detz 2]
Full-PASCAL

Benutzeranleitung



detzc2
Full-PASCAL

Benutzeranleitung

Solnaer Snate Computer
olinger StraBe

4330 Miinem-Runr | D)) || IS TPZ4

R SYSTEME

2-8011-01-"81 Echutzgebithr D 77,50



Wwwwww LWWwWwLWLwWwwLwwWwwWwww wWwwwwww LWWLLWLWLWWLWLWWLWLWWLWLWWLWWLWWLWWWMNRDNPDNPNPNDNOND = —

_
.

[e)NerNeorNerNe)Ne) OO OYOYOYOYOY O (R RO IR R R R

WN —mam

FEFEEEEEEEEEEEEERFONA 2

W

—_
.

U EWNDMNODMNDDNOND = 2

WP N —

g g i g g FrrLLWLWLWLWW N —

wWwnN -

ZWN -

wWwN -

UEWND —

_
0

~NOoOUTEWN

= Computer
DIETZ SYSTEME|

Einleitung

Syntax-Diagramme

Lexikalische Symbole

Zeichenvorrat (character set)

Schliisselworte (key-words)

Namen (identifier)

Zahlen

Zeichenketten (strings)

Zwischenrdume, Kommentare, Zeilenende
Vereinbarungsteil

Blockkonzept

Gultigkeitsbereiche von Namen und Marken
Aufbau des Vereinbarungsteils

Marken - Vereinbarungen
Konstanten-Definitionen

Typ-Definitionen

Einfache Typen (simple type)

Standardtypen (standard simple-types)
Aufzidhlungstyp (Enumerated-Types)
Teilbereichstypen (subrange-type)
Strukturierte Typen (structured type)
Bereichs-Typen (array type) 1%

Satz-Typ (record-type)

Mengentyp (set type)

Datei-Typ (file type)

Zeiger-Typ (pointer-type)

Zusammenfassendes Typen-Diagramm
Zuordnungsvertrdglichkeit (assignment -
compability)

Deklaration von Variablen

Einheitsvariable (entire variable)
Komponentenvariable (component-variable)
Indizierte Variable (indexed variable)
Satzfeldbezeichner (field-designator)
Puffervariable (file-buffer)

Zeiger-Variable (pointer variable) und
Referenzierte Variable (referenced variable)
Progkedur- und Funktions-Deklarationen
Prozedur-Deklarationen
Funktions-Deklarationen

Parameter

Wertparameter (value-parameter)
Variablenparameter (variable parameter)
Prozedur-Parameter

Funktions-Parameter

Gegenliberstellung der Parameteriibergabe-Formen
Standard-Prozeduren

Prozeduren zur Dateiverarbeitung (file - handling
- procedures)

Prozeduren zur Erzeugung dynamischer Variablen
Standardfunktionen

Arithmetische Funktionen

Funktionen flir Ganzzahlen

Prddikate (predicates)
Initialisierungsprozeduren




B g g g =g g g g B I I R i g g i g gl gl g

o O [©2R 02 U2 0 LU RN g g gl gl g

NMDNON —

NN
NN

WN —

. . . .

NN

[ACJACI AR \VI\V)
DN

w LWLWLWWLWMNHLMNDMNDNDNON =

UEWND —

w N i o WN —

FLwwww WN =

WD -

Ausfiihrungsteil (statement part)

Ausdriicke (expression)

Operanden

Operatoren

Logische Umkehrung (NOT)
Multiplikationsoperatoren (multiplying operator)
Additionsoperatoren (adding-operator)
Vergleichsoperatoren (Relationale Operatoren)
Prizedenzklassen der Operatoren

Bildung von Ausdriicken

Multiplikationsausdruck (Term)

Additionsausdruck (einfacher Ausdruck)

Ausdruck und Ausdrucksverbindungen (Element,
Menge)

Faktor

Anweisungen (statement)

Einfache Anweisungen (simple statement)
Wertzuweisung oder Ergibtanweisung (assignment
statement)

Prozeduranweisung (procedure statement)
Sprunganweisung (goto statement)

Strukturierte Anweisungen (structured statements)

Verbundanweisung (compound statement)

Bedingte Anweisung (conditional statement)
Wiederholungs- oder Zyklusanweisung (repetitive
statement)

. WHILE-Anweisung

REPEAT-Anweisung
FOR-Anweisung

LOOP-Anweisung
WITH-Anweisung

Externe Daten und Prozeduren
Allgemeines
Schnittstellenbeschreibung
Externe Module
Ein-Ausgabe-Prozeduren
Procedures)
Eingabe-Prozedur (Input-Procedure)
Ausgabe-Prozedur (Output-Procedure)

(Input - Output -

96
97

97
100
101
101
103
106
109
110
110
111
112

115
119
121
122

123
124
126

127
128

134

135
137
138
141
144
145
145
146
150
153

153
157




Computer
DIETZ ey

Benutzeranleitung Full-PASCAL Seite 2

Einleitung

Die folgende Beschreibung definiert den Sprachumfang
des DIETZ 621 - PASCAL - Compilers. Als Vorlage
diente ein ANSI - Normvorschlag 1%, Der
implementierte Sprachumfang entspricht der Definition
der iberarbeiteten Auflage (Revised Report) 2¥. Auf
Erweiterungen und Einschrdnkungen dieser im folgenden
als Standard-Pascal bezeichneten Version wird im Text
verwiesen.

Professor . Niklaus Wirth hat PASCAL an der
eidgendssischen Technischen Hochschule in Ziirich auf
Basis von ALGOL 60 entwickelt.

Bei PASCAL handelt es sich um eine
Programmiersprache, deren Syntax und Semantik formal
definiert sind. Hierbei wurde auf kurzgehaltene und

prdzise Ausdrucksformen Wert gelegt, ohne daB die
Leistungsfdhigkeit im Hinblick auf den Programmablauf
leidet.

Im einzelnen tridgt PASCAL folgenden Zielen Rechnung:
Klarheit und Eindeutigkeit

Die Anlehnung an mathematische Ausdrucksmittel
prdzisiert die Darstellung und Bedeutung von
Vereinbarungen, Sprachanweisungen und
Verknipfungsregeln. Das betrifft sowohl die
Folgerichtigkeit des Aufbaus (Logik) wie die
bedeutungserhaltende Knappheit der Darstellung
(geringe Redundanz).

1% ANSI (American National Standard Institute)
Working Draft Specification for PASCAL, Report No.
97/5 N462
New York, February 1979

2% Jensen, K.; Wirth, N.

PASCAL User Manual an Report

Sgringer Lecture Notes in Computer Science, Vol.
16,

Berlin, Heidelberg, New York 1974




Computer
I SYSTEME|

Benutzeranleitung Full-PASCAL Seite 3

Anwendungsbreite

Die Problemorientierung von PASCAL 1leitet sich

nicht aus der Anlehnung an methodischen
Problemkomplexen (z.B. rein kommerziell, technisch
u.a.) sondern aus der Anlehnung an die

Arbeitsweise aktueller Datenverarbeitungsanlagen
ab. '

Leistungsfdhigkeit

Es wurde weitgehend auf Belastungen verzichtet,
die wdhrend der Programmlaufzeit entstehen kdnnen.
Das betrifft die Einflihrung bestimmter zu
verarbeitender Daten und den Aufruf von
Unterprogrammen und Funktionen, die widhrend des
Ablaufs 2zu interpretieren widren. Das vermeidet
ablaufinterne Wartezeiten und steigert die
zeitbezogene Wirksamkeit des Programmes.

Zuverlidssigkeit

Mit der formalen Eindeutigkeit und den strengen
Ubersetzungsanforderungen vermeidet man Ausnahmen,
die durch miBverstdndliche Sprachregelungen
Fehlerquellen in sich bergen kdnnen. Der Zwang zu
einem strukturierten Programmaufbau erfordert eine
aufwendigere Vorbereitung, erhdoht aber die
Zuverldssigkeit beim spdteren Programmeinsatz.

Lehr-, lernmethodische Eignung

PASCAL  gewinnt als didaktisches Hilfsmittel in
Ausbildungsinstitutionen groRe Bedeutung, weil die
Notwendigkeit in methodisch exaktem Vorgehen den
Lehrenden und den Lernenden zZUu einer
konsequenteren Denkweise zwingt. Die Darstellung
in Struktogrammen ist dabei ein Mittel, die
Programmplanung im Sinne "strukturierter
Programmierung" zu unterstiitzen.




Computer

A4 SYSTEME
Benutzeranleitung Full-PASCAL Seite U
Syntax-Diagramme
Folgende Regeln sind fir das Verstédndnis
festzuhalten:

—L
O
L
—{_}—
—_F—
—(__

\

]
L J
1
L

Zuriickweisende Pfeile be-
deuten, daR mehrere der
Jjeweiligen Rechteckbe-
zeichnung entsprechende
Ausdriicke nacheinander
aufgefiihrt werden kdnnen.

Solche Wiederholungen sind
ggf. durch die im Kreis
vorgeschriebenen Zeichen
(Komma, Semikolon, Vor-
zeichen usw.) zu trennen.

In dhnlicher Weise lassen
sich unterschiedliche
Zeichen- und Symbolfolgen
veranschaulichen.

Uberspringende Pfeile be-
deuten, daR der im Recht-
eck genannte Ausdruck
entfallen kann.

Weiterhin lassen sich da-
mit alternative Ausdriicke
darstellen.




Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 5

Der Aufbau von PASCAL-Programmen wird hier durch die
nachfolgende Form von Syntax - Diagrammen
beschrieben.

G’ROGRAM}—{ Programmname }»
O

Alle Worte bzw. Zeichen 1in den Kreisen und Ovalen
sind in der angegebenen Form endgiiltig. Die Angaben
in den Rechtecken miissen vom Programmierer festgelegt
werden.

Dazu gehdren "Programmname", "Dateiname" und "Block".

Im Gegensatz =zu Namen (vgl. 2.1.2) im allgemeinen
darf der Programmname nur aus Buchstaben bestehen.

Unsere Implementierung gestattet das Fehlen von
Dateinamen. (Bei Standard-PASCAL muB mindestens =2in
Dateiname vorhanden sein). Der zuriickweisende Pfeil
bedeutet die Moglichkeit, mehrere Dateinamen -
jeweils durch "Komma" getrennt - zu nennen.

An dieser Stelle mufd beil Verwendung der
Standardprozedur fiur die Ausgabe (WRITE) der
Dateiname OUTPUT; bzw. bei Verwendung der

Standardprozedur fiir die Eingabe (READ) der Dateiname
INPUT eingesetzt werden. AuRerdem kdnnen vom Benutzer
definierte Dateinamen eingesetzt werden.

Ein Block besteht aus einem Vereinbarungsteil und
einem Ausfilihrungsteil. Im Vereinbarungsteil missen
alle Objekte mit Ausnahme von Konstanten (Marken,
Typen, Variable, Funktionen und Prozeduren) dem
Compiler bekanntgegeben werden.




Computer
DU sy STEME

Benutzeranleitung Full-PASCAL Seite §

Der Ausfiihrungsteil beginnt mit dem Schlisselwort
BEGIN und enthdlt Anweisungen, die zur Laufzeit des
Programms ausgefiinrt werden. Der Ausfihrungsteil
endet mit dem Schliisselwort END. Das gesamte Programm
endet mit einem Punkt.

“Block’

._—>1Vereinbarungstei1P<Z>-rﬁ—kusfuhrungsteil

'Ausfithrungsteil!

()

U/
Aus dem Syntax-Diagramm erkennt man, daR der
Vereinbarungstelil fehlen darf (iberspringender
Pfeil). Im Ausfiihrungsteil kdnnen dann bei allen

Anweisungen nur konstante Objekte verwandet werden.

In der Folge werden alle wesentlichen
Programmbestandteile zZur besseren ‘bersicht als
Syntaxdiagramme bzw. Sprachelemente (vgl. 2

lexikalische Symbole) dargestellt. Das betrifft u.a.
die Begriffe BEGIN wund END (2.1.1 Schliusselworte)
genauso wie Programmname und Dateiname (2.1.2 Namen).




.

Computer
[DOETTZZ e TS

Benutzeranleitung Full-PASCAL Seite 7

Lexikalische Symbole

Alle in PASCAL-Programmen verwendbaren Symbole
bezeichnet man als lexikalische Symbole. Alternative
Symbole werden im folgenden durch "i" getrennt.

Zeichenvorrat (character set)

@]

Fir unterschiedliche Symbole gibt es einen zur
Darstellung zugelassenen Zeichenvorrat.

Buchstaben: = At By Ct Dt Et Ft Gt Hse It Jt Ki
(letter) Lt Mt N1 O1 Pr Qt Rt S1 Tt Ut V1
We X1 11 Z

at bt c1 di ft g1t hr it Jt kt
11 my nt ot p1 gt ry st Lt ut vi
Wl X1 y1 2

)

Kleinbuchstaban in Namen werden
von den GroRbuchstaben nicht

unterschieden. Der Compiler uater-

scheidet jedoch nicht zwischen
kleinen und grofien Buchstaben.

Ziffern: = 1t 2t 31 4t 51 6t 7¢ 81 91 0
(digit)
Sonderzeichan: = +1 -1 ¥ /o =1 <t oD 1o ()
{13}
.t ,t i1 ; 1t a17g <space>

R ( $ 1 %o &N\




Computer
DIETZ ey e

Benutzeranleitung Full-PASCAL Seite 8

Schliisselworte (key-words)

Schliisselworte sind vorgeschriebene Buchstaben-
folgen, die eine bestimmte Bedeutung flir den
Programmablauf haben (Indikatoren). Zusammen mit den
syntaktischen Regeln bestimmt ihr semantischzr Gehalt
das Leistungsvermdgen von PASCAL.

Folgende Schliisselworte sind definiert:

Schlisselworte: =

ANDt ARRAY: BEGIN: CASEt CONST:1 DIVa
DOWNTOs DO¢ ELSE¢ ENDt FILE®1 FORt FORWARD1
FUNCTION: GOTO:r IF: IN1 LABEL1 MOD: NILt
NOT: OFt ORt PACKED: PROCEDURE: PROGRAMt
RECORD:1 REPEAT: SETt THEN:t TO3s TYPE:
UNTIL: VARt WHILEt WITH

Folgende Bezeichnungen gehdren noch zusitzlich zum
Sprachumfang von Full-PASCAL:

EXPORTSt EXTERN1 IMPORTSt
MODULEt
LOOPy» EXIT: OTHERSt INITPROCEDURE




1.

Computer
[DIETTZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 9

Namen (identifier)

Namen bezeichnen Konstanten, Typen, Variable,
Prozeduren, Funktionen und Programme.

Namen sind auf 128 Zeichen begrenzt. Zur
Unterscheidung reicht die Abweichung in einem dieser
Zeichen aus.

Alle Namen missen wit einem Buchstaben beginnen,
danach kdnnen Ziffern oder Buchstaben in beliebiger
Reihenfolge angefiigt werden.




Computer
[DIETZZ ey v

Benutzeranleitung Full-PASCAL Seite 10

Zahlen

Flir Zahlen wird die Dezimalschreibweise verwendet.
Man unterscheidet folgende Darstellungen:

- Ziffernfolgen (digit sequence)

Ziffer -

Beispiele: 1]34

- Vorzeichenlose Ganzzahl (unsigned integer)

— Ziffernfolge P————»

Beispiele: 7]50

Die Ziffernfolge entspricht einer vorzeichenlosen

Ganzzahl; ihre gesonderte Darstellung ist aus
formalen Grinden erforderlich. So wdre es falsch,
eine Ziffernfolge ohne Zusammenhang als

"yvorzeichenlose Ganzzahl" darzustellen.

- Ganzzahl nmit Vorzeichen (signed integer)

(+)
\J

' vorzeichen-
— lose e ——————

: Ganzzahl

Beispiele: +3[-31




Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 11

- Skalarfaktor (scale-factor)

Skalarfaktor (auch Skalierungsfaktor genannt) ist ein

ganzzahliger Anhang einer Zahl. Er stellt den
Exponenten einer Zehnerpotenz dar, der mit der Zahl
multipliziert den Zahlenwert ergibt. Positive

Skalarfaktoren stellen Zehnerpotenzen dar, die groRer
oder gleich 1 sind, negative solche die kleiner als 1
sind.

Sie entsprechen einer "Ganzzahl mit Vorzeichen"
(signed integer).

vorzeichen-

lose S -

) Ganzzahl

Beispiel: siehe "vorzeichenlose Realzahl"
- Vorzeichenlose Realzahl (unsigned real)

Realzahlen (real) umfassen den Bereich der reellen 1%
Zahlen, die neben den Ganzzahlen auch die gebrochenen
Dezimalzahlen beinhalten.

Bei der Darstellung von Realzahlen mit Skalarfaktor
wird der Buchstabe E zwischen Zahl und Skalarfaktor
gesetzt.

rvorzeichenlose vorzeichenlose

—sGanzzahl . viffer ‘—GII I’ Ganzzahl .

Beispiele: 6E-3 = 6x107° = 6x 1_86'0' = 0.006
43.%5E45 = 43.35x10%0 = 43.35 x 10000 = 433500

1% Gegeniiber dem mathematiséhen Begriff der reellen
Zahlen ergibt sich bei Rechnern die Einschridnkung
auf Zahlen mit begrenzter Stellenanzahl.




Computer
DIETZ ey s

Benutzeranleitung Full-PASCAL Seite 13

- vorzeichenlose Zahl (unsigned number)

Der Begriff "Zahl" unfalt den Begriff der
"Real-Zahlen". Die syntaktische Darstellung flr
"Zahl" ist dann geeignet, wenn nicht vorher bekannt
ist, ob Ganzzahlen gesondert auftreten oder nicht.
Ganzzahlen lassen sich Realzahlen zuweisan.

vorzeichenlose
»{ Ganzzahl —

vorzeichenlose
»| Realzahl

Beispiele: 41 0.51 3.6

- Zahl mit Vorzeichen (signed number)

] vorzeichenlose
Zahl >

e
()

Beispiele: +161 =51 +0.81 -4.9




Computer
DIETZ ey

Benutzeranleitung Full-PASCAL Seite 14

Zeichenketten (strings)

Es handelt sich um Zeichenfolgen (character strings),
die bei der Darstellung in Hochkommata eingeschlossen
werden.

———’-C} »=17Zeichen ‘O -

Beispiele: ‘B’: “#°: “ZEICHENKETTE’

Zeichenketten kdnnen zu Kennzeichnungen und
Erliuterungen (u.a. Texte) eingesetzt werden. Wenn
Hochkommata als Bestandteil einer Zeichenkette
auftauchen, sind sie als zwel Hochkommata

darzustellen (z.B. °‘DER BEGRIFF “STRING® ENTSPRICHT
EINER ZEICHENKETTE. ). :




Computer
U2 o\ o 7e e

Benutzeranleitung Full-PASCAL Seite 15

Zwischenriume, Kommentare, Zecilenende

o . o - v . A e e e - e M A e s T e eSS WS i e e e e we e im

Im PASCAL-Programm diirfen beliebig viele Leerstellen
oder -zeilen -eingefiigt werden. Das gleiche gilt fir
erliuternde Texte (Kommentare), die allerdings an
folgende Form gebunden sind:

Zeicheniiolfe

—_— (:) ohneg* l*)- - (:) r,

Zeich 1
: : Og;.lg{enfo}ge‘ : :
)

(*'*

Je zwel aufeinanderfolgende vorzeichenlose Zahlen,
Namen und Schlisselworte missen mindestens durch eine
Leerstelle oder Kommentar oder Zeilenende getrennt
werden. Innernhalb dieser Begriffe darf aber keine
Unterbrechung durch Leerstellen; -zeilen, Trenn-
zeichen und Zeilenende erfolgen.




Benutzeranleitung Full-PASCAL Seite 16

Vereinbarungsteil

- v m e @ M im w e ow @ e e

Blockkonzept

Ein Block bestent aus einen Vereinbarungsteil
(Dafinitionen und Deklarationen) und einem
Ausfiihrungsteil (Anweisungen), die zusammen Teil
einer Prozedur, einer Funktion oder eines
PASCAL-Programmes sind.

'Block! Ausfiihrungsteil

Verein-

An-
barungs- - : -
ST 0 O v Gy g RETE (@0 )—

Da man innernalb einer Prozedur bzw. Funktion
wiederum Prozeduren bzw. Funktionen einrichten kann,
ergeben sich folgende Blockscnachtelungs-

méglichkeiten:

Block 1 Programm bzw. Prozedur

Block 2 Prozedur bzw. Funktion

Block 3 Prozedur bzw. Funktion




1.

Computer
A SvSTEME]

Benutzeranlieitung Full-PASCAL Seite 17

Der Block 1 1ist den Blicken 2 und 3 Ubergeordnet.
Block 2 und 3 sind parallel angelegt. Innerhalb der
Bldécke 2 und 3 sind mehrere untergeordnete Bldcke
zugelassen.

In der vorliegenden Implementierung dirfen max. 127
Prozeduren und Funktionen je Programm vorkomamen. Die
Schachtelungstiefe betridgt max. 7.

Gliltigkeitsbereiche von Namen und Marken

-—— a8 A e e e R TN v MR R e e e e e e . e . - -

Die in einem Block definierten Grdfen nennt man lokal
beziglich des Blockes. Global heiBen diejenigen
Vereinbarungen, die 1in einem {bergeordneten Block
festgelegt wurden.

- Ein Name oder eine Marke darf innerhalb eines
Blockes nicht mehr als einmal definiert werden.

- Alle Namen und Marken sind demzufolge "lokal"
bezogen auf einen Block. Sie gelten auch "global"
fir Programmteile, die diesem Block untergeordnet
sind (untergeordnete Bldcke).

- Wenn "lokale"™ wund "globale" Vereinbarungen den
gleichen Namen tragen, dann werden die "globalen"
im "lokalen" Bereich nicht wirksam. Das kann aus
Grinden sachlicher Vergleichbarkeit sinnvoll sein.

Entsprechend dieser genannten Bedingungen missen alle
Bestandteile der Vereinbarungsteile festgelegt
werden.




Benutzeranleitung Full-PASCAL Seite 18

Aufbau des Vercinbarungsteils

- n . e e e e T e W S - e e L e e e e e e w e &

Im Vereinbarungsteil werden in bestimmter Reihenfolge
Marken, Konstanten, Typen, Variable, Funktionen und
Prozeduren beschrieben. Die Reihenfolge der
Vereinbarungen ergibt sich aus folgendem
Syntaxdiagramm.

'Block!

alle Marken, die im
.angehorigen Ausfiihrungs-
teil verwendet werden

Marken-Vereinbarungsteil

alle Konstanten des
zugehdrigen Blockes

L"Konstanten—Vereinbarungsteil

P L9

| Typen-Vereinbafungsteil q alle Typen des zuge-
horigen Blockes

alle Variablen des
zugehdrigen Blockes

Variablen-Vereinbarungsteil

Es handelt sich um eine
in "Standard-FASCAL"
nicnt vorgesehene MOg-
lichkeit, im Hzuntpro-
gramm aie Verieblen

mit Anfangsinhalten
vorzubesetzen.

Vereinbarungen fiir
L—— Eriffungsprozedur

L"Funktionen—Vereinbar;n;steil ‘e lokalen Funktionen

Prozeduren-Vereinbarunzsteil alle loxelen Frozeduren

P19/ 9 LY




Computer
2 SV STEME]

.Benutzeranleitung Full-PASCAL Seite 19

Marken - Vereinbarungen

- - - - - - -~ -

Marken (label) sind Ziele, zu denen im Programmablauf
gesprungen werden kann (Ansprung mit GOTO). Im
Vereinbarungsteil (Markendeklarationsteil oder
"label-declaration-part") muR LABEL als Schliisselwort
ausdriicklich genannt werden.

