5. 1974

Burroughs
B1700
SYSTEMS

COBOL

REFERENCE MANUAL

Printed in U.S. America

Burroughs

B 1700
Systems

COBOL

REFERENCE MANUAL

R

Burroughs Corporation
Detroit, Michigan 48232

$4.00

10-72

1057197

COPYRIGHT © 1966, 1968, 1969, 1970, 1972 BURROUGHS CORPORATION

AA873007 AA971839 AA9428 AA88920 AA208492

Burroughs Corporation believes the program described in this
manual to be accurate and reliable, and much care has been
taken in its .preparation. However, the Corporation cannot
accept any responsibility, financial or otherwise, for any con-
sequences arising out of the use of this material. The infor-
mation contained herein is subject to change. Revisions may
be issued to advise of such changes and/or additions.

Correspondence .regarding this document should be forwarded using the Remarks Form at
the back of the manual, or may be addressed directly to Systems Documentation, Sales
Technical Services, Burroughs Corporation, 6071 Second Avenue, Detroit, Michigan 48232.

Tabfe of Contents

Sectlon Title
INTRODUCTION . [] . [} [} . L] . [[} [

1 COBOL LANGUAGE ELEMENTS 4 o o o o
General , o ¢ o s ¢ o o o o o
Character Set , + + o

Characters Used For Words
Punctuation Characters .,
Characters Used In Editing
Characters Used In Formulas
Characters Used In Relations
Definitions Of Words ,
Types of Words ., .,
Nouns * o o o o 8
F']e‘Name * o
Record-Name .
Data=Name , .
Condition=Name
Procedure=Name
Literals . « « &
Numeric Ltteral
Non-Numeric Litera
Undigit Literals
Figurative Constant ,
Special Register Name ,
Tally « + &
Todays=-Date (Calenda
Date (Jullan) . . .
Time o o o o
Special=Names , .
verbs L] L] (] [] . L]
Reserved Words ,
Connectives ,
Optional Words
Key Words . . .
Statement And Sentence F
Paragraph Formation , .
Section Formation , . .
Notation Used In Verbs A
Key Words + + « « &
Optional Words . .
Lower Case Words ,
Braces ¢ ¢ o s o o
Brackets . + + o
s

.
[
.
.
.
.
L)

. * ® L] ® L] L] . []

i

.
[}
L]
.

r

® o J o e o o o o o

d E

Consecutive Period
Per‘Od * o o o o

® ® ® © o o o J° o (t e o o o o o o
® © o © ¢ o o YO o O°® o o o 0o s o

® ®© o ® o o o Je s D e 0©o o o o

L ®* o ® o ® ® e o o ® o o L L ® * [® o o

*® o . L] L] L 2 L] L J - *® *® L] ® L J] ® L] L K J L] ® ® L]

® o o o o o ¢ O°® o o © o o o o o o o

L J L] L] L L ® [Y 3. [[] [) [} ® L J [3 L J ® o L] L J L L] L] .o L J L L] L 2 ° L] L] ® L L] L o - L] L] ® L3 ®

[J)]

L] Ld - L] L d o L] ct o ® o L] ® [] *® ® L J > e L] e o L] L 3 L] L] ® - * L] L] L 2 L] - L 2 [] L J [] L] L] L] L] L]

L] L] L 2 L] L] L] ® L] L] ® ® L] L L] - L] - L J ® L L] LJ L 3 L L] L J L] L L d L] [] ® . L] L]

L L d L] L L L] * [] * e o [] [] [] - L] L J o o ® * L L d L] ® L] L] L] L] L L J L] L] L L] [] L] * L] L ® [] L]

L] L] ® L d ® ® - ® . L] L] ® ® .o L] [] L d e o L] L] L] *® L] L] L L o L] L] L] L] L J ® L ® L ® L] L] L] L J L]

® [] - * e L] e o e ® © ® e o o ® o ® o e ® o © o o o ® e [] * o *® L] [] L J L] ® L] ® o e * o

Page

x

= OV WOWWOWOWOWOOOWOOWONNNNNOOVMIEEFEFEFFWWWWWWANRNRNNRN - - -

oo

—) — el D ol ol il D ol i el -l) b Al o — ——d D — D el — el = — ——) - ald - = ol ol — ——

[|
[N o]

(RN

Table of Contents (cont)

Title

Section

IDENTIFICATION DIVISION

General

[]
.
L]
[]

e o o
e o o
=z
e o o O
—
e © o ()
g
o o o>
—
e o o
e o o2
o
e e o+
T
e o o<
(&5
e o o
W
e o e+
—
e o o Z
(R4
L) L Xan
[7,] o
LN ' Ned
— 0O e
e J— C
oL v 2
=z
XOo o
@ = C
Iy} o—
= ©
> o
w (&

o~ T

= e e = (NN MNWNINN - —

ENVIRONMENT DIVISION

. L)

General

Organization
Structure ,

[] [} (] L]

Syntax Rules

[

Configuration Section ,

SOURCE=-COMPUTER

0BJECT-COMPUTER

SPECIAL-NAMES
INPUT=-0UTPUT SECTION

LI I B B N]
MO NN NN NN NN N

L}

L]

FILE-CONTROL

(]
[

L] L] . . L] . []

[-0-CONTROL
Coding the ENVIRONMENT DIVISION ,

= — (NN NS NN

DATA DIVISION ,

e @ o o o o
e o @ o o o
e o o e o

[V]
) oL o o
C 3
e 0 e e o
-— (&)
e Q@ T e o
0 v
e N J & .
— PN
e C U Q
T 3 C O
ey O U o
v~ Y- C
e WV &2 O e

Qo
ez Z - o
OO0+ 0
e——Q Q-
NV naoa
e Q E®

>0 39

— et g 2 -

VOOV ¢t 4
| | S e
OO0 @ —
CH—+r— 00U >0
VIO 03I

Uoox 20O

Tables

L]

Subscripting

FILE SECTION

FILE DESCRIPTION

8LOCK

DATA RECORDS

FILE CONTAINS ,

LABEL

]
B2 B0 JRC gE- gBC JRL JP Bt B it g gL g g g g S

.

e e e e o
® e e e o
® e e e o
e ®© e o o
e o e o o
e o e -

i
e o o o
- oet— O
w a @
o) o™ 1)
o N
e OV

—_—nZ
e ¢t Ww
Zunol
-0 =

oo o

X a W ¥

[o N oo Yo b4

CoOoJdJog

W < J

X« >ocom

Condition=Name

DATA-NAME
JUSTIFIED

Level«Nymber

OCCURS
PICTURE

L]

lv

Sectlon

4 (cont)

Table of Contents (cont)
Title

REDEFINES ., . &
RENAMES & & o
USAGE + « o «
VALUE L[] .] L[] .
WORKING-STORAGE SECT
Organization
Non=-Contliguous W
WORKING=-STORAGE R
Initial values . .
Condition=Names . +
Coding the WORKING=-STORAGE SECTION

10N
OR
e

® y Ze e o o o o
a o
® ® © o ® e ® ® o o o

ZSTORAGE
S o ¢ o
"SECTI0

PROCEDURE DIVISION 4 4 & o o o o o
General o o o o o ¢ o o o o 0 o 0
Rules Of Procedure Formation ., .
Statements e o 8 o o o o & o s

Imperative Statements « « o« o
Conditional Statements , . .
Compller-Directing statements
Sentences . o o« o o+ o s s s o s 0
Imperative Sentences . « o "o

Conditional Sentences . o+ «
Compiler-Directing Sentences

Sentence Punctuation . « o« o o o
Verb Formats .« o o o o o s o
Sentence Formats .+ o+ o« o o o

Execution of Imperative Sentences

Execution of Conditional Sentences

Execution of Compller=-Directing Senten

® o L] ®o o L Jd L] * o L] L] * @ L] L]

L[]
.
.
.
.
.
L[]
.
L .
.
o
.
.
.
.
L

Control Relationship Between Procedure'

Paragraphs . « « « &
Sectlions s & o o & o o
DECLARATIVES & 4 o o
USE Statement o o o o o o o o o
COPY Statement As A DECLARATIVE
Arithmetic Expressions . « « o o
Arithmetic Operators ., .« o+ +
Formation and Evaluation Rules
Conditlons o o o o o o o o
Logical Operators . .
Relatlion Condition , .
Relatlional Operators ,
Comparison of Operands
Non=Numeric . . &
_ Numeric'. s e o
Evaluation Rules
Simple Conditlions .

[
[] [[[] [.
[] [} .

L]
L)
[
[]
[
L]
L]
. L] [
(]
.
.
[}
(]
.
(]
L)

® ® © ® © o o o o
® o *® - - - o L]
® ® L] L] L] L) - -
L] .4 L] L] - L] L J L 3 -

L] - L] - * L 3 ® - - ® L

......'.‘........mﬂ...........'....'

- ® L3 L3 L] L] L] - L] L -

* ® * L] L] L] L ® L] . * o L] L] - -® ® L] ne L] L] L - L] ® ® > o - - * o L] -

* ©o L] ® L] L J L] L] L] *® ® L 2 * L J L J L J ® L] L] L d L] o L J ® o L] L 2 L) ® L] ® L J o ® L]

- L3 L J - L] [] > L] - L] L]

o o L L] L J L] L] L J - L] L J .'. L 3 * L J - L4 L] L] L] L J ® L] L] ® L] * e [] [] ® o ® L]

e o ® L] L] L] L] L J L] L] L] L L] *® ® [3 o [® L4 L] L] [] ® o L J L] ® L ® L] .‘. L] L]

L] [] L d - ® L] L 3 L] L] - L]

et et s = \D\DOONNOONVIUVITVNIEEEFWWWWWRRNNRNNN — s

VIVIVTUTUTUVTUTUVITVITUVTUITUTUIT VTUVTUT VT VT UTUT VYT TUTUT YT T UY Ty Ty v v
Nt s =t — O

Table of Contents (cont)

Page

Title

Section

NITNUNNWOODONO =T NO—MNOWO N N T
— e e (NN NN NN NN ST
LI R D D D D D e D D D R D R R B D DR R REN R B B |
nununnuniuniununN NN NN wn

Compound Conditions ,

5 (cont)

[

Abbrevliated Compound Conditions .,

Segmentation

e o o e
e o o o
e o o @
® e e o
e o o o
e o o o
e o o o
e o o o
e e o o
e o o o
- * e
C
e QO e wn
- (V]
e o C
Ny O
e U &
o~) o
ey L =T
— oW
w .0
wuneEE
&S0 30
Coe— 2=
¢ O o]
E >0
e O
QO C—a
[Z2 2K VI N
E O—
E o—®©
T ¢ v C
L% ey
Jo) (V]
o Ee
| | =
o —

Verbs ,

Specrfic‘vérb Fprmats .

ACCEPT
ADD

ALTER
CLOSE

[] [] [}
[] (2 [}

COMPUTE
capy

Library éreat}on

DISPLAY
DIVIDE

. .
L]

END -OF = JOB
EXAMINE
EXIT

GO TO
IF

e o e o o
e o o o o
e o e o o
® © e e o
e © o o o
e o o e o
®© e o o o
L] e e e
0w .

o 39 e e
[T

e @ 4 o
- C [}
- Q o
‘m ("]
e M @ o Q@
C o | el
e O ®

— O N O
e W I
o~ 0 —
e Ve @ @©
C O—>
e« O C

ooCcCcoe
e — 0>
et'i
oe— = 33 &)
Qo @ ©
e £ C e v
—0 0 Q®
N X X

Conditional Qariab!e Tests

. L]

Class Test

Not Loglc ',

MOVE

MULTIPLY
NOTE

OPEN & & & &
PERFORM [[L]
READ

RELEASE , .
RETURN
SEARCH
SEEK

.A. L] -
L] L J L] L]
e o o o
L] L J L] L
L] L] L] L
e e L] L]
L J ® ...
* L] L] -
L] ..‘ L]
- L J L L
L] - L -
* L] L] [
L] L] L] o
e .,. L
L] - L] L]
L] L L *
- Ld L] *
L] - L]
-
o o o)
<€
. o
—a -
—axOm
wor2D
(RN R R]

T IUNNOVON"TNNOYO~—FTNOONTON—
T I T ITTTTONDNNOOOONNNNN©O
[I N N DUNN R NN DU DN DN DN NN NN RS R D R N B B R]
MO O NN NN NN N NN

USE

WRITE

¢ @ ¢ e o o 0o & ¢ o o o
o o

ZIP
Coding the PROCEDURE DIVISION

vi

Table of Contents (cont)

Section Title Page

6 DATA COMMUNICATIONS o ¢« o o o o ¢ o o o o o o o o o 6-1

General . « o o o o o o ¢ 8 o o 8 0 0 8 s s o 0 6-1

Specific Verb FOrmats o+ o« o+ o o o o o o o s o o 6-1

7 CODING FORM 4 4 o o o s o o o 8 ¢ 8 ¢ o o o o o o 7=1

General o o« o s o o o o o s ¢ s o o & o o o o 0 7-1

Coding Form Representation ., « o« s o o o o o o 7=1

Sequence Numbers (Columns 1-6) & & & o ¢ o o o 7-1

Continuation Indicator (Column 7) & ¢ o & & o o 7-1

Continuation of Und‘glt Literals ¢ & o o o o o 7-3

Continuation of Non-Numeric Literals . , « o & 7-3

Continuation of Words and Numeric Literals . . 7=3

Division Header ., o« o« « o o o s o o s s o ¢ o o 7=3

Section Header o o 6 o 6 8 8 6 o o o & o s o o 7-3

Paragraph Names and Paragraphs . « « ¢ ¢ o o & 7<5

Data Division Entries 4+ o« ¢« ¢ o o ¢ o o s s o 7=5

Declaratives « o o o o o s o o ¢ o o o o o o o 7-6

Punctuation o+ « o o o o s o o o s o ¢ o o o o 7-6

8 COBOL COMPILER CONTROL e o o o 0o & o o o o o o o o 8‘1

General , o 4 ¢ o o s o o 8 o 6 ¢ 5 ¢ o o s o o 8-1

Compllation Card DecCk o o « o« o o s o o o o o 8-1

?COMPILE Card o o & o 8 8 8 0 & 0 & o 0o o o o o 8'1

MCP Label Card o 0 o o o o o & & o o s s o o o 8-2

$ Uption Control Card o ¢« o ¢ « ¢ o o o s o o o 8-2

Source Data Card » o o o o s e e 8 0o & o o s o 8'5

Label Equatlon Card o« o« ¢ ¢ o o o o o o o o o o 8-5

APPENDIX A COBOL RESERVED WORDS v 4 ¢ o o ¢ o o o o 8 o o o o A=1
List of Illustrations

Figure Title Page

2=1 IDENTIFICATION DIVISION COding o 6 o & 0 o o 8 o 2‘“

3" ENVIRONMENT DIVISION COding e o 6 o 6 o6 o & o o o o 3‘1

41 COdth of Level=Number o o o o 8 o 8 o 6 o & s o @ b3

b2 Coding of Multi=Dimensioned Table 4 4 o o« o o o o o 45

L3 Coding of FD and DATA RECORDS 4 4 « o ¢ o o o o o Ly

vil

(S

Figure

o] NNNVV B
LI DN Y I B B |
WK =N — U &

]
—

Table

w N - ~Jovun EWN —

v A RV, I g o L i s i =

vili

List of Illustrations (cont)

Title

Coding of Condition=Name . + « &+ o o
WORKING=STORAGE SECTION Coding .

Example of SEARCH Operation Re!atlng To
Coding of PROCEDURE DIVISION , , .
Coding Format for a Source Line , .
c0oBOL COd;ng FOrm ¢« o« o o o ¢ ¢ o o
Sample Coding Showing Continuation o
Special Remarks and Actions . . «
Compllation Card Deck + o o o o o o

. O

e o (ne ® e (to o

[¢]

e © -ne o o
- L] r-.
e o ;o o o (Je o

List of Tables

Title

Maximum Value of Integers . « o« o« o o o &
Recording Modes for Peripheral Devices .,
Editing Sign Control Symbol Results . . o
Order of Precedence When Using Characters
Symbols « + . & s s o s o s e
Numeric and Alphabetuc Items ¢ e e e s e
Alphanumeric Items e o o o e o o o o
Editing Application of the Picture Clause , .

-]

® © o Ise o o

Combinatlion of Symbols In Arithmetic Expressions

Relationship of Conditions, Logical Operators,
andTFuthValues ¢ o o . e o o o & 6 o o

Combinations of Condntfons and Logical Operators

oooa.oo
3

®
.
[]
®
L]

Page

(S ARV,] AV AT gl o i < g~
s 8 8 ¢ 2 ¢ 8 &

— D NEEE e W) =t s
~N OV e WO W N

o

INTRODUCTION

This manual provides a complete description of C030L (CQMMON
BUSINESS ORTENTED LANGUAGE) as implemented for use on this system,
This concept of COB0L embraces the adoption of proposed American
National Standards Institute (ANSI) COBOL-68,

COB0L's long list of advantages is derived chiefly from its in=
trinsic quality of permitting the programmer to state the problen
solution in English, The programming language reads much like or-
dinary English prose, and can provide automatic progranm and system
documentation, When users adopt in-house standardization of ele-
ments within files, plus well chosen data-names, before attempting
to program a system, they obtain maximum documentational advantages
of the language described herein,

To a computer user, the Burroughs COB0L offers the following major
advantages:

a, Expeditious means of program implementation,

b, Accelerated programmer training and simplified
retraining requirements,

¢, Reduced conversion costs when changing from a computer
of one manufacturer to that of another,

d., Significant ease of program modification,
e, Standardized documentation,

f, Documentation which facilitates non-technical management
participation in data processing activities,

g, Efficient object program code,

h, Segmentation capability which sets the maximum allowable
program size well in excess of any practical reqguirement,

i, Due to the incorporation of debugging language statements,
a high degree of sophistication in program design is
achlieved,

j» A comprehensive source program diagnostic capability,

A program written in COBOL, called a source program, is accepted
as input by the (030L Compiler, The compiler verifies that all
rules outlined in this manual are satisfied, and translates the
source program language into an object program language capable of
communicating with the computer and directing it to operate on the
desired data, Should source corrections become necessary, approe-
priate changes can be made and the program recompiled, Thus, the
cource deck always reflects the object program being operationally
executed,

A COB0L source program is always divided into four parts or
DIVISIONS in the following order:

IDENTIFICATION DIVISION,
ENVIRONMENT DIVISION,
DATA DIVISION,

PROCEDURE DIVISION,

The purpose of the IDENTIFICATION DIVISION is to identify the program
and to include an overall description of the program,

The ENVIRONMENT DIVISION consists of two sections, The Configuration
Section specifies the equipment being used, The Input=-Output Section
associates files with the hardware devices that will be used for thelr
operation, This section also furnishes the compller with information
about mass storage parameters,

The DATA DIVISION is used to describe data elements which the object
program is to manipulate or create, These data elements may be items
within files, records or program work areas, and constants,

The PROCEDURE DIVISION defines the necessary steps which will accom=
plish the desired task when operating on the data as defined in the
DATA DIVISION,

SECTION 1
COBOL LANGUAGE ELEMENTS

It has been stated that COBOL is a language based on English and
that the language Is composed of words, statements, sentences,
paragraphs, etc, The following paragraphs define the rules to
be followed in the creation of this language, The use of the
different constructs formed from the created words is covered In
subsequent sections of this document,
CHARACTER SET,
The COBOL character set for this system consists of the following
53 characters:

0 -9

A -1

blank or space

+ plus sign

- minus sign or hyphen

* asterisk

/ slash (virgule)

= equal sign

S dollar sign

’ comma

. period or decimal point

H semicolon

" quotation mark

(left parenthesis

) right parentheslis

> greater than symbol

< less than symbol

o

colon

) at sign

1=1

CHARACTERS USED FOR WORDS,

The character set for words consists of the following 37
characters:

0 -9
A -2
- (hyphen)

PUNCTUATION CHARACTERS,
The following characters may be used for program punctuation:

@ at sign space or blank

" quotation mark . period

(left parenthesis ’ comma (see note below)

) right parenthesis H semicolon (see note below)
NOTE

Commas and semicolons may be used between
statements, at the programmer's discre=
tion, for enhanced readability of the
source program, Use of these characters
implies that a following statement s to
be Included as a portion of an entire
statement,

CHARACTERS USED IN EDITING,
The COBOL Compiler accepts the following characters in editing:

S dollar sign + plus

* asterisk (chHeck protect) - minus

’ comma CR credit

. actual decimal point DB debit

B space VA zero suppress
0 zero

CHARACTERS USED IN FORMULAS,

The COBOL Compiler accepts the following characters in arithmetic
expressions:

+ addition %k exponentiation
- subtraction (left parenthesis
» multiplication) right parenthesis

/ division

CHARACTERS USED IN RELATIONS,

The COBOL Compller accepts the following characters in conditional
relations:

equal
less than
greater than

van

1=2

DEFINITIONS OF WORDS,
A word |s created from a combination of not more than 30 characters,
selected from the following:

A through Z
0 through 9
- (the hyphen)

A word is ended by a space, or by a period, comma, or semicolon,
A word may not begin or end with a hyphen, (A literal constitutes
an exception to these rules, as explained later,)

TYPES OF WORDS,
COBOL (1ike English) contains types of words, These word types
are:

a, Nouns,
b, Verbs, .
c, Reserved words,

NOUNS .,
Nouns are divided into nine special categories:

a, Flle=names,

b, Record-names,

c, Data-names,

d, Condition=-names,

e, Proceduree-names,

fo LItG"G]So

g, Figurative constants,
h, Special register names,
i+« Special names,

Since the noun is a word, its length may not exceed 30 charac-

ters (exception: 1literals may not exceed 160 characters), For pur-
poses of readablility, a noun may contain a hyphen, However, the
hyphen m?y neither begin nor end the noun (this does not apply to
literals),

FILE-NAME, A file-name is a collective name or word assigned to
designate a set of data items, The contents of a file are divided
into logical records that in turn are made up of any consecutive
set of data items,

RECORD-NAME, A record-name is a noun assigned to identify a logical
record, A record can be sub-divided into several data items, each
of which Is distinguishable by a data-name,

DATA-NAME, A data-name is a noun assigned to Ildentify elements
within a record or work area and is used In COBOL to refer to an
element of data, or to a defined data area containing data elements.
Each data-name must be composed of at least one alphabetical
character,

1-3

CONDITION-NAME, A condition-name !s a special data-name which

ls assigned to a specific value within a set of values, For (llus=-
trating a condition-name, consider this example, If THIS-YEAR
identifies the 12 months of a year, whereas Its subordinate

data items are defined as JANUARY, FEBRUARY, etc,, and the values
assigned to each month range from 01 to 12, then it follows that
JUNE would have the assigned value of 06, Using the condition=name
#U?E. the programmer can utilize it in conditional statements as
ollows:

IF JUNE GO TO , & + &
which is logically equivalent to the statement:
IF THIS-YEAR IS EQUAL TO 06 GO TO , « + &

As a conditional=name, the special data-name itself is called a
conditional-variable, The value that it may assume is referred to
by condition-names, The condition-name is formatted according to
noun rules and may be used only in conditional statements,

PROCEDURE-NAME, A procedure-name is either a paragraph-name or
section name, and is formulated according to noun rules, The ex-
ception is that a procedure-name may be composed entirely of num-
eric characters, Two procedure-names are identical only If they
both consist of the same character strings, For example: proce-
dure-names 007 and 7 are not equivalent,

LITERALS, A literal is an item of data which contains a value
identical to the characters being described, There are three
classes of a literal: numeric, none-numeric, and undigit,

A numeric literal is defined as an item composed of characters
chosen from the digits 0 through 9, the plus sign (+) or minus
sign (=), and the decimal point, The rules for the formation of
a numeric literal are:

a, Only one sign character and/or more than one decimal
point may be contained in a numeric literal for use
with Sterling, Left-most decimal determines the scale,

NOTES
A comma must be substituted for the dec-
imal point if the DECIMAL=-POINT IS COMMA
option is used (see SPECIAL-NAMES in the
ENVIRONMENT DIVISION),

The Implied USAGE of numeric literals Is
COMPUTATIONAL except when used with the
verbs DISPLAY or STOP,

b, There must be at least one digit In a numeric literal,

1-4

c, The sign of a numeric literal must appear as the left-
most character, If no sign is present, the literal is
deflined as a positive value,

d. The decimal point may appear anywhere within the literal
except for the right-most character of a numeric literal,
A decimal polint within a numeric literal Is treated as an
Implied decimal point, Absence of a decimal polint denotes
an integer quantity, (An integer Is a numeric literal
which contains no decimal point,)

e, A numeric literal used for arithmetic manipulations cannot
exceed 125 signed digits, otherwise, the maximum is 160
digits, The following are examples of numeric literals,

13247

. 005
+1,808
'00968
7894,54

A non-numeric literal may be composed of any allowable character,
The beginning and end of a non-numeric literal is denoted by a
quotation mark, Any character enclosed within quotation marks Is
part of the non-numeric literal, Subsequently, all spaces enclosed
within the quotation marks are conslidered part of the literal, Two
consecutive quotation marks within a non-numeric literal cause a
single quote to be inserted Into the literal string, Four conse-
cutive quotation marks will result In a single " literal,

A non-numeric literal cannot itself exceed 160 characters, Examples
of non-numeric literals are:

Literal on Soyrce Program lLevel Literal Stored by Compller
"ACTUAL SALES FIGURE" ACTUAL SALES FIGURE
"-1234,567" -1234,567
"N IMITATIONS Y "LIMITATIONS"
"ANNUAL DUES" ANNUAL DUES
nuun "

"AN"B" A"B
NOTE

Literals that are used for arithmetic computa-
tion must be expressed as numeric 1lterals and
must not be enclosed in quotation marks as non-
numeric literals, For example, "=7.7" and -7.7
are not equivalent, The compller stores the non=
numeric literal as -7,7, whereas the numeric lit=-
eral would be stored as 0077 if the PICTURE were
S999V9 DISPLAY with the assumed decimal point

located between the two sevens,

Binary 10 through 15 are represented as A through F and must be
bounded by @ signs, For example, binary 11 would be literalized
by ®8d, An undigit literal cannot exceed 160 digits, Refer to
section 7 for the correct declaration,

FIGURATIVE CONSTANT, A filgurative constant is a particular value
that has been assigned a fixed data-name and must never be enclosed
In quotatlon marks except when the word, rather than the value, s
desired, The figurative constant names and their meanings are:

2ERD Represents the value of 0O,

ZERQOS

ZEROES

SPACE Represents one or more spaces (blanks),

SPACES

HIGH=VALUE Represents the hlighest internal coding sequence

HIGH=VALUES (t.e., 999) value, When HIGH=-VALUES are moved
to a signed numeric computational field, the
sign will not be changed,

LOW=VALUE Represents the lowest internal coding sequence

LOW=VALUES (blanks) value. When LOW=-VALUES are moved to a
signed numeric computational field, the sign will
not be changed,

QUOTE Represents one or more of the single character

QUOTES " (quotation mark), The word QUOTE or QUOTES
does not have the same meaning in COBOL as the
symbol ", For example, if "STANDARDS" appears
as part of the C0OB0OL source program, the word
STANDARDS is stored in the object program, If
however, the full "STANDARDS" is desired In a
DISPLAY statement, it can be achleved by writing
QUOTE "STANDARDS" QUOTE, In which case the object
program will print "STANDARDS", The same result
can be obtained by writing """STANDARDS""" In the
source program, Only the latter method can be
used in MOVE statements and conditionals,

ALL When followed by a non-numeric literal or a fig-
urative constant, the word ALL represents a seriles
of that literal, For example, if the COBOL state-
ment is MOVE ALL literal TO ERROR-CODE, then the
resultant ERROR=-CODE would take on the following
values:

ALL literal Size of ERROR-CODE Resulting value of

ERROR=CODE
ALL "ABC" 7 characters ABCARBCA
ALL "3" or ALL 3 5 characters 33333
ALL "HI-LO" 12 characters Hl-LOHI=LOHI
ALL QUOTE 3 characters e
ALL SPACES 9 characters (nine spaces)
NOTE

The use of ALL with figurative constants,
as illustrated in the last two instances,
is redundant, MOVE ALL SPACES and MOVE
SPACES would yield the same result,

SPECIAL REGISTER NAME, The Burroughs COBOL Compller provides four
speclal PROCEDURE DIVISION register names which are:

a, TALLY,

b, TODAYS-DATE (Calendar),
c. DATE (Julian).

d, TIME,

Jally,
The special register TALLY is automatically provided by the coBOL
Compiler and has a def ined length of five COMPUTATIONAL digits.,

The primary use of TALLY Is In conjunction with the EXAMINE statement,

however, TALLY may be used as temporary storage or an accumulative
area during the interim when EXAMINE,,,TALLYING,..is not being
executed in a program,

T -

This special register contains the current date and is maintained
by the Master Control Program (MCP), Its format is made of three
character pairs, each representing the month, day and year, For
example, if the current date is Dec, 13th, 1971, the TODAYS=DATE
register contalns 121371, The function of TODAYS-DATE is to
provide the programmer with a means of referring to the current
date during program execution, TODAYS-DATE is maintained in
COMPUTATIONAL form,

This special register contains the current Julian date and is
malntained by the MCP, Its format Is YYDDD, For example, if the
current date were January 1, 1971, the DATE register would contain
71001, The function of DATE is to save programmatic evaluation

of TODAYS-DATE when Julian dates are required, DATE is maintained
in COMPUTATIONAL form,

lime.

MAccess to an internal clocking register reflecting the time of day
is programmatically avallable whenever TIME Is requested, Thls
register Is maintained in milliseconds by the MCP as a 10=-diglit
COMPUTATIONAL fleld. The contents of the TIME register will be

1-7

maintained In hours, minutes, seconds and 60th of seconds when
TIME 60 is declared in the 0OBJECT-COMPUTER paragraph,

SPECTAL=-NAMES,

The SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION allows

the programmer to assign a slignificant character for a CURRENCY
SIGN, and to declare DECIMAL-POINT as being a COMMA and to provlide
a means of relating implementor hardware=-names to mnemonic-names
as desired by the programmer,

VERSBS,

Another type of COBOL word is a verb, A verb in COBOL is a single
word that denotes action, such as ADD, WRITE, MOVE, etc, Al]
allowable verbs in COBOL, with the exception of the word IF, are
truly English verbs, The usage of the COBOL verbs takes place
primarily within the PROCEDURE DIVISION,

RESERVED WORDS,

The third type of COBOL word Is a reserved word, Reserved words
have a specific function in the COBOL language and cannot be used
out of context, or for any other purpose than the one for which
they were intended, Reserved words are for syntactical purposes
and can be divided into three categories:

a, Connectives,
b, Optional words,
c., Key words,

A complete list of reserved words in COBOL used by the compiler is
included in appendix A,

CONNECTIVES, Connectlives are used to indicate the presence of

a qualifler or to form compound conditional statements, The con-
nectives OF and IN are used for qualification, 0On the other hand,
AND, AND NOT, OR, or NOT are used as loglical connectives in
conditional statements,

OPTIONAL WORDS, Opttonal words are included in the COBOL language
to Improve the readability of the statement formats, These op-
tional words may be included or omitted, as the programmer wishes,
For example, IF A IS GREATER THAN B,,. Is equivalent to IF A
GREATER B,,sss Therefore, the inclusion or omission of the words
IS and THAN does not influence the logic of the statement,

KEY WORDS, The third kind of reserved words |s referred to as
being a key word, The category of key words includes the verbs and
required words needed to complete the meaning of statements and
entrlies, The category also includes words that have a specific
functional meaning, In the example shown in the above paragraph,
the words IF and GREATER are key words,

1-8

Statements are formed by the completion of the various entry and
verb constructs discussed in the later sections of thls manual,

A statement may be terminated by a period and thus become a sen-
tence, A group of statements, terminated by a period, forms a
sentence, An example of a sentence made up of a group of state-
ments would be MOVE A TO B8, ADD 01 TO COUNTER WRITE SUMMARY, Note
that the word THEN can be used interchangeably with the semi-colon
or comma,

PARAGRAPH FORMATION,.

One or more sentences may comprise a paragraph, A paragraph begins
with a paragraph name and is terminated by the paragraph name of
the next paragraph,

One or more paragraphs may formulate a section, A section Includes
all paragraphs between one section name and a following section
name, or the end of the source program, Each section must begin
with a paragraph-name, The method of referring to procedures
within sections and transferring of operational control to these
procedures is discussed in the PROCEDURE DIVISION,

T
The notatlon conventions that follow enable the reader to Interpret
the COBOL syntax presented in thls manual,

KEY WORDS,
A1l underlined upper case words are key words and are required when

the functions of which they are a part are utillized, Their omission

will cause error conditions at compllation time, An example of key
words is as follows:

JF data-name IS [NQT] ‘{ﬁggﬁglg }

The keys words ares IF, NOT, NUMERIC, and ALPHABETIC,

OPTIONAL WORDS,

All upper case words not underlined are optional words and are
included for readability only and may be included or excluded in
the source program, In the example above, the optional word is:
IS,

LOWER CASE WORDS,

A1l lower case words represent generic terms which must be supplied
in that format position by the programmer, Integer-1 and integer-2
are generlic terms In the following example:

EILE-LIMIT IS integer=-1 IHRU Integer=2

1-9

BRACES,

When words or phrases are enclosed In braces {}, a choice of one of
the entries myst be made, In reference to the key words example
above, one or the other of the words NUMERIC or ALPHABETIC must be
included In the statement,

BRACKETS,

Words and phrases enclosed in brackets [] represent optional por-

tions of a statement, If the programmer wishes to include the

optional feature, he may do so by including the entry shown between
brackets, Otherwise It may be omitted, In terms of the example above,
the word enclosed In brackets is optional, However, if the programmer
wishes to distinguish between NUMERIC and ALPHABETIC, he pust choose
one of the words enclosed in braces,

CONSECUTIVE PERIOQDS,

The presence of ellipsis (,,.) within any format Indicates that
the data Immediately preceding the notation may be successively
repeated, depending upon the requirements of problem solving,

PERIOD,

When a single period is shown In a format, It must appear in the
same position whenever the source program calls for the use of that
particular statement, A space after a period Is not required,
however, such a practice will enhance readabllity of the source
program,

1-10

SECTION 2
IDENTIFICATION DIVISION

The first part or division of the source program |s the IDENTIFI=-
CATION DIVISION, 1Its function is to identify the source program
and the resultant output of Its compilation, In addition, the date
the program was written, the date the compilation was accomplished,
plus other pertinent Information may be included in the
IDENTIFICATION DIVISION,

The structure of this division is as follows:

(MONITOR...]
JOENTIFICATION DIVISION,
(PROGRAM=1D., Any COBOL word,] < /<7 § 7oa

[AUTHOR. Any entry,]
(INSTALLATION, Any entry,]
[DATE-WRITTIEN., Any entry,]

(DATE-COMPILED, Any entry - replaced by the current date
and time as maintained by the MCP,]

(SECURITY., Any entry,]

(REMARKS, Any entry, Continuatlion lines must be coded
In Area B of the coding form,]

S
The following rules must be observed In the formation of the
IDENTIFICATION DIVISION:

a, The IDENTIFICATION DIVISION must begin with the reserved
words IDENTIFICATION DIVISION followed by a period,

b, All paragraph-names within thls division must begin
under Area A of the coding form,

¢, An entry following a paragraph=-name cannot contaln
periods, except that one must be present to denote
the end of that entry,

NOTES
When DATE-COMPILED is included,
the compiler automatically in-
serts the time of complilation
in the form of HH:MM and the
date of compilation in the form
of MM/DD/YY,

2-1

2=-2

With the exception of the DATE~
COMPILED paragraph, the entire
division is copled from the input
source program by the compiler and
listed on the output listing for
documentat ional purposes only,

MONITOR

MONITOR,
This statement provides a debugging trace of specified data-names
and/or paragraph names,

Construct of this statement is:

[MONITOR [DEPENDING] file=name <[data-name] coe ki

(B}])]

This statement must begin under Area A of the coding form, The
parentheses and colon are required as part of the source program
statement, MONITOR is active only while the file=name is in OPEN
status,

Only one MONITOR statement per program is allowed and must precede
the IDENTIFICATION DIVISION header card in the source program,

The file-name must be ASSIGNed to a line printer and is recognized
by the compller as being the output media for the MONITORed data-
names,

The data-name(s) may be any name(s) appearing in the DATA DIVISION
except for those which require subscripting or Indexing,

Whenever a MONITORed elementary data-name is encountered as the
receiving field in a MOVE or arithmetic statement, data-name
and Its current value are listed,

If a group item appearsxtn the data-name-list, it will be MONITORed
only when explicitly used as a receiving flield,

If the DEPENDING option is present, SW6 will be tested for an ON=-OFF
condition, Print of MONITORed items will depend upon the setting
as being "ON",

A1l paragraph-names listed wlll be printed each time they are en-
countered, along with a total Indicating the number of times that a
paragraph-name has been passed,

The use of the ALL option, Instead of the paragraph-name list, will
cause al) sectlon and paragraph-names to be MONITORed, thus
providing a trace of the programs control path during operation,

T
Flgure 2-1 provides an illustrative example of how the IDENTIFI=-
CATION DIVISION may be coded in the source program, Note that
continued lines must be indented to the B position of the form,
or beyond,

2-3

Buipo) NOISIAIG NOTLIVIIJIUIN3AI *l=-Z 24n6iy4

yryyrrryrrryrrrrv rrrrryryJyvrJyJyrrrrrryryJ1J1r1r11ro1 ity J1 1 rryrrrryr T)
|

yrrrryrrrrrrrrrryrrryryryrrrrrrrrrrrrr1rJrrr1rJr1ryrrrryrrrrrrryrvyr1rroruTy YT Tve
|

rYyvyYy vV ryrryryrrrryrryryrryryryvrrrrrrryrrrrrrrrrrJyrrrrrrrrrryryyrryryryyyrvrvrvrvrvrvirvriy_yw T 1e2
{

TyvyyrrryrryryrrryrrrryrryrvrrryrrrrrJyrrrrrrrrrryrryrrrryrrrrryryyryyrryrvyryryYorrviv7vvT T T le2
!

ryrvyrrryryryryrrrrrryryrrrrrrrrrrryryrryrrJrrrrrryryrrrrryrrrrryrrrvyrvyrvyourry T 172
[}

vy ryvyvryrryrvy vrryy vy rryvyrryrvyrvyrryryvyvryrrqyryryryrryryryrryryrryryrrryr7vvVyirvrrvyrvivrvyToririTd LR o2
vyryryvyryrrrrrvyrryrryryrryryrrrrrrrryrrrrrrrvyryryryrrvyvyrryyryyryryryrrrrrvyrryr7vr7vv7vu171vT LA 6
rvryrryYryrr ryryvyryrrryrr1rrryrrryrrryrryvrryryrryrvyr1rrrrrryyryrvyrryryrryrrryrrrvyrrrrrvyror7vvuviu LB 101
!

