mincal 513/523

- Handbuch

s Computer
i SYSTEME

mincal 513/523

Heinrich Dietz
Com uter | industie-Elektronix
DNETZZ Pkl fe o ¢
Tolox baetr g0

HANDBUCH 4/72

Dietz bietet immer etwas mehr

Ausgabe:

Herausgeber:

Druck:

April 1972

Heinrich Dietz

Industrie-Elektronik

433 Milheim a d Ruhr 13, Kolner StraBe 115
Telefon (02133) 48 85 41 . Telex 0856770
W-Germany

Hoppe + Werry KG, Mulheim a d Ruhr

Einfuhrung:

C omputer:

Software:

Peripherie:

Anhang:

Inhalt

DIETZ in Kurzform

Uber die MINCAL 500-Computer

Computer=Fibel

Spezifikationen
Struktur
Mikroprogrammierung
Maschinenbefehle
Bedienung

Aufbau

Assembler
Monitor
FORTRAN
ALGOL
BASIC
Library

Kernspeicher-Erweiterung
Periphere Speichererweiterungen
Peripherie-Interfaces
Analog-MeBsysteme

Peripherie-Gerdte

Mafbild
ASClI-Code
Befehlstabelle

Seite

39
42
54
59
79
86

88
105
109
123
131
144

146
147
154
160
163

165
166
168

DIETZ in Kurzform

Die Firma HEINRICH DIETZ INDUSTRIE-ELEKTRONIK besteht seit 1951. Das
Programm war und ist die industrielle Automation mit elekironischen Mitteln.
Diese Mittel sind heute Computer.

Der Weg fuhrte von elektronisch geregelten Getrieben Uber KompensationsmeBgerite
und Analogrechner zur Digitaltechnik, uUber den DIGIVERTER (den ersten deutschen
Digitalumsetzer) zu den ZDE-Anlagen und mit dem Aufkommen der Halbleiter als
industrielle Baukomponenten zum COMBIDAT-System.

1965 wird das COMBIDAT-System durch die ersten technischen Kleincomputer aus
Deutschland, die MINCAL-Digitalrechner, erweitert. In dieser Zeit entsteht eine
Rechner-Familie von festprogrammierten Kleincomputern mit der Bezeichnung
MINCAL 0, MINCAL E, MINCAL Q und MINCAL 1 und einem speicherprogram-
mierten Computer, dem MINCAL 3.

Auf die Computer der ersten Generation folgt 1968 der MINCAL 4, der erste in
Deutschland entwickelte ProzeSBrechner in integrierter Technik. Mit dem MINCAL 4
wurde die Multiprogramming-Struktur und die 19-bit-Wortldnge eingefuhrt.

Diese Struktur findet sich auch bei den Computern MINCAL 513 und MINCAL 523,
erweitert um neue Eigenschaften, wie parallele Verarbeitung, Mikroprogrammierbar-
keit und modularen Aufbau.

Heute entwickeln und fertigen in Mulheim 200 Mitarbeiter nicht nur Computer,
sondern auch Computer-Peripherie und Standard-Software. AuBerdem liefert DIETZ
schlusselfertige Computer-Anlagen einschlieBlich Planung, Systemanalyse, Ausarbei-
tung der Anwenderprogramme und der ProzefBperipherie.

DIETZ COMPUTER SYSTEME ist ein Begriff geworden fir ein eigenstindiges Ent-
wicklungskonzept. Die Prozefirechner der MINCAL 500-Baureihe sind ein Teil dieser
Gesamtkonzeption.

Uber die MINCAL 500-Computer

Die Computer MINCAL 513 und MINCAL 523 sind fur den Einsatz als Prozef3-
rechner - in sehr kleinen bis zu relativ groBlen Systemen - und fir die Losung
technisch-wissenschaftlicher Rechenprobleme konzipiert. In Struktur, Peripherie
und Software weisen sie zum Teil neuartige Merkmale auf, die sie fur diese
Aufgaben besonders geeignet machen.

Wortldnge 19 bit: 3 bit mehr (als die fur ProzeBrechner wenigstens erforderlichen
76 bit) bedeuten umfangreicheren Befehlsvorrat, bessere und vielfdltigere Adressie-
rung, Zugriff zu groBeren Speicherbereichen, ausreichende Genauigkeit auch bei
extremen Anforderungen, keine Probleme bei Speicher- und Peripher-Erweiterungen.

GroBer Befehlsvorrat: 10 speicherbezogene Befehle (einschlieBlich Multiplikation
und Division); 2 Konstantenbefehle; é Registerbefehle; 7 Manipulationsbefehle fur
512 Speicheradressen; 14 Schiebebefehle; 4 Konversionsbefehle; 6 Verzweigungs-
und Aufrufbefehle; 12 Ein/Ausgabebefehle und 13 weitere Instruktionstypen -, das
sind 74 verschiedene Maschinenbefehle, die zum groflen Teil vielfaltig modifizier-
bar und sehr leistungsfihig sind.

Flexible Adressierung bei speicherbezogenen Befehlen: Absolut sind 0.5 k, relativ
sind 1 k Worte zugdnglich. Durch indirekte Adressierung konnen 32 k Kernspeicher-
Worte und der gesamte Festspeicher erreicht werden. Hinzu kommen 3 Indexregister
je Ebene. Durch Ebenen-Bindung von Speicheradressen kann sich der Benutzer wei-
tere Register aufbauen.

Mikroprogrammierung: Fur den Aufbau von Sonderbefehlen und besonders schnell
ablaufenden Routinen kann der Benutzer auf die Mikrobefehle zurickgreifen.

Multiprogramming=Struktur: Der MINCAL 523 bietet dem Benutzer bis zu 64 undb-
hdngige Unterrechner mit eigenem Instruktionszdhler, eigenen Akkumulatoren, Index-
registern, Datenspeichern und eigener Peripherie. Diese Unterrechner benutzen ab-
wechselnd die eigentliche Recheneinheit, gesteuert von ihren Prioritdten. Bei ent-
sprechender Prioritdt kann am Ende jedes Befehls ein anderer Unterrechner oder,
besser ausgedriickt, eine andere Programmebene die Recheneinheit benutzen. Dabei
missen weder von der Hardware noch durch ein Organisationsprogramm Speicher-
oder Register-Inhalte gerettet werden. Jede Ebene verfigt iber 8 eigene Register.
Multiprogramming ist extrem einfach, denn fur jede Aufgabe gibt es eine vollig
unabhingige Ebene.

3 Datenkandle: Fiur programm- und fremdgesteuerten Datentransfer sowie fiir die
Kernspeichererweiterung sind 3 getrennte Datenkantle vorgesehen, - ein bedeuten-
der Faoktor fur die Arbeitsgeschwindigkeit und den Umfang der anschlieBbaren Pe-
ripherie.

Festspeicher: Mikroprogramme und Programmierhilfen sind unzerstorbar in speziellen
Sie sind voll kompatibel mit Kernspeichern und kénnen da-

Festspeichern enthalten.)
h Anwenderprogramme enthalten. Die

her wichtige Unterprogramm-Pakete und auc
Festspeicher haben 750 ns Zykluszeit.

Bedienungskomfort: Alle Register und Speicherpldtze sind Uber die Frontplatte zugdng-
Tich, alle wichtigen Zustdnde sichtbar und beeinfluBbar. Adrefstop und andere Funk-
tionen erleichtern den Testbetrieb. Eine als Festspeicher eingebaute Programmierhilfe

erlaubt sofortiges Einlesen sowie bequemes Andern und Ausgeben von Programmen.

Modularer Aufbau: Zentraleinheit und Peripherie sind modular konzipiert, so daf3 fur
jede Aufgabenstellung eine optimale Konfiguration gewdhlt werden kann.

Externspeichers Schnelle Trommel- und Plattenspeicher erhthen - einschliellich der
zugehorigen Betriebssysteme - die Leistungsfihigkeit von MINCAL 523~Anlagen.
AuBerdem sind Magnetband=Systeme verfugbar.

Peripherie: Eine vielseitige Bedienungsperipherie - Fernschreiber, Drucker, Streifen-
leser und -locher, Datensichtgerdte, Kartenleser, Plotter - ist verfugbar. Hinzu
kommen Interfaces fur Datenferniubertragung und ein umfangreicher Katalog von Pro-
zefBperipherie: Ein/Ausginge fur digitale und analoge Signale sowie spezielle Analog-
MeBsysteme . Echtzeituhren. Speicherschutz. Schnelle Speicher-Zahlkandle.

Basis-Software: ASSEMBLER/EDITOR. Bibliothek mit Doppelwort-Paket, Einwort- und
Doppelwort-Gleitkomma-Paket sowie mathematischen Funktionen. MONITOR-Testhilfe.
CALCULATOR-Tischrechnerprogramm. Graphische Programme. FORTRAN- und ALGOL-
Compiler. BASIC-Interpreter. Betriebssystem fir das Arbeiten mit Formalsprachen.

Prozefsysteme mit Rechenplatz: Als Folge der Multiprogramming=Struktur ist es mog-
lich, auf einem Prozeflsystem gleichzeitig technisch-wissenschaftliche Datenverarbei-
tung zu betreiben, ohne den on-line-Betrieb zu stéren und ohne aufwendige Betriebs-
systeme.

Computer-Fibel

WIE ES HINTER DEN KULISSEN AUSSIEHT

Jeder Computer, der etwas auf sich hilt, besitzt einen SPEICHER. Das ist ein Regal
mit vielen Fdchern, SPEICHERPLATZE genannt, und da Computern die Ordnung im
eigenen Hause Uber alles geht, gibt es fir jeden Platz eine Nummer, die ADRESSE,
und zwar immer hUbsch in aufsteigender Reihenfolge.

In jedem Platz des Speichers ist etwas enthalten, was wir nicht umhin kénnen, als
seinen INHALT zu bezeichnen. Alle Platze sind gleich groB, und was da hineinpaBt,
nennen wir ein WORT. Und wie sich die Worte unserer Sprache aus Buchstaben zu-
sammensetzen, so bestehen Computer-Worte aus bindren Elementen, BITs; bindr deshalb,
weil sie nur die beiden Formen O oder 1 annehmen kénnen (dieses Schwarz-Weif3-Denken
haben alle Computer an sich, bemihen sich aber, es durch differenzierten Umgang mit
den Bits wettzumachen.)

Die Anzahl der Bits in einem Wort nennt man die WORTLANGE; je groBer diese und
die Zahl der Speicherplitze (KAPAZITAT) ist, desto hoher der Preis des Computers,
seine Leistungsfahigkeit und der Stolz seines Besitzers.

Nehmen wir an, unsere Worte seien 3 Bit lang; dann gibt es, wie man sich leicht
Uberzeugt, folgende Kombinationen von O und 1:

000
001
010
011
100
101
110
111

Das sind 8 verschiedene Worte; allgemein gilt die Regel, daB8 ein n-bit-Wort 2" ver-
schiedene Inhalte haben kann (in unserem Beispiel 23 = 8).

Hat ein Computer-Wort die Linge von 18 bit (wie die MINCAL 500-Computer, worauf wir
wiederum besonders stolz sind), so ergeben sich 218 = 262144 verschiedene mogliche
Worte. Schreibt man allerdings so ein langes BINARES Wort hin:

001010000100111011

so verliert man vor lauter Nullen und Einsen schnell die Ubersicht, und man kann sich
so ein Wort weder merken noch einem anderen schnell zurufen, der sich moglicherweise

auch dafir interessiert.

Deshalb fihren wir schnell einen Trick ein, ndmlich den mit der OKTALEN Schreib-
weise. Zuerst ordnen wir die 18 Bit in 6 Dreierpdckchen:

001 010 000 100 111 011

(zum Gluck ist 18 durch 3 teilbar!) und ersetzen jedes Pdckchen, je nach seinem
Inhalt, durch eine der Ziffern 0 bis 7, wobei folgende Zuordnung gilt:

000
001
010
on
100
101
110
m

L | | O | Y [A

NO O W —O

(Der geschulte Betrachter erkennt, daB es sich dabei um die BINARZAHLEN von 0 bis 7
handelt; die zugehsrige OKTALZIFFER ergibt sich, wenn man den Bindrstellen - den
Bits - von links nach rechts die Wertigkeit 4, 2 und 1 gibt und sie zusammenzihlt.
Bitte selbst nachrechnen!).

So wird also aus unserem bindren Wort

001 010 000 100 111 011

M M S e S
1 2 0 4 7 3

die OKTALZAHL 120473, die man gut aussprechen (je nach Geschmack zwslf null=vier
dreiundsiebzig oder eins=zwanzig viersdreiundsiebzig oder eins-zwei-null-vier-sieben-drei)
und sich notfalls auch noch merken kann. Wenn Gefahr besteht, sie mit unseren ublichen
Dezimalzahlen zu verwechseln, geben wir Oktalzahlen eine 8 als Anhdnger mit: 120473g;
dann weifl jeder Bescheid.

Kehren wir zum Speicher und seinen Adressen zuriick. Computer sind ein biichen einsei-
tig, aber darin konsequent: Gehen sie schon nur mit bindren Informationen um, so be-
zeichnen sie ihre Speicherplitze auch mit Bindrzahlen. Weil wir die nicht so sehr mogen,
wenden wir auch hier unsere List mit den Oktalzahlen an.

Nehmen wir an, der Speicher habe eine Kapazitit von 4096 Worten (eine bei Computern
ubliche GroBe; 4096 = 212 = "4K", wobei 1K = 1024 = 210 ist). Dann sind alle Adres-
sen mit 12-stelligen Bindrzahlen - also 12 Bit - darstelltar, die wir gleich in 4-stellige
Oktalzahlen umschreiben:

1. Adresse: 000 000 000 000 = 0000g
2, " 000 000 000 001 = 0001g
Usw.

vorletzte Adresse: 1 111 111 110 = 7776g
letzte Adresse: 11111 111 111 = 77774

Stellen wir uns diesen Speicher vor:

7777 } Adressen der Plitze (oktal)
7776
7775
7774
Inhalt jedes r~ 7773
Plarzest | 7772
1 Wort mit n Bit 7771
7770
7767

|
! A 4K-SPEICHER

0010
0007
0006
0005
0004
0003
0002
0001
0000

Womit, wie es sich fur Computer-Leute gehort, das Thema Speicher schdn geordnet und
eingeteilt wiare.

WIE ES IM SPEICHER LEBENDIG WIRD

Ein Speicher macht noch keinen Computer,und kein Regal, dessen Fécher nicht von
Zeit zu Zeit einen neuen Inhalt bekommen.

Jeder Computer besitzt (mindestens) ein auBlerhalb des Speichers liegendes Fach, in
das gerade ein Wort hineinpaBt und welches man mit dem Inhalt eines Speicherplatzes
laden kann. Oder dessen Inhalt man in jede Speicheradresse ubertragen kann. Wir
nennen es das ARBEITSREGISTER (oder W-Register oder im ublichen Sprachgebrauch
auch Akkumulator).

Das geht so vor sich:

Laden aus Adresse M:
Speicher CM>=W

Arbeitsregister

Transfer in Adresse M:

<W>=-M

Speicher

[W Arbeitsregister

W ist das Symbol fur das W-Register, M das fur einen beliebigen Speicherplatz,
und <..> bedeutet "Inhalt von ...".

Bemerkenswert an diesen Transportvorgdngen ist, daf3 der frihere Inhalt von W bezie-
hungsweise M keine Rolle spielt, und daBl im ersten Falle M, im anderen W seinen
Inhalt beibehdlt (womit unser Bild vom Lagerregal heftig zu hinken anfdngt und wir,
mit freundlicher Genehmigung des Lesers, es endgultig Uber Bord werfen).

- 10 -

Mit LADEN und TRANSFER haben wir gleich zwei fundamentale Operationen eines
Computers kennengelernt. Eine OPERATION ist ein abgeschlossener Vorgang einfacher
Art, und viele aufeinanderfolgende Operationen machen einen PROGRAMMABLAUF.

Noch zwei Eigenschaften machen unsere Operationen deutlich: Der Inhalt jedes Spei-
cherplatzes kann veréndert werden, indem man den Inhalt des W-Registers dorthin Gber-
trégt. Und dieses spielt die Rolle einer Daten-Drehscheibe, was auch an der folgenden
Aufgabe klar wird.

Sie lautet: Ubertrage den Inhalt der Speicheradresse M1 in den Platz M2. Es geht nur
Uber das W-Register, ndmlich so:

1. Operation:
Laden aus Adresse M1

<MP>-=W
L w]
M2
M1 > 2. Operation:
Transfer in Adresse M2
<W>- M2

Low]

Wir konnen das auch in SYMBOLISCHER Form notieren:

LD M1
TR M2

womit wir schon unser erstes (Mini-)Programm geschrieben hdtten, und zwar in symbo-
lischer Schreibweise, weil die BEFEHLE (Laden, Transfer) durch Abkurzungen (LD, TR)
und die Adressen durch MARKEN (M1, M2) - anstelle der echten oktalen Nummern -
angegeben sind.

-1 -

Unser Mini-Programm besteht aus zwei INSTRUKTIONEN (oder Anweisungen an den
Computer, dies oder jenes zu tun), und wie wir sehen, beantwortet eine solche Instruk-

tionen dem Computer Fragen:

Was soll ich tun? (Es antwortet der Befehl.)
Womit, woher, wohin? (Es antwortet die Adresse).

Damit ist klar, daB zur Ausfuhrung einer bestimmten Operation eine dementsprechende
Instruktion gehort. Lhd die Gesamtheit aller Instruktionen, die einen von uns gewiinsch-
ten Ablauf vorschreiben, - eben diese nennt man ein PROGRAMM.

Womit fast nichts mehr im Wege stinde, lustig mit dem Programmieren zu beginnen.

NOCH EIN STUCK COMPUTER-INTIMSPHARE

Zuvor wollen wir noch einen Blick ins Innenleben unseres geliebten Spielzeugs werfen,
diskret zwar, aber doch so eindringlich, daf3 wir herausfinden, wo es eigentlich die
Programminstruktionen aufhebt und wie es sie versteht.

Die Antwort auf die erste Frage ist ganz einfach: Im Speicher nattirlich. Dort stehen,
sduberlich in der Reihenfolge steigender Adressen angeordnet, alle Instruktionen. Und
jede hat die Linge eines Wortes. Denken wir an unser Mini-Programm und stellen wir
uns vor, die erste Anweisung stehe im Platz 0200, dann hat die zweite die folgende
Adresse:

0200 LD Ml
0201 TR M2

Nun muB3 es einen dienstbaren Geist geben, der aufpaflt, daf3 die jeweils benstigte
Instruktion auch aus dem richtigen Kastchen geholt wird und vor Holen der ndchsten

die Wahl auf die folgende Adresse fallt. Das tut fur uns der INSTRUKTIONSZAHLER
(oder Programmstand oder das N-Register, wie wir's nennen): Er gibt die Speicheradresse
an, in der die Instruktion fur die Operation enthalten ist, die daraufhin ablaufen soll.

Der Mechanismus geht so:

Schritt 1: <N> + 1-=N N-Register um 1 erhshen
Schritt 2: <KN>» —INSTR Instruktion holen
Schritt 3t .iiiieiiiiiaieanns Ausfihren der Instruktion

- 12 -

Dabei bedeutet <€ N3 den "Inhalt vom Inhalt von N", oder, in Nicht-Computer-
Deutsch, den Inhalt des Speicherplatzes, dessen Adresse im N-Register steht. Und INSTR
ist fur uns einstweilen ein weiterer dienstbarer Geist, der die Instruktion aufhebt und den
Ablauf der Operation - die Ausfihrung - steuert.

Wohlgemerkt: Die Schritte 1 und 2 laufen ab, ohne daf3 Sie dies dem Computer ausdriick=
lich sagen - ein eingebauter Reflex sozusagen. Erst auf Schritt 3 haben Sie durch Pro-

grammieren der geeigneten Instruktion Einflu3.

Zeichnen wir den vollen Ablauf der Instruktion

LD M1
noch einmal auf:
Schritt 1:
Mi (N erhshen
<N> + 1= N
[INSTR | [W] N 1
Instruktion «——— -
|
|
Ml = Schritt 2:
! Instruktion holen
L INSR] ! << ND>SINSTR
i
L
LW | [N]
Schritt 3:
Ty Ml Ausfiihrung
i < MI>+W
| INSTR 1

- 13 -

Wir sehen, dafB3 erst im dritten Schritt das fur die Instruktion Spezifische passiert. Was
da vor sich gehen soll, sagt das Wort aus, das in INSTR steht, und jedes Bit darin
(oder jede Oktalzahl, wie wir sehen werden) hat eine bestimmte Funktion.

Zum Beispiel verstehen die MINCAL-Rechner ihre 18 bit-Instruktionen so:

;' 8::0:::6”: } enthalten den Befehl OP

. alste

3. Oktalstelle enthdlt die Erginzung Q
4. Oktalstelle

5. Oktalstelle enthalten die Adresse AAA
6. Oktalstelle

Oder aufgezeichnet:

R B A T (OPQAAA)

N ——— ——— —

Befehl Erg. Adresse

Was Befehl und Adresse ist, wissen wir schon; die Geheimnisse der Ergidnzung heben
wir uns fur spater auf.

Nehmen wir die Oktalzahl 120437 als Instruktion:

o P Q A A A
v [2] o 4 |3 [7 |

und setzen wir voraus, daf3 12 der BEFEHLSCODE fur "Laden" sei, so bedeutet sie:
"Lade den Inhalt von Adresse 437". Und hatte der Platz M1 unseres Mini-Programms
gerade diese Adresse, so wire diese identisch mit

LD M1

- aber eben nicht in einer symbolischen SPRACHE, sondern in der, die der Computer

einzig und allein versteht: in MASCHINENSPRACHE (oder auch Maschinencode genannt).

Wenn wir noch wissen, daB 16 der Befehlscode fur "Transfer" ist, und annehmen, 440
sei die Adresse M2, dann kann unser Mini-Programm sogar in zwei Zungen sprechen:

- 14 -

symbolisch Maschinencode

—_—— ——
0200 LD Ml 120437
0201 TR M2 160440

(Zwischenfrage: Wieviele Plitze liegen zwischen M1 und M2?)

Damit genug der Computer-Anatomie.

WIE EIN RECHNER AUCH RECHNEN KANN

Futtern wir das Raubtier mit einem nutzlichen Programm und lassen wir es mal rechnen:
z =x+ty

Damit die Reihenfolge stimmt, schreiben wir die Aufgabe um:
X ty—-z

und denken uns, die Werte x und y stinden in den Pldtzen M1 und M2 des Speichers,
und die Summe z solle nach M3. Wemwir noch wissen, daB8 AD... das Symbol fur
"Addiere... zum Inhalt des W-Registers" ist, so lautet das Programm:

LD Ml x —= W
AD M2 <W> +y—W
TR M3 z=x+ty —= M3

Hdtten wir stattdessen y gerne von x abgezogen:

X =y—Z

- mit im Gbrigen gleichen Pldtzen fur x, y und z -, so hdtte es heiflen mussen:

- 15 -

LD M1 x — W
SB M2 <W> -y—W
TR M3 z=x=-y— M3

wobei SB... bedeutet: "Subtrahiere ... vom Inhalt des W-Registers".

Betrachten wir im Bild, was bei der Instruktion "AD M2" passiert:

Adresse
r~——-- -
I Operan

INSTR |

Y
d
OP Q] AAA
LA
Befehl Addierer‘\ E
X

M2 AD M2

Addition:
<WH +E{M2>—=W

Wie man sieht, steuert der Befehl AD die additive VERKNUPFUNG der Inhalte von W
und M2 in einem ADDIERER, wobei die Summe wieder ins W-Register gebracht wird.
Ubrigens heiBt y, als Inhalt der angesprochenen Adresse, der OPERAND.

Vielleicht ist es ganz nutzlich, die Addition zweier Bindrzahlen = nur solche kann der
Rechner zueinander addieren = nther zu befrachten. (Man kénnte sie dem Computer
selbst Uberlassen, aber manchmal mschte man bs bestimmt - trau schau wem - auch mal
selbst nachvollziehen).

Nehmen wir 3-stellige Bindrzahlen und rechnen 3 + 1 = 4:

22 21 20
x 0 1 1 = 3)
ty 0 0 1 (=1)
1 1
=x+y 1 0 0 (= 4)

wobei 1 + 1 =0 + UBERTRAG in die ndchsthohere Stelle!

- 16 -

Noch ein Beispiel fur 18 bit-Zahlen, die wir aber gleich als 6-stellige Oktalzahlen
schreiben (mit entsprechender Wertigkeit 8" der Oktalstellen):

g5 g4 g3 g2 gl g0

x=0 0 1 7 5 0 (= 1000)
y=0 0 0 0 3 0 (= 24)

1 1
x+y=0 0 2 0 0 0 (= 1024)

wobei z.B. 3 +5 =0 + Ubertrag 1 in die ndchsthohere Stelle (Ziffern > 7 sind bei
Oktalzahlen nicht erlaubt!).

Man erkennt, daB Bindr- und Oktalzahlen im Prinzip wie unsere iblichen Dezimalzahlen
behandelt werden; jede Stelle kann allerdings die Ziffern 0 oder 1 (bei Bindrzahlen) be-
ziehungsweise 0..7 (bei Oktalzahlen) enthalten, im Gegensatz zu den Dezimalzahlen,
wo 0...9 erlaubt ist.

Subtrahieren wir noch schnell zwei Oktalzahlen voneinander, damit wir das auch getbt
haben:

g8 84 83 g2 gl g
x 0 0 2 0 0 0 (= 1024)
-y 0 0 0 0 3 0 (= 24)
=x-y 0 0 1 5 (= 1000)

(hier muB man sich etwas von der hoheren Stelle "borgen", wenn die x-Ziffer groBer
als die y-Ziffer ist, - wie gehabt!).

Alle Zahlen, mit denen wir bisher zu tun hatten, hatten eines gemeinsam: sie waren
positiv. Doch ein Computer, der nicht auch negative Zahlen akzeptiert, wire nicht
positiv zu beurteilen. Aber wie unterscheidet er sie?

Da muB nun eingestanden werden, dal wir dem geneigten Leser bisher etwas Kleines,
wenn auch Wichtiges unterschlagen haben: das Vorzeichen-Bit, das jedes Computer-Wort
hat. Das neunzehnte Bit in jedem MINCAL-Wort:

N 8 g¢ g3 82 gl g0

E [T T l T T I T T ‘ T T | T T I T ll
Vorsei- 217 20
chenbit

- 17 -

Je nachdem, ob das N-Bit eine O oder 1 enthdlt, ist die Zahl positiv oder negativ.
Und wir vereinbaren, vor jeder negativen Oktalzahl das N-Bit durch ein Minuszeichen
darzustellen (das Pluszeichen vor positiven sparen wir uns).

Nun gibt es - leider - zwei Arten, negative Zahlen darzustellen. Die erste: Im N-Bit
steht das Vorzeichen, in den Ubrigen der Betrag der Zahl. Zum Beispiel:

-001750 (= -1000)

So war’s friher beim MINCAL 4.

Die MINCAL 500-Computer haben sich bei ihrer Geburt eine andere Darstellung ausge-
sucht: Negative Zahlen werden als ZWEIERKOMPLEMENT der entsprechenden positiven
Zahl ausgedrickt,

Zundchst: Was ist ein Komplement, besser gesagt, ein EINERKOMPLEMENT? Nun, das
ist die Zahl, die eine andere zur groBten darstellbaren Zahl (in unserem Falle -7777778)
ergdnzt. Beispiel:

001750 (= 1000)
-776027 (= Einerkomplement von 1000)
-777777

(wir addieren einfach die Zahlen und denken uns das Vorzeichen-Bit als Ziffer).

Wir bilden das Zweierkomplement einer Zahl, indem wir zu ihrem Einerkomplement eine
1 addieren:

-776027 (= Einerkomplement von 1000)
+ 1 (=1
-776030 (= Zweierkomplement von 1000 = -1000)

Und das wdre nun unsere negative Zahl.

Rechnen wir ein Beispiel:

002000 (= 1024)
+ (-776030) (= -1000
000030 (= 24)

- 18 -

wobei Sie bitte das Vorzeichen wie ein Bit behandeln, einen Ubertrag dazu addieren
und den im N-Bit entstehenden Ubertrag schlicht vergessen sollten.

Viele Computer begnigen sich, was das Rechnen angeht, mit Addition und Subtraktion
(einige sogar mit dem Addieren allein, wobei das Subtrahieren durch Hinzuzdhlen einer
Zahl erfolgt, die man vorher in ihr Zweierkomplement verwandelt hat). Will man mehr,
so muB8 man das durch eine Folge von Additionen und Subtraktionen programmieren, denn
alle hsheren Rechenarten bauen auf diesen auf.

Andere Rechner hingegen, darunter die MINCALs, konnen noch ein bichen mehr; sie
kennen niamlich Befehle fur Multiplikation (MP) und Division (DV).

Schauen wir uns das einmal an. Wenn man zwei 18-bit-Zahlen miteinander multipli-
ziert, dann entsteht daraus eine Zahl (das Produkt), die doppelt so gro8 sein kann,
ndamlich 36 bit lang. Weil die in unser W-Register nicht mehr hineinpaB8t, erfinden wir
noch ein weiteres, das HILFSREGISTER (oder X-Register), in dem die zweite Halfte des
Ergebnisses (die UNBEDEUTENDEN Stellen) Platz hat, wihrend die erste Halfte (die
BEDEUTENDEN Stellen) im W-Register steht.

Die Instruktion
MP M1
bedeutet also:
<W> . <MI>— W, X

Oder im Bild:

Multiplikand
Multiplikator (Operand)

= [w } l X J Produkt

1. Halfte 2. Halfte

- 19 -

Der Vollstindigkeit halber noch kurz eine Division

DV M1

bei der der W-Register-Inhalt durch den Operanden < M1 > geteilt wird; der Quotient
steht wieder im W- und der Rest im X-Register:

<KW >: <MI>—=W
Rest — X

Oder so:
Dividend
: Divisor (Operand)
=W] Quotient
Rest

Zum SchluB wollen wir ein kurzes arithmetisches Programm schreiben. Die Aufgabe laute:

U vV+Hw +tx.y—z

oder, weil die Zahlen in entsprechenden Speicherpldtzen untergebracht sind:

<M5 >+ (KM3> + <M4>) +<MI> . < M2>— M6

Wir werden sehen, daB wir die Formel in zwei Abschnitten rechnen und ein Zwischen -
ergebnis in einem Speicherplatz aufheben missen; dazu miBbrauchen wir den Platz M6,
wo spdter das Ergebnis stehen soll. Wir fangen mit dem rechten Term an, nehmen uns
dann den linken vor und programmieren:

LD M1

MP M2

R Mé \1. TEILERGEBNIS X#Y

LD M3

AD M4

MP M5 \ 2. TEILERGEBNIS U%(V+W)
AD M6

R M6 \ RESULTAT Z

Man verfolge das Programm Schritt fur Schritt! Und beachte dabei, daf wir uns bei MP
nur fur die "bedeutende" Halfte des Produkts interessieren, die im W-Register steht. Wire
die andere Halfte interessant gewesen, so hdtte nach der Multiplikation der X-Register-
Inhalt ins W-Register transferiert werden mussen. Die Instruktion hierfur heilt TRRX W,

- womit wir auch gleich einen typischen REGISTERBEFEHL kennengelernt hatten.

Rechts stehen Anmerkungen - KOMMENTARE -, die uns die Ubersicht erleichtern sollen;
ein guter Programmierer kommentiert sein Programm, damit andere es verstehen (und er
selbst sich spdter darin zurecht findet).

Womit in diesem Kapitel bewiesen wire, dafl Rechner auch rechnen konnen.

WIE COMPUTER ZEICHEN SCHLUCKEN, ZERSCHNEIDEN, VERSCHIEBEN, ZUSAMMEN-
SETZEN UND WIEDER AUSSPUCKEN

Bis jetzt war unser Computer nur mit sich und seinem Innenleben beschdftigt. Wir wollen
ihm nun die Augen offnen, damit er sieht, was um ihn herum vorgeht. Irgendwie muf er
ja die Daten hereinbekommen, mit denen er umgeht, und irgendwann einmal soll er seine
Ergebnisse ausspucken.

Die Umgebung des Rechners, mit der er Informationen austauscht, die PERIPHERIE, kann
man als eine Art Speicher auffassen, jedenfalls vom Standpunkt des Programmierers aus.
Jedes an den Computer angeschlossene Gerdt, mag es nun eine Schreibmaschine, ein
Lochstreifenleser oder -stanzer, eine MefBstelle, eine Anzeigeeinheit oder sonst etwas
sein, bekommt eine EXTERNE ADRESSE (oder GER;&TE-ADRESSE) zugeteilt, und Informa-
tionen (DATEN) werden in Form von Worten ausgetauscht, - ganz wie beim Speicher.
Und wieder ist das W-Register der Tauschpartner.

- 21 -

Nehmen wir als Beispiel einen Lochstreifenleser als externes Eingabegerit. Seine Gerdte-
adresse sei LES (hinter dieser symbolischen Bezeichnung verbirgt sich natirlich wieder eine
3-stellige oktale Adresse), und der EINGABE-Befehl laute IBG; dann bewirkt die Instruk-
tion

IBG LES

das Lesen eines ZEICHENS aus dem Lochstreifen ins W-Register:
Zeichen — W

Zeichnen wir es auf:

! W Arbeitsregister

men—
Leser LES

Zeichen

Wie sieht nun ein solches Zeichen aus? MINCAL-Computer mdgen 8-Kanal-Lochstreifen
besonders gern; sie besitzen - auBer dem Transportloch - acht Lochreihen:

—— Leserichtung

Kandle ¢
¢ ¢ ¢+5«— Transportloch

— N WO
O O OeO O O OO

r

——
1 Zeichen

- 22 -

Ein Zeichen besteht aus 8 Lochern (oder Nicht-Lochern) quer zur Transportrichtung, die
mit einem Mal gelesen und in die rechten 8 Bit des W-Registers ubertragen werden
(wobei Loch =1 und Nicht-Loch = 0 bedeutet):

Kandle

- N W Hh OO

Genau genommen, inferessiert uns Kanal 8 nicht -, wie wir gleich sehen werden. Mit
LES sei gemeint, daB nur die Kandle 1 bis 7 Ubertragen werden; das Zeichen wird
MASKIERT. Die zu LES entsprechende Adresse enthdlt also eine FORMAT-Angabe
(7-bit-Format in unserem Falle).

Was ksnnen nun die 8-Kanal-Zeichen bedeuten? Dariber ist eine Vereinbarung zu

treffen, ein CODE. Nehmen wir einen gebrduchlichen, den ASCIlI- (oder 1SO-7-)-Code;
jeder Buchstabe und jede Ziffer haben ein bestimmtes Code-Zeichen, zum Beispiel:

Kanal: 7654321 oktale ASCl1-Code-

Bit : 26420 Darstellg. Bedeutung

0110000 060 Ziffer 0

% 0110001 061 "o

* 0110010 062 "2
0110011 063 "3

% 0110100 064 "4
0110101 065 "5
0110110 066)

% 0110111 067 w7

+ 0111000 070 "8
0111001 071 "9
1000001 101 Buchstabe A
1000010 102 " B

usw.

- 23 -

Und Kanal 87? Der ist eigentlich uberflussig = und doch sehr wichtig: Im Sireifen ist er
immer dann gelocht, wenn die Summe der Ubrigen Locher im Zeichen ungerade ist. Man
kann dann prifen, ob die Gesamtsumme immer gerade ist (0, 2, 4, 6 oder 8), auf daf3
kein Loch zu viel oder zu wenig gelesen werde. Kanal 8 ist also ein Prif- oder PARITY-
Bit. Wo es auftaucht, haben wir oben einen Stern hingeschrieben.

Nun zur AUSGABE, die wir ganz schnell hinter uns bringen. Das Ausgabegerdt sei eine
mit FSS bezeichnete Fernschreibmaschine; sie arbeite mit unserem 8-Kanal-Code, und der
Ausgabebefehl heile OBH . Dann ist

OBH FSS
die Ausgabe-Instruktion, die
< W >—» Fernschreiber

bewirkt:

Arbeitsregister

N

Fernschreiber

Wieder werden die rechten 8 (oder 7) Bit des W-Registers herangezogen.

Jetzt hatten wir das leidige (und zugegeben etwas langweilige) Kapitel der Ein/Ausgabe
beinahe hinter uns gebracht. Ganz fertig sind wir noch nicht damit, denn so, wie wir
die Codes lesen, kann sie unser Computer noch nicht verdauen. Bendtigt er doch keine
ASClI-Zeichen, sondern bekanntlich Bindrzahlen, um damit zu rechnen. Also machen wir
uns welche!

Wir stellen uns eine Aufgabe: 2 ASClI-Zeichen, die eine 2-stellige Dezimalzahl enthal-

ten, sollen eingelesen, mit einer Konstanten CON multipliziert und als Produkt 2-stellig
ausgeschrieben werden.

- 24 -

Fangen wir an. Das erste Zeichen wird eingelesen:
IBG LES

Im W-Register steht ein 7-bit-Zeichen. Davon interessieren uns nur die letzten 4 (denn
die stellen die Dezimal-Ziffer in bindrer Form dar: BCD-Darstellung genannt: bitte in
der ASCli-Tabelle selbst nachsehen!). Also schneiden wir die anderen ab:

FA MA4

FA ist ein LOGISCHER Befehl, die sogenannte UND-Operation (oder konjunktive Ver=-
kntpfung):

<W> & < MA4>—-W

die bewirkt, daB nur die Bits eine 1 behalten, die im W-Register und im Operanden schon
eine 1 hatten. MA4 ist eine entsprechende MASKE. Wir vollziehen das fur die Dezimal-
ziffer 5 einmal nach:

0110101 (= ASCII-Zeichen "5
000000000000001111 (= Maske MA4)
000000000000000T0T (= BCD-Ziffer "5")

Dann verschieben wir den Inhalt des W-Registers um 4 Bit nach links und transferieren
den Inhalt in einen Zwischenspeicher ZWS:

SLLW 4,
TR ZWS

SLLW bedeutet "SCHIEBE links logisch W-Register", in unserem Falle um 4 Bit, mit fol-
gendem Ergebnis:

00000000001010000
| E—

(und somit hdtten wir schon einen der SHIFT-Befehle kennengelernt).

- 25 -

Wir lesen das zweite Zeichen und maskieren es auf die gleiche Weise:

IBG LES
FA MA4

Und dann figen wir das erste, in ZWS aufgehobene Zeichen dazu
FO ZWS

FO ist auch ein logischer Befehl, ODER genannt (genauer: inklusives Oder, auch dis-
junktive Verknupfung genannt). Hier erhdlt jedes Bit eine 1, in dem im W-Register oder
im Operanden (oder in beiden) eine 1 schon stand:

<W> v < ZWS'>S=W

Jetzt stehen unsere beiden Ziffern schon 4-bit-weise (in BCD-Darstellung) nebeneinander

in W:

0000000000000001011001
5 9

(Beispiel: die zweite Ziffer war eine 9).
So weit, so gut. Aber noch immer ist keine Bindrzahl daraus geworden! Zum Glick hat

unser Computer (weil's ein MINCAL ist) einen Umwandlungsbefehl VBR, der die KONVER-
SION der Dezimal- in eine Bindgrzahl durchfihrt. Wir schreiben also

VBR
was im W-Register
bin < W>—=>W

bewirkt, und endlich haben wir unsere Bindrzahl.