Marken werden als vorzeichaenlose Gaanzzahlen (uasizgned
integer) gebildet wund dirfen nichnt wmehr als vier
Stellen groR sein. Jede Marke darf nur einmal in
ihrem GlUltigkeitsbereich auftreten.

vorzeichenlose

. Ganzzahl

()
X/

Beispiel: LABEL 1]23 |4




3.3.

Benutzeranleitung Full-PASCAL

Konstanten-Definitionen

- - e -y w. e @ e e e e Aa un e w4

Die Vereinbarung von Konstanten
Namen einen festen Wert
Konstantennane

Zuweisung verwendet werden.

Seite 20

erlaubt es, einen
zuzuweisen. Ein
darf nicht auf der linken Seite einer

Konstantenname —@—Konstante «@———-

"Ganzzahl"- oder "Integer"-Konstante

Ein vereinbarter HKoastanteanan: darf in @inee danach

Konstantenvereinbarung
winrend des

folgeanden
Eine Konstante 1ist
unveranderbar.

Der Typ der Konstante wird nach
zelichen ausgedriicktb.
Es zibt folgende Miglichkeiten:

"Ganzzahl"- oder "Integer"-Konstante

vorzeichen+
] lOse —_—
Ganzzahl

MAXINT y

verwandet

ganzen

werden.
Programms

dem Gleichhelts-

Name fur
— Ganzzahl- a-(E)
konstante

\ MININT A\

Name einer
Beispiel: »{ anderen —-
h Ganzzahl-
CONST KONSTANTE1=1280; p
KONSTANTE2=KONSTANTE1; LKonstanten
KONSTANTEA=MAXINT;

MININT
=-2.147.483.647

MAXINT
= 2.147.483.647

(standardmifig die
kleinste und grofte
Zahl, die auf das
Jeweilige System
zugelassen sind)




Computer
SYSTEME]|

Benutzeranleitung Full-PASCAL

Realzahl- oder "Real"-Konst.

Seite

vorzeichen-
lose
° Realzahl
Name flr -
IRealzahl-~
—’Konstan'te e
’ Name einer
anderen
" |Realzahl-
Beigpielr Konstanten

CONST PI: 3.14159;
CONST A :-0.753E2;

Zeichen- oder "Character"-Konstante

—— - . . T - Ym . TEm TS WS e Mm i W e W TE W e e e W e 8 W e @ e e

i1 ren 2 ic sprict ma
Bei mehreren Zeichen richt man von

Zeichenketten- oder "String"-Konstanten

Neme einer
_ | anderen
7] Zeichen-
Konstante
Name fur ~ ~
eine Zei- - ! Zeichen
chenkon- N4 _
stante
Beispiel:

CCNST KCNSTANTE-1
KONSTANTZ-2

nn

O -

'DIES IST EINE ZEICHENKONSTANTE';

21




Computer
IR SvSTEME]

Benutzeranleitung Full-PASCAL Seite 22

Boolesche Konstanten {(boolean constant)

Hierbeil werden Aussazen der Booleschen Algebra
zugrundegelegt, die auf den Aussagen "falscu"
(=FAL3E) und "richtig" (=TRUE) beruhen. Die
formeluniBige Verbindung (symbolische Logik) erlaubt
die Darstellung und Losung von Problemen, die
urspringlich aur als sprachliche Folgerungen erfaft
werden konnten. Damit wurde es mdglich, schliissige
Ergebnisse fiir komplizierte Aufgabenstellungen
(Mengenlehre, Schaltalgebra, Operations Research,
Kybernetik, Informatik usw.) abzuleiten.

FALSE
Name filir '
-] €ine > ( ) . - .
Boolesche

Konstante

Name einer
»| anderen

Booleschen
Konstanten

Beispiel:

CONST WAHR
FALSCH

TRUE;
FALSE;

noun




3

R

Computer
[DIETZ ey N

Benutzeranleitung Full-PASCAL Seite 23

Typ-Definitionen

Ein Typ bestimmt die Werte und die Struktur, die
Variablen dieses Typs annehmen kdnnen und die
Operationen, die wmit diesen Variablen ausgefiihrt
werden kdnnen.

Prinzipiell ist folgende Darstellung vorgeschrieben:

TYPE -l Typen- - (: ) ol TYD ,( )J___,_’
name

Durch die Typen-Definition wird ein Typ mit einem
Namen versehen.

Grundsidtzlich darf der vereinbarte Typ nur definierte
Typnamen enthalten. Ausnahmen hierzu sind bei der
Verwendung von Zeigertypen (vgl. 3.4.3) zugelassen.
Weiterhin sind die Standardtypean (INTEGER, BOOLEAN,
CHARACTER, REAL) als "von vornherein bestimmt" von
dieser Regel ausgenommen.




3.4.1.

3.4.1.

Computer
I SYSTEME|

Benutzeranleitung Full-PASCAL Seite 24

Einfache Typen (simple type)

- —— . s wm 8 G s e ne im0 TR B e e em wm ae m = e e

Alle einfachen Typen definieren geordnete Mengen und
Werte.

Standardtypen (standard simple-types)

———— . i e TE M W W am e e m m R T W W W e am e e e e _m e .

- Ganzzahl-Typen (integer)

Name fiir

Y _ |Ganzzahl-
TYPE > Typ

INTEGER

Name fir
anceren
Ganzzahl-
Typ

Die einsetzbaren Ganzzahlen werden intern 4 Byte lang
dargestellt. Der Wertebereich gent wvon MININT
2.147.483.647) bis MAXINT 2.148.4833,647).

- Boolesche Typen (boolean)

Name fir

TYPE ] | Booleschen
] Typ

BOOLEAN

Name fir
anderen
Booleschen

Typ

Diese Werte sind Wahrheitswerte (vgl. 3.2 Boolesche
Konstanten), die durch die Aussagen "falsch" (=FALSE)
oder "wahr" (=TRUE) dargestellt werden. Der Boolesche
Typ wird maschinenintern mit der biniren Darstellung
0 (=FALSE) uad 1 (=TRUE) dargestellt (FALSE < TRUE).




w
A0 o e
eV ) N »

S U@. L
Lo -
ST ) —
P fiy w
DO o T — —~

; TN g o -

! en ) ™) -

”, S =N n

' lb il,,ﬁ)//_

! = | U AN/ -

_“ T dn 1| S

H L oo o | pamatlael 0

: 0 R T o o

S - i N g
S babs
- F @ m |

! - 23 M\m W,Lv m —t 70 .
atier fSte) T BIRHER m ) . }

- " H\lﬂb e~ SH0) _V WM V\Jdl T M
Too = R m
Py A N ]vﬁ.,s S

| por ! - ‘nmn oo g

..R“ == Lo Y g P./Hs//\.w

N ) IR L) RIERe e

N cc e oc ] j - ~

= =t M 00 | s st )

:. BT \1\1‘ i e 4 ’34‘.,1rHIH/:/.VV

| a4 PSSR i S8 CEPIL LN A /M @

= 20 Q0 | apog=) B2t ololles i oio)

- o0 ! 1 NN i K40 © SXS :

- —— 1 | oc A

- o oo QO & BR.nl i

o3 DO 55 o o 22
N ] i fa ¥y
o0 T .ivi lelydBo” >
SIS Tm.. ., 9! Bt N
£ LA ~ > uﬂw&ﬁﬁwa@%o
I ] — & "
ago o oo, i DB BN I
Q0 Pl I YN 77 QONTOTEE OIS S
m oCi 1 L i el Ay
oeh BsL i g sisrlast
e, ~
NN 2% %) O QT
DOTTOEG 55




Computer
[DIETZ e N

Benutzeranleitung Full-PASCAL Seite 26

- Realzahl-Typen (real)

- . . w im m m _m e m ws s v e e e

Name fur
TYPE = Realzahl-
Typ

ame flr
__|anderen

" |Realzahl-
Typ

Die einsetzbaren realen Zahlen werden intern durch
eine 7 Byte 1lange Mantisse wund einen 1 Byte
Exponenten dargestellt.

-38 +5%
Der Zahlenbereich 1liegt bei 10 bis 10 , wobei sich
durch Unmrechnungsverscniebungen zWwischen den

Zahlensystemen und durch die Beschrinkung der Dezi-
maldarstellung (auf 15-16 Stellen) kleinere Spannen
ergeben kdnnen.




e

3.4.1.2.

Computer
[DIETrZ SYSTEME

Banubzeranleitung Full-PASCAL Seite 27

Aufzdhlungstyp (Eaunerated-Types)

e - i v e e M B w Mo m me ke e m ® e e e m.m o e e e

Aus Grinden der Verstiadiichkeit waride hier der von
Professor Wirthh geprigte Bezgriff "Skalarer Typ"
(scalar type) durch "Aufzihlungstyp" ersetzt.

Durch die Vereinbaruang wird einem Namen (Typaane)
eine Wertmenge bestehead aus Namen (= Werte-Naaen)
zugewiesen.

Der Reihenfolge der Werte-Namen warden
nasciinenintern  3tellenwarte  zuzeordnet, nach denen
die Namen gezihlhb und verglichan werden kdnnen.

In der vorliegenden Implementierung dirfen
"Aufzdhlungstypen" maximnal 255 Elemente haben.

Name fir Werte-
lungstyp

(N
L/

b

Name fir
| Aufzih-
lungstyp

TYPE WOCHE = (MONTAG, DIENSTAG, MITTWOCH, DONNERSTAG,
FREITAG, SAMSTAG, SONNTAG);




3.4.1.3.

Computer
DURIZ Sy sTEME]

Benutzeranleitunz Full-PASCAL Seite 28

Teilbereichstypen (subrange-type)

Es ist mbglich, nit Hilfe der Ordnungs-Typen
(INTEGER, BOOLEAN, CHAR) wund der Aufzihlungstypen
neue Typen mit eingescnrinkter Wartemenge
(Wertbereich) zu vereinbaren. Das geschieht durch
Angabe des kleinsten und grolten Wertes als
Konstanten. Teillbereichstypen naben alle

Eigenschaften Jdes Basistyps wmit der Bescnrinkung auf
das vereinbarte Intervall.

kleinster grobter
Wert Wert

Name fir ]
Teilbe- __<:>‘_ Konstante Xonstante
reichstyp ( : >"

Beispiel:

- - um s e

TYPE WOCHE

(MONTAG,DIENSTAG,MITTWOCH, DONNERSTAG,
FREITAG, SAMSTAG, SONNTAG) ;

WERKTAG MONTAG .. FREITAG;




3.4.2.

3.4.2.1.

Computer
SYSTEME|

Benutzeranleitung Full-PASCAL Seite 29

Strukturiarte 'ypen (struﬁtured type)

Es handelt sieh um eine Zusamaensatzung von
Komponenten nach bestimmten Ordnuangsnerkaalen. Die
Komponenten warden aus 21nea oder aenrecran aaderen
Typen zZebildetb.

Bercizhs-Typen {array type) 1%

4 n

Ein Bereichstyp bYastent aus einer fast egten Anzanl
von Komponenten desselben Typs (Konponenten-Typ oder
"component- typ="). Die Komponenten 23  Berzichs
kdnnen ldber Indizes aungesprochen warden (Index-Typ

oder "index-type").

1% Der Begriff "array" wird hier als "Bereich" uad
nicht als "Feld" (field) iibersetzt {(vzl. 3.4.2.2).




Computer
(DOETTZZ e I

Benutzeranleitung Full-PASCAL 5

D

ite 30

Name fiir

Rereichs-
typ

Komponen-
tentyp

Der Indextyp wirid it Odrdinaltypen oder

Aufzihlungstypen zebildet (vgl. 3.4.1.3), deren
Bereich (Intervall aus Ober- und Uatergrenze)

definiert 1ist. Beim Koaponententyp ist mit Ausnahnme
des Dateityps (file type - vgl. 3.4.2.4) jede andere
Typ-Angabe mdglich.

Beispiele

Indextyp Komponenteatyp Foraullerung
a) BOOLEAN INTEGER TYPE AFALL = ARRAY
[FALSE..TRUA] OF
INTEGER;
b) CHAR BOOLEAN TYPA BFALL = ARRAY
[L’A”..°Z7] OF BOOLEAN;
c) CHAR REAL TYPR CFALL = ARRAY
[© .. 7/7] OF REAL;
d) INTEGER ARRAY TYPR DFALL = ARRAY
| REAL [-255 .. 255] OF ARRAY
[1 .. 100] OF REAL;
e) Aufzih- REAL TYPE ZAEHLER = (ANTON,
lungstyp BERTA, CAESAR);

TYPE EFALL = ARRAY
[ANTON .. CAESAR] OF REAL;

Mit Hilfe eines Aufzihlungs<
typs (ZAEHLER) kdnnen In-
dextypen gebildet warden.

f) BOOLEAHN IHTRGER TYPE FFALL = ARRAY
[FALSE .. FALSE| OF INTEGER

Wenn Unter- und Oberygrenze
dbereinstimmen, besteht
der Komponententyp aus

nur einem Element.




e e

Computer
[DIETZ ey e

Benutzeranleitung Full-PASCAL

Seite 31

Jede Definition kann aulder den Dbestimmtea Typen
weitere zusanmengesctztz Typdefinitionen (z.B.
Bereichstyp) heranziehen. Dazu Wodoumen aucn lie

Anwendungsmidglicnkeiten des Satztyps (record type -

vgl. 3.4.2.2).




o

3.4.2.2.

Computer
SYSTEME]|

Benutzeranleitung Full-PASCAL Seite 32

Satz-Typ (record-type)

- Einfacher 3Satztyp

Im Vergleich Zum Bereichstyp (ARRAY) gibt
folgende wesentlichen Uanterschiede:

Die Komponenten des 3Satz-Typs (3atzfeld
record field) bestehen aus gleichen
verschiedenen Typen. 1%

esS

oder
oder

Die Satzfelder (record field) werden nicht iber
Indizes angesprochen sondern nhaben einen eigenen
festen Nawmen (Komponentennamen oder field

identifier).

Dem Komponentennane folgt der Komponententyp

(component-type).

Name fir

anderen
Satz-Typ ° @

Mame fiir
S(ltz—T;‘D ° @ ’
Die Konstruktion aus Komponantennane und

Komponenten-Typ wird Komponentenliste (field list)

genannt.

1 Im  Zusammenhaag ait  PA3CAL sind array (Bereich)
und field (F=21d) zu unterscheiden. Die Satzfalder
(record field) haben im Gegensatz zu den Elementen
eines Bersichstyps (array type) eigene Haqen und

k5anen von untersshizdlichean Typ scein.




Computer
U Sy STEME|

Benutzeranieitunz Full-PASCAL

(7]
o
r—h
t
D
(UV]
W

Hier ist ein Satz-Typ mit draei verschiedenen Typen
gebildet woriden: Zinlbarer Typ, Teilbereichstyp
bel Ganzzanlen and Ganzzahltyp.

Beispiel:

- w e e v 4 @ W

TYPE DATUM = RECORD MONAT: (JAN,FEB,MAER,APR,

MAI, JUN, JUL, AUG, SEP,

OKT,NOV,DEZ) ;
TAG: 1T .. 31;
JAHR: INTEGER;
END;




Benutzeranleitung Full-PASCAL Seite 34

- Varianten-Satztyp

Hier kann ein 3atzfeld (rec
Feldbelegung mehrere unters
darstellen (Redefinition).

ord field) bei zZleicher
chiedliche Typvarianten

Der Variantenteil (variant part) beginnt ait dem
Schliisselwort "CASE" und dem Namen fiir die
Auswahlnarke (tag field).

Danach folgt der Typ fir die Auswahlaarks (tag
type) und die Auswahlmarksnliste
(case-constant-list), die durch das Schliisselwort
"OF" eingeleitelt wird.

Die Auswahlmarkealiste {cass-constaant-1list) zibt
die Konstanten an, dle die Aaswahlmarks annehaen
darf. Die den Konstanten zugeordnete
Komponentenliste ©Destimmt die Art der Definition.
Sie erfolgt mit Ordinaltypen oder zinlbaren Typen.

Bei den hier zugelassenen Typen 1ist es nicht
gestattet, daR als Komponenten des Satztyps
Dateitypen (file type - vgl. 3.4.2.4) auftreten.

Alle Auswahlmarken in der Liste
(case-constant-1list) miissen voneinander verschieden
sein. Auswahlmarks und Konstante miissen

typidentisch s2in.

Inasrhalb der zugeordnsten Xonponentanliste (field
list) wird die Variante Jdurch Komponentann:ae
(field identifier) wuad Komponententyp (component
type) bestinmuat,.

B [ —O—ED—

Variablenteil
Name der Typ der Auswahl- .
Auswahl- - Auswahl- marken- Komponen-
CASE ) husve : e _@ parke tenliste

s




Computer
[DIET 2 Py N

Bennbzzranleitunz Fall-PASCAL Seite 35

Beispiel:

TYPE FIGUR = (DREIZCK,QUADRAT,RECHTRECK);
GEOMETRIE = RECORD CASE FLAECHE : FIGUR OF

DREIECK : (GRUNDSEITE,HOEHE:REAL);
QUADRAT : (3EITE:REAL);

RECHTECK: (LARNGR,BREITE:REAL);
END;

Im Verarbeitungszusammenhang /indert sich die Struktur
der Satzblypkomponante (Ausdruck ab CASE), wenn der
Auswahlmarke ein ncuer Wert zugewlascn wird. Dann ist
der bis danin gefilhrte Inhalt nicht mehr definiert.

Bei allen Formen des 3atztyps kdnnen auBer Standard-

typen weltere zusaimengesetzte Typdefinitionen
verwendet werden, die zudem beliecbige

Schachtelungsmdglichikaiten bistan.




3:4.2.3.

Computer
[DIETZ s N

3annutzeranleitung Full-PASCAL Seite 37

Mengentyp (sat type)

Der hier verwasndebtz: Begriff "Manzgentyp" wird 1in
dieser Darstellung nur fir dea "sel-typa" zgebrauchnt.
Der Meugentyp Jdefiniert einen Wertebereich, der die
Potenzmenge seines Basistyps uafaBt.

Hinter Potenzmenge steht ein eindeutig beseoiriedener
Begriff aus der mathesaatischen Mengenlchre, ler alle
Kombinationsmbzlichkeiten einer beschriebenen
Grundmenge umfaldt. Dabei werden die Grundmenge uad
die "leere Menge" = i { dazuzerechnet.

- <

Bei- Darstellung Anzanl NDarstellung Anzahl
spiele Grundmenge Blemeanta PoLenzasnge Kombina-
tionen

b) 0y, 1 2 {i {or 2
{1} fo, 4=2
o) {0,1,2) 3 {t o)
{14 ngj
f0,1 {0,2f 3
{1,2¢ {0,1,2 8=2
d) {1,2,3,'? Y { g {1}
7 {2l (3}
fuo 1,2
£ 1,30 11,4
f2,3§ (2,4
§3,4 1,2,3
1,2,4:1,3,4 4
{2,3,4/1,2,3,4 16=2




Benutzeranleibany Full-PA3CAL Seite 38

0]

Die Untersuachung c2lner forigezsebzten Relhe fithrt zu
der Erkenntais, daB die Anzahl der Kombinationen

(Mdchtigkeit der Potenzmenge) Zwasierpotenzen ia
Abhingigkeit von der Anzahl der Elemnente der

Grundmenge sind:

M
P(M) = 2

Da die Anzahl der Elemeateanzrundmenge als LExponent
zur Basis 2 aufreitt, nat man den Begriff
"Potenzmenge" geprigt.

Bei der Typdzafinition entspricht diz Grundmenge den
Basistyp und der Inhaltsbereich der Potenzmenge dem
Mengentyp.

In dieser Implementierung sind als Basistypen
Teilbereicnstypen aus Ordinaltypen und "Aufzihlungs -
Typen" bis 255 Slemente (0-255) erlaubi.

Der Teilbereicn kann inm Meagaatyp aoiageschlossen saein
dder als gesonderter  Tellberai:nstyp foraulilert
werden.

Name fiir 1. 2.
Mengen- Konstante Konstante L
typ

Name fiir

Teilbe-

reichs-Typ




Computer
U2 S\ s 7e e

Benutzeranleitung Full-PASCAL Seite 39

Beispiele:

Basistyp

- i -

e) INTEGER
(eingeschlossen)

(gesondert)
) BOOLEAN
(eingeschlossen)

g) CHAR
(eingeschlossen)

h) Aufzihlungstyp
gesondert

Formulierung

TYPE AINT=SET OF 0..9;

TYPE TEILB = 0..9;
TYPE BINT=SET OF TEILH;

TYPE CBOOL=SET OF FALSE..TRUS;

’ ’, ’,

A

’

TYPE DCHAR=SET OF B,

TYPE SKAT = (KREUZ,PIK,HERZ,
KARO);
TYPE BUBEN=SET OF SKAT;

Mit dieser Definition werden
alle Bubenkonstellabionen
beim Skatspiel definiert
(vgl. Beispiel d).




3.4.2.4,

Benutzeranleitung Full-PASCAL Seite 40

Datei-Typ (file type)

Beim Dateityp handelt e3 =sich wum eine Folge von
Komponenten gleichen Typs. Die Anzahl der Komponenten
ist zua Zeitpuakt der Definition unbestimmt; ebenso
der Inhalt der Datel.

Name ‘eines
anderen
Datéi-Typs]| -

llame des

~@ S E @ - -

Datei-Typen sind in dieser Implementierung als
Komponenten nicht erlaubt.

Mit dem Datei-Typ 1lassan sicnh sequentielle Dataien
aufbauen.

Dateinamen (z.B. ADATEI) miissen wie die
Standarddateien (INPUT, OUTPUT) hinter dem
Programnmnanen {(vzl. 1.1) aufgefiinrt sein.




TN

Computer
DIETZ SYSTEME|

Benutzeranleitung Full-PASCAL Seite U1

Belsplcl

TYPE ADRESSE = RECORD NAME:ARRAY [1 . 20" OF CHAR;
VORNAME: ARRAY 11 .. 15 OF CHAR;
STRASSE:ARRAY 7 .. 30] 07 CHAR;

L

HAUSNUMMER: INTRGER;
POSTLEITZAHL: [NTHGER;
ORT: ARRAY [1 .. 25 OF CHAR;
END;
PERSONEN=FILE OF ADRESSE;

In diesem Zusammenhang 1ist daraaf hinzuweisen, dal
eine Typdefinition noch keine Datei begrindean kann
(vgl. 3.4). Dazu sind erst eatsprechende
Variablen-Vereinbarungen erforderlich {vgl. 3.5.2.3).

Im Standardprologz 1% ist 2ia vordefinierter Datei-Typ
mit dem Namen "TEXT'" enthalten. Variable dieses Typs
heiRen Text-Dateien und sind voa Zeichentyp (CHAR).

1% Unter Prolog werdea in diesem Zusammenhaayg von

Ubersetzer vorbesetzte Programmvereinbarungen
verstanden, die fir Jjedes nmit Jdiesem Compiler
ungewandelte Progranm gelten und bel der

Prograniiecung genubzt werdea kdanen.,




3.4.3.

Benutzeranleitung Full-PASCAL

Zeiger-Typ (pointer-type)

- em e me e s @S @ wm e 4 @ & & ™ e a7y v

Die Vereinbarung elnes
iblichen Typ-Defianition:

Neme des

TYPE Zeiger-
Typs

Typ
Name

antspricht der

@,

Der Zeiger-Typ 2rlaubt die Darstellung von
Hauptspeicheradresser (je 2 Dbyte) zur Adressierung
von Variablen. Die eigentlichen
Anwendungsmdglichkeiten des Zeiger-Typs lassen sich
dabei nur 1in Verbindung mit Variablen sinnvoll

beschreiben (vgl. 3.5.3).