T T Yy rr vy r Yy r vy r Yy T r Y rrrrr rrrr vy r T r T T T rr rr rrrrrrrrryrrr v rrrort T T T T 2
|

ryyryyryrryryyrryrrrrryryrryryryrrryyrrrrryyrryrryryyryryryrvrvr17v17r7vr7vVr17v . ,2vVvVTV VTV VT LANLIN | 19
'

T ryrvrryryrvy v yvyyryvyryrrryryrrrvrrrrrrryrryryx¥ZrryrrrrryryryrrrrrrrrrryrvrvyryYrvrvrv17ryvuyvviV V7V T7a LA 1 s
!

YT T rryrvr y 7Yy vy vy rrYvrrrrrrrrr1rrrrr rrrrrrrrrrrrrrrryrrrrrryrrryr v vyt 1w
|

T T T ¥y rryrrrrrrrrrrrrrr1r 7y r rrrrrr rrrr1rr1 171 rrrryrrrrr1rryr1rrrrrrrry[vrrt T
- !

TTIT vy YyYrrrryyr oo vy r T rrrrrrTrrrr T yYr Y YT rrrrrrrrrrrrrrrrrrrrrrrrr r T T T Tz
|

T T Y Y Y T r T T YT T I T P TP T T Ty rrr 7Ty r vy rrr rrrryrrryrri rrrr 11 rrrrrrrrT T T "B
|

___-._-<-_qqqq_qq_qqqq.~d.ﬁr§i§~ L U UL Y EUSIRELUAINAE R jo1
|

1 IR (~Ue UL (W) LR Teo

|

A T 9 G NI THT ST =Y “-o

r7T 7T 1T T 7 T T 7T 77T T T T T rrrrrrrrrryrrrroiT __.Jéﬂ.@ﬂggma OIS L0
]

Y 7ry 7y rrryry vy ryrrrrryryYryrrrrvrvYrrrrryrrrrrryrrr1rrvrr1rrrr 17>y _--_ALQ.MJ_H.&.—LJG.U.-_.P.{& 190
1

<<<4qq<<<<d_«d_._aqqdqq_-__-_q_.___.<_.3§. M- 1'vV'Q K
|

LA S L N O O 0 O NUW AL U L GO LLVARE LY i RA R A L= A AL LI LGS N A R L LY L4 LSRR Y17 B A LA L L T VLS | “.o
qﬂqu~.<«¢.<<<d4q~_4-4q~dqdqqﬂq<q-ﬂﬁd~4a.Tuﬂqq_...U§qqZ-I.6:LT£§.._..3 1£0
|

q__.-~d414ﬂ444<4~4q~_-.14q7qud>£5-0-ta_ugﬁ.§§im 1 2o
|

TrTrrJrrryryrrrrryrrvry7vryrvrvVrvrrrvrvrvrvv v v 17T 7 LI qq<--—.Z-S—ﬂﬁ-H—>ﬁHda<iQHq_<Qquq -FZ-U-QqH ')
'

20 - = aln o|s]® »
ON

1 [v)
LSRR AR T T
o LYY 12301 uvo WINVNOOud ,
ON

20 Ve A8 03153N03y WVMBOud | 30¥e

W¥04 SNIQOJ 10800 SHONOWINE

2-4

SECTION 3
ENVIRONMENT DIVISION

GENERAL, |
The ENVIRONMENT DIVISION is the second division of a COBOL source
program, Its function is to specify the computer being used for
the program compilation, to specify the computer to be used for
ob ject program execution, to associate files with the computer
hardware devices, and to provide the compiler with pertinent in=-
formation about disk storage files defined within the program,
Furthermore, this division is also used to specify input-output
areas to be utlilized for each flle declared in a program,

ORGANIZATION,

The ENVIRONMENT DIVISION consists of two sections., The CONFIGU=-
RATION SECTION contains the over-all specifications of the computer,
The INPUT-QUTPUT SECTION deals with files to be used in the object
program, v

The structure of this division Is as follows:

ENVIRONMENT DIVISION,
(CONFIGURATJON SECTION,]
(SQURCE-COMPUTER . .,)
[O — P 00]0]
§£E£lAL_ﬂAM£§

[NPUT=-QUTPUT §EQIIQN]
(EILE-CONTROL .
(1-0-CONTROL . -'.J

The following syntax rules must be observed in the formulation of
the ENVIRONMENT DIVISION:

a, The ENVIRONMENT DIVISION must begin with the reserved
words ENVIRONMENT DIVISION followed by a period,

b. All entries other than the ENVIRONMENT DIVISION source
l1ine are optional, but when used they must begin under
Area A of the coding form,

Specific definitions for the ENVIRONMENT DIVISION paragraphs are
given on the following pages,

3-1

SOURCE-COMPUTER

CONFICGURATION SECTION,

The CONFIGURATION SECTION contains information concerning the
system to be used for program compilation (SOURCE-COMPUTER) and
the system to be used for program execution (OBJECT-COMPUTER),

SOURCE-COMPUTER,
The function of this paragraph Is to allow documentation of the
configuration used to perform the COBOL compilation,

The construct of this paragraph Is:

Qption 1

[SOURCE-COMPUTER., COPY l1brary-name

{word-! } word=2
REPLACING data-name=-1J BY data-name-2

literal=1

{ word=3 } word=4
[, data-name-3 § BY{ data-name-4 J e R

11teral=2

QOption 2:

[iQLLB.QE:.QQMEA.lI.E&- {8-1700 }]

any entry

This paragraph is for documentation only,

3-2

0BJECT-COMPUTER

0BJECT-COMPUTER,
The functlion of this paragraph Is to allow a description of the
configuration used for the object program,

The construct of this paragraph Is as follows:

Qption 1:

[OBJECT-COMPUTER, CoPY 1ibrary=-name

word=-1 word=2
REPLACING 8Y data-name=2 }
data-name=1 literal=]
word=3 word=l
’ { BY data-name-=U4] cos
data=-name=~3 Jiteral=2

Qotlon 2:

[0BJECT-COMPUTER. [.{a-\7oo }]

any entry

WORDS
MEMORY=-SIZE integer-1|J{CHARACTERS

MODULES
(DATA SEGMENT=-LIMIT IS integer-2 CHARACTERS]
(SEGMENT=LIMIT IS priority number]) .]

If section priority numbers are used in the PROCEDURE DIVISION, they
must be positive integers with a value from zero through 99, The
SEGMENT=-LIMIT clause signifies the limit for non-overlayable program
segmentation of sections numbered from 00 through 49, See SEGMENT
CLASSIFICATION, PROGRAM SEGMENTS, and PRIORITY NUMBERS on pages 5-15
through 5-19,

The MEMORY-SIZE clause is used for documentation only,

The DATA SEGMENT-LIMIT clause may be used to specify the size of
the data segments in the WORKING-STORAGE section, Integer-2 will
reflect the number of characters desired in each data segment,

When the value of Integer-2 Is zero, the WORKING-STORAGE section
will not be segmented, and will reside in memory as a contiguous

3-3

OBJECT=-COMPUTER
cont

block,

If the DATA SEGMENT=-LIMIT clause is omitted, no data segmen-
tation will take place,

A record (01 level) that Is greater In length than the DATA
SEGMENT-LIMIT will be placed in a segment by Itself, and will
not be split between segments, If DATA SEGMENT-LIMIT has
been declared larger than the defined record size, the record
wil) reside In the declared amount of memory, plus the next
other record if it will fit Into the defined segment,

34

SPECIAL-NAMES,

SPECIAL=-NAMES

The functlon of this paragraph Is to allow the programmer to assign

a significant character for all currency signs, to declare decimal
points as being commas and to provide a means of relating implementor
hardware-names to user specified mnemonic-names,

The construct of thls paragraph Is:

Qption 1:
[SPECIAL-NAMES. COPY library=-name
{ word=1 } word=2
REPLACING data-name-1 BY data-name=-2
literal=1
word=-3 word=4
[’ data-name-3 8Y data-name=4] ...]
literal=2
Qotion 2

[SP - . [CURRENCY sign IS literall

[Implementor-names IS mnemonic-name ,,.]

[DECIMAL=PQINT IS COMMA] }

This paragraph Is required if all decimal points are to be
interchanged with commas and/or if all currency signs are
to be represented by a character other than a dollar sign

(s).

This literal is limited to a single character and must not be
one of the following:

a, Numeric digits O through 9.

b, Alphabetic characters A, 8, C, D, J, K, Py Ry
S. V’ X. Z’ or b]anko

c. Special characters * + = , , 3 () ",

The clause DECIMAL-POINT IS COMMA signifies that the function of
comma and period are to be exchanged in the PICTURE clause character-
string and in numeric literals,

3-5

SPECTAL=-NAMES
cont

The implementor-name clause must be one of the allowable COBOL
hardware-names are listed on page 3-8, For example:

PUNCH IS CARD-PUNCH=-EBCDIC

The mnemonic named device can be directly referred to in the ASSIGN
clause,

The SPECIAL-NAMES paragraph statement ends with a perlod as a
delimiter, Periods between clauses are not allowed.

3-6

FILE-CONTROL

The INPUT-QUTPUT section contains information concerning files to be
used by the ob ject program,

FILE-CONTROL,

The functlion of this paragraph is to name each file, to identify the
file medium, and to specify a particular hardware assignment, The
paragraph also specifies alternative input-output areas,

The construct of this paragraph has three optlons which are:

Qotlon 1:

FILE-CONTROQL. COPY library-name
word=-1 } word=2
REPLACING {data-name-1 Y < data-name-2
literal=1
word=3 word=-4
’ { data-name-B} By data-name-4 } ...]
literal=2
Qotion 2
’[w.m.mam.
SELECT ([QPTIONAL] file=-name-1 ASSIGN TO hardware-name=-1

[{&w }]tsgem [FOR MULTIPLE REEL)
sstnae {Beegernt | [acreenare (M6}] |

FILE-LIMIT IS literal=1 JHRU END
[{EJLE:LlMlli ARE}'{data'ﬂame'1}'{lﬂﬂﬂuﬁﬂ } { }...

{literal-m } ({lﬂ&u } literalen }
data-name-m THRQUGH data-name=n

access | SehoeeriaL |
ACCESS MODE IS ﬁﬁﬁﬁﬁﬂfﬁii&L [ACTUAL KEY IS data=-name=3]

oy K A “hm

3-7

FILE-CONTROL

cont
(BRQCESSING MODE IS SEQUENTAIL]
Optlion 3:
[EI1LE-CONTROL.

SELECT sort-file-name ASSIGN TO SORT DISK, }

Option 1 may be used when the systems library contains the LIBRARY
name entry, See COPY, section 5,

The files used in a program must be the subject of only one SELECT
statement, If it is to be OPENed INPUT=-OUTPUT or 1-0, it must be
present In the MCP Disk Directory.,

The word OPTIONAL must be used In the SELECT statement whenever
an input file can be omitted during certain operational circume~
stances,

The ASSIGN clause must be used in order for the MCP to associate
the file with a hardware peripheral component., The allowable
hardware-name entries are:

B=-1712 DISK (or DISC) READER

B=1714 DISK=PACK SORTER

B-1726 DISPLAY=UNIT SPO

B-2500 IBM=1030 TAPE (7 or 9 channel MCP to assign)
B=-3500 IBM=1050 TAPE=7 (7 channel only)

B=4700 LISTER TAPE=9 (9 channel only)

B-9350 O-L-BANKING TC=500

B-9352 PRINTER TC=-700

B-9353 PT-PUNCH TOUCH=TONE

3-8

FILE-CONTROL
cont

CARD96 PT-READER TT7-28
DC-1000 PUNCH TWX
DCT=-2000

The BACKUP option will cause printer output files to be placed on
a printer backup tape or disk file for subsequent printing, The

BACKUP option will cause punch output files to be placed on punch
backup disk files for subsequent punching,

The NO BACKUP option will prevent the file from going to printer
backup automatically when the MCP's printer backup option is set
"ON" and a Line Printer is not avallable, This file may be
manually assigned to printer backup by the operator with an woy"
or "OUDK" message, -

Use of the FORM option with printer or punch files, will cause
the program to halt and a MCP message to be printed declaring
the need for special forms to be loaded in the Line Printer,

It is recommended that a STOP literal be executed just prior to

a STOP RUN If the FORM option Is used, This will allow the opera-
tor sufficlent time to remove the special forms before the printer
is released back to the MCP, MWithout a temporary halt, there is

a possibllity that another job In the mix may start printing on
that same printer,

The MULTIPLE REEL clause is for documentation only, This function
is performed by the MCP, '

The RESERVE clause allows a variatlon of the number of input or
output physical record buffers to be supplied by the MCP at the
time the file Is opened, Each ALTERNATE AREA reserved requires
additional memory to be utilized, and will be the size of a
physical record as defined in the FD statement of the DATA
DIVISION for that specific ‘file,

No alternate areas are reserved when the NO option Is specified or
if the entire optlon Is omitted,

The MCP will keep track of passing record data to or from the
buffer and record work area,

The programmer can use the READ or WRITE statements without
regard to the buffering actlion taking place,

The FILE=LIMIT clause is invalid if specified for a sort file
description (SD) entry, The FILE-LIMIT clause for Input and
output flles assocliated with the SORT verb will not be effectlive
when executing the SORT unless there Is an INPUT/QUTPUT
PROCEDURE declared,

3-9

FILE-CONTROL
cont

The FILE=-LIMIT clause specifies the following:

a, For SEQUENTIAL access, logical records are obtained
from, or placed sequentially in, the disk storage file
by the implicit progression from segment to segment, The
AT END imperative statement of a READ statement is exe-
cuted when the logical end of the last segment of the
file Is reached and an attempt is made to READ another
record, The INVALID KEY clause of a WRITE statement is
executed when the end of the last segment is reached and
an attempt is made to WRITE another record, The END option
specifies that the compller is to determine the upper limit
of an existing flile,

b, For RANDOM access, logical records are obtained from, or
placed randomly In, the disk storage file within the speci=-
fied FILE LIMIT, The contents of ACTUAL KEY not within the
specified 1imit will cause the execution of the INVALID KEY
branch in the READ and the WRITE statements,

In the FILE-LIMIT clause, each palr of operands associated with the
key word THRU represents a logical segment of a file, The logical
beginning of a disk storage file Is considered to be that address
represented by the first operand of the FILE-LIMIT clause; the
logicdl end is considered to be that address as specified by the
last operand of the FILE-LIMIT clause,

In a FILE-LIMIT series, SEQUENTIAL records are accessed in the
order in whicH they are specified, For example:

FILE-LIMITS 1 THRU 5, 10 THRU 12, 3 THRU 7

This example will result in the sequential access of records 1,
2' 3’ b. 59 109 1’9 12. 3. ‘G, 5. 6 and 7 in that Order.

For the ACCESS MODE SEQUENTIAL clause, the disk storage records

are obtained or placed sequentially, That is, the next loglcal

record is made available from the file on a READ statement execution,
or a specific 'logical record is placed Into the file on a WRITE state-
ment execution, The ACCESS MODE SEQUENTIAL clause is assumed |f
ACCESS MODE RANDOM is not specified,

If the ACCESS MODE RANDOM clause is specified, the ACTUAL KEY
entry must be used,

Values of the ACTUAL KEY data-name=-3 are controlled by the pro-
grammer, Including any execution of the USE FOR KEY CONVERSION
statement, The value may range from 1 to n, where n equals the
number of records in the flle or as reflected by the FILE=-LIMITS
clause, The ACTUAL KEY signifies the relative position of a record
within the file and Is equated to a data-name at any level which

is defined with a PICTURE of 9(8) COMPUTATIONAL, ACTUAL KEY Is

not used for ACCESS MODE SEQUENTIAL files,

FILE-CONTROL
cont

The PROCESSING MODE IS SEQUENTIAL clause is for documentation
only,

All integers must be of positive values,

Flle-name-1 must be unique in the first ten ¢haracters If the use
of an MCP Label Equation Card is anticipated,

The sort-file-name in Option 2 is the SD level file-name to be used
by the SORT verb,

[-0-CONTROL

[-0=-CONTROL,
The function of thls paragraph is to specify memory area, to be shared
by different files during object program execution and the point in

time that a rerun procedure is to be established,

The construct of this paragraph lIs:

Qption 1:

J=0=-CONTROL. CQPY library-name
word=-1 worde=2
REPLACING data-name=1 BY data-name=2

literal-1

word=-3 word=4
[. { data-name-3 BY data-name=4 } cos
literal=2

Qotlon 2:
':.L‘Q__Q_Q.Nl' RQ.L.
{[ENQ OF] REEL. }
[:ﬂiﬂuﬁ EVERY integer-1 RECORDS OF file=name=1] s

[:SAME (RECORD] AREA FOR file-name-2 file-name=3
(file-name-4] ,., } [MULTIPLE FILE TAPE "multi-file=id"
CONTAINS file-name=1ist [POSITION integer=2 ,,,] ...] -]

The 1-0-CONTROL paragraph name may be omitted from the program if the
paragraph does not contain any of the clause entries.

The RERUN clause sets up a communication with the MCP to create control
procedures whereby an operational program encountering a malfunction
can be restarted at the last RERUN control point instead of restarting
from the beginning of the program, Integer-1 records cannot exceed

99999,

3-12

[=0-CONTROL
cont

The SAME AREA clause In this COBOL compller is used to assign the same
sector and displacement addresses to the record work areas of all files
named In the clause, This area will be in the overlayable data section
of the program, This capability is due to the VIRTUAL MEMORY concept
employed in the design of the system, For example, a given file's File
Information Block (FIB), Buffer and Alternate areas will not exist in
memory unt!l an OPEN statement in the PROCEDURE DIVISION has been
executed, At thls time the MCP will allocate sufficient memory outside
of the Base and Limlt register limits to contain these areas., The
fille's Record Work area will be called into the overlayable data
section of the program whenever It |s referenced by the program, When
the flle is programmatically CLOSED, the memory being used to contalin
the files FIB, BUFFER and ALTERNATE AREAS wlll be returned to the MCP,

COBOL restricts the OPENIng of files defined as residing in the SAME
AREA of memory to one file at a time, This system ignores that logic
and the result saves memory over the conventional intent by not using
memory to contain FIB record area, buffers, or ALTERNATE AREAs unti]
a file iIs actually OPENed by the program,

When the RECORD option of the SAME AREA clause is used, only the record
area |s shared and the associated alternate areas for each file remain
independent, In this case, any number of the files sharing the same
record area may be OPEN at one time, but only one of the records can

be processed at a time,

The use of the RECORD option may decrease the physical size of a
program as well as Increase the speed of the object program, To illus-
trate this point, conslder file malintenance, If the SAME RECORD AREA
s asslgned to both the old and new flles, a MOVE will be eliminated
which transfers each record from the input to the output area, The
records do not have to be defined In detall for both files, Definition
of a record within one file and the simple inclusion of an 01 level
entry for the other file will suffice,

Because these are record areas in fact in the same memory location,
one set of data names Is sufficlent for all processing requirements
without requliring qualiflcation,

The MULTIPLE FILE clause specifies that two or more files are resi-
dent on one magnetic tape, All files resident on a multi=file tape
(that are required in a program) must be represented In the source
program by a SELECT statement and a FD entry for each file, The
flle-name-1ist entries do not have to be defined in the program
sequence in which the files appear on the multi-file tape, How=
ever, the MCP wil]l read the label of the next file on tape, check
the label against the file request, and, |f the next file is not the
one requested, It will rewind the multi-file tape and will start
searching for it from the beginning of tape,

The "multl-file=-1d" is the file-name contained in the physical
tape label of a magnetic tape containing multi-flles, when file-
name-1ist Is a serles of FD flle-names in the program indicated
as residing on the multi-file~tape,

1-0-CONTROL
cont

A1l fliles named in the MULTIPLE FILE cltause will have an implied
SAME AREA clause,

Multi=-files, or any flile contained within the file may be OPTIONAL,
The POSITION clause Is for documentation only,

T
An example of ENVIRONMENT coding |s provided in figure 3-1,

3-14

6ulpo) NOISIAIG INIWNOYIANI *|-€ 24n614
91£0Z01 wiog auswy ‘g Ul pesug
T4 89| 9| 09} 95| 43 8y [4d) or| %) I 8z, 2] 0z 91 41 8 v
T T VI S S s e B S S S N D S N I O O R B AR L B T T TP T 7T [T 711 "
T T T 7 S T e O L L L L L L LN N N D O A A |
T T 1T N O S o B s s S U N I N O O B A DL R B B L S O O O T F_
T T T VI T S S o e S N S S S B S D N D O N O L O R LIS O O O O O X
TT T 11 N s B e S A N N N O L B L T T T T T T T 11| 117 “
TT T 77 S A N e N T T L L B O R B O B T T T Y
TT T T T 71T 7111 T A N T O T O L L BB B B B T T 1 __:
T T T T T 77T eegrrifr= fﬂ.(e%ﬂ_\%ﬁﬂ_uﬁlm.ﬂﬂm&z_q_tﬁ_l_q_:iF_Mﬁ___mJ__E_ NFIOSYW T | T __:
T I SNTWLNGS 1, T 9 LT, T B 30 g 3idrim T m:
TT T T T 1T T 11T T 1T 1T T 17T T T T T T _.w_nﬁ‘q_.h. N.N_\P_Wu.\z_ IELw] _WQNQQL_N_ OoOIGT _TN_N_ZM_ N2 T T T 9t
T 1T T 1T 171 du___._d___dw_nmflﬁ_l&_ﬂm_mﬂ_ _, _nm:qlP_ _\/_J:_E_ %GD_&_ _u:_q_w T T 1 w:
q____.._______d__._q_____-_____.____._____.___.____N:.J_QN..EZGGLS.LH P
__q____4______________________.Q_M-N@a_NF%NHN_FJ_Q__%_@_ZNJ_WDM____ T __n_
rvr1v11 a__‘___________.______m&_an_GL-_ NN TSKE/ \m_n&_q\h_lm_@mmﬂ_ ARALE L ke L' IR “:
TNy S T IIRW ST IIE T T T
| 250 B I O L L L B O BRI 510 [o2 A L AR ARSI FARL AN LS |=1r Ln LE 0" UL RN BN Y
_.______d__________4___d___._M_W:Q_G._uﬁi_wq.mﬂﬁg_kdeﬂﬂ___ __o
T T T 17T 171 ______.______.__.__q__._mmg_]ﬂm_l_z@:_w_w_q_ _Um_gxh_n_zd__.q_q C._U_.w_l_ﬁ_w T 71 m.u
._d____________.______________._.___q._~._________TJ_&@_FZ_&_U_MJ__I 7
_____q______________4_____4______~._________.ZAS:FG_M:W_F:EFAUQ_HH __‘M
L S O e N O B LR BN R = ¢ AT ARRL SN AN LN A N BN 4 T LINN LG TN - IR TS "n
2 L B S L B B B BB 9) AL QAR WA A T i B WAL LS LN O Lol AR LER * | _.wm_kj_LZQU.IFOU_ﬂWS [
T o B L L LA X AN S < L~ U fi= (AN EE i e L “J
S S B B S B S A D R __________4____.q.__.______..z_@__.roj_m_zqﬂﬁ% _U “T.w_
TT T T T T T T T T 7V T 711 _d___.___d.__..__...____._d_.zelm.t)_ﬂ_ﬁ_z_m AN ___e
[(L Yor o9 9T E4l (2 Al orT 9el Tel LAl 124 (4] LU T 7 o_ v
z 9 v amn
TT T T 11 17 T 1
08 €L "AN301 aiva UIANWYYUO0¥d |¢ 1
40 2ovd A8 03153Nd3Y 1ovd

WYO4 ONIGOD 1080) suBnoaang

3=15

SECTION 4
DATA DIVISION

GENERAL, ' _
The third part of a COBOL source program is the DATA DIVISION which
describes all data that the object program is to accept as input,
and to manipulate, create, or produce as output, The data to be
processed falls into three categories:

a, Data whichH is contained in files and enters or leaves
the Internal memory of the computer from a speciflied
area or areas,

b, Data which is developed internally and placed into
intermediate storage, or Into a specific format for
output reporting purposes,

¢c. Constants whichH are defined by the programmer,

DATA DIVISION ORGANIZATION,
The DATA DIVISION is subdivided Into two sections:!

a, The FILE SECTION defines the contents of data files
which are to be created or used by an external
medium, Each file is defined by a file description,
followed by a record description or a series of
file-related record descriptions,

b, The WORKING=-STORAGE SECTION describes records, con-
stants, and non-contiguous data items which are not
part of an external data field, but are developed
and processed internally,

The general structure of the DATA DIVISION is as follows:

DATA DIVISION,

(E1LE SECTION,]

(FD flle-name=1 . « & o)
[01 record=name=1 ,]
(02 data-name=1 , . .1,
[02 « 0 0].
(03 data=-name=2 , . .1 .
(01 record-name-2 ,]

ESD file-name=-2 ,]]

WORKING=-STORAGE SECTION.
[77 data-name=3 , ., . 1 .
[77 data-name=4 , , ,]
(01 record-name=3 ,]
[02 data"name.s " o o] .
[02 data=-name=6 , . .J] .
etc,
(01 record-name=4 ,]
etc,

A Record Description consists of a set of data description entries
which describe the elements within a particular record, Each data
element consists of a level-number followed by a data-name, followed
by a series of Independent clauses, as required, A Record Description
has a hierarchical structure and therefore the clauses used with an
entry may vary considerably, depending upon whether or not it is
followed by subordinate elementary entries,

The level-number shows the hierarchy of data within a logical record,
In addition, it is used to identify entries for Condition-Names, non=-
contiguous constants, Workling-Storage items, and the RENAMES clause,

Each record of a file begins with the level=-number 01 (which may
also be shown as 1), This number is reserved for the record-name
only, as the most-inclusive grouping for a record, Less-inclusive
groupings are given higher numbers, but not necessarily succes-
sively, The numbers can range up to 49, Figure 4-1 jllustrates
the use of level within a record,

For an item to be elementary, it cannot have subordinate levels,
Therefore, the smallest element of a data description is called

an elementary item, In figure 4-1, MONTH, DAY, YEAR, MILLING, and
FINISHING are elementary items, Since ITEM=-NO, LOT-NO, STANDARD=-COST,
ASSEMBLY, INSPECTION, and WARRANTY-CODE do not have subsidiary clauses,
they also represent elementary items,

A level that has further subdivisions is called a group item, In
flgure 4-1, ITEM-DATE, PRODUCTION-CODE, and MACHINE-SHOP represent
items on a group level, A group |s defined as being composed of

all group and elementary items described under it. A group item ends
when a level-number of equal or lower numeric value than the group
item itself Is encountered, In figure 4-1, group item PRODUCTION=-
CODE ends with INSPECTION, A group item can only consist of a level=
number and a data-name followed by a period, C0BOL defines all group
items to be alphanumeric and will be byte aligned by the compiler,

The FILLER ADDED message will appear where such alignment has taken
place, Apart from level=-numbers 01 through 49, three additional
level=numbers exist in COBOL, These are numbers 66, 77, and 88, They
represent level-numbers within RENAMES, WORKING-STORAGE, and Conditione
Name entries respectively,

To reiterate, a level=number is the first required element of each
record and data description entry, In value it can range from 01
through 49 (1, 2, etc, Is also permissible), plus special numbers

of 66, 77, and 88, It is Important to remember that multiple level
01 entries of a given File Description of the File Section represent
implicit redefinition of the same memory area,

QUALIFICATION,

The data-names of the DATA DIVISION need not be unique as long as

the parent item of that data-name is unique in itself, Qualification
is accomplished by following the data-name to be qualifled with either

L-2

daqunN=-|9A37 40 Buipo) - *|~=4 34nb6) 4

r7TyYrrrrrryryrrrrrrrrrrrrrr1ryryryrrrrrirrm/1 T o vYrrrrrrrrJrrirrryrrrrrryrro T

lse

!

rvyryrryrrr7yrr rrr r Y rryYrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrryrrrrrrrr Ty ™1 Tve
|

rvyYyyvryrryryryry ryrvrrrrr vy yrrrrryryrryrrrrrrrrrrrrrrrrrrrrrrrrvryrrrrrryrr1rv177¢ v T —ﬂﬂ
!

rYrvyrvVrrrvrrrryrryrrrryryryryryryvyrrrrrrrrrrrrrryryrrrrrrrrryrrrrryyrryryxzrryrrrrrvr T T T .NN
[

rvvyyrryrryrrrrrrrrYrrryrrr7r7rr7ryr T T T T T T T T T T T T T T T O T T T T T T T Y T T T T T T Y T 1

oz
rYvrvrrYryrrvyrrrryyrvryryryvryrvrrrrrrrrryrrJrrryryrrrrrryryryrrryrrryryrryrryrvrrryrrrrvrrvrrYy T ¥
rv¥YrvTryryrrryrrrrrrryryrrrvrvrryrrrr1rrr1rrv1rvrJr1rrrrrrrryvyrrrrrrrrrrrro o LA 0
rY¥rvyYrvyYrryryrvrrrryyrrryrvrvrrrrrrryrrvrvyrr1r1rrrrryrri7rvrrrrJrrrrrrrrrrrrrrrrrrr o LB

~

rryrrryrryrrrrrrrrryrrryrrrrrvrrrryrJ11r1rrvyrryrrryrrrrrrrrrrysyvryrrrryrrrrrrzy LI

rTTTT T YT YT T T T T T T TNy T T T T T T LR B B O KL B b e 1) LS LB S A RU N LI "10T1AY) VAR (=8 (o] IR AN
gﬂlﬂgﬂgd%jjgﬂug%u g TR TR T T
gﬂwﬂdﬂsﬁgﬂq L2 L L L B BB B A Y S/ e = LR PN LA~ L7 e LN LB B

TNITHSTIINT T 7oy 7 T v 1 71 T T T

[]

L 4

~

SINTITATTIW JIor T T T T 777
T T T T T 7T T 71 qﬂaﬂﬂ.qﬂ. 1210 N D ARLALAL LA B A L L BB AL R LB T T THIST-HNTITHTYVIRT Slor T T [T 7 1
rrrrrryyT A.E.UJ.J«3-&5995-3&.&. TEIO[T 7 T

+..v) . = TCTol 7 7 7

T 1rrr1rvrT

u O n
1 v
7Y rTy v v uTT
oo [73 ANIQ! uvo UIONVURONd [\
ON
20 Wve A8 03453Nn03y NYMBONd | I0%e

WYO04 ONIQOD 10980) SHONOYINE

L=3

IN or OF and the qualifying data-name, record-name or file=name, In
the example below, all item descriptions (except the data=name PREFIX)
are unique, In order to refer to either PREFIX item, qualification
must be used, Otherwlise, if reference is made to PREFIX only, the
compiler would not know which of the two |s desired, Therefore, In
order to move the contents of PREFIX into PREFIX of other, the
PROCEDURE DIVISION must be coded with one of the following sentences:

a, MOVE PREFIX OF ITEM=NO TO PREFIX IN CODE-NO,

b, MOVE PREFIX OF ITEM=NC TO PREFIX IN MASTER-FILE,

c, MOVE PREFIX OF TRANSACTION=-TAPE TO PREFIX IN CODE-NO,

d. MOVE PREFIX OF TRANSACTION=-TAPE TO PREFIX IN MASTER-FILE,

Example:
01 TRANSACTION=TAPE ,,... 01 MASTER=FILE soeee
03 ITEM=NO soe0e 03 CODE=NO ,440
05 PREFIX sasns 05 PREFIX suue
05 CODE ,... 05 SUFFIX suss
03 QUANTITY +soeoe 03 DESCRIPTION sauoe

Frequently, the need arises to describe data which appears in a
table or an array, Ffor example, an annual sales total record

might have to be broken down by months, In order to accomplish
this, January sales would have to be referred to by a given data-
name, February sales by another, etc, By using the OCCURS clause,
the same result can be obtained without the need for 12 different
data-names, Fligure 4-2 illustrates how the OCCURS clause may be
used in order to have the compiler build a table of 12 elements,
each having a structure 1ike MONTHLY=-TOTALS, The first element will
be known as 1 of the table, the second as 2, etc, The technique of
referring to elements within a table or an array is known as
subscripting,

The OCCURS clause may appear at any level except the 01 level which
is reserved for record-names, For more detailed Information, refer
to the OCCURS clause,

The repetition of data elements applies to all subordinate fields,
OCCURS may be nested to describe tables of more than one dimension
when the OCCURS clause is applied to a subordinate name. The
compiler permits tables of up to three dimensions.

When a data-name OCCURS more than once, the particular element
desired within the array Is referred to by the use of subscripts,
The subscripts follow the data-name representing the array in a
COBOL statement, A space may separate the data-name and the sub-
script bounded by parentheses, A subscript can elther be a numeric’
literal or a data-name, A data-name being used as a subscript can
not be subscripted, If the value of a subscript is changed In a
series (e,g., MOVE A (B) to C (B), B, D (B),) the subscript for D
(B) Is re-evaluated,

L-b

a|1qe] pauo

Isuawig=131nNy 30 Bulpon

*Z~% 94nb} 4

Ty T Y rrrrr Yy rr Ty Ty Yy YT T rT Ty T r Ty T o
ryYyYrrYrrr rrrrryYrrryryY 7YYy 7rrrrrrrrrrr 1y rrrrrrrrrrr v rrrrr o T T ":
rYvryYyyYr vy rrrrYyY v rrrrrrrryrr ryrryrrrryrrrrrrrrryrrryrrrrvr1rvr77vVv7vr7vrr1vr17v T 17T "nu
ryryvyryyrvyv vryrrrrrrvryrryrrrrrrrrrryrrJ1rrJ7rrrrrrrrvrvrrr1r1rr7r¢v1rr1r1r1yrvrv 1177V Tv T T T LA "ﬁu
rYyYrrryrrryrrrrrrrrrrrrrrrr-rrrrrrrrYr7rrrrrrrrrrrr1rr1r1rrrrr1rrrr1rr1rr1vrrvor17 v “_~
rrYyYrvyyyrrrrrrrrrrrryrrvyrryrryrvrryryrryryryyrryryyvryrryryryryr1rrvV 171717 7V7vrT1r 7177V T 7T T7 T T "O~
yyrrryrrrrrryrrrryrvyrvyrrrryrrrrrrrvrrrrrrryrrJrryxyrrrrryrrrryryrrrrrrvyrvr1rri1rr1rr1v 177 T 7T "O_
ryYvrrrrryrrrrrr rrrrrryrryyrvryrryrrrrrrrrrryyrrrryrrrrryrvrrrrrvrrr1rr17r17v 177 LR “..
rTYryYryYyYrryvrrr vy yrrrrrrryrrrrvyvyryrrorrrvrorrryryx2rrrrvrvrrrr v 7vv 1v7viy vy orrriuorTd LA “s_
T T T Y T T T ¥y Ty T 7T T rr rr r 7r 7V 77 77T r 17T 7T T T T 7T T T T T 7 7T T T T P T T T T T T iV T T T T v T T 1 v v vy T “o_
r~-vrrrrvyY¢vr vxvTrr v rryryrr1rrrryr1rrryrrrryrrryrvrrrrrryryrrrvrr1vrvr17vVrvVvyr7vv17i7yvTroTrTivTrouoT AL “n.
T T T Y Y Y T T Y T T T T T T YT T T T T YT T T T T Y T T T T T T T T T T r Ty T T v T T rrrrrrrrr v rort “v_
ryYrrrryrrrrryyrrrrryrrryrrrrrr1rr1yrJr1r1ryrJrr1iJryJirrrrrrryrrrryr1rrrryrrryrrrvyrrrr~ “n.
v ryJ1rryryrvrYyrr; rrrryryrrrr1rryryryrrrrrrryrrrrrr¢rrrrrrrJ1rr1rJ1r1r1y7y1r1ryrrrrrr LA ”N_
rryrrrrrrryrr r 7y rrI7rrrryr1rryr 17 7ryrrrr1rrrryrrr1ryryrrrrriyrrrrryrrrrrryrrrrr 117 “__
Tyrrrrrrryryryrryrryrrrryr1rrJ1ryrr1r1r1rryr1rJ1r1rryrr1ryr1rrryr1r1rr1ryr1rrrrrryrrorvirorT “o_
LA N (N B N B D B S S L N D O O S N S N S A S D N B A A N B NN B B R B BN O [T AR G L% LR o= LS) W) S e Lo LT LE L LR ESL () LA ".o
rYyrrryrrryryrryrrrryYrrryyrryryvrrrrryrvrrg1vvov v TrTvr T rT Y TG O T WIITOKIQ-RIIIINGT 110 T T “.o
T T T T T T T T T T T T T T T YT T T T T T T T T YT T T T T T T T T gEr Py gy T 7 TV T eIy gy 7 1 7 7 T "..o
(SN, AL AL B S S S S B S N S N S A B S B B A A B oL S LERL B N L7 16 QA RASY ALK LC. AT A LA FRIC LR R BELANL BN BB “-o
TT T T T T YT T T T P T P T T T T T 7 T P T 17T v IR angrIr gy gy gﬂaﬂmﬂ}g«m&_ TglgV T T [T T 7 so
LALAN S S S AN A S AN A S B N A A O D R D R D O R O R D A D S SN NN N R D [P 1AL 50)= | RT-TISTggrgrgr grgr 1 1 rT T)
LA B S S S (D N S G A R S SN N S D B AN 0 D SR D B S B D R D BN BONR SR AR BN BN) .20 S 501 V) N A PR A el mR{e AL7) ¥ AP LENR EATO LI LI .no
LZSLAL L JL I O AR S N S A A N B B B S B B K (45 Y IS LN ARSI SA BN A LY L o 5ol00)i BRI i LIANR S MR E) S L E AARE VL RLARE=1[0) LB 120
TrTrrrryyvyrrryYrryryryry7yryrrrrrrrrrrror /vy ivrr rrrroeoryrrrrTvuru qoqmﬁ.w—J«dw-mqo_J-gj-Z-Z-(4<ﬂ40 "_O

'
22 ——— T P s 115 >
OoN
b [} v oA
T Trrr vy ourvy LANRAN
oe [73 AN30! uvo §n ,
ON
20 W9V A® 031$3N0D3N WYMBOud | 30v4

WYO04 ONIGOD 10802 SHONO¥YNE

4=5

In order to reference the first occurrence of MONTHLY-TOTALS of
figure 4-2, one could write: ,,.MONTHLY-TOTALS (data-name), where
data-name must contain a 1, or MONTHLY-TOTALS (1),

If a data=-name INCREMENTER were used to refer to the desired element
in a table (using the terms of the sample [1lustration) MONTHLY=-
TOTALS (INCREMENTER) would be written, In this case, the INCREMENTER
would have to contain a value that represents the desired element,

If a specific 'RESALE item within a given month is again required,
RESALE (INCREMENTER, CODE-X) would have to be programmed, CODE=-X

Is a data-name that can have a value of 1, 2, or 3 depending on what
level is required,

Indexing into a table follows much the same loglic as subscripting,
There 1s a 1imit of three Indexes per operand (e,g.,, A(INDEX=-1,
INDEX=2, INDEX=3), The use of a relative index modifies the

index name without actually changing its value,

Example:
A (INDEX-1 + 3, INDEX=2 =4, INDEX=3)

Relative indexing is Indicdted by a + or a - integer following an
Index-name, and causes the affected index to be incremented or
decremented by the number of elements within the table,

At the point In time when a data-name is used for subscripting
purposes, any SIGN associated with the data-name will be ignored
and the contents of the field will be treated as a positive
Integer, Its value must be greater than zero, but not greater

than the value shown In the corresponding OCCURS clause, The
generated ob ject code checks the validity of data-name values used
for subscripting or indexing. Should the program reference a sub-
scripted data-name or an index-data=-name containing a value of
zero, or a value above the defined subscript or index range as
reflected in the OCCURS clause pertaining to that array, the

MCP will DS the program indicating PROGRAM SUBSCRIPT ERROR,

When qualification and subscripting are used simultaneously, the
qualifications must be followed by the subscripting,

k-6

FILE DESCRIPTION

-

This section contains descriptions of the flles used by the ob ject
program,

FILE DESCRIPTION,
The functlion of this paragraph is to furnish information to the

compller concerning the physical structure, ldentification, and
record names pertaining to a given file,

The construct of this paragraph contains four options:

Qption 1:

[ED file=name CoPY library-name
word=2
REPLACING {word-l : } BY < data-name=2
data-name-| literal=-1
word=4 ,
{word-B } BY data-name=4 ces e
data-name-3 literal=2 5

Qotion 2:

ASCIL
ED file-name-1 [RECORDING MODE Is {ﬁlAN,QA&Q § }
NON=-STANDARD

FILE CONTAINS integer-1 [BY Integer-2] RECQORDS J

ELQQK CONTAINS [integer=3 JQ] integer-i {'CHARACTERS}]

RECORD CONTAINS [integer-5 JQ] integer-6 CHARACTERS }

LASEL (RSO T) QUL L]

_/\/\

FILE DESCRIPTION
cont

"literal=1" }

[{ﬁﬂ_ﬁ} & {l.LBlE_NJ_IL.LC.A_TJ_Qﬂ} s {data-name-l

(/"1iteral-2"] [SAVE-FACTOR IS litekal-3] }

{ RECORD IS
DATA RECORDS ARE data-name=2 [data=-name=3 ,,.] .

