
mincal 518/523
- . Handbuch

VHDEKHRR SL
PRROESEK

woe

SRA tes,

OORT
rREAME

PRR IERS

mincal 513/523

Computer
SES SVSTEME

Heinrich Dietz
Industrie-Elektronik
433 Mulheim-Ruhr
Kolner StraBe 115
Tel. (0 2133) 48 85 44
Telex 08 567 70

HANDBUCH 4/72

 Dietz bietet immer etwas mehr

Ausgabe:

Herausgeber:

Druck:

April 1972

Heinrich Dietz

Industrie-Elektronik

433 Mulheim a d Ruhr 13, K6lner StraBe 115
Telefon (02133) 48 85 41 . Telex 0856770
W-Germany

Hoppe + Werry KG, Mulheim a d Ruhr

Einfuhrung:

C omputer:

Software:

Peripherie:

Anhang:

Inhalt

DIETZ in Kurzform

Uber die MINCAL 500-Computer

Computer-Fibel

Spezifikationen

Struktur

Mikroprogrammierung

Maschinenbefehle

Bedienung

Aufbau

Assembler

Monitor

FORTRAN

ALGOL

BASIC

Library

Kernspeicher-Erweiterung

Periphere Speichererweiterungen

Peripherie-Interfaces

Analog-MeBsysteme

Peripherie-Gertte

MaBbild

ASClI-Code

Befehlstabelle

Seite

39

A2

54

39

79

86

88

105

109

123

13]

144

146

147

154

160

163

165

166

168

DIETZ in Kurzform

Die Firma HEINRICH DIETZ INDUSTRIE-ELEKTRONIK besteht seit 1951. Das
Programm war und ist die industrielle Automation mit elektronischen Mitteln.
Diese Mittel sind heute Computer.

Der Weg fuhrte von elektronisch geregelten Getrieben uber KompensationsmeBgerite
und Analogrechner zur Digitaltechnik, uber den DIGIVERTER (den ersten deutschen
Digitalumsetzer) zu den ZDE-Anlagen und mit dem Aufkommen der Halbleiter als
industrielle Baukomponenten zum COMBIDAT-System.

1945 wird das COMBIDAT-System durch die ersten technischen Kleincomputer aus
Deutschland, die MINCAL-Digitalrechner, erweitert. In dieser Zeit entsteht eine
Rechner-Familie von festprogrammierten Kleincomputern mit der Bezeichnung
MINCAL 0, MINCAL E, MINCAL Q und MINCAL 1 und einem speicherprogram-
mierten Computer, dem MINCAL 3.

Auf die Computer der ersten Generation folgt 1968 der MINCAL 4, der erste in
Deutschland entwickelte Proze8rechner in integrierter Technik. Mit dem MINCAL 4
wurde die Multiprogramming-Struktur und die 19-bit-Wortlange eingefihrt.

Diese Struktur findet sich auch bei den Computern MINCAL 513 und MINCAL 523,
erweitert um neue Eigenschaften, wie parallele Verarbeitung, Mikroprogrammierbar-
keit und modularen Aufbau.

Heute entwickeln und fertigen in Miulheim 200 Mitarbeiter nicht nur Computer,
sondern auch Computer-Peripherie und Standard-Software. AuBerdem liefert DIETZ
schlisselfertige Computer-Anlagen einschlieBlich Planung, Systemanalyse, Ausarbei-
tung der Anwenderprogramme und der Proze@peripherie.

DIETZ COMPUTER SYSTEME ist ein Begriff geworden fur ein eigenstdndiges Ent-
wicklungskonzept. Die ProzeBrechner der MINCAL 500-Baureihe sind ein Teil dieser
Gesamtkonzeption.

Uber die MINCAL 500-Computer

Die Computer MINCAL 513 und MINCAL 523 sind fur den Einsatz als ProzeB-

rechner - in sehr kleinen bis zu relativ groBen Systemen - und fir die Lésung

technisch-wissenschaftlicher Rechenprobleme konzipiert. In Struktur, Peripherie

und Software weisen sie zum Teil neuartige Merkmale auf, die sie fur diese

Aufgaben besonders geeignet machen.

Wortlange 19 bit: 3 bit mehr (als die fiir ProzeBrechner wenigstens erforderlichen
16 bit) bedeuten umfangreicheren Befehlsvorrat, bessere und vielfaltigere Adressie-
rung, Zugriff zu grdBeren Speicherbereichen, ausreichende Genauigkeit auch bei
extremen Anforderungen, keine Probleme bei Speicher- und Peripher-Erweiterungen.

GroBer Befehlsvorrat: 10 speicherbezogene Befehle (einschlieBlich Multiplikation
und Division); 2 Konstantenbefehle; 6 Registerbefehle; 7 Manipulationsbefehle fur
512 Speicheradressen; 14 Schiebebefehle; 4 Konversionsbefehle; 6 Verzweigungs-
und Aufrufbefehle; 12 Ein/Ausgabebefehle und 13 weitere Instruktionstypen -, das
sind 74 verschiedene Maschinenbefehle, die zum groBen Teil vielfaltig modifizier-
bar und sehr leistungsfahig sind.

Flexible Adressierung bei speicherbezogenen Befehlen: Absolut sind 0.5 k, relativ
sind | k Worte zugtnglich. Durch indirekte Adressierung kénnen 32 k Kernspeicher-
Worte und der gesamte Festspeicher erreicht werden. Hinzu kommen 3 Indexregister
je Ebene. Durch Ebenen-Bindung von Speicheradressen kann sich der Benutzer wei-
tere Register aufbauen.

Mikroprogrammierung: Fur den Aufbau von Sonderbefehlen und besonders schnell
ablaufenden Routinen kann der Benutzer auf die Mikrobefehle zurtickgreifen.

Multiprogramming-Struktur: Der MINCAL 523 bietet dem Benutzer bis zu 64 unab-
hdngige Unterrechner mit eigenem Instruktionszadhler, eigenen Akkumulatoren, Index-
registern, Datenspeichern und eigener Peripherie. Diese Unterrechner benutzen ab-
wechselnd die eigentliche Recheneinheit, gesteuert von ihren Prioritdten. Bei ent-
sprechender Prioritét kann am Ende jedes Befehls ein anderer Unterrechner oder,
besser ausgedriickt, eine andere Programmebene die Recheneinheit benutzen. Dabei
miissen weder von der Hardware noch durch ein Organisationsprogramm Speicher-
oder Register-Inhalte gerettet werden. Jede Ebene verfiigt uber 8 eigene Register.
Multiprogramming ist extrem einfach, denn fir jede Aufgabe gibt es eine vollig
unabhangige Ebene.

3 Datenkandle: Fur programm- und fremdgesteverten Datentransfer sowie fiir die
Kernspeichererweiterung sind 3 getrennte Datenkandle vorgesehen, ~ ein bedeuten-

der Faktor fur die Arbeitsgeschwindigkeit und den Umfang der anschlieBbaren Pe-
ripherie.

Festspeicher: Mikroprogramme und Programmierhilfen sind unzerstérbar in speziellen

Sie sind voll kompatibel mit Kernspeichern und kénnen da-Festspeichern enthalten.
h Anwenderprogramme enthalten. Dieher wichtige Unterprogramm~Pakete und auc

Festspeicher haben 750 ns Zykluszeit.

Bedienungskomfort: Alle Register und Speicherplatze sind Uber die Frontplatte zugdng-

lich, alle wichtigen Zustdnde sichtbar und beeinfluBbar. AdreBstop und andere Funk-

tionen erleichtern den Testbetrieb. Eine als Festspeicher eingebaute Programmierhilfe

erlaubt sofortiges Einlesen sowie bequemes Andern und Ausgeben von Programmen,

Modularer Aufbau: Zentraleinheit und Peripherie sind modular konzipiert, so daB fur

jede Aufgabenstellung eine optimale Konfiguration gewahlt werden kann.

Externspeicher: Schnelle Trommel- und Plattenspeicher erhdhen - einschlieBlich der
zugehérigen Betriebssysteme - die Leistungsfthigkeit von MINCAL 523~Anlagen.
AuBerdem sind Magnetband-Systeme verfiigbar.

Peripherie: Eine vielseitige Bedienungsperipherie - Fernschreiber, Drucker, Streifen-
leser und -locher, Datensichtgertite, Kartenleser, Plotter - ist verflgbar. Hinzu

kommen Interfaces fir Datenfernibertragung und ein umfangreicher Katalog von Pro-
zeBperipherie: Ein/Ausgdnge fir digitale und analoge Signale sowie spezielle Analog-
MeBsysteme. Echtzeituhren. Speicherschutz. Schnelle Speicher-Zdhlkandle.

Basis-Software: ASSEMBLER/EDITOR. Bibliothek mit Doppelwort-Paket, Einwort- und
Doppelwort-Gleitkomma-Paket sowie mathematischen Funktionen. MONITOR-Testhilfe.
CALCULATOR-Tischrechnerprogramm. Graphische Programme. FORTRAN- und ALGOL-
Compiler. BASIC-Interpreter. Betriebssystem flr das Arbeiten mit Formalsprachen.

ProzeRsysteme mit Rechenplatz: Als Folge der Multiprogramming-Struktur ist es mdg-
lich, auf einem Prozefsystem gleichzeitig technisch-wissenschaftliche Datenverarbei-
tung zu betreiben, ohne den on-line-Betrieb zu stéren und ohne aufwendige Betriebs-
systeme.

Computer-Fibel

WIE ES HINTER DEN KULISSEN AUSSIEHT

Jeder Computer, der etwas auf sich halt, besitzt einen SPEICHER. Das ist ein Regal

mit vielen Fachern, SPEICHERPLATZE genannt, und da Computern die Ordnung im
eigenen Hause uber alles geht, gibt es fiir jeden Platz eine Nummer, die ADRESSE,
und zwar immer hUbsch in aufsteigender Reihenfolge.

In jedem Platz des Speichers ist etwas enthalten, was wir nicht umhin kénnen, als
seinen INHALT zu bezeichnen. Alle Platze sind gleich groB, und was da hineinpabt,
nennen wir ein WORT. Und wie sich die Worte unserer Sprache aus Buchstaben zu-
sammensetzen, so bestehen Computer-Worte aus bindren Elementen, BITs; binar deshalb,
weil sie nur die beiden Formen 0 oder 1 annehmen kénnen (dieses Schwarz-Wei-Denken
haben alle Computer an sich, bemishen sich aber, es durch differenzierten Umgang mit
den Bits wettzumachen.)

Die Anzahl der Bits in einem Wort nennt man die WORTLANGE; je grdGer diese und
die Zahl der Speicherplatze (KAPAZITAT) ist, desto hoher der Preis des Computers,
seine Leistungsfahigkeit und der Stolz seines Besitzers.

Nehmen wir an, unsere Worte seien 3 Bit lang; dann gibt es, wie man sich leicht
Uberzeugt, folgende Kombinationen von 0 und 1:

000
001
010
O11
100
101
110
11]

Das sind 8 verschiedene Worte; allgemein gilt die Regel, daB ein n-bit-Wort 2” ver-
schiedene Inhalte haben kann (in unserem Beispiel 23 = 8).

Hat ein Computer-Wort die Lange von 18 bit (wie die MINCAL 500-Computer, worauf wir
wiederum besonders stolz sind), so ergeben sich 218 = 262144 verschiedene mogliche

Worte. Schreibt man allerdings so ein langes BINARES Wort hin:

001010000100111011

so verliert man vor lauter Nullen und Einsen schnell die Ubersicht, und man kann sich
so ein Wort weder merken noch einem anderen schnell zurufen, der sich mdglicherweise

auch dafiir interessiert.

Deshalb fuihren wir schnell einen Trick ein, namlich den mit der OKTALEN Schreib-
weise. Zuerst ordnen wir die 18 Bit in 6 Dreierpa@ckchen:

001 010 000 100 111 O11

(zum Glick ist 18 durch 3 teilbar!) und ersetzen jedes Packchen, je nach seinem
Inhalt, durch eine der Ziffern 0 bis 7, wobei folgende Zuordnung gilt:

000
001
010
011
100
101
110
11

o
o

|

S
E
O
&
&

G
&

B
b
—
©

(Der geschulte Betrachter erkennt, daB es sich dabei um die BINARZAHLEN von 0 bis 7
handelt; die zugehdérige OKTALZIFFER ergibt sich, wenn man den Bindarstellen - den
Bits - von links nach rechts die Wertigkeit 4, 2 und 1 gibt und sie zusammenzdhlt.
Bitte selbst nachrechnen!).

So wird also aus unserem bindren Wort

001 010 000 100 111 O11
ONOSY

1} 2 0 4 7 3

die OKTALZAHL 120473, die man gut aussprechen (je nach Geschmack zwolf null=vier
dreiundsiebzig oder einsezwanzig vieredreiundsiebzig oder eins-zwei-null-vier-sieben-drei)
und sich notfalls auch noch merken kann. Wenn Gefahr besteht, sie mit unseren tblichen
Dezimalzahlen zu verwechseln, geben wir Oktalzahlen eine 8 als Anhanger mit: 120473g;
dann wei jeder Bescheid.

Kehren wir zum Speicher und seinen Adressen zuriick. Computer sind ein bi®chen einsei-
tig, aber darin konsequent: Gehen sie schon nur mit bindren Informationen um, so be-
zeichnen sie ihre Speicherplatze auch mit Binarzahlen. Weil wir die nicht so sehr mdgen,
wenden wir auch hier unsere List mit den Oktalzahlen an.

Nehmen wir an, der Speicher habe eine Kapazitat von 4096 Worten (eine bei Computern

Ubliche GréBe; 4096 = 212 = "4k", wobei 1K = 1024 = 2!0 ist). Dann sind alle Adres-
sen mit 12-stelligen Bindrzahlen - also 12 Bit - darstellkar, die wir gleich in 4-stellige

Oktalzahlen umschreiben:;

1. Adresse: 000 000 000 000 = 00008

2. Nos 000 000 000 001 = 0001¢

USW.

vorletzte Adresse: T1111 111 110 = 7/763

letzte Adresse: 111117 111 111 = 77772

Stellen wir uns diesen Speicher vor:

7777 * Adressen der Platze (oktal)
7776
7775
7774
7773
7772
777\
7770
7767

Inhalt jedes
Platzes:

1 Wort mit n Bit
4K-SPEICHER

0010
0007
0006
0005
0004
0003
0002
0001
0000

Womit, wie es sich flr Computer-Leute gehort, das Thema Speicher schén geordnet und
eingeteilt ware.

WIE ES IM SPEICHER LEBENDIG WIRD

Ein Speicher macht noch keinen Computer,und kein Regal, dessen Facher nicht von
Zeit zu Zeit einen neven Inhalt bekommen.

Jeder Computer besitzt (mindestens) ein auferhalb des Speichers liegendes Fach, in

das gerade ein Wort hineinpaBt und welches man mit dem Inhalt eines Speicherplatzes
laden kann. Oder dessen Inhalt man in jede Speicheradresse Ubertragen kann. Wir
nennen es das ARBEITSREGISTER (oder W-Register oder im ublichen Sprachgebrauch

auch Akkumulator).

Das geht so vor sich:

> Laden aus Adresse M:

Speicher <M>-=W

Arbeitsregister
, Transfer in Adresse M:

<W>*M
Speicher

 | W Arbeitsregister

W ist das Symbol fiir das W-Register, M das fiir einen beliebigen Speicherplatz,
und <... bedeutet "Inhalt von ...".

Bemerkenswert an diesen Transportvorgingen ist, dafs der fruhere Inhalt von W bezie-
hungsweise M keine Rolle spielt, und da im ersten Falle M, im anderen W seinen

Inhalt beibehalt (womit unser Bild vom Lagerregal heftig zu hinken anfdngt und wir,
mit freundlicher Genehmigung des Lesers, es endgiiltig Uber Bord werfen).

-10-

Mit LADEN und TRANSFER haben wir gleich zwei fundamentale Operationen eines
Computers kennengelernt. Eine OPERATIONist ein abgeschlossener Vorgang einfacher
Art, und viele aufeinanderfolgende Operationen machen einen PROGRAMMABLAUF.

Noch zwei Eigenschaften machen unsere Operationen deutlich: Der Inhalt jedes Spei-
cherplatzes kann verdndert werden, indem man den Inhalt des W-Registers dorthin tber-
tragt. Und dieses spielt die Rolle einer Daten-Drehscheibe, was auch an der folgenden
Aufgabe klar wird.

Sie lautet: Ubertrage den Inhalt der Speicheradresse M1 in den Platz M2. Es geht nur
Uber das W-Register, ndmlich so:

>» 1. Operation;
Laden aus Adresse Ml]

<M1>—+> W

» 2. Operation;
Transfer in Adresse M2

<W>+ M2

 |W
Wir kénnen das auch in SYMBOLISCHER Form notieren:

LD MI
TR M2

womit wir schon unser erstes (Mini-) Programm geschrieben hdtten, und zwar in symbo-
lischer Schreibweise, weil die BEFEHLE (Laden, Transfer) durch Abkiirzungen (LD, TR)
und die Adressen durch MARKEN (MI, M2) - anstelle der echten oktalen Nummern -
angegeben sind.

-ll-

Unser Mini-Programm besteht aus zwei INSTRUKTIONEN (oder Anweisungen an den

Computer, dies oder jenes zu tun), und wie wir sehen, beantwortet eine solche Instruk-

tionen dem Computer Fragen:

Was soll ich tun? (Es antwortet der Befehl.)
Womit, woher, wohin? (Es antwortet die Adresse).

Damit ist kbar, da®B zur Ausfiihrung einer bestimmten Operation eine dementsprechende
Instruktion gehért. Und die Gesamtheit aller Instruktionen, die einen von uns gewiinsch-
ten Ablauf vorschreiben, - eben diese nennt man ein PROGRAMM.

Womit fast nichts mehr im Wege stiinde, lustig mit dem Programmieren zu beginnen.

NOCH EIN STUCK COMPUTER-INTIMSPHARE

Zuvor wollen wir noch einen Blick ins Innenleben unseres geliebten Spielzeugs werfen,
diskret zwar, aber doch so eindringlich, daf8 wir herausfinden, wo es eigentlich die
Programminstruktionen aufhebt und wie es sie versteht.

Die Antwort auf die erste Frage ist ganz einfach: Im Speicher nattirlich. Dort stehen,
sduberlich in der Reihenfolge steigender Adressen angeordnet, alle Instruktionen. Und
jede hat die Lange eines Wortes. Denken wir an unser Mini-Programm und stellen wir
uns vor, die erste Anweisung stehe im Platz 0200, dann hat die zweite die folgende
Adresse:

0200 LD MI
0201 TR M2

Nun mu es einen dienstbaren Geist geben, der aufpaBt, dal’ die jeweils bendtigte
Instruktion auch aus dem richtigen Kastchen geholt wird und vor Holen der ndchsten
die Wahl auf die folgende Adresse fallt. Das tut flr uns der INSTRUKTIONSZAHLER
(oder Programmstand oder das N-Register, wie wir's nennen): Er gibt die Speicheradresse
an, in der die Instruktion fir die Operation enthalten ist, die daraufhin ablaufen soll.

Der Mechanismus geht so:

Schritt 1: <N> + 1+N N-Register um | erhdhen

Schritt 2: «KN» —+INSTR Instruktion holen

Schritt 3: ...cccccecccee eee. Ausfishren der Instruktion

-12-

Dabei bedeutet <K N3 den "Inhalt vom Inhalt von N", oder, in Nicht-Computer-

Deutsch, den Inhalt des Speicherplatzes, dessen Adresse im N-Register steht. Und INSTR
ist fUr uns einstweilen ein weiterer dienstbarer Geist, der die Instruktion aufhebt und den
Ablauf der Operation - die Ausfiihrung - steuvert.

Wohlgemerkt: Die Schritte 1 und 2 laufen ab, ohne da Sie dies dem Computer ausdriick-
lich sagen - ein eingebauter Reflex sozusagen. Erst auf Schritt 3 haben Sie durch Pro-
grammieren der geeigneten Instruktion Einfluf.

Zeichnen wir den vollen Ablauf der Instruktion

LD M1

noch einmal auf:

Schritt 1:

N erhchen

qN2+ 17% N

[INSTR |

Schritt 2:

> Instruktion holen

<< N>>INSTR

i INSTR |

 Z
-
-
-
-
-
-
-
-
-
-

Schritt 3;
> Ausfiihrung

C M1>eWw

- 13 -

Wir sehen, da erst im dritten Schritt das fir die Instruktion Spezifische passiert. Was

da vor sich gehen soll, sagt das Wort aus, das in INSTR steht, und jedes Bit darin

(oder jede Oktalzahl, wie wir sehen werden) hat eine bestimmte Funktion.

Zum Beispiel verstehen die MINCAL-Rechner ihre 18 bit~Instruktionen so:
, Ortaster i enthalten den Befehl OP

. q

3. Oktalstelle enthalt die Erganzung Q
4, Oktalstelle

5. Oktalstelle enthalten die Adresse AAA

6. Oktalstelle

Oder aufgezeichnet:

 aa (OPQAAA)
~. raeaee wv,

Befehl Erg. Adresse

Was Befehl und Adresse ist, wissen wir schon; die Geheimnisse der Ergdnzung heben
wir uns fur spdter auf.

Nehmen wir die Oktalzahl 120437 als Instruktion:

O P QQ A AA

pao; 2 | oP 4A 8 7

und setzen wir voraus, da 12 der BEFEHLSCODE fir "Laden" sei, so bedeutet sie:

"Lade den Inhalt von Adresse 437". Und hatte der Platz M1 unseres Mini-Programms
gerade diese Adresse, so wire diese identisch mit

LD M1

- aber eben nicht in einer symbolischen SPRACHE, sondern in der, die der Computer
einzig und allein versteht: in MASCHINENSPRACHE (oder auch Maschinencode genannt).

Wenn wir noch wissen, dal 16 der Befehlscode fiir "Transfer" ist, und annehmen, 440
sei die Adresse M2, dann kann unser Mini-Programm sogar in zwei Zungen sprechen:

-~ 14 -

symbolisch Maschinencode
OF oF

0200 LD Ml 120437
0201 TR M2 160440

(Zwischenfrage: Wieviele Platze liegen zwischen MI und M2?)

Damit genug der Computer-Anatomie.

WIE EIN RECHNER AUCH RECHNEN KANN

Futtern wir das Raubtier mit einem nutzlichen Programm und lassen wir es mal rechnen:

z=xty

Damit die Reihenfolge stimmt, schreiben wir die Aufgabe um:

X +t yz

und denken uns, die Werte x und y stiinden in den Platzen Ml und M2 des Speichers,
und die.Summe z solle nach M3. Wemwir noch wissen, daB AD... das Symbol fir

"Addiere... zum Inhalt des W-Registers" ist, so lautet das Programm:

LD Ml x —» W
AD M2 cW> +y—+W
TR M3 z=x+ty—.M3

Hatten wir stattdessen y gerne von x abgezogen:

x =~ Y—» Zz

- mit im uUbrigen gleichen Platzen fir x, y und z ~, so hatte es heifen missen:

- 15 -

LD Mi x —» W
SB M2 <W> -~y—W
TR M3 z=x-y—-M3

wobei SB... bedeutet: "Subtrahiere ... vom Inhalt des W-Registers".

Betrachten wir im Bild, was bei der Instruktion "AD M2" passiert:

Adresse
PTT T TT

| Operan

INSTR |

[OP TO AAA |

y
d

|oo x

Befehl Adoe7

AD M2

Addition:

CWPF+EM27>—-W

Wie man sieht, stevert der Befehl AD die additive VERKNUPFUNG der Inhalte von W
und M2 in einem ADDIERER, wobei die Summe wieder ins W-Register gebracht wird.
Ubrigens heiBt y, als Inhalt der angesprochenen Adresse, der OPERAND.

Vielleicht ist es ganz nutzlich, die Addition zweier Bindrzahlen - nur solche kann der
Rechner zueinander addieren - ndher zu betrachten. (Man kénnte sie dem Computer
selbst Uberlassen, aber manchmal mdchte man bs bestimmt - trau schau wem — auch mal
selbst nachvollziehen).

Nehmen wir 3-stellige Binadrzahlen und rechnen 3 + 1 = 4:

22 21 20

x 0 1 (= 3)

ty 0 0 1] = 1)
1 \

=x+y 1 0 0 (= 4)

wobei 1 + 1 = 0 + UBERTRAG in die ndchsththere Stelle!

- 16 -

Noch ein Beispiel fir 18 bit-Zahlen, die wir aber gleich als é6-stellige Oktalzahlen
schreiben (mit entsprechender Wertigkeit 8° der Oktalstellen):

go g4 93 gt gl 20

x= 0 0 1 7 5 0 = 1000)
y= 0 0 0 0 3 0 (= 24)

} }

xty= 0 0 2 0 0 0 (= 1024)

wobei z.B. 3 + 5 = 0 + Ubertrag 1 in die nachsthdhere Stelle (Ziffern > 7 sind bei
Oktalzahlen nicht erlaubt!).

Man erkennt, da Bindr- und Oktalzahlen im Prinzip wie unsere tblichen Dezimalzahlen

behandelt werden; jede Stelle kann allerdings die Ziffern 0 oder 1 (bei Bindrzahlen) be-
ziehungsweise 0..7 (bei Oktalzahlen) enthalten, im Gegensatz zu den Dezimalzahlen,
wo 0...9 erlaubt ist.

Subtrahieren wir noch schnell zwei Oktalzahlen voneinander, damit wir das auch geubt

haben:

go g4 g3 gt gh_~— gO

x 0 0 2 0 0 9 = 1024)
-y 0 0 0 0 3 0 = 24)

=x-y 0 0 1 5 (= 1000)

(hier muB man sich etwas von der hdheren Stelle "borgen", wenn die x-Ziffer groRer
als die y-Ziffer ist, - wie gehabt!).

Alle Zahlen, mit denen wir bisher zu tun hatten, hatten eines gemeinsam: sie waren
positiv. Doch ein Computer, der nicht auch negative Zahlen akzeptiert, ware nicht
positiv zu beurteilen. Aber wie unterscheidet er sie?

Da muB nun eingestanden werden, da wir dem geneigten Leser bisher etwas Kleines,
wenn auch Wichtiges unterschlagen haben: das Vorzeichen-Bit, das jedes Computer-Wort

hat. Das neunzehnte Bit in jedem MINCAL-Wort:

N 98 g4 33 g2 gl g0

ee
Vorzei- 217. 70
chenbit

-17-

Je nachdem, ob das N-Bit eine O oder 1 enthalt, ist die Zahl positiv oder negativ.
Und wir vereinbaren, vor jeder negativen Oktalzahl das N-Bit durch ein Minuszeichen
darzustellen (das Pluszeichen vor positiven sparen wir uns).

Nun gibt es - leider - zwei Arten, negative Zahlen darzustellen. Die erste: Im N-Bit

steht das Vorzeichen, in den Ubrigen der Betrag der Zahl. Zum Beispiel:

-001750 (= -1000)

So war’s fruher beim MINCAL 4.

Die MINCAL 500-Computer haben sich bei ihrer Geburt eine andere Darstellung ausge-
sucht: Negative Zahlen werden als ZWEIERKOMPLEMENT der entsprechenden positiven
Zahl ausgedrickt, |

Zundchst: Was ist ein Komplement, besser gesagt, ein EINERKOMPLEMENT? Nun, das

ist die Zahl, die eine andere zur gréBten darstellbaren Zahl (in unserem Falle -777777¢)

ergdnzt. Beispiel:

001750 (= 1000)
~776027 (= Einerkomplement von 1000)

-777777

(wir addieren einfach die Zahlen und denken uns das Vorzeichen-Bit als Ziffer).

Wir bilden das Zweierkomplement einer Zahl, indem wir zu ihrem Einerkomplement eine
1 addieren:

-776027 (= Einerkomplement von 1000)
+ 1 (= 1)

-776030 (= Zweierkomplement von 1000 = -1000)

Und das ware nun unsere negative Zahl.

Rechnen wir ein Beispiel:

092000 (= 1024)
+ (-776030) (= - 1000)

000030 (= 24)

- 18 -

wobei Sie bitte das Vorzeichen wie ein Bit behandeln, einen Ubertrag dazu addieren
und den im N-Bit entstehenden Ubertrag schlicht vergessen sollten.

Viele Computer begniigen sich, was das Rechnen angeht, mit Addition und Subtraktion
(einige sogar mit dem Addieren allein, wobei das Subtrahieren durch Hinzuzdhlen einer

Zahl erfolgt, die man vorher in ihr Zweierkomplement verwandelt hat). Will man mehr,
so mu man das durch eine Folge von Additionen und Subtraktionen programmieren, denn

alle héheren Rechenarten bauven auf diesen auf.

Andere Rechner hingegen, darunter die MINCALs, kdnnen noch ein biBchen mehr; sie
kennen ndmlich Befehle fir Multiplikation (MP) und Division (DV).

Schaven wir uns das einmal an. Wenn man zwei 18-bit-Zahlen miteinander multipli-
ziert, dann entsteht daraus eine Zahl (das Produkt), die doppelt so gro sein kann,
ndmlich 36 bit lang. Weil die in unser W-Register nicht mehr hineinpaBt, erfinden wir
noch ein weiteres, das HILFSREGISTER (oder X-Register), in dem die zweite Halfte des
Ergebnisses (die UNBEDEUTENDEN Stellen) Platz hat, wahrend die erste Halfte (die
BEDEUTENDEN Stellen) im W-Register steht.

Die Instruktion

MP M1

bedeutet also:

<W> - < MI>—W, X

Oder im Bild:

Multiplikand

Multiplikator (Operand)

~ | W | L xX | Produkt

l. Halfte 2. Halfte

- 19 -

Der Vollstandigkeit halber noch kurz eine Division

DV Ml

bei der der W-Register-Inhalt durch den Operanden < MI> geteilt wird; der Quotient
steht wieder im W- und der Rest im X-Register:

<W>: < MI>>W

Rest —> X

Oder so:

W | Dividend

: | Ml | Divisor (Operand)

= | W | Quotient

| xX Rest

Zum Schlu8 wollen wir ein kurzes arithmetisches Programm schreiben. Die Aufgabe laute:

u-(vtw)t+tx- y—»z

oder, weil die Zahlen in entsprechenden Speicherplatzen untergebracht sind:

<M5 > - (<M3> + <M4>)+<MI>- < M2>—+ M6

Wir werden sehen, da®B wir die Formel in zwei Abschnitten rechnen und ein Zwischen -

ergebnis in einem Speicherplatz aufheben miissen; dazu miBbrauchen wir den Platz Mé,
wo spdter das Ergebnis stehen soll. Wir fangen mit dem rechten Term an, nehmen uns
dann den linken vor und programmieren:

-~ 20 -

LD MI
MP M2
TR M6 \1. TEILERGEBNIS X#Y
LD M3
AD M4
MP M5 \ 2. TEILERGEBNIS U*(V+W)
AD Mé
TR M6 \RESULTAT Z

Man verfolge das Programm Schritt fur Schritt! Und beachte dabei, da wir uns bei MP
nur fur die "bedeutende" Halfte des Produkts interessieren, die im W-Register steht. Ware
die andere Halfte interessant gewesen, so hitte nach der Multiplikation der X-Register-

Inhalt ins W-Register transferiert werden missen. Die Instruktion hierftir hei®t TRRX W,
- womit wir auch gleich einen typischen REGISTERBEFEHL kennengelernt hatten.

Rechts stehen Anmerkungen - KOMMENTARE -, die uns die Ubersicht erleichtern sollen;
ein guter Programmierer kommentiert sein Programm, damit andere es verstehen (und er

selbst sich spdter darin zurecht findet).

Womit in diesem Kapitel bewiesen ware, dal} Rechner auch rechnen kénnen.

WIE COMPUTER ZEICHEN SCHLUCKEN, ZERSCHNEIDEN, VERSCHIEBEN, ZUSAMMEN-
SETZEN UND WIEDER AUSSPUCKEN

Bis jetzt war unser Computer nur mit sich und seinem Innenleben beschaftigt. Wir wollen
ihm nun die Augen offnen, damit er sieht, was um ihn herum vorgeht. Irgendwie muB8 er
ja die Daten hereinbekommen, mit denen er umgeht, und irgendwann einmal soll er seine
Ergebnisse ausspucken.

Die Umgebung des Rechners, mit der er Informationen austauscht, die PERIPHERIE, kann
man als eine Art Speicher auffassen, jedenfalls vom Standpunkt des Programmierers aus.

Jedes an den Computer angeschlossene Gerdt, mag es nun eine Schreibmaschine, ein
Lochstreifenleser oder -stanzer, eine MeBstelle, eine Anzeigeeinheit oder sonst etwas
sein, bekommt eine EXTERNE ADRESSE (oder GERATE-ADRESSE) zugeteilt, und Informa-
tionen (DATEN) werden in Form von Worten ausgetauscht, - ganz wie beim Speicher.

Und wieder ist das W-Register der Tauschpartner.

- 2] -

Nehmen wir als Beispiel einen Lochstreifenleser als externes Eingabegerdt. Seine Gertte-
adresse sei LES (hinter dieser symbolischen Bezeichnung verbirgt sich natirlich wieder eine
3-stellige oktale Adresse), und der EINGABE-Befehl laute IBG; dann bewirkt die Instruk-
tion

IBG LES

das Lesen eines ZEICHENS aus dem Lochstreifen ins W-Register:

Zeichen — W

Zeichnen wir es auf:

| W | Arbeitsregister

Leser LES

Zeichen

Wie sieht nun ein solches Zeichen aus? MINCAL-Computer mégen 8~Kanal-Lochstreifen
besonders gern; sie besitzen - auBer dem Transportloch - acht Lochreihen:

——+» Leserichtung

“

v
t

H
O

C
O
B
O
O
N

©

Kandle *

e ¢ 5 «— Transportloch

O
0
0
0
0
0
0
0

0

 r

—~
] Zeichen

- 22 -

Ein Zeichen besteht aus 8 Léchern (oder Nicht-Léchern) quer zur Transportrichtung, die
mit einem Mal gelesen und in die rechten 8 Bit des W-Registers Ubertragen werden
(wobei Loch = 1 und Nicht-Loch = 0 bedeutet):

9/
20

Kanile <

 —
D
O

G
©

B
R
O
O

N
i
©

“
0
0
0
0

0
o
o

0

Genau genommen, interessiert uns Kanal 8 nicht -, wie wir gleich sehen werden. Mit
LES sei gemeint, daB nur die Kandle | bis 7 tbertragen werden; das Zeichen wird
MASKIERT. Die zu LES entsprechende Adresse enthalt also eine FORMAT-Angabe
(7-bit-Format in unserem Falle).

Was kénnen nun die 8-Kanal-Zeichen bedeuten? Darisber ist eine Vereinbarung zu
treffen, ein CODE. Nehmen wir einen gebrauchlichen, den ASCII- (oder ISO-7-)-Code;
jeder Buchstabe und jede Ziffer haben ein bestimmtes Code-Zeichen, zum Beispiel:

Kanal:

Bit

7654321
» 264—20

0110000
0110001
0110010
0110011

0110100
0110101
0110110

0110111

0111000
0111001

1000001
1000010

oktale

Darstellg.

060
061
062
063

064
065
066
067
070
071

101
102

- 23 -

ASClI-Code-
Bedeutung

Ziffer 0

1

2

3

4
5

6

7

8

9

Buchstabe A

USW.

B

Und Kanal 8? Der ist eigentlich tberfliissig - und doch sehr wichtig: Im Streifen ist er
immer dann gelocht, wenn die Summe der tbrigen Locher im Zeichen ungerade ist. Man
kann dann priifen, ob die Gesamtsumme immer gerade ist (0, 2, 4, 6 oder 8), auf da

kein Loch zu viel oder zu wenig gelesen werde. Kanal 8 ist also ein Priif- oder PARITY-
Bit. Wo es auftaucht, haben wir oben einen Stern hingeschrieben.

Nun zur AUSGABE, die wir ganz schnell hinter uns bringen. Das Ausgabegerdt sei eine
mit FSS bezeichnete Fernschreibmaschine; sie arbeite mit unserem 8-Kanal-Code, und der
Ausgabebefehl heiBe OBH. Dann ist

OBH ~FSS

die Ausgabe-Instruktion, die

< W >-» Fernschreiber

bewirkt:

Arbeitsregister

™

Fernschreiber

Wieder werden die rechten 8 (oder 7) Bit des W-Registers herangezogen.

Jetzt hatten wir das leidige (und zugegeben etwas langweilige) Kapitel der Ein/Ausgabe
beinahe hinter uns gebracht. Ganz fertig sind wir noch nicht damit, denn so, wie wir
die Codes lesen, kann sie unser Computer noch nicht verdauen. Bendtigt er doch keine
ASCll-Zeichen, sondern bekanntlich Bindrzahlen, um damit zu rechnen. Also machen wir
uns welche!

Wir stellen uns eine Aufgabe: 2 ASClII-Zeichen, die eine 2-stellige Dezimalzahl enthal-
ten, sollen eingelesen, mit einer Konstanten CON multipliziert und als Produkt 2-stellig

ausgeschrieben werden.

~ 24 -

Fangen wir an. Das erste Zeichen wird eingelesen:

IBG LES

lm W-Register steht ein 7-bit-Zeichen. Davon interessieren uns nur die letzten 4 (denn
die stellen die Dezimal-Ziffer in bindrer Form dar: BCD-Darstellung genannt: bitte in
der ASCli-Tabelle selbst nachsehen!). Also schneiden wir die anderen ab:

FA MA4

FA ist ein LOGISCHER Befehl, die sogenannte UND-Operation (oder konjunktive Ver-
knlpfung):

<W> & < MA4>—-W

die bewirkt, da nur die Bits eine 1 behalten, die im W-Register und im Operanden schon
eine 1 hatten. MA4 ist eine entsprechende MASKE. Wir vollziehendas fiir die Dezimal-
ziffer 5 einmal nach:

0110101 (= ASCll-Zeichen "5")
000000000000001111 (= Maske MA4)

0000 0 (= BCD-Ziffer "5")

Dann verschieben wir den Inhalt des W-Registers um 4 Bit nach links und transferieren
den Inhalt in einen Zwischenspeicher ZWS:

SLLW 4.
TR ZWS

SLLW bedeutet "SCHIEBE links logisch W-Register", in unserem Falle um 4 Bit, mit fol-

gendem Ergebnis:

0000000000 1010000
Pemenanmnnl

(und somit hitten wir schon einen der SHIFT-Befehle kennengelernt).