Folgende Typ-Vereinbarung
Zeiger-Typ dar:

TYPE A = RECORD
BZEIGER :
END;
B = RECORD
AZEIGER :
END;

anderen
Komponenten

Bei Jjeder
Namen einer

Zeiger-Typ gestattel di=
eigen) in Abweichung voa dieser Regel.

Aufeinanderz

Definition

stellt ein Beispiel fiir den

ist es zwingend, den
vorher 2zu Dbestimmen. Der
segenseitige Bezugnahme (=




3.4.4.

Baautzeranlaitans Fall-PASCAL S
usanaentissenies LJ)GW—“) 1T
< TYPE }'F A ‘ INTEGER 0
N\ .
™ B = ROULEAN ;
ol C G CHAR ' ——
I¥e O
Aufzih-
Trmestyn H
Teilbe-
reichstyp -—»@-——’
Rerelichs-
tynp
Inuex- TN Komponen-

N

| Satztyp

Finfacher

tyn W tentyy

Komnonen-
RECORD tentyp
Varianto!
Satztyrp e
Name
RECORD CASE Auswahl -
- marke

arke

-
., | - ( ‘Fomponen— l ) o
Auswanl-  p e 0K L—.—( S~ enlistc
N\ N

J
[K
L"'l[,

2ite 43

——— - EN_ /
SET-_”_}’@‘_"T Teilbereichstyp
TILi OF Typ

(N
\_/) = lyp




3.4.5.

Benutzeranleitung Full-PASCAL Seite Ul
Zuordnungsvertriglichkeit (assignment -

- e et ws 3 % A _m_8 W e % w e % 4.8 e ™ 4= & ™ W e % w s 4 W s eV e wW W wm e e s s o em . w

compability)

Wenn Inhalte unterschiedlichen Typs (z.B. Variable)
verarbeitungstechniscn zusammeangefiithrt werden sollen
(z.B. bei einer Wertzuweisung), aud der Zuwelsungstyp
nit dem Empfangstyp zuordnungsvertriglicn sein. 3So
ist es Dbeispielsweise @mdglich, eine Ganzzahl einer
Variablen vom Typ "REAL" zuzuweilsen, was uangekehrt

ausgeschlossan ist, niimlich eine Realzahl einer
Variablen vom Typ "INTEGER" zu idbergesoen.

Die Voraussaebtoungen Jder Zadrdnungsvertrdglichkelt
sind in folgenden Fillen g2ageben:

Beispiele
Wir beschnrinken ans auf die  Typ-Darstellung;
tatsionlich sind andere Konstruaktionen (2.8.

donl i
Zuweisungzen an Variabla) erforderlich.

Zuweilsungs- Eapfangs-

typ typ
a) Typidentit&t REAL REAL
Das glLt auler fir
Datei-Tvpen bei allen
anderen Typen
b) vorgegebene INTEGER REAL

Untermenge

Diese Zuwelsungsndz-

lichkeiten zelten in

Bereich der Ordnungs-
typen (CHAR,INTEGER,

BOOLEAM) .




e o

Computer
[DIETZ2 e N

Benutzeranieitunzg Full-PASCAL

; Zuweisungstyp

; e mia e e e s

E 2) vereinbarte

! Untermenge

g i mmm

(1) Teilbereichs-

Typen TYPE INTTEIL = 5..10;
Auch hier sind
ihnliche Zu- TYPE ALPHTEIL= J..Q;
weisungsmdg-
lichkeiten TYPE WERKTAG = "MO-FR;
wie bei b).  WOCHE =(Wm

SA,S0);

(2) Mengen-Typen

(3) Zeichenfolgen

———— . e m m e W

OF CHAR;

hierbei gegeben,

dizierung / 3.5).

Bei Teilbereichstypen
gemeldet, wenn
Zuordnungsvertrdglichkeit

Bei allen anderen

TYPE ABC=ARRAY[O..

und

10,D1,MI,D0,FR,

2]

bei
Kontrollfunktion (check option) werden Laufzeitfehler
die

nicht
(Uberschreitungen der vorgegebenen Intervalle).

mehr

Seite 45

Empfangstyp

. e e o m m e = e

INTEGER

CHAR

TYPE HUNDERT=
SET OF 1..100;

TYPE ABCLDEF=ARRA1 (0.

UF CHAR;

Eine Zuordnungsvertriglichxeit ist
wenn bei der Zu-
weisung bestimmt wird, an welcher
Stelle die kiirzere Zeichenfolge
aufgenommen werden so0ll {(vzl. In-

eingeschalteter

zugrundegelegte
gegeben ist

Zuordnungsunvertriglichkeiten
werden die Fehler zur Ubersetzungszeit gemeldet.

.9]




3.

5.

Computer
2 SYSTEME]

Benutzeranleitung Full-PASCAL Seite U6

Deklaration von Variablen

Variable sind im Vergleich zu Konstanten inhaltlich
dnderbare Objekte, die aber ebenfalls durch bestimmte
Namen (Variablennamen - "variable-identifier") oder
Selektoren 1% angesprochen werden kdnnen.

Die Definition des Typs einer Variablen kann bei der
Variablen-Deklaration erfolgen (Standard-Typen) oder
durch Nennung eines vorher definierten Typennamens
(Benutzertyp) .

[
>/

V Variablen-
VAR »{ name ,@-— Typ ——®——-—-
3

Der Geltungsbereich elner Variablendeklaration
richtet sich nach der Blockstruktur (vgl. 3.1.0,
3.1.1).

1% Unter Selektion werden Auswahlmechanismen
verstanden, mit denen man die Komponenten von
Variablen ansprechen kann. Man unterscheidet in

Anlehnung an den Aufbau der strukturierten
Datentypen filir die Variablenselektion:

Bereichsselektoren (Indizierung)

z.B. VAR A : ARRAY [1..3] OF CHAR;
Indizierung der 2. Komponente A [2]

Satzselektoren (Namensverkniipfung)

z.B. VAR A : RECORD B,C,D:CHAR;END;

Namensverknlipfung f.Komponente C A.C




3.

5.

1.

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite U7

Einheitsvariable (entire variable)

Hierbei handelt es sich wum eine Variable, die
innerhalb ihrer Bestimmung keine weiteren
"Untervariablen" auffiihrt. Das unterscheidet sie von
der Komponentenvariablen (vgl.3.5.2).

Beispiele:

VAR NUMMER : INTEGER; (¥BEZEICHNUNG Z.B.GANZZAHL-
VARIABLE¥)
AUSSAGE : BOOLEAN;
BUCHSTABE: CHAR;

DIVISION,DIVIDEND,DIVISOR : REAL;

b) mit Aufzihlungstypen (Aufzidhlungs-Variable)

VAR JAHRESZEIT : (FRUEHLING, SOMMER,HERBST,WINTER);

c) mit Teilbereichstyp (Teilbereichs-Variable)

- - - — - ——————— - —

VAR TAGNUMMER N B

d) mit Bereichstyp (Bereichs-Variable)

VAR BUCHSTABEN : ARRAY [A..Z] OF CHAR;

Wdadhrend die Variable "Buchstaben" eine Einheits-
variable darstellt, deklariert Array bereits die
Komponenten A bis Z. Um eine reine Einheitsvariable
auszudriicken, kann man einen Typennamen ansprechen.
TYPE BUCHSTABEN = ARRAY [A..Z] OF CHAR;

VAR VOKALE,KONSONANTEN : BUCHSTABEN;




Computer
[DIETZ S I

Benutzeranleitung Full-PASCAL Seite L8

e) mit Satztyp (Satz-Variable)
(entspricht den Darstellungsmdglichkeiten bei d) )
TYPE EHESTATUS = RECORD. LEDIG,VERHEIRATET,
GESCHIEDEN, VERWITWET :BOOLEAN;
END;
VAR FAMILIENSTAND:EHESTATUS;

f) mit Mengentyp (Mengen-Variable)

VAR VERHEIRATET : SET OF FALSE..TRUE;
g) mit Dateityp (Datei-Variable)

VAR GANZZAHL : FILE OF INTEGER;

h) mit Zeigertypen (Zeiger-Variable)

Ahnlich wie d) und e) ist eine vorgelagerte
TYP-Definition erforderlich, um eine Einheits-
variable zu deklarieren.

TYPE BUCHUNG = RECORD CASE KONTO : INTEGER OF
1 : (SOLL : REAL);
2 : (HABEN : REAL);
END;
VAR KASSE, BANK:"BUCHUNG;




e o e

3.5.2.

Computer
I SYSTEME|

Benutzeranleitung Full-PASCAL Seite 49

Komponentenvariable (component-variable)

Komponentenvariable werden mit Einheitsvariablen
eingeleitet. Die Untergliederungen einer Einheits-
variablen sind Komponentenvariablen.

Komponentenvariable

Bereichg- | = —mm—m—mmmmmmmmmm—m————
typ
Indizierte Variable
(vgl. 3.5.2.1)
Variablen- -
name. ,_®> 2;;2 Y _ Satzfeldbezeichner
A (vgl. 3.5.2.2)
Puffervariable
Datei- (vgl. 3.5.2.3)
typ

Auf die Komponenten einer Variablen kann {iber ihren
Namen, auf den ein Selektor folgen muRl, zugegriffen
werden. Die Art des Selektors hdngt von dem Typ der
vorgelagerten Einheitsvariablen ab.




3.5.2.1.

Computer
U oy EE

Benutzeranleitung Full-PASCAL Seite 50

Indizierte Variable (indexed variable)

Wenn mit der Einheitsvariablen ein Bereichstyp
festgelegt wird, ergibt sich wmit Vereinbarung des
Indextyps eine ansprechbare Anzahl von Komponenten.

Beispiel:

VAR RECHENFELD : ARRAY [1..10] OF REAL;

Es wird ein Rechenfeld vom Typ REAL angelegt, bei dem
jede Komponente mit einem Index aus dem Bereich 1 bis
10 angesprochen werden kann.

Un einer Dbestimmten Komponente (z.B. 4) einen Wert
(z.B. 3.5) =zuzuordnen, 1ist folgende Zuweisungsform
(vgl. 4.3.1) mdglich:

RECHENFELD [4):= 3.5;

Der Indexausdruck innerhalb der Zuweisung muR mit der

Variablendeklaraticn +vzrtrdglicn sein (Zuweisungs-
vertridglichkeit = as<signmeat cowgatibility"), d.h
der angesprochene 1Index mufR in dem Bereicn d4des

Indextyps enthalten sein.




Computer
[DOET 22 S TN

e e

Benutzeranleitung Full—PASCAL

g 3.5.2.2. Satzfeldbezeichner (field-designator)

- —— - - —— e ——— ——— - - —

Die Komponenten eines Satztyps werden
(record field) genannt. Im Unterschied
Bereichstyp werden sie nicht durch

Seite 51

Indizierung

sondern {ber den Komponentennamen (field identifier)

angesprochen.

Im Zusammenhang mit Variablendeklarationen nennt man

designator).

i Beispiele:

——— - ——— - —— -

: HOEHE
END;

Wertzuweisung:

DREIECKFLAECHE.GRUNDSEITE := 5.5;

b) Varianten-Satztyp

VAR RECHTECK : RECORD CASE FLAECHE

die Komponenten Satzfeldbezeichner

A° : (LAENGE:

‘B’ (BREITE:
END;
Wertzuweisung:
RECHTECK.FLAECHE := “A";
RECHTECK.LAENGE = 6.5;

(field

VAR DREIECKFLAECHE : RECORD GRUNDSEITE : REAL;

REAL;

CHAR OF
REAL);
REAL);

Satzfelder
zZum




3.5.2.3.

Computer
(DUETZZ e v

Benutzeranleitung Full-PASCAL Seite 52

Puffervariable (file-buffer)

Mit der Vereinbarung einer Datei-Variablen ist
automatisch fir deren Komponenten eine Puffervariable
definiert.

Variablen-
VAR name : Typ H
1,2 o0

Die Variablennamen werden als Puffervariablen
bezeichnet, wenn sie die Komponenten einer
sequentiellen Datei bezeilchnen sollen. Sie werden mit
symbolischen Namen folgender Form angesprochen:

Variablen-|
name 1 ( A ) .

Diese Puffervariable 1ist wie eine einfache Variable
des Komponententyps 2zu behandeln. Sie dient dazu,
Komponenten 1in eine Datei zu schreiben oder sie zu
lesen.

Beispiel:

VAR PRIMZAHL,ZWILLINGSPRIMZAHL : FILE OF INTEGER;

Der Zugriff auf die Komponenten (PRIMZAHL,
ZWILLINGSPRIMZAHL) erfolgt mit Hilfe der
Puffervariablen, die mit den nachgestellten

Zeigerzeichen bezeichnet werden (vgl. Referenzierte
Variable 3.5.3).




3.

5.

3.

Computer
LURIFA oy sTEME

Benutzeranleitung Full—PASCAL Seite 53

Das Offnen einer Datei mit "REWRITE" wird hier nicht
dargestellt (vgl. 3.6.4.1).

Z.B. bei Wertzuweisung

PRIMZAHL" := 3;
ZWILLINGSPRIMZAHL" := PRIMZAHL +2;

Man kann jeweils nur die durch die aktuelle
Datei-Position bestimmte Komponente direkt ansprechen
(aktuelle Komponente).

Zeiger-Variable (pointer variable) und

-—— - - - ——— - . . . - ——— - — — - ———— - — e - N . - o - ———

R S U e U e U ————— e e R

Mit Hilfe von Zeiger-Variablen kdnnen
Speicherbereiche dynamisch eingefiihrt und freigegeben
werden.

Zeiger-Variable und referenzierte Variable werden in
folgender Weise dargestellt:

Die Kennzeichnung einer Variablen mit einem
nachgestellten Zeigerzeichen nennt man
Dereferenzierung, weil sie als "Referenzierte
Variable" tatsdchlich von der Zeigervariablen - also
in umgekehrter Richtung - Dbezeichnet wird. Die
Dereferenzierung einer Zeigervariablen fihrt

demzufolge zu einer referenzierten Variablen.

Zeigervariable (Z = Name der Zeigervariablen)

—( )2 KOO

Referenzierte Varizbie (7 = Name der Zeigervariablen)

]

N R _@__




Computer
IR Sy STEME

Benutzeranleitung Full-PASCAL Seite 54

Beispiel a

TYPE ELEMENT = INTEGER;
VAR A,B : "ELEMENT;(*¥Zeigervariablen A und B¥);

Das Besetzen der Zeigervariablen mit der Anweisung

"NEW" wird hier nicht dargestellt (vgl. Beispiel b).
AA
3~

13 (* "Referenzierte Variable" ¥)
23 © (¥ mit Wertzuweisung ¥)

A und B sind an den Typ ELEMENT gebundene
Zeiger-Variablen, wihrend A" und B” (= Referenzierte
Variable) filir Variable vom Typ ELEMENT stehen, auf
die A und B zeigen.

Zeigervariable Referenzierte Variable
A | Aktuelle Adresse A* 1
B | Aktuelle Adresse 1 B* 2




Computer
URIEA oy sTEME

Benutzeranleitung Full-PASCAL Seite 55

Beispiel b)
Standardprozedur "NEW"

Mit der Prozedur "NEW" kann man die Anlage von
Variablen im Programmablauf vornehmen.

TYPE ELEMENTZEIGER ="LISTENELEMENT;
LISTENELEMENT =RECORD OF;
NAME : ARRAY [0..4] OF CHAR;
VERKETTUNG: ELEMENTZEIGER;
END;
VAR ANKER :ELEMENTZEIGER;
BEGIN
NEW (ANKER);
ANKER” .NAME:="ANTON " ; (¥ERSTNAME¥*)
NEW (ANKER™ .VERKETTUNG) ;
ANKER" .VERKETTUNG" .NAME:= "BERTA " (¥ ZWEITNAME#*)
NEW (ANKER™ .VERKETTUNG".VERKETTUNG);
ANKER" .VERKETTUNG" .VERKETTUNG" .NAME:="COSTA "~
(*DRITTNAME#*)

END.

Das hier gezeigte Verkettungsprinzip beruht auf der
Verbindung der Namenverkniipfung (Satzselektion) und
Dereferenzierung. Damit ist es im Beispiel b)
méglich, Speicherpldtze fir Variableninhalte wihrend
der Programmausfihrung zu belegen, mit ihnen =zu
arbeiten und sie anschliefend wieder aufzufinden.

Bei den "Prozeduren fiir die Erzeugung dynamischer
Variablen" (vgl. 3.6.4.2) gibt es einige
Anwendungsméglichkeiten mehr, die insgesamt gesehen
besonders fir schwierige und beliebig verzweigte
Datenstrukturen infrage kommen, die im
Verarbeitungszusammenhang gewartet, gedndert und

erweitert werden.

Um die Einsatzm&glichkeiten der Zeiger-Variablen
erschdpfend darzustellen, widre die Vorwegnahme von
"Prozeduren fir die Erzeugung dynamischer Variablen"
(vgl. 3.6.4.2) erforderlich.




3.

3.

6.

6.

1.

Computer
BURIA oy sTEVE

Benutzeranleitung Full-PASCAL Seite 57

Prozedur- und Funktions-Deklarationen

—— - —- - ————— —— - —— —————— —————— ——__ - — -

Prozeduren und Funktionen sind Unterprogramme, deren
Anweisungsfolge mit einem vereinbarten Namen
(Prozedur- bzw. Funktionsname) angesprochen werden
kann. Funktionen wunterscheiden sich von Prozeduren
dadurch, daB ihr Aufruf die Bildung eines einzigen
Wertes 1¥ zur Folge hat und sie iberall dort
auftreten dlirfen, wo Bezug auf sie genommen wird
(Platzhalter 2% ),

Prozedur-Deklarationen

Ein Unterprogramm, das mit seinen Anweisungen nicht
auf die Abgabe eines Wertes beschrdnkt ist sondern
Wirkungen auf den Programmlauf ausiiben kann, nennt
man Prozedur. Eine Prozedur kann nicht wie eine
Funktion als Platzhalter fiir einen Wert gestellt
werden.

Eine Prozedurdeklaration erkldrt ein Unterprogramm
zur Prozedur und ordnet ihm einen Namen zu. Dieser
Name ermdglicht den wiederholbaren Aufruf der
Prozedur.

Prozeduren sind wie Programme aufgebaut (vgl. 1.1).
Man unterscheidet einen Prozedurkopf
(procedure-heading) und einen Prozedurblock
(procedure-block) .

1% Der Begriff "Wert" bezieht sich hier auf den
Bereich der Standard- und Zeigertypen.

2% Im Zusammenhang mit der Funktion ist hier gemeint,
daR der Funktionsname an den Platz eines Wertes
gestellt werden kann.




Computer
[DETTZZ P FIv

Benutzeranleitung Full-PASCAL Seite 58

Prozedurkopf
(procedure heading)

Prozedur- Parameter-
PROCEDURE )| name —11iste | BV
NG

procedure formal-parameter-
identifier list
Verein- _¥/"““\\
= barungs- = BEGIN Anweisung = END
teil y T
Prozedurblock

(procedure block)

__@4_

In der Parameterliste wird festgelegt, ob ein
formales Argument 1*¥ eine Variable, eine Prozedur
oder eine Funktion darstellt (vgl. 3.6.3). Ein

"formales Argument" bezeichnet einen symbolischen
Platzhalter, filir den beim Aufruf der Prozedur ein
"aktuelles Argument" 1% eingesetzt wird. Daher muB

die Parameterliste mit dem Prozedurnamen zusammen
benannt werden.

Innerhalb des Prozedurblocks werden
Verarbeitungsalgorithmen aus Anweisungsfolgen
gebildet, die beim Prozeduraufruf aktiviert werden
und unter Einsatz der aktuellen Argumente vorgesehene
Aufgabenstellungen 1ldsen.

1% Der hier verwendete Begriff "Argument" lehnt sich
an den: mathematischen Sprachgebrauch beil
Funktionen an. Bei einer Funktion y=f(x) stellt x
ein formales Argument (unabhingige Verdnderliche)
dar, von dem y abhdngt. Nimmt x einen konkreten
Wert an, spricht man von aktuellem Argument.




Computer
[DOET 22 s FIv

Benutzeranleitung Full-PASCAL Seite 59

Dabei 1ist es mdglich, daB eine Prozedur sich selbst
aufruft (rekursiver Aufruf) und innerhalb ihrer
eigenen Ausfiihrung nochmals ablduft.

Eine Variante von Prozedurvereinbarungen 1ist die
FORWARD - Deklaration. Hierbeil wird innerhalb einer
Prozedur A eine Prozedur B verwendet, die mit FORWARD
angekiindigt wund spidter erst vervollstdndigt wird.
Dieser Vorwidrtsverweis muR die Parameterliste flr die
Prozedur B beinhalten; sie darf nicht in einem tiefer
geschachtelten Block stehen.

Parameter-

FROCEDURE B ||liste fur ; FORWARD ° Vorwirtsverweis
B ©®rozedur B

i

Parameter-
PROCEDURE 4 A liste fir
A Deklaration der

Prozedur A be-
o Block A beinhaltet
{ DBEGIN + Aufruf der Proze- @ ‘
dur B

inhalktet im

Vervollstindigung
“ROCEDURE B BEGIN Jlock B @ 0 der Deklaration

von Frozedur B

Block den Aufruf
von B

010

.

Der Vorwidrtsverwels und die spidtere Vervollstidndigung
einer solchen Prozedur miissen im gleichen Block
stehen. FORWARD - Deklarationen sind fiir solche Fille
geeignet, in denen Prozeduren sich gegenseitig
aufrufen sollen. Diese Verschachtelungsméglichkeiten
vermeiden erheblichen Programmieraufwand, weil ohne
den Verweils auf eine andere Prozedur der
entsprechende Algorithmus nochmals wiederholt werden
miRte.




3.6.2.

Computer
[DIET Z ey N

Benutzeranleitung Full-PASCAL Seite 00

Funktions-Deklarationen

- — - —— - ————— -t em - ——— -

Funktionen bezeichnen Unterprogramme, die einen Wert
berechnen und als Platzhalter dafilir eingesetzt werden
kdnnen. Sinngendfl entspricht der Aufbau einer
Funktion der Prozedur; abweichend ist die Benennung
eines Ergebnistyps (result types), der angibt, von
welchem Typ der abzugebende Wert ist. Zugelassen sind
einfache Typen (simple type) oder Zeigertypen
(pointer type).

.,_(\EUNCTION > name liste : typ (function heading)

(function identifier) (formal parameterlist) (result type)

T Funktions- Parameter—- Ergebnis- Funktionskopf

Verein-
barungs- BEGIN Anwelisung @ ‘ Funktionsblock
teal (function block)

Innerhalb des Funktionsblocks muR dem Funktionsnamen
der Funktionsinhalt (Wert, Algorithmus) zugewiesen
werden; hierbei bewirkt die Benennung des
Funktionsnamens keinen Funktionsaufruf.

Z.B.: Wenn CONST PI=3,14159; und VAR R:REAL; sind,

lautet die Zuweisung fir die Funktion KREISFLAECHE:

KREISFLAECHE := R¥R¥PI;

Vor dieser Zuweisung gilt der Funktionswert als
unbestinmt.,

Auch bei Funktionen i<t die "Rekursion- iZz'ich. Das
gilt ebenso fir FORWARD-Delkztargtionen; hel ae:
nachfolgenden Funkticnsvervollstidndigu.g Jdarf der
Ergebnistyp nicht mehr aufgefiirt werden.




)

Computer
A SYSTEME|

Benutzeranleitung Full-PASCAL Seite 61

3.6.3. Parameter

- . - ———

Bei der Deklaration von Prozeduren und Funktionen
werden zundchst die "formalen Argumente" benannt. Im
Hinblick auf die Parameterliste unterscheidet man

daher die "Formale Parameterliste"
(formal-parameter-list) und "Aktuelle Parameter"
(actual parameter) , die den jeweils im
Verarbeitungszusammenhang tatsidchlich =zugewiesenen

Inhalten entsprechen.