Option 3:

SD sort-file=-name CQPY library-name

word=-2
REPLACING word=-1 } BY data-name-Z}
{ data-name-1 literal=1
word=-4
word=3 } 8y data=-name=-4 } oo .
{ data-name-3 literal=2

SD sort-file-name

[FILE CONTAINS integer-1 [BY integer-2] RECQRDS } :
[Rscogu CONTAINS [integer-3 10 integer-i CHARACTERS]]

BLoc { ChRRacTews |
BLOCK CONTAINS [integer-5 I0] integer-6 CHARACTERS

4-8

FILE DESCRIPTION
cont

\/\/\

R 1S
[DATA { RECORDS ARE} data-name-1 [data-name-2] ...} .

The level indicator, FD and SD identify the beginning of a File
Description or a Sort File Description and must precede the file
statement, Both entries must commence under Area A of the coding
form, Only one period is allowed In the entry and it must follow
the last used clause,

Options 1 and 3 can be used when the Systems library contains the
library-name entry, otherwise, Option 2 and/or Option 4 must be used,

In many cases, the clauses within the File Description, or Sort Flle
Descriptlion sentence are optional, EachH clause is discussed In
detail, '

NOTE
Figure 4=-3 jllustrates the use of the File Description
sentence followed by data record entries, It Is further
noted that the three 01 levels implicitly redefine the
record area and that the DATA RECORDS clause is treated
by the compiler as being documentational only and does not
cause an explicit redefinition of the area,

4-9

FILE DESCRIPTION

cont

SQ¥023Y Vviva Pwe (g4 30 Buipo) °g-4 aunby 4

9140201 wiog oduswy ‘g ‘M) Ul pejulig
2L 99] 9| 09 9| zs| 8y, Naidl or| %) | 8z, 144 0z 9y (4} 8 v
T r17 T T 17 i 1111 rtrrrrirrrrirrrorirrTriTTd I 1 T T FrrT T T T T v TT 7T “
rvrvr1rr1rr 17 171rr1r 1ol rrrrryr1rrr 17717 i1 riv 11 T TT T T 7 171 T7TT 17T 7T 1771 T TT ”
T T T T T T T 1T T T 771 T T T T 7T T T T 1T T 1T T 1T 17T T TT T 1 T T T T 177 17 T 1T 1T 171 T T T “
1
TT T T 7T T T T 7 7T T 11 | N A N N N N O O O O B A T T T 1 T T T T T 77T T T T T 17 1T)
|

TT 1T 1T 17T T T T 17T T 11 rr11717 711717177 17T T0mT T T 71T T T T T T T T T T TT T T T T T UTla] T T T \
1

TT T T 77T 1T T T T T 7110 rT1rr1rrrrrrrrrrrurtihaea T TT T T rrJyrrrrrrrrrr,prrr L 02
.]

TT T T T T 7T T 1T T 11 T T T 1T T T T T [T T 1T 1T 1T 1T 1117 T 1 TT T T T T T T 7T T T T T T T 1. T 171 1 6t
1

TT T T T T T T T 1 111 T T rr1rr1r1rr1rrrrrrrrr T1 T1 T 1 T T T 17T T TelTT R T 11 L el
4 1

T T T T T T T T 17T T 17071 rvrrrrrorrrrrvrrvririped [T T 1 _A.WLNGR-WA_W_ZQQ_IN__HAO 1 Lt
1

Tr r1rrr1irrrovrrTid rrrrrrrrrrrvrrirrurid T T LB T T T T T T T T T T U T T U1 1 9t
) : [
Tr rrryrrrov 177177 rr1rrrrrrrr7vrer1717TT17T 1m0 71mTa T 7T T71 T T T T T T T T T T T T 1T T, T T 7T D
1

T™T T T T 17 7T T T 171711 T Vr v 1rr1rrrrrrrrrrorrrd T 1 1 T 1 T T T T 1T T T T T T 7T 17 Tef T T T mv_
|

L N B A N N N N A B L L L L O L B T TT 1 T T T T Tt g T ' D
) 1

TT T T T T T T T T 11T TT T T T T T T T 1T T T T 1TV 11 T 1 T T TT T T T T T gRgiQn TT70 1zt
]

TTr 7T 17T1rvrvr77r 171 1v1 rrTrr7rvr7r17 1717177 vTrrrurura LI LR T 7T T T T T T 7T T T 17T 10T 7T 17T, 1T 1T 71 o
]

TT T T rTTr rrrrrr1 T T T T T T T T T V7T T T T roId T 1 T1 L T T T T T T T T T VT Tl TT1 1 o1
LI T I R O O L LB T T T T T T T T T 7T T T 111 TT TT T T T T T T T T T T T T T 0. T T 1 uﬁ
]

TrT 1171717V 177171717 1711 rrrr7vrrVmVvrrvr1r1rrvirrriyure LI B] | _______o_._o_-__m_o__a _.J
TT 7T T T T T T T T 771 T T T T T T T T T T T T T T v o T T T 1 T T T T T TSI T 'T0 “~
- 1

L L L L L L IO L O L L TT 1. 1T 11 T TrT T 1T 1T 1T 1T T 1111 L]
L L ya —
JI]JJJJI&?J%IQE. LS 7 (] __Q._ TISRYTT Yy SqEPOEN WL Y T T T[T TS
: |
_—_ﬁlawd_d___.____<4u4___Aq-ﬁa___.a__oc_ﬂ_ W_IN_MQF_.U_Q.L.I_.Uf-{w_-q-- LB [
]

R ol i A A S A S D

T T T 7T T T T 17T 77 T ._____.-_______._g.gsx_q_h_ﬂ__n:__Q_%ﬂ@mE_J..wﬂ.@:ﬂ.__. T T 7T ":_
1

rrVm17r 1777V 17171771717 1 _‘______—_uq-qa.-u_._qq—-qq~___._m_\ﬂ-u-)_N_m.aN_n_q_t _.Q_l _~4
|

(2.5 L yor 097 957 41 o7 wl orl 9¢l el [T} 124 [1}14] o LAV 0y v
‘ON

z] v EL TR
TT 1T T T 1 171 T T T

08 €L iN3QI; ilva UINWYYI0Ud \
i ON

40 uué_ A8 @3153n03Y 39v4

WYO4 ONIGOD 1090D syBnoaang

=10

BLOCK

BLOCK,
The function of this clause is to specify the size of a physical
record (block).

The construct of this clause is:

| B s |
BLOCK CONTAINS [Integer-1 IQ] Integer=2 CHARACTERS

Integer-1 and integer-2 must be positive integer values,

This clause is required if the block contains more than one logical
record,

When only integer-2 is used, it will represent logically blocked,
fixed length, records if its value Is other than 1, When the
integer-1 T0 integer-2 option is used, it will represent the
minimum to maximum size of the physical record and indicates

the presence of blocked variable-length records, Integer-1 is
for documentation purposes only,

The maximum value of the integer used In this clause is shown In
table k-1 and refers to the number of characters in a block,

The word CHARACTERS Is an optional word in the BLOCK clause, When=-
ever the key word RECORDS is not present, the integers represent
characters,

For ob ject program efficiency, the use of blocked records |s recom-
mended, The physical slize of the block should be as large as
possible depending on memory availability,

Blocks of records are READ into the input record buffer area by the
MCP, and the delivery of each record to the programs record
work=area (required by an explicit READ command) is completed,

Blocking or un=blocking of records is of no concern to the
programmer,

BLOCK
cont

Table 4=}

Maximum vValue of Integers

1/0 Medium Maximum Block Size - Characters

READER 80/96

PUNCH 80/96

TAPE Limited only by the amount of
memory available,

DISK Limited only by the amount of
memory available,

PRINTER One print 1line,

PT-READER Limited only by the amount of

memory available,

PT=-PUNCH Limited only by the amount of
memory avalilable,

Every explicit WRITE verb causes compller generated object code to
deliver a record to a files output record buffer area, and to accu-
mulate the number of loglcal records required to create a specified
block size before notifylng the MCP to write the block, When a file
s CLOSEd, the records left in the output buffer area will be written
as a short block by the MCP before the file is physically CLOSEd, The
coding of record area to buffer is automatic, and is of no concern to
the programmer,

The user must specify the actual size of varlable=length records in
the first four bytes of each record, This four-character indicator
is counted in the physical size of each record,

The BLOCK clause is not applicable to the READER, PT=-PUNCH, or
PT-READER peripherals,

This clause may be omitted for unblocked files,

b-12

DATA RECORDS

DATA RECORDS,
The function of this clause is to document the names of the logical
record(s) actually contained within the file being described,

The constfuct of this clause Is:

[DATA { g%&3§%§lzRE} data-name-2 [data-name=3,,.] }

This statement is only for documentation purposes, The compller
will obtain this information from 01 level record description
entrles,

FILE CONTAINS

FILE CONTAINS,

The function of this clause Is to Indicate the number of logical
records in a file. This statement Is requlired for disk files, and
optional for all other files,

The construct of this clause is:

[FILE CONTAINS integer-1 [BY integer-2] RECORDS]

The Indicated Integers must be positive values,

LABEL

LABEL,

The function of this clause is to specify the presence or absence
of file label information as the first and last record of an input
or output file,

The construct for this clause is:

[RS e b { St}]

If this statement is not specified it is assumed that the file either
contains, or has been created with STANDARD ANSI labels,

STANDARD specifies that labels exist for the file or device to which
the file is assigned, It also specifies that output labels conform
to the standards as implemented,

STANDARD, when specified for disk files, indicates that the 20~
character contents of the VALUE or ID clause will be inserted into
the disk file header, Should VALUE of ID be omitted, the first 10
characters FD or SD file-name will be inserted Into the disk file
header,

OMITTED specifies that physical labels do not exist for the specific
input file to which the file is ASSIGNed, During object program
execution, the operator will be queried by the MCP as to which unit
possesses the Input data, - The operator must reply with "mix=index"
UL unit-mnemonic" control message,

The user's portion of the STANDARD label may be of any length., The
BURROUGH'S clause specifies that labels exist for the file assigned

a magnetic tape Input, or will be created for an output magnetic tape
file in the BURROUGH'S standard format,

NON-STANDARD indicates that the files physical magnetic tape label
is formatted as an EDP installations own standard label which has
been appropriately defined in the System Specification Deck at

"cold start" time, (See MCP Reference Manual for specifications),

OMITTED specifies that labels are not to be created for the specific’
output file ASSIGNed,

The BURROUGHs Standard label record serves as both the beginning
and ending label record, and Is comprised of the following parts:

Posltlons Eleld Description

1 Invalid character for card files and
blank for other files

4-15

LABEL

cont
Positions Eleld Description
2-8 "LABELbD"
9-18 "Multiple-file-id" or zeros
19 Blank
20-29 "Flle-identifier"
30 B1ank
31-33 Reel number within a magnetic tape file
34-38 Date written (creation date YYDDD)
39-40 Cycle (distingulshing multi-runs of the
program) o
L1-45 Purge-date (YYDDD) at which time the MCP
assumes a magnetic tape as,"scﬁatch"
L6 Sentinel (0 = End-of=-File and 1 = End-of-
Reel)
L7-51 Block count (ending label only)
52-58 Record count (ending label only)
59-63 External magnetic tape library reel numbér
64-80 Reserved |
81 User's portion

The COBOL compiler will obtain the value of "multiple-file=1d"
from the 1-0-CONTROL MULTIPLE FILE TAPE clause,

The COBOL compller will obtain the value of the "file-identifier
from the FD VALUE OF ID IS clause, or if it has been omitted, it
will be taken from the first ten characters of the FD-name,

The STANDARD label record serves both the beginning label record
and the ending label record, Its format is as follows!

Positions
1-3

5-14
15=-24
25-27

28
29-31

32-35
36-39
40-41

b2-47

4L8-53
54

55-60

61-67

68-72
73

74-80
81-

LABEL
cont

HDR

1
"multiple-file-id"
"file-ldentifier"
blanks

0 (zero)

nnn (reel number within a magnetic tape
file)

nnn (flile sequence number)
Blanks (generation number optional)

nn (cycle number-generation version
number optional)

bYYDDD (creation date)
bYYDDD (purge date)
Blank (accessability)

nnnnnn (block count (end label
count))

nnnnnnn (record count (end label
record count))

nnnnn (physical tape number)
B (optional)
blanks

User's portion

b-17

RECORD

RECORD,
The function of this clause is to specify minimum and/or maximum
variable record lengths,

The construct of thls clause is:

[REQOBQ CONTAINS [integer-1 IQ] integer=2 CHARACTERS]

Integer-1 and integer-2 must be positive integer values,

If integer-1 and integer-2 are indicated, the variable-length record
technique is utilized,

If only integer-2 is indicated, the compiler will treat the clause
as being documented only, The record size will be determined by the
structure of the record description,

If integer-1 and integer-2 are indicated, they refer to the minimum
and maxImum size of the variable records to be processed, At least
one record description must reflect the maximum slize record length
as specifled in the RECORD CONTAINS clause,

The user must specify the actual size of variable-length records in

the first four bytes of each record and the record size must contain
an even number of characters (MOD 2), The four-character variable-

size Indicator is counted in the physical size of each record.

This clause is applicable to disk or magnetic tape files sequentially
OPENed INPUT or QUTPUT,

RECORDING MODE

RECORD ING MODE,
The function of this clause is to specify the recording mode for
peripheral devices where a cholice can be made,

The construct for this clause is:

2TANDARD
RECORDING MODE Is NON=STANDARD
ASCIL

STANDARD RECORDING MODE 1s assumed if this clause is absent from the
FD sentence, The MCP automatically checks the parity of input mag-
netic tapes and will read the tape in the intelligent mode, For
this reason, this clause is requlired only for tapes when the output
s to be NON=STANDARD,

The MCP will automaticdlly assign STANDARD RECORDING MODE on 9-
channel magnetic tape drives if a SELECT clause indicates TAPE,
even though the programmer has designated the unit as being
NON=-STANDARD,

The recording modes for the peripheral devices are provided in
table 4-2,

Table 4-2

Recording Modes for Peripheral Devices
Device Standard Non=-Standard
TAPE=-7 Odd Parity Even Parity
TAPE=9 0dd Parity -
DISK Memory Image -
READER Documentational Only -
PUNCH EBCDIC or BCD -
PT-READER BCL Blinary
PT=PUNCH BCL Binary
PRINTER BCL -

b-19

VALUE-OF-ID

VALUE=-QOF-ID,

The function of this clause is to define the identification value
assligned, or to be assigned, to a file of records and to declare
the length of time that a file is to be saved,

The construct of thls clause is:

{VALUE} o]3 1D } IS {"Hteral-1" t/ "Hteral-Z"]}
VA {lDENTIEIQA![QN data-name=1
(SAVE-FACTQR IS literal=3]]

This clause may be used when label records are present in the file
being described, If this clause Is not present the compiler will
take the VALUE-OF-ID from the first 10 characters of the file=-name
(FD or SD) and place that ID in the ID entry of the label where the
value of literal=1 would normally be found, The file-name must

be uniquely constructed so that the MCP will be able to recognize
the files,

Example:

FD SCHEDULE-DISK1 Would create a value of ID as
FD SCHEDULE=DISK2 SCHEDULE=D for both flles and
cause a dup file action by

the MCP,
To make them unique:
FD DISKOUTPAY Would create a VALUE OF ID as
FD DISKOUTTAX DISKOUTPAY and one of DISKOUTTAX

thus causing no MCP confusion
during object program execution,

Each flle will have two names each consisting of 10 characters, the
first name for a magnetlic tape file is a common name of a MULTI=-FILE
tape and the second name will be the name of a file within the MULTI-
FILE, The first name of a magnetic tape file will be taken from the
MULTI-FILE clause in the 1-0-CONTROL paragraph, The second name will
be taken from the value of literal-1, data-name-1, or by default from
the FD name,

A disk file can be named in two different ways, It can have one name
up to 10 characters long or two names divided by a slash (/) mark
each of which can be up to 10 characters long, A file with one name
(maln directory name) will be placed in the main directory by means
of a scramble technique, The address following the name will point
to the disk file header, A file with two names adds another level

L-20

VALUE=-OF=-1D
cont

to the directory, The first name is the multi-file or main directory
name. The main directory name will be scrambled to a directory with
the file-type set to "2", The "2" designates that the address
following the name is the address of a sub-directory, The second
name or sub-directory name Is then placed in this additional di-
rectory, The address In the sub-dlirectory now points to the file
header of the file, The sub-directory entry will not be scrambled
into the directory as is the main directory entry which has the
location of the sub-directory, When the MCP finds the sub-directory
it must search for the sub-directory file-name,

When data-name=-]1 is used, it must be defined in the WORKING-STORAGE
section of the program and must be described as being alphabetic
or alphanumeric,

The VALUE OF 1D declared for OUTPUT disk files will cause up to

20 characters of literal=-1 and literal=2, or the value of
data-name=-1 to be inserted into the disk file header, Inversely
up to 20 characters of literal-1 and literal=2, or the value

of data-name-=1 will be checked agalinst the MCP Disk File Directory
to obtain the physical disk location of the file when declared

as being INPUT or INPUT=-QUTPUT disk files,

SAVE-FACTOR is used only for output magnetic tape files, Literal-3
represents the number of days the file is to be saved before It can
be manually purged and used for other purposes by the system, Lit-
eral=3 Is limited to an unsigned positive integer not to exceed
three digits in length with values from 00! to 999,

SAVE=FACTOR, when declared for a disk file, is only for documenta-

tional purposes due to the fact that files residing on disk should

only be purged by mutual consent within an EDP organization and can
only be performed as a physical action by the systems operator,

If SAVE-FACTOR isn't specified, tapes are automatically assigned a
SAVE=-FACTOR of one day to preclude expiration action when the
system is being operated during the period just prior to midnight
and thereafter,

4-21

RECORD DESCRIPTION

RECORD DESCRIPTION,

Thi

s portion of a COBOL source program follows the file description

entrles and serves to completely identify each data element within a
record in a glven file,

The construct of these entries contain four options which are:

Ootion 1:

Q] data-name-1 CQOPY library=-name

data-name=-2 literal=1

word-2
[jBEELAQlNﬁ _{word-! } BY { data-name-B}

word-4
word-3 "} BY data-name=5 .
data-name~4 literal=2

Jotion 2:
{Ql } {E_I.LL.E.B } (REDEFINES data-name=-2]
lever-number data-name-1

L-22

2C
({BJQ } IS (allowable PICTURE characters)}
| (EICTURE

[B2 Qc integer=1 TIMES
_{ BLANK WHEN ZERQ }] [{ QLQM&S}’{integer-Z I0 integer-3 TIMES }

(DEPENDING ON data=-name=3]]

pESCENDING |
E N KEY IS data-name=4 [data-name=5] ... con

~ — ~_—

RECORD DESCRIPTION
cont

\/\/\

INDEXED BY index-name-1 [Index-name=2] ...

S
wsage 11 { COMPUTATIONA HW } i |
JUSTIFIED

l:{ﬁu&} IS literal-1 [{ﬁgﬁuﬁu} literal=2 :,

e] [B} o]

(e 5]

Qeotion 3:

66 data-name-1 RENAMES data-name=1 {_‘Lﬁ&u } data-name-3 | ,
JHRQUGH

4-23

RECORD DESCRIPTION
cont

Qotion 4:

88 condition-name { YA } IS literal=1
YALUE

Uiteral-Z...] [{L"M } literalen,,.] .

The optional clauses shown may occur in any order, except If REDEFINES
is used it must follow data-name=1,

The record description must be terminated by a period,
Level-numbers in Option 2 may be any number from 1-49,

The clauses PICTURE, BLANK WHEN ZERO, JUSTIFIED, and SYNCHRONIZED
must occur on elementary item level only,

Option 1 can be used when the COBOL library contains the record
description entry, Otherwise, one of the other options will have
to be used,

In many cases, the clauses within the record description sentence
are optlional, Each clause is discussed in detall,

In Option 4, there is no practical 1imit to the number of literals
in the condition-name series,

The SYNCHRONIZED clause is for documentation only,

-2k

BLANK WHEN ZERO

BLANK WHEN ZERO,
The function of thls clause is to supplement the specification of
a PICTURE,

The construct of this clause Is:

[{gfm WHEN m}]

BLANK WHEN ZERO may be abbreviated BZ,

This clause overrides the zero suppress float sign functions in
a PICTURE, If the value of a fileld is all zeros, the BZ clause
will cause the field to be edited with spaces, However, It does
not override the check protect function (zero suppression with
asterisks) in a PICTURE,

The BZ clause can only be used in conjunction with an item on
an elementary level,

BLANK WHEN ZERO may be assocliated only with PICTUREs describing
numeric or numeric edited fields,

L-25

Condition=Name

CONDITION=NAME,

Condition-name is a special name which the user may assign to a
given code within a data element, This value may then be referred
to by the specified condition=names,

The construct of thlis clause Is:

YA
88 condition-name { VYALUE } IS 1literal=-i

{ TRdug |
[literal=2,,.] IHRQUGH literal=n,..

Since the testing of data is a common data processing practice,
the use of conditional variables and condition-names supplies a
short-hand method which enables the writer to assign meaningful
names (condition-names) to particular code values that may appear
in a data-field (conditional variable),

When defining condition-names, the following rules must be
observed:

a, Each condition=name requires a separate entry with
the level=-number 88,

b, If reference to a conditional variable requires
subscripting, then references to its condition-names
also require subscripting,

Examples:

02 CONDITION-VARIABLE PC A, OCCURS 10 TIMES,
88 GIRL VALUE IS "Gg",
88 BOY VALUE Is "B",
88 MAN VALUE IS "M",
88 WOMAN VALUE IS "w",

IF CONDITION-VARIABLE (SuB) = "G" THEN GO TO
SEE-IF-SHES=-PURDY,

IF GIRL (SuUB) THEN GO TO SEE~IF=-SHES=-PURDY,

Both of the above examples will generate ob ject
code to accomplish the same result,

c. A conditional variable may be used as a qualifier
for any of its condition=-names,

L-26

cont

Condition=tame

Condition-names can only appear in conditional
statements,

Condition-names cannot be assocliated with index-
data-names,

Figure L-4 provides an example of the coding of
condition=-name,

b-27

SWeN=-uoll11puo)y jo 6Bulpo) ‘=4 24n6) 4y

Condition=liame

cont

RS T Ty oY rrryryrryrrrrrrryrrrrrt1rJ1rrJ1 rrqyrrrrrrrrrrrrrorrrot T T sz
rTTTTT TT TT T rrrrrrryrryyyrrrrrrrrrrrrrrr1ryrryrrJ1rvrr1rrr1r1r1r 111 T “-
LD SR AR RS T v LR SR A S § rYrvYvrrYrrrryryyYrrrrrrrryrrrrryrrrrrrrrvrrrrrrrr1vr1rvv1vrv T T “n~
LB R AR LERS Yy v v Ty rY vy 7Yy Yy rrryrvrryryrrrvyrrrryrrryrrrrrrrryrrryrryrrrrrrrrrrrryxr—r T 1T “Nu
TV T Y T TTTTY TY r r r r rryr r7rrrryr 7 rrr rrrrr T T T T T T T T T T T T T T T T T T Y “_~
YT TrTTY LA vV T Ty re'vYrTYrvyrryyvyryrvryrvrrrrrrrryrrryryrryryrrrryryrvrrryrryrrrrrrrrrryrrrxy T T “°N
LSRR T T LER BB rvY vy vy T Ty rryr Ty T v rrrrrrrrrvrrrryrrrrrryrrrrurora T T7 6
T T T T LR TV T T rY¥YvYrYrrrrrryrrrrrrryrrrrryrrrrrrrryrrrrrrr1rrrrrrrr 7T 'Y
LA S BN GE 4 T LANLANR SR BN | rrrrrYrrrrrvyryrrrryrrrrryrvyrrrrrrrrrr1rryrrryryrrrrrrrrrz LI “:
T 7T Trr LR LANR BN B G 4 rYrryYyrrryryyryrryryyyyyrry1rrrrrrrrryrrrrr1rr1rv17v7v VvV rryvrrrrryozr LA | “‘_
RERSLERSRI T 7 T 7V 777 rYevrYryrrrrryrrrvr vy rrr1rryrrrrrrrJrrryrrvyvrrJyryrrry7rrrrrrrorry LB “m.
T T T 7177 LR r¥M 7YY 7rryYrr r r rr7rr r7rIrrrr r r 7y rrrr7rrrrrrrrrrrrrryr T YT T T “c.
T T T T V71777 TT 77T TTYr T T 7 rrrr 7r 7171 7T 1T rr 7rr r1r 1T rr 17 r 7 rrr rFrrrrrrrrrr T “n_
T T T T T T T TT T T TR 707 S0 MMaHL Sor ST T T T AT QAT grgr T T T T T "u.
T T T T 7T T TT T T T TT T VT T T T T UVTGUT O gUHY 1107 TQTIT T 7 T WiAT TR LIRS T XL A "._
T 1T 1T 1771 T TT T T T T T T T T T T 7T T Tl TVdTHTLT BPOT ST1T TATTTYAT T T T 1T g [Ty gr T T’ mo.
T T T 1T LANL S A BN S B 0 8 TTT T T T T TT TG TRIYTHILT TTOY QT TY 3T WIAT T 1 1 T T er LCIC AR A “oo
[T
LA O B | T T Ty T T T T T T T 0 RO 90" o «Njﬂldﬂqu_-dx-\,ﬂ« TT ISNATY gy ' ' [7 “oo
TTTrrrT T TT T 1T LAANRER ERE A5 LRI AT LR VAlO LARISAICLIRIL(C Y b COLIRIS Ll L s Lin L4 A7 LB B .-W.Q.O.G- C1C U SR 120
T T T T TT T 7T LA SR B B S B B B A AN o L) ° LAY 1 RIS g«lﬂjﬁg*# TTr T "oo
T T T T T T 77 LILBRER R __..q_qqqﬁ__-<q_.«q._qoq%uiqmqﬂqwq&q<ﬂ.‘q S0
LML L LA A S A L L L - LA L0 LA L o U 47 UL B L " LAo L™ A7 ™ -1~ B B B L B B vo
LANRINR SN S S BB AR 4 LA S B A | _-qﬂqﬂ_.qq_.ﬂqqq-q.agdiﬁ_w«w_.. Trr €0
YT T Y T T T TV 1T 17T q__q<.-ﬂ.-4qﬂ.-q~...ﬁ0«§ﬂ4ﬂ—l§._ T T "no
TTTTT \BR T T ~«<.~4qq4--.q<_q144q<-_..qw.wdquq¢<§4qﬂ< T T P.o
L 23 LB}
1 v I
T T7 o g — e T
o8 8¢ AN30! §n '
20 v A8 031$3N03y i‘ous

W¥03 ONIGOD 10900 SHONOYINE

4-28

DATA=-NAME

DATA-NAME,

The purpose of this mandatory clause is to specify the name of each
data element to be used In a program, If a data element requires a
definite label, a data-name is assigned, Otherwise, the word FILLER
can be used In its place,

The construct of this clause is:

(g,)]

The word FILLER can be used to name a contliguous description area
that does not require programmatic reference,

This entry must immediately follow a level=-number, FILLER s only
applicable to elementary levels,

A data-name need not be unique if it can be made unique through
qualification by using data-names on higher levels than itself,

It Is not permissible to relationally compare an Index-data-name
against data-name-1,

4-29

JUSTIFIED

JUSTIFIED,
The function of this clause is to specify a non=-standard MOVE
of alphabetlc or alphanumeric data within a receiving data field,

The construct of this clause is:

The JUSTIFIED clause can be specified only on an elementary item
level where the receiving field Is described as being alphabetic
or alphanumeric, JUSTIFIED can be abbreviated as JS or JUST,

This clause cannot be specified for a receiving field described
as being numeric or numeric edited,

When the receiving field is described with the JUSTIFIED clause
and the sending field is larger than the receiving field, the
left=most characters are truncated,

Example:
SEND ING RECEIVING
PC X(7) A123CDE PC X(5) 23CDE
When the receiving field |Is described with the JUSTIFIED clause

and the sending field is smaller than the receliving field, the
data will be positioned right with space fill to the left,

Example:
SENDING RECEIVING
PC X(5) A123C PC X(7) A123C

JUSTIFIED cannot be associated with an index=data-name,

L-30

Level=Number

LEVEL=-NUMBER,

The function of this clause is to show the hlerarchHy of data within
a logical record, Its further function Is to identify entries for
condltion-names, non=-contiguous constants, working=-storage items,
and for re-grouping,

The construct of this clause is:

| et
level=number datae-name=1

A level-number is the first required element of each record and
data-name description entry,

Level=-numbers may be as follows:

a., 01 to L9 record description and WORKING=-STORAGE entries,

b, 66 - RENAMES clause used as a record description or
WORKING=STORAGE entry,

c. 77 - applicable to WORKING=-STORAGE only as non=-
contiguous items and must precede all other
level=numbers,

d, 88 - condition names clause used as a record
description or WORKING=STORAGE entry,

Level=numbers 01 through 49 are used for record or WORKING-STORAGE
descriptions, Level number 01 Is reserved for the first entry within

a record description, Level=number 66 is reserved for RENAMES entries,
Level=-number 77 is used for miscellaneous elementary [tems in the
WORKING=-STORAGE SECTION when these items are unrelated to any record,
They are called non-contiguous items since it makes no difference as

to the order in which they actually appear, Level-number 88 is used to
define the entries relating to condition-names in record descriptions
or WORKING-STORAGE entries.

For additional information on level=-numbers, see LEVEL-NUMBER CONCEPT
on page 4-2,

431

OCCURS

OCCURS,

The function of this clause is to define a sequence of data-items
which possess ldentical formats, and to define a subscripted item
or Indices,

The construct of this clause is:

{ c } {integer-t TIMES }
QCCURS integer-2 T0 integer-3 TIMES

(DEPENDING ON data=-name=3]]

ASCEND ING
DESCEND ING KEY IS data~name-4 [data=-name=5]... so e

[INDEXED BY index-name=1 [index=-name=2] ...]

This clause cannot be used in a record description entry whose
level=-number is 01, and can only be used with fixed-size items,
Any item described with this clause must be subscripted or indexed
whenever referenced in a statement other than SEARCH, and all sub-
divisions of the item must also be subscripted or indexed, Up to
three levels of subscripting are acceptable, OCCURS can be abbre=-
viated 0OC,

If only Integer-1 appears, it refers to the exact number of occur=
rences of the data, Integer-1 must not be zero, Integer=-2 TO
integer-3 indicates a varlable number of occurrences of this item,
When integer-2 TO integer-3 s used, the following rules must be
observed:

a, Integer-3 must be greater than integer=-2 and both must
be positive integers,

b, The item must be the last area of a record, No part of
a record may follow an item of variable occurrences,

€. Only the first dimension of a table can be defined with
this clause, The following definition is not permitted:

02 RATE-TABLE OCCURS 10 TIMES ...
03 WHOLE-TABLE ,,,
03 AGE OCCURS 4 TO 8 TIMES
d. The user must employ his own tests to determine how many
occurrences of the item are actually present in the record

k.32

OCCURS
cont

at any time, The DEPENDING ON option is for documentational
purposes only,

Integer=-2 70 Integer-3 Indicates variable-length records and the user
must specify the actual size of variabje-length records in the first
four bytes of each record and the record size must contain an even
number of characters (MOD2), The four-cHaracter variable size
indicator is counted in the physical size of each record,

The following example i{llustrates a use of the OCCURS clause to

provide nested descriptions, A reference to ITEM=4 requires the
use of three levels of subscripting; e.g., ITEM=4 (2, 5, 4), A

reference to ITEM-3 requlires two subscripts; e,g., ITEM=3 (I,J).,
In the example below there are 50 ITEM-474g,

Example:

02 ITEM OCCURS 2 TIMES ...
03 ITEM=1 ..,
03 ITEM=2 OCCURS 5 TIMES ...
04 ITEM=3 ,,.,
04 ITEM=4 OCCURS 5 TIMES ...
C5 ITEM=5 .,
05 ITEM=6 eo s

The following example shows another use of the OCCURS clause., Assume
that the user wishes to define a record consisting of five "amount"
ltems, followed by five "tax" ltems, Instead of describing the record
as contalning 10 individual data items, it could be described in the

following manner:
Lxample:
1 TABLE ...

