1

-4

AN T“ERNATIUN.LE

L}

L’INFORMAT‘QUE

PR

;iw"g

)

G.N._

Giia IV. A\ ‘

¥

10070 BATCH
PROCESSING MONITOR

user’'s manual
C900954 B/En

. 18 Bez 1969
10 070 Computer
C900954 B/En
Price : 60,00 FF

10070 BATCH PROCESSING MONITOR

user’'s manual

COMPAGNIE INTERNATIONALE POUR L'INFORMATIQUE

REVISION

This publication, C 900 954 B/En, is a revision of the 10 070 Batch Processing Monitor user’s manual
C 900 954 A/En dated February 1968. A change in text from that of the previous manual is indicated

by avertical line in the margin of the page.

RELATED PUBLICATIONS

TITLE . PUBLICATION N°
10 070 Mathematical Routines User’s Manual C 900 906
10 070 Computer Description Manual - C 900 950
10 070 SYMBOL and METASYMBOL User’'s Manual (o 960 952
10 070 Basic Control Monitor User’s Manual C 900 953
10 070 Stand-Alone Systems Operations Manual C 901 053
10 070 FOR+RAN IV User’'s Manual ‘ C 900 956
10 070 FORTRAN IV-H User’s Manuel C 900 966
10 070 FORTRAN IV-H Operations Manual C 901 144
10 070 RAD SORT User's Manual C 901 199
10 070 Batch Processing Monitor Operations Manual C 901 198
10 070 COBOL-65 User’'s Manual C 901 500
NOTICE

The specification of the software system described in this publication are subject to change without notice. The availibility or

performance of some features may depend on a specific configuration of equipment such as additional tape units or larger memory.

DEFINITION OF TERMS

1.

INTRODUCTION

CONTENTS

viii

Operating System 1
Philosophy of Operation 1
Batch Processing 1
Peripheral Processing 2
Real-Time Processing 2
Processing Programs 2
Language Translators 3
Service Programs 3
Monitor 4
General Organization 5
Job Organization 5
Monitor Organization 6
Disc Organization 7
File Organization 7
System Generation 7
System Hardware Configuration 7
System Commands 7
System Parameters 10
CONTROL COMMANDS 12
System Control Commands 13
JOB 13
LIMIT 13
POOL 13
STDLB 14
MESSAGE 15
TITLE 16
ASSIGN 16
FMGE 19
Processor Control Commands 19
LOAD 20
Overlay Control Commands 22
OVERLAY 22

TREE 22
PTREE 23

INCL 23
OLAY 23
MODIFY 24
SWITCH 24
RUN 24
Debug Control Commands 25
Postmortem Dump Control Commands 25
PMD 26

PMDI 26
Snapshot Control Commands 26
SNAP 26
SNAPC 27

AND 28

OR 28
COUNT 28

Input Control Commands 29
BIN 29
BCD 29
EOD 29

FIN

Utility Control Commands

PFIL

REW
WEOF

OPERATOR COMMUNICATION

System Communication

DATE
TIME

REQUEST ndd KEY-IN

REQUEST 7T/9T/MT KEY-IN
PRIORITY

WAIT

START

ERROR
ABORT

DELETE

DISPLAY
WRITELOG

INT

~ SWITCH
Direct 1/O Communication

Card Reader

Card Punch

Printer

Paper Tape Reader

Paper Tape Punch

Magnetic Tape

Rapid Access Disc File

Symbiont Communication

Installation Communication

SYSTEM PROCEDURES

General-Purpose Procedures

Load Overlay Segment
M:SEGLD

Link to a Load Module
M:LINK

Load and Transfer Control

M:LDTRC
Get Limits

M:GL

Get Common Pages.

M:GCP

Free Common Pages

M:FCP

Get N Pages
M:GP

Free N Pages

M:FP

Checkpoint Job

M:CHKPT
Restart Job

M:RESTART

Set Memory Protection
M:SMPRT

29
30
30
30
30

31

31
31
31
31
31
31
32
32
32
32
32
32
33
33
33

34

35
35
35
35
36
36
37

39

39
39
39
40
40
40
40
41
41
41
41
41
41
41
41
42
42

42
42
42
43
43

5.

Foreground Procedures

File Maintenance Procedures

Give Time and Date

M:TIME

Set Interval Timer

M:STIMER

Test Interval Timer

M:TTIMER

Type a Message
M:TYPE

Request a Key-In
M:KEYIN

Write to Listing Log
M:PRINT

Set Traps

M:TRAP
Connect Console Interrupt

M:INT

Exit from Trap or Timer Routine

M:TRTN

Simulate a Trap

M:STRAP
Exits to the Monitor

M:EXIT

M:ERR

M:XXX

Trigger Foreground Interrupt

M:TRIGGER

Arm Interrupt

M:ARM

Disarm Interrupt
M:DISARM

Set Exit Control

M:SXC

Reset Exit Control

M:RXC

Save Background

M:SBACK

Restore Background

M:RBACK

Connect CAL

M:CAL
Disconnect CAL

M:DCAL

Enable Interrupt
M:ENABLE

Disable Interrupt

M:DISABLE
Enter Master Mode

M:MASTER

Enter Slave Mode

M:SLAVE

Terminate Task
M:TERM

1/O PROCEDURES

Create a Data Control Block

M:DCB

Open a File (Reinitialize o DCB)

M:OPEN

43
43
44
44
44
44
44
44
45
45
45
45
46
46
46
46
47
47
47
47
47
48
48
48
48
48
48
48
48
49
49
49
49
50
50
50
50
50
50
50
50
51
51
51
51
51
51
51
51
52
52
52
52

53

53
53
54
61
61

Close a File (Terminate 1/O Through a DCB) — 63

M:CLOSE

63

Set Error or Abnormal Address

M:SETDCB

Check 1/0O Completion

M:CHECK

Declare a Temporary File

M:TFILE

Data Record Manipulation

Read a Data Record

M:READ
Write a Data Record

M:WRITE

Release a Data Record
M:RELREC

Delete a Data Record

M:DELREC

File Manipulation

Position N Records

M:PRECORD

Position File

M:PFIL

Close Volume

M:CVOL

Rewind

M:REW
Write End-of-File

M:WEOF

Special Device Procedures

M:DEVICE
DEBUG PROCEDURES

Snapshot Dumps

Monitor Error Control

M:MERC

USE OF TEMPORARY STORAGE BY
LIBRARY ROUTINES

PREPARING THE PROGRAM DECK

Symbolic Deck to Program Listing
Compressed Deck Update

Symbolic Deck to Binary Deck
Symbolic Deck to Binary File on Disc

Process, Load, and Execute
Create File for Use by Another Program
Update File, Object Module, and Load

Module of User's Program

Execute Program from User's Library, Using

Debug Feature
Create and Execute Temporary Program

Create a Private File
Create a Private File Having Privileged

Read Access

Read a Private File Having Privileged Read

Access

Create a Resident Foreground Task

Load a Resident Foreground Task for Execution
Connect a Nonresident Foreground Task for

Execution

REAL-TIME OPERATIONS

Generation of a Real-Time System

:DEVICE

:RESERVE

64
64

64
65
65
65
65
65
66
66
68
68
68
68
69
69
69
69
69
70
70
70
70
70
70
71
71

77

77
78
78

79
80

80
80
80
80
80
81

82
82
82
82

82

10.

JANTS
:INTR
:TIME
Initialization Modules
Creation of Foreground Load Modules (Tasks) —
Task Initiation
Operator Control of Foreground Tasks
System Procedures for Real-Time Foreground

Tasks

M:TRIGGER

M:DISABLE

M:ENABLE
M:DISARM

M:ARM
M:CAL

M:DCAL

M:SLAVE
M:MASTER

M:SBACK

M:RBACK

M:TERM
M:SXC

M:RXC

Foreground Restrictions
Monitor Calls

Foreground Files
Saving Enviornment at Interrupt Time

SYSTEM GENERATION

Summary of System Generation

IPASS1
:SELECT

:UPDATE
:LABEL

:SYSWRT
1PASS2

:STDLB

DEVICE

:SDEVICE
:MONITOR

:RESERVE
:DLIMIT

:ABS

JINTS

JINTR

:TIME
IDEF

System Generation Example

System Generation Messages

PASS-1 Messages
PASS-2 (:DEVICE/:STDLB) Messages
PASS-2 (:SDEVICE) Messages
PASS-2 (:MONITOR) Messages

PASS-2 (:ABS) Messages

PASS-2 (:DLIMIT) Message
PASS-2 (:DLIB) Messages

PASS-2 (FORMLIB) Messages
PASS-2 (RJITGEN) Messages
PASS-2 (:RESERVE) Messages
PASS-2 (INTR/ANTS) Messages

PASS-2 (:TIME) Messages

85

86

87
87

88
88
88
88
88

88
88
88
89
89

89
89
89
89
89
89
89

91

11. MONITOR BOOTSTRAP PROCEDURE

PASS-0 Control Commands

:GENCHN

:GENOP
:GENDCB

:GENSZ

:GENDC

:GENMD

:GENDEF

:GENEXP

:GENDICT

PASS-0 Messages

INDEX

APPENDIXES

10 070 STANDARD OBJECT LANGUAGE

Introduction

General

Source Code Translation
Object Language Format

Record Control Information

Load Items

Declarations

Definitions

Expression Evaluation

Loading
Miscellaneous Load Items

Object Module Example

FILE ORGANIZATION

Introduction

File Control

File Organization

File Access

Record Blocking
Exclusive Use of Records and Files

Exclusive Use of Tape Files

Exclusive Use of Disc Files
Multiple DCB's within a User's Program
Referencing the Same File

Tape Files

Disc Files

Labeled Tapes (See Figure B-2)

Sentinels

1/0 HANDLERS

Introduction

Registers

Basic Structure

Entry and Exit
Device Tables Set/Used

Handler and 1/O Executive Interface

/0 Handler Descriptions

KBTIO (Keyboard Typewriter Handler) ———

CRDIN

105

105
105
105
106
106
106
107
107
107
108
108

187

111

111
m
11
112
112
113
113
115
116
118
120
120

127

127
127
127
127
128
129
130
130

130
130
130
130
130

134

134
134
135
135
135
136
137
137
137

CRDOUT (Card Punch Handler, Unbuffered) — 138

vi

PRTOUT (Line Printer Handler, Buffered)

PTAP (Paper Tape Handler)

MTAP (Magnetic Tape Handler)
7TAP (7 Track Magnetic Tape)
DISCIO (Magnetic Disc Handler)

SENSE SWITCH SIMULATION

Test-Sense=-Switch Routine

Set-Sense-Switch Routine

Reset-Sense-Switch Routine

BLOCKING/DEBLOCKING

Output Files

Write Logical Record
Write Output Buffer

Input Files
Read Logical Record

Close Current Input Buffer

DATA FORMATS ON EXTERNAL MEDIA

Formatted Data Records
Direct Data Records

Error Recovery Procedures

COOPERATIVE AND SYMBIONTS

Cooperative

Symbionts

Symbiont-Cooperative Housekeeping -
ERROR AND ABNORMAL RETURNS
MEMORY PROTECTION

INFORMATION GIVEN TO USERS
AND PROCESSORS

CLOSING AND SAVING TAPES

Closed Files

Input Tapes
Output, Update, and Scratch Tapes

Closed Volumes
Unlabeled Tapes

Labeled Tapes

Rewound Files

Unlabeled Tapes
Labeled Tapes

LOAD MAP FORMAT

Column 1

Column 2

Column 3

LOADER ERROR MESSAGES

SPECIFIC CONFIGURING INFORMATION

Patching the Resident System

File Names and Contents

Monitor Files

138
139
140
141
141

143

143
143
143

143

143
143
144
144
144
144

144

144
145
145

146

146
146
146

148

151

151

152

152
152
152
152
152
152
152
152
152

153
153
153
153
154
155
155

155
155

Loader Files

CCI Files

TAPEFCN Files

FMGE Files

Library Files

System Generation Processors
Tree Structures

Monitor
Loader

Control Command Interpreter

PASS2 Processor
Un-Segmented Processors and DCB's
PASS1 Processor

DEF Processor
FMGE Processor

REW, WEOF, and PFIL Processors

System DCB's
TASK CONTROL BLOCK FORMAT

FILE ATTRIBUTES

Function

Disposition Type
Organization

Access

CHARACTER ORIENTED COMMUNICATIONS

ROUTINES

Commands

Line States
Handling of the Break Signal

Input Processing = TTY

Input Processing — K/D
QOutput Processing

Creation and Initialization of a Resident
Real-Time COC System

System Generation

:RESERVE

(INTR
COC Assembly Parameters

Creating a COC System File

Loading Core with the COC System
Initiation of the COC System
Retrictions

COC Command Details

COCRD (Read Message)
COCWR (Write Message)

COCREL (Wait for Output)
COCTR (Terminate COC 1/0)
Line Control Tables

State Table — STATE (Byte Table)

Input Conversion Table Location —

COCIT (Word Table)
Mode Table — MODE (Byte Table)
Output Conversion Table Location —

COCOT (Word Table)
Actual Record Size Table — ARS

(Byte Table)

Byte Address for Next Character Table —

COCBE (Word Table)

Link Table — LINK (Half Word Table)

156
156
156
156
157
157
157
157
157
158
158
158
158
158
158
158
158

161

163

163
163
164
164

165

165
165
165
165
166
166

166
166
166
166
166
167
167
167
167
167
167
168
168
168
168
168

169
169

169

169

169
169

Output Character Count Table — N-1b. Monitor Tree Structure 159
COCOCNT (Halfword) 169 N-2. Loader Tree Structure 160
Local Storage 169 N-3. Control Command Interpreter Tree Structure — 160
Buffer Format 169 N-4, PASS2 Processor Tree Structure ——— 160
Input Special Character Handling Routines 169 R-1. Memory Allocation 177
Output Special Character Handling Routines 174
R. MEMORY ALLOCATION 177 TABLES
S. MONITOR MODULES LISTED BY 1. Monitor Operational Labels 14
CATALOG NUMBER 178 2. 1/O Device Type Codes 15
3. Channel Designation Codes 15
T. LOADER CONSTRUCTED DCB'S AND 4. Device Designation Codes 15
SYSTEM DCB'S 186 5. Line Printer Format Control Codes ——————— 18
6. Error Severity Levels 20
7. Monitor Actions 34
8. Symbiont Communication 36
ILLUSTRATIONS 9. Symbiont Messages 37
10. 1/O Assignments 37
1. Operating System 1 C-1. Register References 132
2. Real-Time System Memory Layout —— 85 C-2a. Function Codes Passed Via DCT 10HR7 ——— 136
3. Pass 1 of System Generation 93 C-2b. Function Codes Modifiers 136
4. Card Input Sequence for Selecting or C-3. Names/Functions of Handler Interface —
Updating Monitor Files ——4M —————— 94 Routines 136
5. System Generation Example 99 H-1. Abnormal Codes —Insufficient or
B-1 Labeled Tape Format for Variable-Length Conflicting Information 149
Blocked Records 129 H-2. Abnormal Codes — Device Failure or
B-2. General Format of Labeled Tape —— 131 End of Data 149
B-3. Label Sentinel 131 H-3. Error Codes —Insufficient or Conflicting
B-4. Identification Sentinel 131 Information 150
B-5. Beginning-of-File Sentinel 132 H- Error Codes — Device Failure or End of Data — 150
B-6. File Information on Tape 132 K-1. Tape Positioning for Output, Update,
B-7. End-of-File Sentinel 132 and Scratch Tapes 152
B-8. End-of-Volume Sentinel 133 L-1. Load Map Codes 153
B-9. End-of-Reel Sentinel 133 M-1. Loader Error Messages 154
G-1. Information Flow Through Cooperative Q-1. Input Conversion = TTY 170
and Symbionts 147 Q-2. Input Conversion —K/D 172
N-la. Monitor Root Structure 159 Q-3. Output Conversion (EBCDIC —ASCII(TTY)) —— 175

vii

DEFINITION OF TERMS

absolute loader: a resident Monitor routine capable of load-
ing a program into a core storage area beginning with
the location specified in the first record of the program.

addend value: a hexadecimal constant to be added to the
value of a relocatable address. The constant is ex-
pressed as a signed integer appended to the address;
e.g., START+12 or HERE-F1.

address resolution code: a 2-bit code that specifies whether
an associated address is to be used as a byte address or
is to be converted (by truncating low order bits) to a
halfword, word or doubleword address.

background area: that area of core storage allocated to
batch processing. Programs executed in this area may
be interrupted by foreground programs.

background program: any program executed under Monitor
control in the background area of core storage.

binary input: input from the device to which the Bl (binary
input) operational label is assigned.

checkpointed job: a partially processed background job
that has been saved in secondary storage along with all
registers and other "environment" so that the job can
be restarted.

common page: a page of core storage that is available to
the user's program and in which stored data is retained
until the current job is terminated or until the page is
released by the user's program.

console interpreter: a Monitor routine that interprets graph-
ic and control codes input from a keyboard (TY device).

control command interpreter: a Monitor routine that inter-
prets control commands.

control command: any control message other than a key-in.
A control command may be input via any device to
which the system command input function has been as-
signed (normally a card reader).

control function: any Monitor function initiated by a con-
trol command or control key=-in.

control key-in: a control message of the type that must be
input from the operator's console.

control message: any message received by the Monitor that
is either a control command or a control key-in (see
"key-in").

cooperative: a Monitor routine that transfers information
between a user's program and disc storage (also see
"symbiont").

Data Control Block (DCB): a table that contains the infor-
mation used by the Monitor in the performance of an
1/0O operation.

declaration: a load item that introduces a symbolic name,
so that the loader can give it a unique name number.

declaration number: the name number given to the symbolic
name associated with a particular declaration.

dedicated memory: core memory locations reserved by the
Monitor for special purposes, such as traps, interrupts,
and real-time programs.

definition: a load item that assigns a specific value to the
symbolic name associated with aparticular name number.

dummy section: a type of program section that provides a
means by which more than one subroutine may reference
the same data (via an external definition used as a la-
bel for the dummy section).

element file: a user's file consisting of program elements,
such as relocatable object modules or library load
modules.

end record: the last record to be loaded, in an object mod-
ule or load module.

error card: a card punched by the Monitor following each
card punched in error on a single-stacker punch. The
letters ERR are punched on each error card.

error severity level code: a 4-bit code indicating the sever-
ity of errors noted by the processor. This code is con-
tained in the final byte of an object module.

Event Control Block (ECB): a word containing flags set by
the Monitor to indicate the completion of events such
as segment loading or solicited key=ins.

expression: a series of load items immediately preceded by
an "origin", "define field”, "forward reference defini-
tion", "external definition", or "define start" load
item and terminated by an "expression end" load item
(see Appendix A).

expression accumulator: a register in which the object
module loader stores values generated during the
evaluation of an expression.

external definition: a load item that assigns a specific value
to the symbolic name associated with a particular ex-
ternal definition name number. An external definition
allows the specified symbolic name to be used in exter-
nal references (see below).

external reference: a reference to a declared symbolic
name that is not defined within the object module in

which the reference occurs. An external reference can
be satisfied only if the referenced name is defined by
an external load item in another object module.

file management routines: Monitor routines that interpret
and perform 1/O functions.

foreground program: a real-time program executed on the
occurrence of a priority interrupt signal or an unsolic-
ited key-in.

forward reference number: a number assigned by a processor
to designate a specific forward reference in a source
program.

Function Parameter Table (FPT): a table through which a
user's program communicates with a Monitor function
(such as an /O function).

GO file: a temporary disc file of relocatable object mod-
ules formed by a processor. Such modules may be re-
trieved by the use of a LOAD control command.

granule: a block of disc sectors large enought to contain
512 words of stored information.

idle state: the state of the Monitor when it is first loaded
into core memory or after encountering a FIN control
command. The idle state is ended by means of an S
key=-in.

installation control command: any control command used
during System Generation to direct the formatting of
a Monitor system,

1/O supervisor: a Monitor routine that controls the queue
of outstanding 1/O requests.

Job Information Table (JIT): a table in which the Monitor
retains information that is needed for handling the cur-
rent job (e.g., memory area allocated, SPD address,
etc.).

key-in: information entered by the operator via a keyboard.

keyword: a word, consisting of from 1 to 8 characters, that

identifies a particular operand used in a control command.

library input: input from the device to which the LI (library
input) operational label is assigned.

library load module: a load module that may be combined
(by the relocating loader) with relocatable object mod-
ules, or other library load modules, to form a new
executable load module.

load bias: a value replacing the origin of a relocatable pro-
gram, to change the address at which program loading
is to begin.

load information: information (i.e., control information,
data, and instructions) generated by a processor and
contained in one or more modules capable of being
linked to form an executable program.

load item: a load control byte followed by any additional
bytes of load information pertaining to the function
specified by the control byte.

load location counter: a counter established and maintained
by the Monitor to contain the address of the next loca-
tion into which information is to be loaded.

load map: a listing of significant information pertaining to
the storage locations used by a program (see Appen-

dix L).

load module: an executable program formed by the relocat-
ing loader, using relocatable object modules and/or
library load modules as source information.

logical device: a peripheral device that is represented in a
program by an operational label (e.g., Bl or PO) rather
than by a specific physical device name.

monitor: a program that supervises the processing, loading,
and execution of other programs.

name number: a number assigned by the relocating loader
to identify a declared name.

object deck: a card deck comprising one or more object
modules of load information.

object language: the arbitrary, conventional, binary lan-
guage in which the output of a processor is expressed.

object module: the series of records containing the load
information pertaining to a single program or subpro-
gram (i.e., from the beginning to the end). Object
modules serve as input to the relocating loader.

operational label: a symbolic name used to identify a logi-
cal system device.

option: an elective operand in a control command or pro-
cedure call, or an elective parameter in a Function
Parameter Table.

overlay loader: a Monitor routine that loads and links ele-
ments of overlay programs.

overlay program: a segmented program in which the element
(i.e., segment) currently being executed may overlay
the core storage area occupied by a previously executed
element.

parameter presence indicator: a bit, in word 1 of a Func-
tion Parameter Table that indicates whether a particular
parameter word is present in the remainderof the table.

physical device: a peripheral device that is referred to by
a "name" specifying the device type, 1/O channel,
and device number (also see "logical device").

postmortem dump: a listing of the contents of a specified
area of core memory, usually following the abortive
execution of a program.

primary reference: an external reference that must be satis-
fied by a corresponding external definition (capable of
causing loading from the system library).

Program Trap Conditions (PTC): two words that indicate trap
status (setor reset) and trap exit address, respectively.

pseudo file name: a symbolic name used to identify a logi=
cal device in a user's program.

public library: a setof library routines declared, at System
Generation time, to be public (i.e., always resident
during execution of a user's program).

relocatable object module: a program, or subprogram, gen-
erated by a processor such as Meta-Symbol, FORTRAN,
COBOL, etc. (in 10070 object language).

relocating loader: a program capable of loading one or
more object modules and linking them to form an
executable program.

resident program: a program that has been loaded into a
dedicated area of core memory.

scheduler: a Monitor routirie that controls the initiation
and termination of all jobs.

secondary reference: an external reference that may or may
not be satisfied by a corresponding external definition

(not capable of causing loading from the system library).

secondary storage: any rapid-access storage medium other
than core memory (e.g., -magnetic disc).

segment loader: o Monitor routine that loads overlay seg-
ments from disc storage at execution time.

source deck: a card deck comprising a complete program
or subprogram, in symbolic format.

source language: a language used to prepare a source pro-
gram {and therefrom a source deck) suitable for pro-
cessing by an assembler or compiler.

standard control section: a control section whose length is
not known by a 1-pass processor until all the load
information for that section has been generated.

symbiont: a Monitor routine that transfers information be-
tween disc storage and a peripheral device (also see
"cooperative").

symbolic input: input from the device to which the SI (sym-
bolic input) operational label is assigned.

symbolic name: an identifier that is associated with some
particular source program statement or item so that
symbolic references may be made to it even though its
value may be subject to redefinition.

system library: a group of standard routines in object-
language format, any of which may be incorporated
in a program being formed.

system register: a register used by the Monitor to communi-
cate information that may be of use to the user's pro~
gram (e.g., error codes). System registers SR1, SR2,
SR3, and SR4 are current general registers 8.9, 10,
and 11, respectively.

Task Control Block (TCB): a table of task control informa-
tion set up and maintained by the Monitor. Among
other things, it contains the data required to allow
reentry of library routines during program execution.

TSS temp stack: a push-down stack established by the Mon-
itor for use by an executing program (unless NOTCB was
specified for the load module).

wait state: the state of the Monitor when it has encountered
a W key-in, during which all backgroun operations
are suspended until the state is ended by means of an
E, S, or X key=in.

1. INTRODUCTION

OPERATING SYSTEM

The 10 070 Batch Processing Monitor functions as the
major control element in an installation's operating system.
The operating system consists of the Monitor and a number
of processing programs: language translators, service pro-
grams, batch user's programs and real-time user's programs.
In general the Monitor governs the order in which these
programs are executed and provides common services to all
of them (see Figure 1).

The number, types and versions of the programs in an oper-
ating system vary, depending upon the exact requirements
at a particular installation. Each operating system consists
of a selection of Monitor routines and processing programs

that are closely integrated for a given range of applications.

The operating system required for a particular installation
is generated through use of the 10 070 Batch Processing
Monitor System Generation program.

As the requirements of an installation increase, the operat-
ing system can easily be enlarged, modified, or updated.
The ability to adapt conveniently to new requirements is in-
herent in the system design. Once a system is generated,

it can quickly be expanded to include user's programs, data,
and system libraries. User's programs and the standard sys-
tem processors are equivalent in that they are stored, cata-
loged, and referred to within the system in the same way.
They are also written using the same conventions for com-
municating with the Monitor.

A user's program and/or data may be incorporated in the
operating system temporarily or it may remain a part of the
system for an extended period of time.

The operating system is self-contained and requires operator
intervention only under exceptional conditions.

Operating procedures are given in the 10 070 Batch
Processing Monitor Operations Manual (C 901 198).

PHILOSOPHY OF OPERATION

The Monitor uses sophisticated techniques for efficient ma-
chine operation in a production environment, while offer-
ing concurrent, critical real-time processing on a dynamic
and compatible basis. The full multiuse capability of the

Monitor provides for three levels of operation:

1. Batch processing.

2. Peripheral processing (symbionts): card-to-disc, disc-
to-punch, disc-to-printer.

3. Real-time foreground processing.

BATCH PROCESSING

The ability to process a continuous series of jobs with little
or no operator intervention is one of the most important
features of the system. By reducing the need for operator
participation, the operating system ensures faster through-
put, and operations are less subject to error. For the most
part, the operator should only have to perform routine tasks
such as loading and unloading tape reels.

Complete and easy-to-use /O services are available to
user programs, thus relieving the programmer of many cod-
ing chores. Device assignment is general and automatic,

Monitor

Operator System Control [™]

Job Input
Job Scheduler }-

Resident
Real-Time

i

Symbionts |

Processing Programs

Langauge
Translator

Service

Supervisor

Batch User

Non-resident
Foreground

- - o — —— ———— ——— = - o w——

Figure 1. Operating System

Introduction 1

enabling the user's program to exploit the complete flexi-
bility of 10 070 Peripheral units.

/O service is comprehensively organized to simplify pro-
gramming and make machine utilization efficient. 1/0
transfers are automatically buffered, and 1/O peripherals
are serviced on a queue basis (by job). Jobs can thus be
executed sequentially even though they might normally be
1/0-bound and delay use of the CPU or other 1/O devices.

Jobs can be run from a card-reader stack in the simplest
case, or run under the rules of an installation's job schedu-
ler by using the card-to-disc symbiont. The job scheduler
permits selective job operation based on job type or admini-
strative priority to maximize throughput efficiency or en-
vironmental needs. The computer operator maintains com-
plete control over the job stack on secondary storage. Jobs
can be suspended, initiated on a priority basis, or reorganized
in sequence.

Secondary storage (disc) management is essential to effi-
cient operation of the Monitor, since such storage is fully
exploited in various ways. It is used for system storage to
overlay portions of the Monitor, minimizing core memory
residency. Service processors (compilers, assemblers, etc.)
are contained on the disc for immediate access, and they
too capitalize on rapid overlay techniques to minimize core
memory requirements at execution time. Scratch storage
for service processors and user programs is available on the
disc, as is check-point storage. Finally, the secondary
storage accommodates permanent and temporary user files.

Because of the Monitor's extensive use of high-speed secon-
dary storage, comprehensive facilities for efficient storage
allocation and access are provided by a Disc Management
Routine. A choice of random or sequential access to files

is provided to operating programs. Security features are
offered to users so that assigned storage areas can be desig-
nated as public or private, read-only, or read-and-write.
Private files are given ageneral password mechanism whereby
access can be designated in various ways according to the
needs of the installation.

User programs can avail themselves of the rapid-access disc
and overlay service of the Monitor. With these facilities,
user programs that require more operating core memory stor-
age than is physically available can be easily segmented
and controlled so that only part occupies available core
memory at any one time. The Monitor accepts the overlay
structure of the user's program and ensures proper sequencing
and transferring of program elements. It also detects incon-
sistencies in the logical overlay structure and logs them as

a diagnostic message to the user.

"Check-point" service can be called either by the user pro-
gram itself or a real-time foreground process. In all cases,
the user's program is saved on secondary storage for reacti=-
vation at the checkpoint, when appropriate. Thus, for a
long production task, the program can call for periodic
check-pointing. If a malfunction occurs, data files arere-
positioned so that the program can then continue from the
last checkpoint. Finally, it may be necessary to checkpoint

2 Philosophy of Operation

the background process if a real-time foreground task re-
quires additional temporary core memory.

The Monitor provides for complete accounting user job ac-
tivity on the10 070 computer. Because of the system's
multiusage capability, the accounting information indicates
both elapsed time and actual machine facility utilization of
each job.

The Monitor's loader function relocates user programs into
the currently available core memory space, satisfies all li-
brary subroutine references, and links all program elements
called for by the user. [n addition, run-time debugging
calls are recognized and established for the binary programs.

PERIPHERAL PROCESSING

Peripheral processing tasks (symbionts) are primarily /0O
functions that require minimum service from a central pro-
cessor (CPU); such processing can be performed concurrently
with other computing tasks and other 1/O processing. Sym-
bionts consist of small routines that control 1/O transactions
and buffer storage in core memory to accommodate the data
throughput. With a minimum core memory, high-speed /0O
transactions can be processed without interfering with other
concurrent processing tasks.

The Monitor permits the computer operator to directly call,
or a user program to indirectly call, for the initiation of a
symbiont. The symbionts provided are established in core
memory as extensions to the operating system, and they com-
municate directly with the operator for termination of error
conditions.

Because symbiont operation may be independent of and con-
current with other system actions, computer efficiency is
maximized by overlapping bulk 1/O transactions with normal
processing. In particular, the rapid-access secondary stor-
age philosophy of 10 070 operating systems capitalizes on
the use of symbionts to derive maximum efficiency from the
various service processors such as compilers and assemblers.

REAL-TIME PROCESSING

Real time processing, the most critical aspect of multiusage,
involves processes that must react to external events (includ-
ing clock pulses) within milliseconds or microseconds. Such
tasks must be given priority treatment in varied ways. Al-
though geared to job-shop operations, the Monitor permits
10 070hardware to process real-time tasks and background
tasks concurrently.

Real-time processes can be installed permanently as exten-
sions of the resident Monitor or they can be dynamically
loaded and initiated. The first method is used when the
real-time process normally remains unchanged and is con-
stantly operative. The dynamic approach can be used when
real-time operations are executed periodically or irregular-
ly, as in an experimental laboratory.

At installation time, a real-time process is assigned machine
facilities on a dedicated basis. These facilities include
disc and core memory residency, 1/O channels, peripheral
devices, external interrupt lines, and CAL trap locations.
Such allocation remains in force until either the process or
the computer operator terminates the program.

Finally, the real-time process can call for a secondary ser-
vice that employs normal system facilities (nondedicated)
without disturbing normal operations. Such a task might
bean /O transfer of accumulated data or the transmittal of
a message to the operator.

If the real-time process requires use of the input/output
processor, the Monitor recognizes 1/O interrupts for the
process by means of the task's priority level (hardware as-
signment) and immediately turns control over to the respon=
sible program. Thus, although 1/O interrupts are central~-
ized, a real-time process still retains control over all its
operations.

For real-time processes requiring operation on a periodic
time basis, the Monitor offers a clock-watching service.
This facility activates the process when the appropriate time
elapses (within the precision of the standard clock). The
user need not provide special clocks for the private use of a
real-time program if the standard clock facility is adequate.

The Monitor can service several independent real-time pro-
cesses concurrently. The user must be judicious in theallo-
cation of time resources; however, to eliminate conflict in
processing time between the various real-time processes,
hardware assignment dictates priority. With proper plan-
ning, machine resources can be fully utilized without over-
loading the system.

PROCESSING PROGRAMS

A wide variety of processing programs are available for in-
clusion in the operation system. These may be supplemented
by others supplied by the user or by Cll . These programs
are designed to increase throughput, decrease the response
time of the system, enable a flexible and orderly growth of
the system through a broad range of applications, and assist
in programming.

LANGUAGE TRANSLATORS

The language translators assist a user by enabling him to de-
fine a program in a language form that can be readily learned
and understood. The language franslators provided by the
system are discussed below.

FORTRAN

Compilers can be included in the operating system for com-
piling programs written in the FORTRAN IV language.

COBOL

A compiler may be included in the operating system for com-
piling programs written in the COBOL 65 language.

SYMBOL

A Symbol assembler may be included in the operating system
for assembling programs written in the Symbol language.
Symbol is a 1-pass assembler that provides for literals, for-
ward references, and external definitions.

META-SYMBOL

A Meta-Symbol meta-assembler may be included in the op-
erating system for assembling programs written in the Meta-
Symbol language. Meta=Symbol is a multi-pass, high-level
language, assembler. Its features compare favorably with
those of the most advanced operational assemblers on the
largest computing systems. Meta-Symbol is a superset of
the Symbol language.

A comprehensive set of system procedures is provided for
communicating service requests to the Monitor supervior.

SERVICE PROGRAMS

Service programs assist the programmer by providing routines
for performing frequently used functions. The service pro-
grams consist of a Loader, Sort routine, relocatable library,
and a set of utility programs (e.g., file management and
media conversion).

LOADER

A Loader is provided for loading the output from a compiler
or assembler into memory. The loader can also select any
routines that are required from object module and load mod-
ule libraries, and effectively combine them to form a single
program, ready to be loaded into memory and executed.

The Loader enables changes to be made in a program with-
out recompiling or reassembling it. In addition, it provides
a means by which the program can be divided, if it is too
large for the space available in memory (i.e., executed
segments of the program can be overlaid by segments yet to
be executed).

SORT

Sort is a generalized program for use in sorting fixed-length
records. The sorting uses a direct-access storage device to
minimize sort time, and the program takes full advantage of
the input/output resources allocated by the Monitor.

UTILITY PROGRAMS

A set of utility programs is provided for performing functions
such as:

Transferring data from one storage device or input/out-
put device to another

Listing an inventory of data and programs that are
cataloged

Listing files

Tape positioning and general control

Processing Programs 3

MONITOR

The Monitor is a disc-oriented multiprogramming system de-
signed to ensure efficient facility operation. It controls
and coordinates the processing of a continuous series of
batch and real-time jobs, and controls the I/O operations.

The Monitor enables users to fully exploit the capabilities
of the Cl1 10 070 computer system by providing the comput-
ing power and flexibility usually found only on larger, more
expensive systems.

The Monitor system is a control and production tool the user
can adapt to a variety of environmental requirements. It
simplifies computer utilization in a job-shop environment,
where maximum efficiency is required ona productionbasis.
In addition, the system can accommodate real-time fore-
ground processing on a dynamic basis; that is, critical real-
time tasks can be either permanently embedded in the oper-
ating environment or established and dismissed under
operator control. Under the fundamental concept of multi-
usage, foreground tasks can be processed compatibly and
concurrently with both a background production job stack
and peripheral processors (symbionts), thus realizing three
levels of concurrent processing.

A batch job is the basic independent task performed by the

operating system. Each such background job is independent
of any other job and consists of one or more directly or in-
directly related job steps. A job step results in the execu-
tion of a processing program such as a language translator,

loader, utility service, or user's program.

Job steps may be related to one another; the output of one
may be passed on as the input to another.

Parts of the Monitor must remain resident to ensure continu-
ous coordinated operation. Other parts are brought into
core memory from secondary storage as they are required to
perform specific functions.

Secondary storage management is essential in the Monitor.
It is used for system storage to overlay portions of the Moni-
tor, thus minimizing core memory residency. Processing pro-
grams are retrieved fromdiscand they too capitalize on rapid
overlay techniques to minimize core memory requirements.

Scratch storage for service processors and user's programs is
available on the disc, as is checkpoint and symbiont storage.
In addition, the secondary storage accommodates permanent
and temporary user's files.

Security features are offered to the user, so that assigned
storage areas can be designated as public or private, read
only, or read and write. A general password mechanism is
provided whereby access can be designated in various ways
according to the needs of the user's installation.

The Monitor provides a comprehensive group of facilities
that feature automatic and efficient control of many data
processing operations previously performed by the user.

4 Monitor

The file management cataloging scheme enables the user to
retrieve data and programs (including loadable programs)
by symbolic name alone. Thus, the user is freed from the
necessity of maintaining inventory lists of data and pro-
grams stored within the system. Cataloging reduces manual
intervention and human error, and provides for protection,
security, and sharing of files. Control of confidential data
is provided by the system, and a user may prevent unauthor-
ized access to a file. A secure file is made available for
processing only when the correct password is furnished.

The file access facilities provided by the Monitor are a ma-
jor expansion of the 1/O control systems of previous operat-
ing systems. 1/O routines are provided to efficiently
schedule and control the transfer of data between main
storage and 1/O devices.

File management provides for

Reading and writing data

Blocking and deblocking records
Overlapping 1/O and processing operation
Reading, verifying and writing file labels
Automatic file volume positioning

User error and abnormal condition checking
User label checking

Permitting the user to store, modify, and retrieve
programs and data by symbolic name

Freeing the user from concern about specific 1/O
device configurations

Making device assignment external to the user's
program, and

Sharing user's system files with

Complete file security

BPM features are summarized as follows:
Efficient and comprehensive 1/0O service to user
programs
Automatic job sequencing for closed-shop operations
Dynamic real-time process initiation and execution

Maximum utilization and comprehensive management
of rapid-access secondary storage (disc)

Comprehensive control of system operation by computer
operator

Sophisticated (but easy-to-use) processor services for
program creation, debugging, and execution such as
FORTRAN 1V, and Meta=-Symbol

Recognition of administrative priority assignment on
incoming jobs

Checkpoint service

Automatic job accounting

Flexible job scheduling for efficient throughput oper-
ation and recognition of installation priorities

Unimplemented instruction traps for simulation of un-
available hardware options

Sophisticated error processing
Modular, flexible design for user modification

User of overlay techniques to minimize core memory
residency

Upward compatibility with the Universal Time-Sharing
Monitor

Tape Label processing

Scheduling and controlling of 1/O operations
Blocking of disc and tape files

Priority scheduling

General and automatic device assignment

Complete memory protection of the operating environ-
ment and real-time processes

Comprehensive secondary storage management

GENERAL ORGANIZATION
SYSTEM CONTROL

The primary function of system control is to provide a two-
way communication link between the operator and the sys-
tem. The operator may command the system to change the
status of a device, alter the operation of the system, and
request status information. He is also responsible for alert-
ing the job scheduler to initiate the reading and processing
of jobs and rescheduling the order in which they are to be
processed.

JOB SCHEDULER

The job scheduler is called into memory to prepare each job
to be run. It performs its functions between jobs and be-
tween job steps but is not resident while a processing pro-
gram is executing. The job scheduler is initiated by an op-
erator key-in and directed by programmer-supplied control
commands. The control command input stream is under
complete control of the job scheduler; it performs various
functions based on the control commands processed.

There are two versions of the job scheduler. One of these
reads and processes jobs sequentially. The other (for the
symbiont system) can read jobs concurrently from several in-
put devices, such as card readers, and output on several
output devices, such as printers, card punch, typewriter,
and paper tape. Reading and writing can occur either inde-
pendently of, or concurrently with, the actual processing of
the jobs.

SUPERVISOR

The supervisor is the heart of the operating system. Its pri-
mary function is to provide a variety of services for other

parts of the system while coordinating and controling the
performance of these services to ensure efficient use of the
facilities and resources. It also prevents programs from in-
terfering with one another and with the operation of the
Monitor. This is accomplished by its use of privileged in-
structions, such as storage-protection and 1/0.

The supervisor receives control by means of program inter-
ruption. This may be caused by a specific request for ser-
vices or it may be an automatic interruption, such as an
1/O interrupt.

The 1/O interrupts, in general, enable the supervisor to
coordinate and effectively maintain control over the physi-
cal and programming resources of the system.

Services performed by the supervisor may be the result of a
specific request, such as a request for storage space, or it
may be a service that is virtually automatic, such asattempt-
ing to recover from an error condition.

JOB ORGANIZATION

The user controls the construction and execution of his pro-
gram by means of control cards placed before, within, and
following the input card decks. These control cards, inter=-
preted by the Monitor, specify

Processors required and the options to be used

Input/output devices required and their specific
assignments

Loading and execution requirements
Libraries and supporting services required

Program modification and debugging requirements

Monitor routines may be used to handle all 1/O functions
and to perform other services for the user's program. To pro-
vide linkages between the user's program and a Monitor
routine, an appropriate calling sequence must be present in
the user's program when it is executed. Such a caliing se-
quence can be generated at assembly time through the use
of a Meta-Symbol procedure call in the source program.

If the Symbol assembler is used instead of the Meta-Symbol
assembler, the calling sequence must be included explicitly
in the user's source program (see Chapter 4, "System Proce-
dures"), since the Symbol assembler does not process proce-
dure calls. Compilers such asCi110 070 FORTRAN 1V

generate all necessary calling sequences automatically.

Jobs may be input directly from a card-reader stack or under
control of the system's job scheduler, through the use of a
card-to-disc symbiont. Use of the scheduler permits selec-
tive job operation based on job priority. At all times, the
operator may exercise complete control over the job queue
in secondary storage. Jobs may be suspended, initiated on
a priority basis, or reorganized in sequence.

Resident foreground tasks may be createdand included in the
foreground element file when the Monitor systemis generated.

Monitor 5

Nonresident foreground tasks may be created during normal
batch operation. Both resident and nonresident foreground
tasks may be updated during batch operation.

The Monitor can service several independent real-time pro-
cesses concurrently. However, the user must be judicious
in the allocation of time resources. To preclude conflicts
between real-time processes, relative priorities are estab-
lished uniquely by hardware interrupt assignments.

A foreground task may cause the background process to be
checkpointed if additional core storage area is required for
the real-time program. The Monitor's checkpoint routines
are reenterable, and all data needed to restart a check-
pointed job is saved along with the job.

For real-time processes requiring periodic operation, the
Monitor offers a clockwatching service. This facility acti-

vates the real-time process when a specified time period has
elapsed.

MONITOR ORGANIZATION
The Monitor system includes the following programs:

1. Control command interpreter (pcrfly resident)

2. Console interpreter (partly resident)

3. Scheduler (nonresident)

4. File management routine (resident and nonresident)

5. Language processors (nonresident)

6. Relocating loader (nonresident)

7. Overlay loader (nonresident)

8. Segment loaders (resident and nonresident)

9. User service routines (resident and nonresident)
10. Foreground programs (resident and nonresident)
11. Library routines (nonresident)

12. Debug routines (nonresident)
13. 1/O supervisor (resident)
14. 1/O control routines (resident)

15. Cooperative and symbionts (partly resident)

The control command interpreter reads all control commands
and performs specified functions; the console interpreter ex-
amines and processes all console messages and performs
specified functions.

The scheduler controls the initiation and termination of all
jobs on a priority basis. Disc storage allocated to the job

6 Monitor

queue is requested and released dynamically, as necessitated
by the size and number of incoming jobs. When a job is ter-
minated, all of its temporary files and other resources are
released for other use. Another scheduler function is the
maintenance of accounting information for each job.

The file management routines provide for the comprehensive

management of files in disc storage.

The language processors translate source programs into ob-
ject programs. Standard processors include ClI Symbol and
Meta-Symbol assemblers and the COBOL and Cli FORTRAN
IV compilers for 10 070 computers. Other processors are
optional.

The relocating loader brings load modules (previously formed
by the overlay loader) into core storage and then transfers
control to the loaded program.

The overlay loader loads program elements that have been
produced by a processor and are in standard object language
format. It provides the program linkages needed to combine
separately processed subprograms and library routines into
an executable program and constructs a disc file containing
the load module. If an overlay structure was specified, a
table containing the structure of the program is generated.

The segment loader operates at run time to determine whether
a referenced overlay segment is in core storage and, if not,
to load the segment and its backward path (see "TREE",
Chapter 2).

A large repertoire of Monitor functions is provided by means
of user service routines. Calling sequences for such Moni-

tor routines are included at assembly time, either explicitly
or via standard Monitor procedures.

Foreground real-time programs to be included in the resident
Monitor are appended to the system at System Generation
time or may be created during normal batch operation. Non-
resident foreground programs may be added to the system
during batch operations.

System library routines are included in the system at System
Generation time or may be generated and updated at run
time, but they are not resident. Users' library routines may
be placed in disc storage; library elements are loaded from
disc storage automatically when referenced by programs or
when requested as private copies in a LOAD control command.

Debug routines provide extensive capabilities for program
checking and modification.

The 1/O supervisor program controls the queue of outstand-
ing 1/O requests. The 1/O control routines are service rou-
tines; all background tasks performing any 1/O function must
utilize them. Foreground tasks may also use these routines
or may incorporate their own 1/O routines, since they may
operate in the master mode.

The cooperative and symbionts allow peripheral operations
to be handled concurrently with other computing tasks, -
thereby maximizing CPU utilization.

DISC ORGANIZATION

Much of the Monitor system resides indisc storage when not
required by current system operations, and areas of disc
storage are used for system and user libraries, processors,
permanent and temporary files, and scratch and check-
point storage.

FILE ORGANIZATION

Each file is an organized collection of information that can
be identified by a symbolic name. A file is either orga-
nized as a consecutive sequence of records or as a sequence
of records arranged according to sort keys.

Each record of a keyed file has an identifying key associ-
ated with it. A key consists of a character string, with the
first byte stating the number of characters in the string.

The key associated with each record is stored at the front
of that record (on tape) or in a key index (on disc). Keyed
files may be accessed either directly (by key) or sequential -
ly (by positioning the file). Records of a consecutive file
can only be accessed sequentially.

SYSTEM GENERATION

System Generation is a series of processors that enables the
user to generate a Monitor system tailored to the specific
requirements of his installation, by processing a master sys-
tem tape and a set of installation control commands.

SYSTEM HARDWARE CONFIGURATION

The minimum hardware configuration requirements for use
of the Monitor are as follows:

1. 10 070 CPU with memory protection and two
register blocks.

2. 24K core memory.

3. Card reader.

4. Typewriter,

5. 1.5-million byte disc unit.

6. Magnetic tape unit.

The following are strongly recommended options:
1. Card punch.

2. Line printer.

3. 32K core memory.

4, Additional Magnetic tape unit.

The resident Monitor occupies from 6,000 to about 13,000
words of core storage (depending on the hardware and software

features included). The processors and libraries are retained
in disc storage and loaded info core storage by the Monitor
when needed. The use of disc secondary storage conserves
core storage space without necessitating time-consuming
manual loading operations.

SYSTEM COMMANDS

Control Command Definitions

Control

Command Definition

ASSIGN The ASSIGN control command is used to re-
late an operational label or a pseudo file
name to a device. A pseudo file name may
be assigned to an operational label.

FMGE Gives the user the ability to create, list, de-
lete, copy, and punch files.

INCL Directs the overlay loader to allocate public
library routines in a segment.

JOB Signals the completion of a previous job and
the beginning of a new one. All jobs must
have a JOB control command.

LIMIT Estimates the system job parameters (i.e.,
number of pages of output, number of cards to
be output, time job is to run, etc.)forthe job.

LOAD Directs the dynamic loader to form a relocat-
able load module and enters it in the user's
element file if a load module name is specified.

MESSAGE Causes the specified message to be typed to
the operator when the MESSAGE command is
encountered by the system.

OVERLAY Directs the loader to form the specified over-
lay tree structure.

Processor Tells the Monitor which processor is to operate

Name and what options the processor is to execute.

PTREE Tells the Monitor that a tree control command
is to be read from the user's file.

RUN Tells the Monitor to transfer control to the
user's program.

STDLB Allows the user to define system operational
labels.

TITLE Causes the specified title to be output at the
beginning of each logical page of output on
the LO device.

TREE Specifies the symbolic representation of the

overlay structure.

Disc/File Organization/System Generation/System Hardware Configuration/System Commands 7

Causes a specified test to be made at a spe-
cified location. Only if the condition is true
and the specified test identifier is set does it

remain set; otherwise, it is reset (see SNAPC).

Specifies the range and the steps within the
range where the test identifier is set (see

Causes a specified test to be made at a spe-
cified location. The specified test identifier
is set only if the condition is true; otherwise,
the identifier is reset or remains reset (see

Allows the user to insert a modification into
a foreground or background program before

Causes a specified test to be made at a spe-
cified location (if a specified test identifier
is reset). If the condition is true, the spe-

cified test identifier is set; otherwise, it re-
mains unchanged (see SNAPC).

Causes the Monitor to dump the selected
area of memory, in hexadecimal form, if an
error occurs during execution.

Causes the Monitor to dump the selected area
of memory, in hexadecimal form, regardless
of whether errors have been detected.

Causes a snapshot of the specified memory
and registers at the location specified.

Causes a snapshot of the specified memory

and registers at the location specified to be
performed only when the specified test iden-

Produces the initial settings of the pseudo

Servesasa terminatorfora binary input source.

Informs the Monitor that the information to

Informs the Monitor that the information to

Causes an end-of-data abnormal return to the
Monitor, indicating the end of a series of

Debug
Control Definition
AND
COUNT

SNAPC).
IF

SNAPC).
MODIFY

execution.
OR
PMD
PMDI
SNAP
SNAPC

tifier is set.
SWITCH

sense switches.
Input
Control Definition
BCD
BIN

follow is binary.
DATA

follow is data.
EOD

data records.
FIN

Specifies the end of a stack of jobs.

8 System Commands

Utility

Position n files on unlabeled magnetic tape.

Control Definition
PFIL

REW Rewind Tape.
WEOF

Write physical end-of-file on magnetic tape.

Unsolicited Key-In Definitions

Key=-in

Definition

ABORT|X

DATE|D
DELETE
DISPLAY

ERROR E
Fname, m

INT
MOUNT
PRIORITY
REQUEST
SCRATCH

START|S

Syyndd, m
SWITCH
SYST

TIME [T
WAIT| W

WRITELOG

yyndd, m

Terminate currently active job with no post-
mortem dumps.

Inform Monitor of current day, month, year.
Delete specific job from system 1/O file.

Allows the operator to display any schedule
queuve as defined by the system operational
label, the availability of disc, the status of
the current tape units, the current operating
jobs, or the time-sharing stations currently
on line.

Terminate current job with postmortem dumps.
Allows foreground communication.

Allows user interrupt control of his executing
program.

Allows the operator to notify the Monitor that
a required tape has been mounted.

Change priority status of any job on system

1/0 file.

Allows the operator to request foreground
scratch units.

Allows the operator to notify the Monitor that
a required scratch tape is mounted.

Causes job to continue from a wait state.

This key-in allows the operator to communi-
cate with a symbiont.

Allows the operator to change the settings of
the pseudo sense switches.

Allows the operator to change system
parameters.

Informs the Monitor of current time of day.
Discontinues operation on current job.

Causes the Monitor to output the accounting
file on the AL device.

This key=-in allows the operator to direct 1/0
recovery procedure.

Procedure Definitions

Procedure

Definition

M:AND

M:ARM

M:CAL

M:CHECK

M:CHKPT

M:CLOSE

M:COUNT

M:CVOL

M:DCAL

M:DCB

M:RELREC

M:DEVICE

M:DISABLE

M:DISARM

M:ENABLE

M:ERR

M:EXIT

M:FP

Causes a specified test to be made at a speci-
fied location. Only if the condition is true
and the specified test identifier is set does it
remain set; otherwise, it is reset or remains

reset (see M:SNAPC).

Arms and connects a foreground task to a spe-
cified interrupt.

Connects a resident foreground task to CAL3
or CAL4.

Checks type of 1/O completion.

Checkpoints the job issuing the procedure on
external storage.

Terminates all [/O associated with a given
DCB (Data Control Block).

Specifies the range and the steps within the
range where a specified test identifier is set
(see M:SNAPC).

Causes the control program fo advance to the
next volume of a data set before the physical
end of the current volume is detected. This
call is meaningful only for tapes.

Disconnects a foreground program from a CAL.

Defines a Data Control Block.
Specifies that a data record that has been
read exclusively is to be released of exclu-

sive use.

Allows the user to set special device
procedures.

Disables a specified interrupt.

Disarms and connects a foreground task to a

- specified interrupt.

Enables a specified interrupt.

Returns contro! to the Monitorand the Monitor
honors all PMD and ASSIGN control com-
mands while ignoring all other control com-
mands until it encounters a | FIN or | JOB.

Returns control to the Monitor which then
honors all output control commands of the
form PMDI.

Frees page of main storage owned by a given
task.

Procedure

Definition

M:FCP

M:GL

M:GCP

M:GP

M:IF

M:INT

MKEYIN

M:LDTRC

M:LINK

M:MASTER

M:MERC

M:OPEN

M:OR

M:PFIL

M:PRECORD

M:PRINT

M:RBACK

Frees common page.
Gets common limits.
Gets common pages.

Allocates pages of main storage to the request-
ing task.

Causes a specified test to be made at a speci-
fied location. Only if the specified test
condition is true is the test identifier set;
otherwise, it is reset or remains reset (see

M:SNAPC).
Connects a console interrupt.

Writes the specified message to the operator
on the operator's console and returns the
operator's reply to the program issuing the
procedure.

Loads the specified load module if a reenter-
able copy is not available in memory, deletes
the calling module, and transfers control to
the loaded load module.

Loads the specified load module if reenterable
copy is not available in memory and links to it.

Causes a foreground task to change its mode
of operation from "slave" to "master".

Allows the user to have the Monitor process
any system abnormal or error code, overriding
an ABN or ERR exit.

Causes the specified file associated with the
specified DCB to be opened.

Causes a specified test to be made at a speci-
fied location (if a specified test identifier is
reset). If the condition is true, the specified
test identifier is set; otherwise, it remains

unchanged (see MSNAPC).

The specified tape is positioned past the num-
ber of end-of-files specified and in the direc-
tion specified.

The tape specified by the DCB will be posi-
tioned in the direction specified by the speci-
fied number of records.

Writes the specified message on the listing log
(LL) output media.

Causes the background area checkpointed by

a foreground task (via M:SBACK) to be
restored.

System Commands 9

Procedure Definition Procedure Definition

M:TRTN Restores control to the user from a trap or

M:READ Causes the next data record to be read into A :
timer routine.

the location specified by the user.

M:TTIMER Gives the time remaining in the interval that
was previously set by M:STIMER and option-
ally cancels the interval in effect.

M:RESTART Restarts the specified checkpointed job.

M:DELREC Specifies that a data record is to be deleted
from the file.

M:TYPE Writes the specified message to the operator
M:REW Rewinds the tape specified by the DCB. on the operator’s console.
M:RXC Restores the user's exits to the Monitor. M:WEOF Writes an end-of-file mark on the tape speci-

fied by the DCB.

M:SBACK Allows a foreground task to checkpoint the

background memory area. M:WRITE Causes the loaded buffer specified to be trans-

mitted to the output device.
M:SEGLD Loads a specified overlay segment into memory.
M: XXX The Monitor terminates the job and does not

honor any further commands until it reads

M:SETDCB Sets error or abnormal addresses in a specified
another 1 JOB or a IFIN.

Data Control Block.

M:SLAVE Causes a foreground task to change its mode SYSTEM PARAMETERS
of operation from "master" to "slave".
) System parameters that may be defined during System Gener-
M:SMPRT Sets memory protection. ation are summarized in the following table.
M:SNAP Causes a snapshot of the registers and memory Disc Storage Parameters Defaults
specified to be performed.
Number of disc tracks available 512 tracks
M:SNAPC Causes a snapshot of the registers and memory
specified to be performed if the specified test Number of first available disc track Track 0
identifier is set. Whetherthe test identifieris
set or not is dependent on the M:IF, M:AND, Number of disc track not to be used None
M:OR, and M:COUNT procedures. by system
M:STIMER Sets the interval timer with the specified Number of disc sectors per track 16 sectors
interval.
Number of disc sectors per granule 6 sectors
M:STRAP Simulates a trap.
Number of words per disc sector 90 words
M:SXC Supplants the user's exits to the Monitor.
Number of tracks for symbiont queue 200 tracks
M:TERM Causes the executing foreground task to be
terminated. Number of tracks fu: peimanent files 300 tracks
M:TFILE Causes a specified Data Control Block to be Number of tracks for permanent system 12 tracks
closed, on return to the user's program, and area
the ossoc.nofed file to be registered as a Number of tracks for foreground files 0 tracks
scratch file.
M:TIME Gives the time of day and the current date. Core Storage Parameters Defaults
M:TRAP Sets and resets the traps to go to a user rou- Size of core memory available to CPU 16K words
tine or the standard system routine. Also
Number of words allocated to the 192 words

sets and resets the maskable traps.
Monitor's temp stack

M:TRIGGER Causes the initiation of a foreground task, by Number of words of core storage 0 words
causing a specified interrupt to occur. reserved for background tasks
Number of words of core storage 0 words
M:TRUNC Causes the blocking buffer reserved for a spec- reserved for modification and expan-
ified Data Control Block to be released. sion of the Monitor

10 System Parameters

Core Storage Parameters

Number of words of core storage
reserved for modification and expan-
sion of resident foreground tasks

Number of foreground debug commands
requiring resident core storage

Number of words of core storage

reserved for foreground COMMON area

Number of pages of core storage for
Monitor use in file management

Buffer and Context Block Parameters

Number of buffers pooled for Monitor use

Number of buffers pooled for symbiont
use

Number of buffers pooled for symbiont
context block use

Number of buffers pooled for current
file use

Number of buffers pooled for foreground

file indexing use

Number of cooperative buffers for
foreground tasks

Number of cooperative context blocks
for foreground tasks

Default number of buffers to be pooled
for batch file indexing

Default.number of cooperative buffers
to be allocated to batch tasks

External trap or interrupt is present in
the Monitor system

Entry to specified trap or interrupt
routine

Specified interrupt routine to be
entered directly

Register block n available to specified
external interrupt or trap

Foreground task associated with a
specified trap or interrupt

Specified foreground task is resident
or nonresident

Relative priorities of real-time
background tasks

Maximum number of interval timers
active at one time

Defaults

0 words
0 commands
0 words

1 page

Defaults
2 buffers

1 more than the
number of de-
vices serviced
by symbionts

1 more than the
number of de-
vices serviced
by symbionts
4 buffers

1 buffer

0 buffers

0 blocks

1 buffer

1 buffer
None

None

To be entered
via the Moni-
tor's interrupt
service routine

None
None
None
None

None

Buffer and Context Block Parameters

Number of tasks to be initiated by the
clock interrupt

Register block n is available to the
clock routine

Job Limit Default Parameters

Default limit for job execution time

Default limit for pages listed by
processors for a job

Default limit for object records produced

for a job

Default limit for pages of diagnostics
produced for a job

Default limit for pages output by
executing programs

Default limit for number of granules of
temporary disc storage used by a job

Default limit for number of granules of
permanent disc storage used by a job

1/O Device Parameters

Peripheral device name

Input device or output device
1/0 recovery tries

1/O handlers

Device dedication

Maximum lines per page

Maximum characters per line
Devices associated with the symbiont

Miscellaneous Parameters

Standard Monitor configuration
Standard operational labels
Resident library routines
Non-resident library routines
Master password

Register block n available to the
Monitor

Unimplemented instruction simulation
Number of 1/O operations which may
be queued at one time

A core map listing is to be given

Relocatable object modules are to be
deleted from disc storage

Account names to be retained in
resident account table

Defaults

None
Block 0

Defaults
5 min

100 pages
500 records
100 pages
100 pages
64 granules
64 granules

Defaults
None
Both

3 tries

Standard for
device

Undedicated
51 lines

132 characters
None

Defaults

None

None

None

None

None

Block 0

None

4 1/0

operations

No listing
Object modules
are not to be

deleted

None

System Parameters 11

2. CONTROL COMMANDS

The Monitor is controlled and directed by means of control
commands. These commands effect the construction and
execution of programs and provide communication between
a program and its environment. The environment includes
the Monitor and the Meta~Symbol, Symbol, COBOL, and
FORTRAN 1V processors, the operator, and the peripheral
equipment.

Control commands have the general form

! mnemonic specification

where
! optionally followed by one or more spaces iden-
tifies the beginning of a control message; i. e.,
either a control command or a control key=-in (see
Chapter 3).
mnemonic is the mnemonic code name of a control

function or the name of a processor. It may con-
sist of up to 8 alphanumeric characters and may
begin any number of spaces after the ! character.

specification is a listing of required or optional
specifications.” This may include keyword operands,
labels, and numeric values appropriate to the spe-
cific command. The specification field may begin
one or more spaces after the mnemonic field and
may consist of any number of alphanumeric char-
acters, commas, and parentheses (see below).

In this manual, the options that may be included in the spec-
ification field of a given type of control command are iden-
tified as optional by enclosure within brackets, as shown
below.

[(option 1] [, (option 2)] cen [, (option n)]

No brackets are actually used in control commands, and op-
tions need not appear in any particular sequence relative to
each other in a specific control command. Parentheses are
used to indicate the grouping of subfields, and commas are
used to separate subfields, as in

[(keyword 1, value)] [, (keyword 2,value)] ... [, (option n)]
Braces are used to identify alternative options, asshown below.

(option 1)
(option 2)
(option 3)

One or more blank spaces may separate the mnemonic and
specification fields, but no blanks may be embedded within

12 Control Commands

a field (except in a MESSAGE control command). A
period after the specification field (or after the mnemonic
field if the command is one with no specification) con-
stitutes the command terminator. If the specification
field is absent and a comment follows the command, the
command is terminated by a period following the mnemonic
field. Annotational comments detailing the specific purpose
of a command may be written following the command termi-
nator, but no physical control command record may contain
more than 80 characters, including blanks.

The specification field may be continued from one physical
record to the next by the use of a semicolon, as indicated
by the following example:

K fication comment

! mnemonic speci;

Although a comment field may also be continued from one
record to the next, no comment in a control command record
may containasemicolon (except as a continuation indicator).

Communication between the operator and the Monitor is ac-

|
|

complished through control commands, key=-ins, and messages.

Control commands are usually input to the Monitor via
punched cards, and control key-ins are always through the
operator's console; however, any input device(s) may be des-
ignated for these functions (see "ASSIGN", below). All
control commands and Monitor messages are listed on the
output device designated as the listing log (normally a line
printer). In this manner, the Monitor keeps the operator in-
formed about the progress of each job.

Control commands may be categorized as follows:

System Debug
JOB COBOL PMD
LIMIT LOAD PMDI
POCL OVERLAY SNAP
STDLB INCL SNAPC
MESSAGE TREE IF
TITLE PTREE AND
ASSIGN MODIFY OR
FMGE SWITCH COUNT
SYMBOL RUN
METASYM
FORTRAN

Input Utility
BIN PFIL
BCD REW
EOD WE OF
DATA

FIN

SYSTEM CONTROL COMMANDS

JOB Each background job to be processed by the sys~
tem must begin with a JOB control command. The JOB
command signals the completion of the previous job, if any,
and the beginning of a new one. Standard system assignments
become effective when a JOB control command is encountered.

The form of the JOB control command is

! JOB account number, name [, priority]

where

account number identifies the account or project.
It consists of from 1 to 8 numeric characters.

name identifies the user. It consists of from 1 to
12 alphanumeric characters.

priority specifies the priority of the job (0-Fy4),
where F is the highest (i.e., most urgent) priority.
If no priority is specified, the default value is 1.

Example:

I JOB 12345, JOBSAMPI, 1

The above example specifies that the account number for
the job is 12345, the user is JOBSAMPI, and the job has
priority 1. The JOB control command may not be continued
from card to card. Fields must be terminated by commas.

LIMIT If a LIMIT control command is included in a
job, it must follow the JOB control command immediately.
[t is used to specify maximum values for various system
resources used by the job. If some parameters are not speci-
fied in a LIMIT control command, or if the LIMIT command
is omitted from the job (or does not follow the JOB command
immediately), the limits established during System Gen-
eration will apply for the unspecified parameters. If
any limit is exceeded when the job is run, the job is
aborted and the Monitor skips to the next JOB control
command.

The form of the LIMIT control command is

I LIMIT (option)[, (option)]... [, (option)]

where the options are

TIME,vaIuef specifies, in minutes, the maximum
execution time for the current job.

LO,value specifies the maximum number of pages
(excluding diagnostic output) that may be listed for
programs processed in the current job (processor
output plus system output).

PO,value specifies the maximum number of object
records that may be produced in the current job.

DO, value specifies the maximum number of pages
that may be output fordiagnosticsinthe current job.

UO,value specifies the maximum number of pages
that may be output (on the LOdevice) by executing
program(s) in the current job (user's executing
program),

TSTORE, value specifies, in granules, the maximum |
amount of temporary direct-access storage (on disc)
that may be used by the current job.

PSTORE, value specifies, ingranules, the maximum |
amount of permanent direct-access storage (on
disc) that may be used by the current job.

SCRATCH, value specifies the maximum number of
scratch tapes that may be used at any one time by
the current job. l

(L(SCRATCH, 2) |

((TSTORE, 10), (PSTORE, 20); |

Example:

K (PO,2500), (DO, 50),(UG,75), ;

I LIMIT (TIME, 10),(LO,100), ;

The above example specifies that the current job may require
no more than: 10 minutes of execution time, 100 pages of
object listings, 2500 object cards, 50 pages of diagnostic
output, 75 pages of output produced by the executing pro-
gram, 10 granules of temporary disc storage, and 20 granules |
of permanent disc storage. It also specifies that not more
than 2 scratch tapes are to be used at any one time. |

POOL A POOL control command may appear anywhere
in a job except between the JOB command and the LIMIT
command or imbedded in a series of debug commands. It is
used to specify the number of buffers to be allocated for file
management and file indexing used by the Monitor, If not
specified, system limits are assumed. The maximum number
of buffers allocated will never exceed available memory.

t . ;
ALL values in a LIMIT control command are expressed
as decimal integers.

System Control Commands 13

The minimum will always be 1 (for each pool). The buffer
area will be allocated from the background area after each
processor or user's program is loaded for execution.

The form of the POOL control command is

I POOL (option)[, (option)]

where the options are

' FPOOL,value specifies the number of 512-word
buffers to be assigned to file management use.
These buffers are used by the Monitor for pack-
ing and unpacking data. Each active file must
use a data buffer as well as an index buffer (see
IPOOL below). If there are fewer buffers in the
pool than there are active files, the buffers will
be shared.

IPOOL,value specifies the number of buffers to be
assigned to the file index pool. Each IPOOL buf-
fer is twelve words larger than the sector size of
the disc. For a 90-word/sector disc, 5 index buf-
fers will fit into one page.

STDLB A STDLB control command may be used to define
or redefine (for the duration of the current job) any speci-
fied system operational label, with the exception of OC
An operational label is a symbolic
name used to identify a logical system device. Standard
Monitor operational labels are given in Table 1. STDLB
control commands may also be used to redefine foreground
operational labels that were defined initially during Sys-

(operator's console).

tem Generation.

Table 1. Monitor Operational Labels
Label | Reference Comments
BI Binary Binary coded input will be received
input from the device to which this label
is assigned.
CI Compressed | Compressed symbolic input will be
input received from the device to which
this label is assigned.
El Element Element file input will be received
input from the device to which thislabel
is assigned.
S1 Source Symbolic (source language) input
input will be received from the device
to which this label is assigned.
C Control Input from the device to which this
input label is assigned will be monitored,
so that all control commands will
be recognized by the Monitor.
14 System Control Commands

Table 1. Monitor Operational Labels (cont.)
Label | Reference Comments
BO Binary Binary coded output will be trans-
output mitted to the device to which this
label is assigned.
CcO Compressed| Compressed symbolic output will be
output transmitted to the device to which
this label is assigned.
DO Diagnostic | Diagnostic program dumps will be
output output on the device to which this
label is assigned.
EO Element Element file output will be trans-
output mitted to the device to which this
label is assigned.
LO Listing Source and object listings for assem-
output blies and compilations will be
output on the device to which this
label is assigned.
SO Source Symbolic (source language) output
output will be transmitted to the device
to which this label is assigned.
PO Punch BCD or binary coded output will be
output transmitted to the device to which

this label is assigned (normally a
card or paper tape punch).

AL Accounting| The accounting file will be out-
log put on the device to which this
label is assigned, as a response
to a WRITELOG key=-in.
LL Listing All control commands and system
log messages, including accounting
information for the job, will be
output on the device to which
this label is assigned.
OC Operator's | All JOB, MESSAGE, and FIN
console control commands, and all job

termination messages will be out-
put on the device to which this
label is assigned (OC may not be
assigned to another operational

label).

The form of the STDLB control command is

I STDLB operational label, device name

where

operational label

device name

where

Yy
n

dd

specifies either a Monitor opera-
tional label (other than OC) or a foreground oper-
ational label. An operational label consists of one

or two alphanumeric characters,

specifies the type of device (see Table 2).
specifies the channel letter (see Table 3).

specifies the device number (see Table 4), in

hexadecimal.

specifies either an operational label
or a physical device name of the form yyndd

Table 2. 1/O Device Type Codes
yy Device Type
MT Magnetic tape
7T 7-track magnetic tape
o1 9-track magnetic tape
cpP Card punch
CR Card reader
PP Paper tape punch
PR Paper tape reader
TY Typewriter
LP Line printer
MD Magnetic drum
DC Magnetic disc
PL Plotter
NO No device

Table 3. Channel Designation Codes

Specified Corresponding
Channel Decimal Digit
Letter (n) of Unit Address

A 0

B 1

C 2

D 3

3 4

F 5

G 6

H 7

Table 4. Device Designation Codes

Hexadecimal Device

Code (dd) Designation

00 <dd < 7F Refers to a device number
(00 through 7F).

80 = dd =< FF Refers to a device controller
number (8 through F) fol-
lowed by a device number
(O through F).

Examples:

I STDLB LO,LPALS

The above example specifies that the operational label LO
is to be assigned to a line printer: device number 15 on
channel A.

The following example specifies that the operational label
DO is to be assigned to the device to which the operational
label LO is assigned.

