

detzc00
C-BASIC

Heinrich Dietz

o Ve
Telex 856770 SYSTEME

2—-7504—00-007

D iese Dokumentation beschreibt die Programmiersprache des kommerziellen

Systems DIETZ 600.

Sie ist nicht als Programmierhandbuch gedacht, sondern soll einen Uberblick
Uber die Mdglichkeiten der Sprache C-BASIC geben. Dabei werden besonders
Sprachelemente betont, die Uber die Dialogsprache BASIC hinausgehen. Vor
allem ist der Komfort zur Fehlerbehandlung, zur Ein/Ausgabe und die Datei-

zugriffssprache zu erwthnen.

Nthere Informationen zum Timesharing-Betriebssystem sowie zur Programmierung

in BASIC sind der entsprechenden Zusatzdokumentation zu entnehmen.

Inhalts-Verzeichnis Seite

—

Allgemeines

1.
1.1 Eigenschaften von C-BASIC 1
1.2 Time-sharing-Betriebssystem 1
1.3 Speicher-Belegung 2
2. C-BASIC-Kommandos 4
2.1 Time-sharing-Organisation 4
2,2 Programm-Edition 5
2.3 Ein/Ausgabe auf Poolgertte 6
2.4 Programm=DurchfUhrung 8
2.5 Programm~-Verwaltung 10
3. C-BASIC-Sprachelemente 12
3.1 Datentypen 12
3.2 Operatoren 13
3.3 Funktionen 14
3.4 Systemvariable 15
4. C-BASIC-Statements 16
4.1 Kommentare 16
4.2 Deklarationen 16 .
4.3 Zuordnungen 18
4.4 Ausgabe 20
4.5 Ablauf-Befehle 23
4.6 Programm-Verkettung 25
4.7 Fehlerbehandlung 26
5. C-BASIC-Dafei-Verwall:u_n:g_ 28
.1 Daten-Struktur 28
.2 Deklarationen 31
.3 Ersffnen und SchlieBen von Dateien 32
4 Beschreibupg und Lschen von Sdtzen 33
5 I:gsen und Andern von Sdtzen 34
é Andern des SchlUsselverzeichnisses 34
.7 Datei-Kommandos 35

(S N NS NS WS NS NS |

1.1

1.2

Allgemeines

_E_jgenschaffen von C-BASIC

C-BASIC ist eine auf Dartmouth-BASIC aufbauende Sprache zur Formulierung
der Aufgaben in der kommerziellen Datenverarbeitung.

C-BASIC unterscheidet sich von BASIC vor allem durch:

spezielle kommerzielle Arithmetik, Integer-Arithmetik

* komfortable Zeichenketten-Verarbeitung

* format- und maskenspezifizierte Ausgabebefehle

#* benutzergesteuerte Fehlerbehandlung

problemangepafite Strukturierung von Dateien in Sttze und Felder
* sequentieller oder direkter Zugriff Uber SchlUsselverzeichnisse

Time-sharing-Betriebssystem
C-BASIC lduft auf dem Syséem DIETZ 600 und besteht aus 2 Hauptteilen:

Sprach-Verarbeitung
* Time -sharing-Operafing—Sysfem (TSOS)

TSOS erlaubt in der Grundausbaustufe bis zu 12 Teilnehmern den gleich-
zeitigen Zugang zum Rechner. Jeder Teilnehmer arbeitet an einer Konsole
praktisch unabhtingig von anderen Benutzern des Systems. Normalerweise

ist fUr Systemeingriffe, Systemabfragen und Protokollierung eine zusttzliche
System-Konsole vorzusehen. Bei kleineren Systemen kénnen deren Funktionen
jedoch von dner bestimmten Teilnehmerkonsole (Masterkonsole) Ubernommen
werden.

TSOS hat 3 Aufgaben:
JOB-Scheduling (JOBS):

Allen rechenwilligen Teilnehmern wird nach einem Zeitscheibenverfahren
(Time=Slicing) der Reihe nach Rechenzeit zugeordnet.

#* Resource-Management (RESMA):

Verwaltung der allen Teilnehmern gemeinsamen Systemhilfsmittel
(EA-Gerdte, Dateien) nach der Methode First in - First out.

* |nput-Output Control-System (IOCS):

Steuerung aller EA-Vorgtinge , zum Teil unter Verwendung der

SPOOLING-Technik.

TSOS ist modular aufgebaut. Nur diejenigen Teile, die in einer
speziellen Konfiguration erforderlich sind, werden in das System
eingebunden. '

Der sprachverarbeitende Systemteil ist in 3 Hauptteile gegliederf:
* Command-Interpreter C-INT

Statement-Interpreter S-INT

#* Stgtement-Compiler S-COM

C-BASIC

JOBS RESMA |OCS C-INT S-INT S-COM

Bild 1: Hauptbestandteile des Systems

1.3 Speicher-Belegung

Das vollstandige C-BASIC-System residiert auf der Platte.Neben dem
speicherresidenten Kern TSOS werden die sprachverarbeitenden Programm-
teile nach Bedarf in einen Uberlagerungs (Overlay) - Bereich geladen.Auf
diese Weise sind . durch das System nur etwa 18Kbyte belegt. Der Rest des
Speichers wird auf die einzelnen Teilnehmer aufgeteilt. Sie werden vom
System~-Manager an der System - bzw. Masterkonsole bei der Anmeldung
des Teilnehmers vergeben.

C-BASIC enthtilt eine Reihe von Dienstprogrammen zur Dateiverwaltung
Datensicherung, Sortierung. Diese laufen in der Partition des aufrufenden
Teilnehmers ab.

Teilnehmer-Programme, die nicht vollsténdig in den zugewiesenen
Partitionen Platz finden, ktnnen in Segmente zerlegt und programm-
gesteuert in den Speicher geladen werden.

System Teilnehmer-Programm
auf Platte /
o
nle=|l =12 >I- E
8 Z|lz 1|0 S o ,,8_ '%) Y)
/

N >
5|3 AE
o 8
- | g o g
O
System . Teilnehmer-Programm

im Hauptspeicher

Bild 2: Speicher-Belegung

2.1

C-BASIC-Kommandos
Nach Inbetriebnahme des Rechners meldet sich C-BASIC auf der

System/Master-Konsole mit "READY". Der System-Manager kann jetzt
Teilnehmer an Konsolgeriten anmelden und fur diese Speicherbedarf
anfordern. Nach der Registrierung meldet sich C-BASIC auf der zuge-
lassenen Konsole mit "READY" und reagiert nun auf Eingaben des
Teilnehmers. Diese Eingaben zerfallen in zwei Gruppen, Kommandos
und Statements.

Kommandos beginnen mit einem Kommandowort und kommen unmittelbar
zur Durchfihrung. Statements beginnen mit einer Statementnummer und
werden im Teilnehmerspeicher nach den Nummern geordnet. Insgesamt
bilden sie ein Programm zur Lésung einer speziellen Aufgabe. Kommandos,
die ein Teilnehmer eingeben kann, beziehen sich hauptstchlich auf dieses
Programm. Er hat die Moglichkeit:

#* Programme zu editieren
% Programme ein/auszugeben

Programme durchzufthren

Programme zu archivieren
Der System-Manager ist durch Organisationskommandos in der Lage,
Eingriffe in den Timesharing-Ablauf des Systems vorzunehmen. Fur den
Teilnehmer sind diese Kommandos gesperrt. Es kann auBerdem vorgesehen
werden, daf3 die nachstehenden Kommandos ausschlieB8lich von der System-

konsole aus erlaubt sind, wihrend alle Ubrigen Konsolen nur im Rahmen
bereits erstellter Programme benutzt werden.

Time sharing-Organisation

ACTIVATE k , s

Damit meldet der System-Manager ein Konsolgerdt k dem System an und
beauftragt es, dem Teilnehmer, der an diesem Gerdt arbeitet, s Sektoren
(s * 128 byte) Speicherbereich zuzuweisen.

TERMINATE k

Der Teilnehmer am Konsolgerdt k hat seine Arbeit beendet und wird
abgemeldet. Der von ihm belegte Speicherbereich wird freigegeben.

SUSPEND k

Ein Programm oder Kommando~Aufirag am Konsolgertt k soll vorlaufig
zurlckgestellt werden. Diese MafBnahme ermsglicht es dem System-Manager,
beispielsweise ein EA-Gerit betriebsfahig zu machen (z.B. Papierwechsel).
Falls die Angabe k entfillt, werden alle Auftridge suspendiert.

2.2

CONTINUE k

Die durch SUSPEND zurlckgestellte Arbeit an der Konsole k wird
wieder fortgesetzt. Die Angabe k kann wieder entfallen, wenn alle
suspendierten Aufiridge wieder zugelassen werden sollen.