2 AMOUNT OCCURS 5 TIMES ...
2 TAX QCCURS 5 TIMES ...

The above example would result in memory allocated for five AMOUNT
fields and five TAX fields, Any reference to these fields is made
by addressing the field by name (AMOUNT or TAX) followed by a
subscript denoting the particular occurrence desired,

The ASCENDING/DESCENDING KEY option is for documentation only,

L-33

OCCURS
cont

The operands in the INDEXED BY option are jndex-names or indlces.
The operands of an INCEXED BY option must appear in association with
an OCCURS clause and are usable only when referencing fhat level of
the table, When using three-level indexing, each level must have

an INDEXED BY option and in a given indexing operation, only one
operand from each option may be used,

Other than their use as an Index Into an array, an index-name may
be referred to only in a SET, SEARCH, PERFORM, or in a relation
condition, All index=names must be unique., Index-names have an
assumed construction of PC 9(5) COMPUTATIONAL,

Using an Index-name assocliated with one (row of a) table for
Indexlng Into another (row of a) table will not cause a syntax
error, but will, in most cases, cause incorrect object time re-
sults since it is the index-name that contains the information
pertinent to the element sizes,

When using an Index-name series (e,g., INDEXED BY A, B, C):

a, The indexes should be used only when referencing the
assoclated row.

b, All "assumed" references are to the first index-name In
a series, Others In the series are affected only during
an explicit reference,

Indexing into a table follows much the same logic as subscripting.
There is a 1imit of three indexes per operand (e.g., A (INDEX-1,
INDEX=2, INDEX-3)), The use of a relative index allows modification
of the index-name without actually changing the value of the
Index=-name,

Example:

A (INDEX=-1 +3, INDEX-2 =4, INDEX=3)
Relative indexing is indicated by a + or a - integer following an
index=name and causes the affected index to be incremented or
decremented by that number of elements within the table,
A data-name whose USAGE is defined to be INDEX is an index-data-name,

Condition=-names, PICTURE, VALUE, SYNCHRONIZED or JUSTIFIED capnot
be associated with an index-data-name,

The COBOL compiler will assign the construction of a PC 9(5)
COMPUTATIONAL area for each Index=-data-name specified,

It is not permissible to relationally compare an index=-data-name
agalnst a literal or a regular data-name,

L34

PICTURE

PICTURE,
The function of this clause is to describe the size, class, general
characteristics, and editing requirements of an elementary item,

The construct of this clause is:

Bg
<{Bl£ } IS (character string)
BICTURE

The word PICTURE may be abbreviated as PC or PIC, Character string
denotes letters of the alphabet, special characters, and diglits
which are used in conjunction with one another to describe a
data-name, See USAGE for a description of characters and digits,

The maximum number of characters and symbols allowed In the char-
acter string used to describe a data=-name or FILLER is 30, A char-
acter string consists of a certain allowable combination of char-
acters defined as PICTURE descriptors, plus insert characters
encompassing the entire character set employed by the systems 1ine
printer that have no PICTURE descriptor value or action,

This clause must appear for évery elementary item level entry and
cannot be used at group levels,

PICTURE cannot be associated with an index-data=-name,

A PICTURE of A(5) indicates that the item is a five character (byte)
alphabetic field, The integer within parentheses indicates how many
times A occurs in order to constitute the desired PICTURE, The PICTURE
A(5) can also be represented by AAAAA, The value of the integer within
parentheses must always be greater than zero,

Record descriptions do not necessarily have to conform to the physlical
cHaracteristics of an ASSIGNed hardware-name, The flow of Iinput-output
data will terminate at the end of the prescrlbed PICTURE size, For
example:

READER (can read 80 columns) description can be PICTUREd
from 1 through 80,

PUNCH (can punch 80 columns) description can be PICTUREd
from 1 through 80,

CARD96 (can read or punch 96 columns) description can be
PICTUREd from 1 through 96,

PRINTER (120/132 character lines) description can be
PICTUREd from 1 through maximum,

L35

PICTURE
cont

SPO (one character at a time) description can be PICTUREd
from 1 to any limit,

There are five categories of data that can be described with a PICTURE
clause, These are alphabetic, numeric, alphanumeric, alphanumeric=-
edited, and numeric-edited,

The symbols used to define the category of an elementary item and
thelr functions are explained as follows:

a., The letter A In a character string represents a positlion
whlicH can only contain a letter of the alphabet or a
space,

b. The letter B in a character string represents a position
into which the space character is to be inserted,

c. The letter J in a character string Indicates that the
operational data sign is appearing as an over=punch in the
least-significant digit position [f USAGE IS DISPLAY is
associated with the item, However, If USAGE has been In-
dicated as COMPUTATIONAL, J takes on the same function as
an S, A J Is not counted In the length of a DISPLAY item,
Only one operational sign may appear In any one PICTURE
and, if specified, the J must appear as the left-most
character of the PICTURE, Data elements requiring a J
PICTURE descriptor may not be described by a VALUE clause
with a signed literal, PICTURE J should be used only in
those cases where PICTURE S is not applicable,

NOTE
If J appears within a PICTURE
descriptor, It no longer per-
forms as an operational sign
but serves to reinitiate zero
suppression,

d., The letter K In a character string indicates the presence
of an 8«bit (byte) sign appearing in the first character
position of a PICTURE descriptor when USAGE is implicitly
or explicitly DISPLAY and is counted in the length of the
ITEM, If USAGE IS COMPUTATIONAL, the letter K becomes
the same as an S, Data elements requiring a K PICTURE
descriptor may not be described by a VALUE clause with a
signed literal,

e, The letter P in a character string Indicates an assumed
decimal scaling position and is used for specifying the
locatlion of an assumed decimal point when the point is
not within the number that appears in the data item, The
scaling position character P Is not counted in the length
of the allowable number of characters within a PICTURE
description, Scaling position characters are counted

b-36

9

PICTURE
cont

in determining the maximum number of digit positions (125)
in numeric edited items or numeric items which appear as
operands in arithmetic statements, The character P can
appear only to the left or right as a continuous string

of P's within a PICTURE description, Since it implies

an assumed decimal point (to the left of the P's are
left-most PICTURE characters and to the right of P's

are right-most PICTURE characters), the assumed decimal
point symbol V is redundant as either the left-most or
right-most character within such a PICTURE description,

The letter S in a character string |s used to indicate the
presence of the standard operational sign in the form of
an overpunch in the most-significant digit position of an
Ttem if USAGE IS DISPLAY and is not counted in the length
of the PICTURE, If USAGE IS CMP, it will denote an opera-
tional sign digit in front of the most-significant digit
position and is counted in the length of the PICTURE, The
S must be written as the first character of the character
string of a PICTURE, A sligned item may not be more than
125 characters/digits in length, Wherever possible,
PICTURE § should be used rather than J or K.

The letter V In a character string Indicates the location
of an assumed decimal point and may only appear once in a
character string, It does not represent a character posli=-
tion and therefore Is not counted in the length of the
item, When the assumed decimal point character V is the
right-most character of the PICTURE character string, it
is redundant. The maximum number of decimal places is
125,

The letter X in a character string Indicates an alphanumeric
position which can contain any allowable character in the
computer's character set,

Each letter Z In a character string represents a zero
suppress editing action and may only be used to cause the
left-most leading numeric character positions to be re-
placed by a space at object time when the contents of that
character position is zero, Each Z Is counted as part of
the PICTURE length, Zero suppression is terminated with
the first non-zero numerlic character in the data, Inser-
tion characters are also replaced by spaces while suppres-
sion is in effect., Z can also appear to the right of J
when the J symbol is used to reinitiate zero suppression,
For additional information on zero suppression, see the
BLANK WHEN ZERO clause, FILLER entries cannot be defined
by the letter Z usage,

The number 9 in a character string represents numeric data,
If USAGE IS explicitly or implicitly DISPLAY, the data wil]
be operated on as 8-bit (byte) characters, If USAGE IS
CMP, ft wlll be operated on as L=-bit digits, Each 9 Is

L-37

PICTURE
cont

ke

1o

M,

N,

L-38

counted In the length of the PICTURE,

The number 0 (zero) in a character string represents a
position into which zero is to be inserted when that item
is a receiving field and it Is counted in the length of the
PICTURE,

The special character comma in a character string represents
a position into which a comma will have to be inserted., It
is counted as part of the PICTURE length, (Also see
DECIMAL=POINT IS COMMA in section 3 of this document,) If
zero suppression is indicated, a blank character will
replace each applicable comma until meaningful data is
encountered in the data stream,

The special character perlod in a character string is an
editing symbol which represents the decimal point for data
alignment purposes, In addition, It represents a character
position into which a period will be inserted, It Is
counted as part of the PICTURE length, If more than one
period |Is indicdted In the PICTURE, the left-most period
determines the scale of the PICTURE, The PICTURE must not
terminate with a period except when It is used to Indicate
the end of the item clause, For a given program, the
functlion of the period and comma are exchanged if the
DECIMAL-POINT IS COMMA clause appears in the SPECIAL-NAMES
paragraph, If exchanged, the rules that apply to the use
of periods apply to commas and vice versa, (Also see
DECIMAL=-POINT IS COMMA In section 3 of this document,)

The symbols +, -, CR, and DB are used as editing sign con-
trol symbols, When used, they represent the character posi-
tion into which the editing sign control symbol will be
placed, The symbols are mutually exclusive in any one
character string and each character used in the PICTURE

is counted In the length,

1) Flixed Insertion characters, A single + or - can be
used at the extreme left or right of a PICTURE, The
CR and DB can be used only at the extreme right end of
a PICTURE, The CR and DB symbols represent a two char=-
acter position and are counted In the length of the
item, Only one currency symbol and only one of the
editing sign control symbols can be used in a given
PICTURE, The currency symbol ($) must be the left=-
most character position except that it can be preceded
by either a + or - symbol, Fixed insertion editing
results In the insertion character occupying the same
character position in the edited Item as it occupied
In the PICTURE character string, Editing sign control
symbols (sometimes referred to as report signs) pro=-
duce the results shown In table 4-3, depending upon
the value that the ltem contains,

PICTURE

cont
Table 4-3
Editing Sign Control Symbol Results
Result
Editing Symbol In Data Item Data Item
Picture Character String Positive Negat ive
+ + -
- Space -
CR 2 Spaces CR
DB 2 Spaces DB

2)

3)

Floating Insertion Characters, When used as floating
replacement and suppression characters, + and - are
written from the extreme left of the PICTURE to
represent each leading numeric character into which the
sign (+ or =) is to be floated, At least two symbols
must be shown to use the subject symbols as floating
characters, The floating symbol may not appear to the
right of the decimal point unless all replacement posi=
tions consist of that symbol, In this case, the field
will consist of all spaces when the value is zero, The
currency symbol and editing symbols + and - are the
insertion characters, and they are mutually exclusive
as floating insertion characters In a PICTURE character
string.,

In a PICTURE character string, there are only two ways
of representing floating Insertion editing, One way

is to represent, by the Insertion characters, any or all
of the leading numeric character positions to the left
of the decimal point, The other way s to represent all
of the numeric character positions In the PICTURE char=
acter string by the Insertion characters, If the first
method Is employed, a single Insertion character will

be placed Into the character position immediately pre-
ceding the first non-zero digit in the data represented
by the Insertion symbol string to the decimal point,
whichever Is encountered first, If the second method

is used, the result depends upon the value of the data,
If the value is zero, the entire data Item will contain
spaces, If the value |s not zero, the result is the
same as when the insertion character Is only to the left
of the decimal point, The PICTURE must contain at least

4-39

PICTURE
cont

one more floating insertion character than the maximum
number of significant digits in the item to be edited,

o. The special character asterisk in a character string repre=
sents a leading numeric character position into which an
asterisk will be placed when the content of that position
is zero and asterisk replacement was not disabled, Asterisk
replacement is disabled when the first non-zero character
is encountered, or when the decimal point (implicit or
explicit) is reached, When the PICTURE character string
specifies only asterisks (*), and the value of the Iltem
is zero, the entire output item will consist of asterisks
and the decimal point, if present, BLANK WHEN ZERQO does
not override the Insertion of asterisks,

p. The special character dollar sign in a character string
represents a character positlon into which a currency symbol
is to be inserted. The currency symbol in a character
string |s represented automatically by a dollar sign ($).

If the CURRENCY clause of the SPECIAL=-NAMES paragraph is
Indicated, the dollar sign is replaced by the character
specified as a replacement CURRENCY SIGN and is counted In
the length of the item,

1) Flixed insertion character, The currency sign may
appear anywhere in the PICTURE,

2) Floating Insertion character, At least two currency
slgns must appear as the left-most characters in the
PICTURE, The currency sign Is written to represent
each leading numeric character position into which the
currency sign may be floated, A single sign is placed
In the least-significant suppressed position shown by
the currency symbol in the PICTURE, The output item
must contain at least one more currency sign character
poslition than the maximum number of significant digits
in the source item,

The length of an elementary item, where the length means the number
of character positions occupied by the elementary item in standard
data format, |s determined by the number of allowable symbols which
represent character positlions,

An integer which is enclosed in parentheses describing the character
string of a PICTURE and following the symbols A, ,, X, 9, P, Z, *,
8, 0, +, =, or the currency sign indicates the number of consecutive
occurrences of the symbol, Note that the K, $, CR, and DB symbols
may appear only once in a given PICTURE character string.

To define an item as alphabetic, its PICTURE character string can
only contaln the symbols A and B,

L-4o

PICTURE
cont

To define an Item as numeric, its character string of the PICTURE
can only contain the symbois 0, 9, J, K, P, S, and V, Its contents,
when represented In standard data format, must be a combination of
the numerals 0, 1 through 9, The item may Include an operational
sign symbol,

To define an item as alphanumeric, Its PICTURE character string
is restricted to certain combinations of the symbols A, X, and 9.

The item is treated as if the character string contained all X's,
The PICTURE character string which contains all A's or all 9's
does not define an alphanumeric item,

To deflne an item as alphanumeric edited, its PICTURE character
string is restricted to the following combinations of symbols:

a, The character string must contain at least one
X and one B or 0 (zero),

b, Another alternative is that the character string
must have at least one A and one B or 0 (zero),

To define an ltem as numeric edited, its PICTURE character string

is restricted to certalin combinations of the symbols B, J, K, P,

v, Z, 0, 9, comma, period, *, +, -, CR, DB, and the currency sign,
The allowable combinations are determined by the order of precedence
of symbols and the editing rules, The number of positions which may
be represented in the character string is 99,

There are two general methods of performing editing In the PICTURE
clause, either by insertion or by suppression and replacement,
There are four types of insertion editing avallable,

a, Simple iInsertion,
b, Speclal insertion,
c, FfFlixed Insertion,

d, Floating Insertion,

There are two types of suppression and replacement editing modes:

a, lero suppressicn and replacement with spaces,
b, Zero suppression and replacement with asterisks,

Floating insertion editing and editing by zero suppression and re=-
placement are mutually exclusive in a PICTURE clause, Only one type
of replacement may be used with zero suppression in a PICTURE clause,

Simple insertion editing involves the usage of comma, B, and O
(zero) as the insertion characters, The insertion characters are
counted In the length of the item and represent the position in the
item into which the character will be inserted,

b=l

(B8]

PICTUR
cont

Special insertion editing character period (,) is used to represent
the decimal point for alignment in addition to acting as an inser=
tion character, The Insertion character used for the actual decimal
point is counted In the length of the item, The use of the assumed
decimal point, represented by the symbol V and the actual decimal
point, represented by the insertion character period (,) in the same
PICTURE character string is disallowed, If the insertion character
is the last symbol in the character string, it must be immediately
followed by one of the punctuation characters, semicolon, or period,
followed by a space, The result of special insertion editing is the
appearance of the insertion character In the Item in the same posi-
tion as shown in the character string. Any character or digit other
than those defined with PICTURE meanings can be used as special
insertion characters and will be counted in the size of the PICTURE,

Example:

99/99/99 could be a date mask and 999=99=9999
could represent a social security number mask,

lero suppression editing of leading zeros In numeric character
positions Is Indicated by the use of the character Z, or the char-
acter * (asterisk) as suppression symbols in a PICTURE character
string, These symbols are mutually exclusive in a given PICTURE
character string., £tach suppression symbol is counted in deter-
mining the length of the item, If Z is used, the replacement char-
acter will be the space and if the asterisk is used, the replacement
character will be *,

lero suppression and replacement is indicated In a PICTURE charac-
ter string by using a string of one or more of the allowable symbols
to represent leading numerlic character positions which are to be
replaced when the character contalns a zero, Any of the simple
Insertion characters embedded In the string of symbols or to the
Iimmediate right of this string are part of the string.

In a PICTURE character string, there are two ways of representing
zero suppression, One way Is to represent any or all of the leading
numeric character positions to the left of the decimal point by
suppression characters, The other way is to represent all of the
numeric character positions in the PICTURE character string by
suppression characters, If the suppression symbols appear only to
the left of the decimal point, any leading zero in the data which
corresponds to a symbol In the string is replaced by the replacement
character, Suppression terminates at the first non=zero digit in
the data represented by the suppression symbol string or at the
decimal point, whichever is encountered first, If all numeric
positions In the PICTURE character string are represented by
suppression symbols, and the value of the data is not zero, the
result is the same as If the suppression characters were only to

the left of the decimal point, If the value is zero, the entire
data item will be spaces If the suppression symbol Is Z, whereas
asterisks will cause the fleld (except for decimal point) to be
replaced with asterisks, Even {f the BLANK WHEN ZERO clause |s

L-k2

PICTURE
cont

used In conjunction with asterisks, the replacement of character
positions containing zeros will be conducted with asterisks. BLANK
WHEN ZERO will be ignored if used in the same picture clause with
CHECK PROTECT (*),

The symbols +, =, and the currency symbol, when used as floating
replacement characters, are mutually exclusive within a given char-
acter string., At least two floating replacement characters must
appear as the left-most characters in the PICTURE,

Table 4-4 shows the order of precedence when using characters as
symbols In a character string, For a glven function In the left
column, a small x in its row Indicates that the arguments, used as
column headings, are the only ones that may immediately precede the
first appearance of the functlon in a particular string. Arguments
appearing In braces () indicate that the symbols are mutually
exclusive, The currency symbol is represented by $,

The symbols A, B, V, X, 0, 9, period, and comma can be preceded by any
symbols in the PICTURE character string except CR and DB, The V has
one other exception and that is it cannot be preceded by an A or X,

NOTE
When the + or - appears on the right of
a character string and the P s also on
the right, the sign precedes the P,

To simplify the explanation of allowable character pairs in the char-
acter string of a PICTURE, tables 4<5 and 4-6 are provided, These
tables have been constructed so that they reflect the use of all
allowable symbols, depending upon whether the item is numeric, alpha-
betli¢, or alphanumeric. For example, if the item is numeric and the
programmer wishes to determine whether the symbol V can follow a 9,
then table 4-5 should be used., In the numeric item section of table
L-5, the letter Y (Yes) can be found at the crossing point or hori-
zontal, first symbol, 9 and vertical, second symbol, V., 0On the other
hand, the use of J after 9 is indicated with N (No),

h-kh3

PICTURE

cont
Table 4-4
Order of Precedence
When Using Characters As Symbols
S P $ (+ -) (22 foe

S

P X (1) (1) X X
$ X X X

* X X X
- X X X
zz X X X X

o X X X X
$S X X X
++ X X
-- X X

L-4h

PICTURE
Table 4=5 cont

Numeric and Alphabetic Items

= ~ wn

[ve}

SECOND SYMBOL

v

Numeric Alphabetic
Item Item
9 VsSJXKTP A B

=45

PICTURE Table 4=6
cont
Alphanumeric Items
SECOND SYMBOL
Non-Editing Editing
9 X A B J 9V, . +-2 % CRDBBO §$
N 9 YYYY
o
X YYYY
P A YYYY
I B YYYY
R
S
T 9 YYYYYYYNNY Y Y YN
v YYNNNYYYYY Y Y YN
s) YYNYNYYYYY Y Y YN
¥ E YYNYNYYYYY Y Y YN
M d + YYYYYYNYYN N N YY
B i - YYYYYNYYYN N N YY
o t Z YYYYYYYYNY Y Y YN
L i * YYYYYYYNYY Y Y YN
n CR NNNNNNNNNN N N NN
g DB NNNNNNNNNN N N NN
B YYYYYNNNNY Y Y YN
Y YYYYYYYYNY Y Y YN
$ (BUT NOT FIRST Y YYYYYYYYY Y Y YY
J SYMBOL IN PC) v vy yyyyyNY Y Y YY

L=k

Table 47

PICTURE
cont

Table 4-7 demonstrates the editing function of the PICTURE clause,

Editing Application of the Picture Clause

Source Area

Receiving Area

Editing
Picture Cata Picture tEdited Data
9(5) 12345 $12,119,99 $12,345,00
Vo(5) 12345 $$$,559,99 $0,12
Vo (5) 12345 $12,1719.99 $ 0,12
9(5) 00000 $55,559,99 $0,00
9(3)V99 12345 $171,2119,99 S 123,45
9(5) 00000 $55,855,5$
9(5) 01234 Susw ##%9, 99 $#1,234,00
9(5) 00000 Gt ddese v ddrddded dk
9(5) 00123 Sww, *%9,99 S¥#*%123,00
9(3)Vv99 00012 $12,119,99 $ 0,12
9(3)Vv99 12345 $55,859,99 $123,45
9(3)v99 00001 $172,1171.99 S .01
9(5) 12345 $$5,859,99 $12,345,00
9(5) 00000 $212,1712,11
9(3)Vv99 00001 $85,585,5S $.01
$9(5) (+) 12345 21119,99+ 12345,00+
$9(5) (=) 00123 =-=99999,99 - 123,00+
9(3)v99 12345 999,00 123,00
$9(5) (=) 12345 2111719,99- 12345,00-
$9(5) (+) 12345 211119.99- 12345,00
9(5) 12345 BB8B99,99 45,00
S9(5)V (=) 12345 -2212719,99 -12345,00
$9(5) (=) 12345 $658S85,99CR $12345,00CR
S99V (3) (=) 12345 ce=ea- 99 -12,34
59(5) (+) 12345 $$8$S5S,99CR $12345,00
9(3)Vv99 12345 999.88 123,
9(5) 12345 00999,00 00345,00
9(7) 0012003 27199J19 123

447

REDEF INES

REDEFINES,

The function of this clause is to allow an area of memory to be
referred to by more than one data-name with different formats and
sizes,

The construct of the REDEFINES clause is:

[level-number data-riame=1 REDEFINES data-name-2]

The leve-numbers of data-name=1 and data-name=2 must be identical and
must not be 66 or 88,

This clause must not be used in 01 level entries of the FILE SECTION
as an impliclt REDEFINES is assumed when multiple 01 level entries
within a file description are present, The size of the record(s)
causing implicit redefinition do not have to be equal to that of the
record being redefined, The various sizes of implicitly redefined
record descriptions create no restriction as to which description is
to be coded first, second, third, etc,, In the source program,

Redefinition starts at data-name=2 and ends when a level=-number less
than or equal to that of data-name=2 is encountered in the source
program,

When the level-number of data=name-2 is other than 01 (REDEFINES can
not be used on the 01 level in the FILE SECTION), it must specify a
storage area of the same size as specified by data-name-1, It is Im-
portant to observe that the REDEFINES clause specifies the redefinition
of a storage area, not simply of the data items occupying that area,

Multiple redefinitions of the same storage area are permitted, The
entries giving the new descriptions of the storage area must follow
the entries defining the area being redefined, without intervening
entries that define new storage areas, Multiple redefinitions of the
same storage area may all use the data-name of the originally defined
area or the data-name of the area defined just prior to the new area
description,

The data description entry being redefined cannot contain an O0CCURS
clause, nor can it be subordinate to an entry which contains an
OCCURS clause,

The entries giving the new description of the storage area must not
contain VALUE clauses, except in condition-name entrles,

Data=name=2 need not be qualified,

L-48

KRENAMES

mos

RENAMES,
The function of this clause is to permit alternative and possibly
overlapping, grouping of elementary items,

The construct of this clause is:

66 data-name-1 RENAMES data-name=-2
{.T.li&ul
THROUGH f data-name=3 .

A1l RENAMES entries associated with a given loglical record must
Immediately follow its last data description entry,

Data-name-2 and data-name=3 must be names in the associated logical
record and cannot be the same data-name or have the same logical
address, A 66 level entry cannot rename another 66 level entry
nor can it rename a 77, 88, or 01 level entry,

Data=-name-1 cannot be used as a qualifier, and can only be qualified
by the names of the level 01 or FD entries, Neither data-name-2 nor
data-name=-3 may have an OCCURS clause in Its data description entry
nor be subordinate to an ltem that has an OCCURS clause in its data
description entry,

Data-name=-2 must precede data-name=3 in the Record Description, and
data-name-3 cannot be subordinate to data-name=-2,

One or more RENAMES entrles can be written for a logical record,

When data-name-3 is specified, data=name=1 is a group Item which
Includes all elementary items starting with data-name-2 (If data-
name-2 is an elementary item) or the first elementary item in data-
name-2 (!f data-name-2 is a group item), and concluding with data-
name-3 (if data-name=-3 |is an elementary item) or the last elementary
item in data-name-3 (if data-name=3 Is a group ltem),

When data-name-3 is not specified, data=-name-2 can be either a group
or an elementary item, When data=name-2 is a group item, data-name-l
is treated as a group item, and when data-name=2 Is an elementary item,
data-name-1 s treated as an elementary item,

When data-name=-3 is specified, none of the elementary items within

the range, including data-name-2 and data-name-3, can be of varlable-
length,

=49

USAGE

USAGE,
The function of this clause is to specify the format of a data item
in compiler storage,

The construct of this clause is:

QISPLAY
LIp .
CHP -
Pe

(LSAGE Is] conp
COMPUTATIONAL
COMPUTATIONAL=1
QQ["'E!!TQIIQ““ _3
JNDEX
ASCIL

The USAGE clause can be written at any level, If USAGE is written on
group level, it applies to each elementary item in that group,.

COMPUTATIONAL=-1 and CMP«1 are acceptable substitutes for, and are
equivalent to, COMPUTATIONAL, COMP, or CMP entries,

A warning message of POSSIBLE CMP GROUP USAGE ERROR will appear
whenever the receiving field is a group CMP item, It indicates that
the resultant contents during object program execution of the group
CMP item may not contain expected results,

NOTE
Group moves are performed whenever the
sending gor recelving field Is a group
ltem and both will be treated as alpha-
numeric (byte) data, regardless of USAGE,

The USAGE of an elementary item cannot contradict the USAGE of a group
to which the item belongs,

USAGE 1s a declaration for the EBCDIC internal representation of the
system and is deflned as follows:

a. When USAGE IS DISPLAY, the data item consists of 8-bit
(byte) characters; two such characters comprise a
computer word,

b, When USAGE IS COMPUTATIONAL, the data item consists
of L-bit coded digits,

c. When USAGE IS INDEX, a PICTURE may not be specified,
For example, "77 ABC USAGE IS INDEX,"

d., When USAGE IS COMPUTATIONAL=3 or CMP-3 it specifies the

4-50

USAGE
cont

data item consists of L-bit coded digits with the low-order
digit (LSD) containing the sign,

e, The USAGE 1S ASCII clause can only be used for 77
level or 01 level data names in the WORKING=-STORAGE
SECTION, A FILE with recording mode of ASCII will
be ASCII USAGE by default,

The PICTURE of a COMPUTATIONAL item can contaln only 9's, the opera-
tional sign character S, J, or K, the decimal point character V, one
or more P's and the insertion character 0 (zero),

COMPUTATIONAL items may be declared for 9=-channel magnetic tape files
(TAPE-9), disk file (DISK), Supervisory Printer, paper tape files (PT-
READER or PT-PUNCH), or for WORKING-STORAGE SECTION items,

A DISPLAY ltem Is automatically converted to its L-bit equivalent
whenever the receiving area Is defined as COMPUTATIONAL except when
the receiving area is a group item, A CMP Item is automatically con-
verted to its 8-bit equlvalent whenever the receiving area s declared
DISPLAY except when the sending CMP item is a group item,

In the absence of a USAGE clause, USAGE IS DISPLAY will be assumed,

For the most efficient use of hardware storage and internal record
storage areas, records should be devised so as to avolid Inter-mixing
of odd-length COMPUTATIONAL items with DISPLAY items, This rule is
due to the compller automatically placing the machine addresses of
DISPLAY areas to modulo two,

When the USAGE IS ASCII 1s used It specifies the data item consists
of ASCI! coded data., A DISPLAY or COMPUTATIONAL item will be auto-
matically converted to its ASCII equlivalent whenever the receiving

area |s defined as ASCII, An ASCII item will be automatically con=-
verted to its numeric or EBCDIC equivalent when the receiving field
is COMPUTATIONAL or DISPLAY,

k=51

VALUE

VALUE,

The function of this clause is to declare an Initial value to
WORKING=-STORAGE items, or the value associated with a condition-
name,

The construct of this clause is:

RE-TER RN Y. FY BTNy

JHRY
[1iteral=3] IHRQUGH literal-4 e
[,

Abbreviation VA can be used in lieu of VALUE,

Literals may consist of Figurative Constants; e.g., ZEROS, QUOTES,
etc,

Literals may be replaced by the reserved word DATE-COMPILED, If
DATE-COMPILED is used In the VALUE clause, the date that the program
was compiled will be placed in the data=-name in the JULIAN form of
YYDDD,

In the FILE SECTION, the VALUE clause is allowed only in condition=
name (88 level) entries, VALUE entries in other data descriptions
in the FILE SECTION are considered as being documentation only,

In the WORKING=STORAGE SECTION, the entire VALUE caluse may be used
with condition-name entries, All levels other than 88 are restricted
to the use of literal=1 only,

The VALUE clause must not be stated in a Record Description entry
with an OCCURS clause, or in an entry which is subordinate to an
entry containing an OCCURS clause, This rule does not apply to
condition-name entries,

The VALUE clause must not conflict with other clauses in the data
description of an item or in a data description within the hierarchy
of the item, The following rules apply:?

a, If a category of an item |s numeric, all literals
In the VALUE clause must be numeric literals; e.g.,
VA 1, 3 THRU 9, 12, 16 THRU 20, 25 THRU 50, 51, 56,

b, If the category of the Item is alphabetic or alpha=-
numeric, all literals in the VALUE clause must be
specifically stated non-numeric literals; e,g., VA
IS "A"’ IIBII’ ncu, "F"' "M". l'N"’ "O". "p"’ "Q"’ "Z".

c., All literals in a VALUE clause of an item must have a

L-52

VALUE
cont

value which requires no editing to place that value
in the item as Indicated by the PICTURE clause,

d. The function of any editing clause or editing characters
In a PICTURE clause is ignored in determining the initial
appearance of the item described, However, editing char-
acters are included in determining the length of the ltem,

In a condition-name entry, the VALUE clause is required and Is the
only clause permitted in the entry, The characteristics of a condi-
tion-name are implicitly those of Its conditional variable.

If this clause Is used In an entry at the group level, the literal
must be a figurative constant or a non-numeric literal (byte char-
acters), The group area is Intiallzed without consideration for
the USAGE of the individual elementary items, Subordinate levels
within the group cannot contaln VALUE clauses.

The VALUE clause must not be specified for a group containing ltems
requiring separate handling due to the USAGE clause,

The VALUE clause must not be stated in a Record Description entry
which contains a REDEFINES clause, or in an entry which is sub-
ordlinate to an entry containing a REDEFINES clause, This rule
does not apply to condition-name entries,

A literal must not contain a sign when the VALUE clause s used
with a data-name whose PICTURE specifles a J or K sign position,

In a VALUE clause, there is no practical limit to the number of

literals In a series., VALUE cannot be associated with an index-
data-name,

L-53

WORKING=-STORAGE

-

WORKING-STORAGE SECTION,

The WORKING=-STORAGE SECTION is optional and is that part of the
DATA DIVISION set aside for intermediate processing of data, The
difference between WORKING-STORAGE and the FILE SECTION is that
the former deals with data that is not associated with an input
or output flle, ‘

ORGANIZATION,

Whereas the FILE SECTION is composed of file description (FD or $D)
entries and thelir associated record description entries, the WORKING-
STORAGE SECTION is composed only of record description entries and
non=-contiguous items, The WORKING=-STORAGE SECTION begins with a
sectlon-header and a period, followed by item description entries

for non-contiguous WORKING-STORAGE jtems, and then by record des=-
cription entries for WORKING-STORAGE records, in that order, The
format for WORKING-STORAGE SECTION is as follows:

[WORKING=-STORAGE SECTION]
[77 data-name=1]
(88 condition=name=1]

(77 data-n;me-n]
[01 data-name-2]
[02 data-name=3]

[66 data-name-m RENAMES data-name=3]
[01 data-name=-4]
(02 data-name=5]
(03 data-name=-n]
[88 condition-name-2]

NON=CONTIGUOUS WORKING=-STORAGE,

Items In WORKING=-STORAGE which bear no relationship to one another need
not be grouped into records provided they do not need to be further
subdivided, Instead, they are classified and defined as non-contiguous
items, Each of these items is defined in a separate record description
entry which begins with the special level-number 77, The following
record description clauses are required in each entry:

a, Level=number,
b, Data-name,
¢, PICTURE clause or equivalent,

The OCCURS clause Is not meaningful on a 77 level item and will cause

an error at compilation time If used, Other record description clauses
are optional and can be used to complete the description of the item

I1f necessary,

A1l level 77 items must appear before any 01 levels in WORKING=-STORAGE,

L-54

WORKING=STORAGE
cont

WORKING-STORAGE RECORDS,

Data elements in WORKING=-STORAGE which bear a definite relationship to
one another must be grouped into records according to the rules for the
format ion of record descriptions. All clauses which are used in normal
input or output record descriptions can be used in a WORKING=STORAGE
record description, including REDEFINES, OCCURS, -and COPY, Each
WORKING=STORAGE record-name (01 level) must be unique since It can=-

not be gualified by a file-name, Subordinate data-names need not be
unique iIf they can be made unique by qualification,

INITIAL VALUES,

The initial value of any item In the WORKING=-STORAGE SECTION s speci-
fled by using the VALUE clause of the record description, If VALUE is
not specified, the initial values are set to 4-bit zeros
(COMPUTATIONAL),

CONDITION=NAMES,

Any WORKING=STORAGE item may be a conditional variable with which one
or more condition-names are associated, ¢Entries defining condition-
names must Immediately follow the conditional varlable entry., Both
the conditional variable entry and the associated condition-name
entries may contain VALUE clauses,

Flgure 4-5 il1lustrates the coding of the WORKING-STORAGE SECTION,

k=55

Buipojy NOI1J3S 3IDVYOLS-OININYOM

"G-# 24n6y

WORKING=STORAGE

cont

T LENR G T rrYvrerrrrrrrrrrrrrrrrryryrryryr o rrryrrrrrrrr T T 1T 152
LI T T TrT rrYrvyY7vyrrrrrrrYryrrrryrrrrrrrryrrr1rrrrr 171 77T TTTY "vn
LS T 7Y T -ﬁ-qd*iqdq#«<<44[««~qqq<ﬂ4da-<<«<<d<-<<q<-4~4 T “ﬂN
LI 4 TT7 T rTrrrvyrrrryryyryrror7ry 1T T T T T T T T T T 71 "-
LI f TV T T rY¥Y v v vyrrryrrryrrr1rvrrrr1vrrrrrrrr T YT T T T T T "_u
v v VT LN A A | rryrrYryrTryryrrrryrryrrrvrrrrrrrrrrrrrr T o T T T Y T 177 “0.4.
T T T ¥ T 7T T ..qq-qqq-<<--.q~4.-d._-_q.__-4..qi__.q...-;\-ﬂmuo_<q Y
LR TV 7 LR SR Y rYrryr T v vy ryrrYr YT rTTTTTTTTTTTYTTTTTTTTTY T 0 ﬂ-aqez- du-l_—md<4uﬂu<|~m_z-<-m-lﬂl A qﬂ.qo —.-
T T 17 TV T LA S0 SEE S S S S SND SRS SN SND BN SN SN SN SN | RIS AT aA_ﬂ-va_Ja LS LSLELaLELE LS LARISATS) IR BN “:
T LR T T LR -.—n-u«uz_d:z.@&-.wqm_u—n__ LSUSLELYL R AT _Acu_ﬂ-u)_ LISLL ISR IT TeTop 7 7 7 "o_
T T v 1T T v 7 17 T T T Trrrrr vy oy oryroy -o-quun&-&m- «Uj-ld<<->~ ~A-ququ<4 -\Udm—‘ E-d-J-J- Hq&- «M-O LA "ﬂ_
T T TV LB -4.-.4-«-«~__<q-q_-quqﬁ.-A_.-_dqqq..-uqzqwﬂ.ﬂ..%_.*_Tﬂdo “v_
T T LIRS V17T rY¥YrrYrYrYrvrrvrrrrrryryrrrrrryrrrrrrrTy _o_m_ _u_&_ _m-w-HEdU— :W—O- LEER T 1T "n.
T T T T T T 7 T T T T 7T rr7vr7vyr7v r 7 rrrr v rTTTrTTT ﬂdm.m_ .\U_&_ C/E.ﬂdﬂﬁ_“v- TSlor 7 1 T 171 “~_
T T 7T TT 7T rTTTrrrTrrTrrTTrTT T Ty T T rrrrrrrIra q.qmq _Q&- .wqaqsduqz-u—LW(—x—.-mq _m.~oq LR | LB " [l
Ty TTrT rm 70 T VeISTRTIT T Gl —Wf«j.d-dq&_ ﬂW-Uf—.ﬂ(«PqW« TQIINTTT 737N ITyYT C/Twﬂ.o-w-.—._d}kdm‘- 4M<O T v T mo_
T T TTT7TT rFrrrryryYy rrTrrrrryrrrrrrrrrryrrro oo _cqﬂqvqu-qu -.U.n: Zi-wqﬂm- -Mqoq T 0 LB 160
T TT T TT T LA N S S S B A AN S SRR NN BN S SN SN SN BN NS UND SNNS S SRR GED SEE SNN SEN ¢ PG T T TR <o’ ' T T moo
T7 TV 7T TT T ryYr Ty yrryrrrryrrryrrrrrrrrorrrory LA ST ATAl -U.L« THOTW <or 7 7 T T)
LER S LI | T Ty ryYyYrryrryrrryryr v T T T T T T T T T T Y TTRININTIRT 721G 7 7 7 "oo
T T VT TV T 71 rrTr YT T T T T T T rT T T T T T T YT T T T T T T T LRLE L Lie LA RSV F LA LA B TT70 X
T 7 77T LB LA rFrry T T T T T Ty T Iy r Yy T rryrrTTrTUTTY «.qﬂ_o-.—-u-m— -U#nm- {H@ﬂd@dl_m-w-ld-(—m | quN ®» 0
LI T 7T TV TY 4_-4-.<«__q-d-..ﬁ4&ﬂﬂajgj§_k LERDRS N "no
DA B SRR L4 N 5 U0 e Ll A SR U s el L L T e L e S B
TT TV T T T q.q.qqaq_<«q-_._-.-ﬁq..«~.~.£«3ﬁ§ "_o
(]

” = — =t = 5 S
L [] v %..z..
LS LB RS — LB
e (7 AN30! uwo udeveooud | ,

20 Wve A8 034S3IND3y NYUBOue “‘

WY¥04 ONIGOD 10809 SHONOYING

=56

SECTION 5
PROCEDURE DIVISION

GENERAL,

The fourth part of the COBOL source program is the PROCEDURE
DIVISION, This division contains the procedures needed to solve
a given problem, These procedures are written as sentences which
may be combined to form paragraphs, whicH in turn may be combined
to form sections,

COBOL procedures are expressed in a manner similar (but not iden-
tical) to normal English prose, The basic unit of procedure for-
mation |!s a sentence, or a group of successive sentences, A pro-
cedure is a paragraph, or a group of successive paragraphs, or a
section, or a group of successive sections within the PROCEDURE
DIVISION, The first entry following the PROCEDURE DIVISION
header must be DECLARATIVES a section-name or a paragraph-name,
If the first entry Is a section-name, then it must be followed

by a paragraph-name, Sentence structure Is not governed by the
rules of English grammer, but rather, dictated by the rules and
formats outlined in this manual,

There are three types of statements: Imperative statements,
conditional statements, and compliler-directing statements,

IMPERATIVE STATEMENTS,

An Imperative statement Iis any statement that is neither a condi-
tlonal statement nor a compller-directing statement, An Imperative
statement may consist of a sequence of Imperative statements, each
possibly separated from the next by a separator, A single impera-
tive statement |s made up of a verb followed by its operand, A se-
quence of Imperative statements may contain elther a GO TO statement
or a STOP RUN statement which, if present, must appear as the last
imperative statement of the sequence, Some of the imperative verbs
are:

ACCEPT MOVE

ADD(*1) MULTIPLY(*1)
ALTER OPEN

CLOSE PERFORM
COMPUTE(*1) SEARCH
DISPLAY SEEK
DIVIDE(*1) SET

EXAMINE STOP

EXIT SUBTRACT(*1)
GO WRITE(*2)

1 Without the SIZE ERROR Option,
2 Without the INVALID KEY Option,

5=1

CONDITIONAL STATEMENTS,
A conditional statement specifies that a truth value of a condition
is to be determined for subsequent action of the ob ject program,

COMPILER-DIRECTING STATEMENTS,
A compiler-directing statement is one that consists of a compller
directing verb (COPY and NOTE) and its operand(s).

SENTENCES .

