Prototyping Board
Manual

AMIL.

INTRODUCTION D8 el g o m

CHAPTER 1 : .

SYSTEM DESCRIPTION . (& e se Bty 1

MPU. il e gl i s X

Clock . 5 e S 2

Reset . . el el 2

Restart: . T R Rt 2

BUSSTREUCTURE . .o s 2

MEMORY ADDRESS ASSIGNMENT .. 3

READ ONLY MEMORY 3

RANDOM ACCESS MEMORY 3

PARALLEL IO - Sl L bt 3

SERIAL O .. .o i it e Ciriil =i 3

EPROM PROGRAMMER 4

INTERVAL TIMER :. ..l tiie o oay 4

DMA " s e e] 4
CHAPTER 2

PHYSICAL DESCRIPTION .t . iaiis 5
CHAPTER 3

SOFTWARE | - .. : o sl il i 9

L, ADDL; ADDH. OFESEY ' .,0 9

P, ADDL, ADDH, OFFSET 9

S, ADD BYTE 1, BYTE 2, -, BYTEN . 10

D, ADDL, ADDH ;.. .cioviinibie g il e 10

G, ADDE s L bt eie il 10

R i e R L 10

B, ADDL, ADDH, ROMAD 10

V, ADDL, ADDH, ROMAD iy ¥

I, ADDL, ADDH, ROMAD.......... 11

M, ADDL, ADDH,DEST 11

THE SUBROUTINEROM 11

INTERRUPTS. | s iilsle i 11

BREAKFOINTS . |, .ol SR sl 12

© 1976 AMERICAN MICROSYSTEMS, INC.

Table of Contents
CHAPTER 4
REENTRANT SELF-RELATIVE SUBROUTINE
ROMs (RSRSRS) = (RS)3 13
CONCEPTS0l SRS 13
IMPLEMENTATION 0. g 13
THE PROTOSYSTEM1.. 0 14
(RS)3 IN PROTO — SUBROUTINE
DESCRIPTIONS0 it 14
CHAPTER 5
OPERATING PROCEDUREScc... 19
CHAPTER 6
TROUBLESHOOTING PROCEDURES 21
APPENDIX A
BOUU HEX TAPE FORMATbdsld Ad
APPENDIX B
PARTS LIST FOR 6800 PROTOTYPING
B .. B1
APPENDIX C
FROGRAM LISTING ivh e vivnsidd G0 C-1
PROTO (PROTOTYPE BOARD
MONITOR PROGRAM) C-1
PROM BURNER ADDITION TO
PROTOL..0 s C-22
RSRSRS—REENTRANT SELF-RELA-
TIVE SUBROUTINE ROMs C-29
PROTOTYPE SYSTEM SOFTWARE IN
HEX TAPE FORMAT+ = C-48
APPENDIX D
S6800 INSTRUCTIONSETcvovvenss D-1
APPENDIX E
BMISALES OFFICES ih e aieigicd E-1
APPENDIX F
PCB COMPONENT LAYOUT, ARTWORK
AND SCHEMATIC DIAGRAMS F-1

AMIL

List of Figures & Tables

Figure 1-1.
Figure 1-2.
Figure 5-1.
Table 1-1.
Table 1-2.

Table 2-1.
Table 5-1.

AMI 6800 Prototyping Board

Block Diagram

.................

Memory Assignment Map for the
AMI 6800 Prototyping Board
AMI 6800 Prototyping Board
Switch Configuration

I/O Address Assignment
Bit Rate Generator Switch

Settings.....

.................

I/O Pin Assignments
Prototyping Board Current

Requirements

II

AMI.

The AMI6800 Prototyping Board is a single
board, hardware and software, prototyping system.
It allows system development using a functionally
compatible system for reduced development time.
With this board the basic 6800 family parts (S6800,
56810, S6820, S6830, S6831, S6834 and S6850)
can be evaluated. It may also serve as a general
purpose microcomputer for low volume systems to
which the user can easily add I/O or memory. The
10%" x 12" card has two 86 pin edge connectors,
one for MPU Bus lines and one for I/O.

The AMI 6800 Prototyping Board has several
major features which offer great flexibility for
program development.

MAJOR FEATURES

e 2K Bytes ROM

® 512 Bytes EPROM

e Location for 2K Bytes EPROM
e 1K Bytes RAM

III

Introduction

EPROM Programming Capability for S6834
Variable Speed or Crystal Controlled Clock
Up to 58 Programmable I/O lines

ACIA with either TTY or RS-232C Interface

Single +5 Volt Power Source except when using
EPROM or RS-232C Interface Chips

® Totally Buffered MPU Lines Available at Edge
Connector Pins

® RAM in High Order Memory for Dynamic
Interrupt Flexibility

Interval Timer Giving 1ms and 100us Interrupts
Selectable DMA Mode
Restart Address Selection

TTY Operating System Software with a Re-
Entrant Self-Relative Subroutine

® ROM and an EPROM Programming Subroutine

Several of the above options are switch selectable.
See Chapter 5 for details.

AMI.

v

AMIL

— Chapterl

The AMI Prototyping Board is an inexpensive high-
performance system that is ideal for first time users
of microcomputers so that they may gain familiarity
with the individual devices and recommended
applications circuitry. It should also be attractive
for OEMs who are looking for a single board micro-
computer to include as part of their overall system.

System Description

Figure 1-1 shows the block diagram of the AMI
6800 Prototyping Board.

The Prototyping Board is packaged on a 10-1/2" x
12" card (26.67 x 30.48 cm) and has two 86-pin

edge connectors, one for the microprocessing unit
(MPU) bus lines, and one for I/0.

1.000 MHz
MPY ® cLocK Coxn
I
TTL BUFFERS
&
TTL BUFFERS
RESET < »| ADDRESS
SWITCHES
L oo RESET RESTART
= VECTOR
1MHz INTERNAL 2K BYTES 1K BYTES
cLock EPROM RAM
TIMER Rl 63101
-
6834 Lo erROM » 2K BYTES AKBYTES
PROGRAM AOM’s f--- ROM t
EPROM PIASES20 56830 se31 |
T -
2.4576 MKz
EPROM 2 1
ACI AT
PROGRAM PIA A || ereare Zom
CONTROL $8820 56850 GENERATOR
n;__ﬁ
RS232 v
INTERFACE INTERFACE
r v ¢V
1/0 EDGE CONNECTOR BUS EDGE CONNECTOR

Figure 1-1. AMI 6800 Prototyping Board Block Diagram

AMI.

MPU

There are three versions of the Prototyping Board.
The EVK 300 is a fully built and tested unit with
2K bytes of S6834 EPROM. The EVK 200 is kit
version containing all of the components as on the
EVK 300 except it has only 512 bytes of EPROM.
The EVK 100 is a kit containing only the minimum
number of parts to operate with a TTY I/O device.

Central to the Prototyping Board is the S6800 MPU.
All data, address and control lines for the MPU are
buffered and available at the Bus edge connector.
There are also additional circuits for clock genera-
tion, reset and restart. ’

Clock

The basic clock is derived from a 96S02 dual one-
shot (IC 12) connected in a regenerative feedback
loop. A potentiometer is connected to the RC net-
work of each one-shot which allows the clock to be
adjusted from 1.0MHz to approximately 300kHz.
The two phases of the clock are driven from
2N5771/5772 transistors. Both phases are buffered
and available at the Bus edge connector.

A 1MHz crystal frequency generator is also available
for those applications requiring rigid timing accu-
racies. The 1MHz clock is optionally strapped into
the ¢ 1 one-shot to control the timing accuracy.
The 1MHz frequency is also buffered and available
on the Bus edge connector.

The clocks can be halted in either ¢ 1 or ¢ 2 for
cycle-steal, DMA or slow memory applications.
Phase 1 is held HIGH by setting the CYCLE STEAL
control line LOW. Phase 2 is held HIGH by setting
the MEMORY READY line LOW.

The S6800 internal registers are dynamic and it is
necessary to refresh them periodically. It is there-
fore important that the CYCLE STEAL and
MEMORY READY lings are not held LOW for more
than 5 microseconds. Provisions are made on the
Prototyping Board to protect the microprocessor
from non-refresh conditions.

Reset

The Reset circuit provides a timed reset for Power
On Reset timing and for the Reset switch. The
circuit is a timed oscillator which provides a 200
ms reset pulse.

Restart

The starting address of an S6800 is FFFE/FFFF.
The contents of these memory locations are put in-
to the Program Counter register each time the MPU
is reset. The Evaluation Board traps the FFE/FFFF
addresses and puts the contents of the two 8-bit
switch sets (IC 32, 43) on the data bus for each
address and disabling memory, then gating the first
set of switches to the Data Bus during FFFE time
and the second set during FFFF time. The user is
thus allowed to select any restart address by simply
selecting a two byte address on the 16 bits of
switch settings.

BUS STRUCTURE

All of the controls to and from the S6800 are
available at the Bus edge connector. This allows
the user to have complete interface and control to
the MPU. TTL buffers are used to isolate MPU
lines from the bus. Other buffers are provided to
assure that the devices on the board do not violate
the maximum load capacity when the board is fully
loaded. Bus polarity is the same as on the MPU
(data and address true = HIGH).

The bus buffers are non-inverting 3-state hex
buffers (8T97). The enable controls to the MPU
are always active. Controls for the address bus are
gated by the DMA GRANT line. The data bus is
controlled by the DMA and R/W lines.

MEMORY ADDRESS ASSIGNMENT

Address assignments have been made such that all
components on the card can run in the upper 8K
bytes of memory. An address assignment map is
shown in Figure 1-2 on page 3. All I/O devices are
assigned as shown in Table 1-1, page 3.

Address decoding is made by use of three 745138
one-of-eight decoders (IC 44, 46, 54). The first
decoder (IC 54) selects one 1K-byte block of the
upper eight 8K-bytes of memory. The output of
this decoder is for RAM, I/O, ROM, or PROM
enable lines. The second decoder (IC 44) selects
one of eight RAM memory chips. The third (IC 45)
selects I/O devices on the board.

AMIL

1K

1K

*® <

—

K <

nYd

56K <

FFFF
FIXED RAM FE00

WOVEABLE RAM (HIGH) | Fobe
FOFF

"

£800
FIFF
ROM
F400
FIFF

ROM
£000

EFFF
ROM
ECO0

EBFF
ROM
E800

ETFF
EPROM (HIGH)
E400

E3FF
EPROM (LOW)
E000

OFFF

—————————————— 0FF

MOVEABLE RAM (LOW)

Figure 1-2 Memory Assignment Map for the

AMI Prototyping Board
1/0 PORT ADDRESS ASSIGNMENT
S6850 ACIA Serial 1/0 — TTY
FBCE Status/Read
FBCF Control/Write
S6820PIA 1 Unassigned
FBCS8 Peripheral Register A
FBC9 Control Register A
FBCA Peripheral Register B
FBCB Control Register B
$6820 PIA 2 Keyboard/Unassigned
FBCO Peripheral Register A
FBC1 Control Register A
FBC2 Peripheral Register B
FBC3 Control Register B
S6830 PIA 3 PROM Burner

FBC4 Peripheral Register A
FBCbH Control Register A
FBC6 Peripheral Register B
FBC7 Control Register B

Table 1-1 I/0 Address Assignment

A MEMORY DISABLE line is available at the Bus
edge connector. This line, when LOW, deselects the
first address decoder disabling all I/O and memory
devices on the board. An I/O ENABLE line is
derived from the first address decoder and is avail-
able at the Bus edge connector. It must be noted
that 1/O ENABLE on the backplane is not valid
when MEMORY DISABLE is LOW.

READ ONLY MEMORY

The Prototyping Board has assigned locations for
two 1K byte S6830 ROMs and for four 512 x 8
S6834 EPROMs. The ROM circuits are designed
such that the locations will also accept two 2K
byte 16K ROMs (S6831). Thus, maximum memory
allocation for ROM and EPROM is 6K bytes. The
prototyping operating system program (PROTO)
is assigned to the ROM with a starting address of
F000.

The four EPROM locations may contain any user
program. Execution can start from beginning
EPROM location either by selecting EPROM
starting address of EOOO in the restart switches or
by branching to that address using the “G” com-
mand in the PROTO program.

RANDOM ACCESS MEMORY

The RAM is divided into two parts, 512 bytes
fixed in the highest memory locations and 512
bytes of moveable memory.

Since the highest memory locations (FFFE,
FFFF) are used for restart address, the address
circuits disable the RAM using a memory disable
line and force the 16 bit switch address on the data
bus whenever a Reset occurs. This allows the user
to vector to any address as his restart address.

The PROTO program assigns restart vectors for
IRQ, NMI and SWI whenever it is started (usually
via Reset). It is therefore important to note that
the user program must do the same thing if he does
not use PROTO and restarts from a power down
mode.

The stack pointer is assigned to address FF8F in
PROTO. This allows the remaining RAM to be
used as stack if so desired.

A switch option allows 512 bytes of RAM to be
relocatable. When in the upper portion of memory,

AMIL

the RAM is assigned to addresses FC00 to FDFF
making all 1K-bytes of RAM on the board con-
tiguous (FC00 to FFFF). When in the lower por-
tion of memory, the 512 bytes are addressed when-
ever A9 and Al5 are not true (0000 — O1FF for
example). It is thus recommended that RAM be
assigned to the low address only if the user does
not add other RAM to his development system.

PARALLEL 1/0

Three S6820 PIA’s give the user a wide range of
I/O flexibility. The PIA’s are assigned addresses as
shown in Table 1-1. Interface pins of these devices

are directly connected to the I/O edge connector.

The CA2 pin for the PIA at addresses FBC4 is also
connected to the Vprog input (pin 11) to the
EPROM socket (IC 46) through a +5V to -50V
driver. The user is cautioned to use this line such
that it will not interfere with his I/O function if
programming an EPROM. For example, if the CA2
line is connected to an external control function,
this function may be erroneously activated while
programming an EPROM.

SERIAL 1/0
SW POSITION BIT RATE

4 3 2 1

(1} 0 0 0 19,200 baud
0 0 0 1 0 baud
0 0 1 0 60 baud
0 0 1 1 75 baud
0 1 0 0 134.5 baud
0 1 0 1 200 baud
0 1 1 0 600 baud
0 1 1 1 2,400 baud
1 0 0 0 9,600 baud
1 0 0 1 4,800 baud
1 (1} 1 0 1,800 baud
1 0 1 1 1,200 baud
1 1 0 0 2,400 baud
1 1 0 1 300 baud
1 1 1 0 150 baud
1 1 1 1 110 baud

Table 1-2. Bit Rate Generator Switch Settings,
0 = Closed, 1 = Open

One S6850 ACIA allows the system to communi-
cate bi-directionally with serial data I/O peripherals
such as a TTY. A baud rate generator generates all
standard communication frequencies by switch
selection. This frequency operates independently
of the system clock so the MPU frequency can be
changed without altering the I/O clock rate. See
Table 1-2 for switch setting and associated fre-

quencies. A 20 mA current loop interface and an
RS-232 interface are both available at the I/O
edge connector.

Address assignments for the ACIA are given in
Table 1-1.

EPROM PROGRAMMER

A unique feature of the Prototyping Board is its
ability to program AMI S6834 EPROMs. A third
PIA latches the address and data information
for programming the EPROM. The EPROM socket
programs only the S6834 EPROM, however, an
adapter plug is available to also program the AMI
S5204A EPROM. Except for the Wprog input, all
address, chip select, R/W and data I/O pins on both
EPROMs are completely TTL compatible and are
driven directly from the PIA outputs. The outputs
are also available on the I/O edge connector for
convenience in using another EPROM programming
socket. '

Programming is achieved by pulsing the VproG pin
with ~50 volts through the CA2 line of the PIA at
address FBC4. This line drives the transistor that
gates the -50 volt source to the Vprog pin. The
-50 volt source is switched ON or OFF via the

VproOG switch.
INTERVAL TIMER

The 1MHz clock is divided into two basic interval
timing pulses, one every 100us and one every milli-
second, by using three 74160 divide-by-ten counters
(IC 50, 51, 52). The time intervals may be changed
only by rerouting the printed circuit lands. These
basic times are available to the user and are also
used for EPROM programming. The 1 ms timer
sets bit 7 of address FBC5 and the 100us timer sets
bit 7 of address FBC7.

DMA

Three types of DAM implementation are possible

on the Prototyping Board, a halt processor mode, a
cycle steal mode and a multiplex mode. A switch
selects these DMA modes. The switch must be in
the DMA position for the multiplex DMA mode. A
delayed clock gives the DMA GRANT line to the
bus after the ‘“Data Hold” time has passed for a
multiplexed type of DMA operation. The control
lines for the halt processor and cycle steal modes
are available at the Bus edge eonnector.

AMIL.

Chapter 2

The AMI 6800 Prototyping Board is designed on
a single 10%°X12" printed circuit board. There
are two edge connectors, one is used for the MPU
bus and the other for the input and output. Volt-
age assignments are made such that the card may
be reversed in a dual connector application without
destroying the circuits. The connectors are 43X2
or 86 pins each and fit an Amphenol P/N 225-805-
43 connector or equivalent. Table 2-1 lists the I/O
pin assignments.

Physical Description

It is possible to operate the Prototyping Board by
using only one connector. All power, ground and
I/O connect circuits are present in the I/O
connector so this is all that is essential to connect
in a minimum system. The Bus connector is for
expanding the system to add more memory, I/O
or controls.

Nominal power requirements are 3.5 amps of +5
volts and 150mA of -12 volts when S6834 EPROMs

are used.

Connector Pin Assignment Comments | Connector Pin Assignment Comments
A 1 Ground A , 26 Dy
2 Ground (cont’d) 27 A
(MPU Bus) 3 Ground 28 Ds
4 Ground 29 Asg
5 +5 volts 30 Dg
6 +5 volts 31 Aq
7 +5 volts 32 Dy
8 +5 volts 33 Ag
9 +12 volts 34 Reserved
10 +12 volts 35 Ag
11 +15 volts
12 +15 volts gf‘, Reffmd
13 -12 volts 38 Resemved
14 —12 VOltS 39 A
15 -15 volts 40 Reserved
16 -15 volts 41 A 12
ig SO 42 Reserved
19 Ao 43 Axs
20 Dl 44 Reserved
1 45 Ajyg
gé 32 46 Reserved
23 A - As
24 D3 48 Reserved
A 25 Al 19 (Ae)
4 A 50 Reserved

Table 2-1. 1/O Pin Assignments

AMIL.

Connector Pin Assignment Comments | Connector Pin Assignment Comments
A 51 VMA B 1 -50 volts
(cont’'d) 52 Reserved . 2 V PROG
53 ENABLE (1/0) 3 EPROM Dy
54 Reserved 4 EPROM Ay
55 MEMORY DISABLE Open 5 EPROM D,
IColletf:t;or 6 EPROM A;
npu 7 EPROM D,
56 Reserved 8 EPROM A,
57 MEMORY READY 9 EPROM D3
58 Reserved 10 EPROM A3
59 R/W 11 EPROM Dy
60 Reserved 12 EPROM A 4
61 HALT 0.C. Input 13 EPROM Ds
62 Reserved 14 EPROM Aj
63 1/0O SELECT Output 15 EPROM Dg
64 Reserved 16 EPROM Ag
65 RESET Output/ 17 EPROM Dy
0.C. Input 18 EPROM Aq
66 16 X Baud Rate 19 EPROM R/W
67 RESET sW Input 20 EPROM Ag
68 Reserved 21 CBa.9
69 RES. SW DISABLE O.C. Input 22 CB2_1
70 TSC 23 CBi.o
71 1.000MHz Clock 24 CBjy-1
72 Bus ¢1 Clock 25 PB7.2
73 2.4576MHz Clock 26 PB7.,
74 Bus ¢2 Clock 27 PBg.2
75 IRQ O.C. Input 28 PBg.1
76 BA 29 PBs.2
77 NMI 0.C. Input 30 PBs5.1
78 REFRESH GRANT PB
79 CYCLE STEAL a PBs .
80 _DELAYED 33 PBj.o
DMA GRANT 34 PB3 1
81 DMA GRANT OUT 35 PBg.2
82 DMA GRANT IN 36 PBj.,
84 JNTP IN
38 PB;.;
85 Reserved 39 PB.o
A 86 -50 volts 40 PBO-]
41 PA7.9
42 PA74
43 PAg.o
44 PAg.1
B 45 PAs.o

Table 2-1. I/O Pin Assignments (Continued)

AMIL.

Connector Pin Assignment Comments Connector Pin Assignment Comments
B 46 PAj. 4 B 66 TTY OUT -
(cont’d) 47 PA4.2 (cont'd) 67 TXD
48 PA4q 68 TTY IN +
49 PAg.o 69 ~ RXD
50 PA3 4 70 TTY IN -
51 PAg.2 71 ~15 volts
52 PAg.q 72 -15 volts
53 PAi 9 73 -12 volts
54 PA1 74 -12 volts
55 PAg.2 75 +15 volts
56 _PAg-1 76 +15 volts
57 CAj 71 +12 volts
58 CA1— 78 +12 volts
59 CAo_o 79 +5 volts
60 CAg— 80 +5 volts
61 RTS 81 +5 volts
62 READER CONTROL 82 +5 volts
64 TTY OUT + 84 Ground
B 65 DCD 85 Ground
B 86 Ground

Table 2-1. I/O Pin Assignments (Continued)

I

1

I

A% i

AMI.

Chapter 3

The board will be supplied with a prototyping
operating system program (PROTO). The program
resides in ROM with a starting address of FQQ9.
The various routines within PROTO are called by
entering via the TTY keyboard one of the com-
mands described in the following paragraphs. A
command consists of one character command
identifier followed by additional parameters, if
needed, separated by blanks or commas. All
commands end with a carriage return. Since no
action is taken before the carriage return, an input
line may be deleted by the use of the TTY ESCAPE
key.

L, ADDL, ADDH, OFFSET

The Load tape command loads data from a hex
formatted tape (see Appendix A) into the user’s
memory between ADDL and ADDH, inclusive. The
OFFSET is added to the memory address specified
on the tape to form the actual memory starting
address for the data stored. If a byte to be stored
into memory has an address outside of the range
ADDL, ADDH, it is not entered into memory, but
a Delete character (H’FF) is transmitted to the
terminal.

Example: L 0100 O02FF FFFA

The address range‘ in the L command is optional, ~

and if omitted is assumed to be the full range of
memory (0000—FFFF). The offset parameter is
also optional, and if omitted is assumed to be zero
(0000). Thus the L command with no parameters
loads the tape into the memory locations specified
on the tape with no offset. The offset value in the
L command is a two’s complement signed number,
entered in unsigned hexadecimal. For example, an
offset of -6 is entered as FFFA.

Software

If an attempt is made to load non-existent memory,
or ROM, the loading operation will terminate,
typing out the address and the message ‘“BAD
ADR”,

In operating the Load command, PROTO turns
on the tape reader and scans the tape for the
first ASCII “‘S”, which indicates start of record.
It is not necessary to position the tape at the first
record of a tape file since each record contains
its own starting address.

PROTO will load data records until it encounters
an end of file (EOF) record or a tape error (Check
Sum or illegal character). When PROTO reads a
header record (start of record and address), it
translates the header into ASCII characters and
prints the result. The Check Sum is the binary
sum of all characters in the block.

PROTO does not list the tape contents as the tape
is being read.

When PROTO encounters an end of file record
or a tape error, it turns off the reader and prints
“EOF” or “CKSM ERR” respectively.

P, ADDL, ADDH, OFFSET

—

The Punch hex format command causes PROTO
to punch on the TTY papertape the contents of
memory between ADDL and ADDH, inclusive.
Each record is punched with a four-digit hex
address of the starting byte of the record. This ad-
dress is derived from the memory address of the
byte being punched, plus the offset value, OFF-
SET. The offset is optional, and if omitted is as-
sumed to be zero.

AMIL

All data records are punched in hex format.
Records using this command (except the last
record) contain 16 bytes of data plus the start
code, byte count, address, and the checksum.

The P command does not cause an EOF record
to be punched so that several disjoint blocks
of memory can be combined on one tape file.

Example: P FO00 FO07F O0OF00

S, ADDR, BYTEL1, BYTE2, — — —, BYTEN

The Set memory command writes the 8-bit data

words specified by BYTE1 to BYTEN into con-

secutive memory locations starting at ADD.

If ADD has more than 4 (hexadecimal) characters
or if any of the data bytes have more than 2
characters each, only the last 4 or 2 characters are
used respectively.

Example: S 0000 86 05 97 28

Memory locations at 0000 thru 0003 are loaded
as shown.

