dretzc’)

Handbuch

Computer
e SYSTEME

dietz52

BN Computer| i
ndustrie-Elektronil
0-4330 Miilheim a.d. Ruhr 13
©UE . = SYSTEME | 75tz
elex 856770

Handbuch 4/74

Hinweis fur den Leser:

Das vorliegende Handbuch DIETZ 621 soll lhnen einen Uberblick uber das
Computer-System 621, seine Konfigurationsmdglichkeiten, seine Software und
seine Peripherie geben.

Detaillierte Information kann der Benutzer dem Handbuch entnehmen, wenn es
um technische Daten, die Struktur und Bedienung der Zentraleinheit, die Ma-
schinenbefehle und die Programmierung in Assembler geht.

Andere Aspekte und Baugruppen des Systems, insbesondere die Peripherie, Betriebs-
systeme und Programmiersprachen, sind hier nur so weit beschrieben, wie es das
Verstdndnis von Funktion und Leistungsfahigkeit erfordert. Benutzer-orientierte Do-
kumentation hierzu liegt in getrennter Form vor.

Ausgabe: April 1974

Herausgeber: Heinrich Dietz
Industrie-Elektronik
D-4330 Milheim a.d. Ruhr 13
Solinger Strafle 9
Telefon (02133) 48 50 24
Telex 0856770

Druck: Hoppe + Werry KG, Mulheim a.d. Ruhr

inhalt

Zentraleinheit

Das Unternehmen:

Die Produkte:

Prinzip:

Hardware:

Prinzip:

System=-Peripherie:

Gerdte-Peripherie:

ProzeB-Peripherie:

DFU-Peripherie:

DIETZ in Kurzform

Qber den DIETZ 621
Uber das DIETZsystem 621

Struktur
Maschinenbefehle

Aufbau
Bedienung
Technische Daten

Peripherie-System
Universal-BUS
Universal-Interface-Einheit
Aktive Elemente

Erweiterungen der Zentraleinheit

Plattenspeicher-Systeme

Geriite-Interfaces

Standard-Peripherals
Graphische Ausgabe
Magnetband-Systeme

Digitale Ein- und Ausgdnge
Analoge Ein- und Ausgdnge

Datenfernibertragung

Seite

13
27

55
61
65

73
75
90
99

105
108

115
118
129
132

137
147

162

Anhang

=

Seite

Basis-Programmierung: Programmierhinweise 164
ASSEMBLER 171
LIBRARY 192
MONITOR 205
Betriebssysteme: DBOS 210
DFMS 214
MPOS 221
RTOS 224
Programmiersprachen: MARS 600 228
BASIC 235
BASEX 246
C-BASIC 252
FORTRAN IV 255
Hilfsprogramme: UTILITIES 261
MINCTEST 600 262
Standard-Systeme: DIETZsystem 621 263
ProzeBterminal-System 6150 277
Fur Beginner: Computer-Fibel 279

Zum Nachschlagen: Tabellen 304

DIETZ in Kurzform

Die Firma HEINRICH DIETZ INDUSTRIE-ELEKTRONIK besteht seit 1951, Das Programm
war und ist die industrielle Automation mit elektronischen Mitteln. Diese Mittel sind
heute Computer.

Der Weg fihrte von elektronisch geregelten Anirieben Uber KompensationsmeBgerdte und
Analogrechner zur Digitaltechnik, Uber den DIGIVERTER (den ersten deutschen Digital-
umsetzer) zu den ZDE-Anlagen und mit dem Aufkommen der Halbleiter als industrielle
Baukomponenten zum COMBIDAT-System.

1965 wird das COMBIDAT-System durch die ersten technischen Kleincomputer aus
Deutschland, die MINCAL-Digitalrechner, erweitert. In dieser Zeit entsteht eine
Rechner-Familie von festprogrammierten Kleincomputern mit der Bezeichnung MINCAL 0,
MINCAL E, MINCAL Q und MINCAL 1 und einem speicherprogrammierten Computer,
dem MINCAL 3.

Auf die Computer der ersten Generation folgt 1968 der MINCAL 4, der erste in Deutsch-
land entwickelte ProzeBrechner in integrierter Technik. Mit dem MINCAL 4 wurde die
Multiprogramming-Struktur und die 19-bit-Wortlange eingefohrt. :

Diese beiden Eigenschaften finden sich auch bei dem MINCAL-500-System, das 1969
auf den Markt gebracht wird. Dieses erfoigreiche Prozeflrechner-System umfat den
festprogrammierten Computer MINCAL 513 und sein freiprogrammiertes Gegenstiick,
den MINCAL 523.

1972 wird der Multibyte-Computer MINCAL 621 auf dem Markt eingefthrt. Er hat sich
schnell zu einem der erfolgreichsten Minicomputer auf dem europdischen Markt entwickelt
und bildet den Kern des heutigen Systems DIETZ 621.

1973 kommt der DIETZ 1600 hinzu, ein auBerordentlich leistungsfahiges System mit um-
fangreicher Software fur ProzeBanwendungen und technisch-wissenschaftliche Datenverar-
beitung im Foreground-/Background- oder Timesharing-Betrieb.

Am unteren Ende des Produktionsspektrums liegt der 1974 eingefthrte Mikrocomputer
DIETZ 211, der vor allem Aufgaben der Steuerung, MeBwerterfassung und -verarbeitung
kostengunstig lost.

Heute entwickeln und fertigen in Milheim 250 Mitarbeiter nicht nur Computer, sondern
auch Computer-Peripherie und Standard-Software. AuBerdem liefert DIETZ schlusselfertige
Computer-Anlagen einschliefilich Planung, Systemanalyse, Ausarbeitung der Anwenderpro-
gramme und der Prozeflperipherie.

DIETZ COMPUTER SYSTEME ist ein Begriff geworden fur ein eigenstdndiges Entwicklungs-
konzept. Auch der DIETZ 621 ist ein Teil dieser Gesamtkonzeption.

Uber den DIETZ 621

Das Konzept des DIETZ 621 bertcksichtigt die Erfahrungen langjshriger erfolgreicher
Computer-Entwicklung und verwendet modernste Technologien. Das gunstige Preis-/
Leistungsverhdltnis ist nicht durch Weglassen wichtiger Funktionen erreicht worden,
sondern durch eine neuartige Konzeption, die im Bereich der Kleincomputer ganz neue
Mafistabe setzt.

Hier in Kurzform die wichtigsten Eigenschaften des Computers:

MULTIBYTE-KONZEPT

Der DIETZ 621 pafit sich optimal der gestellten Aufgabe an, weil er mit variabler
Wortlénge arbeitet: 8 bit fur Textverarbeitung und Zeichen-Ein/Ausgabe, 16 bit fur
ProzeBdaten, 32 bit fur Rechengrsflen.

Die Bytes werden durch die Computer-Hardware zu Daten beliebiger Lange verkettet
- schnell, speichersparend, einfach.

MULTIPROGRAMMING - HARDWAREUNTERSTUTZT

Echtzeit-Aufgaben verlangen von einem Computer Multiprogramming-Eigenschaften:
Programm-Unterbrechungen durch Ablidufe mit hoher Prioritdt, gleichzeitige Bearbeitung
mehrerer Programme.

Der DIETZ 621 hat bis zu 16 unabhiingige Programmebenen mit eigenen Registern und
Datenkantlen. Wechsel der Aufgaben bedeutet Wechsel der Ebene, und dieser erfolgt
praktisch verzgerungsfrei, weil hardwaregesteuert.

MULTIREGISTER-STRUKTUR

Jede Programmebene verfugt Uber bis zu 256 Register - eine fur Computer dieser Klasse
ungewdhnlich hohe Zahl. Viele Universalregister bedeuten kompakte, mit hoher Geschwin-
digkeit laufende Programme; sie ergdnzen Multibyte- und Multiprogramming-Struktur zu
einem einzigartigen Computer-Konzept.

UNIVERSAL-BUS

Zentraleinheit, Kernspeicher, Peripherie und Massenspeicher verkehren tUber einen Uni-
versal-BUS miteinander. Programmgesteuerter Datenverkehr und direkter Sgeicherzugriff
bedienen sich des gleichen Datenkanals. Die Peripherie und der Speicher werden véllig
gleich behandelt, so daB sich die Programmierung von Ein- und Ausgaben vereinfacht und
trotzdem an Flexibilitat gewinnt. Bei direktem Speicherzugriff wird die Zentraleinheit
nicht berthrt und kann bis zu ihrem ndchsten Speicherzugriff intern weiterarbeiten. Das
BUS-Konzept erlaubt den AnschluB unterschiedlich schneller Speicher.

HALBLEITER-SPEICHER

Jeder 621 enthalt - neben dem Hauptspeicher - einen Halbleiter-Speicher mit extrem
kurzer Zugriffszeit, in dem sich Register, Datenpuffer und schnellaufende Programme
befinden.

FLEXIBLE ADRESSIERUNG

Die BUS-bezogenen Befehle konnen vielfsltig adressiert werden: CONSTANT (die
Adre-Bytes werden unmittelbar als Operand verwertet), REGISTER (die ebenen-zuge-
horigen Register werden angesprochen), RELATIVE (der Operand steht bis zu 127 bytes
vor bzw. nach dem Befehl), ABSOLUTE (der gesamte Speicherbereich kann durch eine
16-bit-Adresse angesprochen werden). Zusdtzlich kann die so gebildete Adresse noch in-
diziert werden, Uber eines von maximal 127 Indexregistern.

BEDINGTER SPRUNG

Alle Entscheidungen werden durch bedingte Springe gefdllt, bei denen das Programm
relativ um bis zu 127 byte vorwirts oder rickwirts verzweigt. Besondere Befehle testen
beliebige Bits oder Bitgruppen auf 0- oder 1-Zustand.

ZWEIADRESS-BEFEHLE

Alle BUS-bezogenen Instruktionen sind Zweiadre-Befehle, ein bei Kleincomputern un-
gewshnlicher Komfort.

HARDWARE-BOOTSTRAP

Ein Urladeprogramm ist in einem ROM gespeichert und durch Tastendruck aufrufbar. Da
dieses Programm nicht im Kernspeicher liegt, kann es auch nicht durch Programmierfehler
zerstort werden.

ZUSATZLICHE OPTIONEN

In das Rechnergehduse ksnnen zusdtzlich eingebaut werden:

2 Interfaces fur Standard-Peripherie; Real-Time-Clock; 4, 8, 16 oder 32 Kbyte Kern-
speicher oder bis zu 8K reprogrammierbarer Festspeicher; Batteriepufferung fur den Halb-
leiterspeicher.

COMPUTER-PERIPHERIE

Wie der Rechner selbst, so ist auch seine Peripherie modular ausbaufghig. Jede Anlage
wird aus den Komponenten zusammengestellt , die zur Lsung der jeweiligen Aufgabe be-
notigt werden. Wachst die Aufgabe, wird das System erweitert, z.B. durch Kernspeicher-

erweiterung bis 80 Kbyte, Festkomma- oder Gleitkomma-Prozessoren, Platten-Systeme,
Magnetband, Fernschreiber, Datensichtgerite, Schnelldrucker, Lochstreifenleser/-Stanzer,
Lochkartenleser, Plotter, XY-Schreiber, Datenferniberiragungseinrichtungen und Prozef3-
Ein/Ausginge fur die unterschiedlichsten digitalen und analogen Signale.

MODULARER AUFBAU

Zentraleinheit und periphere Erweiterungen sind so modular aufgebaut, daB sie in jedem
Anwendungsfall kosten- und funktionsgerecht konfiguriert werden konnen.

Uber das DIETZsystem 621

Das DIETZsystem 621 ist ein universelles Hardware-/Software-System, das auf der
Zentraleinheit 621 aufbaut und mit dem gesamten Peripherie- und Software-Katalog
ausgerustet werden kann.

UNIVERSELLER EINSATZ

Die Einsatzmoglichkeiten des DIETZsystems 621 sind nahezu unbegrenzt, vor allem dort,
wo es auf Echtzeit-Verhalten, Benutzerfreundlichkeit und Flexibilitat ankommt:
Datenerfassung, MeBwertverarbeitung, Steuerung und Regelung - die klassischen Aufgaben
von ProzeBrechnern. Experimentsteuerung, Automatisierung analytischer MeBgerdte, Labor-
automation, medizinische Technik - ein bedeutendes Gebiet fur den Computer-Einsatz.

Technisch-wissenschaftliche Datenverarbeitung, Unterrichts-Unterstitzung - fur Forschung
und Lehrbetrieb.

Datenfernverarbeitungs-Systeme und intelligente Terminals - mit Fshigkeiten vollwertiger
Computer.

Interaktive, dialogfdhige Systeme fur die Erfassung und Verarbeitung von kommerziellen,
administrativen und Fertigungsdaten - mit schnellem Zugriff im Echtzeit-Betrieb.

DIETZdisk - EIN NEUES SPEICHERMEDIUM

Jedes DIETZsystem 621 ist mit einem neuartigen Speichermedium ausgestattet: der
DIETZ disk.

Ein flexibler Plattenspeicher in einer robusten, vollig geschlossenen, handlichen Kassette.
Berthrungslos gelesen und beschrieben, priformatiert und daher unempfindlich und austausch-
bar, mit hoher Kapazitdt und schnellem Zugriff.

Die DIETZdisk steht dem Benutzer als Programm- und Datentriger zur Verfugung. Ein
sicheres, bequem handhabbares Medium, mit 256 Kbyte sofort zugreifbarer Kapazitit.
Eine Lssung, die Lochstreifen, Bandkassetten und Floppy Disks in den Schatten stellt.

Im DIETZsystem 621 C ist ein zweites DIETZdisk-Laufwerk als Systemspeicher enthalten.
Kurze Zugriffszeit und hohe Transferrate bieten die Eigenschaften eines plattenorientierten
Systems - zu den Kosten eines normalen Computers,

2.4 MBYTE SYSTEMSPEICHER

Das DIETZsystem 621 D enthalt als Systemspeicher eine Wechselplatte mit 2.4 Mbyte
Kapazitat - fur erhshte Anspriche an Speichervolumen und Zugriffsgeschwindigkeit. Die
Erweiterung auf bis zu 9.6 Mbyte ist vorgesehen.

MODULARE PERIPHERIE

Zum DIETZsystem 621 gehort ein umfangreicher Katalog von Periphergerdten, Prozef-
Interfaces und Datenutbertragungs-Schnittstellen. Aufgrund der modularen Konzeption des
Peripherie-Systems lassen sich optimale Konfigurationen fur alle Einsatzfille zusammen-
stellen.

Ein Universal-BUS verbindet die Peripherie-Anschlisse mit dem Grundsystem; System-
Erweiterungen sind daher problemlos durchfthrbar. Und: Die gesamte Peripherie wird von
der Software unterstitzt.

BENUTZERFREUNDLICHES BETRIEBSSYSTEM

Das Betriebssystem faflt alle Hardware- und Software-Ressourcen zusammen.

Es unterstitzt:

Benutzer/System-Dialog uber das Konsolgerit; Behandlung von und Zugriff zu Dateien;
Overlay von Programmen; Verarbeitung von Interrupt- und Zeitauftriigen; Verwaltung von
Programmen; Edition und Ubersetzung von Quellprogrammen; Erkennung von Systemfehlern.

Diese Eigenschaften werden garantiert durch

DBOS Plattenorientiertes Basis-Betriebssystem
DFMS Datei-Verwaltungssystem

MPOS Multiprogramming-Betriebssystem

RTOS Echtzeit-Betriebssystem

FUR JEDES PROGRAMM DIE GEEIGNETE SPRACHE

Dem Benutzer des DIETZsystems 621 steht eine Vielzahl von Computer-Sprachen zur Ver-
fugung.

- MINCASS 600 - die Assembler-Sprache fir speicher- und laufzeit-optimale Program-
mierung

- MARS 600 - ein Makro-Assembler fur Realtime-Systeme, der dem Benutzer die Beschrei-
bung des Echtzeitverhaltens und die Behandlung der Peripherie leicht macht

- BASIC - die Dialogsprache fur technisch-wissenschaftliche Probleme

- BASEX - ein interaktives, benutzerfreundliches Programmiersystem fur Echtzeit-Anwen-
dungen jeder Art, das im Multiprogramming arbeitet und die gesamte System-Peripherie
unterstitzt

- C-BASIC - eine interaktive Programmiersprache fur kommerziell-administrativen Einsatz

- FORTRAN 1V - die leistungsfshige Programmiersprache fur technisch-wissenschaftliche
Anwendungen.

- 10 -

SOFTWARE-PAKETE

Fur das DIETZsystem 621 steht eine stindig wachsende Zohl anwendungsorientierter
Programm-Pakete zur Verfigung:

Basis-Programme fur Mefwertverarbeitung; mathematische und statistische Programme;
Datenfernibertragungs-Prozeduren und Terminal-Emulationen; Commercial Package fur
kommerzielle Systeme.

DIETZsystem 621 C - GRUNDVERSION

Computer-System fur Multiprogramming in 6 Benutzer-Ebenen. Plattenunterstitzt durch
256 Kbyte DIETZdisk. Das Grundsystem umfaBt:

- Zentraleinheit mit
Kernspeicher 32 Kbyte 650 ns
Halbleiterspeicher 1 Kbyte 200 ns
Netzausfallschutz, Echtzeituhr

- DIETZdisk-Doppellaufwerk 2 x 256 Kbyte
mittlere Zugriffszeit 210 ms

- Konsoldrucker 50 Z/s 80 Z/ZI
mit Tastatur

- 19"-Gestellschrank

DIETZsystem 621 D - GRUNDVERSION

Computer-System fur Multiprogramming in é Benutzer-Ebenen. Plattenunterstitzt durch
2.4 Mbyte Wechselplattenspeicher. Das Grundsystem umfaB3t:

- Zentraleinheit mit
Kernspeicher 32 Kbyte 650 ns
Halbleiterspeicher 1 Kbyte 200 ns
Netzausfallschutz, Echtzeituhr

- DIETZdisk-Einlaufwerk 256 Kbyte
mittlere Zugriffszeit 210 ms

- Plattenspeicher-System 2.4 Mbyte
mittlere Zugriffszeit 60 ms

- Konsoldrucker 50 Z/s 80 Z/ZI

- 19"-Gestellschrank

OPTIONEN

Halbleiter-Speicher 2 Kbyte (Erweiterung auf 12 Benutzer-Ebenen)
- Kemspeicher 48 Kbyte und 80 Kbyte

Gleitkomma-Prozessor 32 bit (max. 10 ps)

Plattenspeicher 4.8, 7.2 und 9.6 Mbyte

-1 -

PERIPHERGERATE

Mosaikdrucker-Terminal 50 Z/s 80 Z/ZlI
Bildschirm-Terminal 1000 Zeichen
Bildschirm-Terminal 2000 Zeichen
8-Kanal-Fernschreiber
Schnelldrucker 200 ZI/min 132 Z/Z|
Streifenleser 125 Z/s

Streifenlocher 75 Z/s

Kartenleser 400 K/min

Graphische Bildschirmgerdte
XY-Schreiber

Digitalplotter

Magnetband-Systeme

PROZESS-ANSCHLUSSE

8/16-bit-Interrupteingtnge
16-/32-bit-Digitaleingdnge
16-/32-bit-Digitalausgénge
16-bit-Zshleingtnge/Zeitausginge
12-bit-Analogeingtinge
10-bit-Analogausgdnge
Analog-Mefisysteme 30 kHz/250 kHz
Integrierendes Mefsystem

und viele weitere ProzeB-Interfaces

DFU-INTERFACES

Synchrone und asynchrone Datenfernibertragungs-Schnittstellen, 110

- 12 -

...9600 Baud.

Struktur

RECHENEINHEIT

Folgende Baugruppen bilden die wesentlichen Bestandteile der Recheneinheit:

A-Register:

B-Register:

P-Register:

M-Register:

N-Register:

SW-Register:

DISPLAY:

ALU:

Q-Register:

8-bit-Register, in das alle gelesenen Daten gelangen und das
als Rechenregister fur arithmetische und logische Operationen
dient. Der Inhalt des A-Registers wird angezeigt, sobald der
Rechner angehalten wird.

8-bit-Register als zweites Rechenregister. Bei Indizierung ent-
halt es die Indexregister-Adresse.

8-bit-Register zur Adressierung des Arbeitsregisters.

16-bit-Register fur die effektive Adresse. Die beiden Halften des
M-Registers kdnnen angezeigt, und es kénnen die Daten des
Switch-Registers in das M-Register ibertragen werden.

16-bit-Register, das als Instruktionszdhler dient. Bei angehaltenem
Rechner enthdlt das N-Register die Adresse des Befehls, der als
ndchster ausgefthrt wird. Der Inhalt des N-Registers kann ange-
zeigt, und es konnen die Daten des Switch-Registers in das N-
Register Ubertragen werden.

8-bit=-Schaltersatz in der Bedienungskonsole (Option). Die Daten
des SW-Registers kdnnen in das M-Register, N-Register oder eine
Speicheradresse Ubertragen werden.

8-bit-Lampenfeld in der Bedienungskonsole (O ption) zeigt den
Zustand des F-Kanals an. Bei Stop wird der Inhalt des A-Regi-
sters angezeigt, wenn nicht Uber spezielle Schalter das M-Regi-
ster oder das N-Register angewdhlt ist.

Arithmetisch-logische Einheit fur 8 bit. Die ALU ist der zentrale
Verknupfungspunkt des Rechners.

8-bit-Register fur das Befehls-Byte der Instruktion.

- 13 -

UNIVERSAL-BUS

Adressen Daten RK GEBE FE Ebenen Starts
A

AD..A15 Lo..Lts $0..515
I BUS-
PoOL STEUERUNG
(RAM)
16
- 4
®
L._A__I CNPj L
® ® ® | Pp-Locik | = {]
‘I‘ I DISABLE
ALU 4'5 o st | srR
LT

LT e

PoispLay] [switcH | KONSOLE

BLOCKBILD DIETZ 621 ZENTRALEINHEIT

- 14 -

D-Register:

DO-Register:
C-Register: -

ROM:

S-Register:

L-Register:

DISABLE:

P-Logik:

BUS-Steuerung:

8-bit-Register, das in einer DO-Schleife die Zahl der Ausfihrungen
zghlt.

4-bit-Speicher fur die Steuerinformationen eines DO-Befehls.
5-bit-Register fur die Adresse der im ROM gespeicherten Mikroschritte,

TTL-Read Only Memory, das die Steuersignale (Mikroschritte) fir den
Rechner erzeugt.

16-bit-Register zur Speicherung der Ebenenstarts Starts kdnnen
vom Universal-BUS kommen oder programmiert sein. Zuriuckgestellt wer-
den die Bits des S-Registers nur vom Programm.

8-bit-Register, bei dem in den Bits O bis 3 die laufende Ebene ange-
geben wird,

Die Bits 4 bis 7 dienen zur ldentifikation eines Interrupts der CNP-
Ebene.

Bit 4 wird bei Netzausfall, Bit 5 bei einer BUS-Belegung, die mit

keinem FE-Signal quittiert wird, und Bit 6 bei Kernspeicher-Parity

eingeschaltet. Bit 7 wird von dem Clock-Interrupt gesetzt.

Das DISABLE-Flip-Flop (1-bit-Register) verhindert Ebenenwechsel bzw.
laBt im ausgeschalteten Zustand einen Ebenenwechsel zu.

Die Prioritatslogik ermittelt die hochste gestartete Ebene und setzt das
L-Register entsprechend.

Logik zur Steuverung der BUS-Belegungsvorgidnge der Zentraleinheit und
zur Synchronisation der Zentraleinheit mit dem asynchronen BUS.

Alle genannten Register sind in Form integrierter Schaltkreise in der Recheneinheit ent-
halten. Sie sind fur das Verstandnis der Rechner-Struktur wichtig, jedoch fur die Pro-
grammierung - mit Ausnahme von N- und SW-Register - nicht von Bedeutung, da der
Benutzer keinen Zugriff zu ihnen hat. Vielmehr arbeitet der Benutzer mit Speicherplatzen
im Arbeitsspeicher (Pool), die "seine" Register darstellen.

- 15 -

ARBEITSSPEICHER (POOL)

Der Arbeitsspeicher ist ein Halbleiter~RAM mit 256 bytes Kapazitit (erweiterbar auf
insgesamt 4k bytes). Er dient als schneller Datenspeicher; insbesondere aber ent-
hilt er die Arbeits- und Indexregister.

Jeder Programmebene werden (fest einstellbar) 16, 32, 64, 128 oder 256 bytes
zugeteilt; diese Pldtze bilden den "Pool". Registeradressen beziehen sich auf die-
se Bereiche, d.h. je nachdem, in welcher Ebene das Programm lguft, werden un-
terschiedliche Pools benutzt. (Will man diese Niveau-Bindung nicht, benutze man
"absolute" Adressierung).

Die RAM-Adressen laufen von @@ bis @FF bei 0,25k (bzw. @@F bis FFF bei 4k).

Register- und Pool-Adressen beziehen sich auf den Anfang des jeweiligen Pools.
Im Prinzip sind alle Pool-Adressen von @@ bis max. FF anzusprechen (als Pool-
Adressen, spezifizierte Arbeitsregister und Indexregister), jedoch beachte man
folgendes:

Pool-Adressen @7 und @1 nehmen bei Ebenenwechsel den augen-
blicklichen Programmstand auf und sind daher anderweitig nicht
benutzbar.

Pool-Adresse §2 (und - bei Mehrbyte-Operationen - die folgen-
den) stellt den "Akku" dar (fur den Fall, daB kein spezifizier-
tes Arbeitsregister angegeben ist).

Ist der Pool nicht auf 256 byte Linge eingestellt, so reichen Pool-Adressen, die
nicht mehr realisiert sind, in den Pool der ndchsththeren oder eventuell den Pool
mehrerer hoherer Ebenen. Die Pool-Bereiche schlieBen unmittelbar aneinander an.