There are three types of sentences: imperative sentences, conditional
sentences, and compiler-directing sentences., A sentence consists of
a seguence of one or more statements, the last of which is terminated

by a period,

IMPERATIVE SENTENCES.,

An imperative sentence Is an imperative statement terminated by a
period., An imperative sentence can contain either a GO TU statement
or a STOP RUN statement which, if present, must be the last statement
In the sentence, Examples would be:

ADD MONTHLY=-SALES TO TOTAL-SALES, THEN GO TO PRINT-TOTAL,

DISPLAY "PGM-END"™ THEN STOP RUN,

CONDITIONAL SENTENCES,

A conditional sentence is a conditional statement which may optionally
contain an imperative statement and must always be terminated by a
perlod,

Examples:

IF HEIGHT IS GREATER THAN SIX-FEET-NINE GO TO
TALL-MEN, ELSE ADD 1 TO PUNIES, GO GET-ANOTHER-
RECORD,

IF SALES IS EQUAL TO BOSSES-QUOTA THEN MOVE SALESMAN
TO HONOR-ROLL OTHERWISE MOVE HIS-NAME TO PINK-SLIP-
LIST, GO TO NEXT-SENTENCE,

If the phrase NEXT-SENTENCE immediately precedes a period, then
the phrase may be eliminated and a GO TO NEXT-SENTENCE will be
implied,

COMPILER-DIRECTING SENTENCES,
A complier-directing sentence Is a single compiler-directing
statement terminated by a period,

Example:
COPY SCANER,

SENTENCE PUNCTUATION,

VERB FORMATS,
Punctuation rules for individual verbs are as shown iIn the verb
formats and in section 1 of this manual,

SENTENCE FORMATS,
The following rules apply to the punctuation of sentences:

a., A sentence |s terminated by a period,

b, A separator Is a word or character used for the purpose
of enhancing readabllity, The use of a separator (other
than a space) is optional,

c. The allowable separators are: spaces, the semicolon (),
the comma (,), and the reserved word THEN,

d, Separators may be used in the following places:?

1) Between statements,
2) In a conditlional statement,

a) Between the condition and statement=-1,
b) Between statement-1 and ELSE,

e, A separator (other than a space) should be followed by
at least one space but Is not required,

An Imperative sentence is executed in its entirety and control is
passed to the next applicable procedural sentence,

In the conditional sentence:

| BEEEE
JE condition statement=! ELSE statement=2

the condition is an expression which is TRUE or FALSE, If the
condition is TRUE, then statement-1 is executed and control is
immediately transferred to the next sentence, If the condition
s FALSE, statement=-2 Is executed and control passes to the next
sentence,

If statement-1 1s conditional, then the conditional statement must
be the last (or only) statement comprising statement-1, For
example, the conditional sentence would then have the form:

JE condition=1 imperative-statement-1 JIFf condition=2

{ r‘\TnL‘hll‘rrr‘ b { MATLICONIY O N
QIHERWISE QIHERWISL
statement-3 i\iLii statement-4 { ELSE

statement-2,

If condition=1 is TRUE, imperative-statement-1 is executed, If
condition=2 is TRUE, statement=-3 is executed and control is trans-
ferred to the next sentence, If condition-2 is FALSE, statement=k4
is executed and control is transferred to the next sentence, If
condition=1 is FALSE, statement-2 is executed and control is trans-
ferred to the next sentence, Statement-3 can In turn be elther
Iimperative or conditional and, If conditional, can in turn contain
conditional statements to an arbitrary depth, In an identical
manner, statement-4 can either be imperative or conditional, as

can statement=-2, The execution of the phrase NEXT SENTENCE causes
a transfer of control to the next sentence written in order, except
when |t appears in the last sentence of a procedure being PERFORMed,
In which case control is passed to the return control,

EXECUTION OF COMPILER=-

The compiler-directing sentences direct activities during compilation
time, On the other hand, procedural sentences denote action to be
taken by the object program, Compller-directing sentences may result
in the inclusion of routines into the object program, They do not
directly result in either the transfer or passing of control, The
routines themselves, which the compiler-directing sentences may have
included in the object program, are subject to the same rules for
transfer or passing of control as {f those routines had been created
from procedural sentences only,

In COBOL, imperative and conditional sentences describe the procedure
that Is to be accomplished, The sentences are written successively,
according to the rules of the coding form (section 7), to establish
the sequence in which the object program is to execute the procedure.
In the PROCEDURE DIVISION, names are used so that one procedure can
reference another by naming the procedure to be referenced. In this
way, the sequence in which the object program is to be executed may
be varied simply by transferring to a named procedure,

In executing procedures, control is transferred only to the begin-
ning of a paragraph or section, Control is passed to a sentence
within a paragraph only from the sentence written Immediately
preceding It, If a procedure is named, control can be passed to

it from any sentence which contains a GO TO or PERFORM, followed
by the name of the procedure to which control |s to be transferred.

So that the source programmer may group several sentences to convey
one idea (procedure), paragraphs have been included in COBOL., In
writing procedures in accordance with the rules of the PROCEDURE
DIVISION and the requirements of the coding form (section 7), the

54

source programmer begins a paragraph with a name, The name consists
of a word followed by a period, and the name precedes the paragraph
it names, A paragraph is terminated by the next paragraph-name,

The smallest grouping of the PROCEDURE DIVISION which is named Is

a paragraph, The last paragraph in the PROCEDURE DIVISION is the
optional special paragraph-name END-OF-JOB which will be the last
card in the source program the compliler will use to generate code
for the object program,

Programs may contain ldenticdl paragraph=-names provided they are

resident in different sections, If such paragraph-names are not

cualified when used, the current section is assumed. They may be
used In GO, PERFORM and ALTER statements |f desired,

SECTIONS.

A section consists of one or more successive paragraphs and must
be named when designated, The section=-name is followed by the
word SECTION, a priority number which Is optional, and a period,
If the section is a DECLARATIVE section, then the DECLARATIVE
sentence (i,e., USE or COPY) follows the section header and begins
on the same line, Under all other circumstances, a sentence may
not begin on the same line as a section-name, The section=name
applies to all paragraphs following it until another sectlon=name
is found, It is not required that a program be broken Into sec-
tions, but this technique is exceptionally useful in trimming down
the physical size of object programs by stating a priority number
to declare overlayable program storage (see SEGMENT CLASSIFICATION),

Since paragraph-names and sectlon-names both have the same desig-
nated position on the reference format (i.e.,, position A), section=-
names, when specified, are written on one line followed by a para-
graph name on a subsequent line, When PERFORM Is used in a non-
DECLARATIVE procedural section to call another section, the same
rules apply as when PERFORM is used In a DECLARATIVE section,

Declaratives are procedures which operate under the control of the
input-output system, Declaratives consist of compller-directing
sentences and thelr assoclated procedures, Declaratives, If used,
must be grouped together at the beginning of the PROCEDURE DIVISION,
The group of declaratives must be preceded by the key word DECLA-
RATIVES, and must be followed by the words END DECLARATIVES, Each
DECLARATIVE consists of a single section and must conform to the
rules for procedure formation, There are two statements that are
called declarative statements in the COBOL Compiler, These are the
USE and the COPY statements, The next source statement following
the END DECLARATIVES statement must be a Section or paragraph name,

USE STATEMENT,

A USE declarative is used to supplement the standard procedures
provided by the input-output system, The USE sentence, Immediately
following the section=-name, ldentifies the condition calling for
the execution of the USE procedures, Only the PERFORM statements
may reference all or part of a USE section, The USE sentence

itself is never executed, MWithin a USE procedure, there must be
no reference to the main body of the PROCEDURE DIVISION, The
format for the USE declarative is as follows:

Sectton"name SECTION. USE.............'..'.
paragraph-name, Flrst procedure-statement ...

Complete rules for writing the formats for USE are stated under
the USE verb,

COPY STATEMENT AS A DECLARATIVE,

A COPY declarative is used to incorporate a DECLARATIVE library
routine in the source program, That is, a routine which is a
USE declarative, The format of the COPY declarative is:

section-name SECTION, COPY 1library-name ,

Complete rules for writing the format for COPY are stated under
the COPY verb,

An arithmetic expression is an algebraic expression which is
def ined as:

a. An identifier of a numeric elementary item,
be A numeric literal,

€. Such identifiers and literals separated by arithmetic
operators,

d. Two arithmetic expressions separated by an arithmetic
operator,

e, An arithmetic expression enclosed in parentheses.,

Any arithmetic expression may be preceded by a unary + or -, The
permissible combinations of identifiers, literals, and arithmetic
operators are given in table 5-1, Those identiflers and literals
appearing in an arithmetic expression must represent either numeric
elementary items or numeric literals on which arithmetic operation
may be performed,

5-6

Table 5-1

Combination of Symbols
in Arithmetic Expressions

Second Symbol

First

Symbol Variable B [de% +e ()
Variable - P P - P
t vk P - P P -
+a P - - P -
(P - P P -
) - P p - P

NOTE

In the above table, the letter P represents

a permissable pair of symbols, The character
- represents an invalid character pair, Vari-
able represents an ldentifier or literal,

ARITHMETIC OPERATORS,

There are five arithmetic operators that may be used In arithmetic
expressions, They are represented by specific characters which
must be preceded by a space and followed by a space.

Character leaning
+ addition
- subtraction
b multiplication
/ division
wk Exponentiation

FORMATION AND EVALUATION RULES,

Parentheses may be used In arithmetic expressions to specify the
order In which elements are to be used, Expressions within paren-
theses are evaluated first and, within a nest of parentheses,
evaluation proceeds from the least inclusive set to the most in-
clusive set, When parentheses are not used, or parenthesized
expressions are at the same level of Inclusiveness, the following
hierarchical order of operations is implied:

Unary + or =
s

5-7

* and /
+ and -

The symbols + and -, If used without parenthesizing, may only follow
one of the arithmetic operators *¥, *, /, or appear as the first
symbol in a formula, Parentheses have a precedence hlgher than any
of the operators and are used to eliminate ambiguities in logic where
consecutive operatlions of the same hlerarchical level appear, or to
modify the normal hilerarchical sequence of execution in formulas
where it is necessary to have some deviation from the normal pre-
cedence, When the sequence of execution is not specified by paren-
theses, the order of executlion of consecutive operations of the same
hlerarcHical level is from left to right, Thus, expressions or-
dinarily conslidered to be ambiguous, e,gsy A/ B8 * C, A/ B/ C,

and A**B**(are permitted in COBOL, They are interpreted as |f

they were written (A / 8) = C, (A / B) / C, and (A**B) #%C, respec~-
tively, Without parenthesizing, the following example:

A+B/ C+0D=**E*F «@G
would be Interpreted as:
A+ (B / C) + ((D ** E)Y = F) = @G

with the sequence of operations working from the inner-most paren-
theses toward the outside, i,e,, first exponentiation, then mul-
tiplication and division, and finally addition and subtraction.

The way in which operators, variables, and parentheses may be
combined in an arithmetic expression is summarized in table 5-1,

An arithmetic expression may only begin with the symbols (, +, =,

or a variable and may only end with a) or a variable, There must
be a one-to-one correspondence between left and right parenthesis
of an arlithmetic expression such that each left parenthesis |s to

the left of its corresponding right parenthesls,

-

A condition causes the object program to select between alternate
paths of control depending upon the truth value of a test, Con-
ditions are used in IF and PERFORM statements. A condition is
one of the following:

a, Relation condition,

b, Class condition,

c., Condition=-name condition,

d. Sign condition,

e. NOT condition,

5-8

f, Condition { AND | condition,
R

The constructlion NOT condition, where condition is one of the first
four types of conditions listed above, Is not permitted if the
condition Itselif contains NOT,

LOGICAL OPERATORS,

Conditlons may be combined by logical operators, The logical opera-
tors must be preceded by a space and followed by a space, The
meaning of the logical operators is as follows:

Logical Operagor Meaning
OrR Logical Inclusive OR
AND Logical Conjunction
NOT Logical Negation

Table 5<2 iIndicates the relationships between the logical operators
and conditions A and B, Table 5-3 indicates the way in which
conditions and logical operators may be combined,

RELATION CONDITION,

A relation condition causes comparlison of two operands, each of
which may be a data-name, a literal, or an arlithmetic expression
(formula). Comparison of two elementary numeric items I!s permitted
regardless of the format as specified in individual USAGE clauses,
However, for all other comparisons the operands must have the same
USAGE, Group numeric items are defined to be alphanumeric, It is
not permissible to compare an index-data-name to a literal or a
data-name,

Table 5=2

Relationship cf Conditions,
Logical Operators, and Truth Values

Condition Condition and Value
A B A AND B A OR B NOT A
TRUE TRUE TRUE TRUE FALSE
FALSE TRUE FALSE TRUE TRUE
TRUE FALSE FALSE TRUE FALSE
FALSE FALSE FALSE FALSE TRUE

5-9

Table 5-3

Combinations of Conditions
and Logical Operators

Second Symbol

First

Symbol Conditlon OR AND NOT ()
Condition - P P - - P
OR P - - P P -
AND P - - P P -
NOT P - - - P -
(P - - P P -
) - P P - - P

NOTE

The letter P represents a

permitted palr of symbols,
The character - represents
an Invalid character palr,

The general format for a relation condition is as follows:

{'data-name-t } {data-name-Z }
literal=1 relational=-operator literal=2

arith, expression=-1 arith, expression=2
The first operand, data-name=-1, literal=-1, or arithmetic expression-

1 Is called the subject of the condition, The second operand, data-
name-2, literal-2, or arithmetic expression-2 Is called the object of
the condition, The object and the subject may not both be literals,

RELATIONAL OPERATORS,

The relational operators specify the type of comparison to be made
in a relation condition, The relational operators must be preceded
by a space and followed by a space, Relational operators are:

a., IS [NOTJ] GREATER THAN,
b, IS [NOT] LESS THAN,
c. IS [NOTJ] EQUAL TO,

d, IS [NOI] >,
e, IS [,NQI.] <,
f. IS [NOT] =,

COMPARISON OF OPERANDS,

NON=NUMERIC, For non-numeric (byte) operands, a comparison will
result when determination is made that one operand is less than,
equal to, or greater than the other with respect to a specified
Internal collating sequence of characters, The size of an operand
is the total number of characters In the operand, Non=numeric
operands may be compared only when their USAGE Is the same,
implicitly or explicitly, There are two cases to consider:

a, If the operands are of equal size, characters in
corresponding character positions of the two
operands are compared starting from the high=-order
end through the low-order end, If all pairs of
characters compare equally through the last pair,
the operands are considered equal when the low-
order end Is reached, The first pair of unequal
characters to be encountered is compared to de-
termine their respective relationship, The
operand that contains the character that is
positioned higher In the internal collating se-
quence is considered to be the greater operand,

b, If the operands are of unequal size, the comparison
of characters proceeds from high=-order to low-order
positions until a palr of unequal characters is
encountered, or until one of the operands has no
more characters to compare, If the end of the
shorter operand is reached and the remaining char-
acters in the longer operand are spaces, the two
operands are considered to be equal,

NUMERIC, For operands that are numeric, a comparison results in
the determination that one of them is less than, equal to, or
greater than the other with respect to the algebraic value of

the operands, The length of the operands, in terms of number

of digits, Is not significant, Zero is considered a unique value
regardless of the sign, Comparison of these operands is permitted
regardless of the manner In which their usage is described, Un-
signed numeric operands are considered positive for purposes of
comparisons,

The signs of signed numeric operands will be compared as to their
algebraic value of being plus (highest) or minus (lowest),

EVALUATION RULES,

The evaluation rules for conditions are analogous to those given
for arithmetic expressions except that the following hierarchy
applies:

a., Arithmetic expressions (formulas),
b, All relational operators,

c. NOT.
d. AND,
e, OR,

5-11

SIMPLE CONDITIONS,

Simple conditions, as distinguished from compound conditlons, are
subdivided into four general families of conditional tests: Re-
lation Tests, Relative Value Tests, Class Tests, and the Condi-
tlonal Variable Tests. A detailed explanation of each of these
can be found under the IF verb discussion,

COMPOUND CONDITIONS,
The most common format of a compound condition is:

S “"p]e“COndit jon=1 QB s imple-condit fon=2

Simple conditions can be combined with logical operators according
to specified rules to form compound conditions, The logical op-
erators AND, OR, and NOT are shown in table 5-2 where A and b re-
present simple conditions, Thus, if A is TRUE and B is FALSE, then
the expression A AND B |s FALSE, while the expression A OR B Is
TRUE,

The followling are illustrations of compound conditions:
a, AGE IS LESS THAN MAX-AGE AND AGE IS GREATER THAN 20,
b, AGE IS GREATER THAN 24 OR MARRIED,

c. STOCK-ON=HAND IS LESS THAN DEMAND OR STK-SUPPLY IS
GREATER THAN DEMAND + INVENTORY,

d, A IS EQUAL TO B, AND C IS NOT EQUAL TO D, OR E IS NOT
EQUAL TO F, AND G IS POSITIVE, OR H IS LESS THAN I * J,

e, STK=ACCT I35 GREATER THAN 72 AND (STK=NUMBER IS LESS
THAN 100 OR STK-NUMBER EQUAL TO 76920),.

Note that it |s not necessary to use the same logical connective
throughout, The rules for determining the logical (i,e,, truth)
value of a compound condition are as follows:

a, If AND's are the only logical connectives used, then the
compound condition Is TRUE if, and only if, each of
the simple conditions Is TRUE,

b, If OR'd are the only logical connectives used, then the
compound condition is TRUE if, and only if, one or
more of the simple conditions is TRUE,

c. If both logical connectives are used, then the conditions
are grouped first according to AND, proceeding from left
to right, and then by OR, proceeding from left to right.

Parentheses may be used to indlcate grouping as specified in the
examples below, Parentheses must always be paired the same as In
algebra, l,e,, the expressions within the parentheses will be
evaluated first, In the event that nested parenthetical expres-
sions are employed, the innermost expressions within parentheses
are handled first, Examples of using parentheses to indicate
groupling are:

a. To evaluate C1 and (C2 OR NOT (C3 OR C4)), use the
first part of rule ¢ above and successively reduce
this by substituting as follows:

Let C5 equal "C3 OR C4" resulting In
C1 AND (C2 OR NOT C5)

Let C6 equal "C2 OR NOT C5" resulting
in C1 AND Cé

This can be evaluated by table 5-2,

b, To evaluate C1 OR C2 AND C3, use the second part of
rule C and reduce this to C1 OR (C2 AND C3), which
can now be reduced as in example a,

c, To evaluate C1 AND C2 OR NOT C3 AND Ck, group first
by AND from left to right, resulting in:

(C1 AND C2) OR (NOT C3 AND C&4)
whichH can now be evaluated as In example a,

d. To evaluate C1 AND C2 AND C3 OR C4 OR C5 AND C6 AND C7
OR C8, group from the left by AND to produce:

((C1 AND C2) AND C3) OR Ck OR ((C5 AND C6)
AND C7) OR C8

which can now be evaluated as in example a,

e, The following is using a condition-name as part of
the statement,

IF CURRENT-MONTH AND DAY = 15 OR 30,.., would
be treated as:

IF (CURRENT-MONTH AND DAY
actual test desired is:

15) OR 30,.,. the

IF CURRENT-MONTH AND (DAY

15 0OR 30)4..

The required result is that CURRENT-MONTH be true
as well as DAY containing either 15 or 30,

Without the parentheses as shown, the conditions

are:

1) DAY = 30 or
2) CURRENT=MONTH is true AND DAY = 15,

ABBREVIATED COMPOUND CONDITIONS,
Any relatlion condition other than the first that appears in a compound
conditional statement may be abbreviated as follows:

a,

b.

The subject or the subject and relational operator,
may be omitted, In these cases, the effect of the
abbreviated relation condition is the same as If
the omitted parts had been taken from the nearest
preceding complete relation condition within the
same condition, That is, the first relation is

a condition and must be complete,

If, in a consecutive sequence of relation conditions
(separated by logical operators) the subjects are iden-
tical, the relational operators are identical and the
logical connectors are identical, the sequence may be
abbreviated as follows!

1) Abbreviation 1 - when identical subjects are
omitted In a consecutive sequence of relation
conditions. An example of abbreviation 1 would
be:

IF A =B AND = C,
This 1s equivalent to IF A = B and A = C,

2) Abbreviation 2 - when ldentical subjects and
relatlional operators are omitted In a consecutive
sequence of relatlion conditions, An example of
Abbreviation 2 is:

IF A =8 AND C,
This is equivalent to IF A = B AND A = C,

As Indicated In the previous paragraphs, compound con-
ditlons can be abbreviated by having implied subjects, or
implled subjects and relational operators, providing

the first simple condition Is a full relation, The
missing term is obtained from the last stated relation

in the sentence, The following examples further 11lus-
trate the abbreviated compound conditions:

1) IF A =B ORC is equivalent to IF A =B OR A =C,

2) IF A<BOR =CORD Is equivalent to IF A < B OR
A =COR A =D,

COBOL segmentation is a facility that provides a means by which
communication with the compliler, to specify object program overlay
requirements, can be accomplished., COBOL segmentation deals only
with segmentation of procedures, As such, only the PROCEDURE
DIVISION and the ENVIRONMENT DIVISION are considered in
determining segmentation requirements for an object program,

P SE

Although it is not mandatory, the PROCEDURE DIVISION for a source
program may be written as a consecutive group of sections, each of
which are operations that are designed to collectively perform a
particular function, Each section must be classified as belonging
either to the fixed portion or to one of the independent segments
of the object program, Segmentation In no way affects the need
for qualification of procedure-names to ensure uniqueness,

The object program is composed of two types of segments: a fixed
segment and overlayable segments,

a, The fixed segment is the main program segment and is
never overlaid by any other part of the progran,

b. An overlayable segment is a segment which, although
logically treated as If it were always In memory, can
be overlaid, If necessary, by another segment to optil-
mize memory utilization, However, such a segment, if
called for by the program, is always made available
in its "initial" state when the segment priority=-number
is 50 or greater, When the segment priority=-number
is 49 or less the segment will be made available in its
"Initial" state except for ALTERed switches which are
always set to their last used state,

Also, depending on availability of memory, the number of permanent
segments in the fixed and overlayable portions can be varied by
changing the SEGMENT-LIMIT clause in the OBJECT-COMPUTER paragraph,

SEGMENT CLASSIFICATION,
Sections which are to be segmented are classified using a system
of prlority numbers and the following criteria:

a. Logic requirements - sections with prlority numbers
from 00 thru 49 in a program may reside In the fixed
segment depending on the value specified in SEGMENT-
LIMIT, Sections contalning a priority number lower
than that specified In SEGMENT=-LIMIT, regardless of
their physical location in the program, will be assigned
to the fixed segment; all other sections will be assigned
as overlayable segments, Fall=through control from one
SECTION to another SECTION is accomplished In thelr order
of appearance in the source program,

b, Relationship to other sections - sections coded within

the SEGMENT=-LIMIT range will become the fixed segment
and can communicate freely with each other, Those coded
outside the stated SEGMENT-LIMIT range fall into the
overlayable category and can also communicate from one
to the other,

The compiler will create one non-overlayable (fixed)
program area which will Include all sections with
priority numbers below the value specified in SEGMENT-
LIMIT, The overlayable sections will be called into
memory as needed by the program, When memory is available
more than one overlayable section will be In memory at

the same time. This will reduce the number of disk
accesses which in turn will cause the program to have

a shorter run time,

PRIORITY NUMBERS,

Section overlay classifications are accomplished by means of a

system of priority numbers, The priority number is Included in
the section header, The general format of a section header Is

as follows:

section=name SECTION priority=-number,

The priority number must be an integer ranging in value from 00
through 99 (also 0, 1, 2, etc.,, are permissible priority numbers),
If the priority number is omitted from the section header, the
priority number is assumed to be 0, Segments with priority numbers
ranging from 0 up to, but not Iincluding, the value speciflied in

the SEGMENT=LIMIT clause (or 50 if no SEGMENT-LIMIT clause has been
specifled) are considered as being located In the fixed (non-over-
layable) portion of the object program, Segments with priority
numbers equal to or higher than, the value specified In SEGMENT-
LIMIT, but not exceeding 99, are independent segments (overlayable)
and fully ALTERable; however, segments with priority numbers
greater than 49 will be made available in their "'nitial" state
each time they are referenced, A GO TO statement In a section
whose priority Is greater than or egual to 50 must not be referred
to by an ALTER statement in a section with a different priority,
Sectlons in DECLARATIVES are assumed to be 00 and must not contain
priority numbers in their sectlion headers, Priority numbers may

be stated In any sequence and need not be in direct sequence, The
fixed segment does not end when the first priority number equal to
or greater than SEGMENT-LIMIT 1s encountered, '

A1l segments, regardless of their physical location in the source
program, whose prlority number Is less than that which is specified
In SEGMENT-LIMIT will be "gathered" into a single non-overlayable
segment, Al]l other segments equal to, or greater than that which
is specified in SEGMENT-LIMIT will be "gathered" into overlayable
segments according to equal prlority numbers regardless of their
physical location in the source program,

5-16

The use of the "gathering" technique will allow programmers to
create tailored segments which will reduce disk access times.

For example:

E

N D) = et et N) ot wed b

Program A:

CONWVUNO WY

Main
Used
Used
Used
Used
Used
Used
Used
Used
Used

Matn
Used
Used
Used
Used
Used
Used
Used
Used
Used

Main
Used
Used
Used
Used

SEGMENT-LIMIT equals 17,

Non=-Gathered
D] lc :':: I DI ‘I
body of the program 20,000
frequently 1,000
frequently 5,000
infrequently L,000
at E0J only 500
frequently 2,000
at BOJ only 1,000
frequently 500
for Infrequent test 1,500
infrequently 3,000
Gathered
Rescriprion slze In Digits
body of the program 20,000
frequently 1,000
infrequently 5,000
Infrequently L,000
at EOJ 500
frequently (was segment 21) 2,000
at BOJ (was segment 22) 1,000
frequently (was segment 23) 500
for infrequent test (was segment 24) 1,500
infrequently (was segment 25) 3,000

Results of Gathering

D 1t | Sl in Digl
body of the program 20,000
frequently 3,500
infrequently 5,000
infrequently 5,000
Infrequently 5,000

"Fall through" will be performed in the sequence as outlined in

the above Non-Gathered example and not as they appear in the Re-

sults of the Gathering example above, therefore preserving the logical
Integrity of the original program,

The COBOL interpreter will automatically check to see if an overlay
being called for by an object program is already present in the object
programs overlayable memory storage area, If it is present, no disk
access is required and the program is interrupted, If it is not pre-
sent, the COBOL interpreter interrupts the program and wlll access the
disk for the desired overlayable portion of the program, The COBOL
interpreter uses overlay segments directly from the program library
where the object program was compiled to and is called in as an over-
lay in its lnitial generated code each and every time [t is reguired
by the operating program, Although the initial code is retrieved each
time, the latest addresses of ALTERed exits are still applicable and
are In force by the use of an automatic ALTER table for segments with
a priority number of 49 or less,

INTERNAL PROGRAM SWITCHES,

Every complled object program contains eight programmatic switches
provided automatically., Switches SW1 through SW8 are composed of
one unsigned digit in length and are located in memory locations
(base relative) 0 through 7,

These switches can be referred to in the PROCEDURE DIVISION by the use
of the reserved words SW1, SW2,..SW8, ¢Each individual switch setting
can be changed during operation by a MOVE, ADD, SUBTRACT, etc,. For
example:

MOVE O TO SW1,
ADD 1 TO SW2,
SUBTRACT 1 FROM SW3,

Note that SW6 has an affect on the MONITORING DEPENDING,.,,.requirement
if the statement is present,

The switch memory locations are reserved and operate exactly like the
reserved TALLY locations,

Some of the verbs available for use with the COBOL Compliler are cate-
gorized below, Although the word IF is not a verb in the English
language, It is utilized as such in the COBOL language., Its
occurrence is a vital feature in the PROCEDURE DIVISION,

a, Arithmetic:
ADD
SUBTRACT
MULTIPLY
DIVIDE
COMPUTE

b, Compliler directing declaratives:

5-18

NOTE
USE

c. Compiler directing:
CoPYy

d. Data manipulations:
MOVE
EXAMINE
SORT

e, Ending:
STOP

f, Input-output:

WRITE
READ

OPEN
CLOSE
ACCEPT
DISPLAY
SEEK

g. Logical Control:
IF

h, Procedure Branching:
GO
ALTER
PERFORM
EXIT
ZIP

1+ Source-level Debugging:
TRACE

SPECIFIC VERB FORMATS,

The specific verb formats, together with a detailed discussion of
the restrictions and limitations associated with eachH, appear on
the following pages In alphabetic sequence,

ACCEPT

ACCEPT,
The function of thls verb is to permit the entry of low=volume
data from the console typewriter,

The construct of this verb is:

AccepT FROH | e |
ACCEPT data-name oM mnemonic-name

This statement causes the operating object program to halt and walt
for appropriate data to be entered on the SUPERVISORY PRINTER (SPQO).
The SPO entry will replace the contents of memory specified by the
data-name, The systems operator answers an ACCEPT halt by keying

In the following message:

mix=-index AXdata-required

If a blank appears between the AX and data-required, the blank
character will be Included in the data-stream,

The number of characters ACCEPTed must correspond to the size of
the receiving data-name,

If mnemonic-name is used, It must appear in the SPECIAL-NAMES
paragraph equated to the hardware-name SPO,

The recelving data-name may be a group level entry and cannot
be subscripted,

Because of the ineffliciency of entering data through the keyboard,
this technlque of data transmission should be solely restricted

to low=volume input data,

The maximum number of characters per ACCEPT statement is unlimlted,
ACCEPT's of greater than 60 characters must be entered thru the SPO

in exact groups of 60 characters, except for the last group, which
can be of any size up to 60,

5-20

ADD

ADD.
The function of this verb is to add two or more numeric data items
and ad just the value of the receiving field(s) accordingly.

The construct of this verb has three options.

Qotion 1

{literal-l } {1itera]-2 }

ADD data-name-1 data-name-2 e

JQ data-name-3 [BQMNQEQ}[:data-name-n (ROUNDEDT ..]
(ON SIZE ERRQOR any statement]

Qotlon 2:

{ literal=1 } { literal=2 } { literal=3 }

ADD data-name=-1 data-name=2 data-name=3 ces
GIVING data-name-n [RQUNDED]

[(ON SIZE ERRQR any statement)

Qption 3:

{ e
ADD CORRESPONDING data-name-1 JQ data-name=2

(RQUNDED] (ON SIZE ERRQR any statement]

With Option 1, the value(s) of the operand(s) preceding the word

70 will be added together and the sum will be added to the existing
value(s) of operand(s) following the word TO, A resumation does not
occur if the value of one of the data-names changes In the process,
For example:

ADD A TO B,A,C,

In Option 2, the sum of the operands preceding the word GIVING wil]
be inserted as a replacement value of data-name following the word
GIVING,

In Options 1 and 2, the data-names must refer to elementary numeric
ltems only, except that data-names appearing only to the right of
the word GIVING may refer to data-names which contain editing
symbols,

5=21

ADD
cont

An ADD statement must have at least two operands,

Editing items can only be used as the receiving field with the
GIVING format., Operational signs and implied decimal polints are
not considered as editing symbols,

The composite of operands, which is that data ltem resulting from

the superimposition of all operands, excluding the data item that

follows the word GIVING, aligned on their decimal points, must not
contain more than 125 digits/characters,

The internal format of operands referred to In an ADD statement may
differ among each other, Any necessary format transformation and
decimal point alignment is automatically supplied throughout the
calculation,

Each literal must be a numeric literal,

If, after point alignment with the receiving data item, the cal-
culated result would extend to the right of the receiving data

item (l,e., a data=-name whose value Is to be set equal to the sum),
truncatlon will occur. Truncation is always in accdrdance with

the size associated with the resultant data-name, When the ROUNDED
optlon is specified, it causes the resultant data-name to have its
absolute value Increased by | whenever the most=-significant digit
of the truncated portion Is greater than or equal to five,

Whenever the magnitude of the calculated result exceeds the largest
magnitude that can be contained in a resultant data-name, a size
error condition arises, In the event of a size error condition, one
of two possibilities will occur, depending on whether or not the

ON SIZE ERROR option has been specified, The testing for the size
error condition occurs only when the ON SIZE ERROR option has been

specified,

a. In the event that ON SIZE ERROR is not specified and
slze error conditions arise, the value of the resultant
data-name is unpredictable,

b, If the ON SIZE ERROR option has been specified and size
error conditions arise, then the value of the resultant
data-name wlll not be altered, After determining that
there is a size error condition, the "any Imperative-
statement" associated with the ON SIZE ERROR option
will be executed.

If Option 3 is used, multiple operations are performed, The opera-
tions are executed by pairing Identical data-names of numeric ele-
mentary ltems subordinate In hierarchy to data-name-1 and data-
name-2. Data-names match if they, and all their possible qualifiers
up to, but not including data-name-1 and data-name-2, are the same,
A11 general rules pertalning to the ADD verb apply to each indivi-
dual ADD operation., For instance, if the slize of matched data-names
does not correspond In that the decimal point is out of alignment or

5-22

ADD
cont

the sizes differ, the decimal point allgnment or truncation takes
place according to the rules previously discussed,

In the process of palring ldentical data-names, any data-name with
the REDEFINES clause is ignored, Similarly, data=-names which are
subordinate to the subordinate data-names with the REDEFINES clause
are ignored,

NOTE
This restriction does not preclude data-name-|
or data-name-2 themselves from having REDEFINES
clauses or from being subordinate to data-names
with REDEFINES clauses,

If the CORR or CORRESPONDING option is used, no item in the group
referred to can contain an OCCURS clause.

If, In Option 3, either data-name-1 or data-name-2 is a group item
which contains RENAMES entries, the entrlies are not considered In
the matching of names,

In Option 3, data-name-1 and data-name-2 must not have a level number
of 66, 779 or 880

If corresponding data=-names are not elementary numeric items the
ADD operation will be ignored,

In Option 3, CORR is an acceptable substitute for CORRESPONDING,

5-23

ALTER

ALTER,
The function of this verb Is to modify a predetermined sequence of
operations by changing the operand of a labeled GO TO paragraph,

The construct of this verb Is:

ALTER procéduée-name-l IO [(PROCEED IQ) procedure-name-2
[procedure-name-3 IO |PROCEED lg] procedure-name=4 ...]

Procedure=name-1, procedure-name-3, ,.,, are names of paragraphs,
each of which contains a single sentence consisting of only a GO
TO statement as defined under Option 1 of the GO TO verb, Proce-
dure-name=-2, procedure-name=-4, ,,, are not subject to the same
restrictions and they may be either paragraph names or sectlon
names,

When control passes to procedure-name-1, control is immediately
passed to procedure-name-2 rather than to the procedure-name ref-
erred to by the GO TO statement in procedure-name=-1, Procedure-
name-1 is therefore a "gate" which remains set until again
referenced by another ALTER statement,

A GO TO statement in a section whose priority is greater than or
equal to 50 must not be referred to by an ALTER statement in a
section with a different priority,

A1l other uses of the ALTER statement are valid and are performed

even If the GO TO which the ALTER refers to is in an overlayable
section, as long as the section prlority number is less than 50,

5-24

CLOSE

CLOSE, :

The function of this verb is to communicate to the MCP that the
designated flle-name being operated on or created is programmatically
completed, and also to fulfill the stated action regqulirements,

The construct of this verb Is:

CLOSE file=-name-1 [REEL] WITH RELEASE

(file-name=2...,]

Flle-names must not be those defined as being SORT files, A file
must have been OPENed previously before a CLOSE statement can be
executed for the file, File space in memory will not be allocated
until the flle has been OPENed, When a file is programmatically
CLOSEd, the memory allocated for that file will be returned to the
MCP, A unit which remains assigned to the program after the file
on that unit has been CLOSEd, will be reflected In the 1/0
assignment table in the MCP,

The above statement applies to the following categories of input
and output flles,

a, Fliles whose input and output media involve print files,
card files, etc,

b. Flles which are contained entirely on one reel of magnetic
tape, and are the only files on that reel,

¢, Flles which may be contained on more than one physical
reel of magnetic tape, Furthermore, the number of reels
might possibly be higher than the number of physical tape
units provided on the system, ’

d, Disk files,

To show the effects of the CLOSE options, each type of file will
be discussed separately,

a, Card Input.

1) CLOSE - releases the Input memory areas, but does
not release the reader,

2) CLOSE WITH NO REWIND - same as CLOSE,

3) CLOSE WITH RELEASE - releases the input memory areas
and returns the reader to the MCP,

5-25

CLOSE
cont

4) CLOSE WITH LOCK - same as CLOSE WITH RELEASE,
5) CLOSE WITH PURGE - same as CLOSE WITH RELEASE,
6) CLOSE WITH REMOVE - same as CLOSE,

b, Card Output,

1) CLOSE - punches the trailer label (if any) releases
the output memory areas, but does not release the punch,

2) CLOSE WITH NO REWIND - same as CLOSE,

3) CLOSE WITH RELEASE - releases the output memory areas
and returns the punch to the MCP,

4) CLOSE WITH LOCK - same as CLOSE WITH RELEASE,
5) CLOSE WITH PURGE - same as CLOSE WITH RELEASE.
6) CLOST WITH 2-MOVE - same as CLOSE.

c. Magnetic Tape Input,

1) CLOSE - checks the trailer label (if any) rewinds the
tape and releases the input memory areas. The unit
remains assigned to the program,

2) CLOSE WITH NO REWIND - same as CLOSE except the tape
s not rewound.

3) CLOSE WITH LOCK - releases the input memory areas,
checks the traller label (if any) rewinds the tape,
and the MCP marks the unit not ready.

L) CLOSE WITH RELEASE - releases the memory input areas,
checks the trailer label (If any), rewinds the tape,
and returns the unit to the MCP,

5) CLOSE WITH PURGE - releases the input memory areas,
checks the trailer label (I1f any), rewinds the tape,
and If a write ring is in the reel, over-writes the
label, making the tape a scratch tape which becomes
a candidate for use by the MCP, The unit Is returned
to the MCP,

6) CLOSE WITH REMOVE - same as CLOSE,
d. Magnetic Tape Output,
1) CLOSE - releases the output memory areas, writes the

tralier label (if any), and rewinds the tape. The
unit remains assigned to the program,

5-26

CLOSE
cont

2) CLOSE WITH NO REWIND - releases the output memory areas,
writes the trailer label (if any), The tape remains
positioned beyond the trailer label (or tape mark If
there |s no trajler label), The unit remains assigned
to the program,

3) CLOSE WITH LOCK - releases the output memory areas,
writes the traller label (If any), rewinds the tape,
and the MCP marks the unit not ready.

