

INSTITUT FÜR INFORMATIK
UND PRAKTIISCHE MATHEMATIK
DER UNIVERSITÄT KIEL

Burroughs

B 6700

NETWORK DEFINITION LANGUAGE

INFORMATION MANUAL

THIS MANUAL REPLACES FORM NO. 5000078 DATED NOVEMBER 1970.

LIST OF EFFECTIVE PAGES

NOTE: Insert latest changed page;
dispose of superseded pages.

TOTAL NUMBER OF PAGES IN THIS MANUAL IS 146 CONSISTING OF THE FOLLOWING:

<u>Page No.</u>	<u>Issue</u>	<u>Page No.</u>	<u>Issue</u>
Title	Original		
List of Effective Pages ...	Original		
Table of Contents	Original		
Introduction	Original		
1-1 thru 1-5	Original		
1-6 Blank	Original		
2-1 thru 2-94	Original		
3-1 thru 3-17	Original		
3-18 Blank	Original		
A-1 thru A-3	Original		
A-4 Blank	Original		
B-1 thru B-15	Original		
B-16 Blank	Original		

COPYRIGHT © 1970, 1971 BURROUGHS CORPORATION

Burroughs Corporation believes the program described in this manual to be accurate and reliable, and much care has been taken in its preparation. However, the Corporation cannot accept any responsibility, financial or otherwise, for any consequences arising out of the use of this material. The information contained herein is subject to change. Revisions may be issued to advise of such changes and or additions.

B6700 NETWORK DEFINITION LANGUAGE

TABLE OF CONTENTS

PREFACE	PAGE	1
INTRODUCTION	PAGE	3
1. GENERAL INFORMATION		1- 1
1.1. LANGUAGE CHARACTERISTICS		1- 1
1.1.1. DESCRIPTION OF THE LANGUAGE		1- 1
1.1.2. TYPES OF DEFINITIONS		1- 2
1.1.3. STRUCTURE OF THE NETWORK DEFINITION LANGUAGE		1- 3
1.1.4. STATEMENT REQUIREMENTS AND DEFAULTS		1- 5
2. STRUCTURE OF THE LANGUAGE		2- 1
2.1. SYNTAX CONVENTIONS		2- 1
2.2. BASIC ELEMENTS		2- 3
2.3. SYNTAX AND SEMANTICS OF SECTIONS		2- 9
2.3.1. CONSTANT SECTION		2- 10
2.3.2. REQUEST SECTION		2- 12
2.3.3. MODEM SECTION		2- 44
2.3.4. TERMINAL SECTION		2- 48
2.3.5. STATION SECTION		2- 65
2.3.6. LINE SECTION		2- 77
2.3.7. DCP SECTION		2- 89
2.3.8. FILE SECTION		2- 92
3. USING THE NETWORK DEFINITION LANGUAGE PROCESSOR		3- 1
3.1. PREPARING PROGRAMS		3- 1
3.1.1. CONTROL CARDS AND FILES		3- 1
3.1.2. USING OPTIONS		3- 3
3.2. RESERVED WORDS		3- 5
3.3. DIAGNOSTIC MESSAGES		3- 7
APPENDIX		A- 1
INDEX OF METALINGUISTIC VARIABLES		B- 1

PREFACE

PURPOSE

THIS DOCUMENT IS INTENDED FOR SOMEONE WHO IS RESPONSIBLE FOR PLANNING AND INITIALIZING THE DATA COMMUNICATION NETWORK ON A B6700 INSTALLATION. THE PERSON SHOULD HAVE INFORMATION FOR THE DEVICES WHICH THE INSTALLATION INTENDS TO USE FOR REMOTE ENTRY TO THEIR SYSTEM, AND THE ORGANIZATION OF ACTIVITIES ON THAT SYSTEM.

**PREREQUISITE
INFORMATION**

BEFORE ATTEMPTING TO CREATE THE DEFINITION OF A NETWORK FOR AN INSTALLATION, THE INDIVIDUAL RESPONSIBLE FOR THIS MUST BE AWARE OF CERTAIN ELEMENTS, SUCH AS THE FOLLOWING:

CHARACTERISTICS OF TERMINAL DEVICES; WHAT HARDWARE WILL BE AVAILABLE FOR DATA COMMUNICATIONS, SUCH AS PERIPHERAL PROCESSORS, MODEMS AND ADAPTERS; WHAT APPLICATIONS THESE DEVICES HANDLE AND HOW TO RUN THEM EFFICIENTLY; WHAT SECURITY MEASURES ARE USED, AND HOW THEY ARE TO BE ENFORCED FOR THE REMOTE USERS.

**RELATED
PUBLICATIONS**

PREREQUISITE INFORMATION ABOUT THE B6700 AND ITS DATACOM CAPABILITY IS INCLUDED WITHIN THE FOLLOWING DOCUMENTS:

FUNCTIONAL DESCRIPTION OF THE B6700 DATA COMMUNICATION SYSTEM (DOCUMENT 5000060).

B6700 DATA COMMUNICATIONS ALGOL LANGUAGE (DOCUMENT 5000052).

OF THESE, DETAILED UNDERSTANDING OF THE FIRST IS CRUCIAL TO RELATING THE NETWORK DEFINITION LANGUAGE TO THE REMAINING SOFTWARE.

DOCUMENT

THE INTRODUCTION TO THIS DOCUMENT PROVIDES A DESCRIPTION OF THE PURPOSE AND STRUCTURE OF THE LANGUAGE. THIS IS FOLLOWED BY A SECTION-BY-SECTION PRESENTATION OF THE SYNTAX AND SEMANTICS, AND, IN SECTION 3, EXPLANATIONS AND EXAMPLES OF THE PROCEDURES USED TO RUN THE SYSTEM TO GENERATE THE TABLES AND DCP OPERATING SYSTEM(S). IN THE APPENDIX, A SET OF USEFUL TABLES ARE INCLUDED.

INTRODUCTION

A DATA COMMUNICATION NETWORK INCLUDES THE REMOTE DEVICES WHICH ARE ATTACHED TO A CENTRAL COMPUTER AND THE VARIOUS MEANS BY WHICH THESE ARE ATTACHED (I.E., LINES, ADAPTERS, MODEMS, DATA COMMUNICATIONS PROCESSORS). REMOTE DEVICES VARY IN HOW THEY COMMUNICATE WITH THE SYSTEM, AS DO THEIR MEANS OF COMMUNICATION. THE USE OF PARTICULAR COMPONENTS OF A NETWORK MAY VARY FROM INSTALLATION TO INSTALLATION. THIS REQUIRES THAT AN INTERFACE FOR THE REMOTE NETWORK AND THE CENTRAL SYSTEM BE FLEXIBLE, I.E., CAPABLE OF HANDLING A VARIETY OF VARYING ASPECTS OF THE NETWORK.

THE NETWORK DEFINITION LANGUAGE ALLOWS AN INSTALLATION TO TAILOR PORTIONS OF THE DATACOM INTERFACE TO THEIR OWN NETWORK AND TO VARY THAT INTERFACE EASILY AND QUICKLY. THE PROCESSES WHICH FORM THE INTERFACE FOR DATA COMMUNICATION ON A B6700 USE TABLES TO DETERMINE SOME CRITICAL FEATURES OF THE NETWORK. THESE "TABLE-DRIVEN" PROCESSES NEED NOT BE MODIFIED TO ADAPT THEM TO CHANGES IN THE NETWORK, BUT RATHER CHANGING THE CONTENT OF THE TABLES ACCOMPLISHES THIS. THE NETWORK DEFINITION LANGUAGE LETS THE INSTALLATION INITIALLY CREATE THESE TABLES, AND WHEN CRITICAL FEATURES VARY, CHANGE THEM EASILY.

IN ADDITION TO PROCESSES RUNNING ON THE B6700 FOR DATA COMMUNICATION, THE SYSTEM HAS A PROGRAMMABLE PERIPHERAL PROCESSOR FOR DATA COMMUNICATION CALLED THE "DCP" WHICH STANDS FOR "DATA COMMUNICATION PROCESSOR". THIS PROCESSOR REQUIRES AN OPERATING SYSTEM TAILORED TO THE INSTALLATIONS NETWORK TO OPERATE EFFICIENTLY.

THE NETWORK DEFINITION LANGUAGE PARTIALLY DETERMINES ACTUAL CODE FOR THE DCP. THIS RELIEVES THE USER OF PROGRAMMING IN SOMETHING LIKE AN ASSEMBLY LANGUAGE, OR OF HAVING TO LIMIT THE DCP TO A SET OF COMMONLY USED PACKAGED FUNCTIONS. AN APPROPRIATE OPERATING SYSTEM FOR THE DCP IS GENERATED VIA THE NETWORK DEFINITION LANGUAGE. IT WILL CONTAIN ONLY THE CODE NECESSARY FOR DEVICES ACTUALLY SPECIFIED (E.G. IF THERE WERE NO TC500 TERMINALS, IT NEED NOT ACCOMMODATE THEM.) AND IT MAY CONTAIN ROUTINES TO PERFORM COMBINATIONS OF ACTIVITIES WHICH WERE UNFORESEEABLE PRIOR TO A NEW TERMINAL ARRIVING.

1. GENERAL INFORMATION1.1. LANGUAGE CHARACTERISTICS1.1.1. DESCRIPTION OF THE LANGUAGE

THE NETWORK DEFINITION LANGUAGE IS NOT A PROGRAMMING LANGUAGE, BUT RATHER A DESCRIPTIVE LANGUAGE. RATHER THAN PRODUCING MACHINE-EXECUTABLE CODE DIRECTLY FROM THE STATEMENTS, TABLES ARE PRODUCED WHICH ARE USED BY THE SOFTWARE OF THE DATA COMMUNICATIONS SYSTEM. THE TABLES ARE SUMMARIES OF INFORMATION ABOUT THE VARIOUS ASPECTS OF THE REMOTE NETWORK. THIS ALSO MAKES A DIFFERENCE IN THE TYPES OF STATEMENTS IN THIS LANGUAGE. AS AN EXAMPLE OF DIFFERENCE BETWEEN A PROGRAMMING LANGUAGE AND A DESCRIPTIVE LANGUAGE, CONSIDER HANDLING A TERMINAL "ON-LINE" TO A B6700, WHICH SENDS CHARACTERS IN A CODE WHICH SHOULD BE TRANSLATED TO THE EBCDIC CHARACTER CODE FOR INTERNAL STORAGE (TO BE READ BY, FOR EXAMPLE, AN OBJECT JOB), THE PROGRAMMER WOULD SAY HOW THE CHARACTERS ARE TO BE TRANSLATED, SUCH AS "PROCEDURE TRANSLATE . . ." AND, THEN TELL HOW THIS IS TO BE DONE. ON THE OTHER HAND, IN A DESCRIPTIVE LANGUAGE LIKE THE NETWORK DEFINITION LANGUAGE, THE TERMINAL IS DESCRIBED AND ONE OF ITS CHARACTERISTICS IS ITS CHARACTER CODE, AND ITS DESCRIPTION INCLUDES A STATEMENT, "CODE = . . ." WHERE THE "PROGRAMMER" GIVES THE NAME OF THE TERMINAL CHARACTER CODE, LIKE BCD, BCL OR ONE OF MANY THAT ARE RECOGNIZED BY THE LANGUAGE PROCESSOR.

1.1.2. TYPES OF DEFINITIONS

THE NETWORK DEFINITION LANGUAGE (NDL) IS USED TO DESCRIBE THREE DIFFERENT ASPECTS OF THE REMOTE NETWORK

- A. THE LINE DISCIPLINE DEFINITION INCLUDES A SET OF SPECIFIED PROCEDURES CALLED "REQUESTS" WHICH INDICATE HOW TO COMMUNICATE WITH THE REMOTE NETWORK. PROCESSES ARE ENTERED AS INPUT AND/OR PRODUCED AS OUTPUT IN THE SELECTED FORMAT. BOTH INPUT AND/OR OUTPUT PROCESSES RETURN AN ENTRY IN THE RESULT QUEUE TO THE SYSTEM, OR SWITCH TO OTHER PROCESSES.
- B. THE PHYSICAL NETWORK DEFINITION PORTION OF THE NETWORK DEFINITION LANGUAGE IS USED TO DEFINE THE PHYSICAL NETWORK IN TERMS OF THE NUMBER OF DATA COMMUNICATIONS PROCESSORS ON THE SYSTEM, THE NUMBER OF LINES AND LINE ATTRIBUTES FOR EACH DCP, THE NUMBER OF STATIONS AND STATION ATTRIBUTES.
- C. FILE DEFINITIONS ALLOW SETS OF STATIONS TO BE GROUPED INTO THE LOGICAL ENTITIES FILES. FILE NAMES ARE USED BY OBJECT PROGRAMS TO IDENTIFY THE STATION OR SET OF STATIONS WITH WHICH THEY COMMUNICATE.

1.1.3. STRUCTURE OF THE NETWORK DEFINITION LANGUAGE

A DESCRIPTION IS THE ONLY MEANINGFUL CONSTRUCT IN THE NETWORK DEFINITION LANGUAGE. ANY CONSTRUCT OR SET OF CONSTRUCTS NOT SUBSUMED UNDER A DESCRIPTION IS SYNTACTICALLY DEVIANT (I.E. AN ERROR). A DESCRIPTION IS THE PHYSICAL AND LOGICAL SPECIFICATION OF A DATA COMMUNICATIONS NETWORK.

A NETWORK DESCRIPTION IS AN ORDERLY ARRANGEMENT OF A SERIES OF SECTIONS. THE TABLE BELOW ILLUSTRATES THE ORDER AND FUNCTIONS OF THE SECTIONS. THE CONSTANT SECTION IS OPTIONAL BUT PROVIDES THE USER WITH A WAY TO USE STRINGS OF CHARACTERS AND SPECIAL CHARACTERS (SUCH AS THE DATACOM CONTROL CHARACTERS LIKE STX, AND ETX). FOR WHICH NO EBCDIC GRAPHIC EXISTS. ANOTHER TYPE OF SECTION PROVIDED FOR PROGRAMMING CONVENIENCE IS THE DEFAULT, WHICH ALLOWS THE USER TO DEFINE COMMON SETS OF CHARACTERISTICS A SINGLE TIME PRECEDING THE SECTION IN WHICH THEY ARE TO BE USED.

WITHIN THE SECTIONS (OTHER THAN THE REQUEST SECTION) THE ORDER IN WHICH THE STATEMENTS ARE LISTED IS NOT SIGNIFICANT.

<u>NAME OF SECTION</u>	<u>FUNCTION</u>
CONSTANT	EQUATE NAMES WITH STRINGS FOR CONVENIENCE IN OTHER DESCRIPTIONS
REQUEST	DEFINE LINE DISCIPLINES USED FOR REMOTE DEVICES
MODEM	DESCRIBE MODEMS USED FOR LINES
TERMINAL	DESCRIBE PHYSICAL "HARDWARE" CHARACTERISTICS OF REMOTE DEVICES
STATION	DESCRIBE LOGICAL ASPECTS AND "FILE" ATTRIBUTES FOR SPECIFIED REMOTE DEVICES
LINE	SPECIFY TYPE OF LINE, ITS ADAPTER AND CONNECTED STATION(S)
DCP	SPECIFY MEMORY AND TRANSLATORS AVAILABLE ON DCP

FILE RELATED SETS OF STATIONS INCLUDED AS A FILE

THE LANGUAGE PROCESSOR WILL CHECK FOR CONTRADICTORY STATEMENTS AND/ OR MISSING STATEMENTS AT THE END OF EVERY SPECIFICATION. AFTER EACH TERMINAL, STATION, LINE, DCP, AND FILE DEFINITION HAS BEEN SCANNED, A SUMMARY OF THE ERRORS WILL BE PRINTED OUT IF THE SECTION IS ERRONEOUS OR INCOMPLETE.

1.1.4. STATEMENT REQUIREMENTS AND DEFAULTS

BECAUSE OF THE DIFFERENT CHARACTERISTICS OF VARIOUS REMOTE DEVICES, IT IS POSSIBLE FOR THE REQUIRED STATEMENTS IN A DESCRIPTION TO VARY FROM ONE DEFINITION TO ANOTHER. THIS UNUSUAL NATURE OF NDL CAN BE BRIEFLY SUMMARIZED BY MAKING THE FOLLOWING OBSERVATIONS ABOUT THE STATEMENTS MAKING UP A DESCRIPTION:

- A. SOME OF THE ATTRIBUTES DEFINED IN THE SYNTAX ARE REQUIRED.
- B. SOME OF THE ATTRIBUTES ARE DEPENDENT ON THE PRESENCE OF OTHER ATTRIBUTES.
- C. SOME OF THE ATTRIBUTES DEFINED IN THE SYNTAX ARE ENTIRELY OPTIONAL.

THE INTERDEPENDENCY OF THE VARIOUS ATTRIBUTES WILL BE POINTED OUT IN THE SEMANTICS OF EACH SECTION OF THE MANUAL.

DEFAULTS

THE NDL COMPILER AND DATA COMMUNICATIONS SYSTEM AS A WHOLE MAKE NO ASSUMPTIONS FOR ANY PART OF A NETWORK. THE DEFAULT LISTS WHICH WILL BE DEFINED IN THE SYNTAX THROUGHOUT THIS MANUAL PROVIDE THE USER WITH A CONVENIENT METHOD OF GROUPING UNDER ONE OR MORE IDENTIFIERS, SETS OF ATTRIBUTES FOR TERMINALS, STATIONS, LINES, AND FILES.

THE COMPILER WILL NOT CHECK FOR CONTRADICTORY STATEMENTS WITHIN A DEFAULT DEFINITION. THE ATTRIBUTES SPECIFIED WITHIN A DESCRIPTION ALWAYS OVERRIDE THOSE LISTED IN A DEFAULT DEFINITION WHENEVER CONFLICTS ARISE.

2. STRUCTURE OF THE LANGUAGE

2.1. SYNTAX CONVENTIONS

THIS SECTION DISCUSSES THE BACKUS-NAUR FORM (BNF) USED TO DESCRIBE THE SYNTAX OF THE NETWORK DEFINITION LANGUAGE

METALINGUISTIC SYMBOLS

THE FOLLOWING METALINGUISTIC SYMBOLS WILL BE USED IN THIS DOCUMENT:

- < > LEFT AND RIGHT BROKEN BRACKETS ARE USED TO CONTAIN ONE OR MORE DIGITS AND/OR LETTERS REPRESENTING A METALINGUISTIC VARIABLE WHOSE DEFINITION IS GIVEN BY A METALINGUISTIC FORMULA.
- ::= THE SYMBOL "::=" MEANS "IS DEFINED AS". THE METALINGUISTIC VARIABLE TO THE LEFT OF THIS SYMBOL IS DEFINED BY THE METALINGUISTIC FORMULA ON ITS RIGHT.
- / THE SYMBOL "/" MEANS "OR". IT SEPARATES ALTERNATIVE DEFINITIONS OF A METALINGUISTIC VARIABLE.
- ≤≥ THE "≤" AND "≥" SYMBOLS ARE USED TO ENCLOSE ENGLISH LANGUAGE EXPRESSIONS WHEN SUCH EXPRESSIONS ARE NECESSARY TO DEFINE A METALINGUISTIC VARIABLE.

METALINGUISTIC FORMULAS

METALINGUISTIC SYMBOLS ARE USED IN FORMING A METALINGUISTIC FORMULA. A METALINGUISTIC FORMULA IS A RULE WHICH WILL PRODUCE AN ALLOWABLE SEQUENCE OF CHARACTERS AND/OR SYMBOLS. THESE FORMULAS ARE USED TO DEFINE THE SYNTAX OF THE B6700 NETWORK DEFINITION LANGUAGE. THE SYNTAX, COMBINED WITH THE SEMANTICS, CONTAINED IN THIS MANUAL DEFINES THE B6700 NETWORK DEFINITION LANGUAGE.

ANY MARK OR SYMBOL IN A METALINGUISTIC FORMULA WHICH IS NOT ONE OF THE METALINGUISTIC SYMBOLS, IS EQUIVALENT TO ITSELF. THE JUXTAPOSITION OF THE METALINGUISTIC VARIABLES AND/OR SYMBOLS IN A METALINGUISTIC FORMULA DENOTES THE JUXTAPOSITION OF THOSE ELEMENTS IN THE CONSTRUCT INDICATED.

AN EXAMPLE OF A METALINGUISTIC FORMULA IS:

```
<IDENTIFIER> ::= <LETTER> / <IDENTIFIER> <LETTER> /  
<IDENTIFIER> <DIGIT>
```

THIS METALINGUISTIC FORMULA IS READ:

AN IDENTIFIER IS DEFINED AS A LETTER, OR AN IDENTIFIER FOLLOWED BY A LETTER, OR AN IDENTIFIER FOLLOWED BY A DIGIT.

THE METALINGUISTIC FORMULA ABOVE DEFINES A RECURSIVE RELATIONSHIP BY WHICH A CONSTRUCT CALLED AN IDENTIFIER MAY BE FORMED. THAT IS, EVALUATION OF THE FORMULA SHOWS THAT AN IDENTIFIER BEGINS WITH A LETTER. THE LETTER MAY STAND ALONE, OR MAY BE FOLLOWED BY ANY SEQUENCE OF LETTERS AND DIGITS.

2.2. BASIC ELEMENTSCHARACTER SET

THE CHARACTER SET FOR WHICH THE LANGUAGE IS DEFINED IS DRAWN FROM THE EXTENDED BINARY CODED DECIMAL INTERCHANGE CODE (EBCDIC) CHARACTER SET.

SYNTAX

```
<LETTER> ::= A / B / C / D / E / F / G / H / I / J / K / L / M /  
          N / O / P / Q / R / S / T / U / V / W / X / Y / Z  
<DIGIT> ::= 0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9  
<SPECIAL CHARACTER> ::= . / , / ≤ / ≥ / ( / ) / + / - /  
          <SLASH> / < / > / = / * / : / ? / " / ;  
<SLASH> ::= /  
<STRING CHARACTER> ::= <LETTER> / <DIGIT> / <SPECIAL CHARACTER> /  
          <SINGLE SPACE>  
<SINGLE SPACE> ::= [ONE HORIZONTAL BLANK POSITION ]  
<SPACE> ::= <SINGLE SPACE> / <SPACE> <SINGLE SPACE>  
<CHARACTER> ::= <STRING CHARACTER> / <STRING BRACKET CHARACTER>  
<STRING BRACKET CHARACTER> ::= "
```

SEMANTICS

THE CHARACTER SET FOR NDL IS A 52 CHARACTER SUBSET OF THE EBCDIC CHARACTER SET CONTAINING LETTERS, DIGITS, SPECIAL CHARACTERS, AND THE SPACE.

BASIC SYMBOLSSYNTAX

```
<BASIC SYMBOL> ::= <LETTER> / <DIGIT> / <LOGICAL VALUE> /  
    <DELIMITER> / <EMPTY>  
<DELIMITER> ::= <OPERATOR> / <SEPARATOR> / <BRACKET> / CONSTANT /  
    REQUEST / MODEM / TERMINAL DEFAULT / TERMINAL /  
    STATION DEFAULT / STATION / LINE DEFAULT / LINE / DCP /  
    FILE DEFAULT / FILE  
<EMPTY> ::= THE NULL STRING OF SYMBOLS  
<OPERATOR> ::= <ADD OPERATOR> / <RELATIONAL OPERATOR> /  
    <SEQUENTIAL OPERATOR> / <ASSIGNMENT OPERATOR>  
<ADD OPERATOR> ::= + / -  
<RELATIONAL OPERATOR> ::= GT / GE / LS / LE / NE / EQ / < / > / =  
<SEQUENTIAL OPERATOR> ::= GO / GO TO / IF / THEN / ELSE  
<ASSIGNMENT OPERATOR> ::= =  
<SEPARATOR> ::= , / . / : / <SPACE>  
<BRACKET> ::= ( / ) / ≤ / ≥ / " / BEGIN / END
```

SEMANTICS

ONLY UPPER-CASE LETTERS ARE PERMITTED. DELIMITERS SEPARATE THE VARIOUS ENTITIES THAT MAKE UP A NETWORK DEFINITION.

EACH DELIMITER HAS A FIXED MEANING WHICH IS EXPLAINED IN THIS DOCUMENT IN THE SYNTAX AND SEMANTICS OF THE APPROPRIATE CONSTRUCTS.

A <SPACE> MUST SEPARATE ANY TWO OF THE FOLLOWING:

- MULTICHARACTER DELIMITER
- LOGICAL VALUE
- IDENTIFIER
- INTEGER
- GENERALIZED IDENTIFIER

BASIC COMPONENTSSYNTAX

```
<BASIC COMPONENT> ::= <IDENTIFIER> / <GENERALIZED IDENTIFIER> /  
<INTEGER> / <STRING> / <LOGICAL VALUE> / <TIME>
```

SEMANTICS

BASIC COMPONENTS ARE THE MOST PRIMITIVE STRUCTURES OF THE LANGUAGE.

IDENTIFIERSSYNTAX

```
<IDENTIFIER> ::= <LETTER> / <IDENTIFIER> <LETTER> /  
<IDENTIFIER> <DIGIT>
```

SEMANTICS

IDENTIFIERS HAVE NO INTRINSIC MEANING. IDENTIFIERS ARE USED TO NAME LABELS, CONSTANTS, REQUESTS, TERMINALS, AND LINES.

