

dietz SV
_C-BASIC

 Heinrich Dietz
433 Mülheim-Ruhr —

en DUEL
Telex 856770

2-7504-00--007

D iese Dokumentation beschreibt die Programmiersprache des kommerziellen

Systems DIETZ 600.

Sie ist nicht als Programmierhandbuch gedacht, sondern soll einen Überblick

über die Möglichkeiten der Sprache C-BASIC geben. Dabei werden besonders

Sprachelemente betont, die über die Dialogsprache BASIC hinausgehen. Vor

allem ist der Komfort zur Fehlerbehandlung, zur Ein/Ausgabe und die Datei-

zugriffssprache zu erwähnen.

Nühere Informationen zum Timesharing-Betriebssystem sowie zur Programmierung

in BASIC sind der entsprechenden Zusatzdokumentation zu entnehmen.

Inhalts-Verzeichnis

Allgemeines

Eigenschaften von C-BASIC
Time-sharing-Betriebssystem
Speicher-Belegung

C-BASIC-Kommandos

e
e

.

D
D

—

‘1 Time-sharing-Organisation
.2 Programm-Edition

.g Ein/Ausgabe auf Poolgeräte

.4 Programm-Durchführung
5 Programm-Verwaltung

. C-BASIC-Sprachelemente

.] Datentypen

.2 Operatoren

.3 Funktionen

.4 Systemvariable

C-BASIC-Statements

Kommentare
Deklarationen
Zuordnungen
Ausgabe
Ablauf-Befehle
Programm-Verkettung
Fehlerbehandlung

C-BASIC-Datei-Verwaltung

Daten-Struktur

Deklarationen
Eröffnen und Schließen von Dateien

Beschreibung und Löschen von Sätzen
Lesen und Ändern von Sützen

Ändern des Schlüsselverzeichnisses
Datei-Kommandos

s
n
o
v
m
a
A
o
n
 —

n
u
n
o
a
u
m
a
A
O
o
»
N
n

—

u
n
u
n
o
o
ı

an

a
n
n
a

Ba
8

@
8
@

WW

N
D
M
N
D
N
D
I
N
D
D

DD

u

Seite

O
O
o
A
U
u
m
R

AR
DB

—
u
d

.

ar

”n
u

u

u

>
@
%
»
M
r

ui

Oo
.

D
D
M
D

ID
—

u

ui

a
n
n

o
o

o
n

Oo
”m ©

G
R
R
S
S
E
R
O

l.

1.1

1.2

Allgemeines

Eigenschaften von C-BASIC

C-BASIC ist eine auf Dartmouth-BASIC aufbauende Sprache zur Formulierung
der Aufgaben in der kommerziellen Datenverarbeitung.

C=-BASIC unterscheidet sich von BASIC vor allem durch:

spezielle kommerzielle Arithmetik, Integer-Arithmetik

* komfortable Zeichenketten-Verarbeitung

%* format- und maskenspezifizierte Ausgabebefehle

benutzergesteuerte Fehlerbehandlung

problemangepaßte Strukturierung von Dateien in Sätze und Felder

x
.

k
*

sequentieller oder direkter Zugriff Uber Schlüsselverzeichnisse

Time-sharing-Betriebssystem

C-BASIC läuft auf dem System DIETZ 600 und besteht aus 2 Hauptteilen:

_Sprach-Verarbeitung

* Time -sharing-Operating-System (TSOS)

TSOS erlaubt in der Grundausbaustufe bis zu 12 Teilnehmern den gleich-
zeitigen Zugang zum Rechner. Jeder Teilnehmer arbeitet an einer Konsole

praktisch unabhängig von anderen Benutzern des Systems. Normalerweise
ist für Systemeingriffe, Systemabfragen und Protokollierung eine zusätzliche
System-Konsole vorzusehen. Bei kleineren Systemen können deren Funktionen
jedoch von dner bestimmten Teilnehmerkonsole (Masterkonsole) übernommen
werden.

TSOS hat 3 Aufgaben:

* JOB-Scheduling (JOBS):

Allen rechenwilligen Teilnehmern wird nach einem Zeitscheibenverfahren
(Time-Slicing) der Reihe nach Rechenzeit zugeordnet.

#* _Resource-Management (RESMA):

Verwaltung der allen Teilnehmern gemeinsamen Systemhilfsmittel
(EA-Geräte, Dateien) nach der Methode First in - First out.

* Input-Output Control-System (IOCS):

Steuerung aller EA-Vorgünge , zum Teil unter Verwendung der
SPOOLING-Technik. |

1.3

TSOS ist modular aufgebaut. Nur diejenigen Teile, die in einer
speziellen Konfiguration erforderlich sind, werden in das System

eingebunden. |

Der sprachverarbeitende Systemteil ist in 3 Hauptteile gegliedert:

#* _Command-Interpreter C-INT

Statement-Interpreter S-INT

%# Statement-Compiler S-COM

C-BASIC

JOBS RESMA 1I0C5 C-INT S5-INT S-COM

Bild 1: Hauptbestandteile des Systems

Speicher-Belegung

Das vollständige C-BASIC-System residiert auf der Platte.Neben dem
speicherresidenten Kern TSOS werden die sprachverarbeitenden Programm-
teile nach Bedarf in einen Überlagerungs (Overlay) - Bereich geladen. Auf
diese Weise sind . durch das System nur etwa 18Kbyte belegt. Der Rest des
Speichers wird auf die einzelnen Teilnehmer aufgeteilt. Sie werden vom
System-Manager an der System - bzw. Masterkonsole bei der Anmeldung
des Teilnehmers vergeben.

C-BASIC enthält eine Reihe von Dienstprogrammen zur Dateiverwaltung
Datensicherung, Sortierung. Diese laufen in der Partition des aufrufenden
Teilnehmers ab.

Teilnehmer-Programme, die nicht vollständig in den zugewiesenen
Partitionen Platz finden, können in Segmente zerlegt und programm-

gesteuert in den Speicher geladen werden. |

System Teilnehmer-Programm
auf Platte S Ä

©

O zI|i z|Io = O $ -I |

m VO a J BE 8 x $ E a f

an

> >
w de < 8 |2 |
2 |& =| >

OÖ O

System | Teilnehmer-Programm

im Hauptspeicher

Bild 2: Speicher-Belegung

C-BASIC-Kommandos

Nach Inbetriebnahme des Rechners meldet sich C-BASIC auf der
System/Master-Konsole mit "READY". Der System-Manager kann jetzt
Teilnehmer an Konsolgeräten anmelden und für diese Speicherbedarf
anfordern. Nach der Registrierung meldet sich C-BASIC auf der zuge-
lassenen Konsole mit "READY" und reagiert nun auf Eingaben des
Teilnehmers. Diese Eingaben zerfallen in zwei Gruppen, Kommandos
und Statements. |

Kommandos beginnen mit einem Kommandowort und kommen unmittelbar
zur Durchführung. Statements beginnen mit einer Statementnummer und
werden im Teilnehmerspeicher nach den Nummern geordnet. Insgesamt
bilden sie ein Programm zur Lösung einer speziellen Aufgabe. Kommandos,
die ein Teilnehmer eingeben kann, beziehen sich hauptsächlich auf dieses
Programm.Er hat die Möglichkeit:

* Programme zu editieren

#* Programme ein/auszugeben

Programme durchzuführen

Programme zu archivieren

Der System-Manager ist durch Organisationskommandos in der Lage,
Eingriffe in den Timesharing-Ablauf des Systems vorzunehmen. Für den

Teilnehmer sind diese Kommandos gesperrt. Es kann außerdem vorgesehen
werden, daß die nachstehenden Kommandos ausschließlich von der System-
konsole aus erlaubt sind, während alle übrigen Konsolen nur im Rahmen
bereits erstellter Programme benutzt werden.

Time sharing-Organisation

 ACTIVATE K, s

Damit meldet der System-Manager ein Konsolgerät k dem System an und
beauftragt es, dem Teilnehmer, der an diesem Gerät arbeitet, s Sektoren
(s # 128 byte) Speicherbereich zuzuweisen.

[TERMINATE _k

Der Teilnehmer am Konsolgerät k hat seine Arbeit beendet und wird

abgemeldet. Der von ihm belegte Speicherbereich wird freigegeben.

ISUSPEND k

Ein Programm oder Kommando-Auftrag am Konsolgerät k soll vorläufig
zurückgestellt werden. Diese Maßnahme ermöglicht es dem System-Manager,
beispielsweise ein EA-Gerüät betriebsfähig zu machen (z.B. Papierwechsel).

Falls die Angabe k entfällt, werden alle Aufträge suspendiert.

