

 dietza”
BASEX

Beschreibung

 Heinrich Dietz
Industrie-Elektronik

433 Mülheim a.d. Ruhr
Solinger Str. 9

Tel. (021 33)4850 24
Telex 856770

Computer
EISYSTEME

® ick felol

Heinrich Dietz
Industrie-Elektronik

433 Mülheim a.d. Ruhr

Solinger Str. 9
Tel. (021 33)4850 24

Telex 856770

Beschreibung

Januar 1975

l.

2.

Einleitung:

BASEX-Beschreibung
- Grundelemente

- BASIC-Befehle

Inhalt

Ausgabe 12.74

Einführung -

Sprachelemente -

Zahlen -

Strings -

- Ausdrücke -_

Funktionen -

Sonstige Elemente -

Einführung -
Kommandos -

Anweisungen -

Vorwort

Dialog mit dem System
Kommandosprache
Programmiersprache
Statement-Codes
Namen

Datentyp Zahl
Zahlenkonstanten
Zahlenvariablen
Datentyp String
Stringkonstanten
Stringvariablen
Arithmetische Ausdrücke

Logische Ausdrücke

Vergleichsausdrücke
Präzedenz von Operatoren

Stringausdrücke
Mathematische Funktionen
Funktion CHG
Systemvariablen
Systemprozeduren
Systemvariable ERR

BASEX-Befehle aus BASIC

Grundkommandos

Köummandos READ,PUNCH und
LISP

Statement REM
u DIM

CHAR

DEF
LET

DATA,READ und RES
INPUT
PRINT
GOTO
GOSUB und RETURN
IF
FOR und NEXT
CALL
END

D
M

D
M

D
M

N
D

=
O
D
—
-
D
-
U
B
O
N
D
—
-
O
D
-
O
N
D
-
B
O
N
-
—
-
—

G
)

—

V
o
l

u
h
u
h
b
l
i

- Pluttenspeicher-

System

- Realtime-System

Be

- Einführung
- Programmverwal-

tung

- DBOS

Einführung
Multiprogramming

Asitverwaltung

-

3

GEB

Platten als Hintergrundspeicher ‚2.3.1.1

Kommandos SAVE,LOAD,KILL 2.3.2.1]

Segmentierung von Programmen .2
Kommando INITIALIZE 3
Statements LINK und ENDS 4
DBOS in BASEX 2.3.3.1

Dateiverwaltung unter DBOS .2

Dateizugriff unter DBOS 3

DBOS-Fehlermeldungen 4
Systemprozeduren GF,PF,GFS,PFS 3

RTOS in BASEX 2.4.1.1

Statement WAIT 2.4.2.1]
"SYART 2
" STOP —_ .3

Systemvarioble LPV/ .4
' STNU 5

Systemvariablen IMSET,SEC,
MIN und HOUR 2ARN
Kommando TIME .2
Systemprozedur ! IM 3
Statement AFTER .4
Sämement ON IF. Ba

® ENAB und DISAR

$
w
w
.

wi

- Prozeß-E in-/
Ausgabe - Einführung

- Universelle Ein-/
Ausgabe

 - Standard-Ein-/

- Peripheral-Ein/
-Ausgabe

Ausgabe

- Einführung

- Universelle Ein-/
Ausgabe

- Standard-Ein-/
Ausgabe

Prozeßperipherie

Statement EQUI-

EQUO
" PUT |

Statische digitale Eingänge
(PSSE) |
Speichernde digitale
Ausgänge (PSSA)
Zähleingänge (PIZE)
Zeitausgänge (PISA)
Einkanal-Analogeingänge (ADE)
Einkanal-Anal ogausgang (DA UDAI)

Mittelschnelles Analog-Meß-
system (ADM-62])

Integrierendes Meßsystem
(ADI/ADA)

Geräte-Peripherie

Systemprozedur READ

Magnetbandsystem (MBE-621)

Spezielle Bildschirm-Befehle
(BTH 2000)
Graphische Ausgabe

- Kartenleser (MD5 6042)

2.5.1.1

2.5.2.1

2.5.3.1

N
O
A
U
O
R
O

NM
@

2.6.1.1

2.6.2.1

2.6.3.7

m
@
Q
M

- Sonstige
Funktionen - Einführung - Systemvariablen und -prozeduren 2.7.1.1

- Zahl-/String- | |
Transfer - - Systemprozeduren LDST und STST 2.7.2.1

System-Modifikationen: - Systemgenerierung 8.1

- Einbau von Routinen in BASEX 8.2

Anhang: - BASEX-Fehlerliste 9.1

Pıogrammbeispiele 9.3.1

1.1

Vorwort

BASEX ist eine interaktive Programmiersprache für Echtzeit- Anwendungen .Sie ist
auf der inzwischen weltweit verbreiteten Dialog-Sprache BASIC aufgebaut und
umfaßt außer deren Sprachumfang eine Vielzahl weiterer Sprachelemente zur Be-
schreibung des Echtzeit-Verhaltens und für die Prozeßdaten-Verarbeitung. Dialog-
fähigkeit und einfacher Sprachaufbau machen BASEX zu einem leicht erlernbaren,

benutzerfreundlichen Programmiersystem.

Die Sprache BASEX wurde am Institut für Physik der Universität Freiburg (Breisgau)
entwickelt. Die erste Implementierung erfolgte auf Computer-Systemen vom Typ

DIETZ 621.

Die vorliegende Benutzer-Anleitung beschreibt BASEX so, wie es auf dem DIETZ 62]
implementiert ist. Ste soll Benutzern von DIETZ 621-5ystemen helfen, ihren Einsatz
zu planen und sie zu programmieren, zu bedienen und erfolgreich zu betreiben.

2.1.1.1

Dialog mit dem System

BASEX ist eine interaktive Programmiersprache: Programme werden im Dialog

zwischen Benutzer und System ein- und ausgegeben, verändert und zur Ausführung
gebracht.

Dabei wird zwischen zwei Beiriebsarten unterschieden, in denen sich das System
befinden kann:

- Bedienungsbetrieb (command mode)
- Ausführungsbetrieb (execute mode)

BASEX

Command Mode

Kommende | Anweisung

RUN END

BASEX

Execute Mode

Im Bedienungsbetrieb nimmt das System Kommandos des Bedienars an, die sofort
ausgeführt werden, und speichert Programm-Änweisungen, die später ausgeführt

werden sollen.

Im Ausführungsbetrieb wird das gespeicherte BASEX-Programm ausgeführt.

Die Gliederung in zwei Betriebsarten ist nicht streng, da sowohl Kommandos als
auch Programme vem gleichen BASEX-System interpretiert werden; zum Verständnis

des Systems erweist sie sich jedoch als praktisch.

In Abschnitt 2.1.2.1 sind Grundsätze des Bedienungsbetriebs beschrieben; die
restlichen Abschnitte beschäftigen sich mit den im Ausführungsbetrieb abgearbeiteten

Elementen vom BASEX-Pıogramm.

2.1.2.1-1

K ommandosprache

BASEX-Kommandos sind Befehle, die der Benutzer dem System über das Konsolgerät
erteilt. Sie bestehen aus einem Kommandowort, das von einigen Parametern gefolgt

sein kann, und werden vom System sofort ausgeführt. Der Zustand des Systems, in
dem es Kommandos akzeptiert, wird "Bedienungsbeirieb" (command mode) genannt.

Zum Beispiel bewirkt das Kommando

LIST 58,100

daß ein Teil des im System befindlichen BASEX-Programms, beginnend mit Anweisung
S0 und endend mit Anweisung 100, auf dem Konsolgerät ausgedruckt wird. Der Ausdruck

beginnt unmittelbar nach Abschluß der Kommando-Zeile mit "Wagenrücklauf" (CR).

Im Bedienungsbetrieb können Programm-Anweisungen eingegeben werden; zum Beispiel
in der Form

38 LET A=3

Jedoch werden diese vom System nicht sofort ausgeführt, sondern anhand der davor-
stehenden Zahl als Anweisungen erkannt und gespeichert.

Durch das Kommando

RUN

wird das gespeicherte Programm zur Ausführung gebracht; das System geht in den

"Ausführungsbetrieb"" (execute mode) über, in dem es keine 'Kommandos (oder Eingaben

von Anweisungen) mehr zuläßt.

Mit Ende des Programms (END-Anweisung) kehrt das System wieder in den Bedienungs-

betrieb zurück, was durch Ausgabe von

+*READY

auf dem Konsolgerät gemeldet wird.

Statt des vollständigen Kommando-Wortes kann auch eine Kurzform eingegeben werden,

die aus den drei er "en Buchstaben besteht, z.B.

LIS 528-188

Fehler bei der Eingabe können auf folgende Weise ‚korrigiert werden:

Eingabe von eliminiert] vorangehendes Zeichen

Eingabe von «= eliminiert 2 vorangehende Zeichen

Eingabe von "Rubout"" eliminiert alle vorangehenden Zeichen der Zeile.

2.1.2.1-2

BASEX kennt folgende Kommando-Worte:

Grund-Kommandos: LIST Programm listen auf Konsolgerät (s. 2.2.2.1)
DELETE Programmteil löschen "

SCRATCH Gesamtes Programm löschen "
RENUMBER Programm neu numerieren “
RUN Programm starten “

Peripherie: READ Programm einlesen über Streifenleser (s. 2.2.2.2)
PUNCH Programm auslochen über Streifenlocher "
LISP Programm listen auf Schnelldrucker "

Plattensystem: LOAD Programm laden aus Datei (s. 2.3.2.1)
SAVE Programm ablegen auf Datei “

KILL Programm-Datei löschen “
INITIALIZE Programm initialisieren (s. 2.3.2.3)
END Übergang in Basis-Betriebssystem (s. 2.3.3.1)

Z eitsystem: TIME Systemzeit abfragen/eingeben (s. 2.4.3.2)

Die BASEX-Kommandos sind in den angegebenen Abschnitten ausführlich beschrieben.

2.1.2.2

Programmiersprache

BASEX-Programme bestehen aus einer Folge von Anweisungen. Jede Anweisung findet
in einer Zeile Platz und besteht aus

- der Anweisungsnummer (1...9999)
- der Anweisung im eigentlichen Sinne (Statement), die stets mit einem

für den Anweisungs-Typ spezifischen Kennwort (Statement-Code) beginnt.

Beispiel:

30 LETTA=3

| Teen can

Anweisungs-N ummer

Die Anweisungen werden in aufsteigender Reihenfolge ihrer Nummern abgearbeitet —
außer bei Sprüngen (GOTO, GOSUB), ausgeführten Verzweigungen (IF) und Schleifen

(NEXT). Kommentare (REM) und Anweisungen beschreibenden Charakters (DIM, CHAR,

DEF, DATA, ETUI, EQUO) werden bei der Ausführung übergangen.

Programmanweisungen werden im Bedienungsbetrieb (s. 2.1.2.1) Zeile für Zeile einge-

geben; die zeitliche Reihenfolge ist dabei unmaßgeblich.

Fehler bei der Eingabe können durch & bzw. "Rubout" korrigiert werden (s. 2.1.2.1).

Anweisungen müssen den für die Programmiersprache BASEX gültigen Regeln entspre-
chen, wie sie .im folgenden beschrieben sind. Formale, insbesondere syntaktische
Fehler werden unmittelbar naeh Eingabe einer Zeile vom System erkannt und durch
Ausgabe von

ERR n

auf dem Konsolgerät erkannt; n ist die Fehler-Nummer (s. Fehlerliste 9.1)

Leerzeichen sind in beliebiger Zahl, auch zwischen zusammengehörigen Zeichen,

zulässig; jedoch nicht innerhalb von Statement-Codes.

Der Zeichenvorrat von BASEX umfaßt alie 26 Buchstaben des Alphabets, die Ziffern
0...9 sowie eine Reihe von Sonderzeichen:

KLMNOPRQRRSTUVWAXYZ

+
0
»

I

0

>
N
e
)

SS

o
D

I
on

7
 EFGHIJ

456789
I =#<e>3 JR! "R12 2,58%:

Statement-Codes

BASEX kennt folgende Statement-Codes:

BASIC-Statements:

Plattensystem:

Realtime-System:

Prozeß-Ein/ Ausgabe:

Die BASEX-Statements sind in

REM

DIM
CHAR
DEF

LET
DATA
READ
RES

INPUT
PRINT

GOTO
GOSUB
RETURN

IF
FOR

NEXT
CALL
END

LINK

ENDS

WAIT

START
STOP
AFTER

ON INT
ENAB

DISAB

EQUI
EQUO

PUT

den angegebenen

Kommentar

Zahlenfeld
Stringvariable
Funktion
Zuweisung
Konstanten-Liste
Konstanten- Zuweisung

Setzen Konstanten-Zeiger
Eingabe
Ausgabe
Sprung
Unterprogramm-Sprung
Rücksprung

Verzweigung

Schleifen-Anfang
Schleifen-Ende
Prozedur-Aufruf
Programm-Ende

Aufruf Segment

Ende Segment

Warten
Programm-Auftrag
Abschluß Auftragsprogramm
Zeitauftrag
Interrupt-ÄAuftrag

Interrupt zulassen
Interrupt sperren

Eingabe-Makro
Ausgabe -Makro

L Makro-A ufruf

2.1.2.3

(2.
(2.
(2.
(2.
(2.

(2.
(2.
(2.
(2.

(2.
(2.

(2.
(2.

(2.

D
D
y
D
I
D
I
N
D
M

D&D
DD

ad

DI
DD

DD

.
2
.
s
y
B
2
D
2

=:
D
B
D
y
N
D

-
D
M

D
M

&

&

=
 @&

&

D&D
DD

D
&
D

Z
2
8
S

‚11)
‚12)

.13)
‚14)

.4)

1)
,2)
3)
4)
N
.2)

.))

.2)

.3)

Abschnitten ausführlich beschrieben.

2.1.2.4

N amen

Namen sind mnemotechnische Bezeichnungen in BASEX-Programmen. Sie bestehen

aus

- einem Buchstaben,

- dem bis zu 3 Buchstaben oder Ziffern folgen können.

Beispiele für Namen:

A
Z
Al
AA]
AAAA
TEMP
x23
N2A8

Namen bezeichnen:

Variablen
Systemvariablen
Systemprozeduren
Benutzer-Funktionen

Als Namen sollen nicht verwendet werden:

- Statement-Codes, wie REM, LET, ...
= Anweisungs-spezifische Schlüsselwörter, wie OF, THEN, ...

- Operator-Namen, wie NOT, AND, ...
- Standard-Funktionen, wie SQR, CHG, ...

2.1.3.1

Datentyp Zahl

Numerische Werte werden intern als Gleitkomma-Zahlen ("Real") dargestellt.

Dieser Datentyp wird als "Zahl" bezeichnet.

Von jeder Zahl werden im Speicher 4 byte (32 bit) belegt; davon nehmen

- die Mantisse 3 byte
- der Exponent (zur Basis 2) | byte

ein.

Mantissen können damit im Bereich (-223 +1) ... (223 - 1) liegen, was einer

Genauigkeit der Darstellung von 6 Dezimalstellen entspricht.

Der gesamte Zahlenbereich beträgt absolut 0.5 - 101 ...05.- 10%,

Ganze Zahlen behalten bei allen arithmetischen Grundoperationen ihren Charakter
bei, solange die Mantisse die Bereichsgrenze nicht überschreitet. Dies gilt nicht

für Divisionen mit nicht-ganzzahligem Ergebnis.

Im Speicher haben Zahlen folgenden Aufbau:

To 23“ 0

ron
\ 7 A\ n r

Exponent Mantisse

ea [2 a2 0 al 5 a
u Adresse

Mantisse und Exponent sind binäre Zweierkomplement-Zohlen.

2.1.3.2

Zahlenkonstanten

Numerische Konstanten können im Programm in unterschiediicher Form geschrieben
werden.

Folgende Darstellungsweisen sind möglich:

- Ganzzahlen;)
2

123

009999
-8

- 345678

- mit Dezimalpunkt: 2.0
-3.45
0.7
.7
-.00009
-263.37

- in Gleitkommaform: 2E3
2.0E0
-6E -]

-6E-01

0.99E12

- „234E-10

Bemerkung:

In der Gleitkomma-Form bedeutet die Zahl hinter dem Buchstaben E den Exponenten
zur Basis 10.

2E3 hat also den Wert 2 - 10° = 2000.

2.1.3.3

Zahlenvariablen

Zahlenvariablen bezeichnen Speicherplätze, die einen numerischen Wert (eine Zahl)
enthalten,

Es wird unterschieden zwischen

- einfachen Zahlenvariablen und

- indizierten Zahlenvariablen.

Einfache Zahlenvariablen werden durch einen Namen identifiziert, z.B.:

A
OTTO
2
DATI

Der für sie benötigte Speicherplatz wird automatisch reserviert, sobald der zugehörige

Name im Programm zum ersten Mal erscheint.

Indizierte Zahlenvariablen sind Bestandteil eines ein- oder zweidimensionalen Zahlen-
feldes (array). Sie werden durch einen Namen identifiziert, hinter dem in Klammern

ein oder zwei Indizes stehen, z.B.:

A(0)
A(6* 7) einfach indizierte Zahlenvariablen

Zz(X)
B15 (S(3-T)

X(1,2)

Y(E+4,L) zweifach indizierte Zahlenvariabten

ARRA (A(3),X# 8) |

N2(0,0)

Der Name bezeichnet ein Zahlenfeld, das in einer DIM-Anweisung reserviert werden

muß. Der Index bezeichnet die Position innerhalb des Feldes. Bei zweifach indizier-

ten Zahlenvariablen gibt der erste Index die Zeile, der zweite die Spalte des Feldes
an. Ä

Indizes beginnen mit 0, 1, 2 ...; d.h. die jeweils erste Position hat den Index 0!

Bemerkung:

Für einfache und indizierte Zahlenvarlablen sind die gleichen Namen zulässig die
Varidßlen X und X(0) sind nicht identisch!

2.1.4.1

Datentyp String

Zeichenketten werden intern im ASCII-Code dargestellt. Dieser Datentyp wird als
"String" bzeichnet.

Für jedes Zeichen wird intern im Speicher] byte belegt. Strings haben beliebige
Längen zwischen I und 1000 byte.

Es sind alle Zeichen des ASCII-Codes in Strings darstellbar, insbesondere die 64

druckbaren Zeichen (einschließlich Leerschritt) sowie Steuerzeichen (Wagenrücklauf, ...).
Es können aber auch beliebige Bitmuster in Strings enthalten sein.

Im Speicher haben Strinas folgenden Aufbau:

L | | |
1.Zeichen 2.Zeichen 3.Zeichen ...

a at] o042

Adresse

2.1.4.2

Stringkonstanten

Stringkonstanten können im Programm in unterschiedlicher Form geschrieben werden.

Folgende Darstellungen sind möglich:

- Druckbare ASCII-Zeichen,

von " eingeschlossen: "A"
"ABC"

n7yn

"DIESU ISTUNR. 1"

- Hexa-Ziffern,

von % eingeschlossen: KRAA%
%DACSOBFF%

Bemerkung:

Jedes Paar von Hexa-Ziffern stellt ein String-Zeichen dar. Damit lassen sieh
beliebige Bitmuster definieren, Insbesondere auch nicht druckbare ASCII-Zeishen.

2.1.4.3

Stringvariablen

Stringvariablen kennzeichnen Speicherplätze, die Zeichenkstten enthalten.

Sie werden durch Namen gekennzeichnet, denen das Dollar-Zeichen £ angehängt. wird:

Ag
TEXTE
M3
L5AS

Der für eine Stringvariable benötigte Speicherplatz kenn in einer CHAR-Anweisung

unter Angabe der Länge (1...32967 Zeichen) reserviert werden. Einer String-Variablen,
die in keiner CHAR-Anweisung v.ıkommt, wird vor Programm automatisch ein Platz

von 2 Zeichen reserviert.

Ein String-Name, hinter dem in Klammern zwei Indizes (p,|) stehen, bezeichnet
einen Teilstring. Der Index p bezeichnet die Position des ersten Zeichens, der

Index | die Länge des Teilstrings. Dadurch kann aus dem Inhalt einer Stringvariablen
ein beliebiges Stück herausgegriffen werden:

1 2 3 4 58 & 7 8 7

* L1_ 1 Baia N IL
an T

R= pr)

Ga ef SR
rn

ze

Beispiele für Teilstring-Definitionren:

AB (4,3)
TEXTZ(X, 12)
M38 (39 Y, Z+2)

Bemerkung:

Für Zahlen- und Stringvariablen sind die gleichen Namen zulässig, da letztere
durch 8 gekennzeichnet sind; ie Vorioblen A und A& sind nicht identisch!

Arithmetische Aus

Arithmetische

Hilfe von bi

Ausdrucks ist

Binäre arıthmet:

/
t

r
e
n

gleicher Prüze«

3 Ferner können nal

RE

Bemerkung:

Br ar:
u A+ et

? En BE In

E ”

2.1.5.1

Wert einer Zahl haben, mit
aines arithmetischer

toren fs. 2.1.5.4. Bei

Aa MIN B Wert: A wenn A<B
8 a 8 Ä > B

2 Wert: A wenn AzB
a N sy PP.

(auch: AF="MAUS")

arithmetische Operatoren auf

Logische Ausdrücke

2.1. 5.2

Logische Ausdrücke verknüpfen Terme, die den Wert einer Zahl haben, mit Hilfe
von binären logischen Operatoren. Der Wert eines logischen Ausdrucks ist entweder

die Zahl O oder die Zahl 1.