- 26 -

Wenn wir jetzt noch unsere Multiplikation mit CON durchfthren, das Produkt wieder in
eine Dezimalzahl zurickverwandeln und als zwei ASCIl ausgeben, ist unser Programm fer-
tig. Wir schreiben es einfach hin und tberlessen es dem beflissenen Leser, Instruktion fur
Instruktion zu verfolgen und zu verstehen (sofern er dies auf sich nimmt):

LMD IBG LES ‘1. ZEICHEN LESEN
FA MA4 \ MASKE
SLLW 4. \'4 MAL LINKS
TR ZWS
IBG LES \' 2, ZEICHEN LESEN
FA MA4 \ MASKE
FO ZWS \ VEREINIGEN
VBR \ BINAERUMWANDLUNG
MP CON \ MULTIPLIKATION
VDR \ DEZIMALUMWANDLUNG
TR ZWS
SRLW 4. \ 4 MAL RECHTS
FO ASC \ ASCII-ZEICHEN
OBH FSS ‘' 1. ZEICHEN DRUCKEN
LD
FA MA4 \ MASKE
FO ASC \ ASCII-ZEICHEN
OBH FSS \ 2. ZEICHEN DRUCKEN
ZWS VvV
CON 4711

B
MA4 O g7
ASC O pgpeges

Noch ein paar kleine Hinweise dazu: Unser Programm soll einen Namen haben: LMD
(Lesen/Multiplizieren/Drucken), den wir als LINKSMARKE vor die erste Instruktion
schreiben. SRLW ist der zu SLLW analoge Befehl fur Rechisverschiebung, und VDR kon-
vertiert eine Bindr- in eine Dezimalzahl.

Da wir im Programm einige Zwischenspeicher, Konstanten und Masken benutzen, missen
wir sie auch irgendwo im Programm definieren, jeweils mit einer Linksmarke davor (damit
sie das Programm auch findet). Das tun wir mit den Symbolen V (Variablenspeicher, hier-
fur ein Wort freihalten!), B (Bindrzahl, im Beispiel 0.4711) und O (Oktalzahl, im Bei-
spiel die erwdhnte Maske MA4 und ein Bit-Muster ASC, das mit der BCD-Ziffer geodert
ein ASCII-Zeichen ergibt), - welches schon die wichtigsten DEFINITIONEN unserer sym-
bolischen Programmsprache sind.

Beachte, lieber Leser: In symbolischen Programmen durchstreichen wir die @ (Null), um

sie besser vom O (Oh!) unterscheiden zu kdnnen. Man wei3 ja: Computer nehmen's
genau, und wir sollten da nicht zurickstehen.

- 27 -

WIE EIN PROGRAMM SPRUNGE MACHT UND SICH IM KREISE DREHT

Betrachten wir noch einmal das Programm LMD im letzten Kapitel. Es lduft von oben
nach unten und fihrt - wie sich der fleiBige Leser inzwischen Uberzeugt haben wird -
unsere Aufgabe richtig durch. Aber dann?

Wenn wir es einfach weiterlaufen lassen, wird es das Wort ZWS als Instruktion auffas-
sen und je nach dessen Inhalt irgendeinen Unsinn machen, was wir als zielbewuBte und
serisse Programmierer doch nun wirklich nicht wollen.

Es muB also dort, wo wir in weiser Voraussicht drei Punktchen Abstand gelassen haben,
etwas eingebaut werden, was das Programm veranlaft, woandershin zu gehen: Eine

VERZWEIGUNG.

Nehmen wir an, wir wollten danach zu einem Programmteil XYZ:

Lesen
Multipliz.
Drucken

dann setzen wir statt der 3 Punktchen die Instruktion

BR XYZ

ein, was heilt: Verzweige nach XYZ. Dahinter verbirgt sich naturlich die Adresse des
Speicherplatzes, in dem die ndchste auszufihrende Instruktion steht; XYZ muB im sym-
bolischen Programm als Linksmarke vor der betreffenden Stelle erscheinen.

Verzweigungen werden Ubrigens dadurch ausgefihrt, dafl der Instruktionszdhler (das
N-Register) auf die betreffende Adresse gesetzt wird.

Statidessen hdtten wir auch nach LMD zuriickverzweigen kénnen:

BR LMD

- 28 -

wodurch sich der Vorgang, wie er im vorigen Kapitel beschrieben ist, immer und immer
wiederholt. Ein Zeichen-Paar nach dem anderen wird gelesen, verarbeitet und gedruckt:

Lesen
Multipl.
Drucken

L]

Aus dieser PROGRAMMSCHLEIFE kommen wir allerdings nie wieder heraus; der Streifen-
leser liest und liest und liest, der Fernschreiber druckt und - und so weiter.

Erlosen wir das Programm und sagen: Es sollen genau 100 Zeichen-Paare (100 2-stellige
Dezimalzahlen) gelesen und verarbeitet und dementsprechend 100 Werte gedruckt werden.
Dazu brauchen wir einen Zihler.

Wir entdecken dabei einen neuen Typ von Registern: das INDEXREGISTER. Jeder Com-
puter, der diesen stolzen Namen verdient, hat wenigstens ein solches (die MINCALs
haben 3 davon). Wir benutzen es als Zshler, setzen es zundchst auf 100, ziehen nach
jedem Durchlauf eins ab und fragen, ob es Null geworden ist:

Y

100> i
LMD 100mal
i-1—i
NEIN

- 29 -

Wenn nein, geht das Programm nach LMD zurick; wenn ja, und das ist nach dem
hundertsten Durchlauf der Fall, nach XYZ.

Das zugehtrige Programm sieht so aus:

LDC1 199.

LMD
Programm LMD (siehe voriges Kapitel)
ADCI-1.
BZ 1 XYZ
BR LMD

Jetzt haben wir allerdings einiges zu erkldren!
LDC] 149.

bedeutet: Lade die Konstante 100 in das Indexregister Nr.1. Und
ADCI1-1.

heiBt: Addiere zum Inhalt desselben die Konstante (=1); es wird also eins abgezogen.
LDC und ADC sind FESTWERT-Befehle; im AdrefBteil steht ausnahmsweise keine Adresse,
sondern der Operand selbst.

Die "1" danach gibt die Nummer des Indexregisters an (weil es davon mehrere gibt);

sie ist nicht Bestandteil des Befehls, sondern bildet seine ERGANZUNG, - womit gleich
eine Erkldrung fur diesen mystericsen Bestandteil der Instruktion nachgeliefert ware. Ubri-
gens bezeichnen wir der Einfachheit halber den Inhalt des Indexregisters 1 mit i, als
LAUFINDEX.

Fassen wir noch die Abfrage-Instruktion
BZ 1 XYZ

ins Auge. Sie lautet: Verzweige nach XYZ, wenn Indexregister 1 Null ist, und gehort
zur Gruppe der BEDINGTEN VERZWEIGUNGEN. Der Sprung nach XYZ wird nur ausge-
fuhrt, wenn der Inhalt des in der Ergdnzung erwdhnten Registers Null ist; andernfalls
wird die ndchstfolgende Instruktion ausgefihrt.

- 30 -

Schleifen sind des Computers Lieblingsspeise (besonders mit einem Indexregister - wobei
wir dessen Nutzen bisher nur zur Hilfte entdeckt haben). Aber deshalb sollten wir ihn
nicht einen Wiederkduer schimpfen. Denn Programmschleifen sind praktisch und platz-
sparend. Oder wirde jemand vorschlagen, in unserem Beispiel 100mal hintereinander
das Programm LMD zu schreiben?

Was aber tut man, wenn der Programmteil (die ROUTINE) LMD mal hier, mal da im
Programm gebraucht wird? Schleifenbinden ist unméglich, und die Routine jedesmal neu
schreiben ist Platzverschwendung und langweilig dazu.

Zum Gluck gibt es die Moglichkeit, LMD als UNTERPROGRAMM (oder Subroutine)
aufzufassen und mit einem Befehl CS aufzurufen:

CS U LMD

Dabei geschieht zweierlei: Erstens springt das Programm zur Stelle LMD, und insofern
verhdlt es sich wie bei einem Verzweigungsbefehl. Vorher aber, und das ist das Beson-
dere daran, wird der Programmstand N (um 1 vermindert) als RUCKKEHRADRESSE in ein
Register Ubertragen, das als Ergiénzung angegeben ist; in unserem Beispiel das U-Register,
welches wir bei dieser Gelegenheit gleich vorstellen konnen. Und wenn das Unterpro-
gramm zu Ende ist, programmieren wir den RUCKSPRUNG ins HAUPTPROGRAMM (das
heiflt an die Stelle nach dem Aufrof CS...) mit

TRRU N

was heiflt: Transferiere den Inhalt des U-Registers (die Ruckkehradresse) ins N-Register.
Worauf das Spiel an anderer Stelle des Hauptprogramms wiederholt werden kann:

LMD

LMD

- 31 -

Es ist wohl an der Zeit, ein kldrendes Wort uUber die Kdstchen zu sagen, die in diesem
Kapitel aufgetaucht sind. Sie sind Bestandteile von Programmablaufpldnen (kirzer:
BLOCKDIAGRAMMEN) und sollen Programmverldufe anschaulich darstellen. Die Kist-
chen werden durch Pfeile so miteinander verbunden, wie sie im Programm aufeinander-
folgen, und zwar immer schon von oben nach unten und wenn méglich von links nach
rechts.

Die wichtigsten grafischen Symbole seien kurz erwihnt:
1

100~ i Allgemeine Verarbeitung:
Ein Kastchen fur alles, wofur es kein spezielles
Késtchen gibt.

Unterprogramm=-Aufruf

J Bedingte Verzweigung mit Ausgdngen fur JA und
NEIN

Manuelle Eingabe aus der Peripherie

Ausgabe auf Registriergerdt

Lesen oder Stanzen eines Lochstreifens

ich
Yitiag (im Zweifelsfall hineinschreiben)

Langerer, definierter Programmteil (ROUTINE,
PROZEDUR, ALGORITHMUS - und was der
Namen mehr sind)

Verkntpfungspunkt (CONNECTOR) bzw. Beginn
eines Programmteils bzw. markanter Punkt im
Programm

Anhalten des Programms; es muB3 einen Anstof3
von auBen bekommen, damit es weitergeht

o @ TG 1

-32 -

Noch ein Wort zum letzten Symbol:

HLT

heilt "Anhalten Programm" und ist ein STEUERBEFEHL.

Zeichnen wir zum AbschluBB noch das Blockdiagramm unserer Routine LMD auf, und zwar

als Unterprogramm;

MASKE

4x links
— ZWS

MASKE
IV:QWZWS

L
BINAR
Iy

<W>.<CON>
W

DEZ1~
MAL

—ZW5
4x rechts

ASCII

UNTERPROGRAMM LMD

1. ZEICHEN LESEN

2. ZEICHEN LESEN

VERARBEITUNG

-

1 Zeichery 1.ZEICHEN DRUCKEN

PR
ZWS*W
ASCII

1 Zeiche% 2.ZEICHEN DRUCKEN
O RUCKSPRUNG

- 33 -

Womit wir am Ende unseres Exkurses widren, hdtten wir nicht noch einiges unterschlagen,
was zu wissen wichtig ist.

WIE DIE ENTFERNTESTEN WINKEL DES SPEICHERS ERREICHT WERDEN

Erinnern wir uns an die Darstellung der Adresse im Maschinencode. Die Instruktion
OPQAAA halt 9 Bit (= 3 Oktalstellen AAA) fur sie bereit. Ein bichen wenig eigent-
lich, denn damit kann man nur 27 = 1000g = 512 Speicherplétze erreichen. Was tun,
wenn der Speicher grofler ist (und das wird im allgemeinen der Fall sein)?

Zuntchst kann man die ersten 512 Worte mit dem AdrefBteil AAA bedienen, also die
Adressen 0000g bis 0777g. Diesen Bereich nennen wir die SEITE NULL des Speichers,
und Instruktionen, die dorthin zugreifen, heiflen ABSOLUT adressierts

Absolute Adressierung: Effektive Adresse = AdrefBteil

wobei wir, wie auch im folgenden, unter EFFEKTIVER Adresse diejenige verstehen wollen,
welche den Operanden enthdlt, mit dem die Instruktion arbeiten soll.

Daneben gibt es zwei Methoden, Adressen in der Nachbarschaft der jeweiligen Programm-
instruktion zu erreichen. Bei der ersten denkt man sich den Speicher in weitere Seiten von
je 512 Worten eingeteilt, und dann kann man alle die Plétze der Seite erreichen, in der
die Instruktion selbst steht. Diese Art heifst SEITENWEISE Adressierung (und wiirde beim
MINCAL 4 verwendet):

Seitenweise Adressierung: Effektive Adresse = Seiten-Anfangsadresse
+ Adrefteil AAA

Die zweite Methode laBt es zu, jeweils maximal 511 (= 777g) Pldtze vor oder hinter der
Instruktion zu bedienen (je nach Vorzeichen); man nennt sie RELATIVE Adressierung (und
findet sie beim MINCAL 500):

Relative Adressierung: Effektive Adresse = Adresse der Instruktion (N)
AdreBteil AAA

|+ 1

- 34 -

Zeichnen wir uns diese Moglichkeiten einmal auf:

512 Worte
(gleiche

Seite) 1 b /

1023 Worte

*~ INSTRUKTION (relativ adressiert)

o
S
w0 |

stets erreichbar)

MINCAL 4 MINCAL 500

(Ubrigens braucht man bei symbolischer Programmierung auf diese Adressierungsart
nur insoweit zu achten, als man sich Uber die Erreichbarkeit im klaren ist. Der Unter-
schied steckt in Vorzeichen und Ergidnzung der Maschineninstruktion).

Wie kommt man aber an Speicheradressen heran, die auBlerhalb der absolut, seitenweise
oder relativ erreichbaren Grenzen liegen?

Hier hilft die INDIREKTE Adressierung, und das geht so: Wir reservieren im erreichbaren
Gebiet einen Platz, dessen Adresse wir in der Instruktion programmieren, und legen dort
die effektive Adresse des weit weg liegenden Platzes ab:

Indirekte Adressierung: Effektive Adresse = Inhalt der programmierten Adresse.

Beispiel: Der Inhalt des fveit entfernten) Platzes SP A soll zum W-Register addiert werden.
Wir machen ein Speicherwort SPX in der Nthe unserer Instruktion (oder auch in Seite 0)
auf und programmieren:

ADY SPX

SPX Y SPA

- 35 -

wobei ADY "Addiere indirekt" bedeutet und Y... die Definition fur "Adresse ..." ist.

Im Bild sieht das so aus:

E._ Effektive Adresse SPA

|

° <+— Programmierte Adresse SPX
(<SPX> = SPA

bt <+— |nstruktion ADY SPX

(Fur Interessenten: Enthdlt bei SPEICHERBEZOGENEN Befehlen das letzte Bit des Befehls-
codes OP eine 1, findet indirekte Adressierung statt).

SchlieBlich gibt es noch eine dritte (und, geduldiger Leser, letzte) Kategorie der
Adressierungsarten: die INDIZIERUNG. Die Regel hierfur lautet:

Indizierte Adressierung: Effektive Adresse = direkt oder indireki gefundene Adresse
+ Inhalt des angesprochenen Indexregi-
sters

Und diese Eigenschaft macht die Indexregister erst richtig wertvoll. Folgendes Beispiel
mag ihre Funktion erkldren: Die Daten von 20 MefBstellen (mit aufeinanderfolgenden ex-
ternen Adressen, beginnend bei MES) sollen abgefragt und in ein FELD von 20 Speicher-
plidtzen Ubertragen werden, dessen erste Adresse SPE sein mdge. Wir benutzen das Index-
register 3 und nennen seinen Inhalt den Laufindex k.

- 36 -

Zunidchst das Blockdiagramm (wir bauen wieder eine Schleife):

Und dazu das Programm:

EIN LDC3 g.
REP IBG 3 MES \ MESSEN
TR 3 SPE \ SPEICHERN
ADC3-19.
BZ 3 AUS \K =192
ADC 3 2¢.
BR REP
SPEF 2. \ SPEICHERFELD
MES X 709 { ZUORDNUNG

Woraus wir noch dreierlei lernen: Auch Ein- und Ausgabebefehle - wie IBG in unserem
Beispiel - sind indizierbar. Speicherfelder darf man nicht vergessen zu definieren, und
zwar mit dem Symbol F unter Angabe der FeldgrsBe in Worten. Und die Marken fur
externe Adressen bedirfen der Zuordnung einer Oktalzahl (Definition X) - sonst weif3
der Computer nichts damit anzufangen.

Und jetzt wiren wir wirklich am Ende. Nur eine kleine Sprachregelung steht aus.

- 37 -

WIE MAN SICH MIT SEINEM COMPUTER UNTERHALT

Lassen wir einmal alle graue Theorie beiseite, lieber Leser, und vergessen wir das
Computer-ABC (Adressen, Bits, Codes, ...). Reden wir davon, wie Sie mit lhrem
Rechner reden sollen.

Da gibt es eine kleine Schwierigkeit: lhr Maschinchen spricht seine eigene Sprache,
Maschinensprache. Diese missen Sie wohl oder Ubel lernen, wenigstens so weit, dafl
eine gewisse Verstindigungsbasis erreicht ist. Dann konnen Sie den Speicher Instruktion
fur Instruktion, Wort fur Wort damit fullen (entsprechende Knopfe und Schalter halt lhr
Computer fir Sie bereit, und in vielen Fillen auch einen Blattschreiber mit Tastatur und
einen Lochstreifenleser).

Aber ganze Programme in dieser Weise schreiben? Befehlscodes memorieren, Adressen
rechnen, Zahlen aus Tabellen zusammenholen? Sie weisen das mit Recht entrustet von
sich! Kann man das Ding denn nicht in symbolischer Sprache fittern, an die wir uns so
sehr gewshnt haben?!

Gewill - eben daran hat lhr Computer-Bauer schon gedacht. Denn neben der HARDWARE
- den Gerdtschaften Rechner samt Peripherie - liefert er lhnen (unter anderem) ein bil3-
chen SOFTWARE, ein Umwandlungsprogramm vor allem fur die Ubersetzung symbolischer
in Maschinensprache, ASSEMBLER genannt (weshalb die symbolische Programmiersprache
auch Assembler-Sprache heif3t).

Sie futtern lhren Rechner mit dem Assembler (einem langen Stick Lochstreifen) und
stellen erfreut fest, daB seine Verstdndigungsbereitschaft erheblich gestiegen ist. Er
versteht auf einmal alle Ihre Anweisungen, Ubersieht milde alle Kommentare, reserviert
Speicherpldtze, merkt sich Marken, wandelt Zahlen um und vieles mehr. Er hilft lhnen
sogar, indem er ungultige oder Uberflussige Eingaben hflich aber bestimmt zurickweist
und fehlende anmahnt. Und zum SchluB spuckt er einen Lochstreifen aus, der lhr Pro-
gramm in Maschinencode enthilt, mit denSie ihn dann wieder fittern.

Worauf Sie dann aber selbst probieren missen, ob es auch richtig lduft, - denn mitdenken
konnen die MINCAL-Computer (noch) nicht.

- 38 -

Spezifikationen

TECHNISCHE DATEN

MINCAL 513 und MINCAL 523 sind zwei verschiedene Zentraleinheiten des gleichen
Computer-Systems. Sie unterscheiden sich hinsichtlich ihrer Konfiguration und ihrer
Ausbaufshigkeit; im Ubrigen sind sie strukturell vsllig gleich.

Typ:

Programmierung:
Wortlange:
Verarbeitung:

Kernspeicher:

Parity-Logik:

Festspeicher:

Technologie:
Instruktionen:
Instruktionsldnge:
Arbeitsregister:

Indexregister:

MINCAL 513 MINCAL 523

Universal-Computer fur ProzeBanwendungen und technisch-wissen=
schaftliche Datenverarbeitung

Speicher-, fest- oder mischprogrammiert
19 bit (Vorzeichen + 18 Datenbits)
Parallel (wortweise)

Ferritkernspeicher 20 bit (19 bit + Paritybit), 1.5 us Vollzyklus
in Zentraleinheit enthalten:

0.25 kWorte, oder 4 kWorte, oder
1 kWorte, oder 8 kWorte
4 kWorte

extern erweiterbar:

- bis 32 k in Einheiten von 4 k
(Option) I (Option)

ROM-Einheiten (folien-programmiert) 0.5 k/19 bit; 0.75 us Zyklus-
zeit
in Zentraleinheit enthalten:

max. 4 kWorte max. 2 kWorte
(= 8 Einheiten) (= 4 Einheiten)
davon stets 1 Einheit fur Mikroprogramm Grundbefehle; ferner je 1

Einheit fur erweiterten Befehlsvorrat und 1 Einheit fur Programmier-
hilfe Xg@ (Optionen)

Integrierte Schaltkreise (TTL)

74 Maschinenbefehle sowie 5 Typen von Mikrobefehlen
1 Wort

1 Haupt-Arbeitsregister + 3 Zusatzregister je Ebene

3 Indexregister je Ebene

- 39 -

Ebenen:

Interrupt:

X-Kanal:

PX-Kanal:

DMA-Kanal:

DMI-Zusatz:

Interfaces:

Froniplattes

Stromversorgung:

MINCAL 513 | MINCAL 523

2 Programmebenen | 8 Programmebenen

mit getrennten Registern und hierarchischer Prioritat
erweiterbar auf:

- bis zu 64 Programmebenen
in Stufen von 8

Durch Wechsel der Programmebene bei Ende jeder Operation
moglich

Schneller Datenkanal fur programmgesteuerten wortweisen Daten=
transfer zur Peripherie.

Je 19 Daten-Ein/Ausginge, 15 AdreBeinginge, Ebenen-Ausginge,
Ebenen~Starteingtnge, Steuersignale. TTL-Schnittstelle. Bis ca.

20 kWorte/s.

Gepufferter Datenkanal fur Daten- -
transfer mit reduzierter Geschwin-

digkeit. Transistor-Schnitistelle

(30 V).

(Option)

- Datenkanal fur fremdgesteuerten
wortweisen Datentransfer zur
Peripherie (direkter Speicherzu-
griff). TTL-Schnitistelle. Bis 667
kWorte/s.

(Option)

- 8 Speicher-Zshlkandle, extern auf
bis zu 64 erweiterbar.

(Option)

8- oder 5-Kanal-Fernschreiber I 8-Kanal-Fernschreiber
(Option)

Schnelle Lochstreifenausristung I Schnelle Lochstreifenausriistung
(Option) (Option)

oder Sonder-Interfaces
Enthdlt Bedienungskonsole mit 20-bit-Datenanzeige, 19 Datentasten,
16 AdreB-Vorwahlschaltern, 5 Zustands- und 3 Prifanzeigen, 7

Sensorschaltern sowie 14 weiteren Tasten und Schaltern.

Liefert alle Versorgungsspannungen fir die Computer-Zentraleinheit.
Netzausfallschutz mit und ohne Wiederstart (Option).

- 40 -

MINCAL 513 MINCAL 523

NetzanschluB: 220 V +10 % 50 Hz einphasig
Leistungsaufnahme 0.6 kVA

Crdfle: 19"-Einschub
10 Einheiten hoch (ca. 445 mm, einschlieBlich Stromversorgung)
ca. 580 mm tief

Gewicht: ca. 65 kg

Operationszeiten:
Befehlsgruppe Operationsdauer (us)
Steuerbefehle 7.5... 9.25 us
Register-Befehle 6.75...13.5 wus
Speicher-Befehle 6.0 ...35.0 wus

Ein/Ausgabe-Befehle 10.5 ...40.0 us + Arbeitszeit des externen Gerites

Komplexe Befehle
(erweiterte Arithmetik) 20.25...390 us

- 4] -

Struktur
WORTSTRUKTUREN

Die MINCAL 513/523 sind bindgre Parallelrechner; Daten und Befehlsworte liegen in
bindgrer Form vor und werden bit-parallel, d.h. wortweise verarbeitet. Das gilt sowohl
fur den Austausch von Daten zwischen der Recheneinheit und den Speichern sowie der
Peripherie als auch fur die Verarbeitung innerhalb der Recheneinheit.

Ein Wort hat beim MINCAL 513/523 insgesamt 19 bit (1 Vorzeichen-, 18 Datenbits).
Jeder Kernspeicherplatz besitzt dariberhinaus ein weiteres Bit, das als Prifbit (Parity)
benutzt werden kann.

Typische Wortstrukturen sind:

Bindrzahl mit Vorzeichen und 18 bit (6 Oktalstellen):

N[i7hshsTialiahiz i liol e Talo Te TsTalala i T
3|2 20

Vorzeichen

Negative Zahlen werden in Form des Zweierkomplements dargestellt.

Dezimalzahl (Ganzzahl) mit Vorzeichen und 4 1/2 Dezimalstellen:

Nh7hsfishiahisha]ntiole T)7 6 s lafal2 1 To

$12 1]8 4 2 1|8 4 2 1|8 4 2 1]8 4 21
—
Vorzeichen Dezimalstelle

Alphanumerisches Wort mit 3 Zeichen:

1heishiahishiz[nTioleTaTaTe [sTaTaT2a T T
1. Zeichen 2. Zeichen 3. Zeichen

z

Adreflwort:

wwiahizfuholefsl7Te[slalafaliTo
1000er 100er 10er ler

z
3
>
Iz

«+—— 512 Worte —»

Erneute 44— LK Worte —»

Substi-

tution

Ebenen- Festprogramm-
Bindung Speicher

+———— 32K Worte —»

- 42 -

Maschinenbefehl:

NTi7TeTisliananiz|iitolelsl71s |5 4l3[2liTa

[[¢] P Q A A A
T — ——
Vorz. Befehl Ergdnzung Adresse

Mikroinstruktion (Bedeutung der Stellen je nach Typ unterschiedlich):

z

1hehsfiahishizfnliolefet7Te[sTalalzTiTo

MIKROSTRUKTUR

Zur Verarbeitung der Informationen wihrend eines Operationsverlaufs dient eine Reihe
von Komponenten in der Recheneinheit, die mit dem Kernspeicher, dem Festprogramm=
speicher und den Datenkandlen in Beziehung stehen:

KERN- FESTPROGRAMM
SPEICHER I SPEICHER
Speicher- Puffer Mikroinstruktion Stutusregister
—————
1
B D ' E
| S
L] i ¥ < MIKROPROGRAMM TAKTGENERATOR
LOGIK
L] A C
Adrefiregister Mikroprogrammzdhler

- 43 -

A, B und D sind 3 Flipflopregister von Wortltinge. Register B dient als Speicherpuffer
und zugleich °als erstes Datenregister; Register A als AdreB- und zweites Datenregister;
beide sind mit einem Addier- und Verschiebeelement = verbunden. Register D enthdlt
vorwiegend die Mikroinstruktion, die von der Mikroprogramm=-Logik: interpretiert und
in Steuerbefehle umgesetzt wird. Das Statusregister E mit 8 bzw. 20 bit speichert
wichtige Zustinde bzw. zusdtzlich die jeweils anstehende Programmebene; Register C
ist ein 12-bit-Zghler, der die Mikroprogramm=-Schritte bestimmt. Der Taktgenerator
stevert den Ablauf der Zyklen.

Der Zustand der Recheneinheit ist nur wihrend eines Maschinenbefehls bzw. eines
Mikroprogramms von Bedeutung. Eine genaue Beschreibung “ihrer Funktion und ihrer
Verknifpungen findet sich im Abschnitt "Mikroprogrammierung".

Fur den Benutzer, der nur Maschinen- (ASSEMBLER-) Befehle verwendet - d.h. fur
den Normalfall - ist die Kenntnis der Mikrostruktur nicht erforderlich.

REGISTER

Der Kernspeicher des MINCAL 513/523 hat je nach Ausbauzustand 256, 1024, 4096
oder 8192 Pldtze von Wortlinge (extern kann er bis auf 32768 Worte erweitert werden);
jeder Platz kann einen beliebigen Dateninhalt haben, der gelesen und gelsscht, zuriick-
geschrieben oder verdndert werden kann. Die ersten 8 Pldtze des Kernspeichers mit den
oktalen Adressen 0000...0007 haben die Funktion von besonderen Registerpldtzen mit
der Bedeutung:

Adresse Bezeichnung Funktion

0000 u Sonderregister/Riickkehradresse
0001 \ linkes Hilfsregister/Ruckkehradresse
0002 w Arbeitsregister
0003 X rechtes Hilfsregister
0004 N Instruktionszahler
0005 I Indexregister 1
0006 12 Indexregister 2
00067 13 Indexregister 3

Diese Register sind fir den Benutzer von Maschinenbefehlen allein interessant. lhr
Inhalt wird beim Ablauf eines Maschinenbefehls in einer durch den Befehl gekenn-
zeichneten Weise abgefragt oder vertndert; wenn der Befehl ausgefuhrt ist, sind alle
fur den Programmverlauf wichtigen Informationen in diesen Registerpldtzen enthalten.

Der MINCAL 513/523 hat mehrere Programmebenen; beim MINCAL 513 sind 2 Ebenen
vorgesehen; beim MINCAL 523 8 (die extern bis auf 64 erweitert werden kénnen). In
jeder Ebene kann der Rechner ein selbstdndiges und von den anderen Ebenen unabhtn-
giges Programm ausfuhren (Multiprogramming). Um dies zu gewdhrleisten, besitzt jede

Ebene einen eigenen Satz von 8 Registern im Kernspeicher; deren Adressen sind
nach der Rangfolge der Ebenen so geordnet, dafB die (oktale) 100er- und 10er-
Adresse der (oktalen) Nummer der Programmebene entspricht:

0107 Ebene 10

0077 Ebene 07

Seite 0

0017 Ebene 01

0007 Ebene 00

il i } |- —) —
0770 | 1 | o777] ebene 77
T L 1 1 T T _
Kernspeicher —
0100
0070
0017
0000 | 0001 | 0002 | 0003 | 0004 | 0005 | 0006
v vV ow o X N 1, I,

]3 <+—Register

Die Programmebenen haben eine feste Rangordnung in der Weise, daB8 jede Ebene
Vorrang vor allen anderen mit niedrigeren Nummern hat. Wird eine Ebene mit h&-
herem Rang gestartet, so wird am Ende der laufenden Operation das Programm der
niedrigeren Ebene unterbrochen, und der Rechner setzt das Programm der hoheren
Ebene fort, indem er deren Register benutzt.

KERNSPEICHER

Der Kernspeicher des MINCAL 513/523 enthélt Programm und Daten in beliebiger
Weise. Die oktalen Adressen der Kernspeicherpldtze lauten:

.25

0 Hh — O

32

~r xR

000000. .
000000. .
000000. .
000000. .

000000. .

.000377
.001777
.007777
.017777

.077777

] MINCAL 513

MINCAL 523

Die ersten 512 Speicherpldtze (Seite 0; Adressen 000000...000777) haben insofern
eine besondere Bedeutung, als sie durch absolute Adressierung von jedem anderen
Platz aus erreichbar sind und bestimmte Befehlsgruppen (Manipulations- und Regi-
sterbefehle) sich auf sie beziehen.

Am Anfang der Seite 0 liegen die Registersttze der einzelnen Programmebenen; bei

64 Ebenen ist die gesamte Seite O von ihnen belegt.

- 45 -

Jeder Kernspeicherplatz enthidlt 20 bit (19 bit + Parity). Das Paritdtsbit wird automatisch
erzeugt und auf ungerade Paritdt Uberpruft. Bei Parity-Fehler erfolgt Rechner-Stop

(auf Anzeige CK3) oder Start einer besonderen Programmebene. Die Parity-Logik ist
eine Option.

FESTSPEICHER

Die Computer MINCAL 513/523 enthalten bis zu 4 bzw. 8 Festspeicher-Einheiten mit
je 512 Worten zu je 19 bit. Die oktalen Adressen der Einheiten lauten:

0 100000...100777 Mikroprogramm Grundbefehle der Benut

1 101000...101777 n erweiterter Befehlsvorrat p OCS" BenUzer=
2 102000...102777 Programmierhilfe X00 programm

3 103000...103777 Benutzerprogramm

4 104000...104777 n

5 105000...105777 n nur bei

6 106000...106777 " MINCAL 513
7 107000...107777 "

Die Einheiten 0 und 1 enthalten Standard-Mikroprogramme, die der Computer zur
Interpretation des Grund- und erweiterten Vorrats der Maschinenbefehle benstigt.

In Platz 2 kann eine festverdrahtete Programmierhilfe (X@@) eingesetzt werden, die
bequemes Einlesen, Andern und Ausgeben von Programmen erlaubt. Das zugehtrige
Programm ist 256 Worte lang und belegt damit nur die erste Hdlfte des Festspeichers;
die andere Halfte kann auf Wunsch ein weiteres Programmpaket erhalten.

Sowohl in Platz 1 und 2 als auch insbesondere in den Ubrigen Pldtzen konnen Fest-
speicher mit Benutzerprogrammen (Maschinenprogramme, Mikroprogramme, Festwerte)
vorgesehen werden. Sie werden vom Hersteller aufgrund von Maschinencode-Lochstreifen
im Oktalformat hergestellt.

In der Grundstellung (nach Betdtigen der Taste END oder bei Netzeinschaltung, wenn
Netzausfallschutz mit Wiederstart vorgesehen ist) steht das N-Register der Ebene 0 auf
102000; die erste dann ausgefihrte Instruktion hat die Adresse 102001 (zweites Wort
im Festspeicher 2). Ist dort die Programmierhilfe X00 enthalten, so wird (wenn kein
Sensor erregt ist) auf Platz 001000 im Kernspeicher verzweigt; dort muf3 die erste
Programminstruktion stehen, die in diesem Falle auszufihren ist.

- 46 -

PROGRAMMEBENEN

Wie bereits erwthnt, besitzt der Rechner MINCAL 513 zwei Programmebenen. Die
Ebene O ist fur das normale Arbeitsprogramm, die vorrangige Ebene 1 fur Programm-
unterbrechungen vorgesehen. Zu jeder Ebene geh&rt ein Satz von 8 Registern im
Kernspeicher; der Rechner bedient sich automatisch der Register der jeweiligen Pro-
grammebene. Auflerdem konnen Teile der Peripherie bestimmten Ebenen zugeordnet
werden.

Eine Programmunterbrechung geht z.B. in folgender Weise vor sich: Wahrend der
Rechner den Maschinenbefehl (n) in Ebene 0 ausfihrt, wird von auBen Ebene 1 ge-
startet. Am Ende der Operation n wird Ebene 1 wirksam und dadurch Ebene O unter-
brochen; der Rechner setzt unverziglich die Arbeit fort, jedoch in der Ebene 1, d.h.
unter Benutzung der betreffenden Register. Die erste Operation wird durch den Stand
(n’) des Instruktionszdhlers der Ebene 1 bestimmt. Das Programm lauft bis zu einem
Halt-Befehl in Ebene 1, wodurch das Programmniveau wieder ausgeschaltet wird; am
Ende dieser Operation wird das unterbrochene Programm in Ebene O mit der Instruk-
tion (n+1) unverzdgert fortgesetzt.

Start Ebene !

R

g HALT Ebene 1
H n n+l Ebene 0

Der Vorzug getrennter Programmebenen mit getrennten Registern liegt einmal darin,
daB Programmunterbrechungen ohne Programmieraufwand beherrscht werden konnen.
AuBerdem besteht, insbesondere wenn die Anzahl der Ebenen gréBer wird und jeder
Ebene auBerdem ein eigener Datenkanal von und zu spezifischen Periphergerdten zu-
geordnet wird, die Moglichkeit, eine Mehrfachausnutzung des Rechners zu erreichen
(Multiprogrammierung). Dies geschieht ohne jeden Programmaufwand, da jede Ebene
eigene Register (Instruktionszdhler, Arbeits-, Hilfs= und Indexregister) besitzt und da-
mit vo&llig unabhiingig von den anderen ist.

Die Anzahl der Programmebenen ist beim MINCAL 523 durch Einbau eines Prioritits-
systems (und Erweiterung des Statusregisters E) auf 8 erhsht, und extern kann die
Ebenenzahl bis auf 64 erweitert werden. Die Ebenen hdben untereinander eine feste
Rangordnung.

Eine Ebene wird entweder von einem dufleren Signal, durch die Fertigmeldung eines
ihr zugeordneten Periphergerits oder mittels eines speziellen Programmbefehls in einer
niedrigeren Ebene, die damit unterbrochen wird. Beendet wird das Programm einer
Ebene durch einen Halt-Befehl.

Durch speziellen Programmbefehl kann erreicht werden, daf3 der Rechner das Programm

in einer Ebene auch dann fortsetzt, wenn eine Ebene mit hoherem Rang gestartet wird.
Diese mit DISABLE bezeichnete Funktion ist nur beim MINCAL 523 vorgesehen.

- 47 -

NETZAUSFALLSCHUTZ

Diese Option bewirkt, daB bei Netzausfall der Rechner mit dem Ende des gerade
ablaufenden Maschinenbefehls bzw. Mikroprogramms angehalten wird; alle Daten
sind im Kernspeicher enthalten und damit gesichert. Die Anzeige CK1 leuchtet
dabei auf.

In der Ausfuhrung "mit Wiederstart" geschieht bei Wiederkehr des Netzes (oder

auch bei erstmaliger Netzeinschaltung) folgendes: Alle speichernden Halbleiterschal-
tungen werden nullgestellt, das N-Register der Ebene 0 wird auf 102000 gesetzt und
die Ebene O wird gestartet (entspricht dem Betdtigen der Tasten RES-END=-STA in die-
ser Reihenfolge.

Ab Adresse 102001 (bzw. bei eingebender Programmierhilfe X00 ab Adresse 001000)
ist ein Programm vorzusehen, das die notwendigen Funktionen fur den Fall der Netz-
wiederkehr vorsieht.

STEUERANSCHLUSSE

An einen Adapterbaustein sind beim MINCAL 513/523 wichtige Steuersignale anschlieB-
bar:

je ein Eingang fur den Start der Programmebenen O und 1 (LSTO, LSTI)

bzw. 0 bis 7 (LST0...LST7)
je ein Ausgang fur "Programm lauft" (PROGR) wnd Programm lauft in
hsherer Ebene" (INTERRUPT)
7 Sensoreingtinge (SRT...SR7)

Die beiden Ausginge werden zur Meldung des erfolgten Starts bzw. des laufenden Pro-
gramms benutzt. Die 7 Sensoreingdnge wirken auf Verzweigungsbefehle, die Sensor-be-
dingt sind, und dienen zur Modifikation des Programmverlaufs; sie entsprechen den
Schaltern auf der Frontplatte.

