=5.JUN1974

INSTITUT FUR INFORMATIK
UND PRAKTISE E MATHEMATIK
DER UNIVERSITAT KIEL

Burroughs

B 1700
SYSTEMS

System Software
OPERATIONAL GUIDE

QUFITIUT i RN R s AT
INSTITUT FUR INFORMATI

Sies X

Burroughs

B 1700 Systems

System Software

OPERATIONAL GUIDE

R

Burroughs Corporation
Detroit, Michigan 48232

$5.00

Printed in U.S. America 7-73

1068731

COPYRIGHT © 1972, 1973 BURROUGHS CORPORATION
AA 370509, AA 401135

Burroughs Corporation believes the program described in this
manual to be accurate and reliable, and much care has been
taken in its preparation. However, the Corporation cannot
accept any responsibility, financial or otherwise, for any con-
sequences arising out of the use of this material. The infor-
mation contained herein is subject to change. Revisions may
be issued to advise of such changes and/or additions.

Correspondence regarding this document should be forwarded using the Remarks Form at
the back of the manual, or may be addressed dircctly to Systems Documentation, Technical
Information Organization, TIC-Central, Burroughs Corporation, Burroughs Place, Detroit,
Michigan 48232.

TABLE OF CONTENTS

Section Page
INTRODUCTION « v ottt it it et e ee it i a e et aaa e oo e it ix
1 INTRODUCTION TO SYSTEM . ..ttt it ittt it ittt ee et et 1-1
System Initializationttt e 1-1
UNIt MIIEIMOMICS .+ v v v v e et e e ettt e e e e e e ottt ie it et e e e e e aaaaeae s s 1-1
System DeSCIiPHiON . . v v v v et ittt i it e e et e e 1-2
Hardware ReqUITEmMentso v vt ittt it et i ittt 1-2
(ST« v TR 1-3
FIEEIPICTETS o o v v v v o e e e e e e e e e e e e me e et e aeome et e 1-3
2 MASTER CONTROL PROGRAM ittt ittt ittt et iisanaeset e 2—1
(TS 1V 1 K 2-1
MCP DiSK StIUCLUTES + v v v v v e v v e vt e oo s e e v e sa e anaaseaeenenasoneassnssason 2-1
DISK DITECHOTY v v v v v e et e e et ettt o ine e taae e eans e saaa et 2-2
Disk PacK I & oot e e e et e e e e e e e e e e e 2-2
Main Directory File Namettt 2-2
Sub-Directory File Nameo ittt ci i ecnoeann 2-3
Main Directory CONtENntS . . v v vt i i vt iie et iieeseae ettt at e 2-3
SUD-DiIrectory CONTENTS & v v v v v v o vt o ime o iee e taee s et eeanaannsssnseens 2-3
Directory RefEIeNnCe .. v v v v vttt ittt it iie i in st 2-4

& 1 2~ I e 2-4
| (00 01 5 T ¢ T 2-5
51012 R 2-6
(01 5 20 2—6
Y-\ = T I I 2—-6
27 I 2—-6
7.5 > 3 2—-6

5 15T I I I I 2—6

10 32 2, [I R 2-7
2333 Y I I 2-1

42335 T I 2-17
128, (0 1"/ I 2-7
L3 5 1. R 2-17

8 0 2. (T I 2-17

TABLE OF CONTENTS (cont)

Section Page

MCP Options (cont)

TIME e e e e e e e e e 2-8
CLOS o e e e e e e e e 2-8
LOG e e e e e e e e e 2-8
MCP-Operator Interface ittt ittt it ittt it et e ettt et e e e 2-8
GeneTal .. i e e e e e e e e 2-8
MCP CommumniCations v v vt vttt et et e e ettt e et et e i e 2-9
Punched Cards ittt e e e e e e e e 2-9

Console Printer i ittt e e e 2-11

/5 o P 2—11

General TeIMS . ..o v it it et e e e e e e e e 2-11

Library Maintenance Instructions i v it ittt ittt it ittt ettt et ittt 2—13
CHANGE .o e e e e e e e e e e e 2-13
REMOVE e e e e e e e e e 2—-15
Control INStrUCTIONS . . v v vt it ettt e et et et et e e e e e e 2-16
COMPILE . . i e e e e e e e e e 2—-16
EXECUTE ..ottt et et et et et e et et ettt et et 2-18
MODIEY o e e e e e e e e e 2-19

AF TR . e e e e e e e e e e e 2-20
AFTER.INUMBER e it e e et e et e e it e e e 2-21
THEN o e e e e e e e 2-22
THEN. ALW A Y S L o it ettt ettt et e ettt en e 2-23
Control Instruction Attributes i ittt it it e it e i te e e et et e 2-24
CHARGE . e e e e e e e e e 2-24
0 2-25

L) 2-25

File Attributes . . o vttt it e e e e e e e e e e e 2-26
FREEZE . . it e et e e e e e e e e e e e e e 2-30
HOLD . e e e e e e e e e 2-31
INTERPRETER ...t e e e e e et i e e et e e 2-32
INTRINSIC. INAME .« .. it et et i et et et ettt e 2-33
INTRINSIC.DIRECTORY . . .ottt et e e e e et ettt e e ee e e e 2-34
MEMO R Y i e e e e e e e e e e 2-35
o028 (] 2 I A 2-36
UNFREEZE . . i e e e st et e e e et e e e e e 2-37

TABLE OF CONTENTS (cont)

Section Page

Control Instruction Attributes (cont)

VIRTUAL. DDISK ..t e i et e et ettt et e 2-38
File Parameter InStructions i i ittt it it i it it ittt 2-39
AT A Lt e e e e e e e e e e 2-39
EN D ittt e e e e e e e e e e 2-40
Keyboard Input Messages . . v v v v v vt v et et e oottt et e ittt eeasenaeonaeneeeneas 2—41
(53173 - 2-41
Keyboard Entry Procedurettt ittt 2—41
G 2-44
5 2-45
1 2—-46
! 2-47
. 2-48
1 2—-49
0 2-50
21 2-51
1)) 2-52
) 2 I 2-53
DS it e e e e e e e e e i e e e e 2-54
2 2-55
2 2-56
0 2-57
FR it e e e e e e e e e 2-58
ST 2-59
7 S 2-60
& £ 2-61
2-62
0N 2—-63
6 2—-64
5 2—-65
5 2—-66
0 5 2—-68
(R 2—-69
% 2-70
L) T 2-71
1) < 2-72
1) 2-73

iii

TABLE OF CONTENTS (cont)

Section Page

Keyboard Input Messages (cont)

OU ettt e e e e e e e e 2-74
5 2-175
2 2-176
2 2-178
20 [2-79
{0 2 2-80
o 2-81
£ 2-82
2228 2 2-83
23 2 2-84
2. 2-85
238 [2-86
20 2 2-87
2 2—-88
28 A TR 2—-89
230" 2-90
103 2-91
103 7 2-92
0] 6 2-93
o3 2-94
03 2-95
o172 I 2-96
5 00 0 TS 2-97
5 (5 2-98
5 5 7 2-99
0 0 TS 7-100
0 12 2-101
1 7 2-102
1,72 5 5 2—-103
L T 2-104
S ittt e e e e e e e e e e e e e 2-105
L2 2—-106
"2 2—-107
MCP OUtpUt MESSAZES « + « o v v v vt e vt ettt ie et ene e ia s e e 2—-108
=3 4 1=3 - [2—-108

iv

TABLE OF CONTENTS (cont)

Page

Keyboard Input Messages (cont)
SYMEAX + v e et et et e e e e e e 2—-108
MOP MESSAEES « « « v e e v e e e e et e i e e e e e e 2—-109
SYSTEM SOFTWARE . . ottt i it e it e et et it e et et e it e e et e e e 3-1
Disk Cartridge Initializer« .ottt e 3-1
GEIETAL o o v v e 3-1
Disk Initialization InStrUCtions. . « . v v vt vt it e it et e i e e 3-1
System Loading Procedurest vn it i 3-2
GENETAl . e e e e e e e e e e e e e e e 3-2
(070 Y s T 22« A I I I 3-3
(0] T2 11721 « S I 3—4
(@S 1=y w1 O I 3-4
Clear/Start ProcedUIe . . v oo v vttt i it e e 3-5
DiSK File COPY v ot v et e e e et ettt et e e e e e 3-5
LT3 s =5 v K 3-5
Disk/Copy Operating INStTUCHONS v vttt i e 3-6
Specification Cards vttt e 3-6
MEmOTY DUINID © v ot e et e e e et ittt e i e e e e e e e 3-7
Memory Dump Procedureottt e 3-7
DM P AL ..ttt et e e e e e e et e 3-8
(TS £ 1<) w1 U 3-8
%P5 o 3-8
RePIOQUCINE .+ o v v vt et et it ettt ot e e e it e e e 3-8
Operating INStrUCtIONS . .. v vttt e e e 3-9
Keyboard COMSOIE . v v v oo vttt it i ee e i et e e et it e 3-9
CaTAS v v et e e e e e e e e e e e e e s 3-9
Multiple Specification Filesot 3-9
Print Specifications e e e e e e e e 3-10
Reproducing Specifications vv v v vttt 3-12
FILE/LOADER . . ot ittt it e ettt e i e et et 3-15
(@S 1=y 1 U R I 3-15
DOHAr CArd . o v v e e et e e e e e e e e e e e 3-16
ASEETISK Card . v v v v e e e e e e e e e e e e e e e 3-16
EITOr MESSAZES « o v v o et et e e et et it ittt e e 3-17

TABLE OF CONTENTS (cont)

Section Page
076 2 T I 3-19
General R I A I 3-19
Sort Execution Deck . it it it i e e e e e e e e 3—-19
The File Statement . . o v v v o ittt e e e et ittt e it e et s e e 3-20
251 P=0 0 P 3-20

1) 2 (c 3-20
File-Tdentifiers . . v v v v vt et e e e e e e e e e e e e e e s 3-20
CATA o o e e e e e e e i 3-21
<= I 3-21
DASK o v et e e e e e e e e e e e e e e 3-21
ReCOTAS-PEI-ATEa .« o v v vt it et ettt e e e et et et et e e e s 3-21
RECOTA-SIZE & v vt et e it et e e e e e e e s 3-21
BlOCKING FaCtor .o v v vt ot et e et it e e e 3-21
o0 I 3-21

TS5 72171 & S 3-22

0 IR 3-22

The Key Statement u i ittt et ettt 3-23
22 I 3-23
Key-Locationttt i e e e e e e 3-24
T 3 V= ¢ N I 3-24
ASCendiNg OF A L.ttt it it i e e e e e 3-24
Descending Or D ..o o vttt e e e e e 3-24
Alpha or UA ... it i e e e 3-24
Numeric 0T UN L. . it et e ettt i e e s e et 3-25
103N A 3-25

Sort Option Statementso ov vttt vttt iine et e 3-26
o3 535 11 S 3-26

5 4T3 . 20 3-27
77102 I I 3-27
33TV~ 3-27
5973 F: Y- J A I 3-28

13302 117 - I 3-28

(00 4%+ 1= 4t A 3-28

Sort Reserved Words .. o v vt ittt et e e e e 3-29

4 COMPILERS .o ittt ittt it ettt et e e e e e e e e 4-1

vi

TABLE OF CONTENTS (cont)

Section Page
4 COMPILER (cont)
Introduction e e e 4-1
REPORT PROGRAM GENERATORttt e ettt et e et 4-1
L3 Y 4-1
Compilation Card DecK ot ot i i e e e 4-1
Dollar Card Specifications v it i ittt ittt et et et e e et e, 4-2
RPG EXTENSIONS . .ottt it it sttt st eeeenesneenennnenns .. 4-3
Compiler Directed Options v v ittt it ittt ittt et ettt et 44
RPG t0 COBOL Options . . v vt vttt ittt ittt ettt te et et entn et tneenenns 4-6
Internal File Namesottt it i it ettt ettt e tieaannn 4-6
RPG TO COBOL TRANSLATOR (COFIRS)ttt ittt ittt it eeeennnn. 4-6
General ... e e e e e e e e e e 4-6
Execution of Translatorottt ittt i i ittt et e it et 4-7
COBOL COMPILER ..ttt it it it s et ettt e et tne e enasenennn. 4-8
3T T 4-8
Compilation Card DecK ottt it e i it i it e e e e e e e 4-8
S OPTION CONTROL ... ittt ittt et sttt et et e et 4-8
SOURCE DATA Cards . . .ot i ittt ittt it et et ettt sttt saeeasoneenennennas 4-11
Internal File Names ittt i i i it it et e ettt ee e 4-13
FORTRAN COMPILER . .. ittt ittt ettt ittt s aaeoneannanaaneens 4-13
General ... e e et e e et e e e e, 4-13
Compilation Card Deckttt ittt ittt ittt e i it e e 4-13
B0 o 403 7V 4-14
OPTIONS o e e e e e i e e e e 4-15
SOURCE DATA Cards . . .ot ittt it it ittt ettt it tae et an et s eneeas 4-15
Internal File Namesot it ittt et ittt et v et snatennosenseesnsesas 4-15
BASIC COMPILER . .. it it it it ittt ittt 4-16
L0155 4 - 4-16
Compilation Card DecKt it i ittt ittt it e it et e e i e e 4-16
B0 o5 oo K 67: e K 4-17
OPTION S L e e e e e i e e e 4-17
SOURCE INPUT Cards .. .o v ittt ittt it iit ittt et nenneanes e 4-18
Intrinsic Files i i i e et e i e e 4-19
Sample Compilation Deck it ittt ittt ittt 4-19
Internal File Names ittt ittt ettt it e e 4-20

vii

TABLE OF CONTENTS (cont)

LIST OF TABLES

Number Title Page
3-1 DISK/COPY Control Deck 3-6
3-2 SORT Execution Deck 3—-19
41 RPG Compilation Deck 4-2
4-2 RPG Internal File Names 4-6
4-3 COBOL Compilation Deck 4-8
4-4 COBOL Internal File Names 4-13
4-5 FORTRAN Compliation Deck 4—-14
4-6 FORTRAN Internal File Names 4-15
4-17 BASIC Compilation Deck 4-16

4-8 BASIC Internal File Names 4-20

viii

INTRODUCTION

The productivity of a computer facility is largely dependent on an operator’s experience and knowledge of the
system. When the programs produced for the installation have been refined and are ready for use, the successful
results obtained are largely due to the expertise of the operator. Therefore, some concept of the B1700 MCP and

a knowledge of its peripherals are important in order to utilize the equipment effectively.

This manual is divided into sections to ease the operating personnel’s task in referencing material to efficiently

operate the B 1700 system.

The purpose of the System Software Operational Guide is to provide a general description of all Burroughs B 1700

System Software without going into such detail as is required for a programming language or a reference manual.
Formal documents pertaining to the system software described herein are referenced where applicable. Included
in this manual are those operating instructions required to perform any major function of the described system

software.

An explanation of the notational conventions used throughout this manual is as follows:

a. Key Words. All underlined upper case words are key words and are required when the functions of

which they are a part are utilized.

b. Optional Words. All upper case words not underlined are optional words, included for readability only,

and may be included or excluded as desired.

c. Lower Case Words. All lower case words represent generic terms which must be supplied by the system

operator in the position described.

d. Braces. Words or phrases enclosed in braces ({ }) indicate a choice of entries of which one must be made.

e. Brackets. Words or phrases enclosed in brackets ([]) represent optional portions of a statement which

may be omitted.

f. Consecutive Periods (Ellipses). The presence of ellipses(. . .) within any format indicate that the control

syntax immediately preceding the ellipsis notation may be successively repeated, depending upon the

requirements of the operation.

g. Question Mark. The appearance of a question mark (?) indicates that any invalid EBCDIC character is
acceptable. This convention is used primarily by the Master Control Program to indicate a control card

instruction.

h. At Sign: Any data contained between “‘at signs” (@) identifies that information to be hexidecimal

information.

i, Master Control Program: The Master Control Program is abbreviated throughout this manual as MCP.

Its functions are explained in a separate chapter of this manual.

This publication supersedes and replaces the B 1700 System Software Operational Guide (Preliminary Edition), form
1057171 dated October, 1972.

SECTION II
INTRODUCTION TO SYSTEM

SYSTEM INITIALIZATION

The MCP was designed as an integral part of the system and is intended to serve a wide range of installations and
users. Therefore, provisions have been incorporated in the system to adapt the operation of the MCP to the particu-
lar requirements of a variety of installations. This has been accomplished by incorporating different environments
within the MCP which may be specified at the time of system initialization. Some of the environment options can

be changed or set after the system has been initialized by using a console printer input message.

In order to place the MCP in control of the system, the MCP must be loaded onto the system disk with the system’s
environment defined and the disk directory established. Then the SDL interpreter must be loaded to interpret the
MCP S-language. When this procedure has been completed, the SDL interpreter starts interpreting and executing the
instructions of the MCP.

Three separate procedures are performed during initialization thereby making the system operable: (1) Initializing
Disks (System and Removable), (2) Performing a COLD START, and (3) Performing a CLEAR START.

UNIT MNEMONICS

Mnemonic names are assigned to the peripherals attached to the system by the MCP. The mnemonics are:

CDX — 96-column card device

LPX - line printer

CRX ~— 80-column card reader
CPX — 80-column card punch
DPX — Disk cartridge or pack
SRX — Reader/sorter

DISK — Head-per-track
MTX — Magnetic tape
SPO — Console Printer

NOTE

The “X” is replaced by a capital letter A - Z for multiple

units of a specified type.

SYSTEM DESCRIPTION

The following functions are controlled by the MCP:

Loading

o @

Interrupt handling
1/O control

a o

Selection and initiation of programs
I/O error handling
System log maintenance

Storage allocation—memory and disk

Fw oo

Overlay functions—data and code

—

Multi-programming (MCP II)

Both the MCP I and MCP 1I will service the following standard peripheral equipment:

Console Printer

96-column Card Devices

IS

80-column Card Devices

Line Printers

Magnetic Tape (MCP 1I)

Disk Cartridges

Disk Packs (MCP II)
Head-per-Track Disk (MCP II)

e o

= R

In addition, MCP II will accommodate the MICR reader sorter as well as various data communication devices through

a single line or a multi-line control.
HARDWARE REQUIREMENTS

The following list of equipment must be present for MCP operations. However, the listed equipment is not dedicated

to the MCP and may be utilized by any user program.

Hardware Type Usage

Console Printer Operator communication
Disk Auxiliary storage

Card Reader(s) Control input

1-2

GISMO

GISMO (Generalized Interface and Supervisor for Multitasking Operations) is a microcoded routine which performs

the following functions in an equivalent hard-wired machine:

Interrupt Detection and Handling.
b. Passes control to/from the MCP, usually on an interrupt.
¢. Controls all I/O activity, such as:

1. 1/O Initialization

2. Data Transfers

3. 1/O Termination

d. Manages Interpreter Activity.

INTERPRETERS

Interpreters are microcoded routines or “firmware” that perform the operations specified by the programmer. Each

language has its own interpreter.

1-3

SECTION 2
MASTER CONTROL PROGRAM

GENERAL

The Master Control Programs (MCP’s) are modular operating systems which assume complex and repetitive functions
to make programming and operations more efficient and productive. The MCP provides the coordination and pro-
cessing control that is so important to system throughput by allowing maximum use of all system components.
Operator intervention is greatly reduced through complete resource management by the MCP. Since all program
functions are performed under this centralized control, changes in scheduling, system configuration, and program

size can be readily accommodated resulting in greater system throughput.

The System Software Operational Guide will make reference to both an MCP I and MCP II, distinguishing between
the functions of each where applicable. The basic difference between MCP 1 and MCP II is that MCP I is designed
for minimum system configurations and does not have multi-programming capabilities whereas MCP 1II is designed

for larger system configurations with multi-programming capabilities.

A detailed description of the MCP is presented in the B1700 Master Control Program Reference Manual.

MCP DISK STRUCTURES

A significant aspect of the MCP design is the disk handling technique. Because this handling is the responsibility of

the MCP, the users’ programs are less complicated and easier to write.

Areas handled by the MCP include:

a. Dictionary Maintenance

Users need only to specify changes or remove directives by file-name. All other actions pertaining to disk

table maintenance are automatic.

b. Disk Allocation
Programs need only specify the amount of disk they require. The MCP will handle the actual allocation

of a physical area containing only the amount requested.

c. File Assignment
As for all files within the system, disk file assignment is made according to the programmatically specified

file name and type.

d. Record Addressing

Programs need only specify the accessing method, and in the case of random files the specific record

desired. The actual disk location is the sole responsibility of the MCP. This means the programmer

need not be concerned with the physical locations of the files.