 IcONTINUE k

Die durch SUSPEND zurückgestellte Arbeitan der Konsole k wird
wieder fortgesetzt. Die Angabe k kann wieder entfallen, wenn alle
suspendierten Aufträge wieder zugelassen werden sollen.

 |CHANGE kI, _k2

Der Auftrag an der Konsole k1 soll an der Konsole k.2 fortgesetzt

werden. Diese Maßnahme ist beispielsweise nötig, wenn ein Konsolgerät
ausfällt. |

Ri dd
DISARM d

Mit diesen beiden Kommandos kann ein peripheres Gerät d zugelassen
und wieder gesperrt werden.

 [STATUS t

Mit diesem Kommando ist der System-Manager in der Lage, sich über den

System-Zustand (Auslastung) zu informieren und die Zeitscheibe zu
verändern. "t" gibt an, welcher Teilauftrag durchzuführen ist.

t = P Ausgabe einer Liste der Speicher-Partitionen

t = D Ausgabe der Warteliste auf Pool-Gerüäte

t = K Ausgabe des Katalogs aller Datei-Namen, ihrer Zugriffsart
und ihrer Plattenbelegung

t = T Angabe des Arbeitszustandes aller Teilnehmer

t =ddd Ändern der Zeitscheibe auf 'Udd" msec.

2.2 Programm-Edition

 [SCRATCH

Mit diesem Kommando löscht ein Teilnehmer Programm- und Datenbereich
seiner Partition und setzt das System in den Ausgangszustand für neue
Programmeingabe.

[LIST nl, n2 |

Die Statements von Nummer n] bisn2 sollen auf dem Konsolgerät

aufgelistet werden. Statt einer vollständigen Zahlenangabe sind auch
Kurzschreibweisen erlaubt:

LIST M alle Statements ausgeben

LIST ‚,n2 alle Statements bis zur Nummer n’2 ausgeben

LIST nl, alle Statements ab Nummer n] ausgeben

LISTnN] Statement n! ausgeben

IDEıere nl, n2]

Die Statements von n] bis n2 werden gelöscht(inklusiv). Als Abkürzungen

gelten die bei LIST aufgezählten Formen.

 [RENUMBER rl,n2

Das gesamte Programm im Speicher erhält durch dieses Kommando neue
Statementnummern, das erste Statement die Nummer n1, die folgenden
al+tn2, ml+2%#n2, Speziell in der Programmerstellungsphase,
wo Statements an eine Stelle eingefügt werden müssen, oder bei Übernahme
fremder Programmteile, hat der Anwender damit ein nützliches Hilfsmittel .

Bei der Umbenennung sind auch alle Sprungstatements mit berücksichtigt.

2.3 Ein/Ausgabe auf Poolgeräte

Poolgeräte sind allen Teilnehmern am Timesharing-Betrieb zugängliche
zentrale Ein/Ausgabe-Geräte wie Lochstreifenleser, stanzer, Schnell-
drucker. Jedes Gerät ist dem System unter einer Geräötenummer "d" bekannt.

2.3.1 Spooling-Methode

Die Ein/Ausgabe bei solchen Geräten kann je nach Systemkonfigurierung
direkt zwischen Gerät und Hauptspeicher oder nach der SPOOLING-Methode
erfolgen.

Die Spooling-Methode erhöht den Dürchsutz bei Systemen mit mehreren
Teilnehmern beträchtlich. Dies betrilft jedoch weniger die Ein/Ausgabe-
vorgänge bei Kommandos, als vielmehr solche im Programmablauf.. Sollen

dort Dateien auf Drucker ausgegeben werden, so ist es erforderlich, den
Drucker für andere Teilnehmer zu sperren. Da jedoch Ausgaben zum Teil
langdauernde Aufbereitungsvorgänge erfordern und darüberhinaus auch

eine Umschaltung von Teilnehmer zu Teilnehmer stattfindet, ist der Drucker
schlecht ausgenutzt. |

Nach der Spooling-Methode werden deshalb alle Daten, so wie sie anfallen,
auf einen speziellen Bereich der Systemplatte (SPOOL-Datei) geschrieben.
Anschließend wird das Gerät vom System reserviert, falls es frei ist, und der
Inhalt der SPOOL-Datei komplett ausgegeben.

Bei der Eingabe wird zunächst, falls das Gerät frei ist, die SPOOL-Datei
mit den Eingabedaten belegt, ehe sie zur Weiterverarbeitung bei Bedarf
der Reihe nach ausgelesen werden.

2.3.2 Anforderung/Freigabe von Poolgeräten

Die Interpretation der Lese/Schreib-Kommandos auf Poolgeräten nimmt
eine automatische Reservierung der Geräte vor. Dasselbe geschieht auch bei
der Durchführung von Lese /Schreib-Statements in der Spooling-Methode.

Ist jedoch kein Spooling-Modul vorhanden, so muß die Anforderung und
Freigabe von Geräten durch explizite Kommandos erfolgen , wenn solche in

"Programm-Statements angesprochen werden.

IREQusst @)|

Nach Eingabe dieses Kommandos prüft das System, ob das verlangte
Gerät "d" frei ist. Falls ja, wird das Gerät belegt, falls nein, erfolgt die
Meldung:

"NOT READY"

 RELEASE (d)

Mit diesem Kommando wird das Gerät "d" wieder freigegeben.

2.3.3 Ein/Ausgabe

IREAD (4)

Wie beschrieben, enthält das Kommando READ die Funktionen von REQUEST
und RELEASE. Zunächst wird geprüft, ob das Gerät frei ist. Falls nein,

erfolgt die Fehlermeldung "NOT READY". Falls ja, erfolgt die Eingabe
entweder direkt in den Hauptspeicher oder indirekt über die SPOOL-Datei.

2.4

Bei der Belegung der Teilnehmer-Partition wird ein bereits vorhandenes

Programm jedoch nicht gelöscht, sondern das neue Programm angefügt.

Soll dies vermieden werden, muß vorher SCRATCH erteilt werden.

 LIST (d)

Das im Speicher stehende Programm soll auf das Gerät "d" ausgegeben

werden. Die Ausgabe geschieht direkt oder über das Spooling-Modul.

Die Reservierung des Gerätes und dessen Freigabe wird implizit vorge-

nommen.

Programm-Durchführung

C-BASIC kennt 2 Methoden der Programm-Durchführung:

x interpretierend

x compilierend

Die "interpretierende"Methode ist adäquat in der Erstellungsphase eines
Programmes. Sie unterstützt die Pliase durch eine Anzahl von Testmöglich-
keiten (TRACE) und gewährleistet volle Interaktivität.

Nach Erstellung eines Programmes und nach einem vollen funktionellen

Test, erreicht man durch Compilieren eine optimale Durchführungs-
geschwindigkeit.

Das folgende Bild soll die Arbeitsweise verdeutlichen. Man sieht daran,
daßCompilieren gegenüber dem Interpretieren einen zusätzlichen
Arbeitsgang erfordert.

Translit.

Code

COMPILE > COM-\
PILER ,

Objekt-

code

Bild 4: Interpreter-Compiler

RER EEE gg \ Eu EEE 7 SEE u

 RUN u, Name oda Ki Dice
ur ze

Dieses Kommando lädt on der Flatlencn, hit "u" (bzw. u =o)das
Programm mit dem angeyekenen Namen und führt es interpretierend durch.

Steht das Programm bereits im Speicher, so kann es mit dem Kommando

RUNnI,n2

direkt an Statementnummer n] gestartet werden. Es läuft dann bis

Statementnummer n2 einschließlich. Als Abkürzungen sind zulässig:

RUN | Gesamtprogramm im Speicher interpretieren

RUN nl, Ab Statement n1 interpretieren

RUN, n2 Bis Statement rı2 interpretieren

RUN nl Statement n| interpretieren

 TRACE n1, n2 (Variable)

Mit diesem Kommando wird das Programm w ie bei RUN interpretierend

abgearbeitet. Bei jeder Wertzuweisu.ig zu der in Klammern angegebenen

Variablen erfolgt zusätzlich die Ausyabe:

n : Variablenname = Wert, wobein die Statementnummer ist, wo die
Zuweisung des ausgedruckten Weites zu der Variablen
(LET-Statement, FOR-Statement, READ-Statement) erfolgte.

Falls die Variablenangabe eıtfüllt, gibt dasSystem bei berechneten und
bedingten Verzweigungyen aus:

FROMn] TOn2, wobein] die Statamentnummer angibt, bei welcher eine
Verzweigung nach Staternent n. eıfslgte.