- 25 -

Wir lesen das zweite Zeichen und maskieren es auf die gleiche Weise:

IBG LES
FA MA4

Und dann fiigen wir das erste, in ZWS aufgehobene Zeichen dazu

FO ZWS

FO ist auch ein logischer Befehl, ODER genannt (genauer: inklusives Oder, auch dis-
junktive Verkniipfung genannt). Hier erhalt jedes Bit eine 1, in dem im W-Register oder
im Operanden (oder in beiden) eine 1 schon stand:

<W> v < ZWS'>>~W

Jetzt stehen unsere beiden Ziffern schén 4-bit-weise (in BCD-Darstellung) nebeneinander
in W:

000000000000000 1011001

5 9

(Beispiel: die zweite Ziffer war eine 9).

So weit, so gut. Aber noch immer ist keine Bindrzahl daraus geworden! Zum Glick hat
unser Computer (weil's ein MINCAL ist) einen Umwandlungsbefehl VBR, der die KONVER-
SION der Dezimal- in eine Bindrzahl durchflhrt. Wir schreiben also

VBR

was im W-Register

bin < W>—>W

bewirkt, und endlich haben wir unsere Bindrzahl.

- 26 -

Wenn wir jetzt noch unsere Multiplikation mit CON durchfihren, das Produkt wieder in
eine Dezimalzahl zuriickverwandeln und als zwei ASCII ausgeben, ist unser Programm fer-
tig. Wir schreiben es einfach hin und Uberlassen es dem beflissenen Leser, Instruktion fir
Instruktion zu verfolgen und zu verstehen (sofern er dies auf sich nimmt):

LMD IBG LES V1. ZEICHEN LESEN
FA MA4 \ MASKE
SLLW 4. \4 MAL LINKS
TR =ZWS
IBG LES \ 2. ZEICHEN LESEN
FA MA4 \ MASKE
FO ZWS \ VEREINIGEN
VBR \ BINAERUMWANDLUNG
MP CON \ MULTIPLIKATION
VDR \ DEZIMALUMWANDLUNG
TR =ZWS
SRLW 4. \4 MAL RECHTS
FO ASC \ ASCHI-ZEICHEN
OBH FSS \ 1, ZEICHEN DRUCKEN
LD
FA MA4 \ MASKE
FO ASC \ ASCII-ZEICHEN
OBH FSS \2. ZEICHEN DRUCKEN

ZwWs V
CON B_ .471
MA4 O 900017
ASC O PPPS

Noch ein paar kleine Hinweise dazu: Unser Programm soll einen Namen haben; LMD
(Lesen/Multiplizieren/Drucken), den wir als LINKSMARKE vor die erste Instruktion
schreiben. SRLW ist der zu SLLW analoge Befehl fiir Rechtsverschiebung, und VDR kon-
vertiert eine Bindr- in eine Dezimalzahl.

Da wir im Programm einige Zwischenspeicher, Konstanten und Masken benutzen, missen
wir sie auch irgendwo im Programm definieren, jeweils mit einer Linksmarke davor (damit
sie das Programm auch findet). Das tun wir mit den Symbolen V (Variablenspeicher, hier-

fur ein Wort freihalten!), B (Binarzahl, im Beispiel 0.4711) und O (Oktalzahl, im Bei-
spiel die erwdhnte Maske MA4 und ein Bit-Muster ASC, das mit der BCD~-Ziffer geodert
ein ASClII-Zeichen ergibt), - welches schon die wichtigsten DEFINITIONEN unserer sym-
bolischen Programmsprache sind.

Beachte, lieber Leser: In symbolischen Programmen durchstreichen wir die @ (Null), um
sie besser vom O (Oh!) unterscheiden zu kénnen. Man wei® ja: Computer nehmen's

genau, und wir sollten da nicht zuriickstehen.

-~ 27 -

WIE EIN PROGRAMM SPRUNGE MACHT UND SICH IM KREISE DREHT

Betrachten wir noch einmal das Programm LMD im letzten Kapitel. Es lauft von oben
nach unten und fihrt - wie sich der fleiBige Leser inzwischen tberzeugt haben wird -
unsere Aufgabe richtig durch. Aber dann?

Wenn wir es einfach weiterlaufen lassen, wird es das Wort ZWSals Instruktion auffas-

sen und je nach dessen Inhalt irgendeinen Unsinn machen, was wir als zielbewuRte und
seridse Programmierer doch nun wirklich nicht wollen.

Es mu8 also dort, wo wir in weiser Voraussicht drei Plnktchen Abstand gelassen haben,
etwas eingebaut werden, was das Programm veranlaBt, woandershin zu gehen: Eine
VERZWEIGUNG.

Nehmen wir an, wir wollten danach zu einem Programmteil XYZ:

Lesen

Multipliz.
Drucken

dann setzen wir statt der 3 Piinktchen die Instruktion

BR XYZ

ein, was heiBt: Verzweige nach XYZ. Dahinter verbirgt sich natirlich die Adresse des
Speicherplatzes, in dem die nachste auszufitihrende Instruktion steht; XYZ mu im sym-
bolischen Programm als Linksmarke vor der betreffenden Stelle erscheinen.

Verzweigungen werden ubrigens dadurch ausgefthrt, dafs der Instruktionszahler (das
N-Register) auf die betreffende Adresse gesetzt wird.

Statdessen hdtten wir auch nach LMD zuritickverzweigen kénnen:;

BR =LMD

- 28 -

wodurch sich der Vorgang, wie er im vorigen Kapitel beschrieben ist, immer und immer
wiederholt. Ein Zeichen-Paar nach dem anderen wird gelesen, verarbeitet und gedruckt;

Lesen

Multipl.
Drucken

pd

Aus dieser PROGRAMMSCHLEIFE kommen wir allerdings nie wieder heraus; der Streifen-

leser liest und liest und liest, der Fernschreiber druckt und - und so weiter.

Erlésen wir das Programm und sagen: Es sollen genau 100 Zeichen-Paare (100 2-stellige
Dezimalzahlen) gelesen und verarbeitet und dementsprechend 100 Werte gedruckt werden.
Dazu brauchen wir einen Zéhler.

Wir entdecken dabei einen neven Typ von Registern: das INDEXREGISTER. Jeder Com-
puter, der diesen stolzen Namen verdient, hat wenigstens ein solches (die MINCALs
haben 3 davon). Wir benutzen es als Zahler, setzen es zundchst auf 100, ziehen nach
jedem Durchlauf eins ab und fragen, ob es Null geworden ist:

O
100 i

LMD 100mal

-~ 29 .

Wenn nein, geht das Programm nach LMD zuriick; wenn ja, und das ist nach dem
hundertsten Durchlauf der Fall, nach XYZ.

Das zugehtrige Programm sieht so aus:

LDC] 190.
LMD

Programm LMD (siehe voriges Kapitel)

ADCI-1.
BZ 1 XYZ
BR LMD

Jetzt haben wir allerdings einiges zu erkldren!

LDC] 199.

bedeutet: Lade die Konstante 100 in das Indexregister Nr.1. Und

ADCl-1.

heiBt: Addiere zum Inhalt desselben die Konstante (-1); es wird also eins abgezogen.
LDC und ADC sind FESTWERT-Befehle; im AdreBteil steht ausnahmsweise keine Adresse,
sondern der Operand selbst.

Die "I" danach gibt die Nummer des Indexregisters an (weil es davon mehrere gibt);
sie ist nicht Bestandteil des Befehls, sondern bildet seine ERGANZUNG, - womit gleich

eine Erkladrung fiir diesen mysteridsen Bestandteil der Instruktion nachgeliefert ware. Ubri-
gens bezeichnen wir der Einfachheit halber den Inhalt des Indexregisters 1 mit i, als
LAUFINDEX.

Fassen wir noch die Abfrage-Instruktion

BZ 1 XYZ

ins Auge. Sie lautet: Verzweige nach XYZ, wenn Indexregister 1 Null ist, und gehért
zur Gruppe der BEDINGTEN VERZWEIGUNGEN. Der Sprung nach XYZ wird nur ausge-
fuhrt, wenn der Inhalt des in der Erganzung erwdhnten Registers Null ist; andernfalls
wird die ndchstfolgende Instruktion ausgefthrt.

~ 30 -

Schleifen sind des Computers Lieblingsspeise (besonders mit einem Indexregister - wobei
wir dessen Nutzen bisher nur zur Halfte entdeckt haben). Aber deshalb sollten wir ihn
nicht einen Wiederkdver schimpfen. Denn Programmschleifen sind praktisch und platz-
sparend. Oder wurde jemand vorschlagen, in unserem Beispiel 100mal hintereinander
das Programm LMD zu schreiben?

Was aber tut man, wenn der Programmteil (die ROUTINE) LMD mal hier, mal da im
Programm gebraucht wird? Schleifenbinden ist unmdglich, und die Routine jedesmal neu
schreiben ist Platzverschwendung und langweilig dazu.

Zum Glick gibt es die Moglichkeit, LMD als UNTERPROGRAMM (oder Subroutine)
aufzufassen und mit einem Befehl CS aufzurufen:

CS U LMD

Dabei geschieht zweierlei: Erstens springt das Programm zur Stelle LMD, und insofern
verhalt es sich wie bei einem Verzweigungsbefehl. Vorher aber, und das ist das Beson-
dere daran, wird der Programmstand N (um 1 vermindert) als RUCKKEHRADRESSE in ein
Register tbertragen, das als Erganzung angegeben ist; in unserem Beispiel das U-Register,
welches wir bei dieser Gelegenheit gleich vorstellen kénnen. Und wenn das Unterpro-
gramm zu Ende ist, programmieren wir den RUCKSPRUNG ins HAUPTPROGRAMM (das
heiBt an die Stelle nach dem Aufruf CS...) mit

TRRU N

was hei®Bt: Transferiere den Inhalt des U-Registers (die Rickkehradresse) ins N-Register.
Worauf das Spiel an anderer Stelle des Hauptprogramms wiederholt werden kann:

LMD

LMD

- 3] -

Es ist wohl an der Zeit, ein klarendes Wort Uber die Kiastchen zu sagen, die in diesem
Kapitel aufgetaucht sind. Sie sind Bestandteile von Programmablaufplénen (kirzer:
BLOCKDIAGRAMMEN) und sollen Programmverldufe anschaulich darstellen. Die Kast-
chen werden durch Pfeile so miteinander verbunden, wie sie im Programm aufeinander-
folgen, und zwar immer schdn von oben nach unten und wenn méglich von links nach
rechts.

Die wichtigsten grafischen Symbole seien kurz erwahnt:

‘

100i Allgemeine Verarbeitung:
Ein Kdastchen fir alles, woftir es kein spezielles
Kastchen gibt.

Unterprogramm—Aufruf

J Bedingte Verzweigung mit Ausgtngen fiir JA und
NEIN

S
S

Manuelle Eingabe aus der Peripherie

Ausgabe auf Registriergerat

Lesen oder Stanzen eines Lochstreifens

(im Zweifelsfall hineinschreiben)

oo
B
e

a

Langerer, definierter Programmteil (ROUTINE,
PROZEDUR, ALGORITHMUS - und was der
Namen mehr sind)

Verkniipfungspunkt (CONNECTOR) bzw. Beginn
eines Programmteils bzw. markanter Punkt im
Programm

Anhe!ten des Programms; es mu einen AnstoB
von auBen bekommen, damit es weitergeht

- 32 -

Noch ein Wort zum letzten Symbol:

HLT

heiBt "Anhalten Programm" und ist ein STEUERBEFEHL.

Zeichnen wir zum AbschluB8 noch das Blockdiagramm unserer Routine LMD auf, und zwar
als Unterprogramm:

UNTERPROGRAMM LMD

T. ZEICHEN LESENb
e

MASKE

Ax links

— ZWS

2. ZEICHEN LESEN

MASKE
KWSZWS cher 1. ZEICHEN DRUCKEN

BINAR

!
<W?.<CON> |VERARBEITUNG

> W

 Ay

Ax rechts

ASCII
RUCKSPRUNG

Zach 2.ZEICHEN DRUCKEN

-~ 33 -

Womit wir am Ende unseres Exkurses waren, hatten wir nicht noch einiges unterschlagen,
was zu wissen wichtig ist.

WIE DIE ENTFERNTESTEN WINKEL DES SPEICHERS ERREICHT WERDEN

Erinnern wir uns an die Darstellung der Adresse im Maschinencode. Die Instruktion
OPQAAA halt 9 Bit (= 3 Oktalstellen AAA) fir sie bereit. Ein bi®chen wenig eigent-
lich, denn damit kann man nur 2? = 1000g = 512 Speicherplatze erreichen. Was tun,

wenn der Speicher gréBer ist (und das wird im allgemeinen der Fall sein)?

Zundchst kann man die ersten 512 Worte mit dem AdreBteil AAA bedienen, also die
Adressen 0000g bis 07778. Diesen Bereich nennen wir die SEITE NULL des Speichers,
und Instruktionen, die dorthin zugreifen, heiBen ABSOLUT adressiert:

Absolute Adressierung: Effektive Adresse = AdreBteil

wobei wir, wie auch im folgenden, unter EFFEKTIVER Adresse diejenige verstehen wollen,
welche den Operanden enthalt, mit dem die Instruktion arbeiten soll.

Daneben gibt es zwei Methoden, Adressen in der Nachbarschaft der jeweiligen Programm-
instruktion zu erreichen. Bei der ersten denkt man sich den Speicher in weitere Seiten von
je 512 Worten eingeteilt, und dann kann man alle die Platze der Seite erreichen, in der
die Instruktion selbst steht. Diese Art hei®t SEITENWEISE Adressierung (und wirde beim
MINCAL 4 verwendet):

Seitenweise Adressierung: Effektive Adresse = Seiten-Anfangsadresse

+ AdreBteil AAA

Die zweite Methode laRt es zu, jeweils maximal 511 (= 777g) Platze vor oder hinter der
Instruktion zu bedienen (je nach Vorzeichen); man nennt sie RELATIVE Adressierung (und
findet sie beim MINCAL 500):

Relative Adressierung: Effektive Adresse = Adresse der Instruktion (N)
+ AdreBteil AAA

~ 34 -

Zeichnen wir uns diese Médglichkeiten einmal auf:

a

(

i

512 Worte
(gleiche ,

Seite)

1023 Worte

(relativ adressiert)SS <— INSTRUKTIONN
i

a
K

 \

 BS

“ a 512 Worte
(Seite 0,
stets erreichbar)

 v7
)
Y

MINCAL 4 MINCAL 300

(Ubrigens braucht man bei symbolischer Programmierung auf diese Adressierungsart
nur insoweit zu achten, als man sich Uber die Erreichbarkeit im klaren ist. Der Unter-
schied steckt in Vorzeichen und Ergdnzung der Maschineninstruktion).

Wie kommt man aber an Speicheradressen heran, die auBerhalb der absolut, seitenweise
oder relativ erreichbaren Grenzen liegen?

Hier hilft die INDIREKTE Adressierung, und das geht so: Wir reservieren im erreichbaren
Gebiet einen Platz, dessen Adresse wir in der Instruktion programmieren, und legen dort
die effektive Adresse des weit weg liegenden Platzes ab:

Indirekte Adressierung: Effektive Adresse = Inhalt der programmierten Adresse.

Beispiel: Der Inhalt des Weit entfernten) Platzes SP A soll zum W-Register addiert werden.
Wir machen ein Speicherwort SPX in der Ndhe unserer Instruktion (oder auch in Seite 0)
auf und programmieren:

ADY SPX

SPX Y SPA

-~ 35 -

wobei ADY "Addiere indirekt" bedeutet und Y... die Definition fir "Adresse ..." ist.

Im Bild sieht das so aus:

a Effektive Adresse SPA

e «— Programmierte Adresse SPX
C €SPX > = SPA

e +— Instruktion ADY SPX

(Fir Interessenten; Enthalt bei SPEICHERBEZOGENEN Befehlen das letzte Bit des Befehls-
codes OP eine 1, findet indirekte Adressierung statt).

SchlieBlich gibt es noch eine dritte (und, geduldiger Leser, letzte) Kategorie der
Adressierungsarten: die INDIZIERUNG. Die Regel hierfur lautet:

Indizierte Adressierung: Effektive Adresse = direkt oder indirekt gefundene Adresse
+ Inhalt des angesprochenen Indexregi-

sters

Und diese Eigenschaft macht die Indexregister erst richtig wertvoll. Folgendes Beispiel
mag ihre Funktion erkldren: Die Daten von 20 Me@stellen (mit aufeinanderfolgenden ex-
ternen Adressen, beginnend bei MES) sollen abgefragt und in ein FELD von 20 Speicher-
platzen Ubertragen werden, dessen erste Adresse SPE sein mége. Wir benutzen das Index-
register 3 und nennen seinen Inhalt den Laufindex k.

-~ 36 -

Zunichst das Blockdiagramm (wir baven wieder eine Schleife):

Und dazu das Programm:

EIN LDC3 9.
REP 1BG3 MES \ MESSEN

TR 3 SPE \ SPEICHERN
ADC3-19.
BZ 3 AUS \K = 199?
ADC 3 29.
BR REP

SPE FF 29. \ SPEICHERFELD
MES X 708 ‘ ZUORDNUNG

Woraus wir noch dreierlei lernen: Auch Ein- und Ausgabebefehle - wie IBG in unserem
Beispiel - sind indizierbar. Speicherfelder darf man nicht vergessen zu definieren, und
zwar mit dem Symbol F unter Angabe der Feldgréfe in Worten. Und die Marken fir
externe Adressen bediirfen der Zuordnung einer Oktalzahl (Definition X) - sonst wei®
der Computer nichts damit anzufangen.

Und jetzt waren wir wirklich am Ende. Nur eine kleine Sprachregelung steht aus.

- 37 -

WIE MAN SICH MIT SEINEM COMPUTER UNTERHALT

Lassen wir einmal alle graue Theorie beiseite, lieber Leser, und vergessen wir das
Computer-ABC (Adressen, Bits, Codes, ...). Reden wir davon, wie Sie mit Ihrem
Rechner reden sollen.

Da gibt es eine kleine Schwierigkeit: Ihr Maschinchen spricht seine eigene Sprache,
Maschinensprache. Diese miissen Sie wohl oder ubel lernen, wenigstens so weit, da
eine gewisse Verstdndigungsbasis erreicht ist. Dann kénnen Sie den Speicher Instruktion
fir Instruktion, Wort fir Wort damit fillen (entsprechende Knépfe und Schalter halt Ihr
Computer fiir Sie bereit, und in vielen Fallen auch einen Blattschreiber mit Tastatur und
einen Lochstreifenleser).

Aber ganze Programme in dieser Weise schreiben? Befehlscodes memorieren, Adressen
rechnen, Zahlen aus Tabellen zusammenholen? Sie weisen das mit Recht entriistet von
sich! Kann man das Ding denn nicht in symbolischer Sprache futtern, en die wir uns so
sehr gewShnt haben?!

GewifB - eben daran hat Ihr Computer-Baver schon gedacht. Denn neben der HARDWARE
- den Gerttschaften Rechner samt Peripherie - liefert er Ihnen (unter anderem) ein biB-
chen SOFTWARE, ein Umwandlungsprogramm vor allem fiir die Ubersetzung symbolischer
in Maschinensprache, ASSEMBLER genannt (weshalb die symbolische Programmiersprache
auch Assembler-Sprache hei@t).

Sie fUttern [hren Rechner mit dem Assembler (einem langen Stiick Lochstreifen) und
stellen erfreut fest, dal seine Verstandigungsbereitschaft erheblich gestiegen ist. Er
versteht auf einmal alle Ihre Anweisungen, Ubersieht milde alle Kommentare, reserviert
Speicherplatze, merkt sich Marken, wandelt Zahlen um und vieles mehr. Er hilft Ihnen
sogar, indem er ungultige oder Uberflissige Eingaben hoflich aber bestimmt zuriickweist
und fehlende anmahnt. Und zum Schlu8 spuckt er einen Lochstreifen aus, der Ihr Pro-
gramm in Maschinencode enthalt, mit denSie ihn dann wieder fittern.

Worauf Sie dann aber selbst probieren miissen, ob es auch richtig lauft, - denn mitdenken
kénnen die MINCAL-Computer (noch) nicht.

- 38 -

Spezifikationen
TECHNISCHE DATEN

MINCAL 513 und MINCAL 523 sind zwei verschiedene Zentraleinheiten des gleichen
Computer-Systems. Sie unterscheiden sich hinsichtlich ihrer Konfiguration und ihrer
Ausbaufthigkeit; im Ubrigen sind sie strukturell véllig gleich.

Typ:

Programmierung:

Wortldnge:

Verarbeitung:

Kernspeicher:

Parity-Logik:

Festspeicher:

Technologie:

Instruktionen:

Instruktionslange:

Arbeitsregister:

Indexregister:

MINCAL 513 MINCAL 523

Universal-Computer flr ProzeBanwendungen und technisch-wissen-
schaftliche Datenverarbeitung

Speicher-, fest- oder mischprogrammiert

19 bit (Vorzeichen + 18 Datenbits)

Parallel (wortweise)

Ferritkernspeicher 20 bit (19 bit + Paritybit), 1.5 us Vollzyklus
in Zentraleinheit enthaltens

0.25 kWorte, oder

I kWorte, oder

4 kWorte

4 kWorte, oder

8 kWorte

extern erweiterbar:

~ bis 32 k in Einheiten von 4 k

(Option) | (Option)

ROM-Einheiten (folien-programmiert) 0.5 k/19 bit; 0.75 us Zyklus-

in Zentraleinheit enthalten:

max. 4 kWorte max. 2 kWorte
(= 8 Einheiten) (= 4 Einheiten)
davon stets 1 Einheit fir Mikroprogramm Grundbefehle; ferner je 1
Einheit fur erweiterten Befehlsvorrat und | Einheit fir Programmier-
hilfe X@Z (Optionen)

Integrierte Schaltkreise (TTL)

74 Maschinenbefehle sowie 5 Typen von Mikrobefehlen

| Wort

1 Haupt-Arbeitsregister + 3 Zusatzregister je Ebene

3 Indexregister je Ebene

~ 39 -

Ebenen:

Interrupt:

X-Kanal:

PX-Kanal:

DMA- Kanal:

D Mi-Zusatz:

interfaces:

Frontplatte:

Stromversorgung:

MINCAL 513 | MINCAL 523

2 Programmebenen | 8 Programmebenen

mit getrennten Registern und hierarchischer Prioritat

erweiterbar auf:

- bis zu 64 Programmebenen
in Stufen von 8

Durch Wechsel der Programmebene bei Ende jeder Operation
modglich

Schneller Datenkanal fiir programmgesteverten wortweisen Daten-
transfer zur Peripherie.
Je 19 Daten-Ein/Ausginge, 15 AdreBeinginge, Ebenen-Ausginge,
Ebenen-Starteingdnge, Steuersignale. TTL-Schnittstelle. Bis ca.
20 kWorte/s.

Gepufferter Datenkanal fir Daten- -
transfer mit reduzierter Geschwin-
digkeit. Transistor-Schnittstelle
(30 V).
(Option)

- Datenkanal fiir fremdgesteverten
wortweisen Datentransfer zur
Peripherie (direkter Speicherzu-
griff). TTL-Schnittstelle. Bis 667
kWorte/s.
(Option)

- 8 Speicher-Zéhlkantle, extern auf
bis zu 64 erweiterbar.
(Option)

8- oder 5—Kanal~Fernschreiber | 8-Kanal-—Fernschreiber

(Option)

Schnelle Lochstreifenausriistung
(Option)

Schnelle Lochstreifenausriistung
(Option)
oder Sonder-Interfaces

Enthalt Bedienungskonsole mit 20-bit-Datenanzeige, 19 Datentasten,
16 AdreB-Vorwahlschaltern, 5 Zustands- und 3 Prifanzeigen, 7
Sensorschaltern sowie 14 weiteren Tasten und Schaltern.

Liefert alle Versorgungsspannungen fir die Computer-Zentraleinheit.
Netzausfallschutz mit und ohne Wiederstart (Option).

- AQ -

MINCAL 513 MINCAL 523

NetzanschluB: 220 V +10 % 50 Hz einphasig
Leistungsaufnahme 0.6 kVA

GrdBe: 19"~-Einschub
10 Einheiten hoch (ca. 445 mm, einschlieBlich Stromversorgung)
ca. 580 mm tief

Gewicht: ca. 65 kg

Operationszeiten:

Befehlsgruppe Operationsdaver (us)

Steuerbefehle 7.5... 9.25 us

Register~Befehle 6.75...13.5 us

Speicher-Befehle 6.0 ...35.0 us

Ein/Ausgabe-Befehle 10.5 ...40.0 us + Arbeitszeit des externen Geriites

Komplexe Befehle
(erweiterte Arithmetik) 20.25...390 us

- 4] -

Struktur

WORTSTRUKTUREN

Die MINCAL 513/523 sind bindre Parallelrechner; Daten und Befehlsworte liegen in
bindrer Form vor und werden bit-parallel, d.h. wortweise verarbeitet. Das gilt sowohl
fur den Austausch von Daten zwischen der Recheneinheit und den Speichern sowie der
Peripherie als auch fur die Verarbeitung innerhalb der Recheneinheit.

Ein Wort hat beim MINCAL 513/523 insgesamt 19 bit (1 Vorzeichen-, 18 Datenbits).
Jeder Kernspeicherplatz besitzt dartiberhinaus ein weiteres Bit, das als Prifbit (Parity)
benutzt werden kann.

Typische Wortstrukturen sind:

Bindrzahl mit Vorzeichen und 18 bit (6 Oktalstellen):

Nhigtielislialishalutiolgtelz tei slalglaty to
¢ 2'% 2°
Vorzeichen

Negative Zahlen werden in Form des Zweierkomplements dargestellt.

Dezimalzahl (Ganzzahl) mit Vorzeichen und 4 1/2 Dezimalstellen:

Nhizhelishialishetdalolotelzi6istalal2/i to
2il8 4621/8 62 118 421418421

perl”

Vorzeichen Dezimalsteile

Alphanumerisches Wort mit 3 Zeichen:

Nhe lishialish2ainhiologtlelzi6istaialali loa

1. Zeichen 2. Zeichen 3. Zeichen

AdreRBwort:

Nfizlielisliatiaiizinhiolotelz eislalalati lo
+ 4 1000er 100er WOer ler

@—— 512 Worte ————>

Erneute +———————— 4K Worte —>

Ebenen- Festprogramm-

Bindung Speicher

- 4? -

Maschinenbefehl:

Nhizhneisiaiszi2iniiolslalzie{[sialsf2iilo

4 0 P Q A A A

Vorz. Befehl Ergadnzung Adresse

Mikroinstruktion (Bedeutung der Stellen je nach Typ unterschiedlich):

Woe islaushetuiioiglelziefstalal2'i lo=

MIKROSTRUKTUR

Zur Verarbeitung der Informationen wahrend eines Operationsverlaufs dient eine Reihe

von Komponenten in der Recheneinheit, die mit dem Kernspeicher, dem Festprogramm-

speicher und den Datenkandlen in Beziehung stehen:

KERN-

SPEICHER

FESTPROGRAMM

SPEICHER

Speicher- Puffer Mikroinstruktion Statusregister

oom

‘$—— !

Lo Ln . _ -eemesamenememmaenned

5

tL t < 3 eeeeee TAK TGENERATOR
L K

| —

Adrefiregister Mikroprogrammzahler

-~ 43 -

A, B und D sind 3 Flipflopregister von Wortlunge. Register B dient als Speicherpuffer
und zugleich -als erstes Datenregister; Register A als AdreB- und zweites Datenregister;
beide sind mit einem Addier- und Verschiebeelement = verbunden. Register D enthalt
vorwiegend die Mikroinstruktion, die von der Mikroprogramm~Logik: interpretiert und
in Steuerbefehle umgesetzt wird. Das Statusregister E mit 8 bzw. 20 bit speichert
wichtige Zusténde bzw. zusttzlich die jeweils anstehende Programmebene; Register C
ist ein 12-bit-Zahler, der die Mikroprogramm-Schritte bestimmt. Der Taktgenerator
stevert den Ablauf der Zyklen.

Der Zustand der Recheneinheit ist nur wahrend eines Maschinenbefehls bzw. eines
Mikroprogramms von Bedeutung. Eine genaue Beschreibung ihrer Funktion und ihrer
Verknufpungen findet sich im Abschnitt “Mikroprogrammierung".

Fur den Benutzer, der nur Maschinen- (ASSEMBLER-) Befehle verwendet - d.h. fir
den Normalfall - ist die Kenntnis der Mikrostruktur nicht erforderlich.

REGISTER

Der Kernspeicher des MINCAL 513/523 hat je nach Ausbauzustand 256, 1024, 4096
oder 8192 Platze von Wortlange (extern kann er bis auf 32768 Worte erweitert werden);
jeder Platz kann einen beliebigen Dateninhalt haben, der gelesen und geléscht, zuriick-
geschrieben oder verdndert werden kann. Die ersten 8 Platze des Kernspeichers mit den
oktalen Adressen 0000...0007 haben die Funktion von besonderen Registerplatzen mit
der Bedeutung:

Adresse Bezeichnung Funktion

0000 U Sonderregister/Riickkehradresse
0001 V linkes Hilfsregister/RUckkehradresse
0002 W Arbeitsregister
0003 X rechtes Hilfsregister
0004 N Instruktionszdhler
0005 i Indexregister |
0006 12 Indexregister 2
0007 13 Indexregister 3

Diese Register sind fiir den Benutzer von Maschinenbefehlen allein interessant. Ihr
Inhalt wird beim Ablauf eines Maschinenbefehls in einer durch den Befehl gekenn-
zeichneten Weise abgefragt oder verdndert; wenn der Befehl ausgefithrt ist, sind alle
flr den Programmverlauf wichtigen Informationen in diesen Registerplatzen enthalten.

Der MINCAL 513/523 hat mehrere Programmebenen; beim MINCAL 513 sind 2 Ebenen
vorgesehen; beim MINCAL 523 8 (die extern bis auf 64 erweitert werden konnen). In
jeder Ebene kann der Rechner ein selbsttndiges und von den anderen Ebenen unabhin-
giges Programm ausfihren (Multiprogramming). Um dies zu gewdhrleisten, besitzt jede

Ebene einen eigenen Satz von 8 Registern im Kernspeicher; deren Adressen sind
nach der Rangfolge der Ebenen so geordnet, da®B die (oktale) 100er- und 10er-
Adresse der (oktalen) Nummer der Programmebene entspricht:

| j 1 j 4. L

0770 | | | | | [0777 Ebene 77
_ { t T T r ; _ ry

Kernspeicher

Ebene 10

Ebene 07
a

» Seite 0

0017 Ebene 01

0002 0003 0004 0005 0006 0007 Ebene 00

U V W X N I, I,], +—— Register

Die Programmebenen haben eine feste Rangordnung in der Weise, dal jede Ebene
Vorrang vor allen anderen mit niedrigeren Nummern hat. Wird eine Ebene mit hé-
herem Rang gestartet, so wird am Ende der laufenden Operation das Programm der
niedrigeren Ebene unterbrochen, und der Rechner setzt das Programm der héheren
Ebene fort, indem er deren Register benutzt.

KERNSPEICHER

Der Kernspeicher des MINCAL 513/523 enthalt Programm und Daten in beliebiger
Weise. Die oktalen Adressen der Kernspeicherplatze lauten:

0.25 k 000000. . .000377
l k 000000. ..001777 MINCAL 513
4 k 000000. . .007777
8 k 000000. ..017777 MINCAL 523

32 k 000000. ..077777

Die ersten 512 Speicherpliétze (Seite 0; Adressen 000000...000777) haben insofern
eine besondere Bedeutung, als sie durch absolute Adressierung von jedem anderen
Platz aus erreichbar sind und bestimmte Befehlsgruppen (Manipulations- und Regi-
sterbefehle) sich auf sie beziehen.

Am Anfang der Seite 0 liegen die Registersétze der einzelnen Programmebenen; bei
64 Ebenen ist die gesamte Seite 0 von ihnen belegt.

-~ 45 -

Jeder Kernspeicherplatz enthalt 20 bit (19 bit + Parity). Das Paritatsbit wird automatisch
erzeugt und auf ungerade Paritat uberpruft. Bei Parity-Fehler erfolgt Rechner-Stop
(auf Anzeige CK3) oder Start einer besonderen Programmebene. Die Parity-Logik ist
eine Option.

FESTSPEICHER

Die Computer MINCAL 513/523 enthalten bis zu 4 bzw. 8 Festspeicher-Einheiten mit
je 512 Worten zu je 19 bit.

N
O
O
O
B
O
H
M
—
© 100000...

101000...
102000...
103000...
104000...
105000...
106000...
107000...

100777
. 101777
102777
103777
104777
105777
106777
107777

Die oktalen Adressen der Einheiten lauten:

Mikroprogramm Grundbefehle
" erweiterter Befehlsv orrat oder Benutzer-

Programmierhilfe X00 programm

Benutzerprogramm

" nur bei

" MINCAL 513

Die Einheiten 0 und 1 enthalten Standard-Mikroprogramme, die der Computer zur
Interpretation des Grund- und erweiterten Vorrats der Maschinenbefehle bendtigt.

In Platz 2 kann eine festverdrahtete Programmierhilfe (X@@) eingesetzt werden, die
bequemes Einlesen, Andern und Ausgeben von Programmen erlaubt. Das zugehdrige
Programm ist 256 Worte lang und belegt damit nur die erste Halfte des Festspeichers;
die andere Halfte kann auf Wunsch ein weiteres Programmpaket erhalten.

Sowohl in Platz 1 und 2 als auch insbesondere in den tbrigen Platzen k6énnen Fest-
speicher mit Benutzerprogrammen (Maschinenprogramme, Mikroprogramme, Festwerte)
vorgesehen werden. Sie werden vom Hersteller aufgrund von Maschinencode-Lochstreifen
im Oktalformat hergestellt.

In der Grundstellung (nach Betttigen der Taste END oder bei Netzeinschaltung, wenn
Netzausfallschutz mit Wiederstart vorgesehen ist) steht das N-Register der Ebene 0 auf
102000; die erste dann ausgefihrte Instruktion hat die Adresse 102001 (zweites Wort
im Festspeicher 2). Ist dort die Programmierhilfe X00 enthalten, so wird (wenn kein
Sensor erregt ist) auf Platz 001000 im Kernspeicher verzweigt; dort muB die erste
Programminstruktion stehen, die in diesem Falle auszufitshren ist.

- 46 ~

PROGRAMMEBENEN

Wie bereits erwahnt, besitzt der Rechner MINCAL 513 zwei Programmebenen. Die
Ebene 0 ist fir das normale Arbeitsprogramm, die vorrangige Ebene 1 fir Programm-
unterbrechungen vorgesehen. Zu jeder Ebene gehort ein Satz von 8 Registern im
Kernspeicher; der Rechner bedient sich automatisch der Register der jeweiligen Pro-
grammebene. AuBerdem kénnen Teile der Peripherie bestimmten Ebenen zugeordnet
werden.

Eine Programmunterbrechung geht z.B. in folgender Weise vor sich: Wahrend der
Rechner den Maschinenbefehl (n) in Ebene 0 ausfiihrt, wird von auBen Ebene 1 ge-
startet. Am Ende der Operation n wird Ebene 1 wirksam und dadurch Ebene 0 unter-
brochen; der Rechner setzt unverztiglich die Arbeit fort, jedoch in der Ebene 1, d.h.
unter Benutzung der betreffenden Register. Die erste Operation wird durch den Stand

(n’) des Instruktionszdhlers der Ebene 1 bestimmt. Das Programm lduft bis zu einem
Halt=-Befehl in Ebene 1, wodurch das Programmniveau wieder ausgeschaltet wird; am
Ende dieser Operation wird das unterbrochene Programm in Ebene 0 mit der Instruk-
tion (nt+1) unverzégert fortgesetzt.

Start Ebene }

nd CT Haut Ebene |
| n n+] Ebene 0

Der Vorzug getrennter Programmebenen mit getrenntenRegistern liegt einmal darin,

daB Programmunterbrechungen ohne Programmieraufwand beherrscht werden kénnen.

AuBerdem besteht, insbesondere wenn die Anzahl der Ebenen gréRer wird und jeder
Ebene auRerdem ein eigener Datenkanal von und zu spezifischen Periphergertten zu-
geordnet wird, die Moglichkeit, eine Mehrfachausnutzung des Rechners zu erreichen
(Multiprogrammierung). Dies geschieht ohne jeden Programmaufwand, da jede Ebene
eigene Register (Instruktionszthler, Arbeits-, Hilfs- und Indexregister) besitzt und da-
mit vollig unabhangig von den anderen ist.

Die Anzahl der Programmebenen ist beim MINCAL 523 durch Einbau eines Prioritdts-
systems (und Erweiterung des Statusregisters E) auf 8 erhoht, und extern kann die
Ebenenzahl bis auf 64 erweitert werden. Die Ebenen haben untereinander eine feste
Rangordnung.

Eine Ebene wird entweder von einem GuBeren Signal, durch die Fertigmeldung eines
ihr zugeordneten Periphergertts oder mittels eines speziellen Programmbefehls in einer
niedrigeren Ebene, die damit unterbrochen wird. Beendet wird das Programm einer
Ebene durch einen Halt-Befehl.

Durch speziellen Programmbefehl kann erreicht werden, da der Rechner das Programm
in einer Ebene auch dann fortsetzt, wenn eine Ebene mit héherem Rang gestartet wird.
Diese mit DISABLE bezeichnete Funktion ist nur beim MINCAL 523 vorgesehen.

- 47 -

NETZAUSFALLSCHUTZ

Diese Option bewirkt, daB bei Netzausfall der Rechner mit dem Ende des gerade
ablaufenden Maschinenbefehls bzw. Mikroprogramms angehalten wird; alle Daten
sind im Kernspeicher enthalten und damit. gesichert. Die Anzeige CK1 leuchtet
dabei auf.

In der Ausfihrung "mit Wiederstart" geschieht bei Wiederkehr des Netzes (oder
auch bei erstmaliger Netzeinschaltung) folgendes: Alle speichernden Halbleiterschal-
tungen werden nullgestellt, das N-Register der Ebene 0 wird auf 102000 gesetzt und
die Ebene O wird gestartet (entspricht dem Betatigen der Tasten RES-END-STA in die-
ser Reihenfolge.

Ab Adresse 102001 (bzw. bei eingebender Programmierhilfe X00 ab Adresse 001000)
ist ein Programm vorzusehen, das die notwendigen Funktionen fiir den Fall der Netz-
wiederkehr vorsieht.