Binäre logische Operatoren sind:

AND Konjunktion Beispiels A AND B Wert:
2

Distunktipn Beispiel: A OR B Wert:

Hierzu gehört auch der unltäre logische Operator

NOT Negatian Beisplelı NOT A_ Wert:

Beispiele für logische Ausdrücke:

DATI AND DAT2
X OR Y

0 wenn A=0

I" Az0

0 wenn A=0

1 " A#0

A AND NOT BORC entspricht: (A AND (NOT B)) OR C

oder B=0

und B#O

und B=0

oder B#O

2.1.5.3

Vergleichsausdrücke

Vergleichsausdrücke (Relationen) verknüpfen Terme, die den Wert einer Zahl haben
oder einen String darstellen, mit Hilfe von Vergleichsoperatoren. Der Wert eines

Vergleichsausdruckes ist die Zahl O oder die Zahl 1.

Vergleichsoperatoren sind:

= gleich Beispiel: A = B Wert: 0 wenn A#B
u | A =B

> größer A”B Wert: 0 wenn ASB
u 1 IL A>B

>= größer oder gleich A?=B Wert: O0 wenn AS B
nt 1 nt A2B

< kleiner A<B Wert: 0 wenn AB
v1" A<B

<= kleiner oder gleich A<=B Wert: O0 wenn A>B
u 1 u ASB

ungleich AtB Wert: 0 wenn A= B
u 1 u At#B

Benutzbare Terme: Siehe arithmetische Ausdrücke (2.1.5.1) sowie Strings oder
Stringausdrücke (werden mit dem binären Wert der ASCII-
Zeichen berechnet).

Beispiele für Vergleichsausdrücke:

xX®2
DATI#DAT2
Ag = "MAUS"
1000 <=Y (7)

Anweisungsbeispiel:

250 IF A(X)>= 6.75 THEN 18%

2.1.5.4

Prazedenz von Üperatöne

Für die Präzedenz von caritlurerischen, logischen und Vergleichsoperatoren (d.h.
die Rangfolge ihrer Abarbeitung in Ausdrücken, soweit sie nicht durch andere
syntaktische Regeln, wie Klammerung, festgelegt ist) gilt folgendes Schema:

4 NOT ah höchste

’ /
+ _

Präzedenz

Vergleichsoperatoren

AND,OR,MIN,MAX niedrigste
Befinden sich Stringvergleiche in einem Ausdruck, so haben die zugehörigen
Vergleichsoperatoren die höchste Präzedenz.

2.1.5.5

Stringausdrücke

Stringausdrücke verknüpfen Terme, die einen String darstellen, mit Hilfe von

binären Stringoperatoren. Das Ergebnis ist wiederum ein String.

Binäre Stringoperatoren sind

AND 3 Konjunktion Beispiel: %1A% ANDZ WF% Ergebnis: AA

OR 8 Disjunktion " %K1A%R ORZ KOF% " %1F%

Diese Operatoren führen bitweise UND- bzw. ODER-Verknüpfungen der Strings durch.
Bei Strings un terschiedlicher Länge wird die Operation auf die Länge des kürzeren von

beiden beschränkt; der andere wird "linksbündig" bearbeitet.

& Verkettung Beispiel: "A" & "B" Ergebnis: "AB"

Mit diesem Operator werden zwei Strings verkettet, d.h. aneinandergesetzt.

Hierzu gehört auch der unifäre Stringoperator

NOT 8 Negation Beispiel: NOTRPE% Ergebnis: %F1%

Er bewirkt die bitweise Komplementierung des Strings.

Benutzbare Terme sind:

- Stringkonstanten

- Stringvarioble
- Stringausdrücke

Beispiele für Stringausdrücke:

A AND&B 3
TX8 OR 3 % ÖF ÖF 0F%
Al AND 8 NOT 3 A233

Bemerkung:

Rechts vom Gleie

stehen.

Ikheitsmeichem eimer LET-Anweisung darf nur ein Stringoperator

Mathematische Funktionen

2.1.6.1

Folgende mathematische Funktionen sind im System implementiert:

ABS (x)

INT (x)

SGN (x)

LOG (x)

EXP(x)

SQR

SIN (x)

COS (x)

TAN (x)

ATN (x)

RND(0)

Absolutwert

Ganzzahl-Teil

Vorzeichen

nat. Logarithmus

Exponentialfunktion

Quadratwurzel

Sinus

Cosinus

Tangens

Arcustangens

Zufallsfunktion

| xI

Wert: I wenn x >20
mn _ yon x<0O

In x

eX

„v2

sin x

cos x

fan x

arctan x

Wertebereich: >0,... < |]

Als Argument dürfen Zahlenkonstanten, Zahlenvariable oder beliebige arithmetische

Ausdrücke verwendet werden.

Das Argument von RND ist ohne Wirkung.

2.1.6.2

Funktion CHG

Die Funktion CHG dient zur Ilnwandlung des binären Inhalts eines Strings in

eine Zahl bzw. umgekehrt.

Umwandlung String—> Zahl:

CHG (a8)

Der binäre Inhalt des Strings a8 (1 oder 2 byte lang) wird in eine positive Zahl

verwandelt (0...255 oder 0...65535). Ist der String länger als 2 byte, erfolgt

Fehlermeldung.

Umwandlung Zahl—String:

CHG (a)

Die Zahl a wird in einen String von 2 byte Länge verwandelt, dessen binärer
Inhalt (16 bit entsprechend 0...65535) dem Wert der Zahl entspricht. Ist die

Zahl größer als 65535, erfolgt Fehlermeldung.

Die Funktion CHG hat vor allem den Zweck, den Übergang zwischen (als Strings
definierten) 16-bit-Ganzzahlen (wie sie z.B. an Prozeßschnittstellen auftreten) und

dem Datentyp Zahl (der für die Weiterverarbeitung geeignet ist) herzustellen.

Beispiele:

1 LET A = CHG ()
25 LET X(0) = CHG (T$(4,2))
5d IF CHG (Q$)> 25A@ THEN 15

2.1.7.)

Systemvariablen

Systemvariablen sprechen bestimmte Funktionen des Systems an und werden im
Programm wie einfache oder indizierte Zahlenvariablen verwendet.

Es gibt zwei Arten von Systemvariablen:

- Input-Typ

- Qutput-Typ

Der Input-Typ liefert bei der Abarbeitung einen Zahlenwert; er wird wie eine
Zohlenvarlcbfe behandelt und kann wie diese in beliebigen Ausdrücken vorkommen.
Er ist jedoch links vom Gleichheitszeichen in LET-Anweisungen verboten. Typische
Anwendung: Eingabe eines Wertes aus dem Prozeß.

Der QOutput-Typ ist stets links vom Gleichheitszeichen in LET-Anweisungen zu ver-
wenden; ihm wird bei der Abarbeitung der Wert des rechts vom ÖGleichheitszeichen

stehenden Ausdrucks zugewiesen. Typische Anwendung: Ausgabe eines Wertes an
den Prozeß.

Außerdem werden Systemvariable vom Output-Typ in der PUT-Anweisung verwendet;

in diesem Falle wird kein Wert ausgewiesen. Typische Änwendung: Ausgabe eines

Steuversignals an den Prozeß.

Eine Reihe von Systemvariablen ist Bestandteil des BASEX-Systems bzw. wird bei der
Systemgenerierung dem Betriebssystem hinzugefügt. Der Benutzer kann jedoch auch
eigene Systemvariablen im BASEX-Programm definieren; dies geschieht von den An-
weisungen EQUI und EQUO unter Angabe des Moschinencodes, der das entsprechende
"Makro" repräsentiert.

Systemvariable sind ohne oder mit Index definier?:

- einfache Systemvariable: Name
- indizierte Systemvariable: Name (Index)

Beispiele:

108 LET A=HOUR HOUR = einfache Input-Variable
129 IF INRCDI=1 THUN 152 INB(2) = indizierte Input-Variable _
209 LET OUTWCY=+- D=x+5 OUTW(Y+2) = indizierte Output-Variable
600A PUT HOME HOME = einfache Output-Variable

2.1.7.2

Systemprozeduren

Systemprozeduren erweitern den durch die Statements definierten Sprachumfang. Sie
sind Bestandteile des Betriebssystems bzw. werden diesem bei der Systemgenerierung
hinzugefügt.

Systemprozeduren

- sind durch einen Namen gekennzeichnet,
- werden durch das Statement CALL unter diesem Namen aufgerufen,
- können mit ein bis vier Parametern behaftet sein, die den Zusammen-

hang mit dem übrigen Programm herstellen.

Diie Parameter werden der Systemprozedur vom Programm übergeben, wobei Anzahl

und Typ für jede Prozedur festgelegt ist. Folgende Parameier-Typen sind möglich:

- Zahl: Zahlenkonstante, beliebige Zahlenvariable oder arıthmetischer

Ausdruck.
Übergeben wird der numerische Wert.

Beispiele:

20
VAR
AB (5# |)
X +SIN (PHI)

- String: Stringkonstante oder einfache Stringvariable,
Übergeben werden die Anfangsadresse und die Länge des Strings.

Beispiele: -

"ANTON'

TX8

- Array: Indizierte Zahlenvariable.
Übergeben wird die Adresse des entsprechenden Elements im

DIM-Feld.

Beispiele:

A (0)
XDAT (2,4)
AB (5% |)

Eine Vielzahl von Systemprozeduren ist entweder fester oder bei der Systemgenerierung
wahlweise einbezogener Bestandteil des vom Hersteller gelieferten BASEX-Systems,

Der Benutzer kann darüberhinaus eigene Systemprozeduren erstellen und in die System-
generierung einbeziehen,

2.1.7.3

Systemvariable ERR

Die Systemvariable ERR enthält einen Fehler-Code. der bei der Abarbeitung
bestimmter Systemprozeduren (z.B. Dateibefehle) erzeuyt wird. Es handelt sich dabei

um Fehler, die nicht zum Abbruch des Programms führe...

Der Benutzer kann ERR im Programm über Anweisungen vom Typ IF, GOTO...OF
oder GOSUB...OF abfragen, wann immer er dies für nötig hält. Jedoch sollte die

Abfrage erfolgen, bevor (in der gleichen Programmebene) die nächste Systemprozedur
mit CALL aufgerufen wird.

Der Fehlercode ist eine Zahl, deren Bedeutung von der jeweiligen Systemprozedur
abhängt. Er ist unter den jeweiligen Prozeduren beschrieben.

Beispiel für die Anwendung von ERR:

188 CALL OPEN (8s'"5IGMA",3)

115 GOSUB 880

800 IF ERR=Ö THEN 820
812 GOTO ERR-3 OF 830» 4b, 450
828 RETURN
E30 0.

Bemerkung:

Jede Programmebene besitzt physisch einen eigenen Speicherplatz für ERR, so daß
gleichzeitig in mehreren Ebenen ablaufende Systemprozeduren ihre Fehlermeldungen
nicht gegenseitig verändern.

2.2.1.1

BASEX-Befehle aus BASIC

In BASEX ist der Sprachumfang üblicher Implementierungen der Programrniersprache
BASIC enthalten .

In den folgenden Abschnitten sind die Kommandos und Programm-Änweisungen be-

schrieben, die aus BASIC stammen und das Kernstück von BASEX bilden.

In BASIC erfahrene Benutzer werden diese Befehle kennen; jedoch ist zu beachten,

daß einige davon erweiterte bzw. auf die Hardware-Konfiguration abgestimmte
Funktionen haben.

Die Abschnitte 2.2.2.1 und 2.2.2.2 behandeln Grund- und erweiterte Kommandos;
in den restlichen Abschnitten sind Programmanweisungen beschrieben.

2.2.2.1

Grundkommandos

Unabhängig von der Konfiguration des Systems sind folgende Grund-Kommandos

vorgesehen:

LIST Gesamtes Programm listen

LIST n Programm Anweisung n listen
LIST,n Programm bis Anweisung n listen
LISTm, Programm ab Anweisung m listen

LIST m,n Programm von Anweisung m bis Anweisung n listen

SCRATCH Gesamtes Programm löschen
DELETE n Programm Anweisung n löschen

DELETE,n Programm bis Anweisung n löschen
DELETE m, Programm ab Anweisung m löschen

DELETE m,n Programm von Anweisung m bis Anweisung n löschen

RENUMBER m,n Programm neu numerieren.
Neue erste Anweisungsnummer = m; Schrittweite = n

RUN Gesamtes Programm ausführen
RUN n Programm Anweisung n ausführen

RUN ,n Programm bis Anweisung n ausführen
RUN m, Programm ab Anweisung m ausführen
RUN m,n Programm von Anweisung m bis Anweisung n ausführen

Bemerkungen:

LIST bewirkt die Ausgabe des Quellprogramms auf dem Konsolgerät.

m,n bezeichnen Anweisungsnummern.

2.2.3.1

Statement REM

m REM Bemerkung

REM erlaubt es, in das Programm zum Zweck besserer Verständlichkeit Bemerkungen
einzufügen. Bei der Programm-Ausführung werden sie Ubergangen.

Beispiele:

18 REM DIES IST EINE BEMERKUNG
2@8 REM ***k PROGRAMMTEIL 1 *x*

98 REM ENDE PROGRAMM XYZ

Hinweis:

Ein Sprung auf eine REM-Anweisung ist erlaubt. Da sie nicht ausführbar ist, wird das
Programm mit der nächsthöheren Anweisungs-Nummer fortgesetzt.

Kommandos READ, PUNCH und LISP

2.2.2.2

Folgende Kommandos sind nur bei Ausrüstung des Systems mit Lochstreifen-Peripherie
bzw. Schnelldrucker möglich:

READ Programm

PUNCH Gesamtes
PUNCH n Programm
PUNCH,;,n Programm
PUNCH m, Programm
PUNCH m,n Programm

LISP Gesamtes

einlesen

Programm lochen
Anweisung n lochen

bis Anweisung n lochen

ab Anweisung m lochen

von Anweisung m bis Anweisung n lochen

Programm auf Schnelldrucker listen

Parametrierung siehe LIST

Bemerkungen:

Diese Kommandos bewirken Ein- bzw. Ausgabe des Quellprogramms.

Folgende Hardware-Voraussetzungen müssen erfüllt sein:

- für READ: Lochstreifen-Leser (auf Standard-Adresse, Geräte-Nr. d = 2)
- für PUNCH: Lochstreifen-Stanzer (auf Standard-Adresse, Geräte-Nr. d = 2)

- für LISP: Schnelldrucker (auf Standard-Adresse, Geräte-Nr. d = 3)

m,n bezeichnen Anweisungsnummern.

2.2.3.2 1

Statement DIM

m DIM z (p)
e m DIM z (q,p)

e m DIM z] (pl), z2 (p2), z3 (a3, p3),

Mit DIM wird für ein oder mehrere ein- oder zweidimensionale Zahlen-

felder z Platz reserviert. Die Dimensionsangabe erfolgt hinter dem Namen des Fel-
des; sie muß ganzzahlig sein. Die maximal zulässige Feldgröße hängt vom zur Ver-

fügung stehenden Kernspeicherbereich ob.

Beispiel:

1A DIM AC9YI,FC3>2)

Für jede Zahl werden 4 Bytes im Speicher reserviert.

Bei der Feldgrößen-Angabe ist zu beachten, daß ab O0 gezählt wird:

DIM A(9) ist ein Feld von 10 Zahlen und belegt 40 byte
DIM B(3,2) ist ein Feld von 4 x 3 Zahlen und belegt 48 byte

Bei zweidimensionalen Feldern (X,Y) ist X die Zeile und Y die Spalte,

Beispiel:

DIM (1,3) reserviert 4 Spalten und 2 Zeilen:

PP P1 82 93
1@ 11 12 13

Achtung: Wenn kein DIM-Feld vorhanden ist und im Programm z.B. eine Variable

X(A) angegeben wurde, so wird automatisch ein Feld X(9) reserviert.

Gleiche Variablen-Namen für einfache und indizierte Variablen sind

zulässig; z.B. sind die Variablen X und X(f) nicht identisch.

Bereichsüberschreitungen (versuchter Zugriff zu Feidelementen außerhalb

der Feldgrenzen durch zu großen Index) werden vom System bei Ausführung

des Programms erkannt (Fehler 16).

2.2.3.2-2
Speicherbelegung durch DIM:

Die dargestellte Speicherbelegung wird durch beide der folgenden Programmbe ispiele
bewirkt:

Beispiel 1: 18 DIM AQ), B(1,2)

Beispiel 2: Id DIM A(2)

20 DIM B (1,2)

_ Adresse a + 35

n h
A (2) m

Feld AD) - AU) -

A(0) _
\ Adresse a + 24

[_ Adresse a + 23

(1,2) F ‘

B(0,2) m

Feld B(1,2)- B(1,1) _

B(0, 1) _

B1,0) |
wu

—T TI } Exponent

0,0 F ü Mantisse
& Adresse a Lo

2.2.3.3

Statement CHAR

em CHAR s{l)
e m CHAR sl (IT), s2 (12),

Mit CHAR wird für eine oder mehrere Stringvariablen s Platz reserviert. Die Länge | des
Strings wird hinter dem Namen der Stringvariablen angegeben; sie entspricht der An-
zahl der Zeichen, die in der Variablen Platz finden.

Beispiel:

ld CHAX AS(l2IIst5 (19)

Für jedes Zeichen wird 1 Byte im Speicher reserviert.

Kommt im Programm eine String-Variable vor, für die nicht mit CHAR Platz reserviert

wurde, so werden automatisch 2 Zeichen für sie reserviert.

Speicherbelegung durch CHAR:

Die dargestellte Speicherbelegung wird durch beide der folgenden Programmbeispiele
bewirkt:

Beispiel I: 10 CHAR A& (4), BZ (2)

Beispiel 2: 10 CHAR AZ (4)
| 20 CHAR B3 (2)

" Ag| (4) Adrese a + 5
Feld Ag (A) 4 As (A) |

AB (2)
AS Os Adrese a + 2

BZ (2) Adrese a + |
Feld BZ (2) 1 B3 ; (1) Adresse a

Die absolute Speicher-Adresse a ist von System-Konfiguration und Benutzerprogramm
abhängig.

2.2.3.4

Statement DEF

em DEF FNf = u

Zusätzlich zu den in BASIC vorhandenen Standardfunktionen erlaubt DEF die Definition
von Benutzer-Funktionen u. Sie werden durch das Symbol FN und einen Namen f,
z.B.

FNA
FNOTTO

bezeichnet.

Beispiel:

ld DEF OFNOTIOCAI=SLOGCAIZ/ZLOUC1S)

Diese Funktion ermittelt z.B. für ein gegebenes Argument X den Logarithmus zur
Basis 10. Im Programm kann diese Funktion später wie folgt aufgerufen werden:

Söd Lei A=sFNOTTOCD)

69 LET VI=FNCTTOCCY-CI/H)

18 PRINT FNOTIOC25)I-U5&A

Die Definition einer Funktion kann auch den Aufruf einer anderen Funktion beinhalten.

Beispiel:

Id LeT r=3.1415Y

28 DEF FND(CA)=AÄRF/LED

30 DEF OFNSCAISSINCFENDCAD)I

4d DEF OCFNECAISLOSCFNDEA))

50 PRINT PsFNUctldI>FNSCII>FNDEND

Die Funktion FNS (X) ermittelt den Sinus für ein Argument, dessen Wert im Bogenmaß

vorliegt. FND (X) besorgt die Umwandlung vom Bogenmaß in Grad.

2.2.3.5

Statement LET

m LETv=e
m LET vl =el, v2=e2,

Im Statement LET wird einer Variablen v ein Wert zugewiesen.

Der Wert wird auf der rechten Seite des Gleichheitszeichens durch einen Ausdruck e

angegeben. Die rechte Seite wird zunächst berechnet und das Resultat der linken Seite
zugewiesen.

LET kann mehrere, durch Kommata getrennte Zuweisungen enthalten.

Beispiele:

Id LET A=5.01
20 LET DATI=3/CAE2#N/CATI+SINCL.LI)
38 LET OTTO(1,2)=xX
48 LET TEXTS=B8 ANDS CH
S® LET AS$=NOTS 2ZF6%
68 LET X1$="AB"
18 LET XCCAS<BS)+5, INTCSINCAS<BEIY)I)
88 LETX6(Y)=1,»A=1,AZ(XY)=l e
98 LET AsA$>C$
95 LET A=1-(2+(3-(4+(5-(6+7)))))

188 LET X$=x$ ANDS ZUFZ,Xi=X$ 0OR$ %344

Hinweis:

Die Variable v und der Ausdruck e, bzw. der Wert des Ausdruckes müssen vom gleichen

Typ sein (Zahl oder String)

2.2.3.6-1

Statements DATA, READ und RES

m DATA c

m DATA cl, c2,

DATA eröffnet eine Liste von Zahlen- oder String-Konstanten c, die später durch
READ-Anweisungen bestimmten Variablen zugewiesen werden.