CHANGE k1, k2

Der Auftrag an der Konsole k 1 soll an der Konsole k 2 fortgesetzt
werden. Diese Mafinahme ist beispielsweise nstig, wenn ein Konsolgerdt
ausfallt.

ARM d
DISARM d

Mit diesen beiden Kommandos kann ein peripheres Gertt d zugelassen
und wieder gesperrt werden.

STATUS t

Mit diesem Kommando ist der System~Manager in der Lage, sich Uber den
System-Zustand (Auslastung) zu informieren und die Zeitscheibe zu
vertindern. "t" gibt an, welcher Teilauftrag durchzufUhren ist.

t = P Ausgabe einer Liste der Speicher-Partitionen
t = D Ausgabe der Warteliste auf Pool-Gerite
t = K Ausgabe des Katalogs aller Datei~Namen, ihrer Zugriffsart

und ihrer Plattenbelegung
t = T Angabe des Arbeitszustandes aller Teilnehmer

t =ddd Andern der Zeitscheibe auf 'ddd" msec.

Programm-Edition

SCRATCH

Mit diesem Kommando [8scht ein Teilnehmer Programm=- und Datenbereich
seiner Partition und setzt das System in den Ausgangszustand fUr neue
Programmeingabe.

2.3

LIST nl, n2

Die Statements von Nummer n'1 bisn 2 sollen auf dem Konsolgerdt
aufgelistet werden. Statt einer vollstindigen Zahlenangabe sind auch
Kurzschreibweisen erlaubt:

LIST , alle Statements ausgeben

LIST ,n2 alle Statements bis. zur Nummer n'2 ausgeben
LIST nl, alle Statements ab Nummer n1 ausgeben
LIST nl Statement n1 ausgeben

DELETE nl, n2

Die Statements von n1 bis n2 werden geloscht(inklusiv). Als AbkUrzungen
gelten die bei LIST aufgezdhlten Formen.

RENUMBER nl, n2

Das gesamte Programm im Speicher erhdlt durch dieses Kommando neue
Statementnummern, das erste Statement die Nummern1, die folgenden

wl +n2, nl +2#%n2, Speziell in der Programmerstellungsphase,

wo Statements an eine Stelle eingefiigt werden mussen, oder bei Ubernahméd
fremder Programmteile, hat der Anwender damit ei n nUtzliches Hilfsmittel .’
Bei der Umbenennung sind auch alle Sprungstatements mit berUcksichtigt.

Ein/Ausgabe auf Poolgerite

Poolgerite sind allen Teilnehmern am Timesharing-Betrieb zugtingliche
zentrale Ein/Ausgabe-Geridte wie Lochstreifenleser, -stanzer, Schnell-
drucker. Jedes Gerdt ist dem System unter einer Gertdtenummer "d" bekannt.

2.3.1 Spooling=Methode

Die Ein/Ausgabe bei solchen Gerdten kann je nach Systemkonfigurierung
direkt zwischen Gerdt und Hauptspeicher oder nach der SPOOLING ~Methode
erfolgen.

Die Spooling~=Methode erhshit den Durchsitz bei Systemen mit mehreren
Teilnehmern betréchtlich. Dies betriitt jedoch weniger die Ein/Ausgabe-
vorginge bei Kommandos, als vielmehr solche im Programmablauf. Sollen
dort Dateien auf Drucker ausgegeben wetden, so ist es erforderlich, den
Drucker fur andere Teilnehmer zu sperren. Da jedoch Ausgaben zum Teil
langdauernde Aufbereitungsvorgidnge erfordern und dariberhinaus auch
eine Umschaltung von Teilnehmer zu Teilnehmer stattfindet, ist der Drucker
schlecht ausgenutzt.

Nach der Spooling-Methode werden deshalb alle Daten, so wie sie anfallen,
auf einen speziellen Bereich der Systemplatte (SPOOL-Datei) geschrieben.
AnschlieBend wird das Gerdt vom System reserviert, falls es frei ist, und der
Inhalt der SPOOL-Datei komplett ausgegeben.

Bei der Eingabe wird zundchst, falls das Gerdt frei ist, die SPOOL-Datei
mit den Eingabedaten belegt, ehe sie zur Weiterverarbeitung bei Bedarf
der Reihe nach ausgelesen werden.

2.3.2 Anforderung/Freigabe von Poolgerdten

Die Interpretation der Lese/Schreib-Kommandos auf Poolgeridten nimmt
eine autanatische Reservierung der Gerdte vor. Dasselbe geschieht auch bei
der Durchfihrung von Lese /Sclreib-Statements in der Spooling-Methode.
Ist jedoch kein Spooling-Modul vorhanden, so muB3 die Anforderung und
Freigabe von Gerdten durch explizite Kommandos erfolgen , wenn solche in
Programm-Statements angesprochen werden.

REQUEST (d)

Nach Eingabe dieses Kommandos prift das System, ob das verlangte
Gerdt "d" frei ist. Falls ja, wird das Gerdt belegt, falls nein, erfolgt die
Meldung:

"NOT READY"

RELEASE (d)

Mit diesem Kommando wird dus Gerdt "d" wieder freigegeben.

2.3.3 Ein/Ausgabe

READ (d)

Wie beschrieben, enthilt das Kommando READ die Funktionen von REQUEST
und RELEASE. Zunidchst wird gepriift, ob das Gerdt frei ist. Falls nein,
erfolgt die Fehlermeldung "NOT KEADY". Falls ja, erfolgt die Eingabe
entweder direkt in den Hauptspeicher oder indirekt Uber die SPOOL-Datei.

2.4

Bei der Belegung der Teilnehmer-Partition wird ein bereits vorhandenes
Programm jedoch nicht geltscht, sondern das neue Programm angefugt.
Soll dies vermieden werden, muBB vorber SCRATCH erteilt werden.

LIST (d)

Das im Speicher stehende Programm soll auf das Gerat "d" ausgegeben
werden. Die Ausgabe geschieht direkt oder Uber das Spooling-Modul .

Die Reservierung des Gertites und dessen Freigabe wird implizit vorge-
nommen.

Programm-Durchfihrung

C-BASIC kennt 2 Methoden der Programm-Durchfihrung:

* interpretierend

« compilierend

Die "interpretierende"Methode ist addquat in der Erstellungsphase eines
Programmes. Sie unterstUtzt die Phase durch eine Anzahl von Testméglich-
keiten (TRACE) und gewdhrleistet volle Interaktivitét.

Nach Erstellung eines Programmes und nach einem vollen funktionellen
Test, erreicht man durch Compilieren eine optimale DurchfGhrungs-
geschwindigkeit.

Das folgende Bild soll die Arbeitsweise verdeutlichen. Man sieht daran,
daBCompilieren gegenuber dem Interpretieren einen zusdtzlichen
Arbeitsgang erfordert.

Translit.

Code

COMPILE =

Objekt-

code

Bild ~ 4: Interpreter-Compiler

RUN u, Mane ()J”..Ril.}.(_ .

Dieses Kommando lddt w-on der Flattencr, hoit "u" (bzw. u =0) das
Programm mit dem angegek enen Namen und fUhrt es interpretierend durch.
Steht das Programm bereits im Speicher, so kann es mit dem Kommando
RUNn1, n2

direkt an Statementnummer n1 gestartet werden. Es l&uft dann bis
Statementnummer n2 einschliefllich . Als AbkUrzungen sind zuldssig:

RUN . Gesamtprogramm im Speicher interpretieren
RUN nl, Ab Statement nl interpretieren

RUN, n2 Bis Statement n2 interpretieren

RUN nl Statement n1 interpretieren

TRACE n1, n2 (Variable)

Mit diesem Kommando wird das Programm w ie bei RUN interpretierend
abgearbeitet. Bei jeder Wertruweisung zu der in Klammern angegebenen
Variablen erfolgt zuséitzlich die Ausjabe:

n : Variadblenname = Wert, wobei n die Stutementnummer ist, wo die
Zuweisung des ausgedruchten Wertes 2u der Variablen
(LET-Statement, FOR-Statement, READ=-Statement) erfolgte.

Falls die Variablenangube entfdllt, gibt dasSystem bei berechneten und
bedingten Verzweigungen aus:

FROM~nI TOn2, wobein1 die Statementnummer angibt, bei welcher eine
Verzweigung nach Statement n. eifslgte.

COMPILE * ul, Name 1,u2, ".!ff."f_‘ffz:l

Das Programm mit dem Namen "llame 1" auf der Platteneinheit "ul" wird
compiliert und unter dem amen "I .ime 2" auf Einheit "v2" abgelegt . Falls
die Angaben ul, u2 nicht vorhaiden sind, ist Einheit o angesprochen.