DISK DIRECTORY

The Disk Directory is a disk-resident table that contains the name and type of file, together with a pointer to the

disk file header or sub-directory for all files which the MCP received a permanent disk directory entry request.

Disk Pack Id

The disk pack-id is the name that is assigned to a disk pack at initialization time.

Example:

AAA/program-name/

AAA is the disk pack-id

Main Directory File Name

If there were a set of programs that were all common to solving one problem, they could all have the same first

“family” name.
Example:
PAYROLL/program-name-1
PAYROLL/program-name-2

PAYROLL/program-name-3
PAYROLL/program-name-4

In this example, PAYROLL is the main directory file name or the family name, while program-name-1 through

program-name-4 are the sub-directory file names.

2-2

Sub-Directory File Name

The main directory links to a sub-directory when the sub-directory file name is used. This sub-directory will contain
an address on disk of a File Header for each of the sub-directory file entries. The sub-directory is an extension of

the main directory.

Main Directory Contents

The main directory entry contains:

1. Family Name
2. Address of the disk file header or sub-directory address.
3. Type of File:

0 = MCP

1 = LOG

2 = Directory (entry points to sub-directory)

3 = Control Deck

4 = Backup Print

5 = Backup Punch

6 = Dump File
7 = Interpreter
8 = Code File
9 = Data File

Sub-Directory Contents

If the file has a family name and a secondary file name, the address in the main directory will not point to the disk
file header but to a sub-directory. This sub-directory has the same format as the main directory, except that it uses
only one segment of disk. If there are more than twelve names in the sub-directory the MCP will increase the size

by one segment for each twelve additional names.

The sub-directory entry is identical to the main directory entry with one exception, the addresses will always point

to a Disk File Header.

Directory Reference

When a file is referenced on a removable disk, it must be preceded with the disk cartridge or disk pack identifier.

The removable disk directories and system disk directories are the same format.

HALTS

When certain conditions of the MCP have been violated, all processing will stop and a HEX value will be displayed
in the “L” register. Recovering from a HALT state is accomplished by performing a Clear/Start. The following

list will explain the HALT codes and their meanings.

_Iial_t Co_de Description _(Zf y_a_l_g
1 Evaluation/Program pointer stack overflow.
2 Control stack overflow.
3 Name/Value stack overflow.
4 Cassette data error.
5 Invalid parameter passed to a procedure.
6 Invalid sub-string.
7 Invalid sub-script.
8 Invalid value returned from a procedure.
9 Invalid case.
A Divide by zero.
B Invalid index.
C Memory parity. The “T” register will contain the address of the parity

error. If the “T” register equals @FFFFFF@, the error was caused by

an attempt to read outside the physical bounds of memory.

D Invalid operator.

E Unused.

F Attempt to trace the MCP with a Non-Trace version of Clear/Start.
10 Console HALT. (interrupt Switch)

Halt Code Description of Halt

11 This is a controlled HALT. The “T” register will contain a message
from the MCP.

12 Attempt to write outside of the MCP base or limit register.

17 Bad I/O descriptor. System port and channel in “X* register; address

of 1/O descriptor in “Y” register.

19 Irrecoverable I/O error. Result descriptor in “T”’ register.

1A Insufficient memory available for Clear/Start.

22 Invalid service request.

25 Second operation complete bit is missing from the result status field.

Result descriptor in “T” register.

31 Invalid command to soft I/O. Can COLD START only.

MCP OPTIONS

The MCP will perform certain functions based on the status of its available options. The system operator can use
the SO input message to set (turn on) an option, or the RO message to reset (turn off) an option except in the
case of LOG and CHRG which are independently set with SL and MC respectively.

At COLD START all of the MCP options with the exception of DATE, TIME, BOJ, and EOJ are set “off”, and

must be set “on” if desired as part of the MCP’s operations.

The DATE and TIME options are set automatically at COLD START time. The date and time must be entered
after Clear/Start before the MCP will allow programs to execute. However, these options may be reset, thereby
making it unnecessary to enter the date and time after each Clear/Start. After a Clear/Start, the MCP options remain

in the same state, set or reset, as they were before the Clear/Start was performed.

The following is a list of the available MCP options:

BOJ SCHM PBT
DATE TERM PBD
EOJ TIME CHRG
LIB LAB CLOS
OPEN LOG RMOV

The MCP options are defined in the following paragraphs.

BOJ

The BOJ option specifies that a beginning-of-job message be displayed each time the MCP initiates an executable

object program.

CHRG

The CHRG option requires that all program executions be accompanied by a charge number which will be entered

in the log.

DATE
The DATE option is set “on” at COLD START time and specifies that the “** DR PLEASE” message be displayed

at Clear/Start time. When the option is set and the “** DR PLEASE” message is displayed, the system operator

must enter the date with the DR input message before program execution may begin.

EOJ

The EOJ option specifies that an End-of-Job message be displayed each time an object program reaches normal

End-of-Job.

LAB

The LAB option when “on” causes the MCP to display a tape label-name when a BOT is read.

LIB

The LIB option causes the MCP to display the affected file-id and the resultant library maintenance actions per-

formed on that file. The message displayed on the console printer can be one of the following:

file-identifier REMOVED

file-identifier CHANGED TO file-identifier
file-identifier LOADED

file-identifier DUMPED

OPEN

The OPEN option specifies that a ““file-identifier OPENED . . . ” message be displayed on the SPO each time an

object program opens a file.

PBD

The PBD option specifies that output files assigned to a printer or card punch will be diverted to a disk backup file

if the required output device is not available when the object program tries to open that file.

PBT

The PBT option specifies that output files assigned to a printer or card punch will be diverted to a tape backup file

if the required output device is not available when the object program tries to open that file.

RMOV

The RMOV option when “on” will automatically remove the old file in “DUPLICATE FILE ON DISK” situations
as though an “RM” message had been typed in by the system operator.

SCHM

The SCHM option causes the MCP to display a program scheduled message when a program is placed in the schedule

awaiting exection. The MCP message has the following format:

SCHEDULED: program-name = job-no. PR = integer TIME = (seconds)

TERM

The TERM option specifies that the MCP automatically discontinue (DS) processing of a program when an error

condition is encountered. If an error condition occurs and it is necessary to obtain a memory dump of the program,

the TERM option should not be set.

TIME

The TIME option is set “on” at COLD START time and specifies that the “** TR PLEASE” message be displayed
on the SPO at Clear/Start time. When this option is set and the ‘“** TR PLEASE” message is displayed, the system

operator must enter the time with the TR input message before program execution may begin.

CLOS

The CLOS option specifies that a “file-id CLOSED . . . ” message be displayed on the SPO each time an object

program closes a file.

LOG

The LOG option will request the MCP to keep a log of all program executions on disk. See the LG, SL, and TL
input messages for printing the log and/or starting a new log. The LOG option once set by the SL message cannot

be reset (turned off).

MCP-OPERATOR INTERFACE

General

The Master Control Program is directed to perform particular actions by the system operator through the use of

Control Instructions. These control instructions apply to both the MCP I and the MCP II.

Control instructions may be supplied to the Master Control Program by punched cards, the console printer or ZIP

statements in an executing program.

There are four major types of control instructions:

(1) Library Maintenance Instructions
(2) Control Instructions
(3) Control Attributes

(4) File Parameter Instructions

MCP Communications

PUNCHED CARDS

If punched cards are used to communicate a control instruction to the MCP, the following rules apply:

a. Column 1 must contain an invalid character (80 column cards) or a question mark (96 column cards). An

invalid character or question mark may not appear in any other column.

b. The remainder of the card, except for the last eight columns, may contain control instructions in free-field

format; the MCP ignores information in the last eight columns.

c. If the special character percent (%) appears in a control card, all information following it is ignored for

control purposes. This allows comments to be present in control cards.

d. The appearance of the less than (<) sign in a control message will cause the MCP to backspace its pointer
one position for each < sign in memory while scanning the control instruction. This allows correction of
mistakes without requiring that the entire message be re-entered. Even though this is intended mainly for

messages entered via the keyboard, it will work with control instructions entered on punched cards as well.

e. Any program-name or file-identifier which contains the special characters listed below must be enclosed

in quotes.

; semicolon

, comma

= equal sign

|/ slash

blank or space
quote mark

@ at sign

% percent sign

< less than sign

Any special characters not contained in the above list do not require quote marks to enclose the identifier.

Examples:

“FILE%001”
“063”["%ABC="

“IXYZ”

SDL.INTRIN/ # 000000001

The slash in the second example above separates the family-name from the file-name and is not enclosed in

quotes.
In the third example, the slash is part of the family-name and is therefore, enclosed in quote marks.

In the last example the pound sign (#) is not listed as a special character and therefore does not need to be

enclosed with quote marks.

f. Control instructions may be contained on more than one card; however, words may not be split between
cards. The card on which the information is to continue must contain an invalid character or question

mark in column 1.

Example:

? EXECUTE ALPHA/BETA PRIORITY = 5§ MEMORY

? = 16000 CHARGE = 123456 DATA CARDS

g. All control instructions are described on the following pages under headings which would indicate that
each of them must consist of a separate card. This is not necessarily so because if the text of one control
instruction is delimited by a space then this is considered to indicate the “logical end” of that control

instruction and may be followed by another control instruction on the same card as the example above

indicates.

h. If control instructions are communicated to the MCP through keyboard input messages, the entire

instruction must fit on one line. There is no continuation of control instructions allowed with keyboard

input.

CONSOLE PRINTER

Control instructions may be entered via the console printer as input to the MCP. The control statements are restricted
to one line; there can be no continuation lines. When the END OF MESSAGE is pressed, the MCP assumes the end of

the control instruction and processes the control statement. Program control and program parameter statements must

be entered in the same statement as the COMPILE, EXECUTE, or MODIFY statements.

Example:

EXECUTE program—name PRIORITY = 9 MEMORY = 8000

ZIP

MCP control statements may be passed to the MCP by the use of a ZIP statement in an executing program. The ZIP
statement in the program must reference a defined data area where the control statement is located. Refer to the

appropriate language reference manual for additional syntax regarding the ZIP statement.

GENERAL TERMS

A number of generic terms are used within this manual to describe the syntax of input and output messages. These terms

are defined as follows:

a. identifier: A word consisting of from one to ten alphabetic, numeric, and special characters in any

combination.

b. disk—pack—(dp-id): An identifier which is the name of a disk pack or cartridge.

c. family—name: An identifier which is a single file name, or the name given to identify a main file with

subdirectory entries.
d. program—name: A file—identifier which is the name of a program.
e. compiler—name: A file—identifier which is the name of a compiler.

f. interpreter—name: A file—identifier which is the name of an interpreter.

g. unit—mnemonic: A name which consists of from one to six characters, used to identify a peripheral device.

unit— mnemonic device
CDX 96—column card device
CRX 80—column card reader
CPX 80—column card punch
LPX Line Printer
MTX Magnetic Tape
CSX Cassette Tape (peripheral unit)
SRX MICR Reader Sorter
PPX Paper Tape Punch
PRX Paper Tape Reader
DPX Disk pack/cartridge
DISK Head—per—Track disk
SPO Console Printer

B

The “X’’ notation represents an alpha character which distinguishes multiple units of the same type.

For example two Line Printers would have mnemonic names of LPA and LPB.

h. system pack: The name given to a disk pack or cartridge that is initialized as a system type pack. A system

pack is under the control of the MCP and one or more must be present on the system for the MCP to function.

i. removable disk pack: The name given to a disk pack or cartiridge that can be removed from the system during

operations. The MCP does not need removable disk packs in order to function.

j. file—identifier: All file identifiers used on the system must be unique, therefore, there can be no duplication
of file names. Throughout this manual “file—identifier” will incorporate all the combinations allowed for a

file—identifier. Such as:

file—identifier
family—name/file—identifier
dp—id/family —name/file—identifier
dp—id/file—identifier/

CHANGE

LIBRARY MAINTENANCE INSTRUCTIONS
CHANGE

The CHANGE statement changes the file-identifier of a disk file causing the file to be referenced by the new file

identifier.

The format of a CHANGE statement is:

CHANGE | file-identifier-1 [TO] file-identifier-2
CH [file-identifier-3 [TO] file-identifier-4 . . .]

The control word CHANGE may be abbreviated as CH.

Any CHANGE statements affecting more than one file must have the file-identifiers separated by commas.

The CHANGE statement will cause the MCP to change the file-identifier of specified disk files from one name to
the other. If the file-identifier in the CHANGE statement is residing on a removable disk, the disk pack-id must
precede the file-identifier in order for the MCP to locate the proper file to change.

? CHANGE ALPHA/BETAONE/ TO ALPHA/BETATWO/

A new sub-directory is created any time the main directory file name is changed. This is due to the structure of

the directory where more than one main directory file may not point to the same sub-directory file.

If the CHANGE statement is entered into the system and the MCP cannot locate the file or if the file is in use, the

following message is displayed on the console printer:
file-identifier =~ NOT CHANGED ... (reason). ..

If the CHANGE statement is accepted by the MCP and the change is made the following message will be displayed

on the console printer:

file-identifier =~ CHANGED TO file-identifier

CHANGE

The CHANGE statement may consist of additional cards where two or more “changes” may be made. For example:

? CHANGE
? A/B C/D

? XY, ZQ
? ABC DEF;

Termination will occur when a semicolon (;) is detected.

REMOVE

REMOVE
The REMOVE statement deletes specified files from the disk directory making the file space available to the MCP.

The format of the REMOVE statement is:

file-identifier
» | REMOVE

RE

family-name/=

dp-id/family-name/=

The control statement REMOVE may be abbreviated as RE.
The /=" option will delete the main directory entry and in turn delete all the files in its sub-directory.

The REMOVE statement may delete any number of files. However, any statement affecting more than one file must

have the file-identifiers separated by commas.

If the file-identifier referenced in the REMOVE statement resides on a removable disk pack, the disk pack-id must

precede the file-identifier in order for the MCP to locate the correct file.
In the REMOVE statement when the pack is not referenced, the MCP assumes that the file resides on a system pack.
Once a file has been REMOVED, there is no means of recovering it.

The REMOVE statement may be continued to additional cards with the last “remove” terminated by a semicolon.

COMPILE

CONTROL INSTRUCTIONS
COMPILE
The COMPILE statement designates the compiler to be used, and the type of compilation to be performed.

The format for the COMPILE statement is:

LIBRARY
? COMPILE program-name [WITH] compiler-name SAVE
co SYNTAX

[control attributes]

The COMPILE statement may be abbreviated as C_O

The compiler control statement must be the first statement in a set of compile statements. The COMPILE statement

has four options:

COMPILE

COMPILE [TO] LIBRARY
COMPILE SAVE

COMPILE [FOR] SYNTAX

B

The COMPILE is a “compile and go” operation. Providing the compilation is error-free, the MCP schedules the
program for execution. The program-name will not be entered into the disk directory, and must be recompiled to

be used again. The “compile and go” is the default option of the COMPILE statement.

The COMPILE [TO] LIBRARY will leave the program object file on disk and will enter the program-name into the
disk directory after an error-free compilation. The program is not scheduled for execution until an EXECUTE

statement for that program-name is issued to the MCP.

The COMPILE and SAVE combines the execute and library options. The MCP will enter the program-name into
the disk directory and will leave the object program file on disk, as well as schedule the program to be executed

after an error-free compilation. The program remains available for re-scheduling using an EXECUTE statement.

COMPILE

The COMPILE [FOR] SYNTAX provides a source listing as the only output. This option does not enter the

program-name into the disk directory or leave the program object file on disk. Some uses are a debugging tool,

first time compilation, or a new source listing.

EXECUTE

EXECUTE

The EXECUTE statement instructs the MCP to call a program from the disk system software library for subsequent

execution.

The format of the EXECUTE statement is:

EXECUTE

EX program-name [control attributes] .

The EXECUTE control word can be abbreviated as EX.

The EXECUTE control statement must be the first control statement in a set of control statements pertaining to
the execution of a program. This does not, however, prevent the use of a CHANGE or REMOVE statement prior
to the EXECUTE statement in order to prevent a duplicate file situation and reduce operator intervention. The

CHANGE and REMOVE statements do not directly pertain to the execution itself.

If the program referenced in the EXECUTE statement resides on a removable disk cartridge or disk pack, the disk-

pack-id must precede the program-name in order for the MCP to locate the correct file.

Example:

? EXECUTE TEST
? DATA file-identifier (data cards)
? END

This example shows that a program named TEST is called out of the system software library on disk and executed.
One of the files in the program TEST assigned as a card file is identified by the DATA control card. If the program
does not require a card file, only the EXECUTE control statement is necessary and can be entered through the card

reader with the “? EXECUTE TEST” or the console printer with the “EX TEST” command.

MODIFY

MODIFY
The MODIFY statement is used to permanently change attributes within a program.

The format of a MODIFY statement is:

MODIFY

? MO program-name [control-attributes]

The MODIFY control statement can be abbreviated as MO.

The MODIFY statement has the same syntax as the EXECUTE statement, but does not execute the program.
Example:
? MODIFY A/B PRIORITY 6
The above example will permanently change the priority of program A/B to six.
The MODIFY statement can be used to change the following attributes:

CHARGE

FILE

FREEZE

HOLD
INTERPRETER
INTRINSIC.NAME
INTRINSIC.DIRECTORY
MEMORY
PRIORITY
UNFREEZE
VIRTUAL.DISK

AFTER

AFTER

The AFTER statement is used to conditionally schedule a program “after” the End-of-Job of another program.

The format of the AFTER statement is:

EXECUTE AFTER
EX program-name) o program-name [control-attributes]

The control word AFTER may be abbreviated as AF.

AFTER. NUMBER

AFTER.NUMBER

The AFTER.NUMBER statement is used to conditionally schedule a program in relation to a program already in
the schedule.

The format of the AFTER.NUMBER statement is:

EXECUTE AFTER.NUMBER
? program-name job-number [control-attributes]
EX AN

The AFTER.NUMBER can be abbreviated as élj

Example:

EXECUTE ALPHA AFTER.NUMBER 7

2-21

THEN

THEN
The THEN statement is used to conditionally schedule execution of a program in relation to another program.

The format for the THEN statement is:

EXECUTE THEN
EX program-name | TH program-name

2-22

THEN . ALWAYS

THEN.ALWAYS

The THEN.ALWAYS statement is used to unconditionally schedule a program for execution which is independent

of the other program’s outcome.

The format for the THEN.ALWAYS statement is:

EXECUTE THEN.ALWAYS
? EX program-name \ A program-name

2-23

CHARGE

CONTROL INSTRUCTION ATTRIBUTES

CHARGE

The CHARGE instruction is used to insert a charge number into the MCP log for any or all programs.

The format of a CHARGE statement is:

CHARGE
CH [=] integer

The control word CHARGE can be abbreviated as CH.

The integer cannot exceed six digits. If less than six digits are used, leading zeros will be assumed. This number

will be carried in the MCP log file for subsequent analyzation.

If the MCP’s CHRG option is set, the CHARGE statement must be used before a program will be scheduled.

2-24

FILE

FILE

The FILE statement may be used to specify various attribute changes for both input and/or output files.

The format of the FILE statement is:

FILE

? [OBJ] FI internal-file-identifier file-attribute-1 [file-attribute-2] [...];

The control word FILE can be abbreviated as FI.

The FILE statement must have each element within the statement separated by at least one space, and must be
terminated with a semicolon or ETX. If more than one card is required for a FILE statement, each of the continua-

tion cards must have a question mark in column 1.

The FILE statement must immediately follow the COMPILE or EXECUTE statement. The MCP modifies the infor-
mation in a working copy of the program’s FILE PARAMETER BLOCK (FPB).

The file-identifier used in the FILE statement must refer to the internal-file-identifier used in the program that opens
the file. For example, if the file-identifier is to be changed for this run only, the FILE statement would be as

follows:
? FILE internal-file-identifier =~ NAME file-identifier
Changes may be made permanent by using the MODIFY statement.
OBJ
When compiling, the OBJ option within a FILE statement must be included if the file information to be changed
applies to the object-program. In such a case, the FPB of the object-program being compiled will be permanently

changed to include such file information without the use of a MODIFY statement.

By omitting the OBJ option, the MCP assumes the statement is to apply to the compiler and will not affect the

object-program.

FILE

FILE ATTRIBUTES

The FILE statement provides a vehicle by which to modify the original file-attributes at execution time without

having to recompile or permanently alter the source program. For instance, a program written to output a paper

tape file can be changed to output the same data to a punched card file, thus avoiding a recompilation.

Following is a list of file-attributes that may be modified at execution time with the use of a FILE statement.

FILE ATTRIBUTE

ALLOCATE.AT.OPEN

AREAS[=]integer

ASCII

BACKUP

BACKUP.DISK

BACKUP.TAPE

BCL

BINARY

BLOCKS.AREA[=]integer

BUFFERS[=] integer

CYLINDER.BOUNDARY

DEFAULT

FUNCTION

All of the areas requested by this file will be allocated at the time the

file is opened.