Die formale Parameterliste (formal-parameter-list)
hat folgenden grundlegenden Aufbau:

(i e
L

L o

P ter-
VAR —@._.

Funktions-

~(FuncTION Y | PATAMETET-
Vi name
I

___———___(:::)1——— Typ )
Prozedur-

(: ~ - ) parameter-
FROCEDURE name




3.6.3.1.

Computer
[DIET Z ey N

Benutzeranleitung Full-PASCAL Seite 62

In der Darstellung sind die vier Arten von Parametern
dargestellt:

Wertparameter (value-parameter)

Eine Parametergruppe (parameter group) ohne
vorangehendes Schliisselwort (z.B. VAR), entspricht
einer Liste von Wertparametern, die aus

Parameternamen mit Typ-Definitionen bestehen. Der
formale Parameter stellt eine lokale Vereinbarung fir
den Block der dazugehdrigen Prozedur oder Funktion
dar.

Der aktuelle Parameter muB ein Ausdruck (expression)

sein (vgl. U4.1). Ausdricke stellen mathematische
Aufgabenstellungen (z.B. Formeln) dar, die aus
Operanden (Konstanten, Variablen wund Funktionen)
sowie Operatoren (Zeichen zur Darstellung und

Ausldsung mathematischer Regeln und Operationen)
bestehen und neue Werte des bestimmten Typs erzeugen.

Beispiel:

PROGRAM TESTA;
VAR A,B : INTEGER;

PROCEDURE X (Y:REAL); (¥*FORMALER PARAMETER¥)

BEGIN

A:=1;
B:=Y+1;
X(A/B); (¥* AKTUELLER PARAMETER¥)
END;
BEGIN
END.




Computer
[DIET 2 ey N

Benutzeranleitung Full-PASCAL Seite 63

Bei Aufruf einer Prozedur oder Funktion (im Beispiel:

rekursiv) wird der aktuelle Wert des Ausdrucks
zugewiesen. Er muB dem formalen Parameter angepaft
sein, d.h. im Sinne der Typendeklaration
zuordnungsvertriglich (vgl. 3.3.5) sein. Anzahl und

Reihenfolge der aktuellen Parameter entsprechen den
formalen.




3.6.3.2.

Computer
[DIETZ ey NS

Benutzeranleitung Full-PASCAL Seite 64

Variablenparameter (variable parameter)

- - - ——— - — - — — - —— - —— - — —

Hierunter wird eine Parametergruppe mit dem
Schliisselwort "VAR" verstanden; sie stellt eine
lokale Vereinbarung filir den Block der dazugehdrigen
Prozedur oder Funktion dar.

Der aktuelle Parameter muR eine Variable sein. Jede
Operation, die fir den formalen Parameter vorgesehen
ist, erfolgt im Verarbeitungszusammenhang mit dem
aktuellen Parameter. Hinsichtlich der
Zuordnungsvertridglichkeit (vgl. 3.4.5) muR
Typidentitdt gegeben sein. Anzahl und Reihenfolge der
aktuellen Parameter entsprechen den formalen.

Beispiel:

PROGRAM TESTB (INPUT, OUTPUT);
VAR XO,X2:REAL;X1:INTEGER;
FUNKTION Z(VAR C:INTEGER;VAR D:REAL):REAL;
(*FORMALE PARAMETER¥*)

BEGIN
END;
BEGIN (¥*HAUPTPROGRAMM¥)
X0 := 1;
X1 := 3;
X2 : X0 ¥ 2;
X0 := Z (X1,X2); (*AKTUELLE PARAMETER¥)
END.




3.6.3.3.

Computer
DETT2Z v v

Benutzeranleitung Full-PASCAL Seite 65

Prozedur-Parameter

Die formalen Parameter bezeichnen eine oder mehrere
Prozeduren mit  Namen, die von den aktuellen
Prozeduren wihrend der Aktivierung des aufzurufenden
Blocks reprdsentiert werden.

Abweichend vom Standard-PASCAL 1ist es in der hier
beschriebenen Implementierung erforderlich, hinter
dem Prozedurparameternamen Typen (Typenliste)
aufzufihren, die fir formale Parameter (formale
formale Paraueter) der einzuseilzendeu Prozeduren
stehen. 30 ist bereits zur fbersetzunigszcit eine
vollstindige Typprifung der Paraacter moglich.

Prozeduren, die Parameter von anderen Prozeduren und
Funktionen sind, dirfen nur Wertparameter beinhalten.
Hinsichtlich der Zuordnungsvertrdaglichkeit (vgl.
3.3.5) formaler und aktueller Parameter muR
Typidentitdt gegeben sein. Anzahl und Reihenfolge der
aktuellen Parameter entsprechen den formalen.




Computer
(DO 22 P rTvr

Benutzeranleitung Full-PASCAL Seite 66

Beispiel:

PROGRAM TESTC;

TYPE T = 0..9;

PROCEDURE P1 (X:T; Y:REAL); (¥WERTPARAMETER:
TYPIDENTITAET MIT DER
TYPENLISTE VON
PROZEDUR PX¥)

BEGIN

END;
PROCEDUR P2 (XX:T; YY:REAL); (*WERTPARAMTER:
TYPIDENTITAET MIT DER
TYPENLISTE VON
PROZEDUR PX¥)

BEGIN

END;
PROCEDURE P3 (PROCEDURE PX (T,REAL)); (¥*¥FORMALE
PROZEDUR PX#¥)
(¥DIE TYPEN T UND REAL HINTER DER
FORMALEN PROZEDUR PX STELLEN DTE
TYPENLISTE FUER DIE "FORMALEN FORMALEN
PARAMETER" DER EINZUSETZENDEN
PROZEDUREN P1 und P2 DAR¥)
VAR V1:T; V2:REAL;
BEGIN

V1 2;
V2 1.5;
PX (V1, V2);

END;
BEGIN (*HAUPTPROGRAMM#)

P3 (P1); (¥ AKTUELLE PROZEDUR P1%)
P3 (P2); (¥ AKTUELLE PROZEDUR P2%)
END.




3.6.3.4.

Computer
A SVSTEME]

Benutzeranleitung Full-PASCAL Seite 67

Funktions-Parameter

Die formalen Parameter bezeichnen eine oder mehrere
Funktionen mit Namen, die von den aktuellen
Funktionen widhrend der Aktivierung des aufzurufenden
Blocks reprisentiert werden.

Abweichend von 3tandard-PASCAL 1ist es in der hier
beschriebenen Implementierung mdglich, hinter dem
Funktionsparameternamen Typen (Tvypenliste)
aufzufihren,die fur formale Paraaeter(forumale

tormale Paraueter)der einzusetzenden Funktionen
stenen.

So ist bereits zur Ubersetzungszeit eine vollstidndige
Uberprifung der Parameteriibergabe mdglich.

Funktionen, die Parameter von anderen Prozeduren und
Funktionen sind, dirfen nur Wertparameter beinhalten.
Der aktuelle Parameter muR ein Funktionsname sein.

Aktuelle und formale Funktion miissen identische
Parameter- und Ergebnis-Typen haben (vgl. 3.4.5).




Computer
[DIETTZZ P v

Benutzeranleitung Full-PASCAL Seite 68

Beispiel

(*ES GELTEN ENTSPRECHENDE ANFORDERUNGEN WIE IM
PROZEDURBEISPIEL.¥)

PROGRAM TESTD;
FUNCTION F1 (X,Y: INTEGER) : REAL;
BEGIN

END;
FUNCTION F2 (FUNCTION FX(INTEGER,INTEGER) :REAL;
(*FORMALE FUNKTION FX¥)
VAR V10,V11:REAL;
BEGIN
V10
V11 = 35
FX (V10,V11);

13

END;
BEGIN (*HAUPTPROGRAMM¥)

F2 (F1); (¥ AKTUELLE FUNKTION F1%)

END.




3.6.3.5.

Computer
LUBZ Sy STEME|

Benutzeranleitung Full-PASCAL Seite 69

Gegeniliberstellung der Parameteriibergabe-Formen

Daten kdnnen nur aus dem Hauptprogramm an die
Prozedur oder Funktion abgegeben werden (vgl.
3.6.3.1).

Bei Parametern strukturierten Typs (z.B. Satz-Typ)
wdchst die Ubergabezeit mit dem Umfang der
Speicherbelegung, da das gesamte Datenfeld in die
Funktion bzw. in die Prozedur kopiert wird. Das wirkt
sich nachteilig auf die Laufzeit und die
Speicherplatzbelegung aus.

Adressiibergabe (call by reference)

Bei Variablenparametern (vgl. 3.6.3.2) werden
demgegeniliber Kkeine Speicherinhalte ilibergeben sondern
die Adressen der aktuellen Parameter.

Die Daten kdnnen sowohl vom aufrufenden zum gerufenen
Programm wie umgekehrt ibergeben werden
(bidirektionale Ubergabe). Die Veridnderung globaler
Daten ist zu vermeiden.

Namensiibergabe (call by name)

- ——— - - ——— - ——— —————————

Es ist m&glich, beliebige Funktionen als aktuelle
Parameter an die Stelle des formalen Funktionsnamens
einzusetzen, sofern die Zuordnungsvertridglichkeit
(identische Parameter- und Ergebnistypen)
gewdhrleistet ist {(vgl. 3.5.3.4).




3.6.4.

3.6.4.1.

Computer
D2 SYSTEME]

Benutzeranleitung Full-PASCAL Seite 70

Standard-Prozeduren

Bestimmte, hdufiger einsetzbare Anwelisungsfolgen sind
in PASCAL standardmdBig vorgesehen; sie gelten in
Jjedem Programm als deklarierte Prozeduren.
Standard-Prozeduren dirfen nicht als aktuelle
Prozedur-Parameter ilibergeben werden.

Prozeduren zur Dateiverarbeitung (file - handling

-—— . - - —— - - -

Die Prozeduren zur Dateiverarbeitung lassen sich von
ihrer Funktionsweise her in zwei Bereiche gliedern:

- Dateiverwaltung
- Dateizugriff

Datei-
REWRITE name )

Gerdteart Gerdte- Physikali- Physikali-
nummer scher sche
Dateiname Lénge

(file (device type) (device (file name) (1length)
identifier) number)




s i e

Computer
(DIETZ Py v

Benutzeranleitung Full-PASCAL Seite 71

Prozeduren zur Dateiverwaltung:

a) Offnen einer Datei fiir Schreibzugriff

Beim Geridteeinsatz unterscheidet man
fiir Geriteart (device type):
0 SLI-Gerit (seriell-line-interface)
z.B. Drucker)

1 Platte

2 SchlieBen Datei

Keine An- Es wird "1" (= Platte) eingesetzt
gabe

(Default)

fir Geritenummer (device number):

Es wird Jjeweills die logische Geridtenumumer
(Device-Nr.) angeben. Wenn die Angabe fehlt,
(default) wird das Gerdt "O" eingesetzt.

Wenn andere Geridte als die Platte "0O" verwendet
werden sollen, dann miissen Geriteart- und nummer
angegeben werden.

Die Prozedur REWRITE o&ffnet eine Datei flir den
Schreibzugriff und muB vor Beschreiben ausgefihrt
werden. Ist die Datei Dbereits vorhanden, wird sie
geldscht wund neu angelegt; anderenfalls wird die
Datei nur angelegt.

Nach Ausfihrung von REWRITE hat die Standard-Funktion
EOF (Dateiname) (vgl. 3.6.4.3) den Wert TRUE. Die
Prozedur REWRITE darf nicht auf die Standard-Dateien
INPUT und OUTPUT angewendet werden (vgl. 6).

Die physikalische Linge wird in Sektoren (1 Sektor =
128 Byte) angegeben. Fehlt diese Angabe, wird eine
Datei mit 512 Sektoren physikalischer Lidnge angelegt.
Max imal sind 65535 Sektoren mdglich. Der

physikalische Dateiname muR 6 Zeichen lang sein; er
kann als Variavle vereinoart werden oder unuictelpar

als Konstante (in Hochkommata) eingesetzt werden.

Die Parameter (Gerdteart, Gerdtenummer,
Physikalischer Dateiname, Physikalische Ldnge) werden
vom Compiler darauf lberprift, ob es sich uu
"Ordnungstypen" bzw. beim physikalischen Datcinamen
um eine "6-Bvte lange Zeichenkette" handelt.
Dariberhinaus muf der Programmierer auf die
Zuldassigkeit der Ziffern und Zeichen achten.




Computer
[DiETZ SYSTEME]|

Benutzeranleitung Full-PASCAL Seite T2

b) Offnen einer Datei flir Lesezugriff

— Datei- N ST
A-—-Quasy:r ( name {) }{)_,

Gerdte- Fhysikall-
Gerateart nummer scher
Dateiname

(file (device type) (device number) (file name)
identifier)

Mit der Prozedur RESET (Dateiname) wird die
aktuelle Lese- Position auf Dateianfang gesetzt
und der Wert der ersten Dateikomponente der
Puffervariablen zugewiesen. Im Gegensatz 2zu
REWRITE (Dateiname) wird sofort implizit gelesen
(Ausnahme Textdateien, vgl. 6); beim ersten
Zugriff ist eine gesonderte Leseprozedur somit
nicht erforderlich.

Im gleichen Zusammenhang wird die Standardfunktion
EOF (Dateiname) (vgl. 3.6.4.6 Priadikate) im
booleschen Sinn auf unwahr (=FALSE) gesetzt. Bei
leerer Datei bleibt die Puffervariable undefiniert
und EOF ist wahr (=TRUE).

Fir die Parameter (Gerdteart, Gerdtenummer,
Physikalischer Dateiname) gelten die gleichen
Vereinbarungen wie beim REWRITE. Die Angabe der
physikalischen Linge (length) ist ©bei "RESET"
nicht vorgesehen. .

Bei Textdateien (vgl. 6) 1ist der Lesezugriff
abweichend implementiert. Die Puffervariable
erhdlt keine automatische. Zuweisung. RESET
(Dateiname) setzt die aktuelle Position auf den
Dateianfang und SOR (Dateiname) auf "TRUE" (vgl.
3.6.4.6 Pridikate).

Die Anwendung der Prozedur RESET 1ist bel den
Standard-Dateien INPUT und OUTPUT verboten.




Computer
DIETZ SYSTEME]|

Benutzeranleitung Full-PASCAL Seite 73

Proieduren zum Dateizugriff:

a) Schreibzugriff

Mit der Prozedur RUT (Dateiname) wird

der

unmittelbare Schreibvorgang ausgeldst, sofern er
mit REWRITE eingeleitet wurde (zwingende

Voraussetzung) .

Wenn vor der Ausfiihrung von PUT die Puffervariable
am Dateiende "Priddikat EOF (Dateiname) ist wahr"

(vgl. 3.6.4.6) steht, so wird der Wert

Puffervariablen hinzugefigt.

Beispiel:

PROGRAM SCHREIBEN (INPUT,BEWERBER);

TYPE AUSBILDUNG = RECORD SCHULBILDUNG:ARRAY |1.

OF CHAR;
BERUFSBILDUNG:ARRAY D.
OF CHAR;
END;
VAR BEWERBER : FILE OF AUSBILDUNG;
PERSON : AUSBILDUNG;

BEGIN

REWRITE (BEWERBER);

BEWERBER := PERSON;
PUT (BEWERBER);

END.

der

.50]
.5@]




v Computer
[DIETTZZ s vy

Benutzeranleitung Full-PASCAL Seite TU

Der 1Inhalt der Puffervariablen BEWERBER steht
jetzt am Ende der Datei BEWERBER. Nach
Durchfiihrung dieser Standardprozedur ist der Wert
der Puffervariablen unbestimmt, wdhrend das
Pridikat EOF (Dateiname) filir die erweiterte Datei
wiederum wahr ist.

Falls EOF (Dateiname) vor der Ausfithrung falsch
ist, erfolgt das Setzen des Prddikats.

IOERROR (Dateiname) auf TRUE (vgl. 3.6.4.6)

Hiermit werden Eingabe-, Ausgabefehler
gekennzeichnet (input - output - error), die vom
Programmierer abgefragt werden kdnnen.

Bei Textdateien (vgl. 6) wird mit der Prozedur
BREAK (Dateiname) eine unmittclbare Ausgabe des
Puffers bewirkt. Das gilt sowohl beil Magnetplatten
wie ©bei SLI-Gerdten. Diese Moglichkeit ist bpeil
Standard-PASCAL nicht vorgesehen.




Computer
[DOETTZZ e TS

Benutzeranleitung Full-PASCAL Seite 75

b) Lesezugriff

Mit der Prozedur GET (Dateiname) wird der
unmittelbare Lesevorgang (Puffervariable erhdlt
Zuweisung) ausgeldst, sofern ein "RESET" vorher
erfolgt ist (zwingende Voraussetzung).

Da der erste Lesevorgang im "RESET" eingeschlossen
ist, wird die aktuelle Datei-Position auf die
ndchste Komponente gesetzt und der Wert dieser
Komponente der Puffer-Variablen zugewiesen.
Voraussetzung ist, daR® EOF (Dateiname) vor der
Ausfiihrung von "GET" unwahr (=FALSE) ist (vgl.
3.5.5.3 Prddikate).

Falls EOF (Dateiname) = TRUE ist, erfolgt das
Setzen des Priddikats.

IOERROR (Dateiname) auf TRUE (vgl. 3.6.4.6)

Hiermit werden Eingabe-, Ausgabefehler
gekennzeichnet (input-, output-error), die vom
Programmierer abgefragt werden kdnnen. Am
Dateiende wird damit der Lesevorgang
abgeschlossen.

Bei Textdateien, die zum Lesezugriff erdffnet
werden, muB die Zuweisung der ersten Komponente an
die Puffervariable mit einem "GET" erfolgen, das
dann auch SOR (F) zuriicksetzt (=FALSE) (vgl.
3.6.4.6).




Computer
U2 o\ s 1eME

Benutzeranleitung Full-PASCAL Seite T6

Beispiel:

In diesem Beispiel wird angedeutet, wie man mit den
Dateiverwal tungsprozeduren arbeiten kann.

Es geht darum, daf eine Datel alphabetisch in eine
andere sortiert wird. Folgende Dateien liegen auf der
Platte vor und haben die physikalischen Dateinamen
KUNDEN, VLIEFER wund PERSON. Die Dateien KUNDEN und
LIEFER sollen in vorgesehener Sortierung nach PERSON
gebracht werden.

Innerhalb des Sortierprogrammes TSORT soll eine frei
vereinbarte Prozedur SORTIER diese Aufgabe erfillen.
Sie wird hier nicht ndher beschrieben. Sie verwendet
folgende Dateien:

logischer physikalischer

Dateiname Dateiname
Quelldatei QUELLE ABGABE
Zieldatei ZIEL ERHALT

Der Einfachheit halber wird angenommen, daf die
Besonderheiten der Behandlung von Textdateien
innerhalb der Prozedur SORTIER enthalten seien. Das
betrifft die Abfrage SOR (DATEINAME) = TRUE und das
zusdtzlich erforderliche GET (DATEINAMEN).




Benutzeranleitung Full-PASCAL

Computer
DIETZ SYSTEME

PROGRAM TESTSORT (QUELLE, ZIEL);

TYPE ADRESSE = RECORD NAMEN : ARRAY [1..4q OF

ANSCHRIFT: ARRAY D..6@ OF
END;

)
VAR QUELLE,ZIEL : FILE OF ADRESSE;

BEGIN

RESET (QUELLE, 1,0, "KUNDEN");
REWRITE (ZIEL,1,0, PERSON");
SORTIER (QUELLE,ZIEL);

(¥ HIERBEI WIRD DEUTLICH, WIE MAN DEN PARAMETER
"PHYSIKALISCHER DATEINAME" FUER BESTIMMTE
VERARBEITUNGEN NUTZEN KANN! #%)

RESET (QUELLE, 1,0, LIEFER’);
REWRITE (ZIEL,1,0, PERSON’);
SORTIER (QUELLE,ZIEL);

Seite TT7

CHAR;
CHAR;




3.6.4.2.

Computer
DIETZ ey N

Benutzeranleitung Full-PASCAL Seite 78

Prozeduren zur Erzeugung dynamischer Variablen

Bei der Besprechung von Zeiger-Variablen und
Referenzierten Variablen (vgl. 3.4.3) wurde die
Anlage von dynamischen Variablen bereits dargestellt.

a) Anlage von dynamischen Variablen

Die Standardprozedur NEW (Zeigervariable) legt auf
der Halde (heap) Platz fir eine "Referenzierte
Variable" an und weist der dazugehdrigen
Zeigervariablen deren Adresse zu.

Unter Halde (heap) ist ein Speicherbereich fir die
Ablage von Variablen zZu verstehen, deren
Lebensdauer nur dynamisch bestimmt ist.

"Halde" Die "Referenzierten
Variablen" (ZA",ZB",ZC")
werden in der Reihenfolge

- ihrer Erzeugung abgelegt.
ZC—=ZC".I:= 75 [4-HZ Beliebiger Zugriff ist

ZB—»ZB* . I:=100 iber im Programm verein-
— barte Zeigervariablen
ZA—»ZB" .1:= 50 (ZA,ZB,ZC) mdglich.

Dariiberhinaus gibt es einen "Haldenzeiger" (HZ),
der vom PASCAL-Laufzeitsystem verwaltet wird und
jeweils auf die zuletzt angelegte Variable zeigt.




Computer
[DIET ZZ ey N

Benutzeranleitung Full-PASCAL Seite 79

Beispiel:

TYPE T = RECORD I : INTEGER;
END;
VAR ZA,ZB,ZC

~

T;

NEW (ZA); (* ADRESSE FUER
"REFERENZIERTE VARIABLE"
WIRD ZUGEWIESEN UND ALS PLATZ AUF DER
"HALDE" ANGELEGT. ¥)

ZA®.I : = 50; (¥ ZUWEISUNG AN DIE "REFERENZIERTE
VARIABLE" %)

100;

NEW (ZB); ZB".I
I 755

NEW (zC); zC~.




Computer
A SYSTEME]

Benutzeranleitung Full-PASCAL Seite 80

Anlage von Varianten-Satztyp-Variablen

Weiterhin ist es mdglich, Satztypvarianten (vgl.
3.4.2.2) zu erzeugen. Die Auswahlmarken miissen in der
Reihenfolge ihrer Definition aufgefihrt werden. Sie
kbnnen von hinten nach vorn weggelassen werden und
erhalten dann den Wert "NIL". Dieses Schliisselwort
besagt, daR die Zeigervariable auf keine Variable
gerichtet ist und stellt insofern eine
Standardkonstante dar.

Beispiel:

——— o ———

TYPE ST = RECORD CASE BO : BOOLEAN OF
TRUE : (A,B,C : CHAR);
FALSE: (X,Y,Z : INTEGER);
END;
VAR VSZ  : ST;

NEW (VSZ, TRUE);
VSZ™.A := “A7;

.

Anlage von Bereichstyp-Variablen

- ———— - - . . - - —— - - - - o= - —— -

Wenn die "Referenzierte Variable" ein Bereichstyp
(vgl. 3.4.2.1) 1ist, gilt folgende Schreibweise (in
Standard-PASCAL nicht vorgesehen):

TYPE BT

ARRAY [0..99] OF INTEGER;
VAR VBZ

ABT; -

NEW (VBZ,50); (*MIT DIESER DARSTELLUNG WIRD
DER URSPRUENGLICH DEFINIERTE
BEREICH EINGESCHRAENKT ¥)

VBz® [45] := 250: (¥ZUWEISUNG AN DER STELLE 45¥)




s

Computer
4 SSTEME
Benutzeranleitung Full-PASCAL Seite 81
Analog dazu ist die Konstruktion von

mehrdimensionalen Bereichs-Variablen:

TYPE MBT = ARRAY [O..99, 0..49! OF INTEGER;
(*ZWEIDIMENSIONALER BEREICHSTYP¥)
VAR VTAB : "MBT;
(¥*ENTSPRICHT EINER TABELLE MIT
100 ZEILEN UND 50 SPALTEN BZW.
50 ZEILEN UND 100 SPALTEN.¥)

BEGIN
NEW (VTAB);
VTAB" [1,5j := 1600; (*¥ZUWEISUNG IN ZEILE 1,

SPALTE 5%)
Es ist darauf hinzuweisen, daR die mit "NEW"
erzeugten "Referenzierten Variablen" vom
Varianten-Satztyp und vom Bereichstyp nicht als
aktuelle Parameter {ibergeben werden dirfen. Auch

kdnnen sie nicht als Variable in einer Zuweisung oder
als Operand in einem Ausdruck stehen. Im Ubersetzer
kann keine Priifung erfolgen, die feststellt, mit
welchen Komponenten die Variable erzeugt wurde.