DATA-Statements können an beliebigen Stellen des Programms vorkommen; sie müssen

insbesondere nicht vor den READ-Anweisungen stehen.

Die Argumentlisten mehrerer DATA-Anweisungen in einem Programm werden als eine
zusammenhängende DATA-Liste behandelt.

Beispiel:

ld DATA 1,253

ed DATA 4 556

entspricht:

I\ö DATA 1>2>3545556

m READ v
m READ vl, v2,

READ weist Konstanten der DATA-Liste sequentiell den Variablen v der Argumentliste

zu.

Beispiel: Wertzuweisung:

C 2 JA"

1M DATA 8:7, "JA" = 8

15 DATA 35 4»5
E = 3,

29 READ &5 B>C$>Es>s F

3A READ I

‚B=7, -

F=4,1=5

2.2.3.6-2

e m RES

semRESn

Die Anweisung RES (Restore) erlaubt mehrmaliges bzw. gezieltes Lesen von Konstanten
aus der DATA-Liste.

Zu Beginn des Programms steht der DATA-Zeiger auf der ersten Konstante der DATA-

Liste; bei jeder Wertzuweisung wird er um 1 erhöht.

RES setzr den Zeiger auf die.erste Kofistante der gesamten DATA-Liste zurück, während

RES n ihn auf die erste Konsiante der Anweisung n DATA... setzt.

Beispiel: Wertzuweisung

1 ala ra A=4,8=3,6;
16% RES, 21 4

170 nEaD A =:
1803 ana“ \

139 üEAN D |
21 DALH Ass

2.2.3.7-1

Statement INPUT

em INPUT V

em INPUT vl, v2, ..
em INPUT "Text", vl, v2,

INPUT dient dazu, den Variablen v einer Argumentliste während des Programm-Ablaufs

über ein Eingabegerät Werte zuzuweisen, die je nach Variablentyp Zahlen- oder

"String-Konstanten sind.

Findet das Programm im Programmverlauf ein INPUT-Statement, so meldet es sich mit

Fragezeichen (?) auf dem Eingabegerät und wartet auf die Eingabe.

Der Benutzer gibt eine der Variablenliste entsprechende Anzahl von Zahlen (in
beliebigem Format) bzw. Text-Strings, getrennt durch Komma, ein. Dä eingegebene

Text-Strings ebenfalls durch Komma voneinander zu trennen sind, ist Komma (,) als
String-Zeichen richt eingebbar. Hat er sich verschrieben, so kann er wie üblich

korrigieren (RUBOUT, «-). Die Eingabe wird mit "Wagenrück auf" (CR) beendet.

Die eingegebenen Werte werden der Reihe nach den Variablen zugeordnet. Gibt der

Benutzer eine nicht ausreichende Zahl von Werten ein (vorzeitiges ER), schreibt das
Programm "7?" und wartet auf Vervollständigung der Eingabe, Zuviel eingegebene
Werte dagegen werden nicht berücksichtigt.

Vor der Eingabe von Zahlen oder Strings kann ein Text ausgegeben werden, der
hinter INPUT in Anführungszeichen ("...") anzugeben ist. Dies dient als Zusammen-

fassung der häufig vorkommenden Befehlsfolge PRINT "Text" INPUT Voariablenliste.

Durch Eingabe von Control-S (Tasten CTRL und S gleichzeitig, auch X-OFF genannt)
statt eines Wertes kann eine Programmbeendigung erreicht werden.

Beispiele:

Das Programm

IB INPUT "GIB EIN Al>BlsCi "ABC
eDB LET D=eA+B+C
38 G0T0 12
4a END

führt bei Ausführung zu folgendem Dialog (Eingaben unterstrichen):

RUN

GIB EIN Al>sRl>Cl ?l>s2-.
??3—

GIE EIN AL, BlsC1 ?&)
*READY

= Eingabe CR (ASCII-Code: ’8D)
(+) = Eingabe X-OFF (ASCII-Code: ’93)

2.2.3.7-2

em INPUT DEV(d), ...

Die Eingabe erfolgt im Normalfall über das Konsolgerät (Geräte-Nummer d = 0).
Soll ein anderes Eingabegerät benutzt werden, so ist dessen Geräte-Nummer d durch
das Steverwort DEV(d) in der INPUT-Anweisung zu spezifizieren. Diese Zuordnung
bleibt (in der betreffenden Programmebene) für alle folgenden INPUT- (und PRINT-)

Anweisungen gültig, bis ein neues Gerät spezifiziert wird.

Das Steuverwort DEV(d) muß in der INPUT-Anweisung vor den weiteren Anweisungen

stehen.

Beispiel:

18 INPUT "SOLLWERT "s SLWT — Gerät 0

2B INPUT DEVCH,A rm Gerät |

38 INPUT B>C>X ——

40® INPUT DEVCO)>Y Gerät O
5@ INPUT Z 1

2

Häufig vorkommende Nummern von Eingabe-Geräten sind:

d=0 Tastatur am Konsolgerät
d=|] Streifenleser am Konsolgerät (bei Teleitype ASR 33)
d = 2 Schneller Streifenleser

Der Zusammenhang zwischen Geräte-Nummer d und Gerät ist durch das Betriebssystem
festgelegt. Für d kann eine Zahlenkonstante, eine Zahlenvariskle oder ein beliebiger

arithmetischer Ausdruck eingesetzt werden.

Es ist darauf zu achten, daß

- das Steuerwort DEV{d) auch in PRINT-Anweisungen verwendet werden kann,
wodurch die in einer vorangegangenen INPUT-Anwe'sung vorgenommene

Geräte-Zuordnung verändert wird,

bestimmte Nummern d Eingabe- und Ausgabefiunktionen desselben Gerätes
bzw. derselben Gerätegruppe spezifizieren (z.B. d = Ü für Konsolgerät-Ein/

&

-Ausgabe; d = 2 für schnellen Streifenleser/Streitenlocher).

2.2.3.8-1

Statement PRINT

e m PRINT a

e m PRINT al, a2, ...
e m PRINT

Das Statement PRINT dient zur Ausgabe von Zahlenwerten und Texten auf einem
Ausgabegerät. Die auszugebenden Daten a stehen jn einer Argumentliste hinter PRINT.

In der Argumentliste können, beliebig gemischt, folgende Arten vorkommen:

Zahlenkonstanten Beispisie &£.5
Zahlenvariablen M I DATI

Zahlenvariablen, indiziert u OTFO(,2)

Arithidgtische Ausdrücke w A+B = SIN (C)

Loglsah® Ausdrücke . " x AND NOT B
Vergleichsausdrück®. | "HIGH = LOW
String-Konstanten fText) i "BERICHT"
String-Konstanten (Steuerzeichen) " AREDPA%
StringrVariablen N TX223

Die Ausgabe erfolgt in der Reihenfolge der Argumente. Diese sind in der Liste durch

Komma oder Semikolon voneinander zu trennen.

Komma (,) als Trennzeichen bewirkt, daß die Ausgabe des nächsten Datums an der

nächsten Tabulatorspalte beginnt.

&

Semikolon (;) als Trennzeichen bewirkt dagegen, daß das nächste Datum unmittelbar
anschließend ausgegeben wird.

Normalerweise wird nach Ausgabe aller Argumente eine neue Zeile begonnen. Dies

kann verhindert werden, indem man hinter das letzte Argument ein Semikolon oder

Komma setzt.

PRINT ohne weitere Angaben bewirkt Wagenrücklauf und Zeilenvorschub.

Beispiel:

Das Programm

IA LET AN=6s 45 P=5e 1

oA PFINT "WERT A ="; "WERT F ="; BE "ENDE"

390 END

bewirkt folgende Ausgabe:

RIIN

„FIT NA = ef WEFT RR = 5el ENDE

*«FEADY 4

N

Tabulator-Spalten

j);
ü om PRINT DEV(

“ a 3 f em PRINT DEV(d)
em PRINT ... DEV: ...

vordnung >
Lonnes E52

® F

3
Ei

Die Ausgabe erfolgt im Norm:
Soll ein anderes Ausgal
das Steuerwort DEV(d) in

£
5 bleibt (in der betref!

Anweisungen

; Das Steuemwort DEV! 4;
S

KB)
f
e
n

N

&
Q he

O
D < Bazı

®
5

iger lieb

Beispiele:

ur

FI NT 1a pP

> ix}
en

G
a
s

2 e
e

I
 D,

&

&

n
g

Is ©,
EN a

kl
oe nm
A
B
.

e
e

un
n
a

SS S
S

n
r

U
 a

gi

?
 nn

&%
D,

©
 N 5

Ana? = Zr

e
 <

H
N

e

23O,0%0
&=
ö 4
2

=

N
 Ss

©
OO

festgeleat. F

arithmetircher Aı

&
E

er Ä weh Es is} darauf zu

2.2.3.8-3

e m PRINT TAB(e);

e m PRINT TAB(e); |
e m PRINT ... TAB(e); ...

Das Steuerwort TAB in einer PRINT-Anweisung bewirkt, da der folgende Wert um
so viel Spalten weiter rechts ausgegeben wird, wie der ‘Wert des arithmetischen
Ausdrucks e ergibt. Dadurch kann z.B. der Schreibkopf eines Druckers beliebig

positioniert werden. Die Positionierung geht stets von der üugenblicklichen Stellung

aus nach rechts.

Das Steuerwort TAB(e) kann in der PRINT-Anweisung on be.iebiger Stelle der Argu-
mentliste stehen.

Beispiel (graphische Ausgabe einer Funktion mittels Schre bixopi -Positionierung):

1008 REM BEISPIEL TARIXD
11M DEF FNFOCX)=SINCK)*«EXFC=-e 1tX)

1208 FOR I=9@ TO 15 STEF +5
13@ PFINT TABC3Be 5+ 15«FNFOEIYIS IR

aa NEXT I . | .
1528 END

*HEADY
RUN

M > | x

%

| *
*

” %

R

*
%.

*

*

%
*

>%

*
*

*
*

*
%

*
*

*
*

*

* READY

2.2.3.8-4

° m PRINT FMT(f);
e m PRINT FMTf); ...
e m PRINT ... FMT(f); ...

Das Steuerwort FMT(f) spezifiziert ein Format f für die Ausgabe von Zahlen durch
PRINT-Anweisungen.

Eine Format-Spezifikation bleibt (in der betreffenden Programmebene) so lange gültig,

bis sie durch eine andere ersetzt wird.

Das Steverwort FMT(f) kann in der PRINT-Anweisung allein vorkommen oder an be-
liebiger Stelle der Argumentliste stehen. Seine Wirkung beginnt mit dem Augenblick
der Abarbeitung in der Liste.

Es gibt drei verschiedene Typen von Format-Spezifikationen:

- Automatisches Format: FMT (A)

Festes F-Formot: FMT(Fw.d)

- Festes E-Format: FMT(Ew.d)

Das automatische Format ist die Standard-Ausgabeform für Zahlen; es ist vom Augen-
blick des Programmstarts durch RUN wirksam, bis eine andere Format-Spezifikation
FMT(...) im Programm erkannt und abgearbeitet wird. Danach kann es jederzeit durch

FMT(A) wiederhergestellt werden. Beim automatischen Format paßt sich die Darstellung

_ der Art und Größe des auszugebenden Zahlenwertes on:

- Ganzzahlige Werte mit Beträgen Kleiner als 10° werden 1- bis örstellig

eingegeb&fi; vor negäfiven Zahlen steht ein Minuszeichen (-). Beispiele:

0
1
-]

325
-471

999999

-99999

Zu beachten ist hierbei, daß die Ausgabe "linksbundig"” erfolgt, d.h. an der

Stelle beginnt, wo der Schreibkopf im Augenblick steht. Die "Feldweite", d.h.
die Anzahl der ausgegebenen Zeichen, ist variabel, da sie von der Größe der

Zahl und ihrem Vorzeichen abhängt.

- Nicht-ganzzahlige Werte im Bereich zwischen 10°° und 10*> werden in einer

Dezimalpunkt-Darstellung (variables F-Format) ausgegeben. Beispiele:

.I

123456
- „000001

99999 .9

Auch hier handelt es sich um "linksbündige" Ausgabe mit variabler Feldweite.

2.2.3.8-5

- Alle übrigen Zahlenwerte werden in einer Gleitkomma-Darstellung (Standard-
E-Format) ausgegeben. Beispiele:

‚100000E 10 (= 10°)
.123456E-05 (= 0.000001 2345)
- 500000E-09 (= -0.0000000005)

Das feste F-Format ist eine Dezimalpunkt-Darstellung, die durch das Steuerwort
FMT(Fw.d) spezifiziert wird. Darin bedeutet w die Feldweite, d.h. die Gesamt-

Zahl der auszugebenden Zeichen einschließlich führender Leerzeichen („), Vor-

zeichen und Dezimalpunkt, während d die Anzahl der Stellen nach dem Dezimal-

punkt angibt. Die Spezifikatoren w und d können nach Bedarf gewählt werden; jedoch

sind folgende Einschränkungen zu beochten:

2£wgx15 (Feldweite minimal 2, maximal 15 Zeichen)
0«ds6 (maximal 6 Stellen nach Dezimalpunkt)
wad+2 (Feldweite wenigstens 2 Zeichen größer als d)

Ausgabebelspiele für die Formatspeaifikation FMT(FB.3:

999.999
wuue, 2
oo OU]
ou 20.000

Paßt eine Zahl nicht in des angegebene Format, so wird sie im automatischen Format

ausgegeben.

Das feste E-Format ist eine Gleitkomma-Darstellung mit Mantisse und Exponent zur
Basis 10; sie wird durch das Steuerwort FMT(Ew.d) spezifiziert. Darin bedeutet w die
Feldweite einschließlich führender Leerstellen, Vorzeichen der Mantisse, Dezimalpunkt,
Buchstabe "E" und Vorzeichen des Exponenten, während d die Anzahl der Stellen nach
dem Dezimalpunkt angibt. Für w und d sind folgende Einschränkungen zu beachten:

/zsw<s]5 (Feldweite minimal 7, maximal 15 Zeichen)
Isdsö6 (minimal 1, maximai 6 >Sielien nach Dezimalpunkt)

w>2d +6 (Feldweite wenigstens 6 Zeichen größer als d)

Ausgabe-Beispiele für die Formatspezifikation FMT(EIO.3):

o. 100E 02

U”e 123E-09

Ausgabe der

18
2®
32
4
32
17
T®
32
28
188
118
12%
132
142
50
16%
1772
189
196
2288
2109
220
230 P
2AO
259 PRINT
268

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT 94

»
we

e
n
 ir

eu
ch

e
-

n

a

v
o

vu

Pa
n

be
ne

EB
un
gt
:]

PRI

PR
PRI

Er

I
U
T

m

S
a
u

& \
Pr I
m

30
%

be
n

un

fu
ll

Gu
n

u Du
n Q
u
o

x

& eo
N

a

Gum
Ba
se
)

Gum
&

©

Ss

w
g

a
n

er
g P
r
 D
o
w

I
x

ea

u

u

u

A

2
2
2
3
2
4

u

Kr
ie

x
% 5
ru

nd
e

©}

ie

a»
E
R

y "

E02

x
8

$
#
4

H
r

“
8

’

Zahl -1.234:

LET A=<= le 234

"FX.e Q= FORMAT"
"43 FMTOF2 O5
a EMTCH3 A): 2:

3 Piz 2@

Ge se. FMTC Fiss A353 £: 28

5 FMTORSWMDEAS"R
Er EMTEEBE A) AS ar"

Bug v8 FMTEF1S: 0): a: a 98

PEY.Y=- FORMAT"

"EFMTOFIE DER

> FMTCFSs:
 DD5 A: Bay. 8 Be

ENEEMTORSE LIE AS
© EMTCF1Se

":EFMTCF1Se

3 EMTCF15e
"3 FMTCFI1S: S

E
E
S

e
e

"EXe Y- FORMAT
RE EMTCETs ID Rt EMTCES. 1)

s FMTC EIS LD
:FMTCEIS®s I
;FMTCE1S®. 2

EEE EMTEC E15«- 3
>; FMTCEIS> 4)
>; FMTCELS»S

"20; RMTCELS» &

x a

&

%
I

de

ca

B
e

S
e

1 0%

3

5

Al

Sa
ng
i

Do

>
(3

DO

mw

g
e

P
R
,

a
)

a wa
5

|

zu Er

Z
e
n

W
e
m

 A
re
mu
ie

A
u
e

Su
se

Ei
ne
s

%

a

Q°

e
t

&

ag
n

a PR

a

E
h
r
e

;

33
% ®
E83

a8

E58

Y ®

2»

2“:

Ö
® 8

E

8

22

);

>
3

33

33

Y

Bun

em „ 2
Er = :

Ex

ao

a
s

a

s
s

a
s

u
s

y
o

w
o

W
e

w
e

w
e

W
e

I
>

>

T
>

»
D
i
D
b

DD

!
D

!
D

"
e
o

w
s

n
e

a Fr E

en
=

x dr

Programm-Beispiel mit verschiedenen Format-Spezifikationen für Er
,

u

K
a
e
 ra

a

2.2,.3.8-6

2.2.3.9

Statement GOTO

em GOTO n

em GOTO e OF nl, n2,

Mit GSOTO wird der normale Programmablauf verändert, indem das Programm mit der
Anweisung n fortgesetzt wird (statt mit der auf m folgenden Nummer).

Beispiel:

1I@® LET A=6

2R LET B=7

393 GOTO 60

4a PRINT ABC

5@9 END

6 LET C=A+R

‚TB GS0TO 44

entspricht:

1d LET A=6

DA LFT PR=-7

39 LET C=A+R

4@ PRINT ABC

sa END

In der Form GOTO...OF wird anstelle eines festen ein berechneter Sprung im Pro-
grammablauf erzeugt.

Je nachdem, ob der Wert des Ausdrucks e gleich 1, 2, ... ist, wird das Programm
an der Stelle nl, n2, ... fortgesetzt.

Ist der Wert des Ausdrucks kleiner als I oder größer als die Anzahl der hinter OF
angegebenen Statement-Nummern, so wird die auf m folgende Anweisung ausgeführt.

Für e kann eine Zahlenvariable oder ein beliebiger arithmetischer Ausdruck eingesetzt

werden. Bei nicht ganzzahligen Werten wird der Ganzzahl-Anteil für die Berechnung

des Sprungzieles herangezogen. Wegen eventueller Rundungsfehler sollten jedoch solche

Ausdrücke vermieden werden, bei denen nicht-ganzzahlige Werte zu erwarten sind.

Beispiel:

1a INPUT A
ed G0OTO A OF 12% 12% 140s 160 ——
38 PRINT "A<s<\I1 ODER A> 4"
49 G0T0O 19 (AA AD)

10@ PRINT "1'% A -— A=])
119 G0T0 10
12@ PRINT "2’%A -——— (A = 2)
138 GOTO 1®
148 PRINT "3", A -——t (A = 3)
158 GOTO ıa
160 PRINT „ys,A a—— (A = 4)

1728 50T0 ıe

N
|

2.2.3.10

Statements GOSUB und RETURN

em GOSUB n

em GOSUB e OF nl, n2,

Die Anweisung GOSUB bewirkt den Sprung in ein Unterprogramm, das mit der
Anweisungsnummer n beginnt. Nach dem Rücksprung aus dem Unterprogramm (durch
RETURN) wird das Programm mit der auf m folgenden Anweisung fortgesetzt.

Unterprogramme können mehrfach und von beliebigen Stellen des Programms aufgerufen
werden. Von Unterprogrammen können weitere Unterprogramme aufgerufen werden; sie

dürfen beliebig tief geschachtelt sein. (Eine Grenze setzt lediglich die vorhandene

Speicherkapazität.

Beispiels:

1a INPUT A

A GOSUR 198

3@ END

Ina LET A=A+l erstes Unterprogran m
118 GOSUR 17099

122 RETURN

1RBM PFINT TAPCAIFA H
1019 RETURN

- geschachtelt

zweites Unterprogramm

Die Form GOSUB...OF beschreibt einen berechneten Unterprogramm-Sprung; die Be-
rechnung des Sprungzieles ist dieselbe wie bei GOTO...OF.

Beispiel:

3U GOSJB AY OF 113124130» LAU

e m RETURN

RETURN bewirkt den Rücksprung aus dem Unterprogramm. Ein Unterprogramm kann

mehrere, muß jedoch mindestens eine Rücksprung-Anweisung enthalten.

2.2.3.1]

Statement IF

m IF e THEN n

Das Statement IF beschreibt eine bedingte Verzweigung.

Ist der Wert des Ausdrucks e ungleich Null, so wird das Programm mit der Anwei-
sung n fortgesetzt, deren Nummer n hinter THEN steht; andernfalls mit der auf m

folgenden Anweisung.

Als Ausdruck e ist jede Variable sowie jeder arithmetische und logische Ausdruck
zulässig.

Besonders gebräuchlich sind auch Vergleichs-Ausdrücke mit den Operatoren

kleiner
= kleiner oder gleich

gleich

ungleich
größer oder gleich
größer V

V
#
I

A
M

in der Form:

m IF a op bTHEN n

Die Verzweigung zu n erfolgt hier, wenn die Vergleichsbedingung zwischen a und b

erfüllt ist.