Die Angabe " x" ist eine Option. |t sie vorhanden, so entfallen im Objekt-
code alle Fehlerprifungen (wie wuf Bereichsuberschreitungen, Schleifen-
Inkrement = o usw.).

In einem voll ausgetesteten Projramm kann man dadurch noch hohere
Effizienz bezuglich Laufzeit und Speicherb:legung erreichen.

2.5

-10 -

EXECUTE u, Name

Das angegebene compilierfe‘ Programm wird von Einheit "u" geladen und
gestartet. Nach DurchfUhrung des Programms ist das System wieder im
Kommando-Betrieb. Die .Angabe "u" kann wieder entfallen.

Kommandos zur Detei-Verwaltung

Dateien sind Bereiche auf dem Plattenspeicher, in denen die Teilnehmer
Programme oder Daten archiviert haben. Im Teilnehmer-Betrieb ergibt
sich das Problem des Datei-Schutzes. Der die Datei eréffnende Teilnehmer
kann ihr folgenden Status geben:

- privat : Zugriff nur dem Autor erlaubt .

- tffentlich : Zugriff allen Teilnehmern erlaubt.

- halb-&ffentlich: Autor darf lesen und dndern,
alle anderen Teilnehmer durfen nur lesen.

Um Dateien vor nicht autorisiertem Zugriff schitzen zu kdnnen, mussen
ihre Namen im Datei~Verzeichnis mit einem Code versehen sein.

CODE ccc

Mit diesem Kommando teilt ein Teilnehmer dem System ein Codewortccc
mit.

Alle vom Teilnehmer ab jetzt ersffneten Dateien (Programme- oder Daten -
bereiche) werden im Dateiverzeichnis mit diesem Wort versehen und als
privat erklart. Will der Teilnehmer auf private oder bei Anderungen auf
halb-&ffentliche Dateien zugreifen, vergleicht das System deren Codewort
mit dem des Teilnehmers.

Ein spezielles Code-Wort erlaubt dem System-Manager den Zugriff zu allen
Dateien.

SAVE u, Name

Ein im Speicher stehendes Programm wird auf Einheit "u" unter dem angege-
benen Namen archiviert und als privat erkldrt.

LOAD u, Name

Ein Programm wird aus dem Archiv in den Speicher geladen. Ein dort bereits
vorhandenes Programm wird jedoch nicht geltscht, sondern durch das neue
ergtinzt. Es tritt dabei ein Mischeffekt auf. Soll dies vermieden werden, ist
vor diesem Kommando mit SCRATCH der Speicher zu Itschen.

=11 -

KILL u, Name

Ein Programm soll geltscht werden. Nur durch Code-Wort autorisierten
Teilnehmern ist dies erlaubt .

ALTER u, Name 1, s, Name 2

Dieses Kommando erlaubt dem autorisierten Teilnehmer eine Anderung
im Dateienverzeichnis. Die Datei mit dem Namen "Name 1" soll den
neuen Status "s" und den neuen Namen "Name 2" bekommen. Eine von
beiden Angaben kann auch entfallen.

Damit hat ein Teilnehmer die Méglichkeit, eine private Datei der Offent-
lichkeit voll oder nur zum Zweck des Lesens zur Verfugung zu stellen. Er
kann aber auch ein von ihm abgelegtes Programm sptter wieder privatisieren.

SERVICE Typ

Der praktische Umgang mit Dateien verlangt eine Reihe von System-
Dienstprogrammen, die Uber dieses Kommando angesprochen werden kénnen.
Die Angabe " Typ" spezifiziert dabei ein spezielles Programm, das von der
Platte in den Speicherbereich des rufenden Teilnehmers geladen und durch-
gefUhrt wird. Die Parameter zur Durchfihrung eines Programmes (Dateiname,
Ausgabegerit usw.) werden im Dialog spezifiziert.

L = Liste : Ausgabe des Verzeichnisses der privaten und/oder
offentlichen Dateien auf Konsole oder Drucker.

K = Key : Ausgabe der Schlussel in den SchlUsselverzeichnissen,
die zu einer Datei gehdren (siehe 5)

R = Rollin/Rollout: Ubertragung von Datei-Inhalten von einem Gerdt auf
ein anderes (Platteneinheiten, Bdnder, Drucker,
Lochstreifen).

O = Organisation : Umorganisation von Dateien, beispielsweise zum Zweck
der "Garbage collection".

Das Kommando SERVICE erlaubt auch auf einfache Weise den Einbau neuer
System-Diensprogramme, beispielsweise fur das Sortieren von Datei en nach
bestimmten Kriterien.

n Namell

Anstelle der Kommandofolge.SCRATCH) LOAD, o, Name',' kann ein Programm
von der Platteneinheit o auch Uber seinen Namen direkt aufgerufen werden.

3.

3.1

- 12 -

C-BASIC-Sprachelemente

Datentypen
C-BASIC kennt 3 Datentypen:

* Integer (Ganzzahl)
% Redl (= kommerzielle Zahl)

* String (Zeichenkette)

Die Integerzahl wird im System durch 2 byte bindr dargestellt. Der zuldssige
Zahlenbereich ist somit [~ 32768, 327671 . Integers werden vor allem zur
Indizierung sowie fur Darstellung von logischen Gréflen verwendet.

Die kommerzielle Zahl wird im System durch 8 byte bindr-codiert =dezimal (BCD)
dargestellt. 14 + 64
Die Genauigkeit der Darstellung ist 10, der erreichbare Zahlenbereich 10 .
Ein spezielles Statement (siehe 4. 3) erlaubt die Angabe eines Rundungsverfahrens.

Die Zeichenkette kann eine beliebige, nur durch den Speicher begrenzte Anzahl
von Zeichen enthalten.

Zu allen Datentypen gibt es Konstanten, Variablen und Strukturen.
Zahlenkonstanten werden in der bekannten wissenschaftlichen Notation geschrieben.

Das System erzeugt bei entsprechender Grifle entweder den platzsparenden
Integertyp oder die kommerzielle Zahl.

Beispiele: 1, - 1.2, 1.2E+3, 1.23E -4 usw.
(Die Angabe E bedeutet "10 hoch")

Die Stringkonstante besteht aus einer Folge im ASClI-Alphabet zugelassener
Zeichen oder aus einer Folge von Hexaziffern. Erstere haben als Pre= und Suffix
das Zeichen ", letztere das Zeichen %.

Beispiel: "AB - DE"
% 1A2F%

Die Léinge von Zeichenketten-Konstanten ist durch die Eingabe-Zeile beschrénkt.

Variablewerden mit einem Namen von 1 bis 4 Zeichen Linge angegeben. Zur
Unterscheidung des Typs erhalten Real-Variable das Suffix @ , Stringvariable
das Suffix
Beispiele: KOM®@ : Name fur Real-Rariable

i ¢ Name fur Integer-Variable

KET 8 : Name fur String-Variable

3.2

-13 -

Mehrere Variablenwerte knnen zu einer Struktur zusammengefaf3t werden.
C-BASIC kennt den ein- und zweidimensionalen Zahlenbereich fur "Integers"
und "Reals" und einen eindimensionalen Stringbereich. Strukturen mussen im
allgemeinen deklariert werden. Fehlt eine solche Deklaration, so reserviert
das System automatisch Platz fur 10 Zahlen bzw. 10 Stringkonstanten, wobei
hier jede 2 Zeichen umfaBt. Uber Indexangaben kann auf Einzelelemente
eines Bereiches zugegriffen werden.

Beispiele: ARR A (5, 10) : 2-dim. Bereich ARR fur "Reals"
1 (3) : 1 -dim. Bereich |fur "Integers"
KET ¥ (5) : 1 -dim. Bereich KET 8 fur Strings

Die Abspeicherung eines 2-dimensionalen Bereiches geschieht zeilenweise.

Operatoren
C-BASIC kennt folgende Operatoren:

arithmetisch : +, -, %, /, t , - unit fur Integers und Reals
Vergleich : >, »=, <, <=, £ fur Integers, Reals, Strings
logisch : AND, OR, NOT fur Integers

Verkettung : & fur Strings

Operanden und Operatoren durfen zu beliebigen Ausdricken nach den bekannten
Regeln der Mathematik in Verbindung mit Klammerpaaren zusammengesetzt werden.
Eine Mischung von Integers- und Reals ist zultssig, jedoch keine Mischung von
Zahlen mit String-Operanden.

Die Typen-Mischung zwischen Integers und Reals verlangt Konventionen bezuglich
der Konvertierung.