FESTSPEICHER
Anstelle des Kernspeichers kann ein reprogrammierbarer Halbleiter-Festspeicher einge-

setzt werden, der in Stufen von 256 byte bis 8 kbyte ausbaufihig ist. Seine Adressen
laufen von 4@@F bis 5 FFF.

- 16 -

KERNSPEICHER

Der Kernspeicher hat 4K, 8K, 16K oder 32K (bzw. bei extemer Erweiterung bis 80 K)
bytes Kapazitit; seine Adressen laufen von 480 bis 4FFF, 5FFF, 7FFF oder BFFF (bzw.
bis FFFF).

y a0
4FFF
8k 50
i SFFF
16k
3%
G
T Y. BFFF
) 8
ext.Speicher 1 1‘6k 1£>k & ext.Speicher 2
i i BFFF
32 k| PP
{ { | Frrr

Bei einem Gesamtspeicherausbau bis 32K kann ein 32K-Modul als interner Speicher ver-
wendet werden. Bei Ausbau Uber 32K ist die maximale GroBe des internen Speichers auf

16K begrenzt.

Bei einem Speicherausbau uber 48k (bis max. 80k) bytes sind entweder der externe
Speicher 1 oder der externe Speicher 2 angewdhlt. Gleichzeitig kénnen beide Spei-
cher nicht angewdhlt sein.

Im Ausgangszustand kann mit dem externen Speicher 1 gearbeitet werden. Eine Um-
schaltung erfolgt mit einem TRA, (@) ,”3FFD. Nach Ausfihrung des Befehls ist der ex-
terne Speicher 2 angewdhlt. Eine Ruckumschaltung wird durch den Befehl TRA ‘(a) ’3FFE
bewirkt.

Aus dem externen Speicher 1 und dem externen Speicher 2 kann zum RAM, zur Periphe-
rie und Zu dem ersten 16 k Kernspeicher zugegriffen werden.

-17-

PROGRAMMEBENEN

Es sind 16 verschiedene Programmebenen vorgesehen. Jede Ebene ist dadurch
gekennzeichnet, dafl

ihr ein eigener Bereich (Pool) im Arbeitsspeicher zugeordnet ist,
auf den sich die programmierten Register-Adressen beziehen,

fur sie ein eigener E/A-Kanal aufgebaut werden kann, auf den
sich die Gerdteadressen beziehen (bei Benutzung der Ebenenaus-
gidnge als zusdtzliche AdreBinformation).

Das Programm in einer Ebene wird von seinem &uBeren Signal, durch die Fertig-
meldung eines ihr zugeordneten Peripheriegerdtes, oder durch das in einer anderen
Ebene laufende gestartet. Lduft das Programm in keiner anderen oder in einer nie-
drigeren Ebene, so wird die gestartete Ebene sofort bzw. mit Ende der laufenden
Operation aktiv und fuhrt die ndchste Instruktion aus (deren Adresse in Platz @@/@1

des Pools gespeichert war). Mit einem Halt wird das Programm angehalten, und eine
niedrigere Ebene kann weiterlaufen.

Start Ebene 1

[o.on=N iy | iz [§ [[HALT |N=0001] Ebene 1

N PR (e posto=n] Twi T

Ebene 0

00,019 = Pool-Adressen 00,01 der Ebene 0
00,01, u 00,01 * v 1

1]

1l

n Instruktion n eines Programms

Durch Setzen von DISABLE kann der Ebenenwechsel (d.h. die Unterbrechung des

Programms durch Start einer htheren Ebene) verhindert und wieder zugelassen wer-
den.

Die Ebenen-Struktur erlaubt einfache Multiprogrammierung.

Hat der Computer mehrere, villig unabhéangige Aufgaben zu erledigen, so wird man
jeder Aufgabe eine Ebene zuteilen. Man hat nur darauf zu achten, daB Aufgaben,
die eine besonders schnelle Reaktion verlangen, einer Ebene mit hoher Prioritdt zu-
geordnet werden. Jede Ebene hat ihr eigenes Programm und eigene Datenspeicher.

- 18 -

Bei Ein- und Ausgaben muB durch Anhalten der Ebene auf das Peripheriegerdt ge-
wartet werden, damit die Zentraleinheit fur die anderen Ebenen frei wird.

Besonders geeignet ist die Struktur des DIETZ 621 auch fur die Bearbeitung von
mehreren véllig gleichen Aufgaben, bei denen nur die Peripheriegeridte und die
Daten unterschiedlich sind. In diesem Falle gentgt es, ein Programm zu haben,

das alle Ebenen benutzen. Nur bei Ansprechen der Peripheriegeridte benstigt man
eine zusdtzliche Information, denn bei gleichem Programm haben die Peripherie-
gerdte auch die gleichen Adressen. Diese zusttzliche Information liefert der Ebenen-
(Level-) Ausgang, der als zusdtzliche AdreBinformation verwertet wird. Bei den Da-
tenspeichern erhdlt man ebenengebundene Adressen durch Register-Adressierung.

Da die Ruckkehradressender Unterprogramme ebenengebunden abgelegt werden, kon~
nen auch Unterprogramme von mehreren Ebenen benutzt werden.

Will man von einer Ebene aus andere Ebenen steuern, so geschieht dies von der
hochsten Ebene aus.

REGISTER

Mit "Registern” sind Speicherplidtze im jeweiligen Pool gemeint. Sie werden ver-
wendet als:

Arbeitsregister: Die Mehrzahl der Befehle bezieht sich auf ein Arbeitsregister,
das verdndert, verglichen, geladen, transferiert oder sonstwie
behandelt wird. Hierfur dient entweder der "Akkumulator" @
(Pool-Adresse #2) oder das in einem besonderen Byte "spezifi-
zierte" Register (mit einer beliebigen Pool-Adresse). Damit
stehen max. 254 Arbeitsregister bereit.

Indexregister: Wenn BUS-bezogene Befehle indiziert sind, dient die in einem
besonderen Byte angegebene Pool-Adresse und folgende Adresse
als Indexregister (2-byte-Indexregister). Ist die angegebene Pool-
Adresse ungerade, wird nur diese Adresse als Indexregister ver-
wendet (1 byte-Indexregister). Damit stehen max. 127 Indexre-
gister zur Verfiigung.

Riuckkehradressen: Sie werden beim Unterprogrammsprung im spezifizierten Register
sowie dem darauffolgenden Platz aufgehoben und beim Rucksprung
dort wiedergeholt.

Pool-Adressen: Niveaugebundene Adressen (bei BUS-bezogenen Befehlen).

-19 -

UNIVERSAL-BUS

Der Universal-BUS ist ein Datenkanal zur Verbindung der einzelnen Komponenten des
DIETZ 621-Systems Uber diesen Datenkanal erfolgen

a) programmgesteuerte Ein- und Ausgaben und

b) Direkte Speicherzugriffe.

Ein Datentransfer tber den Universal-BUS wird von einem oktiven Element initiiert
(bei programmgesteuerter Ein-/Ausgabe von der Zentraleinheit, bei direktem Speicher-
zugriff z.B. von einem Plattencontroller), indem der BUS belegt wird (Signal BE) und
Uber eine Adresse (Signale Ag@...A15 und gegebenenfalls L@@...L15) ein passives
Element (z.B. der Kernspeicher) angewshlt wird. Uber das Signal RK (Richtungskenn-
zeichen) wird angegeben, ob Daten (D@...D7) vom dktiven zum passiven Element oder
vom passiven zum aktiven Element transportiert werden sollen. Das passive Element
empfingt (oder sendet) nun die Daten und gibt auBerdem mit dem Signal FE (Fertig)
eine Quittung Uber den erfolgten Datentransport. Bleibt diese Quittung aus, weil
z.B. ein nicht existierendes Element angesprochen wurde, erzeugt die BUS-Steuerung
diese Quittung gleichzeitig mit einem System-Interrupt der CNP-Ebene.

Will ein passives Element von sich aus einen Datentransport initiieren, so sendet es
einen Interrupt (SPP...S15) zur Zentraleinheit, die als programmierte Reaktion hierauf
als aktives Element einen Datentransport durchfihrt.

Konkurrieren mehrere aktive Elemente zur gleichen Zeit um eine BUS-Belegung, so
wird dieser Konflikt Uber das Signal GE (Gewiinscht) nach festgelegten Prioritdten
gelost. Der BUS enthélt auBerdem ein Nullstellsignal (N), das durch Betdtigen der
Taste RES der Bedienungskonsole oder bei einem Netzausfall erregt wird und das
Signal STPX, das bei Fehlern der externen Speicher erregt wird.

BUS-Signale:

Dg...D7 Daten

Agg...A15 Adressen
Lg@...L15 Levelleitungen
Spg...S15 Interrupt-Leitungen
RK Richtungskennzeichen
BE Belegt

GE Gewunscht

FE Fertig

N Nullstellung

STPX Fehlerstart

-20 -

ADRESSIERUNG

Die BUS-bezogenen Befehle kdnnen wie folgt adressiert werden:

unmittelbar (CONSTANT)

niveaugebunden (REGISTER) wahlweise
relativ (RELATIVE)

voll (ABSOLUTE)

indirekt (INDIRECT)

nicht-indiziert } -
e wahlweise
indiziert

CONSTANT bedeutet, daB8 die Adrebytes als Konstanten verwendet werden. In Ver-
bindung mit einem DO-Befehl kann es auch ein String von Konstanten sein.

REGISTER bezieht sich auf den Pool der jeweiligen Ebene.

RELATIVE bedeutet um einen Betrag von maximal -128 bzw. +127 bytes verschoben,
bezogen auf das Byte, in dem die Adrefdifferenz angegeben ist.

ABSOLUTE bedeutet, daBl jedes Byte des gesamten Speicherbereichs durch eine 16~
bit-Adresse erreicht werden kann.

Indizierung bedeutet Addition des Indexregister-Inhaltes zur berechneten Adresse
(#..132767 bei 2-byte-Indexregister; @...255 bei 1-byte-Indexregister). Mit 2=

byte-Indexregistern lassen sich negative Indizes darstellen.

Indirekt bedeutet, daB der Inhalt des angegebenen Registers die Adresse bestimmt.

MEHRFACHAUSFUHRUNG (DO-BEFEHL)

Ein besonderer Befehl (DO) erlaubt es, die folgende Instruktion 2- bis 256-mal auszu-
fuhren. Eine eventuell zum Befehl gehdrende Adrefirechnung wird allerdings nur ein=
mal durchgefihrt.

Ergdnzend kann man angeben, ob die Registeradresse (<&), die Operandenadresse

(> &) oder beide (=&) bei jedem Durchlauf inkrementiert werden, ferner ob das

Ubertragungsbit (LINK) bertcksichtigt werden soll (3 statt &).

Der DO-Befehl kann sinnvoll auf Befehlsgruppen angewendet werden:
Schiebebefehle

Bedingte Sprungbefehle
BUS-bezogene Befehle

-21 -

Schiebebefehle werden durch vorgeschaltetes "DO" zum 1-byte-Mehrbitschieben be-
nutzt, indem die Registeradresse nicht inkrementiert (also die Mehrfachausfihrung
auf 1 byte abgewendet wird) und kein Uberlauf beriicksichtigt wird.

4&SLO , @ 4-bit-1-byte-Linksschieben (Akku)

1-byte-Mehrbit-Rotieren wird durch DO ohne Registerinkrement und ohne Berucksich-
tigung des Uberlaufs erzielt:

2&SRC , @ 2-bit-1-byte-Rechts-Rotieren (Akku)

Mehrbyte-1-bit-Schieben erhdlt man, indem der DO-Befehl die Registeradresse inkre=-
mentiert und auBerdem den Uberlauf beriicksichtigts

2<%SRO,REG 1-bit-2-byte~Rechtsschieben (2 Registerplitze)

Wichtig hierbei ist, daB beim Linksschieben als erstes Byte (Basis-Byte) das mit der
niedrigeren Adresse (und den niedrigwertigen Stellen) geschoben wird und dann das
ndchsthshere Byte.

Beim Rechtsschieben wird dagegen beim Byte mit der hichsten Adresse (und den
heherwertigen Stellen) begonnen und dann mit dem n&chstniedrigeren Byte weiter-
gearbeitet. Im Falle des Rechtsschiebens (und nur dann) dekrementiert der Rechner
die Registeradresse. Im Maschinencode sind also die Basis-Bytes bei Rechts- und
Linksschieben unterschiedlich (nicht dagegen bei Benutzung des Assemblers).

Will man beim Schieben von einem oder mehreren Bytes einen Gesamtiberlauf bertcksichti=
gen, so muBl 1 Byte mehr als gewinscht geschoben werden. Der Inhalt dieses Bytes

ist vorher zu loschen. Anschliefend kann in diesem Byte der Uberlauf abgefragt

werden.

Programmiert man beim Mehrbyte-Schieben den Uberlauf nicht, so werden die be-
nachbarten Bytes unabhiingig voneinander um 1 bit verschoben.

Bedingte Sprungbefehle mit vorgestelltem DO dienen zu folgenden Zwecken:

Abfrage eines Strings von Register - Bytes auf Null/nicht Null. .
Hierzu ist DO mit Inkrementieren der Registeradresse zu programmieren (der Uber-
lauf ist hierbei irrelevant):

3<& BZ,REG,,ADR Sprung nach ADR, falls sowohl REG als
auch die beiden folgenden Bytes Nullin-
halt haben

-22 -

Vergleich eines Register-Strings mit einer im Befehl angegebenen Konstanten und
Verzweigung, falls der Inhalt aller Register-Bytes gleich der Konstanten ist. Zu
program mieren ist: DO mit Inkrementieren Registeradresse:

4<& BEC, @ , CON,ADR Sprung nach ADR, wenn der Inhalt des
Akkus und der drei folgenden Bytes gleich
der Konstanten CON ist.

Will man einen String von Register-Bytes mit einem anderen Register vergleichen,
programmiert man:

4<& BER, @ , REG,ADR

Vergleich eines Register-Strings mit einem Konstanten-String (im Befehl). Hierbei
wird das erste Register-Byte mit der ersten Konstanten, das zweite Register-Byte mit
der zweiten Konstanten, das dritte Register-Byte mit der dritten Konstanten usw.
verglichen. Verzweigt wird, wenn in allen Fallen Gleichheit besteht. Voraussetzung:
D O mit Inkrementieren beider Adressen:

2=& BEC,REG,CON,ADR Sprung nach ADR, wenn Register- und
Konstanten=String gleich.

Die Instruktion sieht in diesem Falle folgendermaBen aus:

n T Befehl

n+l r Basisadresse Register

n+2 o Konstante (niedriges Byte = Basis-Byte)
n+3 c] Konstante (hohes Byte)

n+4 d Sprungweite

Will man einen String von Register-Bytes mit einem anderen Register-String verglei-
chen, programmiert man:

2=& BER ,REG1,REG2,ADR

-23 ~

BUS-bezogene Befehle mit vorgestelltem DO erfullen z.B. folgende Funktion:

Arithmetische Mehrbyte-Operationen sind durch einen DO-Befehl mit Inkrementieren
sowohl der Registeradresse als auch der Operandenadresse sowie mit Bericksichtigung
des Uberlaufs darstellbar:

2=% ADL,REG,ADR Doppel-Byte-Addition
3=% SBL ,REG,ADR 3-byte=Subtraktion

Will man hierbei ein mégliches Uberschreiten des Zahlenbereichs in positiver oder
negativer Richtung bertcksichtigen (Gesamt-Uberlauf), so muB3 je ein Byte mehr
verarbeitet werden.

Nicht moglich ist es allerdings, auf diese Weise zu 2 Bytes ein einzelnes Byte zu
addieren.

Programmiert man z.B. nur das Inkrementieren der Registeradresse, aber nicht der
Operandenadresse, wird derselbe Operand zundchst zum ersten Byte, anschlieBend
zum zweiten Byte und eventuellen weiteren einzeln addiert.

Bei der Verarbeitung werden die Adressen grundsitzlich inkrementiert (Ausnahme:
Rechtsschieben). Das fihrt dazu, dafl das Byte mit der niedrigeren Adresse auch
die niedriger wertigen Stellen enthalten muB3:

Byte n+2 Byte n+l Byte n
L] [] l]
235 216 2 15 28 27 20

Statt des Operanden kann in allen obengenannten Fillen auch mit einem Konstan-
ten-String gearbeitet werden.

Blockweiser Transfer |&Bt sich durch Laden oder Speichern mit vorangestelltem DO

(mit Inkrementieren Register und Operandenadresse) realisieren; er fuhrt zur Uber-
tragung von Registerbereichen in den Kernspeicher oder umgekehrt:

256=& STA,@@,ADR Speichern gesamter Pool in Kernspeicher
256=8 LDA,@0d,ADR Laden gesamter Pool aus dem Kernspeicher

- 24 -

Wird die Registeradresse nicht inkrementiert, so 1&Bt sich z.B. ein Kernspeicherbe-
reich mit dem gleichen Inhalt laden:

LDC,REG,# Loschen von 256 byte
256>& STA ,REG,ADR Kernspeicher

Anstelle von Operanden kann auch mit Konstanten oder Konstanten=Strings gearbeitet
werden:

20<& LDC,REG,# Loschen von 20 bytes im Pool

SinngemdB3 1&Bt sich der DO-Befehl auch in Verbindung mit logischen Verknupfungen
verw enden:

2=4% ANA, @ ,ADR 2 byte UND-Verknupfung

7>& ORL ,REG,ADR 7 byte des Kernspeichers werden mit dem
Register REG durch ODER verknupft

3<& ANC,REG,ADR Maskierung von 3 Register-Bytes mit der
gleichen Maske ADR

- 25 -

BEFEHLSAUFBAU

Instruktionen werden beim MINCAL 621 durch ein oder mehrere aufeinanderfolgende
Bytes dargestellt. Das erste Byte enthdlt den Befehl sowie ggfs. einige zusdtzliche
Angaben, z.B. Uber die Art der Adressierung; in den Folgebytes stehen weitere An-
gaben, welche die Instruktion nther beschreiben, z.B. Register- und Operanden-
adressen, Konstanten, Sprungweiten usw.

Der Befehlsaufbau ist fur die Befehlsgruppen im folgenden kurz skizziert; ndheres
entnehme man dem Abschnitt MASCHINENBEFEHLE.

7 0

Steuerbefehle: n 0000...L Befehl

ntl {11 Ebene
Mehrfachausfuhrung: n 0001...2Z Befehl

ntl |z} Anzchl
Zustandsabfrage: n 00100..5S Befehl

ntl | s | Arbeitsregister
Schiebebefehle: n 00101 ..5 Befehl

ntl s 1 Arbeitsregister
Bedingter Sprung: n 01..... S Befehl

nt+l ! s ! Arbeitsregister

et |)

nt2 1 r Referenzregister

n+3 d I Sprungweite
BUS-bezogene Befehle: n T..... XS Befehl

n+l s i Arbeitsregister)

nt2 | a 1 AdreBangabe 1

i3 [k b I Adreﬁqngabe 2

nt4d | X [Indexregister

[R, —

*)

oder Konstante bzw. Konstanten-String von z byte Ldnge bei vorgeschaltetem
DO-Befehl

Eine DO-~Instruktion muB unmittelbar vor dem Befehlsbyte der Instruktion liegen,
deren Mehrfachausfihrung er bewirken soll.

-26-

Maschinenbefehle

STEUERBEFEHLE 0000. ...
Befehle NOP Keine Operation 00000000
SEL Start Ebene 00000001
HLT Halt 00000010
HSL Halt, Start Ebene 000000 11
ECL Unterbrechung zulassen 00000100
DCL Unterbrechung verhindern 00001000
Lange 2 byte (SEL, HSL)

1 byte (ubrige)

Die Steuerbefehle bewirken Start einer Programmebene, Anhalten des laufenden Programms
sowie Aus- und Einschalten des DISABLE-Zustands. Der Befehl NOP (leeres Befehlsbyte)
hat keine Funktion und wird Ubersprungen.

Die Anwendung der DO-Instruktion auf Steuerbefehle ist nicht sinnvoll.
Wird die CNP-Ebene durch Netzausfall, nicht quittierten BUS-Aufruf oder durch Speicher-

Parity gestartet, wird gleichzeitig eine eventuell anstehende Unterbrechungssperre aufge-

hoben.

-27 -

NOP

Funktions

SEL

Funktion:

HLT

Funktions

HSL

Funktion:

ECL

Funktion:

DCL

Funktion:

Keine Operation n 0000000O0| Befehl

Dieses Befehlsbyte wird Ubersprungen.

Start Ebene n (0000000 1] Befehl
n+l | Ebene

Die im folgenden Byte als rechtsbindige Hexazahl @...F angegebene Ebene |
wird gestartet.

Halt n 000000 10| Befehl

Das Programm in der laufenden Ebene wird angehalten.

Halt, Start Ebene n 0000001 1] Befehl
n+l | Ebene

Das Programm in der laufenden Ebene wird angehalten. Die im folgenden
Byte als rechtsbundige Hexazahl f...F angegebene Ebene | wird gestartet.

Unterbrechung zulassen n 00000 100| Befehl

Dieser Befehl stellt den Normalzustand her, in dem das Programm der
jeweiligen Ebene durch den Start jeder hsheren Ebene unterbrochen werden
kann.

Unterbrechung verhindern n 0000 1000| Befehl

Dieser Befeh!l stellt den DISABLE-Zustand her, in dem das Programm der
jeweiligen Ebene nicht durch Aktivieren einer htheren Ebene unterbrochen
werden kann. Durch ECL wird dieser Zustand beendet.

Vor jedem Halt-Befehl (HLT, HSL) ist der DISABLE~Zustand durch ECL zu
verhindern, da sonst der Halt nicht wirksam wird.

- 28 -

MEHRFACHAUSFUHRUNG (DO)

Befehle: z& 0001000 .
z% mit L . 0001001.
z>& M+ 0001010.
z>% M+1, mit L 0001011,
z<& R+1 0001100.
zZ<% R+1, mit L 0001101,
z=& R+1, MH 0001110.
z=% R+1, M+1, mit L 00011171,
Anzahl: z=2 e 0
z=3...2% ... 1
Ldnge: 1 byte (z = 2): n 0001 .. .0| Befehl
oder :
2 byte (z = 3...256): n 0001 ... 1| Befehl
n+1 z Anzahl

Eine DO-Instruktion bewirkt, daB3 die folgende Instruktion mehrfach ausgefihrt wird.
Die Anzahl der Ausfihrungen z kann von 2 bis 256 gewdhlt werden. Bei z = 2 ist

nur das Befehlsbyte vorhanden; dartberhinaus steht z als rechtsbiindige Bindrzahl im
folgenden Byte, wobei zu beriicksichtigen ist, daB Nullinhalt des Folgebytes 256malige
Ausfihrung bedeutet.

Im DO-Befehl kann angegeben werden, ob das LINK-Bit (L) bertcksichtigt wird (Uber-
lauf bei Schiebebefehlen, Mehrbyte-Addieren und Subtrahieren), und ob bei jeder
Ausfihrung die Operanden-Adresse (M) oder die Arbeitsregister-Adresse (R) um 1 erhsht
wird. Beim Befehl SR (Schieben rechts) wird die Arbeitsregister-Adresse um 1 erniedrigt,
wenn R angegeben ist.

Der DO-Befehl fuhrt nur zur mehrmaligen Wiederholung des Ausfihrungsteils der folgen-
den Instruktion, nicht zur Wiederholung der vorher ablaufenden AdreBrechnung.

Zwischen einem DO-Befehl und beendeter Ausfihrung der nachfolgenden Instruktion kann
das Programm nicht durch Wechsel der Programmebene unterbrochen werden.

- 29 -

z&

Funktion:

zZ¥%

Funktion;

z>&

Funktion:

Z>%

Funktion:

z<&

Funktion:

z<x

Funktion:

DO z-mal n [000T000 .| Befehl
z

ntl Lz | Anzahl

Die folgende Instruktion wird z-mal ausgefhrt. LINK wird nicht bertcksich-
tigt; keine Adresse wird inkrementiert.

DO z-mal mit Link n [00017001 .| Befehl

- 1
ntl | z] Anzahl

Die folgende Instruktion wird z-mal ausgefuhrt. LINK wird beriicksichtigt;
keine Adresse wird inkrementiert.

DO z~mal n 0001010 .| Befehl

mit Inkrementieren Adresse n+l ['_ z _,‘ Anzahl

Die folgende Instruktion wird z-mal ausgefuhrt. Nach jeder Ausfihrung wird
die Operanden-Adresse M um 1 erhsht.

DO z-mal mit Link n 0001011 .| Befehl

mit Inkrementieren Adresse ntl | z | Anzahl

Die folgende Instruktion wird z-mal ausgefihrt. LINK wird beriicksichtigt;
nach jeder Ausfihrung wird die Operanden-Adresse M um 1 erhsht.

DO z-mal n '0 001100 l Befehl
1

mit Inkrementieren Register ntl L z | Anzahl

Die folgende Instruktion wird z-mal ausgefihrt. Nach jeder Ausfihrung wird
die Adresse des Arbeitsregisters um 1 erhoht.

DO z-mal mit Link n 0001101 .| Befehl

mit Inkrementieren Register ntl 1 z 1 Anzahl

Die folgende Instruktion wird z-mal ausgefthrt. LINK wird bericksichtigt;
nach jeder Ausfihrung wird die Adresse des Arbeitsregisters um 1 erhoht.

-30 -

z=&

Funktion:

Z=%

Funktion:

DO z-mal n 0001110 .| Befehl
mit Inkrementieren Register n+l z Anzahl

mit Inkrementieren Adresse

-
1
[
]
|
]
|
1
I
1
L

Die folgende Instruktion wird z-mal ausgefihrt. Nach jeder Ausfuhrung wer-
den die Adresse des Arbeitsregisters und die Operanden-Adresse um 1 erhsht.