Wohlgemerkt kann ein durch Dereferenzierung,
Indizierung und Selektion bestimmter Teil einer
erzeugten Variablen sehr wohl diese Anforderungen
erfiillen - nur die Variable insgesamt nicht.




Computer
LUBIZ Sy sTEME

Benutzeranleitung Full-PASCAL Seite 82

BEISPIEL FUR DIE ERZEUGUNG DYNAMISCHER VARIABLEN

- —————— - ———— - - ——— — — — ——— ———— - — - —— - — —— — = o

Unter Zeigervariablen (vgl. 3.5.3) haben wir als
Beispiel ©b) fiir die Erzeugung dynamischer Variablen

"Mehrfachdeklarationen" gebracht. Umstindlich ist
dort die langwierige Verkettung durch
Namensverkniipfung (Satzselektoren) und
Derefernzierung. Im folgenden wird das gleiche

Beispiel mit einer verkiirzten Konstruktion gebracht:

PROGRAM MEHRFACHDEKLARATION;
TYPE ELEMENTZEIGER = "LISTENELEMENT;
LISTENELEMENT = RECORD .
NAME:ARRAY [0..l4[OF CHAR;
VERKETTUNG : ELEMENTZEIGER
END;
VAR ANKER : ELEMENTZEIGER;
HILFA : ELEMENTZEIGER;
HILFB : ELEMENTZEIGER;
(* DIE VARIABLEN "HILFA" UND "HILFB"
DIENEN ALS ZWISCHENSPEICHER FUER
EINE PERMANENTE VERKETTUNG. *)

BEGIN

NEW (ANKER);

ANKER™ .NAME:= “ANTON";

NEW (HILFA);

HILFA”™ .NAME:= “BERTA";

ANKER” .VERKETTUNG:=HILFA; (*VERKETTUNG¥)

NEW (HILFB);

HILFB” .NAME:="COSTA ;

HILFA" .VERKETTUNG:=HILFB; (*¥VERKETTUNG¥)

HILFA:= HILFB; (*¥UMBESETZUNG#)

NEW (HILFB); , )

HILFB.NAME:= DCRIS

HILFA" .VERKETTUNG:=HILFB; (*¥VERKETTUNG¥)
(¥ MIT DER UMBESETZUNG KANN
DIE EINFUEHRUNG NEUER
VARIABLEN BELIEBIG WIEDER-
HOLT WERDEN ¥)

HILFB” .VERKETTUNG:= NIL; (*ENDE-BEDINGUNG#)

END;




Computer
[DIETTZZ ey W

Benutzeranleitung Full-PASCAL Seite 83

Die im Beispiel dargestellte Erzeugung von
Variablen ist insofern uniiblich, als im wirklichen
Anwendungsfall die Namen eingelesen werden und der
Erzeugungsvorgang mit einer Schleife erfolgt. Es
kam hierauf an, das Prinzipielle bei dem Einsatz
der Standardprozedur "NEW" zu verdeutlichen.

b) Haldenverwaltung

Die stdndige Generierung neuer Variablen kann zu
einem Uberlauf fiihren, weil angelegte Variablen
auch dann weiterbestehen, wenn sie nicht mehr
gebraucht werden.

Umn diesen Platz im Programm mit anderen Variablen
belegen Zu kdnnen, bedarf es einer
Speicherbereinigung. Der hier gewdhlte Weg legt
bereits Dbei der Deklaration einer Variablen fest,
ob und wann der Speicherplatz einer Variablen
freizugeben ist.

"Halde"

78—

~+—HZp  MARK (25);

27—

76—

Diese Prozedur weist den Stand des
Haldenzeigers (HZIM) der Zeiger-

Z5—m]

. 17 variablen (Z5) die vom Typ Ganzzahl

Zl4—]

M (INTEGER) sein muB, zu. D.h., von
dieser Adresse an kdnnen die

73—

"Referenzierten Variablen" Z5 bis

72—

Z8 freigegeben werden.

Z |~

RELEASE (Z8);

- ——— - - —

Diese Prozedur gibt die Adressen Z5 bis Z8 frei;
sie werden bei der Erzeugung neuer Variablen
wieder vergeben, die 1Inhalte der urspriinglich
"Referenzierten Variablen" sind dann nicht mehr
verfiigbar.

Geht einem "RELEASE" Kkein "MARK" voraus, werden
alle Adressen der Halde freigegeben. Der
Ubersetzer prift nicht, ob ein "MARK"
vorangegangen 1ist.




S Computer
[DIET 22 ey v

Benutzeranleitung Full-PASCAL Seite 84
Diese Prozeduren wurden anstelle der - in
Standard-PASCAL vorgesehenen Prozedur DISPOSE

implementiert. Da die Programmlogik oftmals nicht
ohne weiteres bis 1ins Letzte einsichtig wird, ist
Vorsicht geboten. Es muB exakt lberpriift werden, ob
angelegte Variable tatsidchlich nicht mehr im
Programmablauf bendtigt werden.




3.6.4.3.

3.6.4.4,

Computer
O SvSTEME|

Benutzeranleitung Full-PASCAL Seite 85

Standardfunktionen

Bestimmte, hiufiger einsetzbare Funktionen sind in

PASCAL standardmdfig vorgesehen; sie gelten in Jjedem
Programm als deklarierte Standardfunktionen und
dirfen nicht als aktuelle Funktions-Parameter

ibergeben werden.

Arithmetische Funktionen

Es handelt sich um Standardfunktionen, die
mathematische Funktionen l1ldsen oder Werte eines Typs
in Werte eines anderen Typs umwandeln. Folgende

"arithmetische Funktionen" sind vorgesehen:

Funktion Parameter- Ergebnis- Bemerkung
typ typ
INTEGER INTEGER Absolutwert
ABS(X) REAL REAL von X
INTEGER INTEGER 2
SQR(X) REAL REAL X
SIN(X) INTEGER REAL X im Bogenma®
REAL
COS(X) INTEGER REAL X im BogenmaB
REAL
EXP(X) INTEGER REAL . X X
REAL e = (2,718281828 )
LN(X) INTEGER REAL Logarithmus zur
REAL Basis e bei x > 0
SQRT(X) INTEGER REAL Quadratwurzel (ijgj)
REAL bei x > 0 '
ARCTAN(X) INTEGER REAL Arcustangens von X
REAL

Der Benutzer kann diese Standardfunktionen mit ihremn
Namen aufrufen und einsetzen, ohne daR zusdtzliche
Vereinbarungen getroffen werden miissen.




3.6.4.5.

Computer

[DIETZ SYSTEME
Benutzeranleitung Full-PASCAL Seite 86
Funktionen fir Ganzzahlen
Diesen Standardfunktionen 1st gemeinsam, daR ihr
Ergebnistyp mit einer Ausnahme immer "INTEGER" ist.

Bei ORD(X) muR der Parametertyp "INTEGER" sein.

Funktion

Parametertyp

Bemerkung

TRUNC(X)

ROUND(X)

REAL
(INTEGER ist
moglich,
aber nicht
sinnvoll)

REAL
(INTEGER ist
moéglich,
aber nicht
sinnvoll)

Es wird der ganzzahiigec Anteil

von X geliefert/z.B.TRUNC (6.3)

=6. Bei eingeschalteter Kon-
trollfunktion (check option)
erfolgt eine Fehlermeldung,
wenn der Bereich der darstell-
baren Ganzzahlen (MININT bis
MAXINT) lberschritten wird.

Es wird im mathematischen

Sinne auf- bzw. abgerundet.
Z.B.:

ROUND (3.6) = U4

ROUND (3.4) = 3

Tatsichlich setzt der Compiler
den Aufruf in eine "TRUNC"-
Funktion um:

Fir X > = 0 gilt ROUND (X) =
TRUNC (X+0.5)

z.B.:

X = 3.6

TRUNC (3.6 + 0.5) = 4

X = 3.4

TRUNC (3.4 + 0.5) = 3

Fir X < 0 gilt ROUND (X) =
TRUNC (X-0.5)

z.B.:

X = =4.2

TRUNC (=4.2 - 0.5) ==4




Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 37

Funktion

-—— - - ——

Parametertyp Bemerkung

- . . - - - - . —— - . - D =D w8 = . - . . n T . . G - . -

X muR ein Ausdruck von einem
Ordnungstyp sein. INTEGER ist
méglich, aber nicht sinnvoll.

BOOLEAN Flir FALSE wird 0, flir TRUE
1 ausgedriickt.
z.B. ORD(FALSE) = 0

CHAR Das Ergebnis ist der dezimale
Ganzzahlwert vom ASCII-CODE.
z.B. ORD(A") = 65

Aufzdhlungs- Man erhdlt Ganzzahlen, die
typen sich aus der Reihenfolge der
Vereinbarung ausgehend von
0 positiv zdhlend ergeben.

zZ.B.:

VAR FAMILIENSTAND : (LEDIG,VERHEIRATET
GESCHIEDEN, VERWITWET);
EHESTAND : 0..3;
BEGIN

FAMILIENSTAND := GESCHIEDEN; |
EHESTAND := ORD (FAMILIENSTAND);
(* DIE GANZZAHL 2 WURDE DER VARIABLEN
EHESTAND ZUGEWIESEN #¥)

END.




[DIETZ

Computer
SYSTEME|

Benutzeranleitung Full-PASCAL Seite 88

Funktion

Parametertyp

Bemerkung

- — - —————————— - — - . . - M D WS WD S . . - - — . - e . - . . - w——

CHR(X)

SuccC(X)

PRED(X)

INTEGER

INTEGER
BOOLEAN

CHAR
Aufzdhlungs-
typen

INTEGER
BOOLEAN

CHAR
Aufzihlungs-
typen

Es wird ein ganzzahliger Wert
von 0 bis 255 erwartet. Beil
eingeschalteter Kontrollfunk-
tion (check option) erfolgt
eine Fehlermeldung, wenn der
Parameter nicht in diesen
Bereich liegt. Als Ergebnis
wird das entsprechende ASCII-
Code-Zeichen bereitgestellt.

!

z.B. CHR(65) ='A'

Insoweit entspricht diese
Funktion der Umkehrung von

ORD(X) beim Parametertyp "CHAR".

Der eingegebene Ausdruck vom
bezeichneten Ordnungstyp wird
um 1 erhdht und ergibt so die
Nachfolgezahl in der Zdhlreihe
(Nachfolger/successor) .

z.B. SUCC(A") = "B’

Der eingegebene Ausdruck vom
bezeichneten Ordnungstyp wird
um 1 reduziert und ergibt so
den Vorgidnger (predecessor)
in der Zdhlreihe.

z.B. PRED(TRUE) = FALSE




e

3.6.4.6.

Computer
[DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 89

Pridikate (predicates)

Es handelt sich um Standardfunktionen, die eine
Aussage (Prddikat) im Sinne der 2zugrundeliegenden

Logik 1liefern (Prddikatenlogik). Sie werden daher
auch "logische Standardfunktionen" genannt. Dabeil
werden in einem Vergleich bestimmte Bedingungen

geprift wund mit dem "booleschen Priddikat" "TRUE"
angezeigt, wenn sie zutreffen; anderenfalls erhalten
sie den Wert "FALSE".

Funktion 1logischer Bemerkungen

Wert
ODD(X) TRUE Der Wert des Ganzzahlausdrucks
X ist ungerade.
FALSE Der Wert des Ganzzahlausdrucks

X 1st gerade.




Computer
DU o\ s TEVE|

Benutzeranleitung Full-PASCAL Seite 90

Beispiel:

Die Funktion soll innerhalb einer Abfrage
dazu eingesetzt werden, um eingelesene In-
formationen bestimmten Kategorien zuzu-
weisen.

VAR FAHRZEUG: (KRAD,FAHRRAD, PKW,ANHANGER, LKW,
PFERDEFUHRWERK) ;

BEGIN _

(¥ BEI EINER VERKEHRSZAHLUNG WERDEN FAHRZEUG-

ARTEN EINGEGEBEN. MIT EINER IF-ABFRAGE WIRD

NMACH MOTORFAHRZEUGEN UND NICHTMOTORFAHRZEUGEN

UNTERSCHIEDEN ¥)

IF ODD (ORD (FAHRZEUG)) THEN

(¥ "ORD" WEIST GANZZAHLEN ZU. DIE DEKLARATION
WAR SO ANGELEGT, DASS GERADE ZAHLEN
MOTORISIERTE FAHRZEUGE KENNZEICHNEN UND
UNGERADE NICHTMOTORISIERTE. WENN ODD
(FAHRZEUG)=TRUE, DANN ERFULLT SICH DER
PROGRAMMTEIL NACH "THEN", ANSONSTEN DERJENIGE
NACH "ELSE". ¥)

BEGIN
END
ELSE
BEGIN
enn.




Computer
DIIETr 22 v N

Benutzeranleitung Full-PASCAL Seite 91

Funktion

logischer Benerkungen
Wert

TRUE Die Puffervariable ist am Datei-
ende positioniert.

FALSE Die Puffervariable ist nicht am
Dateiende positioniert. Wenn die
Parameterliste fehlt, wird die
Funktion auf die Standarddatei
"INPUT" bezogen und entspricht
EOF (INPUT).

Hinsichtlich der Anwendungsmdg-
lichkeiten ist auf die Prozeduren
zur Dateiverarbeitung (vgl.
3.5.4.1) zu verweisen.

Beispiel:
Ebenso 1l4R8t sich "EOF" als Abfrage sinn-
voll im Programm einsetzen.

VAR A : FILE OF INTEGER;
BEGIN
IF EOF (A) THEN
(* PROGRAMMTEIL FUER EOF (A) = TRUE#)
BEGIN

(¥Z.B. SCHREIBPROZEDUR MIT
"REWRITE" UND "PUT"#)

END
ELSE
(*PROGRAMMTEIL FUER EOF (A)=FALSE¥)
BEGIN '
(¥Z.B. LESEPROZEDUR MIT "RESET"
UND "GET"#)
END

END.




Computer
[DIETr 22 ey FNTE

Benutzeranleitung Full-PASCAL Seite 92

Funktion logischer Bemerkungen

Wert

- - - —— - = - . M S = W = - - . - M - —— - - - —— - w— -

Diese Funktion ist ausschlieBlich

(Datei- auf Textdateien anzuwenden (FILE

name)

OF CHAR).

TRUE Die Puffervariable hat das Ende
einer Zeile erreicht.

FALSE Pie Puffervariable hat das Ende
einer Zeile nicht erreicht. Wenn
die Parameterliste fehlt, wird
die Funktion auf die Standard-
daten "INPUT" bezogen und ent-
spricht "EOLN (INPUT)".

Beispiel:

Die Abfrage "EOLN (DATEINAME)" ist u.a.
dann sinnvoll, wenn beim zeichenweisen
Lesen oder 3Schreiben das Zeilenende er-
reicht wird und danach eine spezifische
Verarbeitung stattfinden soll. So kann
z.B. nach jeder geschriebenen Zeile eine
Leerzeile vorgesehen werden:

VAR DATEI : FILE OF CHAR;

BEGIN
REWRITE (DATEI);

IF EOLN (DATEI) THEN WRITELN (DATEI) -
(¥ MIT "WRITELN (DATEI)" OHNE WEITERE
ERGANZUNG WIRD EINE LEERZEILE
EINGEFUGT. #)

ELSE (* SCHREIBEN IN DIE DATEI #)

END.




Computer
[DIIETr 22 v

Benutzeranleitung Full-PASCAL Seite 93

Die ©beiden folgenden Funktionen IOERROR (Dateiname)
und SOR (Dateiname) betreffen ebenfalls die
Dateiverarbeitung. Sie gehdren nicht zum Sprachumfang
von Standard-PASCAL.

Funktion logischer Bemerkungen
Wert
IOERROR TRUE Es wird ein Ein-/Ausgabefehler
(Datei- angezeigt.
name) ‘

FALSE Es liegt kein Eingabe- oder
Ausgabefehler vor.
Wird auf "IOERROR" abgefragt,
lassen sich Eingabe-, Ausgabe-
fehler im Dialog erfassen
(vgl. 3.6.4.1).

SOR Diese Standardfunktion ist
(Datei- lediglich im Zusammenhang mit
name) dem Lesen von Textdateien zu
3 verwenden (vgl. 3.6.4.1).

. TRUE Die Puffervariable hat keinen
i definierten Wert.

FALSE Die Puffervariable hat einen
definierten Wert.
"SOR" ohne Dateinamen bezieht
sich auf die Standarddatei
"INPUT" und entspricht somit
"SOR (INPUT)".

e o : .




3.6.4.7.

Computer
[DIETTZZ e T

Benutzeranleitung Full-PASCAL Seite 94

Initialisierungsprozeduren

- — - — - - —————— t— - -

Diese Prozeduren sind nicht 1in Standard-PASCAL
enthalten. Es genht darum, Daten des Hauptprogrammes
bzw. eines Moduls (selbstindige Programmteile, die
noch nicht 2zu einem ablauffdhigen Programm gebunden
sind) zur ibersetzungszeit vorzubesetzen
(Initialisierung), um Speicherplatz zu sparen.

:

,@ITPROCEDUR 3

Variablen-
name Konstante END

Zuordnung (assignment)

Beispiel:

VAR FELD1, FELD2 : INTEGER;

INITPROCEDURE;
BEGIN .
FELD1 := 0; (* BESETZUNG MIT 0 ¥)
FELD2 := 1; (¥ BESETZUNG MIT 1 #)
END; .

Die Zuweisung auf die Variable darf nur konstante
Selektoren enthalten, d.h. variable Selektoren sind
nicht zugelassen.




s i

e

Computer
[DIET 22 P Fv

Benutzeranleitung Full-PASCAL Seite 95

Beispiel: Bereichsselektion (Indizierung)

TYPE TEXT = ARRAY 0..8, OF CHAR;

VAR JAHRESZEIT : ARRAY [1..4] OF TEXT;

INITPROCEDURE;

BEGIN

JAHRESZEIT -1] : = ‘FRUEHLING';
JAHRESZEIT [2] : = “SOMMER”;
JAHRESZEIT [33 : = “HERBST';
JAHRESZEIT (42 : = “WINTER';

END;

(¥ Bei buchstabenweiser Ubertragung wird
folgendermaRen selektiert:

i nlid %N\

JAHRESZeIT [1,0] t= "F7; #)
Fir Satzselektion (Namensverkniipfung) und
Verbindungen beider Selektionsarten gilt entsprechendes.

Auch Variablen vom Mengentyp (set type) kann man mit
Konstanten vorbesetzen.

Beispiel:

TYPE STATUS = (BESTAND, NEUANLAGE, AENDERUNG,
SPERRUNG, LOESCHUNG); '
VAR SATZZUSTAND : SET OF STATUS;
INITPROCEDURE
BEGIN
SATZZUSTAND := [BESTAND . LOESCHUN@],
END; -




Computer
A SVSTEME|

Benutzeranleitung Full-PASCAL Seite 956

Ausfiihrungsteil (statement part)

- - - — - —— - - . . - . = —— e - — - -

Unter 3. wurde der Vereinbarungsteil beschrieben. Ein
Programnm oder Unterprogramm (Prozedur, Funktion)
besteht meistens aus zwel Teilen, nimlich dem
Vereinbarungsteil und dem Ausfilhrungsteil
(Anweisungsteil/statement part), wobei der
Vereinbarungsteil fehlen darf.

Der Ausfiihrungsteil bestimmt mit seinen Anweisungen
algorithmische Aktionen, mit denen die im
Vereinbarungsteil bezeichneten Daten verarbeitet
werden. Man unterscheidet Operanden und Ausdriicke
(vgl. 4.1), die zusammen mit Befehlen die
eigentlichen Anweisungen bilden.

Die Abgrenzung der Begriffe 1ist flieRBend; daher
werden flir diese Beschreibung folgende Kldrungen
zugrundegelegt:

Deutsch/Englisch Bedeutung

- —— . - - ——— - - - —— - W . - . S . S M . S - G L . . - e . e -

Operand (operand) Aktuelle Inhalte im Vereinbarungs-
teil bestimmter Daten (Konstanten,
Variable und Funktionen)

Operator Zeichen zur Darstellung und Aus-
(operator) 1l6sung von Operationen nach
mathematischen Regeln

Ausdriicke Mathematische Aufgabensﬁellungen,

(expression) die mit Operanden und Operatoren
Werte eines bestimmten Typs er-
zeugen

Befehl,Befehlswort Befehle (i.e.S. Befehlsworte), die

(statement, Ausdriicke in den Rahmen bestimmter
statement key Operationen (Zuweisungen, Akti-
word) vieren von Prozeduren, Verzweigungen,

Abfrage- und Bedingungsfolgen,
Schleifenbildungen) stellen

Anweisung Zusammensetzung von Befehlen und

(statement) Ausdricken zu Befehlsfolgen. Da
eine aus einem Befehl bestehende
Anweisung schon als "einfache
Befehlsfolge" aufgefalBt wird, ist
in vielen anglo-amerikanischen
Texten der Begriff "statement"
sowohl fiir Befehle wie flir An-
welsungen gebrduchlich.




1.

.

Computer
U sy STEME

Benutzeranleitung Full-PASCAL Seite 97

Anmerkung Beispiele:

Wadhrend im Vereinbarungsteil die Beispiele inhaltlich
so eingeschrdnkt wurden, daR nur ein ganz konkreter
Sachverhalt vermittelt wurde, werden wir im Rahmen
des Ausfiihrungsteils mdglichst vollstdndige Beispiele
angefihrt.

Das geschieht zum Teil mit Sprachkonstruktionen, die
bis dahin nicht gebraucht wurden. Diese Methode wird
deshalb gewdhlt, um eine praxisnahe Vermittlung zu
ermbglichen und um den Anwender zur aktiveren Arbeit
(z.B. mit gezielten Vorgriffen) mit der
Benutzeranleitung anzuregen.

Ausdriicke (expression)

Ausdriicke stellen mathematische Aufgaben dar, die mit
Operanden und Operatoren gebildet werden und neue
Werte eines bestimmten Typs erzeugen.

Operanden

Operanden sind Variable, Konstanten und
Funktionsbezeichner, deren Inhalte mit den in
Ausdriicken enthaltenen Algorithmen (Operatoren,

Befehle) . verarbeitet werden. Der "Operanden"-Begriff
wird durch den Faktorenbegriff erweitert (vgl.

Multiplikationsoperatoren y.1.2.2 und Faktoren
h.1.3.4).




Computer
[DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 98

a) Konstanten (vgl. 3.3)

b)

An dieser Stelle 1ist darauf hinzuweisen, daB
Konstante den Wert "NIL" (Standardkonstante)
annehmen kdnnen (vgl. 3.6.4.2). Ergidnzend zu den
Standardkonstanten MAXINT (2.147.483.647) und
MININT (-2.147.483.647) gilt folgendes:

Alle ganzzahligen Werte 1im Intervall zwischen
MININT..MAXINT werden als Integer-Typen
dargestellt.