D, ADDL, ADDH

The Display memory command prints the contents
of memory between ADDL and ADDH, inclusive,
in hex format. Up to sixteen bytes per line are
printed, preceded by the hexadecimal address of
the first byte of the line. A carriage return is forced
after a byte having a low order digit of F in its
memory address is printed.

Example: D FC00 FCIF

Two lines of memory contents are printed as
follows:
FCOO 00 01 02 03 04...0EOQF
FC10 10 11 12 13 14...1E1F

~

G, ADDR

The Go command starts execution of the user
program at the address specified by the input
parameter. To insure that all registers contain the
same information they held before the user pro-
gram was interrupted, PROTO pushes into the
stack the copy of the user registers that it keeps
at locations FFEB—FFF3 (CC, B, A, X, P, S) then
executes an RTI instruction. The user can change

10

the memory address),

the initial values of the registers by changing the
contents of these locations.

Example: G 300

Program will branch to address 0300 and start
execution from that point.

R

The Registers command prints the contents of
memory locations FFEF—FFF3 which contain
the values that were in the user’s C, B, A, X, P, and
S registers (in that order) when the user’s program
was last interrupted.

B, ADDL, ADDH, ROMAD

The Burn command copies the contents of user
memory into the EPROM in the programming
socket, beginning with memory location ADDL
through ADDH, inclusive, to EPROM locations
beginning with address ROMAD. Each byte is
burned in with 20 3-ms pulses of -50V on the
VPrOG pin (pin 11) of the EPROM. Before at-
tempting to write into the EPROM, the contents of
the EPROM are compared with the user memory
data byte to verify that the EPROM will take the
byte (PROTO will not attempt to program a
EPROM location to logic LOW which already con-
tains logic HIGH). After the 20 pulses, the new
contents of the EPROM are verified against the
memory byte to be sure the data was indeed
written. If the byte did not program, a NAK code
is typed out on the terminal, and another try is
made, up to a maximum of three tries.

If the preverify encounters a EPROM location
containing HIGHs where the memory byte has
zeros, PROTO will type out the memory address,
the memory byte in binary, the EPROM byte in
binary, and the EPROM address (if different from
then stop. If after
attempting to write data into the EPROM, the
data does not program, or erroneous bits show
up, a similar display occurs for the failing location,
with the additional message “BAD ADR” typed
on the same line.

The EPROM address ROMAD is optional, and if
omitted, ADDL is used, with only the least signi-
ficant nine bits of the address being used. If the
address range ADDL, ADDH is omitted, the 512
bytes beginning at FC00 are used, and the EPROM

AMIL

is checked to insure it contains all LOWs before
any locations are written. If not, four question
marks are typed and the B command is aborted.

Y, ADDL, ADDH, ROMAD

The Verify command compares user memory bet-
ween ADDL and ADDH, inclusive, with the corres-
ponding locations in the EPROM in the program-
ming socket, beginning with EPROM address
ROMAD. Each location that does not match is
typed out in the following format:
aaaa mmmmmmmm PPPPPPPP . ITIT

where ‘‘aaaa” represents the user memory address,
“mmmmmmmm” represents the memory byte, in
binary, and ‘‘rrrr’’ represents the EPROM address,
if different from the memory address (in the low
nine bits). Nothing is typed for matching locations.
The typeout may be aborted by typing an ESC
key during the typeout.

If the ROMAD parameter is omitted, ADDL is
assumed. If no parameters are supplied in the
command, the whole EPROM is compared to the
contents of FCO0 — FDFF.

I, ADDL, ADDH, ROMAD

The Input command copies the contents of an
EPROM in the programming socket into memory
beginning at the address ADDL through ADDH,
inclusive, from the EPROM address ROMAD. If
ROMAD is omitted, ADDL is assumed. If no para-
meters are supplied, the entire EPROM is copies
into the RAM area, FCO0 — FDFF. An attempt to
copy an EPROM into non-existent memory will
abort the command with the message “BAD ADR”.

M, ADDL, ADDH, DEST

The Move command copies memory from the
range ADDL — ADDH, inclusive, to the RAM loca-
tions starting at DEST. This copy begins at the
lower address, so if DEST lies within the range
ADDL — ADDH, some of the original data will be
lost, and other parts will be duplicated.

E

The End of Transmission command is used to
cause an EOT character to be punched on the
paper tape. After a field has been punched, an EOT
will terminate the record and punch a trailer tape.
When reading a record, the reader will stop at the

11

EOT character. If no EOT character is present,
the reader must be manually turned off and the
Reset switch must be pressed to enter the operating

system program.
THE SUBROUTINE ROM

Many of the monitor’s functions are accomplished
with the help of the Re-Entrant Self-Relative
Subroutine ROMs (RS) . This standard ROM,
which can be considered a software extension to
the 6800 instruction set, is also available to be used
by the user both on the prototype board and in his
final production system. The user can call one of
the 25 (RS)’ subroutines with an SWI instruction
followed by the number of the desired subroutine.
The details of the subroutines available in the
(RS)’ user’s manual.

The user should be aware of the fact that the
(RS)® pushes from 7 to 10 bytes of data onto the
stack, depending upon which subroutines are called.
This means that if the user calls (RS)’ routines, he
must make sure that the necessary memory space is
available for stack expansion.

Since PROTO assigns its own stack area, the user
need not be concerned about how (RS) is used.

INTERRUPTS

Of the four available interrupt vectors, IRQ, RE-
SET and SWI are used by PROTO while NMI is
left for the user. The vectors are in RAM (except
for RESET which is switch controlled) so the user
writing his won program can completely control
the system.

The upper memory locations are RAM. If the user
expects either NMI or IRQ interrupts to occur, he
must initialize the vector addresses to the starting
address of the IRQ and NMI handler routines.

PROTO must have control of the RESET vector so
that the RESET switch on the Prototyping Board
can return program control to PROTO at any time.

The reset routine copies the contents of the B, A,
X, CC, and S registers into a fixed area of memory.
This means that the program can be aborted at any
time by using the reset switch while still saving all
the registers except the program counter. Unfor- .
tunately, the contents of the program counter are
lost.

AMIL

It is possible for the user to use the NMI interrupt
to abort a program execution without losing the
contents of the P and C registers. This condition is
automatically set in the NMI handling routine
when PROTO is called. This interrupt vector will
cause the contents of the user’s registers to be
printed when the NMI lines goes low.

Since the SWI instruction is used to call sub-
routines between 00 and H'18 from (RS)?® as
described in Chapter 3 ‘“The Subroutine ROM”,
the user is somewhat limited in the ways he can use
SWI instructions. However, he can access an SWI
handler routine in his own program by an SWI

instruction followed by -a byte containing the"

decimal number less than H'80 but greater than
H'19 < n < H’'80 sequence, PROTO passes control
at address FFF4. If the user expects to access his
own SWI routine and use PROTO, he must use the
Set Memory command to store the address of this
routine at locations FFF4 and FFF5.

PROTO makes sure that the user’s SWI routine is
entered from the stack with all registers containing
the same information that they would hold if the
routine were entered directly through the SWI
vector.

BREAKPOINTS

Breakpoints allow the user to halt his program and
examine the contents of the internal registers.
PROTO provides two types of breakpoints. In this
system, breakpoints are actually debugging routines
that can be called from the user’s program just like

12

(RS)* routines. (See Chapter'3 “The Subroutine
ROM”.)

Each breakpoint requires a two byte calling
sequence: an SWI instruction followed by a number.

Breakpoints may be inserted either by reassembling
the program with the extra SWI instructions added
the Set Memory command may be used to replace
parts of the code with SWI instructions. Note that
the second method is not satisfactory for the snap-
shot option (described below) since the replaced
code must be restored before execution can be
continued. When using the second method, the user
must make sure that he replaces the first two bytes
of an instruction. If the SWI replaces the second or
third byte of an instruction, it may be interpreted
as an address rather than an opcode.

The different types of breakpoints are:
1. Print registers (SWI, H'80)
2. Snapshot (SWI, H'81)

The sequence SWI, H'80 saves the user’s registers at
the vector stored in FFF4 — FFF5, prints their
contents (in the order CC BB AA XXXX PPPP
SSSS), then returns control to PROTO.

The sequence SWI, H'81 prints out the contents of
the user’s registers then continues executing the
user’s program starting at the address following the
byte containing the number H'81. Note that if this
address does not contain a valid opcode, unpredict-
able results will occur.

AMIL.

Chapter 4

The cost of microprocessor software development
is many small items: the cost of assembly time,
storage time, transmission time, loading time,
design, development, documentation and debug.
The cost of many of these items continues to ac-
cumulate even though a subroutine library exists
for common functions, in particular the time and
cost of transmission, loading and ROM pattern
generation.

The purpose of Reentrant Self-Relative Subroutine
ROMs (RS)3 is to give the user a hardware subrou-
tine package which exists in the breadboard design
from the beginning. The programs are documented,
debugged and constitute some of the most com-
monly performed subroutines that assembly lan-
guage programmers generate. The subroutines are
not complex and are not intended to be. Any sub-
routine could easily be reproduced by a user; how-
ever, the intention is that the routine exists now
and the user does not have to reproduce it. The
routines tend to be slow because of their generality
but the intention is immediate availability. If a
particular program is time critical, it can be regen-
erated later when the time critical elements are
known.

CONCEPTS

The (RS)3 uses a number of concepts to allow flex-
ibility in the user environment. The first concept is
self-relative programming. This simply means that
the program will function correctly regardless of
where it is located in memory. The user will need
to know where it is located so he can reference it.
However, this actual location will only have to be
recorded once. The self-relative program uses rela-
tive address instructions for program control and
the index and stack pointer instructions for data
manipulation.

13

Reentrant Self-Relative

Subroutine ROMs (RSRSRS)=(RS)’

The stack is used for temporary storage of data to
prevent (RS)3 from being tied to fixed addresses.
This allows the program to be reentrant; i.e. the
program can be called at different times without
completing the previous call. This means that the
same routine can be called by the interrupt proces-
sor as well as by the program which was inter-
rupted. The concept of reentrant code is not to be
confused with recursive code; even through recur-
sive coding could have been used in the subroutine
package, it is not.

The subroutine calling mechanism uses the SWI
instruction followed by a single byte index for the
particular subroutine invoked. This was chosen
because the SWI is the most convenient from an
internal programming viewpoint and the safest. It
is safe because an error in a ROM can be cor-
rected by replacing the subroutine ROM without
altering any other user ROM. If direct addresses to
subroutine code exist in the user’s domain, his
ROMs would change if the location of the routine
in the (RS)3 changed.

IMPLEMENTATION

The user places the base address of the (RS)3 into
the SWI vector address. Each SWI instruction re-
quires an index byte to follow the SWI instruction
where the index indicates the function to be exe-
cuted. After the function is performed, the user
program will continue with the instruction follow-
ing the index byte. In essence, a whole new set of
instructions have been created for the user which
are two bytes long.

To make the entry easier, a macro call can be pro-
vided which will assemble the correct index byte
when the function name is used. A set of EQU
assembler commands associates the name and the
index byte value.

AMIL.

Example:
MULS EQU 10
MUL16 EQU 11
DIVS8 EQU 12
DIV16é EQU 13
FUN M:ACRO INDEX
SWI.
BYTE INDEX
MEND
FUN MUL8

Each (RS)3 ROM will have the ability to interro-
gate the index byte and vector to the appropriate
subroutine if it is included in the ROM. If the
index extends the number of subroutines included
on the ROM the number is subtracted from the
temporary index value and the next (RS)3 ROM is
automatically branched to. This allows the user to
select any of several subroutine sets, where each set
of subroutines is represented by a separate ROM.
The selected ROMs are concatenated together into
a contiguous region of the user’s memory space,
and are automatically linked together by the index
value. Thus the actual value of the index byte for
any particular subroutine is the sum of the total
number of subroutines in the physically previous
(RS)3 ROMs plus the offset in its own ROM. The
document for each (RS)3 ROM will therefore
include both the descriptions of the subroutines in
that ROM and the relative index values for these
subroutines. It must be noted that address assign-
ments for (RS)3 ROMs must be made beginning at
1K boundary addresses.

THE PROTO SYSTEM

The 2K X 8 ROM provided with the PROTO pro-
totyping system includes a set of (RS)3 subrou-
tines with a slightly different linkage from the
standard (RS)3 form, although the calling sequence
is the same. In particular, the provision for addi-
tional subroutines in the form of other (RS)3
ROMs is limited to a total of 127 subroutines. The
first additional (RS)3 ROM address must be placed
in RAM location FFF4 (which can be set via the
Set Memory command or modified by an initializa-
tion code in a user program). Also, since it is incor-
porated into a larger program, the whole of which
very nearly fills the 2K bytes of its ROM, the

14

(RS)3 part of the ROM does not start on an even
page boundary, making it awkward for isolated
use, However, the 24 subroutines included in this
ROM are available to user program calls with the
SWI calling sequence, as described.

(RS)3 IN PROTO — SUBROUTINE
DESCRIPTIONS

Each of the subroutines in the ROM are described
here, giving the index for the call, a mnemonic sub-
routine name, a descriptive title, and the number
of bytes in the stack used by the call (including the
SWI). A brief description of the subroutine opera-
tion is also given, with the entry requirements, the
exit conditions, and the registers altered by the
subroutine. Only those registers indicated are
altered by any (RS)3 subroutine.

Stack
Index Name Title v Bytes
00 PUSH ALL Push All Registers 14

Five bytes are pushed onto the stack, containing,
respectively, the Condition Codes, the B and A
accumulators, and the Index Register. No registers
are altered (except the stack pointer, which is
decremented by 5).

Entry: Any

Exit: Stack: SP +1 +2 +3 +4 +5 (=old SP)
CC, B, A, XHXL

Registers Altered: Sp

01 POPALL Pop (=Pull) All Registers 9

Five bytes are pulled from the stack into the Con-
dition Codes, the B and A accumulators, and the
Index register, respectively. The Stack Pointer is
incremented by 5.

Entry: Stack, as by PUSH ALL

Exit: CC, B, A, X pulled from stack
Registers Altered: CC, B, A, X, SP
02 TXAB Transfer Index Register 9

toAand B

The most significant eight bits of the index register
are copied to the A accumulator, and the least
significant eight bits are copied to the B accumu-
lator.

Entry: Any
Exit: A, B loaded from X
Registers Altered: AB

AMI.

Stack Stdck

Index Name Title Bytes Index Name Title Bytes
03 TABX Transfer A and B to 9 07 ADDXAB AddIndextoAandB 14

Index Add the contents of the Index Register to the two

Accumulator A is copied to the most significant
byte position of the index register, and accumula-
tor B is copied to the least significant byte position
of the index register.

Entry: Any
Exit: X loaded from A, B
Registers Altered: X
04 XABX Exchange A and B with 12

Index

The contents of the Index register and the two
accumulators are exchanged, A with the most signi-
ficant byte of X, B with the least significant byte.

Entry: Any

Exit: A, B and X exchanged

Registers Altered: A, B, X

05 PUSHX Push Index Register 11

The contents of the index register is pushed onto
the stack. The Stack Pointer is decremented by
two.

Entry: Any
Exit: Stack: SP +1 +2 (=old SP)
XH XL
Registers Altered: SP
06 PULLX Pop (=Pull) Index 9

Register from Stack

Two bytes are puﬁed from the stack into the index
register, and the stack pointer is incremented by
two.

Entry: Two bytes on stack
Exit: X pulled from stack
Registers Altered: X, SP

15

accumulators, as a 16-bit sum, leaving the result in
the two accumulators. The most significant byte is
assumed to be in accumulator A. The condition
codes are set according to the result.

Entry: Addend in X, augend in A, B

Exit: Sumin A, B
Condition
Codes: H = carry from bit 11 to
bit 12 of sum
N = bit 15 of sum
Z = 1if sum is zero; else = 0
V = 1 if two’s complement
overflow
C = carry out of bit 15 of
sum
Registers Altered: A, B,CC
08 ADDABX Add A and B to Index 9

Register
Add the contents of the two accumulators to the
Index register, leaving the 16-bit sum in the index
register. Accumulator A is assumed to be more sig-
nificant than accumulator B. The condition codes
are set according to the result.

Entry: Addend in A, B; augend in X

Exit: Sumin X

1

carry from bit 11 to
bit 12 of sum

bit 15 of sum

1 if sum is zero, =0
otherwise

1 if two’s complement
overflow

= carry out of bit 15 of
sum

Condition
Codes:

H
N
Z
v
C

Registers Altered X, CC

AMIL.

Stack Stack
Index Name Title Bytes Index Name Title Bytes
09 ADDAX Add A to Index 9 0C SUBABX Subtract A and B from 9
Register Index Register

Add the A accumulator to the contents of the
Index register, and return the sum to the index
register. The Condition Codes are set according to
the result.

Entry: Addend in A, augend in X

Exit: Sumin X

Condition
Codes: (Same as ADDABX)
Registers Altered: X, CC
0A ADDBX Add B to Index 9
Register

Add the contents of the B accumulator to the
Index register, and leave the sum in the Index
register. The Condition Codes are set according to
the result.

Entry: Addend in B, augend in X

Exit: Sum in X

Condition

Codes: (Same as ADDABX)
Registers Altered: X, CC

Subtract Index from 14

A,B
Subtract the contents of the index register from

accumulators A and B as a 16-bit difference. The
Condition Codes are set according to the result.

0B SUBXAB

Entry: Subtrahend in X, minuend in A, B
Exit: Differencein A, B

A

Condition
Codes: undefined

bit 15 of difference

1 if result is zero, =0
otherwise

1 if two’s complement
overflow

borrow into bit 15 of

difference
A, B, CC

N Zm
[|

a <
1

]

Registers Altered:

16

Subtract the contents of the A and B accumulators
from the Index register, leaving the difference in
the Index. The Condition Codes are set according
to the result.

Entry: Subtrahend in A, B; minuend in X

Exit: Difference in X

Condition
Codes: (Same as SUBXAB)
Registers Altered: X, CC
0D SUBAX Subtract A from 9
Index Register

Subtract the contents of the A accumulator from
the contents of the Index register and return the
difference to the index register. The Condition
Codes are set according to the result.

Entry: Subtrahend in A, minuend in X

Exit: Difference in X

Condition
Codes: (Same as SUBXAB)
Registers Altered: X, CC
OE SUBBX Subtract B from Index 9

Register
Subtract the contents of the B accumulator from

the Index register, leaving the difference in the

index register. The Condition Codes are set accord-
ing to the result.

Entry: Subtrahend in B, minuend in X

Exit: Difference in X
) Condition

Codes: (Same as SUBXAB)
Registers Altered: X, CC

AMI.

Stack Stack
Index Name Title Bytes Index Name Title Bytes
OF P2HEX Print Byte in Hex 15 12 PMSG Print Message String 12

The byte pointed to by the address in the Index
register is converted to hexadecimal notation in
ASCII, and output to the ACIA located as follows:
memory locations FFF6—FFF7 contain an address
of a pair of bytes (indirect pointer) which in turn
contain the address of the ACIA status register.

FFF7 il
FFF6 iH

i+l aL,

i aH

a.-:l ACIA Data
a ACIA Status

Each byte of the output is stored into the ACIA
data register after bit 1 of the Status register is
true. The Control register of the ACIA is not al-
tered, and the Data register is not read by this
routine. The Index register is incremented past the
byte which is output.

Entry: Memory byte at (X); ACIA at (FFF6)

Exit: (two ASCII bytes output)

Registers Altered: X

10 P4HEX Print Address in Hex 15

The two bytes in memory pointed to by the Index
register are converted to four ASCII digits and out-
put to the ACIA located at the address pointed to
by the pointer pointed to by the byte pair at
FFF6—FFF7 (see P2ZHEX). The Index register is
incremented by two.

Entry: Two bytes at (X); ACIA at ((FFF6))

Exit: (four ASCII bytes output)

Registers Altered: & X

11 PRINTA Print the Byte in A 10

The byte in accumulator A is output to the ACIA,
the address of whose address is in locations FFF6—
FFF7. No registers are altered except the ACIA
data register.

Entry: Character in A
Exit:
Registers Altered:

(one byte output)
None

17

A message string, the first byte of which is pointed
to by the Index register, is output to the ACIA, the
address of whose address is in locations FFF6—
FFF7. The string is terminated by an ASCII EXT
(=hex 04), and the Index register is left pointing to
that byte on return.

Entry: Character string to (X) terminated by 04;

ACIA at ((FFF6))
Exit: (in ASCII bytes output), X pointing to 04
byte
Registers Altered: X
13 VALAN Validate AlphaNumeric 11

The character pointed to by the Index register is
analyzed, and the Carry flag is set if it is a letter or
digit; if it is not a hexadecimal digit, the Overflow
flag is set. Other than the condition codes, no regis-
ters are altered.

Entry: Memory byte (ASCII) at (X)

Exit: Condition
Codes: H = undefined
N = undefined
Z=0
V = 0 if character in range
0—9, A—F;else=1
C = 1 if character in range
0—9, A—Z;else =0
Registers Altered: CC
14 INPUTA Input ACIA byte to A 9

One byte is input from the ACIA, the address of
whose address is at location FFF6—FFF7, and this
byte is returned to accumulator A. The ACIA is
not written to, and except.for the A accumulator,
no registers are changed. (RS)3 samples bit 0 of the
status register of the ACIA, and when it goes to
one, reads the data register. The input byte has bit
7 removed (set to zero).

Entry: (one byte input)
Exit: Character in A, bit 7=0
Registers Altered: A

AMI.

Stack Stack
Index Name Title Bytes Index Name Title Bytes
15 CONHB Convert Hex String 11 17 MULS Multiply A Times B 12

to Binary

A string of characters in memory beginning at the
address in the index register is scanned for valid
Hexadecimal digits; when one is found, it and all
immediately following hex digits are converted to
a binary number, which is left in the A and B
accumulators (A is more significant). When this
routine is called, the maximum length of the string
is in the B accumulator. On exit, the Carry flag is

set to one if the conversion resulted in a valid’

binary number, and the index register is left point-
ing to the next character in the string, or if the
string is exhausted before finding any hex digits, to
the last character of the string.

Entry: Character string (including ASCII hex num-

ber) at (X)
Max string length in B (<128)

Exit: Binary numberin A, B
Condition
Codes: H = undefined
N = undefined
Z = undefined
V = undefined
C = 1 if valid number; = 0 if
not
Registers Altered: A, B, X, CC

12

16 INDEX Multiply A X B and

Add to Index

The contents of the A accumulator is multiplied by
the contents of the B accumulator, and the prod-
uct is added to the Index register. The Condition
Codes are set according to the result.

Entry: Multiplicand in A, Multiplier in B, augend

in X A
Exit: Sumin X
Condition
Codes: (Same as ADDABX)

18

Multiply the contents of the A accumulator times
the contents of the B accumulator, and leave the
product in both accumulators as a 16-bit number,
with the most significant part in A. This is an un-
signed multiply, and if either or both of the factors
is negative (two’s complement signed) the product
will not be a true signed product of the signed
factors, as may be seen in this formula:

(-n) X(m) = (256 - n) Xm = 256m + (-nm)

The condition codes are nonetheless set according
to the result.

Entry: Multiplicand in A, multiplier in B

Exit: Productin A, B
Condition
Codes: H = undefined
N = bit 15 of product
V=20
Z = 1 if product is zero;
otherwise = D
C=20
Registers Altered: A, B, CC

AMI.

Chapter 5

This chapter details the specific requirements of
the AMI 6800 Prototyping Board that the opera-
tion must meet in order to make the board fully
functional. The board requires a power supply and
an I/O device such as a TTY terminal in order to be
fully operational.

Power can be applied through either or both edge
connectors. The edge connector is an Amphenol
P/N 225-805-43 or equivalent. The basic board
(with TTY current loop interface and no EPROM
devices) requires only +5 volts for power. Both +5
and -12 volts are required for any operation using
EPROMs and +5 and * 12 volts are required for
RS-232 operations. Table 5-1 lists the current
specifications for each voltage.

Voltage Current Use
+5V 4.0 Amps | General Logic
-12V 150 mA EPROM and RS-232
+12V 25 mA RS-232
-50V 35 mA EPROM Programming

Table 5-1. Prototyping Board Current
Requirements

The Board requires a standard TTY ARS 33 type

19

Operating Procedures

terminal or equivalent as all operating programs
assume TTY and ASCII protocol. A baud rate
switch (see Figure 5-1) is provided for all standard
baud rates. Default condition (open or no switch)
is 110 baud. See Table 1-2, page 4 for full details
on the baud rate selection.

The clock frequency is selected via the Clock swith
(see Figure 5-1). Clock source is either from a
crystal or a pair of one-shots. If the crystal source
is used, the one-shot times must not be shorter
than 430 ns for phase 1, and 450 ns for phase 2;
the total time cannot exceed 1 us.

