

- dezi2l
Full-PASCAL
Benutzeranleitung

dietz 32
Full-PASCAL
Benutzeranleitung

 Heinrich Dietz

Solinger Straße 9 Computer

Te. (0209,44381 DIETZ SYSTEME
elex

EN
Be 2-8011-01-°21 Schutzgebühr DU 77,

I
R
R
E
E
E
R
F
R
E
R
E
N
E

aa
n

 W
W

U
W
W

WW
Ww

WI

W
I
 W

I
WU

WI

WO

WI

WW

W
W
)

W
I

WI
)
W
W

WU
)

W)

W

W
W
W
W
W
W
W
B
W
W
W
W
W
W
W
W
W
K
W
W
U
U
I
D
D
R
D
D
B
D
T
D
N
T
D

—-
—_

+

—

.

S
l

F
r
t
T
t
t
r
r
r
T
r
r
r
r
m
r
w
D

.
6
+
o

N
N
D

O
N

N
N
N
N
O
N
O
N

N
N

ON

O
N
C
O
N

VI

V
I

VI

I
V
I
I
I

U
T

w
w

—-
oo

-o

W
W

—

N
)

—

e
r
e
e
t
e
c
e
c
e
2
f

E

Z
W

W
W
W
W
W

MI
—

U

OO

D
B
R
y
P
D
y
D
P
D
y
D
D
y
D
—
—
—
_
—
_

V
D
D
y
D
P
D
D
 —_

w
w
 —

Z
w
n
—
_

w
w
 —

U

Z
w
W
P
D
—

—

.

N
N

F
W
D

BMComputer|
[DIE IT ZZ SYSTEME

Einleitung
Syntax-Diagramme
Lexikalische Symbole
Zeichenvorrat (character set)
Schlüsselworte (key-words)
Namen (identifier)
Zahlen
Zeichenketten (strings)
Zwischenräume, Kommentare, Zeilenende

Vereinbarungsteil

Blockkonzept

Gültigkeitsbereiche von Namen und Marken
Aufbau des Vereinbarungsteils
Marken -— Vereinbarungen.
Konstanten-Definitionen
Typ-Definitionen
Einfache Typen (simple type)
Standardtypen (standard simple-types)
Aufzählungstyp (Enumerated-Types)
Teilbereichstypen (subrange-type)
Strukturierte Typen (structured type)
Bereichs-Typen (array type) 1*
Satz-Typ (record-type)
Mengentyp (set type)
Datei-Typ (file type)
Zeiger-Typ (pointer-type)
Zusammenfassendes Typen-Diagramm
Zuordnungsverträglichkeit (assignment _
compability)
Deklaration von Variablen
Einheitsvariable (entire variable)
Komponentenvariable (component-variable)

Indizierte Variable (indexed variable)
Satzfeldbezeichner (field-designator)
Puffervariable (file-buffer)
Zeiger-Variable (pointer variable) und
Referenzierte Variable (referenced variable)
Progedur- und Funktions-Deklarationen
Prozedur-Deklarationen
Funktions-Deklarationen

Parameter

Wertparameter (value-parameter)
Variablenparameter (variable parameter)
Prozedur-Parameter
Funktions-Parameter
Gegenüberstellung der Parameterübergabe-Formen
standard-Prozeduren
Prozeduren zur Dateiverarbeitung (file - handling
- procedures)
Prozeduren zur Erzeugung dynamischer Variablen
Standardfunktionen |
Arithmetische Funktionen

Funktionen für Ganzzahlen
Prädikate (predicates)
Initialisierungsprozeduren

N
O

OQ
NU
I

VI
I

UI

V
I

F
e
r

e
r
r

r
e
r

t
r
e
t
e

F
T
r
r
r
r
E
r
T
Z
m
r
m
m
e

D
n
w
m
m

D
V
w
D
—
_
—

w
w
 —

“
®.

D
W
w
m
D

D
D
y
D
P
D
D

D
V
w
m
w
m
m
n

W

W
W
W
W
P
D
P
P
D
P
D
P
D
P
R
P
D
P
D
D

—

P
e
n

NG
RB
ER
. \

o
o

D
D

D
m
m

U

F
w
D
P
D
 —

w
m

r

w
w
 —

I
W
W

W

W

w
w
 —

F
Z
w
n
R
n
 —_

Computer
DIUESIEZISVSTEME

Ausführungsteil (statement part)
Ausdrücke (expression)
Operanden
Operatoren

Logische Umkehrung (NOT)
Multiplikationsoperatoren (multiplying operator)
Additionsoperatoren (adding-operator)
Vergleichsoperatoren (Relationale Operatoren)
Präzedenzklassen der Operatoren

Bildung von Ausdrücken
Multiplikationsausdruck (Term)
Additionsausdruck (einfacher Ausdruck)
Ausdruck und Ausdrucksverbindungen (Element,
Menge)
Faktor
Anweisungen (statement)
Einfache Anweisungen (simple statement)
Wertzuweisung oder Ergibtanweisung (assignment
statement)
Prozeduranweisung (procedure statement)
Sprunganweisung (goto statement)
Strukturierte Anweisungen (structured statements)

Verbundanweisung (compound statement)
Bedingte Anweisung (conditional statement)
Wiederholungs- oder Zyklusanweisung (repetitive
statement)

. WHILE-Anweisung
REPEAT-Anweisung
FOR-Anweisung
LOOP-Anweisung
WITH-Anweisung
Externe Daten und Prozeduren
Allgemeines
Schnittstellenbeschreibung
Externe Module
Ein-Ausgabe-Prozeduren (Input - Output -
Procedures)
Eingabe-Prozedur (Input-Procedure)
Ausgabe-Prozedur (Output-Procedure)

96
97
97

100
101
101
103
106
109

110
110
111
112

115
119
121
122

123
124
126

127
128

134

135
137
138
141
144
145
145
146
150
153

153
157

Ein Computer
DJ 1Z. SYSTEME

Benutzeranleitung Full-PASCAL Seite 2

Einleitung

Die folgende Beschreibung definiert den Sprachumfang
des DIETZ 621 - PASCAL - Compilers. Als Vorlage
diente ein ANSI _ Normvorschlag 1*. Der
implementierte Sprachumfang entspricht der Definition
der überarbeiteten Auflage (Revised Report) 2*. Auf
Erweiterungen und Einschränkungen dieser im folgenden
als Standard-Pascal bezeichneten Version wird im Text
verwiesen.

Professor . Niklaus Wirth hat PASCAL an der

eidgenössischen Technischen Hochschule in Zürich auf
Basis von ALGOL 60 entwickelt.

Bei PASCAL handelt es sich um eine
Programmiersprache, deren Syntax und Semantik formal
definiert sind. Hierbei wurde auf kurzgehaltene und
präzise Ausdrucksformen Wert gelegt, ohne daß die
Leistungsfähigkeit im Hinblick auf den Programmablauf
leidet.

Im einzelnen trägt PASCAL folgenden Zielen Rechnung:

Klarheit und Eindeutigkeit

Die Anlehnung an mathematische Ausdrucksmittel
präzisiert die Darstellung und Bedeutung von
Vereinbarungen, Sprachanweisungen und
Verknüpfungsregeln. Das betrifft sowohl die
Folgerichtigkeit des Aufbaus (Logik) wie die
bedeutungserhaltende Knappheit der Darstellung
(geringe Redundanz).

1* ANSI (American National Standard Institute)
Working Draft Specification for PASCAL, Report No.
97/5 N462
New York, February 1979

2* Jensen, K.; Wirth, N.
PASCAL User Manual an Report
Springer Lecture Notes in Computer Science, Vol.

15,
Berlin, Heidelberg, New York 1974

ı

Computer
DEI SVSTEME

Benutzeranleitung Full-PASCAL Seite 3

Anwendungsbreite

Die Problemorientierung von PASCAL leitet sich
nicht aus der Anlehnung an methodischen

Problemkomplexen (z.B. rein kommerziell, technisch
u.a.) sondern aus der Anlehnung an die
Arbeitsweise aktueller Datenverarbeitungsanlagen
ab. |

Leistungsfähigkeit

Es wurde weitgehend auf Belastungen verzichtet,
die während der Programmlaufzeit entstehen können.
Das betrifft die Einführung bestimmter zu
verarbeitender Daten und den Aufruf von
Unterprogrammen und Funktionen, die während des
Ablaufs zu interpretieren wären. Das vermeidet
ablaufinterne Wartezeiten und steigert die
zeitbezogene Wirksamkeit des Programmes.

Zuverlässigkeit

Mit der formalen kindeutigkeit und den strengen
Übersetzungsanforderungen vermeidet man Ausnahmen,
die durch mißverständliche Sprachregelungen
Fehlerquellen in sich bergen können. Der Zwang zu

einem strukturierten Programmaufbau erfordert eine
aufwendigere Vorbereitung, erhöht aber die
Zuverlässigkeit beim späteren Programmeinsatz.

Lehr-, lernmethodische Eignung

PASCAL : gewinnt als didaktisches Hilfsmittel in
Ausbildungsinstitutionen große Bedeutung, weil die
Notwendigkeit in methodisch exakten Vorgehen den
Lehrenden und den Lernenden zu einer
konsequenteren Denkweise zwingt. Die Darstellung

in Struktogrammen ist dabei ein Mittel, die
Programmplanung im Sinne "strukturierter
Programmierung" zu unterstützen.

DIETZ

Computer
SYSTEME

Benutzeranleitung Full-PASCAL Seite 4

Syntax-Diagramme

Folgende Regeln
festzuhalten:

sind für das Verständnis

Zurückweisende Pfeile be-
deuten, daß mehrere der
Jeweiligen Rechteckbe-
zeichnung entsprechende
Ausdrücke nacheinander
aufgeführt werden können.

Solche Wiederholungen sind
ggf. durch die im Kreis
vorgeschriebenen Zeichen
(Komma, Semikolon, Vor-
zeichen usw.) zu trennen.

In ähnlicher Weise lassen

sich unterschiedliche

Zeichen- und Symbolfolgen
veranschaulichen.

Überspringende Pfeile be-
deuten, daß der im Recht-
eck genannte Ausdruck
entfallen kann.

Weiterhin lassen sich da-

mit alternative Ausdrücke

darstellen.

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 5

Der Aufbau von PASCAL-Programmen wird hier durch die
nachfolgende Form von Syntax - Diagrammen
beschrieben.

(PROGRAM }Programmnane HA, Doateinam ()\

©

Alle Worte bzw. Zeichen in den Kreisen und ÖOvalen

sind in der angegebenen Form endgültig. Die Angaben

in den Rechtecken müssen vom Programmierer festgelegt
werden.
Dazu gehören "Programmname", "Dateiname" und "Block".

Im Gegensatz zu Namen (vgl. 2.1.2) im allgemeinen

darf der Programmname nur aus Buchstaben bestehen.

Unsere Implementierung gestattet das Fehlen von

Dateinamen. (Bei Standard-PASCAL muß mindestens ein
Dateiname vorhanden sein). Der zurückweisende Pfeil
bedeutet die Möglichkeit, mehrere Dateinamen -
jeweils durch "Komma!" getrennt - zu nennen.

An dieser Stelle muß bei Verwendung der
Standardprozedur für die Ausgabe (WRITE) der
Dateiname OUTPUT; bzw. bei Verwendung der
Standardprozedur für die Eingabe (READ) der Dateiname
INPUT eingesetzt werden. Außerdem können vom Benutzer
definierte Dateinamen eingesetzt werden.

Ein Block besteht aus einem Vereinbarungsteil und

einem Ausführungsteil. Im Vereinbarungsteil müssen
alle Objekte mit Ausnahme von Konstanten (Marken,
Typen, Variable, Funktionen und Prozeduren) dem
Compiler bekanntgegeben werden.

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 5

Der Ausführungsteil beginnt mit dem Schlüsselwort
BEGIN und entnält Anweisungen, die zur Laufzeit des
Prozramms ausgefünrt werden. Der Ausführungsteil
endet mit dem Schlüsselwort END. Das gesamte Programm
endet mit einem Punkt.

"Block

— | VereinbarungsteiiH(; T*tustührungsteil |

'"Ausführungsteil!'

GE)
Hhnwei sung

(END)

 (.\ Gy,

Aus dem Syntax-Diagramm erkennt man, daß der
Vereinbarungssteil fehlen darf (überspringender
Pfeil). Im Ausführungsteil können dann bei allen
Anweisungen nur konstante Objekte verwendet werden.

In der Folge werden alle wesentlichen
Programmbestandteile zur besseren Übersicht als
Syntaxdiagramme bzw. Sprachelemente (vgl. 2
lexikalische Symbole) dargestellt. Das betrifft u.a.
die Begriffe BEGIN und END (2.1.1 Schlüsselworte)
genauso wie Prograumnane und Dateinane (2.1.2 Namen).

.1.

Computer
DJ EIIF7. SYSTEME

Benutzeranleitung Full-PASCAL Seite 7

Alle in PASCAL-Programmen verwendbaren Symbole
bezeichnet man als lexikalische Symbole. Alternative
Symbole werden im folgenden durch "}!" getrennt.

Zeichenvorrat (character set)
U eb era GAME MM "HH SMmmib Cum mil <CEED SD TUE GES CE STH SHib ih MD AD HD mil Mm Seh AL Mi U u "TE

0

Für unterschiedliche Symbole gibt es einen zur
Darstellung zugelassenen Zeichenvorrat.

Buchstaben: = Aı Bı Cı Dı Et Ft Gı Hı Iı Jr Kı

(letter) Lı Mı Nı Oı Pı Qı Rı Sı Tı Ut Vı
Wı Xı Yı Z

aı bı cı di ft sınhnı it ji Kt
lı mins om pı qaır rı sı Tr ur vi
wi xı yı 2

ıD

Kleinbuchstapden in Näanen werden

von den Großbuchstaben nicht

unterschieden. Der Compiler unter-
scheidet jedoch nicht zwiscnen
kleinen und großen Buchstaben.

Ziffern: = 1t 2: 3ı 41 51 6: 7ı 81 9Iı O

(digit)

Sonderzeichen: = +1 -ı #: /ı =ı Kt > ı ıCı)

Cıdı
bo ,E tl y na 17 <Space?

J I" Hı$ ı DB EL &IN\

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 8

Schlüsselworte (key-words)
mm WED Se MU ED STD mn —unE ° Sp . U ME U SEE CH ED CE m MED - SD Tun U AM TED WED

Schlüsselworte sind vorgeschriebene Buchstaben-
folgen, die eine bestimmte Bedeutung für den
Programmablauf haben (Indikatoren). Zusammen mit den
syntaktischen Regeln bestimmt ihr semantiscner Gehalt
das Leistungsvernmnögen von PASCAL.

Folgende Schlüsselworte sind definiert:

Schlüsselworte: =

ANDt ARRAYı BEGINı CASEı CONSTı DIVı

DOWNTOı DOk ELSE ENDı FILEı FOR FORWARDI

FUNCTION: GOTOı IFı INı LABELı MODı NILe

NOTı OFt ORı PACKED:ı PROCEDUREı PROGRAMt

RECORDı REPEATı SETı THENı TOs TYPEı

UNTILı VARt WHILEL WITH

Folgende Bezeichnungen gehören noch zusätzlich zum
Sprachumfangs von Full-PASCAL:

EXPORTSı EXTERNı IMPORTSI
MODULE t
LOOPı EAITı OTHERSt INITPROGEDURE

Computer
ID EI1E7 SYSTEME

Benutzeranleitung Full-PASCAL Seite 9

Namen (identifier)
WR ED ED m Me WU SUR Cm (HD AU a SE CE A u N u

Namen bezeichnen Konstanten, Typen, Variable,
Prozeduren, Funktionen und Programme.

Namen sind auf 128 Zeichen begrenzt. zur
Unterscheidung reicht die Abweichung in einem dieser
Zeichen aus.

Buchstabe

Alle Namen müssen mit einen Buchstaben beginnen,
danach können Ziffern oder Buchstaben in beliebiger
Reihenfolge angefügt werden.

Computer
SYSTEME

Benutzeranleitungs Full-PASCAL Seite 10

Zahlen

Fir Zahlen wird die Dezimalschreibweise verwendet.

Man unterscheidet folgende Darstellungen:

- Ziffernfolgen (digit sequence)

 | Ziffer FRE

Beispiele: 1[34

- Vorzeichenlose Ganzzahl (unsigned integer)

' — Zififernfolge

Beispiele: 7150

Die Ziffernfolge entspricht einer vorzeichenlosen
Ganzzahl; ihre gesonderte Darstellung ist aus
fornalen Gründen erforderlich. So wäre es falsch,
eine Ziffernfolge ohne Zusanmenhang als
Nvorzeichenlose Ganzzahl" darzustellen.

- Ganzzahl mit Vorzeichen (signed inteser)

vorzeichen-

— »-]ose >

Ganzzahl

Beispiele: +3 |-31

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 11

- Skalarfaktor (scale-factor)

Skalarfaktor (auch Skalierungsfaktor genannt) ist ein
ganzzanliger Anhang einer Zahl. Er stellt den
Exponenten einer Zehnerpotenz dar, der mit der Zahl

multipliziert den Zahlenwert ergibt. Positive
Skalarfaktoren stellen Zehnerpotenzen dar, die grüßer
oder gleich 1 sind, negative solche die kleiner als |]
sind.

Sie entsprechen einer "Ganzzahl mit Vorzeichen"
(signed intezer).

vorzeichen-

— lose UNE
4 Ganzzahl

—)—

Beispiel: siehe "vorzeichenlose Realzahl!"

- Vorzeichenlose Realzahl (unsigned real)

Realzahlen (real) umfassen den Bereich der reellen 1*

Zahlen, die neben den Ganzzahlen auch die gebrochenen
Dezimalzahlen beinhalten.

Bei der Darstellung von Realzahlen nit Skalarfaktor

wird der Buchstabe E zwischen Zahl und Skalarfaktor

gesatzt.

 vorzeichenlose vorzeichenlose

—-Ganzzahl . »UViffer {5 | Ganzzahl ge

Beispiele: 6E-3 = 56x10”? = 6x — = 0.006

43.235645 = 43.35x10*? = 43.35 x 10000 = 433500

1% Gegenüber den mathenatischen Begriff der reellen
Zahlen ergibt sich bei Rechnern Jdie Einschränkung
auf Zahlen mit begrenzter Stellenanzahl.

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 13

- vorzeichenlose Zahl (unsigned number)

Der Begriff "Zahl!" umfaßt den Begriff der
"Real-Zahlen". Die syntaktische Darstellung für
"Zahl! ist dann geeignet, wenn nicht vorher bekannt
ist, ob Ganzzahlen gesondert auftreten oder nicht.
Ganzzahlen lassen sich Realzahlen zuweisen,

vorzeichenlose
Ganzzahl >

vorzeichenlose

|! Realzahl

Beispiele: Hı 0.5ı 3.9

- Zahl mit Vorzeichen (signed nunber)

' vorzeichenlose
"| Zahl I

z
o

no.

—

Beispiele: +16ı -5ı +0.3ı -4.9

Computer
DUEIIFZISVSTEME

Benutzeranleitung Full-PASCAL Seite 14

Zeichenketten (stringss)
ED ME TUE GEB CEmmE SEE m Ge U TE A N EN EN u N Er TE

Es handelt sich um Zeichenfolgen (character strings),
die bei der Darstellung in Hochkommata eingeschlossen
werden.

! ?

—) Zeichen —_) —

Beispiele: 'B’: °#*°; TZEICHENKETTE'

Zeichenketten können zu Kennzeichnungen und
Erläuterungen (u.a. Texte) eingesetzt werden. Wenn
Hochkommata als Bestandteil einer Zeichenkette
auftauchen, sind sie als zwei Hochkommata
darzustellen (z.B. DER BEGRIFF "STRING ENTSPRICHT
EINER ZEICHENKETTE.). Ä

2.3.

Computer
SYSTEME

Benutzeranleitung Full-PASCAL seite 15

GEH mE ib Gmb SCH GrCHED <mEh mem vorm AMD mail SEHE .AMEE cl CD UHid AD SEHE Sn MED SCHHb MD FEED SED SE TED MED TEUUD SB mil CC SCH AB MD ED MM „A

Im PASCAL-Prosramm dürfen beliebig viele Leerstellen
oder -zeilen eingefügt werden. Das zleiche gilt für
erläuternde Texte (Konmentare), die allerdings an
folgende Form gebunden sind:

nt F°

)
—— OD „johne {

Zeich ı = 7 © . © etc ep $° | Ä N

) “ı*

— 0

Je zwei aufeinanderfolgende vorzeichenlose Zahlen,
Namen und Schlüsselworte müssen mindestens durch eine
Leerstelle oder Kommentar oder Zeilenende getrennt
werden. Innerhalb dieser Bezriffe darf aber keine
Unterbrechung durch Leerstellen, -zeilen, Trenn-

zeichen und Zeilenende erfolgen.

3.1.

Computer
SYSTEME

Benutzeranleitung Full-PASCAL Seite 16

Vereinbarungsteil
m CE CE WE "SE SE Sa er =

Blockkonzept
U CE EEE ED TED U Dr LE

Kin Block bestent aus einen Vereinbarungsteil
(Definitionen und Deklarationen) und einen
Ausführungsteil (Anweisungen), die zusammen Teil
einer Prozedur, einer Funktion oder eines
PASCAL-Programmes sind...

'!Block! Ausführungsteil

Verein-
An- _| barungs- _ RER

teil GITTER | veisuns m)——

Da man innernalb einer Prozedur bzw. Funktion

wiederum Prozeduren bzw. Funktionen einrichten kann,
ergeben sich folgende Blockscnachtelungs-
möglichkeiten: Ä

Block 1 Programm bzw. Prozedur

Block 2 Prozedur bzw. Funktion

Block 3 Prozedur bzw. Funktion

.1.

Computer
DIETZ SYSTEME

Benutzeranleitung FuLl-PASCAL Seite 17

Der Block 1 ist den Blöcken 2 und 3 übergeordnet.
Block 2 und 3 sind parallel angelezt. Innerhalb der
Blöcke 2 und 3 sind nehrere untergeordnete Blöcke
zugelassen.

In der vorliegenden Implementierunz dürfen max. 127
Prozeduren und Funktionen je Programm vorkonmen. Die
Schachtelungzstiefe beträgt max. 7.

Gültigkeitsbereiche von Namen und Marken
GEB EEE GEM EEG CE GEB „ME TED smmiD AD CC SU SED Sm AMD Sub Arc MIEEE 7 Sri SUR Um cm Mb FREE reich man SUB (MED GEHE TUEHEE Tmnil AED rum HD :MME SED CEmiED AED SmiRD

Die in einem Block definierten Größen nennt man lokal
bezüglich des Blockes. Global heißen diejenigen
Vereinbarungen, die in einen übergeordneten Block
festgelest wurden.

-— Ein Name oder eine Marke darf innerhalb eines

Blockes nicht mehr als einmal definiert werden.

- Alle Namen und Marken sind demzufolge "lokal!"
bezogen auf einen Block. Sie gelten auch "global"
für Programmteile, die diesem Block untergeordnet
sind (untergeordnete Blöcke).

- Wenn "lokale" und "globale" Vereinbarungen den
gleichen Namen tragen, dann werden die "globalen!"
im "lokalen" Bereich nicht wirksan. Das kann aus
Gründen sachlicher Vergleichbarkeit sinnvoll sein.

Entsprechend dieser genannten Bedingungen müssen alle
Bestandteile der Vereinbarungzsteile festgelegt
werden.

Computer
DESIEA SYSTEME

Benutzeranleitung Full-PASCAL Seite 18

Aufbau des Vereinbarungsteils
u GE CE STE Em TUNER SED SUCHE USB - zB WEB GEM iD MM Sail MD Tb Ze TUE ch CU "TE TE TER = A05 2

Im Vereinbarungsteil werden in bestimmter Reihenfolge
Marken, Konstanten, Typen, Variable, Funktionen und
Prozeduren beschrieben. Die Reihenfolge der
Vereinbarunsen ergibt sich aus folgendem
Syntaxdiagramnm.