STEUERANSCHLUSSE

An einen Adapterbaustein sind beim MINCAL 513/523 wichtige Steuersignale anschlieB-
bar:

je ein Eingang fiir den Start der Programmebenen 0 und 1 (LSTO, LST1)

bzw. 0 bis 7 (LSTO...LST/)

je ein Ausgang fiir "Programm lduft" (PROGR) und Programm léuft in
hdherer Ebene" (INTERRUPT)

7 Sensoreinginge (SRT. ..SR7)

Die beiden Ausgtinge werden zur Meldung des erfolgten Starts bzw. des laufenden Pro-
gramms benutzt. Die 7 Sensoreinginge wirken auf Verzweigungsbefehle, die Sensor-be-
dingt sind, und dienen zur Modifikation des Programmverlaufs; sie entsprechen den

Schaltern auf der Frontplatte.

X-KANAL

Der programmgesteuverte Datenkanal (X-Kanal) des MINCAL 513/523 dient zum schnel-
len Austausch von Informationen mit der Peripherie. Der X-Kanal wird benutzt:

a) zur wortweisen, bit-parallelen Abfrage von Informationen aus Datentragern bzw. zur
Ausgabe in Datentrager, die mit integrierten Schaltkreisen bestiickt und in rdumli-
cher Nachbarschaft des Rechners angeordnet sind, wobei der Datentrager unabhingig
von der Programmebene nur durch seine Adresse bestimmt wird,

-~ 48 -

b) zum bit-parallelen Transfer von Worten oder Teilworten zwischen dem Rechner und
raumlich benachbarten Puffern, die den Programmebenen zugeordnet sind und die

z.B. Eingabe- und Registriergertite, Multiplexer und andere Einrichtungen stevern,
deren Arbeitsgeschwindigkeit vergleichsweise gering ist.

Der X-Kanal hat folgende Schnittstellen:

19 Dateneingtnge (SXN, SX17...5X0)
19 Datenausginge (ZXN, ZX17...ZX0)
15 bindre AdreBausgiinge (MX14...MXO0O)
1 Ausgang fir nicht-niveaugebundene Ein/Ausgabe (NLX)
16 Ausginge fur niveaugebundene Ein/Ausgabe (LX00...LX17) von und

zu Puffern, die den 8 Programmebenen zugeordnet sind (bei externer
Erweiterung der Ebenenzahl sind weitere Ausgtinge dort verfiigbar)

16 Eingdnge fir Programmstarts (RX00...RX17) bei Fertigmeldung der
Puffer, die den 8 Programmebenen zugeordnet sind (bei externer
Erweiterung der Ebenenzahl sind weitere Eingtinge dort vorgesehen)

Steuverpotential bei Dateneingabe (SX)
Taktimpuls fur Datentransfer nach aulien (ZTX)
Taktimpuls fir AdreBtransfer nach auBen (MTX)
Steuerpotentiale Eingabegerat Ein (IBUSY ON)

Ausgabegerat Ein (OBUSY ON)
Ein/Ausgabegerat Aus (BUSY OFF)
Fertigmeldung Aus (READY OFF)
Startverriegelung (LOCK)

2 Abfrageeinginge Gerdt in Aktion (BUSY)
Gerdt fertig (READY)

2 Steverpotentiale fur Blocktransfer Anfang (BXB)
Blocktransfer Ende (BXE)

1 allgemeiner Taktimpuls fiir jeden Ein/Ausgabezyklus (TX)

C
O

w
e
t
e
t

e
d

Jeder Ein/Ausgabevorgang tber den X-Kanal hat eine Daver von 1.5 us; wahrend die-
ser Zeit stehen die Potentiale an den Schnittsteller; an. Taktimpu'se liegen am Ende
des Vorgangs und davern 0.375 us.

Im nicht-niveaugebundenen Datentransfer (Fall a) wird der externe Informationstréger
durch die Adresse MX... sowie zusdtzlich durch den Ausgang NLX identifiziert. Bei
Dateneingabe wird SX erregt; der Inhalt des Informationstraégers wird am Datenein-~
gang bereitgestellt und am Ende des Zyklus’ vom Rechner Ubernommen. Bei Daten-
ausgabe stellt der Rechner die Information am Datenausgang bereit und tberschreibt
sie mit dem Impuls ZTX in den externen Datenempfinger. Wenn erforderlich, kann
auch die Adresse MX... ganz oder teilweise nach aufen Uberschrieben werden; hier-
zu wird der Taktimpuls MTX ausgegeben.

Beim niveaugebundenen Datentransfer (Fall b) wird der Puffer durch den Ausgang LX...
identifiziert, der zur jeweiligen Programmebene gehért. Sind je Ebene mehrere Puffer
vorgesehen entsprechend mehreren Ein/Ausgabegeriiten, die gleichzeitig und unabhdn-

- 49 -

gig voneinander arbeiten, so wird der Puffer durch die Ausginge MX8...MX3 (ent-
sprechend der aktalen 100er- und 10er-Adrefstelle) zusttzlich bestimmt. Zu einem
externen Datenpuffer gehért u.U. ein Adre@Bpuffer (der zustétzliche Angaben wie
Ein/Ausgabeformat, MeBstelle usw. speichert) sowie ein Satz von 4 Flipflops fir
die Zusttinde "Eingabegerat" (IBUSY), "Ausgabegertt in Aktion" (OBUSY), "Gerdat
fertig' (READY) und "Startverriegelung" (LOCK). Die BUSY-Flipflops werden vom
Rechner gesetzt und ldésen einen Eingabe- bzw. Ausgabevorgang zwischen Puffer
und Periphergerdt aus; ist dieser beendet, so wird das betreffende BUSY-Flipflop
selbsttatig zurlickgesetzt und das READY-Flipflop eingeschaltet, wodurch ein Pro-
grammstart RX... der zugehtrigen Ebene zugeordnet wird. Der Programmstart kann
dadurch verhindert werden, da das LOCK-Flipflop vom Rechner gesetzt wurde; er
wird wieder wirksam, wenn LOCK zuritickgestellt wird. READY wird in jedem Falle,
BUSY kann vom Rechner zuritickgestellt werden. Solange READY eingeschaltet (und
LOCK nicht gesetzt) ist, steht der Programmstart RX... an.

Der Verkehr zwischen Rechner und Puffern kennt verschiedene Arten von Ein/Ausgabe-

Zyklen Uber den X-Kanal:

Ubernahme: SX ist erregt; der Inhalt des Datenpuffers wird dem Daten-
eingang SX... angeboten und vom Rechner Ubernommen.
READY wird ausgeschaltet.

Eingabe-Start: Der Datenausgang ZX... ist nicht durchgeschaltet; mit ZTX
wird Nullinhalt in den Datenpuffer tberschrieben. Die am
Ausgang MX... bereitstehende Adresse wird mit MIX in den
AdreBpuffer Uberschrieben (falls vorhanden; auch teilweise).
IBUSY wird gesetzt.

Ausgabe: Der Datenausgang ZX... ist durchgeschaltet; mit ZTX wird
der Datenpuffer geladen. Die am Ausgang MX... bereit-
stehende Adresse wird mit MIX in den Adre@Spuffer Uber-
schrieben (falls vorhanden; auch teilweise). OBUSY wird
gesetzt.

Zustandsdnderung: Die BUSY-Flipflops oder READY werden zuriickgestellt; oder
LOCK wird gesetzt oder zuriickgestellt.

Zustandsabfrage: Der Rechner fragt ab, ob BUSY oder READY gesetzt sind.

Die Schnittstellen des X-Kanals sind mit integrierten TTL-Schaltkreisen ausgefihrt.
Sie befinden sich auf Adapterkarten und sind uber spezielle Flachkabel mit den
Puffern usw. zu verbinden, die in unmittelbarer Nahe des Rechners angeordnet sein
mussen. Die Interface-Schaltungen kénnen mit Bausteinen der MINCAL 500-Baureihe
aufgebaut werden.

Ein oder zwei Puffer mit Interface-Schaltungen fiir spezielle Ein/Ausgabegertte kénnen
sich im Rechner befinden.

- 50 -

KONSOL=PERIPHERIE

Die dem MINCAL 523 zugeordnete (und beim MINCAL 513 auf Wunsch vorgesehene)
Konsol-Peripherie besteht aus

einem 8-Kanal-Fernschreiber (Teletype ASR 33) mit angebautem,
durch Codes ein/ausschaltbarem Locher und Leser

einem 8~Kanal-Streifenleser und einem 8-Kanal-Streifenlocher

(beides Optionen)

Die Interfaces hierzu befinden sich in der Zentraleinheit; die Gertteadressen sind
OOX (Teletype) und 06X (Locher/Leser). Die Konsol-Peripherie arbeitet auf Programm-
ebene 0.

PX-KANAL

Der PX-Kanal (eine Option des MINCAL 513) bietet eine einfache Kommunikations-
moglichkeit mit externen Datentragern. Er erméglicht bit-parallele, wortweise Ein-
und Ausgabe von Informationen von und zu maximal 256 externen Datentragern mit
geringer Ubertragungsgeschwindigkeit.

Der PX-Kanal hat folgende Schnittstellen (Normalausfiihrung):

19 Dateneinginge (SPN, SP17...SPO0)
19 Datenausgiinge (ZPN, ZP17...ZPO)
3x8 oktal entschlisselte AdreBausgange (MPOO...MPO7; MP10...MP17;

MP20...MP24)
1 Ausgang "Eingabe" (IP)
1 Ausgang "Ausgabe" (OP)
1 Taktimpuls-Ausgang (TP)
1 Riickmeldeeingang (RP)

Der AdreBausgang identifiziert den peripheren Datentrager durch eine der 256 oktalen
Adressen 000..377, wobei durch die Ausgdnge IP und OP zusdtzlich nach Gebern und
Empfangern von Informationen unterschieden werden kann. Am Ende des Eingabevor-
gangs Ubernimmt der Rechner das am Dateneingang anstehende Wort, wdhrend er fir
die Dauver eines Ausgabevorgangs ein Wort am Datenausgang bereitstellt.

Der PX-Kanal hat 2 Register. Die Adresse ist im A-Register enthalten, das auszuge-

bende Wort im D-Register. Der Vorgang dauert, je nach 100er-Adresse, entweder eine
im Bereich 0.1...100 ms fest eingestellte Zeit oder unbegrenzt lange. Im ersten Fall
wird am Ende der Ein/Ausgabe-Zeit ein Taktimpuls TP ausgegeben, im anderen der
Vorgang durch ein Rickmeldesignal RP beendet, das von auBen kommt (Unterscheidung
durch AdreBbit 8, das im ersten Falle 1, im zweiten 0 sein mu&).

-~ 5] -

Stopzeit

WMI WWCUU//006€0@—!’, Adresse MP... ,IP

WC. LLL Dateneingang SP...

Ubernahme

Takt TP bw.
—p i Rickmeldung RP

Sys

Eingabe (IP)

Stopzeit

MMM MYYEi0. Adresse MP...,

VM VALLE Datenausgang zp. Ausgabe (OP)

O
o 0

Takt TP bw.

—- Ruickmeitdung RP
Sys

Der PX-Kanal wird in Ebene 0 uber normale X-Kanal-E/A-Befehle programmiert. Die
zugehérigen externen Adressen sind 000...777. Adressen uber 400 bewirken Transfer
mit fest eingestellter Zeit ohne Riickmeldung. Die Adressen evtl. vorhandener Kon-
sol-Peripherie dirfen nicht fir den PX-Kanal benutzt werden.

Die Schnittstellen des PX-Kanals sind in diskreten Transistorschaltungen ausgefithrt,
die auf zwei Adapterbausteinen (AdreB- und Datenadapter) angeordnet sind.

DMA-KANAL

Auf Wunsch kann der Rechner MINCAL 523 mit einem Adapter-Baustein fir direkten
Speicherzugriff ausgeriistet werden. Die Schnittstellen (integrierte TTL-Schaltkreise)
umfassen einen 19-bit-Dateneingang, einen 19-bit-Datenausgang, einen 15-bit-AdreR-
eingang, zwei Steuvereingdnge fiir Lese- und Schreib-Betrieb sowie einen Meldeausgang.

Der Speicherzugriff dient dazu, unabhdngig vom Programm Daten von Wortlange mit
sehr hoher Transferrate in den Kernspeicher einzugeben oder aus dem Speicher zu
lesen. Er arbeitet mit héchster Prioritétsstufe, indem je Wort ein ACCESS=Zyklus
erregt und das Programm fiir dessen Dauer unterbrochen wird (cycle stealing).

Die maximale Transferrate des Speicherzugriffs-Kanals betragt ca. 667000 Worte je
Sekunde.

Der DMA-~Kanal ist in Verbindung mit Trommel~, Platten- und Magnetbandspeichern
sowie mit schnellen Analog-Digital- Umsetzern erforderlich.

- 52 -

DMI-ZUSATZ

Durch Einbau eines Zusatzes ist es beim MINCAL 523 méglich, programm-unabhin-
gige Zahlkandle unter Benutzung des Kernspeichers aufzubaven. Jeder Kanal ist
einem Speicherplatz zugeordnet; bei jedem Impuls wird der Inhalt des betreffenden
Speicherplatzes um 1 erhéht. Die Zahlimpulse werden in Flipflops gespeichert; un-
mittelbar darauf bzw. am Ende der nachsten Mikroinstruktion wird ein ACCESS-
Zyklus von 1.5 us Dauer ausgeldst, wahrend dessen der Inhalt des Speicherplatzes
gelesen und um 1 erhdht zuriickgeschrieben wird; das Speicher-Flipflop wird wieder
ausgeschaltet. Fir die Daver des ACCESS-Zyklus’ wird das laufende Programm un-
terbrochen.

FETCH

EXECUTE

ACCESS

Speicher-FF WMI

imputs MMM

Im Rechner kann eine Baugruppe fir 8 Z&hlkandle vorgesehen werden; extern kann
das System auf maximal 64 Zéhlkandle erweitert werden. Die Zuhleingitnge haben
untereinander eine feste Rangordnung, so da auf mehreren Kandlen gleichzeitig
eintreffende Zthlimpulse nacheinander und in geregelter Weise verarbeitet werden.

Die maximale Zahlrate bei 1...5 Kandlen betragt ca. 130 kHz; bei gréBerer Kanal-
zahl ist sie entsprechend niedriger.

Die Zuordnung der Zéhlkantle zu den Speicheradressen ist fest programmiert; zu je-
der Gruppe von 8 Kandlen gehéren 8 aufeinanderfolgende Platze auf den ler-Adres-
sen 0...7. Jeder Kanal hat eine Kapazitat von 2°° - 1 = 262143 Impulsen. Jeder
Kanal kann so geschaltet werden, daB bei Uberlauf der benachbarte Speicherplatz
inkrementiert wird (unter Fortfall des entsprechenden Ziéhleingangs).

Die Schnittstellen der Zahlkandle (1 Eingang je Kanal) sind mit integrierten TTL-
Schaltkreisen ausgeriistet und auf einem Adapter-Baustein angeordnet.

-~ 53 -

Mikroinstruktionen

Der MINCAL 513/523 besitzt einen festen Vorrat an Mikroinstruktionen, die
fiir die Darstellung der Makrobefehle verwendet werden. Jedem Benutzer stehen die

Mikroinstruktionen darliberhinaus zum Aufbau von speziellen Befehlen und schnell-
laufenden Standard-Routinen zur Verfligung. Mikroprogramme werden durch die Be-

fehle COD, CM oder CMY aufgerufen.

Jede Mikrooperation besteht aus FETCH- und EXECUTE- Zyklus; der erstere dauert

0.75 ps (wenn im Kernspeicher programmiert: 1.5 ps).

Jede Mikroinstruktion hat die Lange eines 19 bit-Wortes; Mikroprogramme kénnen je-
weils in den ersten 4 k des Festprogrammspeichers oder des Kernspeichers stehen.

5 Typen von Mikroinstruktionen sind vorhanden:

N -} Festwert

7 0
16 OQ

is 0

14 LOAD =GO0TO

13 A,

M2 Cs
iu B, Speicherpuffer Mikroinstruktion Statusregister

10 EL, B Fest- a
9 ER, D wert | EL ER

8 400) ST
E 200 - !
6 100

5 40 2

|4 20 Festwert

3 10 |
9 4 LOAD GOTO

pf L_* :0 1 } Adressregister Mikroprogrammzdhler

GOTO/LOAD-Typ (EXECUTE-Dauer: 0.75 ys).

Diese Mikroinstruktion hat die Form GOTO/LOAD (A, C + B, EL, ER, Festwert) und

bewirkt, daB der Mikroprogrammzahler C (bei GOTO) bzw. das Adressregister A (bei

LOAD) auf einen neven Wert gesetzt werden, der sich durch ODER-Verknipfung bzw.
durch Addition aus dem Inhalt vom A-, C-, B-Register, linker und rechter Halfte des

E-Registers und einem positiven oder negativen Festwert von 3 Oktalstellen ergibt.

- 54 -

o
l
e

I
n

w
o
l
a
l
a
a
e
e

o
l
s
g
l
z
-

uu w
nRESET ET

DISABLE
BN
FLAG (ADR)
FLAG 2
FLAG
LINK ,
CARRY
BORRO
LEVEL
oP
LP
END |

LOCK

ADR TR

DAT OUT

DAT IN

DAT TR

OBUSY ON

(BUSY ON

BUSY OFF

READY OFF

FLAG (BUSY)

FLAG (READY)

BLOCK BEGIN

BLOCK END

END

SET/RESET-Typ (EXECUTE-Dauer: 0.75 ps).

In der Form SET/RESET ..., ..., ...; END
bewirkt diese Mikroinstruktion Setzen oder

RUckstellen bestimmter Flipflops im B-Regi-

ster (BN) oder im Statusregister E, Ein- oder

Ausschalten einer Programmebene (LEVEL) oder

Einleiten eines Ein/Ausgabevorgangs Uber den
P-Kanal (IP, OP; stets mit SET). Mit SET-FLAG
(ADR) wird das FLAG-Bit im Statusregister ge-

setzt, wenn die Stellung der Adresschalter in

der Frontplatte mit dem Inhalt des A-Registers
Ubereinstimmt.

END bedeutet Ende des Mikroprogramms mit
diesem Schritt (darf nicht mit Set Level oder

Reset Level zusammen programmiert werden).

INPUT/OUTPUT-Typ (EXECUTE-Daver 1.5 ps).

Diese Mikroinstruktion stevert Ein/Ausgabevor-
gdnge Uber den X-Kanal. In jedem Falle ist

der Inhalt des A-Registers auf den AdreBausgang

MX... geschaltet; bei positivem Vorzeichen von
A ist NLX, bei negativem Vorzeichen der zur
jeweiligen Ebene gehtrige Ausgang LX... erregt.

LOCK, OBUSY ON, IBUSY OFF und READY OFF
steuern die gleichnamigen Ausgange, BLOCK -

BEGIN/END die Steverpotentiale BXB/BXE. Mit
FLAG (BUSY)/(READY) wird das FLAG~bit des
Statusregisters gesetzt , wenn der betreffende

Eingang erregt ist.

Mit ADR TR wird der Impuls MTX, mit DAT TR
der Impuls ZTX ausgegeben.

DAT OUT schaltet den Inhalt des B-Registers auf

den Datenausgang ZX.... DAT IN erregt das

Potential SX und schaltet die am Dateneingang

SX... anstehende Information durch zwecks

Ubernahme ins B-Register.

Der Impuls TX wird bei jeder |/O-Operation
ausgegeben.

END bedeutet Ende des Mikroprogramms mit
diesem Schrift.

-~ 55 =

Vt

a
l
c

DONT

END= SKIP

SENSOR)

AN

AT

BN

B17

FLAG 2 IF...

FLAG

LINK

CARRY

BORRO

NEG

Q4

Q2

Qi
CLEAR = “a EAD

(M)

(R)

4 Adresse

2

1

RESTORE

&MARK
LOAD

&MODIFY

STORE we
RIGHT

ARITHM

A,

A+

+ (Summe)
B,

B

END

m
e

 20
o
f
o

of
CF

 ~
O
o

O
7
F
O

OF
;

=
<

 O
o
2
-
~
a
l
o

o
f
f

 ~—
~—

=
O
O

Of
]

-
«

 20
—
-
j
]
0

o
l
s
,

 m
o

O
o

“~
“~

{
|
T
~
-

SKIP/END-Typ (EXECUTE-Dauer: 0.75 ps).

In der Form (DONT) SKIP/END, IF..., ...,

... bewirkt diese Mikroinstruktion, da (bei

SKIP) der folgende Mikrobefehl (nicht) tber-

sprungen oder (bei END) das Mikroprogramm
(nicht) beendet wird, wenn einer oder mehrere

der angegebenen Zustinde vorhanden sind.

SENSOR bedeutet, daB der von den 3 letzten

Stellen Q... bezeichnete Sensoreingang er-

regt ist; AN, Al7, BN, B17 sind die entspre-

chenden bits im A- und B-Register; die Ubri-

gen Stellen betreffen den Zustand des Status-

registers E,

READ/CLEAR-Typ (EXECUTE-Dauer: 1.5 ps).

Diese Mikroinstruktion hat die Form

READ/CLEAR (Adresse); RESTORE; LOAD&...,
STORE... (Summe); END und stevert den Da-

tentransfer zwischen den Speichern und den

Flipflop-Registern A und B.

Durch CLEAR wird der Speicherplatz geléscht;
mit READ wird der Inhalt des Speicherplatzes
ins Register B Ubertragen und der Speicherplatz

geloscht.

~ 56 -

RESTORE schreibt den Inhalt von B in den Speicherplatz zurtick. Die Summe (der Ausgang
des Addierers £) wird mit LOAD ins A-Register, mit STORE in den Speicherplatz tber-

tragen.

Die Speicheradresse wird entweder vom A~=Register (M), von den drei letzten Stellen des

E-Registers (R) oder in der Mikroinstruktion selbst vorgegeben. Sie ist nur bei (M) und

positivem Vorzeichen des A-Registers nicht niveaugebunden.

LOAD&MARK dient zur Separierung der einzelnen Oktalstellen einer Makroinstruktion
+© PQAAA und ihrer Ubertragung in die bestimmten Register:

Befehlscode —» Mikroprogrammzthler C: 0O PO

Ergtinzung —» Statusregister E: 00Q

Adresse + Vorzeichen -» Adressregister A; +000AAA

LOAD&MODIFY bewirkt das Laden des A-Registers mit dem Summenausgang, wobei das

A-~Register als ein Summand auftritt. Ist das Vorzeichen des A-Registers negativ, wird

das Zweier- Komplement des A-Inhalts gebildet.

Das Abspeichern der Summe kann um 1 bit links verschoben (STORE LEFT) oder rechts

verschoben (STORE RIGHT) geschehen, wobei zwischen logischer und arithmetischer

(ARITHM) Verschiebung unterschieden wird.

Die Summe wird aus dem Inhalt des A-Registers und des B-Registers sowie einer rechts-

bundigen | (29) gebildet. Es kann der Inhalt von A und/oder B oder eineinfaches Kom-
plement (A und/oder B) als Summand benutzt werden. Mit A, A oder B, Bwird die Zahl

(-1) als Summand eingefthrt.

END bedeutet Ende des Mikroprogramms mit diesem Schritt.

KERN - FESTPROGRAMM

SPEICHER SPEICHER

Q
<t
lu
ce

Adresse
5

t

_— (M) (U,V,W,X,N) (eben) CR)

RESTORE ._ a
B D Ee

PT Loe

w} © - L-|------- qonce eee eeneee4
cy; B® MARK—> |
oad Gimme (

olf wees y e 1

|

r |
us AIA4 :

LOAD —»

-~ 57 =

Das Statusregister E hat 8 oder 20 bit und ist in folgender Weise organisiert:

lu

‘i “4 28
< o © x rs ac2 eveL SEE O Bee -
Q oe a OOS OOOO US

POTT t 1
! | | |

i t | i 1 { '

nur bei MINCAL 523

Q1, Q2, Q4 speichern die Ergtinzung Q einer Makrooperation. In NEG, BORRO,
CARRY steht eine 1, wenn die Summe der vorhergehenden READ/CLEAR-Operation
negativ war bzw. negativen oder positiven Ubertrag ergeben hatte. LINK nimmt das

beim Verschieben rechts oder links herauslaufende Bit auf, und sein Zustand geht selbst

beim Verschieben links- oder rechts- erginzend ein. FLAG und FLAG2 sind Merkspei-
cher. Die Stellen 0...8 behalten nur fiir den Verlauf eines zusammenhangenden Mikro-

programms ihren Inhalt.

Die Stellen 9...14 beinhalten die "Adresse" der jeweiligen Programmebene (LEVEL);

sie werden u.U. bei Ende eines Mikroprogramms (bzw. einer Makrooperation) neu ge-

setzt, was jedoch verhindert wird, solange DISABLE eine 1 enthalt.

Mikroprogramme werden nur in Sonderfdllen benutzt. Bei Verwendung steht ein
MIKRO=ASSEMBLER zur Ubersetzung der symbolischen Befehle in die Mikropro-
grammierung zur Verfiigung.

Im Normalfall werden nur die Maschinenbefehle (s. nachstes Kapitel) benutzt,
fur die ebenfalls ein Ubersetzungsprogramm (ASSEMBLER) zur Verftigung steht.

- 58 -

NMaschinenbefehle

VORBEMERKUNG

Die Maschineninstruktionen der MINCAL 513/523 Computer sind jeweils ein 19-bit-
Wort lang; sie haben im allgemeinen die oktal gegliederte Form

* OPQAAA

mit der Bedeutung

* N-Bit Vorzeichen (- = Inhalt 1; sonst 0)

> et 4 13. , Befehlscode

Q Bit 11, 10, 9 Ergdnzung

A Bit 8, 7, 6
A Bit 5, 4, 3 } ain
A Bit 2, 1, 0

Die Befehle sind im folgenden beschrieben; der Inhalt von je 3 bit eines Befehlswortes
ist dabei zu einer Oktalziffer (0...7) zusammengefaft.

Erld@uterung: Vorzeichen ist von Bedeutung
(e) Befehl gehort zum erweiterten Befehlsvorrat
(2) Befehl nur bei MINCAL 523 méglich

~ 59 -

N17 0
NULL-, KONVERSIONS-, CODEBEFEHLE l-|O|/O;/A;IAIA|A|

3efehle:

(e)
(e)
(e)
(e)

Adresse:

NOP Nulloperation 000 0 0 0
VBL Bindrumwandlung Linkskomma 00 1 4 0 0
VBR " Rechtskomma 00144 0
VDL Dezimalumwandlung Linkskomma 001 5 0 0
VDR " Rechtskomma 001 5 4 0
COD Code-Operation allgemein 0 0

kleinste (100000) 0000 0 0
groBte (107777) 007 77 7

Diese Befehle rufen ein im Festspeicher liegendes Mikroprogramm auf. Fur 4 Konver-
sionsbefehle ist das Mikroprogramm vorgegeben. Ein Befehlswort mit Nullinhalt wird
jbersprungen.

NOP

VBL

VBR

VDL

VDR

Bemerkung:

Nulloperation 000000

Dieser Befehl wird Ubersprungen.

Binérumwandlung Linkskomma 001400

Der im W-Register stehende dezimale Bruch wird in einen bindren Bruch
umgewandelt.

Bindérumwandlung Rechtskomma 001440

Die im W-Register stehende dezimale Ganzzahl wird in eine binére Ganz-
zahl umgewandelt.

Dezimalumwandlung Linkskomma 001500

Der im W-Register stehende bindre Bruch wird in einen dezimalen Bruch
umgewandelt.

Dezimalumwandlung Rechtskomma 001540

Die im W-Register stehende bindre Ganzzahl wird in eine dezimale Ganz-
zahl umgewandelt.

Bei bindren Brichen hat Bit 17 den Wert Qt Bit 0 den Wert 27!8,
Bei bindren Ganzzahlen hat Bit 17 den Wert g\7 Bit O den Wert 2°,
Negative bindre Briche und Ganzzahlen werden als Zweierkomplement
dargestellt.

Dezimalzahlen sind in BCD-Form dargestellt (je Dezimalstelle 4 bit mit dem
Wert 8-4-2-1).

- 60 -

Bei dezimalen Briichen hat Bit 17 den Wert 8-107!, Bit O den Wert 4.1079,

Bei dezimalen Ganzzahlen hat Bit 17 den Wert 2-104, Bit O den Wert 1-102,
Negative dezimale Briiche und Ganzzahlen werden wie positive dargestellt;
das N-Bit hat jedoch den Inhalt 1.

Die maximal konvertierbare Ganzzahl hat den Betrag 39999.

COD Code-Operation OOAAAA

Es wird ein (vom Benutzer zu erstellendes und vom Hersteller zu implemen-
tierendes Mikroprogramm aufgerufen, das bei Adresse (IOAAAA+1) des
Festspeichers beginnt. Nach Ausftiihrung des Mikroprogramms wird das
Programm mit der auf den COD-Befehl folgenden Instruktion fortgesetzt.

N 17 0
EINFACH-SCHIEBEBEFEHLE llololojo] | |

Befehle: SRLW Schieben Rechts logisch W 000 0 1 0
SRLD " " " Doppelt 000011
SRLX " " " x 00001 2
SRAW " " Arithmetisch W 000014
SRAD " u u Doppelt 00001 5
SRAX " " " X 00001 6
SLLX " Links Logisch X 000020
SLLD " " " Doppelt 00002 1
SLLW " " " W 000022
SLAX " " Arithmetisch X 00002 4

SLAD " " " Doppelt 00002 5
SLAW " " " W 00002 6

Diese Befehle dienen zum logischen und arithmetischen Rechts- und Linksverschieben
des Inhalts von W- und X-Register bzw. beider Register gemeinsam um 1 bit. lhre
Funktion entspricht den im folgenden Abschnitt beschriebenen Mehrfach-Schiebebe-
fehlen mit der gleichen symbolischen Bezeichnung.

- 6] -

N 7 0
>) MEHRFACH-SCHIEBEBEFEHLE [Tio [TPO EN TN]

efehle: SRLW Schieben Rechts Logisch W Oo 10 0
SRLD " " " Doppelt 0 1 1 0
SRLX " " " X 0 12 0
SRAW " " Arithmetisch W Oo 1 4 0
SRAD " " " D oppelt 0 15 0
SRAX au il il x 0] é 0

SLLX " Links Logisch X O 2 0 0
SLLD " " " Doppelt 0 2 1 0
SLLW " " "Ww 0 2 2 0
SLAX " " Arithmetisch X 0 2 4 0
SLAD " " " Doppelt 0 2 5 0
SLAW " " " W 0 2 6 Q

SRR Schiften Rechts mit Runden 0 1 3 0 .
SLN Normalisieren 0 23 0 0 0

\nzahl der Schiebestellen: kleinste (0) ~ oe 2 « O OD
groBte sinnvolle (37) » oe we 4 OS

Yiese Befehle dienen zum logischen und arithmetischen Rechts- und Linksverschieben
les Inhalts von W- und X-Register bzw. beider Register gemeinsam um eine beliebi-
ie Zahl von Bindrstellen. Je ein weiterer Befehl bewirkt Rechtsschieben mit Runden

owie Normalisieren des W-Register-Inhalts.

keim logischen Schieben werden alle 19 bit einbezogen. Herauslaufende Bits gehen
rerloren; frei werdende Bits bekommen Nullinhalt. Beim doppelten Schieben werden
veide Register (W links, X rechts) zu einem Doppelwort verbunden; bit 0 des W-Re-
jyisters und das N~Bit des X-Registers grenzen aneinander.

3eim arithmetischen Schieben bleibt der Inhalt des N-Bits erhalten; sein Inhalt setzt
‘ich beim Rechtsschieben nach rechts fort; beim Linksschieben gehen aus Bit 17 her-
yusgeschobene Inhalte verloren. Beim doppelten Schieben wird angenommen, daf in
»eiden Registern eine Doppelwort-Zweierkomplementzahl steht (Vorzeichen + 18 bit
n W, restliche 18 bit in Bit 17...0 von X); Bit 0 des W-Registers und Bit 17 des
X-Registers grenzen aneinander, wdhrend das N-Bit des X-Registers Nullinhalt haben
ioll und véllig auBer Betracht bleibt.

SRLW Schieben rechts logisch W O1TOONN

Der Inhalt des W-Registers wird um NN bif logisch nach rechts ver-
schoben.

SRLD Schieben rechts logisch Doppelt O1TITONN

Der Inhalt von W- und X-Register wird gemeinsam um NN bit nach
rechts verschoben.

- 62 -

SRLX

SRAW

SRAD

SRAX

SLLX

SLLD

SLLW

SLAX

SLAD

SLAW

Schieben Rechts logisch X O120NN

Der Inhalt des X-Registers wird um NN bit logisch nach rechts verschoben.

Schieben rechts arithmetisch W O1l40NN

Der Inhalt des W-Registers wird um NN bif arithmetisch nach rechts ver-
schoben.

Schieben rechts arithmetisch doppelt O150NN

Der Inhalt des W- und X-Registers wird um NN bit arithmetisch nach
rechts verschoben.

Schieben rechts arithmetisch X O160NN

Der Inhalt des X-Registers wird um NN bit arithmetisch nach rechts
verschoben.

Schieben links logisch X O200NN

Der Inhalt des X-Registers wird um NN bit logisch nach links verschoben.

Schieben links logisch doppelt O210NN

Der Inhalt des W- und X-Registers wird um NN bit logisch nach links
verschoben.

Schieben links logisch W O0O220NN

Der Inhalt des W-Registers wird um NN bit logisch nach links verschoben.

Schieben links arithmetisch X O240NN

Der Inhalt des X-Registers wird um NN bit arithmetisch nach links ver-
schoben.

Schieben links arithmetisch doppelt O250NN

Der Inhalt des W- und X-Registers wird um NWN bit arithmetisch nach
links verschoben.

Schieben links arithmetisch W O260NN

Der Inhalt des W-Registers wird um NN bit arithmetisch nach links ver-

schoben.

-~ 63 -

SRR Schieben Rechts mit Runden O130NN

Der Inhalt des W-Registers wird um NN bit nach rechts verschoben.
War das letzte rechts herausgeschobene Bit gleich |, so wird anschlie-
Bend der W-Register-Inhalt um 1 erhtht. Dieser Befehl darf nur auf po-
sitive Zahlen angewendet werden.

SLN Normalisieren 023000

Der Inhalt des W-Registers wird normalisiert, d.h. so weit nach links
verschoben, da sie dem Betrage nach gleich oder gréBer als 2°’ ist.
Die Anzahl der hierfiir bendtigten Schiebevorgitinge steht anschlieBend
bindr rechtsbiindig im X-Register. War der Inhalt bereits normalisiert,
so bleibt er unverdndert, und in X steht eine 0. War der Inhalt gleich
Null, so bleibt er es, und in X steht 18. Auf die Zahl -2!8 (-000000)
darf der Befehl nicht angewendet werden.

N i7 Ci
MANIPULATIONSBEFEHLE [-| OJP} Q{A[A]A |

Befehle: MZR Null setzen 0 3 0
MPO Plus Eins setzen 0 3 1]
MMO Minus Eins setzen 0 3 2
MIC Inkrementieren 0 3 3
MDC Dekrementieren 0 3 4
MCO Komplementieren 0 3 5
MCI Zweierkomplement bilden 0 3 6

Adresse: kleinste (000000)

N
I
©

N
I
©

N
©

gréBte (000777)

Ebenenbindung der Adresse: -

Diese Befehlsgruppe vertdndert den Inhalt eines beliebigen Speicherplatzes in Seite 0.
Der Speicherplatz kann ebenengebunden adressiert werden (zur Adresse OOOAAA wird
die Ebenen~Adresse OOOLLO geodert); dadurch sind die Befehle insbesondere auch auf
Register anwendbar.

MZR

MPO

Null setzen * OSO0OAAA

Der Speicherplatz erhalt Nullinhalt (000000).

Plus Eins setzen * OSTAAA

Der Speicherplatz erhalt den Inhalt 1 (000001).

MMO

MIC Inkrementieren *®O33 AAA

Der Inhalt des Speicherplatzes wird um 1 erhtht. Ein eventueller Uber-
lauf wird nicht berticksichtigt.

MDC Dekrementieren *O34 AAA

Der Inhalt des Speicherplatzes wird um | erniedrigt. Ein eventueller
Uberlauf wird nicht beriicksichtigt.

MCO Komplementieren *O35 AAA

Der Inhalt des Speicherplatzes wird komplementiert (Einerkomplement).

MC] Zweierkomplement bilden * O36AAA

Der Inhalt des Speicherplatzes wird komplementiert und dann um 1 erhtht.

N i7 __0
REGISTERBEFEHLE [TO] PIR|AITAIA |

Befehle: LDR Laden in Register 1]
TRR Transfer aus Register 1} 5
ADR Addieren zu Register O 4
SBR Subtrahieren von Register 0 5
FOR ODER mit Register 0 6
FAR UND mit Register 0 7

Register: U 0
V 1
W 2
X 3
N 4
[XR] 5
IXR2 6
IXR3 7

Adresse; kleinste (000000) 0 0 0
groBte (000777) 7 7 7

Minus Eins setzen *O32AAA

Der Speicherplatz erhalt den Inhalt -1 (-777777).

Ebenenbindung der Adresse: -

-~ 65 -

LDR Laden in Register * 1TTRAAA

Das Register R wird mit dem Inhalt der Adresse geladen.

TRR Transfer an Register * 15RAAA

Der Inhalt des Registers R wird in der Adresse abgespeichert.

ADR Addieren zu Register *O4RAAA

Zum Inhalt des Registers R wird der Inhalt der Adresse addiert. Ein
eventueller Uberlauf wird nicht beriicksichtigt.

SBR Subtrahieren von Register *O5RAA A

Vom Inhalt des Registers R wird der Inhalt der Adresse subtrahiert. Ein
eventueller Uberlauf wird nicht bertcksichtigt.

FOR ODER mit Register *O6RAAA

Der Inhalt des Registers R wird mit dem der Adresse R in inklusive
ODER-Verkniipfung gebracht; das Ergebnis steht im Register R.

FAR UND mit Register *O7RAAA

Der Inhalt des Registers R wird mit dem der Adresse R in inklusive
UND-Verkniipfung gebracht; das Ergebnis steht im Register R.

 N17 0
KO NSTANTENBEFEHLE I-| O[PI[R{C{C{c|

Befehle: LDC Laden Konstante . ne)

ADC Addieren Konstante . 1 4

Register:

N
O
O
B

O
N
D
—

O
C

Konstanten: gréBte negative (-511) -
Null
groBte positive (+511) N

O
N

N
O
N

N
O
N

- 66 -

Diese Befehlsgruppe verdndert den Inhalt eines der 8 Register durch eine im Befehl
definierte Konstante.