DO z-mal mit Link n Befehl
Inkrementieren Register und Adresse n+l z Anzahl

Die folgende Instruktion wird z-mal ausgefihrt. LINK wird berucksichtigt;
nach jeder Ausfuhrung werden die Adresse des Arbeitsregisters und die
Operanden~Adresse um 1 erhsht.

-31-

ZUSTANDSABFRAGE 00100..5

Befehle: GS Schalter abfragen 0010001 .
GL Ebene abfragen 0010010.
Arbeitsregister: Akkumulator @ ..o L. 0
Spezifiziertes Register s 1
Ldnge: 1 byte (@) n 00100. . 0| Befehl
oder i
2 byte (s) n 00100 . . 1| Befehl
n+l s Arbeitsregister

Diese Befehlsgruppe ubertrdgt Informationen von den Konsol-Tasten bzw. die Nummer der
laufenden Programmebene in das Arbeitsregister. Als Arbeitsregister kann entweder der
Akkumulator @ oder ein beliebig spezifiziertes Register s angegeben werden, dessen
Adresse dann im Folgebyte steht.

Die Anwendung der DO-Instruktion auf diese Befehle ist nicht sinnvoll.

Mit GL konnen auflerdem Fehler- und Clock=Interrupt-Meldungen abgefragt werden.

-32-

GS

Funktion:

GL

Funktion:

Schalter abfragen n [o 0100015| Befehl
n+l L s | Arbeitsregister

Das uber die 8 Daten-Schalter 7...0 der Rechnerkonsole eingegebene Byte
wird in das Arbeitsregister Gbertragen.

Nur wirksam, wenn Rechner mit Konsole ausgestattet.

Ebene abfragen n 00100105 Befehl

n+l L _S__ | Arbeitsregister
Die Nummer der laufenden Programmebene wird als rechtsbindige Hexa-Zahl
@...F in das Arbeitsregister Ubertragen. Die linke Halfte des Arbeitsregister-
Inhalts hat folgende Bedeutung:

<Bit 4> =1 Netzausfall

<Bit 5> =1 BUS-Belegung ohne Quittierung
<Bit 6> =1 Kernspeicher=Parityfehler

<Bit 7% =1 Clock=Interrupt.

Diese Informationen kommen aus dem L-Register, dessen Bits 4 bis 7 nach
einer GL-Instruktion in der CNP-Ebene automatisch gel@scht werden.

- 33 -

SCHIEBEBEFEHLE 00101..5

Befehle: SRO Schieben rechts offen 00.
SRC Schieben rechts zyklisch 01.
SLO Schieben links offen 10.
SLC Schieben links zyklisch 11.
Arbeitsregister: Akkumulator @ 0
Spezifiziertes Register s 1
Ldnge: 1 byte (@) n 00101 . .0 Befehl
oder
2 byte (s) n 00101, .1 Befehl
n+l s Arbeitsregister

Diese Befehlsgruppe bewirkt offenes oder zyklisches Schieben des Arbeitsregister-Inhalts
um 1 bit nach rechts oder links. Als Arbeitsregister kann entweder der Akkumulator oder
ein beliebig spezifiziertes Register s angegeben werden, dessen Adresse dann im Folgebyte
steht.

In Verbindung mit einer geeigneten DO-~Instruktion ist offenes und zyklisches Mehrbit-
Schieben eines Register-Bytes méglich, sowie offenes Schieben des Inhalts eines Mehrbyte-
Register-Strings um 1 bit.

SRO Schieben rechts offen n 0010100S Befehl

ntl L s | Arbeitsregister

Funktion: Der Inhalt des Arbeitsregisters wird um 1 bit offen nach rechts verschoben.
Bit 7 wird zu Null, und der vorherige Inhalt von Bit 0 geht verloren.

z& SRO Ein vorgeschalteter DO-Befehl z& bewirki offenes Rechts-Schieben des
Arbeitsregister-Inhalts um z bit.

z<% SRO Ein vorgeschalteter DO-Befehl z<x bewirkt offenes Rechis-Schieben eines
Register-Srings von z byte Linge um 1 bit. Als Arbeitsregister-Adresse ist
die um (z-1) erhshte Basis-Adresse des Register-Strings anzugeben (gilt nicht
fur symbolische Programmierung).

SRC Schieben rechts zyklisch n 00101015 Befehl

ntl | s | Arbeitsregister

Funktion: Der Inhalt des Arbeitsregisters wird um 1 bit zyklisch nach rechts verschoben.
Bit 7 erhult den vorherigen Inhalt von Bit O.

z& SRC Ein vorgeschalteter DO-Befehl z& bewirkt zyklisches Rechts=Schieben des
Arbeitsregister-Inhalts um z bit.

SLO Schieben links offen n 0010110S Befehl

n+l s 1 Arbeitsregister

Funktion: Der Inhalt des Arbeitsregisters wird um 1 bit offen nach links verschoben.
Bit O wird zu Null, und der vorherige Inhalt von Bit 7 geht verloren.

z& SLO Ein vorgeschalteter DO-Befehl z& bewirkt offenes Links-Schieben des Ar-
beitsregister-Inhalts um z bit.

z<% SLO Ein vorgeschalteter DO-Befehl z<x bewirkt offenes Links-Schieben eines
Register-Srings von z byte Ldnge um 1 bit. Als Arbeitsregister-Adresse ist
die Basis~Adresse des Register-Strings anzugeben.

SLC Schieben links zyklisch n 001011 15| Befehl

n+l s | Arbeitsregister

Funktion: Der Inhalt des Arbeitsregisters wird um 1 bit zyklisch nach links verschoben
Bit O erhdlt den vorherigen Inhalt von Bit 7.

z& SLC Ein vorgeschalteter DO-Befehl z& bewirkt zyklisches Links-Schieben des
Arbeitsregister-Inhalts um z bit.

-35 -

BEDINGTE SPRUNGBEFEHLE 01 ..N.IS

Befehlsgruppen:

Sprung:

Inkrementieren:

Arbeitsregister:

Abfrage auf Null/Positiv 0100.
Abfrage auf Gleichheit 0101.
Abfrage auf Testbits o11.....
wenn Bedingung erfullt B |
wenn Bedingung nicht erfullt R
nein ce e .. 0.
ja e e e e e 1.
Akkumglator @ L. 0
Spezifiziertes Register s 1

Diese Befehlsgruppe fragt den Inhalt des Arbeitsregisters auf bestimmte Kriterien ab.
Je nachdem, ob sie erfullt sind oder nicht, verzweigt das Programm auf eine entfernte
Stelle; andernfalls wird es mit der folgenden Instruktion fortgesetzt.

Abfrage-Kriterien sind:

Nullinhalt (alle Bits sind 0),
positiver Inhalt (Bit 7 ist 0);

Gleichheit mit einer Konstanten c;
Gleichheit mit Inhalt eines Referenzregisters r;

Vorhandensein bestimmter Bitmuster (Testbits), wobei deren
Stellung durch eine Maske vorgegeben wird, die als Kon-
stante ¢ oder als Inhalt eines Referenzregisters r vorhanden ist.

Vor Abfrage kann das Arbeitsregister inkrementiert, d.h. sein Inhalt um 1 erhsht werden.

Durch diese Befehle wird der Inhalt des Arbeitsregisters - abgesehen von der eventuellen
Inkrementierung - nicht verdndert.

Die relative Sprungweite d steht im letzten Byte der Instruktion und bezieht sich auf
dessen Adresse, wobei d eine Zweierkomplementzahl bildet. Damit kann das Programm
maximal um 128 byte zurick bzw. 127 byte vorwdrts springen.

DO-Befehle:

Eine vorgeschaltete DO-=-Instruktion_z<x (bei Abfrage auf Null-
inhalt eines Registers) bzw. z=% (bei den ubrigen Befehlen)
bewirkt Abfrage eines Arbeitsregister-Strings von z byte Linge, bzw.
dessen Vergleich mit einem ebenso langen Konstanten- oder Register-
String.

Dabei sind die Basis-Adressen der Register-Sirings anzugeben.

Bei Abfrage auf Null ist die Bedingung erfillt, wenn alle Bytes
Nullinhalt haben.

Bei Vergleichs- und Testbit-Abfragen ist die Bedingung insgesamt
erfullt, wenn sie in allen Bytes erfullt ist.

Inkrementierung bezieht sich auch bei vorgeschaltetem DO nur auf

das Basis-Byte des betreffenden Registers. Ein Uberlauf wird nicht
beriicksichtigt.

-36 -

Lange:

Vereinbarung: Befehle mit Verneinung ("Sprung wenn nicht

Abfrage auf Null/positiv: 2 byte (@)

Ubrige Befehle:

3 byte (s)

3 byte (@)

4 byte (s)

n
n+l

n
n+l
n+2

n
n+l
n+2

n
n+l
n+2
n+3

0100...0
d
0100 . 1
S
d
01.....1
c/r
d
01.....1

Befehl
Sprungweite

Befehl
Arbeitsregister
Sprungweite

Befehl
Konstante/Register
Sprungweite

Befehl
Arbeitsregister
Konstante/Register
Sprungweite

Bei einem vorgeschalteten DO-Befehl z=% ist statt einer Konstanten c ein
Konstanten-String von z Bytes in der Instruktion enthalten, vom Basis-Byte

an in Richtung aufsteigender Adressen.

-37-

...") fihren in all den Fallen
zum Verzweigen, wo der entsprechende nicht verneinte Befehl das Programm
unverzweigt weiterlaufen |&Bt, und umgekehrt.

BZ

Funktion:

Funktion:

BP

Funktion:

Funktion:

BNZ

Funktion:

INZ

Funktion:

Sprung wenn Null 0100000 S| Befehl

! s | Arbeitsregister

a1 Ssprungweite

Das Programm verzweigt, wenn das Arbeitsregister Nullinhalt hat.

Inkrementieren, !0 100001 Sj Befehl

Sprung wenn Null ! s Arbeitsregister

I d | Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn das
Arbeitsregister Nullinhalt hat.

Sprung wenn positiv 0100010S| Befehl

! s i Arbeitsregister

R T—

Das Programm verzweigt, wenn das Arbeitsregister positiven Inhalt hat.

Inkrementieren, [0 100011 Sj Befehl

Sprung wenn positiv 1 s Arbeitsregister

——

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn das
Arbeitsregister positiven Inhalt hat.

Sprung wenn nicht Null 0100100S| Befehl

! s ' Arbeitsregister

51 Sprunguete

Das Programm verzweigt, wenn das Arbeitsregister nicht Nullinhalt hat.

Inkrementieren, 01001015 Befehl

Sprung wenn, nicht Null] s i Arbei fsregister

a1 Sorongweire

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn das
Arbeitsregister nicht Nullinhalt hat.

- 38-

BNP

Funktion:

INP

Funktion:

BEC

Funktion:

IEC

Funktion:

BER

Funktion:

Sprung wenn nicht positiv 01001105 Befehl

[s ! Arbeitsregister

I T—

Das Programm verzweigt, wenn das Arbeitsregister nicht positiven Inhalt hat.

Inkrementieren, 01001115 Befehl

Sprung wenn nicht positiv ! s i Arbeitsregister

[] sprungweite

Das Arbeifsregister wird inkrementiert. Das Programm verzweigt, wenn das
Arbeitsregister nicht positiven Inhalt hat.

Sprung wenn gleich Konstante 0101000S| Befehl

1 s | Arbeitsregister
c Konstante
d Sprungweite

Das Programm verzweigt, wenn der Inhalt des Arbeitsregisters gleich der Kon-
stanten ¢ ist.

Inkrementieren, Befehl

Sprung wenn gleich Konstante ' s Arbeitsregister
c Konstante
d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn der
Inhalt des Arbeitsregisters gleich der Konstanten ¢ ist.

Sprung wenn gleich Register 01010105 Befehl

! s ! Arbeitsregister
r Register
d Sprungweite

Das Programm verzweigt, wenn der Inhalt des Arbeitsregisters gleich dem des
Referenzregisters r ist.

-39 -

IER

Funktion:

BNEC

Funktions

INEC

Funktion:

BNER

Funktion;

INER

Funktion;

Inkrementieren, 01010115 Befehl

Sprung wenn gleich Register ! s Arbeitsregister
r Register
d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn der
Inhalt des Arbeitsregisters gleich dem des Referenzregisters r ist.

Sprung wenn nicht gleich Konstante 0101 100S| Befehl

! s ! Arbeitsregister
c Konstante
d Sprungweite

Das Programm verzweigt, wenn der Inhalt des Arbeitsregisters nicht gleich
der Konstanten c ist.

Inkrementieren, 01011015 Befehl

Sprung wenn nicht gleich Konstante 1 s 1 Arbeitsregister
< Konstante
d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn der
Inhalt des Arbeitsregisters nicht gleich der Konstanten c ist.

Sprung wenn nicht gleich Register iO 1011105 Befehl

: s ! Arbeitsregister
r Register
d Sprungweite

Das Programm verzweigt, wenn der Inhalt des Arbeitsregisters nicht gleich
dem des Referenz-Registers r ist.

Inkrementieren, 0101111S Befehl

Sprung wenn nicht gleich Register s { Arbeitsregister
r Register
d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn der
Inhalt des Arbeitsregisters nicht gleich dem des Referenz-Registers r ist.

- 40 -

BZC

Funktion:

1ZC

Funktion:

BZR

Funktion:

1ZR

Funktion:

BNZC

Funktion:

Sprung wenn alle Testbits Null
maskiert mit Konstante

[0110%0005]

S
Cc

d

Befehl
Arbeitsregister
Konstante
Sprungweite

Das Programm verzweigt, wenn alle durch die Konstante ¢ vorgegebenen

Testbits des Arbeitsregisters Null sind.

Inkrementieren,
Sprung wenn alle Testbits Null
maskiert mit Konstante

01100015

| s |

o]

d

Befehl
Arbeitsregister
Konstante
Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn alle
durch die Konstante c vorgegebenen Testbits des Arbeitsregisters Null sind.

Sprung wenn alle Testbits Null
maskiert mit Register

01100105

S
r

d

Befehl
Arbeitsregister
Register
Sprungweite

Das Programm verzweigt, wenn alle durch das Referenzregister r vorgegebenen

Testbits des Arbeitsregisters Null sind.

Inkrementieren,
Sprung wenn alle Testbits Null
maskiert mit Register

01100115s

13 s 1
r

d

Befehl
Arbeitsregister
Register
Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn alle
durch das Referenzregister r vorgegebenen Testbits des Arbeitsregisters Null

sind.

Sprung wenn nicht alle Testbits Null
maskiert mit Konstante

01101005

i S !
C
d

Befehl
Arbeitsregister
Konstante
Sprungweite

Das Programm verzweigt, wenn nicht alle durch die Konstante ¢ vorgegebenen

Testbits des Arbeitsregisters Null sind.

- 41 -

INZC

Funktion:

BNZR

Funktion:

INZR

Funktion:

BOC

Funktion:

10C

Funktion:

Inkrementieren,
Sprung wenn nicht alle Testbits Null
maskiert mit Konstante

0110101S

S I
Cc
d

Befehl
Arbeitsregister
Konstante
Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn nicht
alle durch die Konstante c¢ vorgegebenen Testbits des Arbeitsregisters Null sind.

Sprung wenn nicht alle Testbits Null |01 10110S
s

maskiert mit Register

r

d

Befehl
Arbeitsregister
Register
Sprungweite

Das Programm verzweigt, wenn nicht alle durch das Referenzregister r vorge-
gebenen Testbits des Arbeitsregisters Null sind.

Inkrementieren,
Sprung wenn nicht alle Testbits Null
maskiert mit Register

0110111
s

r
L d |

Befehl
Arbeitsregister
Register
Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn nicht
alle durch das Referenzregister r vorgegebenen Testbits des Arbeitsregisters

Null sind.

Sprung wenn alle Testbits Eins
maskiert mit Konstante

01110005

| s 1
C

d

Befehl
Arbeitsregister
Konstante
Sprungweite

Das Programm verzweigt, wenn alle durch die Konstante ¢ vorgegebenen Test-

bits des Arbeitsregisters Eins sind.

Inkrementieren,
Sprung wenn alle Testbits Eins
maskiert mit Konstante

IOIIIOOISI

] S !
C

d

Befehl
Arbeitsregister
Konstante
Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn alle
durch die Konstante c vorgegebenen Testbits des Arbeitsregisters Eins sind.

- 42 -

BOR

Funktion:

IOR

Funktion:

BNOC

Funktion:

INOC

Funktion:

BNOR

Funktion:

Sprung wenn alle Testbits Eins 0111010S| Befehl

maskiert mit Register s ! Arbeitsregister
r Register
d Sprungweite

Das Programm verzweigt, wenn alle durch das Referenzregister r vorgegebenen
Testbits des Arbeitsregisters Eins sind.

Inkrementieren, 0O111011S Befehl

Sprung wenn alle Testbits Eins ! s I Arbeitsregister
maskiert mit Register r Register
d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn alle
durch das Referenzregister r vorgegebenen Testbits des Arbeitsregisters Eins
sind.

Sprung wenn nicht alle Testbits Eins 0111100858 Befehl

maskiert mit Konstante ! s Arbeitsregister
c Konstante
d Sprungweite

Das Programm verzweigt, wenn nicht alle durch die Konstante ¢ vorgegebenen
Testbits des Arbeitsregisters Eins sind.

Inkrementieren, 01111015 Befehl
Sprung wenn nicht alle Testbits Eins ! s ! Arbeitsregister
maskiert mit Konstante c Konstante

d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn nicht
alle durch die Konstante ¢ vorgegebenen Testbits des Arbeitsregisters Eins sind.

Sprung wenn nicht alle Testbits Eins, 0111110858 Befehl

maskiert mit Register ! s 1 Arbeitsregister
r Register
d Sprungweite

Das Programm verzweigt, wenn nicht alle durch das Referenzregister r vorge-
gebenen Testbits des Arbeitsregisters Eins sind.

- 43 -

INOR Inkrementieren, ‘0 111111 Sl Befehl

Sprung wenn nicht alle Testbits Eins s 1 Arbeitsregister
maskiert mit Register r Register
d Sprungweite

Funktion: Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn nicht
alle durch das Referenzregister r vorgegebenen Testbits des Arbeitsregisters
Eins sind.

Bei den bedingten Sprungbefehlen mit Testbit-Abfrage (BZC...INOR) werden die Biis
des Arbeitsregisters Uberpruft, die in der "Maske" gleich 1 sind, wobei die Maske als
Konstante im Befehl oder als Variable in einem Referenzregister enthalten ist. Bits mit
Nullinhalt in der Maske spielen keine Rolle.

Beispiele: a) Maske 00011010
Arbeitsregister 10100001 dlle Testbits g
b) Maske 00011010
Arbeitsregister 01101000 nicht alle Testbits @
nicht alle Testbits 1
c) Maske 00011010
Arbeitsregister 01011110 dlle Testbits 1
Fur die einzelnen Befehle bedeutet dies:
BZ.. /IZ...: Programm verzweigt bei a) , lauft weiter bei b)c)
BNZ../INZ..: " " b)), ™ u ")
BO.../lO.. : " " e, " " " a)b)
BNO-./lNO..: " " Cl)b), " u n C)

BUS-BEZOGENE BEFEHLE .. xs]

Befehle: LD Laden 1000 .
AD Addieren 1001. ..
SB Subtrahieren 1010.
AN UND 1011.
OR Inklusives ODER 1100 .
EO Exklusives ODER 1101,
ST Speichern 1110, ...
JP Sprung T111...0
Cs Unterprogramm~-Sprung Tri1r. .01
Adressierung: -
..C Konstante (unmittelbar)000.
X indirekt (Uber Register x)001.
..R Register . 01
..L relativ 10
A absolut 11
Indizierung: nicht indiziert ... L. 0.
indiziert Uber Indexregister x 1.
Arbeits-
registers Akkumulator @ oo 0
Spezifiziertes Register s 1

Diese Befehlsgruppe setzt das Arbeitsregister mit einer BUS -Adresse (effektive Adresse)
in Beziehung, d.h. mit einem Byte des RAM’s (Pool), des Kernspeichers oder Fest-
speichers, oder mit der Peripherie des Rechners. Hierzu gehtren auBerdem Sprung und
Unterprogramm-Sprung auf eine beliebige Adresse des Kern- oder Festspeichers sowie des
RAM's.

Adressierungsmoglichkeiten sind:

..C Konstante: Der Operand steht als Konstante in der Instruktion
(nicht m&glich bei ST, JP und CS)

X indirekt: Die effektive Adresse steht in einem Indexregister x
..R Register: Die effektive Adresse ist ein Register r

(nicht moglich bei JP und CS)
. L relativ: Die effektive Adresse ist um die Differenz d entfernt

von dem Byte, in dem d steht
(maximal 128 byte zurtck bzw. 127 byte vorwirts)

A absolut: Die effektive Adresse ist in Form von 2 Bytes (16 bit)
in der Instruktion angegeben.

- 45 -

Indizierung ist bei Register-, relativer und absoluter Adressierung méglich. In diesem
Falle wird der Inhalt des Indexregisters x zur effektiven Adresse addiert. Dabei ist
folgendes zu beachten:

Ist fur das Indexregister eine gerade Adresse x angegeben, so wird das
Doppelbyte x (niedrige Stellen) und x+1 (hohe Stellen) als Index verwen-
det. Der Index ist eine 16-bit~Zweierkomplement-Zahl; daher ist positive
und negative Indizierung méglich (-32768...+32767).

Ist dagegen eine ungerade Adresse x angegeben, so wird nur das Byte x
als Index verwendet. Der Index ist eine 8-bit-Zahl, mit der nur positive
Indizierung moglich ist (0...255).

Fir die indirekte Adressierung bedeutet das, daB im ersten Falle eine volle
16-bit-Adresse in x, x+l enthalten ist, wdhrend im zweiten Falle nur die
8 bit in x wirksam sind, d.h. hiermit kdnnen nur die absoluten Adressen

900@. . .99FF angesprochen werden.

Zy beachten ist, daB3 angegebene Register und Indexregister ebenen-gebunden sind, d.h.
ihre absolute Adressen sind mit der jeweiligen Ebenen-Adresse in logische ODER-Verkniip-
fung gebracht. Dies gilt auch bei Registeradressierung und indirekter Registeradressierung.

DO-Befehle: Die Anwendung von DO-Instruktionen auf die Befehle LD, AD, SB, AN,
OR, EO und ST ist sinnvoll; die hgufigsten Anwendungen sind spdter
im einzelnen angegeben.

Lange: Konstante: 2 byte (@) n [1...0000]| Befehl
n+1 c Konstante
3 byte (s) n [1...0001] Befehl
n+1 s Arbeitsregister
n+2 c Konstante
indirekt: 2 byte (@) n [1...0010] Befehl
n+l1 X Indexregister
3 byte (s) n 1 .00 1 1] Befehl
n+l s Arbeitsregister
n+2 X Indexregister
Register: 2...3 byte (@) n [1...01X0] Befehl
n+l r Register
X=1)— nt2 x| Indexregister
3...4 byte (s) n [1...01X1] Befehl
n+l s Arbeitsregister
n+2 r Register
(X=l)— n#3_ x| Indexregister

- 46 -

relativ: 2...3 byte (@ n |1 ...10X0]| Befehl
n+l d Differenz
X=l)— nt2 x | Indexregister
3...4 byte (s) n [1...10X1]| Befehl
n+l s Arbeitsregister
n+2 d Differenz
(X=)—> nt3_ x| Indexregister
absolut: 3...4 byte (@) n [1...71T1X0]| Befehl
n+l a Adresse niedrig
n+2 b Adresse hoch
(X=)—= n#3_ x| | Indexregister
4...5byte (s) — n [1 ... 11X 1| Befehl
n+l s Arbeitsregister
n+2 a Adresse niedrig ~
n+3 b Adresse hoch
(X=1)—= nH| x | Indexregister

Bei einem vorgeschalteten DO-Befehl ist statt einer Konstanten ¢ ein Konstanten-String
von z Bytes in der Instruktion enthalten, vom Basis-Byte aus in Richtung aufsteigender
Adressen.

47 -

LD Laden 1000..XS
L ~

Funktion: Das Arbeitsregister wird mit dem Inhalt der effektiven Adresse (Operand)
geladen.

z<& LD.. Ein vorgeschalteter DO-Befehl z<& bewirkt Laden der z Bytes eines Arbeits—
register-Strings mit stets demselben Operanden-Byte.

z=& LD.. Ein vorgeschalteter DO-Befehl z=& bewirkt Laden eines Arbeitsregister-Strings
von z Byte Lange mit einem Operanden=String derselben Linge.

AD.. Addieren 1001°..XS5S
Funktion: Zum Arbeitsregister=Inhalt wird der Inhalt der effektiven Adresse (Operand)
addiert.

z=%AD.. Ein vorgeschalteter DO-Befehl z=x bewirkt Addieren eines Operanden=Strings
von z Byte Linge zu einem Arbeitsregister derselben Linge.

SB.. Subtrahieren 1010..XS

— ~

Funktion: Vom Arbeitsregister-Inhalt wird der Inhalt der effektiven Adresse (Operand)
subtrahiert.

z=%SB.. Ein vorgeschalteter DO-Befehl z=x% bewirkt Subtrahieren eines Operanden-
Strings von z Byte Ldnge von einem Arbeitsregister der gleichen Linge.

AN.. UND T01T1..XS

L~ ~l

Funktion: Der Arbeitsregister-Inhalt wird mit dem Inhalt der effektiven Adresse (Ope-
rand) in UND-Verkniipfung gebracht; das Ergebnis steht im Arbeitsregister.

z<& AN.. Ein vorgeschalteter DO-Befehl z<& bewirkt, daf die z Bytes eines Arbeits-
register-Strings mit stets demselben Operanden-Byte in UND-Verknupfung
gebracht werden.

z=& AN.. Ein vorgeschalteter DO-Befehl z=& bewirkt UND=-Verknitpfung zwischen

einem Arbeitsregister- und einem Operanden-String von jeweils z Byte
Lange.

