dietz 521
BASEX

Beschreibung

Heinrich Dietz
Industrie-Elektronik [
433 Miilheim a.d.Ruhr
Solinger Str. 9

Tel. (02133)485024
Telex 856770

Computer
P SYSTEME

Lickfelof

BASEX

Beschreibung

)
Ny

Januar 1

Heinrich Dietz
Industrie-Elektronik
433 Milheim a.d.Ruhr
Solinger Str. 9

Tel. (02133)485024
Telex 856770 ¢

iComputer
| SYSTEME

Inhalt

Ausgabe 12.74

1. Einleitung: - Vorwort

2. BASEX-Beschreibung
- Grundelemente

Einfthrung - Dialog mit dem System
- Sprachelemente - Kommandosprache
- Programmiersprache
- Statement-Codes
- Namen
- Zahlen - Datentyp Zahl
- Zahlenkonstanten
- Zahlenvariablen
- Strings - Datentyp String
- Stringkonstanten
- Stringvariablen
- Ausdriicke - Arithmetische Ausdricke
- Logische Ausdricke
- Vergleichsausdriicke
- Prézedenz von Operatoren
- Stringausdriicke
- Funktionen - Mathematische Funktionen
- Funktion CHG
- Sonstige Elemente - Systemvariablen
- Systemprozeduren -
- Systemvariable ERR
- BASIC-Befehle Einfuhrung - BASEX-Befehle aus BASIC
- Kommandos - Grundkommandos
- Kommandos READ,PUNCH und
LISP
Anweisungen - Statement REM
- " DIM
- " CHAR
- " DEF
- " LET
- " DATA,READ und RES
- " INPUT
- " PRINT
- " GOTO
- " GOSUB und RETURN
- L IF
- " FOR und NEXT
- : CALL
- " END

NN
N —

w

£

o O
® - . . [*« ° a & o ® . ° « e °
WN=PN— O WN—=WN—=WN =D WN — —

N

NN

NN

w N —

VOV A WN = N

~ Plattenspeicher-
Systam ~ Einfthrung ~ Platten als Hintergrundspeicher 2.3.1.1
' - Programmverwal -
tung - Kommandos SAVE,LOAD,KILL 2.3.2.1
- Segmentierung von Programmen .2
- Kommando INITIALIZE 3
- Statements LINK und ENDS .4
- DBOS - DBOS in BASEX 2.3.3.1
- Dateiverwaltung unter DBOS .2
- Dateizugriff unter DBOS 3
- DBOS-Fehlermeldungen 4
- Systemprozeduren GF,PF, GFS, PFS 5

- Realtime-System - Einfihrung - RTOS in BASEX 2,4.1.1
- - Multiprogramming - Statement WAIT 2.4.2.1
- . STAKY 2

- " STOP .3

- Systemvariable LEV .4

- " STNU .5

- Reitverwaltung - Systemvariablen MSEC,SEC,

MIN und HOUR 2.4.3.1

- Kommando TIME 2

« Systemprozedur ¢ A4 .3

- Statement AFTEk 4

~ Indeerpis « Sttwement ON [b.[SO e
w ® ENAB und DISAB »

- ProzeB-Ein-/
Ausgabe

- Peripheral-Ein/
~Ausgabe

- Einfuhrung
- Universelle Ein-/
Ausgabe

- Standard-Ein-/
Ausgabe

- Einfuhrung
- Universelle Ein-/
Ausgabe

- Standard-Ein-/
Ausgabe

H

Prozefperipherie 2.5.1.1

Statement EQUI 2,5.2.1
“ EQUO .2
" PUT _ .3

Statische digitale Einginge 2,5.3.1

(PSSE)

Speichernde digitale .2

Ausginge (PSSA)

Zshleingdnge (PIZE) .3

Zeitausgdange (PISA) 4

Einkanal-Analogeingtinge (ADE) .5

Einkanal-Analogausgang (DAU/DAI) .6

Mittelschnelles Analog-Mef3- 7

system (ADM-621)

Integrierendes Mefsystem .8

(ADI/ADA)

Gertite-Peripherie 2.6.1.1

Systemprozedur READ 2.6.2.1

Magnetbandsystem (MBE-621) 2.6.3.1
Spezielle Bildschirm-Befehle
(BTH 2000)

Craghische Ausgabe
Kartenleser (MDS 6042)

W

8.

- Sonstige

Funktionen - Einfthrung

- Systemvariablen und -prozeduren

- Zchl-/String- .
Transfer - - Systemprozeduren LDST und STST

System~-Modifikationen:

Anhang:

1

Systemgenerierung

Einbbau von Routinen in BASEX

BASEX-Fehlerliste

Piogrammbeispiele

2.7.1.1

2.7.2.1

8.1
8.2

2.1
9.3.1

1.1

Vorwort

BASEX ist eine interaktive Programmiersprache fur Echtzeit- Anwendungen.Sie ist
auf der inzwischen weltweit verbreiteten Dialog-Sprache BASIC aufgebaut und
umfaBt auBer deren Sprachumfang eine Vielzaohl weiterer Sprachelemente zur Be-
schreibung des Echtzeit-Verhaltens und fiir die ProzeRdaten-Verarbeitung. Dialog-
fahigkeit und einfacher Sprachaufbau machen BASEX zu einem leicht erlernbaren,
benutzerfreundlichen Progrommiersystem.

Die Sprache BASEX wurde am Institut fur Physik der Universitit Freiburg (Breisgau)
entwickelt. Die erste Implementierung erfolgte auf Computer-Systemen vom Typ

DIETZ 621.

Die vorliegende Benutzer-Anleitung beschreibt BASEX so, wie es auf dem DIETZ 621
implementiert ist. Sie soll Benutzern von DIETZ 621-Systemen helfen, ihren Einsatz
zu planen und sie zu programmieren, zu bedienen und erfolgreich zu betreiben.

2.1.1.1

Dialog mit dem System

BASEX ist eine interaktive Programmiersprache: Programme werden im Dialog
zwischen Benutzer und System ein- und ausgegeben, verdndert und zur Ausfuhrung
gebracht,

Dabei wird zwischen zwei Betriebsarten unterschieden, in denen sich das System
befinden kann:

- Bedienungsbetrieb (command mode)
- Ausfihrungsbetrieb (execute mode)

BASEX
Command Mode
Kommgnde Anwelisung
RUN END
BASEX

Execute Mode

Im Bedienungsbetrieb nimmt das System Kommandos des Bedlenars an, die sofort
ausgefuhrt werden, und speichert Programm-Anwsisungen, die spdter ausgefuhrt
werden sollen.

Im Ausfihrungsbetrieb wird das gespeicherte BASEX-Programm ausgefihrt.

Die Gliedetung in zwei Betriebsarten ist nicht streng, da sowohl Kommandos als
auch Programme vem gleichen BASEX-System interpretiert werden; zum Verstdndnis
des Systems erweist sie sich jedoch als praktisch,

In Abschnitt 2.1.2.1 sind Grundsiitze des Bedienungsbetriebs beschrieben; die
restlichen Abschnitte beschaftigen sich mit den im Ausfihrungsbetrieb abgearbeiteten
Elementen vom BASEX-Progromm.

2.1.2.1-1

K ommandosprache

BASEX-Kommandos sind Befehle, die der Benutzer dem System Uber das Konsolgerdt
erteilt. Sie bestehen aus einem Kommandowort, das von einigen Parametern gefolgt
sein kann, und werden vom System sofort ausgefiihrt. Der Zustand des Systems, in
dem es Kommandos akzeptiert, wird "Bedienungsbeirieb” (command mode) genannt.

Zum Beispiel bewirkt das Kommando
Liéf 50,100
daBl ein Teil des im System befindlichen BASEX-Programms, beginnend mit Anweisung

50 und endend mit Anweisung 100, auf dem Konsolgerdt ausgedruckt wird. Der Ausdruck
beginnt unmittelbar nach AbschluB der Kommando-Zeile mit "Wagenricklauf" (CR).

Im Bedienungsbetrieb kdnnen Programm-Anweisungen eingegeben werden; zum Beispiel
in der Form

30 LET A=3

Jedoch werden diese vom System nicht sofort ausgefuhrt, sondern anhand der davor-
stehenden Zahl als Anweisungen erkannt und gespeichert.

Durch das Kommando

RUN

wird das gespeicherte Programm zur Ausfuhrung gebracht; das System geht in den
"Ausfuhrungsbetrieb" (execute mode) Uber, in dem es keine -Kommandos (oder Eingaben
von Anweisungen) mehr zuldft,

Mit Ende des Programms (END-Anweisung) kehrt das System wieder in den Bedienungs-
betrieb zurick, was durch Ausgabe von

*READY

auf dem Konsolgerst gemeldet wird.

Statt des vollstandigen Kommando-Wortes kann auch eine Kurzform eingegeben werden,
die aus den drei er *2n Buchstaben besteht, z.B.

LIS 508,100

Fehler bei der Eingabe kénnen auf folgende Weise korrigiert werden:

Eingabe von < eliminiert 1 vorangehendes Zeichen
Eingabe von <— ¢m eliminiert 2 vorangehende Zeichen

Eingabe von "Rubout" eliminiert alle vorangehenden Zeichen der Zeile.

2.1.2.1-2

BASEX kennt folgende Kommando-Worte:

Grund-Kommandos: LIST : Programm listen auf Konsolgerdt (s. 2.2.2.1)
DELETE Programmteil lsschen "
SCRATCH Gesamtes Programm |8schen "
RENUMBER Programm neu numerieren "
RUN Programm starten "
Peripherie: READ Programm einlesen Uber Streifenleser (s. 2.2.2.2)
PUNCH Programm auslochen tber Streifenlocher "
LISP Programm listen auf Schnelldrucker "
Plattensystem: LOAD Programm laden aus Datei (s~ 2.3.2.1)
SAVE Programm ablegen auf Datei "
KILL Programm-Datei |5schen "
INITIALIZE Programm initialisieren (s. 2.3.2.3
END Ubergang in Basis-Betriebssystem (s. 2.3.3.1)
Z eitsystem: TIME Systemzeit abfragen/eingeben (s. 2.4.3.2)

Die BASEX-Kommandos sind in den angegebenen Abschnitten ausfuhrlich beschrieben.

2.1.2.2

Programmiersprache

BASEX-Programme bestehen aus einer Folge von Anweisungen. Jede Anweisung findet
in einer Zeile Platz und besteht aus

- der Anweisungsnummer (1...9999)
- der Anweisung im eigentlichen Sinne (Statement), die stets mit einem
fur den Anweisungs-Typ spezifischen Kennwort (Statement-Code) beginnt.

Beispiel:

30 LET A =

I Itatement Code

Anweisungs-Nummer

Die Anweisungen werden in aufsteigender Reihenfolge ihrer Nummern abgearbeitet =
auBBer bei Springen (GOTO, GOSUB), ausgefuhrten Verzweigungen (IF) und Schleifen
(NEXT). Kommentare (REM) und Anweisungen beschreibenden Charakters (DIM, CHAR,
DEF, DATA, ECUl, EQUO) werden bei der Ausfihrung Ubergangen.

Programmanweisungen werden im Bedienungsbetrieb (s. 2.1.2.1) Zeile fur Zeile einge-
geben; die zeitliche Reihenfolge ist dabei unmafigeblich.

Fehler bei der Eingabe kdnnen durch ¢— bzw. "Rubout" korrigiert werden (s. 2.1.2.1).

Anweisungen missen den fiur die Programmiersprache BASEX gultigen Regeln entspre-
chen, wie sie im folgenden beschrieben sind. Formale, insbesondere syntaktische
Fehler werden -unmittetbar na¢h Eingabe einer Zeile vom System erkannt und durch
Ausgabe von

ERR n
auf dem Konsolgertit erkannt; n ist die Fehler-Nummer (s. Fehlerliste 9.1)

Leerzeichen sind in beliebiger Zahl, auch zwischen zusammengehdrigen Zeichen,
zulassig; jedoch nicht innerhalb von Statement-Codes.

Der Zeichenvorrat von BASEX umfaflt alie 26 Buchstaben des Alphabets, die Ziffern
0...9 sowie eine Reihe von Sonderzeichen:

KLMNOPQRSTUVWXYZ

+ o>
| — ™
b ENYQ]
~Nw O
TS,

EFGHIJ
456789 :
f=F<>()@ " " &1 2?2 . ,;8%:

Statement-Codes

BASEX kennt folgende Statement-Codes:

BASIC-Statements:

Plattensystem:

Realtime-System:

ProzeB-Ein/Ausgabe:

REM
DIM
CHAR
DEF

LET
DATA
READ
RES
INPUT
PRINT
GOTO
GOSuUB
RETURN
IF

FOR
NEXT
CALL
END

LINK
ENDS

WAIT
START
STOP
AFTER
ON INT
ENAB
DISAB

EQUI
EQUO
PUT

Kommentar

Zohlenfeld
Stringvariable
Funktion

Zuweisung
Konstanten-Liste
Konstanten-Zuweisung
Setzen Konstanten-Zeiger
Eingabe

Ausgabe

Sprung
Unterprogramm=Sprung
Rucksprung
Verzweigung
Schleifen-Anfang
Schleifen-Ende
Prozedur-Aufruf
Programm-Ende

Aufruf Segment
Ende Segment

Warten

Programm-Aufitrag
Abschlufl Auftragsprogramm
Zeitauftrag
Interrupt-Auftrag

Interrupt zulassen

Interrupt sperren

Eingabe-Makro
Ausgabe-Makro

. Makro-Aufruf
7

2.1.2.3

WWWwwWwww

NNNNNN
82N

NNV N

.

= NDDNNDN
S2ey

WWwWww
—

NSNS

NS
=N
e o
ot o

=

(2.
2.

NN

(2.3.2.49)

Die BASEX-Statements sind in den angegebenen Abschnitten ausfuhrlich beschrieben.

2.1.2.4

Namen

Namen sind mnemotechnische Bezeichnungen in BASEX-Programmen. Sie bestehen
aus

- einem Buchstaben,
- dem bis zu 3 Buchstaben oder Ziffern folgen kénnen.

Beispiele fuir Namen:

A

Z

Al
AA1
AAAA
TEMP
X23
N2A8

Namen bezeichnen:

Variablen
Systemvariablen
Systemprozeduren
Benutzer-Funktionen

Als Namen sollen nicht verwendet werden:

Statement-Codes, wie REM, LET, ...
Anweisungs-spezifische Schlusselwsrter, wie OF, THEN, ...
Operator-Namen, wie NOT, AND, ...
Standard-Funktionen, wie SQR, CHG, ...

2.1.3.1

Datentyp Zahl

Numerische Werte werden intern als Gleitkomma-Zahlen ("Real") dargestellt.
Dieser Datentyp wird als "Zahl" bezeichnet.

Von jeder Zahl werden im Speicher 4 byte (32 bit) belegt; davon nehmen

- die Mantisse 3 byte
- der Exponent (zur Basis 2) 1 byte

ein.

Mantissen kdnnen damit im Bereich (—223 + 1) ... (223 - 1) liegen, was einer
Genauigkeit der Darstellung von 6 Dezimalstellen entspricht.

Der gesamte Zahlenbereich betrdgt absolut 0.5 - 1078 ... 0.5 . 1043,
Ganze Zahlen behalten bei allen arithmetischen Grundoperationen ihren Charakter
bei, solange die Mantisse die Bereichsgrenze nicht Uberschreitet. Dies gilt nicht

fur Divisionen mit nicht-ganzzahligem Ergebnis.

Im Speicher haben Zahlen folgenden Aufbau:

70 23= 0
\ \
T 1
Exponent Mantisse
ot . at2 o at] l a
Adresse

Mantisse und Exponent sind bindre Zweierkomplement-Zahlen.

2.1.3.2

Zdhlenkonstanten

Numerische Konstanten knnen im Programm In unterschiedlicher Form geschrieben
werden.

Folgende Darstellungsweisen sind mtglich:

- Ganzzchlen; 0
2
123
009999
-8
-345678

- mit Dezimalpunkt: 2.0
-3.45
0.7
7
-.00009
-265.37

- in Gleitkommaform: 2E3
2.0E0
-6E-1
-6E-01
0.99E12
-.234E-10

Bemerkung:

In der Gleitkomma-Form bedeutet die Zcohl hinter dem Buchstaben E den Exponenten
zur Basis 10.

2E3 hat also den Wert 2 - 10° = 2000.

2.1.3.3

Zahlenvariablen

Zahlenvariablen bezeichnen Speicherpldtze, die einen numerischen Wert (eine Zahl)
enthalten,

Es wird unterschieden zwischen

- einfachen Zahlenvariablen und
- indizierten Zahlenvariablen.

finfache Zahlenvariablen werden durch einen Namen identifiziert, z.B.:

A
o170
X2
DATI

Der fur sie bendtigte Speicherplatz wird automatisch reserviert, sobald der zugehsrige
Name im Programm zum ersten Mal erscheint.

Indizierte Zahlenvariablen sind Bestandteil eines ein- oder zweidimensionalen Zahlen-
feldes (array). Sie werden durch einen Namen identifiziert, hinter dem in Klammern
ein oder zwei Indizes stehen, z.B.:

A(0))

A(6%* 7) L einfach indizierte Zohlenvariablen
Z (X)

B15 (S(3)-T))

X(1,2)]

Y (E+4,L) - zweifach indizierte Zahlenvarioblen
ARRA (A(3), X** 8)

N2(0,0))

Der Name bezeichnet ein Zahlenfeld, das in einer DIM-Anweisung reserviert werden
muB. Der Index bezeichnet die Position innerhalb des Feldes. Bei zweifach indizier-
ten Zahlenvariablen gibt der erste Index die Zeile, der zweite die Spalte des Feldes
an. :

Indizes beginnen mit 0, 1, 2 ...; d.h. die jeweils erste Position hat den Index 0!

Bemerkung:

FOr efnfache und indizierte Zahlenvariablen sind die gleichen Namen zulussig die
VaridBlen X und X(0) sind nicht identisch!

2.1.4.1

Datentyp String

Zeichenketten werden intern im ASCII-Code dargestellt. Dieser Datentyp wird als
"String" bzeichnet.

Fur jedes Zeichen wird intern im Speicher 1 byte belegt. Strings haben beliebige
Langen zwischen 1 und 1000 byte.

Es sind alle Zeichen des ASCIlI-Codes in Strings darstellbar, insbesondere die 64

druckbaren Zeichen (einschlieBlich Leerschritt) sowie Steuerzeichen (Wagenrucklauf, ...).

Es konnen aber auch beliebige Bitmuster in Strings enthalten sein.

Im Spoeicher haben Strings folaenden Aufbau:

| [| I

1.Zeichen 2.Zeichen 3.Zeichen ...

a atl at2

L 1 1 1

Adresse

.

2.1.4.2

Stringkonstanten

Stringkonstanten ksnnen im Programm in unterschiedlicher Form geschrieben werden.

Folgende Darstellungen sind masglich:

- Druckbare ASCIlI-Zeichen,
von " eingeschlossen: AN
“ABCII
"]2"
"DIESwL ISTLNR. 1"

- Hexa-Ziffern,
von % eingeschlossen: %4A%
%D4CS508FF%

Bemerkung:

Jedes Paar von Hexa-Ziffern stellt ein String-Zeichen dar. Damit lassen sieh
beliebige Bitmuster definieren, insbesondere auch nicht druckbare ASCli-Zelehen.

2.1.4.3

Sfringvariablen

Stringvariablen kennzeichnen Speicherplitze, die Zeichenketten enthalten,

Sie werden durch Namen gekennzeichnet, denen das Dollar-Zeichen £ angehtngt wird:

AS
TEXTS
M3
L5AS

Der fur eine Stringvariable bendtigte Speicherplatz konn in einer CHAR-Anweisung

unter Angabe der Linge (1...32967 Zeichen) reserviert werden. Einer String-Variablen,
die in keiner CHAR-Anweisung v.rkommt, wird vom Progromm automatisch ein Platz
von 2 Zeichen reserviert.

Ein String-Name, hinter dem in Klammern zwei Indizes (p,l) stehen, bezeichnet
einen Teilstring. Der Index p bezeichnet die Position des ersten Zeichens, der

Index | die Lange des Teilstrings. Dadurch kann ous dem Inhalt einer Stringvariablen
ein beliebiges Stick herausgegriffen werden:

1 2 3 4 5 4 7 8 9
oA N NN NN 775 56 777/ N R I

LffL B

Beispiele fur Teilstring-Definiticnen

Ag(4,3)
TEXTS(X, 12)

M3E (3¢ Y, Z+2)

Bemerkung:

Fur Zohlen- wnd Stringvarichien sind die gleichen Nomen zultssig, da letztere
durch § gekennzeichmet sind; die Voridblen A und A% sind nicht identisch!

Arithmetische Ao

Arithmetische Auo.

Hilfe von bina:
Ausdrucks ist i

Bindgre arithmetis -

4

s
/
¢

Es gelten die 1
gleicher Prazede:

Ferner konnen o -
MiIM

MAX

Als Term kénna

-1

A

En "AAE‘
Bemerkung:

Die Operate:
(d.h. konnen

Beispiele:

+5
-3.7
-(A+2% 1),

e)

2.1.5.1

S

der Tosrotoren (5. 2.1.5,4), Bei

Wart: A wenn A <B
8 B L] A ?B
Wert: A wenn A2 B
§ B L1 A(B

(ﬂU(ﬁ:h: AB’-::"MAUSH)

arithmetische Operatoren auf

ngische Ausdriicke

2.1.5.2

Logische Ausdricke verknupfen Terme, die den Wert einer Zahl haben, mit Hilfe
von bindren logischen Operatoren. Der Wert eines logischen Ausdrucks ist entweder

die Zahl 0 oder die Zahl 1.

