
 ure
Handbuch

 = Heinrich Dietz

Computer Industrie-Elektronik
D-4330 Mülheim a.d. Ruhr 13

Solinger Straße 9
SYSTEME Tel. (021 33)4850 24

Telex 856770
DIETZ

Handbuch 4/74

Hinweis für den Leser:

Das vorliegende Handbuch DIETZ 621 soll Ihnen einen Überblick über das
Computer-System 621, seine Konfigurationsmöglichkeiten, seine Software und
seine Peripherie geben.

Detaillierte Information kann der Benutzer dem Handbuch entnehmen, wenn es
um technische Daten, die Struktur und Bedienung der Zentraleinheit, die Ma-
schinenbefehle und die Programmierung in Assembler geht.

Andere Aspekte und Baugruppen des Systems, insbesondere die Peripherie, Betriebs-
systeme und Programmiersprachen, sind hier nur so weit beschrieben, wie es das
Verständnis von Funktion und Leistungsfähigkeit erfordert. Benutzer-orientierte Do-
kumentation hierzu liegt in getrennter Form vor.

Ausgabe: April 1974

Herausgeber: Heinrich Dietz
Industrie-Elektronik
D-4330 Mülheim a.d. Ruhr 13
Solinger Straße 9
Telefon (02133) 48 50 24
Telex 0856770

Druck: Hoppe + Werry KG, Mülheim a.d. Ruhr

Inhalt

| Zentraleinheit

Das Unternehmen:

Die Produkte:

Prinzip:

Hardware:

Prinzip:

System-Peripherie:

Geräte-Peripherie:

Prozeß-Peripherie:

DFÜ-Peripherie:

DIETZ in Kurzform

Über den DIETZ 621
Über das DIETZsystem 62]

Struktur

Maschinenbefehle

Aufbau

Bedienung
Technische Daten

Peripherie-System
Universal-BUS
Universal-Interface-Einheit
Aktive Elemente

Erweiterungen der Zentraleinheit
Plattenspeicher-Systeme

Geräte-Interfaces
Standard-Peripherals
Graphische Ausgabe
Magnetband-Systeme

Digitale Ein- und Ausgänge
Analoge Ein- und Ausgänge

Datenfernübertragung

Seite

13
27

55
61
65

73
75
90
99

105
108

115
118
129
132

137
147

162

| Anhang |

Basis-Programmierung:

Betriebssysteme:

Programmiersprachen:

Hilfsprogramme:

Standard-Systeme:

Für Beginner:

Zum Nachschlagen:

Programmierhinweise
ASSEMBLER
LIBRARY
MONITOR

DBOS
DFMS
MPOS
RTOS

MARS 600
BASIC
BASEX
C-BASIC
FORTRAN IV

UTILITIES
MINCTEST 600

DIETZsystem 62]
Prozeßterminal-System 6150

Computer-Fibel

Tabellen

Seite

164
171
192
205

210
214
22]
224

228
235
246
252
255

261
262

263
277

279

304

DIETZ in Kurzform

Die Firma HEINRICH DIETZ INDUSTRIE-ELEKTRONIK besteht seit 1951. Das Programm
war und ist die industrielle Automation mit elektronischen Mitteln. Diese Mittel sind

heute Computer.

Der Weg führte von elektronisch geregelten Antrieben über Kompensationsmeßgeräte und
Analogrechner zur Digitaltechnik, über den DIGIVERTER (den ersten deutschen Digital-
umsetzer) zu den ZDE-Anlagen und mit dem Aufkommen der Halbleiter als industrielle
Baukomponenten zum COMBIDAT-System.

1965 wird das COMBIDAT-System durch die ersten technischen Kleincomputer aus
Deutschland, die MINCAL-Digitalrechner, erweitert. In dieser Zeit entsteht eine
Rechner-Familie von festprogrammierten Kleincomputern mit der Bezeichnung MINCAL 0,
MINCAL E, MINCAL Q und MINCAL 1 und einem speicherprogrammierten Computer,
dem MINCAL3.

Auf die Computer der ersten Generation folgt 1968 der MINCAL 4, der erste in Deutsch-
land entwickelte Prozeßrechner in integrierter Technik. Mit dem MINCAL 4 wurde die
Multiprogramming-Struktur und die 19-bit-Wortlänge eingeführt.

Diese beiden Eigenschaften finden sich auch bei dem MINCAL-500-System, das 1969
auf den Markt gebracht wird. Dieses erfoigreiche Prozeßrechner-System umfaßt den
festprogrammierten Computer MINCAL 513 und sein freiprogrammiertes Gegenstück,
den MINCAL 523.

1972 wird der Multibyte-Computer MINCAL 621 auf dem Markt eingeführt. Er hat sich
schnel! zu einem der erfolgreichsten Minicomputer auf dem europäischen Markt entwickelt
und bildet den Kern des heutigen Systems DIETZ 621.

1973 kommt der DIETZ 1600 hinzu, ein außerordentlich leistungsfähiges System mit um-
fangreicher Software für Prozeßanwendungen und technisch-wissenschaftliche Datenverar-
beitung im Foreground-/Background- oder Timesharing-Betrieb.

Am unteren Ende des Produktionsspektrums liegt der 1974 eingeführte Mikrocomputer
DIETZ 211, der vor allem Aufgaben der Steuerung, Meßwerterfassung und -verarbeitung
kostengünstig löst.

Heute entwickeln und fertigen in Mülheim 250 Mitarbeiter nicht nur Computer, sondern
auch Computer-Peripherie und Standard-Software. Außerdem liefert DIETZ schlüsselfertige
Computer-Anlagen einschließlich Planung, Systemanalyse, Ausarbeitung der Anwenderpro-
gramme und der Prozeßperipherie.

DIETZ COMPUTER SYSTEME ist ein Begriff geworden für ein eigenständiges Entwicklungs-
konzept. Auch der DIETZ 621 ist ein Teil dieser Gesamtkonzeption.

Über den DIETZ 621

Das Konzept des DIETZ 621 berücksichtigt die Erfahrungen langjähriger erfolgreicher
Computer-Entwicklung und verwendet modernste Technologien. Das günstige Preis-/
Leistungsverhältnis ist nicht durch Weglassen wichtiger Funktionen erreicht worden,
sondern durch eine neuartige Konzeption, die im Bereich der Kleincomputer ganz neue
Maßstäbe setzt.

Hier in Kurzform die wichtigsten Eigenschaften des Computers:

MULTIBYTE-KONZEPT

Der DIETZ 621 paßt sich optimal der gestellten Aufgabe an, weil er mit variabler
Wortlänge arbeitet: 8 bit für Textverarbeitung und Zeichen-Ein/Ausgabe, 16 bit für
Prozeßdaten, 32 bit für Rechengrößen.

Die Bytes werden durch die Computer-Hardware zu Daten beliebiger Länge verkettet
- schnell, speichersparend, einfach.

MULTIPROGRAMMING - HARDWAREUNTERSTÜTZT

Echtzeit-Aufgaben verlangen von einem Computer Multiprogramming-Eigenschaften:
Programm-Unterbrechungen durch Abläufe mit hoher Priorität, gleichzeitige Bearbeitung
mehrerer Programme.

Der DIETZ 621 hat bis zu 16 unabhängige Programmebenen mit eigenen Registern und

Datenkanälen. Wechsel der Aufgaben bedeutet Wechsel der Ebene, und dieser erfolgt
praktisch verzögerungsfrei, weil hardwaregesteuert.

MULTIREGISTER-STRUKTUR

Jede Programmebene verfügt über bis zu 256 Register - eine für Computer dieser Klasse
ungewöhnlich hohe Zahl. Viele Universalregister bedeuten kompakte, mit hoher Geschwin-
digkeit laufende Programme; sie ergänzen Multibyte- und Multiprogramming-Struktur zu
einem einzigartigen Computer-Konzept.

UNT'VERSAL-BUS

Zentraleinheit, Kernspeicher, Peripherie und Massenspeicher verkehren über einen Uhi-
versal-BUS miteinander. Programmgesteuerter Datenverkehr und direkter Speicherzugriff
bedienen sich des gleichen Datenkanals. Die Peripherie und der Speicher werden völlig
gleich behandelt, so daß sich die Programmierung von Ein- und Ausgaben vereinfacht und
trotzdem an Flexibilität gewinnt. Bei direktem Speicherzugriff wird die Zentraleinheit
nicht berührt und kann bis zu ihrem nächsten Speicherzugriff intern weiterarbeiten. Das
BUS-Konzept erlaubt den Anschluß unterschiedlich schneller Speicher.

HALBLEITER-SPEICHER

Jeder 621 enthält - neben dem Hauptspeicher - einen Halbleiter-Speicher mit extrem
kurzer Zugriffszeit, in dem sich Register, Datenpuffer und schnellaufende Programme
befinden.

FLEXIBLE ADRESSIERUNG

Die BUS-bezogenen Befehle können vielfältig adressiert werden: CONSTANT (die
Adreß-Bytes werden unmittelbar als Operand verwertet), REGISTER (die ebenen-zuge-
hörigen Register werden angesprochen), RELATIVE (der Operand steht bis zu 127 bytes
vor bzw. nach dem Befehl), ABSOLUTE (der gesamte Speicherbereich kann durch eine
16-bit-Adresse angesprochen werden). Zusätzlich kann die so gebildete Adresse noch in-
diziert werden, über eines von maximal 127 Indexregistern.

BEDINGTER SPRUNG

Alle Entscheidungen werden durch bedingte Sprünge gefällt, bei denen das Programm
relativ um bis zu 127 byte vorwärts oder rückwärts verzweigt. Besondere Befehle testen
beliebige Bits oder Bitgruppen auf O- oder I-Zustand.

ZWEIADRESS-BEFEHLE

Alle BUS-bezogenen Instruktionen sind Zweiadreß-Befehle, ein bei Kleincomputern un-
gewöhnlicher Komfort.

HARDWARE-BOOTSTRAP

Ein Urladeprogramm ist in einem ROM gespeichert und durch Tastendruck aufrufbar. Da
dieses Programm nicht im Kernspeicher liegt, kann es auch nicht durch Programmierfehler
zerstört werden.

ZUSÄTZLICHE OPTIONEN

In das Rechnergehäuse können zusätzlich eingebaut werden:
2 Interfaces für Standard-Peripherie; Real-Time-Clock; 4, 8, 16 oder 32 Kbyte Kern-
speicher oder bis zu 8K reprogrammierbarer Festspeicher; Batteriepufferung für den Halb-
leiterspeicher.

COMPUTER-PERIPHERIE

Wie der Rechner selbst, so ist auch seine Peripherie modular ausbaufähig. Jede Anlage
wird aus den Komponenten zusammengestellt , die zur Lösung der jeweiligen Aufgabe be-
nötigt werden. Wächst die Aufgabe, wird das System erweitert, z.B. durch Kernspeicher-

erweiterung bis 80 Kbyte, Festkomma- oder Gleitkomma-Prozessoren, Platten-Systeme,
Magnetband, Fernschreiber, Datensichtgeräte, Schnelldrucker, Lochstreifenleser/-Stanzer,
Lochkartenleser, Plotter, XY-Schreiber, Datenfernübertragungseinrichtungen und Prozeß-
Ein/Ausgänge für die unterschiedlichsten digitalen und analogen Signale.

MODULARER AUFBAU

Zentraleinheit und periphere Erweiterungen sind so modular aufgebaut, daß sie in jedem
Anwendungsfall kosten- und funktionsgerecht konfiguriert werden können.

Über das DIETZsystem 621

Das DIETZsystem 621 ist ein universelles Hardware-/Software-System, das auf der
Zentraleinheit 621 aufbaut und mit dem gesamten Peripherie- und Software-Katalog

ausgerüstet werden kann.

UNIVERSELLER EINSATZ

Die Einsatzmöglichkeiten des DIETZsystems 621 sind nahezu unbegrenzt, vor allem dort,
wo es auf Echtzeit-Verhalten, Benutzerfreundlichkeit und Flexibilität ankommt:
Datenerfassung, Meßwertverarbeitung, Steuerung und Regelung - die klassischen Aufgaben
von Prozeßrechnern. Experimentsteuerung, Automatisierung analytischer Meßgeräte, Labor-
automation, medizinische Technik - ein bedeutendes Gebiet für den Computer-Einsatz.

Technisch-wissenschaftliche Datenverarbeitung, Uhnterrichts-Unterstützung - für Forschung
und Lehrbetrieb.

Datenfernverarbeitungs-Systeme und intelligente Terminals - mit Fähigkeiten vollwertiger
Computer.

Interaktive, dialogfähige Systeme für die Erfassung und Verarbeitung von kommerziellen,
administrativen und Fertigungsdaten - mit schnellem Zugriff im Echtzeit-Betrieb.

DIETZdisk - EIN NEUES SPEICHERMEDIUM

Jedes DIETZsystem 621 ist mit einem neuartigen Speichermedium ausgestattet: der
DIETZdisk.

Ein flexibler Plattenspeicher in einer robusten, völlig geschlossenen, handlichen Kassette.
Berührungslos gelesen und beschrieben, präformatiert und daher unempfindlich und austausch-

bar, mit hoher Kapazität und schnellem Zugriff.

Die DIETZdisk steht dem Benutzer als Programm- und Datenträger zur Verfügung. Ein
sicheres, bequem handhabbares Medium, mit 256 Kbyte sofort zugreifbarer Kapazität.
Eine Lösung, die Lochstreifen, Bandkassetten und Floppy Disks in den Schatten stellt.

Im DIETZsystem 621 C ist ein zweites DIETZdisk-Laufwerk als Systemspeicher enthalten.
Kurze Zugriffszeit und hohe Transferrate bieten die Eigenschaften eines plattenorientierten
Systems - zu den Kosten eines normalen Computers.

2.4 MBYTE SYSTEMSPEICHER

Das DIETZsystem 621 D enthält als Systemspeicher eine Wechselplatte mit 2.4 Mbyte
Kapazität - für erhöhte Ansprüche an Speichervolumen und Zugriffsgeschwindigkeit. Die
Erweiterung auf bis zu 9.6 Mbyte ist vorgesehen.

MODULARE PERIPHERIE

Zum DIETZsystem 621 gehört ein umfangreicher Katalog von Periphergeräten, Prozeß-
Interfaces und Datenübertragungs-Schnittstellen. Aufgrund der modularen Konzeption des
Peripherie-Systems lassen sich optimale Konfigurationen für alle Einsatzfälle zusammen-
stellen.

Ein Universal-BUS verbindet die Peripherie-Anschlüsse mit dem Grundsystem; System-
Erweiterungen sind daher problemlos durchführbar. Und: Die gesamte Peripherie wird von
der Software unterstützt.

BENUTZERFREUNDLICHES BETRIEBSSYSTEM

Das Betriebssystem faßt alle Hardware- und Software-Ressourcen zusammen.
Es unterstützt:
Benutzer/System-Dialog über das Konsolgerät; Behandlung von und Zugriff zu Dateien;
Overlay von Programmen; Verarbeitung von Interrupt- und Zeitaufträgen; Verwaltung von
Programmen; Edition und Übersetzung von Quellprogrammen; Erkennung von Systemfehlern.

Diese Eigenschaften werden garantiert durch

- DBOS Plattenorientiertes Basis-Betriebssystem
- DFMS Datei-Verwaltungssystem
- MPOS Multiprogramming-Betriebssystem
- RTOS Echtzeit-Betriebssystem

FÜR JEDES PROGRAMM DIE GEEIGNETE SPRACHE

Dem Benutzer des DIETZsystems 621 steht eine Vielzahl von Computer-Sprachen zur Ver-
fügung.

- MINCASS 600 - die Assembler-Sprache für speicher- und laufzeit-optimale Program-
mierung

- MARS 600 - ein Makro-Assembler für Realtime-Systeme, der dem Benutzer die Beschrei-
bung des Echtzeitverhaltens und die Behandlung der Peripherie leicht macht

- BASIC - die Dialogsprache für technisch-wissenschaftliche Probleme

- BASEX - ein interaktives, benutzerfreundliches Programmiersystem für Echtzeit-Anwen-
dungen jeder Art, das im Multiprogramming arbeitet und die gesamte System-Peripherie
unterstützt

- C-BASIC - eine interaktive Programmiersprache für kommerziell-administrativen Einsatz

- FORTRAN IV - die leistungsfähige Programmiersprache für technisch-wissenschaftliche

Anwendungen.

- 10 -

SOFTWARE-PAKETE

Für das DIETZsystem 621 steht eine ständig wachsende Zahl anwendungsorientierter
Programm-Pakete zur Verfügung:

Basis-Programme für Meßwertverarbeitung; mathematische und statistische Programme;
Datenfernübertragungs-Prozeduren und Terminal-Emulationen; Commercial Package für
kommerzielle Systeme.

DIETZsystem 621 C - GRUNDVERSION

Computer-System für Multiprogramming in 6 Benutzer-Ebenen. Plattenunterstützt durch
256 Kbyte DIETZdisk. Das Grundsystem umfaßt:

- Zentraleinheit mit
Kernspeicher 32 Kbyte 650 ns
Halbleiterspeicher I Kbyte 200 ns
Netzausfallschutz, Echtzeituhr

- DIETZdisk-Doppellaufwerk 2 x 256 Kbyte
mittlere Zugriffszeit 210 ms

- Konsoldrucker 50 Z/s 80 Z/ZI
mit Tastatur

- 19"-Gestellschrank

DIETZsystem 621 D - GRUNDVERSION

Computer-System für Multiprogramming in 6 Benutzer-Ebenen. Plattenunterstützt durch
2.4 Mbyte Wechselplattenspeicher. Das Grundsystem umfaßt:

- Zentraleinheit mit
Kernspeicher 32 Kbyte 650 ns
Halbleiterspeicher 1 Kbyte 200 ns
Netzausfallschutz, Echtzeituhr

- DIETZdisk-Einlaufwerk 256 Kbyte
mittlere Zugriffszeit 210 ms

- Plattenspeicher-System 2.4 Mbyte
mittlere Zugriffszeit 60 ms

- Konsoldrucker 50 Z/s 80 Z/ZI
- 19"-Gestellschrank

OPTIONEN

Halbleiter-Speicher 2 Kbyte (Erweiterung auf 12 Benutzer-Ebenen)
- Kemspeicher 48 Kbyte und 80 Kbyte
- Gleitkomma-Prozessor 32 bit (max. 10 ps)

Plattenspeicher 4.8, 7.2 und 9.6 Mbyte

- 11 -

PERIPHERGERÄTE

- Mosaikdrucker-Terminal 50 Z/s 80 Z/ZI
- Bildschirm-Terminal 1000 Zeichen
- Bildschirm-Terminal 2000 Zeichen
- 8-Kanal-Fernschreiber
- Schnelldrucker 200 ZI/min 132 Z/ZI
- Streifenleser 125 Z/s
- Streifenlocher 75 Z/s
- Kartenleser 400 K/min
- Graphische Bildschirmgeräte
- XY-Schreiber
- Digitalplotter
- Magnetband-Systeme

PROZESS-ANSCHLÜSSE

- 8/16-bit-Interrupteingänge
- 16-/ 32-bit-Digitaleingänge
- 16-/32-bit-Digitalausgänge
- 16-bit-Zähleingänge/Zeitausgänge
- 12-bit-Analogeingänge
- 10-bit-Analogausgänge
- Analog-Meßsysteme 30 kHz/250 kHz
- Integrierendes Meßsystem
- und viele weitere Prozeß-Interfaces

DFÜ-INTERFACES

Synchrone und asynchrone Datenfernübertragungs-Schnittstellen, 110

-12-

...9600 Baud.

Struktur

RECHENEINHEIT

Folgende Baugruppen bilden die wesentlichen Bestandteile der Recheneinheit:

A-Register: 8-bit-Register, in das alle gelesenen Daten gelangen und das
als Rechenregister für arithmetische und logische Operationen
dient. Der Inhalt des A-Registers wird angezeigt, sobald der
Rechner angehalten wird.

B-Register: 8-bit-Register als zweites Rechenregister. Bei Indizierung ent-
hält es die Indexregister-Adresse.

P-Register: 8-bit-Register zur Adressierung des Arbeitsregisters.

M-Register: 16-bit-Register für die effektive Adresse. Die beiden Hälften des
M-Registers können angezeigt, und es können die Daten des
Switch-Registers in das M-Register übertragen werden.

N-Register: 16-bit-Register, das als Instruktionszähler dient. Bei angehaltenem
Rechner enthält das N-Register die Adresse des Befehls, der als
nächster ausgeführt wird. Der Inhalt des N-Registers kann ange-
zeigt, und es können die Daten des Switch-Registers in das N-
Register übertragen werden.

SW-Register: 8-bit-Schaltersatz in der Bedienungskonsole (Option). Die Daten
des SW-Registers können in das M-Register, N-Register oder eine
Speicheradresse übertragen werden.

DISPLAY: 8-bit-Lampenfeld in der Bedienungskonsole (Option) zeigt den
Zustand des F-Kanals an. Bei Stop wird der Inhalt des A-Regi-
sters angezeigt, wenn nicht über spezielle Schalter das M-Regi-
ster oder das N-Register angewählt ist.

ALU: Arithmetisch-logische Einheit für 8 bit. Die ALU ist der zentrale
Verknüpfungspunkt des Rechners.

Q-Register: 8-bit-Register für das Befehls-Byte der Instruktion.

- 13 -

UNIVERSAL-BUS

Adressen Daten RK GEBE FE Ebenen Starts

A

npssrt os

_BUS-
STEUERUNG

POOL

si (RAM)
16

__ h

©)

CI NE
@ ® © 1 P-LOGIK k- 1

| DISABLE

ALU \ o | pi> L > SL I sr

we CE un men dinmEm Miein dumit AimmEE imm MMAMME GAME GER Mmab Mminep Amen amummb dere ame min —— mm om ie mm wen mm (era mim aaims WA amerim druaiit ende Sie am gummmER me Aemimm momias wiminm mim pnken mim mine meh mn

[DISPLAY } [SWITCH KONSOLE

BLOCKBILD DIETZ 621 ZENTRALEINHEIT

- 14 -

D-Register:

DO-Register:

C-Register:

ROM:

S-Register:

L-Register:

DISABLE:

P-Logik:

BUS-Steuerung:

8-bit-Register, das in einer DO-Schleife die Zahl der Ausführungen
zählt.

4-bit-Speicher für die Steuerinformationen eines DO-Befehls.

S-bit-Register für die Adresse der im ROM gespeicherten Mikroschritte.

TTL-Read Only Memory, das die Steuersignale (Mikroschritte) für den
Rechner erzeugt.

16-bit-Register zur Speicherung der Ebenenstarts Starts können
vom Universal-BUS kommen oder programmiert sein. Zurückgestellt wer-
den die Bits des S-Registers nur vom Programm.

8-bit-Register, bei dem in den Bits O0 bis 3 die laufende Ebene ange-
geben wird.

Die Bits 4 bis 7 dienen zur Identifikation eines Interrupts der CNP-
Ebene.
Bit 4 wird bei Netzausfall, Bit 5 bei einer BUS-Belegung, die mit
keinem FE-Signal quittiert wird, und Bit & bei Kernspeicher-Parity
eingeschaltet. Bit 7 wird von dem Clock-Interrupt gesetzt.

Das DISABLE-Flip-Flop (1-bit-Register) verhindert Ebenenwechsel bzw.
laßt im ausgeschalteten Zustand einen Ebenenwechsel zu.

Die Prioritätslogik ermittelt die höchste gestartete Ebene und setzt das
L-Register entsprechend.

Logik zur Steuerung der BUS-Belegungsvorgänge der Zentraleinheit und
zur Synchronisation der Zentraleinheit mit dem asynchronen BUS.

Alle genannten Register sind in Form integrierter Schaltkreise in der Recheneinheit ent-
halten. Sie sind für das Verständnis der Rechner-Struktur wichtig, jedoch für die Pro-
grammierung - mit Ausnahme von N- und SW-Register - nicht von Bedeutung, da der
Benutzer keinen Zugriff zu ihnen hat. Vielmehr arbeitet der Benutzer mit Speicherplätzen
im Arbeitsspeicher (Pool), die "seine" Register darstellen.

ARBEITSSPEICHER (POOL)

Der Arbeitsspeicher ist ein Halbleiter-RAM mit 256 bytes Kapazität (erweiterbar auf
insgesamt 4k bytes). Er dient als schneller Datenspeicher; insbesondere aber ent-
hält er die Arbeits- und Indexregister.

Jeder Programmebene werden (fest einstellbar) 16, 32, 64, 128 oder 256 bytes
zugeteilt; diese Plätze bilden den "Pool". Registeradressen beziehen sich auf die-
se Bereiche, d.h. je nachdem, in welcher Ebene das Programm läuft, werden un-
terschiedliche Pools benutzt. (Will man diese Niveau-Bindung nicht, benutze man
"absolute" Adressierung).

Die RAM-Adressen laufen von PP bis PFF bei 0,25k (bzw. PAR bis FFF bei Ak).

Register- und Pool-Adressen beziehen sich auf den Anfang des jeweiligen Pools.
Im Prinzip sind alle Pool-Adressen von ß@ bis max. FF anzusprechen (als Pool-
Adressen, spezifizierte Arbeitsregister und Indexregister), jedoch beachte man
folgendes:

Pool-Adressen @@ und P1 nehmen bei Ebenenwechsel den augen-
blicklichen Programmstand auf und sind daher anderweitig nicht
benutzbar.

Pool-Adresse 92 (und - bei Mehrbyte-Operationen - die folgen-
den) stellt den "Akku" dar (für den Fall, daß kein spezifizier-
tes Arbeitsregister angegeben ist).

Ist der Pool nicht auf 256 byte Länge eingestellt, so reichen Pool-Adressen, die
nicht mehr realisiert sind, in den Pool der nächsthöheren oder eventuell den Pool
mehrerer höherer Ebenen. Die Pool-Bereiche schließen unmittelbar aneinander an.

FESTSPEICHER

Anstelle des Kernspeichers kann ein reprogrammierbarer Halbleiter-Festspeicher einge-
setzt werden, der in Stufen von 256 byte bis 8 kbyte ausbaufähig ist. Seine Adressen
laufen von 4QQ@ bis5 FFF.

- 16 -

KERNSPEICHER

Der Kernspeicher hat AK, 8K, 16K oder 32K (bzw. bei externer Erweiterung bis 80 K)

bytes Kapazität; seine Adressen laufen von 4Abis AFFF, 5FFF, 7FFF oder BFFF (bzw.
bis FFFF). |

au | | agap
AFFF

&k 53717]
4 SFFF

16k
32k

y | |7FFF
21212022.0 84 BFFF

8
ext.Speicher | UM DM | 10) ext.Speicher 2

| 74 BFFF

32k 39

|

PR

Y h FFFF

Bei einem Gesamtspeicherausbau bis 32K kann ein 32K-Modul als interner Speicher ver-

wendet werden. Bei Ausbau über 32K ist die maximale Größe des internen Speichers auf

16K begrenzt.

Bei einem Speicherausbau über 48k (bis max, 80k) bytes sind entweder der externe
Speicher] oder der externe Speicher 2 angewählt. Gleichzeitig können beide Spei-
cher nicht angewählt sein. |

Im Ausgangszustand kann mit dem externen Speicher 1 gearbeitet werden. Eine Um-
schaltung erfolgt mit einem TRA,(a) ,'3FFD. Nach Ausführung des Befehls ist der ex-
terne Speicher 2 angewählt. Eine Rückumschaltung wird durch den Befehl TRA ’(a) ’3FFE
bewirkt.

Aus dem externen Speicher | und dem externen Speicher 2 kann zum RAM, zur Periphe-
rie und Zu dem ersten 16 k Kernspeicher zugegriffen werden.

- 7-

PROGRAMMEBENEN

Es sind 16 verschiedene Programmebenen vorgesehen. Jede Ebene ist dadurch
gekennzeichnet, daß

ihr ein eigener Bereich (Pool) im Arbeitsspeicher zugeordnetist,
auf den sich die programmierten Register-Adressen beziehen,

für sie ein eigener E/A-Kanal aufgebaut werden kann, auf den
sich die Geräteadressen beziehen (bei Benutzung der Ebenenaus-
gänge als zusätzliche Adreßinformation).

Das Programm in einer Ebene wird von seinem äußeren Signal, durch die Fertig-
meldung eines ihr zugeordneten Peripheriegerätes, oder durch das in einer anderen
Ebene laufende gestartet. Läuft das Programm in keiner anderen oder in einer nie-
drigeren Ebene, so wird die gestartete Ebene sofort bzw. mit Ende der laufenden
Operation aktiv und führt die nächste Instruktion aus (deren Adresse in Platz Q@/1
des Pools gespeichert war). Mit einem Halt wird das Programm angehalten, und eine
niedrigere Ebene kann weiterlaufen.

Start Ebene |

 [0o.o1—-N] 5 |] i2 IffInact n=0001) Ebene I

ı| in In 00,010] 100,0 10-N| in+1 RR

Ebene 0

00,010 = Pool-Adressen 00,01 der Ebene 0

00,01, = u 00,01 " v1

in = Instruktion n eines Programms

Durch Setzen von DISABLE kann der Ebenenwechsel (d.h. die Unterbrechung des
Programms durch Start einer höheren Ebene) verhindert und wieder zugelassen wer-
den.

Die Ebenen-Struktur erlaubt einfache Multiprogrammierung.

Hat der Computer mehrere, völlig unabhängige Aufgaben zu erledigen, so wird man
jeder Aufgabe eine Ebene zuteilen. Man hat nur darauf zu achten, daß Aufgaben,
die eine besonders schnelle Reaktion verlangen, einer Ebene mit hoher Priorität zu-
geordnet werden. Jede Ebene hat ihr eigenes Programm und eigene Datenspeicher.

- 18 -

Bei Ein- und Ausgaben muß durch Anhalten der Ebene auf das Peripheriegerät ge-
wartet werden, damit die Zentraleinheit für die anderen Ebenen frei wird.

Besonders geeignet ist die Struktur des DIETZ 621 auch für die Bearbeitung von
mehreren völlig gleichen Aufgaben, bei denen nur die Peripheriegeräte und die
Daten unterschiedlich sind. In diesem Falle genügt es, ein Programm zu haben,
das alle Ebenen benutzen. Nur bei Ansprechen der Peripheriegeräte benötigt man
eine zusätzliche Information, denn bei gleichem Programm haben die Peripherie-
geräte auch die gleichen Adressen. Diese zusätzliche Information liefert der Ebenen-
(Level-) Ausgang, der als zusätzliche Adreßinformation verwertet wird. Bei den Da-
tenspeichern erhält man ebenengebundene Adressen durch Register-Adressierung.

Da die Rückkehradressen der Unterprogramme ebenengebunden abgelegt werden, kön-
nen auch Unterprogramme von mehreren Ebenen benutzt werden.

Will man von einer Ebene aus andere Ebenen steuern, so geschieht dies von der
höchsten Ebene aus.

REGISTER

Mit "Registern" sind Speicherplätze im jeweiligen Pool gemeint. Sie werden ver-
wendet als:

Arbeitsregister: Die Mehrzahl der Befehle bezieht sich auf ein Arbeitsregister,
das verändert, verglichen, geladen, transferiert oder sonstwie

behandelt wird. Hierfür dient entweder der "Akkumulator" @

(Pool-Adresse 92) oder das in einem besonderen Byte "spezifi-
zierte" Register (mit einer beliebigen Pool-Adresse). Damit
stehen max. 254 Arbeitsregister bereit.

Indexregister: Wenn BUS-bezogene Befehle indiziert sind, dient die in einem
besonderen Byte angegebene Pool-Adresse und folgende Adresse
als Indexregister (2-byte-Indexregister). Ist die angegebene Pool-
Adresse ungerade, wird nur diese Adresse als Indexregister ver-
wendet (1 byte-Indexregister). Damit stehen max. 127 Indexre-
gister zur Verfügung.

Rückkehradressen: Sie werden beim Unterprogrammsprung im spezifizierten Register
sowie dem darauffolgenden Platz aufgehoben und beim Rücksprung
dort wiedergeholt.

Pool-Adressen: Niveaugebundene Adressen (bei BUS-bezogenen Befehlen).

- 19 -

UNIVERSAL-BUS

Der Universal-BUS ist ein Datenkanal zur Verbindung der einzelnen Komponenten des
DIETZ 621-Systems Über diesen Datenkanal erfolgen

a) programmgesteuerte Ein- und Ausgaben und

b) Direkte Speicherzugriffe.

Ein Datentransfer über den Universal-BUS wird von einem aktiven Element initiiert
(bei programmgesteuerter Ein-/Ausgabe von der Zentraleinheit, bei direktem Speicher-
zugriff z.B. von einem Plattencontroller), indem der BUS belegt wird (Signal BE) und
über eine Adresse (Signale Aß®...A15 und gegebenenfalls Lß9...L15) ein passives
Element (z.B. der Kernspeicher) angewählt wird. Über das Signal RK (Richtungskenn-
zeichen) wird angegeben, ob Daten (DP...D7) vom aktiven zum passiven Element oder
vom passiven zum aktiven Element transportiert werden sollen. Das passive Element
empfängt (oder sendet) nun die Daten und gibt außerdem mit dem Signal FE (Fertig)
eine Quittung über den erfolgten Datentransport. Bleibt diese Quittung aus, weil
z.B. ein nicht existierendes Element angesprochen wurde, erzeugt die BUS-Steuerung
diese Quittung gleichzeitig mit einem System-Interrupt der CNP-Ebene.

Will ein passives Element von sich aus einen Datentransport initiieren, so sendet es
einen Interrupt (S0ß...S15) zur Zentraleinheit, die als programmierte Reaktion hierauf
als aktives Element einen Datentransport durchführt.

Konkurrieren mehrere aktive Elemente zur gleichen Zeit um eine BUS-Belegung, so
wird dieser Konflikt über das Signal GE (Gewünscht) nach festgelegten Prioritäten
gelöst. Der BUS enthält außerdem ein Nullstellsignal (N), das durch Betätigen der
Taste RES der Bedienungskonsole oder bei einem Netzausfall erregt wird und das
Signal STPX, das bei Fehlern der externen Speicher erregt wird.

BUS-Signale:

Dß...D7 Daten
ABB...A15 Adressen
Lß6...115 Levelleitungen
Sßß...515 Interrupt-Leitungen
RK Richtungskennzeichen
BE Belegt
GE Gewünscht
FE Fertig
N Nullstellung
STPX Fehlerstart

- 20 -

ADRESSIERUNG

Die BUS-bezogenen Befehle können wie folgt adressiert werden:

- unmittelbar (CONSTANT)
niveaugebunden (REGISTER) wahlweise
relativ (RELATIVE)
voll (ABSOLUTE)
indirekt (INDIRECT)

nicht-indiziert \ .
“le wahlweise
indiziert

CONSTANT bedeutet, daß die Adreßbytes als Konstanten verwendet werden. In Ver-
bindung mit einem DO-Befehl kann es auch ein String von Konstanten sein.

REGISTER bezieht sich auf den Pool der jeweiligen Ebene.

RELATIVE bedeutet um einen Betrag von maximal -128 bzw. +127 bytes verschoben,
bezogen auf das Byte, in dem die Adreßdifferenz angegebenist.

ABSOLUTE bedeutet, daß iedes Byte des gesamten Speicherbereichs durch eine 16-
bit-Adresse erreicht werden kann.

Indizierung bedeutet Addition des Indexregister-Inhaltes zur berechneten Adresse
(9. .+32767 bei 2-byte-Indexregister; 9...255 bei 1-byte-Indexregister). Mit 2-
byte-Indexregistern lassen sich negative Indizes darstellen.

Indirekt bedeutet, daß der Inhalt des angegebenen Registers die Adresse bestimmt.

MEHRFACHAUSFÜHRUNG (DO-BEFEHL)

Ein besonderer Befehl (DO) erlaubt es, die folgende Instruktion 2- bis 256-mal auszu-
führen. Eine eventuell zum Befehl gehörende Adreßrechnung wird allerdings nur ein-
mal durchgeführt.

Ergänzend kann man angeben, ob die Registeradresse (<&), die Operandenadresse
(>&) oder beide (=&) bei jedem Durchlauf inkrementiert werden, ferner ob das
Übertragungsbit (LINK) berücksichtigt werden soll (x statt &).

Der DO-Befehl kann sinnvoll auf Befehlsgruppen angewendet werden:

Schiebebefehle
Bedingte Sprungbefehle
BUS-bezogene Befehle

-21 -

Schiebebefehle werden durch vorgeschaltetes "DO" zum 1-byte-Mehrbitschieben be-
nutzt, indem die Registeradresse nicht inkrementiert (also die Mehrfachausführung
auf 1 byte abgewendet wird) und kein Überlauf berücksichtigt wird.

48SLO ,® 4-bit-1-byte-Linksschieben (Akku)

1-byte-Mehrbit-Rotieren wird durch DO ohne Registerinkrement und ohne Berücksich-
tigung des Überlaufs erzielt:

2&SRC ,@ 2-bit-1-byte-Rechts-Rotieren (Akku)

Mehrbyte-1-bit-Schieben erhält man, indem der DO-Befehl die Registeradresse inkre-
mentiert und außerdem den Überlauf berücksichtigt;

2%SRO,REG I-bit-2-byte-Rechtsschieben (2 Registerplätze)

Wichtig hierbei ist, daß beim Linksschieben als erstes Byte (Basis-Byte) das mit der
niedrigeren Adresse (und den niedrigwertigen Stellen) geschoben wird und dann das
nächsthöhere Byte.

Beim Rechtsschieben wird dagegen beim Byte mit der höchsten Adresse (und den
höherwertigen Stellen) begonnen und dann mit dem nächstniedrigeren Byte weiter-
gearbeitet. Im Falle des Rechtsschiebens (und nur dann) dekrementiert der Rechner
die Registeradresse. Im Maschinencode sind also die Basis-Bytes bei Rechts- und
Linksschieben unterschiedlich (nicht dagegen bei Benutzung des Assemblers).

Will man beim Schieben von einem oder mehreren Bytes einen Gesamtüberlauf berücksichti-
gen, so muß 1 Byte mehr als gewünscht geschoben werden. Der Inhalt dieses Bytes
ist vorher zu löschen. Anschließend kann in diesem Byte der Überlauf abgefragt
werden.

Programmiert man beim Mehrbyte-Schieben den Überlauf nicht, so werden die be-
nachbarten Bytes unabhängig voneinander um 1 bit verschoben.

Bedingte Sprungbefehle mit vorgestelltem DO dienen zu folgenden Zwecken:

Abfrage eines Strings von Register - Bytes auf Null/nicht Null.
Hierzu ist DO mit Inkrementieren der Registeradresse zu programmieren (der Über-

lauf ist hierbei irrelevant):

3<& BZ,REG,,ADR Sprung nach ADR, falls sowohl REG als
auch die beiden folgenden Bytes Nullin-
halt haben

- 722 -

Vergleich eines Register-Strings mit einer im Befehl angegebenen Konstanten und
Verzweigung, falls der Inhalt aller Register-Bytes gleich der Konstanten ist. Zu
programmieren ist: DO mit Inkrementieren Registeradresse:

4<& BEC, @ ‚, CON,ADR Sprung nach ADR, wenn der Inhalt des

Akkus und der drei folgenden Bytes gleich
der Konstanten CON ist.

Will man einen String von Register-Bytes mit einem anderen Register vergleichen,
programmiert man:

4<& BER, @ , REG,ADR

Vergleich eines Register-Strings mit einem Konstanten-String (im Befehl). Hierbei
wird das erste Register-Byte mit der ersten Konstanten, das zweite Register-Byte mit
der zweiten Konstanten, das dritte Register-Byte mit der dritten Konstanten usw.

verglichen. Verzweigt wird, wenn in allen Fällen Gleichheit besteht. Voraussetzung:
DO mit Inkrementieren beider Adressen:

2=& BEC,REG,CON,ADR Sprung nach ADR, wenn Register- und
Konstanten-String gleich.

Die Instruktion sieht in diesem Falle folgendermaßen aus:

n Befehl
n+] Basisadresse Register
n+2 Konstante (niedriges Byte = Basis-Byte)
n+3 Konstante (hohes Byte)
n+4 Sprungweite

Will man einen String von Register-Bytes mit einem anderen Register-String verglei-
chen, programmiert man:

2=& BER ,REG1,REG2,ADR

- 23 -

BUS-bezogene Befehle mit vorgestelltem DO erfüllen z.B. folgende Funktion:

Arithmetische Mehrbyte-Operationen sind durch einen DO-Befehl mit Inkrementieren
sowohl der Registeradresse als auch der Operandenadresse sowie mit Berücksichtigung
des Überlaufs darstellbar:

2=%*ADL,REG,ADR Doppel-Byte-Addition
3=%* SBL ‚REG,ADR 3-byte-Subtraktion

Will man hierbei ein mögliches Überschreiten des Zahlenbereichs in positiver oder
negativer Richtung berücksichtigen (Gesamt-Überlauf), so muß je ein Byte mehr
verarbeitet werden.

Nicht möglich ist es allerdings, auf diese Weise zu 2 Bytes ein einzelnes Byte zu
addieren.

Programmiert man z.B. nur das Inkrementieren der Registeradresse, aber nicht der
Operandenadresse, wird derselbe Operand zunächst zum ersten Byte, anschließend
zum zweiten Byte und eventuellen weiteren einzeln addiert.

Bei der Verarbeitung werden die Adressen grundsätzlich inkrementiert (Ausnahme:
Rechtsschieben). Das führt dazu, daß das Byte mit der niedrigeren Adresse auch
die niedriger wertigen Stellen enthalten muß:

Byte n+2 Byte n+1 Byte n

29 „16 2 15 „8 07 „2

Statt des Operanden kann in allen obengenannten Fällen auch mit einem Konstan-
ten-String gearbeitet werden.

Blockweiser Transfer läßt sich durch Laden oder Speichern mit vorangestelltem DO
(mit Inkrementieren Register und Operandenadresse) realisieren; er führt zur Über-
tragung von Registerbereichen in den Kernspeicher oder umgekehrt:

256=%& STA,P@,ADR Speichern gesamter Pool in Kernspeicher

256=& LDA,A®,ADR Laden gesamter Pool aus dem Kernspeicher

- 24 -

Wird die Registeradresse nicht inkrementiert, so läßt sich z.B. ein Kernspeicherbe-
reich mit dem gleichen Inhalt laden:

LDC,REG ‚@ Löschen von 256 byte

256>& STA ,‚REG,ADR Kernspeicher

Anstelle von Operanden kann auch mit Konstanten oder Konstanten-Strings gearbeitet
werden:

2ß<& LDC,REG,$ Löschen von 20 bytes im Pool

Sinngemäß läßt sich der DO-Befehl auch in Verbindung mit logischen Verknüpfungen
verwenden:

2=& ANA, @ ‚,ADR 2 byte UND-Verknüpfung

7>& ORL ‚REG,ADR 7 byte des Kernspeichers werden mit dem

Register REG durch ODER verknüpft

3<& ANC,REG,ADR Maskierung von 3 Register-Bytes mit der
gleichen Maske ADR

- 25 -

BEFEHLSAUFBAU

Instruktionen werden beim MINCAL 621 durch ein oder mehrere aufeinanderfolgende
Bytes dargestellt. Das erste Byte enthält den Befehl sowie ggfs. einige zusätzliche
Angaben, z.B. über die Art der Adressierung; in den Folgebytes stehen weitere An-
gaben, welche die Instruktion näher beschreiben, z.B. Register- und Operanden-
adressen, Konstanten, Sprungweiten usw.

Der Befehlsaufbau ist für die Befehlsgruppen im folgenden kurz skizziert; näheres
entnehme man dem Abschnitt MASCHINENBEFEHLE.

7 0

Steuerbefehle: n 10000 L} Befehl
n+l ı____E_2.. Ebene

Mehrfachausführung: n 10001 Z| Befehl
n+l L____2___, Anzahl

Zustandsabfrage: n 00100..5S| Befehl

Schiebebefehle:

Arbeitsregister

Befehl

nl ı___S__.J Arbeitsregister

Bedingter Sprung: n [01.....5$] Befehl
n+l I ____8S___.. Arbeitsregister
n+2 4 r ı Referenzregister
n+3 | Sprungweite

BUS-bezogene Befehle: n 1222.2..X5 Befehl
n+l ı 5 i Arbeitsregister «)
n+2 I a ı Adreßangabe |
n+3 ILL bb, Adreßangabe 2
n+4 I x| Indexregister

*)

DO-Befehl

oder Konstante bzw. Konstanten-String von z byte Länge bei vorgeschaltetem

Eine DO-Instruktion muß unmittelbar vor dem Befehlsbyte der Instruktion liegen,
deren Mehrfachausführung er bewirken soll.

- 26 -

Maschinenbefehle

STEUERBEFEHLE [0000....]|

Befehle _NOP Keine Operation 00000000
SEL Start Ebene 00000001
HLT Halt 00000010
HSL Halt, Start Ebene 00000011

ECL Unterbrechung zulassen 00000100
DCL Unterbrechung verhindern 00001000

Länge 2 byte (SEL, HSL)
1 byte (übrige)

Die Steuerbefehle bewirken Start einer Programmebene, Anhalten des laufenden Programms
sowie Aus- und Einschalten des DISABLE-Zustands. Der Befehl NOP (leeres Befehlsbyte)
hat keine Funktion und wird übersprungen.

Die Anwendung der DO-Instruktion auf Steuerbefehle ist nicht sinnvoll.

Wird die CNP-Ebene durch Netzausfall, nicht quittierten BUS-Aufruf oder durch Speicher-

Parity gestartet, wird gleichzeitig eine eventuell anstehende Unterbrechungssperre aufge-
hoben.

- 2/7 -

NOP Keine Operation n |[00000000| Befehl

Funktion: Dieses Befehlsbyte wird übersprungen.

SEL Start Ebene n 00000001] Befehl
n+] | Ebene

Funktions Die im folgenden Byte als rechtsbündige Hexazahl 9...F angegebene Ebene|
wird gestartet.

HLT Halt n 1000000 10| Befehl

Funktiongs Das Programm in der laufenden Ebene wird angehalten.

HSL Halt, Start Ebene n 00000011] Befehl
n+] | Ebene

Funktions Das Programm in der laufenden Ebene wird angehalten. Die im folgenden

Byte als rechtsbündige Hexazahl 9...F angegebene Ebene | wird gestartet.

ECL Unterbrechung zulassen n 100000100) Befehl

Funktions Dieser Befehl stellt den Normalzustand her, in dem das Programm der
jeweiligen Ebene durch den Start jeder höheren Ebene unterbrochen werden
kann.

DCL Unterbrechung verhindern n B 000100 0| Befehl

Funktion; Dieser Befehl stellt den DISABLE-Zustand her, in dem das Programm der
jeweiligen Ebene nicht durch Aktivieren einer höheren Ebene unterbrochen
werden kann. Durch ECL wird dieser Zustand beendet.

Vor jedem Halt-Befehl (HLT, HSL) ist der DISABLE-Zustand durch ECL zu
verhindern, da sonst der Halt nicht wirksam wird.

- 28 -

o
O

o
O

o
OMEHRFACHAUSFÜHRUNG (DO)

Befehle: z& 0001000.
zx* mit L - 0001001.
z>& M+] 0001010.
z>* M+l, mit L 000101].

z<& R+l 0001100.
z<% R+l, mit L 0001101.
z=& R+l, M+l 0001110.
z= R+l, M+l, mit L 0001111.

Anzahl: een0

een1

Länge: I byte (z = 2): n 10 001... 0| Befehl
oder

2 byte (z = 3...256): n 0001... 1| Befehl
n+1 z Anzahl

Eine DO-Instruktion bewirkt, daß die folgende Instruktion mehrfach ausgeführt wird.
Die Anzahl der Ausführungen z kann von 2 bis 256 gewählt werden. Bei z = ist
nur das Befehl sbyte vorhanden; darüberhinaus steht z als rechtsbündige Binärzahl im
folgenden Byte, wobei zu berücksichtigen ist, daß Nullinhalt des Folgebytes 256malige
Ausführung bedeutet.

Im DO-Befehl kann angegeben werden, ob das LINK-Bit (L) berücksichtigt wird (Über-
lauf bei Schiebebefehlen, Mehrbyte-Addieren und Subtrahieren), und ob bei jeder
Ausführung die Operanden-Adresse (M) oder die Arbeitsregister-Adresse (R) um 1 erhöht
wird. Beim Befehl SR (Schieben rechts) wird die Arbeitsregister-Adresse um 1 erniedrigt,
wenn R angegebenist.

Der DO-Befehl führt nur zur mehrmaligen Wiederholung des Ausführungsteils der folgen-
den Instruktion, nicht zur Wiederholung der vorher ablaufenden Adreßrechnung.

Zwischen einem DO-Befehl und beendeter Ausführung der nachfolgenden Instruktion kann
das Programm nicht durch Wechsel der Programmebene unterbrochen werden.

- 29 -

z&

Funktion:

Zzx*

Funktion:

z>&

Funktion:

z>*

Funktion:

z<&

Funktion:

z<x

Funktion:

DO z-mal n [0001000.| Befehl

nH ı _ ___ zZ ___L| Anzahl

LINK wird nicht berücksich-Die folgende Instruktion wird z-mal ausgeführt.
tigt; keine Adresse wird inkrementiert.

0001001 .| Befehl

Anzahl

DO z-mal mit Link n

LINK wird berücksichtigt;Die folgende Instruktion wird z-mal ausgeführt.
keine Adresse wird inkrementiert.

DO z-mal n E 001010 .| Befehl

Imit Inkrementieren Adresse n+]1 zZ ; Anzahl

Die folgende Instruktion wird z-mal ausgeführt. Nach jeder Ausführung wird
die Operanden-Adresse M um 1 erhöht.

000101 L.| Befehl

| Anzahl

DO z-mal mit Link n

mit Inkrementieren Adresse n+l z
wen anne um ir auänm gem men au anne sun

Die folgende Instruktion wird z-mal ausgeführt. LINK wird berücksichtigt;
nach jeder Ausführung wird die Operanden-Adrese M um 1 erhöht.

001100. Befehl

| Anzahl

DO z-mal n
mit Inkrementieren Register n+1 z

Die folgende Instruktion wird z-mal ausgeführt. Nach jeder Ausführung wird
die Adresse des Arbeitsregisters um 1 erhöht.

DO z-mal mit Link n [0001101 ..| Befehl
mit Inkrementieren Register n+l ! zZ 1 Anzahl

Die folgende Instruktion wird z-mal ausgeführt. LINK wird berücksichtigt;
nach jeder Ausführung wird die Adresse des Arbeitsregisters um 1 erhöht.

- 30 -

Funktion:

Funktion:

DO z-mal n 10001110 .| Befehl
mit Inkrementieren Register n+1 |! z | Anzahl
mit Inkrementieren Adresse

Die folgende Instruktion wird z-mal ausgeführt. Nach jeder Ausführung wer-
‘ den die Adresse des Arbeitsregisters und die Operanden-Adresse um 1 erhöht.

DO z-mal mit Link n [0001111 ..) Befehl

{Inkrementieren Register und Adresse n+l z , Anzahl

Die folgende Instruktion wird z-mal ausgeführt. LINK wird berücksichtigt;
nach jeder Ausführung werden die Adresse des Arbeitsregisters und die
Operanden-Adresse um 1 erhöht.

- 31 -

ZUSTANDSABFRAGE

Befehle: GS5

Arbeitsregister:

Schalter abfragen
GL Ebene abfragen

Akkumulator ®

Spezifiziertes Register s

Länge: I byte (®)
oder

2 byte (s)

n

n

n+]

00100.. 1

 S

00100. .0| Befehl

Befehl
Arbeitsregister

Diese Befehlsgruppe überträgt Informationen von den Konsol-Tasten bzw. die Nummer der
laufenden Programmebene in das Arbeitsregister. Als Arbeitsregister kann entweder der
Akkumulator @ oder ein beliebig spezifiziertes Register s angegeben werden, dessen
Adresse dann im Folgebyte steht.

Die Anwendung der DO-Instruktion auf diese Befehle ist nicht sinnvoll.

Mit GL können außerdem Fehler- und Clock-Interrupt-Meldungen abgefragt werden.

- 322 -

GS

Funktion:

GL

Funktion:

Schalter abfragen n. |00100015| Befehl
n+]1 no Arbeitsregister

Das über die 8 Daten-Schalter 7...O der Rechnerkonsole eingegebene Byte
wird in das Arbeitsregister übertragen.

Nur wirksam, wenn Rechner mit Konsole ausgestattet.

Ebene abfragen n |0010010S| Befehl
nt 1._22.82._....,7 Arbeitsregister

Die Nummer der laufenden Programmebene wird als rechtsbündige Hexa-Zahl
%...F in das Arbeitsregister übertragen. Die linke Hälfte des Arbeitsregister-
Inhalts hat folgende Bedeutung:

<Bit 42 = 1] Netzausfall
<Bt5>>=]1 BUS-Belegung ohne Quittierung
<Bit 6> = | Kernspeicher-Parityfehler
<Bit 7> =] Clock-Interrupt.

Diese Informationen kommen aus dem L-Register, dessen Bits 4 bis 7 nach
einer GL-Instruktion in der CNP-Ebene automatisch gelöscht werden.

- 33 -

SCHIEBEBEFEHLE

Befehle: SRO

SRC
SLO
SLC

Arbeitsregister:

Länge:

Schieben rechts offen
Schieben rechts zyklisch
Schieben links offen
Schieben links zyklisch

Akkumulator @
Spezifiziertes Register s

I byte (®@) n
oder

2 byte (s) n
n+1

00101. Ss]

00101..0]

00101... 1

 S

Befehl

Befehl
Arbeitsregister

Diese Befehlsgruppe bewirkt offenes oder zyklisches Schieben des Arbeitsregister-Inhalts
um I bit nach rechts oder links. Als Arbeitsregister kann entweder der Akkumulator oder
ein beliebig spezifiziertes Register s angegeben werden, dessen Adresse dann im Folgebyte
steht.

In Verbindung mit einer geeigneten DO-Instruktion ist offenes und zyklisches Mehrbit-
Schieben eines Register-Bytes möglich, sowie offenes Schieben des Inhalts eines Mehrbyte-
Register-Strings um 1 bit.

SRO

Funktion:

z& SRO

z<x SRO

SRC

Funktion:

z& SRC

SLO

Funktion:

z& SLO

z<* SLO

SLC

Funktion:

z& SLC

 Schieben rechts offen n [0 010100S| Befehl
n+1 OLSLLLIL| Arbeitsregister

Der Inhalt des Arbeitsregisters wird um 1 bit offen nach rechts verschoben.
Bit 7 wird zu Null, und der vorherige Inhalt von Bit O0 geht verloren.

Ein vorgeschalteter DO-Befehl z& bewirkt offenes Rechts-Schieben des
Arbeitsregister-Inhalts um z bit.

Ein vorgeschalteter DO-Befehl z<x bewirkt offenes Rechts-Schieben eines
Register-Srings von z byte Länge um 1 bit. Als Arbeitsregister-Adresse ist
die um (z-1) erhöhte Basis-Adresse des Register-Strings anzugeben (gilt nicht
für symbolische Programmierung).

Befehl
Arbeitsregister

Schieben rechts zyklisch n 00101015]
{

|

Der Inhalt des Arbeitsregisters wird um 1 bit zyklisch nach rechts verschoben.
Bit 7 erhält den vorherigen Inhalt von Bit O.

Ein vorgeschalteter DO-Befehl z& bewirkt zyklisches Rechts-Schieben des
Arbeitsregister-Inhalts um z bit.

Befehl
Arbeitsregister

 Schieben links offen n joo1ıo110Sl
n+1 LLSSLg

Der Inhalt des Arbeitsregisters wird um 1 bit offen nach links verschoben.
Bit OÖ wird zu Null, und der vorherige Inhalt von Bit 7 geht verloren.

Ein vorgeschalteter DO-Befehl z& bewirkt offenes Links-Schieben des Ar-
beitsregister-Inhalts um z bit.

Ein vorgeschalteter DO-Befehl z<* bewirkt offenes Links-Schieben eines
Register-Srings von z byte Länge um 1 bit. Als Arbeitsregister-Adresse ist
die Basis-Adresse des Register-Strings anzugeben.

BefehlSchieben links zyklisch n 00101115]
Arbeitsregister1n+] L S 1

Der Inhalt des Arbeitsregisters wird um 1 bit zyklisch nach links verschoben
Bit O erhält den vorherigen Inhalt von Bit 7.

Ein vorgeschalteter DO-Befehl z& bewirkt zyklisches Links-Schieben des

Arbeitsregister-Inhalts um z bit.

-35 -

BEDINGTE SPRUNGBEFEHLE O1..N.IS|

Befehlsgruppen:

Sprung:

Inkrementieren:

Arbeitsregister:

Abfrage auf Null/Positiv 0100.

Abfrage auf Gleichheit 0101.

Abfrage auf Testbits 011

wenn Bedingung erfüllt0...

wenn Bedingung nicht erfüllt a

EEE0.

eeı.

Akkumlator® ee 0
Spezifiziertes Register 5 nen 1

Diese Befehlsgruppe fragt den Inhalt des Arbeitsregisters auf bestimmte Kriterien ab.
Je nachdem, ob sie erfüllt sind oder nicht, verzweigt das Programm auf eine entfernte
Stelle; andernfalls wird es mit der folgenden Instruktion fortgesetzt.

Abfrage-Kriterien sind:

Nullinhalt (alle Bits sind O),
positiver Inhalt (Bit 7 ist 0);

Gleichheit mit einer Konstanten c;
Gleichheit mit Inhalt eines Referenzregisters r;

Vorhandensein bestimmter Bitmuster (Testbits), wobei deren
Stellung durch eine Maske vorgegeben wird, die als Kon-
stante c oder als Inhalt eines Referenzregisters r vorhanden ist.

Vor Abfrage kann das Arbeitsregister inkrementiert, d.h. sein Inhalt um 1 erhöht werden.

Durch diese Befehle wird der Inhalt des Arbeitsregisters - abgesehen von der eventuellen
Inkrementierung - nicht verändert.

Die relative Sprungweite d steht im letzten Byte der Instruktion und bezieht sich auf
dessen Adresse, wobei d eine Zweierkomplementzahl bildet. Damit kann das Programm
maximal um 128 byte zurück bzw. 127 byte vorwärts springen.

