
Assembly Manual

EVK Series

Prototyping Boards

Revision D

June, 1977

AMI

-- INTRODUCTION --

This manual describes the assembly procedures for kit versions of the EVK Series -- microcomputer prototyping boards for the AMI S6800.

A factory-assembled board is an EVK 300. A complete kit (except that less EPROMs are supplied) is an EVK 200. A kit which omits support for EPROM and PIA usage is an EVK 100. A set containing the circuit board and samples of the S6800 device family is an EVK 99. The circuit board alone is an EVK 98.

All EVKs (except for the EVK 98) are supplied with a 2K-byte ROM containing PROTO, a TTY-oriented debugging monitor. A separately-priced ROM is also available, containing MA/D -- a "direct" or "zero-pass" micro-assembler combined with a disassembler.

The hardware and software design of a running EVK 300 are described in a separate publication, the "Prototyping Board Manual." That book contains schematics, layout guides, and scope photos which are useful during kit assembly.

-- STARTING KIT ASSEMBLY --

All the integrated circuits go into sockets, so leave the IC's in their shipping packages until the rest of the kit has been assembled and checked.

Set aside the big low-force socket. Insert all the other sockets into their numbered positions. Use some cardboard to hold all the sockets in place while you flip the board over for soldering; a record album cover is just the right size.

Place the board on your work surface and slide out the cardboard. Now solder two diagonally opposite pins on each socket. Press down while you're doing this, so each socket will be correctly seated, flush with the board.

Go back and solder all the remaining pins on all the sockets. An unsoldered pin will lead to mysterious problems later, so double-check the integrity and flow at every pin.

Finally, install and solder the low-force socket in Position 46.

-- FINAL STEPS --

Before you install the IC's, connect your +5V power supply to all the +5V and Ground pins on the "A" connector of the EVK. If your power supply has a current limiter, set it to 4 amps, and expect a draw of 3.5 amps for a full load. Use a meter to check for any short circuits in the power paths. No point on the 5V paths should be less than 4.8V from local ground.

Remember to remove all power each time you insert or remove any component. The distinctive mark for Pin 1 always goes in the upper lefthand corner of each socket.

Install only the TTL devices. Check the clock with a scope. Phase 1 is on 16/3 (Socket 16 Pin 3); Phase 2 is on 16/37. Use the variable resistors to bring each phase to approximately 1 microsecond per half cycle.

Install the 4702 in Socket 27. Check the waveform on 27/10 against scope photo #7 in the other EVK manual.

Install the MOS devices, using normal precautions against static damage. Make the Reset Vector Switches (IC 32 and 43) read F000 -- 1111 0000 0000 0000 -- so bringing power up will jump control to PROTO.

From this point, you can use the operating and troubleshooting procedures in the "Prototyping Board Manual."

-- REGISTRATION AND REPAIRS --

Register your board immediately. It is sold with a 90-day warranty on component failures, other than those caused by negligence in handling or assembly.

After the warranty period has expired, AMI must charge for repairs. As of June 1977, the service fee (in U.S. dollars) is \$75 for an EVK 100, \$125 for an EVK 200 or an EVK 300. This fee includes fault diagnosis, parts replacement, and final checkout on a special tester.

For all EVK matters, address "Microcomputer Services" at one of these locations:

(U.S) American Microsystems, Inc.
3800 Homestead Road
Santa Clara CA 95051

(U.K.) AMI Microsystems, Ltd.
108A Commercial Road
Swindon, Wiltshire

(Japan) AMI Japan, Ltd.
Daiwa Bank Building
1-6-21, Nishi-Shimbashi
Minato-ku, Tokyo 105

-- CONSTRUCTION TABLES --

The board is divided into functional sections, and the components are grouped by those sections:

Clock
Reset
Interval Timer
MPU and Buffers
Restart
Decoding
Memory
I/O
TTY Interface
EPROM Programmer

Resistors, unless otherwise noted, are carbon film, 1/4 watt, 5%. Values are specified in ohms.

Capacitors, unless otherwise noted, are ceramic disks, rated for at least 6 volts. Values are specified in microfarads.