! STDLB DO,LO

MESSAGE A MESSAGE control command may be used
to type a message to the operator at the time that it is en-
countered by the Monitor. The form of the MESSAGE con-
trol command is

! MESSAGE message string

where

message string specifies the message to be typed.
The message string may contain any desired charac-
ters, including blanks, but may not be continued
from one record to the next. Two or more MES-
SAGE control commands may be used in immediate
succession,

Example:

/l MESSAGE SEND ALL SAVE TAPES TO TOM ATKINS

The above example would cause the following message to be
output on the LL end OC devices.

Il MESSAGE SEND ALL SAVE TAPES TO TOM ATKINS

Note: All Monitor messages to the operator begin with two
exclamation characters.

System Control Commands 15

TITLE A TITLE control command may be used to produce
a heading at the beginning of each logical page listed on
the LO device. The form of the TITLE control command is

I TITLE title string

where

title string specifies the title that is to appear on
each page. The title string may contain any de-
sired characters, including blanks, but may not be
continued from one record to the next.

Example:

I TITLE CRITICAL PATH ANALYSIS RP-18

The above example would cause the titie string to be output
with every logical page listed on the LO medium by the ex-
ecuting program. The entire control command would also be
output (once) on the LL device, as are all control commands.

If more than one TITLE control command is used in a job,
the one most recently encountered by the Monitor super-
sedes, and page numbering begins with a 1 whenever a
TITLE control command occurs.

ASSIGN ASSIGN control commands specify what files
and physical peripheral devices are to be used in the cur-
rent job, and the uses to which they will be put. ASSIGN
commands appear prior to a LOAD or OVERLAY control
command. They may also occur elsewhere within a job, if
new assignments are to be made after part of the job has
been processed. Each ASSIGN command assigns a Data
Control Block (DCB) name to a file name' or device name.
An operational label is a symbolic name used to identify a
logical system device (see Table 1). A pseudo file name is
a symbolic name used (in a user's program) to identify a
logical device or file,

The "device name" to which a DCB name may be assigned
may be either a physical device name (see "STDLB") or
a logical device name (i.e., an operational label). For
example, a DCB name corresponding to a pseudo file
name may be assigned to an operational label which in
turn may have been assigned (via a STDLB control com-
mand) to some physical device name or to another oper-
ational label.

The "file name" to which a DCB name may be assigned
may correspond to a disc file or a magnetic tape file.
The type of file is specified by the keyword used with

the file name.

Output to a labeled tape or disc file through a Monitor
DCB such as M:BO, M:LO, etc., will exist as a single file

tUp to 31 alphanumeric characters.

16 System Control Commands

provided that the DCB is not reassigned between job steps
via an ASSIGN control command or an M:CPEN procedure
call (see "M:OPEN", Chapter 5).

The three general types of assignments that may be made via l
an ASSIGN command are illustrated below,

DCB DEVICE physical
name name device
|
DCB FILE disc
name name file
DCB LABEL =] tape
name name file

The form of the ASSIGN control command is

I ASSIGN dcb name, (option)[, (option), . .., (option)]

where

dcb name specifies the name (not exceeding 31 char-
acters in length) by which the DCB may be refer-
enced. This must be the first subfield following
ASSIGN, and must be followed by at ieast one of
the optional specifications given below. The first
two characters of a user's DCB name must be "F"
and ":" (e.g., F:PRINT or F:BI). The first two char-
acters of a Monitor or foreground DCB name are "M"
and ":" (e.g., M:LO). :

The options are as follows:

name (one of the three keyword operands given below). |

1. DEVICE,name specifies a system physical device
name or a system operational label. Specific magnetic
tape units should not be assigned by their physical de-
vice name. However, magnetic tape may be designated
by one of the three specifications listed below.

a. DEVICE,MT specifies that the Monitor is to as-
sign the specified DCB to any available magnetic
tape unit,

b. DEVICE,7T specifies that the Monitor is to as-

sign the specified DCB to any available 7-track
magnetic tape unit.

c. DEVICE,9T specifies that the Monitor is to as-
sign the specified DCB to any available 9-track
magnetic tape unit,

If no serial number is specified (see INSN and
OUTSN, below) and the DCB is opened in the out-
put mode, an available scratch tape of the type
specified will be used. If no serial number is ||

specified and the DCB is to be opened in the input
mode, the DCB is not opened and an abnormal re-
turn is given, indicating insufficient parameters.,

2. FILE,name [;account] specifies the name of the file
(i.e., the system file directory name). The named file
will be maintained in disc storage. If the named file
belongs to a different account than that of the current
job, the file's account number must be given.

3. LABEL,name Eaccounﬂ specifies the name of the
file (i.e., the name identifying the file on magnetic
tape). An INSN or OUTSN option (see below) must
be used to specify the particular tape(s) confaining the
file. If the named file belongs to a different account
than that of the current job, the file's account number
must be given.

org (one of the two file organization types given below).

1. CONSEC specifies that the records in the file are
consecutively organized and each record is to be pro-
cessed in order,

2. KEYED specifies that the location of each record
in the file is determined by an explicit identifier (key)
that may be used to address the device containing the

file.

access (one of the two record access means given below).

1. SEQUEN specifies that records in the file are to be
accessed in the order in which they appear within the
file.

2. DIRECT specifies that the next record to be accessed

is to be determined by an explicit identifier (a "key",
see Chapter 5).

function (one of the four file modes given below).

I. IN specifies the file input mode.

2. OuUT specifies the file output mode.

3. INOUT specifies the file input and output mode

(i.e., the update mode).

4. OUTIN specifies the file output and input mode
(i.e., the scratch mode).

PASS,value specifies the password that will allow access
to a classified data file (after any other security checks have
been made). The password may be from 1 through 8 alpha-
numeric characters in length and wiil be omitted from the
listing of the ASSIGN command.

file (one of the two specifications given below).

1. REL specifies that, for single-file tapes, the reel is
to be released to the Monitor's scratch files. For multi-
filed tapes, no action is to occur if the tape is being
used for input; on output, the tape is to be positioned
at the beginning of the file (allowing the file to be
overwritten), For direct access devices (i.e., disc),
all allocated direct access storage for the file is to be
released to the Monitor.

2. SAVE specifies that the file is to be included in the
system file directory. If the file function (see above)
is OUT or OUTIN, the SAVE option must be specified
(either in the ASSIGN control command or in an
M:DCB or M:OPEN procedure call; see Chapter 5, to
cause the Monitor to allocate permanent disc storage
for the file. When closing such a file, SAVE must
again be specified, in the M:CLOSE procedure call
(see Chapter 5), if the file is to be permanently saved
in disc storage.

READ,value[jvalug] ... [value] specifies the account
numbers of those accounts that may read but not write the
file. The value "ALL" may be used to specify that any
account may read but not write the file (e.g., READ, ALL).
The value "NONE" may be used to specify that no account
may read the file. If no value is specified, or if READ {and
WRITE, see below) is omitted, ALL is assumed by default.
The total number of accounts explicitly specified in a READ
or WRITE specification must not exceed 8.

WRITE,value [,value] ... [value] specifies the account
numbers of those accounts that may have both read and
write access to the file. The values "ALL" and "NONE"
may be used, as with the READ option (see above); and,
if a conflict exists between READ and WRITE specifications,
those of the WRITE option take precedence. NONE is as-
sumed by default.

INSN, value [[value] [,value] specifies the serial numbers
of magnetic tapes that are to be used for file input. « These
numbers must be ordered in the proper sequence for the file.
A maximum of three values may be specified for Monitor
DCBs; for the user's DCBs, the number of values is not lim=
ited. Serial numbers may be from 1to 4 alphanumeric
characters in length. INSN has no effect on file mode.

OUTSN, value [,value] [,value] specifies the serial num-
bers of magnetic tapes that are to be used for file output.

If the output fills the first reel, then the second reel speci-
fied will be used, etc. A maximum of three values may be
specified for Monitor DCBs; for the user's DCBs, the number
of values is not limited. Serial numbers may be from 1 to 4
alphanumeric characters in length., OUTSN has no effect
on file mode.

RECL,value specifies the maximum record length, in
bytes. The greatest value that may be specified is 32,767.
If RECL is not specified, a standard value (appropriate to the
type of device used) will apply by default.

TRIES, value
tries to be performed for any 1/O operation.
value that may be specified is 255.

KEYM,value
the keys associated with records within the file,
is not specified, the value 11 is assumed.

VOL,value specifies the beginning volume number of a
multivolume file,

specifies the maximum number of recovery
The greatest

specifies the maximum length, in bytes, of
If KEYM

The following options are device-dependent, and will be
ignored by the Monitor in all cases where they are not ap-
plicable to the device used.

System Control Commands 17

format (one of the two following specifications).

1. VFC specifies that the first character of each record
is a format-control character for printing (see Table 5).

Table 5. Line Printer Format Control Codes

Code (hexa-

decimal) Action

C0,40 Space no additional lines.

60,E0 Inhibit space after printing.

Cl Space 1 additional line before printing.

C2 Space 2 additional lines before printing.

C3 . Space 3 additional lines before printing.

CF Space 15 additional lines before
printing.

FO Skip to Channel O (bottom of page)
before printing.

F1 Skip to Channel 1 (top of page) before
printing.

F2 Skip to Channel 2 before printing.

FF Skip to Channel 15 before printing.

2. NOVFC specifies that the records do not contain

format-control characters.

COUNT, tab specifies that a page count is to appear at
the top of each page, beginning in the column specified by
"tab". If COUNT is specified for the LO device and TITLE
is also specified, the page count will be superimposed on
the title line.

Exomple:
COUNT, 60

The above example specifies that the most significant digit
of the page count is to appear in column 60 at the top of
each page.

DATA, tab specifies that output is to begin (on each page)
in the column specified by "tab". Data exceeding device
line length will be lost.

SEQ[,id] specifies that the punched output is to have se-
quencing in columns 77-80. If id is specified, it will ap-
pear in EBCDIC, in columns 73-76 of the punched output.
Sequencing begins with 0000 and is incremented by 1 for
each record.

LINES, value specifies the number of printable lines per
page. The greatest value that may be specified is 127, If
LINES is not specified, the value established at System
Generation time will apply.

SPACE, value [, top] specifies the spacing between lines
(value) and between the top of each page and the first line
printed (top). Avalueof Tindicatesthat lines are tobe single~
spaced. The greatest value that may be specified is 15,

18 System Control Commands

mode (any of the following specifications for I/O mode),

1. BCD specifies that EBCDIC mode is to be used.

2. BIN specifies that the binary device mode is to be
used.

3. FBCD specifies that FORTRAN BCD conversion is to
be used.

If no mode is specified, the current mode estab-
lished for the DCB (see Chapter 5) is used.

4. PACK specifies that the packed binary mode (7-
track tape) is to be used.

5. UNPACK specifies that the unpacked binary mode
(7-track tape) is to be used.

6. L specifies that a listing-type device is to be used.

BIN/BCD controls the mode of writing to CP,PP, or 7T,
and reading from 7T. It also controls the mode of reading
from CR if DIRECT has been specified.

FBCD causes conversion from the FORTRAN BCD set to
EBCDIC on reading CR or 7T and the opposite conversion
when writing to CP or 7T.

PACK/UNPACK specifies packed or unpacked binary on 7T
if BIN is also specified.

If no ASSIGN commands are included in a job, standard
Monitor input/output assignments will apply during that job.
Standard 1/O assignments are specified in the Monitor system
tape (or deck) and, when the Monitor system is loaded into
resident storage, these assignments are established and re-
main in effect until altered by an ASSIGN command or a
SYST key-in (see Chapter 3). Standard assignments altered by
ASSIGN commands revert to standard at the end of a job, but
assignments altered by SYST key-ins replace standard assign-
ments until the system is reinitialized by loading it again
from the Monitor system tape (or until changed by another

SYST key~in).
Examples:

1. Alabeled multi-reel tape file:

! ASSIGN F:TAPE,(LABEL, ABC), (INSN,256,231,001)

This example specifies that the user's DCB name F:TAPE is to
be assigned to magnetic tape file name ABC. It also speci-
fies that input tapes 256, 231, and 001 are to be used (in
that order) to input the file.

2. The system listing output medium:

! ASSIGN F:0UT, (DEVICE,LO), (SEQ,OUT)

This example specifies that the user's DCBname F:OUT is to
be assigned to the output device to which the operational
label LO is assigned (normally a line printer). Sequence num-
bers are to be printed in columns 77-80 and the identifica-
tion "OUT" is to be printed in columns 73-76 of each record.

3. Alisted output file:

! ASSIGN F:JED,(FILE,XX1A),(EXPIRE, NEVER)

This example specifies that the user's DCB name F:JED is to
be assigned to the disc file name XX1A, and also specifies
that the file is to be retained in disc storage indefinitely.

FMGE A file management (FMGE) control command
may be used to enter, copy, list, delete, or punch any file
in the system file directory. The M:EO and M:EI DCBs are
used to enter information and obtain information, respec-
tively. The entire user's file directory will be listed if no
options are specified. The entire file directory, as defined
by the current M:El assignment, will be listed; that is, any
account's file directory may be listed by assigning the
M:EI DCB to that account.

The form of the FMGE control command is

I FMGE [(option)]... [,(opfion)]

where the options are

DELETE specifies that the file is to be deleted from
the system file directory after any other action
specified by the FMGE command has been taken.
The file that is to be deleted is determined by the
current assignment of the M:El DCB,

LIST [,mode] specifies that the file is to be listed
on the LO device. The mode may be either
FORMAT, BIN (binary), or BCE (EBCDIC). The
file that is to be listed is determined by the
current assignment of the M:EI DCB. If BIN is
specified, a hexadecimal dump of each record is
given on the DO device. If FORMAT is speci-
fied, BCD is assumed and the first byte of each
record is assumed to be a VFC byte.
option is BCD. If the file is keyed, the keys
are also listed.

PUNCH[,mode] specifies that the file is to be out-
put on the PO device. The mode may be either BIN
(binary) or BCD (EBCDIC). The default option is
BCD. Any element file punched may be reintro-
duced to the system by means of the ENTER option
(see below). The file punched is determined by
the current assignment of the M:El DCB,.

ENTER[, PERM] specifies that an element obtained
from the El device is to be added to the system file
directory. If PERM is also specified, the file is
placed in permanent disc storage; otherwise, the
element is deleted from disc storage when the job
is terminated. The information read from the EIl
device is written on the EO device or file.

The default

Example:

! FMGE (DELETE), (PUNCH,BIN)

This example specifies that the file assigned to the M:El DCB
is to be deleted from the system file directory after it has
been output on the PO device in the binary mode.

PROCESSOR CONTROL COMMANDS

A processor control command indicates to the Monitor that
control is to be transferred to the specified resident proces-
sor. It also specifies the types of input to be accepted, and
the types of output to be produced by the processor.

Processors may be created, updated, and deleted under nor-
mal batch operations. There are no restrictions as to how
many and what kind of processors may be added to the system.

User programs are called by ! RUN(LMN,name) and proces-
sors are called by ! name, where the name is the name of
the load module specified in the LOAD or OVERLAY control
command. User's processors must be inserted under the Mon-
itor system account number.

A LOAD or OVERLAY control command normally follows a
processor command (and is read after all specified inputs
have been received and processed), so that the processor's
output will be translated into an executable load module.

The form of a processor control command is

I name specification

where

name is the name of a Monitor processor (e.g.,

FORTRAN, SYMBOL, COBOL or METASYM).

specification is a listing of input and output options
for the processor. At least one input option and
one output option must be specified. The following
lists the options that may be specified.

Specification | Specification Reference

Cl Compressed input from the CI device

SI Symbolic input from the SI device

BO Relocatable binary output (on cards
or paper tape) on the BO device

Cco Compressed output on the CO device

GO Relocatable binary output to disc
storage (i.e., the GO file)

LO Listing output on the LO device

LS Listing source

D Debug output

S in column 1 (FORTRAN only)

System Control Commands 19

Example:

I METASYM S[LO,GO

This example specifies that control is to be given to the
Meta-Symbol assembler. It also specifies that symbolic in-
put will be received from the device to which the SI oper-
ational label is assigned, listing output is to be transmitted
to the device to which the LO operational label is assigned,
and relocatable binary output is to be stored in the file to
which the M:GO DCB is assigned.

LOAD A LOAD control command is used to direct the
loader to form a relocatable load module (i.e., an execut-
able program) from relocatable object modules (i.e., sub-
programs in Sigma object language) and library load modules.
The loader will also generate DCBs to be included in the
load module (see Appendix T). The object modules or load
modules may be loaded from one or more of the following:

1. The GO file(s).

2. Element files.

3. The system library.
4. The BI medium.

The resulting program may be entered into the user's ele-
ment file, and thereafter called internally by an executing
program, or it may be executed independently, as specified
by a RUN control command.

The form of the LOAD control command is

I LOAD [(opfion):] [, (option)]... [, (option)]

where the options are

GO specifies that data from the user's temporary
GO file is to be included in the root of the load
module (see "TREE" below).

EF, (name[,accounf Epassword]])l[:, . specifies
that the named module (either object or load) from
the element file of the designated account is to be
included in the load module. If no account num-
ber is specified, that of the current job is assumed.
If a password is associated with a named module,
it and the account number must be included in the
specification. More than one module may be speci-
fied in an EF specification.

UNSAT, (account [, password])[, . . .] specifies that
the library of the designated account is to be
searched for external definitions required for the
load module (i.e., corresponding to primary ex-
ternal references). More than one account may be
specified in an UNSAT specification. The library
password (if any) for each account must be included
in the specification, although listing of the pass-
word is suppressed. (Library passwords are defined
by PERM specifications, see below.)

20 System Control Commands

PERM[, LIB]

LMN,name [, password]

specifies that the load module is to be
added to the account's element file. If PERM is
omitted, the load module will be placed in the
account's temporary file. If a previously formed
load module of the same name (see LMN, below)
exists, it will be replaced by the newly formed
one. If LIB is specified, any external definitions
or external references in the load module will be
added to the account library's table of external
definitions and references, and the load module
will be inserted into the library.

specifies the name that is to be
giventothe load module. If no name is specified for
a load module, it is considered temporary, even if
PERM (see above) is specified. A password to be as-
sociated with the load module may be specified.

If (PERM,LIB) is specified, the password is the pass-
word of the library. The password specified for the
first library load module entered in the library be-
comes the password of the library.

READ

WRITE » (see ASSIGN control command).

EXPIRE

SL,value specifies the error severity level that will

TSS,size

BIAS,value

be tolerated by the loader in forming a load mod-
ule. The value may have the range shown in Table 6.

specifies (in hexadecimal) the maximum
size, in words, of the temporary storage stack for
the current job (see Chapter 7). If TSS is omitted,
the maximum size is set at 10 words. The greatest
size that may be specified is limited to available
core storage and may not exceed 7FFF words regard~-
less of core size.

specifies (in hexadecimal) the load bias,
in word locations. If thevalue is not a page bound-
ary, the next lower page boundary is used.

Table 6. Error Severity Levels
Error . . N
Severity Typical Meaning (Actual Meaning is
Determined by the Processor Used)
Level
0 No abnormalities detected.
1 Abnormal ity detected but error unlikely.
2 Possible error detected.
3
4 Probable error detected.
5
6
7 Definite error detected, but localized
in effect: e.g., an undefined symbol.
8
9

Table 6. Error Severity Levels (cont.)
g::;ﬁr Typical Meaning (Actual Meaning is
L 4 Determined by the Processor Used)

evel
A
B Definite error detected, not localized
in effect; e.g., improper DO loop
nesting.
C
D
E Disastrous error.
F
NOSYSLIB specifies that the system library is not

MAP

BI

MI10

M100

ABS

ERTABLE,size

ERSTACK,size

NOTCB

to be searched. If NOSYSLIB is omitted, the sys-
tem library will be searched to satisfy any external
references that are unsatisfied after loading has

been accomplished fromall other specified sources.

If MAP is specified, a complete listing of ex-
ternal references and definitions for the load mod-
ule is to be outputon the LLdevice (see Appendix L).

specifies that the Bl input device is to be used
to read unspecified relocatable object modules.
Object modules will be loaded from the BI device
until either two end-of-data codes (05) or one
end-of-file code (06) is encountered. If neither
BI, EF, nor GO are specified as input sources, BI
is assumed by default. Normally, the Bl and C
operational labels are both assigned to the same de-
vice. If a control command is read, the Monitor
generates an end-of-file code and terminates the
binary input.

specifies that each control or dummy section is
to be loaded at the next greater multiple of]0]6'

(same as M10, above, except that loading
starts at the next greater multiple of 100).

specifies that a relocation dictionary is not to
be formed for the load module. If ABS is omitted,
a relocation dictionary will be formed and the load
module will be treated as "semiabsolute" (i.e.,
executable but capable of being relocated).

specifies the size, in words, of the

library error table (see the Mathematical Routines
user's manual, publication C 900 906. The
default option is 10 words.

specifies the size, in words, of the
library error stack. The default option is 10 words.

specifies that no Task Control Block (TCB)
is to be created by the loader. This option should
not be used for FORTRAN jobs, since FORTRAN
requires a TCB.

Any number of LOAD commands may be used in a single job.

Examples:

LOAD

This example specifies that loading is to be accomplished

from the BI device.

Default conditions are assumed for all

options,

/ I (BI), (M100), (FCOM)

/ I (SL,2),(TSS, 3E8), (BIAS, 2000), ;

/! (WRITE, NONE), (EXPIRE, NEVER), ;

/! (LMN, ANI), (PERM, LIB), (READ,ALL), ;

ﬂ (UNSAT, (1235), ;

I LOAD (EF, (ABC, 1234, AMT)),;

This example specifies that:

1.

©

No load information is to be taken from the GO file,
since GO is not specified.

Element ABC, having the password AMT associated with
it, is to be loaded from the element file of account

1234.

The element file of account 1235 is to be searched for
external definitions corresponding to unsatisfied exter-
nal references (if any exist after loading has been
accomplished from all other specified sources).

The name ANI is to be associated with the load module
being formed.

The load module is to be a permanent file in the user's
library.

Any account may read the load module, but none may
write into it.

The disc storage allocated to the load module is never
to be released for other use.

Errors of severity level 2 are acceptable in the load
module.

Up to 3EB1¢ words of temporary storage may be used by
the current job.

A relocation bias of 2000]6 is to be used.
No load map is to be output.

Relocatable object modules are to be loaded from the
BI input device.

Each control section or dummy section is to be loaded
starting at a multiple of 100;,.

System Control Commands 21

OVERLAY CONTROL COMMANDS

The use of an overlay program structure allows two or more
program segments to begin at the same logical core storage
location at different times during program execution, This
capability is often useful when the total storage require-
ments of a program exceed the size of available core stor-
age. The formation of the load module for an overlay pro-
gram is accomplished in the same way that load modules in
general are formed (see "LOAD", above). However, the
load parameters must be specified either in an OVERLAY
control command (see below) or a LOAD command, and the
overlay structure must then be specified in a TREE control
command (see below). There is no functional difference be-
tween the LOAD and OVERLAY commands. The SEG and
REF options may be used in a LOAD command and a TREE
command may follow a LOAD command also. Cross refer-
encing between paths (see "TREE" below) is not allowed.

Debug control commands may be used with overlay programs.

OVERLAY An OVERLAY control command may be
used to specify the load parameters for an overlay load
module. The load parameters that may be specified in
OVERLAY commands include those appropriate to LOAD
control commands. Also, either of two overlay modes (see
SEG and REF, below) may be specified.

The form of the OVERLAY control command is

I OVERLAY [(option)] [(option]] ... [(option}]

where the options include any of those appropriate to the
LOAD control command and either of the following:

SEG specifies that the overlay structure is to be set
up for the segment loading mode. In this mode, it
is the user's responsibility to explicitly load each
segment from disc storage to core storage (e.g., by
means of the M:SEGLD procedure; see Chapter 4)
before it is referenced by the executing program.

REF specifies that the overlay structure is to be set
up for the reference loading mode. In this mode,
any permissible reference (in another segment of
the program) to an external definition within a
given segment will cause that segment and ali its
backward path (see "TREE" below) to be loaded, if
it is not already in core storage, even in the case
of an unsatisfied conditional branch to that segment.
The external reference must not originate in an al-
terable instruction (i.e., one that may be replaced
or changed during program execution).

If neither REF nor SEG is specified, segment loading (see
SEG, above) is assumed.

TREE A TREE control command must appear immediately
following the associated OVERLAY command. It must specify
the overlay structure of the load module formed as a result

22 System Control Commands

of the preceding OVERLAY command, so that the logical
segments of the program will be loaded from disc storage
into core storage as required. It is the user's responsibility
to pian the relationship of these segments.

The relationship of the segments that comprise an overlay
program can be represented graphically by means of a tree
diagram, as in the example shown below. The horizontal
coordinate of the diagram denotes increasing core storage
(address) allocation, from left to right. The vertical coordi-
nate denotes overlays. The leftmost segment, or "root", is
that portion of the program that resides in core storage
through program execution. A'"path" of an overlay consists
of those segments that may occupy core storage at the same
time. The portion of a path that exterds from the start of
the program (i. e., the root) to a given segment is termed
the "backward path" of that segment.

The following example consists of four paths, any one of which
may be present in core storage at any given time. Segment
A, below, is the root of the pregram and is never overlaid
by another segment. Any path may be loaded into core
storage and overlaid as many times as required by the pro-
grem. All segments of the load module are saved in disc
storage and, when a segment that hasbeen overlaid is called
again by the executing program, the original copy is loaded
from the disc. Therefore, any communication between two
overlay segments {e.g., D and E, below) must be done in a
part of the backward path common to both,

Example:

The form of the TREE control command is:

! TREE specification

where
specification specifies the tree structure by use of
the symbology given below.

name specifies the name of a relocatable object
module.

- indicates that two named relocatable object mod-
ules are to be contiguous in core storage.

indicates that two segments are to overlay one
another (i.e., begin at the same core storage
location,

0 indicates a new (lower) level of overlay.

Example:

! TREE A - (C - (E,D),B - (G,F))

The above example is a symbolic representation of the over-
lay structure of the preceding graphic example.

PTREE A PTREE control command may be used to ob-
tain a TREE control command from the user's file.

The form of the PTREE control command is

! PTREE (name[,accounrEpassword]])

where

name specifies the name of the file containing the
TREE control command. This file can be created
by ENTERing (see "FMGE") a TREE control command

without an exclamation character.

account specifies the account containing the desig-
nated file.

password specifies the password associated with the
designated file. If the file has an associated pass-
word, both it and the account number must be
given in the command.

INCL " An INCL (include) control command may be
used, following a TREE or PTREE command, to include a
named public library routine in a specified overlay segment
(e.g., to satisfy a secondary external reference).

The form of the INCL control command is

I INCL,segment name [.. ,name]

where

segment specifies the name of the segment to which
the named library routine is to be appended. Each
segment takes the name of the first element file
named in the segment specified on the TREE card.

name specifies the name of a public library routine
that is to be appended to the specified segment.

Primary external references to public library routines are
satisfied automatically by the overlay loader. Therefore, it
is not necessary to specify such references in an INCL com-
mand. However, there is no restriction against doing so.
Any number of public library routines may be specified in a
single INCL command.

OVERLAY EXAMPLE

An example of the control card sequence used to specify the
structure of an overlay program is given below.

/! INCL, AIRT L:LOG

/! INCL, BOSK L:SIN, L:COS

ﬂ TREE AIRT - (BOSK, KALX - ABC)

[! (EXPIRE,7,11,73), (BI), (REF), (MAP)

/! LIB), (READ, 1234), (WRITE, NONE), ;

I (UNSAT, (1236), (1237)), (LMN, OMER), (PERM, ;

I OVERLAY (EF, (ABC), (AIRT), (BOSK), (KALX)), ;

The above example specifies that:
1. No load information is to be taken from any GO file.

2. Elements ABC, AIRT, BOSK, and KALX are to be loaded
from the element file of the present job. I

3. The element files of accounts 1236 and 1237 are to be
searched if unsatisfied external references exist after
loading has been accomplishe for all other sources
specified.

4. The name OMER is to be associated with the load mod-
ule being formed.

5. The load module is to be a permanent file in the user's
library.
6. Account 1234 may read the load module, but no account

(other than that of the current job) may write into it.

7. The disc storage allocated to the load module is to be
released for other use on July 11, 1973

8. Relocatable object modules are to be loaded from the
BI input device and are to be included in the root seg-
ment (AIRT),

9. The overlay structure is to be set up for loading in the
reference mode.

10. A load map is to be output.

11. The system library is to be searched for external defini-
tions corresponding to unsatisfied primary external ref-
erences (if any).

OLAY The OLAY control command provides the user
with a larger background area in which to load than do the
LOAD and OVERLAY control commands, The OLAY com-
mand uses an overlaid version of the loader, whereas both
LOAD and OVERLAY use an unsegmented version. The un-
segmented version is faster, but the overlaid version takes
less core space,

The OLAY control command may be substituted for either the
LOAD or OVERLAY control command. All options used with
LOAD or OVERLAY also may be used with OLAY and the

System Control Commands 23

control command sequence may be identical to that used
with a LOAD or OVERLAY command.

MODIFY The MODIFY control command allows the
user to insert words into a foreground or background program
in core storage.

The form of the MODIFY control command is

! MODIFY[,segment] loc,word [[word]. .. [word]

where

segment specifies the name of an overlay segment.
This parameter is omitted if the load module is not
overlaid. :

loc specifies a relative hexadecimal location (i.e.,
an external definition followed by an optional
hexadecimal addend value) or a signed positive
absolute hexadecimal address where the modifica-
tion is to be made. If an external definition is
used, and the modification is to be made to an
overlay segment, the definition must not have been
referenced in a "lower" segment of the overlay tree.
This restriction applies only if the MODIFY com-
mand appears after the OVERLAY command for the
program.

word specifies the word to be inserted (right-justified)
at the designated location (see "loc", above). The
word must be expressed as an unsigned hexadecimal
(i.e., value+name), If it is desired to specify an
address resolution for the external definition
(following the value), the name of the external
definition must be enclosed in parentheses (i.e.,
value +res (name)).

res Resolution
BA Byte

HA Hal fword
WA Word

DA Doubleword

If no resolution is specified, word resolution is
assumed.

The MODIFY control command may be used either following
a LOAD command or a RUN command (see "RUN", below).
If used following a LOAD command, the inserted words
become a permanent part of the program; otherwise, they
are a temporary "patch" used only during the current exe-
cution of the program.

Example:

! MODIFY LOCI+AI,1234E

24 System Control Commands

This example specifies that the hexadecimal value 1234E is
to be inserted at a location whose address is 161 words higher
than that of LOCI. '

SWITCH Any of six pseudo sense switches (see Appen-
dix D) may be set or reset by means of the SWITCH control

command (or by an unsolicited key=-in; see Chapter 3).

The form of the SWITCH control command is

[[,(RESET,value[, .. .,value])]

I SWITCH [(SET,value[, ...,value])];

where

SET,value specifies which pseudo sense switches are
to be set. The "value" may be from 1 to 6, and more
than one value may be specified. If ALL is speci-
fied, all pseudo sense switches will be set.

RESET,value specifies which pseudo sense switches
are to be reset, The "value" may be from 1 to 6,
and more than one value may be specified. If ALL
is specified, all pseudo sense switches will be reset,

If a conflict exists between the SET and RESET options, the
last setting specified in the command will apply, since the
Monitor processes the options in sequence (i.e., left toright).

RUN The RUN control command specifies that a desig-
nated program (or the program most recently formed by the
loader) is to be executed, provided that the execution error
severity level (see XSL, below) has not been exceeded by
the program (i.e., the load module).

The form of the RUN control command is

I RUN [{option]] [, (option]] ... [, (option)]

where the options are as follows:

LMN,name ,account ,password specifies the name
(account number and associated password, if any)
of the load module that is to be executed, If this
option is omitted, the job's most recently formed
load module will be executed.

START, address specifies the location at which pro-
gram execution is to begin. The "address" may be
either an external definition (optionally followed
by a hexadecimal addend value) or a signed abso-
lute hexadecimal address.

BIAS,address specifies the address to which the load
module is to be relocated, The "address" must be
on an absolute hexadecimal page boundary.

XSL,value specifies the highest error severity level
that is to be tolerated in accepting a program for
execution (see Table 5). If XSL is omitted, a
value of 4 is assumed.

INT,address [, DISABLE] specifies the absolute hexa-
decimal interrupt location to be associated with the

real-time program, If the named program has been
designated as a resident foreground task, it will be
loaded into its assigned area. If the named program
has been designated as a non-resident foreground task,
it will be loaded when the respective interrupt occurs.
If DISABLE is specified, the interrupt will be armed

and disabled; otherwise, it will be armed and enabled.

If INT is specified, neither TIME nor CLOCK (see
below) may be specified in the RUN command.

TIME, value specifies a time interval (after a real-
time program hasbeen loaded and the timer started),
in hundredths of a second, following which the
real-time program is to be executed. The real-
time program will be executed repeatedly at the
frequency specified by the designated value. If
TIME is specified, neither INT nor CLOCK (see
below) may be specified in the RUN command.

CLOCK,oddress,.volue[,DISABLE] specifies a signed
absolute hexadecimal clock location to be associ-
ated with the real-time program. The "value"
specifies the time interval, in units of the clock's
resolution, to which the clock is to be set. If
DISABLE is specified, the designated clock will be
armed and disabled; otherwise, it will be armed
and enabled. If CLOCK is specified, neither
TIME nor INT (see above) may be specified in the
RUN command. If CLOCK is specified, DIRECT
(see below) is assumed also; but, if a specified reg-
ister block is to be used, then the DIRECT option
must be specified explicitly.

DIRECT[,rblock] specifies that the real-time pro-
gram is to be entered directly each time the asso-
ciated interrupt or clock becomes active. The
foreground routine also must have been declared
RESIDENT and MASTER at System Generation time.
The programwill be entered in the master mode and
is responsible for saving and restoring any machine
environment it changes (and returning control to
the point at which the interrupt occurred).

The sub-option "rblock" specifies a register block
to be associated with the task. If DIRECT is not
specified (for a foreground task), the task will be
entered through the Monitor's interrupt service
routine and the Monitor will automatically save
and restore the machine environment and return
address. DIRECT may be specified only if CLOCK
or INT (see above) is also specified in the RUN
command.

Example:

I RUN (INT,6D), (XSL,3)

This example specifies that the program to be executed is a
foreground program to be initiated on the occurrence of an
interrupt at location 6D. It also specifies that the program

is not to be executed if the load module contains errors of
a greater severity level than 3. Since neither START nor
LMN is specified, the most recently encountered starting

address in the most recentiy formed load module will be used.

DEBUG CONTROL COMMANDS

Debug control commands described under this heading may
be used only following a RUN command. With the exception
of the IF, AND, and OR control commands, they may appear
in any random sequence after the RUN command for the
program to which they apply. Only one page is reserved for
debug control command FPTs generated by the program loader.
If this limit is exceeded, the error message "TOO MANY
DEBUGS" is listed.

Memory dumps performed in response to debug control
commands may be either conditional or unconditional.
Conditional dumps are dependent on the outcome of a
program's execution (e.g., whether errors occurred during
program execution). The memory dump lists the current PSD
and registers, followed by the requested memory areas.

A location appearing in a debug command may be specified
as a hexadecimal address, an external definition, or an ob-
ject module name. Addressesrelative to external definitions
consist of the label of the external definition optional ly fol -
lowed by a signed hexadecimal addend value (e.g., LOC+B).

All dynamic debug commands (i.e., SNAP, SNAPC, IF,
AND, OR, COUNT) cause the specified instruction to be
replaced by a Monitor call. The replaced instruction will
be executed after the specified action takes place,

All debug output is listed on the DO device. Debug control
commands PMD and SNAP (see below) may be used to dump
only those areas within the limits of the load module, since
any pages obtained by means of M:GP or M:GCP procedure
calls are not known to the Monitor at the time that the pro-
gram is loaded.

POSTMORTEM DUMP CONTROL COMMANDS

A postmortem dump control command requests the Monitor

to dump a selected area of memory. Such a dump is termed
"postmortem' because, in general, it is performed after the
program has been executed or terminated due to error (i.e.,
"errored"). If an error is detected during program execution,
the Monitor lists an appropriate error message on the LL de-
vice, inaddition tolisting the dump outputonthe DO device.

Any number of separate program areas may be specified for
a program, in one or more postmortem dump commands. If
no program areas are specified, all areas having a protection
code of 00 will be dumped. If asingle job includes several
programs to be loaded and executed separately, each such
program may have one or more associated postmortem dump
control commands.

There are two types of postmortem dump commands (see be-

low), neither of which may be used prior to the RUN com-
mand for the program to which they apply.

Debug Control Commands 25

PMD A PMD control command causes a specified dump
to be output only if an error occurred during program exe-
cution or if the program has returned control to the Monitor
via an ERR or XXX return (see Chapter 4).

The form of the PMD control command is

I PMD[, segment] [(from,to)] ... [(from,to] [,(pp)]

where

segment specifies the name of an overlay segment
(valid only if an OVERLAY control command
was used in loading the program). If the seg-
ment name is omitted, the root (of an overlay
program) is assumed.

from,to specifies the location of the beginning (from)
and end (to) of an area to be dumped. Either "from"
or "to" may be expressed as a relative hexadecimal
location (i.e., an external definition followed by
an optional hexadecimal addend value) or a posi-
tive (preceded by a "+" character) absolute hexa-
decimal address.

pp specifies the memory-access class that is to be
dumped (see Appendix A).

Examples:

r PMD

This example specifies that the data areas of the program (or
of the root portion of an overlay program) is to be dumped.
It is equivalent to ! PMD (00}.

(! PMD, K ALX(10)

This example specifies that all areas of overlay segment
KALX that have a memory-access code of 10 (i.e., memory
access 10) are to be dumped.

KPMD,KALX(LOCHS,LOC%A)

This example specifies that the area to be dumped is that part
of overlay segment KALX beginning five words higher than
location LOC1 and ending ten words lower than LOC2.

(PMD(10), (00)

This example specifies that all areas of the program that
have a memory-access code of 10 or 00 are to be dumped.

26 Debug Control Commands

PMDI The PMDI control command causes the specified
dump to occur whether or not any errors have been detected.

The PMDI control command is of the form

| PMDI[,segment] specification

where

segment specifies the name of an overlay segment
(valid only if all areas to be dumped lie within
the designated overlay segment).

specification may include any (or all) of the speci-
fication options appropriate to a PMD control com-
mand (see "PMD", above).

SNAPSHOT CONTROL COMMANDS

A memory snapshot control command requests the Monitor to
dump a selected area of memory when a specified instruction
is about to be executed. Such a dump is termed a "snapshot”
because it provides an instantaneous "picture" of program
conditions existing at a particular point in time during pro-
gram execution.

Any number of separate program areas may be specified in a
snapshot control command. All registers are dumped, as is
the Program Status Doubleword (PSD).

Note that the location initiating the dump (i. e., causing the
dump to take place) must contain an executable instruction
that is not altered or replaced during program execution.
This requirement is necessary because the Monitor replaces
the contents of that location with a branch to the Monitor's
snapshot dump routine. ‘

There are two types of snapshot dump commands (see below),
neither of which may appear in the job deck prior to the
RUN command for the program.

SNAP The SNAP control command requests the Monitor
to take an unconditional memory snapshot.

The form of the SNAP control command is

I SNAP[,segmeni] loc,com [, (from [,fo])]. .. [,(from [,fo]):l

where

segment specifies the name of an overlay segment
(valid only if the location initiating the dump and
also the area to be dumped are located within the
specified overlay segment).

loc specifies the location at which the dump is to

be initiated. That is, the specified dump is to oc-
cur just prior to the execution of the instruction at
"loc". Note that "loc" (and either "from" or "to",
below) may be expressed as a relative hexadecimal
location (i. e., an external definition followed by
an optional hexadecimal addend value) or a posi-
tive absolute hexadecimal address.

com specifies a string of up to eight alphanumeric
comment characters that are to be printed with the
dump output. Note that at least one such comment
character must be specified in the command.

from specifies the location of the beginning of an
area to be dumped.

to specifies the location of the end (i.e., highest
core location) of an area to be dumped.

Example:

I SNAP TAB,SNAPI, (HERE+14, THERE-1)

This example specifies that the area beginning twenty
word locations higher (in address) than location HERE
and ending one word location lower than THERE is to be
dumped just prior to the execution of the instruction at
location TAB. The message "SNAP1" is to be printed
with the dump.

SNAPC The SNAPC control command requests the
Monitor to take a conditional memory snapshot.

The form of the SNAPC control command is

! SNAPC [;segment] flag,specification

where
segment specifies the name of an overlay segment
(see "SNAP", above).
flag specifies the name of the test identifier, It

may consist of any character string from one to
eight characters in length, Since the Monitor
does not associate the flag with the user's pro-
gram, no confusion with program symbols can
arise. The normal state of the flag bit associ-
ated with a flag (in a table established and
maintained by the Monitor) is the set state. It
is set and reset by means of the IF, AND, OR,
and COUNT control commands (see below). Un-
less the flag bit is set, the specified dump can-
not take place.

specification must include both of the required
parameters of a SNAP control command (i.e. ini-
tiating location and comment string) and may also
include any or all of the optional specifications
(see "SNAP", above).

Example:

I SNAPC,NIM AT5,LUP+1,TP33

This example specifies that, if flag AT5 is in the set state
just prior to the execution of the instruction whose memory
address is one (word) greater than that of LUP (in overlay
segment NIM), then all general registers and the PSD are
to be dumped. If the dump occurs, the message "TP33" is
printed with the dump.

IF The IF control command may be used in conjunction
with a conditional snapshot command (see SNAPC!, above).
It requests the Monitor to make a specified fest at a desig-
nated location and, if the test condition is found to be true,
to set the flag bit associated with the conditional snapshot.
If the test condition is found to be false, the flag bit is to
be reset by the Monitor,

Since the IF control command may be used in conjunction
with other dynamic debug commands (see AND and OR,
below), the relative sequence of such commands may af-
fect the performance or inhibition of the dump. It is the
user's responsibility to sequence such commands in the
order dictated by the logical requirements of the condi-
tional dump.

Note that the instruction at the test location specified in a
dynamic debug command must be executed prior to the exe-
cution of the instruction at the location that initiates the
dump. In the case of an overlay program, both the test lo-
cation and the dump-initiating instruction must be located
in the same segment,

The IF control command is of the form

! IFEsegmenf] flag,!oc,(ll,x][,b]],r,lz,x2[,b2])

where

segment specifies the name of the overlay segment
(if any) that is specified also in the associated
SNAPC command (see "SNAPC", above).

flag specifies the name of the test identifier (see
"SNAPC", above).

loc specifies the absolute or relative (external defi-
nition [+ addend]) hexadecimal location at which

Debug Control Commands 27

the test is to take place. That is, the specified
test is to occur just prior to the execution of the
instruction at "loc",

Il and | specify locations that are to be compared
as specified by "r" (see below). They may be
either absolute or relative and may be indirect

(*1.).

x; and xo specify index registers to be used to
modify the addresses specified by Iy and I, (see
above), respectively. A zero may be used to spec-
ify that indexing is not to be used.

by and by specify the number of bytes to be com-
pared, The permissible values and their meanings
are
Value Meaning
1 Byte O
2 Halfword O
4 Full word
8 Doubleword

The values of by and b, are normally the same but
may be different, If omitted, the value 4 (i.e.,
full word) is assumed.

r specifies the type of comparison to be made. The
permissible values and their meanings are

Value Meaning
GT Greater than
LT Less than
EQ Equal to
GE Greater than or equal to
LE Less than or equal to
NE Not equal

Example:

[PSI-5,5)

I IF TAU,ETA+1,(RHO+A,4,EQ,;

This example specifies that two words in core storage are to be
tested to determine whether they are equal (i.e., identical).

28 Debug Control Commands

One of these two words has on oddress that is ten word
locations greater than that of external definition RHO, plus
the contents of index register 4. The other word to be com-
pared has an address that is five word locations less than that
of external definition PSI, plus the contents of index reg-
ister 5.

The example also specifies that the test is to occur just prior
to the execution of the instruction that is one word location
higher than external definition ETA, If the specified test
gives a true result, the flag named TAU is to be set; other-
wise, the flag is to be resef.

AND The AND control command may be used in con-
junction with a conditional snapshot command (see "SNAP",
above). It requests the Monitor to make a specified test at
a designated location, but only if the flag bit for the associ-
ated snapshot is in the set state wnen the test is to be made.
If the test condition is found to be true, the flag bit remains
set; otherwise, the flag bit is reset. If the flag bit is in the
reset state when the test is to be made, the test is not per-
formed and, unless the flag bit is set as a result of some sub-
sequent command, the associated snapshof does not occur.

The AND control command is of the form

! AND[,segmenf] specification

where

segment specifies the name of the overlay segment
(if any) that is specified also in the associated
SNAPC command (see "SNAPC", above}.

specification (see "IF", above).

OR The OR control command may be used in conjunc=
tion with a conditional snapshot command (see "SNAPC",
above). It requests the Monitor to make a specified test at

a designated location, but only if the flag bit for the associ-
ated snapshot is in the reset state when the test is to be made.
If the test condition is found to be true, the flag bit is set;
otherwise, the flag bit remains reset and, unless the fiag bit
is set as a result of some subsequent command, the associated
snapshot does not occur.

The OR control command is of the form

I OR[,segmenf] specification

where

segment specifies the name of the overlay segment
(if any) that is specified also in the associated
SNAPC command (see "SNAPC", above).

specification (see "IF", above).

COUNT The COUNT control command allows the user

to specify an iteration range (and steps within that range) in

which a designated test identifier (i.e., a flag for a snapshot
dump) will be set. Aseparate internal counter is established
by the Monitor for each COUNT command and the count is
incremented by one whenever (i.e., just before) an instruc-
tion at a specified location is executed. The iteration count
is then tested to determine whether the flag for the specified
dump will be set or reset. COUNT operates independently
of any OR, IF, or AND commands.

The flag for the designated dump will be set if the current
count is within the range of the specified start and end count,
and if the quotient "(count-start)/step" is an integer. Other-
wise, the flag will be reset.

The COUNT control command is of the form

! COUNT[,segmenf] flag, loc,start,end, step

where

segment specifies the name of the overlay segment
(if any) that is specified also in the associated
SNAPC command (see "SNAPC", above).

flag specifies the name of the test identifier (see
"SNAPC", above).

loc specifies the absolute or relative (external defi-
nition [taddend]) hexadecimal location at which
the count is to be incremented by one.

start specifies the decimal count at which the test-
ing of the count is to begin. When the count
equals "start", the flag is set (even if "start" is
equal to zero).

end specifies the decimal count at which the incre-
menting of the count is to cease. A maximum
value of 2,147,483,647 may be specified.

step specifies the decimal count increment that de-
termines the intervals (within the range designated
by "start" and "end") at which dumps are to be taken.
Both "step" and "start" must be less than "end".

Example:

! COUNT FLG26,HERE+6,1,10,1

This example specifies that the name of the flag to be set is
FLG26, the count is to be incremented by one just prior to
executing the instruction located six word locations higher
than external definition HERE, the count range within which
the count is to be tested (to determine if "count-start/step"
is an integer) is from 1 to 10, and the flag is to be set when-
ever the count is incremented by one. Note that, in this
example, the flag is not set until the count reaches 2.

INPUT CONTROL COMMANDS

Note that input control commands must not have any spaces
between the exclamation character and the mnemonic.

BIN The BIN control command informs the Monitor
that the information to follow will be in binary. The termi-
nation of the binary information is specified by a BCD con-
trol command (see "BCD", below).

The form of the BIN control command is

IBIN

BCD The BCD control command is used os a terminator
for binary input, i.e., it causes the Monitor to revert to its
“normal " EBCDIC input mode.

The form of the BCD control command is

!BCD

DATA The DATA control command is used to inform
the Monitor that a data deck is to follow. The data deck is
for use by the executing program,

The DATA control command is of the form

IDATA

Any debug commands associated with the user's program must
precede a DATA control command.

EOD The EOD (i.e., end of data) control command
may be used to define data blocks in a data deck. This is
accomplished by inserting EOD control commands ot the end
of each block of data. When an EOD command is encoun-
tered, the Monitor returns an abnormal code of 05 in SR3

(if the user has specified an abnormal address for the M:READ
procedure).

The EOD control command is of the form

1EOD

Any number of EOD commands may be used in a job.

FIN The FIN control command is used to inform the
Monitor that there are no more jobs to be processed.

The FIN control command is of the form

IFIN

On encountering a FIN control command, the Monitor out-
puts a message informing the operator that all current jobs
have been completed. The Monitor then enters the wait
state, but remains responsive to real-time tasks.

Input Control Commands 29

UTILITY CONTROL COMMANDS

The utility control commands described below allow the user
to manipulate magnetic tape files.

PFIL The PFIL control command may be used to cause
a designated number of physical files on unlabeled tape to
be moved (i.e., skipped) in a specified direction. For un-
labeled tape, the tape will be positioned after the end-of-
file in the direction skipped.

The form of the PFIL control command is

I PFIL dcb name[,(BACK)][, (files)]

where

dcb name specifies the name of the Monitor DCB
associated with the files to be skipped.

BACK specifies that skipping will take place in the
reverse direction (the default option is skipping in

the forward direction).

files specifies the (decimal) number of files to be
skipped. If "files" is not specified, 1 is assumed.

30 Utility Control Commands

REW The REW control command may be used to cause
the tape associated with a specified DCB to be rewound.

The form of the REW control command is

I REW dcb name

where
dcb name specifies the name of the DCB associated
with the tape fo be rewound.
WEOF The WEOF control command may be used to

cause a physical end-of-file to be written on unlabeled
tapes (see "M:WEOF", Chapter 4).

The form of the WEOF control command is

I WEOF dcb name

where

dcb name specifies the name of the DCB associated
with the tape on which the end-of-file is tobe written.

3. OPERATOR COMMUNICATION

Operator key-ins and Monitor typeouts provide the means
of communication between the operator and the system when
operator intervention is necessary to maintain system oper-
ation. Monitor typeouts inform the operater of various error
or abnormal conditions affecting system operation and, if a
key-in from the operator's console (the OC device) is
expected, the Monitor outputs the message

I KEY-IN

on the OC device. All messages from the Monitor to the
operator are preceded by two exclamation marks (1) as
shown above.

The common characteristics of all key-ins, whether or not
solicited by the Monitor, are:

1. To initiate a key-in, the operator presses the INTER~
RUPT switch on the processor (CPU) control panel.

2. The operator always types an exclamation mark (!) as
the first character, and terminates each key=-in by a
carriage return (i.e., presses the NEW LINE key).

3. The blank (i.e., space) is used as a field delimiter,
and any number of blanks may be used to separate
fields.

4, Each BACKSPACE means "delete the previously typed
character",

5. To delete an entire message prior to termination of the

key=-in, the cperator presses the EOM (end of message)
key.

SYSTEM COMMUNICATION

DATE The DATE (or D) key=-in may be used to inform
the Monitor of the current date,

The DATE key-in has the form

|
=| gATEf month, day, year
where
month specifies the current month

(1 < month =12).

day specifies the current day of the month
(1 = day = 31).

year specifies the two least significant digits of
the current year (00 < year < 99).

TIME The TIME (or T) key-in may be used to set the
system clock to the current time of day.

The TIME key~-in has the form

| E
{ipM"} hour, minute

where
hour specifies the current hour (0 < hour = 23).
minute specifies the current minute

(0 = minute = 59).

REQUEST nnd KEY-IN The operator may request the

Monitor to let him dismount a tape from a particular unit.
He does this through the REQUEST key~in. The REQUEST
key-in has the form

IREQUEST ndd

The Monitor will respond with

tindd

followed by nothing if the tape unit isempty, or followed by
DISMOUNT SCRATCH reei number

if a scratch tape is on the unit and may be removed and re-

turned to the scratch pool, or followed by

DISMOUNT AND SAVE reel number
if the tape belongs to someone.

[f the unit is in use, the Monitor will type

LATER

REQUEST 1T/9T/MT KEY-IN If the operator wishes the
Monitor to tell him on which unit he may mount a tape, he
may use the following form of the REQUEST key~in.

77)
IREQUESTA 9T
MT

where

7T requests a /-track unit.

o7 requests a 9-track unit.
MT requests any available unit.
PRIORITY The PRIORITY key=-in may be used to change

the priority status of any system /O file (i.e., o job in
disc storage). An attempt to use a PRIORITY key-in in a
system that does not contain a system 1/O file directory
(i.e., a non=symbiont system) will cause the message

ITKEYERR

to be output on the OC device, since this key-in has no
meaning in a non-symbiont system.

Operator Communication 31

The PRIORITY key=-in has the form

IPRIORITY system id, yyndd priority

where

system id specifies the identification number as-
signed to the job by the Monitor. The system ID
is listed on the OC device as each job is entered
into the system.

yyndd specifies the name of the symbolic device
for which the file was created.

priority specifies the new priority number (see

"JOB", Chapter 2) for the job. A priority of
0 implies that the job is to be deferred until a
higher priority is specified.

WAIT The WAIT (or W) key-in may be used to discon-
tinue a specified job., However, the discontinued job is
not checkpointed by such a key-in.

The WAIT key-in is of the form

|
iaAIT} system id

where

system id is the same as for "PRIORITY", above.

START The START (or S) key=-in may be used to cause a
specified job to continue after having been discontinued by
a WAIT key-in (see above) or causes the Monitor to end an
idle state (the Monitor enters an idle state when the
system is first loaded or when a FIN control command is
encountered).

The START key-in has the form

1
igTART system id
where

system id is the same as for "PRIORITY".

ERROR The ERROR (or E) key-in forces an error return
to the Monitor (see Chapter 4). The job is terminated im-
mediately and any specified postmortem dump is performed
for the program being executed.

The ERROR key=in has the form

IERROR .
IE system id

where

system id is the same as for "PRIORITY".

32 System Communication

The Monitor responds with the message
11JOB id ERRORED AFTER xxxx

where

XXXX is the address of the last instruction executed
in the job.

The above message is listed on the LL and OC devices. The
PSD and the contents of the general registers are listed on
the LL device. If the Monitor is in the wait state when this
key=-in is input, it is taken out of that state (see "WAIT").

ABORT The ABORT (or X) key-in forces an abort return
to the Monitor (see Chapter 4). The job is terminated
immediately and any specified portmortem dump is not
performed.

The ABORT key-in has the form

i
{iQBORT} system id

where

system id is the same as for "PRIORITY".

The Monitor responds with the message

11JOB id ABORTED AFTER xxxx

where.

XXXX is the address of the last instruction executed
in the job.

The above message is listed on the LL and OC devices. The
PSD and the contents of the general registers are listed on
the LL device. If the Monitor is in the wait state when this
key=-in is input, it is taken out of the wait state (see "WAIT).

DELETE The DELETE key-in may be used to delete a
specified system 1/O file associated with a specific job.
This key-in is applicable to all job files in the file queue,
regardless of whether they are input or output files. When
a file is deleted, all the disc storage area associated with
that file is made available for other use. An attempt to
use a DELETE key-in in a system that does not contain a
system 1/O file directory (i.e., a non-symbiont system)
will cause the message

FIKEYERR
to be output on the OC device.

DISPLAY The DISPLAY key-in may be used to request
the Monitor to display (on the OC device) specified infor-
mation regarding certain aspects of current system opera-
tion. Note that if no operational parameter (see below) is
specified the entire schedule queue will be displayed. An
attempt to use a DISPLAY key-in having none of the
options listed below, in a system that does not contain a

system [/O file directory (i.e., a non-symbiont system)
will cause the message

TIKEYERR
to be output on the OC device.

The DISPLAY key=-in has the form
IDISPLAY option

where the option may be any of the following:

DIsC specifies that the Monitor is to list the cur-
rently available disc storage space as well as
those disc sectors that have been locked out from
use by the system.

TAPES specifies that the Monitor is to list the de-
vice name and status of each of the tape units
currently available to the system.

system id specifies that the Monitor is to list any
outstanding system [/O files for the specified job.

JOB specifies that the Monitor is to list the system
ID of any currently active background job.

WRITELOG The WRITELOG key=-in may be used to re-
quest the Monitor to output the accounting file on the
AL device (rormally a card punch).

The WRITELOG key~in has the form
IWRITELOG

The following is the format of records maintained in the
accounting log file. One record is created for each 1JOB
processed. When the operator initiates the key-in
IWRITELOG, the entire file is outputon the accounting log
(M:AL), normally the card punch, at the end of the current
job. This also deletes the records. Subsequent jobs cre-
ate new records, and all records are saved until output.

Total job time is divided into two categories: user time
and processor time. User time is time recorded from the
time a user's program gets control via a IRUN card until
control is returned to the Monitor. All other time is pro-
cessor time.

These two categories are then subdivided into three more
categories each: execution time, 1/O time, and overhead
time. Execution time is time spent in the slave mode.
1/O time is time directly attributable to waiting for user
1/O(e.g., unlabeled tape operation with WAIT specified).
Overhead time is all other time. Decoding CALs, calling
segments of Monitor, calling user overlay elements, block-
ing/deblocking, waiting for blocking buffers, waiting for
symbiont storage or symbiont input, 1/O, and clock inter-
rupt time are all included in overhead time.

Temporary disc space used is the sum of the size (in 512~
word granules) of all files which were RELeased on closing.

This storage is returned to system. Permanent disc space
used is the sumof the size of all files which were SAVed by
processors or user (even if later released). Accumulated
disc space used is the net change in disc storage for this
user. This may be negative if the net effectof the job was
to release files, or positive if the job created PERManent
files.

Al Record Format

Word Contents (all information in EBCDIC)

0 blanks

1,2 account number

3 blanks

4,56 name

7 blanks

8,9 total job time

10, 11 processor execution time
12,13 processor 1/O time
14,15 processor overhead time
16,17 user execution time
18,19 user 1/O time

20, 21 user overhead time

22,23 # of cards read

24,25 # of cards punched

26,27 # of processor pages out
28, 29 # of user pages out

30, 31 # of diagnostic pages out
32,33 # of scratch tapes used
34,35 # of save tapes used
36,37 # of tape reads and writes
38, 39 # of disc reads and writes

40,41 temporary disc space used (granules)
42,43 permanent disc space used (granules)
44,45 accumulated permanent disc space used(granules)

INT The INT key-in may be used to transfer control to
the user's console interrupt routine (see "M:INT", Chapter4).
Note that the user's program must set the console interrupt
linkage (e.g., by means of a M:INT procedure call).

The INT key-in has the form
IINT system id
where

system id is the same as for "PRIORITY".

SWITCH The SWITCH key=-in may be used to change the
settings of specified pseudo sense switches.
The SWITCH key-in has the form
ISWITCH system id [, (SET,value, ...)];
[(RESET, value, ...J]

where

system id is the same as for "PRIORITY".

SET, value

RESET, value} (see "SWITCH", Chapter 2).

System Communication 33

DIRECT |/0 COMMUNICATION

If the Monitor encounters an abnormal condition during an
1/O operation, a pertinent message to the operator is out-
put on the OC device. Such a message is of the form

Il name message

where

name is the physical device name (see "STDLB",
Chapter 2).
message is the message string informing the operator

of the specific condition that has been detected.
For example:

ERROR (unable to perform operation)
or
NOT READY (device not ready)
Monitor 1/O messages are discussed below, grouped accord-

ing to the type of device to which they apply.

After correcting the abnormal condition, the operator re-
sponds by means of a key-in. The format for an 1/O
key~-in is

Iname a

where

name is the physical device name of the device
involved in the 1/O operation.

a specifies a Monitor-action character(see Table 7).

Table 7. Monitor Actions

a Monitor Action
C Continue "as is".
E Set the appropriate error flag in the

DCB associated with the 1/O operation,
and continue.

L Continue, but lock out the device from
the system after the completion of the
current job.

R Repeat the 1/O operation.

CARD READER

If the card reader fails to read properly, or if a validity er-
ror occurs, the Monitor outputs the message

11 CRndd ERROR

on the OC device. After correcting the condition, the
operator responds with an 1/O key-in message. The action

character selected(see Table 6) dependson the circumstances.

If a feed check error or a power failure occurs, the Monitor
outputs the message

11CRndd INTLK

34 Direct /O Communication/Card Reader/Card Punch

on the OC device. If the card in the hopper is damaged,
the operator replaces it with a duplicate, presses the RESET
button on the card reader, and responds tc the Monitor with
the key-in

I CRndd, R

In the event of a power failure, the operator presses the
RESET button on the card reader and responds to the Monitor
with the key-in

| CRndd, R

If the card stacker is full, the hopper empty, or the device
is in the manual mode, the Monitor outputs the message

11CRndd EMPTY

on the OC device. The operator corrects the condition and
then simply presses the START button on the card reader, at
which point the operation continues.

CARD PUNCH

Instead of outputting an error message when a punch error is
first detected, the Monitor punches an error card following
each card punched in error, recovers from the error, and
then proceeds without operator intervention. The [/O
handler attempts to punch a card x times (x = NRA, a DCB
variable specified by the user; see Chapter 5) before out-
putting the message

11CPndd ERROR

on the OC device. The above message indicates that the
card punch is not functioning properly, and the operator
should reevaluate the job stack based on this knowledge.

The error cards may be sorted out by the operator or user.
They may be sorted visually, as the letters ERR are punched
on each one (if a multi-stacker punch is used, no error cards
are punched; improperly punched cards are routed to an
alternate stacker).

If the input hopper is empty, the stacker is full, or the chip
box is full (some machines), or if the device is in the man-
val mode, the Monitor outputs the message

11CPndd EMPTY

on the OC device. The operator corrects the condition and
simply presses the START button on the card punch.

If a power failure or a feed check error occurs, the Monitor
outputs the message :

11CPndd INTLK

on the OC device. If the card in the hopper is damaged,
the operator removes it, presses the RESET button on the
card punch, and responds to the Monitor with the key-in

1 CPndd, R

In the event of a power failure, the operator presses the
RESET button on the card punch and responds to the Monitor
with the key=-in

| CPndd, R

PRINTER

Whenever a print error is detected, the Monitor outputs the
message

!1LPndd ERROR

on the OC device. The 1/O handler attempts to print a line
x times (x = NRA, a DCB variable specified by the user;
see Chapter 5) before outputting the above message. The
operator's response after correcting the condition depends on
the specific device and circumstances.

If the printer is out of paper, the carriage is inoperative, or
the device is in the manual mode, the Monitor outputs the
message

I1LPndd EMPTY

on the OC device. The operator correcfs the condition and
simply presses the START button on the line printer.

If the line printer power is off, the Monitor outputs the
message

ILPndd INTLK

on the OC device. The line printer effects its own recovery
in the event of power failure.

PAPER TAPE READER

If an error occurs during the reading of paper tape, the
Monitor outputs the message

11PRndd ERROR

on the OC device. After correcting the condition, the oper-
operator responds with an 1/O key~in message. The action
character selected (see Table 7) depends on the circumstances.

PAPER TAPE PUNCH

If the paper tape punch is out of paper, the Monitor outputs
the message

I1PPndd EMPTY
on the OC device. The operator corrects the condition and
responds to the Monitor with the key-in

IPPndd INTLK

on the OC device. The operator corrects the condition and
responds to the Monitor with the key-in

I'1PPndd, C

MAGNETIC TAPE

If an error occurs during the reading or writing of magnetic
tape, the Monitor outputs the message

1 IMTndd ERROR

on the OC device. The I/O handler attempts a recovery x
times (x = NRA, a DCB variable; see Chapter 5) before out-
putting the above message. The operator's response depends
on the circumstances.

If a magnetic tape is addressed and there is no power, or the
reel is file protected for a write operation, the Monitor will
output the message

1IMTndd NOT READY

on the OC device. The operator's response depends on the
circumstances.,

If a magnetic tape is addressed and there is no physical reel,
the Monitor will output the message

IMTndd INTLK

on the OC device. The operator corrects the condition by
mounting a reel of tape (see below).

The monitor requests the operator to mount a scratch tape
by outputting the message

7
HISCRATCHH9 T, system id
M
where
system id specifies which job requires the use of the

scratch tape.

After responding to the above message by mounting a scratch
tape, the operator may enter the scratch tape into the system
by means of the key-in

ISCRATCH ndd, reel number

The Monitor requests the operator to mount a specific volume
by outputting the message

7
HMOUNT <9
M

T,reel number, system id
on the OC device.

After responding to the above message by mounting the
requested tape, the operator may enter the tape into the
system by means of the key-in

IMOUNT ndd, [reel number], system id

Printer/Paper Tape Reader/Paper Tape Punch/Magnetic Tape 35

Upon mounting a ree!l of labeled magnetic tape, the operator
can inform the Monitor of the reel's presenceby pressing the
RESET, ATTENTION, and START buttons on the front panel
of the tape unit. The Monitor's Automatic Volume Recog-
nition (AVR) routine then reads the label record and stores
the reel number in a Monitor table (the AVR table). If the
reel number is not specified in the label, or it has no label,
the message

ITAVR ERR
is typed on the OC device.

If the tape unit has no ATTENTION button, or if the tape
reel has no label, the operator may use a MOUNT key-in
(see beiow) to convey the ree! number to the MONITOR.
The key-in

IMOUNT ndd

causes the Monitor to call the AVR routine to read the label
record. The key=-in shown below causes the Monitor to
accept the specified reel number:

IMOUNT ndd, reel number, system id
where
ndd is as specified in Tables 3 and 4.

reel number specifies the number of the reel that
has been mounted.

system id is the same as for "PRIORITY".
The Monitor requests the operator to dismount a specified
tape at the conclusion of the job, to write~protect the reel
if not protected already, and to save it for future use by
outputting the message

11SAVE volume number, reel number, system id
on the OC device.
The Monitor informs the operator that a specified tape is
being returned to the system for scratch file use by out-

putting the message

I IRELEASE volume number, reel number, system id

No intervention by the operator is required.

RAPID ACCESS DISC FILE

Instead of outputting an error message whenever an attempt
to perform a disc 1/O operation is not successful, the
Monitor attempts recovery x times (x = NRA, a DCB pa-
rameter; see Chapter 5) before outputting the message

11DC ndd ERROR t,s

36 Rapid Access Disc File/Symbiont Communication

where

ndd is as specified in Tables 3 and 4.

t is the number of the track on which the operation
was attempted.

s is the number of the sector on which the operation
was attempted.

The above message indicates that the listed disc area is not
available to the system. The operator's response dependson

the circumstances. On output, the system selects another
disc area and continues writing.

SYMBIONT COMMUNICATION

Although symbionts may be entered as a result of program-
initiated 1/O requests, any explicit control of symbionts
must be done via the operator's console rather than by means
of control command cards.
Symbiont key-ins have the form

IS name, m

where

name specifies the name (see "STDLB" in Chapter2)
of the physical device associated with the symbiont.

m specifies the action to be taken (see Table 8).

Table 8. Symbiont Communication

m Action tc be Taken

C Continue current symbiont activity for
the specified device.

I Initiate symbiont activity for the
specified device.

L Lock-out symbiont from future activity
after this file,

R Recover to the top of the previous
66-line page (printer only).

X Terminate this job file.

S Suspend symbiont activity for the
specified device.

Symbionts address the operator via messages on the oper-
ator's console. Such messages have the form

1S name, message

where
name specifies the name of the physical device
associated with the symbiont.
message is the message to the operator (see Table 9).

Table 9. Symbiont Messages

INSTALLATION COMMUNICATION

Message Meaning of Message SYST The SYST key-in allows the operator to alter stan-
dard system assignments (see Table 10) without the necessity
ACTIVE The operator attempted to initiate a of going through System Generation.
symbiont that was already active. The SYST key~in has the form
NOT ACTIVE The operator attempted to suspend a 1SYST label, name
symbiont that was already inactive.
where
SUSPENDED The symbiont is temporarily inactive
(i.e., has suspended operation). label specifies a Monitor operational label to be
assigned to a physical device or to another
NOT The operator attempted to continue or Monitor operational label.
SUSPENDED recover a non-suspended symbiont. name specifies a physical device name (see
) . "STDLB" in Chapter 2) or a Monitor operational
TERMINATED The syr.nbnonf has completeci.gli ?f is label to which the above operational label is to
operations and has become inactive. b .
e assigned.
Table 10. 1/O Assignments
Oper.
Label Reference ' Permissible Device Types 1/O Function
BI Binary input Cord reader’ Read number of bytes specified (up to 120)
Magnetic tape Read number of bytes specified
Paper tape Read number of bytes specified
Disc Read number of bytes specified
C Control input Card reader’ Read number of bytes specified (up to 80 in BCD
mode, up to 120 in binary mode)
Typewriter Read number of bytes specified
Magnetic tape Read number of bytes specified
Paper tape Read number of bytes specified
@] Compressed input
Same as B
EI Element input
Sl Source input Card reader’ Read number of bytes specified (up to 80)

Magnetic tape
Paper tape
Typewriter

Disc

Read number of bytes specified
Read number of bytes specified
Read number of bytes specified

Read number of bytes specified

t .
Normal assignment

Installation Communication 37

Table 10. 1/O Assignments (cont.)

Oper.
Labei Reference Permissible Device Types 1/O Function
BO Binary output Card puncht Punch number of bytes specified (up to 120)
Paper tape Punch number of bytes specified (up to 120)
Magnetic tape Write number of bytes specified (up to 120)
Disc Write number of bytes specified (up to 120)
CO Compressed output
EO Element output Same as BO
SO Source output
AL Accounting log Same as DO
DO Diagnostic output Line printerf Perform all device format options and print up
to one line
Card punch Break into 80-character records and punch up
to two records.
Typewriter Break into carriage-size records, insert carriage
returns, and type up to 132 characters
Magnetic tape Same as line printer
Disc Same as line printer
Paper tape Break into 80-character records and punch up to
two records
LO Listing output
Same as DO
LL Listing log
PO Punch output Card puncht Punch number of bytes specified (up to 120)
(binary)
Paper tape Punch number of bytes specified (up to 120)
Magnetic tape Write number of bytes specified (up to 120)
Punch output Line printert Same as DO
(EBCDIC)
Magnetic tape Break into 80-character records and write up to
two records
Paper tape Same as DO
Typewriter Same as DO
Disc Same as DO (line printer)
ocC Operator's Typewril’ert Write up to 256 bytes
Console
tNormc:l assignment

38 Installation Communication

4. SYSTEM PROCEDURES

Monitor procedures enable the user's symbolic Meta-Symbol
program fo request a variety of Monitor functions. When a
procedure call is encountered during the processing of a
program, the processor responds by retrieving a symbolic
calling sequence from the procedure library, modifying it
according to the parameters specified in the procedure call,
and inserting the modified symbolic code into the user's
source program (to be translated into object code during a
subsequent processing phase).

At execution time, the calling sequence calls an appropri-
ate Monitor routine that, in turn, performs the desired func~
tion. In this manual, the Monitor routine called at execu~
tion time, as the end result of a procedure call having o
command mnemonic of the form M:XYZ, is referred to as
Monitor routine XYZ,

When using Cll Meta-Symbol, the Batch Processing Monitor
Procedure Library is invoked via the directive

SYSTEM BPM

This directive defines all of the Monitor procedures dis-
cussed in Chapters 4, 5, and 6 of this manual. The 10 070
instructions are invoked by the directive

sYSTEm s1G7[F] [0] [P

Thus, both the SYSTEM BPM and the SYSTEM SIG7 direc-
tives should be used. When the SYSTEM BPM directive is
processed, a control section is declared for use in generating
function parameter lists for Monitor procedures subsequently
used.