DO-Befehle: Eine vorgeschaltete DO-Instruktion_z<%* (bei Abfrage auf Null-
inhalt eines Registers) bzw. z=* (bei den übrigen Befehlen)
bewirkt Abfrage eines Arbeitsregister-Strings von z byte Länge, bzw.
dessen Vergleich mit einem ebenso langen Konstanten- oder Register-
String.

Dabei sind die Basis-Adressen der Register-Strings anzugeben.

Bei Abfrage auf Null ist die Bedingung erfüllt, wenn alle Bytes
Nullinhalt haben.

Bei Vergleichs- und Testbit-Abfragen ist die Bedingung insgesamt
erfüllt, wenn sie in allen Bytes erfüllt ist.

Inkrementierung bezieht sich auch bei vorgeschaltetem DO nur auf
das Basis-Byte des betreffenden Registers. Ein Überlauf wird nicht
berücksichtigt.

- 36 -

Länge: Abfrage auf Null/positiv: 2 byte (@) n
n+]

3byte (s) n
n+1

n+2

übrige Befehle: 3byte (@) n
n+1

n+2

Abyte (s) n

n+2

n+3

Befehl
Sprungweite

Befehl
Arbeitsregister
Sprungweite

Befehl
Konstante/Register
Sprungweite

Befehl
Arbeitsregister
Konstante/Register
Sprungweite

Bei einem vorgeschalteten DO-Befehl z=* ist statt einer Konstanten c ein
Konstanten-String von z Bytes in der Instruktion enthalten, vom Basis-Byte
an in Richtung aufsteigender Adressen.

Vereinbarung: Befehle mit Verneinung ("Sprung wenn nicht .. .") führen in all den Fällen
zum Verzweigen, wo der entsprechende nicht verneinte Befehl das Programm
unverzweigt weiterlaufen läßt, und umgekehrt.

- 37 -

BZ

Funktion:

Funktion:

BP

Funktion:

Funktion:

BNZ

Funktion:

INZ

Funktion:

Sprung wenn Null [0 100000 S| Befehl
5 i Arbeitsregister

| d | Sprungweite

Das Programm verzweigt, wenn das Arbeitsregister Nullinhalt hat.

Inkrementieren, CH 000015 Befehl
Sprung wenn Null I s Arbeitsregister

| d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn das
Arbeitsregister Nullinhalt hat.

Sprung wenn positiv [0 1000105] Befehl
S 1 Arbeitsregister

| d | Sprungweite

Das Programm verzweigt, wenn das Arbeitsregister positiven Inhalt hat.

Inkrementieren, |0100011S Befehl
Sprung wenn positiv I s Arbeitsregister

I d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn das
Arbeitsregister positiven Inhalt hat.

Sprung wenn nicht Null [01 00100S| Befehl
s ı Arbeitsregister

B d | Sprungweite

Das Programm verzweigt, wenn das Arbeitsregister nicht Nullinhalt hat.

Inkrementieren, |01001015] Befehl
Sprung wenn, nicht Null | s ı Arbei tsregister

| d | Sprungweite

Dos Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn das

Arbeitsregister nicht Nullinhalt hat.

- 38-

BNP

Funktion:

INP

Funktion:

BEC

Funktion:

IEC

Funktion:

BER

Funktion:

Sprung wenn nicht positiv 010011 S| Befehl
I S ı Arbeitsregister

ud

| d | Sprungweite

Das Programm verzweigt, wenn das Arbeitsregister nicht positiven Inhalt hat.

Inkrementieren, 10 1001115) Befehl
Sprung wenn nicht positiv s i Arbeitsregister

| d | Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn das
Arbeitsregister nicht positiven Inhalt hat.

Sprung wenn gleich Konstante 10 101000 S] Befehl
S I Arbeitsregister
c Konstante

d Sprungweite

Das Programm verzweigt, wenn der Inhalt des Arbeitsregisters gleich der Kon-
stanten c ist.

Inkrementieren, |01010015S| Befehl
Sprung wenn gleich Konstante s Arbeitsregister

c Konstante

d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn der
Inhalt des Arbeitsregisters gleich der Konstanten c ist.

Sprung wenn gleich Register 0101010 S| Befehl
s ı Arbeitsregister
r Register

d Sprungweite

Das Programm verzweigt, wenn der Inhalt des Arbeitsregisters gleich dem des
Referenzregisters r ist.

- 39 -

IER

Funktion:

BNEC

Funktion:

INEC

Funktion:

BNER

Funktion:

INER

Funktion:

Inkrementieren, [0 101011 S] Befehl

0004

Sprung wenn gleich Register s Arbeitsregister

r Register

d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn der

Inhalt des Arbeitsregisters gleich dem des Referenzregisters r ist.

Sprung wenn nicht gleich Konstante 010110 os] Befehl

s ı Arbeitsregister

c Konstante

d Sprungweite

Das Programm verzweigt, wenn der Inhalt des Arbeitsregisters nicht gleich
der Konstanten c ist.

Inkrementieren, 10 10110] S| Befehl
Sprung wenn nicht gleich Konstante I ı Arbeitsregister

c Konstante
d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn der

Inhalt des Arbeitsregisters nicht gleich der Konstanten c ist.

Sprung wenn nicht gleich Register 10 101110 S| Befehl
S | Arbeitsregister
r Register
d Sprungweite

Das Programm verzweigt, wenn der Inhalt des Arbeitsregisters nicht gleich
dem des Referenz-Registers r ist.

Inkrementieren, 0O1I10111]I Befehl
Sprung wenn nicht gleich Register s I Arbeitsregister

Register
Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn der
Inhalt des Arbeitsregisters nicht gleich dem des Referenz-Registers r ist.

- 40 -

BZC

Funktion:

IZC

Funktion:

BZR

Funktion:

IZR

Funktion:

BNZC

Funktion:

Sprung wenn alle Testbits Null |0110000s5]| Befehl

maskiert mit Konstante s Arbeitsregister
c Konstante

d Sprungweite
Das Programm verzweigt, wenn alle durch die Konstante c vorgegebenen
Testbits des Arbeitsregisters Null sind.

Inkrementieren, |0 1100015] Befehl
Sprung wenn alle Testbits Null s ı Arbeitsregister
maskiert mit Konstante c Konstante

d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn alle
durch die Konstante c vorgegebenen Testbits des Arbeitsregisters Null sind.

Sprung wenn alle Testbits Null |O110010S| Befehl
maskiert mit Register | S ı Arbeitsregister

r Register

d Sprungweite
Das Programm verzweigt, wenn alle durch das Referenzregister r vorgegebenen
Testbits des Arbeitsregisters Null sind.

Inkrementieren, [0 110011 S| Befehl
Sprung wenn alle Testbits Null s ı Arbeitsregister
maskiert mit Register r Register

d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn alle
durch das Referenzregister r vorgegebenen Testbits des Arbeitsregisters Null
sind.

Sprung wenn nicht alle Testbits Null [01 10100S| Befehl
s

maskiert mit Konstante Arbeitsregister
c Konstante

d Sprungweite

Das Programm verzweigt, wenn nicht alle durch die Konstante c vorgegebenen

Testbits des Arbeitsregisters Null sind.

-41 -

INZC

Funktion:

BNZR

Funktion:

INZR

Funktion:

BOC

Funktion:

IOC

Funktion:

Inkrementieren, [0 11010 Ss Befehl
S

Sprung wenn nicht alle Testbits Null Arbeitsregister
maskiert mit Konstante c Konstante

d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn nicht

alle durch die Konstante c vorgegebenen Testbits des Arbeitsregisters Null sind.

Sprung wenn nicht alle Testbits Null [0 110110 S] Befehl

maskiert mit Register s Arbeitsregister
r Register
d Sprungweite

Das Programm verzweigt, wenn nicht alle durch das Referenzregister r vorge-
gebenen Testbits des Arbeitsregisters Null sind.

Inkrementieren, |O 110111 5S| Befehl
Sprung wenn nicht alle Testbits Null s ı Arbeitsregister
maskiert mit Register r Register

d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn nicht
alle durch das Referenzregister r vorgegebenen Testbits des Arbeitsregisters
Null sind.

Sprung wenn alle Testbits Eins |O 1110005} Befehl
maskiert mit Konstante s I Arbeitsregister

c Konstante
d Sprungweite

Das Programm verzweigt, wenn alle durch die Konstante c vorgegebenen Test-
bits des Arbeitsregisters Eins sind.

Inkrementieren, I0 1110015} Befehl
Sprung wenn alle Testbits Eins S ı Arbeitsregister
maskiert mit Konstante c Konstante

d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn alle
durch die Konstante c vorgegebenen Testbits des Arbeitsregisters Eins sind.

- 42 -

BOR

Funktions

IOR

Funktion:

BNOC

Funktion:

INOC

Funktion:

BNOR

Funktion:

Sprung wenn alle Testbits Eins |O 1110105] Befehl
maskiert mit Register S) Arbeitsregister

r Register

d Sprungweite

Das Programm verzweigt, wenn alle durch das Referenzregister r vorgegebenen
Testbits des Arbeitsregisters Eins sind.

Inkrementieren, IO 1110115] Befehl
Sprung wenn alle Testbits Eins s | Arbeitsregister
maskiert mit Register r Register

d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn alle
durch das Referenzregister r vorgegebenen Testbits des Arbeitsregisters Eins
sind.

Sprung wenn nicht alle Testbits Eins 10 I1ı110 05] Befehl
maskiert mit Konstante l s I Arbeitsregister

c Konstante
d Sprungweite

Das Programm verzweigt, wenn nicht alle durch die Konstante c vorgegebenen
Testbits des Arbeitsregisters Eins sind.

Inkrementieren, 10 I1110 1Ss] Befehl
Sprung wenn nicht alle Testbits Eins s I Arbeitsregister
maskiert mit Konstante c Konstante

d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn nicht
alle durch die Konstante c vorgegebenen Testbits des Arbeitsregisters Eins sind.

Sprung wenn nicht alle Testbits Eins, I0 I117110 S| Befehl
maskiert mit Register f S ı Arbeitsregister

r Register

d Sprungweite

Das Programm verzweigt, wenn nicht alle durch das Referenzregister r vorge-
gebenen Testbits des Arbeitsregisters Eins sind.

-43 -

INOR Inkrementieren, 0111111 S| Befehl
Sprung wenn nicht alle Testbits Eins | s ı Arbeitsregister
maskiert mit Register r Register

d Sprungweite

Funktion: Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn nicht
alle durch das Referenzregister r vorgegebenen Testbits des Arbeitsregisters
Eins sind.

Bei den bedingten Sprungbefehlen mit Testbit-Abfrage (BZC...INOR) werden die Bits
des Arbeitsregisters überprüft, die in der "Maske" gleich 1 sind, wobei die Maske als
Konstante im Befehl oder als Variable in einem Referenzregister enthalten ist. Bits mit
Nullinhalt in der Maske spielen keine Rolle.

Beispiele:e ca) Maske 00011010

Arbeitsregister 10100001 alle Testbits 9

b) Maske 00011010

Arbeitsregister 01101000 nicht alle Testbits 9
nicht alle Testbits 1

c) Maske 00011010
Arbeitsregister 01011110 _adlle Testbits 1

Für die einzelnen Befehle bedeutet dies:

BZ.. /IZ...: Programm verzweigt bei a) , läuft weiter bei b)c)
BNZ../INZ..: " " b)e), " “ " a)
BO.../1O.. : u " a), " a)b)
BNO../INO..: n n a)b), u u u c)

- 44 -

BUS-BEZOGENE BEFEHLE 1.....xs]

Befehle: LD Laden 1000.
AD Addieren 1001.
‘SB Subtrahieren 1010.
AN UND 1011.
OR Inklusives ODER 1100.
EO Exklusives ODER ı101.
ST Speichern ı110....
JP Sprung Iı111...0
CS Unterprogramm-Sprung ıı11ı1...1I

Adressierung:
..c Konstante (unmittelbar)000.
..X indirekt (über Register x)001.
..R Register 01

L relativ 10
„A absolut 11

Indizierung: nicht ndizierttt OO 0.
indiziert über Indexregister x 2... 2020. ı.

Arbeits-
regiters Akkumulator® 020000“ 0

Spezifiziertes Register s 03030 1

Diese Befehlsgruppe setzt das Arbeitsregister mit einer BUS -Adresse (effektive Adresse)
in Beziehung, d.h. mit einem Byte des RAM’s (Pool), des Kernspeichers oder Fest-
speichers, oder mit der Peripherie des Rechners. Hierzu gehören außerdem Sprung und
Unterprogramm-Sprung auf eine beliebige Adresse des Kern- oder Festspeichers sowie des
RAM'’s.

Adressierungsmöglichkeiten sind:

..C Konstante; Der Operand steht als Konstante in der Instruktion

(nicht möglich bei ST, JP und CS)

..X indirekt: Die effektive Adresse steht in einem Indexregister x

.«R Register; Die effektive Adresse ist ein Register r
(nicht möglich bei JP und CS)

-L relativ; Die effektive Adresse ist um die Differenz d entfernt
von dem Byte, in dem d steht
(maximal 128 byte zurück bzw. 127 byte vorwärts)

A absolut: Die effektive Adresse ist in Form von 2 Bytes (16 bit)
in der Instruktion angegeben.

-45 -

Indizierung ist bei Register-, relativer und absoluter Adressierung möglich. In diesem
Falle wird der Inhalt des Indexregisters x zur effektiven Adresse addiert. Dabei ist
folgendes zu beachten;

Ist für das Indexregister eine gerade Adresse x angegeben, so wird das

Doppelbyte x (niedrige Stellen) und x+1 (hohe Stellen) als Index verwen-
det. Der Index ist eine 16-bit-Zweierkomplement-Zahl; daher ist positive
und negative Indizierung möglich (-32768...+32767).

Ist dagegen eine ungerade Adresse x angegeben, so wird nur das Byte x
als Index verwendet. Der Index ist eine 8-bit-Zahl, mit der nur positive
Indizierung möglich ist (0...255).

Für die indirekte Adressierung bedeutet das, daß im ersten Falle eine volle
16-bit-Adresse in x, x+l enthalten ist, während im zweiten Falle nur die
8 bit in x wirksam sind, d.h. hiermit können nur die absoluten Adressen

ApaR...BOFF angesprochen werden.

Zu beachten ist, daß angegebene Register und Indexregister ebenen-gebunden sind, d.h.
ihre absolute Adressen sind mit der jeweiligen Ebenen-Adresse in logische ODER-Verknüp-
fung gebracht. Dies gilt auch bei Registeradressierung und indirekter Registeradressierung.

DO-Befehle: Die Anwendung von DO-Instruktionen auf die Befehle LD, AD, SB, AN,

Länge:

OR, EO und ST ist sinnvoll; die häufigsten Anwendungen sind später
im einzelnen angegeben.

Konstante: 2 byte (@) n [1...0000) Befehl
n+]1 c Konstante

3 ayte (s) n |1...0001 Befehl
n+]1 S Arbeitsregister
n+2 c Konstante

indirekt: 2 byte (@) n 11.2...0010| Befehl
n+] x Indexregister

3 byte (s) n |1...0011| Befehl
n+1 s Arbeitsregister
n+2 x Indexregister

Register; 2...3 byte (@) n |1...01X0]| Befehl
n+1 r Register

X=)— n#12%2.0.7 Indexregister

3...4 byte (s) n |1...01X 1| Befehl
n+1 s Arbeitsregister
n+2 r Register

X=)— nt3____%2.5. Indexregister

- 46 -

relativ: 2...3 byte (@)

(x)—
3...4 byte (s)

(X=1) —

absolut: 3...4 byte ((@)

(X=1)—

4...5 byte (s) —

(x=1)—

n 11...10XxX0
n+1 d

nt2| ___XSEE|

n |1 ‚10x11
n+1 s

n+2 d

nt3xLLLLHr

Befehl

Differenz

Indexregister

Befehl

Arbeitsregister
Differenz
Indexregister

Befehl
Adresse niedrig
Adresse hoch
Indexregister

Befehl
Arbeitsregister
Adresse niedrig °
Adresse hoch
Indexregister

Bei einem vorgeschalteten DO-Befehl ist statt einer Konstanten c ein Konstanten-String
von z Bytes in der Instruktion enthalten, vom Basis-Byte aus in Richtung aufsteigender
Adressen.

- 47 -

LD

Funktion:

z<& LD..

z=& LD..

AD..

Funktion:

z=#*+AD..

SB..

Funktion:

z=+5SB..

AN..

Funktion:

z<& AN..

z=& AN..

1000..XxXS

Das Arbeitsregister wird mit dem Inhalt der effektiven Adresse (Operand)

geladen.

Laden

Ein vorgeschalteter DO-Befehl z<& bewirkt Laden der z Bytes eines Arbeits-
register-Strings mit stets demselben Operanden-Byte.

Ein vorgeschalteter DO-Befehl z=& bewirkt Laden eines Arbeitsregister-Strings
von z Byte Länge mit einem Operanden-String derselben Länge.

1001..xXS

Zum Arbeitsregister-Inhalt wird der Inhalt der effektiven Adresse (Operand)
addiert.

Addieren

Ein vorgeschalteter DO-Befehl z=* bewirkt Addieren eines Operanden-Strings
von z Byte Länge zu einem Arbeitsregister derselben Länge.

1010..XS

nn, a

Vom Arbeitsregister-Inhalt wird der Inhalt der effektiven Adresse (Operand)
subtrahiert.

Subtrahieren

Ein vorgeschalteter DO-Befehl z=% bewirkt Subtrahieren eines Operanden-
Strings von z Byte Länge von einem Arbeitsregister der gleichen Länge.

1011..XxXS

nn Mund

UND

Der Arbeitsregister-Inhalt wird mit dem Inhalt der effektiven Adresse (Ope-
rand) in UND-Verknüpfung gebracht; das Ergebnis steht im Arbeitsregister.

Ein vorgeschalteter DO-Befehl z<& bewirkt, daß die z Bytes eines Arbeits-
register-Strings mit stets demselben Operanden-Byte in UND-Verknüpfung
gebracht werden.

Ein vorgeschalteter DO-Befehl z=& bewirkt UND-Verknüpfung zwischen
einem Arbeitsregister- und einem Operanden-String von jeweils z Byte

Länge.

- 48 -

OR..

Funktion:

z<& OR..

z=& OR..

EO..

Funktion:

z<& EO..

z=& EO..

ST..

Funktion:

z>& ST..

za ST..

Inklusives ODER 1100..XS

nn Mm

Der Arbeitsregister-Inhalt wird mit dem Inhalt der effektiven Adresse
(Operand) in inklusive ODER-Verknüpfung gebracht; das Ergebnis steht
im Arbeitsregister.

Ein vorgeschalteter DO-Befehl z<& bewirkt, daß die z Bytes eines Arbeits-
register-Strings mit stets demselben Operanden-Byte in inklusive ODER-Ver-
knüpfung gebracht werden.

Ein vorgeschalteter DO-Befehl Z=& bewirkt inklusive ODER-Verknüpfung
zwischen einem Arbeitsregister- und einem ÖOperanden-String von jeweils
z Byte Länge.

Exklusives ODER 1101..XxXS

Net uf

Der Arbeitsregister-Inhalt wird mit dem Inhalt der effektiven Adresse
(Operand) in exklusive ODER-Verknüpfung gebracht; das Ergebnis steht
im Arbeitsregister.

Ein vorgeschalteter DO-Befehl z<& bewirkt, daß die z Bytes eines Arbeits-
register-Strings mit stets demselben Operanden-Byte in exklusive ODER-Ver-
knüpfung gebracht werden.

Ein vorgeschalteter DO-Befehl z=& bewirkt exklusive ODER-Verknüpfung
zwischen einem Arbeitsregister- und einem Operanden-String von jeweils

z Byte Länge.

Speichern I1110..XxXS$

 er vn,

Der Inhalt des Arbeitsregisters wird in der effektiven Adresse abgespeichert.

Ein vorgeschalteter DO-Befehl z>& bewirkt Speichern des immer gleichen
Arbeitsregister-Inhalts in z aufeinanderfolgenden Bytes eines Adreß-Strings.

Ein vorgeschalteter DO-Befehl z=& bewirkt Speichern eines Arbeitsregister-
Inhalts von z Byte Länge in einem gleich langen Adreß-String.

- 49 -

JP,.

Funktion:

CcS.,

Funktion:

Sprung I111..X0

Das Programm verzweigt zur angegebenen Adresse, indem der Instruktionszähler
auf deren Wert gesetzt wird.

Unterprogramm-Sprung I111..X1I

Nm „s

Der Inhalt des Instruktionszählers, bezogen auf das letzte Byte der Instruktion
und um 1 erhöht, wird im Arbeitsregister s gespeichert (Rückkehradresse =
Adresse des Befehlsbytes der auf CS folgenden Instruktion). Dann verzweigt
das Programm zur angegebenen Adresse.

Die Rückkehr aus dem Unterprogramm (zur auf CS folgenden Instruktion) wird
an dessen Ende durch einen indirekten Sprungbefehl über das Rückkehr-Adreß-

register s (JPX,,,s) programmiert.

-50 -

BEFEHLSLISTE

Ausfüh-
Befehl rungszeit Bedeutung

NOP 2,1 No Operation
SEL LEV 2.8 Set Level
HLT 2,1 Halt

HSL LEV 2.8 Halt, Set Level
ECL 2,1 Enable Change Level
DCL 2,1 Disable Change Level

(DO) (NUM)... 1.9 Do next ... times
GL (REG) 1.9 Get Level
GS5 (REG) 1.9 Get Switch

SRO (REG) 2.5/1.0 Shift right open

SRC (REG) 2.5/1.0 Shift right closed
SLO (REG) 2.5/1.0 Shift left open
SLC (REG) 2.5/1.0 Shift left closed

BZ (REG) ADR 3.2/0.6 Branch if Zero
BNZ (REG) ADR 3.2/0.6 Branch if Non Zero
BP (REG) ADR 3.2/0.6 Branch if Positive
BNP (REG) ADR 3.2/0.6 Branch if Non Positive

IZ (REG) ADR 4.0/0.6 Increment, Branch if Zero
INZ (REG) ADR 4.0/0.6 Increment, Branch if Non Zero
IP (REG) ADR 4.0/0.6 Increment, Branch if Positive
INP (REG) ADR 4.0/0.6 Increment, Branch if Non Positive

BEC (REG) CON ADR 4.3/1.7 Branch if Equal Constant
BER (REG) REG ADR 4.9/1.2 Branch if Equal Register
BNEC (REG) CON ADR 4.3/1.7 Branch if Non Equal Constant
BNER (REG) REG ADR 4.9/1.2 Branch if Non Equal Register

IEC (EG) CON ADR 5.1/1.7 1, Branch if Equal Constant
IER (REG) REG ADR 5.7/1.2 I, Branch if Equal Register
INEC (REG) CON ADR 5.1/1.7 1, Branch if Non Equal Constant
INER (REG) REG ADR 5.7/1.2 I, Branch if Non Equal Register

BZC (EG) CON ADR 4,3/1.7 Branch if all Testbits Zero, Constant-Mask
BZR (REG) REG ADR 4.9/1.2 Branch if all Testbits Zero, Register-Mask
BNZC (REG) CON ADR 4.3/1.7 Branch if not all Testbits Zero, Constant-Mask
BNZR (REG) REG ADR 4.9/1.2 Branch if not all Testbits Zero, Register-Mask

IZC (REG) CON ADR 5.1/1.7 1, Branch if all Testbits Zero Constand-Mask
IZR (REG) REG ADR 5.7/1,2 1, Branch if all Testbits Zero Register-Mask
INZC REG) CON ADR 5.1/1.7 1, Branch if not all Testbits Zero Const.-Mask
INZR (REG) REG ADR 5.7/1.2 1, Branch if not all Testbits Zero Reg. -Mask

-51 -

Befehl Ausfüh- Bedeutung
rungszeit

BOC (REG) CON ADR 4.3/1.7 Branch if all Testbits ONE, Constant-Mask
BOR (REG) REG ADR 4.9/1.2 Branch if all Testbits ONE, Register-Mask

BNOC (REG) CON ADR 4.3/1.7 Branch if not all Testbits ONE, Const. Mask

BNOR (REG) REG ADR 4.9/1.2 Branch if not all Testbits ONE, Reg.-Mask

IOC (REG) CON ADR 5.1/1.7 1, Branch if all Testbits ONE, Const.-Mask
IOR (REG) REG ADR 5.7/1.2 1, Branch if all Testbits ONE, Reg.-Mask
INOC (REG) CON ADR 5.1/1.7 1, Branch if not all Testbits ONE, C-Mask
INOR (REG) REG ADR 5.7/1.2 Il, Branch if not all Testbits ONE, R-Mask

LDC (REG) CON 2.5/1.5 LOAD Constant
ADC (REG) CON 2.%1.9 ADD Constant
SBC (REG) CON 2.9%1.9 SUBTRACT Constant

ANC (REG) CON 2.9/1.9 AND Constant
ORC (REG) CON 2.%1.9 OR Constant
EOC (REG) CON 2.9%1.9 Excl. OR Constant

LDX (REG) IXR 4.2/1.0 Load indirect
ADX (REG) IXR 4.6/1.4 Add indirect
SBX (REG) IXR 4.6/1.4 Subtract indirect
ANX (REG) IXR 4.6/1.4A AND indirect
ORX (REG) IXR 4.6/1.4 OR indirect
EOX (REG) XR 4.6/1.4 Excl. OR indirect
SIX REG) IXR 4.2/1.0 Store indirect
JPX IXR 4.0 Jump indirect

Csx REG IXxR 5.5 Call Subroutine indirect

LDR (REG) ADR (IXR) 3.6/1.0 Load Register
ADR (REG) ADR (IXR) 4.0/1.4 Add Register
SBR (REG) ADR (IXR) 4.0/1.4 Subtract Register
ANR (REG) ADR (IXR) 4.0/1.4 AND Register
ORR (REG) ADR (IXR) 4.0/1.4 OR Register
EOR (REG) ADR (IXR) 4.0/1.4 Excl. OR Register
STR (REG) ADR (IXR) 3.6/1.0 Store Register

LDL (REG) ADR (IXR) 4.1/1.5 Load relative
ADL (REG) ADR (IXR) 4.5/1.9 Add relative
SBL (REG) ADR (IXR) 4.5/1.9 Subtract relative
ANL (REG) ADR (IXR) 4.5/1.9 AND relative

ORL (REG) ADR (IXR) 4.5/1.9 OR relative

EOL (REG) ADR (IXR) 4.5/1.9 Excl. OR relative
STL (REG) ADR (IXR) 4.1/1.5 Store relative
JPL ADR (IXR) 3.4 Jump relative
CSL REG ADR (IXR) 4.9 Call Subroutine relative

- 52 -

Ausfüh-
rungszeit

Befehl Bedeutung

LDA (REG) ADR (IXR) 4.7/1.0 Load absolute
ADA (REG) ADR (IXR) 5.1/1.4 Add absolute
SBA (REG) ADR (IXR) 5.1/1.4 Subtract absolute
ANA (REG) ADR (IXR) 5.1/1.4 AND absolute

ORA (REG) ADR (IR) 5.11.4 OR absolute
EOA (REG) ADR (IXR) 5.1/1.4A Excl. OR absolute
STA (REG) ADR (IXR) 4.7/1.0 Store absolute
JPA ADR (IXR) 4.5 Jump absolute
CSA REG ADR (IXR) 6.0 Call Subroutine absolute

Bemerkung:

Die erste Zeitangabe ist die gesamte Befehlsausführungszeit, die zweite Angabe gibt
die Zeit für eine Mehrfachausführung bei vorgeschaltetem DO-Befehl an.

Die angegebenen Ausführungszeiten der Befehle gehen von folgenden Voraussetzungen
aus:

1) Das Programm steht im Kernspeicher (0.65 ps Zykluszeit). Sollte das Programm im
Halbleiterspeicher stehen, können je Byte der Instruktion 0.5 ps von den angege-
benen Zeiten abgezogen werden.

2) Ist bei einem DO-Befehl die angegebene Wiederholzahl > 2 oder ist als Register
nicht der Standard-Akku ((a)) angegeben, so muß zu den angegebenen Zeiten
0.7 ps addiert werden. Dies gilt nicht für den CS-Befehl.

3) Bei Indizierung mit einem 1-byte-Indexregister sind 1.7 ps, bei einem 2-byte-
Indexregister 2.3 ps zu addieren.

4) Bei CONSTANT- und RELATIVE-Adressierung steht die Konstante oder der adressier-
te Operand im Kernspeicher. Sollten sich diese Daten im Pool befinden, sind von
den angegebenen Zeiten 0.5 ps zu subtrahieren.

5) Bei INDIRECT-, REGISTER- und ABSOLUTE-Adressierung steht der adressierte Operand
im Pool. Steht er im Kernspeicher, so sind zu den angegebenen Zeiten 0.5 ps zu
addieren.

6) Der UNIVERSAL-BUS des MINCAL 621 ist ein asynchroner BUS. Alle Zeiten hängen
von der physikalischen Länge des BUS und von der Reaktionszeit der passiven Elemente
ab. Die angegebenen Zeiten können sich deshalb in geringem Maße von den tatsäch-
lichen Zeiten unterscheiden.

-53 -

- 54 -

Aufbau

Der DIETZ 621 besteht aus einem geschlossenen Gehäuse, das vorne von der Bedie-

nungs-Konsole (oder einer Blindplatte) abgeschlossen wird. Hinten befindet sich der
Netzanschlußstecker. Hier werden auch die Kabel eingebauter Interfaces und das
BUS-Kabel herausgeführt.

Die Kühlluft für den Rechner wird von vorn angesaugt (unter der Frontplatte). Sie
geht durch einen Filter, das leicht gereinigt werden kann, an den Komponenten
des Computers vorbei und wird nach hinten herausgeblasen.

In dem Gehäuse befindet sich unten der Kernspeicher (oder ein ROM), der waage-
recht eingebaut ist. Darüber ist die CPU waagerecht montiert, die auch die Stecker
für die Frontplatte, den Kernspeicher und die senkrecht gesteckten Leiterplatten für
die Uhr, für die RAMs, die Ebenenlogik, die Schrittsprung-Logik, die Interfaces und
den BUS-Anschluß enthält.

Über der CPU befindet sich die hochklappbare Stromversorgung.

Interface-

von oben gesehen Anschlüsse

Netz ext.Batterie ı 2 3

Mm MN] ERBEN
NINY/

1 f [l 1

Stromv.

Stecker

nn ı TeIn

JzeixlEY 0
e| = Xoo0 =) 00 8
| © gu Sms "g

STROMVERSORGUNG ö Ta ı 0 2

ie:
ca =”

= 8
.e £

z

©
N

Klapprichtung U U U U

der Stromver-

sorgung _

\ | Halbleiter-

> 2.] RAM

CPU c + Echtzeit-Uhr

Frontplatten-

” N] Anschluß

_
TILIT LLLI] [ILL] [LLLL[LLT]

-55 -

Be .
Bedienungs-
Konsole

DIETZ 621

mit aufgeklappter Stromversorgung

-56 -

Bei der Stromversorgung blickt man auf die Leiterseite des Regelbausteins der Strom-
versorgung.

Auf der Leiterseite sind die wichtigsten Meßpunkte durch Beschriftung gekennzeigh-
net.

Bei der Inbetriebnahme des Rechners sind folgende Meßpunkte auf ihre Sollwerte
gegen den Massemeßpunkt (" L" Telefonbuchse) zu überprüfen:

Bezeichnung

+Z
+T
HR
-R
+Zp

+H
-H

Meßwert Toleranz

+5 V +2%

+12 V +5%
+12 V +5%

-12 V +5%

+5 V +2%
+15 V +2%
-15 V +2%

Für die Betriebsspannungen befinden sich Potentiometer an der zur Frontplatte zeigen-
den Leiterplattenkante. Von der Frontplatte aus gesehen haben diese Potentiometer von

rechts nach links folgende Reihenfolge:

Bezeichnung

+Z
Ss*

N*

+B

-H
+H

Funktion

Spannungshöhe der +Z
Strombegrenzung der +Z
Ansprechschwelle des Netzausfallschutzes
Spannungshöhe der +B

n " —_H

u u +H

* Diese Potentiometer dürfen nicht verstellt werden!

-57-

die ZentraleinheBlick in

(Stromversorgung entfernt)

-58-

Folgende Spannungen werden auf Überspannung durch Schutzschalter überwacht:

Bezeichnung Einschaltstellung

+Z Knebel zeigt zur Rückwand
+H u u u iM

-H Stift ist eingedrückt
+T nn BR u

+Zp ı nu u

Netzsicherungen:

Zwischen Stromversorgung und Rückwand befinden sich drei Sicherungen.
Eine defekte Sicherung wird durch Aufleuchten der Sicherungsschraubkappe angezeigt.

Die linke Sicherung (von der Frontplatte gesehen) ist für den Transformator Tr. 1
(+Z; +T; #R).

Die zweite Sicherung ist für den Transformator Tr.2 (-R; +B; +H; -H).

Die rechte Sicherung ist zum Schutz der Batterien vorgesehen.

- 59 -

DIETZ 62]

mit ausgeklapptem Kernspeicher

- 60 -

Bedienung

Zur Kontrolle des Computers ist eine Bedienungskonsole vorgesehen, über die die
wichtigen Register und Zustände angezeigt werden und außerdem Daten eingegeben
werden können. Der Computer kann aber auch ohne Bedienungskonsole betrieben
werden,

Durch Rechtsdrehen des Schlüsselschalters wird der Computer eingeschaltet. Die Lampe
über dem Schalter leuchtet, und der Computer ist betriebsbereit. Über die Taste ST
oder über einen externen Interrupt kann der Computer gestartet werden, wenn ein ent-

sprechendes Programm im Speicher des Computers gespeichert ist.

Will man ein Programm in den Speicher einlesen, so kann über den eingebauten Boot-
strap ein Ladeprogramm (Lader) eingelesen werden, mit dem dann ein beliebiger Hexa-
Lochstreifen an beliebige Stellen des Kernspeichers geladen werden kann.

Bedienung Bootstrap: Schalter BS einlegen. Lader-Lochstreifen (im RUBOUT-Bereich) in
Teletype-Leser oder in schnellen Leser einlegen (im letzteren Falle zusätzlich Schalter 4
einlegen). Taste STA betätigen; jetzt :wird der Lader in die Plätze ’06 bis ’FF des RAMs
eingelesen.

Bedienung Lader: Schalter BS und 4 in Normalstellung bringen. Einzulesenden Hexa-Loch-
streifen (im RUBOUT-Bereich) in Teletype-Leser oder schnellen Leser einlegen. Taste
STA betätigen. Teletype führt Wagenrücklauf aus und druckt # aus. Nun

aaaa-bbbb ISH (bei Teletype-Leser) oder
aaaa-bbbb IFH (bei schnellem Leser)
aaaaS (Start bei Adresse aaaac)

-61 -

aaaa ist die Anfangs-, bbbb die Endadresse des Kernspeicherbereichs, in den der
Streifen gelesen werden soll (4-stellige Hexazahlen). Der Streifen wird eingelesen.
Am Ende wird # ausgedruckt. Danach kann der Vorgang mit weiteren Streifen wieder-
holt werden (neuen Streifen einlegen und o.a. Eingaben über den Teletype machen).

Der Lader prüft den zu ladenden Streifen und bricht bei einem Fehler den Vorgang mit
der Nachricht ERR ab.

Hat man einen Lochstreifen, der einen Lader als Vorspann enthält, vereinfacht sich die
Bedienung:

Schalter BS einlegen. Lochstreifen (im RUBOUT-Bereich) in Teletype-Leser oder in
schnellen Leser einlegen (im letzteren Falle zusätzlich Schalter 4 einlegen). Tuste STA
betätigen; jetzt wird der Lochstreifen eingelesen. Wenn der Lesevorgang aufhört, Schal-
ter BS und 4 in Normalstellung bringen und erneut Taste STA betätigen. Nun wird der
gesamte Lochstreifen ein gelesen.

Die Schalter und Tasten der Bedienungskonsole haben im einzelnen folgende Funktionen:

Über ein 8-bit-Schalter-Register (Switch-Register) - Schalter 0...7 - können Daten in
bestimmte Flip-Flop-Register, in Pool-Adressen und in BUS-Adressen gegeben werden.

Über dem Schalter-Register befindet sich ein 8-bit-Lampenfeld, das den Zustand von
Flip-Flop-Registern, Pool-Adressen und BUS-Adressen anzeigt.

Links neben dem Switch-Register ist ein 4-bit-Schalterfeld, über das das N -Register
(Instruktionszähler) und das M-Register angewählt werden können. Da beide Register
2-byte-Länge haben, wird jeweils die rechte Hälfte (NR, MR) mit den niedrigwertigen
Bits oder die linke Hälfte (NL, ML) angewählt.

Die angewählten Register werden in dem Lampenfeld angezeigt. Bei Betätigen der Täste
SW (aus dem Schalterfeld links neben der Registeranwahl) wird der Inhalt des Switch-
Registers in das angewählte Register übertragen und gleichzeitig angezeigt. Sind weder
ML, MR noch NL; NR angewählt, wird das A-Register angezeigt.

Durch gleichzeitiges Betätigen von NR und ML wird das B-Register und durch Betätigen
von NR und MR das P-Register und durch NR und NL die laufende Ebene angezeigt.

Im dritten Schalterfeld von rechts sind außer der Taste SW (Switch) noch die Tasten DE
(Deposit), DI (Display) und BS (Bootstrap) enthalten.

Durch Betätigen der Taste DE wird der Inhalt des Switch-Registers in die Adresse über-
tragen, die durch das M-Register angewählt wird.

Mit der Taste DI wird der Inhalt der Adresse angezeigt, die durch das M-Register ange-
wählt ist (Voraussetzung: Tasten NL, NR, ML und MR sind in Ruhestellung).

Mit dem Schalter BS wird das eingebaute Bootstrap-Programm angewählt. Dieses Pro-
gramm wird ausgeführt, wenn man zusätzlich die Taste ST (START) im Schalterfeld ganz
links betätigt.

-&2-

Im Schalterfeld ganz links gibt es folgende Tasten und Schalter:

RS (Reset): Hiermit werden alle Flip-Flops des Rechners in die Ausgangsstellung ge-
bracht.

Schalter HT (Halt): Ein laufendes Programm kann mit diesem Schalter angehalten werden.
Das N-Register, Pool- und BUS-Adressen lassen sich in diesem Zustand anzeigen und
ändern.
Betätigt man dann die Taste GO (Go), so wird eine Instruktion ausgeführt; danach wird
wieder angehalten.
Wird der Schalter HT wieder in die Ruhestellung gebracht, so läuft nach Betätigen der
Taste GO das Programm weiter.
Läuft kein Programm (die Lampe über der Taste ST leuchtet in diesem Falle nicht), so
führt ein Betätigen der Taste GO bei gleichzeitig eingelegtem Schalter HT zur Inkre -
mentierung des M-Registers.

Mit der Taste ST (Start) wird die Ebene ß des Computers gestartet. Die Lampe über
dieser Taste leuchtet auf, sobald eine Ebene gestartet wurde und das Programm läuft.

Links auf der Bedienungskonsole ist ein Schlüsselschalter mit 3 Stellungen: In der
1. Stellung ist der Computer ausgeschaltet, in der 2. Stellung ist das Netz einge-
schaltet, und die Lampe über dem Schalter leuchtet. In der 3. Stellung ist das Netz
eingeschaltet (Lampe leuchtet), aber alle Schalter und Tasten der Bedienungskonsole
sind verriegelt (Ausnahme: Switch-Register).

Läuft das Programm, so sind auch bei nicht verriegelter Bedienungskonsole alle Schalter
und Tasten wirkungslos (Ausnahme: HT, BS, RS und Schlüsselschalter)..

Nach dem Einschalten der Spannung mit dem Schlüsselschalter (die Lampe über dem
Schalter leuchtet) ist der Computer betriebsbereit, und ein Programm kann über die
Taste ST oder von außen über einen BUS-Start gestartet werden; danach leuchtet die
Lampe über der Taste ST.

Während das Programm läuft, wird über das Lampenfeld der F-Kanal des Rechners an-
gezeigt. Ist der Schalter HT nach unten geschaltet, so hält das Programm an. Im N-
Register steht die Adresse des Befehlsbytes der Instruktion, die als nächste ausgeführt
wird.

Bei angehaltenem Rechner können alle Flip-Flop-Register ohne Einfluß auf das Programm
verändert werden. Bei Ändern des N-Registers wird das Programm bei. der neuen Adresse
fortgesetzt. Der Inhalt von N muß das Befehlsbyte einer Instruktion adressieren.

Bei angehaltenem Rechner (oder wenn kein Programm läuft) können Pool- und BUS-
Adressen angezeigt und geändert werden: Die niedrigwertigen 8 Bits der gewünschten
Adresse werden im Switch-Register eingestellt (Schalter betätigt = 1). Danach wird MR
angewählt und durch Betätigen der Taste SW der Inhalt des Switch-Registers nach MR
übertragen. Dieser Wert wird gleich angezeigt. Dann stellt man die 8 höherwertigen
Bits der Adresse im Switch-Register ein, bringt MR in die Ausgangsstellung und schaltet
ML ein. Durch erneutes Betätigen der Taste SW wird dieser Wert übernommen und

-63 -

angezeigt. Danach wird auch ML in die Ruhelage gebracht. Durch Betätigen der Taste
DI wird nun der Inhalt der eingegebenen Adresse im Lampenfeld angezeigt. Will man
diesen Wert ändern, so stellt man den neuen Wert im Switch-Register ein und betätigt
die Taste DE. Zur Kontrolle kann man anschließend noch DI betätigen.

Will man mehrere aufeinanderfolgende Adressen anzeigen oder ändern, kann man bei
ausgeschaltetem Programm und nach Einlegen des Schalters HT mit der Taste GO das
M-Register um jeweils I erhöhen. Mit SW wird nur die Ausgangsadresse in M einge-
geben und anschließend auf die beschriebene Weise erhöht.

Technische Daten

Typ:

Wortlänge:

Arbeitsspeicher:

Hauptspeicher:

Technologie:

Instruktionen:

Instruktionslänge:

Operationsdauer:

Arbeitsregister:

Indexregister:

Ebenen:

Interrupts:

Universal-Computer für Prozeßanwendungen, technisch-
wissenschaftliche Zwecke und allgemeine Datentechnik

8 bit (1 byte)
Ein- und Mehrbyte-Verarbeitung vorgesehen
(Einzelbefehle 1- bis 256mal ausführbar)

Halbleiter-RAM 0.25 K bis 4 Kbyte
Zugriffszeit 200. ns, Vollzyklus 400 ns
auf Wunsch batteriegepuffert
als Register-, Daten- und Programmspeicher

Kernspeicher 4 Kbyte bzw. 8 K, 16 K oder 32 Kbyte
Zugriffszeit 400 bzw. 300 ns, Vollzyklus 1 us bzw. 650 ns
oder
Festspeicher (RPROM) 0.25 K bis 8 Kbyte

extern auf 80 Kbyte erweiterbar

Integrierte Schaltkreise (TTL-MSI)

5 Steuerbefehle
I Mehrfach-Ausführungsbefehl
2 Zustandsabfragebefehle
4 Schiebebefehle
32 bedingte Sprungbefehle
9 BUS-bezogene Befehle mit Register-, relativer, absoluter

oder indirekter sowie indizierter Adressierung
6 Konstanten-Befehle

1...5 byte je nach Befehlstyp

min. 1.9 us; max. 8.3 us

max. 254 sowie 1 fester Akku je Ebene (1...254 byte lang)

max. 127 je Ebene (1 oder 2 byte lang)

2 oder 16 Programmebenen mit getrennten Registern und
hierarchischer Priorität

Durch Wechsel der Programmebene bei Ende jeder Operation
möglich

Universal-BUS:

Bedienungskonsole:

Echtzeit-Uhr:

Interfaces:

Netzanschluß:

Größe:

Gewicht:

Standard-Schnittstelle mit 8 bit-Daten-Ein/Ausgang, 16 bit-
Adreßausgang, Ebenen-Ausgang und Ebenenstart-Eingang für
den Anschluß von externen Speichern und der Peripherie,
ermöglicht programm- und fremdgesteuerten Datenverkehr

Option

Option

Option (Raum für 2 Einkarten-Interfaces)

220 V +10 % 50 Hz einphasig
Leistungsaufnahme ca. 400 VA (4k KS)

ca. 675 VA (8/16k KS)

19"-Einschub, allseitig geschlossen, zwangsbelüftet
5 Einheiten hoch (ca. 225 mm)
525 mm tief

ca. 35 kg

- 66 -

GRUNDAUSRÜSTUNG

Der MINCAL 621 ist ein System-Computer mit modularem, der jeweiligen Aufgabe
anzupassendem Aufbau. Zur Grundausrüstung der Zentraleinheit gehören:

Prozessor: Vollständiger Prozessor für alle Maschi nenbefehle

Stromversorgung: Netzteil für Prozessor, Kernspeicher und Optionen

Arbeitsspeicher: 0.25 Kbyte RAM

Programmebenen: Logik für 16 Programmebenen

BUS -Anschluß: - Steckerplatz für Universal-BUS-Anschluß

Weitere Anschlüsse: Netzstecker, Stecker für externe RAM-Pufferung und 3
Interface-Stecker in Gehäuse-Rückseite

Frontplatte: Einfache Frontplatte ohne Bedienungs- und Anzeigeelemente

OPTIONEN

Die Zentraleinheit MINCAL 621 kann darüberhinaus folgende Optionen enthalten:

Arbeitsspeicher: Erweiterung um jeweils 0.25 Kbyte bis insgesamt 4 Kbyte
RAM-Kapazität

Pufferung: Pufferung der RAMs bei Netzausfall durch 2 eingebaute
Batterien (bis | Kbyte RAM; Ladestromversorgung ist im Netz-
teil vorgesehen.
Versorgungsdauer: 10 h (0.25 K); 5 h (0.5 K); 2 h (1 Kbyte
RAM).
Bei 2 Batterien verdoppeln sich die Zeiten.

Hauptspeicher: Kernspeicher 4 Kbyte (400 ns Zugriffszeit, 1 us Vollzyklus)
mit Netzausfallschutz-Logik, oder

Kernspeicher 8 Kbyte (300 ns Zugriffszeit, 650 ns Vollzyklus)
mit Netzausfallschutz- und Parity-Logik, oder

Kernspeicher 16 Kbyte (300 ns Zugriffszeit, 650 ns Vollzyklus)
mit Netzausfallschutz- und Parity-Logik, oder

Kernspeicher 32 Kbyte; sonst wie 16 Kbyte, oder

-67-

Echtzeit-Uhr:

Bedienungskonsole:

Interfaces:

MODIFIKATIONEN

Reprogrammierbarer Festspeicher (ca. 1 us Zugriffszeit)
Kapazität max. 8 Kbyte, in Stufen von 0.25 Kbyte
ausbaufähig
mit Netzausfallschutz-Logik

Untersetzer (vom Prozessor-Quarz gesteuert)
löst in Abständen von 1, 10, 100 oder 1000 ms (fest
eingestellt) einen Ebenen-Start aus (CNP-Ebene)

Frontplatte mit Bedienungs- und Anzeigeelementen
(anstelle der einfachen Frontplatte)

Einbauraum und Steckplätze für 2 Einkarten-Interfaces sind
vorgesehen

Folgende Parameter werden vom Hersteller oder Benutzer festgelegt bzw. sind nachträglich
modifizierbar:

Pool-Größe:

CNP-Ebene:

Ebene Interface 2:

Festlegung auf 16, 32, 64, 128 oder 256 byte pro Ebene
(auf Ebenenlogik-Baustein)

Zuordnung des Starts für Fehlermeldungen und Echtzeituhr zu

einer bestimmten Programmebene (CNP-Ebene)
(auf Ebenenlogik-Baustein)

Festlegung des Intervalls für den Echtzeituhr-Start auf 1, 10,
100 oder 1000 ms
(auf Clock-Baustein)

Rückmeldung des Interfaces auf beliebigen Eban en-Start $x,
statt auf SQ
(auf CPU-Grundplatte).

- 68 -

ANSCHLUSS- UND UMGEBUNGSBEDINGUNGEN

Spannung

Spannungsschwankung

Frequenz

Klirrfaktor

Zulässige Kurzzeiteinbrüche

Umgebungstemperatur

Luftfeuchtigkeit

Staubgehalt der Luft

220 V Wechselspannung, einphasig
mit Schutzleiter

+10 %

50 Hz, 45 %, -2 %

6%

< 4 ms (Abstand >1 s)

0°C bis +50°C

0 bis 95 % ohne Kondensation

Filterklasse B

Diese Angaben gelten nicht für alle Peripheriegeräte bzw. Erweiterungen des Systems.
Je nach Anlagenkonfiguration sind andere Anschluß- und Umgebungsbedingungen einzu-
halten.

- 69 -

N

 I
,

77:TU,

c
2
O0)
z
oO
I)
I
®
>
E
2

Dh?
4

77

R

lock

 En

8-Kanal-Fern-

S
E
K

 NNII
I

1
6
8
4

 IETZ COMPUTER SYST |

D

IE nn
| EIZJ MINCAL 621

Schrankaufbau und -abmessungen des

Computer-Systems DIETZ 621

- N -

Peripherie-System

Die Zentraleinheit kann durch Anschluß von zusätzlichen Baugruppen zu einem
Computer-System erweitert werden.

All diese Baugruppen werden über den UNIVERSAL-BUS mit der Zentraleinheit
verbunden. Ausgenommen Erweiterungen der Zentraleinheit (Kernspeicher, Gleit-
komma-Rechenwerk) gibt es zwei Einschübe, über die die Peripherie angeschlossen
werden kann:

- UNIVERSAL-INTERFACE-EINHEIT
19"-Einschub, 6 Einheiten hoch
zur Aufnahme von Einkarten-Interfaces, die im programmgesteuerten
Betrieb bedient werden

- AKTIVES ELEMENT
19"-Einschub, 3 Einheiten hoch
zur Aufnahme von Controllern und schneller. Meßsystemen, die in
direktem Speicherzugriff (DMA) betrieben werden.

Die Ankopplung der UNIVERSAL-INTERFACE-EINHEIT an den UNIVERSAL-BUS
erfolgt über einen DEVICE-SELECTOR, der aus dem asynchronen UNIVERSAL-BUS
den synchronen, reduzierten MINI-BUS erzeugt, an den die Interfaces angeschlossen
werden.

- 73 -

PERIPHERIE-SYSTEM

Zentral- Speicher Gleitkom-
einheit 4...80 K ma-

Rechenwerk

{ {
| UNIVERSAL-BUS

|) |
Controller
für Device- Device-

selectof selector

.— Wechsel- DO Aunı A MINI-
platte BUS BUS

DIETZ- BR ITY m digit. j
disk "Eingänge _

Festkopf- I Festkom- Konsol-

platte ma-Recherf* Fern drucker 1*
werk digit. —2—

= Leser | Ausgänge

» oo
Magnet- DFÜ es Locher

> band Is FA
rt dyn. —

» Magnet- — Eingänge,

Püs band [1

Analog-
> |

Karten-Meßsystem Display ke [2:2 leser lc, Analog- |
Eingang

> „_|Sehnell- IM
&£_G |drucker

Displ
SPIOY er Analog-

> m———

DisplayGes 7

v y Y

i \ nf
T I

Universal- Universal-Interface-Einheit

Interface-Einheit

- 74 -

Universal-BUS

ALLGEMEINE BESCHREIBUNG

Der Universal-BUS (kurz: BUS) des DIETZ 621 hat die Aufgabe, alle Komponenten

eines Systems miteinander zu verbinden und einen bit-parallelen Datenaustausch zwi-

schen ihnen zu ermöglichen. Die Systemkomponenten könnensein:

eine CPU (Central Processor Unit)

Speichermoduln

passive Elemente (z.B. Interfaces)

aktive Elemente (z.B. Controller).

Pool

CPU —— >

Speicher- passives aktives
moduln Element Element

BUS-Schnittstelle

Der Halbleiterspeicher des DIETZ 621, der Pool, gehört nicht zu den vom BUS er-
reichbaren Elementen. Der Inhalt des Pool kann nur von der CPU selbst unter Pro-
grammkontrolle gelesen oder verändert werden.

Als passive Elemente sind die Komponenten definiert, die den BUS nicht selbsttätig
belegen und für einen Datenaustausch mit einem anderen Element benutzen können;
Speichermoduln sind somit grundsätzlich als passive Elemente anzusehen.

Aktive Elemente sind die Komponenten, die selbsttätig den BUS belegen und einen
Datentransfer durchführen können; CPU oder Controller sind demnach aktive Elemente.

Mit Ausnahme der CPU sind aktive Elemente nicht ausschließlich aktiv; sie verhalten
sich genau wie passive Elemente, wenn sie z.B. von der CPU Arbeitsanweisungen er-
halten.

- 75 -

Ein Datentransfer kann nur zwischen einem aktiven und einem passiven Element er-
folgen, wobei das aktive Element die Steuerung des Transfers übernimmt und das
passive Element lediglich den vollzogenen Transfer quittiert.

Durch dieses Quittungsprinzip wird erreicht, daß der Datenaustausch unabhängig von
der physikalischen Länge des BUS und von der Reaktionszeit der Elemente durchge-
führt werden kann. Die max. Transferrate wird jedoch sowohl von der Länge des BUS
bestimmt als auch von der Reaktionszeit; im günstigsten Fall kann alle 650 ns ein
8-bit-Wort übertragen werden, was 1.5 Millionen Bytes pro Sekunde entspricht.

Sind mehrere aktive Elemente an einen BUS angeschlossen, dann sorgt eine Prioritäts-
struktur dafür, daß die BUS-Belegungen zeitlich gestaffelt erfolgen. Jedem aktiven
Element wird deshalb eine Prioritätsstufe zugeteilt. Wollen zwei aktive Elemente
gleichzeitig die BUS-Kontrolle übernehmen, so bekommt sie das Element mit der höhe-
ren Priorität zuerst.

Die Schnittstellen aller Elemente sind gleichartig aufgebaut, so daß ein aktives Element
mit Speichern und Interfaces unter Ausnutzung der gleichen Signale korrespondieren kann.

Speziell für die CPU bedeutet das, daß alle Maschinenbefehle für den Speicherverkehr
auch für den Verkehr mit Interfaces verwendet werden können (s. auch BUS-bezogene
Befehle!). Interface-Register können somit genau so flexibel behandelt werden wie Ker-
speicherzellen.

Der Universal-BUS des DIETZ 621 ist bidirektional aufgebaut, d.h. daß an der BUS-
Schnittstelle eines Elements kein Unterschied zwischen Eingangs- und Ausgangsleitungen
besteht. Die Richtung des Datentransfers wird durch ein spezielles Signal bestimmt, das
Richtungskennzeichen RK.

Ein BUS hat den Vorteil, sowohl den programmgesteuerten Datentransfer als auch den
direkten Kernspeicherzugriff (Direct Memory Access oder DMA) ohne zusätzlichen
Aufwand zuzulassen.

Der Universal-BUS bietet zusätzlich die Möglichkeit, die Mehrebenenstruktur des
DIETZ 621 innerhalb der Peripherie auszunutzen, sei es durch Bindung eines Inter-
faces an eine bestimmte Ebene oder durch Rückmeldungen von Interfaces in Form von
Startsignalen (Interrupts).

BUS-SIGNALE

Der Universal-BUS des DIETZ 621 umfaßt insgesamt 63 Signalleitungen, deren Namen
und Bedeutungen im folgenden Abschnitt erläutert sind.

Alle Leitungen haben bei nicht belegtem BUS ein positives Potential. Bei belegtem BUS
haben die Signalpegel folgende Bedeutung:

I1
>

0 V...10.5 V 2 logisch 1 Signal vorhanden

+3 V...# V 2 Jogisch $ 2 Kein Signal

-76 -

DP...D7

APP. ..A15

Adresse/] 6 bit

8 bidirektionale Datenleitungen zur bit-parallelen (byte-seriellen)
Übertragung eines Datums. Zur Datensicherung durch ein Parity-Bit

steht bei Bedarf eine neunte Datenleitung D8 zur Verfügung.
Die Zuordnung von Datenleitung und Wertigkeitdes Datenbits zeigt
folgende Abbildung:

 D7mDg
DIT
7a0

16 bidirektionale Adreßleitungen zur Anwahl von Interfaces und

Speichern durch ein aktives Element:

Alse—198 AQ7A

Mit einem 16-bit-Adreßwort sind

64 k = 6553610 = FFFFi& Einzeladressen

anwählbar, die nach folgendem Schema aufgeteilt sind:

2aay Ak Halbleiterspeicher (Pool) nicht über BUS

zugreifbar!

1909 4k Geräte-Peripherie

2009
8k Prozeß-Peripherie

DDR
a 16k
2 (32K)

7FFE
(BFFF) max. 5 x 16 k Speicher,

app

 tr FFFF

 ? davon 1 Speicher im CPU-Gehäuse
ext. Sp.| ext. u

Ted

32k 32k

|)

- 7 -

RK

BE

FE

Ein Adreßwort kleiner als 198914 wählt eine Zelle des Halbleiterspeichers
an, ein Adreßwort größer oder gleich 1006 aktiviert den BUS.

Der Adreßbereich von 199914 bis 3FFFjg einschließlich ist der Peripherie
vorbehalten; Adressen größer als 3FFFj, sind den Speichern zugeordnet.

Ein Adreßwort für den Peripheriebereich ist unterteilt in die Hauptadresse
und die Unteradresse:

Al5 = ABB
nnKL
16° 162 16! 160

Unter-
Hauptadresse adresse

Die Hauptadresse ist ein 12-bit-Wort und wählt das Interface an; die
gleichzeitig angebotene Unteradresse ist ein 4-bit-Wort und wählt inner-
halb des Interfaces eine bestimmte Baugruppe an, meist ein Register.

Diese Aufteilung des 16-bit-Adreßworts erlaubt den Anschluß von 76819
bzw. 30014 Interfaces mit je 16j0 bzw. Fig anwählbaren Unteradressen.

Das Richtungskennzeichen gibt an, in welcher Richtung ein Datentransfer
ausgeführt werden soll. Bei RK = log 1 soll der Datentransfer vom

aktiven zum passiven Element verlaufen. Dieser Transfer kann als "Schrei-
ben" oder "Ausgabe" bezeichnet werden.

Bei RK = log ß ist die Übertragungsrichtung vom passiven zum

aktiven Element; es handelt sich um "Lesen" oder "Eingeben".