X-KANAL

Der programmgesteuerte Datenkanal (X-Kanal) des MINCAL 513/523 dient zum schnel-
len Austausch von Informationen mit der Peripherie. Der X-Kanal wird benutzt:

a) zur wortweisen, bit-parallelen Abfrage von Informationen aus Datentrégern bzw. zur
Ausgabe in Datentrdger, die mit integrierten Schaltkreisen bestickt und in réumli-
cher Nachbarschaft des Rechners angeordnet sind, wobei der Datentrdger unabhtingig
von der Programmebene nur durch seine Adresse bestimmt wird,

- 48 -

b) zum bit-parallelen Transfer von Worten oder Teilworten zwischen dem Rechner und
rdumlich benachbarten Puffern, die den Programmebenen zugeordnet sind und die
z.B. Eingabe- und Registriergerdte, Multiplexer und andere Einrichtungen steuern,
deren Arbeitsgeschwindigkeit vergleichsweise gering ist.

Der X-Kanal hat folgende Schnittstellen:

19 Dateneingiinge (SXN, SX17...5X0)

19 Datenausgdnge (ZXN, ZX17...ZX0)

15 bindre AdreBausginge (MX14...MXO0)

1 Ausgang fur nicht-niveaugebundene Ein/Ausgabe (NLX)

16 Ausginge fur niveaugebundene Ein/Ausgabe ([X00...[X17) von und
zu Puffern, die den 8 Programmebenen zugeordnet sind (bei externer
Erweiterung der Ebenenzahl sind weitere Ausginge dort verfigbar)

16 Eingdnge fur Programmstarts (RX00...RX17) bei Fertigmeldung der
Puffer, die den 8 Programmebenen zugeordnet sind (bei externer
Erweiterung der Ebenenzahl sind weitere Eingdnge dort vorgesehen)

Steuerpotential bei Dateneingabe (SX)

Taktimpuls fur Datentransfer nach aulsen (ZTX)

Taktimpuls fur AdreBtransfer nach auBien (MTX)

Steuerpotentiale Eingabegerdt Ein (IBUSY ON)
Ausgabegerdt Ein (OBUSY ON)
Ein/Ausgabegerdt Aus (BUSY OFF)
Fertigmeldung Aus (READY OFF)
Startverriegelung (LOCK)

2 Abfrageeingtinge Gerdt in Aktion (BUSY)

Gerit fertig (READY)
2 Steuerpotentiale fur Blocktransfer Anfang (BXB)
Blocktransfer Ende (BXE)
1 allgemeiner Taktimpuls fur jeden Ein/Ausgabezyklus (TX)

[S; Jepe—m—

Jeder Ein/Ausgabevorgang tber den X-Kanal hat eine Dauer von 1.5 us; wihrend die-
ser Zeit stehen die Potentiale an den Schnittsteller: an. Taktimpu'se liegen am Ende
des Vorgangs und dauern 0.375 us.

Im nicht-niveaugebundenen Datentransfer (Fall a) wird der externe Informationstrager
durch die Adresse MX... sowie zusdtzlich durch den Ausgang NLX identifiziert. Bei
Dateneingabe wird SX erregt; der Inhalt des Informationstrégers wird am Datenein-
gang bereitgestellt und am Ende des Zyklus’ vom Rechner Gbernommen. Bei Daten-
ausgabe stellt der Rechner die Information am Datenausgang bereit und Gberschreibt
sie mit dem Impuls ZTX in den externen Datenempfinger. Wenn erforderlich, kann
auch die Adresse MX... ganz oder teilweise nach auBen Uberschrieben werden; hier-
zu wird der Taktimpuls MTX ausgegeben.

Beim niveaugebundenen Datentransfer (Fall b) wird der Puffer durch den Ausgang LX...
identifiziert, der zur jeweiligen Programmebene gehsrt. Sind je Ebene mehrere Puffer
vorgesehen entsprechend mehreren Ein/Ausgabegeriten, die gleichzeitig und unabhtin-

- 49 -

gig voneinander arbeiten, so wird der Puffer durch die Ausginge MX8...MX3 (ent-
sprechend der aktalen 100er- und 10er-Adrefistelle) zusdtzlich bestimmt. Zu einem
externen Datenpuffer gehort u.U. ein AdrefBpuffer (der zusdtzliche Angaben wie
Ein/Ausgabeformat, MeBstelle usw. speichert) sowie ein Satz von 4 Flipflops fur
die Zustinde "Eingabegerdt" (IBUSY), "Ausgabegerdt in Aktion" (OBUSY), "Gerdt
fertig" (READY) und "Startverriegelung" (LOCK). Die BUSY-Flipflops werden vom
Rechner gesetzt und lssen einen Eingabe- bzw. Ausgabevorgang zwischen Puffer
und Periphergerit aus; ist dieser beendet, so wird das betreffende BUSY~Flipflop
selbsttdtig zurUckgesetzt und das READY-Flipflop eingeschaltet, wodurch ein Pro-
grammstart RX... der zugehdrigen Ebene zugeordnet wird. Der Programmstart kann
dadurch verhindert werden, daB das LOCK-Flipflop vom Rechner gesetzt wurde; er
wird wieder wirksam, wenn LOCK zuriickgestellt wird. READY wird in jedem Falle,
BUSY kann vom Rechner zuriickgestellt werden. Solange READY eingeschaltet (und
LOCK nicht gesetzt) ist, steht der Programmstart RX... an.

Der Verkehr zwischen Rechner und Puffern kennt verschiedene Arten von Ein/Ausgabe-
Zyklen tber den X-Kanal:

Ubernahme: SX st erregt; der Inhalt des Datenpuffers wird dem Daten-
eingang SX... angeboten und vom Rechner Ubernommen.
READY wird ausgeschaltet.

Eingabe-Start: Der Datenausgang ZX... ist nicht durchgeschaltet; mit ZTX
wird Nullinhalt in den Datenpuffer Uberschrieben. Die am
Ausgang MX... bereitstehende Adresse wird mit MTX in den
AdreBpuffer Uberschrieben (falls vorhanden; auch teilweise).
IBUSY wird gesetzt.

Ausgabe: Der Datenausgang ZX... ist durchgeschaltet; mit ZTX wird
der Datenpuffer geladen. Die am Ausgang MX... bereit~
stehende Adresse wird mit MTX in den AdreBpuffer uber-
schrieben (falls vorhanden; auch teilweise). OBUSY wird
gesetzt.

Zustandstinderung: Die BUSY-Flipflops oder READY werden zurickgestellt; oder
LOCK wird gesetzt oder zuriickgestellt.

Zustandsabfrage: Der Rechner fragt ab, ob BUSY oder READY gesetzt sind.

Die Schnittstellen des X-Kanals sind mit integrierten TTL-Schaltkreisen ausgefihrt.
Sie befinden sich auf Adapterkarten und sind Uber spezielle Flachkabel mit den
Puffern usw. zu verbinden, die in unmittelbarer Nihe des Rechners angeordnet sein
mussen. Die Interface-Schaltungen konnen mit Bausteinen der MINCAL 500-Baureihe
aufgebaut werden.

Ein oder zwei Puffer mit Interface-Schaltungen fir spezielle Ein/Ausgabegerite konnen
sich im Rechner befinden.

- 50 -

KONSOL=-PERIPHERIE

Die dem MINCAL 523 zugeordnete (und beim MINCAL 513 auf Wunsch vorgesehene)
Konsol-Peripherie besteht aus

einem 8-Kanal-Fernschreiber (Teletype ASR 33) mit angebautem,
durch Codes ein/ausschaltbarem Locher und Leser

einem 8-Kanal-Streifenleser und einem 8-Kanal-Streifenlocher
(beides Optionen)

Die Interfaces hierzu befinden sich in der Zentraleinheit; die Gerdteadressen sind
00X (Teletype) und 06X (Locher/Leser). Die Konsol-Peripherie arbeitet auf Programm-
ebene 0.

PX-KANAL

Der PX-Kanal (eine Option des MINCAL 513) bietet eine einfache Kommunikations-
moglichkeit mit externen Datentrigern. Er ermdglicht bit-parallele, wortweise Ein-
und Ausgabe von Informationen von und zu maximal 256 externen Datentrigern mift
geringer Ubertragungsgeschwindigkeit.

Der PX-Kanal hat folgende Schnittstellen (Normalausfihrung):

19 Dateneingénge (SPN, SP17...5P0)

19 Datenausgidnge (ZPN, ZP17...ZP0)

3x8 oktal entschlusselte AdreBausginge (MP0O...MP07; MP10...MP17;
MP20. . . MP24)

1 Ausgang "Eingabe" (IP)

1 Ausgang "Ausgabe" (OP)

1 Taktimpuls-Ausgang (TP)

1 Ruckmeldeeingang (RP)

Der AdreBausgang identifiziert den peripheren Datentrdger durch eine der 256 oktalen
Adressen 000..377, wobei durch die Ausginge IP und OP zusatzlich nach Gebern und
Empfingern von Informationen unterschieden werden kann. Am Ende des Eingabevor-
gangs Ubernimmt der Rechner das am Dateneingang anstehende Wort, wahrend er fur
die Dauer eines Ausgabevorgangs ein Wort am Datenausgang bereitstellt.

Der PX-Kanal hat 2 Register. Die Adresse ist im A-Register enthalten, das auszuge-
bende Wort im D-Register. Der Vorgang dauert, je nach 100er-Adresse, entweder eine
im Bereich 0.1...100 ms fest eingestellte Zeit oder unbegrenzt lange. Im ersten Fall
wird am Ende der Ein/Ausgabe-Zeit ein Taktimpuls TP ausgegeben, im anderen der
Vorgang durch ein Ruckmeldesignal RP beendet, das von auBen kommt (Unterscheidung
durch Adrefbit 8, das im ersten Falle 1, im zweiten 0 sein muB3).

- 5] -

Stopzeit

% 4 V% 7)) Adresse MP .., IP
W % % ﬁ Dateneingang SP

Ubernahme

Takt TP bw.

é‘— Rickmeldung RP

Eingabe ((P)

Sp
Stopzeit
v 7% 7] Adresse MP...,0P
W A V ﬂ Datenausgang ZP Ausgabe (OP)

Takt TP bw.

- Rickmeldung RP
Sps

Der PX-Kanal wird in Ebene O Uber normale X-Kanal-E/A-Befehle programmiert. Die
zugehorigen externen Adressen sind 000...777. Adressen Uber 400 bewirken Transfer
mit fest eingestellter Zeit ohne Rickmeldung. Die Adressen evtl. vorhandener Kon-
sol-Peripherie durfen nicht fur den PX-Kanal benutzt werden.

Die Schnittstellen des PX-Kanals sind in diskreten Transistorschaltungen ausgefihrt,
die auf zwei Adapterbausteinen (AdreB- und Datenadapter) angeordnet sind.

DMA-KANAL

Auf Wunsch kann der Rechner MINCAL 523 mit einem Adapter-Baustein fur direkten
Speicherzugriff ausgerustet werden. Die Schnittstellen (integrierte TTL-Schaltkreise)
umfassen einen 19-bit-Dateneingang, einen 19-bit-Datenausgang, einen 15-bit-Adre3-
eingang, zwei Steuereingdnge fur Lese- und Schreib-Betrieb sowie einen Meldeausgang.

Der Speicherzugriff dient dazu, unabhiingig vom Programm Daten von Wortldnge mit
sehr hoher Transferrate in den Kernspeicher einzugeben oder aus dem Speicher zu
lesen. Er arbeitet mit hochster Prioritdtsstufe, indem je Wort ein ACCESS-Zyklus
erregt und das Programm fur dessen Dauer unterbrochen wird (cycle stealing).

Die maximale Transferrate des Speicherzugriffs-Kanals betrdgt ca. 667000 Worte je
Sekunde.

Der DMA-Kanal ist in Verbindung mit Trommel-, Platten- und Magnetbandspeichern
sowie mit schnellen Analog-Digital- Umsetzern erforderlich.

- 52 -

DMI-ZUSATZ

Durch Einbau eines Zusatzes ist es beim MINCAL 523 méglich, programm-unabhén-
gige Zdhlkanile unter Benutzung des Kernspeichers aufzubauen. Jeder Kanal ist
einem Speicherplatz zugeordnet; bei jedem Impuls wird der Inhalt des betreffenden
Speicherplatzes um 1 erhsht. Die Zghlimpulse werden in Flipflops gespeichert; un-
mittelbar darauf bzw. am Ende der n&chsten Mikroinstruktion wird ein ACCESS-
Zyklus von 1.5 us Dauer ausgeldst, wihrend dessen der Inhalt des Speicherplatzes
gelesen und um 1 erhdht zurickgeschrieben wird; das Speicher-Flipflop wird wieder
ausgeschaltet. Fur die Dauver des ACCESS-Zyklus’ wird das laufende Programm un-
terbrochen.

FETCH v %' %
EXECUTE 1 W22 V274
ACCESS V7

Speicher-FF v 7////////////////////////4
Impuls V77

Im Rechner kann eine Baugruppe fur 8 Zghlkandle vorgesehen werden; extern kann
das System auf maximal 64 Zghlkandle erweitert werden. Die Zghleingtnge hdben
untereinander eine feste Rangordnung, so dafl auf mehreren Kandlen gleichzeitig

eintreffende Zahlimpulse nacheinander und in geregelter Weise verarbeitet werden.

Die maximale Zshlrate bei 1...5 Kandlen betrdgt ca. 130 kHz; bei grsBerer Kanal-
zahl ist sie entsprechend niedriger.

Die Zuordnung der Zshlkandle zu den Speicheradressen ist fest programmiert; zu je-
der Gruppe von 8 Kanilen gehsren 8 aufeinanderfolgende Pldtze auf den ler-Adres-
sen 0...7. Jeder Kanal hat eine Kapazitdt von 2'° = 1 = 262143 Impulsen. Jeder
Kanal kann so geschaltet werden, daB bei Uberlauf der benachbarte Speicherplatz
inkrementiert wird (unter Fortfall des entsprechenden Zdhleingangs).

Die Schnittstellen der Zghlkandle (1 Eingang je Kanal) sind mit integrierten TTL-
Schaltkreisen ausgerustet und auf einem Adapter-Baustein angeordnet.

- 53 -

Mikroinstruktionen

Der MINCAL 513/523 besitzt einen festen Vorrat an Mikroinstruktionen, die
fur die Darstellung der Makrobefehle verwendet werden. Jedem Benutzer stehen die
Mikroinstruktionen dariberhinaus zum Aufbau von speziellen Befehlen und schnell-
laufenden Standard-Routinen zur Verfigung. Mikroprogramme werden durch die Be-

fehle COD, CM oder CMY aufgerufen.

Jede Mikrooperation besteht aus FETCH- und EXECUTE- Zyklus; der erstere davert
0.75 ps (wenn im Kernspeicher programmiert: 1.5 ps).

Jede Mikroinstruktion hat die Lidnge eines 19 bit-Wortes; Mikroprogramme konnen ie-
weils in den ersten 4 k des Festprogrammspeichers oder des Kernspeichers stehen.

5 Typen von Mikroinstruktionen sind vorhanden:

N -} Festwert

17 0

6 0

15 0

14 LOAD =GO 10

13 A,

12 cs

,l‘ B, Speicherpuffer Mikroinstruktion Statusregister
_I_O EL, B D Fest- |r

9 ER, wert | EL ER
B 400 too

|7 200 l
6 100

15 40 z

_l. 20 Festwert

3 10]

2 4 LOAD GO TO

i) A c

4] 1 Adressregister Mikroprogrammzdhler

GOTO/LOAD-Typ (EXECUTE-Dauer: 0.75 ps).

Diese Mikroinstruktion hat die Form GOTO/LOAD (A, C + B, EL, ER, Festwert) und
bewirkt, daB der Mikroprogrammzihler C (bei GOTO) bzw. das Adressregister A (bei

LOAD) auf einen neuen Wert gesetzt werden, der sich durch ODER-Verknupfung bzw.
durch Addition aus dem Inhalt vom A-, C-, B-Register, linker und rechter Halfte des
E-Registers und einem positiven oder negativen Festwert von 3 Oktalstellen ergibt.

- 54 -

ol-Inlolalalalsle olgl=

= P VS P P Py o e Py prg By

"
L

RESET ET

DISABLE
BN
FLAG (ADR)
FLAG 2
FLAG
LINK
CARRY
BORRO
LEVEL
op

P

END

LOCK

ADR TR

DAT OUT

DAT IN

DAT TR
OBUSY ON
(BUSY ON
BUSY OFF
READY OFF
FLAG (BUSY)
FLAG (READY)
BLOCK BEGIN
BLOCK END
END

SET/RESET-Typ (EXECUTE-Daver: 0.75 ps).

In der Form SET/RESET ..., ..., ...; END
bewirkt diese Mikroinstruktion Setzen oder
Ruckstellen best immter Flipflops im B-Regi -
ster (BN) oder im Statusregister E, Ein- oder
Ausschalten einer Programmebene (LEVEL) oder
Einleiten eines Ein/Ausgabevorgangs Uber den
P-Kanal (IP, OP; stets mit SET). Mit SET-FLAG
(ADR) wird das FLAG-Bit im Statusregister ge-
setzt, wenn die Stellung der Adresschalter in
der Frontplatte mit dem Inhalt des A-Registers
Ubereinstimmt.

END bedeutet Ende des Mikroprogramms mit
diesem Schritt (darf nicht mit Set Level oder
Reset Level zusammen programmiert werden).

INPUT/OUTPUT-Typ (EXECUTE-Dauer 1.5 ps).

Diese Mikroinstruktion steuert Ein/Ausgabevor-
génge Uber den X-Kanal. In jedem Falle ist

der Inhalt des A-Registers auf den AdreBausgang
MX. .. geschaltet; bei positivem Vorzeichen von
A ist NLX, bei negativem Vorzeichen der zur
jeweiligen Ebene gehsrige Ausgang LX... erregt.

LOCK, OBUSY ON, IBUSY OFF und READY OFF
stevern die gleichnamigen Ausgdnge, BLOCK -~
BEGIN/END die Steuerpotentiale BXB/BXE. Mit
FLAG (BUSY)/(READY) wird das FLAG-bit des
Statusregisters gesetzt , wenn der betreffende
Eingang erregt ist.

Mit ADR TR wird der Impuls MTX , mit DAT TR
der Impuls ZTX ausgegeben.

DAT OUT schaltet den Inhalt des B-Registers auf
den Datenausgang ZX..., DAT IN erregt das
Potential SX und schaltet die am Dateneingang
SX... anstehende Information durch zwecks
Ubernahme ins B-Register.

Der Impuls TX wird bei jeder 1/O~-Operation
ausgegeben.

END bedeutet Ende des Mikroprogramms mit
diesem Schritt.

- 55 -

ol lnlolclo|olale ol

1=

ol-ToleoleTaloliTe o]

DONT

END=SKIP
SENSOR
AN

A7

BN
B17
FLAG 2 IF...
FLAG
LINK
CARRY
BORRO
NEG
Q4

Q2

at

|
I

CLEAR =

e
m
o

(M)

(R)

4 Adresse
2

1

RESTORE

&MARK
LOAD
&MODIFY

} STORE {LEFT

RIGHT

ARITHM

A,

A+

1.

(Summe)

B,

B

END

o o olo o|C

- o ole of<

o - oo of=

- - oo ofx

o o —-|o o=z

o o —- |- o~

SKIP/END-Typ (EXECUTE-Daver: 0.75 ps).

In der Form (DONT) SKIP/END, IF..., ...,
... bewirkt diese Mikroinstruktion, daf3 (bei
SKIP) der folgende Mikrobefehl (nicht) uber~
sprungen oder (bei END) das Mikroprogramm
(nicht) beendet wird, wenn einer oder mehrere
der angegebenen Zustéinde vorhanden sind.
SENSOR bedeutet, daB der von den 3 letzten
Stellen Q... bezeichnete Sensoreingang er-
regt ist; AN, A17, BN, B17 sind die entspre-
chenden bits im A- und B-Register; die ubri-
gen Stellen betreffen den Zustand des Status—
registers E.

READ/CLEAR-Typ (EXECUTE-Daver: 1.5 ps).

Diese Mikroinstruktion hat die Form
READ/CLEAR (Adresse); RESTORE; LOADS&...,
STORE... (Summe); END und stevert den Da-
tentransfer zwischen den Speichern und den
Flipflop-Registern A und B.

Durch CLEAR wird der Speicherplatz geloscht;
mit READ wird der Inhalt des Speicherplatzes

ins Register B Ubertragen und der Speicherplatz
geloscht.,

- 56 -

RESTORE schreibt den Inhalt von B in den Speicherplatz zuriick. Die Summe (der Ausgang
des Addierers L) wird mit LOAD ins A-Register, mit STORE in den Speicherplatz tber-
tragen.

Die Speicheradresse wird entweder vom A-Register (M), von den drei letzten Stellen des
E-Registers (R) oder in der Mikroinstruktion selbst vorgegeben. Sie ist nur bei (M) und
positivem Vorzeichen des A-Registers nicht niveaugebunden.

LOAD&MARK dient zur Separierung der einzelnen Oktalstellen einer Makroinstruktion
+OPQAAA und ihrer Ubertragung in die bestimmten Register:

Befehlscode —» Mikroprogrammzéhler C: 00PO
Ergdnzung —» Statusregister E: 00Q
Adresse + Vorzeichen - Adressregister A: +000AAA

LOAD&MODIFY bewirkt das Laden des A-Registers mit dem Summenausgang, wobei das
A-Register als ein Summand auftritt. Ist das Vorzeichen des A-Registers negativ, wird
das Zweier- Komplement des A-inhalts gebildet.

Das Abspeichern der Summe kann um 1 bit links verschoben (STORE LEFT) oder rechts
verschoben (STORE RIGHT) geschehen, wobei zwischen logischer und arithmetischer
(ARITHM) Verschiebung unterschieden wird.

Die Summe wird aus dem Inhalt des A-Registers und des B-Registers sowie einer rechts-
bindigen 1 (20) gebildet. Es kann der Inhalt von A und/oder B oder ein einfaches Kom-
plement (R und/oder B) als Summand benutzt werden. Mit A, A oder B, Bwird die Zahl
(1) als Summand eingefthrt.

END bedeutet Ende des Mikroprogramms mit diesem Schritt.

KERN - FESTPROGRAMM
SPEICHER SPEICHER
a
<
W
o
Adresse
¥
1
— (M) (UV, W, X.N) —:(Ebznc) (R)
RESTORE L | coos
B D ‘ E
1 Lo—_-
- ! —
w © - | SR R oo e 1
€ = B 48 MARK—> |
- S, t
Iy I umme b3 . :
I
Iy |
ry]
3 AlA .
— A C
LOAD —»

- 57 -

Das Statusregister E hat 8 oder 20 bit und ist in folgender Weise organisiert:

w
E:J ~ > g
< © 2 g
@ LEVEL S S Z S50 v -
[=] —_———.— L u 53 OmZ OO o

“TT""T"“"T“"_T‘ T T

: Lol [| \ 1 I

i 1 1
Statusregister E LPIN 17,16 15 114,13 12 111,10, 918, 7,6 |5,4,312/1,0

nur bei MINCAL 523
Q1, Q2, Q4 speichern die Ergdnzung Q einer Makrooperation. In NEG, BORRO,
CARRY steht eine 1, wenn die Summe der vorhergehenden READ/CLEAR-Operation
negativ war bzw. negativen oder positiven Ubertrag ergeben hatte, LINK nimmt das
beim Verschieben rechts oder links herauslaufende Bit auf, und sein Zustand geht selbst
beim Verschieben links— oder rechts- ergdnzend ein. FLAG und FLAG2 sind Merkspei-
cher. Die Stellen 0...8 behalten nur fur den Verlauf eines zusammenhingenden Mikro-
programms ihren Inhalt.

Die Stellen 9...14 beinhalten die "Adresse" der jeweiligen Programmebene (LEVEL);
sie werden u.U. bei Ende eines Mikroprogramms (bzw. einer Makrooperation) neu ge-
setzt, was jedoch verhindert wird, solange DISABLE eine 1 enthalt.

Mikroprogramme werden nur in Sonderfdllen benutzt. Bei Verwendung steht ein
MIKRO-ASSEMBLER zur Ubersetzung der symbolischen Befehle in die Mikropro-
grammierung zur Verfigung.

Im Normalfall werden nur die Maschinenbefehle (s. néchstes Kapitel) benutzt,
fur die ebenfalls ein Ubersetzungsprogramm (ASSEMBLER) zur Verfigung steht.

- 58 -

Maschinenbefehle
VORBEMERKUNG

Die Maschineninstruktionen der MINCAL 513/523 Computer sind jeweils ein 19-bit-
Wort lang; sie haben im allgemeinen die oktal gegliederte Form

* OPQAAA

mit der Bedeutung

* N-Bit Vorzeichen (- = Inhalt 1; sonst 0)
O Bt 17, 16, 15

P Bt 14, 13, 12 } Befehlscode

Q Bit 11, 10, 9 Ergdnzung

A Bit8, 7,6

A Bit 5, 4, 3 } AdreBteil

A Bit2, 1,0

Die Befehle sind im folgenden beschrieben; der Inhalt von je 3 bit eines Befehlswortes
ist dabei zu einer Oktalziffer (0...7) zusammengefaft.

Erlguterung: Vorzeichen ist von Bedeutung
(e) Befehl gehort zum erweiterten Befehlsvorrat
(2) Befehl nur bei MINCAL 523 msglich

- 59 -

N 17 0
NULL-, KONVERSIONS-, CODEBEFEHLE [-TOJOATATATA]
3efehle: NOP Nulloperation 000 O0OO
(e) VBL Bindrumwandlung Linkskomma 0 01T 400
(e) VBR n Rechtskomma 0 01 4 40
() VDL Dezimalumwandlung Linkskomma 001 500
(e) VDR u Rechtskomma 0015 40

coD Code-Operation allgemein 00
Adresse: kleinste (100000) 0 00 0O0O
groBte (107777) 007 777

Diese Befehle rufen ein im Festspeicher liegendes Mikroprogramm auf. Fur 4 Konver-
sionsbefehle ist das Mikroprogramm vorgegeben. Ein Befehlswort mit Nullinhalt wird
sbersprungen.

NOP

VBL

VBR

VDL

VDR

Bemerkung:

Nulloperation 000000

Dieser Befehl wird ubersprungen.

Bingrumwandlung Linkskomma 001400

Der im W-Register stehende dezimale Bruch wird in einen bindren Bruch
umgewandelt.

Bindrumwandlung Rechtskomma 001440

Die im W-Register stehende dezimale Ganzzahl wird in eine bindre Ganz-
zahl umgewandelt.

Dezimalumwandlung Linkskomma 001500

Der im W-Register stehende bindre Bruch wird in einen dezimalen Bruch
umgewandelt.

Dezimalumwandlung Rechtskomma 001540

Die im W-Register stehende bindre Ganzzahl wird in eine dezimale Ganz-
zahl umgewandelt.

Bei bindren Brichen hat Bit 17 den Wert 2_], Bit O den Wert 2718,
Bei bindren Ganzzahlen hat Bit 17 den Wert 2]7, Bit O den Wert 20.
Negative bintre Briche und Ganzzahlen werden als Zweierkomplement
dargestellt.

Dezimalzahlen sind in BCD-Form dargestellt (je Dezimalstelle 4 bit mit dem

Wert 8-4-2-1).

- 40 -

Bei dezimalen Brischen hat Bit 17 den Wert 8-10~1, Bit 0 den Wert 4.1075,
Bei dezimalen Ganzzahlen hat Bit 17 den Wert 2-104, Bit O den Wert 1-100.
Negative dezimale Briche und Ganzzahlen werden wie positive dargestellt;
das N-Bit hat jedoch den Inhalt 1.

Die maximal konvertierbare Ganzzahl hat den Betrag 39999.

COD Code-Operation 0O0AAAA

Es wird ein (vom Benutzer zu erstellendes und vom Hersteller zu implemen-
tierendes Mikroprogramm aufgerufen, das bei Adresse (10AAAA+1) des
Festspeichers beginnt. Nach Ausfihrung des Mikroprogramms wird das
Programm mit der auf den COD-Befehl folgenden Instruktion fortgesetzt.

N 17 0

EINFACH-SCHIEBEBEFEHLE [({ToJoJo o[]
Befehle: SRLW Schieben Rechts logisch W 00 0 O0 1O
SRLD " o " Doppelt 0000 11

SRLX " " " X 0000 1 2

SRAW " " Arithmetisch W 0O 0 0 O0 1 4

SRAD " u u Doppelt 000O0TT S5

SRAX " " u X 00001 6

SLLX " Links Logisch X 000020

SLLD " u " Doppelt 0000 21

SLLW u " u w 0000 2 2

SLAX " " Arithmetisch X 0 000 2 4

SLAD " u " Doppelt 0000 25

SLAW " “ " w 0000 2 6

Diese Befehle dienen zum logischen und arithmetischen Rechts- und Linksverschieben
des Inhalts von W- und X-Register bzw. beider Register gemeinsam um 1 bit. lhre
Funktion entspricht den im folgenden Abschnitt beschriebenen Mehrfach=Schiebebe-

fehlen mit der gleichen symbolischen Bezeichnung.

- 61 -

N 7 0
s) MEHRFACH-SCHIEBEBEFEHLE [[OTTTTOININ]

efehle: SRLW Schieben Rechts Logisch W 01 00
SRLD u u " Doppelt 0110
SRLX " " " X 01 20
SRAW " " Arithmetisch W 01 40
SRAD " " " D oppelt 01 50
SRAX " " " X 01 60
SLLX " Links Logisch X 02 00
SLLD " " " Doppelt 0210
SLLW " u W 0220
SLAX " " Arithmetisch X 0 2 40
SLAD " " " Doppelt 0250
SLAW " 1 u W O 2 6 0
SRR Schiften Rechts mit Runden 01 3 0 .
SLN Normalisieren 023000
Anzah! der Schiebestellen: kleinste (0) 00
grofite sinnvolle (37) 4 5

diese Befehle dienen zum logischen und arithmetischen Rechts- und Linksverschieben
les Inhalts von W- und X-Register bzw. beider Register gemeinsam um eine beliebi-
je Zahl von Bindrstellen. Je ein weiterer Befehl bewirkt Rechtsschieben mit Runden
owie Normalisieren des W-Register-Inhalts.

leim logischen Schieben werden alle 19 bit einbezogen. Herauslaufende Bits gehen

rerloren; frei werdende Bits bekommen Nullinhalt. Beim doppelten Schieben werden

eide Register (W links, X rechts) zu einem Doppelwort verbunden; bit 0 des W-Re-
jisters und das N-Bit des X-Registers grenzen aneinander.

leim arithmetischen Schieben bleibt der Inhalt des N-Bits erhalten; sein Inhalt setzt
iich beim Rechtsschieben nach rechts fort; beim Linksschieben gehen aus Bit 17 her-
wsgeschobene Inhalte verloren. Beim doppelten Schieben wird angenommen, daB in
>eiden Registern eine Doppelwort-Zweierkomplementzahl steht (Vorzeichen + 18 bit
n W, restliche 18 bit in Bit 17...0 von X); Bit 0 des W-Registers und Bit 17 des

X -Registers grenzen aneinander, widhrend das N-Bit des X-Registers Nullinhalt haben
oll und vollig auBer Betracht bleibt.

SRLW Schieben rechts logisch W 0100NN
Der Inhalt des W-Registers wird um NN bit logisch nach rechts ver-
schoben.

SRLD Schieben rechts logisch Doppelt 01T 10NN

Der Inhalt von W- und X-Register wird gemeinsam um NN bit nach
rechts verschoben.

- 62 -

SRLX

SRAW

SRAD

SRAX

SLLX

SLLD

SLLW

SLAX

SLAD

SLAW

Schieben Rechts logisch X 0120NN
Der Inhalt des X-Registers wird um NN bit logisch nach rechts verschoben.

Schieben rechts arithmetisch W 01 40NN

Der Inhalt des W-Registers wird um NN bit arithmetisch nach rechts ver-
schoben.

Schieben rechts arithmetisch doppelt 0150NN

Der Inhalt des W~ und X-Registers wird um NN bit arithmetisch nach
rechts verschoben.

Schieben rechts arithmetisch X 01 60NN

Der Inhalt des X-Registers wird um NN bit arithmetisch nach rechts
verschoben.

Schieben links logisch X 0200NN
Der Inhalt des X-Registers wird um NN bit logisch nach lirks verschoben.

Schieben links logisch doppelt 0210NN

Der Inhalt des W- und X-Registers wird um NN bit logisch nach links
verschoben.

Schieben links logisch W 0220NN
Der Inhalt des W-Registers wird um NN bit logisch nach links verschoben.

Schieben links arithmetisch X 0240NN

Der Inhalt des X-Registers wird um NN bit arithmetisch nach links ver-
schoben.

Schieben links arithmetisch doppelt 0250NN

Der Inhalt des W- und X-Registers wird um NN bit arithmetisch nach
links verschoben.

Schieben links arithmetisch W 0260NN

Der Inhalt des W-Registers wird um NN bit arithmetisch nach links ver=-
schoben.

- 63 -

SRR Schieben Rechts mit Runden 0130NN
Der Inhalt des W-Registers wird um NN bit nach rechts verschoben.
War das letzte rechts herausgeschobene Bit gleich 1, so wird anschlie=
Bend der W-Register-Inhalt um 1 erhoht. Dieser Befehl darf nur auf po-
sitive Zahlen angewendet werden.
SLN Normalisieren 023000
Der Inhalt des W-Registers wird normalisiert, d.h. so weit nach _links
verschoben, daB sie dem Betrage nach gleich oder gréBer als 2'/ ist.
Die Anzahl der hierfur benstigten Schiebevorgtnge steht anschlieBend
bindr rechtsbindig im X-Register. War der Inhalt bereits normalisiert,
so bleibt er unveridndert, und in X steht eine 0. War der Inhalt gleich
Null, so bleibt er es, und in X steht 18. Auf die Zahl -218 (-000000)
darf der Befehl nicht angewendet werden.
N 17 0
MANIPULATIONSBEFEHLE [[] 0PI QTATATA]
Befehle: MZR Null setzen 0 3 0
MPO Plus Eins setzen 0 3 1
MMO Minus Eins setzen 0 3 2
MIC Inkrementieren 0 3 3
MDC Dekrementieren 0 3 4
MCO Komplementieren 0 3 5
MCI Zweierkomplement bilden 0 3 6
Adresse: kleinste (000000) 0 0 0
groflite (000777) 7 7 7

Ebenenbindung der Adresse: -

Diese Befehlsgruppe veriandert den Inhalt eines beliebigen Speicherplatzes in Seite 0.
Der Speicherplatz kann ebenengebunden adressiert werden (zur Adresse 000AAA wird
die Ebenen~Adresse 000LLO geodert); dadurch sind die Befehle insbesondere auch auf
Register anwendbar.

MZR

MPO

Null setzen *030AAA
Der Speicherplatz erhdlt Nullinhalt (000000).

Plus Eins setzen * 031 AAA
Der Speicherplatz erhdlt den Inhalt 1 (000001).

MMO Minus Eins setzen
Der Speicherplatz erhdlt den Inhalt

MIC Inkrementieren

Der Inhalt des Speicherplatzes wird
lauf wird nicht beriicksichtigt.

MDC Dekrementieren

Der Inhalt des Speicherplatzes wird
Uberlauf wird nicht berucksichtigt.

MCO Komplementieren
Der Inhalt des Speicherplatzes wird

MCI Zweierkomplement bilden

Der Inhalt des Speicherplatzes wird

REGISTERBEFEHLE

Befehle: LDR Laden in Register

TRR Transfer aus Register
ADR Addieren zu Register
SBR Subtrahieren von Register

FOR ODER mit Register
FAR UND mit Register

Register: U
\
w
X
N
IXR1
IXR2
IXR3
Adresse: kleinste (000000)

groBte (000777)

Ebenenbindung der Adresse:

- 65 -

*» 032AAA

=1 (=777777).

*033AAA

um 1 erhoht. Ein eventueller Uber-

*034AAA

um 1 erniedrigt. Ein eventueller

*035AAA

komplementiert (Einerkomplement).

= 036 AAA

komplementiert und dann um 1 erhsht.

N 17 0
(CoTPTRTATATA]

T 1
1 5
0 4
0 5
0 6
0o 7
0
1
2
3
4
5
6
7

N O
N O
N O

LDR Laden in Register *» 1TTRAAA

Das Register R wird mit dem Inhalt der Adresse geladen.

TRR Transfer an Register * 15RAAA

Der Inhalt des Registers R wird in der Adresse abgespeichert.

ADR Addieren zu Register *04RAAA

Zum Inhalt des Registers R wird der Inhalt der Adresse addiert. Ein
eventueller Uberlauf wird nicht berucksichtigt.

SBR Subtrahieren von Register *05RAA A

Vom Inhalt des Registers R wird der Inhalt der Adresse subtrahiert. Ein
eventueller Uberlauf wird nicht bericksichtigt.

FOR ODER mit Register *06RAAA

Der Inhalt des Registers R wird mit dem der Adresse R in inklusive
ODER-Verknipfung gebracht; das Ergebnis steht im Register R.

FAR UND mit Register *O7RAAA

Der Inhalt des Registers R wird mit dem der Adresse R in inklusive
UND-Verkniipfung gebracht; das Ergebnis steht im Register R.

N 17 0
KONSTANTENBEFEHLE [-] TO[PIR]C[C]C]

Befehle: LDC Laden Konstante . 1

0
ADC Addieren Konstante . 1 4

Register:

zxXz<cCc

IXR1
IXR2
IXR3

NOO A WN — O

Konstanten: grofite negative (-511) -
Null
gréBte positive (+511)

N O N
N O N
N O N

- 66 -

Diese Befehlsgruppe verdandert den Inhalt eines der 8 Register durch eine im Befehl
definierte Konstante.

LDC Laden Konstante * 10RCCC

Das angegebene Register wird mit der Konstanten geladen. Bei nega-
tiven Konstanten wird das Zweierkomplement geladen.

ADC Addieren Konstante #* 14RCCC

Zum Inhalt des angegebenen Registers wird die Konstante addiert. Bei
negativen Konstanten wird deren Zweierkomplement addiert. Ein even-
tueller Uberlauf wird nicht bertcksichtigt.

N 17 0
SPEICHERBEZOGENE BEFEHLE [OJPIQIAA[A]
Befehle: LD Laden 1 2
TR Transfer 1 6
AD Addieren 2 0
SB Subtrahieren 2 2
(e) MP Multiplizieren 30
(e) DV Dividieren 3 2
FO Inklusives ODER 2 4
FA UND 2 6
FE Exklusives ODER 3 4
CP Vergleichen 3 6
Adressierung: .. direkt ...
Y indirekt o]
absolut 0
absolut ebenengebunden - 0
relativ vorwdrts 4
relativ rickwdrts - 4
nicht indiziert 0
indiziert Uber IXR1 1
2 2
3 3
AdreBteil: kleinster Wert (0) P .0 0 O
groBter Wert (511) 7 7 7

- 67 -

Diese Befehlsgruppe setzt das W-Register mit einer beliebigen Speicheradresse in
Beziehung. Bei einigen Befehlen wird auBler dem W-Register auch das V- oder X-
Register verwendet.