- 48 -

OR..

Funktion:

z<& OR..

z=& OR..

EO..

Funktion:

z<& EO..

z=& EO..

ST..

Funktion:

z>& ST..

z=& ST..

Inklusives ODER 1100..XS5S

L~— o~

Der Arbeitsregister-Inhalt wird mit dem Inhalt der effektiven Adresse
(Operand) in inklusive ODER-Verkniupfung gebracht; das Ergebnis steht
im Arbeitsregister.

Ein vorgeschalteter DO-Befehl z<& bewirkt, daB die z Bytes eines Arbeits-
register-Strings mit stets demselben Operanden-Byte in inklusive ODER-Ver-
knupfung gebracht werden.

Ein vorgeschalteter DO-Befehl Z=& bewirkt inklusive ODER-Verknupfung
zwischen einem Arbeitsregister~ und einem Operanden=String von jeweils
z Byte Linge.

Exklusives ODER 1101, .X5$
Der Arbeitsregister-Inhalt wird mit dem Inhalt der effektiven Adresse
(Operand) in exklusive ODER-Verknipfung gebracht; das Ergebnis steht
im Arbeitsregister.

Ein vorgeschalteter DO-Befehl z<& bewirkt, da die z Bytes eines Arbeits-
register-Strings mit stets demselben Operanden-Byte in exklusive ODER-Ver-
knupfung gebracht werden.

Ein vorgeschalteter DO-Befehl z=& bewirkt exklusive ODER-Verknipfung
zwischen einem Arbeitsregister- und einem Operanden~String von jeweils
z Byte Lénge.

Speichern 1110..XS5S

L~ —~

Der Inhalt des Arbeitsregisters wird in der effektiven Adresse abgespeichert.

Ein vorgeschalteter DO-Befehl z>& bewirkt Speichern des immer gleichen
Arbeitsregister-Inhalts in z aufeinanderfolgenden Bytes eines AdreB-Strings.

Ein vorgeschalteter DO-Befehl z=& bewirkt Speichern eines Arbeitsregister-
Inhalts von z Byte Lidnge in einem gleich langen AdreB3-String.

49 -

JP.. Sprung 1111..X0

L~ ~J

Funktion: Das Programm verzweigt zur angegebenen Adresse, indem der Instruktionszihler
auf deren Wert gesetzt wird.

Cs.. Unterprogramm=-Sprung 1111, .X1
~ ~

Funktion: Der Inhalt des Instruktionszdhlers, bezogen auf das letzte Byte der Instruktion
und um 1 erhsht, wird im Arbeitsregister s gespeichert (Ruckkehradresse =
Adresse des Befehlsbytes der auf CS folgenden Instruktion). Dann verzweigt
das Programm zur angegebenen Adresse.

Die Ruckkehr aus dem Unterprogramm (zur auf CS folgenden Instruktion) wird
an dessen Ende durch einen indirekten Sprungbefehl uber das Ruckkehr-Adref-
register s (JPX,,,s) programmiert.

-50 -

BEFEHLSLISTE

Ausfuh-

Befehl rungszeit Bedeutung
NOP 2.1 No Operation
SEL LEV 2.8 Set Level
HLT 2.1 Halt
HSL LEV 2.8 Halt, Set Level
ECL 2.1 Enable Change Level
DCL 2.1 Disable Change Level
(DO) (NUM)... 1.9 Do next ... times
GL (REG) 1.9 Get Level
GS (REG) 1.9 Get Switch
SRO (REG) 2.5/1.0 Shift right open
SRC (REG) 2.5/1. Shift right closed
SLO (REG) 2.5/1.0 Shift left open
SLC (REG) .5/1.0 Shift left closed
BZ (REG) ADR 3.2/0.6 Branch if Zero
BNZ (REG) ADR 3.2/0.6 Branch if Non Zero
BP (REG) ADR 3.2/0,6 Branch if Positive
BNP (REG) ADR 3.2/0.6 Branch if Non Positive
1z (REG) ADR 4.0/0.6 Increment, Branch if Zero
INZ (REG) ADR 4.0/0.6 Increment, Branch if Non Zero
IP (REG) ADR 4.0/0.6 Increment, Branch if Positive
INP (REG) ADR 4.0/0.6 Increment, Branch if Non Positive
BEC (REG) CON ADR 4.3/1.7 Branch if Equal Constant
BER (REG) REG ADR 4,9/1.2 Branch if Equal Register
BNEC (REG) CON ADR 4.3/1.7 Branch if Non Equal Constant
BNER (REG) REG ADR 4.9/1.2 Branch if Non Equal Register
IEC (REG) CON ADR 5.1/1.7 "1, Branch if Equal Constant
IER (REG) REG ADR 5.7/1.2 I, Branch if Equal Register
INEC (REG) CON ADR 5.1/1.7 |, Branch if Non Equal Constant
INER (REG) REG ADR 5.7/1.2 1, Branch if Non Equal Register
BZC (REG) CON ADR 4,3/1.7 Branch if all Testbits Zero, Constant-Mask
BZR (REG) REG ADR 4.9/1.2 Branch if all Testbits Zero, Register-Mask
BNZC (REG) CON ADR 4.3/1.7 Branch if not all Testbits Zero, Constant-Mask
BNZR (REG) REG ADR 4.9/1.2 Branch if not all Testbits Zero, Register-Mask
1ZC (REG) CON ADR 5.1/1.7 |, Branch if all Testbits Zero Constand-Mask
1ZR (REG) REG ADR 5.7/1.2 |, Branch if all Testbits Zero Register-Mask
INZC (REG) CON ADR 5.1/1.,7 1, Branch if not all Testbits Zero Const.-Mask
INZR (REG) REG ADR 5.7/1.2 |, Branch if not all Testbits Zero Reg.-Mask

-5] -

Befehl Ausfih- Bedeutung
rungszeit

BOC (REG) CON ADR 4.3/1.7 Branch if all Testbits ONE, Constant-Mask
BOR (REG) REG ADR 4.9/1.2 Branch if all Testbits ONE, Register-Mask
BNOC (REG) CON ADR 4.3/1.7 Branch if not all Testbits ONE, Const.Mask
BNOR (REG) REG ADR 4.9/1.2 Branch if not all Testbits ONE, Reg.-Mask
10C (REG) CON ADR 5.1/1.7 1, Branch if all Testbits ONE, Const.~-Mask
IOR (REG) REG ADR 5.7/1.2 1, Branch if all Testbits ONE, Reg.-Mask
INOC (REG) CON ADR 5.1/1.7 |, Branch if not all Testbits ONE, C-Mask
INOR (REG) REG ADR 5.7/1.2 |, Branch if not all Testbits ONE, R-Mask
LDC (REG) CON 2.5/1.5 LOAD Constant
ADC (REG) CON 2.9/1.9 ADD Constant
SBC (REG) CON 2.9/1.9 SUBTRACT Constant
ANC (REG) CON 2.9/1.9 AND Constant
ORC (REG) CON 2.9/1.9 OR Constant
EOC (REG) CON 2.9/1.9 Excl. OR Constant
LDX (REG) IXR 4.2/1.0 Load indirect
ADX (REG) IXR 4.6/1.4 Add indirect
SBX (REG) IXR 4.6/1.4 Subtract indirect
ANX (REG) IXR 4.6/1.4 AND indirect
ORX (REG) IXR 4.6/1.4 OR indirect
EOX (REG) IXR 4.6/1.4 Excl. OR indirect
STX (REG) IXR 4.2/1.0 Store indirect
JPX IXR 4.0 Jump indirect
CsSX REG IXR 5.5 Call Subroutine indirect
LDR (REG) ADR (IXR) 3.6/1.0 Load Register
ADR (REG) ADR (IXR) 4.0/1.4 Add Register
SBR (REG) ADR (IXR) 4.0/1.4 Subtract Register
ANR (REG) ADR (IXR) 4.0/1.4 AND Register
ORR (REG) ADR (IXR) 4.0/1.4 OR Register
EOR (REG) ADR (IXR) 4.0/1.4 Excl. OR Register
STR (REG) ADR (IXR) 3.6/1.0 Store Register
LDL (REG) ADR (IXR) 4,1/1.5 Load relative
ADL (REG) ADR (IXR) 4.5/1.9 Add relative
SBL (REG) ADR (IXR) 4.5/1.9 Subtract relative
ANL (REG) ADR (IXR) 4.5/1.9 AND relative
ORL (REG) ADR (IXR) 4.5/1.9 OR relative
EOL (REG) ADR (IXR) 4.5/1.9 Excl. OR relative
STL (REG) ADR (IXR) 4.1/1.5 Store relative
JPL ADR (IXR) 3.4 Jump relative
CsL REG ADR (IXR) 4.9 Call Subroutine relative

- 52 -

Ausfih-

Befehl .
rungszeit

Bedeutung

.7/1.0 Load absolute
1/1.4 Add absolute
1.4 Subtract absolute
1.4 AND dabsolute
1.4 OR absolute
1.4
1.0

LDA (REG) ADR (IXR) 4
ADA (REG) ADR (IXR) 5
SBA (REG) ADR (IXR) 5
ANA (REG) ADR (IXR) 5
ORA (REG) ADR (IXR) 5.
5 Excl. OR absolute
4 Store absolute
4
6

EOA (REG) ADR (IXR)
STA (REG) ADR (IXR)
JPA ADR (IXR)
CSA REG ADR (IXR)

5 Jump absolute
.0 Call Subroutine absolute

Bemerkung:

Die erste Zeitangabe ist die gesamte Befehlsausfuhrungszeit, die zweite Angdbe gibt
die Zeit fur eine Mehrfachausfuhrung bei vorgeschaltetem DO-Befehl an.

Die angegebenen Ausfihrungszeiten der Befehle gehen von folgenden Voraussetzungen
aus:

1) Das Programm steht im Kernspeicher (0.65 ps Zykluszeit). Sollte das Programm im
Halbleiterspeicher stehen, konnen je Byte der Instruktion 0.5 ps von den angege-
benen Zeiten abgezogen werden.

2) Ist bei einem DO-Befehl die angegebene Wiederholzahl > 2 oder ist als Register
nicht der Standard-Akku ((Q)) angegeben, so muB zu den angegebenen Zeiten
0.7 ps addiert werden. Dies gilt nicht fur den CS-Befehl.

3) Bei Indizierung mit einem 1-byte-Indexregister sind 1.7 ps, bei einem 2-byte-
Indexregister 2.3 ps zu addieren.

Bei CONSTANT- und RELATIVE-Adressierung steht die Konstante oder der adressier-
te Operand im Kernspeicher. Sollten sich diese Daten im Pool befinden, sind von
den angegebenen Zeiten 0.5 ps zu subtrahieren.

4

~

(3]
~

Bei INDIRECT-, REGISTER- und ABSOLUTE-Adressierung steht der adressierte Operand
im Pool. Steht er im Kernspeicher, so sind zu den angegebenen Zeiten 0.5 ps zu
addieren.

6

~

Der UNIVERSAL-BUS des MINCAL 621 ist ein asynchroner BUS. Alle Zeiten héngen
von der physikalischen Linge des BUS und von der Reaktionszeit der passiven Elemente
ab. Die angegebenen Zeiten kénnen sich deshalb in geringem MaBe von den tatstich-
lichen Zeiten unterscheiden.

- 53 -

- 54 -

Aufbau

Der DIETZ 621 besteht aus einem geschlossenen Gehduse, das vorne von der Bedie-
nungs-Konsole (oder einer Blindplatte) abgeschlossen wird. Hinten befindet sich der
Netzanschluflstecker. Hier werden auch die Kabel eingebauter Interfaces und das
BUS-Kabel herausgefiihrt.

Die Kuhlluft fur den Rechner wird von vorn angesaugt (unter der Frontplatte). Sie
geht durch einen Filter, das leicht gereinigt werden kann, an den Komponenten
des Computers vorbei und wird nach hinten herausgeblasen.

In dem Gehiuse befindet sich unten der Kernspeicher (oder ein ROM), der waage-
recht eingebaut ist. Dariber ist die CPU waagerecht montiert, die auch die Stecker
fur die Frontplatte, den Kernspeicher und die senkrecht gesteckten Leiterplatten fur
die Uhr, fur die RAMs, die Ebenenlogik, die Schrittsprung-Logik, die Interfaces und
den BUS-AnschluB3 enthiilt.

Uber der CPU befindet sich die hochklappbare Stromversorgung.

Interface~
von oben gesehen Anschlusse
Netz ext.Batterie l 2 3
M [
\ \ /
Sfro v
Sfecke
“cg'c 3=
126 v 1= 0
c| % CE5E8T8 8
g ® g e et ¥
STROMVERSORGUNG | 5| 7 =
-
2] 2
- a
£l £
Z
A
Klapprichtung
der Stromver-
sorgung .
———
Halbleiter-
~ 2 RAM
CPU c—————+ Echtzeit-Uhr
Frontplatten-
N1 AnschluB
S I T I LI T LIt Bedienungs-
Konsole

- 55 -

DIETZ 621

mit aufgeklappter Stromversorgung

- 56 -

Bei der Stromversorgung blickt man auf die Leiterseite des Regelbausfeinsl der Strom-
versorgung. .

Auf der Leiterseite sind die wichtigsten MeBpunkte durch Beschriftung gekennzeigh-
nef.

Bei der Inbetriebnahme des Rechners sind folgende MeBpunkte auf ihre Sollwerte
gegen den MassemeBpunkt (" L" Telefonbuchse) zu uberprifen:

Bezeichnung MefBwert Toleranz
+Z +H Vv + 2%
+T +12 v 5%
R o +12V 5%
-R -12 v ¥5%
+Zy +5V 2%
+H +15 V + 2%
-H -15 VvV E 2 %

Fur die Betriebsspannungen befinden sich Potentiometer an der zur Frontplatte zeigen-
den Leiterplattenkante. Von der Frontplatte aus gesehen haben diese Potentiometer von
rechts nach links folgende Reihenfolge:

Bezeichnung Funktion
+Z Spannungshshe der +Z
S* Strombegrenzung der +Z
N * Ansprechschwelle des Netzausfallschutzes
+B Spannungshshe der +B
_H n n _H
+H n " +H

* Diese Potentiometer durfen nicht verstellt werden!

-57 -

Blick in die Zentraleinheit

(Stromversorgung entfernt)

-58 -

Folgende Spannungen werden auf Uberspannung durch Schutzschalter uberwacht:

Bezeichnung Einschaltstellung
+Z Knebel zeigt zur Ruckwand
+H u u un n
-H Stift ist eingedruckt
+T n n n
+ZB n n n

Netzsicherungen:

Zwischen Stromversorgung und Riuckwand befinden sich drei Sicherungen.
Eine defekte Sicherung wird durch Aufleuchten der Sicherungsschraubkappe angezeigt.

Die linke Sicherung (von der Froniplatte gesehen) ist fur den Transformator Tr.1
(+Z; +T; +R).
Die zweie Sicherung ist fur den Transformator Tr.2 (-R; +B; +H; -H).

Die rechte Sicherung ist zum Schutz der Batterien vorgesehen.

- 59 -

DIETZ 621

mit ausgeklapptem Kernspeicher

Bedienung

Zur Kontrolle des Computers ist eine Bedienungskonsole vorgesehen, tUber die die
wichtigen Register und Zustande angezeigt werden und aulerdem Daten eingegeben
werden konnen, Der Computer kann aber auch ohne Bedienungskonsole betrieben
werden.

Durch Rechtsdrehen des Schlusselschalters wird der Computer eingeschaltet. Die Lampe
tber dem Schalter leuchtet, und der Computer ist betriebsbereit. Uber die Taste ST
oder Uber einen externen Interrupt kann der Computer gestartet werden, wenn ein ent-
sprechendes Programm im Speicher des Computers gespeichert ist.

Will man ein Programm in den Speicher einlesen, so kann Uber den eingebauten Boot-
strap ein Ladeprogramm (Lader) eingelesen werden, mit dem dann ein beliebiger Hexa-
Lochstreifen an beliebige Stellen des Kernspeichers geladen werden kann.

Bedienung Bootstrap: Schalter BS einlegen. Lader-Lochstreifen (im RUBOUT-Bereich) in
Teletype-Leser oder in schnellen Leser einlegen (im letzteren Falle zusdtzlich Schalter 4
einlegen). Taste STA betdtigen; jetzt wird der Lader in die Platze ‘@6 bis ‘FF des RAMs
eingelesen.

Bedienung Lader: Schalter BS und 4 in Normalstellung bringen. Einzulesenden Hexa-Loch-
streifen (im RUBOUT-Bereich) in Teletype-Leser oder schnellen Leser einlegen. Taste
STA betitigen. Teletype fuhrt Wagenriicklauf aus und druckt # aus. Nun

aaaa-bbbb 1SH (bei Teletype-Leser) oder
aaaa-bbbb IFH (bei schnellem Leser)
aaaaS (Start bei Adresse aaaa)

- 61 -

aaaa ist die Anfangs-, bbbb die Endadresse des Kernspeicherbereichs, in den der
Streifen gelesen werden soll (4-stellige Hexazchlen). Der Streifen wird eingelesen.
Am Ende wird 3 ausgedruckt. Danach kann der Vorgang mit weiteren Streifen wieder-
holt werden (neuen Streifen einlegen und o.a. Eingaben Uber den Teletype machen).

Der Lader pruft den zu ladenden Streifen und bricht bei einem Fehler den Vorgang mit
der Nachricht ERR ab.

Hat man einen Lochstreifen, der einen Lader als Vorspann enthilt, vereinfacht sich die
Bedienung:

Schalter BS einlegen. Lochstreifen (im RUBOUT-Bereich) in Teletype-Leser oder in
schnellen Leser einlegen (im letzteren Falle zusdtzlich Schalter 4 einlegen). Toste STA
betdtigen; jetzt wird der Lochstreifen eingelesen. Wenn der Lesevorgang aufhsrt, Schal-
ter BS und 4 in Normalstellung bringen und erneut Taste STA betidtigen. Nun wird der
gesamte Lochstreifen eingelesen.

Die Schalter und Tasten der Bedienungskonsole haben im einzelnen folgende Funktionen:

Uber ein 8-bit-Schalter-Register (Switch-Register) - Schalter 0...7 - kénnen Daten in
bestimmte Flip-Flop-Register, in Pool-Adressen und in BUS-Adressen gegeben werden.

Uber dem Schalter-Register befindet sich ein 8-bit-Lampenfeld, das den Zustand von
Flip-Flop-Registern, Pool-Adressen und BUS-Adressen anzeigt.

Links neben dem Switch-Register ist ein 4-bit-Schalterfeld, Uber das das N-Register
(Instruktionszshler) und das M-Register angewihlt werden konnen. Da beide Register
2-byte-Lange haben, wird jeweils die rechte Hilfte (NR, MR) mit den niedrigwertigen
Bits oder die linke Halfte (NL, ML) angewdhlt.

Die angewdhlten Register werden in dem Lampenfeld angezeigt. Bei Betdtigen der Taste
SW (aus dem Schalterfeld links neben der Registeranwahl) wird der Inhalt des Switch-

Registers in das angewdhlte Register Ubertragen und gleichzeitig angezeigt. Sind weder
ML, MR noch NL; NR angewihlt, wird das A-Register angezeigt.

Durch gleichzeitiges Betdtigen von NR und ML wird das B-Register und durch Betatigen
von NR und MR das P-Register und durch NR und NL die laufende Ebene angezeigt.

Im dritten Schalterfeld von rechts sind auBer der Taste SW (Switch) noch die Tasten DE
(Deposit), DI (Display) und BS (Bootstrap) enthalten.

Durch Betidtigen der Taste DE wird der Inhalt des Switch-Registers in die Adresse uber-
tragen, die durch das M-Register angewihlt wird.

Mit der Taste DI wird der Inhalt der Adresse angezeigt, die durch das M-Register ange-
wahlt ist (Voraussetzung: Tasten NL, NR, ML und MR sind in Ruhestellung).

Mit dem Schalter BS wird das eingebaute Booistrap-Programm angewihlt. Dieses Pro-

gramm wird ausgefthrt, wenn man zusdtzlich die Taste ST (START) im Schalterfeld ganz
links betatigt.

-62 -

Im Schalterfeld ganz links gibt es folgende Tasten und Schalter:

RS (Reset): Hiermit werden alle Flip-Flops des Rechners in die Ausgangsstellung ge-
bracht.

Schalter HT ‘(Halt): Ein laufendes Programm kann mit diesem Schalter angehalten werden.
Das N-Register, Pool- und BUS-Adressen lassen sich in diesem Zustand anzeigen und
dndern.

Betdtigt man dann die Taste CO (Go), so wird eine Instruktion ausgefuhrt; danach wird
wieder angehalten.

Wird der Schalter HT wieder in die Ruhestellung gebracht, so l&uft nach Betdtigen der
Taste GO das Programm weiter.

Lguft kein Programm (die Lampe Uber der Taste ST leuchtet in diesem Falle nicht), so
fuhrt ein Betatigen der Taste GO bei gleichzeitig eingelegtem Schalter HT zur Inkre -
mentierung des M-Registers.

Mit der Taste ST (Start) wird die Ebene @ des Computers gestartet. Die Lampe Uber
dieser Taste leuchtet auf, sobald eine Ebene gestartet wurde und das Programm lguft.

Links auf der Bedienungskonsole ist ein Schlusselschalter mit 3 Stellungen: In der

1. Stellung ist der Computer ausgeschaltet, in der 2. Stellung ist das Netz einge-
schaltet, und die Lampe Uber dem Schalter leuchtet. In der 3. Stellung ist das Netz
eingeschaltet (Lampe leuchtet), aber alle Schalter und Tasten der Bedienungskonsole
sind verriegelt (Ausnahme: Switch-Register).

Lauft das Programm, so sind auch bei nicht verriegelter Bedienungskonsole alle Schalter
und Tasten wirkungslos (Ausnahme: HT, BS, RS und Schlusselschalter).

Nach dem Einschalten der Spannung mit dem Schlusselschalter (die Lampe uber dem

Schalter leuchtet) ist der Computer betriebsbereit, und ein Programm kann Uber die

Taste ST oder von auBen Uber einen BUS-Start gestartet werden; danach leuchtet die
Lampe Uber der Taste ST.

Wihrend das Programm lguft, wird Uber das Lampenfeld der F-Kanal des Rechners an-
gezeigt. Ist der Schalter HT nach unten geschaltet, so halt das Programm an. Im N-
Register steht die Adresse des Befehlsbytes der Instruktion, die als ndchste ausgefuhrt
wird.

Bei angehaltenem Rechner kinnen alle Flip-Flop-Register ohne EinfluB auf das Programm
verdndert werden. Bei Andern des N-Registers wird das Programm bei der neuen Adresse
fortgesetzt, Der Inhalt von N muB8 das Befehlsbyte einer Instruktion adressieren.

Bei angehaltenem Rechner (oder wenn kein Programm lduft) ksnnen Pool- und BUS-
Adressen angezeigt und getindert werden: Die niedrigwertigen 8 Bits der gewunschten
Adresse werden im Switch-Register eingestellt (Schalter betatigt = 1). Danach wird MR
angewdhlt und durch Betdtigen der Taste SW der Inhalt des Switch-Registers nach MR
Ubertragen. Dieser Wert wird gleich angezeigt. Dann stellt man die 8 hsherwertigen
Bits der Adresse im Switch-Register ein, bringt MR in die Ausgangsstellung und schaltet
ML ein. Durch erneutes Betdtigen der Taste SW wird dieser Wert Ubernommen und

- 63 -

angezeigt. Danach wird auch ML in die Ruhelage gebracht. Durch Betdtigen der Taste
DI wird nun der Inhalt der eingegebenen Adresse im Lampenfeld angezeigt. Will man

diesen Wert dndern, so stellt man den neuen Wert im Switch-Register ein und betdtigt
die Taste DE. Zur Kontrolle kann man anschlieend noch DI betitigen.

Will man mehrere aufeinanderfolgende Adressen anzeigen oder &ndern, kann man bei
ausgeschaltetem Programm und nach Einlegen des Schalters HT mit der Taste GO das
M-Register um jeweils 1 erhshen. Mit SW wird nur die Ausgangsadresse in M einge-
geben und anschlieBend auf die beschriebene Weise erhtht.