Das Signal "BELEGT" wird von einem aktiven Element auf die bidirektionale
Signalleitung geschaltet und zeigt an, daß ein Datentransfer abläuft, der
BUS also nicht frei für ein anderes aktives Element ist.

Das Signal "FERTIG" wird während eines Datentransfers von einem angewähl-
ten passiven Element erzeugt und hat die Funktion einer Quittung: dem akti-
ven Element wird mitgeteilt, daß der Datentransfer "fertig" ist.

Die Signalleitung FE ist bidirektional ausgelegt.

- 78 -

GE Das Signal "GEWUENSCHT" wird von einem aktiven Element erzeugt, wenn
es einen Datentransfer ausführen möchte, es also die BUS-Kontrolle wünscht.
Alle aktiven Elemente müssen vor einer Belegung einen Belegungswunsch an-
melden. Die einzige Ausnahme bildet die CPU, die ohne Anmeldung den
BUS belegen kann.

10...L15

Meldet ein anderes aktives Element einen Belegungswunsch an, so kann die
CPU den BUS nicht erneut belegen. Die zur Zeit des Belegungswunsches
bestehende Belegung wird regulär beendet.

Die Prioritäten der einzelnen aktiven Elemente sind durch die Leitungs-
führung des Signals GE vorgegeben: |

CPU < BUS (ohne GE) >

P Im
er GE ! | GE ! GE

 {GP} {SP

aktives aktives
Element] Element 2

Priorität] Priotität 2

Wie in obiger Abbildung gezeigt, steigt die Priorität von links nach rechts.
Die mit "GP" bezeichneten Funktionsgruppen stellen die "Gewünscht Prio-

ritäten" fest. So darf z.B. das aktive Element I nur dannein "Gewünscht"
anmelden, wenn das Element 2 oder ein Element noch höherer Priorität kein
"Gewünscht" anmeldet. Ein bereits vorhandener Belegungswunsch wird durch
ein "Gewünscht höherer Priorität" unterbrochen.

Das Signal N ist die zentrale Nullstellung. Sie kommt von der CPU
(Taste des Bedienungsfeldes bzw. automatische Nullstellung bei wiederkeh-
rendem Netz).

16 Levelleitungen, die decodiert anzeigen, in welcher der möglichen 16

Ebenen der DIETZ 621 arbeitet. Die Levelinformation wird benötigt bei
der Anwahl ebenengebundener Interfaces. Bei Ausnutzung der Ebenenbin-
dung können somit die 768]0 Hauptadressen des Peripheriebereichs 16-fach
benutzt werden. Die Levelleitungen sind nicht bidirektional, sie gehen nur
von der CPU aus.

- 79 -

sßY...S15 16 Startleitungen (Interruptleitungen), über die durch ein Startsignal
(Interrupt) eine der 16 Ebenen des DIETZ 621 gestartet werden kann.

Diese Leitungen sind nicht bidirektional, sie gehen nur zur CPU.

STPX 1 Startleitung, über die ein Parityfehler eines externen Elementes der CPU
gemeldet werden kann. Der Interrupt STPX startet die CNP-Ebene.

DATENTRANSFER

Ein Datentransfer findet grundsätzlich zwischen einem aktiven und einem passiven Ele-
ment statt, wobei das aktive Element den Transfer einleitet und steuert.

Ist die CPU das aktive Element, handelt es sich um eine programmgesteuerte Datenüber-
tragung. Belegt ein anderes aktives Element den BUS und tauscht unabhängig von dem
gerade laufenden Programm Daten mit dem Kernspeicher aus, liegt ein DMA (direkter
Kernspeicherzugriff) vor.

Der Ablauf eines einzelnen Belegungsvorgangs ist in beiden Fällen gleich; Unterschiede
bestehen lediglich in der Verfügbarkeit der CPU und des BUS.

BUS-Belegung

CPU u u u u | | Eu u u

aktives Element ı u

In der Zeit t] verarbeitet die CPU ein beliebiges Programm, in dessen Ablauf ein zu-
nächst passives Element durch Übergabe von Arbeitsanweisungen von der CPU aus akti-
viert wird, angedeutet durch die drei BUS-Belegungen der CPU.

Das aktive Element und die CPU arbeiten in der Zeit t9 unabhängig voneinander und
belegen abwechselnd den BUS, um entweder programmgesteuerte Datentransfers (CPU)
oder DMA-Zyklen (aktives Element) auszuführen. Nach Ablauf von t2 hat das aktive
Element seine Arbeit beendet und verhält sich wieder rein passiv. Im Normalfall teilt
das aktive Element der CPU das Ende der Aktiv-Phase durch einen Interrupt mit, der
z.B. während t3 vom Programm identifiziert und verarbeitet wird.

- 80 -

Beim Datentransfer wird zwischen "Schreiben" (Senden des aktiven Elements) und
"Lesen" (Empfangen) unterschieden.

Schreibzyklus:

.

Gewünscht GE |

Belegt BE |

Adressen ABB... A15 6 kei
\ s aktives

Daten D8...07 KITLTTA Element

Richtungskenn- RK | \ /
zeichen

Level 190...115 ZILKLTLITILLHTT

Fertig FE — BUS IFES f passives
Element

e——— TBelegt —
Da nur die CPU als aktives Element vorliegt, bleibt das Signal GE im Ruhezustand.
Die CPU belegt den BUS durch das Signal BE und schaltet gleichzeitig Adressen, Daten
und Richtungskennzeichen RK auf den BUS. Die Ebeneninformation LP@...L15 wird un-
abhängig vom Belegungszustand des BUS von der CPU angeboten.

Nach Ablauf der Zeit tgys übernimmt das durch die Adreß- und Levelinformation ange-
wählte passive Element die angebotenen Daten und quittiert die Übernahme durch Auf-
schalten des Signals FE.

Wern das aktive Element das Quittungssignal FE empfängt, werden mit dem BE-Signal
die Daten, Adressen und auch das Richtungskennzeichen vom BUS genommen; das passive
Element wird nicht mehr angewählt und schaltet seinerseits FE ab. Jetzt erst ist der BUS
für eine erneute Belegung frei.

Die Gesamtzeit fBelegt eines solchen Belegungsvorganges ist die Summe der Zeiten

tgus und tfEs.

-81 -

In die Zeit tgys gehenein:

a) Signallaufzeit des Kabels einschließlich Sende- und Empfangsschaltungen

b) Signallaufzeit der Adreßentschlüßlung des Interfaces

c) Einstellbare Beruhigungszeit zum Abwarten von Einschwingungsvorgängen und Uhter-
drücken von Störungen

d) Signallaufzeiten der Steuerlogik.

Bei einer BUS-Länge von ca. 150 cm liegt die Zeit tgys im Bereich von 350 bis 400 ns.

Die Zeit tFES ist die Summe aus:

a) Signallaufzeiten von Kabel, Sende- und Empfangsschaltungen und Steuerlogik

b) Signallaufzeit der Adreßentschlüßlung des Interfaces.

Bei gleichen Voraussetzungen wie für tgys liegt die Zeit tFgs im Bereich von 250 bis
300 ns, so daß die Gesamtdauer der Belegung tBelegt ” 600. ..700 ns beträgt.

Bei längeren BUS-Kabeln ist die Belegungsdauer größer; als Richtwert können für je
2 m Kabel ca. 100 ns Zeitzuschlag angenommen werden.

Lesezyklus:

Gewünscht GE

Belegt BE | [77°

Adressen APß...A15 LEEELLLELLLLLG, L aktives
Element

Richtungskenn- RK
zeichen

Level 198..115 ZUZLLZERLLLLLLLLLEVINDIE.

Daten Dp...D7 N
IT passives

>

I Element
Fertig FE —ı_

—— tgys —leBUG_,a TFEL

| 50...100 ns

_ fBelegt

-92-

Das aktive Element belegt den BUS und schaltet die Adressen und das Richtungskenn-
zeichen auf. Nach Ablauf der Zeit tgys leitet das durch die Adreß- und Levelinfor-
mation angewählte passive Element einen internen Lesezyklus ein, nach dessen Ablauf
die Daten am BUS bereitgestellt werden. Das Quittungssignal FE wird verzögert auf
den BUS geschaltet, um die Leseaufforderung erst dann zu quittieren, wenn die Daten
sicher anstehen.

Die Zeit vom Aktivieren des passiven Elements bis zum Aufschalten des FE-Signals ist
die Zugriffszeit tZUG. Sie beträgt beim Lesen einer Kemspeicherzelle ca. 400 ns.

Wenn das aktive Element das Quittungssignal FE erkannt hat, übernimmt es die ange-
botenen Daten und schaltet das BE-Signal, das Richtungskennzeichen und die Adressen
vom BUS; als Antwort darauf nimmt das passive Element das FE-Signal und die Daten
vom BUS; der BUS ist frei für eine erneute Belegung. Das Signal FE steht beim Lese-
zyklus ca. 100 ns länger an als beim Schreibzyklus, da das aktive Element vor dem
Abschalten der Adressen und des Belegt-Signals die Daten übernehmen muß.

Somit ergibt sich bei einer BUS-Länge von 150 cm eine Gesamt-Belegungsdauer beim
Lesevorgang von

fBELEGT * !BUS + tZUG + FFEL

tBELEGT = (350... .400) + (400) + (350...400)

tBELEGT = 700...1200 ns

Aus der Darstellung der Belegungsvorgänge ersieht man, daß bei einem fehlenden
Quittungssignal (FE-Signal) der BUS nicht wieder freigegeben würde; der BUS und
damit das gesamte System wäre blockiert. Um dies zu vermeiden, ist auf dem BUS-
Ausgangsbaustein der CPU eine Überwachungsschaltung (Watchdog) realisiert, die die
Dauer der BUS-Belegungen laufend überprüft. Sobald auf ein BE-Signal nach spätestens
1 sec kein FE-Signal folgt, erzeugt die Watchdog selbst ein FE-Signal und einen Inter-
rupt für die CNP-Ebene des Rechners. Dadurch wird zum einen der Belegungszustand des
BUS beendet und zum anderen eine interpretierbare Fehlermeldung abgegeben.

PRIORITÄTSSTEUERUNG

Beim Anschluß raehrerer aktiver Elemente an den BUS wird vor einem Belegungsvorgang
das Element mit der höchsten Priorität von den "Gewünscht"-Prioritätssteverungen ausge-
wählt. Wie im Kapitel "BUS-Signale" bereits dargestellt, werden diese Prioritätssteue-
rungen mit dem Signal GE (Gewünscht) gesteuert, mit dem ein aktives Element einen
Belegungswunsch anmeldet. Der BUS wird von dem aktiven Element mit dem Signal BE

belegt und mit FE vom passiven Element quittiert.

DeBEL Femetx [[Element 21] Element

17

_ _“ N‘ N
| 1

 IGEI .

-83 -

Die aktiven Elemente 1 und 2 wollen den BUS belegen, wobei das Element 2 die
höhere Priorität hat. Die Signale GEI und GE2 sind die Gewünscht-Signale dieser

Elemente.

Wie aus der Abbildung ersichtlich, kann Element | erst dann den BUS belegen, wenn
die Belegung von Element 2 beendet ist und wenn kein Belegungswunsch eines Elemen-
tes höherer Priorität mehr vorliegt.

Bevor ein aktives Element den BUS belegen kann, müssen demnach folgende Bedingungen
erfüllt sein:

a) der BUS ist nicht belegt, d.h. sowohl BE als auch FE stehen nicht an,

b) das Signal GE muß mindestens die Zeit tGE ununterbrochen auf den BUS geschaltet
sein.

Diese Bedingung entfällt für die CPU, da sie keinen Belegungswunsch anmeldet und
den BUS immer dann belegt, wenn er frei ist.

Die Zeit tGE ist bestimmt durch die Laufzeiten des GE-Signals und beträgt für das von
der CPU aus erste aktive Element mindestens 350 ns. Für jedes weitere aktive Element
gilt ein Zuschlag von ca. 50 ns.

HARDWARE DES UNIVERSAL-BUS

Der Universal-BUS ist realisiert durch verschiedene Kabeltypen, wobei das Kabel selbst
immer gleich ist; lediglich die Anschlußstecker an den Kabelenden sind unterschiedlich;
sie sind den zu verbindenden Systemkomponenten angepaßt.

Das Kabel selbst besteht aus zwei Lagen eines 40-adrigen, einseitig abgeschirmten
Flachbandkabels des Typs Scotchflex 3380. Die elektrischen Daten dieses Kabels sind:

Wellenwiderstand 75 Ohm (gegen Abschirmung)

Signallaufzeit 5,5 ns/m

Um eine möglichst schnelle und auch störsichere Signalübertragung auf dem BUS zu
erreichen, werden die einzelnen Signalgruppen unterschiedlich behandelt.
Die Dimensionierung der Sender- und Empfängerschaltungen und der Abschlußwiderstände
sind der folgenden Abbildung und Tabelle zu entnehmen.

Spannung +Z =5V+5%
Widerstände R = R, +5 %

 —

R2 0 D Rs | | Ors
+00+Z

0 R6 |

HI | SN7438
+ +Z

| oder
SN74132 DS

Abschluß Empfänger Sender Abschluß

Schematische Darstellung von Sende- und Empfangsschaltungen sowohl für unidirektionale
als auch für bidirektionale Signale. Bei den Sendern von unidirektionalen Signalen wird
anstelle des SN 7438 oft ein SN 7416 verwendet, da eine Durchschaltung DS des Sig-
nals entfällt.

-
B
-

Stanal Richtung RI R2 R3 RA R5 R6 R7 C
‚900 CPU - Per. |(Ohm) (Ohm) (Ohm) (Ohm) (Ohm) (Ohm) (Ohm) pF

Daten

Adressen .-—— 330 560 330 560 © 0 ©RK, N, BE

FE .—— 270 © 270 © © 680 1000 100 Ja

GE .— 120 270 4700 ” ” 680 1000 -

oo oo

Starts a 560 1500 1000 0 -

Level — 560 1500 1000. o 0

6 Sender/Empfangsstufen belastet werden, wobei pro Stufe ein TTL Fan In von I als
Lastfaktor anzusetzen ist.

Bei größeren BUS-Längen oder beim Anschluß von mehr als 6 Elementen wird der
Universal-BUS durch BUS-Verstärker in einzelne BUS-Segmente aufgeteilt, die den
geforderten Übertragungsbedingungen genügen. Die BUS-Elemente sollten nicht länger
als 4-5 m sein.

Ver-

Kabell I<5 m

max.4 Elemente

Die BUS-Verstärker bilden den BUS-Abschluß nach und regenerieren die empfangenen
Signale.

- 897 -

CPU Peripherie

...Al5< AßQ...A15 _n < AB >

I FE.RK,BE 2 S 2

Dg...D8 D...D8 >

BE BE
—{ [—————

RK r Logik entschlüsselt aus BE und RK RK
die Verstärkungsrichtung und er-
zeugt die Durchschaltsignale

V &———, ——
V,R, VRK, VRK

R
RK 0
RK 7278

Blockschaltbild des BUS-Verstärkers

- 88 -

Der BUS-Verstärker bewirkt eine Signalverzögerung von max. 100 ns pro Signal. Das
bedeutet für einen Belegungsvorgang eine Verlängerung von insgesamt 400 ns.

Für den Aufbau eines BUS-Systems ergeben sich durch von der Hardware bedingte
Gründe folgende Regeln:

a) BUS segmentieren.
Jedes BUS-Segment hat eine Länge |= 5 m und wird mit max. 4 zusätzlichen
TTL Fan In pro Signal belastet.

b) Elemente bzw. Interfaces, die eine hohe Arbeitsgeschwindigkeit haben, in der
Regel aktive Elemente, sollen möglichst rechnernah angeordnet werden, da Ver-
stärker den BUS verlangsamen.

c) Bei der Anordnung mehrerer aktiver Elemente ist auf die Priorität der Elemente zu
achten: das der CPU nächste Element hat die niedrigste Priorität.

d) Das physikalische Ende des BUS ist mit einer Widerstandskombination pro Signallei-
tung abzuschließen (Abschlußkarten vorsehen).

Soll der Universal-BUS des DIETZ 621 über große Entfernungen außerhalb der
Systemschränke geführt werden, so ist er über einen Entkopplungsbaustein galvanisch
zu trennen. Der so entkoppelte BUS kann nur zum Anschluß passiver Elemente benutzt
werden, da alle Signalleitungen mit Ausnahme der Daten unidirektional entkoppelt
werden.

- 89 -

Universal-Interface-Einheit

AUFBAU

Die Universal-Interface-Einheit (UIE) dient zur Aufnahme von Einkarten-Interfaces. Sie
beinhaltet standardmäßig

a) zwölf Steckplätze für Einkarten-Interfaces

b) einen Device-Selector

c) entweder einen BUS-Verstärker, eine BUS-Durchschaltung oder eine BUS-Abschluß-
karte

d) eine +5 V-Stromversorgung.

Die Stromversorgung kann bei Bedarf zusätzlich folgende Spannungenliefern:

+15 W3 A

+12 WI A

Die Verbindung zwischen den Interface-Steckplätzen und dem Device-Selector - der
sog. Mini-BUS - erfolgt mittels einer gedruckten Leiterplatte, die gleichzeitig die
Rückwand der UIE bildet.

non nn “nn nn non nm

ZSTSSTREITERE
83 65 63 54 46 41 3835 32 29 26 23 20 17118 5 2

„oO.
> - En ı5 <a,
o n £2o n © = o
. w © o| S5o

Io > oo aD

oo no Ts.
z. 9 >
n

1 [4 LI LI AH A LI LH LI LA

INRANNNANNNNNNMNNn

= r _
® _ m N_ u e << © <o

® i oO mo© 0%

Nm oo > © >20

z. n 2 une
E + DD ++ D | | |

+

N Device-Selector__]

o 600 000

o BUS-Verstärker

S 600 009

oder BUS-Durchschaltg.
Vorderseite! 600 011

oder BUS-Abschluß 621 611 5

- 90 -

Stromversorgung

Netzanschluß:

Größe:

Gewicht:

+43 VI0A
+12 V/15 V (Option) 1 AY3 A

220 V +10 % 50 Hz einphasig
Leistungsaufnahme max. 150 VA

19"-Einbaurahmen, offen, konvektionsbelüftet
6 Einheiten hoch (ca. 270 mm)
max. 250 mm tief

ca. 10 kg

- 91 -

IRMO@... .IRM11 Unidirektionale Signale. Wie die Signale IS0B...IS11 sind
die Rückmeldungen den jeweiligen Steckplätzen zugeordnet
(Signal IRMXY des Steckplatzes 8 - IRM@@, IRMXY des
Steckplatzes 11 - IRMÖI usw. (siehe Bild Universal-Interface-
Einheit). Die Rückmeldungen werden auf dem Device-Selector
den Interruptleitungen des Universal-BUS zugeordnet.

Zeitdiagramm Mini-BUS:

IXY |
 r

TAB-ABSCHIED

DID-1007 VREEEREEEEEE
_In737 f

9% IDI7 100m fes

IFT I

ca.150 ns-—= Bei Transfer zum Interface

Datenübernahme

tfes = 100.. 300 ns (Signallaufzeiten)

-N-

MINI-BUS

Der Mini-BUS ist der Datenkanal, an den Einkarten-Interfaces in einer Universal-

Interface-Einheit angeschlossen werden. Der Mini-BUS wird durch den DEVICE-
Selector aus dem UNIVERSAL-BUS erzeugt.

Im Gegensatz zum Universal-BUS ist der Mini-BUS ein synchroner Datenkanal. Die
Datenübernahme erfolgt mit dem Taktimpuls IFT.

Der Mini-BUS umfaßt folgende Signalleitungen:

(log 1 20V; Lgß”"+3V...+5 V)

IDP Bidirektionales Signal. Parity-Bit (bei Standard-Interfaces
nicht verwendet)

IDßß...1D07 Bidirektionale Signale Datenbits ...7

ID18...1D17 Bidirektionale Signale Datenbits 8...15 (vorgesehen für
16-bit-Systeme; zur Zeit bei Device-Selector mit IDß@...1D97
zusammengeschaltet; d.h. IDAß = ID1)

IAßß.. .1A03 Unidirektionale Signale. Niedrigwertige Adressen des Universal-
BUS. Sie dienen zur Erzeugung von Unteradressen auf den
Einkarten-Interfaces.

IS0ß...1S11 Unidirektionale Signale. Anwahlsignale für die einzelnen
Interface-Plätze. IS@@ wählt Steckplatz 8, IS@1 Steckplatz 11
usw. (siehe Bild Universal-Interface-Einheit) an.
Am jeweiligen Steckplatz heißt das Signal ISXY.
Die Signale werden auf dem Device-Selector aus den höher-
wertigen Adreßbits (A04...A15) und gegebenenfalls aus den
Levelleitungen (L99...L15) entschlüsselt.

IRK Unidirektionales Signal. Richtungskennzeichen gibt die Daten-
richtung der Signale IDß@...1D87 bzw. IDI@... ID17 an. Bei
IRK = Log.1 werden Daten zum Interface, bei IRK = Log.f
zum Rechner transportiert.

IN Unidirektionales Signal . Nullstellung für Flip-Flops bei
Einschalten bzw. Betätigen der Taste RES an der Bedienungs-
konsole des Computers.

-93-

DEVICE-SELECTOR

Der Datenfluß zwischen dem Computer DIETZ 621 und den Interfaces in einer UIE
erfolgt über den Universal-BUS, Device-Selector und Mini-BUS. Auf dem Device-
Selector müssen die Adressen der Interfaces mit Lötbrücken programmiert werden. Sie
sind durch die Signale Aß4...A15 definiert und eventuell an eine der 16 Hardware-
Ebenen gebunden. Jeder Interface-Steckplatz hat eine eigene Select-Leitung (ISP@...
IS11), und bei der Entschlüßlung einer der programmierten Adressen erfährt das entspre-
chende Interface über diese Leitung, daß es angesprochen werden soll.

-A-

Außerdem triggert das Select-Signal eine Zeitstufe an, die nach einer Verzögerung von
mindestens 100...150 ns den Interface-Takt (IFT) bildet. Dessen Rückflanke erzeugt das
Fertig-Signal, das bewirkt, daß die bis dahin am BUS anstehende Adresse weggeschal-
tet wird,damit die Select-Information nicht mehr vorhanden ist und hierdurch das "Fertig'
wieder zurückgenommen wird.

Der Interface-Takt gelangt über den Mini-BUS auch zu allen angeschlossenen Interfaces
und kann dort bei Rechner-Ausgaben als Übernahmetakt benutzt werden.

Fertig Takt für Datenübernahme
i

 ——— SN74123 | —iFE FT

>N7474 —- ca.100 ns

A

vl |]

SN74123 —» ca. 100-150 ns

L2ß..L15 1S@

——N Adreß- } |
decodie-

rung
 ABA. .A15 sn |

 !

Select-Leitungen (positive Logik)
zu den Interfaces

Zeitstufe auf dem Device-Selector

- 95 -

Damit ein Interface, wenn es über die Select-Leitung angewählt wird, erkennen kann,
mit welchem seiner Register gearbeitet werden soll, verstärkt der Device-Selector die
vier niederwertigen Adreßbits und bietet sie über den Mini-BUS an (IAPP...1AQ3). Das
gleiche geschieht mit dem Richtungskennzeichen (IRK), das hier zur Unterscheidung von
Rechner-Ein- und -Ausgaben dient. Auf dem Device-Selector selbst steuert es dement-
sprechend die Datendurchschaltung.

Jedes Interface kann seinerseits eine Anforderung an den Computer senden. Hierzu geht
von jedem Steckplatz eine eigene Leitung (IRMP@...IRMI1) zum Device-Selector, auf
dem durch Lötbrücken programmiert werden kann, welche Rechner-Hardware-Ebenen durch
die einzelnen IRM-Meldungen gestartet werden sollen.

Eine letzte Aufgabe von Device-Selector und Mini-BUS ist, die Interfaces an die zen-
trale Nullstellung anzuschließen.

Blockschaltbild Device-Selector (UIE)

FE Fertig IFT

Zeit-

I stufe
AB4...A15

ISßg...1511
>

LAB...L15 Adreßde-
> kodierung

Durchschaltungszeichen

< D@...D8 Es bidirektionaler e IDP, IDpP.. DR

Verstärker ID1@...1D17

RK IRK

ABB... Ap3 wnidirektionaler 1ABd.. .1A03
>| Verstärker ADD. IRB >

Sspp...515 Ebenen- IRM@Z. . .IRMI1
zuordnung <

_ a

Universal-BUS Device-Selector | Mini-BUS
| |

- 96 -

EINKARTEN-INTERFACES

Einkarten-Interfaces (EKI) schließen Bedienungsperipherie, Datenfernübertragungssysteme
und Prozeß-Ein/Ausgänge an den Computer DIETZ 621 an. Sie können entweder in
den beiden S$teckplätzen der Zentraleinheit oder in einer UIE untergebracht werden.
Ihr Format ist das einer doppelten Europakarte (233,5 mm x 160 mm), und sie sind mit
zwei 64-poligen Steckern ausgerüstet. Stecker | in der UIE oben ist die Schnittstelle
zum Computer bzw. Mini-BUS. Stecker 2 ist die Schnittstelle zur Peripherie, deren
Anschluß rückseitig entweder auf dem zu Stecker 2 gehörenden Gegenstecker oder auf
einem verriegelbaren Stecker für Kabelanschluß erfolgt. Dieser verriegelte Stecker ist
ein 26-poliger AMP-Stecker, wenn es sich um Prozeßperipherie handelt, ein 25-poliger
Cannon-Stecker, wenn es sich um Gerüte-Peripherie handelt.

Wesentliche Funktionsgruppen eines EKls sind (Beispiel für ein Geräte-Interface mit
8 Bit-E/A):

Datenregister: 8-bit-Flip-Fi op-Speicher, programmgesteuert einschreib- und/oder
abfragbar. Hält Daten für das periphere Gerät bereit (Ausgabe)
bzw. übernimmt sie von ihm (Eingabe).

Statusregister: 8-bit-Flip-Flop-Speicher, programmgesteuert einschreib- und abfrag-
bar mit den Funktionen:

READY (Fertigmeldung vom Gerät, kann Start der Ebene auslösen)
- IBUSY (Eingabe)
OBUSY (Ausgabe)

- LOCK (verhindert Ebenenstart durch READY)
- bis zu vier weitere Funktionen je nach Art des peripheren Geräts.

Eine Datenausgabe zu einem Gerät erfolgt, sobald OBUSY eingeschaltet und READY
ausgeschaltet ist. Mit Beendigung der Ausgabe wird READY eingeschaltet und damit,
wenn vorher nicht LOCK eingeschaltet wurde, ein Start erzeugt.

Eine Eingabe erfolgt sinngemäß bei eingeschaltetem IBUSY und ausgeschaltetem READY.

- 97 -

-
9
8
6

-

Mini-BUS

s
n
g
-
t
u
m
y

u
s
p

u
p

se
op

yi
ey

uj
s
e
u
r
a
B
u
n
j
d
d
o
y
u
y

 tatus-Register

Adreßde-
kodierung

Multiplexer

Geräte-Daten-Takt

Daten-Eingabe

Rückmeldung

Aktive Elemente

AUFBAU

Zu den aktiven Elementen des DIETZ 621-Systems gehören Controller und Meßsysteme
mit Selbststeuerzusätzen. Jedes dieser Elemente ist als eine in sich geschlossene Bau-
gruppe realisiert, die in einem 19"-Einschub der Höhe C untergebrachtist.

8 8° BASISTASSASSI TI IT on

=] AnFnARHAAnAHnABRRF
S YuUmMVM

20 o urr
< vyıYr= 9 > rn

Y < rrnnr
o 2 I

2.» > Arrrvrm 4

2 UUULUUULDLUUULBHLHLUG

Standard- gerätespezifische BUS -
Stromversorgung Logik Ankopplung

Die Baugruppe "aktives Element" ist aufgeteilt in drei Untergruppen:

a) die Standard-Stromversorgung, bestehend aus einer Transformatoreneinheit und einem
5 W/5 A-Regelbaustein

b) die Baugruppe mit gerätespezifischer Logik, deren Aufbau weitestgehend vom anzu-
schließenden Gerät abhängt

c) die Baugruppe BUS-Ankopplung, die die gerätespezifische Logik an den BUS des
DIETZ 621 anpassen und Datentransfers über den BUS steuern soll.

Die Logik-Bausteine sind einfache Europakarten (100 mm x 160 mm) mit 64-poligen
Steckern auf den Steckplätzen 14 bis 50, mit 36-poligen Steckern auf den Plätzen
2 bis 11.

-9-

BUS-ANKOPPLUNG

Die BUS-Ankopplung besteht aus 5 gedruckten Schaltungen, die wie folgt angeordnet
sind:

Steckplatz Baustein

2 BUS-Verstärker | 605 026

oder BUS-Abschluß 605 022

oder BUS-Durchschaltung 605 058

5 BUS-Verstärker 2 605 027

oder BUS-Abschluß 605 022

oder BUS-Durchschaltung 605 058

8 Device-Selector 1 605 008

11 Device-Selector 2 605 009

14 Adreßzähler, Bus-Belegung 605 028

BUS-Verstärker, BUS-Abschlußkarten und BUS-Durchschaltungen entsprechen logisch
den in der UIE verwendeten Bausteinen, lediglich die Bauform wurde dem C-Einschub
angepaßt.

Die Device-Selectoren sind gegenüber dem Device-Selector für die Einkarten-Interfaces
logisch geringfügig erweitert:

Die Durchschaltungskennzeichen für die bidirektionalen Verstärker hängen außer vom
Richtungskennzeichen auch davon ab, welches Element im Augenblick aktiv ist, da
erst durch beide Informationen die Transferrichtung eindeutig bestimmbar ist (Signale
DDE und DDA). Die Zeitstufe des Device-Selectors kann zusätzlich vom aktiven Ele-_
ment beim Lesevorgang angestoßen werden. Sie erzeugt in diesem Fall einen Takt IF],
schaltet aber nicht das "Fertig-Flip-Flop" ein.

Die gerätespezifische Logik wird somit genau wie ein Einkarten-Interface an den Mini-
BUS angeschlossen.

Der Baustein "Adreßzähler, BUS-Belegung" umfaßt die Steuerungslogik für einen Daten-
transfer ohne Rechnerkontrolle, die Prioritätslogik für das Gewünsch#+Signal und ein
16-bit-Register, das bei einem Transfer die Adresse des passiven Elements vorgibt, in
der Regel eine Kernspeicherzelle.

- 100 -

Universal-BUS

T
i
m
i
n
g

KBA] KBA2

D
a
t
e
n
r
e
g
i
s
t
e
r

16-bit-Adreß-Register

8 bit 8 bit

St
at

us
re

gi
st

er

DKSBA2

M
i
n
i
-
B
U
S

A
d
r
e
ß
d
e
-

ko
di
er
un
g

Universal-BUS

- 101 -

Die gerätespezifische Logik enthält u.a. eine Adreßdecodierung, die aus den Adreßbits
1AB® bis iAB3 und der auf dem Device-Selector entschlüsselten Gesamtadresse die Unter-
adressen der internen Register erkennt. Die Unteradresen DKSBAI und DKSBA2 sind dem
16-bit-Adreßregister zugeordnet, das von der CPU setz- und abfragbar ist und das bei
einem DMA-Zyklus die Kernspeicheradresse (ABB...AT5) anwählt.

Der eigentliche Belegungsvorgang wird eingeleitet durch eine DMA-Anforderung der
gerätespezifischen Logik. Das Signal DMA stößt ein Mono-Flop an, dessen Ausgangs-
impuls zum einen das nachgeschaltete Gewünscht-Flip-Flop (GEFF) setzt und damit die
DMA-Anforderung speichert und zum anderen zur Zeitüberwachung des GE-Signals dient.
Die gespeicherte DMA-Anforderung wird als GE-Signal auf den BUS geschaltet. Ein
BUS-GE wird außerdem erzeugt, wenn ein GE höherer Priotität ansteht.

Das Belegt-Flip-Flop (BEFF) wird eingeschaltet, wenn

a) DMA-Anforderung gespeichert,

b) kein Belegt-Signal auf dem BUS ansteht,

c) kein Fertig-Signal auf dem BUS ansteht,

d) kein GEHP (gewünscht höherer Priorität) anliegt und

e) die GE-Überwachungszeit abgelaufen ist.

Das gesetzte Belegt-Flip-Flop (Signal BEI) schaltet alle Signale des aktiven Elements
auf den BUS.

Das GewünschtFlip-Flop (GEFF) wird mit der verzögerten Vorderflanke des BEI-Signals
zurückgesetzt.

Am Ende des Belegungsvorganges wird das Belegt-Flip-Flop auf zweierlei Weise über
den Takteingang zurückgesetzt:

a) bei einem Schreibvorgang mit dem kommenden FE-Signal

b) bei einem Lesevorgang mit der Rückflanke des iFT-Impulses, der von der Zeitstufe
des Device-Selectors erzeugt wird. Die Zeitstufe wird dabei angetriggert über das
Signal AKTTA, das von der gerätespezifischen Logik während eines Lesevorgangs
beim Empfangen des FE-Signals erzeugt wird.

Das Adreßregister wird am Ende eines Belegungsvorganges inkrementiert.

Die folgenden Zeitdiagramme zeigen den Steuerungsablauf bei einem Lese- und einem
Schreibvorgang, wobei beim Schreibvorgang vorausgesetzt wurde, daß kein GEHP vor-
handen wor.

- 102 -

DMA

Mono Flop

GE |

BEFF

DBE
BET

BE

RK

IRK

Takt BEFF

FET

DDA

DDE

Takt BEFF
FEI
AKTTA

DDA
__DDE

Schreibvorgang (aktiv — passiv)

u
d

n
n

m
e
d

Lesevorgang (passiv—= aktiv)

|

 177ZZZZLZ
 KILLSLLL

N \
I!2 £L/Lv7 \ Ay

- 103 -

Die BUS-Belegungssteverung in der dargestellten Form führt jeweils einen Belegungsvor-
gang durch und gibt den BUS anschließend wieder frei, so daß ein anderes aktives
Element den BUS belegen kann. Werden sehr hohe Transferraten verlangt (DMA-Abstand
kleiner als 3 us), kann dafür gesorgt werden, daß ein "Dauer-Belegt" (DBE) erzeugt
und die BUS-Kontrolle erst nach Beendigung aller Transfers abgegeben wird.

- 104 -

Erweiterungen der Zentraleinheit

SPEICHERERWEITERUNG

Im Gehäuse des Computers MINCAL 621 können bis zu 16 Kbyte (bzw. 32 Kbyte) Kern-
speicher bzw. bis zu 8 Kbyte reprogrammierbarer Festspeicher untergebracht werden. Wird
eine darüberhinausgehende Kapazität benötigt, so sind zusätzliche Speicher-Einheiten er-
forderlich; sie erlauben eine Erweiterung der Speicherkapazität auf insgesamt 80 Kbyte.

Jede dieser Speichereinheiten enthält:

Kernspeicher: I oder 2 Speicher zu je 16 oder je 32 Kbyte
Zugriffszeit 300 ns
Vollzyklus 650 ns
mit Parity-Prüfung/Erzeugung

Bei Arbeiten mit dem 2. externen Speicher wird vom 1. externen Speicher durch einen
Umschaltbefehl umgeschaltet und dann die gleichen Adressen wie beim]. externen Spei-
cher verwendet (siehe Kapitel "Struktur - Abschnitt Kernspeicher").

Festspeicher: I oder 2 Speicher zu je max. 8 Kbyte
(wahlweise statt in Stufen von 256 byte ausbaufähig
Kernspeicher) reprogrammierbarer MOS-Speicher

Zugriffszeit ca. 1 us M
Adressen: ’8@@0...’9FFF (1. Speicher)

'CcAdd...’DFFF (2. Speicher)

Stromversorgung: eingebaut

Netzanschluß: 220 V +10 % 50 Hz
Leistungsaufnahme ca. 500 VA

Größe: 19"-Einschub, allseitig geschlossen, zwangsbelüftet
5 Einheiten hoch (ca. 225 mm)
525 mm tief

Anschluß: an Zentraleinheit MINCAL 621 über BUS-Kabel
(in unmittelbarer Nähe)

Adressen: '800%...’BFFF Erweiterung auf 32K) .
"8ö0B...’FFFF Erweiterung auf 48K) |.externer Speicher
'8000...’BFFF Erweiterung auf 64K)
'8000...’FFFF Erweiterung auf 80K)

2.externer Speicher

- 105 -

FESTKOMMA MULTIPLIKATION/DIVISION

Der DIETZ 621 hat in der Standard-Ausführung keine Hardware-Multiplikation/Division.
Diese Rechnungen sind durch Unterprogramme realisiert.

Zur Steigerung der Geschwindigkeit von arithmetischen Operationen dient das Festkomma-
Rechenwerk. Es hat die gleiche Bauform wie Einkarten-Interfaces und wird in eine Univer-
sal-Interface-Einheit eingesteckt (siehe Kapitel "Einkarten-Interfaces"). Es besteht aus 2
Steckkarten, die durch einen Verbindungsstecker miteinander verbunden sind.

Funktionen: Multiplikation Dauer max.6.72 us
Division " 6.4 us/11.8 us
Zweierkomplement " 0.64 us

Wortlänge: Ausgangswerte 16 bit
Ergebnis Multiplikation 32 bit

" Division 32 bit oder 16 bit + 16 bit Rest
" Komplement 16 bit

Zahlendarstellung: Zweier-Komplement

Adresse: "120X

Baugröße: 233,5 mm hoch, 160 mm tief (doppelte Europakarte).

Einbauraum: 2 Steckplätze

GLEITKOMMA-RECHEN WERK

Der DIETZ 621 läßt sich zusätzlich mit einer Hardware-Gleitkomma-Arithmetik ausrüsten.

Die Laufzeiten aller Programme mit Gleitkomma-Operationen (z.B. BASIC oder BASEX)
werden wesentlich verkürzt.

Bei den arithmetischen Operationen des DIETZ 621 -Gleitkomma-Rechenwerkes ist es
möglich, nach Ausführung der Operationen ein Normalisieren der Ergebnisse zu verhin-
dern. Auf diese Weise lassen sich auch Festkomma-Operationen mit dem Gleitkomma-
Rechenwerk durchführen.

Funktionen: Addition Dauer max. 6.5 us
Subtraktion " "6.5 us
Multiplikation " "9.5 us
Division " "9.5 us

Bilden des Absolutbetrages " "0.1 us
Negation " "0.1 us
Umrechnung Gleit- — Festkomma " "5.8 us

Fest- —Gleitkomma " " 5.8 us

- 106 -

Wortlänge:

Zahlendarstellung:

Fehlermeldungen:

Sonstige Meldungen:

Adresse: "16x

24 bit Mantisse, 8 bit Exponent

Mantisse und Exponent in Zweier-Komplement

Überlauf, Unterlauf

Ergebnis = @, Ergebnis > @, Ergebnis < @

Einbau: in Speichererweiterungs-Einschub..

BATTERIE-EINHEIT

Das als Register- und Arbeitsspeicher des DIETZ 621 Computers verwendete Halbleiter-
RAM kann bis zu einer Kapazität von 1 kbyte über eine bestimmte Zeit des Netzausfalls
durch eingebaute Batterien versorgt werden. Ist bei größeren Kapazitäten oder für länge-
re Zeiträume eine Pufferung erforderlich, so ist eine getrennte Batterie-Einheit erforder-
lich.

Technische Daten

Pufferungsdauer:

Stromversorgung:

Netzanschluß:

Größe:

Anschluß:

bei 0.25 kbyte RAM: 192 h
“05 " "2.96 h
n 1 nt u . 48 h

iL 2 u u 24 h

nt 4A n n .. 10 h

eingebaut

220 V +10 % 50 Hz
Leistungsaufnahme ca. 300 VA

19"-Einbaurahmen, offen, konvektionsbelüftet
3 Einheiten hoch (ca. 135 mm)
ca. 450 mm tief

an Batteriestecker der Zentraleinheit DIETZ 621 über 2-poliges

Kabel.

- 107 -

Plattenspeicher-Systeme

DIETZ-DISK

Die DIETZdisk ist ein Wechselplattenspeicher mit einem neuartigen Prinzip. In diesem
Speichersystem werden die Vorteile von großen Plattensystemen - Zuverlässigkeit, wahl-
freier Zugriff, hohe Geschwindigkeit - mit dem niedrigen Preis von Lochstreifen-Peri-
pherie vereint. Wie bei großen Plattensystemen findet keine Berührung zwischen Platte
und Lese-Schreib-Kopf statt. Die Positionierung erfolgt nach Servo-Informationen, die
sich auf der Speicherkassette befinden. Eine Kassette kann deshalb ohne Schwierigkeiten
auf einem Laufwerk beschrieben und auf einem anderen gelesen werden.

Laufwerke:

- DIETZdisk 30 - Einzellaufwerk zum Betrieb einer Plattenkassette

- DIETZdisk 40 - Doppellaufwerk zum Betrieb von zwei Plattenkassetten

Technische Daten:

Platten-Drehzahl:

Positionierzeit:

Eingebauter Schreibschutz

Kassette:

K apazität:

Anzahl der Spuren:

Sektoren pro Spur:

Bytes pro Sektor:

Aufzeichnungsdichte:

Spurdichte:

Maße:

Stromversorgung:

Netzanschluß:

Leistungsaufnahme:

Größe:

Anschluß:

3000 Upm

minimal 100 ms

im Mittel 210 ms

maximal 320 ms

262 144 byte

64

32

128 (+2 +2 für CRC)

3700 bpi

SO tpi

200 x 200 x 10 mm

Zusätzlicher Einschub 19" (3 Einheiten hoch)

220 V +10 % 50 Hz

ca. 300 VA (Doppellaufwerk)

19"-Einschub (4 Einheiten hoch)

Über Einkarten-Interface in UNIVERSAL-INTERFACE-

EINHEIT oder in Zentraleinheit und über eingebauten
MIN I-Controller. Pro MINI-Controller lassen sich bis

zu 8 Laufwerke betreiben.

- 108 -

Datenübertragung zwischen Interface und MINI-
Controller unter Programmkontrolle (asynchron).

Funktionen: Lesen eines Sektors

Schreiben eines Sektors

Kopieren eines Sektors.

In Verbindung mit einem Bootstrap-ROM in der Bedienungskonsole des Rechners läßt
sich ein Sektor automatisch in den Speicher des Rechners laden.

Adressen: "1BX

"1BX1

"1BX2

"1BX3

’1BX4

Bit 9...4 Sektor/nur setzbar
Bit 5...7 Spur niederwertig

Bit 9...2 Spur höherwertig
Bit 3...6 Unit belegt
Bit 7 frei

Statuswort setz- und abfragbar
Bit Ö Ready
Bit 1 IBUSY
Bit 2 OBUSY
Bit 3 LOCK
Bit 4 Transfer Complete
Bit 5 Write Protect
Bit 6 Copy Initiate

Gerätezustand / nur abfragbar
Bit Unit nicht READY
Bit 1 CRC Error
Bit 2 Unit Write Protect

Datenregister /setz- und abfragbar

- 109 -.

WECHSELPLATTENSPEICHER

Größere Speicherkapazität und Zugriffsgeschwindigkeit bietet der Wechselplatten-
speicher WP 2.4.

Laufwerk:

Plattendrehzahl:

Positionierzeit:

Transferrate:

Eingebauter Schreibschutz

Kassette:

Kapazität:

Anzahl der Spuren:

Sektoren pro Spur:

Zahl der Bytes pro Sektor:

Stromversorgung:

Netzanschluß;

Leistungsaufnahme:

Umgebungstemperatur:

Größe:

Anschluß:

Controller:

Größe:

Stromversorgung:

Netzanschluß:

Eingebaute Auto-Load-

Funktion:

Einzellaufwerk mit 2 beweglichen Köpfen für eine Speicherkassette

1500 Upm
im Mittel 60 ms

1.6 MHz entsprechend 200 Kbyte/s

2.4 Mbyte

2 x 200

12

512

Zusätzlicher Einschub (Montage hinter Laufwerk)

220 V +10 % 50 Hz
ca. 500 VA

oO
0...40 C

19"-Einschub (5 Höheneinheiten)

Über Controller WPCE 621 direkt an den UNIVERSAL-

BUS. Datentransfer im direkten Speicherzugriff (DMA).
Pro Controller lassen sich bis zu 4 Laufwerke betreiben.

19"-Einschub (3 Höheneinheiten)

eingebaut

220 V +10 % 50 Hz

Bei Tastendruck oder Netzausfall wird automatisch ein

Sektor der Platte gelesen und der Rechner gestartet.

- 110 -

Auf einer der Steckkarten des Controllers befinden sich 5 Schalter, die für Test-
zwecke und Modifikationen der Betriebsweise gedacht sind. Im Normalfall stehen
alle Schalterknebel nach unten. Im einzelnen haben die Schalter (von oben nach
unten) folgende Bedeutung:

1) Adreßinkrementierung: Schalter nach oben: verhindert
Schalter nach unten: zugelassen

2) Auto-LOAD bei Netzausfall bzw. Betätigen der Taste RES der Bedienungskon-
sole des Rechners: Schalter nach oben: verhindert

Schalter nach unten: zugelassen

3) LOAD Taste, bei deren Betätigung Auto-LOAD initiiert wird.

4) Schreibschutz Spur 9: Schalter nach oben: nicht wirksam
Schalter nach unten: wirksam

5) Schreibsperre Taste, bei deren Betätigung allgemein eine Schreibsperre besteht
(Entsprechend Netzeinschalten). Schreibschutz kann durch Taste am Laufwerk

aufgehoben werden.

Adreßliste für den Wechselplatten-Controller WPCE 621

Befehl Adresse Datenwort LD ST

4 Worte Lesen "189 beliebig x x
KS-Basisadresse niederwertig "1861 "ßß...’FF x x
" " höherwertig '1802 "A. x x

Zylinderadresse "1803 'Bß...'CB x
Kopfauswahl, Select "1804 YYBopaaax x
Sektor-Basisadresse '1865 'B8...'2B x
Sektoranzahl "1896 '90...'0B x

YY: Angabe der Geräteeinheit: ’ß = Gerät |
"MB = Gerät 2 .

A = ht *"80 2 Gerät 3" 07
'CO = Gerät 4

X: Kopfauswahl: x = l: oberer Kopf
X = 0: unterer Kopf

Sektor-Basisadresse: B = 11; 8 = Sektor 1
11 5 Sektor 12

Sektoranzahl: 21, 1212

Zylinderadresse (Spur): A = 203 maximal

Statuswort (Rechner): '1807 x x

- 111-

READY Bit 9
READ Bit 1
WRITE Bit 2
LOCK Bit 3
RESTORE Bit 7

Statuswort (Platte): '1808 nur LD

Schreibsperre: Bit 9

Fehler beim Schreiben
(Spannungseinbruch): Bit 1

Sektorzahl zu hoch Bit 2

Suche nicht beendet
(setzt READY) Bit 3

Platte nicht bereit Bit 4

Zu große Spuradresse Bit 5

Übertragungsfehler (Parity oder
CRC) Bit 6

"LD" bzw. "ST" bedeutet:

LD: Load z.B. LDA; Daten von Controller an Rechner

ST: Store z.B. STA; Daten von Rechner an Controller

Die Adresse '180X ist nicht niveaugebunden, d.h. sie läßt sich von jeder Ebene aus
ansprechen. Die Rückmeldung des Controllers (IRM) erfolgt jedoch auf eine festgelegte
Ebene.

- 112 -

FESTKOPF-PLATTENSPEICHER

Sehr schnellen Zugriff und sichere Funktion auch unter schlechten Umgebungsbedingungen
bietet der Festkopf-Magnetplattenspeicher. |

Magnetplattenspeicher mit einer festen Platte und festen Schreib-/Lese-Köpfen für jede
Spur.

Plattendrehzahl:

Transferrate:

Schreibschutz:

Kapazität:

Zugriffszeit:

Zahl der Spuren:

Zahl der Sektoren pro Spur:

Kapazität pro Sektor:

Stromversorgung:

Netzanschluß:

Leistungsaufnahme:

Umgebungstemperatur:

Größe:

Anschluß:

Controller:

Größe:

Stromversorgung:

Netzanschluß:

Leistungsaufnahme:

3000 Upm

2 MHz entsprechend 220 Kbyte/s

Für jeweils 16 Spuren gemeinsam einschaltbar

256 Kbyte oder 1024 Kbyte

im Mittel 10 ms

64 oder 256

8

512 Byte

Zusätzlicher Einschub 19" (4 Einheiten hoch)

220 V +10 % 50 Hz
ca. 500 VA

0...50°C

19"-Einschub (7 Einheiten hoch)
(11 Einheiten mit Stromversorgung)

Über Controller FPCE 621 direkt an dem UNIVERSAL-
BUS. Datentransfer im direkten Speicherzugriff (DMA).
Pro Controller lassen sich bis zu 4 Plattenspeicher be-
treiben.

19"-Einschub (3 Höheneinheiten)

eingebaut

220 V +10 % 50 Hz

ca. 100 VA

Eingebaute Auto-Load- Bei Tastendruck oder Netzausfall wird automatisch ein
Funktion: Sektor der Platte gelesen und der Rechner gestartet.

Auf einer Steckkarte befindet sich von vorn zugänglich
ein Schalter, mit dem sich die Auto-Load-Funktion für
Testzwecke ausschalten läßt.
Schalterknebel zeigt nach oben: Keine Auto-Load-Funktion
Schalterknebel zeigt nach unten: Auto-Load-Funktion,

Adreßliste für Festkopfplatten-Controller

Gesamtadresse: "98x

Sektor-Basisadresse und Einheitenauswahl: x = ß

Sektor-Basisadresse: Bit 9. .3

Einheitenauswahl: Bit 4...5

Spur adresse: x=l

Sektoranzahl: x=2 Bir... A

KS-Basisadresse 1.Teil (niederwertige Bits): x =

2

3

KS-Basisadresse 2.Teil (höherwertige Bits); x = 4

5Statusregister: x =

READY Bit Ö

READ Bir
WRITE Bit 2

LOCK Bit 3

Platte nicht bereit (oder zu hohe
Spuradresse): Bit 4

Schreibversuch in geschützte Zonen Bit 5

Datenfehler Bit 6

Daten zu spät an den K5 übergeben Bit 7

- 114 -

Geräte-Interfaces

Geräte-Interfaces dienen zum Anschluß von Ein- und Ausgabegeräten an den
DIETZ 621. Die Interfaces sind als Einkarten-Interfaces gebaut und werden in
einer Universal-Interface-Einheit oder im Rechnergehäuse (2 Steckplätze) betrieben
(siehe Kapitel "Universal-Interface-Einheit).

Der Datenverkehr zwischen Rechner und Peripherie-Gerät erfolgt fast ausschließlich
byteweise. Das Interface übernimmt bei einer Ausgabe dieses Byte. vom Rechner und
speichert es für die Dauer der Ausgabe bzw. übernimmt bei einer Eingabe die Daten
in einen Speicher und stellt sie für eine schnelle Übernahme in den Rechner bereit.

Die Steuerung des Interfaces erfolgt durch ein vom Rechner her setz- und abfragbares
Statusregister. Typische Signale eines Statusregisters sind (siehe auch. Kapitel "Univer-
sal-Interface-Einheit"):

- READY ist die Fertigmeldung des Interfaces an den Rechner. Es erzeugt
einen Interrupt, der auf dem Device-Selector programmiert wird. Der
Interrupt kann durch das LOCK-Flip-Flop verhindert werden.

- IBUSY steuert die Eingabe von Daten. Aktiviert ist das Interface, wenn
IBUSY eingeschaltet und READY noch nicht gesetzt ist. Ist die Eingabe
erfolgt, wird READY eingeschaltet, und das Interface ist nicht mehr akti-
viert.

- OBUSY steuert die Ausgabe von Daten. Sinngemäß ist die Wirkung wie
die von IBUSY.

- LOCK verhindert, daß durch READY ein Interrupt erzeugt wird. Der
Rechner kann durch Abfragen des Statusregisters feststellen, ob die
Eingabe oder die Ausgabe erfolgt ist.

Für die Geräte-Interfaces sind die Adressen ’1P@X...’15FX vorgesehen.

x=9 Ansprechen des Datenregisters
x =] Ansprechen des Statusregisters

Folgende Geräte-Interfaces sind erhältlich:

- V24-Interface für Geräteanschluß (1V24/TTY)
8-Kanal-E/A-Schnittstelle
110...1200 Bd (fest eingestellt), 10 oder 11 Schritte/Zeichen
mit zusätzlichem Steuerausgang, Schnittstelle nach V24
(für Standard-Teletype, Mosaikdrucker, Datensichtgerät usw.)

- 115 -

Aufbau Statusregister: Bit £
Bit 1
Bit 2
Bit 3
Bit 4

- Linienstrom-Interface (ILS/TTY)

READY
IBUSY
OBUSY
LOCK
Initiate (steuert Leser des Teletype)

5- oder 8-Kanal-E/A-Schnittstelle (fest eingestellt)
50...200 Bd (einstellbar), 11 Schritte/Zeichen (8-Kanal),
7.5 Schritte/Zeichen (5-Kanal)
Halbduplex-Betrieb, Linienstrom 20...40 mA
(für 5- ond 8-Kanal-Fernschreiber mit Linienstrom)

Aufbau Statusregister: Bit Q
Bit 1

Bit 2

Bit 3

READY
IBUSY
OBUSY
LOCK

- Streifenleser-/Locher-Interface (ILE/LO)
8-Kanal-E/A-Schnittstelle (kombiniert)
für 8 (5)-Kanal-Lochstreifenleser, 125 Z/s, 300 Z/s
und 8-Kanal-Lochstreifenstanzer, 75 Z/s

Aufbau Statusregister: Bit Q
Bit]

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

- Kartenleser-Interface (IKLE)
12-Kanal-Schnittstelle

Datenregister I (Kanäle 1...8)
Datenregister 2 (Kanäle 9...12)

READY
IBUSY
OBUSY
LOCK
VOR (1 = Leser vorwärts, 0 = Leser rückwärts)
Parity-Fehler (Leser)
Error (Locher) Streifen gerissen oder zu
straff gespannt
kein Lochstreifenvorrat mehr

_
[

ı
A

- 116 -

Aufbau Statusregister: Bit Q READY
Bit 1 IBUSY

Bit 3 LOCK
Bit 4 Fehler
Bit 5 Eingabeschacht leer
Bit 6 Einziehfehler

- Ketten-Schnelldrucker-Interface (IMDS)
gepuffertes 8-bit-Interface

Aufbau Statusregister: Bit 9 READY
Bit 2 OBUSY

Bit 3 LOCK

- 117 -

Standard-Peripherals

MOSAIKDRUCKER-TERMINAL

Druckgeschwindigkeit: 50 Zeichen/s

Zeilenlänge: 80 Zeichen

Anzahl der Zeichen: 64 (ASCII)

Zeichendichte: 10 Zeichen/Zoll

Zeichenart: Punktmatrix 8 x 9

Papiergröße: Variabel bis 244,5 mm

Tastenfeld: Alphanumerisch (ECMA-23C)
(wie Teletype)

Sonderfunktion: Seitensteuerung

Schnittstellen: - V24-Schnittstelle, 110...9600 Baud
- Parallel-Schnittstelle

Abmessungen: Höhe: 170 mm
Breite: 510 mm
Tiefe: 310 mm

Gewicht: 20 kg

Netzanschluß: 220 V +10 % 50 Hz

Leistungsbedarf: ca. 100 VA

- 118 -

Mosaikdrucker-Terminal

- 119 -

BILDSCHIRM-TERMINAL

Bildschirmgröße

Bildschirmkapazität

Eingabetastatur

Schnittstelle

Netzanschluß

Abmessungen

Betriebsarten:

Optionen:

BTH 2000

12" Fernseh-Monitor

1998 Zeichen
27 Zeilen zu je 74 Zeichen

ASCII-Code mit Sonderzeichen

V24, 1200...9600 Baud

220 V 50 Hz 350 W

560 mm Tiefe, 470 mm Breite, 318 mm Höhe

On-line/Off-line mit eigenem Speicher

Foreground/Background
Vom Computer kommende Zeichen werden dunkelgrün,
über die Tastatur eingegebene Zeichen hellgrün ange-
zeigt.

Tabulator zum Listen, Formular- und Tabellenaufbau

Adressierbarer Cursor
Direkte Adressierung beliebiger Bildschirmpunkte
durch den Computer

Horizontales Rolling-System
Einfügen von Zeichen oder Leerstellen ohne Neu-
schreiben der Restzeile. Die vorhandenen Zeichen
werden automatisch nach rechts oder in die nächste
Zeile transportiert.

Vertikale Zeilenverschiebung
Einfügung von Zeilen ohne Neuschreiben der anderen.
Die bestehenden Zeilen werden automatisch nach
unten geschoben. Beim Löschen tritt der umgekehrte
Vorgang ein.

Anschluß eines zweiten Bildschirms an dieselbe Tasta-

fur

TV-Zusatz zum Anschluß eines normalen Fernseh-

Monitors

Hardcopy-Druckeinheit mit Thermodruckwerk,
30 Zeichen/s

Magnetband-Kassetteneinheit

- 120 -

-
Ie
l

-

Datensichtgerät mit Hardcopy-Druckeinheit und Magnetbandkassetteneinheit

BILDSCHIRM-TERMINAL BTH 1000

Bildschirmgröße: 12" diagonal (Anzeigefeld 9" x 5")

Bildschirmkapazität: 960 Zeichen
12 Zeilen zu je 80 Zeichen

Eingabetastatur: | ASCII-Code mit Sonderzeichen

Schnittstelle: V24, 1200...9600 Baud

Netzanschluß: 220 V 50 Hz 350 W

Abmessungen: Tiefe 560 mm

Breite 470 mm
Höhe 318 mm.