Bindre logische Operatoren sind:

AND Konjunktion Beispiel: A AND B Wert:

OR Disjunktipn Beispiel: A OR B Wert:

Hierzu gehtrt auch der wnitdre logische Operator

NOT Negatian Belsplels NOT A Wert:

Beispiele fur logische Ausdrucke:

DAT1 AND DAT2
X ORY

A AND NOT B OR C entspricht: (A AND (NOT B)) OR C

wenn A=0

0 wenn A=0

oder B=0
\Jr‘xd BﬁO

und B=0
oder B#O

2.1.5.3

Verg leichsausdriicke

Vergleichsausdriicke (Relationen) verknupfen Terme, die den Wert einer Zahl haben
oder einen String darstellen, mit Hilfe von Vergleichsoperatoren. Der Wert eines
Vergleichsausdruckes ist die Zahl 0 oder die Zahl 1.

Vergleichsoperatoren sind:

= gleich Beispiel: A = B Wert: 0 wenn A#B
n 1 " A =B

> groBler A~B Wert: 0 wenn ASB
" 'I n A,B

= groBer oder gleich A 7=B Wert: 0 wenn A< B
n 1 © A>B

< kleiner A<B Wert: 0 wenn A>B
"1 " AKB

<= kleiner oder gleich A< =B Wert: 0 wenn A> B
n] n AsB

3# ungleich A¥B Wert: 0 wenn A= B
n 1 " A#B

Benutzbare Terme: Siehe arithmetische Ausdricke (2.1.5.1) sowie Strings oder
Stringausdricke (werden mit dem bindren Wert der ASCII-

Zeichen berechnet).

Beispiele fur Vergleichsausdriicke:

X>2
DAT 14 DAT2
AZ = "MAUS"
1000 < =Y (7)

Anweisungsbeispiel:

250 IF A(X)>= 6.75 THEN 18¢

2.1.5.4

Prazedenz von (Cperaroe

Fur die Prazedenz von writlurerischen, logischen und Vergleichsoperatoren (d.h.
die Rangfolge ihrer Abarbeitung in Ausdricken, soweit sie nicht durch andere
syntaktische Regeln, wie Klammerung, festgelegt ist) gilt folgendes Schema:

4 NOT A hschste
* /
+ -

Prizedenz
Vergleichsoperatoren

AND, OR, MIN, MAX niedrigste

Befinden sich Stringvergleiche in einem Ausdruck, so haben die zugehdrigen
Vergleichsoperatoren die hochste Prizedenz.

2.1.5.5

Stringausdricke

Stringausdriicke verknupfen Terme, die einen String darstellen, mit Hilfe von
bingren Stringoperatoren. Das Ergebnis ist wiederum ein String.

Bindre Stringoperatoren sind:
AND 8 Konjunktion Beispiel: %1A% ANDZ 9%0F% Ergebnis: %0A%
OR g Disjunktion " %1A% ORZ %@F% " %1F%
Diese Operatoren fUhren bitweise UND- bzw. ODER-Verknipfungen der Strings durch.
Bei Strings un terschiedlicher Ldnge wird die Operation auf die Linge des kirzeren von \
beiden beschrankt; der andere wird "linksbundig" bearbeitet. |
& Verkettung Beispiel: "A" & “B" Ergebnis: "AB"

Mit diesem Operator werden rwei Strings verkettet, d.h. oneinandergesetzt.

Hierzu geh8rt auch der unitére Stringoperator
NOT 8 Negation Beispiel: NOT%0E% Ergebnis: %F1%

Er bewirkt die bitweise Komplementierung des Strings.

Benutzbare Terme sind:

- Stringkonstanten
- Stringvariable
- Stringausdriicke

Beispiele fur Stringausdriicke:

A% AND B 8
TX8 OR 8 % [OF OF OF%
A18 AND g NOT g A28

Bemerkung:

Rechts vom Gleichheitsaeichen einer LET-Awnweisung dorf nur ein Stringoperator
sichen .

M athematische Funktionen

Folgende mathematische Funktionen sind im System implementiert:

ABS (x)
INT (x)
SGN(x)

LOG(x)
EXP(x)
SQR
SIN(x)
COS(x)
TAN(x)
ATN (x)
RND(0)

Als Argument durfen Zahlenkonstanten, Zahlenvariable oder beliebige arithmetische

Absolutwert
Ganzzahl-Teil

Vorzeichen

nat. Logarithmus
Exponentialfunktion
Quadratwurzel
Sinus

Cosinus

Tangens
Arcustangens

Zufallsfunktion

Ausdricke verwendet werden.
Das Argument von RND ist ohne Wirkung.

| x|

Wert: 1 wenn x>0
n _] n x<o

In x
eX

/2
sin x
cos X
tan x

arctan x

Wertebereich: >0...

2.1.6.1

<1

2.1.6.2

Funktion CHG

Die Funktion CHG dient zur Umwandlung des bingren Inhalts eines Strings in
eine Zahl bzw. umgekehrt.

Umwandlung String—» Zahl:

CHG (aB)

Der bingre Inhalt des Strings a8 (1 oder 2 byte lang) wird in eine positive Zahl
verwandelt (0...255 oder 0...65535). Ist der String linger als 2 byte, erfolgt
Fehlermeldung.

Umwandlung Zahl —String:

CHG (o)

Die Zahl a wird in einen String von 2 byte Ldnge verwandelt, dessen bingrer
Inhalt (16 bit entsprechend 0...65535) dem Wert der Zdhl entspricht. Ist die
Zahl groBer als 65535, erfolgt Fehlermeldung.

Die Funktion CHG hat vor allem den Zweck, den Ubergang zwischen (als Strings
definierten) 16-bit-Ganzzahlen (wie sie z.B. an ProzeBschnittstellen auftreten) und
dem Datentyp Zahl (der fur die Weiterverarbeitung geeignet ist) herzustellen.

Beispiele:

18 LET A8 = CHG (B)
25 LET X(0) = CHG (T8(4,2))
50 IF CHG (Q%)> 2500 THEN 150

2.1.7.1

Systemvariablen

Systemvariablen sprechen bestimmte Funktionen des Systems an und werden im
Programm wie einfache oder indizierte Zahlenvariablen verwendet.

Es gibt zwei Arten von Systemvariablen:

- Input-Typ
- Output-Typ

Der Input-Typ liefert bei der Abarbeitung einen Zahlenwert; er wird wie eine
Zah|envoriabie behandelt und kann wie diese in beliebigen Ausdriicken vorkommen.
Er ist jedoch links vom Gleichheitszeichen in LET-Anweisungen verboten. Typische
Anwendung: Eingabe eines Wertes aus dem Prozef,

Der Output-Typ ist stets links vom Gleichheitszeichen in LET-Anweisungen zu ver-
wenden; ihm wird bei der Abarbeitung der Wert des rechts vom Gleichheitszeichen
stehenden Ausdrucks zugewiesen. Typische Anwendung: Ausgabe eines Wertes an

den Prozef.

AuBerdem werden Systemvariable vom OQutput-Typ in der PUT-Anweisung verwendet;
in diesem Falle wird kein Wert ausgewiesen. Typische Anwendung: Ausgabe eines
Steuversignals an den ProzeB3.

Eine Reihe von Systemvariablen ist Bestandteil des BASEX -Systems bzw. wird bei der
Systemgenerierung dem Betriebssystem hinzugefigt. Der Benuizer kann jedoch auch
eigene Systemvariablen im BASEX-Programm definieren; dies geschieht von den An-
weisungen EQUI und EQUO unter Angabe des Maschinencodes, der das entsprechende
"Makro" reprdsentiert.

Systemvariable sind ohne oder mit Index definier::

- einfache Systemvariable: Name
- indizierte Systemvariable: Name (Index)
Beispiele:
100 LET A=HOUER HOUR = einfache Input-Variable
120 IF INR(2)=1 THEN 150 INB(2) = indizierte Input-Variable
200 LET OUTW(Y+2)=X+5 QUTW(Y+2) = End%zieﬁe Qutput-Variable

6000 PUT HOME HOME = einfache Output-Variable

2.1.7.2

Systemprozeduren

Systemprozeduren erweitern den durch die Statements definierten Sprachumfang. Sie
sind Bestandteile des Betriebssystems bzw. werden diesem bei der Systemgenerierung
hinzugefugt.

Systemprozeduren

- sind durch einen Namen gekennzeichnet,

- werden durch das Statement CALL unter diesem Namen aufgerufen,

- kdnnen mit ein bis vier Parametern behaftet sein, die den Zusammen-
hang mit dem uUbrigen Programm herstellen.

D ie Parameter werden der Systemprozedur vom Programm iibergeben, wobei Anzahl
und Typ fur jede Prozedur festgelegt ist. Folgende Parameter-Typen sind méglich:

- Zahl: Zahlenkonstante, beliebige Zahlenvariable oder arithmetischer

Ausdruck.
Ubergeben wird der numerische Wert.

Beispiele:

20
VAR

AB (5 1)

X + SIN' (PHI)

- String: Stringkonstante oder einfache Stringvariable,
Ubergeben werden die Anfangsadresse und die Léinge des Strings.

Beispiele: -

"ANTON"
X8

- Array: Indizierte Zahlenvariable.
Ubergeben wird die Adresse des entsprechenden Elements im

DIM-Feld.
Beispiele:

A (0)
XDAT (2,4)
AB (5% 1)

Eine Vielzahl von Systemprozeduren ist entweder fester oder bei der Systemgenerierung
wahlweise einbezogener Bestandteil des vom Hersteller gelieferten BASEX-Systems.

Der Benutzer kann dariiberhinaus eigene Systemprozeduren erstelien und in die System-
g Y
generierung einbeziehen,

2.1.7.3

Systemvariable ERR

Die Systemvariable ERR enthdlt einen Fehler-Code. der bei der Abarbeitung
bestimmter Systemprozeduren (z.B. Dateibefehle) erzeujt wird. Es handelt sich dabei
um Fehler, die nicht zum Abbruch des Programms fihre:..

D er Benutzer kann ERR im Programm Uber Anweisungen vom Typ IF, GOTO...OF
oder GOSUB...OF abfragen, wann immer er dies fur notig hadlt. Jedoch sollte die
Abfrage erfolgen, bevor (in der gleichen Programmebene) die nidchste Systemprozedur
mit CALL aufgerufen wird.

Der Fehlercode ist eine Zahl, deren Bedeutung von der jeweiligen Systemprozedur
abhdngt. Er ist unter den jeweiligen Prozeduren beschrieben.

Beispiel fur die Anwendung von ERR:

103 CALL OPEN (B5"SIGMA",3)
115 GOSUB 809

800 IF ERR=¢ THEN 8290

819 GOTO ERR=-3 OF 830,840,550
820 RETURN
830 oo

Bemerkung:

Jede Programmebene besitzt physisch einen eigenen Speicherplatz fur ERR, so daR
gleichzeitig in mehreren Ebenen ablaufende Systemprozeduren ihre Fehlermeldungen
nicht gegenseitig vertdndern,

2.2.1.1

BASEX-Befehle aus BASIC

In BASEX ist der Sprachumfang Ublicher Implementierungen der Programrmiersprache
BASIC enthalten.

In den folgenden Abschnitten sind die Kommandos und Programm-Anweisungen be-
schrieben, die aus BASIC stammen und das Kernstick von BASEX bilden,

In BASIC erfahrene Benutzer werden diese Befehle kennen; jedoch ist zu beachten,
daBl einige davon erweiterte bzw. auf die Hardware-Konfiguration abgestimmte
Funktionen haben.

Die Abschnitte 2.2.2.1 und 2.2.2.2 behandeln Grund- und erweiterte Kommandos;
in den restlichen Abschnitten sind Progrommanweisungen beschrieben.

Grundkommandos

2.2.2.1

Unabhéngig von der Konfiguration des Systems sind folgende Grund-Kommandos

vorgesehen:

LIST
LIST n
LIST,n
LISTm,
LIST m,n

SCRATCH
DELETE n
DELETE,n
DELETE m,
DELETE m,n

RENUMBER m,n

RUN
RUN n
RUN ,n
RUN m,
RUN m,n

Bemerkungen:

Gesamtes
Programm
Programm
Programm
Programm

Gesamtes
Programm
Programm
Programm
Programm

Programm

Programm listen

Anweisung n listen

bis Anweisung n listen

ab Anweisung m listen

von Anweisung m bis Anweisung n listen

Programm l&schen

Anweisung n l&schen

bis Anweisung n loschen

ab Anweisung m lsschen

von Anweisung m bis Anweisung n |8schen

neu numerieren.

Neue erste Anweisungsnummer = m; Schrittweite = n

Gesamtes
Programm
Programm
Programm
Programm

Programm ausfihren

Anweisung n ausfuhren

bis Anweisung n ausfihren

ab Anweisung m ausfihren

von Anweisung m bis Anweisung n ausfihren

LIST bewirkt die Ausgabe des Quellprogramms auf dem Konsolgerat.

myn bezeichnen Anweisungsnummern.

2.2.3.1

Statement REM

m REM Bemerkung

REM erlaubt es, in das Programm zum Zweck besserer Verstindlichkeit Bemerkungen
einzufugen. Bei der Programm-Ausfihrung werden sie Ubergangen.

Beispiele:
10 REM DIES IST EINE BEMERKUNG

20 REM *%*x PROGRAMMTEIL 1 #*%x%
90 REM ENDE PROGRAMM XYZ

Hinweiss

Ein Sprung auf eine REM-Anweisung ist erlaubt. Da sie nicht ausfihrbar ist, wird das
Programm mit der n&chsththeren Anweisungs-Nummer fortgesetzt.

2.2.2.2

Kommandos READ, PUNCH und LISP

Folgende Kommandos sind nur bei Ausristung des Systems mit Lochstreifen-Peripherie
bzw. Schnelldrucker maglich:

READ Programm einlesen

PUNCH Gesamtes Programm lochen

PUNCH n Programm Anweisung n lochen

PUNCH,n Programm bis Anweisung n lochen

PUNCH m, Programm ab Anweisung m lochen

PUNCH m,n Programm von Anweisung m bis Anweisung n lochen
LISP Gesamtes Programm auf Schnelldrucker listen

Parametrierung siehe LIST

Bemerkungen:

Diese Kommandos bewirken Ein- bzw. Ausgabe des Quellprogramms.

Folgende Hardware-Voraussetzungen mussen erfullt sein:

- fur READ: Lochstreifen-Leser (auf Standard-Adresse, Gerdte-Nr. d = 2)

- fur PUNCH: Lochstreifen-Stanzer (auf Standard-Adresse, Gerdte~-Nr. d = 2)
- fur LISP: Schnelldrucker (auf Standard-Adresse, Gerdte-Nr. d = 3)

m,n bezeichnen Anweisungsnummern.

2.2.3.2-1

Statement DIM

m DIM z (p)
e m DIM z (q,p)
e m DIM z1 (pl), 22 (p2), 23 (93, p3),

Mit DIM wird fur ein oder mehrere ein- oder zweidimensionale Zahlen-

felder z Platz reserviert. Die Dimensionsangabe erfolgt hinter dem Namen des Fel-
des; sie muB3 ganzzahlig sein. Die maximal zulassige FeldgrsBe hangt vom zur Ver-
fugung stehenden Kernspeicherbereich db.

Beispiel:

17 DIM A(9)5 F(3,2)

Fur jede Zahl werden 4 Bytes im Speicher reserviert.
Bei der FeldgrsBen-Angabe ist zu beachten, da ab 0 gezshlt wird:

DIM A(9) st ein Feld von 10 Zahlen und belegt 40 byte
DIM B(3,2) ist ein Feld von 4 x 3 Zahlen und belegt 48 byte

Bei zweidimensionalen Feldern (X,Y) ist X die Zeile und ¥ die Spalte.

Beispiel:
DIM (1,3) reserviert 4 Spalten und 2 Zeilen:

B0 £ p2 B3
19 11 12 13

Achtung: Wenn kein DIM-Feld vorhanden ist und im Programm z.B. eine Variable

X(A) angegeben wurde, so wird automatisch ein Feld X(9) reserviert.

Cleiche Variablen-Namen fir einfache und indizierte Variablen sind
zuldssig; z.B. sind die Variablen X und X(@) nicht identisch,

Bereichsuberschreitungen (versuchter Zugriff zu Feldelementen auBBerhalb
der Feldgrenzen durch zu groflen Index} werden vom System bei Ausfihrung
des Programms erkannt (Fehler 16).

2.2.3.2-2
Speicherbelegung durch DIM:

Die dargestellte Speicherbelegung wird durch beide der folgenden Programmbeispiele
bewirkt:

Beispiel 1: 19 DIM A(2), B(1,2)

Beispiel 2: 18 DIM A(2)

26 DIM B (1,2)
i Adresse a + 35
- |
A2 -
Feld AQ A A(1) -
—
AQ) |
~ Adresse a + 24
(Adresse a + 23
B(1,2 T ‘
-
B(0,2) -
Feld B(1,2) B(1,1) N
BO,) |
B(1,0) |
B "N:# } Exponent
B(0,0) B - Mantisse
L " Adresse a “,:__

Die absolute Speicher-Adresse a ist von System-Konfiguration und Benutzer-Programm
abhtingig.

2.2.3.3

Statement CHAR

e m CHAR s(l)
e m CHAR sl (11), s2 (12),

Mit CHAR wird fur eine oder mehrere Stringvariablen s Platz reserviert. Die Lange | des
Strings wird hinter dem Namen der Stringvariablen angegeben; sie entspricht der An-
zahl der Zeichen, die in der Variablen Platz finden.

Beispiel:
19 CHAd A$(23)5185C14)

Fur jedes Zeichen wird 1 Byte im Speicher reserviert.

Kommt im Programm eine String-Variable vor, fur die nicht mit CHAR Platz reserviert
wurde, so werden automatisch 2 Zeichen fir sie reserviert.

Speicherbelegung durch CHAR:

Die dargestellte Speicherbelegung wird durch beide der folgenden Programmbeispiele
bewirkt:

Beispiel 1: 10 CHAR AZ (4), BZ (2)
Beispiel 22 10 CHAR A8 (4)
20 CHAR Bg (2)

, , Adresse a + 5
Feld AZ (4) ’ (o)

A/g 2)
L__AX (1)‘ Adresse a + 2
B3 (2 Adresse a + |
Feld B2 (2) . BE (1) Adresse a

Die absolute Speicher-Adresse a ist von System-Konfiguration und Benutzerprogramm
abhangig.

2.2.3.4

Statement DEF

em DEF FNf = u

Zusatzlich zu den in BASIC vorhandenen Standardfunktionen erlaubt DEF die Definition

von Benutzer-Funktionen u. Sie werden durch das Symbol FN und einen Namen f,
z.B.

FNA
FNOTTO

bezeichnet.

Beispiel:

18 DelF FNOTTO(K)=L0CG(X)/L0GC(1d)

Diese Funktion emittelt z.B. fir ein gegebenes Argument X den Logarithmus zur
Basis 1@. Im Programm kann diese Funktion spdter wie folgt aufgerufen werden:

954 LET A=pNOITC(B)
69 LET VI=FNCTTOC(Y-C)/H)
74 PRINT rNOTTIO(25)-CsA

Die Definition einer Funktion kann auch den Aufruf einer anderen Funktion beinhalten.

Beispiel:

1V LelT P=3.1415Yy

29 DEF FND(R)=X%2/189

30 DEF ruS(A)=S5INC(rNDCAD)

4 Db FNC(AI=CO03(C(FNDCA))

50 PRINT PoFNC (L) FNSCL)sFNDCL)

Die Funktion FNS (X) ermittelt den Sinus fur ein Argument, dessen Wert im Bogenmal}
vorliegt. FND (X) besorgt die Umwandlung vom Bogenmafl in Grad.

2.2.3.5

Statement LET

mLET v = e
m LET vl = el, v2 =¢2, ...

Im Statement LET wird einer Variablen v ein Wert zugewiesen.

Der Wert wird auf der rechten Seite des Gleichheitszeichens durch einen Ausdruck e
angegeben. Die rechte Seite wird zundchst berechnet und das Resultat der linken Seite
zugewiesen.

LET kann mehrere, durch Kommcta getrennte Zuweisungen enthalten.
Beispiele:

19 LET A=5.01

20 LET DAT1=3/CAE2%N/(AT1+SINCl.1))
30 LET OTTO(1,2)=X

40 LET TEXT$=B$ AND$ C$

58 LET A$=NOT$ ZFéZ%

68 LET X1$="AB"

7@ LET X((A$<B$)+5, INT(SINCAS<BS)))
80 LETKG(Y)=1;A=1;AZ(X»Y)RA ~199

99 LET A=A$>CS$
95 LET A=1 - (24(3-(4+(5=-(6+7)))))

100 LET X$=X$ AND$ ZOFZ,X$=X$ OR$ %34%

Hinweis:

Die Variable v und der Ausdruck e, bzw. der Wert des Ausdruckes missen vom gleichen

Typ sein (Zahl oder String)

2.2.3.6-1

Statements DATA, READ und RES

o m DATA ¢
e m DATA cl, c2, ...