Adressierungsmoglichkeiten sind:

a) absolut: Die Adresse ist O00AAA (in Seite 0 des Speichers)
absolut ebenengebunden: Die Adresse ist 000AAA geodert mit der Ebenenadresse
000LLO
relativ vorwdrts: Die Adresse ist ntAAA
relativ rUckwidrts: Die Adresse ist n-AAA
b) indirekt: Der Inhalt der nach a) berechneten Adresse wird als

neue Adresse genommen.
Ist Bit 17 des AdreBinhalts gleich 1, wird erneut substi-
tuiert.

o]

~

indiziert: Zu der nach a) bzw. b) berechneten Adresse wird der
Inhalt des angegebenen Indexregisters addiert.

Beliebige Kombinationen a)-b)-c) sind erlaubt; sie laufen in dieser Reihenfolge zur
Berechnung der effektiven Adresse ab.

LL = Nummer der laufenden Ebene; n = Programmstand (Instruktionsadresse).

LD Laden * 12QAAA
Das W-Register wird mit dem Inhalt der effektiven Adresse (Operand)
geladen.

TR Transfer * T6QAAA

Der Inhalt des W-Registers wird in der effektiven Adresse abgespeichert.

AD Addieren *» 20QAAA

Zum W-Register-Inhalt wird der Inhalt der effektiven Adresse (Operand)
addiert. Bei positivem Uberlauf wird der Inhalt des V-Registers um 1 er-
hoht, bei negativem Uberlauf um 1 erniedrigt.

SB Subtrahieren * 22 QAAA

Vom W-Register~Inhalt wird der Inhalt der effektiven Adresse (Operand)
subtrahiert. Bei positivem Uberlauf wird der Inhalt des V-Registers um 1
erhoht, bei negativem Uberlauf um 1 erniedrigt.

- 68 -

MP

DV

Bemerkung:

FO

FA

FE

Cp

Multiplizieren *30QAAA

Der W-Register-Inhalt wird mit dem Inhalt der effektiven Adresse (Ope-
rand) multipliziert. Das Doppelwort=Produkt steht mit den unbedeutenden
Stellen im X-Register und mit den bedeutenden Stellen im W-Register.
Die Multiplikation lduft vorzeichenrichtig ab; das N-Bit des W-Registers
enthélt das Vorzeichen des Produkts. Das N-Bit des X-Registers bekommt
stets Nullinhalt.

Dividieren * 32QAAA

Der W-Register-Inhalt wird durch den Inhalt der effektiven Adresse
(Operand) dividiert. Der Einwort-Quotient steht im W-Register, der
Rest im X-Register. Die Division lduft vorzeichenrichtig ab; das N-Bit
des W-Registers enthdlt das Vorzeichen des Quotienten. Der Rest ist
stets positiv. Bit 17 des Quotienten hat die Bedeutung 2']; daher sind
nur Quotienten erlaubt, die dem Betrage nach kleiner als 1 sind; an-
dernfalls wird das Ergebnis unrichtig.

Die Befehle MP und DV veridndern den Inhalt des V-Registers.
Inklusives ODER *24 QAAA

Der W-Register-Inhalt wird mit dem Inhalt der effektiven Adresse (Operand)
in inklusive ODER-VerkniUpfung gebracht; das Ergebnis steht im W-Register.

UND * 26 QAAA

Der W-Register=Inhalt wird mit dem Inhalt der effektiven Adresse (Operand)
in UND=Verknupfung gebracht; das Ergebnis steht im W-Register.

Exklusives ODER *»34QPgg

Der W-Register-Inhalt wird mit dem Inhalt der effektiven Adresse (Operand)
in exklusive ODER-Verknupfung gebracht; das Ergebnis steht im W-Register.

Vergleichen *36QPgPH

Der Inhalt des W-Registers wird mit dem der effektiven Adresse (Operand)
verglichen. Stimmen beide Uberein, wird die folgende Instruktion Uber-
sprungen und die Uberndchste ausgefuhrt; andernfalls die auf den CP-Befehl
folgende.

- 69 -

N
S

17 0
V ERZWEIG UNG SBEFEHLE "O [P [Q[AATA]

Befehle: BR Verzweigen 4 0
BZ Verzweigen wenn Null 4 2
BP Verzweigen wenn Plus 4 4
BM Verzweigen wenn Minus 4 6
Ergéinzung: bei BR: Sensor; sonst Register U 0
\ 1
w 2
X 3
N 4
IXR1 5
IXR2 6
IXR3 7
Adressierung: .. direkt
.Y indirekt e

relativ vorwirts
re lativ ruckwdrts -

AdrefBteil: kleinster Wert (0)
groBter Wert (512)

N O
N O
N O

Diese Befehle bewirken einen Sprung im Programmablauf. Die Ausfihrung des Sprungs
kann an eine Bedingung geknipft sein; ist sie nicht erfillt, so wird das Programm mit
der folgenden Instruktion fortgesetzt.

Effektive Sprungadressen werden relativ berechnet (n+AAA). Bei indirekter Adressierung
wird der dort gefundene Wortinhalt als Sprungadresse aufgefallt und auf diese verzweigt
(s. auch vorigen Abschnitt).

BR Verzweigen *40SAAA

Das Programm verzweigt zur effektiven Adresse. Hat S den Wert 1, 2, ...
.7, so wird nur dann verzweigt, wenn der entsprechende Sensor 1, 2, ...
erregt ist.

BZ Verzweigen wenn Null * 42RAAA
Das Programm verzweigt zur effektiven Adresse, wenn das Register R Null-
inhalt hat.

BP Verzweigen wenn Plus * 4 4R AAA

Das Programm verzweigt zur effektiven Adresse, wenn das Register R
positiven oder Nullinhalt hat.

- 70 -

BM Verzweigen wenn Minus * 4 6RAAA

Das Programm verzweigt zur effektiven Adresse, wenn das Register R
negativen Inhalt hat.

Bemerkung: Spriinge werden dadurch ausgefihrt, daf das N-Register verdndert wird.
Jede durch irgendeinen anderen Befehl bewirkte Verdnderung des N-Re-
gisters fuhrt ebenfalls zu einem Programmsprung.

UNTER-, MIKROPROGRAMM- SPRUNGBEFEHLE [o[P]a|a][A]A]

Befehle: (& Aufruf Unterprogramm
CM Aufruf Mikroprogramm

(S, 8]

Ergdnzung: Rickkehr= [in U-Register .. . 0
Adresse in V-Register |
bei CS vor Unterprogramm L. 2

Adressierung: .. direkt ...
..Y indirekt o]

absolut

absolut ebenengebunden -
relativ vorwdrts

relativ rickwarts -

N M OO

Adrefteil: kleinster Wert (0)
grofBiter Wert (511)

N O
N ©
N o

Diese Befehlsgruppe dient zum Aufruf eines Unterprogramms oder Mikroprogramms. Die
Adressierungsarten entsprechen denen der speicherbezogenen Befehle; Indizierung ist
jedoch nicht maglich.

Cs Aufruf Unterprogramm *50QAAA

Das Programm springt auf die der effektiven Adresse folgende Instruktion.
Die Instruktionsadresse des CS-Befehls (Ruckkehradresse) wird - je nach
Angabe in der Ergidnzung Q - entweder in einem der Register U oder V
oder in der effektiven Adresse (vor Beginn des Unterprogramms) abgelegt.
Der Rucksprung ins Hauptprogramm geschieht im ersten Falle durch Uber-
tragung des Register-Inhalts nach N (TRRU N bzw. TRRV N), im zweiten
Falle durch einen indirekten Sprung uber den Unterprogramm-Anfang
(BRY...).

- 71 -

CM Aufruf Mikroprogramm *52QAAA
Ein bei der effektiven Adresse beginnendes Mikroprogramm wird aufge-
rufen. Nach Ausfihrung des Mikroprogramms wird das Programm mit der
auf den CM-Befehl folgenden Instruktion fortgesetzt.
Mikroprogramme ktnnen jeweils in den ersten 4 k Worten des Kernspei-
chers (Adressen 000000...000777) oder des Festspeichers (100000...107777)
liegen. Der Inhalt bei denrechten Bits in Q ist ohne Bedeutung, kann dem
Aufruf jedoch als Parameter mitgegeben werden.
N 17 0
STEUERBEFEHLE [TO]PTQIA]ATA]
Befehle: HLT Halt 540000
HSL Halt, Start Ebene 5 4 2 0
HBR Halt mit Verzweigen 5 4 4 .
STL Start Ebene 550 0
ECL Unterbrechung zulassen 55 3000
DCL Unterbrechung verhindern 55 40 00
Ebene: (bei HSL, STL): niedrigste (00) . . . 00
hschste (77) .. . 77
Adressierung: (bei HBR): relativ vorwdrts
relativ ruckwirts -
AdreBteil: (bei HBR): kleinster Wert (0) 000
groBter Wert (511)7 7 7

Diese Befehle bewirken Anhalten des Progranms (ohne und mit Verzweigung danach),
internen Start einer beliebigen Programmebene sowie die Steuerung der Unterbrechbar-

keit.

HLT

HSL

Halt 540000

Das Programm hilt an, indem die laufende Programmebene ausgeschaltet
wird. Ein Start dieser Ebene sefzt den Programmablauf mit der folgenden
Instruktion fort.

Halt, Start Ebene 542LL0

Das Programm hdlt an, indem die laufende Programmebene ausgeschaltet
wird; gleichzeitig wird die Programmebene LL gestartet.

Die letzte Oktalstelle der Instruktion ist ohne Bedeutung; sie kann statt O
auch eine der Ziffern 1...7 enthalten.

-72 -

HBR Halt mit Verzweigen * 544 AAA

Das Programm hilt an, indem die laufende Programmebene ausgeschaltet
wird. Ein Start dieser Ebene setzt den Programmablauf an einer Stelle
fort, die durch (relativ berechnete) effektive Adresse bestimmt ist.

STL Start Ebene 550LL0

Die Programmebene LL wird gestartet.
Die letzte Oktalstelle der Instruktion ist ohne Bedeutung; sie kann staft 0
auch eine der Ziffern 1...7 enthalten.

(2) ECL Unterbrechung zulassen 553000

Durch diesen Befehl wird der DISABLE-Zustand wieder aufgehoben; die
laufende Programmebene kann durch jede hohere unterbrochen werden.

(2) DCL Unterbrechung verhindern 554000

Dieser Befehl stellt den DISABLE-Zustand her, in dem die laufende Pro-
grammebene nicht durch den Start einer anderen Ebene unterbrochen werden
kann.

Spdtestens vor einem Halt (HLT, HSL, HBR) muf8 der DISABLE-Zustand durch
ECL wieder aufgehoben werden, damit der Halt wirksam wird.

EIN/AUSG ABE-BEFEHLE [o[P]X[Aa]a]A]
Befehle: GB,GX Qbernqhme 6 0
FB, FX Ubernahme mit ODER 6 1
IBG Eingabe, ’z.{bernqhme 6 2
IBF Eingabe, Ubernahme mit ODER 6 3
1B Eingabe 6 4
OB,0X Ausgabe 6 5
IBH Eingabe, Halt 6 6
OBH Ausgabe, Halt 6 7
Ebenen-Bindung: X nein
.B. ja B
Indizierung: keine 0
tber IXR1 1
2 2
3 3
Adrefteil: kleinste (000) externe 0 00
grofite (777) Adresse 7 7 7

- 73 -

Diese Befehlsgruppe steuert wortweise die Ein- und Ausgabe Uber das W-Register den
programmgesteuerten Datankanal (X-Kanal) des Computers. Die externe Adresse 00AAA
ist gleich dem AdreBteil AAA der Instruktion; gegebenenfalls wird dazu der Inhalt des
angegebenen Indexregisters addiert. Die externe Adresse kann in der peripheren Hard-
ware mit der laufenden Programmebene verknipft sein; dann sind die entsprechenden
Befehle zu benutzen (Minuszeichen gesetzt). Dies empfiehlt sich insbesondere bei Ver-
wendung externer Register (Interfaces), die den Datentransfer zur eigentlichen Peripherie
tbernehmen; nach Ende des - beliebig langen - Transfervorgangs erhilt die jeweilige
Programmebene ein Startsignal.

GB Qbernahme - 60XAAA
GX Ubernahme (nicht ebenengebunden) 60X AAA

Der Inhalt der externen Adresse wird in das W-Register Ubernommen.

FB Ubernahme mit ODER -

U 61T XAAA
FX Ubernahme mit ODER (nicht ebenengebunden) 61T X AAA

Der Inhalt der externen Adresse wird mit dem des W-Registers geodert
und das Ergebnis in das W-Register Gbernommen.

IBG Eingabe, Ubernahme - 62X AAA

Das durch die externe Adresse bestimmte Interface wird in Eingabebereit-
schaft versetzt und das Programm durch Ausschalten der laufenden Ebene
angehalten. Nach Eintreffen des Datenworts von auflen startet das Inter-
face die Ebene wieder; das Datenwort wird in das W-Register tbernommen,
und das Programm lduft weiter.

IBF Eingabe, Ubernahme mit ODER - 63X AAA

Ablauf wie bei IBG; jedoch werden W-Register-Inhalt und externes Daten-
wort geodert und das Ergebnis ins W-Register Gbernommen.

1B Eingabe - 64X AAA

Das durch die externe Adresse bestimmte Interface wird in Eingabebereit-
schaft versetzt. Das Programm lduft weiter.

OB Ausgabe - 65X AAA
OoX Ausgabe (nicht ebenengebunden)

Der Inhalt des W-Registers wird in die externe Adresse Ubertragen. Bei OB
handelt es sich um ein Interface, welches das Datenwort Ubernimmt und mit
dem Befehl einen Ausgabevorgang beginnt.

Das Programm l&uft weiter.

- 74 -

IBH Eingabe, Halt - 66 XAAA

Ablauf wie bei IB; jedoch wird das Programm angehalten. Mit dem néch-
sten Start der Ebene - z.B. durch das Interface nach Beendigung des
Eingabevorgangs - lduft das Programm weiter.

OBH Ausgabe, Halt - 67X AAA

Ablauf wie bei OB; jedoch wird das Programm angehalten. Mit dem ndch-
sten Start der Ebene - z.B. durch das Interface nach Beendigung des
Ausgabevorgangs = lguft das Programm weiter.

N 17 0

INTERFACE-STEUERBEFEHLE BEIRIEEIDIPIN

Befehle: RBL Rucksetzen LOCK -7 00 0

SBL Setzen LOCK -7 00 1

RBR Rucksetzen READY -7 10 0

SKB Sprung wenn BUSY -7 20 0

SKR Sprung wenn READY -7 30 0
Gerdtenummer: kleinste (000) 0 0
greBte (770) 7 7

Diese Befehle steuern Status-Flipflops in Ein/Ausgabe-Interfaces oder fragen deren
Zustand ab. Die Flipflops haben folgende Bedeutung:

BUSY Wird durch die Befehle IB... bzw. OB... gesetzt und bei
beendetemEin- oder Ausgabevorgang selbsttdtig ruckgesetzt.
Zeigt an, daB ein Ein- oder Ausgabevorgang lduft.

READY Wird bei beendetem Ein- oder Ausgabevorgang selbsttitig
gesetzt und startet dadurch die zugehorige Programmebene. Es
wird zu Beginn der IB...- und OB...-Befehl riickgesetzt.
Wichtig: Nach 1B, OB IBH und OBH (da im Interface, sobald
der Ein/Ausgabevorgang zu Ende ist, READY gesetzt wird) das
Flipflop mit RBR ricksetzen, bevor das Programm auf HLT, HBR
oder HSL lduft; sonst ist der Halt unwirksam.

LOCK Verhindert, wenn gesetzt, den Start der Ebene durch READY.
Dieses bleibt jedoch unbeeinflut; nach Rucksetzen von LOCK
wird der Start wirksam, wenn READY gesetzt ist.

Interfaces dieser Art haben eine oktale Gerdtenummer DD, die der externen Adresse
00DDO entspricht.

- 75 -

BL Ricksetzen LOCK - 700DDO
Das LOCK-Flipflop im Interface DD wird ausgeschaltet.
iBL Setzen LOCK - 700DD 1
Das LOCK-Flipflop im Interface DD wird eingeschaltet.
‘BR Ricksetzen READY - 710DDO
Das READY~Flipflop im Interface DD wird ausgeschaltet.
KB Sprung wenn BUSY - 720DDO
Die folgende Instruktion wird ubersprungen und die Uberntichste ausgefuhrt,
wenn BUSY im Interface DD gesetzt ist.
KR Sprung wenn READY - 730DDO
Die folgende Instruktion wird Ubersprungen und die Uberndchste ausgefiihrt,
wenn READY im Interface DD gesetzt ist.
N 17 0
‘ORMATISIERTE EIN/AUSG ABE-BEFEHLE [OIPTNID]DTF]
lefehles IBS Eingabe Seriell -7 4
OBS Ausgabe Seriell -7 5
\nzahl: 1 Zeichen 1
2 " 2
3 " 3
4 " 4
5 " 5
6 " 6
Serdtenummers kleinste (00) 0 0
groBte (77) 7 7
‘ormat: @] (3 bit/Zeichen) 2
D (4 " n) 3
F <5 i Ll) 4
A (6 1 " } 5
S (7 n n) 6
E (8 i n) 7

- 76 -

Diese Befehle steuern die serielle (zeichenweise) Ein/Ausgabe von Teilen eines
Wortes. Die Linge der Wortteile kann von 3 bis 8 bit gewdhlt werden; ebenso
die Anzahl, die ein- oder ausgegeben wird (1 bis 6 Zeichen).

Nach einer Eingabe stehen die Teilworte von links nach rechts entsprechend ihrer
zeitlichen Reihenfolge im W-Register (das zuletzt eingegebene Zeichen rechisbin-
dig); die restlichen Bits haben Nullinhalt. Vor einer Ausgabe muBl das erste Zeichen
linksbindig (einschlieBlich Bit 17!) im W-Register stehen; die danach auszugebenden
schlieBen sich nach rechts an.

Das N-Bit des W-Registers bleibt aufler Betracht.
Die zugehorigen Ein/Ausgabe-Interfaces haben eine Gerstenummer DD, die der ex-
ternen Adresse 00DDO entspricht. In ihnen wird jedes Zeichen u.U. besonders ver-

schlusselt (z.B. im ASCIlI-Code).

Die Befehle IBS und OBS entsprechen einer Folge von IBG- bzw. OBH-Befehlen;
withrend der Zeichen-Ein/Ausgabe ber das Interface wird die Programmebene ausge-

schaltet.

IBS Eingabe Seriell - 74 NDDF
N Zeichen werden im Format F Uber das Interface DD in das W-Register
eingegeben.

OBS Ausgabe Seriell - 75NDDF

N Zeichen werden im Format F Uber das Interface DD aus dem W-Regi-
ster ausgegeben.

Achtung: Durch diese Befehle wird der Inhalt des V- und X-Registers verdndert.

17
(e) BLOCK-EIN/AUSG ABE-BEFEHLE [-[OIPTA]D]D]0]
Befehle: BB Eingabe Block -7 60 0
OBB Ausgabe Block -7 70 0
Gerdtenummer: kieinste (00) 00
grofite (77) 7 7

- 77 -

diese Befehle dienen zur Eingabe eines Blocks von Daten in ein Speicherfeld bzw.
zur Ausgabe des Speicherfeld-Inhalts. Die beiden auf den Befehl folgenden Worte
nussen folgende Angaben enthalten:

0AAAAA Speicherfeld-Basisadresse
OBBBBB Blockldnge (bindr, in Worten)

Je Ein/Ausgabevorgang wird ein Wort transferiert; das erste Wort gehdrt zur Basis-
adresse des Speicherworts, die folgenden zu aufsteigenden Adressen des Feldes.

Zugehsrige Ein/Ausgabe-Interfaces haben eine Gerdte-Nummer DD, die der externen
Adresse 00DDO entspricht. Die letzte Oktalstelle der Instruktion kann statt 0 auch eine
der Ziffern 1...7 enthalten (zu einer genaueren AdreB- oder Formatspezifikation).

Wahrend des Ein/Ausgabevorgangs Gber das Interface wird die Programmebene ausge-
schaltet.

Achtung: Durch diese Befehle wird der Inhalt des V- und X-Registers verdndert.
Das W-Register bleibt unberuhrt.

DO
A A
B B

I1BB Eingabe Block -

O O N
@ O

0D
A A
BB

Ein Block der Lange BBBBB wird uber das Interface DD in ein Speicher-
feld ab Adresse AAAAA eingegeben.

OBB Ausgabe Block - 770DDO
0OAAAAA
0BBBBB

Ein Block der Linge BBBBB wird Uber das Interface DD aus einem Speicher-

feld ab Adresse AAAAA ausgegeben.

- 78 -

Bedienung

Die Frontplatte der MINCAL 500-Computer ist als Bedienungsfeld mit Anzeige- und
Bedienungselementen ausgeristet. Das Bedienungsfeld wird benutzt, wenn Programme
getestet, Funktionen und Abldufe schnell Gberprift oder Daten manuell in den Kern-
speicher eingegeben werden sollen.

Beim festprogrammierten Rechner MINCAL 513 kann u.U. die Bedienungs-Frontplatte
durch eine Blindplatte ersetzt werden.

Das Bedienungsfeld enthdlt im einzelnen folgende Elemente:

ein 20-bit-Lampenfeld als zentrale Datenanzeige (18 bit + Vorzeichen + Parity)

ein 20-bit-Tastenfeld zur Informationseingabe in angewthlte Kernspeicherplitze.

CLR dient zum Ltschen von Kernspeicherinhalten, NP zum Loschen einer
Parity~-Fehlermeldung

ein 16-bit-Adref3-Schalterfeld zur Vorwahl einer beliebigen Festprogramm-
oder Kernspeicheradresse.

Das linke, 15. bit entscheidet zwischen Kernspeicher- (Schalter nicht einge-
legt) und Festprogrammadressen (Schalter eingelegt).

je eine Taste

RES zur Nullstellung aller Hardware-Register in der Recheneinheit

GO zur Fortschaltung des Programms im Einzelschrittbetrieb (in Verbindung
mit CYC, INS NOP oder ADR).

die Stopschalter

CYC stoppt nach jeder Mikrooperation

INS stoppt nach jeder Makroinstruktion

ADR stoppt bei der vorgewdhlten Instruktionsadresse

7 SENSOR-Schalter; diese liegen parallel zu den externen Sensoreingdngen.
INT-Schalter; er macht - wenn eingelegt - die externen Sensoreingdnge un-
wirksam.

Die Taste STA startet das Programm auf Ebene O.

HLT schaltet die laufende Programmebene aus.

END setzt den Instruktionszdhler (N-Register) auf die Kernspeicher-Anfangs-
adresse 10200g.

MEM bewirkt Lesen und Anzeigen des Speicherinhaltes der angewihlten
Adresse bzw. Neueinschreiben der eingestellten Information in die ange-
wihlte Adresse.

REG entspricht MEM fiur die angewdhlte Registeradresse der laufenden Ebene
(Zu der angewdhlten Adresse wird die jeweils laufende Programmebene hin-
zugeodert.

- 79 -

- Der Taster A bewirkt die Anzeige des AdreBregister-Inhalts
" der letzten ausgefuhrten Mikroinstruktion

c " " des Mikroprogrammzihler=Inhalts (néchster
Mikroschritt)

D " " " " Speicherpuffer-Inhalts
E " " " " Statusregister-Inhaltes
F o " " " Startspeicher-Inhalts der Ebene 0...7

- Die Lampe PRG zeigt an: Programm l&uft
IPT " ": Interrupt; eine hohere Programmebene als 0 lduft

PSE " “: Pause; bei Stop oder langsamer Ein/Ausgabe

ppL * ": Display; Anzeigezyklus lauft

ACC " ": Access; ein direkter Speicherzugriff (der Peripherie)
lguft.

CK1 " ": Parityfehler vom Kernspeicher

CK2 " " Parityfehler von der Peripherie

CK3 " ": Netzausfall nach Netzwiederkehr

Die Frontplatte der Stromversorgung enthdlt den Netzschalter (Wippschalter), der
aufleuchtet, wenn der Rechner eingeschaltet ist.

Programmtest

Zum Uberprifen des Programmverlaufs sind verschiedene Testmoglichkeiten eingebaut,
die unter Zuhilfenahme der Stopschalter benutzt werden konnen.

Ist der gelbe Schalter INS nach unten geschaltet, so fuhrt das Programm bei jeder
Betatigung der Taste GO einen Befehl (Makrobefehl) aus und hilt bei Beginn der
néchsten Operation an. Die neue Instruktion ist bereits gelesen und auf C-, E- und
A-Register verteilt. Diese Registerinhalte kann man so lange im 20-bit-Lampenfeld
sichtbar machen, wie man die entsprechenden Tasten betitigt.

Der Operationsteil steht dann in den Bits 3...8 des C-Registers, die Befehlsergdn-
zung in den Bits 0...2 des E-Registers und der AdreBlteil in den Bits 0...8 des
A-Registers. Im D-Register ist noch die komplette Instruktion zu sehen. Im B-Re-
gister steht die gerade ausgefthrte Mikroinstruktion (Bit 17, 16, 11 und 10).

AuBer den Registerinhalten konnen beliebige Speicheradressen angezeigt werden,
Hierzu ist es erforderlich, die gewinschte Adresse mit dem 16-stelligen AdreB3-
schalter vorzuwdhlen (Schalter nach unten - AdreBbit vorgegeben). AuBerdem
mu3 die Taste MEM betatigt werden. Fur diese Zeit ist dann der Inhalt dieser
Adresse im Lampenfeld links oben sichtbar. AuBlerdem leuchtet die gelbe Lampe
DPL auf.

- 80 -

Will man den Inhalt der niveaugebundenen Kernspeicher-Register sehen, so genugt
es, mit den AdreBschaltern die oktale "Einer-Adresse” (3 AdreBschalter am rechten
Ende des AdreBschaltersatzes) vorzuwidhlen und die Taste REG zu betidtigen. In die-
sem Falle werden die Registerinhalte des gerade in Ausfihrung stehenden Niveaus an-
gezeigt.

Ist der Schalter CYC nach unten geschaltet, so fuhrt das Programm nach jeder Betdi-
tigung der Taste GO einen Mikroprogrammschritt durch und hilt nach Beendigung
dieses Schrittes an.

Ebenso wie die Stops durch den Schalter INS kénnen alle Register (A, B, C, D, E, F)
und alle Speicher-Zellen auf die gleiche Weise angezeigt werden.

In den Registern A, D und E ist dann der jeweils vom Mikroprogramm bestimmte In=
halt anzeigbar. Die gerade ausgefihrte Mikroinstruktion ist im B-Register, die Adres-
se der folgenden Mikroinstruktion im C-Register enthalten.

Durch Betdtigen der Taste ADR (Schalterstellung nach oben) ist es moglich, den Rech-
ner dann anzuhalten, wenn die Instruktionsadresse und die im AdreBschaltersaiz einge-
stellte Adresse Ubereinstimmen. Bei der eingestellten Instruktion hilt der Rechner an,
als sei der Schalter INS betatigt.

Alle Register und alle Speicher-Zellen kénnen auch nach diesem Stop angezeigt wer-
den.

Wenn der Rechner durch einen der Stop-Schalter angehalten worden ist, leuchtet die
gelbe Lampe PSE im Lampenfeld oben rechts auf. Werden die Stop-Schalter wieder
in die Mittelstellung gebracht, lauft das Programm nach Betdtigung der Taste GO
normal weiter.

Andern von Kernspeicherplitzen

Will man den Inhalt von Kernspeicherpidtzen dndern, so muB man den Inhalt der
entsprechenden Adressen anzeigen (Vorwahl der Adresse und Betdtigen von MEM oder
REG). Das ist mdglich, nachdem der Rechner durch einen Stop angehalten worden ist
oder wenn alle Niveaus ausgeschaltet sind.

Wahrend die Tasten MEM oder REG betdtigt sind, mu8 man nun die Taste CLR (mitt=
leres Tastenfeld links) nach oben schalten. Dadurch wird der Inhalt dieser Kernspei-
cher-Zelle Null gesetzt. Nun kann man neue Bits in diese Zelle ubergeben, indem
man die entsprechenden Tasten (mittleres Tastenfeld links) nach unten schaltet. Das
eingegebene Bit ist sofort im Lampenfeld sichtbar. Wahrend die Tasten MEM oder
REG betdtigt sind, konnen so beliebige Inhalte in alle Kernspeicher-Zellen einge-
geben werden.

Will man die Kernspeicheradressen @ndern, muB8 man fir die Zeit der AdreBumschal-

tung die Tasten MEM oder REG loslassen. Erst wenn die neue Adresse eingestellt ist,
kann der Inhalt auf die oben beschriebene Weise getdndert werden.

- 81 -

Umschalten der Adressen bei betdtigten Tasten MEM oder REG zerstort mehrere Kern-
speicher~Z ellen!

Durch eine solche Eingabe kann man z.B. auch kleine Testprogramme in den Kern-
speicher geben. Dann ist es allerdings erforderlich, dem Instruktionszghler des ent-
sprechenden Niveaus einen Inhalt zu geben, der um 1 kleiner ist als die erste In-
struktionsadresse (Eingabe auf die oben beschriebene Weise).

Program mierbetrieb

Beim MINCAL 523 4Bt sich uber die SENSOR-Schalter der Frontplatte ein Testpro-
gramm zum Eingeben, Andern und Ausgeben von Speicherzellen aufrufen. Als Option
kann dieses Testprogramm auch beim MINCAL 513 eingebaut werden.

Bedienung des Programmierbetriebs

Zu Beginn und bei Wechsel der Betriebsart stets Taste RESET und END betitigen.
Wenn externe Sensoreingidnge angeschlossen, Schalter INT einlegen.

Streifenvorlauf, wenn erwiinscht, so herstellen: Fernschreiber auf LOCAL schalten
(sonst stets auf LINE); Locher einschalten, mehrfach NUL lochen (= ASClI-Code 000g),
dann mehrfach DEL lochen (= RUBOUT = ASClI-Code 377g).

EINZEL-AUSGABE auf Fernschreiber

SENSOR 1 ein. START betdtigen.
Adresse 6-stellig oktal eingeben. Inhalt wird im OKTAL-Format ausgedruckt und CR,
LF wird ausgegeben. Danach wieder eine Adresse eingeben, usw.

EINZEL-EINGABE uber Fernschreiber

SENSOR 1 + 3 ein. START betdtigen.
Adresse 6-stellig oktal sowie unmittelbar danach Inhalt (im OKTAL-Format) eingeben.
CR, LF werden ausgegeben. Danach wieder Eingabe von Adresse und Inhalt, usw.

GESAMT-AUSGABE (OKTAL-Format) auf Fernschreiber

SENSOR 1 + 2 ein. START betdtigen.
Erste und letzte Adresse des auszugebenden Speicherbereichs je 6-stellig oktal eingeben.
CR, LF werden ausgegeben.

Locher einschalten, wenn Streifen gestanzt werden soll. START betitigen. Speicherin-
halt wird Wort for Wort im OKTAL-Format gedruckt und ggfs. gelocht; nach jedem
achten Wort (ler-Adresse = 7) werden CR, LF ausgegeben. Vorgang wird nach Ausga-
be der letzten Adresse beendet.

- 82 -

GESAMT-EINGABE (OKTAL-Format) Uber Fernschreiber

SENSOR 1 + 2 + 3 ein. Wenn Streifen-Eingabe: Im OKTAL~-Format gelochten Strei-
fen einlegen (im Zufuhrbereich oder auf 1. Zeichen), START betdtigen.

Erste und letzte Adresse des einzulesenden Speicherbereichs je 6-stellig oktal einge-
ben. CR, LF werden ausgegeben.

START betdtigen. Wenn Streifen-Eingabe: Leser einschalten; wenn manuelle Eingabe:
Wort fur Wort im OKTAL-Format sowie nach jedem achten Wort (ler-Adresse = 7)

CR, LF eingeben. Lochkombination 021g (entsprechend X-ON) wird uberlesen. Vor-
gang wird nach Eingabe in die letzte Adresse beendet. Leser jetzt ggfs. ausschalten.

Sollen die eingegebenen bzw. eingelesenen Werte gleichzeitig mitgedruckt werden,
mufl zusdtzlich SENSOR 6 betdtigt werden.

GESAMT-AUSGABE (ALPHA-Format) auf Fernschreiber
SENSOR 1 + 2 + 4 ein. START betdtigen.

Erste und letzte Adresse des auszugebenden Speicherbereichs je 6-stellig oktal einge-
ben. Locher einschalten. START betdtigen. Speicherinhalt wird Wort fur Wort im
ALPHA-Format gestanzt. (Gleichzeitig werden die Werte ausgedrucki. Sie sind aber
nicht als Protokoll zu gebrauchen, da 1. unleserliches ALPHA-Format gedruckt wird
und 2. CR, LF fehlen, so daB8 nach einer Zeile der Druckvorgang beendet wird).
Vorgang wird nach Ausgabe der letzten Adresse beendet.

GESAMT-EINGABE (ALPHA-Format) iiber Fernschreiber

SENSOR 1 + 2 + 3 + 4 ein. Im ALPHA-Format gelochten Streifen einlegen (im Zu-
fuhrbereich oder auf 1. Zeichen), START betdtigen.

Erste und letzte Adresse des einzulesenden Speicherbereichs je 6-stellig oktal einge-
ben. CR, LF werden ausgegeben. START betitigen. Leser einschalten. Vorgang wird
nach Eingabe in die letzte Adresse beendet. Leser ausschalten.

GESAMT-EIN/AUSGABE Uber schnelle Lochstreifeneinheit
Zusatzlich SENSOR 5 ein.

Bedienung wie bei GESAMTEINGABE (OKTAL- oder ALPHA-Format) oder bei GESAMT-
AUSGABE (OKTAL- oder ALPHA-Format). START betdtigen. Erste und letzte Adresse
werden Uber Fernschreiber je é-stellig oktal eingegeben. CR, LF werden ausgegeben.
Lochstreifen einlegen und Leser einschalten bzw. Locher einschalten und Streifenvor-
lauf (erst TRANS und dann ZUF betdtigen) herstellen. START betdtigen. Einlese- bzw.
Ausgabevorgang wird nach Erreichen der Endadresse beendet. Leser ausschalten bzw.
Streifenende (Taste TRANS betadtigen) herstellen und Locher ausschalten.

- 83 -

Bemerkung: Gilt fir normalen AnschluB des 8-Kanal-Fernschreibers tber X-Kanal
ond Standard-ASCll=Interface (und normalen AnschluB von schnellem Leser und

Locher).

OKTAL-Format bedeutet: Vorzeichen (Leerschritt oder Minuszeichen) und 6 Oktal-
ziffern.

ALPHA-Format “ : Vorzeichen (/@ entsprechend + oder A entsprechend -) und
3 Alpha-Stellen

Sensor 1 2 3 4 5 6 7

Einzel-Ausgabe oktal Fernschreiber

x

X X Einzel-Eingabe oktal Fernschreiber

X X Gesamt-Ausgabe oktal Fernschreiber

X X X Gesamt-Eingabe oktal Fernschreiber

X x X x Gesamt-Eingabe oktal Fernschreiber
mit Protokoll

X X X Gesamt-Ausgabe alpha Fernschreiber

X X x x Gesamt-Eingabe alpha Fernschreiber

X X X Gesami-Ausgabe oktal schneller Locher

X X X X Gesamt-Eingabe oktal schneller Leser

X X X x Gesamt-Ausgabe alpha schneller Locher

X X X x X Gesamt-Eingabe alpha schneller Leser

-84 -

(N\
U L Y,
L 9 S ¥ € z L LNI 1 z k4 t z b 1 z A 1 14 ki 1 Z b ! SNIJAD S3¥ 09
] oooocoo00O0 0000000000000 000000 O ﬁ
HOSN3S ———— §S 340V d0V dON
2 & V O93IYWINANILTH VIS [-4 v

0000000

4 3 a0

XD 24T (M) JDV1d0 3Sd Ld| 9¥d

olejo)ol0lel0]e)

YHNA/WIIHINKW

[A T 2 2 R 2 2 G S 2 B A

O00000000000O00O000O00

¥ dN
o oLz e 75 9

L8 6 0L Ll ZL €L 7l SL 9L Ll - d

0000000000 OOOOOOOO00

43NHO33IV1IIOIQ

€LS TVONINW

-85 -

Aufbau

Die Standardausristung der MINCAL 500-Rechner besteht aus zwei 19"-Einschiben:

Stromversorgung 19"-Einschub D
Rechnerrahmen
Speicherrahmen 19"-Einschub F

Frontplatte

Beide Einschibbe sind miteinander verschraubt und an zwei Teleskopschienen befestigt.
Somit kdnnen beide bequem aus dem Schrank herausgezogen werden.

Rechnerrahmen, Speicherrahmen und Frontplatte des oberen Einschubs sind durch
Scharniere verbunden und koénnen auseinandergeklappt werden.

Wie die Zeichnung zeigt, konnen die einzelnen Bauteile leicht erreicht werden.

Die Frontplatte der Stromversorgung enthdlt den Netzschalter (Wippschalter), der
aufleuchtet, wenn der Rechner eingeschaltet ist. Auf der Ruckseite ist der Anschlufl
fur die Netzspannung.

Durch Entriegeln des Schnellverschlusses unter dem rechten Griff der Rechner-Front-
platte kann diese aufgeklappt werden. Somit sind die Bausteine der Speichereinheit
(Festwert- und Kernspeicher) von vorne zuginglich.

Ist der gesamte Einschub aus dem Schrank herausgezogen, so kann mit einem Schrau-
benzieher ein weiterer Schnellverschlufl, der sich rechts an der Seitenwand des Spei-
cherrahmens befindet, gelsst werden. Danach Bt sich der gesamte Speicherrahmen
nach links schwenken, so daB die Verdrahtung von Speicher- und Rechnerrahmen zu-
ginglich ist.

Der Rechnerrahmen enthélt alle Baugruppen des Rechners aufler Fest- und Kernspeicher.
Auch ist im Rechnerrahmen noch Platz fur einige Erweiterungen bzw. Interfaces

(Optionen).

Die Adapter konnen erst nach Losen der Befestigungsschrauben entfernt werden.

- 86 -

I
Moz

FRONTPLATTE

(ausgeschwenkt)

RECHNER-

———— 1 | RAHMEN

q? {(heraus-

gezogen)

SPEICHER-
R AHMEN
(ausgeschwenkt) D
STROM-
VERSORGUNG
(heraus - 1]
gezogen)

- 87 -

Assembler

VORBEMERKUNG

Der Assembler/Editor MINCASS 500 ist ein Programm zur Ubersetzung von symbo-
lischen Programmen in die Maschinensprache der Rechner-Baureihe MINCAL 500.