If a TTY is used through the current loop inter-
face, the following jumper must be installed to tie-
up the DCD and RTS input:

Jumper Pins B61 & B63 on the I/O
edge connector to +5 volts.

The DMA switch should be down (Halt Processor
or Cycle Steal Modes) if no DMA is being used. Use
the up position only for systems using Multiplex
mode of DMA.

The -50 volt switch should be off unless pro-
gramming an EPROM.

Four holes are provided in the board for soldering
heavy gauge wire directly to the board if so de-
sired. They are marked as to which voltage lead
goes to which location.

AMIL

R‘DDRZ [JReser

CRYSTAL | |CLOCK
1-SHOT ~' SOURCE

DS BAUD BIT 15
o RATE D
RESTART

ADDRESSU
BITO

MUX
D DMA
HALT

| CONNECTOR A
1 I 1

CONNECTOR B

VPROG

OFF
OND

—

Figure 5-1. AMI 6800 Prototyping Board Switch Configuration

20

\\./

—

AMI.

Chapter 6

Although AMI has taken special precautions to
ensure reliability of Prototyping Boards by conser-
vative design and component testing and burn-in,
occasions may arise where the user may need to
troubleshoot a failure. Special handling must be
considered for all MOS devices. The following pro-
cedures are recommended to test the board for a
failure condition.

The first check that should be made is to check for
proper 5V distribution throughout the board. This
is best done with a digital volt meter, but a scope is
adequate. Be sure that the voltage does not drop
below about 4.8V at any point on the board, refer-
enced to the local ground plane.

The next section to check in detail is the clock sec-
tion. It can be tested by observing the oscilloscope
photographs that follow and the corresponding
reference number on the schematics. The pin
numbers for scoping are referenced on the bottom
of each photograph. For all operations in this
.section, it is assumed that the switch if it is installed
is set for single-shot regenerative triggering and, if
it is not installed, the jumper is set for single-shot
regenerative triggering.

Once the clock section is working the other sections
can be tested in the following order.

1) Reset
2) Interval Timer
3) Restart

4) CPU Section

5) Memory and I/O

6) Serial and Parallel I/O Operation
7) PROM Burner Section

The accompanying photographs should be of great

21

Troubleshooting Procedures

help in troubleshooting the board. In the following
photographs, if more than one trace is present, the
second trace shows the OV reference level. There
were several points on the board that were difficult
to photograph due to the non-repetitive nature of -
the wave form. To observe these wave forms, the
best procedure is press the Reset button repeatedly
and observe the wave form upon release. The opera-
tion of the Restart circuits, ACIA selection and
ACIA output may be observed in this manner.

The majority of the pictures in the following
sequence were taken with the Prototype Board in
an idle state waiting for an input from the TTY.
Pictures 18, 19 and 21 were taken using the Reset
button.

Picture 23, which is the Memory disable pin, is also
the one activated by the Restart circuitry. This is
normally a one shot operation following depressing
of the Reset button. For the purposes of this
picture, the processor was set in a small short loop
where it was just loading the index from FFFE and
FFFF to show the wave form. It will normally not
repeat that quickly.

Pictures 26 and 27 show the PROM burner opera-
tion and the relative wave forms at 10V per cm
vertically, with the second line being the reference
line in the photograph. These photographs should
be very useful in sorting out any difficulties with
the board.

In the event a Prototyping Board does not func-
tion when power is applied and after all trouble-
shooting directions have been followed without
success, the board can be returned directly to AMI
for repair. The charge for repair by AMI for an
EVK 300 Kit is $125.00 after the warranty has

AMIL.

expired. (In the event of obvious user gross negli-
* gence, higher repair charges may be quoted.)

Repack the board in the shipping box and mail it to:

EVK Service

c/o American Microsystems, Inc.
3800 Homestead Road

Santa Clara, CA 95051

22

Enclose a check for the amount specified payable
to AMI. AMI will repair the board and return it.
Be sure your name and mailing address is enclosed
so that the board can be promptly returned. An
indication of the failure mode would also be of
great assistance.

1y

N L STy

LY \ .Y
‘ Mf - e
[- i : ‘ M - e

D57-F8 D56-53

28

AMI.

Appendix A

The AMI 6800 Hex Tape format provides a com-
pact representation of binary data patterns for
transmission using ASCII communication termi-
nals.

The Hex tape is organized into data records with
each record containing information in the same
format. The record information consists of type,
length, address, data and checksum. All records
begin with an ‘S’ character for start of record
identification. All information on the tape which
is not between a start of record and the checksum
is ignored.

TAPE FORMAT
ASCII
Character Description
1 Start of record (S)
2 Type of record
0 — Header record
1 — Data record
9 — End of file record
3—4 Byte Count

Since each data byte is repre-
sented as two hex characters, the
byte count must be multiplied
by two to get the number of
characters to the end of the

record. (This includes checksum

and address data.)
Address Value

The memory location where this
record is to be stored.

Data

Each data byte is represented by
two hex characters.

Checksum
The one’s complement of the ad-

N+1, N+2

6800 Hex Tape Format

ditive summation (without carry)
of the data bytes, the address,
and the byte count.

Example Data Record
Memory Contents
Address Data
A000 10
A001 1A
A002 20
A003 2A
Data Record Contents
Character Tape
1 Start of record 53 S
2 Type of record 31 1
3 Byte count 30 | o |
4 37 7
5 41 A
6 30 0
7 Address 30 0
8 30 0
9 Data byte 1 31 1 g ~
10 30 0 E .
11 Databyte2 31 |1 O3
12 41 | A o
13 Data byte 3 32 2 g‘
14 30 0
15 Data byte 4 32 2
16 41 A ¢
17 Checksum 38 8
18 34 4 k3

AMIL.

The format for all hex tape records is diagrammed below.

Header Data End-of-File
Character Record Record Record
1 Start of Record 53 S 53 S 53 S
2 Type of Record 30 0 31 1 39 9
3 31 12 31 30
Byte Count 16 03
4 32 36 33
5 Add 30 ‘ 31 30
ress
6 (if any) 30 0000 31 1100 30 0000
7 30 30 30
8 30 30 30
9 Data 34 39 98 46 FC
10 38 38 43
34 30 02 (Checksum)
34 32
35
32
41
. 48 A8 (Checksum)
N Checksum 39
9E
45

AMIL.

Parts List for Prototyping Board

Appendix B
Qty Part Designation Qty Part Designation
1 AMI S6800 3 74160 Asynchronous IC 50,51,52
Prototyping Board Decimal Counter :
1 AMI S6800 Micro- IC 16 2 748257 Quad 2-bit IC 31,42
processor Multiplexer
8 AMI S6810-1 RAM IC 19,20,21, 1 1488 RS-232 Driver IC 67
22,33,34, 1 1489A RS-232 Receiver |IC 68
35,36 1 4702 Baud Rate IC 27
3 AMI S6820 PIA IC 47,48,49 Generator (Fairchild)
1 AMI S6830-003 ROM IC10 1 655 Voltage Controlled |{IC 38
1 AMI S6830-004 ROM IC11 Oscillator
*] AMI S6834 EPROM 1C 6,7,8,9,46 2 96502 Dual One-Shot IC12,13
1 AMI S6850 ACIA IC 37 14 8T97 Hex Tristate Buffer {IC 1,2,3,4,5,
2 74S00 Quad 2-input IC 56,63 15,17,18,
NAND 24,25,26,
2 74S02 Quad 2-input IC 39,61 30,60,64 -
NOR 2 DIP Switch, 8 position |IC 32,43
1 7404 Hex Inverter IC 14 1 DIP Switch, 4 position |IC 28
1 7407 Hex Open IC 65 1 Transistor 2N3563 Q5
Collector Driver 1 Transistor 2N4402 Q6
1 74S08 Quad 2-input IC 62 1 Transistor 2N5400 Q7 -
AND 2 Transistor 2N5771 Q2,Q4
2 748510 Triple 3-input IC 55,59 2 Transistor 2N5772 Q1,Q3
NAND 1 Transistor MJE340 Q8
1 748520 Dual 4-input IC 53 (Motorola)
NAND 2 Diode 1N914 CR 1,2
1 74830 8-input IC 40 7 Diode 1N4003 CR 3,4,5,6,
NAND 78,9
2 74LS30 8-input IC 29,41 3 Diode A15F (G.E.) CR 10,11,12
NAND- 1 Crystal 2.4576 MHz XTAL
2 74532 Quad 2-input IC 57,58 1 Crystal 1.000 MHz XTAL
OR 1 Switch, Momentary, Reset
1 7437 Quad 2-input IC 23 C&K 8125A Rt. Angle
NAND Buffer 2 Resistor Packs, 8 resistors,iRP1, RP2
1 7438 Quad 2-input IC 66 16 pin, 4.7K
NAND Open Collector 2 Potentiometers, 16 turn, |R1, R2
3 745138 3 to 8 bit IC 44,45,54 20K (Bourns 3006P) :
Decoder 1 Resistor, 10Q2 UWW £ 5% [R 55
carbon film

*Sockets required for 5 S6834 EPROMs.

AMI.

PARTS LIST FOR PROTOTYPING BOARD (CONT’D)

Qty Part Designation Qty Part Designation
1 Resistor, 2202 W + 5% | R 24 1 Capacitor, Ceramic Disc C 36
carbon film .047uF, 6V or more .
1 Resistor, 33Q2 4¥W + 5% | R 18 31 Capacitor, Ceramic Disc C1,8,9,12,
carbon film 1uF, 6V or more 16,21,23,
2 Resistor, 51Q W + 5% | R 19,25 24,25,26,
carbon film 27,28,29,
1 Resistor, 1000 %W + 5% | R 49 32,33,34,
carbon film 35,37,38,
1 - | Resistor, 120Q “4W + 5% | R 37 39,40,42,
carbon film 43,44,45,
1 Resistor, 1502 UW + 5% | R 45 46,4748,
carbon film , 50,51,52,54
4 Resistor, 4702 %4W + 5% | R 9,10,14, 5 Capacitor, Ceramic Disc C10,11,13,
carbon film 20 JuF, 12V or more 57,58
1 Resistor, 5102 W + 5% | R 44 1 Capacitor, Tantalum, C 22,28,41,49,
carbon film '22uF, 15V 55,56,59
10 Resistor, 1IKQ %W + 5% | R 8,17,23,30, 1 Capacitor, Tantalum, C 53
carbon film 40,47,48, 4.TuF, 715V
50,561,563 1 Socket, 8 pin IC 38
5 Resistor, 1.5K, W + 5% | R 4,6,7,12, (TI C930802)
carbon film 46 19 Socket, 14 pin IC 14,23,29,
2 Resistor, 2K, 4W + 5% | R 41,43 (T1 C931402) 39,40,41,
carbon film 53,55,56,
4 Resistor, 3.3K, 4W + 5% | R 13,29,36 57,58,59,
carbon film 42 61,62,63,
15 Resistor, 4.7K, YW + 6% | R 11,15,16, 65,66,67,
carbon film 21,22,31, 68
32,33,34, 25 Socket, 16 pin 1C 1,2,3,4,5,
35,38,39, (T1 C931602) 12,13,15,
40,56,57 17,18,24,
2 Resistor, 10K, 4W + 5% | R 28,52 25,26,27,
carbon film 30,31,42,
1 Resistor, 22K, 4W + 5% | R 54 44,45,50,
carbon film 51,562,564,
2 Resistor, 100K, 4W + 5%| R 3,5 60,64
carbon film 15 Socket, 24 pin I1C 6,7,8,9,10,
2 Resistor, 1M, W + 5% | R 26,27 21,2233,
carbon film 34,35,36,
4 Capacitor, MICA, 8pF C 17,18, 37
19,20 1 Socket, 24 pin IC 46
1 Capacitor, MICA, 20pF | C6 (R—N TS—61024)
2 Capacitor, MICA, 56pF | C 30,31 4 Socket, 40 pin IC 16,47,48,
2 Capacitor, MICA, 100pF | C 2,15 (TI C934002) 49
2 Capacitor, MICA, 270pF | C 1,14 2 Connector Edge A, B
2 Capacitor, MICA, 470pF{ C 3,4 #261—10043—2)
1 Capacitor, Ceramic Disc | C5

.01uF, 6V or more

AMI.

Appendix C Program Listing

t PROTO 03/35/76 17:04 PROTO

\

LocC 0BJECT M SOURCE STATEMENT

TITLE PROTO
oPT LSKP

I L L T R L s Ly
“PROTOTYPE BOARD MONITOR PROGRAM

VERSION 2,0 01/08/76
COPYRIGNT 1976 BY AMERICAN MICROSYSTEMS INC.

[K 2R BN B BE BE N B 3

2 R Y I I R R X R R R R A A R R A A P Y P Y TR I Y)

*

* DEFINITIONS

FBCE A ACIAC EQu $FBCE ACIA CONTROL REG
FBCF A ACIAD £Qu $FBCF ACIA DATA REG
FBCE A ACIAS £EQu $FBCE ACIA STATUS REG
0020 A BLANK Eou 320 BLANK CHAR
0000 A CR EQU $00 CARRIAGE RET CHAR
001B A ESC EQU s18 ABORT CHAR
0004 A EOT EQu $04 END OF NSG TO 8E PRINTED
FFFF A LAST €au SFFFF NIGHEST ROM ADDRESS
000A A LF EQu $0A LINE FEED
007F A RuBOUT EQU (144
*
. EXTERNALS FOR RSRSR AND PRUM BURNER
»
DEF MONENT» GETRNGaNXTADR.PXISTS2sRNGERRSPBADR
DEF PCRLFsOUTCHsPSPACE,SETMEMABORT
DEF PROMAD »ADR+ADDL » ADDH» COUNT < MONITR
REF RSRSR,BURNIMOVESREADSVFY,PINIT
R .
#RSRSR ROUTINE DEFINITIONS!
.
000B A SUBXAB Eau 11 SUBTRACT X FROM A.B
0008 A ADDABX EQu 8 AUD AsB TO X
0012 A PMSG EQu 18 PRINT MSG
000F A P2HEX EQu 15 PHRINT BYTE AS 2 HEX CHARS
0010 A PANEX EQU 16 PRINT WORD AS &4 HEX CHARS
0015 A CONHB EQu 21 CUNVERT HEX TO BINARY
0031 A pPuUTA EQU 17 QUTPUT TO ACIA
0014 A GETA = EqQu 20 - INPUT FROM TTY
0013 A ALPNyM EQu 19 TEST FOR ALPHANUMERIC
0009 A PRTXD EQu 9 CUNv, X TO DEC, & PRINT

*
* SUBR IS A MACRO TO CALL RSRSR ROUTINES
"

SUBR MACRO PARAM

Swl
BYTE PARAM
MEND
*

R F Y A R X A X R A A Y Y X PSR X 2 X2 XL
- .

AMIL

2 PROTO 01/15/76 17104 PROTO

Loc OBJECT M SOURCE STATEMENT
* MONITOR RAM

]

FF90 ORG SFFFE~110 **aCHANGE IF RAM USAGE CHANGES
FF90 A BASE EQu » BASE ADR USED wITH INDEX OPS
FF8F A BOS EQuU we] BUTTOM OF MONITOR STACK
*
FF90 0048 BUF RMB 72 LINE OF TTY INPUT
*
FFD8 A PROMAD EQu » AUDRESS IN PROM
FFD8 0002 OFFSET RMB 2 UFFSET FOR LOADER/PUNCH
FFDA 0002 ADR RMB 2 PARAM, ENTERED BY USER
FFOC 0002 ADDL RMB 2
FFDE 0002 ADDH RMB 2
FFEO 0002 BUFPTR RMB 2 PUINTER TO LAST CHAR SCANNED
FFE2 0001 RECTYP RMB 1 TAPE RECORD TYPE
FFE3 0001 COUNT RMB 1 CUUNT FIELD FROM TAPE
FFES 0001 CKSM RMB 1 CALCULATED CKSM
FFES 0002 SAVESP RMB 2 TEMP STORAGE FOR S REG
FFE? 0002 SAVEX RMB 2 TeMP STORAGE FOR X REG
FFE9 0001 ECHO RMB 1 1%ECHO TTY., O=NO ECHO
FFEA 000} TCOUNT RMB 1 TEMP LOC FOR COUNT
* USER REGISTERS
FFEB 0001 CREG RMB 1
FFEC 0001 BREG RMB 1
FFED 0001 AREG RMB 1
FFEE 0002 XREG RMB 2
FFFO 0002 PREG RMB 2
FFF2 0002 SREG RMB 2
L]
FFFa 0002 uSw! RMB 2 USER SWI VECTOR (MAY NOT BE IMPLEMENTED)
FFF6 0002 ACIA] RMB 2 INDIRECT POINTER TO ACIA FOR RSRSR
FFF8 0002 IRQVEC RMB 2 INTERRUPT REQUEST VECTOR
FFFA 0002 SWIVEC RMB 2 SOFTWARE INTERRUPT VECTOR
FFFC 0002 NMIVEC RMB 2 NUN=MASKABLE INTERRUPT VELTOR

AMIL.

3 PROTO

L0C

0000
0000

0002
0005

0007
0008
0009
000C
0000
0010
0013
0016
0019
001C
001F
0022
0025
0028
0028
002¢€
0031
0034
0037
0039

003¢C
003E

0041

0044

0047
004A

01/35/76 173104 MONITOR

0BJECT M

20
TE

36
o7
87
32
87
F7
FF
8F
et
CE
FF
FF
CE
FF
43
FF
CE
FF
86
a7

86
87

8D

8¢t
80

0000

0002

0087
FBCE

0007

FFEB

FFED
FFEC
FFEE
FFF2
FFOF
0002
FFFC
FFF8
0001
FFF4
00BE
FFFA
0005
FFF6
03

FBCE

01
FBCE

0041
0041
0005
0304

0047
FF8F
0398

b X N]

» b A B N B J oI 3 b 25 3 5 3 3 »

s X o e

> e

SOURCE STATEMENT

YT e s aaa2 A T X2 2SS 22 22 2 R 2 2 2 X 2

wa® MONITOR ENTRY VECTOR @ee

.
.

.

» RESTARY INTERRUPT HANDLER
« INTERRYPT BREAK HANDLER

.
*

P ey 22220 222 22222 R 2 2222 2 2)

1SEC
START EQU » RESET INTERRUPT HANDLER

BRA STARTY
BREAK EQU * BREAK ON INTERRUPT ROUTINE

JHP BREAK1
ACIAA WORD ACIAC PUINTER YO ACIA

*
STARTI! EQu »

PSH A SAVE A REG IF STACK EXISTS
A SAVE CONDITION CODES

STA A CREG

PUL A

STA A AREG SAVE CURRENT VALUE OF REGS
STA B BREG

sTX XREG SAVE X

STS SREG SAVE SP

L0S #80S INIT, SREG TO MON, STPCK
LoX #BREAK BREAKPOINT ROUTINE

S$TX NMIVEC STORE IN INTERRUPTY VECTORS

$TX IRQVEC
LOX #SWI30

STX uswi
LOX #SWIHAN SUFTWARE INTERRUPT HANDLER
STX SWIVEC
LOX SACIAA SLT UP ACIA PTR
STX ACIAL
LDA A #3 RESET ACIA
STA A ACIAS
*
LOA A 21 SET ACIA CR

STA A ACIAC
PRINT CRsLFs & RETURN TO MONITOR
* .
MONENT EQu .
MONEN] EQU *
JSR PINIY
JSR PCRLF
*
P T T Y Y Lt L L L T P T S PR T T PR T Y
*
.
* MONITOR ENTRY POINT
*
S I T T L L R Y P Y T R P A R T L Y
MONITR EQU *
LoS #80S INJT MON, STACK
JSR ROROFF TURN OFF READER

AMIL

N
4 PROTO 01/15/76 17104 MONITOR
Loc 0BJECT M SOURCE STATEMENT
004D B6 FBCF A LDA A ACIAD DUMP TTY INPUY DATA
00350 86 3t LDA A 2> PROMPT USER
0052 80U 020D I JSR OUTCH
*
* READ TTY LINE (BUFPTR)
¢ STORE TTY INPUT IN BUF UNTIL CR IS HIT
*
0055 CE FF90 A LDOX ¢BUF INITIALIZE BUFPTR
0056 FF FFEO A STX BUFPTR
0058 0D SEC SET ECHO FLAG
005C 79 FFE9 A ROL ECHO
~ *BEGIN UNTIL LOOP .
005F 8C FFD? A RT10 CPX #BUF+71 TEST FOR BUF DVERFLOH
0062 26 02 BNE RY20 NU OVERFLOW
0064 20 a7 BRA ABORT
0066 BD 0400 1 RT20 JSR WAITTY READ NEXT CHAR
0069 A7 00 RT30 STA A 0.X INSERT CHAR INTO Buyf
0068 08 INX INC BUFPTR
* WHILE CONDITION 13
006C 81 0D RT90 CMP A #CR CARRIAGE RETURN ?
006k 26 EF BNE RT10 NU, CONTINUE LOOP
«END OF L00P)
[]
* DECODE 1 CHAR COMMAND
» COMPARE CHAR WITH TABLE OF VALID CHARS ?GLLONED BY
* ADDRESSES OF APPROPRIATE ROUTINES, ~r
*
0070 8D 0385 1 JSR PXISYS GET I1ST CHAR
0073 o8 INX INC BUFPIR
0074 FF FFEO A STX BUFPTR
0077 CE o008C 1} LDX SCTABLE SIART OF TABLE
« BEGIN LOOP
007A Al 0O bLoor CMP A 00X CUMPARE
007C 26 o0a BNE pL1O
* FOUND CHAR, GET ADORESS IMMEUIATELY FOLLOWING CHAR,
007E EE 01 LoX 19X
0080 6E& 00 JMP 0eX GU TO PROPER RQUTINE
* NO COMPARE, MOVE TO NEXT CHANR,
0082 o8 bL10 INX
0083 08 INX
0084 08 INX
0085 8C 00AD I cPX SCTEND END OF TABLE?
0088 26 fFO BNE pLooOP NU, REPEAT
* END LOOP,
008A 20 2% BRA ABORY NUT IN TABLE,
*
0037 I MONEND Equ MONITR
L]
. .
* CTABLE: TABLE OF VALID 1 CHARACTER COMMANDS.
. EACH ENTRY CONSISTYS OF 3 BYTES, B8YTE 1§
» CONTAINS THE ASCII CHAR, HBYTES 243 CONTAIN THE
" ADDRESS OF THE APPROPRIATE ROUTINE,
»
008C I CTABLE EQU *
~

S PROTO 01/15/76 17104 MONITOR

LOC OBJECT M SOURCE STATEMENT

008C 4c BYTE 'L
008D 01AD I WORD LOAD
000F 47 BYTE 'G
0090 019F 1 WORD 60
0092 50 BYTE 'P
0093 0308 1| WORD PUNCH
0095 42 BYTE '8
0096 0001 R WORD BURN
0098 40 BYTE "™
0099 0002 R WORD MOVE
0098 56 BYTE 'y
009C . 0004 R WORD vFY
009E 49 BYTE ‘1
009F 0003 R WORD READ
00AL 53 BYTE 5
00A2 03E3 1 WORD SM
00A4 44 BYTE 'D
00AS5 0136.1 WORD DM
00A7 52 BYTE 'R
00A8 00EE 1 WORD PREGS
00AA 45 BYTE] 2
00AB 0150 1 WORD EOF
00AD I

CTEND €Qu *
.

(22 A R P R R R A A A A T P Y Y Y R X2 2 X Y}

* ABORY
*
L R L R T Y T I T Y Y Oy

00AD [ABORY EQu *
00AD I BADINP EQuU *
00AD CE 0273 I LOX #MQUES PRINT 2?72?

.
* PRINT MSG AND RETURN TO MONITUR
"

0080 I MSGMON EQu »

0080 I MSGABT EQu .

0080 B8E FFOF A LDS #80S St=B0TTOM OF STACK
0083 SUBR PMSG

0083 3F . SWI

0084 12 + BYTE PMSG

0085 20 8aA BRA MONEN1

AMIL.