LDC Laden Konstante * JORCCC

Das angegebene Register wird mit der Konstanten geladen. Bei nega-
tiven Konstanten wird das Zweierkomplement geladen.

ADC Addieren Konstante * 14RCCC

Zum Inhalt des angegebenen Registers wird die Kconstante addiert. Bei
negativen Konstanten wird deren Zweierkomplement addiert. Ein even-
tueller Uberlauf wird nicht beriicksichtigt.

N 17 0
SPEICHERBEZOGENE BEFEHLE [|] “O[PTQlAIlAIA|

Befehle: LD Laden 1 2
TR Transfer 1 6

AD Addieren 2 0

SB Subtrahieren 2 2
(e) MP Multiplizieren 3 0
(e) DV Dividieren 3.2

FO Inklusives ODER 2 4
FA UND 2 6
FE Exklusives ODER 3 4

CP Vergleichen 3.6

Adressierung: .. direkt . ee
oY indirekt ~ . |

absolut 0
absolut ebenengebunden - 0
relativ vorwarts 4
relativ rickwarts - 4

nicht indiziert 0
indiziert Uber [XR] 1

2 2
3 3

AdreBteil: kleinster Wert (0) oe - 0 0 0

groBter Wert (511) - ee . FJ 7 7

- 67 -

Diese Befehlsgruppe setzt das W-Register mit einer beliebigen Speicheradresse in
Beziehung. Bei einigen Befehlen wird aufer dem W-Register auch das V- oder X-
Register verwendet.

Adressierung

a) absolut:
absolut e

smoglichkeiten sind:

Die Adresse ist OOOAAA (in Seite 0 des Speichers)
benengebunden: Die Adresse ist OOOAAA geodert mit der Ebenenadresse

OOOLLO
relativ vorwarts: Die Adresse ist ntAAA
relativ ruckwéarts: Die Adresse ist n-AAA

b) indirekt: Der Inhalt der nach a) berechneten Adresse wird als
neve Adresse genommen.

Ist Bit 17 des AdreBinhalts gleich 1, wird erneut substi-
tuiert.

c) indiziert: Zu der nach a) bzw. b) berechneten Adresse wird der
Inhalt des angegebenen Indexregisters addiert.

Beliebige Kombinationen a)-b)-c) sind erlaubt; sie laufen in dieser Rethenfolge zur
Berechnung der effektiven Adresse ab.

LL = Nummer der laufenden Ebene; n = Programmstand (Instruktionsadresse).

LD

TR

AD

SB

Laden * JZQAAA

Das W-Register wird mit dem Inhalt der effektiven Adresse (Operand)
geladen.

Transfer * T6OQAAA

Der Inhalt des W-Registers wird in der effektiven Adresse abgespeichert.

Addieren * 2QOQAAA

Zum W-Register-Inhalt wird der Inhalt der effektiven Adresse (Operand)
addiert. Bei positivem Uberlauf wird der Inhalt des V-Registers um | er-
hcht, bei negativem Uberlauf um 1 erniedrigt.

Subtrahieren * 22QAAA

Vom W-Register-Inhalt wird der Inhalt der effektiven Adresse (Operand)
subtrahiert. Bei positivem Uberlauf wird der Inhalt des V-Registers um 1
erhdht, bei negativem Uberlauf um 1 erniedrigt.

-~ 68 -

MP

DV

Bemerkung:

FO

FA

FE

CP

Multiplizieren *30QAAA

Der W-Register-Inhalt wird mit dem Inhalt der effektiven Adresse (Ope-
rand) multipliziert. Das Doppelwort-Produkt steht mit den unbedeutenden
Stellen im X-Register und mit den bedeutenden Stellen im W-Register.
Die Multiplikation lauft vorzeichenrichtig ab; das N-Bit des W-Registers
enthalt das Vorzeichen des Produkts. Das N-Bit des X-Registers bekommt
stets Nullinhalt.

Dividieren * 32QAAA

Der W-Register-Inhalt wird durch den Inhalt der effektiven Adresse
(Operand) dividiert. Der Einwort- Quotient steht im W-Register, der
Rest im X-Register. Die Division la@uft vorzei chenrichtig ab; das N-Bit
des W-Registers enthalt das Vorzeichen des Quotienten. Der Rest ist
stets positiv. Bit 17 des Quotienten hat die Bedeutung 27I. daher sind
nur Quotienten erlaubt, die dem Betrage nach kleiner als 1 sind; an-
dernfalls wird das Ergebnis unrichtig.

Die Befehle MP und DV verdndern den Inhalt des V-Registers.

Inklusives ODER *24QAAA

Der W-Register-Inhalt wird mit dem Inhalt der effektiven Adresse (Operand)
in inklusive ODER-Verkniipfung gebracht; das Ergebnis steht im W-Register.

UND * 26QAAA

Der W-Register-Inhalt wird mit dem Inhalt der effektiven Adresse (Operand)
in UND-Verknupfung gebracht; das Ergebnis steht im W-Register.

Exklusives ODER * 34 Q0 08

Der W-Register-Inhalt wird mit dem Inhalt der effektiven Adresse (Operand)
in exklusive ODER-Verkniipfung gebracht; das Ergebnis steht im W-Register.

Vergleichen *36QPGB

Der Inhalt des W-Registers wird mit dem der effektiven Adresse (Operand)
verglichen. Stimmen beide tberein, wird die folgende Instruktion tber-
sprungen und die Uberntchste ausgefthrt; andernfalls die auf den CP-Befehl
folgende.

- 69 -

N17)

 V ERZWEIG UNGSBEFEHLE [|] O][PJQ|AJAIA

Befehle: BR Verzweigen 4 0
BZ Verzweigen wenn Null 4 2
BP Verzweigen wenn Plus 4 4
BM Verzweigen wenn Minus 4 6

Ergdnzung: bei BR: Sensor; sonst Register U 0
V 1
W 2
X 3
N 4
[XR] 5
IXR2 6
IXR3 7

Adressierung: .. direkt . . -

..Y indirekt . . . 4

relativ vorwdarts

re lativ rlckwarts -

AdreBteil: kleinster Wert (0)
groBter Wert (512) N

I
O

N
O
©

N
I
©

Diese Befehle bewirken einen Sprung im Programmablauf. Die Ausfiihrung des Sprungs
kann an eine Bedingung geknipft sein; ist sie nicht erfullt, so wird das Programm mit
der folgenden Instruktion fortgesetzt.

Effektive Sprungadressen werden relativ berechnet (n+ AAA). Bei indirekter Adressierung
wird der dort gefundene Wortinhalt als Sprungadresse aufgefait und auf diese verzweigt
(s. auch vorigen Abschnitt).

BR Verzweigen * AZO0SAAA

Das Programm verzweigt zur effektiven Adresse. Hat S den Wert 1, 2, ...
./, so wird nur dann verzweigt, wenn der entsprechende Sensor 1, 2, ...

erregt ist.

BZ Verzweigen wenn Null * 42RAAA

Das Programm verzweigt zur effektiven Adresse, wenn das Register R Null-
inhalt hat.

BP Verzweigen wenn Plus * AARAAA

Das Programm verzweigt zur effektiven Adresse, wenn das Register R
positiven oder Nullinhalt hat.

- 70 -

BM Verzweigen wenn Minus * AERAAA

Das Programm verzweigt zur effektiven Adresse, wenn das Register R

negativen Inhalt hat.

Bemerkung: Springe werden dadurch ausgefithrt, dal’ das N-Register vertndert wird.
Jede durch irgendeinen anderen Befehl bewirkte Vertinderung des N-Re-
gisters fuhrt ebenfalls zu einem Programmsprung.

UNTER-, MIKROPROGRAMM- SPRUNGBEFEHLE | ofP| QfAl Atal

Befehle: CS Autruf Unterprogramm 5 0
CM Autruf Mikroprogramm 5 2 . .

Ergdnzung: Ruckkehr- in U-Register - . « O
Adresse in V-Register ~ ew « |
bei CS vor Unterprogramm ~ 2 « 2

Adressierung: .. direkt . ee
.-Y indirekt - . |

absolut 0
absolut ebenengebunden - 0
relativ vorwarts 4
relativ rickwarts - 4

AdreBteil: kleinster Wert (0) 0 0 0
groBter Wert (511) 7 7 7

Diese Befehlsgruppe dient zum Aufruf eines Unterprogramms oder Mikroprogramms. Die
Adressierungsarten entsprechen denen der speicherbezogenen Befehle; Indizierung ist
jedoch nicht mdglich.

CS Autruf Unterprogramm *SOQAAA

Das Programm springt auf die der effektiven Adresse folgende Instruktion.
Die Instruktionsadresse des CS-Befehls (Riickkehradresse) wird - je nach
Angabe in der Ergdnzung Q - entweder in einem der Register U oder V_

oder in der effektiven Adresse (vor Beginn des Unterprogramms) abgelegt.
Der Rucksprung ins Hauptprogramm geschieht im ersten Falle durch Uber-
tragung des Register-Inhalts nach N (TRRUN bzw. TRRV N), im zweiten
Falle durch einen indirekten Sprung Uber den Unterprogramm-Anfang

(BRY...).

-71-

CM Aufruf Mikroprogramm *52QAAA

Ein bei der effektiven Adresse beginnendes Mikroprogramm wird aufge-
rufen. Nach Ausfihrung des Mikroprogramms wird das Programm mit der
auf den CM-Befehl folgenden Instruktion fortgesetzt.
Mikroprogramme kénnen jeweils in den ersten 4 k Worten des Kernspei-
chers (Adressen 000000...000777) oder des Festspeichers (100000. ..107777)
liegen. Der Inhalt bei denrechten Bits in Q ist ohne Bedeutung, kann dem
Aufruf jedoch als Parameter mitgegeben werden.

NZ __0
STEUERBEFEHLE || O|P|QIAIAIA|

Befehle: HLT Halt 5 40 0 0 0
HSL Halt, Start Ebene 5 4 2 0
HBR Halt mit Verzweigen 5 4 4 .
STL Start Ebene 5 5 0 . 0
ECL Unterbrechung zulassen 5 5 3 0 0 0
DCL Unterbrechung verhindern 5 5 40 0 0

Ebene: (bei HSL, STL): niedrigste (00) - « « OO
hdchste (77) ~ « « 4 7

Adressierung: (bei HBR): relativ vorwarts
relativ ruckwéarts -

AdreBteil: (bei HBR): kleinster Wert (0) 0 0 0
gr6Bter Wert (511) 7 7 7

Diese Befehle bewirken Anhalten des Progranms (ohne und mit Verzweigung danach),
internen Start einer beliebigen Programmebene sowie die Steverung der Unterbrechbar-
keit.

HLT

HSL

Halt 540000

Das Programm halt an, indem die laufende Programmebene ausgeschaltet
wird. Ein Start dieser Ebene setzt den Programmablauf mit der folgenden
Instruktion fort.

Halt, Start Ebene 542LL0

Das Programm halt an, indem die laufende Programmebene ausgeschaltet
wird; gleichzeitig wird die Programmebene LL gestartet.
Die letzte Oktalstelle der Instruktion ist ohne Bedeutung; sie kann statt 0
auch eine der Ziffern 1...7 enthalten.

- 72 -

HBR

STL

(2) ECL

(2) DCL

EIN/AUSGABE-BEFEHLE

Halt mit Verzweigen * 544 AAA

Das Programm halt an, indem die laufende Programmebene ausgeschaltet
wird. Ein Start dieser Ebene setzt den Programmablauf an einer Stelle
fort, die durch (relativ berechnete) effektive Adresse bestimmt ist.

Start Ebene 550LLO

Die Programmebene LL wird gestartet.
Die letzte Oktalstelle der Instruktion ist ohne Bedeutung; sie kann statt 0
auch eine der Ziffern 1...7 enthalten.

Unterbrechung zulassen 553000

Durch diesen Befehl wird der DISABLE-Zustand wieder aufgehoben; die
laufende Programmebene kann durch jede hdhere unterbrochen werden.

Unterbrechung verhindern 554000

Dieser Befehl stellt den DISABLE-Zustand her, in dem die laufende Pro-

grammebene nicht durch den Start einer anderen Ebene unterbrochen werden
kann.
Spdtestens vor einem Halt (HLT, HSL, HBR) mu® der DISABLE-Zustand durch
ECL wieder aufgehoben werden, damit der Halt wirksam wird.

i STFTXTATATE
Befehle: GB,GX Ubernahme 6 0

FB, FX Ubernahme mit ODER 6 |

IBG Eingabe, 'Jbernahme 6 2
IBF Eingabe, Ubernahme mit ODER 6 3
IB Eingabe 6 4
©B,OX Ausgabe 6 5
IBH Eingabe, Halt 6 6
OBH Ausgabe, Halt 6 7

Ebenen-Bindung: .X nein
-B. ja -

Indizierung: keine 0
Uber IXR1 |

2 2
3 3

AdreBteil: kleinste (000) externe 0 0 0
groBte (777) Adresse 7 7 7

~ 73 -

Diese Befehlsgruppe stevert wortweise die Ein- und Ausgabe uber das W-Register den
programmgesteuverten Datankanal (X-Kanal) des Computers. Die externe Adresse OOAAA
ist gleich dem AdreBteil AAA der Instruktion; gegebenenfalls wird dazu der Inhalt des
angegebenen Indexregisters addiert. Die externe Adresse kann in der peripheren Hard-
ware mit der laufenden Programmebene verkniipft sein; dann sind die entsprechenden
Befehle zu benutzen (Minuszeichen gesetzt). Dies empfiehlt sich insbesondere bei Ver-
wendung externer Register (Interfaces), die den Datentransfer zur eigentlichen Peripherie
Ubernehmen; nach Ende des - beliebig langen - Transfervorgangs erhalt die jeweilige
Programmebene ein Startsignal.

GB
GX

FB
FX

IBG

IBF

Ubernahme - 60XAAA
Ubernahme (nicht ebenengebunden) 60X AAA

Der Inhalt der externen Adresse wird in das W-Register Ubernommen.

Ubernahme mit ODER ~ 6 | A

Ubernahme mit ODER (nicht ebenengebunden) 6] A

W-

XAA
XAA

Der Inhalt der externen Adresse wird mit dem des
und das Ergebnis in das W-Register Ubernommen.

Registers geodert

Eingabe, Ubernahme - 62XAAA

Das durch die externe Adresse bestimmte Interface wird in Eingabebereit-
schaft versetzt und das Programm durch Ausschalten der laufenden Ebene
angehalten. Nach Eintreffen des Datenworts von auen startet das Inter-
face die Ebene wieder; das Datenwort wird in das W-Register Ubernommen,
und das Programm lduft weiter.

Eingabe, Ubernahme mit ODER - 63XAAA

Ablauf wie bei IBG; jedoch werden W-Register-Inhalt und externes Daten-
wort geodert und das Ergebnis ins W-Register Ubernommen.

Eingabe - 64XAAA

Das durch die externe Adresse bestimmte Interface wird in Eingabebereit-
schaft versetzt. Das Programm lduft weiter.

Ausgabe - 65XAAA
Ausgabe (nicht ebenengebunden)

Der Inhalt des W-Registers wird in die externe Adresse Ubertragen. Bei OB
handelt es sich um ein Interface, welches das Datenwort tbernimmt und mit
dem Befehl einen Ausgabevorgang beginnt.
Das Programm lduft weiter.

-~ 74 -

IBH Eingabe, Halt - 66XAAA

Ablauf wie bei IB; jedoch wird das Programm angehalten. Mit dem nach-
sten Start der Ebene ~- z.B. durch das Interface nach Beendigung des
Eingabevorgangs - lduft das Programm weiter.

OBH Ausgabe, Halt -~- 67XAAA

Ablauf wie bei OB; jedoch wird das Programm angehalten. Mit dem n&ch-
sten Start der Ebene - z.B. durch das Interface nach Beendigung des

Ausgabevorgangs - lduft das Programm weiter.

N iz iC
INTERFACE-STEUERBEFEHLE [-| O{P | Q{D|D] |

Befehle: RBL Rucksetzen LOCK - 7 0 0 0
SBL Setzen LOCK - 7 0 0 1
RBR Rucksetzen READY - 7 1 0 0
SKB Sprung wenn BUSY - 7 2 0 0
SKR Sprung wenn READY - 7 3 0 0

Gerdtenummer: kleinste (000)

N
I
©

N
I
©

gréBte (770)

Diese Befehle steuern Status-Flipflops in Ein/Ausgabe-Interfaces oder fragen deren
Zustand ab. Die Flipflops haben folgende Bedeutung:

BUSY Wird durch die Befehle IB... bzw. OB... gesetzt und bei
beendetemEin- oder Ausgabevorgang selbsttatig riickgesetzt.
Zeigt an, da ein Ein- oder Ausgabevorgang lduft.

READY Wird bei beendetem Ein- oder Ausgabevorgang selbsttitig
gesetzt und startet dadurch die zugehtérige Programmebene. Es
wird zu Beginn der IB...- und OB...-Befehl riickgesetzt.
Wichtig: Nach IB, OB IBH und OBH (da im Interface, sobald

der Ein/Ausgabevorgang zu Ende ist, READY gesetzt wird) das
Flipflop mit RBR riicksetzen, bevor das Programm auf HLT, HBR
oder HSL lduft; sonst ist der Halt unwirksam.

LOCK Verhindert, wenn gesetzt, den Start der Ebene durch READY.
Dieses bleibt jedoch unbeeinfluBt; nach Riicksetzen von LOCK
wird der Start wirksam, wenn READY gesetzt ist.

Interfaces dieser Art haben eine oktale Gerdtenummer DD, die der externen Adresse
QODDO entspricht.

~ 75 -

BL Rucksetzen LOCK - 7O0OO0DDQO

Das LOCK-Flipflop im Interface DD wird ausgeschaltet.

BL Setzen LOCK - 7JOODD 1

Das LOCK-Flipflop im Interface DD wird eingeschaltet.

‘BR Rucksetzen READY - 710DD0

Das READY~Flipflop im Interface DD wird ausgeschaltet.

KB Sprung wenn BUSY - 720DD0

Die folgende Instruktion wird Ubersprungen und die ubernichste ausgefthrt,
wenn BUSY im Interface DD gesetzt ist.

KR Sprung wenn READY - 730DD0

Die folgende Instruktion wird Ubersprungen und die tberndchste ausgefihrt,
wenn READY im Interface DD gesetzt ist.

N 17 0
‘ORMATISIERTE EIN/AUSGABE-BEFEHLE |-] O|P | NID] DIF|

lefehles IBS Eingabe Seriell -~ 7 A
OBS Ausgabe Seriell - 7 5

\nzahl: 1 Zeichen 1
2 " 2
3. 0 3
4" 4
5" 5
6 " 6

jserdtenummers kleinste (00) 0 0
groBte (77) 7 7

“orm at: O (3 bit/Zeichen) 2
D (4 ik it) 3

F (5 TT ") 4

A (6 it R) 5

S (7 ul it) 6

E (8 nh il) 7

- 76 -

Diese Befehle steuern die serielle (zeichenweise) Ein/Ausgabe von Teilen eines
Wortes. Die Linge der Wortteile kann von 3 bis 8 bit gewahlt werden; ebenso
die Anzahl, die ein- oder ausgegeben wird (1 bis 6 Zeichen).

Nach einer Eingabe stehen die Teilworte von links nach rechts entsprechend ihrer
zeitlichen Reihenfolge im W-Register (das zuletzt eingegebene Zeichen rechtsbiin-
dig); die restlichen Bits haben Nullinhalt. Vor einer Ausgabe mu8B das erste Zeichen
linksbiindig (einschlieBlich Bit 17!) im W-Register stehen; die danach auszugebenden
schlieBen sich nach rechts an.

Das N-Bit des W-Registers bleibt auBer Betracht.

Die zugehtrigen Ein/Ausgabe-Interfaces haben eine Gertittenummer DD, die der ex-
ternen Adresse OODDO entspricht. In ihnen wird jedes Zeichen u.U. besonders ver-
schliisselt (z.B. im ASCII-Code).

Die Befehle IBS und OBS entsprechen einer Folge von IBG- bzw. OBH-Befehlen;
wdhrend der Zeichen-Ein/Ausgabe tber das Interface wird die Programmebene ausge-
schaltet.

IBS Eingabe Seriell -~ JANDODF

N Zeichen werden im Format F uber das Interface DD in das W-Register
eingegeben.

OBS Ausgabe Seriell - 75NDDF

N Zeichen werden im Format F Uber das Interface DD aus dem W-Regi-
ster ausgegeben.

Achtung: Durch diese Befehle wird der Inhalt des V- und X-Registers verdndert.

N 17
(e) BLOCK-EIN/AUSGABE -BEFE HLE |-|O}P| @]|D]D{0 |

Befehle: [BB Eingabe Block - 7 6 0 0
OBB Ausgabe Block - 7 7 QO 0

Gerdtenummer: kleinste (00) . 0 0
groBte (77) . 7 7

- 77 -

Diese Befehle dienen zur Eingabe eines Blocks von Daten in ein Speicherfeld bzw.

zur Ausgabe des Speicherfeld-Inhalts. Die beiden auf den Befehl folgenden Worte
nussen folgende Angaben enthalten:

OAAAAA Speicherfeld-Basisadresse
OBBBBB-~Blocklange (binadr, in Worten)

Je Ein/Ausgabevorgang wird ein Wort transferiert; das erste Wort gehort zur Basis-
adresse des Speicherworts, die folgenden zu aufsteigenden Adressen des Feldes.

Zugehorige Ein/Ausgabe-Interfaces haben eine Gertite-Nummer DD, die der externen
Adresse OODDO entspricht. Die letzte Oktalstelle der Instruktion kann statt 0 auch eine
der Ziffern 1...7 enthalten (zu einer genaveren AdreB- oder Formatspezifikation).

Wihrend des Ein/Ausgabevorgangs Uber das Interface wird die Programmebene ausge-
schaltet.

Achtung: Durch diese Befehle wird der Inhalt des V- und X~-Registers verdndert.
Das W-Register bleibt unberthrt.

D 0

AA
BB

[BB Eingabe Block - 0D

AA
BBo

o
n

D
p

OX

Ein Block der Lange BBBBB wird uber das Interface DD in ein Speicher-
feld ab Adresse AAAAA eingegeben.

OBB Ausgabe Block - 770DD0
OAAAAA
OBBBBB

Ein Block der Linge BBBBB wird Uber das Interface DD aus einem Speicher-
feld ab Adresse AAAAA ausgegeben.

- 78 -

Bedienung

Die Frontplatte der MINCAL 500-Computer ist als Bedienungsfeld mit Anzeige- und
Bedienungselementen ausgeriustet. Das Bedienungsfeld wird benutzt, wenn Programme
getestet, Funktionen und Abléufe schnell Uberprift oder Daten manuell in den Kern-
speicher eingegeben werden sollen.

Beim festprogrammierten Rechner MINCAL 513 kann u.U. die Bedienungs-Frontplatte
durch eine Blindplatte ersetzt werden.

Das Bedienungsfeld enthalt im einzelnen folgende Elemente:

ein 20-bit-Lampenfeld als zentrale Datenanzeige (18 bit + Vorzeichen + Parity)

ein 20-bit-Tastenfeld zur Informationseingabe in angewdthlte Kernspeicherplétze.
CLR dient zum Léschen von Kernspeicherinhalten, NP zum Léschen einer
Parity-Fehlermeldung

ein 16-bit-AdreB-Schalterfeld zur Vorwahl einer beliebigen Festprogramm-
oder Kernspeicheradresse.
Das linke, 15. bit entscheidet zwischen Kernspeicher- (Schalter nicht einge-
legt) und Festprogrammadressen (Schalter eingelegt).

je eine Taste
RES zur Nullstellung aller Hardware-Register in der Recheneinheit
GO zur Fortschaltung des Programms im Einzelschrittbetrieb (in Verbindung
mit CYC, INS NOP oder ADR).

die Stopschalter
CYC stoppt nach jeder Mikrooperation
INS stoppt nach jeder Makroinstruktion
ADR stoppt bei der vorgewthlten Instruktionsadresse

7 SENSOR-Schalter; diese liegen parallel zu den externen Sensoreingtngen.
INT-Schalter; er macht - wenn eingelegt - die externen Sensoreinginge un-
wirksam.

Die Taste STA startet das Programm auf Ebene 0.

HLT schaltet die laufende Programmebene aus.
END setzt den Instruktionszthler (N-Register) auf die Kernspeicher-Anfangs-
adresse 10200. |

MEM bewirkt Lesen und Anzeigen des Speicherinhaltes der angewahlten
Adresse bzw. Neueinschreiben der eingestellten Information in die ange-
wahlte Adresse.
REG entspricht MEM fir die angewdhlte Registeradresse der laufenden Ebene
(Zu der angewthlten Adresse wird die jeweils laufende Programmebene hin-
zugeodert.

-~ 79 -

- Der Taster A bewirkt die Anzeige des Adre@register-Inhalts
BO” " " der letzten ausgefiihrten Mikroinstruktion
Cc" " " des Mikroprogrammzihler-Inhalts (nachster

Mikroschritt)
D " " " " Speicherpuffer-Inhalts
E "w. 8 " " Statusregister-Inhaltes
FO " " " Startspeicher-Inhalts der Ebene 0...7

- Die Lampe PRG zeigt an: Programm lduft
IPT " "; Interrupt; eine héhere Programmebene als 0 Iduft
PSE " " : Pause; bei Stop oder langsamer Ein/Ausgabe
DPL " ": Display; Anzeigezyklus léuft
ACC " "': Access; ein direkter Speicherzugriff (der Peripherie)

lauft.
CK1l " "s Parityfehler vom Kernspeicher
CK2 "“ ": Parityfehler von der Peripherie
CK3 " ": Netzausfall nach Netzwiederkehr

Die Frontplatte der Stromversorgung enthalt den Netzschalter (Wippschalter), der
aufleuchtet, wenn der Rechner eingeschaltet ist.

Programmtest

Zum Uberpriifen des Programmverlaufs sind verschiedene Testméglichkeiten eingebaut,
die unter Zuhilfenahme der Stopschalter benutzt werden kénnen.

Ist der gelbe Schalter INS nach unten geschaltet, so fiihrt das Programm bei jeder
Betdtigung der Taste GO einen Befehl (Makrobefehl) aus und halt bei Beginn der
nachsten Operation an. Die neue Instruktion ist bereits gelesen und auf C-, E- und
A-Register verteilt. Diese Registerinhalte kann man so lange im 20-bit-Lampenfeld
sichtbar machen, wie man die entsprechenden Tasten betitigt.

Der Operationsteil steht dann in den Bits 3...8 des C-Registers, die Befehlsergtin-
zung in den Bits 0...2 des E~Registers und der AdreBteil in den Bits 0...8 des
A-Registers. Im D-Register ist noch die komplette Instruktion zu sehen. Im B-Re-
gister steht die gerade ausgefihrte Mikroinstruktion (Bit 17, 16, 11 und 10).

AuBer den Registerinhalten kénnen beliebige Speicheradressen angezeigt werden.
Hierzu ist es erforderlich, die gewUinschte Adresse mit dem 16~stelligen AdreB-
schalter vorzuwdhlen (Schalter nach unten - AdreBbit vorgegeben). AuBerdem
muB die Taste MEM betdtigt werden. Fir diese Zeit ist dann der Inhalt dieser

Adresse im Lampenfeld links oben sichtbar. AuBerdem leuchtet die gelbe Lampe
DPL auf.

- 80 -

Will man den Inhalt der niveaugebundenen Kernspeicher-Register sehen, so geniigt
es, mit den Adre@schaltern die oktale "Einer-Adresse"” (3 AdreBschalter am rechten
Ende des AdreBschaltersatzes) vorzuwdhlen und die Taste REG zu betitigen. In die-
sem Falle werden die Registerinhalte des gerade in Ausfthrung stehenden Niveaus an-
gezeigt. |

Ist der Schalter CYC nach unten geschaltet, so fUhrt das Programm nach jeder Betd-
tigung der Taste GO einen Mikroprogrammschritt durch und halt nach Beendigung
dieses Schrittes an.

Ebenso wie die Stops durch den Schalter INS kénnen alle Register (A, B, C, D,E, F)
und alle Speicher-Zellen auf die gleiche Weise angezeigt werden.

In den Registern A, D und E ist dann der jeweils vom Mikroprogramm bestimmte In-
halt anzeigbar. Die gerade ausgefiihrte Mikroinstruktion ist im B-Register, die Adres-
se der folgenden Mikroinstruktion im C-Register enthalten.

Durch Betttigen der Taste ADR (Schalterstellung nach oben) ist es mdglich, den Rech-
ner dann anzuhalten, wenn die Instruktionsadresse und die im Adrefschaltersatz einge-
stellte Adresse ubereinstimmen. Bei der eingestellten Instruktion halt der Rechner an,
als sei der Schalter INS betdtigt.

Alle Register und alle Speicher-Zellen kénnen auch nach diesem Stop angezeigt wer-
den.

Wenn der Rechner durch einen der Stop-Schalter angehalten worden ist, leuchtet die
gelbe Lampe PSE im Lampenfeld oben rechts auf. Werden die Stop-Schalter wieder
in die Mittelstellung gebracht, lauft das Programm nach Betitigung der Taste GO
normal weiter.

Andern von Kernspeicherplatzen

Will man den Inhalt von Kernspeicherplatzen Gndern, so muB man den Inhalt der
entsprechenden Adressen anzeigen (Vorwahl der Adresse und Betitigen von MEM oder
REG). Das ist méglich, nachdem der Rechner durch einen Stop angehalten worden ist
oder wenn alle Niveaus ausgeschaltet sind.

Wahrend die Tasten MEM oder REG betitigt sind, mu man nun die Taste CLR (mitt-
leres Tastenfeld links) nach oben schalten. Dadurch wird der Inhalt dieser Kernspei-
cher-Zelle Null gesetzt. Nun kann man neue Bits in diese Zelle tbergeben, indem
man die entsprechenden Tasten (mittleres Tastenfeld links) nach unten schaltet. Das
eingegebene Bit ist sofort im Lampenfeld sichtbar. Wdahrend die Tasten MEM oder
REG betttigt sind, kénnen so beliebige Inhalte in alle Kernspeicher-Zellen einge-
geben werden.

Will man die Kernspeicheradressen Gndern, mu man fir die Zeit der AdreBumschal-
tung die Tasten MEM oder REG loslassen. Erst wenn die neue Adresse eingestellt ist,
kann der Inhalt auf die oben beschriebene Weise gedndert werden.

- gi -

Umschalten der Adressen bei betitigten Tasten MEM oder REG zerstért mehrere Kern-
speicher-Z ellen!

Durch eine solche Eingabe kann man z.B. auch kleine Testprogramme in den Kern-
speicher geben. Dann ist es allerdings erforderlich, dem Instruktionszéhler des ent-
sprechenden Niveaus einen Inhalt zu geben, der um 1 kleiner ist als die erste In-
struktionsadresse (Eingabe auf die oben beschriebene Weise).

Program mierbetrieb

Beim MINCAL 523 la@t sich tber die SENSOR-Schalter der Frontplatte ein Testpro-
gramm zum Eingeben, Andern und Ausgeben von Speicherzellen aufrufen. Als Option
kann dieses Testprogramm auch beim MINCAL 513 eingebaut werden.

Bedienung des Programmierbetriebs

Zu Beginn und bei Wechsel der Betriebsart stets Taste RESET und END betitigen.
Wenn externe Sensoreingdnge angeschlossen, Schalter INT einlegen.

Streifenvorlauf, wenn erwiinscht, so herstellen: Fernschreiber auf LOCAL schalten
(sonst stets auf LINE); Locher einschalten, mehrfach NUL lochen (= ASCII-Code 000g),
dann mehrfach DEL lochen (= RUBOUT = ASCII-Code 377g).

EINZEL-AUSGABE auf Fernschreiber

SENSOR 1 ein. START betdtigen.
Adresse 6-stellig oktal eingeben. Inhalt wird im OKTAL-Format ausgedruckt und CR,
LF wird ausgegeben. Danach wieder eine Adresse eingeben, usw.

EINZEL-EINGABE uber Fernschreiber

SENSOR 1 + 3 ein. START betitigen.
Adresse 6-stellig oktal sowie unmittelbar danach Inhalt (im OKTAL-Format) eingeben.
CR, LF werden ausgegeben. Danach wieder Eingabe von Adresse und Inhalt, usw.

GESAMT-AUSGABE (OKTAL-Format) auf Fernschreiber

SENSOR 1 + 2 ein. START betitigen.
Erste und letzte Adresse des auszugebenden Speicherbereichs je 6-stellig oktal eingeben.
CR, LF werden ausgegeben.

Locher einschalten, wenn Streifen gestanzt werden soll. START betdtigen. Speicherin-
halt wird Wort fur Wort im OKTAL-Format gedruckt und ggfs. gelocht; nach jedem
achten Wort (ler-Adresse = 7) werden CR, LF ausgegeben. Vorgang wird nach Ausga-
be der letzten Adresse beendet.

- 82 -

GESAMT-EINGABE (OKTAL-Format) uber Fernschreiber

SENSOR 1 + 2 + 3 ein. Wenn Streifen-Eingabe: Im OKTAL-Format gelochten Strei-
fen einlegen (im Zufuhrbereich oder auf 1. Zeichen), START betitigen.
Erste und letzte Adresse des einzulesenden Speicherbereichs je 6-stellig oktal einge-
ben. CR, LF werden ausgegeben.

START betitigen. Wenn Streifen-Eingabe: Leser einschalten; wenn manuelle Eingabe:
Wort fiir Wort im OKTAL-Format sowie nach jedem achten Wort (ler-Adresse = 7)
CR, LF eingeben. Lochkombination 021g (entsprechend X-ON) wird uberlesen. Vor-
gang wird nach Eingabe in die letzte Adresse beendet. Leser jetzt ggfs. ausschalten.

Sollen die eingegebenen bzw. eingelesenen Werte gleichzeitig mitgedruckt werden,
mu zusdtzlich SENSOR 6 betdtigt werden.

GESAMT-AUSGABE (ALPHA-Format) auf Fernschreiber

SENSOR 1 + 2 + 4 ein. START betttigen.

Erste und letzte Adresse des auszugebenden Speicherbereichs je 6-stellig oktal einge-
ben. Locher einschalten. START betitigen. Speicherinhalt wird Wort fir Wort im
ALPHA-Format gestanzt. (Gleichzeitig werden die Werte ausgedruckt. Sie sind aber
nicht als Protokoll zu gebrauchen, da 1. unleserliches ALPHA-Format gedruckt wird
und 2. CR, LF fehlen, so da nach einer Zeile der Druckvorgang beendet wird).

Vorgang wird nach Ausgabe der letzten Adresse beendet.

GESAMT-EINGABE (ALPHA~-Format) tber Fernschreiber

SENSOR 1 + 2 + 3 + 4 ein. Im ALPHA-Format gelochten Streifen einlegen (im Zu-
fuhrbereich oder auf 1. Zeichen), START betdtigen.

Erste und letzte Adresse des einzulesenden Speicherbereichs je 6-stellig oktal einge-
ben. CR, LF werden ausgegeben. START betitigen. Leser einschalten. Vorgang wird
nach Eingabe in die letzte Adresse beendet. Leser ausschalten.

GESAMT-EIN/AUSGABE Uber schnelle Lochstreifeneinheit

Zusdtzlich SENSOR 5 ein.

Bedienung wie bei GESAMTEINGABE (OKTAL- oder ALPHA-Format) oder bei GESAMT-
AUSGABE (OKTAL- oder ALPHA-Format). START betatigen. Erste und letzte Adresse
werden Uber Fernschreiber je 6-stellig oktal eingegeben. CR, LF werden ausgegeben.
Lochstreifen einlegen und Leser einschalten bzw. Locher einschalten und Streifenvor-
lauf (erst TRANS und dann ZUF betatigen) herstellen. START betdtigen. Einlese- bzw.
Ausgabevorgang wird nach Erreichen der Endadresse beendet. Leser ausschalten bzw.
Streifenende (Taste TRANS betdtigen) herstellen und Locher ausschalten.

-~ 83 -

Bemerkung: Gilt fir normalen Anschlu8 des 8-Kanal-Fernschreibers uber X-Kanal

ond Standard-ASCll-Interface (und normalen AnschluB von schnellem Leser und

Locher).

OKTAL-Format bedeutet: Vorzeichen (Leerschritt oder Minuszeichen) und 6 Oktal-

ziffern.

ALPHA-Format " : Vorzeichen (f@ entsprechend + oder A entsprechend ~) und

3 Alpha-Stellen

Sensor 1 2 3 4 5 6 7

Einzel-Ausgabe oktal Fernschreiberx
x x Einzel-Eingabe oktal Fernschreiber
x x Gesamt~Ausgabe oktal Fernschreiber
x x xX Gesamt-Eingabe oktal Fernschreiber
x ™% xX x Gesamt-Eingabe oktal Fernschreiber

mit Protokoll
x xX x Gesamt-Ausgabe alpha Fernschreiber
x “x xX xX Gesamt-Eingabe alpha Fernschreiber
x x x Gesamt-Ausgabe oktal schneller Locher
x x xX x Gesamt-Eingabe oktal schneller Leser
x x x x Gesamt~Ausgabe alpha schneller Locher
x x xX x xX Gesamt-Eingabe alpha schneller Leser

-~ 84 -

- 85 -

M
I
N
C
A
L

5
1
3

D
I
G
I
T
A
L
R
E
C
H
N
E
R

 O
O
Q
O
Q
O
O
O
O
C
O
C
O
O
O
O
O
C
O
C
0
C
0
O

Po
-

17
16

35
14

13
12

71
3
0

9
6

7
6

5
4

3
2

71
~«-4

N
P

C
L
R

O
O
O
W
W
D
O
V
D
O
C
O
O
O
C
O
0
O
0
0
0
0
0

p
e

4
2

}
4

2
1

4
2

41
4

2
1

4
2

1
4

2
41

N
O
P
A
D
R

A
D
R
E
S
S

O
W
O
W
D
W
O
O
V
D
O
V
O
O
O
0
O
O
0
O
O
C
O
O

G
O

R
E
S

C
V
C

I
N
S

i
4

2
1

4
2

}
4

2
1

4
2

,
4

2
1

M
U
L
H
E
I
M
/
R
U
H
R
 O
Q
O
O
0
0
0
O
O
O

P
R
G

IP
T

P
S
E
D
P
L
A
C
C

CK
?