- 122 -

MOSAIK-SCHNELLDRUCKER

Geschwindigkeit: 200 Zeilen/min

“Anzahl der Kolonnen: 132

Anzahl der Zeichen: 64 Standard-Zeichen (USASCII)

Zeichendichte: 10 Zeicher/Zoll

Zeichenart: Punktmatrix 5 x 7

Papierarten: Typ Endlospapier gefaltet, mit perforierten Kanten
Breite 4 bis 14 7/8 Zoll, Anzahl der Kopien max. 6

Formularsteuerung: Standard-8-Kanal-Lochstreifen

Schnittstelle: | TTL-Level

Abmessungen: Breite 71,1 cm
Tiefe 58,4 cm

Höhe 27,9 cm

Gewicht: 68 kg

Netzanschluß: 220 V +10 % 50 Hz

Leistungsaufnahme: max. 800 W

- 123 -

LOCHSTREIFENLESER

Geschwindigkeit: 125 Zeichen/s / 300 Zeichen/s

Schrittmotor-Antrieb für Vorwärts/Rückwärts-Lesen

Optische Lochstreifenabtastung

1" Lochstreifen, 5 bis 8 Kanäle

mit Spuleinrichtung

19"-Einbaurahmen (5 / 7 Höheneinheiten)

Netzanschluß: 220 V, +10 %, 50 Hz, 110 / 135 W

LOCHSTREIFENSTANZER

Geschwindigkeit: 75 Zeichen/s

Schrittmotor-Antrieb für Vorschub

1" Lochstreifen, 0.08...0.11 mm Streifendicke

Streifenarten: Papier, ISO-Norm, ca. 300 m Streifenlänge (120.000 Zeichen)

mit Aufwickelvorrichtung und automatischer Streifenvorratskontrolle

19"-Einbaurahmen (6 Höheneinheiten)

Netzanschluß: 220 V, +10 %, 50 Hz, 100 W, max. 200 W

- 124 -

KETTEN-SCHNELLDRUCKER

Druckgeschwindigkeit 300 Zeilen/min

Schreibbreite 132 Zeichen pro Zeile

Schnittstelle TTL-Level

Abmessungen 960 mm Höhe, 800 mm Breite, 600 mm Tiefe

Netzanschluß 220 V, +10 %, 50 Hz, 5 A

- 125 -

LOCHKARTEN-STAPELLESER

Lesegeschwindigkeit 400 Karten/min

Lochkarten 80-spaltige Standard-Lochkarten

Leseprinzip fotoelektrische Abtastung

Stapelkapazität je 500 Karten

Abmessungen 318 mm hoch, 318 mm tief, 585 mm breit

Netzanschluß 220 V, +10 %, 50 Hz, 400 VA

- 126 -

8-KANAL-FERNSCHREIBER

als Ein/Ausgabe-Gerät mit

Optionen:

Tastatur und Druckwerk für 64 Zeichen

Geschwindigkeit 10 Zeichen/s, 110 Baud

Schreibbreite 72 Zeichen/Zeile

eingebautem Lochstreifenleser/stanzer für 1" Standard-Lochstreifen

Leser-Einzelschritt-Betrieb |

V24-Schnittstelle

zusätzlicher Funktionstaste für Rechnerstart

Netzauschluß 220 V, 50 Hz, ca. 280 VA
bei Anlauf kurzzeitig 500 VA

Abmessungen 560 x 840 x 470 mm

Wartung alle 750 Stunden, spätestens jedoch alle 6 Monate
(eingebauter Betriebsstundenzähler).

automatische Motor-Ein/Ausschaltung

Stachelradwalze für 8 1/2" randperforierte Endlos-Formulare

geräuschgedämpftes Tischgehäuse

- 127 -

8-Kanal-Fernschreiber in geräuschgedämpftem Tischgehäuse

- 128 -

Graphische Ausgabe

An den DIETZ 621 können Inkrementalplotter, XY-Schreiber oder Speicheroszillo-
graphen angeschlossen werden. Für diese Gerüte sind Programmoduln erhältlich, die
folgende Funktionen realisieren:

HOME
PLOT (X,Y,Z)

SYMB (h, s)

HOME bewirkt, daß die Ausgangsstellung (Koordinaten-Nullpunkt) eingenommen bzw.
der Speicherbildschirm gelöscht wird.

PLOT läßt den Schreibstift bzw. den Strahl vom jeweiligen Ausgangspunkt zum Ziel-
punkt mit den Koordinaten (X, Y) wandern. Ist Z gleich £, so geschieht dies nicht-
schreibend; ist Z gleich 1, so wird zwischen Ausgangs- und Zielpunkt linear interpo-
liert und geschrieben:

 y e Zielpunkt

Ausgangspunkt

SYMB ist ein Befehl zur graphischen Ausgabe von alphanumerischem Text (große Buch-
staben, Ziffern, einige Sonderzeichen). Der Parameter h gibt die Schrifthöhe an, der
Parameter s den Schriftzug in Form eines Textstrings oder einer String-Variablen. Der
Schriftzug beginnt am jeweiligen Ausgangspunkt und verläuft parallel zur X-Achse.

Für den Anschluß der Geräte stehen folgende Interfaces zur Verfügung:

- Analog-XY-Interface (lAXY)
mit 2 Analogausgängen 0...]1 V R; = 700 Ohm
mit 2 10-bit-Digital-Analog-Umsetzern und 2 Kaskadenregistern
mit Steuerung für Z-Koordinaten
(für XY-Schreiber und graphische Displays)

- Digital-Plotter-Interface (IPLOT)
mit Impulsausgängen für XY-Koordinaten und Federsteuerung

(für Digital-Plotter).

- 129 -

DIGITAL-PLOTTER

Digital-Inkremental-Plotter

Geschwindigkeit 300 Schritte/s

Schrittgröße 0.1 oder 0.25 mm

Papierformat DIN A4
DIN A3, 2-gefaltetes Endlospapier
DIN A2, 2-gefaltetes Endlospapier

| - 130 - -

ALPHANUMERISCH-GRAPHISCHES DATENSICHTGERÄT

Bildschirmgröße 11" Speicherröhre

Alphanumerische Darstellung 35 Zeilen mit je 72 Zeichen
63 ASCIi-Zeichen
5 x 7 Segment-Darstellung
Cursor-Adressierung

Graphische Darstellung Vektor-Betriebsart
1024 (10 bit) adressierbare Punkte

mit Tastatur und Standfuß

Schnittstelle V24, 1200 Baud

Netzanschluß 220 V, 50 Hz

Option Hardcopy-Einheit

- 131 -

Magnetband-Systeme

Als Massenspeicher zur Archivierung großer Datenmengen steht für den DIETZ 621
eine Reihe von Magnetbandeinheiten verschiedener Geschwindigkeiten, Bitdichten und
Spulengrößen zur Verfügung.

LAUFWERKE

- MBE 7840 - 9-Spur-Magnetbandlaufwerk

Schreibdichte: 800 cpi

Bandgeschwindigkeit: 12,5...25 ips

Spulendurchmesser: 7" (7200" Bandlänge)

Betriebsart: Read after Write

Aufzeichnung: IBM-kompatibel

Baugröße: 19"-Einschub (5 Einheiten hoch)

Stromversorgung: eingebaut

Netzanschluß: 220 V +10 % 50 Hz

Leistungsaufnahme: ca. 300 VA

Temperaturbereich: 0...50°C

MBE 7970 B/C - 9-Spur-Magnetbandlaufwerk

Schreibdichte: 800 cpi

Bandgeschwindigkeit: 12,5...25 ips

Spulendurchmesser: 10.5" (28800'" Bandlänge)

Betriebsart: Read after Write

Aufzeichnung: IBM-kompatibel

Baugröße: 19"-Einschub (14 Einheiten hoch)

Stromversorgung: eingebaut

Netzanschluß: 220 V +10 % 50 Hz

Leistungsaufnahme: ca. 400 VA

Temperaturbereich: 0...50°C

- 132 -

- MBE 7970 E - 9-Spur-Magnetbandlaufwerk

Schreibdichte:

Bandgeschwindigkeit:

Spulendurchme sser:

Betriebsart:

Aufzeichnung:

Baugröße:

Stromversorgung:

Leistungsaufnahme:

Temperaturbereich:

1600 cpi

12.5...25 ips

10.5" (28800" Bandlänge)

Read after Write

IBM-kompatibel

19"-Einschub (14 Einheiten hoch)

eingebaut

ca. 400 VA

0...50°C

Anschluß der Magnetbandlaufwerke über:

- Einkarten-Interface

eingebaut in UNIVERSAL-INTERFACE-EINHEIT

Datentransfer:

Betriebsarten:

Adressen:

Zahl der Laufwerke pro Interface:

Stromaufnahme:

- Controller

vom Programm gesteuert

Lesen, Schreiben, Rewind, Backspace und
Filemark-Schreiben

'102X...105xX

1...4

+5 V ca. 600 mA

zum direkten Anschluß an den UNIVERSAL-BUS

Datentransfer:

Betriebsarten:

Adressen:

Zahl der Laufwerke pro Controller:

Baugröße:

Netzanschluß:

Leistungsaufnahme:

im direkten Speicherzugriff (DMA)

Lesen, Schreiben, schneller Vorlauf, schneller
Rücklauf, Schreiben File-Mark, Backspace

192X...185X
1...4

19"-Einschub (3 Einheiten hoch)

220 V +10 % 50 Hz
ca. 100 VA

- 133 -

Auf einer Karte des Controllers sind von vorn zwei Schalter zugänglich, die für
Testzwecke eingebaut sind:

Oberer Schalter:

Unterer Schalter:

Schalthebel nach oben: Inkrementieren des

Adreßzählers verhindert

Schalthebel nach unten: Inkrementieren des

Adreßzählers zugelassen

Schalthebel nach oben: Inkrementieren des

Blocklängenzählers verhindert

Schalthebel nach unten: Inkrementieren des
Blecklängenzählers zugelassen

Das Band-System beschreibt das Band kompatibel zu den Bändern der Serie 360 von
IBM.

Folgende Befehle sind möglich:

Lesen vom Band

Schreiben auf das Band

Zurückspulen bis zum Anfang (Rewind)
Zurücksetzen um einen Block (Backspace)
Schreiben einer Filemark
Schneller Vorlauf (nur bei Verwendung eines Controllers)

SYSTEM MIT EINKARTEN-INTERFACE

Der Aufruf des Band-Systems erfolgt durch einen Unterprogramm-Sprung in einer belie-
bigen Ebene. Die Parameter werden in folgenden Registern übergeben:

Akku = Betriebsart

Reg 3, 4
Reg 5, 6
Reg 7
Reg 8, 9
Reg '@A, '£B

= Lesen, = Schreiben
2 = Rewind, 3 = Backspace
4 = Filemark-Schreiben
KS-Adresse
Blocklänge bzw. Blockzahl bei Backspace
frei

Rückkehradresse im CSA-Aufruf
Rückkehradresse im Fehlerfall

- 134 -

Ein erkannter Fehler wird im Akku ® übergeben.

Fehler-Nr.

v
O
o
O
N
O
C
G
I
P
B
R
O
D

—
-

Y
_

a
n
o

Fehlerart

nicht On-Line
nicht Ready
Parity-Fehler
File Mark gelesen
Blocklänge zu klein
Blocklänge zu groß
Begin of Tape (BOT)
Band leer
KS-Adresse € ’ 4000
Länge < 16 Byte
End of Tape (EOT)

- 135 -

SYSTEM MIT CONTROLLER

Der Aufruf des Systems erfolgt durch einen Unterprogrammsprung in einer beliebigen Ebene.

KS-Bereich: relativ

Länge: ca.IK

Aufruf: CSA, ’3E, TOS;

Parameter: Reg ® ...'6

<®>= Unit (9...3)

benutzte Register: ® ... 17

Programmbetehl Einsprung KS-Basis-Adr Länge Anzahl
READ "Xo08 Reg 3, 4 Reg 5,6 -
WRITE 'X02 Reg 3, 4 Reg 5,6 -
WRITE FILEMARK ’XD84 - - -
REWIND ’xX006 - - -
BACKSPACE 'x008 - - Reg 3, 4
FORWARD "XBBA - - Reg 3, 4 1)
BACKSPACE to FILEMARK ’X008 - - <3,4>= iD
FORWARD to FILEMARK ’X0QA - - <3,4>=ß

) Nach Ausführung steht Kopf vor der File Mark

2 Nach Ausführung steht Kopf hinter der File Mark

Ein erkannter Fehler wird im Akku ® übergeben.

Fehler-Nr. Fehlerart

1 nicht On-Line
2 nicht Ready

93 -_-

4 Begin of Tape
5 Parity
6 angegebene Blocklänge zu klein
7 Schreibversuch trotz Schreibsperre
8 keine Betriebsart erkannt

Fehler-Nr. Warnung

9 angegebene Blocklänge zu groß
10 Filemark gelesen
13 End of Tape

>13 Fehler + End of Tape

Benutzte Register: ’69...’6%.

- 136 -

Digitale Ein- und Ausgänge

VORBEMERKUNG

Alle digitalen Ein- und Ausgänge sind als EINKARTEN-Interfaces gebaut, die in eine
Universal-Interface -Einheit eingesteckt werden.

Grundsätzlich gibt es alle Ein- und Ausgänge in folgenden Versionen:

TTL-Schnittstelle
HTL-Schnittstelle
HTL-Schnittstelle potentialgetrennt über Fotokoppler
Reed-Relais-Schnittstelle (potentialgetrennt)

Nur bei den digitalen Ausgängen sind TTL- und HTL-Schnittstelle identisch.

Die TTL-Schnittstelle wird verwendet, wenn schnelle Elektronik (in TTL) bedient wird
und keine Störungen von außen in das System gelangen.

Die HTL-Schnittstelle dient zum Anschluß an Logik mit höherem Signalpegel (12...30 V)
und ist unempfindlich gegen statische und dynamische Störungen.

Potentialtrennung wird immer dann verwendet, wenn Erdschleifen nicht mit Sicherheit
vermieden werden können oder wenn Gefahr besteht, daß andere Störungen durch die
Peripherie in das System gelangen können.

Bei schnellen Signalen verwendet man eine Potentialtrennung durch Fotokoppler, bei
langsamen Signalen eine durch Reed-Relais.

Die Versorgung der potentialgetrennten Elektronik erfolgt durch Zusatzstromversorgungen
in der UIE oder durch externe Stromversorgungen.

Bei allen Ein- und Ausgängen sind Log.1 2 0 V und Log. ? externe Spannung oder
Log.1 ° geschlossener Kontakt und Log.® 7 geöffneter Kontakt.

- 137 -

STATISCHE EINGÄNGE

Je 16 Eingänge sind auf einem Baustein zusammengefaßt. Jeder Eingang besteht aus
einem Eingangsverstärker und einem Schalter, der das jeweilige Eingangssignal auf
den Datenkanal des Universal-BUS durchschaltet.

Jeweils 8 Eingänge werden mit einer Adresse gleichzeitig durchgeschaltet.

Beispiel: Statischer digitaler Eingang mit Reed-Relais.

Bit O

.o

Bit 15

|
|

|

I>o-

x ...

O0

+

Uaxt

| I
T
T
I

T
E
T
T

I

e— Interface — Prozeß —

Adressen der statischen Eingänge: 3X...’ 33FX

x
x

Durchschalten der Eingänge 1 bis 8
2 u " " 9 bis 16m

A

Folgende Bausteine sind verfügbar:

16-bit-Digitaleingang statisch/TTL (PSSE 16/5)

Prozeß-Interface zur statischen Abfrage von 16 digitalen Eingangssignalen
TTL-Schnittstelle (5 V)

16-bit-Digitaleingang statisch/HTL (PSSE 16/12.60)

Prozeß-Interface zur statischen Abfrage von 16 digitalen Eingangssignalen
HTL-Schnittstelle (12...60 V)

16-bit-Digitaleingang statisch/potentialfrei (PSSE 16/FK)
Prozeß-Interface zur statischen Abfrage von 16 digitalen Eingangssignalen
HTL-Schnittstelle (12...60 V)
mit Potentialtrennung über Fotokoppler

16-bit-Digitaleingang statisch/Relais (PSSE 16/R)
Prozeß-Interface zur statischen Abfrage von 16 digitalen Eingangssignalen
über Relais (212 V, 15 mA)
16 Spulenanschlüsse + 1 gemeinsame Rückleitung

32-bit-Digitaleingang statisch/TTL (PSSE 32/5)
Prozeß-Interface zur statischen Abfrage von 32 digitalen Eingangssignalen
TTL-Schnittstelle (5 V)

- 138 -

SPEICHERNDE AUSGÄNGE

Je 16 Ausgänge sind auf einem Einkarten-Interface zusammengefaßt. Jeder Ausgang
besteht aus einem Speicher (Flip-Flop) und dem jeweiligen Treiber.

Je 8 Ausgänge werden gleichzeitig vom Programm mit einer Adresse angesprochen.
Jeder Ausgang ist einem Datenbit zugeordnet. Bei Datenbit = I wird der Ausgang
gesetzt, bei Datenbit = @ rückgesetzt. Ein Abfragen der eingeschriebenen Informa-
tion ist nicht möglich.

Beispiel: Digitaler Ausgang mit Potentialtrennung über Fotokoppler.

Bit O

|
|
|

Bit 18

|
|
|

+15V Hlext

FK >.
Tr

un

|
|
|

»
L

|
 I

V

I;
Ä 4I

u— Interface ————eProzeß ———————

Adressen der digitalen Ausgänge: ’34PX...’37FX.

x
x

1 Ansprechen der Ausgänge 1... 8
=2 u " u 9...16

Folgende Bausteine sind verfügbar:

16-bit-Digitalausgang/TTL (PSSA 16)
Prozeß-Interface zur Speicherung und Ausgabe von 16 Ausgangssignalen
TTL-Schnittstelle (5...30 V, max. 80 mA)

16-bit-Digitalausgang/potentialfrei (PSSA 16 FK)
Prozeß-Interface zur Speicherung und Ausgabe von 16 Ausgangssignalen
TTL-Schnittstelle (5...30 V, max. 80 mA)
mit Potentialtrennung über Fotokoppler

16-bit-Digitalausgang/Relais (PSKA 16 R)
Prozeß-Interface zur Speicherung und Ausgabe von 16 Ausgangssignalen
16 Kontaktausgänge von Reed-Relais
1 Arbeitskontakt je bit mit gemeinsamer Rückleitung
max. 110 V 0.5 A 10 W bei ohmscher Last.

32-bit-Digitalausgang/TTL (PSSA 32)
Prozeß-Interface zur Speicherung und Ausgabe von 32 Ausgangssignalen

TTL-Schnittstelle (5...30 V, max. 80 mA)

- 139 -

DYNAMISCHE EINGÄNGE

Über dynamische Eingänge stellt der Computer fest, daß eine Zustandsänderung (Signal-
änderung) eingetreten ist. Solche Änderungen verlangen im allgemeinen eine möglichst
unverzögerte Reaktion des Rechners. Dies wird erreicht, indem bei einer Signalände-
rung ein Interrupt erzeugt wird. Man spricht deshalb auch von Interrupt-Eingängen.

Auf einem Baustein sind 8 dynamische Eingänge zusammengefaßt. Jeder Eingang besteht
aus einem differenzierten Eingang und einem Speicher. Die Speicher eines Bausteins
lösen im gesetzten Zustand den gleichen Interrupt aus (zu programmieren auf dem Device-
Selector). Die Speicher sind vom Programm her abfragbar und rücksetzbar (Rücksetzen
mit Datenbit = 1). Jedem Eingang ist ein Masken-Flip-Flop zugeordnet, das in ge-
setztem Zustand einen Interrupt zuläßt. Diese Maske ist vom Programm her setz- und
rücksetzbar.

Beispiel: Dynamischer Eingang.

verhindern _ Maskei

zulassen — a

Interrupt- Speicher i _—
.. | “ai uAuslösung h " 7 Interrupt-Engang i

rückstellen]

Adressen der dynamischen Eingänge: ’380X... 38FX

x al Abfragen der Interrupt-Speicher
x =1 Rücksetzen der Interrupt-Speicher (jeweiliges Datenbit = 1)

x=4 Setzen der Maske (Datenbit = 1A Zulassen Interrupt;
Datenbit = 9 2 Verhindern Interrupt).

Das Masken-Register ist nicht abfragbar.

Folgende Bausteine sind verfügbar:

- 8-bit-Digitaleingang dynamisch/TTL (PDSE 8/5)
Prozeß-Interface zur Speicherung und Abfrage von 8 digitalen Eingangs-
signalen
mit Differenziereingang, 8-bit-Speicher und Interrupt-Auslösung
(verriegelbar)
TTL-Schnittstelle (5 V)

- 140 -

8-bit dynamischer Digitaleingang (PDSE/FK)

- 141 -

8-bit-Digitaleingang dynamisch/HTL (PDSE/12.60)
Prozeß-Interface zur Speicherung und Abfrage von 8 digitalen Eingangs-
signalen
mit Differenziereingang, 8-bit-Speicher und Interrupt-Auslösung
(verriegelbar)
HTL-Schnittstelle (12...60 V)

8-bit-Digitaleingang dynamisch/potentialfrei (PDSE/FK)
Prozeß-Interface zur Speicherung und Abfrage von 8 digitalen Eingangs-
signalen
mit Differenziereingang, 8-bit-Speicher und Interrupt-Auslösung
(verriegelbar)
HTL-Schnittstelle (12...60 V)
mit Potentialtrennung über Fotokoppler

8-bit-Digitaleingang dynamisch/Relais (PDSE/R)
Prozeß-Interface zur Speicherung und Abfrage von 8 digitalen Eingangs-
signalen über Relais (2 12 V, 15 mA) mit Differenziereingang, 8-bit-
Speicher und Interrupt-Auslösung
(verriegelbar)

16-bit-Digitaleingang dynamisch/TTL (PDSE 16/5)
Prozeß-Interface zur Speicherung und Abfrage von 16 digitalen Eingang-
signalen
mit Differenziereingang, 16-bit-Speicher und Interrupt-Auslösung
(verriegelbar)
TTL-Schnittstelle (5 V)

- 142 -

ZÄHLER

Der Zähler dient zum Zählen schneller Impulse. Die Impulse werden in einen
16-bit-Zähler eingezählt. Vom Rechner ist der Stand des Zählers abfragbar und
rücksetzbar. Bei einem Überlauf wird ein Carry-Flip-Flop gesetzt, das einen Interrupt
auslöst, es sei denn, dies ist durch das Setzen eines ARM-Flip-Flops verhindert. Sind
also mehr als 65536 Impulse zu zählen, so müssen die Interrupt-Signale vom Programm
gezählt werden.

Es stehen 3 Eingangsschaltungen zur Verfügung:

TTL-Eingang Zählfrequenz 20 MHz
HTL-Eingang " I MHz
HTL-Eingang potentialfrei " 30 kHz

Adressen der Zähler: ’39@X ..."39FX

Abfragen Zähler niederwertiges Byte
Abfragen Zähler höherweertiges Byte
Setzen Zähler niederwertiges Byte
Setzen Zähler höherwertiges Byte
Setzen Statusregister

Abfragen Statusregister

Il

x
X
X
X
X
X
X

n
n

B
P
E
€
D
—
-
n
N
n
-
—

Il

Aufbau des Statusregisters:

Carry (Interrupt)IBit &
Bit I = IBUSY (Aktivieren Zähler)
Bit 2=f
Bit 3 = ARM

Folgende Bausteine sind erhältlich:

- 16-bit-Zähler (PIZE 16/5)
zum Zählen von Eingangsimpulsen
max. Zählfrequenz 20 MHz
steuer-, abfrag- und setzbar
TTL-Schnittstelle (5 V)

- 16-bit-Zähler (PIZE 16/15)
zum Zählen von Eingangsimpulsen
max. Zählfrequenz 1 MHz

steuver-, abfrag- und setzbar
HTL-Schnittstelle (15 V)

- 143 -

- 16-bit-Zähler (PIZE 16/15 FK)
zum Zählen von Eingangsimpulsen
max. Zählfrequenz 30 kHz
stever-, abfrag- und setzbar
HTL-Schnittestelle (potentialfrei).

- 144 -

STEUERZÄHLER

Der Steuerzähler dient zur Ausgabe von Signalen definierter Dauer. Hierzu wird ein
16-bit-Zähler vom Rechner gesetzt und von einem eingebauten Quarzoszillator weiter-
gezählt, bis der Zähler auf & steht. Von einem Start durch den Rechner bis zum Er-
reichen des Zustands ß steht am Ausgang des Steuerzählers ein Signal an. Bei Erreichen
der £ wird ein Interrupt an den Rechner ausgelöst, es sei denn, dies ist durch Setzen
eines ARM-Flip-Flops verhindert.

Der Oszillator kann mit einem 10 MHz (Auflösung 100 ns) oder einem 1 MHz (Auflö-
sung | us) bestückt werden. Der Baustein ist mit einem TTL-Ausgang und einem poten-
tialgetrennten HTL-Ausgang lieferbar.

Die Zahl der Impulse, die die Dauer des Ausgangssignals bestimmen, müssen als Zweier-
Komplement eingeschrieben werden.

Adressen des Steuerzählers: ”390X...’39FX.

B
A
N
D
D
D

Setzen Zähler niederwertiges Byte
Setzen Zähler höherwertiges Byte
Abfragen Zähler niederwertiges Byte
Abfragen Zähler höherwertiges Byte
Setzen Statusregister
Abfragen Statusregisterx

x
X
X
X
X
X

N

Aufbau des Statusregisters:

Bit £ = Carry (Interrupt)
Bit 1=P
Bit 2 = OBUSY (Auslösung Zähler)
Bit 3 = ARM

Folgende Bausteine sind erhältlich:

- 16-bit-Steuerzähler (PISA 16)
zur Ausgabe eines Steuersignals definierter Dauer
mit 10 MHz- oder | MHz-Quarz, Auflösung 0.1 us oder 1 us
vom Programm setz- und steuerbar, auch als Zähler benutzbar
TTL-Schnittstelle (5...30 V)

- 16-bit-Steuerzähler (PISA 16/FK)
zur Ausgabe eines Steuersignals definierter Dauer
mit 10 MHz- oder | MHz-Quarz, Auflösung 0.1 us oder 1 us
vom Programm setz- und steuerbar, auch als Zähler benutzbar
HTL-Schnittstelle (5...30 V), potentialfrei

- 145 -

WATCHDOG

Für Zwecke der Selbstüberwachung eines Rechner-Systems dient der Watchdog-Ausgang.
Dieses Einkarten-Interface enthält eine Verzögerungsschaltung (1...60 sec einstellbar),
die regelmäßig vom Programm angestoßen werden muß. Unterbleibt dies länger als die
Verzögerungszeit, so wird der Watchdog-Ausgang wirksam, und ein äußerer Alarm kann
ausgelöst werden.

Mit einem Schalter auf dem Baustein kann der Watchdog-Ausgang für die Inbetriebnahme-
phase unwirksam gemacht werden.

Als Ausgang steht ein Relais-Kontakt (Öffner + Schließer) zur Verfügung.

Die Ansprechadresse der Watchdog ist "3FDX.

- Watchdog-Ausgang (PW DOG)
zum Überwachen von Prozeß-Systemen
Relais-Ausgang 2 A/500 V/100 W

- 146 -

Analoge Ein- und Ausgänge

VORBEMERKUNG

Die analogen Ein- und Ausgänge sind unterteilt in

- Einkarten-Interface: mittelschneller ADU
DAU-Spannungsausgang
DAI-Stromausgang
2fach-DAl-Stromversorgung

- Analog-Meßsysteme: mittelschnelles ADU-System
schnelles ADU-System
integrierendes ADU-System

ANALOGE EINGÄNGE

Zur Erfassung eines oder mehrerer Meßsignale muß das Gleichspannungssignal von
einem Analog-Digital-Umsetzer (ADU) in einen Digitalwert verwandelt werden, der
vom Rechner verarbeitet werden kann.

Abhängig von den Forderungen: Genauigkeit, Meßgeschwindigkeit und Störsicherheit
ist zu wählen zwischen:

- ADU (integrierend) mit hoher Auflösung, mit hoher Störunterdrückung
für Gleichtakt- und Gegentaktstörungen, aber mit geringer Meßgeschwin-
digkeit

- ADU (Stufenverschlüßlung) geringere Auflösung, hohe Meßgeschwindigkeit,
sehr geringe Unterdrückung von Gegentaktstörungen und beim Einkarten-
ADU auch sehr geringe Unterdrückung von Gleichtaktstörungen..

Beim integrierenden ADU wird das Meßsignal über die Zeit einer Periode der Netz-
frequenz (20 ms) integriert, so daß diese Frequenz, die meist die Hauptgegentakt-
störung darstellt, ausgefiltert wird. Gleichtaktstörungen werden durch einen potential-
freien Eingang unterdrückt. Zur Meßstellenumschaltung wird ein Relais-Multiplexer be-
nutzt.

Bei einem ADU, der nach dem Prinzip der Stufenverschlüßlung arbeitet, muß das Meß-
signal für die gesamte Dauer der Umsetzung anliegen. Beim ADU-System wird die Meß-
signalübernahmezeit auf ca. 1/8 der Umsetzzeit verkürzt, wenn ein "Sample and Hold"-
Verstärker eingebaut wird. Hochfrequente Störungen werden während der Übernahmezeit
durch einen Kondensator integriert. Niederfrequente Gegentaktstörungen werden nicht
unterdrückt. Die Auswirkung von Gleichtaktstörungen wird durch potentialfreie Eingänge

- 147 -

verringert (nicht beim Einkarten-ADU). Zur schnellen Meßstellenumschaltung wird ein
Halbleiter-Multiplexer benutzt. Das ADU-System kann mit einer DMA-Steuerung für
selbstgesteuerte Messungen im Cycle-Stealing-Betrieb ausgestattet werden. Mit dieser
Steuerung ist der ADU in der Lage, selbständig bis zu 256 aufeinanderfolgende Mes-
sungen durchzuführen. Dies ist in drei Arbeitsweisen möglich:

- Mehrkanal-Messung
Nach jeder Messung wird der Meßstellen-Adreß-Zähler inkrementiert

- Einkanal-Messung
Die gewünschte Anzahl von Messungen wird an einer Meßstelle durchgeführt.

- Zweikanal-Messung
Die gewünschte Anzahl von Messungen wird abwechselnd zwischen zwei
direkt benachbarten Meßstellen durchgeführt.

Folgende Analog-Eingänge sind verfügbar:

MITTELSCHNELLER EINKARTEN-AD-UMSETZER (ADE)

- Einkarten-Interface
Analogeingang 12 bit/+10 V, +5 V, +10 V (ADE 12.010/ADE 12.505/

u u ADE 12.1010)
Prozeß-Interface mit Analog-Digital-Umsetzer 12 bit
Konversionszeit ca. 27 us
Eingangsspannung +10 V, +5 V, +10 V, nicht potentialfrei
Eingangswiderstand 100 MOhm
max. Fehler +2 LSB

Adresse des ADE 12: "3APX...'3AFX

il Datendurchschaltung niederwertige Bits
Datendurchschaltung höherwertige Bits
Statusregister laden und abfragenx

x
x

I

B
D

I

Bitzuordnung der Daten:

höherwertig niederwertig

Bit 7654321 | 7654

Null BevERBPp PRpp
Endwet I1I1I1I17119I ıı1ıı

MSB LSB

Aufbau des Statusregisters:

Bit $ Ready
"1 IBUSY
"3 LOCK

- 148 -

Analog-Eingang ADE 12.010

- 149 -

EINKARTEN-RELAIS-MULTIPLEXER (MURE 16)

- Einkarten-Interface

16 Eingänge, dreipolig
HG-Reedrelais

Schaltfrequenz 200 Hz„ax

- 150 -

MITTELSCHNELLES ANALOG-MESSYSTEM ADM 62]

Auflösung:

Konversionszeit:

Eingangswiderstand:

Meßbereich:

max. Fehler:

Potentialtrennung:

Betriebsarten:

Meßfrequenz:

Meßkanäle:

Sample-and-Hold:

Stromversorgung:

Größe:

Meßanschlüsse:

Netzanschluß:

12 bit (Stufenverschlüßler)

ca. 33 us

100 MOhm

0...t10 V 0 ...+t1 V (Option) zusätzl
-5...+.5 V (Option) -0.5...10.5 V (Option) 7 SB "
-10...+10 V (Option) -1 ...+l V (Option)
0...+5 V)Option) -2,5...+2,5 V (Option)

+2 LSB

zwischen Meßkreis und Logik durch Fotokoppler (Option)

programmgesteuert, oder

selbstgesteuert (Option):
für Messung mehrerer Meßwerte bzw. Meßkanäle und Ablage

der Digitalwerte im Kernspeicher (DMA)
vom Programm vorwählbar: Speicher-Basisadresse, Meßkanal-

Basisadresse, Blocklänge, Einkanal-Messung/inkrementierende

Mehrkanal-Messung/Zweikanal-Messung

ca. 30 kHz im selbstgesteuerten Betrieb mit MOS-FET-
Multiplexer
ca. 200 Hz mit Relais-Multiplexer

1. MOS-FET-Multiplexer (Option)
1...4 Bausteine mit 8 oder 16 Eingängen, einpolig
(max. 64 Kanäle)

2. Relais-Multiplexer (Option)
1...4 Bausteine mit 8 Eingängen, zweipolig
HG-Reedrelais
Die Anzahl der Eingänge ist durch den unten beschriebenen
Multiplexer-Einschub MU2 auf bis zu 244 Eingänge erwei-
terbar.

Option
Eingan gswiderstand 10° MOhm

eingebaut

19"-Einbaurahmen, offen (abgeschirmt), konvektionsbelüftet
Höhe 3 Einheiten (ca. 135 mm); Tiefe ca. 230 mm

über rückseitige Steckverbindungn

220 V +10 % 50 Hz ca. 70 VA

- 151 -

MULTIPLEXER MU2

Meßkanäle:

Relais:

Schaltfrequenz:

Stromversorgung:

Größe:

Meßanschlüsse:

Netzanschluß:

1...24 Bausteine mit 8 Eingängen
(max. 192 Eingänge)
zweipolig

HG-Reedrelais

max. 107 Schaltsignale

max. 200 Hz

eingebaut

19"-Einbaurahmen, konvektionsbelüftet
Höhe 3 Einheiten (ca. 135 mm); Tiefe ca. 420 mm

über rückseitige Steckverbindungen

220 Vv+10 % ca. 10 VA

- 152 -

SCHNELLES ANALOG-MESSYSTEM ADS 62]

Auflösung:

Konversionszeit:

Meßbereich:

Eingangswiderstand:

Potentialtrennung:

Betriebsart:

Meßfrequenz:

Meßkanäle:

Sampe-and-Hold:

Stromversorgung:

Größe:

Meßanschlüsse:

Netzanschluß:

10 bit (Stufenverschlüßler)
8 bit (")

ca. 4 us

0...+10 V
-5...+ 5 V (Option)

2.5 kOhm (ohne Sample-and-Hold)
max. Fehler 10 bit +3.5 LSB

8 bit +1.5 LSB

zwischen Meßkreis und Logik durch Fotokoppler (Option)

selbstgesteuert
für Messungen mehrerer Meßwerte bzw. Meßkanäle und Ablage
im Kernspeicher
vom Programm vorwählbar: Speicher-Basisadresse, Meßkanal-
Basisadresse, Blocklänge, Einkana/inkrementierende Mehrkanal-

Messung/Zweikanal-Messung

235 kHz (10 bit)
250 kHz (8 bit) im selbstgesteuerten Betrieb

MOS-FET-Multiplexer (Option)
1...4 Bausteine mit 8 Eingängen
(max. 32 Kanäle)

Option
Eingangswiderstand 10° MOhm

eingebaut

19"-Einbaurahmen, offen (abgeschirmt), konvektionsbelüftet
Höhe 3 Einheiten (ca. 135 mm), Tiefe ca. 250 mm

über rückseitige Steckverbindungen

220 V +10 % 50 Hz, ca. 70 VA

- 153 -

Adressen von ADM 621 und ADS 621: "3F@X, ’3F2X...’3F9X

Beim ADM 621 ohne Selbststeuerung:

<
<

I
l

I
H

N
m
y

w
@
r
_
N
— Datendurchschaltung niederwertige Bits

Datendurchschaltung höherwertige Bits
Meßstellenadrese im ADM-Einschub
Statusregister
Meßstellenadresse im MU2-Einschub

Beim ADM 621 und beim ADS 621 mit Selbststeuerung:

x
x
X
X
X
X

Il
Il

|

o
T
o
n

—
-
ı
Q Meßstellenadresse im AD-Einschub

Kernspeicher-Basisadresse niederwertige Bits
Kernspeicher-Basisadresse höherwertige B-its
Blocklängenzähler
Statusregister
Meßstellenadrese im MU2-Einschub

Die Bitzuordnung der Daten und der Aufbau des Statusregisters beim ADM ohne
Selbststeuerung entsprechen der Festlegung, wie sie oben beim ADE aufgezeigt wurde.
Beim ADM mit Selbststeuerung und beim ADS ist das Statusregister wie folgt aufgebaut:

Bit ß READY
1 IBUSY
3 LOCK
4 Externe Starterzeugung
5 Mehrkanal-Messung
6 Zweikanal-Messung

Bit 5 =, Bit 6 = : Einkanal-Messung

Die Bitzuordnung der Multiplexer-Kanäle:

1) Im AD-Einschub:

Bit
54321g@

BerRpRRgR MU Kan.]
gegagpı MU Kan.2

Il ıııı MU Kan.64

- 154 -

2) Im MU2-Einschub:

Bt 76543219

BRABBRRDR MU Kan.O
PRBRRPPN MU Kan.

ıgııı111 MU Kan.191

Der Ausgangs-Code von ADE, ADM und ADS:

Digitalausgang
ADU-Bit MB 2345 6 7 81910 11 LSB

Rechner-Bit ID7 .6.5.4.3.2.1.21.7.6.5 .4

Unipolar (Binär)

Endwert II131311111119I

halber Endwert 100000000000

kleinste digitale Einheit 000000000001

Null 000000000000

Bipolar (Offset Binär)

positiver Endwert IIıT11ı111111119

1/2 positive kleinste digitale Einheit 100000000000

1/2 negative kleinste digitale Einheit OI1I1ı11111111I

negativer Endwert 000000000000

- 155 -

Analog-Meßsystem ADS 621

- 156 -

INTEGRIERENDES MESSYSTEM ADI/200 - ADA 203
ADI/210 - ADA 213

CONTRA. nars

LOCAL REMOTE W/SEL KAANGAL “

mm EW

Typ: ADI/200 ADI/210
ADAY203 ADAY/213

Auflösung: 19.999 119.999

Dual-Ramp-Integrierendes Verfahren

Meßbereiche: 10 mV= bis 1000 V= |
nur bei

100 mV= bis 1000 V=

IV» bis 1000 |
bei100 mVbis 1000 v- I

1 kOhm bis 10 MOhm | ADAY203 | Ohm bis 10 MOhm APY23

Mefßfolge: 10 Messungen/s 10 (25/100) Messungen/s

Meßkanäle: Relais-Multiplexer, 3- bis 8-polig
bis 100 Kanäle pro Einschub
(max. 1000 Kanäle)

Rechneranschluß: über zwei Einkarten-Interfaces (Einbau in UIE)

Betriebsart: programmgesteuert

Größe: 19"-Einbaurahmen
ADU: 2 Höheneinheiten
je Multiplexer-Einschub: 4 Höheneinheiten

Netzanschluß: 220 V+10 % 50 Hz

- 157 -

Adresse des ADI: ’3F1X

| Meßergebnis

Statusregister
Steuerregisterx

x
X
X
x
X
X
X
x
X

n
a
N

v
r
w
o
D
p
_
n
—

Bitzuordnung des Meßergebnisses:

Signal Adresse Bit

Haupt Einer

1001 rarı ı I
2
4 2
8 3

101 4
2 5
4] &
8 7

1021 2.19
2 2
4 2 2
8 2 3

1091 2 4
2 2 5
4 2 6
8 2 7

1091 3 ß
2 3
4 3 2
8 3 3

1001 3 4
Polarity 3 7

Bitzuordnung des Statusregisters:

Statusregister | Adresse | Bit | Bemerkung

READY ı "3F14 1 % | Rückmeldung DVM startet Niv.
IBUSY I ’3F14 | 1 | startet das DVM

ARM I zF14 | 3 | Startverriegelung
RATE Commands | "3F14 | 4 | Meßfolge

log I5 1

- 158 -

Bitzuordnung der Steuerregister:

Steuerregister Adresse Bit Bemerkung

Range CodeI "3F15 d
Range Code 2 1 Meßbereichsvorwahl
Range Code 4 2
Data is changed 3 Meßbereich wurde geändert
Slow/Fast 4 langsam/schnell
Remote 5 Fernbedienung

Mode-Commands - b Art der Messung (=, »» , Ohm)

Codierung der Meßbereiche:

ı__Range-Code___|
Meßbereich 4 _l2 _|_ L_

Ä (Bir 2 1 Bir 11 Bit 0,
1000 V= 1000 V= 10 MOhm 19 Ä o Io ı
100 v- 100 V= 1 Mom 0,0 11 |
10 Vv= 10V 100 kOhm 0,110 |

I V= 1 V- 10 kOhm OT
100 mV= 100 mV» 1 kOhm 170,0 |
IOmv= - - 1011 [|

Codierung der Meßfolge:

Meßfolge IBit 5 | Bit 4

10/sec ıı 13
25/sec ıIo|1Iı
100/sec | ı 10

Codierung der Art der Messung:

Art der Messung |Bit 7| Bit 6

DC I 1 [71
AC | 0 | 1
Ohm ı 110

- 159 -

Das Ansprechen und die Adressierung des Relais-Multiplexers erfolgen wie bei digitalen
Ausgängen (Adressen: ’349X ...37FX).

Bitzuordnung der Meßstellen:

Meßstelle | Adresse | Bit
3-stellig, BCD, Ä

a3,01100
0 2 11

10 4 | | 2

| 3
I | Ä 4

8 | 301,7

2 2 | 1
0 4 | | 1a

8 | 3, u2[|3
|
|

Meßstelle , 102 | 10° + 100
| |

| BP ı BP
USW. |

- 160 -

ANALOGE AUSGÄNGE

Zur Ausgabe von Analogwerten durch den Rechner ist eine Umwandlung von Digital-
werten in einem Digital-Analog-Umsetzer (DAU) erforderlich. Der Analogwert kann
als Spannungswert oder als Stromwert ausgegeben werden. Es sind daher drei Typen
von Analogausgängen verfügbar:

- Analogausgang 10 bit/10V (DAU 1010)
Prozeß-Interface mit 10-bit-Register, Digital-Analog-Umsetzer und
Verstärker
Ausgangsspannung 0...10 V, niederohmig

- Analogausgang 10 bit/20 mA (D Al 1020)
Prozeß-Interface mit 10-bit-Register, Digital-Analog-Umsetzer und
Verstärker
Ausgangsstrom 0...20 mA, max. Bürde 400 Ohm

- Analogausgang zweimal 8 bit/20 mA (2-DAI-820)
Prozeß-Interface mit 2Systemen, je ein 8-bit-Register mit Digital-
Analog-Umsetzer und Verstärker
Ausgangsstrom 0...20 mA, max. Bürde 400 Ohm

Adressen des DAU und des DAl: ’3B@X.. .”3BFX

x =] Daten niederwertige Bits, beim 2-ADI-820 Daten des Systems|
X=2 Daten höherwertige Bits nach Ausgabe des Analogwertes, beim

2-ADI-820 Daten des Systems 2

Die niederwertigen Bits sind kaskadiert und werden gleichzeitig mit den höherwerti-
gen Bits gewandelt.

Bitzuprdnung der Daten:

höherwertig niederwertig

76543219 |76

z.B. Endwert ITııı11911)11

MSB LSB

- 161 -

Datenfernübertragung

Bei der Datenübertragung von einem Computer zu einem anderen verwendet man bei
größeren Entfernungen Telefonleitungen. Allerdings ist das nur mit Modems (Modulator/
Demodulator) möglich (bei galvanisch durchverbundener Leitung bis max. 30 km auch
Gleichstromübertragungselemente, z.B. GDN).

Auf der Gerüteseite sind diese Einrichtungen mit der genormten Schnittstelle V24

ausgerüstet.

Die erhältlichen Datenübertragungs-Interfaces bedienen folgende V24-Signale:

El Schutzerde Stift-Nr. 1
E2 Betriebserde 7
D1 Sendedaten 2
D2 Empfangsdaten 3
S] Übertragungsleitung anschalten 20
52 Sendeteil einschalten
53 Empfangsteil ausschalten 18
54 Hohe Übertragungsgeschwindigkeit 23

einschalten
MI Betriebsbereitschaft 6
M2 Sendebereitschaft 5
M3 Ankommender Ruf 22
M5 Empfangssignalpegel 8
T2 Sendeschrittakt 15
T4 Empfangsschrittakt 17

Die Datenübertragung erfolgt seriell entweder asynchron oder synchron.

Bei der asynchronen Übertragung besteht jedes Zeichen aus

1 Startschritt

8 Datenschritten

I oder 2 Stopschritten

d.h. die Synchronisation erfolgt erneut bei jedem Zeichen. Dieses Verfahren ist nur
bei Übertragungseinrichtungen möglich, die frequenztransparent sind, d.h. nicht genau
auf eine Frequenz abgestimmt sind. Dies trifft auf Modems bis 1200 bit/s und auf
Gleichstromübertragungseinrichtungen zu.

Bei der synchronen Übertragung wird durch eine Synchronisierphase die Synchronität von
Sender und Empfänger hergestellt. Jedes Zeichen besteht aus 8 Datenbits. Eine Nach-
synchronisation erfolgt bei Bitwechseln und durch eingefügte Synchronisierzeichen.

Bei der synchronen Datenübertragung wird der Übertragungstakt entweder vom jeweiligen
Sender (Eigentakt) oder vom Modem erzeugt (Modemtakt).

- 162 -

Es stehen für die Datenübertragung folgende Interfaces zur Verfügung:

- DÜ-Interface Asynchron (IV24/DAS)
8-Kanal-E/A-Schnittstelle nach V24
für asynchronen Betrieb
110...9600 Bd (fest eingestellt), 10 oder 11 Schritte/Zeichen
(für asynchrone Datenübertragung)

- DÜ-Interface Synchron (1V24/DSM)
8-Kanal-E/A-Schnittstelle nach V24
für bitsynchronen Betrieb
600...9600 Bd (fest eingestellt)
(für synchrone Datenübertragung mit Synchronisation durch Modem)

- DÜ-Interface Synchron E (IV24/DSE)
8-Kanal-E/A-Schnittstelle nach V24
für bitsynchronen Betrieb
600...9600 Bd (fest eingestellt)
(für synchrone Datenübertragung mit Eigen-Synchronisation)

Bei der Datenübertragung unterscheidet man zwei Prinzipien:

- Der eine Rechner ist übergeordnet und ruft den untergeordneten Rechner
mit einer Sendeaufforderung (Polling) oder einer Empfangsaufforderung
(Selecting).

- Die Rechner sind gleichberechtigt. Der jeweils aktive Rechner baut die
Übertragung auf (Contention).

Das Polling-Selecting-Prinzip ermöglicht auch einen Party-Line-Betrieb, d.h. an einer
Leitung befinden sich mehrere untergeordnete Rechner, die vom Master adressiert werden.

Für den DIETZ 621 bestehen Programme, die mit Hilfe der o.g. Interfaces die bei
IBM und Siemens gebräuchlichen Prozeduren sowohl für asynchrone als auch für synchrone
Datenübertragung im Polling-Selecting- und im Contention-Prinzip bedienen können. Für
Polling-Selecting-Betrieb bestehen auch Programme, mit denen der DIETZ 621 unter-
geordnete Rechner auch im Party-Line-Betrieb bedient.

- 183 -

Programmier- Hinweise

VORBEMERKUNG

Dieser Abschnitt enthält einige Hinweise für die Programmierung des DIETZ 62]
die sich aus der Multiprogramming-Struktur und der Art der Peripherie-Schaltungen
ergeben und beachtet werden sollten.

PROGRAMM-ANFANG

Jedes Programm sollte mit der Instruktion

ECL

beginnen; damit wird der Ebenenwechsel freigegeben.

Bei Rechnern mit Netzausfallschutz ist eine weitere Maßnahme vorzusehen. Sobald das
Netz wiederkehrt, werden alle Flip-Flop-Schaltungen nullgesetzt. Das N-Register je-
doch wird auf die Adresse ’4A0V gesetzt, das ist das erste Byte im ersten Kernspeicher.
Dort ist eine Anfangsroutine vorzusehen, die aus folgenden Elementen besteht:

- DCL-Befehl (Befehlsbyte auf ’4999)

- Laden der Programmstand-Speicherregister
den erwünschten Anfangsadressen

1)aller benutzten Ebenen mit

- Indirekter Sprung über das Programmstand-Speicherregister

Wird irgendeine Ebene gestartet, entweder bei Wiederkehr des Netzes automatisch die
Ebene 9 (wenn Netzausfallschutz so beschaltet) oder von außen bzw. durch die Rech-
ner-Uhr irgendeine andere Programmebene, so läuft dieses Programm in der jeweiligen
Ebene richtig und springt dann auf die Anfangsadresse des Programms der gestarteten
Ebene. Dort muß (und dies ist je Ebene vorzusehen) entweder sofort oder nach wei-
teren, vom Benutzer zu bestimmenden Instruktionen der Befehl ECL stehen, um den
DISABLE-Zustand wieder aufzuheben und Multiprogrammierung zu ermöglichen.

" Register-Adressen AQ/P1 der einzelnen Ebenen

- 14 -

Beispiel für eine Anfangsroutine:

ANF: DCL & Unterbrechung verhindern
2=*LDC, ,‚’4049 .
2=#STA ,@ ,gogg für Ebene 9

2=%*LDC ‚(a ‚’408ß } n oo]

2=%STA ,@® ‚’ppig
2=%*LDA ‚(a ‚STAF b von g
2=% STA ‚(a ‚'POrg

PX, , ‚28 Sprung zum Anfang

ANF liegt auf Adresse ’4PP%. Die Startadressen der Ebenen Ö bzw. 1 werden auf
feste Werte (’4Q4Q bzw. ’408P) gesetzt, während für Ebene F der Inhalt des Spei-
cherplatzes STAF (+ folgender) als Startadresse maßgebend ist. Für die Lage der Pro-
grammstandspeicher im Pool ist angenommen, daß jede Ebene 16 byte als Register-
plätze hat; daraus ergeben sich die absoluten Adressen ’AApd, ’AAId bzw. ’ARFR
für die Ebenen ß, 1 bzw. F.

RECHNER-UHR

Die Zentraleinheit des DIETZ 621 kann eine Rechner-Uhr (real-time-clock) 'erhal-
ten. Sie besteht aus einer Untersetzerschaltung, die vom quarzgesteuerten Taktgene-
rator des Rechners betrieben wird und in Abständen von wahlweise I, 10, 100 oder
1000 ms den Start einer Ebene bewirkt. Taktabstand und die CNP-Ebene werden
durch Beschaltung in der Zentraleinheit festgelegt.

Die Uhr kann vom Programm her blockiert und freigegeben werden, indem man die
BUS-Adresse ’3FFF mit 9 oder einer rechtsbündigen 1 belegt:

ER Tr ! Uhr AUS (unwirksam)

LDC 1‚(@ r .
STA ‚@ ‚'3FFF Uhr EIN (wirksam)

Durch die Taste RS und durch die Nullstellung bei Netzwiederkehr wird die Uhr in
den AUS-Zustand gebracht.

Da auch Netzausfallschutz, Speicher-Parity und BUS-Kontrolle auf die CNP-Ebene
wirken, ist der Uhr-Start zu identifizieren. Dies geschieht durch einen GL-Befehl,
der in der CNP-Ebene abläuft, bei Uhr-Start Bit 7 = 1 ins Arbeitsregister überträgt
und den Uhr-Start selbsttätig zurückstellt:

GL,
BOC,(& ‚,'8@, CLCK

Es wird nach CLCK verzweigt, wenn es sich um einen Uhr-Start handelte.

- 165 -

PROZESS-EIN/AUSGABEN

Für die Prozeßperipherie des DIETZ 62] d.h. alle Ein/Ausgabeschaltungen, die
sich nicht auf Geräte, wie z.B. Fernschreiber, Leser, Locher usw. beziehen, sind z.B.
die BUS-Adressen ’20@%...’3FFF vorgesehen, also 8192 verschiedene Adressen. (Bei
eingebauter Uhr ist die letzte dieser Adressen - ’3FFF - für diese reserviert).

Der Datentransfer zwischen CPU und Prozeßperipherie geschieht in der gleichen Wei-
se wie der zwischen CPU und Kernspeicher, d.h. über den Universal-BUS und die
BUS-bezogenen Befehle.

Beispiele: LDA, (® ,’2@0ß Eingabe ’2@@Q nach (@

EXT3: Q „'2F78 Eingabe von EXT (= ’2F78)
LDA,REG7 , "EXT3,1IXR + IXR nach REG?

6=%STA, (@ ,„’3@F Ausgabe (Q) (+ 5 folgende Bytes)
nach ’3BPF (+ 5 folgende
Adressen)

Je Adresse können Daten von | byte Länge ausgetauscht werden; Ein- und Ausgabe

sind in Verbindung mit der gleichen Adresse möglich, wenn im Interfacedie entspre-
chenden BUS-Anschlüsse berücksichtigt werden. Außer dem Befehl LD... können auch
die Befehle AD..., SB..., OR..., AN... und EO... verwendet werden, wenn dies
zweckmäßig erscheint. Als Adressierungsarten kommen ...A (absolut) und ...X (indi-
rekt) in Betracht; im letzteren Falle ist ein 2-byte-Indexregister (gerade Basisadresse)
zu wählen, in dem die externe Adresse steht.

GERÄTE-PERIPHERIE

Die Geräteperipherie des DIETZ 621 hat den BUS-Adreßbereich ’1QB...’IFFF.
Dabei ist zu beachten, daß bei den meisten Gerätetypen mehr als ein Flip-Flop-
Register von Byte-Lünge im Interface enthalten und dementsprechend mehrere Adres-
sen vorgesehen sind.

Jedem Gerät ist eine aus zwei Hexa-Ziffern bestehende Gerätenummer gg zugeordnet,
jedem Interface-Register eine weitere Hexa-Ziffer f. Aus diesen baut sich die BUS-
Adresse auf:

"Iggf = BUS-Adresse Register f für Gerät gg

Damit können maximal256 Geräte mit je 16 Interface-Registern von Byte-Länge ange-
sprochen werden. Jedes Interface und damit jedes Gerät kann, wenn entsprechend
beschaltet, einer bestimmten Programmebene zugeordnet werden. Dadurch vervielfacht
sich die Zahl der möglichen Geräte, denn in diesem Falle wird - bei gleicher

- 166 -

Geräte-Nummer - immer jeweils das Interface angesprochen, welches der jeweiligen
Programmebene zugeordnet ist.

Typische Interface-Schaltungen wie die für den 8-Kanal-Fernschreiber (Teletype ASR
33) und für den schnellen Streifenleser und -locher haben jeweils 2 Interface-Regi-
ster von Byte-Länge mit den Adressen:

’Iggp = Datenregister
"Iggl = Statusregister

Das Datenregister bewirkt den byte-weisen Datenaustausch zwischen Periphergerät und
Universal-BUS.

Das Statusregister steuert die Ein/Ausgabe und hat folgende Einzelfunktionen (Beispiel
für Teletype):

Il READY
IBUSY
OBUSY
LOCK

= INITIATE
..7 = (nicht benutzt)

Bit

N
Il

H

2
1

2

3
A

5

IBUSY bzw. OBUSY leitet den Ein- bzw. Ausgabevorgang ein (wenn gleichzeitig
READY ausgeschaltet ist). Ist der Ein- bzw. Ausgabevorgang beendet, z.B. ein
Zeichen ausgedruckt, schaltet sich READY selbsttätig ein; es bewirkt einen Start der
zugehörigen Programmebene, wenn nicht LOCK gesetzt ist. INITIATE hat eine be-
sondere Funktion: Es löst z.B. bei Lesen den Transport des Streifens aus und muß da-
her beim angebauten langsamen Leser des Teletype (angebauter Leser) zugleich
mit IBUSY vom Programm eingeschaltet werden.

Zur Ein/Ausgabe über die Geräteperipherie werden im Normalfalle die Makrobefehle
der LIBRARY ausreichen. Jedoch kann der Benutzer anhand der folgenden Beispiele
Ein/Ausgaben auch in Einzelschritten programmieren.

Ein/Ausgabe im Multiprogramming:

Diese auf die Struktur des DIETZ 621 zugeschnittene Betriebsart beruht darauf, daß
nach Anstoß des Ein- oder Ausgabevorgangs die jeweilige Programmebene ausgeschal-
tet wird, um anderen Ebenen Gelegenheit zur Benutzung der Recheneinheit zu geben.
Mit Ende des Vorgangs wird die auslösende Ebene wieder gestartet, und das Programm
läuft weiter.

- 17 - _

Ausgabe:

Eingabe:

Zunächst wird ein Register XOS mit dem Bitmuster Pad giga (= ’@4)
geladen, um bei jeder folgenden Ausgabe das Statusregister im Inter-
face richtig zu bedienen (OBUSY ein, alle anderen aus):

LDC,XOS, ’@4

Je Ausgabevorgang ist dann zu programmieren (gg = Geräte-Nummer):

STA,DAT ‚ggf (Datenregister laden)
STA,XOS, ’Iggl (Statusregister laden)
HLT

Der erste Befehl lädt das Datenregister des Interfaces mit dem im Register
DAT stehenden Byte, der zweite stößt die Ausgabe an. Dann folgt ein
Halt. Mit Ende des Ausgabezyklus’ wird die Ebene wieder gestartet, und
das Programm läuft weiter.

Zunächst wird ein Register XIS mit dem Bitmuster PPRP Aple (= ’92)
geladen, entsprechend dem Statusregister-Inhalt bzw. den folgenden
Eingabebefehlen (IBUSY ein, alle anderen aus):

LDC,X15,'92

Dies gilt z.B. für gie Tastatur des Teletype) Für dessen Leser

(angebauter Leser)”’ ist stattdessen das Bitmuster AOB1 Aaıg (= ’12)
vorzusehen (zusätzlich INITIATE ein):

LDC,XIS,’12

Dann folgt je Eingabevorgang (gg = Geräte-Nummer):

STA,IXS ‚’Iggl (Statusregister laden)

HLT
LDA,DAT, ’Igg® (Datenregister holen)

Der erste Befehl löst den Eingabevorgang aus; dann folgt ein Halt. Mit
Ende des Eingabezyklus’ wird die Ebene wieder gestartet, und der dritte
Befehl transferiert den Inhalt des Datenregisters, d.h. das gelesene Byte,
ins Register DAT.