Beispiele:

10 IF A=6 THEN 108 Wenn A = 6, ist Sprung nach 10%

Wenn At6 oder = 7 ist Sprung nach 12%

Ä mn Wenn die Stringvariable Aß gleich "y" ist 12 IF Ag="yı _ r Y

YT AND A=7 THEN 100 und die Variable A den Wert 7 hat, dann
Sprung nach |]

1@ IF A+6<=7 THEN 100

IB IF SINCXI<=COSCY) AND SINCZY#.5 THEN 108

Sprung nach 1ßQ, wenn SIN (x) < = COS(y) und SIN (zZ) # .5%

ıa INPUT A%>sB
e@ IF A=B OR A<6 OR P>6 THN 52
3@ PRINT "30% u» RB A=B A<6, P>6
48 GOTO 18
sS® PRINT "50% & BA=-B A«<6P>6
693 GOTO 1@

2.2.3.12

Statements FOR und NEXT

m FORx=aTOb

m FOR x = a TO b STEP c

n NEXT x

Die Statements FOR und NEXT beschreiben eine Programmschleife.

Sie wird eröffnet mit dem Statement FOR, in dem einem Laufindex x ein Anfangswert a
zugewiesen und dessen Endwert b bestimmt wird. Außerdem ist darin die Angabe der
Schrittweite c möglich; fehlt diese Angabe, so wird mit der Schrittweite | gearbeitet.

Abgeschlossen wird die Schleife durch das Statement NEXT mit Angabe des Laufindex’ x.

Der Laufindex x ist eine einfache Zahlenvariable, die nur für die Schleife definiert ist.
Als Anfangswert, Endwert und Schrittweite können Zahlenkonstanten, -Voriablen oder

beliebige arithmetische Ausdrücke verwendet werden.

Zu Beginn des ersten Durchlaufs wird dem Laufindex x der Änfangswert a zugewiesen.
Nach jedem Durehlauf wird x um die Schrittweite ce (bzw. um 1) erhöht. Dies geschieht

so oft, bis x größer als der Endwert b geworden isi; damit wird die Schleife beendet
und die auf NEXT folgende Anweisung ausgeführt,

Programmschleifen dürfen beliebig ineinander verschachtelt sein; jedoch ist überkreuzke
Schachtelung verboten.

Zu jedem FOR x darf nur ein NEXT x gehören; dies muß eine höhere Anweisungs-
Nummer haben als das FOR x.

FOR-Schleifen müssen vom Programm durch Ausführung des Statements NEXT beendet
®

werden; Herausspringen aus der Schleife ohne Rücksprung in die Schleife ist nicht
erlaubt.

Beispiele:

13 FC I=sl TC 13 SIEr 2 —

ed FOx Asa IC Axse#l ——

3d LET a=n+MCl>n) erlaubte Schachtelung
4) NEAl X m
39 Neal I ——

18 FON I=sl TO Ivo SIE? 20

ed FOR KesA TO Akst+l _—
33 LET R=R+M (IsX) „verbotene Schachtelung
4ö NEXT I ud

0 NEAT K nd

2.2.3.13

Statement CALL

em CALL z
em CALL z (y)
em CALL z (yl, y2, ...)

Das Statement CALL ruft eine Systemprozedur auf, die den Namen z hat. Die Proze-
dur ist Bestandteil des Betriebssystems bzw. wird bei der Systemgenerierung diesem

hinzugefügt. Sie wird nach dem Aufruf wie ein Unterprogramm ausgeführt; danach

wird das Programm mit der auf m folgenden Anweisung fortgesetzt.

Es dürfen nur solche Prozeduren gerufen werden, die im Betriebssystem unter dem be-

treffenden Namen enthalten sind,

In Klammern können ein bis vier Parameter y angegeben sein. Sie werden der Proze-
dur vom Programm übergeben und dienen zum Transfer von Werten aus dem Programm

zur Prozedur bzw. in umgekehrter Richtung. Anzahl und Typ der Parameter sind für
jede Prozedur festgelegt (siehe Abschnitt "Systemprozeduren").

Die verfügbaren Systemprozeduren sind in späteren Abschnitten angegeben.

Beispiele:

1A CALL HOME

2R CALL SYMRCA BS(6,7))
38 CALL CREACTH, "NS AM E'",LAFN)
4@ CALL GFRCARB, ACX)» SEKA, SEKL)

2.2.3.14

Statement END

m END

Die Anweisung END kennzeichnet das logische Ende des gesamten Programms auf

beliebiger Ebene.

Das System kehrt bei Ausführung von END in die Bedienungs-Betriebsart (command

mode) zurück und meldet sich auf dem Konsolgerät mit der Nachricht

* nEADY

Ein neuer Start des Programms erfordert Eingabe des Kommandos RUN.

Die Anweisung END kann beliebig oft im Programm vorkommen. Es ist üblich, aber

nicht notwendig, sie außerdem stets als letztes Statement anzugeben.

Beispiel:

1235 END

YYJ3Y9 END

; 2.3.1.1

Platten als Hintergrundspeicher

Plattenspeicher erhöhen die Leistungsführung eines Computer-Systems beträchtlich,

da Programme und Daten in großem Umfang für das System auf der Platte bereit-
gehalten werden können.

Im folgenden sind die Funktionen beschrieben, die BASEX bei plattenorientierten
Systemen mit dem Computer DIETZ 621 enthält. Dabei handelt es sich um die
DIETZsysteme 621 C, D und E, die unter einem plattenorientierten Betriebssystem

(z.B. DBOS) laufen.

Jedes Plattenlaufwerk hat eine Nummer u:

- DIETZsystem 21 C u=0 DIETZdisk 0.25 MB (Systemplatte)
u=4 DIETZdisk 0.25 MB

- DIETZsyttem 21 D u=0 Wechselplatte 2.4 MB (Systemplatte)
u>=4 DIETZdisk 0.25 MB

N oO
 Wechsel-+ 9.6 MB (Systemplatte)

Festplatte
u=4 DIETZdisk 0.25 MB

- DIETZsystem 621 E U

Bis zu 3 weitere Laufwerke vom Typ der Systemplatte sind anschließbar; die
Nummern u lauten dann 1, 2 und 3.

Im folgenden sind die BASEX-Funktionen geschildert, die sich im Zusammenhang mit

dem Plattensystem ergeben (Ablegen, Laden und Segmentieren von Programmen; Ver-
waltung und Zugriff zu Dateien).

Bemerkung:

Mit SAVE und INITIALIZE abgelegte Programme sind stets auf der Systemplatte
enthalten!

2,3.2.1-1

Kommandos SAVE, LOAD und KILL

Bei plattenorientierten Systemen können das gesamte BASEX-Programm oder Teile
davon, insbesondere auch die Teile segmentierter Programme, durch die Kommandos
SAVE bzw. LOAD auf dem Plattenspeicher abgelegt bzw. aus ihm in den Kernspeicher
geladen werden. SAVE und LOAD entsprechen den Kommandos PUNCH und READ bei
Lochstreifen-orientierten Systemen.

Jeder so behandelte Programmteil ist mit einem Namen zu versehen (Buchstabe, v.U.
gefolgt von bis zu 3 Buchstaben oder Ziffern), durch den er identifiziert wird; der

Programmteil wird als Datei geführt.

Die Kommandos SAVE und LOAD können wie folgt angewandt werden:

SAVE Name Ablegen gesamtes Programm
SAVE Name n Ablegen Anweisung n
SAVE Name,n Ablegen bis Anweisung n

SAVE Name m, Ablegen ab Anweisung m
SAVE Name m,n Ablegen von Anweisung m bis Änweisung n

LOAD Name Laden Programm

Die Programme werden beim Ablegen (SAVE) von Zwischen- in Quellsprache, beim
Laden (LOAD) von Quell- in Zwischensprache übersetzt.

Ein mit LOAD geladenes Programm kann wie üblich in Dialog verändert, mit LIST
gelistet, durch RUN gestartet oder mit SAVE wieder abgelegt werden.

Bemerkung;

- Bei Ablegen von Namen auf der Platte werden die Namen im Namensverzeichnis mit

B-Name abgelegt

- Führt das Kommando SAVE Name zu der Fehlermeldung 40, so kann dieser Name durch

die Kommandos KILL Name und erneutem SAVE Name abgelegt werden.

Beispiel (Eingaben unterstrichen):

12 _ INPUT_A
28 PRINT _SOR(CA)
38 END
SAVE_ESPI

*RFEADY

LOAD RSPI

x READY

5 PFINT "QUADRATWUFZEL

LIST

5 PFINT "AUADRATWITRZEL”

12 INPUT A

2A PRINT SORCA)
3@ END

* READY

RUN

PUADRATWURTZEL
?4
2

*FEADY

SAVE RSPI

* READY

KILL B5SPl

* READY

2.3.2.1-2

Mit SAVE wird auf dem Plattenspeicher unter dem eingegebenen Namen eine Datei

eröffnet, in der das Programm abgelegt ist. Durch das Kommando

KILL Name Programm-Datei löschen

wird der Programm-Name im Datei-Inhaltsverzeichnis gelöscht; das Programm kann

nicht mehr geladen werden.

?2.3,2.2-1

Segmentierung von Programmen

BASEX-Programme, deren Größe die verfügbare Kernspeicher-Kapazität übersteigt,

können segmentiert, d.h. in einzelne nacheinander in den Speicher geladene Teile
zerlegt werden. Voraussetzung ist, daß das System einen Plattenspeicher besitzt und
von einem plattenorientierten Betriebssystem (z.B. DBOS) unterstützt wird.

Zu beachten ist, daß nur ein Overlay-Bereich im Kemspeicher existiert, in den die
Programmsegmente nacheinander geladen werden. Zur gleichen Zeit kann sich daher
nur ein Segment dort befinden und abgearbeitet werden. Daraus ergibt sich:

- Segmentierte Programme haben eine einstufige Baumstruktur; sie bestehen
aus einem Kernspeicher-residenten Wurzelprog: mr (Root) und mehreren,

von ihr nacheinander aufgerufenen Segmenten,

- Bei Systemen, die im Multiprogramming laufen (typisch tür BASEX-Anwen-

dungen), ist im allgemeinen nur das Programm einer Benutzer-Ebene seg-
mentierbar. Laufen in mehreren Ebenen segmentierte Programme, so muß

der Overlay-Bereich vom Benutzer-Programm verwaltet werden,

- Insbesondere die Programme, die in den Zeitauftrags- und Interrupt-Ebenen
laufen, dürfen nicht segmentiert werden, sondern müssen Bestandteil der

Root sein.

Segmentierungs-Struktur:

Wurzelprogramm

(Root)

LINK ENDS LINK \ENDS LINK EMNMS
s1 s2 Ä s3

Segment | Segment Segment | |

s] s2 | 53 | |

Jedes Segment wird durch einen Namen identifiziert (Buchstabe, u.U. gefolgt von

bis zu 3 Buchstaben oder Ziffern). Es wird im Wurzelprogramm durch eine LINK-
Anweisung mit Angabe des Namens aufgerufen; die Rückkehr aus dem Segment in

die Wurzel bew'rkt die ENDS-Anweisung.

Root

2.3.2.2-2

Alle Variablen, deren Namen in der Wurzel vorkommen, sind global, d.h. sowohl

von der Wurzel als auch von allen Segmenten aus zugreifbar. Dagegen sind alle
die Variablen lokal, d.h. nur in einem Segment definiert und innerhalb dieses zu-
greifbar, die nicht mit Variablen-Namen der Wurzel übereinstimmen. Für lokale

Variablen können in ‚verschiedenen Segmenten die gleichen Namen verwendet wer-

den; jedoch haben sie dann keinerlei’ Bezug zueinander.

Zu beachten ist, daß die Anweisungsnummern der Segmente größer sein müssen als
die höchste Anweisungsnummer der Wurzel; jedoch können für verschiedene Segmente
die gleichen Anweisungsnummern verwendet werden.

Kermspeicher-Aufteilung bei segmentierten Programmen (vereinfacht):

Globale
Variablen .

. Lokale | Lokale Lokale |

Overlay- Variablen Variablen Variablen
--_- _ [oJ u nn an.

Bereich | | — N

Programm Programm | Programm

Residentes Segment s] Segment s2 Segment sd ..
Programm \ ,

|

Ä auf Plattenspeicher

BASEX
Betriebs-
system

Alle Segmente und die Wurzel werden unter deren Namen zusammenhängend auf

der Platte abgelegt und sind direkt vom DBOS her ausführbar.

2.3.2.3

 B AH un ASS ae ser

Die einzelnen Teile eines segmentierten Programms sind, bevor sie zum ersten Mal

komplett zur Ausführung gebracht werden, im Dialog zu verketten. Dabei ist voraus-
gesetzt, daß die Programmteile durch SAVE-Kommandos unter ihren Namen auf dem

Plattenspeicher abgelegt sind.

Die Verkettung beginnt mit dem Kommando

INITIALIZE

worauf das System mit

ROOT?

3

nach dem Namen des Wurzelprogramms fragt. Dei Pe.l’srer gibt den Namen en (mit
Wagenrücklauf danach). Der entsprechende Programmteii wird geladen und bleibt im

folgenden im Kernspeicher.

Danach fragt das System mit

SEGMENT?

nach dem Namen des ersten Segmentes, den der Bediener eingibt (mit Wagenrücklauf
danach); das Segment wird geladen, in Zwischensprache auf einer besonderen Datei
des Plattenspeichers abgelegt und mit seiner Platten-Adresse im System vermerkt.

Es folgt wieder die Frage

SEGMENT?

mit der Beantwortung durch den nächsten Segment-Nnamen. Dies wiederholt sich für
jedes weitere Segment, bis der Bediener mit Eingabe des Zeichens "F£ " den Verket-

tungs-Dialog beendet. Das System kehrt in das Basis-Betriebssystem (z.B. DBOS) zurück.

Beispiel (Eingaben unterstrichen):

INITIALIZE

ROOT? ADAM
SE3MENT? SEGL
SEIMENT? SEG2
SEIMENT? SADA
SESMENT? A
SEGMENT? #

*DROS

Hinweis:

Auch unsegmentierte Programme sind, wenn sie in Zwischensprache abgelegt und später
vom Basis-Betriebssystem (z.B. DBOS) unter ihren Namen aufgerufen werden sollen (s.
Kommandos SAVE und LOAD), dem INITIALIZE-Dialog zu unterwerfen. Der Programm-
Name wird nach der Frage ROOT? eingegeben; nach der ersten Frage SEGMENT? wird
der Dialog durch Eingabe von # beendet.

2.3.2.4

Statements LINK und ENDS

em LINK Name

Die Anweisung LINK ruft das Programmsegment mit dem eingegebenen Namen auf.

Das Segment wird vom Plattenspeicher in den Overlay-Bereich des Kernspeichers
geladen, und das Programm wird mit der ersten Anweisung des Segmentes fortgesetzt.

LINK-Anweisungen dürfen nur im Wurzelprogramm (Root) stehen, nicht dagegen in

Segmenten.

Beispiel:

208 LINK ASE2

e m ENDS

Die Anweisung ENDS (End Segment) beendet den Ablauf des Programms im Segment.

Die Kontrolle wird an das Wurzelprogramm (Root) zuückgegeben, das mit der Anwei-

sung fortgesetzt wird, die auf den Segment-Aufruf durch LINK folgt.

ENDS-Anweisungen dürfen nur in Segmenten vorkommen.

Beispiel:

855 END S

2.3.3.1-1

DBOS in BASEX

DBOS (Disk Based Operating System) ist ein Betriebssystem für plattenorientierte
Systeme mit dem Computer DIETZ 621 (DIETZsystem 621).

Seine Hauptfunktionen sind die Verwaltung von Plattenspeicher-Dateien und der
Zugriff zu ihnen. DBOS-Dateien bestehen aus einem oder mehreren Sektoren von

je 128 byte Länge.

Der Übergang von der DBOS-Kontrolle in die von BASEX bzw. BASEX-Programmen

geschieht durch DBOS-Kommandos:

DBOS

| | r
BASEX [END | RUN,P, BZ END Name END

LOAD... | oder BASEX BASEX BASEX

Programmeinga System System System

RUN END [RUN END RUN END

BASEX-Programm BASEX-Programm BASEX-Programm

Fall 1: Fall 2: Fall 3
Aufruf BASEX-System Aufruf BASEX-Programm Aufruf BASEX-Programm

über RUN und Namen über Namen direkt

Fall 1:

Fall 2:

Fall 3

2.3.3.1-2

Der Bediener gibt BASEX ein, Der Interpreter wird geladen, und das System
befindet sich im BASEX-Bedienungsbetrieb. Nun kann über das Kommando
LOAD... ein vorhandenes BASEX-Quellprogramm geladen oder ein Programm
eingegeben werden. Auch alle übrigen Möglichkeiten des BASEX-Bedienungs-

betriebes bestehen.

Durch das Kommando RUN wird das Programm zur Ausführung gebracht.

Bei Ausführung der END-Anweisung kehrt das System in den BASEX-Bedie-

nungsbetrieb zurück.

Das Kommando END gibt die Kontrolle an DBOÖS zurück.

Der Bediener ruft mit RUN, @, Name, 5900 ein vorhandenes (bereits vorher
im INITIALIZE-Dialog in Zwischensprache abgele gtes) BASEX-Programm auf,
das einschließlich Interpreter geladen wird. Das Programm wird sofort zur

Ausführung gebracht.

Alle übrigen Funktionen entsprechen Fall 1.

Als Name ist der Programmname, bei segmentierten Programmen der Name

des Wurzelprogramms (Root) einzugeben.

Wie Fall 2, jedoch wird das BASEX- „Programm einsc
direkt, d.h. nur durch Eingabe seines Namens au! gerufen
gebracht.

Voraussetzung ist, daß das Programm vorher bereits

abgelegt und durch das DBOS-Kommando

PROT,&,Name, 11

zum Direktaufruf freigegeben (und gleichzeitig geschützt) worden wer.

2.3.3.1-3

Die Dateiverwaltungs- und Dateizugriffsfunktionen von MBO5 werden in BASEX von

Systemprozeduren durchgeführt, die mit CALL aufgerufen werden:

- Dateiverwaltung: CALL CREA Wü; f,

CALL KILL (u,
CALL ALTR url,

CALL LENG(u ‚f,
CALL PROT (u,f,e)

- Dateizugriff: CALL OPEN (u, F, wi
CALL CLSE (w)

CALL GFB (w,a,s- |)
CALL PFB (w,a,s.

CALL GFBS (w,a,s-)
CALL PFBS (w,.a,s N

$

Beispiel: Datei mit 6 Sektoren Länge. Zugriff auf Sektoren 2 und 4(s=3, 1=2).

OCnrrToTepZzZzITaI EI >

 — = Datei f =

Als Optionen sind folgende Systemprozeduren vorgese
Feldern erlauben, die nicht mit Sektoren übereinstimme Er

CALL GF (w,a,1,.

CALL PF (w,a,';.)
CALL GFSlw,a,i,
CALL PFS (w, 3,1, I

Die DBOS-Prozeduren sind in den folgenden Abschnitten suschneben,

Im übrigen wird auf die Beschreibung des Betriebssy sie. verwiesen.

2.3.3.2-1

Dateiverwaltung unter DBOS

Die Systemprozeduren

CREA (u,f,l) Datei eröffnen
KILL (u,f) Datei löschen
ALTR (u,fl,f2) Dateinamen ändern
LENG (u, f, |) Dateilänge kürzen
PROT (u, f,p) Datei schützen

dienen zur Verwaltung der Plattenspeicher-Dateien im Rahmen des plattenorientierten
Basis-Betriebssystems DBOS. Sie werden mit CALL aufgerufen und verändern das Datei-
Inhaltsverzeichnis. | |

Die Nummer des Plattenlaufwerks (Einheit) wird durch u spezifiziert; f bezeichnet den
Dateinamen (String mit max. 6 Zeichen); | gibt die Länge der Datei in Sektoren zu

je 128 Bytes an. Der Dateischutz-Code p ist unter CALL PROT erklärt.

m CALL CREA (u, f,)D

Auf der Einheit u wird unter dem Namen f eine Datei mit der Länge | eröffnet.

Beispiele:

1a@m CALL CREACR "SIGMA'",25) © Eröffnen einer Datei SIGMA von
| 25 x 128 byte Länge auf Einheit O

SAAM CHAR F$(C6) M |
esse

S5@ LET F$C1>s4)="FIL3"
S6A LET U=4,SCTS=100

6M® CALL CREACUs F$> SCTS) Eröffnen einer Datei FIL3 von
| | 100 x 128 byte Länge auf Einheit 4

m CALL KILL (u,f)

Auf der Einheit u wird die Datei mit dem Namen f gelöscht.

Beispiel:

2RB CALL KILLCM "SIEMA) Löschen der Datei "SIGMA" auf Einheit 0

2.3.3.2-2

em CALL ALTR (u,fl,f2)

Auf der Einheit u wird der Name der Datei fl durch den Namen f2 ersetzt. Alle

übrigen Parameter bleiben erhalten.

Beispiel:

659 CALL ALTRC4s "FIL3", "FIL7') Never Dateiname: FIL7

e m CALL LENG (u,f,))

Auf der Einheit u wird die Länge der Datei mit dem Namen f auf | Sektoren verkürzt.