Within each section, part number prefixes follow this order:

R Resistor
C Capacitor
RP Resistor Pack
CR Diode
IC Integrated Circuit or Dual In-Line Package
Q Transistor

These special indicators may appear after a part number:

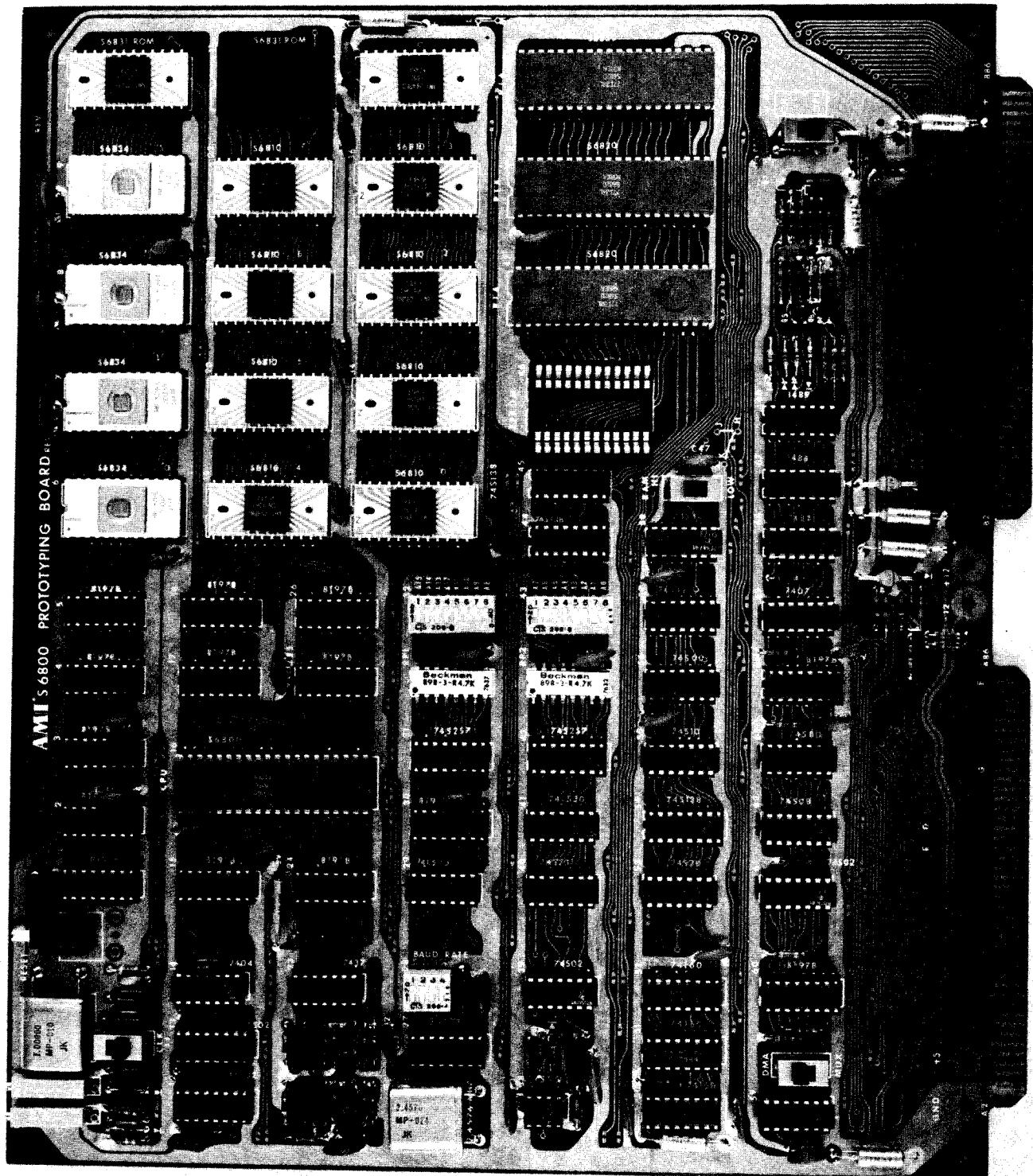
* EVK 200 only
+ EVK 100 only
@ Not supplied with a kit