Der Assembler wird dem Benutzer in Form eines Lochstreifens zur Verfugung gestellt.
Der Lochstreifen wird in den Kernspeicher eingelesen; danach ist die Anlage zur
Programmumwandlung bereit. Die Umwandlung erfolgt in 2 Laufen:

A-Lauf: Eingabe des symbolischen Programms (manuell, tber Lockstreifen
oder aus Editor-Bereich im Kernspeicher) mit Prifung auf formale
Fehler, Aufbau der Markenliste sowie ggfs. manueller Korrektur
und ggfs. Ausgabe des symbolischen Programms als Lochstreifen
oder in Editor-Bereich

C-Lauf: Erneute Eingabe des symbolischen Programms (wie oben) und
Ausgabe in umgewandelter Form (Maschinencode) als Loch-
streifen bzw. Drucken des Programms in Form einer Liste.

Weiterhin kann der Assembler den C-Lauf ohne Ausgabe durchfihren, wobei nur
auf Fehler geprisfft wird. AuBerdem luft sich die Markenliste lsschen, prufen,
verdndern und ausdrucken.

Rechner-Ausstattung: MINCAL 513/523
Crund + erweiterter Befehlsvorrat
Programmierhilfe X00 (empfohlen)
Kernspeicher 4k oder groBer
Konsol-Fernschreiber (8-Kanal) an Ebene 0
Schnelle Lochstreifenausristung (8-Kanal-Leser/Locher)
an Ebene 0 (empfohlen)

Speicher-Belegung: 0000...6041

Startadresses Platz 1000

Anweisungsliste: Enthdlt fur 105 Anweisungstypen Raum, davon 99 fest
installiert und 6 zur Verfigung des Benutzers

Merkmalsliste: Enthalt Raum fur 500 Merkmale

Editor-Bereich: ca. 1000 Worte lang (bei 4k Kernspeicher); entspricht
ca. 200 symbolischen Anweisungen.

- 88 -

HANDHABUNG

Der Lochstreifen MINCASS 500 wird im Zufuhrbereich in den schnellen Leser
eingelegt.

An der Rechner-Frontplatte werden die Tasten RES und END betdtigt. Sensor=-
Schalter INT, 1, 2, 3, 4 und 5 einlegen (fur eingebaute Programmierhilfe X00:
Gesamt-Eingabe in Alpha-Format uber schnellen Leser). Taste STA betdtigen und
Uber Fernschreiber die Adressen 000100 und 004033 eingeben.

Taste STA erneut betdtigen. Der Assembler wird eingelesen. Danach Tasten RES
und END drucken. Sensor-Schalter 1 bis 5 wieder zurtcksetzen. Die Umwandiung
kann beginnen.

Betriebsarten
Mit Betdtigen der Taste STA wird der Assembler gestartet. Von diesem Augenblick
an erfolgt die Bedienung im Dialogverkehr Uber den Konsol-Fernschreiber: Nach

dem Ausdruck der Programmbezeichnung (MINCASS 500) fragt das Programm, wel-
che Betriebsart infrage kommt (Ausdruck auf Fernschreiber):

R-A (A-Lauf)

R-C (C-Lauf)
PRI (Drucken Programm)
ADR Markenliste untersuchen)

(
COM (Kommentar zum Programm)
END (Ende)

Die gewunschte Betriebsart ist durch Eingabe von Y zu wthlen; nicht erwunschte
Betriebsarten sind durch N (oder ein beliebiges Zeichen auBler Y) zu verwerfen.

Nach Ablauf einer Betriebsart fordert der Rechner wieder zur Vorwahl auf.

Mit END wird das Programm beendet. Es kann durch Betdtigen der Taste STA
wieder begonnen werden.

A-Lauf

Nach Betdtigen von R-A durch Y beginnt ein A-Lauf mit dem Ausdruck INP
(Eingabe) und der Frage nach der Herkunft des symbolischen Programms:

MAN (wird manuell Uber Konsol-Fernschreiber eingegeben)
RDR (wird als Lochstreifen eingegeben)
MEM (befindet sich im Editor-Bereich des Kernspeichers).

-89 -

Darauf folgt Drucken von OTP (Ausgabe) und die Frage, wohin das symbolische
Programm wihrend des A-Laufs (ggfs. in korrigierter Form) wieder ausgegeben
werden soll:

PCH (ber Locher ausgeben)
MEM (in Editor-Bereich ablegen)

Es schlieBen sich folgende Fragen an:

STP (Anhalten bei ausgewdhlten Anweisungen zwecks Korrektur)
ERR (Anhalten bei formalen Fehlern)
CLR (Loschen Markenliste).

Erwinschte Funktionen sind mit Y zu bestdtigen, nicht bendtigte mit N (oder
beliebigen Zeichen aufler Y) zu verwerfen.

Dabei ist folgendes zu beachten:

Nach INP ist eine und nur eine Eingabeart zu wihlen. MAN ist fur die Erstein-
gabe eines symbolischen Programms zweckmafBig. Bei RDR liegt bereits ein Loch-

streifen mit dem symbolischen Programm vor (vor Start des Assembler-Programms in
schnellen Leser einlegen!). MEM ist nur bei einem wiederholten A-Lauf sinnvoll;
dazu ist vorher das symbolische Programm in einem A-Lauf (mit OTP MEM) in den
Editor-Bereich des Kernspeichers abzulegen.

Nach OTP kann eine der beiden Ausgabearten gewdhlt werden. PCH ist zweck-
mdfig bei Korrekturen, wenn der Editor-Bereich nicht benutzt wird, aber auch

zur Ausgabe des im Editor-Bereich korrigierten, endgiltigen symbolischen Programms
MEM dagegen empfiehlt sich stets bei Editor-Betrieb (sowohl fir Ersteingabe als
auch fur Korrektur-A-Ldufe).

STP bewirkt, dafl das Einlesen des symbolischen Programms beim A-Lauf an be-
stimmten Stellen angehalten wird, um Korrekturen durchzufthren. Zur Vorwahl
der Stelle, wo das Programm angehalten werden soll, ist einzugeben:

Die laufende Anweisungsnummer (4-stellig dezimal), oder
das Instruktionsmerkmal (falls vorhanden)

der Anweisung, bei der angehalten werden soll. Der A-Louf wird an der betref-
fenden Stelle angehalten, die Anweisung wird ausgedruckt, und nach Ausdruck von

SEL (Vorwahl)

- 90 -

ist eine der folgenden Korrekturarten einzugeben:

D (Anweisung loschen)

A (Anweisung dndern, d.h. neu eingeben)

| (Anweisung ist in Ordnung, jedoch danach neue Anwei-
sung einfugen)

s (= Leertaste; Anweisung ist in Ordnung; ndchste Anwei-
sung holen)
G (Anweisung ist in Ordnung; Aufheben des Stops, verbun<

den mit never Stop-Vorwahl).

ERR bedeutet, daB formal fehlerhafte Anweisungen wdhrend des A-Laufs mit Fehler-
art ausgedruckt werden sollen (siehe Fehlerliste).

CLR hat, wenn mit Y bestdatigt, zur Folge, daB die Markenliste vor Beginn des
A-Laufs geloscht wird. Im Regelfall ist dies vor jedem A-Lauf erforderlich; jedoch
kann es erwiinscht sein, die Merkmalsliste zu erhalten, wenn mehrere Programme,
deren Adressen aufeinander Bezug nehmen, nacheinander assembliert werden.

Die Anweisungen werden vom Assembler gezdhlt und mit einer laufenden Nummer
versehen, die zu Beginn der Anweisung gedruckt wird. Die gedruckten Nummern
beziehen sich auf den aktuellen Lauf; zwecks Anhaltens eingegebene Nummern be-
ziehen sich auf das zu korrigierende Programm, d.h. sind unabhdngig von Lo-
schungen oder Einfigungen im aktuellen Lauf.

Es ist mindestens ein A-Lauf fur jede Umwandlung erforderlich. AxlLdufe konnen
beliebig oft wiederholt werden, z.B. zwecks Korrektur des symbolischen Programms;
auf vorheriges Loschen der Merkmalsliste mit CLR ist dabei zu cchten.

C-Lauf

Hierfur wird R-C mit Y bestdtigt; es folgt mit INP die Frage nach dem Eingabe-

medium fur das symbolische Programm:

RDR (wird als Lochstreifen eingegeben)
MEM (befindet sich im Editor-Bereich des Kernspeichers)

wovon eine und nur eine mit Y zu bestdtigen ist, und mit OTP die Vorwahl der
Umwandlungsart:

LIS (Ausdrucken der Programmliste)
MAC (Lochen Maschinencode-Streifen).

-9 -

Vorgewdhlte Ein/Ausgabearten sind mit Y zu bestdtigen.
Hierbei ist zu beachten:

Nach INP ist entweder RDR zu widhlen (symbolischen Lochsireifen vorher mit
seinem Anfang in Leser einlegen!) oder MEM (setzt A-Lauf mit Editor-Betrieb
voraus, d.h. symbolisches Programm muB3 im Editor-Bereich des Kernspeichers
stehen).

Nach OTP kann LIS oder MAC gewdhlt werdens

LIS fuhrt zum Ausdruck des gesamten Programms. Je Anweisung wird eine Zeile
gedruckt; sie enthalt:

Laufende Anweisungsnummer (4 Dezimalstellen),

Fehlerart (bei Fehler),

Instruktionsadresse (6 Oktalstellen),

Anweisung (Instruktionsmerkmal, Befehl, Ergtnzung, Vorzeichen,
Adrefmerkmal),

Maschinencode (Vorzeichen + 6 Oktalstellen),

Kommentar.

Beim Listen werden jeweils 64 Zeilen zusammenhdngend gedruckt mit Abstand zu
den ndchsten 64 Zeilen, so daB trennbare Seiten der Grofle DIN A4 entstehen;
die Seiten werden mit 001, 002, ... numeriert. Dahinter steht die Programmbe-
zeichnung.

MAC erzeugt einen Maschinencode-Lochstreifen im Oktal=Format fur das umge-
wandelte Programm. Der notwendige Streifenvorlauf (Transport- und Zufuhrlochung)
wird automatisch erzeugt.

Wahlt man beim C-Lauf weder LIS noch MAC vor, werden nur fehlerhafte Anwei-
sungen auf dem Fernschreiber ausgedruckt (wichtig fur Feststellung von Adressie-

rungsfehlern durch fehlende AdreBmarken oder Uberschreitung des relativ adressier-
saren Bereichs).

Drucken Protokoll

Diese besondere, durch Y nach PRI zu wdhlende Betriebsart hat den Zweck, das
gesamte symbolische Programm oder Teile davon auszudrucken.

Der zu druckende Bereich ist einzugeben mit

Ifd.Nr. der ersten und
Ifd.Nr. der letzten Anweisung des Bereichs

- 92 -

(jeweils 4-stellig dezimal); danach folgt als Bestdtigung eine Leertaste (Eingabe
eines anderen Zeichens bewirkt, dafl die Ifd.Nummern erneut eingetastet werden
mUssen).
Danach folgt mit INP die Frage nach der Eingabeart fur das symbolische Programm:
RDR (wird als Lochstreifen eingelesen)
MEM (befindet sich im Editor-Bereich des Kernspeichers).

Zutreffendes ist mit Y zu bestdtigen.

Es folgt der Ausdruck des symbolischen Programms im ausgewdhlten Bereich.

Untersuchen Markenliste

Beim A-Lauf wird ein Keller aufgebaut, der die im Programm verwendeten symbo-
lischen Marken und die ihnen zugewisenen Adressen bzw. sonstigen Werte enthalt
(Merkmalsliste); der C-Lauf bedient sich dieses Kellers beim Einsetzen der Werte

aostelle der Marken.

Es kann nitzlich sein, die Markenliste vor dem C-Lauf zu untersuchen bzw. auch
zu dndern, z.B. um fehlende Adressen fur anschliefende Programmteile einzusetzen
oder unvollstindige Marken zu suchen.

Hierzu bestdtigt man die Betriebsart ADR mit Y, worauf FCT ausgedruckt wird. Die
erwinschte Funktion widhlt man vor durch Eintasten eines Zeichens:

L (Listen aller Marken)
E (Listen aller fehlerhaften Marken)
F (Suchen/Andern einer Marke).

Mit L wird die Gesamtheit der Marken einschlieBlich der zugehsrigen Adressen
bzw. der zugewiesenen Werte ausgedruckt, und zwar je Zeile

die symbolische Marke (3 druckbare Zeichen), und
die Adresse bzw. der zugewiesene Wert (6 Oktalstellen).

Hierbei ist zu beachten, daf} letztere in der hochsten Oktalstelle normalerweise
eine 6 enthalten missen. Ist nur eine 2 vorhanden, so ist die betreffende Marke
nur als AdreB-(Rechts-)Merkmal im Programm vorgekommen; eine 4 an dieser
Stelle bedeutet, dafBl die Marke nur als Instruktions-{Links-)Merkmal gefunden wor-
den ist.

- 93 -

Mit E werden alle die Marken (wie oben beschrieben) ausgedruckt, die keine 6
in der ersten Oktalstelle enthalten, also unvollstdndig sind. Dies gibt Hinweise
auf Programmfehler (insbesondere bei fehlenden Linksmarken).

Mit F wird eine bestimmte Marke in der Liste gesucht. Die Marke ist 3-stellig
einzugeben. Ist die Marke vorhanden, wird die zugehorige Adresse 6-stellig oktal
gedruckt. Dann ist A einzutasten, wenn eine Anderung gewinscht wird; danach
mussen Marke (3-stellig) und Adresse (6 Oktalstellen) neu eingegeben werden.
Jedes andere Zeichen statt A bestitigt die Marke und dndert sie nicht. Ist die
Marke nicht vorhanden, wird die Betriebsart beendet (Ausdruck R-A). Neue Mar-
ken konnen dadurch eingefigt werden, daB man @QQ eingibt (und danach die
zugehtrige Adresse). Ebenso werden Marken dadurch gelsscht, dal man @Q@
eingibt sowie fur die Adresse sechs Nullen.

Programmbezeichnung eingeben

Hierfur ist COM mit Y zu bestdtigen und anschlieBend eine aus 18 Zeichen be-
stehende Programmbezeichnung einzugeben. Diese wird dann beim Protokoll am
Anfang jeder Seite gedruckt.

FEHLERLISTE

Die beim Assembler-Betrieb ausgedruckten Fehler-Schlissel haben folgende Be-
deutung:

Schlusselzahl Fehlerart
01 AdreBBmerkmal nicht dezimal
02 " " oktal
03 Instruktionsmerkmal mehrfach vorhanden
04 Verbotenes Zeichen in Ergénzung oder AdreBmerkmal
05 Uberlauf Markenliste
06 Anweisungstyp nicht vorgesehen
10 AdreBmerkmal fehlerhaft
11 Sonstiger Fehler
12 Adresse relativ nicht erreichbar

- 94 -

ALLGEMEINE REGELN

Programmaufbau

Ein symbolisches Programm, das vom Assembler MINCASS 500 verarbeitet wird,
besteht aus einer Folge von "Anweisungen". Die Anweisungen sind in einzelne
Gruppen von Zeichen gegliedert (siehe Syntaxregeln).

Kennzeichnend fur eine Anweisung ist ihr "Typ"; es sind nur die giltigen Anwei=
sungstypen zuldssig (siehe spdter). Es gibt vier Arten davon:

Befehle
Definitionen
Zuweisungen
Steueranweisungen.

Die ersten beiden belegen im Maschinenprogramm jeweils ein Wort (im Falle der
Felddefinition F sogar mehrere); symbolische Befehle erzeugen entsprechende Ma-
schinenbefehle, widhrend Definitionen Pldtze reservieren oder mit Festwerten bele-
gen. Zuweisungen ordnen symbolischen Marken gewisse Werte zu; sie belegen im
Maschinenprogramm keinen Platz. Steueranweisungen stehen am Anfang und am
Ende des Programms oder halten reine Textzeilen frei; auch sie belegen keinen
Platz.

Jedes Programm beginnt mit der Steueranweisung U (mit Angabe der Anfangs-
adresse) und endet mit der Steueranweisung Z. Die dazwischen liegenden Befehle
und Definitionen werden in ihrer Reihenfolge ins Maschinenprogramm eingesetzt.
Zuweisungen konnen an beliebiger Stelle im Programm stehen; jedoch muB jede
Marke, die einer anderen zugewiesen wird, vorher definiert sein.

Bei der Niederschrift des symbolischen Programms benutze man die MINCAL=-In-
struktionslisten; jede Zeile mit einem giiltigen Anweisungstyp entspricht darin
einer Anweisung.

Zeichenvorrat

Es sind alle 64 druckbaren Zeichen des ASCII-(1SO-7-) Codes zuldssig, einschlieB-
lich Leerschritt, soweit sie nicht durch die Gestalt der einzelnen Anweisungen einge-
schrankt sind.

Zu beachten ist jedoch:

Das "Fehlerzeichen" <— (Code 137g) lsscht alle davor stehenden Zeichen der
Anweisung; sie beginnt danach von neuem. Das "Kommentarzeichen" \ (= Code
134g) leitet einen Kommentar ein und darf nur hierzu benutzt werden.

- 95 -

Alle nicht-druckbaren Zeichen werden uberlesen. Das Zeichen "Leser aus"
(X-OFF = Code 023g) ist das Zeichen fur Anweisungs-Ende. Bei manueller
Eingabe kann das Semikolon (;) fur "Ende Anweisung" benutzt werden; es

erzeugt automatisch die notwendigen Steuerzeichen.

Mit "echten Zeichen" sind im folgenden die 64 druckbaren Zeichen aufler Leer-
schritt, Fehler- und Kommentarzeichen gemeint.
Syntaxregeln

Eine Anweisung ist (in dieser Reihenfolge) aus Instruktionsmerkmal, Befehl, Ergdn-
zung, Vorzeichen, AdreBmerkmal und eventuellem Kommentar aufgebaut :

I1T1BBBE-AAAXXX \ (¢ . .

I |
Instr. - 1. Halk 2. Halk Kommentar
merkmal
l2 fe Kommentarzeichen
Befehl AdreBmerkmal
Vorzei-

Ergdnzung chen

Das Instruktionsmerkmal ist eine symbolische Marke (siehe spdter); sie umfaflt 2
oder 3 echte Zeichen und mufl unmittelbar nach dem Ende der vorigen Anweisung
stehen. Sie kann entfallen.

Der "Befehl" enthdlt den Anweisungstyp; er besteht aus 1, 2 oder 3 echten Zei-
chen. Er folgt auf Anweisungs-Ende + Leerschritt oder auf das Instruktionsmerkmal
mit beliebig vielen Leerschritten dazwischen (mindestens 1 Leerschritt bei Instruk=
tionsmerkmalen mit 2 echten Zeichen). Jede Anweisung mu8 einen gultigen Anwei-
sungstyp in der Befehlsspalte enthalten. Fur den Befehl mussen (ggfs. durch nach-
folgende Leerschritte) insgesamt 3 Zeichen vorgesehen werden.

Die Ergdnzung ist unmittelbar an den Befehl anzuschlieBen; sie besteht aus einem
echten Zeichen oder einem Leerschritt (falls nicht vorgesehen).

Folgt (sofort oder mit beliebig vielen Leerschritten) auf die Erginzung ein Minus-
zeichen (=), wird es als negatives Vorzeichen aufgefafit.

Das AdreBmerkmal hat bis zu 6 echte Zeichen (falls vorgesehen); es folgt unmittel-

bar auf das Minuszeichen bzw. beginnt mit dem ersten echten Zeichen nach der
Ergénzung.

- 96 -

Das Kommentarzeichen beendet die eigentliche Anweisung; alle danach stehenden
Zeichen bis zum Anweisungsende werden als Kommentar aufgefallt. Der Kommentar
sollte nicht mehr als 35 Zeichen umfassen. Er kann unmittelbar hinter dem letzten
Zeichen der eigentlichen Anweisung beginnen und wird durch das Anweisungsende
begrenzt.

Das Anweisungsende kann unmittelbar nach dem letzten Zeichen der Anweisung
stehen.

Regeln fur Marken und AdreBmerkmale

Symbolische Marken

Instruktionsmerkmale bestehen stets aus symbolischen Marken; Adrefimerkmale
konnen eine oder zwei symbolische Marken enthalten.

Eine symbolische Marke reprdsentiert im symbolischen Programm eine Adresse
oder einen zugewiesenen Wert.

Marken bestehen aus 2 oder 3 echten Zeichen; das erste Zeichen darf keine
Ziffer sein.

AdreBmerkmale
Als AdreBmerkmale konnen vorkommen:

Marken (siehe oben).

Oktalzahlen (3 oder 6 Zeichen aus den Ziffern 0...7),

Dezimalzahlen (1 bis 5 Zeichen aus den Ziffern 0...9, stets mit Dezimal-
punkt dahinter).

Ferner sind Kombinationen aus einer Marke (3 echte Zeichen oder 2 echte
Zeichen + Leerschritt) und einer weiteren Marke, einer 3-stelligen Oktal-
zahl oder einer 1- bis 2-stelligen Dezimalzahl (mit Punkt danach) zuldssig.
In diesen Fillen wird die Summe beider dem AdreBmerkmal zugewiesen
(auBer bei Produktzuweisung P, wo das Produkt gebildet wird).

Alle obengenannten AdreBmerkmale kdnnen verwendet werden, wenn in
Abschnitt 5 "universell" angegeben ist.

Ferner ist bei einigen Anweisungen vorgesehen:

Registerangabe (1 Zeichen: U, V, W, X, N, 1, 2 oder 3).

- 97 -

GULTIGE ANWEISUNGEN

In der Befehlsliste des Assemblers sind die nachstehenden Anweisungstypen mit den
folgenden Vorschriften fur die Form der Anweisung vermerkt:

Steueranweisungen

u Ursprung Programm
Definiert die Adresse der ndchstfolgenden speicherbelegenden Anweisung

und muB3 am Anfang des Programms stehen.
AdreBmerkmal: 6-stellige Oktalzahl.

C Kommentarzeile
Wird uberlesen. Ein dahinterstehender Kommentar wird jedoch im Protokoll
an ublicher Stelle gedruckt.

4 Ende Programm
SchlieBt das symbolische Programm ab.

Zuweisungen
M Speicheradre-Zuweisung (Seite 0 des Kernspeichers)

X Externe Adref3-Zuweisung

Instruktionsmerkmal: Notwendig
Adremerkmal: 3-stellige Oktalzahl.

Q Beliebige Zuweisung (Equal)

Instruktionsmerkmal: Notwendig
Vorzeichen: Minuszeichen erlaubt
AdreBBmerkmal: universell

P Produkt-Zuweisung

Instruktionsmerkmal: Notwendig
AdreBmerkmal: Marke * Marke
Marke # Oktalzahl
Marke * Dezimalzahl
(es wird das Produkt zugewiesen).

E Element

Instruktionsmerkmal: Notwendig

AdrefBmerkmal: Dezimalzahl
(Weist auf einen Speicherplatz in einem vorher mit F re-
servierten Feld. Der erste Platz des Feldes hat den Index 0).

- 98 -

Definitionen

YY

Y1
Y2
Y3

Variable (freier Platz)

Feld (von Variablen)

Instruktionsmerkmal: Bezieht sich, wenn vorhanden, auf den ersten Platz

Adre3merkmal :

Bindrzahl

Vorzeichen:

Adrefimerkmal :

Oktalzahl

Vorzeichen:

AdreBmerkmal :

Alpha-Wort

Vorzeichen:

AdreBmerkmal :

Adresse

Vorzeichen:

Adrefmerkmal ;

des Feldes
Universell

Minuszeichen bedeutet negativen Wert (Zweier-Komple-
ment)

Dezimale Ganzzahl (1. bis 39999.), oder

dezimaler Bruch (.00004 bis .99998)

Minuszeichen setzt N-Bit auf 1
6-stellige Oktalzahl

Minuszeichen setzt N=-Bit auf 1. Erforderlich bei
fuhrenden Leerschritten oder Minuszeichen
3 druckbare Zeichen

Minuszeichen bedeutet Niveaubindung
Marke

Adressen, mehrfach indirekt (mit 1 in Bit 17)

Wie Y

Adresse (mit 1 in Bit 15)
Adresse (mit 1 in Bit 16)

Indizierte Adressen fir
MINCDOS 500

Adresse (mit 1 in Bit 15 und 16)

Wie Y

- 99 -

- oot -

M'NCAL INSTRUKTIONSLISTE
BEARBEITER ”ej/ef DATUM 40. . 72

TUNHO0¥d /AN KWW OX

o

SL

rivas

6:
z ~N[e z
SORTIERMERK - lNSTR.—sEFENLz“ADRESSMERK- K BEMERKUNGEN
K <N
z MAL MERK- ola MAL z
MAL x2
112 718 10 {11 13 |14 {1516 18{19 21{22] 23 25 30 35 40 45 50 55 60 65 70
AAJOI T -l 1 - i1 TR W TN WA SUN WU SN S N 1 I SN R SR S § U TR W SN SR SN A 1 I S
1||‘|l||1 [T S T | [Y WY TR W WY TN [NN SRR SN SN S SUN SN SUN N YR SN SUN S SHN S SN S S SU S SN S SN S S S S SN S N S S S G SN S S S Sy
llzlllll Y T LJ‘lllLlll'l!llllll(llAll‘lllltlllllllllAAIII'A
N o ol NUHREZEIT PROGHRIY FUBR ¥ STUNDEN . . . o o o o | . .
LI B A I 7. SENUNDEN-STPRBT. .\ o o ootootiottite
R 7 2B ENUVEBSPRUNGS-ADRESSE. . . . ot oottt
e S HNFLDCA 1B, | NBESET, | o o e e e
2 LD @B | S ST R
1 i 1 3A I — 1 i 1 n 1 1 1 L 1 L L 1 L 1 i 1 1 n 1 1 4 s 1 L L 1 1 1 1 4 L L 1 1 1 1 1 n 1 L 1 1 Y SR Y S (U S WS S S ——
723 10’4-5.9.,..6A#.U/»'.ng...,.........,.J.‘.‘.A,..A...'.‘.._LM,
PN P Nnc’4 e P PR S S P S T R SR S S S T S R T S S W S S S S S S S PR B
s :
. O, WU BDCWI-59.] . NHINUTEN. . . . o o
4
I||1| AL (R S I Y T AT SN S (S SNV SUN SN SN SN S U SN SUSN SN SU SN SN SN S S SR S S S S S I SR UG SN S NN SR S Lo d
3. .., W3R | U4 | . e e e T B
.k U3 RDCB-123., | . . S R ST S
. S|, RIS RY¥-| R R B -
L |0: T TRt TR R 1 TR T | SR TN WY SN S W WU NN S S— SRS SR S S S | 1 L Y TR S I
€ 1L L lll i — i 11 . L L 1 1 - IR S SR N B Lo 1t [N 1 L 1 1 1 L 1 L TR ISR TN P U SR W A A
1 L 1 2 n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 n L) L L 1 L 1 1 1 1 1 1 n A 1 1L L 1 1 1 L [R TR S S W —
4 i L 3 1 I i 1 L L L L L 1 L s s s s 1 1 1 L I I L L 1 L L 1 1 1 1 1 1 1 L 1 R VTSNS W TR R —
e i l‘l 1 1 1 T 1 L s s IS SN NN TN WU TN S W) L1 1 1 N WY SO FUUY S SN S - 1 L TR SRR N WY N S —
i1 |5|| 1 A U T N S 1 — F— 1 L SR — IR W T S L 1 [S——
IAGA - 1 1 1 VI S F R TR N T 1 1 IR SN TN WA TN SRS SRR SN SO NN SN N SHN S SR SU S S 1 Tl
i ||7| | - n 1 Rt PR S 1 PR 1 L IR TR S Bt Ll R RN RN SR S WU SO SUNY N R P SR " —

Symbolische Befehle

NOP Keine Operation

VBL Dezimal-Bindr Linkskomma
VBR Dezimal-Bintr Rechtskomma
VDL Bindr-Dezimal Linkskomma
VDR Bindr-Dezimal Rechtskomma
SLN Normalisieren

HLT Halt

ECL Unterbrechung zulassen
DCL Unterbrechung verhindern

Keine weiteren Angaben

CcOD Code-Operation

AdreBmerkmal: 6-stellige Oktalzahl (4 letzte Stellen geben Beginn
des Mikroprogramms im Festspeicher an)

SRL Schiften rechts logisch
SRA Schiften rechts arithmetisch
SLL Schiften links logisch
SLA Schiften links arithmetisch

Ergdnzung: W, X oder D (vorgeschrieben)

Adrefimerkmal: entfallt (Einbit-Schiftbefehle), oder
Universell (Mehrbit-Schiftbefehle)

SRR Schiften rechts mit Runden

AdreBmerkmal: Universell

MZR Null Setzen

MPO Plus Eins Setzen

MMO Minus Eins Setzen

MIC Inkrementieren

MDC Dekrementieren

MCO Komplementieren

MCI Komplementieren und Inkrementieren

Adref8merkmal: 3-stellige Oktalzahl oder
Marke oder
Register
(= Adresse in Seite 0)

LDC Laden Konstante
ADC Addieren Konstante

Ergdnzung: Register (vorgeschrieben)
Vorzeichen: Minuszeichen bedeutet negative Konstante
AdreBmerkmal: Universell

- 101 -

LDR
TRR
ADR
SBR
FOR
FAR

LD
TR
AD
SB
MP

FO
FA
FE

Cp

BR

In Register Laden
Register Transferieren

Zu Register Addieren
Von Register Subtrahieren
ODER mit Register

UND mit Register

Ergdinzung: Register (vorgeschrieben)
AdreBmerkmal: Universell, oder
Register
(= Adresse in Seite 0)

Laden

Transfer
Addieren
Subtrahieren
Multiplizieren
Dividieren
Inklusives ODER
UND

Exklusives ODER
Vergleichen

Ergdnzung: Fehlt, oder
1, 2 oder 3 (Indexregister)

Vorzeichen: Minuszeichen bedeutet Niveaubindung (vor Marke
bzw. 3-stelliger Oktalzahl) oder relative Adressierung
in Ruckwdrtsrichtung (vor Dezimalzahl)

AdreBmerkmal: Marke, oder
3-stellige Oktalzahl (Adresse in Seite 0), oder
Dezimalzahl (1. bis 511. = relative Adressierung), oder
Register

Bei indirekter Adressierung wird an den Befehl ein Y angehangt
(z.B. LDY).
Verzweigen

Ergdnzung: Fehlt, oder
1, 2, 3, 4, 5, 6 oder 7 (Sensor)

Vorzeichen: Minuszeichen vor Dezimalzah! bedeutet relative
Adressierung in Ruckwadrtsrichtung

AdreBBmerkmal: Marke, oder
Dezimalzahl (1. bis 511. = relative Adressierung)

Bei indirekter Adressierung wird an den Befehl ein Y angehdngt
(z.B. BRY).

- 102 -

BZ

BM

Cs

CM

STL
HSL

HBR

Verzweigen wenn Null
Verzweigen wenn Plus
Verzweigen wenn Minus

Ergtnzung: Register (vorgeschrieben)
Vorzeichen: wie BR
AdreBmerkmal: wie BR

Bei indirekter Adressierung wird an den Befehl ein Y angehdngt
(z.B. BZYJ.
Unterprogramm-Aufruf

Erginzung: Fehlt, oder

U oder V (Ruckkehradresse)
Vorzeichen: wie LD
AdreBmerkmal: wie LD

Bei indirekter Adressierung wird an den Befehl ein Y angehdngt
(z.B. CSY).
Mikroprogramm-Aufruf

Vorzeichen: wie LD
AdreBBmerkmal: wie LD

Bei indirekter Adressierung wird an den Befehl ein Y angehdngt
(z.B. CMY).

Start

Halt, Start Ebene

Adrefmerkmal: 3-stellige oder 6-stellige Oktalzahl
(die drittletzte und die vorletzte Stelle geben die
Zehner- und Einer-Adresse der Ebene an, die ge-
startet wird). .

Halt mit Verzweigen

Vorzeichen: wie BR
AdreBmerkmal: wie BR

- 103 -

GX
FX
OX
GB
FB
IBG
IBF
1B
OB
IBH
OBH
RBL
SBL
RBR
SKB
SKR
IBS
OBS
1BB
OBB

Bemerkung:

Eingabe (Laden)
" (ODER)
Ausgabe
Ubernahme (Laden)
" (ODER)
Eingabe, Ubernahme (Laden)
" " (ODER)
Eingabe-Auslssung
Ausgabe
Eingabe-Auslssung, Halt
Ausgabe, Halt
Ruckstellen LOCK
Setzen LOCK
Ruckstellen READY
Sprung wenn BUSY
" " READY
Serielle Eingabe
" Ausgabe
Blockiransfer-Eingabe
" -Ausgabe

Ergdnzung: bei IP...OBH (1..
...6 = Zeichenzahl) vorgeschrieben

bei 1BS, OBS (1

X~Kanal

X~Kanal, niveaugebunden

.3

I

Indexregister) zuldssig, und

AdreBmerkmal: 3-stellige Oktalzahl (externe Adresse), oder

Marke, oder

2-stellige Oktalzahl (Gerdteadresse) mit Format danach,

oder
Format

Bemerkung: Zuldssige Formatangaben sind:

mov»TOQ

Oktal

Dezimal
Funfkanal
Alphanumerisch
Sieben-Bit
Acht-Bit

Statt einer Marke kann stets auch ein Doppelmerkmal verwendet
werden, bestehend aus einer Marke sowie einer weiteren Marke,

einer 3-stelligen Oktalzahl

(000 bis 777) oder einer Dezimalzahl

(1. bis 99.). Zugewiesen wird die Summe der Werte beider Mar-

ken.

Eine ausfuhrliche Beschreibung des MINCASS 500 Assembler/Editor steht auf
Wunsch zur Verfugung.

- 104 -

Monitor
VORBEMERKUNG

Der MONITOR 500 ist ein Programm zum Austesten von Programmen, die im
Kernspeicher des MINCAL 513/523 abgelegt sind. Das zu testende Programm lauft
unter Steuerung des MONITORS ab und bleibt an vereinbarten Stellen stehen, so
daB der Benutzer Register- und Speicherpldtze auf ihren Inhalt untersuchen oder
diesen verdndern sowie Befehle ein- oder ausbauen kann. Der Dialog erfolgt uber
den Konsol-Fernschreiber. Auflerdem enthdlt der MONITOR Routinen zur Ein- und
Ausgabe des Speicherinhalts iber Konsol=Fernschreiber und schnelle Lochsireifenge=
rdte.

Rechner-Ausstatfungs ~ MINCAL 513/523
Grund + erweiterter Befehlsvorrat
Programmierhilfe X00 (ampfohlen)
Kernspeicher 4k oder grofler
Konsol-Fernschreiber (8-Kanal) an Ebene 0
Schnelle Lochstreifenausristung an Ebene O (empfohlen)

Programmldnge: 13¢@g Worte

Lage im Kernspeicher beliebig
Benutzte feste 8 aufeinanderfolgende Plidtze in Seite 0
Speicherplidtze: Adressen 040...047, vertnderbar)

TESTBEGINN

Zuntichst wird der MONITOR-Lochstreifen in einen freien Kernspeicherbereich einge-
lesen, von einer Anfangsadresse a bis zu einer Endadresse e = a + 1277g. Dies ge-
schieht z.B. Uber die eingebaute Programmierhilfe X00 wie folgt: Schalter INT und
SENSOR 1, 2, 3, 4 (und 5 bei schnellem Leser) einlegen. Tasten RES, END, STA
in dieser Reihenfolge betdtigen. Auf dem Fernschreiber a und e als 6-stellige Oktal-
zahlen eingeben. STA betdtigen; der Streifen wird gelesen. Danach N-Register (Platz
000004) uber die Frontplatte auf a-1 setzen (war a = 001000 gewdhlt worden, gentgt
Betdtigen der Taste END). Schalter INT und SENSOREN in Ausgangsstellung bringen.
Tasten RES, STA betdtigen.

Jetzt wird durch Eingabe von
LEV 1 (cr) (cr = Wagenricklauf)
die Ebene | (=0...7) vorgewshlt, in der das zu testende Programm laufen soll.

Dann wird das zu testende Programm uUber eine der Einlese-Betriebsarten in den

Speicher gelesen (s. EIN/AUSGABE).

- 105 -

STEUERKOMMANDOS

Das zu testende Programm wird mit
RUN s (cr)

gestartet, wobei s die Startadresse angibt. Diese ist -~ wie alle im folgenden be-
schriebenen Adressen - als 1- bis é-stellige Oktalzahl einzugeben.

Soll spdter nach einem Monitor-Halt das Programm wieder gestartet werden, ist
RUN (cr)

ohne Adresse einzugeben.

Durch das Kommando
END (cr)

wird der Monitor-Betrieb beendet.

MONITOR-HALT

Das zu testende Programm kann an beliebigen Stellen angehalten werden; man bereitet
sie durch die Eingabe

STl h (er)

vor, wobei h die Adresse ist, an der das Programm spdter einmal anhalt. Will man,
daf3 es dort beliebig oft anhalt, wird

STl h, @ (cr)

eingegeben.

Jeder so eingebaute Halt kann durch das Kommando
STO h (cr)

wieder ausgebaut werden, wobei h die Stopadresse ist. Durch
STD (cr)

werden sdamtliche Halts wieder eliminiert.

- 106 -

LOSCHEN, ABFRAGEN UND ANDERN

Durch das Kommando
DEL m,n (cr)

wird der AdreBbereich von m bis n gelsscht (alle Platze bekommen Nullinhalt). Soll
nur ein Platz m geloscht werden, gebe man

DEL m (cr)

ein.

Der jeweilige Inhalt der 7 Register U, V, W, X, 1, 2 und 3 der Ebene 1 wird, durch
IXR (cr)

ausgelost, in dieser Reihenfolge oktal ausgedruckt.

Ein weiteres Kommando
ITC m (cr)

bemerkt, dafl der Inhalt der Adresse m oktal ausgedruckt wird. Jetzt hat der Benutzer
folgende Moglichkeiten:

Eingabe C: Der Inhalt der folgenden Adresse wird gedruckt
(kann beliebig oft wiederholt werden)

Eingabe xC: Der neue Inhalt x (1- his 6-stellige Oktalzahl), evtl. Minus=-
zeichen davor) wird in den gerade angewthlten Speicherplatz

Ubertragen.

Eingabe (cr): Der Inhalt des gerade angewihlten Speicherplatzes wird aus-
gedruckt.

Eingabe E: Die Betriebsart ITC wird beendet.