Block!

 alle Marken, die im
.angehörigen Ausführungs-
teil verwendet werden

| Marken-Vereinbarungsteil

alle Konstanten des
zugehörisen Blockes

| kKonstanten-Vereinbarungsteil

alle Typen des zuge-
hörigen Blockes

.
> Typen-Vereinbarunssteil

alle Variablen des

zugehörigen Blockes
Variablen-Vereinbarungsteil

Es handelt sich um eine
in "Standard-FASCAL"
nicht vorgesehene Mög-
lichkeit, im Hauntpro-

gramm Gie Variablen

mit Anfangssinhalten
vorzubesetzen.

Vereinbarungen für
| Ersf£ungsprozedur

alle lnakalen Funktionen

Funktionen-Vereinbarunssteil

Prozeduren-Vereinbarunzssteil alle lokalen Frozeduren

 sb

Eb
el

le

_läusführungs-
 |teil

Computer
DIIESIEZISVSTEME

.Benutzeranleitung Full-PASCAL Seite 19

Marken - Vereinbarungen
wu wem EEE Gmb mei mE AMD -Sib "MD Zum „MED iM „ui MED TEMED MED MD CH -muminh . mi ce nA SCH

Marken (label) sind Ziele, zu denen im Programmablauf
gesprungen werden kann (Ansprung mit GOTO). Im
Vereinbarungsteil (Markendeklarationsteil oder

"label-declaration-part") muß LABEL als Schlüsselwort
ausdrücklich genannt werden.

Marken werden als vorzeichenlose Ganzzahlen (unsigned
integer) gebildet und dürfen nicent nehr als vier
Stellen groß sein. Jede Marke darf nur einmal in
ihrem Gültigkeitsbereich auftreten.

vorzeichenlose
. Ganzzahl

— LABEL I "| (max. 4 Stedlen) —(———

 IN

\/

Beispiel: LABEL 1|23|A

3.3.

Computer
DEIIFZISVSTEME

Benutzeranleitung Full-PASCAL

Konstanten-Definitionen
GEEEE ED wi GES GEM GE TED SUB men =UmR „iib «CHR Sub SER IE U U -_..

Die Vereinbarung von Konstanten
Namen einen festen Wert

Konstantenname darf nicht auf der

Zuweisung verwendet werden.

Seite 20

erlaudt es, einen
zuzuweisen. Bin

linken Seite einer

 CONST 1 =-| Konstantennanme

Konstante GH

"Ganzzahl"- oder "Integer"-Konstante

Ein vereinbäarter HKonstantennane darf in einer Janaz

Konstantenvereinbarung
wänrend des

folgenden
Bine Konstante ist

unveränderbar.

Der Typ der

zeichen ausgedrückt.
Es gibt folgende Möglichkeiten:

ı n
werden.

Prosramms

verwendet

sanzen

Xonstante wird nach den Gleichheits-

"NGanzzahl!"'- oder "Integzer"-Konstante
mE Wu ME ED SED SOERE EST FE ET Eh ET

vorzeichen-
>| lose WE

Ganzzahl

Neme für MAXINT y

—-- Ganzzahl- (=) > MININT ee

konstante _ ih
MININT

Name einer MAXINT

Beispiel: >| anderen BOB (2.147.483.647
mAa_Aa0oRN. Ganzzahl- standardmäßig die

CONST KONSTANTE1=1980; Konstanten kleinste und größte KONSTANTE2=KONSTANTE1N;
KONSTANTE3=MAXINT;

Zahl, die auf das
Jeweilige System
zugelassen sind)

DiIEamzj computer

Benutzeranleitung Full-PASCAL

SYSTEME

Realzahl- oder "Real"-Konst.
ER Web WED GUEE GEB EHE CEER TER WE U N TE LEE N EN u BE En BE} -— wm m a To

Name für
„—nealzahl-

Konstante

Realzahl

vorzeichen-

„lose

Name einer
anderen

Beispiel?

CONST PI: 3.14159;
CONST A :-0.753E2;

Zeichen- oder "Character"-Konstante
> m GE Eb ETib OD SU ums > WE TOD Th TEE TOD WE ZU TE EEE EEE EEE EEE N TE EEE TEE

Bei mehreren Zeichen spricent man von

Zeichenketten- oder "String"-Konstanten

Realzahl-

Konstanten

anderen

Name für

Name einer

Seite 21

Zeichen-

Konstante

=> Zeichen

eine Zei- | () @
chenkon-

stante

Beispiel:

CONST KONSTANTE-1 =
KONSTANTE-2 = '\DIES IST EINE

om

ZEICHENKONSTANTE!';

Computer
DUESIEZISVSTEME

Benutzeranleitung Full-PASCAL Seite 22

Boolesche Konstanten (boolean zonstant)
mE wu EHE Ve SED TU Ui = Ch Tb 2 ih u ME SE TE u TE TE [2 - - om u u TE 3 3 } -— -

Hierbei werden Aussazen der Booleschen Algebra
zugrundegelegt, die auf den Aussagen "falsen"
(=FALSE) und "richtig" (=TRUE) beruhen. Die
formelmäßige Verbindung (symbolische Logik) erlaubt
die Darstellung und Lösung von Problenen, die
ursprünglich nur als sprachliche Folgerungen erfaßt
werden konnten. Damit wurde es möglicen, schlüssigse
Ergebnisse für konplizierte Aufgabenstellunzen
(Mengenlehre, Schaltalgebra, Operations Research,
Kybernetik, Informatik usw.) abzuleiten.

| FALSE Ä

Name für . ‚
| eine > () > ,
Boolesche |

Konstante

Name einer
>| anderen

Booleschen
Konstanten

Beispiel:

CONST WAHR = TRUE;
= FALSE; FALSCH

3 4.

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 23

Typ-Definitionen
mE WE MED SEHE SEE WEWEE SEE AmCEE ih <R <CED U u

Ein Typ bestimmt die Werte und die Struktur, die
Variablen dieses Typs annehmen können und die
Operationen, die mit diesen Variablen ausgeführt
werden können.

Prinzipiell ist folgende Darstellung vorzeschrieben:;

IYPE _ Typen- oe Typ Di
name

Durch die Typen-Definition wird ein Typ mit einen
Namen versehen.

Grundsätzlich Jarf der vereinbarte Typ nur definierte
Typnamen enthalten. Ausnahnen hierzu sind bei der
Verwendung von Zeigertypen (vgl. 3.4.3) zugelassen.
Weiterhin sind die Standardtypen (INTEGER, BOOLEAN,
CHARACTER, REAL) als "von vornherein bestimmt" von
dieser Regel ausgenommen.

3.

3.

4.

4.

1.

1.

Computer
DIUEIITZISVSTEME

Benutzeranleitung Full-PASCAL Seite 24

Einfache Typen (simple vype)

Alle einfachen Typen definieren geordnete Mengen und
Werte.

Standardtypen (standard sinmple-types)
mb WE GEUEER GE m GENE "ib ©2008 TE TE EEE TE TS TH Te > = A ME A SE N ME TE

- Ganzzahl-Typen \integer)
GUAM GE SU mb u EC - u TE TE = E . En} oe

Name für

Y_]|Ganzzahl-
TYPE > Typ

I INTEGER

Name für
anderen
Ganzzahl-

Typ

Die einsetzbaren Ganzzahlen werden intern 4 Byte lang
dargestellt. Der Wertebereich sent von MININT
2.147.483.647) bis MAXINT 2.143.433.647).

- Boolesche Typen (boolean)
uD mb mb GE GEM CE 72. TS U ED TEE u EEE TE

Name für

TYPE ' _|] Booleschen
| Typ

 BOOLEAN

Name für
anderen
Booleschen

Typ

Diese Werte sind Wahrheitswerte (vgl. 3.2 Boolesche

Konstanten), die durch die Aussagen "falsch" (=FALSE)
oder "wahr" (=TRUE) dargestellt werden. Der Boolescene
Typ wird maschinenintern mit der binären Darstellung
0 (=FALSE) und 1 (=TRUE) dargestellt (FALSE < TRUE).

.“,

Lu

wu
nn,
en
.—

u El

A
N

\ ”
N

Br
h
t

un)

r
n

. 2 2 0010 1 ET TE m e eu m CE Se a u 1 001 0 TE

nvorrates auftreten ahs
ur

a

Reschen-
Typ

Nameı &ur
anderen

hen-

ame IU
Hameh&hfr

T
T

n
m
:

e
u
r
e
n

m
e
n
.
“

S
e

e
r

m
e

eo

;
si

“
Di

u
u
d

Bo
en

BG
i
n

—

F

m

P
e

u
t

-
Peer

ri R

1

nnu

OHAR. en

3

e
EN
T

a
e
a
t

I
I
N
N
>
>

P
L

E
N
N
I
W
V
I

A
S

I
N
N

I
T

IrTr"
I
K
T

u
n
m
m
m
e
r

—
e
r
n

n
a
m
e
n

m
e

-
=

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 26

- Realzahl-Typen (real)
u CE CE u ur A ET EEE > TEE TE “SEHR TED © DUB

Name für

TYPE = Realzahl-

Typ

ame für
__janderen

- |Realzahl-

Typ

Die einsetzbaren realen Zahlen werden intern durch
eine T Byte lange Mantisse und eine 1 Byte
Exponenten darzestellt.

3 +57
Der Zahlenbereicn Lliezt bei 10 bis 10 ,„ wobei sich
durch Umrechnungsverschiebungen zwischen den
Zahlensystenen und durch Jie Beschränkung der Dezi-
maldarstellung (auf 15-16 Stellen) kleinere Spannen
ergeben können.

a

3.4.1.2.

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 27

Aufzählungsstyp (Tnunerated-Types)
ER ED VE ED A ED < E SE E E EE TE T = a. —[1 Bu mn 3 L} u}

Aus Gründen der Verstäialilionkeit warle hier der von
Professor wirthn geprägte Bezriff "Skalarer Typ"
(scalar type) durch "Aufzählungzstyp" ersetzt.

Durch die Vereinbarung wird einem Namen (Typnane)
eine Wertnenze bestehend aus Nanen (= Werte-Nanen)
zugewiesen. |

> Der Reinenfolzge je Werte-Nanen werden
naseninenintern Stellenwarte zugeordnet, nach Jenen

gli die Nanen gezählt und verglichen werden können.

In der vorliegenden Inplementierung dürfen
"Aufzählungstypen" maximal 255 Elemente haben.

Name für Werte-

| Aufzäh- -IHO | name Or

lungstyp

Name für
= Aufzäh-

lungstyp

m CE EEE (AR TE un - =

TYPE WOCHE = (MONTAG, DISNSTAG, MLTTWOCH, DONNERSTAG,
FREITAG, SAMSTAG, SONNTAG);

3.4.1.3.

Computer
DEIIEA SYSTEME

Benutzeranleitunz Full-PASCAL Seite 28

Teilbereichstypen (subrange-type)
m CE WE m a VE iD 1 MD N EN u N -o—-—. MB TE N N TE TE m m A TE

Es ist möglich, nit Hilfe der Ordnunss-Typen
(INTEGER, BOOLEAN, CHAR) und der Aufzählungstypen
neue Typen nit eingeschränkter Wertenenze

(Wertbereich) zu vereinbaren. Das geschieht durch
Angabe des kleinsten und srößten Wertes als
Konstanten. Teilbereichstypen naben alle
Kigenschaften Jes Basistyps nit der Beschränkung auf
das vereinbarte Intervall.

kleinster größter
Wert wert

Name für

Teilbe- O9 Konstante (Ze forstente
reichstyp

Beispiel:
— u TE a

(MONTAG, DIENSTAG, MITTWOCH, DONNERSTAG,
FREITAG, SAMSTAG, SONNTAG);

YPE WOCHE

WERKTAG MONTAG .. FREITAG;

3.4.2.

3.4.2.1.

Computer
ID EIIE7 SYSTEME

Benutzeranleitung Full-PASCAL Seite 29

Strukturierts Typen (structure d | type)
m m ZU u a TE N ETW - m 0 . ne 2 a a Ta Ta mn m -— .» m m _m - 0“

Es handelt s3ıeon un eine Zusammensetzung von
Komponenten nacn bestimmten Ordnungsnerknälen. Die
Komponenten werden aus szinen oder mehreren aaderen
Typen zebildei.

Bereichs-Typen (array type) 1#
WED MED VE +UED KU a ME TE EN "SE a -— 3 ME N TEE + L 1

4 i ‚ N

Bin Bereichsty»p D2Stent aus alnar Festgalezgten Anzanl
von Komponenten desselben Typs (Kanpanenten-Typ oder
"conponent- type"). Die Komponenten des Bereichs
können über Indizes angesprochen werden (Index-Typ
oder "index-type").

1* Der Begriff "array" wird hier als "Bereich" und
nicht als "Feld" (field) übersetzt (vsl. 3.4.2.2).

En

DIETZ AA

Benutzeranleitung Fuli-PASCAL Seite 30

name für Vamnaranl
(mE) Rereichs- tentyn

iyp

nane für
anderen

—]5Bereichs-
Typ

Der Indextyp wir. Mit Ordinaltypen oder
Aufzählungstypen zebildet (vgl. 3.4.1.3), deren
Bereich (Intervall aus Ober- und Untergzrenze)
definiert ist. Bein Konponententyp ist mit Ausnanne
des Dateityos (file type - vgl. 3.4.2.4) jede andere

Typ-Angabe nöglich.

Beispiele

Indextyp

a) BOOLEAN

b) CHAR

c) CHAR

d) INTEGER

e) Aufzäh-
lungstyp

f) BOOLEAN

KOoNDonententyp
OT

INTEGER

BOOLEAN

REAL

ARRAY
REAL

REAL

INTREGER

[1 .. 100] OF REAL;

Fornullerung
ET Er

TYPE AFALL = ARRAY
[FALSE..TRUR] OF
INTEGER;

TYPE BFALL = ARRAY
L’A’..’z] OF BOOLEAN;

TYP® CFALL = ARRAY
I" °...°/°] OF REAL;

TYPE DFALL = ARRAY
[-255 .. 255] o® array

TYPE ZAEHLER = (ANTON,
BERTA, CAESAR);
TYPE EFALL = ARRAY
[LANTON .. CAESAR| OF REAL;

Mit Hilfe eines Aufzänlunss+
typs (ZAEHLER) können In-
dextypen gebildet werden.

TYPE FFALL = ARRAY
[FALSE .. FALSE] OF INTEGER|

Wenn Unter- und Obergrenza
übereinstinmen, Desteht
der Komponententyp aus
nur einem Element.

Computer
DET? SYSTEME

Benutzeranleitung Full-PASCAL Seite 31

Jede Definition kann außer den Dbestinnten Tvpen
weitere zusanmenzesetzt=s Typdefinitionen (z.B.
Bereichstyp) Nneranzienen. Dazı kKkonmen auen Jie

u Anwendunssmöglichksiten Jes Satztyps (record type -
vgl. 3.4.2.2).

=
n
n

n
i

ni

a

n
n

u

n
n

on

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 32

3.4.2.2. Satz-Typ (record-type)

- Einfacher Satztyp

In Vergleich zum Bereichstyp (ARRAY) gibt es
folgende wesentlichen Unterschiede:

Die Konponenten des Satz-Typs (Satzfeld oder
record field) bestehen aus sleicnen oder

verschiedenen Typen. 1*

Die Satzfelder (rezord field) werden nicht über
Indizes angesprochen sondern haben einen eizenen
festen Nanen (Komponentennanmen oder field
identifier).

Dem Konponentennane folzt der Konmponententyp
(component-type).

Name für

__janderen G;)
' 15atz-Typ (Ei)

 -
Xomponen-
tenname

NOV D n B

Die Konstruktion aus Konpöanaentennane und

Konponenten-Typ wird Konponentenliste (field list)
genannt.

1* Im Zusammenhang nit PASCAL sind array (Bereich)
und field (Fald) zu unterscheiden. Die Satzfalder
(record field) haben im Gezensatz zu den Elementen
eines Bereichstyps (array type) eizene Naaen und
xönnen von unterschiellichen Typ sein.

r
e
g

zn

S
E
E
.

0

Te

in
Er

I
T

2

n
a

ET

a

m

i
e

t
n

Computer
DUESIEA SYSTEME

Benutzeranleitungz Fuli-PASCTAL Seite 33

Hier ist ain Satz-Typ mit drei verschiedenen Typen
sebildet worlen: Zähldbarer Typ, Teilpdereichstyp
bei Ganzzanlen und GanzzahltvD.

Beispiel:
m CE m ee - =

TYPE DATUM = RECORD MONAT: (JAN,FEB,MAER,APR,
MAI,JUN,JUL,AUG,SEP,
OKT,NOV, DEZ);

TAG: 1... 315
JAHR: INTEGER;

END;

Computer
ISYSTEME

Benutzeranleitung Full-PASCAL Seite 34

- Varianten-Satztyp

Hier kann ein Satzfeld (rea

reldvdelesung mehrere unters
darstellen (Redefinition).

ord field) bei zleicher
eniedliche Typvarianten

Der Variantenteil (variant part) besinnt nit den
Schlüsselwort "CASE" und den Namen für die
Auswahlmarke (taz field). |

Danach folst der Typ für die Auswahlmarke (tag
type) und die Auswahlmarkenliste
(case-constant-list), die durch das Schlüsselwort
"OF" eingeleitet wird.

Die Auswahlmarkealiste (cas»-constant-list) zibt
die Konstanten an, die die Auswahlmarke annehnen
darf. Die den Konstanten zugeordnete
Komponentenliste bestimmt die Art der Definition.
Sie erfolgt nit Ordinaltypen oder zänlbaren Typen.

Bei den hier zugelassenen Typen ist es nicht
gestattet, daß als Komponenten des sSatztyps
Dateitypen (file type - vgl. 3.4.2.4) auftreten.

Alle Auswahlmarken in der Liste

(case-constant-list) mässen voneinander verschieden

sein. Auswahlnarka und Konstante nissen

typidentisch se»ein.

Innerhalb der zugeordneten Konponentenliste (field
list) wird die Variante Juren Komponentennaune
(field identifier) und Konponententyp (conponent

type) bestimmt.

Name für

Variablenteil

©
Nane de Ti der - ane der ypD de Auswahl Kompenen- Auswahl- Auswahl- | |marken- -

ne sarie MOyiiste jenliste UN) O

DR
7
0
2
2
3

u
n

E
T
.

n
e

Computer
DINESIFZSVSTEME

Beniıtzeranleitunzg FuLl-PASCAL Seite 35

Beispiel:
m E WE TE u WE 1 a

TYPE FIGUR = (DREISCK,QUADRAT, RECHTECK);

GEOMETRIK = RECORD CASE FLAECHE : FIGUR OF

DREIECK : (GRUNDSEITE, HOEHE: REAL);

QUADRAT : (3EITE:REAL);

RECHTECK: (LAENGE,BREITE:REAL);
END;

In Verarbeitungszusainmenhanz ändert sich die Struktur
der Satztypkonponente (Ausdruck ab CASE), wenn der
Auswahlmarke ein neuer Wert zuzewiesaon wiril. Dann ist
der bis Janin zefünrte Inhalt nicht nehr definiert,

Bei allen Formen des Satztyps können außer Standard-
typen weitere zusannengesetzta Typdefinitionen
verwendet werden, die zuden beliebize
Schachtelunzsmöglichkaiten bieten.

e
n

w
e
n
n

s
a
u

T
r

nn
in

34.2.3.

Computer
DIUEIIEZISVSTEME

Baenızzeranleitung Full-PASCAL

Mengentyp (set type)
un U u -— m ee = - = * -» wm m

Der hier verwendete
dieser
Der Menzentyp
Potenzmenge seines Basistyps unfaßt.

Besriff

Hinter Potenznenze 3
Begriff oJ

iten einer

7 Grundnenze unfaßt.

"Mangentyp"

Darstelluns nur für Jen "set-typae" zebrauent.
Jefiniert einen Wertebereich, der die

wird in

aht ein eindeutig besrnirlebener

beschriebenen

t
aus Jer matnhenasviscenen Mangenlcehrs, ler alle

Kal
D Dabei werden die Grundmenge und

die "leere Menge" = f \ dazugerechnet.

Bei- Darstellung Anzanlı. Darstellung Anzahl
spiele Grundmenge H nlenente PatLenzamenge Konbina-

tionen
m GE WE LE A u u > u m ME N 3 TE N m:

a) fo} ;

b) N, 2

e
m
,

—

&
u
n
d

(.
.

e
n
d

1
0,13

[1,2

f \
d) 11»2,3, 8) 4 S

L
e

e
r

K
r

D
-
W
N
n
-

E
N

u
m

w
m

ns

DI

2
7

m
m

n
n

D
e
m

u
n

m

A
n

nn
;

=

n
n
 n
n

t.

_ - - - un = _ Bl ® 0. w “ - - a oO En; 0 - E ; - E_ 7 1 2 - m u n 2 = B E]

to! 322.

0. 2
0,1; u=2

[of
23
[0,2 | 3
{0,1,2 8=2

U

BE
L

eN
g

\
m
e
r

m
a
n

_

o
o
 [N

—

ww

—

D
W
N
D
E
H
N
,

0
 2

m

w
w

X
,

—

O
N

ıl \D

FE u

I r
a
n

I;

n
n

e
n

>
a
m

m
n

r
n

e
n

n
n

Computer
DIETZ SYSTEME

33 ul

19)

rn
 ct

(D
 Benutzeranleib: ing FTaLl-PASTAL

Die Untersusnuns ainer fürigesatzsen Reine führt zu
der Erkenntnis, daß die Anzahl der Konbinationen
(Mächtiskeit der Potenzmenge) Zweierpotenzen iu
Abhängiskeit von der Anzahl der Elenente der
Grundmenze sind!

M

P(M) =

Da die Anzahl der Elementenzrundlmenge als kxponent
zur Basis 2 auftritt, nat nan den Begriff
"Potenzmenze" geprägt.

Bei der Typdefinition entsprieht die Grundmenge den
Basistyp und der Inhaltsbereich der Potenzuenze Jen
Menzentyp.

In Jieser Inplenentierunzg
Teilbereienstypen aus Drdina

Pr

ö
AL!

Typen" bis 255 Slemente (090-255

sind als Basistypen

‚sypen und "Aufzänlungs -

) erlauni.

Der Teilbereion kann in Mengzenatyp Pingescnlossen 32i1N
ler als sesanderter Teilberai:hstyp foarnaulliert
werden.

 1, 2.

Konstante Konstante un Name fiir

typ

Name für
Teilbe-
reichs-Typ

Computer
DIESE SVSTEME

Benutzeranleitung Full-PASCAL Seite 39

Beispiele:
mm GE TEE NAME Gm Sn x: 1 VE

Basistyp Formulierung

e) INTEGER TYPE AINT=SET OF 0..9;

(eingeschlossen)

(gesondert) TIPE TEILB = 0..9;
TYPE BIiANT=SET OF TEILS;

f) BOOLEAN | TYPE CBOOL=SET OF FALSE..TRUS;

(eingeschlossen)

g) CHAR TYPE DCHAR=SET OF ’A’..’B';
(eingeschlossen)

h) Aufzählungstyp TYPE SKAT = (KREUZ,PIK,HERZ,
gesondert KARO);

TYPE BUBEN=SET OF SKAT;

Mit dieser Definition werden

alle Bubenkonstellatbionen

bein Skatspiel definiert
(vgl. Beispiel d).

a

m
e
n
t

u
n

u
n

m
r

tr
a

—

m

ti
n
Z
T

We
ka

nn

3.4.2.4.

Computer
DIETZ

Benutzeranleitung Full-PASCAL Seite 40

Datei-Typ (file type)
& .

ED EEE WE ED TED rap er = u . - > N VE Te u “ ” - =

Beim Dateityp handelt e3 sich un eine Folge von
Komponenten gleichen Typs. Die Anzahl der Komponenten
ist zua Zeitpunkt der Definition unbestimnt; ebenso
der Inhalt der Datei.

Name eines
anderen

Datei-Typs|

Name des

de HI HO—

Datei-Typen sind in dieser Implenentierung als
Komponenten nicht erlaubt.

Mit dem Datei-Typ lassen sion sequentielle Dateien
aufbauen.

Dateinamen (z.B. ADATEI) nissen wie die
Standarddateien (INPUT, OUTPUT) hinter den

Progranmnanen (vzl. 1.1) aufgeführt sein.