- Sind beide Operanden Integer, so ist das Resultat der Operation Integer
(z.B.: 10/3 =3)

- Sind beide Operanden Real, so ist das Resultat vom selben Typ
(z.B.: 10/3 = 3.3333333333333)

- Bei gemischten Operanden wird der Integer-Typ fur die Berechnung in eine
Real-Zahl konvertiert. Das Resultat ist vom Typ Real.

- Bei der Zuweisung eines Wertes zu einer Variablen (LET, READ, INPUT-
Statement) wird, falls nstig, der zuzuweisende Wert entsprechend dem Typ
der Variabl en konvertiert .

-14 -

Die Konversion zwischen Zahlen und Zeichenketten ist ebenfalls mosglich,
wird aber explizit durch Funktionen angegeben.

Funktionen

In C-BASIC sind folgende Standardfunktionen benutzbar:

numerische Funktionen

Y = ABS (X) Absolut-Betrag .Das Argument der Funktion kann
ein beliebiger numerischer Ausdruck vom Typ
"Integer" oder "Real" sein.

Y =SGN (X) Signum. Fur das Argument gilt das eben Gesagte.
Resultat der Funktion ist:

1,0, - 1fuor X >0, =0,<0.

Die folgenden Funktionen sind bei Integers nicht sinnvoll.

Y =INT (X) Ganzza hliger Teil von X® : [X]

Y =FPT(X @) "Fractional Part" : X - [X]
* Stringfunktionen

Y =LEN (X8) Langenbestimmung des Strings X8

Y =POS (X158, X28) Bestimmung der Position des Strings X28 im
String X18. Resultat ist eine Integer-Zahl.

Y 8 =SEL (X8, A,L) Selektion der Zeichenfolge im String X8
ab Zeichen A bis A+[-1

% Konversionen

Y = ASC (X8) Resultat ist der ASCII-Wert des Zeichen X8

-8 =CHR (X) Resultat ist das ASClI-Zeichen, welches der Zahl X
entspricht.

Y = NUM (Xg) Die Zeichen von X8 (zuléssig nur +~.E und Ziffer)
werden in die irterne Zahlendarstellung umgerechnet .

Y8 =STR (X9) Die Zahl X wird in die externe Zahlendarstellung

umgerechnet.

3.4

-15 -

System=Variablen

C-BASIC kennt einige Systemvariablen, die wie gewdhnliche Variable
abgefragt, jedoch nicht verdndert werden kdnnen.

- Zeit-Variablen
MIN : Gibt die aktuelle Minute an.
HOUR : Gibt die aktuelle Stunde an.

DATEZ : Liefert als Zeichenkette von 10 Zeichen das aktuelle Datum
(z.B.: 10.12.1974)

Die System-Variablen erhalten bei der System-Initialisierung durch den
System-Manager Anfangswerte und werden dann vom System gefuhrt.

- Fehler-Variablen

Zur Behandlung von semantischen Fehlern, die bei der Durchfuhrung eines
Programmes auftreten konnen, (z.B. Bereichsuberschreitung, fehlerhafte
Eingabe) stellt C-BASIC folgende Variablen zur Verfugung:

ERN : Fehler-Nummer
ERL : Fehler-Label

ERN gibt den aufgetretenen Fehlertyp, ERL (Error Label) die Nummer des-
jenigen Statements an, bei dem der Fehler aufgetreten ist.

Die genaueren Angaben zur Fehlerbehandlung sind unter dem Kapitel
"Statements" (4.7) zu finden.

-16 -

4, E:BASIC-Sfafemenfs

Statements bestehen aus einer Statementnummer , gefolgt von einem
Statement-Codewort und einer Reihe weiterer spezifischer Angaben. Die
Statementnummer (1 bis 32767) gibt dem System an, wie die Statements
geordnet werden sollen, dient als Unterscheidungsmerkmal von Kommandos
und vor allem auch als Statementmarke fur Sprunganweisungen.

C-BASIC erlaubt die Eingabe mehrerer durch ":" getrennter Statements

pro Zeile (£ 72 Zeichen). Eine Zeile wird durch das Zeichen "cr" (Wagen-
rUcklauf) abgeschlossen. Mit dem Zeichen "Del" kann eine Eingabe
geldscht werden, die Sonderzeichen folge "¢+ 4 . .." |6scht die zuletzt
eingegebenen Zeichen.

4.1 Kommentare

REM Kommentar

Dieses Statement dient dem Einfigen von Kommentaren in ein Programm. Es
wird bei Durchfuhrung eines Programmes und bei Ubersetzung (COMPILE)
Ubergangen.

Das Zeichen ! hinter einem Statement erlaubt die Zufugung von Kommentar
in einer Zeile.

Kommentare kosten zwar Speicherplatz, sind aber fur die Lesbarkeit und
Strukturierung eines Programmes unbedingt erforderlich. Uber die Moglichkeit
des Mischeffektes (LOAD, READ) lassen sich Kommentare separat fuhren und
fur Dokumationszwecke in ein Programm einbauen. Auf diese Weise ist der
Speicherplatz zur Laufzeit optimal ausgenutzt.

4.2 Deklarationen

4.2.1 DIM-Statement

DIM v1 (i), v2 (i,k)
DIM v 1 (i), v2a (i, k)
DIM v1 8 () 1), v28 ()

Das DIM-Statement reserviert Speicherplatz fur einen oder mehrere Bereiche.
Hinter dem SchlUsselwort DIM sind die Bereichsangaben spezifiziert . Jede

von ihnen enthdlt den Bereichsnamen von Typ "Real", "Integer", "String" und
die BereichsgroBe. Bei Real-Bereichen werden (i + 1)# 8 bzw. (i + 1) #

(k + 1) x8 Speicherbytes reserviert, bei Integer-Bereichen (i + 1) * 2 bzw.
(i+1) (k + 1)& 2. Bei String-Bereichen sind es (i + 1)%* | Bytes bzw. (i + 1)* 2
byte, falls die Angabe | wie im dritten Statement entfdllt.

4.2.2

4.2.3

-17 -

Bereichsangaben fir Real-, Integer- und Stringbereiche kdnnen auch
gemischt stehen.

Beispiel: 10 DIM AB (15), B ® (20,2), CDS (10) 5)
Defekt-Modus: Eindimensionale Bereiche brauchen nicht explizit deklariert

zu werden.

C-BASIC nimmt in diesem Fall als Defekt einen Bereich von 10 Zahlen oder
10 Strings zu je 2 Zeichen an.

CHAR - Statement

CHAR v1¥ (I1), v28 (12),....

Dieses Statement reserviert fur eine einfache Stringvariable einen Speicher-
platz von 11 bzw. 12 byte. Entfillt eine solche Reservierung, so werden als
Defektmodus 2 Zeichen angenommen.

Beispiel: 15 CHAR ARBE (10), BETAZ (100)

DEF-Statement

DEF FNf (v1, v2,) = a

C - BASIC kennt die Moglichkeit zur Deklaration einer einzeiligen Benutzer-
funktion mit bis zu 4 Parametern.

Die Funktion mit dem Namen FNf, wobei f fir eine beliebige Zeichenfolge

(£ 4 Zeichen) steht, kann in einem beliebigen Ausdruck anstelle eines
Operanden in der Form FNf (al, a2, ...) verwendet werden. al, a2 bedeuten
hierbei Ausdricke, deren Wert errechnet und vor Aufruf der Funktion den
Leer-Variablen v1, v2 zugewiesen werden. Danach wird der Funktionsausdruck a
ausgewertet.

Beispiel: 100 DEF FNPOLY® (X,A,B,C) = A*X %3 + B*X %2 + C* X
110 DEF FNEXOR (X1,X2) = (X1 AND NOT X2) OR (NOT X1 AND X2)

Beispiel 1 errechnet ein Polynom, Beispiel 2 bildet die Funktion "Exklusiv Oder".

4.2.4

4.2.5

4.3

4.3.1

-18 -

DATA-Statement

DATA cl, c2, c3

Dieses Statement spezifiziert eine Liste von Konstanten ci. Diese knnen
vom Typ "Zahl (Real, Integer)" oder "String" sein. Die Konstanten werden
durch das Statement READ (4.3.1) gelesen und Variablen zugewiesen.
Beispiel: 100 DATA 5, 6.23, - 7E5, "ENDE"

Weitere Deklarationen

Zur Deklaration von Dateien sind weitere Statements vorgesehen, die im
Kapitel 5 behandelt werden.