N Makrobefehle K... der LIBRARY

2) Makrobefehle R... der LIBRARY

- 168 -

Abschluß: Nach einer Folge von Ein- oder Ausgaben, in jedem Falle jedoch vor
einem gewünschten Programm-Halt, muß das READY-Bit im benutzten
Interface rückgesetzt werden, da sonst der Halt durch den infolge von
READY dauernd anstehenden Programmstart überlaufen wird. Dies ge-
schieht z.B. durch die Befehlsfolge (gg = Geräte-Nummer):

LDC,@ ‚A
STA,(@ ‚’Iggl (Nullstellen Statusregister)

Bemerkung: Während der oben beschriebenen Ein/Ausgaben darf der Rechner nicht im
DISABLE-Zustand sein, da der Programm-Halt (HLT) nicht wirksam
würde. Statt LD... können bei der Eingabe auch andere BUS-bezogene
Befehle benutzt werden (mit dann anderer Funktion); statt absoluter kann
indirekte Adressierung verwendet werden, ebenfalls Indizierung über ein
Indexregister, sofern nur die effektive BUS-Adresse gleich der vom Sta-
tus- oder Datenregister ist.

Ein/Ausgabe mit Warteschleifen:

Diese Betriebsart ist insbesondere dann von Nutzen, wenn ein Geräte-Interface, dessen

Daten- und Statusregister keiner Ebene fest zugeordnet sind, von einer beliebigen Pro-
grammebene aus bedient werden soll.

Hierbei ist zunächst das LOCK-Bit des Statusregisters jedesmal zu setzen, um einen
Start der Programmebene, auf die das READY-Flip-Flop des Interfaces im Normalfall
auch bei den übrigen nicht ebenen-gebundenen Geräten wirkt, zu verhindern. Das
bedeutet ein anderes Bitmuster beim Vorbereiten der Register XOS bzw. XIS:

LDC,XOS,’PC (Ausgabe)
oder LDC,XIS ‚’@A (Eingabe ohne INITIATE)
oder LDC,XIS ‚,’IA (Eingabe mit INITIATE)

Im übrigen ist die Programmierung für Ein- und Ausgabe gleich denen für Multipro-
gramming-Betrieb, jedoch werden die Halt-Befehle (HLT) ersetzt durch die Befehls-
folge (gg = Geräte-Nummer);

LOOP: LDA ,@ ‚’Iggl (Laden Statusregister)
BNOC,(& ,'ßl ‚LOOP (Rückverzweigen bis READY ge-

setzt)

die so lange als Abfrageschleife läuft, bis mit READY der Vorgang beendet ist. Im
Prinzip hat diese Betriebsart den gleichen Ablauf wie die Multiprogramming-Ein/
Ausgabe; jedoch ist der Rechner währenddessen für alle Programmebenen mit niedri-
gerer Priorität gesperrt.

- 169 -

KONSOL-PERIPHERIE

Ein 8-Kanal-Fernschreiber (Teletype ASR 33) mit eingebautem Streifenleser und
-locher sowie ggfs. ie ein schneller Streifenleser und -locher bilden die Standard-
Peripherie eines DIETZ 621 sie werden als Konsol-Peripheriegeräte bezeichnet.
Die Interfaces hierfür haben folgende Spezifikationen:

Fernschreiber: Geräte-Nummer: ’

BUS-Adresse Datenregister: ’ 190%
BUS-Adresse Statusregister: ’1@1

Druckwerk: Ausgabe programmieren

Locher: Ausgabe programmieren; Locher vorher manuell
einschalten (Druckwerk läuft mit) 1)

Tastatur: Eingabe programmieren ohne INITIATE,,
Leser: Eingabe programmieren mit INITIATE

Schnelle Locch- Geräte-Nummer: 9
streifengeräte: BUS-Adresse Datenregister: ’1919

BUS-Adresse Statusregister: ’1@11

Locher; Ausgabe programmieren "
Leser: Eingabe programmieren mit INITIATE)

Die Interface-Register der Konsol-Peripherie sind nicht ebenen-gebunden; das bedeu-
tet, daß sie von allen Programmebenen aus bedient werden können (und im übrigen,
daß die Geräte-Nummern ’B% und ’P1 an kein anderes Gerät gleich welcher Ebene
vergeben werden dürfen). Der durch READY bewirkte Start (bei Ende Ein/Ausgabevor-
gang) startet jedoch stets Ebene f.

Die Interfaces hierzu befinden sich auf Platz 1 (Teletype) und 2 (Locher/Leser) in der
Zentraleinheit. Sie können auf Wunsch durch Einkarten-Interfaces für andere periphere
Schnittstellen ersetzt werden. Auf Wunsch kann der durch READY des Interfaces 2
(Geräte-Nr. ’P1) ausgelöste Start auf eine andere Ebene gelegt werden. Im übrigen
bleiben die obengenannten Adreßvereinbarungen usw. bestehen.

ı) bzw. Makrobefehle K... der LIBRARY

2) bzw. Makrobefehle R... der LIBRARY

- 170 -

ASSEMBLER

VORBEMERKUNG

Der Assembler MINCASS 600 ist ein Programm zur Übersetzung von symbolischen

Programmen in die Maschinensprache des Computers DIETZ 621. Er steht dem
Benutzer in Form eines Lochstreifens zur Verfügung; nach Einlesen des Lochstrei-
fens in den Kernspeicher (ab Adresse ABQP) und Betätigen der Taste ST (Start) an
der Rechner-Konsole ist das System zur Programmumwandlung bereit.

Es sind drei Assembler-Versionen verfügbar, die sich durch zusätzliche Funktionen
voneinander unterscheiden:

Assembler MINCASS 600
für Systeme ab 4 kbyte Kernspeicher und Teletype

Editor-Assembler MINCASS 600 E
für Systeme ab 8 kbyte Kernspeicher mit Teletype
(schnelle Lochstreifenausrüstung empfohlen)

Makro-Assembler MINCASS 600 M
für Systeme ab 16 kbyte Kernspeicher mit Teletype und
schneller Lochstreifenausrüstung

Funktionen, die nur vom Makro-Assembler MINCASS 600 M ausgeführt werden, sind
im folgenden mit (M) gekennzeichnet; mit (E) solche Funktionen, die zum MINCASS
600 E und MINCASS 600 M gehören.

Der Assembler benutzt die ersten 256 Bytes (Adresse0...’AAFF) des RAMs.

- 171 -

PROGRAMMAUFBAU

Ein symbolisches Programm besteht aus einer Folge von Anweisungen (Statements). Es
gibt verschiedene Typen von Anweisungen:

Steueranweisungen

Wertzuweisungen

Belegungsanweisungen
Maschinen-Instruktionen
Makro-Instruktionen
Kommentare

Anweisungen werden in der Reihenfolge geschrieben, wie sie im Programm nacheinan-
der benötigt werden; der Assembler übersetzt das Programm in gleicher Reihenfolge in
Maschinensprache. Zur Niederschrift benutze man die MINCAL 600 Programm-Form-
blätter.

Jede Anweisung besteht aus einer Folge von Buchstaben, Ziffern und Symbolen, wobei
- soweit nicht im einzelnen eingeschränkt - alle 64 druckbaren Zeichen des ASCII-
(ISO-7-) Codes zulässig sind. Leerschritte (Space) werden im allgemeinen vom Assem-
bleüberlesen. Steuerzeichen, wie z.B. Wagenrücklauf (CR) und Zeilenwechsel (LF)
werden ebenfalls überlesen. Anweisungen werden voneinander durch Semikolon (;) ge-
trennt und vom Assembler fortlaufend numeriert (0000...9999).

Innerhalb der Anweisungen sind die Zeichen zu Worten zusammengefaßt, welche die
notwendigen Einzelangaben darstellen. Die Worte werden durch Trennzeichen sepa-
riert. Der generelle Aufbau einer Anweisung ist wie folgt:

LABEL NUMBER INSTR SPEC OPERAND SUPPL

d Marke} :dAnzahl 23X Befehl),£Spezifikation),{Operand),{ Ergänzung};

Im Einzelfalle, insbesondere auch je Anweisungstyp, können bestimmte Worte ent-
fallen; die Kommentar-Anweisung besteht nur aus Text, eingeleitet durch einen
Schrägstrich (/). Die Worte einer Anweisung haben folgende Bedeutung:

Marke: Hier ist ein Name einzutragen, wenn an anderer Stelle im Programm
auf die Anweisung Bezug genommen wird. Als Trennzeichen steht
hinter der Marke ein Doppelpunkt (:).

Anzahl: Hier ist eine Dezimalzahl z (2...256) einzutragen, wenn Variablen-
oder Konstanten-Strings von mehr als 1 Byte Länge vereinbart werden,
oder wenn Mehrfachausführung (DO-Befehl) vorgesehen ist. Im letzte-
ren Falle ist ggfs. auch eines der Zeichen >, < oder = hinter z
notwendig. Statt der Zahl z kann ein Name stehen, dem vorher ein

Wort zugewiesen wurde, oder auch eine Hexa-Zahl (wobei für z = 256
ein Name mit Nullwert bzw. die Hexa-Zahl ’@® stehen muß. Als
Trennzeichen steht (*) oder (&) hinter der Anzahl.

- 172 -

S31lON

Z
T

1
3
3
H
S

S
SS
I
N
I
W
W
O
I
0
3

E
I
S

0
8

€
?

Iz
Bl

g
el

O
N
n
v
y
3
d
o

!h
3
3
4
5

||
a
ı
s
n
ı

y
a
g
n
n
N

3
W
N
V
Y
N

s
z
7
/
%
/
5

3
1
v
o

c
N
O
R
A

N
A
N
3
E
A
F
I
L
O
T
G

W
V
M
9
0
4
d

N
O0

J

w
a
OOIYI

°TVONIW

- 173 -

Befehl:

Spezifikation:

Operand:

Ergänzung:

Jede Anweisung muß einen "Befehl" enthalten, der sie kennzeichnet.
Er besteht für Steuer- und Belegungsanweisungen sowie für Wertzu-
weisungen aus einem Buchstaben, für Maschinen- und Makro-Instruk-
tionen aus einem Buchstaben, gefolgt von 1 bis 3 weiteren Buchstaben
oder Ziffern. Es sind nur solche Befehle zulässig, die in der Befehls-
liste des Assemblers vermerkt oder vom Benutzer als Makrobefehle de-
finiert sind (s. später). Als Trennzeichen steht dahinter ein Komma (,).

Enthält notwendige Zusatzangaben. Bei Maschinen-Instruktionen sind
dies die gestarteten Ebenen oder das Arbeitsregister; in jedem Falle
können Namen, Hexa-Zahlen oder das Akkumulator-Symbol @ verwen-
det werden. Als Trennzeichen steht dahinter ein Komma ((,).

Enthält bei Maschinen-Instruktionen die Operanden-Adresse oder eine
Konstante. Je nach Bedarf können Namen, Dezimalzahlen, Hexa-
Zahlen, Text-Zeichen oder das Symbol @ verwendet werden.
Als Trennzeichen steht dahinter ein Komma(,).

Enthält bei bedingten Sprungbefehlen die Sprungadresse (Name), bei
BUS-bezogenen Befehlen das Indexregister (Name, Hexa-Zahl, ®@).

Den Abschluß einer Anweisung bildet ein Semikolon (;). Es muß unmittelbar auf das
letzte Wort folgen. Wenn Marke oder Anzahl nicht vorgesehen ist, entfallen die zu-
gehörigen Trennzeichen; für hinter dem Befehl stehende Worte, die "leer" bleiben,
müssen Kommata als Trennzeichen vorgesehen werden, wenn danach noch ein "ausge-
fülltes" Wort folgt.

Nach der Anweisung kann ein Kommentar stehen. Er wird durch einen Schrägstrich (/)
- anstelle des Semikolons - eingeleitet und durch ein Semikolon (;) abgeschlossen.

- 174 -

WORTELEMENTE

Worte innerhalb von Anweisungen können aus folgenden Elementen bestehen:

Namen:

Dezimalzahlen:

Hexa-Zahlen:

Text-Zeichen:

Namen sind symbolische Ersatzbezeichnungen für Adressen, Festwerte
oder andere Angaben. Sie bestehen aus einem Buchstaben, dem bis
zu 3 weitere Buchstaben oder Ziffern folgen können.
Beispiele: A, AB, ABC, ABCD, X1, X999, HIT, OßS3P.
Jedem Namen muß im Programm ein bestimmter Wert zugewiesen wer-
den. Das geschieht durch Eintragen des betreffenden Namens als Make
in einer Anweisung, wodurch ihm die (Basis-) Adresse der .betreffenden
Instruktion oder Belegung zugeteilt oder - im Falle der Wertzuweisung
Q - ein bestimmter Wert zugewiesen wird. Ein Name darf in jedem
Programm nur einmal definiert sein.

Dezimalzahlen bestehen aus 1 bis 5 Ziffern, vor denen ein Minuszei-
chen stehen kann. Der Assembler erzeugt aus ihnen die entsprechende
binäre Ganzzahl bzw. deren Zweierkomplement.
Beispiele: I, 99, 255, 32767, -1, -128, -32768.

Hexa-Dezimalzahlen bestehen aus 2 oder 4 Hexa-Zeichen (Ziffern
0...9, Buchstaben A...F), vor denen ein Apostroph (’) steht. Je 2
Hexa-Zeichen faßt der Assembler zu einem Byte zusammen.
Beispiele: ’@@, ’F3, ’1A77.
Hexa-Strings bestehen aus 2, 4, 6, ... Hexa-Zeichen mit Apostroph
davor.
Achtung: Das Byte mit der niedrigsten Adresse steht ganz rechts!

Textzeichen oder -Strings bestehen aus einem oder mehreren druckbaren
ASCII-Zeichen; davor und danach muß ein Anführungszeichen (") ste-
hen. Der Assembler reserviert ein Byte je Zeichen. Leerschritte werden
in diesem Falle nicht überlesen, sondern als Byte berücksichtigt.
Beispiele: "1", "TEXT", "+12A ABC"

ZEICHENVORRAT

Es sind alle druckbaren ASCII-Zeichen mit folgenden Ausnahmen erlaubt:

Semikolon (;) nur für Anweisungs-Ende
Schrägstrich (/) nur für Kommentar-Anfang
Anführungszeichen (") nur für Text-Anfang und -Ende
Linkspfeil (-) bzw. Hochpfeil (#) machen davorliegendes Zeichen bzw. Anweisung un-
gültig
Doppelkreuz (}}) außer am Programmanfang verboten
Leerschritte (Ls) werden - außer in Text-Strings und Kommentaren - überlesen.

- 175 -

GÜLTIGE ANWEISUNGEN

Steueranweisungen

Stehen am Anfang und Ende eines Programms. Sie belegen keinen Speicherplatz.

Beginn Programm

O Ursprung Programm

Definiert die Adresse der nächstfolgenden speicherbelegenden Anweisung. Zu
Beginn jedes Programms sollte eine O-Anweisung stehen (sonst Beginn mit ’QQ99).

Spezifikation: 4-stellige Hexa-Zahl

Beispiel: O, ’4F12

Z Ende Programm

Schließt das symbolische Programm ab.

Wertzuweisung

Bewirkt Zuweisung eines Wertes zu einem Namen. Belegt keinen Speicherplatz.

Wertzuweisung

Weist einem Namen, der als Marke vor Q steht, den danach spezifizierten

Wert zu.

Marke: Vorgeschrieben (Name)

Anzahl: Angabe notwendig, wenn der Wert die Kapazität eines Bytes über-
schreitet. Es wird die Anzahl der benötigten Bytes angegeben (2...256).

Spezifikation: Dezimalzahl,
Hexa-Zahl,,
Text,

Name,

Name + Dezimalzahl, oder
Name + Hexa-Zahl,

Name + Name

Die Q-Definition kann im Programm grundsätzlich an beliebiger Stelle stehen. Ausnahme:
Wird der Name in einer weiteren Q-Anweisung oder als Name für eine Anzahl (DO-
Befehl) oder für den Akkumulator benutzt, so ist er an beliebiger Stelle vor seiner Be-
nutzung zu definieren. —

- 176 -

Beispiele: A
ZHI5
REGS3
ADR
TX1
TX2
NAMI:
XYß :

XxYDI:
AlB
SUM

“
v
o
.

.
.
.

N
N
M

“
x

.
-

=
-

n
b
}

N
D
R

%
%

P
P
P
P
D
P
P
P
P
P
O
D

=

Belegungsanweisungen

12

-32768

"F3
'QFA6
n A"

"ALPHABETÜTE"
NAM2
XYı+l

XYD+999
AB+'PF
xX1+X2

Belegen Speicherplätze mit Nullinhalt oder Festwerten. Die Anweisungen können mit
Namen als Marken versehen werden. Der Name bezieht sich dann auf die Speicher-
adresse bzw. auf die Basis-Adresse des Byte-Strings.

(M) Zur Definition von Gleitkommazahlen siehe Abschnitt STANDARD PACKS.

V Variable

Reserviert ein Byte bzw. einen Byte-String im Speicher. Nach dem Assemblie-
ren haben mit V reservierte Bytes Nullinhalt.

Anzahl: Angabe notwendig, wenn mehr als ein Byte reserviert werden soll.
Es wird die Länge des Byte-Strings angegeben (2...256).

Beispiele: V
2% V

256% V

D Dezimalzahl

Reserviert ein oder zwei Bytes im Speicher und belegt sie mit der Binärzahl,
die der angegebenen Dezimalzahl entspricht.

Anzahl: Angabe notwendig, wenn 2 Bytes belegt werden.

Spezifikation; positive oder negative dezimale Ganzzahl

Beispiele: D,

2xD,

2x*D,

2x*D,

A Adresse

1
255
-35
9999
-32768
32767

Reserviert ein oder zwei Bytes im Speicher und belegt sie mit einer Adresse.
Anzahl: Angabe, wenn 2

Beispiele:

ytes belegt werden. Spezifikation: Name

2% A,ADDR
,

- 177 -

H Hexa-Zahl

Reserviert ein Byte bzw. einen Byte-String im Speicher und belegt sie mit 2
Hexa-Zahlen je Byte.

Anzahl: Angabe notwendig, wenn mehr als ein Byte reserviert wird. Es wird
die Länge des Byte-Strings angegeben (2...256).

Spezifikation: 2- ...512-stellige Hexa-Zahl (Leerschritte und Zeilentrennung
werden überlesen).

Beispiele: H, ’FF

2%*H, ’92B3
4% H, 7'778899AA

T Text

Reserviert ein Byte bzw. einen Byte-String im Speicher und belegt sie mit
einem druckbaren ASCII-Zeichen je Byte.

Anzahl: Angabe notwendig, wenn mehr als ein Byte reserviert wird. Es wird
die Länge des Byte-Strings angegeben, die gleich der Zeichenzahl ist (2...256).

Spezifikation: 1] bis 256 druckbare Zeichen (einschließlich Leerschritt).

Beispiele: T, "zZ
94T, "+12u/u ABC"

Maschinen-Instruktionen

Die hierzu gehörenden Anweisungen beziehen sich auf die Maschinenbefehle des
DIETZ 621 (siehe dort). Der Maschinencode wird vom Assembler entsprechend der
Befehlsstruktur und in der Reihenfolge der Anweisungen erzeugt. Zur Mehrfach-Ausfüh-
rung einer Instruktion (DO-Befehl) ist in der Anweisung die Anzahl z (2...256) einzu-
tragen, gefolgt von der Angabe, welche Adresse inkrementiert wird, sowie von einem
Trennzeichen, das zugleich die Berücksichtigung des LINK-Bits angibt:

z& n-fache Ausführung
z>& " ‚, Operanden-Adresse wird inkrementiert}| LINK
z<& " ‚ Register-Adresse " wird nicht
ze " ‚ beide Adressen " berücksichtigt
z * it

z>% , Operanden-Adresse " LINK
Zz<% u ‚ Register-Adresse 5 wird

z=x* " ‚ beide Adressen “ berücksichtigt

- 178 -

Zu Beginn der Anweisung kann als Marke ein Name stehen. Ihm wird die Adresse
des Befehls-Bytes zugewiesen, bei Mehrfachausführung die Adresse des Befehlsbytes

des davorstehenden DO-Befehls.

Eine vollständige Anweisung sieht z.B. so aus:

MARK:2=XADA,REGI,ADR, IXRG

Folgende symbolische Befehle sind vorgesehen, geordnet nach Gruppen:

NOP Ebenso: HLT, ECL, DCL
Steuerbefehle
Keine weiteren Angaben.

SEL Ebenso: HSL

Steuerbefehle mit Start einer Programmebene.

Spezifikation: Nummer der gestarteten Programmebene.

Beispiele: SEL ,’@B
HSL,LEV3

GS5 Ebenso: GL

Abfrage Konsolschalter bzw. laufende Programmebene.

Spezifikation: Arbeitsregister.

Beispiele: G5 ,@
GL,’lA

GL ‚REG?

SRO Ebenso: SRC, SLO, SLC

Schiebebefehle.

Spezifikation: Arbeitsregister.

Beispiele: SRO,@
SRC,’1A
SLO, REG7

- 179 -

BZ

BEC

LD...

Ebenso: IZ, BP, IP, BNZ, INZ, BNP, INP
Bedingter Sprung mit Abfrage Register-Inhalt auf Null oder Vorzeichen.

Spezifikation: Arbeitsregister.

Operand: Nicht zulässig (jedoch Komma vorsehen).

Ergänzung: Sprungadresse (Name).

Beispiele: BZ, @® +, , SPRG
IZ ‚JA „„ AD6
BNP, REG7, ,X2

Ebenso: IEC, BER, IER, BNEC, INEC, BNER, INER,
BZC, IZC, BZR, IZR, BNZC, INZC, BNZR, INZR
BOC, IOC, BOR, IOR, BNOC, INOC, BNOR, INOR

Bedingter Sprung mit Vergleich zwischen Arbeitsregister-Inhalt einerseits und
Konstante oder Vergleichsregister-Inhalt andererseits.

Spezifikation: Arbeitsregister.

Operand: Konstante oder Vergleichsregister.

Ergänzung: Sprungadresse (Name).

Beispiele: BEC,@ ‚12 ,SPRG

INEC ,'1A ‚,'FF ‚,AD6
BZC ‚REG7,MA3 ,X2
ER ,@® ‚RG17,NIA
BNOR,’IA ,„'A3 ‚AD?
INOR ‚REG7,@ ‚L

Ebenso: AD..., SB..., AN..., OR..., EO..., ST...
BUS-bezogene Befehle (außer JP und CS).

Als dritter Buchstabe des Befehls ist je nach Adressierungsart C, X, R, L oder A
anzugeben.

Spezifikation: Arbeitsregister.

Operand: Konstante oder Operanden-Adresse (außer bei ...X).

Ergänzung: Indexregister (wenn indiziert).

Beispiele: LDC ,@ ,23
ADX ,‚’1IA, ‚IND2
SBR ‚REG7,'FF
ANL , @ ‚ADR
ORA ,‚’1A „’49A2 ‚'IF

- 180 -

JP... Sprung
Dritter Buchstabe siehe LD...

Spezifikation: nicht zulässig (jedoch Komma vorsehen)

Operand: Sprungadresse (außer bei ...X)

Ergänzung: Indexregister (wenn indiziert)

Beispiele: JPX , , ‚IND2
JPL , ‚SPRG
JPA , ‚4ABA2 ,’IF

CS... Unterprogramm-Sprung
Dritter Buchstabe siehe LD...

Spezifikation: Arbeitsregister (Rückkehradresse)

Operand: Sprungadresse (außer bei x)

Ergänzung: Indexregister (wenn indiziert)

Beispiele: CcsX,@ , ‚IND2

CSL ‚IA „SPRG
CSA ‚RET3 ,‚’49A2 ‚IF

Bemerkung: Bei Konstanten-Befehlen der Gruppe BEC und LD... können Konstanten von
bis zu 2 Byte Länge dezimal oder hexa-dezimal als Operanden eingetragen werden,

z.B.:

2=&1NEC,@ ‚’B@FF,SPRG

2=*xADC ‚’1A,4096

Für längere Konstanten sind Namen vorzusehen, denen über eine Q-Anweisung die
entsprechenden Werte zugewiesen werden. .

Kommentare

Kommentare dienen zur verbalen Erklärung des Programms. Sie können an beliebigen
Stellen des Programms stehen und haben für das Programm selbst keine Bedeutung.

Eine Kommentar-Anweisung beginnt mit einem Schrägstrich (/), gefolgt vom Text aus
beliebigen druckbaren Zeichen, wobei alle Leerschritte berücksichtigt werden. Der
Kommentar wird mit Semikolon (;) beendet; es ist daher innerhalb des Kommentars

nicht zulässig.

- 181 -

(M) MAKRO-INSTRUKTIONEN

(M

E
d

Symbolische Makro-Anweisungen dienen zur Programmierung von komplexen Befehlen,
die nicht durch einfache Maschinen-Instruktionen des DIETZ 621 darstellbar sind.
Die Makro-Anweisung ruft ein Unterprogramm auf, welches diesen komplexen Befehl

ausführt; danach wird zur folgenden Anweisung zurückgesprungen.

Der Benutzer kann Makro-Anweisungen auf zweierlei Art gebrauchen:

Standard-Makros zu den MINCAL 600-Bibliotheksprogrammen (LIBRARY)

Selbstdefinierte Makros zu vom Benutzer erstellten Unterprogrammen.

Standard-Makros

Die Standard-Makros sind in der Befehlsliste des MINCASS 600 M Makro-Assemblers
vermerkt; ihre Namen und Funktionen sind im Kapitel LIBRARY ausführlich beschrie-
ben. Sie werden im Programm wie normale Anweisungen geschrieben.

Die Verwendung von Standard-Makrobefehlen setzt voraus, daß zur Ausführungszeit
außer dem Objektprogramm auch die benötigten Teile (Packs) der LIBRARY im Kern-
speicher enthalten sind. Dies kann auf zweierlei Weise sichergestellt werden:

a) Automatisches Hinzufügen der LIBRARY:

Hierbei merkt sich der Assembler während der Umwandlung die benutzten Stan-
dard-Makros und die zugehörigen Packs der LIBRARY. Nach der Umwandlung
werden in einem Zusatzlauf die Teile der LIBRARY hinzugefügt, die vom Objekt-
programm benötigt werden. Sie stehen dann auf dem Maschinencode-Streifen bzw.
später im Kernspeicher unmittelbar hinter dem umgewandelten Programm; ihre Lage
ist daher von dessen Länge und ihre Zusammensetzung von den darin benutzten

Makros bestimmt. Nicht benötigte Packs der LIBRARY werden nicht übernommen.

b r
t Vorbestimmte Lage der LIBRARY:

Der Benutzer kann sich dafür entscheiden, die einzelnen Packs der LIBRARY in

vorbestimmte Plätze des Kernspeichers zu legen. In diesem Falle hat er dafür zu
sorgen, daß sie sich zur Ausführungszeit dort befinden, z.B. durch getrenntes
Einlesen; die LIBRARY wird nicht dem Maschinencode-Streifen des umgewandelten
Programms hinzugefügt.

Im symbolischen Programm ist die Lage der benötigten Packs anzugeben, und zwar
zu Anfang z.B. in folgender Weise:

+

M;
WRID , "SEP;
ARD ,‚’8D;
+

(folgt eigentliches symbolisches Programm)

- 182 -

Dies bedeutet, daß das LIBRARY-Pack WRID (beginnend bei Adresse ’8PEP) und
das Pack ARD (beginnend bei ’8DAP) verwendet werden sollen.

Voraussetzung ist, daß die Zuordnung der Packs zu den Makro-Befehlen und ihre
gegenseitige Abhängigkeit vom Benutzer beachtet werden. Alle benutzten der 7
LIBRARY-Packs sind anzugeben, und zwar in der Reihenfolge WRTH, WRID, WRF,

WRG, ARD, ARF, ARG.

(M) Benutzer-Makros

Der Benutzer kann Unterprogrammen, die getrennt zu erstellen, zu testen und in
vorbestimmte Speicherplätze einzulesen sind, eigene Namen geben und diese als
Makro-Instruktionen in seinen symbolischen Programmen verwenden.

Benutzer-Makros haben im Programm die Gestalt

XYml

mit folgender Bedeutung:

X Buchstabe } 2 Zeichen vorgeschrieben, kennzeichnen
Y Buchstabe oder Ziffer Unterprogramm
m Adressierungsart .

| Länge des übergebenen Parameters ı bei Bedarf

Für XY sind alle Kombinationen verboten, die für Maschinenbefehle oder Standard-

Makros verwendet werden, für das erste Zeichen (X) in jedem Falle die Buchstaben
W, Rund K.

Für m ist bei Bedarf einer der Buchstaben C, X, R, L oder A einzusetzen (entspre-
chend Konstanten-, indirekter, Register-, relativer oder absoluter Adressierung).

Für | ist einer der Buchstaben D, F oder G einzusetzen, wenn statt eines Bytes 2,
3 oder 4 aufeinanderfolgende Bytes als Parameter übergeben werden sollen.

Benutzer-Makros können 3 Typen von Hauptprogramm aufrufen:

a) Einfaches Unterprogramm: Es wird kein Parameter übergeben.
Schreibweise im Programm z.B.: M3;
Erzeugt wird folgende Instruktion:
CSA. (Rückkehradresse), (Anfangsadresse von M3);

b) Unterprogramm LD-Typ: Vor Aufruf des Programms wird ein Parameter ins
Unterprogramm übergeben. Schreibweise im Programm
z.B.: DMX,o, X;

Erzeugt wird diese Befehlsfolge:
LDX, (Übergaberegister), ‚X;
CSA, (Rückkehradresse), (Anfangsadresse von DM);

- 183 -

c) Unterprogramm ST-Typ: Nach Ablauf des Unterprogramms wird ein Parameter
ins Hauptprogramm übergeben. Schreibweise im Pro-
gramm z.B.:

HIYA, @ ‚„ADDR;
Erzeugt wird diese Befehlsfolge:
CSA, (Rückkehradresse), (Anfangsadresse von H9);
STA, (Übergaberegister), ADDR

Während also beim Typ a) nur ein zweistelliger Makro-Name erlaubt ist, ist bei
den Typen b) und c) der Name um die Adressierungsart (m) zu ergänzen und ein
Hinweis für die Operandenadresse zu geben; dadurch wird bestimmt, woher der Para-
meter geholt bzw. wohin er gebracht wird. Die Regeln entsprechen genau denen für
BUS-bezogene Befehle.

Aus formalen Gründen ist bei Makros vom LD- bzw. ST-Typ als Spezifikation das
Zeichen ® einzusetzen. Die Angabe einer Anzahl vor Benutzer-Makros ist verboten.

Ist ein Parameter von 2, 3 oder 4 Byte Länge zu übergeben, so wird an den Makro-
Namen als 4. Zeichen (l) der Buchstabe D, F oder G angehängt; Beispiel:

DMRG,() , OPD;
Erzeugt die Befehlsfolge:
4 = & LDR, (Übergaberegister), OPD;
CSA, (Rückkehradresse) , (Anfangsadresse von DM);

Zu Beginn des Programms sind die Namen der Benutzer-Makros als Anweisungen mit
dem Rückkehradreß-Register und der Anfangsadresse des zugehörigen Unterprogramms
sowie (für Fälle b und c) dem Typ (LD oder ST) undder Adresse des Übergaberegi-
sters anzugeben; alle Adreßangaben sind dabei Hexa-Zahlen. Dies geschieht z.B. in
folgender Form:

+

M;
M3 „"5ARß; "IE
DM, ’5889 "1C,’10,LD;
H9 ‚"S59ad,’2A,' IF,ST;

4 (folgt eigentliches symbolisches Programm)
ov.o

Typ

Adresse Übergaberegister

 Rückkehradreß-Register

Anfangsadresse Urterprogramm

Unter M können außerdem die im vorigen Abs:hnitt beschriebenen Pakete der
LIBRARY erscheinen.

- 184 -

KORREKTUREN

Beim Erstellen von symbolischen Programmen, z.B. off-line mit Hilfe des Teletype,
können Fehler entstehen, die bereits beim Eintippen erkannt werden. Hierfür sind
Korrekturmöglichkeiten vorgesehen:

Ein Linkspfeil («J macht das vorangehende Zeichen ungültig,
mehrere aufeinanderfolgende Linkspfeile («— +-...) die ent-
sprechende Anzahl vorangehender Zeichen. Danach sind die
richtigen Zeichen einzugeben.

Ein Hochpfeil (f) macht die gesamte Anweisung bis zum vorange-
henden Semikolon ungültig. Danach ist die Anweisung neu einzu-
geben.

Bei Benutzung der einfachsten Assembler-Version MINCASS 600 werden fehlerhafte
symbolische Lochstreifen mit dieser Methode korrigiert, indem man sie off-line (im
Local-Betrieb) auf dem Teletype dupliziert und ändert.

HANDHABUNG DES ASSEMBLERS

Jede Programmumwandlung erfordert mindestens 2 Läufe des Assemblers:

ASS dient zum Aufbau der Markenliste sowie zur Erkennung von formalen Fehlern

EXC dient zur Erzeugung eines Lochstreifens, der das Programm in Maschinencode
enthält, und zur Fehlererkennung

Nach Start des Rechners meldet sich der Assembler auf dem Teletype mit # und Klingel-
zeichen. Der Benutzer wählt den Lauf durch Eingabe der Bezeichnung ASS bzw. EXC über
die Tastatur des Teletype vor; darauf ist einzugeben, worüber das Quellprogramm eingele-
sen wird und wohin das Resultat abgelegt wird:

ASS Eingabe: IKB Tastatur des Teletype
ISB Langsamer Leser (Teletype) symbolisches Programm
IFB Schneller Leser

Ausgabe: OSB Langsamer Locher (Teletype) h bolisches P mm
OFB Schneller Locher ymBarisenes TTOgT0

EXC Eingabe: ISB Langsamer Leser (Teletype) } symbolisches Programm
IFB Schneller Leser

Ausgabe: OSH Langsamer Locher (Teletype)
OFH Schneller Locher

Maschinencode-Programm

Beispiele: ASS ‚IKB,OSB

ASS ‚ISB ,OFB
EXC ,ISB ,OSH
EXC,IFB ,OFH

Nach Vorwahl der Betriebsart ist "Wagenrücklauf" einzugeben, und der Lauf beginnt.
Das symbolische Programm, gleichgültig ob über die Tastatur eingegeben oder als Loch-
streifen eingelesen, hat das vom Assembler vorgeschriebene symbolische Format. Ausge-
lochte Maschinencode-Streifen haben Hexa-Format (s. Anhang).

- 185 -

Varianten dieser Betriebsarten sind solche, bei denen nur die Eingabe vorgeschrieben,
die Ausgabe aber weggelassen wird, z.B.:

ASS ‚ISB
EXC,ISB

Hierbei erfolgt keine Ausgabe; jedoch werden alle Anweisungen, die formale oder
Adressierungsfehler enthalten, zusammen mit der Anweisungs-Nummer und einem Fehler-
code auf dem Teletype ausgedruckt (siehe Fehlerliste).

Im Normalfall wird zu Beginn jedes ASS-Laufs die Markenliste gelöscht; jedoch hat
der Benutzer die Möglichkeit, dies zu verhindern; er gibt dann SAV zusätzlich ein:

ASS,SAV,...

Zusätzlich kann mit PRO das Drucken eines Protokolls auf dem Teletype vorgewählt
werden, z.B.:

ASS, ISB,PRO
ASS,IFB, OFB,PRO
EXC,IFB,OFH,PRO

Das gedruckte Protokoll hat je Zeile folgendes Format (1 Zeile = 1 Anweisung):

Fehlercode (2 Ziffern oder Leerschritt)
Leerschritt
Anweisungs-Nummer (4 Ziffern)
Leerschritt
(Basis-) Adresse (4 Hexa-Ziffern)
Leerschritt
Marke | (4 Zeichen)
. falls vorhanden

Anzahl (4 Zeichen)
Zusatzzeichen (>,< , = oder Leerschritt) falls vorhanden
Trennzeichen (* oder &)
Befehl (4 Zeichen)

Spezifikation (4 Zeichen)
, oder längere
Operand (6 Zeichen) Spezifikation

Ergänzung (4 Zeichen)
Leerschritt

Maschinencode (max. 8 Hexa-Ziffern-Paare, durch je 1 Leerschritt

getrennt; die Paare entsprechen erzeugten Bytes in

aufsteigender Adreßreihenfolge,; nur bei EXC-Lauf).

- 186 -

(E)

Spezifikationen mit mehr als 16 Zeichen und Maschinencode-Strings mit mehr als
8 byte werden in Folgezeilen spaltengerecht fortgesetzt.

Kommentare werden unter Weglassung des einleitenden Schrägstrichs mit Beginn der
Markenspalte als besondere Zeilen ausgedruckt.

EDITOR-BETRIEB

Die Assembler MINCASS 600 E und M erlauben darüberhinaus die Korrektur fehler-

hafter symbolischer Programme während eines Assembler-Laufs. Korrekturen werden
vor dem Lauf eingegeben und in zwei Pufferbereiche A (für Korrekturvorschriften)
und B (für neue symbolische Anweisungen) eingegeben. Danach wird der Lauf (ASS,
evtl. auch EXC) ausgeführt; die vorgegebenen Korrekturen werden dabei automatisch
ausgeführt.

Zur Eingabe der Korrekturen wird durch Eintippen von

COR,kk oder COR

(danach Wagenrücklauf) die zugehörige Betriebsart vorgewählt. kk ist eine zweistel-
lige Dezimalzahl; sie gibt die Größe des Pufferbereichs A an, d.h. die maximale
Anzahl der folgenden Korrekturvorschriften. Diese werden dann in folgender Weise
eingegeben:

m D Anweisung m löschen
m-n D Anweisung m bis n löschen

m A Anweisung m ändern) danach jeweils Eingabe der
m-n A Anweisung m bis n ändern neuen Anweisung(en) in übli-

, cher symbolischer Form. Anwei-
sungen durch Semikolon (;) ge-
trennt. Nach letzter Anweisung
Doppelkreuz (#F) statt Semikolon

) eingeben.

m 1 Nach m neue Anweisung(en)
einfügen

m, n sind bis zu 4-stellige Dezimalzahlen; sie entsprechen den Anweisungsnummern
des zu korrigierenden Lochstreifens bzw. auf dem zugehörigen Protokoll.

Wird kein kk eingegeben, gilt die in einer früheren Anweisung gemachte Größe des

Pufferbereichs und der Korrekturvorschriften.

Außerdem gibt es folgende Kommandos für die Überprüfung bzw. Änderung des Kor-
rekturpuffers:

L Listen aller eingegebenen Korrekturen
m L Listen der Korrektur zu Anweisung m

m-n L Listen der Korrekturen zu Anweisungen m bis n

C Löschen aller eingegebenen Korrekturen
m C Löschen der Korrektur zu Anweisung m

m-n C Löschen der Korrekturen zu Anweisungen m bis n

Dies bezieht sich sowohl auf Korrekturvorschriften als auch auf neue Anweisungen,
die mit COR in den Puffer eingegeben worden sind.

- 187 -

(E)

(M)

(M)

Nach D, A, I, L und C ist Wagenrücklauf zu betätigen. Durch Eingabe von #F
wird die Betriebsart beendet.

Ein danach ausgeführter Assembler-Lauf berücksichtigt automatisch die eingegebenen
Korrekturen und führt zu einem berichtigten Lochstreifen bzw. Protokoll.

Sind sehr viele Korrekturen nötig, so kann der hierfür benötigte Speicherraum da-
durch geschaffen werden, daß die Markenliste nicht aufgebaut wird. Man führt einen
reinen Korrekturlauf (anstelle eines Assemblerlaufs) durch, indem man die Eingabe
ASS wegläßt und durch Eingabe von

ISB, OSB oder
IFB, OFB

diese Betriebsart vorwählt (mit Wagenrücklauf danach).

Beispiele für Korrekturvorschriften und -anweisungen:

2-10 D Anweisung 2 bis 10 löschen
12 A Anweisung 12 ändern:

H126: CSA,’10,UP18 (neue Anweisung)
335 | hinter Anweisung 335 einfügen:
XAB : LDC, © „"T" (neue Anweisung)
4ßB D Anweisung 49%" löschen
1828-1021 A Anweisung 192 und 1021 ändern:
NOP (neue Anweisung)
NOP (neue Anweisung)

WEITERE FUNKTIONEN

Die dem Assembler zur Verfügung stehende Speichergröße kann durch Eingabe von

ADR, (Endadresse = 4-stellige Hexa-Zahl)

bestimmt werden. Dies ist zu Beginn durchzuführen; andernfalls wird ’5FFF (Ende
8 kbyte-Speicher) als Endadresse genommen.

Der Protokollausschrieb erfolgt in Abschnitten von DIN A4-Blattgröße. Auf jedem
Blatt steht zu Anfang die Blatt-Nummer sowie der Programmname. Dieser kann bis
zu 48 Zeichen haben und vom Benutzer durch

COM, (Programmname)

eingegeben werden.

Nach EXC-Lauf eines Programms, in dem Standard-Makros vorkommen, fordert der
Rechner durch Ausdrucken von LIB auf, einen Maschinencode-Streifen mit der

LIBRARY in den (schnellen) Leser einzulegen. Nachdem dies geschehen ist, wird
mit Wagenrücklauf bestätigt und die LIBRARY (bzw. Teile davon) dupliziert.

- 188 -

FEHLERLISTE

Fehlercode

gi Parity-Fehler
92 Name mehrfach definiert
93 | Name beginnt nicht mit Buchstabe
4 Speicherüberlauf
25 Befehl nicht zulässig

6 DO-Befehl falsch bzw. falsche Anzahl
10 Name nicht definiert

ı Operand hat falsche Länge
12 Adreßabstand für relative Adressierung zu groß

13 Konstante (Eingabe als Operand) zu lang
14 Hexa-Zahl enthält unerlaubtes Zeichen
15 Hexa-Zahl endet zu früh
16 Additive Q-Definition länger als 32 byte
17 Textstring als Operand zu lang
18 Textstring in Definition zu lang

19 F- oder G-Format falsch
2] Komma fehlt nach Befehl
22 Semikolon oder Schrägstrich fehlt.
23 Anweisung endet zu früh
24 Leerspalte ist nicht leer
25 Angabe in einer Spalte fehlt

28 O-Anweisung setzt Adreßzähler zurück (Warnung)

(M) 48 Makro enthält unerlaubte Anzahl-Angabe
(M) 41 Makro enthält andere Spezifikation als (a
(M) 42 Formatangabe unzulässig

ASSEMBLER-DATEN

MINCASS 600 bei 4k: max. 65 Namen; bei 8: max. 880 Namen in Markenliste

MINCASS 600 E bei 8k: max. 610 Namen; bei 16k: max. 1425 Namen in Markenliste

MINCASS 600 M bei 16k: max. 815 Namen in Markenliste

Zugrunde gelegt sind Namen mit 2-byte-Werten (z.B. Adressen), die 5 Byte in Marken-
liste einnehmen. Namen mit n-byte-Werten erfordern 44n bytes, wodurch sich die o.a.
Anzahl von Namen erniedrigt.

Beim MINCASS 600 E/M sind außerdem die Korrekturpuffer in Abzug zu bringen (9 byte
je Korrekturvorschrift sowie 1 byte je Zeichen für neue Anweisungen).

- 189 -

PROGRAMM-BEISPIEL

Aufgabenstellung:

In den Zellen mit den symbolischen Adressen ZAHL bis ZAHL + 99 stehen 100 Werte,
deren Summe in der Zelle mit der symbolischen Adresse SUM abgelegt werden soll.

Ein Überlauf soll berücksichtigt werden.

Das Programm beginnt mit der symbolischen Adresse ANF und wird durch einen Sprung
nach Zelle ENDE verlassen.

Blockdiagramm:

ANF

SUM-

ı-p

SUM«- SUM
HZahl)+ <1>

Imst 1

- 190 -

Programm:

88208

0 »’6000 /
SUMMATION MIT UEBERLAUF53

B201 I s a ’ 33
8392 SUM 3 Q s 43
88083 ZAHL? 2x Q ‚'480835
8894 /

3

808085 6888 ANF : 6<&LDC »I D 83 19 86 81 83 20
8896 6885 LI 3: LDA »'87 „ZAHL »I1 3 8F 07 08 48 083
8887 688A 2=%#ADR »SUM >» 75 IE 95 84 97
2808 608DE INEC»I ’ 188>sLl ;3 5B 903 64 F4
200889 6812 END 3 HLT 3 82
8812 6013 JPL >» „ANF 3 F& EC
voll Z 3

\ nn, / ___ v ,

symbolischer Befehl Maschinencode

Kernspeicher-Adresse des 1. Befehls-Bytes

Zeilennummer des Protokolls

Erläuterungen:

Zu Zeile f:

Zu Zeile |] - 2:

Zu Zeile 3:

Zu Zeile 5:

Zu Zeile &

Zeile 7:

Zu Zeile 8:

Die O-Zuweisung legt die Programm-Anfangsadresse fest.

Den symbolischen Namen I und SUM wird der Wert 3 bzw. 4 zuge-
wiesen.

Dem Namen ZAHL wird der 2 Byte große Wert ’49Pß zugewiesen.

Das Register I (= Register ’93) und die 5 folgenden Register
(Register ’4...’98) werden mit @ geladen.

Die Adresse ZAHL (= 4909) wird mit dem Register I (= ’93) indi-
ziert: ZAHL + <I> .
Der Inhalt der sich daraus ergebenden Adresse wird in das Register
"97 geladen.

Der 2 Byte große Inhalt der Register 97 und ’98 wird zum 2 Byte-
Inhalt der Register SUM und SUM + 1 addiert (Register ’98 hat
immer Nullinhalt). |

Der Inhalt des Registers I wird um 1 erhöht und auf 190 (= ’64) ge-
prüft. Wenn er nicht 19% ist, verzweigt das Programm zur Marke L]
(= Adresse 6995).

- 191 -

LIBRARY

VORBEMERKUNG

Die Bibliothek (LIBRARY) des DIETZ 621 Computers besteht aus Unterprogrammen,
die umfangreichere Funktionen erfüllen als einzelne Maschinenbefehle. Die Unter-
programme werden durch Makro-Anweisungen aufgerufen; hierfür ist der Makro-As-
sembler MINCASS 600 M zu benutzen. Jedoch können sie auch - für den Benutzer
umständlicher - mit Unterprogrammaufrufen unter Übergabe des Operanden mit einfa-
chen Assemblerbefehlen bedient werden.

Die Unterprogramme der Bibliothek sind entsprechend ihrer Funktion zu Paketen
(PACKS) zusammengefaßt:

WRTH (Ein/Ausgabe von Text und Hexa-Zahlen)
WRID (Ein/Ausgabe von 1I- und 2-byte-Ganzzahlen)
WRF (Ein/Ausgabe von 3-byte-Gleitkommazahlen)
WRG (Ein/Ausgabe von 4-byte-Gleitkommazahlen)
ARD (Doppelbyte-Arithmetik)
ARF (3-byte-Gleitkomma-Arithmetik)
ARG (4-byte-Gleitkomma-Arithmetik)

WRID bedingt das Vorhandensein von ARD, WRF das von ARF, WRG das von ARG.

Die Unterprogramme benutzen als Variablenspeicher die Register der jeweiligen Ebene;
sie können daher im Multiprogramming von beliebig vielen Ebenen gleichzeitig be-
nutzt werden. Je Ebene muß ein Pool von 64 Bytes (Register-Adressen 99...3P) zur
Verfügung stehen; dieser Bereich, einschließlich dem Akkumulator (a) , kann durch
die Unterprogramme veründert werden.

Die vollständige LIBRARY ist ca. 6.8 kbyte lang.

PAKET WRTH (Länge ’@12P)

Dieses Unterprogramm-Paket dient zur Ein- und Ausgabe von Text und Hexa-Zahlen
in Verbindung mit Fernschreibern, Lochstreifengeräten und anderen, zeichenweise
arbeitenden Periphergeräten im ASCII-Code.

Der Aufbau der zugehörigen Makro-Anweisungen ist:

X Anzahlp* $Befehl$, {Gerät} , FOperand»p ‚ X{indexregisterp

- 192 -

Folgende Befehle sind vorgesehen:

RTm Lesen Text

WTm Schreiben Text
RHm Lesen Hexa

WHm Schreiben Hexa
KTm Eingabe Text über Tastatur
KHm Eingabe Hexa über Tastatur

Lesen bedeutet Eingabe Periphergerät und Abspeichern in der effektiven Adresse,
Schreiben den umgekehrten Vorgang. Für m ist einer der Buchstaben C, X, R, L
oder A entsprechend der gewünschten Adressierungsart einzusetzen; die Operanden-
Adresse wird wie üblich programmiert, ebenso das eventuelle Indexregister, mit des-
sen Inhalt sie modifiziert wird.

Bei Text (T) wird ein Byte unverändert als ASCII-Zeichen behandelt; im Falle von
Hexa (H) werden die linke und rechte Hälfte (in dieser Reihenfolge) eines Bytes
zwei ASCII-Zeichen (ß...9, A...F) zugeordnet, indem die zusätzlichen 4 Bit des
ASCII-Codes abgeschnitten bzw. ergänzt werden.

Die Gerätenummer wird als Spezifikation dem Befehl mitgegeben, wobei dort entwe-
der eine zweistellige Hexa-Zahl oder ein Name steht, der entsprechend definiert ist.
Wird z.B. ’F3 als Gerätenummer programmiert, so wird das Gerät mit der BUS-Adres-
se IF3Q angesprochen.

Vor dem Befehl kann die Anzahl der ein- oder ausgegebenen Zeichen bestimmt wer-
den (2...256), wenn es sich um mehr als eins handelt. Bei Text-Befehlen entspricht
dem ein gleich langer Operanden-String, wobei das Basis-Byte, welches auch das
zeitlich zuerst behandelte Zeichen enthält, programmiert wird. Bei Hexa-Befehlen
ist die Länge des Operanden-Strings halb so groß.

Achtung: Die ein- oder auszugebenden Zeichen benutzen den Pool, Die Übergabe
erfolgt im Intern-Format ab Register ’1@ (bei WHm, WIm, KTm, RTm) bzw. ab
Register ’18 (KHm, RHm). Das bedeutet, daß durch die Übergabe alle Register
ıd- "1 + N-I (bzw. ’18 + N-1) belegt werden. Sind nur die Register bis ’3F
für die LIBRARY reserviert, so lassen sich maximal ’28 d.i. 40 Bytes durch einen
Aufruf übertragen.

Text- und Hexa-Zeichen werden, als Konstanten verwendet, zweckmäßig mit den
Definitionen T und H programmiert. Für die Ausgabe von ASCII-Steuerzeichen (z.B.
Wagenrücklauf) ist Text-Ausgabe von Konstanten zweckmäßig, die als Hexa-Zahlen
eingegeben werden.

Beispiele:

RTA ‚’F3 ‚ADDR Lesen I Textzeichen von ’F3 nach ADDR

6=% RHR ‚’9@ ‚REGI " 6 Hexa-Zeichen von @% nach REGI
WTL ‚DEV,CHAR Schreiben | Textzeichen aus CHAR nach DEV

2= x WTC,FS2 ‚'BAPD Ausgabe Wagenrücklauf/Zeilenvorschub auf FS2
WTC,FS2 ‚"xX" Schreiben "X" auf FS2

- 193 -

Die Ausgabe der Zeichen erfolgt im ASCII-(ISO-7-) Code mit geradzahliger Parität.
Bei der Eingabe wird auf diese Parität geprüft; fehlerhafte Zeichen werden zwar ab-
gelegt, jedoch wird dann ein Register-Byte ’Q8 auf FF gesetzt; der Benutzer kann
dieses Byte nach Ablauf des Makrobefehls im Hauptprogramm abfragen. Im Normal-
fall hat das Register ’@8 Nullinhalt.

Achtung: Bei der Übergabe von Hexa-Konstanten werden die Bytes zeitlich in
aufsteigender Adreßreihenfolge behandelt: (d.h. von rechts nach links!).

PAKET ARD (Länge ’00C0)

Mit diesem Unterprogramm-Paket können Doppelbyte-Ganzzahlen arithmetisch behan-
delt sowie ein- und ausgegeben werden, einschließlich der Umwandlungen von Binär-
in Dezimalzahlen und umgekehrt.

Einbyte-Ganzzahlen sind stets positiv: n 7.2 0...255

Doppelbyte-Ganzzahlen sind positiv oder n 27-—— „0° -32768
negativ (Zweierkomplement) und umfassen n+l| 4 ala 28 32767
16 bit (niedriges Byte = Basis-Byte): Vorzeichen

Folgende arithmetischen Befehle sind für Doppelbyte-Ganzzahlen vorgesehen:

MPmD Multiplizieren Doppelbyte
DVmD Dividieren "

Als Arbeitsregister wird stets der Akkumulator (@ benutzt. Der Operand kann wie bei
BUS-bezogenen Befehlen üblich addiert werden; für m ist C, X R, L oder A einzu-
setzen.

Die Multiplikation ergibt ein 4-byte-Produkt:

@ |7 2| nn |2 2| @
a + 2 n+tl a 21 @ +

I m

VZ VZ 2 r

 4-Byte-
Produkt

Akku Operand — Akku

- 194 -

Bei der Division ergibt sich ein 4-Byte-Quotient mit Mittelkomma:

(@ > 2 on / ?| ®@ 2 26 .
@) + B nl27 aHa TTTTTIyET Bruchteil

I (a) +2]7 PDVz Vz | |Ganzzcht-(& +3
ui 2 Teil
Vz

Akku / Operand — Akku

Beide Operationen laufen vorzeichenrichtig ab.

Um dem Benutzer einen symbolisch vollständigen Satz von Doppelbyte-Befehlen an
die Hand zu geben, sind im Makro-Assembler noch folgende Befehle vorgesehen:

LD mD Laden Doppelbyte (Operand —e Akku)
STmD Speichern " (Akku —— Adresse)
ADmD Addieren N (Akku + Operand — Akku)
SB mD Subtrahieren " (Akku - Operand — Akku)

Es werden jedoch keine Unterprogramme hierfür benutzt; vielmehr erzeugt der As-
sembler hieraus Maschinenbefehle mit vorgeschaltetem DO-Befehl.

Die Angabe einer Anzahl ist nicht zulässig, so daß sich für diese Anweisungs-
Gruppe folgender Aufbau ergibt:

{Befehl$,„, @,d& Operand p , & Indexregister p

Beispiele für Doppelbyte-Anweisungen:

LDCD , ® ‚-25P% -25000 — Akku
STXD ‚,@,,IND Akku — <IND>
ADRD , @ ‚REG7 ‚IXR] Akku + Operand— Akku
SBLD ,@ ,CONS Akku - Operand — Akku
MPAD, (a ‚ADDR,’AB Akku - Operand — Akku
DVRD ,@ ‚’Al Akku : Operand —Akku

Anmerkung:

Es werden in diesem Paket die Register bis einschließlich IF belegt.

- 195 -

PAKET WRID (Länge 'P3AR)

Zu diesem Paket gehören folgende Ein/Ausgabe- und Konversionsbefehle:

RD mD Lesen Doppelbyte-Ganzzahl
WD mD Schreiben Doppelbyte-Ganzzahl

RA mD Konversion ASCII — Binär
WAmD " Binär — ASCII Doppelbyte-
RB mD “ BCD — Binär Ganzzahl
WB mD " Binär — BCD

Die ersten beiden Befehle haben den Aufbau

X Anzahip 8 d Befehlp , X Gerät} „ {Operand$, & Indexregister p

und bewirken das Lesen eines ASCII-Zeichen-Strings mit Ganzzahl-Bedeutung,
Umwandlung in eine binäre Doppelbyte-Zahl und Abspeichern in der angegebenen
(sowie der nächsthöheren) Adresse; beziehungsweise beim Schreiben den umgekehr-
ten Vorgang. Dabei ist das Periphergerät sowie die Zahl der ASCII-Zeichen anzu-
geben, die gelesen bzw. ausgegeben werden sollen:

- 12345 Anzahl =
- 2 u =

vuuuu35 =

uuu-32768 " =

Beim Schreiben werden führende Nullen mit Leerschritten unterdrückt; für positives
Vorzeichen steht ein Leerschritt. Gelesen wird höchstens die angegebene Stellen-
zahl; jede Nicht-Ziffer nach einer Ziffer führt jedoch schon zur Beendigung des

Lesevorgangs (Ausnahme; Return, Line-feed, Rubout).

Hinsichtlich Paritäts-Erzeugung und -Prüfung des ASCII-Codes gelten die Bemerkungen
des vorigen Abschnitts; das Fehler-Register hat die Adresse ’1@.

Mit den restlichen 4 Befehlen, die den Aufbau

X Befehlp ,(@, X Operand$, 4 Indexregister b

haben, können Geunzzahlen, die als ASCII- oder BCD-Zeichen im Akkumulator und
den nächsthöheren 5 Bytes stehen, in binäre Doppelbyte-Zahlen umgewandelt und in
der effektiven Adresse abgelegt werden; ebenso ist der umgekehrte Vorgang möglich.

- 196 -

Lage der Zeichen im Akkumulator:

Inhalt: ASCIH-Zeichen

@ Vorzeichen

@ +1 10%
@ +2 10° Betrag

bzw. BCD (’8...’9) @ +3 102
@ 4 10!

Vorzeichen: - oder Leerschritt (ASCII) @ +5 100
bzw. ’@D oder ’90 (BCD)

Beispiele für Doppelbyte-Ein/Ausgabe- und Konversionsbefehle:

DR 6-Zeichen-Zahl von DEV nach ADDR (binär)68 RDAD ‚DEV,AD
98 WDCD,’F3 ‚-32768

RAXD ,, @ ,,IND
WARD, @, REG7
RBAD , @ , ’2F@8
WBLD,@, VAR,IXR

-32768 auf ’F3 9-stellig ausgeben

@XASCH)— <IND>(binär)
REG7 (binär) +@ (ASCI1)
@ (BCD) —’2F98 (binär)
Operand (binär)— (a) (BCD)

Bestandteil des WRID-Pakets sind schließlich noch Ein/Ausgabe- und Konver-
sionsbefehle für Einbyte-Ganzzahlen:

Ri m

Wim

RAm

WAm

RB m

WBm

Lesen Einbyte-Ganzzahl
Schreiben Einbyte-Ganzzahl

Konversion ASCII— Binär

u Binär —— ASCII

" BCD — Binär

" Binär — BCD

Sie entsprechen völlig den Doppelbyte-Befehlen; jedoch werden nur positive Zahlen
behandelt, die maximal 3 geltende Ziffern haben, nur 3 Akkumulator-Bytes
(@bis @+ 2) belegen und in binärer Form ein Byte einnehmen.