6 PROTO

Loc

0087

00BA
008C

00HE
008F
0o0cC1
00C3

00C5
00C?
00C9

oocCcC
“00CF

0001
ooD2
0004
00Dé6
00D8

ooD8
000C
00DE
00LF
00E2

00E4

00ES
00ES
00EA
00EC

01/15/76 17104

08JECT

80
86
20

30
EE
A6
28

80
2A

[43

FE
(13

30
6C
26

6C 0

ct

33
E?
o8
ac
26

AF

a1
26
8D
20

0087
0005
80
1A

00BE

05
0oC
18

03
0000

FFFa
00

06
02

5
FFEB

00

FFF2
F7

00

81
04

1€

SOURCE STATEMENT

SWI=HANDLER

(2 A A R R R R Y R R R R A A A AR I X R AR R Y

*

* SWI HANDLER?
* DETERMINE WHETHER SWI IS MUNITOR CALLs RSRSR CALL,

* OR yYSER SWI (NOT IMPLEMENTLD),

*

(22 Y X R R R X R R R R R R A A A A R R R R XY 'Y

.
HREAK!L EQU * BREAKPOINY ENTRY
JSR PINIT CLEAR PROM BURNER
LDA A 2128 PRETEND TO BE sSwIl 128
BRA swlao SAVE REGS
*
SWIHAN EQU *
« FIND INDEX BYTE (BYTE AFTER SWI THAT GOT US MERE)
TSX
LOX S X XisRET, ADR,
“LDA A OsX AtsINDEX BYTE
BMI SWI30 BREAKPOINT?
« IF USER HAS ADDITIONAL (RS)##3 ADDR OF FIRST®2 MUST BE IN FFF&
SUB A #24 RORSR CALL?
BPL SWI20 NU we
JMP RSRSR
*
* USER SW]
.
SWI20 LOX USwW!
JMP Qe X GU DO IT
*
* MONITOR CALL, COPY REGS FROM STACK
.
SWi3do TSX INCREMENT RET, ADDR,
INC 6o X
BNE SWi4o0
INC %X
Swlao LDX SCREG DEST, FOR 1ST REG
* BEGIN LOOP
SWISo PUL B GtT REG
STA B 0eX copy
INX MUVE TO NEXT REG
cPX 2CREG+7 END OF LOOP?
ANE sWisSo
« END LOgP
»
* S NOW CONTAINS ITS VALUE BEFUKE SWI
* WAS EXECUTED, SAVE 1IT,
.
STS 0»X
3 .
* A STILL CONTAINS SWI INDEX, TEST IT
.
CMP A 8129
BNE PREGS NUT 129t BREAK
BSR PR 1293 SNAPSHOT
BRA RESTAK AND RETURN TO USER PROGRAM

AMIL

7 PROTO 01/15/76 17304 SWI=HANDLER

Loc OBJECT M SOURCE STATEMENT

»
(A X A R R R R R R R R Y R R L A A e Y P Y T T R 2]

»
*» PREGS! PRINT USER REGISTERS

*
[22 2 PR R XX 22 2 I X R R A R A R R R A X S A A R R A R Y R XXX XX 2RXX22%%}

]

Q0EE I PREGS (23 *

00EE 8D 03 BSR PR1
00F0 7E 0047 1 JMP MONEND
00F3 1 PR EQuU . SUBROUTINE TO PRINT REGS
00F3 CE FFEB A LOX #CREG X POINTS T0 1ST BYTE OF AREA
* PRINT 3 1=BYTE REGS
00F6 C6 03 LDA B8 #3 SLT UP COUNT
*
00F8 PR10 SUBR P2HEX
00F8 3F + SWl
QOF 9 oF . BYTE P2HEX
O00FA 8D 0360 I JSR PSPACE
00FD 5A DEC B
O0FE 2E f8 BGT PR10
.
* PRINT 3 2<-BYTE REGS
0100 cCé 03 LOA B #3 SET UP COUNT
L]
0102 8D 037C I PR20 JSR PAHEXS
0105 5A OEC B
0106 2E fFaA BGY PR20
»
0108 80 0304 I JSR PCRLF PRINT CRLF
0108 39 RTS RETURN

8 PROTO 01/15/76 17104 VECTRS

LoC OBJECT M SOURCE STATEMENT

(2 A A X R R R R R R X R 2 R R Y
. RESTORE USER STATUS AND RETURN FROM MONITOR
:t.to‘...QQQ...'QQO..Q.QQQ.Qttt".ttttti!tt't'

. RESTORE USER'S STATUS

010C BE FFF2 A RESTAK LDS SREG TUP OF USER STACK
010F CE FFF1 A LOX $CREG+6 USER REGS,
*BEGIN LoOP
0112 A6 00 RUS10 LDA A 0sX GET USER REG
0114 36 PSH A PUSH INTO USER STACK
0115 09 DEX MUVE TO NEXT REG
0116 8C FFEA A cPX #CREG=1 LAST REG ?
0119 26 f7 BNE RUS10 NU, CONTINUE LOOP
*END OF LOOP
0118 38 RTI RETURN TO USER PROG

AMIL.

9 PROTO 01715/76 17;04 COMMANDS

LocC OBJECT M SOURCE STATEMENT

IR Y Y Y Y IR Ry
*

+ COMMANDS AND SUBROUTINES!

*

L T R L e R R R R i

*
I 22 A R T R R A A A X X R R R R Y Y 2 R R 222222
*

* CHEKSM(CKSM)

* VALIDATE CKSM

*
A Y e R Y A I Y Y R sy

011C I CHEKSM EQU *

011C B6 FFEA A LDA A CKSM SAVE CALC, CKSM
011F 36 . PSH A
0120 BD 029E I JSR NEXT2D Ats NEXT BYTE FROM TAPE
0123 33 PUL B
0124 53 COM 8 Bi=CALC, CKSM
0125 11 CBA BeTAPE CKSM?
0126 26 01 BNE cs1 NO,
0128 39 RTYS

*
0129 30 Cs1 TSX Xt=ADR OFCALC., CKSM
012A 09 DEX
0128 SUBR P2HEX PRINT CALC, CKSM
0128 3F + SWI
012¢C oF + BYTE P2HEX

JSR PSPACE
LOX EMCSER PRINT "CKSM ERR"
JMP MSGABT

0120 BD 0380
0130 CE 0278
0133 7E 0080

" =g

»
L L Y T R R R LT
.

* DM ADDL,ADDM CUMMAND

*
(2 A R R T Y A A Y R Y R Y R R R I

0136 1 OM EQU *

0136 8D 35 8SR GETRNG GET ADD RANGE FROM BUF

» RETURNS ADDLsADOH+t

*BEGIN NUTER LOOP
0138 CE FFDC A DM10 LDX #AD0OL
0138 BD 037C 1! JSR PAHEXS PRINT ADDL., SPACE

* BEGIN INNER LOOP
013E FE FFDC A DM20 LoX ADDL
0141 SUBR P2HEX PRINT MEM(X),SPACE,INC X
0141 3F . SWI
0142 of * BRYTE P2HEX
0143 BD 0380 ! JSR PSPACE
03146 FF FFDQ A STX ADOL
0149 BC FFDE A cPX ADDH IF ADDL=ADDH+1s END OF RANGE
014C 27 of BEQ DMS0 EXIT OUTER LOOP
014E B6 FFDD A LDA A ADDLet IF LSB'S OF ADDL=0, END OF LINE
0151 84 ofF AND A . #8F
0153 26 9 BNE DM20 NOT END OF LINE, CONTINUE

* END OF INNER LOOP

AMI.

10 PROTO

Loc

0135
0158

015A

0150
0160
0160
0161

0162

0164
0165
0168
0169

0168

0160
0170
03173
0176
0179
017¢

017E
018}

0184
0187
0189
0188
0180
018F
0191
0194

01/15/76 17404 COMMANDS

0BJECT

80D
20

TE

CE
3F

cé

(12
8D
SA
26

20

80
FE
FF
FF
8D
27

FE

FF

CE
A6
(2]
)]
A2
28
CE
TE

0304
DE

0041

028A

12

3B

0200
F9
€D

M SOURCE STATEMENT

1 JSR PCRLF PRINT CRsLF
BRA DM10 EXIT INNER LOOP
« END OF OUTER LOOP
I DOM50 JMP MONEN1 CRoLFs BACK TO MONITOR
*
tii.t.tit.t.t'tﬁt.'ti"t‘t.i'.i'ttttﬁ'.t.'.tti'tit
»
*# PYNCH END OF FILE AND 60 NULLS
*
t.i"i.i'ttttttiti.t.i'ittt.t..fittit.i.tt‘tttt'tt
1 EOF LDX #MPEOF PUNCH EOF RECORD
SUBR . PMSG
* SWl
+ BYTE PMSG
*
* PUNCH 60 NULLS
*
NULLS LDA B #59 LUAD COUNTER
. BEGIN LOOP
NULL1 CLR A LUAD NULL
I JSR OUTCH PRINT ONE NULL
DEC B DECREMENT COUNTER
BNE NULL1 DUNE?
* END OF LOQP
BRA DM50 CRoLFsBACK TO MONITOR
R A I a2 2 s A XY 2R 2222222 22
]
* GETRANGE (ADDL»ADDH,BUFPTR)
" GET ADDRESS RANGE FROM BUF
» ABORTY IF INVALID
" SET ADDHi=ADDH#1 TO SIMPLIFY COMPARISONS
. RETURNS ADDL & ADDH+t
* ALTERS ADRsXsAsB
*
t.t.tit.tititQt.tt.ti.i.t..itii"'i'ttttt.tit‘titt
I GETRNG EQuU .
1 JSR NXTADR GET ADDL
A LDX ADR
A STX ADDL STORE ADDL
A sSTX ADDH MAY BE ONLY 1 PARAM
1 JSR NXTADR GET ADOM
BEQ GETRG) ONLY 1 PARAM
»
A GETRGI LDX ADR
A STX ADOH SAVE ADDH
® THE NEXT S INSTR TEST ADDH=ADLUL
A GETRGI LDX #BASE REF WeReT, BASE OF RAM
. LDA A ADDH=BASEsX MSBYTE
LDA B ADDHe1=BASEsX
SUB B ADDL+1=BASEsX
SBC A ADDL=BASEsX
BCC GETRGS AUDH,GE.ADDL
I RNGERR LDX #MRNGER RANGE ERR MSG
1 JMP MSGABT PRINT MSG & ABORT

»

AMIL

01/15/76 17:04 COMMANDS

11 PROTO
LocC gBJECT
0197 FE FFDE
019A 08
0198 FF FFODE
019E 39
019F 80 o2B8
01A2 27 06
01A4 FE FFDA
01A7 FF FFFo
01AA T7E o010¢C
01AD
01AD CE 0000
0180 FF FFO8
0183 FF FFOC
o186 09
0187 FF fFfDE
018A @80 0288
0180 27 e
O1BF FE FFDA
01C2 FF FFODB
01C5 8D 0288
01C8 27 13
01CA FE fFL8
01CD FF FFOC
0100 CE 0000
0103 FF FFD8
0tDée 8D A6
01D8 FE FFODE
0108 20 09
0100 BD 03A%
01E0 80 70
01€2 80D 0400
01ES5 81 30
01E7 27 f7°

Ll 2 J L P I 35]

> 3 2

SOURCE STATEMENT

GETRGA LOX ADDH
INX
STX ADDH
RTS

*
*

INC ADDH

(A A A X R R R R R X R R A A R A A Y R R Y X 2 S XX XXX]

*

* GO COMMAND
*

222232 2 2 2R X2 X A2 AR X2 2 AR AR R R T RSS2

*

G0 JSR NXTADR
BEQ 610

[J
LOX ADR
STX PREG

*

610 JMP RESTAK

*

*

GET PARAM
NU PARAM, CONTINUE EXECUTION

AUR=PARAM FROM NXTADR

(IN INTERRYUPT HANDLER)

LA A R R Y R Y R R R I R X R A R A S R X X L,

"
* LOAD COMMAND

*

LA A R R Y Y N R A Y A A A A R Y Y R R R X2 XX

*

LOAD €Qu *
LOX 20
STX OFFSET
STX ADDL
LOOFST DEX
STX ADDH
JSR NXTADR
BEQ LHF2
Lox ADR
STX OFFSET
JSR NXTADR
BEQ LHF2
LOX OFFSEY
$TX ADDL
LDX 20
STX NFFSET
BSR GETRG1
LDXx ADDH
ARA LOOFST
+ BEGIN QOUTER LOOP
LHF2 JSR RDRON
* SHORT L00P YO
RDPRE BSR FINDS
.
JSR WAITTY
CMP A 20
BEOQ RDPRE

* END SHORT LOOP

c—10

SETS (ECHO)3=0

INITIALIZE RANGE & OFFSET
TU 0000=FFFF»0000

ANY OPERANDS?
NU» USE DEFAULT.

Yts,

It ONE, IT*S OFFSET
ANOTHER?

NU,

YtS, FIRST TwO ARE RANGE

GU TRY AGAIN FOR OFFSET

TURN ON READER

SKIP HBR RECORDS

FIND START OF RECORD
ON ENTRY
RETURNS (A):1=sTTY I/P
IUNORE HOR RECQRDS

AMI.

- 12 PROTO

Loc

01E9
01EC
O1EF
01F2
01F3
01F4
01F5
01F8
01iFB
OIFE
0201
0204
0207
020A
0200
0210
0213
0215

0217

021A
0210
~— 0220
0221
0224
0227

4 0229
0228
0220

022F
0232
0235
0237

0239
023C
023F

0242

0245
0248
0248
0249

01/15/76 17404

OBJECT

87
TF
80
4A
4A
4A
87
80
87
80
88
ar
86
89
87
86
8t
26

80

FE
80
08
FF
TA
2E

20
81
26
80

81
26

80
CE
7€
BD
CE

3F

FFE2
FFE4
029€

FFEI
029E
FFDA
029t
FFD9
FFDB
FFDA
FFOD8
FFDA
FFE2

14

029¢E

FFDA
03AF

FFOA
FFED
EE
04
39
13

011C
FFE2

Ab

0398
026F
0080
0398

8281

M

- >

"~ » > Lo b 20 B b B B W% R

L X N

SOURCE STATEMENTY

STA A
CLR
JSR
DEC
DEC
DEC
STA
JSR
STA
JSR
ADD
STA
LDA
ADC
STA
LDA
LHF3 CMP
BNE

> > >

>

b B B B 2B B 3

*

COMMANDS

RECTYP
CKSM
NEXT2D

COUNT
NEXT2D
AOR
NEXT20D
OFFSET*1
ADRe |
ADR
OFFSET
ADR
RECTYP
21
LHF &

* LOAD DATA RECORD

*

*BEGIN UNTIL LOOP

LDR10O JSR
L]

LOX
JSR
INX
STX
DEC
BGT

*END UNTIL LOOP
BRA

LHF & CMP A
BNE

*

LHF9 JSR
LDA A
CMP A
BNE

*

NEXT20

SAVE RECORD TYPE

READ BYTE COUNT FROM TAPE
DEDUCT ADR & CKSM

SAVE BYTE COUNTY
READ ADR FIELD FROM TAPE
157 BYTE

2ND BYTE
CARRY YO FIRST BYTE

GET RECORD TYPE (0.1,9)
DATA RECORD ?
NU :

READ 2 HEX DIGITS FROM

TAPE« RETURNS IN A

ADR
SETOFF

ADR
COUNT
LDR10O

LHF9
29
BADTAP

CHEKSM
RECTYP
9
LHF2

*END OF QUTER LoO0OP

*
JSR
LDX
JMP

"

BADTAP JSR

*
LOX
SUBR
SW}
AYTE

»

RDROFF
$MEQF

MSGMON
ROROFF

SMTAPER
PMSG

PMSG

SVORE IN MEM(X)es VERIFY

DUES COUNT=0?
NUs CONTINUE LOOP

LUF RECORD ?
ILLEGAL RECORD TYPE

CHECK CKSM

GET RECORD TYPE
EUF RECORD ?

NU, CONTINUE LOQOP

PRINT “EOF®
AND RETURN TO MONITR LOOP

PRINT "TAPE ERR"™

* ACCEPT NO COMMANDS UNTIL USER PRESSES ESC

*

C—11

AMIL

01/15/76 1704 COMMANDS

13 PROTO
Lac¢ 0BJECT
024A 7C FFE9
024D BD 0400
0250 20 fB
0252
0252 7TFf FFE9
0255 BD 0400
02586 81 53
025A 26 F9
025¢C 39
0250 424
025F 4420
0261 4144
0263 52
0264 04
0265 5241
0267 4ES7
0269 4520
0268 4552
0260 52
026t 04
026F 454F
02713 46
0272 04
0273 3F3F
0275 IF3IF
0277 04
0278 4348
027A 5340
027¢ 2045
027€ 5252
0280 04
0281 5441
0283 5045
0285 2045
0287 $252
0289 08
028A 5339
028¢C 3033
028k 3030
0290 3030
0292 4643

b]

SOURCE STATEMENT

INC EcHa SET ECHO

*

BT1 JSR WAITTY ESC CAUSES ABORT
BRA B8T1

[]
X3 R 2 A R R R 22 1 2222 AR 2 A AR R XS RS RS R RS2 X Y]

»

* FIND S

* READ TAPE UNTIL START OF RELCORD
»

*
2 X 2 R X s 2222222232200 AR SR 22 RS RS2 22 2 2 2 2

FINDS EqQu *
CLR ECHO NU ECHO
«BEGIN LOOP
FS10 JSR WAITTY READ NEXT TAPE CHAR
CMP A 2°S CHAR = §
BNE FS10 NU
*END LOOP
RTS
L]
* MESSAGES
»
MBADR CHAR /BAD ADR/
BYTE 4
MRNGER CHAR /RANGE ERR/
BYTE 4
MEOF CHAR /EOF/
BYTE 4
MQUES CHAR 7?1?%/
BYTE 4
MCSER CHAR /CKSM ERR/
BYTE 4
MTAPER CHAR /TAPE ERR/
BYTE 4
MPEOF CHAR /59030000FC/

C—12

AMI.

14 PROTO

Loc

0294
0295
0297
0299
0298
0290

029¢
02A1
02A2

02AS5
02A6
02A7
02A8
02AA
02AA
02AB
02AC

02AE
02AF
0282
0285
0286
0287

01/18/76 17104 COMMANDS

OBJECT M

8D
16
8o

36
37
30
cé

3F
24

17
FB
F?7
31
31
39

04
000A
0000
0000
5331
04

029E 1
0400 I

0400

02

15
94

FFE4 A
FFES A

SOURCE STATEMENT

BYTE q
MCRLFS BYTE CRoLF2000+s0002'S,71,4

*
.ﬁ.QQ.t'Q..ti'.tttiﬁ.t"*'ii""ﬂtt'tti.'ttt'i.t.t
*
* NEXT 2 DIGITVSwe
. READ NEXT 2 CHAR FROM TTY TAPE AND CONVERT
. TO HEX NUMBER IN A REGe UPUATE CKSM,
* RETURN UPDATED CKSM IN B REG,
'ttttﬁt‘tt.tiitt'tt'ttiit.iﬁii'.ttttt.itttttt'tttt
NEXT2D EQU *

JSR WAITTY GET CHAR

TAD SAVE CHAR IN A

JSR WAITTY

.
* SET UP PARAMS FOR CONVERSION ROUTINE,
* PUSH ASCII CHARS INTD STACK, POINT X AT STACK,
* SET AsTYPE OF CONVERSION AND HBmg OF CHARS TO CONVERT.
»
PSH A
PSH 8
TSX
LOA B #2
SUBR CONHB CUNVERT FROM ASCII TO BINARY
SwI
BYTE CONHB
BCC BADTAP I? NONSHEX CHARs ABORT
.
TBA UFDATE CKSM
ADD B8 CKSM
STA B CKSM
INS RESTORE STACK PTR
INS
RTS

»
(A A A R R R R R R R R Y R R R T Y Y on

*

NEXT ADR(BUFPTRsADR)

L]
¢ SET ADR=0 OR NEXT NUMBER SIRING STARTING
* AT BUFPTR

* LEAVES BUFPTR AT CR,DELIMITER,OR FIRST
* CHAR BETWEEN 6 = 2 ,

. LEAVES (A)= LAST CHAR SCANNED,
* LEAVES (B)= LS BYTE OF ADR
*

»

*

*

»

RETURNSY CC= Z FOR NO PARAMETER
ABORTS IF NON=HEX PARAMETER

C—13

AMI.

01/15/76 173,04 COMMANDS

1S PROTO

LOC 0BJECT
0288

0288 7F FFDA

0288 7F FFOB

02BE BD 0385

02C1 26 01

02€3 39

02C4 6 a7

02C6

02C6 3F

02C7 15

02C8 FF FFEO

02CB B7 FFDA

02CE F7 FFDB

0201 A6 00

0203

0203 3F

0204 13

0205 25 01

0207 39

0208 7E 00AD

0208 A6 00
0200

0200 37

020E F6 FBCE

02E1 57

02E2 24 oA

02E4 F6 FBCF

0267 C1 18

02E9 26 03

02EB 7E 00AD

02EE

02EE 3F

02€EF 11

02F0 81 0D

02F2 26 O

(o 2 W

» > >

Z® % e

SOURCE STATEMENT

2 X R X R 2 X 2 R X 2 A A A A R Y RS R R R RS XS X X 2

NXTADR EQu "
CLR ADR
CLR ADRel
JSR PXISTS

BNE NAL
RTS

Al LDOA B 871
SUBR CONHA
SWi
8YTE CONHB
STX BUFPTR
STA A ADR
STA B ADRel
LOA A 0»X
SUBR ALPNUM
SW1
BYTE ALPNUM
BCS NA3
RTS

Al JMP ABORT

"
N
.
.
*
.
.
.
.
.
*

»
OQUTCHX
*
CUTCH EQu *

* FIRST CHECK FOR ESC

LDA A 0»X

PSH B
LDA B ACIAS
ASR B
BCC 0c10
LDOA B ACIAD
CMP B #ESC
BNE ocio
JHP ABORT
. \
0c10 SUBR PUTA
SWl
BYTE PUTA
CMP A #CR
ANE 0C20

C—14

OUTCH = PRINT CHAR IN A /
QUTCHX = PRINT CHAR AT MEM(X) /
IF CHAR = 'CR's FOLLOW WITH LF & 4 NULLS

AURts O

IS5 THERE A PARAMETER?
Yts

RETURN W/ND PARAM (CCs2Z

SET UP PARAMS FOR ASCI1 TO HEX CONVERSION

MAX, CHARS TO SCAN

SAVE RESULY
CHECK TERMINATQR
IS5 CHAR ALPHA?

Yts

NU

I S R X X 222X 2 XX A A A R Y R R R X R X2 X2 XX X232}

[A R Y R R R R R R R A R A A AR R R R SRR S X Y

ENTRY 1

ACIA INPUT STATUS
Cl=RDRF

NU INPUT

READ ACIA

NUT ESC

PRINT CHAR

NUT CR, RETURN

16 PROTO

Loc

02f4
02F6
02F6
02F7
02F8
02F9

02fB
02F8
02FC
02FD
02FE

0300

0302
0303

0304
0306

0308
0308
030t
0311
0313
0315
0318

0318
031t

0321

0324
0327
0329

01/15/76 17104 COMMANDS

08JECT

86
3F
AF
cé
3F

SA
26

86
33
39

86
20

BO
CE
FF

27
FE
FF

0A

11
04

11
FB
oD

00
05

016D
0000
FFD8
AS

06

FFDA
FFD8

0318

FFDF
FFOO
FFODE
FFOC
04
1€

M

> P e

> >

> > >

+
¢+

SOURCE STATEMENTY

LOA A #LF PRINY LF

SUAR PUTA

SWI

BYTE PUTA

CLR A PRINT 4 NULLS
LDA B 24

+ BEGIN LOOP
oCLOQP SUBR PUTA
SWl
BYTE PUTA
NEC 8
BNE . OCLDOP
» END LOQOP
LDOA A #CR RESTORE A
*
ucao PUL ©
RTS
*
I T N L Y R R R P R R Y

*
* PRINT CRsLFoNULL

*
I e R A R e e R R R A AL

PCRLF LDA A #CR
BRA QUTCH UUTCH PRINTS LF AFTER CR

I A A s T2 222 AT R AR P22 22 2 2 X 2

"
*
*
.
* PUNCH ADDL»ADDH

* PUNCH MEMORY CONTENTS BETWEEN ADOL & ADDM
. IN HEX FORMAT

*
Y A A X s T2 X A A A S AR SRR 2 RS2 A 2 22 2 2

PUNCH JSR GETRNG READ ADDL & ADDHel

LDX #0

STX OFFSET

BSR NXTADR ANY OFFSET?
BEQ PHF15 NU,

LDX ADR YES,

STX OFFSET
. PUNCH DATA RECORDS UNTIL ADDL = ADDH
PHFIS EQu e
« BEGIN L0OP
. CALCULATE DATA LENGTH & MIN(3U, ADDH¢1=ADR)

PHF 20 LOA B ADDHey Bi=ADDH=ADDL
SUB B ADDLet
LOA A ADDH
SBC A ADOL
RANE PUNDLO ODIFF «GT. 256
CMP B 230 LS BYTE .GT, 307

C—156

AMIL.