- 107 -

EIN/AUSGABE

Fur die Ein- und Ausgabe der zu testenden Programme oder von Programmteilen halt
der MONITOR folgende Kommandos bereit:

ITO m,n (cr) Eingabe Uber Teletype Oktal-Format
ITA m,n (cr) " " " Alpha~- "
IRO m,n (cr) " " Leser Oktal- "
IRA m,n (cr) " " " Alpha- "
OTO m,n (cr) Ausgabe " Teletype Oktal- "
OTA mn (cr) wow w0 Alphg- M
OPO m,n (cr) " " Locher Oktal- ™
OPA m,n (cr) " " " Alpha- "

Mit m ist die erste, mit n die letzte Adresse des Speicherbereichs gemeint.

ZUR BEACHTUNG
Der MONITOR benutzt 8 aufeinanderfolgende Speicherpldtze in Seite 0, die fur ihn
freigehalten werden mussen. Im Normalfall sind dies die Platze 040g...047g. Soll

stattdessen der Platz p in Seite O (und die 7 folgenden) verwendet werden, so gebe
man zu Anfang das Kommando

ITC q (er)
...pC

wobei q = a + 27g zu wihlen ist (a = Anfangsadresse MONITOR).

Bei Systemen mit Externspeicher (Trommel) kann durch das Kommando
DOS

jederzeit die Kontrolle an den OPERATING-Teil des Trommelbetriebssystems
MINCDOS 500 tbergeben werden.

- 108 -

FORTRAN
VORBEMERKUNG

FORTRAN ist eine Programmiersprache fur mathematische und technisch-wissenschaft-
liche Aufgaben und, in Form des MINCAL FORTRAN, auch fur begrenzten Einsatz

in der Prozeftechnik. Fur die Umwandlung von FORTRAN-Programmen in die Maschi-
nensprache des MINCAL 523 steht ein Ubersetzungsprogramm (Compiler) zur Verfigung.

Rechner-Ausstattung: MINCAL 523
Crund- + erweiterter Befehlsvorrat
Programmierhilfe X@@
Kernspeicher ab 4 k (ab 8 k empfohlen)
Konsol-Fernschreiber (8-Kanal) an Ebene 0
Schnelle Lochstreifenausristung an Ebene 0
wahlweise zusdtzlich Externspeicher

Compiler: Phasen-Compiler, ca. 16 k lang, 20 Phasen
ubersetzt Quellprogramm in einem Arbeitsgang

Speicherbelegung: Compiler und compiliertes Objektprogramm arbeiten auf Ebene 0.
Die 8 Register dieser Ebene (g0...07) sowie die Platze 500...777
in Seite O werden benutzt; ferner die Speicheradressen von 180d
bis zur eingegebenen Endadresse.

Soweit nicht nachstehend anders beschrieben, entspricht MINCAL FORTRAN den ASA-
Spezifikationen fur FORTRAN.
QUELLPROGRAMM

Das FORTRAN=-Quellprogramm, das als Lochstreifen im ASCIl-Code vorliegen muB,
besteht aus einer Folge von Anweisungen; jede umfaBt im Normalfall eine Zeile:

1. Zeichen Leerschritt

2.-5. Zeichen Leerschritte oder 1- bis 4-stellige Anweisungsnummer (label)
6. Zeichen Leerschritt

ab 7. Zeichen eigentliche Anweisung

Fur Folgezeilen gilt:

1.-5. Zeichen Leerschritte
6. Zeichen nicht Leerschritt und nicht @
ab 7. Zeichen Fortsetzung der Anweisung

Fir Kommentarzeilen gilt:

1. Zeichen Buchstabe C
ab 2. Zeichen beliebiger Kommentar

- 109 -

Das physikalische Ende des FORTRAN=-Programms ist gekennzeichnet durch:

1. Zeichen Schragstrich (/)
2. Zeichen Stern ()

Jede Zeile wird mit Semikolon (;) abgeschlossen.

ZEICHENVORRAT

Buchstaben ABCDEFGHIJKLMNOPQRSTUVWZ
Ziffern 0123456789
Symbole =+-%/0),.";

Leerschritte werden, auBer in Textstrings und Kommentaren, tberlesen.

ELEMENTE

Ganzzahl-Konstanten: 1 bis 5 Ziffern, bei negativen Konstanten Minuszeichen

davor
maximaler Betrag bei Ein/Ausgaben: 39999

Gleitkomma-Konstanten: Ziffernfolge im F-Format (z.B.: 2. oder -.g@@7)
oder im E-Format (z.B.: 1374.9E27 oder -.5896E-102)

maximaler Betrag des Exponenten: 153

Einfache Variable: Variablen-Namen (names) beginnen mit einem Buchstaben,
dem bis zu 5 Buchstaben oder Ziffern folgen konnen.
Namen, die mit 1, J, K, L. M oder N anfangen, be-
zeichnen Ganzzahl-Variablen.
Verboten sind FORTRAN-Worter sowie Namen von Stan-
dard-Funktionen und Unterprogrammen.

Indizierte Variable: Variablen-Name, gefolgt von einem oder zwei Indizes
(durch Komma getrennt) in Klammern.
Indizes dirfen aus einer einfachen Ganzzahl-Variablen,
einer Ganzzahl-Konstanten oder der Summe oder der
Differenz beider bestehen. Der Wert des Index muBl im
Bereich 1...511 bleiben.

Ganzzahlen werden intern durch ein Wort dargestellt (max. Betrag 262143), Gleit-

kommazahlen durch ein Doppelwort (Genauigkeit der Mantisse = 107°, max. Betrag
des Exponenten 153).

- 110 -

Arithmetischer Ausdruck: Als Operanden sind Konstanten, Variablen-Namen und
(expression) Namen von Standard-Funktionen zugelassen. Als Ope-
ratoren sind erlaubt:

+ Addition

- Subtraktion

* Multiplikation
/ Division
*

Potenzierung

Beliebige Klammerung ist zugelassen. In einem Ausdruck
durfen nur Operanden eines Typs (Ganzzahl oder Gleit-
komma) vorkommen.

AUSFUHRBARE ANWEISUNGEN

Ergibtanweisung: < name > = expression
Weist der links stehenden Variablen den Wert des rechts
stehenden Ausdruckes zu. Name und Ausdruck dirfen von
verschiedenem Typ sein.

GOTO GOTO < ldbel >
Unbedingter Sprung

COMPUTED GOTO GOTO (<label 1> ,< ldbel 2>, ...) <name >

Berechneter Sprung

IF IF (<expression>) <label 1> ,<label 2>, < ldbel 3>
Bedingter Sprung

IF SENSOR IF (SENSOR<n>)<label 1> ,<label 2>
Bedingter Sprung in Abhingigkeit von Sensor-Schaltern
(wenn EIN, label 1)

DO DO <label> <name> =< first >, < last>,<step >
Laufanweisung.
Die Lauf-Variable (name) muB3 eine einfache Ganzzahl-
Variable, die restlichen diurfen einfache Ganzzahl-Vari-
ablen oder positive Ganzzahl-Konstanten sein. Die
Schrittweite (step) kann entfallen; sie wird dann zu 1
angenommen.
Als letzte Anweisung einer DO=-Schleife (hinter label)
darf nicht GOTO, IF, IF SENSOR, DO, RETURN, STOP
oder PAUSE stehen. Stattdessen ist CONTINUE zu ver-
wenden.
DO-Schleifen dirfen 5fach geschachtelt werden. Die innere
Schleife muB3 innerhalb der duBeren liegen. Mehrere DO-
Schleifen durfen auf die gleiche Anweisung ziehen.
Aus einer DO-Schleife darf herausgesprungen werden; der
augenblickliche Wert der Lauf-Variablen (name) ist ver-
fugbar. Jede DO-Schleife wird mindestens einmal durch-
laufen.

- 111 -

CONTINUE

STOP

PAUSE

CALL NIVEAU

CALL SUBROUTINE

RETURN

CALL CODE

READ

WRITE

CONTINUE

Leeranweisung

STOP < octal >
Ende des Programmablaufs. Ist danach eine 1- bis 4-stellige
Oktalzahl (octal) angegeben, wird diese ausgedruckt.

PAUSE <octal >

Anhalten des Programmablaufs. Ist danach eine 1- bis
4-stellige Oktalzahl (octal) angegeben, wird diese ausge-
druckt.

CALL NIVEAU <level >
Startet eine andere Programmebene, die als 1- oder
2-stellige Oktalzahl (level) anzugeben ist.

CALL < subr>(<par 1>,<par 2>, ...)

Es konnen bis zu 15 aktuelle Parameter (par...) Ubergeben
werden, die aus Konstanten, einfachen Variablen oder Feld-
namen bestehen. Im letzteren Falle wird das ganze Feld
Ubergeben. Parameter mussen in Anzahl, Typ und Gréfle
mit den formalen Parametern des Unterprogramms (subr)
Ubereinstimmen.

Die Parameter-Ausgabe kann entfallen.
Unterprogramm-Aufrufe dirfen im Hauptprogramm und im
Unterprogramm in beliebiger Zahl und Schachtelung vor-
kommen.

RETURN

Rucksprung aus Unterprogramm

CALL CODE< number >
Aufruf einer Code-Prozedur, deren Nummer (number) durch
eine 1- oder 2-stellige Oktalzahl anzugeben ist.

READ (<device>, <format>), <list>

Leseanweisung

WRITE (<device> , < format>) < list>

Schreibanweisung

Diese Anweisungen beziehen sich auf die Konsol-Peripherie
des Rechners.
Als Gerdteadressen (device) sind anzugeben:

g fur Teletype
6 fur schnellen Leser/Locher
Die Formatangabe ist in einer getrennten FORMAT-Anwei-

sung enthalten, deren Anweisungs=Nummer in (format) anzu-
geben ist.

- 112 -

INPUT

OUTPUT

DREAD

DWRITE

NICHTAUSFUHRBARE

DIMENSION

C OMMON

Am Ende der Anweisung steht eine Variable oder eine
Liste von Variablen (list), die durch Kommata getrennt
sind, oder auch eine implizite DO-Schleife der Form

(<name > (<index>), < index >=<first >, < last >, <step>).

INPUT (<first >, <last >, <step>) <list >

Eingabeanweisung

OUTPUT (< first >, <last>, <step>) < list >

Ausgabeanweisung

Diese Anweisungen beziehen sich auf bindre ProzeB-Ein/
Ausgaben. In der Klammer stehen externe Anschlufnummern
oder Ganzzahl-Variablen, denen vorher eine Nummer zuge-
wiesen wurde. Die Anweisung bewirkt den Transfer zwischen
einer Reihe von ProzeBanschlissen und der in der Liste an-
gegebenen Ganzzahl-Variablen (list, s.oben).

Die Angabe der Schrittweite (step) kann entfallen; sie wird
dann zu 1 angenommen. Fir nur einen transferierten Wert
entfallt auch (last).

DREAD <mem >, < ext >

Externspeicher-Leseanweisung

DWRITE <mem>, <ext >
Externspeicher-Schreibanweisung

Diese Anweisungen dienen zum Transfer von Datenfeldern
zwischen Kernspeicher und Externspeicher (Trommel oder
Platte). Der Name der Kernspeicher-Adresse (mem) muf3 in
einer DIMENSION=-, der Name der Externspeicher-Adresse
in einer DCOMMON-Anweisung vereinbart sein.

ANWEISUNGEN

DIMENSION <name 1> (<dim 11>,<dim 12>), ...
Feldanweisung.

Reserviert beliebig viele ein- oder zweidimensionale Felder
(mit 1 bis 511 Pldtzen je Dimension) fur jeden Programm-
teil getrennt.

COMMON <name 1>(<dim 11>,<dim 12>), ...
Speicherblockanweisung.

Reserviert beliebig viele Variablen, ein- oder zweidimen-
sionale Felder (mit 1 bis 511 Pldtzen je Dimension) fur
alle Programmteile gemeinsam.

- 113 -

DCOMMON

CODE

SUBROUTINE

FORMAT

END

DCOMMON (<device >)<name >(<dim>), ...
Externspeicher-Belegung.

Reserviert beliebig viele Variablen oder eindimensionale
Felder auf dem Externspeicher (Trommel oder Platte). Wenn
mehrere Externspeicher angeschlossen sind, ist fur jeden
eine DCOMMON-Anweisung vorzusehen mit Angabe der
Nummer (device, @ bis 3).

CODE <number > (< length>)

Code=-Prozedur.

Reserviert fur eine Code-Prozedur mit einer 1- bis 2-stelligen
oktalen Nummer (number) Speicherplatz, dessen GrofBe (in
Worten) als Dezimalzahl anzugeben ist (length).
Code=Prozeduren sind getrennt erstellte Maschinenprogramme,
die nach der Compilierung eingelesen werden.

SUBROUTINE <subr>(<par 1>,<par 2>, ...)
Unterprogramm.

Gekennzeichnet durch Namen (subr) mit bis zu 6 alphanu-
merischen Zeichen (1. Zeichen = Buchstabe). Parameter
siehe CALL SUBROUTINE.

FORMAT (<spec 1> ,<spec 2>, ...)

Formatanweisung .

Die Spezifikationen (spec...) kdnnen folgende Formate ent-
haltens

riw Ganzzahl r = Wiederholungszahl
rFw.d Gleitkommazahl im F-Format
rEw.d Gleitkommazahl im E-Format
rAw Alphanumerischer Wert

' text >’ Literal (Textstring)

nX n Leerschritte bzw. n Zeichen Uberlesen
/ Zeilenende

Gruppen von Formatspezifikationen kénnen in Klammern
eingeschlossen und mit einer davorstehenden positiven
Ganzzahl als Wiederholungsfaktor versehen werden.

w = Zeichenzahl
d = Stellen hinter
Dezimalpunkt

END
Bezeichnet das physikalische Ende eines Programmteils
(Haupt=- oder Unterprogramm).

- 114 -

STANDARDFUNKTIONEN

Folgende Standardfunktionen sind vorgesehen:

Name Bedeutung Argument Ergebnis
ABS Absolutwert R R
1ABS’ " | l
FLOAT Typumwandlung I R
IFIX " R l
EXP Exponentialfunktion R R
ALOG Naturlicher Logarithmus R R
SIN Sinus R R
CcOS Cosinus R R
TANH Tangens hyperbolicus R R
SQRT Quadratwurzel R R
ATAN Arcus tangens R R

I = Typ Ganzzahl; R = Typ Gleitkommazahl

CODE-PROZEDUREN

Jede Code-Prozedur kann als einzelner Maschinencode-Lochstreifen vorliegen. Die
Streifen mussen in Alpha-Format gestanzt sein und folgenden Aufbau haben:

1. Wort: Name der Code-Prozedur (1...77 oktal)
2. Wort: Ldnge der Prozedur (bindr)
3. letztes Wort: Befehle

Die Code-Prozeduren brauchen nicht in der Reihenfolge ihrer Definition eingelesen zu
werden.

Die Code-Prozeduren liegen spdter in der Reihenfolge ihrer Nummern im Speicher vor
dem COMMON-Bereich, der am Ende des verfigbaren Speicherbereichs liegt (festge-
legt durch Eingabe der Compiler~Endadresse). Sie sind moglichst relativ adressiert zu

schreiben. Die Ubergabe von Daten erfolgt zweckmiBig tber den COMMON-Bereich;
in diesem sind Variable und Felder von hinten nach vorn in der Reihenfolge ihrer De-
finition enthalten.

- 115 -

F ORTRAN-WORTER

AuBler den Namen der Standard-Funktionen dirfen folgende Warter nicht als Variablen-
Namen verwendet werden:

GOTO COBDE DIMENSION
IF NIVEAU COMMON
SENSOR RETURN SUBROUTINE
DO; WRITE FORMAT
CONTINUE READ DREAD

STOP INPUT DWRITE
PAUSE OuTPUT DCOMMON
CALL END

Ferner die Namen der Standard-Funktionen.

HANDHABUNG DES COMPILERS

Compiler-Lochstreifen vor Phase 1 in den schnellen Leser einlegen. INT, SENSOR 1,
2, 3, 4, 5 nach unten; RES, END, STA betdtigen; Anfangs= und Endadresse (auf
Lochstreifen vermerkt) é-stellig oktal Uber Fernschreiber eingeben; STA erneut betd-
tigen. Phase 1 wird eingelesen; danach INT und SENSOREN nach oben; RES, END,
STA betdtigen.

Auf dem Fernschreiber werden nun Fragen ausgedruckt, die der Benutzer beantworten
mufBl. Zuvor ist das Quellprogramm mit dem Zufuhrbereich in den Leser einzulegen.

LISTE: Y, wenn ein Protokoll des eingelesenen FORTRAN-Programms gewinscht wird,
sonst N.
DOS-NIVEAU: Ebene der DOS-EXECUTIVE 2-stellig oktal eingeben*)

TROMMEL-ANZ.: Anzahl der Externspeicher eingeben*). Die Basisadresse fur den
DCOMMON-Bereich auf den Trommeln ist 6-stellig oktal einzugeben, z.B.:

Anfangsadresse auf Trommel 1: 100 gdd
C T o o g

MAXIMUM KERNSP.: é-stellige Oktalzahl als Endadresse fur den Compiler eingeben.

Nach diesen Angaben wird das Quellprogramm eingelesen und im Kernspeicher abgelegt.
Danach muB3 der Compiler-Lochstreifen vor Phase 2 in den Leser gelegt und nach Ausga-
be der Nachricht START: ein Zeichen getippt werden. Nach Eingabe dieses Zeichens
wird dann sukzessiv compiliert.

Nach dem Compilieren wird der noch freie Kernspeicherbereich ausgedruckt, z.B.

FREI: @10334-@17776. AnschlieBend wird nach einfigenden Code-Prozeduren (CP?)
gefragt. Der Compiler-Streifen kann jetzt herausgenommen werden.

*) bei Systemen mit Externspeicher. Falls nicht vorhanden, Nullen eingeben.

- 116 -

Sind Code-Prozeduren vorgesehen, Antwort auf CP?: "Y", nachdem der Code-Loch-
streifen eingelegt ist. Der Lochstreifen wird eingelesen. Diese Manipulation ist fur
jede Code-Prozedur zu wiederholen.

Auf die Eingabe eines beliebigen Zeichens, auBler "Y" erfolgt die Ausgabe der
Nachricht: START? xxxxxx (Startadresse). Der Dialog wird mit "Y" fortgesetzt,
falls das generierte Programm sofort ausgefihrt werden soll. Werden in diesem Pro-
gramm Informationen Uber den Leser angefordert, ist der zugehsrige Datenlochstrei-~
fen vor dem Programmaufruf in den Leser einzulegen.

Die Startaufforderung wird mit jedem anderen Zeichen auBler "Y" negiert. In diesem
Fall lauft der Rechner auf HALT; das Objektprogramm kann danach zu einem beliebi-
gen Zeitpunkt uber die Taste "STA" (an der Rechner-Frontplatte) gestartet werden.

Fehler im Quellprogramm werden durch eine Nachricht registriert; fuhren diese Fehler
zum Abbruch der Compilierung, kann eine neue Umwandlung erst nach der Korrektur
des Quellprogramms wiederholt werden. Es werden auch Fehler gemeldet, die zur
Objektzeit festgestellt werden. In diesen Fillen stoppt der Rechner nach Ausgabe der
Fehlernachricht; erneutes Starten ist moglich und zuldssig.

FEHLERMELDUNGEN

Warnungen ***

001 ungultiges Zeichen in Spalte 1, Zeile wird als Kommentar aufgefaf3t

002 kein giltiges Programmende-Zeichen

003 ungiiltiges Zeichen in Spalte 2...5

004 Folgestatement darf keine Statement-Nr. besitzen

005 erstes Statement kann kein Folgestatement sein

007 Statement=Nr. vor END, COMMON, SUBROUTINE, CODE oder
DIMENSION

008 END als 1. Statement

009 END fehlt vor SUBROUTINE; wird vom Compiler generiert; nachfolgende
Statement-Nrn. sind dann um 1 erhoht

010 mehrere ENDs hintereinander

Fehler <<<zur Compilezeit

100 Kernspeicher-Uberlauf

101 kein imperatives Statement zwischen SUBROUTINE und END

102 nach END kein SUBROUTINE

103 offnende Klammer nach DIMENSION fehlt. Variable nicht indiziert.
104 Variable nicht durch Komma getrennt (auch indizierte)

105 keine schlieBende Klammer bei DIMENSION

106 mehr als 2 Indizes (mehr als 1 Komma vorhanden)

107 keine offnende Klammer vor Parametern bei SUBROUTINE

108 keine schlieBende Klammer nach Parameter bei SUBROUTINE

- 117 -

109
110

1M
112
113
114

115
116
117
118
119
120
121
122
123
124
125
126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

145
146
147
148
149
150

151
152
153
154

mehr als 15 Parameter

kein Statementende nach schlieBender Klammer bei SUBROUTINE oder
CODE

keine oktale Nummer bei CODE

keine &ffnende Klammer vor Ldngenangabe in CODE

keine schlieBende Klammer nach Léngenangabe in CODE

keine Ltngenangabe in CODE (nach offnender Klammer folgt sofort
schlieende)

keine Ldngenangabe bei CODE

Variable beginnt nicht mit Buchstaben

Index > 511

frei

Variablenname = Name einer Standardfunktion

Variablenname doppelt definiert

Parametername in SUBROUTINE doppelt definiert

Einfache Miriable indiziert gebraucht

indizierte Variable einfach gebraucht

unzuldssiges Zeichen nach UP-Name in CALL-Statement
Parametername = Standardfunktions-=Name

gesamtes Feld in READ, WRITE, INPUT, OUTPUT darf nicht in

D COMMON definiert sein

kein gultiger UP-Name

RETURN im Hauptprogramm nicht erlaubt

falsches Zeichen vor LITERAL

mehr als ein "E" in REAL-Konstante

mehr als ein Punkt in REAL-Konstante

INTEGER-Konstante > 39999

FORMAT-Spezifikation beginnt nicht mit &ffnender Klammer

keine Statement-Nummer bei FORMAT vorhanden

zwei FORMAT-Spezifikationen teilende Zeichen hintereinander
mehr als ein Buchstabe pro FORMAT-Spezifikation

unzuldssiges Zeichen im FORMAT-Statement

Anzahl der offnenden Klammern ungleich der schlieBenden

kein Punkt in E- bzw. F-FORMAT

D ezimalstellen > 80

Feldldnge - Dezimalstellen < 7 bei E-FORMAT

Feldldnge - Dezimalstellen < 2 bei F-FORMAT

mehr als ein Punkt in E- oder F-FORMAT

Feldlange - bei 1-, E- bzw. F-FORMAT >80

Feldlange bei |-, E- bzw. F-FORMAT =0

Feldldnge bei A-Spezifikation = 0

Feldlange bei A-Spezifikation >3

Wiederholungsfaktor vor |-, E-, F-, A- bzw. X-Spezifikation = 0
Wiederholungsfaktor vor I-, E-, F-, A- bzw. X-Spezifikation >130
die FORMAT-Nr. einer READ- oder WRITE-Anweisung ist nicht
definiert

FORMAT-Nr. doppelt definiert

frei

Kernspeicher-Basisadresse darf kein Feld = COMMON-Bereich sein
trotz Angabe Trommelzahl = 0 werden Trommelbefehle benutzt. Abbruch.

- 118 -

155
156
157
158
159
160
161
162
163
164
165
166
168
169
170
171
172
173
174
175
176
177
178
179
180

181
182
183
184
186
187
188
189
190
191
192
193

194
195
196
197
198
199
200
201
202
203
204
205

Index = Standardfunktion bzw. 156

Index ist indiziert

Index ist nicht INTEGER

Reihenfolge: "Variable + Konstante" nicht eingehalten
unzuldssiger Index -

Index 511

Index 0

Index =0

bei doppelter Indizierung Indizes nicht durch Komma getrennt
schlieBende Klammer nach Index fehlt

keine Variable auf linker Seite bei arithmetischem Statement
"=" Zeichen im arithmetischen Statement fehlt

kein " (" bei Standardfunktionen

ungiltiger Operand

Klammerung unpaarig im arithmetischen Statement

ungiltiges Zeichen im arithmetischen Statement

ungiiltiges Zeichen in IF (arithmetisch)

Klammerung unpaarig in IF (arithmetisch)

unzuldssiges Zeichen im Statement

frei

Ziffer nicht oktal in CALL NIVEAU

ungiiltiges Zeichen in CALL NIVEAU

keine &ffnende Klammer bei CALL name

unzuldssiges Zeichen in CALL name

nach Vorzeichen (+) folgt keine Konstante in Parameterliste von CALL
name -

mehr als 15 Parameter in CALL name

Parameter in CALL name indiziert

keine schliefende Klammer nach Parameter in CALL name
unzuldssiges Zeichen in CALL CODE

keine Oktalzahl in CALL CODE

ungiltiges Zeichenin PAUSE oder STOP
Kernspeicher-Basisadresse bei DRED/DWRITE muB gesamtes Feld in E/A sein
keine Oktalzahl bei STOP/PAUSE

nach schlieender Klammer bei CALL NIVEAU kein Statementende
ungiiltiges Zeichenin DREAD/DWRITE

keine oder falsche Gerdte-Nr. bei READ/WRITE

kein Komma als Trennzeichen zwischen Gerdte-Nr. und Format-Nr. bei
READ/WRITE

frei

keine schlieBende Klammer nach Gerite/Format-Nr. in READ/WRITE
mehr als 5fache Schachtelung der Impl.-DO-Schleife

frei

ungiltiges Zeichen in E/A-Liste

unpaarige Klammerung in E/A-Liste

mehr als 64 Zeichen pro Statement-Zeile

Variable in E/A-Liste nicht durch Komma getrennt
Lauf-Variable in impl.-DO-Schleife ist nicht vom Typ INTEGER
Externspeicher-Basisadresse nicht durch DCOMMON definiert
Anfangswert der impl. DO-Schleife nicht INTEGER

Parameter der impl. DO-Schleife nicht durch Komma getrennt

- 119 -

206
207
208
209
210
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

235
236
237

238

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

Endwert der impl. DO-Schleife nicht INTEGER

auf den Endwert der impl. DO-Schleife folgt keine ")" oder Komma
die Schrittweite der impl. DO-Schleife ist nicht INTEGER

"(" bei INPUT/OUTPUT fehlt

externe Adresse bei INPUT/OUTPUT nicht INTEGER

Anfangs- und Endwert der externen Adressen bei INPUT/OUTPUT nicht
durch Komma getrennt

Endwert der externen Adresse bei INPUT/OUTPUT nicht INTEGER
auf den Endwert der externen Adresse folgt kein Komma oder ")"
Schrittweite der externen Adresse bei INPUT/QUTPUT nicht INTEGER
")" bei INPUT/OUTPUT fehlt

mehr als 5fache Schachtelung der DO-Statement

DO-Schleife ruckwdarts nicht erlaubt

falsche DO-Schachtelung

keine gultige DO=-Ende-Nr.

keine Lauf-Variable vorhanden

nach Lauf-Variablen fehlt "="-Zeichen

kein Anfangswert fur Lauf-Variable vorhanden

kein Komma nach Anfangswert

kein Endwert fur Lauf-Variable vorhanden

keine gultige Schrittweite fur Lauf-Variable

kein gultiges Statementende

GOTO darf nicht als DO-Ende-Statement benutzt werden

Comp. GOTO "

IF "

IF SENSOR "

DO i

STOP "

RETURN "

im vorangegangenen Programmteil wurden folgende DO-Ende-Statements
nicht gefunden

ungiltiges Zeichen in GOTO

Marke enthdlt mehr als 4 Ziffern bei comp. GOTO

Marken nicht durch Komma getrennt oder keine schlieBende Klammer bei
comp. GOTO

keine Marke innerhalb des Klammerausdruckes bei comp. GOTO vor-
handen

nach offnender Klammer keine Marke vorhanden
Sprungverteiler-Variable im comp. GOTO-Statement nicht INTEGER
kein Statementende nach Sprungverteiler-Variablen

ungiltiges Zeichen zwischen Marken bei arithmetischem IF

keine drei Marken bei arithmetischem IF vorhanden

ungiltige Marke bei arithmetischem IF

Marke in arithmetischem IF besteht aus mehr als 4 Ziffern

mehr als 3 Marken bei arithmetischem IF vorhanden

Sensorangaben in IF SENSOR falsch

keine schlieBende Klammer bei IF SENSOR vorhanden

Marken bei IF SENSOR nicht durch Komma getrennt

ungUltige Marke

Marke nicht definiert

Statement-Nr. doppelt definiert

Mixed Mode

- 120 -

254
255
300
301
304
305
333

IFIX/FLOAT mehr als 5fach geschachtelt
GP lduft in Markentabelle Abbruch

keine Oktalziffern fur Trommel vorhanden
Fehler kein ")" nach Trommel-Nr.-Angabe
kein Punkt nach E erlaubt

Exponent fehlt

Statement enthdlt Fehler

Fehler << < zur Objekizeit

400
401
402
403
404
405
406
407
408
409
410
411
412
418

keine Liste bei INPUT/OUTPUT

ungiiltiger Satzabschluf3

Typ-Unterschied zur FORMAT-Spezifikation und Liste
INTEGER-Wert zu grof3

FORMAT-Spezifikation zu klein (bei F E, [, A)
Liste bei INPUT/OUTPUT zu kurz

Ergebnis bei ADD, SUB, MUL oder POT zu grof
IFIX: Zahl zu groB

SQRT: Radikand negativ

LN fur negative Werte nicht definiert

LN (0) = unendlich

EXP: Ergebnis zu grof3

UP-Name nicht definiert

NEU STARTEN! (Tabelleniberlauf)

- 121 -

MINCAL FORTRAN

rrocram _PURDRRT PRHLEN-BERECH, oatg _ 6.3, 72

N
- z
ILaeeL |2 S TATEMENT
(] o
N S
112 3 45167 10 15 20 25 30 3s 40 4“5 50 55 60 65 0 75 5 80
-
] e R
e . e
BETSPIEL: FERECHFZUNG Vo QURDRE m%\émq: T
1 \\ WD WU VRS T WA WY WY SN SN SUN DUNN S S S A) WS T WY W S 1 W SRR S WY W W W S § WS W S NN SV NS WA Y SN S W N SR S G S N B B N W |
,_.@umx&qsi\\.n%_,,ﬁ&p__.___._ﬁ_. T
PR &Nh@ q&fmv**\\ YT S S SN ST SN SN ST U SO WU ST Y SN S NS WY SRS YU ST S S S S N SN 1 IO Y W T SR WY VOO S S S S 1 L N 4
At @0 \Q& w‘ﬁ§¢\ﬂ T S S SR ST S WO S S SR | F T WO U0 S S R S S S S N TS U U SE S S S WA WA T SN NS NN SAS UON SO SN WY S G G G S 1 il
PR Gor W@.u.n_ ./N..IAQ\\.!;. L P n L4 4 NS S N N S S R RN S NS N B N S NS N R L i JES! L
WIS) =T % F A R A S A T S S S PR
xl&h&Smﬂ@m&.b.y?&ix&ﬁﬁ_._______ e
A2\ \WRITE (2, .wu i c3
)] L L PO ST ST R S S S T I S UG U W VY S WS U ST SN S TS U WS SO S S SH SO S S SN S T S WO S G | Y n
e,
o .0 /W&;& 4\.(\\&\\-.. L 1 L P L U SR VNS T S WY AN WA U ST U S N VAN ST TN SN U A N NS S NS N N MRS N1 JETE o4y
...QD?WB.&N\V&X-.....#....,., RS WS SR U U SR SR U NN WU NN SUN S SN (N SN VNN SN NN SN N N N NN SUN U SO SN SH U S SN S SN S G SN G ST U S S S
...QmH&N,vuanmus.*..ih&.i:,
.,wrs\iuﬂmg..@kﬁ?n N
B (CONTT NHUE. . A R S A I
L | ISTOR S T N S R S SR S B
A FoRHAT (I3 . o N
L..&ﬂomthﬂ\ﬂwr.i_vﬂuu ,N,M\L;. u_ T
S |FoRHART (/)
_— L -\ i1 4) i T § U U VAN T SN W WU WY U S SN N SN U SN U TN U WH SN NN S S U NN T S SN SN SN N S S N | L T N S T .
K RRTRRALIEN ") . |
:v\uom%\.ﬁbsﬂvmw /2 T
. *o.axmrrw&q,wewﬁv.___,.._..r T
o ErD T s R T A R S T S I
*..- I T S WY U S WU WA U N W N R S S A L R)R N NN SN S N 3 1L | N S S S SN N S S NN SN NN WA S NN N SUNY SUNN SN NN SN SN NN SN DU U N SNAY SN SN S S SN SN N SN S N
A T N S S T ST S TN SN SN SN SH SR W S 1 L i N W (N WS W S W S § SRS WS TN WY WU T NN U WY S U WY SN W S NN WU SN SN SN SN SN SN N SN NN NN GRS U SN SN NN S SN N S S S S B W
T W S S5 NS SN SN SN W S Y A il i i i1 L N SR N TR W i1 1 § W N WS WO WS W W U W WU NN SN U NN SN W SN NN VNN SN NN WU W S N SN S N SN G S U S G R S S
A Aol S s 1 R N W S | | S Y) W N TN SR N WS N NS N T TN WU S W NN W N W SN SN SN NN NN SN U N SN N SR U S S U |
Y W SN N SENT NN N SN S VY S Y i L - (TR W W N S N W A A a2 4 3 oA 4 A & o 4 3 A % 0 & A & 0 % o & % A & % 3 & L 4 3 4 4 # 4 4 4 1 Loy oy o4 4
U S N SR S S 1 1 i T W S S T PN SHN VAN T W N SR S S | Aokl PR B U S S G UNN NN 1 TR B SR S B N

- 122 -

ALGOL
VORBEMERKUNG

ALGOL ist eine Programmiersprache fur mathematische und technisch-wissenschaftliche
Aufgaben. Fur die Umwandlung von ALGOL-Programmen in die Maschinensprache des
MINCAL 523 steht ein Ubersetzumgsprogramm (Compiler) zur Verfigung.

Rechner-Ausstattung: MINCAL 523
GCrund- + erweiterter Befehlsvorrat
Programmierhilfe X00
Kernspeicher ab 4k (ab 8k empfohlen)
Konsol-Fernschreiber (8-Kanal) an Ebene 0
Schnelle Lochstreifenausristung an Ebene 0

Compiler: Phasen-Compiler, ca. 7 k lang, 6 Phasen
Ubersetzt Quellprogramm in einem Arbeitsgang

Speicherbelegung: Compiler und compilierte Objektprogramme arbeiten auf Ebene 0.
Die 8 Register dieser Ebene (00...07) sowie die Platze 400...777
in Seite 0 werden benutzt; ferner die Speicheradressen von
1000 bis zur Endadresse.

Soweit nicht nachstehend anders beschrieben, entspricht MINCAL ALGOL dem IFIP-
Subset von ALGOL 60.

QUELLPROGRAMM

Das ALGOL-Quellprogramm muf3 als Lochstreifen im ASClI-Code vorliegen. Das
physikalische Ende wird durch ein Doppelkreuz (4f) gekennzeichnet. NULL- oder
RUBOUT-Zeichen innerhalb des ALGOL-Programms sind verboten.

ZEICHENVORRAT

Buchstaben ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ziffern 0123456789
Symbole =:+-*/()C2, . " ;

Leerschritte werden, aufler in Textstrings, Uberlesen.

Bemerkung: Die bei ALGOL sonst ubliche tiefgestellte q ist durch den Buchstaben E
zu ersetzen.

- 123 -

ELEMENTE, WORTSYMBOLE, ANWEISUNGEN

Ziffernfolge ohne Dezimalpunkt (z.B. 99 oder -12345).
Ziffernfolge mit Dezimalpunkt (z.B. 3.1415 oder -.@6789).
Vollstandige Form (z.B. 8.88E12 oder -.54321E-135).

Zahlkonstante:

Name: Ein Buchstabe, dem beliebig viele Buchstaben oder Ziffern
folgen konnen. Bei Marken-Namen sind nur die ersten 3 Zei-
chen, bei den uUbrigen nur die ersten 5 Zeichen von Bedeutung.
Verboten sind ALGOL-Namen.

Variable: Wird durch einen Namen vereinbart. Bei indizierten Variablen

stehen ein, zwei oder drei Indizes, durch Komma getrennt, in

Zahlen werden intern mit 2 Worten dargestellt (Genauigkeit =

eckige

Klammern T 3 eingeschlossen hinter dem Namen. Indizes

konnen beliebige aritiimetische Ausdricke sein.

]0_8; Betrag des Ex-

ponenten bei Gleitkommazahlen max.150).

Arithmetischer Ausdruck: Als Operanden sind Zahlkonstanten, Variablen-Namen und
Prozedur~Namen zugelassen.

Operatoren: + Addition
- Subtraktion
* Multiplikation
/ Division
"POWER’ Potenzierung
Boole’sche "TRUE’ wahr
Konstanten: "FALSE’ falsch
Boole’sche "NOT’ Negation
Operatoren: "AND’ Konjunktion
"OR’ Disjunktion
"IMPL’ Implikation
"EQUIV’ Aquivalenz
Vergleichsoperatoren: ’LESS’ kleiner als
"NOT LESS’ nicht kleiner als
"EQUAL’ gleich
"NOT EQUAL’ ungleich
"GREATER’ gréBer als

Klammerung:

Wertzuweisung:

"NOT GREATER’

(
)

nicht gréBer als

sffnende Klammer
schlieBende Klammer

ist gleich

- 124 -

Kommentars

Blockvereinbarung:

Vereinbarungen:

Prozeduren:

Unbedingter Sprung:

Bedingung:

Schleife:’

"COMMENT’

"BEGIN’
"END’

"INTEGER”
'REAL’
'BOOLEAN’

"INTEGER ARRAY”’

" ARRAY’

"BOOLEAN ARRAY’
"INTEGER PROCEDURE’
"REAL PROCEDURE"

"LABEL’

"PROCEDURE"
"VALUE'

'GOTO’

IIFI
"THEN'
"ELSE’

"FOR’
! STEP’
"UNTIL’
"WHILE’
!DOI

STANDARD-PROZEDUREN

Funktionen:

Ein/Ausgaben:

ABS
ENTIER
SIGN
LN

EXP

SIN
COs
ARCTAN
SQRT

ININTEGER
OUTINTEGER
INREAL
OUTREAL
READ

PRINT

TYPE
WRITE

- 125 -

folgt Kommentar

Anfang eines Blocks
Ende eines Blocks

Ganzzahl-Variable
Gleitkomma=-Variable
Aussage-Variable

Feld von Ganzzahl-Variablen
Feld von Gleitkomma-Variablen
Feld von Aussage-Variablen
Prozedur mit Ganzzahlen
Prozedur mit Gleitkommazahlen
Marke

eigentliche Prozedur
Wertaufruf

Sprunganweisung

Vergleichsanweisung
Folgeanweisung wenn wahr
Folgeanweisung wenn falsch

Anfangswert
Schrittweite
Endwert
Bedingung
Laufanweisung

Absolutwert
Ganzzahlwert
Vorzeichen

Natirlicher Logarithmus
Exponentialfunktion
Sinus

Cosinus

Arcus tangens
Quadratwurzel

Eingabe Ganzzahl
Ausgabe Ganzzahl
Eingabe Gleitkommazahl
Ausgabe Gleitkommazahl
Eingabe beliebige Zahl

Drucken beliebige Zahl in Standard-

Format
Drucken Ganzzahl
Drucken Zeichenfolge

CODE-PROZEDUREN

Code-Prozeduren sind im ALGOL-Programm enthaltene Programme in Maschinensprache.
Sie werden als Folge von Maschinenbefehlen in oktaler Schreibweise (evtl. Minuszei-
chen, 6 Oktalstellen) formuliert.