DATA erdffnet eine Liste von Zahlen- oder String-Konstanten ¢, die spater durch
READ-Anweisungen bestimmten Variablen zugewiesen werden.

D ATA-Statements konnen an beliebigen Stellen des Programms vorkommen; sie miussen
insbesondere nicht vor den READ-Anweisungen stehen.

Die Argumentlisten mehrerer DATA-Anweisungen in einem Programm werden als eine
zusammenhdngende DATA-Liste behandelt.

Beispiel:
19 DATA 1,2,3
24 DATA 4 ,5,6

entspricht:

10 DATA 15253545556

¢ m READ v
e m READ v1, v2,

READ weist Konstanten der DATA-Liste sequentiell den Variablen v der Argumentliste
zu.

Beispiel: Wertzuweisung:

= - —_ i n
19 DATA 8,7, "JA" é‘ : gl B : 7, lC_; JA
15 DATA 35455 =3, F =4, =

20 READ AsBsC3%5 Es F
3% READ 1

2.2.3.6-2

e m RES
s m RES n

Die Anweisung RES (Restore) erlaubt mehrmaliges bzw. gezieltes Lesen von Konstanten
aus der DATA-Liste.

Zu Beginn des Programms steht der DATA-Zeiger auf der ersten Konstante der DATA-
Liste; bei jeder Wer’rz.uweisung. wird er um 1 erhtht.

RES setzt den Zeiger auf dle erste Kohstanfe der gesomten DATA-Liste zurick, wthrend
RES n ihn auf die erste Kons}cmte der Anweisung n DATA... seizi.

Beispiel: Wertzuweisungt

1 DAla 15233 . A=4 B = L=
16w RES. 210 ’ % 4
179 READ Ass.0 ‘ D =1
185 w5 '

19.‘? EaA D
21Y DATH 455506

2.2.3.7-1

Statement INPUT

em INPUT v
em INPUT vi1, v2, ...
em INPUT "Text", vl1, v2,

INPUT dient dazu, den Variablen v einer Argumentliste wihrend des Programm-Ablaufs
uber ein Eingabegerat Werte zuzuweisen, die je nach Variablentyp Zohlen- oder
“String-Konstonten sind.

Findet das Programm im Programmverlaouf ein INPUT-Statement, so meldet es sich mit
Fragezeichen (?) auf dem Eingabegerdt und wartet auf die Eingabe.

Der Benutzer gibt eine der Variablenliste entsprechende Anzahl von Zahlen (in
beliebigem Format) bzw. Text-Strings, getrennt durch Komma, ein. D& eingegebene
Text-Strings ebenfalls. durch Komma voneinander zu trennen sind, ist Komma (,) als
String-Zeichen hicht eingebbar. Hat er sich verschrieben, so kann er wie Ublich

kotrigieren (RUBOUT,«—). Die Eingabe wird mit "Wagenricklauf" (CR) beendet.

Die elngegebenen Werte werden der Reihe nach den Variablen zugeordnet. Gibt der
Benutzer eine nicht ausreichende Zahl von Werten ein (vorzeitiges €R), schreibt das
Programm "?7?" und wartet auf Vervollstindigung der Eingabe. Zuviel eingegebene
Werte dagegen werden nicht beriicksichtigt.

Vot der Eingabe von Zahlen oder Strings kann ein Text ausgegeben werden, der
hinter INPUT in Anfuhrungszeichen ("...") anzugeben ist. Dies dient als Zusammen-
fassung der haufig vorkommenden Befehlsfolge PRINT "Text" INPUT Variablenliste.

Durch Eingabe von Control-S (Tasten CTRL und S gleichzeitig, auch X-OFF genannt)
statt eines Wertes kann eine Programmbeendigung erreicht werden.

Beispiele:

D as Programm

10 INPUT "GIB EIN Al»Bl>Cl "sAsB-C
20 LET D=A+B+C

30 GOTO 1@

4@ END

fuhrt bei Ausfihrung zu folgendem Dialog (Eingaben unterstrichen):

RUN

GIB EIN A1,B1»Cl 21,2+

723 —y
GIE EIN AlsR1,Cl ?@
* READY —

— = Eingabe CR (ASCIll-Code: ’8D)
@ Eingabe X-OFF (ASCl1-Code: '93)

2.2.3.7-2

o m INPUT DEV(d),

Die Eingabe erfolgt im Normalfall Uber das Konsolgerat (Gertite-Nummer d = 0).
Soll ein anderes Eingabegerat benutzt werden, so ist dessen Gergte-Nummer d durch
das Steuverwort DEV(d) in der INPUT-Anweisung zu spezifizieren. Diese Zuordnung
bleibt (in der betreffenden Programmebene) fur alle folgenden INPUT- (und PRINT-)
Anweisungen giltig, bis ein neuves Gerdt spezifiziert wird.

D as Steuerwort DEV(d) muB3 in der INPUT-Anweisung vor den weiteren Anweisungen
stehen.

Beispiel:

10 INPUT "SOLLWERT " SLWT —— Gergt 0
2@ INPUT DEV(1),A —f_ Gergt 1
30 INPUT B, CsX —

40 INPUT DEVC @)Y j Gerst 0

5@ INPUT Z

Haufig vorkommende Nummern von Eingabe-Gerdten sind:

d=20 Tastatur am Konsolgerat
d=1 Streifenleser am Konsolgerdt (bei Teletype ASR 33)
d

=2 Schneller Streifenleser

Der Zusammenhang zwischen Gerdte-Nummer d und Gerst ist durch das Betriebssystem
festgelegt. Fur d kann eine Zaohlenkonstante, eine Zahlenvarisble oder ein beliebiger
arithmetischer Ausdruck eingesetzt werden.

Es ist darauf zu achten, daf

- das Steuerwort DEV(d) auch in PRINT-Anweisungen verwendet werden kann,
wodurch die in einer vorangegangenen INPUT-Anwe «ing vorgenommene
Gerdte-Zuordnung verdndert wird,

- bestimmte Nummermn d Eingabe- und Ausgabefunktionsn desselben Gerdtes
bzw. derselben Geritegruppe spezifizieren (z.B. d = 0 fur Konsolgergt-Ein/
-Ausgabe; d = 2 fir schnellen Streifenleser/Streifenlocher).

2.2.3.8-1

Statement PRINT

m PRINT a

m PRINT al, a2, ...
m PRINT

Das Statement PRINT dient zur Ausgabe von Zahlenwerten und Texten auf einem
Ausgabegerdt. Die auszugebenden Daten a stehen jh einer Argumentliste hinter PRINT.

In der Argumentliste konnen, beliebig gemischt, folgende Arten vorkommen:

Zahlenkonstanten Bajspigts 2.5
Zahlenvariablen : " DATI
Zahlenvariablen, indiziert . OT110(1,2)
Arithragtische Ausdricke " A+B » SIN(C)
Logleshd Ausdricke : " X AND NOT B
Vergleichsausdriicke. ' " HIGH = LOW
String-Konstanten Text) " "BERICHT"
String-Konstanten (Steuerzeichen) " %8DPFA%
String~Variablen - " TX228

Die Ausgabe erfolgt in der Reihenfolge der Argumente. Diese sind in der Liste durch
Komma oder Semikolon voneinander zu trennen.

Komma (,) als Trennzeichen bewirkt, daB die Ausgabe des ndchsten Datums an der
ndchsten Tabulatorspalte beginnt.

Semikolon (;) als Trennzeichen bewirkt dagegen, dafBl das ndchste Datum unmittelbar
anschlieBend ausgegeben wird.

Normalerweise wird nach Ausgabe aller Argumente eine neue Zeile begonnen. Dies
kann verhindert werden, indem man hinter das letzte Argument ein Semikolon oder
Komma setzt.

PRINT ohne weitere Angaben bewirkt Wagenricklauf und Zeilenvorschub.

Beispiel:

Das Programm

12 LET A=6e4, B=5,.1
op PFINT "WERT A ="; 4, "WERT F =";E, "ENDE"
30 END

bewirkt folgende Ausgabe:

RUIN

JECT 6 = € WEET R = 5.1 ENDE
§

*FEADY !

Tabulator-Spalten

2.2.3.8-2

e m PRINT DEV(d);
e m PRINT DEV(d); ...
em PRINT ... DEV({d); ...

Die Ausgabe erfolgt im MNormalfall Uber das Konscl
Soll ein anderes Ausgobscers! benutzt werden, ;
das Steverwort DEV(d) in der PRINT-Anweisung
bleibt (in der betreffendsn Frogrammebene) fur
Anweisungen giiltig, bis eb

Viese Zuordnung

0T~ (und INPUT-)

neues Gerdt spezifizie-?

ien oder an be-
dem Augenblick

38

D as Steuverwort DEV{ i
liebiger Stelle der Argument!
der Abarbeitung i

0

Beispiele:

10 PRINT *START*
20 PRINT DEV(9)3 77 an DEUL 331
373 PRINT 1, 2,34 -
40 PRINT DEV(@)3
S0 PRINT 152:3:4

Huufig vorkommends 11
d=20 Lonsolgerat
d=2

d=3
Der Zusammenhang

festgelegt. Fir d k
arithmetivcher Ausd:

Es ist darauf zu achten,

<

- das Sreus
kanh,
nommene i

bestimmie M:
bzw. derse!
~Ausgabe;

2.2.3.8-3

e m PRINT TAB(e);
¢ m PRINT TAB(e);
» m PRINT ... TAB(e);

Das Steuerwort TAB in einer PRINT-Anweisung bewirkt, dofl der folgende Wert um
so viel Spalten weiter rechts ausgegeben wird, wie der “Weri des arithmetischen
Ausdrucks e ergibt. Dadurch kann z.B. der Schreibkopf eines Druckers beliebig
positioniert werden. Die Positionierung geht stets von der uugenblicklichen Stellung
aus nach rechts.

Das Steverwort TAB(e) kann in der PRINT-Anweisung cn Leliebiger Stelle der Argu-
mentliste stehen.

Beispiel (graphische Ausgabe einer Funktion mittels Schreibicop! ~Pusitionierung):

160 REM BEISPIEL TAR(X)

119 DEF FNF(X)=SINC(X)*EXF(=¢ [%X)
120 FOR 1=0 TO 15 STEP +5

13@ PPINT TAB(C30. 5+ 15%kFNFCI))8 ™

140 NEXT 1
1560 END
*FEADY
FUN
ks
¥
%
Py
%
. o
&
*
“
&
*
*
2%k
#
e
*
*
¥
*
*
*
¥
*
%*
*

*READY

2.2.3.8-4

e m PRINT FMT(f);
« m PRINT FMT(); ...
o m PRINT ... FMT(P); ...

Das Steverwort FMT(f) spezifiziert ein Format f fur die Ausgabe von Zahlen durch
PRINT-Anweisungen.

Eine Format-Spezifikation bleibt (in der betreffenden Programmebene) so lange giltig,
bis sie durch eine andere ersetzt wird.

Das Steuerwort FMT(f) kann in der PRINT-Anweisung alléin vorkommen oder an be-
liebiger Stelle der Argumentliste stehen. Seine Wirkung beginnt mit dem Augenblick
der Abarbeitung in der Liste.

Es gibt drei verschiedene Typen von Format-Spezifikationen:

- Automatisches Format: FMT (A)
- Festes F-Format: FMT (Fw.d)
- Festes E-Format: FMT (Ew.d)

Das automatische Format ist die Standard-Ausgabeform fur Zahlen; es ist vom Augen-
blick des Programmstarts durch RUN wirksam, bis eine andere Format-Spezifikation
FMT(...) im Programm erkannt und abgearbeitet wird. Danach kann es jederzeit durch
FMT(A) wiederhergestellt werden. Beim automatischen Format pafBt sich die Darstellung
der Art und Gréle des auszugebenden Zahlenwertes on:

- Ganzzahlige Werte mit Betragen Kleiner als T“Oé werden 1- bis 6-stellig
eingegebéii; vor negativen Zahlen steht ein Minuszeichen (-). Beispiele:

0

1

-1

325
-4711
999999
-99999

Zu beachten ist hierbei, dafl die Ausgabe "linksbundig" erfolgt, d.h. an der
Stelle beginnt, wo der Schreibkopf im Augenblick steht. Die "Feldweite", d.h.
die Anzahl der ausgegebenen Zeichen, ist variabel, da sie von der GrofBe der
Zohl und ihrem Vorzeichen abhdngt.

- Nicht-ganzzahlige Werte im Bereich zwischen 10'6 und 10*2 werden in einer
Dezimalpunkt-Darstellung (variables F-Formot) ausgegeben. Beispiele:

.5
.123456
~-.000001
99999.9

Auch hier handelt es sich um "linksbiindige” Ausgabe mit variabler Feldweite.

2.2.3.8-5

- Alle ubrigen Zdhlenwerte werden in einer Gleitkomma-Darstellung (Standard-
E-Format) ausgegeben. Beispiele:

.100000E 10 (= 109)
. 123456E-05 (= 0.0000012345)
-.500000E-09 (= -0.0000000005)

Das feste F-Format ist eine Dezimalpunkt-Darstellung, die durch das Steuerwort
FMT(Fw.d) spezifiziert wird. Darin bedeutet w die Feldweite, d.h. die Gesamt-

Zahl der auszugebenden Zeichen einschlief8lich fuhrender Leerzeichen (o), Vor-
zeichen und Dezimalpunkt, wihrend d die Anzahl der Stellen nach dem Dezimal-
punkt angibt. Die Spezifikatoren w und d konnen nach Bedarf gewdhlt werden; jedoch
sind folgende Einschriankungen zu beachten:

2¢w g5 (Feldweite minimal 2, maximal 15 Zeichen)
Ogdgéd (maximal 6 Stellen nach Dezimalpunkt)
wapd+ 2 (Feldweite wenigstens 2 Zeichen groBer als d)

Ausgabebelsplele fur die Formatspeaifikation FMT(FB, 3
-999.999

e %3 f
= 20.000 E

PaBt eine Zahl nicht in das ongegebene Format, so wird sie im outomatischen Format
ausgegeben .

Das feste E-Format ist eine Gleitkomma-Darstellung mit Mantisse und Exponent zur
Basis 10; sie wird durch das Steuverwort FMT(Ew.d) spezifiziert. Darin bedeutet w die
Feldweite einschlieBlich fuhrender Leerstellen, Vorzeichen der Mantisse, Dezimalpunkt,
Buchstabe "E" und Vorzeichen des Exponenten, wihrend d die Anzohl der Stellen nach
dem Dezimalpunkt angibt. Fir w und d sind folgende Einschrinkungen zu beachten:

7<swglb (Feldweite minimal 7, maximal 15 Zeichen)
l<d <é (minimal 1, maximal & Stelien nach Dezimalpunkt)
wxd +6 (Feldweite wenigsiens & Zeichen groBer als d)

Ausgabe-Beispiele fur die Formatspezifikation FMT(E10.3):

. 100E 02
u=.123E-09

Programm-Beispiel mit verschiedener

Ausgabe der Zahl -1.234:

1o
20
30
40
5@
1]
70
537
o0
19
11
ie
13
14
15
16
17
18
19
20
el
22
23
24
25
26
27
28
29
32

#R

LET A==1]e. 234

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
@ PRINT
@ PRINT
O PRINT
@ PRINT
@ PRINT
@ PRINT
B PRINT
@ PRINT
B PRINT
@ PRINT
@ PRINT
O PRINT
@ PRINT
@ PRINT
@ PRINT
? PRINT
B PRINT
@ PRINT
» PRINT
B PRINT
@ END

EADY

RUN
F¥e 3= FORMAT
1
- 1%
- 1%
- 1%
o 1

wn

*

e
2
*
i

et s @
€ e @
5 o 3

8

&

¥ ¥ % W o ¥ #

w o D%

F¥e O-FORMAT™

I EMTCOF2s @) 3 A% 7

Format-Spezifikationen fur o

3 FMTCF3e 8)3 A3 " 5

kTR FMTCF 4. @) 3 A5 "k

a8

kIS FMTCFSe @) 3 A5 V%77
TR FMTCF6e @) A8 T ™
UU*FF WT(FIS @) A’& ’7;_‘??

VEX . Y=FORMAT?®®

PR FMTCF3e 135 A1 70"

CETIFMTCF4e 125 AT
VI FMT(FSe 125 A3 7

ETIFMTCFLISs 133 A

S s FMTCF 150 2) 2 A5
FFMTCF15e 332 A5 °
Tk FMT(F1504)3 A2 %
Uk 0 FMTCF15e 5) 5 A5 %

SS“%:

EX Y = FORMAT™

P FMTCET o 123 A5 7
" 75 FMTCES. 133 A7 &0
P FMTCEQs 105 Az 7
TE U FMTCELSe 1) A3 %5

RS FMTCELSe 2) 5 AS
kT FMTCELSe 335 As

03 FMTCEL S0 4) 5 A3 7%

%5 FMTCE15+ 5) 3 A3
493 FMTCELSe €5 A

b ?rs 2*
e ‘(<] :)B*

- 1. 234%
s 2340%

1,3. o B3400%

EXeY=FORMAT

e«

* % B ¥ E % st

R

o 1E fl%
“o LE 1

“ l

-y i 0

EADY

*

234K

J’L;@F

!’Xk &
g

w3

‘@

2.2.3.8-6

2.2.3.9

Statement GOTO

e m GOTO n
e m GOTO e OF nl, n2,

Mit GOTO wird der normale Programmablauf verdndert, indem das Programm mit der
Anweisung n fortgesetzt wird (statt mit der auf m folgenden Nummer).

Beispiel:

13 LET A=6

20 LET B=7

30 GOTO 60

49 PRINT A-B.C
5@ END

6 LET C=A+R
7@ GOTO 4@

entspricht:

10 LET A=6

2¢ LFT B=7

30 LET C=A+R
49 PRINT AsPBsC
5S@ END

In der Form GOTO...OF wird anstelle eines festen ein berechneter Sprung im Pro-
grommablauf erzeugt.

Je nachdem, ob der Wert des Ausdrucks e gleich 1, 2, ... ist, wird das Programm
an der Stelle n1, n2, ... fortgesetzi.

Ist der Wert des Ausdrucks kleiner als 1 oder grfler als die Anzohl der hinter OF
angegebenen Statement-Nummern, so wird die auf m folgende Anweisung ausgefuhrt.

Fur e kann eine Zahlenvariable oder ein beliebiger arithmetischer Ausdruck eingesefzt
werden. Bei nicht ganzzohligen Werten wird der Ganzzaohl-Anteil fur die Berechnung

des Sprungzieles herangezogen. Wegen eventueller Rundungsfehler sollten jedoch solche
Ausdriicke vermieden werden, bei denen nicht-ganzzahlige Werte zu erwarten sind.

Beispiel:

12 INPUT A
20 GOTO A OF 100, 120» 140, 160 —
30 PRINT A < 1 ODER A > 4"

4 G0TO 10 (A<1'A>4)

180 PRINT "1° A - (A =1)
112 GOTO 10
120 PRINT "2' A -} A =2
130 GOTO 10
3)
4)

>
i

143 PRINT "3", A -
150 GOTO 10
160 PRINT "4°', A P
170 GOTO 10

>
il

2,2.3.10

Statements GOSUB und RETURN

em GOSUB n
e m GOSUB e OF nl, n2,

Die Anweisung GOSUB bewirkt den Sprung in ein Unterprogramm, das mit der
Anweisungsnummer n beginnt. Nach dem Rucksprung aus dem Unterprogramm (durch
RETURN) wird das Programm mit der auf m folgenden Anweisung fortgesetzt.

Unterprogramme kdnnen mehrfach und von beliebigen Stellen des Programms aufgerufen
werden. Von Unterprogrammen konnen weitere Unterprogramme aufgerufen werden; sie
durfen beliebig tief geschachtelt sein. (Eine Grenze setzt lediglich die vorhandene
Speicherkapazitdt.

Beispial:

172 INPUT A
o0 GOSIIR 100
3@ END -
1a@ LET A=A+1 } erstes Unterprogran m
11@ GOSUR 1003

120 RETURN

1260 PRINT TAPCA); A ~— }_
1213 RETURN

geschachtelt

zweites Unterprogramm

Die Form GOSUB...OF beschreibt einen berechneten Unterprogramm-Sprung; die Be-
rechnung des Sprungzieles ist dieselbe wie bei GOTO...OF.

Beispiel:

3Y GOSUBS aY OF 1195120513595 144

e m RETURN

RETURN bewirkt den Rucksprung aus dem Unterprogramm. Ein Unterprogramm kann
mehrere, mufl jedoch mindestens eine Riucksprung-Anweisung enthalten.

2.2.3.11

Statement |F

m IF e THEN n
Das Statement |F beschreibt eine bedingte Verzweigung.

Ist der Wert des Ausdrucks e ungleich Null, so wird das Programm mit der Anwei-
sung n fortgesetzt, deren Nummer n hinter THEN steht; andernfalls mit der auf m

folgenden Anweisung.

Als Ausdruck e ist jede Variable sowie jeder arithmetische und logische Ausdruck
zuldssig.