C
K
2
C
K
3

DO
€

F

O
O
0
O
0
0
0
0
0

S
T
A
H
L
T
E
N
D
M
E
M
R
E
G

A
B

C

S
E
N
S
O
R

O
W
W
D
0
O
0
0
0
0

I
N
T

1
2

3
=4

5
6

7

Aufbau

Die Standardausristung der MINCAL 500-Rechner besteht aus zwei 19"-Einschtiben:

Stromversorgung 19"-Einschub D
Rechnerrahmen
Speicherrahmen 19"=Einschub F
Frontplatte

Beide Einschibe sind miteinander verschraubt und an zwei Teleskopschienen befestigt.
Somit kénnen beide bequem aus dem Schrank herausgezogen werden.

Rechnerrahmen, Speicherrahmen und Frontplatte des oberen Einschubs sind durch
Scharniere verbunden und kénnen auseinandergeklappt werden.

Wie die Zeichnung zeigt, kénnen die einzelnen Bauteile leicht erreicht werden.

Die Frontplatte der Stromversorgung enthalt den Netzschalter (Wippschalter), der
aufleuchtet, wenn der Rechner eingeschaltet ist. Auf der Rickseite ist der AnschluB
fur die Netzspannung.

Durch Entriegeln des Schnellverschlusses unter dem rechten Griff der Rechner-Front-
platte kann diese aufgeklappt werden. Somit sind die Bausteine der Speichereinheit
(Festwert- und Kernspeicher) von vorne zugdnglich.

Ist der gesamte Einschub aus dem Schrank herausgezogen, so kann mit einem Schrau-
benzieher ein weiterer Schnellverschlu&, der sich rechts an der Seitenwand des Spei-
cherrahmens befindet, gelést werden. Danach laBt sich der gesamte Speicherrahmen
nach links schwenken, so da die Verdrahtung von Speicher- und Rechnerrahmen zu-
gidnglich ist.

Der Rechnerrahmen enthalt alle Baugruppen des Rechners auBer Fest- und Kernspeicher.
Auch ist im Rechnerrahmen noch Platz fir einige Erweiterungen bzw. Interfaces
(Optionen).

Die Adapter kénnen erst nach Lésen der Befestigungsschrauben entfernt werden.

- 8 -

FRONTPLATTE

(ausgeschwenkt)

0°

PpretzZ

LOE MCTE rae Enart reg net

 (l

SPEICHER-

R AH MEN

(ausgeschwenkt)

STROM-

VERSORGUNG

(heraus -

gezogen)

1©

- 87 -

Lo

a!

RECHNER-

T RAHMEN

{heraus-

gezogen)

Assembler

VORBEMERKUNG

Der Assembler/Editor MINCASS 500 ist ein Programm zur Ubersetzung von symbo-
lischen Programmen in die Maschinensprache der Rechner-Baureihe MINCAL 500.

Der Assembler wird dem Benutzer in Form eines Lochstreifens zur Verfligung gestellt.
Der Lochstreifen wird in den Kernspeicher eingelesen; danach ist die Anlage zur

Programmumwandlung bereit. Die Umwandlung erfolgt in 2 Laufen:

A-Lauf: Eingabe des symbolischen Programms (manuell, Uber Lochstreifen
oder aus Editor-Bereich im Kernspeicher) mit Prifung auf formale

Fehler, Aufbau der Markenliste sowie ggfs. manueller Korrektur
und ggfs. Ausgabe des symbolischen Programms als Lochstreifen
oder in Editor-Bereich

C-Lauf; Erneute Eingabe des symbolischen Programms (wie oben) und
Ausgabe in umgewandelter Form (Maschinencode) als Loch-
streifen bzw. Drucken des Programms in Form einer Liste.

Weiterhin kann der Assembler den C-Lauf ohne Ausgabe durchfihren, wobei nur
auf Fehler gepruft wird. AuBerdem laRt sich die Markenliste léschen, prufen,
verdndern und ausdrucken.

Rechner-Ausstattung:

Speicher~Belegung:

Startadresse:

Anweisungsliste:

Merkmalsliste:

Editor—Bereich:

MINCAL 513/523
Grund + erweiterter Befehlsvorrat
Programmierhilfe X00 (empfohlen)
Kernspeicher 4k oder gréGer
Konsol-Fernschreiber (8-Kanal) an Ebene 0
Schnelle Lochstreifenausriistung (8-Kanal-Leser/Locher)
an Ebene 0 (empfohlen)

0000. ..6041

Platz 1000

Enthalt flr 105 Anweisungstypen Raum, davon 99 fest
installiert und 6 zur Verfigung des Benutzers

Enthalt Raum fiir 500 Merkmale

ca. 1000 Worte lang (bei 4k Kernspeicher); entspricht
ca. 200 symbolischen Anweisungen.

- 88 -

HANDHABUNG

Der Lochstreifen MINCASS 500 wird im Zufuhrbereich in den schnellen Leser

eingelegt.

An der Rechner-Frontplatte werden die Tasten RES und END betdtigt. Sensor-

Schalter INT, 1, 2, 3, 4 und 5 einlegen (fir eingebaute Programmierhilfe X00;
Gesamt-Eingabe in Alpha-Format Uber schnellen Leser). Taste STA betutigen und
Uber Fernschreiber die Adressen 000100 und 004033 eingeben.

Taste STA erneut betdtigen. Der Assembler wird eingelesen. Danach Tasten RES
und END drucken. Sensor-Schalter 1 bis 5 wieder zurticksetzen. Die Umwandlung
kann beginnen.

Betriebsarten

Mit Betatigen der Taste STA wird der Assembler gestartet. Von diesem Augenblick
an érfolgt die Bedienung im Dialogverkehr tber den Konsol-Fernschreiber: Nach
dem Ausdruck der Programmbezeichnung (MINCASS 500) fragt das Programm, wel-

che Betriebsart infrage kommt (Ausdruck auf Fernschreiber):

R-A (A-Lauf)
R-C (C-Lauf)
PRI (Drucken Programm)
ADR (Markenliste untersuchen)
COM (Kommentar zum Programm)
END (Ende)

Die gewunschte Betriebsart ist durch Eingabe von Y zu wthlen; nicht erwUnschte
Betriebsarten sind durch N (oder ein beliebiges Zeichen auBer Y) zu verwerfen.

Nach Ablauf einer Betriebsart fordert der Rechner wieder zur Vorwahl auf.

Mit END wird das Programm beendet. Es kann durch Betdtigen der Taste STA
wieder begonnen werden.

A-Lauf

Nach Betétigen von R-A durch Y beginnt ein A-Lauf mit dem Ausdruck INP
(Eingabe) und der Frage nach der Herkunft des symbolischen Programms:

MAN (wird manuell tuber Konsol-Fernschreiber eingegeben)
RDR (wird als Lochstreifen eingegeben)
MEM (befindet sich im Editor-Bereich des Kernspeichers).

~ 39 -

Darauf folgt Drucken von OTP (Ausgabe) und die Frage, wohin das symbolische
Programm wahrend des A-Laufs (ggfs. in korrigierter Form) wieder ausgegeben

werden soll;

PCH (Uber Locher ausgeben)
MEM (in Editor-Bereich ablegen)

Es schlieBen sich folgende Fragen an:

STP (Anhalten bei ausgewdhlten Anweisungen zwecks Korrektur)
ERR (Anhalten bei formalen Fehlern)
CLR (Léschen Markenliste).

Erwunschte Funktionen sind mit Y zu bestatigen, nicht bendtigte mit N (oder
beliebigen Zeichen auBer Y) zu verwerfen.

Dabei ist folgendes zu beachten:

Nach INP ist eine und nur eine Eingabeart zu wahlen. MAN ist fur die Erstein-
gabe eines symbolischen Programms zweckmaBig. Bei RDR liegt bereits ein Loch-
streifen mit dem symbolischen Programm vor (vor Start des Assembler-Programms in
schnellen Leser einlegen!). MEM ist nur bei einem wiederholten A-Lauf sinnvoll;
dazu ist vorher das symbolische Programm in einem A-Lauf (mit OTP MEM) in den
Editor-Bereich des Kernspeichers abzulegen.

Nach OTP kann eine der beiden Ausgabearten gewahlt werden. PCH ist zweck-
maBig bei Korrekturen, wenn der Editor-Bereich nicht benutzt wird, aber auch

zur Ausgabe des im Editor-Bereich korrigierten, endgultigen symbolischen Programms
MEM dagegen empfiehlt sich stets bei Editor-Betrieb (sowohl fur Ersteingabe als
auch fur Korrektur-A-Ldufe).

STP bewirkt, da®B das Einlesen des symbolischen Programms beim A-Lauf an be-
stimmten Stellen angehalten wird, um Korrekturen durchzufuhren. Zur Vorwahl

der Stelle, wo das Programm angehalten werden soll, ist einzugeben:

Die laufende Anweisungsnummer (4-stellig dezimal), oder
das Instruktionsmerkmal (falls vorhanden)

der Anweisung, bei der angehalten werden soll. Der A-Lauf wird an der betref-
fenden Stelle angehalten, die Anweisung wird ausgedruckt, und nach Ausdruck von

SEL (Vorwahl)

- 90 -

ist eine der folgenden Korrekturarten einzugeben:

D (Anweisung ldschen)
A (Anweisung Gndern, d.h. neu eingeben)
| (Anweisung ist in Ordnung, jedoch danach neue Anwei-

sung einfiigen)
4 (= Leertaste; Anweisung ist in Ordnung; ndchste Anwei-

sung holen)

G (Anweisung ist in Ordnung; Aufheben des Stops, verbun=
den mit never Stop-Vorwahl).

ERR bedeutet, da formal fehlerhafte Anweisungen wahrend des A-Laufs mit Fehler-
art ausgedruckt werden sollen (siehe Fehlerliste).

CLR hat, wenn mit Y bestatigt, zur Folge, dal die Markenliste vor Beginn des

A-Laufs geldscht wird. Im Regelfall ist dies vor jedem A-Lauf erforderlich; jedoch
kann es erwinscht sein, die Merkmalsliste zu erhalten, wenn mehrere Programme,
deren Adressen aufeinander Bezug nehmen, nacheinander assembliert werden.

Die Anweisungen werden vom Assembler gezdhlt und mit einer laufenden Nummer
versehen, die zu Beginn der Anweisung gedruckt wird. Die gedruckten Nummern
beziehen sich auf den aktuellen Lauf; zwecks Anhaltens eingegebene Nummern be-

ziehen sich auf das zu korrigierende Programm, d.h. sind unabhdngig von Lé-
schungen oder Einfligungen im aktuellen Lauf.

Es ist mindestens ein A-Lauf flr jede Umwandlung erforderlich. AzLaufe kénnen
beliebig oft wiederholt werden, z.B. zwecks Korrektur des symbolischen Programms;
auf vorheriges Léschen der Merkmalsliste mit CLR ist dabei zu achten.

C-Lauf

Hierfir wird R-C mit Y bestatigt; es folgt mit INP die Frage nach dem Eingabe-
medium fiir das symbolische Programm:

RDR (wird als Lochstreifen eingegeben)
MEM (befindet sich im Editor-Bereich des Kernspeichers)

wovon eine und nur eine mit Y zu bestdtigen ist, und mit OTP die Vorwahl der

Umwandlungsart:

LIS (Ausdrucken der Programmliste)
MAC (Lochen Maschinencode-Streifen).

- 9] -

Vorgewahlte Ein/Ausgabearten sind mit Y zu bestdtigen.

Hierbei ist zu beachten:

Nach INP ist entweder RDR zu withlen (symbolischen Lochstreifen vorher mit
seinem Anfang in Leser einlegen!) oder MEM (setzt A-Lauf mit Editor-Betrieb
voraus, d.h. symbolisches Programm mu im Editor-Bereich des Kernspeichers

stehen).

Nach OTP kann LIS oder MAC gewahlt werden;

LIS fuhrt zum Ausdruck des gesamten Programms. Je Anweisung wird eine Zeile

gedruckt; sie enthalt;

Laufende Anweisungsnummer (4 Dezimalstellen),
Fehlerart (bei Fehler),
Instruktionsadresse (6 Oktalstellen),
Anweisung (Instruktionsmerkmal, Befehl, Ergdnzung, Vorzeichen,

AdreBmerkmal),
Maschinencode (Vorzeichen + 6 Oktalstellen),

Kommentar.

Beim Listen werden jeweils 64 Zeilen zusammenhdngend gedruckt mit Abstand zu
den ndchsten 64 Zeilen, so daf trennbare Seiten der GréBe DIN A4 entstehen;
die Seiten werden mit 001, 002, ... numeriert. Dahinter steht die Programmbe-

zeichnung.

MAC erzeugt einen Maschinencode-Lochstreifen im Oktal-Format fiir das umge-
wandelte Programm. Der notwendige Streifenvorlauf (Transport- und Zufuhrlochung)
wird qutomatisch erzeugt.

Wahlt man beim C-Lauf weder LIS noch MAC vor, werden nur fehlerhafte Anwei-

sungen auf dem Fernschreiber ausgedruckt (wichtig fur Feststellung von Adressie-
-ungsfehlern durch fehlende Adrefmarken oder Uberschreitung des relativ adressier-
oaren Bereichs).

Drucken Protokoll

Diese besondere, durch Y nach PRI zu wahlende Betriebsart hat den Zweck, das
jesamte symbolische Programm oder Teile davon auszudrucken.

Der zu druckende Bereich ist einzugeben mit

Ifd. Nr. der ersten und
Ifd. Nr. der letzten Anweisung des Bereichs

-~ 92 -

(jeweils 4-stellig dezimal); danach folgt als Bestdtigung eine Leertaste (Eingabe
eines anderen Zeichens bewirkt, da®B die Ifd. Nummern erneut eingetastet werden
mUssen).

Danach folgt mit INP die Frage nach der Eingabeart fir das symbolische Programm:

RDR (wird als Lochstreifen eingelesen)
MEM (befindet sich im Editor-Bereich des Kernspeichers).

Zutreffendes ist mit Y zu bestdtigen.

Es folgt der Ausdruck des symbolischen Programms im ausgewdhlten Bereich.

Untersuchen Markenliste

Beim A-Lauf wird ein Keller aufgebaut, der die im Programm verwendeten symbo-
lischen Marken und die ihnen zugewisenen Adressen bzw. sonstigen Werte enthalt

(Merkmalsliste); der C-Lauf bedient sich dieses Kellers beim Einsetzen der Werte
austelle der Marken.

Es kann nutzlich sein, die Markenliste vor dem C-Lauf zu untersuchen bzw. auch

zu Gndern, z.B. um fehlende Adressen fir anschlieBende Programmteile einzusetzen
oder unvollstdndige Marken zu suchen.

Hierzu bestdtigt man die Betriebsart ADR mit Y, worauf FCT ausgedruckt wird. Die
erwuUnschte Funktion wahlt man vor durch Eintasten eines Zeichens:

L (Listen aller Marken)
E (Listen aller fehlerhaften Marken)
F (Suchen/Andern einer Marke).

Mit L wird die Gesamtheit der Marken einschlieBlich der zugehérigen Adressen
bzw. der zugewiesenen Werte ausgedruckt, und zwar je Zeile

die symbolische Marke (3 druckbare Zeichen), und

die Adresse bzw. der zugewiesene Wert (6 Oktalstellen).

Hierbei ist zu beachten, da letztere in der hochsten Oktalstelle normalerweise
eine 6 enthalten missen. Ist nur eine 2 vorhanden, so ist die betreffende Marke
nur als AdreB-(Rechts-)Merkmal im Programm vorgekommen; eine 4 an dieser
Stelle bedeutet, dafS die Marke nur als Instruktions-(Links-)Merkmal gefunden wor-

den ist.

-~ 93 -

Mit E werden alle die Marken (wie oben beschrieben) ausgedruckt, die keine 6
in der ersten Oktalstelle enthalten, also unvollstandig sind. Dies gibt Hinweise

auf Programmfehler (insbesondere bei fehlenden Linksmarken).

Mit F wird eine bestimmte Marke in der Liste gesucht. Die Marke ist 3-stellig
einzugeben. Ist die Marke vorhanden, wird die zugehtrige Adresse 6-stellig oktal
gedruckt. Dann ist A einzutasten, wenn eine Anderung gewunscht wird; danach

miussen Marke (3-stellig) und Adresse (6 Oktalstellen) neu eingegeben werden.

Jedes andere Zeichen statt A bestdtigt die Marke und Gndert sie nicht. Ist die
Marke nicht vorhanden, wird die Betriebsart beendet (Ausdruck R-A). Neuve Mar-
ken kénnen dadurch eingefiigt werden, da man &@Q@@ eingibt (und danach die

zugehorige Adresse). Ebenso werden Marken dadurch geldscht, da man @@@
eingibt sowie fur die Adresse sechs Nullen.

Programmbezeichnung eingeben

Hierflr ist COM mit Y zu bestdtigen und anschlieBend eine aus 18 Zeichen be-
stehende Programmbezeichnung einzugeben. Diese wird dann beim Protokoll am

Anfang jeder Seite gedruckt.

FEHLERLISTE

Die beim Assembler-Betrieb ausgedruckten Fehler-Schlissel haben folgende Be-
deutung:

Schlisselzahl Fehlerart

01 AdreBmerkmal nicht dezimal
02 " " oktal
03 Instruktionsmerkmal mehrfach vorhanden
04 Verbotenes Zeichen in Ergtinzung oder AdreBmerkmal
05 Uberlauf Markenliste
06 Anweisungstyp nicht vorgesehen

10 AdreBmerkmal fehlerhaft
1] Sonstiger Fehler
12 Adresse relativ nicht erreichbar

~ 94 -

ALLGEMEINE REGELN

Programmaufbau

Ein symbolisches Programm, das vom Assembler MINCASS 500 verarbeitet wird,
besteht aus einer Folge von "“Anweisungen". Die Anweisungen sind in einzelne
Gruppen von Zeichen gegliedert (siehe Syntaxregeln).

Kennzeichnend fir eine Anweisung ist ihr "Typ"; es sind nur die gultigen Anwei-
sungstypen zuldssig (siehe spdter). Es gibt vier Arten davon:

Befehle
Definitionen
Zuweisungen

Steveranweisungen.

Die ersten beiden belegen im Maschinenprogramm jeweils ein Wort (im Falle der
Felddefinition F sogar mehrere); symbolische Befehle erzeugen entsprechende Ma-
schinenbefehle, wahrend Definitionen Platze reservieren oder mit Festwerten bele-
gen. Zuweisungen ordnen symbolischen Marken gewisse Werte zu; sie belegen im
Maschinenprogramm keinen Platz. Steveranweisungen stehen am Anfang und am

Ende des Programms oder halten reine Textzeilen frei; auch sie belegen keinen
Platz.

Jedes Programm beginnt mit der Steveranweisung U (mit Angabe der Anfangs-
adresse) und endet mit der Steveranweisung Z. Die dazwischen liegenden Befehle
und Definitionen werden in ihrer Reihenfolge ins Maschinenprogramm eingesetzt.
Zuweisungen kénnen an beliebiger Stelle im Programm stehen; jedoch mu jede
Marke, die einer anderen zugewiesen wird, vorher definiert sein.

Bei der Niederschrift des symbolischen Programms benutze man die MINCAL-~-In-
struktionslisten; jede Zeile mit einem giltigen Anweisungstyp entspricht darin
einer Anweisung.

Zeichenvorrat

Es sind alle 64 druckbaren Zeichen des ASCII-(ISO-7-) Codes zuldssig, einschlieB-
lich Leerschritt, soweit sie nicht durch die Gestalt der einzelnen Anweisungen einge-
schrankt sind.

Zu beachten ist jedoch:

Das "Fehlerzeichen" <«~ (Code 137g) léscht alle davor stehenden Zeichen der
Anweisung; sie beginnt danach von neuvem. Das "Kommentarzeichen" \ (= Code
134g) leitet einen Kommentar ein und darf nur hierzu benutzt werden.

- 95 -

Alle nicht-druckbaren Zeichen werden uberlesen. Das Zeichen "Leser aus"
(X-OFF = Code 023g) ist das Zeichen flr Anweisungs-Ende. Bei manueller
Eingabe kann das Semikolon (;) flr "Ende Anweisung" benutzt werden; es
erzeugt automatisch die notwendigen Steverzeichen.

Mit "“echten Zeichen" sind im folgenden die 64 druckbaren Zeichen au@er Leer-
schritt, Fehler- und Kommentarzeichen gemeint.

Syntaxregeln

Eine Anweisung ist (in dieser Reihenfolge) aus Instruktionsmerkmal, Befehl, Ergén-
zung, Vorzeichen, AdreBmerkmal und eventuellem Kommentar aufgebaut;

LLLLBBBE-AAAXXX/\..-,

|
Instr.-

leHalft 2.Hale Kommentar
merkmal |

Wg vss Kommentarzeichen
Befehl AdreBmerkmal

Vorzei-

Ergdnzung chen

Das Instruktionsmerkmal ist eine symbolische Marke (siehe spdter); sie umfaBt 2
oder 3 echte Zeichen und muB unmittelbar nach dem Ende der vorigen Anweisung
stehen. Sie kann entfallen.

Der "Befehl" enthalt den Anweisungstyp; er besteht aus 1, 2 oder 3 echten Zei-
chen. Er folgt auf Anweisungs-Ende + Leerschritt oder auf das Instruktionsmerkmal
mit beliebig vielen Leerschritten dazwischen (mindestens 1] Leerschritt bei Instruk-
tionsmerkmalen mit 2 echten Zeichen). Jede Anweisung mu einen giltigen Anwei-
sungstyp in der Befehlsspalte enthalten. Fir den Befehl missen (ggfs. durch nach-
folgende Leerschritte) insgesamt 3 Zeichen vorgesehen werden.

Die Ergdnzung ist unmittelbar an den Befehl anzuschlieBen; sie besteht aus einem
echten Zeichen oder einem Leerschritt (falls nicht vorgesehen).

Folgt (sofort oder mit beliebig vielen Leerschritten) auf die Ergdnzung ein Minus-
zeichen (-), wird es als negatives Vorzeichen aufgefaGt.

Das AdreBmerkmal hat bis zu 6 echte Zeichen (falls vorgesehen); es folgt unmittel-
bar auf das Minuszeichen bzw. beginnt mit dem ersten echten Zeichen nach der
Ergdnzung.

- 9% -

Das Kommentarzeichen »eendet die eigentliche Anweisung; alle danach stehenden
Zeichen bis zum Anweisungsende werden als Kommentar aufgefaBt. Der Kommentar
sollte nicht mehr als 35 Zeichen umfassen. Er kann unmittelbar hinter dem letzten
Zeichen der eigentlichen Anweisung beginnen und wird durch das Anweisungsende
begrenzt.

Das Anweisungsende kann unmittelbar nach dem letzten Zeichen der Anweisung
stehen.

Regeln fir Marken und AdreBmerkmale

Symbolische Marken

Instruktionsmerkmale bestehen stets aus symbolischen Marken; AdreBmerkmale
konnen eine oder zwei symbolische Marken enthalten.

Eine symbolische Marke reprasentiert im symbolischen Programm eine Adresse
oder einen zugewiesenen Wert.

Marken bestehen aus 2 oder 3 echten Zeichen; das erste Zeichen darf keine
Ziffer sein.

AdreBmerkmale

Als AdreBmerkmale koénnen vorkommen:

Marken (siehe oben).
Oktalzahlen (3 oder 6 Zeichen aus den Ziffern 0...7),
Dezimalzahlen (1 bis 5 Zeichen aus den Ziffern 0...9, stets mit Dezimal-
punkt dahinter).

Ferner sind Kombinationen aus einer Marke (3 echte Zeichen oder 2 echte
Zeichen + Leerschritt) und einer weiteren Marke, einer 3-stelligen Oktal-
zahl oder einer I- bis 2=stelligen Dezimalzahl (mit Punkt danach) zuldssig.

In diesen Fallen wird die Summe beider dem AdreBmerkmal zugewiesen
(auBer bei Produktzuweisung P, wo das Produkt gebildet wird).

Alle obengenannten AdreBmerkmale kénnen verwendet werden, wenn in
Abschnitt 5 “universell" angegeben ist.

Ferner ist bei einigen Anweisungen vorgesehen:

Registerangabe (1 Zeichen: U, V, W, X, N, 1, 2 oder 3).

-~ 97] =

GULTIGE ANWEISUNGEN

In der Befehlsliste des Assemblers sind die nachstehenden Anweisungstypen mit den
folgenden Vorschriften fir die Form der Anweisung vermerkt:

Steveranweisungen

U Ursprung Programm
Definiert die Adresse der nuchstfolgenden speicherbelegenden Anweisung
und mu am Anfang des Programms stehen.

AdreBmerkmal: 6-stellige Oktalzahl.

Kommentarzeile
Wird uberlesen. Ein dahinterstehender Kommentar wird jedoch im Protokoll
an ublicher Stelle gedruckt.

Ende Programm
SchlieBt das symbolische Programm ab.

Zuweisungen

M

X

SpeicheradreB-Zuweisung (Seite 0 des Kernspeichers)

Externe AdreB- Zuweisung

Instruktionsmerkmal: Notwendig
AdreBmerkmal: 3-stellige Oktalzahl.

Beliebige Zuweisung (Equal)

Instruktionsmerkmal: Notwendig
Vorzeichen: Minuszeichen erlaubt

AdreBmerkmal: universel|

Produkt- Zuweisung

Instruktionsmerkmal: Notwendig
AdreBmerkmal: Marke * Marke

Marke * Oktalzahl
Marke * Dezimalzahl
(es wird das Produkt zugewiesen).

Element

Instruktionsmerkmal: Notwendig
AdreBmerkmal: Dezimalzahl

(Weist auf einen Speicherplatz in einem vorher mit F re-
servierten Feld. Der erste Platz des Feldes hat den Index 0).

- 98 -

Definitionen

YY

YI
Y2
Y3

Variable (freier Platz)

Feld (von Variablen)

Instruktionsmerkmal: Bezieht sich, wenn vorhanden, auf den ersten Platz

AdreBmerkmal:

Bindrzahl

Vorzeichen:

AdreBmerkmal:

Oktalzahl

Vorzeichen:

AdreBmerkmal:

Alpha-Wort

Vorzeichen:

AdreBmerkmal:

Adresse

Vorzeichen:

AdreBmerkmal:

des Feldes

Universell

Minuszeichen bedeutet negativen Wert (Zweier-Komple-
ment)

Dezimale Ganzzahl (1. bis 39999.), oder
dezimaler Bruch (.00004 bis .99998)

Minuszeichen setzt N-Bit auf 1

6-stellige Oktalzahl

Minuszeichen setzt N-Bit auf 1. Erforderlich bei

fUhrenden Leerschritten oder Minuszeichen

3 druckbare Zeichen

Minuszeichen bedeutet Niveaubindung
Marke

Adressen, mehrfach indirekt (mit 1 in Bit 17)
Wie Y

Adresse (mit | in Bit 15)
Adresse (mit | in Bit 16)

Indizierte Adressen fur

MINCDOS 500
Adresse (mit | in Bit 15 und 16)
Wie Y

-~ 99 -

-
OO
L

=
MINCAL INSTRUKTIONSLISTE

BEARBEITER Meyer

z
K |SORTIERMERK- INST SEFEH

Zz MAL MERK-~
MAL

ADRESS MERK -

MAL

V
O
R
Z
E
I
C

42 ~ u
n

_ a ~
— 19 21

~~
T
O
P
S
O
A

Ee
)

wi
Nm

nm
O
p
i

a
p
a

ae
lw

e
l
m

O
p
a

Oi
w
t

EN
wl

nm
[|

3
w
y

{
|

A
P
;

e
s

|

w
l

r
R

z

K

Z

DATUM 10.3. #2

Computer
SYSTEME

BEMERKUNGEN

“
Y
N
U
O
D
O
N
d

/
Y
N
N
W
O

L
i
v
e

Symbolische Befehle

NOP
VBL
VBR
VDL
VDR
SLN
HLT
ECL
DCL

COD

SRL
SRA

SLL
SLA

SRR

MZR
MPO
MMO
MIC
MDC
MCO
MC]

LDC
ADC

Keine Operation
Dezimal-Bindr Linkskomma
Dezimal-Bintr Rechtskomma
Bindr-Dezimal Linkskomma
Bindr-Dezimal Rechtskomma
Normalisieren

Halt

Unterbrechung zulassen
Unterbrechung verhindern

Keine weiteren Angaben

Code-Operation

AdreBmerkmal: 6-stellige Oktalzahl (4 letzte Stellen geben Beginn
des Mikroprogramms im Festspeicher an)

Schiften rechts logisch
Schiften rechts arithmetisch

Schiften links logisch
Schiften links arithmetisch

Ergdnzung: W, X oder D (vorgeschrieben)

AdreBmerkmal: entfallt (Einbit-Schiftbefehle), oder
Universell (Mehrbit-Schiftbefehle)

Schiften rechts mit Runden

AdreBmerkmal: Universell

Null Setzen

Plus Eins Setzen

Minus Eins Setzen

Inkrementieren

Dekrementieren

Komplementieren
Komplementieren und |nkrementieren

Adre8merkmal: 3-stellige Oktalzahl oder
Marke oder
Register

(= Adresse in Seite 0)

Laden Konstante

Addieren Konstante

Ergdnzung: Register (vorgeschrieben)
Vorzeichen: Minuszeichen bedeutet negative Konstante

AdreBmerkmal: Universel|

- 10] -

LDR
TRR
ADR
SBR
FOR
FAR

LD
TR
AD
SB
MP

FO
FA
FE

CP

BR

In Register Laden

Register Transferieren
Zu Register Addieren
Von Register Subtrahieren
ODER mit Register
UND mit Register

Ergdnzung: Register (vorgeschrieben)
AdreBmerkmal: Universell, oder

Register

(= Adresse in Seite 0)

Laden

Transfer
Addieren

Subtrahieren
Multiplizieren
Dividieren

Inklusives ODER

UND
Exklusives ODER
Vergleichen

Ergdinzung: Fehlt, oder
1, 2 oder 3 (Indexregister)

Vorzeichen: Minuszeichen bedeutet Niveaubindung (vor Marke
bzw. 3-stelliger Oktalzahl) oder relative Adressierung
in Ruickwéartsrichtung (vor Dezimalzahl)

AdreBmerkmal: Marke, oder
3-stellige Oktalzahl (Adresse in Seite 0), oder
Dezimalzahl (1. bis 511. = relative Adressierung), oder
Register

Bei indirekter Adressierung wird an den Befehl ein Y angehdngt
(z.B. LDY).

Verzweigen

Ergdnzung: Fehlt, oder
1, 2, 3, 4, 5, 6 oder 7 (Sensor)

Vorzeichen: Minuszeichen vor Dezimalzah!l bedeutet relative

Adressierung in Rickwéartsrichtung

AdreBmerkmal: Marke, oder

Dezimalzahl (1. bis 511. = relative Adressierung)

Bei indirekter Adressierung wird an den Befehl ein Y angehdngt
(z.B. BRY).

- 102 -

BZ

BM

CS

CM

STL
HSL

HBR

Verzweigen wenn Null
Verzweigen wenn Plus
Verzweigen wenn Minus

Ergtnzung: Register (vorgeschrieben)
Vorzeichen: wie BR

AdreBmerkmal: wie BR

Bei indirekter Adressierung wird an den Befehl ein Y angehtngt
(z.B. BZY).

Unterprogramm—Aufruf

Erganzung: Fehlt, oder
U oder V (RUckkehradresse)

Vorzeichen: wie LD
AdreBmerkmal: wie LD

Bei indirekter Adressierung wird an den Befehl ein Y angehingt
(z.B. CSY).

Mikroprogramm~Aufruf

Vorzeichen: wie LD

AdreBmerkmal: wie LD

Bei indirekter Adressierung wird an den Befehl ein Y angehtingt
(z.B. CMY).

Start
Halt, Start Ebene

AdreBmerkmal: 3-stellige oder 6-stellige Oktalzahl
(die drittletzte und die vorletzte Stelle geben die

Zehner- und Einer-Adresse der Ebene an, die ge~
startet wird)..

Halt mit Verzweigen

Vorzeichen: wie BR

AdreBmerkmal: wie BR

- 103 -

GX
FX
OX

GB
FB
IBG
IBF
IB
OB
IBH
OBH
RBL
SBL
RBR
SKB
SKR

IBS
OBS
IBB
OBB

Eingabe (Laden) X-Kanal
" (QDER) n

Ausgabe "

Ubernahme (Laden) X~Kanal, niveaugebunden
" (ODER) "
Eingabe, Ubernahme (Laden) "
" " (ODER) "
Eingabe-Ausldsung
Ausgabe
Eingabe-Auslésung, Halt
Ausgabe, Halt "

Ruckstellen LOCK "

Setzen LOCK "
Ruckstellen READY "
Sprung wenn BUSY "
al i READY ia

Serielle Eingabe
" Ausgabe
Blocktransfer-Eingabe
" ~Ausgabe

Ergdnzung: bei IP...OBH (1...3 = Indexregister) zulussig, und
bei IBS, OBS (1...6 = Zeichenzahl) vorgeschrieben

AdreBmerkmal: 3-stellige Oktalzahl (externe Adresse), oder
Marke, oder

2-stellige Oktalzahl (Gerdteadresse) mit Format danach,
oder

Format

Bemerkung: Zulussige Formatangaben sind:

Oktal

Dezimal

FUnfkanal

Alphanumerisch
Sieben~Bit
Acht-Bitm

o
n
p
n
o
g
d

Bemerkung: Statt einer Marke kann stets auch ein Doppelmerkmal verwendet
werden, bestehend aus einer Marke sowie einer weiteren Marke,

einer 3-stelligen Oktalzahl (000 bis 777) oder einer Dezimalzahl
(1. bis 99.). Zugewiesen wird die Summe der Werte beider Mar-

ken.

Eine ausfihrliche Beschreibung des MINCASS 500 Assembler/Editor steht auf
Wunsch zur VerfUgung.

~ 104 -

Nionitor

VORBEMERKUNG

Der MONITOR 500 ist ein Programm zum Austesten von Programmen, die im
Kernspeicher des MINCAL 513/523 abgelegt sind. Das zu testende Programm lduft
unter Steuerung des MONITORS ab und bleibt an vereinbarten Stellen stehen, so
daB der Benutzer Register- und Speicherplétze auf ihren Inhalt untersuchen oder
diesen verdndern sowie Befehle ein- oder ausbauen kann. Der Dialog erfolgt tiber
den Konsol-Fernschreiber. AuBerdem enthalt der MONITOR Routinen zur Ein- und
Ausgabe des Speicherinhalts Uber Konsol-Fernschreiber und schnelle Lochstreifenge-
rdte.

Rechner~Ausstattung; MINCAL 513/523
Grund + erweiterter Befehlsvorrat
Programmierhilfe X00 (ampfohlen)
Kernspeicher 4k oder gréRer
Konsol=Fernschreiber (8-Kanal) an Ebene 0
Schnelle Lochstreifenausristung an Ebene 0 (empfohlen)

Programmlinge: 13003 Worte
Lage im Kernspeicher beliebig

Benutzte feste 8 aufeinanderfolgende Plitze in Seite 0
Speicherpldatze: Adressen 040...047, verdnderbar)

TESTBEGINN

Zundchst wird der MONITOR-Lochstreifen in einen freien Kernspeicherbereich einge-
lesen, von einer Anfangsadresse a bis zu einer Endadresse e = a + 1277g. Dies ge-
schieht z.B. Uber die eingebaute Programmierhilfe X00 wie folgts: Schalter INT und
SENSOR 1, 2, 3, 4 (und 5 bei schnellem Leser) einlegen. Tasten RES, END, STA
in dieser Reihenfolge betttigen. Auf dem Fernschreiber a und e als 6-stellige Oktal-
zahlen eingeben. STA betitigen; der Streifen wird gelesen. Danach N-Register (Platz
000004) uber die Frontplatte auf a-1 setzen (war a = 001000 gewahlt worden, gentgt
Betdtigen der Taste END). Schalter INT und SENSOREN in Ausgangsstellung bringen.
Tasten RES, STA betitigen.

Jetzt wird durch Eingabe von

LEV | (cr) (cr = Wagenriicklauf)

die Ebene | (= 0...7) vorgewahlt, in der das zu testende Programm laufen soll.

Dann wird das zu testende Programm uber eine der Einlese-Betriebsarten in den
Speicher gelesen (s. EIN/AUSGABE).

- 105 -

STEUERKOMMANDOS

Das zu testende Programm wird mit

RUN s (cr)

gestartet, wobei s die Startadresse angibt. Diese ist - wie alle im folgenden be-
schriebenen Adressen - als I- bis 6-stellige Oktalzahl einzugeben.

Soll spdter nach einem Monitor-Halt das Programm wieder gestartet werden, ist

RUN (cr)

ohne Adresse einzugeben.

Durch das Kommando

END (cr)

wird der Monitor-Betrieb beendet.

MONITOR-HALT

Das zu testende Programm kann an beliebigen Stellen angehalten werden; man bereitet
sie durch die Eingabe

STI h (cr)

vor, wobei h die Adresse ist, an der das Programm spdter einmal anhalt. Will man,
daB es dort beliebig oft anhalt, wird

STI h,@ (cr)

eingegeben.

Jeder so eingebaute Halt kann durch das Kommando

STO h (er)

wieder ausgebaut werden, wobei h die Stopadresse ist. Durch

SID (er)

werden sdamtliche Halts wieder eliminiert.

- 106 -

LOSCHEN, ABFRAGEN UND ANDERN

Durch das Kommando

DEL m,n (er)

wird der AdreBbereich von m bis n geldscht (alle Platze bekommen Nullinhalt). Soll
nur ein Platz m geléscht werden, gebe man

DEL m (cr)

ein.

Der jeweilige Inhalt der 7 Register U, V, W, X, 1, 2 und 3 der Ebene 1 wird, durch

IXR (cr)

ausgeldst, in dieser Reihenfolge oktal ausgedruckt.

Ein weiteres Kommando

ITC m (cr)

bemerkt, da der Inhalt der Adresse m oktal ausgedruckt wird. Jetzt hat der Benutzer
folgende Méoglichkeiten:

Eingabe C: Der Inhalt der folgenden Adresse wird gedruckt
(kann beliebig oft wiederholt werden)

Eingabe xC: Der neve Inhalt x (1- his 6-stellige Oktalzahl), evtl. Minus-
zeichen davor) wird in den gerade angewahlten Speicherplatz
Ubertragen.

Eingabe (cr): Der Inhalt des gerade angewahlten Speicherplatzes wird aus-
gedruckt.

Eingabe E; Die Betriebsart ITC wird beendet.