MORE. RE 1 = ©. nimmt ar var ar Anne

COMPILE * ul, Name 1,2, Flame 2

Das Programm mit dem Namen "are 1" auf der Platteneinheit "ul" wird

compiliert und unter dem Humen "Time 2" auf Einheit "V2" abgelegt. Falls

die Angaben ul, v2 nicht vorhanden sind, ist Einheit o angesprochen.

Die Angabe " x" ist eine Option. It sie vorhanden, so entfallen im Objekt-
code alle Fehlerprüfungen (wie auf Bereichsüberschreitungen, Schleifen-
Inkrement = o usw.).

In einem voll ausgetesteten Pro:jrcımm kann nıan dadurch noch höhere
Effizienz bezüglich Laufzeit und Speicherb:legung erreichen.

2.5

lexecure u, Name |

Das angegebene compilierte Programm wird von Einheit "u" geladen und
gestartet. Nach Durchführung des Programms ist das System wieder im

Kommando-Betrieb. Die .Angube "u" kann wieder entfallen.

Kommandos zur Detei-Verwaltung

Dateien sind Bereiche auf dem Plattenspeicher, in denen die Teilnehmer
Programme oder Daten archiviert haben. Im Teilnehmer-Betrieb ergibt
sich das Problem des Datei-Schutzes. Der die Datei eröffnende Teilnehmer
kann ihr folgenden Status geben:

- privat : Zugriff nur dem Autor erlaubt .

- öffentlich : Zugriff allen Teilnehmern erlaubt.

- halb-öffentlich: Autor darf lesen und ändern,
alle anderen Teilnehmer dürfen nur lesen.

Um Dateien vor nicht autorisiertem Zugriff schützen zu können, müssen

ihre Namen im Datei-Verzeichnis mit einem Code versehen sein.

 |copE ccc

Mit diesem Kommando teilt ein Teilnehmer dem System ein Codewort ccc
mit.

Alle vom Teilnehmer ab jetzt eröffneten Dateien (Programme- oder Daten -
bereiche) werden im Dateiverzeichnis mit diesem Wort versehen und als

privat erklärt. Will der Teilnehmer auf private oder bei Änderungen auf
halb-öffentliche Dateien zugreifen, vergleicht das System deren Codewort
mit dem des Teilnehmers.

Ein spezielles Code-Wort erlaubt dem System-Manager den Zugriff zu allen
Dateien.

Isave u, Name

Ein im Speicher stehendes Programm wird auf Einheit "u" unter dem angege-
benen Namen archiviert und als privat erklärt.

 LOAD u, Name

Ein Programm wird aus dem Archiv in den Speicher geladen. Ein dort bereits
vorhandenes Programm wird jedoch nicht gelöscht, sondern durch das neue
ergänzt. Es tritt dabei ein Mischeffekt auf. Soll dies vermieden werden, ist
vor diesem Kommando mit SCRATCH der Speicher zu I&schen.

- 11 -

|Kıı u, Name |

Ein Programm soll gelöscht werden. Nur durch Code-Wort autorisierten
Teilnehmern ist dies erlaubt .

 ALTER u, Name |, s, Name 2

Dieses Kommando erlaubt dem autorisierten Teilnehmer eine Änderung
im Dateienverzeichnis. Die Datei mit dem Namen "Name 1" soll den

neuen Status "s" und den neuen Namen "Name 2" bekommen. Eine von

beiden Angaben kann auch entfallen.

Damit hat ein Teilnehmer die Möglichkeit, eine private Datei der Öffent-
lichkeit voll oder nur zum Zweck des Lesens zur Verfügung zu stellen. Er

kann aber auch ein von ihm abgelegtes Programm später wieder privatisieren.

| SERVICE Typ |

Der praktische Umgang mit Dateien verlangt eine Reihe von System-
Direnstprogrammen, die über dieses Kommando angesprochen werden können.
Die Angabe "Typ" spezifiziert dabei ein spezielles Programm, das von der
Platte in den Speicherbereich des rufenden Teilnehmers geladen und durch-
geführt wird. Die Parameter zur Durchführung eines Programmes (Dateiname,
Ausgabegerät usw.) werden im Dialog spezifiziert.

L = Liste : Ausgabe des Verzeichnisses der privaten und/oder
öffentlichen Dateien auf Konsole oder Drucker.

K = Key : Ausgabe der Schlüssel in den Schlüsselverzeichnissen,

die zu einer Datei gehören (siehe 5)

R = Rollin/Rollout: Übertragung von Datei-Inhalten von einem Gerät auf

ein anderes (Platteneinheiten, Bänder, Drucker,
Lochstreifen).

O = Organisation : Umorganisation von Dateien, beispielsweise zum Zweck

der "Garbage collection".

Das Kommando SERVICE erlaubt auch auf einfache Weise den Einbau neuer

System-Diensprogramme, beispielsweise für das Sortieren von Dateien nach
bestimmten Kriterien.

"Name"

Anstelle der Kommandofolge SCRATCH » LOAD, o, Name, kann ein Programm

von der Platteneinheit o auch über seinen Namen direkt aufgerufen werden.

3.1

- 12 -

C-BASIC-Sprachelemente

Datentypen

C-BASIC kennt 3 Datentypen:

* Integer (Ganzzahl)

#* Real (= kommerzielle Zahl)

 * String (Zeichenkette)

Die Integerzahl wird im System durch 2 byte binär dargestellt. Der zulässige
Zahlenbereich ist somit [- 32768, 32767] . Integers werden vor allem zur
Indizierung sowie für Darstellung von logischen Größen verwendet.

Die kommerzielle Zahl wird im System durch 8 byte binär-codiert -dezimal (BCD)
dargestellt. _14 + 64
Die Genauigkeit der Darstellung ist 10, der erreichbare Zahlenbereich 10 .

Ein spezielles Statement (siehe 4. 3) erlaubt die Angabe eines Rundungsverfahrens.

Die Zeichenkettekann eine beliebige, nur durch den Speicher begrenzte Anzahl

von Zeichen enthalten. |

Zu allen Datentypen gibt es Konstanten, Variablen und Strukturen.
Zahlenkonstanten werden in der bekannten wissenschaftlichen Notation geschrieben.

Das System erzeugt bei entsprechender Größe entweder den platzsparenden

Integertyp oder die kommerzielle Zahl.

Beispiele: 1, - 1.2, 1.2E+3, 1.23E -4 usw.
(Die Angabe E bedeutet "10 hoch")

Die Stringkonstante besteht aus einer Folge im ASCII-Alphabet zugelassener

Zeichen oder aus einer Folge von Hexaziffern. Erstere haben als Pre- und Suffix

das Zeichen ", letztere das Zeichen %.

Beispiel: "AB - DE"

%1A2F%

Die Länge von Zeichenketten-Konstanten ist durch die Eingabe-Zeile beschränkt.

Variablewerden mit einem Namen von] bis 4 Zeichen Länge angegeben. Zur
Unterscheidung des Typs erhalten Real-Variable das Suffix & , Stringvariable
das Suffix
Beispielee KOM® : Name für Real-Rariable

| : Name für Integer-Variable

KET32 : Name für String-Variable

3.2

-3-

Mehrere Variablenwerte können zu einer Struktur zusammengefaßt werden.
C-BASIC kennt den ein- und zweidimensionalen Zahlenbereich für "Integers"
und "Reals" und einen eindimensionalen Stringbereich. Strukturen müssen im
allgemeinen deklariert werden. Fehlt eine solche Deklaration, so reserviert
das System automatisch Platz für 10 Zahlen bzw. 10 Stringkonstanten, wobei
hier jede 2 Zeichen umfaßt. Über Indexangaben kann auf Einzelelemente
eines Bereiches zugegriffen werden.

Beispiele: ARR a (5, 10) : 2-dim. Bereich ARR für "Reals"
I (3) : 1 -dim. Bereich Ifür "Integers"
KET % (5) : 1 -dim. Bereich KET & für Strings

Die Abspeicherung eines 2-dimensionalen Bereiches geschieht zeilenweise.

Operatoren

C-BASIC kennt folgende Operatoren:

arithmetisch : +, -,*, /, tft ,„- unit für Integers und Reals

Vergleich >, >=,°,<=,# für Integer, Reals, Strings

logisch : AND, OR, NOT für Integers

Verkettung : & für Strings

Operanden und Operatoren dürfen zu beliebigen Ausdrücken nach den bekannten
Regeln der Mathematik in Verbindung mit Klammerpaaren zusammengesetzt werden.
Eine Mischung von Integers- und Reals ist zulässig, jedoch keine Mischung von
Zahlen mit String-Operanden.

Die Typen-Mischung zwischen Integers und Reals verlangt Konventionen bezüglich
der Konvertierung.