Often it is desirable to be able to symbolically reference
the parameter list associated with a particular procedure.
The second element of the label field list is used for this purpose.

For example, assume the user wanted to use the label "RD"
to identify the address of the CAL generated for the read
function on the C device, and also wanted to use the label
"RDFPT" to identify the address of the Function Parameter
Table (FPT) for the same function. He could do so by means
of the following Meta-Symbol procedure reference in his
program:

Label Command Argument

RD,RDFPT M:READ M:C, (BUF, ALPHA)
Examples:

WR M:WRITE etc.

,OPNFPT M:OPEN etc.

In the first example, above, the Iabel "WR" identifies the ad-
dress of the CAL generated for the write function specified
by the argument list (represented here by "etc."). In the
second example, the label "OPNFPT" identifies the address

of the first word of the FPT generated for the OPEN function
specified by the argument list (the associated CAL, in this
example, is not given a label; hence, the comma preceding

"OPNFPT").

GENERAL-PURPOSE PROCEDURES

LLOAD OVERLAY SEGMENT

M:SEGLD Monitor routine SEGLD causes a specified
overlay segment to be loaded into core storage. If an I/O
error occurs in executing the SEGLD routine, or if the speci-
fied segment is not found, the job is aborted.

The M:SEGLD procedure call is of the form

M:SEGLD [*]address[,ecb address)
where
address specifies the address of the first word of a

byte string containing the EBCDIC name of the seg-
ment to be loaded. The first byte (i.e., byte 0) of
the addressed location must indicate (in binary) the
number of characters in the name. An * may be
used to indicate indirect addressing.

ecb address specifies the address of a location (in
the calling segment or its backward path) contain-
ing the word address of the ECB to be associated
with the M:SEGLD procedure call.

Calls generated by the M:SEGLD procedure have the form

CAL1,8 address
where
address points to word O or the Function Parameter

Table (FPT) shown below.

word 0
X'orn 0———0 ECB address
0 1 2 314 5 6 718 9 10 N1z 13 14 15116 17 18 19i20 21 22 23124 25 26 27128 29 30 31
word 1
*|0 0 Address of byte string

0 1 2 3T4 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Al in bit position 0 of word 1 indicates indirect addressing.

System Procedures 39

M:LINK

LINK TO A LOAD MODULE

The Monitor LINK routine causes the calling

load module's core information (i.e., program and data,
except common dynamic data) to be saved in disc storage.
The calling module's core area is made available to the

The called module is then loaded into core
storage (overlaying the calling program) and control is trans-

called module.

ferred to it.

If there is no transfer address associated with

the called module, the job is aborted. The user's temporary
and permanent load module libraries are searched for the
specified load module. If it is not found or an 1/O error
occurs in executing the LINK routine, the job is aborted.
To effect a return to the calling module, the called module
must make use of the Monitor's LDTRC routine (see below).

Any communication between the calling and called load
modules must be accomplished through the general registers
or common dynamic storage.

The Monitor-assigned file name of the calling program is
contained in SR1, allowing the called module to return to
the calling location + 1 (via M:LDTRC, returning control to
the overlaid program).

The M:LINK procedure call is of the form

M:LINK
where

'name’

‘account’

'password'

‘name’ [, 'account’ [, 'password ']]

specifies the EBCDIC image of the name of
the load module to which control is to be transferred.

specifies the account from which the load
module is to be obtained.

specifies the password associated with
the load module.

Calls generated by the M:LINK procedure have the form

first word of 'account’

CAL1,8 address
where
address points to word 0 of the FPT shown below.
word 0
X'02' 0 olAlP
0 1 2 314 5 o 718 92 10 T1112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 1 (first word of 'name')
n 2 ap ag
0 1 2 314 5 6 718 9 10 nli2 13 1415016 17 18 19120 21 22 23124 25 26 27128 29 30 31
last word of 'name’
n-3 an-2 an-| n
0 1 2 314 5 6 718 9 70 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

40

General-Purpose Procedures

B B2 B3 B4
0 1 2 314 5 6 718 9 10 TIT12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
last word of 'account’

Ps Ps 7 Pg
D 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
first word of 'password'
B B I S S B | O N NP N T VA TN L A K 7 WL L3 2 L
last word of 'password'

Y Y Y

5 6 7 g

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
where

A specifies that 'account' is present (A=1) or absent

(A=0).
P specifies that 'password' is present (P=1) or ab-
sent (P=0).

LOAD AND TRANSFER CONTROL

M:LDTRC Monitor routine LDTRC loads a specified load
module (either one that had been partially executed and then
saved as the result of an M:LINK procedure call, or else a
"new" one), releases the core area used by the calling mod-
ule, and transfers control to the starting address of the called
module. If the called modulewas a previously saved program,
it will be entered at a point immediately following the orig-
inal M:LINK call, provided that the Monitor-assigned file
name of the previously saved program (communicated to the
user via SR1) was stored into word 1 of the FPT associated
with the M:LDTRC call prior to executing the M:LDTRC call.

The user's temporary and permanent load module libraries are
searched for the specified load module. If it is not found or
an /O error occurs in executing the LDTRC routine, the job
is aborted.

Any communication from the calling module to the called
module must be accomplished through the general registers
or common dynamic storage.

The M:LDTRC procedure call is of the form

M:LDTRC 'nome'[,'occounf'[,'possword']]
where

‘name’

'account' (see "M:LINK", above).

'password'

Calls generated by the M:LDTRC procedure have the form

CAL1,8 address
where

address points to word O of the FPT shown below.
word 0

X'03' 0 OIA'PI

0 v 2 374 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

The subsequent words of the FPT are of the same form as
shown previously for M:LINK,

GET LIMITS

M:GL The Monitor GL routine may be used to obtain
the absolute hexadecimal addresses of common dynamic core
storage. The lower limit is returned in SR1 and the upper
limit in SR2,

The M:GL procedure call is of the form
M:GL

Calls generated by the M:GL procedure have the form

CALl,8 address
where

address points to word 0 of the FPT shown below.
word 0

X'0B' 0 0
0 1 2 3?4 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

GET COMMON PAGES

M:GCP The Monitor GCP routine may be called to ex-

tend the lower limit of common dynamic storage by a speci-
fied number of pages. If the required pages are available

at execution time, condition code 1 (i.e., bit 1 of CC) is
set to 0. If the required pages are not available, condition
code 1 is set to 1 and the number of pages available is re-
turned in SR1. In either case, SR2 contains the address of
the first available page (i.e., the address of the lowest com-
mon page available).

The M:GCP procedure call is of the form

M:GCP pages
where
pages specifies the number of pages by which com-

mon dynamic storage is to be extended.

Calls generated by the M:GCP procedure have the form

CAL1,8 address
where
address points to word O of the FPT shown below.

word 0

X'oC' 0—————0| Number of pages required

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

FREE COMMON PAGES

M:FCP The Monitor FCP routine may be called to free
a specified number of pages from the lower limit of the cur-
rent dynamic common storage area. The freed pages are not
available for use by the user's program, and any attempt to

use such freed pages will result in a trap.

If the specified pages are not part of the user's dynamic
storage area, no pages are affected and condition code 1 is
set to 1; otherwise, it is set to 0.
The M:FCP procedure call is of the form

M:FCP pages
where

pages specifies the number of pages to be freed.

Calls generated by the M:FCP procedure have the form

CAL1,8 address
where

address points to word O of the FPT shown below.
word 0

X'0D’ 0————0| Number of pages to be freed
0 1+ 2 374 5 6 718 9 101112 13 i4 l5i36 17 18 19120 21 22 23124 25 26 27128 29 30 31

GET N PAGES

M:GP The Monitor GP routine extends the area of core

storage that may be used by the user's program. If the speci-
fied number of additional pages of memory are available,
CCl(i.e., bit 1 of the CPU's condition code register) is set
to a 0; otherwise, CCl is set to a 1 and the number of avail-
able pages is returned in SR1. In any case, SR2 contains the
address of the first available page.

The M:GP procedure call is of the form

M:GP pages
where
pages specifies the number of additional pages
requested.

Calls generated by the M:GP procedure have the form

CAL1,8 address
where
" address points to word O of the FPT shown below.
word 0
X'08' 0——0| Number of pages requested
0 1 2 374 5 ¢ 718 9 10 11112 13 14 15;16 17 18 |9120 21 22 23‘]2‘25 26 27128 29 30 31

General-Purpose Procedures 41

FREE N PAGES

M:FP The Monitor FP routine frees a specified number
of pages from the high end of the area of core storage that
may be used by the user's program. The pages freed are no
longer available for use by the user's program, and an at-
tempt by the user's program to access any of the freed pages
will cause the job to be aborted.

If the specified pages are not part of the user's dynamic
storage areq, no pages are affected and condition code 1 is
set to 1; otherwise, it is set to O.
The M:FP procedure call is of the form

M:FP pages
where

pages specifies the number of pages to be freed
from use by the user's program.

Calls generated by the M:FP procedure have the form
CAL1,8 address

where

address points to word 0 of the FPT shown below.

word 0
X'09' 0 —————0| Number of pages to be freed
0 1 2 314 5 6 718 9 10 11112 ¥3 14 ISElé 17 18 19120 21 22 23|24‘25 26 27128 29 30 31
CHECKPOINT JOB
M:CHKPT The Monitor CHKPT routine causes the user's

executing program, data area, TCB, and open output DCB
files for the current job to be saved on the checkpoint de-
vice (i.e., the M:CK device). The IN option (see below)
may be used to save open input files as well. Execution
continues in the task requesting the checkpoint.

Included with the information checkpointed is a table of
restart information containing the job ID, restart address,
and magnetic tape and disc storage information. The mag-
netic tape information defines where tape reels are to be
positioned when the job is restarted. The block count (i. e.,
the number of physical records from the beginning of an un-
labeled tape to the current position) is saved with the asso-
ciated DCB. The key identifying the current record of a
labeled tape is saved with the associated DCB. When the
job is restarted the block count, or key identifier, is used
to restore the tape to the proper position to contfinue the
checkpointed job.

Any number of checkpoints may be made during the execu-
tion of a job, but each must be uniquely identified via the
user-defined ID (see below), If the user-defined ID of any
checkpoint is identical to the ID of a prior checkpoint, the
new checkpoint replaces the prior checkpoint.

42 General-Purpose Procedures

Any checkpointed program that uses a temporary input file
(i.e., one declared temporary via an M:TFILE procedure
call) may not be restarted, if that file is to be used, since
temporary files are not saved when a job is checkpointed.
Because the M:LINK procedure call causes a temporary file
(containing the calling load module) to be created, a subse-
quent checkpoint would cause the loss of the calling module.

The M:CHKPT and M:RESTART (see below) procedure calls
generate an external reference to the M:CK DCB that is
used by the Monitor in saving the job.

The M:CHKPT procedure call is of the form
M:CHKPT 'id'[,(LOC, address)] [, IN]
where

'id' specifies the user-defined ID of the job that is
to be checkpointed. The ID must be from 1 to 3
characters in length. The 'id' is appended to the
file name to which the M:CK DCB is assigned (if

any).

address specifies the address at which execution is
to be restarted for the checkpointed job.

IN specifies that open input files are to be saved
with the job.

Calls generated by the M:CHKPT procedure have the form
CALI, 4 address
where
address points to word 0 of the FPT shown below.
word 0

I
X'00! 0 0 N Restart address

T 1 2 314 5 6 718 9 16 13112 13 14 1516 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 1

Length of ID |Firstbyteof ID| Second byte | Third byte

" 4 ; "
07 2 314 5 & 718 9 10 11012 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

where

IN specifies whether open input files are to be
saved {IN = 1) or not saved (IN = 0).

RESTART JOB

M:RESTART The Monitor RESTART routine causes a check-
pointed job to be restarted. If the IN option was not speci-
fied in the M:CHKPT call, the user is responsible for deter-
mining whether any input files that were open during the
checkpoint still exist. Temporary files are released by the
Monitor when a checkpoint occurs, and therefore may not
exist when the job is restarted.

The M:RESTART procedure call is of the form
M:RESTART 'id' [, (LOC, address)]

where

'id' specifies the 1- to 3-character ID of the pre-
viously checkpointed job that is to be restarted.

The 'id' is appended to the file name to which the
M:CK DCB is assigned (if any).

address specifies the address at which execution is
to be restarted. If omitted, execution will com-
mence at the restart address specified in the orig-
inating M:CHKPT call.
Calls generated by the M:RESTART procedure have the form

CAL1,4 address

where

address points to word O of the FPT shown below.
word 0

X'01' Restart address
T T 7 317 5 6 718 9 w0 iz 7 15116 1B Bl o 2 BiH 5 % ot B w
word 1

Length of ID |Firstbyteof ID| Second byte| Third byte

0 1 2 314 5 6 718 9 10 111213 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

SET MEMORY PROTECTION

M:SMPRT The Monitor SMPRT routine may be called to
set the memory protection, for specified pages of core mem-
ory, to a specified value (i. e., protection class). If any of
the specified pages do not belong to the user's allocated
area, condition code 1 isset to 1 and the requested setting
is not made; otherwise, condition code 1 is reset to 0.

SMPRT may be used to setaccess control for systems not using
the memory protection feature of the CPU, by simulating
access control through use of the write lock feature, in the
following manner:

Memory Corresponding
Protection Write Lock

0 User's key

1 3

2 3

3 3

The M:SMPRT procedure call is of the form

M:SMPRT value,from[,fé]

where
value specifies the value of the requested memory
protection setting (0, 1, 2, or 3)
from specifies the address of the first page to which

the specified setting is to apply. If no "to" (see

below) is specified, only this page will be affected.

to specifies the address of the last page to which
the specified setting is to apply.

Calls generated by the M:SMPRT procedure have the form
CAL1,8 = address

where

address points to word 0 of the FPT shown below.
word 0

X'0A! Address of first page
0 1 2 3T4 5 6 718 9 10 1111213 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 1

Value Address of last page
0 1 2 314 576 778 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

GIVE TIME AND DATE

M:TIME The Monitor TIME routine gives the time of

day and the current date.

The M:TIME procedure call is of the form
M:TIME address

where
address specifies the address of a four-word block
where the time and date are to be stored. The
(EBCDIC) byte format of this block is shownbelow.
word 0
h h m
word 1
m b m o
word 2

word 3

where
hh is the hour (00 < hh =23).
mm is the minute (00 < mm < 59).
mon is the month (standard 3-letter abbr.)
dd is the day (01 =dd = 31).
yy s the year (00 = yy < 99).

Calls generated by the M:TIME procedure have the form
CAL1,8 address

General-Purpose Procedures 43

where
address points to word 0 of the FPT shown below.
word 0
X'10' Address of block to receive time and date
0 1 2 314 5 o 718 9 10 N1z 13 i4 |5i|.s 17 18 wizo 21 22 23024 25 26 27128 29 30 31
SET INTERVAL TIMER
M:STIMER The Monitor STIMER routine sets the interval

timer with the specified value and specifies what action is to
be taken. The interval is to be decremented only when the
job issuing the M:STIMER procedure is operating.

When the time expires, the PSD and registers are stored in a
block of user's memory on a doubleword boundary. The user's
program is entered af "exit address" with register 1 contain-
ing the address of the block containing the PSD and general
registers. The interrupted program may be reinstated by use
of the M:TRTN procedure.

The M:STIMER procedure call is of the form
(MIN, value)

M:STIMER {(SEC,value) },[[*] exit address]
(TUN, value)
where
MIN, value specifies (in minutes) the interval to

which the timer is to be set.

SEC,value specifies (in seconds) the interval to
which the timer is to be set.

TUN,value specifies (in interval timer units) the
interval to which the timer is to be set.

exit address specifies the address of a routine to be
entered when the specified interval ends. If omit-
ted, the task will resume at the location following
the call to STIMER.

Cails generated by the M:STIMER procedure have the form

CAL1,8 address
where
address points to word O of the FPT shown below.
word 0
* X" 0 o|uU Exit Address
0 ' 2 314 5 6 718 9 10 T1112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 1
Interval value
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 2324 25 26 27128 29 30 31
where

u specifies the type of units represented by the in-
terval (0 means seconds, 1 means minutes, 2 means
interval timer units).

44 General-Purpose Procedures

TEST INTERVAL TIMER

M:TTIMER The Monitor TTIMER routine causes an indi-
cation of the time remaining in the time interval (previously
set by the STIMER routine) to be returned to SR1.

The M:TTIMER procedure call is of the form
M:TTIMER [unif] [,CANCEL]

where

unit specifies the units in which the time indication
is to be returned to SR1. Unit may be either SEC,
MIN, or TUN (see "M:STIMER", above. If omit-
ted, TUN is assumed.

CANCEL specifies that the interval currently in ef-
fect is to be canceled. The exit address (see
"M:STIMER") is ignored.

Calls generated by the M:TTIMER procedure have the form

CAL1,8 address
where

address points to word O of the FPT shown below.
word 0

X'12' 0 o(clo olu
0 1 2 314 5 & 718 9 10 1nl12 13 14 15116 17 18 19720 21 22 23124 25 26 27128 29 30 31
where

C specifies whether the interval in effect is (C = 1)
or is not (C = 0) to be concluded.

u specifies the units in which the time indication is
to be returned to SR1 (0 means seconds, 1 means
minutes, 2 means interval timer units).

TYPE A MESSAGE

M:TYPE The Monitor TYPE routine outputs a specified
message to the operator, on the operator’s console typewriter.

The M:TYPE procedure call is of the form

M:TYPE (MESS, [*] address)
where
MESS, address specifies the word address of the be-

ginning of the message to be typed. The first byte
of the message must specify the number of charac-
ters in the message. The message may consist of
not more than 255 alphanumeric characters. An
optional asterisk may be used to specify indirect
addressing.

Calls generated by the M:TYPE procedure have the form

CAL1,2 address
where
address points to word O of the FPT shown below.

word 0 word 1
X'02' o 0 A2l 0
0 1 2 Jil 56 718 9 10 Ili|2 13 14 lSi\é 17 18 |9i20 21 22 23?24 25 26 27i28 29 30 31 O 1 2 3'4 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 1 (parameter-presence-indicator word) word 2
PP 0 *0 0 Message address
L R R B R S R 1) NP K TR Y AT VAN TR B TR R) 23 L3 A L 0 1 2 314 5 6 718 9 10 11112 13 14 516 77 78 19120 21 22 23124 25 26 27138 2 30 31
word 2 word 3
*10 0 Reply address
*0 0 Message address 4
. | G 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
P must be equal to 1, indicating that the following param- word 4
eter word (word 2) is present. t
*10 0 Message size

REQUEST A KEY-IN

M:KEYIN The Monitor KEYIN routine types a specified
message to the operator and enables the operator's reply to
be returned to the user's program.

The M:KEYIN procedure call is of the form

M:KEYIN (MESS, [*] address), (REPLY, [*]address),

(SIZE,value), (ECB, [*] address)

where

MESS, [*] address specifies the word address of the
beginning of the message to be output to the oper-
ator. The first byte must specify the number of
characters in themessage. The message may consist
of not more than 255 alphanumeric characters.

REPLY, [*] address specifies the word address of the
location at which the beginning of the operator's
reply is to be stored. The first byte will (automat-

ically) contain the number of characters in the reply.

SIZE,value specifies the maximum number of alpha-
numeric characters to be accepted from the opera-
tor's key-in, and stored.

ECB, [*]address specifies the address of the Event
Control Block to be posted when a reply has been
received. Bit O of the ECB is to be set to a 1 until
the reply has been received, then set to a 0.

Calls generated by the M:KEYIN procedure have the form

CAL1,2 address

where

address points to word O of the FPT shown below.
word 0

X'04' 0 0|
0 + 2 314 5 6 718 9 10 11112 13 14 15116 l7m 21 22 23124 25 26 27128 29 30 31

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 5

*10 0 ECB address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

P} through P4 must be equal to 1, indicating that words 2-5
are present,

WRITE TO LISTING LOG

M:PRINT The Monitor PRINT routine outputs a specifi ed
message on the listing log (LL device).

The M:PRINT procedure call is of the form
M:PRINT (MESS, [*] address)

where

MESS, [*] address specifies the word address of the
location containing the beginning of the message
to be output. The first byte must specify the num-
ber of characters in the message. The message may
consist of not more than 255 alphanumeric charac-
ters (132 if LL is assigned to a line printer).

Calls generated by the M:PRINT procedure have the form
CAL1,2 address

where

address points to word O of the FPT shown below.
word 0

X'or 0 0

L A B T B 1) N P o BTN A LN O T Y L T TR VA B B S R

fMessage size may be indirectly addressed by setting bit O
of word 4 to a 1. However, this cannot be specified in the
procedure call.

General-Purpose Procedures 45

word 1

plo | 0
T T T T s Ty I T W e TR BB T R B a S B DB BN
word 2

*1 0 Message address

D 1 Z 314 5 6 716 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 28 27?2329133)

P] must be equal to 1.

SET TRAPS

M:TRAP The Monitor TRAP routine sets and resets the
trap conditions. Any trap condition that occurs while in the
"trap" state causes control to go to a user's routine; any trap
condition that occurs while in the "abort" state causes con-
trol to go to a Monitor routine. Maskable traps (i. e., fixed-
point and decimal arithmetic) may be masked off so they do
not occur, by placing them in the "ignore" state.

Each time the Monitor TRAP routine is entered, the previous
contents of the Program Trap Conditions (PTC) become avail-
able in SR1 and SR2. The PTC always contains the current
trap settings. The first word of the PTC (returned in SR1) in-
dicates which trapsare inthe "trap" or "abort" state and which
maskable traps are in the "ignore" state,

The second word of the PTC {returned in SR2) contains the
exit address of the previous trap condition, Using the RE-
STORE option (see below) and some previcus PTC, the trap
settings can be restored to a previous setting.

The M:TRAP procedure call is of the form
M:TRAP [exit address] [, (ABORT, traps)] [, (TRAP, traps)]

[, IGNORE, mask traps))
or

M:TRAP (RESTORE,ptc address)
where

exit address specifies the relative (external defini-
tion [t addend]) or absolute positive hexadecimal
location of a user's routine, to handle any traps
caused by the TRAP option (see below).

ABORT, trap[, ..] specifies the traps to be set to
the "abort" state. Any combination of the follow-
ing (separated by commas) may be specified:

trap Designated Trap(s)

NAO Nonallowed operation.

Ul Unimplemented instruction.
WDOG | Watchdog timer (foreground only).
PS Push-down stack limit.

FX Fixed-point arithmetic.

FP Floating-point arithmetic

DEC Decimal arithmetic.

ALL All of the above.

46 General-Purpose Procedures

TRAP,trap(, . .] specifies the traps to be set to the
"trap" state, Any combination of the above may
be specified (ABORT is assumed by default).

IGNORE, mask traps specifies which moskable traps
are to be set to the "ignore" state. Any of the fol-
lowing may be specified:

mask

H)
traps Designated Trap(s)
FX Fixed-point arithmetic.
DEC Decimal arithmetic.,
BOTH Both of the above.

RESTORE,ptc address specifies the relative location
{external definition *addend) or absolute positive
hexadecimal location of a previous PTC,

Calls generated by the M:TRAP procedure have the form

CAL1,8 address
where
address points to word O of the FPT shown below,
word 0
X'14! 0—————0{ Exit address or PTC address
0 1 2 3?4 T 6 718 § 10 11112 13 14 15116 37 18 19120 21 22 23124 25 26 27128 29 35 3\
word 1
Permit Ignore
/ v/
0 Abort // Trap /; % A
S 1 2 314 5 6 718 9 10 11§12 13 34 1518 37 T8 19120 21 22 23:24 25 26 27126 29 0)

where the control bits are as shown below:

\ 2 3 4 5 6 7 22 23
Abort bits [WIN|U|P|FIDI|F Permit bits §DIF
DIA|I |SIPIE X E{X
O|0 C C
Trap bits |G Ignore bits
S 10 11 12 13 14 15 35 31

When a user's trap routine is to be executed, due to the oc-
currence of a trap condition for a set trap, the Program Status
Doubleword (PSD), current general registers, and trap loca-
tion are stored in that order into a 19-word block of tempo-
rary storage, on a doubleword boundary, and a pointer to
word 0 of that block is placed in current general register 1.
When a user's trap routine is entered, the condition codes
are those loaded by the execution trap. The trap return
function (see "M:TRTN", below) can be used to return to
the trapped program. If the PSD for the trapped program is
to be changed, the user must change the PSD (in temporary
storage) before control is returned to the trapped program.

CONNECT CONSOLE INTERRUPT
M:NT The Monitor INT routine may be cailed to con-

nect a console interrupt (key-in addressing the program) to
a user's program, allowing execution of the program to be

controlled from the operator's console. When control is
given to the INT routine, the PSD and general registers are
stored into a 19-word block of user's memory (on a double-
word boundary) and a pointer to word 0 of that block is
placed in current general register 1. When a user's interrupt
routine is entered, the condition codes are those loaded by
the execution of the interrupt. The TRTN routine (see
"M:TRTN", below) may be used to restore control from a
console interrupt.

The M:INT procedure call is of the form

M:INT address
where
address specifies the location of the entry to the

user's console interrupt routine.

Calls generated by the M:INT procedure have the form

CAL1,8 address
where

address points to word O of the FPT shown below.
word 0

X'OE! 0——0| Address of interrupt routine
0 1 2 314 5 6 718 9 10 iz 13 14 lSi)é 17 18 19120 21 22 23124 25 26 27128 29 30 31

The occurrence of a trap condition for one on which the cor-
responding trap control bit has been set causes the Program
Status Doubleword (PSD), current general registers, and trap
location to be stored (in that order) into a 19-word block of
temporary storage (see Chapter 7). This block is located on
a doubleword boundary, and a pointer to word 0 of the block
is placed in current general register 1.

The user's trap routine is then entered at the exit address spec-
ified in the procedure call. The condition codes are those
loaded by the execution of the trap. The Monitor trap return
routine (see "M:TRTN", below) may be used to return to the
trapped program. [f the PSD for the trapped program is to be
changed, the user must change the PSD (in temporary storage)
before control is returned to the trapped program.

EXIT FROM TRAP OR TIMER ROUTINE

M:TRTN The Monitor TRTN roufine restores control to
a trapped program. The PSD and contents of the general
registers at the time the trap occurred are loaded from the
19-word block of temporary storage used by the most recent
trap occurrence.
The M:TRTN procedure call is of the form
M:TRTN
Calls generated by the M:TRTN procedure have the form
CALL9? 5

No FPT is required.

SIMULATE A TRAP

M:STRAP The Monitor STRAP routine simulates the oc-
currence of a trap condition specified by a block in tempo-
rary storage (at the top of the user's temp stack). If the
SPD for the user's temp stack contains an even-numbered
address, the user's information must be entered into the
stack as follows:

1. Word O (the word pointed to by the SPD) must con-
tain O.

2. Words 1 and 2 must contain the PSD for the simulated
trap occurrence.

3. Words 3 through 18 must simulate the contents of the
registers that would have been active if the trap had
occurred.

4. Word 19 must contain the address of the simulated

trap.

If the SPD for the user's temp stack contains an odd-numbered
address, the user's information must be entered into the stack
as follows:

1. Word O (the word pointed to by the SPD) must con-
tain 0.

2. Word 1 must contain =1 (i.e., X'FFFFFFFF').

3. Words 2 and 3 must contain the PSD for the simulated
trap occurrence.

4. Words 4 through 19 must simulate the contents of the
registers that would have been active if the trap had
occurred,

5. Word 20 must contain the address of the simulated
trap.

The traps that may be simulated are locations X'40" through
X'46' and X'48' through X'4B',

The M:STRAP procedure call is of the form

M:STRAP

Calls generated by the M:STRAP procedure have the form

CALL? 4
No FPT is required.

EXITS TO THE MONITOR

To enable the Monitor to provide continuous system opera-
tion, control of the system must be returned to the Monitor by

General-Purpose Procedures 47

each user's program when it has terminated execution of its
operations (for any reason). The Monitor provides three return
routines by which the user's program may relinquish control.
The user's program must select the return that is appropriate
for the circumstances under which the program terminates.

MEXIT An EXIT return should be used when the user's
program has completed its operations in a normal manner.
When control is returned via the EXIT routine, the Monitor
performs any PMDI dumps that have been specified for the
program and then proceeds to the next control command.
The M:EXIT procedure call is of the form

M:EXIT

Calls generated by the M:EXIT procedure have the form
CALL9 1

No FPT is required.

M:ERR AnERR return is used when an error has occurred
during program execution and the user wants the Monitor fo
discontinue execution of the current program and proceed

to the next task (if any) in the job, after performing any speci-
fied postmortem dumps. The Monitor outputs the message

1t JOB id ERRORED BY USER AT xxxxx
where
XXXXX is the address of the last instruction executed

in the program.

This message plus the contents of the current register block
and Program Status Doubleword (PSD) are listed on the LL
device. The PSD contains the address of the last instruction
executed in the errored program.

The Monitor also lists the message

1! JOB id ERRORED
on the operator's console.

The M:ERR procedure call is of the form
M:ERR

Calls generated by the M:ERR procedure have the form
CAL1,9 2

No FPT is required.

M: XXX The XXX (abort) return is used when an irre-

coverable error has occurred in the execution of the user's

program, and the job is to be aborted. When a job is

aborted, the Monitor lists the message

11 JOB id ABORTED BY USER AT xxxxx

where

XXXXX is the address of the last instruction executed
in the program.

48 Foreground Procedures

This message plus the contents of the current register block
and Program Status Doubleword (PSD) are listed on the LL
device. The PSD contains the address of the last instruction
executed in the aborted program.
The Monitor also lists the message

1t JOB id ABORTED
on the operator's console.
The M:XXX procedure call is of the form

M:XXX

When a job is aborted, any specified postmortem dumps are

performed, but no further control commands are honored until

a JOB or FIN control command is encountered.

Calls generated by the M:XXX procedure have the form
CALL9? 3

No FPT is required.

FOREGROUND PROCEDURES

TRIGGER FOREGROUND INTERRUPT

M:TRIGGER By causing the appropriate interrupt to oc-
cur, foreground tasks may call the Monitor TRIGGER routine
to cause the initiation of other foreground tasks.

The M:TRIGGER procedure call is of the form

{CLOCK, address)

M:TRIGGER (HNT,address

where

CLOCK,address specifies the location of a clock
interrupt to be triggered.

INT, address specifies the location of an external
interrupt to be triggered.

Calls generated by the M:TRIGGER procedure have the form
CAL1,5 address
where

address points to word O of the FPT shown below.

word 0

X'00' 000jIl000 Address of interrupt

o7 27 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 7728 29 0 31

where
I specifies that the interrupt is a clock interrupt
(1=0) or an external interrupt (1=1).
ARM INTERRUPT
M:ARM The Monitor ARMroutine may be called to arm

and connect a foreground task to a specific interrupt. Sys-
tem facilities may also be assigned to the foreground task.

The M:ARM procedure call is of the form

_ {CLOCK, address[,value] [, DISABLE])
M:ARM (llNT address[DISABLE]
[, (DIRECT[, rblock])] [, (START, [*] address)] ;

where the options shown are defined under "RUN" (see
Chapter 2).

Calls generated by the M:ARM procedure have the form
CAL1L5 address

where
address points to word O of the FPT shown below.

word 0

X'04' 000j1|000Q

0 i 2 3Ta 5 6 778 9 10 2 13 14 15016 17 18 19720 21 22 23124 25 26 27128 29 30 31

Address of interrupt

word 1
RBJR DD
112{3(0 Ols|1
0 1 2 374 5 6 718 9 10 11112 12 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 2
*| .

0 0 Starting address
T T I 3T T T T T O T B T BRI T B B R T I
word 3
0 0] rblock
T T 3T 3 s T s N B R B 7R Pn T E B s %o E o
word 4

Clock value

0 1t 2 314 5 6 718 9 10 11112 13 14 15(16 17 18 19120 21 22 23124 25 26 27128 29 30 31

where

I 1 specifies that the interrupt is a clock interrupt
(I=0) or an external interrupt (I=1),

DS specifies that the interrupt is to be disabled
(DS=1) or not disabled (DS=0)

DI specifies that the interrupt is to be direct
(DI=1) or not direct (DI=0).

DISARM INTERRUPT

M:DISARM The Monitor DISARM routine may be called
to disarm and connect a foreground task to a specific
interrupt. System facilities may also be assigned to the
foreground task.

The M:DISARM procedure call is of the form

CLOCK, address[, volue])
M:DISARM (glNT address
[, START, [*] address)] [, (DIRECT[,rblock])] ; |

where the options shown are defined under "RUN" (see
Chapter 2).

Calls generated by the M:DISARM procedure have the form
CAL1,5 address

where
address points to word O of the FPT shown below.

word 0

X'03' ooorjoo00 Address of interrupt

G 1 2 314 5 6 718 9 10 nliz2 13 14 15116 17 18 19120 21 22 23124 2526 27128 29 30 31

word 1

P BP D
1123;0 0 I
0 1 2 314 5 6 718 9 10 11112 13 1415016 17 18 19120 21 22 Z3i24 25 26 27128 29 30 31

word 2

*10 0 Starting address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 I?iZO 21 22 23124 25 26 27128 29 30 31

word 3

0 0| rblock

0 1 2 314 5 6 718 9 10 11112 13 14 15[16 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 4

Clock Value

0 1 2 314 5 6 718 9 10 1213 1415176 17 18 19120 21 22 23124 25 26 27128 29 30 3! !

where

I specifies that the interrupt is a clock interrupt
(I=0) or an external interrupt (I=1)

DI specifies that the interrupt is to be direct
(DI=1) or not direct (DI=0).
SET EXIT CONTROL
M:SXC The Monitor SXC routine may be called to
supplant all exits of a foreground program (i. e., all exits to
the Monitor). A specified user's routine will handle all
exits until a call to RXC (see below) is made.

The M:SXC procedure call is of the form

M:SXC [*jadd ress

Foreground Procedures 49

where

address specifies the location of a foreground rou-
tine that will handle all exits to the Monitor.
When an exit occurs, the Monitor will communi-
cate the type of return (see the table below) in
SR1 and clear the current exit status.

Code Type of Exit
X'0' Normal
X' Trap error
X'2! 1/0O error
X'20! Termination
X'40' Abnormal
X'80! Error

Note that an unsolicited abort key=in will abort the task
without passing control to the user's program.

Calls generated by the M:SXC procedure have the form

CALI,5 address
where
address points to word 0 of the FPT shown below.
word 0
* X'oC' 0——0 Address of exit routine
0 1 2 314 5 6 718 9 10 1111213 14 15176 17 16 19120 21 22 23124 25 26 27128 29 30 31
RESET EXIT CONTROL
M:RXC The Monitor RXC routine may be called to re-

store the user's exits to the Monitor, thereby allowing the
Monitor to perform its normal function (see "M:SXC", above).

The M:RXC procedure call is of the form
M:RXC

Calls generated by the M:RXC procedure have the form

CAL1,5 oddress
where

address points to word O of the FPT shown below.
word 0

X'0D! 0 0
RN PR -] SR TR AT N I P L) ET I A E

SAVE BACKGROUND

M:SBACK The Monitor SBACK routine may be called to

save the core area of a program that is to be checkpointed
(i.e., the executing program). The entire background area
is written to the foreground area on the disc and the write
locks are set to an access code of 10. The address of the first
location in the backgroundarea is returned in SR2 and the
size, in pages, is returned in SR1. A task may save the back-
ground area only once. If the task does not restore the area
with a M:RBACK call, the area will be restored by the Mon-
itor when the task exits.

50 Foreground Procedures

The M:SBACK procedure call is of the form
M:SBACK

Calls generated by the M:SBACK procedure have the form

CAL1,5 address
where

address points to word 0 of the FPT shown below.
word 0

X'09' 0 0
0 1 2 314 5 6 718 9 10 111213 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

RESTORE BACKGROUND

M:RBACK The Monitor RBACK routine may be called to

restore the background area saved by the M:SBACK call. If
the task did not save the background area, the task will be
aborted.

The M:RBACK procedure call is of the form
M:RBACK

Calls generated by the M:RBACK procedure have the form

CAL1,5 address
where

address points to word 0 of the FPT shown below.
word 0

X'0A' 0 0

o7 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27[28 29 30 3

CONNECT CAL

M:CAL The Monitor CAL routine (not to be confused
with the four CAL machine instructions) may be called to
connect a resident foreground program to either CAL3 or
CAL4 (machine instructions). The connected program will
be entered in the "master" mode and will have the responsi-
bility of saving and restoring any machine environment that
it changes (as well as returning program control to the point
immediately following the CAL).

The M:CAL procedure call is of the form
M:CAL value, [¥] address[,rblock]

where

value specifies the particular CAL that is to initiate
the task. The "value" is 3 for CAL3, 4 for CAL4.

address specifies the relative (external definition
+ addend) or absolute positive hexadecimal loca-
tion to which control is to be transferred when the
CAL instruction is executed in the user's program.

rblock specifies the number (from 0 through 31) of
the register block associated with the CAL.

Calls generated by the M:CAL procedure have the form
CAL1,5 address

where

address points to word O of the FPT shown below.
word 0

X'06" 0 Ochlue

+ e
0 1 2 3T4a 5 6 718 9 10 N2 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 1
1150 o’
0 1 2 314 5 6 7?8 9 10 12 13 14 |5il6 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 2
*0 0| Address of connected program
01 2 314 5 6 7i3 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 3
0 0] rblock
0 1 2 3745 6 718 9 10 11112 13 14 15116 17 8 19120 21 22 23124 25 26 27128 29 30 31
DISCONNECT CAL

M:DCAL The Monitor DCAL routine may be called to

disconnect a foreground program from a CAL.

The M:DCAL procedure call is of the form
M:DCAL value

where

value (see "M:CAL", above).

Calls generated by the M:DCAL procedure have the form
CAL1,5 address

where
address points to word O of the FPT shown below.
word 0
X'05' 0 OMalue
L R S R S SR ¥ B I 1) AV RN K PR T T TR B OB BB
ENABLE INTERRUPT
M:ENABLE The Monitor ENABLE routine may be called

to enable a specified interrupt.
The M:ENABLE procedure call is of the form

‘CLOCK,address
M:ENABLE (EINLcddress)

where the above options are defined under "RUN" (see
Chapter 2).

Calls generated by the M:ENABLE procedure have the form

CALl1,5 address
where

address points to word O of the FPT shown below.
word 0

X'02' ooojijooo Address of interrupt

L I A AR L R R N A A R P R L T T A

where
I specifies that the interrupt is a clock interrupt
(1=0) or an external interrupt (I=1),
DISABLE INTERRUPT
M:DISABLE The Monitor DISABLE routine may be called

to disable a specified interrupt.
The M:DISABLE procedure call is of the form

CLOCK, address|

M:DISABLE (INT,address ‘)

where the above options are defined under "RUN" (see
Chapter 2).

Calls generated by the M:DISABLE procedure have the form

CAL1,5 address
where

cddress points to word 0 of the FPT shown below.
word 0

X'on ooojjooo Address of interrupt ’

0 1 2 374 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

where
I specifies that the interrupt is a clock interrupt
(I=0) or an external interrupt (I=1).
ENTER MASTER MODE
M:MASTER The Monitor RBACK routine may be called

to cause a foreground task operating in the "slave" mode
to change its mode of operation to the "master" mode
(only if the task has been designated "master" at System
Generation).

The M:MASTER procedure call is of the form
M:MASTER

Calls generated by the M:MASTER procedure have the form
CAL1,S5

address

Foreground Procedures 51

where

address points to word 0 of the FPT shown below.

word 0

X'08' 0 OI

T 7 2 314 5 6 718 ¢ 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

ENTER SLAVE MODE

M:SLAVE The Monitor SLAVE routine may be called to
cause a foreground task operating in the "master" mode to
change its mode of operation to the "slave" mode.

The M:SLAVE procedure call is of the form
M:SLAVE

Calls generated by the M:SLAVE procedure have the form
CAL1,5 address
where

address points to word 0 of the FPT shown below.

word 0
X'07° 0

0 1 2 314 5 6 718 9 10 11112 13 14 15716 17 18 WI!OZ\ 22 23'24252617'2!29”31

52 Foreground Procedures

TERMINATE TASK

M:TERM The Monitor TERM routine may be called to
cause the executing foreground task to be terminated and
program control returned to the Monitor. The Monitor will
list the following message on the OC device:

1 | TASK name TERMINATED
If the named task was initiated by an interrupt, the interrupt

will be cleared and disarmed. If the task is nonresident, its
core storage will be released to the Monitor.

The M:TERM procedure call is of the form
M:TERM

Calls generated by the M:TERM procedure have the form
CALL,5 address

where

address points to word 0 of the FPT shown below.
word 0

X'0B' 0 0
T T T R T T R T R PR A B A B B DR B B N

5. 1/0 PROCEDURES

The Monitor can perform one operation at a time for each
peripheral device. Operations requiring use of the same
device are performed in the order requested, and operations
using different devices are done simultaneously.

Foreground programs may make use of the Monitor's 1/0
capabilities or use their own 1/O routines. Since all back-
ground programs are executed in the slave mode, the privi-
leged instructions required for 1/O operations are not di-
rectly available to background tasks. Therefore, background
programs must call the Monitor's 1/O routines to perform
1/O functions.

Data Control Blocks (DCBs) are the means by which 1/O in-
formation is communicated between a user's programand the
Monitor. The information required for a particular 1/O op-
eration is either contained in the associated DCB or is given
ina call. The specific information needed for an 1/O oper-
ation depends on the organization of the data involved, but
is independent of the type of operation to be performed.

As each 1/O operation is requested, the associated DCB is
set active and is reset appropriately, depending on the out-
come of the operation. An attempt to perform another oper-
ation through a given DCB while it is active causes the re-
quest to be queued, and control to be returned to the user's
program if no wait is specified.

System output is usually intended for unit-record devices;
therefore, output data is organized sequentially. Systems
using the Monitor symbionts may store output data in
disc storage until 1/O facilities are available, then output
it under symbiont control. Monitors that do not allow sym-
biont operations write output data directly to the unit-
record device or to a private file.
The device used for an 1/O operation is determined by the
contents of the associated DCB when the 1/O operation is
requested by the executing program.
General registers may not be used as 1/O buffers.
1/0O procedures are provided for the following1/O functions:
1. File Maintenance

Create a Data Control Block

Open a File

Close a File

Set Error or Abnormal Address

Check 1/O Completion

Declare Temporary File

2. Data Record Manipulation

Read a Data Record
Write a Data Record
Release a Data Record
Delete a Data Record

Truncate Blocking Buffer

3. File Manipulation

Position N Records
Position File

Close Volume
Rewind

Write End of File

4. Special Device

Set Listing Tabs

Skip to Top of Form

Set Number of Printable Lines
Set Line Spacing

Specify Direct Formatting
Specify Vertical Format Control
Specify Page Count

Change Output Form

Change Device Mode or Record Size
Specify Beginning Column
Specify Output Header

Specify Card Punch Sequencing

FILE MAINTENANCE PROCEDURES
CREATE A DATA CONTROL BLOCK

If the user's program is written in Cl1 COBOL or FORTRAN 1V,
the processor will automatically include all necessary 1/0
calls and DCBs in the object modules generated for the pro-
gram. However, if the user's program is writtenin Cll Meta-
Symbol, he must provide all necessary 1/O procedure calls
in his symbolic program. ClIl Symbol programs must contain
explicit code for all 1/O calls and user's DCBs, since the
Symbol assembler does not process procedure calls.

The user may use Monitor DCBs (see Appendix T) by declar-
ing them as external references in his Symbol orMeta~-Symbol
program; otherwise, he must create his own DCBs by means
of explicit symbolic code (Symbol or Meta-Symbol) or via
M:DCB procedure calls (Meta-Symbol only).

1/O Procedures 53

All options specified in an M:DCB procedure call or an

- M:OPEN procedure call (see below) remain in effect only
during the execution of the load module containing the call.
Thus, if a DCB name is reassigned (via an ASSIGN control
command) between the execution of one load module and
another, a "new" DCB having that name must be created
before that DCB name may be referenced in an 1/O call or
M:OPEN procedure call.

M:DCB The M:DCB procedure generates nonexecutable

code (i.e., it creates only a data area in the user's program)

which must have a label. The label is the name by which
the DCB is to be referenced.

The M:DCB procedure call is of the form

dcb name M:DCB [(opfion)] e [,(opfion)]

where

deb name specifies the name of the user's DCB. The
name may consist of from 3 to 31 alphanumeric
characters, the first two of which must be "F:".
The "dcb name" must previously have beendeclared
a dummy section, via a statement of the form

dcb name DSECT 1

The options are as follows:

name (one of the three keyword operands given below).

1.
2.

org

54

DEVICE, name specifies a system operational label.

FILE[, 'name'[, 'account']] specifies a system file
directory name of less than 32 characters. If the named
file belongs to a different account than that of the cur-
rent job, the file's account number must be given(either
in the M:DCB call or in an ASSIGN control command
or M:OPEN call). If the name and account number are
both omitted, 16 words are reserved for the name (tobe
inserted via an ASSIGN control command or M:OPEN
call) and 2 words for the account number. 1f neither
FILE nor LABEL (see below) is specified in the
M:DCB call, the DCB may not be assigned to any file
except a system operational label.

LABEL[, 'name'[, ‘account']] specifies the name of
a file on magnetic tape. If LABEL is specified,an INSN
or OUTSN option(see below) must be used to specify the
reel containing the file. If the named file belongs to

a different account than that of the current job, the
file's account number must be given (either in the
M:DCB call or in an ASSIGN control command or
M:OPEN call). If the name and account number are
both omitted, 16 words are reserved for the name (to be
inserted via an ASSIGN control command or M:OPEN
call) and 2 words for the account number.

(one of the two file organization types given below).

CONSEC specifies that the records in the file are
consecutively organized and each record is to be pro-
cessed in order.

KEYED specifies that the location of each record

in the file is determined by an explicit identifier (key)
that may be used to access the record.

File Maintenance Procedures

access (one of the tworecord access means given below).

1. SEQUEN specifies that records in the field are to
be accessed in the order in which they appear within
the file

N

DIRECT specifies that the nextrecord tobe accessed
is determined by an explicit identifier (key).

function (one of the four file modes given below).
1. IN specifies the file input mode.
2. OuTt specifies the file output mode.

3. INOUT specifies the file input and output mode
(i.e., the update mode).

4. OUTIN specifies the file output and input mode
(i.e., the scratch mode).

PASS[, ‘value'] specifies the password that is to allow
access to a classified data file. The password may be from

1 through 8 alphanumeric characters in length. If this op-
tion is omitted from the M:DCB procedure call it will not
appear in the DCB and, consequently, may not be used in
an ASSIGN control command or M:OPEN procedure call
referencing the DCB. If PASS is specified but no value
given in the M:DCB call, 2 words are reserved for the value
(to be inserted via an ASSIGN control command or M:OPEN
call).

file (one of the two specifications given below).

1. REL specifies that the Monitor is to allocate tem-
porary space in secondary storage. This option applies
only to direct-access files in the OUT or OUTIN mode
(see above). Such a file (i.e., one for which REL is
specified) can never be saved permanently.

2. SAVE specifies that the file may be included in the
system file directory. If the file function (see above)
is OUT or OUTIN, the SAVE option must be specified
(either in an M:DCB or M:OPEN procedure call, or in
an ASSIGN rontrol command), to cause the Monitor to
allocate permanent disc storage for the file. When
closing such a file, SAVE must again be specified, in
the M:CLOSE procedure call, if the file is to be per-
manently saved in disc storage.

READ[, value']. .. [, 'value'] specifies the account
numbers of those accounts that may read but not write the
file. The value "ALL" may be used to specify that any ac-
count may read but not write the file (e.g., READ, ALL).
The value "NONE" may be used to specify that no account
may read the file. 1f no value is specified, or if READ is
omitted, ALL is assumed by default. The number of accounts
explicitly specified in a READ or WRITE specification must
not exceed 8. If this option is omitted from the M:DCB pro-
cedure call it will not appear in the DCB and, consequently,
may not be used in an ASSIGN control command or M:OPEN
procedure call. [f READ is specified but no values given,

16 words are reserved for Read account number (to be

inserted via an ASSIGN control command or M:OPEN
call).

WRITE[, 'value'] ... [, 'value'] specifies the account
numbers of those accounts that may have both read and
write access to the file. The values "ALL" and "NONE"
may be used, as with the READ option (see above); and, if
a conflict exists between READ and WRITE specifications,
those of the WRITE option take precedence. 1f no WRITE
accounts are specified, NONE is assumed.

If this option is omitted from the M:DCB procedure call it
will not appear in the DCB and, consequently, may not be
used in an ASSIGN control command or M:OPEN procedure
call. If WRITE is specified but no values given, 16 words
are reserved for Write account numbers (to be inserted via
an ASSIGN control command or M:OPEN call).

INSN, 'value' ... [, 'value'] specifies the serial num-
bers of the magnetic tape reels that are to be used for file
input. These numbers must be ordered in the proper sequence
for the file. A maximum of three values may be specified
for Monitor DCBs. Serial numbers are from 1 to 4 characters
in length. If this option is omitted from the M:DCB proce-
dure call, it will not appear in the DCB and, consequently,
may not be used in an ASSIGN control command orM:OPEN
procedure call. If INSN is specified but no values given,
three words are reserved for serial numbers (to be inserted
via an ASSIGN control command or M:OPEN call). Note
that the use of INSN has no effect on the file mode.

OUTSNI, 'value] ... [, 'value'] specifies the serial num-
bers of the magnetic tape reels that are to be used for file
output. If the output fills the first reel, then the second
reel specified will be used, etc. A maximum of three values
may be specified for Monitor DCBs. Serial numbers are

from 1 to 4 characters in length. If this option is omitted
from the M:DCB procedure call, it will not appear in the
DCB and, consequently, may not be used in an ASSIGN
control command or M:OPEN procedure call. If OUTSN is
specified but no values given, three words are reserved for
serial numbers (to be inserted via an ASSIGN control com-
mand or M:OPEN call). Note that the use of OUTSN, like
INSN, does not affect the file mode (i.e., OUTSN
will not change the file mode function indicator).

If no OUTSN values are specified (either in the M:DCB pro-
cedure call or in an ASSIGN control command or M:OPEN
call) and the user wishes to create a tape file, the Monitor
will request a scratch tape to be mounted. The scratch tape
will be saved or released according to the closing specifica-
tion (see "M:CLOSE" below).

RECL, value specifies the maximum record length, in
bytes. The greatest value that may be specified is 32, 767.
If RECL is not specified, a standard value (appropriate to the
type of device used) will apply by default.

TRIES, value specifies the maximum number of recovery
tries to be performed for any 1/O operation. The greatest
value that may be specified is 255. If TRIES is not specified
for System DCBs, the standard value established at System
Generation time will apply by default. The default for user
DCBs is zero.

KEYM, value
the keys associated with records within the file.
is not specified, the value 11 is assumed.

specifies the maximum length, in bytes, of

If KEYM

ERR, address specifies the symbolic location of a user's
routine that is to be used to analyze any error conditions
associated with the makeup of the DCB (see Appendix H).

ABN, address specifies the symbolic address of a user's
routine that is to be used to analyze any abnormal condi-
tions associated with the makeup of the DCB.

BTD, value specifies the byte displacement (0-3) in the
user's buffer from which 1/O is to take place (i.e., at which
byte in the buffer the data begins).

VOL, value specifies which tape reel in the list of
INSN or OUTSN reels is to be used initially. A value of
1" designates the first reel (in the list), the value "2"
designates the second reel, etc. If VOL is omitted, a value
of 1 is assumed by default.

NXTF specifies that when the DCB is opened (see
"M:OPEN", below) for disc or labeled tape, the Monitor

is to access the next file in sequence (following the one
most recently accessed via the DCB). If no file name s spe-
cified (currently) in the DCB, the first file on the tape or

in the user's disc file directory is accessed. If there are no
more files available, an abnormal return is executed.

FPARAM, address specifies that the Monitor is to pass the
file parameters, in M:OPEN FPT format (see "M:OPEN",
below), to the user's program, beginning at the specified
"address". The area in the user's program that is fo receive
the file parameters must be 90 words in length. Only the
variable-length parameters are passed to the user's program.

SYNON[, 'file name') specifies that the "name" given
in the FILE option (see above) is to be considered synony-
mous with the designated "file name". The "file name"
must currently apply to the file in disc storage. This option
is used to create a synonym for a disc file. It forces the
DCB to be open in the update mode. If SYNON is not spe-
cified in the M:DCB procedure call, it will not appear in
the DCB and, therefore, may not be used in an ASSIGN
control command or M:OPEN procedure call referencing the
DCB. If SYNON is specified but no value given, 16 words
are reserved for the file name (to be inserted viaan ASSIGN
control command or M:OPEN call).

TLABEL, address specifies the symbolic address of a user's
buffer into which a label is to be read, or from which a la-
bel is to be written upon opening a disc or tape file. The
first byte of the label information must contain the Iengfh
(i.e., number of bytes) of the buffer.

BUF, address specifies the symbolic address of a buffer
that is to be used in the transfer of data.

The following options are device-dependent, and will be
ignored by the Monitor in all cases where they are not ap-
plicable to the device used.

File Maintenance Procedures 55

format (one of the two following specifications).
1. VFC specifies that the first character of each record

is a format-control character for printing(see Table 5).

2. NOVFC specifies that the records do not contain
format-control characters.

COUNT, tab specifies that a page count is to appear at
the top of each page, beginning in the column specified by
" be".

Example:

COUNT, 60

The above example specifies that the most significant digit
of the page count is to appear in column 60 at the top of
each page.

DATA, tab specifies that output is to begin on each page
(or card, if EBCDIC) in the column specified by "tab".

SEQ, 'id' specifies that the punched output is to have
sequencing in columns 77-80. If 'id" is specified, it will
appear in columns 73-76 of the punched output (see
ASSIGN, Chapter 2).

LINES, value specifies the number of printable lines per
page. The greatest value that may be specified is 32,767.
If LINES is not specified, the value established at System
Generation time will apply.

SPACE,value[, top) specifies the spacing between lines
(value) ana between the top of each page and the first line
printed (top). A value of 1 indicates that lines are to be
single-spaced. The greatest value that may be specified

is 15.

mode (any of the following specifications).

1. BCD specifies that the EBCDIC device mode is to
be used.

2. BIN specifies that the binary device mode is to
be used. ‘

3. FBCD specifies that FORTRAN BCD conversion is
to be used.

4. PACK specifies that the packed binary mode
(7-track tape) is to be used.

5. UNPACK specifies that the unpacked binary mode

(7-track tape) is to be used.

6. L specifies that a listing type of device is to be
used.

If no mode is specified, BCD is assumed.

DRC specifies that the Monitor is not to do special for-
matting of records on read or write operations.

NODRC specifies that the Monitor is to do record format-

ting on read or write operations. If neither DRC nor
NODRC is specified, NODRC is assumed by default.

56 File Maintenance Procedures

TAB, value. .. [, value] specifies the values of tab stop
settings (for an output device). The values must be in as-
cending order.

HEADER, tab, address specifies that the 1/0O handler is to
output a header (heading) on each page. Tab specifies the
column at which the header is to begin. Address specifies
the symbolic location of the header; the first byte of the
header must contain the number of bytes.

The format and sequence of the machine (data) words com-
prising a DCB are shown below. DCB words 15 through 21
have two alternative forms. The first form shown applies
only to typewriters or line printers. The second form applies
to all other types of DCB assignments.

word 0
MFFWEMND:AEED?V: N
TTL ciclc|a| o [ofw|riclololxfijuie] + | 7 | ASN
o sfio|v| ¢ fox]c]p]vivic|rin]c] & | §
O T 2 314 5 6 7T8 v W0 TiZ 1314 15116 177 18 WIH 21 22 BI24 55 % 5138 5 %0 31

word 1

<mO

NRT FUN 10|v|L| TYPE

01 2 3145 6 718

v DEV/OPLB I
10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 0 31

0|

word 2
NRA TYC BUF
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 3
RSZ ERA
T T T T T T T R B T R R T S S T T R
word 4
ARS ABA
[I SR S R NI NV I E R B) uw—mmmmam‘
word 5
H slsiri¥ ‘
L 100 el | 0————0 PRI ORG | ACS
1 DNl
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3}
word 6

BLK FLP

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 2) 22 23124 25 26 27128 29 30 31

word 7
FCN 0———0 QBUF I
T T 3T S T TIE T W Nhe 3 Bl 7 win s E BN S %D £l
t
word 8
CDA I
0 1 2 314 5 6 718 9 IOHIIZ|3|4|51|6l7‘3|9202|22232‘25u272ﬂ29”3l

t . .
Two alternative forms of this word are shown.

t t
word 8 word 17
0 0 NVA 0—————0 EXL EXB
IR VA C R R SRR R R AR R A S A T T T T T T T O TR BT T R S T B B R BB BT
t
word 9 word 18
CVO or CVI SBUF1 BUF1 TABI13 TAB14 TAB15 TAB16
0 1 2 314 5 6 718 9 10 11112 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31 0 1 2 Jil 5 6 718 9 10 ”il? 13 14 15116 i7 18 I?i?ﬁ 21 22 23124 25 26 Z7T23 29 30 3
t
word 10 word 18
LVA KBUF CBD KAD
o1z 314 5 6 7Te 9 0 N2 13145116 1718 Wi 21 22 23124 25 26 718 7 %0 3 0 1 2 314 5 6 718 9 10 Hi'? 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 11 word l9f
COS or CIS FPARAM KEYL KEY1 KEY2 KEY3
G 1T 2 3i4 5 6 7iB $ 0 ”il? 13 14 15i|6 177 1 4 1 O 1 2 314 5 6 718 9 10 1iliz 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
t
word 12 word 19
KEYM 0————-0 CLK DSC SVA HLC
0 1 2 3i4 5 6 718 9 10 ”i|2 13 14 ‘5i|6 7 mT 22 23124 25 26 27128 29 30 3 0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 13 word 20"
RWS CMD PBD
T T T I TR T O T B B T B RE TR B R B % DB E %9 ST T3 55 718 5 0 1Tz 13 14 15116 17 18 19120 21 22 23124 25 26 128 29 30 31
word 14 word 20t
CSC TLB HSC FVA CVA or SQS
T T ST e T e T o B R BT 78 BIm I 22 Bl & 2 ol B % 31 T 1 2 314 5 & 718 9 10 11112 13 14 15116 17 16 19120 21 22 23124 25 26 27128 29 30 31
t t
word 15 word 21
TAB1 TAB2 TAB3 TAB4 SID
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 12120 21 22 23124 25 26 27128 29 30 31 D 1 2 314 5 6 718 9 10 11132 13 14 15116 17 18 19120 21 22 23124 25 26 7128 29 30 31
t t
word 15 word 21
BCDA ACD FLD
0 1 2 314 5 6 708 9 10 11112 13 14 e 17 8 wim 2 22 7315 75 26 57128 5 % 31 0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
t
word 16 where
TTL specifies the length of the DCB, in words (a
TABS TABS TABZ TA‘BB total of 90 words should be reserved for a user's
O 1 2 314 5 & 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31 DCB' ro GIIOW {_‘or expcnsion of the DCB by fhe
A .
word 16 Monitor).
ST TeTs MGB is the Monitor-buffer flag (0 means user's
IMT MM s s oE BUF2 buffer, 1 means Monitor's buffer). The Monitor
G 1 2 314 5 6 718 E ?o T2 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31 sets this flog to a 1 when it ossigns a buffer to an
¢ I/O operation, and sets it to a O when it releases
word 17 the buffer.
" FCI is the file-closing flag (0 means no, 1 means
TAB9 TAB1O TAB11 TAB12 yes). The Monitor sets this flag to a 1 when the
G 1 2 314 5 6 718 9 10 11112 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31 DCB hqs been opened preViOUS’y; therWiseI if is
set to a 0.
FCD is the file-closed flag (1 means no, 0 means

t . .
Two alternative forms of this word are shown.

yes). The Monitor sets this flag to a 0 when a file

File Maintenance Procedures 57

58

associated with the DCB is closed, and sets it to a
1 when the file is opened.

WAT is the wait flag (0 means no wait, 1 means
wait). The Monitor sets this flag to a 1 when the
system is to wait until the current 1/O operation
has been completed, and sets it to a O when the
system is to proceed without waiting.

EOP is the ending-operation indicator (1 means read,
2 means write, 0 means other, e.g., rewind). The
Monitor sets this flag to indicate the type of /O
operation most recently performed for the associ-
ated file.

MQOD is the mode flag (0 means EBCDIC, 1 means
binary). The Monitor sets this flag to indicate the
device mode to be used in the current 1/O operation.

NWK is the new-key flag (0 means existing, 1 means
new). The Monitor sets this flag to indicate whether
or not the key of the record being written already
existed prior to writing the record.

DRC is the device-direct-format indicator (0 means
automatic formatting, 1 means no automatic for-
matting — see Appendix E).

FBCD is the FORTRAN-BCD flag (0 means no con-
version, | means conversion).

AGV is the abnormal-given flag (0 means no, 1
means yes). It indicates whether an abnormal
condition has been detected by the Monitor.

EGV is the event-given flag (0 means no, 1 means
yes). It indicates whether the 1/O completion
type has been communicated to the user's program.

EXC is the exclusive-use flag (0 means exclusive
use not wanted, 1 means exclusive use wanted).
The Monitor sets this flag to indicate whether or
not the current user's program is to have exclusive
use of the file or record accessed via this DCB.

DIR is the direction-moved flag (0 means forward,
1 means reverse). The Monitor sets this flag to
indicate whether a read operation to be done via
this DCB is to take place in the forward or reverse
direction,

PUN is the packed/unpacked mode indicator (0
means unpacked, 1 means packed).

VFC is the vertical-format-control flag (0 means no
format control, 1 means format control). The
Monitor sets this flag to indicate whether or not
vertical format control is applicable to operations
performed via the DCB.

HBTD is the handler's-byte-displacement indicator
(0 means none, 1 means 1 byte, 2 — 2 bytes, 3~
3 bytes), specifying at which byte in the 1/O
handler's buffer the data begins (Monitor use only).

File Maintenance Procedures

UBTD is the user's-byte-displacement indicator (0
means none, | means 1 byte, 2 —2 bytes, 3 —3
bytes), specifying at which byte in the user's buf-
fer the data begins.

ASN is the assignment-type indicator (0 means null,
1 means FILE, 2 —LABEL, 3 —DEVICE. It is set
by the Monitor to indicate the type of assignment
currently in effect for this DCB.

NRT indicates the number of recovery tries remain-
ing before the device error message is to be listed.

FUN indicates the file mode function (0 means null,
1 means IN, 2 —OUT, 4 —INOUT, 8 — QUTIN).

DEVF is an indicator defining whether this is a di-
rect device assignment or an operational label as-
signment (1 means direct device assignment, 0
means operational label).

L is an indicator defining a listing type device
(L option specified on IASSIGN), 1 means listing
type device, 0 means nonlisting type.

TYPE is one of the following codes if DEVF equals 1.
Code Device

TY
= PR
= PP
CR
Ccp
LP
DC
9T
= 71
= MT

If DEVF equals zero, the TYPE field is meaningless.

il

1]

non

POONOCGVPEWN —~
|

DEV is the index of the Monitor device table if
DEVF equals zero.

Label OPLB Value

C
ocC
LO
LL
DO
PO
BO
LI
Sl
BI
SL
SO
Cl
co
AL
El
EO

ON®P>POVONOCOGEWN —~

— — T m
- O

NRA indicates the number of recovery tries that
may be attempted before a device error message
to be listed.

TYC indicates the type of completion of an 1/O
operation (1 means normal, 2 — lost data, 3 —
beginning of tape, 5 —end of reel, 8~ read error,
9 — write error (see also Appendix H).

BUF contains the address of the user's buffer asso-
ciated with this DCB.

RSZ indicates the maximum record size, in bytes.

ERA contains the address of the user's routine that
will handle error conditions (except for 1/0
operations).

ARS indicates the actual record size, in bytes, that
has been input or output in the current 1/O opera-
tion using this DCB. If ARS is all 1's RWS (see
below) indicates the actual record size.

ABA contains the address of the user's routine that
will handle abnormal conditions (except for 1/0
operations).

FIL1 indicates the file option specified by an

M:DCB or M:OPEN procedure call or by an
ASSIGN control command (0 means null, 1 —
release. 2 —save).

SEQ is the sequence-option flag (0 means no se-
quence numbering, 1 indicates sequence number-
ing is desired).

SID is the sequence-ID-given flag (0 means no ID
has been specified for punched output, 1 means
ID has been specified).

TRN is the truncation flag (0 means the blocking
buffer is to be released, 1 means the blocking buf-
fer is not to be released).

NXTF is the next-file indicator (0 means no, 1
means yes). It indicates whether the next file
in sequence is to be accessed for the next /0O
operation.

PRI indicates the 1/O priority code.

ORG is the file-organization indicator or (0 means
null, 1 —consecutive, 2 —keyed).

ACS is the file-access indicator (0 means null,
1 —sequential, 2 —direct).

BLK indicates the data block size, in bytes.

FLP is the file-list pointer (for Monitor use).

FCN indicates the current number of outstanding

1/O functions for this DCB (i.e., I/O requests
that have not yet been satisfied).

QBUF contains the address of the buffer to be used
(by the Monitor) in the current 1/O operation per-
formed via this DCB,

CDA contains the current device address (i.e., the
disc address to be read from or written to).

NVA indicates the number of records to be skipped
on magnetic tape.

CvO indicates the volume number of the current
tape in a multi-reel output file (e.g., CVO =2
implies that this is the second tape of the file).

Cwvi indicates the volume number of the current
tape in a multi-reel input file (e.g., CVI =3
implies that this is the third tape of the file).

SBUF1 indicates the size, in bytes, of the Monitor
buffer used to block user’s data.

BUF1 contains the address of the Monitor blocking
buffer used to block user's data.

LVA indicates the number of printable lines per
logical page (for printer or typewriter).

KBUF contains the address of the buffer containing
the key most recently used.

COS contains the relative position (in the list of
OUTSN numbers) of the serial number of the mag-
netic tape reel to be used for current file output.

CIs contains the relative position (in the list of
INSN numbers) of the serial number of the mag-
netic tape reel to be used for current file input.

FPARAM contains the receiving address to which
file parameters are to be passed; otherwise, it
contains 0.

KEYM indicates the maximum length, in bytes, of
keys for records in the file associated with this
DCB. [fKEYM =0, the maximum length is as-
sumed to be 4 bytes.

CLK contains the cooperative link address (for Mon-
itor use).

RWS indicates the size, in bytes, of the buffer to
be used in the current 1/O operation performed via

* this DCB.

Csc indicates the number of the column at which
the page count is to begin (for printer or type-
writer), The most significant digit of the count
will be printed in this column.

File Maintenance Procedures 59

60

TLB contains the address of a user's label that is to
be written on a tape file when the file is output
via this DCB.

BCDA indicates the current buffer displacement, in
records, for the Monitor's blocking buffer, speci-
fying which record the Monitor is processing.

IMT is the image-type flag (0 means account index
key, 1 means master file key), used by the Monitor
only.

B1UD indicates that the Monitor's primary blocking
buffer has (B1UD = 1) or has not (B1UD = 0) been
updated.

MIUD indicates that the Monitor's master file index
has (MIUD = 1) or has not (MIUD = 0) been updated.

TBT indicates that the Monitor's tape buffer has
(TBT = 1) or has not (TBT = 0) been released.

BR indicates that the current record is (BR = 1) or
is not (BR = 0) blocked.

EOT indicates that an end=of-tape has (EOT = 1) or
has not (EOT = 0) been encountered.

REV indicates that the current block was (REV = 1)
or was not (REV = 0) read in the reverse direction.

BUF2 contains the address of the Monitor's second-
ary buffer.

TAB1-TABI16 indicate listing tabs (i.e., tab stops)
for printer or typewriter.

EXL indicates the length, in bytes, of the exclusive-
use buffer used to store exclusive-use keys.

EXB contains the address of the exclusive-use buffer.

CBD indicates the current buffer displacement, in
bytes, for the Monitor's blocking buffer, specify-
ing at which byte the current record will begin.

KAD contains the address of the current key (or of
a dummy key, if the file is not keyed).

DsSC indicates the (leftmost) column at which out-
put data is to begin (for a card punch, typewriter,
or printer).

SVA indicates the number of lines to be spaced be-
tween printed lines and between the top of the
page and the first line (1 means single space) on
a typewriter or printer.

HLC contains the address of a header (heading) that
is to be output (the first byte of the header indi-
cates the length of the header, in bytes).

KEYL indicates the length of the current key, in
bytes.

File Maintenance Procedures

KEY - KEY3 s the buffer for the key last used for
the file associated with this DCB, if KEYM =3
(word 12). 1f KEYM >3, a dummy is contained
in this buffer and the key in KBUF is used to ac-
cess the file.

HSC indicates the column at which header output
is to begin (for a typewriter or printer). The first
character of the header will be printed in this
column.

FVA indicates the first line on which printing is to
begin (for a typewriter or printer).

CVA indicates the current value of the page count
(for a typewriter or printer).

SQS indicates the next sequence number to be
punched (for a card punch).

CMD is the current master index displacement (in
bytes).

PBD is the previous buffer displacement (in bytes),
specifying at which byte in the Monitor's blocking
buffer the last record begins.

SID indicates the sequence 1D for punched card
output.

ACD is the account number displacement (in words),
specifying displacement from the file list pointer.

FLD is the file name displacement (in words), speci-
fying displacement from the file list pointer.

Entries for any variable-length parameters follow those for
the fixed-length parameters already given. Each variable-
length entry is preceded by a control word. Byte O of each
control word contains a unique code number identifying the
parameter that follows. Byte 1 contains a code specifying
whether the parameter is (code = 01) or is not (code = 00)
the last entry of the FPT. Byte 2 specifies the number of
significant data words in the entry for the parameter. Byte
3 specifies the total number of FPT words reserved for the
entry, not including the control word (i.e., maximum entry
length).

The control-word codes in byte 0 identifying each type of
variable-length parameter are shown in the table below.

Code | Parameter Type

01 | File name (the first byte of which contains the
number of characters in the name).

02 | Account number.

03 | Password.

04 | Expiration date.

05 | READ account numbers,
06 | WRITE account numbers.
07 | INSN reel numbers.

08 | OUTSN reel numbers.
0B | SYNON name

OPEN A FILE (Reinitialize a DCB)

M:OPEN The Monitor OPEN routine reinitializes spe-
cified parameters of a designated DCB; the current values
for the remaining entries in the DCB are not altered.

In addition to allowing DCB parameters to be changed prior
to an 1/O operation, the OPEN routine also sets the DCB's
file-closed indicator (FCD) to a 1 (indicating that the DCB
is open for use in an /O operation). No file positioning is
done as the result of an Open.