- 107 -

EIN/AUSGABE

Fur die Ein- und Ausgabe der zu testenden Programme oder von Programmteilen halt
der MONITOR folgende Kommandos bereit:

ITO m,n (er) Eingabe uber Teletype Oktal-Format
ITA m,n (er) " " " Alpha- "
IRO m,n (er) " " Leser Oktal- "
IRA m,n (cr) " " " Alpha- —"
OTO m,n (cr) Ausgabe " Teletype Oktal- "
OTA m,n (cr) " " " Alpha- "
OPO m,n (cr) " "Locher Oktal- "
OPA m,n (cr) " " " Alpha- "

Mit m ist die erste, mit n die letzte Adresse des Speicherbereichs gemeint.

ZUR BEACHTUNG

Der MONITOR benutzt 8 aufeinanderfolgende Speicherplatze in Seite 0, die fur ihn
freigehalten werden missen. Im Normalfall sind dies die Platze 040g...0479. Soll
stattdessen der Platz p in Seite 0 (und die 7 folgenden) verwendet werden, so gebe
man zu Anfang das Kommando

ITC q_ (cr)
2. epC

wobei q =a + 27g zu wihlen ist (a = Anfangsadresse MONITOR).

Bei Systemen mit Externspeicher (Trommel) kann durch das Kommando

DOS

jederzeit die Kontrolle an den OPERATING-Teil des Trommelbetriebssystems
MINCDOS 500 tbergeben werden.

- 108 -

FORTRAN

VORBEMERKUNG

FORTRAN ist eine Programmiersprache fiir mathematische und technisch-wissenschaft-
liche Aufgaben und, in Form des MINCAL FORTRAN, auch fir begrenzten Einsatz
in der ProzeBtechnik. Fur die Umwandlung von FORTRAN-=Programmen in die Maschi-
nensprache des MINCAL 523 steht ein Ubersetzungsprogramm (Compiler) zur Verfiigung.

Rechner-Ausstattung:

Compiler:

Speicherbelegung:

MINCAL 523
Grund- + erweiterter Befehlsvorrat
Programmierhilfe X@@
Kernspeicher ab 4 k (ab 8 k empfohlen)
Konsol-Fernschreiber (8-Kanal) an Ebene 0
Schnelle Lochstreifenausriistung an Ebene 0
wahlweise zusdtzlich Externspeicher

Phasen-Compiler, ca. 16 k lang, 20 Phasen
Ubersetzt Quellprogramm in einem Arbeitsgang

Compiler und compiliertes Objektprogramm arbeiten auf Ebene 0.
Die 8 Register dieser Ebene (@@...07) sowie die Platze 500...777
in Seite 0 werden benutzt; ferner die Speicheradressen von 10@@

bis zur eingegebenen Endadresse.

Soweit nicht nachstehend anders beschrieben, entspricht MINCAL FORTRAN den ASA-
Spezifikationen fir FORTRAN.

QUELLPROGRAMM

Das FORTRAN-Quellprogramm, das als Lochstreifen im ASCII-Code vorliegen muB,
besteht aus einer Folge von Anweisungen; jede umfaBt im Normalfall eine Zeile:

1. Zeichen

2.-5. Zeichen

6. Zeichen
ab 7. Zeichen

Fur Folgezeilen gilt:

1.-5. Zeichen

6. Zeichen

ab 7. Zeichen

Fur Kommentarzeilen

1. Zeichen

ab 2. Zeichen

Leerschritt
Leerschritte oder I- bis 4-stellige Anweisungsnummer (label)
Leerschritt

eigentliche Anweisung

Leerschritte
nicht Leerschritt und nicht @
Fortsetzung der Anweisung

gilts

Buchstabe C

beliebiger Kommentar

- 109 -

Das physikalische Ende des FORTRAN-Programms ist gekennzeichnet durch:

1. Zeichen Schrigstrich (/)
2. Zeichen Stern (*)

Jede Zeile wird mit Semikolon (;) abgeschlossen.

ZEICHENVORRAT

Buchstaben ABCDEFGHIJKLMNOPQRSTUVWZ

Ziffern 0123456789

Symbole =t-#* /(),.7;

Leerschritte werden, auBer in Textstrings und Kommentaren, tberlesen.

ELEMENTE

Ganzzahl-Konstanten: | bis 5 Ziffern, bei negativen Konstanten Minuszeichen
davor
maximaler Betrag bei Ein/Ausgaben: 39999

Gleitkomma-Konstanten: Ziffernfolge im F-Format (z.B.: 2. oder -.@@@7)
oder im E-Format (z.B.: 1374.9E27 oder -.5896E-192)
maximaler Betrag des Exponenten: 153

Einfache Variable: Variablen-Namen (names) beginnen mit einem Buchstaben,
dem bis zu 5 Buchstaben oder Ziffern folgen kénnen.
Namen, die mit 1, J, K, L. M oder N anfangen, be-

zeichnen Ganzzahl-Variablen.
Verboten sind FORTRAN-Wéorter sowie Namen von Stan-
dard-Funktionen und Unterprogrammen.

Indizierte Variable: Variablen-Name, gefolgt von einem oder zwei Indizes
(durch Komma getrennt) in Klammern.
Indizes durfen aus einer einfachen Ganzzahl-Variablen,
einer Ganzzahl-Konstanten oder der Summe oder der

Differenz beider bestehen. Der Wert des Index muim
Bereich 1...511 bleiben.

Ganzzahlen werden intern durch ein Wort dargestellt (max. Betrag 262143), Gleit-
kommazahlen durch ein Doppelwort (Genauigkeit der Mantisse = 107%, max. Betrag
des Exponenten 153).

- 110 -

Arithmetischer Ausdruck:

(expression)
Als Operanden sind Konstanten, Variablen-Namen und
Namen von Standard-Funktionen zugelassen. Als Ope-
ratoren sind erlaubt:

+ Addition

- Subtraktion
* Multiplikation
/ Division
% Potenzierung

Beliebige Klammerung ist zugelassen. In einem Ausdruck
dirfen nur Operanden eines Typs (Ganzzahl oder Gleit-
komma) vorkommen.

AUSFUHRBARE ANWEISUNGEN

Ergibtanweisung:

GOTO

COMPUTED GOTO

IF SENSOR

DO

< name > = expression
Weist der links stehenden Variablen den Wert des rechts
stehenden Ausdruckes zu. Name und Ausdruck dirfen von
verschiedenem Typsein.

GOTO < label >
Unbedingter Sprung

GOTO (<label 1> ,< label 2>, ...) <name>
Berechneter Sprung

IF (<expression >) <label 1>,< label 2>, < label 3>
Bedingter Sprung

IF (SENSOR<n>)<label 1> ,< label 2>
Bedingter Sprung in Abhangigkeit von Sensor-Schaltern
(wenn EIN, label 1)

DO <label> <name> =< first >,< last > ,< step >
Laufanweisung.

Die Lauf-Variable (name) mu8 eine einfache Ganzzahl-
Variable, die restlichen diirfen einfache Ganzzahl-Vari-

ablen oder positive Ganzzahl-Konstanten sein. Die
Schrittweite (step) kann entfallen; sie wird dann zu |
angenommen.
Als letzte Anweisung einer DO-Schleife (hinter label)
darf nicht GOTO, IF, IF SENSOR, DO, RETURN, STOP
oder PAUSE stehen. Stattdessen ist CONTINUE zu ver-
wenden.

DO-Schleifen dirfen 5fach geschachtelt werden. Die innere
Schleife muB innerhalb der duBeren liegen. Mehrere DO-
Schleifen dirfen auf die gleiche Anweisung ziehen.
Aus einer DO-Schleife darf herausgesprungen werden; der
augenblickliche Wert der Lauf-Variablen (name) ist ver-
fugbar. Jede DO-Schleife wird mindestens einmal durch-
laufen.

- |ll-

CONTINUE

STOP

PAUSE

CALL NIVEAU

CALL SUBROUTINE

RETURN

CALL CODE

READ

WRITE

CONTINUE
Leeranwelisung

STOP < octal >

Ende des Programmablaufs. Ist danach eine I- bis 4-stellige
Oktalzahl (octal) angegeben, wird diese ausgedruckt.

PAUSE <octal >
Anhalten des Programmablaufs. Ist danach eine 1I- bis
4-stellige Oktalzahl (octal) angegeben, wird diese ausge-
druckt.

CALL NIVEAU < level >
Startet eine andere Programmebene, die als |- oder
2-stellige Oktalzahl (level) anzugeben ist.

CALL < subr>(<par 1>,<par 2>, ...)
Es kénnen bis zu 15 aktuelle Parameter (par...) Ubergeben
werden, die aus Konstanten, einfachen Variablen oder Feld-
namen bestehen. Im letzteren Falle wird das ganze Feld
Ubergeben. Parameter mussen in Anzahl, Typ und Gréfe
mit den formalen Parametern des Unterprogramms (subr)
Ubereinstimmen.
Die Parameter-Ausgabe kann entfallen.
Unterprogramm-Aufrufe durfen im Hauptprogramm und im
Unterprogramm in beliebiger Zahl und Schachtelung vor-
kommen.

RETURN
RUcksprung aus Unterprogramm

CALL CODE <number >
Aufruf einer Code~Prozedur, deren Nummer (number) durch

eine Il- oder 2-stellige Oktalzahl anzugeben ist.

READ (<device>, <format >), <list >
Leseanweisung

WRITE (<device>,< format >) < list>
Schreibanweisung

Diese Anweisungen beziehen sich auf die Konsol-Peripherie
des Rechners.
Als Gerdteadressen (device) sind anzugeben:

@ fir Teletype
6 fir schnellen Leser/Locher

Die Formatangabe ist in einer getrennten FORMAT~-Anwei-
sung enthalten, deren Anweisungs-Nummer in (format) anzu-
geben ist.

-~ 112 -

INPUT

OUTPUT

DREAD

DWRITE

N ITCHTAUSFUHRBARE

DIMENSION

C OMMON

Am Ende der Anweisung steht eine Variable oder eine
Liste von Variablen (list), die durch Kommata getrennt
sind, oder auch eine implizite DO-Schleife der Form
(<name >(<index>), < index >=<first >,< last >,<step>).

INPUT (<first>, <last >,<step>) < list >
Eingabeanweisung

OUTPUT (<first >,< last >,<step>) < list >
Ausgabeanweisung

Diese Anweisungen beziehen sich auf bindre ProzeB-Ein/
Ausgaben. In der Klammer stehen externe AnschluBnummern
oder Ganzzahl-Variablen, denen vorher eine Nummer zuge-
wiesen wurde. Die Anweisung bewirkt den Transfer zwischen
einer Reihe von ProzeBanschltissen und der in der Liste an-
gegebenen Ganzzahl-Variablen (list, s.oben).
Die Angabe der Schrittweite (step) kann entfallen; sie wird
dann zu | angenommen. Fir nur einen transferierten Wert

entfallt auch (last).

DREAD <mem>,< ext >

Externspeicher-Leseanweisung

DWRITE<mem>, <ext >

Externspeicher-Schreibanweisung

Diese Anweisungen dienen zum Transfer von Datenfeldern
zwischen Kernspeicher und Externspeicher (Trommel oder
Platte). Der Name der Kernspeicher-Adresse (mem) muf in
einer DIMENSION-, der Name der Externspeicher-Adresse
in einer DCOMMON-~Anweisung vereinbart sein.

ANWEISUNGEN

DIMENSION <name 1>(<dim 11>,<dim 12>), .
Feldanweisung.

Reserviert beliebig viele ein- oder zweidimensionale Felder
(mit 1 bis 511 Platzen je Dimension) fiir jeden Programm-
teil getrennt.

COMMON <name 1>(<dim 11>,<dim 12>), ..
Speicherblockanweisung.
Reserviert beliebig viele Variablen, ein- oder zweidimen-
sionale Felder (mit 1 bis 511 Platzen je Dimension) fur
alle Programmteile gemeinsam.

- 113 -

DCOMMON

C ODE

SUBROUTINE

FORMAT

END

DCOMMON(<device >)<name>(<dim>), ...
Externspeicher-Belegung.
Reserviert beliebig viele Variablen oder eindimensionale
Felder auf dem Externspeicher (Trommel oder Platte). Wenn
mehrere Externspeicher angeschlossen sind, ist fur jeden
eine DCOMMON-Anweisung vorzusehen mit Angabe der
Nummer (device, @ bis 3).

CODE <number >(<length>)
Code-Prozedur.
Reserviert fur eine Code-Prozedur mit einer I- bis 2-stelligen
oktalen Nummer (number) Speicherplatz, dessen GréRe (in
Worten) als Dezimalzahl anzugeben ist (length).
Code-Prozeduren sind getrennt erstellte Maschinenprogramme,
die nach der Compilierung eingelesen werden.

SUBROUTINE <subr >(<par 1>,<par 2>, ...)
Unterprogramm.
Gekennzeichnet durch Namen (subr) mit bis zu 6 alphanu-
merischen Zeichen (1. Zeichen = Buchstabe). Parameter
siehe CALL SUBROUTINE.

FORMAT (<spec 1>,<spec 2>, ...)
Formatanweisung.
Die Spezifikationen (spec...) kénnen folgende Formate ent-
haltens

rlW Ganzzahl r = Wiederholungszahl
rFw.d Gleitkommazahl im F-Format
rEw.d Gleitkommazahl im E-Format
rAw Alphanumerischer Wert
’< text>’ Literal (Textstring)
nx n Leerschritte bzw. n Zeichen Uberlesen
/ Zeilenende

Gruppen von Formatspezifikationen kénnen in Klammern
eingeschlossen und mit einer davorstehenden positiven
Ganzzahl als Wiederholungsfaktor versehen werden.

w = Zeichenzahl

d = Stellen hinter

Dezimalpunkt

END
Bezeichnet das physikalische Ende eines Programmteils
(Haupt- oder Unterprogramm).

- 114 -

STANDARDFUNKTIONEN

Folgende Standardfunktionen sind vorgesehen:

Name Bedeutung Argument Ergebnis

ABS Absolutwert R R
|ABS’ " | |
FLOAT Typumwandlung | R
IFIX " R |

EXP Exponentialfunktion R R
ALOG Natirlicher Logarithmus R R
SIN Sinus R R
COS Cosinus R R
TANH Tangens hyperbolicus R R
SQRT Quadratwurzel R R
ATAN Arcus tangens R R

| = Typ Ganzzahl; R = Typ Gleitkommazahl

CODE-PROZEDUREN

Jede Code-Prozedur kann als einzelner Maschinencode-Lochstreifen vorliegen. Die
Streifen mussen in Alpha-Format gestanzt sein und folgenden Aufbau haben:

1. Wort: Name der Code-Prozedur (1...77 oktal)
2. Wort: Ltinge der Prozedur (binar)
3. letztes Wort: Befehle

Die Code-Prozeduren brauchen nicht in der Reihenfolge ihrer Definition eingelesen zu
werden.

Die Code-Prozeduren liegen spdter in der Reihenfolge ihrer Nummern im Speicher vor
dem COMMON-Bereich, der am Ende des verfiigbaren Speicherbereichs liegt (festge-
legt durch Eingabe der Compiler-Endadresse). Sie sind méglichst relativ adressiert zu
schreiben. Die Ubergabe von Daten erfolgt zweckmaRig uber den COMMON-Bereich;
in diesem sind Variable und Felder von hinten nach vorn in der Reihenfolge threr De-
finition enthalten.

- 115 -

FORTRAN-WORTER

AuBer den Namen der Standard-Funktionen dirfen folgende Worter nicht als Variablen-

Namen verwendet werden:

GOTO CODE DIMENSION
IF NIVEAU COMMON
SENSOR RETURN SUBROUTINE
DO; WRITE FORMAT
CONTINUE READ DREAD
STOP INPUT DWRITE
PAUSE OUTPUT DCOMMON
CALL END

Ferner die Namen der Standard=Funktionen.

HANDHABUNG DES COMPILERS

Compiler-Lochstreifen vor Phase 1 in den schnellen Leser einlegen. INT, SENSOR 1,
2, 3, 4, 5 nach unten; RES, END, STA betdtigen; Anfangs- und Endadresse (auf

Lochstreifen vermerkt) 6-stellig oktal Uber Fernschreiber eingeben; STA erneut beta-
tigen. Phase 1 wird eingelesen; danach INT und SENSOREN nach oben; RES, END,
STA betitigen.

Auf dem Fernschreiber werden nun Fragen ausgedruckt, die der Benutzer beantworten
mu. Zuvor ist das Quellprogramm mit dem Zufuhrbereich in den Leser einzulegen.

LISTE: Y, wenn ein Protokoll des eingelesenen FORTRAN-=Programms gewiunscht wird,
sonst N.

DOS-NIVEAU: Ebene der DOS-EXECUTIVE 2-stellig oktal eingeben -)

TROMMEL-ANZ.: Anzahl der Externspeicher eingeben ”). Die Basisadresse flr den
DCOMMON-Bereich auf den Trommeln ist 6-stellig oktal einzugeben, z.B.:

Anfangsadresse auf Trommel 1: 188 Q0d

rN 2s 2
MAXIMUM KERNSP.: 6-stellige Oktalzahl als Endadresse fiir den Compiler eingeben.

Nach diesen Angaben wird das Quellprogramm eingelesen und im Kernspeicher abgelegt.
Danach mu der Compiler-Lochstreifen vor Phase 2 in den Leser gelegt und nach Ausga-
be der Nachricht START: ein Zeichen getippt werden. Nach Eingabe dieses Zeichens
wird dann sukzessiv compiliert.

Nach dem Compilieren wird der noch freie Kernspeicherbereich ausgedruckt, z.B.
FREI: @10334-017776. AnschlieBend wird nach einfigenden Code-Prozeduren (CP?)
gefragt. Der Compiler-Streifen kann jetzt herausgenommen werden.

*) bei Systemen mit Externspeicher. Falls nicht vorhanden, Nullen eingeben.

- 116 -

Sind Code=-Prozeduren vorgesehen, Antwort auf CP?: "Y", nachdem der Code-Loch-
streifen eingelegt ist. Der Lochstreifen wird eingelesen. Diese Manipulation ist fur
jede Code-Prozedur zu wiederholen.

Auf die Eingabe eines beliebigen Zeichens, auBer "Y" erfolgt die Ausgabe der
Nachricht: START? xxxxxx (Startadresse). Der Dialog wird mit "Y" fortgesetzt,
falls das generierte Programm sofort ausgeftihrt werden soll. Werden in diesem Pro-
gramm Informationen uber den Leser angefordert, ist der zugehérige Datenlochstrei-
fen vor dem Programmaufruf in den Leser einzulegen.

Die Startaufforderung wird mit jedem anderen Zeichen auBer "Y" negiert. In diesem
Fall lauft der Rechner auf HALT; das Objektprogramm kann danach zu einem beliebi-
gen Zeitpunkt uber die Taste "STA" (an der Rechner-Frontplatte) gestartet werden.

Fehler im Quellprogramm werden durch eine Nachricht registrierts fuhren diese Fehler
zum Abbruch der Compilierung, kann eine neue Umwandlung erst nach der Korrektur
des Quellprogramms wiederholt werden. Es werden auch Fehler gemeldet, die zur
Objektzeit festgestellt werden. In diesen Fallen stoppt der Rechner nach Ausgabe der
Fehlernachricht; erneutes Starten ist mdglich und zuldssig.

FEHLERMELDUNGEN

Warnungen * **

001 ungultiges Zeichen in Spalte 1, Zeile wird als Kommentar aufgefait
002 kein gultiges Programmende-Zeichen
003 ungultiges Zeichen in Spalte 2...5
004 Folgestatement darf keine Statement-Nr. besitzen
005 erstes Statement kann kein Folgestatement sein
007 Statement-Nr. vor END, COMMON, SUBROUTINE, CODE oder

DIMENSION
008 END als 1. Statement
009 END fehlt vor SUBROUTINE; wird vom Compiler generiert; nachfolgende

Statement-Nrn. sind dann um 1 erhoht
010 mehrere ENDs hintereinander

Fehler <<<zur Compilezeit

100 Kernspeicher—Uberl auf
101 kein imperatives Statement zwischen SUBROUTINE und END
102 nach END kein SUBROUTINE
103 6ffnende Klammer nach DIMENSION fehlt. Variable nicht indiziert.
104 Variable nicht durch Komma getrennt (auch indizierte)
105 keine schlieBende Klammer bei DIMENSION
106 mehr als 2 Indizes (mehr als 1 Komma vorhanden)
107 keine Offnende Klammer vor Parametern bei SUBROUTINE
108 keine schlieBende Klammer nach Parameter bei SUBROUTINE

- 117 -

109
110

111
112
113
114

115
116
117
118
119
120
12]
122
123
124
125
126

127
128
129
130
13]
132
133
134
135
136
137
138
139
140
14]
142
143

145
146
147
148
149
150

15]
152
153

154

t
a
t
H

mehr als 15 Parameter
kein Statementende nach schlieBender Klammer bei SUBROUTINE oder
CODE
keine oktale Nummer bei CODE
keine offnende Klammer vor Langenangabe in CODE
keine schlieBende Klammer nach Ltngenangabe in CODE
keine Langenangabe in CODE (nach offnender Klammer folgt sofort

schlieBende)
keine Langenangabe bei CODE
Variable beginnt nicht mit Buchstaben
Index > 511
frei
Variablenname = Name einer Standardfunktion
Variablenname doppelt definiert
Parametername in SUBROUTINE doppelt definiert
Einfache Variable indiziert gebraucht
indizierte Variable einfach gebraucht
unzuldssiges Zeichen nach UP-Name in CALL-Statement
Parametername = Standardfunktions-Name
gesamtes Feld in READ, WRITE, INPUT, OUTPUT darf nicht in
D COMMON definiert sein
kein giltiger UP-Name
RETURN im Hauptprogramm nicht erlaubt
falsches Zeichen vor LITERAL
mehr als ein "E" in REAL-Konstante
mehr als ein Punkt in REAL-Konstante
INTEGER=-Konstante > 39999
FORMAT-Spezifikation beginnt nicht mit offnender Klammer
keine Statement-Nummer bei FORMAT vorhanden
zwet FORMAT-Spezifikationen teilende Zeichen hintereinander
mehr als ein Buchstabe pro FORMAT-Spezifikation
unzuldssiges Zeichen im FORMAT-Statement
Anzahl der offnenden Klammern ungleich der schlieBenden
kein Punkt in E- bzw. F-FORMAT
Dezimalstellen > 80

Feldlange - Dezimalstellen < 7 bei E-FORMAT
Feldlange - Dezimalstellen < 2 bei F-FORMAT
mehr als ein Punkt in E- oder F-FORMAT
Feldlange - bei I-, E- bzw. F-FORMAT > 80
Feldlange bei I-, E- bzw. F-FORMAT = 0
Feldlange bei A-Spezifikation = 0
Feldlange bei A-Spezifikation > 3
Wiederholungsfaktor vor I-, E-, F-, A- bzw. X~Spezifikation = 0
Wiederholungsfaktor vor I-, E-, F-, A- bzw. X~Spezifikation >130
die FORMAT-Nr. einer READ- oder WRITE-Anweisung ist nicht
definiert

FORMAT-Nr. doppelt definiert
frei

Kernspeicher-Basisadresse darf kein Feld = COMMON-Bereich sein
trotz Angabe Trommelzahl = 0 werden Trommelbefehle benutzt. Abbruch.

- 118 -

155
156
157
158
159
160
16]
162
163
164
165
166
168
169
170
171
172
173
174
175
176
177
178
179
180

181
182
183
184
186
187
188
189
190
19]
192
193

194
195
196
197
198
199
200
201
202
203
204
205

Index = Standardfunktion bzw. 156
Index ist indiziert

Index ist nicht INTEGER
Reihenfolge: "Variable + Konstante" nicht eingehalten
unzuldssiger Index —
Index 511

Index 0
Index = 0
bei doppelter Indizierung Indizes nicht durch Komma getrennt
schlieBende Klammer nach Index fehlt
keine Variable auf linker Seite bei arithmetischem Statement
"=" Zeichen im arithmetischen Statement fehlt
kein " (" bei Standardfunktionen
ungultiger Operand
Klammerung unpaarig im arithmetischen Statement
ungultiges Zeichen im arithmetischen Statement
ungiltiges Zeichen in IF (arithmetisch)
Klammerung unpaarig in IF (arithmetisch)
unzuldssiges Zeichen im Statement
frei
Ziffer nicht oktal in CALL NIVEAU
ungiltiges Zeichen in CALL NIVEAU
keine offnende Klammer bei CALL name
unzuldssiges Zeichen in CALL name
nach Vorzeichen (+) folgt keine Konstante in Parameterliste von CALL
name 7
mehr als 15 Parameter in CALL name
Parameter in CALL name indiziert
keine schlieBende Klammer nach Parameter in CALL name
unzuldssiges Zeichen in CALL CODE
keine Oktalzahl in CALL CODE
ungiltiges Zeichenin PAUSE oder STOP
Kernspeicher-Basisadresse bei DRED/DWRITE mu gesamtes Feld in E/A sein
keine Oktalzahl bei STOP/PAUSE
nach schlieBender Klammer bei CALL NIVEAU kein Statementende
ungiltiges Zeichenin DREAD/DWRITE
keine oder falsche Gertte-Nr. bei READ/WRITE
kein Komma als Trennzeichen zwischen Gerdte-Nr. und Format-Nr. bei
READ/WRITE
frei
keine schlieBende Klammer nach Gerdte/Format-Nr. in READ/WRITE
mehr als 5fache Schachtelung der Impl.-DO-Schleife
frei
ungultiges Zeichen in E/A-Liste
unpaarige Klammerung in E/A-Liste
mehr als 64 Zeichen pro Statement-Zeile
Variable in E/A-Liste nicht durch Komma getrennt
Lauf-Variable in impl.-DO-Schleife ist nicht vom Typ INTEGER
Externspeicher—Basisadresse nicht durch DCOMMON <definiert
Anfangswert der impl. DO-Schleife nicht INTEGER
Parameter der impl. DO-Schleife nicht durch Komma getrennt

- 119 -

206
207
208
209
210
21]

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
22/7
228
229
230
231
232
233
234

235
236
237

238

239
240
24]
242
243
244
245
246
247
248
249
250
25]
252

253

Endwert der impl. DO-Schleife nicht INTEGER
auf den Endwert der impl. DO-Schleife folgt keine ")" oder Komma
die Schrittweite der impl. DO-Schleife ist nicht INTEGER
"(" bei INPUT/OUTPUT fehlt
externe Adresse bei INPUT/OUTPUT nicht INTEGER
Anfangs- und Endwert der externen Adressen bei INPUT/OUTPUT nicht
durch Komma getrennt
Endwert der externen Adresse bei INPUT/OUTPUT nicht INTEGER
auf den Endwert der externen Adresse folgt kein Komma oder ")"
Schrittweite der externen Adresse bei INPUT/OUTPUT nicht INTEGER

")" bei INPUT/OUTPUT fehlt
mehr als 5fache Schachtelung der DO-Statement
DO-Schleife rickwarts nicht erlaubt
falsche DO-Schachtelung
keine glltige DO-Ende-Nr.
keine Lauf-Variable vorhanden
nach Lauf-Variablen fehlt "="-Zeichen
kein Anfangswert fur Lauf-Variable vorhanden
kein Komma nach Anfangswert
kein Endwert fir Lauf-Variable vorhanden
keine gultige Schrittweite fur Lauf-Variable
kein glltiges Statementende
GOTO darf nicht als DO-Ende-Statement benutzt werden
Comp. GOTO "
IF "
IF SENSOR "
DO "
STOP "
RETURN "
im vorangegangenen Programmteil wurden folgende DO-Ende-Statements
nicht gefunden
ungultiges Zeichen in GOTO
Marke enthalt mehr als 4 Ziffern bei comp. GOTO
Marken nicht durch Komma getrennt oder keine schlieBende Klammer bei
comp. GOTO
keine Marke innerhalb des Klammerausdruckes bei comp. GOTO vor-
handen
nach offnender Klammer keine Marke vorhanden
Sprungverteiler-Variable im comp. GOTO-Statement nicht INTEGER
kein Statementende nach Sprungverteiler-Variablen
ungultiges Zeichen zwischen Marken bei arithmetischem IF
keine drei Marken bei arithmetischem IF vorhanden
ungultige Marke bei arithmetischem IF
Marke in arithmetischem IF besteht aus mehr als 4 Ziffern
mehr als 3 Marken bei arithmetischem IF vorhanden
Sensorangaben in IF SENSOR falsch
keine schlieBende Klammer bei IF SENSOR vorhanden
Marken bei IF SENSOR nicht durch Komma getrennt
ungultige Marke
Marke nicht definiert
Statement-Nr. doppelt definiert

Mixed Mode

- 120 -

254
255
300
301
304
305
333

IFIX/FLOAT mehr als 5fach geschachtelt
GP lauft in Markentabelle Abbruch
keine Oktalziffern fur Trommel vorhanden
Fehler kein ")" nach Trommel-Nr.-Angabe
kein Punkt nach E erlaubt
Exponent fehlt
Statement enthalt Fehler

Fehler <<< zur Objektzeit

400
40]
402
403
404
405
406
407
408
409
410
Al]
Al2
418

keine Liste bei INPUT/OUTPUT
ungultiger Satzabschlu
Typ-Unterschied zur FORMAT-Spezifikation und Liste
INTEGER-Wert zu groB
FORMAT=Spezifikation zu klein (bei F E, I, A)
Liste bei INPUT/OUTPUT zu kurz
Ergebnis bei ADD, SUB, MUL oder POT zu grof
IFIX: Zahl zu grofB
SQRT: Radikand negativ
LN fur negative Werte nicht definiert
LN (0) = unendlich
EXP: Ergebnis zu grof
UP-Name nicht definiert
NEU STARTEN! (Tabelleniiberlauf)

- 12) -

122 -

ben

be

v
v

bo

bom

—

~~

=

C
U
L
*
E
L
e
)
T
a
H
y
O
s

Zé
, T

H
a
C
H
N
G
,
J

L
a
W
w
O
L

WI
TH

EZ
L
E

T
A
T

O
S
T
L
Y
A
O
D

r
T
H
E
I
S
E
C
E
LT
U
E
L
L

OZ
r
t

i“C
e
l
)
L
e
v
e
L

T
F

A
O
L
S

Z
U
M
L
L
N
O
,

“
O
D
C
H
7
Y

hae

W
r
a
p
o
"
w
h
S
H
A
L
E

C
y

T
T
O
Y

ui
Rl
<
Z

H
O
A
9
a
n
V
T
E
E
L
E
,e

F7
EE

ES
TE
S

Y

 0
8

5
L
t
G
¢
e 04

0
7

G
7

€
£

—_

i
N
3
w
W
3
d
t
V
i
s

 {CONTIN

V
3
e
V
1

COMNT

 A
I
N
S
L
S
A
S

F
J
a
y
n
d
w
o
y
|

C
E

°°
'9

3
1
v
a

W
I
T
H
E
R
N
I
G
E
L
A
G
A
H
N
O

N
V
Y
L
Y
O
S

F
V

W
V
U
O
O
U
d

O
N
I
W

ALGOL

VORBEMERKUNG

ALGOList eine Programmiersprache fir mathematische und technisch-wissenschaftliche
Aufgaben. Fir die Umwandlung von ALGOL-Programmen in die Maschinensprache des
MINCAL 523 steht ein Ubersetzumgsprogramm (Compiler) zur Verfiigung.

Rechner-Ausstattung: MINCAL 523
Grund- + erweiterter Befehlsvorrat
Programmierhilfe X00
Kernspeicher ab 4k (ab 8k empfohlen)
Konsol-Fernschreiber (8-Kanal) an Ebene 0
Schnelle Lochstreifenausristung an Ebene 0

Compiler: Phasen-Compiler, ca. 7 k lang, 6 Phasen
Ubersetzt Quellprogramm in einem Arbeitsgang

Speicherbelegung: Compiler und compilierte Objektprogramme arbeiten auf Ebene 0.
Die 8 Register dieser Ebene (00...07) sowie die Platze 400...777
in Seite 0 werden benutzt; ferner die Speicheradressen von
1000 bis zur Endadresse.

Soweit nicht nachstehend anders beschrieben, entspricht MINCAL ALGOL dem IFIP-
Subset von ALGOL 60.

QUELLPROGRAMM

Das ALGOL-Quellprogramm muB als Lochstreifen im ASCII-Code vorliegen. Das
physikalische Ende wird durch ein Doppelkreuz (44) gekennzeichnet. NULL- oder
RUBOUT-Zeichen innerhalb des ALGOL-Programms sind verboten.

ZEICHENVORRAT

Buchstaben AB CDEFGHIJSKLMNOPQRSTUVWXY Z

Ziffern 0123456789

Symbole =: t+-*/()CQ,.'’;

Leerschritte werden, auBer in Textstrings, Uberlesen.

Bemerkung: Die bei ALGOLsonst ubliche tiefgestellte j9 ist durch den Buchstaben E
zu ersetzen.

- 123 -

ELEMENTE, WORTSYMBOLE,

Zahlkonstantes

ANWEISUNGEN

Ziffernfolge ohne Dezimalpunkt (z.B. 99 oder -12345).
Ziffernfolge mit Dezimalpunkt (z.B. 3.1415 oder -.@6789).
Vollstdndige Form (z.B. 8.88E12 oder -.54321E-135).

Name: Ein Buchstabe, dem beliebig viele Buchstaben oder Ziffern
folgen kénnen. Bei Marken-Namen sind nur die ersten 3 Zei-
chen, bei den Ubrigen nur die ersten 5 Zeichen von Bedeutung.
Verboten sind ALGOL-Namen.

Variable: Wird durch einen Namen vereinbart. Bei indizierten Variablen

stehen ein, zwei oder drei Indizes, durch Komma getrennt, in

eckige Klammern C 7 eingeschlossen hinter dem Namen. Indizes
kénnen beliebige arifiimetische Ausdriicke sein.

Zahlen werden intern mit 2 Worten dargestellt (Genauigkeit = 10
ponenten bei Gleitkommazahlen max. 150).

“8. Betrag des Ex-

Arithmetischer Ausdruck: Als Operanden sind Zahlkonstanten, Variablen~Namen und
Prozedur~Namen zugelassen.

Operatoren: +

*

“POWER’

“TRUE’
"FALSE’

Boole’ sche

Konstanten:

‘NOT!
‘AND!‘OR?
“MPL
‘EQUIV’

Boole’ sche
Operatoren:

Vergleichsoperatoren: ’LESS’
"NOT LESS’
“EQUAL”
“NOT EQUAL’
GREATER’
"NOT GREATER’

Klammerung: (

)

Wertzuweisung: :=

Addition

Subtraktion

Multiplikation
Division

Potenzierung

wahr

falsch

Negation

Konjunktion
Disjunktion
Implikation
Aquivalenz

kleiner als
nicht kleiner als
gleich
ungleich
groGBer als
nicht groGBer als

Sffnende Klammer

schlieBende Klammer

ist gleich

- 124 -

Kommentar: "COMMENT’

Blockvereinbarung: ‘BEGIN’
"END’

Vereinbarungen: INTEGER‘
REAL’

"BOOLEAN’
"INTEGER ARRAY’
” ARRAY’

"BOOLEAN ARRAY’
“INTEGER PROCEDURE’
"REAL PROCEDURE’
"LABEL?

Prozeduren: ”PROCED URE’

"VALUE ’

Unbedingter Sprung: “GOTO’

Bedingung: IF’
THEN’
“ELSE”

Schleifes "FOR’

’STEP’
‘UNTIL’
’WHILE’
'DO’

STANDARD-PROZEDUREN

Funktioneng ABS

ENTIER
SIGN
LN
EXP
SIN
COS
ARCTAN
SQRT

Ein/Ausgaben: ININTEGER
OUTINTEGER
INREAL
OUTREAL
READ
PRINT

TYPE
WRITE

~ 125 -

folgt Kommentar

Anfang eines Blocks
Ende eines Blocks

Ganzzahl-Variable
Gleitkomma-Variable
Aussage~Variable
Feld von Ganzzahl-Variablen

Feld von Gleitkomma-Variablen

Feld von Aussage~Variablen
Prozedur mit Ganzzahlen

Prozedur mit Gleitkommazahlen
Marke

eigentliche Prozedur
Wertaufruf

Sprunganweisung

Vergleichsanweisung
Folgeanweisung wenn wahr
Folgeanweisung wenn falsch

Anfangswert
Schrittweite
Endwert
Bedingung

Laufanweisung

Absolutwert
Ganzzahlwert

Vorzeichen

Naturlicher Logarithmus
Exponentialfunktion
Sinus

Cosinus

Arcus tangens

Quadratwurzel

Eingabe Ganzzahl
Ausgabe Ganzzahl
Eingabe Gleitkommazahl
Ausgabe Gleitkommazahl
Eingabe beliebige Zahl
Drucken beliebige Zah! in Standard-
Format

Drucken Ganzzahl
Drucken Zeichenfolge

CODE-PROZEDUREN

Code-Prozeduren sind im ALGOL-Programm enthaltene Programme in Maschinensprache.
Sie werden als Folge von Maschinenbefehlen in oktaler Schreibweise (evt]. Minuszei-
chen, 6 Oktalstellen) formuliert.

Vereinbarung einer Code-Prozedur: ’*PROCEDURE’ <NameX< Parameter >,...)
"OUTCODE’ <Oktalliste >
“INCODE’ < Oktalliste >
’CODE’ < Oktalliste >

"OUTCODE’ bzw. ’INCODE’ dienen zur Ubergabe von Parametern vom ALGOL-
Programm in die Code-Prozedur bzw. in umgekehrter Richtung. Das erste Wort der
Oktalliste gibt die Anzahl der folgenden an; diese enthalten die Adressen der zu
ibergebenden Parameter. Hinter ‘CODE’ steht das Maschinenprogramm (1. Wort:
Anzahl der folgenden; dann erster Befehl, usw.; zuletzt BRY uber 1. Wort). Es darf
alle Register sowie Platze in Seite 0 bis Adresse 399 vertndern.

Die Code-Prozedur selbst wird im ALGOL-Programm durch ihren Namen, gefolgt von
einer Liste der aktuellen Parameter, aufgerufen.

ZUR BEACHTUNG

Jedes ARRAY mu8 einzeln mit seinen Indexgrenzen vereinbart sein. Dynamische
ARRAYs sind nicht erlaubt.

Bei Prozeduren sind keine ARRAYs, Marken oder Prozeduren als formale Parameter
erlaubt. Formale Parameter gelten als zu dem Block gehérig, in dem die Prozedur
definiert ist; sie dirfen daher nicht mit Variablennamen dieses Blocks tbereinstimmen.

Bedingte arithmetische Ausdriicke sind in runde Klammern einzuschlieBen.

Die Schachteltiefe bei Laufanweisungen ist unbeschrankt.