Zuordnungen

READ-Statement

READ v1, v2,v3,

Das Statement leistet die Zuordnung von Konstanten, die in DATA-Statements
aufgezidhlt sind, zu Variablen. Im System ist ein Zeiger vorhanden, der bei
Programmbeginn auf die erste Konstante des ersten DATA-Statements zeigt.
Diese Konstante wird gelesen und der ersten in READ angegebenen Variablen
zugewiesen. Anschlieflend zeigt der Zeiger auf die nichste Konstante, die der
Wert der nichsten Variablen wird. Ist ein DATA-Statement erschopft, setzt das
System den Zeiger auf die erste Konstante des niéichstfolgenden DATA-Statements
oder meldet Fehler, falls ein solcher nicht existiert. Die gelesenen Konstanten
mussen im Typ mit den Variablen Ubereinstimmen.

C-BASIC bietet die Msglichkeit, mit einer speziellen Angabe einen Bereich
mit Daten zu fullen. Wird im Argument einer Bereichsvariablen statt einer Zahl
oder eines Ausdruckes das Zeichen " * " angegeben, so werden aus dem
DATA-Feld so viele Konstanten gelesen, bis der Bereich belegt ist. Die Abspei-
cherung geschieht bei zweidimensionalen Bereichen zeilenweise.
Beispiel: 10 DATA 5,6,7,8, 9E4, "AB"

20 READ A, B, C, D, Ed, DY

30 DIM BE®(3)

40 DATA 6.23, 7.5, 6.8, 9.4, "ABC", "DEF"

50 READ BE®(%), CHARZ (*)

Im Statement 20 werden Werte zu Einzelvariablen Ubertragen, in Statement 50
an Bereiche.

4.3.2

4.3.3

4.3.4

-19 -

RESTORE-Statement

RES n

Der DATA-Zeiger wird mit Hilfe des Statements neu gesetzt. Nach
Durchfihrung von RESTORE zeigt er auf die erste Konstante im auf
Statement n folgenden DATA-Statement. Die Nummernangabe kann
auch entfallen, wenn der Zeiger auf das erste DATA-Statement gesetzt
werden soll.

INPUT-Statement

INPUT DEV (d), t, ul, u2, u3,...

Das Statement elaubt die Eingabe von Konstanten von einem Gerdt d
wdhrend des Programmablaufes. Das Gerdt kann die Konsole oder auch

ein beliebiges anderes Eingabegerdt sein. Entfallt eine Gerdteangabe,

so afolgt die Eingabe vom zuletzt in einem INPUT- oder PRINT-Statement
spezifizierten. Bei Programmanfang ist das Konsolgerdt (d = o) angewdhlt.
Der Teilnehmer wird in diesem Fall vom System durch "?" aufgefordert,
Daten einzugeben. Vor dem "?" wird der Text "t", falls er vorhanden ist,
noch ausgegeben.

Danach werden Daten in der iblichen Weise (mit Korrekturmoglichkeit
"Del" und "¢ ") eingegeben. Nach Abschlu8 durch das Zeichen "cr"
ordnet das System die eingegebenen Werte den aufgefiihrten Variablen zu.
Hier gelten genau dieselben Vereinbarungen wie bei READjhat der Teil-
nehmer zu wenig Daten eingegeben, so meldet sich das System mit "??2".

Fehler, die bei der Interpretation der Benutzereingabe registriert werden,
fuhren nicht zum Programm-Abbruch, wenn im Programm vor dem INPUT-

Statement ein ON ERR-Statement (siehe 4.7) steht.

Beispiele: 10 INPUT DEV (1), "GIB EIN", A¥, BS, C®
20 INPUT "WIEVIEL IST", DE (5, 6)

LET-Statement

LET v =a
LET vl =ql,v2 =qa2,

Dieses Statement ist die hdufigste Zuweisungsform eines Wertes zu einer
Variablen.

4.3.5

4.4

4.4.1

-20 -

Der Ausdruck a wird zundchst ausgewertet und dann in den durch die

Variable v angegebenen Platz eingeschrieben. Bei Ty penmischung rechts

und links vom Zuweisungszeichen erfolgt eine automatische Konversion
entsprechend dem Variablentyp.(Bei Zahlen-String=-Mischung Fehlermeldung!).

Die Syntax des LET-Statements erlaubt neben der einfachen auch die Mehrfach-
zuweisung .
Beispiele: IO LET A Q = BX+ 5

20 LET XA (5,3) = XB + 6E3, XB = 5% (A +1)

30 LET Z§ (2) ="ABCD" & X§

ROUND - Statement

ROUND r

Dieses Statement dient dazu, dem System anzugeben, wie reelle Zahlenwerte
vor Zuweisung zu einer reellen Variablen im LET-Statement oder vor Ausgabe
in einen PRINT-Statement gerundet werden sollen. Die Angabe "r'" ist entweder
eine Konstante oder Variable. Der Wert von r wird ab diesem ROUND-Statement
zu dem errechneten Ausdruckswert hinzuaddiert. AnschlieBend werden alle
Stellen ab der durch "r" angegebenen ersten signifikanten Ziffer auf O gesetzt.

Beispiel 1: Rundung vor dem Komma.
10 ROUND 50
20 LET A = 501 % 10, B = 507 * 10

Wert von A: 5010, B:5070. Nach Rundung A:5000, B:5100

Beispiel 2: Rundung nach dem Komma
10 ROUND 0.05
20LET = 5.3%6.2,D = 0,1 %0.8

Wert von C:32.86, D: 0.08. Nach Rundung C: 32.90, D:010
Bei ROUND 0 erfolgt keine Rundung mehr.

Ausgabe

Ausgabe von Zahlen, Texten, Steuerzeichen

PRINT DEV (d), a
PRINT DEV (d), al, a2,

Das Statement dient der Ausgabe von Zahlenwerten und/oder Texten auf ein
peripheres Gerdt "d", das in DEV (d) spezifiziert ist. Eine explizite Spezifi-
kation ist dabei nicht notig, wenn die Ausgabe auf das zuletzt angewihlte

4.4.2

-21-

Gerit erfolgen soll .Die Ausdricke a kénnen beliebige numerische Ausdricke
Stringkonstanten bzw. Stringvariablen sein. Als Trennzeichen zwischen den
einzelnen Angaben fungiert das Komma oder der Strichpunkt. Ein Komma
bedeutet, daB8 nach der Ausdrucksausgabe solange Leerzeichen folgen bis die
ndchste Tabulatorposition (Spalte 16,32,48,..) erreicht ist.

Die Ausgabe von Zahlen geschieht, wenn nicht anders spezifiziert (siehe 4.4.2),
in einem automatischen Format, das entsprechend der ZahlengroBle arbeitet.

Zeichenketten konnen aus einer Folge direkt auszugebender Zeichen

(z.B. "ABCD..") bestehen, aus einer Folge von Hexakonstanten

(z.B. % AIFF BO05 %), aber auch aus einer Folge von Funktionssymbolen
(z.B. "CRLF’), die gewisse Steuerfunktionen am Bildschirm, Drucker, Loch-
streifengerdt auslssen. :
Prinzipiell kdnnen solche Funktionen auch im Hexacode angegeben werden,
aus Grunden der Mnemotechnik ist es jedoch sinnvoll, hierfUr eine spezielle
Symbolik zu verwenden.

CR Carriage Return SF Set Foreground
LF Line Feed SB Set Background
BL Bell

HT Horizontal Tab. FF Form Feed

VT Vertical Tab. PL Print Line

CP Clear Page
CH Cursor Home

Diese Funktionsliste ist erweiterungsfahig.

Beispiel: 10 PRINT “CRLFLFLFBL’; "RESULTAT"; 3 A +B
15 PRINT DEV (3); “FF’; "UEBERSCHRIFT"; "CRLFLF’

Formatspezifikationen

Anstelle eines Ausdruckes in der Liste des PRINT-Statement kann eine Format~
spezifikation stehen. Wird eine solche bei der Programmdurchfihrung angetroffen,
ist die bisherige Spezifikation aufgehoben und durch die neue ersetzt. Alle Zahlen

werden ab jetzt gemdl dieser Spezifikation formatisiert. C-BASIC kennt eine
FORTRAN und eine COBOL-dhnliche Spezifikation.

a = FMT (f)
a = USING (s)

4.4.3

-22 -

Bei der Angdbe FMT steht f fur folgende Mglichkeiten:

A : Umschalten zum automatischen Format

Fw.d: Ausgabe im Dezimal (oder bei d = O: Integer) Format mit insgesamt
w Stellen (inklusiv Vorzeichen und Dezimalpunkt) , wobei “d"
Stellen hinter dem Komma stehen.

Ew.d:Die Ausgabe soll im Exponentialformat erfol_gen . Hinter den Ziffern
der Mantisse wird zusdtzlich ausgegeben E = xx.

Beispiele: 10 PRINT FMT (F 9.3) 12345E-2 : 123.450
20 PRINT FMT (E12.4) 12345E-2 : 1.2345 E -02

Bei der Angabe USING ist "s" eine Folge von Zeichen, die bei der Verwen-
dung zur Zahlenausgabe.folgendermaBBen interpretiert werden.