Technische Daten

Typ:

Wortlange:

Arbeitsspeicher:

Hauptspeicher:

Technologie:

Instruktionen:

Instruktionsldnge:

Operationsdauer:

Arbeitsregister:
Indexregister:

Ebenen:

Interrupts:

Universal-Computer fur ProzeBanwendungen, technisch-
wissenschaftliche Zwecke und allgemeine Datentechnik

8 bit (1 byte)
Ein- und Mehrbyte=Verarbeitung vorgesehen
(Einzelbefehle 1- bis 256mal ausfihrbar)

Halbleiter-RAM 0.25 K bis 4 Kbyte
Zugriffszeit 200 ns, Vollzyklus 400 ns

auf Wunsch batteriegepuffert

als Register~, Daten= und Programmspeicher

Kernspeicher 4 Kbyte bzw. 8 K, 16 K oder 32 Kbyte
Zugriffszeit 400 bzw. 300 ns, Vollzyklus 1 us bzw. 650 ns
oder

Festspeicher (RPROM) 0.25 K bis 8 Kbyte

extern auf 80 Kbyte erweiterbar
Integrierte Schaltkreise (TTL-MSI)

5 Steuerbefehle

1 Mehrfach=~Ausfihrungsbefehl

2 Zustandsabfragebefehle

4 Schiebebefehle

32 bedingte Sprungbefehle

9 BUS-bezogene Befehle mit Register-, relativer, absoluter
oder indirekter sowie indizierter Adressierung

6 Konstanten-Befehle

1...5 byte je nach Befehlstyp

min. 1.9 us; max. 8.3 us

max. 254 sowie 1 fester Akku je Ebene (1...254 byte lang)
max. 127 je Ebene (1 oder 2 byte lang)

2 oder 16 Programmebenen mit getrennten Registern und
hierarchischer Prioritdt

Durch Wechsel der Programmebene bei Ende jeder Operation
moglich

Universal-BUS:

Bedienungskonsole:

Echtzeit-Uhr:
Interfaces:

Netzanschluf:

Grofle:

Gewicht:

Standard-Schnittstelle mit 8 bit-Daten-Ein/Ausgang, 16 bit-
AdreBausgang, Ebenen-Ausgang und Ebenenstart-Eingang fur
den AnschluB von externen Speichern und der Peripherie,
ermdglicht programm- und fremdgesteuerten Datenverkehr

Option

Option

Option (Raum fur 2 Einkarten-Interfaces)
220 V +10 % 50 Hz einphasig

Leistungsaufnahme ca. 400 VA (4k KS)

ca. 675 VA (8/16k KS)
19"-Einschub, allseitig geschlossen, zwangsbeluftet
5 Einheiten hoch (ca. 225 mm)
525 mm tief

ca. 35 kg

- 66 -

GRUNDAUSRUSTUNG

Der MINCAL 621 ist ein System-Computer mit modularem, der jeweiligen Aufgabe
anzupassendem Aufbau. Zur Grundausristung der Zentraleinheit gehtren:

Prozessor:
Stromversorgung:
Arbeitsspeicher:
Programmebenen:
BUS~-Anschlufi:

Weitere Anschlisse:

Frontplatte:

OPTIONEN

Vollstandiger Prozessor fur alle Maschinenbefehle
Netzteil fur Prozessor, Kernspeicher und Optionen
0.25 Kbyte RAM

Logik fur 16 Programmebenen

Steckerplatz fur Universal-BUS-Anschlu3

Netzstecker, Stecker fur externe RAM-Pufferung und 3
Interface-Stecker in Gehduse-Ruckseite

Einfache Frontplatte ohne Bedienungs- und Anzeigeelemente

Die Zentraleinheit MINCAL 621 kann dartberhinaus folgende Optionen enthalten:

Arbeitsspeicher:

Pufferung:

Hauptspeicher:

Erweiterung um jeweils 0.25 Kbyte bis insgesamt 4 Kbyte
RAM-Kapazitat

Pufferung der RAMs bei Netzausfall durch 2 eingebaute
Batterien (bis 1 Kbyte RAM; Ladestromversorgung ist im Netz~
teil vorgesehen.

Versorgungsdaver: 10 h (0.25 K); 5 h (0.5 K); 2 h (1 Kbyte
RAM).

Bei 2 Batterien verdoppeln sich die Zeiten.

Kernspeicher 4 Kbyte (400 ns Zugriffszeit, 1 us Vollzyklus)
mit Netzausfallschutz-Logik, oder

Kernspeicher 8 Kbyte (300 ns Zugriffszeit, 650 ns Vollzyklus)
mit Netzausfallschutz- und Parity-Logik, oder

Kernspeicher 16 Kbyte (300 ns Zugriffszeit, 650 ns Vollzyklus)
mit Netzausfallschutz- und Parity-Logik, oder

Kernspeicher 32 Kbyte; sonst wie 16 Kbyte, oder

- 67 -

Reprogrammierbarer Festspeicher (ca. 1 us Zugriffszeit)
Kapazitdt max. 8 Kbyte, in Stufen von 0.25 Kbyte
ausbaufshig

mit Netzausfallschutz-Logik

Echtzeit-Uhr: Untersetzer (vom Prozessor-Quarz gesteuert)
lost in Abstdnden von 1, 10, 100 oder 1000 ms (fest
eingestellt) einen Ebenen-Start aus (CNP-Ebene)

Bedienungskonsole: Frontplatte mit Bedienungs- und Anzeigeelementen
(anstelle der einfachen Frontplatte)

Interfaces: Einbauraum und Steckpldtze fur 2 Einkarten-Interfaces sind
vorgesehen

MODIFIKATIONEN

Folgende Parameter werden vom Hersteller oder Benutzer festgelegt bzw. sind nachtriglich
modifizierbar:

Pool-GrsBe: Festlegung auf 16, 32, 64, 128 oder 256 byte pro Ebene
(auf Ebenenlogik-Baustein)

CNP-Ebene: Zuordnung des Starts fur Fehlermeldungen und Echtzeituhr zu
einer bestimmten Programmebene (CNP-Ebene)
(auf Ebenenlogik-Baustein)

Festlegung des Intervalls fur den Echtzeitehr-Start auf 1, 10,
100 oder 1000 ms
(auf Clock-Baustein)

Ebene Interface 2: Ruckmeldung des Interfaces auf beliebigen Eben en-Start Sx,

statt auf S@
(auf CPU-Grundplatte).

- 68 -

ANSCHLUSS- UND UMGEBUNGSBEDINGUNGEN

Spannung

Spannungsschwankung
Frequenz

Klirrfaktor

Zulassige Kurzzeiteinbriche
Umgebungstemperatur
Luftfeuchtigkeit

Staubgehalt der Luft

220 V Wechselspannung, einphasig
mit Schutzleiter

+10 %

50 Hz, +5 %, -2 %

=6 %

s 4 ms (Abstand 21 s)

0°C bis +50°C

0 bis 95 % ohne Kondensation

Filterklasse B

Diese Angaben gelten nicht fur alle Peripheriegerdte bzw. Erweiterungen des Systems.
Je nach Anlagenkonfiguration sind andere AnschluB- und Umgebungsbedingungen einzu-

halten.

- 69 -

Zentraleinheit DIETZ 621

(Grundausrustung schraffiert)

Bedienungskonsole

Kernspeicher,

Halbleiter-Arbeitsspeicher Festwertspei-
cher
v
/ o L&
5 o
e b
H / S v
> 5 N
2 a &
] I
/ 4] / [}
y K
£ £
= &
wv

_

Recheneinheit

_

Real-Time-Clock /
16 Ebenen X
b
8-Kanal-Fern- ’
schreib-Interface
\4
L o
eer 72
Lochstreifenleser/ v %
= Stanzer-Interface ~

Universal 1
BUS

-70 -

1ETZ COMPUTER sysrl |
Qa
al)

=== IEmEr

—
X7 MINCAL 621

1684

Schrankaufbau und -abmessungen des
Computer-Systems DIETZ 621

-72 -

Peripherie-System

Die Zentraleinheit kann durch Anschlu von zusitzlichen Baugruppen zu einem
Computer-System erweitert werden.

All diese Baugruppen werden uber den UNIVERSAL-BUS mit der Zentraleinheit
verbunden. Ausgenommen Erweiterungen der Zentraleinheit (Kernspeicher, Gleit-
komma-Rechenwerk) gibt es zwei Einschube, Uber die die Peripherie angeschlossen
werden kann:

~ UNIVERSAL-INTERFACE-EINHEIT
19"-Einschub, 6 Einheiten hoch
zur Aufnahme von Einkarten-Interfaces, die im programmgesteuerten
Betrieb bedient werden

- AKTIVES ELEMENT
19"~Einschub, 3 Einheiten hoch
zur Aufnahme von Controllern und schneller. MeBsystemen, die in
direktem Speicherzugriff (DMA) betrieben werden.

Die Ankopplung der UNIVERSAL-INTERFACE-EINHEIT an den UNIVERSAL-BUS
erfolgt Uber einen DEVICE-SELECTOR, der aus dem asynchronen UNIVERSAL-BUS
den synchronen, reduzierten MINI-BUS erzeugt, an den die Interfaces angeschlossen
werden.

-73 -

PERIPHERIE-SYSTEM

Zentral- Speicher Gleitkom-
einheit 4...80 K ma-
Rechenwerl
& 1
4 [UNIVERSAL-BUS
Controller U B
fur Device+ Device-
selecto selector
=] Wechsel) *MINI- 4 MINI-
platte BUS BUS
. e oo
DIETZ- digit. 2
disk 1 Y 11" Ei ngtinge /:_-
Festkopf- Festkom— Konsol-
= platte '—.8 ma-Recher ﬂ. drucker
werk digit. |—o—
== o Leser 7| Ausginge o
® ; 1
Magnet DFU fas Locher
= band D —
I dyn. N
Q Magnet- B Eing'dnge‘_
:|. band ||
)
Analog-
= f—
Karten-
MeBsystemes— Display fes] . I::;n lest | | Analog-
Eingang
< Schnell-
L Z" |drucker [
Displ
splay e Analog-
™ Ausgang
Display [
v v . v ,
_— T

Universal- Universal-Interface~Einheit

Interface-Einheit

- 74 -

Universal-BUS

ALLGEMEINE BESCHREIBUNG

Der Universal-BUS (kurz: BUS) des DIETZ 621 hat die Aufgabe, alle Komponenten
eines Systems miteinander zu verbinden und einen bit-parallelen Datenaustausch zwi-
schen ihnen zu ermoglichen. Die Systemkomponenten kdnnen sein:

eine CPU (Central Processor Unit)
Speichermoduln
passive Elemente (z.B. Interfaces)

aktive Elemente (z.B. Controller).

CPU

UNIVERSAL-BUS >

BUS-Schnittstelle . .
passives aktives

Element Element

Speicher-
moduln

Der Halbleiterspeicher des DIETZ 621, der Pool, gehort nicht zu den vom BUS er-
reichbaren Elementen. Der Inhalt des Pool kann nur von der CPU selbst unter Pro-
grammkontrolle gelesen oder verindert werden.

Als passive Elemente sind die Komponenten definiert, die den BUS nicht selbsttdtig
belegen und fur einen Datenaustausch mit einem anderen Element benutzen konnen;
Speichermoduln sind somit grundsdtzlich als passive Elemente anzusehen.

Aktive Elemente sind die Komponenten, die selbsttiatig den BUS belegen und einen
Datentransfer durchfihren kdnnen; CPU oder Controller sind demnach aktive Elemente.

Mit Ausnahme der CPU sind aktive Elemente nicht ausschlieBlich aktiv; sie verhalten
sich genau wie passive Elemente, wenn sie z.B. von der CPU Arbeitsanweisungen er-
halten.

-75 =~

Ein Datentransfer kann nur zwischen einem aktiven und einem passiven Element er-
folgen, wobei das aktive Element die Steuerung des Transfers Ubernimmt und das
passive Element lediglich den vollzogenen Transfer quittiert.

Durch dieses Quittungsprinzip wird erreicht, daf8 der Datenaustausch unabhiingig von
der physikalischen Linge des BUS und von der Reaktionszeit der Elemente durchge-
fuhrt werden kann. Die max. Transferrate wird jedoch sowohl von der Linge des BUS
bestimmt als auch von der Reaktionszeit; im gunstigsten Fall kann alle 650 ns ein
8-bit-Wort ubertragen werden, was 1.5 Millionen Bytes pro Sekunde entspricht.

Sind mehrere aktive Elemente an einen BUS angeschlossen, dann sorgt eine Prioritdts—
struktur dofir, dafl die BUS-Belegungen zeitlich gestaffelt erfolgen. Jedem aktiven
Element wird deshalb eine Priorititsstufe zugeteilt. Wollen zwei aktive Elemente
gleichzeitig die BUS-Kontrolle Ubernehmen, so bekommt sie das Element mit der hthe-
ren Prioritdt zuerst.

Die Schnittstellen aller Elemente sind gleichartig aufgebaut, so daB ein aktives Element
mit Speichern und Interfaces unter Ausnutzung der gleichen Signale korrespondieren kann.

Speziell fur die CPU bedeutet das, daB8 alle Maschinenbefehle fur den Speicherverkehr
auch fur den Verkehr mit Interfaces verwendet werden kdnnen (s. auch BUS-bezogene
Befehle!). Interface-Register konnen somit genau so flexibel behandelt werden wie Ker-
speicherzellen.

Der Universal-BUS des DIETZ 621 ist bidirektional aufgebaut, d.h. daB an der BUS-
Schnittstelle eines Elements kein Unterschied zwischen Eingangs- und Ausgangsleitungen
besteht. Die Richtung des Datentransfers wird durch ein spezielles Signal bestimmt, das
Richtungskennzeichen RK.

Ein BUS hat den Vorteil, sowohl den programmgesteuerten Datentransfer als auch den
direkten Kernspeicherzugriff (Direct Memory Access oder DMA) ohne zusitzlichen
Aufwand zuzulassen.

Der Universal-BUS bietet zusitzlich die Moglichkeit, die Mehrebenenstruktur des
DIETZ 621 innerhalb der Peripherie auszunutzen, sei es durch Bindung eines Inter-
faces an eine bestimmte Ebene oder durch Rickmeldungen von Interfaces in Form von
Startsignalen (Interrupts).

BUS-SIGNALE

Der Universal-BUS des DIETZ 621 umfaf3t insgesamt 63 Signalleitungen, deren Namen
und Bedeutungen im folgenden Abschnitt erldutert sind.

Alle Leitungen haben bei nicht belegtem BUS ein positives Potential. Bei belegtem BUS
haben die Signalpegel folgende Bedeutung:

1>

0 V...H0.5 V 2 Jogisch 1 £ Signal vorhanden
+3 Voo#5 V2 ogisch # 2 Kein Signal

- 76 -

Dg...D7

AP...A15

Adresse/14 bit

aop8

8 bidirektionale Datenleitungen zur bit-parallelen (byte-seriellen)
Ubertragung eines Datums. Zur Datensicherung durch ein Parity-Bit
steht bei Bedarf eine neunte Datenleitung D8 zur Verfigung.

Die Zuordnung von Datenleitung und Wertigkeit des Datenbits zeigt
folgende Abbildung:

27 a— 90

Al5e—————— g

16 bidirektionale AdreBleitungen zur Anwahl von Interfaces und
Speichern durch ein aktives Element:

s

2]5--—————————- 28

Mit einem 16-bit-AdreBwort sind

27 _——-———————-20

64 k = 6553610 = FFFF14 Einzeladressen

4k

1908 "
2009
8k
g9
- 16k
2 (32K)
7FEE
(BFFF)
8ggd t:svp/.l\’ ext. Sp.2
—_——
32k 32k
1 FFFF L

- 77 -

anwihlbar, die nach folgendem Schema aufgeteilt sind:

Halbleiterspeicher (Pool) nicht uber BUS
zugreifbar!

Geridte-Peripherie

ProzeB-Peripherie

max. 5 x 16 k Speicher,
davon 1 Speicher im CPU-Gehéuse

RK

BE

FE

Ein AdreBwort kleiner als 10814 wihlt eine Zelle des Halbleiterspeichers
an, ein AdreBwort gréBer oder gleich lﬂﬁﬂlb oktiviert den BUS.

Der AdreBbereich von 19014 bis 3FFF14 einschlieBlich ist der Peripherie
vorbehalten; Adressen gréBer als 3FFFj4 sind den Speichern zugeordnet.

Ein AdreBwort fur den Peripheriebereich ist unterteilt in die Hauptadresse
und die Unteradresse:

Al5 = AZp

163 162 16! 160
Unter-
Hauptadresse adresse

Die Hauptadresse ist ein 12-bit-Wort und wahlt das Interface an; die
gleichzeitig angebotene Unteradresse ist ein 4-bit=Wort und wahlt inner-
halb des Interfaces eine bestimmte Baugruppe an, meist ein Register.

Diese Aufteilung des 16-bit-AdreBworts erlaubt den Anschlu von 7681q
bzw. 3814 Interfaces mit je 1619 bzw. Fig anwihlbaren Unteradressen.

Das Richtungskennzeichen gibt an, in welcher Richtung ein Datentransfer
ausgefihrt werden soll. Bei RK = log 1 soll der Datentransfer vom

aktiven zum passiven Element verlaufen. Dieser Transfer kann als “Schrei-
ben" oder "Ausgdbe" bezeichnet werden.

Bei RK = log § ist die Ubertragungsrichtung vom passiven zum
aktiven Element; es handelt sich um "Lesen" oder "Eingeben".

Das Signal "BELEGT" wird von einem aktiven Element auf die bidirektionale
Signalleitung geschaltet und zeigt an, dafl ein Datentransfer ablduft, der
BUS also nicht frei fur ein anderes aktives Element ist.

Das Signal "FERTIG" wird wiéhrend eines Datentransfers von einem angewihl-
ten passiven Element erzeugt und hat die Funktion einer Quittung: dem akti-
ven Element wird mitgeteilt, da8 der Datentransfer "fertig" ist.

Die Signalleitung FE ist bidirektional ausgelegt.

-78 -

GE

Lay...L15

Das Signal "GEWUENSCHT" wird von einem dktiven Element erzeugt, wenn
es einen Datenfransfer ausfihren méchte, es also die BUS-Kontrolle winscht.
Alle dktiven Elemente miissen vor einer Belegung einen Belegungswunsch an-
melden. Die einzige Ausnahme bildet die CPU, die ohne Anmeldung den
BUS belegen kann.

Meldet ein anderes aktives Element einen Belegungswunsch an, so kann die
CPU den BUS nicht erneut belegen. Die zur Zeit des Belegungswunsches
bestehende Belegung wird regulir beendet.

Die Prioritdten der einzelnen aktiven Elemente sind durch die Leitungs-
fuhrung des Signals GE vorgegeben:

CpPU < BUS (ohne GE) >

IGT GE @ GE ﬁ GE

{GP - {GP}-

aktives aktives
Element 1 Element 2
Prioritat 1 Priotitdat 2

Wie in obiger Abbildung gezeigt, steigt die Prioritdt von links nach rechts.
Die mit "GP" bezeichneten Funktionsgruppen stellen die "Gewiinscht Prio-
rititen" fest. So darf z.B. das aktive Element 1 nur dann ein "Gewinscht"
anmelden, wenn das Element 2 oder ein Element noch hsherer Prioritdt kein
"Gewunscht" anmeldet. Ein bereits vorhandener Belegungswunsch wird durch
ein "Gewinscht hoherer Prioritdt" unterbrochen.

Das Signal N ist die zentrale Nullstellung. Sie kommt von der CPU
(Taste des Bedienungsfeldes bzw. automatische Nullstellung bei wiederkeh-
rendem Netz).

16 Levelleitungen, die decodiert anzeigen, in welcher der méglichen 16
Ebenen der DIETZ 621 arbeitet. Die Levelinformation wird benstigt bei
der Anwahl ebenengebundener Interfaces. Bei Ausnutzung der Ebenenbin-
dung konnen somit die 76810 Hauptadressen des Peripheriebereichs 16-fach
benutzt werden. Die Levelleitungen sind nicht bidirektional, sie gehen nur
von der CPU aus.

- 79 -

SPY...515 16 Startleitungen (Interruptleitungen), uber die durch ein Startsignal
(Interrupt) eine der 16 Ebenen des DIETZ 621 gestartet werden kann.

Diese Leitungen sind nicht bidirektional, sie gehen nur zur CPU.

STPX 1 Startleitung, Uber die ein Parityfehler eines externen Elementes der CPU
gemeldet werden kann. Der Interrupt STPX startet die CNP-Ebene.

DATENTRANSFER

Ein Datentransfer findet grundsitzlich zwischen einem aktiven und einem passiven Ele-
ment statt, wobei das aktive Element den Transfer einleitet und steuert.

Ist die CPU das aktive Element, handelt es sich um eine programmgesteuerte Datentber-
tragung. Belegt ein anderes aktives Element den BUS und tauscht unabhiingig von dem

gerade laufenden Programm Daten mit dem Kernspeicher aus, liegt ein DMA (direkter
K ernspeicherzugriff) vor.

Der Ablauf eines einzelnen Belegungsvorgangs ist in beiden Fdllen gleich; Unterschiede
bestehen lediglich in der Verfigbarkeit der CPU und des BUS.

§US-Belegung

CPU EE BN H H BEiENE B
aktives Element l . .

f ty i‘3

In der Zeit t] verarbeitet die CPU ein beliebiges Programm, in dessen Ablauf ein zu-
ndchst passives Element durch Ubergabe von Arbeitsanweisungen von der CPU aus akti-
viert wird, angedeutet durch die drei BUS-Belegungen der CPU.

Das aktive Element und die CPU arbeiten in der Zeit ty unabhiingig voneinander und
belegen abwechselnd den BUS, um entweder programmgesteuerte Datentransfers (CPU)
oder DMA-Zyklen (aktives Element) auszufthren. Nach Ablauf von 2 hat das aktive
Element seine Arbeit beendet und verhilt sich wieder rein passiv. Im Normalfall teilt
das aktive Element der CPU das Ende der Aktiv-Phase durch einen Interrupt mit, der
z.B. wihrend t3 vom Programm identifiziert und verarbeitet wird.

-80 -

Beim Datentransfer wird zwischen "Schreiben" (Senden des aktiven Elements) und
"Lesen" (Empfangen) unterschieden.

Schreibzyklus:

l EN

Gewiinscht GE I

Belegt BE 1 [

Adressen Agf...A15 K\y/ A IAY, ////;J\ aktives

Daten Dg...D7 QW?M ¢ Element

Richtungskenn- RK \ 7

zeichen

Level L@B...L15 LA /XL

Fertig FE =— fBUS ——s=t=— fFES —= j passives

Element

jm——— TBelegt —_—

Da nur die CPU als aktives Element vorliegt, bleibt das Signal GE im Ruhezustand.
Die CPU belegt den BUS durch das Signal BE und schaltet gleichzeitig Adressen, Daten
und Richtungskennzeichen RK auf den BUS. Die Ebeneninformation L@F...L15 wird un-
abhingig vom Belegungszustand des BUS von der CPU angeboten.

Nach Ablauf der Zeit tgys Ubernimmt das durch die AdreB- und Levelinformation ange-
wihlte passive Element die angebotenen Dafen und quittiert die Ubernahme durch Auf-
schalten des Signals FE.

Wenn das aktive Element das Quittungssignal FE empfingt, werden mit dem BE-Signal
die Daten, Adressen und auch das Richtungskennzeichen vom BUS genommen; das passive
Element wird nicht mehr angewthlt und schaltet seinerseits FE ab. Jetzt erst ist der BUS
fur eine erneute Bg.legung frei.

Die Gesamtzeit tBeIegt eines solchen Belegungsvorganges ist die Summe der Zeiten
tpus und frEs-

- 81 -

In die Zeit tgys gehen ein:

a) Signallaufzeit des Kabels einschlieBlich Sende- und Empfangsschaltungen
b) Signallaufzeit der AdreBentschluBlung des Interfaces

¢) Einstellbare Beruhigungszeit zum Abwarten von Einschwingungsvorgtingen und Unter-
dricken von Stdrungen

d) Signallaufzeiten der Steuerlogik.

Bei einer BUS-Liénge von ca. 150 cm liegt die Zeit tgys im Bereich von 350 bis 400 ns.

Die Zeit tfgs ist die Summe aus:

a) Signallaufzeiten von Kabel, Sende- und Empfangsschaltungen und Steuerlogik

b) Signallaufzeit der AdreBentschliBBlung des Interfaces.

Bei gleichen Voraussetzungen wie fur tgys liegt die Zeit tpgs im Bereich von 250 bis
300 ns, so daB die Gesamtdauer der Belegung tBelegt = 600.-..700 ns betrdagt.

Bei ltngeren BUS-Kabeln ist die Belegungsdauer griBer; als Richtwert kdnnen fur je
2 m Kabel ca. 100 ns Zeitzuschlag angenommen werden.

Lesezyklus:

Gewlnscht GE

Belegt BE ——l J*—
Adressen AGf...A15 S S, /iA/\ , aktives

Element
Richtungskenn- RK
zeichen

Level Lgg..L15 7K A

)
Daten Dg...D7 passives
1
i Element
Fertig FE >
e tpys —ee BUC_s{e tFET
50...100 ns

fe————————— Belegt

-82-

Das aktive Element belegt den BUS und schaltet die Adressen und das Richtungskenn-
zeichen auf. Nach Ablauf der Zeit tgys leitet das durch die AdreB~ und Levelinfor-
mation angewdhlte passive Element einen internen Lesezyklus ein, nach dessen Ablauf
die Daten am BUS bereitgestellt werden. Das Quittungssignal FE wird verzogert auf
den BUS geschaltet, um die Leseaufforderung erst dann zu quittieren, wenn die Daten
sicher anstehen.

Die Zeit vom Aktivieren des passiven Elements bis zum Aufschalten des FE-Signals ist
die Zugriffszeit t7yG. Sie betrtgt beim Lesen einer Kemspeicherzelle ca. 400 ns.

Wenn das cktive Element das Qui ttungssignal FE erkannt hat, Ubernimmt es die ange-
botenen Daten und schaltet das BE-Signal, das Richtungskennzeichen und die Adressen
vom BUS; als Antwort darauf nimmt das passive Element das FE-Signal und die Daten
vom BUS; der BUS ist frei fur eine erneute Belegung. Das Signal FE steht beim Lese-
zyklus ca. 100 ns ldanger an als beim Schreibzyklus, da das aktive Element vor dem
Abschalten der Adressen und des Belegt-Signals die Daten tbernehmen muS.

Somit ergibt sich bei einer BUS-Ldnge von 150 c¢cm eine Gesamt-Belegungsdauer beim
Lesevorgang von

'BELEGT = 1BUS + tZUG + tFEL
tBELEGT = (350...400) + (400) + (350...400)

tBELEGT = 700...1200 ns

Aus der Darstellung der Belegungsvorginge ersieht man, dafB3 bei einem fehlenden
Quittungssignal (FE-Signal) der BUS nicht wieder freigegeben wirde; der BUS und

damit das gesamte System widre blockiert. Um dies zu vermeiden, ist auf dem BUS-
Ausgangsbaustein der CPU eine Uberwachungsschaltung (Watchdog) realisiert, die die
Dauer der BUS-Belegungen laufend uberprift. Sobald auf ein BE-Signal nach spdtestens
1 sec kein FE-Signal folgt, erzeugt die Watchdog selbst ein FE-Signal und einen Inter-
rupt fur die CNP-Ebene des Rechners. Dadurch wird zum einen der Belegungszustand des
BUS beendet und zum anderen eine interpretierbare Fehlermeldung abgegeben.