Computer
DNSIEZISVSTEME

Benutzeranleitung Full-PASCAL

Beispiel:
mn zu nn {an Ta ee

TYPE ADRESSE =

PERSONEN=

Seite 4]

RECORD NAME:ARRAY I .. 20: OF CHAR;
VORNAME:ARRAY 1 .. 15 OF CHAR;
STRASSK:ARRÄY 71... 30) 0# CHAR;
HAUSNUMMER: INTEBOGRR; |
POSTLEITZAHI:_ INTEGER;
ORT: ARRAY |1 .. 25! OF CHAR

END;
LE OF ADRESSE;

In diesem Zusammenhang ist darauf ninzuweisen, Jaß
eine Typdefinition noch keine Datei Degründen kann

Dazu sind erst entsprechende (vgl. 3.4).
/ Variablen-Vereinbarunsen erforderlien (vgl. 3.5.2.3).

Im Standardprolosg 1* ist ein vordefinierter Datei-Typ
mit dem Nanen

heißen Text-Dasa

1* Unter Prolo
Übersetzer
verstanden,

ung ewand elta

mm

2

vorbasetzte

die für jedes mit

Prozgramnievuilg

EXT" enthalten. Variable dieses Typs
en und sind von Zeichentyp (CHAR).

werden in diesen Zusammenhang von
Proözgrannvereinbarungen

diesem Compiler
Prozrann gelten und bei ler
genutzt werden köinnen.

3.4.3.

"Computer
ID EI SYSTEME

Benutzeranleitung Full-PASCAL Seite 42

Zeiser-Typ (pointer-type)
nn GE BE u TE AT Te. = = om = oa an ” m

Die Vereinbarung eines Zeiger-Typs entspriont ler
üblichen Typ-Definition:

Name des | Tyd
TYFE Zeiger- Name —

Typs

Der Zeiger-Typ erlaubt die Darstellung von
Hauptspeicheradressen (je 2 byte) zur Adressierung
von Variablen. Die eigentlichen
Anwendungsmöglichkeiten des Zeizer-Typs lassen sicn
dabei nur in Verbindung mit Variablen sinnvoll
beschreiben (vgl. 3.5.3).

Folgende Typ-Vereinvarung stellt ein Beispiel für den
Zeiger-Typ dar:

u o
 1 an
 SQ a Oo
 IYPE A

Bei jeder anderen Definition ist es zwinzend, den
Nanen einer Konponenten vorher zu bestimmen. Der
Zeiger-Typ gestattet lie gegenseitige Bezugnahme (=
Aufeinanderzeigen) in Abweichung von dieser Rezel.

ZuUs2a:
[eo €.

3.4.4.

Computer
DIETZ SYSTEME

Benutzeranleitims Fall-PASCAL

amenfissendes Typen-Niızrama
ee mw = _a De . m m 2 8 = EZ Ze .-— o..M 2 » 2m - - -

\ TYPE mi oA

NPNZerm

“ ERW

PET

I'TEGER

N on

= RULLEAN ;

9-9

Aufzäh-
iımestynD

“1 38

1 c

“DD

“4 E

Io Fr reichstyn

= Teilbe-

Rereichs-

Seite 43

 tyD

Inuex-
tyn

Finfacher

Komponen-
lm tentypr

 Satztyp

Komnonen-

| tentyv

Name
RECORD Auswahl-

-- marke

mm —
‚omponen-

AuSwWanLl- ar a En et enliste
warke | \/ | ı

IL. 4

rn

)

- K = WIL. ur Typ

N
1 = I {yp

3.4.5.

Computer
DIUESIFZISVSTEME

Benutzeranleitung Full-PASCAL Seite 44

Zuordnungsverträglicnkeit (assignment _
ED ME TE TE 7 m _. 1 = - - - -.——0 11 0.01 a m “- —— 2-2 m 0 m - “=... . “ “* ® - = - m TE TE -— .8 = m 1 TE TE

compability)
mE am WED a ED AED - u N

Wenn Inhalte unterschiedlichen Typs (z.B. Variable)
verarbeitungstechnisch zusannengeführt werden sollen
(z.B. bei einer Wertzuweisung), nuß der Zuweisungstyn
nit dem Empfanzstyp zuordnungsvertriglien sein. 50
ist es beispielsweise nöglich, eine Ganzzahl einer
Variablen von Typ "REAL" zuzuweisen, was ungekenrt
usgeschlossen ist, nämlich eine Realzahl einer

Variablen von Typ "INTEGER" zu lübergeven,

Die Voraussetzungen Jer Zanrdnungsvertraglichkeit
sind in folzende n FäLlıen zezeden!

Beispiele

Wir beschränken UNS Auf lie Typ-Darstellunsz;
vrawsäonlLion sind andere Konstruktionen (zB.
Zuweisungen an Variable) erforderlien.

Zuweisungs- Empfanzs-

typ typ

a) Typidentität REAL REAL

Das giit außer für
Datei-Typen bei allen
anderen Typen

b) vorgegebene INTEGER REAL
Untermenze

Diese Zuweisungsndg-
lichkeiten zelten in
Bereich der Orinungs-
Lypen (CHAR,INTEGER,
BOOLBAM).

a
.

T
E
E
N

E
M
I

T
R
E
E

N
A

T
E
E

L
E

T
e

—

Computer
BESIEA SYSTEME

Benutzeranieitung Full-PASCAL Seite 45

Zuweisungstyp Empfansstyp

2) vereinbarte
Untermengze
mn SEE EEE SE A Sr CR > U A

(1) Teilbereichs-
Typen TYPE INTTEIL = 5..10; INTEGER

Auch hier sind

ähnliche Zu- TYPE ALPHTEIL= J..0; CHAR
weisungsmög-
lichkeiten TYPE WERKTAG = MO-FR;
wie bei b). _ WOCHE =(MO,DL,MI,DO,FR,

SA,SO);

(2) Mengzen-Typen TYPE ZEHN=SSET OF 1..10;5 TYP& HUNDERT=
------ 2.202. SET OF 1..100;

(3) Zeichenfolgen TYPE ABC=ARRAY[D..2] TYPE ABCDEF=ARRAY(O. .5|
----- 22200 OF CHAR; UF CHAR;

Bine Zuordnungsverträglichkeit ist
hierbei gegeben, wenn bei der Zu-

weisung bestimmt wird, an welcher
Stelle die kürzere Zeichenfolge
aufgenommen werden soll {vzl. In-
dizieruns / 3.5).

Bei Teilbereichstypen und bei eingeschalteter
Kontrollfunktion (check option) werden Laufzeitfehler
gemeldet,. wenn die zugrundegelegte
Zuordnungsverträglichkeit nicht mehr gegeben ist
(Überschreitungen der vorgegebenen Intervalle).

Bei allen anderen Zuordnungsunverträglichkeiten
werden die Fehler zur Übersetzungszeit gemeldet.

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 46

Deklaration von Variablen

Variable sind im Vergleich zu Konstanten inhaltlich
änderbare Objekte, die aber ebenfalls durch bestimmte
Namen (Variablennamen - "variable-identifier") oder
Selektoren 1* angesprochen werden können.

Die Definition des Typs einer Variablen kann bei der
Variablen-Deklaration erfolgen (Standard-Typen) oder
durch Nennung eines vorher definierten Typennamens
(Benutzertyp).

y Variablen-
VAR] => name co Typ =

L

Der Geltungsbereich einer Variablendeklaration
richtet sich nach der Blockstruktur (vgl. 3.1.0,
3.1.1).

1* Unter selektion werden Auswahlmechanismen

verstanden, mit denen man die Komponenten von

Variablen ansprechen kann. Man unterscheidet in
Anlehnung an den Aufbau der strukturierten
Datentypen für die Variablenselektion:

Bereichsselektoren (Indizierung)

z.B. VAR A : ARRAY I1..3] OF CHAR;
Indizierung der 2. Komponente AL[2]

Satzselektoren (Namensverknüpfung)
z.B. VAR A : RECORD B,C,D:CHAR;END;
Namensverknüpfung f.Komponente C A.C

Computer
DJ EIIr7. SYSTEME

Benutzeranleitung Full-PASCAL Seite 47

Einheitsvariable (entire variable)

Hierbei handelt es sich um eine Variable, die
innerhalb ihrer Bestimmung keine weiteren

"Untervariablen" aufführt. Das unterscheidet sie von
der Komponentenvariablen (vgl.3.5.2).

Beispiele:

VAR NUMMER : INTEGER; (*BEZEICHNUNG Z.B.GANZZAHL-
VARIABLE*)

AUSSAGE : BOOLEAN;
BUCHSTABE: CHAR;

DIVISION,DIVIDEND,DIVISOR : REAL;

b) mit Aufzählungstypen (Aufzählungs-Variable)

VAR JAHRESZEIT : (FRUEHLING,SOMMER,HERBST,WINTER);

c) mit Teilbereichstyp (Teilbereichs-Variable)

VAR TAGNUMMER : 1..7;5

d) mit Bereichstyp (Bereichs-Variable)

VAR BUCHSTABEN : ARRAY [A.. 2) OF CHAR;
Während die Variable "Buchstaben" eine Einheits-
variable darstellt, deklariert Array bereits die
Komponenten A bis Z. Um eine reine Einheitsvariable
auszudrücken, kann man einen Typennamen ansprechen.

TYPE BUCHSTABEN = ARRAY [A..Z] OF CHAR;
VAR VOKALE,KONSONANTEN : BUCHSTABEN;

Computer
DIIESIFZI SYSTEME

Benutzeranleitung Full-PASCAL Seite 48

e) mit Satztyp (Satz-Variable)

(entspricht den Darstellungsmöglichkeiten bei d))
TYPE EHESTATUS = RECORD. LEDIG,VERHEIRATET,

GESCHIEDEN, VERWITWET:BOOLEAN;

END;
VAR FAMILIENSTAND: EHESTATUS;

f) mit Mengentyp (Mengen-Variable)

VAR VERHEIRATET : SET OF FALSE..TRUE;

g) mit Dateityp (Datei-Variable)

VAR GANZZAHL : FILE OF INTEGER;

h) mit Zeigertypen (Zeiger-Variable)

Ahnlich wie d) und e) ist eine vorgelagerte
TYP-Definition erforderlich, um eine Einheits-
variable zu deklarieren.

TYPE BUCHUNG = RECORD CASE KONTO : INTEGER OF
1 : (SOLL : REAL);
2 : (HABEN : REAL);

END;
VAR KASSE, BANK: "BUCHUNG;

n
t

a

a

—

a
2

E
R

T
A
T

er

3.5.2.

Computer
ID EI. SYSTEME

Benutzeranleitung Full-PASCAL Seite 49

Komponentenvariable (component-variable)

Komponentenvariable werden mit kinheitsvariablen
eingeleitet. Die Untergliederungen einer Einheits-
variablen sind Komponentenvariablen.

Komponentenvariable

Bereichs- | 2 emumumuuoec[et[ienenenen

typ

Indizierte Variable

(vgl. 3.5.2.1)

Variablen-

name 4: Fe _ 1, Satzfeldbezeichner
Ä (vgl. 3.5.2.2)

Puffervariable

Datei- (vgl. 3.5.2.3)
typ

Auf die Komponenten einer Variablen kann über ihren
Namen, auf den ein Selektor folgen muß, zugegriffen
werden. Die Art des Selektors hängt von den Typ der
vorgelagerten Einheitsvariablen ab.

F
r
e

e
r

e
n

“
o
n

m
n

3.5.2.1.

Computer
DIESIFZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 50

Indizierte Variable (indexed variable)
@UR EEE WEB Te Cumib si) SEA SMMED Wab CE <eib memin SEHE TEN sei SMMIE AMD Gmb SAD TH inmmim MAMdEb einiir GENE SEM em MED CMMdl GEB MED GuMiD AM Auiip CME GemEn AmiD AUndiD ABM:

Wenn mit der Einheitsvariablen ein Bereichstyp
festgelegt wird, ergibt sich mit Vereinbarung des
Indextyps eine ansprechbare Anzahl von Komponenten.

Beispiel:

VAR RECHENFELD : ARRAY [1..10| OF REAL;

Es wird ein Rechenfeld vom Typ REAL angelegt, bei dem
jede Komponente mit einem Index aus dem Bereich]1 bis
10 angesprochen werden kann.

Um einer bestimmten Komponente (z.B. 4) einen Wert
(z.B. 3.5) zuzuordnen, ist folgende Zuweisungsform
(vgl. 4.3.1) möglich:

RECHENFELD [4 ':= 3.5;

Der Indexausdruck innerhalb der Zuweisung muß mit der
Variablendeklaration verträglich sein (Zuweisungs-
verträslichkeit = assignment tcougatibility"), d.h
der angesprochene Index muß in dem Bereich es
Indextyps enthalten sein.

m
n

R
E
R

TE
E
E
E

De
in

e
In

T
E

S
m

OR
TE

!

3.5.2.2.

Computer
[DIETZ SYSTEME

Benutzeranleitung FuLl-PASCAL Seite 51

Satzfeldbezeichner (field-designator)

Die Komponenten eines Satztyps werden Satzfelder
(record field) genannt. Im Unterschied zum
Bereichstyp werden sie nicht durch Indizierung
sondern über den Komponentennamen (field identifier)
angesprochen.

Im Zusammenhang mit Variablendeklarationen nennt man
die Komponenten Satzfeldbezeichner (field
designator).

Beispiele:

VAR DREIECKFLAECHE : RECORD GRUNDSEITE : REAL;
HOEHE : REAL;

END;
Wertzuweisung:

DREIECKFLAECHE.GRUNDSEITE := 5.5;

b) Varianten-Satztyp

VAR RECHTECK : RECORD CASE FLAECHE : CHAR OF

"A° : (LAENGE: REAL);
B’ : (BREITE: REAL); ‘

END;
Wertzuweisung:
RECHTECK.FLAECHE := TA’;
RECHTECK.LAENGE = 6.5;

3.5.2.3.

A

U
E
R
W
R
U
R
E

n

O
m
a
n
i

tt

a
l
e
.

N

m
e
r
n

w
e

r
i
n

6

A
n

N

E
r
n
i
e

Computer
DUESIZSVSTEME

Benutzeranleitung Full-PASCAL Seite 52

Puffervariable (file-buffer)

Mit der Vereinbarung einer Datei-Variablen ist
automatisch für deren Komponenten eine Puffervariable
definiert.

Variablen-
n name

1,2 .oeooeo

Typ .o_

Die Variablennamen werden als Puffervariablen
bezeichnet, wenn sie die Komponenten einer
sequentiellen Datei bezeichnen sollen. Sie werden mit
symbolischen Namen folgender Form angesprochen:

Variablen

| name 1 | A) -

Diese Puffervariable ist wie eine einfache Variable
des Komponententyps zu behandeln. Sie dient dazu,
Komponenten in eine Datei zu schreiben oder sie zu
lesen.

Beispiel:

VAR PRIMZAHL, ZWILLINGSPRIMZAHL : FILE OF INTEGER;

Der Zugriff auf die Komponenten (PRIMZAHL,
ZWILLINGSPRIMZAHL) erfolgt mit Hilfe der
Puffervariablen, die mit den nachgestellten
Zeigerzeichen bezeichnet werden (vgl. Referenzierte
Yariable 3.5.3).

a

3. 5. 3.

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 53

Das Öffnen einer Datei mit "REWRITE" wird hier nicht
dargestellt (vgl. 3.6.4.1).

Z2.B. bei Wertzuweisung

PRIMZAHL” := 3;
ZWILLINGSPRIMZAHL” := PRIMZAHL +2;

Man kann jeweils nur die durch die aktuelle
Datei-Position bestimmte Komponente direkt ansprechen
(aktuelle Komponente).

Zeiger-Variable (pointer variable) und

Mit Hilfe von Zeiger-Variablen können

Speicherbereiche dynamisch eingeführt und freigegeben
werden.

Zeiger-Variable und referenzierte Variable werden in
folgender Weise dargestellt:

Die Kennzeichnung einer Variablen mit einem
nachgestellten Zeigerzeichen nennt man

Dereferenzierung, weil sie als "Referenzierte
Variable" tatsächlich von der Zeigervariablen - also
in umgekehrter Richtung - bezeichnet wird. Die
Dereferenzierung einer zeigervariablen führt
demzufolge zu einer referenzierten Variablen.

Zeigervariable (Z = Name der Zeigervariablen)

-=-: 10-0» H

Referenzierte Vsrisnyie (7 = kame der Zeigervariablen)

nn

— 2 O-

N

Computer elta voten

Benutzeranleitung Full-PASCAL Seite 54

Beispiel a

TYPE ELEMENT = INTEGER;

VAR A,B : ELEMENT; (*Zeigervariablen A und B#);

Das Besetzen der Zeigervariablen mit der Anweisung
"NEW" wird hier nicht dargestellt (vgl. Beispiel b).

A: 1; (* "Referenzierte Variable"
B” : 2; ‘ (* mit Wertzuweisung *)

A und B sind an den Iyp ELEMENT gebundene
Zeiger-Variablen, während A” und B” (= Referenzierte
Variable) für Variable vom Typ ELEMENT stehen, auf
die A und B zeigen.

u

Na
me
s.

a

R
E

T
E
R
.

E
E
E

L
A
T

a

Zeigervariable Referenzierte Variable

A Aktuelle Adresse | A” 1

B Aktuelle Adresse t>1 B” 2

*)

Computer
ID E3177. SYSTEME

Benutzeranleitung Full-PASCAL Seite 55

Beispiel b)
Standardprozedur "NEW"

Mit der Prozedur "NEW" kann man die Anlage von
Variablen im Programmablauf vornehmen.

TYPE ELEMENTZEIGER ="LISTENELEMENT;
LISTENELEMENT =RECORD OF;

NAME : ARRAY [0..4] OF CHAR;
VERKETTUNG: ELEMENTZEIGER;
END;

VAR ANKER : ELEMENTZEIGER;
BEGIN

NEW (ANKER);
ANKER” .NAME:= "ANTON’ ; (*ERSTNAME*)
NEW (ANKER .VERKETTUNG);
ANKER” .VERKETTUNG” .NAME: = "BERTA "(*ZWEITNAME*)
NEW (ANKER” . VERKETTUNG“ . VERKETTUNG);
ANKER” . VERKETTUNG“ . VERKETTUNG“ . NAME: = "COSTA

(*DRITTNAME*)

END.

Das hier gezeigte Verkettungsprinzip beruht auf der
Verbindung der Namenverknüpfung (Satzselektion) und
Dereferenzierung. Damit ist es im Beispiel b)
möglich, Speicherplätze für Variableninhalte während
der Programmausführung zu belegen, mit ihnen zu
arbeiten und sie anschließend wieder aufzufinden.

Bei den "Prozeduren für die Erzeugung dynamischer
Variablen" (vgl. 3.6.4.2) gibt es einige
Anwendungsmöglichkeiten mehr, die insgesant gesehen
besonders für schwierige und beliebig verzweigste
Datenstrukturen infrage kommen, die im
Verarbeitungszusammenhang gewartet, geändert und
erweitert werden.

Um die Einsatzmöglichkeiten der Zeiger-Variablen
erschöpfend darzustellen, wäre die Vorwegnahme von
"Prozeduren für die Erzeugung dynamischer Variablen"!
(vgl. 3.6.4.2) erforderlich.

Tu

i
R

LE

R
n
.

M
E
T

R
E

n
e

E
N

0
e
n

B
a
 T
E

A
n

n
n
:

on

3.

3.

6.

6. 1.

Computer
ID E77. SYSTEME

Benutzeranleitung Full-PASCAL Seite 57

Prozedur- und Funktions-Deklarationen

Prozeduren und Funktionen sind Unterprogramme, deren
Anweisungsfolge mit einem vereinbarten Namen

(Prozedur- bzw. Funktionsname) angesprochen werden
kann. Funktionen unterscheiden sich von Prozeduren
dadurch, daß ihr Aufruf die Bildung eines einzigen
Wertes 18 zur Folge hat und sie überall dort
auftreten dürfen, wo Bezug auf sie genommen wird
(Platzhalter 2#).

Prozedur-Deklarationen

Ein Unterprogramm, das mit seinen Anweisungen nicht
auf die Abgabe eines Wertes beschränkt ist sondern

Wirkungen auf den Programmlauf ausüben kann, nennt
man Prozedur. Eine Prozedur kann nicht wie eine
Funktion als Platzhalter für einen Wert gestellt
werden.

Eine Prozedurdeklaration erklärt ein Unterprogramm
zur Prozedur und ordnet ihm einen Namen zu. Dieser
Name ermöglicht den wiederholbaren Aufruf der
Prozedur.

Prozeduren sind wie Programme aufgebaut (vgl. 1.1).

Man unterscheidet einen Prozedurkopf
(procedure-heading) und einen Prozedurblock

(procedure-block).

1% Der Begriff "Wert" bezieht sich hier auf den
Bereich der Standard- und Zeizertypen.

2% Im Zusammenhang mit der Funktion ist hier gemeint,
daß der Funktionsname an den Platz eines Wertes

gestellt werden kann.

N

N Computer
ID ESIIE7 SYSTEME

Benutzeranleitung Full-PASCAL Seite 58

Prozedurkopf

Prozedur- Parameter- | (p

PROCEDURE name „liste \ G;)

procedure formal-parameter-
identifier list

 Verein- ll I.N
=| barungs- = BEGIN ®- Anweisung | END

teil ı WA

(1 ye

 Prozedurblock

(procedure block)

In der Parameterliste wird festgelegt, ob ein
formales Argument 1* eine Variable, eine Prozedur
oder eine Funktion darstellt (vgl. 3.6.3). Ein
"formales Argument!" bezeichnet einen symbolischen
Platzhalter, für den beim Aufruf der Prozedur ein
"aktuelles Argument" 1% eingesetzt wird. Daher muß
die Parameterliste mit dem Prozedurnamen zusammen

benannt werden.

Innerhalb des Prozedurblocks werden
Verarbeitungsalgorithmen aus Anweisungsfolgen
gebildet, die beim Prozeduraufruf aktiviert werden
und unter Einsatz der aktuellen Argumente vorgesehene
Aufgabenstellungen lösen.

un nn en ne nn m nn ne a nn ee

1% Der hier verwendete Begriff "Argument" lehnt sich
an den: mathematischen Sprachgebrauch bei

Funktionen an. Bei einer Funktion y=f(x) stellt x
ein formales Argument (unabhängige Veränderliche)
dar, von dem y abhängt. Nimmt x einen konkreten

Wert an, spricht man von aktuellem Argument.

rocedure heading)

Computer
DIUEIIEZI SYSTEME

Benutzeranleitung Full-PASCAL Seite 59

Dabei ist es möglich, daß eine Prozedur sich selbst
aufruft (rekursiver Aufruf) und innerhalb ihrer
eigenen Ausführung nochmals abläuft.

Eine Variante von Prozedurvereinbarungen ist die
FORWARD - Deklaration. Hierbei wird innerhalb einer

Prozedur A eine Prozedur B verwendet, die mit FORWARD
angekündigt und später erst vervollständigt wird.
Dieser Vorwärtsverweis muß die Parameterliste für die
Prozedur B beinhalten; sie darf nicht in einem tiefer
geschachtelten Block stehen.

Parameter-
liste fi |

PROCEDURE B | Iiste für ; FORWARD (:) Vorwärtsverweis
B Drozedur B

Parameter-

PROCEDURE || A liste für

A Deklaration der
Prozedur A be-
inhaltet im

Block den Aufruf
von B

 98

\ Block A beinhaltet

> BEGIN Aufruf der Proze- (200))
dur B

 d

Ä Vervollständigung
FROCEDURE B (2ecin) Block B (@0) 6) der Deklaration

von Frozedur B

Der Vorwärtsverweis und die spätere Vervollständigung
einer solchen Prozedur müssen im gleichen Block
stenen. FORWARD - Deklarationen sind für solche Fälle
geeignet, in denen Prozeduren sich gegenseitig
aufrufen sollen. Diese Verschachtelungsmöglichkeiten
vermeiden erheblichen Programmieraufwand, weil ohne
den Verweis auf eine andere Prozedur der
entsprechende Algorithmus nochmals wiederholt werden
müßte.

3.8.2.

e
r

e
n

a

e
e

T
i

-

Non. Ve Tem GE

Computer
ID EI177. SYSTEME

Benutzeranleitung Full-PASCAL Seite 60

Funktions-Deklarationen

Funktionen bezeichnen Unterprogramme, die einen Wert
berechnen und als Platzhalter dafür eingesetzt werden
können. Sinngemäß entspricht der Aufbau einer
Funktion der Prozedur; abweichend ist die Benennung
eines Ergebnistyps (result types), der angibt, von
welchem Typ der abzugebende Wert ist. Zugelassen sind
einfache Typen (simple type) oder Zeigertypen
(pointer type).