Vereinbarung einer Code-Prozedur: 'PROCEDURE’ < NameX < Parameter>,...)
'OUTCODE’ < Oktalliste >
"INCODE’ < Oktalliste >
’CODE’ < Oktalliste >

'OUTCODE’ bzw. 'INCODE’ dienen zur Ubergabe von Parametern vom ALGOL-
Programm in die Code-Prozedur bzw. in umgekehrter Richtung. Das erste Wort der
Oktalliste gibt die Anzahl der folgenden an; diese enthalten die Adressen der zu
Ubergebenden Parameter. Hinter "CODE’ steht das Maschinenprogramm (1.Wort:
Anzahl der folgenden; dann erster Befehl, usw.; zuletzt BRY uber 1. Wort). Es darf
alle Register sowie Pldtze in Seite 0 bis Adresse 399 verdndern.

Die Code-Prozedur selbst wird im ALGOL-Programm durch ihren Namen, gefolgt von
einer Liste der aktuellen Parameter, aufgerufen.

ZUR BEACHTUNG

Jedes ARRAY muB einzeln mit seinen Indexgrenzen vereinbart sein. Dynamische
ARRAYs sind nicht erlaubt.

Bei Prozeduren sind keine ARRAYs, Marken oder Prozeduren als formale Parameter
erlaubt. Formale Parameter gelten als zu dem Block gehsrig, in dem die Prozedur
definiert ist; sie durfen daher nicht mit Variablennamen dieses Blocks tbereinstimmen.

Bedingte arithmetische Ausdricke sind in runde Klammern einzuschlieBen.

Die Schachteltiefe bei Laufanweisungen ist unbeschrankt.

Bedingte Marken (berechneter Sprung) sind nicht erlaubt. SWITCH ist nicht vorgesehen;
stattdessen verwende man (eventuell geschachteltes) IF...THEN...ELSE...GOTO...

Die Laufvariable einer Laufanweisung darf nur eine nichtindizierte Variable sein.

Fur formale Parameter von Prozeduren, die nicht in der VALUE-Liste stehen, durfen
keine Konstanten, indizierten Variablen oder arithmetischen Ausdrucke als aktuelle
Parameter verwendet werden, sondern nur einfache Varidble.

- 126 -

HANDHABUNG

Compiler-Lochstreifen (Anfangsteil) in den (schnellen) Leser einlegen. INT, SENSOR 1,
2, 3, 4, (5) nach unten; RES, END, STA betdtigen. Anfangs- und Endadresse (auf
dem Lochstreifen vermerkt) iber den Fernschreiber 6-stellig oktal eingeben; STA er-
neut betitigen. Phase 1 wird eingelesen; danach INT und SENSOREN nach oben.

RES, END, STA betdtigen.

Auf dem Fernschreiber werden nun Fragen ausgedruckt, die der Benutzer beantworten
mufl. Zuvor ist das Quellprogramm in den benutzten Leser einzulegen.

CORE: 6-stellige Oktalzahl als Endadresse eingeben (grofer als Z@d6400).

LISTING: Eingabe YES, wenn das Quellprogramm nach dem Einlesen protokolliert
werden soll, sonst NO.

OP.PUNCH: Eingabe YES, wenn nach der Compilierung ein Maschinencode-Streifen
des Objektprogramms ausgegeben werden soll (einschlieBlich Versorgungsprogrammen);

sonst NO.

LIMIT: Eingabe YES bewirkt Einschrankung der Variablenliste (Normalfall). Bei grofen
ARRAYs NO eingeben.

FASTREAD: Eingabe YES, wenn Quellprogramm uber schnellen Leser eingelesen werden
soll; das Quellprogramm wird eingelesen bis# ; dann Compiler-Lochstreifen (Hauptteil)
in Leser einlegen und STA driicken. Das Quellprogramm wird - nach eventueller Pro-
tokollierung - durch die sukzessive eingelesenen Compiler-Phasen compiliert. Bei
Eingabe NO wird das Quellprogramm tber den Teletype-Leser "eingelesen; danach
Wagenricklauf eingeben, und die Compilierung erfolgt wie oben beschrieben.

Bemerkung: Falsch beantwortete Fragen konnen durch Eingabe von DELET ungiltig
gemacht werden.

Nach der Umwandlung werden zwei Zahlen ausgegeben: Erste freie Adresse nach den
Versorgungsprogrammen und erste freie Adresse vor dem Objektprogramm.

Jetzt evil. bendtigte Datenstreifen in den Leser einlegen. Durch Betdtigen von STA
wird das umgewandelte Programm gestartet.

- 127 -

BEISPIEL EINES ALGOL-PROGRAMMS

001

002
003
004
005
006
007
008
009
010
01l1
o012
013
014
015
016
017
018
019
020
021

o022
023
024

025
026

027
028
029

"BEGIN' 'COMMENT'TEST DER SIMPSON-INTEGRATION MIT
'REAL'ERALTsERNEUS

' INTEGER" M3

'REAL"® "PROCEDURE"'SIM(UG>0G>N)3

'VALUE'UG> 0G5 N3

'REAL'UG, 063

' INTEGER' N3

"BEGIN''REAL'H»S1,52;

' INTEGER'K>N1,N23

'REAL' 'PROCEDURE" I(R)3;

'VALUE'R;

"REAL'R3

"BEGIN'I:=SIN(R);3

'END' INTEGRAND3

H:=(0G~UG)Y/(2*N)3

S1:=52:=03

N1 ¢=N+N-13

N2 :=N+N-23
'FOR'K:=1"STEP'2'UNTIL'NL1"DO'S1:=S1+IC(UG+K*H)3
'FOR'Kt=2'STEP'2"'UNTIL'N2'D0O'S2:=52+1(UG+K*H);
SIMe=((0G~UGY/(6*N)I*(I(UGI+4%S1+2%52+1(0G)I)I 3
'END'SIM;

ERALT:=03

SIN:

'FOR'M:=10'STEP'10"UNTIL"M+10"'DO"' "BEGIN'ERNEU:=5IM(0,1.57079

633-sM)3
PRINT(MsERNEU) 3

'IF'ABS (ERALT-ERNEU)'LESS'1E~-3'THEN''GOTO'ENDE'ELSE'ERALT :=E

RNEU;
'END'
ENDE:'END';

- 128 -

FEHLERLISTE

Fehler zur Compilezeit

(mit Angabe der Zeilennummer des Fehlers. Nummer 000: Zeile l&Bt sich nicht loka-
lisieren).

Bei geradzahligen Fehlercodes wird die Ubersetzung abgebrochen.

100 Speicheriberlauf bei Einlesen der ndchsten Phase
102 Speicheruberlauf, da ALGOL-Programm zu lang
104 4 fehlt am Ende

106 Interner Uberlauf

101 falsches Zeichen

103 nach Wortsymbol fehlt Apostroph

105 unbekanntes Wortsymbol

107 unerlaubtes Wortsymbol nach "END’

109 falscher String

111 falsche Oktalzahl

113 falsche ARRAY-Vereinbarung

117 zwei Punkte in einer Zahl
119 zwei E in einer Zahl

121 Zahl endet mit Punkt

123 Zahl endet mit E

125 zu grofler Exponent

202 'DO’ fehlt oder steht an falschem Platz

206 "END’ zuviel; auch: ";" oder # fehlt am Ende
208 "UNTIL” fehlt oder steht an falschem Platz

210 String-Uberlauf: ALGOL-Programm zu lang

212 '"THEN’ fehlt oder steht an falschem Platz

214 Klammer-oder "BEGIN’/’END’~Anzahl stimmt nicht

216 Programm mehr als ca. 30fach geschachtelt

301 Variable nicht in gultigem Block vereinbart

305 Prozedurname nicht vereinbart

309 ARRAY -Name nicht vereinbart

313 Variable aus Spezifikationsliste fehlt in Parameterklammer
315 Komma oder Klammer fehlt in Parameterteil

317 nach Komma folgt keine Variable

321 Variablenname im selben Block mehrfach vereinbart

323 Prozedurname im selben Block mehrfach vereinbart

325 Strichpunkt fehlt

327 Variable aus VALUE-Liste fehlt in Parameterklammer
329 Komma oder Strichpunkt fehlt in Vereinbarungsliste
331 Zahl der aktuellen Parameter bei Prozeduraufruf falsch
335 desgleichen

340 Uberlauf: ALGOL-Programm zu lang

341 Markenname schon im selben Block vereinbart

350 Uberlauf der Konstantenliste (> 64 Zahlkonstanten)
352 Uberlauf der Variablenliste (>512 Varidble)

354 Uberlauf der Markenliste (> 128 Marken)

356 desgleichen

358 Uberlauf der Prozedurliste (> 18 Prozeduren)

- 129 -

360 Uberlauf der ARRAY-Liste (> 12 ARRAYs)
362 Uberlauf (> 32 ineinandergeschachtelte Blocke)
364 desgleichen

366 Markenname nicht in gultigem Block vereinbart

400 Kelleruberlauf: zu groBer arithmetischer Ausdruck

401 Klammer auf zu wenig

403 Klammer auf zu viel

500 nicht definierbarer Fehler im String

502 nicht msgliche Wertzuweisung an eigentliche Prozedur
510 Stringtberlauf: Programm zu lang

Fehler zur Objektzeit

0 Argument von LN £0
2 Argument von EXP zu groB3 (groBer als 512-1,9 = 355)
18 Argument von SQRT < 0
20 A =0, B<O0
22 } bei A 'POWER’ B {A:O,B-‘—O
A <0, B real oder integer > 31
26 Zahl zu groB fur TYPE (wie bei 53)
52 Division durch Null
53 Zahl zu groB fir interne real-integer-Wandlung
54 Zahlbereichsiberschreitung bei Rechenoperation (Betrag grsBer als
ca. 10190 bow. Kkieiner als ca. 10-19)

- 130 -

BASIC
VORBEMERKUNG

BASIC ist eine Programmiersprache fur mathematische und technisch-wissenschaftliche
Aufgaben. Sie ist besonders leicht lernbar und bietet - wenn, wie beim MINCAL
BASIC, die Ubersetzung durch einen Interpreter mit Editor-Teil geschieht - dem Be-
nutzer die Moglichkeit, im Dialogbetrieb zu arbeiten. Programme kénnen bequem
eingegeben, getestet, korrigiert und schnell ausgefuhrt werden.

Man unterscheidet bei BASIC die Programmsprache (mit Anweisungen als Sprach-
elemente) und die Kommandosprache (fur den Benutzer-Rechner-Dialog).

Rechner-Ausstattung: ~ MINCAL 523
Grund- + erweiterter Befehlsvorrat
Programmierhilfe X00
Kernspeicher ab 4 k (8 k empfohlen)
Konsol-Fernschreiber (oder Datensichtgerdt) an Ebene O als
Dialoggerdt
Schnelle Lochstreifenausrustung an Ebene 0 (empfohlen)

Interpreter: Interpreter (mit Editor)
ubersetzt jeweils 1 aktuelle Anweisung des als komprimiertes
BASIC im Speicher enthaltenen Programms
Der Interpreter arbeitet auf Ebene O.

Soweit nicht nachstehend anders beschrieben, enfsprlchf MINCAL BASIC der Dart-
mouth-Konvention.

EINLESEN DES INTERPRETERS

Interpreter-Lochstreifen in den (schnellen) Leser einlegen. INT, SENSOR 1, 2, 3, 4, (5)
nach unten; RES, END, STA betdtigen. Anfangs- und Endadresse (auf dem Lochstreifen
vermerkt) Uber den Fernschreiber é-stellig oktal eingeben; STA erneut betdtigen. Der
Lochstreifen wird eingelesen. Danach INT und SENSOREN nach oben. RES END, STA
betdtigen.

Das System ist betriebsbereit fur die Eingabe von Anweisungen oder Kommandos.

KOMMANDOS

Kommandos sind tber die Tastatur einzugebende Aufforderungen des Benutzers an das
System, bestimmte Arbeiten auszufihren; die Ausfuhrung geschieht unmittelbar, nach-
dem das Kommando durch die Eingabe von “Wagenrucklauf" abgeschlossen wurde.
Kommandos bestehen aus einer Buchstabenfolge (wovon nur dfe ersten 3 von Bedeutung

- 131 -

sind); danach kdnnen eine oder zwei 1- bis 4-stellige Zahlen (m, n) folgen, die
sich auf die Anweisungsnummern eines vorher eingegebenen, gespeicherten BASIC-
Programms beziehen.

LIST Gesamtes Programm listen

LIST m,n Programm von Anweisung m bis n listen
LIST m Anweisung m listen

PUNCH Gesamtes Programm lochen

PUNCH m,n Programm von Anweisung m bis n lochen } (schneller Leser)
PUNCH m Anweisung m lochen

READ BASIC-Programm einlesen (schneller Leser)
und dem vorhandenen hinzufiigen }

SCRATCH Gesamtes Programm |dschen

DELETE m,n Programm von Anweisung m bis n léschen

DELETE m Anweisung m l&schen

RUN Programm starten (bei der niedrigsten Anweisungsnummer)

RUN m Programm starten bei Anweisung m

Fehlerhafte Kommandozeichen kénnen durch Eingabe eines oder mehrerer Linkspfeile
(=—) ruckwirkend gelsscht, das ganze Kommando durch Eingabe von DEL ungiltig
gemacht werden (vor Eingabe "Wagenricklauf"). Erkennbare Fehler werden gemeldet
(s. Fehlerliste).

Kommandos fur Einfigen oder Andern von Anweisungen gibt es nicht. Zu @ndernde

Anweisungen werden durch Neueingabe mit der gleichen Nummer ersetzt; fur Einfi-
gungen benutze man Nummern, die zwischen den Nummern der vorangehenden und

der nachfolgenden Anweisung liegen.

Kommandos konnen in beliebiger Folge gegeben werden oder sich mit der Eingabe
von Programmzeilen (Anweisungen) abwechseln.

PROGRAMMZEILEN

Program mzeilen bestehen aus einer 1- bis 4~stelligen Zahl (der Anweisungs- oder
Zeilen-Nummer), gefolgt von der eigentlichen Anweisung in BASIC-Programmsprache.

Jede Zeile enthdlt eine in sich abgeschlossene Anweisung, die mit einem Statement-
Code beginnt:

<Nummer > <Statement-Code > <Spezifikation >

Das Programm besteht aus der Gesamtheit dieser Anweisungen, die in aufsteigender
Reihenfolge der Nummern argearbeitet werden (soweit keine Springe in Betracht
kommen).

- 132 -

Program mzeilen werden einzeln eingegeben und durch "Wagenricklauf" (cr) abge-
schlossen, z.B.:

ZOLET C = A +B (cr)

worauf diese Anweisung gespeichert ist. Danach kann eine neue Programmzeile einge-
geben oder auch ein Kommando erteilt werden.

Fehlerhafte Zeichen konnen durch Linkspfeil («—), ganze Zeilen durch Eingabe von
DEL eliminiert werden.

STATEMENT-CODES

Diese Elemente von BASIC kennzeichnen die Art einer Anweisung. Sie stehen (hinter
der Nummer) am Anfang einer Programmzeile. Sie bestehen aus einer Buchstabenfolge.

REM m REM Kommentar
Dient zur Einfigung von Bemerkungen (beliebige ASCllI-Zeichen) in
das Programm. Bei der Programmausfihrung wird diese Zeile uber-
gangen.

Beispiel:

1g@ REM DIES IST EIN KOMMENTAR

LET m LET Variable = Ausdruck
m LET Variable 1T = Ausdruck 1, Variable 2 = Ausdruck 2
m LET Variable 1 = Variable 2 = ... = Ausdruck

Einer Variablen wird der Wert des rechts vom Gleichheitszeichen
stehenden Ausdruckes zugewiesen. Derselbe Wert kann mehreren
Variablen zugewiesen werden; auBerdem ist es moglich, verschiedene
(durch Komma getrennte) Zuweisungen mit einem LET-Statement vor-

zunehmen.
Beispiele:
19 LET A =5.92
208 LET D = (3/C2 N)/(A+SIN(1))
1400 LET C = A=B1=D3=F, D = E=F7=1-SIN(x)
50 LET B = B+1, A = A+]
INPUT m INPUT Variable 1, Variable 2, ...

m INPUT "Nachricht" Variable 1, Variable 2, ...

Mit INPUT werden einer oder mehreren Variablen Werte zugewiesen,
die vom Benutzer Uber die Tastatur einzugeben sind. Bei Ausfuhrung
dieser Anweisung wird ein Fragezeichen (?) ausgegeben. Daraufhin

- 133 -

gibt der Benutzer die Zahlen in beliebigem Format, getrennt durch
Kommata, ein; am Ende ist "Wagenricklauf" einzugeben. Waren es

zu wenig Werte, wird ?? gemeldet, und der Benutzer kann die
Eingabe vervollstindigen. Waren es zu viel, wird eine Fehlermeldung
ausgegeben, das Programm jedoch fortgesetzt. Die eingegebenen Werte
werden der Reihe nach den Variablen zugeordnet. Fehlerhafte Eingaben
ksnnen durch Linkspfeil (w—) je Zeichen oder durch DEL je Wert eli-
miniert werden.

Eine in Anfuhrungsstrichen hinter INPUT stehende Nachricht (aus be-
liebigen ASClI-Zeichen) wird vor der Eingabebereitschaft ausgegeben.
Gibt der Benutzer STOP anstelle einer Zahl ein, wird das Programm

beendet.
Beispiele:
19 INPUT A,B
20 INPUT "GIB Al, B1, B2 EIN" A,B C
PRINT PRINT
PRINT "Text"

PRINT Ausdruck 1, Ausdruck 2, ...
PRINT "Text" Ausdruck 1, Ausdruck 2, ...

Mit PRINT werden Texte oder Zahlenwerte ausgegeben. PRINT ohne
weitere Angaben bedeutet "neue Zeile". Im ubrigen konnen Texte
(in Anfuhrungszeichen gesetzte, beliebige ASCllI-Zeichen) und
Ausdrucke in beliebiger Reihenfolge vorkommen; sie werden in der
geschriebenen Reihenfolge verarbeitet und ausgegeben.

3 3 3 3

Fur jeden Ausdruck wird der Wert ermittelt und ausgegeben; falls
nicht anders spezifiziert, in folgendem Format: =@ xxxxxxE=xxx
(normales E-Format). Kommata (,) zwischen den Ausdrucken bewir-
ken, daB die Werte nacheinander in 4 festen Spalten ausgegeben
werden (entsprechend Zeichenspalte 1, 17, 33 und 49). Ein Semi-
kolon (;) statt eines Kommas unterbindet diese Funktion und laBt den
Schreibkopf stehen. Beide Zeichen kénnen auch am Ende der PRINT-
Anweisung stehen. Bei Erreichen der Zeichenspalte 65 wird selbst-
titig auf eine neue Zeile geschaltet.

Beispiele:

19 PRINT
20 PRINT A,B(5),C+D+1 E * X
3¢ PRINT "ERGEBNIS="; A3+B4

m PRINT TAB (Ausdruck) Liste

Steht hinter PRINT das Wort TAB mit einem Ausdruck in Klammern
danach, so wird der Schreibkopf in die Zeilenspalte tabuliert, deren
Nummer sich aus dem Wert des Ausdruckes ergibt. Von da an wird die
Liste gedruckt, die sich wiederum in beliebiger Weise aus Texten und
Ausdrucken zusammensetzen kann.

Beispiel:

20 PRINT TAB (3@ * SIN(x)+30.5)"+"

- 134 -

GOTO

m PRINT FOR (Format 1) Liste 1, FOR (Format 2) Liste 2, ...

Steht hinter PRINT das Wort FOR mit einer in Klammern eingeschlos-
senen Formatspezifikation danach, so werden die Ausdrucke der fol-
genden Liste in besonderen Formaten gedruckt. FOR kann in einer
Anweisung beliebig oft angegeben werden.

Die Formatspezifikationen lauten (in Analogie zu FORTRAN) Fw.d
(F-Format) oder Ew.d (E-Format mit Exponent), wobei fur w (Feld-
weite ein schlieBlich aller Zeichen) und d (Stellen hinter Dezimal-
punkt) je eine Ziffer vorzusehen ist. Eine Formatspezifikation gilt

so lange, bis eine neue erfolgt. Mit FOR (E@.6) kehrt man zum nor-
malen E-Format zurtck.

Beispiele:

1% PRINT FOR(F5.2) 7, FOR(F6.1)-4+7
20 PRINT FOR(F5.0)509. 1
5@ PRINT FOR(E5.2)1g1E+3

Folgende Werte werden ausgegeben:
7.98 1.g
508

9. 10606

m GOTO n

Das Programm wird durch GOTO mit der Anweisung forfgesetzt, vor
der die angegebene Nummer n steht.

Beispiel:

19 GOTO 190

m GOTO Ausdruck OF nl, n2, ...

Das berechnete GOTO fihrt zu einem Spring auf die Anweisung mit
der Nummer nl oder n2 oder ..., je nachdem, ob der Wert des
hinter GOTO stehenden Ausdrucks gleich 1 oder 2 oder ... ist.

Wenn der Wert des Ausdrucks kleiner als 1 oder groBer als die An-
zahl der Nummern in der Liste ist, so wird die folgende Anweisung
ausgefihrt. Nicht ganzzahlige Werte des Ausdrucks werden abgerundet.

Beispiel:

20 GOTO A+B+1 OF 19@,29,50

- 135 -

FOR

NEXT

m IF Bedingung THEN n

Das Programm verzweigt auf die Anweisung mit der hinter THEN
stehenden Nummer n, wenn die hinter IF stehende Bedingung er-
fullt ist; andernfalls wird die folgende Anweisung ausgefuhrt.

Die Bedingung kann aus einem Ausdruck bestehen oder aus einem
Vergleichsausdruck (mit den Vergleichsoperatoren < , <=, =, => ,

> ,¥) oder einer Boole’schen Verkniupfung aus diesen. Sie gilt als
erfullt, wenn der arithmetische Wert ungleich Null bzw. das Boole’sche
Ergebnis gleich Eins ist.

Beispiele:

20 IF X/5>=N THEN 6

39 IF SIN(A)<=COS(A) AND SIN(B)¥ .5 THEN 1¢
50 IF A+B+1 <Cé THEN 7¢

8J IF A AND B OR C# @ THEN 35 } dentisch!
85 IF A AND B OR CHTHEN 35 ~ idenfisch:
99 IF A=8 AND C#D OR B>=J THEN 55

m FOR Variable = Ausdruck 1 TO Ausdruck 2
m FOR Varidble = Ausdruck 1 TO Ausdruck 2 STEP Ausdruck 3

Mit FOR wird eine Programmschleife ersffnet. Die (Lauf-) Variable
wird auf einen Anfangswert gesetzt, der sich aus dem Ausdruck 1
ergibt, und spdter durch NEXT um jeweils den Wert von Ausdruck 3
erhoht (entfallt dieser, so wird sie um 1 erhsht). Die Schleife wird

so oft durchlaufen, bis die Variable den Wert des Ausdrucks 2 erreicht
hat, mindestens jedoch einmal. Auf die FOR-Anweisung folgen die
Anweisungen der Schleife; sie gehen bis zur zugehsrigen NEXT-An-
weisung.

Zu beachten ist:

Die Anfangswerte der Lauf-Variablen konnen beliebig sein, ebenso die
Schrittweiten (jedoch # 0).

Schleifen-Schachtelungen sind bis zu einer Tiefe von 10 erlaubt; sie
werden von innen nach auBlen abgearbeitet. Uberkreuzte Schleifen-
schachtelungen sind verboten.

Die Lauf-Variable ist nur fur die Schleife selbst definiert.

Beispiele: siehe NEXT.

m NEXT Variable

NEXT ist die letzte Anweisung einer Schleife. Die Variable muf3 mit der
Lauf-Variablen der zugehsrigen FOR-Anweisung ubereinstimmen.

Durch NEXT wird die Schrittweite vor Lauf-Variablen addiert und
geprift, ob der Endwert der Lauf-Variablen erreicht ist. Ist dies der

- 136 -

GOsuB

RETURN

Fall, so wird die folgende Anweisung ausgefihrt; andernfalls wird
zu der Anweisung hinter der zugehdrigen FOR-Anweisung zurick-
verzweigt.

Beispiele:

19 FOR I=1 TO 19 STEP 2
3¢ NEXT |

¢ FOR J=1g TO -2 STEP -1.2
20 FOR K=A/B+C * SIN(x) TO A+1g

3¢ NEXT K
4 NEXT J

19 FOR 1=1 TO 1@
20 FOR K=1 TO 1¢
falsch! Uberkreuzte Schachtelung
NEXT |
NEXT K

~—

m GOSUB n
Durch GOSUB wird ein Unterprogramm aufgerufen, das mit der An-

weisung n beginnt. Nach Ausfihrung des Unterprogramms wird das
Hauptprogramm mit der auf GOSUB folgenden Nummer fortgesetzt.
GOSUB-Anweisungen konnen bis zu einer Tiefe von 6 geschachtelt
werden.

Beispiel:
200 GOSUB 108

m GOSUB Ausdruck OF nl, n2, ...

Das berechnete GOSUB ruft je nach dem Wert des Ausdrucks eines
der bei n1, n2, ... beginnenden Unterprogramme auf (s. auch be-

rechnetes GOTO).

Beispiel:

20 GOSUB A OF 199,119,120

m RETURN

Mit RETURN wird aus einem Unterprogramm in das Hauptprogramm
zurickgesprungen. Jedes Unterprogramm muf3 wenigstens ein RETURN
enthalten.

Beispiel:

13@ RETURN

- 137 -

CALL m CALL name (parl, par2, ...)

Mit CALL wird ein in Maschinensprache geschriebenes Programm
(Code-Prozedur) als Unterprogramm aufgerufen. Der Name der
Code-Prozedur besteht aus einem Buchstaben, gefolgt von 2 Buch-
staben oder Ziffern. Als Argument kénnen bis zu 7 Parameter uber-
geben werden; sie werden mit dem Wert der Parameterausdrucke uber-
geben.

Beispiele:

180 CALL ADU (A+B,18* 2,5 * SIN(x))
20 CALL INT (1,1,100)

DIM m DIM dim Variable 1, dim Variable 2, ...

Mit DIM werden ein~ oder zweidimensionale Variablen-Felder defi-
niert und im Speicher reserviert. Die Dimension wird hinter den Feld-
namen angegeben; Dimensionsangaben sind ganzzahlige Konstanten und
dirfen nicht groBer als 511 sein.

Die DIM-Anweisung muf3 der erstmaligen Verwendung einer indizierten
Variablen vorausgehen; die Zahl der Indizes muf3 Ubereinstimmen.
Variablen-Felder werden durch DIM auf Nullinhalt gesetzt.

Beispiel:

1% DIM A (3,19),B(5),C3(14,19)

DEF m DEF FN Buchstabe (Variable) = Ausdruck

Mit DEF kann der Benutzer eigene Funktionen definieren, die im Pro-
gramm als Funktionsnamen (ghnlich Standardfunktionen) auftauchen.
Die Funktion muB3 FN, gefolgt von einem Buchstaben, sein. AufBerdem
ist eine Variable als Argument sowie ein Ausdruck anzugeben, dessen
Wert der Funktion im Augenblick des Aufrufs zugewiesen wird.

In einer DEF-Anweisung darf nur eine Funktion definiert werden.

Beispiele:

6 DEF FNA(B)=A+2/B+C
100 DEF FNF (X)=SIN(Ax X+B)

DATA m DATA Zahl 1, Zahl 2, ...

DATA ertffnet eine Liste von Konstanten. Diese Daten konnen durch
eine READ-Anweisung dessen Argumenten (Variablen) zugewiesen werden.
Sind mehrere DATA-Listen vorhanden, so werden alle Konstanten. zu
einem Block gehorig betrachtet (in der Reihenfolge der Auflistung bzw.
der Zeilen-Nummern).

- 138 -

READ

STOP
END

Die Konstanten sind Dezimalzahlen in beliebigem Format.

Beispiels

19 DATA 100,5.24,-3.0E45, 1

m READ Variable 1, Variable 2, ...

READ weist Konstanten aus dem DATA-Block den Variablen seiner
Argumentliste zu. Dabei wird den Variablen in der Reihenfolge ihrer
Auflistung bzw. der Folge der READ-Anweisungen ein Wert des DATA-
Blocks nach dem anderen zugeordnet.

Beispiel:

19 DATA 4,2,3
20 DATA 9,8,1
190 READ A,B,C,D
94 READ E,F

141

Es wird zugewiesen:
4—E, 2—F, 3—A,
9—-B8, 8—=C, 1—D

’

m STOP
m END

STOP und END beenden den Programmablauf. END wird tberlicher=
weise am physikalischen Ende des Programms benutzt, wihrend STOP
innerhalb des Programms benutzt wird.

Bei Erreichen von STOP oder END wird DONE ausgegeben. Das
System wartet auf ein neues Kommando.

SPRACHELEMENTE

Zahlen:

Konstanten:

Variablen:

Operatoren:

Alle Werte werden intern durch G_l_gifkomquohlen dargestellt. Die
Genauigkeit der Mantisse ist 10 ; der (Zehner-) Exponent darf
den Betrag 154 nicht Ubersteigen.

Ganzzahlen, z.B. +123, -267894, 5
Gleitkommazahlen im F-Format, z.B. 12.45, -@.90@012, -.5
Gleitkommazahlen im E-Format, z.B. -12 E-2, 12.34E5¢, .8E+3

Buchstabe oder Buchstabe, gefolgt von Ziffern, z.B.: A, Z, B3, X9
Bei indizierten Variablen stehen dahinter, in Klammern eingeschlossen,

ein oder zwei (durch Komma getrennte) Ausdrucke, welche die Lage
im Variablen-Feld angeben; z.B. A(5),B6(2.3+Y,Z/3), D8(X+7)

+

Addition

Subtraktion

Multiplikation

Division

Potenzierung (XT 2 bedeutet "X hoch 2")

arithmetische:

— N\ % 1

- 139 -

logische:

Vergleich:

‘unktionen: mathematisch:

SQR
SIN
COs
TAN
ATN
LOG
EXP
RND

sonstige:

Negation
Konjunktion
Disjunktion
Kleinstwert (A MIN B ergibt A wenn
und B wenn

AL
B <
(A MAX B ergibt A wenn A>
B>

und B wenn

GrolBtwert

kleiner

kleiner oder gleich
gleich

ungleich

aréBer oder gleich
gréBer

Absolutwert
Ganzzahl-Teil
Vorzeichen (=1 wenn Argument positiv;
sonst = =1)

Quadratwurzel

Sinus

Cosinus

Tangens

Arcus tangens

Logarithmus

Exponentialfunktion

Zufallsfunktion

(Es ist ein Pseudo-Randomgenerator vorgesehen. Er erzeugt:

RND (9)

gleichverteilte Zufallszahl zwischen # und 1

RND(-1) zufalliges Setzen zweier Startwerte

RND(1)

< lammerung:

SEHLERMELDUNGEN

normalverteilte Zufallszahl

Mit runden Klammern () beliebig zuldssig.

Vom Interpreter erkannte Fehler werden (bei Anweisungen erst wahrend der Durchfihrung

des Programms) durch die Nachricht

m ERR xx

jemeldet, wobei m die Zeilen-Nummer der fehlerhaften Anweisung, xx den nachste-

nenden Fehlercode bedeutet.

- 140 -

Fehler, die nicht unmittelbar zur Programmunterbrechung fihren:

Bei INPUT wurden zu viele Daten eingegeben.

Argument von SQR oder LOG ist negativ. Es wird der Absolutwert genommen.
Argument von SIN, COS ist groBer als 5x105, von_EXP gréBer als 128 oder
LOG gleich 0. Es wird mit den Werten 0 bzw. 10 bzw. -10194 weiter-
gerechnet.

Berechneter Wert ist absolut groBer als 10194, Es wird mit dem Maximal-
wert weitergerechnet.

Fehler bei Ausdrucken:

8

9
10
11
12
13
14
15

Auf Operator folgt).

Avusdruck beginnt mit «, /, t , Vergleichsoperator, AND, OR, MIN oder
MAX.

Funktionsargument steht nicht in Klammern.

Auf eine Konstante folgt Konstante, Variable oder Funktion.

Auf eine Konstante folgt (.

Auf eine Variable folgt NOT.

Auf eine Variable folgt Variable, Konstante oder Funktion.

2 Operatoren in unerlaubter Reihenfolge.

Vor dem Zuordnungsoperator (=) steht keine Variable bzw. keine Funktion.
Es fehlt eine rechte Klammer.

Es fehlt eine linke Klammer.

Fehler bei BASIC-Anweisungen:

16

19
20
21
22

24
25

26
27

28
29

30

Variable, Daten, Ausdrucke bei READ, INPUT, PRINT, DISPLAY, DATA
nicht richtig getrennt oder abgeschlossen.

Kein richtiges Argument bei PRINT FOR oder TAB oder Zahl paBt nicht ins
F-Format.

Die Variable nach NEXT entspricht nicht der Lauf-Variablen der aktiven
FOR-Schleife.

Die DATA-Liste ist erschopft. READ findet keine Daten mehr.

Nach LET, DEF, FOR fehlt der Operator =.

Nach IF, GOTO, GOSUB steht keine oder keine existierende Zeilennummer.
Kein richtiger Ausdruck nach LET oder PRINT.

In FOR ist die Schrittweite 0.

Nach DIM oder FOR fehlt eine Variable.

Nach IF fehlt THEN oder nach FOR fehlt TO bzw. STEP oder nach DEF
fehlt FN.

Zu RETURN gibt es kein GOSUB.

Mehr als 6 Unterprogramme oder FOR-Schleifen tiefer als 10fach verschach-
telt.

Geloschte Bibliotheksfunktion wird verwendet.

Eine Funktion FN oder ein Name in CALL ist nicht definiert oder die Para-
meterzahl von CALL stimmt nicht mit der Listenangabe iberein.

Fehlerhafte Angaben in DIM-Anweisungen.

- 141 -

31 Indizierte Variable ist in DIM nicht definiert.

32 Indizierte Variable hat falsche Dimensionsangabe oder Index uberschreitet
Dimensionsangaben.

33 Dimensionsangabe in DIM ist > 511.

34 Speichertberlauf, da zu groBe Felder.

35 Speicheruberlauf, da zu viele Variablen.

36 Statement-Code existiert nicht.

“ehler bei Kommandos (m ist ohne Bedeutung):

37 Speicheriberiauf, da Programm zu lang.
38 Zeile langer als 72 Zeichen.

39 Zeilen-Nummer > 9999.

40 Zeilen-Nummer existiert nicht.

41 Kommando existiert nicht.

- 142 -

BEISPIEL EINES BASIC-PROGRAMMS

READ

LIST

0100 REM PROGRAMMBEISPIEL 2

0101 REM PLOTTEN EINER FUNKTION AUF DEM FERNSCHREIBER
0110 DEF FNF(X)=SIN(X)*EXP(=0s1%xX)

0115 FOR I=0 TO 15 STEP 5

0120 PRINT TAB(30«5+15%FNFCI)) 3" %"

0140 NEXT I

0150 END
RUN
*
*
*
%
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

- 143 -

Library
VORBEMERKUNG

Im folgenden sind einige weitere Programmiersysteme 1ind Unterprogrammpakete er-
wihnt, die zur Basis-Software der Computer MINCAL 513/523 gehtren. Ausfuhrliche
Beschreibungen hierzu sind auf Wunsch erhdltlich.

Betriebssysteme fur periphere Gerdte sind im Kapitel "Peripherie" erw ghnt.

D OFPPELWORT-PAKET
Dieses Paket enthdlt in Mikroprogram m-Technik realisierte Befehle fur

Doppelwort - Laden
" = Transfer
" - Addition
" - Subtraktion
" - Multiplikation
- Division
" - Dezimal-Bindr-Konversion (Rechts- und Linkskomma)
" - Bindr-Dezimal-Konversion (Rechts- und Linkskomma)

Es ist 512 Worte lang und kann entweder in den ersten 4 k des Kernspeichers abge-
legt oder in Form einer Festspeicher-Einheit implementiert sein.

Die interne Zahlen-Darstellung ist 2 Worte lang (Vorzeichen + 36 Datenbits).

EINWORT-GLEITKOMMA-PAKET

Dieses Paket enthélt Unterprogramme fiur die Ausfihrung folgender Befehle:

Gleitkomma - Addition

" - Subtraktion

" Multiplikation
- Division
- Dezimal=Konversion
Festkomma - Gleitkomma-Konversion
Gleitkomma - Quadratwurzel

Es ist 300 Worte lang und kann entweder im Kernspeicher abgelegt oder -~ zusammen
mit der Programmierhilfe ~ als Festspeicher-Einheit X@1 implementiert werden.

Die interne Zahlen-Darstellung ist 1 Wort lang (Vorzeichen + 12 bit Mantisse, 6 bit
Charaxteristik).

- 144 -

DOPPELWORT-GLEITKOMMA-PAKET

D ieses Paket enthdlt Unterprogramme fur

die 4 Grundrechnungsarten, sowie
Potentzierung
Ein/Ausgabe-Konversionen
Mathematische Standardfunktionen

auf Wunsch

Die interne Zahlen-Darstellung ist 2 Worte lang: (Vorzeichen + 27 bit Mantisse,
Vorzeichen + 9 bit Exponent). Dies entspricht einer Mantissen-Genauigkeit von
ca. 1078 und einem Zahlenbereich von ca. 10T 150,

C ALCULATOR

Der CALCULATOR ist ein Programm zum Betrieb des MINCAL 523 als Tischrechner.
Er erlaubt die Berechnung von mathematischen Gleichungen, in denen die 4 Grund-
rechnungsarten, Potenzierung, 8 Standardfunktionen, beliebige Klammerung und Kon-
stanten vorkommen durfen. Zwischen- und Endergebnisse werden sofort ausgedruckt;
auBerdem ist die wiederholte Berechnung von Ausdrucken mit einer bei konstanter
Schrittweite verdnderten Variablen moglich.

EDITOR-BETRIEBSSY STEM

Dieses Programm ist fur MINCAL 523-Systeme mit Externspeicher (Trommel oder Platte)
vorgesehen. Es dient zur Archivierung und zum Aufruf von Programmen in ASSEMBLER-
oder Formalsprachen (FORTRAN, ALGOL), zu deren Ein- und Ausgabe und Anderung

sowie zum Aufruf des Assemblers bzw. der Compiler.

Die Quellprogramme werden im Kernspeicher als Dateien dynamisch verwaltet und
sind im Externspeicher durch den Benutzer dnderbar.