17 PROTO

Lac
0328
0320

032F
0330
0331
0332
0335
0338
0338
0339
033A
0338
033t
0340
0341
0344
0347
0344
0344A
0348
034C
034F
0352

0353
0355
0357

‘035A
035¢C

035E
0361
0364
0365
0367
0369
036C
036F

0371

0374

01/15/76 17104 COMMANDS

OBJECT M

23
cé

5C
S¢C
5C
F7
CE

3F

SF
CE
80
7
FE
86
Fé

IF
FF
CcE
3
80

80
FE

L]
2t

FF

53
E?

8o

FE
8c
26

TE

€8

02
1€

FFEJ
0295

12

FFE3
34

FFDC
FFD8
FFD9

08
FFOA
FFDA

1F
10
FFDC

18
FC

FFOC
FFE&

00
08
FFDC
FFDE
AA

0041

00

-

> >

SOURCE STATEMENT
BLS
»

PUND10O LDA

*

PUND20 INC
INC
INC
STA
LOX
SUBR
SWl
BYTE
CLR B
LOX
BSR
PSH B
LDX
LOA A
LOA 8
SURR
SWI
BYTE
STX
LDX
PUL B

BSR
BSR
LOX

D WD ™

L]

PUND20

230 DIFF «GTe30
CUUNTIsCOUNT+3
+oo INCLUDES ADDR & CKSM

COUNT

#MCRLFS

PMSG

PMSG
8 HOLDS CKSM

#COUNT PUNCH COUNT

PUNBYT

ADDL CUMPUTE OFFSET ADDRESS

OFFSEY

OFFSET+]

ADDABX

ADDABX

ADR PUNCH FROM ADR

#ADR

PUNBYT CINCREMENTS X)

PUNBYT

ADDL RESTORE X

* PUNCH BYTES FROM MEMORY UNTIL COUNT IS EXHAUSTED

*

* BEGIN LOOP

PREC10 BSR
BGT

* END LOgP
STX
LDX
COomM B
STA B
BSR
LOX
CPX
BNE

* END LOOP
JMP

"

PUNBYT (CC=0 IF COUNT=0)
PREC1O

ADDL SAVE X
#CKSM PUNCH CKSM

00X CKSMi =B
PUNBYT

ADDL

ADDH

PHF 20

MONEN1

LA A AT AL AR R R R R R R R R R A A Y S R R S22 222

>

PUNBYT (MEM(X)»COUNTSCKSM)

.
L PUNCH BYTE
.

AT MEM(X) AND AUJUST COUNT AND CKSNM,

CCmz IF COUNT=0Q

L]

LA R A R R L X R Y A A A A Y Y R Y R X222)

PUNBYT ADD B

0sX CRSMIBCKSMeMEN(X)

C—16

AMIL.

18 PROTO 0171577
Loc 0BJECT M
0376
0376 3F +
0377 oF *
0378 7A FFE3 A
0378 39
037¢C
037C 3F .
0370 10 +
0376 80 00
0380 86 20
0362
0382 23F .
0383 11 .
0384 39

0385 1
0385 FE FFEO A
0388 1
0388 A6 00
038A
038A 3F *
0388 13 +
038C 25 o7
038E 81 oD
0390 27 o3
0392 08
0393 20 F)
0395 FF FFEO A
0398 81 0D
039A 39

6 17108 COMMANDS

SOURCE STATEMENT

SUBR P2HEX PRINT MEM(X) AS 2 CHAR
Sl

BYTE P2HEX

DEC COUNT

RTS

R I R N N Y R R R R R ey
*
* PANEXSt PRINT 2 BYTES AT X AS 4 HEX CHARS ¢ 2 SPACES
»
I I T T
»
PAHEXS SUBR .PGHEX
Swi
BYTE PAHEX
BSR PSPACE
.
T I T

*

* PSPACE==<PRINT 1 BLANK

»

[2 A R R A R R R R R R R R R A A R A X R S X PR X Y

PSPACE LDA A #BLANK

SUBR PUTA
SW1
BYTE PUTA
RTS

*
1 2 X A X R R X R R R R X X R I Y R R R R L A X N S R R 2 X R R AR XX2%;

*

PARAM EXISTS(RUFPTR) (2BUFPTR) = BUFPTR
v (X) = BUFPTR

INC BUFPTR UNTIL CHAR = ALPHA OR CR

LEAVE A s MEM(BUFPTR)

SET Z IF NO PARAMETER EXISTS

* % * e e

»
[22 S R s R R R R R R L R L R R R R R R R R 222222

PXISTS EQu * ENTRY FOR (#BUFPTR)sBUFPTR
LDX BUFPYR
PXISTX EQU » ENTRY FOR (X) s BUFPTR
*+BEGIN LooOP
PX1 LDA A 09X 1S CHAR ALPHANUM ?
SUBR ALPNUM
Swl}
BYTE ALPNUM
RCS PX2 yes, ExXIT poQpP
CMP A #CR IS CHAR CR ?
BEO PX2 YES, EXIT LOOP
INX ’ MUVE TO NEXT CHAR
BRA PX1
*END LOOP
Px2 STX BUFPTR »
CMP A #CR SET Z IF NO PARAMETER
RTS

(A A A R R A A R Y R X YR R 22222

C—17

AMIL

19

PROYO 01715776 17104 COMMANDS
Loc 0BJECT M SOURCE STATEMENTY
»
* RDR OFF
* TURNS TAPE RDR OFF1
* ACIA RTS 0/P HIGH
" ACIA CHAR 813 (DC3)
*
R R R R X2 2 a2 XA A2 RS2 2 X2 2
0398 I RDROFF EQuy *
0398 86 01 LDA A #£$01 RTS HIGH
0390 B7 FBCE A ROF90 STA A ACJAC SET ACIA CONT REG
03A0 86 13 LDA A 2813 SEND TTY RDR CONT CHAR
03A2 SUBR PUTA
03A2 3F . SWI
03A3 11 . AYTE PUTA
03A4 39 RTS
2 AR A R 2 s s X2 X222 AR AR SRR R RS R 2R R X 2
w
* RDR ON
* TURNS TAPE READER ON
L ACIA RTS O/P LOW
. ACIA CHAR 811 (DC1)
.
[X AR R R R R X XXX XXX 2R AR 2 2R 22 R0 R 222 X2
03A5 I RDRON EQU "
Q3AS5 86 41 LDA A #2841 RIS LOW
03A7 B7 FBCE A RON9O STA A ACIAC SET ACIA CONT REG
03AA 86 11 LDA A #8111 SEND TTY RDR CONT CHAR
03AC SUBR PUTA
03AC 3F + SW1
03AD 11 + BYTE PUTA
03AE 39 RTS
"
2 2 R R R R s P A A A A R AR XS RSS2 22 22 22 28
*
* SETMEM(X)
* SETS MEM(X)tsA AND VERIFY
*
2 2 A a2 A A L A R TR XY 2R S22 R X
*
03AF 1 SETOFF EQU ™
03AF 36 PSH A FIRST CHECK RANGE!?
0380 B6 FFDC A LDA A ADDL LUWw LIMIT
03B3 F6 FFDD A LDA B ADDL*1
0386 SUBR SUBXaB 16=817 SUBTRACTY
0386 3F + SHI
0387 08 . + RYTE SUBXAB
0388 22 0A AHI SETOUTY TUD LOW
03BA B6 FFRDE A LOA A ADDH HIGH LIMIY
038D F6 FFOF A LOA B ADDHe1
03Co SUBR SUBXAR
03C0 3F + SWl1
03C} 08 + BYTE SUBXAR
03C2 24 o7 BCC SETPUL UK
03C4 32 SETOUTY PUL A OQUTSIDE RANGE LIMITS
03C5 86 FF LDA A 2255 TYPE DELETE (RuBOUT)

C—18

20 PROTO

LocC

03C7
03C7
03Cs8
03C9
03CB

03cC
03CE
0300

0302
0305
0308
03DA
030C
030DF

03ke

03E3

03t6
03E9

03EC
03EF
03F1
03F4
03F5
03F7
03F8
03F8

03FD

0400
0400
0401
0402
0404

01715776 17104 COMMANDS

0BJECT

3F

20
32

AT
Al
27

FF
ce
80
80
Ct
7t

39

8o

FE
FF

80
27
FE
17
80
08
FF
20

TE

IF

a1
26

11
17

03CC
00
00
10
FFDA
FFDA
cl

0250
0080

03€E3
0288

FFDA
FFOC
0288
FFOC
05

FFOC
EF

0047

0800

14
18
03

M SOURCE STATEMENTY

» » =t

>

SETPUL
SETMEM

* VERI

PBADR

*

SETMY

SUBR PUTA
SWl
BYTE PUTA
BRA SETML
PUL A
EQU *
STA A QX
CMP A 0oX
REOQ SETM]
FY ERROR » PRINT ADR
STX ADR
LOX £ADR
BSR ROROFF
BSR PAHEXS
LDX #MBADR
JMP MSGABT
RTS

TU SIGNAL FACT TO USER

UTHERWISE IGNORE STORE REQUEST

VERIFY
EHROR ?

SET PARAM FOR PAHEX

PRINT 'BAD ADR!
PRINT MSG & ABORY

LA A XA X R R R N R A R R Y T R R Y R 2 2222222232)

"
* SM
*

ADR BYTE31sBYTE2000e

LA AR A R R R R R R I R A A N Y R 2 2 2 R R R 2T

SM
*
SMS
*

SM10

* END
.

EQU »
JSR NXTADR
LOX ADR
STX ADDL

* BEGIN WHILE LOOP
JSR NXTADR
BEQ $M30
LDX ADDL
T8A
BSR SETMEM
INX
STY ADDL
BRA SM10

OF LooP

JMP MONEND

SM30

AUR1=s NEXT PARAM

SAVE ANR IN ADDL

AURts NEXT PARAM
END OF LINE. EXIT LOOP,
Xi= ADD TO BE SET

Al=LS BYTE

MEM(X)1=As VERIFY

MUVE TO NEXT ApD

A AR A R A X R R Y R L R Y R R R A I Y

*

* WAIT FQR TTY(CHAR,ECHO)

»
*
L]

(#ECHO)=ECHD

RETURN NEXT TTY CHAR IN A
IF (#ECHO) NOT 0 » ECHO CHAR

AR XA A A X R R R R R R R A A A R A X 22222 2y

WAITTY

EQu

*

«L00P UNTIL INPUT o NE, RuUBOUT

wio

SURAR
SWI
RYTE
CHMP A
BNE

GETA
GETA

2ESC
w20

C—19

READ TTY

£5CAPE ?
NU

AMIL

21 PROTO 01/15/76 17104 COMMANDS

LocC 0BJECT M SOURCE STATEMENT

0806 T7E QOAD I JMP ABORT YLS, ABORT
0409 81 7F w20 CMP A gRUBOUT RUugout ?
0408 27 f3 BEQ Wwio YeS CONTINUE LOQOP
*END UNTIL LOOP
0400 70D FFE9 A TSTY ECHO
0810 27 03 BEQ w30 NU ECHD
0412 B8D 0200 1 JSR QUTCH ECHD A
0415 139 w30 RTS
END

SYMBOL TABLES

w10 0400 I w20 0409 W30 0415

XREG FFEE A

VFY 0004
WAITTY 0400

ABORT 00AD I ACIAA 0005 1 ACIAC FBCE A ACIAD FBCF A
ACIAL FFF6 A ACIAS FBCE a ADDABX 0008 A ADDH VFDE A
ADDL FFDC A ADR FFDA A ALPNUM 0013 A AREG FFED A
BADINP O0AD I+ BADTAP 0242 BASE FF90 A BLANK 0020 A
B80S FFBF A BREAK 0002 | BREAK1 0087 I BREG FPFEC A
BT1 024D | BUF FF90 A BUFPTR FFEO A RURN 0001 R
CHEKSM 011C I CKSM FFE4 A CONHB 0015 A COUNT FFE3 A
CR 0000 A CREG FFEB A ¢S} 0129 1 CTABLE 008C.1
CTEND O0O0AD I pL10 0082 | pLOOP 007A I DM 0136 1
OMI0O 0138 | DM20 O013E | DMS0 01SA I ECHO FFE9 A
EOF 015D | €07 0004 A* ESC 001B A FINDS 0252 1
FS10 0255 1 . G610 01AA [GEYA 0018 A GETRG! 0O17€ 1§
GETRG3 0184 | GETRGE 0197 1 GETRNG 016D I 60 019F 1
IRQVEC FFF8 A LAST FFFF A* LOR10 0217 1 LF 000A A
LHF2 0100 LHF3 0213 [* (HFa 0228 1 LHF9 022F 1
LOAD 01AD I LOOFST 0186 I MBADR 0250 I MCRLFS U295 1
MCSER 0278 1 MEOF 026F 1 MONENY 00481 I MONEND V047 1}
MONENT 0041 | MONITR 0047 | MOVE 0002 R MPEOF 028a I
MQUES 0273 | MRNGER 0265 1| MSGABT 0080 I MSGMON 00RO 1
MTAPER 0281 | NA1 02¢4 1 NA3 0208 1 NEXT2D 029f |
NMIVEC FFFC A NULLL 0164 | NULLS 0162 I+ NXTADR U288 I
0C10 02EE | 0c20 0302 1 0CLOOP 02FB 1 OFFSET FFD8 A
OUTCH 020D | QUTCHX 0208 I* P2HEX OQ0O0F A PAHEX U010 A
PAHEXS 037C] PBADR 03DC 1| PCRLF 0308 [PHF1S U318 I
PHF20 0318 | PINIT 0005 R PMSG 0012 A PRI VOF3 I
PR10 0OF8 | PR20 0102 1 PREC10 035A ! PREG FFFQ A
PREGS OOEE | PROMAD FFD8 A PRTXD 0009 A« PSPACE 0380 I
PUNBYT 0374 | PUNCH 0308 1| PUND10 0320 1 PUND20 U32F I
PUTA 00311 A PX} 0388 | PX2 0395 1 PXISTS 0385 I
PXISTX 0388 [+« RDPRE O01EO [ROROFF 0398 I RDRON U3AS I
READ 0003 R RECTYP FFE2 A RESTAK 010C 1 RANGERR 0191 1}
ROF90 039D I+ RON90 O03A7 I+ RSRSR 0000 R RT10 OUOSF I
RT20 0066 | RT30 0069 I+ RT90 006C I« RUBOUT UO7F A
RUS10 0112 [SAVESP FFES Av SAVEX FFE7 A« SETM1 03E2 1
SETMEM 03CC | SETOFF 03AF 1 SETOUT 03Ca8 I SETPUL 03cB I
SM 03e3 SMI0 03EC I - SM30 03FD I SMS VU3E6 I#
SREG FFF2 A START 0000 I+ START1 0007 I SUBXAB 000B A
SWI20 00CC I swi3o o00D1 I sWlao o00D8 I SWI50 00DB I
SWIHAN O00BE | SWIVEC FFFA A TCOUNT FFEA As USWI FFFa A
R 1 1
1

C—20

AM

22 PROTO 01/15/76 17108 COMMANDS

Lac OBJECT M SOURCE STATEMENT
CHECKSUM = 07S5€E

LENGTH OF pSECT = 0 (0000)
LENGTH OF [SECT = 1046 (0416)

NO ERRORS, NO WARNINGS, THIS ASSEMBLY

AMIL.

1 PROM

Loc

0000
0416

01/15/76 17114 PROM BURNER ADDITIUN TU PROTO

OBJECT M SOURCE STATEMENT

LAl I Y R R R R Y R A A A Y Y Y 2222222 2 I Iy

*

]

TITLE PROM BURNER ADDITION TO PROTO

PROM BURNER

LR R R BN NE R I I NS

0001 A MOVER EQu
000A A DELAY EQu
oPY
ISEC
ORG
REF
REF
REF
DEF
)

*

VERSION 2,0 01/08/76
COPYRIGHT 1976 BY AMERTICAN MIGCROSYSTEMS INC.

AR A R AR A2 E 2 A A P 2 A X A R A A A Y Y RS R R X R R X R X 22 Xy

ASSEMBLY OPTIONS

1 0= MOVE ROUTINE EXCLUDED

10 PUST PROGRAM DELAY, BEFORE VFY (MS)
LSKP,LMAC

$416

MONENT»GETRNGoNXTADR«PXISTSsRNGERR PBADR
PCRLFsPSPACE,»SETMEMs ABORTsMONITR
PROMADSADRsADDL»ADDH» COUNT
BURN,MOVE»READs VFY+PINIT

*« PIA LOCATIONS!

[]

FBCO A PIA EQU
0001 A VS0 EQu
0004 A PROM €Qu

[]

H'FBCO
H'FBC1=PIA
H'FBCA=PIA

* STANDARD RAM BUFFER (DEFAULT)

*

FCOO A RAM EQu

*

H'FCOO

* CHARACTER TYPING MACRO

TYPE MACRO

CHAR

IF CHAR 0
LDAA #CHAR

1END

CALL PRINTA

MEND
»

* RSRSR CALL MACRO

*

CALL MACRO ITEM
R swl
BYTE ITEN
MEND

L]

* RSRSR CALL LOCATIONS

*
00311 A PRINTA EQu
0010 A PAHEX EQu

17
16

AMI.

2 PROM

LocC

0416
0419
0418
0410
041F
0421
0423
0425
0427
0429
0428
042D
042F

0430
0431}
0432
0434
0435
0437
0438
0439
0438
043C

043C
083C
0430
043¢
043F
0440
0442
0443

0446
0449
044cC
044F
0452
0455
0458
045A
0450
0460
0463
0466

01/15/76 17114 PROM BURNER ADDITION TU PROTO

0BJECT M

CE
86
AA
AT
86
A7
A7
6f
6F
63
86
AT
39

37
36
8D

cé
89
36
86
49

3F
32

26
33
7E

¢t
FF
Ct
FF
142
80
2r
80
7¢
FE
FF
80D

FBCO
38
01
01
3A
05

0é
04
04
3E
05

oF
08

18

11

FS.
0007

FCOO
000D
FEOO
000E
000K
0003
06

0001
000F
0000
0008
0002

A

DX D>

VDIV

* e ¢ o0

SOURCE STATEMENT

*

* INITIALIZE PROM BURNER PIA'S

*
PINIT LOX
LDAA
ORAA
STAA
LDAA
STAA
STAA
CLR
CLR
COM
LOAA
STAA
RTS

* TYPE A IN RINARYs» ENCLOSED

*
PBBIN PSHB
PSHA
BSR
PULA
LDAB
18 ROLA
PSHA
LDAA
ROLA
TYPE
IF
LDAA &
1END
CALL
SW1
BYTE
PULA
DECSH
BNE
PuLSB
PSP JMP
*

SPIA
#8'00111000
V50X

V500X
28100111010
PROM+1 X
PROM® 3, X
PROM#2,X
PROM, X
PROMs X
#8'00111110
PROMeg o X

PSP

224

PRINTA
PRINTA

18
PSPACE

TURN OFF Sov

R/W TO READ

(HOPE NO DNUBLE=DRIVE HERE)
PROM DATA SET TO INPUTS
SELECT ADDRESS AS QUTRUTS

PUINT YO ADDRESS OUTPUT REG,

BY SPACES
SAVE B
PRINT LEADING SPACE

6 DIGIT COUNTER

(=1/2 ASCI?! "O™)

PRINT ONE MORE SPACE

* RAM/PROM ADDRESS SETUP & VALIDATION

*

RASYV LOX
STX
LOX
STX
CLR
JSR
BEQ
JSR
INC
tAl LDX
STX
JSR

SRAM
ADDL
SRAM+S12
ADDH
COUNT
PXISTS
1A}
GETRNG
COUNT
ADDL
PROMAD
NXTADR

INTITALIZE POINTERS TO DEFAULT RAM

SET FULL PROM FLAG
vooIF NO ADDRESS.,

ULFAULT PROM ADDRESS
IS SAME AS START
TRY FOR PROM ADDRESS

AMIL.

3 PROM

Loc

0469
0468
046E
0ars
0474
0475
0arr
0479
0478
0470
047F
0481
0483
0485
0487
0489
0488
048cC

048F
0492
0492
0493
0494
0497
0499
0498
049E
04A0
048A3
048AS
04A7
04A9
04A9
04AA
04AB
04AE
0480
0481

04B2
0485
0aB7
04BA
048C
04BF
04CO
n4ac]
04cC2
04C3
04C5

01/15/76 1718

PROM BURNER ADDITION TU PROTO

O0BJECT M SOURCE STATEMENT

27
FE
FF
CE
00
€6
£Ee
A6
A2

Cct
3F

FE
A6
80
Bé
80

CE
A6

At
27

F

ab
86
48
39

CE

8r
A6
CE
48
4C
44

A8
84

06

000C R
0008 R
0008 R

7
0S
06
o0&
02
08
o1
00
00
FE
01

0004 R

0000 R

10
0000 R
00

FBC6 A
90
0008 R
o1
0s
02

10
0006 R
40

0008 R

FBCa A
00
FBCO "A

or
oc

A3

1A8
*

BEQ
LOX
STX
LOX
SEC
LDAB
SBC8
LDAA
S8CA
CMPA
BGE
ADDB
ADCA
EORA
ANDA
BNE
RTS
JMP

* TYPE RAM L

*

VERR

17

*

* PROM ADDRESS

»
ADDRS

LOX
CALL
SWI
BYTE
LOX
LDAA
BSR
LDAA
BSR
LDX
LDAA
CMPA
1Y)
CALL
SW1
BYTE
JSR
LDAA
ASLA
RTS

LDx

LDAA
STAA
LDAA
LOX

ASLA
INCA
ASLA
ASLA
EORA
ANDA

1A3

ADR
PROMAD
SPROMAD

PeX
o X
6sX
Qe X
22
1AN
10X
0o X
00X
SH'FE
tAS

RNGERR

NU,
YEs,

VERIFY THAT RANGE <s 512
(* ORCE BORROW)

SADDH1

sADDL*1

SHOULD BE 1 OR O
TUD BIG,
ALSO SHOULD NOY OVERSTEP PROM

IT DOES,
AUDRESS RANGE ERROR

ROM ADDRESS & DATA

#ADOL
PAHEX

PAHEX
ADDL
0s X
PBBIN
PROMe2¢PIA
PBBIN
#PROMAD
1oX

SeX

1T
PAKHEX

PAHEX
PCRLF
264

#PROMAD
1oX
PROM+PIA
0 X

#P1A

PROM+3» X
#12

TYPE RAM ADDRESS

NUW THE BYTE THERE

THEN PROM DATA

NUW IF ADDRESS (LOw 8)
DUES NOT MATCH RAM ADDRESS»
sADDL

PRINT PROM ADDRESS

EXIY C=0s» 230, Vs

SETUP & DATA READ

LUw 8 BITS

HIGH BIT

PUSITION IT

WITH DATA REGISTER SELECT

INSERT INTO CONTROL

AMI

4 PROM

Loc

04C7
04C9
04cs
04CD

04CE
0401
0403
0405
0407
0409

0408
040E
04E0
0AE3
04E6
04ES8

04EA
04ED
04EE
04F1
0AF4
04FS
04F8
0AFB
04FD

0500
0502
0505
0507
0509
0350A
050C
0300
050F
0510
0511

0514
0517
051A
051¢C

01/15/76 1714

08JECT

A8
A7
Ab
39

8O
ao
24
8D
8D
20

80
8D
FE
80
80
20

FE
08
FF
FE
08
FF
8C
26
42

80
FE
Al
27
43

43
26
4C
39
LY

80
70
26
42

o7
07
06

0446
02
0000
0008
02
Fa

0008

0008
0000

0000
000E

85
000A

80
000D

00
o7
00

02

048F

0446
000F

0008

M SOURCE STATEMENT

- D - -] =

0 »

EORA
STAA
LDAA
RTS

*

* PROM VERIF

»

VFY JSR

vV BSR
8ceC
BSR

N BSR
BRA

*

« PROM READ

*

READ JSR

IR BSR
LDX
JSR
BSR
BRA

N .