1f a READ or WRITE 1/O routine is called (see M:READ and
M:WRITE, below) while FCD =0, the Monitor stores the call
temporarily and calls the OPEN routine automatically. If
FCD is still 0 after the OPEN routine has terminated, the
requested read or write operation is not executed. The FCD
will remain O if the information in the DCB is insufficient,
inaccurate, or contradictory, and the resulting abnormal
error code will be returned in byte 0 of SR3. If the Open
is made with no parameters, the existing parameters in the
DCB are used.

If the specified DCB is already open (i.e., FCD=1) when
the OPEN routine is called, an abnormal condition is sig-
naled (see Appendix H). If the DCB is not open when the
OPEN routine is called, the DCB is reinitialized according
to the parameters specified in the M:OPEN procedure call.

The M:OPEN procedure call is of the form
M:OPEN [*] dcb name[, (option)]. .. [,(option)]
where

dcb name specifies the name of the DCB that is to
be opened. The options specified in the OPEN
call override those previously specified. 1f no op-
tions are specified, the existing ones are used.

The options are as follows:
name (one of the three keyword operands given below).

1. DEVICE, '‘name’

2. FILE, 'name'[, 'account'] specifies a system file di-
rectory name (no more than 31 characters in length).
If the named file belongs to a different account than
that of the current job, the file's account number (not
exceeding 8 characters) must be given.

| 3. LABEL, 'name'[, ‘account'] specifies the name (not
exceeding 31 characters) of a file on magnetic tape.

An INSN or OUTSN option (see below) must be used

to specify the particular tape(s) containing the file.

If the named file belongs to a different account than

that of the current job, the file's account number (not

exceeding 8 characters) must be given.

org (one of the two file organization types given below).

1. CONSEC specifies that the records in the file are
consecutively organized ond each record is to be pro-
cessed in order.

specifies a system operational label.

2. KEYED specifies that the location of each recordin
the file is determined by an explicit identifier(key) that
may be used to address the device containing the file.

If "org" is omitted and DIRECT access is specified (see
below), then KEYED is assumed; if neither DIRECT nor
"org" are specified, CONSEC is assumed.

access (one of the two record access means givenbelow).

1. SEQUEN specifies that records in the file are to be
accessed in the order in which they appear in the file.

2. DIRECT specifies that the next record to be ac-
cessed is to be determined by an explicit identifier(key).

If "access" is omitted and KEYED organization is spec~
ified (see above), then DIRECT access is assumed; if
KEYED is not specified, SEQUEN is assumed.

function (one of the four file modes given below).

1. IN specifies the file input mode.

2. OUT specifies the file output mode.

3. INOUT specifies the file input and output mode

(i.e., the update mode).

4. OQUTIN specifies the file output and input mode
(i.e., the scratch mode).

PASS, 'value' specifies the password that allows access
to aclassified data file. The password may be from 1 through
8 alphanumeric characters in length.

file (one of the two specifications given below).

1. REL specifies that, for single-file tapes, the reel is
to be released to the Monitor's scratch files. For multi-
file tapes, no action is to occur if the tape is being used
for input; on output, the tape ic to be positioned at the
beginning of the file(allowing the file to be over writ-
ten). For direct-access devices (i.e., disc), all allo-
cated direct-access storage for the file is to be released
to the Monitor.

2. SAVE specifies that the file is to be included in the
system file directory. If the file function (see above)
is OUT or QUTIN, the SAVE option must be specified
(either in an M:OPEN or M:DCB procedure call or in
an ASSIGN control command), to cause the Monitor to
allocate permanent disc storage for the file. When
closing such a file, SAVE must again be specified —in
the M:CLOSE procedure call (see below) —if the file is
to be permanently saved in disc storage.

READ, 'value'[, 'value']...[, ‘value'] specifies the ac-
count numbers of those accounts that may read but not write
the file. The value "ALL" may be used to specify that any
account may read but not write the file (e.g., READ, ALL).
The value "NONE" may be used to specify that no account
may read the file. If no value is specified, or if READ is

File Maintenance Procedures 61

omitted, ALL is assumed by default. The total number of
accounts explicitly specified in the READ and WRITE speci-
fications together must not exceed 16 (a maximum of 8

READ and 8 WRITE).

WRITE, 'value'[, valve'] ... [, 'value'] specifies the
account numbers of those accounts that may have both read
and write access to the file. The values "ALL" and
"NONE" may be used, as withthe READ option(see above);
and, if a conflict exists between READ and WRITE specifi-
cations, those of the WRITE option take precedence. If no
WRITE accounts are specified "NONE" is assumed.

INSN, 'value'(, 'value'] [, 'value'] specifies the serial
numbers of magnetic tapes that are to be used for file input.
These numbers must be ordered in the proper sequence for
the file. A maximum of three values may be specified for
Monitor DCBs. Values are 1 to 4 characters in length.

OUTSN, 'value'[, 'value'] [, 'value'] specifies the serial

numbers of magnetic tapes that are to be used for file output.

If the output fills the first reel, then the second reel speci-
fied will be used, etc. A maximum of three values may be
specified for Monitor DCBs. Values are 1 to 4 characters
in length.

RECL, value specifies the maximum record length, in
bytes. The greatest value that may be specified is 32,767.
If RECL is not specified, a standard value (appropriate to
the type of device used) will apply by default.

TRIES, value specifies the maximum number of recovery
tries to be performed for any 1/O operation. The greatest
value that may be specified is 255. [f TRIES is not speci-
fied, the standard value established at System Generation
time will apply by default.

KEYM, value specifies the maximum length, in bytes,
of the keys associated with records within the file. If
KEYM is omitted, the value 11 is assumed.

TLABEL, [*] address specifies the symbolic address of
the user's label that is to be written. The first byte of the
label information must contain the number of characters in
the labei when opening an output file, or number of bytes
available in the label block when opening an input file.
Upon return, the first byte contains the number transmitted.

BUF, [(*]address specifies the symbolic address of a buf-
fer that is to be used in the transfer of data(the buffer may
not be a general register).

ERR, [*] address specifies the symbolic location of a
user's routine that is to be used to analayze any error
conditions associated with the makeup of the DCB (see
Appendix H).

ABN,[*] address specifies the symbolic address of a

user's routine that is to be used to analyze any abnormal
conditions associated with the makeup of the DCB.

62 File Maintenance Procedures

SYNON, name

NXTF
BTD,value

FPARAM, [*] address

VOL,value

See "M:DCB", explainea
previously in this chapter

Calls generated by the M:OPEN procedure have the form

CAL1,1 address
where

address points to word O of the FPT shown below.
word 0
* X'14! DCB address

L R B R

718 9 10 HiIZ 1314 lSiIb 1718 l?iN 21 22 23i24 25 26 17i?—§ 29 30 31

word 1
ol fe]e |6 el e
o 1% {5 |5 % |71 |Offo 7 [i2|is| e | 0——0[|2 S5 % 1% [hoff [l
O 1 2 314 5 & 718 9 10 111:2 13 14 15116 17 18 19120 21 22 23124 25 26 271728 29 30 kil
optional
*10 0 Error address
a 2 314 5 6 718 9 10 iiliv 13 14 |5A“é 17 18 19120 21 22 23124 25 26 27128 29 30 °}
optional
*0 0 Abnormal address
[Qi‘ 5 6 71n 9 10 11112 13 14 15016 17 18 19120 21 22 23124 25 26 27:28 29 30 1}
optional
*0 0 Buffer address
T 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19720 21 22 23124 25 26 27128 29 30 31
optional
*0 0| Maximum record length
O 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 2° i 31
optional
*0 0| Maximum recovery tries
0 1 2 314 5 6 7i3 S 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
optional
* R
0 0|

0 1 2 314 5 6

where

ORG

-
718 9 10 11112 13 14 5116 17 18 19120 21 22 23124 25 26 27128 29 30 31

specifies the file organization type (1 means

consecutive, 2 means keyed).

optional a DCB. As is the case with all FPTs having opfional pa-
. rameters, the parameter-presence flags (p] through plé)
*0 0 ¢ indicate which options are present.
[
o7 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31 F]Qgs f through f ‘n word 1 of the FPT hqve the signif-
where icance indicated below (when f; = 1).
ACC specifies the record access method (1 means
ial, 2 direct). ‘g
sequential, 2 means direct) Flag Significance (when set to 1)
tional
optiona f] A synonym is to be equated to the file name.
*0 ' ' olMODE f2 :'fhe next file of th account Ls tcf). be f?rene;d.h
s T T T T R R T R R T R BIR B B DR B B3 none are currently open, the first file of the

where

MODE specifies the file functionmode (1 means IN,
2 — OUT, 4 -INOUT, 8 — OUTIN).

optional
*|0 0 1 if REL, 2 if SAVE
—

o7 2 314 5 6 718 9 10 11112.13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3}
optional
*10- 0 FPARAM address
12 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
optional
*10 0 TLABEL address
572 314 5 6 718 5 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3
optional
*0 0 Maximum key length
T 1 2 314 5 6 718 9 10 11112 13 14 15116 17 6 19170 21 22 23124 25 26 128 25 30 31
optional
*0 0| DEVICE operational label
5T 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
optional
*0 0
o 72 314 5 & 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3}

Byte displacements
optional
*10 0 VOL value
572 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Entries for any variable-length parameters follow those for
the fixed-length parameters previously discussed. The
variable-length entries are identical in format to those of

account is to be opened.

f3 A password is present in the FPT,

f4 An expiration date is present in the FPT.

f5 QUTSN serial numbers are present in the FPT.

fé INSN serial numbers are present in the FPT.

f7 WRITE account numbers are present in the FPT.

F8 READ account numbers are present in the FPT.

f9 The number of the user's account is present in
the FPT.

flO Not used.

1 The file is a LABEL type.

f]2 The file is a FILE type.

CLOSE A FILE (Terminate 1/0 Through ¢ DCB)

M:CLOSE The Monitor CLOSE routine terminates ‘and
inhibits I/O through a specified DCB, until the DCB is again
open (see "M:OPEN", above). It sets the DCB's file-closed
indicator to 0, indicating that the DCB is not open for use
by an 1/O operation. If the DCB being closed is assigned

to a card or paper tape punch, an !EOD record is output to
the device, indicating an end-of-file (unless the FRM bit is
set to 1).

If the DCB is assigred to unlabeled tape and the DRC bit is
not set to 1, two end-of-file codes are written and the tape
is backspaced prior to the second end-of-file, provided the
previous operation was a write operation. (DRC has no ef-

fect on labeled tape.) l

When a DCB is closed, any special device entries (see
M:DEVICE, below) are cleared.

The M:CLOSE procedure call is of the form

M:CLOSE [*] dcb name, (file status)[, (PTL)] [, (REM)]

where
dcb name specifies the name of the DCB that is to
be closed.
file status (one of the two status options givenbelow).

File Maintenance Procedures 63

1. REL specifies that, for tape tiles, the reel is to
be released for use as a scratch file and a message
informing the operator is to be typed. For direct-
access devices, all allocated direct-accessstorage
for the file is to be released to the Monitor.

2. SAVE specifies that the current file is to be
added to the Monitor's master file, and the file
name added to the system file directory. If the

file name already exists in the system file directory,

the current file will replace the previous one.
If "file status" is omitted for IN or INOUT files, SAVE is
assumed; for OUT or OQUTIN files, REL is assumed.

PTL specifies that the (labeled magnetic tape) file is to
be closed and positioned to the beginning of the file.

REM specifies that the tape is to be rewound and then a
message is to be typed requesting the operator to demount

the reel. This option is valid for either labeled or unlabeled

magretic tape files.

The options specified in the M:CLOSE procedure call de-
termine whether or not a magnetic tape is to have more than
one file. If a reel is to have several files, the SAVE op-
tion must be specified in closing each, and the REM op-
tion must not be specified until the last file of the reel is
to be closed.

An inter-volume mark is written at the end ot each inter-
mediate reel of a multi-reel file when the end-of-reel
marker is reached or when a volume isclosed(see M:CVOL,
below) without closing the last (or only) file on the reel,
indicating continuation of the file on another reel.

Calls generated by the M:CLOSE procedure have the form

CALT, 1 address
where

address points to word 0 of the FPT shown below.
word 0
* X115 0—0 DCB address

: 4 4 +
T 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 2122 23124 25 26 27?58 29 30 31

word 1
Rlo — 0 R|EJ0—0
0 1 z 314 5 6 716 9 10 11172 13 14 15116 17 18 19120 21 22 23124 25 26 27128 25 30 31
word 2
0 ,,A o| TifREL,

2 if SAVE
0 1 2 314 5 6 /18 9 10 12 1314 15006 17 18 19120 21 22 23124 25 26 2:128 29 30 31
where

R specifies that the REM option (see above) has
(R=1) or has not (R = 0) been requested.

E specifies that the PTL option (see above) has
(E - 1) or has not (E =0) been requested.

64 File Maintenance Procedures

SET ERROR OR ABNORMAL ADDRESS

M:SETDCB The Monitor SETDCB routine allows the
user's program to set the error or abnormal address in a des-
ignated DCB; the call may be made while the DCB is either
open or closed.
The M:SETDCB procedure call is of the form
M:SETDCB [*] dcb name[, (ERR,[*] address)] ;
[, (ABN, [*] address)]

where the optional parameters are of the same form as those
given for ERR and ABN in "M:DCB", above.

Calls generated by the M:SETDCB procedure have the form

CALI,1 address
where

address points to word O of the FPT shown below.
word 0
* X'06' 0——0 DCB address
Tz 314 5 6 718 9 16 iz 13 14 15116 17 18 19120 21 22 23124 25 26 77178 29 30 31
word 1
R0 0

0 1 2 314 5 6 718 9 10 11112 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31

optional

*0—— —0 Error address

0 1 2 314 5 6 718 9 10 11112 13 14 lﬁlb 17 18 19120 21 22 23124 25 26 27’28293;31
optional

*10 0 Abnormal address

0 1 2 314 5 6 718 © 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3}

CHECK 1/0 COMPLETION

M:CHECK The Monitor CHECK routine checks the
completion-type indicator (TYC) of a specified DCB. If
TYC #0 and error or abnormal addresses were specified in
the procedure call, an appropriate error or abnormal code
is returned to the user's program via SR3. If the M:READ
or M:WRITE procedure zall specified an error or abnormal
address, then a normal return to the user's program will be
made by the CHECK routine. 1f 1/O is currently active,
it will be completed before control is returned to the user's
program. If no error address or abnormal address was spec-
ified in the procedure call, the Monitor handles any error
or abnormal conditions and no error or abnormal code is re-
turned to the user's program. The check applies only to
the most recent 1/O operation done via the DCB. (See
Appendix H.)

The M:CHECK procedure call is of the form
M:CHECK [*] dcb name[, (option)] ... [, (option)]
where

dcb name specifies the name of the DCB to be
checked for type of completion.

The options are as follows:

ERR, [*] address specifies the address of a user's routine
that will handle error conditions for I/O operations per-
formed via the DCB.

ABN, [+] address specifies the address of a user's routine
that will handle abnormal conditions for 1/O operations per-

formed via the DCB.

Calls generated by the M:CHECK procedure have the form

CALIL 1 address
where

address points to word 0 of the FPT shown below.
word 0
¥ X'29" 0——0 DCB address
0 1 2 314 5 6 718 9 10 112 13 1415016 17 lBlﬁNZl?ZZ“?‘ZSZbZﬁEﬁSOM
word 1
k80 9

T 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27(28 29 30 31

o

optional

*10 0 Error address

B s e TR 1 O R T [TR P [N R L YR PR R R A O
optional

*10 0 Abnormal address

; + ; ‘ —_ "
0 ' 2 314 5 & 718 9 10 11112 13 14 15116 17 18 19720 21 22 23124 25 26 27128 29 30 31

DECLARE A TEMPORARY FILE

M:TFILE The Monitor TFILE routine causes a specified
DCB to be closed, on return tothe user's program, and the
associated file to be registered with the Monitor asa
scratch file. Error and abnormal addresses may be specified
for the DCB. Files declared by means of this call will be
released at the end of the job, unless otherwise explicitly
released. Thus, a file may besaved between job steps and
yet be released on completion of the job.

The M:TFILE procedure call is of the form

M:TFILE [¥]dcb name, (TFILE, [¥] address);
[, (ERR, [*] address)] [,(ABN, [*]address)]

where

[*] dcb name specifies the name of the DCB associ-
ated with the file to be declared temporary.

TFILE, [*] address specifies the address of the name
of the file to be declared temporary.

ERR, [*] address (see "M:CHECK" above).
ABN, [*] address (see "M:CHECK" above).

Calls generated by the M:TFILE procedure have the form
CAL1,1 [¥] address [,x]
where

oddress[,x] points to word 0 of the FPT shown be-
low. The value "x" specifies that indexing is to be
used to obtain the effective address (1 < x <7).

word 0

* X'OF! 0 0 DCB address

B I S-S a s B TR T NV RN TS A TR VN) P TR R S LR TR T PO T
word 1

RBloji| 1o o/t [ofi plojo|o
0 1 2 314 5 6 7 iB S 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
optional

*10 0 Error address

T T 314 5 5 718 5 10 i1z 13 14 15116 17 18 19120 21 22 23124 25 2 2126 29 30 31
optional

*10 0 Abnormal address

0 1 2 314 5 6 718 9 10 Hi'lZ 13 14 |5i|6 17 18 19120 21 22 23124 25 26 27128 29 30 31
required

0 0
0 1 2 314 5 6 718 9 10 112 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31
required

*10 0 File name address

10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

of

0 1 2 314 5 6 718

DATA RECORD MANIPULATION
READ A DATA RECORD

M:READ The Monitor READ routine causes a specified
data record to be read into a buffer in core storage. If the
record is larger than the specified buffer, part of the record
is lost and this fact is communicated to the user's program
(see Appendix H). It is not necessary for the user's program
to explicitly call the Monitor OPEN routine prior to reading
or writing a record, since the Monitor generates such a call
automatically if the DCB is not open.

Data Record Manipulation 65

Both EBCDIC and binary decks may be used in the same job,
but binary information must be preceded by a BIN control
command and must end with a BCD control command if the
device is a card reader. On encountering a BIN control
command, the Monitor switches the device mode and auto-
matically reads the next record in binary. Subsequent rec-
ords are also read in binary until a BCD control command

is encountered. The Monitor then changes the device mode
and automatically reads subsequent records in EBCDIC.

The mode flag (MOD), in the DCB associated with the read
operation, is set to a 0 if a record is read in EBCDIC and is
set to a 1 if a record is read in binary.

A BCD control command encountered when reading in the
EBCDIC mode causes no change in the device mode. When
the C device is read, any record having an ! in column 1
(except for a BIN, BCD, or EOD control command) causes
a code of 06 to be placed in byte 0 of SR3. The record is
placed in the Monitor's control command buffer and, if an
attempt is made to read that record again via the same DCB,
the job is aborted and the user is notified (via the LL and
OC devices) of the reason for aborting the job.

Whenever an EOD control command is encountered (when

reading), a code of 05 is returned to the user's program in
byte 0 of SR3 if an abnormal address is specified.

The M:READ procedure call is of the form

M:READ [*] decb name[, (option)] . . . [, (option)]
where
dcb name specifies the name of the DCB to be

associated with the read operation.

The options are as follows:

BUF, [*] address specifies the address of the user's buffer
into which data is to be read.

SIZE, [*] value specifies the size, in bytes, of the user's
buffer. 1f 0 is specified, a record is skipped. An asterisk
may be used to indicate that the "value" is the address of

a location containing the buffer size.

ERR, [*] address specifies the address of a user's routine
that will handle error conditions for the read operation. .
(See Appendix H.)

ABN, [*] address specifies the address of a user's routine
that will handle abnormal conditions for the read operation.
(See Appendix H.)

WAIT specifies that the operation is to be completed
before control is returned to the user's program. WAIT is
implied if either ERR or ABN is specified. If WAIT is neith-
er specified nor implied, no wait is assumed.

KEY, [*]address specifies the address containing the key
(identifier) associated with the record tobe read. The first

66 Data Record Manipulation

byte of the key contains the length of the key, in bytes.
This option is valid only for keyed files.

BTD, value specifies the byte displacement (0 - 3), inthe
user's buffer, into which data is to be read; i.e., the byte
into which the first data byte is to be read.

EXCL specifies that the record to be read may not be
accessed by other programs. If EXCL is not specified,
NOEXCL is assumed.

NOEXCL specifies that exclusiveuse of the record to be
read is not desired (i.e., the record may be accessed by
other programs).

PRI, value specifies the priority of this operation relative
to other 1/O operations within the job. The "value" may be
from 0 to 255 (lowest to highest).

FWD specifies that the record is to be read in the for-
ward direction.

REV specifies that the record is to be read in the reverse
direction.

Calls generated by the M:READ procedure have the form

CAL1,1 address
where

address points to word 0 of the FPT shown below.
word 0
* X'10' 0—0 DCB address
0 1 2 314 5 6 718 9 10 1112 13 14 15116 17 18 |9|EZ| 2223'242526272029”31
word 1
PR.PIPIPIPIR f if.f
1{2|3(4|5670 olffof50—o0
T T 3Te T 5 7te v oz 3 4 15116 17 18 15120 21 22 D124 25 26 128 B B 31
optional
*0 0 Error address
0 Vv 2 3i4 5 6 7i‘ 9 lOHilZ 13 14 15116 17 IQWTEZ‘2123242526272829”3
optional
*(0 0 Abnormal address
0 1 2 314 5 6 718 9 10 11112 13 14 15716 17 18 19120 21 22 23i24 25 26 27128 29 30 31
optional
*0 0 Buffer address
01 2 3 i4 5 6 718 9 10 11112 13 14 1516 17 18 19120 21 22 23124 25 26 27128 29 30 31
optional
*10 0 Buffer size
0 1 2 314 5 6 718 9 10 11121314 15016 17 18 19120 21 22 23124 25 2¢ 27128 29 30 31

optional

*10 0 Key address

+ 4 +
0 v 2 374 5 6 718 9 10 N2 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

.
optional
’)
* o 0 T
>
0 1 2 314 5 6 718 9 10 1111213 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
optional
*
0 Of PRI value
0 1 2 314 5 6 718 9 10 1111213 14 |5i16 17 18 19120 21 22 23124 25 26 27128 29 30 3\

Flag Significance

f 0 means no exclusive use is desired.

1

1 means exclusive use is desired.

f 0 means read in the forward direction.

1 means read in the reverse direction.

f 0 means return control to the user's program
immediately.

1 means wait until 1/O is complete before re-
turning control to the user's program.

WRITE A DATA RECORD

M:WRITE The Monitor WRITE routine causes a specified
data record to be written from a buffer in core storage. The

format of the output depends on the type of physical device

associated with the DCB.

If the DCB is assigned to a card punch or a paper tape punch,
the output for either is handled in a similar manner, except
that the Monitor will cause "IBIN" and "!BCD" records to
be punched on the card punch where appropriate. For ex-
ample, if the user's program needs to punch a binary record
and the previous record was punched in EBCDIC, an "IBIN"
record is punched automatically before the binary record is
punched. Similarly, an "!BCD" record is punched automat-
ically before a record is punched in EBCDIC, if the previous
record was punched in binary.

On a binary record, a maximum of 120 bytes are punched.
On an EBCDIC record, a maximum of 160 bytes are punched,
but the data is broken into two records, the first of which
contains no more than 80 bytes.

For a line printer, vertical spacing is determined by the first
output character if the vertical-format-control flag (VFC)

in the associated DCB is set to a 1. A maximum of 132 char-
acters per line may be printed on a line printer.

If the associated DCB is assigned to a typewriter (or to OC),
a maximum of 256 characters per write operation is allowed.
The user's program must include appropriate carriage return

characters in the record to be written. If the DCBis assigned

to LO, LL, DO, PO, or BO, a maximum of 160 characters
per write operation is allowed; the Monitor will break the
output data into two typed lines, the first of which will be
80 characters in length.

The M:WRITE procedure call is of the form
M:WRITE [¥] dcb name [, (option}] ... [, (option)]
where

dcb name specifies the name of the DCB to be as-
sociated with the write operation.

The options are as follows:

BUF, [*] address specifies the address of the user's buffer |
from which data is to be read.

SIZE,value specifies the size, in bytes, of the user's buf-
fer, If 0 is specified, the operation is ignored unless rec-
ords are being written into a keyed file; the key is retained,
but the record length is zero.

ERR, [¥] address specifies the address of a user's routine
that will handle error conditions for the write operation.
(See Appendix H.) I

ABN, [*]address specifies the address of a user's rou-
tine that will handle abnormal conditions for the write
operation. (See Appendix H.) '

WAIT specifies that the operation is to be completed
before control is returned to the user's program. WAIT is
implied if either ERR or ABN is specified. If WAIT is |
neither specified nor implied, no wait is assumed.

ONEWKEY specifies that the NEWKEY option is to be
overridden. That is, when updating a record, if the key
exists, rewrite the record even though the NEWKEY flag is
set to 1; if the key does not exist, write a new key even
though the NEWKEY flag is set to 0.

PRI, value (see "M:READ", above).
BTD,value (see "M:READ", above).
KEY, [¥] address specifies the address containing the key

(identifier) associated with the record to be written. The
first byte of the key contains the length of the key, in bytes.
This option is valid only for keyed files.

NEWKEY specifies that the KEY (see above) is a new
key in the file table. That is, the key of the record to be
written must not already exist; if it does exist, an abnormal
return is given. (See Appendix H.) I

Calls generated by the M:WRITE procedure have the form

CALI1,1 address
where
address points to word O of the FPT shown below.

Data Record Manipulation 67

where

dcb name specifies the name of the DCB through
which the data record was read.

KEY,address specifies the address of the character
string comprising the key that identifies the data
record. The first byte of the key specifies the
number of bytes in the key. If KEY is omitted, the
last record read exclusively through the specified
DCB is released.

Calls generated by the M:RELREC procedure have the form
CALl,1 address

where

address points to word 0 of the following FPT:

word 0

word 0
* '
X | 0—————0 DCB address

0 Vv 2 314 5 6 718 9 10 1111213 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 1
PlPp PR d £EF lo—
1|203][55]8[7° 0 3021|0—0
0 1 2 314 5 6 718 9 101111213 14 15116 17 18 19120 21 22 23124 25 26 27128 29 0 31
optional
*

0 0 Error address
I B B R S R RN T RN Y B) R VAN R A T T Y R RN 7 R I A VO
optional
*10 0 Abnormal address
0 1 2 314 5 6 718 9 10 11213 14 \Si‘é 17 18 19120 21 22 23124 25 26 17?2329303]
optional
*

0 0 Buffer address

* X'oc! 0——0 DCB address

0 17 2 314 5 6 718 9 10 11172 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

G 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 1
Rlo 0
B B B S S B T R AT P b L YR TR LR IR A R T
optional
*

0 0 Key address

optional
* .
0 0 Buffer size
0 1 2 314 5 o 718 9 10 1NT12 13 14 15116 17 18 19120 21 22 237124 25 26 27128 29 30 31
optional
*
0 0 Key address
0 1 2 314 5 & 718& 9 10 11112 13 14 15116 17 18 Wi?ﬁ 21 22 23124 25 26 27128 29 30 31
optional
' 1y
*10
T
+ o D
0 1 2 214 5 & 718 9 10 NT12 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31
optional
*
0 0 | PRI value
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
Flag Significance (when set to 1)
f] The WAIT option has been specified.
f2 The NEWKEY option has been specified.
f3 The NEWKEY option is to be overridden.

RELEASE A DATA RECORD
M:RELREC The Monitor RELREC routine causes a data
record that has been read exclusively (see M:READ, above)
to be released for general use.

The M:RFLREC procedure call is of the form

M:RELREC [*] dcb name[, (KEY,address))

68 Data Record Manipulation

N R B oSS R T F PN R PR AT VA TN O TR P %) EZ R R TR A R R

DELETE A DATA RECORD

M:DELREC The Monitor DELREC routine causes a data
record to be deleted from a file. Note that the INOUT
(i.e., update) file mode function must be indicated in the
FUN entry of the DCB associated with the file (i.e.,
FUN = 4),

The M:DELREC procedure call is of the form
M:DELREC [*]dcb name[, (KEY, [¥] address)]

where

dcb name specifies the name of the DCB associated
with the file containing the record to be deleted.

KEY,address specifies the address of the key that
identifies the data record. The first byte of the
key specifies the number of bytes in the key. If
KEY is omitted, the last record read through the
specified DCB is deleted.

Calls generated by the M:DELREC procedure have the form
CALl,1 address

where

address points to word 0 of the FPT shown below.

word 0

* X'0D! 0-————0 DCB address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 77|L25 29 30 31
word 1

P

110 0
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
optional

*10 0 Key address

0 1 2 314 5 6 778 9 10 111213 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

TRUNCATE BLOCKING BUFFER

M:TRUNC The Monitor TRUNC routine causes the
Monitor to wait for the completion of any outstanding I/0
associated with a specified DCB and then to release the
blocking buffer (if any is reserved for the DCB) back to the
system for other use. The next READ or WRITE will be as-
signed a buffer automatically, as needed. This call applies
only to files on disc storage or labeled tape.

The M:TRUNC procedure call is of the form

M:TRUNC [*]dcb name

where

dcb name specifies the name of the DCB associated
with the blocking buffer to be released.

Calls generated by the M:TRUNC procedure have the form
CAL1,1 address

where
address points to word O of the FPT shown below.

where

dcb name specifies the name of the DCB associated
with the file (in disc storage or on labeled or un~
labeled magnetic tape).

N,value specifies the number of records to be skipped.
The default value is 1. :

ABN, [¥] address specifies the address of a user's
routine to be entered if any of the following ab-
normal conditions occur: end-of-file, end-of-tape,
beginning-of-file, beginning-of-tape. The num-
ber of records yet to be skipped is placed in the
ARS field of the associated DCB,

FWD specifies that skipping is to take place in the
forward direction,

REV specifies that skipping is to take place in the
reverse direction,
Calls generated by the M:PRECORD procedure have the form
CAL1,1 address

where
address points to word 0 of the FPT shown below.
word 0
1 xupt jo—o0 DCB address

0 1 2 374 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3)

word 1
A5l 0| filo—o
0 1 2 314 5 6 718 9 10 NT12 13 14 15116 17 18 19720 21 22 23124 25 26 27128 29 30 31
optional

' Number of records
*|0 0 to be skipped

word 0
* X'12! 0—o0 DCB address
0 1 2 3"7 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 1
0 0
0 1 2 314 5 & 7i8 9 10 11112 13 14 15116 17 18 19720 21 22 23124 25 26 27128 29 30 31
FILE MANIPULATION
POSITION N RECORDS
M:PRECORD The Monitor PRECORD routine causes a

specified number of logical records to be skipped in the di-
rection specified.
The M:PRECORD procedure call is of the form

M:PRECORD [*] dcb name, [(N,value)];
L (option)] [(option)]

L] 3;4 56 7|9 910 HH? 1314 I5II6 LR

of

optional

*10 0 Abnormal address

(R T S R S BN R T) MO E R PR AT 0N P) PR TR RS TR ST mf??%
Flag Significance
fl 0 means skip in the forward direction,

1 means skip in the reverse direction.

POSITION FILE

M:PFIL The Monitor PFIL routine causes the device
associated with a specified DCB to move to the beginning
or end of the current file (in disc storage or on labeled or
unlabeled magnetic tape).

The M:PFIL procedure call is of the form

(EOF)

. %*
M:PFIL [*] deb name, (BOF)

File Manipulation 69

where

dcb name specifies the name of the DCB associated
with the file that is to be positioned.

BOF specifies that the file is to be positioned at its
beginning.

EOF specifies that the file is to be positioned at its

end (for unlabeled magnetic tape, the file is posi-

tioned after the physical EOF mark).

Calls generated by the M:PFIL procedure have the form
CAL1,1 address
where

address points to word O of the FPT shown below.

word 0
* X"1c! 0——0 DCB address
D 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23|L24 25 26 27128 29 30 31
word 1
0 olflo—o
G 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23[24 25 26 27128 29 30 31
Flag Significance
f] 0 means position to the end-of-file.
1 means position to the beginning-of-file.
CLOSE VOLUME
M:CVOL The Monitor CVOL routine causes the Monitor

to terminate the reading or writing of data in the magnetic
tape reel currently dssociated with a specified DCB, and to
advance to the next reel of the data set.

Unlabeled tapes are positioned at the beginning of the next
input reel; output files are positioned at the beginning of a

new scratch tape (or output reel, if any). The DCB is closed

on the last reel.

For output files on labeled tape, an intra-volume sentinel
is written, an alternate tape selected, and a label block
written on the alternate tape.

For input tapes, the tape is advanced to the next reel of
the data set and the file currently open is located on the
next reel,

The M:CVOL procedure call is of the form
M:CVOL [*]dcb name

where

dcb name specifies the name of the DCB associated
with the volume to be closed.

Calls generated by the M:CVOL procedure have the form
CAL1,1 oddress

70 File Manipulation

where

address points to word 0 of the FPT shown below.

word 0

* X'03' 0——O0 DCB address

o7 2 314 5 6 718 9 10 N1z 13 14 15116 17 18 19120 21 22 23]24 25 26 27128 29 30 31

REVWIND

M:REW The Monitor REW routine causes the tape reel
associated with a specified DCB to be rewound if the DCB

is open, If the DCB is closed but had been opened previous-
ly to a labeled or unlabeled tape, the tape is positioned to
the beginning-of-file (labeled tape) or the beginning-of-
tape (unlabeled tape).

The M:REW procedure call is of the form
M:REW [*]dcb name
where

dcb name specifies the nome of the DCB associated
with the file that is to be rewound.

Calls generated by the M:REW procedure have the form
CAL1,1 address
where

address points to word O of the FPT shown below.

word 0

* X011 p———0

DCB address

01 2 3i4 56 718 9 10 HilZ 13 14 15016 17 18 19120 21 22 23(24 25 26 27128 29 X0 31

WRITE END-OF-FILE

M:WEOF The Monitor WEOF routine causes an end-
of-file to be written on the unlabeled tape associated with
a specified DCB, or EOD to be output to card punch or
paper tape punch, and a top-of-form to be output to the
line printer.

The M:WEOF procedure call is of the form
M:WEOF [¥] dcb name
where
dcb name specifies the name of the DCB associated
with the tape on which the egi-of-file is to be
written,
Calls generated by the M:WEOF procedure have the form
CAL1,1 address
where

address points to the word 0 of the FPT shown below.

word 0

* X'02' 0—0 DCB address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

SPECIAL DEVICE PROCEDURES

M:DEVICE The Monitor DEVICE routine 1s capable of
performing a variety of functions. The function performed
is determined by the keyword specified in the procedure
call. In all cases where the M:DEVICE call is not compat-
ible with the device associated with the specified DCB, the
call is ignored and no error or abnormal return is given.

(The DCB must be ASSIGNed to a DEVICE file.)
SET LISTING TABS

This call allows the user's program to set listing tabs for
designated columns of data output listed via a specified DCB.

The procedure call is of the form
M:DEVICE [*] dcb name, (TAB, value[, value] . ..)
where

dcb name specifies the name of the DCB associated
with the device on which data is to be listed.

TAB,value[,value] specifies the values (column
numbers) of desired tab positions. As many as 16 tab
values may be specified. The tabvaluesare stored
inthe TAB fields of the specified DCBin the sequence
in which they are specified in the procedure call.
A value of 0 specified at TAB; causes TAB; through
TAB](, to be set to 0, indicating null tabs.

Calls generated by the M:DEVICE (TAB) procedure have the
form

CAL1, 1

where

address

address points to word O of the FPT shown below.

word 0

* X'28' 0——o0 DCB address

0 1 2 314 5 6 718 9 10 121314 ISTM 17 18 19120 21 22 23124 25 26 27128 29 30 31

word |

il¢ 0

0 1 2 314 5 6 718 9 10 1112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 2

n t) ty

T I T e 7 T 0 B W B T R BIE T EBH S % om0

last word ki

tn-A3 tn—2 tn-| fn

0 1 2 374 5 6 718 9 10 11112 13 1415176 17 18 l?f?o 21 22 23124 25 26 27728 29 30 31

For this FPT, P} must be set to 1.

When the user's program requires tab spacing in the output

buffer, this is indicated inthe character stringby an EBCDIC
code of 05. The Monitor responds to such a code by insert-
ing the subsequent character (in the character string) at the
column indicated by TAB; (where TAB;_} was the most recent
tab setting used in formatting the current line).

Note that unless the value of TAB, < TAB;_., data may be
lost by being overlapped in the output buffer.

Example:

The procedure call

M:DEVICE M:LO, (TAB, 5, 20, 35)

would result in the following enrries in word 15 of the DCB
associated with the operator's console:

TAB1 =5
TAB2 = 20
TAB3 =35

TAB4 = unchanged

With these tab settings, the EBCDIC (hexadecimal) string
05C3D6D 3E4D4D540F105C3D6D 3E4DADS540F2

would result in the following typeout:

| |

(col.5) (col.20)
COLUMN 1 COLUMN 2

SKIP TO TOP OF FORM

This call allows the user's program to cause the printer or
typewriter associated with a specified DCB to skip to the
top of a new physical page. If the printer is already posi-
tioned at the top-of-form, no action takes place.

The procedure call is of the form

M:DEVICE [*]dcb name, (PAGE)

where

dcb name specifies the name of the DCB associated
with the device that is to be positioned.

PAGE specifies that the device associated with the
specified DCBis to skip to the top of the next page.

Calls generated by the M:DEVICE (PAGE) procedure have
the form

CALl1,1 address
where

address points to word O of the FPT shown below.
word 0

* X'04' 0—0 DCB address

O 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

SET NUMBER OF PRINTABLE LINES

This call allows the user's program to set the number of
printable lines per page, for the printer or typewriter as-
sociated with a specified DCB,

The procedure call is of the form

M:DEVICE [*¥]dcb name, (LINES,value)

Special Device Procedures 71

where

deb name specifies the name of the DCB associated
with the device for which the number of printable
lines is to be set.

LINES, value specifies the number of printable lines
per page. Amaximum of 32,767 lines per page may
be specified.

Calls generated by the M:DEVICE (LINES) procedure have
the form

CAL1,1 address
where
address points to word O of the FPT shown below.
word 0
* X'20! 0—0 DCB address
0 17 2 374 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 1

fo 0

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23724 25 26 27128 29 30 3

word 2
* . .
0 0| Printable lines per page
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3)

Py must be equal to 1.

SET LINE SPACING

This call allows the user's program to set the number of
spaces between lines printed by a typewriter or printer.
It is valid only if the VFC flag in the DCB is set to 0.

The procedure call is of the form

M:DEVICE [*]dcb name, (SPACE, value)

where

dcb name specifies the name of the DCB associated
with the device for which the line spacing is to
be set.

SPACE, value specifies the number of lines to be
spaced after printing a line (a value of either 0
or 1 results in single spacing).

Calls generated by the M:DEVICE (SPACE) procedure have
the form

CALI 1 address
where
address points to word O of the FPT shown below.

72 Special Device Procedures

word 0

* X'25' 0—0 DCB address

O 1 2 314 5 6 718 9 10 11112 13 14 15118 17 18 19120 21 22 23124 25 26 27128 29 %0 3}

word 1
b 0
0 1 2 314 5 & 7 ES T 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3
word 2
0 O|Line spacing

T 3T 55 718§ 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 %0 3

Pl must be equal to 1.

SPECIFY DIRECT FORMATTING

This call allows the user's program to specify whether or not
special record formatting is to be done by the Monitor.

The procedure call is of the form

. . (DRC)
M:DEVICE [*]deb name, {\iopec)

where

dcb name specifies the name of the DCB associated
with the device for which the special formatting is
or is not to be done.

DRC specifies that no special record formatting is
to be done for the device associated with the des-
ignated DCB (inhibit Monitor formatting).

NODRC specifies thet the normal mode of Monitor
formatting is to be reinstated for the device asso-
ciated with the designated DCB.

Calls generated by the M:DEVICE(DRC/NODRC) procedure
have the form

CALI,1 address
where

address points to word O of the FPT shown below.
word 0
* X'0B' 0——0 DCB address
R R b e S S T N YD N R TR STV B B R TR PR 5L F TR LR T T F U
word 1
0 o|hlo—o0
T T T T s e s o hz 1316 17 18 BB 2 22 DI B % 1w B P 3

Flag | Significance

f 0 means Monitor formatting is not to be
inhibited.

1 means Monitor formatting (for card and paper
tape devices) is to be inhibited.

SPECIFY VERTICAL FORMAT CONTROL

This call allows the user's program to specify whether or not
the Monitor is to interpret the first character of each output
image as a vertical format control character.

The procedure call is of the form

(VEC)

. * ‘
M:DEVICE [*] dcb name, ((NOVEC)|

where

dcb name specifies the name of the DCB associated
with the typewriter or line printer that is (or is not)
to operate under vertical format control.

VFC specifies that the user has inserted a control
character in his print image.

NOVFC specifies that the user has not inserted a

control character in his print image.

Calls generated by the M:DEVICE(VFC/NOVFC) procedure

have the form

CALI, 1 address
where

address points to word O of the FPT shown below,
word 0
* X'05! 0—0 DCB address
T 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 1
0 o|flo—o
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19720 21 22 23124 25 26 27128 29 30 31

Flag | Significance

F‘ 0 means no vertical format control is to be
performed.

1 means vertical format control is to be
performed.

SPECIFY PAGE COUNT

This call allows the user's program to request that the Mon-
itor count output pages, and also to specify in which column
this count is to be listed on the output device. The page
count will appear at the top of the form, if no header has
been specified (see "Specify Output Header", below); other-
wise, the page count will appear on the same line as the

header. The count will be expressed in decimal form, from
1 to 9999.

The procedure call is of the form

M:DEVICE [*] dcb name, (COUNT, tab)
where

dcb name specifies the name of the DCB associated
with the typewriter or printer on which the page
count is to be listed.

COUNT, tab specifies the column in which the most
significant digit of the page count is to be listed.
The value of "tab" must be appropriate for the
physical device associated with the DCB.

Calls generated by the M:DEVICE (COUNT) procedure
have the form

CAL1,1 address
where

address points to word 0 of the FPT shown below.

word 0

* X'24' . |0——0 DCB address

0 v 2 314 5 6 778 9 10 112 13141506 17 18 19120 21 22 23124 25 26 27728 29 30 31

word 1

Rlo 0

0 1 2 314 5 6 718 9 10 nTi2 131415016 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 2

*10 O [Leftmost column of page count

[R I R S BN 1 B PR NP ST TR B B O TR ¥ X 67 B R 30 7 LM Ol T

Py must be equal to 1.

CHANGE OUTPUT FORM

This call allows the user's program to request a change in
the form used on the output device (card punch, typewriter,
and line printer). The Monitor informsthe operator of the
change that is to be made. When the operator has changed
the form, he informs the Monitor by an appropriate key=-in.

The procedure call is of the form

M:DEVICE [*] dcb name, (FORM, [*] address)

where

dcb name specifies the name of the DCB associated
with the device for which the change of form is to
be requested.

FORM, [*] address specifies the address of the mes-
sage (that is to be output to the operator) concerning
a change of cards or paper. The first byte of the mes-
sage must specify the number of bytes in the message.

Special Device Procedures 73

Calls generated by the M:DEVICE (FORM) procedure have
the form

CAL1,1 address

where
address points to word O of the FPT shown below.

word 0

word 1

* X121 0—0 DCB address

T TSt T e T T I T A e v T8 Bl 3T 2 B3 5 B 5% ® % 3

word |

flo 0

5 1 2 314 5 6 718 ¢ 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 2

H f Ef
110 OB 1|0—0
0 1 2 314 5 6 718 9 10 1112 13 14 15116 17 18 19120 21 22 23124 25 26 7128 29 30 3
optional
0 0 Maximum record size
0 1 2 3il 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
Flag Significance
f 0 means BCD mode.

1

1 means binary mode.
f 0 means no FBCD.
1 means FBCD.

f 0 means unpacked.

1 means packed.

*0 0 Message address

0 1 2 314 5 & 7?8 T 70 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

P1 must be equal to 1.

CHANGE DEVICE MODE OR RECORD SIZE

This call allows the user's program to change the mode of
the device associated with a specified DCB, or to change
the logical record size entry (RSZ) in the specified DCB.

The procedure call is of the form

M:DEVICE [*]dcb name, (option)

where

dcb name specifies the name of the DCB associated
with the device for which the change in mode or
record size is to be made.

The options are:

BCD specifies the EBCDIC mode.

SPECIFY BEGINNING COLUMN

This call allows the user's program to specify that all data
output by the card punch (EBCDIC only), typewriter, or line
printer associated with a designated DCB is to begin in a
specified column.

The procedure call is of the form
M:DEVICE [*]dcb name,(DATA, tab)
where

dcb name specifies the name of the DCB associated
with the output device for which the beginning
column is to be specified.

DATA, tab specifies the column in which the first
character of the data output is to appear.
Calls generated by the M:DEVICE (DATA) procedure have
the form

CAL1,1 address

BIN specifies the binary mode. where
FBCD specifies FORTRAN BCD conversion. address points to word O of the FPT shown below
PACK specifies the packed binary mode.
word 0
UNPACK specifies the unpacked binary mode.
SIZE,value specifies the maximum record size, in |ox23 0 0 DCB address
byfes. D 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
Calls generated by the procedure have the form word 1
CAL1,1 address li‘ 0 0
where O 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
address points to word O of the FPT shown below. word 2
word 0 0 0|Data tab col.
. 22 0 0 ¥ T T W T T RS T R R T R B R E B DB B B
122! E— DCB address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23[24 25 26 27128 29 30 31

74 Special Device Procedures

P] must be equal to |

SPECIFY OUTPUT HEADER

This call allows the user's program to specify an output
header (heading) that is to appear at the top of each form.

The procedure call is of the form
M:DEVICE [*] dcb name, (HEADER, tab, [*] address)

where

dcb name specifies the name of the DCB associated
with the device on which the header is to appear.

HEADER, tab, [*] address specifies the column num-
"ber (tab) at which the header is to begin, and the
address of the header. The first byte of the header
must specify the number of bytes it contains.

Calls generated by the M:DEVICE (HEADER) procedure have
the form

CAL1,1 address

where

address points to word O of the FPT shown below.

word 0

* X'26' 0————0 DCB address

01 2 Jil 5 6 718 9 10 Ili|2 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

SEQ(, 'id] specifies that sequence numbers are to
be punched in columns 77-80 of each card. Ifa
user-defined 'id' is specified, it will be punched
in columns 73-76 of each card.

Calls generated by the M:DEVICE (SEQ) procedure have the
form

CALIL address
where

address points to word 0 of the FPT shown below.

word 0

* o X'27! 00— 0 DCB address

0 v 2 314 5 6 718 9 10 nl1213 14 15116 17 18 19120 21 22 23124 25 26 27128 25 30 31

word 1

flo 0

01 2 3i4 5 6 778 9 10 2 1314 15016 17 18 IﬁZOZI 22 23124 25 26 27128 29 30 31

optional

Identification characters

word 1

PIP

1120 0
01 2 3 Tl 5 6 718 9 10 11832 13 14 15116 17 18 19120 21 22 23724 25 26 27128 29 30 31
word 2

*|

0 0 Header address

0 1 2 314 5 6 718 9 10 11112 13714 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 3

*0 0| Header tab

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Py and Py must be equal to 1.

SPECIFY CARD PUNCH SEQUENCING

This call allows the user's program to specify that sequence
numbers are to be punched on cards output by the card
punch associated with a designated DCB.

The procedure call is of the form
M:DEVICE [*]dcb name, (SEQ[,'id"])

where

deb name specifies the name of the DCB associated
with the card punch that is to output cards with
sequence numbers.

T Tz 31 3 s 7 T 0T B R R T B R T R Ba R T e o

NUMBER OF LINES REMAINING

This cali allows the user's program to determine the number
of printable lines remaining on a page.

The procedure call is of the form
M:DEVICE [*] dcb name (NLINES)
where
deb name specifies the name of the DCB associated
with the device for which the number of lines re-

maining on a page is to be obtained.

NLINES keyword designating what the procedure
call is requesting.

Calls generated have the form
CAL1, 1 address
where

address points to the FPT shown below.

o X'2A' |0———0 deb

0 1 2 314 5 5 718 9 10 1111213 14 15116 17 18 I;'EZ\ 22 23124 25 26 27128 29 30 31

Upon return to the caller, SR1 contains 0 if not applicable;
otherwise, it contains the number of lines remaining on the
current page.

Special Device Procedures 75

CHECK CORRESPONDENCE OF DCB ASSIGNMENTS Calls generated have the form

This call allows the user's program a means of determining

if two DCBs have been assigned to the same physical device. CALI, 1 address

The procedure call is of the form where
M:DEVICE [*] dcb] name, (CORRES, dcb2 name) address points to the FPT shown below
where word 0
dcb, name specifies the name of a DCB which is « xm o 0 . d b‘
to be checked for assignment correspondence with o]
dcbzname. T 1 2 314 5 6 718 9 10 11112 13 14 15118 17 18 1 2%
word 1

CORRES, dcd, name specifies the name of a DCB
which is to be checked for assignment correspond-

e |0 0 dcb
ence with dcb] name. __n_%A___m._J
0 | 2 314 5 6 7218 9 10 1112 13 14 15116 17 18 19120 21 22 23 25 26 77 2 3 3

76 Special Device Procedures

6. DEBUG PROCEDURES

SNAPSHOT DUMPS

The user's program may employ debug procedure calls to
determine whenor if a conditional snapshot dump is to occur.
The functions performed with such procedure calls are the
same as those for the corresponding control commands (see
Chapter 2).

Debug procedure calls are of the form

M:mnemonic ‘comment', (from[, to]). ..
where
mnemonic may be any one of the following: SNAP,

SNAPC, IF, AND, OR, COUNT.

‘comment’ may be from 1 to 8 alphanumeric char-
acters.
from[, to) see "SNAP", Chapter 2.

Calls generated by the M:SNAP procedure have the form

CAL1,3 address
where

address points to word O of the FPT shown below.
word 0

X'00' 0 0
0 1 2 374 5 6 718 9 10 nl12 13 14 15116 17 18 ?9i20 21 22 23124 25 26 27128 29 30 31
word 1
*0 0| First address to be dumped
0 1 2 374 5 6 718 9 10 1111213 1415116 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 2
*10 0| Last address to be dumped
0 1 2 314 5 6 718 9 10 11213 14 1516 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 3

First four characters of comment
0 1 2 314 5 6 718 9 10 N2 13 14 15116 17 18 l9i20 21 22 23124 25 26 27128 29 30 31

word 4

Last four characters of comment

0 v 2 374 5 6 778 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 5

Code for "NOP"

0 1 2 314 5 6 718 9 10 1112 13 14 I5ilé 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 6

Code for "BCR, 0 Z+1" where Z is loc. of CAL1,3

0 v 2 314 5 6 718 9 10 1N1112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Calls generated by the M:SNAPC procedure have the form

CALY, 3 address
where

address points to word 0 of the FPT shown below.
Word 0

xX'on 0 i 0

I B RN B R T R E R O) R VA R R T P Y W IR TR T BT T

Words 1 through 6 of the FPT have the same form as shown
above for the M:SNAP procedure.

word 7

*10 0 Flag address

0 1 2 314 5 6 718 9 10 11112 13 14 15176 17 18 19120 21 22 23124 25 26 27128 29 30 31

Calls generated by the M:IF procedure have the form

CALI, 3 address
where

address points to word O of the FPT shown below.
word 0

X'02! 0 0

0 1 2 374 5 6 718 9 10 NT12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 1

+

* Instruction to load |} data into register 0
[}
0 1 2 31475 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 2

* Instruction to load |9 data into register 0

0 1 2 374 5 6 7i8 9 10 11112 13 14 15716 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 3

Instruction to branch if specified relation (r) is true
0 1 2 314 5 & 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

r Instruction

GT BCS, 1 0
LT BCS, 2 0
EQ BCR, 3 0
GE BCR, 2 0
LE BCR, 1 0
NE BCS, 3 0

Debug Procedures 77

word 4

0 1 2 314 5 6 718 9 10 1111213 14 15116 17 18 I9l202\ 223 2452627'2829.'93!

word 5

word 1

Binary number to start count
0 1 2 314 5 & 718 9 10 1101213 14 15116 17 18 !9i20 21 22 23124 25 26 27128 29 30 31

word 2

NOP instruction
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23'2425 26 27128 29 0 31

word 6

Code for "BCR,0 Z+1" where Z is loc. of CALI1,3

Binary number to end count

0T 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3}

word 3

Binary number specifying step intervals
0 1 2 334 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27i29 2 30 3

Calls generated by the M:AND procedure have the form
CAL1,3 address
where

address points to word 0 of the FPT shown below.

word 0
X'03' 0

0 1 2 314 5 6 718 9 \Ollil2I3\4|5|l617IOI9|202122231425265l2‘29m31

Words 1 through 7 of the FPT have the same form as shown
above for the M:IF procedure.

Calis generated by the M:OR procedure have the form
CAL1, 3 address
where

address points to word 0 of the FPT shown below.

word 0
X'04' 0

T 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 2223!24 252627'2!291)3!

Words 1 through 7 of the FPT have the same form as shown
above for the M:IF procedure.

Calls generated by the M:<COUNT procedure have the form
CAL1,3 address

where
address points to word 0 of the FPT shown below.

word 0

X'05' 0 0

O 1 2 314 5 6 718 9 10 11012 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

78 Monitor Error Control

word 7 word 4
*0 0 Flag address 0 0
T T 7 317 5 6 718 5 1 R RO AL Wt ol 26 2 0 07 2 314 5 6 718 9 10 11112 13 14 15118 17 18 19120 21 22 23124 25 26 27128 29 20 3i

word 5

NOP instruction
Tty T T R R T R Rt T E Bt s B T E T

word 6

Code for "BCR, 0 Z+1" where Z is loc. of CAL1,3

Tt T e TR T R T T N B T W BRI R BN B % D8 B %3

word 7

*10 0 Flag address

0 1 2 314 5 6 718 9 0 liil? 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 20 31

MONITOR ERROR CONTROL

M:MERC The Monitor MERC routine enables the user's pro-
gram to specify an error or abnormal code (see Appendix H)
in SR3 and have the Monitor handle it, overriding any user's
abnormal or error routines that might otherwise apply.

This call can also be used to return control to the Monitor
from a user's error or abnormal routine if that routine can
handle only certain codes. If a user's error or abnormal
routine is called to handle an abnormal or error condition
beyond its capability, it must leave the contents of com-
munication register SR3 intact and call the MERC routine to
handle the condition.

The M:MERC procedure call is of the form
M:MERC

Although no parameters are specified in this call, communi-
cation register SR3 must contain the error or abnormal code
(in byte 0) when MERC is entered. For 1/O errors or abnor-
mal conditions, the address of the associated DCB must also
be contained in SR3, in bytes 1-3 (right-justified). This
information is placed in SR3 by the Monitor, when an error
or abnormal condition is detected. When byte 0 of SR3 con-
tains 4014 - FFy4, the current job is aborted and the message

I/O ERROR xx is logged on OC and LL. It should also be

noted that SR1 will contain the address*+1 of the offending
CAL when the error or abnormal address is entered. It must
also be preserved so that MERC can return properly.

Calls generated by the M:MERC procedure have the form

CAL1, 2 address

where

address points to word 0 of the FPT shown below.
word 0

X'10' 0 0
01 2 3i4 5 6 718 9 10 111121314 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31

1. USE OF TEMPORARY STORAGE BY LIBRARY ROUTINES

All standard system library routines are entered by a BAL
instruction, using current general register 11 as a link reg-
ister. Arguments are passed to the library routine through
current general registers 6 through 9. Current general reg-
ister 0 contains a pointer to a Task Control Block (TCB)
established and maintained by the Monitor. The first two
words of a TCB comprise a stack pointer doubleword, and
the subsequent words contain additional information used
by the Monitor to control the current task.,

The library routine can make register contents available for
use by pushing them into the temp stack set by the Monitor
for the current job. Other kinds of temporary data also can
be saved in the temp stack (e.g., trap return information).

One means of storing data in the temp stack is to push the
data into the stack, by means of push instructions (PSM and
PSW); another is to set aside a block of storage in the stack,
by using an MSP instruction, so that data can then be stored
in the block by the use of store instructions.

All storage used in the temp stack must be released before
the associated routine exits. Storage can be released by a
pull (PLM or PLW) or MSP instruction. All registers
except those used to return output information must remain
unchanged. Note that all push, pull, and MSP instructions
must be done indirectly, through current general register 0.

Examples of two different methods of placing data in tempo-
rary storage are given below,

RO EQU 0

R6 EQU 6
LCI 4
PSM, R6 *RO

The preceding example causes the contents of current
general registers 6, 7, 8, and 9 to be pushed into the
temp stack.

R7 EQU 7
BLOCK1 EQU 100
LI, Ré BLOCK]
MSP,R6 *RO
LW,R7 *RO

The preceding example reserves a 100-word block in the
temp stack. The address of the top of the block is con-
tained in R7. When the block has been reserved, data
can then be stored in it, using the method illustrated
below.

R3 EQU 7
BLW1 EQU -99
STW,R3 BLW1,R7

In the example given above, the contents of current general
register 3 are stored in the first word of the reserved block.

The area reserved for use by the temp stack is established

by a LOAD command TSS specification or is set at 512 words
by default.

Use of Temporary Storage by Library Routines 79

8. PREPARING THE PROGRAM DECK

The following examples show some of the ways that program
decks may be prepared for Monitor operation. Standard
system assignments are normally assumed.

SYMBOLIC DECK TO PROGRAM LISTING

Next Card

”Sym olic Program Unit
r! Processor Name SI, LO

[1 sTDLB SI,CRAOI

! JOB 1234,USER,5

As indicated in the example, a program listing can be
obtained even though no binary (object) output is requested.
If an explicit assignment for operational label SI had not
been specified via a STDLB command, the standard system
assignment would have applied by default (as with opera-
tional label LO in this example).

In this and subsequent examples of program decks, the "next
card" could be any appropriate control command card such
as JOB or FIN.

COMPRESSED DECK UPDATE

Next Card

Compressed Program Unit

rSymbolic Correction
r! Processor Name SI,CI,CO,LO

1 JOB 1234,USER,5

This example shows how a compressed symbolic deck can
be updated using a previously output compressed deck and
uncompressed corrections as input.

80 Preparing the Program Deck

SYMBOLIC DECK TO BINARY DECK

Next Card

' Symbolic Program Unit
[| Processor Name SI,BO
| 1 stoi BO,CPcO3
| JOB 1234,USER,5

This example shows how a binary deck can be output using
an uncompressed symbolic deck as input. A deck produced
in this way will be in standard 10 070 object language and
may be loaded from a card reader, subsequently, as a binary
object module.

SYMBOLIC DECK TO BINARY FILE ON DISC

Next Card

[” Symb”c;lic Proéram Unit
I Processor Name SI, LO,BO
1 ASSIGN M:BO,(FILE, ABC)
! JOB 1234, USER,5

This example shows how a binary (object) file on disc can be
formed from the output of a processor. The disc file thus
formed may be accessed thereafter by means of the file name
ABC. The example specifies that a program listing is to be
output also; but this is optional, since only the binary out-
put is retained in disc storage.

The file becomes a permanent user's file. Thatis, itisplaced
in the disc area allocated to permanent storage, since all
processor output is treated by the Monitor as a SAVE file
(see "ASSIGN", Chapter 2).

PROCESS, LOAD, AND EXECUTE

This example shows how a program can be input in symbolic
form, then processed, loaded, and executed under Monitor
control. Ifassembly andrun-time are in excess of 15 minutes,

'Next Card

IDcfo ADec k

l IDATA

l!PMD (LOC, LOC+3E7)

IRUN (LMN, SAMPL), (START, LOC)

ILOAD (LMN, SAMPL), (GO)

Symbolic Program Unit

[1Processor Name s1, LO, GO, CO

1 IEMG (ENTER)

| IASSIGN M:EI, (FILE, XYZ)

[IASSIGN F:OUT, (DEVICE, LO)

[ITITLE SAMPLE JOB

FSTDLB EI, PRAO1

ILIMIT (TIME, 15)

1JOB 1234, USER, 5

the job is aborted and the user logged out. The operational
label EI is assigned to a paper tape reader, device number
01 on channel A. The title "SAMPLE JOB" is printed at
the top of each page of the assembly listing.

The user's DCB F:OUT is assigned to the LO device (norm-
ally a line printer) and file XYZ is input from the EI device
(in this example, a paper tape reader).

The processor accepts symbolic input and produces com-
pressed symbolic output as well as binary object code
and a program listing on the system devices to which
such functions are currently assigned (by standard sys-
tem assignments).

The name "SAMPL" is associated with the load module,
and no load map is output. After being loaded into
core storage, the program is executed beginning with
the instruction at symbolic location LOC. If an error is
detected during execution of the user's program, a post-
mortem dump is taken of the first 1000 words of the
program.

CREATE FILE FOR USE BY ANOTHER PROGRAM

This example shows how an output file (SHARE) can be

created by one executing program (WRITE) in a user's job
and then used by another executing program (READ) in the
same job,

l Next Card
[IRUN (LMN, READ)
[1ASSIGN M:EL, (FILE, SHARE)
[IRUN (LMN, WRITE)
[1(SAVE)
[TASSIGN M:EO, (FILE SHARE), ;

Preceding Card

Preparing the Program Deck 81

UPDATE FILE, OBJECT MODULE, AND
LOAD MODULE OF USER’S PROGRAM

l Next Card
[IRUN (LMN, PROG)
[1(eF,ROM)
[1LoAD (LMN, PROG),(PERM),;
IMETASYM SI,CO, BO, Cl

[1SOURC2), (SAVE)
[1ASSIGN M:CO, (FILE,;
— 1ASSIGN M:SI, (DEVICE, C)
[1ASSIGN M:CL, (FILE, SOURC1)
[1(savE)
[1ASSIGN M:BO, (FILE,ROM), ;

Preceding Card

This example shows how a user can accomplish the following:

1. Update a symbolic file (SOURC1 becoming SOURC2)

in the user's library.

2. Create a new relocatable object module (ROM) and
place it in the user's library.

3. Execute the program so formed.

EXECUTE PROGRAM FROM USER’S LIBRARY,
USING DEBUG FEATURE

| Next Card
| 1SNAP LOOP, 1,(TEMP XTEMP)
| RUN (LMN, PROGRAM)
Preceding Card

This example shows how a program (PROGRAM) from
the user's private library can be executed, and a snap-
shot dump of a specified program area (from TEMP to
XTEMP) taken.

82 Preparing the Program Deck

CREATE AND EXECUTE TEMPORARY PROGRAM

I Next Card
I IRUN (LMN, NOSAVE)

I Binary Deck
[ILOAD (LMN, NOSAVE)

Preceding Card

This example shows how a user can create a temporary load
module (NOSAVE) that can be executed but is released at
the end of the job.

CREATE A PRIVATE FILE

Next Card

IRUN (LMN, WRITE)
1(SAVE), (PASS, SECRET)
IASSIGN M:EO, (FILE, JOBY),;
1JOB 123,HAS, 4

This example illustrates how a user can create a private
file (JOBI) having a password (SECRET). It assumes that a
user's program (WRITE) capable of writing into the file
(e.g., via an M:WRITE procedure call referencing the
M:EQ DCB) has been loaded previously.

CREATE A PRIVATE FILE HAVING
PRIVILEGED READ ACCESS

I Next Card
[IRUN (LMN, WRITE)
[1(sAVE), (READ, 122), (PASS,PSST)
[1ASSIGN M:EO, (FILE, PRIVATE), ;

1JOB 123,SCAN, 4

Here, a user creates a private file (PRIVATE) having a
password (PSST), specifying also that other jobs with ac-
count number 122 may read the file (but may not write
on it).

READ A PRIVATE FILE HAVING PRIVILEGED
READ ACCESS

l Next Card
[IRUN (LMN, READ)
| 1(PASS, PSST)
[1ASSIGN M:EL(FILE,PRIVATE,123),;
1JOB 122, HEY,3

This illustrates how a user can read a private file (PRIVATE)
having a password (PSST) for which privileged read
access has been established. Note that the account
number associated with the file (123) must be given as well
as a password.,

CREATE A RESIDENT FOREGROUND TASK

| Next Card
| ILOAD (LMN,RESID1), (PERM),(GO)
IMETASYM CI, LO, GO
| [1s0B :SYSRT, FORE, 7

This example shows how a user can create a resident fore~

ground task (RESIDENTI1) by loading from the GO file,

LOAD A RESIDENT FOREGROUND TASK FOR EXECUTION

Next Card
I(INT, 6D)
IRUN (LMN, RESIDENTI),;

1JOB :SYSRT, FORE, 7

V-

Here, a user obtains a foreground task (RESIDENT1) and
connects it to an interrupt (6D). The task must have been
declared resident at System Generation time or it will not
be recognized by the Monitor as a resident foreground task.

CONNECT A NONRESIDENT FOREGROUND
TASK FOR EXECUTION

Next Card
I(INT, 4D)
IRUN (LMN, NONRES1), ;
1JOB :SYSRT, FORE, 6 \

This example shows how a user can obtain a nonresident
foreground task (NONRES) and connect it to an interrupt
(4D). The task must have been declared nonresident at
System Generation,

Preparing the Program Deck 83

9. REAL-TIME OPERATIONS

This chapter gives a detailed description of how to generate
a real-time system, how the foreground tasks are created,
loaded, and connected to the interrupts, and what facilities
the system provides for the foreground tasks.

The Monitor system provides the capabilities for handling
resident, nonresident, and background tasks concurrently.
The priority of a foreground task is determined by the pri-
ority of its associated interrupt. The lower the interrupt
location the higher the priority of the task.

Resident tasks may be connected to any external interrupt,
hardware clock, or the clock dedicated to the Monitor.

A common data area called foreground common is allocated
in resident memory, if requested at System Generation time
(see "System Generation", Chapter 10). This area is ac-
cessable to all operating foreground tasks but is protected
from background tasks.

Dedication of /Odevices and register blocks to foreground
tasks and the ability to connect a resident task or one of its
subroutines to the CAL3 or CAL4 trap locations is also
provided.

GENERATION OF A REAL-TIME SYSTEM

System Generation provides each installation the means of
defining the real-time characteristics of the system. These
specifications may be stated by means of control commands.
If the control commands fail to provide for specific needs,
the installation may supply its own real-time initialization
module.

The control command specifications include: memory and
disc allocation, dedication of devices, and specification of

the attributes of each real-time task.

The following installation control commands (described in
Chapter 10) may be used for this purpose:

:DEVICE
:RESERVE
:INTS
:INTR
:TIME

This discussion is confined to those options or specifications
that concern the real-time user.

:DEVICE
This command is used to introduce peripheral units and their

handlers into the system. It also allows for the dedication
of a device to foreground tasks. The management of a

84 Real-Time Operations

device dedicated to foreground usage is entirely under the
control of the foreground users.

The foreground user who wishes direct access disc storage
may use this command to specify the amount desired. The
disc is divided into four areas, as discussed below.

The system area contains the disc bootstrap, initialization
routines, and the absolute overlays of the Monitor.

The file area contains all permanent and scratch files. In-
cluded in this area are such things as processors, resident
and nonresident real-time tasks, user files, user checkpoint
storage, etc.

The symbiont area contains all symbiont input and output
files.

The backbround checkpoint area contains tasks that have
been checkpointed by the Monitor procedure call M:SBACK.

The disc tracks not specifically allocated to the above
may be used by foreground tasks. The management of

the foreground area is entirely the responsibility of the
real-time user.

{RESERVE

This command has several keywords that apply to the gener-
ation of a real-time system.

The keywords FIPOOL and FFPOOL specify the number of
file index buffers and file blocking buffers to be allocated
for use by resident foreground tasks. If specified, these
buffers are allocated in the resident Monitor. They must be
specified if any resident foreground task uses the Monitor-
supplied services for files or labeled tape.

File index buffers are used by the Monitor in locating
user files, and for maximum efficiency there should be one
allocated for each file opened. File blocking buffers are
used by the Monitor to provide for blocking and unblocking
of user's records. For maximum efficiency, each open file
should have a blocking buffer. Buffer assignment is entirely
up fo the Monitor. The blocking buffers are 512 words in
size, whereas the file index buffers are disc sector size
+ 12 words. Nonresident foreground tasks are allocated buf-
fers dynamically for Monitor-serviced files and labeled
tapes.

The RESDF keyword is used to specify, in decimal, the
size of the resident foreground area. This area is allo-
cated starting from the foreground common area down, in
multiples of 512, If no foreground common is requested,
the resident area is allocated from the high end of core
down (see Figure 2). The area not specifically allocated

Low end of core storage

Resident portion

FIPOOL &FFPOOL buffers
for resident foreground tasks

’ of Monitor

T » Monitor area

[Monitor overlay
area

Background area

page boundary

High end of core storage

Resident foreground area

page boundary

Figure 2. Real-Time System Memory Layout

to the Monitor or to the resident foreground task is avail-

able for batch and nonresident foreground operations. Non-

resident foreground tasks operate in the same memory area
as batch jobs.

This means that an occurrence of a nonresident interrupt
will cause the batch area to be checkpointed. If a non-
resident task is interrupted by another nonresident task of
higher priority, the lower-priority task will be checkpointed
and the higher-priority task loaded. Upon completion of
the higher-priority task, the environment for the lower-
priority task will be reinstated and control will be returned
to the point of interruption.

HINTS

This control command allows interrupts to be connected to
tasks that are incorporated as part of the Monitor. This is
accomplished by specifying the interrupt location to which
the task is to be connected and the entry point in the task.
An entry point may be an external label or an absolute lo-
cation, If it is an external label, System Generation will
generate the necessary external reference to that label. This
reference will be satisfied by including in the Monitor a
relocatable binary module with the appropriate external
definition.

Generation of a Real-Time System 85

The DIRECT option specifies that the interrupt is to be con-
nected directly to the task; i.e., the Monitor's interrupt

service routine is not entered when the interrupt occurs,

but execution of the XPSD instruction in the interrupt loca-
tion gives control to the task at its entry point. If DIRECT
is not specified, the task is entered via the Monitor's in-
terrupt service routine which saves all of the registers and

other pertinent information.

The rblock option allows for the specification of a dedicated
register block. The management of any register blocks so
specified are the responsibility of the real-time user. No
checks are made to guarantee that a specified register
block exists or that it is not used by several tasks. In fact,
several tasks may use the same dedicated register block (but
different registers).

:INTR

This control command is used to specify the load module
names of all foreground tasks, whether resident ornonresident,
and the interrupt locations to be associated with each load
module. The priority of each task is determined by the pri-
ority of its associated interrupt location.

Each foreground load module is formed and connected under
Monitor control, as a batch job, by running with the ac-
count number :SYSRT.

The "number" :SYSRT is the only account number recognized
for real-time operations. The Monitor LOAD control com~-
mand is used to construct the load modules and the RUN
control command is used to connect a load module to an as-
sociated interrupt.