THE MAXIMUM LENGTH OF AN IDENTIFIER IS 17 CHARACTERS. SPACES MAY NOT APPEAR AS PART OF AN IDENTIFIER.

GENERALIZED IDENTIFIERSSYNTAX

```
<GENERALIZED IDENTIFIER> ::= <IDENTIFIER COMPONENT> /
```

```
<GENERALIZED IDENTIFIER> <SLASH> <IDENTIFIER COMPONENT>
<IDENTIFIER COMPONENT> ::= <IDENTIFIER> / <STRING>
```

SEMANTICS

A <GENERALIZED IDENTIFIER> IS USED TO NAME A STATION OR A FILE. A <GENERALIZED IDENTIFIER> MAY CONTAIN A MAXIMUM OF 14 <IDENTIFIER COMPONENT>S SEPARATED BY SLASHES. A <STRING> USED AS AN <IDENTIFIER COMPONENT> MUST BE LESS THAN OR EQUAL TO 17 CHARACTERS.

INTEGERS

SYNTAX

```
<INTEGER> ::= <DIGIT> / <INTEGER> <DIGIT>
```

SEMANTICS

ONLY POSITIVE INTEGERS ARE ALLOWED IN NDL. SPACES MAY NOT APPEAR WITHIN AN INTEGER.

STRINGSSYNTAX

```
<STRING> ::= <SIMPLE STRING> / <UNITARY STRING> / <STRING> <STRING>
<SIMPLE STRING> ::= <HEXADECIMAL STRING> / <EBCDIC STRING>
<HEXADECIMAL STRING> ::= 4<HEXADECIMAL CHARACTER CONCATENATION>
<HEXADECIMAL CHARACTER CONCATENATION> ::= <HEXADECIMAL CHARACTER>/
    <HEXADECIMAL CHARACTER CONCATENATION> <HEXADECIMAL CHARACTER>
<EBCDIC STRING> ::= "<EBCDIC CHARACTER CONCATENATION>"
<EBCDIC CHARACTER CONCATENATION> ::= <EBCDIC CHARACTER> /
    <EBCDIC CHARACTER CONCATENATION> <EBCDIC CHARACTER>
<UNITARY STRING> ::= 4<HEXADECIMAL CHARACTER>
    <HEXADECIMAL CHARACTER> / "<EBCDIC CHARACTER>"
<HEXADECIMAL CHARACTER> ::= 0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 /
    9 / A / B / C / D / E / F
<EBCDIC CHARACTER> ::= <STRING CHARACTER>
```

SEMANTICS

ONLY HEXADECIMAL (4-BIT) OR EBCDIC (8-BIT) STRINGS MAY BE DEFINED.

THE MAXIMUM LENGTH OF A STRING IS 64 CHARACTERS. THE LENGTH OF A <STRING> IS THE MAXIMUM NUMBER OF 8-BIT CHARACTERS REQUIRED TO HOLD THE <STRING>. IF CONCATENATION IS USED AND DIFFERENT CHARACTER SIZES ARE USED, EACH CHARACTER IN A <STRING> MUST BE ALIGNED AT A CHARACTER BOUNDARY APPROPRIATE FOR THAT CHARACTER SIZE.

A SIMPLE <HEXADECIMAL STRING> MUST CONSIST OF AN EVEN NUMBER OF HEXADECIMAL CHARACTERS. THUS, ALL STRINGS ARE EBCDIC STRINGS. (THE DATACOM SYSTEM IS INTERNALLY EBCDIC. WHERE APPROPRIATE ALL CHARACTERS ARE TRANSLATED, AS FOR EXAMPLE, WHEN TRANSMITTING TO A NON-EBCDIC DEVICE.)

STRINGS CONTAINING INTERNAL QUOTES MUST BE BROKEN INTO SEPARATE <STRINGS> CONTAINING THREE QUOTES IN SUCCESSION.

LOGICAL VALUES

SYNTAX

<LOGICAL VALUE> ::= TRUE / FALSE

SEMANTICS

A LOGICAL VALUE CONSISTS OF THE TWO POSSIBLE CONDITIONS THAT A BOOLEAN MAY ASSUME

TIME

SYNTAX

<TIME> ::= <INTEGER> <UNIT> / 0
<UNIT> ::= MICRO / MILLI / SEC / MIN

SEMANTICS

INTERVALS OF TIME MAY BE EXPRESSED IN MICROSECONDS, MILLISECONDS, SECONDS AND MINUTES BY "MICRO", "MILLI", "SEC", AND "MIN" RESPECTIVELY.

2.3. SYNTAX AND SEMANTICS OF SECTIONSSYNTAX

```
<NETWORK DESCRIPTION> ::= <CONSTANT SECTION> <REQUEST SECTION>
    <MODEM SECTION> <TERMINAL SECTION> <STATION SECTION>
    <LINE SECTION> <DCP SECTION> <FILE SECTION>
```

SEMANTICS

THE SECTION-BY-SECTION EXPLICATION FOLLOWING IS ORDERED BY THE ORDER IN WHICH SECTIONS MUST APPEAR.

THE VARIOUS PARTS OF A <NETWORK DESCRIPTION> AS LISTED ABOVE WILL BE DEFINED BOTH SEMANTICALLY AND SYNTACTICALLY IN SUBSEQUENT SECTIONS OF THIS GUIDE.

2.3.1. CONSTANT SECTION

SYNTAX

```
<CONSTANT SECTION> ::= <CONSTANT LIST> / <EMPTY>
<CONSTANT LIST> ::= CONSTANT <CONSTANT DEFINITION LIST>. / 
    <CONSTANT LIST> <CONSTANT LIST>
<CONSTANT DEFINITION LIST> ::= <CONSTANT DEFINITION> / 
    <CONSTANT DEFINITION LIST> , <CONSTANT DEFINITION>
<CONSTANT DEFINITION> ::= <CONSTANT IDENTIFIER> = <STRING>
<CONSTANT IDENTIFIER> ::= <IDENTIFIER>
```

SEMANTICS

THE <CONSTANT LIST> PROVIDES A MEANS FOR EQUATING IDENTIFIERS WITH <STRING>S. THE <CONSTANT IDENTIFIER> IN A <CONSTANT DEFINITION> IS EQUATED WITH THE <STRING> IN THE <CONSTANT DEFINITION>.

THE OCCURRENCE OF A <CONSTANT IDENTIFIER> OUTSIDE OF A <CONSTANT DEFINITION> IS SYNTACTICALLY AND SEMANTICALLY EQUIVALENT TO THE OCCURRENCE OF THE <STRING> NAMED BY THE <CONSTANT IDENTIFIER>.

EXAMPLES OF CONSTANTS

I. VALID

```
CONSTANT NUL = 4"00",
    BAD1 = "ERROR",
    RETRANSMITREQUEST = "PLEASE SEND AGAIN".
CONSTANT QUOTE = "".
```

II. INVALID

CONSTANT 12KANGAROO =	x IDENTIFIER MUST BEGIN WITH LETTER.
12.	x NOT A STRING.
CONSTANT CLEAR =	x RESERVED WORD MAY NOT
40"000".	x BE USED AS CONSTANT
	x MALFORMED STRING.

(PERCENT SIGN (%) ALLOWS COMMENTS TO BE INCLUDED WITH NDL STATEMENTS BECAUSE THE COMPILER WILL IGNORE REMAINING COLUMNS UP TO SEQUENCE STATEMENTS WHEN THE COMPILER ENCOUNTERS A PERCENT SIGN NOT IN A STRING, SO "CONSTANT PERCENT = "% . " WILL GIVE THE USER A CONSTANT WHOSE VALUE IS A PERCENT SIGN (%).)

2.3.2. REQUEST SECTIONSYNTAX

```
<REQUEST SECTION> ::= <REQUEST LIST>
<REQUEST LIST> ::= <REQUEST DEFINITION> /
    <REQUEST LIST> <REQUEST DEFINITION>
<REQUEST DEFINITION> ::= REQUEST
    <REQUEST IDENTIFIER> : <REQUEST STATEMENT LIST>
<REQUEST IDENTIFIER> ::= <IDENTIFIER>
<REQUEST STATEMENT LIST> ::= <REQUEST STATEMENT> . /
    <REQUEST STATEMENT LIST> <REQUEST STATEMENT> ./ <EMPTY>
```

SEMANTICS

THE REQUEST SECTION CONSISTS OF A SIMPLIFIED PROGRAMMATIC LANGUAGE USED TO DEFINE THE LINE DISCIPLINE ROUTINES USED BY THE DCP IN COMMUNICATING WITH THE VARIOUS REMOTE DEVICES.

A REQUEST MUST BE DEFINED FOR EACH CAPABILITY OF A TERMINAL. THAT IS, IF IT IS POSSIBLE FOR A TERMINAL TO SEND INPUT TO THE SYSTEM AND RECEIVE OUTPUT FROM THE SYSTEM THEN BOTH A RECEIVE AND TRANSMIT REQUEST MUST BE DEFINED FOR THAT TERMINAL. THE <REQUEST IDENTIFIER> TO BE USED FOR EACH OF THESE CONDITIONS IS DEFINED THROUGH THE USE OF THE <TERMINAL REQUEST STATEMENT> AS DISCUSSED IN THE TERMINAL DESCRIPTION SECTION OF THIS MANUAL.

THE DCP INITIATES THESE REQUESTS AS DEFINED IN NDL UPON COMMAND FROM THE VARIOUS PARTS OF THE DATA COMMUNICATIONS SYSTEM. FOR INSTANCE, IF IT IS NECESSARY FOR AN OBJECT PROGRAM TO OUTPUT A MESSAGE TO A TC500 TERMINAL, THE SYSTEM FIRST INFORMS THE DCP AS TO WHICH STATION THE MESSAGE IS TO GO TO, THEN THE DCP SELECTS THE TRANSMIT REQUEST AS SPECIFIED IN THE NETWORK DEFINITION FOR THE DESIRED STATION, AND EXECUTES THE SERIES OF COMMANDS AS DESCRIBED

IN THE <REQUEST DEFINITION>. A SIMILAR SERIES OF EVENTS TAKES PLACE WHEN A STATION WISHES TO SEND A MESSAGE TO THE SYSTEM.

REQUEST STATEMENTS

SYNTAX

<REQUEST STATEMENT> ::= <Labeled REQUEST STATEMENT> /
<UNLabeled REQUEST STATEMENT>

Labeled REQUEST STATEMENTS

SYNTAX

<Labeled REQUEST STATEMENT> ::= <LABEL> :
<UNLabeled REQUEST STATEMENT>
<LABEL> ::= <INTEGER>

SEMANTICS

STATEMENTS IN THE REQUEST SECTION ARE EXECUTED SEQUENTIALLY AS LISTED. IN SOME CASES, HOWEVER, IT IS DESIRABLE TO ALTER THE ORDER OF EXECUTION OF STATEMENTS. THE <Labeled REQUEST STATEMENT> IS ONE MEANS OF ACCOMPLISHING THIS ACTION. THE MAXIMUM LENGTH OF A LABEL IS 5 DIGITS. THE <LABEL> MUST BE FOLLOWED BY A COLON TO SEPARATE IT FROM THE SUBSEQUENT <REQUEST STATEMENT>. THE <GO TO STATEMENT> IS USED TO UNCONDITIONALLY TRANSFER CONTROL TO A <Labeled REQUEST STATEMENT>. (<SYNTAX IS GIVEN WITH <UNCONDITIONAL REQUEST STATEMENT>).

UNLABELED REQUEST STATEMENTSSYNTAX

```
<UNLABELED REQUEST STATEMENT> ::= <COMPOUND REQUEST STATEMENT> /  
<CONDITIONAL REQUEST STATEMENT> /  
<UNCONDITIONAL REQUEST STATEMENT>
```

COMPOUND REQUEST STATEMENTSSYNTAX

```
<COMPOUND REQUEST STATEMENT> ::= BEGIN <COMPOUND TAIL>  
<COMPOUND TAIL> ::= <REQUEST STATEMENT> END /  
    <REQUEST STATEMENT>. END / <REQUEST STATEMENT>.  
    <COMPOUND TAIL>
```

SEMANTICS

TO EXECUTE ONE OR MORE <REQUEST STATEMENT>S WHEN A CERTAIN CONDITION IS SATISFIED A <COMPOUND REQUEST STATEMENT> MUST BE USED. A <COMPOUND REQUEST STATEMENT> IS A SERIES OF <REQUEST STATEMENT>S PRECEDED BY A BEGIN AND FOLLOWED BY AN END. THE STATEMENTS COMPRISING A <COMPOUND REQUEST STATEMENT> MAY BE <LABELED REQUEST STATEMENT>S, <UNLABELED REQUEST STATEMENT>S, OR OTHER <COMPOUND REQUEST STATEMENT>S. EACH <REQUEST STATEMENT> MUST BE FOLLOWED BY A PERIOD EXCEPT FOR THE LAST STATEMENT PRECEDING THE END DELIMITER, IN WHICH CASE THE PERIOD IS OPTIONAL.

EXAMPLE: IF BUFOVFL THEN
 BEGIN
 STORE "LOST DATA-RETRANSMIT".
 GO TO 1
 END.

CONDITIONAL REQUEST STATEMENTSSYNTAX

```
<CONDITIONAL REQUEST STATEMENT> ::= IF <LOGICAL EXPRESSION> THEN
    <REQUEST STATEMENT> <ELSE PART>
<LOGICAL EXPRESSION> ::= <TOGGLE> / <RELATIONAL EXPRESSION> / \
    <LOGICAL VALUE>
<ELSE PART> ::= ELSE <REQUEST STATEMENT> / <EMPTY>
```

SEMANTICS

THE <CONDITIONAL REQUEST STATEMENT> OFFERS A MEANS BY WHICH PROGRAM CONTROL MAY BE "CONDITIONALLY" ALTERED DEPENDING ON PROGRAMMATIC CHECKS SPECIFIED BY THE USER. THE <LOGICAL EXPRESSION> SYNTAX PROVIDES FOR A VARIETY OF CHECKS WHICH MAY BE DONE BY THE USER, EACH OF WHICH IS DISCUSSED BELOW. NOTE: THE "THEN" MUST BE FOLLOWED BY A <REQUEST STATEMENT>. ("IF <TOGGLE> THEN ELSE <REQUEST STATEMENT>" IS NOT ALLOWED).

TOGGLERSSYNTAX

```
<TOGGLE> ::= <USER TOGGLE> / <ERROR FLAG> / <VARIANT TOGGLE> / \
    <STATUS TOGGLE>
```

SEMANTICS

TOGGLE CAN ASSUME THE VALUE OF TRUE OR FALSE ONLY.

USER TOGGLSSYNTAX

```
<USER TOGGLE> ::= TOG [<TOGGLE NUMBER>] / NAKONSELECT /
    CONTROLFLAG / WRUFLAG / NAKFLAG
<TOGGLE NUMBER> ::= 0 / 1 / 2 / 3 / 4 / 5 / 6 / 7
```

SEMANTICS

IN THE HEADER OF EACH MESSAGE EIGHT (8) BITS HAVE BEEN RESERVED FOR <USER TOGGLE>S TOG[0] THROUGH TOG[7]. THE PROGRAMMER MAY USE THESE TOGGLS IN AN NDL REQUEST AS SUPPLEMENTARY FLAGS. NAKONSELECT IS A TOGGLE PRESERVED IN THE ERROR FLAG FIELD OF A STANDARD MESSAGE CONNOTING THAT A "NAK" (NEGATIVE ACKNOWLEDGE) TO A SELECT WAS RECEIVED. THIS FLAG IS SET EITHER BY THE USER EXPLICITLY OR BY A TERMINATE ENABLEINPUT. THE CONTROL FLAG AND WRU FLAG ARE SET AUTOMATICALLY WHEN THE APPROPRIATE <TEXT CONTROL CHARACTER>S ARE IN A <RECEIVE ACTION PART> AND THE CHARACTERS ARE ENCOUNTERED. THE NAKFLAG IS INTENDED TO BE USED TO FLAG THE CONDITION WHEN TRANSMISSION OF THE TEXT WAS "NAK"ED; THIS FLAG IS NEVER IMPLICITLY SET BUT CAN BE USED TO NOTE AN ERROR OF SORTS. ALL <TOGGLS> MAY BE SET AND TESTED INDEPENDENTLY.

ERROR FLAGSSYNTAX

```
<ERROR FLAG> ::= <RECEIVE ERROR FLAG> / <TRANSMIT ERROR FLAG> /
    <ITEM ERROR FLAG> / BREAK[RECEIVE] /
    BREAK[TRANSMIT] / SEQERR
<RECEIVE ERROR FLAG> ::= PARITY / STOPBIT / BUFOVFL /
    TIMEOUT / BREAK / LOSSOFCARRIER
<TRANSMIT ERROR FLAG> ::= BREAK
```

<ITEM ERROR FLAG> ::= BCCERR / ADDERR / TRANERR / FORMATERR /
ENDOFBUFFER / BLKNERR

SEMANTICS

PARITY	AS ITS NAME IMPLIES, PARITY IS SET WHEN A PARITY ERROR IS DETECTED BY THE DCP WHILE RECEIVING A MESSAGE, BUT ONLY IF PARITY HAS BEEN DEFINED BY A <PARITY STATEMENT> IN THE TERMINAL DESCRIPTION FOR THE STATION.
BCCERR	IS SET IF THE BLOCK CHECK CHARACTER (BCC) COMPUTED BY THE DCP IS NOT EQUIVALENT TO THE BCC RECEIVED FROM A STATION. THE PARITY OF THE BCC IS DEFINED IN THE <PARITY STATEMENT> OF THE TERMINAL DESCRIPTION ASSOCIATED WITH A STATION.
ADDERR	IS SET ON INPUT FROM A STATION WHEN AN ERROR IN THE STATION ADDRESS IS DETECTED. THE SIZE AND VALUE OF THE STATION ADDRESS AS DEFINED IN THE <TERMINAL DESCRIPTION> AND <STATION ATTRIBUTE LIST> ALLOW THE DCP TO CHECK THE CORRECT VALUE AGAINST THAT WHICH IS RECEIVED.
TRANERR	IS SET ON INPUT FROM A STATION IF THE TRANSMISSION NUMBER RECEIVED IS NOT ONE GREATER THAN THE NUMBER OF THE PREVIOUSLY RECEIVED MESSAGE FROM THE SAME STATION.
STOPBIT	WILL BE SET, IF THE DCP IS EXPECTING TO RECEIVE A STOPBIT ON AN ASYNCHRONOUS LINE AS THE NEXT INPUT ON THAT LINE AND DUE TO PARITY OR NOISE THE STOPBIT IS NOT RECOGNIZED BY THE DCP.

BUFOVFL IS SET IF THE DCP WAS UNABLE TO SERVICE THE "CLUSTER ATTENTION NEEDED" (CAN) INTERRUPT BEFORE THE NEXT CHARACTER WAS RECEIVED ON THE LINE, DESTROYING THE PREVIOUS CHARACTER.

ENDOFBUFFER MAY BE SET BY TWO CONDITIONS. IN THE CASE OF A RECEIVE REQUEST, THERE IS NO TEXT BUFFER RECEIVED BY THE DCP FROM THE SYSTEM. THUS, AN ENDOFBUFFER CONDITION EXISTS WHEN THE NUMBER OF CHARACTERS STORED IN THE BUFFER OBTAINED BY THE DCP BY IMPLICIT OR EXPLICIT STORE COMMANDS (E.G., STORE "GEORGE...") AND RECEIVE TEXT, EXCEEDS THE MAXIMUM ALLOWED AS SPECIFIED BY EITHER A MAXIMUM INPUT OR BUFFER STATEMENT IN THE TERMINAL DESCRIPTION. FOR A TRANSMIT REQUEST, A TEXT BUFFER CONTAINING THE TEXT TO BE TRANSMITTED IS PRESENTED TO THE DCP BY THE SYSTEM. AN ENDOFBUFFER CONDITION OCCURS WHEN THE NUMBER OF IMPLICITY OR EXPLICITY FETCHED CHARACTERS EXCEEDS THE NUMBER ACTUALLY IN THE BUFFER.

FORMATERR IS SET IF AN NDL REQUEST USES THE RECEIVE <STRING> OPTION TO INPUT DATA TO THE DCP, AND THE CHARACTERS RECEIVED DO NOT CORRESPOND TO THE <STRING> SPECIFIED.

TIMEOUT IS SET IF A CHARACTER IS NOT RECEIVED FROM A STATION WITHIN THE TIME SPECIFIED IN THE <TIMEOUT STATEMENT> OF THE TERMINAL DESCRIPTION FOR A STATION; I.E. MAXIMUM TIME BETWEEN INPUT CHARACTERS.

BREAK IS SET IF A BREAK WAS RECEIVED BY THE DCP.

BREAK[RECEIVE]	REFERS TO "BREAK ON INPUT" AND MUST BE USED EXCEPT WHEN IN RECEIVE ACTION LISTS.
BREAK[TRANSMIT]	REFERS TO "BREAK ON OUTPUT" AND MUST BE USED EXCEPT WHEN IN TRANSMIT ACTION LISTS.
SEQERR	IS SET WHEN AN INCREMENT SEQUENCE STATEMENT CAUSES A SEQUENCE NUMBER LARGER THAN ALLOWED.
LOSSOFCARRIER	IS SET UPON "LOSS OF CARRIER".
BLKNERR	IS SET IF THE RECEIVED BLOCK NUMBER DOES MATCH THE ONE SAVED BY THE DCP.

IN ALL CASES, THE ACTION TO BE TAKEN BY THE DCP WHEN A <TOGGLE> HAS BEEN SET MUST BE SPECIFIED BY THE USER. IN ALL CASES THE ASSOCIATED ERROR FLAG WILL BE SET ON THE OCCURRENCE OF THAT ERROR.

VARIANT TOGGLS

SYNTAX

<VARIANT TOGGLE> ::= PAGE / SKIPLINES / CARRIAGE /
LINEFEED / BLOCK / PAPERMOV

SEMANTICS

PAGE, WHEN SET, INDICATES PAGE FORMAT CONTROL IS TO BE DONE.

SKIPLINES INDICATES THAT LINES ARE TO BE SKIPPED. (THE METHOD OF INDICATING HOW MANY IS TO BE SPECIFIED).

CARRIAGE IS SET TO INDICATE THAT A CARRIAGE RETURN FORMAT

SHOULD BE BE DONE.

LINEFEED INDICATES THAT LINEFEED FORMAT CONTROL BE SENT.

BLOCK WILL BE SET WHEN THE TEXT CONSISTS OF MORE THAN ONE MESSAGE.

PAPERMOVEMENT, WHEN SET, INDICATES THAT A NEW LINE SHOULD BE STARTED BEFORE A LINE IS TRANSMITTED.

STATUS TOGGLE

SYNTAX

<STATUS TOGGLE> ::= SEQUENCE

SEMANTICS

TO BE SPECIFIED

RELATIONAL EXPRESSIONS

SYNTAX

<RELATIONAL EXPRESSION> ::= <VALUE> <RELATIONAL OPERATOR> <VALUE>
<VALUE> ::= <BYTE VARIABLE> / <UNITARY STRING> / <INTEGER>
<BYTE VARIABLE> ::= <CHARACTER REGISTER> / <USER TALLY> / <RETRY> /
<BCC>

SEMANTICS

<RELATIONAL EXPRESSION> PROVIDES A MEANS OF COMPARING THE RELATIONSHIPS BETWEEN THE MEMBERS OF A SET OF **<VALUE>**S. AS THE DCP USES MODULO 256 ARITHMETIC THE INTEGER **<VALUE>** IS TAKEN MODULO 256.

CHARACTER REGISTERSYNTAX

<CHARACTER REGISTER> ::= CHARACTER / CHAR

SEMANTICS

"CHAR" AND "CHARACTER" DENOTE THE SAME THING -- THEY ARE SYNONYMS. THE CONTENTS OF THE **<CHARACTER REGISTER>** MAY ONLY BE TESTED FOR A SINGLE **<VALUE>** AT A TIME. THE REGISTER IS LOADED BY AN INSTRUCTION SUCH AS THE FOLLOWING:

RECEIVE CHAR.
RECEIVE TEXT.
RECEIVE.

THE CHARACTER REGISTER CONTAINS THE LAST CHARACTER RECEIVED OR TRANSMITTED IN MOST CASES. THUS, UPON THE SUCCESSFUL COMPLETION OF RECEIVE TEXT, THE CHARACTER REGISTER CONTAINS THE LAST TEXT CHARACTER RECEIVED. SIMILARLY, UPON SUCCESSFUL COMPLETION OF TRANSMIT TEXT, THE CHARACTER REGISTER CONTAINS THE LAST CHARACTER OF TEXT. THESE GENERAL RULES ARE OVERRIDDEN IN TWO CASES. A FETCH STATEMENT CAUSES THE CHARACTER REGISTER TO BE FILLED WITH THE NEXT CHARACTER OF THE TEXT BUFFER NOT ALREADY Fetched EXPLICITLY BY A FETCH STATEMENT OR IMPLICITLY BY A TRANSMIT TEXT CONSTRUCT. ALSO AN EXPLICIT ASSIGNMENT STATEMENT SUCH AS CHARACTER = "S" WILL CAUSE A CHANGE IN THE CONTENTS OF THE CHARACTER REGISTER (IN ACCORDANCE

WITH THE RULES OF ASSIGNMENT).