 —mu—n Funktions- Parameter- Ergebnis- Funktionskopf

—(ieron \Inane = liste : typ (function heading)

(function identifier) (formal parameterlist) (result type)

 Funktionsblock
(function block)

Verein- N
barungs- BEGIN Anweisung
te&l 4

Innerhalb des Funktionsblocks muß dem Funktionsnamen

der Funktionsinhalt (Wert, Algorithmus) zugewiesen
werden; hierbei bewirkt die Benennung des
Funktionsnamens keinen Funktionsaufruf.

Z.B.: Wenn CONST PI=3,14159; und VAR R:REAL; sind,
lautet die Zuweisung für die Funktion KREISFLAECHE:
KREISFLAECHE := R#*FR#*PI;

Vor dieser Zuweisung gzilt der Funktionswert als
unbestimmt.

Auch bei Funktionen ist die "Rekursion" „Srlirch. Das
gilt ebenso für FORWARD-Dextarstinanen; Dei dAcı
nachfolgenden Funkticonsvervollständig“u.s uärf der
Ergebnistyp nicht mehr aufgefünrt werden.

 T mtnn. nn, WE wm. u . UEBBEREHEEDEE ET. > = mäbumen > a rn EEE. .

a

nn

R
E
.

a
n
.

m
.

3. 6. 3.

Computer
DIESIIEA SYSTEME

Benutzeranleitung Full-PASCAL

Parameter

Bei der Deklaration von Prozeduren und

Seite 61

Funktionen

werden zunächst die "formalen Argumente!" benannt. Im
Hinblick auf die Parameterliste unterscheidet man
daher die "Formale Parameterliste!"
(formal-parameter-list) und "Aktuelle Parameter"
(actual parameter), die den jeweils im
Verarbeitungszusammenhang tatsächlich zugewiesenen
Inhalten entsprechen.

Die formale Parameterliste (formal-parameter-list)
hat folgenden grundlegenden Aufbau:

 Ana

\ Parameter-
IN name et:

ww, I

"VAR ol

Funktions-

“(FÜNeTIoN | „| parameter-
J name

nn

—, je), Typ)

Prozedur-

 Typ

| (?) f parameter-
PROCEDURE ” name

3.6.3.1.

Computer
DUESITZISVSTEME

Benutzeranleitung Full-PASCAL Seite 62

In der Darstellung sind die vier Arten von Parametern
dargestellt:

Wertparameter (value-parameter)

Eine Parametergruppe (parameter group) ohne

vorangehendes Schlüsselwort (z.B. VAR), entspricht
einer Liste von Wertparametern, die aus
Parameternamen mit Typ-Definitionen bestehen. Der
formale Parameter stellt eine lokale Vereinbarung für
den Block der dazugehörigen Prozedur oder Funktion
dar.

Der aktuelle Parameter muß ein Ausdruck (expression)
sein (vgl. 4.1). Ausdrücke stellen mathematische
Aufgabenstellungen (z.B. Formeln) dar, die aus
Operanden (Konstanten, Variablen und Funktionen)
sowie Operatoren (Zeichen zur Darstellung und
Auslösung mathematischer Regeln und Operationen)
bestehen und neue Werte des bestimmten Typs erzeugen.

Beispiel:

PROGRAM TESTA; |
VAR A,B : INTEGER;

PROCEDURE X (Y:REAL);(*FORMALER PARAMETER*®)

BEGIN

A:=]1;
B:=Y+1;
X(A/B); (* AKTUELLER PARAMETER*)

END;
BEGIN

END.

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 63

Bei Aufruf einer Prozedur oder Funktion (im Beispiel:

rekursiv) wird der aktuelle Wert des Ausdrucks
zugewiesen. Er muß dem formalen Parameter angepaßt
sein, d.h. im Sinne der Typendeklaration
zuordnungsverträglich (vgl. 3.3.5) sein. Anzahl und
Reihenfolge der aktuellen Parameter entsprechen den
formalen.

r
n

3.6.3.2.

Computer DEZ vetäe

Benutzeranleitung Full-PASCAL Seite 64

Variablenparameter (variable paraneter)

Hierunter wird eine Parametergruppe mit dem
Schlüsselwort "TAR" verstanden; sie stellt eine
lokale Vereinbarung für den Block der dazugehörigen
Prozedur oder Funktion dar.

Der aktuelle Parameter muß eine Variable sein. Jede
Operation, die für den formalen Parameter vorgesehen
ist, erfolgt im Verarbeitungszusammenhang mit dem
aktuellen Parameter. Hinsichtlich der
Zuordnungsverträglichkeit (vgl. 3.4.5) muß
Typidentität gegeben sein. Anzahl und Reihenfolge der
aktuellen Parameter entsprechen den formalen.

Beispiel:

PROGRAM TESTB (INPUT, OUTPUT);
VAR X0,X2:REAL;X1:INTEGER;
FUNKTION Z(VAR C:INTEGER;VAR D:REAL):REAL;
(*FORMALE PARAMETER*)

BEGIN

END;
BEGIN (*HAUPTPROGRAMM*®)
X0 := 1;

X1 := 3;

2 : Xo * 2; |
XO := Z (X1,X2); (*AKTUELLE PARAMETER*®)

END.

3.6.3.3.

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 65

Prozedur-Parameter

Die formalen Parameter bezeichnen eine oder mehrere
Prozeduren mit Namen, die von den aktuellen
Prozeduren während der Aktivierung des aufzurufenden
Blocks repräsentiert werden.

Abweichend vom Standard-PASCAL ist es in der hier
beschriebenen Implementierung erforderlich, hinter
dem Prozedurparameternamen Typen (Typenliste)
aufzuführen, die für formale Parameter (formale

fornale Paräueter) der einzusetzendei Prozeduren
stehen. 30 ist bereits Zur Übersetzungszeit eine

vollstänldixe Typprüfunz der Paraneter möglich.

Prozeduren, die Parameter von anderen Prozeduren und
Funktionen sind, dürfen nur Wertparameter beinhalten.
Hinsichtlich der Zuordnungsverträglichkeit (vgl.
3.3.5) formaler und aktueller Parameter muß
Typidentität gegeben sein. Anzahl und Reihenfolge der
aktuellen Parameter entsprechen den formalen.

Computer
DINSIRZISVSTEME

Benutzeranleitung Full-PASCAL Seite 66

Beispiel:

PROGRAM TESTC;
IYPE T = 0..9;

PROCEDURE P1 (X:T; Y:REAL); (*WERTPARAMETER:
TYPIDENTITAET MIT DER
TYPENLISTE VON
PROZEDUR PX*)

BEGIN

END;
PROCEDUR P2 (XX:T; YY:REAL); (*WERTPARAMTER:

. TYPIDENTITAET MIT DER
TYPENLISTE VON
PROZEDUR PX#)

BEGIN

END;
PROCEDURE P3 (PROCEDURE PX (T,REAL)); (*FORMALE

PROZEDUR PX#)
(*DIE TYPEN T UND REAL HINTER DER
FORMALEN PROZEDUR PX STELLEN DTE
TYPENLISTE FUER DIE "FORMALEN FORMALEN
PARAMETER" DER EINZUSETZENDEN
PROZEDUREN P1 und P2 DAR#)

VAR V1:T; V2:REAL;
BEGIN

v1 = 2;

V2 .= 1.5;

PX (V1, V2);

END;
BEGIN (*HAUPTPROGRAMM®)

P3 (P1); (*AKTUELLE PROZEDUR P1*#)
P3 (P2); (*AKTUELLE PROZEDUR P2*)

END.

W
E
T
.

a
E
n

e
y
e

3.6.3.4.

Computer
ID UES1E7 SYSTEME

Benutzeranleitung Full-PASCAL Seite 67

Funktions-Parameter

Die formalen Parameter bezeichnen eine oder mehrere
Funktionen mit Namen, die von den aktuellen
Funktionen während der Aktivierung des aufzurufenden
Blocks repräsentiert werden.

Abweichend von sStandard-PASCAL ist es in der hier
beschriebenen Implementierung möglich, hinter dem
Funktionsparameternamen Typen (Typenliste)
äufzuführen,die für formale Paraueter(foruale

formale Paraueter)üer einzusetzenden Funktionen

stenen.

So ist bereits zur Übersetzungszeit eine vollständige
Überprüfung der Parameterübergabe möglich.

Funktionen, die Parameter von anderen Prozeduren und
Funktionen sind, dürfen nur Wertparameter beinhalten.
Der aktuelle Parameter muß ein Funktionsname sein.

Aktuelle und formale Funktion müssen identische

Parameter- und Ergebnis-Typen haben (vgl. 3.4.5).

Computer BES Sen

Benutzeranleitung Full-PASCAL Seite 63

Beispiel

(*ES GELTEN ENTSPRECHENDE ANFORDERUNGEN WIE IM
PROZEDURBEISPIEL.*)

PROGRAM TESTD;

FUNCTION F1 (X,Y: INTEGER) : REAL;

BEGIN

END;
FUNCTION F2 (FUNCTION FX(INTEGER, INTEGER):REAL;

(*FORMALE FUNKTION FX*)
VAR V10,V11:REAL;
BEGIN

v10
v11 = 3;
FX (V10,V11);

1;

END;
BEGIN (*HAUPTPROGRAMM®)

F2 (F1); | (* AKTUELLE FUNKTION F1*)

END.

a

N
e
i

G
E
L
.

T
E

3.0.3.5.

Computer
[DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 69

Gegenüberstellung der Parameterübergabe-Formen
uU min WE WERE mE GEB GUMED GA mED Gi GUMED Gem NUMED dmmeiir TEE WED Cm Gm GEM Cum CMS SM) mmmii> WEM SUMME oem: SMMED Ami Auip AMMED CEmmED (med SUP GA GMD TEE GmmiE Gm AM GEB SMEiD EMI ioiD -75c Mh

Daten können nur aus dem Hauptprogramm an die
Prozedur oder Funktion abgegeben werden (vgl.
3.6.3.1).

Bei Parametern strukturierten Typs (z.B. Satz-Typ)
wächst die Übergabezeit mit dem Umfang der
Speicherbelegung, da das gesamte Datenfeld in die
Funktion bzw. in die Prozedur kopiert wird. Das wirkt
sich nachteilig auf die Laufzeit und die
Speicherplatzbelegung aus.

Adressübergabe (call by reference)

Bei Variablenparametern (vgl. 3.6.3.2) werden
dengegenüber keine Speicherinhalte übergeben sondern
die Adressen der aktuellen Parameter.
Die Daten können sowohl von aufrufenden zun gerufenen
Programm wie umgekehrt übergeben werden
(bidirektionale Übergabe). Die Veränderung globaler
Daten ist zu vermeiden.

Namensübergabe (call by name)

Es ist möglich, beliebige Funktionen als aktuelle
Parameter an die Stelle des formalen Funktionsnamens
einzusetzen, sofern die Zuordnungsverträglichkeit
(identische Parameter- und Ergebnistypen)
gewährleistet ist (vgl. 3.5.3.4).

—

j Srpueri
| ESIFZI SYSTEME

Benutzeranleitung Full-PASCAL Seite 70

3.6.4. Standard-Prozeduren

Bestimmte, häufiger einsetzbare Anweisungsfolgen sind
in PASCAL standardmäßig vorgesehen; sie gelten in
jedem Programm als deklarierte Prozeduren.
Standard-Prozeduren dürfen nicht als aktuelle
Prozedur-Parameter übergeben werden.

3.6.4.1. Prozeduren zur Dateiverarbeitung (file - handling

- procedures)

Die Prozeduren zur Dateiverarbeitung lassen sich von
ihrer Funktionsweise her in zwei Bereiche gliedern:

- Dateiverwaltung
- Dateizugriff

Datei-
REWRITE name |)

Physikali- Physikali-
scher sche

file
identifier)

Geräteart Geräte-
(nummer

(device type)

(device
number)

Dateiname

(file name)

Länge

(length)

ET
TT

w
E
R
 m

T
e
e
n

n
e
n

—

r
n

ra

T
A
T

T
r

Computer
BEI SYSTEME

Benutzeranleitung Full-PASCAL Seite 71

Prozeduren zur Dateiverwaltung:

a) Öffnen einer Datei für Schreibzugriff

Beim Geräteeinsatz unterscheidet nan

für Geräteart (device type):
0 SLI-Gerät (seriell-line- interface)

2.B. Drucker)

1 Platte
2 Schließen Datei
Keine An- Es wird "1" (= Platte) eingesetzt
gabe

(Default)

für Gerätenummer (device number):
Es wird jeweils die logische Gerätenumner
(Device-Nr.) angeben. Wenn die Angabe fehlt,
(default) wird das Gerät "0" eingesetzt.

Wenn andere Geräte als die Platte "0" verwendet
werden sollen, dann müssen Geräteart- und nummer
angegeben werden.

Die Prozedur REWRITE Öffnet eine Datei für den
Schreibzugriff und muß vor Beschreiben ausgeführt
werden. Ist die Datei bereits vorhanden, wird sie
gelöscht und neu angelegt; anderenfalls wird die
Datei nur angelegt.

Nach Ausführung von REWRITE hat die Standard-Funktion
EOF (Dateiname) (vgl. 3.6.4.3) den Wert TRUE. Die
Prozedur REWRITE darf nicht auf die Standard-Dateien

INPUT und OUTPUT angewendet werden (vgl. 6).

Die physikalische Länge wird in Sektoren (1 Sektor =

128 Byte) angegeben. Fehlt diese Angabe, wird eine
Datei mit 512 Sektoren physikalischer Länge angelegt.
Maximal sind 65535 Sektoren möglich. Der
physikalische Dateiname muß 65 Zeichen lang sein; er
kann als Variaule vereinvoäart weruen oJer unulsseibar
als Konstante (in Hochkonnata) eingesetzt werden.

Die Parameter (Geräteart, Gerätenummer,
Physikalischer Dateiname, Physikalische Länge) werden
vom Compiler darauf überprüft, ob es sich w
"Ordnungstypen" bzw. beim physikalischen Datzinamen
um eine 1n_-Bvte lange Zeichenkette" handelt.
Darüberhinaus muß der Programmierer auf die
Zulässiskeit der Ziffern und Zeichen achten,

Computer
DIESE SYSTEME

Benutzeranleitung Full-PASCAL Seite 72

b) Öffnen einer Datei für Lesezugriff

— Datei- —

—(iso name Hy

Geräte- Fhysikali-

Geräteart nunner scher _
Dateiname

(file (device type) (device number) (file name)
identifier)

Mit der Prozedur RESET (Dateiname) wird die
aktuelle Lese- Position auf Dateianfang gesetzt
und der Wert der ersten Dateikonmponente der

Puffervariablen zugewiesen. Im Gegensatz zu
REWRITE (Dateiname) wird sofort implizit gelesen
(Ausnahme Textdateien, vgl. 6); beim ersten
Zugriff ist eine gesonderte Leseprozedur somit
nicht erforderlich.

Im gleichen Zusammenhang wird die Standardfunktion
EOF (Dateiname) (vgl. 3.6.4.6 Prädikate) im
booleschen Sinn auf unwahr (=FALSE) gesetzt. Bei
leerer Datei bleibt die Puffervariable undefiniert
und EOF ist wahr (=TRUE).

Für die Parameter (Geräteart, Gerätenummer,
Physikalischer Dateiname) gelten die gleichen
Vereinbarungen wie beim REWRITE. Die Angabe der
physikalischen Länge (length) ist bei "RESET"
nicht vorgesehen.

Bei Textdateien (vgl. 6) ist der Lesezugriff
abweichend implementiert. Die Puffervariable
erhält keine automatische. Zuweisung. RESET
(Dateiname) setzt die aktuelle Position auf den

Dateianfang und SOR (Dateiname) auf "TRUE" (vgl.
3.6.4.6 Prädikate).
Die Anwendung der Prozedur RESET ist bei den
Standard-Dateien INPUT und OUTPUT verboten.

Computer
DEI S\STEME

Benutzeranleitung Full-PASCAL Seite 73

Prozeduren zum Dateizugriff:

a) Schreibzugriff

Mit der Prozedur BUT (Dateiname) wird der
unmittelbare Schreibvorgang ausgelöst, Sofern er
mit REWRITE eingeleitet wurde (zwingende
Voraussetzung).

Wenn vor der Ausführung von PUT die Puffervariable
am Dateiende "Prädikat EOF (Dateiname) ist wahr"
(vgl. 3.6.4.6) steht, so wird der Wert der
Puffervariablen hinzugefügt.

Beispiel:

PROGRAM SCHREIBEN (INPUT,BEWERBER);
TYPE AUSBILDUNG = RECORD SCHULBILDUNG: ARRAY 1..50]

OF CHAR;
BERUFSBILDUNG: ARRAY [1..50|

OF CHAR;
END;

VAR BEWERBER : FILE OF AUSBILDUNG;
PERSON : AUSBILDUNG;

BEGIN

REWRITE (BEWERBER);
BEWERBER ” := PERSON;
PUT (BEWERBER);

END.

Computer BEZ Seren

Benutzeranleitung Full-PASCAL Seite 74

Der Inhalt der Puffervariablen BEWERBER steht
jetzt am Ende der Datei BEWERBER. Nach
Durchführung dieser Standardprozedur ist der Wert
der Puffervariablen unbestimmt, während das
Prädikat EOF (Dateiname) für die erweiterte Datei
wiederum wahr ist.

Falls EOF (Dateiname) vor der Ausführung falsch
ist, erfolgt das Setzen des Prädikats.

IOERROR (Dateiname) auf TRUE (vgl. 3.6.4.6)

Hiermit werden _ Bingabe-, Ausgabefehler
gekennzeichnet (input - output - error), die vom
Programmierer abgefragt werden können.

Bei Textdateien (vgl. 6) wird mit Jer Prozedur
BREAK (Dateiname) eine unmittelbare Ausgabe des
Puffers bewirkt. Das zilt sowohl bei Magnetplatten
wie bei SLI-Geräten. Diese Möglichkeit ist vei
Standard-PASCAL nicht vorgesehen.

b)

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 75

Lesezugriff

Mit der Prozedur GET (Dateiname) wird der
unmittelbare Lesevorgang (Puffervariable erhält
Zuweisung) ausgelöst, sofern ein "RESET" vorher
erfolgt ist (zwingende Voraussetzung).

Da der erste Lesevorgang im "RESET" eingeschlossen
ist, wird die aktuelle Datei-Position auf die
nächste Komponente gesetzt und der Wert dieser

Komponente der Puffer-Variablen zugewiesen.
Voraussetzung ist, daß EOF (Dateiname) vor der
Ausführung von "GET" unwahr (=FALSE) ist (vgl.
3.5.5.3 Prädikate).

Falls EOF (Dateiname) = TRUE ist, erfolgt das
Setzen des Prädikats.

IOERROR (Dateiname) auf TRUE (vgl. 3.6.4.6)

Hiermit werden Eingabe-, Ausgabefehler
gekennzeichnet (input-, output-error), die vom
Programmierer abgefragt werden können. Am
Dateiende wird damit der Lesevorgang
abgeschlossen.

Bei Textdateien, die zum Lesezugriff eröffnet
werden, muß die Zuweisung der ersten Komponente an
die Puffervariable mit einem "GET" erfolgen, das
dann auch SOR (F) zurücksetzt (=FALSE) (vgl.
3.6.4.6).

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 76

Beispiel:

In diesem Beispiel wird angedeutet, wie man mit den
Dateiverwaltungsprozeduren arbeiten kann.

Es geht darum, daß eine Datei alphabetisch in eine
andere sortiert wird. Folgende Dateien liegen auf der
Platte vor und haben die physikalischen Dateinamen
KUNDEN, LIEFER und PERSON. Die Dateien KUNDEN und

LIEFER sollen in vorgesehener Sortierung uach PERSON
gebracht werden.

Innerhalb des Sortierprogrammes TSORT soll eine frei
vereinbarte Prozedur SORTIER diese Aufgabe erfüllen.

Sie wird hier nicht näher beschrieben. Sie verwendet
folgende Dateien:

logischer physikalischer
Dateiname Dateiname

Quelldatei QUELLE ABGABE
Zieldatei ZIEL ERHALT

Der Einfachheit halber wird angenommen, daß die

Besonderheiten der Behandlung von Textdateien

innerhalb der Prozedur SORTIER enthalten seien. Das

betrifft die Abfrage SOR (DATEINAME) = TRUE und das
zusätzlich erforderliche GET (DATEINAMEN).

Computer
DD EIIE7 SYSTEME

Benutzeranleitung Full-PASCAL Seite 77

PROGRAM TESTSORT (QUELLE, ZIEL);

TYPE ADRESSE = RECORD NAMEN : ARRAY l1..40) oF CHAR;
ANSCHRIFT: ARRAY [1..60] OF CHAR;

END;
VAR QUELLE,ZIEL : FILE OF ADRESSE;

BEGIN

RESET (QUELLE, 1,0, KUNDEN’);
REWRITE (ZIEL,1,0, PERSON’);
SORTIER (QUELLE,ZIEL);

(* HIERBEI WIRD DEUTLICH, WIE MAN DEN PARAMETER
"PHYSIKALISCHER DATEINAME" FUER BESTIMMTE
VERARBEITUNGEN NUTZEN KANN! *#)

RESET (QUELLE, 1,0, LIEFER’);
REWRITE (ZIEL,1,0, PERSON’);
SORTIER (QUELLE,ZIEL);

o
n
e

er
E
N
T
E
R

EL

T
R
E
E

N T
E
E

R
E
T
T
E
T

3.6.4.2.

|IComputer
ID EIIYZ, SYSTEME

Benutzeranleitung Full-PASCAL Seite 78

Prozeduren zur Erzeugung dynamischer Variablen

Bei der Besprechung von Zeiger-Variablen und
Referenzierten Variablen (vgl. 3.4.3) wurde die
Anlage von dynamischen Variablen bereits dargestellt.

a) Anlage von dynamischen Variablen

Die Standardprozedur NEW (Zeigervariable) legt auf

der Halde (heap) Platz für eine "Referenzierte
Variable" an und weist der dazugehörigen
Zeigervariablen deren Adresse zu.

Unter Halde (heap) ist ein Speicherbereich für die
Ablage von Variablen zu verstehen, deren
Lebensdauer nur dynamisch bestimmt ist.

"Halde" Die "Referenzierten
Variablen" (ZA”,ZB” ,ZC”)
werden in der Reihenfolge

= ihrer Erzeugung abgelegt.
ZC—elZC .I:= 75 MHZ Beliebiger Zugriff ist

ZB—>IZB".1I:=100 über im Programm verein-

= barte Zeigervariablen
ZA—eZB .I:= 50 (ZA,ZB,ZC) möglich.

Darüberhinaus gibt es einen "Haldenzeiger" (HZ),
der vom PASCAL-Laufzeitsysten verwaltet wird und
jeweils auf die zuletzt angelegte Variable zeigt.

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 79

Beispiel:

TYPE T = RECORD I : INTEGER;
END;

VAR ZA,ZB,ZC : TT;

NEW (ZA); (* ADRESSE FUER
"REFERENZIERTE VARIABLE"
WIRD ZUGEWIESEN UND ALS PLATZ AUF DER
"HALDE" ANGELEGT. *%)

ZA".I : = 50; (* ZUWEISUNG AN DIE "REFERENZIERTE
VARIABLE" #)

NEW (ZB); ZB“.I
NEW (ZC); ZC“.I

100;

175;

R
E

a

T
E

n
e

r
e

e
r

E
T
T
T

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 80

Anlage von Varianten-Satztyp-Variablen

Weiterhin ist es möglich, Satztypvarianten (vgl.
3.4.2.2) zu erzeugen. Die Auswahlmarken müssen in der
Reihenfolge ihrer Definition aufgeführt werden. Sie
können von hinten nach vorn weggelassen werden und

erhalten dann den Wert "NIL". Dieses Schlüsselwort
besagt, daß die Zeigervariable auf keine Variable
gerichtet ist und stellt insofern eine
Standardkonstante dar.