* INCREMENT

.
INCAD LOX

INX
STX
LoX
INX
STX
CPX
BNE
JMP

INK

EXIY
»

* PROM DATA
)
VFY1 BSR
LoX
CMPA
BEQ
COMA
ORAA
COMA
BNE
INCA
X RTS
JVER JMP
"

* PROM BURNE
*

BURN JSR
LE)
BNE

CLR

PROM+3,X
PROM+3, X
PROM+22 X

Y

RASY
VFY1

JVER
-INCAD
v

RASV
ADDRS
ADDL
SETMEM
INCAD
IR

RAM/PROM ADDRESS

PROMAD

PROMAD
ADDL

ADOL
ADOH
ADDRS
MONITR

VERIFY,
ADDRS
ADDL
0 X
X
0eX

JVER

VERR
R ROUTINE

RASV
COUNT
18
PROMAD

ONE BYTE

PROM BURNER ADDITION TU PROTO

READ DATA

GU SETUP ADDRESSES
VERIFY ONE LOCATION
NU ERROR. OR PRINTED,
PRINT FIXABLE ERROR,
INCREMENT ADDRESSES

SET yYP POINTERS
READ ONE BYTE

SIORE IN RAM
NEXTI

PUINTERS

EXIT TO MONITOR

SET uUP & READ A BYTE
CUMPARE TO RAM

QK C=0s Z=1, v=0
NU, IS IT FIXABLE?
1¢E. NO RAM=0y» PROM=1?
=0, V=0

YES, (C=),

NU, TYPE ERROR

"SET UYP PARAMETERS

IF FULL» UNPARAMETERIZED,
DU BLANK CHECK

AMIL

S PROM

Loc

0S1F
0521
0523
0526
0528
052A
052¢C
052t
052F
0531
0533
0535
0537
0539
0538
0530
0540
0542
0545
0547
0549
0548
054D
054F
0551
0533
0555
0557
05586
055A
055C
055¢
0560
0562
0564
0566
0568
056A
056C
0S6E
056F
0ST71
0573
0575
0577

0579
0578
0570
0S7E

0580
0581
0584
0586

osJecCT

1)
26
CE
6C
26
6C
A6
a6
25
6f
20
8D
ceé
80
29
FE
A6
CE
AT
A6
8a

01/15/76 17114 PROM BURNER ADDITION TU PROTO

91 1
75

0008 R

vl

FS

00

00

€t

00

02

83 11
03 3]
¢5

co

0000 R L
00

FBCO A

06

05

F?

03

o7

FB

o7

06

06

14
3F
3 tP
01
F7
01
35
33
3
38
ot

£D
06
0S
38
05
10
0A
1€ . N

FB
0500 1|

oF
AD

M SOURCE STATEMENT

BSR
ANE
LOX
INC
8NE
INC
LDAA
RORA
8cCs
CLR
BRA
BSR
LDAB
BSR
BvVS
LOX
LDAA
LOX
STAA
LDAA
ANDA
STAA
LOAA
ANDA
STAA
CLR
coM
PSHB
LOAR
BSR
BSR
LDAA
ANDA
STAA
BSR
BSR
BSR
ORAA
STAA
DECB
BNE
CLR
LDAA
ORAA
STAA
IF
LDAB
8SR
DECB
BNE

TEND

PULSB
JSR
BYS
BEGC

ADDRS
NOGOOD
S#PROMAD
teX

1C

OeX

0eX

1C

QX

1B

INCAD

23

VFY1L

EXIT

ADDL

0eX

SPIA
PROM¢2, X
PROM+ 1 X
#8'11110111
PROM+ g9 X
PROMe 3 X
#28'11111011
PROM& 3 X
PROMe2, X
PROM+2, X

220

MSEC

MSEC

V50, X
#28'11110111
V50.X

MSEC

MSEC

MSEC
28100111000
Vv50eX

1P

PROM*2,X
PROM+ 1, X
#8'00111000
PROM+1s X
DELAY
#DELAY

MSEC

W

VFY1
1J
11

C—26

AHA == IT ISN'T
INCREMENT pPROM ADODRESS

AUVANCE TO NEXT

SET TRY COUNTER
CHECK THIS LOCATION
CAN'T PROGRAM 1 TO O
GET DATUM

SET R/W TO W

TURN IT AROUND
(70 OUTPUTS)

CLEAR TIMER
WAIT 1 MS BETWEEN PULSES

SET MIGH VOLTAGE
3 MS PULSE DURATION

TURN OFF HIGH VOLTAGE

20 TIMES,
CUNVERT OUTPUTS TO INPUTS
TURN OFF WRITE

OMIT IF NO POST PROGRAM DELAY
DELAY (B) MS

CHECK IT1
BAD BIT SHOWED uP
GuOD

6

01/715/76 17314

PROM
Loc O8JECT M
0588
21
0588 86 15
058A
058A 3F
0588 11
0568C CE fBCO A
058F SA
0590 26 aAB
0592 8D 048F 1|
0595 1
0595 TE 0005 R
0598 7& 0009 R
0598 6D oS
0590 2A f¢C
059F Al 04
05A1 39
1
05A2 8D 0001 R
05A5 8D 0002 R
05A8 27 €8
05AA FE 000D R
0SAD A6 00
- 05AF FE 000C R
0582 8D 0008 R
0585 08
0586 FF 000C R
0589 BD 04F1 1|
05SBC 20 EC
SYMBOL TABLE:!
ABORT 0009 R
ADR 000C R
EXIT 04FD |
JBAD 0595 |
MOVE 05A2 |
NXTADR 0002 R
PCRLF 0006 R
PROM 0004 A

SOURCE STATEMENT

TYPE 21
* iF 21
+ LOAA 221
+ 1END
+ CALL PRINTA
+ SWI
¢ BYTE PRINTA
LDX #PIA
DECSB
BNE 1L
JSR VERR
[} EQu L
JBAD JMP PBADR
NOGODQD JMP ABORTY

* ONE MILLISECOND DELAY
.

MSEC ST PROM#+1,X
BPL MSEC
CMPA PROM, X
RTS

*

* MEMORY MOVE

*
IF MOVER

MOVE JSR GETRNG
JSR NXTADR
BEN JBAD

™ LDX ADDL
LDAA O X
LDX ADR
JSR SETMEM
INX
STX ADR
JSR INK
BRA tM
ELSE

MOVE EQAU RAM
1END

*« END OF MOOULE

L]

END
ADOH 000f R ADDL 000D
BURN 0514 | COUNT® 000F
GETRNG 0001 R INCAD Ou4EA
JVER 0511 1 MONENT 0000
MOVER 0001 A MSEC 0598
PAHEX QU100 A PBATN 0430
PIA F8CO0 A PINIT 0416
PRUMAD 0008 R PSP 0443

L IO W W BT » B of

-

PROM BURNER ADDITION TU pPROTO

NU, TYPE A NAK
0

AND TRY AGAIN

Glve uP
PRINT "BAD ADDRESS™ AND QUIT

WAIT FOR CAt TQ FLOP

CLEAR IT (WITH A DATA READM)

GET SOURCE ADDRESS RANGE

GLT DESTINATION STARTING ADDRESS
ERROR IF NONE

GLT BYTE

SIORE IT WITH VERIFY

INCREMENT POINTERS

CUMPARE TO END

MURE
ADDRS 04R2 1
NDELAY 000A A
INK UarFty 1
MONITR U00A R
NOGOODD US98 1
PRADR U0os% R
PRINTA 001t A
PSPACE U007 R

AMLL

7 PROM 01/13/76 17914 PROM BURNER ADDITIUN TU PROTO

Lo¢ OBJECT M SOURCE STATEMENT
PXISTS 0003 R RAM FCOO0 A RASV 0446 1 READ 0apB I
RNGERR 0004 R SETMEM 0008 R vSo 0008 A VERR Vasr 1
VFY 04CE | vFY1 0500 1
CHECKSUM = 93E¢
LENGTH OF DSECT = 0 (0000)
LENGTH OF ISECT = 424 (01A8)

NO ERRORS, NO WARNINGS» THIS ASSEMBLY

C—28

AMI.

1

RSRSR

Loc

0000
03BE

0SBE

058BF
03C1
03¢2

05Ca
05C5

05Cé

03Cé

05¢C9
05cC8

01/15/76 17417 RSRSR =« REENTRANT SELF RELATIVE SUBROUTINE ROM

0BJECT M SOURCE STATEMENT
TITLE

EE

&F
E6

a9

80

30

€8
A9

0018 A

058E I

0S5

00

00

05C8 I

01
00

*

RSRSR =« REENTRANT SELF RELATIVE SUBROUTINE ROM
e O Y Y T L R L I T I T Y

* (R§)**3 SUBROUTINE ROM FOR USt WITH PROTO

+ VERSION 2.0

01/08/76

* COPYRIGHT 1976 BY AMERICAN MICROSYSTEMS INC,

'Y A R e X A A A S R R R R R R X A R R X2 2 2 X 2 X)

NITEMS
*

CAL

[2R 2K B BN J

SRSR

* % % % Ve

* % e

LDX S, X
-«
CLR A
LDA B 0sX
ASL B
ROL A
-
. AsB HAS
*
L VECTOR OF SUBROUTINE
.
* FROM HERE TO VECTOR
BSR LoCvy
N
"
LOCvy EQu *
TSX
* AsB WILL HAVE
ADD B8 1.X
ADC A 09X

EQu
LING

ISEC
ORG
LOCA
DEF

L

ENTRY IS5 VIA

24
SEQUENCE

$5BE
RSRSR

NUMBER OF ROUTINES

LOC
X SWI
Xel INDEX

X+2 NEXT INSTRUCTION

LOw ORDER ADURESS OF ROM

<<ADDRESS IS PLACED IN S5W] VECTOR ADDRESS

EQu

TSX

|]

GET THE INDEX VALUE
DOUBLE IT FOR VECTOR ADDHESS INDEX

SP INTO X

RESTORE STATE OF INTERRUPT AT TIME OF CAL{

X HAS INDEX ADDRESS

INDEX INTO B
DUUBLE

TWO TIMES INDEX

* ADD VECTOR OFFSEY

ADDHESSES IS AT 512
IS 512 « WHERE WE ARE

+ ROM BASE

STACK HAS WHERE WE ARE

INDEX #2 ¢ LOCATION(1A)

AMIL.

2 RSRSR 01/15/76 17417 RSRSR == REENTRANT SELF RELATIVE SUBROUTINE ROM
Loc O0BJECT M SOURCE STATEMENT
w
05CD C8 24 ADD 8 #(LOCVLH'OOFF) LOW ORDER EIGHT BITS
0SCF 89 o1 ADC A #2(LOCy/H*100) HIGH ORDER EIGHT BITS
*
* AyB NOW HAS ADDRESS UF SUBROUTINE ADORESS
*
0501 A7 00 STA A 0sX SAVE VECTOR ADDRESS» HIGH
0503 E7 ot STA B 1,X SAVE VECTOR ADDRESS, LOW
0505 EE 00 LDX 0sX LUAD VECTOR ADDRESS INTO
0507 EB o1 ADD B 1sX
0509 A9 0O ADC A 0O»X
* ADD IN OFFSET CONTAINED IN VECTOR TABLE
0508 30 TSX
050C A7 00 STA A 0.X
0SDE E7 o1 STA B 1.X
0SEQ A6 02 LDA A 24X
05E2 06 TAP SIORE OLD STATE INTO ¢C
05€3 EE 00 LOX 0sX
»
0SES 3% INS
0SE6 31} INS CURRECT SP
* JUuMp T0O SUBROUTINE
05E7 AD 00 JSR 0sX
]
* NORMAL EXIT FROM SUBROQUTINE
. INCREMENT RETURN ADURESS
05E9 30 TSX
0SEA 6C 06 INC 60X
05EC 26 02 BNE 'Y)
0S5EE 6C 05 INC Se X
. ExIr
0SFO0 38 RTI
3 RSRSR 01715776 17317 SUBROUTINES
LoC 0BJECT M SOURCE STATEMENT
L]
* STACK ELEMENTS ARE STACK POINTER +2 SINCE JSR
*
0002 A uC EQuU 2 CC RELATIVE TO SsP
0003 A UB EQu 3 -] RELATIVE TQ SP
0008 A~ yA EQu a A RELATIVE Yo Sp
0005 A UXH EQuU] XH RELATIVE Tg SP
0006 A UXL Eau 6 XL RELATIVE To SP
0007 A URH EQuU ? RH RELATIVE To Sp
0008 A URL EQU 8 RL RELATIVE To sP,
*
. PUSH ALL UNTO STACK == REGISTERS CORRECYT ON EX
»
0000 A SRH EQu 0 SYSTEM RETURN H RELATIVE
0001 A SRL FQu 1 SYSTEM RETURN L RELATIVE

X

I

T0 SP
T0 SP

AMI.

4 RSRSR

Loc

05F1
05F2
05F3
05F4
05F5

05F6
05F8
05F9
05fF8
05F0
0SFE
05FF

0601
0603
0604
0606
0608
0609
060A

060C

031/15/76 17317 PUSH

OBJECT M

34
34
34
34
34

ceé
30
A6

0é

SA
26

39

05F1 1

09
05
00
F8
05
02

09

F8

ALL

SOURCE STATEMENT

)
* PUSH ALL REGISTERS UNTU STACK==REGISTERS
*
* CURRENT STACK SP +1 & +3 +48 +5
* SRH SKL ¢¢ 8 A
* RESULT STACK BEFORE RETURN TO MAIN EXIT
*SRH SRL ¢¢C B A XH XL URL URH ¢C
»

LOCAL

PUSHALL EQu
.

* MAKE SPACE

*
DES
DES
DES
NES
DES

»

LDA
TSX
1S5 LDA
STA
INX
DEC
8BNE

»

MOVE STACK DOWN

B #»9 NINE BYTES TO MOVE
A SeX UFFSET OF 5
A 00X
8
1S

RECOPY "PUSHED"™ REGISTERS

LD: 8 #3 FIVE BYTES TO MOVE
TS
i LDOA A UCsX
STA A UC*7,X OtFSET BY 7
INX -
DEC B
BNE tC
*
» EXIT TG MAIN
»
RTS
USER STACK IS

> % % o

cc B8 A XH
sP

Cc—31

UNMODIFIED

+6 .7 +8 +9
XH {8

URL URH

8 A XH XL

’

XL

AMIL

01/15/76 17117 POP ALL

S RSRSR

Loc O0BJECT M

060D I

060D 30
060E C6 05
0610 A6 09
0612 A7 02
0614 08
0615 5A
0616 26 8
0618 C6 09
061A A6 03
061C A7 08
061E 09
061F SA
0620 26 F8
0622 31
0623 31
0624 3}
0625 31
0626 11
0627 39

SOURCE STATEMENT

*

. POP ALL REGISTERS

*

LOCAL
POPALL EQU .
TSX
* CURRENT STACK
* SRH SRL C¢C B A XH XL URH URL
* RESULT STACK
. SRH SRL ¢¢C 8
*
* RECOPY "PULLED™ REGISTERS
*
LDA B 85 FIVE OF THEM
iC LDA A UC*7sX OFFSETY OF 7
STA A UYCeX
INX
DEC 8
BNE 1C
*
* SHIFT EVERYTHING OVER
*
LDA B #9 NINE BYTES
1S LDA A URL=S5,X
STA A URLeX OFFSET 5
DEX
NEC 8
ANE 1S

L d

FINALLY INCREMENT SP

INS
INS
INS
INS
INS
RTS

cC
A

XH

xL

XH
URH

XL
UR

AMI.

6 RSRSR

Loc

0628
0629
0628
0620
062F

0631

0632
0633
0635

0637
0639

0638

7 RSRSR

Loc

063C

0630
063F
0640
0642
0644
0645

OBUECT M

30

A6 05
€6 06
A7 04
E7 03

39

30
A6 04
AT 05

A6 03
AT 06

39

OBJECT M

063C 1
30

A6 05
36
€6 06
80 EF
32
20 g6

01/15/76 17417

01/35/76 17117 TXAB/TABX

SOURCE STATEMENT

* TRANSFER X T0
»
TXAB TSX
LOA A UXHeX
LDA B UXLeX
STAB STA A UA»sX
STA B UB#X
»
RTS

» TRANSFER AsB TO X

TABX TSX
LDA A
STA A

UAs X
UXHs X

LDA A
STA A

RTS

UBe X
UXLeX

XABX

SOURCE STATEMENT

»
. EXCHANGE AsB AND
)
XABX Equ- *

75X
. CURRENT STACK
* SRH SRL
. RESULT
. -

LOA A UXHeX

PSH A

LDA B UXL»oX

BSR TABX+1

PUL A

BRA STAB

AsB

X HIGH

X LOW

TV A

Tu B

A

TU X HIGH
8

T0 X LOw
X

¢ 8 A XH XL URH
18 XH A 8

PICK UP UX

THEN GO TRANSFER A,B T0 X
TU STORE IN AsB

URL

AMIL.

8 RSRSR
LoC OBJECT M
0647 1
0647 34
0648 34
0649 30
064A 86 09
064C E6 02
064E E7 00
0650 o8
0651 4aA
0652 26 F8
0654 30
0655 A6 05
0657 A7 09
0659 A6 06
0658 A7 0A
0650 139
065E I
065E 30
065F A6 9
0661 A7 0S5
0663 A6 QA
0665 A7 06
0667 86 09
0669 1
0669 Eo 08
0668 E7 0A
0660 09
066E 4A

01/715/76 17417

PUSX/PULX

SOURCE STATEMENT

LOCAL
* PUSH X
*
PUSX EQu L
"
* GET SPACE IN SPACE
*
DES
DES
TSX
L MOVE STACK DOWN Tw0
LDA A 29
.
1A LOA B 2sX
STA R Q»X
INX
NEC A
ANE tA
*
* STACK MOVED == INSERT
TSX
LDA A UXHsX
STA A XHe 4, X
LDA A UXLeX
STA A uXLed,X
.
RTS
. STACK ON RET
* SRH SRL ¢ ;]
. SP
*
. PUL X
*
LOCAL
PULX EQu "
* GET X FROM STACK
L]
TSX
LDA A UXHe4,X
STA A UXHsX
LDA A 1XL+4.X
STA A XL X
*
* NOW MOVE uyP TwO.
LOA A 29
tA EQU *
LDA B B8,X
STA R 10eX
NEX
NEC A

C—34

MUVE TOTAL OF 9 BYTES

X

A XH XL URH URL xH
CURRENT X ON STACK

REG X

BYTE COUNTY

xL

AMIL.

9 RSRSR 01/715/76 17317 PUSX/PULX

Lo¢ OBJECT M SOURCE STATEMENT

066F 26 F8 BNE tA
» UPDATE SP
0671 INS
0672 N INS
L]
0673 39 RTS

AMIL

10 RSRSR 01715776 17417 ADOXAB
LocC O0BJECT M SOURCE STATEMENT
LOCAL
*
* ADD X T0 A,B
-
0674 I ADDXAB EQu *
o674 30 TSX
0675 80D C6 BSR XABX+}
0677 8b 03 ASR ADDABX+1
0679 20 ¢2 BRA XABX+1
-
* ADD A.B TO X
*
0678 30 ADDARX TS8X
067C A6 03 LDA A yBeX
067E E6 04 LDA B UAeX
.
-
« CODE SHARED BY ADDAXs INDEX
*
V680 I ADDAB (A]V] *
0680 AB 6 ADD A UXLaX
o682 A7 06 STA A UXLeX
-
o684 E9 05 ADC B UXHeX
0686 07 STAUXH TPA
0687 E7 0S STA B UXH»X
.
0689 6D 06 ST UXLeX

-

EASY WAYt EXCHANGE AB & X
AUD OTHER wAY
THEN EXCHANGE BACK

AVD uUxL To uB
SI10RE INTO uXxL

AUD
SAVE
S10RE

UXH TO0 UA
STATyYS
INTO yXH

TEST

LOW BYTE FOR ZERO

* CONE SHARED BY ADDABX» MULB, MUL16

*

0688 I TEST2 EQu .
geb8 27 02 BEQ 1A
0680 84 FB AND A #H'FB
068F AT 02 1A STA A 1CeX

*
0691 39 RTS
*
EY ADD A YO X
*

0692 1 ADDAX EQU *
0692 30 TSX
0693 A6 (4 LDA A UAsX

0695 1 ADDZ EQu *
0695 €6 00 LDA B 20

YLS == HIGH BYTE STATUS IS TRUE RESULT
NU == Z BIT CLEARED
SAVE STATYS

11 RSRSR

Loc
0697

0699
069A
069C

0BJECT M

20 €7

0699 1
30
A6 03
20 f7

01/15/76 17117

ADDBX

ADDXAB

SOURCE STATEMENT

RRA ADDAB

ADD 8 T0 X

EQU *
TSX

LDA A UB»X
BRA ADDZ

AMI.

12

RSRSR

Loc

069E
069F
06A1
06A3

06A5
06A6
06A8

06AA
06AC

06AE
0680

0682
0683
0685
0687
o688

06BA
06BC
06BE

06C0O
06C}

01/715/76 17417

0BJECT M

30
Eé
A6

AQ
A7

E2
20

30
Eé
A6
10
A7

E6
c2
20

30
E6

9¢C
03
98

06AS5 1

05
06

03
06

04
04

0682 1

04
06

06
05
cé

06C0 I

03

SUBXAB

SOURCE STATEMENT

.

.

.
SuBxa

*
*
]

SUBAB

L]
*
*

SUBAX

1SuB

*
*
*

SuBBx

SUBTRACT X FROM

TSx
ASR
BSR
BRA

XABX et
SUBABX+1
XABXe}

SUBTRACT A.B FROM

EQu
78X
LDA
LDA

sus
STA

sac
BRA

B UXHeX
A UXLeX

UBeX
UXL o X

B UAsX
STAUXH

» >

SUBTRACT A FROM

suB

EQu
TSX
LDA
LDA
SBA
STA

L0A
S8¢C
BRA

EQu
TSX
LDA

UAe X
UXLoeX

» @

A UXLeX
B UXHeX

STAUXH

FROM X

*

B UB»X

A28

SUB A FROM XL
SIO0RE Xt

AMIL

13 RSRSR

Loc
06C3

06C5

06C7
06C8
06C9
06CA
06cCs

06CD
06CF
0600
0602
9604
06035
0606

01/15/76 17417

0BJECT M

20

80

k14
16
32
30
20

8D
30
E7
A7
07

20

Fo

06C5 1
11

83

06CD I
09

03
04

B3

SUBXAB

SOURCE STATEMENT

BRA $SUB
[]
*
¢ INDEXS XisX ¢ AeB (SAVE USERA#B)
*
LOCAL
INDEX EQU *
BSR MPY8 Ae8 s USERA®USERSB
*
* EXCHANGE A & A TO SHARE CODE w/ ADDABX
[]
PSH B
TAB
PUL A
TSX
RRA ADDAB
*
*
* MULBY A,B = A#B
*
MULS EQu *
BSR MPYS8
TSX .
STA B UBsX SAVE RESULT
STA A UAsX SLY yP N 817
TPA
TST B
JMPT2 BRA TEST2 UPDATE USER C & RETURN
X
' -
* MULI6*=16 RIT MULTIPLY
. AsB,X 18 A,B#X
*
. A»B = PARTIAL PRODUCT
. USERX = MULTIPLIER
* USERA,USERA = MULTIPLICAND
*
1F NITEMS=24 (UMIT IF NITEMS < 25)
LoCAL
MULI6 LnA A 216 PUSH COUNTER INTO STACK b
PSH A
TSX .
CLR A
CLR B
ROR UXHel1sX SHIFT LSB INTO CRY
ROR UXL+1sX
»
* LOOP 16 TIMESST
»
1L0gGp BcC ISHIFT MULTIPLIER 1S EVEN
ADD B UB+#1,X AsR 1% AyB + USERA,B
ANC A UAeloX
*
ISHIFT ROR A SHIFT EVERYTHING RIGHT
ROR B

AMI.