-- DISCRETE COMPONENTS --

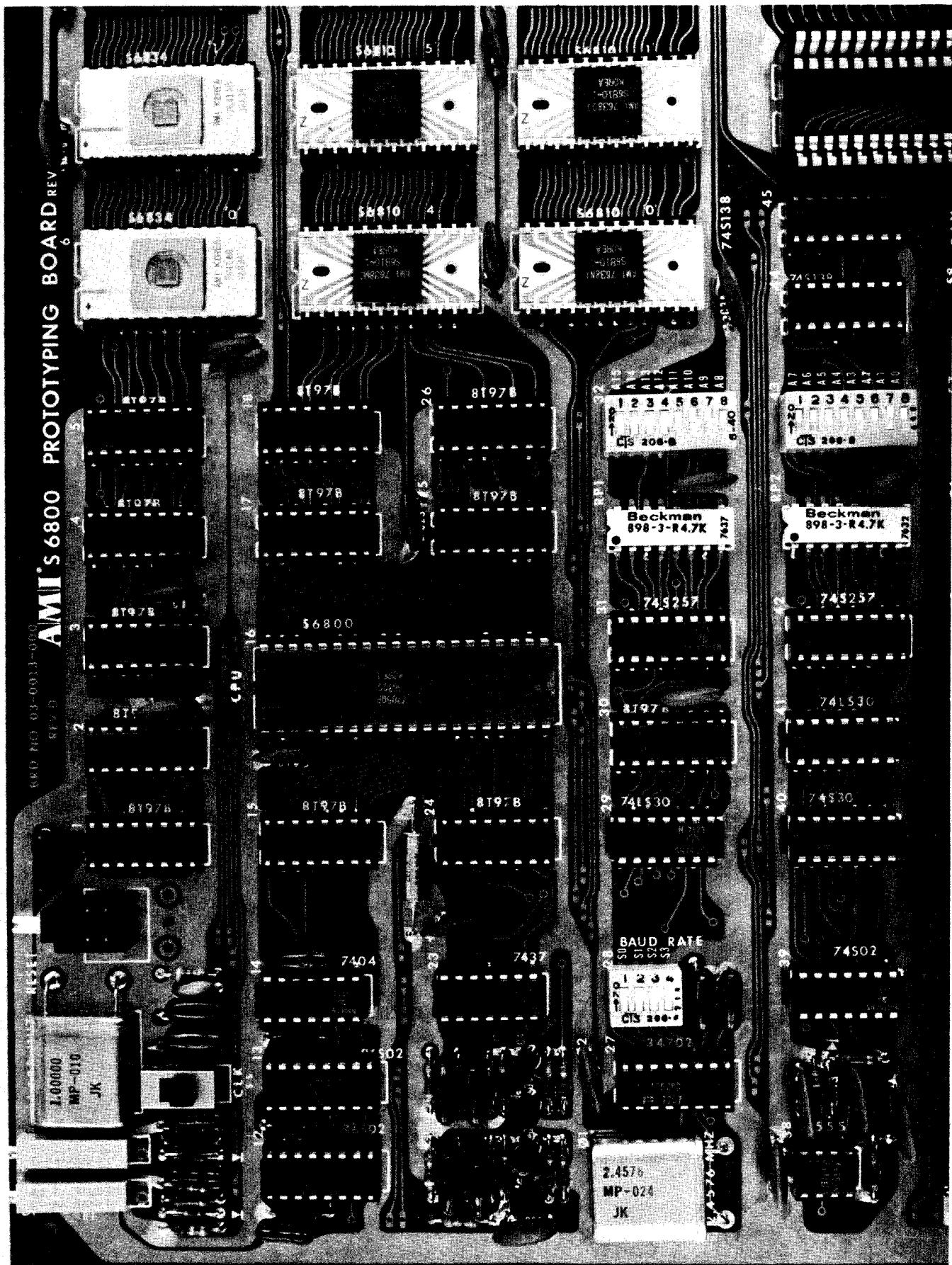
Orient the board, face up, so that it matches the close-up photos in this manual. As you proceed with assembly, compare your work against both the photos and the layout guide in the other manual. Follow the Construction Tables given later, and finish one section at a time.

Install and solder resistors first. Save some long clipped leads for later use as jumpers. Then put in all the diodes. A reversed diode will be hard to find and repair later, so check orientation. Each diode position has a bar-and-triangle symbol; the bar matches the striped end of the diode, and the triangle matches the other end.