9 Stellefur Ziffer

Z Stelle fur Ziffer, jedoch statt fuhrender Null Leerstellenausgabe

Stelle fur Ziffer, jedoch statt fuhrender Null # Ausgabe (Schecksicherung)

Stelle fur Vorzeichen (- bei neg. Zahlen, w bei pos. Zahlen)
+ Stelle fur Vorzeichen (- bei neg. Zahlen, + bei pos. Zahlen)

Die Vorzeichenstelle kann sowohl vor, als auch hinter der Zahl stehen.

Stelle fur Dezimalkomma. Die Zahl wird in das Format so eingepafit,
daB hier das Dezimalkomma steht.

’

w Leerstelle (vor, hinter oder zwischen Zahlen méglich).

E Stelle fur Exponentialzeichen

Beispiel: 100 PRINT USING (+ZZ9.999) 123.45 : +123.450
110 PRINT USING (-ZZZZ E+ZZ) 123.45 : 1234E-01

Posiﬁonierunggfu nktion

Neben den Zeichen "; " und "," sowie den Steuerfunktionen ist in

C-BASIC noch folgende Funktion zur Positionierung erlaubt:

TAB (X) : x- Positionierung
TAB (x,y) ¢ xy = Positionierung

4.5

4.5.1

4.5.2

_Sprung-Statement

-23 -

Diese Funktion darf anstelle eines Ausdruckes in der PRINT-Liste
stehen. Die Integer-Werte von x, y geben die absolute Positionierung
fur den Schreibkopf (Cursor) an.

Ablauf-Befehle

GOTO n
OTO a OF nl,n2,....

Mit GOTO wird der Programmablauf bei dem Statement mit der Anweisungs-
nummer "n" fortgesetzt. In der Form GOTO. .OF wird das Sprungziel aus
dem Wert des Ausdruckes a bestimmt. Liegt dieser zwischen den positiven
ganzen Zahlen i (> o) und i+1, so wird zu dem Statement mit der Nummer ni
verzweigt, falls diese in der Aufztthlung noch vorhanden ist. Entspricht der
Wert von a keiner der angegebenen Nummern, wird das auf GOTO folgende
Statement ausgefUhrt.

Beispiel: 10 INPUT A

20 GOTO A OF 100,200,300
30 PRINT "A< 1 ODER AY 3"

Unterprogramm-Sprung

GOSUB n (al,a2...)
GOSUB a OF nl, n2,.... (al, a2,...)

Die Anweisung GOSUB bewirkt einen Sprung in ein Unterprogramm, das mit
der Anweisungsnummer n beginnt. Beim Aufruf des Unterprogrammes kann eine
Liste von AusdrUcken angegeben werden. Die Werte dieser Ausdricke werden
errechnet und den Leervariablen im Statement SUB zugewiesen. Es ist auch ein
Unterprogrammaufruf ohne ParameterUbergabe mglich.

Das Sprungziel beim berechneten GOSUB wird wie bei GOTO
errechnet. :

Am Ende einer Unterprogramm-DurchfUhrung (RETURN) erfolgt Rucksprung auf
das hinter GOSUB stehende Statement.

-24 -

4.5.3 Unterprogramm-Statements

SUB (v1, v2,...)
RETURN

Bei Unterprogram men mit Parametern mul3 das erste Statement im Unterprogramm
das Statement SUB sein. In Klammern stehen eine Reihe von Leervariablen, denen
vor Durchfuhrung des Unterprogrammes die in GOSUB errechneten Werte zuge-
wiesen werden. Die Ubergabe-Technik entspricht der bei DEF. Die Ruckkehr in
das rufende Programm geschieht nach Interpretation von RETURN.

Eine Schachtelung von Unter-Programmaufrufen ist bis zu einer Tiefe von 8

mdglich.

4.5.4 |F-Statement

IF a THEN n
IF a Statement

Dieses Statement erlaubt die bedingte Verzweigung zu einer Statementnummer "n"

oder die bedingte DurchfUhrung eines aktiven (nicht deklarativen) Statements.
Ist der Wert des Ausdruckes # 0, so gilt die Bedingung als erfullt.

Beispiel: 10 IF A®= BITHEN 200
20 IF A AND B PRINT "RICHTIG"
30IF AY ="ABCD" GOTO 200

4.5.5 Schleifen-Statement

FORv = al TO a2 STEP a3
NEXT v

Die Statements FOR und NEXT er&ffnen und schlieBen eine Programmschleife.
Bei Reginn wird die Schleifenvariable v auf den Anfangswert al gesetzt und
die Schleife durchlaufen. Bei NEXT wird der Wert a3, der positiv oder negativ
sein kann, zum Schleifenindex hinzuaddiert.

Anschlielend erfolgt die Prufung, ob er den Schleifenendwert a2 schon Uber-
x hritten (bei positiver Shrittweite) oder unterschritten (bei negativer Schritt-
weite) hat. Ist dies der Fall, wird die Schleife beendet.

Jedem FOR muB genau ein NEXT entsprechen. Schleifen durfen verschachtelt
werden (bis zur Stufe 8). Uberkreuzte Schachtelung fuhrt jedoch zu einer
Fehlermeldung.

Beispiel: JOFOR 1 =0.1 TO END STEP 0.1 % S
100 NEXT |

4.5.6

4.6

-25 -

Programmende

STOP
END

Das Statement END ist das letzte Statement eines Programmes- Statt eines
Sprungstatements auf END, kann innerhalb eines Programmes STOP verwendet
werden.

Programm~-Verkettung
LINK seg
ENDS

Der Speicherbereicheines Teilnehmers am Timesharingbetri eb wird htufig fur
Programm= und Datenspeicherung nicht voll ausreichen. In diesem Fall kann
das Programm'Ssegmentiert" , d.h. in Teile zerlegt werden. Segmente liegen
unter einem Namen "seg" auf der Platte und werden durch das Statement LINK
bei Durchfuhrung in den Speicher geladen.

Segmentierte Programme bestehen aus einer Wurzel (Root) und bis zu 255 Segmen-
ten. Die Wurzel ist dadurch ausgezeichnet, daB3 sie permanent im Speicher steht.
Sie braucht im Prinzip nur aus dem Statement LINK zu bestehen. Im allgemeinen
ist es jedoch sinnvoll, Programmteile und Daten, die in vielen Segmenten
gebraucht werden, in der Wurzel unterzubringen.

Ein Segment kann mit ENDS in die Wurzel zurtckkehren oder mit"LINK seg"
ein weiteres Segment aufrufen. Dabei wird es aber Uberschrieben. Durch ein
anderes Segment kann es jedoch wieder gerufen werden.

Beispiel: 5 DIM DAT (100)
10 LINK ABFR Wourzel
20 END

100 REM SEGMENT ABFRAGE
110 INPUT "WELCHE FUNKTION", FUN

120 GOTO FUN OF 150, 160, 170

150 LINK EING Segment |
160 LIN K RECH

170 LINK AUSG

180 STOP

100 REM SEGMENT EINGABE
100 REM SEGMENT RECHNUNG ‘
100 REM . SEGMENT AUSG ABE Weitere Segmente

4.7

-26 -

In diesem Beispiel wird in der Wurzel (5-20) ein Datenfeld zur Aufnahme

von Daten eroffnet. Das Segment ABF R dient der Abfrage einer Funktion,

die der Benutzer anwihlen kann. Im Beispiel soll dies die Dateneingabe

im Segment EING, eine Datenauswertung im Segment RECH und eine Ausgabe
in AUSG sein.

Es ist zu beachten, daB3 verschiedene Segmente dieselben Statementnummern
haben kénnen, da sie nichtgleichzeitig im Speicher stehen. Alle Variablen-
namen, die nicht in der Wurzel vorkommen, sind auBerdem lokal !