Beispiele hierfür:

28RIA ‚DEV.ADDR
68WIC ‚’F3,125

RAX, @,,IND
WAR, @ ‚REG?
RBA , (@ ‚’2FQ8

(@
(a +1
(+2

102
10!
100

2-stellige Ganzzahl von DEV nach ADDR
uuu125 auf ’F3 ausgeben

siehe Doppelbyte-Beispiele

WBL , @ ‚VAR ,IXR

Anmerkung: Es werden in diesem Paket die Register bis einschließlich 23 belegt.

- 197 -

PAKETE ARF UND ARG (Länge 9249, '"225@ ohne Funktionen)
(Länge der Funktionen #74)

Diese Unterprogramm-Pakete geben dem Benutzer die Möglichkeit, mit Gleitkomma-
Zahlen zu rechnen. Es gibt 2 interne Darstellungen von Gleitkomma-Zahlen mit
unterschiedlicher Genauigkeit:

F-Typ (2-Byte-Mantisse): iR 2 Mantisse M

n+2 Exponent E

G-Typ (3-Byte-Mantisse): n |
n+1 2 Mantisse M
n+2

n+3 Exponent E

Die Mantissen sind Doppelbyte- bzw. 3-Byte-Ganzzahlen; sie können positiv oder
negativ sein. Exponenten sind positive oder negative Einbyte-Ganzzahlen (Bereich
-128 ... 127) zur Basis 2. Eine Gleitkommazahl hat daher den Wert

M- ze (M = Mantisse; E = Exponent)

Das niedrige Mantissen-Byte ist stets das Basis-Byte.

Als arithmetische Befehle sind vorgesehen:

ADmF Addieren Gleitkomma F-Typ
SB mF Subtrahieren "
MPmF Multiplizieren " "
DVmF Dividieren u "

ADmG Addieren Gleitkomma G--Typ
SB mG Subtrahieren "
MPmG Multiplizieren " "
DVmG Dividieren " "

- 198 -

(Gleitkomma G-Typ)

POmG Potenzieren " "
SQ Wurzel “

SI Sinus “ "
co Cosinus " "
TA Tangens " "
AT Arcus Tangens " \
LO Logarithmus “ "
EX Exponent " "
RN Random 0...1 “
IT Integer " “
SG Signum " "
AB Absolut " "

Dazu gibt es noch 3- und 4-byte-Transportbefehle, die jedoch nicht als Unterpro-
gramme existieren, sondern vom Makro-Assembler als Maschineninstruktionen mit
vorgeschaltetem DO-Befehl erzeugt werden:

LDmF Laden Gleitkomma F-Typ
STmF Speichern " "

LDmG Laden Gleitkomma G-Typ
STmG Speichern " "

Der Aufbau der Anweisungen ist in allen Fällen:

X Befehl® ,(@, $ Operand $, 4 Indexregister p

und entspricht hinsichtlich der Adressierungsart den Doppelbyte-Befehlen. Als Ar-
beitsregister kann wiederum nur der Akkumulator (@ angegeben werden; das nie-
drigste Byte der Mantisse belegt (@selbst; es folgen das bzw. die höheren Bytes und
schließlich der Exponent in (@+ 2) bzw. (@ + 3).

Einige Beispiele:

LDLF ‚(@ ‚CONS
STXG ‚,@ ‚‚IND
ADRG ‚,@ ‚REG?
SBLF ‚(a ‚VAR,IXR
MPAG,, (a ‚ADDR
DVRF ,@,’Al

- 199 -

SEITE 49808

22AQ 0 „‚'4088 35

Paal /

BEISPIEL FUER ERWEITERTE LIBRARY3

2322 /

xX=ABSCSINCM*kB« 1))xke 3/5. 85

2283 /
.
3

PoB4 ABDOO ANF : 2=KWTC sd »*’DABD 5

2005 ABRC 8 SKERG>O >»@ 5

BOR6 4018 MPAG>® >CONI 3

2007 4022 SI; .
2008 4926 AB 3
2009 42a POAG>@ »CON2 3

BBlo 4934 DVAG>@ »CONZ 35

@Oll AB3E 15:6 SWERG>O »@ ;

AR12 Agaa JPA » sANF 53
8013 A@AD CONI: G 13
ga14 A051 CON2: G 3.3
P@15 4055 CON3: G 5.3
0916 2005

Ba 8D 09

Ba 84 82
la oF 86

66 66 E6

33 53 EC

DA

28

4D

Sl

55

FD

FD

40

48

40

aa

dE

28

FD

FD

FD

93

Zur Definition von Gleitkomma-Festwerten kennt der Makro-Assembler folgende
Belegungs-Anweisungen:

F Belegt 3 Bytes mit einer Gleitkomma-Zahl vom F-Typ
G Belegt 4 Bytes mit einer Gleitkomma-Zahl vom G-Typ

Als Spezifikation steht dahinter entweder eine beliebige Dezimalzahl (F-Format)
oder eine solche mit einer Zehnerpotenz (E-Format); zum Beispiel:

‚-123.45
‚.31415E-91
‚28.
‚2859 .6792

F

F
F

G
G,-2.85967W2E93

Anmerkung: Es werden bei AD, SB, MP und DV die Register bis einschließlich "IF

(= 0.31415- 10")
(F-Format)
(E-Format)
(F-Format)
(F-Format)
(E-Format)

belegt. Die Funktionen belegen die Register bis einschließlich ’37.

- 200 -

59

Be

IE

ec

48

PAKET WRF UND WRG (Länge ’P4FR, '0529)

Diese Pakete erlauben die Ein/Ausgabe von Gleitkonmma-Zahlen mit folgenden Makro-
befehlen:

RF mF Lesen Gleitkomma-Zahl F-Typ im F+Format
WFmF Schreiben " " "

RE mF Lesen " " im E-Format

WEmF Schreiben " " u

RF mG Lesen Gleitkomma-Zahl G-Typ im F-Format
WFmG Schreiben " " "
RE mG Lesen " " E-Format

WEmG Schreiben " " "

Prinzipiell entsprechen sie den Befehlen für die Doppelbyte-Ein/Ausgabe; der Be-
nutzer hat jedoch die Wahl zwischen zwei externen Darstellungen (F- und E-For-
mat). Außerdem ist neben der Anzahl der insgesamt gelesenen oder geschriebenen
Zeichen (w) noch die Zahl der Stellen hinter dem Dezimalpunkt (d) anzugeben,
in diesem Falle mit $ als Trennzeichen, also:

w.dy

Beispiele hierfür:

7.2$RFAF ‚DEV,ADDR Lesen 7 Zeichen, 2 Dezimalen, F-Format
14.7/WERG, 'F3 ‚REG7,IXR Schreiben 14 Zeichen, 7 Dezimalen, E-Format

Hinzu kommen als Konversionsbefehle:

RA mF Konversion ASCII— Binär

WAnF " Binär — ASCII Gleitkommazahl

RB mF " BCD —- Binär F-Typ
WBmF " Binär — BCD

RA mG Konversion ASCII— Binär
WAmG " Binär — ASCII Gleitkommazahl

RB nG " BCD —> Binär G-Typ
WBmG " Binär — BCD

- 201 -

F-Formatfa 1 0% G-Formata 1 09

a + 10° + 100
(d +2 101 (@ +2 10%
a +3 10 (@ +3 103
a +4 100 Q +4 102
(® +5 Vorzeichen (®+45 10!
(@ +6 E + N) +6 100

(@ +7 Sa 47 Vorzeichen
(a +8 Vorzeichen (® +8 }

& +9 Exponent

(@ +10 Vorzeichen

Beispiele für Gleitkomma-Konversionsbefehle:

RAAF: , (a,ADDR,IXR (a (ASCIH)— Adresse (binär, F-Typ)
WBXG,(@ ‚‚IND Operand (binär, G-Typ) — (a) (BCD)

Bezüglich Paritätserzeugung und -Prüfung des ASCII-Codes siehe vorigen Abschnitt.

Anmerkung: Diese Pakete belegen die Register bis einschließlich ’33.

LESEN OHNE INITIATE

Alle gerätebezogenen Lesebefehle R... derLIBRARY beziehen sich auf Eingaben,
die ein INITIATE erfordern (s. HINWEISE FÜR DIE PROGRAMMIERUNG), also z.B.
den Leser am Fernschreiber.

Wo dies nicht erforderlich ist, z.B. bei Eingaben über die Tastatur des Fernschreibers,
ist im Makrobefehl der Buchstabe K anstelle von R zu verwenden, zum Beispiel:

KTA ,‚’F3 , ADDR
68 KDAD ‚DEV,ADDR,IXR

7.25 KFRF ‚DEV,REG7

- 202 -

LISTE DER UNTERPROGRAMME

WRTH

WHm

WTm

KHm

RHm

KTm

RTm

WRID

Wim

WBm

WDmD

WAmD

WBmD

Kim

Rim

RAm

RBm

KDmD

RDmD

RAmD

RBmD

WRF

WEmF

WFmF

WAmF

WBmF

KEmF

KFmF

REmF

RFmF

RAmF

RBmF

Schreiben Hexa
Schreiben Text

Eingabe Hexa
Lesen Hexa

Eingabe Text
Lesen Text

Schreiben Ein-Byte-Ganzzahl
Konversion Ein-Byte Binär— ASCII
Konversion Ein-Byte Binär —BCD
Schreiben Doppelbyte - Ganzzahl
Konversion Doppelbyte Binär — ASCIl
Konversion Doppelbyte Binär—eBCD
Eingabe Ein-Byte - Ganzzahl
Lesen Ein-Byte-Ganzzahl
Konversion Ein-Byte-Ganzzahl ASCII— Binär
Konversion Ein-Byte-Ganzzahl BCD— Binär
Eingabe Doppelbyte-Ganzzahl
Lesen Doppelbyte-Ganzzahl
Konversion Doppelbyte ASCII—» Binär
Konversion Doppelbyte BCD — Binär

Schreiben E-Format F-Format

Schreiben F-Format "
Konversion Binär —ASCII

Konversion Binär —BCD

Eingabe E-Format
Eingabe F-Format
Lesen E-Format

Lesen F-Format

Konversion ASCII —Binär

Konversion BCD —Binär

- 203 -

WRG

ARE

WEmG

WFmG

WAmG

WBmG

KEmG

KFmG

REmG

RFmG

RAmG

RBmG

MPmD

DVmD

MPmF

DVmF

SBmF

ADmF

Schreiben E-Format G-Format
Schreiben F-Format

Konversion Binär —ASCII

Konversion Binär— BCD

Eingabe E-Format
Eingabe F-Format
Lesen E-Format

Lesen F-Format

Konversion ASCII —Binär

Konversion BCD — Binär

Funktion A* B Doppelbyte
Funktion A/B Doppelbyte

Funktion A* B F-Typ
Funktion A/B F-Typ
Funktion A-B F-Typ
Funktion AtB F-Typ

Funktion (a)* B G-Typ
Funktion (@/B G-Typ
Funktiona -B G-Typ
Funktion@+B G-Typ
Funktion Random zwischen @ und 1
Arctan (9)
SIGN (&)
Absolut (&)
Wurzel (%)
TAN (&)

COS (&)
SIN (@)
@# B
EXP (®)

LOGE (&)
INT (®)

- 204 -

MONITOR

VORBEMERKUNG

MONITORist ein Programm zum Testen von Programmen, die im Kernspeicher des
DIETZ 621 abgelegt sind.

Zunächst wird das Monitor-Programm in einen freien Kernspeicherbereich geladen, das
N-Register der Ebene ß über die Bedienungskonsole auf die Anfangsadresse dieses Be-
reichs gesetzt und der Rechner gestartet.

Der Monitor meldet sich dann mit MON und verlangt mit LEV: zunächst die Angabe
der Ebene, auf der der Monitor laufen soll. Der Benutzer muß durch eine vierstellige
Eingabe Pl die Ebene | als Hexazahl angeben, auf der der Monitor und das zu te-
stende Programm laufen soll.

Durch Betätigen von RUBOUT kann die Eingabe wiederholt werden (dies gilt auch für
alle folgenden Kommandos).

Als nächstes verlangt der Monitor mit BUF: die Anfangsadresse des Insert-Puffer-Be-
reichs.

Der Benutzer kann durch eine 4-stellige Hexa-Adresse nnnn die Anfangsadresse eines
Bereichs (Insert-Puffers) angeben, in den später einzufügende Maschinencode-Bytes
abgelegt werden sollen. Wird statt nnnn ein## eingegeben, so wird der Insert-Puffer
unmittelbar an den Monitor angehängt.

Danach gibt der Monitor ein Klingelzeichen und * aus zum Zeichen, daß die Eingabe
eines Steuerbefehls erwartet wird (dies gilt auch für alle folgenden Eingaben).

Nun kann das zu testende Programm über eine der Einlese-Betriebsarten in den Kern-
speicher gelesen werden (siehe EIN/AUSGABE).

STEUERKOMMANDOS

Das zu testende Programm wird mit

aaaa 5 (cr)

_ gestartet, wobei die Startadresse aaaa wie bei allen Adreßangaben als 4-stellige Hexa-
zahl einzugebenist. (cr) bedeutet Wagenrücklauf . Die Startadresse muß dem Basis-Byte
eines Instruktionsstrings entsprechen. Veränderungen des Benutzerprogramms durch einge-
baute Monitor-Halts oder Inserts sind zu beachten.

Ist der angesprochene Befehl durch einen vorher eingebauten Menitor-Halt überdeckt,
so gibt der Monitor die Fehlermeldung

HK (Halt - Kollision)

und führt den Start nicht aus.

- 205 -

Läuft das Programm später auf einen vorher eingebauten Halt, so druckt der Monitor
dessen Adresse aus und erwartet einen neuen Steuerbefehl. Das zu testende Programm
kann dann durch eines der folgenden Kommandos wieder angestoßen werden:

N (er): nächste Instruktion ausführen, dann wieder anhalten

G (er): weiterlaufen bis zum nächsten Monitor-Halt

Alle eingebauten Halts (8 byte lang), die durch einen N-Schritt berührt werden,
werden ausgebaut. Ist der durch einen N-Schritt auszuführende Befehl ein bedingter
Sprung, so wird vor Ausführung des Befehls sowohl hinter dem Befehl als auch am
Sprungziel ein Halt eingebaut. Daher müssen bei N-Halts 2 der 5 möglichen Halts
reserviert werden, d.h. N wird nicht ausgeführt, wenn mehr als 3 andere Halts schon
eingebaut sind. Dies wird durch Drucken eines Fragezeichens angezeigt. Die durch N
eingebauten Halts werden zu Beginn des nächsten N-Schritts wieder ausgebaut.

Durch das Kommando

E (cr)

wird der Monitorbetrieb beendet. E baut alle Halts und Inserts aus und setzt die nö-
tigen Merkerzellen im Monitor so, daß durch einen Start über die Rechner-Konsole
der Monitorbetrieb wieder aufgenommen werden kann.

War der Monitor auf einer höheren Ebene als ß gelaufen, so wird sich nach E (cr) der
Monitor noch einmal auf der Startebene f melden, so daß dort noch einmal E (cr) ge-
geben werden muß.

MONITOR-HALT

Das zu testende Programm kann an beliebigen Stellen angehalten werden. Sie werden
durch die Eingabe

aaaa H (cr)

vorbereitet, wobei aaaa die Haltadresse ist. Sie muß einem Befehlsbyte bzw. dem eines
vorgeschalteten DO-Befehls entsprechen (d.h. dem Basis-Byte eines Instruktionsstrings
laut Assembler-Protokoll). Das Programm hält dann nach Ausführung des davorliegenden
Befehls an. Halts nach unbedingten Sprüngen und Ebenenwechsel-Befehlen (zu höheren
Ebenen) sind wirkungslos; ebenfalls nach bedingten Sprüngen, wenn verzweigt wird.

Als Halt wird vom Monitor im Benutzerprogramm ein _8_byte langer Befehlsstring einge-
baut:

'%2 = & STA,(@ ‚BPP Rückkehr-Register für Benutzer retten;

CSA, „HASU UP-Sprung nach Monitor;

- 206 -

Veränderungen des Benutzerprogramms durch eingebaute Halts sind zu beachten.

Ein Halt einzubauen, ist in 3 Fällen verboten:

a) Der einzubauende Halt würde sich mit einem schon eingebauten Halt überschnei--
den. Fehlermeldung: HK (Halt - Kollision) |

b) Es sind schon 5 Halts eingebaut. Fehlermeldung: HU (Halt - Überlauf)

c) Halt-Adresse < ’4A@@. Fehlermeldung: HV (Halt verboten).

Es können bis zu 5 Haltbefehle eingebaut werden.

Zu Beginn eines G-Schrittes wird der Halt, auf dem weitergestartet wird, zunächst
ausgebaut, um die ursprünglichen Benutzer-Befehle ausführen zu können; bei Erreichen
des nächsten Monitor-Halts wird dieser Halt dann wieder eingebaut. Daraus ergibt
sich, daß in Programmschleifen immer mindestens 2 Halts vorzusehen sind.

Durch den Befehl

H (cr) (ohne Adreßangabe)

wird eine Liste der Adressen aller eingebauten Halts abgerufen.

Haltbefehle kann man einzeln mit

aaaa D (cr)

wieder eliminieren. Ist der durch aaaa spezifizierte Halt nicht vorhanden, so gibt der
Monitor die Fehlermeldung HN (Halt nicht vorhanden) aus.

Durch D (cr) werden sämtliche vorgesehenen Halts wieder ausgebaut.

ABFRAGEN, ÄNDERN, EINFÜGEN

Nach Eingabe von

acaa L (cr)

wird der Inhalt eines Register- oder Speicherplatzes aaaa ausgedruckt; nach Eingabe von

aaaa-bbbb L (cr)

- 207 -

der Inhalt sämtlicher Adressen von aaaa bis bbbb einschließlich. Je Byte wird eine
2-stellige Hexazahl gedruckt; ein Leerschritt trennt sie vom nächsten Byte. Zu Be-
ginn jeder Zeile wird die Adresse des nächsten Bytes angegeben.

Durch Betätigen der Taste WRU kann der Bediener das Ausdrucken des nächsten Byte-
Inhalts anfordern. Das kann beliebig wiederholt werden, wobei jeweils die nächsthöhe-
re Adresse abgefragt wird. Beendet wird der L-Zustand durch Eingabe von# . Jedes
andere eingegebene Zeichen wird überlesen.

Die Adressen aaaasind, auch wenn sie sich auf den Pool beziehen, immer absolute,
nicht niveau-gebundene Adressen. Dies gilt auch für die folgenden Kommandos.

Durch das Kommando

aaaa A (cr)
xx

wird der Inhalt der Adresse aaaa durch xx ersetzt; durch

aaaa-bbbb A (cr)
xXYY ..cH#

die Adressen aaaa bis bbbb durch einen String (xx yy ...). Einzugeben sind je Byte
2 Hexa-Ziffern. Die einzelnen Bytes können durch Leerschritt oder CR, LF getrennt
sein oder unmittelbar hintereinander eingegeben werden. Wird der String vorzeitig
durch ++ beendet, so bekommen die restlichen Bytes Nullinhalt. Eingabe von RUBOUT
löscht bereits angefangene Bytes. Hat man eine Zahl eingegeben, die keine Hexazahl
sein kann, so gibt der Monitor ein Fragezeichen (?) aus und erwartet eine neue Ein-
gabe des letzten Bytes. Die vorhergehenden Byte-Inhalte werden davon nicht berührt.

Schließlich besteht die Möglichkeit, durch

aaaa I (cr)
xX Yy ...#

im Programm (beginnend bei Adresse aaaa) einen Byte-String (xx yy ...) einzufügen;
er wird in dem eingangs erwähnten Pufferbereich abgelegt. Für die Eingabe von Byte-
Strings gilt das bei A beschriebene Vorgehen.

Durch das Kommando I wird an der Stelle aaaa ein 3 byte langer Befehl (JPA, ‚Puffer)
eingebaut. Alle durch diese 3 Bytes berührten Befehle werden ausgebaut und im Insert-
Puffer vor den einzubauenden Insert-String gelegt. Am Ende des Insert-Strings steht ein
JPA aufdem nächsten Befehl hinter den ausgebauten Befehlen.

Die Anzahl der Bytes, die pro Insert im Puffer gebraucht werden, berechnet sich fol-
gendermaßen: Anzahl der eingefügten Bytes + Anzahl der ausgebauten Bytes + 9.
Der Insert-Bereich wird folgendermaßen aufgebaut:

- 208 -

II-Adresse
Anzahl ausgebaute Bytes
Differenz der Adressen II - 12
ausgebaute Befehle
eingebaute Befehle
Rücksprung

1. Einfügung

l2-Adresse

2. Einfügung

Warnung:

a) Relativ adressierte Befehle dürfen durch | nicht aus dem Benutzerprogramm in den
Puffer verlegt werden.

b) Veränderungen des Benutzerprogramms durch eventuell eingebaute Halts sind zu be-
achten.

Es sind beliebig viele Einfügungen möglich; auf das Puffer-Ende wird nicht geprüft.

Mit dem Kommando

aaca U (cr)

kann jede einzelne Einfügung rückgängig gemacht werden.

Die Eingabe

U (cr)

löscht alle Einfügungen.

EIN/AUSG ABE

Für die Ein- und Ausgabe der zu testenden Programme oder von Programmteilen hält
der MONITOR folgende Kommands bereit:

aaaa bbbb ISH Einlesen über langsamen Leser (Konsol-Teletype)
aaaa bbbb IFH " " schnellen Leser
aaaa bbbb OSH Ausstanzen auf langsamem Locher (Konsol-Teletype)
aaaa bbbb OFH " " schnellem Locher

Mit aaaa ist die erste, mit bbbb die letzte Adresse des Kernspeicher-Bereichs gemeint.

Gelesene und gelochte Streifen haben Hexa-Format (s. Anhang).

- 209 -

DBOS

VORBEMERKUNG

Die Grundfunktionen des DIETZsystems 621 werden durch DBOS (Disk Based Operating
System) gewährleistet. Es bildet das Grund-Betriebssystem, das bei allen Hardware- und
Software-Konfigurationen vorhanden ist und auf dem die erweiterten Betriebssysteme
aufbauen. |

DBOS hat folgende Funktionen:

- Benutzer-/System-Dialog über Konsolgerät
- Dateiverwaltung über Konsolgerät

Dateizugriff (sektorweise) vom Programm
Behandlung von Systemfehlern |

Die DBOS-Funktionen sind bei den DIETZsystemen 621 C und 621 D identisch.

SYSTEM-DIALOG

Unter DBOS kann der Benutzer im Dialog Programme aus Platten-Dateien in den Kernspeicher
laden, zur Ausführung bringen und wieder auf die Platte zurückschreiben.

Die Kommandos hierfür lauten:

GET ‚u,f,(a) Programm laden
RUN ‚u, f, (a) Programm laden und zur Ausführung bringen
PUT ‚u,f, (a) Programm zurückschreiben

Dabei bedeuten:

u = Plattenspeicher-Nr. (unit)

Dateiname (max. 6 Zeichen)m
n H

a = Kernspeicher-Basisadresse
(falls nicht angegeben, wird nächste freie Adresse benutzt).

Falls mehrere Programmsegmente geladen werden sollen, so geschieht dies durch eine Folge von
GET-Kommandos. PUT erlaubt das Rückschreiben modifizierter Programme. Mit RUN wird
ein Programm geladen und die Kontrolle an diese übergeben; bei dessen Ende wird in DBOS
zurückgesprungen, und das System ist wieder im Dialog-Betrieb.

- 210 -

D ATEI-VERWALTUNG

DBOS erlaubt die Reservierung und Behandlung von Dateien auf den Plattenspeichern..
Dateien sind unter einem Dateinamen f zugreifbar, bestehen aus einer ganzen Zahl L von
Sektoren zu je 128 byte und können vollständige Programme, Programm-Moduln oder Daten
enthalten.

Dateien werden im Dialog-Betrieb des DBOS reserviert, gelöscht usw. Hierzu dienen die
Kommandos:

CREA ‚u,f ‚L Eröffnen einer Datei von L Sektoren Länge unter
dem Namen f

KILL „u,f Löschen der Datei f

ALTR ‚u,fl,f2 Ändern des Datei-Namens fl in f2
LENG,u,f ‚L Kürzen der Datei-Länge auf L Sektoren
PROT ‚u,f ‚p Eingabe eines Schutzzeichens (Schreibschutz)
LIST ‚u, Listen der eröffneten Datei-Namen und der

zugehörigen Parameter
(bzw. der Parameter einer bestimmten Dateif)

Die Funktionen CREA, KILL, ALTR und LENG können auch als Befehle vom Benutzerpro-
gramm aus gegeben werden.

D ATEI-ZUGRIFF VOM PROGRAMM

Zu Platten-Dateien kann vom Benutzer-Programm sektorweise lesend oder schreibend zuge-
griffen werden. Vorher ist jedoch die Datei mit

OPEN (u,f,w)

zu öffnen; dabei wird ihr eine Arbeits-Nummer w zugewiesen, mit der im folgenden gear-
beitet wird. Der eigentliche Zugriff erfolgt durch die Befehle

GFB(w,a,s,)) Lesen von | Sektoren ab Sektor s in Kernspeicher-Feld a

PFB (w,a,s,|) Schreiben von | Sektoren ab Sektor s aus Kernspeicher-
Feld a

Durch den Befehl

CLSE (w)

wird die Datei wieder geschlossen und die Nummer w freigemacht.

- 2li -

Die Arbeits-Nummer w läuft von O bis 7; d.h. es können bis zu 8 Dateien gleichzeitig
bearbeitet werden.

Bei Multiprogramming-Systemen unter MPOS können insgesamt 32 Dateien gleichzeitig
eröffnet sein und bearbeitet werden. Der Lese-/Schreib-Zugriff über GFB bzw. PFB er-

folgt dabei nacheinander von den verschiedenen Ebenen aus in ihrer zeitlichen bzw. prio-
ritären Reihenfolge.

Beispiel: Datei mit 6 Sektoren Länge. Zugriff auf Sektoren 3 und 4 (s = 3, | = 2):

0 11 | 2 WISKLATA 5 |

1 Sektor -— |-:2 —-

= 128 byte

 4 Datei f _—

SYSTEMFEHLER

DBOS umfaßt Routinen zur Feststellung und Behandlung von Systemfehlern, insbesondere

- Netzausfall und -wiederkehr
- Kernspeicher-Parity

BUS-Fehler
Plattenzugriffs-Fehler,

die entweder zu einer Rückkehr in den DBOS-Dialogbetrieb mit Ausgabe entsprechender
Fehlermeldungen auf dem Konsolgerät führen oder vom Benutzer vorgesehene, auf seine
speziellen Bedürfnisse zugeschnittene Routinen ansprechen.

- 212 -

LISTE DER DBOS-FUNKTIONEN

Name Kommando Programmbefehl Bedeutung

CREA x x Datei eröffnen
KILL x x Datei löschen
ALTR x x Dateinamen ändern
LENG x x Dateilänge kürzen
PROT x Dateischutz eingeben
LIST x Dateiparameter listen
GET x Programm laden
RUN x Programm laden und starten
PUT x Programm ablegen
OPEN x Datei öffnen
CLSE x Datei schließen
GFB x Block lesen
PFB x Block schreiben

- 213 -

DFMS

VORBEMERKUNG

DFMS (Disk File Management System) ist ein komfortables Zugriffs- und Verwaltungssystem
für Platten-Dateien. Es schließt alle Funktionen des Grund-Betriebssystems DBOS ein, ent-
hält jedoch eine Reihe von zusätzlichen Funktionen, insbesondere:

- Eröffnen von vorübergehenden Dateien (temporary files)
- Datei-Schutzfunktionen
- Strukturierung von Dateien in Sätze (records)
- Satz-Zugriff über Satz-Nummern oder Satz-Schlüssel (keys)
- Exklusiver Zugriff zu Sätzen
- Lesen und Schreiben von Datei-Inhalten mit sequentiellem oder Random-Zusgriff.

Die Funktionen des DFMS sind bei den DIETZsystemen 621 C und 621 D identisch; jedoch
kommt vor allem letzteres wegen seiner größeren Plattenspeicher-Kapazität für das DFMS
in Betracht.

DFMS ist vor allem in Verbindung mit C-BASIC und FORTRAN IV zur Behandlung kommer-
ziell-administrativer und technisch-wissenschaftlicher Datenbestände auf Plattenspeichern ge-
eignet.

DATEI-STRUKTUREN

DFMS erlaubt den Aufbau von Dateien, die

- aus nur einem Satz
- aus mehreren Sätzen gleicher Länge

(mit Zugriff über die Satz-Nummer)
- aus mehreren Sätzen gleicher Länge sowie einem Schlüsselverzeichnis

(Index-Datei mit Zugriff über keys)

bestehen.

Art und Größe der Dutei werden bei der Eröffnung definiert. Jeder Satz hat die Größe
eines oder einer ganzen Zahl von Sektoren von je 128 byte.

Jede Datei hat einen Namen f, der max. 6 Zeichen lang ist; unter Angabe des Namens
und der Plattenspeicher-Nummer u kann zur Datei zugegriffen werden. Die Auswahl des
Satzes erfolgt entweder über die Satz-Nummer r oder auch - im Falle der Index-Datei -

- 214 -

über einen Schlüssel k. Das Schlüsselverzeichnis wird durch einen gesonderten Befehl
eröffnet, in dem insbesondere die Länge der Schlüssel (bis zu 60 Zeichen) angegeben
ist.

1 Satz
nm = | Sektoren 00T

| | Ein-Satz-Datei

r=0 Mehr-Satz-Datei

’

Index-Datei

\ + \
! '

Schlüsse lverzeichnis Datei

D ATEI-VERWALTUNG IM KOMMANDO-BETRIEB

Der Benutzer kann wieunter DBOS im Dialog Dateien eröffnen, löschen, umbenennen,
das Dateiverzeichnis ausdrucken, Programme holen und ablegen, indem er eines der
Kommandos

CREA LIST
KILL GET
ALTR RUN
LENG PUT
PROT

benutzt. CREA beinhaltet zusätzlich die Angabe der Satz-Anzahl R.

- 215 -

Hinzu kommt das Kommando

CRIN

für das Eröffnen des Schlüsselverzeichnisses einer Index-Datei.

Im Kommando-Betrieb eröffnete Dateien haben stets dauernden Charakter (permanent files);
sie sind explizit durch KILL zu löschen.

DATEI-VERWALTUNG DURCH PROGRAMMBEFEHLE

Permanente Dateien können außer durch Dialog-Kommandos auch im Programm verwaltet
werden; dazu dienen die Befehle

CREA(u,f ‚L,R) Eröffnen einer Datei mit Namen f auf Plattenspeicher u
mit R Sätzen zu je L Sektoren

KILL (u, f) Löschen der Datei f auf Plattenspeicher u
ALTR (u, fl,f2) Ändern des Datei-Namens fl in f2
CRIN(u,f ‚K) Eröffnen eines Schlüsselverzeichnisses zur Datei f mit

der Schlüssel-Länge K

Daneben kann das Programm Dateien auch vorübergehend eröffnen ("temporary" oder "scratch
files"); dies geschieht durch den Befehl

OPNW(u,w,L,R) Vorübergehendes Eröffnen einer Datei mit der Arbeits-
Nummer w

Eine so eröffnete Datei wird entweder durch den Befehl

CLSE(w) Datei w schließen

gelöscht oder dadurch, daß das Programm beendet wird und die Kontrolle wieder von DBOS
übernommen wird. Durch den Befehl

CTLC(w,f) Eintragen unter Name f in Datei-Verzeichnis

wird jedoch eine vorübergehend eröffnete Datei zu einer permanenten Datei.

- 216 -

Ende CREA KILL KILL

OPNW CLSE
| Programm

TEMPORARY CTLG PERMANENT CRIN
FILE FILE INDEX

uU
ALTR LENG PROT

D ATEI-ZUGRIFF VOM PROGRAMM

Bevor mit einer permanenten Datei gearbeitet werden kann, ist sie zu öffnen durch

OPEN (u, f,w)

wobei ihr eine Arbeits-Nummer w zugeteilt wird, auf die alle folgenden Befehle Bezug
nehmen. Entsprechendes gilt für vorübergehend eröffnete Dateien und den zugehörigen
Befehl

OPNW(u,w,L,R)

Durch den Befehl

CLSE(w)

wird eine Datei wieder geschlossen, die Arbeits-Nummer w freigegeben und die Datei,
falls sie vorübergehend eröffnet war, wieder gelöscht.

- 217 -

Eine geöffnete Datei kann mit den Befehlen

GFB(w,a,s,|) Lesen
PFB (w,a,s,|) Schreiben

sektorweise gelesen bzw. beschrieben werden, wie unter DBOS beschrieben.

Stattdessen gibt es jedoch auch die Möglichkeit der sequentiellen Beschreibung des
Datei-Inhaltes. Hierzu dienen die Befehle

RD (w,a,n) Lesen n Zahlenwerte in Speicherfeld a
WR (w,a,n) Schreiben n Zahlenwerte in Speicherfeld a

- RDS (w,a,n,c) Lesen n Zeichen bzw. bis Zeichen "c"
WRS (w,a,n,c) Schreiben n Zeichen bzw. bis Zeichen "c"

SKP (w,n,z) Überspringen z mal n Zahlenwerte (vor- oder rückwärts)
SKPS(w,n,c,z) Überspringen z mal n Z ichen bzw. z mal über Zeichen

Ic! (vor- oder rückwärts)

SETP (w,n,z) Setzen Pointer auf absolute Position (z mal n byte) im Satz
BKSP (w) Setzen Pointer auf Satzanfang

u | Datei-Satz

ui u __-. teoiel fü
RD SKP - _- SETP Beispiel für

ıSKP____--” sequentielle
WR WR | Behandlung

REW

Alle vorgenannten Befehle beziehen sich auf den Zugriff innerhalb eines Satzes. Nach
OPEN bzw. OPNW steht der Datei-Zeiger (Pointer) am Anfang des ersten Satzes der
Datei. Zur Auswahl eines beliebigen Satzes dient der Befehl

SREC(w,r) Satz r selektieren

- 213 -

Alle künftigen Befehle beziehen sich dann auf diesen Satz, wobei am Satzanfang
begonnen wird. Stattdessen kann auch mit

NREC(w) Springen zum nächsten Satzanfang

die Behandlung des folgenden Satzes eingeleitet werden.

Im Falle von Index-Dateien wird der gewünschte Satz über

SKEY(w,k) Satz zu Schlüssel k selektieren

angesprochen und der Pointer auf dessen Anfang gestellt.

Zur Behandlung des Satzschlüssel-Verzeichnisses dienen folgende Befehle:

ENTK (w,k) Schlüssel k eintragen
ALTK (w,k1,k2) Schlüssel kl in k2 umbenennen
DELK (w,k) Schlüssel k löschen

GTFK (w,a)' Ersten Schlüssel aus Verzeichnis lesen
GTNK (w, a) Nächsten Schlüssel aus Verzeichnis lesen

In Multiprogramming-Systemen kann einem Programm über die Befehle

EREC (w,r) Exklusiver Zugriff zu Satz r
EKEY(w,k) " a gemäß Schlüssel k

der alleinige Zugriff zu einem Satz erteilt werden; diese Befehle verhindern den Zugriff
von jeder anderen Programmebene aus, entsprechen im übrigen jedoch den Befehlen SREC
bzw. SKEY. Zur gleichen Zeit kann eine Programmebene nur zu einem Satz den aus-
schließlichen Zugriff haben; die Exklusivität endet mit Anwahl eines anderen Satzes oder
mit Schließen der Datei über CLSE.

- 219 -

FEHLERMELDUNGEN

Fehler bei der Dateibehandlung im Programm, z.B.

- Eröffnung doppelt definierter Dateinamen
- Zugriff zu nicht existierenden oder geschützten Dateien
- Zugriff zu exklusiv beanspruchten oder nicht vorhandenen Sätzen
- Überschreiten der Satz- bzw. Dateilänge

werden im DFMS festgestellt und abfragbar gemacht, so daß das Benutzer-Programm in
geeigneter Weise darauf reagieren kann.

LISTE DER DFMS-FUNKTIONEN

Name Kommando Programmbefehl Bedeutung

CREA x x (permanente) Datei eröffnen
CRIN x x Schlüsselverzeichnis eröffnen
KILL x x Datei löschen
ALTR x x Dateinamen ändern
LENG x x Dateilänge kürzen
PROT x Dateischutz eingeben
LIST x Dateiparameter listen
GET x Programm laden
RUN x Programm laden und starten.
PUT x Programm ablegen
OPNW x Datei vorübergehend eröffnen
OPEN x Datei öffnen
CLSE x Datei schließen
CTLG x Datei permanent machen
SREC x Satz nach Nummer anwählen
EREC x [" exklusiv anwählen
SKEY x Satz nach Schlüssel anwählen
EKEY x [en " exklusiv anwählen
GFB x Block lesen) Rand
PFB x Block schreiben) om
RD x Lesen Zahl 7
WR x Schreiben Zahl
RDS x Lesen Zeichen
WRS x Schreiben Zeichen Seauentiell
SKP x Springen über Zahl un
SKPS x Springen über Zeichen
SETP x Pointer versetzen
BKSP x Zurück zu Satzanfang

N REC x Vor zu nächsten Satzbeginn J
ENTK x Key eintragen
ALTK x Key ändern
DELK x Key löschen
GTFK x Ersten Key lesen
GTNK x Nächsten Key lesen

- 220 -

MPOS

VORBEMERKUNG

Bei Multiprogramming-Anwendungen des DIETZsystems werden

- die Programmauftrags-Verwaltung und
- die Verwaltung gemeinsamer Betriebsmittel (Ressourcen)

durch MPOS (Multi Program Operating System) geregelt. Dieses Betriebssystem, das stark
durch die Programmebenen-Struktur des DIETZ 621 unterstützt wird, ist bei Multipro-
gramming-Betrieb von BASIC und C-BASIC implementiert und ist zugleich ein Bestandteil
des für MARS 600 und BASEX verwendeten Echtzeit-Betriebssystems RTOS.

EBENEN -STRUKTUR

Multiprogramming hedeutet gleichzeitiger Ablauf mehrerer Programme, die gemeinsame
Ressourcen (CPU, Kermspeicher, Plattenspeicher, Peripherie) benutzen.

Beim DIETZsystem 621 belegt jedes dieser Programme eine "Ebene" mit einem eigenen
Register-Satz (von 128 byte Dröße), in dem der Programm-Kontext enthalten ist. Die
Ebenen und damit die Programme haben unterschiedliche Priorität, so daß im Regelfall
ein Programm auf der Ebene | die Programme auf den Ebenen 0...(l-1) unterbricht, so-
bald es läuft, d.h. die CPU benutzt.

Es wird unterschieden zwischen Benutzer-Ebenen, auf denen Anwender-Programme laufen
können, und System-Ebenen, die dem Betriebssystem vorbehalten sind. Je nach System-
Konfiguration sind 6 oder 12 Benutzer-Ebenen verfügbar:

CNP

r System-Ebenen

zunehmende

Priotität

4

System-
Ebenen

pen

 Benutzer-Ebenen
Benutzer+

 Bbenen

8 Ebenen 16 Ebenen

- 221 -

Benutzer-Ebene O ist dadurch gekennzeichnet, daß ein über DBOS (sowie bei Netzwieder-
kehr mit automatischem Restart) gerufenes Programm zunächst in dieser Ebene läuft (von der
aus dann alle anderen Benutzer-Ebenen aktiviert werden können).

Zwei bzw. vier Ebenen sind dem Benutzer nicht zugänglich; eine dieser System-Ebenen ist
für Funktionen des MPOS reserviert, die andere (CNP) für die Erkennung von Systemfehlern

(die in DBOS ausgewertet werden) sowie (im Falle des RTOS) für die Echtzeit-Uhr.

PROGRAMM-AUFTRÄGE

Zur Synchronisation der Abläufe in einem Multiprogramming-System besteht unter MPOS die
Möglichkeit, von der laufenden Ebene aus ein Programm in einer anderen Ebene |, begin-
nend an der Stelle n, zu aktivieren. Die Befehle hierzu lauten z.B.

in MARS 600: XP,I,n
in BASIC/BASEX: START I:n

Läuft kein anderes Programm in der Zielebene |, so wird es umgehend aktiviert; andern-
falls wird es in eine Warteschlange eingereiht, die vom MPOS gesteuert abgearbeitet wird.

Jedes Programm meldet sich beim MPOS ab, sobald es beendet ist; der zugehörige Befehl
lautet

in MARS 600: EJ
in BASIC/BASEX: STOP

Beispiel für Programm-Aufträge von Ebene I an Ebene 4:

Warteschlange

| Ä
STOP STOP

n LILLLIIIILIIKLLANSSIIISSSSSN 4

START 4:n START 4:n’
LLALLLLLLLLLSLLISLL SLLLLLLLLLLLLLLLLLLLLE N

-22-

RESSOURCE-VERWALTUNG

Eine zweite Funktion des MPOS ist die Verwaltung von Ressourcen, die von mehreren
Programmebenen benutzt werden.

Die Plattenspeicher des DIETZsystems 621 sind gemeinsame Betriebsmittel. Sie werden in
der Weise verwaltet, daß jeweils ein Plattenzugriff entsprechend dem jeweiligen Programm-
befehl abgewickelt wird, bevor eine andere Ebene zur Platte zugreifen kann. Liegen Zu-
griffs-Befehle von mehreren Ebenen vor, so werden sie in absteigender Reihenfolge der
Prioritäten nacheinander abgearbeitet.

MPOS regelt außerdem den exklusiven Zugriff zu einem Satz einer Datei, der von jeder
Ebene aus einmal gleichzeitig möglich ist.

In ähnlicher Weise wie der Platten-Zugriff werden das unter RTOS ansprechbare Analog-
Meßsystem und ähnliche, mit direktem Speicherzugriff arbeitende Systeme verwaltet.

Peripherie-Geräte, wie Drucker, Bildschirm-Terminals usw. sind beim DIETZsystem 621
von allen Benutzer-Ebenen aus anzusprechen. Für den Fall, daß Konflikte (gleichzeitiger
Zugriff mehrerer Ebenen auf ein: Peripheral) zu befürchten sind, kann das betreffende
Periphergerät mit der Geräte-Nummer d vom Benutzer-Programm zur alleinigen Benutzung
angefordert und später wieder freigegeben werden; dazu dienen die Programmbefehle

PREQ(d) Ressource danfordern und belegen, wennfrei
PREL (d) Ressource d freigeben
RRQW (d) Ressource d anfordern, belegen wenn frei bzw .warten bis frei

Diese Befehle können zur Verwaltung nicht nur von Periphergeräten, sondern auch belie-
biger anderer Betriebsmittel im Sinne von Semaphoren verwendet werden, z.B. von Pro-
grammen, Speicherbereichen usw.

- 223 -

RTOS

VORBEMERKUNG

RTOS (Real Time Operating System) ist ein Echtzeit-Betriebssystem, das Prozeßanwendungen
des DIETZsystems 621 unterstützt und in Verbindung mit den Programmiersprachen MARS 600
und BASEX arbeitet.

Es bietet - neben denen des MPOS - folgende Funktionen:

- Laufende Führung der Echtzeit
- Verwaltung von Zeitaufträgen
- Verwaltung von Interrupts
- Behandlung der Prozeßperipherie.

MARS 600 und BASEX benutzen zwei Versionen des RTOS, die geringfügige Unterschiede
aufweisen, in den Grundzügen jedoch identisch sind. Die einzelnen Programmbefehle sind
den Sprachbeschreibungen zu entnehmen; im folgenden werden BASEX-Beispiele herangezogen.

EBENEN-AUFTEILUNG

Unter RTOS werden die Programmebenen des DIETZsystems 621 bestimmten Funktionen zuge-
ordnet:

- Systemebenen: wie MPOS
- Benutzer-Ebenen: 2 oder 4 Interrupt-Auftragsebenen

1 Zeitauftrags-Ebene
3 oder 7 allgemeine Benutzer-Ebenen

Je nach Systemkonfiguration ergibt sich folgende Aufteilung:

I System-Ebenen

s

- Benutzer-Ebenen} System-Ebenen

FIR.

Benutzer-Ebenen

ALLG. 2
BENUTZER _]

0

8 Ebenen 16 Ebenen

- 224 -

ECHTZEIT-UHR

Unter RTOS wird laufend die Echtzeit geführt. Sie wird von der quarzgesteuerten Uhr der
CPU abgeleitet und ist mit einer Auflösung von 1, 10, 100 oder 1000 ms verfügbar (kon-
figurationsabhängig). Zu Beginn der Programmausführung läuft die Echtzeit-Uhr von Null an.

ZEITAUFTRAGS-VERWALTUNG

Das System kann von beliebigen Benutzer-Ebenen aus veranlaßt werden, zu vorgegebenen
Zeiten bestimmte, programmierte Funktionen (Zeitauftrags-Routinen) durchzuführen.

Ein Zeitauftrag lautet beispielsweise:

108 AFTER 258 : LET OUTB(2)=1 (Nach 250 ms Bit-Ausgang 2 setzen).

Zeitauftrags-Routinen laufen in einer eigens dafür reservierten Benutzer-Ebene mit relativ
hoher Priorität ab.

Es können gleichzeitig bis zu 40 Zeitaufträge geführt werden. Werden zwei oder mehr
Zeitaufträge zur gleichen Zeit aktuell, so werden sie nacheinander abgearbeitet.

INTERRUPT-VERWALTUNG

Interrupts im Sinne des RTOS sind statistisch auftretende Signale aus dem Prozeß, die auf
Interrupt-Eingänge wirken und auf die das System in vorbestimmter Weise zu reagieren hat;
die Reaktion besteht aus einer programmierten Interrupt-Routine.

Das System kann von beliebigen Benutzer-Ebenen aus beauftragt werden, einen eintreffen-
den Interrupt mit einer bestimmten Reaktion zu beantworten. Beispiele für Interrupt-Aufträge:

2 ON INT 6 : LET A = INA(3) (Bei Auftreten von Interrupt 6: Analog-
eingang 3 nach A).

358 ON INT 1 : GOTO 50 (Bei Auftreten von Interrupt 1:

508 CALL HLTC() Zähleingang £ schließen und
518 LET Z12 = INC() Zählerinhalt nach Z12).

- 225 -

Interrupt-Routinen laufen in 2 bzw. 4 hierfür reservierten Benutzer-Ebenen mit hoher
Priorität. Je nach ihrer Nummer sind die Interrupt-Eingänge einer dieser Ebenen zuge-
ordnet und haben damit untereinander verschiedene Priorität bei der Ausführung der zu-
gehörigen Routinen. |

Interrupt-Eingänge können einzeln maskiert und wieder geöffnet werden:

DISAB 1,2
ENAB 2

(Interrupt 1 und 2 verhindern)
(Interrupt 2 zulassen)

Auch bei maskiertem Eingang werden eintreffende Interrupts gespeichert; sie werden bei
Wiederzulassung sofort wirksam. Bei Beginn der Programm-Ausführung sind alle Interrupt-
Eingänge maskiert; erwünschte Interrupts sind durch ENAB zuzulassen.

Treffen mehrere Interrupts, die zur gleichen Ebene gehören, gleichzeitig oder während des
Laufs einer Interrupt-Routine auf einer Ebene ein, so werden sie nacheinander in der Rei-
henfolge steigender Nummern abgearbeitet. Dagegen unterbrechen Interrupts, die zu einer
höheren Ebene gehören, Interrupt-Routinen in niedrigen Ebenen (sowie eine eventuell lau-
fende Zeitauftrags-Routine und Programme in den allgemeinen Benutzer-Ebenen).

PROZESSPERIPHERIE

Das RTOS unterstützt die gesamte Prozeßperipherie des DIETZsystems 621; jedoch werden
im allgemeinen nur die I/O-Treiber in das RTOS aufgenommen, welche die jeweilige
Systemkonfiguration benötigt.

Außer den oben erwähnten Interrupt-Eingängen sind u.a. folgende Prozeßanschlüsse an-
sprechbar:

Statische digitale Eingänge:

Speichernde digitale Ausgänge:

Einkanal-Analogeingänge:

Einkanal-Analogausgänge:

- 226 -

INB(x) Bitweise Abfrage
INW(x) Wortweise Abfrage binär
IND(x) " " BCD

OUTBk) Bitweise Ausgabe
OUTW(x) Wortweise Ausgabe binär
OUTD(x) " " BCD

INA(x)

OUTAK)

Analog-Meßsystemee CALL ADCS (a,q,k)
CALL ADCD(a, q,k)
CALL ADCM(a,q,k)

- Zähleingänge: OUTC (x)
INC (&)

CALL ACTC (x)
CALL HLTC (x)

- Zeitausgänge: OUTT(x)

Bemerkung:

CALL ACTT (x)

Nummer des Ein-/Ausgangs
Speicherfeld
Anzahl Meßwerte
(Basis-) Meßkanal”

a
o
a
o

ao
x

- 227 -

Einkanal-Messung
Doppelkanal-Messung
Mehrkanal-Messung

Setzen

Abfragen
Öffnen

Schließen

Setzen

Aktivieren

MARS 600

MARS 600 (Makro-Assembler für Realtime-Systeme) bietet die Möglichkeit, DIETZ 621-
Systeme für Echtzeit- und Prozeßbetrieb zu programmieren.

MARS 600 ist eine Erweiterung der Assembler-Sprache des DIETZ 621; alle Elemente des
Assemblers MINCASS 600 M sind darin enthalten (siehe Abschnitt ASSEMBLER). MARS 600-
Programme stützen sich auf das Echtzeit-Betriebssystem RTOS.

Im folgenden sind alle Makrobefehle aufgeführt, die für MARS 600 spezifisch sind.

PROGRAMMBEGINN UND -ENDE

Diese Befehle dienen zum Initialisieren bestimmter Funktionen des Betriebssystems, zum
Abschluß von Auftragsprogrammen und zur Beendigung des Gesamtprogramms:

BGN Initialisiert Teilfunktionen des Betriebssystems (z.B. System-Uhr)

EJ Beendet ein durch XP, XD, XT oder XI ausgelöstes Auftragspro-
gramm; die betreffende Ebene meldet sich beim Betriebssystem ab
und wird für ein anderes Programm frei.

END Ende des Gesamtprogramms (mit Rückgabe der Kontrolle an DBOS).

PROGRAMM-VERWALTUN G

Von jeder Benutzer-Ebene aus können Programme gestartet werden, die in anderen Benutzer-
Ebenen (außer in den Zeit- und Interrupt-Ebenen) laufen. Sofern die beauftragte Ebene frei
ist (und in keiner anderen höheren Ebene ein Programm aktiv ist), wird das Auftragsprogramm
unverzüglich begonnen; andernfalls wird es in eine Warteschlange von Programmen eingereiht,
die nacheinander abgearbeitet werden.

XPm,® ‚| In Ebene | wird ein Programm gestartet, das an der
2% A,addr Stelle addr beginnt

ZEITVERWALTUNG

Die in RTOS laufend geführte Systemzeit, die von der quarzgesteuerten Rechner-Uhr gesteuert
wird, erlaubt die Erteilung von Programmaufträgen, die mit einer angebbaren Verzögerung
oder zu einem bestimmten Zeitpunkt ausgeführt werden. Außerdem kann die Systemzeit ab-
gefragt und neu gesetzt werden.

- 228 -

XDm, @,h
2% A, addr

XTm,@,h
2*A,addr

SEC

MIN

HOUR

TIME

INTERRUPT-VERWALTUNG

Realtivzeit-Auftrag. Löst nach einer Zeitverzögerung t
ein Programm auf der Zeitebene aus, das an der Stelle
addr beginnt. Die Zeit t (ms) steht in ® (bei h = 0)
bzw. in®@ und ®@+ (bei h =).

Absolutzeit-Auftrag. Löst zum Zeitpunkt T der System-
Uhr ein Programm auf der Zeitebene aus, das an der
Stelle addr beginnt. Die Zeit T steht in @ und hat die
Bedeutung Sekunden (h = 0), Minuten (h = 1) oder
Stunden (h = 2).

Liefert den Sekunden-Teil der Systemzeit (in @).

Liefert den Minuten-Teil der Systemzeit (in ®).

Liefert den Stunden-Teil der Systemzeit (in ®).

Setzt den Sekunden-, Minuten- und Stunden-Teil der
Systemzeit auf den Inhalt von @, @+1 und @ +2.

Auf externe Interrupts reagiert das System durch Auftragsprogramme, die durch einen Makro-
befehl der Interrupt-Nummer i zugewiesen werden und die bei Eintreffen des Interrupts auf
einer der Interrupt-Ebenen ablaufen:

ß... 31
32... 63
64... 95
96...123

il

Interrupt-Ebene |
nt

1 zunehmende Priorität

P
@
o
M
r
m

Gleichzeitig eintreffende Interrupts, die zu einer Ebene gehören, werden in der Reihenfolge
zunehmender Nummern i nacheinander abgewickelt.

Weitere Makrobefehle dienen zum Maskieren und Öffnen der Interrupt-Eingänge sowie zum
Löschen gespeicherter Interrupts. Zu Programmbeginn sind alle Interrupts maskiert.

Xlm, ©;i
2*A,addr

Elm, ®,i

Dim, Oi

Clim, ®,i

Weist dem Interrupt i ein Auftragsprogramm zu, das
bei addr beginnt.

Öffnet den Interrupt-Eingang i.

Schließt (maskiert) den Interrupt-Eingang i.

Löscht einen eventuell gespeicherten Interrupt am
Eingang i.

(Auch bei maskiertem Eingang wird ein eintreffender
Interrupt gespeichert. CI ist im Normalfall nicht nötig ,
da bei Beginn eines Interrupt-Auftragsprogramms der
Interrupt-Speicher automatisch gelöscht wird).

- 229 -

DIGITALE EIN/AUSGÄNGE

Die folgenden Befehle dienen zur Behandlung von statischen digitalen Eingängen und
speichernden digitalen Ausgängen. Jeweils 16 davon befinden sich auf einem Einkarten-
Interface, das bei wortweiser (16-bit-weiser) Behandlung durch seine Nummer x (x = 0,
1, 2...) gekennzeichnet ist. Jedes Bit der Interfaces kann auch einzeln behandelt werden;
seine Nummer y ist anzugeben (y = 0...15 fürx = 0; y = 16...31 für x = 1, usw.).

IWm ‚®,x Wortweise Abfrage von Eingang x nach ®, ® +1

Bm ‚@,y Bitweise Abfrage von Eingang y nach @ (Bit 0)

TBm ‚„®,y Testen von Bit-Eingang y. Falls Ergebnis = I, Sprung
2*A,addr nach der Stelle addr; sonst Fortsetzung des Programms

mit dem nächsten Befehl.

OWm,®@‚x Wortweise Ausgabe von @ , @+1 nach Ausgang x.

OBm ‚®,y Bitweise Ausgabe von ®(Bit 0) nach Ausgang y

ABm ‚®,y Bit-Ausgang y auf 1 Setzen.

CBm ‚@,y Bit-Ausgang y nullstellen.

ZÄHLEINGÄNGE UND ZEITAUSGÄNGE

Mit den folgenden Befehlen werden 16-bit-Zähleingänge und 16-bit-Zeitausgänge (Timer)
behandelt, die sich auf Einkarten-Interfaces befinden und die durch eine Nummer x (x = 0,

1, 2...) gekennzeichnet sind.

ICm ‚® ‚x Wortweise Abfrage von Zähler x nach ®, @ +1

OCm, ® ‚x Wortweise Ausgabe von @, @+1 nach Zähler x

CCm, @® ‚x Zähler x nullsetzen

ACm, @,x Zähleingang x öffnen

HCm, ® ‚x Zähleingang x schließen

OTm, ® ‚x Wortweise Ausgabe von @, ®+1 nach Zähler x

ATm ,® ‚x Timer x auslösen

- 230 -

WATCHDOG

Die Watchdog enthält eine Zeitschaltung, die vom Programm laufend angestoßen werden
soll. Unterbleibt der Anstoß für eine längere als die eingestellte Zeit, z.B. durch einen
Fehler, so wird ein Alarmkontakt betätigt.

AW

ANALOGE EIN/AUSGÄNGE

Anstoßen Watchdog

Die folgenden Befehle dienen zur Abfrage von Einkanal-Analogeingängen (12 bit) und
Einkanal-Analysenausgängen (10 bit), die sich auf Einkarten-Interfaces befinden und - ge-
trennt - durch Nummer x x = 0, 1, 2...) gekennzeichnet sind. Ein weiterer Makrobefehl
steuert das mit bis zu 64 Meßkanälen ausgerüstete Analog-Meßsystem (12 bit).

Am ‚@,x

OAm,® ‚x

GAm,®,h'
2%* A,addr

D,k
D,q

Abfrage Analogeingang x nach @ , (+1 (rechtsbündig)

Ausgabe von @ , @+1 (rechtsbündig) nach Analogaus-
gang x

Auslösung des Analog-Meßsystems. Es werden q Meß-
werte des Kanals k bzw. ab Kanal k in ein Speicher-
feld übertragen, das an der Stelle addr beginnt.

Es bedeutet h = 0: Einkanal-Messung (nur k)
h = 1: Zweikanal-Messung (k,k+l,k,k+l,...)
h = 2: Mehrkanal-Messung (k,k+1,k+2,...)

Enthält das Meßsystem keinen Selbststeuer-(DMA-) Zusatz,
so sind für h statt 0/1/2 die Konstanten 3/4/5 anzuge-
ben.

Bei Zweikanal-Messung sind für k nur gerade Zahlen

(0, 2, 4, ...) erlaubt.

Im Speicherfeld sind 2 Bytes je Meßwert zu reservieren;
die Werte werden dort rechtsbündig abgelegt.

- 231 -

SYSTEMFEHLER

Bei Systemfehlern (sich ankündigender Netzausfall, BUS-Fehler, Kernspeicher-Parity-Fehler)
wird die höchste Ebene des Systems aktiviert. Der Benutzer kann angeben, welche Fehler-
behandlungsprogramme in einem solchen Fall ausgeführt werden sollen. Dies geschieht durch
Makrobefehle, die vom Benutzer-Programm einmal durchlaufen werden sollen und die den
Fehlern bestimmte Sprungadressen zuweisen.