The same load module name may be associated with several
different interrupt locations. When the task is loaded for
execution via the RUN control command, the specified
interrupt is connected to the transfer address associated
with the load module, or the START address in the RUN
command, if specified. The other interrupts associated

with the task may be connected by the task itself with
the M:ARM or M:DISARM calls to the Monitor.

The RESDkeyword specifies that, when the named load mod-
ule is loaded for execution (via a RUN command), it will be
loaded into the resident foreground area. The keyword
MASTER may be specified for a task which is declared resi-
dent (RESD) or nonresident (NRESD). If a task is to be
loaded into the resident foreground area, and if the associated
interrupt is to be directly connected to the task, MASTER
must be specified. Tasks entered by the Monitor's interrupt
service routine are entered in the master mode if MASTER
is specified.

The keyword NRESD specifies that the named task is to be
nonresident. If NRESD is specified, the task may not be
entered directly.

A program that operates in the master mode may execute

privileged instructions; whereas, a task operating in the
slave mode may not execute any privileged instructions.

86 Creation of Foreground Load Modules (Tasks)

TIME

This control command may be used to specify resident fore-
ground tasks that are to be connected to the Monitor's clock
(location 5B16) via the Monitor's clock interrupt service
routine,

This command must be used to name those tasks that are to

be connected to the Monitor's clock. This special class of
tasks is treated as an extension to the Monitor. The time

interval in which they are to be entered is specified in the
RUN control command.

Tasks connected to the Monitor's clock are entered in the

master mode with current general register 11 containing the
return address to the Monitor. Registers 0-4, 12-15 may be
considered volatile by the foreground task.

INITIALIZATION MODULES

When structuring the Monitor (see Chapter 10), modules may
be included that will provide installation initializing func-
tions. These modules will be executed only when bootstrap
loading the system.

The Monitor initialization procedures exist in two separate
segments, as discussed below.

The first segment is responsible for initializing disc from
tape and only ocurs when bootstrapping from tape. Any mod-
ule included in the CLS segment of the Monitor between
files CLS and CLS2 on the tree, with an externally defined
entry point of USNRINIT1or USNRINIT2, will be included
in this phase and will be entered after the system has loaded
the disc. The system will transfer control to the entry point
in the master mode with general register 11 containing the
return address. [f both entry pointsare specified, USNRINIT2
will be entered before USNRINITI.

The second segment is basically responsible for initializing
the interrupts, CALs, and traps. This phase occurs on either
a tape or discbootstrap after all otherinitialization has been
completed. and before the system enters the "wait" state.
Any module included in the TYPR segment of the Monitor
with an externally defined entry point of USRINIT1 or
USRINIT2 will be included in this phase. Control will be
transferred to the entry point in the master mode with gen-
eral register 11 containing the return address. If both entry
points are specified, USRINIT2 will be entered before
USRINITI1. These programs may not call on the Monitor via
the normal procedure calls.

CREATION OF FOREGROUND LOAD MODULES (TASKS)

Foreground load modules are formed under Monitor control
by running a job under the account number :SYSRT. As stated
previously, :SYSRT is the account number given to real-time
operations,

The Monitor control command "LOAD" is used to direct the
loader to form a relocatable load module from relocatable
object modules. The resulting program may be entered into
the real-time account file,

The installation control command ":RESERVE" allows for the
specification of a resident foreground pool. If the foreground
load module is to use this pool, the FCOM option must be
specified on the LOAD control command. The keyword
"FCOM" instructs the loader to connect all program refer-
ences to F4:COM to the resident foreground common pool.
Both resident and nonresident foreground tasks may share this
pool. The management of this pool is entirely the responsi-
bility of the foreground users,

The LOAD control command may be used at any time to re-
place previously constructed foreground load modules.

TASK INITIATION

The RUN control command is used to connect a load mod-
ule to its associated interrupt. The interrupt specified

in the RUN command is connected to the transfer address
associated with the load module, or to the START ad-
dress specified in the RUN control command. Other in-
terrupts associated with the task may be connected by
the task itself with the M:ARM or M:DISARM procedure
calls, A RUN control command also may be used to re-
place a task that is "locked" (see "Operator Control of
Foreground Tasks"), '

The name of the load module (LMN,name) must correspond
to the name specified in either the INTRor TIME installation
control commands. The attributes of the load module are
specified at the time the system is generated. Any options
specified in the RUN control command must agree with the
System Generation specifications or the RUN control com-
mand will not be honored.

The INT option specifies the interrupt location to be asso-
ciated with the real-time program. If the named load mod-
ule has been designated as a resident foreground task, it
will be loaded into the resident foreground memory based
on the value specified in the BIAS option. If no BIAS is
specified, the resident foreground task will be loaded at the
bias specified when it was created. The management of
this resident foreground area is the responsibility of the
real-time user, and it is recommended that user obtain a
load map in order to maintain proper management of this
area.

If the named load module has been designated as a non-
resident foreground task, it will be loaded when the respec-
tive interrupt occurs.

The keyword DISABLE, which may be specified on the INT
option, states that the interrupt is to be armed and disabled;
otherwise, it will be armed and enabled. If INT is speci-
fied, neither TIMEnor CLOCK may be specified in the RUN

command.

The TIME option specifies that the specified task is to be
connected to the Monitor's clock (location X'58"). It will
be entered via the Monitor's clock interrupt service routine
(cyclically) in the time interval specified. Tasks connected
to the Monitor's clock are entered in the master mode with
the current general register 11 containing the address of the

return to the Monitor. General registers 0-4, 12-15 may
be considered volatile by the designated task.

If TIME is specified, the INT, CLOCK or DIRECT options

may not be specified.

The CLOCK option is used to connect a foreground task to
a specified clock. The "value" specifies the time interval,
in units of the clock's resolution, to which the clock is to
be set. The keyword DISABLE, which may be specified in
the CLOCK option, states that the designated clock is to

be armed and disabled. If not specified, the designated
clock will be armed and enabled. Tasks connected to a

clock are always connected directly.

If CLOCK is specified, neither TIME nor INT may be speci-
fied in the RUN command.

The DIRECT option specifies that the foreground task is to
be entered directly each time the associated interrupt or
clock becomes active. The MASTER and RESD options must
have been declared as attributes of the task at System Gen-
eration time in order for the option to be valid. The task
will be entered in the master mode and is responsible for
saving and restoring any machine environment it changes.

It is also responsible for returning control to the point at
which the interrupt occurred.

This option also allows for the specification of a register
block. If a register block is specified, the register block
will be enabled upon entry to the task.

If DIRECT is not specified, the task will be entered through
the Monitor's interrupt service routine and the Monitor will
automatically save and restore the machine environment,
including the interrupt location,

CPERATOR CONTROL OF FOREGROUND TASKS

The primary function of the unsolicited key-ins is to aid in
controlling foreground tasks. The operator may command the
system to change the status of a known task by means of
these key=ins. A known task is one that has been created
by means of LOAD control command and initiated by means
of a RUN control command.

The form of the unsolicited key-ins is

IF name, m
where
name specifies the task name
m specifies the change of state or action desired.

The values of "m" recognized by the Monitor are shown in
the following example.

Task Initiation/Operation Control of Foreground Tasks 87

m Action desired

X (abort) Causes the specified task to be aborted
(forces control to be relinquished to the
Monitor), if currently active. If the task
is not active, the X key-in disarms the in-
terrupts upon their next occurrence. The
result of this key-in on an active task is
the same as though the task had executed
an M:XXX procedure call. The task may
be armed by an I key-in or an M:ARM pro-
cedure call,

S (suspend) | Causes the specified task to be suspended.
If the task is currently active, its associ-
ated interrupts will be disarmed when the
task relinquishes control to the Monitor.
If the task is not currently active, the in-
terrupts associated with the task will be
disarmed upon their next occurrence. If
the task is resident, its associated DCBs
will not be closed on exit. The task is
marked as being suspended and may be re-
armed by the C key-in.

L (lock) Causes the specified task's interrupts to be
disarmed and prohibits the task from being
initiated by an I key-in or an M:ARM pro-
cedure call. If the task is currently active,
it will be disarmed when the task relin-
quishes control to the Monitor. If the task
is not active, its associated interrupts will
be disarmed upon their occurrence. A
locked task may be initiated only by {RUN
control command. A locked task may be
unlocked by a C key-in. An unlocked
task may be armed by an I key-in or an
M:ARM procedure call.

C Causes the interrupts of the associated task
(continue) | to be armed and enabled, if the task has
been suspended. If the task is locked, the
lock condition is cleared (unlocked) and
the task may then be initiated eitherinter-
nally or externally.

I (initiate) | Causes the highest priority interrupt asso-
ciated with the specified task to be armed
and enabled. The primary function of this
key-in is to enable tasks that have been
armed and disabled by the RUN control
command or disarmed by means of the
M:DISARM, M:TERM, or M:XXX, proce-
dure calls or the X key-in. It may also be
used for initiating an unlocked task.

For foreground tasks that are connected to the Monitor's
clock via the :TIME installation control command, the
key-ins work differently. Only the S and I key-ins apply.
The I key-in causes the Monitor to give control to the task
(i.e., initiates the task) at the time interval specified and
the S key-in causes the Monitor to discontinue the task
(i.e., suspends the task).

88 System Procedures for Real-Time Foreground Tasks

SYSTEM PROCEDURES FOR RErAL-TIME
FOREGROUND TASKS

The following calls are available for foreground tasks only.
If a background program makes the call it will be aborted.

M:TRIGGER

If the specified interrupt is armed, the interrupt is then
triggered by aWD instruction, otherwise the trigger function
is not performed and the call is treated as an NOP.

M:DISABLE

If the specified interrupt is currently armed and enabled, it
is disabled via the WD instruction, otherwise the call is
treated as an NOP.

M:ENABLE

If the specified interrupt is armed and disabled, it is enabled,
otherwise the call is treated as an NOP.

M:DISARM

If the disarm call is also a connect function, the interrupt is
disarmed and then the connect function is performed. If the
disarm call does not involve a connect function and the in-
terrupt is currently armed, a flag is set in the interrupt table
entry for the interrupt location. The interrupt will then be
disarmed the next time the interrupt level is cleared after
becoming active. If the interrupt is already disarmed and a
connect is not specified, the call is treated as an NOP.

M:ARM

If the connect option is specified on the call, the interrupt
is first disarmed, then connected, and then armed. If the
connect function is not specified, the interrupt is armed if
disarmed. Otherwise, the call is treated as an NOP.

M:CAL
The specified CAL trap location is connected to the speci-

fied address. The PSD used by the XPSD instruction in the
trap location has the interrupt inhibits set.

M:DCAL
The specified CAL trap location is connected to the Moni-

tor's abort routine. If a task does a CAL for the specified
trap location, the task will be aborted.

M:SLAVE

The master-slave mode bit in the PSD is set to indicate the

slave mode.

fThese procedures are discussed in detail in Chapter 4 of
this manual.

M:MASTER

The master-slave mode bit in the PSD is set to indicate the
master mode if the MASTER option was specified for the task
at system generation time. Otherwise, the task is aborted.

M:SBACK

The entire background area is written to the foreground area
on the disc and the write locks are set to an access code of
10. The address of the first location in the background area
is returned in SR2 and the size, in pages, is returned in
SR1. A task may save the background area only once. If
the task does not restore the area with a M:RBACK call, the
area will be restored by the Monitor when the task exits.

M:RBACK
Restores the background area saved by the M:SBACK call.

If the task did not save the background area, the task will
be aborted.

M:TERM

The message " I TASK name TERMINATED" is output on the
OC device and all of the interrupts associated with the task
are disarmed. A terminated task may be reinitiated by the

I key-in or the M:ARM procedure call.

M:SXC

Causes control to be passed to the specified address for all
exits from the task, whether normal or abnormal. The type
of return is communicated in SR1. The type of returns are

as follows:
Eﬁf code
normal-M:EXIT X'00'
abort-M:XXX X'40'
error X'80'
termination-M:TERM X'20'
I/O error abort X'02!
trap error abort X'or

An unsolicited abort (X) key-in will abort the task without
passing control to the user's program even if it has requested
exit control.

M:RXC

This call resets the user's exit control so that all exits are
processed by the Monitor.

FOREGROUND RESTRICTIONS

MONITOR CALLS

If the following procedure calls are made by resident fore-
ground programs, the current call will override any previously
made by resident foreground programs.

M:STIMER
M:STRAP
M:TRAP
M:TTIMER
M:TRTN
M:INT

The following procedure calls will be ignored if made by
resident foreground programs:

M:CHKPT
M:RESTART
M:LDTRC
M:LINK
M:GL
M:GCP
M:FCP
M:GP
M:FP
M:SMPRT

Any resident task connected to a clock (Monitor's clock
included) may not make any calls on the Monitor for service
or perform any 1/O, because the clock interrupts have a
higher priority than the 1/O interrupt. Furthermore, a resi-
dent task connected to a clock must be connected directly.
For this reason, nonresident tasks may not be connected to
clock interrupts, since 1/0 is involved in loading the tasks
at the time of interrupt occurrence.

The following procedure calls will be ignored if made by
nonresident foreground programs:

M:CHKPT -
M:RESTART

FOREGROUND FILES

A real-time foreground task may not create new files, but
may open a file in any mode; similarly, it may not release
files, Foreground tasks are restricted to updating or read-
ing files from their own account and reading files from other
accounts, A batch job running under a foreground account
may prevent a foreground job from updating a file, If this
occurs, an abnormal code of 14 will be passed at the time
the foreground file is accessed.

A batch job running under a foreground account (foreground
batch) may add files to the foreground file directory, but in
so doing may prevent foreground jobs from obtaining access
to the directory. If this occurs, an abnormal code of 20
will be passed to the foreground task when the foreground
file is accessed. Care should be exercised in running fore-
ground batch jobs under foreground accounts. As a general
rule, a batch job should not be run under the foreground ac-
count for any reason (e.g., té create a file, initiate a fore-
ground task, etc.) if the file directory for the real-time ac~
count is in danger of being used by a foreground task. This
is because running a background job causes temporary files
to be created under the job account, which may prevent
foreground tasks from accessing the directory.

SAVING ENVIRONMENT AT INTERRUPT TIME

The interrupt service routine for resident tasks that are cen-
trally connected does the following:

1. Pushes all of the registers into the Monitor's temp stack.

2. Saves the contents of CJOB (location X'4F) and re-
places the contents with the address of RJIT (Job

Foreground Restrictions/Saving Environment at Interrupt Time 89

90

Information Table for resident tasks) in the address
portion and the priority of the interrupt in byte
zero.

Saves the run-status, 1/O error code, I/O error and
abnormal addresses, TCB address, and the link address
to the task's portion of the DCB name table.

If the task is an overlay task, the address of its tree
table is stored in the tree table address entry in RJIT.

Sets the run-status in RJIT to zero and stores the TCB
address and DCB name table link address in their res-
pective entries in RJIT.

Saving Environment at Interrupt Time

6. Saves the Monitor overlay status (i. e., the numbers of the
Monitor overlay segments that are currently resident),

Saving the environment before initiating nonresident tasks
is different, since the interrupts for nonresident tasks are
queued. The Monitor checks the queue at certain times,
and if a task is waiting, it is initiated when the Monitor
checks the queue. All of the registers have already been
saved and the saving of the Monitor's overlay status is not
necessary, The contents of CJOB are saved and replaced
with the address of NRJIT (Job Information Table for non-
resident tasks) in the address portion and the priority of the
task in byte zero. Then NRJIT and the background memory
area are checkpointed to disc, the task is loaded into the
background areq, and the necessary information is stored

in NRJIT.

10. SYSTEM GENERATION

System Generation provides a means of forming a Monitor
system adapted to the specific requirements of the user's
installation. This is done by processing a master system

tape and a set of installation control commands. Mnemonics
for installation control commands are not preceded by an ex-
clamation character, but begin with a colon (:) instead.

Any continuation records for installation control commands
must also begin with a colon in the first column.

Monitor System Generation comprises two passes, the second
of which may be omitted. The function of the first pass is
to accept a master tape and update elements, select desired
elements from each, and generate a new master tape. The
second pass accepts the selected elements and forms a com-
plete Monitor system. The resulting system is output to
magnetic tape, so that the Monitor system can be loaded at
any time.

The various processes comprising System Generation must be
performed under the control of a Monitor system having at
least minimal BPM capabilities. That is, in order to gen-
erate a Monitor one must already have a Monitor in the
machine. If there is no Monitor in the machine it is neces-
sary to load one, using the standard Monitor bootstrap pro-
cedure (see Chapter 11), before attempting System Genera-
tion. It should be clearly understood that generating a
Monitor and loading a Monitor are separate processes and
the performance of either does not, in itself, necessitate
the performance of the other.

SUMMARY OF SYSTEM GENERATION

System Generation is run as a batch job as follows:

e The system account file must contain load modules
PASS1, PASS2, and DEF.

e The System Generation procedure must run under a dif-
ferent account number then the system account.
This is to preserve the integrity of the current oper-
ating system while System Generation is in process.
Also, M:BI, M:BO, and M:PO must be assigned. Be-
cause System Generation is a lengthy process, TIME
and LO limits should be set at 60 minutes and 500
pages, respectively.

The PASS1 processor accepts elements from the master sys-
tem tape (M:BI) and update modules from M:El. The
M:EI DCB is normally assigned to the card reader. A new
master tape is output through the M:BO DCB. This new
master tape contains the modified bootable System Gener-
ation as defined in the bootstrap procedure. The desired
object modules will remain on disc. The assignment of
M:BI should only include input serial number(s). The
assignment of M:BO should specify DEVICE, MT and out-
put serial number(s). The following control commands are
recognized by PASST.

:LABEL
:SELECT
:UPDATE
:SYSWRT
1EOD

PASS1 accepts a master tape and update elements as input,
places the updated master elements on disc to be used as a
data base for subsequent processes, and (optionally) creates
a new master tape. When entered, the PASSI processor
reads and processes control cards until either an 1EOD or a
:SYSWRT card (see ":SYSWRT", below) is encountered. It
performs a tape-to-disc transfer of all of the files named in
the :SELECT commands (see ":SELECT", below) read from
the Bl device and also named in a :UPDATE command (see
":UPDATE", below). The :LABEL cards (see ":LABEL", be-
low) identify the various update decks. PASS1 then termi-
nates if an 1EOD card was encountered. PASS1 writes a
new master tape, using the M:BO DCB if :SYSWRT was en-
countered. This new master tape contains the following
elements.

1. A bootstrap loader.

2. The load module M:MON from the :SYS (system) ac-
count, written in core image segments (i.e., capable
of being booted into the "target machine").

3. A tape label.

4. Eight labeled files comprising seven load modules and
one null file. The seven load modules are M:MON,
PASS1, PASS2, DEF, LOADER, CCI, and FMGE (all
from the :SYS account). If any of these are missing,
a diagnostic is generated. The null file is named

"LASTLM".

5. All of the sequential disc files of the current job ac-
count, each disc file becoming a labeled tape file.

A PASS2 control command will terminate the selection and
update phase of System Generation. If an 1EOD card is
used in place of a :SYSWRT card, no BO tape is produced.

The PASS2 processor is responsible for defining the Monitor
system for a specific installation. Standard modules will
be replaced by specific installation requirements. In
addition to defining the Monitor, the desired installation
library may be formulated.

The control commands recognized by the PASS2 proces-
sor are:

:STDLB :DLIMIT
:DEVICE :ABS
:SDEVICE JINTS
:MONITOR JINTR
:‘RESERVE :TIME

System Generation 91

The control commands, if specified, must be in the above
order.

The PASS2 processor acts similarly to a compiler, in that it
reads source statements or control cards prepared by the pro-
grammer and generates output to the disc. The output is in
load module form and is intended for inclusion in a Monitor
(M:MON) that will be formed later. The Monitor elements
formed by PASS2 are installation-dependent. PASS2 com-
mands and the modules (files) that they cause to be formed
are listed below.

Command File or Files Formed

:STDLB | IOTABLE

:DEVICE ‘

:SDEVICE M:SDEV

:MONITOR M:CPU and M:JIT

RESERVE M:FCOM, M:RESDF, M:RJIT, and
M :NRJIT

:DELIMIT M:DELIMIT

:ABS M:ABS

ANTS| M:INT, MAINTLOC, M:RJIT, and

ANTR M:NRJIT

TIME M:TIME

The next step in System Generation is the formation of load
modules on disc. A minimum set of such modules would in-
clude M:MON (the target machine Monitor itself), LOADER,
CCl, and FMGE. To this must be added any desired option-
al processors and the system library. This might include

such modules as PASS1, PASS2, DEF, PFIL, SYMBOL,
FORTRAN or FORTRANH, COBOL, METASYMBOL, OLAY,
etc. Normally, the ROMs comprising these processors will
be available on disc from PASSI.

An OVERLAY, DEF, or ASSIGN control command will ter-
minate the definition of the installation modules. The
OVERLAY processor operates under normal system rules and
is responsible for creating the desired Monitor and processor
overlays.

After the initiation of PASS2 but before the DEF command,
load modules for the two versions of the Monitor's resident
loader must be created. These two versions should be iden-
tical except that the unsegmented version (for LOAD and
OVERLAY commands) must be loaded without a TREE com-
mand and must have the load module name "LOADER", and
the segmented version (for OLAY commands) must be created
with a TREE command included as part of the control com-

mand sequence and must have the load module name "OLAY".

The DEF processor is responsible for the formation of a boot-
able system tape with all load modules that were under the

92 Summary of System Generation

account number under which !DEF was run. When booted
from tape, the system will load itself, all load modules, and
a disc bootstrap on disc. The disc bootstrap will maintain
the current files, whereas the tape bootstrap will initialize
the disc.

DEF writes a master tape (using the M:PO DCB) which con-
tains the following elements.

1. A bootstrap loader.

2. The M:MON load module from the current job account
(as core image segments capable of being booted into
the target machine).

3. A tape label.

4. All disc files specifically named on the DEF card (which
may include object modules).

5. All keyed disc files that are not synonymous (e.g., load
modules).

6. All synonymous keyed disc files (e.g., library files).
7. A null file named "LASTLM".

The structure of the various Monitor system tapes is as
follows:

1. Bl and BO tapes:

Record Contents
1 Bootstrap Record
2 Root of Monitor
3 Tree of Monitor
4 Initialization
5-34 Segments of Monitor

This is followed by a tape label and the files M:MON,
PASS1, PASS2, DEF, LOADER, CCl, FMGE, and LASTLM.

Following these load modules are all of the relocatable ob-
ject modules selected or updated during the PASS1 procedure
that generated the tape.

2. PO tape:

The structure of the tape up to the tape label is
identical to that of Bl and BO. Following that are
files for all of the load modules formed during PASS2.

The operation of the first pass of System Generation is shown
graphically below in Figure 3.

The peripheral devices indicated in Figure 3 must be de-
fined for use by System Generation. Input from the oper-
ator's console is assumed by the program, but all other de-
vices must be defined before any other action takes place.
Thus, the first installation control command should be a
:GENCHN command.

Data retained for

Old master tape DISC | use in Pass 2
Syst
Ge::r:':;on BO New master tape
Pass 1
Updates
J— Listing of
3 C Control control cards
cards
Figure 3. Pass 1 of System Generation
'PASS1 The IPASS1 control command instructs the sys- {UPDATE The :UPDATE installation control command

tem to enter the first-pass mode of processing.

The IPASST control command has the form

IPASS]

When this command is encountered, no further commands
beginning with ":GEN" will be accepted.

Installation control commands that may be used during
pass 1 of System Generation are :SELECT, :UPDATE, :LABEL,
and :SYSWRT.

SELECT The :SELECT installation control command
may be used to select (for inclusion in the new master
system tape) any of the standard Batch Monitor configura-
tions and any of the standard libraries and processors
from the Bl device. It may also be used to select any of
the relocatable elements comprising such standard systems
and programs.

The :SELECT installation control command has the form

:SELECT (option)[, (option)] . .. [, (option)]

where the options are

FILE, file name ... specifies the name by which
an element of a standard processor, library, or
Monitor configuration is identified. The first two
characters of the file name identify the system
type (i.e., "A:" for assemblers, "F:" for
FORTRAN compilers, "L:" for libraries, and
"M:" for Monitors).

may be used to update the desired master system by selec-
ting elements and/or systems from the El device. Each
selected element or system will be added to the master
system, replacing any previously selected element or sys-
tem having the same name. If El is from the card reader,
each element must be preceded by a :LABEL name card
(where "name" is the name of the element) and followed
by an EOD card.

The :UPDATE installation control command has the form

:UPDATE (option)[, (option)] ... [, (option))

where the applicable options are the same as those for the
:SELECT command (see above).

:LABEL The :LABEL installation control command may
be used in a BI or El card input sequence (see ":SELECT"
and ":UPDATE", above) to specify the file name of the
data deck following the :LABEL command. The card input
deck sequence must be arranged as shown in Figure 4.,

The :LABEL installation control command has the form

:LABEL, name
where
name specifies the file name (up to 8 alphanumeric

characters) of the following data deck.

Summary System Generation 93

|1ieoD't
[1eoD!
|etc.
Ay
[Dofo Deck 2
[1BIN
:LABEL, name 2

I!BCD
[eOD!

Dcﬁa Deck 1
[1BIN
[:LABEL, name 1
IBCD

Figure 4. Card Input Sequence for Selecting or
Updating Monitor Files

:SYSWRT The :SYSWRT installation control command
may be used to cause all elements previously selected by
:SELECT or :UPDATE commands to be output on the BO
device. If the :SYSWRT command is not used, the object
modules comprising the master system elements are retained
in disc storage but no master system tape is output.

The :SYSWRT installation control command has the form

SYSWRT

'PASS2 The !PASS2 control command instructs the sys-
tem to enter the second-pass mode of processing.

The !PASS2 control command has the form

1PASS2

Installation control commands that may be used during the
second pass of System Generation are :STDLB, :DEVICE,
:SDEVICE, :MONITOR, :RESERVE, :DLIMIT, :ANTS, :ABS,
:(AINTR, :TIME, and :DLIB. The form and functions of these
commands are described below.

fEnd of data
“End of file

94 Summary System Generation

:STDLB All standard Monitor operational labels must be
defined by means of :STDLB installation control commands.
:STDLB commends may also be used to define an optional
set of operational labels for foreground logical devices.

The :STDLB installation control command has the form

:STDLB (label, name[, FORE]) [, (...)...]
where
label specifies a Monitor operational label or a

foreground operational label. All Monitor or
foreground operational labels must consist of one
or two alphanumeric characters.

name specifies a physical device name to which
the operational label is to be assigned (see Tables
2, 3, and 4, in Chapter 3).

and the options are

FORE specifies that the device may be used by
foreground tasks only. If FORE is omitted, the
device may be used by foreground and background
tasks.

If an operational label is to be assigned to a device to which
another operational label has already been assigned, the
previously assigned operational label may be substituted for
the physical device name and no additional parameters need
be specified. For example, if the operational label LO has

‘been assigned to a line printer by the installation control

command

:STDLB(LO, LPA15)

then the operational label DO could be assigned to the same
device by the command

:STDLB (DO, LO)

and, if LO was designated as FORE only, DO is similarly
designated.

If no :STDLB command is encountered, the following de-
faults apply.

C =L =SI =Bl =CI = El = CRAO3

OC =TYAOQ!

LO =LL =DO = SL = LPAO2

PO =BO =SO =CO = AL = EO = CPAM4
:DEVICE The :DEVICE installation control command is

used to introduce peripheral units and their handlers into
the Monitor system.

The :DEVICE installation control command has the form

:DEVICE name[, number] [, (option)] [, (option)] ...

where
name specifies the device name (see Tables 2, 3,
and 4 in Chapter 2).
number specifies the number of the disc (if two

discs have the same device name). The disc num-
ber may be either O or 1.

and the options are as follows:

INPUT/OUTPUTAO specifies whether the device
is to be used for input, output, or both. If this
option is omitted, 10 is assumed.

HANDLER, name specifies the name of the 1/0O
handler to be used with the device. If this option
is omitted, the standard handler for the device
type is assumed.

Standard handlers are as follows (see Appendix C).

CP uses CRDOUT

LP uses PRTOUT

DC uses DISCIO

9T, 7T, and MT use MTAP

TY uses KBTIO
PR uses PTAP
PP uses PTAP
CR uses CRDIN

DEDICATE, value specifies that the device is to be
dedicated. Value may be S (system), F (fore-
ground), or B (background). If this option is
omitted, the device is assumed to be undedicated.

PAPER, size, width specifies the (hexadecimal) num-
ber of printable lines per page (size), and the
maximum (decimal) number of characters per line
(width). This option applies to typewriters, tele-
types, and line printers. If this option is omitted,
the values 38, and 132, are assumed for size
and width, respectively.

The direct-access disc storage area is dynamically allo-
cated, based on the defined system. The remaining area
may be constrained by the following options. (The area

not specified otherwise is allocated for foreground storage.)
These options are specified in hexadecimal.

1. [(SIZE, value)] [,(NSPT,value)] [, (sS, value)]

where

SIZE, value specifies the (hexadecimal) num-
ber of disc tracks available to the system. If
this option is omitted, the value is assumed to
equal the sum of PAS, PFA, PER, FDA, and
BCHK (see below).

NSPT, value specifies the (hexadecimal) num-
ber of sectors per track. If this option is
omitted, the value 161 is assumed.

SS, value specifies the (hexadecimal) number
of words per sector. If this option is omitted,
the value 256 is assumed.

2. (BTRACK, number [, number]. . .)

where

number specifies the (hexadecimal) number of
a track that is not to be used by the system.

3. (keyword operand)

where the keyword operands are:

PER, value specifies the (hexadecimal) number
of tracks to be allocated for peripheral stor-
age (symbiont queue storage). The default
value is 200y(.

PFA, value specifies the (hexadecimal) number
of tracks to be allocated for permanent file
storage (including element files). The default
vque is 300]0

PSA, value specifies the (hexadecimal) number
of tracks to be allocated for permanent system
storage. The default value is 12;.

BCHK, value specifies the (hexadecimal) num=-
ber of tracks to be allocated for background
checkpoint storage. The default value is O.

:SDEVICE The :SDEVICE installation control command
may be used to specify the device(s) to be associated with

a designated symbiont. This control command may be used
only immediately following the :DEVICE or :STDLB com-
mand. There may not be more than one :SDEVICE command,
but continuation cards may be used.

The :SDEVICE installation control command has the form

:SDEVICE (LMN, symbiont, name[,...])[,(...)..]
where
symbiont specifies the load module name of a

symbiont. Either ISSEG (input) or OSSEG (output)
may be specified.

name specifies a device name (see Tables 2, 3,
and 4 in Chapter 2).

Summary System Generation 95

Example:

:SDEVICE (LMN,ISSEG,CRATT)
This example associates the standard input symbiont with
Card Reader 11 on Channel A.

‘MONITOR The :MONITOR installation control com-

mand may be used to select certain Monitor and CPU options.

The :MONITOR installation control command has the form

:MONITOR (option) [, (option)]. .. [, (option)]

where the options are

RBLOCK, n specifies that general register block n
(decimal) is available to the Monitor.

SFIL, n specifies the maximum (decimal) number of
files that can be maintained by symbionts. The
default is 20.

TSTACK, size specifies the size, in (decimal) words,
of the Monitor's temp stack. The default value
is 192.

CORE, size specifies the size, in (decimal) units of
K (where K=1024 words). The default value is 16.

QUEUE, size specifies the maximum (decimal) num-
ber of 1/O operations that may be queued at any
one time. The default value is 4.

MPOOL, size specifies the (decimal) number of 34-
word buffers to be pooled for use by the Monitor.
The default value is 3. The value specified should
be 2 greater than the number of buffered 1/O de-
vices used.

SPOOL, size specifies the (decimal) number of 256-
word buffers to be pooled for use by the symbionts.
The default value is 0.

CPOOL, size specifies the (decimal) number of 40-
word buffers to be pooled for symbionts' context
blocks. The default value is 0.

CFU, size specifies the (decimal) number of 19-word
buffers to be pooled for current file users. The
default value is 1.

:RESERVE The :RESERVE installation control command
may be used to allocate various areas of core storage.

The :RESERVE installation control command is of the form

:RESERVE (option)[, (option)]. .. [, (option)]

96 Summary System Generation

where the options are

MPATCH, size specifies the (decimal) number of
word locations to be reserved for modification and
expansion of the Monitor. The default is 0.

RESDF, size specifies the (decimal) number of word
locations to be reserved for resident foreground
storage. The default is 0.

FIPOOL, value specifies the (decimal) number of
256-word buffers to be pooled for use in foreground
file indexing. The default is O.

FFPOOL, value specifies the (decimal) number of
512-word buffers to be assigned for use in file man-
agement (to be used by the Monitor in the packing
and unpacking of foreground data). The default is 0.

:DLIMIT The :DLIMIT installation control command may
be used to specify the system default limits that are to be

associated with each job (see "LIMIT", in Chapter 2).

The :DLIMIT installation control command has the form

:DLIMIT [(opfion)] [, (option)]...

where the options are

TIME, value specifies the (decimal) default limit for
job execution time. Value is expressed in minutes.
If unspecified, the value 5 is assumed.

LO, value specifies the (decimal) default limit for
the number of pages to be listed by all processors
involved in running a job. If unspecified, the
value 100 is assumed.

PO, value specifies the (decimal) default limit for
the number of object records produced in running a
job. If unspecified, the value 500 is assumed.

DO, value specifies the (decimal) default limit for
the number of pages of diagnostics produced in run-
ning a job. If unspecified, the value 100 is
assumed.

UO, value specifies the (decimal) default limit for
the number of pages that may be output by the
executing program(s) in a job. If unspecified, the
value 100 is assumed.

TSTORE, value specifies the (decimal) default limit
for the number of granules (512 words) of temporary
disc storage that may be used by a job. If unspeci-
fied, the value 64 is assumed.

PSTORE, value specifies the (decimal) default limit
for the number of granules of permanent disc storage
that may be used by a job. If unspecified, the
value 64 is assumed.

IPOOL, value specifies the (decimal) default num-
ber of 100-word buffers to be pooled for batch file
indexing. If unspecified, the value 1 is assumed.

FPOOL, value specifies the (decimal) default num-
ber of 512-word file blocking buffers to be allo-
cated to batch tasks. If unspecified, the value 1
is assumed.

tABS The :ABS installation control command may be
used to specify which processors are to be entered into the
system in absolute format and the size of an absolute file
area for fast access to temporary disc storage. Processors
entered in this manner will be managed as part of the system,
thereby allowing a direct fetch of the processor. Only one
:ABS command may be used, but continuation cards may be
used.

The :ABS installation control command has the form

KABS[,size][(proc] [,sh [,(proc2[, sh]...]
|

where

proc; specifies the name of a processor to be as-
signed an absolute disc address.

S specifies that the load module form of the proces-
sor is to be saved rather than deleted from the
system. System Generation will always save the
load module form of an overlayed processor that
has been declared in the :ABS control command.
The root of the tree structure is the only portion of
the processor affected by the :ABS control card;
therefore, the load module must be saved. System
disc storage space requirements are greatly re-
duced for non-overlayed processors that are not
saved.

size is the number of words desired for the absolute
storage area on disc.

INTS The :INTS installation control command may be
used to specify what external interrupts are to be connected
to resident tasks included in the resident portion of the
Monitor.

The :INTS installation control command has the form

:ANTS (loc, name, entry [, DIRECT[, rblock]]) [, . . .]

where
loc specifies the location, in hexadecimal, of the
designated interrupt.
name specifies the name of a foreground load

module.

entry specifies the location to which control is to be
transferred when the interrupt (or trap) occurs. The
address may be an absolute hexadecimal number or
a relative hexadecimal reference.

DIRECT[, rblock] specifies that the interrupt routine
is to be entered directly whenever the associated
interrupt becomes active. If "DIRECT" is omitted,
the interrupt routine will be entered via the
MONITOR's interrupt service routine. The option
"rblock” specifies that the indicated (hexadecimal)
register block may be used by the interrupt routine.

!INTR The :INTR installation control command may be
used to specify the load module names of all foreground

tasks (other than those specified by :INTS or :TIME commands
or included in the resident portion of the Monitor), whether
resident or nonresident, and the interrupt location to be as-
sociated with each load module. The priority of each task

is determined by the priority of its associated interrupt
focation.

The :INTR installation control command has the form

RESD }

INTR (loc, nome[,{NRESD] [, MASTER]), ...

where
loc specifies the location, in hexadecimal, of the
designated interrupt.
name specifies the name of a foreground load

module.

RESD specifies that the designated foreground task
is to be loaded into resident core memory.

NRESD specifies that the designated foreground
task is to be nonresident. If neither RESD nor
NRESD is specified, the default is NRESD.

MASTER specifies that the task may run in the mas-
ter mode. If MASTER is not specified, the default
is the slave mode. If a task is resident and is to
be connected directly, MASTER must be specified
in the INTR command.

TIME The :TIME installation control command may be
used to define the names of resident foreground tasks to be
connected to the standard clock interrupt location, 5By
(i.e., the Monitor's clock).

The :TIME installation control command is of the form

:TIME name,, name,, name,,...

Summary System Generation 97

where

name specifies the name of a resident foreground
task to be connected to the Monitor's clock. The
named task is loaded and connected to the Monitor's
clock through a normal background job, using the
IRUN control command with the "LMN, name"
and "TIME, value" parameters (see RUN control
command).

'DEF The IDEF (define) control command must be the
last command given in System Generation. It causes a com=-
plete Monitor system to be formed from the parameters and
elements that have been entered.

The DEF processor is responsible for the formation of o boot -
able system tape with all load modules that were under the
account number, under which DEF was run. When boot-
strapped from tape, the system will load itself, all load
modules, and a disc bootstrap on disc. The completed sys-
tem is output on the PO device as a Monitor system tape
(M:PO having been assigned to an OUTSN tape). Thistape
begins with a bootstrap loader.

The !DEF installation control command is of the form

IDEF [(option)] [, (option)]

where the options are
INCL, name [, name] specifies that the named
files (not load modules) are to be copied on the

PO device.

DELETE specifies that all relocatable object mod-
ules are to be deleted from the disc storage.

SYSTEM GENERATION EXAMPLE

An example of a typical deck setup for System Generation
is shown in Figure 5.

SYSTEM GENERATION MESSAGES

The following messages are output by the various System
Generation processors.

PASS-1 MESSAGES

CONTROL COMND ERR

This message is output on the LL device when PASS-1 en-
counters a control command that is not recognized, con=
tains a syntax error, or has no colon in column 1. PASS-1
makes an error return to the Monitor.

98 Summary System Generation

DELIM ERR

This message is output on the LL device when PASS-1 en-
counters a control command containing an incorrect delimi-
ter. PASS-1 makes an error return to the Monitor.

NAME ERR

This message is output on the LL device when PASS-1 en-
counters a control command containing an illegal name
(i.e., one having no alphabetic character or one having a
non-alphanumeric character). PASS-1 makes an error re-
turn to the Monitor.

CARD SEQUENCE ERR

This message is output on the LL device when PASS-1 en-
counters an installation control command that is out of the
proper sequence. PASS-1 makes an error return fo the
Monitor.

NO BO WILL BE GENERATED

This message is output on the LL device if PASS-1 encoun-
ters no :SYSWRT command during System Generation. Since
this is not an error condition, PASS-1 continues.

FILE NOT ON UPDATE CARD —IGNORED

This message is output on the LL device if a file named on a
.LABEL card does not appear on a :UPDATE card. PASS-1
ignores the corresponding binary deck from the M:El device
and continues.

10 ABNORMAL

This message is output on the LL device if an 1/O error oc-
curs during PASS-1, and an error return to the Monitor is
made.

CANNOT FORM BOOTABLE MONITOR

This message is output on the LL device to indicate that a
segment of the Monitor is missing or the Monitor master tape
cannot be output because of an 1/O error. PASS-1 makes
an abort return to the Monitor. (This message is also output
by the DEF processor if the generated Monitor tape cannot
be cutput.)

[1DEF
[1(ouTSN, 270)
[1ASSIGN M:PO, (DEVICE, MT), ;
[1TREE ROOT — (A, 8, ©)
[1(ABS), (PERM), (NOSYSLIB)
[1(B1AS, O)(NOTCB), (SL F), (MAP),;

I(EF, (ROOT), (A),(B), (C)
IOVERLAY (LMN, M: MON),, \

MONITOR (TSTACK, 256),(CORE, 24)
[:sTDLB (C,CRAO3)
|:DEVICE CRAO3, (HAND, CRDIN)
H1PAsS2
|1EOD
IEOD

|‘B'|nary Deck
[:LABEL, C

:SYSWRT \

|:UPDATE (FILE,)
:SELECT (FILE, ROOT, A, B)
[1pAss
11(OUTSN, 269)
| 1ASSIGN M:BO, (DEVICE, MT),;
[! ASSIGN M:BI, (INSN, 268)
[1JOB :SYSGEN, SYSGEN, 1

[1enD
FGE NMD, SEG loc, value, value
[:(INSN, 268) \\
]:GE NDCB (M:BI, :SYSGEN, ; \

' N

Figure 5. System Generation Example

Summary System Generation 99

PASS-2 (:DEVICE/:STDLB) MESSAGES

....PASS-2 CCI IN CONTROL. ...

This message is output on the LL device to indicate that
PASS-2 has begun processing.

....END OF PASS 2....

This message is output on the LL device to indicate that
PASS~2 has completed its processing. PASS-2 makes a nor-
mal exit to the Monitor.

***JNKNOWN CC

This message is output on the LL device if PASS-2 encoun-
ters a control command that it does not recognize. PASS-2
ignores the unrecognized command and continues processing.

**STDLB ENTRY TABLE FULL

**DEVICE ENTRY TABLE FULL

One of these messages is output on the LL device to indi-
cate that there have been too many :STDLB or :DEVICE en-

tries. PASS=-2 ignores the supervenient entries and continues.

**TYPMNE ENTRY TABLE FULL

This message is output on the LL device to indicate that
there is not enough core space available for the "mnemonic"
entry table. PASS-2 continues.

**DISC ENTRY TABLE FULL

This message is output on the LL device to indicate that too
many discs have been defined. PASS-2 continues.

**HANDLER CLIST FULL

**DCT TABLE FULL

**HGP TABLE FULL

100 Summary System Generation

One of these messages is output on the LLdevice toindicate
that not enough core storage is available for the designated
table. PASS-2 exits to the Monitor.

**DISC OPTIONS MISSING

This message is output on the LL device to indicate that the
disc definition (:DEVICE command) does not contain suffi-
cient information. PASS-2 exits to the Monitor.

**OPLB xx EQUIVALENT yy MISSING

This message is output on the LL device to indicate that
standard label "yy", to which label "xx" has been equated,
has not been defined. PASS-2 continues.

**UNKNOWN DEVICE yyndd

This message is output on the LLdevice toindicate that the
device code "yyndd" is syntactically incorrect (e.g.,
"CRXG1") or thedevice is not available. PASS-2 continues.

**INSUFFICIENT PAGES AVAILABLE

This message is output on the LL device to indicate that
PASS-2 cannot obtain sufficient core storage to work with.
PASS-2 exits to the Monitor.

**MODIFY ERROR

This message is output on the LL device to indicate that some
error condition has developed within PASS-2 or the normal
core allocation was not sufficient for PASS-2 processing.
PASS-2 exits to the Monitor.

**NO DISC DEFINED

This message is output on the LL device to indicate that no
:DEVICE command defining a disc unit was encountered.
PASS-2 exits to the Monitor.

**NO HANDLER NAME GIVEN

This message is output on the LL device to indicate that no
handler has been specified for a nonstandard 1/O device.
PASS-2 continues.

**DEVICE TYPE yy ILLEGAL

This message is output on the LLdevice if an illegal device
type (not a valid type code or not alphanumeric) has been
specified. PASS-2 continues.

PASS-2 (:SDEVICE) MESSAGES

INVALID SYMBIONT NAME

This message is output on the LL device if an illegal char-
acter string has been used as a symbiont name. PASS-2
continues.

INVALID KEYWORD

This message is output on the LL device if an invalid key-
word (i.e., not "LMN") is encountered in a :SDEVICE
command. PASS-2 continues.

SYNTAX ERROR

This message is output on the LL device if a control com~-
mand contains an error in syntax. PASS-2 continues.

INVALID "yyndd"

This message is output on the LL device if a specified 1/O
device type is not recognized or is syntactically in error.
PASS-2 continues.

NO ROOM LEFT FOR :SDEVICE

This message is output on the LL device to indicate that
PASS-2 has aborted while processing the :SDEVICE command.

PASS-2 (:MONITOR) MESSAGES

ERROR, DEFAULT TAKEN

This message is output on the LL device if a field of a
:MONITOR command contains an error in syntax or speci-
fies a value less than the minimum allowed for the desig-
nated parameter. PASS-2 continues.

NO PAGES

This message is output on the LL device if insufficient core
storage is available to process a :MONITOR command.
PASS-2 exits to the Monitor.

MODIFY ERROR — ABORT MON*

This message is output on the LL device if insufficient core
storage is available or an error occurs in processing a
:MONITOR command. PASS-2 makes an ERR return to the
Monitor.

PASS-2 (:ABS) MESSAGES

This message is output on the LL device to indicate that in-
sufficient core storage is available for processinga :SDEVICE
command. PASS-2 makes an abort return to the Monitor.

REMAINDER OF CC IGNORED

This message is output on the LL device to indicate that the
unprocessed portion of a control command will be ignored
by PASS-2. This message appears in conjunction with other

messages, as appropriate. PASS-2 skips to the next command.

MODIFY ERROR

This message is output on the LL device fo indicate that
some error condition has developed within PASS-2 or the
normal core allocation was not sufficient for PASS-2 pro-
cessing of the :SDEVICE command. PASS-2 makes an
abort return to the Monitor.

"SDEVICE" ABORTED

":L" NAME ILLEGAL OR NAME ALREADY DEFINED

This message is output on the LL device to indicate that a
processor name (beginning with ":L")is illegal or has al-
ready been defined. PASS-2 continues.

NO PAGES AVAILABLE
"ABS" ABORTED

This message is output on the LL device if an insufficient
number of pages of core storage is available for :ABS com-
mand processing. PASS-2 makes an abort return to the
Monitor.

"(" EXPECTED BUT NOT FOUND

This message is output on the LL device if a field delimiter
(a lift parenthesis) was not found in an :ABS command.
PASS~2 continues.

Summary System Generation 101

NO FIELDS ON CC

This message is output on the LL device if a :ABS command
does not define anything. PASS-2 continues.

INVALID PROCESSOR NAME

This message is output on the LL device if a :ABS processor
name is invalid (contains a non-alphanumeric character or
no alphabetic character). PASS-2 continues.

"S" EXPECTED BUT NOT FOUND** "S" ASSUMED

This message is output on the LL device if PASS-2 expected
an "S" to follow a comma in a :ABS command, but no "S"
was found. PASS-2 continues.

") EXPECTED BUT NOT FOUND

This message is output on the LL device if a field terminator
(a right parenthesis) was not found in an :ABS command.
PASS-2 continues.

SYNTAX ERROR

This message is output on the LL device if a syntax error is
detected in a :ABS command. PASS-2 continues.

PROCESSOR NAME > 11 CHARACTERS

This message is output on the LL device if the name of a
processor specified in a :ABS command is in excess of 11
characters. PASS-2 continues.

INVALID SIZE OR SIZE MISSING, DEFAULT TAKEN

This message is output on the LL device to indicate that the
contents of the "size" field of a :ABS command are illegal,
not defined, or outside the proper range of values. PASS-2
continues.

LOAD MODULE GEN. UNSUCCESSFUL

This message is output on the LL device if :ABS load module
generation is unsuccessful due to errors or insufficient core
storage. PASS-2 makes an abort return to the Monitor.

102 Summary System Generation

PASS-2 (:DLIMIT) MESSAGES

**ERROR, DEFAULT TAKEN

This message is output on the LL device if the contents of a
numeric :DLIMIT field are illegal or outside the proper
range of values. PASS-2 continues.

NO PAGES

This message is output on the LL device if insufficient core
storage is available for processing the :DLIMIT command.
PASS-2 makes an abort return to the Monitor.

MODIFY ERR —ABORT DLIMIT**

This message is output on the LL device if there is an error
in processing a :DLIMIT command or if there is insufficient
core storage available. PASS-2 makes an abort return to

the Monitor.

PASS-2 (:DLIB) MESSAGES

***REFERENCES TO UNAVAILABLE FILES ~IGNORED**

This message is output on the LL device to indicate that a
referenced file for a :DLIB definition does not exist.
PASS-2 continues.

DLIB CONTROL COMMAND IN ERROR - DLIB ABORTED

This message is output on the LL device if a :DLIB command
contains an error in syntax. PASS-2 makes an abort return
to the Monitor.

INSUFFICIENT WORKING SPACE ~DLIB ABORTED

This message is output on the LL device if insufficient core
storage is available to process a :DLIB command. PASS-2
makes an abort return to the Monitor.

PASS-2 (FORMLIB) MESSAGES

NO PAGES AVAILABLE — ABORT

This message is output on the LL device if insufficient core
storage is available to complete the execution of the
FORMLIB routine. PASS-2 makes an abort return to the
Monitor.

PASS-2 (RJITGEN) MESSAGES

NO PAGES

This message is output on the LL device if insufficient core
storage is available to complete the execution of the
RJITGEN routine. PASS-2 makes an abort return to the

Monitor.

MODIFY ERR —ABORT RJITGEN**

This message is output on the LL device if an irrecoverable
error occurs during execution of the RJITGEN routine or if
the requested core storage is insufficient. PASS-2 makes
an abort return to the Monitor.

PASS-2 (:RESERVE) MESSAGES

**ERROR, DEFAULT TAKEN

This message is output on the LL device if a value specified
in a :RESERVE command is illegal or outside the acceptable
limits. PASS-2 continues.

NO PAGES

This message is output on the LL device if insufficient core
storage is available to process a :RESERVE command. PASS-2
makes an abort return to the Monitor.

MODIFY ERROR — ABORT RESERVE

This message is output on the LL device if an irrecoverable
error occurs during the processing of a :RESERVE command
or if the requested core storage is insufficient. PASS-2
makes an abort return to the Monitor.

PASS-2 (INTR/INTS) MESSAGES

SKIP TO)"

This message is output on the LL device if a syntax error is
found in a field of a :INTR or :INTS command. PASS-2
ignores the field and continues.

INVALID SYNTAX

This message is output on the LL device if a :INTR or :INTS
command contains a syntax error. PASS-2 ignores the com-
mand and continues.

INVALID LOC

This message is output on the LL device if the contents of the
LOC field of a:INTR or :INTS command are invalid. PASS-2
ignores the field and continues.

INVALID NAME

This message is output on the LL device if a name in a:INTR
or :INTS command is invalid (i.e., too long, having no
alphabetic character, or containing a non-alphanumeric
character). PASS-2 ignores the name and continues.

INVALID KEYWORD

This message is output on the LL device if a keyword in a
:INTR or :INTS command is not recognized. PASS-2 ignores
the keyword and continues.

INVALID ENTRY-ADDRESS

This message is output on the LL device if a :INTS or :INTR
command contains an invalid entry-address field. PASS-2
ignores the field and continues.

INVALID RBLOCK

This message is output on the LL device if the contents of an
RBLOCK field of a :INTR or :INTS command are too large or
the field contains a non-numeric character. PASS-2 ignores
the field and continues.

UNKNOWN DELIMITER

This message is output on the LL device if a :INTR or :INTS
command contains an invalid terminator. PASS-2 continues.

MODIFY ERROR, ABORT INTSR

This message is output on the LL device if there is an error in
processing a :INTS or :INTR command or insufficient core
storage is available. PASS-2 makes an abort return to the
Monitor.

PASS-2 (:TIME) MESSAGES

NO PAGES

This message is output on the LL device if insufficient core
storage is available for processing the :TIME command.
PASS-2 makes an abort return to the Monitor.

Summary System Generation 103

**MODIFY ERR — ABORT M:TIME

This message is output on the LL device if an error occurs
in processing the :TIME command or the requested core
storage is insufficient. PASS-2 makes an abort return to
the Monitor.

ILLEGAL NAME

104 Summary System Generation

This message is output on the LL device if a name used in a
:TIME command is syntactically incorrect (i.e., too long,
non-alphanumeric, or without an alphabetic character).
PASS-2 makes an abort return to the Monitor.

SYNTAX

This message is output on the LL device if a :TIME command
contains a syntax error. PASS-2 makes an abort return to
the Monitor.

11. MONITOR BOOTSTRAP PROCEDURE

The following procedure should be used to introduce any
version of the Batch Processing Monitor into a machine, re-
gardless of whether the system is then to be used for System
Generation or for a normal operating system.

The Monitor system tape is bootstrapped from any available
tape drive (7-track or 9-track, depending on system for-
mat). While the resident Monitor is being read in from
tape, patch cards may be read in from the control (C)
device. These are fixed-format cards containing patches
to the operating Monitor system. The format of a patch
card is as follows,

seg,loc,value

where

seg is the hexadecimal segment number (see Ap-
pendix N) of the Monitor segment that is to be
patched.

loc is the relative hexadecimal location of the
patch.

value is the absolute hexadecimal value to be
inserted.

The patch cards (if any) must be in order by segment
number and are terminated by a card having an asterisk
(*) in column 1. The asterisk card must be included in
the control card deck regardless of whether any patch
cards are used.

After the asterisk card is read, the resident Monitor is oper-
ational and control is given to the PASS-0 routine. PASS-0
may be thought of as a system initialization routine and is
sometimes considered a preliminary part of System Gener-
ation, since it defines the environment in which System
Generation takes place (if it takes place at all). However,
PASS-0 is more closely related to Monitor loading than to
System Generation, and is entered regardless of whether
System Generation is to be done or not.

The following commands may be read by PASS-0 to define
the environment in which the bootstrapped Monitor is to
operate. Standard device assignments are in effect at this
time and are assumed by PASS-0 unless changed by a
:GENOP (see below).

:GENCHN :GENMD

:GENOP :GENDEF

:GENDCB :GENEXP
:GENSZ :GENDICT
:GENDC IEND

Note that the only required control cards for PASS-0 are
the :GENDCB and !END cards. Any or all of the others
may be omitted, but the :GENDCB card is required for
M:BI to specify the input serial number and account number
of the labeled tape (or tapes) containing the system library,
processors, and other nonresident portions of the Monitor
system. This tape may or may not be the same as the one
from which the resident Monitor was bootstrapped.

After the !END card has been read, the labeled tape speci-
fied on the :GENDCB card is read in to introduce the pro-

cessors, etc. to the system., Any modifications specified on
:GENMD cards are made and any user-specified initializa-
tion routines (see Appendix N) are called.

At this point, PASS-0 outputs the message

* k k k k k *k *x *x *x k k % *k *x %

* o 10 070 BPM * o

* Kk k *k k k k *k Kk k * * % %k *k %

FIRST AVAILABLE DISC ADDRESS = nnnn

(where nnnn indicates the hexadecimal disc address, track/
sector) on the OC device and the system enters the wait state.

PASS-0 CONTROL COMMANDS

Control commands recognized by the PASS-0 routine are
described below.

!GENCHN The :GENCHN installation control com-
mand is used to define the physical peripheral devices that
are to be used.

The :GENCHN installation control command has the form

:GENCHN yyndd , ...

where
yyndd specifies a physical device name (see
"STDLB", in Chapter 2).
Example:

:GENCHN CRA12,DCEA?,MTG81, MTAFF

Defaults are CRAO3, LPAO2, CPAO4, TYAOI, 9TA80, and
DCAFO.

:GENOP The :GENORP installation control command is
used to assign operational labels to peripheral devices.

More than one such assignment may be specified in a single
:GENOP command.

Monitor Bootstrap Procedure 105

The :GENOP installation control command is of the form

:GENOP (label,type)[, (label, type)] [, ..]

where
label specifiesone of the operational labels listed
below
Label | Reference
C Installation control command input.
LL Listing log.
LO Listing output.

type specifies a physical device type (see Table 2),

Example:

:GENOP (C,CRA10),(LO,MTA80)

:GENDCB The :GENDCB installation control command
is used to define the system DCBs associated with tape input
or output,

The :GENDCB installation control command has the form

K[,(!NSN,vclue[, o)

:GENDCB (dcb name,account ,password ;

where

dcb name specifies the name of the DCB that is to
be associated with tape 1/O. M:BI is the only
valid name.

account specifies the account number (up to 8
alphanumeric characters) that is to be associated
with the 1/O source.

password specifies the password that is to be asso-

ciated with the I/O source. The password may be
from one through eight alphanumeric characters in
length.

INSN,value, ... specifies the serial numbers (up to
4 characters in length) of the tapes that are to be
used as input during PHASE-0. No more than 3
reels may be specified. The first reel specified
should contain the first file, etc. INSN must be
specified for the M:BI DCB.

106 PASS-0 Control Commands

Example:

/:(INSN,OOI,OOZ))

:GENDCB (M:BI, ACCOUNTI,PASSWORDI.,

1GENSZ The :GENSZ installation control command may
be used to specify the size of the core memory available to
the CPU. If this command is omitted, PASS-0 assumes that
the core memory size is 24K words,

The :GENSZ installation control command has the form

:GENSZ size
where
size specifies the size, in decimal, of core memory, |

in units of K (where K = 1024 words).

Example:
:GENSZ 32
:GENDC The :GENDC installation control command is

used to specify the disc storage area that is to be made avail-
able to PASS-0.

The :GENDC installation control command has the form

:GENDC (option) [, (opfion)] ve

where the options are

SIZE,value specifies the (decimal) number of disc
tracks to be made available. If this option is omit-
ted, 512 is assumed.

NST,value specifies the (decimal) number of sectors
per track. If this option is omitted, 16 is assumed.

NSG,value specifies the(decimal) number of sectors
per granule. If this option is omitted, é is assumed.

FAT,value specifies the first available file track
number, in decimal. If this option is omitted,

track 0 is assumed.

If the :GENDC installation control command is omitted, all
of the default values given above are assumed.

Example:

KGENDC (SIZE,93), (NSG, 4), (FAT, 11),(NST,32)

‘GENMD The :GENMD instellation control command
may be used to insert modifications into any segment of any
processor input from BI,

The :GENMD installation control command has the form

oo [z

7

:GENMD, segment loc,value [{+res(nome)}] ;
tname

where

segment specifies the name of the segment that is
to be modified.

loc specifies a relative’ hexadecimal location or a
positive absolute hexadecimal address at which
the modification is to be made. If it is an abso-
lute address, it must be preceded by a plus (+).

value specifies the word that is to be inserted,
right-justified, at the indicated location. If more
than one value is given, they will be inserted into
successive locations.

res specifies the address resolution for the external
definition (see "name" below)." If this option is
omitted, word resolution is assumed. When the
instruction or data word has been relocated, this
parameter (res) determines what the resolution of
the word is to be.

res Specified Resolution

BA Byte address
HA Halfword address
WA Word address

DA Doubleword address

name specifies the name of an externally defined
symbol whose address or value is to be used to re~
locate the associated value in the data word.

Examples:

(G ENMD,SEGA+3FA2,+0FOFOFOF

/GENMD,SEGB LOC1,-3+NAME1

t . ops

If an overlay segment is to be modified, the external def-
inition must not have been referenced in a "lower" level of
the overlay tree.

KGE NMD, SEGC LOC2+490, FFFFOO-+BA(NAME?2)

(:- 1+DA(NAME4), +FFFFFFFF+WA(NAMES);

:GENMD, SEGD LOC3-4,10, 13+HA(NAMES);

{GENDEF The :GENDEF installation control command
may be used to equate an external reference (of the System
Generation program) to a specified value.

The :GENDEF installation control command has the form

:GENDEF,segment xref,value [{"‘res(name)}]
+name
where

segment specifies the name of the segment in which
the external reference occurs.

xref specifies the name of the external reference
that is to be equated to a value,

value specifies the value (relative or absolute hexa-
decimal) to which the external reference is to be
equated.

Exgmples:

/GENDEF,SEGA] NAMEAL, +3

/GENDEF,SEGAZ NAMEA2, -FFA

/GENDEF,SEGAS NAMEAZ, 0+NAMEXX

/GENDEF, SEGA4 NAMEA4, -2+WA(NAMEZZ)

{GENEXP The :GENEXP installation control command
may be used to modify a specified location by the insertion
of a specified value. It is similar to the :GENMD command,
except for a preloaded load module. Insuchacase,.an external
reference to the location just modified may be generated.

The :GENEXP installation control command has the form

:GENEXP,segment loc,value [{+res(name}]

+name

PASS-0 Control Commands 107

where

segment specifies the name of the segment that is
to be modified.

loc specifies the relative hexadecimal location or
absolute hexadecimal address at which the modi-
fication is to be made.

value specifies the word that is to be inserted at
the indicated location. If the address field of
the inserted word is not currently defined, an
expression is generated that has the indicated
location as its designation (see "res" and "name"
below).

res specifies the address resolution for the external
definition (see "name" below). If this option is
omitted, word resolution is assumed. When the
instruction or data word has been relocated, this
parameter (res) determines what the resolution of
the word is to be.

res Specified Resolution

BA Byte address

HA Halfword address
WA Word address

DA Doubleword address

name specifies the name of an externally defined
symbol whose address or value is to be used to re=
locate its associated value in the data word.

Examples:

/GENEXP,SEG] +129A, 14

/ :GENEXP,SEG2 LODA+3, +0+NAMEA

@ENEXP,SEGB LOCB-2, -0+WA(NAMEB)

:GENDICT The :GENDICT installation control com-
mand may be used to modify a load module's relocation
dictionary. It may be used in conjunction with :GENMD
and :GENEXP program modifications.

The :GENDICT installation control command has the form

:GENDICT,segment loc,code

where

segment specifies the name of the segment contain-
ing the location referenced (see "loc", below).

108 PASS-0 Control Commands

loc specifies the relative’ hexadecimal location or
absolute hexadecimal address for which the dictio-
nary entry is to be modified.

code specifies the applicable relocation parameters
(see table below).
Code | Relocation | Resolution Load Module Bias
0 Address Byte Module
1 Address Hal fword Module
2 Address Word Module
3 Address Doubleword | Module
8 Left half Doubleword | Module
9 Right half Doubleword | Module
A Both halves| Doubleword | Module
E Absolute - -
Examples:

/GENDICT,SEGIA +10FF,0

/GENDICT,SEGIB LOCIAE

/GENDICT,SEG]C LOC 1B+59F,9

PASS-0 MESSAGES

The following messages may be output by the PASS-0 pro-
gram, on the LL or OC device. PASS-0 either continues its
normal operation or initiates an abort return to the Monitor.

* Kk Kk k k Kk *k Kk * % * *k % % * * *

* ok 10 070 BPM * ke

* % % %k *x % Kk Kk *k k *x *x * % *k * %

FIRST AVAILABLE DISC ADDRESS = nnnn

This message is output on the OC device after the Monitor
is bootstrapped from a "BI" or "PO" tape. The system then
enters the wait state.

The value "nnnn" is the hexadecimal disc address, track/sector.

SYSTEN ABORTED (PASS-0)

This message is output on the LLdevice when PAS5-0 cannot
continue its normal processing.

SKIP TO NEXT CC

This message is output on the LL device in conjunction with
other messages.

t . ops .
If an overlay segment is to be modified, the external defi-
nition must not have been referenced in a lower segment of
the overlay tree.

SYSGEN PASS-0 IN CONTROL

NO PAGE AVAILABLE

This message is output on the LL device to indicate that
PASS-0 has begun its processing.

SYSGEN PASS-0 COMPLETED

This message is output on the LL device to indicate that
PASS-0 in in the final phase of its processing (i.e., the
1END card has been read).

This message is output on the LL device when insufficient
core space is available for use by PASS-0. An abort return
to the Monitor is made.

INVALID YYNDD

INVALID YY OR DD FIELD

PASS-0 CONTROL,NO ':!

INVALID KEYWORD OR VALUE

This message is output on the LL device when PASS-0 en-
counters a command without a colon in column 1. The
command is ignored and PASS-0 skips to the next command.

UNKNOWN CONTROL COMMAND

One of these messages is output on the LL device when a
physical device address is not defined in the system, a de-
vice address field is in error syntactically, or the contents
of a keyword or value are unknown. The invalid item is
ignored and PASS-0 continues.

This message is output on the LL device when PASS-0 en-
counters a command that it does not recognize. The com-
mand is ignored and PASS-0 skips to the next command.

GENDCB CC SYNTAX ERROR

GENMD CC SYNTAX ERROR

GENDEF CC SYNTAX ERROR

MODIFICATION LOC OR VALUE INVALID

This message is output on the LL device when the location
and/or value defined in a :GENMD, :GENDEF, etc, com-
mand has a valid syntax but is not valid for the segment
specified for modification. The location or value may be
out of range, for example, or a name reference may not be
found in the segment specified. The invalid location or
value is ignored and PASS-0 confinues. This message is fol-
lowed by the message shown below.

ttttttt LOC = nnnnnnnn s 1111

GENDICT CC SYNTAX ERROR

SYNTAX ERROR

One of these messages is output on the LL device when
PASS-0 encounters a command containing a syntax error,
The part of the command that is affected by the error is ig-
nored and PASS-0 continues processing.

This message is output on the LL device to indicate which
command caused the preceding "MODIFICATION LOC OR
VALUE INVALID" message. PASS-0 continues normal

processing.

The command mnemonic is indicated by "ttttttt"; the name as-
sociated with the "LOC" field is "nnnnnnnn" (if relocatable);
"I gives the "LOC" field value, i.e., the addend (if
relocatable) or value (if absolute); and "s" is the sign of the

"LOC" field.

SEGMENT-NAME ERROR

PREVIOUS "MODS" IGNORED

This message is output on the LL device when PASS-0 en-
counters a segment name that is in error in some respect.
The name is ignored and PASS-0 continues.

VALUE-FIELD SYNTAX ERROR

LOC-FIELD SYNTAX ERROR

One of these messages is output on the LL device when
PASS-0 encounters a field with a syntax error. The field
in question is ignored and PASS-0 continues.

This message is output on the LL device to indicate that all
previously processed :GENMD, :GENEXP, :GENDEF, and
:GENDICT commands are abrogated. PASS-0 continues
processing.

"OPEN/CLOSE" INFOR MISSING

"READ" "BI/TM" ABNORMAL

MWRITE" "TM" ABNORMAL

PASS-0 Control Command 109

One of these messages is output on the LLdevice to indicate
that an irrecoverable 1/O failure has occurred in reading
from the "BI" tape or in reading from or writing to the sys-
tem "TM" (i.e., temporary) disc files. An abort return to
the Monitor is made.

***NO ABS PROCESSORS REQUESTED

This is not an error message. It simply calls attention to
the fact that no absolute processors have been requested for
the system. After outputting this message on the LL device,
PASS-0 continues.

***PROC **xxx* BIAS BELOW bkgrdll

This message is output on the LL device to indicate that the
processor named "xxx" is biased below the lower limit of
the background area ("bkgrdl!"). The offending processor
is ignored and PASS-0 continues.

**%PROC. **xxx* WILL OVERFLOW PSA AREA
***REMAINDER OF ABS PROCESSORS IGNORED

This message is output on the LL device to indicate that the
processor named "xxx" is too large for the area allocated
for permanent RAD storage. The designated processor and
all remaining processors are ignored. PASS-0 continues.

**%*ABS DCB/SCRATCH AREA > PSA AREA DEFINED
***SYSGEN PASS-0 ABORTED**

This message is output on the LL device to indicate that the
area where DCB assignment information is to be written or
the area to be used for absolute scratch files exceeds the
space allocated for permanent RAD storage. PASS-0 makes
an abort return to the Monitor.

110 PASS-0 Control Commands

xxxPROCESSCOR ABSOLUTE

This message is output on the LL device to indicate that the
processor named "xxx" is absolute. PASS-0 continues.

PROCESSOR LMN SAVED

This message may appear following the message "xxx PRO-
CESSOR ABSOLUTE" to indicate that the load module form
of processor "xxx" is saved (automatic for overlayed pro-
cessors). PASS-0 continues.

PROCESSOR LMN RELEASED

This message may appear following the message "xxx PRO-
CESSOR ABSOLUTE" to indicate that the load module form
of processor "xxx" is released. PASS-0 continues.

- - - - ABS GENERATION COMPLETED

This message is output on the LL device to indicate that
PASS-0 has completed its function. A normal exit to the
Monitor is made.

***CANNOT OPEN**xxx*FILE

This message is output on the LL device when the processor
"yxx" cannot be found in the designated account. PASS-0
then skips to the next processor (if any) to be absolutized.

%C ANNOT READ KEYzzz*IN**xxx*

This message is output on the LL device when the file named
"xxx" is opened but does not contain the record identified by
key "zzz". The key for protection type 00 and/or 01 for the
designated processor cannot be obtained. PASS-0 continues.

APPENDIX A. 10 070 STANDARD OBJECT LANGUAGE

INTRODUCTION

GENERAL

The C1110 070 standard object language provides a means

of expressing the output of any 10 070 processor in standard
format. All programs and subprograms in this object format
can be loaded by the Monitor's relocating loader. Such a

loader is capable of providing the program linkages needed
to form an executable program in core storage. The object
language is designed to be both computer-independent and
medium-independent; i.e., it is applicable to any Cl|

10 070 computer having a 32-bit word length, and the same
format is used for both cards and paper tape.

SOURCE CODE TRANSLATION

Before a program can be executed by the computer, it must
be translated from symbolic form to binary data words and
machine instructions. The primary stages of source program
translation are accomplished by a processor. However,
under certain circumstances, the processor may not be able
to translate the entire source program directly into machine
language form.

If a source program contains symbolic forward references,
a single-pass processor such as the Cll Symbol assembler
can not resolve such references into machine language.
This is because the machine language value for the refer-
enced symbol is not established by a one-pass processor
until after the statement containing the forward reference
has been processed.

A two-pass processor, such as the Cll Meta-Symbol assem-
bler, is capable of making "retroactive" changes in the
object program before the object code is output. Therefore,
a two-pass processor does not have to output any special
object codes for forward references. An example of a for-
ward reference in a Symbol source program is given below.

Y éQU $+3

cLs z
:u, R Z
z ffEQU 2
;30 z

R EQU Z+1

In this example the operand $ + 3 is not a forward reference
because the assembler can evaluate it when processing the
source statement in which it appears. However, the oper-
and Z in the statement

cLs5 z

is a forward reference because it appears before Z has been
defined. In processing the statement, the assembler outputs
the machine-language code for CI,5, assigns a forward ref-
erence number (e.g., 12) to the symbol Z, and outputs that
forward reference number. The forward reference number
and the symbol Z are also retained in the assembler's symbol
table.