USER TALLYS

SYNTAX

```
<USER TALLY> ::= TALLY [<TALLY NUMBER>]  
<TALLY NUMBER> ::= 0 / 1 / 2
```

SEMANTICS

<USER TALLY> PROVIDES THE USER WITH THREE SEPARATE BYTES IN THE MESSAGE HEADER WHICH MAY BE INDIVIDUALLY UTILIZED IN ANY MANNER DESIRED. THE MAXIMUM DECIMAL VALUE WHICH MAY BE STORED IN THESE <TALLY>S IS 255. IF A NUMBER IS ASSIGNED TO A <TALLY> WHICH EXCEEDS 255, THE NUMBER WILL BE TRUNCATED ON THE LEFT BEFORE STORING. THE BYTES ARE REFERENCED BY A <TALLY NUMBER> CORRESPONDING TO THE THREE SEPARATE BYTES.

RETRY

SYNTAX

```
<RETRY> ::= RETRY
```

SEMANTICS

<RETRY> IS INITIALLY SET BY THE USER. THE MAXIMUM VALUE WHICH MAY BE SPECIFIED FOR RETRY IS 255 DECIMAL. EACH REQUEST TO RECEIVE OR TRANSMIT MADE TO THE DCP CONTAINS THE RETRY COUNT AS LAST GIVEN BY THE ORIGINATOR OF THE REQUEST.

BCC
---**SYNTAX**

<BCC> ::= BCC

SEMANTICS

<BCC> PROVIDES THE USER WITH ACCESS TO THE BLOCK CHECK CHARACTER. A RECEIVE OR TRANSMIT STATEMENT ALWAYS UPDATES THE BCC. (CARE MUST BE TAKEN TO RE-INITIALIZE THE BCC WHEN APPROPRIATE). IN ORDER TO ELIMINATE THOSE CHARACTERS NOT TO BE SUMMED IN THE BCC THE <SUM STATEMENT> SHOULD BE USED.

UNCONDITIONAL REQUEST STATEMENTSSYNTAX

```
<UNCONDITIONAL REQUEST STATEMENT> ::= <ASSIGNMENT STATEMENT> /  
  <GO TO STATEMENT> / <INITIATE STATEMENT> /  
  <INITIALIZE STATEMENT> / <FINISH STATEMENT> /  
  <FETCH STATEMENT> / <STORE STATEMENT> /  
  <SUM STATEMENT> / <TRANSMIT STATEMENT> /  
  <RECEIVE STATEMENT> / <TERMINATE STATEMENT> /  
  <ERROR ACTION STATEMENT> / <BREAK STATEMENT> /  
  <DELAY STATEMENT> / <INCREMENT STATEMENT> /  
  <SHIFT STATEMENT>
```

ASSIGNMENT STATEMENTSSYNTAX

```
<ASSIGNMENT STATEMENT> ::= <LOGICAL ASSIGNMENT STATEMENT> /  
  <VALUE ASSIGNMENT STATEMENT>  
<LOGICAL ASSIGNMENT STATEMENT> ::= <ASSIGNABLE TOGGLE> = <TOGGLE> /  
  <ASSIGNABLE TOGGLE> = <LOGICAL VALUE> / SEQUENCE = FALSE  
<ASSIGNABLE TOGGLE> ::= <USER TOGGLE> / <ERROR FLAG>  
<VALUE ASSIGNMENT STATEMENT> ::= <BYTE VARIABLE> = <VALUE> /  
  <BYTE VARIABLE> = <VALUE> <ADD OPERATOR> <VALUE>
```

SEMANTICS

THE <ASSIGNMENT STATEMENT> IS THE MEANS BY WHICH AN NDL REQUEST
ASSIGNS AND/OR UPDATES A <BYTE VARIABLE> OR <ASSIGNABLE TOGGLE>
<VALUE ASSIGNMENT>S PRESUME "MODULO 256" ARITHMETIC.

GO TO STATEMENTSSYNTAX

`<GO TO STATEMENT> ::= GO TO <LABEL> / GO <LABEL>`

SEMANTICS

THE `<GO TO STATEMENT>` SPECIFIES THAT THE NEXT INSTRUCTION TO BE EXECUTED IS THE ONE ASSOCIATED WITH THE `<LABEL>`.

INITIATE STATEMENTSSYNTAX

`<INITIATE STATEMENT> ::= INITIATE <INITIATE ACTION> <DELAY PART>`
`<INITIATE ACTION> ::= RECEIVE / TRANSMIT`
`<DELAY PART> ::= (<DELAY VALUE>) / <EMPTY>`
`<DELAY VALUE> ::= <TIME> / NULL`

SEMANTICS

THE INITIATE RECEIVE FORM OF THE `<INITIATE STATEMENT>` COMMANDS THE ADAPTER, I.E., LINE, TO INITIATE RECEIVE DELAYS. THE DELAYED VALUE IS AS DESCRIBED IN THE SEMANTICS FOR THE MODEM NOISEDELAY STATEMENT.

IF THE `<DELAY PART>` IS EMPTY OR IS ZERO NO DELAY OCCURS. IF THE `<DELAY VALUE>` IS "NULL", SIMILARLY. OTHERWISE, IT WILL BE THE TIME SPECIFIED IF THE `<DELAY VALUE>` IS `<TIME>`.

THE INITIATE TRANSMIT FORM COMMANDS THE LINE TO A TRANSMIT STATE AND DELAYS ANALOGOUSLY TO THAT DESCRIBED ABOVE.

INITIALIZE STATEMENTSSYNTAX

```
<INITIALIZE STATEMENT> ::= INITIALIZE <INITIALIZED ITEM>
<INITIALIZED ITEM> ::= BCC / TEXT / TRAN / BLKN /
    <TALLY-TOGGLE LIST>
<TALLY-TOGGLE LIST> ::= <USER TALLY> / TOG[<TOGGLE NUMBER>] /
    <TALLY-TOGGLE LIST> , <TALLY-TOGGLE LIST>
```

SEMANTICS

INITIALIZED BCC CAUSES THE BLOCK CHECK CHARACTER FOR HORIZONTAL PARITY TO BE INITIALIZED IN THE DCP. FOR EVEN PARITY THIS CHARACTER IS INITIALIZED TO ALL ZEROES; FOR ODD PARITY, ALL ONES. THE BCC SHOULD ALWAYS BE RE-INITIALIZED FOR ERROR RECOVERY, USUALLY INITIALIZE TEXT SETS THE MESSAGE POINTERS IN THE DCP TO THE FIRST BYTE OF THE MESSAGE. THIS STATEMENT MUST BE EXECUTED BEFORE USING THE STORE OR FETCH COMMANDS. INITIALIZE TRAN OR BLKN RESETS THE VALUE TO ZERO.

THE "INITIALIZE <TALLY-TOGGLE LIST>" FORM CAUSES THE TALLYS AND TOGGLS LISTED TO BE INITIALIZED FROM THE MESSAGE HEADER, IF THERE IS ONE, OR SET TO ZERO OR FALSE, OTHERWISE.

SYNTAX

```
<FINISH STATEMENT> ::= FINISH TRANSMIT <DELAY PART>
```

SEMANTICS

THE <FINISH STATEMENT> INITIATES THE TIMEOUT AND DELAY TIMES ESTABLISHED FOR A STATION. THIS COMMAND PUTS THE LINE BACK IN RECEIVE MODE. THE <FINISH STATEMENT> WOULD BE USED, FOR EXAMPLE,

TO GET A LINE READY TO RECEIVE FOLLOWING A POLL. (IT IS A NECESSARY STATEMENT TO HAVE WHEN FINISHED TRANSMITTING TO INSURE THE LAST CHARACTER IS ACTUALLY TRANSMITTED.)

FETCH STATEMENT

SYNTAX

```
<FETCH STATEMENT> ::= FETCH <FETCH ACTION PART>
<FETCH ACTION PART> ::= [<ENDOFBUFFER ACTION>] / <EMPTY>
<ENDOFBUFFER ACTION> ::= ENDOFBUFFER:<LABEL> / ENDOFBUFFER:NULL /
                           <LABEL> / NULL
```

SEMANTICS

FETCH IS VALID ONLY FOR OUTPUT FROM THE DCP TO A STATION. A FETCH LOADS THE <CHARACTER REGISTER> WITH THE BYTE IN THE MESSAGE TEXT POINTED TO BY THE MESSAGE POINTER. WHEN USING THE FETCH INSTRUCTION, PROVISION SHOULD BE MADE FOR TAKING ACTION IF AN ENDOFBUFFER CONDITION IS ENCOUNTERED. (ON AN ENDOFBUFFER CONDITION THE CHARACTER IS NOT TRANSMITTED AFTER FETCHING. AN ENDOFBUFFER CONDITION RESULTING FROM A <FETCH STATEMENT> IS NOT CONSIDERED TO BE AN ERROR; THUS, THE ENDOFBUFFER FLAG IS NOT SET.) THE <FETCH ACTION PART> SPECIFIES THE ENDOFBUFFER ACTION. AN <EMPTY> <FETCH ACTION PART> WILL RESULT ON ABORTING THE REQUEST UPON ENDOFBUFFER, BUT OTHERWISE AN APPROPRIATE BRANCH WILL BE TAKEN ("FETCH[NULL]" IS EQUIVALENT TO "FETCH[1]. 1:").

STORE STATEMENTS

SYNTAX

```
<STORE STATEMENT> ::= STORE <STORE PARAMETER> <STORE ACTION PART> /
                      STORE <TALLY-TOGGLE LIST> / STORE SEQUENCE
```

```
<STORE ACTION PART> ::= [<ENDOFBUFFER ACTION>] / <EMPTY>
<STORE PARAMETER> ::= <CHARACTER REGISTER> / <STRING> / <EMPTY>
```

SEMANTICS

THE <STORE STATEMENT> IS USED FOR INPUT OR RECEIVE REQUESTS ONLY. THE STORE AND STORE <CHARACTER REGISTER> FORMS OF THIS STATEMENT ARE EQUIVALENT. IT IS POSSIBLE TO GET AN ENDOFBUFFER CONDITION WHILE USING THIS INSTRUCTION, IF THE BUFFER SIZE (FOR BUFFERED DEVICES) OR THE MAXINPUT SIZE (FOR UNBUFFERED DEVICES) IS EXCEEDED. UNLIKE THE CASE OF THE <FETCH STATEMENT>, AN ENDOFBUFFER CONDITION HERE IS CONSIDERED AN ERROR CONDITION. UPON THE CONDITION, A <EMPTY> <STORE ACTIONPART> WILL RESULT IN AN AUTOMATIC "TERMINATE ERROR", A "NULL" WILL RESULT IN A CONTINUANCE OF THE PROGRAM, AND A "LABEL" WILL RESULT IN A BRANCH TO THE SPECIFIED LABEL.

WITH THE "STORE SEQUENCE" FORM OF THE <STORE STATEMENT> IF THE STATION IS IN SEQUENCE MODE, THE CURRENT VALUE OF THE SEQUENCE NUMBER IS STORED IN MESSAGE[5].[26:27] AS A BINARY INTEGER AND MESSAGE[5].[27:1] IS SET TO ONE TO INDICATE ITS PRESENCE. IF THE STATION IS NOT IN SEQUENCE MODE AT THE TIME THE STATEMENT IS EXECUTED THEN THE STATEMENT IS A NO-OP.

SUM STATEMENTS

SYNTAX

```
<SUM STATEMENT> ::= SUM <SUM PARAMETER>
<SUM PARAMETER> ::= <CHARACTER REGISTER> / <UNITARY STRING> /
<EMPTY>
```

SEMANTICS

THE <SUM STATEMENT> MAY BE USED TO NEGATE THE HORIZONTAL SUMMATION

FOR THE PREVIOUS CHARACTER TRANSMITTED OR RECEIVED.

FOR EXAMPLE, ASSUME THAT A CHARACTER HAS BEEN RECEIVED AS PART OF A MESSAGE AND HAS BEEN INCLUDED IN THE HORIZONTAL BLOCK CHECK CHARACTER (BCC) BEING ACCUMULATED. THE CHARACTER MAY BE ELIMINATED FROM THE BCC BY THE INSTRUCTION

SUM CHARACTER

WHICH CAUSES THE CHARACTER CONTAINED IN THE <CHARACTER REGISTER> TO BE "EXCLUSIVELY OR"ED WITH THE BCC, THUS DELETING THE CHARACTER FROM THE PARTIAL SUM.

THE SUM AND SUM CHARACTER FORMS OF THIS STATEMENT ARE EQUIVALENT.

EXAMPLE:

RECEIVE.

IF CHAR = STX THEN SUM CHAR.

IN THE ABOVE EXAMPLE, THE START-OF-TEXT CHARACTER WAS ELIMINATED FROM THE BCC.

TRANSMIT STATEMENTSSYNTAX

```
<TRANSMIT STATEMENT> ::= TRANSMIT <ITEM> <TRANSMIT ACTION PART>
<ITEM> ::= <CHARACTER REGISTER> / ADDRESS <ADDRESS QUALIFIER> /
           TRAN / BLKN / TEXT / <STRING> / BCC / <EMPTY>
<ADDRESS QUALIFIER> ::= (RECEIVE) / (TRANSMIT) / <EMPTY>
<TRANSMIT ACTION PART> ::= [<TRANSMIT ERROR FLAG>
                           <ACTION LABEL>] / <EMPTY>
<ACTION LABEL> ::= :NULL / :<LABEL> / <EMPTY>
```

SEMANTICS

THE <TRANSMIT STATEMENT> IS USED FOR OUTPUT OPERATIONS TO A STATION. IF <ITEM> IS <EMPTY>, THE CURRENT CONTENTS OF <CHARACTER REGISTER> ARE TRANSMITTED. OTHERWISE, <ITEM> SPECIFIES THE VALUE TO BE LOADED INTO THE <CHARACTER REGISTER> BEFORE TRANSMITTING.

THE TRANSMIT AND TRANSMIT CHAR FORMS OF THE STATEMENT ARE EQUIVALENT. THE STATEMENT

TRANSMIT TEXT.

IS EQUIVALENT TO

```
1:  FETCH [ENDOFBUFFER :2]
      TRANSMIT.
      GO TO 1.
```

2:

THE ADDRESS, TRAN, BLKN, AND BCC FORMS CAUSE THE STATION ADDRESS, TRANSMISSION NUMBER, BLOCK NUMBER, AND BLOCK-CHECK-CHARACTER, RESPECTIVELY, TO BE LOADED FROM THE MESSAGE BEING PROCESSED AND TO BE TRANSMITTED DOWN THE LINE.

TRANSMIT <STRING> WILL LOAD AND TRANSMIT EACH CHARACTER OF THE <STRING> SPECIFIED UNTIL THE <STRING> IS EXHAUSTED. THE <TRANSMIT ACTION PART> SPECIFIES THE ACTION TO BE TAKEN UPON DETECTION OF A BREAK. IF IT IS <EMPTY>, AN AUTOMATIC "TERMINATE ERROR" WILL RESULT FROM A BREAK. OTHERWISE, A BRANCH SPECIFIED BY THE <ACTION LABEL> WILL RESULT.

AN <EMPTY> <ACTION LABEL> SIGNIFIES A BRANCH TO THE NEXT STATEMENT. A ":NULL" <ACTION LABEL> SIGNIFIES THAT EXECUTION SHOULD PROCEED AS IF THE CONDITION ASSOCIATED WITH THE ACTION LABEL DID NOT OCCUR. A ":<LABEL>" AS AN <ACTION LABEL> SPECIFIES THAT A BRANCH TO THE DESIGNATED LABEL SHOULD OCCUR.

RECEIVE STATEMENTSSYNTAX

```
<RECEIVE STATEMENT> ::= RECEIVE <TIMEOUT PART> <ITEM>
  <RECEIVE ACTION PART>
<TIMEOUT PART> ::= (<TIME>) / (NULL) / <EMPTY>
<RECEIVE ACTION PART> ::= [<RECEIVE ACTION LIST>] / <EMPTY>
<RECEIVE ACTION LIST> ::= <ACTION ITEM> <ACTION LABEL> /
  <ERROR SWITCH DESIGNATOR> /
  <ACTION ITEM> <ACTION LABEL> , <RECEIVE ACTION LIST> /
  <ERROR SWITCH DESIGNATOR> , <RECEIVE ACTION LIST> /
<ACTION ITEM> ::= <TEXT CONTROL CHARACTER> / <UNITARY STRING>
  / <RECEIVE ERROR FLAG> / <ITEM ERROR FLAG>
<TEXT CONTROL CHARACTER> ::= CONTROL / BACKSPACE / LINEDELETE /
  END / WRU
<ERROR SWITCH DESIGNATOR> ::= ERROR [<INTEGER>] / <INTEGER>
```

SEMANTICS

THE <RECEIVE STATEMENT> PROVIDES THE MEANS TO RECEIVE CHARACTERS AND/OR ERROR CONDITIONS. A <RECEIVE STATEMENT> PRESUMES THE ADAPTER FOR THE STATIONS LINE IS IN RECEIVE MODE. IF IT IS NOT, AN ABORT WILL OCCUR, THAT IS, THE DCP WILL SEND AN ABORT ERROR RESULT TO THE MAIN SYSTEM. A <RECEIVE STATEMENT> RECEIVES THE SPECIFIED ITEM AND IF APPROPRIATE STORES THE ITEM. THE <RECEIVE ACTION PART> SPECIFIES ACTIONS TO BE TAKEN UPON EITHER THE RECEIPT OF SPECIFIC CHARACTERS OR OCCURRENCES OF SPECIFIC ERROR CONDITIONS. FOR ALL ITEMS THE <ERROR SWITCH DESIGNATOR> IS APPROPRIATE; THE ERROR SWITCH DESIGNATED SPECIFIES THE ACTION TO TAKE UPON THE VARIOUS ERROR CONDITIONS WHICH ARE <RECEIVE ERROR FLAG>S. THE PRESENCE OF A <RECEIVE ERROR FLAG> CREATES AN ERROR SWITCH UNIQUE TO THE RECEIVE STATEMENT. AN <ERROR SWITCH DESIGNATOR> AND A <RECEIVE ERROR FLAG> MAY NOT BE IN THE SAME <RECEIVE ACTION LIST>. WHICH <ACTION ITEM>S ARE APPROPRIATE FOR RECEIVING VARIOUS ITEMS ARE

DISCUSSED BELOW.

- A. ADDRESS <ADDRESS QUALIFIER> : THE PROPER NUMBER OF RECEIVE OR TRANSMIT ADDRESS CHARACTERS (THE NUMBER OF WHICH IS SPECIFIED BY THE DEFINITION OF THE STATION TERMINAL) ARE RECEIVED AND CHECKED FOR AGREEMENT. SHOULD THE ADDRESS CHARACTERS NOT CORRESPOND, AN ADDRESS ERROR CONDITION RESULTS; IF THE <RECEIVE ACTION PART> HAS "ADDERR" ACTION SPECIFIED THE <ACTION LABEL> IS ADHERED TO BUT OTHERWISE AN "AUTOMATIC" "TERMINATE ERROR" IS DONE. (THE ANALOGOUS ACTION OCCURS FOR ALL ERROR CONDITIONS COVERED BY <ITEM ERROR FLAG>S. THAT IS, FOR EVERY ITEM EXCEPT <CHARACTER> AND <EMPTY>, THERE IS A POSSIBLE ERROR CONDITION WHICH WILL RESULT IN EVENTS ANALOGOUS TO THAT DESCRIBED FOR "ADDRESS <ADDRESS QUALIFIER> AND "ADDERR <ACTION LABEL>"
- B. TRAN : THE PROPER NUMBER OF TRANSMISSION NUMBER CHARACTERS ARE RECEIVED AND CHECKED FOR AGREEMENT WITH THE (RECEIVE) TRANSMISSION NUMBER KEPT FOR THE STATION WITH WHICH THE DCP IS COMMUNICATING. SHOULD THERE NOT BE AGREEMENT A TRANSMISSION ERROR CONDITION IS OBTAINED. (THE NUMBER OF TRANSMISSION NUMBER CHARACTERS IS SPECIFIED IN THE DEFINITION OF THE STATION TERMINAL.) THE TRANSMISSION NUMBER IS STORED IN THE MESSAGE HEADER.
- C. BLKN: A CHARACTER IS RECEIVED AND CHECKED AGAINST THE BLOCK NUMBER. "BLKNERR" IS APPROPRIATE FOR THIS ITEM. THE BLOCK NUMBER IS STORED IN THE MESSAGE HEADER.
- D. BCC: A CHARACTER IS RECEIVED AND CHECKED AGAINST THE BLOCK CHECK CHARACTER THAT THE DCP HAS BEEN ACCUMULATING DURING THE PROCESSING OF THE REQUEST. "BCCERR" IS APPROPRIATE FOR THIS ITEM.
- E. <STRING>: CHARACTERS ARE RECEIVED (AND STORED IN THE TEXT STRING AND A CHECK IS MADE FOR CORRESPONDENCE, WHICH IF NOT

FOUND RESULTS IN A FORMAT ERROR CONDITION. "FORMATERR" IS THE <ITEM ERROR FLAG> FOR THIS ITEM.

F. TEXT: CHARACTERS ARE RECEIVED (AND STORED IN THE TEXT PART OF THE MESSAGE SPACE OBTAINED) UNTIL EITHER AN <ACTION ITEM>S <ACTION LABEL> RESULTS IN A BRANCH TO A LABEL OR A TERMINATE ERROR, OR A "NON-RECOVERABLE" ERROR SUCH AS A DISCONNECT OCCURS. IF THE OCCURRENCE OF A CHARACTER IN THE <RECEIVE ACTION LIST> RESULTS IN A BRANCH OUTSIDE THE <RECEIVE STATEMENT> THAT CHARACTER IS NOT STORED AWAY AUTOMATICALLY. APPROPRIATE <ACTION ITEM>S ARE <TEXT CONTROL CHARACTER>, <UNITARY STRING>, AND "ENDOFBUFFER" (AN ENDOFBUFFER CONDITION EXISTS WHEN TOO MANY CHARACTERS HAVE BEEN RECEIVED AS SPECIFIED BY THE <BUFFER STATEMENT> OR <MAXINPUT STATEMENT> IN THE DEFINITION OF THE STATIONS TERMINAL. THE FOLLOWING WILL ELUCIDATE THESE POINTS AND THE SPECIAL ACTIONS TAKEN UPON THE RECEIPT OF <TEXT CONTROL CHARACTER> IF THEY ARE SPECIFIED IN THE <RECEIVE ACTION LIST>:

EXAMPLE

1:TALLY[2] = TALLY [2] + 1.

RECEIVE TEXT[END , WRU, BACKSPACE: 1].
TERMINATE NORMAL.

IN THIS EXAMPLE, AS EACH CHARACTER IS RECEIVED BY THE DCP A CHECK WILL BE MADE TO SEE IF THE CHARACTER IS THE END, WRU, OR BACKSPACE CODE FOR THE STATION. IF THE CHARACTER IS END OR WRU, AN EXIT TO THE STATEMENT IMMEDIATELY FOLLOWING THE <RECEIVE STATEMENT> WILL BE MADE. IF THE BACKSPACE CHARACTER IS RECEIVED, CONTROL IS TRANSFERRED TO THE STATEMENT LABELLED 1. IF NONE OF THESE THREE CHARACTERS ARE FOUND, THE NEXT CHARACTER IN THE MESSAGE IS RECEIVED, AND THE PROCESS CONTINUES.

IF THE WRU, CONTROL, END, BACKSPACE, OR LINEDELETE ARE USED AS <ACTION ITEM>S, THE SYSTEM WILL TAKE AUTOMATIC ACTION

APPROPRIATE FOR THE CHARACTER, AND THEN BRANCH TO THE INDICATED LABEL OR THE NEXT STATEMENT DEPENDING ON THE <ACTION LABEL> SPECIFIED. THE ACTION TAKEN FOR THE WRU AND CONTROL CHARACTERS IS TO SET THE PERTINENT FLAG. THE ACTION FOR THE END CHARACTER IS TO DO NOTHING (EXCEPT, OF COURSE, TO TAKE THE BRANCH AS SPECIFIED BY THE <ACTION LABEL>). NOTE THAT THE BACKSPACE AND LINE DELETE CHARACTERS ARE NEVER STORED IN THE TEXT PART OF THE MESSAGE SPACE EVEN IF THE <ACTION LABEL> IS ":NULL".

G. <CHARACTER REGISTER> OR <EMPTY> : ONE CHARACTER IS RECEIVED. ALL THE <ACTION ITEMS> APPROPRIATE FOR THE TEXT ITEM ARE APPLICABLE HERE EXCEPT "ENDOFBUFFER" WHICH IS INAPPROPRIATE BECAUSE THE RECEIVED CHARACTER IS NOT STORED ANYWHERE.