POWF Bei Netzausfall: Fehlerprogramm ab Stelle addr
2XA, addr

BUSF Bei BUS-Fehler: Fehlerprogramm ab Stelle addr
2%A,addr

MEMF Bei Speicher-Fehler: Fehlerprogramm ab Stelle addr
2xA,addr

HINWEISE

@ bedeutet Akkumulator (Register-Adresse‘ 02)
@ +1 n n +1 (" u ’03)

@ +2 " u +2 (u u '04)

m bezeichnet die Adressierungsart (C, X, R, L oder A). Beispiele für IAm,@ ‚x:

IAC,® „3 x=3 (Konstante)
IAX,®, ‚Sr x = << '’5F>> (Indexregister '5F)
IAR ,@ ‚REG x= <REG> (Register REG)
IAA, @,ADR x = <ADR> (Absolute Adresse ADR)

MARS 600 benutzt die ersten 64 Register jeder Benutzer-Ebene (’ß@...’3F). Die restlichen

64 Register (’4B...7F) stehen dem Benutzer zur freien Verfügung. Außerdem werden der
Akkumulator ® ("2) sowie ggfs. die folgenden Register-Plätze (03, ’®4, ...) bei den
MARS-Makrobefehlen häufig zur Übergabe von Daten benutzt.

- 232 -

LISTE DER MAKROBEFEHLE

Makro Bedeutung

BGN Begin
EJ End Job
END End

XD Execute with Delay
XxT Execute at Time

SEC Seconds
MIN Minutes
HOUR Hours
TIME Time

xl Execute on Interrupt

EI Enable Interrupt
DI Disable Interrupt
ei Clear Interrupt

XP Execute Program

IW In Word
IB In Bit
TB Test Bit

OW Out Word
OB Out Bit
AB Activate Bit
CB Clear Bit

IC In Counter
eis Out Counter
cc Clear Counter
AC Activate Counter

HC Halt Counter

OT Out Timer
AT Activate Timer

AW Activate Watchdog

IA In Analog
OA Out Analog

GA Get Analog

POWF Power Failure
BUSF Bus Failure
MEMF Memory Failure

- 233 -

BEISPIEL EINES MARS 600-PROGRAMMS

SEITE RBRBR@

ANAR
mAam]
ana?
aeam3
mnapd
AmaS
rane
20237
28
2929
221@
rall
2812
"213
ralı
AA1S
RR16
2917
2313
2219
a2
pa2ıl
nRa22
MR23
MA2a
RAm25
?rA26
Rm27
AM2R
2929
ARMZPR

1231
rAA32
AM33
2934
RmM35
236
Rm37
na38
2739

2%

2%*

2%

2x

ax

ex

D<<LDC ,e@

OWC »®

ARF RR

INEC, !41

BGN

xIC

XIC

xIc

EIC
EIC
FIC

END

XPC
A
EJ

XPC
A
EJ

LDC '4]

LDCD, @
xXDC »®
A

E.J

EJ

LDC „'4R

IWC 3 @

WC ‚®

INFC> !479

EJ
zZ
ur

“
6
0
%

\
“
.

.
.

\
s

.
3

D
a
m \s

“
h
s

V
e

n
i

DI
=

.
1
.

W
e

23

E55 E

- 234 -

e
s

sl

31
SE
FD

3A

23

49

93

4m

236

4]

gP

4ß
3A

32
AI
29
Aal
3A

40
39
39
aß

IC
22

el

At
E83
2]

ei

28
Er

RF

#1

EB
AR
FF
31

46

FD

FD

FD

FD

DE
43

PD

38

3A

3A

3A

3A

3A
3A

3A
3A

Sl

Sl

4a

4a

ca

ca

A Ca

ER
15

8
Ed

49

49

493

49
ı 49
43

43

49

ua
AR

BASIC

BASIC ist eine intemational gebräuchliche, am Dartmouth-College entwickelte Programmier-
sprache für mathematische und technisch-wissenschaftliche Aufgaben. Sie ist besonders leicht
erlernbar und bietet dem Benutzer die Möglichkeit, im Dialogbetrieb zu arbeiten.

Im folgenden ist BASIC so beschrieben, wie es in den DIETZ 621-Systemen implementiert
ist.

BASIC-STATEMENTS

REM m REM Kommentar

Dient zur Einfügung von Bemerkungen; wird bei Ausführung übergangen.
Beispiel:

AA FEM ANSGANG 2 NULLSETZEN

LET m LET Variable = Ausdruck
m LET Variable 1 = Ausdruck 1, Variable 2 = Ausdruck 2, ...

Weist einer oder mehreren Variablen den Werteines Ausdrucks zu.

Beispiele:

ıaA LET A=5.?

75 LET X2P22=X?21 AYD CINRCE) OR INBCITD

355 LET J=W+HINACD>N=Nt+]

INPUT m INPUT Variable 1, Variable 2, ...
m INPUT "Text", Varaibale 1, Variable 2, ...

Bewirkt Eingabe von Daten über ein Periphergerät, das mit PRINT DEV
spezifiziert werden kann. Die Daten werden den Variablen nachein -
ander zugewiesen. Ein zwischen Anführungszeichen stehender Text
wird vorher auf dasselbe Gerät ausgegeben.

Beispiele:

IRPR INPUT X YsSAuM
195 PM INPHIT AS
122 INPUT "KOVNTEOLLWERT "sKYT

-235 -

PRINT

DATA

READ

PRINT "Text"
m PRINT Ausdruck 1, Ausdruck 2, ...

PRINT "Text", Ausdruck 1, Ausdruck 2, ...
PRINT DEV (Gerät) ...
PRINT FMT (Format) ...
PRINT TAB (Spalten) ...
PRINT

3
3

3
3
3
3

Bewirkt Ausgabe von Daten auf einem Periphergerät, das mit DEV
spezifiziert werden kann. Zwischen Anführungszeichen stehende Texte
werden direkt ausgegeben. Bei Ausdrucken wird der Wert berechnet und
dieser ausgegeben, wobei das Format über FMT spezifizierbar ist. TAB
laßt so viel Leerspalten, wie der dahinter in Klammern stehende Ausdruck
ergibt. PRINT ohne weitere Angaben bedeutet "Leerzeile".
Beispiele:

73? PFINT "ERSERNIS"

74m PRINT As PsC> AXKFP+C

755 FFINT "FFGERVNIS'SBKF+C, T{5

77-® PEINT FMTCFSe DS A>sF>s FMTCEL2.DSE

777 PFINT TAPCORA«SINCDI+H IM. SI5

73 PRINT

2PS PFINT DEVC6O)JS '"MFSSPEUOGHAMM'

m DATA Konstante 1, Konstante 2, ...

Eröffnet eine Liste von Konstanten, die durch READ Variablen zugewie-
sen werden. Die Konstanten aller DATA-Anweisungen gehören zu einem
Block in der Reihenfolge der Auflistung bzw. der Zeilen-Nummern.
Beispiele siehe READ,.

m READ Variable I, Variable 2

Weist den Variablen Konstanten aus dem DATA-Block zu.

Beispiele:

5? TETA 190, 5e Ads me ARMANI

1975 DATA "AP", 3. 14165 3276%> 47 11>s 1

2PE&EP READ 4>V1,V2

275 RFAD TEXTE

335 RFAD PI>P215>FEDC> EINS

- 236 -

RES

GOTO

GOSUB

Zugewiesen wird:

1ßß-=H, 5.24-=V1, -0.0003 =V2
AB ->TEXT
3.1416 PI, 32768 P215, 4711-=EDC, I-»EINS

m RES

m RES n

Setzt den DATA-Zeiger auf den Beginn des ersten DATA-Feldes zurück
bzw. auf das DATA-Feld mit der Nummer n. Die nächste READ-Anwei-
sung liest wieder von dort.
Beispiele:

uam PES
45M RES 26m

m GOTO n
m GOTO Ausdruck OF nl, n2

Setzt das Programm bei der Anweisung mit der Nummer n fort. In der
Form des berechneten GOTO wird das Programm an der Stelle nl, n2,...
fortgesetzt, je nachdem, ob der Wert des Ausdrucks gleich 1, 2, ...
ist. Ist der Wert des Ausdrucks kleiner als I oder größer als die An-
zahl der Nummern, wird die darauf folgende Anweisung ausgeführt.
Beispiele:

34 30T0 1Re@
ı2Pr 30TD PrINJCTI OF 182529 155

m GOSUB n

m GOSUB Ausdruck OF nl, n2, ...

Ruft ein Unterprogramm auf, das mit der Anweisung n beginnt. Nach
Rückkehr aus dem Unterprogramm (durch RETURN) wird die Anweisung
mit der auf m folgenden Nummer ausgeführt. Das berechnete GOSUB
entspricht dem berechneten GOTO.
Beispiele:

em5 SOSUF A OF 3195 3203 3385 355

era TOSUF 1335

- 237 -

RETURN

FOR

NEXT

m RETURN

Bewirkt den Rücksprung aus einem Unterprogramm.
Beispiel:

339 RETURN

m IF Bedingung THEN n

Verzweigt zur Anweisung n, wenn die Bedingung erfüllt ist; andernfalls
wird die Anweisung mit der auf m folgenden Nummer ausgeführt. Als
Bedingung kann eine Gleichung oder eine Ungleichung eingesetzt wer-
den, aber auch ein Boole’scher Ausdruck (erfüllt,wenn Wert = 1) oder
ein arithmetischer Ausdruck (erfüllt,wenn Wert ungleich 0).
Beispiele:

PA IF X/5>=\ THEN 69
BA IF A OF P OR INEC®) THEN 35
15M IF X12-1 TAEN 125
252 IF TWCE)=A THEN 312
3m IF 3*INAC1)+612< 1A24 THEN 330

m FOR Laufvariable = Ausdruck 1 TO Ausdruck 2

m FOR Laufvariable = Ausdruck 1 TO Ausdruck 2 STEP Ausdruck 3

Eröffnet eine Programmschleife; die zu Anfang auf den Wert des
Ausdrucks 1 gesetzte Laufvariable wird durch die Anweisung NEXT so
oft um I bzw. den Wert des Ausdrucks 3 erhöht, bis der Wert des
Ausdrucks 2 erreicht oder überschritten ist; danach wird die Schleife

beendet.
Beispiele siehe NEXT.

m NEXT Laufvariable

Schließt eine Programmschleife formal ab. Nach dem letzten Durchlauf
wird die Anweisung mit der auf m folgenden Nummer ausgeführt.
Beispiele:

15? FOR I=1 TO 4

155 LET ZCII=INWVCP+D)

16AM NEXT I

- 238 -

DIM

CHAR

DEF

CALL

END

m DIM Feld 1, Feld 2, ...

Reserviert im Speicher ein- und zweidimensionale Felder von Zahlen-
variablen, Einzelvariablen und Overlay-Felder für Programmoduln.
Beispiel:

am BIM REIS AFFYCS5> 1P)sAC1I34)

m CHARString 1, String 2, ...

Reserviert im Speicher Stringvariablen.
Beispiel:

3A CHAP TX$C 12), TOTOSC 32)

m DEF FN... (Argument) = Ausdruck

Definiert eine Funktion. Nach FN steht Name. Das Argument ist eine
Variable, die im Ausdruck rechts vom Gleichheitszeichen wieder vor-
kommen muß. FN... wird im Augenblick des späteren Aufrufs der durch
den jeweiligen Wert der Variablen bestimmte Ausdruck zugewiesen.
Beispiel:

175 DEF FNEFCHRCX)= 1. 4°«SINCX)I)KEXPC=-.5*X)

m CALL Name
m CALL Name (Parameter)

Ruft eine Systemprozedur auf, die mit der Übergabe von bis zu 4
Parametern verbunden sein kann.

Beispiel:

eaAa CALL LDSTCAC@)>FES>4)

m END

Beendet den Ausführungsbetrieb und läßt das System in den Bedienungs-
betrieb zurückkehren.
Beispiel:

3ARA FND

- 239 -

WEITERE SPRACHELEMENTE VON BASIC

Namen:

Zahlenvariablen:

Stringvariablen:

Zahlenkonstanten:

Stringkonstanten:

Operatoren:

Funktionen:

Klammerung:

Buchstaben, u.U. gefolgt von bis zu 3 Buchstaben oder Ziffern.

Gekennzeichnet durch Namen. Können einfach oder doppelt
indiziert sein. Interne Darstellung als Gleitkomma-Zahlen
(3 byte Mantisse, 1 byte Exponent; Genauigkeit der Mantisse

10°/, Exponent 10+40),

Gekennzeichnet durch Namen mit Suffix 3. Bestehen aus 2 oder
mehr Zeichen. In Teilstrings zerlegbar, z.B. AZ (p,l).

In beliebigem Format anzugeben.

ASCII-Zeichen in Anführungszeichen eingeschlossen, z.B. "ABC",

+ Addition
- Subtraktion
* Multiplikation
/ Division
4 Potenzierung

NOT Negation
AND Konjunktion
OR Disjunktion

MIN Minimum

MAX Maximum

< kleiner
< = kleiner oder gleich
= gleich
+ ungleich
>= größer oder gleich
> größer

& Stringverkettung

ABS Absolutwert
INT Ganzzahl-Teil
SGN Vorzeichen

SQR Quadratwurzel
SIN Sinus

COS Cosinus

TAN Tangens
ATN Arcustangens

LOG Natürlicher Logarithmus
EXP Exponentialfunktion

RND Zufallsfunktion

mit runden Klammern beliebig zulässig

- 240 -

PROGRAMM-SEGMENTIERUNG

Bei plattenunterstützten Systemen ist es möglich, BASIC-Programme zu segmentieren. Diese
bestehen aus einem residenten Teil (ROOT), der nacheinander verschiedene Programmteile
(SEGMENTE) von der Platte in einen Overlay-Bereich lädt und zur Ausführung bringt.

ROOT

LINK ENDS |

1 2 3 4 5 SEGMENTE

Zu beachten ist, daß nur ein Overlay-Bereich existiert, d.h. sich zur gleichen Zeit nur
1 Segment im Speicher befinden kann; außerdem können Segmente keine weiteren Segmente
rufen. Dies gilt auch für Multiprogramming-Anwendungen von BASIC unter MPOS, wo seg-
mentierte Programme zweckmäßig nur in einer Ebene laufen und die Programme aller anderen
Ebenen resident zu halten sind.

Die zugehörigen Statements lauten:

LINK m LINK Name

Lädt das Segment mit dem angegebenen Namen und bringt es,
beginnend mit m, zur Ausführung.
Beispiel:

e5®P LINK ADAM

ENDS m ENDS

Bewirkt die Rückkehr in die Root und zur Ausführung des auf

LINK folgenden Statements.

Zur Generierung bzw. Verkettung eines segmentierten Programms dienen später beschriebene
Kommandos.

- 241 -

D ATEI-ZUGRIFFS-BEFEHLE

Die unter dem Basis-Betriebssystem bzw. dem Datei-Verwaltungssystem zulässigen Zugriffs-
befehle sind in Abschnitt DBOS undDFMS beschrieben. Sie werden mit CALL... (...)
aufgerufen.

SYSTEMPROZEDUREN IN BASIC

BASIC enthält in der Grundversion folgende Systemprozeduren:

String-/Zahl-Umspeicherung: CALL LDST (a,b3,|)

CALL STST (a,b$,l)

MULTIPROGRAMMING-BASIC

Der String b3 wird mit dem Inhalt
des Zahlenfeldes a geladen; es
werden | Bytes übertragen.

DerInhalt des Strings bZ wird im
Zahlenfeld a gespeichert; es werden
| Bytes übertragen.

BASIC kann unter MPOS in mehreren Benutzer-Ebenen laufen. In dieser Multiprogramming-
Version von BASIC sind folgende Systemvariablen bzw. Systemprozeduren zusätzliche vorge-
sehen:

Ebenen-Bindung: LEV

Ressource-Verwaltung: CALL PREQ (d)

CALL PREL (d)

- 242 -

Liefert die Nummer der laufenden

Ebene.

(Verwendbar z.B. als ebenen-abhän-
giger Index).

Fordert das Peripheral d für die
laufende Ebene an und belegt es,
wennfrei.

Gibt das Peripheral d frei.

KOMMANDOS

LIST
LIST m,
LIST m,n
LIST m

SCRATCH
DELETE m,
DELETE m,n
DELETE m

RUN
RUN m,
RUN m,n
RUN m

Gesamtes Programm listen
Programm ab Anweisung m listen
Programm von Anweisung m bis n listen
Anweisung m listen

Gesamtes Programm löschen
Programm ab Anweisung m löschen
Programm von Anweisung m bis n löschen
Anweisung m löschen

Programm starten (bei der niedrigsten Anweisungsnummer)
Programm ab Anweisung m starten
Programm starten bei Anweisung m (stoppt bei Anweisung n)
Programm starten bei Anweisung m

Kommandos für die. Erzeugung segmentierter Programme:

LOAD Name

SAVE Name

INIT
ROOT? Name

SEGMENT? Name |]
SEGMENT? Name 2

SEGMENT? #

KORREKTUREN

RUBOUT

Root bzw. Segment laden
n n u ablegen

Segmentiertes Programm verketten (initialisieren)

Dialog

Eliminiert vorangehendes Zeichen
Eliminiert 2 vorangehende Zeichen

Eliminiert alle vorangehenden Zeichen der Zeile

- 243 -

BASIC-Beispiel 1

LIST
122 REM PROG RAMMBEISPIEL 2 MC6
1180 DEF FNFOXI=SINODIKEXPC-« 1+X)
115 FOR 1=8 TO 15 STEP «+5
128 PRINT TABC38.5+15*FNFCIYDI5 "x"
149 NEXT I
1520 END

*READY

RUN
*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

x

*
*

*

*

*

*

*
*

*READY

- 244 -

BASIC-Beispiel 2

LIST
il REM PROGRAMMBEISPIEL 11 MC6
id REM "EWIGER KALENDER"
20 PRINT "WELCHES DATUM "5

38 INPUT K>M>C

35 LET K1=K,>M1=M,CI1=C

48 LET C=C/188;sD=SINTC. 1+1BB*CC-INTCCYII>C=INTCO)

5@ LET M=M-2

68 IF M>2 THEN 108

78 LET M=M+12,D=D- 1

8@ IF D>B THEN 188

98 LET D=99, C=C-1

188 LET X=INTCC26*&M-2) /1D) +K+D+INTCC/A)+INTCD/4)- 2x&C

185 IF X<6 THEN 11@

186 LET X=X-7

187 GOTO 125

118 PRINT "AM'SK15".- "3MI135 C1S "IST

128 GOTO x+1 OF 148» 150» 168» 178» 180» 19905 130

13@ PRINT " SAMSTAG"

135 GOTO 28

148 PRINT " SONNTAG"

145 GOTO 228

158 PRINT °” MONTAG"

155 GOTO 28

168 PRINT " DIENSTAG"

165 GOTO 2B

17@ PRINT " MITTWOCH"

175 GOTO 208
188 PRINT " DONNERSTAG"
185 GOTOD 28
198 PRINT " FREITAG"
288 GOTO 28
elß END

*READY

RUN
WELCHES DATUM ?1>45 1973
AMI «4 ©1973 IST SONNTAG
WELCHES DATUM ?29,4> 1973
AM29 +4 .1973 IST SONNTAG
WELCHES DATUM ?39> 45 1973
AM3O +4 .1973 IST MONTAG
WELCHES DATUM ?15 5» 1973
AMI e5 .1973 IST DIENSTAG
WELCHES DATUM ?STOP

*READY

- 245 -

BASEX

BASEX ist eine am Physikalischen Institut der Universität Freiburg entwickelte Programmier-
sprache für Echtzeit-Anwendungen. Sie enthält außer dem kompletten Sprachumfang von
BASIC weitere Sprachelemente für Echtzeit-Verarbeitung im Multiprogramming sowie für
Prozeß-Ein/Ausgaben.

Im folgenden ist BASEX so beschrieben, wie es in den DIETZ 621-Systemen implementiert
ist. BASEX wird vom Echtzeit-Betriebssystem RTOS unterstützt, das Bestandteil jedes BASEX-
Systems ist.

STATEMENTS AUS BASIC

REM

LET

INPUT

PRINT

DATA

READ

RES

GOTO

GOSUB

RETURN

IF

FOR

NEXT

DIM

CHAR

DEF

CALL

END

Kommentar

Wert-Zuweisung

Eingabe in Periphergerät

Ausgabe auf Periphergerät

Konstanten-Liste

Lesen aus Konstanten-Liste

Versetzen Zeiger Konstanten-Liste

Sprung

Unterprogramm-Sprung

Rücksprung aus Unterprogramm

Bedingte Verzweigung

Schleifen-Beginn

Schleifen-Abschluß

Reservierung dimensionierter Zahlen-Variablen

Reservierung von String-Variablen

Definition Funktion

Aufruf Systemprozedur

Ende Programm

Einzelheiten siehe Abschnitt BASIC.

- 246 -

ZUSÄTZLICHE STATEMENTS IN BASEX

ON INT

ENAB

DISAB

AFTER

WAIT

m ON INT Interrupt: Auftragsanweisung

Ordnet einem durch seine Nummer bzw. den Wert eines entsprechenden
Ausdrucks angegebenen Interrupt-Eingang eine Routine zu, die aus der
Auftragsanweisung besteht bzw. (bei GOTO), mit ihr beginnt und die
bei Auftreten des Interrupts ausgeführt wird.
Beispiele:

Sim ON INT 32 LET WX=INWC6)
SPP OY INT N: GOTO 559%

m ENABInterrupt 1, Interrupt 2, ...

Läßt die angegebenen Interrupts zu.
Beispiel:

655 ENAR 38

m DISAB Interrupt 1, Interrupt 2, ...

Verhindert das Wirksamwerden der angegebenen Interrupts.
Beispiel:

585 DISAF 8

m AFTER Zeit: Auftragsanweisung

Gibt dem System den Auftrag, nach der als Festwert oder in Form eines
Ausdrucks angegebenen Zeit (in ms) eine Routine auszuführen, die aus
der Auftragsanweisung besteht bzw. (bei GOTO) mit ihr beginnt.
Beispiele:

#05 AFTER 335: LET QUTRC1ID)=M

3?5 AFTER 12PAPA-MSEC: SOTO 129

m WAIT Ausdruck

Läßt das Programm anhalten, bis der Wert des Ausdrucks ungleich Null
geworden ist. Soll nur in Ebene £ verwendet werden.
Beispiel:

3afm JAIT INFC5)

- 247 -

EQUI

EQULO

PUT

START

STOP

m EQUI Name = % Hexa-String F27C %

Ordnet einem Namen, der als Prozeßvariable vom Eingabe-Typ (oder
als Systemprozedur in Verbindung mit PUT) im Programm auftritt, ein
im Maschinencode als Hexa-String formuliertes Programm zu.
Beispiel:

155 EMUT INXY=%19IB43AAAZAAAF27CH

156 PFINT IVXY

m EQUO Name = % Hexa-String F27C %

Ordnet einem Namen, der als Prozeßvariable vom Ausgabe-Typ (oder
als Systemprozedur in Verbindung mit PUT) im Programm auftritt, ein
in Maschinencode als Hexa-String formuliertes Programm zu.
Beispiel:

17m EOMTO CLF?=RAECRAL3AF?7CH
171 LET CLF?=]

m PUT Name

Ruft eine parameterlose Systemprozedur auf, die mit EQUO definiert
ist.
Beispiel:

A15 PIIT CLF?

m START Ausdruck: n

Startet in der Ebene, die dem Wert des Ausdrucks entspricht, ein
Programm, das mit der Zeilen-Nummer n beginnt.
Beispiel:

eFA STAFT 2r6rs

m STOP

Beendet das Programm in der jeweiligen Ebene.
Beispiel:

630? STOP

- 248 -

SYSTEMVARIABLEN UND SYSTEMPROZEDUREN

Systemvariablen sind im BASEX-System vorprogrammierte Funktionen mit Variablen-Charakter,
die unter ihren Namen (mit oder ohne Index) dem Benutzer-Programm zur Verfügung stehen.
Sie liefern entweder einen Zahlenwert innerhalb eines Ausdrucks, oder ihnen wird ein Wert
zugewiesen.

Systemprozeduren sind ebenfalls im BASEX-System enthaltene Funktionen, die unter ihren
Namen mit CALL aufgerufen werden, ggfs. mit Übergabe von bis zu 4 Parametern. Sie
dienen u.a. zur Initialisierung von Ein/Ausgabe-Vorgängen.

Zeitvariablen:

Ebenen-Bindung:

Digitale Eingänge:

Digitale Ausgänge:

Zähleingänge:

Zeitausgänge:

Analog-Eingänge:

Analog-Ausgänge:

Analog-Meßsystem:

Bemerkung:

MSEC
SEC
MIN
HOUR

LEV

INW (x)
IND (x)
INB(x)

OUTW(x)
OUTD(x)
OUTB(x)

INC(x)
OUTC(x)
CALL ACTCK)
CALL HLTC(x)

OUTT(x)
CALL ACTT(x)

INA(x)

OUTA(x)

CALL ADCS(a,k,g)
CALL ADCD(a,k,o)
CALL ADCM(a,k,d)

Liefert die Absolutzeit in ms
tt RE X u s

min
n n n n h

Liefert die Nummer der laufenden Ebene

Wortweise binäre Eingabe (16 bit)
Wortweise BCD-Eingabe "
Bitweise Eingabe

Wortweise binäre Ausgabe (16 bit)
Wortweise BDE-Ausgabe "
Bitweise Ausgabe

Abfragen Zählerinhalt (16 bit)
Setzen Zählerinhalt "
Zähleingang öffnen
Zähleingang schließen

Setzen Timer-Inhalt (16 bit)
Starten Timer

Eingabe Analogwert (12 bit)

Ausgabe Analogwert (10 bit)

Einkanal -Messung
Zweikanal-Messung
Mehrkanal-Messung

x = Nummer des jeweiligen Ein/Ausgangs
a = Feldname für Puffer-Bereich
k = (Basis-) Meßkanal
q = Anzahl Messungen

- 249 -

PROGRAMM-SEGMENTIERUNG

(siehe Abschnitt BASIC).

WEITERE SPRACHELEMENTE VON BASEX

(siehe Abschnitt BASIC).

KOMMANDOS UND KORREKTUREN

(siehe Abschnitt BASIC).

Außerdem gibt es das Kommando TIME:

TIME (cr) Die Systemzeit in Stunden, Minuten und Sekunden wird ausgedruckt.

TIME hsm:s(cr) Die Systemzeit wird auf die eingegebene Stunde, Minute und Sekunde
gesetzt.

- 250-

BASEX-BEISPIELE

Beispiele für Interrupt-Programmierung:

8628 REM AUFTRAG FUER INTERRUPT 28
8625 ON INT B: LET OUTB(6)=2

o..

8638 REM AUFTRAG FUER INTERRUPT &
08645 ON INT 8: CALL ADCM(ARRY,1,18)

8658 REM INTERRUPTS 3 UND 8 ZULASSEN
8655 ENAB 3>8

.0o.®©

8688 REM INTERRUPT 8 VERHINDERN

8685 DISAB 8

Der Analogeingang 1 ist wiederholt in einem zeitlichen Abstand zu messen, der dem
Inhalt der Variablen DELT entspricht, und zwar so lange, bis der Bit-Eingang 14 nicht
mehr erregt ist; anschließend wird der Mittelwert gebildet:

8835
0840

0858
8855
8860
0865
8878

0875

LET N=8,W=0
AFTER DELT:GOTO 858

IF INB(C14)=8 THEN 870
LET W=W+INACLISN=N#+I
AFTER DELT:GOTO 858
STOP
LET W=W/N
STOP

Um 12000 ms Absolutzeit soll der Zähleingang 2 geöffnet, 1000 ms später wieder ge-
schlossen und der Inhalt abgefragt werden. Hierbei wird in der Zeitroutine der Auftrag
für eine zweite gegeben:

8825

31208

8125
8130
8l4o

a145
8147

AFTER 122828-MSEC:GOTO 128

CALL ACTC(2)
AFTER 1088: GOTO 142
STOP
CALL HLTC (2)
LET X=INC (2)
STOP

- 251 -

C-BASIC

Mit C-BASIC (Commercial BASIC) steht für das DIETZsystem 621 eine erweiterte Version
der Programmiersprache BASIC zur Verfügung, die zur Lösung kommerziell-administrativer
Aufgaben geeignet ist und vor allem bei interaktiven, dialogfähigen Systemen ihre Anwen-
dung findet.

C-BASIC enthält den vollen Sprachumfang von BASIC, arbeitet im Einbenutzer-Betrieb oder
im Multiprogramming unter MPOS und benutzt das Basis-Betriebssystem DBOS sowie das Da-
teiverwaltungssystem DFMS.

Im folgenden sind nur die Elemente von C-BASIC beschrieben, die über den Umfang von
BASIC hinausgehen.

KOMMERZIELLE ZAHL

C-BASIC sieht als dritten Datentyp - neben Strings und einfachen Zahlen - die kommerzielle
Zahl (X-Zahl) vor.

Die X-Zahl kann 16-stellige, vorzeichenbehaftete Dezimalwerte darstellen mit fester Lage
des Dezimalpunktes. Intern belegt sie 8 Bytes.

E 7 99 99 919 ZE 9, 9 919 9|9 9

Der Zahlenbereich beträgt somit:

minimal -7 999 999 999.99 9999
maximal +7 999 999 999.99 9999

Die wesentlichen Operationen, die in C-BASIC mit der X-Zahl möglich sind, umfassen:

- Wertzuweisung
- Addition
- Subtraktion
- Multiplikation
- Division

- Rundung in angegebener Stelle

- Konversion X-Zahl in einfache Zahl
- " einfache Zahl in X-Zahl
- " X-Zahl in String
- " String in X-Zahl

- Vergleich

- 252 -

FORMAT-MASKEN

In C-BASIC wird die Ein-/Ausgabe von X-Zahlen über Format-Masken gesteuert. Die
Masken geben das Format an, in dem eine X-Zahl auf einem Periphergerät (Bildschirm,
Drucker usw.) präsentiert wird.

Die Format-Maske besteht aus einer Folge von Steuerzeichen, welche die Art der externen
Darstellung angeben. Folgende Zeichen sind vorgesehen:

9 Ziffernstelle
Z Ziffernstelle mit Unterdrückung führender Nullen
* Ziffernstelle mit Schutzstern bei führenden Nullen
- Vorzeichen-Stelle (- wenn negativ, Leerstelle wenn positiv)
+ Vorzeichen-Stelle (- wenn negativ, + wenn positiv)
, Komma (Dezimalpunkt)

Leerstelle vor/hinter der Zahl zur Feldbegrenzung
bzw. innerhalb der Zahl zur Tausender-Trennung

[

Beispiele von Format-Masken für die Zahl 1234.567899:

Maske: 999999,999999
Darstellung: 001234,567890

Maske: -9999,99
Darstellung: ul234,56

Maske: ZZZ999,99t+wu
Darstellung: uul1234,56+u

Maske: *%%999, 99u
Darstellung: **1234,56u

Maske: +uZZZuZ29,99uuu

Darstellung uuu+ 141 234,56 u u u

Maske: ZZZuZZ9
Darstellung uw lu 234

- 253 -

BILDSCHIRM-BEFEHLE

Zur Erleichterung der Bildschirm-Ein-/Ausgabe, die vor allem bei dialogfähigen Systemen
von Bedeutung ist, enthält C-BASIC eine Reihe von Steuerbefehlen für alphanumerische
Bildschirm-Terminals.

Diese Befehle umfassen v.a.:

- Positionierung des Cursors in Ausgangsstellung (erste Spalte der ersten Zeile)
- Positionierung des Cursors auf eine vorgegebene Spalte einer angegebenen Zeile
- Zeile löschen
- Zeile einfügen
- Löschen des Bildschirm-Inhaltes
- Löschen des Foreground-Inhaltes
- Umschalten auf Foreground
- Umschalten auf Background
- Auslösen der Übertragung (Bildschirm-Inhalt senden)

- 254 -

FORTRAN IV

FORTRAN IV ist eine problemorientierte Programmiersprache, die u.a. für die Lösung
von mathematischen Aufgaben und für technisch-wissenschaftliche Anwendungen geeignet
ist.

Der Sprachumfang von FORTRAN IV ist im folgenden so beschrieben, wie er für das
DIETZsystem 621 implementiert ist.

Er entspricht den einschlägigen ISO- bzw. ASA-Normen und ist mit IBM 1130/1800
FORTRAN kompatibel.

GRUNDZÜGE

Das FORTRAN-Quellprogramm besteht aus einer Folge von Textzeilen, die

- Kommentare
- Anweisungen (Statements) mit beliebig vielen Folgezeilen
- END-Zeilen

sein können. Vor jeder Anweisung kann eine Anweisungs-Nummer n stehen. Das Quell-
programm wird von einem Übersetzer (Compiler) in ein Objektprogramm (Maschinencode)
übersetzt, das vom Computer direkt ausgeführt werden kann. Der Compiler führt syntak-
tische und lexigraphische Analysen durch, bei denen u.a. formale Fehler erkannt und dem
Benutzer gemeldet werden.

Das Quellprogramm wird in den Programmeinheiten übersetzt, die jeweils durch eine END-
Zeile abgeschlossen sind. Die Objektprogramme sind verschiebbar und können durch den
LINKING LOADER zu einem Gesamt-Programm verkettet oder mit anderen Benutzer- oder
Bibliotheksprogrammen verbunden werden.

Ein FORTRAN-Programm kann aus folgenden Programmeinheiten bestehen:

- Hauptprogramm
- Subprogrammen (externe Funktionen, Unterprogramme)
- Datenspezifikations-Programmen

Für die Korrektur fehlerhafter FORTRAN -Quellprogramme steht ein TEXT-EDITOR zur

Verfügung.

- 255 -

FORTRAN -STATEMENTS

Arithmetische Ergibtanweisung:

Boole’sche Ergibtanweisung:

STOP-Anweisung:

PAUSE-Anweisung:

Unbedingte Sprunganweisung:

Aufruf-Anweisung:

Rücksprung-Anweisung:

Arithmetische Wennanweisung:

Boole’sche Wennanweisung:

Berechnete Sprunganweisung:

Gesetzte Sprunganweisung:

Laufanweisung:

Leeranweisung:

Eingabe-Anweisung:

Ausgabe-Anweisung:

Rückspulanweisung:

Rücksetzanweisung:

Dateiabschluß-Anweisung:

Formatanweisung:

Variable = arithmetischer Ausdruck

Feldelement = arithmetischer Ausdruck

Variable = Boole’scher Ausdruck

Feldelement = Boole’scher Ausdruck

STOP
STOP Oktalzahl

PAUSE
PAUSE Oktalzahl

GOTO

CALL Subroutine-N ame
CALL Subroutine-Name (Liste der aktuellen Parameter)

RETURN

IF (arithmetischer Ausdruck) nl, n2, n3

IF (Boole’scher Ausdruck) ausführbare Anweisung

GOTO Anl, n2, ...), Variable

GOTO Variable, (nl, n2, ...)

DO n Laufvariable = Anfangswert, Endwert
DO n Laufvariable = Anfangswert, Endwert, Schrittweite

CONTINUE

READ (Gerät)
READ (Gerät) Eingabeliste
READ (Gerät, Format)
READ (Gerät, Format) Eingabeliste

WRITE (Gerät) Ausgabeliste
WRITE (Gerät, Format) Ausgabeliste

REWIND Gerät

BACKSPACE Gerät

ENDFILE Gerät

FORMAT Formatspezifikation

- 256 -

Feldanweisung:

Bereichsanweisung:

A quivalenzanweisung:

Typenanweisungen:

EXTERNAL-Anweisung:

Anfangswert-Anweisung:

Formelfunktionen:

Funktionsanweisung:

Unterprogramm-Anweisung:

Datenspezifikations-Anweisung:

Sprungzielzuweisung:

DIMENSION Liste der Felderklärungen

COMMONBereichsliste
COMMONJ/Bereichsname/Bereichsliste

EQUIVALENCE (Äquivalenzliste 1), (Äquivalenzliste 2), ...

INTEGER Namenslste

REAL Namensliste

DOUBLE PRECISION Namensliste

COMPLEX Namensliste

LOGICAL Namensliste

EXTERNALListe der Unterprogramm-Namen

DATA Numensliste/Konstantenliste, ...

Funktionsname (Liste der formalen Parameter) = arithmetischer
Ausdruck

Funktionsname (Liste der formalen Parameter) = Boole’scher
Ausdruck

FUNCTION Funktionsname (Liste der formalen Parameter)
Typangabe FUNCTION Funktionsname (Liste der formalen
Parameter)

SUBROUTINE Unterprogramm-N ame
SUBROUTINE Unterprogramm-Name (Liste der formalen
Parameter)

BLOCK DATA

ASSIGN Anweisungs-Nummer TO einfache Variable

- 257 -

WEITERE SPEZIFIKATIONEN VON FORTRAN

Z eichenvorrat:

ÄAnweisungsnummer:

OÖ peratoren:

Datentypen:

Konstanten:

Name:

Dateneinheiten:

A usdrücke:

Formatumwandlungs-
schlüssel:

AIBICIDIEIFIGIHTIISIK JLIMIN| OJPIa|RIsITIulv[jwix|vIzI
0111 2] 3[4151 61 7|81 91
+1 -#]/ IC) 2] -[2]ul

max. 5 Ziffern

+/-[#*|/|**

‚LT. | .LE.| .EQ. I.NE.I .GT.| .GE.

‚NOT. | .AND. | ..OR.

Integer (ganze Zahl) 16 bit
Real (reelle Zahl) 24 bit Mantisse, 8 bit Exponent
Double (erhöht genaue Zahl) 56 bit "——,8bit "
Complex (komplexe Zahl)
Literal
Boole’sche Zahl

ganze Zahl Beispiel: 56
reelle Zahl " : -6.75 | -3E+116
erhöht genaue Zahl " : -08.475669231D13
komplexe Zahl " : (-6E4, .9576)
Oktalzahl "276507
Hollerith-Konstante " : 18HERGEBNIS=
Boole’sche Zahl " : „TRUE. | .FALSE.

Buchstabe, gefolgt von bis zu 5 Buchstaben oder Ziffern.
Bezeichnet eine Variable, ein Zahlenfeld, ein Feldelement,
einen COMMON-Bereich, eine Funktion oder ein Unterprogramm.

einfache Variable N ame

Zahlen-Feld Name

Feldelement Name (Indexliste aus max. 3 Indizes)
COMMON-Bereich
Externe Dateneinheit (z.B. Datei, Satz)

arithmetische Ausdrucke

Boole’sche Ausdrucke

Fw.d F-Format

Ew.d E-Format

Gw.d G-Format

Dw.d D-Format

Iw I-Format

Lw L-Format

Aw A-Format

nH Literal H-Format

nXx Leerstellen

/ neue Zeile

- 258 -

Standardfunktionen: EXP
DEXP
CEXP

ALOG
DLOG
CLOG

ALOGIO
DLOGIO

SIN
DSIN
CSIN

cos
DCOS
CCOS

TANH

SORT
DSQRT
CSQRT

ATAN
DATAN

ATAN2
DATAN2

ABS
IABS
DABS
CABS

AINT
INT
IDINT

AMOD
MOD
DMOD

AMAXO
AMAX]
MAXO
MAX]
DMAX]

Exp.-Funktion

Nat.Logarithmus

lOer-Logarithmus

Sinus
u

Cosinus
111

Tangens Hyp.

Quadratwurzel

Arcus Tangens
n

Arcus Tangens Quotient
u

Absolutwert

Ganzzahl-Teil

Modulo-Fkt.

Maximalwert
ut

- 259 -

Parameter: R
D
c

u
U
»
0
m

7
U
r
»

0
7
a

o
0
u
r
a

79
0
0
?
0
?

D
U
”

o
0
u
o
r

U
a
-
n
-
—

Ergebnis

au
a
u
”

U
»

u
U
”

o
9
0
o
0
?
>
r

I
o
9
0
u
r

o
u
r

u
r

o
9
0
0
u
r
7
r

0
0
9
7

Q
O
7
%

u
y
-
-
r
n
»

Erklärung: |
R
D
c

Integer
Real

Double
Complex

AMINO
AMIN]
MINO
MIN]
DMIN]

FLOAT

IFIX

SIGN
ISIGN
DSIGN

DIM
IDIM

SNGL
DBLE

REAL
AIMAG

CMRLX
CONJG

Minimalwert
u

Konversion

Konversion

Vorzeichen
ft

Min.-Diff.

Konversion

Konversion

Realteil
Imaginärteil

Konversion

kompl. Konjugation

- 260 -

Parameter: |
R
|
R
D

u

O
O

a
D

O
N
7

Ergebnis:

Q
O
-
-
”
@
»

2
7
%

o
n

UTILITIES

Für das DIETZsystem 621 stehen benutzer-orientierte Dienstprogramme (Utilities) zur
Verfügung.

Sie werden bei Bedarf unter DBOS von der Platte abgerufen und führen Funktionen aus,
die der Benutzer von Zeit zu Zeit braucht, z.B. um sein System zu reorganisieren, Da-
teien zu kopieren usw. Utilities haben im Betriebssystem den Rang von Benutzerprogrammen.

PACK

Das Dienstprogramm PACK dient zur Reorganisation eines Plattenspeichers, dessen Nummer u

anzugebenist.

PACK verdichtet den Plattenspeicher-Inhalt, indem es alle Dateien des Speichers lückenlos

aneinanderreiht.

Der Raum, den mit KILL gelöschte Dateien physisch einnehmen, wird dabei vom Inhalt der
dahinterstehenden Dateien aufgefüllt.

Auf diese Weise entsteht ein zusammenhängender freier Raum auf dem Plattenspeicher.

Aufruf: RUN, PACK
Dialog: UNIT? u

COPY

Mit dem Dienstprogramm COPY können Datei-Inhalte von einer Datei in eine andere
übertragen werden bzw. von anderen Geräten eingelesen oder auf ihnen ausgegeben werden.

Quell-Datei (source) und Ziel-Datei (destination) sind dabei anzugeben.

Die File-Namen und die Unit-Nummern beim Plattenspeicher sind anzugeben; die Ziel-Datei
ist ggfs. vorher zu eröffnen.

Aufruf: RUN, COPY
Dialog: FROM DEV-TYP:DSK

SOURCE UNIT? ul
SOURCE FILE? fl
TO DEV-TYP:DSK
DESTINATION UNIT? u2
DESTINATION FILE? f2

- 261 -

MINCTEST 600

MINCTEST 600 ist ein Diagnostik-Programm zur Überprüfung der Funktionen der Zentral-
einheit DIETZ 621.

Es besteht aus zwei unabhängigen Teilen:

- Einzelbefehlstest

- Endprüfung.

EINZELBEFEHLSTEST

Dieser Programmteil überprüft die einzelnen Befehlsabläufe der Zentraleinheit. Es besteht
aus insgesamt 81 Einzeltests, die systematisch aufeinander aufbauen und mit denen jeder
einzelne Befehl, jede Adressierungsart usw. getestet werden.

Das Programm arbeitet im Dialog mit dem Benutzer, der die gewünschten Tests einleitet
und dann der Erfolg bzw. Mißerfolg des Tests in Klartext gemeldet werden.

Voraussetzung für den Test ist ein funktionstüchtiger Hardware-Bootstrap in der Zentralein-
heit, ein Konsolgerät (mit Streifenleser oder getrenntem schnellem Lochstreifen-Leser).

ENDPRÜFUNG

Dies ist ein zusammenhängendes Programm, das nacheinander alle wichtigen Teile der Zen-
traleinheit, wie Kernspeicher, RAM, Ebenen-Logik, BUS-Schnittstelle usw. überprüft und
den erfolgten Test meldet.

Danach gibt das Programm automatisch die Rechner-Konfiguration aus (z.B. Speichergrößen,
Ebenen-Zahl und -Belegung, usw.).

Schließlich geht das Programm in einen Dauvertest unter worst-case-Bedingungen über.

- 262 -

DIETZsystem 621

VORBEMERKUNG

Mit dem DIETZsystem 621 steht ein standardisiertes Computer-System für universellen
Einsatz auf der Basis des DIETZ 621 zur V rfügung. Es bildet ein abgeschlossenes
Hardware-/Software-System mit Konfigurations-Möglichkeiten für nahezu jeden Anwen-
dungsfall.

SYSTEM-EIGENSCHAFTEN

Zwei Versionen des DIETZsystems 621 sind verfügbar; sie unterscheiden sich durch Art
und Umfang des Systemspeichers und umfassen in der Grundausführung:

- DIETZsystem 621 C: - Zentraleinheit mit
1 Kbyte RAM + 32 Kbyte Kemspeicher,
Netzausfallschutz, Echtzeituhr, Bedienungskonsole

- DIETZdisk 256 Kbyte (System)
- DIETZdisk 256 Kbyte (Benutzer)
- Konsoldrucker 50 Z/s 80 Z/ZI mit Tastatur
- Systemschrank

- DIETZsystem 621 D: - Zentraleinheit mit
1 Kbyte RAM + 32 Kbyte Kernspeicher,
Netzausfallschutz, Echtzeituhr, Bedienungskonsole

- Wechselplattenspeicher 2.4 Mbyte (System)
- DIETZdisk 256 Kbyte (Benutzer)
- Konsoldrucker 50 Z/s 80 Z/ZI mit Tastatur
- Systemschrank

Die Grundsysteme können modular um Periphergeräte, Prozeßanschlüsse und Datenfern-
übertragungs-Anschlüsse erweitert werden.

Die zum DIETZsystem gehörende Basis-Software erlaubt das Programmieren in folgenden
Sprachen: |

- Assembler MINCASS 600
- MARS 600 für Echtzeit-Anwendungen
BASIC für technisch-wissenschaftliche Anwendungen

- BASEX für Echtzeit-Anwendungen
- C-BASIC für kommerzielle Anwendungen

FORTRAN IV für technisch-wissenschaftliche Anwendungen.

- 263 -

Beide Versionen (621 C und D) werden vom Basis-Betriebssystem DBOS unterstützt. In

Multiprogramming-Anwendungen wird das Betriebssystem MPOS verwendet. Es erlaubt
den gleichzeitigen Betrieb von 6 oder 12 unabhängigen Benutzerprogrammen, die in
den hierarchisch gegliederten Hardware-Programmebenen des Computers laufen.

Im Falle von Echtzeit-Anwendungen, z.B. beim Einsatz als Prozeßrechner, wird das
Echtzeit-Betriebssystem RTOS verwendet, das die Zeitverwaltung, Interrupt-Verwaltung
und Prozeß-Ein/Ausgabe steuert und zusätzlich das MPOS beinhaltet.

Ein weiterer Bestandteil der Software ist das Dateiverwaltungs-System DFMS, mit dem

die Programm- und Datenbestände sowohl der System- als auch der Benutzer-Platte ver-
waltet werden.

Dadurch, daß beide Systemversionen plattenorientiert sind, bieten sie dem Benutzer ein
hohes Maß an Bedienungs- und Programmierungskomfort. Dieser wird noch erhöht durch
die Möglichkeit, das Benutzer-Plattenlaufwerk zur Ein- und Ausgabe von Programmen und
Daten auf DIETZdisk-Kassetten zu verwenden, mit den diesem Medium eigenen Vorzügen
hinsichtlich einfacher Handhabung, robuster Ausführung, großer Zuverlässigkeit und
schnellem Zugriff.

Typische Einsatzgebiete des DIETZsystems 621 sind v.a.:

- Prozeßrechner-Aufgaben in Industrie, Medizin, Forschung und Lehre

- Rechensystem für technisch-wissenschaftliche Anwendungen

Interaktives Computersystem für kommerziell-administrativen Einsatz

Intelligentes Terminal, Front-End-Prozessor und Datenkonzentrator in Datenfernver-
arbeitungs-Systemen,.

DIE GRUNDAUSFÜHRUNG

Die Grundausführung besteht körperlich aus einem 19"-Systemschrank (einfache Breite),
in dem sich Zentraleinheit und Plattensystem befinden und in dem Finbauraum für weitere
Einheiten vorhanden ist. Getrennt davon steht der Konsoldrucker, über den der System-
Dialog geführt wird; er steht aber auch für die Verwendung im Benutzer-Programm zur
Verfügung.

Der System-Plattenspeicher enthält

- das Betriebssystem DBOS
- weitere Betriebssysteme, soweit implementiert
- Dateien mit systemgebundenen Programmen
- Dateien des Benutzers.

- 264 -

Zwischen 621 C und D besteht hier kein Unterschied, abgesehen von Kapazität,
technischer Ausführung und Zugriffsgeschwindigkeit. Beim 621 C wird das DBOS durch
einen Hardware-Bootstrap von der Platte geladen, während dies beim 621 D nach
Einschalten des Netzes automatisch geschieht.

Die Benutzer-Platte enthält Dateien gleicher Struktur wie der Systemspeicher. Sie dient
zum Einlesen neuer Programme und zur Archivierung von Benutzerprogrammen (d.h. als
Ersatz für die früher übliche Lochstreifen-Peripherie). Außerdem kann der Benutzer auf
dieser Platte Daten abspeichern oder von ihr lesen.

In.der Grundausführung sind 8 Hardware-Ebenen mit je 128 Registern vorgesehen; unter
MPOS bzw. RTOS sind 6 davon als Benutzer-Ebenen (9...5) verwendbar; die restlichen
zwei sind System-Ebenen.

HARDWARE-ERWEITERUN GEN

Die Grundausführung des DIETZsystems 621 C und D ist systematisch erweiterbar, so daß
für jeden Bedarfsfall das passende Gesamtsystem konfiguriert werden kann.

Folgende Erweiterungen sind möglich:

- Halbleiter-Speicher (RAM): - Erweiterung auf 2 Kbyte = 16 Ebenen
(12 Benutzer-, 4 Sysiem-Ebenen)

- Kernspeicher: - Erweiterung auf 48 Kbyte
(in Speichererweiterungs-Einschub SPE-621)

Plattenspeicher (nur 621 D): - Erweiterung auf 4.8, 7.2 oder 9.6 Mbyte
(erfordert zweiten Systemschrank)

- Prozessoren: - Festkomma-Rechenwerk (MP/DV)
- Gleitkomma-Prozessor

(in Speichererweiterungs-Einschub SPE-621)

Periphergeräte: - Bildschirm-Terminal BTH 1000
- Bildschirm-Terminal BTH 2000
- weitere Konsoldrucker PH 50 mit/ohne Tastatur
- 8-Kanal-Fernschreiber ASR 33/V24 und /LS
- Schnelldrucker TAL 2200
- Lochkarten-Stapelleser MDS 6042
- 8-Kanal-Streifenleser LE 125
- 8-Kanal-Streifenlocher LO 75
- Alphanum./graph. Bildschirmgerät TEK 4010
- Speicheroszillograph TEK 611
- Digitalplotter DP-10, -1, -3

- Magnetband-Laufwerke
(1. ...4 anschließbar, erforderlich Controller,

in eigenem Systemschrank)

- 265 -

- Prozeßanschlüsse: - Interrupt-Eingänge
- Statische digitale Eingänge
- Speichernde digitale Ausgänge
- Zähleingänge
- Zeitausgänge

- Watchdog-Ausgang
- Einkanal-Analogeingänge
- Einkanal-Analogausgänge

- Mittelschnelles Analog-Meßsystem
- Schnelles Analog-Meßsystem
- Integrierendes Meßsystem

in zweitem

Systemschrank
En

- DFÜ-Anschlüsse: - Datenfernübertragungs-Interface (V24/asynchron
und synchron)

Im Systemschrank der Grundausführung ist Einbauraum für die Speicher-Erweiterung (SPE-621)
enthalten; ferner für eine. Universal-Interface-Einheit (UIE-821), die 12 Plätze für Einkarten-

Interfaces bereithält.

Bei Bedarf müssen weitere UIEs für Einkarten-Interfaces vorgesehen werden, die in einem

zweiten Systemschrank untergebracht werden.

PROGRAMMIERSPRACHEN

Für das DIETZsystem 621 C und D stehen 6 Programmiersprachen zur Auswahl, die je nach
Bedarf zur Anwendung kommen. Dabei ist zu beachten, daß

- das System entweder unter DBOS im System-Bedienungsbetrieb oder unter Kontrolle
eines Benutzerprogramms läuft (wobei BASIC, BASEX und C-BASIC einen zusätzlichen
"Command-Mode" kennen);

- das Benutzerprogramm einschließlich aller (ggfs. im Multiprogramming parallel laufen-
den) Teile einen einheitlichen Programm-Kontext (Job) bildet;

- jedes Benutzerprogramm aus einer der verfügbaren Sprachen hervorgehen muß (was
den Einbau von Maschinencode-Prozeduren in BASIC, BASEX, C-BASIC und FOR-

TRAN nicht ausschließt; im übrigen umfaßt MARS 600 alle Assembler-Befehle).

Bei der Wahl der geeigneten Programmiersprachen ist im übrigen auf folgende Umstände zu
achten:

- 266 -

- Assembler:

- MARS 600:

- BASIC und C-BASIC:

- BASEX:

- FORTRAN IV:

BETRIEBSSYSTEME

Alle System-Ressourcen sind ansprechbar, jedoch unter
Beachtung entsprechender Vorsichtsmaßnahmen hinsicht-
lich Konfliktfällen und, z.B. bei der Prozeßperipherie,
nur mit Kenntnis der absoluten Adressen sowie in
Einzelbefehls-Schritten. Multiprogramming ist möglich
nach vom Benutzer festgelegten Regeln.

Alle System-Ressourcen sind verfügbar, größtenteils über
Makros. Multiprogramming ist so vorgesehen, wie durch
RTOS/MPOS geregelt. Rückgriff auf RTOS-Funktionen ist
möglich.

Alle System-Ressourcen sind verfügbar, jedoch nicht die
Prozeßperipherie (kein Rückgriff auf RTOS-Funktionen).

Unterschieden wird:

- Single-User-Betrieb (kein Multiprogramming)

- Multiprogramming-Betrieb unter MPOS.
BASIC-Programme auf allen Benutzer-Ebenen möglich
(ausgelöst vom Hauptprogramm in Ebene 9). Segmen-
tierte Programme laufen nur auf einer Ebene.

Alle System-Ressourcen sind verfügbar.
Multiprogramming ist so vorgesehen, wie durch RTOS/
MPOS geregelt. Rückgriff auf RTOS-Funktionen möglich.

Alle System-Ressourcen sind verfügbar, jedoch nicht die
Prozeßperipherie (außer durch vom Benutzer eingebaute
Maschinencode-Programme)..

Single-User-Betrieb (kein Multiprogramming).

Das plattenorientierte Basis-Betriebssystem DBOS des DIETZsystems 621 unterstützt den
Benutzer-/System-Dialog und erlaubt in einer einfachen Form die Verwaltung der Platten-
dateien und den Zugriff zu ihnen.

Darüberhinaus sind folgende Betriebssysteme je nach Anwendungsfall und verwendeter Pro-
grammiersprache zusätzlich implementierbar:

- DFMS: Komfortables Datei-Verwaltungs- und Zugriffs-System
(Ein- und Mehrsatz-Dateien, Index-Dateien; sequen-
tieller und Random-Zugriff; Datei-Schutzfunktionen) .

- 26/ -

- MPOS: Multiprogramming-Betriebssystem

(Programm-Auftragsv erwaltung, Ressource-Verwaltung)

- RTOS:; Echtzeit-Betriebssystem
' (Führung der Systemzeit; Zeitauftrags- und Interrupt-

Verwaltung; Behandlung der Prozeßperipherie).

Die folgende Tabelle enthält die möglichen Betriebssystem-Konfigurationen (x = Standard;
o = Option).

PROGRAMMIER-
SPRACHE BETRIEBSSYSTEM

DBOS DFMS MPOS RTOS

ASSEMBLER x o

MARS 600 x) x x

BASIC Single-User x)

Multipro-
. x 6) x

gramming

BASEX x fe) x x

C-BASIC Single User x x

Multipro-
. x x x

gramming

FORTRAN IV x o

- 268 -

—
a
w
u
n
ß
o
i
d
;
s
u
s
i
g
—
—
—

3
2
4
3
5
1
1
9
9
—
—

—
s
w
w
p
4
b
o
i
g
-
i
a
z
i
n
u
s
g

-ıßomd
*ıßond

°.ıBoud
 ıBoA1d

-
u
n
W

-
o
U
o
W

-
1
4
N
W

-
0
U
O
W

- 269 -

 >

>
E

E
g

g
g

5
179

weiskszuna
WI

sel
E
i

8
5

B
E

|,
5!

[oe
x

8
85]

I5
8

N3NOILVANOIINON-WWVADONd
E
d

2585|
S8|

S
H

5
9

#
3

a
d

je
|
8
5

A
N
N

-WILSASSAIINLIG
sel

SEI
8
]

BE]
SE)

J
B

ISE
8
2

|58
a
4

313145138

S
W
J
0

S
n
J
a

S
N
J
O

s
o
l
a

s
o
1
l
y

|
|

S
O
d
N

S
O
d
N

S
O
d
N

S
O
d
N

<
L

L
|

u
|

IL
5

.
=

2
;

8
5

El
 f4säs]|

TısAs
=
8

S
2

‚Ö
ö
=

®
2

&
3

Al
Al

"sAs|
I'ısAs|

|r4sAs|
|"4sAs|

|’4sAs|
14845

=|
1828|

|5
155

85]
|88|

|2J
Nva|

|Nval
Jos]

Joıs|
Dis]

oıs|
Ixas|

009
2
|

2
D
u
l

2
X

S
2

3043|
303

|-ve|
|-va|

|-va|
|-vaj

|-va|
H
o
w

|

mn,

s
o
g
a

FOREGROUND-BACKGROUND-BETRIEB

Mit den DIETZsystemen 621 C und D ist eine bestimmte Form des Foreground-/Background-
Betriebs zulässig und leicht implementierbar.

Unter Verwendung einer entsprechenden Hardware-Konfiguration, welche ausreichende
Speicherkapazität und Ebenen-Zahl gewährleistet, ist es möglich,

- im "Hintergrund" BASIC-, BASEX-, C-BASIC- oder FORTRAN IV-Programme in
beliebiger Folge zu erstellen, zu compilieren, zu edieren und zur Ausführung zu
bringen, während

- im "Vordergrund" ein in Assembler geschriebenes, ausgetestetes Benutzer-Programm
oder ein DIETZ-Anwendersystem (z.B. eine Terminal-Emulation) läuft, wobei hier-
für eine oder mehrere getrennte Ebenen mit hoher Priorität reserviert sind.