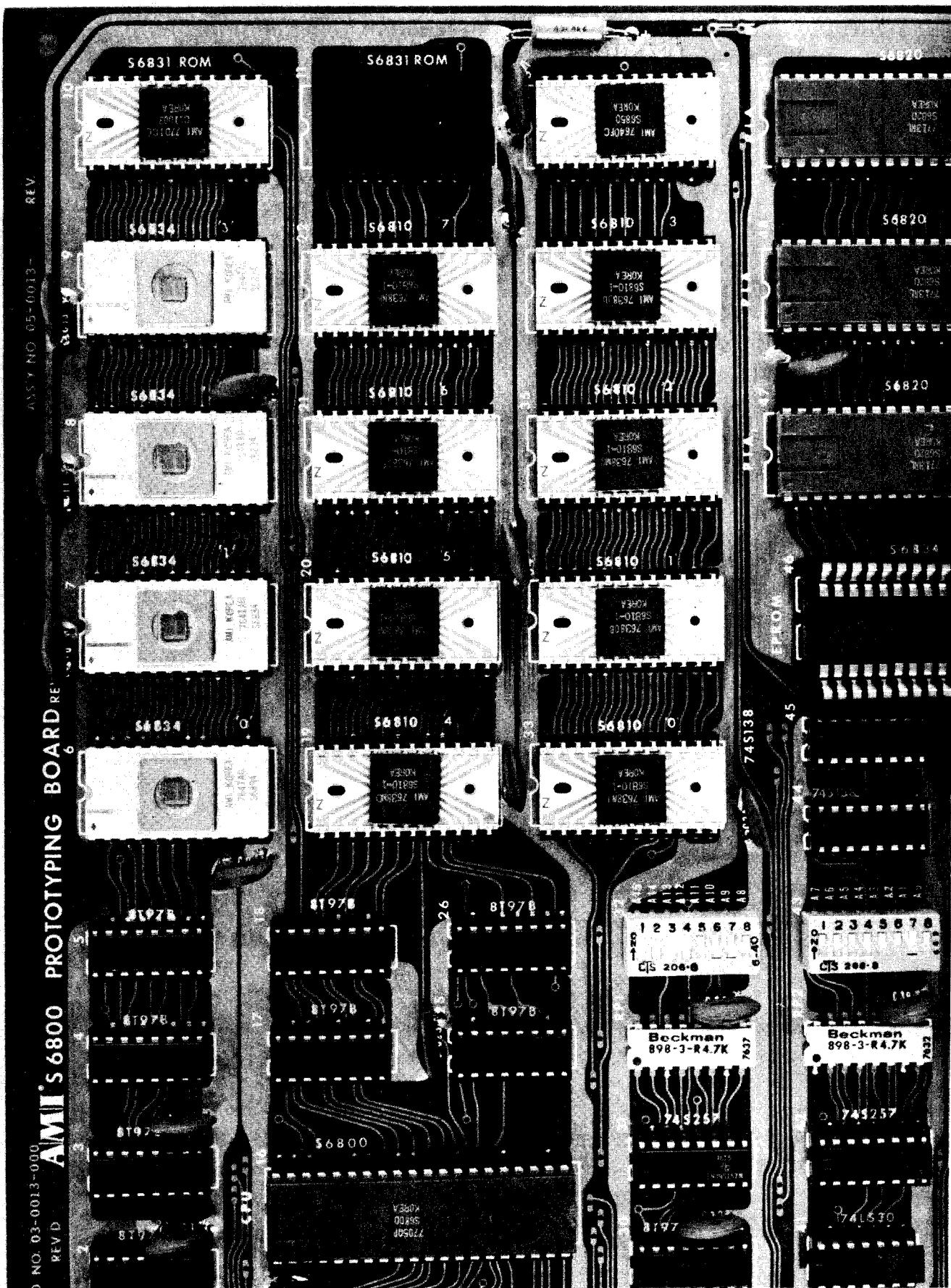
Solder in the capacitors. Each tantalum capacitor -- a silver cylinder -- has a "+" end which must match the board marking.