Besonders gebrduchlich sind auch Vergleichs-Ausdricke mit den Operatoren

kleiner
= kleiner oder gleich
gleich
ungleich
groBer oder gleich
grofler

V Vg AA

in der Form:

m IF a op b THEN n -

Die Verzweigung zu n erfolgt hier, wenn die Vergleichsbedingung zwischen a und b

erfullt ist.
Beispiele:

10 IF A=6 THEN 100 Wenn A = 6, ist Sprung nach 10¢
Wenn A+6 oder = 7 ist Sprung nach 190

Wenn die Stringvariabl e A8 gleich "y" ist

18 IF As="y" =
T" AND A=7 THEN 100 und die Variable A den Wert 7 hat, dann
Sprung nach 190

10 IF A+6<=7 THEIN 10@

18 IF SIN(X)<=COS(Y) AND SINCZ)#.5 THcN 108

Sprung nach 1@8@, wenn SIN(x) < = COS(y) und SIN(z) # .50

190 INPUT As B

20 IF A=B OR A<6 OR P>6 THEV 5@
32 PRINT '"30Q's As Bs A=B, A<6, B>6
40 GOTO 10

50 PRINT "5@", As Bs A=B» A< 6s B> 6
6@ GOTO 10

2.2.3.12

Statements FOR und NEXT

m FOR x=a TO b
m FOR x = a TO b STEP ¢

n NEXT x

Die Statements FOR und NEXT beschreiben eine Programmschleife.

Sie wird ersffnet mit dem Statement FOR, in dem einem Laufindex x ein Anfangswert a
zugewiesen und dessen Endwert b bestimmt wird, AuBlerdem ist darin die Angabe der
Schrittweite ¢ moglich; fehlt diese Angabe, so wird mit der Schrittweite 1 gearbeitet.

Abgeschlossen wird die Schleife durch das Statement NEXT mit Angobe des Laufindex’ x.

Der Laufindex x ist eine einfache Zahlenvariable, die nur fur die Schleife definiert ist.
Als Anfangswert, Endwert und Schrittweite kénnen Zahlenkonstanten, -Variablen oder
beliebige arithmetische Ausdricke verwendet werden.

Zu Beginn des ersten Durchlaufs wird dem Laufindex x der Anfangswert a zugewiesen.
Nach jedem Durehlauf wird x um die Schrittweite ¢ (bzw. um 1) erhtht. Dies geschieht
so oft, bis x grfler als der Endwert b geworden isi; damit wird die Schleife beendet
und die auf NEXT folgende Anweisung ausgefihrt,

Programmschleifen durfen beliebig ineinander verschachtelt sein; jedoch ist Uberkreuz#e
Schachtelung verboten.

Zu jedem FOR x darf nur ein NEXT x gehoren; dies muB3 eine hshere Anweisungs-
Nummer haben als das FOR x.

FOR-Schleifen missen vom Programm durch AusFUhrung‘des §T?memen’rs NEXT beendet
werden; Herausspringen aus der Schleife ohne Riicksprung in die Schleife ist nicht
erlaubt.

Beispiele:

12 rCR I=1 TC 14 S[EP 2 E—

29 FOX L=a 0 4%3+])

34 LET t=n+M(l,K) j erlaubte Schachtelung
43 Neal X

2J NeEal I e

10 rO4 I=1 TO 1y >Thr 2 —
24 FOR K=A TO 4*z+1 —

39 LET R=3+M (I,A) ; verbotene Schachtelung
49 NEXT 1
50 NEAT K

2.2.3.13

Statement CALL

e m CALL z
em CALL z (y)
o m CALL z (y1, y2, ...)

Das Statement CALL ruft eine Systemprozedur auf, die den Namen z hat. Die Proze-
dur ist Bestandteil des Betriebssystems bzw. wird bei der Systemgenerierung diesem
hinzugefigt. Sie wird nach dem Aufruf wie ein Unterprogramm ausgefihrt; danach
wird das Programm mit der auf m folgenden Anweisung fortgesetzt.

Es durfen nur solche Prozeduren gerufen werden, die im Betriebssystem unter dem be-
treffenden Namen enthalten sind.

In Kloammern kdnnen ein bis vier Parameter y angegeben sein. Sie werden der Proze-
dur vom Programm Ubergeben und dienen zum Tronsfer von Werten aus dem Programm
zur Prozedur bzw. in umgekehrter Richtung. Anzahl und Typ der Parameter sind fir
jede Prozedur festgelegt (sieche Abschnitt "Systemprozeduren").

Die verfigbaren Systemprozeduren sind in spdteren Abschnitten angegeben.

Beispiele:

1@ CALL HOME
2@ CALL SYMPR(A> B$(6,7))

30 CALL CREA(1, "NAME'SLAFV)

42 CALL GFBCARE, AC(X)s SEK A, SEKL)

2.2.3.14

Statement END

m END

Die Anweisung END kennzeichnet das logische Ende des gesamten Programms auf
beliebiger Ebene.

Das System kehrt bei Ausfuhrung von END in die Bedienungs-Betriebsart (command
mode) zurtck und meldet sich auf dem Konsolgerst mit der Nachricht

* ARADY

Ein neuver Start des Programms erfordert Eingabe des Kommandos RUN.

Die Anweisung END kann beliebig oft im Programm vorkommen. Es ist Ublich, aber
nicht notwendig, sie auBerdem stets als letztes Statement anzugeben.

Beispiel:

1254 =D

Y9YYY END

Platten als Hintergrundspeicher

2.3.1.1

Plattenspeicher erhshen die Leistungsfihrung eines Computer-Systems betriachtlich,
da Programme und Daten in groBem Umfang fur das System auf der Platte bereit-

gehalten werden kénnen.

Im folgenden sind die Funktionen beschrieben, die BASEX bei plattenorientierten
Systemen mit dem Computer DIETZ 621 enthdlt. Dabei handelt es sich um die
DIETZsysteme 621 C, D und E, die unter einem plattenorientierten Betriebssystem

(z.B. DBOS) laufen.

Jedes Plattenlaufwerk hat eine PNummer u:

- DIETZsystem 621 C

- DIETZsystem 621 D

- DIETZsystem 621 E

c

c

=0
4

0
4

0

4

MB (Systemplatte)

DIETZdisk 0.2
0.25 MB

5
DIETZdisk 5
Wechselplatte 2.4 MB (Systemplatte)
DIETZ disk 0.25 MB

Wechsel-+ 9.6 MB (Systemplatte)
Festplatte

" DIETZdisk 0.25 MB

Bis zu 3 weitere Laufwerke vom Typ der Systemplatte sind anschlieflbar; die

Nummern v lauten dann 1, 2 und 3.

Im folgenden sind die BASEX-Funktionen geschildert, die sich im Zusammenhang mit
dem Plattensystem ergeben (Ablegen, Laden und Segmentieren von Programmen; Ver-

waltung und Zugriff zu Dateien).

Bemerkung:

Mit SAVE und INITIALIZE abgelegte Programme sind stets auf der Systemplatte

enthalten!

2.3.2.1-1

Kommandos SAVE, LOAD und KILL

Bei plattenorientierten Systemen ksnnen das gesamte BASEX-Programm oder Teile
davon, insbesondere auch die Teile segmentierter Programme, durch die Kommandos
SAVE bzw. LOAD auf dem Plattenspeicher abgelegt bzw. aus ihm in den Kernspeicher
geladen werden. SAVE und LOAD entsprechen den Kommandos PUNCH und READ bei
Lochstreifen-orientierten Systemen.

Jeder so behandelte Programmteil ist mit einem Namen zu versehen (Buchstabe, u.U.
gefolgt von bis zu 3 Buchstaben oder Ziffern), durch den er identifiziert wird; der
Programmteil wird als Datei gefuhrt.

Die Kommandos SAVE und LOAD konnen wie folgt angewandt werden:

SAVE Name Ablegen gesamtes Programm

SAVE Name n Ablegen Anweisung n

SAVE Name,n Ablegen bis Anweisung n

SAVE Name m, Ablegen ab Anweisung m

SAVE Name m,n Ablegen von Anweisung m bis Anweisung n
LOAD Name Laden Programm

Die Programme werden beim Ablegen (SAVE) von Zwischen- in Quellsprache, beim
Laden (LOAD) von Quell- in Zwischensprache ubersetzt.

Ein mit LOAD geladenes Programm kann wie sblich in Dialog vertindert, mit LIST
gelistet, durch RUN gestartet oder mit SAVE wieder abgelegt werden,

Bemerkung:

- Bei Ablegen von Namen auf der Platte werden die Namen im Namensverzeichnis mit
B-Name abgelegt

- FGhrt das Kommando SAVE Name zu der Fehlermeldung 40, so kann dieser Name durch
die Kommandos KILL Name und erneutem SAVE Name abgelegt werden.

2.3.2.1-2

Beispiel (Eingaben unterstrichen):

12 INPUT A
28 PRINT SQR(A)

3@ END
SAVE ESPI1

*READY
L OAD RSP1

* READY

5 PFINT "QUADRATWUFZEL"'
LIST

5 PRINT "QUADRATWURZEL"
12 INPUT A

2 PRINT SORCA)

3@ END

*READY

RUN
QUADRATWURZEL
24

2

* FEADY
SAVE RSP]

* READY

KILL Bs5¢l
* READY

M it SAVE wird auf dem Plattenspeicher unter dem eingegebenen Namen eine Datei
erdffnet, in der das Programm abgelegt ist. Durch das Kommando

KILL Name Programm~Datei |5schen

wird der Programm-Name im Datei-Inhaltsverzeichnis gel@scht; dos Progromm kann
nicht mehr geladen werden.

2.3.2.2-1

Segmentierung von Programmen

BASEX-Programme, deren Grofle die verfigbare Kernspeicher-Kapazitdt Ubersteigt,
konnen segmentiert, d.h. in einzelne nacheinander in den Speicher geladene Teile
zerlegt werden. Voraussetzung ist, dafl das System einen Plattenspeicher besitzt und
von einem plattenorientierten Betriebssystem (z.B. DBOS) unterstitzt wird.

Zu beachten ist, daBl nur ein Overlay-Bereich im Kemspeicher existiert, in den die
Programmsegmente nacheinander geladen werden. Zur gleichen Zeit kann sich daher
nur ein Segment dort befinden und abgearbeitet werden. Daraus ergibt sich:

- Segmentierte Programme haben eine einstufige Baumstruktur; sie bestehen
aus einem Kernspeicher-residenten Wurzelprogr sm (Root) und mehreren,
von ihr nacheinander aufgerufenen Segmenten.

- Bei Systemen, die im Multiprogramming laufen (iypisch tur BASEX-Anwen-
dungen), ist im allgemeinen nur das Progromm einer Benutzer-Ebene seg-
mentierbar. Laufen in mehreren Ebenen segmentierte Programme, so mul3
der Overlay-Bereich vom Benutzer-Programm verwaltetr werden.

- Insbesondere die Programme, die in den Zeitauftrags- und Interrupt-Ebenen
laufen, durfen nicht segmentiert werden, sondern miissen Bestandteil der
Root sein.

Segmentierungs-Struktur:

Wurzelprogramm

(Root)
e e e e e e =
LINK ENDS LINK | ENDS LINK [ENDS
sl s2 1 s3 {
Segment | Segment | Segment : %
s s2 s3 §

Jedes Segment wird durch einen Namen identifiziert (Buchstabe, u.U. gefolgt von
bis zu 3 Buchstaben oder Ziffern). Es wird im Wurzelprogromm durch eine LINK-

Anweisung mit Angabe des Namens aufgerufen; die Riickkehr aus dem Segment in

die Wurzel bewidct die ENDS -Anweisung.

2.3.2.2-2

Alle Variablen, deren Namen in der Wurzel vorkommen, sind global, d.h. sowohl
von der Wurzel als auch von allen Segmenten aus zugreifbar. Dagegen sind alle
die Variablen lokal, d.h. nur in einem Segment definiert und innerhalb dieses zu-
greifbar, die nicht mit Variablen-Namen der Wurzel ubereinstimmen. Fur lokale
Variablen kdnnen in verschiedenen Segmenten die gleichen Namen verwendet wer-
den; jedoch haben sie dann keinerlei Bezug zueinander.

Zu beachten ist, daf die Anweisungsnummern der Segmente groBer sein mussen als
die hschste Anweisungsnummer der Wurzel; jedoch ksnnen fur verschiedene Segmente

die gleichen Anweisungsnummern verwendet werden.

Kemspeicher-Aufteilung bei segmentierten Programmen (vereinfacht):

Globale
Variablen

Lokale | Lokale Lokale
Overlay- Variablen Variablen Variablen
______ o et e e] e e e]
Bereich | ==] e
Root
Programm Programm Programm
Residentes Segment sl Segment s2 Segment s3 cen
Programm \)
|
auf Plattenspeicher
BASEX
Betriebs-
system

Alle Segmente und die Wurzel werden unter deren Namen zusammenhingend auf
der Platte abgelegt und sind direkt vom DBOS her ausfihrbar.

2.3.2.3

Kommqndo INITIALIZE

Die einzelnen Teile eines segmentierten Programms sind, bevor sie zum ersten Mal
komplett zur Ausfihrung gebracht werden, im Dialog zu verketten. Dabei ist voraus-
gesetzt, dafl die Programmteile durch SAVE-Kommandos unter ihren Namen auf dem
Plattenspeicher abgelegt sind.

Die Verkettung beginnt mit dem Kommando

INITIALIZE
worauf das System mit

ROOT?
nach dem Namen des Wurzelprogramms fragt. Dei Mel’erer gibt den Namen e n (mit
Wagenricklauf danach). Der entsprechende Programmiteil wird geladen und bleibt im
folgenden im Kernspeicher.
Danach fragt das System mit

SEGMENT?
nach dem Namen des ersten Segmentes, den der Bediener eingibt (mit Wagenruck lauf
danach); das Segment wird geladen, in Zwischensprache auf einer besonderen Datei
des Plattenspeichers abgelegt und mit seiner Platten-Adresse im System vermerkt.
Es folgt wieder die Frage

SEGMENT?
mit der Beantwortung durch den ndchsten Segment-Namen. Dies wiederholt sich fur
jedes weitere Segment, bis der Bediener mit Eingabe des Zeichens "3 " den Verket-

tungs-Dialog beendet. Das System kehrt in das Basis-Betriebssystem (z.B. DBOS) zurick.

Beispiel (Eingaben unterstrichen):

INITIALIZE

ROOT? ADAM
SE3MENT? SEG |
SPMENT? SEG 2
SEIMENT? SADA
SEGMENT? A5A
SEGMENT? 4

*DROS

Hinweis:

Auch unsegmentierte Programme sind, wenn sie in Zwischensprache abgelegt und spiter
vom Basis-Betriebssystem (z.B, DBOS) unter ihren Namen aufgerufen werden sollen (s.
Kommandos SAVE und LOAD), dem INITIALIZE-Dialog zu unterwerfen. Der Programm-
Name wird nach der Frage ROOT? eingegeben; nach der ersten Frage SEGMENT? wird
der Dialog durch Eingabe von # beendet.

2.3.2.4

Statements LINK und ENDS

e m LINK Name

Die Anweisung LINK ruft das Programmsegment mit dem eingegebenen Namen auf.

Das Segment wird vom Plattenspeicher in den Overlay-Bereich des Kernspeichers
geladen, und das Programm wird mit der ersten Anweisung des Segmentes fortgesetzt.

LINK-Anweisungen dirfen nur im Wurzelprogramm (Root) stehen, nicht dagegen in
Segmenten.

Beispiel:

200 LINK ASE?

® m ENDS

Die Anweisung ENDS (End Segment) beendet den Ablauf des Programms im Segment.

Die Kontrolle wird an das Wurzelprogramm (Root) zuiickgegeben, das mit der Anwei-
sung fortgesetzt wird, die auf den Segment-Aufruf durch LINK folgt.

ENDS-Anweisungen dirfen nur in Segmenten vorkommen.
Beispiel:

855 END S

2.3.3.1-1

DBOS in BASEX

DBOS (Disk Based Operating System) ist ein Betriebssystem fur plattenorientierte
Systeme mit dem Computer DIETZ 621 (DIETZsystem 621).

Seine Hauptfunktionen sind die Verwaltung von Plattenspeicher-Dateien und der
Zugriff zu ihnen. DBOS-Dateien bestehen aus einem oder mehreren Sektoren von
je 128 byte Lange.

Der Ubergang von der DBOS-Kontrolle in die von BASEX bzw. BASEX-Programmen
geschieht durch DBOS-Kommandos:

DBOS
BASEX eno |RUNA B TeND Name END
LOAD...
oder BASEX BASEX BASEX
Programmeinga System System System
RUN END RUN END RUN END
BASEX-Programm BASEX-Programm BASEX-Programm
Fall 1: Fall 2 Fall 3:

Aufruf BASEX-System Aufruf BASEX-Programm Aufruf BASEX-Programm
uber RUN und Namen Uuber Namen direkt

Fall 1:

Fall 2;

Fall 3:

2.3.3.1-2

Der Bediener gibt BASEX ein. Der Interpreter wird geloden, und das System
befindet sich im BASEX-Bedienungsbetrieb. Nun kann iiber das Kommando
LOAD... ein vorhandenes BASEX-Quellprogramm geladen oder ein Programm
eingegeben werden. Auch alle Ubrigen Msglichkeiten des BASEX-Bedienungs-
betriebes bestehen.

Durch das Kommando RUN wird das Programm zur Ausfihrung gebracht.

Bei Ausfihrung der END-Anweisung kehrt das System in den BASEX-Bedie-
nungsbetrieb zuriick.

Das Kommando END gibt die Kontrolle an DBOS zuriick

Der Bediener ruft mit RUN, @, Name, 508 ein vorhendenes (bereits vorher
im INITIALIZE-Dialog in Zwischensprache abgelegtes) BASEX-Programm auf,
das einschlieBlich Interpreter geladen wird. Das Programm wird sofort zur
Ausfihrung gebracht,

Alle ubrigen Funktionen entsprechen Fall 1.

Als Name ist der Programmname, bei segmentierten Frogrammen der Name
des Wurzelprogramms (Root) einzugeben.

Wie Fall 2, jedoch wird das BASEX-Programm einschlieflich Interpreter
direkt, d.h. nur durch Eingabe seines Namens aufgeruien und zur Ausfihrung

gebracht.

Voraussetzung ist, daB das Programm vorher bereits im INITIALIZE-Dialog
abgelegt und durch das DBOS-Kommando

PROT,f,Name, 11

zum Direktaufruf freigegeben (und gleichzeitig geschitzi) worden war,

2.3.3.1-3

Die Dateiverwaltungs- und Dateizugriffsfunktionen von DBOS werden in BASEX von
Systemprozeduren durchgefihrt, die mit CALL aufgerufern werden:

- Dateiverwaltung: CALL CREA (u,f,!’
CALL KILL (u,f)
CALL ALTR (u,f1,f2)
CALL LENG(u,f, 1}
CALL PROT (u,f,p)

- Dateizugriff: CALL OPEN(u,f,w’
CALL CLSE (w)
CALL GFB (w,a,s. D)
CALL PFB (w,o,s. D)
CALL GFBS (w,a,s. 1}
CALL PFBS (w,a,s, D)

Beispiel: Datei mit 6 Sektoren Linge. Zugriff auf Sekioien

cund 4 (s =3, 1 =2).

L [] | 2 D3 47 5]

‘ 1 Sektor J
= 128 byt

- Datei f

Als Optionen sind folgende Systemprozeduren vorgesehe
Feldern erlauben, die nicht mit Sektoren Ubereinstimme: -

CALL GF (w,q,i,
CALL PF (w,q, i,
CALL GFS(w,a,i,’
CALL PFS (w,a,i, !

Die DBOS-Prozeduren sind in den folgenden Abschnitte

Im Ubrigen wird auf die Beschreibung des Betriebssycic

= Lesan und Schreiben von

TS R
Den .

yerwiesen.

2,3.3.2-1

Dateiverwaltung unter DBOS

Die Systemprozeduren

CREA (u,f,1) Datei ersffnen
KILL (u,f) Datei loschen
ALTR (u,f1,f2) Dateinamen &ndern
LENG (v, f, 1) Dateildnge kirzen
PROT (u,f,p) Datei schiitzen

dienen zur Verwaltung der Plattenspeicher-Dateien im Rahmen des plattenorientierten
Basis-Betriebssystems DBOS. Sie werden mit CALL aufgerufen und verdndern das Datei-
Inhaltsverzeichnis.

Die Nummer des Plattenlaufwerks (Einheit) wird durch u spezifiziert; f bezeichnet den
Dateinamen (String mit max. & Zeichen); | gibt die Ldnge der Datei in Sektoren zu
je 128 Bytes an. Der Dateischutz-Code p ist unter CALL PROT erklart.

m CALL CREA (u,f,I)
Auf der Einheit u wird unter dem Namen f eine Datei mit der Ldnge | ersffnet.
Beispiele:

100 CALL CREAC®s “"SIGMA', 25) Ersffnen einer Datei SIGMA von

25 x 128 byte Ldnge auf Einheit 0
50 CHAR F$C(6)

® 00

550 LET F$C1,4)="FIL3"
560 LET U=4,SCTS=100

672 CALL CREACUs F$,SCTS) Ersffnen einer Datei FIL3 von
100 x 128 byte Lange auf Einheit 4

m CALL KILL (u,f)
Auf der Einheit u wird die Datei mit dem Namen f geloscht.
Beispiel:

20@ CALL KILL(@> "SIGMA'™ Loschen der Datei "SIGMA" auf Einheit 0

2.3.3.2-2

o m CALL ALTR (u,f1,f2)

Auf der Einheit u wird der Name der Datei f1 durch den Namen f2 ersetzt. Alle
Ubrigen Parameter bleiben erhalten.