IF NULL IS USED AS AN <ACTION LABEL> CONTROL WILL RETURN TO THE <RECEIVE STATEMENT> AFTER APPROPRIATE ACTION IS TAKEN BY THE SYSTEM, IF ANY.

TERMINATE STATEMENTSSYNTAX

```
<TERMINATE STATEMENT> ::= TERMINATE <TERMINATE TYPE>
<TERMINATE TYPE> ::= LOGICALACK <LOGICALACK TYPE> / NORMAL /
    ERROR / BLOCK / ENABLEINPUT
<LOGICALACK TYPE> ::= (RETURN) / <EMPTY>
```

SEMANTICS

THE <TERMINATE STATEMENT> TERMINATES THE REQUEST PROGRAM. THIS USUALLY ENTAILS THE FOLLOWING GENERAL FUNCTIONS:

1. RESULT DESCRIPTION

THE MAIN SYSTEM IS TO BE INFORMED OF THE SUCCESS, FAILURE OR STATUS OF THE TERMINATING REQUEST. TO DO THIS, A MESSAGE SPACE MAY BE ALLOCATED FROM THE AVAILABLE MESSAGE POOL, IF NECESSARY. THE RESULT FIELDS OF THE MESSAGE ARE COMPLETED APPROPRIATELY AND THE MESSAGE IS MOVED TO THE DCP RESULT QUEUE.

2. LINE AND STATION STATUS

IS UPDATED TO INHIBIT OR MODIFY INITIATION OF SUBSEQUENT REQUESTS.

3. LINE INITIATION

NEXT LINE FUNCTION TO BE INITIATED;

A. IDLE THE LINE

NO NEW REQUEST FUNCTION IS INITIATED, BUT ALL LINE EVENTS ARE DISCARDED UNTIL AN APPROPRIATE REQUEST IS RECEIVED

FROM THE SYSTEM.

B. INITIATE A CONTENTION LINE WITH ONE STATION.

IF THE LINE IS MARKED AS IN CONTROL MODE OR
THE STATION IS MARKED NOT READY
THEN IDLE THE LINE; ELSE,
IF THE STATION INITIATE QUEUE HOLDS A REQUEST
THEN MARK THE LINE BUSY AND INITIATE THE REQUEST;
ELSE.
IF THE STATION IS INPUT ENABLED
THEN MARK THE LINE BUSY AND
INITIATE THE INPUT REQUEST LOGIC; ELSE,
IDLE THE LINE.

C. INITIATE A POLLED LINE WITH MANY POSSIBLE STATIONS

IF THE LINE STATUS IS MARKED AS IN CONTROL MODE
THEN IDLE THE LINE; ELSE
SELECT THE NEXT STATION IN TURN AND INVESTIGATE ITS
STATUS:
IF THE STATION STATUS IS MARKED NOT READY
THEN SELECT THE NEXT STATION; ELSE
IF THE STATION INITIATE QUEUE CONTAINS A VALID REQUEST
THEN MARK THE LINE BUSY AND INITIATE THE REQUEST; ELSE
IF THE STATION IS INPUT ENABLED
THEN DECREMENT THE STATION PRIORITY TALLY AND IF ZERO
THEN RESET THE PRIORITY TALLY TO THE STATIONS
PRIORITY, MARK THE LINE BUSY AND
INITIATE THE INPUT REQUEST LOGIC; ELSE
SELECT THE NEXT STATION.

EACH TIME THE NEXT STATION IS SELECTED FOR INVESTIGATION,
THE PROCEDURE YIELDS CONTROL OF THE PROCESSOR,
TEMPORARILY, TO PROCESS LINE EVENTS FOR ACTUALLY
ACTIVE LINES. ALSO, WHEN THE STATION LIST

ASSOCIATED WITH THE LINE IS EXHAUSTED, THE FOLLOWING LOGIC IS INVOKED: IF THE LAST PASS OVER THE STATION LIST FOUND NOT ONE READY STATION WHICH EITHER HAD A VALID REQUEST QUEUED OR WAS ENABLED FOR INPUT (REGARDLESS OF ITS PRIORITY TALLY) THEN THE LINE IS IDLED; ELSE IF THE LAST PASS OVER THE STATIONS DID NOT RESULT IN THE INITIATION OF ANY REQUESTED OR ENABLED FUNCTION THEN THE LINE IS IDLED FOR A TIME COMMENSURATE WITH THE TIME REQUIRED TO PROCESS AN INPUT OR OUTPUT REQUEST BEFORE SCANNING THE STATION LIST AGAIN; OTHERWISE THE STATION LIST IS REINVESTIGATED IMMEDIATELY.

THE ACTUAL COMBINATION OF THE ABOVE FUNCTIONS AND THEIR SPECIFICS DEPENDS ON THE TYPE OF TERMINATE STATEMENT:

TERMINATE ERROR.

THE TERMINATE ERROR STATEMENT SERVES TO INFORM THE SYSTEM OF A FAILURE TO SATISFACTORILY COMPLETE A REQUESTED OR ENABLED FUNCTION, AND INHIBIT INITIATION OF ANY NEW FUNCTIONS FOR THE STATION UNTIL REQUESTED BY THE SYSTEM.

AN ERROR MESSAGE IS OBTAINED, FILLED AND QUEUED (I.E., FIRST A SMALL MESSAGE IS ALLOCATED, THEN ITS RESULT FLAGS AND RETRY TALLY ARE COPIED EITHER FROM THE CURRENT MESSAGE, OR, THERE BEING NONE CURRENT AS FOR ENABLED INPUT, FROM THE STATION TABLE. TALLYS AND TOGGLS ARE COPIED INTO THE NEWLY ALLOCATED MESSAGE, THE MESSAGE CLASS, DCP, LINE AND STATION NUMBER FIELDS ARE INITIALIZED APPROPRIATELY, AND THE ERROR MESSAGE IS INSERTED INTO THE DCP RESULT QUEUE.) LEAVING THE STATION INITIATE QUEUE INTACT; THE STATION STATUS IS MARKED AS NOT READY; AND THE APPROPRIATE LINE INITIATE ROUTINE IS ENTERED (WHICH WILL IDLE A CONTENTION LINE, BUT PROCEED FOR OTHER READY STATIONS ON A MULTIPOLL LINE).

TERMINATE NORMAL.

THE TERMINATE NORMAL STATEMENT SIGNALS THE SATISFACTORY COMPLETION OF A REQUESTED OR ENABLED FUNCTION.

IF NO MESSAGE SPACE IS CURRENTLY ALLOCATED FOR THE TERMINATING FUNCTION, THEN ONE IS ALLOCATED (AS IN TERMINATE ERROR) AND FILLED FROM THE STATION TABLE COPY OF RESULT FLAGS AND RETRY TALLY WHICH ARE THEN RESET. IN ANY CASE, TALLYS AND TOGGLES ARE COPIED INTO THE MESSAGE FROM THE STATION TABLE AND THE RESULT INDEX IN THE MESSAGE IS SET TO DESIGNATE NORMAL TERMINATION. THE MESSAGE IS THEN INSERTED INTO THE DCP RESULT QUEUE. FINALLY THE APPROPRIATE LINE INITIATE PROCEDURE IS ENTERED TO BEGIN THE NEXT APPROPRIATE FUNCTION.

TERMINATE LOGICALACK.

THE TERMINATE LOGICALACK STATEMENT SIGNALS THE SUCCESSFUL RECEIPTION OF AN INPUT MESSAGE WITH THE POSSIBILITY (DEPENDING UPON A RUN-TIME STATION OPTION) OF DELAYING ACKNOWLEDGMENT OF RECEIPT OF THE MESSAGE UNTIL REQUESTED BY THE SYSTEM TO CONTINUE. THE STATION LOGICALACK OPTION IS TESTED AND IF TRUE

THEN THE "TO BE ACKNOWLEDGED" RESULT FLAG IS SET, THE MESSAGE IS COMPLETED AND QUEUED AS FOR TERMINATE NORMAL.

THE LINE STATUS IS SET TO ACKNOWLEDGE READY TO INHIBIT INITIATION OF ANY NORMAL REQUESTS EXCEPT THE ACKNOWLEDGE REQUEST, AND

THE LINE IS IDLED; ELSE

LOGICALACK NOT OPTIONED, THE DCP WILL AUTOMATICALLY CONTINUE WITH THE ACKNOWLEDGMENT.

IF <LOGICALACK TYPE> IS "(RETURN)"

THEN THE MESSAGE IS COMPLETED AND QUEUED AS FOR TERMINATE

NORMAL (ALLOWING OVERLAP OF ACKNOWLEDGMENT WITH SYSTEM PROCESSING OF THE INPUT RECEIVED), A FLAG IS SET TO INHIBIT MESSAGE RESULT ENQUEUEING FOR THE NEXT TERMINATE NORMAL SIGNALLING END OF THE ACKNOWLEDGMENT AND INPUT FUNCTION; ELSE THE MESSAGE IS RETAINED UNTIL THE ACKNOWLEDGMENT TERMINATE NORMAL.

IN ANY CASE, CONTROL IS GIVEN TO THE PROGRAM AT THE NEXT STATEMENT IN SEQUENCE.

TERMINATE BLOCK.

THE TERMINATE BLOCK STATEMENT SERVES A NORMAL TERMINATE FOR A BLOCK (NOT THE LAST) OF INPUT RECEIVED FROM A STATION. THE MESSAGE IS COMPLETED AND QUEUED AS IN TERMINATE NORMAL. CONTROL IS IMMEDIATELY GIVEN BACK TO THE REQUEST PROGRAM AT THE NEXT STATEMENT IN SEQUENCE SO THAT IT MAY BEGIN RECEPTION OF THE NEXT BLOCK OF INPUT FROM THE STATION.

TERMINATE ENABLEINPUT.

THE TERMINATE ENABLEINPUT STATEMENT ALLOWS AN OUTPUT REQUEST THE POSSIBILITY OF SUSPENDING ITSELF IN FAVOR OF THE INPUT LOGIC FOR THE SAME STATION, AS WOULD BE APPROPRIATE TO SOME DEVICES WHICH MAY NAK THE SELECT IF TRANSMIT READY.

IF THE STATION IS INPUT ENABLED

THEN THE CURRENT REQUEST AND ITS MESSAGE ARE HELD IN THE STATION INITIATE QUEUE TO BE REINITIATED FROM THE START LATER, AND THE INPUT LOGIC IS INITIATED; ELSE CONTROL IS IMMEDIATELY RETURNED TO THE WRITE REQUEST PROGRAM AT THE NEXT STATEMENT IN SEQUENCE.

TERMINATE NOINPUT.

B6700 NETWORK DEFINITION LANGUAGE

THE TERMINATE NOINPUT STATEMENT SIGNALS THE END OF AN UNSUCCESSFUL ATTEMPT TO RECEIVE INPUT FROM A STATION, BUT WITHOUT ERRORS.

IF THE INPUT LOGIC WAS INVOKED BECAUSE THE STATION WAS INPUT ENABLED THEN ANY MESSAGE SPACE THAT MIGHT HAVE BEEN ALLOCATED FOR THE INPUT IS DISCARDED TO ALLOW INITIATION OF REQUESTS THAT MIGHT HAVE OR MAY BE MADE.

IF THE INPUT LOGIC WAS INVOKED BECAUSE OF A READ REQUEST THEN IF THE "TRY ONCE" VARIANT IS SET, TERMINATE NOINPUT PROCEEDS AS TERMINATE NORMAL, FINISHING THE REQUEST; OTHERWISE, THE READ REQUEST IS HELD TO BE REINITIATED LATER. FINALLY, THE APPROPRIATE LINE INITIATE PROCEDURE IS ENTERED.

NOTE: THAT FOR ENABLE INPUT, IF THE "READ ONCE" OPTION IS SET FOR THE STATION, THEN ALL TERMINATION OF ENABLED INPUT EXCEPT TERMINATE NOINPUT WILL CAUSE THE STATION ENABLED OPTION TO BE RESET.

ERROR ACTION STATEMENTSSYNTAX

```
<ERROR ACTION STATEMENT> ::= ERROR [<ERRORNUMBER>] =
    <ERROR ACTION LIST>
<ERROR ACTION LIST> ::= <ERROR ACTION> /
    <ERROR ACTION LIST>, <ERROR ACTION>
<ERROR ACTION> ::= <RECEIVE ERROR FLAG>
    <LABEL PART>
<LABEL PART> ::= :<LABEL> / : NULL
<ERRORNUMBER> ::= <INTEGER>
```

SEMANTICS

<ERROR ACTION STATEMENT>S CREATE ERROR SWITCHES WHICH ARE BRANCHED

TO UPON THE OCCURRENCE OF ERROR CONDITIONS CORRESPONDING TO <RECEIVE ERROR FLAG>S IN <RECEIVE STATEMENTS> WHOSE <RECEIVE ACTION PART>S SPECIFY AN ERROR SWITCH. (FOR A <RECEIVE STATEMENT> NOT DESIGNATING AN ERROR SWITCH A "TERMINATE ERROR" WILL RESULT UPON THE EXISTENCE OF A RECEIVE ERROR.) FOR EACH ERROR CONDITION MENTIONED IN AN <ERROR ACTION LIST>, EITHER NO ACTION IS TAKEN OR A BRANCH TO A LABEL IS MADE DEPENDING UPON WHETHER THE <LABEL PART> IS ":NULL OR ":<LABEL>". IF AN ERROR FLAG HAS NOT BEEN MENTIONED IN THE <ERROR ACTION LIST>, THE ACTION IS TO "TERMINATE ERROR".

BREAK STATEMENT

SYNTAX

```
<BREAK STATEMENT> ::= BREAK ( <BREAK TIME> , <BREAK DELAY TIME> )
<BREAK TIME> ::= <TIME> / *
<BREAK DELAY TIME> ::= <TIME> / NULL
```

SEMANTICS

THE <BREAK TIME> SPECIFIES THE TIME TO BREAK. AN ASTERISK INDICATES THAT A STANDARD BREAK OF 2 CHARACTER TIMES SHOULD BE USED. THE <BREAK DELAY TIME> SPECIFIES THE TIME TO DELAY SUBSEQUENT TO THE BREAK BEFORE CONTINUING.

DELAY STATEMENT

SYNTAX

```
<DELAY STATEMENT> ::= DELAY (<TIME>)
```

SEMANTICS

THE <DELAY STATEMENT> WILL CAUSE THE SPECIFIED <TIME> TO ELAPSE

BEFORE EXECUTING THE NEXT STATEMENT OF THE REQUEST.

INCREMENT STATEMENT

SYNTAX

```
<INCREMENT STATEMENT> ::= INCREMENT <INCREMENTED ITEM>
<INCREMENTED ITEM> ::= TRAN / BLKN /
    SEQUENCE <SEQUENCE ACTION PART>
<SEQUENCE ACTION PART> ::= <EMPTY> / [<SEQUENCE ACTION>]
<SEQUENCE ACTION> ::= SEQERR : NULL /
    SEQERR : <LABEL> / NULL / <LABEL>
```

SEMANTICS

THE INCREMENT STATEMENT WILL CAUSE 1 TO BE ADDED TO THE TRANSMISSION NUMBER ("TRAN"), TO THE BLOCK NUMBER ("BLKN") OR A SPECIFIED INCREMENT (INITIALLY SET BY AN MCS USING THE DCWRITE CONSTRUCT) TO THE SEQUENCE NUMBER ("SEQUENCE").

THE BRANCH TO THE LABEL OCCURS IF INCREMENTING THE SEQUENCE NUMBER CAUSES AN OVERFLOW.

SHIFT STATEMENT

SYNTAX

```
<SHIFT STATEMENT> ::= SHIFT <SHIFT DIRECTION>
<SHIFT DIRECTION> ::= UP / DOWN
```

SEMANTICS

THE <SHIFT STATEMENT> ALLOWS THE CHANGING OF WHAT IS CONSIDERED TO BE THE CURRENT "CASE" OF CERTAIN CHARACTER SETS.

2.3.3. MODEM SECTIONSYNTAX

```
<MODEM SECTION> ::= <MODEM LIST>
<MODEM LIST> ::= <MODEM DEFINITION> / <MODEM LIST>
    <MODEM DEFINITION>
<MODEM DEFINITION> ::= MODEM <MODEM IDENTIFIER> :
    <MODEM ATTRIBUTE LIST>
<MODEM IDENTIFIER> ::= <IDENTIFIER>
<MODEM ATTRIBUTE LIST> ::= <MODEM STATEMENT>. /
    <MODEM ATTRIBUTE LIST> <MODEM STATEMENT>.
<MODEM STATEMENT> ::= <MODEM ADAPTER STATEMENT> /
    <TRANSMIT DELAY STATEMENT> / <NOISE DELAY STATEMENT>
```

SEMANTICS

THE MODEM SECTION IS USED TO DEFINE THE PERTINENT CHARACTERISTICS OF EACH TYPE OF MODULATOR/DEMODULATOR TO BE USED WITHIN THE DATA COMMUNICATIONS NETWORK.

MODEM ADAPTER STATEMENTSYNTAX

```
<MODEM ADAPTER STATEMENT> ::= ADAPTER = <ADAPTER TYPE LIST>
<ADAPTER TYPE LIST> ::= <ADAPTER TYPE> /
    <ADAPTER TYPE LIST>, <ADAPTER TYPE>
<ADAPTER TYPE> ::= 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10 / 
    11 / 12 / 13 / 14 / 15 / 16 / 17 / 18 / 19 / 20 / 
    21 / 22 / 23 / 24 / 25 / 26 / 27 / 28 / 29 / 30
```

SEMANTICS

THE <MODEM ADAPTER STATEMENT> IS USED TO LIST ALL OF THE <ADAPTER TYPE>S WITH WHICH THE MODEM BEING DESCRIBED IS COMPATIBLE. THE <INTEGER>S CONTAINED IN THE LIST MUST BE ONE OF THE VALUES LISTED IN THE "TABLE OF DATACOM ADAPTER TYPES" IN THE APPENDIX. TYPE DEPENDS ON THE SPEED OF THE LINE, CHARACTER FORMAT, AND WHETHER THE LINE IS SYNCHRONOUS OR ASYNCHRONOUS.

TRANSMIT DELAY STATEMENTSYNTAX

```
<TRANSMIT DELAY STATEMENT> ::= TRANSMITDELAY =
    <TIME> <DYNAMIC PART>
<DYNAMIC PART> ::= (DYNAMIC) / <EMPTY>
```

SEMANTICS

THE <TRANSMIT DELAY STATEMENT> DEFINES THE AMOUNT OF TIME REQUIRED FOR THE MODEM TO GO FROM A "REQUEST TO SEND" STATUS TO A "READY TO SEND" STATUS. THE TIME MUST BE DEFINED IN UNITS OF MICROSECONDS (MICRO), MILLISECONDS (MILLI), OR SECONDS (SEC). IF THE DYNAMIC PART IS NOT EMPTY THE TRANSMITDELAY VALUE WILL BE RUN TIME CHANGEABLE. (THE SENSE OF THE DYNAMIC PART IS CONSISTENT, WHERE IT APPEARS, WITHIN A SYNTACTIC CONSTRUCT EXCEPT WHERE NOTED.)

NOISE DELAY STATEMENTSYNTAX

```
<NOISE DELAY STATEMENT> ::= NOISEDELAY = <TIME> <DYNAMIC PART>
```

SEMANTICS

THE <NOISE DELAY STATEMENT> DEFINES THE AMOUNT OF TIME THAT SHOULD BE DELAYED UPON THE MODEM ENTERING "REQUEST TO SEND" STATUS TO GET AROUND NOISE ON THE LINE TO WHICH THE MODEM IS CONNECTED. UPON DOING AN "INITIATE TRANSMIT" IN A REQUEST COMMUNICATING TO A STATION WITH CONNECTION THROUGH MODEMS, A DELAY WILL BE OBEYED CORRESPONDING TO THE EXCESS OF THE NOISEDELAY OVER THE TRANSMIT

DELAY FOR THE MODEM AT THE ADAPTER. FOR "INITIATE RECEIVE" THE SAME IS DONE EXCEPT THAT THE VALUES OF THE STATIONS MODEM ARE USED. (THIS PICTURE IS SOMEWHAT COMPLICATED BY THE TURNAROUND VALUES FOR THE STATIONS TERMINAL. IF THE INITIATE RECEIVE TURNAROUND DELAY OF THE TERMINAL EXCEEDS BOTH THE NOISE DELAY AND TRANSMIT DELAY VALUES FOR THE MODEM OF THE LINE ADAPTER, THE INITIATE RECEIVE TURNAROUND DELAY OF TERMINAL IS USED FOR THE "INITIATE TRANSMIT" DELAY.)

2.3.4. TERMINAL SECTIONSYNTAX

```
<TERMINAL SECTION> ::= <TERMINAL LIST>
<TERMINAL LIST> ::= <TERMINAL DEFINITION> / <TERMINAL DEFAULT
    DEFINITION>/
    <TERMINAL LIST> <TERMINAL DEFINITION> / <TERMINAL LIST>
    <TERMINAL DEFAULT DEFINITION>
<TERMINAL DEFINITION> ::= TERMINAL <TERMINAL IDENTIFIER> :
    <TERMINAL ATTRIBUTE LIST>
<TERMINAL IDENTIFIER> ::= <IDENTIFIER>
<TERMINAL DEFAULT DEFINITION> ::= TERMINAL DEFAULT
    <TERMINAL DEFAULT IDENTIFIER> :
    <TERMINAL DEFAULT ATTRIBUTE LIST>
<TERMINAL DEFAULT IDENTIFIER> ::= <IDENTIFIER>
<TERMINAL DEFAULT ATTRIBUTE LIST> ::= <TERMINAL DEFAULT ATTRIBUTE
    STATEMENT>./
    <TERMINAL DEFAULT ATTRIBUTE LIST>
    <TERMINAL DEFAULT ATTRIBUTE STATEMENT>.
<TERMINAL DEFAULT ATTRIBUTE STATEMENT> ::=

    <TERMINAL DEFAULT STATEMENT> /
    <TERMINAL ADDRESS STATEMENT> /
    <TERMINAL WIDTH STATEMENT> /
    <TERMINAL PAGE STATEMENT> /
    <TERMINAL TIMEOUT STATEMENT> /
    <ILLEGAL CHARACTER STATEMENT> /
    <FORMAT CHARACTER STATEMENT> /
    <INTER-CHARACTER DELAY STATEMENT> /
    <TERMINAL TURNAROUND STATEMENT> /
    <CODE STATEMENT> /
    <PARITY STATEMENT> /
    <MODE STATEMENT> /
    <BUFFER SIZE STATEMENT> /
```

```
<MAXINPUT STATEMENT> /
<BLOCKING STATEMENT> /
<SCREEN STATEMENT> /
<TERMINAL DUPLEX STATEMENT> /
<TERMINAL ADAPTER STATEMENT> /
<SPECIAL CHARACTER STATEMENT> /
<TRANSMISSION NUMBER STATEMENT> /
<WRAPAROUND STATEMENT> /
<INHIBITSYNC STATEMENT>
<TERMINAL ATTRIBUTE LIST> ::= <TERMINAL ATTRIBUTE STATEMENT>./
    <TERMINAL ATTRIBUTE LIST> <TERMINAL ATTRIBUTE STATEMENT>.
<TERMINAL ATTRIBUTE STATEMENT> ::= 
    <TERMINAL DEFAULT ATTRIBUTE STATEMENT> /
    <TERMINAL REQUEST STATEMENT>
```

SEMANTICS

A <TERMINAL DEFINITION> MAY BE THOUGHT OF AS A LIST OF THE PHYSICAL ATTRIBUTES OF THE DEVICES BEING DESCRIBED.

TERMINAL DEFAULT STATEMENT

SYNTAX

```
<TERMINAL DEFAULT STATEMENT> ::= DEFAULT =
    <TERMINAL DEFAULT IDENTIFIER>
```

SEMANTICS

THE <TERMINAL DEFAULT STATEMENT> IS USED TO SPECIFY THE NAME OF A SET OF TERMINAL ATTRIBUTES TO BE USED FOR A TERMINAL WHOSE DESCRIPTION IS INCOMPLETE. FOR TERMINALS WHICH HAVE SEVERAL COMMON CHARACTERISTICS, IT IS ADVANTAGEOUS TO GROUP THESE COMMON CHARACTERISTICS UNDER A <TERMINAL DEFAULT DEFINITION> AND LIST THE

REMAINING ATTRIBUTES UNDER EACH INDIVIDUAL <TERMINAL DEFINITION>. THE COMPILER WILL THEN REFER TO THE DEFAULT LIST TO COMPLETE THE TERMINAL SPECIFICATION.

EXAMPLE

ASSUME TERMINALS A1, A2, AND A3 HAVE THE SAME ATTRIBUTES EXCEPT FOR THE SIZE OF THE LOGICAL LINES TO BE TRANSMITTED ON OUTPUT. A <TERMINAL DEFAULT STATEMENT> COULD BE USED AS ILLUSTRATED BELOW TO SIMPLIFY THE CODING OF THE DESCRIPTIONS OF THESE 3 TERMINALS.