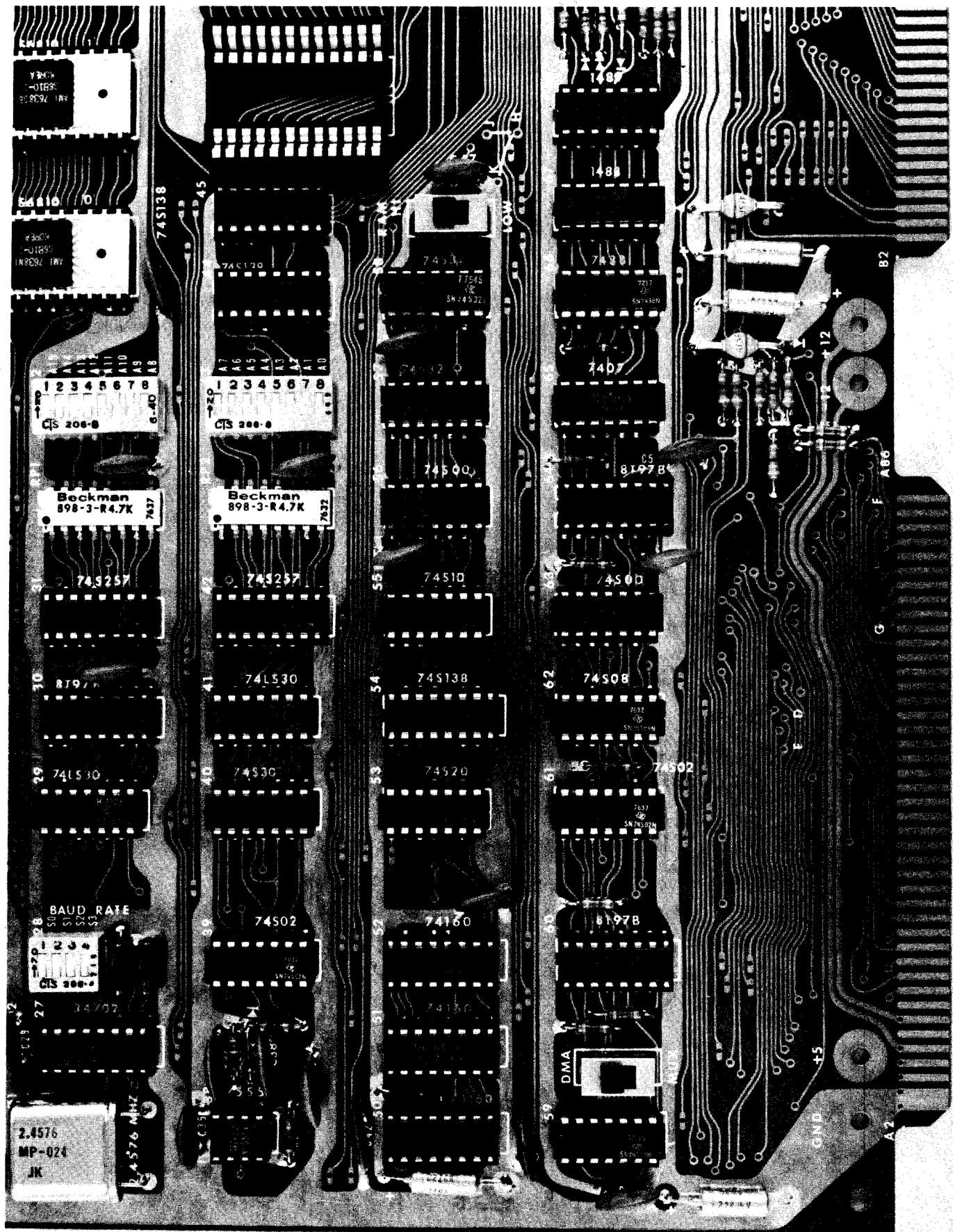

The one or two crystals in your kit will need their leads bent for horizontal mounting, as shown in the photos. Match the frequency on the case to the board marking.