Beispiels

650 CALL ALTRC4, "FIL3", "FIL7'> Never Dateiname: FIL7

e m CALL LENG (u,f,I)

Auf der Einheit u wird die Ldnge der Datei mit dem Namen f auf | Sektoren verkirzt.

ke s e——

Beispiel:

660 CALL LENG (4, "FIL7', 50) Neuve Dateilange: 50 x 128 byte

e m CALL PROT (u,f,p)

Auf der Einheit u erhdlt die Datei mit dem Namen f den Schutzcode p. Der Schutz-
code p hat folgende Bedeutung:

1 Schreib-/L&sch-Schutz
2 feste Startadressen (ab Systemende)

4 nicht ausfijhrbarer Code lﬁkem Maschinencode)
8 automatischer Start bei Namen-Eingabe auf Unit @ (direkter Aufruf durch Pro-

grammname)
Fur p konnen Kombinationen dieser Codes eingesetzt werden.
(z.B. 11 £ 8 und 2 und 1)
Beispiele:
707 CALL PROTC(4,"FIL7'"s5) Schreib-/Losch-Schutz; nicht ausfuhrbarer Code
75¢ CALL PROTC4, "FIL7'", 4) Aufheben des Schreib-/Losch-Schutzes
800 CALL PROTC4, “FIL7"> @) Aufheben des Eintrags "nicht ausfihrbarer Codeé"
|
Hinweis:

Bestimmte Programm- und System-Fehler werden bei Ausfihrung dieser Systemprozeduren
erkannt und sind durch die Systemvariable ERR abfragbar.

Siehe hierzu Abschnitt "DBOS Fehlermeldungen".

2.3.3.3-1

Dateizugriff unter DBOS

Mit den Systemprozeduren

OPEN(u, f,w) Datei &ffnen

CLSE (w) Datei schlieBen

GFB (w,a,s,l) Datei in Zahlenfeld lesen

PFB (w,a,s,|) Datei aus Zahlenfeld schreiben
GFBS (w,a,s,|) Datei in String lesen

PFBS (w,a,s, 1) Datei aus String schreiben

wird zum Inhalt von Plattenspeicher-Dateien im Rahmen des plattenorientierten
Basis-Betriebssystems DBOS zugegriffen. Die Prozeduren werden mit CALL aufgerufen.

D ie Nummer des Plattenlaufwerks (Einheit) wird durch u spezifiziert; f bezeichnet
den Dateinamen, w die Arbeitsnummer (0...7) der Datei nach Offnung, a das Kern-
speicherfeld, s die Nummer des ersten gelesenen bzw. beschriebenen Sektors der
Datei und | die Anzahl der zu lesenden bzw. zu schreibenden Sektoren (1 Sektor

= 128 Bytes).

s m CALL OPEN (u,f,w)

Auf der Einkeit u wird die Datei f fiir den Lese- oder Schreib-Zugriff gecffnet. lhr
wird die Arbeitsnummer w zugetellt.

Beispiele:

llm CN“L Opm(a! '5!‘5@@&% ®) Oﬁnen der Ddfei S!{’;"\AA‘ C‘U'g E;r’he‘” O rnil’
- Arbeitsnummer 3

610 LET WHNR=Y Offnen der Datel FL3 aut Einkeir 4 mit

» | Arbeitsnummer 7
o8 CALL OPENC4, “FIL3", WKNR)

o m CALL CLSE (w)

Die Daici riit der At citsiummer w wird fur den Lese- oder Schieib-Zugriff ge-
schlossen. (iie Arbeitsnummer w wird frei und kann nes vergeben werden.

Beispiel:
19¢ CoLL CLSEC®) Datei mit der Arbeitshumrier 3 (in diesem

Falle die Date! SIGMA «.f Einheit 0)
schiieilen

2.3.3.3-2

em CALL GFB (w,q,s,|)

Der Inhalt der Datei mit Arbeitsnummer w wird, beginnend mit Sektor s und einer
Ldnge von | aufeinanderfolgenden Sektoren, in ein Zahlenfeld gelesen, dessen
erstes Element durch a bestimmt ist.

Beispiele:

18 DIM AC4s 63) , . _
120 CALL GFR(3,AC0s 1), @513 Lesen = Sektor it Sektor 0 in Feld A ab Flemen: (0,1)

125 CALL GFR(3,AC1,2)»10,2) Lesen 2 " " " " Aab " (1,0)

e m CALL PFB (w,aq,s,|)

Die Datei mit der Arbeitsnummer w wird, beginnend mit Sektor s und in einer Lénge
von | Sektoren, mit dem Inhalt eines Zahlenfeldes beschrieben, dessen erstes Element
durch a bestimmt ist.

Beispiele:

130 CALL PFBC3s ACHs 82 B 15 Schreiben 1 Sehfor o,En Se'lffor 0 O:.;IS Feuld:lA ab El. (0,0)
135 CALL PFB(3,AC2, @), 5,2) ochreiben 2 5 ab EI. (2,0)

e m CALL GFBS (w,aq,s,|)

Der Inhalt der Datei mit der Arbeitsnummer w wird, beginnend mit Sektor s und in
einer Ldnge von | aufeinanderfolgenden Sektoren, in eine durch o bezeichnete String-
variable gelesen.

Beispiel:

20 CHAR F$(256)
140 CALL GFES(3,F$, 202, 2) Lesen 2 Sektoren ab Sektor 20 in String FY

e m CALL PFBS (w,aq,s,|)
Die Datei mit der Arbeitsnummer w wird, beginnend mit Sektor s und in einer Ldnge
von | aufeinanderfolgenden Sektoren, mit dem Inhalt der Stringvariablen beschrieben.
Beispiel:
15@ CALL PFBSC3sF$s2151) Schreiben 1 Sekt.ab Sektor 21 aus String Fg
(erste 128 Zeichen)
Hinweis:

Bestimmte Programm- und Systemfehler werden bei Ausfihrung dieser Systemprozeduren
erkannt und sind durch die Systemvariable ERR abfragbar.

Siehe hierzu Abschnitt "DBOS Fehlermeldungen".

2.3.3.4

DBOS Fehlermeldungen

Fehler bei der Ausfihrung von Systemprozeduren, die der Datei-Verwaltung oder
dem Datei-Zugriff unter dem Betriebssystem DBOS dienen, werden vom System er-
kannt und sind mit Hilfe der Systemvariablen

ERR

abfragbar. ERR ist die allgemeine Fehlervariable von BASEX; sie mu8 abgefragt
werden, bevor (in der gleichen Programmebene) eine neue Systemprozedur aufgerufen
wird, die eine Fehlermeldung liefern kann.

Die Systemvariable ERR liefert den Wert 0, wenn kein Fehler aufgetreten ist; andem-
falls liefert sie folgende Werte:

Parameter-Fehler: ERR = 4 Datei-Name bei CREA oder ALTR schon
vorhanden. Arbeitsnummer bei OPEN schon
verwendet. .

=5 Zu grofle Datei-Ldnge bei CREA, LENG,
GFB, PFB, GFBS oder PFBS.

=6 Datei-Name nicht vorhanden oder nicht
gedffnet.
=7 Index bzw.Anzahl< 0 bei GF,PF,GFS,PFS

129 Laufwerk nicht bereit

130 Schreibschutz fur Laufwerk oder Datei
131 CRC-Fehler (Lesefehler nach 5 Versuchen)
132 Plattenadresse zu grof}

133 Laufwerk nicht angeschlossen

134 Kernspeicheradresse zu klein

135 Falsche Betriebsart
136 Spur nicht gefunden (WP)

System-Fehler: ERR

I

Beispiel fur Abfrage von Parameter-Fehlern:

110 CaLL OPEN(@s "SIGMA', 3)

115 GOSUB 800

800 IF ERR=Q THEN 820

810 GOTO ERR-3 OF B33, 340,850

820 RETURN

B30 PRINT °'NAME DOPPELT/ARR.=-NR. BELEGT"
835 RETURN

B4@ PRINT"DATEILAEVGE ZU GROSS"

A3 BRINFY wave uveEKAvNT/DATE SCHUTZ s
855 PRINT " VEFLETZT"
860 RETURY

2.3.3.5-1

Systemprozeduren GF, PF GFS und PFS

Als Option kann auch zu einzelnen Zahlen oder Zeichen in Plattenspeicher-Dateien
zugegriffen werden sowie zu Zahlen oder Stringfeldern beliebiger Linge, in welche
die Datei strukturiert ist. Hierzu dienen die Systemprozeduren

GF (w,q,i,l) Zahlen lesen
PF (w,q,i,d) Zahlen schreiben
GFS(w,a,i,l) String lesen
PFS (w,aq,i,l) String schreiben

Sie erweitern den im Betriebssystem DBOS vorgesehenen sektorweisen Zugriff (mit
GFB, PFB, GFBS und PFBS). Auch hier sind die Dateien mit OPEN zu ersffnen und
mit CLSE zu schlieen; mit OPEN wird die Arbeitsnummer w der Datei vergeben.

Bei dieser Zugriffsart wird angenommen, dafl eine Datei aus Einzel-Elementen oder
aus ein- oder zweidimensionalen Feldern besteht, wobei ein Element entweder einer
Zahl (Ldnge 4 byte) oder einem Zeichen (Ldnge 1 byte) entspricht.

Die Angabe a bezeichnet das Kernspeicher-Feld, mit dem der Austausch stattfindet;
es ist mit DIM (fur Zahlen) oder CHAR (fur Strings) zu reservieren.

Der Parameter | gibt die Anzahl der Ubertragenen Zahlen bzw. Zeichen an (Einheit 1
bzw. 4 byte). Mit i wird ein Index angegeben, der bei eindimensionalen Dateien ein
Element, bei zweidimensionalen eine Zeile der Ldnge | spezifiziert. Ist i = 0, so er-
folgt keine Indizierung. Die Parameter i und | definieren somit eine Position mit der
Lage i * | in der Datei.

Beispiele:
=1 i=0
=5 i =0 XX KA
| =1 i =3 LT [771]
=5 i=2 g
1
7 4 -
1 Element = 4 byte (Zahl) oder £ ///////// 4 g

1 byte (String) P [2 3 4

2.3.3.5-2

e m CALL GF (w,aq,i,l)

Lesen von | Zahlen ab Position i%*l. der Datei w in Zahlenfeld a.

em CALL PF (w,aq,i,l)

Schreiben von | Zahlen aus Zahlenfeld a auf Datei w ab Position i#*|.

em CALL GFS (w,aq,i,l)

Lesen von | Zeichen ab Position i# | der Datei w in String a.

em CALL PFS (w,q,i,l)

Schreiben von | Zeichen aus String a auf Datei w ab Position i,

Der Parameter a ist beim Zugriff zu Zahlendateien der Name einer ein- oder zweifach
indizierten Variablen. Er muBB nicht mit dem Feldumfang Ubereinstimmen; Lesen bzw.
Schreiben erfolgt von dieser Variablen aus in Richtung steigender Indizes (Spalten,
Zeilen).

Der Parameter a ist beim Zugriff zu Stringdateien der Name einer String-Variablen.
lhre Lange kann gréBer sein als die Lange | des tatsichlich Ubertragenen Strings;
Lesen bzw. Schreiben beginnt mit dem ersten Zeichen der String-Variablen.

Fur die Parameter w, |, i kénnen Zahlen-Konstanten, -variablen oder beliebige arith-
metische Ausdricke eingesetzt werden.

Beispiele:

200 CALL GF (05A€0):051)

220 CALL PF (3,ZF(3:2)55,2)
230 CALL GFS (XsB%,A+2,10)
270 CALL PFS (7sTkEXT$,0:,128)

Parameter und Systemfehler sind Uber die Systemvariable ERR abfragbar (siehe DBOS
Fehlermeldungen).

2.4.1.1-1

Realtime-Funktionen

BASEX arbeitet in DIETZ 621-Systemen mit einer in die BASEX-Software integrierten
Version des Echtzeit-Betriebssystems RTOS.

Die wichtigsten Aufgaben von RTOS sind folgende Realtime-Funktionen:

- Multiprogramming: Simultane Abarbeitung mehrerer Benutzer-Programme
mit gegenseitiger Beauftragung und mit Verwaltung
der Auftrage.

- Zeitverwaltung: Laufende Fuhrung der Absolutzeit; Verwaltung und
Ausfuhrung von zeitgebundenen Programmauftragen.

- Interrupts: Verwaltung und Ausfihrung von Programmauftrigen,
die an spontane duBere Ereignisse (Interrupts)
gebunden sind.

Die einzelnen Programmfunktionen laufen unabhidngig voneinander in "Programmebenen"
ab, die von der Hardware-Struktur des DIETZ 621 vorgegeben sind und von ihr stark
unterstitzt werden.

Die Programme in den einzelnen Ebenen haben eine hierarchische Prioritdt. Ein
Programm, das in einer hoheren Ebene lauft, unterbricht die Programme aller niedri-
gen Ebenen und blockiert ihren Ablauf, solange es arbeitet. Allerdings gilt dies nur,
solange das prioritdre Programm die CPU des Computers benutzt; insbesondere bei
Ein-/Ausgabe-intensiven Programmen entstehen so geringe Belegungszeiten der CPU,
daB die Progromme auf niedrigeren Ebenen, u.U. mit verminderter Geschwindigkeit,
ihren Ablauf fortsetzen konnen.

Entsprechend der Hardware-Konfiguration sind 2 RTOS-Versionen verfiigbar:

- fur insgesamt 8 Ebenen
- fur insgesamt 16 Ebenen.

Die Programmebenen sind aufgeteilt in:

- Systemebenen
-~ Benutzerebenen.

Die Systemebenen haben hschste Prioritdt. In ihnen laufen zur Betriebssystem-Funktionen;
der Benutzer hat keinen Zugriff zu ihnen. Sie sind aufgeteilt in

- CNP-Ebene: Fuhrt die Absolutzeit, Uberwacht den jeweils
oktuellsten Zeitauftrag und erkennt Hardware-
Systemfehler.

- ORG-Ebene: Verwaltet den Plattenspeicher sowie die Gerite-
Peripherie.
- Freie Systemebenen: Fur spezielle Betriebssystem-Implementierungen

(hur bei 16-Ebenen-Version).

2.4.1.1-2

H ierarchisch darunter liegen die Benutzer-Ebenen. In ihnen laufen BASEX-Programme;
der Benutzer hat ihre Verwaltung voll in der Hand.

Sie sind aufgeteilt in

- Interrupt-Ebenen: Hier laufen die von externen Ereignissen (Interrupts)
oktivierten Programme.

- Zeitauftrags-Ebene : Hier laufen von der Zeitauftrags-Uberwachung
oktivierte Programme.

- Allgemeine Benutzer-

Ebenen: Hier laufen die Ubrigen Benutzer-Programme. Die
Ebene O (niedrigste Prioritdat) wird als "Hauptebene"
bezeichnet.

Z v beachten ist, dal zur gleichen Zeit in einer Benutzer-Ebene nur ein BASEX-
Programm aktiviert sein bzw. ablaufen kann.

System- |

Ebenen

Benutzer-
Ebenen

System~

Ebenen

Benutzer~
Ebenen

s

N 7/

CNP
ORG
Interrupt- 2
Ebenen]
Zeitauftrags-Ebene
Allgemeine 2
Benutzer- 1
Eb
enen 0
CNP
ORG
Freie
System-Ebenen
4
Interrupt-
Ebenen _—“2___
1
Zeitauftrags-Ebene
6
Allgemeine >
Benutzer- 4
Ebenen
3
2
1
0

N W D O O N

N W A~ O O NN ©© 0O O

O -

| steigende
Priotitat

RTOS/8 Ebenen

‘P steigende
Prioritat

RTOS/16 Ebenen

2.4.1.1-3

2.4.1.1-4

Die Realtime-Funktionen von BASEX sind in den folgenden Abschnitten beschrieben.

Die wichtigsten Realtime-Befehle sind die Anweisungen’

- WAIT Warten

- START Programmauftrag

- STOP Ende Auftrags-Programm
- AFTER Zeitauftrag

- ON INT Interrupt-Auftrag

lhre Wirkung ist an folgenden Programm-Beispielen bzw. Zeitdiagrommen abzulesen:

Beispiel fur WAIT:

10 4AIT INB(®

20 oo
Ebene
‘.
0 19 PV et
Eingang r
INB (@)| v,
(fINB(ﬂ) wird 1, und Programm lguft weiter
Programm halt an und wartet, bis Eingang INB(@) # 0 wird

2.4.1.1-5

Beispiel fur START:

10 START 1:200
125 STOP

11™ PRINT A

126 START 2:3020
1300 sTNP

oA LET A=0

o725 STAFT @:11¢@

21Q STOF
32¢ LET A=4+1]
Q12 1F A<100 THEN 205

3272 END
Ebene Start 2: 34 Start @: 118
 Start 1: 200 Start P: 119 STOP
A |
) STOP
30 318 205 214
| [
1
200 205 214
- 0 l
RPN NN
p RS
199 195110 120

2.4.1.1-8

Beispiel fur ON INT:

12 REM PROGRAMM IN HAUPTEBENE
2¢ ON INT S5:GOTO 508

3@ ON . INT 9:GOTO 622

47 ENAR 5,9

® o0

592 REM SERVICE-ROUTINE ZU INT S

59@ STOP
622 REM SERVICE-ROUTINE ZU INT 9

692 STOP
A
da belegt,

Ebene an BS

} Avuftrag Abmeldung | BS Abmeldung

ON INT 5,9 T STOP startet STOP
an BS an BS an BS
! Interrupt Interrupt 9 |
5

4 #0058 Y7000 0698
YA 237 7 2/

2.4.1.1-7

Beispiel fur AFTER:

1@ PEM HINTERIFUN DPROG RAMM

127 FEM PE3ELMe APLFSUNG JEDE MINUTE
171 IF t=1¥aY THEV 103

102 AFTER 600@0t G0TO 101

1233 LET <(IH)=tNd Iy, I=1+1

174 STOP
AFTER, .. AFTER,..
(never Zeit- (never Zeit-
BS meldet; avftrag) BS meldet: oUftrag)
Ebene Zeitouf”ag STOD Ze“’OUfN’Og STOP
| fallig l fallig [‘

L [L
3 ////A A A \1\r %V/%% Zeitauftragsprogramm
141 1921093 104 101 192103 194

- t = 60 sec —e s t = 60 sec —a=

% A7 77777 Hintergruns-programn

2.4.2.1

Statement WAIT

m WAIT e
Das Statement WAIT ist eine bedingte Halt-Anweisung.

Das Programm hilt an, bis der Wert des Ausdruckes e ungleich Null geworden ist.

Beispiele:

14 WAIT MSEC>=500
300 WAIT IN3(5)
580 WAIT X155 0OrR INB(2) AND &lé

Hinweis:

Bei WAIT befindet sich das System in einer Programmschleife, die fortlaufend den Wert
des Ausdrucks e ermittelt. Sobald infolge eines GuBeren Ereignisses (z.B. ein Prozel3-
eingang), der Systemzeit oder der Veridnderung des Inhalts einer Variablen (durch ein
Programm in einer hoheren Ebene) der Wert des Ausdrucks e ungleich Null wird, geht
das Programm mit der ndchsten Anweisung weiter.

WAIT-Anweisungen blockieren die Programmausfihrung in allen niedrigeren Ebenen;
sie sollten daher moglichst nur in der niedrigsten Benutzer-Ebene (Ebene 0) laufen.

2.4.2.2

Statement START

m START | : n

Das Statement START erteilt der Programmebene | den Auftrag, ein Programm auszu-
fuhren, das mit der Anweisung n beginnt.

Lauft auf dieser Ebene kein Programm, so wird mit der Ausfihrung sofort begonnen;
andernfalls wird die Ausfuhrung so lange zurickgestellt, bis das laufende Programm
beendet ist bzw. alle weiteren dieser Ebene durch START erteilten Auftrage abgewickelt
sind.

Programmauftrige mit START konnen von jeder Programmebene aus erteilt werden. Sie
dienen vor allem zur Auslosung von Programmabliufen in anderen Benutzer-

ebenen und bewirken so deren Synchronisation mit Ereignissen anderer Art, z.B. ein-
treffenden Interrupts, abgelaufenen Zeiten oder erreichten Programmzustanden.

Jeder Uber START beauftragte Programmteil ist durch die Anweisung STOP abzuschlie-
Ben; das Programm halt in dieser Ebene an, es sei denn, es liegen weitere Programm-
auftrige vor.

Programmauftrdge werden in der zeitlichen Reihenfolge ihres Eintreffens abgewickelt.

Beispiele:

199 AFTER 330909 : START 1: 799 —

cee nach 30 sec

79¥ LET AMES=INA(Q),0UTB(1)>=0]

719 S5TOP

208 ON INT 6:START @ @ 64 —

oo wenn Interrupt 6
60 PRINT "ALARM 6" —

65 5TOP

988 START 2: 1509 —

R sofortiger Auftrag
1509 GOSUB 314 S

1519 srop

Bemerkung: Kommando RUN startet das Gesamtprogramm in der Houptebene (Ebenen-
Nummer 0).

2.4.2.3

Statement STOP
m STOP

Die Anweisung STOP beéfdet elmen Programmteil, der auf einer der Programmebenen
lauft. Das Programm In dieser Ebene wird abgeschlossen; liegt bereits ein neuerer
Auftrag fur diese Ebene vor (und ist dieser aktuell), so wird der neue Programmteil
unverziiglich begonnen.