Beispiel:

669 CALL LENG (A, "FILT7'’,50) Neue Doateilänge: 50 x 128 byte

e m CALL PROT (u,f,p)

Auf der Einheit u erhält die Datei mit dem Namen f den Schutzcode p. Der Schutz-

code p hat folgende Bedeutung:

I Schreib-/Lösch-Schutz
2 feste Startadressen (ab Systemende)
d nicht ausführbarer Code „Kein Maschinencode)
8 automatischer Start bei Namen-Eingabe auf Unit Ö (direkter Aufruf durch Pro-

grammname)
Für p können Kombinationen dieser Codes eingesetzt werden.

(z.B. 11 = 8 und 2 und])

Beispiele:

TR CALL PROTL4 "FIL7% 5) Schreib-/Lösch-Schutz; nicht ausführbarer Code
75@ CALL PROT(4> "FIL7'", 4) Aufheben des Schreib-/Lösch-Schutzes

Bam CALL PROTCA, "FIL7" © Aufheben des Eintrags "nicht ausführbarer Code"

Hinweis:

Bestimmte Programm- und System-Fehler werden bei Ausführung dieser Systemprozeduren

erkannt und sind durch die Systemvariable ERR abfragbar.

Siehe hierzu Abschnitt "DBOS Fehlermeldungen".

a

a
m

2.3.3.3-1

Dateizugriff unter DBOS

Mit den Systemprozeduren

OPEN (u, f,w) Datei öffnen

CLSE (w) Datei schließen
GFB (w,a,s,)) Datei in Zahlenfeld lesen
PFPB (w,a,s,)) Datei aus Zahlenfeld schreiben
GFBS (w,a,s,)) Datei in String lesen
PFBS (w,a,s,]) Datei aus String schreiben

wird zum Inhalt von Plattenspeicher-Dateien im Rahmen des plattenorientierten
Basis-Betriebssystems DBOS zugegriffen. Die Prozeduren werden mit CALL aufgerufen,

Die Nummer des Plattenlaufwerks (Einheit) wird durch u spezifiziert; f bezeichnet
den Dateinamen, w die Arbeitsnummer (0...7) der Datei nach Öffnung, a das Kern-

speicherfeld, s die Nummer des ersten gelesenen bzw. beschriebenen Sektors der
Datei und | die Anzahl der zu lesenden bzw. zu schreibenden Sektoren (1 Sektor
= 128 Bytes).

sm CALL OPEN (u,f,w)

Auf der Einkeit u wird die Datei f für den Lese- oder Schreib-Zugriff geöffnet. Ihr
wird die Arbeitsnummer w zugeteilt.

Beispiele:

Offnen der Datei SIGMA auf Einheit O mit

Arbei tsnummer 3

 119 CALL OPEN P. "SIcMAa'% ©)

FIR LET ERYWRe7 Öffnen der Datei FHL3 au: Einheit 4 mit
sea ®

Arbeitsnummer 7
Sa CALL OPEN (A: "FILZ", WKNB)

® m CALL CLSE (w) .

Die Daiei mit der Art.ettsiummer w wird für den Lese- oder Schreib-Zugriff ge-
schlossen. Lie Arheitsnummer w wird frei und kann nes vergeben werden.

Beispiel:

19 CALL CLSECH Datei mit der Arbeitstumrser 3 (in diesem
Falle die Date! SICMA auf Einheit N)

sch!iellen

2.3.3.3-2

em CALL GFB (w,a,s,|)

Der Inhalt der Datei mit Arbeitsnummer w wird, beginnend mit Sektor s und einer
Länge von | aufeinanderfolgenden Sektoren, in ein Zahlenfeld gelesen, dessen
erstes Element durch a bestimmt ist.

Beispiele:

19 DIM AC4,693) | un
120 CALL GFRC»ACO: DI» 9s 1) Lesen © Sektor ab Sektor O in Feld A ab Flemen: 0,1)

125 CALL GFRC3> AC1>2)» 10» 2) Lesen 2 " " 10 " A ab u (1,0)

e m CALL PFB (w,a,s,|)

Die Datei mit der Arbeitsnummer w wird, beginnend mit Sektor s und in einer Länge

von | Sektoren, mit dem Inhalt eines Zahlenfeldes beschrieben, dessen erstes Element

durch a bestimmt ist.

Beispiele:

130 CALL PFRO»AH DD Schreiben 1 Sektor ob pektor 0 aus Feld A ab EI. (0,0)

135 CALL PFBC3»AC3,9),5,2) >Chreiben 2 5 ab EI. (2,0)

e m CALL GFBS (w,a,s, |)

Der Inhalt der Datei mit der Arbeitsnummer w wird, beginnend mit Sektor s und in
einer Länge von | aufeinanderfolgenden Sektoren, in eine durch a bezeichnete String-
variable gelesen.

Beispiel:

A CHAR F$C256)

14a CALL GFRSC3» FE 20 2) Lesen 2 Sektoren ab Sektor 20 in String FF

e m CALL PFBS (w,a,s,!)

Die Datei mit der Arbeitsnummer w wird, beginnend mit Sektor s und in einer Länge
von | aufeinanderfolgenden Sektoren, mit dem Inhalt der Stringvariablen beschrieben.

Beispiel:

ı15SO0 CALL PFBSC3> F$> 21> 1) Schreiben I Sekt.ab Sektor 21 aus String F3
(erste 128 Zeichen)

Hinweis:

Bestimmte Programm- und Systemfehler werden bei Ausführung dieser Systemprozeduren
erkannt und sind durch die Systemvariable ERR abfragbar.

Siehe hierzu Abschnitt "DBOS Fehlermeldungen".

2.3.3.4

DBOS Fehlermeldungen

Fehler bei der Ausführung von Systemprozeduren, die der Datei-Verwaltung oder
dem Datei-Zugriff unter dem Betriebssystem DBOS dienen, werden vom System er-
kannt und sind mit Hilfe der Systemvariablen

ERR

abfragbar. ERR ist die allgemeine Fehlervariable von BASEX; sie muß abgefragt
werden, bevor (in der gleichen Programmebene) eine neue Systemprozedur aufgerufen
wird, die eine Fehlermeldung liefern kann.

Die Systemvariable ERR liefert den Wert 0, wenn kein Fehler aufgetreten ist; andemn-
falls liefert sie folgende Werte:

Parameter-Fehler: ERR = 4 Datei-Name bei CREA oder ALTR schon

vorhanden. Arbeitsnummer bei OPEN schon

verwendet.

=5 Zu große Datei-Länge bei CREA, LENG,

GFB, PFB, GFBS oder PFBS.

=6 Datei-Name nicht vorhanden oder nicht

geöffnet.
= 7 Index bzw.Anzahl< O0 bei GF,PF,GFS,PF5

129 Laufwerk nicht bereit
130 Schreibschutz für Laufwerk oder Datei

131 CRC-Fehler (Lesefehler nach 5 Versuchen)
132 Plattenadresse zu groß

133 Laufwerk nicht angeschlossen

134 Kernspeicheradresse zu klein
135 Falsche Betriebsart
136 Spur nicht gefunden (WP)

System-Fehler: ERR

l
N

N
1

Beispiel für Abfrage von Parameter-Fehlern:

118 CALL OPEN 9 "SIGMA' I

115 GOSUR 828

828 IF ERR=2 THEN 320

819 GOTO ERR-3 OF RBR3R,8349859

329 RETURN

B3@ PRINT ’WAME DOPPELT/ARRe=-NRe BELEGT"

835 FETURPN
B48 PRINT"DATEILAENGE ZU GROSS"

Asa ERINF ame UNBEKAUNT/DATEL SCHUTZ";
ASS PRINT " VERLETZT"
869 RETURN

2.3.3.5-1

Systemprozeduren GF, PF GFS und PFS

Als Option kann auch zu einzelnen Zahlen oder Zeichen in Plattenspeicher-Dateien
zugegriffen werden sowie zu Zahlen oder Stringfeldern beliebiger Länge, in welche
die Datei strukturiert ist. Hierzu dienen die Systemprozeduren

GF (w,a,i,!) Zahlen lesen
PF (w,a,i,l) Zahlen schreiben
GFS(w,a,i,!) String lesen
PFS (w,a,i,|) String schreiben

Sie erweitern den im Betriebssystem DBOS vorgesehenen sektorweisen Zugriff (mit
GFB, PFB, GFBS und PFBS). Auch hier sind die Dateien mit OPEN zu eröffnen und
mit CLSE zu schließen; mit OPEN wird die Arbeitsnummer w der Datei vergeben.

Bei dieser Zugriffsart wird angenommen, daß eine Datei aus Einzel-Elementen oder

aus ein- oder zweidimensionalen Feldern besteht, wobei ein Element entweder einer

Zahl (Länge 4 byte) oder einem Zeichen (Länge | byte) entspricht.

Die Angabe a bezeichnet das Kernspeicher-Feld, mit dem der Austausch stattfindet;
es ist mit DIM (für Zahlen) oder CHAR (für Strings) zu reservieren.

Der Parameter | gibt die Anzahl der übertragenen Zahlen bzw. Zeichen an (Einheit]

bzw. 4 byte). Mit i wird ein Index angegeben, der bei eindimensionalen Dateien ein

Element, bei zweidimensionalen eine Zeile der Länge | spezifiziert. Ist i = 0, so er-
folgt keine Indizierung. Die Parameter i und I definieren somit eine Position mit der
Lage i* | in der Datei.

Beispiele:

I=1 i=0 [77
25 ı=0 PZZEZZRZZRZAZZ
I=1 i=3 1 1 77T

O
D

Ua

I Element = 4 byte (Zahl) oder
I byte (String)

2.3.3.5-2

em CALL GF (w,a,i,])

Lesen von | Zahlen ab Position i#I. der Datei w in Zahlenfeld a.

em CALL PF (w,a,i,|)

Schreiben von I Zahlen aus Zahlenfeld a auf Datei w ab Position i#|.

om CALL GFS wa,i,)

Lesen von | Zeichen ab Position ir | der Datei w in String a.

em CALL PFS (w,a,i,|)

Schreiben von | Zeichen aus String a auf Datei w ab Position il.

Der Parameter a ist beim Zugriff zu Zahlendateien der Name einer ein- oder zweifach
indizierten Variablen. Er muß nicht mit dem Feldumfang übereinstimmen; Lesen bzw.
Schreiben erfolgt von dieser Variablen aus in Richtung steigender Indizes (Spalten,

Zeilen).

Der Parameter a ist beim Zugriff zu Stringdateien der Name einer String-Variablen.
Ihre Länge kann größer sein als die Länge | des tatsächlich übertragenen Strings;

Lesen bzw. Schreiben. beginnt mit dem ersten Zeichen der String-Variablen.

Für die Parameter w, |, i können Zahlen-Konstanten, -variablen oder beliebige arith-

metische Ausdrücke eingesetzt werden.

Beispiele:

289 CALL GF (8>A(Bd)sBd> 1)

228 CALL PF (3,ZF(35,2),55>2)

238 CALL GFS (X,B5,A+2s>10)

278 CALL PFS (7,TEAT8>:9: 128)

Parameter und Systemfehler sind über die Systemvariable ERR abfragbar (siehe DBOS
Fehlermeldungen).

2.4.1.1-1

Realtime-Funktionen

BASEX arbeitet in DIETZ 621-Systemen mit einer in die BASEX-Software integrierten
Version des Echtzeit-Betriebssystems RTOS.

Die wichtigsten Aufgaben von RTOS sind folgende Realtime-Funktionen:

- Multiprogramming: Simultane Abarbeitung mehrerer Benutzer-Programme
mit gegenseitiger Beauftragung und mit Verwaltung

der Aufträge.

- Zeitverwaltung: Laufende Führung der Absolutzeit; Verwaltung und
Ausführung von zeitgebundenen Programmaufträgen.

- Interrupts: Verwaltung und Ausführung von Programmaufträgen,
die an spontane üußere Ereignisse (Interrupts)
gebunden sind.

Die einzelnen Programmfunktionen laufen unabhängig voneinander in "Programmebenen"
ab, die von der Hardware-Struktur des DIETZ 621 vorgegeben sind und von ihr stark

unterstützt werden.

Die Programme in den einzelnen Ebenen haben eine hierarchische Priorität. Ein
Programm, das in einer höheren Ebene läuft, unterbricht die Programme aller niedri-
gen Ebenen und blockiert ihren Ablauf, solange es arbeitet. Allerdings gilt dies nur,
solange das prioritäre Programm die CPU des Computers benutzt; insbesondere bei

Ein-/ Ausgabe-intensiven Programmen entstehen so geringe Belegungszeiten der CPU,
daß die Programme auf niedrigeren Ebenen, uv.U. mit verminderter Geschwindigkeit,
ihren Ablauf fortsetzen können. |

Entsprechend der Hardware-Konfiguration sind 2 RTOS-Versionen verfügbar:

- für insgesamt 8 Ebenen
- für insgesamt 16 Ebenen.

Die Programmebenen sind aufgeteilt in:

- Systemebenen

- Benutzerebenen.,

Die Systemebenen haben höchste Priorität. In ihnen laufen zur Betriebssystem-Funktionen;
der Benutzer hat keinen Zugriff zu ihnen. Sie sind aufgeteilt in

- CNP-Ebene: Führt die Absolutzeit, überwacht den jeweils
aktuellsten Zeitauftrag und erkennt Hardware-

Systemfehler.

= ORG-Ebene: Verwaltet den Plattenspeicher sowie die Geräte-
Peripherie.

- Freie Systemebenen: Für spezielle Betriebssystem-Implementierungen
(nur bei 16-Ebenen-Version).

2.4.1.1-2

Hierarchisch darunter liegen die Benutzer-Ebenen. In ihnen laufen BASEX-Programme;
der Benutzer hat ihre Verwaltung voll in der Hand.

Sie sind aufgeteilt in

- Interrupt-Ebenen: Hier laufen die von externen Ereignissen (Interrupts)

aktivierten Programme.

- Zeitauftrags-Ebene : Hier laufen von der Zeitauftrags-Überwachung

aktivierte Programme.

- Allgemeine Benutzer-
Ebenen: Hier laufen die übrigen Benutzer-Programme. Die

Ebene O (niedrigste Priorität) wird als "Hauptebene"

bezeichnet.

Zu beachten ist, daß zur gleichen Zeit in einer Benutzer-Ebene nur ein BASEX-

Programm aktiviert sein bzw. ablaufen kann.

System-
Ebenen

mi

—

Benutzer-

Ebenen

System-

Ebenen

N
Z

Benutzer-

Ebenen
u

CNP

ORG

Interrupt- 2
Ebenen]

Zeitauftrags-Ebene

Allgemeine ?
Benutzer- 1

Ebenen
Ö

CNP

ORG

Freie

System-Ebenen

A

Interrupt-

Ebenen 2

1

Zeitauftrags-Ebene

6

Allgemeine >

Benutzer- 4

Ebenen
3

2

1

Ö

D

8

>
»

GG
a

N

15

14

13

11

D

©

2

01
A

.
N

0
.
0

©

D
e

| steigende
Priotität

 RTOS/8 Ebenen

ä steigende

Priorität

RTOS/16 Ebenen

2.4.1.1-3

2.4.1.1-4

Die Realtime-Funktionen von BASEX sind in den folgenden Abschnitten beschrieben.

Die wichtigsten Realtime-Befehle sind die Anweisungen

- WAIT Warten

- START Programmauftrag

- STOP Ende Auftrags-Programm
- AFTER Zeitauftrag
- ON INT Interrupt-Auftrag

Ihre Wirkung ist an folgenden Programm-Beispielen bzw. Zeitdiagrammen abzulesen:

Beispiel für WAIT:

I@ WAIT INRCO
2m eso

Ebene

 0 VL AÄAWM TIL AB VL

> T

Eingang |
INB(A)| Dr’

| ins wird I, und Programm läuft weiter

Programm hält an und wartet, bis Eingang INB(ß) # Ö wird

Beispiel für START:

199@ STAFT 1:208
105 STOP
ı1m PRINT A
12@ STAFT 2:3aa2
13A STOP
DAA LET A=M
275 STAFT Q@:119
210 STOF
3aAQ 1ET A=&+]
ap IF A<IpA THEN 2795
37? END

Start 2: 300

Ebene Start ß: 119

Start 1: 200 Start A: 119 STOP

- .
2 STOP

u 30B 310 285 21%

\ \

1

200 205 21%

a u a
p | SEE

00 185|110 129 136 118 129

2.4.1.1-5

2.4.1.1-6

Beispiel für ON INT:

1A REM FROGRAMM IN HAUPTEBENE

29 ON INT 5:G0T0 599%

3@ ON . INT 9:G0TO 69%

4A ENAR 559

522 REM SERVICE- ROUTINE ZU INT 5

59e STOP
6@2 REM SERVICE-ROUTINE ZU INT 9
..o©

692 STOP

atom
da belegt,

Ebene an BS
i Auftrag Abmeldung BS Abmeldung

ON INT 5,9 STOP startet STOP
an BS an BS an BS

I
Interrupt Interrupt 9

5

4 GGG BL ICEZARN

 0 BB ZZ DZ Rs

2.4.1.1-7

Beispiel für AFTER:

ıa REM HINTERFFUN DPROG RAMM

ıPA REM FESELM» APLFSUNG JEDE MINUTE

I1ml IF T=1MAX TIEN 199

1a2 AFTER 6PAAB: GOTO 11

123 LET <CII=ITVNCDd> I=ele#]

1p4 STOP

AFTER... AFTER...

(never Zeit- (never Zeit-

BS meldet; auftrag) BS meldet: auftrag) sToP

Ebene Zeitauftrag tor Zeitauftrag
l fällig | l fällig h h

' L > > > li L 7 7

3 GR \ T, KEG Zeitauftragsprogramm

181 192 103 194 181 1ga193 184

a + = 60 sec —— a + = 60 sec —

 GG ZAVZ ZZ, Wintergrund-Programm

2.4.2.1

Statement WÄAIT

m WAIT e

Das Statement WAIT ist eine bedingte Halt-Anweisung.

Das Programm hält an, bis der Wert des Ausdruckes e ungleich Null geworden ist.

Beispiele:

1ö WAIT MSEC>=5U

388 WAIT INZBC5)

508 WAIT X1l5 On INB(2) AND Aal6

Hinweis:

Bei WAIT befindet sich das System in einer Programmschleife, die fortlaufend den Wert
des Ausdrucks e ermittelt. Sobald infolge eines äußeren Ereignisses (z.B. ein Prozeß-

eingang), der Systemzeit oder der Veränderung des Inhalts einer Variablen (durch ein
Programm in einer höheren Ebene) der Wert des Ausdrucks e ungleich Null wird, geht

das Programm mit der nächsten Anweisung weiter.

WAIT-Anweisungen blockieren die Programmausführung in allen niedrigeren Ebenen;

sie sollten daher möglichst nur in der niedrigsten Benutzer-Ebene (Ebene 0) laufen.

2.4.2.2

Statement START

m START I: n

Das Statement START erteilt der Programmebene | den Auftrag, ein Programm auszu-
führen, das mit der Anweisung n beginnt.

Läuft auf dieser Ebene kein Programm, so wird mit der Ausführung sofort begonnen;

andernfalls wird die Ausführung so lange zurückgestellt, bis das laufende Programm
beendet ist bzw. alle weiteren dieser Ebene durch START erteilten Aufträge abgewickelt

sind.

Programmaufträge mit START können von jeder Programmebene aus erteilt werden. Sie
dienen vor allem zur Auslösung von Programmabläufen in anderen Benutzer-

ebenen und bewirken so deren Synchronisation mit Ereignissen anderer Art, z.B. ein-
treffenden Interrupts, abgelaufenen Zeiten oder erreichten Programmzuständen.

Jeder über START beauftragte Programmteil ist durch die Anweisung STOP abzuschlie-
ßen; das Programm hält in dieser Ebene an, es sei denn, es liegen weitere Programm-

aufträge vor.

Programmaufträge werden in der zeitlichen Reihenfolge ihres Eintreffens abgewickelt.

Beispiele:

133 AFTER 39200 3: STAanT 1: 79%

| nach 30 sec
188 LET AMES=INAC(UB)I>OUTBCL)I=0

7108 STOP

280 ON INT 635TAHT 2 3 64

... | wenn Interrupt 6
668 PRINT "ALANM 6°"

65 STOP

938 STAHNT 28 15490

... | sofortiger Auftrag
1500 GOSUB 31%

1518 STOP

Bemerkung: Kommando RUN startet das Gesamtprogramm in der Hauptebene (Ebenen-

Nummer 0).

2.4.2.3

Statement sTOp
emailen

m STOP

Die Anweisung STOP be&fdet einen Programmteil, der auf einer der Programmebenen
läuft. Das Programm In dieser Ebene wird abgeschlossen; liegt bereits ein neuerer
Auftrag für diese Ebene vor tund ist dieser aktuell), so wird der neue Programmteil
unverzüglich begonnen.

STOP ist in folgenden Fällen zu verwenden:

- zum Abschluß des dureh des Komfinando RUN gestarteten Programms in der
Hauptebene,

- zum Abschluß eines mit START ausgelösten Programmteils in der Haupt- oder
den Zusatzebenen,

- am Ende eines mit AFTER + : SOTO n oder ON INT i : GOTO n formu-
lierten Zeit- oder Interrupt-ÄAuftrags. Ä

Beispiele:

lı CN INT 8 : slAanl d 3 29

> ENAY

ld >iC0r

20 seo.