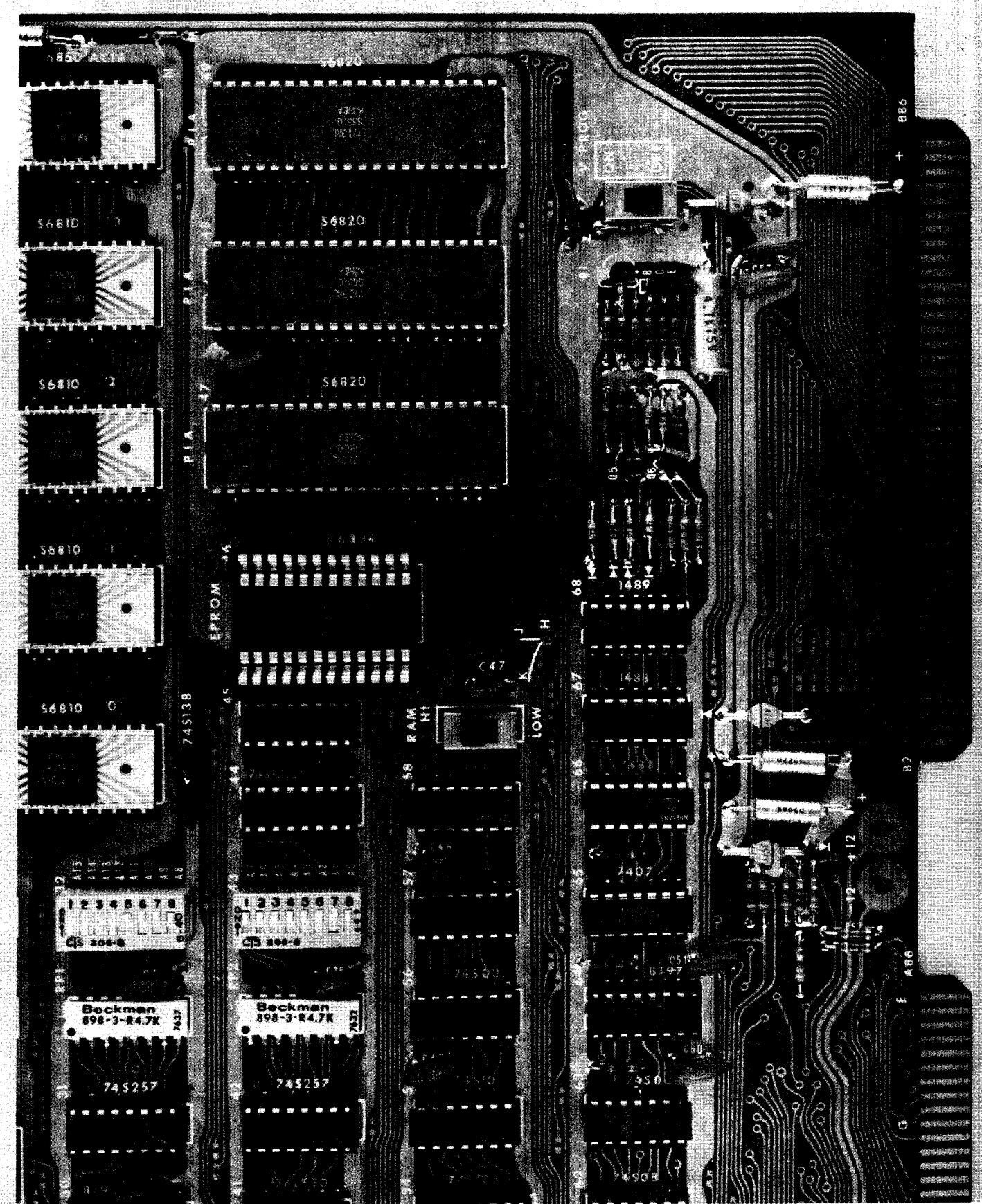
The curved and flat edges of each transistor are shown on the board. Be careful; unsoldering and resoldering a transistor may ruin it.


Now install the switches or jumpers, the variable resistors, and any custom circuit changes you need.

Double-check and triple-check your work. Use a magnifying glass. Almost every board sent back to AMI for repairs has either a poor solder joint or a reversed component.


Check for too much solder as well as too little -- for a "bridge" between two paths. Similarly, watch for a lead not clipped short enough, so that it bends over and touches a board circuit.