Wenn das Ergebnis einer bindren Ganzzahloperation
mit zwei Operanden, die im darstellbaren Bereich
(MININT..MAXINT) liegen, auBerhalb dieses Bereichs
liegt, so wird ein Fehler gemeldet.

Variable (vgl. 3.5)

Es geht im wesentlichen um die aktuellen Inhalte
von Variablen (vgl. auch Parameter Prozedur- und
Funktionsdeklarationen - 3.6), die diese im
Verarbeitungszusammenhang annehmen k&nnen. Dabei
ist darauf =zu achten, daB Variable vor ihrer
ersten Verwendung mit einem Wert besetzt sind
(Zuweisung, Initialisierungsprozeduren). Es wird
sonst mit zufdllig gespeicherten Inhalten
gearbeitet, was 2zu Programmfehlern flihren kann,
die weder vom iUbersetzer erkannt werden noch als
Laufzeitfehler sicher festzustellen sind.

Hinsichtlich der Zuordnungsvertrdaglichkeit
(assignment compability - vgl. 3.4.5) 1ist
folgendes zu beriicksichtigen:

— Ein Operand, dessen Typ den Teilbereich eines
anderen ausmacht, wird behandelt wie ein Operand

des libergeordneten Typs.

- Das gilt gleichermaBen filir Mengentypen.

- Die Operanden von Mengen-Operatoren missen
vertrdgliche Basistypen haben; sie liefern ein

Ergebnis vom Typ des Operanden.




c)

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 99

Beispiele

TYPE UEBER = (WINZIG,KLEIN,MITTEL,GROSS,GEWALTIG);

VAR UNTER : KLEIN..GROSS; (¥FUER DIE VARIABLEN
"UNTERMENGE" BZW.
"UNTER" GELTEN MIT
AUSNAHME DER TEIL-
BEREICHSEINSCHRAENKUNG
DIE GLEICHEN ANFOR-
DERUNGEN WIE BEI DEN
TYPEN "UEBER" BZW.

' MENGE ¥)
TYPE MENGE = SET OF 0..100;
VAR UNTERMENGE: SET OF 26..75;

Funktionsbezeichner (vgl. 3.6.2 und 3.6.3)

Ein Funktionsbezeichner (function-designator) muR
neben dem Funktionsnamen die aktuellen Parameter
enthalten, damit die Funktion den filir den
formellen Parameter vorgesehenen Algorithmus
ausfihren kann (Aktivierung der TFunktion). Die
Liste der aktuellen Parameter muR nach Anzahl und
Reihenfolge der Deklaration entsprechen; die
Auswertungsreihenfolge ist damit nicht vorgegeben.




Computer
UENIZ o\ e ME|

Benutzeranleitung Full-PASCAL

Beispiele

Funktions-
deklaration

FUNCTION X
(Y:REAL):REAL;

FUNCTION Y
(VAR C:INTEGER;
(VAR D:REAL):
REAL;

FUNCTION 2Z
(FUNCTION FX
(INTEGER,
INTEGER) :REAL) ;

Operatoren

Operatoren

Aktuelle Parameter

VAR A,B:INTEGER;

A:=Y;
B:=A+2;
VAR X1:INTEGER;

X2 :REAL

FUNCTION F1 (X,Y:
INTEGER) :REAL;

VAR V10,V11:INTEGE

V10
V11

non
Ul

Seite 100

Funktionsbe-

bezeichner (-aufruf)

Y(X1,X2);

F2(F1);

R;

und Zeichen zur Darstellung und Ausldsung

mathematischer Regeln und Operationen; sie wirken auf

Operanden (vgl.

Mengen- und

Multiplikations-,

Boolesche

ho1.1).

Operato
Additions-

Operatoren dargestellt.

ren werden als
und relationale




4.1.2.1.

hy.1.2.2.

Computer
[DIETZ S I

Benutzeranleitung Full-PASCAL Seite 101

Logische Umkehrung (NOT)

Der Operator "NOT" kann nur auf Operanden vom Typ
"BOOLEAN" angewendet werden. Er drickt eine Negation
aus, die logisch die Bedeutung des Operanden umkehrt.

Beispiel

VAR BOOL, UMKEHR:BOOLEAN;
BOOL: =TRUE;

UMKEHR := NOT BOOL;

(¥ IN UMKEHR STEHT NACH DER
NOT-OPERATION "FALSE". ¥)

Multiplikationsoperatoren (multiplying operator)

- ——— - —— — —— - —— — ———- - - . - - . . . e - W - " - - - . - -

Unter Multiplikationsoperatoren sind alle éymbole fir
Rechnerschritte gemeint, die sich auf die
Multiplikation zuriickflihren lassen.




Operator

DIV

MOD

AND

[DIETZ

Computer
SYSTEME

Benutzeranleitung Full-PASCAL

Operation Typ des
Operanden

generelle REAL,

Multiplik. INTEGER

oder

Schnittmenge Mengentyp

generelle REAL,

Division INTEGER

ganzzahlige INTEGER

Division

Rest bei INTEGER

ganzzahliger

Division (ab-

geleitet von

Modulus oder

modulo)

logisches BOOLEAN

"Und" (auch

Konjunktion
0. logisches
Produkt ge-
nannt)

Typ des
Ergebnisses
REAL,
INTEGER
Mengentyp
REAL
INTEGER
INTEGER
BOOLEAN
Fall
I
IT
II
IV

Ausgehend davon,
FALSE=0 sind, e
tungslogik Ergebnisse,
Multiplikation entsprechen.
stellung X1 AND X2

Seite 102

Beispiele

6%3]3.5%2.9 |
5%7.6 |A*B

Wenn M1 alle geraden
Zahlen und M2 alle
durch 3 teilbaren
Zahlen wiren, dann
enthielte die Schnitt
menge (M1 M2) die
Zahlen 6,12,18 usw.
Darstellung: M1¥M2

4/2(6.4/0.8|
2.5/5|C/D

I DIV J,
14 DIV 8 (Ergebnis 1)
Bei I>=J > 0 gilt:
I DIV J=TRUNC(I/J)
-I DIV J=I DIV-J
=-(I DIV J)
-I DIV-J=I DIV J
Fir J=0 ist DIV undef

I MOD J,
14 MOD 8 (Rest 5)

Bei I>=Jd > 0 gilt:
I MOD J=I-(I DIV J)

Wenn I DIV J nicht
definiert ist, er-
hdlt auch I MOD J
Keinen Wert.

hintereinander
geschaltete Schalter

X1 X2 X1%X2
0 0 0
0 1 0
I 1 0 0
1 1 1

daR TRUE=1 und
rgibt die Schal-
die der
Dar-

-




4.1.2.3.

Operator

Benutzeranleitung Full-PASCAL

[DIETZ

Computer
SYSTEME|

Seite 103

Additionsoperatoren (adding-operator)

Unter

Rechnerschritte

Additionsoperatoren
gemeint,

zuriickfihren lassen.

Operation

Addition
(Identitit
bzw. Vor-
zeichen-
identitidt)

oder
Vereini-
gungs-
menge

Typ des
Operanden

REAL,
INTEGER

Mengentyp

sind
die

Typ des

Ergebnisses

REAL,
INTEGER

Mengentyp

alle Symbole fiir

sich auf die Addition

Beispiele

45 | 2.6+3.1
2+1.ul E+F

Man spricht von einem
Identit4dtsoperator,
weil das Vorzeichen
eines Operanden nicht
gedndert wird und in-
sofern seine Identitidt
erhalten bleibt:

+(=4) = =4

Wenn M1 alle geraden
Zahlen, M2 alle durch
4 teilbaren Zahlen
wdren und M3 der Menge
M1 ohne ‘M2 entspricht,
dann gilt:

M1 = M2 U M3.
Darstellung:

M1 := M2 + M3




Benutzeranleitung Full-PASCAL

Subtrak-

[DIETTZ

INTEGER,

tion (Um- REAL

kehrung
Inversion
bzw. Vor-
zeichen-
umkehrung)

Unitdres Minus
("vereinigtes
Minus")

oder
Differenz-
menge

Computer
SYSTEME|

INTEGER,
REAL

Seite 104
5-4| 6.9-3.5 |
4-1.5 | 6-H

Man spricht von einen
Umkehrungsoperator,
weil das Vorzeichen
eines Operanden um-
gestellt wird:

- (-4) = + 4

- (+4) -4

Das im obigen Beispiel
in Klammern gesetzte
Minus (-4) bildet eine
Einheit mit der dazu-
gehdrigen Zahl und

ist vorrangig vor
jedem anderen Operator
zu beriicksichtigen.

Es gilt z.B.:
M3 = M1 M2
Darstellung:
M3 := M1=-M2




Operator

Benutzeranleitung Full-PASCAL

Operation

logisches
(auch
Disjunktion,
Alternative
oder logische
Addition ge-

" Oder-"

nannt)

Die

liefern

[DIETZ

Typ des
Operanden

vordefinierten

Computer
SYSTEME

Typ des

Ergebnisses

Konstanten

nach der Ganzzahlarithmetik.

MININT
MAXINT

(- 2.147.483.647) =

MAXINT wund MININT
bei linearen Operatoren (+ und -) Ergebnisse

+ 2.147.483.647
+ 2.147.483.647

Seite 105

Beispiele

parallele

Schalter

Fall X1 X2 X1+X2

I 0 0 0
II 0 1 1
IIT 1 0 1
IV 1 1 1

Ausgehend davon, daf
TRUE=1 und FALSE=0,
ergibt die Schaltungs-
logik Ergebnisse, die

der Addition entsprechen:

(X1 OR X2).

Im Fall IV wird tat-
sdchlich nur der {ber-
lauf 1 von 10 regis-
triert.

=4




4.1.2.4.

Operator

<>

Computer
[DIETZ SYSTEME|

Benutzeranleitung Full-PASCAL

Seite 106

Vergleichsoperatoren (Relationale Operatoren)

- —— " - —— - — - - ——— - ————— w — —

Unter Vergleichsoperatoren

sind alle Symbole 2zu

- - - - ————— - -

(relationale operator)
verstehen, die zwel Werte

miteinander vergleichen und die Vergleichsbeurteilung
als boolesches Ergebnis (TRUE,FALSE) ausweisen.

Operation Typ des
Operanden

auBer FILE
alle Typen

Klirung,

ob ein
Operand

mit einem
anderen
gleich ist
(Identitit)

Kldrung, aulBer FILE
ob ein alle Typen
Operand

von einem

anderen

ungleich ist

Kldrung, einfache
ob ein Typen
Operand

kleiner als
der andere

ist ,
Zeichentyp
(Zeichen-
kette)
Kldrung, Einfache Typen,
ob ein Zeichentypen
Operand (Zeichenketten)

groker als
ein anderer
ist

Typ des
Ergebnisses

BOOLEAN

BOOLEAN

Beispiele

Ergebnis
Y = U4 TRUE
TRUE = FALSE FALSE
6.5 = 2%34+0.5 TRUE

usw.

Unkehrung der
Beispiele unter "=",

Y <>l FALSE
6.5 <> 5 TRUE
Usw.

4 < 4 FALSE
FALSE< TRUE TRUE

J < I, FALSE
.2 < 5.1 TRUE
usw.

"ABC’< “AB’ FALSE

Umkehrung der Bei-
spiele unter "<",

y > 4 FALSE
h.2> 5.1 FALSE
usw.




Computer )
A Sy STEME]

Benutzeranleitung Full-PASCAL Seite 107
Operator Operation Typ des Typ des Beispiele
Operanden Ergebnisses Ergebnis
< = Kldrung, Einfache BOOLEAN L < = 1 TRUE
ob ein Typen TRUE< = FALSE FALSE
Operand
gegeniiber usw.

einem anderen
kleiner oder
gleich ist A
Zeichenketten "ABC“<="ABCD° TRUE
usw.
Zeichenketten werden
beispielsweise nach
ihrer lexographischen
Ordnung (Sprachbedeu-
tungsordnung) vergliche
um die "lexikalischen
Symbole" (vgl. 2.0) im
Hinblick auf unter-
schiedliche Aufgaben
im Programm unter-
scheiden zu kdnnen
Mengentypen Wenn M1 alle geraden
und M2 alle durch 4
teilbaren Zahlen sind,

dann gilt:
M2 < = M1 TRUE
usw.
> = Kldrung, Einfache BOOLEAN Beispiele analog 2zu
ob ein Typen, "=
Operand Zeichenketten
gegeniiber Mengentypen

einem anderen
gleich oder
groRker ist




Operator

Computer
[DIETZ SYSTEME]|

Benutzeranleitung Full-PASCAL Seite 108

Operation Typ des Typ des

Beispiele

Operanden Ergebnisses Ergebnis

Kldrung, linker BOOLEAN
ob der linke Operand:

Operand in Ordn.-Typ

dem rechten rechter

VAR LINKOPD:CHAR;
RECHTOPD:SET OF

enthalten Operand: CHAR;
ist Mengentyp
mit typen- .
vertrdglichem (*IM KONKRETEN FALL
Basistyp ' GILT NACH FUELLUNG DER
OPERANDEN "LINKOPD"
UND "RECHTOPD":
LINKOPD IN RECHTOPD
= TRUE ¥)
Die Operanden von Vergleichsoperatoren miissen

zuordnungsvertrigliche Typen sein (vgl. 3.4.5).

Da die Vergleichsoperatoren
zurickgefiihrt werden, k&nnen
falsche Aussagen ergeben.
Kontrollfunktion (check option)
Fall ein Fehler gemeldet.

auff die Subtraktion
sich bei Uberliufen
Bei eingeschalteter
wird in einem solchen




h.1.2.5.

Computer
[DIETZ ey AN

Benutzeranleitung Full-PASCAL Seite 109

Prizedenzklassen der Operatoren

- . - —— - —— —— — — — ——— — — — —— — - —

Mit den vier Prdzedenzklassen wird der Vorrang
(precedence) der Operatoren fir das Zusammenfiigen
festgelegt:

Pridzedenzklasse Operatorén

1 NOT | Unitdres Minus

2. *|/|DIV|MOD|AND

3. +|-I0R

L. = <1< > <=|>= |In
"NOT" hat die hdchste Prioritiat, die
Vergleichsoperatoren die niedrigste; Folgen von

gleichrangigen Operatorn werden von links nach rechts
abgearbeitet.

Bei Klammerausdriicken werden die Operatoren innerhalb
der Klammern vor denen auBerhalb der Klammer
aufgeldst.

Beispiel:

L 4+ 2 % 8 = 20
¥ vor +
ABER: (4 + 2) # 8 = 48

( + ) vor ¥




b.1.3.1.

Computer
[DOET 22 s TN

Benutzeranleitung Full-PASCAL Seite 110

Bildung von Ausdriicken

Ein Term 1ist eine im mathematischen Sinne begrenzte
(terminierte) Einheit, die formale Verbindungen von
Faktoren (vgl. 4.1.3.4) durch
Multiplikationsoperatoren (vgl. 4.1.2.2) beschreibt.

\4

——————p{ Faktor

Multipli-

r—————‘kétions— <
Operator

Faktor

Beispiele:

A ¥ B
C / (D-E)
usw.




Computer
2 SYSTEME]

Benutzeranleitung Full-PASCAL Seite 111

4.1.3.2. Additionsausdruck (einfacher Ausdruck)

Ein "einfacher Ausdruck" (simple expression) ist eine
mathematische Verbindung von Multiplikations-

ausdriicken (vgl. 4.1.3.1) durch Additionsoperatoren
(vgl. 4.1.2.3).

Multipli-
| kations- %
ausdruck A >
(Term)
¥Ei§éﬁii“ Additions-
ausdruck - Operator [@
(Term) '
Beispiele:
F + G
- H

(I ¥ J) - (K/L)
usw.




4.1.3.3.

Computer
DUBIA oy sTEME

Benutzeranleitung Full-PASCAL Seite 112

Ausdruck und Ausdrucksverbindungen (Element,

a) Ausdruck (= Einheitsausdruck)

Ein "Ausdruck" (expression) ist eine mathematische

Verbindung von "einfachen Ausdriicken" (vgl.
4.1.3.2) durch Vergleichsoperatoren (vgl.
y,1.2.4).
Additions-
———— (Einfacher }—pr >-
Ausdruck A
Vergleichs+ Additions-
operator »/(Einfacher)
Ausdruck
Beispiele:
- A+ B ("einfacher Ausdruck"

= Additionsausdruck)

H=56.4
¥ (M-N) = P/(Q-R+S3) (Vergleichsausdruck)
T+U>V-W
usw.
Fir einen Ausdruck, der aus einem einzigen

Operanden von einem Teilbereichstyp besteht,
gelten abgesehen von der Teilbereichseinschridnkung
die Bedingungen des lbergeordneten Typs. Das gilt
gleichermaRen fir Mengentypen (vgl. 4.1.1 /
Operanden) .




Computer
DIETZ ey ans

Benutzeranleitung Full-PASCAL Seite 113

b) Element (Ausdrucksverbindungen)

Ein "Element" (element) ist ein Ausdruck oder eine

Verbindung von zwel "Ausdriicken" (vgl. a)
Einheitsausdruck), um eine Mengenkonstellation
darzustellen.
(Einheits- . _
Ausdruck g h g

(Einheits-)
Ausdruck

Ein Ausdruck ohne die Verbindung mit einem
weiteren entspricht inhaltlich dem (Einheits-)
Ausdruck  (vgl. 4.1.3.3), wihrend die andere
Konstruktion einen Mengenausdruck (set expression)
darstellt, wie er wu.a. bei der Bildung von
Mengenvariablen auftaucht (vgl. 3.4.2.3 und 3.5).

Ausdriicke, die Elemente einer Menge sind
(Mengenausdruck) miissen identische Typen haben
(Basistyp der Menge).




Computer
[DOET 22 fNE

Benutzeranleitung Full-PASCAL Seite 114

c) Menge (Elementverbindungen)

Eine "Menge" (set) ist eine Verkniipfung mehrerer
Elemente, um Mengen detailliert beschreiben und
lMengenselektionen voranshnen zu Xdnanan.

———D@ Element > =®———->
Element 4—-@4_

Ausdriicke, die Elemente einer Menge sind, miissen
identische Typen haben (Basistyp der Menge).

Eckige Klammern ohne Inhalt "( )" kennzeichnen
eine leere Menge; sie ist Bestandteil Jjeder Menge
bzw. Jeden Mengentyps. Eine leere Menge kann auch
dadurch gekennzeichnet sein, daB die erste
Grenzmenge griRer als die zweite ist (z.B. 6..5 ).

Beispiele:

[1..3, 5, 7..10

l0,18,20,22..24,27,30,33,35,36,40,L44,45, 46,48,
50,55,60,69,92 .. 200 .

(* RETZZAHLEN BEIM SKAT, OHNE DIE MOEGLICH-
KEITEN UEBER 92 ZU SPEZIFIZIEREN *)

’ ’ rd d . 4 rd ]
[“a” .. ‘D", 'B", 'L .. T, Z

- o

.

USw.

Bei Ganzzahlmenge (SET OF INTEGER) wird bei
eingeschalteter Kontrollfunktion (check option)
2in Laufzeitfehler geneldet, wenn ein Mengen-
element auBerhalb der Begrenzungen (0..255)
liegt.




h.1.3.4.

Computer
URA oy sTEME

Benutzeranleitung Full-PASCAL Seite 115
Faktor
Faktoren (factor) sind die Operanden eines

Multiplikationsausdrucks (vgl. 4.1.3.1). Wihrend die

Operanden (vgl.b4.1.1) sich iiblicherweise auf
Konstanten, Variable und Funktionsbezeichner
beschrdnken, beinhalten Faktoren dariberhinaus

Ausdricke und Mengen (vgl. 4.1.3.3).

vorzeichend
p4 lose
Konstante

vorzeichen
lose
Konstante

pivariable >

Ausdruck

¢

Menge

Die 1logische Umkehrung "NOT FAKTOR"™ (vgl. 4.1.2.1)
gilt im Hinblick auf eine vorgegebene Definition, die
u.a. bei Abfragen (IF NOT FAKTOR THEN ...) eingesetzt
wird. Unter Faktor ist der Zusammenhang des aktuellen
Inhalts einer der alternativen Moglichkeiten zu
verstehen.




Computer
[DIETZ ey

Benutzeranleitung Full-PASCAL Seite 116

Beispiel fiir "Menge":

VAR A,B,C : INTEGER;

BEGIN

C:=A*B L

IF NOT (C IN [0 .. 100 ) THEN

.

(* DER IN RUNDEN KLAMMER GESETZTE BOOLESCHE
AUSDRUCK UEBERPRUEFT, OB C EINEN AKTUELLEN WERT
ANGENOMMEN HAT, DER ZWISCHEN O UND 100

LIEGT. MIT "NOT" WIRD BEWIRKT, DASS DER
PROGRAMMTEIL NACH "THEN" FOLGT, WENN DIESE
BEDINGUNG NICHT ERFUELLT IST. *)




Computer
DIETZ IS {03

Benutzeranleitung Full-PASCAL Seite 117

Beispiele fir Faktoren

a) vorzeichenlose Konstante Typ

b) Variable

INTEGER 5
REAL 12.631
CHAR ‘A’

(string) "ZEICHENFOLGE’

Name einer anderen Konst.

CONST A = U4;
B = ;

- - — - . - = - - - -

FALSE TRUE MININT MAXINT NIJ

Typ Zuweisung
VAR V1,V2: Viiz 53
INTEGER;

V3,VL:REAL;

<
w
"
3
($)]

¢) Funktionsbezeichner

Standardfunktion SIN (V1+V2);

Deklarierte Funktion:
PROGRAMM SATZDESPYTAGORAS

VAR

KATHETEA,KATHETEB,HYPOTENUSE:REAL;

FUNCTION KATHETENQUADRATE (KA,KB:REAL):REAL;

END.

BEGIN

KATHETENQUADRATE : =KA¥KA + KB¥KB;

IF HYPOTENUSE * HYPOTENUSE

= KATHETENQUADRATE (KATHETEA,KATHETEB)
(¥*FUNKTIONSAUFRUF MIT FUNKTIONS-
BEZEICHNER¥*)

THEHN

ELSE

n




Computer
A SYSTEME]|

Benutzeranleitung Full-PASCAL Seite 118

d) Ausdruck (Einheitsausdruck)

als "Einfacher Ausdruck" (- X)
(Additionsausdruck) (Y + Z)
((A*B) + C - (D/E))
(F DIV J)
(K MOD L)
(M AND N)

als "Vergleichsausdruck" (D-P = Q +(R*3))
((T*U)=-V>(W/X) +4)
E DIV J = TRUNC (I/J)

(Zeichenketten) (“ABC” < “ABCD")
(logische ((E>F) AND (F>F))
Ausdriicke) ((G OR Q) AND NOT (R<10))

als "Einfacher Ausdruck" ;p..9,15,2o,51..99]

als "Vergleichsausdruck" ((E AND F) IN (|FALSE..
(G OR H)j))




Computer
IR oy s TEVE

Benutzeranleitung Full-PASCAL Seite 119

Anweisungen (statement)

Anweisungen beschreiben die "algorithmischen
Aktionen", wmit denen die aktuellen Inhalte der im
Vereinbarungsteil bezeichneten Daten verarbeitet
werden. Anweisungen bestehen aus Befehlen (statement
keyword) und Ausdriicken (vgl. 4.1).

Marke Einfache

(1able) Anwelsung
Struktu-
rierte P >
Anweisung

Vor einer Anweisung darf eine Marke stehen (vgl.
3.2), 2zu der im Programmablauf verzweigt werden kann
(Ansprung mit GOTO).