4L) CLOSE WITH RELEASE - releases the output memory areas,
writes the trailer label (If any), rewinds the tape,
and returns the unit to the MCP,

5) CLOSE WITH PURGE - releases the output memory areas,
writes the trailer label (If any), rewinds the tape,
returns the unit to the MCP, and the MCP over-writes
the labe] making it a scratch tape, which makes it a
a candidate for use by the MCP,

6) CLOSE WITH REMOVE - same as CLOSE,

Printer Qutput,

1) CLOSE - prints the traller labe (if any), releases
the output memory areas but does not release the
printer,

2) CLOSE WITH NO REWIND - same as CLOSE,

3) CLOSE WITH RELEASE - releases the output memory areas
and returns the printer to the MCP,

L) CLOSE WITH LOCK - same as CLOSE WITH RELEASE,

5) CLOSE WITH PURGE - same as CLOSE WITH RELEASE,

6) CLOSE WITH REMOVE - same as CLOSE,

Disk Files, The actions taken on files ASSIGNED to DISK
wll]l be discussed in terms of old files and new files, An
oid file is one that already exists on disk and appears In
the MCP Disk Directory, A new file is one created by the
program and does not appear in the Directory. A new file
may only be referenced by the program which creates it.

1) CLOSE - releases the Input/output memory areas,

a) For an old file, the file is left in the
Directory and Is avallable to other programs.

b) For a new file, the file is not entered in the
directory, however, It remains on the disk

5-27

CLOSE
cont

and may be OPENed again by this program,
2) CLOSE WITH NO REWIND - not permitted on disk files,

3) CLOSE WITH RELEASE - releases the Input/output
memory areas,

a) For an old file, the file is left in the
directory and is available to other programs,

b, For a new file, the file is not entered in
In the directory and the memory and disk
areas are returned to the MCP for use by
other programs,

L) CLOSE WITH LOCK - releases the input/output memory areas,

a) For an old file, the file remains in the
Directory and is made available,

b) A new file is entered in the Directory, Sub=-
sequent action |s identical to an old file.

5) CLOSE WITH PURGE - releases the input/output
memory areas,

a) An old file is immediately removed from the
disk and deleted from the Directory,

b) A new file will be immediately removed from
the disk,

6) CLOSE WITH REMOVE - releases the input/output
memory areas, This option will cause the MCP
to REMOVE a file from the disk directory that
has the same file-id as the file being closed,
This actlion will take place prior to entering
the closing files file=-ID in the disk directory,
Use of this option will eliminate the DUPLICATE
FILE condition and reduce operator intervention,
If the REMOVE optlion Is not used, the "RM" SPO
Input message will accomplish the same results,

If a file has been specified as being OPTIONAL, the standard END-
OF=-FILE processing is not permitted whenever the file Is not
present,

If a CLOSE statement without the REEL option has been executed for a
flle, a READ, WRITE, or SEEK statement for that file must not be
executed unless an intervening OPEN statement for that file is
executed,

5-28

CLOSE
cont

The CLOSE REEL option signifies that the file-name being CLOSEd Is
a multi-reel magnetic tape Input/output file, The reel will be
CLOSEd at the time of encountering the CLOSE REEL statement and an
automatic OPEN of the next sequential reel of the multi-reel file

wlll be performed by the MCP,

5-29

COMPUTE

COMPUTE,
The function of this verb Is to assign to a data item the value of
a numeric data item, literal, or arithmetic expression,

The construct of thils verb is:

data-name-2
COMPUTE data-name-1 [ROUNDED] = numeric-1iteral
arithmetic expression

(ON SIZE ERROR any statement]

The literal must be numeric 1iteral,

Data-name=-2 must refer to an elementary numerlic item, Data-name=|
may describe a data item which contains editing symbols,

The arithmetic expression option permits the use of any meaningful
combination of data-names, numeric literals, arithmetic operators,
and parenthesizatlion, as required,

A1l rules regarding ON SIZE ERROR, ROUNDED options, truncation and
editing are the same as for ADD,

If numeric-literal exponents are used, the results are accurate up
to 18 digits In length or to as many decimal places.

5-30

COPY

COPY,

The function of this verb is to allow library routines contained
on a source language library file to be incorporated into the
program,

The construct of this verb contains two options which are:!

COPY 1ibrary=-name ,

CQPY 1librarye-name

5 word=2
REPLACING word=1 } 3Y data-name-2
data-name-=1 literal=]

l
f
[:jword-B - {Siiiiﬁame-u}] ,

| data-name=3 literal=2

The COPY statement may refer only to one library entry in the library
for every time it is used, Library-name is the value placed in a
library entry bounded by quotes or a procedure-name type word, The
library entry bounded by quotes cannot contain more than 20
characters, separated by a slash (/),

If the library-name is a procedure-name type word and is numeric,
it must be separated from the period (If present) by a space,

The library file is inserted in the source program immediately
after the COPY statement at compllation time, The result is the
same as |f the library data were actually a part of the source
program,

Library data can encompass an entire procedure which may be any
number of statements, paragraphs, or entire source program
divisions or parts thereof,

Library files may not contain COPY statements,

No statement may appear to the right of the COPY statement on the
same source card,

COPY during the PROCEDURE or ENVIRONMENT divisions must follow a
SECTION or paragraph-name and all Information contained in the
library file is included and can be fully referenced,

5-31

COPY
cont

On a COPY during the DATA DIVISION, the FD file=name, or the level
01 data-name preceding the COPY is saved and the relative constructs
from the library file are discarded, For example, the statement

FD MASTER-INPUT COPY "MASTER",

will cause the library file titled MASTER to be inserted into the
source program Immediately following the COPY statement, The source
program must refer to the FD file-name as MASTER=-INPUT and not as
MASTER, The library FD file-name wl!ll appear on the output listing,
but cannot be referenced In the source program,

Library files copled from the library are flagged on the output
l1sting by an L preceding the seauence number,

In Option 2, a word is defined as being any COBOL word that |s not
a COBOL Reserved Word, For example, the following statement re-
flects non-reserved COBOL words AAA,BBB and 1234, where AAA and
BBB are data-names and 1234 is a COBOL word:

MULTIPLY AAA BY BBB, THEN GO TO 1234,

If the COPY REPLACING option Is specified, each word=1 or data-name-=1
stipulated will be replaced BY the word=2 or data-name=-2 entries
specified in the option, Data-names may not be subscripted, indexed
or qualified,

Use of the COPY REPLACING option requires that the "library=-name"
COBOL source Image file be present, on disk, prior to compiling the
source program containing the COPY REPLACING option., The use of this
option wlll not cause alteration of the library file residing on disk.

In Option 2, literals contained In a library file cannot be replaced
by literals, words or data-names,

In Option 2, If an integer is used for a word and it is the last
entry in a replacing list, It must be followed by a blank and then
a period, For example:

COPY REPLACING AAA BY HOURS,
B8BB BY PAY-SCALE, 1234 BY 58b,

The COPY REPLACING option is exceptionally beneficial for conversion
of generalized COBOL source language library routines Into specific
and well-named routines within a given program, For example, a
generalized COBOL source language llbrary routine may use the
following data-names for their noted purposes:

Data-name Burpose
AAA Monthly hours worked per employee,
BB88B Employee pay-rate,

5-32

CcoPY
cont

Data-name Purpose
ccc Employee social security number,
DDD Employee income tax rate,
EEE Employee year to date gross income,
FFF Employee year to date net income,
GGG Employee gross pay for month,

Employee net pay for the month,
® ®

1234 Specifies a GO TO exit from the routine,

A program calling upon the above generallzed routine can replace
the non-descript data-names with descriptive names as defined In
the programs record description or WORKING=-STORAGE area, For
example: ‘

COPY,.,REPLACING AAA BY HOURS=-WORKED
COPY,..REPLACING BBB BY RATE-OF-PAY
COPY,, . REPLACING CCC BY SOC-SEC=NR
COPY,., . REPLACING DDD BY INC=-TAX=-RATE
COPY,..REPLACING EEE BY YR-TO-DATE=-GROSS
COPY,..REPLACING FFF BY YR=-TO=-DATE=-NET
COPY,. ,REPLACING GGG BY THIS=MONTHS=-GROSS
COPY,, REPLACING HHH BY THIS-MONTHS=-NET

COPY,.,.REPLACING 1234 BY WRITE-EMPLOYEE-DRAFT,

The specified source program data-names and exlt points will be inser-
ted into the library file routine at every occurrence of the assigned
generalized names within the routine,

LIBRARY CREATION, A library file will be created only during a cosoL
compllation each time that a source card Is encountered containing an
L In column 7 with a library-name, bounded by gquotation marks starting
in Field A of the same card, A library-file may contain up to a
maximum of 20,000 card Images,

Each 1ibrary file in the source program will be terminated when a
card contalning an L In column 7 followed by all blanks or another
library-name is encountered,

Library=-names cannot start with a blank character or a dash (=),
Once a file has been created, it may be COPYed by other programs,

or the creatling program in succeeding FD, 01, or procedure COPY
statements,

5-33

caPy
cont

The source data used to create an original library file will also
be compiled Into the object program at the point of appearance.

A1l assigned library-names must be unique to other library=names
contained in the library to preserve the integrity of the COBOL
library sy=tem,

Library files to be used with the COPY verb can be created by a
user program which creates an unblocked card Image file on disk,

5-34

DISPLAY

DISPLAY,

The function of this verb is to provide for the printing of low
volume data, error messages, and operator instructions on the
console typewriter,

The construct of this verb |s:

{ literal=i } [{ literal=-2 }
DISPLAY data=name=1 data~-name-=2 see

[{ e §
UPON mnemonic=name

Each literal may be any figurative constant except ALL,
A1l special registers (DATE, TIME, etc.,) may be DISPLAYed,

The DISPLAY statement causes the contents of each operand to be
written on the supervisory printer (SP0) from the MCP SPO queue
to ensure that a program is not operationally deterred while a
message Is printing,

If a figurative constant Is specified as one of the operands, only
a single character of the fligurative constant is displayed.

The data-names may be subscripted and can be PICTUREd as COMPUTA-
TIONAL or DISPLAY items,

An Infinite amount of characters may be displayed with one state-
ment, The compller will supply automatic carriage returns and line
feeds, as may be appropriate,

The DISPLAY series option will cause the literals or data-names to
be printed on one line and, if required, the compiler will cause
automatic carriage returns and line feeds for information extending
to other lines of print., The compller will format each line so
that a partial word at an end of a line will not be printed on that
1ine, and continued on the following 1ines,

When mnemonic-name Is used, It must appear in the SPECIAL-NAMES
paragraph equated to the hardware-name SPO,

5-35

DIVIDE

DIVIDE,
The function of this verb !s to divide one numerical data=-item into
another and set the value of an item equal to the result,

The construct of this verb contains two options which are:

Option 1:

literal=1 }
DIVIDE [MOD] {data-name-l INTQ data-name-2 [RQUNDED]

(ON SIZE ERROR any statement]

Optlon 2:

{llteral-1 } ‘{51 } {1lteral-2 }
DIVIDE ([MOD] data-name-1 JNTQS ldata-name=2

GIVING data-name-3 [RQUNDED]
REMAINDER data-name=-4 [RQUNDED]
(ON S1ZE ERRQR any statement]

Data-name-3 and data-name-4 of Optlon 2 may refer to a data |tem
that contains editing symbols,

Each literal must be a numeric literal,

Division by zero Is not permissible and, if executed, wil] result
in a size error Indication, This can be handled programmatically,
either by doing a zero test prlior to the division, or by the use

of the SIZE ERROR clause, If SIZE ERROR Is not written, an attempt
to divide by zero will result in unpredictable results, Processing
wlill continue,

A1l data-names must refer to elementary numeric |tems.,

In Option 1, the value of the operand preceding the word INTO will
be divided Into the operand following INTO and the resulting quotient
stored as the new value of the latter,

The use of the BY option will cause literal=1/data=-name-1 to be
divided by 1iteral-2/data-name=-2, whereas the INTO option will
cause literal-1/data-name-1 to be divided jnto literal-2/data-
name=2,

In Option 2, the resulting quotient will be stored as the new value

of data-name-3, The value of the operands Iimmediately to the left
of the word GIVING will remaln unchanged,

5-36

DIVIDE
cont

The ROUNDED option and ON SIZE ERROR clause and truncatlion are the
same as dlscussed for the ADD statement (refer to page .5-22).

The size of the operands is determined by the sum of the divisor
and the quotient, The sum of the two cannot exceed 99 digits.,

The use of the MOD option will cause the remainder to be placed
In data-name=2 of Option 1 and data-name-3 of Option 2, The re-
mainder will be carried to the same degree of accuracy as defined
In the PICTURE of the quotient and all extra positions will be
filled with zeros,

Literals cannot be used as dividends,

The use of the REMAINDER option will cause the remainder to be
placed in data-name-4 and data-name-3 will contain the quotient,
unless the MOD option Is also included, If the MOD option is
Included, both data=name=3 and data-name=~4 wlll contain the
remainder,

5-37

END-OF -J0OB

END-OF-J0B,
The function of this verb Is to notify the COBOL Compller that all
source statements within a program have been read,

The construct for this Indicator is:

END=0QF - JOB,

The END-OF-JOB statement is for documentation only but |f used It
must be the last source program card in a COBOL deck, It Immediately
precedes the MCP END Control Card,

5-38

EXAMINE

EXAMINE,

The function of this verb |s to replace a specifled character, and/or
to count the number of occurrences of a particular character in a data
item,

The construct of this verb is:

EXAMINE data-name

TALLYIN {g_gggmg {nteraw } REPLACING BY {litera1-2 }]
UNTIL EIRST data-name-1 data-name=2

ALL
REPLACING LEADING } {llteral-B } {literal-h }
(UNTIL] EIRST data-name=-3 BY | data-name=4

The description of data-name must be such that USAGE is DISPLAY
explicitly or implicitly,

Each literal used in an EXAMINE statement must conslist of a single
DISPLAY character. Flgurative constants will automatically represent
a single DISPLAY character,

Examination proceeds as follows:

a. For items that are not numeric (4-bit), examination
starts at the left-most character and proceeds to the
right, Each 8-bit character in the Iten specifled by
the data-name |s examlned in turn, Any reference to
t he first character means the left-most character,

b, If an item referenced by the EXAMINE verb is numeric,
it must consist of numeric (8<bit) characters and may
possess an operatlional sign, Examination starts at
the left-most character (excluding the sign) and pro=-
ceeds to the right, Each character except the sign is
examined In turn., Regardless of where the sign is
physically located, it Is completely ignored by the
EXAMINE verb, Any reference to the first character
means the left-most numeric character,

The TALLYING option creates an Integral count (i.,e., 2 tally) which
replaces the value of a special reglster called TALLY, The count
represents the number of:

a, Occurrences of literal=1 or data-name-l when the
ALL option is used,

b, Occurrences of literal=1 or data=-name-l prior to

5-39

EXAMINE
cont

C.,

encountering a character other than literal-! or
data-name=-1 when the LEADING option is used,

Characters not equal to literal=1 or data-name-|
encountered before the first occurrence of literal-]
or data-name-1 when the UNTIL FIRST option is used.

When either of the REPLACING options is used (i.e., with or without

TALLYING)

a,

b.

Co.

the replacement rules are as follows:

When the ALL option 1s used, then literal=-2 or data-name=2
or literal-4 or data-name-4 |s substituted for each occur-
rence of literal-1 or data-name-1 or literal=-3 or
data-name=3,

When the LEADING option is used, the substitution of literal=2
or data-name-2 or literal-4 or data-name=4 terminates as soon
as a character other than literal-1 or data-name-1 or literal-
3 or data=-name-3 or the right-hand boundary of the data item
is encountered,

When the UNTIL FIRST option |s used, the substitution of
literal=2 or data-name=-2 or literal-4 or data-name-4 termi-
nates as soon as literal=1 or data-name-i1 or literal-3 or
data-name=-3 or the right-hand boundary of the data item |s
encountered,

When the FIRST option is used, the first occurrence of
literal-3 or data-name-3 Is replaced by literal=4 or
data-name=-4,

The field called TALLY Is a 5-digit field provided by the compiler,
Its usage is COMPUTATIONAL and will be reset to zero automatically

when the

5-40

EXAMINE,, . TALLY option is encountered,

EXIT

EXIT,
The functlon of thls verb is to provide a terminating point for a
PERFORM loop, whenever requlred,

The construct of this verb ist

EXIT.

If the EXIT statement !s used, It must be preceded by a paragraph-name
and appear as a single one-word paragraph. EXIT s documentational
only, but if used, must follow the rules of COBOL,

The EXIT Is normally used in conjunction with conditional statements
contained In procedures referenced by a PERFORM statement, This
allows branch paths within the procedures to rejoin at a common
return point,

If control reaches an EXIT paragraph and no associated PERFORM or
USE statement |s active, control passes through the EXIT point to
the first sentence of the next paragraph and is treated for all
intents and purposes as a NOP (No Operation).

5-41

GO TO

GO TO,.

The functlon of thls verb is to provide a means of breaking out of
the sequential, sentence by sentence, execution of code, and to
permit continuation at some other location indicated by the
procedure-name(s),

The construct of this verb has two options which are:

Qptlion 1:

G0 1Q) (procedure-name],

Qetion 2:

je1e] %Q;procedure-name-1 procedure-name=2 [procedure-name=3,,,)

DEPENDING ON data=-name,

Each procedure-name is the name of a paragraph or section in the
PROCEDURE DIVISION of the program,

In Option 2, GO TO,,, DEPENDING,., may specify up to 1023 procedure-
names in a single statement,

In Option 2, the data-name In the format following the words DEPENDING
ON must be a numeric elementary item described without any positions
to the right of the assumed decimal point, Furthermore, the value
must be positive In order to pass control to the procedure-names
specified, Control will be transferred to procedure-name-1 if the
value of the Identifier is 1, to procedure-name=-2 if the value is 2,
etc, If the value of the Identifier is anything other than a posi-
tive integer, or if its value is zero, or its value is higher than

the number of procedure-names specified, control will be passed to

the next statement In normal sequence, For example:

GO 7O MFG, RE~SALE, STOCK, DEPENDING ON $-0,

a f S-0 GQ T0 Procedure=-name

next sentence

1

0 next sentence
1 MF G

2 RE-SALE

3 STACK

4

next sentence

542

GO T0
cont

Whenever a GO TO statement (represented by Option 1) is executed,
control Is unconditionally transferred to a procedure-name, or

to another procedure-name if the GO TO statement has been changed
by an ALTER statement,

A GO TO statement is unrestricted as to where it branches to in a
segmented program, It can call upon any segment (fixed or over=-
layable) at either sectlon level or paragraph levels nested to
any depth within a section,

When, In Option 1, the GO TO is referred to by an ALTER statement,
the followlng rules apply regardless of whether or not procedure-
name is specified:

a. The GO TO statement must have a paragraph-name,

b, The GO TO statement must be the only statement in the
paragraph,

c., If the procedure-name is omitted, and If the GO TO statement
is not referenced by an ALTER statement prior to the first
executlion of the GO TO statement, the MCP wiil terminate the

' job and cause an error message reflecting an invalid address,

If a GO TO statement represented by Option 1 appears in an imperative

statement, It must appear as the only or the last statement in a
sequence of [mperative statements,

5-43

IF

IF.,

The function of this verb Is to control the sequence of commands to be
executed depending on either a condition, the class status of a field,
or the relative value of two quantlities, The purpose of a condition
Is to cause the object program to select between alternate paths
depending on the passing or failing of the test,

The conditions are subdivided into six major categories which are:

a. Simple conditional tests,
b, Conditional statements,

c, Relation tests,

d. Relation value tests,

e, Class tests,

f. Conditional variable tests,

SIMPLE CONDITIONAL TESTS, The simple conditional tests are contained
in option 1,

Qption 1:

lF condition-1 statement-1

CONDITIONAL STATEMENTS, A conditlional statement specifies that the
truth value of "yes" in a glven condlition is to be determined and that
subsequent action of the object program is contingent upon the resul-
tant value, READ and WRITE statements which specify an INVALID KEY
option, or arithmetic statements (ADD, COMPUTE, DIVIDE, MULTIPLY, and
SUBTRACT) whicH specify a SIZE ERROR option are considered as being
conditlional,

In Option 2, statement-1 or statement-2 can be either imperative or
conditonal, If conditlional, It can In-turn contaln conditional nested
statements to an arbitrary depth,

Qption 2:

1E condition { statement-1 } [{ %ig%&ﬂlﬁi }

{ statemen%-z }]

RELATION TESTS, A relation test involves a comparlison of two operands;
either of which can be a data-name, a literal, or a formula, The com-
parison of two literals Is not permitted, Comparison of elementary
numeric items Is permitted regardless of their individual USAGEs, A1l
other comparisons require that the USAGE of the items being compared be
the same, Group numeric ltems are defined to be alphanumeric, It is

5-44

I¥
cont

not permissible to compare an index-data-name against a literal or a
data-name, The format of relatlon test is shown in Option 3,

Optlon 3:

AV I

literal=1
1F < data-name-1 Is [NOT] EQUAL TQ
arithmetlc expression-1 LESS THAN
GREATER THAN
‘ EQUALS

literal=2
data-name=2

arithmetic expression=2

RELATIVE VALUE TESTS. The relative value test is an alternate way

of stating a comparison of the value zero with a formula, or with
data-name., An item or formula is POSITIVE only if -its value Is
greater than zero, An item or formula is NEGATIVE only if its value
!s less than zero, The value zero is considered neither POSITIVE nor
NEGATIVE, Thils form of comparison with zero !s not considered a re-
lational test. The format of relative value tests is as follows:

Qption b

{ data-name } ZERD
1F arithmetic expression Is [NQT] PQSITIVE
NEGATIVE

CLASS TEST, The class test is used to determine whether the contents
of the data-name Is made up entirely of NUMERIC or ALPHANUMERIC char-
acters, Ffor example:

JOHN DOE is ALPHABETIC (PC Xx(8)]
R, JOHN DOE 1s not ALPHABETIC [PC X(11)]
37373 is NUMERIC (PC 9(5)]
-37452 is NUMERIC [(PC S9(5)]
685,57 Is not NUMERIC (PC X(6)]

The format of the class test is as follows:

Qotion 5¢

| AFir T |
IF data-name IS [NQTJ] | ALPHABETIC

5-45

IF
cont

CONDITIONAL VARIABLE TESTS, A conditional variable test Is one in
which an Item is tested to determine whether or not the value
associated with a condition-name is present, The rules for com=-
paring a conditional variable with a conditional value are the same
as those for relation tests, The format for a condltional variable
test is:

Qetlon 6

JE [NOT] conditlion-name

The statement:

IF A IS NOT EQUAL TO B OR C OR D, GO TO paragraph-name=1
ELSE GO TO paragraph-name-2,

a, Condition=1, If A Is not egual to B, control will transfer
Immediately to paragraph-name-=1,

b, Condition-2, If A equals B, a test of C for inequality Is
set up, If C Is unequal, control transfers immediately to
paragraph=-name=-1; but If C Is also equal, a test of D for
inequality is set up, If D is unegual, control transfers
immediately to paragraphe-name=1; but if D is also equal,
program control transfers immediately to paragraph-name=-2,

¢, Conclusion, The above explanation reflects that a test
of field A versus the fields B OR C QR D for unequal status
in al]l fields during one operation is an impossibility when
using NOT/OR logic, The first data field reflecting in-
equality will cause a branch to be executed to paragraph-
name=1,

d. In the above example, had AND logic been applied, the
tests would have been accomplished In the very same
manner,

5-46

MOVE

MOVE []

The functlion of this verb Is to transfer data from one area of
memory to one or more data areas (receiving fields). The data
will be automatically edited or adjusted as to the applicable
PICTURE and USAGE clauses,

The construct of this verb is:

Option 1:
{literal-1 }
MOVE data-name=-1 JQ data-name-2 ([data=-name-3,,,]
Opglon 2:
{ Etkesroun g |
MOVE CORRESPON data=-name-1 10 data-name=-2

The MOVE statement without the CORR or CORRESPONDING option may not
be used to MOVE a group item if editing or conversion of elementary
items is desired, To do this, either the CORR or CORRESPONDING
option must be used, or each elementary item must be moved indi-
vidually, CORR is an acceptable substitute for CORRESPONDING,

If the CORR or CORRESPONDING option is used, selected sending fields
are MOVEd to selected receiving fields, Data-name-1 and data-name=-2
must be group items, A pair of data items, one from data-name-} and
one from data-name-2, correspond if the data items in both have the
same name and the same qualificatlon up to, but not including, data-
name-1 and data-name=2, At least one of the data items of both data-
name=1 and data-name=2 must be an elementary item, Neither data-name=-l
nor data-name-2 may be data ltems with levels 66, 77, or 88, Etach
data item which is subordinate to data-name-1 and data-name-2, and
which contains a RENAMES clause, is ignored, Furthermore, a data
ftem that is subordinate to data-name-1 and data=-name=2 and contains
a REDEFINES or OCCURS clause is ignored, However, data-name-1 and
data=-name-2 may have REDEFINES or OCCURS clauses or be subordinate

to data items with these clauses,

The CORR or CORRESPONDING option generates the following}
a, tlementary to elementary,
b, Elementary to group,

¢, Group to elementary MOVEs within the two data
descriptions,

5«47

MOVE
cont

Any MOVE in which the sending field and receiving items are elementary
Items is an elementary MOVE, Every elementary item belongs to one of
the following categories: alphabetic, numeric, alphanumeric, numeric
edited, or alphanumeric edited, These categories are discussed in
PICTURE, Numeric literals belong to the numeric (b-bit) category,

and none-numeric literals belong to the alphanumeric (byte) category,
The following rules apply to an elementary MOVE between these
categories:

a, In a MOVE of ALPHABETIC information to numeric field,
the results will be unpredictable,

b, A numeric edited, alphanumeric edited, or alphabetic data
item must not be MOVEd to a numeric or numeric edlted
data item,

€, A numeric or numeric edited data item must not be MOVEd
to an alphabetic item,

d, A numeric item whose implicit decimal point is not imme=
diately to the right of the least=significant digit must
not be MOVEd to an alphanumeric or alphanumeric edited
data item,

e, All other elementary moves are legal and are performed
according to the rules outlined below:

1) An alphanumeric to alphanumeric elementary MOVE
passes data constructed of bytes to a receiving
field constructed of bytes,

2) When an alphanumeric edited, alphanumeric, or alpha-
betic item is a receiving item, left justification
occurs and any necessary space filling takes place
to the right, I[f the length of the sending item is
greater than the length of the receiving item, the
right=most characters are truncated (see JUSTIFIED
for the inverse procedure),

3) When a numeric or numeric edited item is a receiving
item, alignment by decimal point and any necessary
zero filling takes place except where zeros are re=-
placed because of editing requirements, If the
receiving item has no operational sign, the absolute
value of the sending item is used, If the sending
item has more digits to the left or right of the
decimal point than the receiving item can contain,
the excess digits are truncated, If the sending
item contains non=-numeric characters, the following
actions oeccur:

a) Zone bits will be stripped if the receiving
field is COMP,

5-48

MOVE
cont

b) Zone bits may be replaced with the numeric
stick if the receiving field is DISPLAY,

L) Any necessary conversion of data from one form of
internal representation to another takes place during
the MOVE, along with any specified editing in the
receiving item,

Any MOVE in which one or both operands is a group item, regardless

of USAGE, is treated exactly as if it were an alphanumeric to
alphanumeric elementary MOVE, There will be no conversion of data
from one form of internal representation to another unless one of

the fields is an elementary COMPUTATIONAL item, Group COMPUTATIONAL
receiving fields are treated as if they are alphanumerically declared,

The following are examples of the MOVE statement:

a, The following examples show truncation of digits in
movinrg numeric information,

Receiving

Field

Picture 9999 9900 9009 990099 0099 99/99
Value 1234 1234 1234 1234 1234 1234
Receiving

Field 1234 3400 3004 120034 0034 12/34
Warning

Message No Yes Yes No Yes No

b, The following examples show alignment of decimal points in
moving numeric data, The symbol V denotes the assumed decimal

point given by item description PICTURE clause, but which is
not physically present,

sending field Receiving field
Before and After Before Afser
123V45 0020V20 0123V45
123V45 002v020 123V450
123VL45 00202V0 00123VL

c, The following example shows results of MOVE ALL statements,
The use of a figurative constant ZERO in a MOVE statement
will result in the entire DISPLAY or COMPUTATIONAL elemen-
tary receliving field being composed of zeros, with or without
the use of the reserved word ALL, Therefore, MOVE ALL ZEROS,
MOVE ZEROS, and MOVE ALL O are synonymous and will cause the
DISPLAY or COMPUTATIONAL elementary receiving field to be
composed of 8-bit or Lebit zeros respectively,

5-49

MOVE
cont

Five Position Receiving Fleld After Execution

Statement COMPUTATIONAL DISPLAY
MOVE ALL 9 99999 FOF9F9FIF9
(or "9")

MOVE ALL 57 57575 FSF7FSF7F5
MOVE ALL 057 05705 FOF5F7FOF5
MOVE ALL "ABC" * c1C2C3C1C2
MOVE ALL ZERQS 00000 FOFOFOQOFOFO
MOVE ALL O 00000 FOFOFOFOFO

The asterisk above designates the data as being unpredictable,

5-50

MULTIPLY

MULTIPLY,
The function of this verb is to multiply two operands and store the
results in the last-named field (which must be a numeric data-name),

The construct of this verb is:

{Hteral-l } {Hteral-2 }
MULTIPLY data-name=-] 2Y data=-name-2

(GIVING data-name=3] [RQUNDED]
(ON SIZE ERROR any statement]

A1l rules specified under the ADD statement regarding the presence of
editing symbols in operands, the ON SIZE ERROR option, the ROUNDED
option, the GIVING option, truncation, and the editing results apply
to the MULTIPLY statement, except the maximum operand size is 125
digits for the sum of two operands,

The data-names must be elementary item references, If GIVING is used,
the data description of data-name-3 may contain editing symbols, In
all other cases, the data-names used must refer to numeric items only,

If the GIVING option is used, the result of the multiplication replaces
the contents of data-name-3, otherwise, it replaces the contents of
data-name=2, If GIVING is not used, literal=2 is not permitted, i.e.,
data-name=2 must appear,

5«51

NOTE

NOTE,

The function of this verb is to allow the programmer to write exe-
planatory statements in his program which are to be produced on the
source program listing for documentational clarity,

The construct of this verb is:

Option 1 = Paragraph NOTE:

label, NOIE any comment,

Optlon 2 = Paragraph NOTE:

NOTE, any comment,

Qptlon 3 - Sentence NOTE:

NOTE any comment,

Any combination of the characters from the allowable character set
may be included in the character string of a NOTE statement,

If a NOTE sentence is the first sentence of a paragraph, the entire
paragraph is considered to be commentary, Either Option 1 or
Option 2 may be used as NOTE statements on a paragraph level,

If a NOTE statement appears as other than the first sentence of a
paragraph, only the sentence constitutes a commentary, The first
period after encountering the word NOTE will cause the compiler to
rgggme compilation unless the new sentence commences with the word
N .

Refer to page 7-3 of section 7, CONTINUATION INDICATOR, for an

explanation of notes (* or / in column 7) appearing anywhere within
the source program,

5-52

OPEN

OPEN,

The function of this verb is to initiate the processing of both
input and output files, The MCP performs checking or writing, or
both, of labels and other input-output operatlions,

The construct of this verb is:

QPEN
WITH LOCK [ACCESS)
{ INPUT file=name=1 [{jggxggggg } (file=name=2,,,]
WITH NQ REWIND
QUTPUT file-name=3 [WITH NQ REWIND] (file-name=bt ,,,]]
{ INPUT=0UTPUT
1-0 } file=-name-5 [file-name=6,,.])

[Q=1 file=name=7 [file-name-s...]]

Fille=names must not be those defined as being SORT files,

At least one of the options must be specified before a file can

be read, A statement of OPEN INPUT,.eueeeeOUTPUT s uvneeel/0unconves
0/l..4s00sscan appear in one source language card, Continuation of
source card lines is allowed,

The I-0, INPUT-0UTPUT and 0-1 options pertain to disk storage files,

The OPEN statement must be executed prior to the first SEEK, READ,
or WRITE statement for that file,

A second OPEN statement for a file cannot be executed prior to the
execution of a CLOSE statement for that file,

A file area will not exist in memory until an OPEN statement is
executed, which in turn, causes the MCP to allocate memory for the
file work area, and any alternate areas or buffers, The MCP will
obtain the needed information from the File Parameter Block to
determine the file's characteristics, Once the file has been
OPENed, memory wil)l remain allocated until the file is
programmatically CLOSEd,

The OPEN statement does not obtain or release the first data record,
A READ or WRITE statement must be executed to obtain or release,
respectively, the first data record,

When checking or writing the first label, the user's beginning label
subroutine is executed if it Is specified by a USE statement,

5-53

OPEN
cont

The REVERSED and the NO REWIND options can only be used with
SEQUENTIAL, single reel, tape files,

If the peripheral ASSIGNed to the file permits rewind action, the
followling rules apply:

a, When neither the REVERSED nor the NO REWIND option Is
specified, execution of the OPEN statement for the file
will cause the file to be positioned ready to read the
first data-record,

b, When elither the REVERSED or the NO REWIND option s
specified, execution of the OPEN statement does not
cause the file to be positioned, When the REVERSED
option is specified, the file must be positioned at
its physical end, When the NO REWIND option is
specified, the file must be positioned at its

physical beglinning.