Beispiel:

TYPE ST = RECORD CASE BO : BOOLEAN OF
TRUE : (A,B,C : CHAR);
FALSE: (X,Y,Z INTEGER);

END;
VAR VS2Z : ST;

NEW (VSZ, TRUE);
VSZ’.A := TAT;

Anlage von Bereichstyp-Variablen

Wenn die "Referenzierte Variable" ein Bereichstyp
(vgl. 3.4.2.1) ist, gilt folgende Schreibweise (in
Standard-PASCAL nicht vorgesehen):

TYPE BT ARRAY |0..99| OF INTEGER;
VAR VBZ " "BT;

NEW (VBZ,50); (*MIT DIESER DARSTELLUNG WIRD
DER URSPRUENGLICH DEFINIERTE
BEREICH EINGESCHRAENKT *)

vBz” [a5 | := 250: (*ZUWEISUNG AN DER STELLE 45*)

Zn

S
m

T
R

en

i
n

7

|
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 81

Analog dazu ist die Konstruktion von
mehrdimensionalen Bereichs-Variablen:

TYPE MBT = ARRAY [0..99, 0..1491 OF INTEGER;
(*ZWEIDIMENSIONALER BEREICHSTYP#)

VAR VTAB : TMBT;
(*ENTSPRICHT EINER TABELLE MIT
100 ZEILEN UND 50 SPALTEN BZW.
50 ZEILEN UND 100 SPALTEN.*®)

BEGIN
NEW (VTAB); |

_ VTAB” [1,5] := 1600; (*ZUWEISUNG IN ZEILE 1,
SPALTE 5*)

Es ist darauf hinzuweisen, daß die mit "NEW!"
erzeugten "Referenzierten Variablen!" vom
Varianten-Satztyp und vom Bereichstyp nicht als
aktuelle Parameter übergeben werden dürfen. Auch
können sie nicht als Variable in einer Zuweisung oder
als Operand in einem Ausdruck stehen. Im Übersetzer

kann keine Prüfung erfolgen, die feststellt, mit
welchen Komponenten die Variable erzeugt wurde.

Wohlgemerkt kann ein durch Dereferenzierung,
Indizierung und Selektion bestimmter Teil einer
erzeugten Variablen sehr wohl diese Anforderungen
erfüllen - nur die Variable insgesamt nicht.

' Computer
ID ESI1E7 SYSTEME

Benutzeranleitung Full-PASCAL Seite 82

BEISPIEL FÜR DIE ERZEUGUNG DYNAMISCHER VARIABLEN

Unter Zeigervariablen (vgl. 3.5.3) haben wir als
Beispiel b) für die Erzeugung dynamischer Variablen
"Mehrfachdeklarationen" gebracht. Umständlich ist
dort die langwierige Verkettung durch
Namensverknüpfung (Satzselektoren) und
Derefernzierung. Im folgenden wird das gleiche
Beispiel mit einer verkürzten Konstruktion gebracht:

PROGRAM MEHRFACHDEKLARATION;
TYPE ELEMENTZEIGER = “LISTENELEMENT;

LISTENELEMENT = RECORD _
NAME: ARRAY |O..4JOF CHAR;
VERKETTUNG: ELEMENTZEIGER;
END; |

VAR ANKER : ELEMENTZEIGER;
HILFA : ELEMENTZEIGER;
HILFB : ELEMENTZEIGER;

(* DIE VARIABLEN "HILFA" UND "HILFB"
DIENEN ALS ZWISCHENSPEICHER FUER
EINE PERMANENTE VERKETTUNG. *)

BEGIN
NEW (ANKER);
ANKER” .NAME:= ’ANTON ;
NEW (HILFA);
HILFA” .NAME:= ’BERTA';
ANKER” .VERKETTUNG: =HILFA; (*VERKETTUNG®)
NEW (HILFB);
HILFB” .NAME:= "COSTA’;
HILFA” .VERKETTUNG: =HILFB; (*VERKETTUNG®)
HILFA:= HILFB; (*UMBESETZUNG®)
NEW (HILFB); , , |
HILFB.NAME:= DORIS ;
HILFA” .VERKETTUNG: =HILFB; (*VERKETTUNG®)

(* MIT DER UMBESETZUNG KANN
DIE EINFUEHRUNG NEUER
VARIABLEN BELIEBIG WIEDER-
HOLT WERDEN *)

HILFB” .VERKETTUNG:= NIL; (*ENDE-BEDINGUNG®)

END;

b)

"Halde!"

Computer
DUESIFZSVSTEME

Benutzeranleitung Full-PASCAL Seite 83

Die im Beispiel dargestellte Erzeugung von
Variablen ist insofern unüblich, als im wirklichen
Anwendungsfall die Namen eingelesen werden und der
Erzeugungsvorgang mit einer Schleife erfolgt. Es
kam hierauf an, das Prinzipielle bei dem Einsatz
der Standardprozedur "NEW" zu verdeutlichen.

Haldenverwaltung

Die ständige Generierung neuer Variablen kann zu
einem Überlauf führen, weil angelegte Variablen
auch dann weiterbestehen, wenn sie nicht mehr
gebraucht werden.

Um diesen Platz im Programm mit anderen Variablen
belegen zu können, bedarf es einer
Speicherbereinigung. Der hier gewählte Weg legt
bereits bei der Deklaration einer Variablen fest,
ob und wann der Speicherplatz einer Variablen
freizugeben ist.

Zz8> -—HZ2 MARK (25);

Zi

76
Diese Prozedur weist den Stand des

Haldenzeigers (HZM) der Zeiger-

zs > -+— H7 variablen (Z5) die vom Typ Ganzzahl

Zu
M (INTEGER) sein muß, zu. D.h., von

dieser Adresse an können die

za "Referenzierten Variablen" Z5 bis

z272 >
ZS freigegeben werden.

 Zz1->-

RELEASE (28);

Diese Prozedur gibt die Adressen Z5 bis Z8 frei;
sie werden bei der Erzeugung neuer Variablen
wieder vergeben, die Inhalte der ursprünglich
"Referenzierten Variablen" sind dann nicht mehr
verfügbar.

Geht einem "RELEASE" kein "MARK" voraus, werden
alle Adressen der Halde freigegeben. Der
Übersetzer prüft nicht, ob ein "MARK"
vorangegangen ist.

e
e
n

e
e

n
n

G
E

r
n

m
n
a
m

wr
e

in

Computer
BIESITZISYSTEME

Benutzeranleitung Full-PASCAL Seite 84

Diese Prozeduren wurden anstelle der win
standard-PASCAL vorgesehenen Prozedur DISPOSE

implementiert. Da die Programmlogik oftmals nicht
ohne weiteres bis ins Letzte einsichtig wird, ist
Vorsicht geboten. Es muß exakt überprüft werden, ob
angelegte Variable tatsächlich nicht mehr im

Programmablauf benötigt werden.

ae

t
u
n
e
n

ne
t
—

3.6.4.3.

3.6.4.4.

Computer
DESIIEZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 85

Standardfunktionen

Bestimmte, häufiger einsetzbare Funktionen sind in
PASCAL standardmäßig vorgesehen; sie gelten in jeden
Programm als deklarierte Standardfunktionen und
dürfen nicht als aktuelle Funktions-Parameter
überzeben werden.

Arithmetische Funktionen

Es handelt sich um Standardfunktionen, die
mathematische Funktionen lösen oder Werte eines Typs
in Werte eines anderen Typs umwandeln. Folgende
"arithmetische Funktionen" sind vorgesehen:

Funktion Parameter- Ergebnis- Bemerkung

typ typ

INTEGER INTEGER Absolutwert

ABS(X) REAL REAL von X

INTEGER INTEGER 2
SOR(X) REAL REAL X

SIN(X) INTEGER REAL X im Bogenmaß
REAL

COS(X) INTEGER REAL X im Bogenmaß
REAL

EXP(X) ° INTEGER REAL | x x
REAL | e = (2,718281828)

LN(X) INTEGER REAL Logarithmus zur
REAL Basis e pei x > dd

SORT(X) INTEGER REAL Quadratwurzel (j/x)
REAL bei x > 0 |

ARCTAN(X) INTEGER REAL Arcustangens von X
REAL

Der Benutzer kann diese Standardfunktionen mit ihren
Namen aufrufen und einsetzen, ohne daß zusätzliche
Vereinbarungen getroffen werden müssen.

E
r

m
n

3.6.4.5.

Benutzeranleitung Full-PASCAL

[DIETZ

Computer
SYSTEME

Seite 85

Funktionen für Ganzzanlen

Diesen

Ergebnistyp mit
Sstandardfunktionen ist

einer Ausnahme immer "INTEGER"

gemeinsan, daß ihr
ist.

Bei ORD(X) muß der Parametertyp "INTEGER" sein.

Funktion Parametertyp Bemerkung
u GE (mE SED sum Gib GEM mim AD Mei ME Cem: (Emm <mmii) Cenmis GEM SHE cmidib <CiiiD SMS GmmiD SUMME <immiD weil mit MM uni süniD (mil Ab TR Gm CB SUMME cam CM SUMME -CmBED amt sul CMS GMMED AMMEBD <uma SM AMMMED nme smmip AMD Sul wu Ami nd

TRUNC(X)

ROUND(X)

REAL

(INTEGER ist
möglich,
aber nicht

sinnvoll)

REAL

(INTEGER ist
möglich,
aber nicht

sinnvoll)

Es wird der ganzzahılse Arteil
von X geliefert/z.B.TRUNC (6.3)
=6. Bei eingeschalteter Kon-
trollfunktion (check option)
erfolgt eine Fehlermeldung,
wenn der Bereich der darstell-

baren Ganzzahlen (MININT bis
MAXINT) überschritten wird.

Es wird im mathematischen

Sinne auf- bzw. abgerundet.
Z.B.:

ROUND (3.9) 4
ROUND (3.4) 3

Tatsächlich setzt der Compiler
den Aufruf in eine "TRUNC"-

Funktion um:

Für X > = 0 gilt ROUND (X) =
TRUNC (X+0.5)
z.B.:

X = 3.6

TRUNC (3.9 + 0.5) = 4

X = 3.4
TRUNC (3.4 + 0.5) = 3

Für X < 0 gilt ROUND (X) =

TRUNC (X-0.5)

Zz.B.:

X = -4.2

TRUNC (-4.2 - 0.5) =-4

N

n
e
.

.
u
n
e

run
DIETZ:

Benutzeranleitung Full-PASCAL Seite 87

Funktion Parametertyp Bemerkung
mu WED MED WEM eb mu (EEE GumiD AD um em WER mi DOM SAHib ung ME SE CumiiD AMD mmäD Cemib mai vom qui Alb mid Air oma: -MMib AMD GEM mm CME GES Sum GMmEED -Uündl GmEid: (ED Guild sid SUMME SUB m EU CIE uiid SM Emil iD SU Sie

X muß ein Ausdruck von einem
Ordnungstyp sein. INTEGER ist
möglich, aber nicht sinnvoll.

BOOLEAN Für FALSE wird O0, für TRUE
1] ausgedrückt.
2.B. ORD(FALSE) = O

CHAR Das Ergebnis ist der dezinmale
Ganzzahlwert vom ASCII-CODE.
z.B. ORD(A) = 65

Aufzählungs- Man ernält Ganzzahlen, die
typen sich aus der Reinenfolge der

Vereinbarung ausgehend von
O0 positiv zählend ergeben.

z.B.:

VAR FAMILIENSTAND : (LEDIG, VERHEIRATET
GESCHIEDEN, VERWITWET);

EHESTAND :0..35
BEGIN

FAMILIENSTAND := GESCHIEDEN; |
EHESTAND := ORD (FAMILIENSTAND);

(* DIE GANZZAHL 2 WURDE DER VARIABLEN

EHESTAND ZUGEWIESEN *)

END.

Computer
ID ESIIEZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 88

Funktion Parametertyp Bemerkung
ED EEE WE GE aD (ib GUAMD AEHED GRAN GEM Gm) Gummi sn GEMED CME CD SM sum MAMED CAR CD Cusiin SUMME AED cms GM AmGED SOME (AED CiS CME) AU dmmiip CmMin CME SUD GuDtii SEMMD mai N +mmD <mib vb mb cum SAD mp SOME TER Ami Mh ZUM Gm

CHR(X) INTEGER Es wird ein ganzzahliger Wert
von O0 bis 255 erwartet. Bei
eingeschalteter Kontrollfunk-
tion (check option) erfolgt
eine Fehlermeldung, wenn der
Parameter nicht in diesen
Bereich liegt. Als Ergebnis
wird das entsprechende ASCII-
Code-Zeichen bereitgestellt.

'

z.B. CHR(65) = 'A'

Insoweit entspricht diese
Funktion der Umkehrung von
ORD(X) beim Parametertyp "CHAR".

SUCC(X) INTEGER Der eingegebene Ausdruck von
BOOLEAN bezeichneten Ordnungstyp wird
CHAR um 1 erhöht und ergibt so die
Aufzählungs- Nachfolgezahl in der Zählreihe
typen (Nachfolger/successor).

z.B. SUCC(’A’) = ’B’

PRED(X) INTEGER Der eingegebene Ausdruck von
BOOLEAN bezeichneten Ordnungstyp wird

CHAR um 1 reduziert und ergibt so
Aufzählungs- den Vorgänger (predecessor)
typen in der Zählreihe.

z.B. PRED(TRUE) = FALSE

A

=

n
n

u

3.6.4.6.

 Computer
DET? SYSTEME

Benutzeranleitung Full-PASCAL Seite 39

Prädikate (predicates)

Es handelt sich um Standardfunktionen, die eine
Aussage (Prädikat) im Sinne der zugsrundeliegenden
Logik liefern (Prädikatenlogik). Sie werden daher
auch "logische Standardfunktionen" genannt. Dabei
werden in einem Vergleich bestimmte Bedingungen
geprüft und mit dem "booleschen Prädikat" "TRUE"
angezeigt, wenn sie zutreffen; anderenfalls erhalten
sie den wert "FALSE".

Funktion logischer Bemerkungen
Wert

ODD(X) TRUE Der Wert des Ganzzahlausdrucks
| X ist ungerade.

FALSE Der Wert des Ganzzahlausdrucks

x ist gerade.

—

Computer
DIETZ |

Benutzeranleitung Full-PASCAL Seite 90

Beispiel:

Die Funktion soll innerhalb einer Abfrage
dazu eingesetzt werden, um eingelesene In-
formationen bestimmten Kategorien zuzu-
weisen.

VAR FAHRZEUG: (KRAD,FAHRRAD,PKW,ANHÄNGER,LKN,
PFERDEFUHRWERK);

BEGIN |
(* BEI EINER VERKEHRSZÄHLUNG WERDEN FAHRZEUG-
ARTEN EINGEGEBEN. MIT EINER IF-ABFRAGE WIRD
NACH MOTORFAHRZEUGEN UND NICHTMOTORFAHRZEUGEN
UNTERSCHIEDEN #)

IF ODD (ORD (FAHRZEUG)) THEN

(* "NORD" WEIST GANZZAHLEN ZU. DIE DEKLARATION
WAR SO ANGELEGT, DASS GERADE ZAHLEN
MOTORISIERTE FAHRZEUGE KENNZEICHNEN UND
UNGERADE NICHTMOTORISIERTE. WENN ODD
(FAHRZEUG)=TRUE, DANN ERFÜLLT SICH DER
PROGRAMMTEIL NACH "THEN", ANSONSTEN DERJENIGE
NACH "ELSE". *)

BEGIN

END
ELSE

BEGIN

END,

Computer
DUESIFZISVSTEME

Benutzeranleitung Full-PASCAL Seite 91

Funktion logischer Bemerkungen
Wert

ED Mu u -UEEE iD Tun ve u SD Gi SUNG GUMEE mit CB GUD SEHE CHuid MM (mai <imiD GM MEMED -unmib Gin mul AU CUnD WER vummib TUR cumib sb € WM sub Sep COM CmmmD -SEED GM AMD SUED SED SEE SMHED

TRUE Die Puffervariable ist am Datei-
ende positioniert.

FALSE Die Puffervariable ist nicht am
Dateiende positioniert. Wenn die

Parameterliste fehlt, wird die
Funktion auf die Standarddatei

"INPUT" bezogen und entspricht
EOF (INPUT).

Hinsichtlich der Anwendungsmög-
lichkeiten ist auf die Prozeduren
zur Dateiverarbeitung (vgl.
3.5.4.1) zu verweisen.

Beispiel:

Ebenso läßt sich "EOF" als Abfrage sinn-
voll im Programm einsetzen.

VAR A : FILE OF INTEGER;
BEGIN

IF EOF (A) THEN
(* PROGRAMMTEIL FUER EOF (A) = TRUE#)

BEGIN

(*Z.B. SCHREIBPROZEDUR MIT
"REWRITE" UND "PUT"*)

END
ELSE

(*PROGRAMMTEIL FUER EOF (A)=FALSE*)
BEGIN

(*Z.B. LESEPROZEDUR MIT "RESET"
UND "GET"®)

END
END.

e
n

u

e
e

T
R

on

Computer DZ Sven

Benutzeranleitung Full-PASCAL Seite 92

Funktion

(Datei-
name)

logischer Bemerkungen
Wert

u u (ME ME Muiii MEN Gl SUMME GEBE Hm cum GUMMD Gmiib SUMME GE Mm: GOMMD CmED mi -AME GCUER um soil ame ui AMD am AMMEMD Cmmiip <Emiib (MED sum) cm SUMME <ummiih am CME iin GEHE GMMMED LRMMED CmMBEs <mmmib Gum

Diese Funktion ist ausschließlich

auf Textdateien anzuwenden (FILE
OF CHAR).

TRUE Die Puffervariable hat das Ende

einer Zeile erreicht.

FALSE Die Puffervariable hat das Ende

einer Zeile nicht erreicht. Wenn

die Parameterliste fehlt, wird
die Funktion auf die Standard-

daten "INPUT" bezogen und ent-
spricht "EOLN (INPUT)".

Beispiel:

Die Abfrage "EOLN (DATEINAME)" ist u.a.
dann sinnvoll, wenn beim zeichenweisen
Lesen oder Schreiben das Zeilenende er-
reicht wird und danach eine spezifische
Verarbeitung stattfinden soll. So kann
z.B. nach jeder geschriebenen Zeile eine
Leerzeile vorgesehen werden:

VAR DATEI : FILE OF CHAR;

BEGIN
REWRITE (DATEI);

IF EOLN (DATEI) THEN WRITELN (DATEI)
(* MIT "WRITELN (DATEI)" OHNE WEITERE
ERGÄNZUNG WIRD EINE LEERZEILE
EINGEFÜGT. #)

ELSE (* SCHREIBEN IN DIE DATEI *#)

END.

u
n
e

T
E
E

R
h

E
R
B
E
N
.

>
RE
DE
"
E
A
E
L
T
E
T
T
O
R
T
T
T

E
T

2 B
O

E
E
E

E
E
E

a

-

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 93

Die beiden foolgenden Funktionen IOERROR (Dateiname)
und SOR (Dateiname) betreffen ebenfalls die
Dateiverarbeitung. Sie gehören nicht zum Sprachumfanzg
von Standard-PASCAL.

Funktion logischer Bemerkungen
Wert

IOERROR TRUE Es wird ein Ein-/Ausgabefehler
(Datei- angezeigt.
name) |

FALSE Es liegt kein Eingabe- oder
Ausgabefehler vor.
Wird auf "IOERROR" abgefragt,

lassen sich Eingabe-, Ausgabe-
fehler im Dialozs erfassen

(vgl. 3.5.4.1).

SOR Diese Standardfunktion ist

(Datei- lediglich im Zusammenhang mit
name) dem Lesen von Textdateien zu

verwenden (vgl. 3.6.4.1).

TRUE Die Puffervariable hat keinen

definierten Wert.

FALSE Die Puffervariable hat einen

definierten Wert.

"SOR" ohne Dateinamen bezieht

sich auf die Standarddatei

"INPUT" und entspricht somit
"SOR (INPUT)".

an

a
e

R
E
T
T
E
T

E
r

me

B

e
e

3.6.4.7.

Computer
DIESIEZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 94

Initialisierungsprozeduren

Diese Prozeduren sind nicht in Standard-PASCAL
enthalten. Es geht darum, Daten des Hauptprogramnmes

bzw. eines Moduls (selbständige Programmteile, die
noch nicht zu einen ablauffähigen Programm gebunden
sind) zur Übersetzungszeit vorzubesetzen
(Initialisierung), um Speicherplatz zu sparen.

 Konstante

men Variablen-

—(NITPROCEDUR BEGIN name

Zuordnung (assignment)

Beispiel:

VAR FELD1, FELD2 : INTEGER;
INITPROCEDURE;
BEGIN

FELD1 := 0; (* BESETZUNG MIT O0 #)
FELD2 := 15 (%*% BESETZUNG MIT 1 *®)

END;

Die Zuweisung auf die Variable darf nur konstante
Selektoren enthalten, d.h. variable Selektoren sind
nicht zugelassen.

e
r
n

0

R
a

a

T
E

Er

R
E

D
E

T
E

T
I

 DEIIyZ Computer
SYSTEME

Benutzeranleitung Full-PASCAL Seite 95

Beispiel: Bereichsselektion (Indizierungs)

TYPE TEXT = ARRAY .0..8, OF CHAR;
VAR JAHRESZEIT : ARRAY 1..4, OF TEXT;
INITPROCEDURE;

BEGIN
JAHRESZEIT _1] : = "FRUEHLING’;
JAHRESZEIT F2] : = "SOMMER;
JAHRESZEIT [3J : = "HERBST;
JAHRESZEIT [4] : = "WINTER;

END;

(* Bei buchstabenweiser Übertragung wird
folgendermaßen selektiert:

JAHRESZEIT [1,0] := °F’; #)

Für Satzselektion (Namensverknüpfung) und
Verbindungen beider Selektionsarten gilt entsprechendes.

Auch Variablen vom Mengentyp (set type) kann man mit
Konstanten vorbesetzen.

Beispiel:

TYPE STATUS = (BESTAND, NEUANLAGE, AENDERUNG,
SPERRUNG, LOESCHUNG); |

VAR SATZZUSTAND : SET OF STATUS;
INITPROCEDURE
BEGIN

SATZZUSTAND := [Bestand .. LOESCHUNG]| »
END; ”

Computer eltegz svst&e

Benutzeranleitung Full-PASCAL Seite 96

Ausführungsteil (statement part)

Unter 3. wurde der Vereinbarungsteil beschrieben. Ein
Programm oder Unterprogramm (Prozedur, Funktion)
besteht meistens aus zwei Teilen, nämlich dem
Vereinbarungsteil und dem Ausführungsteil
(Anweisungsteil/statement part), wobei der
Vereinbarungsteil fehlen darf.

Der Ausführungsteil bestimmt mit seinen Anweisungen
algorithmische Aktionen, mit denen die im
Vereinbarungsteil bezeichneten Daten verarbeitet
werden. Man unterscheidet Operanden und Ausdrücke
(vgl. 1.1), die zusammen nit Befehlen die
eigentlichen Anweisungen bilden.
Die Abgrenzung der Begriffe ist fließend; daher
werden für diese Beschreibung folgende Klärungen
zugrundegelegt:

Deutsch/Englisch Bedeutung
MED ED USD WEMED AME> (mib GEB ED CME mein GUR sei (AED Gmb GEM SUMME SeMmiED GMiiD GEM AmSmiD MEEED GEMED (mn (MED GM (duumil GM CME Gmmi> =EMMiD Gm mamii ME mil CaimD -wuillb a mE CME SM HMM GN AMMMEM SMmEn ci: AMD ums CmsED BU GmEMiD Gem MED Gun

Operand (operand) Aktuelle Inhalte im Vereinbarungs-
teil bestimmter Daten (Konstanten,
Variable und Funktionen)

Operator Zeichen zur Darstellung und Aus-
(operator) lösung von Operationen nach

mathematischen Regeln

Ausdrücke Mathematische Aufgabenstellungen,
(expression) die mit Operanden und Operatoren

Werte eines bestimmten Typs er-
zeugen

Befehl ,‚Befehlswort Befehle (i.e.S. Befehlsworte), die
(statement, Ausdrücke in den Rahmen bestimmter
statement key Operationen (Zuweisungen, Akti-
word) vieren von Prozeduren, Verzweigungen,

Abfrage- und Bedingungsfolgen,
Schleifenbildungen) stellen

Anweisung Zusammensetzung von Befehlen und
(statement) Ausdrücken zu Befehlsfolgen. Da

eine aus einem Befehl bestehende
Anweisung schon als "einfache
Befehlsfolge" aufgefaßt wird, ist
in vielen anglo-amerikanischen
Texten der Begriff "statement"
sowohl für Befehle wie für An-
weisungen gebräuchlich.