Beispiel:

1 PROGRAM MARKEN (INPUT,OUTPUT);
2 LABEL (¥*DEKLARATION#*)

3 1,2;

4 VAR

5 I: INTEGER;

6  BEGIN

7 I1:=0;

8 1: (*EINLEITUNG ANWEISUNGSFOLGE#*)
9 I:= sSuUcCC (I);
10 WRITELN (I);
11 IF I > 5
12 THEN

13 GOTO 2 (*ANSPRUNG*)
14 ELSE

15 GOTO 1; (*ANSPRUNG¥)

16 2: (*EINLEITUNG ANWEISUNGSFOLGE¥)
17 WRITELN (°I IST GROESSER 57);

18  END.




Computer
A Sy STEME]

Benutzeranleitung Full-PASCAL Seite 120

Der vorgegebene Programmtext bestimmt gleichzeitig
die Ausfihrungsfolge. Sie kann nur durch den Ansprung
von Marken unterbrochen werden. Im Regelfall wird man
Wiederholungen durch Programmschleifen l&sen, wobei
aber aus unterschiedlichen Grinden (z.B.
nachtrigliche Anderungen) ein mit Marken
eingeflochtenes Unterprogramm sinnvoll sein kann. Das
geht 2zu Lasten einer '"sauberen" Programastruktur
(Uniibersichtlichkeit).




Computer
CURIA oy sTEME

Benutzeranleitung Full-PASCAL Seite 121

Einfache Anweisungen (simple statement)

Eine einfache Anweisung 14RBt sich nicht in andere
Anweisungen unterteilen.

! Ergibtanweisung L > (vgl. 4.2.1.1)
» Prozeduranweisung S—— (vgl. 4.2.1.2)
—_— ——
___4 Sprunganweisung S (vgl. 4.2.1.3)
b——] leere Anweisung >

Leere Anweisungen sind durch "nichts" definiert. Aus
syntaktischen Griinden werden sie eingefihrt (vgl.
auch y,.2.2). Ein Anwendungsfall besteht
beispielsweise darin, dal® man aus einer Anweisung
heraus direkt an das Programmende springen will.

1 PROGRAM SPRUNGENDE (INPUT,OUTPUT);
2 LABEL 1,2;

3 VAR A: INTEGER;

4 BEGIN

5 A:= 0;

6 1:

7 A:= SUCC (A);

8 IF A > 5

9 THEN GOTO 2

10 ELSE GOTO 1;

16 2:; (*LEERE ANWEISUNG*)
17 END.




~—-

Computer
U svSTEME|

Benutzeranleitung Full-PASCAL Seite 122

Wertzuweisung oder Ergibtanweisung (assignment’

Eine Zuweisung dient dazu, den aktuellen Wert einer
Variablen oder einer Funktion (Funktionsbezeichner)
durch den Wert eines Ausdrucks zu ersetzen.

Variable

—_— Y e p| Ausdruck |—p

Funktions-
$1 bezeich-
ner

Nach dem Ergibtzeichen ":=" wird die Wertzuweisung
auch Ergibtanweisung genannt. Im Unterschied zum
Gleichheitszeichen kOonnen nach dem aktuellen Status
unterschiedliche Inhalte auf beiden Seiten der
Zuwelisung stehen.

Beispiel: A:= A + B
"A=A+B" ist mathematisch falsch.
Der Ausdruck , der in einer Zuweisung Ubergeben wird,

mufd mit der Variablen oder der Funktion
zuordnungsvertriglich (vgl. 3.4.5) sein.




y.2.1.2.

Computer
DIETZ SYSTEME

Benutzeranleitunz Full-PASCAL Seite 123

Prozeduranweisung (procedure statement)

Eine Prozeduranweisung beinhaltet den Prozedurnamen
und, wenn formale Parameter vorgegeben sind, die
entsprechenden aktuellen Parameter (vgl. 3.6.2 und

3.6.3).

Prozedur- _ aktuelle
—PIname — Parameter ——ﬂ‘-—b

Mit der Prozeduranweisung wird eine Prozedur
aufgerufen (Aktivierung); die aktuellen Parameter
treten an die Stelle der formalen Parameter. Anzahl
und Reihenfolge der aktuellen Parameter richten sich
nach den formalen Parametern.

Beispiel:

1 PROGRAM AUSWECHSELN (INPUT,OQUTPUT);

2 VAR A,B:INTEGER; .

3 PROCEDURE TAUSCHEN (VAR P1,P2:INTEGER);
i (*FORMALE PARAMETER¥*)
5 , VAR P:INTEGER;

6 BEGIN

7 P:=P1;

8 P1:=P2;

9 P2:=P

10 END;
11 BEGIN
12 READ (A,B);
13 TAUSCHEN (A,B); (®*AKTUELLE PARAMETER¥*)
14 WRITE (A,B)
15 END.




L.2.1.3.

Computer
2 SYSTEME]

Benutzeranleitung Full-PASCAL Seite 124

Sprunganweisung (goto statement)

Eine Sprunganweisung dient dazu, ein Programm zu
unterorechen und an anderer Stelle fortzufihren. Die
Bezeichnung des aufgerufenen Programmteils geschieht
mit Marken, die im Vereinbarungsteil zu deklarieren
und bei den Sprunganweisunzen und den auszufiihrenden
Anweisungen anzugeben sind.

»( GOTO | Marke f— »

"GOTO"™ 1ist das Befenlswort, das die Sprunganweisung
ausldst. Das Sprungziel (Marke) muR im gleichen oder
einem Ubergeordneten Block stehen. In diesem
Glltigkeitsbereich missen alle Marken verschieden
sein.

Ausdriicklich mufl auf den Unterschied zwischen
"Marken" und "Auswahlmarken" hingewiesen werden.
Auswahlmarken bezeichnen die Varianten von
Satztypdefinitionen bzw. Satzvariablendeklarationen
(vgl. 3.4.2.2 und 3.5.2.2) und von Auswahlanweisungen
(vgl. y.2.2.2). Wenn ganzzahlige Auswahlmarken
gewdhlt werden, ist eine Verwechslung mdglich.




Computer
[DETrZZ P N

Benutzeranleitung Full-PASCAL Seite 125

Beispiel:

1 PROGRAM SPRUNG (INPUT,OQUTPUT);

2 LABEL 1,2; (*11ARKEN¥)

3 VAR A: RECORD CASE B:INTEGER OF

Y 1:(C:INTEGER); (¥ AUSWAHL-
5 2:(D:ARRAY(1..4)0F CHAR); MARKEN¥)
6 END;

7 V:INTEGER;

8 BEGIN

9 1: READ (V);

10 IF ODD(V) THEN GOTO 2 (¥MARKE 1%)
11 ELSE GOTO 1 (¥MARKE 2%)
12 2: IF V > 1000 THEN

13 BEGIN

14 AB := 1;

15 AC := V;

16 WRITE (A.C)

17 END

18 ELSE

19 BEGIN
20 A.B := 2;
21 A.D := “LEER;
22 WRITE (A.D)
23 END;
24 END.

Sprunganweisungen kénnen im Programm dazu flhren, dal
der Programmtext nicht mehr mit seinem Ablauf
ibereinstimmt. Das Programm wird dadurch
uniibersichtlich und ist schwer zu verstehen. Dadurch
ist seine Anderungsfihigkeit eingeschrdnkt. Neue
Fehler kdnnen im Korrekturfall mangels
Uberschaubarkeit hinzukommen. Es Zibt meistens
Anweisungen (vgl. 3. Strukturierte Anweisungen), die
Sprunganweisungen sachgerecht ersetzen. Daher sollte
ihr Einsatz auf ungewdhnliche Fdlle beschrdnkt sein.




y.2.2.

Computer
[DIEVZ ey s

Benutzeranleitung Full-PASCAL Seite 126

Strukturierte Anweisungen (structured statements)’

- - —— - - —— - - —— - - - - — - — . - - - - —» - —— — -

Strukturierte Anweisungen verbinden mit bestimmten

Befehlswdrtern Anweisungen verschiedener Art.
Entweder sind sie nacheinander auszufiihren
(Verbundanweisung) , treten unter bestimmten

Bedingungen ein (Bedingte Anweisung) oder wiederholen
sich (Wiederholungs- oder Zyklusanweisung). In diesem
Zusammenhang wird auch die Satzfeldbezeichner -
Anweisung (With-Anweisung) behandelt.

—— Verbundanweisung P (vgl., 4.2.2.1)
Bedingte Anweisung | ] (vgl. 4.2.2.2)
—_— -

» Wiederholungsanweisung S— (vgl. 4.2.2.3)

Satzfeldbezelchner-
———P»1 Anweisung (vgl. 4.2.2.4)




N

y.2.2.1.

Computer
[DIETZ e

Benutzeranleitung Full-PASCAL Seite 127

Verbundanweisung (compound statement)

Verbundanweisungen werden in der Reihenfolge, in der
sie niedergeschrieben wurden, ausgefihrt. Die
Befehlsworte WEEGIN" und "END" ©begrenzen eine
Verbundanweisungz. Der Ausflihrungsteil als Bestandteil
von Programmen und Unterprogrammen (Prozeduren und
Funktionen) entspricht einer Verbundanweisung.

Anweisung

Mit einer Verbundanweisunz kdnnen dariberhinaus
mehrere Anweisungen syntaktisch zu einer einzigen
Anweisung zusammengefaft werden. Uberall dort, wo
eine Anweisung gefordert ist, darf auch eine
Verbundanweisung stehen.

Da’s Semikolon zwischen den Anweisungen 1ist ein
Folgeoperator, der besagt, daR die nachfolgende
Anweisung erst dann ausgefiihrt werden darf, wenn die
vorangehende beendet ist.




y.2.2.2.

Computer
[DIETr2Z S TS

Benutzeranleitung Full-PASCAL Seite 128

Bedingte Anweisung (conditional statement)

Eine bedingte Anweisung geht von bestimmten
Voraussetzungen aus, unter denen bestimmte
Anweisungen ausgefiihrt werden sollen.

Man unterscheidet dabei

- die Abfrage von Bedingungen (Vergleichsausdriicke),
deren boolesche Aussage (Wahrheitswert) iliber die
Wahl einer von zweil Anweisungsalternativen
entscheidet (vgl. 4.2.2.2 - a) Wenn-Anweisung oder
IF-statement);

- und die Vorgabe von einer und mehrerer
Alternativen, die nicht mit einer Abfrage verknilipft
sind, sondern von einem Bedingungsschliissel
(Auswahlmarken) ausgehen, der vorher vereinbart
wird (vgl. L4.2.2.2 - ©b) Auswahl-Anweisung oder
case-statement).




Computer )
ARl SYSTEME
Benutzeranleitung Full-PASCAL Seite 129
a) Wenn-Anweisung (IF-statement)
In Abhingigkeit von einer Bedienungsabfrage (IF)
wird entsprechend dem booleschen Wahrheitswert
(TRUE oder FALSE) eine vorgesehene Anweisung
(THEN) ausgefihrt wund im Abweisungsfall nicht
ausgefiihrt. Das Programm wird mit der nidchsten
Anweisung fortgesetzt; eine spezifiscnhe
Folgeanweisung (ELSE) kann eingesetzt werden.
—b@—> Ausdruck A.nweisung > »>
@ M Anwelsung 9

Je nach Abfragestruktur kbnnen sich folgende
Konstellationen ergeben:

Abfrage- Eintritt der vor- Eintritt der nichsten
form geschenen Anweisg. Anweisung bzw. der
positiv bei Folgeanweisz./ELSE bei
z.B.

IF EOF TRUE FALSE
(Dateiname)

THEN

negativ

IF NOT EOF FALSE TRUE
(Dateiname)

THEN




Computer
DIET 22 v T

Benutzeranleitung Full-PASCAL Seite 130
Beispiel:
1 PROGRAM SCHREIBEN (INPUT,OUTPUT)
2 VAR A : INTEGER
3 BEGIN
4 READ (A);
5 IF ODD(A) THEN WRITE (UNGERADE®) (*TRUE¥)
6 ELSE WRITE ( "GERADE’); (*FALSE¥*)
7 END.

Wenn eine Abfrage mehr als 2 Alternativen beinhaltet,
kann man Wenn-Anwelisungen schachteln. Das fihrt oft
zu einem uniibersichtlichen Programmtext.

z.B.: IF B1 THEN IF B2 THEN IF B3 THEN A1
ELSE IF B4 THEN A2 ELSE A3 ELSE Al;

Die Lesbarkeit diees Beispiels 133t sich verbessern,

wenn man mit Verbundanweisungen (BEGIN ...END)
arbeitet:
BEGIN
IF B1 THEN
BEGIN
IF B2 THEN
BEGIN
- IF B3 THEN A1
ELSE
BEGIN
IF B4 THEN A2
ELSE A3
END
END
ELSE Al;
END

END.




Computer
U2 SYSTEME|

Benutzeranleitung Full-PASCAL Seite 131

Wihrend es bei der urspringlichen Darstellung noch zu
Unklarheiten dariber flihren kann, zZzu welcher
Wenn-Bedingung die Folgeanweisungen (ELSE) gehodren,
gibt es bei der durch Verbundanweisung geklammerten
Schreibweise keine diesbeziiglichen Schwierigkeiten.

Auch hier gilt, daR man die Verschachtelungs-
moglichkeiten sinnvoll Dbeschrdnken sollte, um die
Lesbarkeit des Programms 2zu steigern und seine
Wartungseignung damit zu gewdhrleisten.




( . Computer
[DIETZ ey v

Benutzeranleitung Full-PASCAL Seite 132

b) Auswahl-Anweisung (CASE-statement)

In Abhidngigkeit von einem Bedingungsschliissel
(Auswahlmarken) werden Anweisungsalternativen
ausgeldst.

Ausdruck {, Auswahl- V—O Anwelsung @ @»

D)
U

- OTHERS O—— Anweisung >®———'

Die Auswahl-Anweisung wird von den
Schliisselwdrtern CASE... OF... charakterisiert.
Wahrend unmittelbar nach CASE der aktuelle
Ausdruck fir die Auswahl einer Anweisung geflhrt
wird, stehen nach OF die Anweisungsalternativen.

Anweisungsalternativen:

Eine Anweisungsalternative wird jeweils mit einer
Auswahlmarke (case constant list) eingeleitet, an
die nach ":" eine Anweisung geknipft ist. Man kann
mehrere unterschiedliche Auswahlmarken mit einer
einzigen Anweisung verbinden.

Aktueller Ausdruck:

Der Ausdruck (expression) nach CASE muf vom
gleichen Typ wie die Auswahlmarken sein. Er wird
im Programmablauf bestimmt wund wenn er einer
Auswahlmarke entspricht, ist ein vorgesehener Fall
(CASE) eingetreten; die dazugehdrige Anweisung
wird dann veranlaBt.




Computer
DU S\ STEME

Benutzeranleitung Full-PASCAL Seite 133

Als Spracherweiterung gegeniiber Standard-PASCAL
ist wahlweise die OTHERS-Anweisung vorgesehen, die
dann ausgefiihrt wird, wenn der aktuelle Ausdruck
einen Wert annimmit, der mit keiner der
vorgesehenen Auswahlmarken iUbereinstimmt.

Beispiel:

PROGRAMM WAEHRUNG (INPUT,OUTPUT);
VAR KENNUNG : INTEGER;
Di1,VALUTA : REAL;
BEGIN
KENNUNG:=1;
REPEAT
READ (KENNUNG,VALUTA);
CASE KENNUNG OF O0:;
12 DM:=VALUTA * 1.90;
2: DM:=VALUTA ¥ 3.50;
OTHERS : WRITELN ( WAEHRUNG WIRD NICHT
UMGERECHNET ")

= O0OWOIOUTFWN =

—

END;

IF (KENNUNG>0O) AND (KENNUNG <3) THEN
WRITELN (DM:9:2);

UNTIL (KENNUNG <1) OR (KENNUNG >9);
END.

—_
w N

-
U =




y,2.2.3.

Computer
[DIETTZ e FNT

Benutzeranleitung Full-PASCAL Seite 134

Wiederholungs- oder Zyklusanweisung (repetitive

Die Sprache PASCAL kennt 3 Wiederholungs- oder
Zyklusanweisungen. Der hier Zu beschreibende
Sprachumfang ist um eine zusdtzliche
Wiederholungsanweisung erweitert worden.

WHILE-Anwelsung s (vgl. 4.2.2.3.1)
p{ REPEAT-Anweisung (vgl. 4.2.2.3.2)
— >
» FOR-Anweisung p  (vgl., 4.2.2.3.3)
»{ LOOP-Anweisung (vgl. 4.2.2.3.4)
Bei den Wiederholunsanweisungen lassen sich

prinzipiell zwei verschiedene Fidlle unterscheiden.

- Entweder kennt man bei der Programmerstellung die
Anzahl der Schleifendurchlidufe (determinierte
Schleife);

- oder die Anzahl der Schleifendurchldufe ergibt sich
zur Programmlaufzeit (iterative Schleife).

Flir die 1iterative Schleifenverarbeitung stehen die
REPEAT-Schleife, die WHILE-Schleife und die
LOOP-Schleife zur Verfiigung. Determinierte
Schleifenverarbeitung wird durch die FOR-Schleife
erméglicht.




Computer
DIETTZZ vy W

Benutzeranleitung Full-PASCAL Seite 135

4,2.2.3.1. WHILE -Anweisung

Die WHILE -Anweisung ist eine Wiederholungsanweisung,
bei der die Anzahl der ‘Wiederholungen von einer
Bedingung abhingig ist, die zur Programmlaufzeit
erzeugt wird (iterative Schleife). Die Bedingungz wird
zu Beginn eines neuen Durchlaufs geprift.

logischer |.
»( WHILE Ausdruck ‘ Anweisung f—

Die Anweisungz hinter DO wird solange ausgefiihrt, wie
der logiscne Ausdruck den Wert "TRUE" hat. Hinter DO
darf nur eine Anweisung stehen. Falls mehrere
Anweisungen ausgefihrt werden sollen, so ist die
Verbundanweisung BEGIN END (vgl. 4y,2.2.1)
einzusetzen. Die Verbundanweisung selbst gilt als
eine Anweisung, kann jedoch mehrere Anweisungen
enthalten.

Operanden des 1logischen Ausdrucks miissen innerhalb
der Schleife SO verdndert werden, dal die
Endebedingung fiir die Programmschleife (logischer
Ausdruck = FALSE) mindestens einmal zur
Programmlaufzeit erfillt ist. Hat der 1logische
Ausdruck zu Beginn der Schleife den Wert FALSE, so
wird die Programmschleife keinmal durchgefihrt.




Computer
A SvSTEME]|

Benutzeranleitung Full-PASCAL Seite 136

Beispiel: Es sollen Zahlien eingelesen und summiert
werden, obls ein bestimmter Betrag erreichit ist.

PROGRAM SUMMIEREN (INPUT,OQUTPUT);
CONST GRENZE = 531.75;
VAR ZAHL,SUMME : REAL;
BEGIN

SUMME: =0

WHILE SUMME <= GRENZE DO

BEGIN

READ (ZAHL)

SUMME := SUMME + ZAHL;

END;

WRITE (“Summe =: ~ SUMME:3:2)
END.




4.,2.2.3.2.

Computer
URIEA oy sTEME

Benutzeranleitung Full-PASCAL Seite 137

REPEAT-Anweisung

Bei der REPEAT-Anweisung erfolgt der Test auf Abbruch
der Schleife nach jedem Durchlauf.

logischer
REPEAT ppf Anvelsung [ UNTIL Ausdruck [—»

Die Anweisungen zwischen REPEAT wund UNTIL werden
solange wiederholt, wie der 1logische Ausdruck den
Wert FALSE nat. Die Operanden des logischen Ausdrucks
miissen innerhalb der Schleife so verdndert werden,
daB die Endebedingung (logischer Ausdruck = TRUE) zur
Programmlaufzeit erfiillt wird. Hat der 1logische
Ausdruck 2zu Beginn der Schleife den Wert TRUE, so
wird die Programmschleife einmal ausgefiihrt.

Beispiel: Das Progzrammbeispiel aus Kap. L.2.2.3.1
Einlesen und Summieren von Zahlen bis
Erreichen eines Grenzwertes, soll mit
Hilfe der Repeat-Anweisung formuliert
werden.

PROGRAM SUMMIEREN (INPUT,OUTPUT);
CONST GRENZE = 531.75;
VAR ZAHL, SUMME:REAL;
BEGIN
SUMME: =0 ;
REPEAT
READ (ZAHL)
SUMME : =SUMME+Z AHL ;
UNTIL SUMME > GRENZE;
WRITE (“Summe =:", SUMME:8:2)
END.




y,2.2.3.3.

Computer
A SYSTEME
Benutzeranleitung Full-PASCAL Seite 138
FOR-Anweisung
Die FOR-Anweisung dient zur Formulierung von
Programmschleifen, bei denen die Anzahl der

Durchldufe vor Eintritt in die Schleife festliegt.

einfache ’ Ausdruck v
Variable —b@——b flir An- Py
fangswert
DOWNTO

Ausdruck
b fur D p Anweisung | —
Endwert

Di%e einfache Variable hinter FOR wird auch
Laufvariable oder Schleifenzdhler genannt. Die
Laufvariable muB vom Aufzihltyp (skalarer Typ) sein.
Aufzdhlbare Typen sind die Standard-Typen INTEGER,
CHAR, BOOLEAN sowie vom Benutzer definierte
aufzihlbare Typen (vgl. 3.4.1.2).

Diese Typen bilden eine geordnete Menge von Werten;
zu Jjedem Wert gibt es genau einen Vorgidnger
(Predecessor) und einen Nachfolger (successor). Die
Laufvariable muR zu demselben Block gehdren wie die
FOR-Schleife selbst. AuBRBerdem darf die Laufvariable
innerhalb der Schleife nicht verdndert werden. Die
Ausdriicke flir Anfangswert wund Endwert umiissen vom
gleichen Typ wie die Laufvariable sein.

Zu Beginn der FOR-Schleife wird der Laufvariablen der
Wert des Ausdrucks fiir den Anfangswert zugewiesen.
Die Anweisung hinter DO wird solange wiederholt, bis
die Laufvariable den Wert des Ausdrucks fur den
Endwert {iberschritten hat. :




Computer
[DIET 2 ey N

Benutzeranleitung Full-PASCAL Seite 139

Die #Anderung der Laufvariablen erfolgt automatisch

Jjeweils am Ende eines Schleifendurchlaufs. Bei
Verwendung des Schlisselworts TO wird der
Laufvariablen jeweils ihr Nachfolger (succ
(Laufvariable)) zuzewiesen; eine Verwendung des
Schliisselwortes DOWNTO bedingt die Zuweisung des
Vorgingers (PRED (Laufvariable)) auf die

Laufvariable. Wird die FOR-Schleife reguldr, d.h.
nicht durch einen GOTO verlassen, so ist der Wert der
Laufvariablen undefiniert. Ist bei Verwendung von TO
(DOWNTO) der Anfangswert grdler (kleiner) als der
Endwert, so wird die Schleife keinmal ausgefiihrt.

Sollen mehrere Anweisungen wiederholt werden, so ist
hinter DO die Verbundanweisung (BEGIN ... END)
einzusetzen.

Beispiele:

a) Eine bestimmte Anzahl von Zahlen soll eingelesen
und in einem eindimensionalen Feld gespeichert
werden; anschlieBend soll die groélte der einge-
gebenen Zahlen ermittelt und ausgegeben werden.

PROGRAM MAXIMUM INPUT,OUTPUT ;
CONST MAXANZ=20; — -
TYPE ZAHLENFELD=ARRAY [1..MAXANZ| OF REAL;
VAR I:1 .. MAXANZ;
MAXI:REAL;
FELD:ZAHLENFELD;
BEGIN (*ZAHLEN EINLESEN¥)
FOR I:= 1 TO MAXANZ DO
READ (FELD [I] );
(*MAXIMUM SUCHEN¥)
MAXI:=FELD [1] ;
FOR I:=2 TO MAXANZ DO
IF FELD [I] > MAXI THEN o
MAXI:=FELD |I] ;
(*MAXIMUM AUSGEBEN#¥)
WRITE (“Maximum = “,MAXI)
END.




e o

Computer
[DIETZ ey TN

Benutzeranleitung Full-PASCAL Seite

b) FOR-Schleife, bei der die Laufvariable einen
vom Benutzer definierten zdhlbaren Typ hat.