Fehlerbehandlung

Bei Fehlern, die bei Programmeingabe auftreten, gibt C-BASIC auf der
Teilnehmerkonsole aus:

ERR Fehlernummer

Aus einer Fehlertabelle entnimmt der Teilnehmer die entsprechende Fehler-
spezifikation und eventuell Korrektur-Hinweise.Zur Laufzeit kdnnen syntak-
tische Fehler auftreten, die bei Programmeingabe vom System noch nicht
erkannt werden konnten (z.B. zu FOR fehlt ein NEXT). AuBlerdem ist eine
Reihe semantischer Fehler erkennbar (z.B. Feldbereichs-Uberschreitung).
Normalerweise bricht das System bei Fehlern den Programmablauf ab und gibt
die Meldung aus:

ERR e IN LINE n SEG seg
Es kann jedoch hdufig wiinschenswert sein, solche Fehlerabbriiche zu ver-

meiden und eine benutzerspezifische MafBnahme zu ergreifen. Dazu stellt
C-BASIC folgende Statements zur Verfigung:

ON ERR GOTO n
RESUME n
RESET

Mit ON ERR wird dem System mitgeteilt, daf8 ab jetzt die Fehlerangabe unter-
bleiben und statt dessen zu Statement n verzweigt werden soll, wenn ein Fehler
auftritt. Ab diesem Statem ent wird ein Reaktionsprogramm zur Fehleranalyse
und zum Ergreifen spezieller MaBinahmen stehen. Beispielsweise kann es
winschenswert sein, das Statement, bei dem der Fehler aufgetreten ist, zu
wiederholen (z.B. INPUT). In diesem Fall wird das Statement RESUME ohne
Nummeranangabe verwendet. Das System |oscht die Fehlerzelle und wieder-
holt das Statement. Oft ist es jedoch n&tig, einen speziellen Vorgang vor dem
Fehlerstatement zu wiederholen. Dazu wird RESUME n benutzt. Nach Léschen
der Fehlerzelle geht das System zu Statement n. Soll der nédchste auf das
Fehlerstatement folgende Befehl durchgefihrt werden, wird RESUME o geschrieben.

-27 -

Haufig kann es notwendig sein, zum Zweck der Fortsetzung des Programms
nach Auftreten des Fehlers interne Zustandsmerker (Zeiger fur Schleifen-
und Unterprogramm-Keller, Format- und Rundungsspezlﬁkahon) zurUckzu-
setzen. Dies leistet das Statement RESET.

Zur Abfrage der Fehlerart urd der Nummer des Fehlerstatements hat
C-BASIC die Systemvariablen ERN, ERL parat.

Beispiel: 10 ON ERR GOTO 1000
20 INPUT A,B,C
30 PRINT A+B+C
40 GOTO 20

1000 REM FEHLERBEHANDLUNG

1010 IF ERL = 20 RESUME
1020 IF ERL = 30 PRINT "OVERFLOW"
1030 RESUME 20

I

5.1

-28 -

C-BASIC-Datei-Verwaltung

Ein Hauptmerkmal der kommerziellen Datenverarbeitung ist die Menge
der anfallenden Daten. Sie mUssen in problemangepafBiten Strukturen
auf einen Externspeicher untergebracht und Uber rationelle Zugriffs-
methoden abgerufen werden kdnnen.

C-BASIC liefert hierzu Sprachelemente, die dem allgemeinen Niveau
der BASIC-Sprache angepafit sind und auf dem Datei-Verwaltungsmodul
DFMS (Disk File Management System) beruhen.

Daten-Struktur

Bild 5 zeigt den prinzipiellen Aufbau der Datenstruktur auf der Platte.

Alle logisch zusammengehdrigen Daten sind physikalisch zu einer Datei
zusammengefallt. Jede Datei besteht aus Sdtzen, die nach einem Klassi-
fikationsmerkmal unterschieden werden. Sdtze selbst sind in Felder
strukturiert. Felder kbnnen Einzeldaten oder Datengruppen enthalten.

Beispiel :

Die Lagerbestands-Verwaltung benutzt in der allgemeinen Firmen-
datenbank eine Datei, welche alle Daten Uber integrierte Schaltkreise
enthdlt.

Die Sttze der Datei werden beispielsweise nach der logischen Funktion
eines IC klassifiziert.

Satz 1: NAND-4 = Satz 2: NOR-4 usw.
Die Satzfelder ktinnen folgende Daten enthalten:

Datei | —1 N

Feld 1

Feld 2

Feld 3

Date; 2

D afei 3 o—
Index 1 a
\
Index 2
\

Sttze der Datei 1

Feld 1 |Feld 2

| Feld 3 [Feld 4

) - - T’ @®
|

Name

Code

Zugriffsart

Izn‘:;gx“ auf Key 7 | <)

Zeiger auf Key 2 v

Daten

4'} 4

Name _J
Zeiger auf
Satz

Bild 5: Struktur der Datenbank

Sdtze der Datei 3

wWwnN

6z

-30 ~

Lagerbestand - Benttigte Stuckzahl pro Rechner

Lieferfirma 1

Lieferzeit - Kosten pro Stick - Rabatte

Leistungsverbrauch, Gehiuseform - Toleranzen = Zuverltssigkeit
Ausstehende Lieferungen - Mengenvertrtige

Lieferfirma 2

Usw.

Die Namen aller Dateien sind in einem Datei~-Verzeichnis mit dem
Schutzcode des Autors, der erlaubten Zugriffsart (privat, tffentlich,
halbtffentlich) und mit 2 Zeigern versehen. Der erste Zeiger weist
auf den ersten Satz der Datei, der zweite ist entweder leer oder welst
auf ein Schlusselverzeichnis (Index), das Namen zu den Sttzen der
Datei enthdlt. Im obigen Beispiel sind die Satzschlussel die IC~Typen
(NAND-4 usw). Eine C-BASIC-Datei kann m ’
haben. Jedes von ihnen hat einen Namen. Im obigen Beispiel ist sicher
ein Verzeichnis der zum Bau eines Rechnertyps erlaubten IC sinnvoll,
weiter kann einVerzeichnis der IC in MIL-Norm unter Umsttinden fur einen
Verarbeitungsvorgang notwendig sein.

Der Sinn mehrere SchlUsselverzeichnisse zu einer Dateiist der, dafl mehrere
Personen mit unterschiedlichen Verarbeitungsaufgaben mit Namen, die
ihren praktischen BedJrfnissen entsprechen, und vor allem schnell auf Daten
zugreifen kdnnen.

Auf alle Sutze einer Datei mit SchlUsselverzeichnissen kann direkt Uber die
Satznummer oder indirekt Uber den SchlUssel zugegriffen werden. Direkt
wird man immer dann zugreifen, wenn der Inhalt des angesprochenen Satzes
bekannt ist. Melst ist dies jedoch nicht der Fall, da der Aufbau einer Datel
von mehreren Personen her erfolgen kann.

Da die SchlUssel in einem SchlUsselverzeichnis immer sortiert sind, erfolgt
der Zugriff zu einem bestimmten Satz relativ schnell.

Alle Stdtze einer Datei haben eine maximale in einer Deklaration anzugebende
Ldnge . Ebenso ist die Maximalzahl der Sdtze in der Deklaration zu verein-
baren. Bevor in eine Datei Daten eingetragen werden ktnnen, ist diese zu
ffnen. Die Datei-Verwaltung fuhrt zu jeder ertffneten Datei einen Satz-
Zeiger, der auf den gerade in Bearbeitung befindlichen Satz zeigt, aulerdem
einen Satz - offset - Zeiger, der das Feld angibt, auf das innerhalb des Satzes
als ntichstes zugegriffen wird.

5.2

-3] -

C-BASIC hat mehrere Statements zum Ersffnen von Schlusselverzeichnissen
zum Eintragen, Ldschen, Andern und Verketten von SchlUsseln.

Datei-Deklaration

CREATE v, file (s, 1)

Gerdte-Einheit (Platte)

Dateiname (1. Zeichen: Buchstabe, 2. bis 6. Zeichen beliebig)
Anzahl der Sutze

Linge der Sttze (in Sektoren zu 128 byte)

o
nmnyn

Mit CREATE wird eine Datei ersffnet.

Die Dateiverwaltung pruft, ob der Name bereits auf der Einheit "u" vor-
liegt. Ist dies der Fall, erfolgt eine Fehlermeldung. Sonst wird der Name
mit dem Code des ertffnenden Teilnehmers in das Dateien-Verzeichnis
aufgenommen und als "privat" erkltrt.

Gleichzeitig wird der benttigte Platz auf der Platte reserviert und
initialisiert.

Beispiel: 100 CREATE O, ICTYPE (200, 15)
150 CREATE 5, ANGEST (150, 32)

CRIND v, file; index (si, li)
CRIND v, file; index 1 (sil, lil), index 2 (si2, li2),

Namen des SchlUsselverzeichnisses (1-6 Zeichen)
Zahl der Shlussel
Liunge der Schlussen (in Byte)

»w
-y
wnn

Die Datei-Verwaltung ertffnet zu der angegebenen Datei "file" auf
Einheit "u" SchlUsselverzeichnisse unter den angegebenen Namen und
reserviert fUr sie entsprechend den Informationen Uber Zahl und Lunge
der SchlUssel Platz. Durch dieses Statement ist jedoch noch keine
Zuordnung zu den Sdtzen der Datei vorgenommen. Die Er&ffnung von
Schlusselverzeichnissen kann auch dann erfolgen, wenn bereits Sttze
der Datei beschrieben sind.