- Sind beide Operanden Integer, so ist das Resultat der Operation Integer
(z.B.: 10/3 = 3)

- Sind beide Operanden Real, so ist das Resultat vom selben Typ
(z.B.: 10/3 = 3.3333333333333)

- Bei gemischten Operanden wird der Integer-Typ für die Berechnung in eine

Real-Zahl konvertiert. Das Resultat ist vom Typ Real.

- Bei der Zuweisung eines Wertes zu einer Variablen (LET, READ, INPUT-
Statement) wird, falls nötig, der zuzuweisende Wert entsprechend dem Typ
der Variabl en konvertiert .

3.3

- 14 -

Die Konversion zwischen Zahlen und Zeichenketten ist ebenfalls möglich,
wird aber explizit durch Funktionen angegeben.

Funktionen

In C-BASIC sind folgende Standardfunktionen benutzbar:

* numerische Funktionen

Y =ABS (X)

Y=SGN (X)

Absolut-Betrag .Das Argument der Funktion kann
ein beliebiger numerischer Ausdruck vom Typ
"Integer" oder "Real" sein.

Signum. Für das Argument gilt das eben Gesagte.
Resultat der Funktion ist:

1,0, -1fürX >0, =0,£0.

Die folgenden Funktionen sind bei Integers nicht sinnvoll.

Y =INT(Xo)

Y=FPTXo)

* Stringfunktionen

Y =LEN (X3)

Y =POS (X1$, X28)

Y3 =SEL (X, A,L)

* Konversionen

Y =ASC (X)

8 =CHR (X)

Y = NUM (X3)

Y3 =STR(X9)

Ganzzahliger Teil vonXQ : [x]

"Fractional Part" : X - [x]

Längenbestimmung des Strings X3

Bestimmung der Position des Strings X23 im
String X13. Resultat ist eine Integer-Zahl.

Selektion der Zeichenfolge im String X3

ab Zeichen A bis AtL-]

Resultat ist der ASCII-Wert des Zeichen X3

Resultat ist das ASCII-Zeichen, welches der Zahl X
entspricht.
Die Zeichen von X$ (zulässig nur +-.E und Ziffer)
werden in die irterne Zahlendarstellung umgerechnet.

Die Zahl X wird in die externe Zahlendarstellung
umgerechnet.

3.4

-15 -

System-Variablen

C-BASIC kennt einige Systemvariablen, die wie gewöhnliche Variable
abgefragt, jedoch nicht verändert werden können.

- Zeit-Variablen

MIN : Gibt die aktuelle Minute an.

HOUR : Gibt die aktuelle Stunde an.

DATEZ : Liefert als Zeichenkette von 10 Zeichen das aktuelle Datum

(z.B.: 10.12.1974)

Die System-Variablen erhalten bei der System-Initialisierung durch den
System-Manager Anfangswerte und werden dann vom System geführt.

- Fehler-Variablen

Zur Behandlung von semantischen Fehlern, die bei der Durchführung eines
Programmes auftreten können, (z.B. Bereichsüberschreitung, fehlerhafte

Eingabe) stellt C-BASIC folgende Variablen zur Verfügung:

ERN : Fehler-Nummer

ERL : Fehler-Label

ERN gibt den aufgetretenen Fehlertyp, ERL (Error Label) die Nummer des-
jenigen Statements an, bei dem der Fehler aufgetreten ist.

Die genaueren Angaben zur Fehlerbehandlung sind unter dem Kapitel
"Statements" (4.7) zu finden.

4.1

4.2

4.2.1

- 16 -

C-BASIC-Statements

Statements bestehen aus einer Statementnummer , gefolgt von einem
Statement-Codewort und einer Reihe weiterer spezifischer Angaben. Die
Statementnummer (] bis 32767) gibt dem System an, wie die Statements
geordnet werden sollen, dient als Unterscheidungsmerkmal von Kommandos
und vor allem auch als Statementmarke für Sprunganweisungen.

C-BASIC erlaubt die Eingabe mehrerer durch ":" getrennter Statements
pro Zeile (£ 72 Zeichen). Eine Zeile wird durch das Zeichen "cr" (Wagen-
rücklauf) abgeschlossen. Mit dem Zeichen "Del" kann eine Eingabe
gelöscht werden, die Sonderzeichen folge "-+-# ..." löscht die zuletzt

eingegebenen Zeichen.

Kommentare

Irem Kommentar |

Dieses Statement dient dem Einfügen von Kommentaren in ein Programm. Es

wird bei Durchführung eines Programmes und bei Übersetzung (COMPILE)
übergangen.

Das Zeichen ! hinter einem Statement erlaubt die Zufügung von Kommentar
in einer Zeile.

Kommentare kosten zwar Speicherplatz, sind aber für die Lesbarkeit und
Strukturierung eines Programmes unbedingt erforderlich. Über die Möglichkeit

des Mischeffektes (LOAD, READ) lassen sich Kommentare separat führen und
für Dokumationszwecke in ein Programm einbauen. Auf diese Weise ist der

Speicherplatz zur Laufzeit optimal ausgenutzt.

Deklarationen

DIM-Statement

DIM v! (i), v2 (i,k)

DIM v1 (i), v2o(i,k)

DIM v13(i) I), v28 (i)

Das DIM-Statement reserviert Speicherplatz für einen oder mehrere Bereiche.
Hinter dem Schlüsselwort DIM sind die Bereichsangaben spezifiziert . Jede

von ihnen enthält den Bereichsnamen von Typ "Real" "Integer", "String" und
die Bereichsgröße. Bei Real-Bereichen werden (i + 1)#* 8 bzw. (i +1) *
(k + 1)x#8 Speicherbytes reserviert, bei Integer-Bereichen (i + I) *2 bzw.
(i +1) x(k + 1)& 2. Bei String-Bereichen sind es (i + 1)* | Bytes bzw. (i + 1)* 2
byte, falls die Angabe | wie im dritten Statement entfällt.

- 7 -

Bereichsangaben für Real-, Integer- und Stringbereiche können auch

gemischt stehen. |

Beispiel: 10DIM AB (15), B @ (20,2), CDZ (10)5)

Defekt-Modus: Eindimensionale Bereiche brauchen nicht explizit deklariert
zu werden.

C-BASIC nimmt in diesem Fall als Defekt einen Bereich von 10 Zahlen oder
10 Strings zu je 2 Zeichen an.

4.2.2 CHAR - Statement

IcHar v1f (I1), v23 1

Dieses Statement reserviert für eine einfache Stringvariable einen Speicher-
platz von Il bzw. I2 byte. Entfällt eine solche Reservierung, so werden als

Defektmodus 2 Zeichen angenommen.

Beispiel: 15 CHAR ARBZ (10), BETA (100)

4.2.3 DEF-Statement

DEF FNf (v1, v2,) = a |

C - BASIC kennt die Möglichkeit zur Deklaration einer einzeiligen Benutzer-
funktion mit bis zu 4 Parametern.

Die Funktion mit dem Namen FNf, wobei f für eine beliebige Zeichenfolge

(< 4 Zeichen) steht, kann in einem beliebigen Ausdruck anstelle eines
Operanden in der Form FNf (al, a2, ...) verwendet werden. al, a2 bedeuten

hierbei Ausdrücke, deren Wert errechnet und vor Aufruf der Funktion den
Leer-Variablen vl, v2 zugewiesen werden. Danach wird der Funktionsausdruck a
ausgewertet.

Beispiel: 100 DEF FNPOLYO(X,A,B,C) = ArX#3 + B*X#2 + C* X

110 DEF FNEXOR (X1,X2) = (X1 AND NOT X2)OR (NOT X1 AND X2)

Beispiel 1 errechnet ein Polynom, Beispiel 2 bildet die Funktion "Exklusiv Oder".

4.2.4

4.2.5

4,3

4.3.1

-18 -

DATA-Statement

[DATA cl, c2, c3.... |

Dieses Statement spezifiziert eine Liste von Konstanten ci. Diese können
vom Typ "Zahl (Real, Integer)" oder "String" sein. Die Konstanten werden
durch das Statement READ (4.3.1) gelesen und Variablen zugewiesen.

Beispiel: 100 DATA 5, 6.23, - 7E5, "ENDE"

Weitere Deklarationen

Zur Deklaration von Dateien sind weitere Statements vorgesehen, die im

Kapitel 5 behandelt werden.

Zuordnungen

READ-Statement

Ikea vl, v2,v3, 2... |

Das Statement leistet die Zuordnung von Konstanten, die in DATA-Statements

aufgezählt sind, zu Variablen. Im System ist ein Zeiger vorhanden, der bei

Programmbeginn auf die erste Konstante des ersten DATA-Statements zeigt.