The number of areas assigned to the file at compile time will be

altered to the value of the integer.
The recording mode of the file will be changed to ASCII.
The output of the file will be allowed to go to backup.

If the file is allowed to go to BACKUP, the output of the file will be
allowed to go to disk backup.

If the file is allowed to go to BACKUP, the output of the file will be
allowed to go to tape backup.

The recording mode of the file will be changed to BCL.

The recording mode of the file will be changed to BINARY (80-

column card devices only).
Assign integer blocks (physical records) to an area.

The number of buffers assigned to the file will be altered to the
value of the integer. The integer must be a positive number from

I to 15.

Each area of a disk file will start at the beginning of a CYLINDER
when the file is directed to disk pack or disk cartridge.

Override the disk allocation declared and use the file header block and

record sizes. (Input disk files only.)

FILE ATTRIBUTE

DRIVE[=]integer

EBCDIC
EU[=]integer
EVEN

FORMS

HARDWARE

INCREMENT.DRIVE

INCREMENT.EU

LABEL.TYPE[=] integer

LOCK

MAXIMUM.BLOCK.SIZE[=] integer

NAME file-identifier

NO
NOT file-attribute

FILE

FUNCTION

The file will be directed to the drive specified by the integer. The
drive must be one of the system disk(s). The integer must be a

positive number from 0 to 15.

The recording mode of the file will be changed to EBCDIC.
Same as DRIVE.

The file will be changed to even parity.

The program will halt and the MCP will display a message for the
operator to load special forms in the device (printer or punch) when

the file is opened.

A printer or punch file will be allowed to go to the hardware device

assigned.

Each area of a disk file will start on the next system disk pack or
disk cartridge drive. When the last system drive has been used it will

start over from drive ZERO again.

Same as INCREMENT.DRIVE

A file to be processed as labeled (integer = 0) or unlabeled (integer = 1).
The file will be LOCKED at program close or termination time.

Fixed block size will be used for variable length records.

The external file-name or dp-id will be changed to the value of file-
identifier. If only the dp-id is to be changed it must include the com-
plete file-identifier also. If the file is opened input the program will

expect the new dp-id and/or file-identifier to be in the system.

When this option is used it will negate the file-attribute following the
word NO or NOT. For example, a file assigned to go to backup only
could be changed to go to the printer by entering a NO BACKUP file
statement. The following is a list of file-attributes that the NO or

NOT statement can negate.

FILE

FILE ATTRIBUTE

ODD

OPTIONAL

PACK.ID[=] disk-pack-id

PACK.SINGLE

PSEUDO

RANDOM

RECORDS.BLOCK][=]integer

RECORD.SIZE[=] integer

REEL[=]integer

SERIAL

SAVE[=]integer

VARIABLE

FUNCTION

BACKUP
BACKUP.DISK
BACKUP.TAPE
FORMS
ALLOCATE.AT.OPEN
LOCK

DEFAULT
HARDWARE
PACK.SINGLE
OPTIONAL

k. VARIABLE
CYLINDER.BOUNDARY
m. INCREMENT.EU

n. INCREMENT.DRIVE

IS

a o

B om0

e

—.

Ju—

The file will be changed to ODD parity.

Select optional file (COBOL only).

Alter the pack-id.

A file will be restricted to one pack.

Makes file a pseudo type.

The file will be changed to a RANDOM access file.

The number of records per block for a fixed record-length file.

The number of bytes assigned for the logical record will be changed to

the value of the integer.

The value of the integer will determine the reel number for the first

read on a file that has a multiple reel file.
The file is to be processed sequentially.

A save factor representing the number of days a tape or disk file may

be saved.

The file will be processed using variable length records.

2-28

The following list of HARDWARE TYPE ATTRIBUTES may be used to change the input or output device

FILE

originally assigned to a file. When one of the hardware types is used the MCP will direct the file to that device

when the file is opened.

READER.96
READER.PUNCH
READER.PUNCH.PRINTER
READER.SORTER
CARD.READER
CARD.PUNCH
DISK

DISK.PACK
DISK.FILE
DISK.FILE.]
DISK.FILE.2
DISK.CARTRIDGE

DISK.PACK.10
MFCU

TAPE.7

TAPE.9

TAPE.PE

TAPE
PAPER.TAPE.READER
PAPER.TAPE.PUNCH
PRINTER

PUNCH.96
PUNCH.PRINTER

FREEZE

FREEZE

The FREEZE control statement allows the system operator to prohibit rolling a program out to disk during its

execution, thereby remaining in memory regardless of the situation until End-of-Job.

The format of the FREEZE control statement is:

? FREEZE

HOLD

HOLD

The HOLD control statement allows the system operator to place a program into the schedule, but temporarily

prohibiting its execution until it is forced (FS’ed) to execute.

The format of the HOLD message is:

? HOLD

INTERPRETER

INTERPRETER
The INTERPRETER statement allows the system operator to select a different interpreter for use by a program.

The format of the INTERPRETER statement is:

INTERPRETER
? IN [=] interpreter-identifier
INTERP

INTERPRETER may be abbreviated as IN or INTERP.

Examples:

? EXECUTE ALPHA/BETA INTERPRETER COBOL/INTERP001

? EX X/Y IN CCC/SDL/INTERP3

2-32

INTRINSIC .NAME

INTRINSIC.NAME

The INTRINSIC.NAME statement gives the system operator the ability to change the family-name of the intrinsics

to be requested by a program.

The format of the INTRINSIC.NAME statement is:

INTRINSIC.NAME
IT

[=] intrinsic-identifier

The INTRINSIC.NAME may be abbreviated as IT.

The file-id portion of the intrinsics may not be changed.

For example:

? EXECUTE ALPHA/BETA INTRINSIC.NAME ZZZ.INTRIN

or

? EX ALPHA/BETA IT ZZZ.INTRIN

2-33

INTRINSIC .DIRECTORY

INTRINSIC.DIRECTORY

The INTRINSIC.DIRECTORY statement gives the system operator the ability to reference intrinsic files from a

selected removable disk pack.

The format of the INTRINSIC.DIRECTORY statement is:

INTRINSIC.DIRECTORY
ID

The INTRINSIC.DIRECTORY statement can be abbreviated as ID.

Example:

? EX ALPHA/BETA INTRINSIC.DIRECTORY UTILPACKA

MEMORY

MEMORY

The MEMORY statement allows the system operator to override the dynamic memory assigned by the compiler for

a given program at execution time.

The format of a MEMORY statement is:

MEMORY

9\ =1 i
? E [=] integer

The control word MEMORY can be abbreviated as ME.
The program will terminate if there is not enough memory assigned to execute the program.

When the MEMORY statement is used following a compile statement, the memory will be reserved for the compiler,

not the program being compiled.
Examples:
2 COMPILE program-name COBOL SYNTAX MEMORY = 50000
or

9 COMPILE program-name COBOL SYNTAX

? MEMORY = 50000

Both of the above examples will assign 50000 bits of memory for the compiler. The following example will assign

50000 bits of memory for the execution of a program.

9 EXECUTE program-name MEMORY = 50000

2-35

PRIORITY

PRIORITY
The PRIORITY statement specifies the operational priority assigned to a given program.

The format of a PRIORITY statement is:

PRIORITY

ﬂ{ [=] integer

The control word PRIORITY can be abbreviated as PR.

The PRIORITY statement gives the system operator the ability to assign program priorities to maximize output and

scheduling. Priorities range from zero to fifteen (0-15), where zero is the lowest and fifteen is the highest.
When a PRIORITY of fifteen is specified, the following action occurs in a multiprogramming mode:
a. If necessary, jobs which are running and which have a lower priority than fifteen will be “rolled-out”
from memory to disk to create space for the priority fifteen job. This action called “crashout” is the

same as when the STOP instruction is introduced by the system operator.

b. A PRIORITY fifteen job entered in the schedule will not automatically suspend any other priority fifteen
job running in memory, however, the system operator may STOP them providing they meet the other

criteria for suspension.

c. Upon termination of the PRIORITY fifteen job, the suspended programs will be automatically reinstated

to memory.

A PRIORITY of fourteen will cause a “crashout” in the same manner as a PRIORITY fifteen except it will not
interfer with the execution of any PRIORITY fifteen already in the MIX.

2-36

UNFREEZE

UNFREEZE

The UNFREEZE statement allows the system operator to remove the FREEZE condition from a program, thus

permitting the rolling-out to disk of a program that is in an interrupted state.

The format of the UNFREEZE statement is:

? UNFREEZE

2-37

VIRTUAL .DISK

VIRTUAL.DISK

The VIRTUAL.DISK statement gives the operator the ability to expand the number of disk segments assigned for

saving data overlays during execution.

The format of the VIRTUAL.DISK statement is:

VIRTUAL.DISK

2 S — =1 ;
? VI [=] integer

Integer must be eight digits or less.

DATA

FILE PARAMETER INSTRUCTIONS

DATA

The DATA control instruction informs the MCP of the name of a punched card data file.

The format of the DATA control instruction is:

DATA

9 [S—

DA

file-identifier

The control word DATA can be abbreviated as DA.

The DATA control statement must be the last control instruction prior to the actual data.

The file-identifier must be the same as the file-identifier assigned in the program or be label-equated to it in order

for the MCP to automatically find the file.

It is the responsibility of the system operator which input device is to be used for the card file.

2-39

END

END
The END statement indicates to the MCP that the card data input has reached the End-of-File (EOF).

The format of the END statement is:

? END

The END control statement cannot be abbreviated.

When the END statement is used it must be the last card in that file. It signals the MCP to close the file, and

make the card reader available to the system.

The END control card is not required at the end of a data deck if the program recognizes the last card in the file
and closes that file without trying to read another record. However, if the program does try to read another record
from that file and the card reader is empty, the MCP will hold the card reader waiting for more data or a ““? END”

statement to be read.

If a data card with an invalid punch in column 1 is read within a data deck, the MCP stops the card reader and
notifies the operator that the card just read has an invalid punch in column (1). This allows the operator to correct

the card and permit the program to continue reading cards.

KEYBOARD INPUT MESSAGES

GENERAL

Information may be supplied to the MCP through the use of input messages entered through the console printer.
These messages are referred to as keyboard input messages throughout this manual. The keyboard input messages
are used by the system operator to communicate with the MCP. In order to make the operating system an effective

and informative tool, the system operator should be familiar with all the keyboard input messages.

Keyboard input messages may be entered through a card reader by using the ““?”’ or an invalid character in column

one (1), followed by the input message. The last eight columns will be ignored as in a control card.

Keyboard Entry Procedure:

a. Press INPUT REQUEST button.

b. Wait for the READY indicator to light.

c¢. Type in message.

d. Depress END OF MESSAGE button (ETX) to terminate message.

If there are errors or the message is to be ignored, press ERROR prior to the END OF MESSAGE and retype

the message.

INPUT END OF
REQUEST MESSAGE
READY ERROR

AX
BF
CD
Cl
CM
CN
cQ
DM
DP

DR
DT

DS
ED
M
FN
FR
FS

GO
HS
IL

KA
KP
LC
LD

LG
LN

Keyboard Input Messages

(Response to ACCEPT)
(Display Backup Files)

(List Card Decks)

(Change Interpreter)

(Change MCP)

(Display Physical Tape No.)
(Clear Queue)

(Dump Memory and Continue)

(Dump Memory and Discontinue)

(Change MCP Date)

(Discontinue Program)
(Execute Psuedo Deck)
(Response to Special Forms)
(Display Internal File Names)
(Final Reel of Unlabeled Tape File)
(Force from Schedule)
(Resume Stopped Program)
(Hold Schedule)

(Ignore Label)

(Disk Analyzer)

(Print Disk Sements)

(Load Cassette)

(Pseudo Load)

(Transfer/Print LOG)

MC

MX

OF

OK

OL

ou

PB

PD

PG

PM

PO

PR

PS

RB
RF

RD

RM

RN

RO

RP

RS

RY

SD

SL

SO
SP

(Assign System Charge Number)
(Display MIX list)

(Optional File Response)
(Attempt to Continue Processing)
(Display Peripheral Status)
(Specify Output Device)
(Print/Punch Backup)

(Print Directory)

(Purge)

(Print Memory)

(Power Off)

(Change Priority)

(PROD Schedule)

(Remove Backup Files)

(Remove Pseudo Card Files)
(Remove Duplicate Disk File)
(Assign Pseudo Readers)

(Reset Option)

(Ready and Purge)

(Remove Jobs from Schedule)
(Ready Peripheral)

(Assign Additional System Drives)
(Set LOG)

_(Set Option)
(Change Schedule Priority)

ST

SV

TD

TI

TL

TO

TR

(Suspend Processing)
(Save Peripheral Units)
(Display Time/Date)
(Time Interrogation)
(Transfer LOG)
(Display Options)

(Time Change)

Keyboard Input Messages

UL

WD

WM

WS

WT

wY

(Assign Unlabeled File)

(Display MCP Date)

(Display Which MCP and Interpreter)
(Display Schedule)

(Display MCP Time)

(Program Status Interrogation)

AX

AX INPUT MESSAGE (Response to an ACCEPT Message)

The AX message is a response to an ACCEPT message requested by an object program through the MCP.

The format of the AX message is:

mix-index AX ... input message ...

All responses are assumed to be alphanumeric format. The input message starts in the first position after the AX

on the input line.

If the End-of-Message is depressed immediately after the AX, the MCP fills the area in the requesting program with
blanks.

Example:

2 AX CHECK VOID IF OVER 500 DOLLARS

Input messages shorter than the receiving field in the program will be padded with trailing blanks. Longer messages
will be truncated on the right.

2-44

BF

E INPUT MESSAGE (Display Backup Files)

The BF input message lists backup files on the console printer.

The format of the BF message is:

EE [unit-mnemonic]

The PRT/= option will list all printer backup files on disk. The PCH/= option will list all punch backup files on
disk.

The =/= option will list both the printer and card punch backup files that are stored on disk.

PRN and PRT are both to be assumed to mean printer backup files. That is, PRN and PRT are equivalent.

The unit-mnemonic requests displaying the backup files on the designated removable disk drive. If it is omitted,

the MCP will display the backup files resident on system disk.

CD

Q) INPUT MESSAGE (Lists Card Decks in Pseudo Readers)

The CD message allows the system operator to obtain a list of the pseudo card files and their file numbers that have

been previously placed on disk by SYSTEM/LDCONTRL.

The CD message format is:

The MCP displays the number of each pseudo deck and the first fifty (50) characters of the first card in the deck.

If a deck is in use, its name and the program using it are displayed.

_C__I INPUT MESSAGE (Change Interpreter)

The CI input message gives the operator the ability to change the interpreter the MCP will use.

The format for a CI message is:

Cl

cl

interpreter-identifier

The change will actually take place after the next CLEAR/START.

2-47

CM

CM INPUT MESSAGE (Change MCP)

The CM message is used to change the MCP in control of the system.

The format of the CM message is:

CM mcp-identifier

The change will actually take place after the next CLEAR/START.

2—-48

CN INPUT MESSAGE (Display Physical Tape Number)

The CN input message will display the five-character physical tape number contained in the tape label.

The CN message format is:

CN

CN unit-mnemonic

The unit specifier must reference a magnetic tape unit.

CQ

CQ INPUT MESSAGE (Clear Queue)

The CQ input message causes all messages stored in the SPO QUEUE to be cleared.

The CQ message format is:

2-50

DM

D_l_/l_ INPUT MESSAGE (Dump Memory and Continue)

The DM input message allows the system operator to dump the entire contents of a program’s memory space to disk
for subsequent analysis by the DUMP/ANALYZER.

The DM message format is:

mix-index DM

Processing automatically continues when the dump is finished.

The DM message will create a file called DUMPFILE/integer. The integer will be incremented by one each time a
DM is performed in order to make each DUMPFILE unique.

The DUMPFILE may be printed by the DUMP/ANALYZER program. See the “PM’ message.

Example:

2 DM (Dump the memory contents of a program with a mix-index of 2)

2-51

DP

12 INPUT MESSAGE (Dump Memory and Discontinue)

The DP input message allows the system operator to initiate a memory dump during a program’s execution, then

abort that program.

The DP message format is:

mix-index DP

The input of the DP message signals the MCP to halt program execution, dump memory out to disk, and abort the

program as though a DM message had been entered immediately followed by a DS message.

DR
DT

DR INPUT MESSAGE (Change MCP Date)
DT

The DR input message allows the system operator to change the current date maintained by the MCP.

The DR message format is

mm/dd/yy

The MCP will accept only valid dates. The month entry must be between one and twelve, the day must be between

one and thirty-one, and the year must be valid numeric digits.

2-53

DS

DS INPUT MESSAGE (Discontinue Program)

The DS input message permits the system operator to discontinue the execution of a program.

The DS message format is:

mix-index DS

The DS message can be entered at any time after the BOJ and prior to EOJ.
The DS message signals the MCP to stop all program execution and return the memory the program occupied to
the system. Any files not previously entered into the disk directory before the DS message are lost and the disk
area returned to the disk available table.
The DS message causes the following message to be displayed on the console printer:

program-name DS-ED (time)

Example:

03 DS

2-54

E_l_)_ INPUT MESSAGE (Execute Psuedo Deck)

The ED input message will cause a specified pseudo deck to be executed.

The format for the ED message is:

ED

ED integer

If a pseudo reader is not available, a new reader will be allocated for that deck.

When the deck has been processed the pseudo reader will be de-allocated.

2-55

FM

FM INPUT MESSAGE (Response to a SPECIAL FORMS REQUIRED)

The FM input message is a response to the “SPECIAL FORMS REQUIRED” message.

The FM message format is:

mix-index FM unit-mnemonic

The mix-index must be the same mix-index number that appeared in the request for the special forms action.

The unit-mnemonic designates which unit is to be assigned to the file.

The message:

mix-index=program-name SPECIAL FORMS REQUIRED FOR file-id

is output on the console printer requiring that a FM message be submitted by the system operator.

Example:

03 FM LPA

2-56

EN INPUT MESSAGE

The FN input message allows the system operator to display the internal file names of an object program.

(Display Internal File Name(s))

The format of an FN input message is:

FN

FN program-name external-file-identifier

The MCP will list on the console printer all the internal-file-names of the object program which have the specified

external-file-identifier in the following format:

FN
FN
FN

internal-file-identifier-1

internal-file-identifier-2

2-57

FR

FR INPUT MESSAGE (Final Reel of an Unlabeled Tape File)

The FR input message gives the operator the ability to notify the MCP that the last reel of an unlabeled tape file

has completed processing and is at End-of-File.

The format of a FR message is:

mix-index EB

The FR message is a response to the message:

mix-index NO FILE

This message is the result of an unlabeled tape file reaching the End-of-File; the FR message notifies the program

that the file has reached EOF.

2-58

E§ INPUT MESSAGE (Force from Schedule)

The FS input message is used to reenter (force) jobs into the mix.

The format for a FS input message is:

FS

job-number
FS {—

The equal sign (=) option will force all jobs in the schedule for execution.

See the HS message for placing a job in a hold condition.

2-59

GO

GO INPUT MESSAGE (Resume Stopped Program)

The GO input message is used by the system operator to request resumption of a program that has been stopped

(ST message).

The format for a GO message is:

mix-index GO

A program retains its assigned mix-index number when STOPped and rolled-out to disk. The MCP uses this mix-index
number in the GO message to identify the program for resumption.

2-60

HS INPUT MESSAGE (Hold Schedule)

HS

The HS input message will allow the system operator to place a HOLD on a specific job(s) thereby temporarily

removing them from the schedule.

The format for the HS message is:

HS

job-number

The equal sign (=) option will place all jobs in the schedule in a hold condition.

The schedule number is assigned to the job when it is entered into the schedule by the MCP.

2—-61

IL

IL INPUT MESSAGE (Ignore Label)

The IL input message allows the system operator either of two functions: (1) to designate the unit on which a

particular input file is located, or (2) to assign a different disk drive for a disk file at the time the file is opened.

The IL message format is:

mix-index IL unit-mnemonic

The mix-index must be used to identify the program. In a multiprograming environment there may be more than

one “** NO FILE” condition at a time.

The IL message may be used in response to the following messages:

NO FILE ...
DUPLICATE INPUT FILE . ..
file-identifier NOT IN DISK DIRECTORY

It is assumed that the system operator knows that the file on the unit selected is the file needed regardless of the
original file-identifier’s location. If the unit-mnemonic specifies a disk drive, the directory on that drive will be

searched for the required file-identifier.
NOTE
A file on a RESTRICTED disk cannot be assigned to a program

with the IL message. The program must have the correct dp-id

prior to the opening of the file.