PRIORITATSSTEUERUNG

Beim AnschluB raehrerer aktiver Elemente an den BUS wird vor einem Belegungsvorgang
das Element mit der hschsten Prioritidt von den "Gewunscht" -Prioritatssteverungen ausge-
wahlt, Wie im Kapitel "BUS-Signale" bereits dargestellt, werden diese Prioritdtssteve-
rungen mit dem Signal GE (Gewutnscht) gestevert, mit dem ein oktives Element einen
Belegungswunsch anmeldet. Der BUS wird von dem aktiven Element mit dem Signal BE
belegt und mit FE vom passiven Element quittiert.

BE Element x 1 Element 2 ’_jilemmt 1 —
N N
E[_——_—L_/_(_J_—-]/ l l [

]

o]

|

t
T b———— GE1l
f
GEZ l::_GEZ_:’I

Q

- 83 -

Die aktiven Elemente 1 und 2 wollen den BUS belegen, wobei das Element 2 die
hohere Prioritdt hat. Die Signale GE1 und GE2 sind die Gewinscht=Signale dieser
Elemente.

Wie aus der Abbildung ersichtlich, kann Element 1 erst dann den BUS belegen, wenn
die Belegung von Element 2 beendet ist und wenn kein Belegungswunsch eines Elemen-
tes hsherer Prioritdt mehr vorliegt.

Bevor ein aktives Element den BUS belegen kann, missen demnach folgende Bedingungen
erfullt sein:

a) der BUS ist nicht belegt, d.h. sowohl BE als auch FE stehen nicht an,

b) das Signal GE muB mindestens die Zeit tGE ununterbrochen auf den BUS geschaltet

sein.
Diese Bedingung entfdllt fur die CPU, da sie keinen Belegungswunsch anmeldet und
den BUS immer dann belegt, wenn er frei ist.

Die Zeit tGE ist bestimmt durch die Laufzeiten des GE-Signals und betragt fur das von
der CPU aus erste aktive Element mindestens 350 ns. Fur jedes weitere aktive Element
gilt ein Zuschlag von ca. 50 ns.

HARDWARE DES UNIVERSAL-BUS

Der Universal-BUS ist realisiert durch verschiedene Kabeltypen, wobei das Kabel selbst
immer gleich ist; lediglich die AnschluBstecker an den Kabelenden sind unterschiedlich;
sie sind den zu verbindenden Systemkomponenten angepafit.

Das Kabel selbst besteht aus zwei Lagen eines 40~adrigen, einseitig abgeschirmten
Flachbandkabels des Typs Scotchflex 3380. Die elektrischen Daten dieses Kabels sind:

Wellenwiderstand 75 Ohm (gegen Abschirmung)
Signallaufzeit 5,5 ns/m

Um eine moglichst schnelle und auch storsichere Signaltbertragung auf dem BUS zu
erreichen, werden die einzelnen Signalgruppen unterschiedlich behandelt.

Die Dimensionierung der Sender- und Empfangerschaltungen und der AbschluBwiderstinde
sind der folgenden Abbildung und Tabelle zu entnehmen.

+Z
R1 @

Spannung +Z =5V +5 %
Widerstinde R = Ry +5 %

R2

O

AbschluB

D R5
—e0oo+Z
R6
R7 C

L2

SN74132

Empfanger

oy o ey e e

+Z
ﬁ R3

:
;
|

Sender

SN7438

+Z
oder

DS

b

Abschluf3

Schematische Darstellung von Sende- und Empfangsschaltungen sowohl fur unidirektionale
als auch fur bidirektionale Signale. Bei den Sendern von unidirektionalen Signalen wird
anstelle des SN 7438 oft ein SN 7416 verwendet, da eine Durchschaltung DS des Sig-

nals entfallt.

Sional R1 R2 R3 R4 R5 R6 R7 D
‘gna (Ohm) | (Ohm) | (Ohm) | (Ohm) | (Ohm) | (Ohm) | (Ohm)
Daten

Adressen -— 330 560 330 560 o 0 o

RK, N, BE -

FE -— 270 o 270 © b 680 1000 Ja

GE -— 120 270 4700 bt e 680 1000 -
© o] [ee]

Starts - 560 1500 1000 0 -

Level - = 560 | 1500 1000 ® bt 0 © -

6 Sender/Empfangsstufen belastet werden, wobei pro Stufe ein TTL Fan In von 1 als
Lastfaktor anzusetzen ist.

Bei groBeren BUS-Lingen oder beim AnschluB von mehr als 6 Elementen wird der
Universal =BUS durch BUS-Verstirker in einzelne BUS-Segmente aufgeteilt, die den

geforderten Ubertragungsbedingungen genigen. Die BUS-Elemente sollten nicht langer
als 4 - 5 m sein.

Kabelldnge 1 £5 m Ver- | Ver-
starker [& Vistdrker

— A,

Die BUS-Verstdrker bilden den BUS-AbschluB nach und regenerieren die empfangenen
Signale.

CPU &=

-87-

CPU Peripherie

APP...AlS AZB...Al5
i/ e
¢+ < >
1 FE,RK,BE 5 < >
D@...D8
Lgg...L15 Lgg...L15
N N
Sgg...s15 5pg...S15
é <
- GE 4 GE
BE BE
- <
RK : Logik entschlusselt aus BE und RK +—RK
die Verstdrkungsrichtung und er-
zeugt die Durchschaltsignale
l;/ :: V, R, WRK, WRK
WK 00—
VRK ©O——

Blockschaltbild des BUS-Verstarkers

- 88 -

Der BUS-Verstarker bewirkt eine Signalverzégerung von max. 100 ns pro Signal. Das
bedeutet fur einen Belegungsvorgang eine Verlidngerung von insgesamt 400 ns.

Fur den Aufbau eines BUS-Systems ergeben sich durch von der Hardware bedingte
Griinde folgende Regeln:

a) BUS segmentieren.
Jedes BUS-Segment hat eine Liénge | < 5 m und wird mit max. 4 zusdtzlichen
TTL Fan In pro Signal belastet.

b) Elemente bzw. Interfaces, die eine hohe Arbeitsgeschwindigkeit haben, in der
Regel oktive Elemente, sollen mdglichst rechnernah angeordnet werden, da Ver-
starker den BUS verlangsamen.

c) Bei der Anordnung mehrerer aktiver Elemente ist auf die Prioritdt der Elemente zu
achten: das der CPU nichste Element hat die niedrigste Prioritit.

d) Das physikalische Ende des BUS ist mit einer Widerstandskombination pro Signallei-
tung abzuschlieen (AbschluBkarten vorsehen).

Soll der Universal-BUS des DIETZ 621 uber groe Entfernungen auBerhalb der
Systemschrénke gefthrt werden, so ist er Uber einen Entkopplungsbaustein galvanisch
zu trennen. Der so entkoppelte BUS kann nur zum AnschluB passiver Elemente benutzt
werden, da alle Signalleitungen mit Ausnahme der Daten unidirektional entkoppelt
werden.

-89 -

Universal-Interface-Einheit
AUFBAU

Die Universal-Interface-Einheit (UIE) dient zur Aufnahme von Einkarten-Interfaces. Sie
beinhaltet standardmaBig

a) zwslf Steckpldtze fur Einkarten-Interfaces

b) einen Device-Selector

c) entweder einen BUS-Verstirker, eine BUS-Durchschaltung oder eine BUS-AbschluB-
karte

d) eine +5 V-Stromversorgung.

Die Stromversorgung kann bei Bedarf zusitzlich folgende Spannungen liefern:

+15 V/3 A
+12 V/1 A
Die Verbindung zwischen den Interface-Steckpldtzen und dem Device~Selector - der

sog. Mini-BUS - erfolgt mittels einer gedruckten Leiterplatte, die gleichzeitig die
Ruckwand der UIE bildet.

(N R R R R R R R G R R K]
ZS TS IRERI|ER
83 65 63 54 46 41 383532 292623201714 11 8 5 2
=[O .
= s - ~
|| @ £3 ||58]25¢2
- Yo |52 B2t
£2 |72 [
o > =
fout
= s -~
o, h e < © <o
I
N 23 >ol B3 S
E + o e
|
f Device-Selector |
o 600 000
g BUS-Verstdrker
° 600 009
> oder BUS-Durchschaltg.
Vorderseite! 600 011

oder BUS-Abschluf3 621 611 5

- 90 -

Stromversorgung: +5 VvV 10 A
+12 V/15 V (Option) 1 A/3 A

NetzanschluB: 220 V +10 % 50 Hz einphasig
Leistungsaufnahme max. 150 VA

GCrofle: - 19"~Einbaurahmen, offen, konvektionsbeliftet
6 Einheiten hoch (ca. 270 mm)
max. 250 mm tief

Gewicht: ca. 10 kg

-9] -

IRM@@. . . IRM11 Unidirektionale Signale. Wie die Signale IS@@...1S11 sind
die Ruckmeldungen den jeweiligen Steckpliatzen zugeordnet
(Signal IRMXY des Steckplatzes 8 - IRM@@, IRMXY des
Steckplatzes 11 - IRM@1 usw. (siehe Bild Universal-Interface-
Einheit). Die Ruckmeldungen werden auf dem Device-Selector
den Interruptleitungen des Universal-BUS zugeordnet.

Zeitdiagramm Mini-BUS:

—*4100mg=-

ca.150 ns—e Bei Transfer zum Interface
Datenibernahme

tes - 100.. 300 ns (Signallaufzeiten)

- 92 -

MINI-BUS

Der Mini-BUS ist der Datenkanal, an den Einkarten-Interfaces in einer Universal-
Interface-Einheit angeschlossen werden. Der Mini-BUS wird durch den DEVICE-
Selector aus dem UNIVERSAL-BUS erzeugt.

Im Gegensatz zum Universal-BUS ist der Mini-BUS ein synchroner Datenkanal. Die
Datentbernahme erfolgt mit dem Taktimpuls IFT.

Der Mini-BUS umfaBlt folgende Signalleitungen:

(Log 120 V; Logf@*+3 V... 45 V)

IDP Bidirektionales Signal. Parity-Bit (bei Standard-Interfaces
nicht verwendet)

IDg@. ..1Dg7 Bidirektionale Signale Datenbits @...7

ID1g...ID17 Bidirektionale Signale Datenbits 8...15 (vorgesehen fur

16-bit-Systeme; zur Zeit bei Device-Selector mit ID@@...ID@7
zusammengeschaltet; d.h. 1Dg@ = ID1g)

1AG0. . .1AB3 Unidirektionale Signale. Niedrigwertige Adressen des Universal-
BUS. Sie dienen zur Erzeugung von Unteradressen auf den
Einkarten-Interfaces.

1Sg@. ..1S11 Unidirektionale Signale. Anwahlsignale fur die einzelnen
Interface-Platze. 1SEP wihlt Steckplatz 8, 1S@1 Steckplatz 11
usw. (siehe Bild Universal-Interface-Einheit) an.
Am jeweiligen Steckplatz heiBt das Signal ISXY.
Die Signale werden auf dem Device-Selector aus den hoher-
wertigen AdreBbits (Af4...A15) und gegebenenfalls aus den
Levelleitungen (LAP...L15) entschlusselt.

IRK Unidirektionales Signal. Richtungskennzeichen gibt die Daten-
richtung der Signale ID@@...IDF7 bzw. ID1F... ID17 an. Bei
IRK = Log.1 werden Daten zum Interface, bei IRK = Log.d
zum Rechner transportiert.

IN Unidirektionales Signal . Nullstellung fur Flip-Flops bei

Einschalten bzw. Betdtigen der Taste RES an der Bedienungs-
konsole des Computers.

-93 -

DEVICE-SELECTOR

Der DatenfluB zwischen dem Computer DIETZ 621 und den Interfaces in einer UIE
erfolgt Uber den Universal-BUS, Device-Selector und Mini-BUS. Auf dem Device-
Selector mussen die Adressen der Interfaces mit Létbricken programmiert werden. Sie
sind durch die Signale Af4...A15 definiert und eventuell an eine der 16 Hardware-
Ebenen gebunden. Jeder Interface-Steckplatz hat eine eigene Select-Leitung (1S@@...
IS11), und bei der EntschliBlung einer der programmierten Adressen erfdhrt das entspre~
chende Interface tber diese Leitung, daB es angesprochen werden soll.

- 94 -

Auflerdem triggert das Select-Signal eine Zeitstufe an, die nach einer Verzsgerung von
mindestens 100...150 ns den Interface-Takt (IFT) bildet. Dessen Ruckflanke erzeugt das
Fertig=Signal, das bewirkt, daf die bis dahin am BUS anstehende Adresse weggeschal-
tet wird,damit die Select-Information nicht mehr vorhanden ist und hierdurch das "Fertig'
wieder zurickgenommen wird.

Der Interface-Takt gelangt uber den Mini-BUS auch zu allen angeschlossenen Interfaces
und kann dort bei Rechner-Ausgaben als Ubernahmetakt benutzt werden.

Takt fur Datenubernahme

Fertig
{ 1 SN74123 i
FE N FT
SN7474 —t- ca.100 ns
JEH T
SN74123 —r= ca.100-150 ns
Lgg..L15 190
: Adref3-
decodie-
rung
Ad4. . Al5 Is11 .)
—
Select-Leitungen (positive Logik)

zu den Interfaces

Zeitstufe auf dem Device-Selector

-95 -

Damit ein Interface, wenn es uber die Select-Leitung angewihlt wird, erkennen kann,
mit welchem seiner Register gearbeitet werden soll, verstdrkt der Device-Selector die
vier niederwertigen Adrefibits und bietet sie Uber den Mini-BUS an (1AGF...I1A#3). Das
gleiche geschieht mit dem Richtungskennzeichen (IRK), das hier zur Unterscheidung von
Rechner-Ein- und -Ausgaben dient. Auf dem Device-Selector selbst steuert es dement-
sprechend die Datendurchschaltung.

Jedes Interface kann seinerseits eine Anforderung an den Computer senden. Hierzu geht
von jedem Steckplatz eine eigene Leitung (IRM@...IRMI1) zum Device-Selector, auf
dem durch Lstbriicken programmiert werden kann, welche Rechner-Hardware-Ebenen durch
die einzelnen IRM-Meldungen gestartet werden sollen.

Eine letzte Aufgabe von Device-Selector und Mini-BUS ist, die Interfaces an die zen-
trale Nullstellung anzuschlieflen.

Blockschaltbild Device-Selector (UIE)
Fertig IFT

FE

Zeit-
stufe

A4, . .A15

15gg. . .1511
>4

Lgg...L15 Adrefide-
kodierung

Durchschaltungszeichen

Dg...D8 bidirektionaler IDP, IDAP. .. IDg
Verstadrker ID14...ID17
RK _ IRK

widirektionaler
AZP...AB3 N Versfarlfera 1AgF. . .1AZ3 -

N IN

SgP...S15 Ebenen- IRM@P. . . IRMI1
zuordnung <

. _ l
Universal-BUS | Device-Selector : Mini-BUS

| [
- 96 -

EINKARTEN-INTERFACES

Einkarten-Interfaces (EKI) schlieen Bedienungsperipherie, Datenfernubertragungssysteme
und ProzeB-Ein/Ausgdnge an den Computer DIETZ 621 an. Sie kdnnen entweder in
den beiden Steckpldtzen der Zentraleinheit oder in einer UIE untergebracht werden.
Ihr Format ist das einer doppelten Europakarte (233,5 mm x 160 mm), und sie sind mit
zwei 64-poligen Steckern ausgeristet. Stecker 1 in der UIE oben ist die Schnitistelle
zum Computer bzw. Mini-BUS. Stecker 2 ist die Schnittstelle zur Peripherie, deren
AnschluB3 ruckseitig entweder auf dem zu Stecker 2 gehsrenden Gegenstecker oder auf
einem verriegelbaren Stecker fur KabelanschluB3 erfolgt. Dieser verriegelte Stecker ist
ein 26-poliger AMP-Stecker, wenn es sich um ProzeBperipherie handelt, ein 25-poliger
Cannon-Stecker, wenn es sich um Gerite-Peripherie handelt.

Wesentliche Funktionsgruppen eines EKIs sind (Beispiel fur ein Gerdte-Interface mit

8 Bit-E/A):

Datenregister: 8-bit-Flip-Fl op~Speicher, programmgesteuert einschreib- und/oder
abfragbar. Hilt Daten fur das periphere Gerdt bereit (Ausgabe)
bzw. Gbernimmt sie von ihm (Eingabe).

Statusregister: 8-bit-Flip~Flop=Speicher, programmgesteuert einschreib- und abfrag-
bar mit den Funktionen:

READY (Fertigmeldung vom Gerit, kann Start der Ebene auslssen)
- IBUSY (Eingabe)

OBUSY (Ausgabe)

LOCK (verhindert Ebenenstart durch READY)

- bis zu vier weitere Funktionen je nach Art des peripheren Gerdits.

Eine Datenausgabe zu einem Gerit erfolgt, sobald OBUSY eingeschaltet und READY
ausgeschaltet ist. Mit Beendigung der Ausgabe wird READY eingeschaltet und damit,
wenn vorher nicht LOCK eingeschaltet wurde, ein Start erzeugt.

Eine Eingabe erfolgt sinngemdfl bei eingeschaltetem IBUSY und ausgeschaltetem READY.

-97 -

_86-

Mini-BUS

. Daten-Ausgab
{r- aten usgg e

|

|

|

|

|

|
o
3
g |
: [
@ I S ‘
o SHHH
5° ‘ N
2 l Stutus;\egnstcr Data R}g|ster ~ Gertte—Daten—Takt
z |
o
!] Daten-Eingab
2 | £ MUH'iplexer — <j'| aten-Eingabe
g I s
3 T Rickmeldung
3 | o I —
z {IDg...167
1 l'FT N l
L)
c L IRK |4
wv F

15 D

il N

I |4

LB =] Adrefde
) -

kodierung

Aktive Elemente

AUFBAU

Zu den dktiven Elementen des DIETZ 621-Systems gehdren Controller und Meflsysteme
mit Selbststeverzusdtzen. Jedes dieser Elemente ist als eine in sich geschlossene Bau-
gruppe realisiert, die in einem 19"-Einschub der Hshe C untergebracht ist.

83
65
63
50
50
47
44
41
38
35
32
29
26
23
20
17
14
1
8

5

2

Trafo-Einheit
600 003

5V/5 AU 600001
AN

Standard- geritespezifische BUS -
Stromversorgung Logik Ankopplung

Die Baugruppe "oktives Element" ist aufgeteilt in drei Untergruppen:

a) die Standard-Stromversorgung, bestehend aus einer Transformatoreneinheit und einem
5 V/5 A-Regelbaustein

b) die Baugruppe mit gerédtespezifischer Logik, deren Aufbau weitestgehend vom anzu-
schlieBenden Gerdt abhdngt

c) die Baugruppe BUS-Ankopplung, die die geritespezifische Logik an den BUS des
DIETZ 621 anpassen und Datentransfers Uber den BUS steuern soll.

Die Logik-Bausteine sind einfache Europakarten (100 mm x 160 mm) mit 64-poligen
Steckern auf den Steckpldtzen 14 bis 50, mit 36-poligen Steckern auf den Pldtzen
2 bis 11.

-99 -

BUS-ANKOPPLUNG

Die BUS-Ankopplung besteht aus 5 gedruckten Schaltungen, die wie folgt angeordnet
sind:

Steckplatz Baustein
2 BUS-Verstarker 1 605 026
oder BUS-Abschluf3 605 022
oder BUS-Durchschaltung 605 058
5 BUS-Verstarker 2 605 027
oder BUS-Abschluf3 605 022
oder BUS-Durchschaltung 605 058
8 Device-Selector 1 605 008
11 Device-Selector 2 605 009
14 AdreBzihler, Bus-Belegung 605 028

BUS-Verstdrker, BUS-AbschluBkarten und BUS-Durchschaltungen entsprechen logisch
den in der UIE verwendeten Bausteinen, lediglich die Bauform wurde dem C-Einschub
angepalt.

Die Device-Selectoren sind gegeniber dem Device-Selector fur die Einkarten-Interfaces
logisch geringfugig erweitert:

Die Durchschaltungskennzeichen fur die bidirektionalen Verstirker hidngen auBer vom
Richtungskennzeichen auch davon ab, welches Element im Augenblick aktiv ist, da
erst durch beide Informationen die Transferrichtung eindeutig bestimmbar ist (Signale
DDE und DDA). Die Zeitstufe des Device-Selectors kann zusitzlich vom oktiven Ele-_
ment beim Lesevorgang angestolen werden. Sie erzeugt in diesem Fall einen Takt IFT
schaltet aber nicht das “Fertig-Flip-Flop" ein.

Die gerdtespezifische Logik wird somit genau wie ein Einkarten-Interface an den Mini-
BUS angeschlossen.

Der Baustein "AdreBzdhler, BUS-Belegung" umfaflt die Steuerungslogik fir einen Daten-
transfer ohne Rechnerkontrolle, die Prioritdtslogik fur das Gewiinscht-Signal und ein
16-bit-Register, das bei einem Transfer die Adresse des passiven Elements vorgibt, in
der Regel eine Kernspeicherzelle.

- 100 -

Mini-BUS

Universal-BUS
AD...AT5 i
j=}
'E
£
KBAT1 KBA2
R 8
e o 3
[
o
o) a
BEI
I 5
16-bit-Adre-Register < o
+1 3
8 bit 8 bit kS
i I -
ID@...ID7
DKSBA2 H n
8 A +
TFT D
- o
Q¢
DKSéI a2
TARR. . .TAg3 L
—q < O
Gesamtadresse =~
BEFF
— ,
I GEFF L350 ns
L | o
ST (OMA=Anfor-
derung)
I 50 ns 50 ns
4 Q | 4
4 I d
IFT ——
‘J? rl
IRK - '
I x|
9 |
AKTTA " o o) [
© luoIa BEI -

Il'n:'.:‘

Universal-BUS

-101 -

Die geritespezifische Logik enthdlt u.a. eine Adreldecodierung, die aus den Adrefibits
TADZ bis TAB3 und der auf dem Device-Selector entschlusselten Gesamtadresse die Unter-
adressen der internen Register erkennt. Die Unteradressen DKSBA1 und DKSBA2 sind dem
16-bit-Adrefregister zugeordnet, das von der CPU setz- und dbfragbar ist und das bei
einem DMA-Zyklus die Kernspeicheradresse (A#B. . .A15) anwahlt.

Der eigentliche Belegungsvorgang wird eingeleitet durch eine DMA-Anforderung der
gerdtespezifischen Logik. Das Signal DMA stoflt ein Mono-Flop an, dessen Ausgangs-
impuls zum einen das nachgeschaltete Gewtinscht-Flip-Flop (GEFF) setzt und damit die
DMA-Anforderung speichert und zum anderen zur Zeitiberwachung des GE-Signals dient.
Die gespeicherte DMA=-Anforderung wird als GE-Signal auf den BUS geschaltet. Ein
BUS-GE wird auBerdem erzeugt, wenn ein GE hoherer Priotitdt ansteht.

Das Belegt-Flip-Flop (BEFF) wird eingeschaltet, wenn

a) DMA-Anforderung gespeichert,

b) kein Belegt-Signal auf dem BUS ansteht,

c) kein Fertig-Signal auf dem BUS ansteht,

d) kein GEHP (gewunscht htherer Prioritdt) anliegt und
e) die GE-Uberwachungszeit abgelaufen ist.

Das gesetzte Belegt-Flip-Flop (Signal BEI) schaltet alle Signale des aktiven Elements
auf den BUS.

Das Gewiinscht-Flip-Flop (GEFF) wird mit der verzdgerten Vorderflanke des BEI-Signals
zuriickgesetzt.

Am Ende des Belegungsvorganges wird das Belegt-Flip-Flop auf zweierlei Weise uber
den Takteingang zurickgesetzt:

a) bei einem Schreibvorgang mit dem kommenden FE-Signal

b) bei einem Lesevorgang mit der Ruckflanke des iFT-Impulses, der von der Zeitstufe
des Device-Selectors erzeugt wird. Die Zeitstufe wird dabei angetriggert Uber das
Signal AKTTA, das von der gerdtespezifischen Logik withrend eines Lesevorgangs
beim Empfangen des FE-Signals erzeugt wird.

Das AdreBregister wird am Ende eines Belegungsvorganges inkrementiert.

Die folgenden Zeitdiagramme zeigen den Steuerungsablauf bei einem Lese- und einem

Schreibvorgang, wobei beim Schreibvorgang vorausgesetzt wurde, daf kein GEHP vor-
handen war.

-102 -

DMA

Mono Flop
GE '

BEFF

DBE
BET

BE

RK
IRK

Takt BEFF
FET
DDA

DDE

RK
IRK
IFT

Takt BEFF
FET
AKTTA

DDA
~ DDE

Schreibvorgang (aktiv —> passiv)

{&7‘
[
— A /
—
H '
] \/\I’—_—
—__f_‘ ¥
)
K [
] | A
Lesevorgang (passiv— aktiv)
T
350 ns

TZZZIIZ
V2777272

, :

(: 1
\ \ FARERE
L L7 ZZ AN | i

%

- 103 -

Die BUS-Belegungssteuerung in der dargestellten Form fuhrt jeweils einen Belegungsvor-
gang durch und gibt den BUS anschlieflend wieder frei, so daB ein anderes aktives
Element den BUS belegen kann. Werden sehr hohe Transferraten verlangt (DMA-Abstand
kleiner als 3 us), kann daftr gesorgt werden, daB ein "Dauer-Belegt" (DBE) erzeugt
und die BUS-Kontrolle erst nach Beendigung aller Transfers abgegeben wird.