Diese Konstante wird gelesen und der ersten in READ angegebenen Variablen

zugewiesen. Anschließend zeigt der Zeiger auf die nächste Konstante, die der
Wert der nächsten Variablen wird. Ist ein DATA-Statement erschöpft, setzt das

System den Zeiger auf die erste Konstante des nächstfolgenden DATA-Statements

oder meldet Fehler, falls ein solcher nicht existiert. Die gelesenen Konstanten

müssen im Typ mit den Variablen übereinstimmen.

C-BASIC bietet die Möglichkeit, mit einer speziellen Angabe einen Bereich
mit Daten zu füllen. Wird im Argument einer Bereichsvariablen statt einer Zahl

oder eines Ausdruckes das Zeichen " * " angegeben, so werden aus dem
DATA-Feld so viele Konstanten gelesen, bis der Bereich belegt ist. Die Abspei-
cherung geschieht bei zweidimensionalen Bereichen zeilenweise.

Beispiel: 10 DATA 5,6,7,8, 9E4, "AB"

20 READ A, B, C,D,EQ,D$

30 DIM BE (3)

40 DATA 6.23, 7.5, 6.8, 9.4, "ABC", "DEF"

50 READ BEo(*), CHARZ (*)

Im Statement 20 werden Werte zu Einzelvariablen übertragen, in Statement 50

an Bereiche.

4.3.2

4.3.3

4.3.4

- 19 -

RESTORE-Statement

® n |

Der DATA-Zeiger wird mit Hilfe des Statements neu gesetzt. Nach
Durchführung von RESTORE zeigt er auf die erste Konstante im auf

Statement n folgenden DATA-Statement. Die Nummernangabe kann
auch entfallen, wenn der Zeiger auf das erste DATA-Statement gesetzt

werden soll.

INPUT-Statement

INPUT DEV (d), t, ul, u2, u3,.. |

Das Statement elaubt die Eingabe von Konstanten von einem Gerät d

während des Programmablaufes. Das Gerät kann die Konsole oder auch

ein beliebiges anderes Eingabegerät sein. Entfällt eine Geräteangabe,
so afolgt die Eingabe vom zuletzt in einem INPUT- oder PRINT-Statement
spezifizierten. Bei Programmanfang ist das Konsolgerät (d =o) angewählt.

Der Teilnehmer wird in diesem Fall vom System durch '"'?" aufgefordert,
Daten einzugeben. Vor dem "?" wird der Text "t", falls er vorhanden ist,
noch ausgegeben.

Danach werden Daten in der üblichen Weise (mit Korrekturmöglichkeit
"Del" und "$- ") eingegeben. Nach Abschluß durch das Zeichen "cr"

ordnet das System die eingegebenen Werte den aufgeführten Variablen zu.
Hier gelten genau dieselben Vereinbarungen wie bei READ3shat der Teil-
nehmer zu wenig Daten eingegeben, so meldet sich das System mit "??".

Fehler, die bei der Interpretation der Benutzereingabe registriert werden,
führen nicht zum Programm-Abbruch, wenn im Programm vor dem INPUT-

Statement ein ON ERR-Statement (siehe 4.7) steht.

Beispiele: 10 INPUT DEV (1), "GIBEIN", AS, B8, Co
20 INPUT "WIEVIEL IST", DE (5,6)

LET-Statement

LETv=a

LETvl=al,v2=aQo2,

Dieses Statement ist die häufigste Zuweisungsform eines Wertes zu einer

Variablen.

4.3.5

4.4

4.4.1

- 20 -

Der Ausdruck a wird zunächst ausgewertet und dann in den durch die

Variable v angegebenen Platz eingeschrieben. Bei Typenmischung rechts
und links vom Zuweisungszeichen erfolgt eine automatische Konversion

entsprechend dem Variablentyp.(Bei Zahlen-String-Mischung Fehlermeldung!).

Die Syntax des LET-Statements erlaubt neben der einfachen auch die Mehrfach-
zuweisung. |

Beispiele: IOLETTAQ= BV+5
20 LETXA (5,3) = XB + 6E3,XB = 5t(A +1)
30LETZ3 2) ="ABCD" & X

ROUND - Statement

Ikouno r |

Dieses Statement dient dazu, dem System anzugeben, wie reelle Zahlenwerte
vor Zuweisung zu einer reellen Variablen im LET-Statement oder vor Ausgabe
in einen PRINT-Statement gerundet werden sollen. Die Angabe "r" ist entweder

eine Konstante oder Variable. Der Wert von r wird ab diesem ROUND-Statement

zu dem errechneten Ausdruckswert hinzuaddiert. Anschließend werden alle
Stellen ab der durch "r"' angegebenen ersten signifikanten Ziffer auf 0 gesetzt.

Beispiel I: Rundung vor dem Komma.
10 ROUND 50
20 LET A = 501 * 10, B = 507 * 10

Wert von A:5010, B:5070. Nach Rundung A:5000, B:5100

Beispiel 2: Rundung nach dem Komma
10 ROUND 0.05
20LET =5.3*6.2,D = 0,1x 0,8

Wert von C:32.86, D:0.08. Nach Rundung C: 32.90, D:010

Bei ROUND OÖ erfolgt keine Rundung mehr.

Ausgabe

Ausgabe von Zahlen, Texten, Steuerzeichen

PRINT DEV (d), a
PRINT DEV (d), al, a2,

Das Statement dient der Ausgabe von Zahlenwerten und/oder Texten auf ein

peripheres Gerät "d", das in DEV (d) spezifiziert ist. Eine explizite Spezifr
kation ist dabei nicht nötig, wenn die Ausgabe auf das zuletzt angewählte

- 21 -

Gerät erfolgen soll.Die Ausdrücke a können beliebige numerische Ausdrücke
Stringkonstanten bzw. Stringvariablen sein. Als Trennzeichen zwischen den

einzelnen Angaben fungiert das Komma oder der Strichpunkt. Ein Komma
bedeutet, daß nach der Ausdrucksausgabe solange Leerzeichen folgen ‚bis die
nächste Tabulatorposition (Spalte 16,32,48,..) erreicht ist.

Die Ausgabe von Zahlen geschieht, wenn nicht anders spezifiziert (siehe 4.4.2),
in einem automatischen Format, das entsprechend der Zahlengröße arbeitet.

Zeichenketten können aus einer Folge direkt auszugebender Zeichen
(z.B. "ABCD..") bestehen, aus einer Folge von Hexakonstanten
(z.B. % AIFF BO0O5 %), aber auch aus einer Folge von Funktionssymbolen
(z.B. ’CRLF’), die gewisse Steuerfunktionen am Bildschirm, Drucker, Loch-
streifengerät auslösen. M
Prinzipiell können solche Funktionen auch im Hexacode angegeben werden,
aus Gründen der Mnemotechnik ist es jedoch sinnvoll, hierfür eine spezielle
Symbolik zu verwenden.

CR Carriage Return SF Set Foreground

LF Line Feed SB Set Background

BL Bell

HT Horizontal Tab. FF Form Feed

VT Vertical Tab. PL Print Line

CP Clear Page

CH Cursor Home

Diese Funktionsliste ist erweiterungsfähig.

Beispiel: 10 PRINT ’CRLFLFLFBL’; "RESULTAT"; 3 A+B

15 PRINT DEV (3); ’FF’; "UEBERSCHRIFT"; "CRLFLF’

4.4.2 _Formatspezifikationen

Anstelle eines Ausdruckes in der Liste des PRINT-Statement kann eine Format-

spezifikation stehen. Wird eine solche bei der Programmdurchführung angetroffen,

ist die bisherige Spezifikation aufgehoben und durch die neue ersetzt. Alle Zahlen
werden ab jetzt gemäß dieser Spezifikation formatisiert. C-BASIC kennt eine
FORTRAN und eine COBOL-ähnliche Spezifikation.

FMT ff)

USING (s)

N a

N a

- 22 -

Bei der Angabe FMT steht f für folgende Möglichkeiten:

A _: Umschalten zum automatischen Format

Fw.d: Ausgabe im Dezimal (oder bei d = 0; Integer) Format mit insgesamt
w Stellen (inklusiv Vorzeichen und Dezimalpunkt) , wobei "d"
Stellen hinter dem Komma stehen.

Ew.d:Die Ausgabe soll im Exponentialformat erfolgen . Hinter den Ziffern
der Martisse wird zusätzlich ausgegeben E - xx.