KA INPUT MESSAGE (Disk Analyzer)

KA

The KA input message provides the system operator the means to analyze a disk directory’s contents and the file

area assignments.

The format for the KA message is:

KA

dp-id

file-identifier

[dp-id] DSKAVL

The KA message prints a list of the disk areas available to be used, followed by a description of each file in the

directory.

The KA message entered by itself will print the disk directory of the system disk only.
When the file-identifier is used with the KA, only the information concerning that file is printed.
The DSKAVL will print the areas available on the disk.

The dp-id option is used to obtain a disk directory or available table on a removable disk pack.

Examples:

KA
KA
KA
KA

DSKAVL
dp-id

file-identifier

2—-63

KP

KP INPUT MESSAGE (Print Selected Disk Segments)

The KP message provides a means for the system operator to print selected disk files or segments of a disk on the
line printer.

The KP message format is:

p { file-identifier

[number of segments]
@disk-address@

The printout created by the KP message is in hexadecimal format.

The file-identifier options will print an entire file, or when used with the number of segments option will print just

that number of segments of the file.

When the disk-address option is used, it must be the hexadecimal starting address of the area desired to be printed.
If the number of segments option is omitted, only the data for that address will be printed.

If a disk file contains multiple areas, only the first area will be printed.

LC

LC INPUT MESSAGE (Load Cassette)

The LC message is used to load system programs (compilers, interpreters, object code, system software) from a

cassette to disk with appropriate additions in the disk directory. The LC message format is:

LC [dp-id] [number of files]

The LC message cannot be used to load a free-standing program that does not execute under the control of the

MCP.

The LC message will only load the first file on the cassette when the number of files option is omitted. Additional

files may be loaded by re-entering the LC message everytime the “file-id LOADED” message is displayed.

If the file that is needed is embedded within the cassette, all files up to and including the desired file must be

loaded. In other words, there is no selective file loading other than the first file on the cassette.

The LC message may be used to load a file that resides on more than one cassette. This is called a multiple cassette

file. The following steps should be taken to load a multiple cassette file:

1. Place the first cassette into the cassette reader. (Cassette automatically rewinds on a load, not at

End-of-Tape.)
2. Enter the LC message.

3. When the cassette finishes loading, the MCP will HALT. (RUN light goes off, L-register = Hex 11, ahd
the T-register = C3C1E2.)

4. Load next cassette and press START. (DO NOT PRESS CLEAR.)

5. Repeat procedures 3 and 4 till the message “file-id LOADED” is displayed signifying End-of-Job.

LD

LD INPUT MESSAGE (Pseudo Load)

The LD input message is used by the system operator to initiate the building of pseudo card deck(s) on disk to be
processed by pseudo readers.

The LD message format is:

After receiving a LD message, the program, SYSTEM/LDCONTRL, looks for a “? DATA CTLDCK” control

statement that initiates the read.
The card deck’s “file-id” is assigned by a ““? DATA file-id” control statement preceding the data deck to be read.
Each data deck that is loaded will be numbered consecutively along with its file-id, which is used in opening the

pseudo card files.

Terminating the LD function requires a “? END CTLDCK” control statement immediately following the last data
deck that is to be read.

A DS may also be entered to terminate the function providing a “? END” card has been read previously,
Example:

The following example demonstrates how two compile decks and one data deck can be loaded as pseudo

card files to be used by pseudo readers.

(Load cards)
? DATA CTLDCK

? COMPILE program-name COBOL SYNTAX

? ATA CAR
CONTROL DECK D ARDS

DECK
data deck

? END

CONTROL
DECK

? COMPILE program-name FORTRAN

? DATA CARDS

DECK
B data deck

? END

? DATA file-id
data deck

DECK

? END

? END CTLDCK

Enter LD

Enter RN digit (number of pseudo readers to be used)

LD

LG
LN

LG INPUT MESSAGE (Transfer and Print LOG)
LN

The LG or LN message permits the system operator to transfer the file SYSTEM/LOG to the file SYSTEM/LOG1
and print the LOG in a readable format.

The LG, LN message format is:

s}

Z 15
z la

The SYSTEM/LOG] is printed by the program SYSTEM/LOGOUT. SYSTEM/LOGOUT must be in the disk

directory in order to transfer the LOG.

2-68

MC INPUT MESSAGE (Assign System Charge Number)

MC

The MC input message allows the system operator to set the CHRG option ON and to assign a six-digit charge

number to all system-type programs.

The format of the MC message is:

MC integer

The MC message sets the CHRG option requiring that all programs executed have a charge number. Once the MC

message has been entered, the charge option cannot be turned off without performing a COLD START.

MX

MX INPUT MESSAGE (Display MIX list)

The MX input message allows a system operator to request that the MCP display on the console printer all the

programs currently in the MIX.

The MX message format is:

The MX response lists the priority numbers, program-names and the MIX numbers of all programs currently

running.

Example:

MX
PR: 4 program-name = 0l
PR: 4 program-name = 02

END MIX

OF

OF INPUT MESSAGE (Optional File Response)

The OF input message is used in response to the “NO FILE” or when a “duplicate file” situation exists.

The format for the OF message is:

mix-index OF

When a duplicate file situation exists, the OF allows the system operator to close the new output file with PURGE,

and continue processing leaving the previous file in the disk directory.

The OF message in response to the “NO FILE” message indicates to the MCP the optional file being requested is to

be bypassed for this execution. Usage in this context is subject to input files only.

OK

O_Ig INPUT MESSAGE (Continue Processing)

The OK message is used by the system operator to direct the MCP to attempt to continue processing a program

marked as WAITING.

The OK message format is:

mix-index OK

The OK message should only be given after the necessary action has been taken to correct the problem that caused

the program to be placed in WAITING status.

Examples:

job-specifier =~ DUPLICATE INPUT FILES . .
job-specifier = DUPLICATE FILE ON DISK . . .
job-specifier NO DISK ...

job-specifier = NO MEMORY ...

job-specifier ~ FILE f-id NOT PRESENT

If the corrective action is not taken before the OK message is entered, the original output message is repeated.

2-72

OL INPUT MESSAGE (Display Peripheral Status)

The OL input message allows the system operator to interrogate the status of the system’s peripheral units.

The OL input message format is:

OL

unit-mnemonic

unit-ty pe-code

The unit-mnemonic option displays the status of a specific unit.

The unit-type-code option displays the status of all peripherals of the same type.

The following responses are generated:

.. IN USE BY program-name file name

. LABELED file-name

.. NOT READY (The unit is assigned to tape and has a purged tape, with a write

ring installed, mounted on the tape drive.)

. UNLABELED (The unit is assigned to tape and has an unlabeled tape, without a

write ring installed, mounted on the tape drive.)

Any invalid type unit used in the OL message will cause the MCP to display the following message.

NULL type-code-entered TABLE

2-73

Ou

OU INPUT MESSAGE (Specify Output Device)

The OU input message is a response to direct an output file to a specified output device. Within limits, the OU

message may be used to change the hardware medium for a file.

The OU message format is:

mix-index OU unit-mnemonic

Example:
04 OU DPC

The OU is normally used in response to the “PUNCH RQD ... “ PRINTER RQD .. .” message to direct the file
to backup.

PB

PB INPUT MESSAGE (Print/Punch Backup)

The PB input message permits the system operator to print and/or punch backup files.

The format of the PB message is:

integer-1
PRT/=

PB [unit-mnemonic] PCH/= [SAVE] [integer-2]
=/=

The “integer-1” option is the number given to the file by the MCP when the backup was performed and is used to

access a single file for processing.

The “PRT/=" and “PCH/=" options will either print or punch all printer or punch backup files on disk.
The “=/="" option will both print and/or punch all backup files on disk.

The “SAVE” option will prohibit the purging of the file(s) at close time.

The ““integer-2” option is a counter to tell the MCP the number of copies of each file to be printed or punched for

output. If this option is omitted, one (1) is assumed.

The unit-mnemonic option directs the MCP to a specific removable disk drive or magnetic tape unit.

PD

PD INPUT MESSAGE (Print Directory)

The PD input message allows a system operator to request a list of all files on a disk directory or to interrogate a

disk directory for a specific file(s). The PD message has two formats:

Format 1
D dp-id/=/= (removable pack)
— =/= (system pack)
Format 2
* file-identifier
PD family-name/=

dp-id/family-name/=

The format 1 message will give a complete listing of all files in a disk directory.
The format 2 message will give a partial listing of the files in a disk directory.
The family-name/format will list all files with the specifier family-name.

If the file-identifier is not present in the disk directory the MCP will respond with the message:

file-identifier NOT IN DIRECTORY
Examples:

Does a compiler named COBOLZ reside on the system pack?
request: PD COBOLZ

response: PD = COBOLZ (affirmative response)

What files reside on the system pack?

request:

response:

Does a family-name PAYROLL with a file-identifier QUARTERLY reside on a non-system pack called

MASTER?

request:

response:

PD =/=

PD = file-identifier-1
PD = file-identifier-2
PD = ...

PD MASTER/PAYROLL/QUARTERLY

PD = MASTER/PAYROLL/QUARTERLY

Do the files ALPHA, BETA, CHARLIE, reside on the system pack?

request:

response:

PD ALPHA, BETA, CHARLIE
PD = ALPHA

PD = BETA
PD = CHARLIE NOT IN DIRECTORY

2-71

PD

PG

PG INPUT MESSAGE (Purge)

The PG message permits the system operator to purge a removable disk cartridge, disk pack, or magnetic tape.

The message format of the PG message is:

PG unit-mnemonic [serial-number]

A RESTRICTED or SYSTEM disk cartridge/pack that is purged will be redefined as UNRESTRICTED with its

disk pack-id remaining unchanged.

The serial number is required when purging a disk, and must be a six digit number matching the serial number of

the pack being purged.
The serial number is not used when purging a tape.

Example:

PG DPA 000456

PM

_PM INPUT MESSAGE (Print Memory)

The PM input message allows a system operator to print the entire contents of memory or single program dump file.

The format of the PM message is:

PM [integer (SAVE]]

A PM will cause the execution of the MCPI/ANALYZER or MCPII/ANALYZER program which will analyze and
print the contents of SYSTEM/DUMPFILE. (Total Memory)

The ““integer” option will cause the execution of the DUMP/ANALYZER program which will analyze and print the
contents of DUMPFILE/integer. (Program Dump)

The programs DUMP/ANALYZER and either MCPI/ANALYZER or MCPII/ANALYZER must be located on

systems disk to perform a PM message.

The SAVE option will cause the DUMP/ANALYZER to leave the specified DUMPFILE on disk at EOJ; without
this option, the DUMPFILE will be removed from disk.

2-79

PO

PO INPUT MESSAGE (Power Off)

The PO input message informs the MCP that a removable disk pack or cartridge is to be removed from the system.

The PO message format is:

PO unit-mnemonic

A system pack may not be powered off.

A PO message entered for a unit that is currently being used will cause the MCP to display the following message:
unit-mnemonic HAS integer USERS

A PO message entered for a unit that is not currently in use will cause the message:

unit mnemonic MAY NOW BE POWERED DOWN
to be displayed.

If a pack is removed from the system prior to a PO message, the MCP will retain the label of the removed pack
regardless of the label of the new pack when mounted. If this does occur, a PO message may be entered followed

by an RY message. This procedure, however, may cause loss of process time and operational confusion.

E INPUT MESSAGE (Change Priority)

PR

The PR input message allows the system operator to change to priority of a program that is currently in the MIX.

The PR message format is:

mix-index EB_ [=] integer

See the PRIORITY Control Instruction Attribute for a further explanation of priority.

PS

PS INPUT MESSAGE (PROD Schedule)

The PS input message gives the system operator the ability to request that the MCP attempt to bring additonal
programs into the MIX before the normal EOJ of a program.

The message format of the PS message is:

The normal function of the MCP checks the schedule at each EOJ; however the PS message will cause the MCP to

check the schedule when the message is entered.

RB
RF

RB
{RF} INPUT MESSAGE. (Remove Backup Files)

The RB or RF input message gives the system operator the ability to remove backup files on disk.

The format of the RB, RF message is:

PRN/=

RB) integer

{ ﬁ‘ } [unit-mnemonic] PRT/=

— PCH/=
=/=

The integer will remove the backup file specified by the integer.

The PRN,PRT/= and the PCH/= options will remove either all print backup files or all punch backup files

respectively.
The =/= option will remove ill backup files from disk.

The unit-mnemonic option specifies that the backup files to be removed are on the designated removable disk.

2-83

RD

g_D INPUT MESSAGE (Remove Pseudo Card Files)

The RD input message allows the system operator to remove pseudo card files from disk.

The format of the RD message is:

RD | integer

=/=

2-84

RM INPUT MESSAGE

(Remove Duplicate Disk File)

RM

The RM input message allows the system operator to remove a disk file from the disk directory in response to a

DUPLICATE FILE ON DISK message.

The format of the RM message is:

mix-index RM

The DUPLICATE FILE message is a result of a program trying to close an output file with the same name as a
file already in the directory. This causes the program to go into a wait state. The RM message will remove the old

file, close the new file, enter it in the directory, and continue processing.

Example:

1

RM

2-85

RN

RN INPUT MESSAGE (Assign Pseudo Readers)

The RN message is used by the system operator to assign a specific number of pseudo card readers.

The format of the RN message is:

RN integer

The RN message can be entered either before or after the creation of pseudo files.

It is the responsibility of the operator to determine the optimum number of pseudo readers in relation to the

number of pseudo files to be processed.

By entering RN O (zero) all pseudo card readers will be closed as soon as they are finished processing the file that

they are presently reading.

The psuedo card readers may also be closed by performing a Clear/Start.

2-86

RO

RO INPUT MESSAGE (Reset Option)

The RO message allows the system operator to reset the options used to direct or control some of the MCP

functions.

The RO message format is:

RO option-name [option-name], [option-name], ...

An option in a set condition is equal to one (1). An option in a reset condition is equal to zero (0).

The options which may be reset with the RO message are:

BOJ SCHM PBD
DATE TERM PBT
EOJ TIME LAB
LIB CLOS RMOV
OPEN

The B)_ message displays a complete list of the MCP options and their status (set (1) or reset (0)).
The MCP replies with a verification that the option has been reset after each RO input message.
Example:
request: RO EOJ (Reset the EOJ option)
response: EOJ =0

The LOG and CHRG options cannot be reset. The MCP message “LOG LOCKED” or “CHARGE LOCKED” will

be displayed when an attempt has been made to reset these options.

RP

_Ig INPUT MESSAGE. (Ready and Purge)

The RP message entered by the system operator will set a tape unit in “READY” status and “PURGE” the tape.

The format of the RP message is:

RP unit-mnemonic [unit-mnemonic]

The RP message can be used for tape only.

RS

RS INPUT MESSAGE. (Remove Job(s) from Schedule)

The RS input message will allow the system operator to remove a job from the schedule prior to its being entered

in the MIX for execution.

The message format for the RS message is:

RS ! job-number-1 [job-number-2]

The RS message can remove one or more jobs from the schedule.
The schedule number is the number assigned to the job by the MCP when it is entered into the schedule.

The job-number will be displayed by the MCP when the job is entered into the schedule if the SCHM option is set.
The WS message will display the jobs in the schedule by their job-numbers.

The ““=" option will remove all jobs from the schedule.

If the requested program(s) are not in the schedule, the MCP will notify the operator that an invalid request has

been entered.
Example:
RS 33, 34 35, 36
program-name 33 RS-ED
program-name 34 RS-ED

program-name 35 RS-ED
36 NULL SCHEDULE (job 36 not in schedule)

2-89

RY

g INPUT MESSAGE (Ready Peripheral)

The RY input message allows the system operator to ready a peripheral unit and make it available to the MCP.

The message format for the RY message is:

RY unit-mnemonic-1 [unit-mnemonic-2]

Any number of units may be made ready with one RY message.

When a removable disk cartridge or disk pack is placed on a system, the MCP must be notified of its presence with

the RY message.

If the designated unit is not in use and is in the remote status, the RY message causes all exception flags maintained
by the MCP for the specified unit to be reset, and the locked or saved files made accessible to the MCP. After the
unit has been made ready, the MCP attempts to read a file label (input devices only).

Examples:
RY DPB (ready second drive on system)
RY DPC (ready third drive on system)
RY LPA (ready line printer on system)

SD

SD INPUT MESSAGE (Assign Additional System Drives)

The SD input message gives the system operator the ability to assign additional system drives for the MCP.

The message format for the SD message is:

SD unit-mnemonic serial-number

The SD message, after verification of the serial-number, will PURGE the pack, and add it to the system packs

already on the system.

At COLD START, there is only one system drive, so additional drives may be added by the SD message. Once a
system drive has been added to the system, it cannot be removed without performing a COLD START.

The following message is displayed when the new system drive is linked to the system.

DP serial-number IS NOW A SYSTEM PACK—-CLEAR START REQUIRED

2-91

SL

SL INPUT MESSAGE (Set LOG)

The SL input message gives the operator the ability to set the LOG option, and allocate the area required.

The format of the SL message is:

SL integer-1 [integer-2]

The integer-1 entry is the size of the area which is to be assigned to the LOG and cannot be less than 100 or

greater than 1000.

The integer-2 option is the maximum number of these areas desired. The default is 40.

The MCP will respond with the following message when an SL message has been entered.
LOG NOW SET—CLEAR START REQUIRED

or
NO SPACE TO BUILD LOG

SO

SO INPUT MESSAGE ~ (Set Option)

The SO input message allows the system operator to set the options used to direct or control some of the MCP

functions.

The SO message format is:

SO option-name [option-name] ...

The options which may be set with the SO message are:

BOJ SCHM PBD
DATE TERM PBT
EOJ TIME LAB
LIB CLOS RMOV
OPEN

The option indicator equals one when set and zero when reset.

To determine which options are set at any given time, the TO input message may be entered. The MCP will then

display a complete list of the MCP options and their status.

The MCP replies with a verification that the option has been set after each SO input message.

The LOG and CHRG options cannot be set with an SO message. The MCP message “LOG LOCKED” or “CHARGE
LOCKED” will be displayed when an attempt has been made to set these with an SO message.

2-93

SP

SP INPUT MESSAGE (Change Schedule Priority)

The SP input message provides a means for the system operator to change the priority of a program currently in the

schedule.

The message format of the SP message is:

SP job-number integer

The “‘Schedule Priority” is not the same thing as the priority of the job when it is in the mix.
The job-number will identify the program in the schedule that is to be affected by the SP message.

The integer in the SP message specifies the new priority that will be assigned to the program. Priorities may range

from zero through 15 where zero is the lowest priority and 15 is the highest priority.

To change the priority of a program in the schedule with a job-number of 33 to a priority of 7, the following SP

message would be used.

SPp 33 7
This program would be selected from the schedule ahead of the other programs with a lower priority.
The following message would be displayed in response to the above input message:

program-name 33 PR =07

2-94

ST

ST INPUT MESSAGE (Suspend Processing)

The ST input message provides a means for the system operator to temporarily suspend the processing of a program

in the MIX.

The message format of the ST message is:

mix-index ST

The mix-index identifies the program to be suspended.
The MCP will not suspend the program until all 1/O operations in progress for that program have been completed.

When the MCP suspends a program, it is rolled-out to disk and the memory it was using is returned to the MCP

for reallocation.

A suspended program will retain the mix-index assigned to it; the MCP will use this to identify the program when

referenced by another keyboard input message.

To restart a program after it has been suspended, the GO message must be used. If for some reason all of the

conditions necessary for the program to run are not met when the GO message is issued, the MCP will not restart

the program.

There is no MCP acknowledgment that a program has been suspended.

Example:

SV

SV INPUT MESSAGE (Save Peripherial unit(s))

The SV message allows the system operator to make a peripheral unit inaccessible to the MCP until a Clear Start

operation occurs, or an RY input message is used to ready the unit.

The SV message format is:

SV unit-mnemonic [unit-mnemonic]

Any number of peripheral units may be saved with one SV input message.

When the SV message is entered and the unit is not in use, the specified unit is marked SAVED and “‘unit-mnemonic

SAVED” is displayed by the MCP.

If the unit is in use, the MCP will respond with “unit-mnemonic TO BE SAVED” and will save the unit as soon as

it is no longer being used.
Example:

SV LPA

TD INPUT MESSAGE

(Time and Date)

D

The TD input message allows the system operator to request that the MCP type the current values of the time and

date.

The TD message format is:

The MCP displays the date and time in the following format:

Where:

DATE

MM/DD/YY TIME = HH:MM:SS:.T

HH — hours

MM — minutes

SS — seconds

T

— tenths of seconds

2-97

Tl

TI INPUT MESSAGE (Time Interrogation)

The TI input message allows the system operator to interrogate the MCP as to the amount of processor time the

program has used up to the time the interrogation was made.