COMPLETED EVK 300 (REVISION D)


UPPER LEFT SECTION (REVISION D)

UPPER RIGHT SECTION (REVISION D)

LOWER LEFT SECTION (REVISION D)

LOWER RIGHT SECTION (REVISION D)

-- CLOCK --

R1	Variable to 20K, 15 turn
R2	Variable to 20K, 15 turn
R3	100K (brown-black-yellow)
R4	1.5K (brown-green-red)
R5	100K (brown-black-yellow)
R6	1.5K (brown-green-red)
R7	1K (brown-black-red)
R8 *	1.5K (brown-green-red)
R9 *	470 (yellow-violet-brown)
R10 *	470 (yellow-violet-brown)
R11	4.7K (yellow-violet-red)
R12 *	150K (brown-green-yellow)
R13	3.3K (orange-orange-red)
R14	470 (yellow-violet-brown)
R15	4.7K (yellow-violet-red)
R16	4.7K (yellow-violet-red)
R17	1K (brown-black-red)
R18	33 (orange-orange-black)
R19	51 (green-brown-black)
R20	470 (yellow-violet-brown)
R21	4.7K (yellow-violet-red)
R22	4.7K (yellow-violet-red)
R23	1K (brown-black-red)
R24	22 (red-red-black)
R25	51 (green-brown-black)

C1 Mica, 270pf, 500V
C2 * Mica, 100 pf
C3 * Mica, 470 pf, 500V
C5 * .01
C14 Mica, 270 pf, 500V
C15 * Mica, 100 pf
C17 Mica, 8pf
C18 Mica, 8pf
C19 Mica, 8pf
C20 Mica, 8pf
C60 .1

CR1 1N914
CR2 1N914

IC12 96S02 Dual One-Shot
IC13 * 96S02 Dual One-Shot
IC14 7404 Hex Inverter
IC23 * 7437 Quad 2-Input NAND Buffer

Q1 2N5772
Q2 2N5771
Q3 2N5772
Q4 2N5771
XTAL * 1.000 MHz
SWITCH *@ SPDT Slide, in CLK box
JUMPER +@ Center to "ss" in CLK box

-- RESET --

R26 1M (brown-black-green)
R27 1M (brown-black-green)
R28 100K (brown-black-yellow)
R58 4.7K (brown-black-red)

C21 .1
C29 .1
C30 Mica, 56pf
C31 Mica, 56pf
C35 .1
C36 .47
C37 .1
C38 .1

CR13 1N914

IC27 4702 Baud Rate Generator
IC28 DIP Switch, 4 Positions
IC38 555 Voltage Controlled Oscillator
IC39 74S02 Quad 2-Input NOR

XTAL 2.4576 MHz

SWITCH Momentary, in RESET box

-- INTERVAL TIMER --

R30 1K (brown-black-red)
R31 4.7K (yellow-violet-red)
R32 4.7K (yellow-violet-red)
R33 4.7K (yellow-violet-red)

C41 22 microfarad, 15V

C42 .1

C43 .1

C44 .1

C45 .1

C48 .1

C49 22 microfarad, 15V

IC50 * 74160 Asynchronous Decimal Counter

IC51 * 74160 Asynchronous Decimal Counter

IC52 * 74160 Asynchronous Decimal Counter

IC59 74S10 Triple 3-Input NAND

IC60 8T97B Hex TRi-state Buffer

SWITCH *@ SPDT Slide, in DMA box

JUMPER +@ Center to "norm" in DMA box

^

--- MPU AND BUFFERS ---

C6 **Min, 200pf**

C7 .1

C8 .1

C16 .1

C22 **Tantalum, 22 microfarad, 15V**

C23 .1

C32 .1

IC16 AMI 36800 Microprocessor

IC1, IC2, IC3, IC4

8T978 Non Tri-state Buffer

IC9, IC15, IC17, IC18

8T978 Non Tri-state Buffer

IC24, IC25, IC26, IC30

8T978 Non Tri-state Buffer

-- RESTART --

C33 .1

C39 .1

RP1 4.7K, 3 Resistors

RP2 4.7K, 3 Resistors

IC29 74LS30 6-Input NAND

IC31 74S257 Quad 2-Bit Multiplexer

IC32 DIP Switch, 8 Positions

IC41 74LS30 6-Input NAND

IC42 74S257 Quad 2-Bit Multiplexer

IC43 DIP SWITCH, 8 Positions

-- DECODING --

R29	3.3K (orange-orange-red)
R34	4.7K (yellow-violet-red)
R35	4.7K (yellow-violet-red)
R36	3.3K (orange-orange-red)
R37	120 (brown-red-brown)
R38	4.7K (yellow-violet-red)
R39	4.7K (yellow-violet-red)
R40	4.7K (yellow-violet-red)
R41	2K (red-black-red)
R42	3.3K (orange-orange-red)
R56	4.7K (yellow-violet-red)
R57	4.7K (yellow-violet-red)
R59	3.3K (orange-orange-red)
C45	.1
C46	.1
C47	.1
C50	.1
C51	.1
C55	* Tantalum,.22 microfarad, 15V
C56	* Tantalum, 22 microfarad, 15V
CR10	A15F