Beispiele: 10 PRINT FMT (F 9.3) 12345E-2 : 123.450
20 PRINT FMT (E12.4) 12345E-2 : 1.2345 E -02

Bei der Angabe USING ist "s" eine Folge von Zeichen, die bei der Verwen-
dung zur Zahlenausgabe. folgendermaßen interpretiert werden.

9 Stellefür Ziffer

Z Stelle für Ziffer, jedoch statt führender Null Leerstellenausgabe

* Stelle für Ziffer, jedoch statt führender Null # Ausgabe (Schecksicherung)

- Stelle für Vorzeichen (- bei neg. Zahlen, „u bei pos. Zahlen)

+ Stelle für Vorzeichen (- bei neg. Zahlen, + bei pos. Zahlen)

Die Vorzeichenstelle kann sowohl vor, als auch hinter der Zahl stehen.

Stelle für Dezimalkomma. Die Zahl wird in das Format so eingepaßt,
daß hier das Dezimalkomma steht.

,

w Leerstelle (vor, hinter oder zwischen Zahlen möglich).

E Stelle für Exproonentialzeichen

Beispiel: 100 PRINT USING (+ZZ9.999) 123.45 : + 123.450

110 PRINT USING (- ZZZZ E+ZZ) 123.45 : 123 4E-01

4.4.3 _ Positionierungsfunktion

Neben den Zeichen ";" und "," sowie den Steuerfunktionen ist in

C-BASIC noch folgende Funktion zur Positionierung erlaubt:

TAB (X) : x- Positionierung |

TAB (x,y) : xy = Positionierung

4.5

4.5.1

4.5.2

-23 -

Diese Funktion darf anstelle eines Ausdruckes in der PRINT-Liste

stehen. Die Integer-Werte von x, y geben die absolute Positionierung
für den Schreibkopf (Cursor) an. _

Ablauf-Befehle

Sprung -Statement

GOTO n

OTO a _OFnl,n,....

Mit GOTO wird der Programmablauf bei dem Statement mit der Anweisungs-
nummer "n" fortgesetzt. In der Form GOTO..OF wird das Sprungziel aus
dem Wert des Ausdruckes a bestimmt. Liegt dieser zwischen den positiven
ganzen Zahlen i (>o) und i+l, so wird zu dem Statement mit der Nummer ni
verzweigt, falls diese in der Aufzählung noch vorhanden ist. Entspricht der
Wert von a keiner der angegebenen Nummern, wird das auf GOTO folgende
Statement ausgeführt.

Beispiel: 10 INPUT A |
20 GOTO A OF 100,200, 300
30 PRINT "A<& 1 ODER Ay 3"

Unterprogramm-Sprung _

GOSUB n (al,a2...)
GOSUB a OF nl, n2,.... (al, a2,...)

Die Anweisung GOSUB bewirkt einen Sprung in ein Unterprogramm, das mit
der Anweisungsnummer n beginnt. Beim Aufruf des Unterprogrammes kann eine
Liste von Ausdrucken angegeben werden. Die Werte dieser Ausdrücke werden
errechnet und den Leervariablen im Statement SUB zugewiesen. Es ist auch ein
Unterprogrammaufruf ohne Parameterübergabe möglich. |

Das Sprungziel beim berechneten GOSUB wird wie bei GOTO
errechnet. '

Am Ende einer Unterprogramm-Durchführung (RETURN) erfolgt Rucksprung auf
das hinter GOSUB stehende Statement.

4.5.3

4.5.4

4.5.9

- 24 -

Unterprogramm-Statements

SUB (vi, v2,...)
RETURN

Bei Unterprogram men mit Parametern muß das erste Statement im Unterprogramm

das Statement SUB sein. In Klammern stehen eine Reihe von Leervariablen, denen

vor Durchführung des Unterprogrammes die in GOSUB errechneten Werte zuge-
wiesen werden. Die Übergabe-Technik entspricht der bei DEF. Die Rückkehr in
das rufende Programm geschieht nach Interpretation von RETURN.

Eine Schachtelung von Unter-Programmaufrufen ist bis zu einer Tiefe von 8
möglich.

IF-Statement

IFaTHEN n

IF a Statement

Dieses Statement erlaubt die bedingte Verzweigung zu einer Statementnummer "n"
oder die bedingte Durchführung eines aktiven (nicht deklarativen) Statements.
Ist der Wert des Ausdruckes #0, so gilt die Bedingung als erfüllt.

Beispiel: 10 IF Ad= BATHEN 200
20IFAAND B PRINT "RICHTIG"
30IF AS ="ABCD" GOTO 200

‚Schleifen-Statement

FORv = al TO a2 STEP a3
NEXT v

Die Statements FOR und NEXT eröffnen und schließen eine Programmschleife.
Bei Reginn wird die Schleifenvariable v auf den Anfangswert al gesetzt und
dieSchleife durchlaufen. Bei NEXT wird der Wert a3, der positiv oder negativ
sein kann, zum Schleifenindex hinzuaddiert.
Anschließend erfolgt die Prüfung, ob er den Schleifenendwert a2 schon über-
sc hritten (bei positiver Schrittweite) oder unterschritten (bei negativer Schritt-
weite) hat. Ist dies der Fall, wird die Schleife beendet.

Jedem FOR muß genau ein NEXT entsprechen. Schleifen dürfen verschachtelt
werden (bis zur Stufe 8). Überkreuzte Schachtelung führt jedoch zu einer
Fehlermeldung.

Beispiel: JO FOR I =0.1 TO END STEP 0.11% S
100 NEXT I

4.5.6

4.6

- 25 -

_Programmende

DR

. STOP
END

Das Statement END ist das letzte Statement eines Programmes- Statt eines

Sprungstatements auf END, kann innerhalb eines Programmes STOP verwendet

werden.

Programm-Verkettung

LINK seg
ENDS

Der Speicherbereicheines Teilnehmers am Timesharingbetri eb wird häufig für
Programm- und Datenspeicherung nicht voll ausreichen. In diesem Fall kann
das Programm'segmentiert" , d.h. in Teile zerlegt werden. Segmente liegen
unter einem Namen "seg" auf der Platte und werden durch das Statement LINK
bei Durchführung in den Speicher geladen.

Segmentierte Programme bestehen aus einer Wurzel (Root) und bis zu 255 Segmen-
ten. Die Wurzel ist dadurch ausgezeichnet, daß sie permanent im Speicher steht.
Sie braucht im Prinzip nur aus dem Statement LINK zu bestehen. Im allgemeinen
ist es jedoch sinnvoll, Programmteile und Daten, die in vielen Segmenten
gebraucht werden, in der Wurzel unterzubringen.

Ein Segment kann mit ENDS in die Wurzel zurückkehren oder mit"LINK seg"

ein weiteres Segment aufrufen. Dabei wird es aber überschrieben. Durch ein
anderes Segment kann es jedoch wieder gerufen werden.

Beispiel: 5 DIM DAT (100)
10 LINK ABFR Wurzel

20 END

100 REM SEGMENT ABFRAGE
110 INPUT "WELCHE FUNKTION", FUN
120 GOTO FUN OF 150, 160, 170 |
150 LINK EING Segment |
160 LINK RECH
170 LINK AUSG
180 STOP
100 REM SEGMENT EINGABE
100 REM SEGMENT RECHNUNG
100 REM SEGMENT AUSGABE Weitere Segmente

4.7

- 26 -

In diesem Beispiel wird in der Wurzel (5-20) ein Datenfeld zur Aufnahme
von Daten eröffnet. Das Segment ABF R dient der Abfrage einer Funktion,

die der Benutzer anwählen kann. Im Beispiel soll dies die Dateneingabe
im Segment EING, eine Datenauswertung im Segment RECH und eine Ausgabe
in AUSG sein.

Es ist zu beachten, daß verschiedene Segmente dieselben Statementnummern
haben können, da sie nichtgleichzeitig im Speicher stehen. Alle Variablen-

namen, die nicht in der Wurzel vorkommen, sind außerdem lokal !