When the assembler processes the source statement
LI, R z

it outputs the machine-language code for LI, assigns a for-
ward reference number (e.g., 18) to the symbol R, outputs
that number, and again outputs forward reference number
12 for symbol Z,

On processing the source statement
Z EQU 2

the assembler again outputs symbol Z's forward reference
number and also outputs the value, which defines symbol Z,
so that the relocating loader will be able to satisfy refer-
ences to Z in statements CI,5 Z and LI,R Z. At this time,
symbol Z's forward reference number (i.e., 12) may be
deleted from the assembler's symbol table and the defined
value of Z equated with the symbol Z (in the symbol table).
Then, subsequent references to Z, as in source statement

BG Z

would not constitute forward references, since the assembler
could resolve them immediately by consulting its symbol
table.

If a program contains symbolic references to externally
defined symbols in one or more separately processed subpro-
grams or library routines, the processor will be unable to

generate the necessary program linkages.

An example of an external reference in a Symbol source pro-
gram is shown below,

REF ALPH

LI,3 ALPH

When the assembler processes the source statement

REF ALPH

Appendix A m

it outputs the symbol ALPH, in symbolic (EBCDIC) form, in
a declaration specifying that the symbol is an external ref-
erence. At this time, the assembler also assigns a declara-
tion name number to the symbol ALPH but does not output
the number. The symbol and name number are retained in
the assembler's symbol table.

After a symbol has been declared an external reference, it
may appear any number of times in the symbolic subprogram
in which it was declared. Thus, the use of the symbol
ALPH in the source statement

LI,3 ALPH

in the above example, is valid even though ALPH is not
defined in the subprogram in which it is referenced.

The relocating loader is able to generate interprogram link-
ages for any symbol that is declared an external definition
in the subprogram in which that symbol is defined. Shown
below is an example of an external definition in a Symbol
source program.

DEF ALPH

.

LI,3 ALPH

ALPH Al 4 X'F2'

.

When the assembler processes the source statement
DEF ALPH

it outputs the symbol ALPH, in symbolic (EBCDIC) form, in
a declaration specifying that the symbol is an external defi-
nition. At this time, the assembler also assigns a declaration
name number to the symbol ALPH but does not output the
number. The symbol and name number are retained in the
assembler's symbol table.

After a symbol has been declared an external definiticn it
may be used (in the subprogram in which it was deciared) in
the same way as any other symbol. Thus, if ALPH is used as
a forward reference, as in the source statement

LI, 3 ALPH

above, the assembler assigns a forward reference number to
ALPH, in addition to the declaration name number assigned
previously. (A symbol may be both a forward reference and
an external definition.)

On processing the source statement
ALPH Al,4 X'F2'

the assembler outputs the declaration name number of the
label ALPH (and an expression for its value) and also outputs
the machine-language code for Al,4 and the constant X'F2'.

OBJECT LANGUAGE FORMAT

An object language program generated by a processor is out-
put as a string of bytes representing "load items". A load
item consists of an item type code followed by the specific
load information pertaining to that item. (The detailed format
of each type of load item is given later in this appendix.)
The individual load items require varying numbers of bytes

112 Appendix A

for their representation, depending on the type ond specific
content of each item. A group of 108 bytes, or fewer, com-
prises a logical record. A load item may be continued from
one logical record to the next.

The ordered set of logical records that a processor generates
for a program or subprogram is termed an "object module".
The end of an object module is indicated by a module-end
type code foliowed by the error severity level assigned to
the module by the processor.

RECORD CONTROL INFORMATION

Each record of an object module consists of 4 bytes of con-
trol information followed by a maximum of 104 bytes of load
information. That is, each record, with the possible excep-
tion of the end record, normally consists of 108 bytes of
information (i.e., 72 card columns).

The 4 bytes of control information for each record have the
form and sequence shown below.

Byte O
Record Type Mode Format
1 1 1 0
0 1 2 3 4 5 6
Byte 1
Sequence Number
0 7
Byte 2
Checksum
0 7
Byte 3
Record Size
0 7

Record Type specifies whether this record is the last
record of the module:

000 means last
001 means not last

Mode specifies that the loader is fo read binary infor=
mation. This code is always 11.

Format specifies object language format. This code is
always 100.

Sequence Number is 0 for the first record of the medule
and is incremented by 1 for each record thereafter,
until it recycles to O after reaching 255.

Checksum is the computed sum of the bytes comprising
the record. Carries out of the most significant bit
position of the sum are ignored.

Record Size is the number of bytes (including the record
control bytes) comprising the logical record (5 < record

size < 108). The recordsize will normally be 108 bytes
for all records except the last one, which may be fewer.
Any excess bytes in a physical record are ignored.

LOAD ITEMS

Each load item begins with a control byte that indicates the
item type. In some instances, certain parameters are also
provided in the load item control byte. Inthe following dis-

cussion, load items are categorized according to their function:

1. Declarations identify to the loader the external and
control section labels that are to be defined in the
object module being loaded.

2. Definitions define the value of forward references,
external definitions, the origin of the subprogram being
loaded, and the starting address (e.g., as provided in
a Symbol/Meta-Symbol END directive).

3. Expression evaluation load items within a definition
provide the values (such as constants, forward refer-
ences, etc.) that are to be combined to form the final
value of the definition.

4. Loading items cause specified information to be stored
into core memory.

5. Miscellaneous items comprise padding bytes and the
module~end indicator.

DECLARATIONS

In order for the loader to provide the linkage between subpro-
grams, the processor must generate for each external refer-
ence ordefinition aload item, referred to as a "declaration”,
containing the EBCDIC code representation of the symbol
and the information that the symbol is either an external ref-
erence or a definition (thus, the loader will have access to
the actual symbolic name).

Forward references are always internal references within an
object module. (External references are never considered
forward references.) The precessor does not generate a dec-
laration for a forward reference as it does for externals; how-
ever, it does assign name numbers to the symbols referenced.

Declaration name numbers (for control sections and external
labels) and forward reference name numbers apply only within
the object moduie in which they are assigned. They have no
significance in establishing interprogram linkages, since
external references and definitions are correlated by match-
ing symbolic names. Hence, name numbers used in any
expressions in a given object module always refer to symbols
that have been declared within that module.

The processor must generate a declaration for each symbol
that identifies a program section, Although the Cll Symbol
assembler used with the Monitor allows only a standard con-
trol section (i.e., program section), the standard object
language includes provision for other types of control sec-
tions (such as dummy control sections). Each object module
produced by the Symbol processor is considered to consist of
at least one control section. If no section is explicitly iden-
tified in a Symbol source program, the assembler assumes it
to be a standard control section (discussed below). The stan-
dard control section is always assigned a declaration name

number of 0. All other control sections (i.e., produced by
a processor capable of declaring other control sections) are
assigned declaration name numbers {1, 2, 3, etc.) in the
order of their appearance in the source program,

In the load items discussed below, the access code, pp, des-
ignates the memory protection class that is to be associated
with the control section. The meaning of this code is given
below.

PP Memory Protection Feature!

00 Read, write, or access instructions from,
01 Read or access instructions from.

10 Read only.

11 No access.

Contrel sections are always allocated on a doubleword
boundary. The size specification designates the number of
bytes to be allocated for the section.

Declare Standard Control Section

Byte O
Control byte
0 0 0 1 0 1 1

0 1 2 3 4 5 6 7
Byte 1

Access code Size (bits 1 through 4)

P P 0 0

0 1 2 3 4 5 6 7
Byte 2

Size (bits 5 through 12)

Byte 3

Size (bits 13 through 20)

0 7

This item declares the standard control section for the object
module. There may be no more than one standard control
section in each object module. The origin of the standard
control section is effectively defined when the first reference
to the standard control section occurs, although the declara-
tion item might not occur until much later in the object
module.

"iRead" means a program can obtain information from the
protected area; "write'" means a program can store informa-
tion info a protected area; and, "access" means the compu-
ter can execute instructions stored in the protected area.

Appendix A 113

This capability is obviously required by one-pass processors,
since the size of a section cannot be determined until all of
the load information for that section has been generated by
the processor.

Byte 4

Size (bits 5 through 12)

Declare Non=Standard Control Section 0 7
Byte O Byte 5
Control byte Size (bits 13 through 20)
0 0 0 0 1 1 0 0
0 1 2 3 4 5 6 7 0 7
This item comprises a declaration for a dummy control sec-
Byte 1
tion. It results in the allocation of the specified dummy
Access code Size (bits 1 through 4) section, if that section has not been allocated previously
P P 0 0 by another object module. The label that is to be associ-
0 : 2 3 4 7 ated with the first location of the allocated section must be
a previously declared external definition name. (Even
Byte 2 though the source program may not be required to explicitly

Size (bits 5 through 12)

Byte 3

Size (bits 13 through 20)

0 7

This item declares a control section other than standard con=
trol section (see above). Note that this item is not applicable
to the CI! Symbol processor used with the Monitor system.
However, the loader is capable of loading object modules
(produced by other processors, such as the Meta-Symbol
and FORTRAN 1V processors) that do contain this item,

Declare Dummy Section

Byte O
Control byte
0 0 0 0 1 0 0 1
0 1 2 3 4 5 6 7
Byte 1
First byte of name number
0 7
Byte 2
Second byte of name numbert

0 7
Byte 3

Access code Size (bits 1 through 4)
p P 0 0

0 1 2 3 4 7

"I the module has fewer than 256 previously assigned name
numbers, this byte is absent.

114 Appendix A

designate the label as an external definition, the processor
must generate an external definition name declaration for
that label prior to generating this load item.)

Declare External Definition Name

Byte O
Control byte
0 0 0 0 0 0 1 1
1 2 3 4 5 6 7
Byte 1
Name length, in bytes (K)
0 7
Byte 2
First byte of name
0 . 7
Byte K+1
Last byte of name
0 7

This item declares a label (in EBCDIC code) that is an exter-
nal definition within the current object module. The name
may not exceed 63 bytes in length.

Declare Primary External Reference Name

Byte O
Control byte
0 0 0 0 0 1 0 1
0 1 2 3 4 5 6 7
Byte 1
Name length (K), in bytes
0 7

Byte 2
First byte of name
0 7
Byte K+1
Last byte of name
0 7

This item declares a symbol (in EBCDIC code) that is a pri-
mary external reference within the current object module.
The name may not exceed 63 bytes in length.

A primary external reference is capable of causing the loader
to search the system library for a corresponding external
definition. If a corresponding external definition is not
found in anotherload module of the program or in the system
library, a load error message is output and the job is errored.

Declare Secondary External Reference Name

DEFINITIONS

When a source language symbol is to be defined (i.e., equa-
ted with a value), the processor provides for such a value by
generating an object language expression to be evaluated by
the loader. Expressions are of variable length, and termi-
nate with an expression-end control byte (see Section 4 of
this appendix). An expression is evaluated by the addition
or subtraction of values specified by the expression.

Since the loader must derive values for the origin and start-
ing address of a program, these also require definition.

Byte 0
Control byte
0 0 0 0 0 1 0 0
0 1 2 3 4 5 6 7

This item sets the loader's load-location counter to the
value designated by the expression immediately following
the origin control byte. This expression must not contain
any elements that cannot be evaluated by the loader (see
Expression Evaluation which follows).

Byte O
Control byfe Forward Reference Definition
0 0 0 0 0 1 1 Byte 0
0 1 2 3 4 5 6 Control byte
0 0 0 0 1 0 0
Byte 1 0 1 2 3 4 5 6
Name length, in bytes (K) Byte |
7 First byte of reference number
0
Byte 2 0 7
First byte of name Byte 2
Second byte of reference number
0 . 7
Byte K+1 ‘ 0 7
yte This item defines the value (expression) for a forward refer-
Last byte of name ence. The referenced expression is the one immediately
following byte 2 of this load item, and must not contain
0 7 any elements that cannot be evaluated by the loader (see

This item declares a symbol (in EBCDIC code) that is a sec-
ondary external reference within the current object module.
The name may not exceed 63 bytes in length.

A secondary external reference is not capable of causing the
loader to search the system library for a corresponding exter-
nal definition. If a corresponding external definition is not
found in another load module of the program, the job is not
errored and no error or abnormal message is output.

Secondary external references often appear in library routines
that contain optional or alternative subroutines, some of which
may not be required by the user's program, By the use of pri-
mary external references in the user's program, the user can
specify that only those subroutines that are actually required by
the current job are tobe loaded. Althoughsecondary external
references donot cause loading from the library, they do cause
linkages to be made between routines that are loaded.

Expression Evaluation which follows).

Forward Reference Definition and Hold

Byte O
Control byte
0 0 0 1 0 0
0 1 2 3 4 5 6
Byte 1
First byte of reference number
0 7
Byte 2
Second byte of reference number
0 7

Appendix A 115

This item defines the value (expression) for a forward refer-
ence and notifies the loader that this value is to be retained
in the loader's symbol table until the module end is encoun-
tered, The referenced expression is the one immediately
following the name number. It may contain values that have
not been defined previously, but all such values must be
available to the loader prior to the module end.

After generating this load item, the processor need not retain
the value for the forward reference, since that responsibility
is then assumed by the loader. However, the processor must
retain the symbolic name and forward reference number
assigned to the forward reference (until module end).

External Definition

Byte O
Control byte

0 0 0 0 1 0 1 0

0 1 2 3 4 5 6 7
Byte 1

First byte of name number

0 7

Byte 2
Second byte of name numberf
0 | 7

This item defines the value (expression) for an external
definition name. The name number refers to a previously
declared definition name. The referenced expression is
the one immediately following the name number.

Define Start

Byte O

Control byte
0 0 0 0 1. 1 0 1
0 1 2 3 4 5 6 7

This item defines the starting address (expression) to be used
at the completion of loading. The referenced expression is
the one immediately following the control byte.

EXPRESSION EVALUATION

A processor must generafe an object language expression
whenever it needs to communicate to the loader one of
the following:

1. A program load origin.

2. A program starting address.

"If the module has fewer than 256 previously assigned name
numbers, this byte is absent.

116 Appendix A

3. An external definition value.
4, A forward reference value.

5. A field definition value.

Such expressions may include sums and differences of con-
stants, addresses, and external or forward reference values
that, when defined, will themselves be constants or addresses.

After initiation of the expression mode, by the use of a con-
trol byte designating one of the five items described above,
the value of an expression is expressed as follows:

1. An address value is represented by an offset from the
control section base plus the value of the control sec-
tion base.

2. The value of a constant is added to the accumulated
sum by generating an Add Constant (see below) control
byte followed by the value, right-justified infourbytes.

The offset from the control section base is given as a
constant representing the number of units of displace-
ment from the control section base, at the resolution
of the address of the item. That is, a word address
would have its constant portion expressed as a count of
the number of words offset from the base, while the
constant portion of a byte address would be expressed
as the number of bytes offset from the base.

The control section base value is accumulated by means
of an Add Value of Declaration (see below) or Subtract
Value of Declaration load item specifying the desired
resolution and the declaration number of the control
section base. The loader adjusts the base value to the
specified address resolution before adding it to the cur-
rent partial sum for the expression.

In the case of an absolute address, an Add Absolute
Section (see below) or Subtract Absolute Section con-
trol byte must be included in the expression to identify
the value as an address and to specify its resolution.

3. An external definition or forward reference value is
included in an expression by means of a load item add-
ing or subtracting the appropriate declaration or forward
reference value. If the value is an address, the reso-
lution specified in the control byte is used to align the
value before adding it to the current partial sum for the
expression. If the value is a constant, no alignment is
necessary.

Expressions are not evaluated by the loader until all required
values are available. In evaluating an expression, the
loader maintains a count of the number of values added or
subtracted at each of the four possible resolutions. A sepa-
rate counter is used for each resolution, and each counter

is incremented or decremented by 1 whenever a value of the
corresponding resolution is added to or subtracted from the
loader's expression accumulator. The final accumulated sum
is a constant, rather than an address value, if the final count
in all four counters is equal to 0. If the final count inone
(and only one) of the four counters is equal to +1 or -1, the

accumulated sum is a "simple address" having the resolution
of the nonzero counter. If more than one of the four counters
have a nonzero final count, the accumulated sum is termed

a "mixed -resolution expression" and is treated as a constant

rather than an address.

The resolution of a simple address may be altered by means
of a Change Expression Resolution (see below) control byte.
However, if the current partial sum is either a constant or
a mixed-resolution value when the Change Expression Reso-
lution control byte occurs, then the expression resolution

is unaffected.

Note that the expression for a program load origin or start-
ing address must resolve to a simple address, and the single
nonzero resolution counter must have a final count of +1
when such expressions are evaluated.

In converting a byte address to a word address, the two least
significant bits of the address are truncated. Thus, if the
resulting word address is later changed back to byte resolu-

tion, the referenced byte location will then be the first byte

(byte 0) of the word.

After an expression has been evaluated, its final value is
associated with the appropriaté load item.

In the following diagrams of load item formats, RR refers to
the address resolution code. The meaning of this code
is given in the table below.

RR Address Resolution
00 Byte

01 Halfword

10 Word

1 Doubleword

The load items discussed in this appendix, "Expression
Evaluation", may appear only in expressions.

Byte 3

Third byte of constant

Byte 4

Fourth byte of constant

0 7
This item causes the specified 4-byte constant to be added
to the loader's expression accumulator. Negative constants

are represented in two's complement form.

Add Absolute Section

Byte O
Control byte
0 1 1 0 1 R R
1 2 3 4 5 6 7

This item identifies the associated value (expression) as a
positive absolute address. The address resolution code, RR,
designates the desired resolution,

Subtract Absolute Section

Byte O
Control byte
0 1 1 1 0 R
12 3 4 5 6 7

This item identifies the associated value (expression) as a
negative absolute address. The address resolution code,
RR, designates the desired resolution.

Add Value of Declaration

Byte O
Add Constant Control byte
0 0 1 0 0 0 R
Byte 0 1 2 3 4 5 6 7
Control byte
0 0 0 0 0 0 1 Byte 1
1 2 3 - 4 5 6 7 First byte of name number
Byte 1 0 7
First byte of constant
Byte 2
0 7 Second byte of name number’
Byte 2 0 7
Second byte of constant
"If the module has fewer than 256 previously assigned name
0 7 numbers, this byte is absent.

Appendix A 117

This item causes the value of the specified declaration tobe
added to the loader's expression accumulator. The address
resolution code, RR, designates the desired resolution, and
the name number refers to a previously declared definition
name that is to be associated with the first location of the
allocated section.

One such item must appear in each expression for a reloca-
table address occurring within a control section, adding the
value of the specified control section declaration (i.e.,
adding the byte address of the first location of the control
section).

Add Value of Forward Reference

Byte O
Control byte
0 0 1 0 0 1 R R
0 1 2 3 4 5 6 7
Byte 1
First byte of forward reference number
0 7
Byte 2

Second byte of forward reference number

0 7

This item causes the value of the specified forward reference
to be added to the loader's expression accumulator. The
address resolution code, RR, designates the desired resolu-
tion, and the designated forward reference must not have
been defined previously.

Subtract Value of Declaration

Byte O
Control byte

0 1 0 1 0 R R
0 1 2 3 4 5 6 7
Byte 1

First byte of name number

0 7
Byte 2

Second byte of name number!

This item causes the value of the specified declaration to
be subtracted from the loader's expression accumulator.

"I the module has fewer than 256 previously assigned name
numbers, this byte is absent,

118 Appendix A

The address resolution code, RR, designates the desired
resolution, and the name number refers to a previously de-
clared definition name that is to be associated with the
first location of the allocated section.

Subtract Value of Forward Reference

Byte O
Control byte
0 0 1 0 1 1 R R
1 2 3 4 5 6 7
Byte 1
First byte of forward reference number
0 7
Byte 2
Second byte of forward reference number
0 7

This item causes the value of the specified forward reference
to be subtracted from the loader's expression accumulator.
The address resolution code, RR, designates the desired reso-
lution, and the designated forward reference must not have
been defined previously.

Change Expression Resolution

Byte O
Control byte
0 0 1 1 0 0 R
0 1 2 3 4 5 6 7

This item causes the address resolution in the expression to
be changed to that designated by RR.

Expression End

Byte O
Control byte
0 0 0 0 0 1 0
1 2 3 4 5 6 7

This item identifies the end of an expression (the value of
which is contained in the loader's expression accumulator).

LOADING

Load Absolute

Byte O
Control byte
1 0 0 N N N N
1 2 3 4 5 6 7

Byte 1
First byte to be loaded
0) 7
Byte NNNN
Last byte to be loaded
0 7

This item causes the next NNNN bytes to be loaded abso-
lutely (NNNN is expressed in natural binary form, except
that 0000 is interpreted as 16 rather than 0). The load loca-
tion counter is advanced appropriately.

Load Relocatable (Long Form)

Byte O
Control byte

0 1 0 1 Q C R

0 1 2 3 4 5 6 7
Byte 1

First byte of name number
0 7
Byte 2
Second byte of name numbert
0 7

This item causes a 4-byte word (immediately following this
load item) to be loaded, and relocates the address field
according to the address resolution code, RR. Control bit
C designates whether relocation is to be relative to a for-
ward reference (C = 1) or relative to a declaration (C = 0).
Control bit Q designates whether a 1-byte (Q = 1) or a
2-byte (Q = 0) name number follows the control byte of
this load item.

If relocation is to be relative to a forward reference, the
forward reference must not have been defined previously.
When this load item is encountered by the loader, the load
location counter can be aligned with a word boundary by
loading the appropriate number of bytes containing all zeros
(e.g., by means of a load absolute item).

Load Relocatable (Short Form)

Byte O

Control byte
1 C D D D D D D
0 1 2 3 4 5

"If the module has fewer than 256 previously assigned name
numbers, this byte is absent.

This item causes a 4-byte word (immediately following this
load item) to be loaded, and relocates the address field
(word resolution). Control bit C designates whether reloca-
tion is to be relative to a forward reference (C = 1) or rela-
tive to a declaration (C = 0). The binary number DDDDDD
is the forward reference number or declaration number by
which relocation is to be accomplished.

If relocation is to be relative to a forward reference, the
forward reference must not have been defined previously.
When this load item is encountered by the loader, the load
location counter must be on a word boundary (see "Load
Relocatable (Long Form)", above).

Repeat Load

Byte O
Control byte
0 0 0 0 1 1 1 1
0 1 2 3 4 5 6 7
Byte 1
First byte of repeat count
0 7
Byte 2
Second byte of repeat count
0 7

This item causes the loader to repeat (i.e., perform) the

subsequent load item a specified number of times. The
repeat count must be greater than 0, and the load item to
be repeated must follow the repeat load item immediately.

Define Field

Byte O
Control byte

0 0 0 0 1 1 1

i 2 3 4 5 6 7
Byte 1

Field location constant, in bits (K)
0 7
Byte 2
Field length, in bits (L)

0 7

This item defines a value (expression) to be added to a field
in previously loaded information. The field is of length L
(1 = L = 255) and terminates in bit position T, where:

T = current load bit position =256 +K.

Appendix A 119

The field location constant, K, may have any value from
1 to 255. The expression to be added to the specified field
is the one immediately following byte 2 of this load item.

MISCELLANEOUS LOAD ITEMS

Padding
Byte O
Control byte
0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7

Padding bytes are ignored by the loader. The object lan-

Severity level

0 0 0 0 E E E E
1 2 3 4 5 6 7

This item identifies the end of the object module. The val-
ve EEEE is the error severity level assigned to the module
by the processor (see "LOAD", in Chapter 2 of this

manual),

guage allows padding as a convenience for processors. OBJECT MODULE EXAMPLE
Module End
Byte O The following example shows the correspondence between
Control byte the st'atements of a Symbol source program and the string
0 0 1 1) of object bytes output for that program by the assembler,
The program, listed below, has no significance other than
1 3 5 6 7 illustrating typical object code sequences.
Example
1 DEF AA,BB,CC CC IS UNDEFINED BUT CAUSES NO
ERROR
2 REF RZ,RTN EXTERNAL REFERENCES DECLARED
3 00000 ALPHA CSECT DEFINE CONTROL SECTION ALPHA
4 000C8 CRG 200 DEFINE ORGIN
5 000C8 22000000 N AA LI,CNT 0 DEFINES EXTERNAL AA; CNT IS A
_ FWD REF
6 000C9 32000000 N LW,R RZ (R 1S A FORWARD REFERENCE;
7 * { RZ IS AN EXTERNAL REFERENCE, AS
8 * L DECLARED IN LINE 2
9 000CA 50000000 N RPT AH,R KON [DEFINES RPT; R AND KON ARE
10 * | FORWARD REFERENCES
11 000CB 69200000 F BCS, 2 BB [BB 1S AN EXTERNAL DEFINITION
12 * | USED AS A FORWARD REFERENCE
13 000CC 20000001 N AL, CNT 1 CNT IS A FORWARD REFERENCE
14 000CD 680000CA B RPT RPT IS A BACKWARD REFERENCE
15 000CE 68000000 X B RTN RTN IS AN EXTERNAL REFERENCE
16 000CF 0001 A KON DATA, 2 1 DEFINES KON
17 00000003 R EQU DEFINES R
18 00000004 CNT EQU 4 DEFINES CNT
19 000DO 224FFFFF A BB LI,CNT -1 DEFINES EXTERNAL BB THAT HAS
20 * ALSO BEEN USED AS A FORWARD
21 * REFERENCE
22 000C8 END AA END OF PROGRAM
120 Appendix A

The object string generated for this program is given below.

Record-control
information

Declare AA
(source line 1)

Declare BB
(source line 1)

Declare CC

(source line 1)

Declare RZ
(source line 2)

Declare RTN
(source line 2)

Define AA
(source line 5)

(00111100
00000000

4
01100011

L 01101100

[00000011
00000010

4
11000001

L 11000001

[00000011
00000010

4
11000010

L 11000010

(00000011
00000010

<
11000011

L 11000011

(00000101
00000010

<
11011001

. 11101001

-

00000101
00000011
11011001
11100011
L 11010101

(00001010
00000001
00000001
00000000
00000000
00000011
00100000
00100000
00000000

{ 00000010

Begin record

0 (record sequence number)
63]6 (checksum)

6C16 (number of bytes in record)

Begin external -definition declaration
2 (a 2-byte name follows)

C1,¢ (EBCDIC "A")

Cl 16 (EBCDIC "A")

Begin external-definition declaration
2 (a 2-byte name follows)

C2]6 (EBCDIC "B")

C2‘6 (EBCDIC "B")

Begin external -definition declaration
2 {(a 2-byte name follows)

C316 (EBCDIC "C")

C3,4 (EBCDIC "C")

Begin primary-external -reference declaration
2 (a 2-byte name follows)

D94 (EBCDIC "R")

E‘?]é (EBCDIC "Z")

Begin primary-externai-reference declaration
3 (a 3-byte name follows)

D916 (EBCDIC "R")

E316 (EBCDIC "T")

D514 (EBCDIC "N")

Begin definition of external definition
1 (the following expression defines declaration 1, i.e., AA)

Add the following 4-byte constant

320, (the relocatable byte address of AA)

Add the value of the following declaration
0 (declaration 0, i.e., the standard control section)

End expression mode

"No object code is generated for source line 3 (define control section) or 4 (define origin) at the time they are encountered.
The control section is declared at the end of the program after Symbol has determined the number of bytes the program
requires. The origin definition is generated prior to the first instruction,

Appendix A 121

(00000100 Begin definition of origin
00000001 Add the following 5-byte constant

00000000

Defi . . 00000000

(szu‘:; olr;g;n4) d oooocon1 32014 (the relocatable byte address of the origin)
00100000

00100000 Add the value of the following declaration
00000000 0 (declaration 0, i.e., the standard control section)
00000010 End expression mode

.
01000100 Load the next 4 bytes absolutely

Load code 00100010
{:‘; :'I line 5) 1 00000000 22000000]6 (operation code for LI 0)
vree 00000000

k00000000

(00000111 Begin field definition

11101011 EB 1 (field-location constant)
Define field 00000100 4 (number of bits in field)
CNT . £ 00100110 Add the value of the following forward reference
(source line 5)

00000000 0 (forward reference O, i.e., CNT)’

00000000

00000010 End expression mode

rl 0000100 Load the next 4 bytes (word resolution) relative to declaration 4 (i.e., RZ)

Load code 00110010

for LW

(source line 6)] 20000569 32000000 , (operation code for LW)
00000000 16 \°P
00000000
.

(00000111 Begin field definition
11101011 EB4 (field-location constant)
00000100 4 (number of bits in field)

Define field R
(source line 6) 400100110 Add the value of the following forward reference
00000000] .
00000110 6 (forward reference 6, i.e., R)
00000010 End expression mode
r1 1001100 Load the next 4 bytes relative to forward reference Clb (i.e., KC)N)f
01010000
o 1209990} 50000000, (operation code for AH)
(source line 9) 00000000
\00000000

t
Forward reference numbers are normally assigned by the Symbol assembler in the sequence 0, 6, C, 12, etc. (hexadecimal).

122 Appendix A

Define field R
(source line 9)

Load code
for BCS, 2
(source line 11)

Load code
for Al 1
(source line 13)

Define field
CNT

(source line 13)

Load code
for B RPT
(source line 14)

Load code
for B
(source line 15)

(source line 16)

4

4

A

A

A

00000111
11101011
00000100
00100110
00000000
00000110

[00000010

.

11010010
01101001
00100000
00000000
Loooooooo

(01000100
00100000
00000000
00000000
00000001

(00000111
00010011
00000100
00100110
00000000
00000000
00000010
_

10000000
01101000
00000000
00000000
11001010
(10000101
01101000
00000000
00000000

kO()OOOOOO

00001000

|

|

Begin field definition
EBlé (field-location constant)
4 (number of bits in field)

Add the value of the following forward references

6 (forward reference 6, i.e., R)

End expression mode

Load the next 4 bytes relative to forward reference]216 (i.e., BB)

69200000] (operation code for BCS, 2)

6

Load the next 4 bytes absolutely

20000001 16 (operation code for Al 1)

Begin field definition
EBlé (field-location constant)
4 (number of bits in field)

Add the value of the following forward reference

0 (forward reference 0, i.e., CNT)

End expression mode

Load the next 4 bytes relative to declaration 0 (i.e., the standard control section)

L‘.ySOOOCA]6 (code for BCR RPT, i.e., CAlé is the relocatable word address of RPT)

Load the next 4 bytes relative to declaration 5 (i.e., RTN)

6800000016 (operation code for BCR)

Begin forward reference definition (n.b., this item is continued in the next record)

Appendix A 123

(00011100 Begin last record of module
Record-control 00000001 1 (record sequence number)
information 11101100 EC 4 (checksum)

L 01010001 51 16 (number of bytes in record)

A

-
00000000 |
C, (f
00001100] ~16
00000001 Add the following 4-byte constant

orward reference C‘é, i.e., KON)

\

Load code for 00000000

DATA, 21) 00000000 |

(source line 16) 00000011 33C16 (the relocatable byte address of KON)
00111100

00100000 Add the value of the following declaration
00000000 0 (declaration 0, i.e., the standard control section)
00000010 End expression mode

(00001000 Begin forward reference definition

00000000]

00000110 6 forward reference 6, i.e., R)
Define R 00000001 Add the following 4-byte constant
(source line 17) { 00000000

00000000

ooooo000 | 316

00000011

00000010 End expression mode

00001000 Begin forward reference definition

00000000 |

00000000 | 0 (forward reference 0, i.e., CNT)
Define CNT 00000001 Add the following 4-byte constant
(source line 18) 4 00000000

00000000

00000000 | 416

00000100 J

00000010 End expression mode

-

00001111 Repeat the following load item as specified
Load 00001, 00000000
(advance to next 4 00000010 2 (the following load item is to be loaded twice)

word boundary)
01000001 Load the next byte absolutely

\OOOOOOOO 0016 (not a padding control byte)

124 Appendix A

Define forward
reference BB
(source line 19)

Define external
definition BB
(source line 19)

Load code for
LI, CNT -1

(source line 19)

Define start
(source line 22)

Declare standard
control section

End of module

y

(00001000

00000000
00010010
00000001
00000000
00000000
00000011
01000000
00100000
00000000
[00000010
(00001010
00000010
00000001
00000000
00000000
00000011
01000000
00100010
00000000
00000010
(01000100
00100010
01001111
IRRRRRRE!
L1
(00001101
00000001
00000000
00000000
00000011
00100000
00100000
00000000
00000010
(00001011
00000000

4
00000011

L 01000100
00001110
00000000

|

Begin forward reference definition

]2]6 (forward reference]216' i.e., BB)

Add the following 4-byte constant

340]6 (the relocatable byte address of BB)

Add the value of the following declaration

0 (declaration 0, i.e., standard control section)

End expression mode

Begin definition of external definition

2 (the following expression defines declaration 2, i.e., BB)

Add the following 4-byte constant

340]6 (the relocatable byte address of BB)

Add the value of the following declaration
0 (declaration 0, i.e., the standard control section)
End expression mode

Load the next 4 bytes absolutely

224FFFFFhs (code for LI,CNT -1)

Begin definition of start

Add the following 4-byte constant

32016 (the relocatable byte address of the start, i.e., AA)

Add the value of the following declaration
0 (declaration O; i.e., the standard control section)
End expression mode

Begin standard control section declaration
344]6 (access code 00 and 344]6 bytes allocated)

End module

0 (error severity)

Appendix A

125

A table summarizing control byte codes for object language load items is given below.

Object Code Control Byte

Type of Load Item

o

0
0
0 1
0

O O O O O o o o
N e = T T o S o S

OO O O O ©O O O © O O O o o o o o
- O O

©C O O O O O O O O O O o o ©o o o o

—
—

o O O O

O O O O O O © O O O O O O © © O O O O O O o o o o o
O O O O © O O O O O O O O O O O o o o o o o o
—

o o
o
O »m Z =2 o = = o =W 0 O

(o J—

O © o
S 0O Z
o 0N Z o

O o Z » » = o = = 20 O

Padding

Add constant

Expression end

Declare external definition name
Origin

Declare primary reference name
Declare secondary reference name
Define field

Define forward reference

Declare dummy section

Define external definition
Declare standard control section
Declare nonstandard control section
Define start

Module end

Repeat load

Define forward reference and hold
Add value of declaration

Add value of forward reference
Subtract value of declaration
Subtract value of forward reference
Change expression resolution

Add absolute section

Subtract absolute section

Load absolute

Load relocatable (long form)

Load relocatable (short form)

126

Appendix A

APPENDIX B. FILE ORGANIZATION

INTRODUCTION

A file is an organized collection of information that may
only be created, modified or deleted through the Monitor
system. A file has one base name but may have other names
synonymous with it,

Information isretrieved from a file by specifying the file name,
password, account, and the desired record within the file.

The Monitor maintains a master directory of those accounts
(users) that maintain files. Eachentry in the master directory
points to the user's master index of files. Each entry con-
tains the access code and, ingeneral, allsignificant attrib-
utes of the file.

FILE CONTROL

Each file has an independent means of controlling the way
in which it is used.

Information is not made available to users who are no au-
thorized to obtain it. With each file, a password and infor-
mation as to which user may read and/or update the file is
recorded. Protection from unauthorized disclosure is attained
by checking the information carried with the file against the
information supplied by the user.

Changes to the file are allowed or disallowed based on the
user's password and account. No accidental changes can
occur.

Files may be shared simultaneously or a user may attain ex-
clusive use. Inaddition, individual records within a file
may be designated for exclusive use, though this does not
preclude the remainder of the file from being shared.

A user cannot create a file by using an account number
other than his own.

FILE ORGANIZATION

Keyed files are those in which each record has an identify-
ing key associated with it. A key consists of a character
string, the first byte of which states the number of charac-
ters in the string.

1. Keyed Files on Disc

As the file is being created, a master index is also
created with an entry foreachkeyed record in the file.
The entry contains such information as the disc address
of the record, size of the record, and position of the
record within the blocking buffer.

The records are packed into blocking buffers with the
last portion of the last record extending into another
buffer as necessary. If the record is large, it is written
directly from the user's area instead of being packed
into a buffer. Keyed files on disc may be accessed by
direct or sequential access.

2. Keyed Files on Tape

Tape files are created in a manner similar to disc files.
The key associated with a record is stored at the front
of the record. Records are packed into 512-word blocks
and written to tape as the block is filled. Large records
are written directly from the user's area. The last part
of the last record may extend into the next block if
necessary. No master index is maintained.

Consecutive files are files whose records are organized in a
consecutive manner; i.e., there are no identifying keys as-
sociated with the records. The records may only be accessed
sequentially.

1. Consecutive Files on Disc

Records are packed into blocking buffers and written on
disc. A master index is maintained containing an entry
for each granule used. The information in the index is
similar to that for keyed files.

2. Consecutive Files on Tape

Records are packed into 512 word blocks and written to
tape. No master index is maintained.

FILE ACCESS

Sequential Access

Sequential access may be used when accessing records with
keyed or consecutive organization.

1. Output Files

Records of files in the output mode may only be written
— reading is not allowed.

If the file has been declared a keyed file, a key must
be given with each write operation and this key must be
a new key (i.e., it must not have been used before).
If the key has already been used, no informationis writ-
tenand an X'16'abnormal return is executed. Thekeys
must be given in a sorted order. For example, if the user
writes records withkeys A, C, D, respectively, and then
writes a record with key B, the record will not be written
and an X'18' error return will be executed.

The PRECORD FWD (position record forward or FORE-
SPACE) and PRECORD REV (position record backwards
or BACKSPACE) operations are allowed on both keyed
and consecutive files. A BOF is given when the
beginning-of-file is reached and an EOF is given when
the end-of-file is reached. On tape files, BACKSPACE
and FORESPACE will cause the tape to be positioned as
specified.

On disc files, the pointer to the current entry in the
master index is decremented or incremented. A WRITE
operation following BACKSPACE or FORESPACE causes

all forward records to be deleted.

Appendix B 127

128

A WRITE with a 0 count will cause a null record to be
written; on keyed files, the key is saved but no record
is written,

When closing the file, the SAVE option must be speci-

fied in the CLOSE statement and in the OPEN state-

ment if the file is to be saved. If the file already

exists, and generation numbers are not used, the new
file replaces the old one. If generation numbers are
used, the new file becomes the latest generation.

Scratch Files

The same rules that apply to output files also apply to
scratch files, except that reading is allowed. Reading
may be directional —either forward or reverse. A
READ with REV implies that the record preceding the
current position is to be read. If no direction is speci-
fied, FWD is assumed.

When reading a keyed file, a key may or may not be
specified. If a key is specified, a search is made for
the specified key. The FWD, REV options are ignored
when a key is specified. If a key is not specified,
READ FWD implies that the next record in sequence is
to be read. READ with REV implies that the record
immediately preceding the current record is to be read.

Reading a consecutive file is the same as reading a
keyed file without specifying a key.

A WRITE with NEWKEY deletes all forward information.
Input Files

Records may only be read — writing is not allowed.

The READ function is the same as that for scratch files.
BACKSPACE and FORESPACE operations are allowed.
On a keyed or consecutive tape file, BACKSPACE and
FORESPACE will cause the tape to be positioned as
specified.

Update Files

The READ function is the same as for scratch files. Po-
sitioning operations are allowed.

The WRITE function may or may not have a key specified.

If a key is not specified, the WRITE function must have
been preceded by a READ. If it is, the record just read
is updated; if not, an X'15' abnormal code is signaled.

New records may be added to the file. On a keyed file,
the NEWKEY option must be specified, and a search of
the keys will be made to locate the proper place to
merge the new key. If the key already exists, an X'16'
abnormal return is executed.

If the file is consecutive, new records may be added

by positioning to the end of file and yiving WRITE
operations.

Appendix B

The DELETE function may be used. If a key is specified,
a search of the directory is made to find the specified
key. The record is then deleted. If a key is not speci-~
fied, the DELETE operation must have been preceded

by a READ. Then the key just read will be deleted.

On labeled tapes, a file may be opened in the update
mode. However, the first write operation will cause
all forward information to be deleted.

Direct Access

Direct access may be used only on files with keyed organ-
ization on disc.

1. Output Files

When a WRITE is given, a key must be specified. The
keys do not need to be given in a sorted order. They
will be ordered as they are stored on disc.

Unlike sequential output files, the last WRITE does not
cause forward information to be deleted.

Reading is not allowed.
2. Scratch Files

As for output files, a key must be specified on each
WRITE. The keyed record is merged into the file.

A READ may or may not specify a key. If a key is
specified, a search is made of the file until the key is
found and then the record is read. If the key is not
found, an error return is executed.

If a key is not specified, the next sequential record is
obtained.

The FWD and REV options apply on READ operations not
specifying a key. If a key is specified, these options
are ignored. BACKSPACE and FORESPACE operations
are performed in the same way as for sequential output
files. A WRITE with NEWKEY does not cause forward
information to be deleted. A READ after WRITE returns
an X'06' EOF.

3. Input Files

This is the same as for sequential input files.

4. Update Files

This is the same as for sequential update files. READ
after WRITE returns an X'06' EOF.

RECORD BLOCKING

Records may be written to tape or disc in the blocked or un-
blocked mode.

Keyed Files and Consecutive Files on Disc (blocked)

The system will automatically block records to provide more
efficient use of disc space. The user has no knowledge of

thisblocking and, whenreading, will receive the appropriate To perform BACKSPACE or FORESPACE operations, the cor-

record within the block and not the entire block. When up- rect tape positioning will be done by reading each block
dating, theuser may rewrite arecord in a size largerorsmaller and determining the number of records within the block.
than the original record size. If necessary, the Monitor will

allocate additional disc space to accommodate the largersize. EXCLUSIVE USE OF RECORDS AND FILES

Keyed Files and Consecutive Files on Tape (blocked)
(See Figure B-1.)

A user is given the ability to prevent other users from
accessing a record and/or file until desired operations

Blocking will be performed similarly toblocking disc records. are complete.
0 7‘8 1516 2324 31
NKY PBS
SKEY, KEY,
KEY,
KEY, PPy RWS,
RECORD]
SKEY KEY?2 NKY contains number of entries in block.
KEY;, PoPy RWSo PBS contains previous block size.
ins size of key.
RECORD, SKEY contains size of key
KEY contains key.
ote RWS contains size of record in block.

Py = 1 means first part of record.

] ! Py = 0 means not first part,
! Inter-record gap !
P2 =1 means record continued into next blk.
NKY Pas P2 = 0 means not continued.
SKEY3 KEY3 l
KEY3 P2Pq RWS3
1
! Inter-record gap !
RECORD3

(unblocked)

Figure B-1. Labeled Tape Format for Variable-Length Blocked Records

Appendix B 129

EXCLUSIVE USE OF TAPE FILES

1. Single-File Tapes

Once a user has opened a file, no other users may ac-
cess the file until the original user closes it.

2. Multi-File Tapes
Once a user has opened a file on a multi-file tape,
no other user may access the tape until the original
user has closed the file. If the REW option is specified
the tape is rewound and a message is typed requesting
the operator to dismount the reel. Otherwise, the tape
remains at the current position and, if a DCB is opened

using that tape, one of two actions occurs:

a. On input or update, the tape is scanned forward
for the desired file.

b. On output, the tape is positioned to the end of
the current file and the new file is written at that
position.

EXCLUSIVE USE OF DISC FILES

1. Output Files

When creating a file, the user has exclusive use of the
file until it is closed.

2. Scratch Files
Exclusive use is implied until the file is closed.

3. Input Files

Exclusive use is not given.

4. Update Fi les

On keyedfiles usingdirectaccess, the user will obtain ex-

clusive use of the record by executing a read operation.

If, at any time, the user does not want exclusive use
when executing a read operation, he may use the
NOEXCL option.

MULTIPLE DCB’S WITHIN A USER’'S PROGRAM
REFERENCING THE SAME FILE

TAPE FILES

1. Single-File Tapes

Only one DCB may be opened to the file at a time. If
an attempt is made to open a tape file that is already
referenced by another DCB, an abnormal return will be
executed.

130 Appendix B

Multi-File Tapes

Only one DCB may be opened to the tape at a time.
The user may not reference another file on the tape
until the previous file is closed. To do so will cause
an abnormal return.

DISC FILES

Output Files

The user may have only one open DCB in the output
mode referencing an output file (a "new" file). How-
ever, if another version of the file (a "current” file) I
already exists on disc, any number of DCBs in the in-
put mode may read that file. If the new file is closed
with the SAVE option, the disc space for the current

file is released and the new disc space is saved. For
this reason, all DCBs referencing the current file must
be closed before the new file is closed; if the DCBs are
not closed, an X'51' abnormal return is made. Further- |
more, the user must open the new file first.

Scratch Files

See "Output Files", above.

Input Files

Any number of DCBs with the input mode specified may
reference the same file.

Update Files

The user may have only one open DCB in the update
mode referencing a file.

LABELED TAPES (See Figure B-2)

SENTINELS

The formats of sentinels for labeled tapes are described
below. All sentinels begin on a word boundary.

1.

ALBL

This record identifies the reel number of the tape. Reel
numbers are four alphanumeric characters in length.
Sentinel length: 8 bytes (see Figure B-3).

:ACN

This sentinel identifies the owner of the tape, the ex-
piration date, and the creation date, in that order.

The account number is 8 alphanumeric characters
in length, left-justified and in EBCDIC code (see
Figure B-4).

Tape 1

Label sentinel (:LBL)
Identification sentinel (:ACN)

Tape mark
Beginning of file A (:BOF)

User's label

Tape mark

Record 1 of file A
Record 2 of file A
Record 3 of file A

Tape mark
End of volume (:EOV)

Tape mark
End of reel (:EOR)

Tape mark

Tape mark

Tape 2

Label sentinel (:LBL)
Identification sentinel (:ACN)

Tape mark

Beginningof file A (:BOF)

Tope mark

Record 4 of file A

Tape mark
End of file A (:EOF)

Tape mark

Beginning of file B (:BOF)

Tape mark

Record 1 of file B

Tape mark

End of reel (:EOR)

Tape mark

Tape mark

Figure B-3. Label Sentinel

A Cc N

O] 02 03 04

95 1% | 97 | %

m-| m2 d] d2

b k) Y])'2

b b y])’2

! |
! Inter-record gap !

Tape mark record

Figure B-4. Identification Sentinel

The dates are of the form mymopddbbyy,, where
mim2 is the numerical representation of the month,
dydy the day, 66 are blanks, and yyy are the iast
two digits of the year. The digits are in EBCDIC and
the blanks must appear.

Sentinel length: 28 bytes foliowed by a physical end-
of-file (tape mark record).

:BOF

The beginning-of-file sentinel consists of the file-
information record, the user's label (if the user has
specified one) and a physical end-of-file. The file in-
formation consists of control words and the information
itself (see Figures B-5 and B-6). A control word has
the following form:

Code LEI Length

Figure B-2. General Format of Labeled Tape

a. "Code" identifies the type of informaticn following

the control word.

The codes are:

01 - file name. The file name may be a maxi-
mum of 31 characters. An additional byte

is used to state the length of the file name.

03 - password (2 words, left-justified).

Appendix B 131

05 - READ account numbers.

06 - WRITE account numbers.

Each account number is left-justified, blank-
filled, and two words long. The total num-
ber of READ and WRITE accounts must not
exceed 16. READ account identify those
who may have only read access to the file.
WRITE accounts identify those who may
read and write the file. NONE or ALL

are also allowed.

09 - miscellaneous information, such as:

ORG — gives the file organization, which
may be keyed or consecutive.

KEYM —specifies the maximum length of
the keys. Keys may not be greater than
63 bytes. An additional byte is used to
specify the length of the key. On consec~
utive files, the length of the dummy key
is assumed to be two; therefore, KEYM is
ignored. On keyed files, if KEYM =0, the
maximum length is assumed to be 11,

VOL —On multi-reel files, this entry spec-
ifies the position of this tape in the file.
For example, VOL =2 implies this is the
second tape of the multi-reel file. VOL=1
indicates the beginning of the file. Every
file begins with VOL=1 (including single-
reel files).

HDL — This specifies the length of the
user's label. If HDL=0, then no user's
label exists and the following record must
be a physical end-of-file.

BLK —specifies the type of structure of the
record formats. 1f BLK=1, then the file
is unblocked. 1f BLK=0, the file is
blocked. .

b. LEl is the last-entry indicator; this entry in the
control word indicates the end of the file infor-
mation. The control words, along with the infor-
mation they define, do not have to be in a par-
ticular order, but LEI must equal 0 if the file
information entry is not the last one and must
equal 1 if the entry is the last one.

c. "Length" specifies the length, in words, of the in-
formation associated with a particular entry (i.e.,

following the code word).

4. :EOF, :EQV, and :EOR

These sentinels are described in Figure B-7, B-8, and
B-9. The notation "PBS" represents the value of the
previous block size, in bytes.

132 Appendix B

File
information
(see Figure B-6)

Inter-record gap |

User label length

User's

label

Inter-record gap

Tape mark record

Figure B-5. Beginning-of-File Sentinel

B o F
il AN W Length
No, char. in| File name
03 00 W Length
05 00 W Length
READ Account numbers
06 00 ///////// Length
WRITE Account numbers
09 777/
ORG KEYM voL GEN
HoL BLK W
78 15 16 2]

Figure B=6. File Information on Tape

Tape mark record

Inter-record gap !

. le |o|F
PBS

Inter-record gap !

Tape mark record

Figure B-7. End-of-File Sentinel

E O \ : E O IR
PBS PBS
' Inter-record gap | i Inter-record gap !
Tape mark record Tape mark record
Figure B-8. End-of-Volume Sentinel Figure B=9. End-of-Reel Sentinel

Appendix B 133

APPENDIX C. 1/0 HANDLERS

INTRODUCTION KBTIO (Keyboard Typewriter Handler)
CRDIN (Card Reader Handler)
1/O handlers are routines selected during System Generation CRDOUT (Unbuffered Card Punch Handler)
that allow communication between the computer and its PRTOUT (Buffered Line Printer Handler)
peripheral devices. PTAP (Paper Tape Handler)
MTAP (Magnetic Tape Handler)
With the exception of 7TAP (called via MTAP), the han- 7TAP (7 Track Magnetic Tape Handler)
dlers are completely independent of each other, and any DISCIO (Magnetic Disc Handler)
combination of handlers is operable without the remainder
being utilized. Functions common to various handlers are REGISTERS

performed by subroutines provided in the Monitor system
(handlers themselves provide only for specialized 1/O and

error recovery). The registers used by the various routines are specified in
‘ the individual handler descriptions in the latter portion of

The handlers can service many devices simultaneously in a this section.

reenterable fashion, and are parametrically orgonized. The

specialized handlers available under the Monitor are listed The general registers are referred to by the symbols illus-

as follows: trated in Table C-1.

Table C-1. Register References

Register | Symbol | Note | Handler Use
0 RO 1
1 R1 1
2 R2 1 » Not used by /O handlers.
3 R3 1
4 R4 1 J
5 R5 3 Required by 1/O routines to contain the full 1/O address. R5 gets status and device address
as a result of an AIO instruction just prior to entering any 1/O interrupt service routine.
6 R6 1 Not used by 1/0 handlers.
R7 3 Required by I/O routines to contain the logical DC number (pointer to correct entry in
DCT1 through DCT15).
8 SR1 2,3 Contains function code and DCB address.
9 SR2 2,3
10 SR3 23 Not used by 1/O handlers.
1 SR4 2,3 Used for linkage address for subroutines.
12 D1 1 Contains the TIO instruction results just prior to entry of a handler or interrupt
13 D2 1 service routine,
14 D3 1
15 b4 | Not used by 1/O handlers.
Notes: 1. These registers are considered as volatile registers and may be used and destroyed by any routine.
2. System registers,
3. These registers must be preserved and restored if used by any subroutine.

Note: The handlers can use TSTACK for temporary storage (TSTACK is the location of ¢ Stack Pointer Doubleword). All
storage used in a temp stack is released before the associated routine exits.

134 Appendix C

BASIC STRUCTURE

Upon entry, with SR4 as the linkage register, the handler
sets up the order codes and interrupt flags in the command
pairs in the doubleword location(s) specified by the address
in DCT94R7. The handler sets register D3 to the error return
address in case there is an unsuccessful reply to the SIO
instruction, and uses register D4 as the link to the SIO
instruction routine.

A set of common interface subroutines is called that tests

for device ready condition, sends the SIO instruction, and
tests for device address recognition and SIO acceptance.

If the SIO is not accepted, the error service routine address
within the handler is set (for key-in recovery) into DCT7+R7.
If the SIO is accepted, DCT7+R7 is set to the address of the
interrupt service routine. The subroutine returns to the
Monitor or 1/O executive via SR4,

Upon reentry and following the 1/O termination interrupt,
the termination status (from the AIO) in R5 is checked for
error conditions. Each handler takes specific action if an
error has occurred. The number of recovery tries remaining
is checked in cases where automatic error recovery is possi-
ble. If more recovery tries remain, the operation is repeated
by reentering the first part of the handler via SR4, and then
exiting to IOCONT, If the number of tries has been
exhausted, TYERROR is entered and the return address in
DCT7+R7 is set for operator key=-in recovery.

If no error has occurred, the number of bytes transmitted
is stored in DCT7+R7. Output handlers exit to OCOMP,
Input handlers check for lost data and report the condition
to the user's DCB, via the ABNCOND routine., A check is
made for end-of-file and change of mode. If end-of-file
is detected, an EOF condition is reported to the user's DCB
via the ABNCOND routine. If a change-of-mode control
record is read, the mode indicator in DCT1+R7 is changed,
and the next record is then read in the new mode.

ENTRY AND EXIT

All handlers are entered from a common point in the [/O
executive. Register SR4 contains the return address and
each handler returns via SR4 after setting its [/O termina-
tion interrupt service routine address (in DCT7).

Any handler will be reentered at its I/O termination inter-
rupt service routine, where termination status may be
checked and an appropriate response made. Several types
of error and successful completion are possible.

If the operator specifies that an operation is to be retried
(as the result of an error status response notification), the
appropriate subroutine (whose address is in the interrupt
return table) is executed and the subroutine returns via SR4.

DEVICE TABLES SET/USED

The device tables are constructed parallel to one another.
Each has as many entries as there are devices in the system.
Therefore, the 'i'th entry in each table corresponds to the

same device. The '0'th entry in each table is null. Agiven
table may be a byte, halfword, or word resolution. Informa-
tion in a particular table may therefore be accessed by using
the table name as modified by the device pointer (entry num-
ber) carried in index register R7. The various tables are as
follows:

Used and set by executive and by handlers:

DCTI

2]
C

D|LIME IOADD

0 1 2 314 5 6 718 9 10 1111213 1415

DCT1 (halfword table)

DC =1 Means DC busy

D =1 Means device busy

L =1 Means next device on same DC

M =1 Means binary, 0 - EBCDIC (used
and set by handlers)

E =1 Means an error is pending

IOADD Contains full 1/O address of device

Set by handiers and used by executive:

DCT7

IRTN

T 7 314 5 6 718 v 0 iz 13 45

DCT7 (halfword table)

IRTN contains 1/O service routine interrupt
address set by first part of handler or actual
record size (in bytes) set by last part of
handler

Set by executive for use by handlers:

DCT9

CPADDR

0 1 2 314 5 6 718 9 10 11213 1415

DCT9 (halfword table)

CPADDR contains address of doublewords
required to form I/O commands
DCT10
FCM| FC DCB
0 1 2 314 5 6 718 9 10 121314 lSilé 17 18 19120 21 22 23124 25 26 27128 29 30 31

DCT10 (word table)
FCM contains function code modifiers
FC contains function code

DCB contains DCB address (point to the param-
eter list utilized by the executive to deter-
mine the nature of the /O request)

Appendix C 135

DCT13

SKIPC

0 v 2 3T4a 5 6 778 9 10 N2 131415

DCT13 (halfword table)

SKIPC contains magnetic tape skip count

HANDLER AND I/0 EXECUTIVE INTERFACE

The I/O executive sets a pointer (R7) to the proper entry
number in the DCT device tables before entering the handler
for that device (i.e., the device corresponding to R7). It sets
register SR1 to the contents of DCT10+R7 (see Table C-2);
sets the byte address of the buffer andbyte count for transfer

in the first two words of the command list (saving the double-
word address of the list in DCT9+R7); and sets the 1/O de-
vice address from DCT14R7 into register R5. The function
codes passed via DCT10+R7 are given in Table C-2a.

Table C-2a. Function Codes Passed via DCT10+R7

Function
Code
(Bits 4-7) Function Applicable Devices
0 Read Card reader, keyboard,
paper tape leader,
magnetic tape
1 Read Direct Paper tape reader,
card reader
2 Read Binary Magnetic tape
3 Read Direct Magnetic tape, card
Binary reader, paper tape
4 Write Direct Paper tape
5 Write BCD Card punch, typewriter,
paper tape punch, line
printer, magnetic tape
6 Write Binary Card punch, paper
tape punch, magnetic
tape
7 Write Direct Paper tape
Binary
A Skip Records Magnetic tape
Forward
B Skip Records Magnetic tape
Reverse
C Skip File Magnetic tape
Forward
D Skip File Magnetic tape
Reverse
E Rewind Magnetic tape
F Write EOF Magnetic tape

136 Appendix C

Table C-2b. Function Code Modifiers

Bit Meaning!
0 Not used
1 Set = 0 means forward

Set = 1 means reverse

2 Set = 0 means unpacked mode

Set = 1 means packed mode

3 Set = 0 means no FORTRAN BCD conversion
Set = 1 means FORTRAN BCD conversion

Note: The read direct and write direct functions signify
that Monitor formatting conventions are to be
ignored. Most handlers do not use formatting in
any case, and the function codes for direct reading
or writing are treated in the same fashion as the
normal function codes. The card reader and paper
tape handlers do react to the direct function codes.

The names and functions of 1/O handler interface routines
are given in Table C-3. The interface routines utilized by
the various handlers are specified in the individual handler
descriptions.

Table C-3. Names/Functions of Handler
Interface Routines

Names Function

COMSIOCL | Sends SIO, checks acceptance and
empty status,

SENDSIO

Sends SIO and checks acceptance.
SENDSIO 1
EMPTYCK Checks empty status after SIO accepted.
MODBIT Sets a bit in the order code of the first

command.
STORE4WD Stores 4 words from R2,R3, D1, D2,

FUNCTION | Sets order code to write, then checks
type of function.

REGETWD Sets R2,R3, D1, D2 with the first four
command words, sets R1 to the double-
word address of the command list, and
sets RO to the first byte of the image in
the 1/O buffer.

NEWLINE Checks for image of NL in RO and does
some housekeeping (for KBT and paper
tape reads in BCD mode).

tModil’ier bits are ignored if the function code (FC) has a
value of Ay or greater.

Table C-3. Names/Functions of Handler

Interface Routines (cont.)

Names

Function

CKERRLDT
CKERRLD2
NOERR

CKLODATA
CKBCDBIN

BCDCHANG
BINCHANG
EODNOTE

Checks for transmission errors,

Sets numbers of bytes read and checks
for lost data.

Reports lost data, if any.

Checks record image for | or 1EOD,
IBIN or IBCD and reports presence
as applicable.

Changes mode bit in DCT1+R7 to BCD.
Changes mode bit in DCT1+R7 to BIN.

Reports EOD condition with flag via
ABNCOND.

1/0 HANDLER DESCRIPTIONS

A description of the individual 1/O handiers used under the
Monitor system is given in the following pages of this appendix.

KBTIO (Keyboard Typewriter Handler)

PURPOSE

Specific keyboard typewriter action,

INITIAL CONDITIONS

DCT tables set

R5 set with device address

R7 set as pointer to pertinent DCT entry for
this device

SR1 set with function code

SR4 set as linkage return address

CALLING SEQUENCE

BAL, SR4

KBTIO

SUBROUTINES AND PROCEDURES USED

System

ABNCOND
IOCONT
ICOMP

Handler Interface

REGETWD
FUNCTION
STORE4WD
SENDSIO
NEWLINE
SENDSIOI
CKBCDBIN

REGISTERS USED

RO is set with the doubleword address of the command list
(DCT9+R7).

R2,R3 and D1, D2 are used for intermediate storage of actual
command pairs.

D3 and D4 are used for linkage and error address for han-
dler interface subroutines to send the SIO instruction and
to check error conditions after interrupt, and also used for
temporary storage for words 5 and 6 of the command list.

RESULTS

A specific 1/O operation is transacted.

DESCRIPTION
The following commands are applicable:

Read —Read bytes and edit for special character until an

NL (1514) byte is read or the byte count is exhausted, which-
ever occurs first. If the count is exhausted first, output an
NL (15,,) byte. Then, if |EOD was read, report EOD via
ABNCOND. If a rub-out byte (FF,4) is encountered, do

not store the rub-out byte, but store the next byte over the
preceding byte. If an EOM (08) byte is received, output

an NL (15]6) byte and reinitiate the read byte count and
beginning address.

Some of the code for this handler is shared with the Paper
Tape BCD Read handler and is located in the set of handler
interface routines mentioned above.

Write BCD
Type the specified buffer.
Write Binary
CRDIN
PURPOSE

Specific card reader action

INITIAL CONDITIONS

DCT tables set

R5 set with device address

R7 set as pointer to pertinent DCT entry for this
device

SR1 set with function code

SR4 set as linkage return address

CALLING SEQUENCE
BAL, SR4 CRDIN

Appendix C 137

SUBROUTINES USED

System Handler Interface
IOCONT MODBIT

ICOMP COMSIOCL
TYERROR CKERRLDT
TYINTLK CKBCDBIN
TYBADIO

TYEMPTY

ABNCOND

REGISTERS USED
RO is set with the doubleword address of the command list
(DCT9+R7).

R2,R3 and D1, D2 are used for intermediate storage of actual
command pairs.

D3 and D4 are used for linkage and error address for han-
dler interface subroutines to send the SIO instruction and to
check error conditions after interrupt.

RESULTS

A card has been read.

DESCRIPTION

The following functions are available:

Read — Read the next card according to the current mode of
the device. If the SIO instruction is not accepted, report
it and reenter the handler. If data is lost, report LDT via
ABNCOND. If IBCD is encountered, set device mode to
BCD and read. If IBIN is encountered, set device mode to
binary and read. If IEOD is encountered, report EOD via
ABNCOND and exit.

Read Direct —Read the next card according to the current
mode of the device. If data is lost, report LDT via
ABNCOND.

The handler is reentered at the beginning (after any error is
reoprted) and continuation is specified.

CRDOUT (Card Punch Handler, Unbuffered)

PURPOSE

Specific card punch action.

INITIAL CONDITIONS
DCT tables set

RS set with device address

R7 set as pointer to pertinent DCT entry for this
device

SR1 set with function code

SR4 set as linkage return address

138 Appendix C

CALLING SEQUENCE

BAL,SR4 CRDOUT

SUBROUTINES USED

System Handler Interface
IOCONT REGETWD
OCOMP COMSIOCL
TYERROR CKERRLD2
TYBABADIO

TYEMPTY

CHKERC

REGISTERS USED

RO is set with the doubleword address of the command list

(DCT94R7).

R2,R3 and D1, D2 are used for intermediate storage of actual
command pairs.

D3 and D4 are used for linkage and error address for handler
interface subroutines to send the SIO instruction and to

check error conditions after interrupt, and also used for
temporary storage for words 5 and 6 of the command list.

RESULTS

A card has been punched.

DESCRIPTION
The following functions are available:

Write BCD — Punch the specified image (up to 80 bytes) in
EBCDIC.

Write Binary — Punch the specified image (up to 120 bytes)
in Binary.

If errors are detected, card in error plus the following
card are directed to the error stacker and both cards are
repunched.

The handler is reentered at a point just after the initial
housekeeping code if there is continuation following an
unaccepted SIO, and at a buffer switching routine follow-
inga transmission error continuation, :

PRTOUT (Line Printer Handler, Buffered)

PURPOSE

Specific line printer action.

INITIAL CONDITIONS

DCT tables set

R5 set with device address

R7 set as pointer to pertinent DCT entry for this
device

SR1 set with function code

SR4 set as linkage return address

CALLING SEQUENCE

BAL, SR4 PRTOUT

SUBROUTINES AND PROCEDURES USED

Handler Interface

sttem

IOCONT
OCOMP

TYERROR
TYINTLK
TYBADIO
TYEMPTY
CHKERC

MODBIT
COMSIOCL
CKERRLDT

REGISTERS USED

RO is set with the doubleword address of the command list

(DCT9+R7).

R2,R3 and D1, D2 are used for intermediate storage of actual
command pairs.

D3 and D4 are used for linkage and error address for han-
dler interface subroutines to send the SIO instruction and
to check error conditions after interrupt, and are also used
for temporary storage for words 5 and 6 of the command list.

RESULTS

A line has been printed. Format control has taken place if
requested.

DESCRIPTION
The following commands are applicable:
Write BCD — Print the specified buffer as text.

Write with format — Print the specified buffer using the
first byte as a format control character.

The handler is reentered at the beginning if any error is
reported and if continuation is specified.

PTAP (Paper Tape Handler)
PURPOSE

Specific paper tape action,

INITIAL CONDITIONS

DCT tables set

R5 set with device address

R7 set as pointer to pertinent DCT entry for this
device

SR1 set with function code

SR4 set as linkage return address

CALLING SEQUENCE
BAL,SR4 PTAP

SUBROUTINES AND PROCEDURES USED

System Handler Interface
IOCONT REGETWD
IOCOMP FUNCTION
OCOMP STORE4WD
TYERROR COMSIOCL
TYINTLK CKERRLDT
TYBADIO BINCHANG
TYEMPTY BCDCHANG
CKLODATA
NEWLINE
CKBCDBIN

REGISTERS USED

RO set with the doubleword address of the command list
(DCT9+R7).

R2,R3 and D1, D2 are used for intermediate storage of actual
command pairs.

D3 and D4 are used for linkage and error address for handler
interface subroutines to send the SIO instruction, to check
error conditions after interrupt, and used for temporary stor-
age for words 5, 6 of command list.

RESULTS

Input or output has been done. Abnormal code may be set.
DESCRIPTION

The following commands are applicable:

Read — Read first nonblank byte. If the byte is 14 this
is a binary record. Read the next two characters and inter-
pret as record size. Then read specified number of bytes,

If the record size is greater than the requested size, report
LDT via ABNCOND and bypass the remainder of record.
Set the device mode to binary.

If the byte is not 1114, this is an EBCDIC record. Read
bytes and transmit to the user buffer until record size is

Appendix C 139

reached, or an NL(1516) character or blank frame (00) is
encountered. If the record size is reached, set LDT via
ABNCOND and bypass the remainder of the record. If FFyg
is encountered, do not transmit to the user's buffer. If EOM
(08) is encountered, reset the byte address to the beginning
of the user's buffer. Set the device mode to EBCDIC.

If LEOD is the final image, report EOD via ABNCOND.

The following abnormal conditions apply:
EOD — Any EOD read as first four bytes.

Mode Change — Mode is set according to mode of record
(see above).

LDT (lost data) —BCD or Binary record longer than requested
length.

EBCDIC records are made up of one or more characters fol -
lowed by a carriage return. Input is in the single character
mode, and the leader is ignored. The characters are checked
as they are read. A carriage return signifies the end of the
record, regardless of the byte count. It the byte count is
exceeded, the remainder of the record is ignored. An EOM
character means to ignore the entire record to this point.
Parts of the code for editing EBCDIC records are found in
the handler interface routines and paper tape or typewriter
input handlers, The rub-out character on paper tape is
ignored and, on the typewriter, causes the previous char-
acter to be ignored (in addition to the rub-out character).
Carriage returns are not transmitted to the user.

Binary records are made up of a one-byte header (11 16) fol -
lowed by a two-byte record count and data bytes.

Read Direct —Read specified number of bytes into the user's
buffer without editing. Report EOD if 1EOD is read.

Write BCD — Punch record as specified, followed by two
blank (00) frames.

Write Binary —Punch 3 bytes of contrcl information (1114),
followed by a two-byte record size, followed by the record
as specified, followed by two blank frames (00).

Write BCD Direct
Punch record as specified with no
formatting.

Write Binary Direct

In the case of any read or punch errors, no automatic
recovery attempts are made. The appropriate message to
the operator is typed in all cases.

The handler is reentered at a housekeeping routine and
then is restarted at the beginning after any error is re-
ported and a continuation is specified.

140 Appendix C

MTAP (Magnetic Tape Handler)
PURPOSE
Specific magnetic tape action.
INITIAL CONDITIONS

DCT tables set

R5 set with device address

R7 set as pointer to pertinent DCT entry for
this device

SR1 set with function code

SR4 set as linkage return address

CALLING SEQUENCE

BAL, SR4 MTAP

SUBROUTINES AND PROCEDURES USED

_Sm Handler Interface
IOCONT REGETWD
ICOMP STORE4WD
OCOMP COMSIOCL
TYERROR NOERR

TYINTLK

TYBADIO

CHKERC

ABNCOND

REGISTERS USED

RO is set with the doubleword address of the command

list (DCT9+R7).

R2,R3 and D1,D2 are used for intermediate storage of actual
command pairs.

D3 and D4 are used for linkage and error address for handler
interface subroutines to send the SIO instruction and to
check error conditions after interrupt, and used for tempo-
rary storage for words 5 and 6 of the command list,

RESULTS

Specified action has been taken.

DESCRIPTION
The following commands are applicable:

Read forward — Read the next record in the forward
direction.

Read reverse — Read the next record in the reverse
direction,

Write — Write the specified record,

Skip records forward — Skip n records in the forward
direction,

Skip records reverse — Skip n records in the reverse
direction.

Skip file reverse — Skip forward past the EOF mark,

Skip file reverse — Skip past the EOF mark in the
reverse direction,

Rewind — Rewind the tape, report the load point.

Write EOF —Write an EOF mark.

The following abnormal conditions apply:

EOF — Read forward, Read reverse, Skip records forward,
Skip records reverse,

LDT (Lost Data) — Read forward, Read reverse.

EOT (End of Tape) — Write, Write EOF, Read forward,
Skip forward.

BOT (Beginning of Tape) — Any reverse tape function.

Recovery from errors is as follows:

Read error — Backspace and reread until the error count
is exhausted. Then call ERRCOND.

Write error — Backspace, erase, and rewrite until the error
count is exhausted. Then call ERRCOND. No retries are
allowed if write protect violation,

The rewind operation must request a device interrupt
upon completion. The device busy flag must also be set,
The following commands are applicable:

Read — Read starting at address specified.

Write — Write starting at address specified.

Write Direct — Write followed by Check Write,

No abnormal conditions are generated by the handler.
Errors are retried as many times as possible. If no recovery

is possible, ERRCOND is called. If the address is not ac-
cepted by the disc unit, TYBADIO is called.

7TAP (7 Track Magnetic Tape)

PURPOSE

Specific 7 track magnetic tape action.

INITIAL CONDITION
(see MTAP)

CALLING SEQUENCE
B 7TAPI
B 7TAP2

SUBROUTINES AND PROCEDURES USED
MTAP1
MTAP2

REGISTERS USED
(see MTAP)

RESULTS

When entered at 7TAP1, the handler first checks if FBCD
invert was requested on a write, and edits the buffer as
required. The order code is then set up for Read Binary,
Read Packed Binary, Read BCD, Write Binary, Write
Packed Binary, or Write BCD, as requested. If Read Reverse
is requested, a command chain is set up (backspace, read,
backspace) to simulate the Read Reverse option on 9 track
tape. Exit is then made to MTAP1,

When entered at 7TAP2, the handler does the required edit-
ing of the buffer if FBCD was requested on a Read Operation.
Exit is then made to MTAP2.