-- MEMORY --

C9 .1
C10 * .1, 16V
C11 * .1, 16V
C12 .1
C13 * .1, 16V
C24 .1
C25 .1
C26 .1
C34 .1

IC10 AMI S6833-007 ROM, marked C11003 (PROTO)

IC11 * AMI S6833-008 ROM, marked C10224 (MA/D)

IC19, IC20, IC21, IC22

AMI S6810-1 RAM

IC33, IC34, IC35, IC36

* AMI S6810-1 RAM

IC6 * AMI S6810-1 RAM

IC7, IC8, IC9

* AMI S6810-1 RAM

IC40 74S30 8-Input NAND
IC44 74S138 3-to-8 Decoder
IC45 74S138 3-to-8 Decoder
IC53 74S20 Dual 4-Input NAND
IC54 74S138 3-to-8 Decoder
IC55 74S10 Triple 3-Input NAND
IC56 74S00 Quad 2-Input NAND
IC57 74S32 Quad 2-Input OR
IC58 * 74S32 Quad 2-Input OR
IC61 74S02 2-Input NOR
IC62 74S08 Quad 2-Input AND
IC63 74S00 Quad 2-Input NAND
IC64 8T97B Hex Tri-state Buffer
IC65 7407 Hex Open Collector Driver
IC66 7438 Quad 2-Input NAND Open Collector

SWITCH *@ SPDT Slide, in RAM box

JUMPER +@ Center to "HI" in RAM box

--- I/O ---

C27 .1

C28 Tantalum, 22 microfarad, 15V

C40 .1

IC37 ANI 55500 ACIA

IC47 * ANI 55500 PIA

IC48 * ANI 55500 PIA

IC49 * ANI 55500 PIA

IC68 14500 70-102 Receiver

-- TTY INTERFACE (EVK 100 ONLY) --

R43 2K (red-black-red)
R44 510 (green-brown-brown)
R45 150 (brown-green-brown)
R46 1.5K (brown-green-red)
R47 1K (brown-black-red)
R48 1K (brown-black-red)
R49 100 (brown-black-brown)

C52 .1
C54 .1
C59 Tantalum, 22 microfarad, 15V

CR3 1N4003
CR4 1N4003
CR5 1N4003
CR6 1N4003
CR7 1N4003
CR8 1N4003

Q5 2N3563
Q6 2N4402

-- TTY INTERFACE AND EPROM PROGRAMMER (EVK 200 ONLY) --

R43 2K (red-black-red)
R44 510 (green-brown-brown)
R45 150 (brown-green-brown)
R46 1.5K (brown-green-red)
R47 1K (brown-black-red)
R48 1K (brown-black-red)
R49 100 (brown-black-brown)
R50 1K (brown-black-red)
R51 1K (brown-black-red)
R52 10K (brown-black-orange)
R53 1K (brown-black-red)
R54 22K (red-red-orange)
R55 10 (brown-black-black)

C52 .1
C53 Tantalum, 4.7 microfarad (4.7Kpf), 75V
-- large silver cylinder; markings may not include value
C54 .1
C57 .1, 16V
C58 .1, 16V

C59 Tantalum, 22 microfarad, 15V

CR3	1N4993
CR4	1N4993
CR5	1N4993
CR6	1N4993
CR7	1N4993
CR8	1N4993
CR9	1N4993
CR11	A15P
CR12	A15P

IC67 1408 RS-232 Driver

Q5	2N3906
Q6	2N1402
Q7	2N5400
Q8	NV3900

--- 100 ohm resistors; metal faces resistors

SWITCH 6 SWT 3100, to the left of V PROG box

[End of Construction Tables]