Fehlerbehandlung

Bei Fehlern, die bei Programmeingabe auftreten, gibt C-BASIC auf der

Teilnehmerkonsole aus:

ERR Fehlernummer

Aus einer Fehlertabelle entnimmt der Teilnehmer die entsprechende Fehler-
spezifikation und eventuell Korrektur-Hinweise.Zur Laufzeit können syntak-
tische Fehler auftreten, die bei Programmeingabe vom System noch nicht

erkannt werden konnten (z.B. zu FOR fehlt ein NEXT). Außerdem ist eine
Reihe semantischer Fehler erkennbar (z.B. Feldbereichs-Überschreitung).
Normalerweise bricht das System bei Fehlern den Programmablauf ab und gibt
die Meldung aus:

ERR e IN LINE n SEG seg

Es kann jedoch häufig wünschenswert sein, solche Fehlerabbrüche zu ver-
meiden und eine benutzerspezifische Maßnahme zu ergreifen. Dazu stellt
C-BASIC folgende Statements zur Verfügung:

ON ERR GOTO n

RESUME n

RESET

Mit ON ERR wird dem System mitgeteilt, daß ab jetzt die Fehlerangabe unter
bleiben und statt dessen zu Statement n verzweigt werden soll, wenn ein Fehler

auftritt. Ab diesem Statem ent wird ein Reaktionsprogramm zur Fehleranalyse
und zum Ergreifen spezieller Maßnahmen stehen. Beispielsweise kann es
wünschenswert sein, das Statement, bei dem der Fehler aufgetreten ist, zu

wiederholen (z.B. INPUT). In diesem Fall wird das Statement RESUME ohne
Nummeranangabe verwendet. Das System löscht die Fehlerzelle und wieder-
holt das Statement. Oft ist es jedoch nötig, einen speziellen Vorgang vor dem
Fehlerstatement zu wiederholen. Dazu wird RESUME n benutzt. Nach Löschen

der Fehlerzelle geht das System zu Statement n. Soll der nächste auf das
Fehlerstatement folgende Befehl durchgeführt werden, wird RESUME o geschrieben.

- 27 -

Häufig kann es notwendig sein, zum Zweck der Fortsetzung des Programms
nach Auftreten des Fehlers interne Zustandsmerker (Zeiger für Schleifen-
und Unterprogramm-Keller, Format- und Rundungsspezifikation) zurückzu-
setzen. Dies leistet das Statement RESET.

Zur Abfrage der Fehlerart und der Nummer des Fehlerstatements hat

C-BASIC die Systemvariablen ERN, ERL parat.

Beispiel: 10 ON ERR GOTO 1000

20 INPUT A,B,C

30 PRINT A+B+C
40 GOTO 20

1000 REM FEHLERBEHANDLUNG

1010 IF ERL = 20 RESUME
1020 IF ERL = 30 PRINT "OVERFLOW"
1030 RESUME 20

I
AM

5.1

-28 -

C-BASIC-Datei-Verwaltung

Ein Hauptmerkmal der kommerziellen Datenverarbeitung ist die Menge
der anfallenden Daten. Sie müssen in problemangepaßten Strukturen
auf einen Externspeicher untergebracht und über rationelle Zugriffs-
methoden abgerufen werden können. |

C-BASIC liefert hierzu Sprachelemente, die dem allgemeinen Niveau
der BASIC-Sprache angepaßt sind und auf dem Datei-Verwaltungsmodul
DFMS (Disk File Management System) beruhen.

Daten-Struktur

Bild 5 zeigt den prinzipiellen Aufbau der Datenstruktur auf der Platte.

Alle logisch zusammengehörigen Daten sind physikalisch zu einer Datei
zusammengefaßt. Jede Datei besteht aus Sätzen, die nach einem Klassi-
fikationsmerkmal unterschieden werden. Sätze selbst sind in Felder
strukturiert. Felder können Einzeldaten oder Datengruppen enthalten.

Beispiel :
Die Lagerbestands-Verwaltung benutzt in der allgemeinen Firmen-
datenbank eine Datei, welche alle Daten über integrierte Schaltkreise
enthält.

Die Sätze der Datei werden beispielsweise nach der logischen Funktion
eines IC klassifiziert.

Satz 1: NAND-4 , Satz 2: NOR-4 usw.

Die Satzfelder künnen folgende Daten enthalten:

Bild 5: Struktur der Datenbank

Datei] oo

| Datei 2

Datei 3 o—

Index |] a

N
Index 2

N
Key | un

| Key 2

a > & ® »

|

Name

C ode

Zugriffsart

Zi 7
Zeiger auf | Key 2 _
Daten

4 +

Name |

Zeiger auf

Satz

L

T—freldi [Fed2 [reld3 |] |
[|
| J

Sätze der Datei |]

JFeld T I[Feld2 I Feld 3 [Feld 4
| |

J

Sätze der Datei 3

Mm
N

—

-
6
U
-

- 30 -

Lagerbestand - Benötigte Stückzahl pro Rechner

Lieferfirma 1 |

Lieferzeit - Kosten pro Sück - Rabatte

Leistungsverbrauch, Gehüuseform - Toleranzen - Zuverlüssigkeit

Ausstehende Lieferungen - Mengenverträge

Lieferfirma 2

USW.

Die Namen aller Dateien sind in einem Datei-Verzeichnis mit dem
Schutzcode des Autors, der erlaubten Zugriffsart (privat, öffentlich,
halböffentlich) und mit 2 Zeigern versehen. Der erste Zeiger weist
auf den ersten Satz der Datei, der zweite ist entweder leer oder weist
auf ein Schlüsselverzeichnis (Index), das Namen zu den Sätzen der
Datei enthält. Im obigen Beispiel sind die Satzschlussel die IC-Typen
(NAND-4 usw). Eine C-BASIC-Datei kann mehrere Uselverzeichnisse

haben. Jedes von ihnen hat einen Namen. Im obigen Beispiel ist sicher
ein Verzeichnis der zum Bau eines Rechnertyps erlaubten IC sinnvoll,
weiter kann ein Verzeichnis der IC in MIL-Norm unter Umstünden für einen
Verarbeitungsvorgang notwendig sein.

Der Sinn mehrere Schlüsselverzeichnisse zu einer Datelist der, daß mehrere
Personen mit unterschiedlichen Verarbeitungsaufgaben mit Namen, die
ihren praktischen Bedirfnissen entsprechen, und vor allem schnell auf Daten
zugreifen können. |

Auf alle Sätze einer Datei mit SchlUsselverzeichnissen kann direkt Uber die
Satznummer oder indirekt Über den Schlüssel zugegriffen werden. Direkt
wird man immer dann zugreifen, wenn der Inhalt des angesprochenen Satzes
bekannt ist. Meist ist dies jedoch nicht der Fall, da der Aufbau einer Datel
von mehreren Personen her erfolgen kann.

Da die Schlüssel in einem Schlüsselverzeichnis immer sortiert sind, erfolgt
der Zugriff zu einem bestimmten Satz relativ schnell.

Alle Sätze einer Datei haben eine maximale in einer Deklaration anzugebende
Länge . Ebenso ist die Maximalzahl der Sätze in der Deklaration zu verein-
baren. Bevor in eine Datei Daten eingetragen werden können, ist diese zu
öfnen. Die Datei-Verwaltung führt zu jeder eröffneten Datei einen Satz-

Zeiger, der auf den gerade in Bearbeitung befindlichen Satz zeigt, außerdem
einen Satz - offset - Zeiger, der das Feld angibt, auf das innerhalb des Satzes
als nächstes zugegriffen wird.

- 31 -

C-BASIC hat mehrere Statements zum Eröffnen von Schlüsselverzeichnissen
zum Eintragen, Löschen, Ändern und Verketten von Schlüsseln.

5.2 Datei-Deklaration

[cheare u, file (6, |) |

Geräte-Einheit (Platte)
Dateiname (1. Zeichen: Buchstabe, 2. bis 6. Zeichen beliebig)
Anzahl der Sütze
Länge der Sütze (in Sektoren zu 128 byte)

n
s

G
:

®

m

(
N

Mit CREATE wird eine Datei eröffnet.

Die Dateiverwaltung prüft, ob der Name bereits auf der Einheit "u" vor-
liegt. Ist dies der Fall, erfolgt eine Fehlermeldung. Sonst wird der Name
mit dem Code des eröffnenden Teilnehmers in das Dateien-Verzeichnis
aufgenommen und als "privat" erklärt.

Gleichzeitig wird der benötigte Platz auf der Platte reserviert und
initialisiert.

Beispiel: 100 CREATE 0, ICTYPE (200, 15)
150 CREATE 5, ANGEST (150, 32)

CRIND u, file; index (si, li)
CRIND u, file; index 1 (sil, lil), index 2 (si2, li2),

index = Namen des Schlüsselverzeichnisses (1-6 Zeichen)
si = Zahl der Shlüssel
li = Länge der Schlüssen (in Byte)

Die Datei-Verwaltung eröffnet zu der angegebenen Datei "file" auf
Einheit "u" Schlüsselverzeichnisse unter den angegebenen Namen und
reserviert "für sie entsprechend den Informationen über Zahl und Länge
der Schlüssel Platz. Durch dieses Statement ist jedoch noch keine
Zuordnung zu den Sätzen der Datei vorgenommen. Die Eröffnung von

Schlüsselverzeichnissen kann auch dann erfolgen, wenn bereits Sätze
der Datei beschrieben sind.