14 KSRSR 01715776 17317 SUBXAB

L0C O0BJECT M SOURCE STATEMENT

ROR UXH+1,X

ROR UXL+1sX

DecC 0s»X OEC, CUOUNIER
BNE 1LooP

*

END LOQP

INS RESTORE SP
TsX

STA B UB«X

STA A UA,X

SET USER CC3 N=sN(MSBYTE)
Z 1t AND (Z(MSBYTE)seeesZ(LSBYTE))S
V 1= 09
CRY s 0,
THE LAST ADD RESET CRYe STA SET NaN(MSBYTE) & v=0,

[I 2N I R BN %)

TPA
ORA B UXH»X Bi= OR OF 3 LS RYTES

ORA B UXLeX

USER CC HAS CORRECT Nusvs2Ce C HAS CORRECT Z FOR LS BYTES,
GO TO END OF ADDXAB TO UPDATE USERC,

- & * 8

BRA JMPTZ
T1END

SUBROUTINE MPYR! AA.B 13USERA+USERB
A = PARTIAL PRODUCT
B = MULTIPLIER & LSB'S UF PaR, PROD,
USERA = MULTIPLICAND

> ¢ % % % S 9

LOCAL

0608 86 08 MPY8 LDA A g8 PUSH COUNTER INTO STACK
06DA 36 PSH A

« STACK = COUNT, Rs Ry, Rs Ro C» Bs As X» Xs Rs R
0608 aF CLR A
060C 30 TSX
0600 E6 06 LDA B UBR+3sX U*MULTIPLIER
06LF S6 ROR B

*

* LOOP B TIMESS

*

06E0 24 02 iLoopP BCC ISHIFT MULTIPLIER IS EVEN
06E2 AB 07 ADD A UA+3,X

PO
o6Es a6 ISHIFT ROR A : SHIFY |SB OF A INTQO B
06ES5 56 ROR A
06E6 6A 00 DEC 0sX CHECK COUNT
06EB 26 F6 BNE 1Loop

*

+ END OF tOOP
*

AML

15 RSRSR

01715776 17317

LOC OBJECT

06EA 31
06E8 39

16 RSRSR

M

SOURCE STATEMENT

SUBXAB

INS
RTS

RESTORE SP

01/15/76 17¢17 SUBROUTINE ADDRESS VECTOR

LOoC 0BJECT

Q6L (C
06LE
06F0
06F2
06F4
Q6F6
06F8
06FA
Q6FC
06FL
0700
0702
0704
0706
oro08
0704
Q70C
070E
0710
0712
H18Y)
o716
o718
071A

0124
06EC
FFOS
FFL1F
FF38
FFa4o0
FF48
FFS51
FF66
FFTA
FFTF
FF94
FF99
FF9C
FFAL
FFAC
FFB8
0017
0010
002F
004F
0050
00866
0096
FFAD
FFB3

M

PP rerprrerri>PPPPIPPEEDDDBEDDrD

SOURCE STATEMENT

* RELATIVE ENTRY POINTS TU SUBROUTINES VECTOR

.
LOCv
SVECTOR

EQuU wel OCVV
EQu -
WORD PUSHALL=#
WORD POPALL=w
WORD TXAB=«»
WORD TABX=#
WORD XABX=#»
WORD PUSX=#
WORD PULX=+
WORD ADDXAB=w
WORD ADDABYX=w
WORD ADDAX=w
WORD ADDB X =
WORD SUBXAR=+»
WORD SUBARX=#
WORD SUBAX=w®
WORD SUBBX=w
WORD P2HEX =+
WORD PYHEX =+
WORD PRINTA=w
WORD PMESS=?
WORD VALAN=«w
WORD INPUTA=»
WORD CONHB=#
WORD INDEXw«#
WORD MULB =+
IF NITEMS=24
WORD MUL16=v 24
IEND

[

2
o
™m
x

CENOCOVEWN-O

Ll I e
CAXANOUT B WUNR-CO

NN
w e C

AMI.

17 RSRSR 01/15/76 17117 PAHEX/P2HEX

LOC OBJECT M SOURCE STATEMENT
* LOCAL

*
* PRINT 274 HEX CHARS FROM MEM{UXsUX+1)

* UX IS INCREMENTED UPUN OUIPUT T,E. UX = UXe2
L] .

P

o7ic I 4HEX EQu »
071¢ 30 . TSX
071D EE 0S5 LDX UXHo X USERS X

071F 8D 06 RSR PHEX PRINT MEMO)

*+ PRINT 2 HEX CHARS FROM MEM(UX)
0721 1 P2HEX EQU

6721 30 TSx

0722 EE 05 LOX UXHe X USERS X

0724 80 01 BSR PHE X PRINT MEM (X)
0726 39 RTS

18 RSRSR 01715776 17317 PHEX

Loc OBJECT M SOURCE STATEMENT

*

* PRINY 2 HEX CHARS FROM MEM(X)
L]

LOCAL

0727 1 PHEX EQU *
0727 A6 00 LOA A 0sX GET THE CHAR
0729 8D 29 ASR ASCIIR CUNVERT THE RIGHT NIBBLE AND RESULT IN A
0728 36 PSH A SAVE 1IT
072C A6 00 LDA A 0sX GET CHAR AGAIN
072E 8D 20 BSR ASCIIL CUNVERT THE LEFT NIBBLE INTO A
0730 80 ot BSR PUTAX PRINT A REG CHAR
0732 32 PUL A RECOVER SAVED
0733 80 10 B8SR PUTA es o THEN FALL INTO PINCX

211
.
* INCREMENT THE USERS x IN THEL STACK

L E X X
LOCAL
0735 1 PINCX EQU *

0735 30 TS SP IS +2 SINCE TwO BSR DOWN IN CALLS
0736 6C 08 INC UXL$2.X INC MEMDRY X LQW
0738 26 ¢2 BNE 1RTS UVER FLOW MEANS INC HIGH PART
073A 6C 07 INC UXH+2, X YES == INC HIGH
o73C 39 tRTS RTS (2381

AMI.

01/15/76 17417

19 RSRSR

Loc OBJECT M
0730 1

o730 30

OT3E A6 04

0740 FE FFF6 A

0743 EE 00

- 0745

0745 36

0746 A6 00

0748 85 92

OTAA 27 FaA

074C 32

074D A7 o1

o7afF 39

SOURCE

*

* PRINT THE CHAR IN JSERS A

*

PRINT CHAR

STATEHMENT

PRINTA EQu *
TSX
LDA A UAsX GET CHAR
LOCAL
*
* PRINT CHAR IN DESIGNATED REG
* ACIA ADDRESS IN X
nePT LMAC
*
- PUT MACRO BX
PSH 8X SAVE REG
SREADY DA BX 0sX ACIA STAIYS
BIT Bx 202 READY ?
BEQ IREADY NOT READY
PUL Bx RESTORE CHAR
STA Bx 1sX PRINT CHAR
RTS
MEND
*
* PRINT CHAR IN A
*
PUTAX LDX H'FFF6 GLY INDIRECT ADDRESS OF ACIA
LOX 00X GET ACTUAL ADDRESS NF =~ACIA INTO X
PUTA PUT A
+ PSH A SAVE REG
+IREADY LDA A 0sX ACTA STATYS
* 81T A #02 READY 2
+ BEQ tREADY NUT READY
+ PUL A RESTORE CHAR
+ STA A 11X PRINT CHAR
¢ RYS

C—43

AMIL.

20

21

RSRSR
LoC
0750 44
0751 44
0752 4asa
0753 44
0754 84
0756 88
0758 81
075A 23
075C 88
075€ 39

RSRSR
Lac
O75F 30
0760 EE.
0762 A6
0764 81
ore6é6 27
ores 8D
Q76A 80D
ore6C 20
Q76E 39

0BJECT M SOURCE STATEMENT

DBJECT M SOURCE "STATEMENT

0750 1

01/15/76 173117

w

»

= CONVERT

* LEFT PARY
*

A

SCIIL

HEX/T0/ASCII

LOCAL

EQu
LSR
LSR
LSR
LSR

> > >

« INNPNSTINAN

OF . ASCIIR
30
39
02
o7
1RTS

01/15/76 17317

»
» PRINT MESSAGE

075F I PMESS

IRTS
0004 A ETX

AND A
ADD A
CMP A
BLS
ADD A
RTS

#HOF
#H'30
#H*39
$RTS

PRINT MESSAGE

LOCAL
EQU
TSX
L0X
LDA A
CMP A
BE®Q
BSR
ASR
BRA
RTS
EQU

4 FROM HEX TO0 ASCII LEFT/RIGHT NIBBLE

A HAS CHAR TQ RE CONVERTED

CLEAR LEFT PART

01N 9
YES DONE
NU THEN A TO F

POINTED TU BY x AND TERMINATED BY ETX

6T USERS X

GtT CHAR

15 IT TERMINATQR
UUNE

PRINT A

INC USERS X

Ludp TILL NONE

‘A‘J‘dlllm

01/715/76 17317

22 RSRSR
LoC OBJYECT M
o76F I
076F 30
0770 EE 05
o772 80 05
o774 07
o775 30
0776 AT 02
0778 39
0779 1
o779 A6 00
o778 81 4}
o770 20 OE
OTTF 81 SaA
0781 2t 12
0783 81 ¢7
0785 29 g0
0787 80 o7
0789 84 oOF
0788 00D
078C 39
Q78D 81 30
O78F 2P 04
0791 81 39
0793 2F Fa
0795 oC
0796 08
o797 39

VALID ALPHA/NUMERIC

SOURCE STATEMENT

&
* X HAS ADDRESS OF CHAR TO TO BE TESTED
* FOR BEING ALPHA NUMERIC
* CARRY SET IF TRUE
VALAN EQU *
LOCAL
TSX
LDX UXHo X GLT CHAR ADDRESS
BSR ALPNUM TEST MEM(X)SALPHANUMERIC

L]

* SET USER'S
*

CARRY = CURRENT CAKRY (AND QTHER FLAGS!)

SCARRY TPA

*

SETUS TSX
STA A UC»X
RTS

SET CARRY IF MEM(X) 1S ALPHANUMERIC

LPNuM EQu

*
*
*
* CLEAR v IF HEX DIGIT
»
A

*

LDA A 00X GLT THE CHAR
CMP A #'A
RLT INUM TUD SMALL FOR ALPHA »IS5 1Y NUMERIC
CMP A 2'2
BGT INOTOK
CMP A #128+4'6 StT v IF >F
AvsS IRTS QUIT IF NOT HEX (Cs})
SUR A #7 CUNVERT LETTER TO HEX
10K AND A 215 STRIP OVERBITS FROM HEX DIGIT
SEC SLY C FOR VALID A/N
RTS
*
tNUM CMP A 20 NUMERIC TESTINgG
BLT tNOTOK NUT NUMERIC
CMP A 29
RLE 10K It IS IN 0=9
INGTOK cLC RLSET CARRY FOR NOT A/N
SEV SET v FOR NOT MEX EITHER
IRTS RTS

AMIL.

23 RSRSR 01/15/76 17317 INPUT A

Lac OBJECT M SOURCE STATEMENT
0798 20 98 JPINCX BRA PINCX EXTRA BRA TO REACH PINCX

N S I I I A T R T T R SR TS P Y
*

* INPUTA:

. INPUT ACIA DATA INTO A REG

* STRIP PARITY
*
*

X 23 R R R R Xy s s A A S A X TSRS RSS2 X X 20)

LOCAL
079A 1 INPUTA EQU »
079A FE FFFé A LOX HY'FFF6 GLY ACIA INDIRECT ADDRESS
0790 EE 00 Lox 0eX GET ACIA ADDRESS
* N
~O79F A6 00 SHALT LDA A 0sX ACIA STATUS
07Al a7 ASR A CARRY I sRORF
07A2 24 FB 8cCcC INAIT NU INPUT., LOOP.
*
O7A&4 A6 0} LOA A 1,X ACIA DATA
OTA6 B84 TF AND A #H'TF SIRIP PARITY
07A8 30 TSX PUT RESULT ONTQ STACK
07A9 A7 04 STA A UAsX
07AB 39 RTS

i
A

24 RSRSR 01/15/76 17117 HEX YO BINARY

Loc 0BJECT M SOURCE STATEMENT

PP S s R T2 22 22 A ST S22 22 222 2 2 2 2 20

CONHB®=CONVERT HEX TO BINARY!
SCAN UP TO R ASCII CHARACTERS STARTING AT X
LOOKING FOR A VALID HEX NUMBER, RETURN BINARY
EQUIVALENT OF NUMBER IN AsBe IF NUMBER HAS MORE THAN

16 BITSe. IGNORE MSB'S,

INPUTS XwADDRESS OF 1ST CHAR TO BE SCANNED.
RsMAX, # OF CHARS TU BE SCANNED.

QUTPUT: A+BuBINARY RESULT
CARRYs1 IF VALID NUMBER IS FOUND
X POINTS TO LAST CHAR SCANNED

LR B N N S B R N N R R B N N 3

P AT R 2 222 AR AR 22 S X2 2222 AR 222 dd]

LOCAL
O7AC I CONHB EQu *

07AC 30 75X
07AD E6 03 LDOA B UB»X GET MAX COUNT
OTAF 6F 04 CLR UAs X CLEAR USER'S A,B REGS
0781 6F 03 CLR UBeX

*

» LOOP WHILE NOT ALPHANUMERIC AND COUNT > |

*

0rB83 30 1L00pP1 TSX
0784 EE 05 LDX UXH» X GLT CHAR ADDRESS
Q786 8D ¢} BSR ALPNUM 15 MEM(X) ALPHANUMERIC?
orBa 25 09 BCS tFOUND YtS, STOP SCANNING
O7TBA SA DEC B DLC COUNT
O7TBB 2F 04 BLE 1ENDCNT CUUNT EXHAUSTED
o780 8D D9 ASR JPINCYX ENC USER'S X
O7BF 20 f2 BRA 1L,00P1
*
« END LOOP
*
» COUNT EXHAUSTED WITH NO SucCCtss,
« (CARRY WAS RESET BY ALPNUM).
*
07C1 20 81 S$ENDCNT BRA SCARRY RESET USER C AND RETURN
]
* WHILE HEX AND COUNT > 0 SHIFT MEM(X) INTO yAsuB
*
« BEGIN NUTER LOOP
orCc3 30 1FOUND TSX
07C4 EE 05 LDX UXHe X
07C6 8D 81 BSR ALPNUM CNVY MEM(X) TO HEX
orca 29 18 BVS tNOGODD INVALID CHAR
O7CA 37 PSH B SAVE COUNT
07CB €6 04 LDOA B 24 LUOP COUNT
*
* SHIFT LEFT UA,UB
L]
07¢D 30 TSX
O7CE 68 o4 tSLOOP ASL UB*gsX +1 T0 COMP, FOR PUSH

AMIL.

25 RSRS

Loc

orvo
orL2
0703

0705
oro7
0709
070A
07DC
070D

070F
O7EO

07E2
Q7E3
07E4

SYMBOL TABLE!

0BJECT M

69 05
5A
2E F9

AA 04
A7 04
33
80 BC
SA
2t E4

00
20 92

o7
4C
20 8F

ADDAB 0680
ADDXAB 0674
ASCIIR 0754
INPUTA 079A
Locvv 05C8
P2HEX 0721
PMESS 0O75F
PUSHAL 05F1
RSRSR 05BE
SRL 0001
SUBAX 0682
TABX 0632
ua 0003
UXH 0005

Ee 3o bt ot o 0t bmd md Bt Pt Geq B bug peug

01715776 17417

»

HEX TO BINARY

SOURCE STATEMENT

ROL
: DEC
. BGT

ORA
STA
PUL
BSR
DEC
BGT

»

SEC
BRA

* & 8

*

*
INOGOOD TPA

INC A

RRA

END

ADDABX 067B 1
ADD2Z 0695 1
CONHB 0O7AC !
JMPTZ 06D6 1
MPY8 06D8 1
P4HEX 071C 1
POPALL 060D I
PUSX 0647 1
SCARRY 0774 1
STAB 062D 1
SuBBx 06C0 1
TESTZ 0688 1
uc 0002 a
uxtL 0006 A

CHECKSUM = C70f

LENGTH UF DSECT =
LENGTH OF ISECT =

B

NO ERRORS,

D>

L

0 (0000)
552 (0228)

UA+l» X
1SLOOP

UB+1eX
uB+l.X

JPINCX

1 FOUND

END QUTER LOOP

SCARRY

NON=HEX CHAR FOUND,
HEX NUMBER.
NUMBER 1S VALID,.

SETUS

ADDAX
ALPNUM
ETX
JPINCX
MULS
PHEX
PRINTA
PUTA
SETUS
STAUXH
SUBXAB
TXAB
URH
VALAN

TUR' IN NEW CHAR

RETRIEVE COUNT
INC USER X

REPEAT

VALID NUMBER
SET USER C AND RETURN

IF CHAR ® G=2, THIS IS NOT A VALID
OTHERWISE, CHAR IS A DELIMITER AND

0692
or7r9
0004
0798
06CD
or27
073D
0745
or?s
0686
069E
0628
0007
076F

NO WARNINGS.

TUGGLE CARRY BIT
SETUP USER STATUS & RETURN

I ADDBX U699 1
1 ASCIIL 0750 I
A INDEX 06¢CS I
1 LOCYV U124 A
1 NITEMS 0018 A
1 PINCX 0735 |
I PULX 065€ 1
1 PUTAX 0740 1!
I SRH 0000 Aw
I SUBABX 06AS I
1 SVECTO U6EC I
I UA Goos A
A+ URL Vo008 A
1 XABX 063c I

THIS ASSEMBLY

AMIL

PROTOTYPE SYSTEM SOFTWARE IN HEX TAPE FORMAT

S00F000920202020202020202020202070
$121F00020057¢FOB7FBCE3607B7FFEB32RTFFEDF7FFECFFFFEEBFFFY2BEFFBFCEFODO
S121FO1EQ2FFFFFCFFFFFBCEFODIFFFFFACEFUBEFFFFFACEFOOSFFFFY6B603B7FRCE29
S121FC3C8601B7FBCERDF416BUF3NLBEFFBFRDF3I9RAGFREFBOIEBDF2UDCEFFOOFFFFIE
S121F05AEOQU79FFEIBCFFDT26022047RDFE00ATI008B10N26EFBUF3B508FFFFEQCESY
S121F078FOBCA1002604FEO016E00080808BCFUAD?6F020214CF1ADYUTH19F50F30842EC
S121F096F5144pF5A256F4CE4IF4DRS3F3E344F13652F0CE4SFID0DCELE273BEFFBF3F56
$121F0B412208aABDF4168680201A30EE05A6002BOCR0L182A037EFSBEFEFFF46E0030F2
S121F0D26C0626026COSCEFFEB3I3E70008BCFFF226F7AFN0818126045D07201E8D0360
S121FOFO7EFN47CEFFEBCO033FOFRDF3805A2EFBCH03BNF37CS5A2EFABDF3I0439BEFFAS
S121F10EF2CEFFF1A60036098CFFEA2HF73BROFFFA436RDF29E£33531126013930093FF2
S121F12COFBOF3BOCEF2T8TEFVUBOBD3SCEFFDCBDOF3I7CFEFFNC3FUFBUF 380FFFFNCBCAB
S121F14AFFDE270CB6FFODBAQF26E9BDF30420DE7EFO41CEF28A3F12C63R4FRDF2DDAT
S121F1685A26F920EDBUF2BBFEFFNAFFFFDCFFFFDEBDF2RB2706FEFFUAFFFFNECEFFFY
S121F18690A64EL68FE04DA24C2U406CEF2657EFOROFEFFDEORFFFFULIVBNF28B270694
S121F1AUFLFFDAFFFFFOTEFLOCCEONOOFFFFDBFFFFDCO9FFFFDEBUF2B8271EFEFFDA23
S121F1C2FFFIDBBDF2BB2713FEFFNEFFFFDCCEOOOOFFFFNBADAGFEFFUE20DYRDF3A505
S121F1E08D7CBUF400813027F7BTFFE2TFFFE4BDF29E4A4AUARTFFESBDOF29EB7FFDAFS
S121F1FEBUF 29ERBFFDIBTFFDBBOFFDABIFFDBRTFFDARGFFR28131261480DF29EFEFFO2
S121F21CNDABDF3AFOBFFFFDATAFFE32EEE2004813926131DF11CB6FFE2B13926A4BD86
S121F23AF398CLF26F7EFOBORDF3IORCEF2813F127CFFE9RDFAQV20FB7FFFESRDF4OO0R2
S121F258615326F93942418420081464520452814F47452045525204454F46043F3F3F9
S121F2763F044348534D2)455252045881504520455252045339303330303030464389
$121F29404000A00000000533104RDF40016BUF400363730C6023F15249417FBFFE4D?
S121F2B2F7FFE43131397FFFDATFFFOBBNF385260139C6473F1SFFFFLOBZFFDAF7FFRA
S121F2D0DBA0003F132501397EFO0ANAGOQ37F6FRCEST200AF6FBCFC11B26037EFQADCE
S121F2EE3F11810D260E860A3F114FC6043F115A26FBB860D3339860020058DF16NCERS
S121F30C0N00FFFFDBBOAS2706FEFFDAFFFFOBFO6FFDFFOFFODROFFDEB2FFDC2694C152
S121F32A1E2302C61e5C5CSCF7FFFICEF2953F125FCEFFE3BN3437FLIFDCRG6FFDBF6AYL
S121F348FFU93FUBFFFFDACEFFDA33BDIF8DIDFEFFDCAN182EFCFFFFUCCRFFEASIETOF
S121F366008LDOBFEFFDCRCFFNE26AATEFOL1EB003FOF7AFFF3393F108D0086203F115¢
S121F38439FEFFEOA0003F132507810027030820F3FFFFE0B100398B6V1R7FBCEB6131S
S121F3A23F11398641B7FBCEB6113F113936R6FFNCFOFFDD3FOB220ABGFFDEFOFFNFED
S121F3C03F0B24073286FF3F11201732A700A1002710FFFFNDACEFFDABDCIBDAOCEF20D
S121F3DESV7EF)BU3YBUF2BBFEFFDAFFFFNCBUF2RB270CFEFFDCI7BUUS08FFFFDC2053
S121F3FCEFTEFO47T3F148118B26037EFOADBLITF27F370FFE927038BDF2UD39CEFRC08698B
S121F41A38AA01A701863aAT05A7076F066F046304863EA7053937368D0F32C60849E1
S121F438368618493F11325A26F5337EF380CEFCOOFFFFNCCEFEOOFFFFOETFFFEIRDLOQ
S121F456F3852706BUF16D7CFFE3FEFFDCFFFFDBBNF2BB2706FEFFDAFFFFOBCEFFDBEY
S121F4740DL607E205A606A20481022C0BEB01A900AB00R4FE260139/EF191CEFFDCCY
S121F4923F10FEFFDCAG600BD95B6FRCEBNIOCEFFNBAB01A10527023F10BDF3048640F0
S121F4BOY4B3YCEFFDBAGOIB7FBCUA600CEFBCVABAC4BABABOTBLOCABUTATOTAG6063923
S121F4CEBDF446802p2492803ABD1120F6BDF4468DD2FEFFDCBUF3CCBN0220F4FEFF7F
S121F4ECDBOBFFFFOSFEFFDCOSFFFFDCACFFDE26RS7EFNATBNROFEFFUCAI002707433¢
S121F50AAA004326024C397EF4BFRBNFAM6TDFFE3261B7FFFDABLI1267/5CEFFD86C018C
S121F52826F56C0VA6004625EE6F0020028DB3C6038DC529COFEFFDCAG00CEFBCOATRY
S121F54606A60584F7AT05A6(0784FBATO76F06630637C6148N3FBU3DA60IBUFTA7O1A2
S121F56480358D338p318A38AT015A26ER6F06A6058A38A705C60ABDIESA26FB33RDFE
S121F582F500290F27AD86153F11CEFBCOSA26ABRDFABF7EF3IDCTEFOADGDOS2AFCALES
S121F5A004398DF160BDF2B827EBFEFFDCAG60OFEFFDABDF3CCOBFFFFUABDFUF120ECTS
S121F5BE30ELOS4FE60058498D0)30ER01A900CR248901A700E701EELVOEROLAY003025
S121F5DCA700E701A60206EE003131AD0N306C0626026¢053R3434343434C60930A684
S121FS5FA0SAT00085426F8C69530A602A709085426F83930C6054609A702085A26F8E4
S121F618C609A603A708095A26F831313131313930A605E606A704E7U33930A604A7ES
S121F63605A603A7063930460536FE6068DEF3220E6343430B609E602L700084A26F807
S121F63430A605A709A606AT0A3930A609AT05A60AA7068609E60BE7VUAQ094A26F83178
S121F67231393080C6800320¢230A603E608AB06ATO6EINS0TETO056DU6270284FBATS]
S121F690023930A604C60020E730A60320F7308D9¢B8D03209830E605A606A003A706CE
S121F6AEE20420D430E604A60610A706E605C20020C630E60320F08D113716323029R4
$121F6CCH3BD0930E703A704075D29R38B608364F30E606562402AB0746566A0026F658
S121F6EA3I39FFOSFFIFFFIBFFAOFFU4BFFSIFF66FFTAFF7FFFO4FFI9FFOCFFAIFFACFS
S121F708FFB8001/0010002F004F005000860096FFADFFR330EE058UU630EE058N0145
S121F72639A6008D2936A60080208p0E328010306¢0826026¢073930A604FEFFFAEEDNG
S121F74430364600850227FA32A7013944444444840F83308139230288073930EF05E1
S121F762A600810427068nD68VCI20F13930FEE058n050730A70239A6V081412)D0FR138
S121F7805A2E1281¢729108007840F0D3981302D0481392FF40CO0B39209BFEFFFGEEN]
S121F79E09A0004724FBA601B47F30A7043930E6036F046F0330EE058DC12509542F59
S121F78C0480D920F2208130EE0SBDR1291837C608306B0469055A2EF9AA04A7043324
S10FF7DABDBCSAREE4O0D2092074C208FA9