Weitere Beispiele siehe unter AFTER, ON INT und START.

Bemerkung:

Auch wenn das Programm in allen Ebenen ruht bzw. durch STOP beendet ist, geht
das System nicht in den Bedienungsbetrieb über; diese Wirkung hat allein das State-
ment END,

Daher ist in jedem Programm mindestens eine END-Anweisung vorzusehen.

2.4.2.4

Systemvariable LEV

Für die Zuurdnung von Datenfeldern zur jeweils laufengen Frogrammebene sowie für
Ebenen-abhängige Modifikationen von Programm-Ablöufen ist die Systemvariable

LEV Level

vorgesehen.

Sie wird im Programm wie eine einfache Variable behandelt und vor allem als Index

verwendet. Sie liefert im Augenblick der Abarbeitung die Nummer der gerade laufenden

Programmebene. |

Mit LEV ist es möglich, in verschiedenen Ebenen das gleiche Programm laufen zu
lassen. Jeder Ebene ordnet man z.B. durch den Index LEV verschiedene Teile des
gleichen Datenfeldes zu; jede Ebene arbeitet dann mit den eigenen Daten, ohne die

der anderen zu zerstören. |

Außerdem können mit LEV ebenenabhängige Unterschiede im Programmverlauf eingeführt
werden.

LEV

Liefert die Nummer der laufenden Programmebene (0, 1, ...).

Beispiel |]:

| Is 12 3 45
Id5 DIM AuA(lc>D) ABA LEV = 0

208 FCä 1=® I0 5 Bene >
21ld INPUT ABA (6*LEV> I) Ä -2

el5 NkAl I |

Die eingegebenen Daten gehen in Zeile 0, 1 oder 2 des Feldes ABA je nachdem, ob

das Programm in Ebene 0, 1 oder 2 läuft.

Beispiel 2:

55 IF LevV=1 THEN 575

Ebenenabhängige Modifikation eines Programms: Nur wenn es in Ebene] läuft, erfolgt
ein Sprung nach 575.

2.4.2.5

Systemvariable STNU

Zur Abfrage von aktuellen Anweisungsnummern dient die Systemvariable

STNU(N) Statement Number

Die Systemvariable liefert die Nummer der BASEX-Anweisung, die im Augenblick
der Abfrage in der Ebene | abgearbeitet wird. Damit kann von jeder Ebene aus
der aktuelle Programmstand jeder anderen Benutzer-Ebene abgefragt werden.

Hinweis:

Wird die Anweisungsnummer einer Ebene abgefragt, in der kein Programm läuft,
so erhält man eine undefinierte hohe Zahl.

STNU()

Liefert die Nummer der aktuellen BASEX-Anweisung des in Ebene | laufenden

Programms.

Beispiele:

IBB PRINT STNUCO)
228 IF STNUC7)>888 iHEN 250

e
e

o
h

2.4.3.1

Systemvariablen MSEC, SEC, MIN und HOUR

Die Systemvariablen

MSEC Millisekunden
SEC Sekunden

MIN Minuten

HOUR Stunden

liefern die Absolutzeit des Systems.

Sie werden im Programm wie einfache Variablen behandelt. Ihr Inhalt kann jederzeit
abgefragt werden. Die Variablen werden vom System laufend geführt.

Die Systemvariablen SEC, MIN und HOUR können durch das Kommando TIME sowie

durch die Systemprozedur STIM auf Ausgangswerte der Absolutzeit gesetzt werden.

e MSEC

Liefert die Absolutzeit in Millisekunden (9...3599999).

SEC

Liefert die Absolutzeit in Sekunden (ß...59).

eMIN

Liefert die Absolutzeit in Minuten (9...59).

e HOUR

Liefert die Absolutzeit in Stunden (@...23).

Beispiele:

200 AFTER 1AMME-MSEC: LET OUTBes)= 1 Bei 10 s Absolutzeit Bit-Ausgang 6 setzen.
40ß IF HOUR>=5 T4HEN 459 Ab 5 h Absolutzeit Sprung nach 45ß:

450 PRINT HOURsSMIN> SEC Stunden, Minuten und Sekunden drucken

Bemerkung:

Je nach Systemkonfiguration wird die Zeitvariable MSEC mit einer Auflösung von
I, 10 oder 100 ms vom System geführt.

2.4.3.2

Kommando TIME

Die Absolutzeit des Systems kann im BASEX-Bedienungsbetrieb durch das Kommando
TIME abgefragt bzw. neu eingestellt werden. Dabei werden die Zeitvariablen HOUR,

MIN und SEC ausgedruckt bzw. auf neue Werte gesetzt.

Abfragen: TIME eingeben, anschließend Wagenrücklauf.
Die Absolutzeit in Stunden, Minuten und Sekunden wird ausgedruckt.

Beispiel (Eingaben unterstrichen):

TIME

23:59:59

Eingeben: TIME sowie die neue Absolutzeit (Stunden:Minuten:Sekunden) wird

eingegeben, anschließend Wagenrücklauf.

Beispiel (Eingaben unterstrichen):

TIme 15:88:45

2.4.3.3

Systemprozedur STIM

Den Zeitvarialben HOUR, MIN und SEC werden durch die Systemprozedur

STIM (h,m,s) Zeit setzen

neue Werte zugewiesen. Dadurch wird die Absolutzeit des Systems neu eingestellt.

Die Systemprozedur wird mit CALL aufgerufen; als Parameter können Zahlenkonstanten,
Zahlenvariablen oder arithmetische Ausdrücke eingesetzt werden. Der für die Zeit-
variablen gültige Zahlenbereich ((sh<23; Osm=*s59; Oss=59) ist zu beachten.

CALL STIM (h,m,s)

Die Absolutzeit wird auf h Stunden, m Minuten und s Sekunden gesetzt.

Beispiele:

aö8 CALL STIM (4,0.9)
A8 GALL STIM (HOURFI2,.#TS. SET}
5A GALL STIM (23,590,5°0%

Bemerkung: Falsche Angaben {r.E. HOUR = 23) führen zum Setzen
der Variablen ERR auf |

2.4.3.4

Statement AFTER

m AFTER + : Auftragsanwelsung
m AFTER t ı GOTO n

Dureh AFTER wird dem System der Auftrag erteilt, nach einer Zeit t die Auftragsar -
weisung durchzuführen.

Die Zeit t beginnt mit der Abarbeitung des AFTER-Statements. Sie kann als Zahlen-
konstante, -variable oder arithmetischer Ausdruck angegeben werden; ihr Wert ent-
spricht der Relativzeit in Millisekunden.

AFTER-Aufträge können von jeder Programmebene aus erteilt werden. Die Ausführung
des zeitgebundenen Programms (der Auftragsanweisung) selbst erfolgt jedoch stets in
der dafür reservierten prioritären Zeitebene...

Auftragsanweisungen können einzelne Statements vom Typ LET, START, PUT, CALL oder

END sein. Sollen längere Folgen von Anweisungen als Zeitauftrag ablaufen, so sind
diese als getrennter Programmteil zu formulieren, mit GOTO n als Auftragsanweisung
enzuspringen und mit dem Statement STOP abzuschließen. Weitere AFTER-Anweisungen
können darin enthalten sein.

Beispiele:

108 AFTER 800: LET A=INWC3 Abfrage INW(3) nach 200 ms
208 AFTER T2: START 9:508 Programmstart Ebene ß nügh T2 ms
30® AFTER X+50: CALL HLTCCH Anhalten Zähler I naef # + 50 ms
5@aA AFTER 1000: GOTO 588 _ nach 1000 ms:

558 LET OUTRCVD=I1 Setzen OUTB(l)
S$3 AFTER 1900: END Nach weiteren 1000 ms Programmende

862 STOP

2.4.4.1

Statement ON INT

m ON INT i : Auftragsanweisung

m ON INT i : GOTO n

Durch ON INT wird dem System der Auftrag erteilt, bei Auftreten des Interrupts i
die Auftragsanweisung durchzuführen.

Für i ist die Nummer des Interrupt-Eingangs einzutragen.

ON INT-Aufträge können von jeder Programmebene aus erteilt werden. Die Ausführung
des durch den Interrupt ausgelösten Programms (Auftragsanweisung) erfolgt jedoch stets
in einer der hierfür reservierten prioritären Interrupt-Ebenen, die jeweils Gruppen von
Interruopt-Nummern zugeordnet sind.

Demselben Interrupt i können im Laufe des Programms über ON INT verschiedene
Aufträge zugewiesen werden. Auftragsanweisungen können einzelne Statements vomTyp

PUT,LET, START, CALL oder END sein. Sollen längere Folgen von Anweisungen als
Interrupt-Programm ablaufen, so sind diese als getrennter Programmteil zu formulieren,

mit GOTO n als Auftragsanweisung anzuspringen und mit dem Statement STOP abzu-

schließen.

Beispiele:

14@ OV INT 38: LET OUTD<6)=DIS Ausgabe QUTD($6) wenn Interrupt 3
159 ON INT 318 START 1:1095® Start Ebene ! wenn Interrupt 3]
160 ENAR 3; 31
178 ON INT 17: NND Programmende wenn Interrupt 17

IBO OY INT 2: GOTO 699 wenn Interrunt 2:
199 ENAR 1752 u
612 LET QUTBCE>=O Nullsetzen QUTB{2)

EEE enteo Nullsetzen OUTW(. . 7)
62ER NEXT X
625 STOP

Interrupts werden nur vom System akzeptiert, wenn sie durch das Statement ENAB
zugelassen sind; durch DISAB kann man sie wieder sperren.

2.4.4.2

Statements ENAB und DISAB

m ENAB i

m ENAB il, i2, ...

Das Statement ENAB bewirkt, daß die Interrupteingänge i geöffnet werden. Eintref-
fende Interrupts lösen die mit ON INT zugewiesenen Abläufe aus.

Beispiel:

188 CN INT 8 3: GOIC 140

IlB ON INT 1 3 GOIO 2ddd

l2eV ENAB Bsl

138 LEI OUT3(VBI=l

148 CN INT 7 2 END

15d ENAB 7

m DISAB i
m DISAB il, 12,

Durch das Statement DISAB werden die Interrupteingänge i wieder gesperrt. Eintreffende

Interrupts bewirken nichts.

Beispiele:

100 DISAaS 4
238 DISsAad 3152534555657

Bemerkung:

Bei Programmbeginn sind alle Interrupteingänge gesperrt; jeder zu benutzende Eingang
muß daher ausdrücklich mit ENAB geöffnet werden.

Auch im gesperrten Zustand wird ein eintreffender Interrupt gespeichert. Sobald durch
ENAB zugelassen, wird der so gespeicherte Interrupt wirksam.

2.5.1.1

Prozeß-Ein-/ -Ausgabe

M ir BASEX können Prozeßanschlüsse des DIETZ 621-Systems behandelt werden.

Für die Standard-Prozeßperipherie sind in BASEX Systemvariablen und -prozeduren
enthalten, von denen sie voll unterstützt wird. Sie sind speziell auf diese Prozeß-
anschlüsse zugeschnitten und mit mnemotechnischen Bezeichnungen verfügbar
(z.B. INW, ...), so daß der Benutzer einen hohen Programmierkomfort zur Verfügung

hat. | | |

im Falle von Sonder- -Prozeßperipherie oder vom Benutzer selbst 'angefertigten Interfaces,
die von BASEX angesprochen werden sollen, gibt es universelle Möglichkeiten zur For-
mulierung geeigneter Unterprogramme und für deren Aufruf (Statements EQUI, EQUO
und PUT).

Im folgenden sind die Funktionen für beide Formen der Prozeßperipherie-Behandlung
‚besprochen. Die Systemprozeduren und -variablen für Standard-Prozeßanschlüsse wer-
den konfigurationsabhängig implementiert.

Bemerkung:

Interrupt-Eingänge (Einkarten-Interfaces vom Typ PDSE) gehören zwar zur Prozeß-
peripherie, sind jedoch wegen ihrer besonderen Funktion unter den Statements ON INT

bzw. ENAB und DISAB beschrieben (siehe 2.4.4.1/2.4.4.2).

2.5.2.1

Statement EQUI

e m EQUI Name = % Maschinencode %
em EQUI Name (Index) = % Maschinencode %

Mit Hilfe von EQUI kann der Benutzer Unterprogramme (Makros) zu eigenen System-
variablen vom INPUT-Typ formulieren.

EQUI definiert einfache oder indizierte Systemvariablen, die in arithmetischen Ausdrücken
an beliebiger Stelle vorkommen dürfen. Sie werden insbesondere bei speziellen Prozeß-
Eingaben benutzt, für die in BASEX keine Standard-Systemvariablen vorgesehen sind.

Das zur Systemvariablen gehörende Makro wird zwischen %...% als Hexa-String-
Konstante angegeben; diese stellt den Maschinencode des Makros dar und ist stets mit

dem Rücksprung-Befehl F27C abzuschließen. Ist die Hexa-String-Konstante länger als
eine Zeile, so wird sie - ohne neue Änweisungsnummern - in der bzw. den nächsten

Zeilen fortgesetzt.

Für EQUI-Makros gelten folgende Vereinbarungen:

- Datenübergabe: | Der an dus BASEX-Programm zu übergende binäre
Zahlenwert muß nach Ablauf des Makros in folgen-

den Registern stehen:

'ß2 Mantisse niedrige Stellen
"93 n

"dA \ hohe Stellen

'95 Exponent

- Index (wenn vork andand: Der vom .BASEX-Programm übergebene Wert des
2..." Index” eleht vor Ablauf des Makros als bintöre

Ganzagt mi Fölgenden Registern:

€ 09 i ß dr y Stellen

= Rucksprunge Dureh Maschinenbefehl F27C om Ende des Makros.

"MR... IF

= Benutzbare Registör

Beispiel:

172 EYII TEMP = Aeeoeose..r 270%

SA 2NUI YYZCY) = Areee..F2703

222 LET A=z3.5#*TEM?

212 IF YXYZcY) = 2 TNEN 380

2.5.2.2

Statement EQUO

e m EQUO Name = % Maschinencode %

e m EQUO Name (Index) = % Maschinencode %

Mit Hilfe von EQUO kann der Benutzer eigene Unterprogramme (Makros) formulieren,

die

a) Systemvariablen vom OUTPUT-Typ darstellen und die in LET-Anweisungen
verwendet werden,

b) durch PUT-Anweisungen als selbständige Abläufe aufgerufen werden.

Sie werden vor allem bei speziellen Prozeß-Eingaben benutzt, für die in BASEX keine
Standard-Makros vorgesehen sind.

Der Name des Makros kann einfach oder indiziert sein. Im Falle a) steht der Makro-
Name auf der linken Seite des Gleichheitszeichens in LET-Anweisungen; dem Makro wird

vom BASEX-Programm der Wert des Ausdrucks auf der rechten Seite zugewiesen.
Im Fall b) wird das Makro ohne Wertzuweisung durch PUT aufgerufen.

Das Makro wird zwischen %...% als Hexa-String-Konstante angegeben; diese stellt den

Maschinencode des Makros dar und ist stets mit dem Rücksprung-Befehl F27C abzuschließen.
Ist die Hexa-String-Konstante länger als eine Zeile, so wird sie - ohne neue Änweisung-
nummern - in der bzw. den nächsten Zeilen fortgesetzt.

Für EQUO-Makros gelten folgende Vereinbarungen:

- Datenübergabe (nur für a): Der vom BASEX-Programm übergebene binäre

Zahlenwert steht vor Ablauf des Makros in
folgenden Registern:

"2 _Mantisse niedrige Stellen
"93 B

‚04 " hohe Stellen

'05 Exponent

Index (wenn vorhanden): Der vom BASEX-Programm übergebene Wert des

Index’ steht vor Ablauf des Makros als binäre

Ganzzahl in folgenden Registern:

'89 niedrige Stellen
"BA hohe Stellen

- Rücksprung: Durch Maschinenbefehl F27C am Ende des Makros.

- Benutzbare Register: '92...’IF

Beispiel:

133 ENUO ALRM = Reesoso F27C#

125 EQUO ILYe”M) 2 F27C2 oe oe ‚>

258 PUT ALRM
285 LET OLYcA+3) I) <

2.3.2.3

Statement PUT

em PUT Name
em PUT Name (e)

Mit PUT wird ein Unterprogramm (Makro) aufgerufen, das entweder in BASEX als
Standard-Makro enthalten ist oder das der Benutzer durch eine EQUO-Anweisung
definiert hat. |

Der Name des Makros ist einfach oder indiziert; als Index e kann jeder beliebige
aritrmetische Ausdruck verwendet werden.

Mit PUT aufgerufene Makros bewirken im allgemeinen Prozeß- Ausgabefunktionen ohne
Übergabe eines Zahlenwertes.

Beispiele:

48% PUT ALRM
€85 PUT RELC2)

Statische digitale Eingänge (PSSE)

2.5.3.1-1

Diese Eingänge werden durch die Systemvariablen

INW (x) In-Word
IND (x) In-Decimal
INB (x) In-Bit |

beschrieben. Sie werden im Programm wie einfach indizierte Zahlen-Variablen behan-

delt und liefern im Augenblick der Abarbeitung die am Eingang x anstehende digitale

Information in Form eines Zahlenwertes.

Diese Systemvariablen sind in der Standard-Version den Einkarten-Interfaces vom

Typ PSSE 16 zugeordnet (je 16 Eingangsleitungen). Sie interpretieren die externe
Information auf unterschiedliche Weise.

INW (x)

Die externe Information wird als binäres
16 bit-Wort (20,..219) abgefragt und als

positive Zahl (0...65535) ausgewertet.
x ist die Nummer des Eingangs (des Inter-
faces). Sie läuft von 0 bis 693.

IND)

Die externe Information wird als binär
codiertes dezimales Wort mit 4 BCD-

Stellen (100...10°) abgefragt und als
positive Zahl (0...9999) ausgewertet.
x ist die Nummer des Eingangs (wie oben).

INB(X)

Die Information an einer Eingangsleitung

eines Interfaces wird abgefragt und als
Zahl (0 oder 1) ausgewertet. x ist die
Nummer der Eingangsleitung (0...1023).

Beispiele:

188 LETA=INW(U)

I5öd LET DECS=IND(Z)

178 IF INB(CY+5)=d THEN 29%

x
x

Et

Binäres Wort am Eingang P nach A
BCD-Information am Eingang B nach DECS
Sprung nach 200 wenn Bit-Eingang Y+5
gleich Null

2.5.3.1-2

Eine zweite Version der Systemvariablen INW(x), IND(x) und INB(x) ist Einkarten-

Interfaces vom Typ PSSE 32 zugeordnet (je 32 Eingangsleitungen). Funktionell stimmt

sie mit der Standard-Version überein, jedoch ist zu beachten, daß je Interface 2

Gruppen von 16-bit-Eingängen vorhanden sind:

INW (x):

IND (x):

INB (x):

Je Interface 2 16 bit-Worte mit aufeinander-
folgenden Nummern
(z.B.x=0...])

Je Interface 2 mal 4 BCD-Stellen mit

aufeinanderfolgenden Nummern

(z.B.x=0...])

Je Interface 32 binäre Eingänge mit aufein-
anderfolgenden Nummern
(z.B. x = 0...3l).

2.5.3.2-1

Speichende digitale Ausgänge (PSSA)

Diese Ausgänge werden durch die Systemvariablen

OUTW (x) Out-Word
OUTD (x) Out-Decimal

OUTB (x) Out-Bit

beschrieben. Sie werden im Programm wie einfach indizierte Zahlenvariablen behandelt
und setzen im Augenblick der Abarbeitung den Ausgang x so, wie er dem zugewiesenen
Wert entspricht.

Diese Systemvariablen sind in einer Standard-Version den Einkarten-Interfaces vom
Typ PSSA 16 zugeordnet (je 16 Ausgangsleitungen). Sie interpretieren den Wert, der

dem Ausgang durch eine LET-Anweisung zugewiesen wird, auf unterschiedliche Weise.

OUTW(x)

Der zugewiesene Wert wird als positive
Zahl (0...65535) bewertet und als
binäres 16 bit-Wort (20,. ‚215 im
Ausgang gespeichert. x ist die Nummer

des Ausgangs (des Interfaces). Sie läuft |

von O bis 63.

OUTD(x) PA x =}
Ä M x= ERnEE 102

Der zugewiesene Wert wird als positive =? —— 0
Zahl (0. .9999) bewertet und als binär x =}10
codiertes dezimales Wort mit 4 BCD- =} 100
Stellen (100. ‚109) im Ausgang ge- IT speichert. x ist die Nummer des

Eingang (wie oben).

x
OUTB(x) x=0 -15 15 4

Ix=16-31
Eine Ausgangsleitung wird entsprechend x=- 32-7
dem zugewiesenen Wert (0 oder 1) ge- 16-x
setzt. Die übrigen Ausgänge des Inter- 0
faces bleiben unverändert. x ist die
Nummer der Eingangsleitung (0...1023). —

Beispiele:

206 LET OUTWCA2)=1400+V2 1000 + V2 nach Ausgang X2
258 LET OUTD(63)=499J 9999 in BCD nach Ausgang 63
755 LET OUTB(5#X)=xKl Or Ka Bit-Ausgang 5-X entsprechend (klvk2) setzen

2.3.3.2-2

Eine zweite Version der Systemvariablen OUTW(x), OUTD(x) und OUTB(x) ist

Einkarten-Interfaces vom Typ PSSA 32 zugeordnet (je 32 Ausgangsleitungen).
Funktionell stimmt sie mit der Standard-Version überein, jedoch ist zu beachten,

daß je Interface 2 Gruppen von 16-bit-Ausgängen vorhanden sind:

OUTW (x): Je Interface 2 16 bit-Worte mit aufeinander-
folgenden Nummern

(z.B. x=0...])