Beispiel: 100 CREATE 5, ANGEST (150, 32)
110 CRIND 5, ANGEST, NAME (150,20),WEIBL (30,20),.

MAEN (120,20)

5.3

- 2 -

In dem Beispiel wird eine Datei ANGEST(ELLTE) mit 150 Sätzen zu
je 4K Datenspeicher eröffnet. Danach bekommt die Datei 3 Schlüssel-
verzeichnisse, eines für alle Personen, ein zweites für die weiblichen,
ein drittes für die männlichen Angestellten.

Eröffnen und Schließen von Dateien

EXOP u, file f, index] AS w
CLOSE w1 , ze.
OPEN u, ne F index] AS w

u = Platteneinheit
file = Datei-Name
index= Schlüsselverzeichnis -

w = Integervariable zur Aufnahme der Arbeitsnummer

Bevor zu den Daten oder zu dem Inhalt von Schlüsselverzeichnisse zuge-
griffen werden kann, muß durch OPEN eine Anmeldung bei der Datei-
Verwaltung erfolgen. Diese bestimmt daraufhin die physikalische Adresse

“ des ersten Satzes der Datei oder des Indexverzeichnisses, falls "index"
angegeben ist und speichert diese in einer Tabelle im Hauptspeicher ab.
Gleichzeitig werden in dieser Tabelle die Satzzeiger initialisiert.
Die Nummer der Eintragung wird sodann der Integer-Variablen w
zugewiesen. Diese Nummer dient ab jetzt als Arbeitsnummerfür sämtliche
Lese- und Schreiboperationen. Ihre Verwendung spart Schreibarbeit und
sorgt vor allem für schnellen Zugriff. |

Dateien können im Teilnehmerbetrieb von mehreren Benutzern gleichzeitig
zum Zwecke des Lesens und Schreibens eröffnet werden, wenn sie nicht

privat sind. Erfordert es ein Vorgang (z.B. Sortieren), daß, während der
gesamten Zeit, in der ein Teilnehmer auf eine Datei zugreift, kein
anderer die Datei benutzen darf, so wird sie mit EXOP (= EXclusiv OPEN)
eröffnet. Dabei prüft das System zunächst, ob die Datei bereits belegt
wurde. Ist dies der Fall, so wird das neu eröffnende Programm solange in
den Wartezustand versetzt, bis die Datei nicht mehr belegt ist. Alle Teil- _
nehmer, die ab jetzt auf diese Datei mit OPEN oder EXOP zugreifen
wollen, müssen warten.

Eine Datei wird geschlossen durch CLOSE. In einem CLOSE können gleich-
zeitig mehrere Arbeitsnummern angegeben werden. |

- 33 -

5.4 __ Beschreiben/Löschen von Sätzen

IWRITE (w [, key]) al, a2, a3,
WRITE (w [key])

Mit WRITE wird ein Satz der eröffneten Datei w mit den Werten der
Ausdrücke al, a2, a3 ... beschrieben. Die Angabe "key" kann dabei ein
numerischer Integerausdruck (Konstante oder Variable) oder auch ein String
(Konstante oder Variable) sein. Im ersten Fall wird Uber die Satznummer,
im zweiten Uber den Satzschlüssel zugegriffen. Die Angabe muß mit der in
OPEN angegebenen Eröffnungsart übereinstimmen. Ist der angegebene

 Satzschlüssel noch nicht vorhanden, wird er in das Verzeichnis aufgenommen.

Das zu beschreibende Feld ist durch die Satzangabe und durch den Satz -
offset-Zeiger bestimmt. Falls jedoch die Satzangabe "key" entfällt, wird der
Satz von dem internen Satzzeiger ausgewählt. Diese Möglichkeit erlaubt

 sequentiellen Satzzugriff, da der Satzzeiger automatisch inkrementiert wird,
wenn ein Satz bearbeitet ist.

Der Reihe nach werden nun die Werte der Ausdrücke "ai" errechnet und
insgesamt in den Satz Übertragen. Die Werte können vom Typ numerisch oder
Strings sein. Ihre Größe bestimmt die Länge der Satzfelder. Stringfelder
werden durch eine spezielle Stringendmarke abgeschlossen, damit beim Lesen
der richtige Zugriff erfolgen kann.

Wie bereits bei der Beschreibung des READ-Statement angegeben wurde,
können durch Angabe von "Name (%)" oder "Name (* ,*)" komplette
Bereiche übertragen werden.

Am Ende eines Schreibvorganges zeigt der Satzoffset-Zeiger auf die nächste
unbelegte Feldposition, so daß im nächsten Schreibbefehl an dieser Stelle
weitergeschrieben werden kann.

Ein Schreibbefehl ohne eine Ausdrucksliste. dient zum Löschen eines Satzes.
Der Satzoffset-Zeiger wird auf den Anfang des Satzes gestellt. Schlüssel,
die in eventuellen Verzeichnissen auf diesen Satz weisen, sind davon
unberührt.

5.5.

5.6

Lesen/Ändern von Sützen

READ (vw J[,key]) vi,v2,v3,
UPDATE (w [, key]) vi,v2, v3,

Der Befehl READ liest aus dem durch "key" adressierten Satz der Datei w
Zahlen und Stringkonstante und weist sie den Variablen "v" der Variablen-
liste zu. Die Variablentypen müssen dabei den Datentypen bei dem voran-
gegangenen Schreibbefehl entsprechen.

Die Arbeitsweise des READ-Statement entspricht dem Statementpaar
READ-DATA. Wie dort, lassen sich auch hier komplette Bereiche Übertragen.

Der Satzschlüssel "key" kann ein Integerwert oder ein String sein. Wird er
nicht angegeben, ist die Stellung des zur Nummer w gehörenden Satzzeigers
für die Adressierung maßgebend.

Das Statement UPDATE hat, was das Lesen eines Satzes betrifft, dieselbe
Semantik wie READ. Jedoch dient hier das Lesen zum Zwecke der Änderung

(UPDATE) eines Satzes. Der Zugriff zu diesem Satz wird deshalb solange
gesperrt, bis derselbe Teilnehmer erneut einen READ/UPDATE oder WRITE-

Befehl anmeldet.

Außerdem wird der Satzzeiger nach dem Lesen auf den vor dem Lesen bestehen-
den Ausgangszustand gebracht. Der nach UPDATE übliche Befehl ist im allge-
meinen der Befehl WRITE, wobei die zu schreibenden Werte gegenüber den
Originalwerten ganz oder in Teilen modifiziert sind.

Ändern eines Schlüsselverzeichnisses

Wie bereits bei WRITE erwähnt, werden dort "neue" Schlüssel in das eröffnete
Schlüsselverzeichnis aufgenommen und Satznummern zugeordnet. Folgende
Befehle dienen dem Löschen, Umbenennen und Verketten von Schlüsseln:

UNKEY w ‚ Keyl, Key2,....
REKEY w ‚, Keyl TO Key2, Key3 TO Key4,....
COKEY w ‚ Key TO wl, Keyl TO w2, Key2,
UNKEY (= Unsave Key) löscht alle in der Liste aufgeführten Schlüssel im
eröffneten Verzeichnis w . Die Inhalte der Sätze bleiben jedoch unberührt.

REKEY (= Rename Key) erlaubt die Umbenennung von Schlüsseln in dem
eröffneten Verzeichnis.

5.7

COKEY (=Connect Key) dient der Verknüpfung von Schlüsseln aus den
Schlüsselverzeichnissen wWI , w2 „ ... mit einem Schlüssel "key"
aus w , der bereits einem Satz zugeordnet ist. Sind die Namen key],
key2 noch nicht vorhanden, so werden sie in das Verzeichnis aufgenommen.

Ist die Schlüsselangabe "Key" vom Typ Integer, so werden Sttze, die Uber
Satznummern eingetragen wurden, nachträglich mit Namen belegt.

Datei-Kommandos

Die in 2.5 beschriebenen Kommandos KILL und ALTER gelten nicht nur für
Dateien, die Programme enthalten und durch SAVE eröffnet werden, sondern
auch für Dateien, die mit CREATE eröffnet wurden.

Es muß darüberhinaus möglich sein, Schlüsselverzeichnisse einer Datei
löschen und verändern zu können.

KILL u, file, index

Dieses Kommando löscht das Schlüsselverzeichnis "index" in der Datei "file".

ALTER u, file, index 1, index 2

Das Schlüsselverzeichnis "index 1" wird in "index 2" umbenannt.

 Computer!
DIETZ] SYSTEME