¢, When the NO REWIND option is specified, it applies
only to sequential, single ree]l files stored on
magnetic tape units,

When the REVERSED option is specified, the subsequent READ state~
ments for the file makes the data-records available In reverse
record order starting with the last record, Each record will be
read into lts record-area, and will appear as if it has been read
from a forward moving file,

If an input file is designated with the OPTIONAL clause in the
Flle=Control paragraph of the ENVIRONMENT DIVISION, the ob ject
program causes an interrogation to the MCP for the presence or ab-
sence of a pertinent file, If this flle Is not present, the first
READ statement for this file causes the Imperative statement in the
AT END clause to be executed,

The 1-0 or INPUT-0UTPUT option permits the OPENIng of a disk file
for input and or output operations, This option demands the exise=
tence of the file to be on the disk and cannot be used if the file
!s being initially created, That is, the file to be OPENed must
be present In the MCP Disk Directory, or has previously been
created and CLOSEd in the same run of the program,

When the 1-0 or INPUT-QUTPUT optlon Is used, the MCP immediately
checks the MCP Disk Directory to see if the file-name is present,
or has been created and CLOSEd In the same program run, The
system operator will be notified in its absence, and the file

can then be loaded if It is available or the program can be DSed
(Discontinued), If the decision is to load the file, the operator
does so and then notifles the MCP to proceed with the program by

a "mix=index OK" message,

554

QPEN
cont

The O-1 option is identical to OPEN 1-0 with the exception being
that the file Is agsymed to be a new file to the Disk Directory,
The OPEN O-1 option will short cut the usual method of initially
creating I-0 work files within a program, e,g., OPEN QUTPUT,
write record(s), CLOSE WITH RELEASE, OPEN 1-0, etc, The 0O-I
option does not, nor was it intended to, replace the OPEN [-0
option, since the use of OPEN O-1 assumes that a pew file is to
be created each time,

When processing mass storage files for which the access mode Is
sequential, the OPEN statement supplies the initial address of the
first record to be accessed,

The contents of the data-names specified In the FILE-LIMIT clause
of the File=Control paragraph (at the time the file is OPENed) is
used for all checking operation while that file is OPEN, The
FILE-LIMIT clause is dynamic only to this extent,

When an OPEN QUTPUT statement i{s executed for a magnetic tape file,
the MCP searches the assignment table for an available scratch tape,
writes the labe)l as specified by the program, and executes any USE
declaratives for the flle, If no scratch tape is available, a
message to the operator is typed and the program is suspended until
the operator mounts one, or one becomes available due to the
termination of a multiprocessing program,

handled

OPENing of subsequent reels of multi-reel tape files is
ideration

automatically by the MCP and requires no special cons
from the programmer,

5-55

PERFORM

PERFORM,

The function of this verb is to depart from the normal sequence
of execution In order to execute one or more procedures, either
a specified number of times or until a specified condition is
satisfied, Following this departure, control is automatically
returned to the normal sequence,

The construct of this verb has four options which are:

Qetlgn 1:

For { ThRgugs |]
PERFORM procedure-name=! THROUGH procedure-name=-2

Optlon 2:

e ga Thducs |
PERFORM procedure=-name-| [{ THR H procedure=-name=2

{lnteger-l }
data-name-=1

LIMES

Option 3:

IHRY
PERFORM procedure=-name-1 [{ IHROUGH procedure=-name=2]

UNTIL condition=1

Qetlon 4:
IHRY ’
PERFORM procedure-name-1 [{ JHROUGH } procedure-name=2]

index=-name=-2
VARYING {index-name-l} ERQM <{data-name-2 } BY

data-name= numeric=1iteral=1)

{data-name-B index=name=3 }

numeric-literal=2 } UNTIL conditlon=l [AFTER {data-name-h

5-56

PERFORM

cont
index=name-=4
EROM data-name=-5 B8Y {data-name-e }
numeric=]literal=3 numeric=literal=4

index=name=5

UNT condition=2 } [:Aﬂlﬁﬁ {data-name-7 } ERQM
{Index-name-é

data-name=-8 } BY {data-name-9 }
numeric=-literal=5 numeric-literal-6

UNTIL conditlion=3

PERFORM is the means by which subroutines are executed in COBOL,

The subroutines may be executed once, or a number of times, as deter=-
mined by a variety of controls, A given paragraph may be PERFORMed
by itself, in conjunction with another paragraph, control may pass
through it in sequential operation, and it may be the object of a

GO statement, all in the same program, The range of a PERFORM starts
with the first executable statement of procedure-name-1 and continues
in logical sequence through the last executable statement of:

a, THRU procedure-name-2, if specified, automatically sets up
a return to the statement following the PERFORM statement,

b, Procedure-name-1 only, |f procedure=-name=2 is not specified
automatically sets up a return to the statement following
the PERFORM statement,

¢, The automatic return Is implied as Immediately following
the last statement in a PERFORM range,

Each procedure-name is the name of a sectlon or a paragraph in
the PROCEDURE DIVISION,

EacH data-name is a numeric elementary item described iIn the DATA
DIVISION, A1l literals must represent numeric items with no
positions to the right of the assumed decimal point,

There is no necessary relationship between procedure-name=-1 and
procedure-name-2 except that a consecutive sequence of operations
is to be executed beginning at procedure-name-1 and ending with

the execution of procedure-name-2, In particular, GO and PERFORM
statements may only occur within procedure-name-1 and before the
end of procedure-name-2, If there are two or more direct paths to
the return point in procedure-name-1, then procedure-name-2 may

be the name of a paragraph consisting solely of the EXIT statement,
to which all of the procedure-name-1 paths must lead,

5«57

PERFORM
cont

If the object program control passes to procedure-name-1 or proces-
dure-name-2 from a statement other than a PERFORM, the procedure(s)
will be accomplished and control will fall through to the next
sentence following the procedure(s), If procedure-name=2 consists
of an EXIT, program control wlill pass to the next sentence
following procedure-name-2,

If a statement within procedure-name=-1 or procedure-name=-2 contalns
a nested PERFORM, object program control will pass to the procedure-
name contalned In the nested statement and the procedure will be
accompl ished, Program control will automatically return to the

next sentence following the executed PERFORM statement, Nested
PERFORM statements are allowed to any reasonable depth, However,
the procedure named must return to the statement following the
previously executed PERFORM and cannot contain a GO TO out of range
of procedure-name-1 or procedure-name=2,

A PERFORM statement Is not restricted by overlayable segment
boundries and may reference a procedure-name anywhere within
the PROCEDURE DIVISION,

Option 1 1s the basic PERFORM statement, A procedure referred to
by this type of PERFORM statement is executed once and then control
passes to the statement following the PERFORM statement,

Option 2 is the TIMES option and, when used, the procedures are
performed the number of times specified by data-name=-1 or integer-1,
Data-name=1 cannot be described as larger than 6 digits In length,
The value of data-name-1 or integer-1 must be positive, Control is
transferred to the statement following the PERFORM statement, If
the value is zero, control passes immediately to the statement
following the PERFORM sentence, Once the PERFORM statement has
been Initiated, any reference to or manipulation of data-name-|

will not affect the number of times the procedures are executed,

Option 3 is the UNTIL option, The specified procedures are per-
formed unt!l the condition speciflied by the UNTIL condition is TRUE,
At this time, control is transferred to the statement following the
PERFORM statement, If the condition is TRUE at the time that the
PERFORM statement is encountered, the speciflied procedure is not
executed,

Option 4 is the VARYING option, This option is used when it Is
desired to augment the value of one or more data-names or Index-
names in an orderly fashion during the execution of a PERFORM
statement, When index-names are used, the FROM and BY clause
have the same effect as in a SET statement,

In Option 4 where only one condition is required to control the
number of jterations that a procedure Is to be PERFORMed, the
following actions take place:

a, Data-name-! I|s set at the start of the PERFORM to a
starting value as contalned in data-name-=2 (or numeric-

5-58

PERFORM
cont

literal=1)o

b, Condition-! Is compared for an EQUAL condition, If
condition=-1 |s true, control passes to the next
statement,

c. Procedure-name w!ll be executed one time,

d, Data-name-3 s added to the contents of data-name-1,
e, Loop to step b above,

The above cycle continues until an equal comparison occurs, at which
point program control directly passes to the next sentence following
the executed PERFORM statement,

In Option 4 where two conditions are required to control the number
of lterations that a gliven procedure is to be PERFORMed, the
following actions occur:!

a, Data-name=1 and data-name-4 are set at the start of the
PERFORM to starting values as contained in data-name-2
(or numeric-literal=1) and data-name=-5 (or numeric=-

literal=3) respectively,
b, Condition-1 |s compared to data-name=] and:

1) If an equal condition occurs, control is passed to
the next sentence following the executed PERFORM

statement, or else!
2) Condition=2 is compared to data-name=-4 and:

a) If an equal condition occurs, data-name=-4 is set
to the value contained in data-name-5, Data-name-3
is added to the data-name-1 and loop to step b above,
or else:

b) Procedure-name will be executed one time, after which
data-name-6 }s added to data-name-4 and loop to step
a above,

The above cycle continues untll an equal comparlison occurs, at which
point program control directly passes to the next sentence following
the executed PERFORM statement,

NOTE
Data=-name=3, data-name=-6 and data-name=9
cannot contain zeros,

In Option 4 where three conditions are required to control the number
of iteratlons that a glven procedure Is to be PERFORMed, the mechanism
ls the same as for two-conditional control except that data-name=7 goes
through a complete cycle each time that data-name=-6 |s added to data-

5«59

PERFORM
cont

name-4, which in turn goes through a complete cycle each time that
data-name=-1 |s varied,

After the completion of Option 4, data-name=4 and data-name-7 contain
their initial values, while data=-name-1 contains a value which exceeds
its last used setting by one increment or decrement ynless condition=|
s TRUE when the PERFORM statement is entered, in which case data-
name-1, data-name-4 and data-name-7 all contain their initial values,

Since the return control iInformation is placed In the stack rather than
directed through instruction address modification, a PERFORM statement
executed within the range of another PERFORM is not restricted in the
range of paragraph names it may include, The examples shown below

are permitted and will execute correctly,

x PERFORM a THRU m x PERFORM a THRU m x PERFORM a THRU m
a a a
d PERFORM f THRU j d PERFORM f THRU j f ec—
f m m
J f — j —
m] — d PERFORM f THRU
x PERFORM a THRU m x PERFORM a THRU m
a a
d PERFORM f THRU j d IF condition THEN
f IF condition THEN = PERFORM a THRU m
PERFORM a THRU m m
m
J

5-60

READ

READ,
The function of this verb is twofold, namely:?

a, When processing sequertial input files, a READ statement
will cause the next sequential record to be moved from
the Input buffer area to the actual work area, thus
mak ing the record avallable to the program, If the file
has been declared BLOCKED, or, If an ALTERNATE AREA has
been ASSIGNed this will be in addition to the normal
buffer,

A1l sequentlal records will be physically read into the
buffer area of the file, Physical READs are performed

as a functlion of the MCP, The READ statement permits the
performance of a specified statement when an end-of=file
condition is detected by the MCP,

b, For random file processing, the READ statement communicates
with the MCP to explicitly cause the reading of a physical
record from a disk file and also allows performance of a
specified imperative statement If the contents of the
associated ACTUAL KEY data item is found to be invallid,

The construct of this verb Is:

AT END
READ file-name RECORD [INTIQ data=name] [‘{lﬂxALln KEY }

any statement]

The AT END of file clause is used only for non-disk files or for
disk flles being processed in the seguential access mode, If no

AT END or INVALID KEY clause is stated, and one of these conditions
occurs, the program will be terminated with a DS or DP message,

If, during execution of a READ statement with AT END, the logical
End-of-File is reached and an attempt is made to READ that file,
the statement specified In the AT END phrase is executed, After
the execution of the imperative statement of the AT END phrase,

a READ statement for that file must not be given without prior
executlion of a CLOSE statement and an OPEN statement for that
fi‘en

When the AT END clause Is specified in a conditional sentence,
all exits within the sentence are controlled by using the rules
pertaining to the matching of IfF,,,ELSE palrs, For example:

IF AAA = BBB THEN READ FILE-A, AT END
GO TO WRAP-UP, ELSE STOP RUN,

a, When AAA does not equal BBB, control will be passed
to STOP RUN,

5-61

READ
cont

b. When AAA equals BBB, FILE-A is read, end-of=-file is
tested and If the result is "TRUE" program control
will be transferred to the WRAP-UP procedure, however,
a result of "FALSE" will cause program control to be
transferred to the next sentence,

The INVALID KEY applies to files that are ASSIGNed to disk, The
access of the file Is controlled by the value contained in ACTUAL
KEY.

An AT END or INVALID KEY clause myst be specified when reading a
file described as containing FILE=-LIMITS,

The INTO option may only be used when the input file contains
records of one type, The data-name must be the name of a WORKING-
STORAGE area or output record area,

An OPEN statement must be executed for a file prior to the exe=-
cution of the first READ statement for that flle,

When a file consists of more than one type of logical record,
these records automatically share the same storage area and are
equivalent to an implicit redefinition of the area, Only the
Iinformation that is present In the current record is available,

If the INTO option is specified, the current record |s MOVEd from
the input area to the area specified by data-name according to the
rules for the MOVE statement without the CORRESPONDING option, If
multiple 01 levels are declared In the file description, the size
of the first 01 level Is used,

When the INTO option Is used, the record being read is avallable
in both the data area assocliated with data=name and the input
record area,

If a file described with the OPTIONAL clause |s not present, the
Imperative statement in the AT END phrase !s executed on the first
READ, The standard End-of-Flle procedures are not performed, (See
the OPEN and USE statements, and the FILE-CONTROL paragraph in the
ENVIRONMENT DIVISION,)

If the end of a magnetic tape file is recognized during execution
of a READ statement, the following operations are carried out:

a, The standard ending reel label procedure and the user's
ending reel label procedure, if specified by the USE
statement, are carried out, The order of execution of
these two procedures !s specified by the USE statement,

b, A tape swap is performed,

¢, The standard beginning reel label procedure and the
user's beginning label procedure, If specified, are

5-62

READ
cont

executed, The order of execution |s again specified
by the USE statement,

d, The first data record on the new reel is made available,

READ with INVALID KEY is used for disk files in the random access
mode, The READ statement implicitly performs the functions of the
SEEK statement, except for the function of the KEY CONVERSION option
for a specific disk file, If the contents of the associated ACTUAL
KEY data item Is out of the range indicated by FILE LIMITS, the
INVALID KEY phrase will be executed,

For random disk files, the sensing of an INVALID KEY does not
preclude further READs on that file nor need It be closed and
reopened before doing so,

5-63

RELEASE

RELEASE,
The function of this verb |s to cause records to be transferred to
the initial phase of a SORT operation,

The construct of this verb Is:

RELEASE record-name [EROM data=-name]

A RELEASE statement may only be used within the range of an input
procedure associated with a SORT statement,

In the FROM option, the data-name must refer to a WORKING-STORAGE,
or an [nput-record area,

Record-name and data-name must name different memory areas when
specified,

The RELEASE statement causes the contents of record-name to be
released to the Initial phase of a sort., Record-name will be
transferred to the specified sort-file (SD) and becomes controlled
by the sort operation,

In the FROM option, the contents of data-name are MOVEd to recorde-
name, then the contents of record-name are released to the Initilal
phase of a sort, Moving takes place according to the rules specified
for the MOVE statement without the CORRESPONDING option., The record-
name area will not contalin intelligible data after the MOVE, however,
the information In data-name is still avallable,

After the RELEASE has been executed, record-name is no longer avail-
able, When control passes from the input procedure, the SD file
consists of all those records that were placed in It by the executlon
of RELEASE statements,

5-64

RETURN

RETURN,
The function of this verb Is to obtain sorted records from the final
phase of a SORT operation,

The construct of this verb Is:

REIURN file-name RECORD [INIQ data-name]

[AT END any statement]

Flle-name must be a sort file with a Sort File Description (SD)
entry in the DATA DIVISION,

A RETURN statement may only be used within the range of an output
procedure associated with a SORT statement for file-name,

The INTO optlon may only be used when the input file contains just
one type of record, The data-name specified must be the name of
a WORKING=-STORAGE, or an output-record area,

Records automatically share the same area when a file consists of
more than one type record and only the Information pertinent to the
current record s avallable,

The executlon of the RETURN statement causes the next record, In
the order specified by the Keys listed in the SORT statement, to

be made available for processing In the record area associated with
the SORT file (SD).

Moving is performed according to the rules specified for the MOVE
statement without the CORRESPONDING option,

When the INTO option is specified, the sorted data Is avallable
In both the input-record area and the data-area specified by
data=-name,

RETURN statements may not be executed within the current SORT
output procedure after the AT END clause has been executed,

565

SEARCH

SEARCH,

The function of this verb Is to cause a search of a table to locate
a table-element that satisfies a speciflic condltion and, In turn,
to ad just the associated index-name to indicate that table-element,

The construct of this verb has two options which are:

Qetion 1

{ index-name=-1 }]
SEARCH data-name-| YARYING data-name-2

(AT END any statement]

{'imperattve statement=2 }

NEXT SENTENCE

WHEN condition-1

Imperative statement-3 }]
[3 I)

[:ﬂﬂgﬁ condition=2 ‘{NEXI SENTENCE

Qotlion 2:

SEARCH ALl data-name-3 [AT END any statement=4)

imperative statement-5 }

WHEN condition=3 {NE.&I SENTENCE

Data-name-1 and data-name-3 may not be subscripted or indexed, but
their descriptions must contain an OCCURS clause and an INDEXED BY
option,

When Option 2 is specifled, the description of data-name=3 may
optionally contain the ASCENDING/DESCENDING KEY clause,

When using the VARYING option, data-name-2 must be described as
USAGE IS INDEX, or as the name of a numeric elementary {tem de-
scribed without any positions to the right of the assumed decimal
point, Data-name=-2 will be incremented at the same time as t he
occurrence number (and by the same amount) represented by the
Index-name associated with data-name-1,

When using Option 1, condition-1, condition=2, etc., may be comprised
of any conditional as described by the IF verb,

When using Option 2, conditlon=3 may consist of a relatlonal condition
incorporating the relation EQUAL, or a conditlon-name condition where
the VALUE clause that describes the conditlion-name contains only a
single literal, Condition=3 may be a compound condition formed from
simple conditions of the type just mentioned, with AND being the only

5-66

SEARCH
cont

acceptable connective,

When using Option 2, any data-name that appears in the KEY optlon
of data-name-3 may appear as the subject Qr object of a test, Qr
be the name of the conditional variable with which the tested con-
dition-name s assoclated,

When using Option 1, a serlal type search operation takes place,
starting with the current index setting. The search |Is immediately
terminated if, at the start of execution of the statement, the
index-name associated with data-name-1 contains a value that corres-
ponds to an occurrence number that Is greater than the highest per-
missible occurrence number for data-name-1, Then, [If the AT END
option is specifled, statement-1 is executed; If AT END is not
specified, control passes to the NEXT SENTENCE,

When using Option 1, If at the start of execution of the SEARCH
statement, the index-name assoclated with data-name-~l contains a
value that corresponds to an occurrence number that is pot greater
than the highest permissible occurrence number for data-name=1, the
SEARCH statement wlll begin evaluating the conditions In the order
that they are written, making use of Index settings wherever specl-
fled, to determine the occurrences of those ltems to be tested, If
none of the conditions are satisfied, the iIndex-name for data-name-]
s incremented to obtaln a reference to the next occurrence, The
process |s repeated using the new index-name setting for data-name=~|
which corresponds to a table element which exceeds the last setting
by one more occurrence untl]l such time as the highest permissible
occurrence number is exceeded, in which case the SEARCH terminates
as iIndicated in the previous paragraph,

When using Option 1, If one of the conditions Is satisfied upon
its evaluation, the SEARCH terminates immediately and the impera-
tive statement assoclated with that condition Is executed; the
index-name remains set at the occurrence which caused the
condition to be satisfied,

In Option 1 and 2, if the specified imperat ive statements do not
terminate with a GO statement then program control will pass to
the next sentence after the execution of the Imperative statement,

In the VARYING option, If index-name-1 appears In the INDEXED BY
option of data-name-1, then gfhat index-name will be used for the
SEARCH, otherwise, the first Index-name given in the INDEXED BY
option of data-name=-1 will be used, 1f index-name-1 appears in

the INDEXED BY option of another table entry, the occurrence number
represented by index-name-1 is incremented by the same amount as,
and at the same time as, the occurrence number represented by the
Index-name assoclated with data-name-1 Is incremented,

In Option 2, the initlal setting of the index-name for data-name=-3
ls ignored, the effect belng the same as i1f it were SET to 1,

5-67

SEARCH
cont

In Options 1 and 2, If data-name=-1 and data-name=3 is an ltem in a
group, or a hierarchy of groups, whose description contains an
OCCURS clause, then each of these groups must also have an Index=
name assoclated with it, The settings of these index-names are used
throughout the execution of the SEARCH statement to refer to data-
names-1 and 3, or items within its structure, These index settings
are not modified by the execution of the SEARCH statement (unless
stated as index-name-1) and only the index=name associated with
data-name-1 and 3 (and data-name-2 or index=name=1) |s Incremented
by the SEARCH, Fligure 5-1 provides an example of SEARCH operation
as related to Option 1,

5-68

SEARCH
cont

AT END*

INDEX SET:
HIGHEST PERMISSIBLE
OCCURRENCE NUMBER

GREATER THAN ACCOMPLISH
—$4 IMPERATIVE [—®»
STATEMENT-1

TRUE ACCOMPLISH
#{ IMPERATIVE |—# >see *%
STATEMENT- 2

CHECK
CONDITION-1

TRUE ACCOMPLISH
¥ IMPERATIVE -
STATEMENT- 3%

CHECK
CONDITION-2%*

INCREMENT INDEX-
NAME FOR DATA-
NAME-1 OR INDEX-
NAME IF APPLICABLE

l

INCREMENT INDEX-
NAME (FOR A DIFF-
ERENT TABLE) OR

DATA-NAME-2#%

* These operations are only included when called for in the SEARCH
statement.

%% Each of the control transfers is to NEXT SENTENCE unless the im-
perative statement ends with a GO statement.

Figure 5-1, Example of SEARCH Operation
Relating To Option 1

5-69

SEEK

SEEK,
The function of this verb is to initlate the accessing of a disk
file record for subseguent reading and/or writing.

The construct of this verb is:

SEEK file-name RECORD [WITH KEY CONVERSION]

The specificatlon of the KEY CONVERSION clause indicates that the
user provided USE FOR KEY CONVERSION section in the DECLARATIVE
SECTION Is to be executed prior to the execution of the SEEK state-
ment, If there are no DECLARATIVES for KEY CONVERSION in a SEEK
statement, then the KEY CONVERSION clause will be lgnored,

A SEEK statement pertains only to disk storage files in the random
access mode and may be executed prior to the executlion of each READ
and WRITE statement,

The SEEK statement uses the contents of the data-name in the ACTUAL
KEY clause for the location of the record to be accessed, At the
time of execution, the determination Is made as to the valldity of
the contents of the ACTUAL KEY data item for the particular disk
storage file, If the key is invalld, the Imperative statement in
the INVALID KEY clause of the next executed READ or WRITE statement
for the associated file is executed,

Two SEEK statements for a disk storage file may logically follow
each other, Any validity check assocliated with the first SEEK
statement is negated by the execution of a second implicit or
implied SEEK statement,

An implied SEEK Is executed by the MCP whenever an expllicit SEEK
Is missing for the speciflied record, An implied SEEK never executes
any USE KEY CONVERSION Declaratives,

If a READ/WRITE statement for a flile ASSIGNed to DISK is executed,
but an explicit SEEK has not been executed since the last previous
READ or WRITE for the fille, then the Implied SEEK statement |s
executed as the first step of the READ/WRITE statement,

An explicit alteration of ACTUAL KEY after the execution of an
expliclit SEEK has been performed, but prior to a READ/WRITE, will
cause the initiation of an Implied SEEK of the initial record in
the sequence, For example,

a, If ACTUAL KEY is 10, then
b, READ record 10, then

¢, MOVE 50 to ACTUAL KEY, then
d, WRITE record 50,

5-70

SEEK
cont

An implied SEEK of record 50 will be performed between actions c.
and d, above,

5-71

SET

SET,

The function of this verb Is to establish reference points for table
handling operations by setting index-name values associated with
table elements,

The construct of this verb has two options which are:

{index-name-!l {Index-name-Z}
SET data-name-1 | data-name=2 oo
Slndex-name-B l
IQ data=-name-3
lliteral-l 5
QOptlion 2:

SET index-name-4 [index-name-5 ,,,]

UP BY data-name-4
DOWN BY literal=2

All data-items must be either index-data-names or numeric elementary
Items described without any positions to the right of the assumed
decimal point, exceépt that data-name=4 must Dot be an index-data-name,
When a 1iteral Is used, it must be a positive Integer, Index-names
are considered related to a given table and are def ined by beling
specifled in the INDEXED BY clause,

An Index-data-name must be defined In the WORKING-STORAGE section with
the USAGE IS INDEX clause,

An Index-name must be defined in an OCCURS clause,
An index-data-name cannot be SET4seT0,,s a literal or to a data-name,

A data-name cannot be SET.+.70,.. an index~-data-name, a literal or
another data=-name, A data-name can only be SET to an index-name,

Literals cannot be SET,,,TO anything,

The SET verb appears somewhat similar to the MOVE but has a major
difference in that the receiving fileld appears as the first
operand(s) in the statement, Ffor example:

SET A TO B

5-72

SET
cont

The above statement causes the contents of A to change to the value
contalned in B, Series statements may result In more efficlent
object code than separate statements, For example:

SET A, C, D, E, F 70 8B

Depending on the operands in a SET statement, code generated will
vary from a single MVN through a series of MVN, MUL and DIV in-
structions, Because of this, care must be used in determining
what type of receiving operand Is going to be SET to what type

of sending operand, since this is the primary step in calculating
the location within the row, For example:

SET INDEX-DATA=-NAME-A TO INDEX-A
SET INDEX-B TO INDEX-DATA=-NAME-A

Both of the above statements are, by COBOL def inition, plain MOVEs
and unless the two indexes refer to rows of exactly the same size,
will probably not result in an address which the programmer has
perceived, If Instead, the statement had been written: SET INDEX-
B TO INDEX-A, the necessary MOVE, DIVIDE and MULTIPLY instructions
would be generated to reduce the gending" Index to a relative
occurrence (subscript) and then to expand it to the receiving
address,

5-73

SORT

SORT,

The function of this verb is to sort an input flle of records by
transferring such data Into a disk sort-file (work file) and sorting
those records on a set of specified keys, The final phase of the
sort operation makes each record avallable from the sort=-file, In
sorted order, to an output procedure or to an output file,

The construct of this verb |s:

SORT file-name-1
i J
RUN ON ERRQR

END

ARG |
ON { ASCENDIN KEY data-name=1 [data-name-2,,,]

RREROTE® |
[ON { ASCEND ING KEY data-name-3 [data-name-4,,,]

JHRY
INPUT PROCEDURE IS section-name-1 [{:lﬂﬁﬂuﬁﬁ } section-name-z}
LOCK
MSING file-name=2 PURGE
RELEASE
{ ThGuan |
QUTPUT PROCEDURE IS section=name=3 JHROUGH f section-name-i

aruisg | s |
G file-=name-3 RELEASE

Flle-name-1 must be described in a Sort File Description (SD) entry
in the DATA DIVISION and file=names=2 and 3 must be described in a
File Descriptlion (FD) entry,

Section-name-1 specifies the name of the lnpyt procedure to be used
before passing each record to the sort-file, while section-name=-3
specifies the outpyt procedure to be used to obtain each sorted
record from the sort-file,

Each data-name must represent data-ltems described In records asso-
ciated with fllesname-1, Data-names following the word KEY are listed
from left to right In the order of decreasing significance wlithout
regard as to their division into optional KEY clauses,

The PROCEDURE DIVISION of a source program may contaln more than
one SORT statement appearing anywhere In the program, except In
the DECLARATIVES portion or in the input/output procedures
assocliated with a sort statement,

5-74

SORT
cont

The lnput procedure must consist of one or more sections that are
written consecutively and which do not form a part of an output
procedure, The input procedure must include at least one RELEASE
statement in order to transfer records to the sort-file after the
object program has accomplished the required input data manipulation
specified In the procedure, Input procedures can select, create
and/or modify records, one at a time, as speciflied by the
programmer, ‘

There are three restrictions placed on procedural statements within
an input or output procedure: ’

a. The procedure myst not contain any SORT statements,

b, The input or output procedures must NoL contain any
transfers of program control outside the range of the
procedure; ALTER, GO and PERFORM statements within the
procedure are not permitted to refer to procedure=-names
outside of the input or output procedure,

c., The remainder of the PROCEDURE DIVISION must not contain
any transfers of program control to points within the
input or output procedure; ALTER, GO, and PERFORM state-
ments in the remainder of the PROCEDURE DIVISION must not
refer to procedure-names wlithin the range of the Input
or output procedure,

The gutbut procedure must consist of one or more sections that are
written consecutively and which do not form a part of an Input
procedure, The output procedure must include at least one RETURN
statement In order to make each sorted record avallable for pro-
cessing after the file has been sorted and the object program has
accompl ished the required output data manipulation specified in
the procedure, Output procedures can select, create and/or modify
records, one at a time, as they are being returned from the
sort-file,

When the ASCENDING clause is specified, the sorted sequence of the
affected records is from the lowest to the highest value according
to the binary collating sequence, per specified KEY,

When the DESCENDING clause |s specifled, the sorted sequence of the
affected records |s from the highest to the lowest value according
to the binary collating sequence, per specified’KEY. »

The SD record description.of the sort-file must contain fully def ined
data-name KEY items in the relative positions of the record as applli=-
cable., A rule to follow when using these KEY items Is that when a
KEY {tem appears in more than one type of record, the data-names must
be relatively equivalent in each record and may not contain, or be
subord Inate to, entrles containing an OCCURS clause,

.

5-75

SORT
cont

When an INPUT procedure is specified, object program control will be
passed to that procedure automatically as an implicit function of
encountering the generated SORT verb object code compiled into the
program, The compiler will insert a return-to-the-sort mechanism

at the end of the last section in the Input procedure and when pro-
gram control passes the last statement of the Input procedure, the
records that have been RELEASED to file-name-1 commence being sorted,

If the USING option Is specified, all records residing in file-name=-2
will be automatically transferred to file-name=-1 upon encountering
the generated SORT verb object code, At the time of executlion of

the SORT statement, file-name-2 must not be OPEN, The SORT statement
automatically performs the function necessary to OPEN, READ, USE and
CLOSE file-name-2, If file-name-2 is a disk file, it must be in the
Disk Directory before the SORT Intrinsic Is called,

When an outpyt procedure is speciflied, object program control will

be passed to that procedure automatically as an Implicit function
when all records have become sorted., The compliler will insert a
return-to-the-ob ject program mechanism at the end of the last sectlion
In the output procedure and when program control passes the last
statement of the output procedure, the object program wlll execute
the next statement following the pertinent SORT statement,

If the GIVING option Is specified, a1l sorted records residing in
file-name-1 are automatically transferred to the OUTPUT file as
specified in file-name-3, At the time of execution of the sort
statement, file-name-3 must not be OPEN, Flle-name-3 will be
automatically OPENed before the sorted records are transferred from
the sort-file and in turn, will be automatically CLOSEd after the
last record In the sort-file has been transferred,

The ON ERROR option Is provided to allow programmers some control
over irrecoverable parlity errors when INPUT/OUTPUT PROCEDURES are
not present in a program, PURGE will cause all records in a block
contalning an irrecoverable parity error to be dropped and pro-
cessing will be continued after a SPO message giving the relative
position In the file of the bad block has been printed, This option
is always assumed if no other has been defined, RUN will cause the
bad block to be used by the program and will provide the same SPO
message as defined for PURGE, END will cause the usual DS or DP

SPO message,

The PURGE, LOCK, and RELEASE optlions may be used to specify the type
of file close on file-name-2 and file-name-3 (see CLOSE, page 5-25),
The options only apply to the USING/GIVING options.

Example:
SORT file=-name=1 ASCENDING KEY data-name=1

USING file-name-3 PURGE
GIVING file-name-=3 LOCK,

5-76

SORT
cont

Beginning and ending label USE procedures are provided as follows
when INPUT/OUTPUT PRCCEDURES are present in tne SORT statement:

a, OPEN INPUT file-name,
USE, + . (The programmer's USE procedure will be invoked),

b. OPEN QUTPUT file=name,
USE, . +» (The programmer's USE procedure will be Invoked).

c., CLOSE INPUT filee=name,
USE, . . (The programmer's USE procedure will be Iinvoked,

however, the contents of the ending input label will not
be available to the USE procedure),

d., CLOSE QUTPUT file=name,
USE. + «» (The programmer's USE procedure wlll be invoked,
however, the ending label will have been written prior
to executing the USE procedure),

NOTE
The above actlons provide USE on label

facilitles at hbeginning and gndling of
files, but not when switching reels of
multi-reel flles,

5-77

STOP

STOP,
The functlon of this verb Is to halt the object program tempo-
rarily or to terminate execution,

The construct of this verb Is:

§ BRUN }
2I0P | literal

If the word RUN Is used, then all files which remain OPEN will be
CLOSED automatically, Files ASSIGNED to DISK wlll be CLOSED WITH
PURGE and all others will be CLOSED WITH RELEASE, All storage
areas for the object program are returned to the MCP and the job
is then removed from the MCP mix,

The STOP RUN is not used for temporary stops within a program, STOP
RUN must be the last statement of the program execution seguence,

If the literal option Is used, the literal will be DISPLAYed on the
message printer and the program will be suspended, When the operator
enters the MCP continuation message pmix-index AX, program execution
resumes with the next sequential operation, This option Is normally
used for operational halts to cause the system's operator to physically
accomplish an external action,

If a STOP statement with the RUN option appears in an imperative

statement, then it must appear as the only statement or the last
statement in the imperative statement,

5-78

SUBTRACT

SUBTRACT,

The function of this verb is to subtract one, or the sum of two
or more, numeric data Iitems from another item, and set the value
of an Item equal to the result(s).

The construct of this verb has three options which are:

Qptlion 1:

{ literal-1 } [j literal=2 }
SUBTRACT data=-name-1 | . data-name=2 e o e] EROM

data-name-m [RQUNDED [data-name-n (RQUNDED] . .]
[ON SIZE ERRQOR any statement]

Qetion 2

fliteral=1 } [I\iteral-z \]
SUBTRACI | data-name-1 \ data-name=2§ , . . EROM

f1literal=m \
| data-name-m GIVING data-name-n [RQUNDED]

[ON SIZE ERRQOR any statement]

Qption 3:

CORR \
SUBTRACT { CORRESPONDING data-name-1 FROM data-name=-2
(ROUNDED] [ON S]IZE ERRQR any statement]

In Options 1 and 2, the data-names used must refer only to elementary
numeric items, If Option 2 is used, the data-description of data-
name-n may contain editing symbols, except when data-name=-n also
appears to the left of GIVING,

A1l rules specified under the ADD statement with respect to the
operand size, presence of editing symbols in operands, the ON
SIZE ERROR option, the ROUNDED option, the GIVING optlion, trunca-
tion, the editing results, the handling of intermediate results,
and the CORR or CORRESPONDING option apply to the SUBTRACT
statement,

5-79

SUBTRACT
cont

When the GIVING option Is not used, a literal may not be specified
as the minuend,

When dealing with multiple subtrahends, the effect of the subtraction
will be as if the subtrahends were first summed, and then the sum

subtracted from the minuends,

5-80

USE

Use,

The function of this verb is to specify procedures for any input/
output error and/or label handling which are In addition to the
standard procedures supplied by the MCP, to calculate the ACTUAL
KEY for files assigned to DISK, and to accomplish various user
required actions when a 12 punch (overflow) In the printer carriage
control tape is encountered,

The construct of this verb has three options which are:

Qption 1

file-name.s.
| el ™ |
7 QUIPUT
USE AFTER STANDARD ERROR PROCEDURE ON)li!u%u_-w s
L Q=1
QOption 2:
AFTER 1 S BEGINNING }
USE { BEFORE f STANDARD | ENDING
file=name,.. l
[jREg[, ” LABEL PROCEDURE ON {mpm .
| ELLE QuTPUL f
Qption 3:
USE FOR KEY CONVERSION ON file-name-1 [file-name=2,,.1].

A USE statement, when present, must immediately follow a section
header in the DECLARATIVE portion of the PROCEDURE DIVISION and

must be followed by a period followed by a space., The remainder
of the sectlion must consist of one or more procedural paragraphs
that define the procedures to be used,

If the file-name option is used as part of Option 2, the File
Description entry for the file=name must not specify a LABEL
RECORDS ARE OMITTED clause,

A USE statement specified for input and/or output files associated
with the SORT verb will not be affected when executing the SORT
unless an INPUT and/or OUTPUT PROCEDURE has been included in the
program,

5-81

USE
cont

The USE statement itself s never executed rather, it defines the
conditions calling for the execution of the USE procedures,

If neither REEL nor FILE is Included in Optlon 2, the designated
procedures are executed for both REEL and FILE labels, The REEL
option is not applicable to mass storage files,

Within a given format, a file-name must not be referred to
implicitly or explicitly in more than one USE statement.

USE procedures will be executed by the MCP:

a, After completing the standard 1/0 error retry routine
(this applies only to option 1) the record in error has
been read, thus another READ cannot appear in the USE
section since the MCP is performing the section because
of a previous READ which has been completed, Upon com-
pletion of the USE procedure, control is returned to the
statement following the READ which detected the error
condition, In the case of blocked or unblocked magnetic
tape input, the tape wlll be sitting ready to read the
next record as soon as the Option | procedure Is completed,

b, The USE AFTER STANDARD BEGINNING clause designates that
the procedure following the clause must be called upon
to check data on input magnetic tape beginning=-file-labels,
or to insert data as an output magnetic 'tape beginning-
file-1abel before it is written,

c., When the USE BEFORE STANDARD ENDING clause designates
that a following procedure must be called upon to check
user created data contained on input magnetic tape ending
file labels or to insert data onto the user's portion of
an output magnetic tape ending file label before It is
written,

d., Prlor to any SEEK WITH KEY CONVERSION statement on
files named in the USE FOR KEY CONVERSION statement,

References to common label items need not be qualified by a file-name
within a USE statement., A common label item Is defined as being an
elementary data item that appears in every magnetic tape beginning
and/or ending file-label record, but does not appear in any data
record of the program,

A common label item must have the same name, description, and relative
position In every magnetic tape file-label record and may only be
referenced while In a USE,.,,LABEL PROCEDURE for that file,

If the INPUT or OUTPUT option Is specified, the USE,,,LABEL PROCEDURESs
do not apply when files are described as having LABEL RECORDS OMITTED,

5-82

USE
cont

There must not be any reference to non-declarative procedures within

a USE procedure, Conversely, in the non-declarative portion there
must be no reference to procedure-names that appear in the declarative
portion, except that a PERFORM statement may refer to a USE declara-
tive, or to the procedures associated with such USE declaratives,

Option 2 is not applicable to disk files,

5-83

WRITE

WRITE,

The function of this verb is to release a logical record for an output
file, It |s also used to vertically position forms In the printer,

For mass storage files, the WRITE statement also allows the performance
of a specified Imperative statement if the contents of the associated
ACTUAL KEY item are found to be invalid,

The construct of thls verb has two options which are:

Qption 1:

WRITE record-name [fRQM data-name=1]

{integer-i })
s data-name=2 LINES
{ AFTER } ADVANC ING _
BEFORE
TO CHANNEL f integer=2 }
\ | data=-name=3 J .
AT { END-QF-PAGE } imperative-statement
£QP
ERROR |
19 AUXILIARY
STACKER fliteral=1 §
\data-name=L4f

WRITE record-name [ERQM data=-name]
[INVALID KEY any statement]

An OPEN statement for a file must be executed prior to executing the
first WRITE statement for that file,

The record-name must be defined in the DATA DIVISION by means of an
01 level entry under the FD entry for the file, The record-name and
data-name-1 must not be the same name, or be in two flles that have
the same record area,

The ADVANCING option allows the control of vertical positioning of
each record on the printed page, The options are as follows:

a, When LINES i{s used, data-name-=2 must be declared as

PC 99 COMPUTATIONAL or integer-1 must be a positive
Integral value of 00 THRU 99,

5-84

WRITE
cont

b, WRITE BEFORE ADVANCING is more efficient than AFTER
ADVANC ING,

c. When CHANNEL s used, data-name=-3 or integer=-2 must
possess a poslitive integral value of 01 ,,, 11, Data-
name=-3 must be declared as PC 99 COMPUTATIONAL, The MCP
wlll advance the line printers carrlage to the carrlage
control channel specified,

The END-OF-PAGE option applies to a file that has been assigned to a
printer, When the END-OF-PAGE punch in the carrage control tape on
the printer is detected, the END-OF-PAGE branch will occur,

Option 2 must be used for writing on disk files,

If the FROM optlion |s specified, the data is moved from the area
specified by data-name-1 in Option 1, and data-name In Option 2,
to the output area, according to the rules specified for the MOVE
statement without the CORR or CORRESPONDING option, After exe-
cutlon of the WRITE statement is completed, the Information in the
data-name following the word FROM |s available, even though that
record-name {s not available,

When the WRITE statement |s executed at object time, the logical
record is released for output and Is no longer avallable for
referencing by the object program, Instead, the record area is
ready to receive items for the next record to be written, If
blocking is called for by the COBOL program, the records will be
automatically blocked by the MCP,

Short blocks of records which were written during EOF or EOJ
will be of no programmatic concern to the user when using the
file as INPUT at a later period of time,

If a write error Is detected during a magnetic tape write
operation, the tape record in error will be erased and a rewrite
will be attempted further down the tape until the record is
finally written correctly, A punch or printer write error will
result In a message to the operator, The COBOL programmer need
not include any USE procedures to handle write errors,

The shortest allowable blocks which can be written on 7 and 9
channel magnetic tape unlits are 8 and 18 bytes respectively,

If a CLOSE statement has been executed for a flile, any attempt to
WRITE on the file untlil it is OPENed again will result in an error
termination,

For files which are being accessed In a SEQUENTIAL manner, the INVALID
KEY clause is executed when the end of the last segment of the file
(1ast record) has been reached and another attempt |s made to WRITE
Into the file, The last segment of a file is speciflied In the FILE~
LIMITS clause or the FILE CONTAINS clause, Similarly, for files

being accessed in a RANDOM manner, the INVALID KEY clause will be

5-85

WRITE
cont

executed whenever the value of the ACTUAL KEY is outside the def ined
limits, An INVALID KEY entry must be specified when writing to a file
described as containing FILE-LIMITS,

Records will be written onto DISK in either a SEQUENTIAL or RANDOM
manner according to the rules given under ACCESS MODE, For RANDOM
accessing, SEEK statements will be explicitly used for record de-
termination as defined under ACCESS MODE, SEEK, and READ,

If the size and blocking of records being accessed in a RANDOM
manner is such that a WRITE statement must place a record into the
middle of a block wlthout disturbing the other contents of the
block, then an Implicit SEEK will be given to load the block
desired (if an explicit SEEK has not been given), If the file

is being processed for INPUT/QUTPUT, then either an explicit or
implicit SEEK for a READ statement will suffice to load the block
between the READ and WRITE statements,

If the value of the ACTUAL KEY is changed after a SEEK statement
has been given and prior to the WRITE statement, an implied SEEK
will be performed and the WRITE will use the record area selected
by the Implied SEEK as the output record area, The value contained
in the ACTUAL KEY will not be affected,