Beispiel: 100 CREATE 5, ANGEST (150, 32)
110 CRIND 5, ANGEST, NAME (150,20),WEIBL (30,20),
MAEN (120,20)

5.3

-32 -

In dem Beispiel wird eine Datei ANGEST(ELLTE) mit 150 Sttzen zu

je 4K Datenspeicher ertffnet. Danach bekommt die Datei 3 SchlUssel-
verzeichnisse, eines fur alle Personen, ein zweites fur die weiblichen,
ein drittes fUr die mtnnlichen Angestellten.

Erdffnen und SchlieBen von Dateien

OPEN u, file [, index] AS w
EXOP u, file [, indexJ AS w
CLOSEwl , y oo

u = Platteneinheit
file = Datei-Name

index= SchlUsselverzeichnis

w = Integervariable zur Aufnahme der Arbeitsnummer

Bevor zu den Daten oder zu dem Inhalt von SchlUsselverzeichnisse zuge-
griffen werden kann, muB8 durch OPEN eine Anmeldung bei der Datei-
Verwaltung erfolgen. Diese bestimmt daraufhin die physikalische Adresse

“ des ersten Satzes der Datei oder des Indexverzeichnisses, falls "index"

angegeben ist und speichert diese in einer Tabelle im Hauptspeicher ab.
Gleichzeitig werden in dieser Tabelle die Satzzeiger initialisiert.

Die Nummer der Eintragung wird sodann der Integer-Variablen w
zugewiesen. Diese Nummer dient ab jetzt als ArbeitsnummerfUr simtliche
Lese~ und Schreiboperationen. lhre Verwendung spart Schreibarbeit und
sorgt vor allem fur schnellen Zugriff.

Dateien kdnnen im Teilnehmerbetrieb von mehreren Benutzern gleichzeitig
zum Zwecke des Lesens und Schreibens ertffnet werden, wenn sie nicht
privat sind. Erfordert es ein Vorgang (z.B. Sortieren), daf3, wihrend der
gesamten Zeit, in der ein Teilnehmer auf eine Datei zugreift, kein

anderer die Datei benutzen darf, so wird sie mit EXOP (= EXclusiv OPEN)
ertffnet. Dabei pruft das System zuntchst, ob die Datei bereits belegt
wurde. Ist dies der Fall, so wird das neu ertffnende Programm solange in
den Wartezustand versetzt, bis die Datei nicht mehr belegt ist. Alle Teil-
nehmer, die ab jetzt auf diese Datei mit OPEN oder EXOP zugreifen
wollen, mUssen warten.

Eine Datei wird geschlossen durch CLOSE. In einem CLOSE knnen gleich-
zeitig mehrere Arbeitsnummern angegeben werden.

5.4

-33 =

Beschreiben/Ltschen von Sutzen

WRITE (w [, key]) al, a2, a3,
WRITE (w [key])

Mit WRITE wird ein Satz der ertffneten Datei w mit den Werten der
AusdrUcke al, a2, a3 ... beschrieben. Die Angabe "key" kann dabei ein
numerischer Integerausdruck (Konstante oder Variable) oder auch ein String
(Konstante oder Variable) sein. Im ersten Fall wird Uber die Satznummer,

im zweiten Uber den SatzschlUssel zugegriffen. Die Angabe muf3 mit der in
OPEN angegebenen Ertffnungsart Ubereinstimmen. Ist der angegebene
SatzschlUssel noch nicht vorhanden, wird er in das Verzeichnis aufgenommen.

Das zu beschreibende Feld ist durch die Satzangabe und durch den Satz -
offset-Zeiger bestimmt. Falls jedoch die Satzangabe "key" entfallt, wird der
Satz von dem internen Satzzeiger ausgewtthlt. Diese Moglichkeit erlaubt
sequentiellen Satzzugriff, da der Satzzeiger automatisch inkrementiert wird,
wenn ein Satz bearbeitet ist.

Der Reihe nach werden nun die Werte der AusdrUcke "ai" errechnet und
insgesamt in den Satz Ubertragen. Die Werte kdnnen vom Typ numerisch oder
Strings sein. lhre Grfe best-immt die Linge der Satzfelder. Stringfelder
werden durch eine spezielle Stringendmarke abgeschlossen, damit beim Lesen
der richtige Zugriff erfolgen kann.

Wie bereits bei der Beschreibung des READ~Statement angegeben wurde,
kdnnen durch Angabe von "Name (%)" oder "Name (* , #)" komplette
Bereiche Ubertragen werden.

Am Ende eines Schreibvorganges zeigt der Satzoffset-Zeiger auf die ndchste
unbelegte Feldposition, so daf3 im ntichsten Schreibbefehl an dieser Stelle
weitergeschrieben werden kann.

Ein Shreibbefehl ohne eine Ausdrucksliste. dient zum Ltschen eines Satzes.
Der Satzoffset-Zeiger wird auf den Anfang des Satzes gestellt. Schlussel,
die in eventuellen Verzeichnissen auf diesen Satz weisen, sind davon
unberUhrt.

5.5.

5.6

Lesen/Andern von Sttzen

READ (w [, key]) v1,v2,v3,
UPDATE (W [, key]) vi,v2,v3,

Der Befeh! READ liest aus dem durch "key" adressierten Satz der Datei w
Zahlen und Stringkonstante und weist sie den Variablen "v" der Variablen-
liste zu. Die Variablentypen muUssen dabei den Datentypen bei dem voran-
gegangenen Schreibbefehl entsprechen.

Die Arbeitsweise des READ-Statement entspricht dem Statementpaar
READ-DATA. Wie dort, lassen sich auch hier komplette Bereiche Ubertragen.

Der Satzschlussel "key" kann ein Integerwert oder ein String sein. Wird er
nicht angegeben, ist die Stellung des zur Nummer w gehtrenden Satzzeigers
fur die Adressierung maf3gebend.

Das Statement UPDATE hat, was das Lesen eines Satzes betrifft, dieselbe
Semantik wie READ. Jedoch dient hier das Lesen zum Zwecke der Anderung
(UPDATE) eines Satzes. Der Zugriff zu diesem Satz wird deshalb solange
gesperrt, bis derselbe Teilnehmer erneut einen READ/UPDATE oder WRITE-
Befeh! anmeldet.

AuBBerdem wird der Satzzeiger nach dem Lesen auf den vor dem Lesen bestehen-
den Ausgangszustand gebracht. Der nach UPDATE ubliche Befehl ist im allge-
meinen der Befehl WRITE, wobei die zu schreibenden Werte gegentuber den
Originalwerten ganz oder in Teilen modifiziert sind.

Andern eines SchlUsselverzeichnisses

Wie bereits bei WRITE erwtthnt, werden dort "neue" SchlUssel in das ertffnete
Schlusselverzeichnis aufgenommen und Satznummern zugeordnet. Folgende
Befehle dienen dem Léschen, Umbenennen und Verketten von Schlusseln:

UNKEY w , Keyl, Key2,....
REKEY w , Keyl TO Key2, Key3 TO Key4,....
COKEY w , Key TO wl, Keyl TO w2, Key2,

UNKEY (=Unsave Key) loscht alle in der Liste aufgefuhrten Schlussel im
ertffneten Verzeichnis w . Die Inhalte der Sttze bleiben jedoch unberUhrt.

REKEY (= Rename Key) erlaubt die Umbenennung von Schlusseln in dem
ertffneten Verzeichnis.

5.7

COKEY (= Connect Key) dient der Verknupfung von Schlusseln aus den
Schlusselverzeichnissen wl , w2 , ... mit einem SchlUssel "key"

aus w , der bereits einem Satz zugeordnet ist. Sind die Namen key1,

key2 noch nicht vorhanden, so werden sie in das Verzeichnis aufgenommen.

Ist die Schlusselangabe "Key" vom Typ Integer, so werden Sttze, die Uber
Satznummern eingetragen wurden, nachtriglich mit Namen belegt.

Datei-Kommandos

Die in 2.5 beschriebenen Kommandos KILL und ALTER gelten nicht nur fur
Dateien, die Programme enthalten und durch SAVE ersffnet werden, sondern
auch fur Dateien, die mit CREATE ertffnet wurden.

Es muB darUberhinaus méglich sein, SchlUsselverzeichnisse einer Datei
léschen und vertdndern zu ktnnen.

KILL u, file, index

Dieses Kommando léscht das SchlUsselverzeichnis "index" in der Datei "file".

~ALTER u, file, index 1, index 2

Das SchlUsselverzeichnis "index 1" wird in "index 2" umbenannt.

DIETZ

Computer
SYSTEME