- 104 -

Erweiterungen der Zentraleinheit

SPEICHERERWEITERUNG

Im Gehduse des Computers MINCAL 621 ksnnen bis zu 16 Kbyte (bzw. 32 Kbyte) Kern-
speicher bzw. bis zu 8 Kbyte reprogrammierbarer Festspeicher untergebracht werden. Wird
eine dartberhinausgehende Kapazitdt benstigt, so sind zusdtzliche Speicher-Einheiten er-
forderlich; sie erlauben eine Erweiterung der Speicherkapazitdt auf insgesamt 80 Kbyte.

Jede dieser Speichereinheiten enthdlt:

Kernspeicher: 1 oder 2 Speicher zu je 16 oder je 32 Kbyte
Zugriffszeit 300 ns
Vollzyklus 650 ns
mit Parity-Prifung/Erzeugung

Bei Arbeiten mit dem 2. externen Speicher wird vom 1. externen Speicher durch einen
Umschaltbefehl umgeschaltet und dann die gleichen Adressen wie beim 1. externen Spei-
cher verwendet (siche Kapitel "Struktur - Abschnitt Kernspeicher"),

Festspeicher: 1 oder 2 Speicher zu je max. 8 Kbyte
(wahlweise statt in Stufen von 256 byte ausbaufshig
Kernspeicher) reprogrammierbarer MOS-Speicher

Zugriffszeit ca. 1 us
Adressen: "8@@d..."9FFF (1. Speicher)
'C@dd. .. DFFF (2. Speicher)

Stromversorgung: eingebaut

NetzanschluB: 220 V +10 % 50 Hz
Leistungsaufnahme ca. 500 VA

Grofle: 19"-Einschub, allseitig geschlossen, zwangsbeluftet
5 Einheiten hoch (ca. 225 mm)
525 mm tief

Anschlufi: an Zentraleinheit MINCAL 621 uber BUS-Kabel

(in unmittelbarer Nahe)

Adressen: ‘800F. .. BFFF Erweiterung auf 32K) .
'80@@. .. FFFF Erweiterung auf 48K) 1.extemer Speicher
'80@0. . ."BFFF Erweiterung auf 64K)
'80@0. .. FFFF Erweiterung auf 80K)

2.externer Speicher

- 105 -

FESTKOMMA MULTIPLIKATION/DIVISION

Der DIETZ 621 hat in der Standard-Ausfihrung keine Hardware-Multiplikation/Division.
Diese Rechnungen sind durch Unterprogramme realisiert.

Zur Steigerung der Geschwindigkeit von arithmetischen Operationen dient das Festkomma-
Rechenwerk. Es hat die gleiche Bauform wie Einkarten-Interfaces und wird in eine Univer-
sal=Interface-Einheit eingesteckt (siehe Kapitel "Einkarten-Interfaces"). Es besteht aus 2
Steckkarten, die durch einen Verbindungsstecker miteinander verbunden sind.

Funktionen: Multiplikation Daver max.6.72 us
Division " 6.4 us/11,8 us
Zweierkomplement " 0.64 us
Wortlinge: Ausgangswerte 16 bit

Ergebnis Multiplikation 32 bit
" Division 32 bit oder 16 bit + 16 bit Rest
" Komplement 16 bit

Zahlendarstellung: Zweier-Komplement

Adresse: 128X
BaugriBe: 233,5 mm hoch, 160 mm tief (doppelte Europakarte).
Einbauraum: 2 Steckplatze

GLEITKOMMA-RECHEN WERK

Der DIETZ 621 IldBt sich zusdtzlich mit einer Hardware-Gleitkomma-Arithmetik ausrusten.
Die Laufzeiten aller Programme mit Gleitkomma-Operationen (z.B. BASIC oder BASEX)
werden wesentlich verkurzt.

Bei den arithmetischen Operationen des DIETZ 621 -Gleitkomma-Rechenwerkes ist es

moglich, nach Ausfihrung der Operationen ein Normalisieren der Ergebnisse zu verhin-
dern. Auf diese Weise lassen sich auch Festkomma-Operationen mit dem Gleitkomma-

Rechenwerk durchfihren.

Funktionen: Addition Daver max. 6.5 us
Subtraktion " " 6.5 us

Multiplikation " " 9.5 us

Division " " 9.5 us

Bilden des Absolutbetrages " "0.1 us

Negation " " 0.1 us

Umrechnung Gleit- — Festkomma " " 5.8 us

" Fest- — Gleitkomma " " 5.8 us

- 106 -

Wortlange:

Zahlendarstellung:

Fehlermeldungen:

Sonstige Meldungen:

Adresse: 168X

24 bit Mantisse, 8 bit Exponent
Mantisse und Exponent in Zweier-Komplement
Uberlauf, Unterlauf

Ergebnis = @, Ergebnis > @, Ergebnis < @

Einbau: in Speichererweiterungs-Einschub.

BATTERIE-EINHEIT

Das als Register- und Arbeitsspeicher des DIETZ 621 Computers verwendete Halbleiter-
RAM kann bis zu einer Kapazitit von 1 kbyte uUber eine bestimmte Zeit des Netzausfalls
durch eingebaute Batterien versorgt werden. Ist bei groBeren Kapazitdten oder fiur lénge-
re Zeitrdume eine Pufferung erforderlich, so ist eine getrennte Batterie-Einheit erforder-

lich.

Technische Daten

Pufferungsdauer:

Stromversorgung:

Netzanschluf3:

Grofle:

Anschluf3:

bei 0.25 kbyte RAM: 192 h

" 0.5 " " 9% h
n 'I " n . 48 h
i 2 n i . 24 h
n 4 n n .] 0 h
eingebaut

220 V +10 % 50 Hz
Leistungsaufnahme ca. 300 VA

19"-Einbaurahmen, offen, konvektionsbeltftet
3 Einheiten hoch (ca. 135 mm)
ca. 450 mm tief

an Batteriestecker der Zentraleinheit DIETZ 621 Uber 2-poliges
Kabel.

- 107 -

Plattenspeicher-Systeme
DIETZ-DISK

Die DIETZdisk ist ein Wechselplattenspeicher mit einem neuartigen Prinzip. In diesem
Speichersystem werden die Vorteile von grofien Plattensystemen - Zuverldssigkeit, wahl-
freier Zugriff, hohe Geschwindigkeit - mit dem niedrigen Preis von Lochstreifen-Peri-
pherie vereint. Wie bei grolen Plattensystemen findet keine Beruhrung zwischen Platte
und Lese-Schreib-Kopf statt. Die Positionierung erfolgt nach Servo-Informationen, die
sich auf der Speicherkassette befinden. Eine Kassette kann deshalb ohne Schwierigkeiten
auf einem Laufwerk beschrieben und auf einem anderen gelesen werden.

Laufwerke:

- DIETZdisk 30 - Einzellaufwerk zum Betrieb einer Plattenkassette

- DIETZdisk 40 - Doppellaufwerk zum Betrieb von zwei Plattenkassetten
Technische Daten:

Platten-Drehzahl: 3000 Upm

Positionierzeit: minimal 100 ms
im Mittel 210 ms
maximal 320 ms

Eingebauter Schreibschutz

Kassette:
K apazitit: 262 144 byte
Anzahl der Spuren: 64
Sektoren pro Spur: 32
Bytes pro Sektor: 128 (+2 +2 fur CRC)
Aufzeichnungsdichte: 3700 bpi
Spurdichte: 50 tpi
MaBe: 200 x 200 x 10 mm
Stromversorgung: Zusatzlicher Einschub 19" (3 Einheiten hoch)
Netzanschlufl: 220 V +10 % 50 Hz
Leistungsaufnahme: ca. 300 VA (Doppellaufwerk)
GroBe: 19"-Einschub (4 Einheiten hoch)
Anschlul: Uber Einkarten-Interface in UNIVERSAL-INTERFACE-

EINHEIT oder in Zentraleinheit und Uber eingebauten
MINI-Controller. Pro MINI-Controller lassen sich bis
zu 8 Laufwerke betreiben.

- 108 -

Datentbertragung zwischen Interface und MINI-
Controller unter Programmkontrolle (asynchron).

Funktionen: Lesen eines Sektors
Schreiben eines Sektors
Kopieren eines Sektors.

In Verbindung mit einem Bootstrap-ROM in der Bedienungskonsole des Rechners laf3t
sich ein Sektor automatisch in den Speicher des Rechners laden.

Adressen: ' 1BX@ Bit g...4 Sektor/nur setzbar
Bit 5...7 Spur niederwertig
“1BX1 Bit g...2 Spur hoherwertig
Bit 3...6 Unit belegt
Bit 7 frei
" 1BX2 Statuswort setz- und abfragbar
’ Bit @ Ready
Bit 1 1BUSY
Bit 2 OBUSY
Bit 3 LOCK
Bit 4 Transfer Complete
Bit 5 Write Protect
Bit 6 Copy Initiate
"1BX3 Gerdtezustand / nur abfragbar
Bit @ Unit nicht READY
Bit 1 CRC Error
Bit 2 Unit Write Protect
"1BX4 Datenregister /setz- und abfragbar

- 109 -

WECHSELPLATTENSPEICHER

Groflere Speicherkapazitdt und Zugriffsgeschwindigkeit bietet der Wechselplatten-

speicher WP 2.4,

Laufwerk: Einzellaufwerk mit 2 beweglichen Kspfen fir eine Speicherkassette

Plattendrehzahl:
Positionierzeit:
Transferrate:

Eingebauter Schreibschutz
Kassette:

Kapazitat:

Anzahl der Spuren:

Sektoren pro Spur:

Zahl der Bytes pro Sektor:
Stromversorgung:

Netzanschluf3:

Leistungsaufnahme:
Umgebungstemperatur:
GrosBe:

AnschiuB3:

Controlier:

GroBe:
Stromversorgung:
NetzanschluB:

Eingebaute Auto-Load-
Funktion:

1500 Upm
im Mittel 60 ms
1.6 MHz entsprechend 200 Kbyte/s

2.4 Mbyte
2 x 200
12

512

Zusstzlicher Einschub (Montage hinter Laufwerk)

220 V +10 % 50 Hz
ca. 500 VA

0...40°C
19"-Einschub (5 Hoheneinheiten)
Uber Controller WPCE 621 direkt an den UNIVERSAL-

BUS. Datentransfer im direkten Speicherzugriff (DMA).
Pro Controller lassen sich bis zu 4 Laufwerke betreiben.

19" -Einschub (3 Hoheneinheiten)
eingebaut

220 V +10 % 50 Hz

Bei Tastendruck oder Netzausfall wird automatisch ein
Sektor der Platte gelesen und der Rechner gestartet.

-110 -

Auf einer der Steckkarten des Controllers befinden sich 5 Schalter, die fur Test-
zwecke und Modifikationen der Betriebsweise gedacht sind. Im Normalfall stehen
alle Schalterknebel nach unten. Im einzelnen haben die Schalter (von oben nach
unten) folgende Bedeutung:

1) AdreBinkrementierung: Schalter nach oben: verhindert
Schalter nach unten: zugelassen

2) Auto-LOAD bei Netzausfall bzw. Betdtigen der Taste RES der Bedienungskon-
sole des Rechners: Schalter nach oben: verhindert
Schalter nach unten: zugelassen

3) LOAD Taste, bei deren Betdtigung Auto-LOAD initiiert wird.

4) Schreibschutz Spur @: Schalter nach oben: nicht wirksam
Schalter nach unten: wirksam

5) Schreibsperre Taste, bei deren Betdtigung allgemein eine Schreibsperre besteht

(Entsprechend Netzeinschalten). Schreibschutz kann durch Taste am Laufwerk
aufgehoben werden.

AdreBliste fur den Wechselplatten-Controller WPCE 621

Befehl Adresse Datenwort LD ST
4 Worte Lesen "1800 beliebig x X
KS-Basisadresse niederwertig 1801 ‘gp. .. FF x X
" " hsherwertig '1802 48, x x
Zylinderadresse 1803 ‘g@...'CB x
Kopfauswahl, Select 1804 Y'Y BaaaeX x
Sektor-Basisadresse 1805 ‘gp... g8 x
Sektoranzahl 1806 ‘gg...'pB x
YY: Angabe der Geriteeinheit: ‘@0 % Gerat 1

‘49 = Gerst 2 :

A = ht 2

‘80 £ Gerast 3

'CP = Gerat 4
X: Kopfauswahl: X ‘f\ 1: oberer Kopf

X = 0: unterer Kopf
Sektor-Basisadresse: B % 11; B2 Sektor 1

11 £ Sektor 12

Sektoranzahl: g1 1112
Zylinderadresse (Spur): P % 203 maximal

Statuswort (Rechner): 1807 X X

-111-

READY Bit @

READ Bit 1
WRITE Bit 2
LOCK Bit 3
RESTORE Bit 7
Statuswort (Platte): 1808 nur LD
Schreibsperre: Bit @
Fehler beim Schreiben
(Spannungseinbruch): Bit 1
Sektorzahl zu hoch Bit 2
Suche nicht beendet
(setzt READY) Bit 3
Platte nicht bereit Bit 4
Zu groBle Spuradresse Bit 5

Ubertragungsfehler (Parity oder
CRC) Bit 6

"LD" bzw. "ST" bedeutet:

LD: Load z.B. LDA; Daten von Controller an Rechner

ST: Store z.B. STA; Daten von Rechner an Controller

Die Adresse ‘180X ist nicht niveaugebunden, d.h. sie ldBt sich von jeder Ebene aus
ansprechen. Die Rickmeldung des Controllers (IRM) erfolgt jedoch auf eine festgelegte
Ebene.

=112 -

FESTKOPF-PLATTENSPEICHER

Sehr schnellen Zugriff und sichere Funktion auch unter schlechten Umgebungsbedingungen
bietet der Festkopf-Magnetplattenspeicher.

Magnetplattenspeicher mit einer festen Platte und festen Schreib-/Lese-Kopfen fur jede

Spur.

Plattendrehzahl:
Transferrate:

Schreibschutz:

Kapazitat:

Zugriffszeit:

Zdhl der Spuren:

Zahl der Sektoren pro Spur:
Kapazitat pro Sektor:

Stromversorgung:

NetzanschluB:

Leistungsaufnahme:

U mgebungstemperatur:

GroBe:

Anschluf3:

Controller:

Grofe:
Stromversorgung:
NetzanschluB3:

Leistungsaufnahme:

3000 Upm

2 MHz entsprechend 220 Kbyte/s

Fur jeweils 16 Spuren gemeinsam einschaltbar
256 Kbyte oder 1024 Kbyte

im Mittel 10 ms

64 oder 256
8
512 Byte

Zusttzlicher Einschub 19" (4 Einheiten hoch)

220 V +10 % 50 Hz
ca. 500 VA

0...50°C

19"-Einschub (7 Einheiten hoch)

(11 Einheiten mit Stromversorgung)

Uber Controller FPCE 621 direkt an dem UNIVERSAL-
BUS. Datentransfer im direkten Speicherzugriff (DMA).
Pro Controller lassen sich bis zu 4 Plattenspeicher be-
treiben.

19" -Einschub (3 Hoheneinheiten)
eingebaut

220 V +10 % 50 Hz

ca. 100 VA

Eingebaute Auto-Load- Bei Tastendruck oder Netzausfall wird automatisch ein
Funktion: Sektor der Platte gelesen und der Rechner gestartet.

Auf einer Steckkarte befindet sich von vorn zugdnglich
ein Schalter, mit dem sich die Auto-Load-Funktion fur
Testzwecke ausschalten laBt.

Schalterknebel zeigt nach oben: Keine Auto-Load-Funktion
Schalterknebel zeigt nach unten: Auto-Load-Funktion.

AdreBliste fur Festkopfplatten-Controller

Gesamtadresse: 719X
Sektor-Basisadresse und Einheitenauswahl: x = @
Sektor-Basisadresse: Bit g, .3
Einheitenauswahl: Bit 4...5

Spur adresse: x =1
Sektoranzahl: x =2 (Bit g.. 4)

KS-Basisadresse 1.Teil (niederwertige Bits): x = 3

KS-Basisadresse 2.Teil (hsherwertige Bits): x = 4

Statusregister: x =5
READY Bit @
READ Bit 1
WRI TE Bit 2
LOCK Bit 3
Platte nicht bereit (oder zu hohe

Spuradresse): Bit 4
Schreibversuch in geschiitzte Zonen Bit 5
Datenfehler Bit 6
Daten zu spdt an den KS ubergeben Bit 7

- 114 -

Gerate-Interfaces

Gerdte-Interfaces dienen zum AnschluB von Ein- und Ausgabegerdten an den
DIETZ 621. Die Interfaces sind als Einkarten~Interfaces gebaut und werden in
einer Universal-Interface~Einheit oder im Rechnergehduse (2 Steckplitze) betrieben
(sieche Kapitel "Universal-Interface-Einheit).

Der Datenverkehr zwischen Rechner und Peripherie-Geriit erfolgt fast ausschlieBlich

byteweise. Das Interface Ubernimmt bei einer Ausgabe dieses Byte. vom Rechner und
speichert es fur die Dauer der Ausgabe bzw. Ubernimmt bei einer Eingabe die Daten
in einen Speicher und stellt sie fur eine schnelle Ubernahme in den Rechner bereit.

Die Steuerung des Interfaces erfolgt durch ein vom Rechner her setz- und abfragbares
Statusregister. Typische Signale eines Statusregisters sind (siehe auch- Kapitel "Univer-
sal-Interface-Einheit"):

- READY ist die Fertigmeldung des Interfaces an den Rechner. Es erzeugt
einen Interrupt, der auf dem Device-Selector programmiert wird. Der
Interrupt kann durch das LOCK-Flip-Flop verhindert werden.

- IBUSY steuert die Eingabe von Daten. Aktiviert ist das Interface, wenn
IBUSY eingeschaltet und READY noch nicht gesetzt ist. Ist die Eingabe
erfolgt, wird READY eingeschaltet, und das Interface ist nicht mehr akti-
viert.

- OBUSY steuert die Ausgabe von Daten. Sinngemdf ist die Wirkung wie
die von IBUSY.

- LOCK verhindert, daf8 durch READY ein Interrupt erzeugt wird. Der

Rechner kann durch Abfragen des Statusregisters feststellen, ob die
Eingabe oder die Ausgabe erfolgt ist.

Fur die Gerite-Interfaces sind die Adressen '18@X..." 15FX vorgesehen.

) Ansprechen des Datenregisters
1 Ansprechen des Statusregisters

nou

X
X
Folgende Geridte-Interfaces sind erhdltlich:

- V24-Interface fir GeriteanschluBl (1V24/TTY)
8-Kanal-E/A-Schnittstelle
110...1200 Bd (fest eingestellt), 10 oder 11 Schritte/Zeichen
mit zusdtzlichem Steuerausgang, Schnittstelle nach V24
(fur Standard-Teletype, Mosaikdrucker, Datensichtgerdt usw.)

- 115 -

Aufbau Statusregister: Bit @ READY

Bit 1 IBUSY
Bit 2 OBUSY
Bit 3 LOCK
Bit 4 Initiate (steuert Leser des Teletype)

- Linienstrom-Interface (ILS/TTY)
5- oder 8-Kanal-E/A-Schnittstelle (fest eingestellt)
50...200 Bd (einstellbar), 11 Schritte/Zeichen (8-Kanal),
7.5 Schritte/Zeichen (5-Kanal)
Halbduplex-Betrieb, Linienstrom 20...40 mA
(fur 5- ond 8-Kanal-Fernschreiber mit Liniensirom)

Aufbau Statusregister: Bit g READY
Bit 1 IBUSY
Bit 2 OBUSY
Bit 3 LOCK

- Streifenleser~/Locher-Interface (ILE/LO)
8-Kanal-E/A-Schnittstelle (kombiniert)
fur 8 (5)-Kanal-Lochstreifenleser, 125 Z/s, 300 Z/s
und 8-Kanal-Lochstreifenstanzer, 75 Z/s

Aufbau Statusregister: Bit g READY
Bit 1 IBUSY
Bit 2 OBUSY
Bit 3 LOCK
Bit 4 VOR (1 = Leser vorwirts, 0 = Leser ruckwirts)
Bit 5 Parity-Fehler (Leser)
Bit 6 Error (Locher) Streifen gerissen oder zu
straff gespannt
Bit 7 kein Lochstreifenvorrat mehr

- Kartenleser-Interface (IKLE)
12-Kanal -Schnittstelle

Datenregister 1 (Kandle 1...8)
Datenregister 2 (Kanile 9...12)

o
—-=

X X

- 116 -

Aufbau Statusregister: Bit @ READY

Bit 1 IBUSY

Bit 3 LOCK

Bit 4 Fehler

Bit 5 Eingabeschacht leer
Bit 6 Einziehfehler

- Ketten-Schnelldrucker-Interface (IMDS)
gepuffertes 8-bit-Interface

Aufbau Statusregister: Bit & READY
Bit 2 OBUSY
Bit 3 LOCK

=117 -

Standard-Peripherals
MOSAIKDRUCKER-TERMINAL

D ruckgeschwindigkeit: 50 Zeichen/s
Zeilenldnge: 80 Zeichen
Anzahl der Zeichen: 64 (ASCII)
Zeichendichte: 10 Zeichen/Zoll
Zeichenart: Punktmatrix 8 x 9
PapiergrsBe: Variabel bis 244,5 mm
Tastenfeld: Alphanumerisch (ECMA-23C)
(wie Teletype)
Sonderfunktion: Seitensteverung
Schnittstellen: - V24-Schnittstelle, 110...9600 Baud
- Parallel-Schnittstelle
Abmessungen: Hohe: 170 mm
Breite: 510 mm
Tiefe: 310 mm
Gewicht: 20 kg
Netzanschluf: 220 V +10 % 50 Hz
Leistungsbedarf: ca. 100 VA

-118 -

inal

ikdrucker-Term

Mosa

-119 -

BILDSCHIRM-TERMINAL

Bildschirmgrofle

Bildschirmkapazitit

Eingabetastatur
Schnittstelle
Netzanschluf3
Abmessungen

Betriebsarten:

Optionen:

BTH 2000

12" Fernseh-Monitor

1998 Zeichen
27 Zeilen zu je 74 Zeichen

ASCIlI-Code mit Sonderzeichen

V24, 1200...9600 Baud

220 V 50 Hz 350 W

560 mm Tiefe, 470 mm Breite, 318 mm Hohe

On-line/Off-line mit eigenem Speicher

Foreground/Background

Vom Computer kommende Zeichen werden dunkelgrin,
Uber die Tastatur eingegebene Zeichen hellgrin ange-
zeigt.

Tabulator zum Listen, Formular- und Tabellenaufbau

Adressierbarer Cursor
Direkte Adressierung beliebiger Bildschirmpunkte
durch den Computer

Horizontales Rolling=System

Einfugen von Zeichen oder Leerstellen ohne Neu-
schreiben der Restzeile. Die vorhandenen Zeichen
werden automatisch nach rechts oder in die ndchste
Zeile transportiert.

Vertikale Zeilenverschiebung

Einfigung von Zeilen ohne Neuschreiben der anderen.
Die bestehenden Zeilen werden automatisch nach
unten geschoben. Beim Loschen tritt der umgekehrte
Vorgang ein.

AnschluB eines zweiten Bildschirms an dieselbe Tasta-
tur

TV-Zusatz zum AnschluBB eines normalen Fernseh-
Monitors

Hardcopy -Druckeinheit mit Thermodruckwerk,
30 Zeichen/s

Magnetband-Kassetteneinheit

=120 -

- lecl -

[

Datensichtgertit mit Hardcopy-Druckeinheit und Magnetbandkassetteneinheit

BILDSCHIRM-TERMINAL

Bildschirmgrofie:

Bildschirmkapazitat:

Eingabetastatur:
Schnittstelle:
Netzanschluf3:

Abmessungen:

BTH

1000

12" diagonal (Anzeigefeld 9" x 5")

960 Zeichen
12 Zeilen zu je 80 Zeichen

ASCll-Code mit Sonderzeichen
V24, 1200...9600 Baud

220 V 50 Hz 350 W

Tiefe 560 mm

Breite 470 mm
Hohe 318 mm.

-122 -

MOSAIK-SCHNELLDRUCKER

Geschwindigkeit:

" Anzachl der Kolonnen:
Anzahl der Zeichen:
Zeichendichte:
Zeichenart:

Papierarten:

Formularsteverung:
Schnittstelle:

Abmessungen:

Gewicht:
NetzanschluB:

Leistungsaufnahme:

200 Zeilen/min

132

64 Standard-Zeichen (USASCII)
10 Zeichen/Zoll

Punktmatrix 5 x 7

Typ Endlospapier gefaltet, mit perforierten Kanten

Breite 4 bis 14 7/8 Zoll, Anzahl der Kopien max.