For RANDOM access, when records are unblocked, the use of a SEEK
statement related exclusively to WRITE is unnecessary, and may
result in an extra loading of the record from disk because the
compller Is, in general, unable to distingulsh between SEEK state-
ments that are Intended to be related to a READ and those intended
to be related to a WRITE,

The card record being written will be selected to the ERROR or to

the AUXILIARY stackers if Indicated in the particdlar WRITE being
executed,

5-86

Z1P

1P,
The function of this verb |s to cause the MCP to execute a control

instruction contained within the operating object program,

The construct of this verb Is:

ZIP data-name

Data-name (any level) must be assigned a value equlvalent to the infor-
mation contained in the MCP Control Card., VALUE is always ended with

a period inside of the ending quote marks, ZIP may be used for pro-
grammatic scheduling of subordinate object programs contained in the
Systems Program Llbrary or to accomplish any of the "CC" MCP control
functions as performed through the SPO or cadrd reader,

In the statement ZIP TO<CALL-PGM2, the DATA DIVISION of the source
program could contalin the following entry:

01 TO-CALL-PGM2 PIC X(13), VALUE IS "EXECUTE PGM2,"

The MCP will be called upon when the object program encounters the
ZIP statement and wlll reference data-name (TO-CALL=-PGM2 in the
above example) to find out which control function Is being called
for, Using the above example, the MCP will schedule PGM2, When
the time comes and the priority for PGM2 |s recognized and memory
space becomes avallable, the MCP will retrieve PGM2 from the pro=-
gram library and place it In the MIX for subsequent operation,

The program containing the ZIP verb will proceed to the next
sequential instruction following the ZIP,

p
Figure 5-2 jl1lustrates the manner in which the PROCEDURE DIVISION

can be coded,

5-87

NOISIAIG 3¥NQ3J0¥d 40 Bulpo) *z-S aanby 4

d«\i«ﬂ-q<<qd44<ialﬂ-<-4ﬂ_n-qd.._qﬂ———q——____q—___-___.-lﬂdaﬂ—l_l~l_&lquz_u

w
~

LA A L A A B B S N L S L L O N S N LB LN B B W1/ L X L 11 LIUNY SRR

-
~

rY vV VvV TyrTyy vy rryrrvy vy rry Yy r T T T T T T ﬂqo-k.:-a-lgﬂqud- -lh-jg-lqpyd/ﬁHiqﬁwq q.UﬂLdG-Jq\U<q<
LA L S S SR AL B S S S S S B B S S S B B B S S S S B S S S S B S S B S S S SN B S S S S B B B S BB)< 03 B AEVIS
AL L A S A A A L B S S B L S AL B S B L B . 18 & NM 3 L7 L L S L L LAV) T
F T T T T T T TN 20 ON ITONYATY 39 33a 3T 0L WagT INTId ST g™ T T T oz
J&%ﬂjﬂi%aﬂé. TQARETININT T T MT TANTANT T@T [T ISTIRIWIIST TITATON T 77

~
~

L L e e
- [4]
~ ~

KX

[

-«4.-«4<4<-<-<.-qq#--«qqﬂq#qﬂqﬂ-qqa‘-.ﬂqﬂ---.qqd-«qqqqoqm_ma;_M-I 18
~<q<-q-<<<-.<-.-4<.-<1q4-..-.a%ggiﬁ_ "».
-.qnq-ﬂ«<«--<<...<-qqﬂ]4~ﬂ4__«.qgﬂégﬂﬂjwj{;._. “o_
4.1-44141ﬂ<---<-d--<<«<-<u-qd--dddd--«uqdﬂ-‘-44d--nu%udedem “0.
T T T T 7T YT i r rr r v rrYrrrrrrrvr1rrrrIrTs it 3 T 3] TIQT T 17 QqQrqy T 17 mv.
d'4 943N 3 rer Te

TTrr 7TV Vv T T (K] 7 &l TI I T 7 v "u.
LRI LI A A O OO O R R OO -LI-W_H-Z_H_u.. Ly g- T I 3TANTIT, 7 =T W) T-NTNT T Y 7] 7 ' 7 "..
.¢.-_-qqﬂﬁq_q-_«ﬂq..--4.-4«.....ﬁuﬂgﬂdﬂ.ﬂ.§>-ﬁ. T T "o.
rvv9V79r7yryrryryr1r7rryryrrryrrrrrrrrrryvyvrrrr ﬁ«qqu.J.ﬂi_P_Zaﬂ.U-n_.v.:wqdad TPrr T Qg T 7 "oo
Y7 7TT T T 7T 7T 7T r 7 7 ¥ rr T v rrr v rrrrrr T T T 7 LAY B As L) gﬂﬁ_u4ﬂ. LeLVAk| T 7T “-o

rrvrr7rrryrrrY7vvrryrvryr rrrr 7 rrrrrr1r1r1rrr1r1ryrrrrirryrrrrrrrrrryrrrrrrrrrr s 40

<.---_-dj--qd.-dq_._qq....-.--1«-4~.-.-_.£-§u. T T 190
..qﬂ«-.-<<_.<~q_-_<-._-.J_.<<q_.ﬂq-4-.§§

-
-
-

o

(-]

TT T T T T T T T TP T T T Y P T VT YT 7T ST ne- 1 TS LB)

LARLAND S S A AL A A B N AL A N A S N O B AN A B B N S B N N BN SR N B B S R NN SN D SN NN S SN S SR BN BN SR Ly | €0
|

LA A N R U A A A N S L B B AN R BN IO NLEo L L8 L LA D i LAVAR™ 15 120
1

444«1_.-__<._-q<<‘«ﬂ4.~44-.-__‘.-—._.44144...Z§4d4dg | 10
'

u

1

LR AR IR AR AR

oe $4 AN301 v gn ,
ON

2 v AS 031$3N03y e]

W304 ONIQOD 10800 SHONOYINE

5-88

SECTION 6
DATA COMMUNICATIONS

GENERAL,

This section deals with the COBOL constructs of the PROCEDURE
DIVISION required to activate the data communications equipment
as defined by the ASSIGN to hardware-name clause,

SPECIFIC VERB FORMATS,

NOTE
The specific verb formats are
unavailable at this time,

SECTION 7
CODING FORM

GENCRAL,

The coding form, which provides a standard method for describing COBOL
source programs, has been defined by CODASYL, specifications and common
usage, The COBOL Compller accepts thls standard coding format, but
also allows certaln departures from the standard, at the user's
discretion,

The same coding form is used for all four divislions of the source
program, The four divisions must appear in the following order:
IDENTIFICATION DIVISION, ENVIRONMENT DIVISION, DATA DIVISION, and
PROCEDURE DIVISION, Each division must be written according to
the rules for the coding form,

The rules for spacing given In the following discussion of the
coding form take precedence over all other rules for the coding
form,

oy

The coding format for a line is represented in figure 7-1, The
digits designate columns,

11
1234506 7 8961 11 ...7 7 ... 8
2 3 ... 2 3 ... 0
N, M, e, N .
Sequence Continuation Area A Area B Identification
Number Area Area Area
MARGIN L MARGIN C MARGIN A MARGIN B MARGIN R

Figure 7-1, Coding Format for a Source Line

The COBOL Coding Form (see figure 7-2) is illustrated on the following
paQE.

X ! -
The sequence number field may be used to sequence the source program
cards, Normally, numeric sequence numbers are used; however, the
COBOL Compller allows any combination of characters from the allow-
able character set, The compliler generates a warning message during
compllation time if a sequence error (other than ascending) occurs,

A hyphen in the Continuation Area of the continuation line indicates
that the first character in Area B Is the continuation of a word or
a literal from the previous line, If a hyphen does not occur Iin the
Continuation Area, the word or literal starting In Area B is not a
continuation of an entry which started on the previous line and is
separated from the previous entry with a space,

wio4 Bulpo)y J0E0D *Z-L ®4n6l4

91L0Z01 W04 oouswy ‘g ‘M Ul perung
mfl_ _3“__ ___3“___3.“ _«n#___j_ T _3__“_ q__on“_._“_q_:“.__:“ ﬁz# _2“ _~_ ___a “ :
TT VT 1T 1T 1V 1T 1TrrrvmrriyurTild T vV 17 1T 1T T 1T T T T T P T 71T 11T rrrrrrrrrrrrT [1 T T 1T 1 _
LN R S N A A D R T R D A A T 7T T T T 1 TT T T T T ”
T T T T 17T T T T T T 1T 1T V71171 T T T T T T T T T T 1T T Ty rrrrrrrrrrrrT T T1 T T T 1 "
rrrrrrrrrrrirmrrriil rrrrrrr1irrrrrrrrrrrrrrrrrorrrrrirurd T T T I T 1T 7T “
TT rr1rr1r1rrr1rrrrrii rrirri1irrirr1rrir1r ooy rrrrror1rrrirrrporioed T T T T 1T “ou
TT T T T 1T rTrr1rrrrrorrd L NN 0 N T T O O N N O N O N N Y O D T T1 T T T 1 __:
TT T T 7T T T T T T T T 11T 11 TT T T T T 1T T T T T T T T T T T T T i 1T T T T rrrrr1 T T T1 T 1T “._
Trrrrrrrrrrr1ir1rr17T1id rriry17r7rrrrrrrrratrrryrrvrrrrirrrrrrirora T T T T T T T "5_
TT T T T 1T 1T 1111111 1171 TT T T T T T T T T T P T IT T T T P T T T T T T T oo L TT T T 171 ":
TT T T r T T T T T T T 1T 1o T T T T T T T T T T T P T T T T T T T T T T T T T T TT1 1 T 1 TT T T T "_..._
TT T T 7T T T T T T T T T T o1 T FT T T o177 T T T T T _-_
TT T T T 1T T 11T 1T T 1T1T 1T 1 T11 T T T T T T T T T T T T T T T T T i T T T T T I 1 1711 T 1 T T T T T __:
TT T 17T V7 1T T7TT7T T T 1T T T 1T 01 rrrrrrrrrrryroeyrrrvrrrrrrryrrrrruoer TT LI T LI "~—
TTr17TTTT7T 17T TT T T T TV 0V T rryrrryrrrrrrryrrrrrrrrrrrrr1rrrr1 T T TT T T T 71 ":
TT T T T T T T T 7T T T V7T T 71 TT T T T T T T T T T T T 1rr1Tr1T 11T 11Tt rrrrr 1o 11 T 1 TT T T 1T 71 “e.
LI O L AL L L L L R B B B | L L LA L L L L I L L L L LI L T T T T "o
L L L L O L L AL L L L L I B | LIS O L L L L O L DO B B B L LB 1 TT T T T 7T ._
T T T T T T T 1T T T T 1 1111 T T T T T T T T T T T T T 7T T T T T I T T T VT T T T T 7171 T T TV T T "
TT T T T 1T T 1T T T T T T 1T 111 T T T T T T T T T T T T T YT T T T T T T T T T T T T 17T 1 T T TT T TT 7 “
TT T T T T T T T 1T rrrrrorT T T T T 7T 11T rrrrrrrrrrrqirr1rrrrrrrrr L T T T T 1 “
T T T T T T T T T T T 7T 7T T T 1T LN L L L L R L I L O LA T TT T 1 7T 71 "
rrvr7r7VrvrvVmVryrvrvrritiririvrd rvriéry1rr1rryvrrygrryprrrrrrrryrrrrrrrrrrurud LI LI T 1T “J
T T T T 7T T T T T T 7T T T T T 17 T T T T T T 7T T VP T T T T 7T T T T T T T T T T T T 7T T 717 TT T T T “g_
T T 1T r17 17 171717 17T 7V 1T 7 17 1T 11 rrrrrrrrrrrr T rrrrrrrrrryrrrrrryuvTu L T T | L m—o
7] oo or o9 [441 o€l el LIl 24 [}4] U {1 _uwl.
Z n@Uwz_..
] _nh @b..—zma.“ alva YIWWYEI0ud
1
40 uo<m_ A8 @3153Nd03Y 39vd

WYO4 ONIQOD 1080 suBnoaang

7=2

An asterisk (*) indicates that the source line Is for documentatlon
purposes only and can appear anywhere within the source program,
Continuation of following lines is denoted by an asterisk in column 7
of the continued data, All entries of this type are free form from
Area A through Area B,

A slash (/) Indicates that the source line Is for documentation pur-
poses only and that a skip to the head of a new page ls required dur-
Ing the listing phase of the compller output,

The letter L followed by a "library-name" entry, will cause all suc-
ceeding source card data to be placed into the COBOL Library File
during compllation, Termination of the action takes place when an

L Card is encountered followed by spaces,

CONT T

When an undigit literal is continued from one line to another, a
hyphen is placed in the Continuation Area (column 7) of the con-
tinuation line, but the at sign (3) is not placed in the flirst
character position of Area B (column 12), The continuatlion of the
undigit literal commences in column 12 of Area B,

CONTINUATION QF NON-NUMERIC LITERALS.

When a non=-numeric literal is continued from one 1ine to another, a
hyphen is placed in the Continuation Area (column 7) of the contlinua-
tion line and a quotation mark must be the flirst non blank position
of Area B, The continuation of the non=numeric literal commences
immediately following the guotation mark, All spaces at the end

of the continued line and any spaces following the quotatlion mark

of the continuation line and preceding the final quotation mark of
the non-numeric literal are considered part of the literal,

CONTINUATION OF W A E

When a word or numeric literal is continued from one line to another,
a hyphen Is placed in the Continuation Area of the continuation line,
This indicates that the first character of Area B of the continuation
line Is to follow the last non=-blank character of the continued line
without an intervening space,

Use of the continuation Indicator for both non-numeric literals and
other word entrles is Illustrated on the following page (see figure
7'3).

H
The Divislon Header must be the first line of a division coding
format, The Division Header starts in Area A with the division
name, |s followed by a space, then the word DIVISION, and then a
period, No other text may appear on the same |ine as the Divislon
He ader,

H
The name of a section starts in Area A of any line except the first
line of a division coding format, It is followed by a space, then

7-3

|e12adg

SUO§ 3oy pue ¢syieway
¢saul jo uolienuliuo)n
buimoys 6ujpoy a|dues

“¢-/ 24n6} 4

7T T T T 7T 7T

LA

TT T T T T T T T T 1T T Je
= o 4\“m~
Ive2
|
lsz
rryrr7rrrr r¥rrmr rrrryrrvyrrvyrrryrrrvyrryrrrryrryrrrrryrrrrrrrrrriJivrvyrrryrrvyrrrvzy T T T z2
rVTrrryrrYrvyYrrYrrrrrrryrrrrvyvr ryryr1rryrrrryrrryrryrryrrrrrrryrrrrorooTove LEREREE P T2
dq‘nuo 02
rvTrvVYVvY7 7 77Ty vrrrrrrryrrvyrvyrryrryrrrrJ1rrrrryrryrrrrrJrryryrryrrvyrrrrvyrryrryrryrrrryrrrrorr T 17 PY)
WYY T NI 13y o WIIN[@ T T W[te
«q.«q.‘-«..qq..-q_...«--qqqqdj}._zdﬂduqrﬁ(-.—. 1N THLY |% 7
|
rVrrrrrvrrrrrrrrrrrvrrr1rr1rryryrryryrv1rryr1rrryryrrryrrrrrrrrrrivyrrrrrrrrourzy LA 191
rrrTrrrrrvyYr rrrYr 7r v r r r 1 TrrT1T1T 1T 37317 3 T P T P 7P 7 7 3 P 7P T 7 T T T T T T P 7T P 7T TP T Ty T 17T X
r¥rvrryrvrrrrrrrryrrrrrrrryrrrrrrrrrrrrrr v rr v v Ty Ty Ty e T T 1o v

NTINTATVIM] T

TT rVrrirr LA

TTr T T T T T T T T T T T 7T T T T T 7T 77
TTT T T T T T T T TNy r T 7 Vv T 1T 17 7111
MORIVINT T 7 T T T T T T IOggRgargryr r T r 117
T T T T T RIIT AT YA 1002y T 13rgiyi i or 147

rryr1rrrrrrrrrr7rrrrrryvr1r1rr1rryrryryrryvrr1rrrvrorroy

T LB | DR P

AW T)
T T C/f.(.ﬁﬂﬂ.—r(-—/a LI LB B P

LELNIS US LEUNLE LeliTAeLis | I

—Jquq&-(- LI

L]
(-]

T T T T T Ty vyuyurund

~ o
o] ©

rrrruvd

LI

LB

- - - -]] -] o] o o -
o O
o -

rrTryrrrryvrrrrrrYr7Yrrrrrrrryvyvryrrrrrrrryryvryryyrr1yrrrrrrrrrrrrrrryvoruoe TT T 1180
ww_m_:z_a_u_l_d—_m_u_a_ _.W_H_ _ﬂ_mﬂ_ ___ﬂ—:_—_w_ﬂ_ _m__m__a—:_zu<i- _W-H- -U-Q—Gf- -m-m-.w-.U-‘Uq/\- <¢~O—O<m~md :J-M_-I-n—.- -.ﬂ LI S ®»0
€0
|
rv¥vryrrrrrrrrrrrrrvrrrryrrrryrvrryrrrrrrrvyrryvrrvrrrrrrrrrrrrrrrrrrrrrrr 1rf1rrrt [EX)
|
rrr7¥TrrvyY7yvrrvyrrrryryryrrrrrrrrrrryrrrryrrrryrrrrrryrrrrrrrrrrrrrrrrrrvrrr1rrr T v 1 110
]
23
Z
rrrrvryrr
os 4 AN3QI uvo gn .
ON
40 30vd A8 031S3NnD3y WVUBONd 30%4

WY04 ONIGOD 10800 SHONOWING

7-4

the word SECTION, and then a period, In the PROCEDURE DIVISION, an
option may be exercised by which the word SECTION would be followed
by a space followed by a prlority number, As above, the prilority
number would be followed by a period, No other text may appear on
the same line as the Section Header except In the declarative portion
of the PROCEDURE DIVISION, In thls case, the USE and COPY sentences
may beglin on the same line as the Sectlon Header, A section consists
of paragraphs in the ENVIRONMENT and PROCEDURE DIVISIONs and data
description entries in the DATA DIVISION, Paragraph names, but no
secton names, are permitted in the IDENTIFICATION DIVISION,

PARAGRAPH NAMES AND PARAGQRAPHS .

The name of a paragraph starts in Area A of any line following the
first line of a division coding format and ends with a period, A
paragraph consists of one or more successive sentences, The first
sentence in a paragraph begins In Area B of either the same line as
the paragraph name or any succeeding line, Successive sentences
elther begin In Area B of the same line as the preceding sentence
or 'n Area B of the next line, A sentence consists of one or more
statements, followed by a period,

DATA DIVISION ENTRIES,

Each DATA DIVISION entry begins with a level iIndicator or a level
number, followed by one or more spaces, followed by the name of a
data Jtem, followed by a seguence of Independent clauses descr ibed
In the DATA DIVISION, Each clause, except the last clause of an
entry, may be terminated by a semicolon or comma, This last clause
s always terminated by a period,

There are two types of DATA DIVISION entries: those which begin
with a level indicator and those which begin with a level number,
A level Indicator Is an FD, In those DATA DIVISICN entries which
begin with the level indicator FD, the level indicator begins In
Area A followed by a space and then by its associated file name
and appropriate descriptive information and terminated with a
period,

DATA DIVISION entries that begin with level numbers are called data
description entries, A level number may be one of the following

set: 01 through 49, 66, 77, and 88, Level numbers are written either
as a space followed by a digit or a zero followed by a diglt., At least
one space must separate the level number from the word that follows It,

Level numbers 01, 66 and 77 should be coded in Area A, Other level
numbers should be coded In Area B, Each successively higher level
number should be indented four positions, This makes the coding
easler to follow, and structure Is readily apparent, Using odd
numbered level numbers permits easy patching of record descriptions,

Coding repetitive information in the same columns makes keypunching
easler; such as, PIC In columns 36-37, VALUE columns 52-56,

For example:

7-5

01 INPUT-RECORD,

03 AMOUNT PC 9(5)Vv99,
03 AMOUNT-0UT PC 9(5)Vv99,
03 FACTORS PC 9(3)Vv9(5),
03 PERCNT PC V999,
03 NAME-CITY PC X(10),
03 CODR PC XX,
03 DATER,

05 MONTH PC 99,

05 DAY PC 99,

05 YEAR PC 99,

88 CUR-DECADE VA
60 THRU 69,

03 FILLER PC X(33),

66 IN-DATE RENAMES MONTH THRU YEAR,

NOTE
The above 88 level is continued on
the following 1ine, however, a dash
In column 7 myst not appear, inasmuch
as the compller continues to scan the
following 1ine in an effort to satlisfy
the VAlue requirement,

RECLARATIVES .

The key word DECLARATIVES and the key words END DECLARATIVES that
precede and follow the Declaratives portion of the PROCEDURE DIVI-
SION, respectively, must each abpear on a line by itself, Each must
begin in Area A and be followed by a period,

PUNCTUATION,
The following rules of punctuation apply to the writing of COBOL
programs for this system,

a, A sentence is terminated by a period, A period may not
appear within a sentence unless it Is within a non=numeric
literal or is a decimal point In a numeric literal or Is
in a PICTURE,

b, Two or more names in a series must be separated by a space
or a comma,

€. Semicolons are used for readability and are never required,
The semicolon |s used for separating statements within a
sentence or clauses within data description entries.

ds The reserved word THEN is also used for readability and
can be used to separate two statements within a sentence,
It can also be used between the condition and the first
statement within an IF statement, For example:

IF o600 THEN e s 0 THEN s 000 ELSE o000

e, A space must never be Imbedded in a name; hyphens may be

7-6

used Instead., However, a hyphen may not start or terminate

a name, For example:

PRODUCT ION=PERICD

-PRODUCTION=-PERIOD

is a good data-name, section=-
name, or paragraphename,

or -PRODUCTION-PERIOD- gor

PRODUCTION-PERIOD- are all
bad entrles,

7-7

SECTION 8
COBOL COMPILER CONTROL

The COBOL Compliler, In conjunction with the Master Control Program,
allows for varlious types of actions during complliation and is
explained in the text that follows,

Control of the COBOL Source Language input |s dervied from presenting
the Compilation Card Deck, illustrated in figure 8-1, to the MCP,

?END

OPTION CONTROL CARD

1 -..J
r SOURCE DATA
/— o © em— —
! § OPTTION CONTROL CARD
L ' J

SOURCE DATA

r,$ OPTION CONTROL CARD

(;DATA CARDS

r;LABEL EQUATION CARD

r;COMPILE CARD

Figure 8-1, Compllation Card Deck

The Compilation Card Deck !s comprised of several cards; these cards
along with a detaliled discussion of their functlion are presented in
the paragraphs that follow,

i

The first Input control card Instructs the MCP to call-out the COBOL

Compliler and to complile the indicated program=name (P-N) using one
of the followihg options:

a, To compile and run the resultant ob ject program, the
card |s coded:

8-1

?COMPILE P-N WITH COBOL
b, To compile for a syntax check only, the card is coded:
?2COMPILE P-N WITH COBOL SYNTAX

c. To complile and place the resultant object code into the
Systems Library, the card Is coded:

2COMPILE P-N WITH COBOL LIBRARY

de To compile and place the resultant object code into the
Systems Library, and then run the object program, the
card |s coded:

?COMPILE P-N WITH COBOL SAVE

NOTE
The word WITH Is for readability only and
may be excluded from the above statements,

The absence of the ?COMPILE Card will cause the System Operator to
manually execute one of the above options through the SPO, using
the MCP's CC notation In place of the invalid character (7).

)
The second control card, excluding Label Equation Cards, Is the MCP
LABEL Card and is formatted in the following form:

?DATA CARDS (indicates EBCDIC or BCD source language input),
The absence of the MCP LABEL Card will cause the message,
**NO FILE file-name program=name = mix=-index

to be displayed on the SPO, The System Operator will not know the
proper IL message to give the MCP (because of the optlions involved),
without being given specific instructions by the programmer,

The third card, excluding Label Equation Cards, is the COBOL Compiier
Option Control Card ($ sign in column 7), This card is used to notify
the compiler as to which options are required during the compllatiocn,
If this card is omitted, $ CARD LIST CHECK SINGLE will be assumed,
There must be at least one space between each item on the control
card, The options may be in any order, Columns 1 thru 6 of the
$-Card are used for sequence numbers, Any number of $-Cards may be
used and may appear anywhere in the source deck, The options speci-
fled will become either active or inactive from that point on, The
format of the Compiler Option Control Card is as follows:

$ option option ...

8-2

The options avallable for the COBOL Compiler Option Control cards are
as follows!

a, CARD - input is from the Source Language Cards or paper
tape, This option Is for documentation only,

b, LIST = creates a single-spaced output listing of the
source language Input, with error and/or warning
messages, where required,

c. SINGLE - causes the output - listing to be printed in a
single-spaced format,

d, DOUBLE - caduses the output listing to be printed In a
double-spaced format,

e, CODE - list object code following each 1ine of source
code from the point of insertion,

f, HEX CODE - all addresses on the CODE 1isting will be in
Hexadecimal format. If thls option is omitted the addresses
will be In decimal format,

9. MERGE - primary Input Is from a source other than a card
reader and may be merged with a patch deck In the card
reader, It is assumed to be from a disk file, with a
file=1D of COBOLW/SOURCE, by default, If it is desirable
to change the input file-ID or change the input device
from disk to tape, a LABEL EQUATION CARD must be used,
The NEW option may be used with the MERGE option to
create a new output source file plus changes,

h, NEW = creates a NEW output source file with changes, if any,
entered through the use of the MERGE option, but does not
tnclude the Compller Optlion Cards, |f any, which must be
merged in from the card reader when compiling from disk
or tape., The output file will be created on disk by default
with the file=ID of COBOLW/SOURCE, 1If it is desirable to
change the output file-ID device from disk to tape, a LABEL
EQUATION CARD must be used,

!« CHECK = this option wlll cause the compiler to check for
sequence errors and print a warning message for each se-
quence error, The CHECK option is set on by default at
the beginning of each complle, but may be terminated with
the NO option,

jo» SUPPRESS - suppresses all warning messages except seguence
error messages, The sequence error message can be suppressed
with the NO CHECK option,

k., SPEC - If syntax ERRORS occur thls option negates the control

and LIST option and causes only the syntax errors and asso-
clated source code to be printed, Otherwise the CONTROL and

8-3

LIST options remain in effect,

1. "Non-numeric literal" - is Inserted in columns 73-80 of all
following card images when creating a new source file and/or
listing, Thls option can be turned off or changed by a
subsequent control card with the area between the quote
marks containing blank characters,

m. SEQ - starts re-sequencing, the output listing and the new
source file if applicable, from the last sequence number
read in and increments the sequence number by ten or by last
increment presented in a previous $=-Uption Card, When re-
sequencing starts at the beginning of the program source
statements, the sequence will start with 000010,

n, SEQ nnnnnn - starts re-sequencing the output listing and new
source file if applicable, from the sequence number specified
by nnnnnn and increments the sequence numbers by ten,

o. SEQ +nnnnnn - starts re-sequencing the output listing and new
source file if applicable, from the last sequence number read
In and Increments by the number specified by +nnnnnn, When
re-sequencing starts at the beginning of the program source
statements, the sequence will start with 000010,

p. SEQ nnnnnn+nnnnnn - starts re-sequencing the output listing
and new scurce file if applicable, from the sequence number
speciflied by nnnnnn and increments by the value of +nnnnnn,

g. NO SEQ - terminates the SEQ option and resumes using the
sequence number in the source statement as it is read In,

r. CONTROL - prints the $ Option Control Cards on the output
11sting, The LIST option must be on,

s, NO = when the NU option precedes one of the above options
with the exception of MERGE which cannot be terminated it
will terminate the function of that option,

The NEW option does not have to be included when operating with a
tape or disk source input, thus allowing temporary source language
alterations without creating a new source output file,

The MERGE option without the NEW option allows a disk or tape Input
file to be referenced and to have external source images included
from the card reader on the output listing and in the object program,
A new output file will not be created,

Columns 1-6 of the Compller Option Control Card may be left blank
when complling from cards, A sequence number is required when com-
plling from tape or disk when the insertion of the $ option is
requested within the source input,

8-k

These cards follow the $ Option Control Cards, The following scurce
cards are used to create an updated version of the source input file
or cause temporary changes to the tape or disk source language input:

a. VOID nnnnnn Patch Card. The punch sequence number in card
columns 1-6 1s followed by a $ in column 7 then the word
VOID, This will delete the source records from the sequence
number in the first six positions of the VOID Card through
the sequence number specified by nnnnnn, [If "N" is left
blank only the source record identified by the sequence
number in the VOID Card will be deleted from the compilation
and the output listing, tape or disk files,

b, Change or Addition Patch Card, Punch seguence number in card
columns 1-6 and changed or added source language data in
appllicable card columns, These cards must be in the proper
sequence for the source Input file in order to be properly
MERGED Into that file,

The COBOL Compller has the capability of merging inputs from two
sources (punched cards or paper tape, either of which may be merged
with magnetic tape or disk) on the basis of the seguence numbers,

When merging inputs, the output compilation listing will indicate all
inserts and/or replacements,

A1l of the $ opticons may be Inserted at any point within the source
language Input data, Once an option has been turned on it will remain
on until turned off with the "NO" optilon in another $ Option Card., In
the case of the non-numeric literal it must be turned off by coding a
non=-nuymeric literal with blanks,

This card may be used to change a compiler file=-name In order to avold
duplicatlion of file-names when operating in a multiprogramming
environment,

The Label Equation Card must be used in conjunction with the MERGE and
NEW optlons when the primary input or output is from magnetic tape, the
input disk file does not have a file-ID of SOURCE, or when a file=-1D
other than SOURCE is desired for the new disk output file,

The format for the LABEL EQUATION CARD ist

20080L EILE Internal file-name =
users choice of file-1Ds, file=attributes ...

The Label Equation Card (or cards), if used, must immediately follow

the ?COMPILE ,.. Control Card and precede the MCP LABEL Control Card
(refer to figure 8-1),

8-5

The COBOL Compllers internal file-names and external file-1Ds for use
in label equation are as follows:

Internal Flle-Name External File=1D Description
CARDS CARDS Input file from the card
reader, If $§ MERGE is used
this file will be merged with

the Input file on disk or
tape, The default input is
from the card reader,

SOURCE COBOLW/SQURCE Input file from disk or tape
when the MERGE option is
used, The default input is
from disk,

NEWSOURCE COBOLW/SOURCE OQutput file to disk or tape
for a NEW source file when
the NEW option Is used,

The default output is to
disk,

L INE | LINE Source output listing to
the line printer,

The following are some examples of the LABEL EQUATION uses,

Example 1

To complle a COBOL Program from the card reader and create a
copy of the source program blocked five on a disk file with
the file-ID of COBOL/TEST1 the following Label Equation
(FILE) Cards could be used:

? COMPILE P-N WITH COBOL SYNTAX
? COBOL EILE NEWSOQURCE = COBOL/TEST1,DISK,BLOCK 5
? DATA CARDS
$ CARD LIST DOUBLE NEW
eoo SOURCE PROGRAM DECK ...
? END

To create the same program flile on magnetic tape use the
followlng FILE Card,

? COBOL FILE NEWSOURCE = COBOL/TEST!1,MAGTAPE,BLOCK 5

Example 2:
To complile a COBOL Program from a disk file which had been

8-6

created by the default option of the $ NEW option and
create a new source file on disk with the file=ID of
TEST2 the following LABEL EQUATION Card could be used:

? COMPILE P-N WITH COBOL SYNTAX
? COBOL EJLE NEWSQOURCE = TESTZ2,DISK
? DATA CARDS
$ MERGE NEW
ess PATCH CARDS IF ANY ...
? END

If the Input file had a file-ID of COBOL/TEST! in place of
of the default file=ID of SOURCE the following FILE Card
should have also been used in the above example,

? COBOL EJLE SOURCE = COBOL/TEST1,DISK

8=7

APPENDIX A

COBOL RESERVED WORDS(*3)

ABOUT (*4) ACCEPT ACCESS
ACTUAL ADD ADDRESS(*4)
ADVANC ING AFTER ALL
ALPHABETIC ALTER ALTERNATE
ALTERNATING AND APPLY

ARE AREA AREAS
ASCENDING ASSIGN AT

ATT=-8A1 AUTHOR AUXILIARY
B-500 B-1710 B=1712
B-2500 B-3500 B-9352
B-9353 BACKUP BATCH=COUNT
BEFORE BEGINNING BLANK

BLOCK BREAK BY

BZ

CARD96 CF(*L) CH(*4)
CHANNEL CHARACTERS CLOSE

CMP CHMP-1 CHP=3

coBOL CODE(*4) COLUMN(*L4)
COMMA COMP COMP =1
COMP-3 COMPUTATIONAL COMPUTATIONAL-1
COMPUTATIONAL-3 COMPUTE CONF IGURATION
CONTAINS CONTROL CONTROL=1

3 See specfial instructlions, page 1-10,

L These reserved words may appear In a future compller,

APPENDIX A (cont)

CONTROL=-2
CORR

DATA
DATE-WRITTEN
DECIMAL-POINT
DEPEND ING
DISC

DISPLAY
DIVISION

ELSE

END-OF -J0B
ENVIRONMENT
ERROR

EXIT

FD
FILE-LIMIT
FILLER
FLOW
FORMAT

GENERATE(*4)
GREATER

HEAD ING(*4)
HOLD (*L4)

CONTROLS(*4)
CORRESPOND ING

DATE (SPECIAL REGISTER)

DCT=-2000
DECLARATIVES
DESCENDING
DISK
DISPLAY=UNIT
DOWN

END
END=-TRANSIT
EQUAL

EVERY

FILE
FILE-LIMITS
FINAL(*4)
FOOTING(*4)
FORM

GIVING
GROUP (*4)

HIGH-VALUE

COPY
CURRENCY

DATE-COMPILED
DE(*L)

DEMAND
DETAIL(*L)
DISK-PACK
DIVIDE

END ING
ENTER

EQUALS
EXAMINE

FILE-CONTROL
FILL

FIRST

FOR

FROM

GO

HIGH=-VALUES

4 These reserved words may appear In a future compller,

A-2

APPENDIX A (cont)

18M=1030 IBM=1050 10
IDENTIFICATION IF 1GNORE
1-0 1-0-CONTROL IN
INDE X INDE XED INDICATE(*4)
INITIATE(*4) INPUT INPUT=-0UTPUT
INSTALLATION INTO INVALID
Is
Js JUST JUSTIFIED
KEY
LABEL LAST(*L) LEADING
LEFT LESS LIBRARY
LIMIT LIMITS LINE(#*L)
LINE=COUNTER(*4) LINES LISTER
LocK LOW=-VALUE LOW-VALUES
MEMOR Y MICR MICR=-EDIT
MICT-0CT MOD MODE
MODULES MONITOR MOVE

MFCU
NEGATIVE NEXT NO
NO=DATA NO=ERRORS NO=FORMAT
NON=STANDARD NOT NOT=-READY
NOTE NUMBER(*4) NUMERIC

L These reserved words may appear in a future compller,

A-3

APPENDIX A (cont)

OBJECT-COMPUTER 0OC

OCR

0-1

ON

OR
OVERFLOW

PAGE

PERFORM

PIC
POCKET=LIGHT
POSITIVE
PROCEDURE
PROCESSING
PT=PUNCH
PURGE

QUOTE

RANDOM
READER
RECORDS
RELEASE
RENAMES
REPORTING(*4)
RESET(*L)

OF
0-L=-BANKING
OPEN
OTHERWISE

PAGE-COUNTER(*4)

PF(*4)
PICTURE
POLL
PRINTER
PROCEED
PROCESSOR
PT-READER

QUOTES

RD(*4)
RECORD
REDEFINES
REMATINDER
REPLACING
REPORTS(*L4)
RESERVE

4L These reserved words may appear

A=k

OCCURS
OFF
OMITTED
OPTIONAL
QUTPUT

PC

PH(*L)
PLUS(*4)
POSITION
PRIORITY
PROCESS (*L4)
PROGRAM-1D
PUNCH

READ
RECORD ING
REEL
REMARKS
REPORT(*4)
RERUN
RETURN

in a future complier,

REVERSED
RH(*4)
RUN

SAME

SD
SECURITY
SELECT
SEQUENTIAL
SIGNED
SORTER
SPACE

SPO
START=TEXT
STOP
SUBTRACT
SWi1

SW4

SW7
SYMBOLIC

TALLY
TAPE=-7

TERMINATE(*4)

THROUGH
TIMES

REWIND
RIGHT

SAVE
SEARCH
SEEK
SENTENCE
SET

SI1ZE
SOURCE (*4)
SPACES
STACKER
START=-FLOW
STOP=FLOW
SUM(*4)
SW2

SW5

SW8

SYNC

TALLYING
TAPE=9
THAN
THRU

T0

APPENDIX A (cont)

RF(*L4)
ROUNDED

SAVE-FACTOR
SECTION
SEGMENT=-LIMIT
SENTINEL

SIGN

SORT
SOURCE=-COMPUTER
SPECIAL=NAMES
STANDARD
STATUS (*4)
STREAM
SUPERVISOR
SW3

SWé

SY
SYNCHRONIZED

TAPE
TC-500
THEN
TIME

TODAYS-DATE (SPECIAL REGISTER)

L These reserved words may appear in a future compller,

APPENDIX A (codnt)

TONE TOUCH=-TONE TRACE
TRANSLATION TT-28 TWX

TYPE(*L)

UNIT(*4) UNTIL up

UPON USAGE USASI

USE USING

VA VALUE VARYING

VOICE

WAIT WHEN WITH

WORDS WORK WORKING=-STORAGE
WRITE WRITE=-READ WRITE-READ=-TRANS

WRITE=-TRANS=READ

ZERQO ZEROS ZEROES
1P

L These reserved words may appear in a future compller,

A=6

cut along dotted line

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS
REMARKS FORM

TITLE: __B 1700 SYSTEMS FORM: _1057197

COBOL Reference Manual DATE: _10-72

CHECK TYPE OF SUGGESTION:
[JADDITION []DELETION [_JREVISION [_JERROR

GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION:

FROM: NAME DATE

TITLE
COMPANY
ADDRESS

STAPLE

FOLD DOWN SECOND

FOLD DOWN

Postage
Will Be Paid

by
Addressee

Necessary

If Mailed in the

BUSINESS REPLY MAIL
First Class Permit No. 817, Detroit, Mich. 48232

E———

BUI’I’OUQhS Corporol'ion S

6071 Second Avenue]

Detroit, Michigan 48232 ————

——

attn: Sales Technical Services ———

Systems Documentation ————
FOLD UP FIRST FOLD UP

Business There's | Burroughs

Printed in U.S. America
1057197