OUTD(x): Je Interface 2 mal 4 BCD-Stellen mit aufein-

anderfolgenden Nummern
(z.B. x =0...])

OUTB(x): Je Interface 32 binäre Ausgänge mit aufeinander-
folgenden Nummern

(z.B. x =0...3l).

2.5.3.3

Zähleingänge_(PIZE)

Für Zähleingänge sind vorgesehen:

die Systemvariablen OUTC(x) Out Counter
INC (x) In Counter

die Systemprozeduren ACTC (x) Activate Counter
HLTC (x) Halt Counter

OUTC(x) und INC(x) werden im Programm wie einfache indizierte Variablen benutzt,
während ACTC(x) und HLTC(x) durch das Statement CALL aufgerufen werden. x ist
die Nummer des Zähleingangs; sie läuft von O bis 15.

Damit können bis zu 16 Zähleingänge (Einkarten-Interfaces vom Typ PIZE 16) bedient

werden, die jeweils einen 16 bit-Zähler enthalten (Kapazität 0...65535 Impulse).

OUTC (x)

Der Zähler wird auf den Wert gesetzt, |
der ihm über LET zugewiesen wird. yA x=

x=]

x: Ix=2

INC (x)

Liefert den Inhalt des Zählers, der dabei _

unverändert bleibt. \
m CALL ACTC(x)

Öffnet den Zähleingang für von außen kommende Impulse.

m CALL HLTC(x)

Schließt den Zähleingang.

Beispiel:

18 LET OUJTC c2)=9 Zähler 2 nullstellen
28 CVALL ACTUC2) Eingang öffnen
38 AFTER 18808 s: GOTO 108 Nach 1000 ms:

1208 CALL HLTC (2) Eingang schließen
118 LET ZLR=INC(2) Zählinhalt nach ZLR
128 STOP

Bemerkungen:
Bei Überlauf (22! Impulse) kann ein Interrupt ausgelöst werden, der mit ON INT zu
verarbeiten ist. Auf diese Weise lassen sich größere Impulsmengen zählen. Die Zuord-
nung des Interrupts zum Zähleingang wird systemabhängig vorgenommen (Option).
Abfrage des Zählinhalts über INC(x) stets bei geschlossenem Zähleingang empfohlen.

2.3.3.4

Zeitausgänge (PISA)

Für Zeitausgänge sind vorgesehen

die Systemvariable OUTT (x) Out Timer
die Systemprozedur ACTT (x) Activate Timer

OUTT(x) wird im Programm wie eine einfach indizierte Variable benutzt, während
ACTT(x) durch des Statement CALL aufgerufen wird. x ist die Nummer des Zeit-
ausgangs; sie läuft von O bis 15.

Damit können bis zu 16 Zeitausgänge (Einkarten-Interfaces vom Typ PISA 16) bedient
werden, die jeweils einen Quarz und einen 16-bit-Zähler enthalten, Sie dienen zur
Ausgabe eines Steuersignals, dessen Zeitdauer zwischen 0 und 65535 Zeiteinheiten
liegen kann (Auflösung 0.1 oder I us).

m-T

OUTT(e) a Far

Setzt den Zeitausgang auf die gewünschte x 2
Dauer t; der Wert wird mit LET zugewiesen.

 | m CALL ACTT(e)

Löst die Ausgabe des Steuersignals aus.

Beispiel:

38 LET OUTICH)=TIreÜdd6 Zeitdauer 0 auf TO + 2000 setzen
68 CALL AUTT(2) Auslösung des Signals

Bemerkungen:

Mit Ablauf der Zeit (Ende des Signals) kann ein Interrupt ausgelöst werden, der mit

ON INT zu verarbeiten ist. Die Zuordnung des Interrupts zum Zeitausgang wird
systemabhängig vorgenommen (Option).

Die Anzahl der Zeitausgänge und Zähleingänge pro System ist auf insgesamt 16 be-
grenzt; sie werden von O bis 15 numeriert und können in beliebiger Kombination

verwendet werden.

©

2.5.3.5

Einkanal-Analog-Eingänge (ADE)

Diese Eingänge werden durch die Systemvariable

INA (x) In Analog

beschrieben. Sie wird im Programm wie eine einfach indizierte Variable behandelt
und liefert im Augenblick der Abarbeitung die am Eingang x anstehende Spannung

als Zahlenwert.

Sie bezieht sich auf einen von bis zu 16 Analog-Digital-Umsetzern (Einkarten-Inter-
faces vom Typ ADE 12... mit 12 bit Ausgang). Der digitalisierte Meßwert liegt un-
abhängig vom Meßbereich zwischen 0 und 4095.

INA (X)
x

Die anliegende Spannung wird digitalisiert x=]

und als Zahlenwert übergeben. x Ix=
x ist die Nummer des Eingangs; sie läuft

von O bis 15.

Beispiele:

488 LET MES2=INA(U)/U.4U96 Meßeingang O in mV nach MES2
185 IF INA(Z)Y>5l1 THEN 229 Sprung nach 220 wenn Eingang z?511 Teile
628 PRINT INACL) Meßeingang 1 ausdrucken

Bemerkung:

Der über INA(x) abgefragte Wert ist ggfs. zu skalieren, um den Spannungswert in V
oder mV zu erhalten. Im ersten Beispiel ist ein ADU mit 0...+10 V Meßbereich an-
genommen; der Meßwert wird auf mV skaliert.

«2.3.3.6

Einkanal-Analog-Ausgänge (DAU/DAI)

Diese Ausgänge werden durch die Systemvariable

OUTA(x) Out Analog

beschrieben. Sie wird im Programm wie eine einfach indizierte Zahlenvariable behandelt
und setzt im Augenblick der Abarbeitung den Ausgang x auf den mit LET zugewiesenen
Wert.

Sie bezieht sich auf einen von bis zu 16 Digital-Analog-Umsetzern (Einkarten-Inter-
faces vom Typ DAUI10... bzw. DAI 10... mit 10 bit Auflösung). Der auszugebende
Wert liegt unabhängig vom Ausgangsbereich zwischen O0 und 1023.

e OUTA() PT
x

Der zugewiesene Wert wird in den DAU [E
x |x= übertragen und dessen Ausgangssignal 2

entsprechend gesetzt. x ist die Nummer
des Ausgangs; sie läuft von O bis 15.

 —_

Beispiel:

1855 LET OUTACD)J=ANAK1IV2 «A Ausgang ß auf ANA (in V) setzen

Bemerkung:

Der über OUTA(x) auszugebende Wert ist ggfs. zu skalieren, um Spannungs- oder
Stromwerte, die intern in V, mV oder mA vorliegen, in die richtige Ausgangsgröße

zu verwandeln. Im obigen Beispiel ist ein Ausgangsbereich von 0...+10 V angenom-
men; die Variable ANA enthält einen Spannungswert in V.

2.5.3.7

Analog-Meßsystem „(ADM 621)

Zur Bedienung des mittelschnellen Analog-Meßsystems vom Typ ADM 621 mit einge-
bautem Multiplexer dienen die Systemprozeduren

ADCS (a,k,d) A/D-Converter Single
ADCD (a,k,dg) " Double
ADCM(a,k,g) nn Multiple

Sie werden mit CALL aufgerufen, lösen q aufeinanderfolgende Messungen aus und
legen die q Meßwerte in einem Datenfeld ab, das bei a beginnt. k ist die Nummer

des benutzten bzw. des ersten benutzten Meßkandals. |

Die übernommenen Zahlenwerte entsprechen der Auflösung des Meßsystems (z.B.

0...4095 bei 12 bit).

m CALL ADCSf(a,k,d)

Der Kanal k wird q-mal nacheinander gemessen; die q Werte stehen nachher im Feld a.

m CALL ADCD(a,k,q)

Die Kanäle k und k+l werden abwechselnd insgesamt q-mal gemessen; die q Werte ste-
hen nachher im Feld a. Die Nummer k des Basis-Kanals muß ganzzahlig sein.

m CALL ADCM(a,k,d)

Die Kanäle k, ktl, ..., k+q-1 werden nacheinander gemessen; die q Werte stehen

nachher im Feld a.

Beispiele:

IDB DIM MESS(YY) Feld MESS mit 100 Plätzen
2UÖ6 VALL ADSÜLCMESS(CH)I>3, 15) Kanal 5 100mal messen

30% LCAaLL ADÜDCHMESSCHIsEHSN) Kanäle 20 und 21 N-mal abwechselnd messen
420 CALL HLUMCHESSCHY)> 1% >50) Kanäle 10...59 messen und ab Platz 50

ablegen

Bemerkung zu den Parametern:

= Feldname (Array); ist mit DIM zu reservieren.
= Zahl (0...69))

Zahl (1...256))

Q

|

als Konstante, Variable oder arithmetischer Ausdruck angebbar.

D
 I

2.5.3.8

Integrierendes Meßsystem (ADI/ADA)

Zur Bedienung der integrierenden Analog-Meßsysteme vom Typ ADI 200, ADI 210,
ADA 203 und ADA 213 sowie des vorgeschalteten Meßstellenumschalters MUI dienen
die Systemprozeduren

ADIS (a,k,q,s) Einkanal-Messung
ADID (a,k,q,s) Zweikanal-Messung
ADIM(a,k,g,s) Mehrkanal-Messung

Sie werden mit CALL aufgerufen, lösen q aufeinanderfolgende Messungen aus und legen
die q Meßwerte in einem Zahlenfeld ab, das bei a beginnt. k ist die Nummer des be-
nutzten bzw. des ersten benutzten Meßkanals.

Der Parameter s definiert den Anfang eines Zahlenfeldes, in dessen 4 Plätzen folgende
Steverparameter stehen:

s(0) Meßgröße: I = Gleichspannung (Volt)

2 = Widerstand (Ohm)
3 = Wechselspannung (Volt)

s(1) Meßbereichs-Vorwahl: 0 = 1000 vV=/ 10 MOhm
I= 00" y 1
2= 10 " / 100 kOhm
3 =] rt / 10 tt

4= 01" 7/1 ©
5 = 0.01 V=

s(2) Meßfolge: 1 = 25 Messungen/s
2 = 100 "

3= 10 "

s(3) Meßgeschwindigkeit: ß = langsam
1 = schnell

em CALL ADIS (a,k,g,s)

Der Kanal k wird q-mal nacheinander gemessen.

em CALL ADID (a,k,a,)
Die Kanäle k und kt] werden abwechselnd insgesamt q-mal gemessen.

em CALL ADIM (a,k,q,5)

Die Kanäle k, k+tl, ... ktg-1 werden nacheinander gemessen.

Beispiele:

125 CALL ADIS (A(BI,135;:19,5C0))
250 CALL ADID (MESS(CR>Ö I)» KAN>ZAHL>STFCDH))
375 CALL ADIM (B(2)>X:7sn(0))

2.6.1.1

Peripheral Ein-/Ausgabe

BASEX bedient periphere Ein-/Ausgabegeräte, wie z.B. das Konsol-Terminal,
Schnelldrucker usw.

Die Anweisungen INPUT und PRINT (siehe 2.2.3.7/2.2.3.8) dienen zur Ein- bzw.
Ausgabe über diese Geräte.

Darüberhinaus gibt es in BASEX eine Reihe von Systemprozeduren, die diese Geräte
in anderer Weise behandeln oder Geräte mit nicht zeichenweisem Datentransfer

bedienen.

Sie werden konfigurationsabhängig implementiert und sind in den folgenden Abschnit-
ten beschrieben.

2.8.2.1

System prozedur REAI}

Mit der Systemprozedu:

READ (d, a8)

wird von einem Gerät mit der Nummer d ein Zeichenstring ig die String-Variable 7

gelesen. Die Anzahl der Zeichen entsprieht de: Lönge von 8 iewt Definition in dür

CHAR-Anweisung. Die Zeichen werden ohne Parlty im Strin‘ dbgelegt.

® m CALL READ (d,aß)

Eingabe eines Strings aus Gerät d nach a.

Beispiel:

25 CHAR ADDARSCT7I)
1318 CALL xEAD (1>ADbDa8)

Bemerkung:

Die Systemprozedur READ hat eine ähnliche Funktion wie die Anweisung INPUT.
Jedoch bestehen folgende Unterschiede:

- Das Eingabegerät d muß nicht vorher mit PRINT DEV(d) spezifiziert werden,
sondern wird unmittelbar als Parameter angegeben.

- Vor Eingabe wird kein Fragezeichen (?) ausgegeben, um den Bediener zur
REaRBrERge en Den

Eingabe aufzufordern.

- Es werden alle Zeichencodes gelesen (also z.B. auch Komma, das bei

INPUT als Trennzeichen dient).

- Die Anzahl der Zeichen ist gleich der in CHAR reservierten Länge des

Strings. Vorzeitiger Abbruch der Eingabe ist nicht möglich; ebenso nicht
die Eingabe überzähliger Zeichen.

2.6.3.1-1

Magnetband-System (MBE-621)

Zum Betrieb von Magnetband-Laufwerken mit Controllem vom Typ MBE-621 dienen
die Systemprozeduren

RF (u,a,)) Read File
WF (u,a,|) Write File
RFS (u,a,)) Read File String
WFS (u,a,)) Write File String

WFM (u) Write Filemark

BSP (u,n) Backspace
FWP (u,n) Forward

BSPF (u) Backspace to Filemark
FWDF (u) Forward to Filemark
REW (u) Rewind

Sie werden über CALL aufgerufen. Das Laufwerk wird mit u bezeichnet (ß...3). Das
Speicherfeld wird mit a angegeben (Zahlenfeld bzw. Stringvariable), die Länge des
zu lesenden bzw. zu schreibenden Blocks mit I (Zahlen bzw. Zeichen). Der Parame-

ter n gibt die Anzahl der Blöcke an.

Außerdem ist für die Fehlerbehandlung die Systemvariable

TERR Tape Error

vorgesehen.

em CALL RF (u,a,|)

Lesen von | Zahlen (je 4 Byte) vom Band in Zahlenfeld a.

em CALL WF (u,a,|)

Schreiben von | Zahlen (je 4 Byte) aus Zahlenfeld a auf das Band,

em CALL RFS (u,a.|)

Lesen von | Zeichen vom Band in Stringvariable a.

em CALL WFS (u,a,])

Schreiben von | Zeichen aus Stringvariable a auf das Band.

em CALL RFM (u)

Schreiben einer Filemark.

em CALL BSP (v,n)

2.6.3.1-2

Band um n Blöcke zurückspulen.

em CALL FWD (u,a)

Band um n Blöcke vorlaufen lassen.

em CALL BSPF (u)

Band bis zur nächsten Filemark zurückspulen.

em CALL FWDF (u)

Band bis zur nächsten Filemark vorlaufen lassen.

Bemerkungen:

Bei BSP und FWD zählt eine Filemark als Block (keine Fehlermeldung). Bei n = 0
wird das Band zur nächsten Filemark gespult (Funktion wie bei BSPF bzw. FWDF).

Nach Ausführung von BSPF steht das Band vor, nach Ausführung von FWDF hinter
der Filemark.

e TERR

Liefert einen Fehlercode, dessen Zahlenwert folgenden Fehlerarten entspricht:

nn

o
S
N
S
O
A
D
G
T
B
P
@
O
D

-

oO

Beispiele:

122

129

152

170

292

218

215

22%

238

CALL

CALL

CALL

CALL

CALL

CALL

RF

Fr

aF5

WFS

RFM

35P

(",T5,€E4)

Kein Fehler
Laufwerk nicht on-line

" nicht bereit
Speicherfeld-Adressen zu klein
Bandanfang (BOT)
Parity-Fehler
Blocklänge <16 byte
Schreibversuch trotz Schreibsperre
Keine Betriebsart erkannt oder kein Band aufgelegt
Blocklänge zu groß

Filemark gelesen

Bandende (EOT)
EOT + weiterer Fehler

(2>AC9),132)

(1, BER(I,2),25)

(3,123,22)

3)

(2,8)

IF TERR<SI3 ON TERR>LE THEN 239

TER OF 822,519. °0 GO TO

2.6.3.2-1

Spezielle Bildschirm-Befehle (BTH 2000)

BASEX kann (als Option) um eine Reihe von Steuerbefehlen für alphanumerische Bild-
schirm-Terminals vom Typ BTH 2000 erweitert werden:

DISC (x,y) Set Cursor
DICH Cursor Home

DILD Line Delete

DILI Line Insert

.DICS Clear Screen
DICF Clear Foreground
DISB Set Background

DISF Set Foreground
DIXM X-mit
DISP Ä Set Print

sm CALL DISC (x,y)

Positionieren des Cursors auf eine vorgegebene Spalte x einer angegebenen Zeile y.
x kann den Wert ß...73, y den Wert ß...26 annehmen. Der Wert Ö bedeutet die
erste Spalte bzw. Zeile.

Beispiele:

IR CALL DISC (12,11) Setzen des Cursors auf die 11. Spalte
und 12. Zeile

24 LETY = Ar3,Y=CH#D Setzen des Cursors auf die Position,

398 CALL DISC (7, die durch x, y vorgegeben wird.

em PUT DICH

Positionieren des Cursors in Ausgangsstellung (erste Spalte der ersten Zeile).

oe m PUT DILD

Löschen der Zeile über dem Cursor. Alle Zeilen unter der gelöschten Zeile werden

um eine Zeilenposition nach oben geschoben. Am unteren Rand des Bildschirms er-
scheint eine Leerzeile.

em PUT DIL!

Einfügen einer Zeile. Es werden alle Zeichen unterhalb des Cursors um eine Zeile

nach unten verschoben. Die unterste Zeile auf dem Bildschirm geht verloren. Der

Cursor springt an die erste Position der eingefügten Leerzeile.

2.6.3.2-2

® m PUT DICS

Löschen des Bildschirm-Inhaltes, verbunden mit Positionieren des Cursors in Ausgangs-

stellung.

e m PUT DISB

Alle diesem Befehl folgenden Zeichen werden als Hintergrundzeichen dargestellt.

em PUT DISF

Alle diesem Befehl folgenden Zeichen werden als Vordergrundzeichen dargestellt.

em PUT DIXM

Übertragung des Bildschirm-Inhaltes zum Rechner (nur im "Batch Mode"). Es werden

alle Vordergrund-Zeichen vom letzten Transmit-Zeichen an übertragen. Sofort danach
muß eine Eingabe programmiert sein.

Beispiel:

259 PUT DIYM
26&B CALL 3READ (3,48)

e m PUT DISP

Übertragung des Bildschirm-Inhaltes auf das dazugehörige Hardcopy-Gerät.

e m PUT DICF

Löschen der Vordergrunddaten. Es werden alle hell dargestellten Zeichen im Vorder-
grund des Bildschirms durch Blanks (Leerzeichen) ersetzt, und der Cursor springt in
die Ausgangsstellung.

2.6.3.3

Graphische Ausgabe

Zum Betrieb von graphischen Ausgabegeräten dienen die Systemprozeduren

HOME
PLOT (x,y,z)
SYMB (h,aß)

Sie werden über CALL aufgerufen.

Als Ausgabegerät kann angeschlossen sein:

- ein Speicheroszillograph
ein XY-Schreiber, oder
ein Inkremental-Plotter

In den beiden ersten Fällen ist das Gerät über ein Interface angeschlossen, das für

jede der beiden Koordinaten x (Breite) und y (Höhe) einen 10-bit-Digital-Analog-
Wandler enthält (Auflösung 1024). Eine Einheit bei der Angabe von x, y und h

entspricht hier also Y1000 der vollen Schreibbreite bzw. -höhe.

Die Einheit für die Ausgabe beim Inkremental-Plotter entspricht der Schrittweite des
Gerätes.

m CALL HOME

Die Ausgangsstellung (Koordinaten-Nullpunkt) wird eingenommen. Im Falle des
Speicheroszillographen wird außerdem der Bildschirm gelöscht.

m CALL PLOT (x,y,z)

Läßt den Strahl bzw. den Schreibstift vom jeweiligen Ausgangspunkt zum Zielpunkt
mit den Koordinaten (x,y) wandern.

Ist z =ß, so geschieht dies nichtschreibend.

Ist z = |, so wird zwischen Ausgangs- und Zielpunkt linear interpolierend geschrieben.

m CALL SYMB (h, 08)

Schreibt den Textstring a3 (große Buchstaben, Ziffern, Sonderzeichen). Der Schriftzug
wird waagerecht geschrieben, d.h. in Richtung der Koordinate x. Die linke untere

Ecke des ersten Schriftzeichens ist die Ausgangsposition, d.h. die jeweilige Stellung

des Strahls bzw. der Schreibfeder vor dem Aufruf von SYMB. Der Parameter h ist für
die Schrifthöhe maßgebend; die Schriftzeichen haben die Höhe 7h. Der Rasterabstand
der Zeichen beträgt ebenfalls 7h.