Foreground- Foreground-
System ©? Peripherie

Plattenspeicher Background-

System
BASIC Background-BASEX => Peripherie

C-BASIC
FORTRAN IV

r— (Background-)
DBÖS

Konsolgerät

Foreground- und Background-Bystem benutzen getrennte Peripherie-Einheiten; die Platten-
speicher sind jedoch Ressourcen, die beiden Systemen gemeinsam sind. Das Konsolgerät
ist dem Background-System zugeordnet.

- 270 -

KON FIGURATIONSLISTE GRUNDSYSTEM + ZENTRALE ERWEITERUNGEN

Einbau Soft-
V-Bez T-Bez Baugruppe Ort Größe| ware Bem.

Se21IC DIETZsystem 621C/Grundausführung mit: SL 5
- Zentraleinheit 32KB + 1 KB RAM (8 Ebenen)
- DIETZdisk-Doppellaufwerk 2 x 256 KB
- Mosaikdrucker-Terminal 50 Z/s 80 Z/ZI

mit Tastatur

- 19" -Systemschrank
S621D DIETZsystem 621D/Grundausführung mit: S1 S

- Zentraleinheit 32 KB + 1 KB RAM (8 Ebenen)
- DIETZdisk-Einfachlaufwerk 256 KB
- Wechselplattenspeicher 2.4 MB mit Controller
- Mosaikdrucker-Terminal 50 Z/s 80 Z/ZI

mit Tastatur
- 19"-Systemschrank

S62IC1 DIETZsystem 621C wie oben, jedoch: 51 5))
- zus.Bildschirm-Terminal BTH 1000 als Konsole
- Mosaikdrucker ohne Tastatur

5621D] DIETZsystem 621D wie oben, jedoch: 51 S \)
- zus.Bildschirm-Terminal BTH 1000 als Konsole
- Mosaikdrucker ohne Tastatur

S621C2 DIETZsystem 621C wie oben, jedoch: S] 5 1)
- zus.Bildschirm-Terminal BTH 2000 als Konsole
- Mosaikdrucker ohne Tastatur

5621D2 DIETZsystem 621D wie oben, jedoch: S1 5 1)
- zus.Bildschirm-Terminal BTH 2000 als Konsole
- Mosaikdrucker ohne Tastatur

RL-E16 Erweiterung auf 2KB RAM/16 Ebenen MC

SPE-621 Speichereinheit Gl! E65 2)
KS-E48 Kernspeicher-Erweiterung auf 48KB SPE| MI 5
GKE-£21 Gleitkomma-Prozessor SPE| MI S
FKP-62]1 Festkomma-Prozessor VIE B2 5
EWPA4.8 Plattenspeicher-Erweiterung auf 4.8 MB SYS| E6 S 3)
EWP7.2 " " "7.2 MB SYS| EIC S
EWP9Y.6 " " "9,6 MB SYS| E14 S
UIE-621/5 Universal-Interface-Einheit SG E6 | 4

mit Stromversorgung, Device-Selector, BUS- oder
Anschluß und Anschlußsteckern; für 12 Einkarten- SYS
Interfaces

SYS-E A 19"-Systemschrank (Erweiterung) S] 5)

Bemerkungen: 1) Bildschirm statt Mosaikdrucker-Terminal als Dialog-Konsole, + Mosaik-
drucker als Konsol-Hardcopy

2) für KS-E48 und GKE-621
3) nur bei 621D
4) 1 x im Grund-Systemschrank, Rest in Erweiterungs-Schränken. Enthält

12 Plätze "B"
5) ein- oder mehrfach nötig

- 271 -

‚KONFIGURATIONSLISTE PERIPHERGERÄTE

Einbau Soft

V-Bez T-Bez Baugruppe Ort Größe| ware Bem

PH50 Mosaikdrucker-Terminal 50 Z/s 80 Z/ZI S
mit Tastatur

IV24/PH50| 602 000 + Interface VIE] B1
PH50 RO Mosaikdrucker 50 Z/s 80 Z/ZI ohne Tastatur S
IV24/PH50| 602 000 + Interface VIE| BI]

BTH2000 Bildschirm-Terminal 27 ZI 74 Z/ZI F/B 5
IV24/DIS 602 000 + Interface VIE) BI
BTH1000 Bildschirm-Terminal 12 ZI 80 Z/zI 5
IV24/DIS 602 000 + Interface UIE| BI
LE 125 8-Kanal-Streifenleser 125 Z/s mit Spuler E5 T
ILE/LO 602 005 + Interface VIE) BI
LO 75 8-Kanal-Streifenlocher 75 Z/s E6 T
ILE/LO 602 005 + Interface VIE| BI]

MDS6042 Lochkarten-Stapelleser 400 K/min 80 Sp/K T
IKLE 601 045 + Interface VIEI BI

TAL2200 Mosaik-Schnelldrucker 200 Z/min 132 Z/ZI T
ITAL2200 602 017 + Interface UIE} BI
TEK4010 Alphanum ./graphisches Bildschirm-Terminal T
IV24 602 000 + Interface VIE] B]
TEK611 Graphisches Speicher-Display T
IAXY 601 043 + Interface VIE] BI
XYS-A4 XY-Schreiber DIN A4 T
IAXY 601 043 + Interface VIEI BI
XYS-A3 XY-Schreiber DIN A3 T
IAXY 601 043 + Interface UIE| BI
DP-10 Inkremental-Plotter DIN A4 T
IPLOT 601 044 + Interface UVIEI BI]
DP-1 Inkremental-Plotter DIN A3 T
IPLOT 601 044 + Interface UVIE| BI]
DP-2 Inkremental-Piotter DIN A2 T
IPLOT 601 044 + Interface VIE| Bl

- 272 -

KONFIGURATIONSLISTE MAGNETBAND-SYSTEME

Einbau Soft-
V-Bez T-Bez Baugruppe Ort IGröße| ware. Bem

MBE7840-9 9-Spur-Laufwerk 800 cpi 7" Spulen SYS| E5 T 1)
MBE-621/800P + Controller SYS| E3

9-Spur-Laufwerk 800 cpi 10.5" Spulen (Master) SYS T))
M BE-621/800 + Controller SYS| E3

9-Spur-Laufwerk 800 cpi 10.5" Spulen (Slave) SYS T 1)2)
9-Spur-Laufwerk 1600 cpi 10.5" Spulen (Master) SYS T u)

MBE-621/ 1600 + Controller SyYS| E3
9-Spur-Laufwerk 1600 cpi 10.5" Spulen (Slave) SYS T 1)2)

Bemerkungen: 1) Einbau in eigenem Systemschrank empfohlen
2) bis zu 3 Slaves

KONFIGURATIONSLISTE DFÜ-SCHNITTSTELLEN

Einbau Soft-
V-Bez T-Bez Baugruppe Ort Größe ware Bem

IV24/DAS 1602 003 V24-DFÜ-Interface asynchron VIE Bl 1)
IV24/DSM 602 004 [a " _ bitsynchron/Modemtakt VIE| Bl 1)
IV24/DSE 602 005 [" " /Eigentakt VIE B2 1)

Bemerkung: 1) Software (DFÜ-Prozeduren) gegen Mehrpreis

ERLÄUTERUNGEN

Spalte Einbauart: MC Zentraleinheit MC-62]1
SPE Speichereinheit SPE-621
VIE Universal-Interface-Einheit UIE -62]
ADM Analog-Meßsystem ADA-621
MUI Meßstellen-Umschalter MUI-3
G Grund-Schrank 621 C/D
SYS Erweiterungsschrank SYS-E

Spalte Einbaugröße: 5] 19" -Systemschrank (einfache Breite)
E... Einschub (... Einheiten hoch)
MI Speicherkarte (1 Platz)
B... Baustein in VIE (... Plätze breit)

‚Software: 5 Standard-Software
R von berigheral-Treiber unterstützt

von S unterstützt

- 273 -

KONFIGURATIONSLISTE PROZESS-PERIPHERIE

2) unter RTOS nicht gemischt mit &-bit-Interrupt-Eingängen
3) unter RTOS nicht gemischt mit 16-bit-Ein/Ausgängen
4) Open-Collector-Ausführung. Andere Version auf Anfrage
5) andere Versionen (10 MHz; Fotokoppler) auf Anfrage
6) max. 4 je ADM
7) max. 10 je MUI

- 274 -

Einbau Soft- B
V-Bez T-Bez Baugruppe Ort Größe ware em

PDSE8/5 601 020 8-bit-Interrupt-Eingang TTL VIE BI R
PDSE8/12.60|1 601 026 " " " HTL UIE Bl R

PDSE8/FK 601 027 " " " Fotokoppler VIE B] R
PDSE8S/R 601 024 " " " Relais VIE Bl R
PDSES/FL 1601 080 " " " Fotokoppler 2-pol/bit VIE Bl R N)

PDSEI6/5 1601 088 16-bit-Interrupt-Eingang TTL UIE Bl R 2)

PSSE16/5 601 010 16-bit-Digitaleingang TTL VIE Bl R
PSSE16/12.60601 016 " " HTL VIE Bl R

PSSEI&YFK |601 017 " " Fotokoppler VIE Bl R
PSSEI&/R 801 014 " " Relais VIE BI R
PSSEI6/FL 601 082 " " Fotokoppler 2-pol/bit LIE Bl R 1)
PSSE32/5 601 085 32-bit-Digitaleingang TTL VIE Bl R J
PSSA16 601 030 16-bit-Digitalausgang TTL UTE [BI R 4
PSSAI&/FK [601 033 " " Fotokoppler VIE Bl R 4)
PSSAIS/R 1601 036 " " Relais VIE BI R
PSSA32 601 086 32-bit-Digitalausgang TTL VIE BI R 3)
PIZEIG 60T 060 T6-bit-Zähleingang VIE Bi R
PISA16 601 061 16-bit-Zeit-Steuerausgang I MHz TTL VIE Bl R 5)
PWDOG 601 070 Watchdog-Ausgang UIE Bl R
ADE12.010 |&01 000 Einkanal-Analogeingang 12 bit 0...10 V UIE B2 R
ADE12.505 |601 001 " " "0 .5,...5V VIE B2 R
ADE12.1010 601 002 " " "———-10...10 V VIE B2 R
MUEI6R 601 087 1öfach-Relais-Multiplexer 3-polig VIE BI R
DAU1010 601 041 Analog-Ausgang 10 bit 0...10 V VIE Bl R
DAI11020 601 042 " " "—0,...20 mA VIE Bl R
ADM&21S Mittelschnelles Analog-Meßsystem 12 bit SYS E3 R
MUM/EI6 16-Kanal-Multiplexer (MOS) ADM R 6)

ADM-S&H Sample-&Hold-Zusatz ADM R
ADI200 Integrierendes Meßsystem 19.999 DC SYS E2
ADI210 " " 119.999 DC SYS E2
ADA203 " " 19.999 DC/AC/R SYS E2
ADA213 " " 119.999 DC/AC/R SYS E2

PADI 601 009 + Interface zu ADI/ADA VIE Bl
MUI-3 Meßstellenumschalter SYS EA
PIMUI 601 047 + Interface zu MUI VIE B]
MUI-3/E1O 10-Kanal-Multiplexer (Relais) MUI 7)

Bemerkungen: }) 2-poliger, passiver Eingang/bit (5 V) "1" wenn OV

Grundkonfigu-
ration

DIETZsystem 621 C

Platten-
Konfiguration

DIETZsystem 621 D

Sonder-Konfiguration
Konsol-Peripherie

4

nd

DIETZdisk 2x256 KB

User System

MINCAL 621

Zentraleinheit ® Sonsoldrucker
32 Kb mit Tastatur

50 Z/s 80 Z/ZI

Prozeßsignale

| Universal-Interf. -Einh> Periphergeräte

5 E/A-Interfaces HL DFÜ-Anschluß

BUS @.. zu Magnetband-System

n=--ocoSa
Wechsel- | |

plattenspeicher | | |

|
2.4 MB IF

DIETZdisk
256 KB

MINCAL 62]

Zentraleinheit OÖ Konsoldrucker
32 KB mit Tastatur

|
BUS

Bildschirm-|
Konsole

MINCAL 621 7 1000/2000 Zei-
Zentraleinheit chen

I Hardcopy

50 Z/s 80 Z/ZI

- 275 -

MINCAL 62]

Zentraleinheit

32 KB

nnm nn DIETZdisk 2x256 KB
| Analog-
| Meßsystem F 4 op —
FHnnnnon

| SPE

Erweiterung auf 48 KB
| UIE GK-Prozessor
|

|
|--- --- -----

| UIE
|
| VIE E/A-Interfaces
|
I2__-_-_-__-

Daoo
Plattenspeicher-
Erweiterung

Te

Wechsel-
Plattenspeicher

L I

MINCAL 62]

Zentral einheit

32 KB

 muman gmumm emummm em wem Au MemmeMr wma anime damen

Analog-

—— m ne an Auen genen mine summer ame hun.

DIETZdisk 256 KB

[I]

SPE
Erweiterung auf 48 KB

GK-Prozessor

Platten-Controller

nm m mm mm Dramen m mil im mm um

VIE
E/A-Interfaces

- 2/6 -

Aufbau

DIETZsystem
621 C

Aufbau
DIETZsystem
621 D

Prozeßterminal-System 6150

Häufig besteht die Aufgabe, mehrere voneinander unabhängige Prozeßrechner zu instal-
lieren, die eine gewisse räumliche Nachbarschaft haben. Ein Beispiel ist die Automati-
sierung von Geräten, Labors und Versuchsanordnungen im Fachbereich einer Hochschule.
Jedes System soll Zugriff zu Programmen und Dateien in einem Großraumspeicher haben
und gelegentlich leistungsfähige Periphergeräte benutzen. Hier liegt der Gedanke nahe,
die aufwendige Speicher- und Geräteperipherie an einer zentralen Stelle verfügbar zu
halten.

Das Prozeßterminal-System 6150 ist die Konsequenz aus diesen Überlegungen. Es umfaßt

- bis zu 16 Prozeßterminals 6155 mit DIETZ 62]

- ein Poolsystem 1621, das sternförmig mit den Terminals verbunden ist.

Die Prozeßterminals verhalten sich wie Stand-alone-Einheiten des DIETZsystems 621
der Benutzer arbeitet im Dialog über Konsol-Fernschreiber an den Terminals, und diese
führen alle Prozeß- und Verarbeitungsprogramme aus.

Einige Aufgaben jedoch werden vom Poolsystem übernommen:

- Es enthält einen Plattenspeicher (Kapazität 2.4...9.6 Mbyte), der die
Programme der verschiedenen Benutzer enthält und in dem Dateien aufgebaut
sind, die von den Benutzern wie üblich definiert und angesprochen werden.

- Es übernimmt die Ausführung größerer Programme, aktiviert durch die Terminals

- Es hält leistungsfähige Periphergeräte bereit, die von den Terminals nach
Bedarf angesprochen werden können, z.B.:

- einen Zeilendrucker (300...350 Zeichen/min; 132 Z/Zeile)
- ein 9-Spur-Magnetbandgerät (10.5" Spulen)
- einen Digital-Plotter für graphische Ausgaben.

Das Poolsystem, das einen Computer vom Typ MINCAL 1600 enthält, führt keine Real-
time-Verarbeitung von BASEX-Programmen aus; jedoch kann mit Hilfe der Konsol-Peri-
pherie - Konsol-Fernschreiber sowie Streifenleser und -locher - zusätzlich Batch-Verar-
beitung in Assembler, FORTRAN oder BASIC durchgeführt werden.

Daten, Programme und Kommandos werden zwischen Poolsystem und Terminals über
Zweidraht-Leitungen mit einer Übertragungsrate von 2400 Bd ausgetauscht. Die maximale
Entfernung beträgt je nach Kabeltyp bis zu 300 m; darüberhinaus muß eine spezielle
Leitungsanpassung vorgenommen werden.

Die Prozeßterminals werden automatisch vom Poolsystem mit dem Betriebssystem geladen,
sobald sie eingeschaltet werden; hierfür ist ein spezieller Festprogrammspeicher im Ter-
minal vorgesehen.

- 277 -

Schnelldrucker

Magnetband-{g |E

Laufwerk

1621Platten-

speicher

Poolsystem

 I

6155 . . 6155
(weitere (weitere

Prozeß- |“> Periph räte) Periphergeröte) Prozeß-
erminal eripherge pherg terminal

Prozeß Prozeß

u 16 PROZESS-TERMINALS

6150

PROZESSTERMINAL-SYSTEM

- 278 -

Digital-
Plotter

Streifen-

1 leser

Streifen-

locher

Fernschreiber

Computer-Fibel

Dies soll eine kleine Hilfe für alle die Benutzer des DIETZ 621 sein, die noch

keine Erfahrung mit Computern und Computer-Terminologie haben. Ein Computer hat
nichts Geheimnisvolles an sich; um seine Prinzipien zu verstehen und mit ihm um-
zugehen, muß man nur folgerichtig denken und diese Denkschritie sorgfältig formu-
lieren können.

BINÄRZAHLEN

Computer behandeln Zahlen anders, als wir es gewohnt sind. Alle Elemente in einem
Rechner können nur zwei verschiedene Zustände unterscheiden und behandeln:

1. Positive Spannung

2. Keine Spannung

Zwischenwerte kennt ein Computer nicht. Der Zustand: "Es besteht die halbe posi-
tive Spannung" ist nicht möglich, es sei denn, der Computer streikt.

Alle Elemente, die nur zwei oder mehr diskrete Zustände kennen, nennt man

DIGITAL. Darum heißt der Computer auch Digitalrechner.

Der Einfachheit halber nennt man den einen Zustand "1" und den anderen "0".

Rechnen kann man mit O oder 1] erst, wenn man mehrere Elemente miteinander kom-

biniert. Kombinieren wir versuchsweise drei digitale Elemente, drei Lampen, und
überlegen, wie viele Möglichkeiten es gibt, wenn jede Lampe leuchten oder dun-
kel sein kann:

oO 00 -oder 000 0

o 0% 001
o X: 0 010 2

oo 0-0 011 3

0 0 100 4

0% 010005
:0- © 110 6

ER 111 7

s - 2/9 -

"Lampe leuchtet" soll einer I und "Lampe ist dunkel" einer 0 entsprechen.

Das sind 8 verschiedene Kombinationen; allgemein gilt die Regel, daß bei,
n-Elementen 2% Kombinationen möglich sind. In diesem Beispiel sind es 2” = 8
Kombinationen, die wir (rechte Spalte) mit O bis 7 bezeichnen. Das sind Zah-
len im üblichen Dezimalsystem, das die Ziffern von O bis 9 benutzt. Von die-
sen zehn Ziffern hat das System seinen Namen (lateinisch zehn = decem).

Links neben den Dezimalzahlen ist eine weitere Zahlenreihe. Jedes Element aber
nimmt nur zwei verschiedene Zustände an (0 und 1). Deshalb spricht man hier
von einem Dual-System (lateinisch zwei = duo). Gebräuchlich ist auch der Aus-
druck BINAR-Zahlen. Einzelne Binärelemente oder Binärstellen werden als BIT
bezeichnet. Es ist ein Kunstwort aus dem Englischen: binary digit = Binärstelle.
Als Hauptwort für die Bezeichnung eines Elementes wird es großgeschrieben
(Bit), als Maßeinheit für die Anzahl von Binärstellen klein (bit).

Zählen und Rechnen mit Binärzahlen erfolgt nach den gleichen Gesetzmäßigkeiten
wie im Dezimalsystem. Beim Zählen z.B. addiert man ganz rechts eine 1 so lange,

bis die letztmöglichen Ziffern erreicht sind. Will man dann weiterzählen, so be-
ginnt man mit der kleinsten Ziffer eine Spalte weiter links. Beim Dezimalsystem
muß man nach der 9 eine neue Spalte "eröffnen", beim Dualsystem nach der 1.
Die einzelnen Spalten haben nun eine unterschiedliche Wertigkeit. Beim Dezimal-
system sind es von rechts beginnend die Wertigkeiten 1, 10, 100, 1000 usw., oder
anders ausgedrückt, die Potenzen zur Basis 10 (10°, 101, 10%, 10° ...).

Beim Dualsystem haben die Spalten die Wertigkeiten | = 20 2 = 2! 4 = 22,

8 = 2° usw. Hier sind es also die Potenzen zur Basis 2.

Binärzahlen haben beim Rechnen den großen Vorteil, daß das ganze Einmaleins
heißt:

Il o
O1 mal O0 und

HlI mal 1

Ebenso einfach ist das Addieren und Subtrahieren. Der Nachteil besteht aber dar-

in, daß Binärzahlen leicht sehr lang und unübersichtlich werden.
So sieht binär die Zahl 2819 so aus:

101100000011

Da dies sehr unübersichtlich und außerdem schwer zu behalten ist, greift man zur
HEXA-DEZIMAL-Darstellung. Hierbei faßt man jeweils 4 Binärstellen zusammen:

- 280 - ,

1011 0000 0011

Jedes dieser Päckchen wird nun je nach seinem Inhalt durch eine der Ziffern
0...9 oder A...F ersetzt, wobei folgende Zuordnung gilt:

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
111]

m
m

N
u

||
m
o
l

Io
a

(= dezimal 10)

(1)
(12)
(
(
(

)

13)
14)
15)a

a
N

T
M
O
N
V
F
I
P
I
O
O
N
A
U
B
W
M
N
—
O

Die Binärzahl aus dem vorigen Beispiel heißt in hexa-dezimaler Schreibweise "BO3";

1011 0000 0011

B 0 3

Natürlich arbeitet der Computer mit Binärzahlen, die hexa-dezimale Schreibweise
ist nur eine Vereinfachung für den Benutzer.

DAS RECHNEN MIT BINÄRZAHLEN

Üblicherweise kann ein Computer, wenn er rechnet, nur addieren. Die Subtraktion
wird durch eine spezielle Addition ersetzt; Multiplikation wird durch wiederholtes
Addieren, Division durch mehrfaches Subtrahieren erzielt. Alle anderen arithmeti-

schen Operationen lassen sich auf die vier Grundrechenoperationen zurückführen.

Wie addiert und subtrahiert man Binärzahlen ?

- 281 -

Nehmen wir 4-stellige Binärzahlen und rechnen 5 + 4 = 9:

3 2 21 „2

101 (= 5)

100 (= 4)

0)

0

S af = Übertrag

1 001 (= 9)

oder 7/+3=10

0 1 1 1 (= 7)

00
0 11

0 (= 10)

Wichtig hierbei ist, daß man beachtet:

Iı+] =(0 + Übertrag und

1 + 1 + Übertrag = 1 + (neuer) Übertrag

Negative Zahlen werden als ZWEIER-KOMPLEMENTder entsprechenden positiven
Zahl dargestellt. Das Zweierkomplement erhält man, indem man alle Bits in ihr
Gegenteil verkehrt (aus einer O wird eine | und umgekehrt; hier spricht man vom
EINERKOMPLEMENT) und anschließend rechts eine 1 addiert.

Beispiel:

0000 0001 (=])

I1I111 1110 (= Einerkomplement von])
also;

Iı131 1110

+ 1

Iı1ı1 117119 P
a
n Il Zweierkomplement von])

- 282 -

Da das Zweierkomplement eine negative Zahl ist, müßte das Ergebnis bei einer
Addition von +1 und -I Null sein:

0000 0001 (= +1)

+ 1111 1111 (= -1)

DD 0000 0000 (= 0)

Wie wir sehen, stimmt die Annahme allerdings nur, wenn man den vordersten Über-
lauf unberücksichtigt läßt.

Der Computer führt nun eine Subtraktion durch, indem er den Subtrahenden nega-
tiv macht und dann addiert.

Beispiel: 19-5 = 14

N 0000 0101

1111 1010

Iı1131 1011

+5

HlEinerkomplement von 5

llZweierkomplement von 5

also:

0001 001] (= +19)

I11I 101 (= -5)

0000 11190 (= 14)

Negative Binärzahlen erkennt man daran, daß das äußerste linke Bit gleich 1 ist.

- 283 -

DATEN UND WORTE

Zu den Hauptfunktionen, die ein Computer ausführen kann, gehört das Speichern
von DATEN. Das sind Binärzahlen, aber auch Namen, Texte und Anweisungen,
die der Programmierer dem Computer gibt, damit dieser weiß, was er zu tun hat.
All diese Daten werden in binärer Form gespeichert als irgendein Bit-Muster.

Der Computer hat eine Reihe von Speichermedien. Da sind einmal die Flip-Flop-
Speicher, sehr schnelle, aber dafür ziemlich teure elektronische Speicher. Dann
gibt es den Magnetkernspeicher, der etwas langsamer ist, aber dafür sehr viele
Bits speichern kann. Neuerdings setzt man auch hochintegrierte Flip-Flop-Speicher
in IC-Technik ein, die genau die Mitte zwischen Kernspeichern und Flip-Flops
bilden.

Bei allen Speichern ist immer eine bestimmte Anzahl von Bits zusammengefaßt. Diese
Bits werden auf einmal abgelegt, addiert oder anderweitig behandelt. Die Anzahl
Bits, die so zusammengefaßt ist, ist von Computer zu Computer unterschiedlich.
Innerhalb eines Computer-Typs ist sie aber für alle Speicher gleich und stellt eine
wichtige Kenngröße dar, die WORTLÄNGE. Ein Päckchen zusammengefaßter Bits
nennt man ein WORT.

Weit verbreitet ist das 8-bit-Wort; man bezeichnet es als "BYTE".

REGISTER UND SPEICHER

Flip-Flop-Speicher von Wortlänge bezeichnet man als REGISTER. Allerdings kommt
es auch vor, daß Register länger als ein Wort sind, z.B. 2-byte-Register (= 16-bit-
Register).

Der KERNSPEICHER ist in der Lage, sehr viele Worte zu speichern. Im allgemeinen
sind es 2 = 4096 Worte (man spricht hier von 4k) oder ein Vielfaches hiervon.
Will man ein bestimmtes Wort herausholen (lesen), so muß man dem Kernspeicher
eine zusätzliche Information, die ADRESSE, geben, damit das richtige Wort gefun-

den wird. Jede SPEICHERZELLE hat also eine feste Adresse, aber einen variablen
Inhalt von Wortlänge.

Adressen sind ebenfalls binär aufgebaut. Bei einem 4k-Speicher sind alle Adressen
durch 12-stellige Binärzahlen - also 12 bit - darstellbar; übersichtlicher bezeichnet
man sie mit 3-stelligen Hexa-Dezimalzahlen:

l. Adresse 0000 0000 0000 000

2. Adresse 0000 0000 000] 001

USW.

vorletzte Adresse 1111 111] ı1110 FFE

letzte Adresse 1111 11119 11119 FFF

- 284 -

FFF ! Adressen der

FFE Speicherzellen
FFD (hexa-dezimal)
FFC
FFB

FFA
FF9
FF8
FF7
FF6
FF5
FF4

FF3

FF2
FF] 4k-Kernspeicher

Inhalt jeder
Zelle:

1 Wort mit

n bit
—
u

m
T
r

m
e
n

009
008

007
006
005
004
003
002
001

000

Der RAM-Speicher ist genauso organisiert wie der Kernspeicher. Aber ein großer
Teil der Adressen erfüllt die gleichen Funktionen, die früher von Flip-Flop-Regi-
stern erfüllt wurden. Deshalb ist es üblich, hier ebenfalls von REGISTERN zu spre-
chen. Register allerdings, deren Inhalt noch in wirkliche Flip-Flop-Register über-
tragen werden muß, bevor man mit ihm arbeiten kann.

- 285 -

DAS PROGRAMM

Speichern und Wiederauffinden von Daten ist zwar für einen Computer wesentlich,
aber er kann noch mehr: Mit diesen Daten rechnen, sie manipulieren, ausgeben
oder von außen aufnehmen. Aber all dies muß ihm genau vorgeschrieben werden.
Dann führt er die gegebenen Anweisungen blitzschnell und sklavisch genau aus.

Das Erstellen solcher Anweisungen nennt man PROGRAMMIEREN. Eine Folge von
Anweisungen ist ein PROGRAMM, und die einzelnen Anweisungen werden als
INSTRUKTIONEN bezeichnet.

Ein fertiges Programm nimmt der Computer auf, indem er es Instruktion für Instruk-
tion im Kernspeicher ablegt. Wenn man dann den Rechner startet, liest er die er-
ste Instruktion aus dem Speicher und führt sie aus; dann liest er die zweite Instruk-
tion, führt sie aus, dann die dritte und so fort, bis er schließlich eine Instruktion
findet, die ihm sagt, daß er nun anhalten soll.

Um die Instruktionen aus dem Speicher zu lesen, benötigt der Computer eine Adres-
se. Diese Adresse muß natürlich "mitlaufen" und immer die Instruktion adressieren,
die gerade ausgeführt werden soll. Dieses "Zählen" der Adressen übernimmt der
INSTRUKTIONSZÄHLER (oder auch N-Register).

Die aus dem Speicher gelesenen Instruktionen werden in einem anderen Register ge-
speichert. Dieses Register erzeugt Steuersignale für das RECHENWERK (das eigent-
lich ausführende Organ des Computers) und bestimmt, mit welchen Daten gearbeitet
werden soll.

Kernspeicher

L N |
4

2.Schritt: ei
Ausführen Instruktion 1

und Erhöhen von N
um |]

1.Schritt:

Lesen Instrukti Steuersignale
4

| Instruktion | | Instruktion |

IN

Instruktion 3

-_-—___»\ Instruktion 2

3. Schritt: Instruktion |]

Lesen Instruktio

r
-
-
-

Instruktion

- 286 -

Im Kernspeicher des Computers stehen neben den Instruktionen auch die Daten, mit
denen der Computer arbeitet. Natürlich kann nicht direkt im Kernspeicher gerech-
net werden, sondern nur mit den Registern des Rechenwerkes. Das Haupt-Arbeits-

register ist der AKKUMULATOR (oder (@ -Register). Besonders komfortable Computer
verfügen über mehrere Akkumulatoren, die wahlweise benutzt werden können.

Ein wichtiger Arbeitsvorgang ist der Transport von Daten, z.B. aus dem Speicher
in das (A) -Register (LADEN, LOAD) oder aus dem (@ -Register in den Speicher
(SPEICHERN, STORE).

Speicher » Laden aus Adresse M:

P <M >>(a)

 Arbeitsregister

Speichern in Adrese M

Speicher <@>>M

@® Arbeitsregister
(a ist das Symbol für das Arbeitsregister, M das für einen beliebigen Speicher-

platz, und <> bedeutet "Inhalt von ...“.

Bemerkenswert bei diesen Transportvorgängen ist, daß beim Datenempfang der alte
Inhalt zerstört oder überschrieben wird, beim Senden aber erhalten bleibt. Beim
Transport <M>—>(@ haben anschließend M und (@ den gleichen Inhalt, näm-
lich den ursprünglich nur in M gespeicherten.

Will der Programmierer Daten aus einer Kernspeicheradresse in eine andere trans-
portieren, so geht das nur über das Arbeitsregister. Seine beiden Anweisungen lau-

ten dann in symbolischer Form:

LDA,@ ‚MI
STA, @ ‚M2

- 287 -

Symbolisch bedeutet hierbei, daß die Befehle (Laden, Speichern) durch Abkür-
zungen (LDA, STA) und die Adressen durch NAMEN (MI, M2) - anstelle von
z.B. hexa-dezimalen Adressen - angegeben sind. Das Signal (@) bestimmt, mit
welchem Arbeitsregister gearbeitet werden soll. Nur Computer mit mehreren Ar-
beitsregistern benötigen daher diese Angabe.

Wenn der Computer diese beiden Instruktionen ausführt, geschieht folgendes:

, l. Operation
Laden aus Adresse MI
< Mil>-(

2. Operation
Speichern in Adresse M2
<@ >—M2

An diesem Beispiel kann man erkennen, welche Angaben der Computer benötigt:

- Was ist zu tun? (Laden, Speichern)
Diese Angabe nennt man den BEFEHL

- Um welchen Speicherplatz handelt es sich? (MI, M2) |
Diese Angabe nennt man die ADRESSE. Den Inhalt der Adresse, also
der Wert, mit dem gearbeitet wird, bezeichnet man als OPERAND.

- Mit welchem Arbeitsregister soll gearbeitet werden? ((@)
Diese Angabe nennt man die zweite Adresse.

- 288 -

Der Inhalt der (ersten) Adresse heißt OPERAND.

Beim DIETZ 621 sieht eine Instruktion so aus:

| ! | L_______._.0 | |
> V “ m N W

Befehl AKKUMULATOR ADRESSE

1. Byte: enthält den Befehl

2. Byte: enthält die Adresse des Arbeitsregisters.
Sie wird nur dann angegeben, wenn man nicht mit dem Standard-
Akkumulator arbeiten will.

3.+4. Byte: enthält die Operanden-Adresse..

Der Computer versteht nicht die symbolischen Befehle, sondern nur den MASCHI-
NENCODE. Mit einem Übersetzungsprogramm, dem ASSEMBLER, wandelt er das
SYMBOLISCHE Programm in Maschinencode um. Für die 2 obigen Befehle hätten
wir folgendes Maschinencode-Ergebnis (Voraussetzung: MI = Speicheradresse 01E2
und M2 = O1E3; (Wist der Standard-Akkumulator, deshalb keine 2. Adresse):

Befehl Adresse

L | | Il Ä |
8 c E 2 0 1 (DA,@ ‚MI)

E C E 3 0 1 (STA, (@ ‚M2)

MASCHINENBEFEHLE

Aber was kann der Programmierer dem Computer außerdem befehlen, was kann der
Computer noch?

Da sind einmal die Befehle Addieren und Subtrahieren. Addieren bedeutet, daß die
Binärzahl, die in einer Speicheradresse steht, zum Inhalt des Arbeitsregisters ad-
diert wird:

- 289 -

ADA, (@ ‚,M3
Addition

<@> + <M3>—@

Befehl Adresse

"Li

Addierer

1
|
I
!
!

Die Subtraktion läuft genauso ab, nur wird zwischen M3 und den Addierer ein
Glied geschaltet, welches das Zweierkomplement des Operanden bildet.

Außer den arithmetischen Verknüpfungen zwischen Operand und Arbeitsregister
gibt es noch die logischen Verknüpfungen

Logisches UND: 010011 <@® > ANA, (@ ‚ Mn

01110] <Mn>

01000] <(@ > Ergebnis

Beim logischen UND erhält man pro Binärstelle als Ergebnis nur dann eine 1, wenn
beide verknüpften Worte an dieser Stelle eine | enthielten. In allen anderen Fällen
erhält man als Ergebnis eine 0.

Inklusives ODER: 010011 <Qd > ORA, (@ „Mn

011101 <Mn>

01111] <(@> Ergebnis

Bei inklusivem ODER erhält man pro Stelle als Ergebnis eine |, wenn eines der
Worte oder beide an dieser Stelle eine | enthielten. Nur wenn beide Bits O0 waren,

erhält man als Ergebnis eine 0.

- 29%-

Exklusives ODER:

010011 <(@Q) > EOA, (@ ‚Mn

011101 < Mn>

001110 <a) > Ergebnis

Beim exklusiven ODER erhält man pro Stelle als Ergebnis eine I, wenn die ver-
knüpften Worte an dieser Stelle ungleiche Binärziffern enthielten. Bei gleichen
Binärziffern erhält man eine 0.

Diese logischen Verknüpfungen benötigt man zum Zerschneiden und Zusammensetzen
von Daten und zum Feststellen, ob zwei Binärmuster gleich oder ungleich sind.

Außer den Befehlen, die einen Operanden mit dem Akkumulator verknüpfen, gibt
es auch Befehle, die nur den Inhalt des Arbeitsregisters auf eine bestimmte Weise
verändern. Hierzu gehören die Schiebebefehle. Der Inhalt des Akkus laßt sich
rechts oder links verschieben, und das offen und geschlossen. Was hierbei passiert,
kann man am besten an den Beispielen erkennen:

Schiften links offen

Pr (©) <@> SLO,@
IV

0ar1 46 9 1 “ <@> Ergebnis

Jedes Bit wird um eine Stelle nach links verschoben; das vorderste Bit geht verlo-
ren, und rechts wird eine O0 ergänzt.

Schiften links geschlossen (Rotieren)

10011101 <(Aa)> SLC,&
SELI ULLI LU
0011101] <> Ergebnis

Jedes Bit wird um eine Stelle nach links verschoben; das vorderste Bit wird in die
rechts freiwerdende Stelle übertragen.

Entsprechend läuft das Schiften rechts ab:

- 291 -

Schiften rechts offen

OLNOONENon <@> sro,@

TON, <(@> Ergebnis

Schiften rechts geschlossen (Rotieren)

10011101 <@> SRC,@
NNONNNNN \
11001110 <(@ > Ergebnis

Außerdem kennt der Computer noch Instruktionen, mit denen er sich steuern läßt,
z.B. Anhalten nach Erledigung der gestellten Aufgabe (Halt; HLT).

EIN- UND AUSGABE

Der Computer kann Daten von außen aufnehmen oder seiner Umgebung vermitteln.

Die PERIPHERIE, d.h. die mit dem Computer verbundene Umwelt, wird wie der
Speicher behandelt. Jedes an den Computer angeschlossene Gerät, mag es nun
eine Schreibmaschine, ein Lochstreifenleser oder -stanzer, eine Meßstelle, eine
Anzeigeeinheit oder sonst etwas sein, bekommt eine EXTERNE ADRESSE (oder
GERÄTEADRESSE) zugeteilt, und Informationen werden in Form von Worten ausge-
tauscht, - wie beim Speicher. Die Verteilung der Daten erfolgt ebenfalls über das
Arbeitsregister.

Eine typische Befehlsfolge für einen Ausgabevorgang sieht so aus:

!) Laden Datenwort aus Speicher LDA, (@ ‚DI

2) Ausgabe Datenwort an Peripherie STA, (@ ‚Pl

D1 = Kernspeicher-Adresse und

Pl = Externe Adresse.

l. Schritt
Peripherie

"PT

P2

2.Schritt

- 22 -

Normalerweise verstehen die Peripherie-Geräte nicht den Binärcode, mit dem der

Computer rechnet. Sie haben ihren eigenen, z.B. den ASCII-Code. Dieser Code

kommt auch in den Lochstreifen vor, die der Computer liest oder stanzt.

Ein Lochstreifen ist so aufgebaut:

—- Leserichtung

Kanäle <
«—— Transportloch

—
-

NN
D
w
w

1
»
D
O

S
I

0
0

f

Zeichen

Ein Zeichen auf dem Lochstreifen besteht aus 8 Lochreihen und einem kleineren

Transportloch.

Die 8 Löcher (oder Nicht-Löcher) werden mit einem Mal gelesen und in das Ar-

beitsregister übernommen:

27 20
II TI TTTTI

Bo —
Vo

6 0-

3 0-
Kandlesy o-

3 0

2 0—

1 0

- 293 -

Jeder Buchstabe und jede Ziffer hat ein bestimmtes Code-Zeichen, zum Beispiel

beim ASCII-Code:

Kanal 8765432] hexa-dez. ASCII-Code-

Bit Da—„0 Darstellung Bedeutung

00110000 "30 Ziffer Q

10110001 "Bl " 1

10110010 ’B2 " 2

00110011 "33 u 3

10110100 "BA " 4
00110101 35 u 5

00110110 36 u 6
10110111 "B7 " 7
10111000 "B8 u 8
00111001 ‚39 9

01000001 A] Buchstabe A

01000010 '42 " B

USW.

Der Kanal 8 trägt keine eigentliche Information. Er ist zur Kontrolle da und sorgt
dafür, daß immer eine gerade Anzahl von Löchern gestanzt ist (PARITY-Bit).

Wird z.B. eine Ziffer eingelesen, so interessieren nur die rechten 4 Bit, denn sie
entsprechen genau dem Binärcode. Also schneidet man die restlichen 4 Bit ab, in-
dem man das ASClII-Zeichen und eine MASKE durch UND verknüpft:

"35 0011 0101 = Ziffer 5 (ASCII)
"OF 0000 1111 = Maske

"05 0000 0101 = Ziffer 5 (Binöär)

Bei einer Ausgabe fügt man die fehlenden Bits durch inklusives ODER wieder hinzu:

'07 0000 0111 = 7 (Binär)
’Bg 1011 0000 = Ergänzung

"B7 1011 0111 = Ziffer 7 (ASCII)

Bemerkung:

Um bei der Schreibweise von Zahlen die dezimale von der hexa-dezimalen Darstellung
urigncheiden zu können, wird eine hexa-dezimale Zahl 10 als "1 gekennzeichnet
(WW = 16!).
Ebenfalls wird die Null (@) durchgestrichen, um sie von dem Buchstaben © unterschei-
den zu können.

- 294 -

WIR SCHREIBEN EIN PROGRAMM

Um nun all die gesammelten Erkenntnisse anzuwenden, wollen wir jetzt ein kleines
Programm schreiben. Und zwar wollen wir 2 Zahlen eingeben, sie zueinander addie-
ren und das Ergebnis anschließend wieder ausgeben.

Diese Aufgabenstellung ist noch sehr leicht zu überschauen, und man könnte sie daher
sofort mit den bekannten symbolischen Befehlen programmieren.

Trotzdem wollen wir uns bereits bei dieser Aufgabe wie echte Programmierer verhalten;
denn bei denen kommt zuerst das Blockdiagramm, um stets die Übersicht zu behalten.

In Blockdiagrammen verwenden wir graphische Symbole für einzelne Aufgaben. Die
Kästchen werden durch Pfeile so miteinander verbunden, wie sie im Programm aufein-
anderfolgen. Wichtige Symbole sind:

2 IXR Allgemeine Verarbeitung:
Ein Kästchen für alles, wofür es kein spezielles
Kästchen gibt.

EIN Unterprogramm-Aufruf

Bedingte Verzweigung mit Ausgängen für JA und
NEIN

Manuelle Eingabe aus der Peripherie

| Ausgabe auf Registriergerät

Lesen oder Stanzen eines Lochstreifens

IZeiche
lesen (im Zweifelsfall hineinschreiben)

tr
ABC Längerer, definierter Programmteil (ROUTINE,

 PROZEDUR, ALGORITHMUS), auch Unterprogramm

Verknüpfungspunkt (CONNECTOR) bzw. Beginn
eines Programmteils bzw. markanter Punkt im
Programm

Anhalten des Programms; es muß einen Anstoß von
außen bekommen ‚damit es weitergehta

(
d
r

- 295 -

Unser Blockdiagramm des Lösungsweges sieht also folgendermaßen aus:

 1. Zeichen

einlese

Maskieren

 |

Zwischen-
speichern

2.Zeichen

einlesen

Maskieren

Addition

 |

Ergänzen zu
einem

ASCII-Zeichen

Ausgabe

- 296 -

Nachdem wir durch das Blockdiagramm den genauen Ablauf des Programms festgelegt
haben, können wir nun die symbolischen Befehle schreiben.

EAA.: LDA ‚(a) ‚EXT (Eingabe 1. Zeichen)
ANA,(a) ‚MASK (Maske)
STA ‚(a ‚ZWS (Zwischenspeichern)
LDA ‚(a ‚EXT (Eingabe 2. Zeichen)
ANA,(@) ‚MASK (Maske)
ADA ‚(a) ‚ZWS (Addition)
ORA ‚(a ‚ASCI (Ergänzung)
STA ‚(a) ‚EXT (Ausgabe Ergebnis)

MASK: H „’PF

ASCI: H ,’B@

ZWS: V

EXT: 2xQ ,APFI (Geräte-Adresse)

Hierzu ein paar Hinweise: Das Programm soll einen Namen haben: EAA (Eingabe/

Addieren/Ausgabe), der als MARKE vor die erste Instruktion geschrieben wird.

Da im Programm Zwischenspeicher und Masken benutzt werden, müssen diese auch
im Programm definiert werden, jeweils mit einer Linksmarke. Das geschieht mit den
Symbolen V (VARIABLE) und H (Hexa-dezimaler FESTWERT). Mit Q wird dem sym-
bolischen Gerätenamen EXT die Adresse A@FI zugewiesen.

SPRÜNGE UND SCHLEIFEN

Was geschieht, wenn der Computer dieses Programm ausgeführt hat? Er wird weiter-
laufen und MASK als eine Instruktion auffassen. Das aber muß verhindert werden;
andernfalls macht der Computer Unsinn. Ein ordnungsgemäßes Weiterlaufen erreicht
man durch einen SPRUNG (oder VERZWEIGUNG) im Programm, z.B. zum Programm-
teil XYZ.

- 297 -

Eingabe
Addition

Ausgabe

Dann muß an die Stelle der drei Pünktchen die Instruktion: JPA, , XYZ gesetzt
werden. Damit wird der Instruktionszähler auf die Anfangsadresse des Programmteils

XYZ gesetzt.

Oder man kann auch nach EAA zurückverzweigen:

JPA, , EAA

Nun wiederholt sich der beschriebene Vorgang immer wieder.

Eingabe
Addition
Ausgabe

BEE
Aus dieser Programmschleife kommt der Computer allerdings nie wieder heraus. Er
liest Zahlen, adddiert sie und druckt das Ergebnis aus, und das ohne Ende.

Will man nur eine bestimmte Anzahl von Additionen durchführen, so muß ein Zäh-
ler mitzählen und bestimmen, wann aufgehört werden soll. Dieser Zähler ist das
INDEXREGISTER. Es zählt jeden Durchlauf mit, und durch eine ABFRAGEstellt
der Computer fest, ob schon der Endwert, z.B. 100, erreicht ist.

- 298 -

IX

EAA
100 mal

 IXR+] > IXR

Wenn nein, geht das Programm nach EAA zurück, wenn ja - nach dem 100. Durch-
lauf - nach XYZ.

Das zugehörige Programm sieht so aus:

LDC ‚IXR,@
EAA ... |

Programm EAA

IEC ‚IXR,100,XYZ
JPA, ,EAA

LDC,IXR,f bedeutet, daß das Indexregister IXR mit einer Konstanten (CONSTANT) $
geladen wird. Konstante heißt, daß die Adresse direkt als Operand genommen wird
(und nicht ihr Inhalt!).

IEC,IXR,100,XYZ bedeutet: Addiere zu IXR eine 1 und springe, wenn der Inhalt

gleich der Konstanten 100 ist, nach XYZ. Andernfalls laufe weiter auf die nächste
Instruktion.

Solche Schleifenbildungen kommen in Programmen sehr häufig vor, und deshalb kann
ein Computer gar nicht genug Indexregister haben.

- 299 -

UNTERPROGRAMME

In unserem Programm EAA stört aber noch, daß die Eingabe zweimal programmiert
worden ist, was Platz kostet. Natürlich kann man das auch über eine Programm-
schleife erledigen. Besser ist für solche Fälle ein UNTERPROGRAMM, in das man
über einen UNTERPROGRAMM-SPRUNG gelangt:

CSA,RET,EIN

Hierbei geschieht zweierlei: Erstens springt das Programm an die Stelle EIN, und
insoweit verhält es sich wie ein normaler Sprung. Vorher aber wird der Instruktions-
zählerstand als RÜCKKEHRADRESSE in das Register RET übertragen.Am Ende des Un-
terprogramms, das die Befehle für Eingabe und Abspeichern enthält, ist ein RÜCK-
SPRUNG ins HAUPTPROGRAMM (an die Stelle nach dem Aufruf CS...) vorzusehen
mit:

JPX, , ‚RET

Dies heißt: Springe indirekt über den Inhalt des Registers RET.

INDIREKT bedeutet, daß nicht zum Register RET gesprungen werden soll, sondern
daß der Inhalt des Registers RET das Sprungziel angibt. Und hier steht ja die Rück-
kehradresse..

Hieran sieht man, daß die programmierte Adresse (nämlich RET) gar nicht die Adres-
se ist, mit der gearbeitet werden soll, Deshalb unterscheidet man auch die program-
mierte Adresse von der EFFEKTIVEN ADRESSE.

- 300 -

Unterprogramm EIN

1 Zeichen

Maske

Ö
Das Programm EAA sieht nun so aus:

EIN

«(> > Zzws

r EIN

@+ZWws>@

- 301 -

1 Zeichen lesen

Maskierung

Rücksprung

Unterprogramm EIN

Zwischenspeichern

Unterprogramm EIN

Addition

Ausgabe

ADRESSIERUNG

Mit Ausnahme des JPX waren bisher programmierte Adresse und effektive Adresse
gleich. Aber es gibt auch noch andere Fälle, wo beide Adressen nicht überein-
stimmen; das liegt daran, daß der Computer verschiedene Arten der ADRESSIERUNG
kennt.

In den ersten Beispielen wurde der Speicher und auch die Peripherie ABSOLUT ad-
dressiert, gekennzeichnet durch den Buchstaben A bei den Befehlen

LDA LOAD ABSOLUTE
oder STA STORE ABSOLUTE

Die absolute Adresse ist 16 bit lang, und damit lassen sich 64k Speicherzellen adres-
sieren. Die effektive Adresse ist gleich der programmierten Adresse.

Außerdem haben wirbeim Rücksprung aus dem Unterprogramm die INDIREKTE Adres-
sierung kennengelernt. Hierbei ist die effektive Adresse gleich dem Inhalt der pro-
grammierten Adresse: |

DX LOAD INDIRECTr

Die "CONSTANT-Adressierung" ist ebenfalls schon erläutert worden. Hier ist die
programmierte "Adresse" der Operand selbst:

LDC LOAD CONSTANT

Neben diesen Adressierungsarten gibt es noch die RELATIVE (oder LATERALE) Adres-
sierung. Hierbei geht man von der Annahme aus, daß viele Speicherplätze und
Sprungziele in der Nähe der Instruktion stehen. Der Vorteil der relativen Adressie-
rung ist, daß man mit einer 8-bit-Adresse auskommt; und dabei jeden Platz errei-
chen kann, der nicht weiter als 128 Adressen rückwärts bzw. 127 Adressen vorwärts
liegt:

Programmstand — 2 256 Bytes (relativ adressiert)N

N
N

 DER
- 302 -

Bei relativer Adressierung ist die effektive Adresse gleich der Adresse der Instruk-
tion + programmierter Adresse:

LDL LOAD RELATIVE

- 303 -

Tabellen

vorn hinten

Leiterseite Bauelementseite Leiterseite Bauelementseite

1A IC

+Z +2

2A 2C

+ +7

BE

292 182

Bemerkung: Alle Signale (außer RK) mit negativer Logik (0 V wenn ange-
wählt).

Steckerbelegung: UNIVERSAL-BUS-Anschluß (Zentraleinheit DIETZ 621)

- 304 -

oben unten

Leiterseite Bauelementseite Leıterseıte Bauelementseite

2A 2C

+2

IA. IC

D1

5
S1

S13
514
515

Mini- Universal- Mini- Universal-

BUS BUS BUS BUS

Bemerkung: Alle Signale (außer RK, IRK) mit negativer Logik (OV wenn
angewählt)

Steckerbelegung: DEVICE-SELECTOR (Universal-Interface-Einschub)

- 305 -

oben unten

Leiterseite Bauelementseite Leıterseite Bauelementseite

IA IC 2A 2C

+Z +7 +7 +27

+12 V

-12 V

ex ex
Ue2 ex

ex 29 U ex 3

ex 30 Uex 4

Uex5 31 Uex
Mini-BUS für gerätespezifische Signale

Bemerkung: Alle Signale (außer IRK) mit negativer Logik (0 V wenn
angewählt)

Uex 1... Uex 5 sind gedruckte Verbindungen, die für alle
Steckplätze einheitlich für externe Spannungsversorgung ver-
schaltet werden können.

V ist eine gedruckte Verbindung von A- und B-Seite

Steckerbelegung: EINKARTEN-INTERFACE (Mini-BUS).

- 306 -

HEXA-FORMAT-LOCHSTREIFEN

ı NUL-

" Lochung
00000.00o0

2 e00.00 | RUBOUT- Streifen-
u —T Lochung vorlauf00000.00o0

0o00000.00o0

o 0 . Leerschritt

o . o IA l. Byte AP
oo . 2

oo . Leerschritt
o0 . oo|3 2. Byte 3C

ae en:
% o . Leerschritt

o 00 . o |] } Byte mit Adrese ...F 12
o o0 00 ..0 2

5 0.0 0 |Wagenrücklauf
© o 0.0 Zeilenwechsel

ö o 0 . Leerschritt
Ö oo .00 F Byte mit Adresse ...2 FF

oo0 .00 F

o o . Leerschritt

o00. o |9 letztes Byte JE
oo .o o/|E

_l Streifen-Nachlauf
Bu — | (NUL-Lochung) u

Inhalt

j \

oKanal 7654.32]

Pa
ri

tä
ts

bi
t

-

Tr
an
sp
or
tl
oc
h-

- 307 -

Z
e
i
c
h
e
n

Kanal

87654.32

U Io} |e

| o o
u ® o

+ |o| |e oo

$ o .|jo
% lo| le .je| je

& lo| le .|ele

’ o .le/ele
(eo eo.
) lol [el ie|.
%* lol /e| |e/i.!| /e
+ oe |o.| eo

‚ lol |e| |e|.je

- e| |eo|.le

. oe je/l.ieie

/ ToT Te] Jel.lele
2 o/o

I! lo! [ee

2 lol jee o

3 o/e o

4 |o| |jele| |.|e

5 o/o| |.|eo

6 eie| |. oje

7 lol [ele| |.|oele

8 Ilo| Jeleje|.

9 eioie|.

: eiolo|.| |eo

; o| |ejeie|.| je

< oeioje|.|e| |

= Io0[Je/ele|.|e

> Io| |eleje|.jele

? ejoeiei.|oie
| |

Parity- Transport-
Bit lochung

u (Zeichen 20)
bedeutet Leerschritt

- 308 -

Z
e
i
c
h
e
n

Kanal

87654.32 1 Hexa

@ [ole 49
A e oe| 41

B o o 42

C lole eje|i 43

D e o 44

E |ole e |ie| 45

F Iole eo 46

G o eioie| 4/

H o e 48

I lole o e| 49

J lole eo o 4A

K ® e|.| |ele| 4B

L lole e.|eo AC
M o e|.|e je 4D

N o e.ieie 4E

O icile e|.|oe|joie| 4AF

P oe |eo 5Q
Q |ole| |®e e| 5]
R lole| ie o 52

5 o| |eo eie| 53

T Jole| |e o 54
U oe eo e| |e| 55

V oe eo oo | 56

W lole| |e eioloe| 57

X Iole| |eie 58

Y oe joeie e| 59

Z o| |o/e 5A

EC |oje| jele|.| |jeje| 5B

\ o| |eio|.|e 5C

J jole| |eje|.jei |e| 5D

t |ole| |ele|.|oleo 5E
-— oe |e|ej.|oleo| 5F

Parity- Transport-
Bit lochung

o e = Dateninhalt 1

Lochung im Streifen
Stromschritt (MARK)|

ASCH-Code Steuerzeichen

Kanal

Zeichen 87654.321]1 Hexa Bedeutung

NULL 17
SOM 91
EOA 22
EOM 93
EOT 94

WRU 05
RU 26
BELL 27
FEP o|. 28
H-TAB o|. 29
LINE FEED o|. BA Zeilenvorschub

V-TAB e|. PB
FORM o|. PC
RETURN o gD Wagenrücklauf
so eo YE

SI e gr

DCA 10
X-ON eo 11

TAPE ON o 12
X-OFF ® 13
TAPE OFF o 14
ERROR o 15
SYNC o 16
LEM ® 17
SQ eo 18
5] o 19

S2 o 1A

S3 ® 1B

54 o IC

55 o ID

S6 ® IE

57 o IF

ACK oo . 7C

ALT MODE .ieo . ® 7D

ESC oje .|eje 7E_
RUB OUT o/lele .|ejele 7F

Parity- Transport-
Bit lochung

Dateninhalt 1o o

n
u

Lochung im Streifen
= Stromschritt (MARK)

- 309 -

zn

n

ılo0o! 10
2) 1] 05
41 2| 0,3
8| 3| 0,185

16 4 0,0625
2\5| 0,03 3
64 6 0,015 625
128 7 0,007 8125
256 8 0,003 906 25
512 9 0,001 953 125

1.024 10 0,000 976 562 5
2 048 11 0,000 488 281 25
4 096 12 0,000 244 140 625
8 192 13 0,000 122 070 312 5
16 384 14 0,000 061 035 156 25
32 768 15 0,000 030 517 578 125
65 536 16 0,000 015 258 789 062 5

131 072 17 0,000 007 629 394 531 25
262 144 18 0,000 003 814 697 265 625
524 288 19 0,000 001 907 348 632 812 5

1 048 576_| 20 0,000 000 953 674 316 406 25
2 097 152 21 0,000 000 476 837 158 203 125
4 194 304 22 0,000 000 238 418 579 101 562 5
8 388 608 23 0,000 000 119 209 289 550 781 25
16 777 216 24 0,000 000 059 604 644 775 390 625
33 554 432 25 0,000 000 029 802 322 387 695 312 5
67 108 864 26 0,000 000 014 901 161 193 847 656 25
134 217 728 27 0,000 000 007 450 580 596 923 828 125
268 435 456 28 0,000 000 003 725 290 298 461 914 062 5
536 870 912 29 0,000 000 001 862 645 149230 957 031 25

1 073 741 824 30 0,000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0,000 000 000 465 661 287 307 739 257 812 5
4 294 967 296 32 0,000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0,000 000 000 116 415 321 826 934 814 453 125
17 179 869 184 34 0,000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0,000 000 000 029 103 830 456 733 703 613 281 25
68 719 476 736 36 0,000 000 000 014 551 915 228 366 851 806 640 625

- 310 -

NOTIZEN

BEFEHLSTABELLE

Symbol. BEFEHLSBYTE String Symbol. BEFEHLSBYTE String
Befehle hexa binör ı 2 Befehle hexa bintr 1 2 3 4

‘

Symbol. "BEFEHLSBYTE

Befehle hexa binür

LD.
AD.

 100
101
101
N
110
m
111

String
indiziert

. Adresse niedrig
indiziert Adresse. hoch

Konstante
Differenz/Sprungweite
Referenzregister
Arbeitsregister
Indexregister
Anzahl

indiziert

n
e

2
0
c
o

- 320 -

Seit vielen Jahren Computer-Hersteller.
Spezialisiert auf Echtzeit-Systeme.

Computer, Peripherals, Systeme, Packages,
anwendungsorientierte Systeme.