The message format for the TI message is:

mix-index TI

The mix-index identifies the program for which the interrogation was requested.

The time is given in seconds.

Example:

request: 4 TI

reply: program-name = mix-index CPU TIME 000073.6 SEC

2-98

I_I: INPUT MESSAGE (Transfer LOG)

TL

The TL message permits the system operator to transfer all information in the SYSTEM/LOG to the file SYSTEM/

LOG1. The TL message does not print the LOG. (See LG message)

The TL message format is:

2-99

TO

TO INPUT MESSAGE (Display Options)

The TO input message allows the system operator to interrogate the status of the MCP options.

The message format of the TO input message is:

TO [option-name]

The TO message entered by itself will display all of the options and their settings.

A value of zero (0) indicates a reset (off) condition; a value of one (1) indicates a set (on) condition.

Example:
TO LOG
LOG =1
or:
TO
BOJ =0 DATE=1 ... (lists all options)

2-100

TR INPUT MESSAGE (Time Change)

The TR message allows the system operator to change the current value of the time maintained by the MCP.

The message format of the TR message is:

TR

TR integer

The time specified by the integer is designated according to a 24-hour clock.

This message is not accepted by the MCP if the value of the integer is greater than 2400 hours.

Example:

Set the time in the MCP to 7:19 P.M.

TR 1919

2-101

UL

UL INPUT MESSAGE (Assign Unlabeled File)

The UL message allows the system operator to designate the unit on which a particular unlabeled input file is
located in response to a “FILE NOT PRESENT” message from the MCP.

The format for the UL message is:

mix-index UL unit-mnemonic [integer]

The UL message is used only if the unit designated is to be acted on as an unlabeled file. The MCP assumes the file

on the designated unit is the file requested by the program that caused the “FILE NOT PRESENT” message.

The mix-index must be used to identify the program to which the file is to be assigned.

If integer is used, it must not have a value greater than 99. When this option is used, the MCP spaces forward
“integer”” blocks or until a tape mark is read prior to reading the first data block into the object program. This is
done at the time the file OPEN is performed.

Example:

A program with a mix-index of 01 calling for an unlabeled input tape file could be assigned a tape on

a unit with the unit-mnemonic of MTA with the following UL message:
01 UL MTA
If the first three blocks on the tape are not desired, they can be skipped with the following UL message:

01 UL MTA 3

2-102

WD INPUT MESSAGE (Display MCP Date)

The WD input message permits the system operator to request the current date used by the MCP.

The format of the WD message is:

WD

2—-103

WM

WM INPUT MESSAGE (Display Which MCP and Interpreter)

The WM input message allows the system operator to inquire which MCP and Interpreter is currently being used

since there can be more than one MCP and Interpreter residing on the system pack.

The format for the WM message is:

The reply to the WM message is in the following format:

CURRENT MCP IS mcp-name USING interpreter-name

2-104

WS

WS INPUT MESSAGE (Display Schedule)

The WS input message allows the system operator to interrogate what program or programs are currently in the

schedule and their status.

The format of the WS message is:

job-number
WS

The job-number is assigned by the MCP as it is entered into the schedule.

The MCP response to the WS message gives the program-name, schedule number, memory required in KB’s, program

priority, and the number of seconds the program has been in the schedule.

Example:

WS 4

ALPHA = 4 NEEDS 8 KB PR = 4 IN FOR 000789.9 SEC

2—-105

WT

WT INPUT MESSAGE (Display MCP Time)

The WT input message permits the system operator to request the time used by the MCP. The reply is in the

twenty-four hour clock format.

The WT input message format is:

2—-106

WY

WY INPUT MESSAGE (Program Status Interrogation)

The WY message allows the system operator to check the current status of one program or all the programs in the
MIX.

The format of the WY message is:

[mix-index] WY

The mix-index indentifies the program in the MIX that is to be checked and its status displayed on the SPO. If
the mix-index is omitted the MCP will display the program status of the entire MIX.

The MCP response to the WY message is:

program-name = mix-index .. . status message . . .

Example:
1 WY
ALPHA = 01 SUSPENDED BY OPERATOR
ALPHA = 01 SUSPENDED BY OPERATOR
BETA = 02 EXECUTING
DELTA = 03 AX-WAITING FOR KEYBOARD INPUT
ECHO = 04 IN COMMUNICATE QUEUE
5WY

INVALID MIX NUMBER

2-107

MCP OUTPUT MESSAGES
GENERAL

The MCP communicates to the system operator via the console printer. Messages can either be originated by the
MCP for information and possible operator action, or they can originate from an executing program. In either

case, the MCP has complete control over all messages.
Some messages have been omitted mainly because of their simplicity or their self-explanatory nature.
Suggestions and/or directions to the system operator as to what actions to take in regard to the messages have been
omitted, mainly because there is usually a choice of two or more alternatives available for a given situation, as
well as prior instructions as to what course an operator should take.
SYNTAX
The paragraphs below outline the syntax used in defining the MCP messages in this section.

Classification: MCP messages are listed in alphabetical order using the first word of the actual message

as the key. Any optional type entries are to be ignored and not considered as part of the key.

The job-specifier portion of the message is also to be ignored.

Job-Specifier: Job-Specifier is simply used to identify the job for which that message is intended. The

format of the job-specifier is:

[compiler-name:] program-name = mix-index

The compiler-name option is only printed when the executing program is in a compiler.
Terminal-info: The phrase “‘terminal-info” following any message indicates that a termination message

will be printed. Any time this message is printed, the program must be DS-ED or DP-ED except

when the MCP TERM option is set causing the program to be terminated automatically.

The format of the terminal-info message is:

NXT INSTR(HEX) = SEG nnn DISP nnnnnn (nnnn) (nnnn) DS OR DP

The last two entries are the SEG (Segment) and DISP (Displacement) in decimal format.

2-108

MCP MESSAGES

***job-specifier—rABORTED** *

job specifier-ACCEPT

job-specifier—ACCESS PPB TARGET OUT OF RANGE terminal-info
job-specifier—ATTEMPT TO READ UNASSIGNED DISK AREA ON file-identifier
ATTEMPTED TO WRITE OUT OF BOUNDS

unit-mnemonic ASSIGNED TO SYSTEM USE

unit-mnemonic AVAILABLE AS OUTPUT

BACKUP FILE #nnnnnnNOT REMOVED—-NOT ON DISK

BACKUP TAPE NOT FOUND—“RY”” unit-mnemonic

BATCH COUNT COMMUNICATE ISSUED WHILE SORTER FLOWING terminal-info
job-specifier—BEGINNING DATA OVERLAY ADDRESS = nnnn,WHILE BR = nnnn terminal-info
job-specifier—BOJ # = job-number PR = nn TIME = hh:mm:ss.s
job-specifier—CANNOT ACCEPT “[IL‘UL‘OF‘FR‘FM‘OU‘OK‘RM* or QT]” MESSAGE
CANNOT ACCEPT DATA STATEMENT FROM THE SPO

unit-mnemonic CANNOT BE OPENED OUTPUT FOR file-identifier

CANNOT CHANGE PACK-ID OR FAMILY NAMES WITH EQUALS . . .id’s ...
CANNOT FIND UNIT REQUESTED FOR FN

CANNOT READ LABEL ON unit-mnemonic

CANNOT READ THE LABEL ON unit-mnemonic

CANNOT REMOVE PACK.ID OR FAMILY NAMES WITH = -S file-identifier
CANNOT SAVE THIS DEVICE unit-mnemonic

file-identifier CHANGED TO new-file-identifier

CHAR OR BIT STRING IS INCOMPLETE input message
*#*CLEAR/START***B1700 MCPII MARK nnn.nn mm/dd/yy hh:mm:ss.s
***CLEAR/START REQUIRED

CLEAR/START REQUIRED—SYSTEM/PRINTCHAIN MISSING

2—-109

COMPILE program-name CTRL RCD ERR: ...
job-specifier—CONTROL STACK OVERFLOW terminal-info
job-specifier— “CONVERT” ERROR terminal info

COULD NOT CHANGE THE MCP

job-specifier—CPU TIME = nnnnnn.n (seconds)

CURRENT MCP IS identifier USING interpreter-id

job-specifier—DATA OVERLAY RELATIVE DISK ADDRESS = nnnn, WHILE SIZE OF AREA = nnnn

terminal-info
DECK # nnnn = 50 CHAR
DECK #nnnn IN USE BY program-name
**DECK NUMBER nnnn NOT ON DISK
DEFAULT CHARGE NO. = nnnnnn

READ FROM DISK ADDRESS @ nnnn @
DISK ERROR ON OVLY | wpiTE FROM MEMORY ADDRESS @ nnnn @

job-specifier—DISK FILE DECLARED SIZE EXCEEDED ON file-identifier terminal-info
job-specifier—unit-mnemonic DISK PARITY @nnnn @

job-specifier—nnnnDISK SEGMENTS REQUIRED FOR AREA OF file-identifier
job-specifier—DIVIDE BY ZERO terminal-info

**DR PLEASE

job-specifier—DS-ED TIME = hh:mm:ss.s

job-specifier— DUPLICATE INPUT FILES file-identifier

END BF

END MX

END PD

job-specifier—ENDING DATA OVERLAY ADDRESS = nnnn, WHILE BR = nnnn terminal-info
“=> NOT PERMITTED IN FILE NAME FOLLOWING “FN”

unit-mnemonic ERROR/pack-id IS [RESTRICTED or INTERCHANGE] PACK

unit-mnemonic ERROR unit-id

2—-110

job-specifier—EVALUATION OR PROGRAM PTR STACK OVERFLOW terminal-info
EXECUTE program-name CTRL RCD ERR: . ..

job-specifier—EXPONENT OVERFLOW terminal-info

job-specifier—EXPONENT UNDERFLOW terminal-info

job-specifier— EXPRESSION OUT OF RANGE terminal-info

RELEASE
PURGE
REMOVE
INPUT CRUNCH
job-specifier§ OUTPUT FILE file-identifier CLOSED gng;EWIND
INPUT/OUTPUT LOCK
CONDITIONAL
ROLLOUT
TERMINATE

job-specifier—FILE internal-file-identifier LABELED .. . REEL nnnnnn NOT PRESENT

job-specifier—FILE internal-file-identifier NEEDS nnnn BITS TO OPEN, WHICH I COULDN’T FIND-*“OK”
WILL TRY AGAIN, ELSE “DS”

file name “file-identifier” REQUESTED BY “FN” NOT FOUND
FN = “internal-file-identifier”
FREE UP SOME DISK AND CLEAR/START

GOOD MORNING, TODAY IS name-of-day, hh:mm:ss.s ?&I JLN DT = yy/ddd

unit-mnemonic HAS nnnn USERS

unit-mnemonic HAS BEEN PURGED
job-specifier—unit-mnemonic HOPPER EMPTY
INVALID BIT CHARACTER- . ..

INVALID BIT SPECIFIER— . . .

INVALID CHAR COL nn

INVALID CHARACTER . . .

INVALID CHANGE-PACK-IDS DO NOT AGREE
job-specifier—INVALID CASE terminal-info

job-specifier—INVALID COMMUNICATE IN USE ROUTINE terminal-info

2—-111

unit-mnemonic INVALID CONTROL CARD

INVALID DECK NUMBER . ..

INVALID ED MESSAGE DECK NUMBER
job-specifier—INVALID INDEX terminal-info

INVALID JOB NUMBER

INVALID MC-CHARGE OPTION ALREADY SET
INVALID MIX NUMBER

INVALID MNEMONIC . ..

job-specifier—INVALID LINK terminal-info
job-specifier—INVALID OPERATOR terminal-info
INVALID PACK.ID OR TAPE MNEMONIC FOR PB . ..
job-specifier—INVALID PARAM TO VALUE DESC terminal-info
job-specifier—INVALID PARAMETER terminal-info
INVALID PG

job-specifier—INVALID RETURN terminal-info
INVALID SD—SERIAL NUMBER REQUIRED
INVALID SERIAL NUMBER

INVALID SL-LOG ALREADY SET
job-specifier—INVALID SUBSCRIPT terminal-info
job-specifier—INVALID SUBSTRING terminal-info

INVALID SYNTAX FOR CHANGE OR REMOVE, COMMA IS REQUIRED FOR MORE THAN ONE
CHANGE

unit-mnemonic INVALID TYPE CODE . ..

INVALID unit-mnemonic

INVALID UNIT MNEMONIC FOR FN, MUST BEGIN WITH ALPHA
“IL” REQUIRES A PARAMETER

file-identifier IN USE

2-112

job-specifier—INSUFFICIENT MEMORY TO OPEN file-identifier

job-specifier IS EXECUTING

pack-id IS ALREADY A SYSTEM DRIVE

pack-id IS A NONREMOVABLE SYSTEM PACK OR IS ALREADY OFF LINE
pack-id IS AN INTERCHANGE PACK

unit-mnemonic IS NOT A USER PACK

pack-id IS NOT INITIALIZED

job-specifier IS NOT STOPPED

RESTRICTED

INTERCHANGE } PACK

pack-id IS {

job-specifier IS SUSPENDED
job-specifier—INTEGER OVERFLOW terminal-info

INTRINSIC “intrinsic-name’” REQUESTED BY program-name = job-number IS NOT IN DIRECTORY—
RS-ED

INV OPTION option-name

unit-mnemonic LABELED REEL nnnnnn

unit-mnemonic LABELED [S,R,U, or I] SERTAL.NO = nnnnnn
LABELED. ..

unit-mnemonic INUSEBY JS...
UNLABELED

file-identifier LOAD TERMINATED-DISK ESTIMATE ERROR
file-identifier LOADED

unit-mnemonic LOCK OUT

job-specifier LOCKED DISK FILE file-identifier

option-name LOCKED

unit-mnemonic LOCKED

LOG NOW SET-CLEAR/START REQUIRED

LOG OPTION NOT SET

LOG TRANSFER COMPLETE

2—-113

pack-id MAY NOW BE POWERED DOWN

MC REQUIRES 6-DIGIT MCP CHARGE NUMBER

unit-mnemonic MEMORY ACCESS ERROR WAIT TILL UNIT IS RESET AND TRY AGAIN
job-specifier—unit-mnemonic MEMORY PARITY

MISSING PARENTHESIS . . .

unit-mnemonic MISSING PACK-ID

MC REQUIRES NULL MIX

MCP RAN OUT OF WORK SPACE WHILE LOOKING FOR interpreter-id WANTED BY program-name

= job-number
MODIFY program-name CTRL RCD ERR: . ..
NO SEGMENT DICTIONARY SPACE FOR program-name # = job-number
job-specifier—NO SPACE AVAILABLE FOR [CODE or DATA] [PAGE # nnnn] SEGMENT # nnnn
NO SPACE AVAILABLE FOR interpreter-name SOUGHT BY program-name # = job-number
NO SPACE FOR program-name # = job-number

NO SPACE IN INTERPRETER DICTIONARY FOR interpreter-name SOUGHT BY program-name # =

job-number
**NO SYSTEM DISK FOR PSR DIRECTORY
**NO USER MEMORY FOR CD
file-identifier NOT A BACKUP FILE—REQUEST IGNORED
pack-id NOW A SYSTEM DRIVE-CLEAR/START REQUIRED
unit-mnemonic NOT AVAILABLE
NOT A DISK PACK-CANNOT RL

NOT A QUOTE-MARK . ..

“<FILE-NAME>/=" NOT ALLOWED
BLANK OR ZERO FIRST NAME

- . file-identifier ALREADY ON DISK
file-identifier NOT CHANGED— NOT ON DISK

IN USE
RESTRICTED FILE

NOT ENOUGH MEMORY FOR CM

2—-114

job-specifier—NAME OR VALUE STACK OVERFLOW terminal-info
job-specifier—NEEDS AN AX REPLY

program-name # job-number NEEDS nnnnnnKB PR = nn hh:mm:ss.s
job-specifier—NO DISK AVAILABLE FOR DUMP

NO DISK SPACE TO BUILD LOG

job-specifier—NO MEMORY AVAILABLE FOR DUMP

NO MEMORY FOR KA

**NO MEMORY FOR PSEUDO READER

#**NO MEMORY FOR PSR DATA DIRECTORY (PSR = Pseudo Reader)

NO OVLY DISK AVL FOR program-name # = job-number AMT RQD: nnnn SEGMENTS—RS—ED
NO PRINTER AVAILABLE

NO PRINTER AVAILABLE FOR KP

NO PROGRAMS RUNNING

job-specifier—NO PROVISION FOR 1/O ERROR ON file-identifier terminal-info
job-specifier—NO PROVISION FOR END OF FILE ON file-identifier terminal-info
NO PSEUDO DECKS ON DISKS

job-specifier—NO ROOM TO OPEN FILE file-identifier

file-identifier NOT IN DIRECTORY

file-identifier NOT IN DISK DIRECTORY

«=» NOT PERMITTED IN PROGRAM NAME FOLLOWING “FN”
file-identifier NOT LOADED—IN USE BY SYSTEM

LOCKED

INVALID PACK-ID pack-id
REMOVED

file-identifier NOT {

file-identifier NOT ON DISK
pack-id NOT ON LINE
unit-mnemonic NOT READY

NULL SCHEDULE

2—-115

NULL ... TABLE

NUMBER OF PSEUDO READERS CHANGED TO nnnnnn
unit-mnemonic OFF LINE

OUT OF MEMORY SPACE

job-specifier—OUTPUT UNIT NOT AVAILABLE FOR BACKUP

PARITY ERROR

—NO RECOVERY
ACCESS ERROR

job-specifier—unit-mnemonic {

PM CANNOT FIND DUMPFILE/integer FOR DUMP/ANALYZER

job-specifier—POCKET LIGHT COMMUNICATE REQUESTED WHILE SORTER FLOWING terminal-info
job-specifier—PRIORITY CHANGED TO new-priority-number

job-specifier—unit-mnemonic PRINT CHECK

PRINTER NOT READY

job-specifier—PROGRAM ABORTED terminal-info

job-specifier—PROGRAM IS NOT WAITING SPO INPUT—-AX IGNORED

PSEUDO/nnnnnn NOT ON DISK

PSEUDO/nnnnnn NOT REMOVED-INUSE

job-specifier—unit-mnemonic PUNCH CHECK

PURGED LABEL
mag-tape-id = { TAPE-ID file-identifier [REEL# nnnnnn]
UNLABELED

unit-mnemonic READ CHECK

job-specifier—READ OUT OF BOUNDS terminal-info

pack-id RELABELED now-pack-id [S,R,U, or I]

job-specifier—REQUESTED A [CODE or DATA] SEGMENT OF LENGTH ZERO terminal-info

job-specifier—REQUESTED A CORE SPACE NEXT TO THE SIZE I JUST COMPUTED AS HIS
REQUIREMENT—-RS—ED MY SIZE = nnnn HIS SIZE = nnnn

job-specifier—READ REQUESTED ON OUTPUT FILE file-identifier terminal-info

program-name REQUESTED BY “FN” NOT IN DIRECTORY

2—-116

READ
program-name REQUESTED 4 WRITE ; ON CLOSED FILE
SEEK

RO
{ 0 } REQUIRES THREE OR FOUR CHARACTERS

device-mnemonic REQUIRED FOR REEL # nnnnnn file-identifier
REQUIRES MIX NO.

program-name # job-number RS-ED

unit-mnemonic REWINDING

SAVED
TO BE SAVED

unit-mnemonic {
SD REQUIRES NULL MIX

SCHEDULED: program-name # = Job-number PR = nn hh:mm:ss.s

job-specifier—SEEK REQUESTED ON SERIAL FILE file-identifier terminal-info

nnnn SEGS REQ FOR SYSTEM DUMP FILE

SERIAL NUMBER REQUIRED

SPACE REQUIRED BEFORE “ or @. ..

job-specifier—STACK OVERFLOW terminal-info

job-specifier—SUPERFLUOUS EXIT terminal-info

SYSTEM/LOGOUT NOT IN DIRECTORY

job-specifier—TANK OVERFLOW terminal-info

3 DISK SEGMENTS NEEDED FOR SYSTEM/PRINTCHAIN

THERE ARE NO ENTRIES IN LOG ... NO TRANSFERS OCCURRED

THERE ARE NO RELEVANT BACKUP FILES—PB IGNORED

##*THERE IS NO BACKUP PRINT OR PUNCH FILE WITH NUMBER nnnnnn [ON PACK-ID]
job-specifier—unit-mnemonic TIMEOUT @ nnnnnn @

TOKEN TOO LONG—REQUEST IGNORED

job-specifier—TOO LONG IN USE ROUTINE

2—-117

TOO MANY “=” IN NAME . .. TRY AGAIN
TOO MANY “/”-S IN NAME . . . TRY AGAIN

job-specifier—TRIED TO INITIALIZE A GLOBAL BLOCK LARGER THAN ENTIRE STATIC SPACE
REQUESTED STATIC = nnnn GLOBAL = nnnn —RS-ED

SEND TO

“program-name” WHICH IS NOT RUNNING
RECEIVED FROM

job-specifier—TRIED TO {

**TR PLEASE

job-specifier—UNDEFINED RUN TIME ERROR terminal-info
job-specifier—UNEXPECTED POCKET SELECT terminal-info
job-specifier—UNINITIALIZED DATA ITEM terminal-info
mag-tape-id UNIT PURGED

NOT READY
job-specifier—unit-mnemonic § JAM
MISSORT

UNIT-MNEMONIC MUST START WITH ALPHA
unit-menemonic UNLABELED

pack-id WRITE-LOCKOUT

job-specifier—WRITE REQUESTED ON INPUT FILE file-identifier terminal-info

ZIPPED AN INVALID CONTROL CARD

2-118

SECTION 3
SYSTEM SOFTWARE

DISK CARTRIDGE INITIALIZER

General

A disk cartridge must be initialized before it can be presented to the system for operation. The purpose of the disk
initialization is twofold. One, it checks to see what segments, if any, are unusable (cannot be read from or written
to). If any flaws occur in track ZERO or ONE, the entire pack is considered faulty and cannot be used on the

system. Two, it assigns addresses to the appropriate segments to be used by the MCP.
Disk Initialization Instructions

The Disk Initializer program does not operate under the control of the MCP and must be loaded and executed

through the cassette reader on the control panel.