Bedingte Marken (berechneter Sprung) sind nicht erlaubt. SWITCH ist nicht vorgesehen;
stattdessen verwende man (eventuell geschachteltes) IF...THEN...ELSE...GOTO...

Die Laufvariable einer Laufanweisung darf nur eine nichtindizierte Variable sein.

Fur formale Parameter von Prozeduren, die nicht in der VALUE-Liste stehen, dirfen
keine Konstanten, indizierten Variablen oder arithmetischen Ausdrucke als aktuelle
Parameter verwendet werden, sondern nur einfache Variable.

- 126 -

HANDHABUNG

Compiler-Lochstreifen (Anfangsteil) in den (schnellen) Leser einlegen. INT, SENSOR 1,
2, 3, 4, (5) nach unten; RES, END, STA betdtigen. Anfangs- und Endadresse (auf
dem Lochstreifen vermerkt) Uber den Fernschreiber 6-stellig oktal eingeben; STA er-
neut betdtigen. Phase 1 wird eingelesen; danach INT und SENSOREN nach oben.
RES, END, STA betitigen.

Auf dem Fernschreiber werden nun Fragen ausgedruckt, die der Benutzer beantworten

mu. Zuvor ist das Quellprogramm in den benutzten Leser einzulegen.

CORE: é-stellige Oktalzahl als Endadresse eingeben (gréBer als 00640).

LISTING: Eingabe YES, wenn das Quellprogramm nach dem Einlesen protokolliert

werden soll, sonst NO.

OP.PUNCH: Eingabe YES, wenn nach der Compilierung ein Maschinencode-Streifen
des Objektprogramms ausgegeben werden soll (einschlieBlich Versorgungsprogrammen);
sonst NO.

LIMIT: Eingabe YES bewirkt Einschrankung der Variablenliste (Normalfall). Bei groBen
ARRAYs NO eingeben.

FASTREAD: Eingabe YES, wenn Quellprogramm Uber schnellen Leser eingelesen werden
soll; das Quellprogramm wird eingelesen bis+# ; dann Compiler-Lochstreifen (Hauptteil)
in Leser einlegen und STA driicken. Das Quellprogramm wird - nach eventueller Pro-
tokollierung - durch die sukzessive eingelesenen Compiler-Phasen compiliert. Bei
Eingabe NO wird das Quellprogramm uber den Teletype-Leser eingelesen; danach
Wagenriicklauf eingeben, und die Compilierung erfolgt wie oben beschrieben.

Bemerkung: Falsch beantwortete Fragen kénnen durch Eingabe von DELET ungiltig
gemacht werden.

Nach der Umwandlung werden zwei Zahlen ausgegeben: Erste freie Adresse nach den
Versorgungsprogrammen und erste freie Adresse vor dem Objektprogramm.

Jetzt evtl. ben&dtigte Datenstreifen in den Leser einlegen. Durch Betitigen von STA
wird das umgewandelte Programm gestartet.

- 127 -

-8cl-

©,.N8H.8daNa

£,CNa4.

§NANY

a=8DIWUR,<ASTHY,AACNEH,,OLO9,~NAXHKL.Cn“1,.SS8T,COQSNUR-LIVUR)SAULT

§COYEHNUEH*W)INTUd

SCNSELO

GLOLG*TPQOWIS=SNOHNUaNIDSHS,,Od,.OT+W,TIINOAOL.dHLS,OT=*W.YOd,

$O=2LTVYS

SWIS.,aNa,

€CCDOOVT+0S*StTS#74+C90T)*CON*K9I/CON-90)=2WIS

£CH*AMN+9ON)T4+65=°0S,00.0N,.TILINN.c.dd1S,6=3H,.u0d,

SCH#M+tONIT+1S9=2159,00.IN.TIIND.co.ddlS,l=*u.uod,

SGoe-NtN=8oN

STeN+N=sTN

£O=2GqS=27S

SCN*EGI/CON-90)=8H

SGNVYUDAINILUNG,

SCHINTS=2I,NIOWG,

SU,TVG,

SU,HNTVA,

SCUTHUNCHOONd,.TVHY,

SONSINEM,YHOHINI,

SSoS*TS°H,TVHY,NIDA,

sN,YSODHINT,

£90*9N,1VHY,

SNSDOCONANTON«

SCNSOOSONIWIS,.SHUNGHOOd,.TVAU,

SA,URODEINI.«

SOANYSA©LTVHa.TVad,

fNISLIKNOTLVYDRINI-NOSdAWISGHCLSHL,LNGANNOO,..NIOWE,

660
3830
LcGQ

960
SoO

730
E30
o3Q
TocO
060

610
810

LTO
9TO
STO
710
ETO

oO
TTO

OTO
600

BOO
L00

900
SOO
700
£00
c00
TOO

SWWVIDOYd-1TO91VSINIF1451dS1499

FEHLERLISTE

Fehler zur Compilezeit

(mit Angabe der Zeilennummer des Fehlers. Nummer 000: Zeile laBt sich nicht loka-
lisieren).
Bei geradzahligen Fehlercodes wird die Ubersetzung abgebrochen.

100 SpeicherUberlauf bei Einlesen der ndchsten Phase
102 Speichertberlauf, da ALGOL-Programm zu lang
104 +t fehlt am Ende
106 Interner Uberlauf
101] falsches Zeichen
103 nach Wortsymbol fehlt Apostroph
105 unbekanntes Wortsymbol
107 unerlaubtes Wortsymbol nach ’END’
109 falscher String
11] falsche Oktalzahl
113 falsche ARRAY-Vereinbarung
117 zwei Punkte in einer Zahl

119 zwei E in einer Zahl

12] Zahl endet mit Punkt

123 Zahl endet mit E

125 zu groBer Exponent
202 ’DO’ fehlt oder steht an falschem Platz
206 "END’ zuviel; auch: ";" oder 4 fehlt am Ende
208 “UNTIL’ fehlt oder steht an falschem Platz
210 String-Uberlauf: ALGOL-Programm zu lang
212 "THEN’ fehlt oder steht an falschem Platz
214 Klammer- oder ’BEGIN’/’END’=-Anzahl stimmt nicht
216 Programm mehr als ca. 30fach geschachtelt
30] Variable nicht in giltigem Block vereinbart
305 Prozedurname nicht vereinbart

309 ARRAY-Name nicht vereinbart

313 Variable aus Spezifikationsliste fehlt in Parameterklammer
315 Komma oder Klammer fehlt in Parameterteil

317 nach Komma folgt keine Variable
321 Variablenname im selben Block mehrfach vereinbart
323 Prozedurname im selben Block mehrfach vereinbart
325 Strichpunkt fehlt
327 Variable aus VALUE-Liste fehlt in Parameterklammer
329 Komma oder Strichpunkt fehlt in Vereinbarungsliste
331 Zahl der aktuellen Parameter bei Prozeduraufruf falsch
335 desgleichen
340 Uberlauf: ALGOL-Programm zu lang
341 Markenname schon im selben Block vereinbart
350 Uberlauf der Konstantenliste (> 64 Zahlkonstanten)
352 Uberlauf der Variablenliste (>512 Variable)
354 Uberlauf der Markenliste (> 128 Marken)
356 desgleichen
358 Uberlauf der Prozedurliste (> 18 Prozeduren)

~ 129 -

360
362
364
366
400
AQ]
403
500
502
510

Uberlauf der ARRAY-Liste (> 12 ARRAYs)
Uberlauf (> 32 ineinandergeschachtelte Blécke)
desgleichen
Markenname nicht in giiltigem Block vereinbart
K elleriberlauf: zu groBer arithmetischer Ausdruck
Klammer auf zu wenig
Klammer auf zu viel
nicht definierbarer Fehler im String
nicht mdgliche Wertzuweisung an eigentliche Prozedur
Stringlberlauf; Programm zu lang

Fehler zur Objektzeit

18
20
22

26
52
53
54

Argument von LN <0

Argument von EXP zu gro8 (groRer als 512-1,9 = 355)
Argument von SQRT < 0

A=0, B<0

} bei A “POWER B fA so 8 =0
A <0, B real oder integer > 31

Zahl zu groB fur TYPE (wie bei 53)
Division durch Null
Zahil zu groB fir interne real-integer-Wandlung
Zahlbereichstiberschreitung bei Rechenoperation (Betrag gréBer als
ca. 10!99 bow. kleiner als ca. 107!9)

- 130 -

BASIC

VORBEMERKUNG

BASIC ist eine Programmiersprache fir mathematische und technisch-wissenschaftliche
Aufgaben. Sie ist besonders leicht lernbar und bietet - wenn, wie beim MINCAL
BASIC, die Ubersetzung durch einen Interpreter mit Editor-Teil geschieht - dem Be-
nutzer die Méglichkeit, im Dialogbetrieb zu arbeiten. Programme kénnen bequem
eingegeben, getestet, korrigiert und schnell ausgeftihrt werden.

Man unterscheidet bei BASIC die Programmsprache (mit Anweisungen als Sprach-
elemente) und die Kommandosprache (flr den Benutzer-Rechner-Dialog).

Rechner-Ausstattung: =MINCAL 523
Grund- + erweiterter Befehlsvorrat
Programmierhilfe X00
Kernspeicher ab 4 k (8 k empfohlen)
Konsol-Fernschreiber (oder Datensichtgerdt) an Ebene 0 als
Dialoggerdt
Schnelle Lochstreifenausristung an Ebene 0 (empfohlen)

Interpreter: Interpreter (mit Editor)
Ubersetzt jeweils 1 aktuelle Anweisung des als komprimiertes
BASIC im Speicher enthaltenen Programms
Der Interpreter arbeitet auf Ebene 0.

Soweit nicht nachstehend anders beschrieben, entspricht MINCAL BASIC der Dart-
mouth=Konvention.

EINLESEN DES INTERPRETERS

Interpreter-Lochstreifen in den (schnellen) Leser einlegen. INT, SENSOR 1, 2, 3, 4, (5)
nach unten; RES, END, STA betdtigen. Anfangs- und Endadresse (auf dem Lochstreifen
vermerkt) Uber den Fernschreiber 6-stellig oktal eingeben; STA erneut betdtigen. Der
Lochstreifen wird eingelesen. Danach INT und SENSOREN nach oben. RES END, STA
betitigen.

Das System ist betriebsbereit fur die Eingabe von Anweisungen oder Kommandos.

KOMMANDOS

Kommandos sind uber die Tastatur einzugebende Aufforderungen des Benutzers an das
System, bestimmte Arbeiten auszufUhren; die Ausflhrung geschieht unmittelbar, nach-
dem das Kommando durch die Eingabe von "Wagenriicklauf" abgeschlossen wurde.
Kommandos bestehen aus einer Buchstabenfolge (wovon nur dfe ersten 3 von Bedeutung

- 131 -

sind); danach kénnen eine oder zwei I- bis 4-stellige Zahlen (m, n) folgen, die
sich auf die Anweisungsnummern eines vorher eingegebenen, gespeicherten BASIC-
Programms beziehen.

LIST Gesamtes Programm listen
LIST m,n Programm von Anweisung m bis n listen
LIST m Anweisung m listen

PUNCH Gesamtes Programm lochen
PUNCH m,n Programm von Anweisung m bis n lochen (schneller Leser)
PUNCH m Anweisung m lochen

READ BASIC-Programm einlesen (schneller Leser)
und dem vorhandenen hinzufiigen |

SCRATCH Gesamtes Programm léschen
DELETE m,n Programm von Anweisung m bis n léschen
DELETE m Anweisung m léschen

RUN Programm starten (bei der niedrigsten Anweisungsnummer)

RUN m Programm starten bei Anweisung m

Fehlerhafte Kommandozeichen kénnen durch Eingabe eines oder mehrerer Linkspfeile
(t—) rickwirkend geldscht, das ganze Kommando durch Eingabe von DEL ungiltig
gemacht werden (vor Eingabe "Wagenriicklauf"). Erkennbare Fehler werden gemeldet
(s. Fehlerliste).

Kommandos fir Einfigen oder Andern von Anweisungen gibt es nicht. Zu dndernde
Anweisungen werden durch Neuveingabe mit der gleichen Nummer ersetzt; fiir Einfu-
gungen benutze man Nummern, die zwischen den Nummern der vorangehenden und
der nachfolgenden Anweisung liegen.

Kommandos kénnen in beliebiger Folge gegeben werden oder sich mit der Eingabe
von Programmzeilen (Anweisungen) abwechseln.

PROGRAMMZEILEN

Program mzeilen bestehen aus einer |- bis 4~stelligen Zahl (der Anweisungs~ oder
Zeilen-Nummer), gefolgt von der eigentlichen Anweisung in BASIC-Programmsprache.
Jede Zeile enthalt eine in sich abgeschlossene Anweisung, die mit einem Statement-
Code beginnt:

<Nummer > <Statement-Code > <Spezifikation >

Das Programm besteht aus der Gesamtheit dieser Anweisungen, die in aufsteigender
Reihenfolge der Nummern argearbeitet werden (soweit keine Spriinge in Betracht
kommen).

- 132 -

Program mzeilen werden einzeln eingegeben und durch "Wagenriicklauf" (cr) abge-
schlossen, z.B.:

ZO LETC =A +B (er)

worauf diese Anweisung gespeichert ist. Danach kann eine neve Programmzeile einge-
geben oder auch ein Kommando erteilt werden.

Fehlerhafte Zeichen kénnen durch Linkspfeil («#-), ganze Zeilen durch Eingabe von
DEL eliminiert werden.

STATEMENT-CODES

Diese Elemente von BASIC kennzeichnen die Art einer Anweisung. Sie stehen (hinter
der Nummer) am Anfang einer Programmzeile. Sie bestehen aus einer Buchstabenfolge.

REM m REM Kommentar

Dient zur Einfigung von Bemerkungen (beliebige ASClIl-Zeichen) in
das Programm. Bei der Programmausfiihrung wird diese Zeile tber-

gangen.

Beispiel:

(9B REM DIES IST EIN KOMMENTAR

LET m LET Variable = Ausdruck

m LET Variable 1 = Ausdruck 1, Variable 2 = Ausdruck 2

m LET Variable] = Variable 2 = ... = Ausdruck

Einer Variablen wird der Wert des rechts vom Gleichheitszeichen
stehenden Ausdruckes zugewiesen. Derselbe Wert kann mehreren
Variablen zugewiesen werden; auBerdem ist es mdglich, verschiedene
(durch Komma getrennte) Zuweisungen mit einem LET-Statement vor-

zunehmen.

Beispiele:

1@ LET
200 LET
140% LET
50 LET S

O

|

2

3/C2 NIAASSING))
B1=D3#, = E=F7=1-SIN(x)
+1, A= a

|

o
y
u

I NPUT m INPUT Variable 1, Variable 2, ...
m INPUT "Nachricht" Variable 1, Variable 2,

Mit INPUT werden einer oder mehreren Variablen Werte zugewlesen,
die vom Benutzer Uber die Tastatur einzugeben sind. Bei Ausfthrung
dieser Anweisung wird ein Fragezeichen (?) ausgegeben. Daraufhin

~ 133 -

PRINT

gibt der Benutzer die Zahlen in beliebigem Format, getrennt durch
Kommata, ein; am Ende ist "Wagenriicklauf" einzugeben. Waren es
zu wenig Werte, wird ?? gemeldet, und der Benutzer kann die

Eingabe vervollstandigen. Waren es zu viel, wird eine Fehlermeldung
ausgegeben, das Programm jedoch fortgesetzt. Die eingegebenen Werte
werden der Reihe nach den Variablen zugeordnet. Fehlerhafte Eingaben
k6nnen durch Linkspfeil («#—) je Zeichen oder durch DEL je Wert eli-
miniert werden.

Eine in Anfiihrungsstrichen hinter INPUT stehende Nachricht (aus be-
liebigen ASCII-Zeichen) wird vor der Eingabebereitschaft ausgegeben.
Gibt der Benutzer STOP anstelle einer Zahl ein, wird das Programm
beendet.

Beispiele:

1@ INPUT A,B
20 INPUT "GIB Al, Bl, B2 EIN" A,B C

PRINT
PRINT "Text"
PRINT Ausdruck 1, Ausdruck 2, ...

PRINT "Text" Ausdruck 1, Ausdruck 2, ...

Mit PRINT werden Texte oder Zahlenwerte ausgegeben. PRINT ohne
weitere Angaben bedeutet "neue Zeile". Im tbrigen kénnen Texte
(in Anfiihrungszeichen gesetzte, beliebige ASCII-Zeichen) und
Ausdrucke in beliebiger Reihenfolge vorkommen; sie werden in der
geschriebenen Reihenfolge verarbeitet und ausgegeben.

3
.
3
3

3

Fur jeden Ausdruck wird der Wert ermittelt und ausgegeben; falls

nicht anders spezifiziert, in folgendem Format: -@.xxxxxxE-xxx

(normales E-Format). Kommata (,) zwischen den Ausdrucken bewir-
ken, da die Werte nacheinander in 4 festen Spalten ausgegeben
werden (entsprechend Zeichenspalte 1, 17, 33 und 49). Ein Semi-

kolon (;) statt eines Kommas unterbindet diese Funktion und laRt den
Schreibkopf stehen. Beide Zeichen kénnen auch am Ende der PRINT-
Anweisung stehen. Bei Erreichen der Zeichenspalte 65 wird selbst-
tdtig auf eine neue Zeile geschaltet.

Beispiele:

18 PRINT
20 PRINT A,B(5),C+D+1 E *X
38 PRINT "ERGEBNIS=";A3+B4

m PRINT TAB (Ausdruck) Liste

Steht hinter PRINT das Wort TAB mit einem Ausdruck in Klammern

danach, so wird der Schreibkopf in die Zeilenspalte tabuliert, deren
Nummer sich aus dem Wert des Ausdruckes ergibt. Von da an wird die
Liste gedruckt, die sich wiederum in beliebiger Weise aus Texten und
Ausdrucken zusammensetzen kann.

Beispiel:

26 PRINT TAB (30% SIN(x)+30.5)"+"

- 134 -

GOTO

m PRINT FOR (Format 1) Liste 1, FOR (Format 2) Liste 2, ...

Steht hinter PRINT das Wort FOR mit einer in Klammern eingeschlos-
senen Formatspezifikation danach, so werden die Ausdrucke der fol-
genden Liste in besonderen Formaten gedruckt. FOR kann in einer
Anweisung beliebig oft angegeben werden.

Die Formatspezifikationen lauten (in Analogie zu FORTRAN) Fw.d
(F~Format) oder Ew.d (E-Format mit Exponent), wobei fir w (Feld-
weite ein schlieBlich aller Zeichen) und d (Stellen hinter Dezimal-
punkt) je eine Ziffer vorzusehen ist. Eine Formatspezifikation gilt
so lange, bis eine neve erfolgt. Mit FOR (E@.6) kehrt man zum nor-
malen E-Format zuriick.

Beispiele:

1@ PRINT FOR(F5.2) 7,FOR(F6. 1)-4+7
208 PRINT FOR(F5.0)50@. 1
50 PRINT FOR(E5.2)1G1E+3

Folgende Werte werden ausgegeben:

7.08 11.
508

@. 1GE+0G6

m GOTO n

Das Programm wird durch GOTO mit der Anweisung fortgesetzt, vor
der die angegebene Nummer n steht.

Beispiel:

1f GOTO 196

m GOTO Ausdruck OF nl, n2, ..

Das berechnete GOTO fihrt zu einem Spring auf die Anweisung mit
der Nummer nl oder n2 oder ..., je nachdem, ob der Wert des
hinter GOTO stehenden Ausdrucks gleich 1 oder 2 oder ... ist.
Wenn der Wert des Ausdrucks kleiner als 1 oder gréBer als die An-
zahl der Nummern in der Liste ist, so wird die folgende Anweisung
ausgeflhrt. Nicht ganzzahlige Werte des Ausdrucks werden abgerundet.

Beispiel:

28 GOTO AtB+] OF 198,28,58

~ 135 -

FOR

NEXT

m IF Bedingung THEN n

Das Programm verzweigt auf die Anweisung mit der hinter THEN
stehenden Nummer n, wenn die hinter IF stehende Bedingung er-
fullt ist; andernfalls wird die folgende Anweisung ausgefihrt.

Die Bedingung kann aus einem Ausdruck bestehen oder aus einem
Vergleichsausdruck (mit den Vergleichsoperatoren <<, <=, =, => ,

> ,4F) oder einer Boole’schen Verknupfung aus diesen. Sie gilt als
erfullt, wenn der arithmetische Wert ungleich Null bzw. das Boole’sche
Ergebnis gleich Eins ist.

Beispiele:

20 IF X/5>=N THEN 66
30 IF SIN(A)<=COS(A) AND SIN(B)4# .5 THEN 19
56 IF AtB+1 <<C6 THEN 79
80 IF A AND B OR C4 THEN 35 \ dentisch!
85 IF A AND B OR C#THEN 35 teentisens
98 IF A=B AND C#D OR B>=0 THEN 55

m FOR Variable = Ausdruck 1 TO Ausdruck 2

m FOR Variable = Ausdruck 1 TO Ausdruck 2 STEP Ausdruck 3

Mit FOR wird eine Programmschleife erdffnet. Die (Lauf-) Variable
wird auf einen Anfangswert gesetzt, der sich aus dem Ausdruck |

ergibt, und sptter durch NEXT um jeweils den Wert von Ausdruck 3
erhoht (entfallt dieser, so wird sie um 1 erhdht). Die Schleife wird
so oft durchlaufen, bis die Variable den Wert des Ausdrucks 2 erreicht
hat, mindestens jedoch einmal. Auf die FOR-Anweisung folgen die
Anweisungen der Schleife; sie gehen bis zur zugehérigen NEXT-An-
weilsung.

Zu beachten ist:
Die Anfangswerte der Lauf-Variablen kénnen beliebig sein, ebenso die
Schrittweiten (jedoch + 0).
Schleifen-Schachtelungen sind bis zu einer Tiefe von 10 erlaubt; sie
werden von innen nach auBen abgearbeitet. Uberkreuzte Schleifen-
schachtelungen sind verboten.
Die Lauf-Variable ist nur fir die Schleife selbst definiert.

Beispiele: siehe NEXT.

m NEXT Variable

NEXT ist die letzte Anweisung einer Schleife. Die Variable mu mit der
Lauf-Variablen der zugehérigen FOR-Anweisung Ubereinstimmen.
Durch NEXT wird die Schrittweite vor Lauf-Variablen addiert und
gepruft, ob der Endwert der Lauf-Variablen erreicht ist. Ist dies der

- 136 -

GOSUB

RETURN

Fall, so wird die folgende Anweisung ausgefthrt; andernfalls wird
zu der Anweisung hinter der zugehGrigen FOR~Anweisung zurtick-
verzweigt.

Beispiele:

18 FOR I=1 TO 19 STEP 2

38 NEXT |

10 FOR J=10 TO -2 STEP -1.2
28 FOR K=A/B+C * SIN(x) TO At19

38 NEXT K
4g NEXT J

1@ FOR I=1 TO 12
20 FOR K=1 TO 10
eee falsch! Uberkreuzte Schachtelung

NEXT |
NEXT K

m GOSUB n

Durch GOSUB wird ein Unterprogramm aufgerufen, das mit der An-
weisung n beginnt. Nach Ausfthrung des Unterprogramms wird das
Hauptprogramm mit der auf GOSUB folgenden Nummer fortgesetzt.
GOSUB-Anweisungen koénnen bis zu einer Tiefe von 6 geschachtelt
werden.

Beispiel:

28 GOSUB 19

m GOSUB Ausdruck OF nl, n2,

Das berechnete GOSUB ruft je nach dem Wert des Ausdrucks eines
der bei nl, n2, ... beginnenden Unterprogramme auf (s. auch be-
rechnetes GOTO).

Beispiel:

28 GOSUB A OF 100,110,128

m RETURN

Mit RETURN wird aus einem Unterprogramm in das Hauptprogramm
zuruckgesprungen. Jedes Unterprogramm mufi wenigstens ein RETURN

enthalten.

Beispiel:

138 RETURN

CALL

DIM

DEF

DATA

m CALL name (parl, par2, ...)

Mit CALL wird ein in Maschinensprache geschriebenes Programm
(Code-Prozedur) als Unterprogramm aufgerufen. Der Name der
Code-Prozedur besteht aus einem Buchstaben, gefolgt von 2 Buch-
staben oder Ziffern. Als Argument kénnen bis zu 7 Parameter tber-
geben werden; sie werden mit dem Wert der Parameterausdrucke Uber-

geben.

Beispiele:

10 CALL ADU (A+B, 18 * 2,5 * SIN(x))
28 CALL INT (1,1, 198)

m DIM dim Variable 1, dim Variable 2,

Mit DIM werden ein~ oder zweidimensionale Variablen-Felder defi-
niert und im Speicher reserviert. Die Dimension wird hinter den Feld-
namen angegeben; Dimensionsangaben sind ganzzahlige Konstanten und
dirfen nicht grdBer als 511 sein.
Die DIM-Anweisung mu der erstmaligen Verwendung einer indizierten

Variablen vorausgehen; die Zahl der Indizes mu Ubereinstimmen.

Variablen-Felder werden durch DIM auf Nullinhalt gesetzt.

Beispiel:

18 DIM A (3,18),B(5),C3(12, 19)

m DEF FN Buchstabe (Variable) = Ausdruck

Mit DEF kann der Benutzer eigene Funktionen definieren, die im Pro-
gramm als Funktionsnamen (Ghnlich Standardfunktionen) auftauchen.
Die Funktion muB FN, gefolgt von einem Buchstaben, sein. AuBerdem
ist eine Variable als Argument sowie ein Ausdruck anzugeben, dessen
Wert der Funktion im Augenblick des Aufrufs zugewiesen wird.
In einer DEF-Anweisung darf nur eine Funktion definiert werden.

Beispiele:

68 DEF FNA(B)=A+2/B+C
100 DEF FNF (X)=SIN(Ax% X-+B)

m DATA Zahl 1, Zahl 2,

DATA erdffnet eine Liste von Konstanten. Diese Daten konnen durch

eine READ-Anweisung dessen Argumenten (Variablen) zugewiesen werden.

Sind mehrere DATA-Listen vorhanden, so werden alle Konstanten. zu

einem Block gehorig betrachtet (in der Reihenfolge der Auflistung bzw.
der Zeilen-Nummern).

READ

STOP
END

Die Konstanten sind Dezimalzahlen in beliebigem Format.

Beispiels

1W DATA 100,5.24,-3.0E+5, 1

m READ Variable 1, Variable 2, ...

READ weist Konstanten aus dem DATA-Block den Variablen seiner
Argumentliste zu. Dabei wird den Variablen in der Reihenfolge ihrer
Auflistung bzw. der Folge der READ-Anweisungen ein Wert des DATA-

Blocks nach dem anderen zugeordnet.

Beispiel:

18 DATA 4
20 DATA 9
188 READ A,
93 READ E

72,3 ,
9] Es wird zugewiesen:

"BC D 4—E, 2-©F, 3-~A,
cE ’ 9—~-B, 8~C, 1D

,

m STOP

m END

STOP und END beenden den Programmablauf. END wird tberlicher-
weise am physikalischen Ende des Programms benutzt, wahrend STOP
innerhalb des Programms benutzt wird.
Bei Erreichen von STOP oder END wird DONE ausgegeben. Das
System wartet auf ein neues Kommando.

SPRACHELEMENTE

Zahlen:

Konstanten:

Variablen:

Operatoren:

Alle Werte werden intern durch Glgitkommazahlen dargestellt. Die
Genauigkeit der Mantisse ist 10 ~; der (Zehner-) Exponent darf

den Betrag 154 nicht Ubersteigen.

Ganzzahlen, z.B. +123, -267894, 5
Gleitkommazahlen im F-Format, z.B. 12.45, -@.@@@@12, -.5
Gleitkommazahlen im E-Format, z.B. -12 E-2, 12.34E5@, .8E+3

Buchstabe oder Buchstabe, gefolgt von Ziffern, z.B.: A, Z, B3, X9
Bei indizierten Variablen stehen dahinter, in Klammern eingeschlossen,
ein oder zwei (durch Komma getrennte) Ausdrucke, welche die Lage
im Variablen-Feld angeben; z.B. A(5),B6(2.3+Y, Z/3), D8(X+7)

+ Addition

Subtraktion

Multiplikation
Division

Potenzierung (Xx f 2 bedeutet "X hoch 2")

arithmetische:

—
>
~
\

*

~ 139 -

NOT
AND
OR
MIN

logische:

Vergleich:

I

V
V
E
I
A
A

ABS
INT
SGN

‘unktionen: mathematisch:

SQR
SIN
COS
TAN
ATN
LOG
EXP

RINDsonstige:

Negation

Konjunktion
Disjunktion

Kleinstwert (A MIN B ergibt A wenn A
und B wenn B

<
<

(A MAX B ergibt A wenn A>
>und B wenn B

B
A

e
e
”

GroRtwert B

A)
kleiner
kleiner oder gleich
gleich
ungleich
qgréBer oder gleich
gréRer

Absolutwert
Ganzzahl-Teil
V orzeichen (=] wenn Argument positiv;

sonst = ~-1)

Quadratwurzel
Sinus

Cosinus
Tangens

Arcus tangens

Logarithmus
Exponentialfunktion

Zufallsfunktion

(Es ist ein Pseudo-Randomgenerator vorgesehen. Er erzeugt:

RND (@) gleichverteilte Zufallszahl zwischen @ und 1
RND(-1) zufdlliges Setzen zweier Startwerte
RND(1)

< lammerung:

“-EHLERMELDUNGEN

normalverteilte Zufallszahl

Mit runden Klammern () beliebig zuldssig.

Vom Interpreter erkannte Fehler werden (bei Anweisungen erst wahrend der Durchfihrung
des Programms) durch die Nachricht

m ERR xx

yemeldet, wobei m die Zeilen-Nummer der fehlerhaften Anweisung, xx den nachste-
nenden Fehlercode bedeutet.

Fehler, die nicht unmittelbar zur Programmunterbrechung fihren:

Bei INPUT wurden zu viele Daten eingegeben.
Argument von SQR oder LOG ist negativ. Es wird der Absolutwert genommen.
Argument von SIN, COSist gréRer als 5x10°, von EXP gréGBer als 128 oder
LOG gleich 0. Es wird mit den Werten 0 bzw. 10!94 bow. -10!54 weiter-
gerechnet.
Berechneter Wert ist absolut gréBer als 10194. Es wird mit dem Maximal-
wert weitergerechnet.

Fehler bei Ausdrucken:

8
9

10
1]
12
13
14
15

Auf Operator folgt).
Ausdruck beginnt mit «, /, f , Vergleichsoperator, AND, OR, MIN oder
MAX.
Funktionsargument steht nicht in Klammern.
Auf eine Konstante folgt Konstante, Variable oder Funktion.
Auf eine Konstante folgt (.
Auf eine Variable folgt NOT.
Auf eine Variable folgt Variable, Konstante oder Funktion.
2 Operatoren in unerlaubter Reihenfolge.
Vor dem Zuordnungsoperator (=) steht keine Variable bzw. keine Funktion.
Es fehlt eine rechte Klammer.
Es fehlt eine linke Klammer.

Fehler bei BASIC-Anweisungen:

19
20
21
22

24
25

26
27

28
29

30

Variable, Daten, Ausdrucke bei READ, INPUT, PRINT, DISPLAY, DATA
nicht richtig getrennt oder abgeschlossen.
Kein richtiges Argument bei PRINT FOR oder TAB oder Zahl paft nicht ins
F-Format.

Die Variable nach NEXT entspricht nicht der Lauf-Variablen der aktiven
FOR-Schleife.
Die DATA-Liste ist erschdpft. READ findet keine Daten mehr.
Nach LET, DEF, FOR fehlt der Operator =.
Nach IF, GOTO, GOSUB steht keine oder keine existierende Zeilennummer.

Kein richtiger Ausdruck nach LET oder PRINT.
In FOR ist die Schrittweite 0.
Nach DIM oder FOR fehlt eine Variable.
Nach IF fehlt THEN oder nach FOR fehlt TO bzw. STEP oder nach DEF
fehlt FN.

Zu RETURN gibt es kein GOSUB.
Mehr als 6 Unterprogramme oder FOR-Schleifen tiefer als 10fach verschach-
telt.
Geldschte Bibliotheksfunktion wird verwendet.
Eine Funktion FN oder ein Name in CALL ist nicht definiert oder die Para-
meterzahl von CALL stimmt nicht mit der Listenangabe uberein.
Fehlerhafte Angaben in DIM-Anweisungen.

- 141 -

31
32

33
34
35
36

Indizierte Variable ist in DIM nicht definiert.
Indizierte Variable hat falsche Dimensionsangabe oder Index uberschreitet
Dimensionsangaben.
Dimensionsangabe in DIM ist > 511.
Speichertberlauf, da zu groBe Felder.
Speichertberlauf, da zu viele Variablen.
Statement-Code existiert nicht.

-ehler bei Kommandos (m ist ohne Bedeutung):

37
38
39
AQ
4]

Speichertberiauf, da Programm zu lang.
Zeile langer als 72 Zeichen.
Zeilen-Nummer > 9999.

Zeilen-Nummer existiert nicht.
Kommando existiert nicht.

- 142 -

BEISPIEL EINES BASIC-PROGRAMMS

READ

LIST
0100
0101
0110
0115
0120
0140
0150

RUN

REM PROGRAMMBEISPIEL 2
REM PLOTTEN EINER FUNKTION AUF DEM FERNSCHREIBER
DEF FNFCX)=SINCK) KEXP C0 01 *X)
FOR I1=0 TO 15 STEP .5
PRINT TABC30 «S41 S#*FNFCIT) 93%

NEXT I
END

- 143 -

Library

VORBEMERKUNG

Im folgenden sind einige weitere Programmiersysteme sind Unterprogrammpakete er-
wahnt, die zur Basis-Software der Computer MINCAL 513/523 gehéren. Ausfihrliche
Beschreibungen hierzu sind auf Wunsch erhaltlich.

Betriebssysteme fir periphere Gerdte sind im Kapitel "Peripherie" erw Ghnt.

D OPPELWORT-PAKET

Dieses Paket enthalt in Mikroprogramm-Technik realisierte Befehle fir

Doppelwort - Laden
" - Transfer
" - Addition
" - Subtraktion
" - Multiplikation

- Division

" - Dezimal~Bindr-Konversion (Rechts- und Linkskomma)
" - Bindr-Dezimal-Konversion (Rechts- und Linkskomma)

Es ist 512 Worte lang und kann entweder in den ersten 4 k des Kernspeichers abge-
legt oder in Form einer Festspeicher-Einheit implementiert sein.

Die interne Zahlen-Darstellung ist 2 Worte lang (Vorzeichen + 36 Datenbits).

EINWORT-GLEITKOMMA=PAKET

Dieses Paket enthalt Unterprogramme ftir die Ausftiihrung folgender Befehle:

Gleitkomma - Addition

" - Subtraktion
" - Multiplikation

- Division

- Dezimal-Konversion

Festkomma - Gleitkomma~Konversion

Gleitkomma - Quadratwurzel

Es ist 300 Worte lang und kann entweder im Kernspeicher abgelegt oder ~ zusammen
mit der Programmierhilfe ~ als Festspeicher-Einheit X@1 implementiert werden.

Die interne Zahlen-Darstellung ist 1 Wort lang (Vorzeichen + 12 bit Mantisse, 6 bit
Charaxteristik).

- 144 -

DOPPELWORT-GLEITKOMMA-PAKET

Dieses Paket enthalt Unterprogramme fur

die 4 Grundrechnungsarten, sowie
Potentzierung

Ein/Ausgabe-Konversionen
Mathematische Standardfunktionen

auf Wunsch

Die interne Zahlen-Darstellung ist 2 Worte lang: (Vorzeichen + 27 bit Mantisse,
Vorzeichen + 9 bit Exponent). Dies entspricht einer Mantissen-Genauigkeit von
ca. 107° und einem Zahlenbereich von ca. 10- 190

CALCULATOR

Der CALCULATORist ein Programm zum Betrieb des MINCAL 523 als Tischrechner.
Er erlaubt die Berechnung von mathematischen Gleichungen, in denen die 4 Grund-
rechnungsarten, Potenzierung, 8 Standardfunktionen, beliebige Klammerung und Kon-
stanten vorkommen dirfen. Zwischen- und Endergebnisse werden sofort ausgedruckt;
auBerdem ist die wiederholte Berechnung von Ausdrucken mit einer bei konstanter
Schrittweite verdnderten Variablen méglich.

EDITOR-BETRIEBSSYSTEM

Dieses Programm ist fur MINCAL 523~Systeme mit Externspeicher (Trommel oder Platte)
vorgesehen. Es dient zur Archivierung und zum Aufruf von Programmen in ASSEMBLER-
oder Formalsprachen (FORTRAN, ALGOL), zu deren Ein- und Ausgabe und Anderung
sowie zum Aufruf des Assemblers bzw. der Compiler.

Die Quellprogramme werden im Kernspeicher als Dateien dynamisch verwaltet und
sind im Externspeicher durch den Benutzer dnderbar.

- 145 -

Kernspeichererweiterung

Im Gehduse des Computers MINCAL 523 kénnen bis zu 8 kWorte Kernspeicher
untergebracht werden. Wird eine dartiberhinausgehende Kapazitdt bendtigt, so sind
zusdtzliche Speicher-Einschtbe erforderlich; es ist dann eine Erweiterung der Spei-
cherkapazitét auf insgesamt 32 kWorte mdglich.

Technische Daten

K ernspeicher:

Stromversorgung:

Netzanschluf:

GroBe:

Anschlu8:

1, 2 oder 3 Kernspeichereinheiten zu je 4 kWorten 4 20 bit
Zugriffszeit 0.6 us

Vollzyklus 1.5 us
Adressen: 20000...47777 (1. Speichereinheit)

50000...77777 (2. Speichereinheit)

eingebaut

220 V + 10 % 50 Hz
Leistungsaufnahme ca. 600 VA

19"=Einschub (6 Einheiten)
+ Stromversorgung (4 Einheiten) | ca. 440 mm hoch

575 mm tief

an Zentraleinheit MINCAL 523 Kernspeicher-Erweiterungs- Kanal
Uber Flachkabel (in unmittelbarer Nahe)

Die Speichereinheit ist wie die Zentraleinheit MINCAL 513/523 aus einem vorderen
und hinteren Rahmen aufgebaut. Die Kernspeicher belegen den vorderen Rahmen. Der
hintere Rahmen kann zwei Massenspeicher-Interfaces aufnehmen (z.B. Magnettrommel-
Interface + Magnetband-Interface).