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL seite 97

Anmerkung Beispiele:

während im Vereinbarungsteil die Beispiele inhaltlich
so eingeschränkt wurden, daß nur ein ganz konkreter
Sachverhalt vermittelt wurde, werden wir im Rahmen
des Ausführungsteils möglichst vollständige Beispiele
angeführt.

Das geschieht zum Teil mit Sprachkonstruktionen, die
bis dahin nicht gebraucht wurden. Diese Methode wird
deshalb gewählt, um eine praxisnahe Vermittlung zu
ermöglichen und um den Anwender zur aktiveren Arbeit
(z.B. mit gezielten Vorgriffen) mit der
Benutzeranleitung anzuregen.

Ausdrücke (expression)

Ausdrücke stellen mathematische Aufgaben dar, die mit
Operanden und Operatoren gebildet werden und neue
Werte eines bestimmten Typs erzeugen.

Operanden

Operanden sind Variable, Konstanten und
Funktionsbezeichner, deren Inhalte mit den in
Ausdrücken enthaltenen Algorithmen (Operatoren,
Befehle) verarbeitet werden. Der "Operanden'"-Begriff

wird durch den Faktorenbegriff erweitert (vgl.
Multiplikationsoperatoren 4.1.2.2 und Faktoren
1.1.3.4).

Computer
BESIEA SYSTEME

Benutzeranleitung Full-PASCAL Seite 98

a) Konstanten (vgl. 3.3)

b)

An dieser Stelle ist darauf hinzuweisen, daß
Konstante den Wert "NIL" (Standardkonstante)
annehmen können (vsl. 3.6.4.2). Ergänzend zu den
Standardkonstanten MAXINT (2.147.483.647) und
MININT (-2.147.483.647) gilt folgendes:

Alle ganzzahligen Werte im Intervall zwischen
MININT..MAXINT werden als Integer-Typen
dargestellt.

Wenn das Ergebnis einer binären Ganzzahloperation
mit zwei Operanden, die im darstellbaren Bereich
(MININT..MAXINT) liegen, außerhalb dieses Bereichs
liegt, so wird ein Fehler gemeldet.

Variable (vgl. 3.5)

Es geht im wesentlichen um die aktuellen Inhalte
von Variablen (vgl. auch Parameter Prozedur- und
Funktionsdeklarationen - 3.6), die diese im
Verarbeitungszusammenhang annehmen können. Dabei
ist darauf zu achten, daß Variable vor ihrer
ersten Verwendung mit einem Wert besetzt sind
(Zuweisung, lInitialisierungsprozeduren). Es wird
sonst mit zufällig gespeicherten Inhalten
gearbeitet, was zu Programmfehlern führen kann,
die weder vom Übersetzer erkannt werden noch als
Laufzeitfehler sicher festzustellen sind.

Hinsichtlich der Zuordnungsverträglichkeit
(assignment compability _ vgl. 3.4.5) ist
folgendes zu berücksichtigen:

= Bin. Operand, dessen Typ den Teilbereich eines
anderen ausmacht, wird behandelt wie ein Operand
des übergeordneten Typs.

— Das gilt gleichermaßen für Mengentypen.

-— Die Operanden von Mengen-Operatoren müssen
verträgliche Basistypen haben; sie liefern ein
Ergebnis von Typ des Operanden.

3
—

c)

Computer DE en

Benutzeranleitung Full-PASCAL Seite 99

Beispiele

TYPE UEBER = (WINZIG,KLEIN,MITTEL,GROSS,GEWALTIG);
VAR UNTER : KLEIN..GROSS; (*FUER DIE VARIABLEN

| "UNTERMENGE" BZW.
"UNTER" GELTEN MIT
AUSNAHME DER TEIL-
BEREICHSEINSCHRAENKUNG
DIE GLEICHEN ANFOR-
DERUNGEN WIE BEI DEN
TYPEN "UEBER!" BZW.

| MENGE *)
TYPE MENGE = SET OF 0..100;
VAR UNTERMENGE: SET OF 26..75;

Funktionsbezeichner (vgl. 3.6.2 und 3.6.3)

Ein Funktionsbezeichner (function-designator) muß
neben dem Funktionsnamen die aktuellen Parameter

enthalten, damit die Funktion den für den
formellen Parameter vorgesehenen Algorithmus
ausführen kann (Aktivierung der Funktion). Die
Liste der aktuellen Paraueter muß nach Anzahl und
Reihenfolge der Deklaration entsprechen; die
Auswertungsreihenfolge ist damit nicht vorgegeben.

Computer
BUESIIEA SYSTEME

Benutzeranleitung Full-PASCAL Seite 100

Beispiele

Funktions- Aktuelle Parameter Funktionsbe-

deklaration | bezeichner (-aufruf)

FUNCTION X VAR A,B:INTEGER; X(A/B);

(Y:REAL):REAL; .

A:=Y;
B:=A+2;

FUNCTION Y VAR X1:INTEGER; Y(X1,X2);

(VAR C:INTEGER;
(VAR D:REAL): X2:REAL
REAL; .

X1:=3;

X2:=X1+0.5;

FUNCTION 2 FUNCTION F1 (X,Y: F2(F1);

(FUNCTION FX INTEGER):REAL;

(INTEGER, .

INTEGER): REAL);
VAR V10,V11:INTEGER;

v10
v1 ı

u

<

—

oO

%

N

1.1.2. Operatoren

Operatoren und Zeichen zur Darstellung und Auslösung
mathematischer Regeln und Operationen; sie wirken auf
Operanden (vgl. 4.1.1).

Mengen- und Boolesche Operatoren werden als
Multiplikations-, Additions- und relationale
Operatoren dargestellt.

4.1.2.1.

4.1.2.2.

Computer Binz verine

Benutzeranleitung Full-PASCAL Seite 101

Logische Umkehrung (NOT)

Der Operator "NOT" kann nur auf Operanden vom Typ
"BOOLEAN" angewendet werden. Er drückt eine Negation
aus, die logisch die Bedeutung des Operanden umkehrt.

Beispiel

VAR BOOL, UMKEHR:BOOLEAN;

BOOL:=TRUE;

UMKEHR := NOT BOOL;

(* IN UMKEHR STEHT NACH DER
NOT-OPERATION "FALSE". *)

Multiplikationsoperatoren (multiplying operator)

Unter Multiplikationsoperatoren sind alle Symbole für
Rechnerschritte gemeint, die sich auf die
Multiplikation zurückführen lassen.

n
e

e
e

B
E

T
E
N

E
T

B
r

u
m

Operator

DIV

MOD

AND

Benutzeranleitun

Operation Iyp des
Operanden

generelle REAL,
Multiplik. INTEGER
oder
Schnittmenge Mengentyp

generelle REAL,
Division INTEGER

ganzzahlige INTEGER
Division

Rest bei INTEGER
ganzzahliger
Division (ab-
geleitet von
Modulus oder
modulo)

logisches BOOLEAN
"und!" (auch
Konjunktion
o. logisches

Produkt ge-
nannt)

IComputer
[DIETZ Sorputer]

8 Full-PASCAL

Typ des
Ergebnisses

REAL,
INTEGER

Mengentyp

REAL

INTEGER

INTEGER

BOOLEAN

Fall

I
Il
Il
IV

Ausgehend davon

FALSE=O sind, e
tungslogik Ergebnisse,
Multiplikation

Seite 102

Beispiele

6*3]3.5*2.9|
5#1.6|A*B

Wenn M1 alle geraden
Zahlen und M2 alle
durch 3 teilbaren

Zahlen wären, dann
enthielte die Schnitt+

menge (M1 M2) die
Zahlen 6,12,18 usw.
Darstellung: M1*M2

4/2|6.4/0.8|
2.5/5|C/D

I DIV J,
14 DIV 8 (Ergebnis])
Bei I>=J > O0 gilt:
I DIV J=TRUNC(I/J)

-1 DIV J=I DIV-J

--(I DIV J)
-I DIV-J=I DIV J

Für J=0O ist DIV undef

I MOD J,
14 MOD 8 (Rest 5)

Bei I>=J > O0 gilt:
I MOD J=I-(I DIV J)

Wenn I DIV J nicht
definiert ist, er-

hält auch I MOD J
keinen Wert.

hintereinander

geschaltete Schalter

x1 X2 X1*X2

‚ daß TRUE=1 und
rsiopt die Schal-

die der
entsprechen. Dar-

stellung X1 AND X2

>

r
n

e
n

d
e

4.1.2.3.

Operator

[DIETZZ

Benutzeranleitung

Computer
SYSTEME

FuLl-PASCAL Seite 103

Additionsoperatoren (adding-operator)

Unter

Rechnerschritte

zurückführen lassen.

Operation Typ des
Operanden

Addition REAL,
(Identität INTEGER
bzw. Vor-
zeichen-
identität)

oder
Vereini- Mengentyp

BUNgS-
menge

Additionsoperatoren
gemeint,

sind

die

Typ des
Ergebnisses

REAL,
INTEGER

Mengentyp

alle Symbole für
sich auf die Addition

Beispiele

445 | 2.6+3.1:
2+1.4| E+F

Man spricht von einem
Identitätsoperator,
weil das Vorzeichen
eines Operanden nicht

geändert wird und in-
sofern seine Identität.
erhalten bleibt:
+(-4) = -4

Wenn M1 alle geraden

Zahlen, M2 alle durch
U teilbaren Zahlen
wären und M3 der Menge
Mi ohne M2 entspricht,
dann gilt:
M1 = M2 U M3.

Darstellung:
M1 := M2 + M3

Computer
DJ EEI177. SYSTEME

Benutzeranleitung Full-PASCAL

Subtrak-

tion (Um-
kehrung
Inversion

bzw. Vor-

zeichen-

umkehrung)

INTEGER,
REAL

Unitäres Minus

("vereinigtes
Minus")

oder

Differenz-

menge

INTEGER,
REAL

Seite 104

5-4. | 6.9-3.5 |
4-1.5 | 6-H

Man spricht von einen
Umkehrungsoperator,
weil das Vorzeichen
eines Operanden unm-
sestellt wird:
- (-4) = +4
- (+4) - 4

Das im obigen Beispiel
in Klammern gesetzte
Minus (-4) bildet eine
Einheit mit der dazu-
gehörigen Zahl und
ist vorrangig vor
jeden anderen Operator
zu berücksichtigen.

Es gilt z.B.:
M3 = MI M2
Darstellung:
M3 := M1-M2

w
m

n
n
.

n
n

En
 V
I
E
R

GE

 Z
e

son

e
n

Operator

Benutzeranleitung Full-PASCAL

Operation

logisches
(auch

Disjunktion,
Alternative
oder logische
Addition ge-

A Oder!"

nannt)

Die

liefern

DIETZ

Iyp des
Operanden

vordefinierten

Computer
SYSTEME

Typ des
Ergebnisses

Konstanten

nach der Ganzzahlarithmetik.

MININT
MAXINT

(- 2.147.483.647) =

Seite 105

Beispiele

parallele
Schalter

Fall X1 X2 X1+rX2

I 0 0 0
II 0 1 1
IIl 1 0 1
IV 1 1 1

Ausgehend davon, daß
TRUE=1 und FALSE=O,
ergibt die Schaltungs-
logik Ergebnisse, die
der Addition entsprechen:
(X1 OR X2).
Im Fall IV wird tat-

sächlich nur der Über-
lauf 1 von 10 regis-

triert.

MAXINT und MININT

bei linearen Operatoren (+ und -) Ergebnisse

+ 2.147.1483.647
+ 2.147.483.647

ed

1.1.2.4.

Operator

OD

Computer
ID E17. SYSTEME

Benutzeranleitung Full-PASCAL Seite 106

Vergleichsoperatoren (Relationale Operatoren)

Unter

sind

Vergleichsoperatoren
alle Symbole zu

(relationale
verstehen, die

operator)
zwei Werte

miteinander vergleichen und die Vergleichsbeurteilung
als boolesches Ergebnis (TRUE,FALSE) ausweisen.

Operation Typ des Typ des

Operanden Ergebnisses

Klärung, außer FILE BOOLEAN
ob ein alle Typen
Operand
mit einem
anderen
gleich ist

(Identität)

Klärung, außer FILE BOOLEAN
ob ein alle Typen
Operand
von einem

anderen
ungleich ist

Klärung, einfache
ob ein Typen
Operand
kleiner als

der andere

ist 9
Zeichentyp
(Zeichen-
kette)

Klärung, Einfache Typen,
ob ein Zeichentypen
Operand (Zeichenketten)
größer als
ein anderer

ist

Beispiele

Ergebnis

y = 4 TRUE
TRUE = FALSE FALSE

0.5 = 2*%3+0.5 TRUE

USW.

Umkehrung der
Beispiele unter "=",

4 ou FALSE
6.55 TRUE
USW.

4 <4u FALSE
FALSE< TRUE TRUE
J < I, FALSE
1.2. <5.1 TRUE
USW.

"ABC’< TAB’ FALSE

Umkehrung der Bei-
spiele unter "<",

y > U FALSE
41.2> 5.1 FALSE

USW.

Br
n
e
e

M
E
E
R
E

Dr

r
n

a
e

e
e

n
i
n
e

Operator

Computer
DUEIIFZISVSTEME

Benutzeranleitung Full-PASCAL

Operation Typ des Typ des
Operanden Ergebnisses

Klärung, Einfache BOOLEAN
ob ein Typen
Operand
gegenüber

einem anderen

kleiner oder

gleich ist
Zeichenketten

Mengentypen

Klärung, Einfache BOOLEAN
ob ein Typen,
Operand . Zeichenketten

gegenüber Mengentypen
einem anderen

gleich oder

größer ist

Seite 107

Beispiele
Ergebnis

1 < u TRUE
TRUE< = FALSE FALSE

USW.

“ABC ’<="ABCD’” TRUE
USW.
Zeichenketten werden
beispielsweise nach
ihrer lexographischen

Ordnung (Sprachbedeu-
tungsordnung) vergliche:
um die "lexikalischen
Symbole" (vgl. 2.0) im
Hinblick auf unter-
schiedliche Aufgaben
im Programm unter-

scheiden zu können
Wenn M1 alle geraden
und M2 alle durch 4
teilbaren Zahlen sind,
dann gilt:

M2< = MI TRUE
USW.

Beispiele analog zu
1 X N

Operator

Computer ee SoSe

Benutzeranleitung Full-PASCAL

Operation Typ des Typ des
Operanden Ergebnisses

Klärung, Linker BOOLEAN
ob der linke Operand:
Operand in Ordn.-Typ
dem rechten rechter

Seite 108

Beispiele
Ergebnis

VAR LINKOPD:CHAR;
RECHTOPD:SET OF

enthalten Operand: CHAR;
ist Mengentyp

mit typen- .
verträglichem (*IM KONKRETEN FALL
Basistyp GILT NACH FUELLUNG DER

OPERANDEN "LINKOPD!"
UND "RECHTOPD":
LINKOPD IN RECHTOPD
= TRUE *#)

Die Operanden von Vergleichsoperatoren müssen
zuordnungsverträgliche Typen sein (vgl. 3.4.5).

Da die Vergleichsoperatoren auf die Subtraktion
zurückgeführt werden, können sich bei Überläufen
falsche Aussagen ergeben. Bei eingeschalteter
Kontrollfunktion (check option) wird in einem solchen
Fall ein Fehler gemeldet.

_
m
a
r
e
 m
a
n

4.1.2.5.

Computer
DEI S\STEME

Benutzeranleitung Full-PASCAL Seite 109

Präzedenzklassen der Operatoren

Mit den vier Präzedenzklassen wird der Vorrang
(precedence) der Operatoren für das Zusammenfügen
festgelegt:

Präzedenzklasse Operatoren

1 NOT | Unitäres Minus
2. *|/|DIV|MOD|AND
3. +) -IOR
4, =1<>|<| >| <= | >= [In

"NOT" hat die höchste Priorität, die
Vergleichsoperatoren die niedrigste; Folgen von
gleichrangigen Operatorn werden von links nach rechts
abgearbeitet.

Bei Klammerausdrücken werden die Operatoren innerhalb
der Klammern vor denen außerhalb der Klammer
aufgelöst.

Beispiel:

i+2%*8 = 20
* vor +

ABER: (4+2)%*8 = 48

(+) vor *

4.1.3.1.

Computer
DNEIFZISVSTEME

Benutzeranleitung Full-PASCAL Seite 110

Bildung von Ausdrücken

Fin Term ist eine im mathematischen Sinne begrenzte
(terminierte) Einheit, die formale Verbindungen von
Faktoren (vgl. 1.1.3.4) durch
Multiplikationsoperatoren (vgl. 4.1.2.2) beschreibt.

y _—_ s Faktor

Multipli-
Faktor | kätions-

Operator
 Aa

Beispiele:

A* B
C/ (D-E)
USW.

4.1.3.2.

Computer
DJEIIF7. SYSTEME

Benutzeranleitung Full-PASCAL Seite 111

Additionsausdruck (einfacher Ausdruck)

Ein "einfacher Ausdruck" (simple expression) ist eine
mathematische Verbindung von Multiplikations-
ausdrücken (vgl. 1.1.3.1) durch Additionsoperatoren
(vgl. 4.1.2.3).

Multipli-
kations-

_

ausdruck i
>

(Term)

alone Additions-

ausdruck Bu Operator 4

(Term)

Beispiele:

F+G

- H

(I * J) - (K/L)
USW.

4.1.3.3.

Computer
ID E17. SYSTEME

Benutzeranleitung Full-PASCAL seite 112

Ausdruck und Ausdrucksverbindungen (Element,

Menge)

a) Ausdruck (= Einheitsausdruck)

Ein "Ausdruck" (expression) ist eine mathematische

Verbindung von "einfachen Ausdrücken" (vgl.
1.1.3.2) durch Vergleichsoperatoren (vgl.
1.1.2.4).

| Additions-
—— (Einfacher > > >

|Ausdruck 4

Vergleichs- Additions-
operator (Einfacher)

Ausdruck

Beispiele:

- A +B ("einfacher Ausdruck"!
- Additionsausdruck)

H= 5.4
* (M-N) = P/(Q-R+S) (Vergleichsausdruck)
T+U>V-NW

USW.

Für einen Ausdruck, der aus einem einzigen
Operanden von einem Teilbereichstyp besteht,
gelten abgesehen von der Teilbereichseinschränkung
die Bedingungen des übergeordneten Typs. Das gilt
gleichermaßen für Mengentypen (vgl. 4.1.1 /
Operanden).

Computer Bez evstene

Benutzeranleitung Full-PASCAL Seite 113

b) Element (Ausdrucksverbindungen)

Ein "Element!" (element) ist ein Ausdruck oder eine

Verbindung von zwei "Ausdrücken" (vgl. a)
Einheitsausdruck), un eine Mengenkonstellation
darzustellen.

(Einheits-) _ _

Ausdruck A .

 (Einheits-)

Ausdruck

bin Ausdruck ohne die Verbindung mit einen
weiteren entspricht inhaltlich dem (Einheits-)
Ausdruck (vgl. 1.1.3.3), während die andere
Konstruktion einen Mengenausdruck (set expression)
darstellt, wie er u.a. bei der Bildung von
Mengenvariablen auftaucht (vgl. 3.4.2.3 und 3.5).

Ausdrücke, die Elemente einer Menge sind
(Mengenausdruck) müssen identische Typen haben
(Basistyp der Menge). |

' Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 114

c) Menge (Elementverbindungen)

Eine "Menge" (set) ist eine Verknüpfung mehrerer
Elemente, um Mengen detailliert beschreiben und
Mengenselektionen vornennen zu Können.

 — |) Element > > 1)

Element —()y—

Ausdrücke, die Elemente einer Menge sind, müssen
identische Typen haben (Basistyp der Menge).

Eckige Klammern ohne Inhalt "()" kennzeichnen
eine leere Menge; sie ist Bestandteil jeder Menzse

bzw. jeden Mengentyps. Eine leere Menge kann auch
dadurch gekennzeichnet sein, daß die erste
Grenzmense größer als die zweite ist (z.B. 6..5).

Beispiele:

[1..3, 5, 7..10

[0,18,20,22..24,27,30,33,35,36,40,44,45,146,48,
50,55,60,69,92 .. 200] Ä
(* REIZZAHLEN BEIM SKAT, OHNE DIE MOEGLICH-
KEITEN UEBER 92 ZU SPEZIFIZIEREN *)

. ar... 0, 8, L..T,

N
j

USW.

Bei Ganzzahlmenge (SET OF INTEGER) wird bei
eingeschalteter Kontrollfunktion (check »vtion)
ein Laufzeitfehler zeneldet, wenn ein Mengen-
element außerhalb der Begrenzungen (0..255)
liegt.

4.1.3.4.

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 115

Faktor

Faktoren (factor) sind die Operanden eines
Multiplikationsausdrucks (vgl. 4.1.3.1). Während die
Operanden (vgl.4.1.1) sich üblicherweise auf
Konstanten, Variable und Funktionsbezeichner
beschränken, beinhalten Faktoren darüberninaus
Ausdrücke und Menzen (vgl. 4.1.3.3).

vorzeichen+
>| lose

Konstante

vorzeichen
lose
Konstante

„Variable

 Ausdruck +

Menge

|

 (NOT YeFaktor
Die logische Umkehrung "NOT FAKTOR" (vgl. 4.1.2.1)
gilt im Hinblick auf eine vorgegebene Definition, die
u.a. bei Abfragen (IF NOT FAKTOR THEN ...) eingesetzt
wird. Unter Faktor ist der Zusammenhang des aktuellen
Inhalts einer der alternativen Möglichkeiten zu
verstehen.

Computer
DSIIEA SYSTEME

Benutzeranleitung Full-PASCAL Seite 116

Beispiel für "Menge":

VAR A,B,C + INTEGER;

BEGIN

C:=A*B | _

IF NOT (C IN [0 .. 100|) THEN

(* DER IN RUNDEN KLAMMER GESETZTE BOOLESCHE
AUSDRUCK UEBERPRUEFT, OB C EINEN AKTUELLEN WERT
ANGENOMMEN HAT, DER ZWISCHEN O0 UND 100
LIEGT. MIT "NOT" WIRD BEWIRKT, DASS DER
PROGRAMMTEIL NACH "THEN" FOLGT, WENN DIESE

BEDINGUNG NICHT ERFUELLT IST. *)

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 117

Beispiele für Faktoren

a) vorzeichenlose Konstante Typ

INTEGER >
REAL 12.631
CHAR A’

(string) "ZEICHENFOLGE

Nane einer anderen Konst.

CONSTA =;

B =:

FALSE TRUE MININT MAXINT NII

b) Variable Typ Zuweisung

VAR V1,V2: Vl:= 5;
INTEGER;
V3,Vl:REAL; V3:= 7.5;

Standardfunktion SIN (V1+V2);

Deklarierte Funktion:

PROGRAMM SATZDESPYTAGORAS

VAR KATHETEA,KATHETEB,HYPOTENUSE:REAL;
FUNCTION KATHETENQUADRATE (KA,KB:REAL):REAL;

BEGIN

KATHETENQUADRATE:=KA*KA + KB#FKB;
END;

IF HYPOTENUSE * HYPOTENUSE
= KATHETENQUADRATE (KATHETEA,KATHETEB)

(*FUNKTIONSAUFRUF MIT FUNKTIONS-
BEZEICHNER®) Ä

THEN
ELSE

END.