STOP ist in folgenden Fullen zu verwenmdom:

- zum Abschlul des dureh des Komando RUN gestarteten Programms in der
Hauptebene,

- zum AbschluB eines mit START ausgeldsten Progrommteils in der Haupt- oder
den Zusatzebenen,

- am Ende eines mit AFTER t : GOTO n oder ON INT i : GOTO n formu-
lierten Zeit- oder Interrupt-Auftrags.

Beispiele:

1 CN INT 9 ¢ sfarl 4 3 29
5 ENAL J

v sior

20 e

Weitere Beispiele sieche unter AFTER, ON INT und START.

Bemerkung:

Auch wenn das Programm in allen Ebenen ruht bzw. durch STOP beendet ist, geht

das System nicht in den Bedienungsbetrieb uber; diese Wirkung hat allein das State-
ment END,

Daher ist in jedem Programm mindestens eine END-Anweisung vorzusehen.

2.4.2.4

Systemvariable LEV

Fur die Zuourdnung von Datenfeldern zur jeweils laufenoen Programmebene sowie fur
Ebenen-abhingige Modifikationen von Programm-Abldufern ist die Systemvariable

LEV Level

vorgesehen.

Sie wird im Programm wie eine einfache Variable behandelt und vor allem als Index
verwendet. Sie liefert im Augenblick der Abarbeitung die Nummer der gerade laufenden
Programmebene. ‘

Mit LEV ist es moglich, in verschiedenen Ebenen das gieiche Programm laufen zu
lassen. Jeder Ebene ordnet man z.B. durch den Index LEV verschiedene Teile des

gleichen Datenfeldes zu; jede Ebene arbeitet dann mit den eigenen Daten, ohne die
der anderen zu zerstdren.

AuBerdem konnen mit LEV ebenenabhdngige Unterschiede im Programmverlauf eingefuhrt
werden.

LEV

Liefert die Nummer der laufenden Programmebene (0, 1, ...).

Beispiel 1:

106 DIM ABA(253) ABA LEV = 0
209 Fex I=@ 0 5 R S o — =1
219 INPUT ABSA (6%LEV, 1) : -9
215 NEal 1

Die eingegebenen Daten gehen in Zeile 0, 1 oder 2 des Feldes ABA je nachdem, ob
das Programm in Ebene 0, 1 oder 2 lauft.

Beispiel 2:
555 IF LeV=1 THEN 3575

Ebenenabhidngige Modifikation eines Programms: Nur wenn es in Ebene 1 lauft, erfolgt
ein Sprung nach 575.

2.4.2.5

Systemvariable STNU

Zur Abf}age von aktuellen Anweisungsnummern dient die Systemvariable

STNU(I) Statement Number
Die Systemvariable liefert die Nummer der BASEX-Anweisung, die im Augenblick
der Abfrage in der Ebene | abgearbeitet wird. Damit kann von jeder Ebene aus

der aktuelle Programmstand jeder anderen Benutzer-Ebene abgefragt werden.

Hinweis:

Wird die Anweisungsnummer einer Ebene abgefragt, in der kein Programm lduft,
so erhdlt man eine undefinierte hohe Zahl.
STNU(I)

Liefert die Nummer der aktuellen BASEX-Anweisung des in Ebene | laufenden
Programms.

Beispiele:

129 PRINT STNU(®)
220 IF STNU(7)>800 iHEN 250

2.4.3.1

Systemvariablen MSEC, SEC, MIN und HOUR

Die Systemvariablen

MSEC Millisekunden
SEC Sekunden
MIN Minuten
HOUR Stunden

liefern die Absolutzeit des Systems.

Sie werden im Programm wie einfache Variablen behandelt. lhr Inhalt kann jederzeit
abgefragt werden. Die Variablen werden vom System laufend gefihrt.

Die Systemvariablen SEC, MIN und HOUR konnen durch das Kommando TIME sowie
durch die Systemprozedur STIM auf Ausgangswerte der Absolutzeit gesetzt werden.

® MSEC
Liefert die Absolutzeit in Millisekunden (@...3599999).

o SEC
Liefert die Absolutzeit in Sekunden (@...59).

e MIN
Liefert die Absolutzeit in Minuten (@...59).

¢ HOUR
Liefert die Absolutzeit in Stunden (4...23).

Beispiele:
100 AFTER 10AAA-MSEC: LET OUTRCg)=1 Dei 10 s Absolutzeit Bit-Ausgang 6 setzen.
400 1F HOUR»>=5 THEN 450 Ab 5 h Absolutzeit Sprung nach 45(;
450 PRINT HOUPR»MINs SEC Stunden, Minuten und Sekunden drucken
Bemerkung:

Je nach Systemkonfiguration wird die Zeitvariable MSEC mit einer Aufldsung von
1, 10 oder 100 ms vom System gefihrt.

2.4.3.2

Kommando TIME

Die Absolutzeit des Systems kann im BASEX-Bedienungsbetrieb durch das Kommando
TIME abgefragt bzw. neu eingestellt werden. Dabei werden die Zeitvariablen HOUR,
MIN und SEC ausgedruckt bzw. auf neue Werte gesetzt.

Abfragen: TIME eingeben, anschlieend Wagenricklauf.
Die Absclutzeit in Stunden, Minuten und Sekunden wird ausgedruckt.

Beispiel (Eingaben unterstrichen):

TIME
23359159

Eingeben: TIME sowie die neue Absolutzeit (Stunden:Minuten:Sekunden) wird
eingegeben, anschlieBend Wagenriicklauf.

Beispiel (Eingaben unterstrichen):

TIME 1535083845

2.4.3.3

Systemprozedur STIM

Den Zeitvarialben HOUR, MIN und SEC werden durch die Systemprozedur

STIM (h,m,s) Zeit setzen
neue Werte zugewiesen. Dadurch wird die Absolutzeit des Systems neu eingestellt.
Die Systemprozedur wird mit CALL aufgerufen; als Parameter konnen Zahlenkonstanten,

Zahlenvariablen oder arithmetische Ausdriicke eingesetzt werden. Der fir die Zeit-
variablen gultige Zahlenbereich (0<h<23; 0€m =59; 0 <s<59) ist zu beachten,

CALL STIM (h,m,s)
Die Absolutzeit wird auf h Stupden, m Minuten und s Sekunden gesetzt.

Beispicle:

4@@ CALL STIM (0,9,0)
540 CALL STIwM (HOURg 18,98 4-811)
654 UALL STIM (23,59,5 1

Bemetbung: Folsche Angaben (» B. HOWUR = Z8) fuhren zum Setzen
der Variablen ERR auf 1

2.4.3.4

Statement AFTER

m AFTER t : Auftragsanwelsung
m AFTER t 1+ GOTO n

Dureh AFTER wird dem System der Auftrag erteilt, nach einer Zeit t die Auftragson-
weisung durchzufuhren .

Die Zeit t beginnt mit der Abarbeitung des AFTER-Statements. Sie kann als Zahlen-
konstante, -variable oder arithmetischer Ausdruck angegeben werden; ihr Wert ent-
spricht der Relativzeit in Millisekunden.

AFTER-Auftrige kBnnen von jeder Progrommebene aus erteilt werden. Die Ausfilhrung
des zeitgebundenen Programms (der Auftragsanwelisung) selbst erfolgt jedoch stets in
der dafUr reservierten prioritdren Zeitebene..

Auftragsanweisungen ktnnen elnzelne Statements vom Typ LET, START, PUT, CALL oder
END sein. Sollen langere Folgen von Anweisungen als Zeitauftrag ablaufen, so sind
diese als getrennter Programmteil zu formulieren, mit GOTO n als Auftragsanweisung
enzuspringen und mit dem Statement STOP abzuschlieen. Weitere AFTER-Anweisungen
ktnnen darin enthalten sein.

Belspiele:

100 AFTER 200t LET A=INW(3) Abfrage INW(3) nach 200 ms

2@@ AFTER T2: START #:15@0 Programmstart Ebene @ nagh T2 ms
300 AFTER X+50: CALL HLTCC1) Anhalten Zahler 1 naeM x + 50 ms
5@@ AFTER 1000: GOTO 358¢@ nach 1000 ms:

550 LET OUTRC(1)=1 Setzen OUTB(1)

98% AFTER 10@Q: END Nach weiteren 1000 ms Progrommende
$6&@ STOP

2.4.4.1

Statement ON [INT

m ON INT i : Auftragsanweisung
m ON INT i : GOTO n

Durch ON INT wird dem System der Auftrag erteilt, bei Auftreten des Interrupts i
die Auftragsanweisung durchzufihren.

Fur i ist die Nummer des Interrupt-Eingangs einzutragen.

ON INT-Auftrige kénnen von jeder Programmebene aus erteilt werden. Die Ausfuhrung
des durch den Interrupt ausgelssten Programms (Auftragsanweisung) erfolgt jedoch stets

in einer der hierfur reservierten prioritdren Interrupi-Ebenen, die jeweils Gruppen von
Interrupt-Nummemn zugeordnet sind.

Demselben Interrupt i konnen im Laufe des Programms tiber ON INT verschiedene
Auftrige zugewiesen werden. Auftragsanweisungen kinnen einzelne Statements vomTyp
PUT, LET, START, CALL oder END sein. Sollen lingere Folgen von Anweisungen als
Interrupt-Programm ablaufen, so sind diese als getrennter Programmteil zu formulieren,
mit GOTO n als Auftragsanweisung anzuspringen und mit dem Statement STOP abzu-
schlielen.

Beispiele:

140 ON INT 3: LET OUTD(6)=DIS Ausgabe OUTD(6) wenn Interrupt 3

1S@ OV INT 31s START 1:105@ Start Ebene 1 wenn Interrupt 31
160 EVNAR 3, 31

17@ OV INT 17t END Programmende wenn Interrupt 17
139 ON INT 2: GOTO 600 ___wenn Interrupt 2

190@ ENAR 17,2
18 Fom xep$87
6}5 LET ’éﬁwcm:
620 NEXT X

625 STOP

Nullsetzen CQUTB(2)

/] -
? Nullsetzen CUTW(0...7)

Interrupts werden nur vom S ystem akzeptiert, wenn sie durch das Statement ENAB
zugelassen sind; durch DISAB kann maon sie wieder sperren.

2.4.4.2

Statements ENAB und DISAB

e m ENAB i
o m ENAB i1, i2,

Das Statement ENAB bewirkt, daBl die Interrupteinginge i gedffnet werden. Eintref-
fende Interrupts lssen die mit ON INT zugewiesenen Ablaufe aus.

Beispiel:

198 CN INT ¥ ¢ GOTO 1499
118 ON INT | ¢ GOIO 2449
120 ENAS 0,1

130 LET 0OUT3WW)=1

149 ON INT 7 ¢ END

159 ENAB 7

e m DISAB i
o m DISAB il, i2,

Durch das Statement DISAB werden die Interrupteingtnge i wieder gesperrt. Eintreffende
Interrupts bewirken nichts.

Beispiele:

120 DISASB o
2909 DISAB Vsl 52535455657

Bemerkung:

Bei Programmbeginn sind alle Interrupteingénge gesperrt; jeder zu benutzende Eingang
muB daher ausdricklich mit ENAB gedffnet werden.

Auch im gesperrten Zustand wird ein eintreffender Interrupt gespeichert. Sobald durch
ENAB zugelassen, wird der so gespeicherte Interrupt wirksam.

2.5.1.1

ProzeR-Ein-/-Ausgabe

M it BASEX ksnnen ProzeBanschlusse des DIETZ 621-Systems behandelt werden.

Fur die Standard-ProzeBperipherie sind in BASEX Systemvariablen und -prozeduren

en thalten, von denen sie voll unterstitzt wird. Sie sind speziell auf diese Prozef3-
anschlusse zugeschnitten und mit mnemotechnischen Bezeichnungen verfigbar

(z.B. INW, ...), so daB der Benutzer einen hohen Programmierkomfort zur Verfigung
hat.

Im Faile von Sonder-ProzeBperipherie oder vom Benutzer selbst angefertigten Interfaces,
die von BASEX angesprochen werden sollen, gibt es universelle Moglichkeiten zur For-
mulierung geeigneter Unterprogramme und fir deren Aufruf (Statements EQUI, EQUO
und PUT)."

Im folgenden sind die Fuhktionen fur beide Formen der ProzeBperipherie-Behandlung
besprochen. Die Systemprozeduren und -variablen fur Standard-ProzeBanschlisse wer-
den konfigurationsabhidngig implementiert.

Bemerkung:

Interrupt-Eingdnge (Einkarten-Interfaces vom Typ PDSE) geh&ren zwar zur ProzeB-
peripherie, sind jedoch wegen ihrer besonderen Funktion unter den Statements ON INT

bzw. ENAB und DISAB beschrieben (siehe 2.4.4.1/2.4.4.2).

2.5.2.1

Statement EQUI

e m EQUI Name = % Maschinencode %
e m EQUI Name (Index) = % Maschinencode %

Mit Hilfe von EQUI kann der Benutzer Unterprogramme (Makros) zu eigenen System-
variablen vom INPUT-Typ formulieren.

EQUI definiert einfache oder indizierte Systemvariablen, die in arithmetischen Ausdriicken
an beliebiger Stelle vorkommen dirfen. Sie werden insbesondere bei speziellen Prozef3-
Eingaben benutzt, fur die in BASEX keine Standard-Systemvariablen vorgesehen sind.

Das zur Systemvariablen gehdrende Makro wird zwischen %...% als Hexa-String-
Konstante angegeben; diese stellt den Maschinencode des Makros dar und ist stets mit
dem Rucksprung-Befehl F27C abzuschlieflen. Ist die Hexa-String-Konstante langer als
eine Zeile, so wird sie - ohne neue Anweisungsnummern - in der bzw. den ndchsten
Zeilen fortgesetzt.

For EQUI-Makros gelten folgende Vereinbarungen:

- Datenubergabe: ’ Der an das BASEX-Programm zu Ubergende bindre
Zohlenwert muBB nach Ablauf des Makros in folgen-
den Registern stehen:

'$2 Montisse niedrige Stellen
I¢3 n

‘P4 " hohe Stellen
‘05 Exponent

= {ndex (wenn vcyhmdén‘): Der vom .BASEX-Programm ubergebene Wert des

Index” J‘ht vor Ablauf des Makros als bintire
Gonzagt W Migenden Reglstorm

0 z?. Stellen
SOA tellen

- R!j'd(.lpt;ungl Dureh Maschinenbefehl F27C om Ende des Mokeros.

- Benutzbare Reglstérs ‘B2..." IF

Beispiel:
12¢ EZAUD TEMP = Zeeosocss F27C%
157 ZAUTL XYZ(Y) = Reoecos F2T7CHE

27C LET A=3.5xTEMP
212 IF ¥YYI(¥) = 2 THEN 360

2.5.2.2

Statement EQUO

¢ m EQUO Name = % Maschinencode %
e m EQUO Name (Index) = % Maschinencode %

Mit Hilfe von EQUO kann der Benutzer eigene Unterprogramme (Makros) formulieren,
die

a) Systemvariablen vom OUTPUT-Typ darstellen und die in LET-Anweisungen
verwendet werden,

b) durch PUT-Anweisungen als selbstdndige Abldufe aufgerufen werden.

Sie werden vor allem bei speziellen Proze-Eingaben benutzt, fir die in BASEX keine
Standard-Makros vorgesehen sind.

Der Name des Makros kann einfach oder indiziert sein. Im Falle a) steht der Makro-
Name auf der linken Seite des Gleichheitszeichens in LET-Anweisungen; dem Makro wird
vom BASEX-Programm der Wert des Ausdrucks auf der rechten Seite zugewiesen.

Im Fall b) wird das Makro ohne Wertzuweisung durch PUT aufgerufen.

Das Makro wird zwischen %...% als Hexa-String-Konstante angegeben; diese stellt den
Maschinencode des Makros dar und ist stets mit dem Rucksprung-Befehl F27C abzuschlieBen.
Ist die Hexa-String-Konstante langer als eine Zeile, so wird sie - ohne neue Anweisungs-
nummern - in der bzw. den ndchsten Zeilen fortgesetzt.

Fir EQUO-Makros gelten folgende Vereinbarungen:

- Datenibergabe (nur fur a): Der vom BASEX-Programm Ubergebene bindre
Zaohlenwert steht vor Ablauf des Makros in
folgenden Registern:

"2 Mantisse niedrige Stellen
’¢3 n

‘P4 " hohe Stellen
‘@5 Exponent

Index (wenn vorhanden): Der vom BASEX-Programm Ubergebene Wert des
Index’ steht vor Ablauf des Makros als bindgre
Ganzzahl in folgenden Registern:

‘@9 niedrige Stellen
‘@A hohe Stellen

- Rucksprung: Durch Maschinenbefehl F27C am Ende des Makros.
- Benutzbare Register: ‘g2..."1F

Beispiel:

122 ENQUO ALRM = ZBeoooos F27C%

125 EQUO OJLY(Y) = Ze.0F27C%

25@ PUT ALRM
285 LET 0LY(A+3)=Y

2.5.2.3

Statement PUT

e m PUT Name
e m PUT Name (e)

Mit PUT wird ein Unterprogramm (Makro) aufgerufen, das entweder in BASEX als
Standard-Makro enthalten ist oder das der Benutzer durch eine EQUO-Anweisung
definiert hat.

Der Name des Makros ist einfach oder indiziert; als Index e kann jeder beliebige
arithmetische Ausdruck verwendet werden.

Mit PUT aufgerufene Makros bewirken im allgemeinen ProzeR-Ausgabefunktionen ohne
Ubergabe eines Zohlenwertes.

Beispiele:

4073 PUT ALRM
€85 PUT REL(2)

Statische dfgitale Eingtinge (PSSE)

2.5.3.1-1

Diese Eingtinge werden durch die Systemvariablen

INW (x) In-Word
IND (x) In-Decimal
INB (x) in-Bit

beschrieben. Sie werden im Programm wie

einfach indizierte Zahlen-Variablen behan-

delt und liefern im Augenblick der Abarbeitung die am Eingang x anstehende digitale

Information in Form eines Zahlenwertes.

Diese Systemvariablen sind in der Standard-Version den Einkarten-Interfaces vom

Typ PSSE 16 zugeordnet (je 16 Eingangsleitungen). Sie interpretieren die externe

Information auf unterschiedliche Weise.

INW (x)

Die exteme Information wird als bindres
16 bit-Wort (20...2]5) abgefragt und als
positive Zahl (0...65535) ausgewertet.

x ist die Nummer des Eingangs (des Inter-
faces). Sie lduft von 0 bis 63.

IND ()

Die externe Information wird als bindr
codiertes dezimales Wort mit 4 BCD-
Stellen (100...10%) abgefragt und als
positive Zahl (0...9999) ausgewertet.

x ist die Nummer des Eingangs (wie oben).

INB(x)

Die Information an einer Eingangsleitung
eines Interfaces wird abgefragt und als
Zaohl (0 oder 1) ausgewertet. x ist die
Nummer der Eingangsleitung (0...1023).

Beispiele:
1980 LETA=INW(J)

1540 LET DECS=IND((B)
170 IF INB(Y+5)=9d THEN 204

X
X

VATH

Bindres Wort am Eingang @ nach A
BCD-Information am Eingang B nach DECS
Sprung nach 200 wenn Bit-Eingang Y+5

gleich Null

2.5.3.1-2

Eine zweite Version der Systemvariablen INW(x), IND(x) und INB(x) ist Einkarten-
Interfaces vom Typ PSSE 32 zugeordnet (je 32 Eingangsleitungen). Funktionell stimmt
sie mit der Standard-Version Uberein, jedoch ist zu beachten, dal je Interface 2
Gruppen von 16-bit-Eingtingen vorhanden sind:

INW (x): Je Interface 2 16 bit-Worte mit aufeinander-
folgenden Nummern
(z.B. x =0...1)

IND(x): Je Interface 2 mal 4 BCD-Stellen mit
aufeinonderfolgenden Nummern
(z.B. x =0...1)

INB(x): Je Interface 32 bindre Eingtinge mit aufein-
anderfolgenden Nummern
(z.B. x =0...31).

2.5.3.2-1

Speichemde digitale Ausgiinge (PSSA)

Diese Ausgidnge werden durch die Systemvariablen

OUTW (x) Out-Word
OUTD (x) Out-Decimal
OUTB (x) Out-Bit

beschrieben. Sie werden im Programm wie einfach indizierte Zahlenvariablen behandelt
und setzen im Augenblick der Abarbeitung den Ausgang x so, wie er dem zugewiesenen
Wert entspricht.

Diese Systemvariablen sind in einer Standard-Version den Einkarten-Interfaces vom
Typ PSSA 16 zugeordnet (je 16 Ausgangsleitungen). Sie interpretieren den Wert, der
dem Ausgang durch eine LET-Anweisung zugewiesen wird, auf unterschiedliche Weise.

O UTW(x)

Der zugewiesene Wert wird als positive
Zahl (0...65535) bewertet ynd als
bingres 16 bit-Wort (20...219) im
Ausgang gespeichert. x ist die Nummer
des Ausgangs (des Interfaces). Sie lauft
von 0 bis 63.

OUTD(x)

Der zugewiesene Wert wird als positive
Zahl (0. .9999) bewertet und als bindr
codiertes dezimales Wort mit 4 BCD-
Stellen (]OO...IOB) im Ausgang ge-
speichert. x ist die Nummer des
Eingangs (wie oben).

OUTB(x)

Eine Ausgangsleitung wird entsprechend
dem zugewiesenen Wert (0 oder 1) ge-
setzt. Die Ubrigen Ausgdnge des Inter-
faces bleiben unverdndert. x ist die

Nummer der Eingangsleitung (0...1023).