DISCIO (Magnetic Disc Handler)
PURPOSE
Specific disc action.
INITIAL CONDITIONS

DCT tables set

R5 set with device address

R7 set as pointer to pertinent DCT entry for this
device

SR1 set with function code

SR4 set as linkage return address

DCT13+R7 set to disc address

CALLING SEQUENCE

BAL,SR4 DISCIO

Appendix C 141

SUBROUTINES AND PROCEDURES USED

System Handler Interface
IOCONT REGETWD
ICOMP STORE4WD
OCOMP COMSIOCL
DKERROR CKERRLDT
TYINTLK

TYBADIO

CHKERC

ABNCOND

REGISTERS USED

RO set with the doubleword address of the command list
(DCT9+R7).

R2,R3 and D1, D2 used for intermediate storage of actual
command pairs.

142 Appendix C

D3 and D4 are used for linkage and error address for handler
interface subroutines to send the SIO instruction and to
check error conditions after interrupt, and used for tempo-
rary storage for words 5 and 6 of the command list.

RESULTS

Specified action has been taken.

DESCRIPTION

The following commands are applicable:

Read — Read starting at address specified.
Write —Write starting at address specified.
Write direct — Write fokllowed by Check Write.

No abnormal conditions are generated by the handler. Errors
are retried as many times as possible. f no recovery is pos-
sible, ERRCOND is called. If the address is not accepted
by the disc unit, TYBADIO is called.

APPENDIX D. SENSE SWITCH SIMULATION

The Monitor provides the capability of initializing as
many as six pseudo sense switches, by means of the
SWITCH control command (see Chapter 2 of this manual)
and also provides for setting and resetting them by means
of SWITCH unsolicited key-ins (see Chapter 3 of this

manual).

Three library routines are also provided to allow processors
and user programs to set, reset, and test specified pseudo
sense switches. The entire sense switch simulation is based
on the use of a pseudo sense switch register contained in a
Task Control Block (TCB) established and maintained by
the Monitor. The first two words of the TCB comprise a
Stack Pointer Doubleword (SPD), and the subsequent words
contain additional information used by the Monitor to con-
trol the current task. When the Monitor transfers control
to a user's program (or a processor), it places the word ad-
dress of the TCB in general register 0.

When a user's program calls any of the sense switch library
routines, general register 0 must contain the word address
of the TCB. General register 6 is used for passing the num-
ber of the specified sense switch. The link register is gen-
eral register 11, and general registers 6-10 are volatile (not
preserved by the library routine).

TEST-SENSE-SWITCH ROUTINE

The linkage
BAL, 11 L:TSS

causes the sense switch specified in general register 6 to be
tested, If the switch is set, the condition codes are all set
(to 1); otherwise, the condition codes are set to 0.

SET-SENSE-SWITCH ROUTINE
The linkage
BAL, 11 L:SSS

causes the sense switch specified in general register 6 to be
set. If the number of the specified switch is not within the
range 1-6, the routine will ignore the request.

RESET-SENSE-SWITCH ROUTINE

The linkage
BAL, 11 L:RSS

causes the sense switch specified in general register 6 to be
reset. If the number of the specified switch is not within
the range 1-6, the routine will ignore the request.

APPENDIX E. BLOCKING/DEBLOCKING

The Blocking/Deblocking routines will operate under the
Monitor and are designed to supplement the Monitor for a
given set of special operations on sequential files.

There are three parameters that the user must provide in
order to use these routines. They are: block size (RSZ),
location of the user's buffer (BUF), and logical record size
(LRS). The blocking buffer is used by these library routines
and must be at least as large as the block size.

The block size (maximum buffer size) and buffer location

(BUF) may be provided by the user when opening a file or
may be provided at compile or assembly time in the DCB

(see "M:DCB" and "M:OPEN", Chapter 5).

The third parameter, maximum logical record size (LRS), is
provided by the user in a parameter list which he provides
when calling the routines.

OUTPUT FILES

Logical output records will be packed until either the buf-
fer is full or until the Write Output Buffer routine is per-
formed. The user may obtain control on abnormal or error

conditions by specifying an abnormal or error return in the
parameter list.

WRITE LOGICAL RECORD

The linkage
BAL, 11 L:WLR

locates a buffer area large enough to contain the logical
record and then moves the record from the user's buffer to
that buffer. Whenever insufficient area exists for the next
logical record, the records previously blocked will be writ-
ten. It is assumed that general register 6 contains the loca-
tion (CLIST) of the parameter list associated with the output
request.

CLIST has the following format:

CLIST LRS | CLRC

PLIST

Appendix D/Appendix E 143

The routines defined in this appendix are library routines
and, as such, may destroy registers 6-11. Register 6 is
used to pass the location (CLIST) of a parameter list and
register 11 is used as the link register. The first two bytes
of the first word of the list contain the number of bytes
(LRS) in the logical record. The next two bytes are assumed
to be zero initially and are used by the routines as a cur-
rent logical record count (CLRC). The remainder of the
parameter list (PLIST) is identical to that supported by the
Monitor on an /O READ or WRITE operation (see Chapter 5
of this manual).

WRITE OUTPUT BUFFER

The linkage

BAL, 11 L:wOB

causes any unrecorded logical records contained in the buf-
fer to be written. Only the actual records previously block-
ed will be written. This provides the means for writing var-
jable length physical records. It must also be used before
writing an end-of-file, rewinding, closing a file, etc.

It is assumed that general register 6 contains the iocation
(CLIST) of the parameter list associated with the output
request. '

INPUT FILES

Records input will be read until an abnormal or an error con-
dition is encountered or until a Close Current Input Buffer

call is made. The user may obtain control on abnormal or
error conditions by specifying an abnormal or error return
in the parameter list.

READ LOGICAL RECORD
The linkage
BAL, L:RLR

locates the next logical record in the buffer. Only the num-
ber of bytes requested will be moved to the user's area. The
logical record size requested may never be larger than the
logical record size (LRS) provided in CLIST. If no record
size (SIZE) is provided in the PLIST, then the logical record
size (LRS) provided in CLIST is used. It is assumed that gen-
eral register 6 contains the location (CLIST) of the param-
eter list associated with this I/O operation. L:RLR automa-
tically generates a call to M:READ.

CLOSE CURRENT INPUT BUFFER
The linkage

BAL, 11 L:CCIB

causes the reading of the next physical record. Any remain-
ing logical records contained in the current buffer will be
lost. It is assumed that general register 6 contains the lo-
cation (CLIST) of the parameter list associated with the in-
put request.

APPENDIX F. DATA FORMATS ON EXTERNAL MEDIA

On external media (magnetic tape, punched cards, and
paper tape) it is frequently desirable for an operating sys-
temto intersperse certain control information with user data,
to maintain system control, device independence (to user),
etc. On the other hand, users occasionally desire to con-
trol a specific device entirely, as if they were doing the

1/O themselves.

These requirements give rise to the need for several formats
for external —edia.

1. Labeled —applies to system maintained files (magnetic
tape or disc). A labeled file "appears" to the user as
a set of records comprising his data set bounded by a
beginning-of-file and end-of-file. Labeled files
assume formatted data.

2. Formatted — applies to external media and specifies
that 1/O records are formatted and/or interpreted by
the Monitor. Exact actions are listed below.

3. Direct — applies to external mediabut specifies that no
Monitor formatting of user data is done. End-of-data

144 Appendix F

marks are detected upon reading. The user's 1/O re-
quest is performed exactly as if he had control of the
device.

FORMATTED DATA RECORDS

Formatted data records assume the following forms:

1. Punched Cards — Eachrecordis represented on one card.
When the mode is changed (between two records), a
mode control card is interjected (! BCD signals that an
EBCDIC card follows; !BIN signals that a binary card
follows). End-of-dataissignaled by an IEOD card.

2. Paper Tape —Each EBCDIC record contains the data
followed by an NL (1514) byte or at least two blank
(00) frames. Each binary record is made up of aone-byte
binary indicator (1114 —an invalid EBCDIC code), fol-
lowed by a two-byte record count, followed by the bin-
ary data, followed by at least two blank (00) frames.
End-of-data is signaled by an !EOD record.

3.

Typewriter — Each record is made up of data of a speci-

fied size or terminated by an NL (15,,) byte. End-of-

data is signaled by an IEOD record.

DIRECT DATA RECORDS

Direct data records assume the following form:

The data records are represented exactly as user specified
in all cases. End-of-data is signaled by a physical EOF
mark on magnetic tape and by 1EOD on cards, paper tape,
or typewriter.

The actions resulting from various Monitor 1/O requests are
as follows:

1.

M:WRITE — Write the specified buffer as formatted data.
If cards, and mode is changed, output a mode control
card before record. Use mode specified in DCB.

M:CLOSE (Output File) — Output an end-of-data sen-
tinel and, if paper tape, output 10 inches of leader.

M:WEOF — Output an end-of-data sentinel.

M:WRITE (Direct) —Output the specified record exactiy.
If cards, use mode specified in DCB.

M:CLOSE (Direct) —No action.

M:WEOF (Direct) — Output an end-of-data sentinel.
M:CLOSE (Input File) — No action.

M:READ — Read the next record, eliminating the format

information. Set the mode (DCB) according to the mode
of the record. Position to read following record.

M:READ (Direct)

o. Magnetic Tape —Read the next record or specified
number of bytes, whichever is smaller. Position to
read following record.

b. Cards —Read the next card in the mode specified
by the DCB or the specified number of bytes,

whichever is smaller. Position to read the follow-
ing card.

c. Paper Tape —Read the specified number of bytes.
Position to read the next byte.

d. Typewriter — Read the specified number of bytes.

ERROR RECOVERY PROCEDURES

Magnetic Tape

a. Input —The record will be read until it is read
correctly or the specified number of recovery tries
have been made. If it is not read correctly, the
operator is notified.

b. Output —After each error, a gap equal to the
length of the record is erased and the operation is
retried until it is successful or the specified num-
ber of tries have been made. If it is not written
correctly, the operator is notified.

Cards
a. Input —The operator is notified.

b. Output —The action depends on the type of punch.
If the device is a multi-stacker punch, the oper-
ation is retried the specified number of times. If
not successful, the operator is notified. For each
recovery attempt, the error card and the follow-
ing card are diverted to the error stacker and both
cards are repunched.

Paper Tape

The operator is notified for all paper tape errors.

End-of-File Condition — An end-of-file will be given
by the Monitor when a control command is encountered
during reading from the control command device (C).
Any attempt to read past an end-of-file condition will
cause the job to be aborted.

Appendix F 145

APPENDIX G. COOPERATIVE AND SYMBIONTS

The routines to perform peripheral operations operate con-
currently with the jobs being run. The peripheral system is
composed of a "cooperative" and a "symbiont" or symbionts.
The cooperative is a Monitor routine called as a result of a
user's 1/O request, whereas a symbiont is a Monitor routine
that is initiated either by the action of the cooperative or
by operator command from the system console. The cooper-
ative is used to transfer information between the user's pro-
gram and secondary (disc) storage, and symbionts are used
to transfer information between secondary storage and peri-
pheral devices (see Figure G-1).

The symbiont-cooperative system provides for complete buf-
fering between 1/O devices and the user's program. There-
fore, a user's program never has to wait for an 1/O device
to complete an action. Also, the current job may be run-
ning while the output of the previous job and the job file
for the following job are being handled by symbiont
operation.

COOPERATIVE

A single cooperative is provided for handling both user in-
put and output files. It is reenterable and can handle any
number of device-type files (printer, punch, etc.) per job.

The cooperative will be linked to the user's program via the
1/0 Supervisor (IOSP). Consequently, the user need not be
concerned with modifying his program for operation under
either a symbiont or non-symbiont system. In a symbiont-
cooperative system, [OSP will link to the 1/O peripherals
via the cooperative rather than via the 1/O Dispatcher.

SYMBIONTS

A symbiont is a small, reenterable routine that controls the
action of an I/O device having a lower transfer rate than
the computer. Core storage as well as secondary storage
may be used to produce a continuous flow of information to
or from the peripheral devices. Symbionts may be used to
transfer information from one peripheral device to another
peripheral device.

Unlike the user's program, which is directed primarily by
control commands, symbionts — once initiated —receive all
their control from the operator's console. An input symbiont
can be initiated only by the console operator, while an
output symbiont can by initiated either by the operator or
the cooperative. Symbionts are queued for initiation by a
Monitor symbiont activation routine, andall communication
between symbionts and the operator is through a Monitor
table of resident symbionts. All key-ins addressing sym-
bionts are examined, and the current message character is
stored in the appropriate tabie entry. The symbiont table
is created at System Generation time.

A symbiont performs only one 1/O operation at a time, and
is inactive from the time that it initiates a request for 1/O

146 Appendix G

until the 1/O operation is complete. The symbiont regains
control by stipulating an I/O end-action return to itself.

Since symbionts are reenterable, a single symbiont may drive
several types of devices. For example, the same symbiont
may be used to drive many printers and card punches. The
symbiont is given the device table index of the appropriate
device, when the symbiont is activated. The index points to
corresponding entries in a series of tables providing the de-
vice number and type, and the IOP and device controller
number. All the peripheral-dependent information is con-
tained in a context buffer. The location of this buffer is
made known to the symbiont, via a subroutine linkage reg-
ister, whenever it is operating on the associated device.

Two symbionts are provided in the Monitor system: one for
driving all standard input devices, and one for driving all
standard output devices.

SYMBIONT -COOPERATIVE HOUSEKEEPING

Two Monitor subroutines are provided for automatic main-
tenance of core storage. One is used to release a core
buffer from use by the symbionts, and the other is used to
obtain a core buffer and its physical location.

If a core buffer is requested by an operating symbiont and
none is available, an entry is made in the symbiont core-
buffer queue. When one becomes available for symbiont
use, control is retuined to the requesting symbiont.

As each buffer is emptied, either by reading from or storing
into secondary storage, it is released and another is request-
ed by either a symbiont or cooperative. This procedure al-
lows for sharing core buffers where the total number of buf-
fers available may be insufficient for the demand.

Optimum efficiency in buffer utilization is attained if there
is one core buffer per device, dedicated to symbiont activ-
ity, plus one per 1/O type, plus one per symbiont, as well
as one context block per 1/O type and one context block
per device. However, as few as one buffer and one context
block could be used per device type, plus one buffer and
one context block per symbiont. The total number of core
buffers allocated to the system is a System Generation
parameter,

The symbionts themselves will operate in core buffers and
are self-relocating. When a symbiont is to be initiated, it
is read from secondary storage (where it normally resides
when not active) into a requested core buffer. After being
read into core storage, the symbiont is entered with the ap-
priate peripheral device information. After starting an I/O
operation on a peripheral device, with an end-action return
specified, the symbiont relinquishes control to the Monitor
System which will turn control over to another symbiont or
the user's program.

An area of secondary storage is set aside for symbiont files.
The size of this area is an installation variable set up at

sjuoiquig puo aAypsadoor) ybnosy] moj4 uoypwioju) | -5 dinbiy
(dd) wosb| | 1enne 1844ng 194404 1944ng Goung
- alo osi os) alo
oud s, 1950 o) a d 2 adp] 1adoy
(AL) woib 19448 1944nq 1344ng 1844ng
-oid s, 135 B > 240D as1g as1g alo)
juoiquig
I e et MLE] indingo >
A
(d7) woab 1343ng i944ng 1943ng J843ng
-oud s, J9sn > R Cllely) as1Qg os1q 3i0) 19jullg aul
(dD) wosb iayng 1ayng 1ayng 1eyyng
—oid's,uasn [> 210D as1Q as1q 210 4ound PO
aA101ad00") aboio)s [/ / SNOILVY¥3IdO LNdLINO
- 4ndinO /4ndul Awopuodas \ -/ SNOILYY3dO LNdNI
(1d) woib 1944ng 1944ng 1944ng 1944ng
-oud s, 4850 2109 as1qg as1q 2100 1opoay
‘. ado] tadoy
uoiquAi
/ JIr I e
(¥) wo.b 1ayyng 1944ng 1244ng 1a44ng
-oid s 1as) 210D as1g as1q al0) 19po3Y P4OD

147

Appendix G

System Generation time. A secondary storage allocation
table is maintained by the Monitor to indicate which disc
areas are available. Two Monitor subroutines are also pro-
vided for maintenance of secondary storage. One of these
requests storage; the other releases it. If secondary storage
is requested and none is available, an entry is made in the
symbiont secondary storage queue. As I/O information is
processed by the cooperative or symbiont, secondary stor-
age is automatically released by the Monitor. When suf-
ficient storage has been released, control is returned to
the requesting symbiont.

Secondary storage holds the files produced by, or committed
to, a peripheral device. Each disc block of secondary
storage contains the disc address of the next disc block
in the file, and a table of job files is maintained by the
Monitor. Two Monitor subroutines are provided for file
maintenance. One removes a file; the other inserts a new

file into the file table. File removal is based on peripheral
code, priority number, and system identification. When an
input job file is inserted into the file table, the system is
taken out of the "idle" state and the Control Card Interpreter
(CCI) is activated. This, in turn, activates IOSP and the
cooperative,

When processing an input file the input cooperative determines
whether the file is still input-symbiont active, and if it is,
the cooperative processing waits for the symbiont processing
to catch up with it on a disc-block-by-disc-block basis.

When processing an output file, the output cooperative
places it in the file directory. When processing a file, the
output symbiont will determine whether the file is output-
cooperative active. If it is, the symbiont processing, if
necessary, will wait for the cooperative processing to catch
up with it on a disc-bloc-by-disc-block basis.

APPENDIX H. ERROR AND ABNORMAL RETURNS

The "error" and "abnormal " addresses specified in an FPT for

a Read, Check, or Write function are temporary features and
are not retained by the Monitor between calls. (Those ad-

dresses specified in an FPT for an Open function are retain-
ed in the specified DCB.)

1/O error and abnormal conditions fall into two general
categories:

1. Those associated with insufficient or conflicting
information.

2. Those associated with device failures or end-of-
data conditions.

The Monitor responds to conditions of the first category by
honoring the error and abnormal addresses in the associated

DCB. The Monitor responds to conditions of the second cate-

gory by honoring the error and abnormal addresses in the FPT
for the associated Read, Check, or Write functions. Thus, a
Read or Write function for which an error or abnormal ad-
dress is specified will have an implied "wait" (for 1/O

148 Appendix H

completion) even if the WAIT option in the FPT is not
specified.

If the user's program is to allow 1/O overlap, error or ab-
normal returns must not be specified on I/O calls. Instead,
the user's program must check (see "M:CHECK" in Chapter 5)
to determine whether 1/C has been completed prior to ac-
cepting data (Read functions) or using a buffer (Write func-
tions). The error and abnormal codes for conditions of the
first category, above are 01, 02, 03, 08, 0A, 13, 14, 15,
16, 17, 18, 2E, 40, 42, 43, 44, 46, 47, 4A, 51, 54, 55,
and 56. Those for conditions of the second category above,
are 04, 05, 06, 07, 1D, 1C, 41, 45, 49, and 57.

The Monitor communicates the error or abnormal code and
the DCB address in SR3, and the location following the as-
sociated CAL1 is communicated in SR1. The code is con-
tained in byte 0 of the word in SR3, and the DCB address
is contained in bytes 1-3. The previous contents of SR1
and SR3 are lost.

The meaning of each error and abnormal code is shown in
Tables H-1 through H-4.

Table H=1. Abnormal Codes — Insufficient or Conflicting Information

Originating Monitor Action if
Hex. Monitor no Abnormal Address
Code Routine Meaning of Code Returned for Abnormal Conditions is Specified in DCB
01 OPEN An attempt was made to open a DCBwith insufficient information, Continue job
02 OPEN The end of all files has been encountered, and NXTF is specified in Continue job
the DCB.
03 OPEN The "input" or "update" file does not exist. Continue job
08 OPEN The name of the next file was recognized as a synonym for the Continue job
primary name of the file, and NXTF is specified in the DCB.
0A CLOSE An attempt was made to close a DCB that is already closed. Continuve job
13 DELREC or The specified key was not found for an "update" file. Continue job
WRITE
14 OPEN The Monitor has not received all information needed to access Continue job
the file.
15 DELREC or An illegal sequence of operations has been requested for an "update" Continue job
WRITE file.
16 WRITE The NEWKEY option was specified, but the key already exists. Continue job
17 WRITE The NEWKEY option was not specified, for an "output" or "scratch" Continue job
file.
18 WRITE The specified key did not conform to the file's collating sequence. Continue job
2E OPEN An attempt was made to open a DCB that is already open. Continue job
Table H-2. Abnormal Codes — Device Failure or End of Data
Monitor Action if
Originating no Abnormal Address
Hex. Monitor is Specified in
Code Routine Meaning of Code Returned for Abnormal Conditions CHECK or 1/O call
04 PRECORD or The beginning-of-file has been encountered. Continve job
READ
05 PRECORD or The end-of-data has been encountered. Continue job
READ
06 READ The end-of-file has been encountered. Continue job
07 READ Data has been lost (because the buffer was smaller than the Continve job
record read).
1C READ, WRITE The end-of-tape has been encountered. Continue job
or PRECORD
1D READ or The beginning-of-tape has been encountered. Continue job
PRECORD

Appendix H

149

Table H-3. Error Codes — Insufficient or Conflicting Information

Originating Monitor Action if
Hex. Monitor Meaning of Code Returned for Error Conditions no Error Address
Code Routine is Specified in DCB
40 READ A request was made to read an "output" file. Skip to next job
42 READ or The specified key is not valid. Skip to next job
WRITE
43 READ No record having the specified key was found. Skip to next job
44 WRITE A request was made to write in an "input" file. Skip to next job
46 READ The DCB contains insufficient information to open a closed DCB | Skip to next job
on a Read operation.
47 WRITE The DCB contains insufficient information to open a closed DCB | Skip to next job
on a Write operation.
4A READ The specified buffer address is not valid. Skip to next job
51 CLOSE A request was made to close an "output" file, prior to closing Skip to next job
the corresponding "input" file.
54 READ The user has tried to read a control command via the C device Skip to next iobf
more than once through the same DCB.
55 OPEN Too many files are open simultaneously (the Monitor's file-use Skip to next job
tables cannot handle that many files).
56 CLOSE or The disc is saturated or unable to switch to the next volume. Skip to next job
CVOL :
"Monitor action whether an error address has been specified in the DCB or not.

Table H-4. Error Codes — Device Failure or End of Data

N Monitor Action if
Hex Originating no Error Address
: Monitor Meaning of Code Returned for Error Conditions . eps o g
Code Routine is Specified in
CHECK or I/O call
41 READ ‘| An irrecoverable read error has occurred. Skip to next job
45 WRITE An irrecoverable write error has occurred. Skip to next job
49 WRITE No tape unit is available. Skip to next job
57 READ or The disc is saturated or unable to switch to the next volume. Skip to next job
WRITE

150 Appendix H

APPENDIX |. MEMORY PROTECTION

The Monitor provides for memory protection through use of
the (optional) hardware write locks and keys.! Table I-1
describes the lock and key settings for the different types
of programs in core memory.

When the Monitor is entered, the write key control register

is set to the Monitor's key code (i.e., to 00). When a fore-
ground or background program is entered, the write key con-
trol register is set to 10 or 01, respectively.

With the above settings of the locks and keys, the Moniter
has access to all of core memory. A background program

fSee "Memory Address Control" in Section 2 of the "Cl|
10 070 computer description manual " (C 900950).

may write only the background areq, thereby giving the
Monitor and foreground programs complete protection from
background programs. Except for its data area, the Moni-
tor is protected from foreground programs.

Table I-1. Lock and Key Settings for
Programs in Core Memory

Proaram T Write Locks

ogram lype Key Instruction Data
Monitor 00 1 1
Background 01 1 01
Foreground 10 1 .

APPENDIX J. INFORMATION GIVEN TO USERS AND PROCESSORS

On transferring control to a user's program or fo a processor,
the Monitor communicates the following information via the

general registers.

General
Register Information Communicated
0 TCB address

In addition to the above, processors are given the following
information.

General
Register Information Communicated
2 Address of the first word location of the
control command buffer.
6 Byte position (within the control command
buffer) of the first byte following the
name of the processor.

Example:

The address of the control command buffer is CCBUF, and
the buffer contains the following data.

CCBUF ! b S Y word 0
M B O L word 1
b L O P word 2
B o] b b word 3
) b b b word 4
b b b b word n

In this example, register 2 contains the address of location
CCBUF and register 6 contains the number 8.

Appendix I/Appendix J 151

APPENDIX K. CLOSING AND SAVING TAPES

CLOSED FILES

INPUT TAPES

Input tapes closed by the Monitor CLOSE routine (see
M:CLOSE, Chapter 5) are always saved. The REW (rewind)
option, if specified, is honored on both labeled and unlabel -
ed tapes; the PTL (position to label) option is honored on
labeled tapes only.

OUTPUT, UPDATE, AND SCRATCH TAPES

Output, update, and scratch tapes closed by the Monitor
CLOSE routine are handled as indicated in Table K-1.

CLOSED VOLUMES

UNLABELED TAPES

Volumes closed on unlabeled tapes (see M:CVOL, Chapter
5) cause the tape to be rewound. The user's program has
the responsibility of outputting any SAVE and DISMOUNT

messages.

LABELED TAPES

Volumes closed on labeled tapes cause the tape to be re-
wound and a DISMOUNT message to be output. For out-
put, update, and scratch files, a SAVE message is also
output.

REWOUND FILES

UNLABELED TAPES

If the DCB associated with an unlabeled tape file is open,
the tape can be rewound (see M:REW, Chapter 5). If the
DCB is closed when the rewind function is attempted, the
Monitor OPEN routine is called; if the OPEN is successful,
the tape is rewound; otherwise, the tape is not rewound.

LABELED TAPES

If the DCB associated with a labeled tape file is open, the
file is positioned to its beginning by the Monitor REW
routine; otherwise, the tape is not rewound.

Table K-1. Tape Positioning for Output, Update, and Scratch Tapes

SAVE option Unlabeled - OUTSN is not The tape is rewound (and SAVE and DISMOUNT messages are
is specified tapes specified output).
OUTSN is If REW is specified, the tape is rewound; otherwise, no action is
specified taken.
Labeled REW is The tape is rewound.
tapes specified
PTL is The file is positioned to the label at the beginning-of-file; if the
specified label is on another tape, SAVE and DISMOUNT messages are
output.
No options No action is taken.
SAVE option Unlabeled OUTSN is not The tape is rewound and remains a scratch tape.
is not tapes specified
specified
OUTSN is The tape is rewound and remains a scratch tape.
specified
OUTSN is If REW is specified, the tape is rewound; otherwise, no action is
specified taken.
Labeled OUTSN is not The tape is rewound and remains a scratch tape. Any other scratch
tapes specified tapes saved (due to CVOL) for the file are released for other use.
OUTSN is The tape is rewound.
specified

152 Appendix K

APPENDIX L. LOAD MAP FORMAT

If the listing of a load map is specified in the LOAD
control command for a user's program, such a map is out-
put on the LL device when the load module is formed by
the relocating loader. The format of a load map is des-
cribed below.

COLUMN 1

The first column of the listing contains a code indicating
the type of item referenced by the listing. The codes that
may be listed are given in Table L-1.

COLUMN 2

The second column of the listing indicates the numerical
value of the referenced item, in hexadecimal.

COLUMN 3

The third column indicates the byte displacement value for
the referenced item.

COLUMN 4

The symbolic name of the referenced item is listed in column
4. The access code segments are also listed in this column.

If there is a Task Control Block associated with the job, it
begins at the location listed (in the load map) for access
code segment O (see Appendix O for Task Control Block

format).

Table L~1. Load Map Codes
Code Type of Item Referenced
DEF External definition.
LDEF Definition satisfied from library.
UDEF Unused definition.
DDEF Doubly defined definition.
PREF Unsatisfied primary reference.
SREF Unsatisfied secondary reference.
CSEC Control section.
DSEC Dummy section.

Appendix L 153

154

APPENDIX M. LOADER ERROR MESSAGES

All object module loader error messages are output on the LL device, followed by a name and a hexadecimal number.
The name is that of the element file currently (or most recently) opened and the number is the sequence number of
the card currently (or most recently) processed. Table M-1 lists and explains all loader error messages.

Table M-1. Loader Error Messages

UNEXPECTED EOF An end-of-file was encountered before the end of an object module was
reached (incomplete object module).

ILLEGAL RECORD I.D. The type of record read was neither X'3C' nor X'1C" (object module) nor
X'81' (library load module).

SEQUENCE ERROR The cards of an object module were out of sequence.

ILLEGAL RECORD SIZE The number of bytes in an object module card was less than 4 or greater
than X'6C".

CHECKSUM ERRCR A bit (or bits) was dropped in punching or reading the object module.

ABNORMAL 1/0 An abnormal return was encountered while reading a library load module.

CANNOT OPEN E.F. An element file could not be opened. (It does not exist, it has a pass-

word, etc.).

STACK OVERFLOW Insufficient memory in which to load. If no map has been partially printed,
the module is too large. If a map has been partially printed, some unsat-
isfied primary references have caused the stacks to grow to excessive size.

BIAS TOO LARGE At the given bias, the load module will exceed 131K of memory.

ILL. ROM LANGUAGE The object language in a relocatabie object moduie was not translatable
(assembler or compiler error).

BAD START ADDRESS A start address was given which is either not on a word boundary or is not
within the load module.

UNEXPECTED ROM END Module end was given on some card of the object module other than the
last card (assembler or compiler error).

0 REPEAT LOAD An assembler or compiler generated a repeat load item with a 0 count
(assembler or compiler error).

IMPROPER BOUND A short- or long-form relocatable item was not on a word boundary.

ILLEGAL ORG An origin was generated having no resolution or was not within the load
module (assembler or compiler error).

ILLEGAL LMN The load module file could not be opened.

SEV. LEV. EXCEEDED The severity level specified in the LOAD card was less than that encountered

in some object module or that generated by the loader (a DDEF yields a
severity level of 4, a PREF yields 7).

ILL. LIB. LOAD MOD. (PERM,LIB) was specified and the load module had one of the following:
1. More than one protection type.

2. No relocation dictionary (ABS was specified or forced by the
loader due to nonstandard relocatable fields).

NO TYPE 3 PROTECTION CSECT3 or DSECT3 was generated and the loader does not permit type 3
protection (no read, execute, or write).

ILL. DSECT Two dummy sections having the same name but different protection types
were encountered.

Appendix M

PATCHING THE RESIDENT SYSTEM

The segment numbers to be used for patching the resident

Monitor are as follows:

Number Segment
0 OPEN
1 CLs
2 RDF
3 TYPR
4 10D
5 DEBUG
6 EXIT
7 LBLT
8 OPNL
9 POS
A CALPROC
B WRTF
C WRTD
D SEGLOAD
E KEYIN
F LDPRG
10 PRGMLDR
11 MEMALOC
12 ALTCP
13 M: 14
14 M:15
15 M:16
16 M:17
17 M:18
18 M:19
19 M:TA
1A M:1B
1B M:1C
1C M:1D
1D M:1E
FILE NAMES AND CONTENTS

File names and deck catalog numbers are given below for
each file on the master tape. The listed decks should be in

APPENDIX N. SPECIFIC CONFIGURING INFORMATION

the indicated order within each file.

MONITOR FILES

File Name Contents (Catalog Numbers)

SDEBUG 704749

ROOT 704748

RTROOT 704969

IOSYM 704885, 704879,

10 704750, 704751,

COoOop 704928, 704930,
704938

IORT 704715, 704708,

HANDLERS 704368, 704369,
704371, 704373,
704766, 704753,

CRDOUT 704372

PTAP 704374

7TAP 704851

FBCD 704852

DFBCD 704854

TOPRT 704755

PRGMLDR 704776

TYPR 704714

IOD 704716

DEBUG 704756

DUMP 704757

EXIT 704745, 704971

KEYIN 704746, 704929,
704963, 704020

M:14 704972

M:15 704931, 704936,
704937

M:16 704934

M:17 704935

M:18 704973, 704894,

M:1A 704761, 704895

704886
704752
704932,

704709

704370,
704773,
704754

704762,

704964,

704968

Appendix N 155

File l_ln_ms

M: 18
M:1C
M:1D
RDF

OPNL
M:1E
OPN

CLS

SEGLOAD
LDPRG
MEMALOC
CALPROC
WRTF
WRTD
DUMMYCCL
CCLOSE
LBLT

M:19

POS
ALTCP
OBSE

CLS1

RTROOT

File Name
LDR
IN1
PS1

IN2

156 Appendix N

Contents (Catalog Numbers) (cont.)

Dummy file
Dummy file
Dummy file
704713, 704718
704712
704866
704710
704722,

704892,
704888,

704882,
704878,
704889,

704887,
704890

704763, 704880

704764,
704744

704759 704767

704760,
704758
704721
704719
704883
704933
704717
704723
704720, 704881, 704966
704765
704711
704891, 704884

704969

LOADER FILES

Contents (Catalog Numbers)

704724

704725

704726

704727

File Name Contents (Catalog Numbers) (cont.)
PS2 704728
ALL 704729
EVL 704730
WRT 704731
MODIFY 704898
CCI FILES

File Name Contents (Catalog Numbers)
CCIROOT 704901, 704732, 704902,

704903, 704735, 704904,

704733
M:DLIMIT 704736
JOB 704905
LIMIT 704906
ASSIGN 704734, 704907
LOAD 704738
TREE 704741
TELSCPE 704742
RUN 704743
CCIDBUG 704737
READBI 704908
ENDJOB 704909
ABORT 704910

TAPEFCN FILES
File Name Contents (Catalog Numbers)
TAPEFCN 704739
TPECHST 704740
FMGE FILES

File Name Contents (Catalog Numbers)
FILEMNGE 704747
FMGEDCBS 704874
CHKPTROM 704023

File Name
M:CDCB
M:0CDCB
M:LODCB
M:LLDCB
M:DODCB
M:PODCB
M:BODCB
M:LIDCB
M:SIDCB
M:BIDCB
M:SLDCB
M:SODCB
M:CIDCB
M:CODCB
M:ALDCB
M:EIDCB

M:EODCB
M:GODCB
M:CKDCB
BDBROM
SSSROM

LIBRARY FILES

Contents (Catalog Numbers)

704911

704912

704913

704914

704915

704916

704917

704918

704919

704920

704921

704922

704923

704924

704925

704926

704927
704941
704058
704031
704032

SYSTEM GENERATION PROCESSORS

File Name
PASSIROM
DEFROM
PASS2
CCLOAD
PASS2CCI
DCBS
SGLDR

DEVICE

Contents (Catalog Numbers)

704867, 704877, 704939
704876, 704875, 704873
(See segments listed below)

704899

704896

704940

704959

704897

File Name Contents (Catalog Numbers)
SDEVICE 704893
MONITOR 704868
DLIMIT 704957
LIBLOAD 704900

DLIB 704870
FORMLIB 704869
INTSR 704958

RESERVE 704871
RJITGEN 704872
CLOCK 704967

TREE STRUCTURES

MONITOR

The tree structure of the Monitor is given inFigure N-1. The
options that should be specified in the OVERLAY command
used to form the Monitor are shown in the following example.

ANOSYSLIB), (PERM), (LMN, M:MON) [, (MAP)]

IOVERLAY (BIAS, 0), (NOTCB), (ABS), (SL,F),;

As indicated in Figure N=1, the tree structure may be var-
ied slightly to suit the requirements of the installation. If

a non-symbiont system is desired, the IO and DUMMYCCL
files should be included; otherwise, the IOSYM and CCLOSE
files (as well as M:SDEV and COOP)should be used instead.
If the Monitor is to handle any foreground tasks other than
directly entered real-time programs, then RTROOT, M:RJIT,
M:NRJIT, M:RESDF, M:INT, and M:TIME must be included.
If foreground COMMON is desired, M:FCOM must be in-
cluded also. M:RESDF must be included if patches are to
be made to the Monitor. Handlers for standard system 1/0O
devices (i.e., KBTIO, CRDIN, PRTOUT, MTAP, and
DISCIO) are included in the HANDLERS file; three others
(i.e., CRDOUT, PTAP, and 7TAP) are optional and must be
specified individually in the TREE command, if desired. If
FORTRAN BCD conversion capability is desired, FBCD must
be included; otherwise, DFBCD should be selected. Any
appropriate user initialization routines may be included, as
desired (i.e., USRINITI, USRINIT2, USNRINIT1, and
USNRINIT2). ‘

LOADER

The tree structure of the loader is given in Figure N-2.
The options that should be specified in the OVERLAY
command used to form the loader are shown in the fol-
lowing example.

Appendix N 157

ALMN, LOADER)[, (MAP)]

IOVERLAY (BIAS, value), (NOTCB), (PERM), ;

The bias value specified should range from 1400 (minimum
system) to 2400 (maximum system).

CONTROL COMMAND INTERPRETER

The tree structure of the control command interpreter is
given in Figure N-3. The options that should be specified
in the OVERLAY command used to form the control com-
mand interpreter are shown in the following example.

/(LMN, CCI), (PERM)[, (MAP)]

IOVERLAY (BIAS, 2400), (NOTCB),;

PASS2 PROCESSOR

The tree structure of the PASS2 processor is given in
Figure N-4. The options that should be specified in the
OVERLAY command used to form the processor are shown
in the following example.

/!(LMN, PASS2), (TSS, 800)[, (MAP)]

IOVERLAY (BIAS, 2400), (PERM), (SL, F), ;

UN-SEGMENTED PROCESSORS AND DCB'S

The following are all simple program structures and are
formed by the use of LOAD commands rather than OVERLAY

commands.

PASS1 PROCESSOR

The LOAD command used to form the PASS1 processor is
shown below.

ATSS, 100), (BIAS, 2400)[, (MAP)], (PERM)

ILOAD (LMN, PASS1), (EF, (PASSTROM)), ;

DEF PROCESSOR

The LOAD command used to form the DEF processor is shown

in the following example.

158 Appendix N

'/!(TSS, 100), (BIAS, 2400)[, (MAP)], (PERM)

ILOAD (LMN, DEF), (EF, (DEFROM), (M:LLDCB)), ;

FMGE PROCESSOR

The LOAD command used to form the FMGE processor is
shown below.

ﬁMGEDCBS)), (TSS, 100), (BIAS, 2400)[, (MAP)]

[LOAD (LMN,FMGE), (EF, (FILEMNGE), (TPECHST), ;

REW, WEOF, AND PFIL PROCESSORS

The LOAD command used to form any one of these proces-
sors is shown below.

[1[, (MAP)], (PERM) AN
[1(M:GODCB), (TS5, 100), (BIAS,2400), ;

[1(M:ALDCB),(M:EIDCB), (M:EODCB),;
1(M:SODCB), (M:CIDCB), (M: cooce),,\

[1(M:SIDCB), (M:BIDCB), (M:SLDCB),;

[1(M:PODCB), (M:BODCB), (MLIDCB), i \
[1(M:LODCB), (M:LLDCB), (M:DODCB),;

_1(TPECHST), (M:CDCB), (M:OCDCB), ;

TLOAD (LMN, name), (EF, (TAPEFCN),;

The "name" identifying the load module in the above ex-
ample is REW, WEOF, or PFIL, as appropriate.

SYSTEM DCB’S

The LOAD command used to form any one of the system
DCBs is shown below.

APERM, LIB)[, (MAP)]

ILOAD (LMN, name), (EF(file)), ;

The "name" identifying the load module in the above exam-
ple is the name of the system DCB (e.g., M:C); "file" is
the name of the corresponding file in the system library

(e.g., M:CDCB).

10

*% * * *
ROOT — M:ABS ‘I*O*SYM] — M:CPU = MJIT - [M:SDEV] - [RTROOT] - [M:TIME] - [M:RTIT] —]

L~ [M*:NRJIT] - [A’:\;INT] — M:RESDEF — [CRDOUT] —IOTABLE — HANDLERS — [PTAP] _.l

FBCD
— —[71AP] - {DFBCD]

- M:FCOM - [céép] — [ORT — TOPRT

*Real-time system options.
**Symbiont system options.

Figure N-la.

Monitor Root Structure

4+ PRGMLDR (1742 wds)

L TYPR (234 wds)
L 1OD (244 wds)
DEBUG (340 wds)

M:15 (360 wds)
——— M:16 (242 wds)
L M:17 (244 wds)

— EXIT (1068 wds)

— KEYIN (1300 wds)

- M:14 (580 wds)
M:18 (456 wds)

M:1A (1236 wds)
OPNL (530 wds)

M:1E (323 wds)
+ OPN (727 wds)

1+ CLS (674 wds)

——————— MEMALOC (347 wds)

+ SEGLOAD (809 wds)

+ WRTF (559 wds)

CALPROC (147 wds)

+ WRTD (569 wds)

—— RDF (954 wds)

~ LBLT (471 wds)
+ M:19 (335 wds)

POS (503 wds)

TOPRT=8300

— ALTCP (219 wds)

LDPRG (1236 wds) (Background Lower Limit)

BKGRLL= 10,752 (2A0014)
1

! 1 1
8300 8800 9300

i 1
9800 10300 10800

Note: This figure shows the BPM overlay tree (with sizes in decimal words) of a symbiont real-time system including:

8 symbiont buffers (256 wds)

6 symbiont context buffers (40 wds)

10 Monitor print buffers
12 queue entry blocks

1K wd temp stack

3 dises

power fail-safe option
100 wds patch space

Figure N-1b.

Monitor Tree Structure

Appendix N

159

— IN1

— PS1
— IN2

LDR— ALL
— PS2 EVL

WRT-MODIFY

Figure N-2. Loader Tree Structure

— JOB

— LIMIT

—— ASSIGN

— LOAD

— TREE

—— TELSCPE

CCIROOT - M:DLIMIT - MJIT RUN

—— CCIDBUG

—— READBI

— ENDJOB

L— ABORT

Figure N-3. Control Command Interpreter Tree Structure

— DEVICE
L SDEVICE
L MONITOR
L DLIMIT
L RITGEN ———_ e
— CLOCK —DLIB
CCLOAD - PASS2CCI - MODIFY - DCBS-SGLDR LIBLOAD~I: INT
FORMLIB Ps2
IN2
Ps2

ALL

EVL

WRT

160

Appendix N

Figure N-4. PASS2 Processor Tree Structure

APPENDIX 0. TASK CONTROL BLOCK FORMAT

The format of the TCB established and maintained by the Monitor for the user's program is shown below.

where

TSTACK

TSS

TSA

TSASIZ

ERTSIZ

ERT

DCBTAB

ofo 0 TSTACK
1 TSS 0 0
2
3
) These words for use by processor
5
610 0 TSA
7 TSASIZ 0 0
8 ERTSIZ ERT
9 ERTSIZ-2 TSA+1
100 0 DCBTAB
11]o 0 TREE
12 |0 0 SSW
13 For use by Processor
14 XSL specified on !RUN card
15 For use by Monitor
TSA Library error temp stack
ERT Library error table
TSTACK User's temp stack
0 14115"16 25126 31

is the address of the current top of the user's temp stack.

indicates the size, in words, of the user's temp stack.

is the address of the temp stack used by the library error package.

] TSASIZ
] ERTSIZ

} TSS

indicates the size, in words, of the temp stack used by the library error package.

indicates the size, in words, of the error table used by the library error package.

is the address of the error table used by the library error package.

is the address of a table of names and addresses of all of the user's DCBs. This table has the form

shown below under "Table of User's DCBs".

Appendix O

161

TREE is a pointer to the location of the user's overlay structure.
SSW contains the user's sense switch settings (bit 26 contains the setting of switch 1, etc.).
TABLE OF USER'S DCBs

The table of user's DCBs has the following format.

DCBTAB| O 0 LINKADDR
M By By B3
! |
| I
[1
Bn—3 Bn-2 Bn-l Bn
DCBLOC,
| 1
| etc. 1
| |
DCBLOC,,
LINKADDR
0
0 7'8 14115116 23124 31

where
LINKADDR is the address of the location provided for storing a return address.
M indicates the number of characters in the DCB name.

B —Bn indicates the EBCDIC name of the DCB.

1
DCBLOC is the address of the first word location of the DCB.

162 Appendix O

APPENDIX P. FILE ATTRIBUTES

A discussion of several of the attributes of files under the
BPM will help the user to more profitably make use of this
part of the BPM.

It is important to understand the inter-workings of DCBs,
1ASSIGNs and M:OPENs. File attributes may be specified
on any or all of these items. Attributes specified on
IASSIGN override those built into DCBs. In turn, attri-
butes expressed on M:OPEN override those specified by
either DCBs or 1ASSIGNEs.

In some cases, attributes control the file itself rather than
its usage. In these cases the correct attributes are placed
into the DCB when it is opened. For example, if the user
creates a file ALPHA as a KEYED file and tomorrow reads
the file specifying CONSECutive organization, BPM will
override the CONSECutive parameter with a KEYED param-
eter. Thus, for example, it is never meaningful to specify
organization when opening an INput or INOUT (update) file.

Four parameters specified by the user in DCBs on 1ASSIGN
cords, and/or by OPEN or CLOSE commands control file

use:

1. Function — relates to information direction IN, OUT,
etc.

2. Disposition — controls the saving and releasing of files
both within the job and at its termination.

Organization — tells how the file is put together.

4. Access — tells how the file should be accessed.
FUNCTION

This attribute specifies whether the file is to be read or
written, and (by implication) whether an existing file is to
be accessed or a new file is to be created. Function also
controls the disposition of the file (see "Disposition Type").

INput specifies that an existing file is to be accessed
for reading only.

OUTput specifies that a new file is to be created.

INOUT specifies that an existing file is to be accessed
for reading and writing (updating).

OUTIN specifies that a new file is to be created but it
may also be read before closing.

A file opened as OUT or OUTIN does not replace a pre-
vious file by the same name until it is saved when the
CLOSE command is given. Thus two files of that name
exist during creation.

Several DCBs may be simultaneously open to the same file

(and/or the same file name) if the proper protocol is observed.

Note that a DCB open to file ALPHA as IN and another
DCB open to file ALPHA as OUT are not referencing the

same file (merely same file name). For DCBs open to the
same file name the following sequences of opens are
permissible:

1. DCBI,IN ... DCB2,IN ... DCB3,IN ...
2. DCBI1,OUT ... DCB2,IN ... DCB3,IN ...
3. DCB1,OUTIN ... DCB2,IN ... DCB3,IN ...

In cases 2 and 3, DCB2 ... DCBN must be closed before
DCB1 may be closed and saved. Otherwise the new output
file is released.

Thus to generalize, if a DCB is opened INOUTto a file, no
other DCB may be opened to the same file name. [f a DCB
is opened IN, OUT, or OUTIN, other DCBs may be opened
IN only. A DCB opened as OUT or OUTIN may be closed
and saved only if there are no other DCBs open to the same

file.

If the above protocol is violated, an abnormal code of 14 is
returned for an Open command.

DISPOSITION TYPE

There are two levels of disposition types available in BPM.
The user may first specify whether the file is to be SAVEd
or RELeased when the controlling DCB is closed. If a file
is SAVEd, it may be declared to be either TEMPorary or
PERManent, causing it to be released or retainedat the end
of the job. Thus REL/SAVE are concerned only with the
current use (open DCB) of the file while PERM/TEMP are
job associated. A temporary file may be opened and closed
many times before it disappears at the end of the job.

Al IN or INOUT files are saved unless explicitly RELeased
on an M:CLOSE operation. All QUT and OUTIN files are
released unless SAVE is specified by the merged parameters
from DCB, ASSIGN, M:OPEN, and on M:CLOSE. If any
DCBs remain open when a program exits (or errors or aborts),
they are closed with neither SAVE nor REL specified. Thus,
currently open IN (or INOUT) files are saved and currently
open OUT (or OUTIN) files are released. The following
job will normally replace the old copy of MYCI with the
new MYCI when the assembly is complete. If the assembly
is terminated prematurely for any reason, the partially cre-
ated MYCI is released and the old MYCI is retained.

1JOB MYACCT, MYNAME

IASSIGN M:CI, (FILE, MYCI)'
IASSIGN M:CO, (FILE, MYCI)"
IMETASYM I, CI,CO,LO, GO
updates

+END

fC1DCB has IN built in.

"CO DCB has OUT and SAVE built in.

Appendix P 163

The TEMPorary files to be released at the end of the
job are remembered in a list of names declared tempo-
rary. Once a file name is declared temporary, it can-
not be removed from the list. Thus declaring a file
temporary, then later declaring it permanent results in
a temporary file.

Files may be declared TEMPorary in several ways:
1. M:TFILE

2. absence of PERM on :FMGE (ENTER)

3. absence of PERM on !LOAD

4. any file created as the result of GO specified on
a processor card even if M:GO is assigned. This
allows users to use the GO option to create an
overlay structure, while keeping the element files
as temporary files.

164 Appendix P

ORGANIZATION

CONSECutive organization implies that the records within
a file are order dependent, that the file was created
SEQUENTtially and that the records may only be accessed
SEQUEN:Htially.

KEYED organization implies that each record in a file has

a unique identifier (key) which was supplied when the file
was created. If the records were presented in random order,
they have been sorted alphanumerically (by Key) so that
subsequent SEQUENtial access will retrieve the records in
sorted order. The file may also be accessed DIRECTly, ac-
cessing each record by name (Key).

ACCESS

SEQUENTtial access implies that the records are to be ac-

cessed in order. Positioning operations are valid. This
access type may be used for either CONSEC or KEYED files.

DIRECT access implies that all records are to be accessed by
name (Key). This may be used with KEYED files only.

APPENDIX Q. CHARACTER GRIENTED COMMUNICATIONS ROUTINES

The Character Oriented Communications (COC) routines are
resident real-time programs for communicating with 70 015
printers, and Cll keyboarddisplays via a single 70 611
communication controller A user's program loaded with the
COC routines receives control when a complete message is
received from a terminal. Control is returned to the batch
background operation when a Read command is issued to the
COC routines but no complete message is ready. Control
returns to the COC routines and thus to the issuing program
when a complete message is available.

Control of the console is proprietary: i.e., input is not al-
lowed during output and output is not allowed during input.
Communication is, however, available in both directions,
and the receipt of the "break" character is signaled to a
program doing write operations.

Characters going to and from the terminals are translated to
and from internal form through tables associated with indi-
vidual lines. These tables also control end-cf-message ac-
tion and special character functions. Special tables tailored
to other consoles or to other end-of-message characters can
be supplied to the COC routines through reassembly, or dy-
namically through direct access to line control information.

COMMANDS

Four commands interface the user's program with the COC
routines: ACCEPT INPUT, READ, WRITE, and WAIT FOR
OUTPUT. The ACCEPT INPUT command directed to a spec-
ified terminal readies that terminal for input, supplying a
buffer in which received characters are to be placed. READ
returns a complete message with its length in bytes and the
number of the terminal from which it came. If no complete
message is available, control returns to the current batch
job. The WRITE command stacks a message for output to a
specified line, The WAIT FOR OUTPUT command gives up
control to batch operation until some line completes output.
Condition codes report invalid line numbers, output attempted
to a line currently accepting input, and receipt of a "break"
character from the terminal since the last call on the COC
routines,

LINE STATES
There are five line states:

INAC Inactive line.
ouTt Output. The computer is transmitting characters

to the line,
IN Input. The computer is receiving characters from
the line.
t
IC Input complete. An end-of-message or activation

character has been received from the line. The

"In the standard Teletype case, the end-of-message charac-
ters are Cr, Lf, ESC, and break.

completed message will be delivered to the user
program when a READ command is given,

SI Switch to input. The computer is transmitting to
the line; input will be accepted as soon as output
is complete.

Input characters are ignored unless the line state is IN. Out-
put occurs only in OUT or SI states,

HANDLING OF THE BREAK SIGNAL

The special line signal "break" is recognized and recorded
regardless of line state or condition of transmission. When
a break signal is received, abit in the line control table
associated with the sending terminal is set. The condition
of this bit is reported to the user on a Read or Write opera-
tion and the bit is cleared. During input from the terminal,
the receipt of a break signal is also reported by placing the
character EOT in the input buffer and setting the end-of-
message or "activate" condition. If the program using the
COC routines wishes to examine the break condition without
doing a Read or Write, it may examine the bit directly (see
"Iine Control Tables".).

INPUT PROCESSING — TTY

The standard Teletype conversion tables (Tables Q-1 and
Q-2) provide for input line editing, COC mode control,
and message-complete characters as follows.

Cr When the carriage return (Cr) is received,
a line feed (L) is sent to the terminal, the
message is marked complete, and the asso=-
ciated program is activated if it was wait-
ing at a READ command. Further input
from the terminal is ignored until an AC-
CEPT INPUT command is received,

Lf Same as Cr except that Cr is sent to the
terminal.
Cancel When the character CAN (generated at

(CAN, X%) | the Teletype by pressing the control and
X keys) is received, the current partial
input message is erased. The characters

«Cr Lf are sent to the terminal.

Rubout When the character "Rubout" is received
the preceding character is erased and a
blank is sent to the terminal. Crand
Lf are sent if the entire input message is
erased in this way.

us When the US character (generated by
pressing both shift keys and the O key) is
received, the bit controlling character
echoing is complemented. This bit,
when set, causes the COC routines to

Appendix Q 165

echo received characters back to the
terminal to cause printing at terminals
whose keyboards are not locally connected
to the printer.

ALTMODE
or ESC

The message-complete condition is set.

INPUT PROCESSING - K/D

In general, end-of-message activation occurs on all cursor
movements, the hard copy control characters, the roll char-
acters, and the mode change characters.

RS When the RS character (generated by pressing
both shift keys and the N key) is received, the
bit controlling the keyboard/display local
mode is complemented. This bit, when set,
causes the COC routines to transmit, or echo,
received characters to the terminal but take no
further action.

OUTPUT PROCESSING

Standard output conversions for Teletypes and keyboard/
displays are shown in Table Q-3. The tables give the 7-
bit ASCII character sent for each EBCDIC character. In each
table is an eight-bit value including parity for transmission
to the terminal. Illegal characters are not sent to the ter-
minal, For Teletype terminals, both Cr and Lf characters
are sent as the pair CrLf; lower case EBCDIC alphabetics

are sent in upper case; and message output is terminated by
a zero byte or by byte count.

CREATION AND INITIALIZATION OF A RESIDENT
REAL-TIME COC SYSTEM

In order to operate a COC foreground system, the user must
proceed as follows.

1. Generate a system with core and interrupt locations
reserved,

2. Assemble the standard COC routines, specifying the
correct number and types of lines, number of buffers,
conversions desired, etc.

3. Create a load module on file including the COC rou-
tines and the user's program.

4, Cause the load module to be placed in core ready to
run.

5. Trigger initial operation of the process via a console
command.

SYSTEM GENERATION
The generated BPM system must provide for the real-time
COC capability. This is accomplished in PASS2 of System

Generation by specifying appropriate options in the RESERVE
and INTR control commands for core and interrupt location

166 Appendix Q

assignment. Additional options and control commands may
be needed as outlined in Section 10 of this manual.

{RESERVE Command Specifications for COC

Core size specified on the RESDF option must be sufficient
to support the COC routines (about 2000 words) and user
program. FIPOOL and FFPOOL options should appear to
supply an appropriate number of buffers, if any file I/O is
to be performed by the user's program.

INTR Command Specifications for COC

This control command is used to specify the load module nome
of the foreground COC task and its associated interrupt lo-
cation. Since there are two interrupts associated with the
COC system, both must be specified. In addition, the COC
system operates in the master mode and therefore the MASTER
option must be specified.

COC ASSEMBLY PARAMETERS

The COC system must be assembled and a relocatable object
module (ROM) generated that represents the user's needs.
That is, the following parameters must be defined by the
user in the COC source deck:

COCNB Number of buffers to be provided (each
buffer is 4 words long — enough for 14
characters).

COCDN Device number of attached COC.

COCNL Number of lines connected to COC (it is
assumed that the connected lines are
numbered from zero upward to COCNL-1,
and 64 is the maximum for the current
implementation).

COocCll Locations of input and output external

COCIO interrupts.

In addition, the user must specify the locations of the input
(COCIT) and output (COCOT) conversion tables associated
with each line, as well as the initial line mode (MODE).
The standard COC routines are assembled with I/O conver-
sion tables for Teletypes connected for local printing.

Certain information is collected and used by the COC rou-
tines during execution. This information is available to the
user's program. The externally defined and referenced sym-
bols and their contents are described below.

Symbol Type Contents

COCBW (Def) Loop count waiting for buffers
COCIPC (Def) Input parity error count

COCIPL (Def) Input parity error line number (last

line)
COCILC (Def)
COCILL (Def)

Input logical error count

Input logical error line number (last
line)

Symbol Type Contents

CcOcCup (Ref)

Location of user's program initializa-
tion entry

COCOEC (Def) Output extraneous interrupt count
COCOEL (Def) Output extraneous interrupt line

number (last line)

Line Control Table Entry

Symbol Type Contents Size
STATE (Def) Line state (byte)
MODE (Def) Line mode (byte)
COCOT (Def) Location of output conver-

sion table (word)
COCIT (Def) Location of input conversion

table (word)
LINK (Def) Relative buffer address (half)
COCBA (Def) Byte address of next input or

output character (word)
COCOCNT (Def) Output character count (half)
ARS (Def) Input character count (byte)

CREATING A COC SYSTEM FILE

The COC system is formed under Monitor control by running
a job under the account number :SYSRT. The Monitor control
command LOAD is used to direct the loader to form a relo-
catable load module from the COC and user's relocatable
object modules. The resulting program is placed in the real-
time account file.

LOADING CORE WITH THE COC SYSTEM

The RUN control command is used to enter the load module
(created by the LOAD control command) into the resident
foreground area, and to connect the COC system to its as-
sociated interrupt (input). The name of the load module
(LMN, name) must correspond to the name specified on the
INTR control command. Any options specified in the RUN
control command must agree with the System Generation
specifications. The DIRECT option should be used; it spec-
ifies that the foreground task (COC system) is to be entered
directly each time the associated interrupt becomes active.
The MASTER and RESD options must have been specified on
the INTR control command at System Generation to validate
the option. The task is entered in the master mode and is
responsible for saving and restoring any machine environ-
ment it changes. It is also responsible for returning control
to the point at which the interrupt occurred,

INITIATION OF THE COC SYSTEM

The unsolicited TRIGGER key-in is used to trigger the ex-
ternal interrupt. If the interrupt is not armed, the trigger
has no effect.

The format of the key-in is
ITRIGGER location

where "location" specifies the hexadecimal location of the
external input interrupt. When the interrupt occurs, the
COC routines initialize themselves and the assigned terminal
lines. Control is then passed to the user's program for initial
operation,

RESTRICTIONS
FOREGROUND FILES

A real-time foreground task may not create new files but
may open a file in any mode; similarly, it may not release
files. Foreground tasks are restricted to updating or reading
files from their own account and reading files from other ac-
counts, A batch job running under a foreground account may
prevent a foreground job from updating a file if it has the
file open when the foreground wants access. If this occurs,
an abnormal code of 14 will be communicated in SR3 at the
time the file is accessed.

A batch job running under a foreground account may add
files to the foreground file directory, but in so doing will
prevent foreground jobs from obtaining access to the direc-
tory. If this occurs, an abnormal code of 20 is communi-
cated to the foregroundtask in SR3when the file is accessed.
As a general rule, a batch job should not update or create -
foreground files if the file directory is in danger of being
used by a foreground task.

PROCEDURE CALLS

The following Moniter procedure calls will be ignored if
made by resident foreground programs.

M:CHKPT M:GCP
M:RESTART M:FCP
M:LDTRC M:GP
M:LINK M:FP
M:GL M:SMPRT

COC COMMAND DETAILS

The routines defined here follow the conventions of library
routines in that they destroy the contents of registers 6-11,
The following routines are provided.

COCRD (READ MESSAGE)

The linkage
BAL,11 COCRD

causes the COCRD routine to select the first complete mes-
sage and move that message to the requested area. The num-
ber of bytes moved will be the minimum of the actual record
size (number of characters contained in the message) and the
size of the message requested. The COC assumes the follow-
ing register seftings:

Appendix Q 167

Byte address of the area in which the
input message will be packed (left-
justified).

General register 7

Maximum byte size of the message to
be read (right-justified).

General register 8
Upon return to the user's program, the following information
is available:

Binary line number from which the
message came.

General register 6

General register 8

Condition Code 1 is set if a break character was received.
COCWR (WRITE MESSAGE)

The linkage
BAL,11 COCWR

causes the COC to initiate an output message on the speci-
fied terminal if not already in the output state. The results
of the operation may be tested for an invalid line number,
the receipt of a break chardcter, or an invalid request. The
Write call causes the line state to be changed from inactive
to output. If the line state is not inactive or output, the
request will be ignored and Condition Code 2 set. Condition
Code 1 is set if a break code has been received. In honoring
the request, the COC routine will not return control to the
user's program until enough buffer storage is obtained to
move the message from the user's area to internal blocking
buffers. The COC assumes the following register settings.

Line number upon which the message
is to be transmitted.

General register 6

Byte address of the message to be
transmitted,

General register 7

Byte count of the message to be trans-
mitted. The message is terminated on
a zero byte in the standard TTY
conversion.

General register 8

Upon return to the user's program, the following condition
codes apply.

Condition Code Meaning

1 2 3 4

0 0 0 O Normal transfer,

o 1 0 O Invalid line state (not inactive or output);
request ignored.

1 0 0 O Break signal received.

0 0 1 O Invalid line number; request ignored.
COCAI (ACCEPT INPUT)

The linkage

BAL,11 COCAI

168 Appendix Q

Size, inbytes, of the message transferred.

causes the COC to accept input from the specified terminal.
If the terminal is in the output state, the state will be
switched to input when the last character of the output mes-
sage is transmitted. If the terminal state is inactive, the
state will be changed to input. If the terminal state is input
or an input message is already complete, the request is ig-
nored and CC2 is set.

The COC assumes the following register setting.

General register 6 Line number on which input is requested.

Upon return to the user's program, the following information
is available in the Condition Codes.

Condition Code Meaning

1 2 3 4

1 0 0 O Break signal received.

0o 0 1 0 Invalid line number; request ignored.
0O 1 0 O Invalid |ine‘stofe; request ignored.

COCREL (WAIT FOR OUTPUT)

The linkage
BAL,11 COCREL

returns control to the Monitor until output has completed on
some line (a line state change from OUTto INAC). The num-
ber of the first line completing output is returned in register
6 when control returns to the instruction following the BAL.
Condition Code 1 is set if a break character was received on
that line. If no lines are in the OUT state when COCREL is
entered, exit is immediate with Condition Code 2 set,

COCTR (TERMINATE COC 1/0)

The linkage
BAL,11 COCTR

causes all COC 1/O to be terminated, all interrupts disarmed,
and control returned to the interrupted batch program.

LINE CONTROL TABLES

The line control tables contain information regarding lines
to and from terminals. This information pertains to status,
mode, and input/output conversion.

STATE TABLE - STATE (BYTE TABLE)

gﬁ State Meaning
INAC inactive — not accepting or transmjtting
characters
1 IN accepting input
2 ouT transmitting output
3 IC input message complete
4 SI line is to be activated for input after out-

put is complete

INPUT CONVERSION TABLE LOCATION —
COCIT (WORD TABLE)

COCIT is a 128-byte table. The input characters (7 bits)

received from the line index the byte table. The contents
of the table entry determine the conversion of the input

character,

MODE TABLE — MODE (BYTE TABLE)

Bit Name Value Meaning

0 echo 0

Do not echo (terminal is local
printing)

1 Echo (echoplex terminal)

1 K/D 0 K/D not local
1 K/D local

2 bk 0 Break not received
1 Break received

5,6,7 special 000 No special characters to be

output transmitted

flag 001 Cr to be transmitted
010 Lf to be transmitted
011 Cr and Lf to be transmitted
100 End of special transmission

OUTPUT CONVERSION TABLE LOCATION -
COCOT (WORD TABLE)

The output table is a 256-byte output conversion table.
Output characters received from the user's program index
this table. The contents of each entry represent the charac-
ter to be transmitted, including parity (if appropriate).
When the entry contains F1, F2, or F4, special action is
taken (see "Output Special Character Routines").

ACTUAL RECORD SIZE TABLE -
ARS (BYTE TABLE)

Actual record size is the count of all converted input char-
acters contained in the current message.

BYTE ADDRESS FOR NEXT CHARACTER TABLE -
COCBE (WORD TABLE)

The buffer pointer is the byte address at which the next input
character is to be placed, or from which the next output
character is to come.

LINK TABLE — LINK (HALF WORD TABLE)

The LINK table contains the relative buffer address (buffer
address minus buffer pool location) of the first message buf-
fer. If more than one buffer is used for I/O, the buffers are

linked. The last buffer has a zero link, The first halfword
of each buffer is used for linking, as shown in buffer format
below.

OUTPUT CHARACTER COUNT TABLE ~
COCOCNT (HALFWORD)

The COCOCNT table contains the count of characters re-
maining to be transmitted to the terminal.

LOCAL STORAGE

Local storage consists of a group of variables and buffers
used in the storage and manipulation of characters and char-
acter strings.

COCBUF
COCHPB

Word address of buffer pool.

Head of the available buffer pool. Each
available buffer is linked in ifs first half-
word to the next. The last available buffer
has a zero link. Thelinks are displacements
from the beginning of the buffer pool.

COCINRES

n words of temporary storage used by the
input character interrupt routine.

COCOQUTRES

m words of temporary storage used by the
output character interrupt routine.

COCRES 18 words of temporary storage used to re~

tain the interrupted environment. The in-
terrupted environment is saved in this area
when control is transferred to the user's

program.

COCPS

Program state:

=0 User's program is currently inactive.

#0 User's program is currently active.

BUFFER FORMAT

word 0 Link Ci | Co

word 1 C3 Cy Cs Cq
word 2 C7 C8 C9 C 10

word 3 i C]2 Cy3 Cig

where
link contains the relative address of the next buffer
(buffer address — COCBUF).
C; is the 1/O message character,

INPUT SPECIAL CHARACTER HANDLING ROUTINES

In the input conversion tables, values in the EBCDIC column
from 30 to 3A require the special handling routines listed
below.

Appendix Q 169

30 Cr —echo Lf; activate; X'D' goes to input buffer 35 XS (CAN)—" Cr Lf"; release all but one buffer
31 Lf —echo Cr; activate; X'15' goes to input buffer 3 Ignore character
37 Count error and ignore
32 RUBOUT —echo " " backup pointer; echo Cr Lf if
beginning 38 Count error and ignore; put X'FF'inbufferand echo "#"
33 20 (US) —Toggle TTY ECHO mode 39 Echo; put ASCII character in buffer and activate
34 2N (RS) — Toggle K/D ECHO mode 3A ESC or ALTMODE —activate; X'FE' goes to buffer
Table Q-1. Input Conversion —TTY
ASCII EBCDIC ASCII EBCDIC
Code Character Code | Character EOM Note Code | Character Code | Character EOM
0 NULL 00 20 blank 40 blank
1 SOH 01 21 ! 5A !
2 STX 02 22 " 7F "
3 ETX 03 23 # 78 #
4 EOT 38 24 $ 5B $
5 ENQ 09 25 % 6C %
6 ACK 06 26 & 50 &
7 BEL 07 27 ' 7D !
8 BS 18 28 (4D (
9 HT 05 29) 5D)
A NL 31 X Q) 2A * 5C *
B \21 0B 2B + AE +
C FF 0C 2C , 6B ,
D CR 30 X (2) 2D - 60 -
E SO OE 2E . 48 .
F SI OF 2F / 61 /
10 DLE 10 30 0 FO 0
11 DC1(XON) 11 31 1 F1 1
12 DC2(TAPE) 12 32 2 F2 2
13 DC3(XOFF) 13 33 3 F3 3
14 DC4(TAPE) 14 34 4 F4 4
15 NAK 0A 35 5 F5 5
16 SYN 16 36 6 Fé 6
17 ETB 17 37 7 F7 7
18 CAN 35 (3 38 8 F8 8
19 EM 19 39 9 F9 9
1A SS 1A 3A : 7A :
1B ESCI B8 3B ; 5E ;
1C FS 1C 3C < 4C <
1D GS 1D 3D = 7E =
1E RS 1E 3E > 6E >
1F us 33 (4) 3F ? 6F ?
(1) X'15' goes to user buffer
(2) X'OD' goes to user buffer
(3) user buffer contents erased
(4) no character goes to user buffer
170 Appendix Q

Table Q-1. Input Conversion — TTY (cont.)

ASCII EBCDIC ASCII EBCDIC
Code Character Code | Character EOM Note Code | Character Code | Character EOM
40 @ 7C @ 60 38 cD
41 A Cl A 61 a 38 cDh
42 B C2 B 62 b 38 CcD
43 C C3 C 63 c 38 Ccb
44 D C4 D 64 d 38 CcD
45 E c5 E 65 e 38 Ccb
46 F Cé F 66 f 38 CcD
47 G c7 G 67 g 38 o))
48 H cs8 H 68 h 38 CcD
49 I c9 I 69 i 38 CcD
4A J D1 J 6A i 38 CcD
4B K D2 K 68 k 38 cD
4C L D3 L 6C I 38 CcD
4D M D4 M 6D m 38 CcD
4E N D5 N 6E n 38 CcD
AF 0 Dé (0] 6F o 38 Cb
50 3 D7 P 70 p 38 CcD
51 Q D8 Q 71 q 38 CcD
52 R D9 R 72 r 38 Cch
53 S E2 S 73 s 38 CcD
54 T E3 T 74 t 38 cD
55 u E4 U 75 u 38 CcD
56 v E5 v 76 v 38 CcD
57 w E6 w 77 . w 38 cD
58 X E7 X 78 x 38)]
59 Y E8 Y 79 y 38 CD
5A z ES z 7A z 38 CcD
58 cC AF | 78 { 38 CcD
5C VN 4A £ 7C - 38 cD
5D J-C 5F - 7D i 38 CcD
5E Ant 6A A 7E ESC 3A)]
5F _—— 6D - 7F RUBOUT 32 2
most Cll
TTY's 70 015
] 68
70 015 ASCII
68
ASCII

(1) X'FE' goes to buffer

(2) last character in user buffer erased

Appendix Q

171

Table Q-2. Input Conversion —K/D

ASCII EBCDIC
Code Character Code Character EOM Comments
0 NULL 36
1 SOH 37
2 STX 33 X Begin message mode text (no echo)
3 ETX 33 X End message mode text (no echo)
4 EOT 36
5 ENQ 09
6 ACK 06 Unlock keyboard
7 BEL 39 X Cursor up
8 BS 18
9 HT 39 X Cursor right
A NL 39 X
B VT 39 X Cursor home
C FF 39 X Hard copy on
D CR 39 X Cursor return
E SO 39 X Enter normal mode
F SI 39 X Enter insert mode
10 DLE 39 X Hard copy off
11 DCI1(XON) 39 X Roll forward
12 DC2(TAPE) 12
13 DC3(XOFF) 39 X Roll backward
14 DCA4(TAPE) 12
15 NAK 39 X Transmit data
16 SYN 16
17 ETB 17
18 CAN 39 X Erase text
19 EM 39 X Cursor left
1A SS 39 X Cursor down
1B ESCI 1B
1C FS 39 X }Reserved for software {FWD
1D GS 39 X Turn page BACK
1E RS 34
1F us 1F
20 blank 40 blank
21 | 5A |
22 " 7F n
23 # 78 #
24 $ 58 $
25 % 6C %
26 & 50 &
27 ! 7D !
28 (4D (
29) 5D)
2A * 5C * s
2B + 4E +
2C , 6B ,
2D - 60 -
2E . 4B .
2F / 61 /
30 0 FO 0
31 1 Fl 1
32 2 F2 2
33 3 F3 3
34 4 F4 4
35 5 F5 5
36 6 Fé6 6
172 Appendix Q

Table Q-2. Input Conversion — K/D (cont.)