Computer
DINEIIEZIS\STEME

Benutzeranleitunz Full-PASCAL Seite 118

d) Ausdruck (Einheitsausdruck)

als "Einfacher Ausdruck"

(Additionsausdruck)

als "Vergzgleichsausdruck""

(Zeichenketten)

. (logische
Ausdrücke)

Menzen

als "Einfacher Ausdruck"

als "Vergleichsausdruck"

(- X)
(Y + 2)
((A*B) + C -

(F DIV J)
(K MOD L)
(M AND N)

(D/E))

(D-P = Q +(R*5))
((TU)-V>(W/X) +4)
E DIV J = TRUNC (1/9)

(’"ABC” < ’ABCD‘)

((E>F) AND (F>F))
((G OR Q) AND NOT (R<10))

(0..9,15,20,51..99]

((E AND F) IN ([FALSE..
(G OR H)])) |

Computer
DIESIEA SYSTEME

Benutzeranleitung Full-PASCAL Seite 119

Anweisungen (statement)

Anweisungen beschreiben die "algorithmischen
Aktionen", mit denen die aktuellen Inhalte der im
Vereinbarungsteil bezeichneten Daten verarveitet
werden. Anweisungen bestehen aus Befenlen (statement

keyword) und Ausdrücken (vgl. 4.1).

Marke Einfache

Struktu-

rierte >
Anweisung

 Y \

Vor einer Anweisung darf eine Marke stehen (vgl.
3.2), zu der im Programmablauf verzweigt werden kann
(Ansprung mit GOTO).

Beispiel:

1 PROGRAM MARKEN (INPUT,OUTPUT);
2 LABEL (*DEKLARATION®)
3 1,2;
4 VAR
5 I: INTEGER;
6 BEGIN
T 1:20;

8 1: (*EINLEITUNG ANWEISUNGSFOLGE#)
9 I:= SUCC (I);

10 WRITELN (I);
11 IFI>5
12 THEN
13 GOTO 2 (#ANSPRUNG*)
14 ELSE
15 GOTO 1; (*ANSPRUNG®)
16 2: (#EINLEITUNG ANWEISUNGSFOLGE*)
17 WRITELN (‘I IST GROESSER 5°);
18 END.

Computer
DIUESIEZISVSTEME

Benutzeranleitung Full-PASCAL Seite 120

Der vorgegebene Programnmtext bestimmt gleichzeitig
die Ausführunssfolge. Sie kann nur durch den Ansprungz
von Marken unterbrochen werden. Im Rezelfall wird man

Wiederholungen durch Programmschleifen lösen, wobei
aber aus unterschiedlichen Gründen (z.B.
nachträgliche Anderunzen) ein mit Marken
eingeflochtenes Unterprogramm sinnvoll sein kann. Das
geht zu Lasten einer "sauberen" Programastruktur
(Unübersichtlichkeit).

.2. 1.

Computer!
DUEIIFZISVSTEME

Benutzeranleitung Full-PASCAL Seite 121

Einfache Anweisungen (simple statement)

Eine einfache Anweisung läßt sich nicht in andere
Anweisungen unterteilen.

—s Ergibtanweisung > (vgl. 4.2.1.1)

Prozeduranweisung —> (vgl. 4.2.1.2)

— >

| Sprunganweisung mn (vgl. 4.2.1.3)

 5 leere Anweisung

Leere Anweisungen sind durch "nichts" definiert. Aus
syntaktischen Gründen werden sie eingeführt (val.
auch 1.2.2). Ein Anwendungsfall besteht
beispielsweise darin, daß man aus einer Anweisung

heraus direkt an das Programmende springen will.

PROGRAM SPRUNGENDE (INPUT,OUTPUT);
LABEL 1,2;
VAR A: INTEGER;

BEGIN
A:= 0;

A:= SUCC (A);
IFA>5
THEN GOTO 2
ELSE GOTO 1;

2:5; (*LEERE ANWEISUNG*)
END. | —

u

u

N
I
N
O

OO

S
I
N
D

W
P
D

—

r
n

.
c
n

Computer
ID ESIIEZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 122

Wertzuweisung oder Ergibtanweisung (assignment

Eine Zuweisung dient dazu, den aktuellen Wert einer
Variablen oder einer Funktion (Funktionsbezeichner)

durch den Wert eines Ausdrucks zu ersetzen.

Variable

—: Y (=) >| Ausdruck I >

Funktions-
>! bezeich-

ner

Nach dem Erzibtzeichen ":=" wird die Wertzuweisung
auch Ergibtanweisung genannt. Im Unterschied zum
Gleichheitszeichen können nach dem aktuellen Status

unterschiedliche Inhalte auf beiden Seiten der
Zuweisung stehen.

Beispiel: A:=A +B

"AzA+B'"' ist mathematisch falsch.

Der Ausdruck ‚ der in einer Zuweisung übergeben wird,
muß mit der Variablen oder der Funktion
zuordnunzsverträglich (vgl. 3.4.5) sein.

1.2.1.2.

Computer
DIETZ SYSTEME

Benutzeranleitunz Full-PASCAL Seite 123

Prozeduranweisung (procedure statement)

Eine Prozeduranweisung beinhaltet den Prozedurnamen
und, wenn formale Parameter vorzegeben sind, die
entsprechenden aktuellen Parameter (vgl. 3.6.2 und

3.6.3).

Prozedur- aktuelle

>| name »(O—Hreraneter Or

Mit der Prozeduranweisung wird eine Prozedur
aufgerufen (Aktivierung); die aktuellen Parameter
treten an die Stelle der formalen Paraueter. Anzahl
und Reihenfolge Jer aktuellen Parameter richten sich

nach den formalen Parametern.

Beispiel:

1 PROGRAM AUSWECHSELN (INPUT,OUTPUT);
2 VAR A,B:INTEGER;
3 PROCEDURE TAUSCHEN (VAR P1,P2:INTEGER);
l (*FORMALE PARAMETER*)
5 VAR P:INTEGER;
6 BEGIN
7 P:=P];
8 P1:=P2;

9 P2:=P

10 END;
11 BEGIN
12 READ (A,B);
13 TAUSCHEN (A,B); (*FAKTUELLE PARAMETER*)
14 WRITE (A,B)
15 END.

1.2.1.3.

Computer
DIE VZRENT:

Benutzeranleitung Full-PASCAL Seite 124

Sprunzanweisung (goto statement)

Bine Sprunganweisung dient dazu, ein Programm zu
unterdörechen und an anderer Stelle fortzuführen. Die
Bezeichnung des aufgerufenen Programmteils geschieht
mit Marken, die im Vereinbarungzsteil zu deklarieren
und bei den Sprunganweisunzen und den auszuführenden
Anweisungen anzugeben sind.

> GOTO >» Marke >

"GOTO" ist das Befenlswort, das die Sprunganweisung
auslöst. Das Sprunzziel (Marke) muß im gleichen oder
einem übergeordneten Block stehen. In diesem

Gültigkeitsbereich müssen alle Marken verschieden
sein.

Ausdrücklich muß auf den Unterschied zwischen

"Marken! und "Auswahlmarken!" hingewiesen werden.

Auswahlmarken bezeichnen die Varianten von

Satztypdefinitionen bzw. Satzvariablendeklarationen
(vgl. 3.4.2.2 und 3.5.2.2) und von Auswahlanweisungen
(vgl. 1.2.2.2). Wenn ganzzahlige Auswahlmarken
gewählt werden, ist eine Verwechslung möglich.

Computer
DESIFZISVSTEME

Benutzeranleitung Full-PASCAL Seite 125

Beispiel:

1 PROGRAM SPRUNG (INPUT,OUTPUT);
2 LABEL 1,2; | (®HARKEN?®)
3 VAR A: RECORD CASE B:INTEGER OF
l 1:(C:INTEGER); (*AUSWAHL-
5 2:(D:ARRAY(1..4)OF CHAR); MARKEN®)
6 END;
li V:INTEGER;
8 BEGIN

9 1: READ (V);
10 IF ODD(V) THEN GOTO 2 (*MARKE 1%)
11 ELSE GOTO 1 (*MARKE 2%)
12 2: IF V > 1000 THEN
13 BEGIN
14 AB := 1;

15 Al := V;
16 WRITE (A.C)
17 END
18 ELSE
19 BEGIN
20 A.B := 2;
21 A.D := LEER’;
22 WRITE (A.D)
23 END;
24 END.

Sprunganweisunzen können im Prozramm dazu führen, daß
der Programmtext nicht mehr mit seinem Ablauf
übereinstimmt. Das Prosramn wird dadurch
unübersichtlich und ist schwer zu verstehen. Dadurch

ist seine Änderungsfähigkeit eingeschränkt. Neue
Fehler können im Korrekturfall mangels
Überschaubarkeit hinzukommen. Es zibt meistens
Anweisunzen (vgl. 3. Strukturierte Anweisungen), die
Sprunganweisungen sachgerecht ersetzen. Daher sollte
ihr Einsatz auf ungewöhnliche Fälle beschränkt sein.

Computer
DIETZ Se

Benutzeranleitung Full-PASCAL Seite 120

Strukturierte Anweisungen (structured statements)'

Strukturierte Anweisungen verbinden mit bestimmten

Befehlswörtern Anweisungen verschiedener Art.
Entweder sind sie nacheinander auszuführen
(Verbundanweisung), treten unter bestimmten
Bedinzunzen ein (Bedingzte Anweisung) oder wiederholen
sich (Wiederholunzs- oder Zyklusanweisung). In diesen
Zusammenhang wird auch die Satzfeldbezeichner -
Anweisung (With-Anweisung) behandelt.

Verbundanweisung > (vgl. 4.2.2.1)

Bedingte Anwetsung (vgl. 4.2.2.2)

— —

>| Wiederholungsanweisung |____ „| (vgl. 4.2.2.3)

 Satzfeldbezelichner-
» Anweisung (vgl. 4.2.2.4)

a

A
.

i
n
e

1.2.2.1.

! Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL seite 127

Verbundanweisung (compound statenent)

Verbundanweisungen werden in der Reihenfolze, in der
sie niedergeschrieben wurden, ausgeführt. Die
Befehlsworte "BEGINN" und "END" begrenzen eine
Verbundanweisunz. Der Ausführunzsteil als Bestandteil
von Programmen und Unterprosrammen (Prozeduren und

Funktionen) entspricht einer Verbundanweisung.

 >| Anweisung (I

Mit einer Verbundanweisung können darüberhinaus
mehrere Anweisungen syntaktisch zu einer einzigen
Anweisung zusammengefaßt werden. Überall dort, wo
eine Anweisung sefordert ist, darf auch eine
Verbundanweisung stehen.

Das senikolon zwischen den Anweisungen ist ein
Folgeoperator, der besagt, daß die nachfolzende
Anweisung erst dann ausgeführt werden darf, wenn die
voranzehende beendet ist.

4.2.2.2.

Computer
DD EITZ Spur!

Benutzeranleitung Full-PASCAL Seite 128

Bedinzte Anweisung (conditional statement)

Eine bedinzte Anweisung geht von bestimmten
Voraussetzungen aus, unter denen bestimmte
Anweisungen ausgeführt werden sollen.

Man unterscheidet dabei

- die Abfrage von Bedingungen (Vergleichsausdrücke),
deren boolesche Aussage (Wahrneitswert) über die
Wahl einer von zwei Anweisungsalternativen

entscheidet (vgl. 4.2.2.2 - a) Wenn-Anweisung oder
IF-statenent);

- und die Vorzabe von einer und mehrerer
Alternativen, die nicht mit einer Abfraze verknüpft
sind, sondern von einen Bedingungsschlüssel
(Auswahlmarken) ausgehen, der vorher vereinbart
wird (vgl. 4.2.2.2 - b) Auswahl-Anweisung oder
case-statement).

ma
nt

ar
.

m
n

an
n
e
m
.

m
i
s
e

E
E
E

u

a

ma
n

.

Dil] computer .
u SYSTEME

Benutzeranleitung Full-PASCAL Seite 129

a) Wenn-Anweisung (IF-statenent)

In Abhängigkeit von einer Bedienunzsabfrage (IF)
wird entsprechend dem booleschen Wahrneitswert
(TRUE oder FALSE) eine vorgesehene Anweisung
(THEN) ausgeführt und im Abweisungsfall nicht
ausgeführt. Das Programm wird mit der nächsten
Anweisung fortgesetzt; eine spezifische
Folgeanweisung (ELSE) kann eingesetzt werden.

—i) Ausdruck (Gun Ye anwei sung > >

ELSE Anweisung —

Je nach Abfrazestruktur können sich folgende
Konstellationen erzeben:

Abfrage- Eintritt der vor- Eintritt der nächsten
form gesehenen Anweisg. Anweisung bzw. der

positiv bei Folgeanweisz./ELSE bei

z.B.
IF EOÖF TRUE FALSE
(Dateiname)
THEN

nezativ

IF NOT EOF FALSE TRUE
(Dateiname)
THEN

Computer
DNEIIFZSVSTEME

Benutzeranleitung Full-PASCAL Seite 130

Beispiel:

1 PROGRAM SCHREIBEN (INPUT,OUTPUT)
2 VAR A : INTEGER
3 BEGIN
y READ (A);
5 IF ODD(A) THEN WRITE (UNGERADE”) (*TRUE*)
5 ELSE WRITE (GERADE); (*FALSE*)
7 END.

Wenn eine Abfrage mehr als 2 Alternativen beinhaltet,
kann man Wenn-Anweisunzen schachteln. Das führt oft
zu einem unübersichtlichen Progranmnmtext.

z.B.: IF B1 THEN IF B2 THEN IF B3 THEN AI
ELSE IF B4 THEN A2 ELSE A3 ELSE Ad;

Die Lesbarkeit diees Beispiels läßt sich verbessern,
wenn man nit Verbundanweisungen (BEGIN ...END)
arbeitet:

BEGIN
IF Bil THEN

BEGIN
IF B2 THEN

BEGIN
. IF B3 THEN Al
ELSE

BEGIN
IF B4 THEN A2
ELSE A3

END
END

ELSE AU;
END

END.

Computer
[DD EI1E7 SYSTEME

Benutzeranleitung Full-PASCAL Seite 131

Während es bei der ursprünglichen Darstellung noch zu
Unklarheiten darüber führen kann, zu welcher
Wenn-Bedingung die Folgeanweisungen (ELSE) gehören,
gibt es bei der durch Verbundanweisung geklammerten
Schreibweise keine diesbezüglichen Schwierigkeiten.

Auch hier gilt, daß man die Verschachtelungs-
möglichkeiten sinnvoll beschränken sollte, um die
Lesbarkeit des Programms zu steigern und seine
Wartungseignung damit zu zewährleisten.

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 132

b) Auswahl-Anweisung (CASE-statement)

In Abhängigkeit von einen Bedinzungsschlüssel

(Auswahlmarken) werden Anweisungsalternativen
ausgelöst.

—u[a Ausdruck > nuswahl ” =:) Anweisung =:) END

|

(N
N)

Lo.o Anweisung =:)—

Die Auswahl-Anweisung wird von den
Schlüsselwörtern CASE... OF... charakterisiert.
Während unnittelbar nach CASE der aktuelle
Ausdruck für die Auswahl einer Anweisung geführt
wird, stehen nach OF die Anweisungsalternativen.

Anweisungsalternativen:

Eine Anweisungsalternative wird jeweils mit einer
Auswahlmarke (case constant list) einzeleitet, an
die nach ":'" eine Anweisung geknüpft ist. Man kann
mehrere unterschiedliche Auswahlmarken mit einer
einzigen Anweisung verbinden.

Aktueller Ausdruck:

Der Ausdruck (expression) nach CASE muß vom
gleichen Typ wie die Auswahlmarken sein. Er wird
im Programmablauf bestimmt und wenn er einer
Auswahlmarke entspricht, ist ein vorgesehener Fall
(CASE) einzetreten; die dazugehörige Anweisung
wird dann veranlaßt.

Computer
DIUEIITZSVSTEME

Benutzeranleitung Full-PASCAL Seite 133

Als Spracherweiterung gegenüber Standard-PASCAL
ist wahlweise die OTHERS-Anweisung vorzesehen, die
dann ausgeführt wird, wenn der aktuelle Ausdruck
einen Wert annimmit, der nit keiner der
vorgesehenen Auswahlmarken übereinstimmt.

Beispiel:

PROGRAMM WAEHRUNG (INPUT,OUTPUT);
VAR KENNUNG : INTEGER;

D4,VALUTA : REAL;
BEGIN
KENNUNG:=1;
REPEAT

READ (KENNUNG, VALUTA);
CASE KENNUNG OF 0:;

1: DM:=VALUTA * 1.90;
2: DM:=VALUTA #* 3.50;

OTHERS : WRITELN (’WAEHRUNG WIRD NICHT
UMGERECHNET ')

-
o
O
O
D
O
G
O
0
o
N
U

W
D
R

—

END;

IF (KENNUNG>O) AND (KENNUNG <3) THEN
WRITELN (DU:9:2);
UNTIL (KENNUNG <1) OR (KENNUNG >9);
END.

B
E
R
K
E
R
 \

w
M

_

N
r

E
T

RE

m

e
t

T
u

t
m

m
e
n
n

e
r
n

1.2.2.3.

Computer
DESI27 SYSTEME

Benutzeranleitung Full-PASCAL Seite 134

Wiederholunzgs- oder Zyklusanweisunz (repetitive

Die Sprache PASCAL kennt 3 hwiederholunzs- oder
Zyklusanweisunzen. Der nier zu beschreibende
Sprachumfang ist um eine zusätzliche
Wiederholungsanweisunzg erweitert worden.

WHILE-Anweisung „ (vgl. 4.2.2.3.1)

>| REPEAT-Anweisung (vgl. 4.2.2.3.2)

— ——

> FOR-Anweisung > (vgl. 4.2.2.3.3)

> LOOP-Anweisung (vgl. 4.2.2.3.4)

Bei den Wiederholunsanweisunzen lassen sien

prinzipiell zwei verschiedene Fälle unterscheiden.

-— Entweder kennt man bei der Prozrammerstellunz die
Anzahl der Schleifendurchläufe (deternminierte
Schleife);

- oder die Anzahl der Schleifendurchläufe ergibt sich
zur Prozgrammlaufzeit (iterative Schleife).

Für die üterative Schleifenverarbeitungz stehen die
REPEAT-Schleife, die WHILE-Schleife und die
LOOP-Schleife zur Verfügunz. Determinierte
Schleifenverarbeitunzg wird durch die FOR-Schleife
ernöglicht.

N‘

Computer
DSIIEA SYSTEME

Benutzeranleitung Full-PASCAL seite 135

1.2.2.3.1. WHILE -Anweisung

Die WHILE -Anweisunz ist eine Wiederholungsanweisung,
bei der die Anzahl der Wiederholungen von einer
Bedinzunz abhängig ist, die zur Programmlaufzeit
erzeugt wird (iterative Schleife). Die Bedingunz wird
zu Beginn eines neuen Durchlaufs geprüft.

logischer |.
> | Anweisung WHILE Ausdruck — a)— gs >

Die Anweisung hinter DO wird solange ausgeführt, wie
der logische Ausdruck den Wert "TRUE" hat. Hinter DO
darf nur eine Anweisung stehen. Falls nehrere
Anweisungen ausgeführt werden sollen, so ist die
Verbundanweisung BEGIN END (vgl. 4.2.2.1)
einzusetzen. Die Verbundanweisung selbst zilt als
eine Anweisung, kann jedoch mehrere Anweisungen
enthalten.

Operanden des logischen Ausdrucks müssen innerhalb
der Schleife so verändert werden, das die
Endebedingung für die Progzrammschleife (logischer
Ausdruck = FALSE) mindestens einmal zur
Prozgrammlaufzeit erfüllt ist. Hat der lozische
Ausdruck zu Bezinn der Schleife den Wert FALSE, so
wird die Programmschleife keinmal durchzeführt.

Computer
DEIIFZISVSTEME

Benutzeranleitung Full-PASCAL Seite 13

Beispiel: Es sollen Zahlen eingelesen und sunnmiert

werden, Dis eiu vestimmter Betrag erreicht ist.

PROGRAM SUMMIEREN (INPUT,OUTPUT);

CONST GRENZE = 531.75;

VAR ZAHL,SUMME : REAL;
BEGIN

SUMME:=0;
WHILE SUMME <= GRENZE DO

BEGIN

READ (ZAHL) |
SUMME := SUMME + ZAHL;

END;
WRITE ("Summe =:" SUMME:3:2)

END.

Computer
ID ESI1r7 SYSTEME

Benutzeranleitung Full-PASCAL seite 137

REPEAT-Anweisung

Bei der REPEAT-Anweisunzg erfolst der Test auf Abbruch
der Schleife nach jedem Durchlauf.

logischer

REPEAT >> Anweisung L-» > UNTIL > Ausdruck >

Die Anweisunsen zwischen REPEAT und UNTIL werden
solange wiederholt, wie der lozische Ausdruck den
Wert FALSE nat. Die Operanden des logischen Ausdrucks
müssen innerhalb der Schleife so verändert werden,
daß die Endebedingungz (logischer Ausdruck = TRUE) zur
Programmlaufzeit erfüllt wird. Hat der logische
Ausdruck zu Bezinn der Schleife den Wert TRUE, so
wird die Prozrammschleife einmal ausgeführt.

-

Beispiel: Das Prozrammbeispiel aus Kap. 4L.2.2.3.1
Einlesen und Summieren von Zahlen bis
Erreichen eines Grenzwertes, soll mit
Hilfe der Repeat-Anweisung formuliert
werden.

PROGRAM SUMMIEREN (INPUT,OUTPUT);

CONST GRENZE = 531.75;
VAR ZAHL, SUMME:REAL};

BEGIN

SUMME: =0;
REPEAT

READ (ZAHL)
SUMME: =SUMME+ZAHL;

UNTIL SUMME > GRENZE;

WRITE ("Summe =:", SUMME:8:2)
END.

N

einfache Ausdruck v
Variable für An- Ä

fangswert

Computer
DJEIIEZ. SYSTEME

Benutzeranleitung Full-PASCAL Seite 133

FOR-Anweisung

Die FOR-Anweisunzg dient zur Formulierung von
Programmschleifen, bei denen die Anzahl der
Durchläufe vor Eintritt in die Schleife festliegt.

 >{ DOWNTO

 Ausdruck
für >/{D >| Anweisung I—
Endwert

Die einfache Variable ninter FOR wird auch
Laufvariable oder Schleifenzähler genannt. Die
Laufvariable muß vom Aufzähltyp (skalarer Typ) sein.
Aufzählbare Typen sind die Standard-Typen INTEGER,
CHAR, BOOLEAN sowie vom Benutzer definierte
aufzählbare Typen (vgl. 3.4.1.2).

Diese Typen bilden eine geordnete Menge von Werten;
zu jedem Wert gibt es genau einen Vorgänzer
(Predecessor) und einen Nachfolger (successor). Die
Laufvariable muß zu demselben Block gehören wie die
FOR-Schleife selbst. Außerdem darf die Laufvariable
innerhalb der Schleife nicht verändert werden. Die
Ausdrücke für Anfangswert und Endwert müssen von
gleichen Typ wie die Laufvariable sein.

Zu Beginn der FOR-Schleife wird der Laufvariablen der
Wert des Ausdrucks für den Anfangswert zugewiesen.
Die Anweisung hinter DO wird solange wiederholt, bis
die Laufvariable den NWert des Ausdrucks für den
Endwert überschritten hat. Ä

Computer
[DlEI177. SYSTEME

Benutzeranleitunzg Full-PASCAL Seite 139

Die Änderung der Laufvariablen erfolgt automatisch
jeweils am Ende eines Schleifendurchlaufs. Bei
Verwendung des Schlüsselworts To wird der
Laufvariablen jeweils ihr Nachfolzer (SUCC
(Laufvariable)) zuzewiesen; eine Verwendung des
Schlüsselwortes DOWNTO bedinst die Zuweisung des
Vorgängers (PRED (Laufvariable)) auf die
Laufvariable. Wird die FOR-Schleife regulär, d.h.
nicht durch einen GOTO verlassen, so ist der Wert der
Laufvariablen undefiniert. Ist bei Verwendunz von TO
(DOWNTO) der Anfanzswert größer (kleiner) als der
Endwert, so wird die Schleife keinmal ausgeführt.

Sollen mehrere Anweisungen wiederholt werden, so ist
hinter DO die Verbundanweisung (BEGIN ... END)
einzusetzen.

Beispiele:

a) Eine bestiumte Anzahl von Zahlen soll eingelesen
und in einen eindimensionalen Feld gespeichert

werden; anschließend soll die zrößte der einge-
gebenen Zahlen ermittelt und ausgegeben werden.