TERMINAL DEFAULT A123DFLT:

CODE	= ASC63.
MODE	= CONTENTION.
PARITY	= VERTICAL:EVEN.
REQUEST	= TWXREAD:RECEIVE, TWXWRITE:TRANSMIT.
SCREEN	= FALSE.
BLOCK	= FALSE.
DUPLEX	= FALSE.
BUFFER	= NULL.
ADDRESS	= NULL.
WIDTH	= 30.
MAXINPUT	= 72.
TIMEOUT	= 300 SEC.

TERMINAL A1:

DEFAULT	= A123DFLT.
WIDTH	= 50.

TERMINAL A2:

DEFAULT	= A123DFLT.
WIDTH	= 60.

TERMINAL A3:

DEFAULT = A123DFLT.
WIDTH = 35.

TERMINAL A4:

DEFAULT = A123DFLT.
DUPLEX = TRUE.

NOTE: IT MUST AGAIN BE POINTED OUT THAT SHOULD A TERMINAL SPECIFICATION, FOR EXAMPLE, CONTAIN AN ATTRIBUTE STATEMENT WHICH ALSO IS SUBSUMED UNDER A TERMINAL DEFAULT SPECIFICATION WHICH IS REFERRED TO BY A DEFAULT STATEMENT, THE ATTRIBUTE STATEMENT UNDER THE TERMINAL SPECIFICATION IS USED. THE ATTRIBUTE STATEMENTS IN A TERMINAL DEFAULT SPECIFICATION ARE DEFAULT STATEMENTS ONLY. IN THE CASE ABOVE, ONLY TERMINAL A4 HAS THE WIDTH SPECIFIED BY A123DFLT.

TERMINAL ADDRESS STATEMENT

SYNTAX

```
<TERMINAL ADDRESS STATEMENT> ::= ADDRESS = <RECEIVE ADDRESS>
    <TRANSMIT ADDRESS PART> <DIFFERENT PART> / ADDRESS = NULL
<RECEIVE ADDRESS> ::= <ADDRESS SIZE>
<TRANSMIT ADDRESS PART> ::=, <TRANSMIT ADDRESS> / <EMPTY>
<TRANSMIT ADDRESS> ::= <ADDRESS SIZE>
<DIFFERENT PART> ::= (DIFFERENT) / <EMPTY>
<ADDRESS SIZE> ::= 1 / 2 / 3
```

SEMANTICS

THE <TERMINAL ADDRESS STATEMENT> SPECIFIES THE NUMBER OF CHARACTERS WHICH ARE USED TO ADDRESS A STATION ASSOCIATED WITH A TERMINAL. AN EMPTY <TRANSMIT ADDRESS PART> IMPLIES THE TRANSMIT ADDRESS IS OF THE SAME LENGTH AS THE RECEIVE ADDRESS. A NON-EMPTY <DIFFERENT>

PART> INDICATES THAT THE TRANSMIT ADDRESS MAY BE NON-IDENTICAL TO THE RECEIVE ADDRESS. (NATURALLY, IF THE ADDRESSES ARE OF DIFFERENT LENGTHS, THE ADDRESSES MUST BE DIFFERENT.)

THIS STATEMENT MUST BE USED IF THE MODE IS HYBRID OR POLL. IF THE MODE IS CONTENTION THE ADDRESS MUST BE "NULL". THE INTEGER MUST BE LESS THAN OR EQUAL TO 3.

TERMINAL WIDTH STATEMENT

SYNTAX

<TERMINAL WIDTH STATEMENT> ::= WIDTH = <INTEGER>

SEMANTICS

THE <TERMINAL WIDTH STATEMENT> DEFINES THE LENGTH OF A PHYSICAL LINE OF OUTPUT. THIS LENGTH MUST BE LESS THAN OR EQUAL TO THE LENGTH DEFINED IN THE <BUFFER SIZE STATEMENT> OR <MAXINPUT STATEMENT>. A LINE OF OUTPUT MAY BE LESS THAN THE NUMBER OF CHARACTERS SPECIFIED BY THE <TERMINAL WIDTH STATEMENT>. IF WIDTH IS NOT DEFINED, THE BUFFER SIZE OR MAXINPUT SPECIFIED WILL BE USED.

EXAMPLE

TERMINAL A:

•
•
BUFFER = 150.
WIDTH = 50.

•
•

IF 130 CHARACTERS WERE CONTAINED IN A SINGLE OUTPUT LINE TO THE ABOVE TERMINAL, THE OUTPUT WOULD APPEAR AS 3 LINES (PROVIDED THE WRAPAROUND ATTRIBUTE FOR THE STATION TO

WHICH THE OUTPUT IS DIRECTED IS SET). THE FIRST 2 LINES EACH CONTAINING 50 CHARACTERS, THE LAST LINE CONTAINING 30 CHARACTERS.

TERMINAL PAGE STATEMENT

SYNTAX

<TERMINAL PAGE STATEMENT> ::= PAGE = <INTEGER>

SEMANTICS

THE <TERMINAL PAGE STATEMENT> SPECIFIES THE NUMBER OF PHYSICAL LINES EQUAL TO A PHYSICAL PAGE. A ZERO VALUE INDICATES THAT PAGINATION CAN BE ARBITRARY.

TERMINAL TIMEOUT STATEMENT

SYNTAX

<TERMINAL TIMEOUT STATEMENT> ::= TIMEOUT = <TIME> <DYNAMIC PART>

SEMANTICS

THE <TERMINAL TIMEOUT STATEMENT> DEFINES THE INTERVAL OF TIME TO WAIT BETWEEN RECEIPT OF ONE CHARACTER AND THE START OF THE NEXT CHARACTER FROM A TERMINAL BEFORE ASSUMING THAT THE STATION ASSOCIATED WITH THE TERMINAL HAS "TIMED OUT".

ILLEGAL CHARACTER STATEMENTSYNTAX

```
<ILLEGAL CHARACTER STATEMENT> ::= ILLEGALCHR =
  <ILLEGAL CHARACTER LIST>
<ILLEGAL CHARACTER LIST> ::= <UNITARY STRING> /
  <ILLEGAL CHARACTER LIST>, <UNITARY STRING>
```

SEMANTICS

THE <ILLEGAL CHARACTER STATEMENT> LISTS ONE OR MORE CHARACTERS WHOSE PRESENCE IN A MESSAGE TEXT TO BE TRANSMITTED IS ILLEGAL.

FORMAT CHARACTER STATEMENTSYNTAX

```
<FORMAT CHARACTER STATEMENT> ::= <FORMAT CHARACTER> =
    <UNITARY STRING>
<FORMAT CHARACTER> ::= CARRIAGE / LINEFEED / HOME / CLEAR
```

SEMANTICS

THE <FORMAT CHARACTER STATEMENT> PROVIDES A MEANS OF DEFINING THE CARRIAGE RETURN, LINEFEED, HOME, AND CLEAR CHARACTERS. THE HOME AND CLEAR CHARACTERS ARE SIGNIFICANT ONLY FOR TERMINALS WHOSE <SCREEN STATEMENT> IS SET TRUE. IF THE DEVICE HAS DISPLAY CAPABILITIES (I.E. SCREEN = TRUE) AND THE CLEAR FORMAT CHARACTER IS NOT SPECIFIED, IT WILL BE ASSUMED THAT THE HOME CHARACTER AUTOMATICALLY CLEARS THE SCREEN. (FOR THE PRESENT, THE SPECIFICATION OF THESE CHARACTERS IS COMMENTARY ONLY).

INTER-CHARACTER DELAY STATEMENTSYNTAX

```
<INTER-CHARACTER DELAY STATEMENT> ::= ICTDELAY = <TIME>
```

SEMANTICS

THE <INTER-CHARACTER DELAY STATEMENT> DEFINES THE INTER-CHARACTER TRANSMISSION DELAY TIME FOR A TERMINAL. THE DCP WILL DELAY THE <TIME> SPECIFIED BETWEEN EACH CHARACTER TRANSMITTED AS PART OF A MESSAGE. (NOTE THAT THIS DELAY MAY NOT BE DYNAMIC.)

TERMINAL TURNAROUND STATEMENTSYNTAX

```
<TERMINAL TURNAROUND STATEMENT> ::= TURNAROUND = <IRT>
<IRT> ::= <TIME>
```

SEMANTICS

THE <TERMINAL TURNAROUND STATEMENT> SPECIFIES THE TIME BETWEEN THE DCP "TURNING THE LINE AROUND" AND THE TERMINAL BEING ABLE TO RECEIVE CHARACTERS. <IRT> IS THE TIME FROM THE DCF INITIATING TRANSMIT TO THE TIME THE TERMINAL COULD RECEIVE CHARACTERS.

CODE STATEMENTSYNTAX

```
<CODE STATEMENT> ::= CODE = <CODE TYPE>
<CODE TYPE> ::= EBCDIC / BCL / BCD / BAUDOT / ASC63 / ASC67
```

SEMANTICS

THE <CODE STATEMENT> SPECIFIES THE CHARACTER SET WHICH WILL BE USED TO COMMUNICATE WITH A SPECIFIC TERMINAL. TRANSLATION CANNOT BE AVOIDED UPON INPUT TO THE DCP FROM A TERMINAL. INPUT CHARACTERS ARE ALWAYS TRANSLATED TO EBCDIC.

PARITY STATEMENTSYNTAX

```
<PARITY STATEMENT> ::= PARITY = <PARITY LIST> / PARITY = NULL
<PARITY LIST> ::= <PARITY TYPE> / <PARITY TYPE>, <PARITY TYPE>
<PARITY TYPE> ::= VERTICAL : <PARITY VALUE> /
    HORIZONTAL <HORIZONTAL PARITY TYPE> : <PARITY VALUE>
<PARITY VALUE> ::= ODD / EVEN
<HORIZONTAL PARITY TYPE> ::= (<HORIZONTAL PARITY VARIANT>) /
    <EMPTY>
<HORIZONTAL PARITY VARIANT> ::= 0 / 1
```

SEMANTICS

THE <PARITY STATEMENT> IS USED TO DEFINE THE TYPE OF PARITY CHECKING OR GENERATION TO BE PERFORMED BY THE DCP FOR A TERMINAL. HORIZONTAL OR VERTICAL CHECKING MAY BE DONE FOR EVEN OR ODD PARITY. THE VERTICAL OPTION REFERS TO THE PARITY OF THE CHARACTER ITSELF, WHILE THE HORIZONTAL OPTION IS USED FOR PARITY OF THE BLOCK CHECK CHARACTER (BCC). IF THE NULL OPTION IS USED, PARITY IS NOT CHECKED REGARDLESS OF ITS PRESENCE. ONLY ONE OF EACH OF THE TWO <PARITY TYPE>S IS ALLOWED. SHOULD A REQUEST MENTIONED IN A TERMINAL REQUEST STATEMENT MENTION THE "BCC" , IT IS MANDATORY THAT HORIZONTAL PARITY BE SPECIFIED AS NON-NULL. A <HORIZONTAL PARITY VARIANT> OF 0 MEANS THAT THE VERTICAL PARITY BIT OF THE BLOCK CHECK CHARACTER IS A TRUE PARITY BIT WHEREAS A VALUE OF 1 INDICATES THAT THE VERTICAL PARITY IS THE SUM OF THE VERTICAL PARITY BITS OF THE SUMMED CHARACTERS.

AN <EMPTY> <HORIZONTAL PARITY TYPE> IS SEMANTICALLY EQUIVALENT TO SPECIFYING A NON-EMPTY ONE WITH A VARIANT OF 0.

MODE STATEMENT

SYNTAX

```
<MODE STATEMENT> ::= MODE = <MODE TYPE>
<MODE TYPE> ::= POLL / CONTENTION / HYBRID
```

SEMANTICS

THE <MODE STATEMENT> DESIGNATES THE MODE OF OPERATION OF THE TERMINAL, THAT IS, WHETHER THIS DEVICE IS OF POLL, CONTENTION, OR HYBRID TYPE.

BUFFER SIZE STATEMENTSYNTAX

<BUFFER SIZE STATEMENT> ::= BUFFER = <INTEGER> / BUFFER = NULL

SEMANTICS

THE <BUFFER SIZE STATEMENT> DEFINES THE MAXIMUM SIZE OF A PHYSICAL LINE AND MUST BE INCLUDED IN THE TERMINAL DESCRIPTION OF A BUFFERED DEVICE. IF THE TERMINAL DEVICE HAS NO BUFFER, THE NULL OPTION SHOULD BE USED.

MAXINPUT STATEMENTSYNTAX

<MAXINPUT STATEMENT> ::= MAXINPUT = <INTEGER>

SEMANTICS

THE <MAXINPUT STATEMENT> APPLIES ONLY TO INPUTS FROM THE TERMINAL AND DEFINES THE MAXIMUM SIZE OF A PHYSICAL LINE FOR UNBUFFERED DEVICES. A <MAXINPUT STATEMENT> AND A <BUFFER SIZE STATEMENT> MAY NOT APPEAR IN THE SAME TERMINAL DESCRIPTION UNLESS BUFFER IS DEFINED AS NULL.

BLOCKING STATEMENTSYNTAX

<BLOCKING STATEMENT> ::= BLOCKED = <LOGICAL VALUE>

SEMANTICS

THE <BLOCKING STATEMENT> IF SET TRUE, INFORMS THE DCP THAT THE TERMINAL IS CAPABLE OF SENDING AND/OR RECEIVING DATA IN BLOCKED FORMAT. THE REQUESTS DEFINED FOR THE TERMINAL SHOULD BE CODED IN A MANNER THAT ALLOWS THE BLOCKED FORMAT. THE DATA COMMUNICATIONS SYSTEM WILL, UNDER APPROPRIATE CIRCUMSTANCES, ATTEMPT BLOCKED OUTPUT. (THIS IS EXEMPLARY OF THE CONVENTIONS THAT MUST BE OBEYED IN THE WRITING OF REQUESTS.)

SCREEN STATEMENTSYNTAX

<SCREEN STATEMENT> ::= SCREEN = <LOGICAL VALUE>

SEMANTICS

THE <SCREEN STATEMENT> IS SET TRUE ONLY IF A TERMINAL HAS DISPLAY CAPABILITIES. (AT PRESENT THIS ATTRIBUTE IS NOT UTILIZED EXCEPT IN ALLOWING THE SPECIFICATION OF THE HOME AND/OR CLEAR CHARACTERS.)

TERMINAL DUPLEX STATEMENTSYNTAX

<TERMINAL DUPLEX STATEMENT> ::= DUPLEX = <LOGICAL VALUE>

SEMANTICS

THE <TERMINAL DUPLEX STATEMENT> SPECIFIES WHETHER OR NOT THE TERMINAL MUST BE ATTACHED TO LINES OF DUPLEX TYPE. THIS STATEMENT MUST BE INCLUDED IN THE TERMINAL DESCRIPTION.

TERMINAL ADAPTER STATEMENTSYNTAX

<TERMINAL ADAPTER STATEMENT> ::= ADAPTER = <ADAPTER TYPE LIST>

SEE MODEM ADAPTER STATEMENT AS DESCRIBED UNDER THE MODEM SECTION. THIS STATEMENT SPECIFIES THE ADAPTER TYPES WITH WHICH THE TERMINAL MAY BE INTERFACED WITH THE DCP.

TERMINAL REQUEST STATEMENTSYNTAX

<TERMINAL REQUEST STATEMENT > ::= REQUEST <APPLICATION QUALIFIER> =
<REQUEST IDENTIFICATION LIST>

<APPLICATION QUALIFIER> ::= [<APPLICATION NUMBER>] / <EMPTY>

<APPLICATION NUMBER> ::= 1 / 2 / 3 / 4 / 5 / 6

<REQUEST IDENTIFICATION LIST> ::= <REQUEST IDENTIFICATION> /
<REQUEST IDENTIFICATION>, <REQUEST IDENTIFICATION>

<REQUEST IDENTIFICATION> ::= <REQUEST IDENTIFIER> :

B6700 NETWORK DEFINITION LANGUAGE

<REQUEST ACTION>

<REQUEST ACTION> ::= RECEIVE / TRANSMIT

SEMANTICS

THE <TERMINAL REQUEST STATEMENT> ASSOCIATES THE INPUT-OUTPUT CAPABILITIES OF A TERMINAL WITH THE <REQUEST IDENTIFIER>S WHICH WILL HANDLE INPUT FROM (RECEIVE) AND OUTPUT TO (TRANSMIT) THE TERMINAL.

THE <REQUEST ACTION>S DEFINED FOR THE TERMINAL WILL BE CHECKED FOR CONSISTENCY WITH THE <MYUSE STATEMENT> IN ANY STATION DEFINITION REFERENCING THE TERMINAL. IF, FOR EXAMPLE, A STATION SPECIFIES BOTH INPUT AND OUTPUT CAPABILITIES IN THE <MYUSE STATEMENT>, BUT THE ASSOCIATED TERMINAL HAS ONLY A RECEIVE REQUEST DEFINED, AN ERROR WILL OCCUR. ONLY ONE OF EACH OF THE TWO <REQUEST ACTION>S IS PERMITTED.

THE <EMPTY> APPLICATION QUALIFIER IS EQUIVALENT TO THE NON-EMPTY FORM HAVING AN APPLICATION NUMBER EQUAL TO ONE. THE APPLICATION QUALIFIER ALLOWS THE SPECIFICATION OF SIX OR LESS LINE DISCIPLINE ROUTINES FOR THE SAME DEVICE WHICH PRESUMABLY DIFFER FOR "APPLICATION" DEPENDENT REASONS. THE "STANDARD" APPLICATION- THAT USED FOR INITIALIZATION- IS THE ONE HAVING AN APPLICATION NUMBER EQUALING ONE; FOR THIS REASON, THIS "APPLICATION REQUEST SET" MUST BE SPECIFIED.

SPECIAL CHARACTER STATEMENTSYNTAX

```
<SPECIAL CHARACTER STATEMENT> ::= <SPECIAL CHARACTER NAME> =
  <UNITARY STRING> <DYNAMIC PART>
<SPECIAL CHARACTER NAME> ::= END / BACKSPACE / LINEDELETE / WRU
```

SEMANTICS

THE <SPECIAL CHARACTER STATEMENT> DEFINES THE END, BACKSPACE, LINEDELETE, AND WRU CHARACTER FOR A TERMINAL. THE <SPECIAL CHARACTER STATEMENT> FOR A PARTICULAR SPECIAL CHARACTER MUST BE GIVEN IF A REQUEST FOR THE TERMINAL MENTIONS THE SPECIAL CHARACTER. (BACKSPACE CHARACTER MEANS BOTH BACKSPACE AND DELETE PRECEDING CHARACTER NOT MERELY BACKSPACE AS CARRIAGE OR CARRIER MOVEMENT.)

TRANSMISSION NUMBER STATEMENTSYNTAX

```
<TRANSMISSION NUMBER STATEMENT> ::= TRANSMISSION =
    <TRANSMISSION NUMBER>
<TRANSMISSION NUMBER> ::= 0 / 1 / 2 / 3 / NULL
```

SEMANTICS

THE <TRANSMISSION NUMBER STATEMENT> SPECIFIES THE LENGTH OF THE TRANSMISSION NUMBER. THE NUMBER ZERO AND NULL ARE EQUIVALENT AND SPECIFY NO TRANSMISSION NUMBER WILL BE USED. A NON-NULL TRANSMISSION NUMBER MUST BE SPECIFIED IF THE ITEM "TRAN" IS MENTIONED IN A REQUEST OF THE TERMINAL.

WRAPAROUND STATEMENTSYNTAX

```
<WRAPAROUND STATEMENT> ::= WRAPAROUND = <LOGICAL VALUE>
```

SEMANTICS

THE <WRAPAROUND STATEMENT> SPECIFIES WHETHER AUTOMATIC WRAPAROUND OF MESSAGES EXCEEDING THE LINE WIDTH OCCURS -- THAT IS, WHETHER THE DEVICE, IN RECEIVING A MESSAGE EXCEEDING THE LINE WIDTH, SEGMENTS AUTOMATICALLY THE RECEIVED MESSAGE, PLACING THE EXCESS ON SUCCESSIVE LINES OR NOT.

INHIBIT SYNC STATEMENT

SYNTAX

<INHIBITSYNC STATEMENT> ::= INHIBITSYNC = <LOGICAL VALUE>

SEMANTICS

THE INHIBITSYNC STATEMENT INDICATES THAT SYNCRONIZATION CHARACTERS SHOULD NOT BE TRANSMITTED AND WILL NOT BE RECEIVED FROM THE TERMINAL.

2.3.5. STATION SECTIONSYNTAX

```
<STATION SECTION> ::= <STATION LIST>
<STATION LIST> ::= <STATION DEFINITION> /
    <STATION DEFAULT DEFINITION> / <STATION LIST>
    <STATION DEFINITION> / <STATION LIST>
    <STATION DEFAULT DEFINITION>
<STATION DEFINITION> ::= STATION
    <STATION IDENTIFIER> : <STATION ATTRIBUTE LIST>
<STATION IDENTIFIER> ::= <GENERALIZED IDENTIFIER>
<STATION DEFAULT DEFINITION> ::= STATION DEFAULT
    <STATION DEFAULT IDENTIFIER> :
    <STATION DEFAULT ATTRIBUTE LIST>
<STATION DEFAULT IDENTIFIER> ::= <GENERALIZED IDENTIFIER>
<STATION DEFAULT ATTRIBUTE LIST> ::= <STATION DEFAULT ATTRIBUTE
    STATEMENT>./
    <STATION DEFAULT ATTRIBUTE LIST> <STATION DEFAULT ATTRIBUTE
    STATEMENT>.
<STATION DEFAULT ATTRIBUTE STATEMENT> ::=*
    <STATION DEFAULT STATEMENT> / <STATION ADDRESS STATEMENT> /
    <STATION WIDTH STATEMENT> / <STATION PAGE STATEMENT> /
    <STATION TIMELIMIT STATEMENT> /
    <CONTROL CHARACTER STATEMENT> / <WRAPAROUND STATEMENT> /
    <MYUSE STATEMENT> / <SPO STATEMENT> /
    <LOGICALACK STATEMENT> / <MCS STATEMENT> /
    <STATION PHONE STATEMENT> / <ENABLEINPUT STATEMENT> /
    <FREQUENCY STATEMENT> / <STATION ADAPTER STATEMENT> /
    <STATION MODEM STATEMENT> / <STATION TERMINAL STATEMENT> /
    <RETRY STATEMENT>
<STATION ATTRIBUTE LIST> ::= <STATION ATTRIBUTE STATEMENT> . /
    <STATION ATTRIBUTE LIST> <STATION ATTRIBUTE STATEMENT> .
<STATION ATTRIBUTE STATEMENT> ::=
```

<STATION DEFAULT ATTRIBUTE STATEMENT> /
<ALTERNATE STATEMENT>

SEMANTICS

A <STATION DEFINITION> MAY BE THOUGHT OF AS A LIST OF THE LOGICAL ATTRIBUTES OF THE STATION BEING DESCRIBED.

STATION DEFAULT STATEMENT

SYNTAX

<STATION DEFAULT STATEMENT> ::= DEFAULT =
<STATION DEFAULT IDENTIFIER>

SEMANTICS

THE <STATION DEFAULT STATEMENT> IS USED IN THE SAME MANNER THAT A <TERMINAL DEFAULT STATEMENT> IS USED. THE <TERMINAL DEFAULT STATEMENT> IS DISCUSSED UNDER THE DESCRIPTION OF TERMINAL DEFAULT SEMANTICS.

STATION ADDRESS STATEMENT

SYNTAX

<STATION ADDRESS STATEMENT> ::= ADDRESS = <ADDRESS LIST PART>
<ADDRESS LIST PART> ::= <ADDRESS PART> / <ADDRESS LIST PART>,
<ADDRESS PART>
<ADDRESS PART> ::= <ADDRESS LIST> / <ADDRESS PAIR LIST>
<ADDRESS LIST> ::= <ADDRESS> / <ADDRESS LIST>, <ADDRESS>
<ADDRESS> ::= <STRING>
<ADDRESS PAIR LIST> ::= <ADDRESS PAIR> / <ADDRESS PAIR LIST>,

<ADDRESS PAIR>
<ADDRESS PAIR> ::= (<ADDRESS>,<ADDRESS>)

SEMANTICS

THE <STATION ADDRESS STATEMENT> IS USED TO SPECIFY THE ADDRESS OF A STATION FOR OPERATIONS SUCH AS POLLING AND SELECTING.

IF NO <STATION ADDRESS STATEMENT> IS DEFINED FOR A STATION, THE MODE OF THE ASSOCIATED TERMINAL MUST BE CONTENTION.

THE LENGTH OF THE ADDRESS SPECIFIED MUST BE EQUAL TO THE LENGTH AS DEFINED IN THE <TERMINAL ADDRESS STATEMENT> OF THE ASSOCIATED TERMINAL.

THE MULTIPLE ENTRY FORM OF THE <ADDRESS LIST> IS USED IN CONJUNCTION WITH DIALIN LINES. DIALIN LINES ARE DISCUSSED IN THE SECTION ON LINE SEMANTICS. THE ADDRESS PAIR FORM OF THE ADDRESS LIST IS APPROPRIATE ONLY IF THE STATIONS TERMINALS ADDRESS STATEMENT ALLOWED THAT THE RECEIVE ADDRESS MAY BE DIFFERENT FROM THE TRANSMIT ADDRESS. (THE FIRST MEMBER OF AN ADDRESS PAIR IS THE RECEIVE ADDRESS, THE SECOND THE TRANSMIT ADDRESS.)