ASCII EBCDIC
Code Character Code Character EOM Comments
37 7 F7 7
3 8 F8 8
39 9 F9 9
3A : 7A :
3B ; 5E ;
3C < 4C <
3D = 7E =
3E > 6E >
3F ? 6F ?
40 62
41 A Cl A
42 B C2 B
43 C C3 C
44 D C4 D
45 E C5 E
46 F Cé F
47 G Cc7 G
48 H (@] H
49 I (@ I
4A J D1 J
48 K D2 K
4AC L D3 L
4D M D4 M
4E N D5 N
4F O Dé O
50 P D7 P
51 Q D8 Q
52 R D9 R
53 S E2 S
54 T E3 T
55 U E4 U
56 \% E5 \%
57 w E6 '\
58 X E7 X
59 Y E8 Y
5A Z E9 VA
58 C 41 C
5C ~ 4A '3
5D | 51 3
5E A 6A A
5F — 6D —
60 @ 7C @
61 a 81 a
62 b 82 b
63 c 83 c
64 d 84 d
65 e 85 e
66 f 86 f
67 g 87 g
68 h 88 h
69 i 89 i
6A i 91 i
68 k 92 k
6C | 93 |
6D m 94 m

Appendix Q

173

Table Q-2. Input Conversion — K/D (cont.)

ASCII EBCDIC
Code Character Code Character EOM Comments
6E n 95 n
6F o. 96)
70 P 97 p
71 q 98 q
72 r 99 r
73 s A2 s
74 t A3 t
75 v A4 u
76 v A5 v
77 w Aéb w
78 x A7 x
79 y A8 y
7A z A9 z
78 ! 42 |
7C - 5F -
7D ! 52 }
7E I 4F !
7F RUBOUT FF
OUTPUT SPECIAL CHARACTER HANDLING ROUTINES Notes:

In special cases, the output conversion table contains an F
followed by the code number of a special handling routine.

Routines and their functions are:

Fl

F2 Cr and Lf are placed in the buffer.

F4 Output message is complete.

174

Appendix Q

Null — no character is placed in the output buffer.

1.

All empty squares in the following tables are coded F1
and no character is sent to the terminal.

In each square, the upper character represents the
graphic(s) or the name of the character while the
lower characters represent the hexadecimal value of
the character to be transmitted (but not including the
parity which is in the K/D Table).

The usable F codes are those with bad parity; Fl1, 2, 4,
7, 8, B, D, and E; since other F codes represent correct
parity-checked characters.

Table Q-3. Output Conversion (EBCDIC — ASCII (TTY))

Least significant digit (of EBCDIC)
0 1 2 3 4 5 6 7 9 A | B C D E F
NUL| SOH| STX| ETX| EOT| HT| ACK| BEL| CAN|ENQ| NAK| VT| FF| CR| SO| SI
F4 o1 o2 fo3 fo4 Jo9 Jos Joz 18 Jo5 |15 joB loc |F2 JoOE _ [oF
DLE| DC1| DC2| DC3| DC4| NL| SYN| ETB| BS| EM| SS| ESC| FS| GS| RS| US
1o (i 2 he |4 2 e iz Jos D19 A 1B [ic [iIb [IE|IF
blank C { ~ ¢\ < (+ [
20 |58 5C |2 [3C |28 [2B 5B
g &] } ! $ *) I
S 26 |5D- 21 |24 |2a |29 |38 [5D
& 7T R
2 2D [2F j40 56 |2¢ |25 |5F [3E |3F
o Ho@ ' = "
[a)
- 3A |23 |40 |27 [3D |22
8 A B C D E FI G| H I
B 41 |42 |43 |44 |45 |46 |47 |48 49
% J K t M Nl o P Qf R
s 4A 4B 4C 14D J4E |4F |50 |51 |52
S 17 ul vl w| x Y| z
53 |s4 155 |56 |57 |58 |59 |5A
A B C D E Fl o H I
41 42 (43 |44 (45 |46 a7 |48 |49
J K Ll M| N[o© Pl Q R
4A |4B [4C |4D [4E |4F |50 |51 |52
S T ul V] w X[Y| z
53 |54 |55 |56 |57 |58 |59 |5A
0 1 2 3 4 51 6 7 8 9 ESC
ALT
30 (31 [32 |33 {34 |35 |36 [37 {38 [39 7E |23
Appendix Q 175

Table Q-3. Output Conversion (EBCDIC — ASCII (TTY)) (cont.)

Least Significant Digit (of EBCDIC)

Most Significant Digit (of EBCDIC)

0 1 2 3 4 5 6 8 9 A B C D E F
NUL| SOH| STX| ETX| EOT HT| ACK BEL| EOM| ENQ| HAK VT FF CR SO SI
0 |00 01 02 03 04 09 06 07 18 05 15 0B 0C 0D OE OF
DLE| DC1| DC2| DC3| DC4 NL| SYN| ETB BS EM SS| ESC FS GS RS uUsS
1 10 1 12 13 14 0A 16 17 08 19 1A 1B 1C 1D 1E 1F
2
3
blank C { ~ ¢\ < (+ I
4 |20 5B 7B 5C 2E 3C 28 2B 7E
& | ! ! $ *) A
5 |26 5D 7D 21 24 2A 29 3B 7C
- / \ A Jd 0 Bl > ?
6 |2D 2F 40 5E 2C 25 5F 3E 3F
: # @ [} = "
7 3A 23 60 27 3D 22
a b c e f g h i
8 61 62 63 64 65 66 67 68 69
i k I m n o p q r
9 6A 6B 6C 6D 6E 6F 70 71 72
s t v w X y z
A 73 74 75 76 77 78 79 7A
B
A B C D E F G H I
C 41 42 43 44 45 46 47 48 49
J K L M N @] P Q R
D 4A 4B 4C 4D 4E 4F 50 51 52
S T \% W X Y A
E 53 54 55 56 57 58 59 5A
0 1 2 3 4 5 é 7 8 9 #
F |30 31 32 33 34 35 36 37 38 39 23

176

Appendix Q

APPEND!X R. MEMORY ALLOCATION

Figure R-1 shows how core storage areas are allocated in the Monitor system.

Protection type 00

Protection type 01 {

FORTRAN blank COMMON

TCB

User's temp stack

Library error table

Any data control sections

Page boundary

Name list
(2)
Tree tables
DCB name table
Segload DCB
(20)

Reference loading tables

(200)

Page boundary
Protection type 10

Page boundary
1 page
Page boundary

Page boundary

Pure Procedure

.

Static data

Debug tables

User's dynamic data area

File and label tape buffers

Background lower limit
Program lower limit

> (ROOT only)
Area 1

J [

>~ (ROOT only)
Area 2

Area 3

Program upper limit

Area 4

—t—Background upper limit

Figure R-1. Memory Allocation

Appendix R

APPENDIX S. MONITOR MODULES LISTED BY CATALOG NUMBER

704020 M:DISPLAY

This module is used to display specified Monitor information
on the OC device as requested by an unsolicited key-in.

704023 M:COPYFILE

This module copies opened output files to the checkpoint
device. Input files are also copied if the IN option has
been specified.

704031 BLOCK/DEBLOCK

The blocking/deblocking routines are designed to supple-
ment the Monitor for a given set of special packing/reading
operations on sequential files.

704032 SENSE SWITCH SIMULATION

Three routines are provided to allow for setting, resetting,
and testing the pseudo sense switches.

704058 M:CKDCB

This module contains the DCB for checkpoint use.

704363 FLOATING POINT INSTRUCTION SIMULATOR

This routine simulates the following instructions: FAS, FAL,
FSS, FSL, FMS, FML, FDS, and FDL.

704364 DECIMAL INSTRUCTION SIMULATOR

This routine simulates the following instructions: DL, DST,
DA, DS, DM, DD, DSA, DC, PACK, UNPK and EBS.

704365 BYTE-STRING INSTRUCTION SIMULATOR

This routine simulates the following instructions: MBS, CBS,
TBS, and TTBS.

704366 CONVERT INSTRUCTION SIMULATOR

This routine simulates the instructions CVA and CVS.

704368 1/O HANDLER INTERFACE

All handlers require this interface to initiate data transfer
and service device interrupts.

704369 MAGNETIC TAPE /O HANDLER

This handler performs all magnetic tape 1/O. The 1/0
HANDLER INTERFACE (Catalog No. 704368) is used and
must be present.

704370 LINE PRINTER 1/O HANDLER

This handler performs all line printer output. The 1/O
HANDLER INTERFACE (Catalog No. 704368) is used and

must be present.

178 Appendix S

704371 CARD READER 1/0 HANDLER

This handler performs all card reader input. The 1/0
HANDLER INTERFACE (Catalog No. 704368) is used and

must be present.

704372 CARD PUNCH 1/0O HANDLER

This handler performs all card punch output. The 1/O
HANDLER INTERFACE (Catalog No. 704368) is used and

must be present.

704373 TYPEWRITER 1/0 HANDLER

This handler performs all typewriter I/O. The 1/0
HANDLER INTERFACE (Catalog No. 704368) is used and
must be present.

704374 PAPER TAPE 1/0O HANDLER

This handler performs all paper tape [/O. The 1/0
HANDLER INTERFACE (Catalog No. 704368) is used and

must be present.

704708 M:RMESS

This module handles communication for the various overlay
segments in the Monitor.

704709 F:CFUD

This module contains DEFs for the various entries in the
Current File Use (CFU) table of the Monitor.

704710 M:OPN
This module is called to handle the M:OPEN CAL.
704711 M:OBSE

This module performs security evaluation, file name check-
ing and scanning the File Parameter Table when a DCB is
to be opened.

704712 M:OPNL

This module is called by M:OPN (Catalog No. 704710) to
open DCBs assigned to labeled tape.

704713 M:RDF

This module handles the reading of records from disc files.
704714 M:TYPR
This module handles the M:TYPE, M:PRINT, and M:KEYIN

CALs. Italso is called to type tape messages such as
IIMOUNT, ISCRATCH, !ISAVE, and ! IDISMOUNT.

704715 M:1ORT

This module receives M:READ and M:WRITE CALs. [t inter-
prets the parameter list and goes to the appropriate Read or
Write routine. It handles the reading of the C device by
checking for control commands. M:CHECK and M:MERC
CALs are also handled by this module.

704716 M:10D

This module processes all of the M:DEVICE CALs and the
M:SETDCB CAL.

704717 M:LBLT

This module handles the writing of labeled tape, it also per-
forms M:CVOL functions for labeled and unlabeled tapes.

It is called by M:CLS, Catalog No. 704722, to close DCBs
assigned to labeled or unlabeled tape.

704718 M:RDL

This module handles the reading of labeled tape. [f the
end-of-volume sentinel is encountered, the routine switches
to the next volume and reprocesses the Read request.

704719 M:WRTD

This module handles the writing of records for DCBs assigned
to output devices (except disc files and labeled tape).
704720 M:POS

This module handles M:WEOF, M:REW, M:PFIL, and
M:PRECORD CALs.

704721 M:WRTF

This module handles the writing of records to disc files, in-
cluding updating old records and writing new ones. It also

processes the M:DELETE CAL.

704722

This module closes DCBs. It waits for the completion of
outstanding 1/O associated with the DCB. If the DCB is
assigned to tape, M:LBLT (Catalog No. 704717) is called.
On other devices, an EOD is punched (if appropriate) and
the routine exits.

M:CLS

704723 M:DLT

This module handles the deletion of records after M:WRTF
(Catalog No. 704721) locates the record to be deleted.
704724 M:ROOT

This module of the overlay loader controls segment loading

and the calling of loader passes.

704725 M:INIT1

This module initializes the loader's temp stack, allocates
memory for M:PASS1, and reads the LOAD control command
table.

704726 M:PASS1

This module passes through the object modules, making a
table of all external REFs and DEFs, control sections, dum-
my sections, and forward references, and a table of expres-
sions defining them. It also performs the library search.

704727 M:INIT2

This module initializes M:PASS2 data and allocates memory
for M:PASS2.

704728 M:PASS?2

This module controls the sequencing and loading of the sec-
ond pass segments. It also reads the tables built by MPASST.

704729 M:ALLOCATE

This module assigns memory locations to all control sections
and dummy sections.

704730 M:EVLOAD

This module reads all object and library load modules, and
forms the memory image of the program and its relocation
dictionary.

704731 M:WRITESEG

This module writes the load module segments and builds the
necessary tables for the root of the load module. It also
contains the logic for the MODIFY control command.

704732 M:CCI

This module reads each control command, interprets the first
field of the command, and passes control to the appropriate
subroutine to process the command.

704733 M:DCBs

This module provides a complete set of Monitor DCBs for the
control command processor.

704734 M:ASSGR

This module processes the ASSIGN control command.
704735 M:CHARROUT

This module provides a set of routines to perform the syntax
checking and analysis of the control commands for the con-
trol command processor.

704736 M:MDLIMIT

This module contains the standard job limits.
704737 M:DEBUG

This module processes the INCL, PMD, PMDI, SNAP,
SNAPC, IF, AND, OR, and COUNT control commands.

Appendix $ 179

704738 M:LOADR

This module processes the LOAD control command.

704739 M:TAPEFCN

This program implements the control commands REW, WEOF,
and PFIL.

704740 M:TPECHST

This module contains character scan routines for use with

TAPEFCN and FILEMNGE.

704741 M:TREER

This module processes the TREE control command.

704742 M:TELSCPE

This module packs the LOAD control command table, tree
table, and the relocatable object module table (ROMT) into
one table and sorts the ROMT by segment.

704743 M:RUNR

This module processes the RUN control command.

704744 M:LDPRGM

This module calls the program loader to load user or processor
programs, sets memory protection on the program loaded, a!-
locates the specified number of file and index buffers, and
passes control to the loaded program.

704745 M:EXIT

This module processes the M:EXIT, M:ERR, and M:XXX
calls.

704746 M:KEYIN

This module process all unsolicited key~-ins.

704747 M:FILEMNGE

This module implements the FMGE control command.

704748 M:SITB

This module contains the tables used for Monitor overlay
loading.

704749 M:SIMPLEDBUG

This module is an optional simple debug package.

704750

This module contains all common constants and data used
by the Monitor.

M:TABLES

180 Appendix S

704751 M:IOQUEUE

This module accepts all 1/O requests, stores them into a
queue, and dispatches them to the appropriate 1/O handler.
In addition, it handles al! direct operator communication.

704752 M:ENTRY

This module contains common routines for all trap end inter-
rupt entry and exit functions.

704753 M:MONSEGLD

This module controls Monitor internal segment loading.

704754 M:CLOCKI

This module receives the clock interrupt signal and updates
the time and date. Any active timers are also checked and
updated.

704755 M:TOPRT

This module defines all segment numbers and entry points
for the nonsymbiont version.

704756 M:SNAP

This module processes debug procedures M:SNAP, M:SNAPC,
M:IF, M:AND, M:OR, and M:COUNT. The desired snaps

are given on the DO device.

704756 M:DUMP

This module accepts requests to display the contents of reg-
isters or memory on the DO device.

704758 M:CALPROC

This module decodes all CAL1, 1 entries to the Monitor and
gives control to the proper routines.

704759 M:MTRAP

This module implements user service procedures M:TRAP,
M:STRAP, M:TRTN, M:INT, M:STIMER, and M:TTIMER.

704760 M:TIME

This module gets the current time of day and date and returns
them in printable form.

704761

This module checkpoints the specified program and all spec-
ified files.

M:CHKPT

704762 M:IOREC

This module performs the recovery specified on direct device
key=-ins.

704763 M:SEGLD

This module reads in segments requested by M:SEGLD pro-
cedures or implicitly by reference loading.

704764 M:AWR

This module is called by IOQUEUE to recognize labeled
tapes (automatic volume recognition).

704765 M:ALTCP

This module decodes all CAL1 service requests except
CALI, 1.

704766 M:BUFGRAN

This module performs the following functions:

1. Obtains and/or releases symbiont-cooperative core
buffers, symbiont-cooperative file context buffers,
Monitor buffers, file index buffers, and file blocking
buffers.

2. Obtains and/or releases symbiont-cooperative disc
granules, foreground disc granules, and background
disc granules.

704767 M:MEMALOC

This module of subroutines performs the following functions:
1. Gets or frees dynamic program data pages.

2. Gets or frees program COMMON pages.

3. Gets the address limits of COMMON pages.

4. Sets memory protection for core page(s).

704773 M:DISCIO

This module is the disc handler.

704776 M:PRGMLDR

This module reads a load module, relocates it, if necessary,
builds any necessary debug tables, and merges ASSIGN
information with the load module's DCBs.

704851 7-TRACK MAGNETIC TAPE I/O HANDLER

This handler provides the use of all 7-track options in con-
junction with the MAGNETIC TAPE /O HANDLE, (Cat-
alog No. 704369). In addition, it provides a simulated
read-reverse capability.

704852 FORTRAN BCD CONVERSION SUBROUTINE

The subroutine provides conversion from FORTRAN BCD to
EBCDIC and EBCDIC to FORTRAN BCD. It is used in con-
junction with card reader, card punch, and 7-track tape
handlers.

704866 M:OPNT

This module opens DCBs assigned to unlabeled magnetic tape.

704867 M:PASSISG

This module accepts control cards that will allow the selec-
tion and updating of elements on the master installation
tape. A new installation tape can be created if specified.
Control commands accepted are SELECT, UPDATE, and
SYSWRT.

704868 M:MONITOR2

This module accepts the :MONITOR control command via
card input and uses the parameters specified to generate
the load module M:CPU. [f some parameters are not speci-
fied, default values are used.

704869 M:FORMLIB2

This module uses the output from the DLIB module and gen-
erates the inputs to the loader program. A load module is
generated which contains all ROMs that make up the public
library. The loader is called again to form many load mod-
ules that make up the system library.

704870 M:DLIB2

This module builds a list of ROM names to be passed to the
FORMLIB module. The ROM names are taken from the
:DLIB card, and the list contains ROM names that will make
up the public and system libraries.

704871 M:RESERVE

This module accepts data from the RESERVE control card to
generate load modules M:FCOM and M:RESF.

704872 M:RJITGEN

This module is called on by either M:RESERVE or M:SYSINT2
to form two job information tables. The tables are written
to disc under the load module names M:RJIT and M:NRJIT.
704873 M:DEFDCBS

This module contains the DCBs required for the DEF proces-
sor of System Generation.

704874 M:FMGEDCBS

This module contains the DCBs used by FILEMNGE.

704875 M:DEF

This module writes a boot record and a bootable version of
the Monitor formed by M:PASS2.

704876 M:TMTOPO

This module works in conjunction with M:DEF to form a fape
from the system generated by M:ASS2. It copies all modules
from the current account to PO.

704877 M:WRITEMON

This module is used with M:PASS1 to write a boot record and
a bootable System Generation system to tape.

Appendix S 181

704878 M:BITOTM

This module is used to initialize a system. It reads all load
modules from Bl and transfers them to the system account.
704879 M:10QS

This module is similar to Catalog No. 704751, except that
it also handles symbiont communication.

704880 M:TOPRTS
This module defines all of the segment numbers and entry
points used for overlaying the Monitor.

704881 M:TFILE

This module puts the desired file name into the IDT file, to
be released at the end of the job.

704882 M:DUMINIT

This module is included to provide a DEF to delimit the
area of the CLS segment dedicated to initialization.
704883 M:DUMMYCCL

This module is effectively a dummy that replaces the co-op
CCLOSE in a nonsymbiont system.

704884 M:TOP

This module provides an upper delimiter for the initializa-
tion area of the CLS segment.

704885 M:TABLESS

This module contains all commen data and tables for the
symbiont version of the Monitor.

704886 M:ENTRYS

This module contains all standard entry and exit logic for
trap and interrupt processing.

704887 M:SYSCCIO

This module contains the pass-0 control command interpreter
vector. The control commands accepted are :GENCHN,
:GENOP, :GENDC, :GENDCB, :GENSZ, :GENMD,
:GENDEF, :GENEXP, and :GENDICT.

704888 M:SYSPHAOQ

This module contains the processors that syntactically pro-
cess the control commands :GENCHN, :GENOP, :GENSZ,
:GENDC, and :GENDCB.

704889 M:SYSPHBO

This module contains the processors that syntactically pro-
cess the control commands :GENMD, :GENDEF, :GENEXP,
and :GENDICT.

182 Appendix S

704890 M:SYSPHCO

This module copies all of the load modules from the M:BI
file to the M:TM file. It then performs an update of these
load modules with the designated control commands
(:GENMD, :GENDEF, :GENEXP, and :GENDICT) as

directives.

704891 M:SYSCHRO

This module performs a requested character string retrieval
and anclysis. The character string source is found in the
specified contro! command buffer.

704892 M:SYSDCBO

This module defines the DCBs required by System Generation
pass=0.
704893 M:SYSSDEV2

This module processes any SDEVICE control commands and
will generate the load module M:SDEV.

704894 M:LNKLDTRC

This module determines whether a CAL is for M:LINK or
M:LDTRC. For an M:LINK CAL, the calling routine and
all of its necessary information are swapped out by the
M:CK DCB. For both M:LINK and M:LDTRC CALs, the
called overlay segment is loaded and entered at its entry
point. In some cases an M:LDTRC CAL may result in the
return to a previously swapped-out routine.

704895 M:CKPTDCBM

This routine is used to pack the DCBs that are open when a
checkpoint is requested. Information concerning the DCBs
is also saved.

704896 M:SYSCCI2

This module contains the pass-2 character routines and a
vector that identifies a control command type and then
loads the appropriate overlay segment.

704897 M:SYSDVLB2

This module processes the DEVICE and STDLB control com~
mands and generates the load module IOTABLE.

704898 M:SYSMOD

This module performs the actual modification to a load
module element as specified by a MODIFY control com-
mand directive.

704899 M:SYSCCLD2

This module sets up a call to load an overlay segment for
the second pass of System Generation.

704900 M:SYSLBLD2

This module calls CCLOAD to load either the DLIB or
FORMLIB processors.

704901 M:CCITBLS

This module contains the constants and tables used by the
control command processor.

704902 M:CC1SUBR

This module contains a set of closed subroutines to be used
by the control command processor.

704903 M:CCILIST

This module lists all control commands and error messages
for the control command processor.

704904 M:CCIOPNF

This module is used to open a specified Monitor DCB to a
specified file.

704905 M:JOBR

This module processes JOB and FIN control commands.

704906 M:LIMR

This module processes the LIMIT, STDLB, MESSAGE, TITLE,
POOL, and SWITCH control commands.

704907 M:WASGPL

This module writes the information from the ASSIGN con-
trol commands into a system file on disc.

704908 M:READBI

This module reads the binary information from the ASSIGNed
BI device whenthe BI option is specified on the LOAD con-
trol command, and writes the information into the system
BI file.

704909 M:ENDJOB

This module performs the end-of-job functions of releasing
all temporary system files and temporary user files, displays
the accounting information, and intializes the Job Infor-
mation Table for the next job.

704910 M:TYPABORT

This module lists the abort messages on the operator's con-
sole and the listing log device.

704911 M:C

This module defines the Data Control Block (DCB) for the
control command input.

704912 M:0C

This module defines the Data Control Block (DCB) for the
operator's console.

704913 M:LO

This module defines the Data Control Block (DCB) for the
listing output.

704914 M:LL

This module defines the Data Control Block (DCB) for the
listing log.
704915 M:DO

This module defines the Data Control Block (DCB) for the
diagnostic output.

704916 M:PO

This module defines the Data Control Block (DCB) for the
punch output.

704917 M:BO

This module defines the Data Control Block (DCB) for the
binary output.

704918 M:LI

This module defines the Data Control Block (DCB) for the
library input.

704919 M:SI

This module defines the Data Control Block (DCB) for the
source input.

704920 M:BI

This module defines the Data Control Block (DCB) for the
binary input.

704921 M:SL

This module defines the Data Control Block (DCB) for the
system log.

704922 M:SO

This module defines the Data Control Block (DCB) for the
source output.

704923 M:CI

This module defines the Data Control Block (DCB) for the

compressed input.

704924 M:CO
This module defines the Data Control Block (DCB) for the
compressed output.

Appendix S 183

704925 M:AL

This module defines the Data Control Block (DCB) for the
accounting log.

704926 M:El

This module defines the Data Control Block (DCB) for the
element input.

704927 M:EO

This module defines the Data Control Block (DCB) for the
element output.

704928 M:SYMSUBR

This module is composed of a group of small subroutines that
perform computational functions common to more than one
subroutine in symbiont-cooperative control.

704929 M:SYMCOM

This subroutine module allows the operator to communicate
with any symbiont via a key=in.

704930 M:SACT

This subroutine module loads from disc and/or initiates or
reactivates symbionts queued by device in the SYMTAB
table by SYMBOM or by any other means (symbiont queued
itself up, etc.).

704931 M:SUSPTERM

This module allows a symbiont to suspend or terminate oper-
ation on the appropriate device and types an appropriate
message on the console typewriter.

704932 M:COOPRES

This module determines whether a peripheral device 1/0
request should be queued directly (nonsymbiont device re-
quest) or indirectly, via M:COPNRES (symbiont device
request).

704933 M:COPNRES

This module obtains card images written by the card reader
symbiont, or buffers card images, printer images, or type-
writer images for the output symbiont.

704934 M:SYMCR
This module is the card reader symbiont.

704935 M:SYMPPRTY

This module is the output symbiont.
704936 M:ADDF

This module adds a specified input symbiont file or output
cooperative file to the file directory (SYMFILE).

184 Appendix S

704937 M:GETF

This module is used to obtain the proper input device file
for the input cooperative or the proper output device file
for the output symbiont.

704938 M:REQDC
This module performs the following functions:
1. Obtains a disc granule for a requesting input symbiont.

2. Enables an output symbiont to release a disc granule at
1/O end action.

3. Obtains a core buffer for a requesting symbiont.

4. Enables a symbiont to release a core buffer at 1/O end
action.

704939 M:DCBPASS]
This module is used by M:PASST and consists of DCB tables.
704940 M:SYSDCB2

This module provides the DCB tables for the use by the
M:PASS2 processor.

704941 M:GO

This module defines the Data Control Block (DCB) for GO-
file use.

704957 M:DLIMIT2

This module builds the load module M:DLIMIT containing
system default limits generated from information taken from
the :DLIMIT control command.

704958 M:SYSINT2

This module processes the INTS and INTR control commands
and generates load modules M:INT and M:INTLOC.
704959 M:SGLDR

This is a modified version of Catalog No. 704724 for use
with System Generation. It controls segment loading and
the calling of loader passes.

704963 M:DELPRI

This module accepts unsolicited key-ins to delete files or
change the priority of files in the symbiont file directory.

704964 M:SRCHF

This module is used to search for and change item keys in
the symbiont file directory.

704966 M:ARDL

This module controls key Read and Read Reverse operations
on labeled tape.

704967 M:CLOCK

This module accepts data from the :TIME control card.
Two tables are generated, one contains the names taken
from the card and the other has zeroed data cells, The
tables are written to disc under the load module name
M:TIME.

704968 M:LNKIO

This module forms a DCB in the Monitor temp stack, opens,
reads or writes, and closes a file when the M:LINK or
M:LDTRC procedure is executed.

704969 M:INTRT

This module handles all external interrupts connected cen-
trally to a foreground task and restores the Monitor overlay
environment when a resident foreground task exits.

704970 M:LOADRT

This module loads a foreground task and connects it to an
external interrupt.

704971 M:EXITF

This module handles all normal and abnormal exits from a
foreground task.

704972 M:FORCAL

This module processes the foreground call M: TRIGGER,
M:DISABLE, M:ENABLE, M:DISARM, M:ARM, M:DCAL
M:CAL, M:SLAVE, M:MASTER, M:TERM, M:SBACK,
M:=RBACK, M:SXC, and M:RXC.

4

704973 M:LNKRT

This module performs the 1/O rundown for M:LINK and re-
leases all programs swapped by M:LINK calls.

Appendix S 185

APPENDIX T. LOADER CONSTRUCTED DCB’S AND SYSTEM DCB’S

The overlay loader constructs a DCB corresponding to all
external REFs with names beginning either with "F:" or "M:"
These 48-word DCBs contain the default assignment to a
device, an operational label, a default record size, and a
default function, if the DCB name is recognized. These
DCBs also contain space for a 3-word file name, an account
number, a password, 3 input serial numbers and 3 output
serial numbers. If the user requires a DCB with room for
additional information, he may either construct the DCB
himself with the M:DCB procedure or request it explicitly
from the system library by including the DCB name as an
element file with account no. ":SYS" in his !LOAD,
IOVERLAY, or !OLAY card.

The recognized DCB nomes and their defaults are listed
below.

DCB Record Operational
Name Function Byte Size Label

M:C Input 120 C
M:0C Input/output 85 OoC
M:LO Output 132 LO
M:LL Output 132 LL
M:DO Output 132 DO
M:PO Output 80 PO
M:BO Output 120 BO
M:LI Input 120 L

186 Appendix T

DCB

Name

M:SI
M:BI
M:SL
M:SO
M:CI
M:CO
M:AL
M:EI
M:EO
M:GO
F:101
F:102
F:103
F:104
F:105
F:106
F:108

Record Operational
Function Byte Size Label
Input 80 SI
Input 120 BI
Output 132 SL
Output 80 SO
Input 120 Cl
Output 120 cO
Output 80 AL
Input 120 El
Output 120 EO
Output 120 NO
Input 0 ocC
Output 0 oC
Input 0 PR
Output 0 PP
Input 80 St
Output 120 BO
Qutput 132 LO

Only the DCBs whose names begin with "M:" are in the
system library.

INDEX

:ABS installation control command, 91, 94, 97, 101, 102

:DEVICE installation control command, 84, 91, 94, 95, 100

:DLIB installation control command, 94, 103

:DLIMIT installation control command, 91, 94, 97, 102

:GENCHN installation control command, 92, 105

:GENDC installation control command, 105, 106

:GENDCB installation control command, 105, 106

:GENDEF installation control command, 105, 107, 109

:GENDICT installation control command, 105, 107, 109

:GENEXP installation control command, 105, 107, 109

:GENMD installation control command, 105, 107, 109

:GENOP installation control command, 105

:GENSZ installation control command, 105, 106

:INTR command specifications for COC, 165

ANTR installation control command, 84, 86, 87, 91, 94, 103

:(INTS installation control command, 84, 85, 91, 94, 97, 103

:LABEL installation control command, 91, 93, 98

:MONITOR installation control command, 91, 94, 96

:RESERVE command specifications for COC, 165

:RESERVE installation control command, 84, 91, 94, 96, 103

:SDEVICE installation control command, 91, 94, 95, 101

:SELECT installation control command, 91, 93, 94

:STDLB installation control command, 91, 94, 95, 100

:SYSRT account number, 86, 166

:SYSWRT installation control command, 91, 94

:TIME installation control command, 84, 86, 88, 91, 94,
97, 103, 104

:UPDATE installation control command, 91, 93, 94, 98

A

abnormal address, 64, 66

abnormal conditions, 59, 62, 67, 69
abnormal-given flag, 58

abort return, 32

abort key-in, 8, 32

absolute address, 116

absolute file area, 97

absolute loader, viii

absolute processors, 110

absolute scratch files, 110

access, 176

access code, 50, 89, 113, 153
access control, 43

account, 88

account number, 13, 17, 54, 61, 106, 127, 132
account number displacement, 60
accounting, 2, é

accounting file, 14, 33

accounting log, 14, 33, 38

add absolute section, 116, 117

add constant, 116, 117

add value of declaration, 116, 117
add value of forward reference, 118
addend value, viii, 24, 25, 27
address field, 119

address resolution, 116, 118, 119
address resolution code, viii, 117
alternate tape, 70

alternative options, 12

AND control command, 8, 12, 25, 27, 28, 29, 77

arm interrupt, 48
assembly time, 6

ASSIGN control command, 7, 9, 12, 16, 17, 18, 55, 92

assignment-type indicator, 58
asterisk, 66

asterisk card, 105

automatic volume recognition, 36

background, 6, 10, 13, 14, 50, 53, 84, 88, 89, 94, 151

background area, viii

background program, viii

base name, 127

batch file indexing, 97

batch job, 99

batch processing, 1

BCD control command, 8, 13, 29, 66
beginning volume number, 17
beginning-of-file sentinel, 131, 132
bias, 87, 158

BIN control command, 8, 13, 29, 66
binary deck, 77

binary information, 29

binary input, viii, 14, 37

binary mode, 74

binary output, 14, 38

binary record, 67

blank, 31

blanks, 12

block count, 42

block size, 143

blocking, 84

blocking buffer, 69, 127, 143
blocking buffers, 97
blocking/deblocking, 143

braces, 12

brackets, 12

break character, 167

break signal, 164

buffer, 62

buffer and context block parameters, 11
buffer area, 14

buffers, 96, 97

byte count, 137, 140

byte displacement, 66

C

C key-in, 88
CAL machine instructions, 50
CAL routine, 50

Index

187

CAL, 9, 39, 50, 51, 79 control byte, 113

CAL3, 84 control byte codes, 126

CAL4, 84 control command, viii, 12

card punch handler, unbuffered, 138 control command interpreter, viii, 6, 158
card punch, 34 control command interpreter tree structure, 160
card reader, 34 control commands, 6

carriage return, 140, 164 AND, 8, 12, 25, 27, 28, 29, 77
carriage return characters, 67 ASSIGN, 7, 9, 12, 16, 17, 18, 55, 92
cataloging, 4 BCD, 8, 13, 29, 66

change device mode or record size, 77 BIN, 8, 13, 29, 66

change expression resolution, 117, 118 COUNT, 8, 12, 27, 28, 77

change of form, 76 DATA, 8, 13, 29

change output form, 76 EOD, 8, 13, 29, 81, 93

channel designation codes, 15 FIN, 8, 9, 10, 13, 14, 29, 32, 48
character oriented communications routines, 164 FMGE, 7, 12, 19

characters per line, 95 IF, 8, 12, 25, 27, 29, 77

check correspondence of DCB assignments, 79 INCL, 7, 12, 23

check 1/O completion, 64 JOB, 7, 9, 10, 12, 13, 14, 48
checkpoint, 2, 6, 10, 42, 84 LIMIT, 7, 12, 13

checkpoint job, 42 LOAD, 7, 12, 16, 19, 20, 23, 24, 79, 86,
checkpoint storage, 95 87, 158

checkpointed job, viii MESSAGE, 7, 12, 14, 15

checksum, 112 METASYM, 12

classified data, 54 MODIFY, 8, 12, 24

clock interrupt, 48, 49, 51 OLAY, 23, 92

clock interrupt service routine, 86, 87 OR, 8, 12, 25, 27, 28, 29, 77
clock interrupts, 89 OVERLAY, 6, 7, 12, 16, 19, 22, 23, 24, 26, 91,
close a file, 63 157, 158

close cuirent input buffer, 144 PFIL, 8, 13, 30

close volume, 70 PMD, 8, 9, 12, 25, 26

closed volumes, 152 POOL, 12, 13

COBOL, 3, 12, 53 REW, 8, 13, 30

COC routines, 164 RUN, 7, 12, 20, 24, 25, 26, 86, 87, 88
colon, 91 SNAP, 8, 12, 25, 26, 27, 77
command list, 137, 138, 139, 140, 142 SNAPC, 8, 12, 25, 27, 29, 77
command terminator, 12 STDLB, 7, 12, 14

commas, 12 TITLE, 7, 12, 16

comment characters, 27 TREE, 7, 12, 22, 23, 92

comment field, 12 WEOF, 8, 13, 30

common data area, 84 control function, viii

common dynamic storage, 40, 41 control input, 14, 37

common page, viii, 9 control key=in, viii, 12

completion-type indicator, 64 control message, viii, 12

compressed deck update, 77 control section, 113, 114, 118
compressed input, 14, 37 control section base, 116

compressed output, 14, 38 control word, 60

compressed symbolic deck, 77 cooperative, viii, 6, 146

conditional dump, 27 cooperative link address, 59

conditional dumps, 25 core allocation, 100, 101

conditional snapshot, 27, 28 core memory size, 106

confidential data, 4 core storage, 96

connect CAL, 50 core storage parameters, 10

connect console interrupt, 46 COUNT control command, 8, 12, 27, 28, 77
consecutive files on disc, 127 create a Data Control Block, 53
consecutive files on tape, 127 creation date, 130

console interpreter, viii, 6 current block, 60

console interrupt, 9, 33, 46, 47 current buffer displacement, 60

console messages, 6 current date, 10, 43

constant, 113 current device address, 59

constants, 116 current key, 60

context blocks, 96 current record, 60

context buffer, 146 current volume, 9

continuation indicator, 12 cursor movements, 165

188 Index

D key-in, 8, 31

data block size, 59

data blocks, 29

data buffer, 14

Data Control Block, viii, 9, 10, 16
data control blocks, 53

data control sections, 177

data deck, 29

data record manipulation, 65
DATA control command, 8, 13, 29

date, 43
DATE key~-in, 8, 31
DCB name, 54

DCB name table, 177

DCB, 16, 17, 34, 42, 53, 54, 55, 56, 57, 58, 61, 62,
64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 90,
107, 130, 148, 152, 162, 163, 186

debug commands, 13, 29

debug control commands, 25

debug procedures, 77

debug routines, 6

debug tables, 177

declaration, viii, 118, 119

declaration name number, 112, 113

declaration number, viii, 116, 119

declarations, 113

declare a temporary file, 65

declare dummy section, 114

declare external definition name, 114

declare non-standard control section, 114

declare primary external reference name, 114

declare secondary external reference name, 115

declare standard control section, 113

dedicated memory, viii

dedicated register block, 86

dedication, 84

DEF processor, 98

DEF installation control command, 92, 98

default limits, 97

define field, 119

define start, 116

definition, viii

definition of terms, viii

definitions, 115

delete a data record, 68

DELETE key=~in, 8, 32

device assignment, 1

device code, 100

device controller number, 15

device designation codes, 15

device number, 15

device tables, 135

device-direct-format indicator, 58

diagnostic output, 14, 38

direct access, 128

direct access disc storage, 81

direct data records, 145

direct-access disc storage, 95

direct-access files, 54

direction-moved flag, 58

disable interrupt, 51

disarm interrupt, 49

disc allocation, 84

disc bootstrap, 84, 92, 98
disc definition, 100

disc file, 16, 77

disc files, 127, 130

disc management routine, 2
disc number, 95

disc organization, 7

disc storage parameters, 10
disconnect CAL, 51
discontinued job, 32
DISPLAY key-in, 8, 32
dummy section, viii
dynamic debug commands, 25, 27

E

E key-in, 8, 32

EBCDIC input, 29

EBCDIC mode, 74

EBCDIC record, 67

ECB, 45

El device, 81

elapsed time, 2

element file, viii, 14, 19, 20, 154
element input, 14, 37

element output, 14, 38

enable interrupt, 51

end record, viii

END installation control command, 105
end-of-file sentinel, 132
end-of-reel sentinel, 133
end-of-volume sentinel, 133
ending-operation indicator, 58
enter master mode, 51

enter slave mode, 52

EOD control command, 8, 13, 29, 81, 93
error address, 64

error and abnormal returns, 148
error card, viii, 34, 145

error conditions, 59, 62, 67

error flag, 34

error recovery procedures, 145
error return, 32

error service routine, 135

error severity level, 20, 112, 120
error severity level code, viii
error stacker, 145

ERROR key-in, 8, 32

Event Control Block, viii, 45
event-given flag, 58

excess bytes in a physical record, 113
exclamation character, 29
exclamation marks, 31

exclusive use, 66, 127, 130
exclusive use buffer, 60

exclusive use of disc files, 130
exclusive use of records and files, 129
exclusive use of tape files, 130
exclusive-use flag, 58

execution error severity level, 24
execution time, 13, 33, 39

Index

189

exit control, 89

exit from trap or timer routine, 47
exit status, 50

exits to the Monitor, 47

expiration date, 130

expression, viii, 115,116, 117
expression accumulator, viii, 117,118
expression end, 118

expression evaluation, 115,116
expression mode, 116

external definition,viii,22,24,25,27,29,85,112,114-116

external definition name declaration, 114
external definitions, 113

external interrupt, 48,49,51,84
external interrupts, 97

external reference, viii, 22,42, 112

F

feed check error, 34
field definition, 116
field delimiter, 101
field location constant, 119, 120
field terminator, 102
file access, 127

file area, 84

file attributes, 163

file blocking buffers, 84
file control, 127

file function, 17

foreground, 6, 10, 25, 48, 49, 50, 51, 53, 83, 84, 86,

87, 88, 89, 94, 96, 97, 151, 157, 165, 166
foreground accounts, 89
foreground batch, 89
foreground common, 84
foreground DCB name, 16
foreground file directory, 89
foreground files, 89
foreground load modules, 86
foreground logical devices, 94
foreground operational label, 94
foreground operational labels, 14
foreground procedures, 48
foreground program, ix
foreground programs, 6
foreground restrictions, 89
foreground storage, 95
foreground tasks, 96
format control, 139
format control codes, 18
formats for external media, 144
formatted data records, 144
FORTRAN BCD conversion, 74, 157
FORTRAN, 3, 5, 12, 21, 53, 114
FORTRAN-BCD flag, 58

forward reference, 111, 112, 113, 115, 116, 118, 119

forward reference definition, 115
forward reference definition and hold, 115
forward reference name number, 113

i;:e fu;cfiinfr;\ode,sifi forward reference number, ix, 111, 112, 116, 119
ffle n de" Y Ie“]' . FPT, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
!1e Index pool, 52, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,

file indexing, 13

file information on tape, 132

file input, 59

file maintenance procedures, 53
file management, 4,13, 14,19,102
file management routine, 6

file management routines, ix

file manipulation, 69

file mode, 55

file mode function, 58,68

file modes, 17,54

file name, 16

file name displacement, 60

file option, 59

file organization, 7,54,62,127,132
file output, 59

file parameters, 59

file positioning, 61

file queue, 32

file-access indicator, 59
file-closed flag, 57

file-closing flag, 57

file-list pointer, 59
file-organization indicator, 59
files maintained by symbionts, 97
FIN control command, 8, 9,10, 13, 14,29, 32,48
first available file track, 106
fixed-length parameters, 60,63
flag, 27,28,29

FMGE control command, 7,12,19
Fname, m key-in, 8

190 Index

73, 74, 75, 76, 77, 78, 79, 148
free common pages, 41
free n pages, 42
function codes, 136 :
Function Parameter Table (see also "FPT"), ix, 39

F4:COM, 87

G

general register, 62

general registers, 32, 40, 46, 47, 53, 87, 134, 151
general-purpose procedures, 39

get common pages, 41

get limits, 41

get n pages, 41

give time and date, 43

GO file, ix, 20,83,176

granule, ix

handler interface routines, 136, 137
handler interface subroutines, 138
handler's-byte-displacement indicator, 58
handlers, 84, 94,100, 134,157

hard copy control characters, 165

header, 56,60,73,75

I

I key-in, 88,89

1/O assignments, 37

1/O control routines, 6
I/O device parameters, 11
I/O device type codes, 15

1/O errors, 78 interface subroutines, 135

[/O executive, 136 interprogram linkages, 113

1/O handlers, 134, 137 interrupt, 48, 51, 52, 83, 84, 85, 86, 87, 88, 89, 97, 165
1/O key-in, 34 interrupt flags, 135

1/O overlap, 148 interrupt location, 25

1/0O priority code, 59 interrupt service routine, 86, 87, 89, 97, 135
1/O procedures, 53 interval time, 10, 44

1/O supervisor, ix, 6 intra=volume sentinel, 70

1/0 time, 33 invalid key~-word, 101

identification sentinel, 131 invalid line number, 167

idle state, ix, 32 invalid line numbers, 164

IF control command, 8, 12, 25, 27, 29, 77 invalid location or value, 109

illegal character string, 98 invalid request, 167

illegal characters, 165 invalid terminator, 103

illegal name, 98
image-type flag, 60

INCL control command, 7, 12, 23 J

incorrect delimiter, 98

index buffer, 14 job execution time, 96
indexing, 28 job information table, ix, 90
indirect addressing, 39 job limit default parameters, 11
initialization modules, 86 job organization, 5

input and output mode, 17, 61 job queue, 5

input control commands, 29 job scheduler, 2, 5

input file, 62 job stack, 2

input files, 42, 128, 130, 144 job time, 33

input mode, 17, 61, 130 JOB control command, 7, 9, 10, 12, 13, 14, 48

input tapes, 7, 152
installation communication, 37

installation control command, ix K
installation control commands, 91
:ABS, 91, 94, 97, 101, 102 key, 7, 42, 59, 60, 66, 67, 68, 127, 128, 176
:DEVICE, 84, 91, 94, 95, 100 key index, 7
:DLIB, 94, 103 key-ins, ix, 31, 32, 33, 45, 73, 88
:DLIMIT, 91, 94, 97, 102 D, 8, 31
:GEMCHN, 92, 105 DATE, 8, 31
:GENDC, 105, 106 DELETE, 8, 32
:GENDCB, 105, 106 DISPLAY, 8, 32
:GENDEF, 105, 107, 109 E, 8, 32
:GENDICT, 105, 107, 109 ERROR, 8
:GENEXP, 105, 107, 109 Frname, m, 8
:GENMD, 105, 107, 109 I, 88, 89
:GENOP, 105 INT, 8, 33
:GENSZ, 105, 106 L, 88
:(INTR, 84, 86, 87, 91, 94, 97, 103 MOUNT, 8
:INTS, 84, 85, 91, 94, 97, 103 PRIOCRITY, 8, 31
:LABEL, 91, 93, 98 REQUEST, 8, 31
:MONITOR, 91, 94, 96 S, 8, 32, 88
:RESERVE, 84, 91, 94, 96, 103 SCRATCH, 8
:SDEVICE, 91, 94, 95, 101 START, 8, 32
:SELECT, 91, 93, 94 SWITCH, 8, 12, 24, 33
:STDLB, 91, 94, 95, 100 SYST, 8
:SYSWRT, 91, 94 T, 8, 31
:TIME, 84, 86, 88, 91, 94, 97, 103, 104 TIME, 8, 31, 87
:UPDATE, 91, 93, 94, 98 W, 8, 32
DEF, 92, 98 WAIT, 8, 32
END, 105 WRITELOG, 8, 33
installation library, 91 X, 8, 32, 88
insufficient core storage, 101, 102, 103 keyboard displays, 164
insufficient parameters, 17 keyboard typewriter handler, 137
INT key=-in, 8, 33 keyed files, 66, 67, 127, 128

inter-volume mark, 64 keyed files and consecutive files on disc, 128

Index 191

keyed files and consecutive files on tape, 129 logical page, 16

keyed files on disc, 127 logical record, 112
keyed files on tape, 127 logical record size, 74, 143
keyword, ix, 12, 16, 109 logical system device, 14, 16

L M

L key=-in, 88 M:AND procedure call, 9, 10, 78
label block, 70 M:ARM, 9, 48, 86, 87, 88, 89
label sentinel, 131 M:CAL procedure call, 9, 50, 88
labeled tape, 16, 42, 63, 69, 70, 84, 131 M:CHECK procedure call, 9, 64
labeled tape format, 129 M:CHKPT procedure call, 9, 42, 89, 166
labeled tapes, 130, 152 M:CLOSE procedure call, 9, 17, 63
language processors, 6 M:COUNT procedure call, 9, 10, 78
language translators, 3 M:CVOL procedure call, 9, 70
leader, 140 M:DCAL procedure call, 9, 51, 88
library error package, 161 M:DCB procedure call, 9, 17, 53, 54, 55
library error stack, 21 M:DELREC procedure call, 10, 68
library error table, 21, 177 M:DEVICE procedure call, 9, 71
library input, ix M:DISABLE procedure call, 9, 51, 88
library load module, ix, 154 M:DISARM procedure call, 9, 49, 86, 87, 88
library load modules, 20 M:ENABLE procedure call, 9, 51, 88
library routines, 6, 79 M:ERR procedure call, 9, 48
LIMIT control command, 7, 12, 13 M:EXIT procedure call, 9, 48
line control tables, 167 M:FCP procedure call, 9, 41, 89, 166
line feed, 164 M:FP proceduré call, 9, 42, 89, 166
line printer, 35 M:GCP procedure call, 9, 25, 41, 89, 166
line printer handler, buffered, 138 M:GL procedure call, 9, 41, 89, 166
line spacing, 72 M:GP procedure call, 9, 25, 41, 89, 166
link to a load module, 40 M:IF procedure call, 9, 10, 77
listing log, 9, 12, 14, 38, 45 M:INT procedure call, 9, 46, 89
listing output, 14, 38 M:KEYIN procedure call, 9, 45
listing tabs, 60, 71 M:LDTRC procedure call, 9, 40, 89, 166
load absolute, 118 M:LINK procedure call, 9, 40, 89, 166
load and transfer control, 40 M:MASTER procedure cali, 9, 51, 89
load bias, ix, 20 M:MERC procedure call, 9, 78, 79
load information, ix) M:OPEN procedure call, 9, 16, 17, 54, 55, 61, 163
load item, ix, 112, 113 M:OR procedure call, 9, 10, 78
load location counter, ix, 119 M:PFIL procedure call, 9, 69
load map, ix, 87, 153 M:PRECORD procedure call, 9, 69
load module, ix, 6, 9, 19, 20, 21, 22, 24, 25, 40, 54, M:PRINT procedure call, 9, 45

81, 86, 87, 115, 153 M:RBACK procedure call, 9, 50, 89
load module name, 86 M:READ procedure call, 10, 65, 144
load modules, 6 M:RELREC procedure call, 9, 68
load origin, 116 M:RESTART procedure call, 10, 42, 89, 166
load overlay segment, 39 M:REW procedure call, 10, 70
load relocatable, 119 M:RXC procedure call, 10, 50, 89
LOAD control command, 7, 12, 16, 19, 20, 22, 23, 24, M:SBACK procedure call, 10, 50, 89

79, 86, 87, 158 M:SEGLD procedure call, 10, 39
load-location counter, 115 M:SETDCB procedure call, 10, 64
loader, 115, 116, 119, 157 M:SLAVE procedure call, 10, 52, 88
loader constructed DCBs, 186 M:SMPRT procedure call, 10, 43, 89, 166
loader error messages, 154 M:SNAP procedure call, 10, 77
loader tree structure, 160 M:SNAPC procedure cali, 10, 77
loader, 3 M:STIMER procedure call, 10, 44, 89
loader's symbol table, 116 M:STRAP procedure call, 10, 47, 89
loading, 118 M:SXC procedure call, 10, 49, 89
local storage, 168 M:TERM procedure call, 10, 52, 88, 89
lock and key settings, 151 M:TFILE procedure call, 10, 65
lock condition, 88 M:TIME procedure call, 10, 43
logical device, ix M:TRAP procedure call, 10, 46, 89
logical device name, 16 M:TRIGGER procedure call, 10, 48, 88

192 Index

M:TRTN procedure call, 10, 47, 89
MTRUNC procedure call, 10, 69
M:TTIMER procedure call, 10, 44, 89
M:TYPE procedure call, 10, 44
M:WEOF procedure call, 10, 70
M:WRITE procedure call, 10, 67
M:XXX procedure call, 10, 48, 88
machine environment, 50, 87
machine-language code, 111
magnetic disc handler, 141

magnetic tape, 35

magnetic tape file, 16

magnetic tape files, 30

magnetic tape handler, 140

map listing, 11

maskable traps, 46

master directory, 127

master file index, 60

master index displacement, 60

master index of files, 127

master mode, 6, 86, 87, 89, 97, 165
master password, 11

master system fape, 91, 94

maximum execution time, 13
maximum number of recovery tries, 55, 62
maximum record length, 17, 55, 62
maximum record size, 59, 74

memory allocation, 177

memory dumps, 25

memory protection, 7, 10, 43, 151
memory protection class, 113
message to the operator, 34, 45
MESSAGE control command, 7, 12, 14, 15
message-complete condition, 163
Meta-Symbol, 3, 5, 39, 53, 111, 114
METASYM control command, 12
mnemonic field, 12

mode, 74

mode change characters, 165

mode flag, 58, 66

modification and expansion of the Monitor, 96
MODIFY control command, 8, 12, 24
module end, 116, 120, 154
module-end indicator, 113

monitor, ix

Monitor blocking buffer, 59

Monitor bootstrap procedure, 91, 105
Monitor error control, 78

Monitor formatting conventions, 136
Monitor modules, 178

Monitor overlay status, 90

Monitor procedures, 6, 39

Monitor root structure, 159

Monitor tree structure, 159
Monitor-action character, 34
Monitor-assigned file name, 40
Monitor-buffer flag, 57

Monitor's clock, 86, 87, 88
Monitor's temp stack, 96

MOUNT key-in, 8

multi-file tapes, 61, 130

multi-reel file, 132

multi-stacker punch, 34

name list, 177

name number, ix, 112, 113, 114, 116, 118, 119

negative absolute address, 117

negative constants, 117

new files, 89

new key, 67, 127

new-key flag, 58

next-file indicator, 59

nonresident foreground, 25

nonresident library routines, 11
nonsymbiont system, 157

nonresident foreground, 6, 83, 84, 85, 87, 89
nonresident interrupt, 85

nonresident task, 89

nonresident tasks, 90

nonstandard 1/O device, 100

null record, 128

null tabs, 71

number of bytes transmitted, 135
number of lines remaining, 75

number of object records produced, 96
number of pages of diagnostics produced, 96
number of pages that may be output, 96
number of pages to be listed, 96
number of records to be skipped, 59
number of recovery tries, 59

number of recovery tries remaining, 135
number of sectors per granule, 106
number of sectors per track, 106

object deck, ix

object language, ix, 77

object language expression, 115, 116
object language format, 112

object module, ix, 53, 77, 112, 113, 114, 115, 154

object module example, 120

offset, 116

OLAY control command, 23, 92

one-pass processors, 114

open a file, 61

operating system, 1

operational label, ix, 7, 14, 15, 16, 37, 94
operational labels, 105

operator control of foreground tasks, 87
operator intervention, 1, 31

operator's console, 14, 31, 36, 38, 44, 71
operator's reply, 45

option, ix

OR control command, 8, 12, 25, 27, 28, 29, 77
order codes, 135

origin, 113, 115, 154

origin control byte, 115

output and input mode, 17, 61

output buffer, 71

output file, 62, 81

output files, 70, 127, 128, 130, 143
output mode, 17, 61, 127

outstanding 1/O functions, 59

Index

193

overhead time, 33

overlay control commands, 22
overlay example, 23

overlay loader, ix, 6, 7, 23, 187
overlay modes, 22

overlay program, ix

overlay segment, 10, 24

OVERLAY control command, 6, 7, 12, 16, 19, 22, 23, 24,

26, 91, 157, 158

P

packed binary mode, 74
packed/unpacked mode indicator, 58
_ packing, 14

padding, 113, 120

page count, 18, 56, 59, 60, 73
page numbering, 16

paper tape handler, 139

paper tape punch, 35

paper tape reader, 35

parameter presence indicator, ix
parentheses, 12

parity, 173

PASS-1 messages, 98

password, 2, 4, 17, 20, 23, 54, 61, 82, 83, 106, 127

PASS1, 93

PASS2 processor tree structure, 160
PASS2, 94

patch cards, 105

period, 12 .

peripheral processing, 2

peripheral units, 94

permanent disc space, 33

permanent disc storage, 13, 54, 96
permanent file, 21

permanent file storage, 95

permanent storage, 19

permanent system storage, 95

PFIL control command, 8, 13, 30
physical device, ix

physical device address, 109

physical device name, 15, 16, 37, 94, 105
physical end-of-file, 30

PMD control command, 8, 9, 12, 25, 26
PMDI, 8, 9, 12, 26, 48

POOL control command, 12, 13
position file, 69

position n records, 69

positive absolute address, 117
postmortem dump, ix, 32, 81
postmortem dump control commands, 25
postmortem dumps, 48

power failure, 34

preloaded load module, 107

previous buffer displacement, 60
primary blocking buffer, 60

primary external reference, 115
primary reference, x

printable lines, 56

printable lines per page, 18, 59, 71, 72, 95
printable lines remaining, 75

194 Index

PRINTER, 35

priority, 3, 5, 6, 13, 66, 84, 85, 86, 88, 97, 148

priority number, 32

priority status, 31

PRIORITY key-in, 8, 31

private file, 82, 83

private library, 82

procedure calls, 39, 53, 54
M:AND, 9, 10, 78
M:ARM, 9, 48, 86, 87, 88, 89
M:CAL, 9, 50, 88
M:CHECK, 9, 64
M:CHKPT, 9, 42, 89, 166
M:CLOSE, 9, 17, 63
M:COUNT, 9, 10, 78
M:CVOL, 9, 70
M:DCAL, 9, 51, 88
M:DCB, 9, 17, 53, 54, 55
M:DELREC, 10, 68
M:DEVICE, 9, 71
M:DISABLE, 9, 51, 88
M:DISARM, 9, 49, 86, 87, 88
M:ENABLE, 9, 51, 88
M:ERR, 9, 48
M:EXIT, 9, 48
M:FCP, 9, 41, 89, 166
M:FP, 9, 42, 89, 166
M:GCP, 9, 25, 41, 89, 166
M:GL, 9, 41, 89, 166
M:GP, 9, 25, 41, 89, 166
M:IF, 9, 10, 77
M:NT, 9, 46, 89
M:KEYIN, 9, 45
M:LDTRC, 9, 40, 89, 166
M:LINK, 9, 40, 89, 166
M:MASTER, 9, 51, 89
M:MERC, 9, 78, 79
M:OPEN, 9, 16, 17, 54, 55, 61, 163
M:CR, 9, 10, 78
M:PFIL, 9, 69
M:PRECORD, 9, 69
M:PRINT, 9, 45
M:RBACK, 9, 50, 89
M:READ, 10, 65, 144
M:RELREC, 9, 68
M:RESTART, 10, 42, 89, 166
M:REW, 10, 70
M:RXC, 10, 50
M:SBACK, 10, 50, 89
M:SEGLD, 10, 39
M:SETDCB, 10, 64
M:SLAVE, 10, 52, 88
M:SMPRT, 10, 43, 89, 166
M:SNAP, 10, 77
M:SNAPC, 10, 77
M:STIMER, 10, 44, 89
M:STRAP, 10, 47, 89
M:SXC, 10, 49, 89
M:TERM, 10, 52, 88, 89
M:TFILE, 10, 65
M:TIME, 10, 43
M:TRAP, 10, 46, 89
M:TRIGGER, 10, 48, 88

M:TRTN, 10, 47, 89
M:TRUNC, 10, 69
M:TTIMER, 10, 44, 89
M:TYPE, 10, 44
M:WEOF, 10, 70
M:WRITE, 10, 67
M:XXX, 10, 48, 88
procedure library, 39
process, load, and execute, 77
processing programs, 1, 3
processor control commands, 19
processor name, 101, 102
processor time, 33
program deck, 77
program linkages, 6
program listing, 77
program section, 113
program status doubleword, 26, 47, 48
program trap conditions, x, 46
protection type, 110
PSD, 32, 44, 46, 47, 48, 89
pseudo file name, x, 7, 16
pseudo sense switches, 8, 33, 143
PTC, 46
PTREE, 7, 12, 23
public library, x, 23
punch output, 14, 38

rapid access disc file, 36
read a data record, 65

read logical record, 144
real-time account, 86
real-time initialization, 84
real-time operations, 84
real-time processing, 2
real-time program, 25
recognized DCB names, 186
record access, 63

record blocking, 128

record control information, 118
record size, 74, 113
recovery tries, 17

recovery tries remaining, 58
reel number, 36, 130
reference loading mode, 22
reference loading tables, 177
register block, 87, 96, 97
register blocks, 84

release a data record, 68
relocatable object module, x
relocating loader, x, 6, 153
relocation dictionary, 21, 108
repeat count, 119

repeat load, 119

request a key-in, 45
REQUEST key-in, 8, 31
reset exit control, 50
reset-sense-switch routine, 143
resident account table, 11

resident foreground, 5, 9,25, 50, 83, 84, 85, 86, 87, 89, 96, 98

resident foreground tasks, 97
resident library routines, 11
resident loader, 92

resident Monitor, 105
resident program, x

resident task, 84, 90
resolution, 116

restart address, 43

restart information, 42
restore background, 50
returns, 89

REW control command, 8, 13, 30
REWIND, 70

rewound files, 152

roll characters, 165

rub-out byte, 137

rub-out character, 140

run time, 6

RUN control command, 7, 12, 20, 24, 25, 26, 86, 87, 88

)

S key-in, 8, 32, 88

save background, 50

saving and releasing of files, 163
saving environment at interrupt time, 89
schedule queue, 32

scheduler, x, 5, 6

scratch file, 36, 61, 64, 84, 128, 130
scratch mode, 17

scratch pool, 31

scratch storage, 2

scratch tape, 16, 31, 35, 55, 70
scratch tapes, 13

scratch tapes, 152

SCRATCH key=in, 8

secondary external reference, 23, 115
secondary reference, x

secondary storage, X, 7
secondary storage allocation, 148
sectors per track, 95

secure file, 4

security features, 2

segment loader, x, 6

segment loading mode, 22
semicolon, 12

sense switch settings, 162

sense switch simulation, 142
sentinels, 130

sequence ID, 60

sequence number, 60, 75
sequence-ID-given flag, 59
sequence-option flag, 59
sequencing, 18, 56

sequential access, 127
sequential files, 143

serial numbers, 17, 55, 59, 106
service programs, 3

set error or abnormal address, 64
set exit control, 49

set interval timer, 44

set line spacing, 72

set listing tabs, 71 symbiont messages, 37

set memory protection, 43 symbiont name, 101

set number of printable lines, 71 symbiont queue storage, 95

set traps, 46 symbiont secondary storage queue, 148
set-sense-switch routine, 143 symbionts, 2, 6, 93

severity level, 154 Symbol, 3, 5, 12, 53, 111, 112, 113, 114, 120
simple address, 117 symbolic deck to binary deck, 77

simulate a trap, 47 symbolic deck to binary file on disc, 77
single-file tapes, 130 symbolic deck to program listing, 77

skip to top of form, 71 symbolic input, x

skipping, 30, 69 symbolic name, x, 113, 116

slave mode, 33, 53, 86, 88, 97 syntax error, 102, 103, 104, 109

SNAP control command, 8, 12, 25, 26, 27 SYST key-in, 8, 18, 37

SNAPC control command, 8, 12, 25, 27, 29, 77 system account, 91

snapshot, 8, 10 system area, 84

snapshot control commands, 26 system clock, 31

snapshot dumps, 77 system control commands, 13

SORT, 3 system control, 5

source code translation, 111 system DCB, 158, 186 .

source deck, x system file directory, 17, 19, 54, 61, 64
source input, 14, 37 System Generation, 1,7, 10,13, 14,18, 25,37, 51, 55, 56, 62
source language, x 83, 84, 87,91, 105, 107, 134, 147, 148, 165, 166
source language symbol, 115 System Generation example, 98, 99

source output, 14, 38 system generation messages, 98

spaces, 29 system hardware configuration, 7

spacing between lines, 18, 56 system 1D, 32

SPD, 47 system library, x, 21, 105, 115, 158, 186
special character functions, 164 system library routines, 79

special device entries, 63 system operational label, 54

special device procedures, 71 system parameters, 10

specification field, 12 system procedures, 39

specify beginning column, 74 system register, x

specify card punch sequencing, 75 Syyndd, m, 8

specify direct formatting, 72
specify output header, 75
specify page count, 73

specify vertical format control, 73 T

standard assignments, 18

standard clock interrupt, 97 T key~-in, 8, 31

standard control section, x, 113 tab stop, 56

standard device assignments, 115 tab values, 71

standard handler, 95 table of user's DCBs, 162

standard input symbiont, 96 tape bootstrap, 92

standard Monitor configuration, 11 tape buffer, 60

standard Monitor operational labels, 94 tape files, 127, 130

standard object language, 111 target machine monitor, 92 .
standard operational ldbels, 11 Task Control Block (see also "TCB"), x, 21, 79, 143, 153
standard system assignments, 13, 37, 77 Task Control Block format, 161

START key-in, 8, 32 task initiation, 87

starting oddress, 25, 113, 115, 116 TCB, 42, 79, 90, 140, 161, 177
status information, 5 Teletype conversion tables, 164

STDLB control command, 7, 12, 14 Teletypes, 164

subfields, 12 ' temp stack, 79

subtract absolute section, 116, 117 temporary disc storage, 13, 33, 95, 96
subtract value of declaration, 116, 118 temporary file, 20, 163, 176

subtract value of forward reference, 118 temporary files, 6, 42, 86

summary of System Generation, 91 temporary input file, 42

supervisor, 5 temporary load module, 82

SWITCH key-in, 8, 12, 24, 33 temporary storage, 46, 47, 79, 134
symbiont, x, 8, 53, 95, 146 temporary storage stack, 20

symbiont area, 84 terminate task, 52

symbiont communication, 36 termination status, 135

symbiont files, 147 test identifier, 8, 9, 10, 27, 29

196 Index

test interval timer, 44

test location, 27
test-sense-switch routine, 143
time of day, 8, 10, 31, 43

TIME key-in, 8, 31, 87

TITLE control command, 7, 12, 16
top-of-form, 71

transfer address, 40, 87

trap, 10

trap condition, 46, 47

tree structure of the control command interpreter, 158

tree structure of the loader, 157

tree structure of the Monitor, 157

tree structure of the PASS2 processor, 158
tree table, 87, 177

TREE control command, 7, 12, 22, 23, 92
trigger foreground interrupt, 48

trigger function, 88

truncate blocking buffer, 69

truncation flag, 59

TSS temp stack, x

type a message, 44

type of completion, 59

type of return, 89

typeouts, 31

types of assignments, 16

U

unauthorized disclosure, 127
unblocking, 84

uncompressed corrections, 77
unimplemented instruction simulation, 11
unit address, 15

unlabeled tape, 30, 63, 69, 70, 152
unpacked binary mode, 74
unpacking, 14

unrecognized command, 100 .
unsolicited key-ins, 84

update files, 128, 130

update mode, 17, 130

update modules, 91

user files, 2, 84

user initialization, 157

user service routines, 6

user time, 33

user-defined ID, 42

user's buffer, 59, 66, 67, 143
user's DCB name, 16

user's dynamic data area, 177
user's dynamic storage, 41, 42
user's file directory, 19

user's label, 60, 62, 132

user's overlay structure, 162
user's temp stack, 47, 161, 177
user's trap routine, 46, 47
user's-byte-displacement indicator, 58
utility control commands, 30
utility programs, 3

v

value of an expression, 116
variable-length parameters, 60, 63
vertical format control, 73
vertical spacing, 67
vertical-format-control flag, 58
volume number, 59

W

W key-in, 8, 32

wait flag, 58

wait state, x, 29, 32, 105, 108
WAIT key-in, 8, 32

WEOF control command, 8, 13, 30
words per sector, 95

write a data record, 67

write end-of-file, 70

write key, 151

write lock, 43

write locks, 89

write logical record, 143

write output buffer, 144

write to listing log, 45
WRITELOG key-in, 8, 33

X

X key=-in, 8, 32,88

Y

yyndd, m, 8

Index

197

CAL1-TO-FUNCTION INDEX

Call FPT Code Function Page Call FPT Code Function Page

CAL1,1 XxOl M:REW 70 CAL1,4 X'00" M:CHKPT 42
X'02' M:WEOF 70 X'01 M:RESTART 42
X'03' M:CVOL 70 .
X'04' M:DEVICE (PAGE) 71 CAL1,5 X'00" M:TRIGGER 48
X'05' M:DEVICE (VFC/NO VFC) 73 X'01' M:DISABLE 51
X'06' M:SETDCB 64 X'02' M:ENABLE 51
X'0B" M:DEVICE (DRC/NO DRC) 72 X'03' M:DISARM 49
X'oC! M:RELREC 68 X'04' M:ARM 48
X'0D" M:DELREC 68 X'05" M:DCAL 51
X'OF" M:TFILE 65 X'06' M:CAL 50
X'10' M:READ 65 X'07" M:SLAVE 52
X1 M:WRITE 67 X'08" M:MASTER 51
X'12" M:TRUNC 69 X'09" M:SBACK 50
X' 14" M:OPEN 62 X'0A! M:RBACK 50
X'15" M:CLOSE 63 X'0B' M:TERM 52
X'1c M:PFIL 69 | X'0C! M:SXC 49
X'1D! M:PRECORD 69 X'0D' M:RXC 50
X'20" M:DEVICE (LINES) 71
X'21" M:DEVICE (FORM) 73 | | cALL8 X'01" M:SEGLD 39
X'22' M:DEVICE (SIZE) 74 - X'02' M:LINK 40
X'23' M:DEVICE (DATA) 74 X'03" M:LDTRC 40
X'24' M:DEVICE (COUNT) 73 X'08' M:GP 4
X'25' M:DEVICE (SPACE) 72 X'09" M:FP 42
X'26' M:DEVICE (HEADER) 75 X'0A' M:SMPRT 43
X'27" M:DEVICE (SEQ) 75 X'08' M:GL 41
X'28" M:DEVICE (TAB) 71 X'oC! M:GCP 41
X'29" M:CHECK 64 X'0D! M:FCP 41
X'2A! M:DEVICE (NLINES) 75 X'OE! M:INT 46
X'2B' M:DEVICE (CORRES) 76 X'10" M:TIME 43

CALL,2 XOT M:PRINT 45 Xt M:STIMER 44
102" M:TYPE m X'12' M:TTIMER 44
X104" M:KEYIN 45 X'14! M:TRAP 46
X'10" M:MERC 79

CAL1, 3 X'00' M:SNAP 77 | |CALLO T - M:EXIT 48
X'01" M:SNAPC 77 2 - M:ERR 48
X'02' M:IF 77 3) MaXXX 48
X'03' M:AND 78
104" M:OR 78 4 - M:STRAP 47
X'05' M:COUNT 78 5 - M:TRTN 47

198

Printed in France

COMPAGNIE INTERNATIONALE POUR L'INFORMATIQUE 68 route de Versailles 78 — LOUVECIENNES Tél. 951-86-00

S.A. au Capital de 81.000.000 F
R.C. Versailles 66 B 756 — INSEE 283.78.350.0.005

b
»

—d