PROGRAM FARBEN (INPUT,OUTPUT);
TYPE FARBEN = (ROT,GELB,GRUEN,SCHWARZ);
VAR BUNT : AKRAY ROT .. SCHWARZ OF FARBEN;
I : FARBEN;
BEGIN
FOR I := ROT TO SCHWARZ DO
BUNT I := I;

END.

¢) Ein zweidimensionales Zahlenfeld soll zur
Programmlaufzeit auf einen Anfangswert
gesetzt werden.

PROGRAM FELD (INPUT,OUTPUT);
CONST MAX = 20;
WERT= 1;
VAR FELD:ARRAY ﬁ..HAx, 1..MAX] OF REAL;
I,J:1 .. MAX;-
" BEGIN
FOR I:= 1 TO MAX DO
FOR J:=1 TO MAX DO
FELD I,J iz WERT
END.

140




4.2.2.3.4,

Computer
[DIETZZ P ros

Benutzeranleitung Full-PASCAL Seite 141

LOOP-Anweisung

Die LOOP-Anweisung 1ist in Standard-PASCAL nicht
enthalten. Diese Anweisunz bietet die lMoglichkeit,
eine Programnmnschleife 2zu formulieren, bei der das
Beenden der Schleife durch Prifen einer Bedingung an
einer beliebigen Stelle innerhalb der Schleife
moglich ist.

Logischer
LOOP > Anweisung 1% EXIT IF )—DAusdruck

| Anweisung p»{ END

Die Anweisungsfolge hinter LOOP wird ausgefihrt;
danach wird eine Bedingungzg geprift und falls diese
wahr 1ist, die Schleife verlassen. Ist die Bedingung
falsch, wird die Anweisungsfolge vor END ausgefiihrt
und danach wieder zum Anfang der LOOP - Anweisung
gesprungen.




Computer
DU 5y sTEME

Benutzeranleitung Full-PASCAL

Die Anwendung dieser Anweisung

Seite 142

soll eine

Gegeniliberstellung einer Programmfolge, die einmal mit
Hilfe einer While-Anweisung und zum anderen mit Hilfe

der LOOP-Anweisung formuliert ist, zeigen.

a) Programmfolge mit While-Anweisung:

PROGRAM TEST (INPUT);
CONST ENDE = “*7;
TYPE STRING = ARRAY 1..30 OF CHAR;
VAR AUTOR,TITEL:STRING;
JAHR:INTEGER;
X:BOOLEAN;
BEGIN
X:=TRUE
WHILE X = TRUE DO
BEGIN
READ (TITEL);
X:= NOT (TITEL 1 = ENDE);
IF X THEN
BEGIN
READ (AUTOR);
READ (JAHR)
END;
END
END.




Computer
[DIETZ ey s

Benutzeranleitung Full-PASCAL Seite 143

Die Variablen TITEL, AUTOR und JAHR sollen solange
eingelesen werden, bis das erste Zeichen der
Variablen TITEL das Endekennzeichen (hier “%¥7)
enthdlt. Danach soll die Schleife beendet sein; d.h.
das Einlesen der Variablen AUTOR wund JAHR soll
entfallen. Das oben beschriebene Programm 16st dieses
Problem. Allerdings mit zusitzlichen Anweisungen.

b) Programmfolge mit Hilfe der LOOP-Anweisung:

PROGRAM TEST (INPUT);
CONST ENDE = “*7;
TYPE STRING=ARRAY [1 .. 30] OF CHAR;
VAR AUTOR,TITEL:STRING;
JAHR: INTEGER;
BEGIN
LOOP
READ (TITEL);
EXIT IF TITEL [ 1] = ENDE
READ (AUTOR);
READ (JAHR)
END
END.

o

Dieses Programm entspricht dem unter Punkt
beschriebenen.




h.2.2.4.

Computer
DURIEA Sy sTEME

Benutzeranleitung Full-PASCAL Seite 1L4

WITH-Anweisung

Die WITH-Anweisung dient dazu, innerhalb einer
Anweisung, die mehrere Recordkomponenten entnilt, die
symbolischen Namen zu vereinfachen.

Record-
WITH ‘l Variable »{ DO Anweisungf——p

Beispiel:

PROGRA!M ARCHIV (INPUT,QUTPUT);
TYPE STRING = ARRAY B .. 30] OF CHAR;
BUCH = RECCRD TITEL:STRING;
AUTOR:STRIHNG;
JAHR:INTEGEK;

END; -
VAR ARCHIV:ARRAY a1 5@1 OF BUCH;
- I:1 .. 50;

BEGIN
FOR I:=1 TO 50 DO
WITH ARCHIV [I] DO
BEGIN
LOOP
READ (TITEL);
EXIT IF TITEL [1] =%;
READ (AUTOR);
READ (JAHR)

END

END
ZND.
Die WITH-Anweisung erspart denm Programmierer
Schreibarbeit; ohne diese Anwelisung mifite ein

Einlesebefehl des Beispielprogramms folgendermalen
codiert werden:

READ (ARCHIV[I]). TITEL)
AuBerdem erspart die Verwendung der WITH-Anweisung

bei Zugriff auf Elemente eines Feldes (array) voa Typ
Record Rechenzeit.




o g

5.1.

Computer
[DIETZZ e v

Benutzeranleitung Full-PASCAL Seite 145

xterne Daten un rozeduren
Externe Dat d P d

Das Kapitel 5 beschreibt eine Erweiterung von
Standard-PASCAL wum ein Modul-Konzept. Damit wird dem
Anwender die Moglichkeit gegeben, von
PASCAL-Programmen auf externe Grofen zuzugreifen. Das
Modul-Konzept bietet somit die Moglichkeit, modular
ZU programnmieren.

Als externe Grdlden kdnnen Daten, Prozeduren und
Funktionen vereinbart werden. Die Schnittstelle
zwischen Programm und Modul mufB in einer
Schnittstellenbeschreibung, die alle notwendigen
Informationen fir eine vollstindige Konsistenzprifung
(Zusammenhangsprifung) enthilt, beschrieben werden.

Die Erweiterung der Sprache stellt folgendes
Syntaxdiagramm dar.

Programm mit externen Grdflen:

Programm- Schnitt-
—»1 beschrei- P stellenbe- »1 Block | —
bung schreibung

Das Programm, das externe Grdlen benutzt, wird hier
Hauptprogramm genannt; das externe Programm heiBt
hier tlodul.




Ul

Computer
[DIETTZZ e TS

Benutzeranleitung Full-PASCAL Seite 146

Schnittstellenbescinreibung

Die Schnittstellenbeschreibung mufl alle Namen, die im
llauptprograiam bzw. Modul deklariert wurden und nach
auden zur Verfligung stehen sollen, enthalten.

Schnittstellenbeschreibung:

EXPORTS

IMPORTS

Name >@» L =

e

Die Namen, die ninter IIPOKTS stehen, dirfen nicht
hinter EXPORTS stehen. Alle HNanen, die in der
EXPORTS- oder IMPORTS-Liste stehen, wmissen 1im
Deklarationsteil definiert  werden, daait  der
Ubersetzer den entsprechenden Code erzeugern uad
Typprifungen durchfihren xaud.

Steht ein Prozedur- oder Funktioansname 1in einer
IMPORTS5-Liste, so ist die dazuzehdrige Prozedur bzw.
Funktion extern. Der zu diesen Prozeduren bLzw.

Funktionen gehdrende “Block”™ wird durch das iiort
EXTERN ersetzt.

Werden fir die Deklaration eines Namens, der in einer
EXPORTS- oder IMPORTS-Liste steht, weitere Namen
benutzt, so0 missen alle verwendeten MNamen =2xportiert
bzw. iamportiert werden.




Computer
DU oy o TEVE

Benutzeranleitung Full-PASCAL Seite 147

Beispiel:

PROGRA!! PROGO1;
EXPORTS V1, T1, C1;
IHPORTS V2;

CONST
Cl = 255;
TYPE
T1 = 0..C1;
VAR
V1 o: T1;
V2 : REAL;
BEGIN
(* Ausfihrungsteil ¥)
END.

In diesem DBeispiel wurde fur die Definition der
Variablen V1 der Typ-Name T1 benutzt. Demnach mufl,
falls V1 exportiert wird, ebenfalls T1 exportiert
werden. Bei der Typdefinition wvon T1 wurde die
Konstante C1 vervwendet, deshalb mufl auch C1
exportiert werden.

Standard-Namen dirfen weder exportiert noch
importiert werden; auler wenn sie umdefiniert wurden.
In so einem Fall nissen diese HNamen in der Liste
stehen. Fehlt so eine Auflistung, erzeugt der
Compiler eine Typecodierung fur die
Standardbedeutungz, so dal der Binder eine falsche
Typprifung durchfihrt.




Computer
[DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 148

Beispiel:

PROGRA! PROG02;
IMPORTS INTEGER, V1;

TYPE
INTEGER = 0..255;
VAR
V1:INTEGER;
BEGIN
(¥ Ausfuhrungsteil =)
END.
Man kann sich beispiele denken, bel denen die

Bedeutung von Vereinburungen von der Reihenfolge der
Typdefinitionen abhidngt:

PROGRA1 PROGO3;
EXPORTS INTEGEK, T1, V1, V2,
TYPE

T1 = INTLGER;

INTEGER = 0..255;

VAR

V1 : INTEGER;

v2 i T1;
BEGIN

(* Ausfihrungsteil #)
END.

Konstruktionen dieser Art sind verboten !

Der bersetzer erzeugt in diesem TFall fur alle
exportierten Namen eine Typecodierung, die die
Variablen V1 und V2 auf deua Bereich 0..255 festlegt.

Nt asa—— . - e——— ——_ ', — .+ .- e o ——— ——— o r— . ——




Computer
2 SYSTEME]

Benutzeranleitung Full-PASCAL Seite 149

Ein Sonderfall Dbei der Schnittstellenbeschreibung
bilden vom Benutzer definierte skalare Typen. Dies
kann z.B. bei Variablen- Deklarationen der Fall sein:

VAR
Vi,V2 : ARRAY BOOLEAN OF (ROT,BLAU,GELB);
V3 : BLAU .. GELB;

Soll die Variable V3 exportiert werden, so niissen die
Namen BLAU und GELB in der EXPORTS-Liste stehen. Filr
eine wvollstidndige Typprifung ist es notwendig, auch
den Typ der Namen GELB und BLAU in die EXPORTS-Liste
aufzunehmen. Deshalb mufd die Variable, die
unnittelbar vor dem Doppelpunkt der Deklaration des
skalaren Typs steht, in die Liste aufgenommen werden.
Im obigen Beispiel ist dies der HNawme V2.

Wird ein skalarer Typ innerhalb einer Typedefinition
eingeflihrt,so muB der zugehdrige Typname in die Liste
aufgenonmen werden.

Fir die Kompatibilitidtspriifungz von externen Grilden
wird eine identische Deklaration verlangt:

VAR

V1 : RECORD A1, B1 : INTCGER END;

V2 : RECORD B1, A1 INTEGER END;

V3 : RECORD A1:INTEGER; B1:INTEGER END;
VL : RECORD A1, B1: IHNTEGER END;

AR B R

In diesem Beispiel sind nur die Namen V1 und Vi
typekompatibel.




o

(93]

Computer
DETZ ey e

Benutzeranleitung Full-PASCAL Seite 150

Externe lModule

Externe l!MModule sind wie PASCAL-Progranme mit externen
GrofBen aufgebaut.

Anstelle des Schlisselwortes PROGRA!N wird das
Schliisselwort MODULE eingesetzt. Der Anweisungsteil
des Hauptprogrammblocks eines !loduls darf nur die
leere Verbundanweisung BEGIHN EWD enthalten.

Beispiel: Es soll ein externes ilodul fiir die
-------- Steuerung von Bildschirmfunktionen fir
den Bildschirm 5423/5L2L erstellt werden.

MODULE BILD3CHIRMFUNKTIONEW (OUTPUT);
EXPORTS CLEAR, PO3I;
PROCEDURE CLEAR;
(* AUSGABE VON “7E1C = BILDSCHIRM LOESCHEN *)
BEGIN
WRITE (CHR(125), CiR(28))
END;
PROCEDURE POSI (ZEILE, SPALTE:INTEGER);
(¥ AUSGABE VON “TE11 = POSITIONIEREN %)
BEGIN
WRITE (CHR(126),CHR(17),CHR(SPALTE),CHR(ZEILE))
END;
BEGIN
(* LEERE VERBUNDANWEISUNG *¥*)
END.




e e

Computer
DiETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 151

Der Deklarationsteil des Hauptprogramms, das diesen
Modul benutzt, enthdlt folgende Vereinbarungen.

PROCEDURE CLEAR;

EXTERN;
PROCEDURE POSI (ZEILE,SPALTE:INTEGER);
EXTERN;

Das Hauptprograma und der Modul werden getrennt
Ubersetzt. Beim Binden wird mit Hilfe des Kommandos
ENT (vgl. Bedienungsanleitung BINDER) die Zuordnung
festgelegt.

Ein weiteres ©beispiel so0ll eine etwas komplexere
Schnittstellenbeschreibung erldutern.

PROGRA!M PROGO4 (INPUT,OUTPUT);

EXPORTS C1, T1, PROZO, V1;

IMPORTS T2, FCTO1, V2, F1, V3, BLAU, ROT, T3;
CONST

C1 = 10;
TiPE

T1 = 0..C1;

T2 = 0..255;

T3 = ARRAY CHAR OF (BLAU,GELB,ROT,GRUEN);
VAR

vi,vz2 : T2;

V3:BLAU. .ROT;
F1:FILE OF CHAR;
PROCEDURE PROZO (F1:T1);
BEGIN
(* Ausfihrungsteil ¥)
END; A
FUNCTION FCTO1 (U:REAL) : INTEGER;
EXTERN;
BEGIN
(* Hauptprogramm %)

ERND.




Computer
A SV STEME|

Benutzeranleitung Full-PASCAL Seite 152

MODULE M (F1);
EXPORTS FCTO1, F1, T2, V2, V3, BLAU, KOT, T3;
TYPE

T2

T3
VAR

F1 : FILE OF CHAR;

V2 : T2,

V3 : BLAU..ROT;
PROCL DURL LOCAL; BEGIN (* Ausfihrunzsteil ¥) END;
FUNCTIGCN FCTO1 (U REAL) : INTEGEK;
BEGIN ... LOCAL ... END;

BEGIN

0..255;
ARRAY [CHAK] OF (BLAU,GELB,KOT,GRUEN);

END.

(¥ Ausfihrungsteil Hodul: lecre Anweisung BEGIN END¥)




Computer
[DIETZ ey AN

Benutzeranleitung Full-PASCAL Seite 153

Ein-Ausgabe-Prozeduren (Input - Output -

Wwie in Kapitel 1.1 angedeutet, erfolgt der
Datentransport zwischen Anwenderprogrammn und
Peripherie-Gerdten (z.B. Bildschirm-Terminal) Uber
die ©beiden Standarddateien INPUT und OUTPUT, die als
Dateinamen hinter den Programmnamen anzugeben sind.
Die beiden Standarddateien INPUT wund OUTPUT sind
Textfiles, d.h.: Dateien, deren Komponente Zeichen
(vgl.2.1) sind. Fur den Zugriff auf diese beiden
Standarddateien und fir den Zugriff auf vom Benutzer
definierte Textfiles gibt es die Standardprozeduren
READ und WRITE.

Lingabe-Prozedur (Input-Procedure)

READ O | | Variable |—» >®_>
Dateiname _O

A 4

Die Prozedur READ darf nur auf Textfiles angewendet
werden. Wird der Dateiname nicht angegeben, so
erfolgt das Einlesen ilUber die Datei INPUT.

Die Variable mub vom Type CHAR, INTEGER
(bzw.Teilbereich von CilAR oder INTEGER), REAL oder
Zeicnenkette (ARRAY, OF CHAR) sein.




Es

D)

c)

d)

Computer
[DIETrZZ e v

Benutzeranleitung Full-PASCAL Seite 154

gelten folgende konventionen:
Der Prozedur-Aufruf
READ (F,V1, ... Vn)
hat die gleiche Lkedeutung wie
BEGIN READ (F,V1); ... READ (F,Vn) END.
(F = Dateiname, Vx = Variable).
Ist die Variable (Vx) vom Typ CHAR oder
Teilbereich von CHEAR, so ist der Prozeduraufruf
READ (F,V1)
gleilichobedeutend mit
IF SOR (F) = TRUZ TUEN BEGIN

GET (F);

V:=F";

GET (F) .

END  (vgl. 3.5.4.1)
Ist die Variable vom Typ INTEGER (bzw. Teilbereicn
davon) oder REAL, so bewirkt der Prozeduraufruf

READ (F,V)

das Einlesen einer Zeichenfolge, die eine
vorzeichenbenaftete Ganzzanl (signed integer, vgl.
2.1.3) oder eine vorzeichenbehaftete kealzahl
(signed real, vgl. 2.1.3) darstellt. Bei Variablen
vorl Typ INTEGER muld die eingelesene Zahl
zuwelsungsvertrdglich (vgl.3.4.5) sein. Flhrende
Zwischenriume (Blanks) oder Zeilenendezeichen

(Carriage Return) werden {iberlesen.

Das Einlesen wird Dbeendet, sobald ein Zeichen
angetroffen wird, das nicht der Syntax einer
vorzeichenbehafteten Ganzzahl oder einer
vorzeichenbehafteten Realzahl entspricht.

Ist die Variable eine Zeichenkette ( ARRAY OF
CHAR) , SO wird solange eingelesen, bis die
Variable gefillt ist oder bis ein
Zeilenendezeichen gefunden wird.




Computer
(D= 22 s N

Benutzeranleitung Full-PASCAL Seite 155

Eine Erweiterung der Prozedur READ stellt die
Prozedur READLN (Read Line) dar. READLN nat .die
gleiche Parameterliste wie READ. Allerdings darf
READLN auch ohne Parameterliste bzw. mit einer
Parameterliste, die als einziges Element den
Dateinamen enthdlt, benutzt werden. Die Prczedur
KREADLN  bewirkt, dab nach dem Einlescn aul’ das erste
seichen nach dem ndcnsten Zeilenendezeichen
geschaltet wird.

Beispiel:

Man nehme an, daBl die Standarddatei INPUT folgende
Zeichen enthdalt:

4,12 300 Ck =-3.060 =200
Carriage Return (Zeilenendezeichen)
Es soll folgender Vereinbarungsteil gelten:
VAR A,C, : REAL;
B,D:INTEGER;

Der Prozeduraufruf

READ (A,B,C,D)
bewirkt, da® der Variablen

A der Wert L.12,

B der Wert 300,

C der Wert -3.6 und

D der Wert =200 zugewiesen wird.




Computer
SYSTEME

Benutzeranleitunz Full-PASCAL Seite 155

Die Anweisungsfolge
READ(A); REAL(L); READ(C); REALD(D) hitte die gleicne
Wirkuang.

Die Programnfolge
READLH(A); READ(C,L)
bewirkt folgende VWertzuwelisungen:

A .12
C -3.0
D =200

Nach dem LZinlesen der Variablen A wird das erste
Zeichen nach dem nlichsten Zeilenendezcichen, hier das
Minuszeichen, mit der nichsten READ-Prozedur
eingelesen.




6.20

Benutzeranleitung Full-PASCAL Seite 157

Ausgabe-Prozedur (Output-Procedure)

Dateiname

>

{ Ausdruck - :
positiver l positiver
ganzzahl- manzzahl-
. iger Ausdr. iger Ausdr.

Me
T

Die Ausgabe-Prozedur ist die Umkehrung der
Eingabe-Prozedur. Werte werden aus den
Programmspeicher 1in die Datei, die ©bei Dateiname
eingesetzt ist, ausgegeben. Fehlt diese Angabe,
erfolgt die Ausgabe liber die Standarddatei OUTPUT.

Der Ausdruck mul vom Typ REAL, INTEGER, CHAR, ECOLEAN
oder eine Zeichenkette (ARRAY OF CHAR) sein. Der Wert
des Ausdrucks wird ausgegeben.

Die beiden positiven ganzzahligen Ausdriicke kdnnen
benutzt werden, um die Ausgabe zu formatieren. Der
erste ganzzahlige Ausdruck gibt die Feldweite, d.nh.
die gesamte Anzahl der auszugebenden Zeichen (evtl.

einscnlieRlich Vorzeichnen, Dezimalpunkt,
Exponentialzeichsn) an. Der zweite positive
ganzzahlige Ausdruck gibt die Anzahl der

Nachkommastellen an. Die Anzahl der Nachkommastellen
darf nur angegeben werden, wenn der auszugebende lert
vom Typ REAL oder vom Typ ARRAY OF ClAR ist. Bei
Werten vom Typ ARRAY OF (CHAR darf nur die Feldweite
angegeben  werden; dabel wird dann die Anzahl der zu
verarbeitenden Elemente (Linge) bestimmt.




Computer
U2 o\ sTEME

Benutzeranleitung Full-PASCAL Seite 158

Entfillt die Formatangabe, erfolgt die Ausgabe im
automatischen Format. .

Eine Erweiterung der Prozedur WRITE stellt die
Prozedur WRITELN (lirite Line) dar. WRITELN hat die
gleiche Paraaneterliste wie WRITE. Allerdings darf
WRITELN auch ohne Parameterliste bzw. wmit einer
Parameterliste, die als einziges Element den
Dateinamen entndlt, Dbenutzt werden. Die Prozedur
WRITELN bewirkt, dad nach der Ausgabe zusitzlich ein
Zeilenendezeichen ausgegeben wird.

Beispiel:

a) Die Variablen A, B, C und D seien vom Typ REAL und
haben die Werte 4.12, 300, =3.6, =200; dann
bewirkt die Anweisungsfolge

WRITELN (A:8:3); WRITELN (B:8:3);
WRITELN (C:£:3); WRITELN (D:8:3);

folgendes Druckbild:

L.120
300.000
-3.600
-200.0600




Computer
[DIETZ ey N

Benutzeranleitung Full-PASCAL seite 159

b) Eine auf einem Plattenspeicher vorhandene
Textdatei, 1in der ©Eriefe gespeichert sind, soll
zellenweise gelesen werden. In der gelesenen Zeile
sollen alle Vokale (Selbstlaute) durch das Zeichen
* (Stern) ersetzt und die gelesene Zeile auf ein
Bildscnirmgerdt (Standarddatei OUTPUT) ausgegeben
werden.

PROGRAI! TEXTVERARBEITUNG (OUTPUT,BRIEFE);
CONST ¥=R20;
VAR ZEILE : ARRAY [1..M] OF ClAk;
PRUEF : SET OF CHARj;
I: 1 .. 80;
Q : 1 .. 80;
BRIEFE : FILE OF CHAK;
BEGIN
PRUEF := ["A°,"L",’I°,’07,°U0°] ;
RESET ( “BRIEFE",1,1);
REPEAT
I := 1;
REPEAT
READ (BRIEFE,ZEILE [I] );
I := I+1
UNTIL EOLN (BRIEFE) OR EUF (BRIEFE);
IF EOLN (BRIEFE) THEN
BEGIN
FOR Q := 1 TO I DO
BEGIN
IF ZEICHEN [Q] IN_PRUEF THuN ZEICHEN [Q] :="#";
WRITE (ZEICHENW [Q])
END;
WRITELN;
END;
UNTIL EOF (BRIEFE);
RESET (BRIEFE,2)
END.




(e Computer
olinger
4330 Maiheim-Runr D)) || ISR T4

Tel: 020844341 SYSTEME]