Information will be supplied to the initializer through the card reader. There must be one input card for each disk

cartridge to be initialized followed by an ? END card. The following is a description of the Initialization input card.

Card
Columns Description
1 Drive Number (usually drive zero)
3-8 Disk Cartridge serial number
10-19 Label
21 TYPE of cartridge
S = System
U = Unstricted
R = Restricted
I = Interchange
23 Julian date (YYDDD)
29-42 Remarks (Owner’s Name)

The initializer program is contained on a cassette tape and its operations are explained in the paragraphs that follow.

a. Place the DISK INITIALIZER cassette in the cassette reader in the control panel. The BOT light should

be lit at this time.

b. Place the console printer on-line.

c. Place input cards in the card reader. One card for each cartridge to initialized followed by the ? END

card.

d. Set the system MODE switch to the TAPE position and press the CLEAR then START buttons. This

loads the bootstrap loader from the cassette tape and halts the processor.

e. Set the system MODE switch to the RUN position and press START (DO NOT PRESS CLEAR). This

will load and execute the initializer.
f. When the cassette tape has been read, the following message will be displayed on the console printer.
B1700 DISK CARTRIDGE INITIALIZER
Note: When a disk cartridge is initialized, all previous data is lost and must be reloaded if needed.
Example:
The following message would be displayed if a successful initialization had been completed.

ID = UNRESTRICTED SER# = 222001 000000 BAD SECTORS INITIALIZATION COMPLETE
DRIVE 0

The disk cartridge is now ready to used on the system.
SYSTEM LOADING PROCEDURES

General

The Cold Start routine is used to initialize the system. The routine is furnished on a cassette tape and is loaded via

the control panel cassette reader .
The following actions occur while performing a Cold Start:
a. The Cold Start routine is loaded from cassette.
b. The Cold Start routine is executed and performs the following:

1. Constructs and initializes the disk directory on the system’s disk(s).

3-2

2. Loads the MCP from cassette or magnetic tape to system disk.
3. Loads the SDL Interpreter from cassette or magnetic tape to the system disk.
4. Displays a message on the console printer instructing the operator to perform a Clear/Start.
NOTE
When a Cold Start is performed on a system disk that was
previously in operation, all the files entered in the disk direc-
tory are lost and must be reconstructed. This is due to the
disk directory being initialized and cleared by the Cold Start
routine.
The first section of the Cold Start loads the bootstrap loader. Once loaded it then loads GISMO, an abbreviated
version of the SDL Interpreter, and the Cold Start routine. The run structure is then switched to Cold Start and
that routine begins.
Cold Start creates a table containing the Cold Start variables. This table is used by the MCP for system control.
It contains information regarding the MCP disk addresses, MCP name, Options, etc. This table is primarily used on
Clear/Start.
Cold Start
The Cold Start operating procedures are as follows:
a. Mount a system pack on drive O.
b. Set MODE switch to TAPE.
c. Place the Cold Start cassette in the cassette reader. Cassette is automatically rewound.
d. Press CLEAR, then START buttons.

e. Cassette will read a few feet and the system will HALT.

f. Set MODE switch to RUN, press START button.

g. Cassette will continue to read. If the system HALTS with @4 @ in the L register, the cassette has

a hash total error and must be reloaded. When the cassette has finished loading, the ““State” light will

come on, and the Cold Start will begin execution.

During execution of the Cold Start, a number of messages are displayed, and certain actions are required of the

system operator. These messages and their responses are as follows:

Message

DRIVE 0 IS INTERCHANGE OR IS NOT
SYSTEM PACK

WHAT MCP

NO DISK AVAILABLE

MOUNT MCP CASS - START WHEN AT BOT

MOUNT 2ND CASS - START WHEN AT BOT

WHAT INTERPRETER

MOUNT INTERPRETER CASS - START
WHEN AT BOT

WRONG CASSETTE - TRY AGAIN

CLEAR START REQUIRED

Response

The system will halt, and must be re-started using
a disk cartridge that has been initialized for

system use.

Type in MCP name and press “End of Message”

The addresses on the disk have been destroyed.

The disk must be re-initialized.

Mount reel 1 of MCP. Press “Start” when the
“BOT? light is lit.

Mount reel 2 of MCP. Press ““Start” when the
“BOT” light is lit.

Enter Interpreter name then “End of Message”.

Mount Interpreter cassette Press “Start” when the
“BOT” light is lit.

Insert correct cassette and press “Start”.

Perform a Clear/Start.

The system disk created by COLD START is a single system pack configuration, and does not contain a LOG.

Once the system is running under MCP control, the number of system drives may be increased at any time. Also,

the LOG option may be set “on” at any time, and the SYSTEM/LOG file created on disk.

CLEAR/START

GENERAL

A Clear/Start is used by the system operator to restore the system to an operable state. A Clear/Start must be per-

formed when any of the following conditions are present: (1) power-up of the system, (2) the SDL interpreter is

changed. (3) an unscheduled halt, (4) an uninterruptable program loop, or (5) the MCP is changed,
A Clear/Start performs the following functions:

a. Terminates all programs being executed.

b. Empties the schedule.

c. Writes correct parity and zeros throughout memory.
d. Reinitializes the MCP.

e. Returns control to the MCP.

f. Marks all peripherals unassigned.

g. Displays the “Clear/Start” message on the console printer.

If the processor is running at the time a Clear/Start is to be performed, the INTERRUPT switch should be used to
bring the system to an orderly halt.

CLEAR/START PROCEDURE

Place Clear/Start cassette in cassette reader.

o

b. Set MODE switch to TAPE position.
c. Press HALT.

Press CLEAR.

Press START. (This loads bootstrap from cassette and processor will come to a halt.)
d. Set MODE switch to the RUN position.

e. Press START.

f. Cassette will complete the read and place the system under control of the MCP.
DISK FILE COPY

General

The DISK/COPY program will copy one or more disk files from one disk to another or to another location on the

same disk.

All files, data or program, can be copied except those files marked as “ABSOLUTE MCP” or “LOG”.

Cards are used as input for the DISK/COPY routine. Any number of files may be copied during one execution of

DISK/COPY.

DISK/COPY Operating Instructions

The following figure represents the DISK/COPY control deck.

? EXECUTE
DISK/COPY

SPEC. CARDS 1

? DATA
CARDS

Specification Cards

DISK/COPY Control Deck

Figure 3- 1

? END

There may be multiple specification cards processed with a single execution of DISK/COPY, but each specification

card is limited to one file.

Specification cards are free-form. Each card must contain two disk file-identifiers with the first file-identifier being

the file to be copied, and the second file-identifier being the new copy of the file.

The format for the file-identifiers is the same as used for MCP control cards.

for further syntax explanation.

See the REMOVE control instruction

If the file-identifier is to be retained when copying to another disk, the new file-identifier may specify only the name

of the pack-id followed by a slash.
Examples:
a. To copy file AAA on a systems disk to another location on the systems disk with the name BBB:
AAA BBB
b. To copy a file AAA on a systems disk to another disk named NEWDISK and retain the file-identifier:
AAA NEWDISK/AAA

c. Since the file-identifier is not changed in example (b), the same result would be obtained by using

the following specification card.
AAA NEWDISK/
MEMORY DUMP

The memory dump routine will dump the contents of memory to a disk file called SYSTEM/DUMPFILE to be
analyzed with MCPI/ANALYZER or MCPII/ANALYZER.

Memory Dump Procedure
a. Record the contents of the following registers: X, Y, T, L, and A.
b. Set MODE switch to TAPE.
c. Load MEMORY DUMP cassette in cassette reader.

d. Press CLEAR.
Press START.

e. Cassette will read for about ten seconds, then it will HALT with @AAAAAA® in the L register.
f. Set MODE switch to RUN.

g. Press START.

DMPALL

General

Memory will be dumped to disk, after which the system will HALT with @QAAAAAA®@ in the L register.
If the contents of memory have been destroyed to the point where a dump is not possible the system
should hang. However, this may not always be true.

Perform a Clear/Start.

Enter PM on the console printer.

The program DMPALL has two separate functions: (1) printing the contents of files, and (2) reproducing data

from hardware device to hardware device. Execution may be from either a keyboard console or card reader.

Printing

Printing files consist of the following:

a.

Data may be card, magnetic tape, paper tape or disk.

Any file can be read up to a 1000 bytes per logical record.

Contents can be printed in byte, digit, or combined form.

Printing may begin with a specified record number and terminate after a specified number of records are

printed.

Reproducing

Reproducing files may be executed as follows:

A file may be reproduced from any card, magnetic tape, paper tape, or disk device.

File-identifiers, record lengths, and blocking factors may be changed during the reproduction.

Reproducing may begin with a specified record number and terminate after a specified number of

records.

Operating Insturctions

KEYBOARD CONSOLE

DMPALL executed from the keyboard console responds with the following three messages:

DMPALL = mix-index BOIJ.
b. DMPALL = mix-index ENTER SPECS.
c. DMPALL = mix-index ACCEPT.

The operator replys to the ACCEPT message by entering an AX message containing the specifications needed to

perform the DMPALL operation. There cannot be continuation lines with the AX message.

CARDS
The DMPALL execute control deck has the following format:

? EXECUTE DMPALL FILE SPEC NAME specification-file-identifier
? DATA specification-file-identifier (specification cards)

? END

A period will terminate the specification string, after which comments may be entered. There may be more than one

card in a specification card file.

All specification entries are free form, and may be separated by either a space or a comma, or a combination

thereof.
Multiple Specification Files

There may be two or more specification files executed with only one call to DMPALL. When the specifications

have been acted upon for the first specification-file, DMPALL will call for another DATA card and its specifications.

When the last set of specifications have been executed, the DMPALL program will terminate by reading a DATA
card and then an END card.

3-9

For example:

? EXECUTE DMPALL FILE SPEC NAME SPECS

? DATA SPECS

(specification cards)

? DATA SPECS

(specification cards)

? DATA SPECS

? END

Print Specifications

The specification string for printing a file is as follows:

LST
ET file-identifier [Record-length] [Blocking-factor]

[Output-format] [Hardware-type] [SKIP integer]

INCLUDE VARIABLE SEARCH .
——— integer T - start-position
INCL VARY SEA

search-argument

The file-identifier entry must immediately follow the LIST or LST entry, and is required for all files. The format
of the file-identifier entry is the same as used MCP control instructions; therefore may consist of from one to three
separate identifiers separated by slashes. A file-identifier that is entirely numeric or which contains special characters

must be surrounded by quotes.

The record-length in bytes must be the first numeric entry following the file-identifier. If omitted, a record-length of

The blocking-factor must be the second numeric entry following the file-identifier. If omitted, a blocking factor of
one is assumed. For a disk file when both the record length and blocking factor entry are omitted, the blocking

factor with which the file was created will be used.
The output-format entry may be specified as:

a. Alpha: A or ALFA.

b. Numeric: N, NUM, H, or HEX.

c. Alphanumeric: When entry is omitted.

The hardware-type entry may be one of the following:

a. Card files: CRD or CARD

b. Magnetic tape files: MTP or TAPE

c. Paper tape files: PPT or PAPER

d. Disk files: DSK, DISK, or the entry may be omitted.

The SKIP integer entry may be entered to begin printing with a specified record as denoted by the integer.

The INCLUDE or INCL integer entry may be used to specify how many records should be included in the printout.

The VARIABLE or VARY entry may be used to specify tape or disk files having variable length records.

The SEARCH or SEA entry may be used to specify that printing should begin with the first record containing the

value of the specified search-argument at the specified start-position (byte-number) in the record. The first byte

in the record has the number of 1.

The printed output is headed with the file-identifier, record length, blocking factor, the current date, and the time.
In addition a printout of a disk file will have the value of the End-of-File pointer in the heading. A running

record count is printed in the left hand margin.

Reproducing Specifications

The reproduction string consists of the following specifications:

PERFORM
PFM
COPY

[Routine-type] input-file-identifier

[Input-record-length] [Input-blocking-factor]

VARIABLE
VARY

Output-file-identifier [Output-record-length]

[Output-blocking-factor] [Output-blocks . per . Areal

VARIABLE
VARY

INCLUDE |
[SKIP integer] —— } integer
E— INCL
SEARCH

start-position search-argument
SEA

PERFORM, PFM, or COPY informs DMPALL that media conversion is desired.

The Routine-type entry may be either in the long hand or short hand form.

The long hand form utilizes the names of two of the following media:

a. Card files: CARD

b. Magnetic tape files: TAPE

c. Paper tape files: PAPER

d. Disk files: DISK or the entry may be omitted.

3-12

The short hand form uses a combined abbreviation format.

OUTPUT DEVICES

FromV To > Card Mag. Tape Paper Tape Disk
D
| E Card CRDCRD CRDMTP CRDPPT CRDDSK
N V
Mag.Tape MTPCRD MTPMTP MTPPPT MTPDSK
P 1
U C Paper Tape PPTCRD PPTMTP PPTPPT PPTDSK
T E
S Disk DSKCRD DSKMTP DSKPPT DSKDSK
Example:

To go from card to magnetic tape the short hand form Routine-type would be CRDMTP. The long hand
form would be CARD TO TAPE with the TO being optional.

The format of input-file-identifier is the same as used in MCP control instructions.

The input-record-length must be the first numeric entry following the input-file-identifier in bytes. If omitted, a

record length of eighty is assumed for all files except disk files which will use the record length of the file when

created.

The input-blocking-factor must be the second numeric entry following the input-file-identifier. If omitted, a

blocking factor of one is assumed. For a disk file where both the record length and blocking factor entries are

omitted, the blocking-factor with which the file was created will be used.

The VARIABLE or VARY entry may be used after the input-file-identifier entries to indicate that the input file will

have variable length records, but not variable length output.

The format of the output-file-identifier is the same as for the input-file-identifier.

The first numeric entry following the output-file-identifier must be the output-record-length in bytes. If omitted,

a record length of eighty is assumed unless the input file and the output file are both disk files. Then the default

output-record-length will be assumed to be the same as the input-record-length.

The output-blocking-factor must be the second numeric entry following the output-file-identifier. If omitted, a

blocking-factor of one is assumed unless the input file and the output file are both disk files and the output-record-

3-13

length entry was omitted. Then the default output-blocking-factor will be assumed to be the same as the input-

blocking-factor.

The number of blocks.per.area must be the third numeric entry following the output-file-identifier. This entry is
only applicable to disk files. All output disk files have 40 areas. If omitted, 100 blocks.per.area is assumed unless

both the input file and the output file are disk files and the record-length, blocking-factor entries were omitted for

both the input file and the output file. Then the number of blocks.per.area for the input file will be used for the

output file as well.

The VARIABLE or VARY entry may be used after the output identifier to indicate variable length input records

with variable length output records being produced.
The SKIP integer entry may be used to skip to a specified record prior to creating the output file.

The INCLUDE or INCL integer entry may be used to specify how many records should be included in the output
file.

The SEARCH or SEA entry may be used to specify that copying should begin with the first record containing the

value of the specified search-argument at the specified start-position in the record. The first relative location in the

record is one.
Examples:
a. Keyboard Console Input
EXECUTE DMPALL
DMPALL mix-index BOJ.

DMPALL mix-index ENTER SPECS.
DMPALL = mix-index ACCEPT.

A response of

LIST PACKA/PAYROLL/ A SKIP 50

causes a disk file located on the removable disk PACKA to be printed in alpha format beginning with the
fiftieth record.

A response of
1AX COPY CRDDSK CARD SOURCE 80 2

causes a card file with the file-identifier of CARD to be written to a disk file, 80 character records,
blocked 2, with a file-identifier of SOURCE.

A response of

1AX COPY PROGRAM/B CCC/PROGRAM/B

causes a disk file PROGRAM/B located on a system disk to be copied to the removable disk CCC
with the file-identifier PROGRAM/B. The new copy on disk CCC will be an exact copy. Therefore,

record length, blocking, number of areas, and area size will be the same as the original file.

Card Input

? EXECUTE DMPALL FILE SPEC NAME SPECCARDS will allow the operator to enter the
specifications via a card reader. DMPALL will look for a card file with the file-identifier
SPECCARDS.

? EXECUTE DMPALL FILE SPEC NAME SPECCARDS
? DATA SPECCARDS
LIST XXX A CRD
? DATA XXX
(card data deck)
? END

The specifications will cause the card file XXX to be listed in alpha format.

FILE/LOADER

The purpose of FILE/LOADER is to “load > card decks to disk punched by the program FILE/PUNCHER.

The FILE/LOADER card deck consists of the standard EXECUTE control card, a dollar card, an asterisk card,
the data cards, and the END card.

Dollar Card

The dollar card is output by FILE/PUNCHER and identifies the file to be loaded. The dollar card can also be

modified by the operator to change the name of the file-identifier.

The format of the FILE/LOADER dollar card is:

$ file-identifier

The “$* must be in column one and the file-identifier being free-form from column 2 through 80.

Asterisk Card

The asterisk card is used to input the values for the file which is being loaded to disk. This card is output by
FILE/PUNCHER and should not be changed prior to input. When the asterisk card is missing, the card file is

assumed to be a code file.

The format of the FILE/LOADER asterisk card is:

Column Description
1 “%2 Asterisk Sign
3 File Type
0 Invalid for FILE/LOADER
1 LOG
2 Invalid for FILE/LOADER
3 Control Deck
4 Backup Punch
5 Backup Print
6 Dump
7 Interpreter
8 Code
9 Data
5-10
EOF Pointer
12-17 Record Size in bits Right Justified,
19-20 Records.per.Block Leading Zeros
2224 Areas Optional
26-31 Segments.per.Area

NOTES

(1) If a code file is being loaded, the asterisk card is optional

and default values are assumed.

(2) 1If a code or interpreter file is designated on the asterisk
card, only the EOF pointer is used. All other fields are
ignored. If the EOF pointer field is blank, 100 segments
for the interpreter or 500 segments for the code will be

used as default values.

(3) All code and interpreter files will be closed with CRUNCH

which frees the area not being used for the file.

Example:

? EXECUTE FILE/LOADER DATA CARDS
$ file-identifier
* .. (Optional)
data deck
? END

Error Messages

MISSING “$” IN COLUMN ONE
The first card of the input deck does not have a ““$”” in column one.
MISSING file-identifier
The first card of the input deck has a “$” in column one, but is otherwise blank.
SEQUENCE ERROR FOLLOWING #nnnnnnn—file-identifier NOT LOADED
The card following the card number specified is out of sequence.
RECORD.SIZE SPECIFIED nnnn-—file-identifier NOT LOADED
AREAS SPECIFIED = 0 — file-identifier NOT LOADED
RECORDS.BLOCK SPECIFIED = 0 — file-identifier NOT LOADED
SEGMENTS.AREA SPECIFIED = 0 — file-identifier NOT LOADED
EOF.POINTER SEPCIFIED = 0 — file-identifier NOT LOADED
INVALID FILE TYPE SPECIFIED—file-identifier NOT LOADED

3-17

EMPTY DECK-file-identifier NOT LOADED

There are no cards following the specification card(s).
“#” CARD INVALID—file-identifier NOT LOADED

An asterisk card following a dollar card with “$$” specified in columns 1 and 2 is invalid.
file-identifier LOADED

After each file is loaded, the above message will be output.
FILE/PUNCHER
General

The purpose of FILE/PUNCHER is to output disk files to cards in hexadecimal format. The dollar card and the
asterisk card used by FILE/LOADER are also output when FILE/PUNCHER is executed.