Beispiele:
200 LET OUTW(x2)=1930+V2 1000 + V2 nach Ausgang X2
259 LET 0JID(63)=9999 9999 in BCD nach Ausgang 63

755 LET OUTB(5%X)=K1 0R K2 Bit-Ausgang 5-X entsprechend (k1vk2) seizen

2.5.3.2-2

Eine zweite Version der Systemvariablen OUTW(x), OUTD(x) und OUTB(x) ist
Einkarten-Interfaces vom Typ PSSA 32 zugeordnet (je 32 Ausgangsleitungen).
Funktionell stimmt sie mit der Standard-Version Uberein, jedoch ist zu beachten,
daB je Interface 2 Gruppen von 16-bit-Ausgingen vorhanden sind:

OUTW(x): Je Interface 2 16 bit-Worte mit aufeinander-
folgenden Nummern

(z.B. x =0...1)

OUTD(x): Je Interface 2 mal 4 BCD-Stellen mit aufein-
anderfolgenden Nummern
(z.B. x =0...1)

OUTB(x): Je Interface 32 binsre Ausginge mit aufeinander-
folgenden Nummern

(z.B. x = 0...31).

2.5.3.3

Zshleingdnge (P1ZE)

Fur Zshleingtinge sind vorgesehen:

die Systemvariablen OUTC(x) Out Counter
INC(x) In Counter

die Systemprozeduren ACTC(x) Activate Counter
HLTC(x) Halt Counter

OUTC(x) und INC(x) werden im Programm wie einfache indizierte Variablen benutzt,
wiahrend ACTC(x) und HLTC(x) durch das Statement CALL aufgerufen werden. x ist
die Nummer des Zdhleingangs; sie lauft von 0 bis 15.

Damit konnen bis zu 16 Zshleingdnge (Einkarten-Interfaces vom Typ PIZE 16) bedient
werden, die jeweils einen 16 bit-Zshler enthalten (Kapazitat 0...65535 Impulse).

OUTC(x)

Der Zshler wird auf den Wert gesetzt, »
der ihm Uber LET zugewiesen wird. / x=

x=1

X - |x=2

INC(x)

Liefert den Inhalt des Zahlers, der dabei
unverdndert bleibt.

m CALL ACTC(x)

Offnet den Zshleingang fir von auBen kommende Impulse.

m CALL HLTC(x)
SchlieBt den Zghleingang.

Beispiel:

19 LET 0JTC(2)=4 Zshler 2 nullstellen
249 CALL ACTC(2) Eingang offnen

30 AFTER 1000 : GOTO 120 Nach 1000 ms:

199 CALL HLTC(2) Eingang schlielen
110 LET ZLE=1INC (2) Zshlinhalt nach ZLR
120 STOP

Bemerkungen:

Bei Uberlauf (2216 Impulse) kann ein Interrupt ausgeldst werden, der mit ON INT zu
verarbeiten ist. Auf diese Weise lassen sich gréBere Impulsmengen zdhlen. Die Zuord-
nung des Interrupts zum Zchleingang wird systemabhéngig vorgenommen (Option).
Abfrage des Zashlinhalts tUber INC(x) stets bei geschlossenem Zihleingang empfohlen.

2.5.3.4

Z eitausgtinge (PISA)

Fur Zeitausgdnge sind vorgesehen

die Systemvariable OUTT(x) Out Timer
die Systemprozedur ACTT(x) Activate Timer

OUTT(x) wird im Programm wie eine einfach indizierte Variable benutzt, wahrend
ACTT(x) durch des Statement CALL aufgerufen wird. x ist die Nummer des Zeit-
ausgangs; sie lauft von 0 bis 15,

Damit kénnen bis zu 16 Zeitausgtinge (Einkarten-Interfaces vom Typ PISA 16) bedient
werden, die jeweils einen Quarz und einen 16-bit-Zahler enthalten, Sie dienen zur
Ausgabe eines Steuversignals, dessen Zeitdauer zwischen 0 und 65535 Zeiteinheiten
liegen kann (Auflssung 0.1 oder 1 ps) .

-t

O UTT(c) / =]XZ %

Setzt den Zeitausgang auf die gewinschte x=2
Daver t; der Wert wird mit LET zugewiesen.

m CALL ACTT(c)

Lost die Ausgabe des Steuersignals aus.

Beispiel:

50 LET OUTI(4)=Ta+20dY Zeitdaver 0 auf T@ + 2000 setzen
60 CALL ACTT(2) Auslssung des Signals

Bemerkungen:

Mit Ablauf der Zeit (Ende des Signals) kann ein Interrupt ausgeltst werden, der mit
ON INT zu verarbeiten ist. Die Zuordnung des Interrupts zum Zeitausgang wird
systemabhtngig vorgenommen (Option).

Die Anzahl der Zeitausginge und Zahleinginge pro System ist auf insgesamt 16 be-
grenzt; sie werden von O bis 15 numeriert und kénnen in beliebiger Kombination
verwendet werden.

2.5.3.5

Einkanal-Analog-Eingtinge (ADE)

Diese Eingtnge werden durch die Systemvariable

INA (x) In Analog

beschrieben. Sie wird im Programm wie eine einfach indizierte Variable behandelt
und liefert im Augenblick der Abarbeitung die am Eingang x anstehende Spannung
als Zahlenwert.

Sie bezieht sich auf einen von bis zu 16 Analog-Digital-Umsetzern (Einkarten-Inter-
faces vom Typ ADE 12... mit 12 bit Ausgang). Der digitalisierte MeBwert liegt un-

abhingig vom MeBbereich zwischen 0 und 4095.

Die anliegende Spannung wird digitalisiert
und als Zahlenwert Ubergeben.

x ist die Nummer des Eingangs; sie lduft
von 0 bis 15.

Beispiele:

409 LET MESZ2=INA(Y) /Y4096 Mefeingang 0 in mV nach MES2

195 IF INAC(Z)>511 THEN 229 Sprung nach 220 wenn Eingang z 2511 Teile
620 PRINT INACL) Mefeingang 1 ausdrucken

Bemerkung:

Der uber INA(x) abgefragte Wert ist ggfs. zu skalieren, um den Spannungswert in V
oder mV zu erhalten. Im ersten Beispiel ist ein ADU mit 0., .+10 V MeBbereich an-

genommen; der Mefwert wird auf mV skaliert.

2.5.3.6

Einkanal-Analog-Ausgiinge (DAU/DAL)

Diese Ausgidnge werden durch die Systemvariable

OUTA(x) Out Analog

beschrieben. Sie wird im Programm wie eine einfach indizierte Zahlenvariable behandelt
und setzt im Augenblick der Abarbeitung den Ausgang x auf den mit LET zugewiesenen
Wert.

Sie bezieht sich auf einen von bis zu 16 Digital-Analog-Umsetzern (Einkarten-Inter-
faces vom Typ DAU10... bzw. DAI 10... mit 10 bit Auflsosung). Der auszugebende
Wert liegt unabhtingig vom Ausgangsbereich zwischen 0 und 1023,

X:
Der zugewiesene Wert wird in den DAU /’x=] '

Ubertragen und dessen Ausgangssignal X [x=2
entsprechend gesetzt. x ist die Nummer
des Ausgangs; sie lauft von 0 bis 15.

Beispiel:

1055 LET OUTA(U)=ANA*1d2.4 Ausgang @ auf ANA (in V) setzen

Bemerkung:

Der tber OUTA(x) auszugebende Wert ist ggfs. zu skalieren, um Spannungs- oder
Stromwerte, die intern in V, mV oder mA vorliegen, in die richtige Ausgangsgréfle
zu verwandeln. Im obigen Beispiel ist ein Ausgangsbereich von 0...+10 V angenom-
men; die Variable ANA enthdlt einen Spannungswert in V.

2.5.3.7

Analog-MeBsystem ,(ADM 621)

Zur Bedienung des mittelschnellen Analog-MeBsystems vom Typ ADM 621 mit einge-
bautem Multiplexer dienen die Systemprozeduren

ADCS (a,k,q) A/D-Converter Single
ADCD (a,k,q) n Double
ADCM(a,k,q) " Multiple

Sie werden mit CALL aufgerufen, lésen q aufeinanderfolgende Messungen aus und
legen die q Mefiwerte in einem Datenfeld ab, das bei a beginnt. k ist die Nummer
des benutzten bzw. des ersten benutzten MefBkanals.

D ie Ubernommenen Zahlenwerte entsprechen der Auflssung des MefBsystems (z.B.
0...4095 bei 12 bit).

m CALL ADCS(a,k,q)

Der Kanal k wird q-mal nacheinander gemessen; die q Werte stehen nachher im Feld a.

m CALL ADCD(a,k,q)

Die Kandle k und k+1 werden abwechselnd insgesamt g-mal gemessen; die q Werte ste-
hen nachher im Feld a. Die Nummer k des Basis-Kanals muB ganzzahlig sein.

m CALL ADCM(a,k,q)

Die Kandle k, k+1, ..., k+g~1 werden nacheinander gemessen; die q Werte stehen
nachher im Feld a.

Beispiele:

1J0 DIM MESS (99) Feld MESS mit 100 Platzen

204 CALL ADSC(MESS(W)s5s51404) Kanal 5 100mal messen

300 CaLl fUCUCMESS(J)s20sN) Kandgle 20 und 21 N-mal abwechselnd messen
429 CALL ALUCM(MESS (53)518,58) Kandle 10...59 messen und ab Platz 50

ablegen

Bemerkung zu den Parametern:

= Feldname (Array); ist mit DIM zu reservieren.
= Zahl (0...63))
Zahl (1...256))

x Q
|

als Konstante, Variable oder arithmetischer Ausdruck angebbar.

Il

2.5.3.8

Integrierendes Mefsystem (ADI/ADA)

Zur Bedienung der integrierenden Analog-Meflsysteme vom Typ ADI 200, ADI 210,
ADA 203 und ADA 213 sowie des vorgeschalteten Mefistellenumschalters MUl dienen
die Systemprozeduren '

ADIS (a,k,q,s) Einkanal-Messung
ADID (a,k,q,s) Zweikanal-Messung
ADIM(a,k,q,9) Mehrkanal-Messung

Sie werden mit CALL aufgerufen, |sen q aufeinanderfolgende Messungen aus und legen
die q MefBwerte in einem Zahlenfeld ab, das bei a beginnt. k ist die Nummer des be-
nutzten bzw. des ersten benutzten MeBkanals.

Der Parameter s definiert den Anfang eines Zahlenfeldes, in dessen 4 Platzen folgende
Steuerparameter stehen:

s(0) MeBgroBe: 1 = Gleichspannung (Volt)
2 = Widerstand (Ohm)
3 = Wechselspannung (Volt)

s(1) MeBbereichs-Vorwahl: 0 =1000 V#/ 10 MOhm
1= 100 "/ 1 =
2= 10 " /100 kOhm
3 = 'I n / 'IO n
4 — O.'I n / 'I 1]
5= 0.01 v=

s(2) MefBfolge: 1 = 25 Messungen/s
2 =100 "
3=10 "

s(3) MeBgeschwindigkeit: B = langsam
1 = schnell

e m CALL ADIS (a,k,q,s)

Der Kanal k wird gq-mal nacheinander gemessen.

em CALL ADID (a,k,q,s)

Die Kandle k und k+1 werden abwechselnd insgesamt q-mal gemessen.
em CALL ADIM (a,k,q,s)

Die Kandle k, k+1, ... k+g-1 werden nacheinander gemessen.
Beispiele:

125 CALL ADIS (A(¥),13,10,5¢8))
250 CALL ADID (MESS(R,0),KAN,ZAHL>STF(@))
375 CALL ADIM (B(2),X57,1(d))

2.6.1.1

Peripheral Ein-/Ausgabe

BASEX bedient periphere Ein-/Ausgabegerite, wie z.B. das Konsol-Terminal,
Schnelldrucker usw.

Die Anweisungen INPUT und PRINT (siehe 2.2.3.7/2.2.3.8) dienen zur Ein- bzw.
Ausgabe Uber diese Gerdte.

D aruberhinaus gibt es in BASEX eine Reihe von Systemprozeduren, die diese Gerdte
in anderer Weise behandeln oder Geridte mit nicht zeichenweisem Datentransfer
bedienen.

Sie werden konfigurationsabhiingig implementiert und sind in den folgenden Abschnit-
ten beschrieben.

2.6.2.1

Systemprozedur REAI

Mit der Systemprozedu:
READ (d, o)

wird von einem Gertit mit der Nummer d ein Zelichenstring lp dde String-Variable 3§
gelesen. Die Anzahl der Zeichen entsprieht der Lnge ven o8 lewt Definition in dér
CHAR-Anweisung. Die Zeichen werden ohne Parlty Im Strins dbgelegt.

e m CALL READ (d,qf)

Eingabe eines Strings aus Gerdt d nach gf.

Beispiel:

29 CHAR ADDRB (7))
1919 CALL s£EAD (L,&Uiss)

Bemerkung:

Die Systemprozedur READ hat eine shnliche Fumktion wie die Anweisung INPUT.
Jedoch bestehen folgende Unterschiede:

- Das Eingabegerdt d muB nicht vorher mit PRINT DEV(d) spezifiziert werden,
sondem wird unmittelbar als Parameter ongegeben.

- Vor Eingabe wird kein Fragezeichen (?) ausgegeben, um den Bediener zur
Eingobe aufzufordern.

- Es werden alle Zeichencodes gelesen (also z.B. auch Komma, das bei

INPUT als Trennzeichen dient).

- Die Anzahl der Zeichen ist gleich der in CHAR reservierten Ldnge des

Strings. Vorzeitiger Abbruch der Eingabe ist nicht moglich; ebenso nicht
die Eingabe Uberzdhliger Zeichen.

2.6.3.1-1

Magnetband-System (MBE-621)

Zum Betrieb von Magnetband-Laufwerken mit Controllem vom Typ MBE-621 dienen
die Systemprozeduren

RF (u,a,l) Read File

WF (u,qa,l) Write File

RFS (u,q,l) Read File String

WFS (u,q,l) Write File String
WEM (v) Write Filemark

BSP (u,n) Backspace

FWP (u,n) Forward

BSPF (u) Backspace to Filemark
FWDF(u) Forward to Filemark
REW (uv) Rewind

Sie werden Uber CALL aufgerufen. Das Laufwerk wird mit u bezeichnet (@...3). Das
Speicherfeld wird mit a angegeben (Zahlenfeld bzw. Stringvariable), die Linge des
zu lesenden bzw. zu schreibenden Blocks mit | (Zahlen bzw. Zeichen). Der Parame-
ter n gibt die Anzahl der Blocke an.

AuBlerdem ist fur die Fehlerbehandlung die Systemvariable

TERR Tape Error

vorgesehen.

e m CALL RF (u,q,l)

Lesen von | Zahlen (je 4 Byte) vom Band in Zahlenfeld a.

e m CALL WF (u,aqa,l)
Schreiben von | Zahlen (je 4 Byte) aus Zahlenfeld a auf das Band.

em CALL RFS (u,a.l)

Lesen von | Zeichen vom Band in Stringvariable a.

em CALL WFS (u,a,l)

Schreiben von | Zeichen aus Stringvariable a auf das Band.

om CALL RFM (v)

Schreiben einer Filemark.

2.6.3.1-2

e m CALL BSP (u,n)

Band um n Blscke zuriickspulen.

em CALL FWD (u,q)

Band um n Blscke vorlaufen lassen.

em CALL BSPF (u)

Band bis zur ndchsten Filemark zurickspulen.

em CALL FWDF (v)

Band bis zur ndchsten Filemark vorlaufen lassen.

Bemerkungen:

Bei BSP und FWD zshlt eine Filemark als Block (keine Fehlermeldung). Bei n = 0
wird das Band zur ndchsten Filemark gespult (Funktion wie bei BSPF bzw. FWDF).

Nach Ausfuhrung von BSPF steht das Band vor, nach Ausfihrung von FWDF hinter
der Filemark.

o TERR

Liefert einen Fehlercode, dessen Zahlenwert folgenden Fehlerarten entspricht:

0 Kein Fehler
1 Laufwerk nicht on-line
2 " nicht bereit
3 Speicherfeld-Adressen zu klein
4 Bandanfang (BOT)
5 Parity-Fehler
6 Blockldnge <16 byte
7 Schreibversuch trotz Schreibsperre
8 Keine Betriebsart erkannt oder kein Band aufgelegt
9 Blocklange zu grof
10 Filemark gelesen
13 Bandende (EOT)

>13 EOT + weiterer Fehler

Beispiele:

122 CALL RF (2,AC3),173)

120 CALL WF (1,BER(3,2),2%)

153 CALL RFS (¥,Ts,€4)

179 CALL VUFS (3,112%,2Z)

2032 CALL RFM (@)

212 CALL 3SP (2,8)

215 IF TERR<3 0OR TERR>1€ THEN 237
2270 GO TO TERR OF 823581756

232 e

Spezielle Bildschirm-Befehle (BTH 2000)

2.6.3.2-1

BASEX kann (als Option) um eine Reihe von Steuerbefehlen fiur alphanumerische Bild-
schirm-Terminals vom Typ BTH 2000 erweitert werden:

DISC (x,y)

DICH
DILD
DILI
DICS
DICF
DISB
DISF
DIXM
DISP

om CALL DISC (x,y)

Set Cursor
Cursor Home
Line Delete
Line Insert
Clear Screen
Clear Foreground
Set Background
Set Foreground
X—mit

Set Print

Positionieren des Cursors auf eine vorgegebene Spalte x einer angegebenen Zeile y.
x kann den Wert §...73, y den Wert @...26 annehmen. Der Wert @ bedeutet die

erste Spalte bzw. Zeile.

Beispiele:

<< 4
38 CALL DICSC

em PUT DICH

23 LZT ¥ = A+3,VY=C*D
(O

27

Setzen des Cursors auf die 11. Spalte
und 12, Zeile

Setzen des Cursors auf die Position,
die durch x, y vorgegeben wird.

Positionieren des Cursors in Ausgangsstellung (erste Spalte der ersten Zeile).

e m PUT DILD

Lsschen der Zeile Uber dem Cursor. Alle Zeilen unter der geldschten Zeile werden
um eine Zeilenposition nach oben geschoben. Am unteren Rand des Bildschirms er-

scheint eine Leerzeile.

em PUT DILI

Einfugen einer Zeile. Es werden alle Zeichen unterhalb des Cursors um eine Zeile
nach unten verschoben. Die unterste Zeile auf dem Bildschirm geht verloren. Der
Cursor springt an die erste Position der eingefigten Leerzeile.

2.6.3.2-2

e m PUT DICS

Loschen des Bildschirm-Inhaltes, verbunden mit Positionieren des Cursors in Ausgangs-
stellung.

e m PUT DISB

Alle diesem Befehl folgenden Zeichen wearden als Hintesgrundzeichen dargestellt.

e m PUT DISF

Alle diesem Befehl folgenden Zeichen werden als Vordergrundzeichen dargestellt.

e m PUT DIXM
Ubertragung des Bildschirm-Inhaltes zum Rechner (nur im "Batch Mode"). Es werden
alle Vordergrund-Zeichen vom letzten Transmit-Zeichen an Ubertragen. Sofort danach
mull eine Eingabe programmiert sein.

Beispiel:

253 PUT DIXHM
260 CALL READ (3, A%$)

e m PUT DISP

Ubertragung des Bildschirm-Inhaltes auf das dazugehsrige Hardcopy-Geriit.

e m PUT DICF

Lsschen der Vordergrunddaten. Es werden alle hell dargestellten Zeichen im Vorder-
grund des Bildschirms durch Blanks (Leerzeichen) ersetzt, und der Cursor springt in
die Ausgangsstellung.

2.6.3.3

G raphische Ausgabe

Zum Beirieb von graophischen Ausgabegertiten dienen die Systemprozeduren

HOME
PLOT (x,y,2)
SYMB (h, af)

Sie werden Uber CALL aufgerufen.
Als Ausgabegerst kann angeschlossen sein:

- ein Speicheroszillograph
- ein XY-Schreiber, oder
- ein Inkremental-Plotter

In den beiden ersten Fallen ist das Gerdt tUber ein Interface angeschlossen, das fur
jede der beiden Koordinaten x (Breite) und y (Hohe) einen 10-bit-Digital-Analog-
Wandler enthdlt (Auflosung 1024). Eine Einheit bei der Angabe von x, y und h
entspricht hier also 1/1000 der vollen Schreibbreite bzw. -hshe.

Die Einheit fur die Ausgabe beim Inkremental-Plotter entspricht der Schrittweite des
Cerdtes.

m CALL HOME

Die Ausgangsstellung (Koordinaten-Nullpunkt) wird eingenommen. Im Falle des
Speicheroszillographen wird aulerdem der Bildschirm geldscht.

m CALL PLOT (x,y,z)

LaBt den Strahl bzw. den Schreibstift vom jeweiligen Ausgangspunkt zum Zielpunkt
mit den Koordinaten (x,y) wandern.