$9030000FC00

C—49

56800 INSTRUCTION SET .
Addressing Mode Condition Reg
implied | Immediate Direct Extended indexed Relative Boolean/arith | $|4]3]2]1]o
Instruction Mnemonic OP MC PB. | OP MC PB' OP MC PB OP MC PB OP MC PB OP MC PB Operation HII |N|Z'V|(‘
Load accumulator LDAA 8% 2 2 9% 3 2 B6 4 3 A6 S 2 M-A o o ! 1] Rle
LDAB c6 2 2 D6 3 2 F6 4 3 E6 5 2 M-B o o if i Rle
Load stack pointer LDS BE 3 3 9E 4 2 BE 5§ 3 AE 6 ? M-+SPH.(M+ 1) o o] {| Rle
! - SPL
Load index LbX CE 3 3 DE 4 2 FE 5 3 EE 6 2 M=XH. M+ 1) oo i i Rie
register . - Xr
Store accumulator STAA 97 4 2 B7 5 3 A7 6 2 A-M o of 1] 1] K|
STAB D7 4 2 F7 5 3 E7 6 2 B-M o of 1f 1| R|e
Store stack STS 9F 5§ 2 BF 6 3 AF 7 2 SPH —~ M,SP — o o] | t{ Ri®
pointer - M+1)
Store index STX DF 5 2 FF 6 3 EF 7 2 X4~ M. X - ol e|of t{r|e
register M+D
Transfer accumu-
lators TAB 16 2 A-B o o il 1| R|e
TBA 17 2 B-=A o o] 1} L R}®
Transfer Acc. to :
cond. reg. TAP 06 2 A-CCR Note |2
Transfer cond. reg. .
to Acc. TPA 07 2 CCR A olo|o|oie e
Transfer stck ptr to
index TSX - 30 4 SP+1-+X ol efele]ele
Transfer index to
stck ptr TXS 35 4 X-1-SP olejelofefe
Pull data PULA 32 4 SP + | » SP, Msp olojejeje]e
-+ A
PULB 33 4 SP+1—SP, olojeiejele
Msp—B
Push data PSHA 36 4 A->Mgp,SP - | olejofele]e
- SP
PSHB 37 4 B - Mgp,SP - | o|ojo]o]|ele
. - SP
Add accumulators ABA 1B 2 A+B=A HUNBEE
Add ADDA 8B 2 2 9B 3 2 BB 4 3 AB S 2 A+M-A tleftjte |
ADDB CB 2 2 DB 3 2 FB 4 3 EB § 2 B+M~B tleft)tit e
Add with carry ADCA 89 2 2 9 3 2 B9 4 3 A9 5 2 A+M+C-A tleftftit]:
ADCB c9 2 2 D3 2 F9 4 3 E9 5 2 B+M+C-B ety ps
Subtract .
accumulators SBA 10 2 A-B-+A eftittt
Subtract SUBA 80 2 2 9% 3 2 BO 4 3 A0 S 2 A-M-A ojeitft|t]t
SuUBB co 2 2 Do 32 FO 4 3 EO 5 2 B-M-B ofeft]s]s |t
Subtract with
carry - SBCA 82 2 2 92 3 2 B2 4 3 A2 S 2 A-M-C-A eleltft|t |t
SBCB c2 2 2 D2 3 2 F2 4 3 E2 5 2 B-M-C-B sjeftitlt |t
Increment. INCA 4C 2) A+l1—>A oleltitis e
INCB sC 2 B+1-+B olejtitiS e
INC 7 6 3 6 7 2 M+1-M ofaitit|s e
Increment stack)
pointer INS 31 4 SP+1->SP ojojejoje e
Increment index
reg. INX 08 4 X+1-X olelejt]efe
Decrement DECA 4A 2 A-1-A olejtitlale
DECB SA 2 . B-1-+B efeftitide
DEC TA 6 3 6A 7 2 M-1-+M eleftitid e
Decrement stack :
pointer DES 34 4 SP-1-8P olejojele o
Decrement index !
register DEX 0 4 X-1-X ojelo|tjo
Complement (1's) COMA 43 -2 A-~A sfelt|tirR
COMB 53 2 B-B oleftis RE
COM - 73 6 3 63 7 2 M-M ojeft 1t RIS
Complement (2's) NEGA 40 2 00-A>A eleltlth 2
NEGB 50 2 00-B-+B eleltiti 2
NEG : 70 6 3 60 7 2 00 -M~M ofettith 2
Decimal adjust :
accumulator DAA 19 .2 . oleft|tft3

OP = Operation Code

MC = Number of:MPU Cycles

" PB = Number of Program Bytes

AMIL

—— e imomsamnre S
Addressing Mode Condition Reg
Implied immediate Direct Extended Indexed Relative Boolean/Arith kBRI e
Instruction Mnemonic | opmMc P |opmcPs | opMcPs | opMCPB | OP MCPB | OP MC PB Operation v Nz Mc
Logical and ANDA 84 2 2 94 3 2 B4 4 3 A5 2 AOM—A elelt]3|R]e
ANDB Cc4 2 2 b4 3 2 F4 4 3 E4 5 2 BeM-B ejejtit|R]e
Inclusive or ORAA 8A 2 2 9A 3 2 BA 4 3 AA S 2 AtM—~A ejojtitiRle
ORAB CA 2 2 DA 3 2 FA 4 3 EA § 2 B+M—-B ejeft|t|R]e
Exclusive or EORA 48 2 2 98 3 2 B8 4 3 A8 5 2 APM-A eoleitit|Rle
EORB cg 2 2 D8 3 2 F8 4 3 E8 § 2 B@M~B ojeitit|R]e
Shift left arithmetic ASLA 48 2 | A - ofiit]|6
ASLB 58 2 1 B go-g,fnnfo-'—o o|eft]t]e
ASL 7 6 3 68 7 2 M . slnitiile
Shift right
arithmetic ASRA 47 2 i A . eolejtitio]t
ASRB 57 2 1 Bitmpmmn -~ | efeft]t|o]s
ASR 77 6.3 |67 2 M} BT B0 € gleltltle]s
Shift right logical LSRA 4 2 1 : A . ol jt 6|t
: LSRB 54 2 1 B} 00D =0 sleiRIt]|61%
LSR 74 6 3 |ea 7 2 Ml T B0 C o olelnit]e]s
Rotate left ROLA 49 2 | A ololtitlo]t
ROLB 59 2) B - slelt|{t]s]s
ROL 7% 6 3 ® 71 2 M) C 570 elejtitie)t
Rotate right RORA 46 2 1 : A ejoltitio]t
RORB 56 2 1 B - eisltitloft
ROR 76 6 3 166 1 2 M) € 1B gleltis]e|t
Compare accumu-
lators CBA I 2 1 A-B oleftitit|s
Compare CMPA 81 2 2 91 3 2 Bl 4 3 A} 5 2 A-M olejtit]it|s
CMPB cl 2 2 DI 3 2 F1 4 3 Et 5 2 B-M oloftitit]t
Compare index
register CPX 8C 3 3 9 4 2 BC 5 3 AC 6 2 XK -- M, XL - (M+1) | o]e]7]t]s]®
Test (zero or
minus) TSTA 4D 2 1 A - 00 o{s{t{tIRIR
TSTB SD 2 1 B - 00 ofeoltl{[RIR
TST meé 3 D 7 2 M ~-00 ojoltitIRIR
Bit test BITA 8 2 2 95 3 2 BS 4 3 AS 5§ 2 AoM ole{tlt|R]e .
BITB Ccs 2 2 D5 3 2 F5 4 3 ES § 2 BeM ofs{tit{Rle
Tm 8
Branch BRA 20 4 2 oje]s]siefe
Branch if carry
clear BCC 24 4 2 Cc=0 oiejeleieie
Branch if carry
set BCS 25 4 2 C=1 ole|nje]ele
Branch if overflow
clear BVC 8 4 2 Vag oles]ofele
Branch if overflow
set BVS % 4 2 v=1 olofslele]e
Branch if equal to
zero BEQ 27 4 2 2= ofeleislnle
Branch if greater
or equal to zero BGE 2C 4 2 N®V=0 o|eisle{o]e
Branch if greater
than zero BGT 2E 4 2 Z+(N@ V)=0 ofeje]ejo}e
Branch if less ;
than zero BLT 2D 4 2 N@®V=1 ole
Branch if less than
or equal to zero BLE A 2F 4 2 Z+(N@ V)=1 » ol
Branch if not equal]
to zero BNE 2% 4 2 Z=0 olejojeio]e
Branch if minus oMI 2B 4 2 N=1i ololelele
Branch if plus BPL 2A 4 2 N=g ¢ ole
Branch if higher BHI 7 4 2 C+Z=0 elo]e]o]e]e
Branch if lower -)
or same BLS 23 4 2 C+Z=1 ofojele]e]e
OP = Operation Code * MC = Number of MPU Cycles PB = Number of Program Bytes

Addressing Modes Condition Reg
Implied Direct, Immediate Extended ‘Indexed Relative Boolean/Asith si4 39 1o
Instruction Mnemonic | OP MC PB | OPMCPB | OP MCPB | OP MC PB | OP MC PB | OP MC PB Operation HjiINz)v|c
Branch to
subroutine BSR 8D 8 2 slojo|e]eje
Jump to See
subroutine JSR BD 9 3 AD 8 2 Special ole|ejejale
Jump IMP 7€ 3 3 6E 4 2 Operations ojojelojole
Return from
subroutine RTS 39 5 1 slejsjojole
Return from
interrupt RTI 3B 10 |
Software interrupt | - SWI 3F 12 1
Wait for interrupt WAl 3E 9 |
No operation NOP 02 2 1 PC+1-PC
Clear CLRA 4F 2 | 00— A o|ofRISIKIK
CLRB SF 2 | 00-B elo|R|s]K]K
CLR ’ F 6 3 6F 7 2 00-+M olelkisik|K
Clear carry CLC oCc 2 | 0-C olojelejojk
Clear interrupt
mask CLI 0E 2 | 0-1 eiRjeleje e
Clear overflow CLV 0A 2 1 0-V ole]oje{K|e
Set carry SEC oD 2 1 1-C ofe|eje|e}s
Set interrupt
mask SEI OF 2 1 11 o|S|e]e]ele
Set overflow SEV 0B 2 1 1-V eleo]e]s e
CONDITION CODE SYMBOLS: LEGEND:
H Half-carry from bit 3; OP - Operation Code (Hexadecimal):
1 Interrupt mask MC Number of MPU Cycles;
N Negative (sign bit) PB Number of Program Bytes;
¥ A Zero (byte) + Arithmetic Plus;
v Overflow, 2’s complement - Arithmetic Minus;
C Carry from bit 7 L) Boolean AND;
R Reset Always Mgp Contents of memory location pointed to by Stack Pointer;
S Set Always + Boolean Inclusive OR;
: Test and set if true, cleared otherwise ® Boolean Exclusive OR;
. Not Affected M Complement of M;
- Transfer Into;
0 Bit = Zero;
00 Byte = Zero;

Note — Accumulator addressing mode instructions are included in the lMPLlED'addressing
CONDITION CODE REGISTER NOTES:

(Bit set if test is true and cleared otherwise)

1 (Bit V) Test: Result = 10000000?
2 (Bit C) Test: Result = 000000007 -
3 (Bit C) Test: Decimal value of most significant BCD Character greater than nine? (Not cleared if previously set.)
4 (Bit V) Test: Operand = 10000000 prior to execution?
5 (Bit V) Test: Operand = 01111111 prior to execution?
6 (Bit V) Test: Set equal to result of N ® C after shift has occurred.
7 (Bit N) Test: Sign bit of most significant (MS) byte = 1?
8 (Bit V) Test: 2’s complement overflow from subtraction of MS bytes?
9 (Bit N) Test: Resuit less than zero? (Bit 15 = 1)
10 (AlD) Load Condition Code Register from Stack. (See Special Operations)
11 (BitD) Set when interrupt occurs, if previously set, a Non-Maskable Interrupt is required to exit the wait state.
12 (ALL) Set according to the contents of Accumulator A
-

AMIL

SPECIAL OPERATIONS
JMP, JUMP;
PC MAIN PROGRAM PC ‘MAIN PROGRAM
n 6E = JMP n 7E = JMP
INDXD n+1 K = OFFSET EXTENDED n+ 1} KH=NEXT ADDRESS
. n+2| KL =NEXT ADDRESS

X+K

PC

n
INDXD { n+1

n+2

EXTND

PC

n
n+1

n+2

| next INS‘.I’RUCTION |

JSR, JUMP TO SUBROUTINE:

MAIN PROGRAM
AD = JSR

K = OFFSET*
NEXT MAIN INSTR.

MAIN PROGRAM
BD = JSR
SH = SUBR. ADDR.
SL = SUBR. ADDR.
NEXT MAIN INSTR.

BSR, BRANCH TO SUBROUTINE:

MAIN PROGRAM
8D =BSR
+ K = OFFSET*
NEXT MAIN INSTR.
*K = 7-BIT SIGNED VALUE;

=

*K = 8-BIT UNSIGNED VALUE

=

=

sP STACK
———p SP -2
SP -1 (n+2)H
sP in+2) L
(n+ 2}y AND (n+ 2}y FORM n +2
sp STACK
— SP -2
SP—-1 n+3)H
sP n+3) L
———i» = STACK POINTER
AFTER EXECUTION. -
s STACK
et SP — 2
SP -1 h+2)H
sp n+2)L
n + 2 FORMED FROM (n + 2)1
AND (n + 2)¢

K r NEXT msv.num»oNJ

BC
INX + K

BC
S

SUBROUTINE

1st SUBR. INSTR.

SUBROUTINE

1st SUBR. INSTR.

(S FORMED FROM SH AND S¢)

2C
n+2%K

SUBROUTINE

1st SUBR. INSTR.

R

AMI.

SPECIAL OPERATIONS

RTS, RETURN FROM SUBROUTINE:
PC SUBROUTINE

s 39 = RTS

SWi, SOFTWARE INTERRUPT
PC MAIN PROGRAM

nf 3F = SWI 1

WAI, WAIT FOR INTERRUPT
PC MAIN PROGRAM

SIS |

RTI, RETURN FROM INTERRUPT:
PC INTERRUPT PROGRAM

S 38 =RTI

sP STACK
sP
SP+1 LT
SP+2 LT
sp STACK
-7
SP-8 cc
SP-5 ACCB
SP -4 ACCA
sP-3 XH
sp -2 XL
sP—1 (n+NH
sP (n+ 1)
s STACK
SP—~7
sP-61 cc
-5 N AcCB
SP—4 ACCA
SP-31. XH
sP-2 XL -
sP-1 n+ Ny
sP (n+1)
b4 STACK
SP
SP+1 CcC
SP+2 ACCB
SP+3 ACCA
SP+4 XH
SP+8 Xi
SP+6 ny
SP+7 "

PC MAIN PROGRAM
NEXT MAIN INSTR.

-]

PC INTERRUPT PROGRAM

m INT. ROUTINE
mH = (H — 0005)
mg = (H — 0004)

H = ADDRESS WITH
ALL ADDRESS LINES
IN HIGH STATE

PC INTERRUPT PROGRAM
m INT. ROUTINE

my = (H - 0007)

my_ = (H — 0006)

H= ADDRESSWITH
ALL ADDRESS LINES
IN HIGH STATE

PROGRAM PROCEEDS AT m ONLY AFTER
EXTERNAL INTERRUPT REQUEST

PC MAIN PROGRAM
n NEXT MAIN INSTR.

i

AMI.

AMI Sales Offices

Westem Area

1104 Highland Avenue

Suite I

Manhattan Beach, California 90266
Tel: (213) 379-2452

3031 Tisch Way
Suite # 202

San Jose, CA 95128
Tel: (408) 249-4550

Central Area

500 Higgins Road
Elk Grove Village, Iilinois 60007
Tel: (312) 437-6496

725 S. Central Expressway
Suite C-5

Richardson, Texas 75080
Tel: (214)231-5721

29200 Vassar Avenue
Suite # 214

Livonia, Michigan 48152
Tel: (313)478-9339

Fox Meadows Office Building
3030 Harbor Lane North
Suite # 101

Minneapolis, Minnesota 55441
Tel: (612) 559-9004

24200 Chagrin Bivd.
Suite # 352
Cleveland, Ohio 44122
Tel: (216) 292-6850

England

AMI Microsystems Ltd.
108 A Commercial Road
Swindon, Wiltshire
Tel: Swindon 31345

EY

France

AMI Microsystems S.A.R.L.
124, Avenue de Paris
F-94300 Vincennes

Tel: 374 00 90

Italy

AMI Microsystems S.p.A.
via Pascoli 60

1-20133 Milano

Tel: 29 37 45

DOMESTIC

INTERNATIONAL

Eastern Area

20 Robert Pitt Drive
Room # 212

Monsey, New York 10952
Tel: (914) 352-5333

1420 Providence Turnpike
Room # 220A

Norwood, Massachusetts 02062
Tel: (617) 762-0726

Altamonte Centre

249 No. Maitland Avenue

Suite # 317

Altamonte Springs, Florida 32701
Tel: (305) 830-8889

Axewood East

Butler & Skippack Pikes
Suite # 3A

Ambler, Penn. 19002
Tel: (215) 643-0217

West Germany

AMI Microsystems GmbH
D-8 Muenchen 80
Rosenheimer Strasse 30
Suite # 237

Tel: 48 30 81

Japan

AMI Japan Ltd.

Daiwa Bank Building
1-6-21, Nishi Shimbashi
Minato-ku, Tokyo 105
Tel: (501) 2241 ‘

ERRATA

asof June 1977

PROTOTYPING BOARD MANUAL

SUPPLEMENT -~ June 1977

The attached pages correspond to Revision D of the EVK Series.
In particular, the schematics and board layout guides in the
manual are obsolete, and should be replaced with the Revision D

information.

READ ONLY MEMORY

The EVK is now supplied with one 2K-byte ROM containing PROTO.
By convention, this ROM goes into Position 10, although Position
11 has the same partially decoded address. This leaves Position
11 open for some other ROM, either 2K (AMI S6831) or 1lK (AMI
$6830).

A separately-priced ROM appropriate for this usage is AMI's
Micro Assembler/Disassembler. The MA/D program is a "direct"”

or "zero-pass" assembler which translates instruction mnemonics
and hex values into RAM contents, and it can also reverse the
process. The order number for the MA/D ROM is C10224.

For owners of old EVKs with PROTO on two ROMs, the new one-ROM
PROTO is also available as a separately-priced item. The part
number is Cl1003. This ROM is addressed at F000, while MA/D is
address at E800.

PROTO COMMANDS

Although it is not stated in the manual, the Addr parameter
for the G command may be omitted, in which case the value of

P currently stacked is used.

It should be noted that any’ G command unstacks P (and the

other registers) from the user's own stack, based upon the
value 6f S which PROTO has saved in locations FFF2-FFF3. This
pair of locations is not initialized by PROTO at power-up time.
Therefore, a G command will not function properly after power-up
until one of three events has taken place: at least one use

of the Reset button (which will initialize the user's own stack
at FF8F, shared with PROTO itself); or the use of the PROTO
command § to force a value into FFF2-FFF3; or the direct entry
(via the Reset Vector Switches) into a user program which
initializes the user's own stack pointer.

The description in the manual of the E command is incorrect.
What this command generates is an "S9" type hex format record,
as described on Pages A-~l and A-2 of the manual. This is the
End-of-Tape record expected by the PROTO command L and by
similar 6800 software.

RS CUBED ROUTINES

The description of interface conventions for the RS CUBED
routines in Chapter 4 may not be clear to programmers working
at machine code level (or with MA/D), as opposed to users

of AMI's macro assemblers.

The technique for entering any RS CUBED routine is to set up
the 6800 registers as specified, then execute this sequence:

SWI

BYTE hh

XXX XXX
In this sequence, "hh" represents a hex value as .shown in the
Index column of the RS CUBED write-ups, and "xxx" represents
the beginning of the user's own executable code to which
control returns after the RS CUBED routine has accomplished

its function.

Using MA/D, the sequence would be entered this way.at, for
example, RAM location 100: ‘
....3@100
0100:SWI1
0101:hh
0102:xxx XXX

It should be noted that the assembly listings on Pages C-3
through- C~48 reflect the contents of the PROTO ROM from F000
through F7FF. In other words, the LOC column on these pages
should be offset by F000 to match the actual ROM.

OPERATING PROCEDURES

The edge connector supplied with the EVK is an Amphenol
261-10043-2, although the more expensive 225-805-43 mentioned
in Chapter 5 may also be used.

The general logic of the EVK draws about 3.5 amps, not the
4.0 amps specified in Chapter 5.

The protocol used by the TTY interface is 7 bits, with 2
stop bits, even parity. This may be seen from the way that
PROTO sets up the ACIA.

The current loop set-up in the manual is incorrect. A +5V
level should be tied to DCD (B63) and CTS (B65). The rest of
the wiring is:

TTY EVK SIGNAL
7 B64 oUT +
6 B66 ouT -
4 B68 IN +

3

B70 IN -

The switch directions shown on Page 20 of the manual are for
toggle switches, and are therefore backward for slide switches
like those on the EVK 300. Use the board markings when you
install jumpers or slide switches.

Whenever the EVK goes through Reset, either because of power-up
or because the Reset button has been used, remember that the
Reset Vector Switches must point to appropriate code, such as
the start of PROTO, at F000 (binary 1111 0000 0000 0000).

b3

Part Description

EVK=99

'EVK-100

Page 1 of 3

Part List as of

5-25-77

P.C.B. P/N 03-0013~000 Rev D
S6800

S6810-1

S6820

S6834

56850

9263-001 C11003

555

1488

1489A

4702

74S00

74502

7404

7407

74S08

74510

74520

74LS30

74830

74532

7437

7438

745138

74160

748257 .

8T97B *

96s02

Socket 8 Pin C~9308-02
Socket 14 Pin C-9314-02
Socket 16 Pin C-9316-02

TO = -~ O = B

—

1
1
4
0
0
1
1
1
0
1
1
2
2
1
1
1
2
1
2
1
1
0
1
3
0
2

14
1
1
16
21

1
1
8
3

Y/
1
1
1
1
1
1
2
2
1
1
1
2
1
2
1
2
1
1
3
3
2

14 -
2
1
19
25

EVK-200/300

Page 2 of 3

. Part Description EVK-98] EVK-99 | EVK-100 | EVK-200/300

Socket 24 Pin C-9324-02 6 15
Socket 24 Pin (R.N.) TS-61024 ' 0
Socket 40 Pin C-9340-02 1 4
Capacitor .1 uf, 16 V+ UK 16-104 30 37
Capacitor .01 uf, 6 V + 0
Capacitor, Tantalum, 22puf, 15V S
Capacitor, Tantalum,4.7uf, 75 V, 0
Capacitor, Mica, 8 pf, 500 V 4
Capacitor, Mica, 56 pf, 500 V 2
Capacitor, Mica, 100 pf, 500 V 0
Capacitor, Mica, 560 pf, 500 V 0
Capacitor, Mica, 270 pf, 500 V 2
Capacitor, Mica, 470 pf, S00 V 0
Transistor, MJE 340 0
Transistor, 2N3563 1
Transistor, 2N4402 1
Transistor, 2N5400 0
Transistor, 2N5771 (2
Transistor, 2N5772 2
Diode A1lSF 1
Diode 1N914 3
Diode 1N4003 6
Resistor IM 1/4 W 2
Resistor 1Kal/4 W 6
Resistor 1.5 Kwal/4 W 3
Resistor 2Kal/4 W 2
Resistor 3.3Kal/4 W 0
Resistor 4,7Kaal/4 W 0
Resistor 10K.a1/4 W 0
Resistor 10.1/4 W 0
Resistor 22.A1/4 W 1

1

HHHO\AN.&'DNN‘»&NNHHHHNNHNNAH\lo—-

Page 3 of 3

Part Description EVK-98 | EVK-99 | EVK-100| EVK-200/300
Resistor 22Ka1/4 W T T 0 1
Resistor 33.al/4 W 1 1
Resistor 51 a1/4 W 2 2
Resistor 100K.a1/4 W 3 3
Resistor 100al/4 W 1 1
Resistor 120..1/4 W 1 1
Resistor 150.1/4 W 1 1
Resistor 150K.al/4 W 0 1
Resistor 470 .a1/4 W 2 4
Resistor 5104.1/4 W 1 1
Resistor Packs 8 Res. 16 Pin 4.7K
" Beckman 898-3-R4.7 2 2
Amphenol Connector (86 Pin) 261-10043}2 2 2
8 Position Switch CTS-206-008 2 2
4 Position Switch CTS-206-004 0 1
Switch 11C1C 0 4
Switch 8125A 1 1
Crystal 1.000 MHZ 0 1
Crystal 2.4576 MHZ 1 1
Potentiometers, 15 Turn, 20K,
Burns 3006P-1-203 2 2
Cap Cer Disc .47 pfd, > 6 volts 1 1