The file-identifier is supplied to the program by an ‘““AX” input message. For example:

? EXECUTE FILE/PUNCHER

FILE/PUNCHER=mix-index ENTER FILE IDENTIFIER
FILE/PUNCHER=mix-index ACCEPT

mix-index AX file-identifier (free-form)

After punching the output file, the program will repeat the above messages and wait for another file-identifier to be

entered. By responding with a blank file-identifier, the program will go to EOJ.

Error Messages

file-identifier NOT ON DISK

The file-identifier requested for output cannot be located by the MCP.

CANNOT PUNCH AN ABSOLUTE MCP

An ABSOLUTE MCP file cannot be output by the program FILE/PUNCHER.

3-18

SORT

General

The SORT is a system program that provides the user with a means to arrange a file of records. It processes
specification cards that describe the input and output files, the keys by which the file will be arranged, and various

options.

A parameter table is generated by the SORT and a sort intrinsic is invoked. The sort intrinsic may also be invoked
from within a language (RPG or COBOL), and the manual for that language contains a description of its sort

statement.

The sort intrinsic does the actual sorting of the file in either an ascending or descending sequence according to a

designated key or Keys.

There are two sort intrinsics hereafter referred to as the vector replacement and INPLACE techniques. The intrinsic

using the vector replacement technique is normally the one invoked.

The intrinsic using the INPLACE technique is invoked when the user includes an optional INPLACE specification

card in the SORT source deck. This option should be used when a minimum of disk space is available for sorting,

SORT reserved words and characters appear in uppercase type throughout the SORT text. A list of the SORT
reserved words appears at the end of the SORT Text.

SORT Execution Deck

The SORT execution deck consists of specification cards and control cards.

OPTION
CARDS

FILE IN
? DATA CARDS

? EXECUTE
SORT

Sort Execution Deck

Figure 3-2

3-19

Three of the specification cards are required: FILE IN, OUT, and KEY. Other specification cards are optional and

allow modification and optimization of the sort.

A description of each of the SORT specification cards (statements) appears in the following pages.

The FILE Statement

The FILE statement is comprised of two parts which describe the input file to be sorted and the output file to

be produced. The first part must be the FILE IN statement and the second part is the OUT statement, which must
immediately follow FILE IN.

FILE IN

The FILE IN statement describes the input file to be sorted, and is one of the three specification cards that are
required. The parameters following the file-identifier must be enclosed in parentheses and separated by a space.

The FILE IN statement has the following format:

FILEIN [dp-id/ file-identifier
-1 . .
—_— [dp-1d/] file-identifier /~ file-identifier
CARD
({ TAPE record-size [blocking-factor] l:

PURGE }

DEFAULT
DISK (records-per-area) -

DP-ID

The dp-id is the name of the disk pack or disk cartridge that the file is to be read from or written to. If dp-id is

omitted on input, the file is assumed to reside on the systems disk. If it is omitted on output, the file is written

on the systems disk.
FILE-IDENTIFIERS

File-identifiers are standard file names as described in the MCP portion of this manual.

3-20

When the INPLACE sort option is specified and the file-identifiers are the same for both the FILE IN and OUT
statements, the original file will be altered during the sorting process and the output of the sort will occupy the

same space when the files are on disk.

If the file-identitiers are different, the input file will not be disturbed and a new output file will be created.

When the PURGE option is used, the input file-identifier will be removed from the disk directory at the completion

of the sort intrinsic.

CARD

The word CARD specifies that the input file is on cards.

TAPE

The word TAPE specifies that the input file is on magnetic tape.
DISK

The word DISK specifies that the input file is on disk.
RECORDS-PER-AREA

When the file is on disk the records-per-area must be supplied and enclosed within parentheses. The records-per-area

must be calculated by the user.

RECORD-SIZE

The record-size is a required entry and is the actual record size in bytes (characters) associated with the file, When

the DEFAULT option is used a record-size must be specified but need not be correct.

BLOCKING-FACTOR

The blocking-factor is optional and specifies the number of logical records in a block. When this entry is omitted

the blocking-factor default of one (1) will apply.

PURGE

This option will result in the input file-identifier being removed from the disk directory at the completion of the sort.

3-21

DEFAULT

This option allows the user to sort a file when he doesn’t know anything about the file except the file-identifier. If the

file is not on the system pack the user must also supply the disk pack name.
This option applies only to disk files.

ouT

The OUT statement describes the output file to be created, and is one of the three specification cards that are

required.

The OUT statement must immediately follow the FILE IN statement. The parameters following the file-identifier

must be enclosed in parentheses and separated by a space.

The OUT statement has the following format:

file-identifier
OUT [dp-id/] . o . -
file-identifier L file-identifier
CARD
DISK
TAPE
PRINTER

(records-per-area) record-size [blocking-factor])

|~

The elements of the OUT statement have the same function as they do in the FILE IN statement except that they

describe the desired output file.

Examples:

FILE IN CARDX (CARD 80)
OUT LINE (PRINTER 80)

FILE IN CARDX(CARD 80) OUT LINE(PRINTER 80)

3-22

Both of the above examples will produce the same result.

FILE IN RANDOM (DISK(1000) 100 10)
OUT SORTED (DISK (1000) 100 10)

Note that in the above example parentheses serve as delimiters between parameters so that additional spaces are

permitted but not required.

The Key Statement

KEY

The KEY statement defines the field or fields within a record that will determine the order in which the file is to be

arranged. It is one of the three specification cards that are required.

The format of the KEY statement is:

ALPHA |
ASCENDING UA
KEY) A NUMERIC
- (key-location key-length 4 3)
FIELD | — DESCENDING UN -
D SA
SN
L -

(... [c...nl (...l

Multiple key descriptions are allowed and must be enclosed in parentheses. The first key is the major key and any
additional keys are minor keys of decreasing significance. Each succeeding minor key is subordinate to any pre-

ceding minor or major key.

The maximum number of keys is forty unsigned keys, twenty signed keys, or any combination not exceeding forty

where each signed key is counted as two unsigned keys.

KEY-LOCATION

The key-location specifies the relative position of the most significant byte or digit (alpha or numeric) of the field

from the beginning of the record.

The first byte or digit in a record is relative position one (1). The position is counted in the number of units
applicable to the data type for that key. This permits all possible data types to appear within a record. Additional
information describing position will be found in following paragraphs concerning data types (ALPHA, NUMERIC,

etc.).

For signed fields the key-location is specified as the most significant byte or digit of the key itself, and not the

position of the sign. The sign location is the left-most or high order position of the field.

KEY-LENGTH

The key-length specifies the number of significant bytes or digits in the key. It should not include the length of
the sign when the key is signed.

ASCENDING or A

Ascending sequence does not have to be specified as it is the default. The file will be arranged with the record

having the smallest key appearing first, followed by records with increasingly larger keys.

DESCENDING or D

The use of this option will result in the sorted file being arranged with the record having the largest key appearing

first, followed by records with succeedingly smaller keys.

The following SORT reserved words are used to describe the type of data within the key fields of the records to be

sorted.
ALPHA or UA

ALPHA or UA (unsigned alpha) indicates that the data is alphanumeric, and the key-location of the field is counted
in 8-bit units from the beginning of the record. ALPHA or UA need not be specified as they are the default when

no data type is specified.

NUMERIC or UN

NUMERIC or UN (unsigned numeric) indicates that the data is 4-bit numeric, and the relative position of the field

is counted in 4-bit units.

SA

SA (signed alpha) indicates that the data is alphanumeric and that some or all of the keys may contain a minus sign.

The key-location is specified as the most significant byte of the key itself and not the position of the sign.

The minus sign is represented as a hexadecimal D in the most significant four bits of the first byte in the field.

SN

SN (signed numeric) indicates that the data is 4-bit numeric and that some or all of the keys may contain a minus

sign. The key-location is specified as the most significant digit of the key itself, and not the position of the sign.

The minus sign is represented as a hexadecimal D and will occupy the most significant digit of the field.

Examples to illustrate several key descriptions follow:

UNSIGNED ALPHA SIGNED ALPHA

RERRRRRRERREERENRRN

T3 s 6 7 R 9 10 101213 14 1516 17 18 19 20 21 22 23 24 25

1

The method of referencing the key-location and key-length of ALPHA and SA data may be illustrated with the use
of the above illustration which represents a record twenty-five bytes (8-bit) in length. The first twelve bytes are
type ALPHA and the following thirteen bytes are type SA. The thirteenth byte of the record contains the minus

sign if the field is a negative value.

KEY (5 2) describes the field starting with the fifth byte that is two bytes long. The data is type ALPHA and the

output sequence is to be ascending order.

KEY (5 2 A UA) explicitly names the options A and UA and will have the same result as the above description.

KEY (14 12 SA) describes the signed field starting at byte fourteen and continuing to the end of the record.

3-25

KEY (14 1 D SA) describes the one byte field at byte fourteen. The output sequence will be in descending order

so that all positive keys will appear in the output before any of the negative fields.

KEY (1 12) (14 6 SA) describes an unsigned major key field twelve bytes long that starts in the first byte of

the record, and a signed alpha field starting in byte fourteen that is six bytes long.

T L O T

The method of referencing the key-location and key-length of NUMERIC and SN data is illustrated by the above
example which represents a record fifty digits (4-bit) long. The first eighteen digits are type unsigned numeric, and
the remaining thirty-two digits are type SN. The nineteenth digit from the beginning of the record is the sign

location.

KEY (1 18 A UN) describes all of the eighteen digit unsigned numeric field. The reserved word A could be

omitted since ascending sequence is the default option.
KEY (18 1 UN) describes the last digit of the unsigned numeric portion of the record.

KEY (20 5 SN) describes the left-most five digits of the signed numeric part of the record. Digit nineteen is the

sign location.
Data of the type NUMERIC or SN could only be associated with disk or tape files because of its “packed” nature.
SORT Option Statements

The purpose of the sort option statements is to allow the user to optimize the sort and add comments to the
SORT specification card deck.

There are eight option cards as described below.
NOPRINT

The NOPRINT option will inhibit the printing of the sort specifications on the line printer. This allows the sort to

be executed when the printer is in use, and also results in less execution time.

The NOPRINT statement must be the first entry in the sort specifications.
The TIMING option is not affected by the use of the NOPRINT option.
MEMORY number
The MEMORY option can be used to allocate more memory to the sort than the 6000 bytes assigned by default.
Increasing the memory available to the sort will usually make the sort run faster, until an optimum memory size is
reached. Increasing the memory size beyond this optimum will result in a slower sort. The optimum size is depen-
dent on file size (record size and number of records).

Example: MEMORY 15000

number RECORDS

The user may furnish an estimate of the number of records in the input file, which helps to optimize the execution

of the sort. If this option is omitted the default is 20,000 records.

Example: 12500 RECORDS
TIMING
The TIMING option may be used when the vector replacement sort intrinsic is used, and furnishes an estimate of
the number of merge passes that will be required during execution of the sort. The estimate and some other infor-
mation that may be useful for debugging will be printed on the line printer.
This option does not apply to the INPLACE sort.

BIAS number(%]

This option is used to estimate how ordered or sequenced a file is in relation to the keys the file is to be sorted on.

The estimate is used to optimize the execution of the sort intrinsic.

The number entered may be from zero (0) to ninety-nine (99), where a fifty (50) indicates completely random data
and is the default if no BIAS statement is included. A zero (0) would indicate that the file is in reverse order in

relation to the keys to be sorted on. A ninety-seven (97) would suggest that the file is nearly in the desired sequence.

Example: BIAS 60%

The percent sign is optional and may be omitted.
The BIAS option does not apply when the INPLACE option is used.
INPLACE

This option may be used when a minimum of disk space is available for sorting. The vector replacement sort pro-
duces work files approximately two-and-one-third times the size of the input file. The INPLACE sort requires work
file space equal to the input file space, unless the input and output file identifiers are the same. In the latter case,

no work file space is required but the input file is replaced by the output file during the sorting process.

SYNTAX

The SYNTAX option should be used when the SORT specification cards are to be checked for errors only. The

sort intrinsic will not be executed, even when no errors are detected in the specifications.

COMMENT
Any non-reserved word or character.
This option allows explanations or notes to be interspersed between SORT statements. SORT control (reserved)

words may not be used in the text of the comment.
Specification cards for a typical sort might be as shown below:

FILE IN SRT/AAA/ (DISK(500) 100 1)
OUT XYZ/BBB/ (DISK(500) 100 10)

2500 RECORDS

MEMORY 12000

BIAS 50%

KEY (7 12) (1 ©6)

The above specification cards could also appear in different format as shown below and produce the same results.

FILE IN SRT/AAA/ (DISK(500) 100 1) OUT XYZ/BBB/ (DISK(500) 100 10) 2500 RECORDS
MEMORY 12000 BIAS 50 KEY (7 12) (1 6)

The disk pack named SRT would contain the file AAA and the sort intrinsic would order the file, with the output

file (sorted) BBB getting written on disk pack XYZ. The sort intrinsic using the vector replacement method would

be used in both cases.

FILE IN CARDX (CARD 80)
OUT LINE (PRINTER 80)

KEY (1 10)

INPLACE

1900 RECORDS

BIAS 60

The above SORT specification cards would result in the INPLACE sort intrinsic being invoked to do the sorting.
The input file CARDX in the card reader would be read in, the records sorted according to the single ten-byte key,
and the sorted file would be printed on the line printer. The BIAS estimate would be meaningless since that option

has no effect when the INPLACE option is used.

SORT Reserved Words

(ouT PAPER INPLACE

) ODD FIELD COMPILE

, KEY ALPHA EXECUTE

A ZIP MERGE NOPRINT

D FILE IDENT RESTART

\Y% CARD PURGE ASSEMBLE

0] TAPE FIELDS GENERATE

E DISK MEMORY ASCENDING
% EVEN SYNTAX USERBLOCK
/ KEYS TIMING SAVEBLOCK
IN BIAS DEFAULT TAGSEARCH
UA WAIT PRINTER PARTITION
UN CORE NUMERIC DESCENDING
SA COMP RECORDS COMPLEMENT
SB PACK TAGSORT DISTRIBUTE
SN CARDS

3-29

SECTlON 4
PROGRAM PRODUCTS

COMPILERS
INTRODUCTION

The B 1700 computer system recognizes four compilers: RPG, COBOL, FORTRAN and BASIC. Each of these com-
pilers, which generate executable object programs from a programmer’s source program, has various options and
operational techniques which affect its output. The following pages discuss each compiler and its individual operating

procedures.

The COMPILE card, DATA card, and the LABEL equate (FILE) cards are standard for all compilers and are not
discussed in detail for each compiler concerned. See the Control Instruction section for their particular usage and
syntax.

REPORT PROGRAM GENERATOR

General

The Report Program Generator (RPG) enables the user to obtain comprehensive reports from existing files with a
minimum time involved in source coding. An object program produced from RPG source coding is in the COBOL
S-Language format.

Compilation Card Deck

A program written in Burroughs RPG, called a source program is accepted as input by the RPG compiler. The com-
piler has two major functions: (1) verify all syntax rules outlined in the RPG Program Manual, and (2) convert the
source program language into COBOL S-Language which is then ready for execution.

The program generated by the RPG compiler is executed under control of the MCP using the COBOL interpreter.

Following is an example of an RPG compilation deck.

? END

Va

O QUTPUT-FORMATS

C CALCULATIONS

U inputT '“

g—

/L LINE COUNTER

,/ E EXTENSION

Z L— _J
F FILE DESCRIPTION
H CONTROL CARD |
? DATA RPG/CARD

? LABEL EQUATE _“\\

N $ DOLLAR
? COMPILE CARD

RPG Compilation Deck
Figure 4-1

Dollar Card Specifications

Dollar Card Specifications allow the RPG Compiler or Translator to accommodate various extensions to other manu-
facturers RPG and RPG II languages, which cannot be handled on the other specification forms. Dollar Cards also

allow certain compiler-control options to be set or reset during compilation.

Dollar cards may appear anywhere within the source deck, as required. Only one option can be entered on a card

and must be in the following format:

Columns Description
1-5 Page and Line Sequence Number
6 This field may be left blank or contain the form type to align with the associated
form that the $ option was inserted in.
7 A $ sign must appear in this field.
8 This field is used to specify that the option entered in the KEY WORD field is
set ON or OFF. (Blank = ON, N = OFF).
9-14 KEY WORD: This field is used to name the option that is to be used. The option
must be left-justified.
15-24 VALUE: This field is used to specify a value to be associated with the option. All values
in alphanumeric form must be left-justified, numeric form must be right-justified.
25-74 COMMENTS: This field is available for comments and documentary remarks.
75-80 Program Name

RPG Extensions

The following options may appear only within the file description specifications, and must immediately precede the

specification line describing the file to which they apply.
NOTE
None of the following operations may be “reset”.

a. $ PACKID-—specifies the pack name of a disk file. Similar to § FAMILY and $ FILEID, default of blank
dp-id name and the MCP will assume systems pack. This entry should be included to ensure correct hand-

ling of files by the MCP.

b. $§ FAMILY —specifies the external family name (MFID) associated with the file. The VALUE field contains

the name which is one to ten characters, left justified.

c. $ FILEID—specifies the external file identification (FID) associated with the file. The VALUE field con-

tains the name which is one to ten characters, left justified.

d. $ AREAS-—specifies the maximum number of areas to be allocated for the file (disk files only). The
VALUE field contains an integral value, 1 to 40, right justified, leading zeros optional. The default value

assigned is 40, unless specified otherwise.

e. $ RPERA—specifies the maximum number of logical records that will be written in each disk area. The
VALUE field contains an integral value right justified, leading zeros optional. The default value assigned

is 500 unless specified otherwise.

f. $ OPEN—explicit open allows for all files to be opened at Beginning-of-Job. Default is an implicit open

when the files are actually called for.

g. $ CLOSE—explicit close allows all input serial files to remain opened until End-of-Job. Default is the

implicit close of files at End-of-Job.

h. $ AAOPEN-is a file time option used to set a bit in the MCP file parameter block and allocate all disk

space areas at the beginning of the program.
i. $ ONEPAK—specifies that this particular file must be contained on one disk.

j. $ CYL—allocates file areas starting on an integral cylinder boundary.

4-3

$ DRIVE—allocates a physical drive to that particular file. VALUE field must be 0-15. Option may not
be reset and is not related to PACKID.

$ REFORM—input and update disk files are assumed to have the block and record length declared on the
file header unless the $ REFORM option is used. However, on input or update chained indexed file
specifications “data keys in core’ option, it may be desirable to also use $ REFORM to indicate to the
compiler that it may juggle the blocking factor to optimize the speed of chaining. Under this condition,
the blocking-record-length specified on the File Description Specifications must be the same as when the

file was outputted. This combination will produce the fastest chaining possible.

$ REORG—specifies a specialized method of sorting indexed files will be invoked at End-of-Job. The
REORG feature only sorts the additions and then merges them, in place, into the master file. This
method of sorting should decrease the sort time and the temporary disk area required. The VALUE field

contains the external file identifier of the indexed file including disk pack-id.

Compiler Directed Options

$ LIST Specifies that the compiler produce a single spaced output listing of the source statements with

the error or warning messages. This option is set “on” by default. Resetting to “off” will not

inhibit the errors or warning messages from printing.

$ LOGIC Specifies that the compiler produce a single-spaced listing of each source specification line fol-

lowed immediately by an intermediate code used to generate COBOL-S code. The listing is
produced after the NAMES listing (if the NAMES option is set), and does not include addresses

or bit configurations, but only the opcodes and logical operands of the program.

$ MAP Specifies that the compiler produce a single-spaced listing detailing the program’s memory

utilization. The MAP listing is produced after the LOGIC listing (if the LOGIC option is set).

$ NAMES Specifies that the compiler is to produce a single-spaced listing of all assigned indicators, file

names, and field names. The attributes associated with each file and field are also listed. The

NAMES listing is produced immediately after the normal source input listing.

$ RSIGN Indicates to the compiler, the location of the sign in numeric data items. When set, all signs are

assumed to be right-justified; when reset, all signs are assumed to be left-justified. This option
may be set and reset at different points in the Input and Output-Format Specifications, allowing
different fields to have different sign positions. If the option is used, it will override the sign

position specified in the Control Card Specifications.