- 146 -

Periphere Speichersysteme

VORBEMERKUNG

An den Computer MINCAL 523 kénnen Magnettromme!l-, Magnetplatten- und Magnet-
bandspeicher angeschlossen werden, die zur externen Speicherung von Daten und Pro-
grammen dienen. Trommel!l- und Plattenspeicher sind als Systemspeicher zu verstehen,
widhrend Magnetbandgertte vor allem zur Archivierung groBer Datenmengen dienen.

TROMMELSPEICHER-SY STEM

Trommelspeicher: Festkopf-Magnettrommel speicher
Kapazitat 32 k oder 128 kWorte (19 bit + Parity)
32 oder 128 Spuren zu je | kWorten
4 Sektoren mit je 256 Worten je Spur
mittlere Zugriffszeit 10 ms
Transferrate ca. 1 MHz entsprechend ca. 50 kWorten/s

19"-Einschub, 13 Einheiten hoch

mit eigener Stromversorgung

Controller: Interface-Einheit zum Betrieb von 1 bis 4 Trommeln

zum AnschluB an den Computer Uber X-Kanal und DMA-Kanal

eingebaut in eine Speicherein heit

Software: MINCDOS 500 Trommel-Betriebssystem
mit Executive (Lese/Schreibsteverung) und Operating (Bedie-
nungssystem)

MINCDOS 500 EXECUTIVE

EXECUTIVE ist der Teil des Trommel/Platten-Betriebssystems, welcher die Ubertragung
von Blécken beliebiger Lange und Lage zwischen Kernspeicher und Externspeicher
ausfuhrt.

Lesen (vom Externspeicher in den Kernspeicher) und Schreiben (in umgekehrter Rich-
tung) wird jeweils durch eine spezielle Instruktion bewirkt, der 3 Parameter-Worte

folgen:

- 147 -

542LL0 LESEN vom Externspeicher
IAAAAA Kernspeicher-Basisadresse
JAAAAA Externspeicher-Basisadresse
IAAAAA Blocklange

542LL4 SCHREIBEN auf Externspeicher
IAAAAA Kernspeicher-Basisadresse
JAAAAA Externspeicher~Basisadresse
IAAAAA Blocklange

Der erste Parameter gibt die erste Adresse des Speicherfeldes im Kernspeicher an;
ist die 1. Oktalstelle | gleich 1, 2 oder 3, so wird zu AAAAA der Inhalt vom
Indexregister 1, 2, oder 3 addiert. In gleicher Weise wird der dritte Parameter
behandelt, der die Linge des zu tbertragenden Datenblocks (in Worten) angibt.

Der zweite Parameter gibt die erste Adresse des Blocks im Externspeicher an; ent-
halt die erste Oktalstelle J eine 4...7 (Bit 17), so wird zu den restlichen Bits der-
Inhalt vom Indexregister 1 addiert.

Nachdem die effektiven Basisadressen und die effektive Blocklange ermittelt sind,
pruft EXECUTIVE, ob direkter Transfer mdglich oder indirekter Transfer nétig ist.
Direkter Transfer bedeutet Lesen in bzw. Schreiben aus dem Feld mit der angege-
benen Kernspeicher-Basisadresse; er ist nur méglich, wenn die Externspeicher-Basis~
adresse gleich einem Sektoranfang und die Blocklénge gleich 256 (= 400g) bzw. ein
Vielfaches davon ist. Andernfalls wird der Sektor, in dem sich adressierte Worte be-
finden, in das Datenfeld CTB (COMMON TRANSFER BLOCK)transferiert; beim Lesen
werden die interessierenden Worte dann in das angegebene Speicherfeld tbertragen,
wihrend beim Schreiben die betreffenden Worte im CTB uberschrieben und der vertn-
derte Block aus dem CTB auf den Sektor des Externspeichers zuriicktransferiert wird.

Mit dieser Methode ist auBer der Ubertragung von ganzen Sektoren (die am schnell-
sten vor sich geht) auch der Transfer von Einzelworten und Blécken beliebiger Lage
und Lange mdglich. Enthalt ein Block einen oder mehrere ganze Sektoren, wendet
EXECUTIVE direkten Transfer an, auch wenn am Anfang oder Ende des Blocks indi-
rekter Transfer ndtig ist.

Nach Auslésen des Lese- oder Schreibvorgangs geht EXECUTIVE zum Anfang und
halt an. Nach Rickmeldung vom Externspeicher (Sektor transferiert) wird Uber das
Uberschreiben von CTB und erneuten Transfer entschieden; oder CTB wird ausgelesen
bzw. der Einzeltransfer ist beendet. Ist der Block noch nicht fertig bearbeitet, so
wird mit dem nachsten Sektor begonnen.

Sind mehrere Externspeicher angeschlossen (bis zu 4 mdglich), so wird die Gertte-
Nummer (0...3) in den letzten 2 Bils des Befehls angegeben, z.B.:

542LL2 LESEN vom Externspeicher 2
542LL7 SCHREIBEN auf Externspeicher 3

- 148 -

Im symbolischen Programm konnen die Befehle

RD (READ FROM DRUM/DISC = LESEN) bzw.
WD (WRITE ON DRUM/DISC = SCHREIBEN)

benutzt werden.

EXECUTIVE kann 4 Fehlerarten feststellen:

1 WRITE LOCKOUT (zu beschreibende Spur ist geschitzt)
2 PARITY (gelesener Sektor enthielt Parity-Fehler)
3 STATUS (Externspeicher nicht bereit)
4 KEIN CTB (indirekter Transfer nétig, aber kein CTB vorgesehen)

Im Falle eines Fehlers wird auf dem Konsol-Fernschreiber eine Nachricht ausgedruckt,
die mit DOS ERR beginnt und in Form von 7 6-stelligen Oktalstellen Fehlerart, Ur-
sprungsebene, Transferinstruktion, Kernspeicher-, Externspeicher-Adresse und Blocklién-
ge angibt. Das Programm in der Ursprungsebene wird nicht fortgesetzt.

Die Fehlerausgabe lduft in Ebene 00; ein etwa dort in Gang befindliches Programm
wird unterbrochen; danach wird der Programmstand wieder auf den alten Stand ge-
bracht, die Ebene 00 wird jedoch nicht gestartet.

MINCDOS 500 OPERATING

OPERATING ist der zweite Teil des Trommel/Platten-Betriebssystems; er dient zum
Laden der Externspeicher Uber den schnellen Lochstreifenleser, zum Ausstanzen des
Externspeicher-Inhalts auf dem schnellen Locher, zum Aufruf von Programmen aus
dem Extern- in den Kernspeicher und zum Ablegen von Kernspeicher-Inhalten auf
den Externspeicher.

Jedes eingelesene, ausgelochte, aufgerufene oder abgelegte Programm hat einen
Namen, der im PROGRAM DIRECTORY (Programmverzeichnis) auf dem Externspeicher
vermerkt sein muB; mit OPERATING kann dieses Verzeichnis geftihrt und ausgedruckt
werden.

Das PROGRAM DIRECTORYbefindet sich auf der ersten Spur des Externspeichers
(Adressen 000000...001777 = 1 kWorte) und kann bis zu 256 Programm-Namen
einschlieBlich der zugehérigen Parameter aufnehmen, wobei jeweils 4 Worte zu
einem Programm gehGren:

1. Wort Programm-Name
2. Wort Kernspeicher~Basisadresse (fur Aufruf bzw. Ablegen)
3. Wort Externspeicher-Basisadresse (Lage des Programms)
4, Wort Program mlinge (in Worten)

- 149 -

Programm-Namen sind aus 3 alphanumerischen Zeichen (alle 64 druckbare Zeichen
des ASCII-Codes einschlieBlich SPACE) aufgebaut, wobei jede Kombination erlaubt
istz die Kombination "@@@" jedoch gilt als Leerstelle im Verzeichnis und ist als
Name verboten. Basisadressen und Programmldnge werden in bindrer bzw. oktaler
Form dargestellt.

Es ist zweckmaBig, jedes Programm bzw. Teilprogramm, jede Tabelle usw., die
sich im Externspeicher befinden, auf diese Weise im PROGRAM DIRECTORY zu
vermerken.

Bedienung und Betriebsarten

OPERATING wird durch Start der Programmebene 00 begonnen, z.B. mit Betatigen
der Taste STA am Rechner-Bedienungsfeld. Der Konsol-Fernschreiber beginnt eine
neve Zeile mit dem Ausdrucken der Buchstaben DOS.

Der Bediener wahlt eine der 6 OPERATING-~Betriebsarten durch Eintasten der Buch-

staben L, F, R, P, C oder S an; jedes andere Zeichen wird durch erneutes Ausdruk-
ken von DOS moniert; durch Eingabe von E jedoch wird OPERATING beendet.

Es gibt folgende Betriebsarten:

LIST Ausdrucken des Programmverzeichnisses

FIND Programm im Verzeichnis suchen (um es zu Gndern, einzugeben
oder zu ldschen)

PUNCH Auslochen Programm auf schneller Lochstreifeneinheit
READ Einlesen eines Programms Uber die schnelle Lochstreifeneinheit
CALL Aufrufen eines Programms
SAVE Ablegen eines Program ms

- 150 -

PLATTE NSPEICHER-SYSTEM

Plattenspeicher:

Controller:

Software:

MINCEDOS 500

Magnetwechselplattenspeicher mit beweglichem Lese/Schreib-
kopf
Kapazitat 0.8 Mbyte (19 bit + Parity)
2mal 200 Spuren zu je 2 kWorten
8 Sektoren zu je 256 Worten je Spur
mittlere Zugriffszeit 60 ms
Transferrate ca. 1.6 MHz entsprechend ca. 80 kWorten/s

19"-Einschub, 4 Einheiten hoch

mit zusdtzlicher Stromversorgung.

Interface-Einheit zum Betrieb von 1 bis 4 Platten
zum Anschluf an den Computer Uber X-Kanal und DMA-~Kanal
zum Lesen/Schreiben von 1...8 Sektoren einer Spur
eingebaut in eine Speichereinheit

MINCEDOS 500 Platten~Betriebssystem
mit Executive (Lese/Schreibsteuerung) und Operating (Bedie-
nungssystem)

Das MINCEDOS-Betriebssystem entspricht weitgehend dem Trommel-Betriebssystem
MINCDOS. Der einzige Unterschied besteht darin, da nur ein Teil der Platte so
angesprochen werden kann wie die Trommel.

Wegen der groBen AdreBkapazitat gibt es zwei Médglichkeiten der Plattenadressierung:

1. Jedes Wort wird adressiert (bis zu maximal 128 k médglich)

2. Die Sektoren werden adressiert (wird durch ein Minuszeichen in der
Plattenadresse angegeben).

- 151 -

MAG NETBAND-SYSTE ME

Bandeinheit: 9-Spur, 800 oder 1600 bpi Schreibdichte
12.5...25 ips Bandgeschwindigkeit
Read-After-Write
mit Stromversorgung

Spulendurchmesser:
7 " (7200" Bandlinge) (19"-Einbau, 5 Einheiten hoch)
8.5" (14400" a) (it ; 7 iy "i)

10.5" (28800 ii i) (ii , 14 if a)

Controller: Interface-Einheit zum Betrieb von 1 bis 4 Bandern

zum AnschluB an den Computer Uber X-Kanal und DMA-Kanal

eingebaut in eine Speichereinheit

Software: MINCTOS 500 Band-Betriebssystem

MINCTOS 500

Das Band-Betriebssystem MINCTOS 500 ist ein speicherresidentes Programm, das
1/4 kWorte im Kernspeicher einnimmt. Es ist relativ adressiert, kann also beliebig
im Speicher abgelegt werden.

MINCTOS 500 kann maximal 4 Bandeinheiten bedienen.

Es sind nachstehende Befehle mdglich:

Lesen vom Band

Schreiben auf das Band
Zurlickspulen bis zum Anfang (Rewind)
Schreiben einer Bandmarke

Definierter Vorlauf

Definierter Ricklauf

Lesen und Schreiben kann entweder bindr oder byteweise erfolgen.

Bindr hei®t, daB das ganze Wort Ubertragen wird (3 bytes). Byteweise heiBt, daB jedes
Wort als 2 Bytes zu je 8 bit angesehen wird; die Bits 16...19 werden daher nicht
Ubertragen.

Die Ubertragung erfolgt im Cycle-Stealing.

Auf jeden Befehl miuissen immer Parameter-Worte folgen. Er hat die Form:

542LLX
YAAAAA
QOBBBB
CCCCCC

-~ 152 -

L r
m

X
Y

A
B
C..

2A
.B
oC

Ebene, in der MINCTOS 500 lauft
Nummer des Befehls

Nummer der Bandeinheit

Kernspeicher-Basisadresse
Blockldnge
Sonderausgang

Hinter jedem Befehl ist eine symbolische Schreibweise angegeben; in der Befehlsta-
belle des Assemblers ist der entsprechende Maschinenbefehl einschlieBlich der
MINCTOS 500-Ebene (LL) zu vermerken.

Lesen byteweise 542LLO
Lesen bindr 542LL1
Schreiben byteweise 542LL2
Schreiben bindr 542LL3

Zurlickspulen 542LL4
Schreiben einer Band-
marke 542LL5

Definierter Vorlauf 542LL6

Definierter Riicklauf 542LL7

I RTF
RTB
WTF
WTB
RTB

WIM
= FIM
= BTM

Read Tape Format
Read Tape Binary
Write Tape Format
Write Tape Binary
Rewind Tape

Write Tape Mark
Forward until Tape Mark
Bach until Tape Mark

Der Sonderausgang wird in folgenden Fallen angesprungen, wobei im W-Register eine
Schlusselzahl vermerkt ist:

W-Register =

H
o
o

I
H
o
d

Ul
I]

O
O
C
O
N
O
O
R
W
N

—

HH

- 153 -

Bandeinheit nicht bereit
gelesener Block zu lang
Bandmarke gelesen
Blocklaénge gréBer als 4095
Bandende gefunden

Parity~Fehler
Schreibversuch trotz Schreibsperre
Bandanfang gefunden
Basisadresse + Blocklange ungleich Zahlerstand

Peripherie-Interfaces

zerdte- und ProzeBperipherie-Interfaces dienen zum Anschlu8B der Computer
MINCAL 513/523 an Bedienungsperipherie und ProzeB-Ein/Ausginge.

Sie bestehen aus einer oder mehreren Bausteinen im Format der doppelten Europa-
karte (225 mm hoch, 160 mm tief; Adapterkarten sind 270 mm tief). Der Anschlu8B
der Karten geschieht ber zwei 64-polige Stecker. Zu den Gertten oder zum Pro-
zeBanschluf dienen Adapterkarten mit 20- oder 30-poligen DIN-Steckern.

Die Interfaces werden - soweit sie nicht in der Zentraleinheit eingebaut sind - in
einem oder mehreren Zusatzeinschiben (AnschluBeinheit) untergebracht.

AnschluBeinheit

Diese Einheit kann (je nach BaugréBe der Interface-Einheiten) ca. 15 Interfaces
aufnehmen; die Karten werden von hinten in senkrechter Lage eingesteckt. Der An-
schluB der Peripherie erfolgt riickseitig Uber 20- oder 30-polige DIN-Stecker auf
speziellen Adapterkarten. |

Die Einheit enthalt eine fir alle Interfaces ausreichende Stromversorgung; ferner 2
Paar AnschluBstecker mit Adapterkarten flr den X-Kanal (zur Verbindung mit dem
Computer sowie evtl. weiterer Einschube).

Die Baugruppen werden Uber eine gemeinsame Device-Selection angewahlt; auf
dieser Karte werden X-Kanal-Adressen und Programmebenen den Interfaces zugeord-
net.

Steckplatz-Einheiten: 82

Stromversorgung: +5 V/5.5 A; -5 V/1 A; +15 V/5 A; +24 V/3 A

NetzanschluB; 220 V +10 % 50 hz
Leistungsaufnahme max. 200 VA

GrodBe: 19"-Einschub
7 Einheiten hoch ca. 400 mm
+ Stromversorgung 2 Einheiten hoch

- 154 -

MINCAL 500

SCHNELL ORUCKER

SCHREIBMASCHINE

MOSAIK/

THERMOORUCKER

8/3-KANAL-

FERNSCHRE! BER

AN ZEIGE-

UND

BEDIENUNGSFELO

DIGITALSIGNALE

ANALOGSIGNALE

SPALTEN-

ORUCKER

PROZESSRECHNER-SYSTEM

LOCHKARTEN

STAN ZER

a
be
ie
mc
em
cm
ee
d

GERATE-

= 9 INTERFACE “4
oon <

| padhesensaensessmeenme =
ree

x
'

ANSCHLUSSEINHEIT |

J U

[is] 2°
20

oo

STATISCH
PROZESS-

DYNAMISCH INTERFACE 4

INTERRUPT z
<
4

ANSCHLUSSEINHEIT |

MITTELSCHNELLES |

MESSSYSTEM
— - MESS- ANALOG- DIGITAL-
STORSICHERES STELLEN-| DIGITAL: |, ANALOG-
MESSSYSTEM UM- vue <|_| uw-

SCHNELLES SCHALTER| SETZER |<]Ol SETZER
MESSSYSTEM “1S

ANSCHLUSSEINHEIT xpo

KERNSPEICHER- sla
=ERWEITERUNG BE! i<igl , ae a

MINCAL 523 z|<|z| Zz i
apr jo} #2 &
wiciig] @ w w
‘faxjal <a F

SPEICHEREINHEIT xfalw| Zuo =

MINCAL 500 RECHNER z w
sla wjl Vo
tly mw)

KERNSPEICHER a}z|e wy &
<i dtiw z|=

FESTPROGRAMM- z|</z 71u
tp ile Wl z

SPEICHER “io 2+
‘izle Olu
xP Qln he

MONO

GESPEICHERT

COODIERT

KONSTANTSTROM

KONST. SPANNUNG

ae

~ 155 -

ch
/ C

DATENSICHTGERAT

X-Y-SCHREIGER

BDIGITAL- PLOTTER

KOORDINATEN-

LESEGERAT

GROSSRECH NER -

ANSCHLUSS

DIGITALSIGNHALE

ANALOGSIGNALE

FESTKOPFTROMMEL

MAGNETBAND

WECHSELPLATTE

RECHNER-

KONSOLGERATC

Gertte-Interfaces

Diese Interfaces dienen zum AnschluB von Peripheriegerdten (insbesondere Bedienungs-

peripherie). Folgende Interfaces sind verfiigbar:

Fernschreib-Interface
8-Kanal-E/A-Schnittstelle
110 Bd, 11 Schritte/Zeichen
mit Formatisierung und Parity-Erzeugung/-Prifung
fur Linienstrom 20...40 mA

Fernschreib-Interface
8=Kanal/5-Kanal-E/A-Schnittstelle
50/75/110 Bd, 7.5 oder 11 Schritte/Zeichen
fur Linienstrom 20...40 mA

Streifenleser-Interface

8-Kanal-E-Schnittstelle

fir 5/8-Kanal-Lochstreifenleser 125 Z/s

Streifenleser-Interface
8-Kanal-E-Schnittstelle
fur 5/8-Kanal-Lochstreifenleser 330 Z/s

Streifenlocher-Interface

8-Kanal-A-Schnittstelle
fur 5/8-Kanal-Lochstreifenstanzer 50 Z/s

V24-Interface flr Gerdte-AnschluB
8-Kanal-E/A-Schnittstelle
110...1200 Bd, 10 oder 11 Schritte/Zeichen
Schnittstelle nach V24
fur Display, Mosaikdrucker, Teletype

Interface fur Kugelkopf-Schreibmaschine
E/A-Schnittstelle
fir IBM 735 BCD, 15 Z/s

Spaltendrucker~Interface
A-Schnittstelle
(fur Kienzle-Spaltendrucker)

Schnelldrucker-Interface

A-Schnittstelle

(fur Kettendrucker MDS 4030)

- 156 -

Analog-XY-Interface
mit 2 Analogausgdngen 0...1 V
mit 2 10-bit-Digital-Analog-Umsetzern und 2 Kaskadenregistern mit
Steuverung fiir Z-Koordinate
(fir XY-Schreiber und graphische Displays)

Digital-Plotter-Interface
mit Impulsausgingen fir XY-Koordinaten und Federsteverung
(fur Digital-Plotter)

Kartenleser-Interface

12-Kanal-Schnittstelle

geeignet fiir Start-Stop-Betrieb

Interfaces fiir ProzeRsignale

Diese Interfaces dienen zur Ein- oder Ausgabe von digitalen oder analogen Signalen,
wie sie fir ProzeBanschliisse typisch sind. Folgende Interfaces sind verfiigbar:

18/36-bit-Digitaleingang statisch/TTL
ProzeB-Interface zur statischen Abfrage von 18/36 digitalen Eingangssignalen
TTL-Schnittstelle (5 V)

18/36-bit-Digitaleingang statisch/HTL
ProzeB-Interface zur statischen Abfrage von 18/36 digitalen Eingangssignalen
HTL=Schnittstelle (12...30 V)

18/36-bit-Digitaleingang statisch/Relais
ProzeB-Interface zur statischen Abfrage von 18/36 digitalen Eingangssignalen
Uber Relais (312 V, 15 mA)
16 Spulenanschliisse + 1 gemeinsame Rickleitung

18-bit-Digitaleingang dynamisch/TTL
ProzeB-Interface zur Speicherung und Abfrage von 18 digitalen Eingangs-
signalen
mit Differenziereingang, 18-bit-Speicher und Interrupt-Ausldsung
(6-bit-weise verriegelbar)
TTL-Schnittstelle (5 V)

18-bit-Digitaleingang dynamisch/HTL

ProzeB-Interface zur Speicherung und Abfrage von 18 digitalen Eingangs-
signalen
mit Differenziereingang, 18-bit-Speicher und Interrupt-Ausldsung
(6-bit-weise verriegelbar) "
HTL=-Schnittstelle (12...30 V)

- 157 -

18-bit-Digitaleingang dynamisch/Relais
Prozeh-Interface zur Speicherung und Abfrage von 18 digitalen Eingangs-
signalen Uber Relais (> 12 V, 15 mA) mit Differenziereingang, 18-bit-
Speicher und Interrupt-Auslésung

(6—bit-weise verriegelbar)

ProzeB-Interface flr Absolutdrehgeber
fur max. 30 Spuren
mit Hardware-UmschliBlung fiir V-Logik zum AnschluB eines Absolut-
Drehgebers (Dual) mit Lampensteverung uber Referenzdiode

ProzeB-Interface fir Absolutdrehgeber
beliebigen Codes 12 bit
mit Abfrage-Logik und Zweifadenlampen-Steuverung

18/36-bit-Digitalausgang/TTL
ProzeB-Interface zur Speicherung und Ausgabe von 18/36 Ausgangssignalen
TTL-Schnittstelle (5...30 V, max. 80 mA)

18/36-bit-Digitalausgang/Relais
Proze-Interface zur Speicherung und Ausgabe von 18/36 Ausgangssignalen
18/36 Kontaktausgange von Reed-Relais
1 Arbeitskontakt je bit mit gemeinsamer Riickleitung
max. 110 V 0.5 A 10 W bei ohmscher Last

18/36-bit-Digital-Impulsausgang/HTL
ProzeB-Interface zur Ausgabe von 18/36 Ausgangssignalen eingestellter Zeit-
daver

HTL (5...30 V, 80 mA)
T = 1...500 ms

18-bit-Digital-Impulsausgang/HTL
ProzeB=Interface zur Ausgabe von 18 Ausgangssignalen eingestellter Zeitdauver
HTL (5...30 V 1 A)
T = 1...500 ms

{

18-bit-Digital-Impulsausgang/Relais
ProzeB-Interface zur Ausgabe von 18 Ausgangssignalen eingestellter Zeitdaver
Reed-Relais: 1 Arbeitskontakt je bit mit gemeinsamer Rickleitung
max. 110 V0.5 A 10 W bei ohmscher Last
T = 1...500 ms

Analogausgang 10 bit/10 V/1 V
ProzeB-Interface mit 10-/0-bit-Register, Digital-Analog-Umsetzer und Verstdrker
Ausgangsspannung 0...10 V (0...1 V) niederohmig

- 158 -

Analog=Ausgang 12 bit/20 V

ProzeB-Interface mit 12-bit-Register, Digital-Analog-Umsetzer und Verstarker
Ausgangsspannung 0...20 V niederohmig

Analogausgang 10 bit/20 mA
ProzeB-Interface mit 10-bit-Register, Digital-Analog-Umsetzer und Verstérker
Ausgangsstrom 0...20 mA, max. Biirde 450 Ohm/850 Ohm

Ziffern—Anzeige-Treiber
Register- und Treiberschaltungen fiir BCD-Ziffernanzeigen
(3.5...30 V)
fir 4 x 2 (bzw. 2 x 3 oder 2 x 4) Dekaden, mit Vorzeichen

ProzeB-Interface flr codierte Digital-Ausgabe
4 Dekaden, mit Registern

Analog-Eingang 12 bit/10 V
ProzeB-Interface mit Analog-Digital-Umsetzer 12 bit
Konversionszeit ca. 30 us
Eingangsspannung 0...+10 V, nicht potentialfrei

- 159 -

Analog-MeBsysteme

VORBEMERKUNG

Zur Erfassung insbesondere einer Vielzahl von analogen MeRsignalen stehen drei MeR-
systeme zur Verfligung, die sich durch ihre Auflésung und ihre MeBgeschwindigkeit un-
terscheiden.

Alle Systeme sind modular aufgebaut und in sich abgeschlossene Einheiten, die uber

den X-Kanal bzw. DMA-Kanal mit dem Computer MINCAL 513/523 verbunden werden.

Mittelschnelles Analog-MeRsystem

Auflésuriy:

Konversionszeit:

MeBbereich:

Potentialtrennung:

Betriebsarten:

Me Bfrequenz:

MeBkanile:

Sample-and-Hold:

Stromversorgung:

GroBe:

MeBanschliisse:

NetzanschluB:

12 bit (StufenverschluBler)

ca. 25 us

0...+10 V
- 5...+ 5 V (Option)
-10...+10 V (Option)

zwischen MeBkreis und Logik durch Fotokoppler

programmgesteuvert oder

selbstgestevert (Option)
fur Messung mehrerer MeBwerte bzw. MeBkandle und Ablage im
Kernspeicher
vom Programm vorwthlbar: Speicher-Basisadresse, MeBkanal-
Basisadresse, Blocklange, Einkanal/inkrementierende Mehrkanal-
Messung

max. 29 kHz im selbstgesteuverten Betrieb

MOS-FET-Multiplexer (Option)
1...4 Bausteine mit 8 oder 16 Eingangen
(max. 64 Kandle)

Option

eingebaut

19"-Einbaurahmen, offen (abgeschirmt), konvektionsbeliftet
Hshe 3 Einheiten (ca. 135 mm)
Tiefe ca. 250 mm

Uber ruickseitige Steckverbindungen

220 V +10 % 50 Hz

- 160 -

Schnelles Analog-MeBsystem

Aufldsung:

MeBbereich:

Potentialtrennung:

Betriebsart:

MeBfrequenz:

MeBkanile:

Sample-and-Hold:

Stromversorgung:

GroBe:

MeBanschlisse:

NetzanschluB:

8 bit (StufenverschluBler) Konversionszeit 0.95 us, oder
10 bit (StufenverschliBler) " 1.2 us

0...+10 V

Q...+ 5 V (Option)

zwischen MeBkreis und Logik durch Fotokoppler

selbstgesteuvert
flr Messung mehrerer MeBwerte bzw. MeBkandle und Ablage
im Kernspeicher
vom Programm vorwthlbar: Speicher-Basisadresse, MeRkanal-
Basisadresse, Blocklénge, Einkanal/inkrementierende Mehrkanal-
Messung

200 kHz

MOS-FET-Multiplexer (Option)
1...4 Bausteine mit 8 Eingtngen
(max. 32 Kanidle)

Option

eingebaut

19"-Einbaurahmen, offen (abgeschirmt), konvektionsbeliftet
Hshe 3 Einheiten (ca. 135 mm)
Tiefe ca. 250 mm

Uber riickseitige Steckverbindungen

220 V + 10 % 50 Hz

- 16] -

Stdrsicheres Analog-Melsystem

Auflésung:

MeBfolge:

MeBbereich:

Potentialtrennung:

Betriebsart:

Eingangswiderstand:

MeBfehler:

MeBkandle:

GrodBe:

NetzanschluB&:

+ 120000 Ziffernschritte zu je 10 uV

integrierendes MeBverfahren
Integrationszeit 20 ms

20 bzw. 100 Messungen/s

1.2 V

mit MeBkreisschirm (guard)

programmgestevert

1000 MOhm

+0.01 % v.M., +0.003 % v.E.

3-polig schaltende Reed-Relais in Schutzschirmtechnik.
Pro Einschub 8...64 Kanile

19"-Einbaurahmen

Hohe 199 mm

Tiefe 407 mm

220 V +10 %/-15 % 50 Hz

~ 162 -

Periphergerate

Zu den MINCAL 513/523 ist eine groBe Anzahl von Periphergertten verfiigbar, die
Uber die im Kapitel "Ger&te-Interfaces" beschriebenen Schnittstellen betrieben wer-
den.

~ 8-Kanal-Fernschreiber

Teletype ASR 33, mit angebautem Streifenlocher und -leser
10 Z/s, 72 Z/Zeile
mit V24-AnschluB oder mit Linienstrom-AnschluB

- 5~Kanal~Fernschreiber

Siemens T100

10 Z/s, 64 Z/Zeile
mit Linienstrom-AnschluB

- 8 (5)-Kanal-Streifenleser
optischer Leser mit Schrittmotor fur Vor/Riickwarts-Betrieb
125 Z/s

mit Spuleinrichtung (Spulen 152 mm)
19"~Einbaugerdt, Héhe 5 Einheiten

= 8 (5)-Kanal-Streifenleser
optischer Leser mit Andruckrolle und Bremse, 330 Z/s
19"-Einbaugertt, Hthe 3 Einheiten
Spuleinrichtung, H&éhe 4 Einheiten

- 8-Kanal-Streifenlocher
50 Z/s
mit Vorratsspule
19"-Einbaugerat, Hthe 4 Einheiten

- Bildschirm-Terminal
Datensichtgerat mit 12" Bildschirm
27 Zeilen zu je 74 Zeichen
mit Vordergrund/Hintergrund-Speicher
mit V24-AnschluB (110...4800 Bd)
mit Eingabetastatur

auf Wunsch mit Hardcopy-Einheit (Thermodrucker)
auf Wunsch mit Doppel-Magnetbandkassette

- Thermodrucker

10...30 Z/s oder 40 Z/s, 72 Z/Zeile

- 163 -

- Mosaikdrucker

180° Z/s, 132 Z/Zeile

- XY-Schreiber

DIN A4 oder DIN A3

- Digital-Plotter
Aq |
oder fiir Endlospapier (11" Schreibbreite)
300 Schritte/s

- Lochkartenleser
fur 80-spaltige Lochkarten, Stapelleser
0...200 Spalten/s

- LSK-Abrufleser

Siemens—Lochstreifenkartenleser 61, 10 Z/s

~ LSK-Locher
Siemens—Lochstreifenkartenlocher 159, 10 Z/s

- FS-Rundschreibknotenstelle codegestevert
Siemens Zentraleinheit 9530
adressen-gesteverter Datenverteiler flr max. 10 Endstellen

- Computer-Display-Terminal
fur graphische und alphanumerische Darstellungen auf einer Speicherrdhre

- Kugelkopf-Schreibmaschine
IBM 735 BCD, 15 Z/s
mit codegesteverter Rot-Schwarz-Umschaltung, 120 Z/Zeile

- Spaltendrucker
Digitaldrucker mit Springwagen
5-stellig mit Tabulator
(Kienzle D44-SW 5)

- Schnelldrucker

Kettendrucker MDS 4030

300 Z/min, 64 Charaktere, 135 Z/Zeile

- 164 -

_
4
6
3

4
4
3

il
m
e

r
n

—

|

|
Ht]i

O
l
O
l
O
1
O
1
0
101010101

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

0
1
0
1
0
1
0
1
0
1
O101e)

|

co
|

|
co

|
|

~
~

e
o
o
o
o
d
g
o
o
o
a
c
o
e
c
o
d
o
a
o
o
o
d
o
l
o
l
U
l
c
U
t
l
t
l
l
8

lc
e
o
o
o
0
o
0
o
o
0

0
80

|||

a
e
c

q
o
o
g
o
o
o
o
g
o
g
o
c
o
o
c
o
o
o
q
o
q
a
g
a
o
g
c
¢
e
d
s

o
o
c
o
0
l
c
O
C
O
0
0

86
|

~t
sy

J
led

~t
|

|
N

(
O
a
a

|
™
C
e

j
b

e
0

oO

A
N

r
e

|
r
e

c
n

|

T
O
R

a
uy

=

4
8
2

a
s

|
|

i
C

i
l

t
tJ

Gos)
0
4
9

5
0
0

4
4

7
4

- 165 -

ASCll-Code Druckbare Zeichen

d o
< &
2 Y

N N

Kanal Kanal

87654.321. oktal 87654.32 1 oktal

u fol Te 040 @ [ole 100
| e e| 04] A ® e| 101

" e e 042 B e e 102

{O/] |e eje| 043 C jole eie| 103

$ e e 044 D e |e 104

% Io] le -|@| Je! 045 E |ole -j@| jel 105
& |o| je .|e|e 046 F lole .|ele 106
, e -je@lele| 047 G © -|e/ele| 107

(e| |e 050 H ° ° 110
) fof fel fe e| 051 I [ole e e; 11
¥% jo; |e; |e e 052 J |jole ° e 112

+ e| |e ele!) 053 K e e e\e 113

, {ol jel fel.je 054 L jole e|./e 114

- @; jel.le| je) 055 M e e|.je| ie 115

. @| je! .Jje\e 056 N e e|.jele 116

/ j\ol fel fel .[elele| 057 O [ole @e|.jelele| 117
g ele 060 P e| |e 120

1 Jol jele e| 06] Q jole| je e; 121
2 |ol] lele e 062 R |jole; je e 122

3 ele ee), 063 S e| |e eie| 123
4 jo] jeje e 064 T fole| je .|@ 124

5 ole e| 'e| 065 U e| je .|e| le 125

6 e\° e\e 066 V e| |e _lele 126

7 {ol lele @elele! 067 W lolel Je .lelele 127

8 lol Jelele 070 X lole| jeje 130

9 clole e| 071 Y e| jeje e 131

: olole e 072 Z e| jelo|.le 132

; |{o] jelele!.| jele! 073 C lole| jeje eje; 133
< ojeje|.le 074 \ @| |e/o/./e 134

= |0| |eleje!.je| je! 075 1 lole! jele!l.je| je 135

> |o] lelele|.lele 076 t joje| jele|.jele 136
? ejole|.jeieie| 077 <— @| jelo|.jelele 137

Parity- Transport= Parity- Transport=
Bit lochung Bit lochung

wi (Zeichen 949) 0 e@ Dateninhalt 1

H
o
l
l

bedeutet Leerschritt Lochung im Streifen

= Stromschritt (MARK)

- 166 -

ASCli-Code Steverzeichen

Kanal

Zeichen 87654.321 oktal Bedeutung

NULL 000
SOM 001
EOA 002
EOM 003

EOT 004
WRU 005
RU 006
BELL 007
FE@ e 010
H-TAB ° 01]

LINE FEED e 012 Zeilenvorschub
V-TAB e 013

FORM e 014

RETURN e 015 Wagenricklauf

SO ° 016
Sl @|. O17
DC? ° 020
X-ON ° 021
TAPE ON ° 022
X-OFF ° 023
TAPE OFF ° 024
ERROR e 025
SYNC ° 026
LEM ° 027

So ° 030
S$] © 031

$2 ° 032

$3 ° 033

S4 ° 034

$5 ° 035

S6 ° 036
S7 e 037

ACK 174
ALT MODE 175
ESC . 176
RUB OUT . ° 177

Parity- Transport=
Bit lochung

0 @ =Dateninhalt 1 ,
= Lochung im Streifen
= Stromschritt (MARK)

- 167 -

BEFEHLSTABELLE

NOP 000000 MZR -O30AAA HLT 540000
MPO -O31TAAA HSL 542LL0

(e) VBL 001400 MMO -O32AAA HBR 544AAA
(e) VBR 001440 MIC 033AAA STL 550LLO
(e) VDL 001500 MDC .0O34AAA ECL 553000
(e) VDR 001540 MCO .0O35AAA DCL 554000

COD OOAAAA MCI -0O36AAA
GX 60XAAA

SRLW 000010 LDR ~TTRAAA FX 61XAAA
SRLD 000011 TRR . ISRAAA OX 65XAAA
SRLX 000012 ADR -O4RAAA
SRAW 000014 SBR -OSRAAA GB -60XAAA
SRAD 000015 FOR -O6RAAA FB -61XAAA |
SRAX 000016 FAR -O7RAAA IBG ~62XAAA
SLLX 000020 IBF -63XAAA
SLLD 000021 LDC . 1ORCCC IB -64XAAA
SLLW 000022 ADC . 4RCCC OB -65XAAA
SLAX 000024 IBH -~66XAAA
SLAD 000025 LD - I2ZQAAA OBH -67XAAA
SLAW 000026 TR - J6QAAA

AD -20QAAA RBL -700DD0
(e) SRLW O100NN SB -22QAAA SBL -700DD 1
(e) SRLD O1IONN (e) MP -30QAAA -RBR -710DD0
(e) SRLX O120NN (e) DV -32QAAA SKB -720DD0
(e) SRAW O140NN FO -24QAAA SKR -730DD0
(e) SRAD O150NN FA - 26QAAA
(e) SRAX O160NN FE - 34QAAA (e) IBS -74NDDF
(e) SLLX 0200NN CP . 36QAAA (e) OBS -75NDDF
(e) SLLD 0210NN
(e) SLLW 0220NN BR AO0SAAA (e) IBB -760DD0
(e) SLAX 0240NN BZ -42RAAA (e) OBB -770DD0
(e) SLAD 0250NN BP -4A4RAAA
(e) SLAW 0260NN BM -A6RAAA
(e) SRR O130NN
(e) SLN 023000 Cs S0QAAA

CM I2ZQAAA

AAA = AdreBteil = Vorzeichen von Bedeutung
CCC = Festwert - = indirekt wenn ..A
DD = Gerttenummer (+1 bei 2. Oktalstelle)
F = Format (e) = erweiterter Befehlsvorrat
LL = Ebene ,
N = Anzahl Zeichen
NN = Anzahl Bits
Q = Erganzung
R = Register
S = Sensor
X = Indexregister

- 168 -