Ist z =, so geschieht dies nichtschreibend.
Ist z =1, so wird zwischen Ausgangs- und Zielpunkt linear interpolierend geschrieben.

m CALL SYMB (h, g9

Schreibt den Textstring af (grofe Buchstaben, Ziffern, Sonderzeichen). Der Schriftzug
wird waagerecht geschrieben, d.h. in Richtung der Koordinate x. Die linke untere
Ecke des ersten Schriftzeichens ist die Ausgangsposition, d.h. die jeweilige Stellung
des Strahls bzw. der Schreibfeder vor dem Aufruf von SYMB. Der Parameter h ist fur
die Schrifthshe maBigebend; die Schriftzeichen haben die Hshe 7h. Der Rasterabstand
der Zeichen betrigt ebenfalls 7h,

Beispiele:

190 CALL HOME
11v CALL PLOT (5,18,9)
128 CALL SYMBC(1l,"8ASEA")

2.6.3.4

Kartenleser (MDS 6042)

Zum Betrieb des Lochkarten-Stapellesers MDS 6042 ist die Systemprozedur
CARD (d,aq,f)

vorgesehen. Sie wird mit CALL aufgerufen und bewirkt das Lesen einer 80-spaltigen
Lochkarte. Die Daten der Lochkarte werden in ein Zeichenfeld (Stringvariable) a
gelesen, wo sie in Form von ASClI-Zeichen stehen und als String weiterverarbeitet
werden konnen.

Mit d wird die Gerdte-Nummer angegeben. Durch f wird ein Speicherplatz (dimen-
sionierte Variable) definiert, in dem ein Fehler-Code steht:

Fehler-Code 0 kein Fehler '

Zeichen EOF (End of File) gelesen
Kartensehacht leer bzw. zu voll
Einziehfehler

Lesefehler

Parity-Fehler

b wnN —

Der Fehlercode kann nach Lesen einer qute abgefragt werden.

om CALL CARD (d,a,f

Lesen einer Lochkarte am Gertit d nach Stringvarioble o. Ein eventueller Fehler
steht in f,

Beispiel:

183 CHAR KS$ (87)

208 CALL CARD (1€,KS,F (7))

213 GOSUB 8ge

€22 IF F(2)=2 THEN 828

812 CCTO F(7) OF 837,848,350, 862,890
820 RETURN

830 PRINT "ERRGT EOF"

g35 RETURN

2.7.1.1

Sonstige Systemvariablen und -prozeduren

Im folgenden sind in BASEX benutzbare Systemvariablen und -prozeduren beschrie-
ben, die allgemeinen Charakter haben, den Sprachumfang von BASEX ergdnzen und
bei Bedarf implementiert werden.

2.7.2.1

Systemprozeduren LDST und STST

Die Systemprozeduren

LDST (a, bg, 1) Load String
STST (a, b8,) Store String

dienen zum Datenaustausch zwischen einem Zahlenfeld a und einer String-
Variablen bg der Linge |. Sie werden mit CALL aufgerufen.

Das Zahlenfeld a ist mit DIM, der String b8 mit CHAR zu reservieren. Da jeweils
4 String-Zeichen einer Zahl entsprechen, sollte die Lange | ein ganzzdhliges Viel-
faches von 4 sein (1 = 4, 8, 12, ...).
~m CALL LDST (a, b3, 1)

Der String bg wird mit dem Inhalt des Zahlenfeldes a geladen; es werden | Bytes
Ubertragen.

m CALL STST (a, b3, 1)
Der Inhalt des Strings b wird im Zaohlenfeld a gespeichert; es werden | Bytes Ubertragen.
Beispiele:

1

. g | |
11 Gl 554 IN7/7/7/ 7/ % XA

209 CALL LDST(A(Y)I»3554) I B J

o l
300 DIM AC1,2) RL /§<)>47; ?
310 CHAR S3(15) /?C%??ﬁ/

320 CALL STST(R(1,1),3%,8) T

s A T T T T

Bemerkung zu den Parametern:

a = ein- oder zweifach indizierte Zahlen-Variable
= String-Variable
| = Anzahl der ubertragenen Bytes (4, 8, 12, ...)

a kann ein beliebiges Element des Zahlenfeldes sein; es wird von dort aus Ubertragen.
Die Lénge von b% kann groBer als | sein; die Ubertragung beginnt stets mit dem ersten
Zeichen von bj.

A

8.1-1

Systemgenerierung Lochstreifen-Systeme

Jeder Benutzer kann eine spezielle Konfiguration des BASEX-Systems vornehmen,
die seinen BeduUrfnissen entspricht.

Fur Lochstreifen-orientierte Anlagen erhilt er einen Programmstreifen, in dem das
gesamte BASEX-System enthalten ist. Im Dialog wihlt er die Funktionen, System-
variablen und -prozeduren aus, die er fur seine Aufgabe braucht; die brigen
werden Uberlesen.

Zum SchluBB kann der Benutzer weitere verfigbare oder auch selbst erstellte Routinen
einlesen.

Auf diese Weise entsteht ein speicheroptimales BASEX-System.
Die Systemgenerierung erfordert folgende Manipulationen:

Taste RS betdtigen, Schalter BS einlegen. Lader-Lochstreifen (im RUBOUT-Bereich)
in Teletype-Leser oder in schnellen Leser einlegen (im letzteren Fall zusdtzlich
Schalter 4 emlegen) Taste ST betttigen. Jetzt wird der Lader in die Platze)
bis ‘FF des'RAMs emgelesen

Nach Halt des Lochstre!fen‘!‘em sind Schalter BS und 4 (falls erforderlich) in Nor-
malstellung zu bringen. Taste 8T betdtigen. Nach dem Einlesen meldet sich der
Rechner mit ‘* % BASEXu* %’ Auf die nun folgenden Fragen ist fur Ja mit "Y',
fur Nein mit ‘N’ zu anfworfen

Es folgt der Dialog zwischen Benutzer und System (Beispiel mit Erkldrungen siehe
ndchste Seite). Zum SchluB fragt das System nach der Eingabe weiterer Routinen.

Wird diese Frage negativ beantwortet, meldet sich der Rechner mit ' ¥ READY"’.
Bei positiver Antwort mussen jetzt die einzelnen Systemprozeduren Uber den Leser
eingelesen werden. Das geschieht folgendermalen: Die Lochstreifen mussen im
RUBOUT-Bereich auf den Lochstreifenleser gelegt werden, und die Start-Taste ist
so oft zu betdtigen, bis der Lochstreifen gonz eingelesen ist. Nach dem Einlesen
der letzten Prozedur noch einmal die Taste ST betdtigen, worauf sich der Rechner
mit " READY’ meldet.

Beispiel fur Systemgenerierungs-Dialog:

MEMORY SIZE
NEMORY SIZE

48K ? Y N (KERNSPEICHERGROESSE 48K)
32K ? Y/N (KERNSPEICHERGROESSE 32K)

FAST PUNCHER ?Y/N (SCHNELLER LOCHER?

FAST READER

? YN (SCHMNELLER LESER)

DYNAMIC INTERRUPT INPUTS ?.-Y/N (INTERRUPT-EINGARENGE)
BEI Y. ABFRAGE AUF: LEVEL UMD EINGAENGE
BE!I N. NQECHCTE FRAGE:

LOG
EXP
SOR
TAN COS SIN
ATN
© REMND
* MBEC ? Y/N
SEL 7?2 Y/N
MIN ? Y/N
HOUR 72 Y/N -
LEV . ? YsN
INB ' 2, Y/N
INW "7 Y/N.
IHD " 7 Y/N
QUTB ? Y/N
oUTY .72 Y7N
“QUTD 7 PN
INR 7 Y7/N
ouUTA 7 YN
INC 2 t-H
QUTC ? YN
QuUTT ? YN
ACTC ? YsN
HLTG 2 Y~N
ACTT 2 Y/N
LDST 7 Y/N
STST 7 Y/N
READ ? Y-N
BISP ? Y N
DIXM ? Y/N
DISF ? Y/N
DISB ? YN
DICF 2?2 YN
DICS ? YN
DILI ? Y/N
DILD ? Y/N
DICH ? YsN
DISC ? Y/N
STHNU 7 Y/N
ERR ? Y/N
STIN 2 Y/N
SUBROUTINE

O N N

2 YN "(HAT. LOGARITHWUS)
Y,n KE-FUNKTION)
Y/ N (QURDRATWURZEL)
Y/ N CEANGENS COSINUS SINUS)
YN CARCUSTANGENS)

2 YN (ZUFALLSZAHLENGENERATOR)

(MILLISEKUNDEN)
(SEKUNDEN
(MIMUTEN)
(STUNDEN)®
(LEVYEL) .

,inTUEIStk DIGITALER EINGAMG)

(UOITU[!SER DIGITALER EINGAND)
(UORTUEISEP DIGITALER BCD-EINGANG)
(Bl'&EISER DIGITALER AUSGANG)
(UORTUEIQER BIGITARLER RUSGANG)
(UORTUEIbER DIGITALER BCD-AUSGRNG)

KEINKRN&L AMRLOGEINGANG?
CEINKANAL -ANALOGAUSGARNG)

(ZREHLER-INHALT ABFRAGEN)
(ZAEHLER-INHARLT SETZEN)D

(ZEITZAEHLER-IMNHALT SETZENY

¢(ZHEHLER AKTIVIEREMD

(ZAEHLER ANMALTEN)

CZEITZREHLER AKTIVIEREN)

(STRIMNG LARDEN AUS REALD

(REAL LRDEN ALS STRING)

(EINGABE STRIMNG)>

(BILDSCHIRM~INHALT AUSDRUCKEN)
(BILDSCHIRM-INHALT SENDEN)

(UMSCHALTUNG AUF VYORDERGRUMD-DARSTELLUNG?
(UMSCHALTUNG AUF HIMTERGRUND-DARSTELLUNG)
(VORDEKGRUND-DATEN LOESCHEN)

(BILDSCHIRM LOESCHEN)

(ZEILE EIMFUEGEN>

(ZEILE LOESCHEN)

(CURSOR IN GRUNDSTELLUNG)

(CURSOR POSITIGNIEREN)

(STATEMENT-NUMMER?

(FEMLER-VYARIREBLE)

(BASEX-UHR SETZEM)

PROCEDURE ? Y~/N

8.2-1

Einbau von Routinen in BASEX

Der Benutzer kann fir das BASEX-System Maschinencode-Programme (Routinen)
erstellen, die er bei der Systemgenerierung hinzufugt (s. 8.1.2.1).

Den Routinen stehen die Register ‘B2 bis '1F zur Verfigung. Als Variablen-
speicher sollten nur Register benutzt werden, damit die Routine reenterable wird.

Es gibt verschiedene Arten von Routinen:
- fur einfache Systemvariablen

- fur indizierte Systemvariablen
- fur Systemprozeduren (CALL ...)

1. Einfache Systemvariable:

Am Anfang der Routine stehen 8 Kennbytes:

a) In den beiden ersten Bytes wird die Lange der Routine (chne die 8 Kennbytes)
als 2-Byte-Hexa-Zah! angegeben.

b) Im dritten Byte steht als Kennung Hexazahl ’59.
c) Das vierte Byte enthilt die Definition der Transferrichtung {els Hexazahl):

fur INPUT-Typ: ju (Hexa fd)
fur OUTPUT-Typ: -1 (Hera 'FF)

d) In den restiichen vier Bytes wird der Name der Routine angegeben; wenn
weniger als vier Zeichen benttigt werden, miussen die restlichen Bytes mit
Leerinhalt versehen werden.

Es folgt die erste Instruktion der Routine; an diese Stelle springt das Programm
nach dem Aufruf durch das BASEX-Programm.

Soll ein Datenaustausch mit dem BASEX-Programm stattfinden, so ist die Gleit~
komma-Zahl Uber die Register '@2...'@5 (Akku @ + 3 weitere Platze, in fur
Zahlen tblicher Lage) auszutauschen. Bei Variablen vom OUTPUT-Typ steht sie
dort nach dem Aufruf; bei Variablen vom INPUT-Typ ist sie vor dem Rucksprung
dorthin zu bringen.

Der Rucksprung aus der Revtine zuriick in das BASEX~Programm erfolgt durch den
Befehl JPX,,,"7C.

8.2-2

Beispiel:

Routine fur einfache Systemvariable vom INPUT-Typ (LEV):

Boeo] s 6.
668 i /
KENNBYTES
éeez @eeo 2% H ,'66B8S;
8% @@
6083 BBB2Z H ;°89;
59
6084 B89 3 D s 6; 1]
eonsS vBv4 Ix T SLEVYY,
4C 45 56
6886 Beay D s 9 e
eoa? /
GoeE vBoLE 4(«LDC , @ 5 8- iB 64 806 60
EINSPRUNG
eaas gaul GL ; @ H 24
EQiE GRGD RHC .8 ;afF ; Be &F
g8ii @aaafF JE¥ . s s '?7C v F2 ?7C
RUECKSPRUHNG
agglz ¢

i

8.2-3

2. Indizierte Systemvariable

Am Anfong stehen 8 Kennbytes:

a) Siehe 1.q).

b) Im dritten Byte steht die Kennung als Hexazahl ’5A.
c) Siehe 1.¢).

d) Siehe 1.d).

Der Ubrige Aufbau ist identisch mit 1); jedoch erfolgt vom BA’SEX'-F:rogromm die
Ubergabe eines Index’ als 2-Byte-Ganzzah! in den Registem ‘@9, ‘fA.

Beispiel:

Routine fur indizierte Systemvariable vom INPUT-Typ (INB):

6000 0) 0;
8001 4
KENNBYTES
6802 6809 2+ H : 8828,
28 689
p083 8062 H + '3A;
5A
6084 8083 D » 8 1)
8085 8804 3= T » "INB";
49 4E 42
8066 0087 4 i
UL R /
6098 ’
8889 o088 4(sLDC , @ s s 1B 64 80 00
EINSPRUNG ;
00190 008C LpCD, 6, '83F8 ; 1E 81 @6 Fe 83
8811 0611 2=tANR , 6. 9i 1E BS 66 @9
8012 0615 BNOC, 9, 8, A i 79 89 08 @4
8013 0619 ORC ., 6, i Ci 86 01
6614 601C A : LDa , @ » 736801 , 6; BE @1 30 86
8815 0820 ANC 9, 7i 81 89 87?7
8816 0823 EQOC ., 9, -1 Di 89 FF
8817 9826 B : Iz ., 9, . C i 43 B89 84
8018 8829 SRO ., @ i 28
8019 B862a JPL » B i F8 FB
8820 882C C : ANC , @ ’ Li Be et
6821 802€E JPX p »'7C 7 F2 ?C
RUECKSPRUNG ;
8622 4

}
8023 7

3. Systemprozeduren (CALL...)

Im Fehlerfall kann das Register 7B vom Benutzer gesetzt werden, und im BASEX-
programm mit der Systemvariablen ERR abgefragt werden.

Am Anfang stehen 8 Kennbytes:
a) Siehe 1.qd).
b) Im dritten Byte steht als Kennung die Hexazahl '5C.

c) Das vierte Byte enthalt die Definition der 4 Parameter-Typen (2 bit je

Parameter):
I DU SRR B
7 l 7 i i <— Parameter-Typ
2. |

4.

Die Art der Parameter ist als Bitmuster festzulegen und dann als 1-Byte-Hexa-
zahl anzugeben.

Es gilt fur: kein Parameter (NOP) j i}
Zahl (Real) o)
String 14
Zahlenfeld (Array) 11

Beispiel: |1 V|V pIg 1 p p| = 'E4
Array String Real NOP

Registeradressen: fur 1. Parameter | "6B| "6A | "69 | ‘68 |

for 2. " | 76F | 76E | 6D | 7 6C |

for 3. | 773|772 |"71 |78 |
l

fur 4. " 77176 1'75 |'74 |
Kernspeicherzuweisung fur Real [N+3IN+2|N+] [N
Expo-\ Mantisse ’
nent
fur String LN+3|N+2 N+l | N |
Basisadresse des Lénge des.
Strings Strings
fur Array | N+3[N+2|N+1 | N |
Anfangsadresse
des Arrays

Die Parameter werden bei Aufruf der Systemprozedur durch das BASEX-Programm
in die Register Ubergeben.

8.2-5

d) Siehe 1.d).

Es folgt die erste Instruktion der Routine; an diese Stelle springt das Programm
nach dem Aufruf durch das BASEX-Programm.

Der Rucksprung aus der Routine zurick in das BASEX-Programm erfolgt durch den
Befehl JPX,,,"50.

Beispiel:

Routine fur Systemprozedur (LDST).

g e 0))
SR .
KENNBYTES
666: 6050 2% H » "861D:
in a6
e8n3 Bouc H =y
5¢C
Boo4 BBB3 H : "E4
4t
6885 vBL4 4% T » "LOSTY
4C 44 53 54
6BB6 ‘
£867 6886 A : LR . @ s .68 8z 48
EINSPRUHNG
6888 GouR 5T% ., @ ; . 6E i EZ 6E
eee8s eeel £stL 4. 8B i FS 84 a3
00618 Boar JPL s A j F& F8
8811 BB!i B : ABCD, '8k 1 1E 31 6E 81 89
8812 ©B16 ADCD, '68 . 1 1E 91 68 81 88
8613 80818 sl ,'78 , 1 A1 706 81
6814 BOLE 2 T8 . » C ;i 41 78 83
80135 @821 JPX » = 4, F2 84
@816 8823 C JPX ; ‘58 < F2 38

RUECKSPRUMG,
a8y 7

i

[~]
(-~
—
[+
™~

9.1-1

BASEX-Fehlerliste

Nachstehend sind alle Fehiermeldungen aufgefihrt, die vom BASEX-Interpreter
wihrend des Kommandobetriebs (K) oder wihrend des Ausfihrungsbetriebs (R)
erkannt werden, mit Angabe des Fehlercodes:

1
2
3

FS

—
O VO NONW

11
12

13

14
15
16

17

18
19
20

2]

22
23
24
25
26
27
28

31
32
33

K,R Eingabezeile zu lang (mehr als 72 Zeichen)

K Operator-Stack-Uberlauf (zu tiefe Verschachtelung von Ausdriicken)

K Erwartete Ganzzahl nicht im erlaubten Bereich (erlaubt: 1...9999 bei
Statement-Nummern und CHAR-Index; 0...9999 bei DIM-Index)

K,R Speicheriberlauf (zu viele Statements, zu grofie Bereiche, Runtime-Stack-

Uberlauf (bei verschachtelten Programmen)

,R Uber- oder Unterschreitung des Gleitkomma-Zahlenbereichs

,R Paritdtsfehler bei Eingabe

R Standardfunktion bei gegebenem Argument nicht berechenbcr"io

R Standardfunktion wurde bei Systemgenerierung geldscht

K Mehr als ein Stringoperator auf der rechten Seite der String-Zuweisung

K Erwarteter Operand nicht gefunden oder vom falschen Typ

K,R Erwarteter Operator nicht gefunden oder vom falschen Typ

K Offnende und schlieBende Klammern passen in Anzahl und/oder Typ nicht
zusammen

K,R Falsche Syntax beim Aufbau eines Operanden (Variable, Funktion, Zahl,
String, Formatangabe)

K Illegale Folge von Operatoren und Operanden in Ausdricken mit Strings

K Argumente bei indizierten Variablen oder Funkiionen nicht korrekt oder zu viel !

R Bereichsiberschreitung bzw. -unterschreitung bei indizierten Variablen oder
bei Teilstrings
K,R Benutzerfunktion, Unterprogramm oder Segment nicht definiert (Name steht
nicht in Objekttafel)

K Nicht existierendes Statement oder Kommando
R Sprungziel nicht definiert (nicht vorhandene Anweisungsnummer)
K Nach einem Kommando falsche Angaben oder Fehler bei Datei-Behandlung

(z.B. Datei-Name nicht existent oder Plaiten-Fehler)

R NEXT ohne FOR, RETURN ohne GOSUB, ENDS ohne LINK, ENDS in Root

.oder falsche Verschachtelung von Schleifen, Unterprogrammen und Segmenten

=~

DATA-Liste erschopft oder nicht kompatibie Zuordnung in READ oder INPUT
R Im FOR-Statement Schrittweite = 0

In diesem Statement nicht erlaubter String-Ausdruck
Unerlaubtes Statement nach ON INT oder AFTER

ARARR

R Wert des Ausdrucks nach ON INT,AFTER,START,ENAB oder DISAB nicht im

erlaubten Bereich

R verbotener S tartauftrag
K Neustart nach INIT durch RUN nicht erfaubt
K,R Interpretersegment auf Plattenspeicher fehlt
R Uberlauf der START-/AFTER-Tabellen
K,R Fehler Kernspeicher
K,R BUS-Fehler

Zuordnung fehlt (oder an falscher Stelle) bei LET,DEF,FOR,EQUI oder EQUO

Parameter in CALL stimmen in Anzahl und/oder Typ nicht mit Definition Uberein

35
36
37

888

AARAR

~

- -

~ A

Netz-Fehler : .
Kein Unterprogramm vorhanden (z.B. kein Programm fur DEV(6) existent)

Statementnummer im Segment kleiner oder gleich der maximalen
n der Root n " n 1} n

LINK im Segment
Segment im LINK-Statement wurde bei INIT nicht geladen
FILE Lange zu kurz

*) Argument in SQR negativ oder Exponent in EXP zu grof3 (>88) oder zu klein

(<-73) oder Argument in LOG nicht positiv oder beim "Integer-Hoch"
Exponent > 65535 oder beim "Real-Hoch" negative Basis oder Hochzahl >8388407.

detz
Seit vielen Jahren Computer-Hersteller.

Spezialisiert auf Echtzeit-Systeme.

Computer, Peripherals, Systeme, Packages,
anwendungsorientierte Systeme.