STATION WIDTH STATEMENT

SYNTAX

<STATION WIDTH STATEMENT> ::= WIDTH = <INTEGER>

SEMANTICS

THE <STATION WIDTH STATEMENT> SPECIFIES THE MAXIMUM NUMBER OF CHARACTERS IN A LOGICAL LINE OF OUTPUT. THE <INTEGER> DEFINED MUST BE LESS THAN OR EQUAL TO THE NUMBER OF CHARACTERS SPECIFIED FOR THE <TERMINAL WIDTH STATEMENT>, UNDER THE DEFINITION OF THE STATIONS TERMINAL. IF NO <STATION WIDTH STATEMENT> IS INCLUDED IN THE STATION DESCRIPTION, THEN INFORMATION SPECIFIED FOR THE TERMINAL

ASSOCIATED WITH THE STATION WILL BE USED AS A DEFAULT WIDTH SIZE.

STATION PAGE STATEMENT

SYNTAX

`<STATION PAGE STATEMENT> ::= PAGE = <INTEGER>`

SEMANTICS

THE `<STATION PAGE STATEMENT>` DEFINES THE NUMBER OF LOGICAL LINES PER LOGICAL PAGE. THE `<INTEGER>` SPECIFIED MUST BE LESS THAN OR EQUAL TO THE NUMBER OF LINES SPECIFIED FOR THE `<TERMINAL PAGE STATEMENT>` FOR THE STATIONS TERMINAL UNLESS THE NUMBER IS ZERO INDICATING PAGING CAN BE ARBITRARY. IF A `<STATION PAGE STATEMENT>` IS NOT INCLUDED IN THE STATION DESCRIPTION, THE STATIONS TERMINAL SPECIFICATIONS FOR PAGINATION ARE ASSUMED.

STATION TIME LIMIT STATEMENT

SYNTAX

`<STATION TIMELIMIT STATEMENT> ::= TIMELIMIT = <TIME>`

SEMANTICS

THE `<STATION TIMELIMIT STATEMENT>` DEFINES THE INTERVAL OF TIME TO WAIT AFTER ACTIVITY CEASES FROM THAT STATION BEFORE ASSUMING THAT IT IS NO LONGER THERE. (ACTION UPON THE OCCURRENCE OF THIS CONDITION IS TO BE SPECIFIED.)

CONTROL CHARACTER STATEMENTSYNTAX

`<CONTROL CHARACTER STATEMENT> ::= CONTROL = <UNITARY STRING>`

SEMANTICS

THE <CONTROL CHARACTER STATEMENT> DEFINES A CHARACTER WHOSE APPEARANCE IN A RECEIVE TEXT FROM THE STATION SPECIFIES THAT THE CHARACTERS FOLLOWING IT ARE TO BE SENT DIRECTLY TO THE STATION'S CONTROLLING MCS SHOULD THE CHARACTER BE THE FIRST NON-BLANK CHARACTER WITHIN THE TEXT, AND THE REQUEST DETECTS IT.

WRAPAROUND STATEMENTSYNTAX

`<WRAPAROUND STATEMENT> ::= WRAPAROUND = <LOGICAL VALUE>`

SEMANTICS

THE <WRAPAROUND STATEMENT> IF SET TRUE PREVENTS THE TRUNCATION OF MESSAGES WHOSE LENGTH IS GREATER THAN THAT SPECIFIED BY THE <WIDTH STATEMENT>. IF THE WIDTH WAS DEFINED TO BE 35 CHARACTERS AND 40 CHARACTERS ARE TRANSMITTED AS OUTPUT, THE LAST 5 CHARACTERS WILL BE PRINTED ON THE NEXT LINE IF WRAPAROUND IS SET TRUE.

MYUSE STATEMENTSYNTAX

```
<MYUSE STATEMENT> ::= MYUSE = <IO LIST>
<IO LIST> ::= INPUT / OUTPUT / INPUT, OUTPUT / OUTPUT, INPUT
```

SEMANTICS

THE <MYUSE STATEMENT> SPECIFIES IF A STATION IS TO BE USED FOR INPUT ONLY, OUTPUT ONLY, OR BOTH INPUT AND OUTPUT.

A <REQUEST STATEMENT> MUST BE DEFINED WITHIN THE TERMINAL DESCRIPTION ASSOCIATED WITH THIS STATION FOR HANDLING THE INPUT AND/OR OUTPUT CAPABILITIES AS SPECIFIED IN THE <MYUSE STATEMENT>. THUS, IF THE STATION IS TO RECEIVE INPUT FROM AND TRANSMIT OUTPUT TO THE SYSTEM, THE TERMINAL NAMED IN THE <TERMINAL STATEMENT> FOR THE STATION MUST CONTAIN A TRANSMIT AND RECEIVE REQUEST.

SPO STATEMENTSYNTAX

```
<SPO STATEMENT> ::= SPO = <LOGICAL VALUE>
```

SEMANTICS

THE <SPO STATEMENT> SPECIFIES WHETHER OR NOT THE STATION CAN BE TREATED AS A SPO. THAT IS, ALL SYSTEM MESSAGES MAY BE DIRECTED TO THE STATION, AND THE STATION MAY INPUT MESSAGES TO THE SYSTEM AS IF IT WERE THE CENTRAL SPO. (THIS IS A TENTATIVE POSITION.)

LOGICALACK STATEMENT

SYNTAX

<LOGICALACK STATEMENT> ::= LOGICALACK = <LOGICAL VALUE>

SEMANTICS

THE CONSEQUENCES OF THIS STATEMENT ARE EXPLAINED WITH THE RELATED REQUEST STATEMENTS, "TERMINATE LOGICALACK" AND "TERMINATE LOGICALACK RETURN"

MCS STATEMENTSYNTAX

```
<MCS STATEMENT> ::= MCS = <MCS IDENTIFIER>
<MCS IDENTIFIER> ::= <GENERALIZED IDENTIFIER>
```

SEMANTICS

THE <MCS STATEMENT> GIVES THE NAME OF THE MCS WHICH IS TO CONTROL AND HANDLE MESSAGES TO AND FROM THE STATION AND MAINTAIN POSSIBLE SECURITY AND HANDLE ERROR RECOVERY FOR THE STATION.

STATION PHONE STATEMENTSYNTAX

```
<STATION PHONE STATEMENT> ::= PHONE = <INTEGER>
```

SEMANTICS

THE <PHONE STATEMENT> LISTS THE TELEPHONE NUMBER ASSOCIATED WITH THE STATION BEING DESCRIBED. IMBEDDED HYPHENS (AS NORMALLY USED IN PHONE NUMBERS) ARE NOT ALLOWED AND SHOULD BE DELETED. THE PRESENCE OF THE PHONE STATEMENT IMPLIES THAT THE SYSTEM CAN DIAL THE STATION.

ENABLEINPUT STATEMENTSYNTAX

```
<ENABLEINPUT STATEMENT> ::= ENABLEINPUT = <LOGICAL VALUE>
```

SEMANTICS

THE <ENABLEINPUT STATEMENT> IF SET TRUE IMPLIES THAT, IF THE STATION IS ON AN ATTACHED LINE, INPUT FROM THE STATION WILL BE ACCEPTED AND/OR SOLICITED (IF THE STATION'S TERMINAL IS A POLLED DEVICE) UPON COMPLETION OF THE INITIALIZATION OF THE DATA COMMUNICATIONS SYSTEM WITHOUT HAVING A SPECIFIC REQUEST TO DO SO FROM A MCS.

FREQUENCY STATEMENTSYNTAX

`<FREQUENCY STATEMENT> ::= FREQUENCY = <TIME>`

SEMANTICS

THE `<FREQUENCY STATEMENT>` SPECIFIES THE APPROXIMATE INTERVALS IN SECONDS AT WHICH THE STATION BEING DESCRIBED IS TO BE POLLED. THE MAXIMUM NUMBER WHICH MAY BE SPECIFIED IS 255 SECONDS. THE `<TIME>` WILL BE ROUNDED TO THE NEAREST SECOND.

STATION ADAPTER STATEMENTSYNTAX

`<STATION ADAPTER STATEMENT> ::= ADAPTER = <ADAPTER TYPE>`

SEMANTICS

THE `<STATION ADAPTER STATEMENT>` SPECIFIES THE `<ADAPTER TYPE>` TO BE USED WITH THE STATION BEING DESCRIBED. THE `<INTEGER>` MUST BE CHOSEN FROM THE LIST OF VALUES DEFINED IN THE "TABLE OF DATACOM ADAPTER TYPES" IN AN APPENDIX TO THIS DOCUMENT. THE `<ADAPTER TYPE>` MUST BE COMPATIBLE WITH THE LIST OF THE TYPES NAMED IN THE TERMINAL DESCRIPTION ASSOCIATED WITH THE STATION.

STATION MODEM STATEMENTSYNTAX

`<STATION MODEM STATEMENT> ::= MODEM = <MODEM IDENTIFIER>`

SEMANTICS

THE `<MODEM IDENTIFIER>` MUST REFERENCE A DESCRIPTION PREVIOUSLY DEFINED IN THE MODEM SECTION. THE LIST OF ADAPTER TYPES FOR THE `<MODEM IDENTIFIER>` WILL BE CHECKED AGAINST THE STATION AND TERMINAL `<ADAPTER TYPE LIST>`S FOR COMPATIBILITY. IF INCONSISTENCIES ARISE, AN ERROR WILL BE GENERATED BY THE COMPILER. IF THE STATION BEING DESCRIBED, OR THE LINE ASSOCIATED WITH THE STATION HAS NO MODEM STATEMENT, NDL WILL ASSUME A DIRECT CONNECTION BETWEEN THE ADAPTER AND THE STATION. THE STATEMENT IS NECESSARY IF THE STATION'S TERMINAL IS COMPATIBLE WITH SEVERAL TYPES OF ADAPTERS IN ORDER TO RESOLVE AMBIGUITY. THE `<MODEM IDENTIFIER>` MUST REFERENCE A DEFINITION PREVIOUSLY GENERATED BY THE NDL PROCESSOR.

STATION TERMINAL STATEMENTSYNTAX

`<STATION TERMINAL STATEMENT> ::= TERMINAL = <TERMINAL IDENTIFIER>`

SEMANTICS

THE `<STATION TERMINAL STATEMENT>` SPECIFIES THE NAME OF THE TERMINAL DESCRIPTION WHICH DEFINES THE PHYSICAL CHARACTERISTICS OF THE STATION BEING DESCRIBED. MORE THAN ONE STATION DESCRIPTION MAY REFERENCE THE SAME TERMINAL DESCRIPTION.

ALTERNATE STATEMENTSYNTAX

```
<ALTERNATE STATEMENT> ::= ALTERNATE = <ALTERNATE LIST>
<ALTERNATE LIST> ::= <STATION IDENTIFIER> / <ALTERNATE LIST>,
    <STATION IDENTIFIER>
```

SEMANTICS

THE <ALTERNATE STATEMENT> IS COMMENTARY AS FAR AS THE B6700 DATACOM SYSTEM IS CONCERNED.

RETRY STATEMENTSYNTAX

```
<RETRY STATEMENT> ::= RETRY = <INTEGER>
```

SEMANTICS

THE <RETRY STATEMENT> GIVES INITIAL AND/OR DEFAULT RETRY COUNT FOR THE STATION. THE VALUE CAN BE CHANGED BY THE STATIONS CONTROLLING MCS ONCE IT IS ATTACHED. (FOR DETAILS SEE DCALGOL INFORMATION MANUAL - DOCUMENT NUMBER 5000052.)

2.3.6. LINE SECTIONSYNTAX

```
<LINE SECTION> ::= <LINE LIST>
<LINE LIST> ::= <LINE DEFINITION> / <LINE LIST> <LINE DEFINITION> /
    <LINE DEFAULT DEFINITION> / <LINE LIST>
    <LINE DEFAULT DEFINITION>
<LINE DEFAULT DEFINITION> ::= LINE DEFAULT
    <LINE DEFAULT IDENTIFIER> : <LINE DEFAULT ATTRIBUTE LIST>
<LINE DEFAULT IDENTIFIER> ::= <IDENTIFIER>
<LINE DEFINITION> ::= LINE <LINE IDENTIFIER> :
    <LINE ATTRIBUTE LIST>
<LINE IDENTIFIER> ::= <IDENTIFIER>
<LINE DEFAULT ATTRIBUTE LIST> ::=
    <LINE DEFAULT ATTRIBUTE STATEMENT>. /
    <LINE DEFAULT ATTRIBUTE LIST>
    <LINE DEFAULT ATTRIBUTE STATEMENT>.
<LINE DEFAULT ATTRIBUTE STATEMENT> ::= <LINE DEFAULT STATEMENT> /
    <LINE ADDRESS STATEMENT> /
    <LINE ADAPTER CLASS STATEMENT> / <LINE PHONE STATEMENT> /
    <LINE MODEM STATEMENT> / <MAXSTATIONS STATEMENT>
<LINE ATTRIBUTE LIST> ::= <LINE ATTRIBUTE STATEMENT>. /
    <LINE ATTRIBUTE LIST> <LINE ATTRIBUTE STATEMENT>.
<LINE ATTRIBUTE STATEMENT> ::= <LINE DEFAULT ATTRIBUTE STATEMENT> /
    <LINE TYPE STATEMENT> / <LINE STATION STATEMENT> /
    <ANSWER STATEMENT> / <ENDOFNUMBER STATEMENT>
```

SEMANTICS

THE LINE SECTION OF A NETWORK DEFINITION DESCRIBES THE INITIAL STATE OF ALL LINES IN THE NETWORK AND THEIR LOGICAL RELATIONSHIP TO THE STATIONS IN THE NETWORK.

LINE DEFAULT STATEMENTSYNTAX

<LINE DEFAULT STATEMENT> ::= DEFAULT = <LINE DEFAULT IDENTIFIER>

SEMANTICS

THE <LINE DEFAULT STATEMENT> IS USED IN THE SAME MANNER THAT A <TERMINAL DEFAULT STATEMENT> IS USED. THE <TERMINAL DEFAULT STATEMENT> IS DISCUSSED UNDER THE DESCRIPTION OF TERMINAL DEFAULT SEMANTICS.

LINE ADDRESS STATEMENTSYNTAX

<LINE ADDRESS STATEMENT> ::= ADDRESS =
<DCP NUMBER> : <CLUSTER ADDRESS> : <ADAPTER ADDRESS>
<DCP NUMBER> ::= 0 / 1 / 2 / 3 / 4 / 5 / 6 / ?
<CLUSTER ADDRESS> ::= 0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 /
10 / 11 / 12 / 13 / 14 / 15
<ADAPTER ADDRESS> ::= 0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 /
10 / 11 / 12 / 13 / 14 / 15

SEMANTICS

THE LINE ADDRESS STATEMENT IS USED TO SPECIFY THE DCP NUMBER, THE CLUSTER NUMBER AND THE ADAPTER NUMBER WITHIN THE CLUSTER TO WHICH THE LINE IS ATTACHED.

EXAMPLE:

ADDRESS = 2 : 0 : 15.

THIS STATEMENT WOULD APPEAR IN THE LINE DESCRIPTION OF THE LINE WHICH IS CONNECTED TO CLUSTER NUMBER ZERO AT ADAPTER NUMBER 15 OF DCP NUMBER TWO. THAT WOULD BE THE LOWEST-NUMBERED CLUSTER AND THE HIGHEST-NUMBERED ADAPTER WITHIN THAT CLUSTER.

LINE TYPE STATEMENTSYNTAX

```
<LINE TYPE STATEMENT> ::= TYPE = <TYPE LIST>
<TYPE LIST> ::= <TYPE> / <TYPE LIST>, <TYPE>
<TYPE> ::= DIALIN / DIALOUT: <LINE IDENTIFIER> / REMOTE / DUPLEX /
    DUPLEX (RECEIVE): <LINE IDENTIFIER> /
    DUPLEX (TRANSMIT) : <LINE IDENTIFIER> /
    TOUCHTONE : <LINE IDENTIFIER> /
    PASSIVE
```

SEMANTICS

THE TYPE STATEMENT SPECIFIES THE FOLLOWING INFORMATION:

1. LINES WHICH CAN BE DIALED (BY THE SYSTEM)
2. LINES WHICH DIAL IN (TO THE SYSTEM)
3. SPARE ADAPTERS (PASSIVE LINES)
4. TOUCHTONE-VOICE RESPONSE PAIRS
5. PAIRS OF LINES USED TO SIMULATE DUPLEX MODE USING TWO HALF-DUPLEX LINES
6. PSEUDO-LINES EQUIVALENT TO DIALABLE SETS OF STATIONS.

THE "TABLE OF ALLOWABLE COMBINATIONS OF LINE TYPES" CONTAINED IN THE APPENDIX SUMMARIZES THE ALLOWABLE COMBINATIONS OF TYPES, WHICH MAY BE SPECIFIED FOR ONE LINE.

NOTE: LINES RELATED THROUGH A TYPE STATEMENT MUST BE IN

DIALOUT

A LINE WHICH IS ATTACHED TO AN AUTOMATIC CALLING UNIT (ACU) AND IS CAPABLE OF DIALING OUT TO A DATASET IS CALLED DIALOUT. THE <LINE IDENTIFIER> DESIGNATES THE ACU ASSOCIATED WITH THE DIALOUT LINE. THE DIALOUT LINE AND ITS ASSOCIATED ACU MAY BE USED BY THE SYSTEM TO CALL UP ANY COMPATIBLE REMOTE LINE OR STATION WHICH CAN BE DIALED. THE <LINE IDENTIFIER> NAMED IN THE DIALOUT LINES DESCRIPTION WILL BE CHECKED TO ASSURE THAT THE LINE HAS A <LINE ADAPTER CLASS STATEMENT> SPECIFYING THE ACU ADAPTER.

DIALIN

A LINE WHICH MAY BE DIALED FROM A REMOTE STATION IS A DIALED LINE. THE STATION GIVEN IS A "PSUEDO" STATION, WHICH IS USED ONLY TO DEFINE A LIST OF ADDRESSES WHICH MAY DIAL-UP THAT LINE AND ARE TO BE RECOGNIZED AS VALID STATIONS ON IT. IF A <LINE PHONE STATEMENT> IS GIVEN FOR A DIALED LINE, IT IS CONSIDERED DOCUMENTARY ONLY.

PASSIVE

AN ADAPTER TO WHICH NO LINE IS CONNECTED -- A SPARE ADAPTER -- IS CALLED A PASSIVE LINE. FOR THE DESCRIPTION OF A PASSIVE LINE ONLY THE <LINE ADDRESS STATEMENT>, <LINE ADAPTER CLASS STATEMENT>, AND THE <LINE TYPE STATEMENT> MAY BE SPECIFIED.

EXAMPLE:

LINE L1:

ADDRESS = 4:2:1.
ADAPTER = 1.
TYPE = PASSIVE.

THESE THREE STATEMENTS MUST APPEAR FOR EACH DESCRIPTION OF A

PASSIVE LINE.

REMOTE

A REMOTE LINE IS EQUIVALENT TO A SET OF STATIONS WHICH CAN BE DIALED OUT BY THE SYSTEM SIMULTANEOUSLY WITH ONE PHONE NUMBER. THE REMOTE LINE SHOULD NOT BE ASSOCIATED WITH ANY SPECIFIC CLUSTER-ADAPTER ADDRESS. THE REMOTE LINE WILL BE DIALED BY USING A DIALOUT LINE WHOSE ADAPTER TYPE IS COMPATIBLE WITH THAT OF THE REMOTE. THE <LINE PHONE STATEMENT> SPECIFIES THE NUMBER OF THE DATASET ASSOCIATED WITH THE REMOTE LINE.

EXAMPLE:

LINE XXX:

TYPE = REMOTE.
PHONE = 2143750123.
STATION = STAT1, THEM, US.

LINE YYY:

ADDRESS = 2:4:1.
TYPE = DIALOUT: LACU1.

TO REACH "THEM" (STATION IDENTIFIER IN THE STATION ATTACH STATEMENT IN THE LINE DESCRIPTION OF "XXX"), THE ACU WOULD DIAL THE PHONE NUMBER GIVEN IN THE <LINE PHONE STATEMENT> AND WOULD FIND A LINE SUCH AS "YYY", WHICH CAN BE DIALED OUT, AS SPECIFIED IN THE <LINE TYPE STATEMENT>

DUPLEX

A PAIR OF LINES, ONE TO TRANSMIT AND ONE TO RECEIVE, WHICH SIMULTANEOUSLY SEND AND RECEIVE TO/FROM A PARTICULAR STATION ARE CALLED A "DUPLEX LINE PAIR". THE LINE SPECIFIED AS FOR TRANSMISSION OF DATA WILL ALWAYS BE USED FOR TRANSMITTING DATA. NEVER FOR RECEIVING. FOR A TYPE DUPLEX THE RECEIVING LINE IS THE MASTER. THE MASTER LINE MUST ALWAYS HAVE THE LIST OF STATIONS ATTACHED TO THE LINE PAIR.

NOTE: THE RECEIVING AND/OR TRANSMITTING LINE IS ALWAYS DESIGNATED WITH RESPECT TO THE SYSTEM.

THE RECEIVING LINE IS DESIGNED AS TYPE DUPLEX (RECEIVE). THE <LINE IDENTIFIER> FOLLOWING THE <LINE TYPE STATEMENT> SPECIFIES THE OTHER LINE OF THE DUPLEX PAIR, WHICH MUST BE A DUPLEX (TRANSMIT) LINE. BOTH LINES OF A DUPLEX PAIR MUST BE ON THE SAME DCP.

LINE L1:

```
ADAPTER = 1.  
ADDRESS = 1:1:7.  
TYPE = DUPLEX(TRANSMIT):L2.
```

LINE L2:

```
ADAPTER = 1.  
ADDRESS = 1:2:8.  
TYPE = DUPLEX(RECEIVE):L1.  
STATION = NUMBER1.
```

THESE TWO LINE DESCRIPTIONS WOULD DESCRIBE THE SITUATION SHOWN BELOW:

LINE "L1" TRANSMITS INFORMATION TO STATION "NUMBER1" AND ALL INFORMATION FROM THE STATION TO THE SYSTEM GOES ON LINE "L2".

STATIONS WHICH ARE ASSOCIATED WITH DUPLEX LINES MUST HAVE THE <TERMINAL DUPLEX STATEMENT> SET TRUE IN THEIR <TERMINAL DESCRIPTION>.

LINES WHICH ARE DEFINED TO THE NETWORK AS REMOTE MAY ALSO BE DUPLEX, BUT CAN NOT BE SPECIFIED AS DUPLEX (RECEIVE) OR DUPLEX (TRANSMIT), CONVERSELY DUPLEX BY ITSELF IS ALLOWED ONLY FOR USE WITH REMOTE.

LINE ADAPTER CLASS STATEMENTSYNTAX

```
<LINE ADAPTER CLASS STATEMENT> ::= ADAPTER = <LINE ADAPTER CLASS>
  <CONNECTION TYPE>
<LINE ADAPTER CLASS> ::= 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8
<CONNECTION TYPE> ::= (DIRECT) / (MODEM) / <EMPTY>
```

SEMANTICS

THE <LINE ADAPTER CLASS STATEMENT> DEFINES THE UNIQUE ADAPTER CLASS ASSOCIATED WITH THE LINE. THE <INTEGER> LISTED MUST BE A NUMBER FROM ONE TO EIGHT INCLUSIVE, WHICH IS CHOSEN FROM THE "TABLE OF DATACOM ADAPTER CLASSES" DEPENDING ON THE CHARACTERISTICS OF THE ADAPTER ASSOCIATED WITH THE LINE. THE <LINE ADAPTER CLASS STATEMENT> WILL BE CHECKED FOR VALIDITY AGAINST THE <LINE MODEM STATEMENT>. THE <CONNECTION TYPE> SPECIFIES WHICH OF THE VARIANTS CLASSES IS ON THE LINE (SEE THE TABLE OF ADAPTER CLASSES FOR THE POSSIBLE VARIANTS.) A <CONNECTION TYPE> OF <EMPTY> SPECIFIES THAT THE PRESENCE OR ABSENCE OF A <MODEM STATEMENT> DETERMINES THE ADAPTER CLASS VARIANT.

LINE PHONE STATEMENTSYNTAX

```
<LINE PHONE STATEMENT> ::= PHONE = <INTEGER>
```

SEMANTICS

THE <LINE PHONE STATEMENT> LISTS THE TELEPHONE NUMBER OF THE LINE

BEING DESCRIBED (A DIAL UP LINE). IMBEDDED HYPHENS (AS NORMALLY APPEAR IN PHONE NUMBERS) ARE NOT ALLOWED AND SHOULD BE OMITTED.