Beispiele:

135 CALL HOME

118 CALL PLOT (5518,32)

l26 CALL SYMBCIS'"BASER”)

Kartenleser (MDS 6042)

2.6.3.4

Zum Betrieb des Lochkarten-Stapellesers MDS 6042 ist die Systemprozedur

CARD (d,a,f)

vorgesehen. Sie wird mit CALL aufgerufen und bewirkt das Lesen einer 80-spaltigen

Lochkarte. Die Daten der Lochkarte werden in ein Zeichenfeld (Stringvariable) a
gelesen, wo sie in Form von ASCII-Zeichen stehen und als String weiterverarbeitet
werden können.

Mit d wird die Geräte-Nummer angegeben. Durch f wird ein Speicherplatz (dimen-

sionierte Variable) definiert, in dem ein Fehler-Code steht:

Fehler-Code 0

N
B
o
D

kein Fehler |
Zeichen EOF (End of File) gelesen
Kartensehacht leer bzw. zu voll
 Einziehfehler
 Lesefehler
_Parity-Fehler

Der Fehlercode kann nach Lesen einer Karte abgefragt werden.

em CALL CARD (d,a,f)

Lesen einer Lochkarte am Geröt d nach S$tringvarloble a. Ein eventueller Fehler
steht in f.

Beispiel:

194 .CHAR Ks(a”)
.eo

219 COSUB 898

&e@2 IF F(2)=3 THEN 828

288 CALL CARD (lE,KS,F®))

SIE CETO FCA) OF 839, AaE, AR, Read, 87
E29 RETURN
838 PRINT "ERROT EIF"
E35 RETURN

2.7.1.1

Sonstige Systemvariablen und -prozeduren

Im folgenden sind in BASEX benutzbare Systemvariablen und -prozeduren beschrie-
ben, die allgemeinen Charakter haben, den Sprachumfang von BASEX ergänzen und
bei Bedarf implementiert werden.

2.7.2.1

Systemprozeduren LDST und STST

Die Systemprozeduren

LDST (a, b$, |) Load String
STST (a, 58,)) Store String

dienen zum Datenaustausch zwischen einem Zahlenfeld a und einer String-

Variablen b3 der Länge I. Sie werden mit CALL aufgerufen.

Das Zahlenfeld a ist mit DIM, der String b8 mit CHAR zu reservieren. Da jeweils
4 String-Zeichen einer Zahl entsprechen, sollte die Länge | ein ganzzahliges Viel-
faches von 4 sein (Il = 4, 8, 12, ...).

m CALL LDST (a, b8, N

Der String b3 wird mit dem Inhalt des Zahlenfeldes a geladen; es werden | Bytes
übertragen.

m CALL STST (a, b3, |)

Der Inhalt des Strings b3 wird im Zahlenfeld a gespeichert; es werden | Bytes übertragen.

Beispiele:

ß |
133 DIM Acl) BER GERN —- |
112 CHAR 35(4) ALL _ |
288 CALL LOST(AlH),35;4) | |

$ 1.0.0.2

» DIM Als: | 0 VIA P 302 DIM Äätıl,2) RER BE [LLL:
318 CHax SB(15) nn WLAN |
328 CALL STSTent1,1),33>8) >

» KIIRZIANIIID

n——

Bemerkung zu den Parametern:

a = ein- oder zweifach indizierte Zahlen-Variable

55 = String-Variable
| = Anzahl der übertragenen Bytes (4, 8, 12, ...)

a kann ein beliebiges Element des Zahlenfeldes sein; es wird von dort aus übertragen.
Die Länge von b3 kann größer als | sein; die Übertragung beginnt stets mit dem ersten

Zeichen von b2.

A

8.1-1

Systemgenerierung Lochstreifen-Systeme

Jeder Benutzer kann eine spezielle Konfiguration des BASEX-Systems vornehmen,
die seinen Bedürfnissen entspricht.

Für Lochstreifen-orientierte Anlagen erhält er einen Programmstreifen, in dem das
gesamte BASEX-System enthalten ist. Im Dialog wählt er die Funktionen, System-
variablen und -prozeduren aus, die er für seine Aufgabe braucht; die übrigen
werden überlesen.

Zum Schluß kann der Benutzer weitere verfügbare oder auch selbst erstellte Routinen
einlesen.

Auf diese Weise entsteht ein speicheroptimales BASEX-System.

Die Systemgenerierung erfordert folgende Manipulationen:

Taste RS betätigen, Schalter BS einlegen. Lader-Lochstreifen (im RUBOUT-Bereich)

in Teletype-Leser oder in schnellen Leser einlegen (im letzteren Fall zusätzlich

Schalter 4 einlegen). "Taste ST betätigen. Jetzt wird der Lader in die Plätze ’96
bis ’FF des RAMs. eingelesen.

Nach Halt des Lochstreifeiitesem ı sind Schalter BS und 4 (falls erforderlich) in Nor-

malstellung zu bringen. Taste ST betätigen. Nach dem Einlesen meldet sich der
Rechner mit ’w## BASEX###', Auf die nun folgenden Fragen ist für Ja mit "Y’,
für Nein mit ’N’ zu antworten.

Es folgt der Dialog zwischen Benutzer und System (Beispiel mit Erklärungen siehe
nächste Seite). Zum Schluß fragt das System nach der Eingabe weiterer Routinen.

Wird diese Frage negativ beantwortet, meldet sich der Rechner mit ” #READY’.

Bei positiver Antwort müssen jetzt die einzelnen Systemprozeduren über den Leser
eingelesen werden. Das geschieht folgendermaßen: Die Lochstreifen müssen im
 RUBOUT-Bereich auf den Lochstreifenleser gelegt werden, und die Start-Taste ist

so oft zu betätigen, bis der Lochstreifen ganz eingelesen ist. Nach dem Einlesen

der letzten Prozedur noch einmal die Taste ST betätigen, worauf sich der Rechner

mit "* READY’ meldet.
2

E
E
E

e
r

8.1-2

Beispiel für Systemgenerierungs-Dialog:

MEMORY SIZE 48K ? YN
MEMORY SIZE 32K ? Y/N
FAST PUNCHER ?Y/N
FAST READER ? Y/N
DYNAMIC

BEI
BEI

L0G
EXP
'SOR
TAN
ATN
END

MSEC

SEC
MIN
HOUR
LEV
INB!
ERW
IMD
OUTB
OUTW.

"turn
INA
oUTA
INC
OuTEe
OUTT
ACTE
HLTC
ACTT
LDST
STST
READ
DISP
DIXM
DISF
DISB
DICF
DICS
DILI
DILD
DICH
DISC
STNU
ERR
stm

Ce

a

n
e
n
n
e
n
.

55

»

INTERRUFT INPUTS ?-Y/N

(KERNSPEICHERGROESSE 488)

(KERNSPEICHERGROESSE 32K)

(SCHNELLER LOCHER?»

(SCHNELLER LESER)

CINTERRUPT-EINGRENGE)

Y: ABFRAGE AUF- LEVEL UND EINGAENGE
N: NAECHSTE FRAGE:

SIMN

Y/N

Y/N

“N

Y/N
Y/N

.Y/N

Y/N.

Y/MW

vn
.Y/M

IN.
YN

Y/N
YrR
YeN
Y’N

Yen

Y/N

Y/N

Y-/N

Y-N

Y/N

Y/N

Y-/N

Y/N

Y/N

Y-/N

Y/N

Y/N

Y/N

Y/N

Y/N

Y/N

SUBROUTINE

>

9

D

+
3

> YIN CHAT. LOGARITHNUS)
YAN $E-FUNKTIOND
YYR KQURADRATWURZEL)I.
Y/N CtAaNGENS COSINUS SINUS)
Yen CARCUSTANGENS)

2 YZN 000 CZUFALLSZAHLENGENERATOR)
(MILLISEKUNDEN)
(SEKUNDEN!
CHINUTEN?
(STUNDEN).
CLEVEL)
TTWELSER DIe GITALER EINGANG)

» (WORTWEISER. DIGITALER EINGANG)
(WHORTWEISER DIGITALER BCED-EINGANG)

(BITWEISER. DIGITALER: AUSGANG)
(WORTMEISER. BIGITALER AUSGANG)
KBORTWEISER BIGITALER BED-AUSGRANG)

"KEINKANAL- ANALOGEINGANG)

KEINKANAL-ANALOGAUSGANG)

(ZAEHLER-INHALT ABFRAGEN)
(ZAEHLER- INHALT SETZEN)

"tZEITZAREHLER-INHALT SETZEN
CZAHEHLER AKTIVIEREN)
CZREHLER ANHALTEN)
CZEITZAEHLER AKTIVIEREN)
GSTRING LADEN AUS REAL)
(REAL LADEN AUS STRING)
CEINGABE STRING)
(BILDSCHIRM-INHALT AUSDRUCKEN?
(CBILBSCHIRM-INHALT SENDEN)
(UMSCHALTUNG AUF VORDERGRUND-DARSTELLUNG)
CUMSCHALTUNG AUF HINTERGRUND-DARSTELLUNG)
(YORDERGRUNB-DATEN LOESCHEN)
(BILDSCHIRM LOESCHEN)
(ZEILE EINFUEGEN)
(ZEILE LOESCHEN)
(CURSOR IN GRUNDSTELLUNG)
(CURSOR POSITIONIEREN)
(STATEMENT-NUMMER)
(FEHLER-VARIRELE)
CBASEX-UHR SETZEN)

PROCEDURE ? Y/N

n
n

e
n

n
n

8.2-]

Einbau von Routinen in BASEX

Der Benutzer kann für das BASEX-System Maschinencode-Programme (Routinen)

erstellen, die er bei der Systemgenerierung hinzufügt (s. 8.1.2.1).

Den Routinen stehen die Register ’02 bis ’IF zur Verfügung. Als Variablen-

speicher sollten nur Register benutzt werden, damit die Routine reenterable wird.

Es gibt verschiedene Arten von Routinen:

- für einfache Systemvariablen

- für indizierte Systemvariablen
- für Systemprozeduren (CALL ...)

I. Einfache Systemvariable:

Am Anfang der Routine stehen 8 Kennbytes:

a) In den beiden ersten Bytes wird die Länge der Routine (ohne die 8 Kennbytes)
als 2-Byte-Hexa-Zahl angegeben.

b) Im dritten Byte steht als Kennung Hexazahl ’59.

c) Das vierte Byte enthält die Definition der Transferrichtung -{ats Hexazahl):

für INPUT-Typ: £ (Hexa ’P)
für OUTPUT-Typ: -1 (Heza ’FF)

d) In den restlichen vier Bytes wird der Name der Routine angegeben; wenn
weniger als vier Zeichen benötigt werden, müssen die restlichen Bytes mit
Leerinhalt versehen werden.

Es folgt die erste Instruktion der Routine; un diese Stelle springt das Programm

nach dem Aufruf durch das BASEX-Programm.,

Soll ein Datenaustausch mit dem BASEX-Programm stattfinden, so ist die Gleit-
komma-Zahl über die Register '92...'95 (Akku @ + 3 weitere Plätze, in für
Zahlen üblicher Lage) auszutauschen. Bei Variablen vom OUTPUT-Typ steht sie
dort nach dem Aufruf; bei Variablen vom INPUT-Typ ist sie vor dem Rücksprung
dorthin zu bringen.

Der Rücksprung aus Jder Routine zurück in das BASEX-Programm erfolgt durch den

Befehl JPX,,,"7C.

8.2-2

Beispiel:

Routine für einfache Systemvariable vom INPUT-Typ (LEV):

bou6 Ü s 6;

BGoBi /

KENNBYTES;

BbEZ Beh Ex H 8689;

83 66

Bou3 BBuz H : 39;

5%

8054 8843 D s 6; 88

eBu5 HBuda 3x TI ı"LEV®,

4C 45 56
BOSE W057 | D s Bi; 88
au? /

buuS vou8 4 LIC ‚8 > 87 IB 84 88 68

EINSPRUNG;

EBRuu HRsc GL 8 ; 24

Eule gacı RHC .8 : 8 F ; BE &F

Ball Baur JE ; : » ' ?7C 7 F2 FC

RUECKSFRUNG;

88612 j

a

[

[e
y

(a
l

I
d

8.2-3

2. Indizierte Systemvariable

Am Anfang stehen 8 Kennbytes:

a) Siehe 1.a).

b) Im dritten Byte steht die Kennung als Hexazahl ’5A.

c) Siehe 1.c).

d) Siehe 1.d).

Der übrige Aufbau ist identisch mit 1); jedoch erfolgt vom BASEX- Programm die
Übergabe eines Index’ als 2-Byte-Ganzzahl in den Registem ’9, 'PA.

Beispiel:

Routine für indizierte Systemvariable vom INPUT-Typ (INB):

8888 Ö s B;
BoBi ,

KENNBYTES;
Hen2 5888 ee H : 8928;

| 28 08 8883 89892 H SR;

JA
0884 8893 D » B; 88
BBB5 BBaR4 3%s T : "INB®’;

|
49 4E 42 8886 9987 Y ;

Bau? /

8998 f

8889 088 4sıLDt ‚a : ar iB 84 89 988
EINSPRUNG;

8818 H88C LDCD, 6,’ BI3F8 ; IE 8i 86 F@ 83 BBlı BBıl 2e=ZERANR , 6: 9; IE 85 86 989 eBl2 9815 BNOG, 9, 8A ; 79 89 88 984 8813 0919 ORC ı 6, l; 1 86 81 8814 HBlC A LDA ‚0 3881, 6; 8E 81 30 86 8815 99829 ANC » 9, fi Bi 89 87 B816 8823 EOC , 9, -1; Di 89 FF 8817 98826 B 9, ‚cc ; 43 89 84 E818 8829 SK0O ,@ ; 28
819 882A JPL BB ; Fö FB
8929 982C G AN ‚,@ 3 1; Bd Bi
8821 @B2E | JPX 5 : TC sr F2 7C

RUECKSPRUNG;
8822 /

8

a

Sa
nd

n
n

n
e

n
n
.

3. Systemprozeduren (CALL...)

Im Fehlerfall kann das Register "7/B vom Benutzer gesetzt werden, und im BASEX -

programm mit der Systemvariablen ERR abgefragt werden.

Am Anfang stehen 8 Kennbytes:

a) Siehe 1.ca).

b) Im dritten Byte steht als Kennung die Hexazahl ’5C.

c) Das vierte Byte enthält die Definition der 4 Parameter-Typen (2 bit je
Parameter):

T. | —T «— Parameter-Typ

Die Art der Parameter ist als Bitmuster festzulegen und dann als 1-Byte-Hexa-
zahl anzugeben.

Es gilt für: kein Parameter (NOP) AR

Zahl (Real) p1
String 19
Zahlenfeld (Array) 11

Beispiel: Iı ı)ı 812 110 A| = 'E4

Array String Real NOP

Registeradressen: für 1. Parameter | ’6B | "6A | ’69 | 68 |

für 2. u | "6F | "6E | "6D | ’6C |

für 3. " | 73] ’72 |’71 1'790 |

für 4. N | 77 \'76 |'75 |'74 |

Kernspeicherzuweisung für Real | N+3|N+2 IN+1 IN |

Expo- Mantisse
nent

für String | N+3]|N+2 |N+1 | N |

Basisadresse des Länge des.

Strings Strings

für Array IN+3|N+2|N+H IN |

Anfangsadresse
des Arrays

Die Parameter werden bei Aufruf der Systemprozedur durch das BASEX-Programm

in die Register übergeben.

8.2-5

|) S iehe 1.d)

Es folgt die erste Instruktion der Routine; an diese Stelle springt das Programm
nach dem Aufruf durch das BASEX-Programm.

Der Rücksprung aus der Routine zurück in das BASEX- "Programm erfolgt durch den
Befehl PX B.

Beispiel:

Routine für Systemprozedur (LDST).

kuu6 Ö , 6;

Bowl / | |
KENNBYTES;

BB8z 86658 2x H ‚’861iR
ib 88

B8n3 HBuc H SL

| | st
Boos 8863 H ‚’E4: |

| 4E
6855 6804 4% T ‚®LBST® | |

ac 44 53 54
686 Ä

EBBErT 5985 A LEE ,@ 3 ‚’68 32 68
EINSPRUNG: |

B888 Baar 5TX ‚a 6E E2 6E
88823 AUsc ESL: : B i FI 84 83
aBBia Bor JPL A ; Fa F8 |
aB1i 8Bti B ADED, ’SE L; iE 931 6E 81 88
8812 6816 AuLCD, ’58 ; IE 91 68 81 98
8813 881B SBe »’78 5 b; ki 78 Bi
8814 881IE BZ .°78 ‚ce 41 70 83
8815 8821 JPX ı; ' F2 84
BBi6E 8823 CC : 0 JPx '5g8 F2 58

| RUECKSPRUNG;
8817 r

8818 2 ;

91-1

BASEX-Fehlerliste

Nachstehend sind alle Fehlermeldungen aufgeführt, die vom BASEX-Interpreter
während des Kommandobetriebs (K) oder während des Ausführungsbetriebs ®

erkannt werden, mit Angabe des Fehlercodes:

]

3

>

O
O

O

S
O

0

N

12

13

14
15

16

17

18
19
20

2]

22
23
24
25
26
27
28

31
32
33

K,R

I

N
A
T

N
M

A
A
N

wm
D
r

Be

Eingabezeile zu lang (mehr als 72 Zeichen)

Operator-Stack-Überlauf (zu tiefe Verschachtelung von Ausdrücken)
Erwartete Ganzzahl nicht im erlaubten Bereich (erlaubt: 1...9999 bei
Statement-Nummern und CHAR-Index; 0...9997 bei DIM-Index)

Speicherüberlauf (zu viele Statements, zu große Bereiche, Runtime-Stack-
Überlauf (bei verschachtelten Programmen)

Über- oder Unterschreitung des Gleitkomma-Zahlenbereichs
Paritätsfehler bei Eingabe
Standardfunktion bei gegebenem Argument nicht berechenbar ®
Standardfunktion wurde bei Systemgenerierung gelöscht
Mehr als ein Stringoperator auf der rechten Seite der String-Zuweisung

Erwarteter Operand nicht gefunden oder vom falschen Typ
Erwarteter Operator nicht gefunden oder vom falschen Typ
Öffnende und schließende Klammern passen in Anzahl und/oder Typ nicht
zusammen
Falsche Syntax beim Aufbau eines Operanden (Variable, Funktion, Zahl,
String, Formatangabe)
Illegale Folge von Operatoren und Operancen n Ausdrücken mit Strings
Argumente bei indizierten Variablen oder Funktionen nicht korrekt oder zu viel‘

Bereichsüberschreitung bzw. „Unterschreitung bei indizierten Variablen oder
bei Teilstrings

Benutzerfunktion, Unterprogramm oder Segment nicht definiert (Name steht
nicht in Objekttafel)
Nicht existierendes Statement oder Kommando

Sprungziel nicht definiert (nicht vorhandene Änweisungsnummer)
Nach einem Kommando falsche Angaben oder Fehler bei Datei-Behandlung
(z.B. Datei-Name nicht existent oder Plaiten-Fehler)

NEXT ohne FOR, RETURN ohne GOSUB, ENDS ohne LINK, ENDS in Root
‚oder falsche Verschachtelung von Schleifen, Unterprogrammen und Segmenten

DATA-Liste erschöpft oder nicht kompatible Zuordnung in READ oder INPUT
Im FOR-Statement Schrittweite = 0

Zuordnung fehlt (oder an falscher Stelle) bei LET,DEF,FOR,EQUI oder EQUO
In diesem Statement nicht erlaubter String-Ausdruck
Unerlaubtes Statement nach ON INT oder AFTER

Parameter in CALL stimmen in Anzahl und/oder Typ nicht mit Definition überein

Wert des Ausdrucks nach ON INT ‚AFTER, START, ENAB oder DISAB nicht im

erlaubten Bereich
verbotener 5 tartauftrag

Neustart nach INIT durch RUN nicht erlaubt
Interpretersegment auf Plattenspeicher fehlt
Überlauf der START-/AFTER-Tabellen
Fehler Kernspeicher
BUS-Fehler

35
36
37 A

A
N

8
8
 A

=

2

7
 Netz- Fehler |

Kein Unterprogramm vorhanden (z.B. kein Programm für DEV (6) existent)
Statementnummer im Segment kleiner oder gleich der maximalen

nt der Root T u ri u n

LINK im Segment
Segment im LINK- Statement wurde bei INIT nicht geladen

FILE Länge zu kurz

r) Argument in SQR negativ ‚oder Exponent in EXP zu groß (>88) oder zu klein
(<-73) oder Argument in LOG nicht positiv oder beim "Integer-Hoch"

Exponent > 65535 oder beim "Real-Hoch" negative Basis oder Hochzahl > 8388607.

dreiz.
Seit vielen Jahren Computer-Hersteller.

Spezialisiert auf Echtzeit-Systeme.

Computer, Peripherals, Systeme, Packages,
anwendungsorientierte Systeme.