PROGRAM MAXIMUM INPUT,OUTPUT ;
CONST MAXANZ=20; _ Ba
TYPE ZAHLENFELD=ARRAY |1..MAXANZ| OF REAL;
VAR I:1 .. MAXANZ; ”

MAXI:REAL;
FELD: ZAHLENFELD;

BEGIN (*ZAHLEN EINLESEN#)
FOR I:= 1 TO MAXANZ DO

READ (FELD [I]);
(*MAXIMUM SUCHEN*®)

MAXI:=FELD !1];
FOR I:=2 TO MAXANZ DO

IF FELD [I]> MAXI THEN _
MAXI:=FELD |I] ;

(*MAXIMUM AUSGEBEN®)
WRITE ("Maximum = °,MAXI)

END.

Computer
ID ESIIE7 ne

Benutzeranleitung Full-PASCAL Seite 140

b) FOR-Schleife, bei der die Laufvariable einen
vom Benutzer definierten zählbaren Typ hat.

PROGRAM FARBEN (INPUT,OUTPUT);
TYPE FARBEN = (ROT,GELB,GRUEN, SCHWARZ);
VAR BUNT : ARRAY ROT .. SCHWARZ OF FARBEN;

I : FARBEN;
BEGIN

FOR I := ROT TO SCHWARZ DO

BUNT I := I];

END.

c) Ein zweidimensionales Zahlenfeld soll zur
Programmlaufzeit auf einen Anfangswert
gesetzt werden.

PROGRAM FELD (INPUT,OUTPUT);
CONST MAX = 20;

WERT= 1; _
VAR FELD: ARRAY 1..Hax, 1..MAX] OF REAL;

1,J:1 .. MAX;” |
“ BEGIN

FOR I:= 1 TO MAX DO
FOR J:=1 TO MAX DO

FELD I,J := WERT
END.

41.2.2.3.4.

Computer
DJ EI1E7 SYSTEME

Benutzeranleitung Full-PASCAL Seite 141

LOOP-Anweisung

Die LOOP-Anweisunzs ist in Standard-PASCAL nicht
enthalten. Diese Anweisung bietet die liöglichkeit,
eine Programmschleife zu formulieren, bei der das
Beenden der Schleife durch Prüfen einer Bedinsung an
einer beliebigen Stelle innerhalb der Schleife
möglich ist.

logischer
LOOP >> Anweisung TPT—Pi EXIT IF ——?MAusdruck

Die Anweisungsfolge hinter LOOP wird ausgeführt;
danach wird eine Bedingunz geprüft und falls diese
wahr ist, die Schleife verlassen. Ist die Bedingung
falsch, wird die Anweisungsfolge vor END ausgeführt

und danach wieder zum Anfang der LOOP - Anweisung
gesprungen. =

Computer
[DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 142

Die Anwendung dieser Anweisung soll eine
Gesenüberstellung einer Prozramnfolge, die einmal. mit
Hilfe einer wWhile-Anweisung und zum anderen mit Hilfe
der LOOP-Anweisunz formuliert ist, zeigen.

a) Prozgrammfolge mit \khile-Anweisung:

PROGRAM TEST (INPUT);
CONST ENDE = "*’;
TYPE STRING = ARRAY 1..30 OF CHAR;
VAR AUTOR,TITEL:STRING;

JAHR: INTEGER;
X:BOOLEAN;

BEGIN
X:=TRUE

WHILE X = TRUE DO
BEGIN

READ (TITEL);
X:= NOT (TITEL 1 = ENDE);
IF X THEN

BEGIN
READ (AUTOR);
READ (JAHR)

END;
END

END.

Computer
DEIIEZISVSTEME

Benutzeranleitung Full-PASCAL Seite 143

Die Variablen TITEL, AUTOR und JAHR sollen solanze
eingelesen werden, bis das erste Zeichen der
Variablen TITEL das Endekennzeichen (hier °#’)
enthält. Danach soll die Schleife beendet sein; d.h.
das Einlesen der Variablen AUTOR und JAHR soll
entfallen. Das oben beschriebene Programm löst dieses
Problem. Allerdings mit zusätzlichen Anweisungen.

b) Programmfolge mit Hilfe der LOOP-Anweisung:

PROGRAM TEST (INPUT);
CONST ENDE = '#';
TYPE STRING=ARRAY |1 .. 30) or CHAR;
VAR AUTOR,TITEL:STRING;

JAHR: INTEGER;
BEGIN

 LOOP
READ (TITEL);
EXIT IF TITEL | 1] = ENDE
READ (AUTOR);
READ (JAHR)

END
END.

Dieses Programm entspricht den unter Punkt a
beschriebenen.

”

1.2.2.4.

r
t

e
r

ER
.

an

e
n

e
e

Computer
DIETZ re]

Benutzeranleitung Full-PASCAL Seite 1:54

WITlii-Anweisung

Die WITH-Anweisung dient dazu, innerhalb einer
Anweisung, die nehrere Recordkouponenten entnält, die
symbolischen Namen zu vereinfachen.

Record-

WITH > Variable »>{ DO | Anweisung —

Beispiel:

PROGRAM ARCHIV (INPUT,OUTPUT);
TYPE STRING = ARRAY 1 .. 30] OF CHAR;

BUCH = RECORD TITEL:STRING;
AUTOR:STRING;
JAHR:INTEGER;

END; _
VAR ARCHIV:ARRAY 1 .. 50) OF BUCH;

- I:1 .. 50; -
BEGIN

FOR I:=1 TO 50 DO
WITH ARCHIV [I] DO
BEGIN
LOOP
READ (TITEL);
EXIT IF TITEL [1] =#;
READ (AUTOR);
READ (JAHR)

END
END

END,

Die WITH-Anweisung erspart dem Programmierer

Schreibarbeit; ohne diese Anweisung müßte ein
Einlesebefehl des Beispielprogrammns folgendermaßen
codiert werden:

READ (ARCHIV [I). TITEL)

Außerdem erspart die Verwendung der WITH-Anweisung
bei Zugriff auf Elemente eines Feldes (array) von Typ
Record Rechenzeit.

0

Computer
SYSTEME

Benutzeranleitung Full-PASCAL Seite 145

Externe Daten und Prozeduren

Allgemeines

Das Kapitel 5 beschreibt eine Erweiterung von
Standard-PASCAL um ein Modul-Konzept. Danit wird dem
Anwender die Möglichkeit gegeben, von
PASCAL-Programmen auf externe Größen zuzugreifen. Das
Modul-Konzept bietet somit die Möglichkeit, modular
zu programmieren.

Als externe Größen können Daten, Prozeduren und
Funktionen vereinbart werden. Die Schnittstelle
zwischen Programm und Modul muß in einer
Schnittstellenbeschreibunz, die alle notwendigen
Informationen für eine vollständige Konsistenzprüfung
(Zusammenhangsprüfung) enthält, beschrieben werden.

Die Erweiterung der Sprache stellt Tolgendes
Syntaxdiazramm dar.

Prosramm mit externen Größen:

Programnm- Schnitt-

— beschrei- >| stellenbe- Block >
bung schreibung

Das Prosramn, das externe Größen benutzt, wird hier
dauptprosgsramm zenannt; das externe Prozranm heißt
nier Modul.

Z
u
n
e

U

Computer
SYSTEME

Benutzeranleitung Full-PASCAL Seite 116

Schnittstellenbescnreibung

Die Schnittstellenbeschreibung nußS alle Wannen, die im

lHauptprograam bzw. MNodul deklariert wurden und nach

außen zur Verfügung stehen sollen, enthalten.

Schnittstellenbeschreibung:

 1
— IMPORTS } > Name

 EXPORTS

Name -(:); >

’

Die Namen, die ninter INPORTS stehen, dürfen nicht
hinter EXPORTS stehen. Alle Nanen, die in der

EXPORTS- oder IHPORTS-Liste stehen, müssen im

Deklarationsteil definiert werden, danit der
Übersetzer den entsprechenden Code erzeugen uwnä

Typprüfungen durchführen kaun.

Steht ein Prozedur- oder Funktionsnane in einer

IMPORTS-Liste, so ist die dazuzehörige Prozeüur bzw.
Funktion extern. Der zu diesen Prozeduren bzw.

Funktionen gehörende Block’ wird durch das Wort
EXTERN ersetzt.

Werden für Jie Deklaration eines Nanens, der in einer

EXPORTS- oder IMPORTS-Liste steht, weitere Namen

benutzt, so müssen aile verwendeten Nanen exportiert

bzw. iuportiert werden.

Computer
EA systeme

S
i
n
n

a
t

a

—

Benutzeranleitung Full-PASCAL

Beispiel:

PROGRA! PROGO1;
EXPORTS V1, T1, C1;
IMPORTS V2;
CONST

C1l = 255;
TIiPE

T1 = 09..01;
VAR

V’12: T1;
V2 : REAL;

BEGIN

(* Ausführunzsteil *)
END.

werden. bei der Typdefinition von

Typprüfunzs durchführt.

Seite 147

In diesem Beispiel wurde für die Definition der

Variablen VI der Typ-Name T1 benutzt.
falls V1 exportiert wird, ebenfalls

Demnach ıuß,
exportiert

wurde die
Konstante C1 verwendet, desnalb auch CI

exportiert werden.

Standard-Namen dürfen weder exportiert noch
importiert werden; außer wenn sie umdefiniert wurden.
In so einem Fall müssen diese Namen in der Liste
stehen. Fehlt so eine Auflistung, erzeugt der
Compiler eine Typecodierung für die
Sstandardbedeutungzg, so daß der Binder eine falsche

Computer
DJEIIF7. Se

Benutzeranleitung Full-PASCAL Seite 148

Beispiel:

PROGRA:I PROGO2;
IMPORTS INTEGER, V]1;5
TYPE

INTEGER = 09..255;
VAR

V1:INTEGER;
BEGIN

(# Ausführungsteil *)
END.

Man ann sich beispiele denken, bei denen die

Bedeutung von Vereinbäarunzsen von der Reitenfolge der
Typdefinitionen abhängt:

PROGRAM PROGO3;
EXPORTS INTEGER, TI, V1, V2;5
TYPE

Ti = INTEGER;

INTEGER = 0..255;
VAR

V1 : INTEGGR;

v2: 71;
BEGIN

(* Ausführungsteil *F}
END.

Konstruktionen dieser Art sind verboten |!

Der Übersetzer erzeuzt in diesen Tall für alle
exportierten Nanen eine GTypecodierunz, die die

Variablen VI und V2 auf deu Bereich 0..255 festlegt.

nn met 7. om . - © mmaene an Au ee. . > EEE Te. Dora + - a

N

Fi
r.

e
r

G
E

E
E
E

Computer
DNESIFZISVSTEME

Benutzeranleitung Full-PASCAL Seite 149

Bin Sonderfall bei der Schnittstellenbeschreibung
bilden vom Benutzer definierte skalare Typen. Dies
kann Z.b. bei Variablen- Deklarationen der Fall sein:

VAR
V1,V2 : ARRAY BOOLEAN OF (ROT,BLAU,GELDB);
v3 : BLAU .. GELB;

Soll die Variable V3 exportiert werden, so müssen die
Namen BLAU und GELB in der EXPORTS-Liste stehen. Für
eine vollständige Üypprüfunz ist es notwendig, auch
den Typ der Namen GELB und BLAU in die EAXPORTS-Liste
aufzunehmen. Deshalb nuß die Variable, die

unnittelbar vor dem Doppelpunkt der Deklaration des
skalaren Typs steht, in die Liste aufgenommen werden.
Im obigen Beispiel ist dies der Naue V2.

Wird ein skalarer Typ innerhalb einer Typedefinition
einzeführt,so muß der zugehörige Typname in die Liste
aufzsenommen werden.

Für die Kompatibilitätsprüfung von externen Größen
wird eine identische Deklaration verlangt:

VAR
VI 2 RECORD Al, Bl : INTEGER END;
V2 : RECORD BI1, Al : INTEGER END:
V3 : RECORD AI:INTEGER, B1: INTEGER END;
VL x RECORD Al, Bl: INTEGER END;

In diesem Beispiel sind nur die Namen VI unä V4
typekompatibel.

i
n
.

r
e

E
E
E

R
E

e
n

“m
er

w
e
r
e

u

Computer
ID ET] SYSTEME

Benutzeranleitung Full-PASCAL Seite 150

Externe hNodule

Externe Module sind wie PASTAL-Prozranme mit externen

Größen aufgepvaut,.

Anstelle Jes Schlüsselwortes PROGRAN wird das
Schlüsselwort MCGDULE eingesetzt. Der Anweisunzsteil
des Hauptprosramnmblocks eines iloduls darf nur die
leere Verbundanweisung BEGINN END entnalten.

Beispiel: Es soll ein externes »dodul für die

=... --. Steuerung von Bildschirmfunktionen für

Jen Bildschira 5523/5h2l erstellt werden.

MODULE BILDSCHIRMFUNKTIONEN (OUTPUT);
EXPORTS CLEAR, POSI;
PROCEDURE CLEAR;

(* AUSGABE VON "7EIC = BILDSCHIRM LOESCHEN *)
BEGIN
WRITE (CHR(125), CHR(28))

END;

PROCEDURE POSI (ZEILE, SPALTE:INTEGER);
(#* AUSGABE VON "7E11 = POSITIONIEREN %)

BEGIN
WRITE (CHR(125),CHR(17),CHR(SPALTE),CHR(ZEILE))

END;

BEGIN
(* LEERE VERBUNDANWEISUNG *)

END.

Computer
[DIETZ SYSTEME

Benutzeranleituns Full-PASCAL seite 151

Der Deklarationsteil des Hauptprozraumns, das diesen
Modul benutzt, enthält folzende Vereinbarunzen.

PROCEDURE CLEAR;
EXTERN; |
PROCEDURE POSI (ZEILE,SPALTE:INTEGER);
EXTERN;

Das Hauptprozsramıa und der Modul werden zetrennt
übersetzt. Beim Binden wird mit Hilfe des Kommandos

ENT (vgl. Bedienungsanleitung BINDER) die Zuordnung
festgelezt.

Ein weiteres beispiel soll eine etwas komplexere
Schnittstellenbeschreibunz erläutern.

PROGRAM PROGO4 (INPUT,OUTPUT);
EXPORTS C1, TI, PROZO, V1;
IMPORTS T2, FCTO1, V2, Fi, V3, BLAU, ROT, T3;
CONST

CI = 10;

TYPE
T1=0..C1;

T2 = 0..255;

T3 = ARRAY CHAR OF (BLAU,GELB,ROT,GRUEN);
VAR

V1,V2 : T2;
V3:BLAU..RUOT;

F1:FILE OF CHäAßk;

PROCEDURE PROZO (F1:T1);
BEGIN

(* Ausführungsteil *)
END; Ä

FUNCTION FCTO1 (U:REAL) : INTEGER;

EXTERN;
BEGIN

(* Hauptprogramm *)

END.

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 152

MODULE M (F1); |
EXPORTS FCTO1l, Fi, T2, V2, V3, BLAU, ROT, T3;
TYPE

T2 = 09..255;
T3 = ARRAY [CHAK] OF (BLAU,GELB,KOT,GRUEN);

VAR |
F1 FILE OF CHAR;
v2 T2;
v3 BLAU. ‚ROT;

PROCE ‚DURE LOCAL; BEGIN (* Ausfühnrungsteil *) END;
FUNCTICN FCTOI (U: REAL) : INTEGEK;

BEGIN
BEGIN

END.

LOCAL ... END;

(* Ausführungzsteil kodul: leere Änweisuns BEGIN END*)

Br

r
a
n

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 153

wie in Kapitel 1.1 angedeutet, erfolgt der

Datentransport zwiscnen Anwenderprogramm und

Peripherie-Geräten (z.B. Bildschirm-Terminal) über
die beiden Standarddateien INPUT und OUTPUT, die als
Dateinamen hinter den Programmnanen anzuseben sind.
Die beiden Standarddateien INPUT und OUTPUT sind
Textfiles, d.h.: Dateien, deren Komponente Zeichen
(vgl.2.1) sind. Für den Zuzriff auf diese beiden
Standarddateien und für den Zuzriff auf vom Benutzer

definierte Textfiles zibt es Jie Standardprozeuüuren

READ und WRITE.

kinsabe-Prozedur (Input-Procedure)

READ N >> »| Variable >)—

Dateiname >)

 Y

er

Die Prozedur READ darf nur auf Textfiles anzewendet
werden. wird der Dateinane nicht anzezeben, so

erfolgt Jas bBinlesen über die Datei INPUT.

Die Variable muß von iype CHÄR, INTEGER

(bzw.Teilbereich von CHAR oder INTEGER), REAL oder
Zeicnenkette (ARRAY, OF CHAR) sein.

u

e
n

ES

b)

C)

d)

Computer
SYSTEME

Benutzeranleitung Full-PASCAL Seite 154

gelten folsende konventionen:

Der Prozedur-Aufruf
READ (F,V1, ... Vn)
hat die gleiche Ledleutung wie
BEGIN READ (T,V1); ... READ (F,Vn) END.
(F = Dateiname, Vx = Variable).

Ist die Variable (Vx) von Typ CHAR oder
Teilbereich von CHAR, so ist Aer Prozeduraufruf
READ (F,V1)
sleichbedeutend nit

IF SOR (F) = TRUE THIEN bEGIN

GET (F);
V:ı=zF;
GET (F)
END (vgl. 3.5.4.1)

ie

Ist die Variable vom Typ INTEGER (bzw. Teilbereich
davon) oder REAL, so bewirxt der Prozeduraufruf

READ (F,V)

das Einlesen einer zeichenfolse, die eine
vorzeichenbenaftete Ganzzanul (signed intezger, vgl.
2.1.3) oder eine vorzeichenbehaftete kealzahl
(signed real, vgl. 2.1.3) darstellt. Bei Variablen
von Typ INTEGER MUB die eingzelesene Zahl
zuweisungsverträglich (vgl.3.1.5) sein. Führende
Zwischenräune (Blanks) oder zZeilenendezeichen
(Carriage Return) werden überlesen.

Das Einlesen wird beendet, sobald ein Zeichen
angetroffen wird, das nicht der Syntax einer
vorzeichenbehaäfteten Ganzzahl oder einer
vorzeichenbehafteten Realzahl entspricht.

Ist die Variable eine Zeichenkette (ARRAY OF

CHAR), so wird solanze einzelesen, bis die
Variable zefüllt ist oder bis ein
Zeilenendezeichen gefunden wird.

Computer
DIETZ SYSTEME

Bbenutzeranleitung Full-PASCAL seite 155

Eine Erweiterung der Prozedur READ stellt die
Prozedur READLN (Read Line) dar. READLN nat .die
sleiche Paraueterliste wie READ. Allerdings darf
READLN auch ohne Paraneterliste bzw. nit einer

Paraneterliste, die als einziges blement den
Dateinamen enthält, benutzt werden. Die Prozedur
kREADLS bewirkt, das nach dem Linlesen auf das erste
„eicher nach dem nächsten Zeilenendezeichen
geschältet wird.

Beispiel:

Han nehme an, daß die Standarddatei INPUT folzende
zeichen enthält:

41.12 300 CK -3.06 -200

Carriage Return (Zeilenendezeichen)

Es soll folgender Vereinbarunzsteil gelten:

VAR A,C, : REAL;
B,D:INTEGER;

Der Prozeduraufruf

READ (A,B,C,D)

bewirkt, daß der Variablen

A der Wert 4.12,

B der Wert 300,
C der Wert -3.5 und.
D Jer Wert -2090 zugewiesen wird.

B
E
T

W
E
R
E

n
r

T
E

Computer
SYSTEME

Benutzeranleitung Full-PASCAL

Die Anweisungsfols

Seite 15%

e
READ(A); REAR(E); READ(C); READ(D) hätte die gleiche
Wirkung.

Die Prozrannfolse

READLN(A); READ(C,D)
bewirkt folgende wertzuweisun;en:

A i.12

C -3.5
D - 200

Nach den Zinlesen der Variablen X wird Jas erste

Zeichen nash dem nächsten Zeilenenlezeichen, hier das
Minuszeichen, mit der nächsten
eingelesen.

KEAD-Prozedur

b.2.

Computer
ID EI1E7 SYSTEME

Benutzeranleitunz Full-PASCAL seite 157

Ausgabe-Prozedur (Output-Procedure)

WRITE ®

. Dateiname

Y_, Ausdruck _

ä | | >) >

rositiver 1 nositiver |
ganzzahl- panzzahl-

. iger Ausdr. iger Ausdr.

(Ne
NP A

Die Auszabe-Prozedur ist die Unkehrunz der
Binzabe-Prozedur. Werte werden aus den

Prozgrammspeicher in dJie Datei, die bei Dateinane
eingesetzt ist, ausgegeben. Fehlt diese Anzabe,

erfolgt die Ausgabe über die StandardJatei OUTPUT.

Der Ausdruck muß von Typ REAL, INTEGER, CHAR, EOOLEAN
oder eine Zeichenkette (ARRAY OF CHAR) sein. Der Wert
des Ausdrucks wird ausgegeben.

Die beiden positiven zanzzahligen Ausdrücke können
benutzt werden, un die Ausgabe zu foruatieren. Der
erste ganzzahlige Ausdruck gibt die Feldweite, d.h.
die zesamnte Anzahl der auszugebenden Zeichen (evtl.
einscnließlich Vorzeicnen, Dezimalpunkt,
Exponentialzeichen) an. Der zweite positive

ganzzahlige Ausdruck gibt die Anzahl der
Nachkommastellen an. Die Anzahl der Nachkomwastellen
darf nur angegeben werden, wenn der auszuzebende Wert

von Typ REAL oder von Typ .ARRAY OF CHAR ist. Bei
werten vom Wyp ARRAY CF ZHAR darf nur die Feldweite

angeseben werden dabei wird dann die Änzahl der zu ei;
verarbeitenden Elemente (Länse) bestimmt.

I

Computer
DIETZ SYSTEME

Benutzeranleitung Full-PASCAL Seite 159

Ä

Entfällt die Formatanzabe, erfolgt die Ausgabe im
automatischen Format. |

Eine Erweiterung der Prozedur WRITE stellt die
Prozedur WRITELN (Write Line) dar. WRITELN hat die
gleiche Paraueterliste wie WRITE. Allerdinszss darf
WRITELN auch ohne Parameterliste bzw. nit einer
Paraneterliste, die als einziges Elenent den

Dateinamen entnält, benutzt werden. Die Prozedur

WRITELN bewirkt, dad nach der Auszabe zusätzlich ein
weilenendezeichen ausgegeben wird.

Beispiel:

a) Die Variablen A, B, C und D seien vom Typ REAL und
haben die Werte 4.12, 300, -3.6, -200; dann
bewirkt die Anweisungsfolze

WRITELN (A:0:3)5 WRITELN (B:8:3);
WRITELN (C:8:3); WRITELN (D:$ß:3);

folgendes Druckbild:

1.120
300.000
-3.600

-200.000

| Computer
DNSIRZISVSTEME

Benutzeranleitung Full-PASCAL Se

b) Eine auf einen Plattenspeicher vorhandene
Textdatei, in der ö5riefe zespeicnert sind,
zeilenweise zelesen werden. In der zelesenen Zeile
sollen alle Vokale (Selbstlaute) durch das Zeichen
* (Stern) ersetzt und die zelesene Zeile auf ein
Bildscnirmsgerät (Standarddatei OUTPUT) ausgegeben

werden.

PROGRAH TEXTVERARBEITUNG (OUTPUT,BRIEFE);
CONST M=80;
VAR ZEILE : ARRAY D1..M] OF CHak;

PRUEF : SET OF CHAR;
I: 1 0.. 80;
Q 21 .. 805
BRIEFE : FILE OF CHAR;

BEGIN
PRUEF := [’a’,2°, 17,00, u] ;
RESET ("BRIEFE’,1,1);
REPEAT

I :=1; |
REPEAT |
READ (BRIEFE,ZEILE [I);
I := I+]

UNTIL EOLN (BRIEFE) UR EUF (BRIEFE);
IE EOLN (BRIEFE) THEN

BEGIN
FOR Q := 1 TO I DO
BEGIN
IF ZEICHEN [Q] IN _PRUEF THEN ZEICHEN [Q] :="#';
WRITE (ZEICHEN [GC])
END;

WRITELN;
END;

UNTIL EOF (BRIEFE);
RESET (BRIEFE,2)

END.

ite 159

N

Heinrich Dietz E |

Solinger Straße 9
4330 Mülheim-Ruhr

Tel.: (0208) 44 34-1
Telex 856770