§ SEG

$ SUPR

§ XMAP

$ STACK

$ BAZBON

$ ZBINIT

$ XREF

$ PARMAP

Orders the compiler to begin placing code in an overlayable segment identified by the integer in
the VALUE field (right justified, between O and 7 inclusive). Segmentation is an automatic
function of the RPG compiler and optimized for its best usage. When the SEG option is used,

automatic segmentation is not suppressed.

Specifies that the Compiler is to suppress all warning messages from the source program listing.

(Error messages still print.)

Specifies that the compiler print a single-spaced listing of all the code generated, complete with
actual bit configurations and addresses. Combined with the listing produced by the LOGIC
option, complete information about the generated code of the program is available. The XMAP
listing is produced after the MAP listing if the MAP option is set.

Due to infrequent stack overflow conditions during program execution, the user may now change
the stack size of the resultant program. This should only be used when a STACK overflow con-
dition has occurred. The default stack size is 313 bits which will allow 8 entries in the stack.

To increase the stack size add 39 bits, for each additional stack entry, to the default size of 313.

This specifies that if an indicator is assigned to a field to test for ZERO or BLANK in the Input
or Calculation Specifications and the same field is used in the Output Specifications with a
BLANK AFTER designation, that indicator will be turned ON after the field is blanked during
the output operation. Should a N (not) be specified in column 8 the indicator will be turned
OFF overriding the original RPG I or RPG II specifications.

This specifies that all ZERO BLANK indicators are initialized ON at Beginning-of-Job or ifaN
(not) is specified in column 8 they will be initialized OFF regardless of the specifications for
RPG II or RPG L

The XREF option must be placed at the beginning of the RPG source program, prior to the first
File Specification. This option allows the RPGXREF file to be created during compilation for use
as input to the RPG/XREF program. At the completion of the compilation it is necessary to

manually execute the RPG/XREF program in order to obtain the cross reference listing.

Produces a single spaced listing of the compiler generated paragraph names, source statement
numbers, and actual segment displacements of the emitted code. This listing may be used to
relate to the LOGIC listing.

RPG to COBOL Options

The following options may appear prior to the first source statement in the RPG program to direct the compiler to
terminate prior to generation of the code file. The intermediate work files in the disk directory may then be used
as input to COFIRS.

a. $ XLATE-specifies termination of the compiler prior to generation of the code file.

b. $ XLIST—specifies a single spaced listing of the COBOL source language will be produced during the
execution of COFIRS.

Internal File Names

The RPG Compiler’s internal file-identifiers and external file-identifiers for use in Label Equation are as follows:

Internal External Description

LINE RPG/LIST Source output listing to the line printer.
SOURCE RPG/CARD Input file from the card reader.

TABCRD RPG/VECTOR Input file for TABLES from the card reader.

RPG Internal File Names
Figure 4-2

RPG to COBOL Translator (COFIRS)
GENERAL

The RPG to COBOL translator converts the intermediate disk file, previously created from the RPG compiler
through the $§ XLATE option, to a COBOL source language file on disk (SOLD file). This source file is then
acceptable input to the B 1700 COBOL compiler. The flexibility of this translator allows for any RPG source
statement, acceptable to the B 1700 RPG compiler, to be translated to COBOL with little or no loss of run-time

efficiency of the object program.

EXECUTION OF TRANSLATOR

As a preliminary step to the execution of the translator, the RPG program must be compiled with the RPG compiler
using the $ XLATE option. An additional dollar card, $ XLIST, may also be included in the RPG source deck if a

listing of the generated COBOL source file is desired during the execution of the translator.

Example:

? COMPILE program-name RPG LIBRARY
? DATA RPG/CARD

$ XLATE

[$ XLIST] optional

(RPG SOURCE cards)

? END

Once the program has been compiled, the intermediate disk work file will be locked, prior to generating the COBOL

S-Language file. This file is then used as input to the translator.
The following is an example of the execute statement:
? EXECUTE COFIRS

At end of job, COFIRS will lock a COBOL source file named RPGCOB in the disk directory. This file may then be
used as input to the B 1700 COBOL compiler.

The following is an example of the RPGCOB file used as input to the COBOL compiler:

? COMPILE program-name COBOL LIBRARY
? FILE SOURCE NAME RPGCOB;
? DATA CARDS
$ MERGE
? END

COBOL COMPILER

General

The COBOL compiler is designed in accordance with the COBOL standard as specified by the American National
Standards Institute (ANSI). The COBOL compiler can function with any system that runs under the control of the

MCP.

The COBOL compiler in conjunction with the MCP allows for various types of actions during compilation which are

explained in the following paragraphs.

Compilation Card Deck

Control of the COBOL source language input is derived from presenting the compilation card deck to the MCP.

SOURCE

SOURCE DATA

$ OPTION CONTROL CARD

? FILE CARD

$ OPTION CONTROL CARD

? COMPILE CARD

COBOL Compilation Deck
Figure 4-3

$ OPTION Control Card

The third card, excluding label equation cards, is the COBOL $ OPTION card. This card is used to notify the com-
piler which options are desired during a compilation. Without the $ OPTION card, $ CARD LIST CHECK SINGLE

will be assumed.
The $ OPTION card has the following characteristics:

a. A § sign must appear in column 7.

f.

There must be at least one space separating options on a card.

There may be more than one option per card.

The options may be in any order.

Any number of $ cards may be used and may appear anywhere in the source deck. The option will be

set (on) or reset (off) from that point on.

Columns 1 - 6 are used for sequence numbers.

The format of the § OPTION card is as follows:

? OPTION [OPTION .. .]

OPTIONS

The options available for the COBOL compiler are listed below:

CARD—input is from the source language cards or paper tape. This option is for documentation only.

LIST—creates a single-spaced output listing of the source language input, with error and/or warning mes-

sages, where required.

SINGLE—causes the output listing to be printed in a single-spaced format.

DOUBLE—causes the output listing to be printed in a double-spaced format.

CODE-list object code following each line of source code from the point of insertion.

MERGE—primary input is from a source other than a card reader and may be merged with a patch deck in
the card reader. It is assumed to be from a disk file, with a file-ID of COBOLW/SOURCE, by default.

If it is desired to change the input file-ID or change the input device from disk to tape, a LABEL EQUA-
TION CARD must be used. The NEW option may be used with the MERGE option to create a new

output source file plus changes.

NEW-—creates a NEW output source file with changes, if any, entered through the use of the MERGE
option, but does not include compiler option cards which must be merged in from the card reader when

compiling from disk or tape.
The output file will be created on disk by default with the file-ID of COBOLW/SOURCE.

If it is desired to change the output file-ID or change the output device from disk to tape, a LABEL
EQUATION CARD must be used.

CHECK-—This option will cause the compiler to check for sequence errors and print a warning message for
each sequence error. The CHECK option is set on by default at the beginning of each compile, but may
be terminated with the NO CHECK option.

SUPPRESS—suppresses all warning messages except sequence error messages. The sequence error message

can be suppressed with the NO CHECK option.

SPEC—if syntax ERRORS occur, this option negates the control and LIST option and causes only the
syntax errors and associated source code to be printed. Otherwise the CONTROL and LIST options

remain in effect.

“Non-numeric literal”—is inserted in columns 73-80 of all following card images when creating a new
source file and/or listing. This option can be turned off or changed by a subsequent control card with

the area between the quote marks containing blank characters.

SEQ-starts re-sequencing, the output listing and the new source file if applicable, from the last sequence
number read in and increments the sequence number by ten or by last increment presented in a previous
$-option card. When re-sequencing starts at the beginning of the program source statements the sequence

will start with 000010.

SEQ nnnnnn--starts re-sequencing the output listing and new source file if applicable from the sequence

number specified by nnnnnn and increments the sequence numbers by ten.
SEQ +nnnnnn-—starts re-sequencing the output listing and new source file if applicable from the last
sequence number read in and increments by the number specified by +nnnnnn. When re-sequencing starts

at the beginning of the program source statements, the sequence will start with 000010.

SEQ nnnnnn +nnnnnn-—starts re-sequencing the output listing and new source file if applicable from the

sequence number specified by nnnnnn and increments by the value of +nnnnnn.

4-10

p. NO SEQ-terminates the SEQ option and resumes using the sequence number in the source statement as it

is read in.
q. CONTROL-—prints the $-option control cards on the output listing. The LIST option must be on.

r. NO-when the NO option precedes one of the above options, with the exception of MERGE which cannot

be terminated, it will terminate the function of that option.

s. REFERENCE—during debugging additional monitoring can be done to see the effect upon variables

specified in the MONITOR declaration and referenced in a statement that does not change its value.

t. ANSI—when used will inhibit the EXTENSION of AT END . .. ELSE, and during compilation will flag

them as syntax errors.

u. STACK integer—is used to increase the program stack by “integer” bits. The default size, when at least

one PERFORM statement is used, is a 1000 bits.

v. NOCOP—when used will generate COP enteries in the code instead of a COP table causing more memory

to be utilized but faster program execution.

The NEW option does not have to be included when operating with a tape or disk source input, thus allowing

temporary source language alterations without creating a new source output file.

The MERGE option without the NEW option allows a disk or tape input file to be referenced and to have external
source images included from the card reader on the output listing and in the object program. A new output file

will not be created.

Columns 1 - 6 of the Compiler Option Control card may be left blank when compiling from cards. A sequence

number is required when compiling from tape or disk when the insertion of the $ option is requested within the

source input.

SOURCE DATA Cards

The Source Data cards follow the $ Option control cards. These cards have two functions: (1) to update and create

a newer version of a program, and (2) cause temporary changes to the tape or disk source program.

The following two paragraphs outline the Source Data Cards that are available to use with the COBOL Compiler:
the VOID card, and the CHANGE or addition card.

a. VOID Patch Card. Punch the beginning sequence number in card columns 1-6 followed by a $ sign in

column 7 with the word VOID starting in column 8, and terminate with the “optional” ending sequence

number. This will delete the source statements beginning with the 6 digit sequence number through the

ending 6 digit sequence number. For example:
nnnnnn $VOID [nnnnnn]

If the ending sequence number is omitted, only the source statement associated with the beginning

sequence number will be deleted. For example:

nnnnnn $VOID

b. CHANGE or Addition Patch Card. Punch the 6 digit sequence number in card columns 1-6 of the card
that is to be changed or added, followed by the data to be input in their applicable columns. These

cards must be arranged in the sequential order of the source program in order to be MERGED correctly

into the program.

The COBOL Compiler has the capability of merging inputs from punched cards or paper tape, either of which may

be merged with magnetic tape or disk.

The output listing will indicate any inserts and/or replacements when in the MERGE mode.
The following are examples of a COBOL compile deck.

Example 1:

? COMPILE ALPHA WITH COBOL FOR SYNTAX
? DATA CARDS

$ CARD LIST DOUBLE

. . . source program deck . . .
? END

Example 2:

? COMPILE ALPHA WITH COBOL SAVE
? DATA CARDS

$ CARD NO CHECK DOUBLE

... source program deck . ..
? END

Internal File Names

The COBOL compiler’s internal file-identifiers and external file-identifiers for use in Label Equation are as follows:

Internal File-name External File-1D Description

CARDS CARDS Input file from the card reader. If $ MERGE is used,
this file will be merged with the input file on disk or

tape. The default input is from the card reader.

SOURCE COBOLW/SOURCE Input file from disk or tape when the MERGE option

is used. The default input is from disk.

NEWSOURCE COBOLW/SOURCE Output file to disk or tape for a NEW source file when
the NEW option is used. The default output is to disk.

LINE LINE Source output listing to the line printer.

COBOL Internal File Names
Figure 4-4

FORTRAN COMPILER

General

FORTRAN (FORmula TRANslation) was designed for writing programs concerned with scientific and engineering

applications in mathematical-type statements. The FORTRAN compiler translates these statements into object code

which can be executed by the B 1700.

B 1700 FORTRAN is designed to be compatible with FORTRAN 1V, Level H, and to contain ANSI Standard
FORTRAN as a subset.

Compilation Card Deck

Control of the FORTRAN source program is derived by presenting to the MCP the FORTRAN compilation card
deck.

? I:ND

SOURCE DATA ‘

PRR—

$ OPTION CONTROL
/ CARD
? DATA CARD

$ OPTION CONTROL
CARD

S OURCE DATA

? COMPILE

? LABEL EQUATION
CARD

FORTRAN Compilation Deck
Figure 4-5
$ Option Card
The third card, excluding Label equation cards, and the standard COMPILE and DATA cards, is the FORTRAN
compiler $ Option control card. This card is used to notify the compiler as to which options are required during

the compilation. By omitting the $ Option card, the options “CARD LIST SINGLE” are assumed.

The format for the FORTRAN $ Option control card is:

$ option-1 option-n

The FORTRAN $ Option control card has the following characterics:

a. Column one must be a $ sign

b. There must be at least one space between each item

c. Options may be in any order

4-14

d. Columns 73-80 are reserved for sequence numbering
e. Any number of option cards may appear within the source deck.
Options
The options that are available for the FORTRAN compiler are as follows:
a. CARD-—symbolic input is from source language cards. This is a default option.

b. LIST—creates a single spaced output listing of the source program with error and/or warning messages.

This is a default option.
c. SINGLE-—causes the output listing to be printed in a single-spaced format. This is a default option.
d. DOUBLE-—causes the output listing to be printed in a double-spaced format.

e. CODE—will list the object code following each source statement from the point of insertion into the

source deck.

f. NO-used in conjunction with any of the above options will terminate or reset the function of that

option. When an option is preceded by NO, there must be at least one space between the word NO and

the option to be reset.
SOURCE DATA Cards
The Source data cards, commonly referred to as the source deck, are the statements comprising the source program.

Internal File Names

The FORTRAN Compiler’s internal file-identifiers and external file-identifiers for use in Label Equation are as follows:

Internal File-name External File-ID
(file-number) (Label) Description
CARDS CARDS Input file from the card reader.
LINE LINE Source output listing to the line printer.

FORTRAN Internal File Names
Figure 4-6

4-15

BASIC COMPILER

General

BASIC is a problem-oriented language designed for a wide range of applications and may be easily applied to both
business, commercial, engineering and scientific processing tasks. The BASIC language is designed for use by indi-
viduals who have little previous knowledge of computers, as well as, individuals with considerable programing

experience. A distinct advantage of BASIC is that its rules of form and grammar are quite easily learned.

B 1700 BASIC includes the capabilities of the original Dartmouth College BASIC plus extensions provided for com-
patibility with the General Electric MARK 11® BASIC language.

The BASIC compiler, in conjunction with the Master Control Program, enables source programs to be compiled
through the use of a card reader or a card device. Compilation of the BASIC source language input is achieved by
presenting the compilation card deck to the MCP. Control cards included in the compilation deck are of two
general types: (1) MCP control cards, and (2) compiler $ Option control cards. The structure of the BASIC com-

pilation deck is discussed in the text that follows.

Compilation Card Deck

The entities comprising the structure of the BASIC compilation deck and the order of their occurrence are shown

in the figure below.

SOURCE CARD

$ OPTION

COMPILE
CARD

Figure 4-7

MCP control cards are made distinguishable from other cards by an invalid character in column 1 for 80 column
cards, or a valid question mark (?) for 96 column cards. An invalid character is represented by a “?” for clarity in
this manual. MCP control information is punched in a free-form format in columns 2 through 72. The presence of

MARK n®is a registered trademark of General Electric Corporation.

a percent sign in a MCP control card terminates the control information on that card and any information following

the period is treated as a comment by the MCP.

$ Option Card

The third card, excluding the optional Label Equation cards, and the standard COMPILE and DATA cards is the
BASIC § Option card. This card is used to notify the compiler which options are desired during a compilation. By
omitting the $§ Option card, the options “CARD LIST SINGLE” are assumed.

The $ Option cards for the BASIC compiler have the following characterics:

a. All option cards are in a free-form format.

b. A line-number which is required to be sequential within the program, cannot be greater than five digits

and must precede the $ sign.

c. The § sign may appear anytime after the line-number and before the first option.

d. All options listed on the card may appear in any order.

e. There must be at least one space between each option.

f. § cards may be used anywhere within the source deck to either set or reset an option.

The format of the $ Option card is:

line-number §$ option-1 optionn

Options

The following options are available for the BASIC compiler.

CARD Symbolic input is from source language cards. At the present time, this option is for documentation

purposes only.

LIST Creates a compilation output listing of the source language input, with error and/or warning mes-

sages, where required. LIST is a default option.

SINGLE Causes the compilation output listing to be printed in a single-spaced format. SINGLE is a

default option.

DOUBLE Causes the compilation output listing to be printed in a double-spaced format.

CODE Lists the object code generated for a source statement from the point of insertion into the

source deck.

NO Each of the above options may be preceded with NO. This enables the options to be turned
“on” for selected program parts and then turned “off” as desired. When an option is preceded
by NO, there must be at least one space between the word NO and the option to be terminated.

SOURCE INPUT Cards

The source program cards have the following characteristics:

a. FEach card is taken as a different line and can contain only one statement. If the 96 column cards are

used, the source statement must be contained in the first 80 columns.

b. There can be no continuation cards.

c. Each card between the 2 DATA card and the ? END card must contain a line-number.

d. A line-number starts in column 1 and can be a length of 5 digits.

e. The first non-numeric character will terminate the line-number when less than 5 digits.

f. The line-number is used both as a statement label and sequence number.

g. FEach statement is sequence checked by the BASIC compiler as it is read in.

h. Spaces or blanks have no significance within a source statement except for information contained in

string constants. Spaces can be used to make a program more readable.

Intrinsic Files

The BASIC intrinsic files BAS.INTRIN/ #00000000, BAS.INTRIN/ #00000001, through BAS.INTRIN/ # 00000038
must be present on disk when a compiled BASIC program is executed, they are not however, needed when compil-
ing the BASIC program. The intrinsic files contain input/output routines and intrinsic functions provided by the
BASIC language. If the intrinsic files reside on a user pack the INTRINSIC.DIRECTORY control instruction must

be used to identify the user pack, otherwise, the intrinsics are assumed to reside on the system pack.
Example:

? EXECUTE program-name
? INTRINSIC.DIRECTORY dp-identifier
? END

Sample Compilation Deck

In the following example, a BASIC program is to be compiled to LIBRARY and the object program, EXAMPLE/
PROGRAM, is to be entered in the disk directory of a removable disk cartridge labeled BAS. In addition, the
BASIC compiler resides on the removable disk, BAS. A § card is enclosed to cause the compilation output listing
to be printed in a double-spaced format. The options CARD and LIST being default options are not required, but

are included on the § card for documentation purposes only.

2 COMPILE BAS/EXAMPLE/PROGRAM BAS/BASIC/LIBRARY
2 DATA CARDS

10 $ CARD LIST DOUBLE

20 INPUT X, Y, Z

30 PRINT “X="; X, “Y="; Y, “Z="; Z

40 END

2 END

In the next example the compiled program EXAMPLE/PROGRAM is ready for execution. The compiled program
as well as the BASIC intrinsic files and the BASIC interpreter reside on the removable disk pack labeled BAS. The

card file labeled INPUT is required during execution of this program.

? EXECUTE BAS/EXAMPLE/PROGRAM
? INTRINSIC.DIRECTORY = BAS
? INTERPRETER = BAS/BASIC/INTERP2

? END

? DATA INPUT
12, 32, 56

? END

Internal File Names

The BASIC Compiler’s internal file-identifiers and external file-identifiers for use in Label Equation are as follows:

Internal File-name External File-ID Description
CARDS CARDS Input file from the card reader.
LINE LINE Source output listing to the line printer.

BASIC Internal File Names
Figure 4-8

4-20

cut alo:.y4 dotted line

- T - e > > T D D A D e D W WL D T N 20 O

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS
REMARKS FORM

TITLE: B 1700 SYSTEMS FORM: 1068731

SYSTEM SOFTWARE DATE: 7-73

OPERATIONAL GUIDE

CHECK TYPE OF SUGGESTION:
[JADDITION []DELETION [_JREVISION [JERROR

GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION:

FROM: NAME DATE

TITLE
COMPANY
ADDRESS

STAPLE

FOLD DOWN SECOND

FOLD DOWN

Postage
Will Be Paid

by
Addressee

No

Postage Stamp
Necessary

I1f Mailed in the

United States

First Class Permit No. 817, Detroit, Mich. 48232

BUSINESS REPLY MAIL

attn: Systems Documentation
Technical Information Organization, TIC-Central

L]
.]
]
NG R
Burroughs Corporation AT
Burroughs Place e ——
Detroit, Michigan 48232 S ———
.]
NSRS R
RSO
NN
L]
FOLD UP

FOLD UP FIRST

T - - — - ——— - G} - G - - — T - = W . = - - — —— - = S B T W W D G G = . . - G —— - G - - - - - - ——— - - -
- - - - - -———

Business There's | Burroughs

1068731 .
Printed in U.S. America