LINE MODEM STATEMENT

SYNTAX

`<LINE MODEM STATEMENT> ::= MODEM = <MODEM IDENTIFIER>`

SEMANTICS

THE <MODEM IDENTIFIER> MUST REFERENCE A DESCRIPTION PREVIOUSLY DEFINED IN THE MODEM SECTION. THE <ADAPTER TYPE LIST> IN THE MODEM DESCRIPTION WILL BE CHECKED FOR COMPATIBILITY WITH THE ADAPTER CLASS SPECIFIED FOR THE LINE. IF INCONSISTENCIES EXIST, THE COMPILER WILL GENERATE AN ERROR.

LINE STATION STATEMENTSYNTAX:

```
<LINE STATION STATEMENT> ::= STATION = <LIST OF STATIONS>
<LIST OF STATIONS> ::= <STATION IDENTIFIER> / <STATION LIST>,
<STATION IDENTIFIER>
```

SEMANTICS

THE <LINE STATION STATEMENT> IDENTIFIES THE STATIONS ON A LINE. IN THE CASE OF DIAL-IN LINES, THE <STATION LIST> MUST LIST ONE (1) PSEUDO STATION THAT IS REPRESENTATIVE OF ALL THE STATIONS THAT CAN DIAL IN ON THE LINE. LINES DESIGNATED AS PASSIVE OR DUPLEX (TRANSMIT), AND LINES WHICH HAVE AN ACU ADAPTER CLASS MUST NOT HAVE A <LINE STATION STATEMENT>. THE STATIONS ON A DUPLEX PAIR MUST BE MENTIONED ONLY ON LINE THAT IS DUPLEX (RECEIVE).

ANSWER STATEMENTSYNTAX

```
<ANSWER STATEMENT> ::= ANSWER = <LOGICAL VALUE>
```

SEMANTICS

IF THE LINE TYPE IS DIALIN, AN <ANSWER STATEMENT> IS REQUIRED TO INDICATE WHETHER OR NOT THE DCP IS TO ANSWER THE RING AUTOMATICALLY. AN MCS MAY ALTER THIS VALUE AFTER INITIALIZATION.

B6700 NETWORK DEFINITION LANGUAGE

ENDOFNUMBER STATEMENTSYNTAX

<ENDOFNUMBER STATEMENT> ::= ENDOFNUMBER = <LOGICAL VALUE>

SEMANTICS

LINES WHICH HAVE AN ACU ADAPTER CLASS (ADAPTER = 8) MUST ALSO HAVE SPECIFIED WHETHER THE ATTACHED ACU HAS THE "END OF NUMBER" OPTION.

MAXSTATIONS STATEMENTSYNTAX

<MAXSTATIONS STATEMENT> ::= MAXSTATIONS = <INTEGER>

SEMANTICS

THE <MAXSTATIONS STATEMENT> SPECIFIES THE NUMBER OF STATIONS THAT MAY BE ATTACHED TO A LINE. THE <MAXSTATIONS STATEMENT> MAY BE SPECIFIED FOR ANY LINE HAVING OR POTENTIALLY HAVING STATIONS. IF THE STATEMENT IS NOT SPECIFIED FOR A LINE HAVING STATIONS IT IS ASSUMED THAT THE MAXIMUM NUMBER OF STATIONS EQUALS THE NUMBER EXPLICITLY SPECIFIED AS BEING ON THE LINE. THE <INTEGER> SPECIFIED MUST NOT EQUAL ZERO, EXCEED 25, OR BE LESS THAN THE ACTUAL NUMBER OF STATIONS SPECIFIED FOR THE LINE.

2.3.7. DCP SECTION

SYNTAX

```
<DCP SECTION> ::= <DCP LIST>
<DCP LIST> ::= <DCP DEFINITION> / <DCP LIST> <DCP DEFINITION>
<DCP DEFINITION> ::= DCP <DCP IDENTIFIER> :<DCP ATTRIBUTE LIST>
<DCP IDENTIFIER> ::= 0 / 1 / 2 / 3 / 4 / 5 / 6 / 7
<DCP ATTRIBUTE LIST> ::= <DCP ATTRIBUTE STATEMENT>. / 
    <DCP ATTRIBUTE LIST> <DCP ATTRIBUTE STATEMENT>.
<DCP ATTRIBUTE STATEMENT> ::= <MEMORY STATEMENT> /
    <EXCHANGE STATEMENT> / <DCP TERMINAL STATEMENT>
```

SEMANTICS

A DCP SECTION DESCRIBES A DATA COMMUNICATIONS PROCESSOR. THE IDENTIFIER FOR A DCP IS A NUMBER FROM ZERO THROUGH SEVEN. THIS VALUE CORRESPONDS WITH THE SCAN BUS ADDRESS OF THE DCP.

MEMORY STATEMENT

SYNTAX

```
<MEMORY STATEMENT> ::= MEMORY = <MEMORY SIZE>
<MEMORY SIZE> ::= <INTEGER> / NULL
```

SEMANTICS

THE <MEMORY STATEMENT> SPECIFIES THE AMOUNT OF LOCAL MEMORY.

(NOTE: MEMORY = 0 IMPLIES NO LOCAL MEMORY.

MEMORY = N WHERE N IS NON-ZERO IMPLIES INFINITE LOCAL MEMORY.

I.E. ENOUGH TO CONTAIN ALL THE DCP OPERATING CODE.)

EXCHANGE STATEMENT

SYNTAX

$\langle \text{EXCHANGE STATEMENT} \rangle ::= \text{EXCHANGE} = \langle \text{DCP IDENTIFIER} \rangle$

SEMANTICS

AN $\langle \text{EXCHANGE STATEMENT} \rangle$ SPECIFIES THAT CLUSTER EXCHANGING IS ALLOWED BETWEEN TWO DCPS. IT IS PRESUMED THAT ALL CLUSTERS ON THE DCPS INVOLVED ARE EXCHANGED AND THAT THEY ARE DESIGNATED IDENTICALLY ON EACH DCP. (IT IS REQUIRED THAT THE LINES SPECIFIED FOR EACH DCP BE GIVEN ADDRESSES SUCH THAT THE INITIAL CONDITIONS ARE SUCH THAT THE DCPS DO NOT HAVE LINES ON THE SAME CLUSTER.)

A DCP NOT HAVING ANY LINES SPECIFIED FOR IT MUST HAVE AN $\langle \text{EXCHANGE STATEMENT} \rangle$.

DCP TERMINAL STATEMENT

SYNTAX

$\langle \text{DCP TERMINAL STATEMENT} \rangle ::= \text{TERMINAL} = \langle \text{TERMINAL LIST} \rangle$
 $\langle \text{TERMINAL LIST} \rangle ::= \langle \text{TERMINAL IDENTIFIER} \rangle / \langle \text{TERMINAL LIST} \rangle, \langle \text{TERMINAL IDENTIFIER} \rangle$

SEMANTICS

THE $\langle \text{DCP TERMINAL STATEMENT} \rangle$ ALLOWS THE SPECIFICATION OF THE TERMINALS THAT THE DCP IS TO HANDLE - THAT IS, SYSTEM/DCPPROGEN WILL GENERATE CODE ONLY FOR THOSE TERMINALS MENTIONED.

SHOULD THIS STATEMENT NOT BE GIVEN, THE CODE WILL BE GENERATED TO HANDLE ALL OF THE TERMINALS SPECIFIED IN THE <NETWORK DESCRIPTION>.

2.3.8. FILE SECTIONSYNTAX

```
<FILE SECTION> ::= <FILE DEFAULT LIST> <FILE LIST>
<FILE DEFAULT LIST> ::= <FILE DEFAULT DEFINITION> /
    <FILE DEFAULT LIST> <FILE DEFAULT DEFINITION> / <EMPTY>
<FILE DEFAULT DEFINITION> ::= FILE DEFAULT
    <FILE DEFAULT IDENTIFIER> : <FILE ATTRIBUTE LIST>
<FILE DEFAULT IDENTIFIER> ::= <GENERALIZED IDENTIFIER>
<FILE LIST> ::= <FILE DEFINITION> / <FILE LIST>, <FILE DEFINITION>
<FILE DEFINITION> ::= FILE <FILE IDENTIFIER> :
    <FILE ATTRIBUTE LIST>
<FILE IDENTIFIER> ::= <GENERALIZED IDENTIFIER>
<FILE ATTRIBUTE LIST> ::= <FILE ATTRIBUTE STATEMENT>. /
    <FILE ATTRIBUTE LIST> <FILE ATTRIBUTE STATEMENT>.
<FILE ATTRIBUTE STATEMENT> ::= <FILE DEFAULT STATEMENT> /
    <FAMILY STATEMENT> / <CONFLICTING ATTRIBUTE>
```

SEMANTICS

NOTE: ALL CURRENT SEMANTICS FOR <FILE ATTRIBUTE STATEMENT>S ARE TENTATIVE AT THIS POINT.

THE FILE SECTION OF A NETWORK DEFINITION IS TO ASSOCIATE STATIONS WHICH ARE PART OF THE NETWORK WITH THE DATACOM FILE OF AN OBJECT JOB OR JOBS. THE STATIONS REFERENCED IN THE FILE SECTION MUST HAVE BEEN DEFINED IN THE STATION DESCRIPTION SECTION OF THE NETWORK DEFINITION.

FILE DEFAULT STATEMENTSYNTAX

`<FILE DEFAULT STATEMENT> ::= DEFAULT = <FILE DEFAULT IDENTIFIER>`

SEMANTICS

THE `<FILE DEFAULT STATEMENT>` IS USED IN THE SAME MANNER THAT A `<TERMINAL DEFAULT STATEMENT>` IS USED. THE `<TERMINAL DEFAULT STATEMENT>` IS DISCUSSED UNDER THE DESCRIPTION OF TERMINAL DEFAULT SEMANTICS.

FAMILY STATEMENTSYNTAX

`<FAMILY STATEMENT> ::= FAMILY = <FAMILY LIST>`
`<FAMILY LIST> ::= <FAMILY DESIGNATOR> /`
`<FAMILY LIST>, <FAMILY DESIGNATOR>`
`<FAMILY DESIGNATOR> ::= <FILE IDENTIFIER> / <STATION IDENTIFIER>`
`<STATION ATTRIBUTE PART>`
`<STATION ATTRIBUTE PART> ::= (<ATTRIBUTE LIST>) / <EMPTY>`
`<ATTRIBUTE LIST> ::= [TO BE SPECIFIED]`

SEMANTICS

THE `<FAMILY STATEMENT>` LISTS THE NAMES OF STATIONS OR OTHER FILES WHICH ARE TO BE CONSIDERED MEMBERS OF THE FILE BEING DESCRIBED. IF THE `<FILE IDENTIFIER>` OPTION IS USED AS PART OF THE `<FAMILY DESIGNATOR>`, THE `<FILE IDENTIFIER>` MUST BE PART OF A `<FILE DEFINITION>` WITHIN THE `<FILE LIST>`.

CONFLICTING ATTRIBUTES

SYNTAX

```
<CONFLICTING ATTRIBUTE> ::= <BACKSPACE STATEMENT> /  
  <WRAPAROUND STATEMENT> / <LOGICALACK STATEMENT> /  
  <MCS STATEMENT> / <USER STATEMENT> /  
  <SECURITY STATEMENT> / <ENABLEINPUT STATEMENT>
```

SEMANTICS

TO BE SPECIFIED

3. USING THE NETWORK DEFINITION LANGUAGE PROCESSOR

3.1. PREPARING PROGRAMS

3.1.1. CONTROL CARDS AND FILES

NDL SOURCE LANGUAGE STATEMENTS NEED THE FOLLOWING CONTROL CARDS FOR COMPIILATION ON THE B6700 BY SYSTEM/NDL.

```
<I> RUN SYSTEM/NDL
<I> BCL NDLSOURCE
      OR, FOR EBCDIC,
      <I> DATA NDLSOURCE
      [SOURCE LANGUAGE STATEMENTS]
      <I> END
<I> INDICATES AN INVALID PUNCH
IN COLUMN 1 .
```

INPUT FILES

<u>EXTERNAL NAME</u>	<u>INTERNAL NAME</u>	<u>KIND</u>
NDLSOURCE SOURCE/NDL	CARD TAPE	DISK(1)

OUTPUT FILES

<u>EXTERNAL NAME</u>	<u>INTERNAL NAME</u>	<u>KIND</u>
LINE	LINE	PRINTER(7)
SYSTEM/NIF	NIF	DISK(1)
DC/CODE	DCPCODE	DISK(1)
SYSTEM/REQUESTIMAGE	REQIM	DISK(1)
DC/CODE, SYSTEM/REQUESTIMAGE AND SYSTEM/NIF	ARE CREATED ONLY WHEN THE EXECUTION OF SYSTEM/NDL IS ERROR FREE.	

3.1.2. USING OPTIONS

VARIOUS OPTIONS ARE AVAILABLE DURING COMPILE AND ARE ACTIVATED BY DOLLAR SIGN (\$) CONTROL CARDS.

SYNTAX FOR CONTROL STATEMENTS

```
<CONTROL STATEMENT> ::= $ <OPTION LIST>
<OPTION LIST>      ::= <OPTION> / <OPTION LIST> <OPTION>
<OPTION>           ::= <OPTION ACTION> <OPTION ITEM>
<OPTION ACTION>    ::= SET / RESET / POP / <EMPTY>
<OPTION ITEM>      ::= LIST / CODE / VOID / VOIDT / SINGLE /
                         MERGE / NEW / SEQ <BASE> + <INCREMENT> /
                         SYNTAX / SEQ
<BASE>             ::= <INTEGER>
<INCREMENT>        ::= <INTEGER>
```

SEMANTICS

THE OPTION ACTIONS TURN ON AND OFF THE SPECIFIED ITEMS. SET CAUSES THE CURRENT SETTING OF AN OPTION TO BE PLACED IN A STACK FOR STORING OPTIONS, AND THE OPTION TO BE TURNED ON. RESET CAUSES THE CURRENT SETTING OF THE OPTION ITEM TO BE PLACED IN THE STACK, IN THE SAME MANNER AS SET DOES, BUT THEN TURNS OFF THE OPTION.

POP CAUSES THE CURRENT SETTING OF AN OPTION TO BE DISCARDED AND TO BE REPLACED BY THE PRIOR SETTING FROM THE STACK.

OPTIONS ARE IDENTICAL TO THOSE FOR THE ALGOL COMPILER EXCEPT WHERE INDICATED BELOW.

LIST -- CAUSES A LISTING TO BE GENERATED CONTAINING THE SOURCE LANGUAGE INPUT AND POSSIBLE ERROR MESSAGES, AND THE DCP PROGRAM GENERATOR LISTS THE DCP OPERATING SYSTEM(S).

CODE -- LISTS THE MACROS GENERATED BY SYSTEM/NDL FOR REQUESTS AND CAUSES THE OPERATING SYSTEM FOR THE DCP TO BE LISTED BY DCPPROGEN.

VOID -- CAUSES THE SOURCE-LANGUAGE INPUT PROCESS TO OPERATE NORMALLY, WITH SOURCE-LANGUAGE PRIMARY AND SECONDARY INPUT NOT COMPILED.

VOIDT -- LIKE VOID, HOWEVER THE CARD IMAGES ON THE SECONDARY INPUT ARE NOT COMPILED. ONLY PRIMARY COMPILED.

SINGLE -- CAUSES THE LISTING TO BE SINGLE SPACED.

MERGE -- CAUSES THE PRIMARY INPUT TO BE MERGED WITH SECONDARY INPUT. IF MATCHING SEQUENCE NUMBERS OCCUR, THE PRIMARY INPUT WILL REPLACE THE SECONDARY. WHEN THE MERGE OPTION IS OFF THE SECONDARY INPUT IS NOT USED.

NEW -- CREATE A SOURCE/NDL SYMBOLIC FILE.

SEQ -- CAUSES NEW SEQUENCE NUMBERS TO BE CREATED WITH THE FIRST INTEGER GIVEN AS THE INITIAL NEW SEQUENCE NUMBER AND SECOND AS AN INCREMENT.

SYNTAX -- IF SET BEFORE SOURCE IMAGES ARE PROCESSED, THE FILES "SYSTEM/NIF", "SYSTEM/REQUESTIMAGE", AND "DC/CODE" WILL NOT BE CREATED.

3.2. RESERVED WORDS

THE FOLLOWING IS A COMPLETE LIST OF RESERVED WORDS USED IN THE NETWORK DEFINITION LANGUAGE. THESE WORDS HAVE SPECIAL MEANING TO THE COMPILER AND CAN NOT BE USED AS IDENTIFIERS OR IN ANY OTHER MANNER EXCEPT FOR THEIR DEFINED MEANING.

ABORT	BLOCKED	EBCDIC
ACU	BUFFER	ELSE
ADAPTER	BUFOVFL	ENABLEINPUT
ADAPTOR	CARRIAGE	END
ADDERR	CHAR	EQ
ADDRESS	CHARACTER	ERROR
ALTERNATE	CLEAR	EVEN
AUTOANSWER	CODE	EXCHANGE
ASC63	COMMENT	FALSE
ASC67	CONNECTION	FETCH
ASC68	CONSTANT	FILE
BACKSPACE	CONTENTION	FINISH
BAUDOT	CR	FOR
BCC	DCP	FORMAT
BCCERR	DEFAULT	FORMATERR
BCD	DELAY	FREQUENCY
BCL	DIALIN	GE
BEGIN	DIALOUT	GO
BKSP	DISCONNECT	GT
BLOCK	DUPLEX	HOME

HORIZONTAL	NE	TASK
HYBRID	NOISEDELAY	TERMINAL
ICTDELAY	NORMAL	TERMINATE
IF	NULL	TEXT
ILLEGALCHR	ODD	THEN
INHIBITSYNC		
INITIALIZE	ON	TIMEOUT
INITIATE	OUTPUT	TO
INPUT	PAGE	TOG
LE	PARITY	TRAN
LD	PASSIVE	TRANERR
LF	PHONE	TRANSMISSION
LS	POLL	TRANSMIT
LINE	RECEIVE	TRUE
LINEDELETE	REMOTE	TURNAROUND
LINEFEED	REQUEST	TYPE
LOGICALACK	RETRY	USER
LOGIN	SCREEN	VERTICAL
MAXINPUT	SEC	WIDTH
MAXSTATIONS		
MCS	SECURITY	WRAPAROUND
MEMORY	SPECIAL	WRU
MICRO	SPO	
MILLI	STATION	
MIN	STOPBIT	
MODE	STORE	
MODEM	SUM	
MYUSE	TALLY	

3.3. DIAGNOSTIC MESSAGES

THE MESSAGES BELOW WILL BE GENERATED BY THE NETWORK DEFINITION LANGUAGE PROCESSOR WHEN IT ENCOUNTERS INCORRECT STATEMENTS, INCOMPATIBILITIES OR INCOMPLETENESS IN DESCRIPTIONS. (A PERCENT SIGN IN THE MESSAGES BELOW MERELY INDICATES CONTINUATION ON THE NEXT CARD FOR THE PROGRAM WHICH PACKS THESE ERROR MESSAGES FOR THE LANGUAGE PROCESSOR AND DOES NOT APPEAR IN THE LISTING OF THE MESSAGE.) ONLY THE TEXT OF MESSAGES IS LISTED .

<u>NUMBER</u>	<u>TEXT OF ERROR MESSAGE.</u>
300	IDENTIFIER TOO LONG
301	STRING TOO LONG
302	ILLEGAL CHARACTER
303	INTEGER TOO LARGE (EXCEEDS 11 DIGITS)
310	CONSTRUCT NOT IMPLEMENTED
400	ILLEGAL DESCRIPTION DIVISION
401	MISPLACED DEFAULT PART
402	MISSING COLON
403	EXTRA DESCRIPTION PART
404	MISPLACED DIVISION
405	ILLEGAL CONSTRUCT
406	ILLEGAL STRING CODE
407	ILLEGAL STRING CHARACTER
408	CONSTANT GREATER THAN 64 CHARACTERS
450	REQUEST STATEMENT EXPECTED
451	THEN EXPECTED
452	DUPLICATE LABEL
453	ERROR ACTION EXPECTED
454	TERMINATE TYPE EXPECTED
455	INITIATE TYPE EXPECTED
456	INITIALIZE TYPE EXPECTED
457	CHARACTER OR UNITARY STRING EXPECTED
458	CHARACTER OR STRING EXPECTED
459	RECEIVE ACTION ITEM EXPECTED

460 ITEM EXPECTED
461 VALUE EXPECTED
462 TALLY NUMBER EXPECTED
463 TOGGLE NUMBER EXPECTED
464 RECEIVE OR TRANSMIT EXPECTED
465 APPLICATION NUMBER EXPECTED
466 ALL ERROR SWITCH ASSIGNMENTS MUST x
PRECEDE ALL OTHER REQUEST STATEMENTS
467 ERROR SWITCH HAS NOT BEEN SPECIFIED
468 DUPLICATE ERROR SWITCH DESIGNATOR
469 TRANSMIT ACTION ITEM EXPECTED
500 ILLEGAL CONSTANT IDENTIFIER
501 MISSING PERIOD
502 MISSING EQUAL SIGN
503 CONSTANT NOT A STRING
504 TRUE OR FALSE EXPECTED
505 INTEGER EXPECTED
506 STRING EXPECTED
507 UNITARY STRING EXPECTED
508 UNITARY STRING OR INTEGER EXPECTED
509 STRING OR INTEGER EXPECTED
510 LEFT PAREN EXPECTED
511 RIGHT PAREN EXPECTED
512 COLON EXPECTED
513 TIME UNIT EXPECTED
514 LEFT BRACKET EXPECTED
515 RIGHT BRACKET EXPECTED
516 RELATIONAL OPERATOR EXPECTED
517 COMMA EXPECTED
518 QUOTE EXPECTED
519 CHARACTER NOT ALIGNED
520 MISSING CONDITION
521 LIST EXPECTED
522 MISSING REQUEST IDENTIFIER
523 RECEIVE REQUEST NOT SPECIFIED
524 TRANSMIT REQUEST NOT SPECIFIED

525 UNDEFINED REQUEST IDENTIFIER
526 DUPLICATE REQUEST CONDITION
527 DCP ATTRIBUTE STATEMENT EXPECTED
528 MCS IDENTIFIER EXPECTED
529 TASK IDENTIFIER EXPECTED
530 DYNAMIC EXPECTED
531 LINE TYPE STATEMENT MAY NOT BE PART OF **x**
LINE DEFAULT DEFINITIONS
532 LINE STATION STATEMENT MAY NOT BE PART **x**
OF LINE DEFAULT DEFINITION
533 NO. LINES / PAGE TOO LARGE
534 STANDARD CODE EXPECTED
535 ILLEGAL ADAPTER CLASS
536 ILLEGAL ADAPTER TYPE
537 LINE WIDTH TOO LARGE
538 ADDRESS LIST EXCEEDS 50 MEMBERS
539 INCONSISTENT ADDRESS LENGTH
540 LABEL EXPECTED
541 ERROR TOGGLE LIST EXPECTED
542 ERROR TOGGLE EXPECTED
543 ITEM EXPECTED
544 -OUTPUT- EXPECTED
545 -INPUT- EXPECTED
546 -INPUT- OR -OUTPUT- EXPECTED
547 MAX. ADDRESS < MIN. ADDRESS
548 TERMINAL IDENTIFIER EXPECTED
549 ADDRESS EXCEEDS 3 CHARACTERS
550 BUFFER SIZE TOO LARGE
551 -ODD- OR -EVEN- EXPECTED
552 -HORIZONTAL- OR -VERTICAL- EXPECTED
553 TERMINAL MODE EXPECTED
554 CONNECTION TYPE EXPECTED
555 CHARACTER SIZE TOO LARGE
556 ILLEGAL CORE SIZE
557 TERMINAL IDENTIFIER EXPECTED
558 STATION IDENTIFIER EXPECTED

559 LINE IDENTIFIER EXPECTED
560 DCP IDENTIFIER EXPECTED
561 STATION DESIGNATOR EXPECTED
562 A DUPLEX(RECEIVE) LINE MUST POINT TO A ~~x~~
DUPLEX(TRANSMIT) LINE
563 THE DIALOUT TYPE MUST BE ASSOCIATED WITH~~x~~
THE DUPLEX(RECEIVE) LINE OF A DUPLEX ~~x~~
PAIR OF LINES
564 DUPLICATE TYPES
565 THE DIALIN TYPE MUST BE ASSOCIATED WITH ~~x~~
THE DUPLEX(RECEIVE) LINE OF A DUPLEX ~~x~~
PAIR OF LINES
566 RETRY VALUE MUST NOT EXCEED 255
567 DUPLEX(RECEIVE) AND DUPLEX(TRANSMIT) ARE~~x~~
INCOMPATIBLE TYPES
568 LINE DOES NOT POINT BACK
569 A DIALOUT LINE MUST POINT TO A LINE WITH~~x~~
AN ACU ADAPTER CLASS
570 A DUPLEX(TRANSMIT) LINE MUST POINT TO A ~~x~~
DUPLEX(RECEIVE) LINE
571 LINE TYPE EXPECTED
572 THE PASSIVE TYPE AND ALL OTHER TYPES ARE~~x~~
INCOMPATIBLE
573 THE REMOTE TYPE IS ONLY COMPATIBLE WITH ~~x~~
THE TYPE DUPLEX
574 TRANSMISSION NUMBER LENGTH EXPECTED
575 DUPLICATE STATION IN LIST
576 STATION CANNOT BE ALTERNATE OF ITSELF
577 TYPE DUPLEX IS COMPATIBLE ONLY WITH TYPE~~x~~
REMOTE
578 STATION ALREADY ATTACHED TO A LINE
579 DUPLICATE ADDRESS
580 ILLEGAL PHONE NUMBER
581 ILLEGAL DCP ADDRESS
582 ILLEGAL ADAPTER ADDRESS
583 ILLEGAL CLUSTER ADDRESS