- 145 -

Kernspeichererweiterung

Im Gehduse des Computers MINCAL 523 kénnen bis zu 8 kWorte Kernspeicher
untergebracht werden. Wird eine dariberhinausgehende Kapazitat benstigt, so sind
zusétzliche Speicher-Einschube erforderlich; es ist dann eine Erweiterung der Spei-
cherkapazitit auf insgesamt 32 kWorte moglich.

Technische Daten

Kernspeicher: 1, 2 oder 3 Kernspeichereinheiten zu je 4 kWorten a 20 bit
Zugriffszeit 0.6 us
Vollzyklus 1.5 us
Adressen: 20000...47777 (1. Speichereinheit)
50000...77777 (2. Speichereinheit)

Stromversorgung: eingebaut
Netzanschluf: 220 V + 10 % 50 Hz
Leistungsaufnahme ca. 600 VA
Grofle: 19"~Einschub (6 Einheiten)
+ Stromversorgung (4 Einheiten) ca. 440 mm hoch
575 mm tief
Anschlufi: an Zentraleinheit MINCAL 523 Kernspeicher-Erweiterungs-Kanal

tber Flachkabel (in unmittelbarer Nahe)

Die Speichereinheit ist wie die Zentraleinheit MINCAL 513/523 aus einem vorderen

und hinteren Rahmen aufgebaut. Die Kernspeicher belegen den vorderen Rahmen. Der
hintere Rahmen kann zwei Massenspeicher=Interfaces aufnehmen (z.B. Magnettrommel -
Interface + Magnetband-Interface).

- 146 -

Periphere Speichersysteme
VORBEMERKUNG

An den Computer MINCAL 523 kénnen Magnettrommel-, Magnetplatten- und Magnef-
bandspeicher angeschlossen werden, die zur externen Speicherung von Daten und Pro-
grammen dienen. Trommel- und Plattenspeicher sind als Systemspeicher zu verstehen,
w dhrend Magnetbandgeridte vor allem zur Archivierung groBler Datenmengen dienen.

TROMMELSPEICHER-SY STEM

Trommelspeicher: Festkopf-Magnettrommelspeicher
Kapazitdt 32 k oder 128 kWorte (19 bit + Parity)
32 oder 128 Spuren zu je 1 kWorten
4 Sektoren mit je 256 Worten je Spur
mittlere Zugriffszeit 10 ms
Transferrate ca. 1 MHz entsprechend ca. 50 kWorten/s

19"-Einschub, 13 Einheiten hoch
mit eigener Stromversorgung

Controller: Interface-Einheit zum Betrieb von 1 bis 4 Trommeln
zum AnschluB an den Computer Gber X-Kanal und DMA-Kanal
eingebaut in eine Speicherein heit

Softwares MINCDOS 500 Trommel-Betriebssystem
mit Executive (Lese/Schreibsteuerung) und Operating (Bedie-
nungssystem)

MINCDOS 500 EXECUTIVE

EXECUTIVE ist der Teil des Trommel/Platten-Betriebssystems, welcher die Ubertragung
von Blscken beliebiger Ldnge und Lage zwischen Kernspeicher und Externspeicher
ausfshrt.

Lesen (vom Externspeicher in den Kernspeicher) und Schreiben (in umgekehrter Rich-
tung) wird jeweils durch eine spezielle Instruktion bewirkt, der 3 Parameter-Worte
folgen:

- 147 -

542110 LESEN vom Externspeicher
IAAAAA Kernspeicher-Basisadresse
JAAAAA Externspeicher-Basisadresse
1AAAAA Blockldnge

542LL4 SCHREIBEN auf Externspeicher
1AAAAA Kernspeicher-Basisadresse
JAAAAA Externspeicher-Basisadresse
1AAAAA Blockldnge

Der erste Parameter gibt die erste Adresse des Speicherfeldes im Kernspeicher an;
ist die 1. Oktalstelle 1 gleich 1, 2 oder 3, so wird zu AAAAA der Inhalt vom
Indexregister 1, 2, oder 3 addiert. In gleicher Weise wird der dritte Parameter
behandelt, der die Ldnge des zu Ubertragenden Datenblocks (in Worten) angibt.

Der zweite Parameter gibt die erste Adresse des Blocks im Externspeicher an; ent-
hilt die erste Oktalstelle J eine 4...7 (Bit 17), so wird zu den restlichen Bits der
Inhalt vom Indexregister 1 addiert.

Nachdem die effektiven Basisadressen und die effektive Blocklange ermittelt sind,
pruft EXECUTIVE, ob direkter Transfer moglich oder indirekter Transfer ndtig ist.
Direkter Transfer bedeutet Lesen in bzw. Schreiben aus dem Feld mit der angege-
benen Kernspeicher-Basisadresse; er ist nur moglich, wenn die Externspeicher-Basis-
adresse gleich einem Sektoranfang und die Blockldnge gleich 256 (= 4008) bzw. ein
Vielfaches davon ist. Andernfalls wird der Sektor, in dem sich adressierte Worte be-
finden, in das Datenfeld CTB (COMMON TRANSFER BLOCK) transferiert; beim Lesen
werden die interessierenden Worte dann in das angegebene Speicherfeld tbertragen,
withrend beim Schreiben die betreffenden Worte im CTB iberschrieben und der verdn-
derte Block aus dem CTB auf den Sektor des Externspeichers zuriicktransferiert wird.

Mit dieser Methode ist auBer der Ubertragung von ganzen Sektoren (die am schnell-
sten vor sich geht) auch der Transfer von Einzelworten und Blscken beliebiger Lage
und Ldnge méglich. Enthdlt ein Block einen oder mehrere ganze Sektoren, wendet
EXECUTIVE direkten Transfer an, auch wenn am Anfang oder Ende des Blocks indi-
rekter Transfer notig ist.

Nach Auslssen des Lese- oder Schreibvorgangs geht EXECUTIVE zum Anfang und
halt an. Nach Rickmeldung vom Externspeicher (Sektor transferiert) wird ber das
Uberschreiben von CTB und erneuten Transfer entschieden; oder CTB wird ausgelesen
bzw. der Einzeltransfer ist beendet. Ist der Block noch nicht fertig bearbeitet, so
wird mit dem ndchsten Sektor begonnen.

Sind mehrere Externspeicher angeschlossen (bis zu 4 moglich), so wird die Gerdte-
Nummer (0...3) in den letzten 2 Riis des Befehls angegeben, z.B.:

542LL2 LESEN vom Externspeicher 2
542LL7 SCHREIBEN auf Externspeicher 3

- 148 -

Im symbolischen Programm kénnen die Befehle

RD (READ FROM DRUM/DISC = LESEN) bzw.
WD (WRITE ON DRUM/DISC = SCHREIBEN)

benutzt werden.

EXECUTIVE kann 4 Fehlerarten feststellen:

1 WRITE LOCKOUT (zu beschreibende Spur ist geschutzt)

2 PARITY (gelesener Sektor enthielt Parity-Fehler)
3 STATUS (Externspeicher nicht bereit)
4 KEIN CTB (indirekter Transfer notig, aber kein CTB vorgesehen)

Im Falle eines Fehlers wird auf dem Konsol-Fernschreiber eine Nachricht ausgedruckt,
die mit DOS ERR beginnt und in Form von 7 é-stelligen Oktalstellen Fehlerart, Ur-
sprungsebene, Transferinstruktion, Kernspeicher-, Externspeicher-Adresse und Blockldn=
ge angibt. Das Programm in der Ursprungsebene wird nicht fortgesetzt.

Die Fehlerausgabe lauft in Ebene 00; ein etwa dort in Gang befindliches Programm
wird unterbrochen; danach wird der Programmstand wieder auf den alten Stand ge-
bracht, die Ebene 00 wird jedoch nicht gestartet.

MINCDOS 500 OPERATING

OPERATING ist der zweite Teil des Trommel/Platten-Betriebssystems; er dient zum
Laden der Externspeicher Uber den schnellen Lochstreifenleser, zum Ausstanzen des
Externspeicher=Inhalts auf dem schnellen Locher, zum Aufruf von Programmen aus

dem Extern- in den Kernspeicher und zum Ablegen von Kernspeicher-Inhalten auf

den Externspeicher.

Jedes eingelesene, ausgelochte, aufgerufene oder abgelegte Programm hat einen
Namen, der im PROGRAM DIRECTORY (Programmverzeichnis) auf dem Externspeicher
vermerkt sein muf3; mit OPERATING kann dieses Verzeichnis gefihrt und ausgedruckt
werden.

Das PROGRAM DIRECTORY befindet sich auf der ersten Spur des Externspeichers
(Adressen 000000...001777 = 1 kWorte) und kann bis zu 256 Programm-Namen
einschlieBlich der zugehdrigen Parameter aufnehmen, wobei jeweils 4 Worte zu
einem Programm gehdren:

1. Wort Programm-Name

2. Wort Kernspeicher-Basisadresse (fur Aufruf bzw. Ablegen)
3. Wort Externspeicher-Basisadresse (Lage des Programms)

4. Wort Program mlange (in Worten)

- 149 -

Programm-Namen sind aus 3 alphanumerischen Zeichen (alle 64 druckbare Zeichen
des ASClI-Codes einschlieBlich SPACE) aufgebaut, wobei jede Kombination erlaubt
ist; die Kombination "@@@" jedoch gilt als Leerstelle im Verzeichnis und ist als
Name verboten. Basisadressen und Programmlinge werden in bindrer bzw. oktaler
Form dargestellt.

Es ist zweckmdBig, jedes Programm bzw. Teilprogramm, jede Tabelle usw., die

sich im Externspeicher befinden, auf diese Weise im PROGRAM DIRECTORY zu
vermerken.

Bedienung und Betriebsarten

OPERATING wird durch Start der Programmebene 00 begonnen, z.B. mit Betitigen
der Taste STA am Rechner-Bedienungsfeld. Der Konsol-Fernschreiber beginnt eine
neue Zeile mit dem Ausdrucken der Buchstaben DOS.

Der Bediener wihlt eine der 6 OPERATING-Betriebsarten durch Eintasten der Buch-
staben L, F, R, P, C oder S an; jedes andere Zeichen wird durch erneutes Ausdruk-

ken von DOS moniert; durch Eingabe von E jedoch wird OPERATING beendet.

Es gibt folgende Betriebsarten:

LIST Ausdrucken des Programmverzeichnisses

FIND Programm im Verzeichnis suchen (um es zu &ndern, einzugeben
oder zu loschen)

PUNCH Auslochen Programm auf schneller Lochstreifeneinheit

READ Einlesen eines Programms Uber die schnelle Lochstreifeneinheit

CALL Aufrufen eines Programms

SAVE Ablegen eines Programms

- 150 -

PLATTENSPEICHER-SYSTEM

Plattenspeicher:

Controller:

Software:

MINCEDOS 500

Magnetwechselplattenspeicher mit beweglichem Lese/Schreib-
kopf

Kapazitdt 0.8 Mbyte (19 bit + Parity)

2mal 200 Spuren zu je 2 kWorten

8 Sektoren zu je 256 Worten je Spur

mittlere Zugriffszeit 60 ms

Transferrate ca. 1.6 MHz entsprechend ca. 80 kWorten/s

19"-Einschub, 4 Einheiten hoch
mit zusttzlicher Stromversorgung.

Interface-Einheit zum Betrieb von 1 bis 4 Platten

zum AnschluB an den Computer tber X-Kanal und DMA-Kanal
zum Lesen/Schreiben von 1...8 Sektoren einer Spur
eingebaut in eine Speichereinheit

MINCEDOS 500 Platten-Betriebssystem
mit Executive (Lese/Schreibsteuerung) und Operating (Bedie-
nungssystem)

D as MINCEDOS-Betriebssystem entspricht weitgehend dem Trommel-Betriebssystem
MINCDOS. Der einzige Unterschied besteht darin, daf nur ein Teil der Platte so
angesprochen werden kann wie die Trommel.

Wegen der groflen AdreBkapazitdt gibt es zwei Moglichkeiten der Plattenadressierung:

1. Jedes Wort wird adressiert (bis zu maximal 128 k moglich)

2. Die Sektoren werden adressiert (wird durch ein Minuszeichen in der
Plattenadresse angegeben).

- 151 -

MAGNETBAND-SY STEME

Bandeinheit: 9-Spur, 800 oder 1600 bpi Schreibdichte
12.5...25 ips Bandgeschwindigkeit
Read-After-Write
mit Stromversorgung
Spulendurchmesser:

7 " (7200" Bandlange) (19"~Einbau, 5 Einheiten hoch)

8‘5" (]4400" un) (" , 7 n n)

10'5" (28800 n n) (u ']4 " n)
Controller: Interface-Einheit zum Betrieb von 1 bis 4 Bdndern

zum AnschluB8 an den Computer Uber X-Kanal und DMA-Kanal

eingebaut in eine Speichereinheit

Software: MINCTOS 500 Band-Betriebssystem

MINCTOS 500

D as Band-Betriebssystem MINCTOS 500 ist ein speicherresidentes Programm, das
1/4 kWorte im Kernspeicher einnimmt. Es ist relativ adressiert, kann also beliebig
im Speicher abgelegt werden.

MINCTOS 500 kann maximal 4 Bandeinheiten bedienen.
Es sind nachstehende Befehle moglich:

Lesen vom Band

Schreiben auf das Band

Zuriickspulen bis zum Anfang (Rewind)
Schreiben einer Bandmarke

Definierter Vorlauf

Definierter Rucklauf

Lesen und Schreiben kann entweder bindr oder byteweise erfolgen.

Bindr heiBt, daB das ganze Wort ubertragen wird (3 bytes). Byteweise heifit, daB jedes
Wort als 2 Bytes zu je 8 bit angesehen wird; die Bits 16...19 werden daher nicht
tbertragen.

Die Ubertragung erfolgt im Cycle-Stealing.
Auf jeden Befehl missen immer Parameter-Worte folgen. Er hat die Form:
542LLX

YAAAAA

JPBBBB
cceecce

- 152 -

LL Ebene, in der MINCTOS 500 lauft
X Nummer des Befehls
Y Nummer der Bandeinheit

A...A Kernspeicher-Basisadresse
B...B Blockldnge
C...C Sonderausgang

Hinter jedem Befehl ist eine symbolische Schreibweise angegeben; in der Befehlsta-
belle des Assemblers ist der entsprechende Maschinenbefehl einschlieBlich der
MINCTOS 500-Ebene (LL) zu vermerken.

Lesen byteweise 542LLF = RTF Read Tape Format

Lesen bingr 542LL1 = RTB Read Tape Binary
Schreiben byteweise 542LL2 = WTF Write Tape Format
Schreiben bindr 542113 = WTB Write Tape Binary
Zurickspulen 542LL4 = RTB Rewind Tape

Schreiben einer Band-

marke 542LL5 = WTM Write Tape Mark
Definierter Vorlauf 542116 = FTM Forward until Tape Mark

Definierter Ricklauf 542LL7 = BTM Bach until Tape Mark

Der Sonderausgang wird in folgenden Fillen angesprungen, wobei im W-Register eine
Schlusselzahl vermerkt ist:

1l

Bandeinheit nicht bereit

gelesener Block zu lang

Bandmarke gelesen

Blockldnge grofer als 4095

Bandende gefunden

Parity-Fehler

Schreibversuch trotz Schreibsperre

Bandanfang gefunden

Basisadresse + Blockldnge ungleich Zghlerstand

W-Register

Lo

1

= =
Inn

1}
O 0ONONO A WN —

1

!

- 158 -

Peripherie-Interfaces

Serdte- und ProzefBperipherie-Interfaces dienen zum AnschluBl der Computer
MINCAL 513/523 an Bedienungsperipherie und ProzeB-Ein/Ausginge.

Sie bestehen aus einer oder mehreren Bausteinen im Format der doppelten Europa-
karte (225 mm hoch, 160 mm tief; Adapterkarten sind 270 mm tief). Der Anschlu3
der Karten geschieht Uber zwei 6é4-polige Stecker. Zu den Gerdten oder zum Pro-
zeBanschluB dienen Adapterkarten mit 20- oder 30-poligen DIN-Steckern.

Die Interfaces werden - soweit sie nicht in der Zentraleinheit eingebaut sind - in
einem oder mehreren Zusatzeinschiben (AnschluBeinheit) untergebracht.

AnschluBBeinheit

Diese Einheit kann (je nach BaugrsBe der Interface-Einheiten) ca. 15 Interfaces
aufnehmen; die Karten werden von hinten in senkrechter Lage eingesteckt. Der An-
schluB der Peripherie erfolgt riickseitig tber 20~ oder 30-polige DIN-Stecker auf
speziellen Adapterkarten.

Die Einheit enthdlt eine fur alle Interfaces ausreichende Stromversorgung; ferner 2
Paar Anschlufistecker mit Adapterkarten fur den X-Kanal (zur Verbindung mit dem
Computer sowie evtl. weiterer Einschube).

Die Baugruppen werden tber eine gemeinsame Device-Selection angewdhlt; auf
dieser Karte werden X~Kanal-Adressen und Programmebenen den Interfaces zugeord-

net.

Steckplatz-Einheiten: 82
Stromversorgung: +5 V/5.5 A; -5 V/1 A; +15 V/5 A; +24 V/3 A
Netzanschlu3: 220 V +10 % 50 Hz
Leistungsaufnahme max. 200 VA
Grofle: 19" -Einschub
7 Einheiten hoch } ca. 400 mm
+ Stromversorgung 2 Einheiten hoch

- 154 -

MINCAL 500

SCHNELL DRUCKER

SCHREIBMASCHINE
MOSAIK /
THERMODRUCKER

$/5-KANAL-
FERNSCHRE!IBER

ANZEIGE-
UND
BEDIENUNGSFELD

DIGITALSIGNALE

ANALOGSIGNALE

SPALTEN-

DRUCKER

LESER

) By o

PROZESSRECHNER-SYSTEM

LOCHKARTEN
STAN ZER

I
[reeee]

MONO

GESPEICHERT

. - -

CODIERT

KONSTANTSTROM

LA LARALL L

KONST.SPANNUNG

&

I

GERATE-
INTERFACE o
<
I z
<
=
0
ANSCHLUSSEINHEIT |
@ ee
oa
oo
STATISCH
PROZESS-
DYNAMISCH INTERFACE o
INTERRUPT M
<
<
ANSCHLUSSEINHEIT |x
MITTELSCHNELLES I
MESSSYSTEM
- - MESs- | anaLoe- DIGITAL-
STORSICHERES STELLEN-| DIGITAL- |, ANALOG-
MESSSYSTEM - R 2 .
B —— umM UM zlx um
SCHNELLES SCHALTER| SETZER |<|O| SETZER
__MESSSYSTEM ! Y13
ANSCHLUSSEINHEIT |>]o
z
KERNSPEICHER - oz
x w
ERWEITERUNG BEI | f< H I
MINCAL 523 HEEHEFEER
x
<|¥lo] we x
x|<laf aw W
o Bl oz
SPEICHEREINHEIT xjoju| Tw =
MINCAL 500 RECHNER 2 w
1 wlo
<|3 x|«
KERNSPEICHER B e :‘ u
< <|w z|8
FESTPROGRAMM- z|x|x ot =
D w
SPEICHER MEIH HE
X ola
e I —lu

- 155 -

DATENSICHTGERAT

X-Y-SCHREIBER
DIGITAL-PLOTTER

KOORDINATEN-
LESEGERAT

GROSSRECHNER -
ANSCHLUSS

DIGITALSIGNALE

ANALOGSIGNALE

FESTKOPFTROMMEL

MAGNETBAND

WECHSELPLATTE

RECHNER-
KONSOLGERATC

Gerdte-Interfaces

Diese Interfaces dienen zum AnschluB von Peripheriegerdten (insbesondere Bedienungs-
peripherie). Folgende Interfaces sind verfugbar:

Fernschreib-Interface

8-Kanal-E/A-Schnittstelle

110 Bd, 11 Schritte/Zeichen

mit Formatisierung und Parity-Erzeugung/-Prifung
fur Linienstrom 20...40 mA

Fernschreib-Interface

8-Kanal /5-Kanal-E/A-Schnittstelle
50/75/110 Bd, 7.5 oder 11 Schritte/Zeichen
fur Linienstrom 20...40 mA

Streifenleser-Interface
8-Kanal-E-Schnittstelle
fur 5/8-Kanal-Lochstreifenleser 125 Z/s

Streifenleser=Interface
8-Kanal-E-Schnittstelle
fur 5/8-Kanal-Lochstreifenleser 330 Z/s

Streifenlocher-Interface
8-Kanal-A-Schnittstelle
fur 5/8-Kanal-Lochstreifenstanzer 50 Z/s

V24-Interface fir Gerdte-Anschlufl
8-Kanal-E/A-Schnittstelle

110...1200 Bd, 10 oder 11 Schritte/Zeichen
Schnittstelle nach V24

fur Display, Mosaikdrucker, Teletype

Interface fur Kugelkopf-Schreibmaschine
E/A-Schnittstelle
for IBM 735 BCD, 15 Z/s

Spaltendrucker-Interface
A-Schnittstelle
(fur Kienzle-Spaltendrucker)

Schnelldrucker-Interface
A-Schnittstelle
(fur Kettendrucker MDS 4030)

- 156 -

Analog=XY -Interface

mit 2 Analogausgdngen 0...1 V

mit 2 10-bit-Digital-Analog-Umsetzern und 2 Kaskadenregistern mit
Steuerung fur Z~-Koordinate

(fur XY=-Schreiber und graphische Displays)

Digital-Plotter-Interface
mit Impulsausgtingen fir XY-Koordinaten und Federsteuverung
(fur Digital-Plotter)

Kartenleser-Interface
12-Kanal-Schnittstelle
geeignet fur Start-Stop-Betrieb

Interfaces fur Prozefsignale

Diese Interfaces dienen zur Ein- oder Ausgabe von digitalen oder analogen Signalen,
wie sie fur ProzeBanschlusse typisch sind. Folgende Interfaces sind verfugbar:

18/36-bit-Digitaleingang statisch/TTL
ProzeB-Interface zur statischen Abfrage von 18/36 digitalen Eingangssignalen
TTL-Schnittstelle (5 V)

18/36-bit-Digitaleingang statisch/HTL
ProzeR-Interface zur statischen Abfrage von 18/36 digitalen Eingangssignalen
HTL-Schnittstelle (12...30 V)

18/36-bit-Digitaleingang statisch/Relais

ProzeB-Interface zur statischen Abfrage von 18/36 digitalen Eingangssignalen
tber Relais (>12 V, 15 mA)

16 Spulenanschlisse + 1 gemeinsame Rickleitung

18-bit-Digitaleingang dynamisch/TTL

ProzeB-Interface zur Speicherung und Abfrage von 18 digitalen Eingangs-
signalen

mit Differenziereingang, 18-bit-Speicher und Interrupt-Auslssung
(6-bit-weise verriegelbar)

TTL-Schnittstelle (5 V)

18-bit-Digitaleingang dynamisch/HTL

Prozef3-Interface zur Speicherung und Abfrage von 18 digitalen Eingangs-
signalen

mit Differenziereingang, 18-bit-Speicher und Interrupt-Auslssung
(6-bit-weise verriegelbar) '

HTL-Schnittstelle (12...30 V)

- 157 -

18-bit-Digitaleingang dynamisch/Relais

ProzeRB-Interface zur Speicherung und Abfrage von 18 digitalen Eingangs-
signalen Uber Relais (> 12 V, 15 mA) mit Differenziereingang, 18-bit-
Speicher und Interrupt-Ausldsung

(6-bit-weise verriegelbar)

ProzeB-Interface fur Absolutdrehgeber

fur max. 30 Spuren

mit Hardware-UmschluBlung fir V-Logik zum Anschlu3 eines Absolut-
Drehgebers (Dual) mit Lampensteverung Uber Referenzdiode

ProzeB-Interface fur Absolutdrehgeber
beliebigen Codes 12 bit
mit Abfrage-Logik und Zweifadenlampen-Steuerung

18/36-bit-Digitalausgang,/TTL
ProzeB-Interface zur Speicherung und Ausgabe von 18/36 Ausgangssignalen
TTL-Schnittstelle (5...30 V, max. 80 mA)

18/36-bit-Digitalausgang/Relais

ProzeB-Interface zur Speicherung und Ausgabe von 18/36 Ausgangssignalen
18/36 Kontaktausgéinge von Reed-Relais

1 Arbeitskontakt je bit mit gemeinsamer Ruckleitung

max. 110 V 0.5 A 10 W bei ohmscher Last

18/36-bit-Digital~Impulsausgang/HTL
ProzeB-Interface zur Ausgabe von 18/36 Ausgangssignalen eingestellter Zeit-

daver
HTL (5...30 V, 80 mA)
T=1...500 ms

18-bit-Digital-Impulsausgang/HTL

ProzeB-Interface zur Ausgabe von 18 Ausgangssignalen eingestellter Zeitdauer
HTL (5...30 V 1 A)

T=1...500 ms

18-bit-Digital-Impulsausgang/Relais

ProzeB3-Interface zur Ausgabe von 18 Ausgangssignalen eingestellter Zeitdauer
Reed-Relais: 1 Arbeitskontakt je bit mit gemeinsamer Rickleitung

max. 110 V 0.5 A 10 W bei ohmscher Last

T=1...500 ms

Analogausgang 10 bit/10 V/1 V
ProzeB-Interface mit 10-/0-bit-Register, Digital-Analog-Umsetzer und Verstdrker
Ausgangsspannung 0...10 V (0...1 V) niederohmig

- 158 -

Analog-Ausgang 12 bit/20 V
ProzeB-Interface mit 12-bit-Register, Digital-Analog-Umsetzer und Verstarker
Ausgangsspannung 0...20 V niederohmig

Analogausgang 10 bit/20 mA
ProzeB-Interface mit 10-bit-Register, Digital-Analog-Umsetzer und Verstarker
Ausgangsstrom 0...20 mA, max. Biurde 450 Ohm/850 Ohm

Ziffern-Anzeige-Treiber

Register- und Treiberschaltungen fir BCD-Ziffernanzeigen
(3.5...30 V)

fur 4 x 2 (bzw. 2 x 3 oder 2 x 4) Dekaden, mit Vorzeichen

ProzeB-Interface fur codierte Digital-Ausgabe
4 Dekaden, mit Registern

Analog-Eingang 12 bit/10 V

Prozel3-Interface mit Analog-Digital-Umsetzer 12 bit
Konversionszeit ca. 30 us

Eingangsspannung 0...+10 V, nicht potentialfrei

- 159 -

Analog-MeBsysteme

VORBEMERKUNG

Zur Erfassung insbesondere einer Vielzahl von analogen MefBsignalen stehen drei Mef3-
systeme zur Verfigung, die sich durch ihre Auflssung und ihre MeBgeschwindigkeit un-

terscheiden.

Alle Systeme sind modular aufgebaut und in sich abgeschlossene Einheiten, die Gber
den X-Kanal bzw. DMA-Kanal mit dem Computer MINCAL 513/523 verbunden werden.

Mittelschnelles Analog-Mefsystem

Auflosuny:
Konversionszeit:

MeBbereich:

Potentialtrennung:

Betriebsarten:

MefBfrequenzs

MeBkantle:

Sample~-and-Hold:

Stromversorgung:

Grofle:

MeBanschlisse:

Netzanschluf3:

12 bit (StufenverschlufBller)
ca. 25 us

0...+10 V
- 5...+5 V (Option)
-10...+10 V (Option)

zwischen MeBkreis und Logik durch Fotokoppler

programmgesteuert oder

selbstgesteuert (Option)

fur Messung mehrerer MefBwerte bzw. MefBkandle und Ablage im
Kernspeicher

vom Programm vorwdghlbar: Speicher-Basisadresse, MeBkanal-
Basisadresse, Blocklénge, Einkanal/inkrementierende Mehrkanal-
Messung

max. 29 kHz im selbstgesteuerten Betrieb
MOS-FET-Multiplexer (Option)

1...4 Bausteine mit 8 oder 16 Eingdngen
(max. 64 Kandle)

Option

eingebaut

19"-Einbaurahmen, offen (abgeschirmt), konvektionsbeluftet
Hohe 3 Einheiten (ca. 135 mm)
Tiefe ca. 250 mm

Uber rickseitige Steckverbindungen

220 V +10 % 50 Hz

- 160 -

Schnelles Analog-MeBsystem

A uflssung:

MeBbereich:

Potentialtrennung:

Betriebsart:

Meffrequenz:

MeBkandle:

Sample-and-Hold:

Stromversorgung:

Crolle:

MeBanschlusse:

Netzanschluf:

8 bit (StufenverschliBBler) Konversionszeit 0.95 us, oder
10 bit (StufenverschluBler) u 1.2 us

0...+10 V
0...+ 5 V (Option)

zwischen MeBkreis und Logik durch Fotokoppler

selbstgesteuvert

for Messung mehrerer MeBwerte bzw. MeBkandle und Ablage
im Kernspeicher

vom Programm vorwghlbar: Speicher-Basisadresse, MefBkanal-
Basisadresse, Blocklange, Einkanal/inkrementierende Mehrkanal-
Messung

200 kHz

MOS-FET-Multiplexer (Option)

1...4 Bausteine mit 8 Eingdngen

(max. 32 Kanile)

Option

eingebaut

19"-Einbaurahmen, offen (abgeschirmt), konvektionsbeliftet
Hshe 3 Einheiten (ca. 135 mm)

Tiefe ca. 250 mm

Uber ruckseitige Steckverbindungen

220 V +10 % 50 Hz

- 161 -

Stérsicheres Analog-Mefsystem

Auflssung:

Meffolge:
MeBbereich:
Potentialtrennung:

Betriebsart:

Eingangswiderstand:

MeBfehler:

MeBkandle:

GroBe:

NetzanschluB3:

+ 120000 Ziffernschritte zu je 10 uV
Tntegrierendes MeBverfahren
Integrationszeit 20 ms

20 bzw. 100 Messungen/s

1.2V

mit MeBkreisschirm (guard)
programmgesteuert

1000 MOhm

+0.01 % v.M., +0.003 % v.E.

3-polig schaltende Reed-Relais in Schutzschirmtechnik.
Pro Einschub 8...64 Kanile

19"-Einbaurahmen
Hohe 199 mm
Tiefe 407 mm

220 V +10 %/-15 % 50 Hz

- 162 -

Periphergerite

Zu den MINCAL 513/523 ist eine groBe Anzahl von Periphergeriten verfiugbar, die
tber die im Kapitel "Gerdte~Interfaces" beschriebenen Schnitistellen betrieben wer-
den.

~ 8-Kanal-Fernschreiber
Teletype ASR 33, mit angebautem Streifenlocher und -leser
10 Z/s, 72 Z/Zeile
mit V24-AnschluB8 oder mit Linienstrom-Anschluf3

- 5-Kanal-Fernschreiber
Siemens T100
10 Z/s, 64 Z/Zeile

mit Linienstrom-Anschlufl

8 (5)-Kanal-Streifenleser

optischer Leser mit Schrittmotor fur Vor/Ruckwirts-Betrieb
125 Z/s

mit Spuleinrichtung (Spulen 152 mm f)

19"-Einbaugerdt, Hohe 5 Einheiten

8 (5)-Kanal-Streifenleser

optischer Leser mit Andruckrolle und Bremse, 330 Z/s
19"-Einbaugerdt, Hohe 3 Einheiten

Spuleinrichtung, Hohe 4 Einheiten

- 8-Kanal-Streifenlocher
50 Z/s
mit Vorratsspule
19"-Einbaugerdt, Hohe 4 Einheiten

- Bildschirm-Terminal
Datensichtgerat mit 12" Bildschirm
27 Zeilen zu je 74 Zeichen
mit Vordergrund/Hintergrund-Speicher
mit V24-AnschluB (110...4800 Bd)
mit Eingabetastatur
auf Wunsch mit Hardcopy-Einheit (Thermodrucker)
auf Wunsch mit Doppel-Magnetbandkassette

~ Thermodrucker

10...30 Z/s oder 40 Z/s, 72 Z/Zeile

- 163 -

- Mosaikdrucker
180 Z/s, 132 Z/Zeile

- XY=Schreiber
DIN A4 oder DIN A3

Digital-Plotter

oder fur Endlospapier (11" Schreibbreite)
300 Schritte/s

Lochkartenleser
fur 80-spaltige Lochkarten, Stapelleser
0...200 Spalten/s

- LSK-Abrufleser
Siemens-Lochstreifenkartenleser 61, 10 Z/s

- LSK-Locher
Siemens-Lochstreifenkartenlocher 159, 10 Z/s

- FS-Rundschreibknotenstelle codegesteuert
Siemens Zentraleinheit 9530
adressen-gesteuerter Datenverteiler fur max. 10 Endstellen

- Computer~Display-Terminal
fur graphische und alphanumerische Darstellungen auf einer Speicherrshre

- Kugelkopf-Schreibmaschine
IBM 735 BCD, 15 Z/s
mit codegesteuerter Rot-Schwarz-Umschaltung, 120 Z/Zeile

Spaltendrucker
Digitaldrucker mit Springwagen

5-stellig mit Tabulator
(Kienzle D44-SW 5)

- Schnelldrucker

Keftendrucker MDS 4030
300 Z/min, 64 Charaktere, 135 Z/Zeile

- 164 -

441

il |

0000000000000 0000000 OOOOO000

188

©00000000000000000000 00000000 h

HG
|
|
|
|
|
|
©0000000000000000000 ©000O0O0O0OO “
|
|
|
|
[
1
|

- 165 -

(500..520) —

482 — 74 500

Zeichen

Kanal

87654.32

ASClI-Code Druckbare Zeichen

- C
o

+ %= S0 QT
o

0000 j0j00
P AP I R (RO PO O I

.

°

°

.

°

.

.

.

.

°

°

.
, lo]]e .

° .
. . °
/ [o] [e .
g ole
1 |o| (e]e
2 Jo| |e]e
3 oo
4 |o| |eje] [.]|e
5 ole .|e®
6 ole .|e
7 lof |ele| |.|e®
8 |of| [e]e]e
9 olo|e
: olole
; o| |e|e|e
< olo|e ®
= (o] [e|ele|.]|e
> |o ole|e 3
? ejo|e Y

!

Parity- Transport=-
Bit lochung

w (Zeichen g40)
bedeutet Leerschritt

I

oktal

040
041
042
043
044
045
046
047
050
051
052
053

055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

Zeichen

Kanal

87654.321

} LN XSEI<CHOIQOUOZICrAL—IQTMUAOT>H
o
@j0j0/0j0j0/0/ 000000 |j0(0i0/0(0/0o/0/0o|j0(e|/0|/0/0o/c(0/aj0o|o|e

®o/0oj0j0o/0e/0/0/j0/0|j0/0 00 |/0|0 |0
(KL A RE-RE-BE BN

[

°

I I

Parity- Transport-
Bit lochung

Dateninhalt 1
Lochung im Streifen

= Stromschritt (MARK)

I u

- 166 -

oktal

100
101

102
103
104
105
106
107
110
(AR

112
113
114
115
116
117
120
121

122
123
124
125
126
127
130
131
132
133
134
135
136
137

ASClI-Code Steuerzeichen

Kanal
Zeichen 87654 .321 oktal Bedeutung
NULL 000
SOM o . ° 001
EOA o e 002
EOM .| Tele 003
EOT o .|e 004
WRU o |o 005
RU o 006
BELL o o i Bl R 0074
FEZ o L 010
H-TAB ® [011
LINE FEED . ° 012 Zeilenvorschub
V-TAB o ° oo 013
FORM ol .|e 014
RETURN o e. o |o@ 015 Wagenricklauf
SO o o|l.loe 016
Sl o.lo|00 017
DCP o ° 020
X-ON ° o 021
TAPE ON ° ° 022
X-OFF o ° ele| 023
TAPE OFF o [.]e 024
ERROR o ol |.|o| |o| 025
SYNC [o °e 026
LEM ° eleje| 027
g oo 030
Sl o oleo o| 031
S2) ofof. | o 032
S3 eleo oo 033
S4 o olo|.|e 034
S5 ele|l.|o| || 035
Sé olol.|o]e 036
S7 o ojlo|/.|ojo]e 037
ACK olo|elelec|.|e 174
ALT MODE ele|clo|.|e! [o 175
ESC o/lolo/o|.lale 176
RUB OUT ole|ef[ele].[e|e]e] 177
Parity- Transport=-
Bit lochung
o e = Dateninhalt 1

i}

Lochung im Streifen
= Stromschritt (MARK)

|

- 167 -

BEFEHLSTABELLE

NOP 000000 MZR .030AAA HLT 540000
MPO .031AAA HSL 542110
(e) VBL 001400 MMO .032AAA HBR 544AAA
(e) VBR 001440 MIC .033AAA STL 550LL0
(e) VDL 001500 MDC .034AAA ECL 553000
(e) VDR 001540 MCO .035AAA DCL 554000
coD 00AAAA MCI .036AAA
GX 60XAAA
SRLW 000010 LDR .TIRAAA FX 61XAAA
SRLD 000011 TRR . 15RAAA OX 65X AAA
SRLX 000012 ADR .04RAAA
SRAW 000014 SBR .05RAAA GB -60XAAA
SRAD 000015 FOR .06RAAA FB -61XAAA
SRAX 000016 FAR .07RAAA IBG -62XAAA
SLLX 000020 IBF -63XAAA
SLLD 000021 LDC .T0RCCC 1B -64X AAA
SLLW 000022 ADC .14RCCC OB -65XAAA
SLAX 000024 IBH -66X AAA
SLAD 000025 LD .12QAAA OBH -67XAAA
SLAW 000026 TR .16QAAA
AD .20QAAA RBL -700DDO
(e) SRLW 0100NN SB .22QAAA SBL -700DD1
(e) SRLD OTT0NN | (e) MP .30QAAA RBR -710DD0
(e) SRLX 0120NN | (e) DV .32QAAA SKB -720DDO
(e) SRAW 0140NN FO .24QAAA SKR -730DD0
(e) SRAD 0150NN FA .26QAAA
(e) SRAX 0160NN FE .34QAAA (e) 1IBS -74ANDDF
(e) SLLX 0200NN CcpP .36QAAA (e) OBS -75NDDF
(e) SLLD 0210NN
(e) SLLW 0220NN BR .40SAAA (e) 1BB -760DDO
(e) SLAX 0240NN BZ A42RAAA (e) OBB -770DDO
(e) SLAD 0250NN BP J44RAAA
(e) SLAW 0260NN BM L46RAAA
(e) SRR 0130NN
(e) SLN 023000 Cs .50QAAA
CM .52QAAA
AAA = Adrefiteil = Vorzeichen von Bedeutung
CCC = Festwert - = indirekt wenn ..A
DD = Gerdtenummer (+1 bei 2. Oktalstelle)
F = Format (e) = erweiterter Befehlsvorrat
LL = Ebene :
N = Anzahl Zeichen
NN = Anzahl Bits
Q = Ergdnzung
R = Register
S = Sensor
X = Indexregister

- 168 -