584 DUPLICATE STATION ADDRESSES ON LINE
585 MODE OF STATIONS TERMINAL INCONSISTENT X
WITH OTHER STATIONS ON LINE
586 DUPLEX ATTRIBUTE OF STATIONS TERMINAL X
587 ADDRESS LENGTH OF STATIONS TERMINAL X
INCONSISTENT WITH OTHER STATIONS ON LINE
588 REQUEST FOR STATIONS TERMINAL INCONSIS- X
TENT WITH OTHER STATIONS ON LINE
589 STATIONS ADAPTER TYPE NOT CONSISTENT X
WITH OTHER STATIONS ON LINE
590 CODE OF STATIONS TERMINAL INCONSISTENT X
WITH OTHER STATIONS ON LINE
591 A STATION WITH MULTIPLE ADDRESSES MUST X
BE THE ONLY STATION ON A LINE
592 A LINES TYPE STATEMENT MAY NOT REFER TO X
ITS SELF
593 TERMINAL DEFAULT IDENTIFIER EXPECTED
594 STATION DEFAULT IDENTIFIER EXPECTED
595 LINE DEFAULT IDENTIFIER EXPECTED
596 FILE DEFAULT IDENTIFIER EXPECTED
597 ADDRESS SIZE EXCEEDS 3 CHARACTERS
598 DIFFERENT EXPECTED
599 EXISTENCE OF MODEM ON STATION INCONSIS- X
TENT WITH OTHER STATIONS ON LINE
600
601 DUPLICATE STATEMENT
602 MAXINPUT NOT SPECIFIED FOR UNBUFFERED X
DEVICE
603 DUPLEX ATTRIBUTE NOT SPECIFIED
604 REQUESTS FOR TERMINAL USE BCC BUT X
TERMINAL DOES NOT HAVE HORIZONTAL PARITY
605 REQUESTS FOR TERMINAL SPECIFY END X
CHARACTER ACTION BUT TERMINAL DOES NOT X
SPECIFY END CHARACTER
606 REQUESTS FOR TERMINAL SPECIFY BACKSPACE X
CHARACTER ACTION BUT TERMINAL DOES NOT X

SPECIFY BACKSPACE CHARACTER
607 REQUESTS FOR TERMINAL SPECIFY LINEDELETE X
CHARACTER ACTION BUT TERMINAL DOES NOT X
SPECIFY LINEDELETE CHARACTER
608 ADDRESS NOT SIGNIFICANT FOR STATIONS X
HAVING CONTENTION MODE TERMINALS
609 REQUESTS FOR TERMINAL SPECIFY WRU X
CHARACTER ACTION BUT TERMINAL DOES NOT X
SPECIFY WRU CHARACTER
610 ALTERNATE STATEMENT CANNOT BE PART OF A X
STATION DEFAULT DEFINITION
611 DUPLICATE APPLICATION REQUEST SET
612 APPLICATION REQUEST SET ONE NOT X
SPECIFIED
613 APPLICATION REQUEST SETS NOT CONSIS- X
TENTLY SPECIFIED FOR RECEIVE AND/OR X
TRANSMIT
614 DUPLICATE ERROR SWITCH NUMBER
615 DUPLICATE RECEIVE ERROR TOGGLE
616
617 TIMEOUT VALUE OR NULL EXPECTED
618 ADDRESS STATEMENTS MAY NOT BE INCLUDED X
IN STATION DEFAULT DEFINITIONS
619 A RESERVED WORD MAY NOT BE USED AS AN X
IDENTIFIER
620 ALREADY USED IDENTIFIER
621 REQUEST STATEMENTS MAY NOT BE INCLUDED X
IN TERMINAL DEFAULT DEFINITIONS
622 ILLEGAL TERMINAL ATTRIBUTE
623 CODE NOT SPECIFIED
624 MODE NOT SPECIFIED
625 CHARACTER SIZE NOT SPECIFIED
626 IN - OUT CAPABILITY NOT SPECIFIED
627 REQUESTS NOT SPECIFIED
628 BLOCKING NOT SPECIFIED
629 SCREEN NOT SPECIFIED

630 LINE WIDTH EXCEEDS BUFFER SIZE
631 PAGE SIZE OF SCREEN DEVICE NOT SPECIFIED
632 HOME CHARACTER OF SCREEN DEVICE NOT **x**
SPECIFIED
633 CARRIAGE RETURN CHARACTER NOT SPECIFIED
634 MAXINPUT ILLEGAL FOR BUFFERED DEVICE
635 LINEFEED CHARACTER NOT SPECIFIED
636 TIMEOUT NOT SPECIFIED
637 ILLEGAL STATION ATTRIBUTE
638 TERMINAL NOT SPECIFIED
639 MCS NOT SPECIFIED
640 SECURITY NOT SPECIFIED
641 WRU NOT SPECIFIED
642 MYUSE ATTRIBUTE OF STATION NOT CONSIS- **x**
TENT WITH I/O CAPABILITY OF ITS TERMINAL
643 STATIONS BLOCKING ATTRIBUTE NOT COMPAT- **x**
IBLE WITH ITS TERMINAL
644 ADDRESS NOT SPECIFIED (STATION HAS A **x**
NON-CONTENTION MODE TERMINAL)
645 SPECIAL AND WRU CHARACTERS EQUAL
646 REQUESTS FOR STATIONS TERMINAL SPECIFY **x**
CONTROL CHARACTER ACTION BUT STATION **x**
DOES NOT SPECIFY CONTROL CHARACTER
647 SPECIAL AND END CHARACTERS EQUAL
648 SPECIAL AND BACKSPACE CHARACTERS EQUAL
649 SPECIAL AND LINEDELETE CHARACTERS EQUAL
650 WRU AND END CHARACTERS EQUAL
651 WRU AND BACKSPACE CHARACTERS EQUAL
652 WRU AND LINEDELETE CHARACTERS EQUAL
653 END AND BACKSPACE CHARACTERS EQUAL
654 END AND LINEDELETE CHARACTERS EQUAL
655 BACKSPACE AND LINEDELETE CHARACTERS EQUAL
656 STATION PAGE SIZE EXCEEDS TERMINAL PAGE **x**
SIZE
657 LOGIN NOT SPECIFIED
658 STATION ADAPTER TYPE NOT COMPATIBLE **x**

WITH ITS TERMINALS ADAPTER TYPES
659 TERMINAL AND STATION ADAPTER TYPES NOT X
COMPATIBLE WITH MODEM
660 MODEM IDENTIFIER EXPECTED
661 TASK MUST BE SPECIFIED WHEN LOGIN IS X
SET FALSE
662 ILLEGAL LINE ATTRIBUTE
663 ADDRESS NOT SPECIFIED
664 ADAPTER NOT SPECIFIED
665 INPUT/OUTPUT NOT SPECIFIED
666 CONNECTION TYPE NOT SPECIFIED
667 LINE HAS NO STATIONS ATTACHED
668 DIALOUT, DUPLEX(TRANSMIT), AND PASSIVE X
LINES MAY NOT HAVE ATTACHED STATIONS
669 DIALIN LINES MUST HAVE ONLY ONE X
ATTACHED STATION
670 LINE TYPE STATEMENTS MAY NOT REFER TO X
LINES ON OTHER DCPS
671 ONLY DIALIN TYPE LINES MAY HAVE A X
MULTIPLE ADDRESS STATION ATTACHED
672 ADAPTER CLASS OF LINE AND ADAPTER TYPE X
OF STATIONS INCOMPATIBLE
673 LENGTH OF STATIONS ADDRESS INCONSISTENT X
WITH LENGTH RESTRICTIONS SPECIFIED IN X
STATIONS TERMINAL DEFINITION
674 PARITY NOT SPECIFIED
675 TERMINAL CANNOT HAVE AN ACU ADAPTER TYPE X
SPECIFIED IN ITS ADAPTER STATEMENT
676 THE CHARACTER SIZE OF THE TERMINALS X
ADAPTER TYPES ARE TOO SMALL TO CONTAIN X
THE CHARACTER SET SPECIFIED IN THE X
TERMINALS CODE STATEMENT
677 THE TERMINAL HAS VERTICAL PARITY SPECI- X
FIED AND COMPATIBLE ADAPTER TYPES NOT X
HAVING A PARITY BIT ALSO SPECIFIED
678 INHIBITSYNC ATTRIBUTE NOT SPECIFIED

679 ENABLE INPUT ATTRIBUTE NOT SPECIFIED
680 LINES HAVING AN ACU ADAPTER CLASS MAY BE X
 OF TYPE PASSIVE ONLY
681 LINES HAVE AN ACU ADAPTER CLASS MAY NOT X
 HAVE ATTACHED STATIONS
682 LINES ADAPTER CLASS NECESSITATES A MODEM X
 BE SPECIFIED FOR THE LINE
683 STATIONS TERMINAL IS A POLLED DEVICE AND X
 FREQUENCY IS NOT SPECIFIED
684 LOGICALACK NOT SPECIFIED
685 LINES ADAPTER CLASS REQUIRES THAT ITS X
 STATIONS HAVE MODEMS
686 EXISTENCE OF MODEMS ON LINE AND ITS X
 STATIONS INCONSISTENT
687 STATIONS ADAPTER TYPE REQUIRES MODEM BE X
 SPECIFIED FOR STATION
688 NON-ZERO TIMEOUT VALUES EXPECTED
689 ACTION ITEM INAPPROPRIATE FOR ITEM
690 ILLEGAL MODEM ATTRIBUTE
691 ADAPTER STATEMENT NOT SPECIFIED
692 TURNAROUND NOT SPECIFIED
693 NOISEDELAY NOT SPECIFIED
694 INTER-CHARACTER TRANSMIT DELAY NOT X
 SPECIFIED
695 PAGE NOT SPECIFIED
696 NO LINES SPECIFIED FOR DCP
697 MEMORY NOT SPECIFIED
701 ERROR SWITCH DESIGNATORS APPROPRIATE TO X
 RECEIVE ACTION LISTS ONLY
702 ACTION LABEL EXPECTED
703 REQUEST FOR TERMINAL REQUIRES A RECEIVE X
 ADDRESS
704 REQUEST FOR TERMINAL REQUIRES A TRANSMIT X
 ADDRESS
705 REQUEST FOR TERMINAL REQUIRES A TRANS- X
 MISSION NUMBER

706 REQUEST FOR TERMINAL REQUIRES THAT THE **x**
TERMINAL BE CAPABLE OF BLOCKED INPUT **x**
AND/OR OUTPUT

707 ADAPTER CLASS EXPECTED

708 MODEM OR DIRECT EXPECTED

709 ADAPTER CLASS REQUIRES MODEM

710 INCREMENT ITEM EXPECTED

711 RETURN EXPECTED

712 FILE ATTRIBUTE STATEMENT EXPECTED

713 FAMILY NOT SPECIFIED

714 FAMILY STATEMENT NOT FILE DEFAULT **x**
ATTRIBUTE STATEMENT

715 FILE OR STATION IDENTIFIER EXPECTED

716 TIMELIMIT NOT SPECIFIED

717 TRANSMITDELAY NOT SPECIFIED

718 NO STATION DEFINITIONS GIVEN

719 NO TERMINAL DEFINITIONS GIVEN

720 NO LINE DEFINITIONS GIVEN

721 NO DCP DEFINITIONS GIVEN

722 INCOMPLETE DESCRIPTION

728 LINE AND MODEM ADAPTER TYPES ARE INCONSISTENT

729 STATION AND MODEM ADAPTER TYPES ARE INCONSISTENT

730 ANSWER STATEMENT REQUIRED FOR LINES OF TYPE DIALIN

731 ANSWER STATEMENT NOT APPROPRIATE FOR NON-DIALIN LINES

732 END ENDOFNUMBER STATEMENT REQUIRED FOR LINES HAVING AN
ADAPTER CLASS OF 8

733 ENDOFNUMBER STATEMENTS ARE APPROPRIATE ONLY WITH LINES
HAVING AN ADAPTER CLASS OF 8

734 ANSWER STATEMENT IS NOT A LINE DEFAULT ATTRIBUTE
STATEMENT

735 ENDOFNUMBER STATEMENT IS NOT A LINE DEFAULT ATTRIBUTE
STATEMENT

737 HORIZONTAL PARITY VARIANT EXPECTED

738 TALLY OR TOGGLE EXPECTED

739 DCP CANNOT REFERENCE SELF IN EXCHANGE STATEMENT

740 NUMBER OF STATIONS ON LINE CANNOT EXCEED 25

- 741 MAXIMUM NUMBER OF STATIONS IS LESS THAN ACTUAL NUMBER OF STATIONS
- 742 A DCP MAY BE EXCHANGED WITH ONLY ONE OTHER DCP
- 743 TWO DCPS HAVE INCONSISTENT EXCHANGE STATEMENTS
- 744 DCP AND DCP WITH WHICH EXCHANGED HAVE NO LINES ON THEM
- 745 DCP AND DCP WITH WHICH EXCHANGED HAVE THE SAME CLUSTERS DEFINED ON THEM
- 746 THE SET OF TERMINALS SPECIFIED IN TERMINAL STATEMENT DOES NOT INCLUDE ALL THE TERMINALS ON STATIONS ON DCP.
- 747 TERMINAL WIDTH EQUALS ZERO
- 748 DCP MENTIONED IN EXCHANGE STATEMENT NOT DEFINED

APPENDIX

TABLE OF DATACOM ADAPTER CLASSES

CLASS	STYLE	NO.	BAUD RATE	MAX			CON- NECTION	TOUCH ACU	RES- ONSE	AUD IO
				SERIAL	PARA- LLEL	SYNC				
1	B6650-1		600	X			X	D-M		
2	B6650-2		1800	X			X	D-M		
3	B6650-3		2400	X			X	X	D-M	
4	B6650-4		4800	X			X	X	D-M	
5	B6650-5		9600	X			X	X	D-M	
6	B6650-6		40		X			M		X
7	B6650-7		16	X				M		X
8	B6650-8		40		X			M	X	

D = DIRECT CONNECT

M = MODEM

TABLE OF DATACOM ADAPTER TYPES

TYPE	SPEED (BPS)	SIZE					ADAPTER CLASS
		CHAR	UNIT	START BIT	STOP BIT	PARITY ASYNC	
1	45.5	5.0	7.5	1	1.5	-	ASYNC
2	56.9	5.0	7.5	1	1.5	-	ASYNC
3	75.0	5.0	7.5	1	1.5	-	ASYNC
4	110.0	7.0	11.0	1	2	1	ASYNC
5	134.5	6.0	9.0	1	1	1	ASYNC
6	150.0	7.0	10.0	1	1	1	ASYNC
7	3000.0	7.0	10.0	1	1	1	ASTNC
8	600.0	7.0	10.0	1	1	1	ASYNC
9	1200.0	7.0	10.0	1	1	1	ASYNC
10	1200.0	4.0	6.0	1	1	-	ASYNC
11	1800.0	7.0	10.0	1	1	1	ASYNC
12	2400.0	7.0	10.0	1	1	1	ASYNC
13	3600.0	7.0	10.0	1	1	1	ASYNC
14	3600.0	7.0	10.0	1	1	1	ASYNC
15	9600.0	7.0	10.0	1	1	1	ASYNC
16	2000.0	6.0	7.0	-	-	1	SYNC
17	2000.0	7.0	8.0	-	-	1	SYNC
18	2000.0	8.0	9.0	-	-	1	SYNC
19	2400.0	6.0	7.0	-	-	1	SYNC
20	2400.0	7.0	8.0	-	-	1	SYNC
21	2400.0	8.0	9.0	-	-	1	SYNC
22	4800.0	6.0	7.0	-	-	1	SYNC
23	4800.0	7.0	8.0	-	-	1	SYNC
24	4800.0	8.0	9.0	-	-	1	SYNC
25	9600.0	6.0	7.0	-	-	1	SYNC
26	9600.0	7.0	8.0	-	-	1	SYNC
27	9600.0	8.0	9.0	-	-	1	SYNC
28	40.0	4.0	4.0	-	-	-	SYNC
29	16.0	7.0	8.0	-	-	1	SYNC
30	40.0	4.0	4.0	-	-	-	SYNC

TABLE OF ALLOWABLE COMBINATIONS OF LINE TYPES

	D	D T	D R	R	P	D	D	T O U C H T O N E
D U P L E X	U	R	U E	E	A	I	I	
D U P L E X	P	A	P C	M	S	A	A	
D U P L E X	L	N	L E	O	S	L	L	
D U P L E X	E	S	E I	T	I	O	O	
D U P L E X	X	X M	X V	E	V	U	T	
D U P L E X			I		E			
D U P L E X			T					
TOUCHTONE								
DIALIN								
DIALOUT								
PASSIVE								
REMOTE								
DUPLEX								
RECEIVE								
DUPLEX TRANSMIT								
DUPLEX								

TABLE OF ALLOWABLE COMBINATIONS
OF LINE TYPE
X = ALLOWED COMBINATION

INDEX OF METALINGUISTIC VARIABLES

<u>ITEM</u>	<u>PAGE</u>
<FAMILY DESIGNATOR>2-93;2-93,
<FAMILY LIST>2-93;2-93,
<FAMILY STATEMENT>2-93;2-92,
<FETCH ACTION PART>2-27;2-27,
<FETCH STATEMENT>2-27;2-24,
<FILE ATTRIBUTE LIST>2-92;2-92,
<FILE ATTRIBUTE STATEMENT>2-92;2-92,
<FILE DEFAULT DEFINITION>2-92;2-92,
<FILE DEFAULT IDENTIFIER>	2-92;2-92,2-93,
<FILE DEFAULT LIST>2-92;2-92,
<FILE DEFAULT STATEMENT>2-93;2-92,
<FILE DEFINITION>2-92;2-92,
<FILE IDENTIFIER>	2-92;2-92,2-93,
<FILE LIST>2-92;2-92,
<FILE SECTION>2-92;2-9,
<FINISH STATEMENT>2-26;2-24,
<FORMAT CHARACTER>2-55;2-55,
<FORMAT CHARACTER STATEMENT>2-55;2-48,
<FREQUENCY STATEMENT>2-74;2-65,
<GENERALIZED IDENTIFIER>	2-5;2-5,2-6,2-65,2-72,2-92,

<u>ITEM</u>	<u>PAGE</u>
<GO TO STATEMENT>2-25;2-24,
<HEXADECIMAL CHARACTER>2-7;2-7,
<HEXADECIMAL CHARACTER CONCATENATION>2-7;2-7,
<HEXADECIMAL STRING>2-7;2-7,
<HORIZONTAL PARITY TYPE>2-57;2-57,
<HORIZONTAL PARITY VARIANT>2-57;2-57,
<IDENTIFIER>2-5;2-5,2-6,2-10,2-12,2-44,2-48, 2-77,
<IDENTIFIER COMPONENT>2-6;2-5,2-6,
<ILLEGAL CHARACTER LIST>2-54;2-54,
<ILLEGAL CHARACTER STATEMENT>2-54;2-48,
<INCREMENT STATEMENT>2-43;2-24,
<INCREMENTED ITEM>2-43;2-43,
<INHIBITSYNC STATEMENT>2-64;2-49,
<INITIALIZE STATEMENT>2-26;2-24,
<INITIALIZED ITEM>2-26;2-26,
<INITIATE ACTION>2-25;2-25,
<INITIATE STATEMENT>2-25;2-24,
<INTEGER>2-6;2-5,2-6,2-8,2-13,2-20,2-32, 2-41,2-52,2-53,2-58,2-67,2-68, 2-72,2-76,2-85,2-88,2-89,
<INTER-CHARACTER DELAY STATEMENT>2-55;2-48,

<u>ITEM</u>	<u>PAGE</u>
<MODEM ADAPTER STATEMENT>2-44;2-44,
<MODEM ATTRIBUTE LIST>2-44;2-44,
<MODEM DEFINITION>2-44;2-44,
<MODEM IDENTIFIER>2-44;2-44,2-75,2-86,
<MODEM LIST>2-44;2-44,
<MODEM SECTION>2-44;2-9,
<MODEM STATEMENT>2-44;2-44,
<MYUSE STATEMENT>2-70;2-65,
<NETWORK DESCRIPTION>2-9;
<NOISE DELAY STATEMENT>2-46;2-44,
<OPERATOR>2-4;2-4,
<PARITY LIST>2-57;2-57,
<PARITY STATEMENT>2-57;2-48,
<PARITY TYPE>2-57;2-57,
<PARITY VALUE>2-57;2-57,
<RECEIVE ACTION LIST>2-32;2-32,
<RECEIVE ACTION PART>2-32;2-32,
<RECEIVE ADDRESS>2-51;2-51,
<RECEIVE ERROR FLAG>2-16;2-16,2-32,2-41,
<RECEIVE STATEMENT>2-32;2-24,

<u>ITEM</u>	<u>PAGE</u>
<RELATIONAL EXPRESSION>	2-20;2-15,
<RELATIONAL OPERATOR>	2-4;2-4,2-20,
<REQUEST ACTION>	2-61;2-61,
<REQUEST DEFINITION>	2-12;2-12,
<REQUEST IDENTIFICATION>	2-60;2-60,
<REQUEST IDENTIFICATION LIST>	2-60;2-60,
<REQUEST IDENTIFIER>	2-12;2-12,2-60,
<REQUEST LIST>	2-12;2-12,
<REQUEST SECTION>	2-12;2-9,
<REQUEST STATEMENT>	2-13;2-12,2-14,2-15,
<REQUEST STATEMENT LIST>	2-12;2-12,
<RETRY>	2-22;2-20,
<RETRY STATEMENT>	2-76;2-65,
<SCREEN STATEMENT>	2-59;2-49,
<SECURITY STATEMENT>	2-94,
<SEPARATOR>	2-4;2-4,
<SEQUENCE ACTION>	2-43;2-43,
<SEQUENCE ACTION PART>	2-43;2-43,
<SEQUENTIAL OPERATOR>	2-4;2-4,
<SHIFT DIRECTION>	2-43;2-43,

<u>ITEM</u>	<u>PAGE</u>
<STATION IDENTIFIER>	2-65;2-65,2-76,2-87,2-93,
<STATION LIST>	2-65;2-65,2-87,
<STATION MODEM STATEMENT>	2-75;2-65,
<STATION PAGE STATEMENT>	2-68;2-65,
<STATION PHONE STATEMENT>	2-72;2-65,
<STATION SECTION>	2-65;2-9,
<STATION TERMINAL STATEMENT>	2-75;2-65,
<STATION TIMELIMIT STATEMENT>	2-68;2-65,
<STATION WIDTH STATEMENT>	2-67;2-65,
<STATUS TOGGLE>	2-20;2-15,
<STORE ACTION PART>	2-28;2-27,
<STORE PARAMETER>	2-28;2-27,
<STORE STATEMENT>	2-27;2-24,
<STRING>	2-7;2-5,2-6,2-7,2-10,2-28,2-30, 2-66,
<STRING BRACKET CHARACTER>	2-3;2-3,
<STRING CHARACTER>	2-3;2-3,2-7,
<SUM PARAMETER>	2-28;2-28,
<SUM STATEMENT>	2-28;2-24,
<TALLY NUMBER>	2-22;2-22,
<TALLY-TOGGLE LIST>	2-26;2-26,2-27,

<u>ITEM</u>	<u>PAGE</u>
<TERMINAL ADAPTER STATEMENT>2-60;2-49,
<TERMINAL ADDRESS STATEMENT>2-51;2-48,
<TERMINAL ATTRIBUTE LIST>	2-49;2-48,2-49,
<TERMINAL ATTRIBUTE STATEMENT>2-49;2-49,
<TERMINAL DEFAULT ATTRIBUTE LIST>2-48;2-48,
<TERMINAL DEFAULT ATTRIBUTE STATEMENT>	2-48;2-48,2-49,
<TERMINAL DEFAULT DEFINITION>2-48;2-48,
<TERMINAL DEFAULT IDENTIFIER>	2-48;2-48,2-49,
<TERMINAL DEFAULT STATEMENT>2-49;2-48,
<TERMINAL DEFINITION>2-48;2-48,
<TERMINAL DUPLEX STATEMENT>2-60;2-49,
<TERMINAL IDENTIFIER>2-48;2-48,2-75,2-90,
<TERMINAL LIST>2-48;2-90;2-48,2-90,
<TERMINAL PAGE STATEMENT>2-53;2-48,
<TERMINAL REQUEST STATEMENT>2-60;2-49,
<TERMINAL SECTION>	2-48;2-9,
<TERMINAL TIMEOUT STATEMENT>2-53;2-48,
<TERMINAL TURNAROUND STATEMENT>2-56;2-48,
<TERMINAL WIDTH STATEMENT>2-52;2-48,
<TERMINATE STATEMENT>2-36;2-24,