Standard-8-Kanal-Lochstreifen
TTL-Level

Breite 71,1 cm
Tiefe 58,4 cm

Hohe 27,9 cm

68 kg
220 V +10 % 50 Hz
max. 800 W

-123 -

6

LOCHSTREIFENLESER

Geschwindigkeit: 125 Zeichen/s / 300 Zeichen/s
Schrittmotor-Antrieb fur Vorwirts/Riickwarts-Lesen
Optische Lochstreifenabtastung

1" Lochstreifen, 5 bis 8 Kandle

mit Spuleinrichtung

19"~Einbaurahmen (5 / 7 Hoheneinheiten)
NetzanschluB: 220 V, +10 %, 50 Hz, 110 /135 W

LOCHSTREIFENSTANZER

Geschwindigkeit: 75 Zeichen/s

Schrittmotor-Antrieb fur Vorschub

1" Lochstreifen, 0.08...0.11 mm Streifendicke

Streifenarten: Papier, 1SO-Norm, ca. 300 m Streifenldnge (120.000 Zeichen)
mit Aufwickelvorrichtung und automatischer Streifenvorratskontrolle
19"-Einbaurahmen (6 Htheneinheiten)

NetzanschluB3: 220 V, +10 %, 50 Hz, 100 W, max. 200 W

- 124 -

KETTEN-SCHNELLDRUCKER

Druckgeschwindigkeit
Schreibbreite
Schnittstelle
Abmessungen

Netzanschluf3

300 Zeilen/min

132 Zeichen pro Zeile

TTL-Level

960 mm Hohe, 800 mm Breite, 600 mm Tiefe
220 V, +10 %, 50 Hz, 5 A

- 125 -

LOCHKARTEN-STAPELLESER

Lesegeschwindigkeit 400 Karten/min

Lochkarten 80-spaltige Standard-Lochkarten
Leseprinzip fotoelektrische Abtastung

Stapelkapazitit je 500 Karten

Abmessungen 318 mm hoch, 318 mm tief, 585 mm breit
NetzanschluB 220 V, +10 %, 50 Hz, 400 VA

- 126 -

8-KANAL-FERNSCHREIBER

als Ein/Ausgabe-Gerdt mit

- Tastatur und Druckwerk fur 64 Zeichen

- Geschwindigkeit 10 Zeichen/s, 110 Baud

- Schreibbreite 72 Zeichen/Zeile

- eingebautem Lochstreifenleser/stanzer fur 1" Standard-Lochstreifen
- Leser-Einzelschritt-Betrieb

- V24-Schnittstelle

- zusidtzlicher Funktionstaste fur Rechnerstart

- NetzaoschluB 220 V, 50 Hz, ca. 280 VA
bei Anlauf kurzzeitig 500 VA

~ Abmessungen 560 x 840 x 470 mm

- Wartung alle 750 Stunden, spitestens jedoch alle 6 Monate
(eingebauter Betriebsstundenzdhler).

Optionen:

- automatische Motor-Ein/Ausschaltung

Stachelradwalze fur 8 1/2" randperforierte Endlos-Formulare

- gerduschgedidmpftes Tischgehduse

-127 -

8-Kanal-Fernschreiber in gerduschgeddmpftem Tischgehduse

- 128 -

Graphische Ausgabe

An den DIETZ 621 konnen Inkrementalplotter, XY-Schreiber oder Speicheroszillo-
graphen angeschlossen werden. Fir diese Gertite sind Programmoduln erhdltlich, die
folgende Funktionen realisieren:

HOME
PLOT (X,Y,2)
SYMB (h, s)

HOME bewirkt, daB die Ausgangsstellung (Koordinaten~Nullpunkt) eingenommen bzw.
der Speicherbildschirm geloscht wird.

PLOT laBt den Schreibstift bzw. den Strahl vom jeweiligen Ausgangspunkt zum Ziel-
punkt mit den Koordinaten (X, Y) wandern. Ist Z gleich ff, so geschieht dies nicht-
schreibend; ist Z gleich 1, so wird zwischen Ausgangs- und Zielpunkt linear interpo-
liert und geschrieben:

y o Zielpunkt

Ausgangspunkt

SYMB ist ein Befehl zur graphischen Ausgabe von alphanumerischem Text (groBe Buch-
staben, Ziffern, einige Sonderzeichen). Der Parameter h gibt die Schrifthshe an, der
Parameter s den Schriftzug in Form eines Texistrings oder einer String-Variablen. Der
Schriftzug beginnt am jeweiligen Ausgangspunkt und verlduft parallel zur X-Achse.

Fur den AnschluBB der Geridte stehen folgende Interfaces zur Verfigung:

- Analog-XY-Interface (IAXY)
mit 2 Analogausgingen 0...1 V R; =700 Ohm
mit 2 10-bit~-Digital-Analog-Umsetzern und 2 Kaskadenregistern
mit Steuverung fir Z-Koordinaten
(fur XY-Schreiber und graphische Displays)

- Digital-Plotter-Interface (IPLOT)

mit Impulsausgéngen fur XY-Koordinaten und Federsteuerung
(fur Digital-Plotter).

- 129 -

DIN A3, 2-gefaltetes Endlospapier
DIN A2, 2-gefaltetes Endlospapier

0.1 oder 0.25 mm

300 Schritte/s
DIN A4

DIGITAL-PLOTTER
Schrittgrsfle

Digital -Inkremental-Plotter

Geschwindigkei
Papierformat

o
.

-
@4@
L

- 130 -

ALPHANUMERISCH-GRAPHISCHES DATENSICHTGERAT

BildschirmgrsBe 11" Speicherrshre

Alphanumerische Darstellung 35 Zeilen mit je 72 Zeichen
63 ASCll-Zeichen
5 x 7 Segment-Darstellung
Cursor~Adressierung

Graphische Darstellung Vektor-Betriebsart
1024 (10 bit) adressierbare Punkte

mit Tastatur und Standfuf

Schnittstelle V24, 1200 Baud
Netzanschlufl 220 V, 50 Hz
Option Hardcopy~-Einheit

- 131 -

Magnetband-Systeme
Als Massenspeicher zur Archivierung groer Datenmengen steht fur den DIETZ 621

eine Reihe von Magnetbandeinheiten verschiedener Geschwindigkeiten, Bitdichten und
SpulengrsBen zur Verfigung.

LAUFWERKE

- MBE 7840 - 9-Spur-Magnetbandlaufwerk

Schreibdichte: 800 cpi

Bandgeschwindigkeit: 12,5...25 ips
Spulendurchmesser: 7" (7200" Bandlénge)
Betriebsart: Read after Write

Aufzeichnung: IBM-kompatibel

BaugrsBe: 19"-Einschub (5 Einheiten hoch)
Stromversorgung: eingebaut

NetzanschluBl: 220 V +10 % 50 Hz
Leistungsaufnahme: ca. 300 VA

Temperaturbereich: 0...50°C

MBE 7970 B/C - 9-Spur-Magnetbandlaufwerk

Schreibdichte: 800 cpi

Bandgeschwindigkeit: 12,5...25 ips

Spulendurchmesser: 10.5" (28800" Bandlange)
Betriebsart: Read after Write

Aufzeichnung: IBM-kompatibel

BaugrsBe: 19" -Einschub (14 Einheiten hoch)
Stromversorgung: eingebaut

NetzanschluB3: 220 V +10 % 50 Hz
Leistungsaufnahme: ca. 400 VA

Temperaturbereich: 0...50°C

- 132 -

- MBE 7970 E - 9-Spur-Magnetbandlaufwerk

Schreibdichte: 1600 cpi

Bandgeschwindigkeit: 12.5...25 ips

Spulendurchme sser: 10.5" (28800" Bandldnge)
Betriebsart: Read ofter Write

Aufzeichnung: IBM-kompatibel

BaugrsBe: 19"-Einschub (14 Einheiten hoch)
Stromversorgung: eingebaut

Leistungsaufnahme: ca. 400 VA

Temperaturbereich: 0...50°C

Anschlufl der Magnetbandlaufwerke iber:

- Einkarten-Interface
eingebaut in UNIVERSAL-INTERFACE-EINHEIT

Datentransfer: vom Programm gesteuert

Betriebsarten: Lesen, Schreiben, Rewind, Backspace und
Filemark-Schreiben

Adressen: 1g2X. . psx

Zah! der Laufwerke pro Interface: 1...4

Stromaufnahme: +5 V ca. 400 mA

- Controller

zum direkten AnschluB an den UNIVERSAL-BUS

Datentransfer: im direkten Speicherzugriff (DMA)

Betriebsarten: Lesen, Schreiben, schneller Vorlauf, schneller
Rucklauf, Schreiben File-Mark, Backspace

Adressen: ng2x.. ngsx

Zahl der Laufwerke pro Controller: 1...4

Baugrsfle: 19"-Einschub (3 Einheiten hoch)

Netzanschlufi: 220 V +10 % 50 Hz

Leistungsaufnahme: ca. 100 VA

- 133~

Auf einer Karte des Controllers sind von vorn zwei Schalter zugidnglich, die fur
Testzwecke eingebaut sind:

Oberer Schalter: Schalthebel nach oben: Inkrementieren des
AdreBzghlers verhindert

Schalthebel nach unten: Inkrementieren des
AdreBzihlers zugelassen

Unterer Schalter: Schalthebel nach oben: Inkrementieren des
Blocklgngenzahlers verhindert

Schalthebel nach unten: Inkrementieren des
Blccklangenzihlers zugelassen

Das Band-System beschreibt das Band kompatibel zu den Béndern der Serie 360 von
IBM.

Folgende Befehle sind moglich:

Lesen vom Band

Schreiben auf das Band

Zurisckspulen bis zum Anfang (Rewind)

Zuriicksetzen um einen Block (Backspace)

Schreiben einer Filemark

Schneller Vorlauf (nur bei Verwendung eines Controllers)

SYSTEM MIT EINKARTEN-INTERFACE

Der Aufruf des Band-Systems erfolgt durch einen Unterprogramm-Sprung in einer belie-
bigen Ebene. Die Parameter werden in folgenden Registern Ubergeben:

Akku @ = Betriebsart @ = Lesen, 1 = Schreiben
2 = Rewind, 3 = Backspace
4 = Filemark-Schreiben

Reg 3, 4 KS-Adresse

Reg 5, 6 Blockldnge bzw. Blockzahl bei Backspace
Reg 7 frei

Reg 8, 9 Ruckkehradresse im CSA-Aufruf

Reg ‘@A, ‘@B Ruckkehradresse im Fehlerfall

- 134 -

Ein erkannter Fehler wird im Akku @ Ubergeben.

Fehler-Nr.

NV oONOOAWN—

+
—_—
o O

Fehlerart

nicht On-Line
nicht Ready
Parity~Fehler

File Mark gelesen
Blockldnge zu klein
Blocklénge zu groB
Begin of Tape (BOT)
Band leer
KS-Adresse < ‘40080
Lénge < 16 Byte
End of Tape (EOT)

-135 -

SYSTEM MIT CONTROLLER

Der Aufruf des Systems erfolgt durch einen Unterprogrammsprung in einer beliebigen Ebene.

KS-Bereich: relativ

Lange: ca. 1 K

Aufruf: CSA, ’3E, TOS;

Parameter: Reg @ ...76

<®>= Unit (@...3)
benutzte Registers ® ..."17
Programmbefehl Einsprung KS-Basis-Adr Lénge Anzahl

READ X000 Reg 3, 4 Reg 5,6 -
WRITE X082 Reg 3, 4 Reg 5,6 -
WRITE FILEMARK ' X@gg4 - - -
REWIND ' X@g6 - - -
BACKSPACE ' X@ga8 - - Reg 3, 4
FORWARD ' XgoA - - Reg 3, 4 1
BACKSPACE to FILEMARK ’X@@8 - - <3,4>= ﬂ2)
FORWARD to FILEMARK ' X@gA - - <3,4>=4#

D Nach Ausfuhrung steht Kopf vor der File Mark

2 Nach Ausfthrung steht Kopf hinter der File Mark

Ein erkannter Fehler wird im Akku @ Ubergeben.

Fehler-Nr, Fehlerart

1 nicht On-Line

2 nicht Ready

3 ——

4 Begin of Tape

5 Parity

6 angegebene Blockldnge zu klein

7 Schreibversuch trotz Schreibsperre

8 keine Betriebsart erkannt
Fehler-Nr, Warnung

9 angegebene Blockldnge zu grof

10 Filemark gelesen

13 End of Tape
>13 Fehler + End of Tape

Benutzte Register: "gf..." 0.

- 136 -

Digitale Ein- und Ausgidnge
VORBEMERKUNG

Alle digitalen Ein- und Ausgdnge sind als EINKARTEN-Interfaces gebaut, die in eine
Universal-Interface ~Einheit eingesteckt werden.

Grundsatzlich gibt es alle Ein- und Ausgidnge in folgenden Versionen:

TTL-Schnittstelle

HTL-Schnittstelle

HTL-Schnittstelle potentialgetrennt tber Fotokoppler
Reed-Relais-Schnittstelle (potentialgetrennt)

Nur bei den digitalen Ausgdngen sind TTL~ und HTL-Schnittstelle identisch.

Die TTL-Schnittstelle wird verwendet, wenn schnelle Elektronik (in TTL) bedient wird
und keine Storungen von auflen in das System gelangen.

Die HTL-Schnittstelle dient zum AnschluB an Logik mit hsherem Signalpegel (12...30 V)
und ist unempfindlich gegen statische und dynamische Stérungen.

Potentialtrennung wird immer dann verwendet, wenn Erdschleifen nicht mit Sicherheit
vermieden werden konnen oder wenn Gefahr besteht, dafl andere Storungen durch die
Peripherie in das System gelangen konnen.

Bei schnellen Signalen verwendet man eine Potentialtrennung durch Fotokoppler, bei
langsamen Signalen eine durch Reed-Relais.

Die Versorgung der potentialgetrennten Elektronik erfolgt durch Zusatzstromversorgungen
in der UIE oder durch externe Stromversorgungen.

Bei allen Ein- und Ausgingen sind Log.1 £ 0 V und Log.f £ externe Spannung oder
Log.1 2 geschlossener Kontakt und Log ﬂ ~ gedffreter Kontakt,

- 137 -

STATISCHE EINGANGE

Je 16 Eingdnge sind auf einem Baustein zusammengefaflt. Jeder Eingang besteht aus
einem Eingangsverstdrker und einem Schalter, der das jeweilige Eingangssignal auf
den Datenkanal des Universal-BUS durchschaltet.

Jeweils 8 Eingiinge werden mit einer Adresse gleichzeitig durchgeschaltet.

Beispiel: Statischer digitaler Eingang mit Reed-Relais.

Bit 0 So—o r—B

1
[
LR ‘
I
|

3o

Bit 15 So—o
+
Uexf

Y Y

[
| |
je——— — Interfface ———®m—— Prozefl ——|

|
l
|
|

Adressen der statischen Eingdnge: ’3@@X..." 33FX

X
X

1 Durchschalten der Eingtinge 1 bis 8
2 " " " 9 bis 16

non

Folgende Bausteine sind verfugbar:

- 16-bit-Digitaleingang statisch/TTL (PSSE 16/5)
Prozef-Interface zur statischen Abfrage von 16 digitalen Eingangssignalen
TTL-Schnittstelle (5 V)

- 16-bit-Digitaleingang statisch/HTL (PSSE 16/12.60)
ProzeB~Interface zur statischen Abfrage von 16 digitalen Eingangssignalen
HTL-Schnittstelle (12...60 V)

- 16-bit-Digitaleingang statisch/potentialfrei (PSSE 16/FK)
ProzeB-Interface zur statischen Abfrage von 16 digitalen Eingangssignalen
HTL-Schnittstelle (12...60 V)
mit Potentialtrennung iber Fotokoppler

- 16-bit-Digitaleingang statisch/Relais (PSSE 16/R)
ProzeB-Interface zur statischen Abfrage von 16 digitalen Eingangssignalen
Uber Relais (212 V, 15 mA)
16 Spulenanschlisse + 1 gemeinsame Ruckleitung

- 32-bit-Digitaleingang statisch/TTL (PSSE 32/5)

ProzeB-Interface zur statischen Abfrage von 32 digitalen Eingangssignalen
TTL-Schnittstelle (5 V)

- 138 -

SPEICHER

NDE AUSGANGE

Je 16 Ausginge sind auf einem Einkarten-Interface zusammengefaBt. Jeder Ausgang
besteht aus einem Speicher (Flip-Flop) und dem jeweiligen Treiber.

Je 8 Ausginge werden gleichzeitig vom Programm mit einer Adresse angesprochen.
Jeder Ausgang ist einem Datenbit zugeordnet. Bei Datenbit = 1 wird der Ausgang

gesetzt, bei

Datenbit = @ rickgesetzt. Ein Abfragen der eingeschriebenen Informa-

tion ist nicht moglich.

Beispiel: Digitaler Ausgang mit Potentialtrennung tber Fotokoppler.

+15V Uyt
Bit 0 D> FK |
| [|
e] . |
| do
N
Bit 15> FK "l
! |
|
|
I

Interface ————————el@——Proze} ———==

Adressen der digitalen Ausgénge: ’34@X..."37FX.

X
X

o

1 Ansprechen der Ausginge 1... 8
2 n n un 9 cee 'I 6

Folgende Bausteine sind verfugbar:

16-bit-Digitalausgang/TTL (PSSA 16)
ProzeB-Interface zur Speicherung und Ausgabe von 16 Ausgangssignalen
TTL-Schnittstelle (5...30 V, max. 80 mA)

16-bit-Digitalausgang/potentialfrei (PSSA 16 FK)

ProzeB-Interface zur Speicherung und Ausgabe von 16 Ausgangssignalen
TTL-Schnittstelle (5...30 V, max. 80 mA)

mit Potentialtrennung Uber Fotokoppler

16-bit-Digitalausgang/Relais (PSKA 16 R)

ProzeB-Interface zur Speicherung und Ausgabe von 16 Ausgangssignalen
16 Kontaktausginge von Reed-Relais

1 Arbeitskontakt je bit mit gemeinsamer Ruckleitung

max. 110 V 0.5 A 10 W bei ohmscher Last.

32-bit-Digitalausgang/TTL (PSSA 32)

ProzeR-Interface zur Speicherung und Ausgabe von 32 Ausgangssignalen
TTL-Schnittstelle (5...30 V, max. 80 mA)

- 139 -

DYNAMISCHE EINGANGE

Uber dynamische Eingtinge stellt der Computer fest, daB eine Zustandsénderung (Signal-
énderung) eingetreten ist. Solche Anderungen verlangen im allgemeinen eine maglichst
unverzogerte Reaktion des Rechners. Dies wird erreicht, indem bei einer Signaldnde-
rung ein Interrupt erzeugt wird. Man spricht deshalb auch von Interrupt-Eingtngen.

Auf einem Baustein sind 8 dynamische Eingtinge zusammengefaBt. Jeder Eingang besteht
aus einem differenzierten Eingang und einem Speicher. Die Speicher eines Bausteins

lssen im gesetzten Zustand den gleichen Interrupt aus (zu programmieren auf dem Device-
Selector). Die Speicher sind vom Programm her abfragbar und ricksetzbar (Rucksetzen

mit Datenbit = 1). Jedem Eingang ist ein Masken-Flip-Flop zugeordnet, das in ge-
setztem Zustand einen Interrupt zuldBt. Diese Maske ist vom Programm her setz- und
ricksetzbar.

Beispiel: Dynamischer Eingang.

verhindern Maske i
zulassen —e]
Interrupt- Speicher i
. m -
Auslssung b i 7 Interrupt-Engang i
rickstellen 7

Adressen der dynamischen Eingtinge: 380X... 38FX

X =1 Abfragen der Interrupt-Speicher
X =1 Rucksetzen der Interrupt-Speicher (jeweiliges Datenbit = 1)
X =4 Setzen der Maske (Datenbit = 12 Zuylassen Interrupt;

Datenbit = @ & Verhindern Interrupt).

Das Masken-Register ist nicht abfragbar.

Folgende Bausteine sind verfigbar:

- 8-bit-Digitaleingang dynamisch/TTL (PDSE 8/5)
ProzeB3~Interface zur Speicherung und Abfrage von 8 digitalen Eingangs-
signalen
mit Differenziereingang, 8-bit-Speicher und Interrupt-Auslssung
(verriegelbar)
TTL-Schnittstelle (5 V)

- 140 -

-t

S -
-

) £ 0220004

o~ & ‘

; " " ; = "y
1 | b
;. @ % : . I
e ¥ <
& s ER

S

8-bit dynamischer Digitaleingang (PDSE/FK)

- 141 -

- 8-bit-Digitaleingang dynamisch/HTL (PDSE/12.60)
ProzeB-interface zur Speicherung und Abfrage von 8 digitalen Eingangs-
signalen
mit Differenziereingang, 8-bit-Speicher und Interrupt-Auslssung

(verriegelbar)
HTL-Schnittstelle (12...60 V)

8-bit-Digitaleingang dynamisch/potentialfrei (PDSE/FK)

ProzeB-Interface zur Speicherung und Abfrage von 8 digitalen Eingangs-
signalen

mit Differenziereingang, 8-bit-Speicher und Interrupt-Ausldsung
(verriegelbar)

HTL-Schnittstelle (12...60 V)

mit Potentialtrennung Uber Fotokoppler

- 8-bit-Digitaleingang dynamisch/Relais (PDSE/R)
ProzeR-Interface zur Speicherung und Abfrage von 8 digitalen Eingangs-
signalen uber Relais (= 12 V, 15 mA) mit Differenziereingang, 8-bit-
Speicher und Interrupt-Auslssung
(verriegelbar)

16-bit-Digitaleingang dynamisch/TTL (PDSE 16/5)

ProzeB-Interface zur Speicherung und Abfrage von 16 digitalen Eingangs-
signalen

mit Differenziereingang, 16-bit-Speicher und Interrupt-Auslssung

(verriegelbar)
TTL-Schnittstelle (5 V)

- 142 -

ZAHLER

Der Zihler dient zum Zéhlen schneller Impulse. Die Impulse werden in einen
16-bit-Zshler eingezshlt. Vom Rechner ist der Stand des Zshlers abfragbar und
ricksetzbar. Bei einem Uberlauf wird ein Carry-Flip-Flop gesetzt, das einen Interrupt
auslést, es sei denn, dies ist durch das Setzen eines ARM-Flip-Flops verhindert. Sind
also mehr als 65536 Impulse zu zthlen, so missen die Interrupt-Signale vom Programm
gezihlt werden.

Es stehen 3 Eingangsschaltungen zur Verfigung:

TTL-Eingang Zshlfrequenz 20 MHz
HTL-Eingang " 1 MHz
HTL-Eingang potentialfrei * 30 kHz

Adressen der Zdhler: '39@X..." 39FX

Abfragen Zshler niederwertiges Byte
Abfragen Zshler hoherw ertiges Byte
Setzen Zahler niederwertiges Byte
Setzen Zuhler hoherwertiges Byte
Setzen Statusregister

Abfragen Statusregister

XX XX X X
1 O T TR T
AN =N~

Aufbau des Statusregisters:

Bit @ = Carry (Interrupt)

Bit 1 = IBUSY (Aktivieren Zdhler)
Bit 2 =4

Bit 3 = ARM

Folgende Bausteine sind erhdltlich:

- 16-bit-Zghler (PIZE 16/5)
zum Ziéhlen von Eingangsimpulsen
max. Zshlfrequenz 20 MHz
steuer-, abfrag- und setzbar

TTL-Schnittstelle (5 V)

- 16-bit-Zghler (PIZE 16/15)
zum Zihlen von Eingangsimpulsen
max. Zshlfrequenz 1 MHz
stever-, abfrag- und setzbar

HTL-Schnittstelle (15 V)

- 143 -

- 16-bit-Zahler (PIZE 16/15 FK)
zum Zshlen von Eingangsimpulsen
max. Zshlfrequenz 30 kHz
steuer-, abfrag- und setzbar
HTL-Schnittestelle (potentialfrei).

- 144 -

STEUERZAHLER

Der Steuerzdhler dient zur Ausgabe von Signalen definierter Dauer. Hierzu wird ein
16-bit-Zshler vom Rechner gesetzt und von einem eingebauten Quarzoszillator weiter-
gezéhlt, bis der Zdhler auf @ steht. Von einem Start durch den Rechner bis zum Er-
reichen des Zustands @ steht am Ausgang des Steuerzdhlers ein Signal an. Bei Erreichen
der # wird ein Interrupt an den Rechner ausgel©st, es sei denn, dies ist durch Setzen
eines ARM-Flip-Flops verhindert.

Der Oszillator kann mit einem 10 MHz (Auflssung 100 ns) oder einem 1 MHz (Aufls-
sung 1 us) bestickt werden. Der Baustein ist mit einem TTL-Ausgang und einem poten=
tialgetrennten HTL-Ausgang lieferbar.

Die Zahl der Impulse, die die Dauer des Ausgangssignals bestimmen, mussen als Zweier-
Komplement eingeschrieben werden.

Adressen des Steuerzdhlers: ’39@X..." 39FX.

Setzen Zidhler niederwertiges Byte
Setzen Zidhler hherwertiges Byte
Abfragen Zidhler niederwertiges Byte
Abfragen Zishler hoherw ertiges Byte
Setzen Statusregister

Abfragen Statusregister

W anou

XXX XXX
ARAN =N —

Aufbau des Statusregisters:

Bit @ = Carry (Interrupt)

Bit 1 =g
Bit 2 = OBUSY (Auslosung Zihler)
Bit 3 = ARM

Folgende Bausteine sind erhiltlich:

- 16-bit-Steuerzshler (PISA 16)
zur Ausgabe eines Steuersignals definierter Dauer
mit 10 MHz- oder 1 MHz-Quarz, Auflssung 0.1 us oder 1 us
vom Programm setz- und steuerbar, auch als Zdghler benutzbar
TTL-Schnittstelle (5...30 V)

- 16-bit-Steuerzdhler (PISA 16/FK)
zur Ausgabe eines Steuersignals definierter Dauer
mit 10 MHz- oder 1 MHz-Quarz, Auflosung 0.1 us oder 1 us
vom Programm setz- und steuerbar, auch als Zidhler benutzbar
HTL-Schnittstelle (5...30 V), potentialfrei

- 145 -

WATCHDOG

Fur Zwecke der Selbstuberwachung eines Rechner-Systems dient der Watchdog-Ausgang.
Dieses Einkarten-Interface enthilt eine Verzdgerungsschaltung (1...60 sec einstellbar),
die regelmdBig vom Programm angestoBen werden muB. Unterbleibt dies ldnger als die

Verzogerungszeit, so wird der Watchdog-Ausgang wirksam, und ein &uBerer Alarm kann
ausgelost werden.

Mit einem Schalter auf dem Baustein kann der Watchdog-Ausgang fir die Inbetriebnahme-
phase unwirksam gemacht werden.

Als Ausgang steht ein Relais-Kontakt (Offner + SchlieBer) zur Verfugung.
Die Ansprechadresse der Watchdog ist ‘3FDX.
- Watchdog-Ausgang (PW DOG)

zum Uberwachen von ProzeR-Systemen
Relais-Ausgang 2 A/500 V/100 W

- 146 -

Analoge Ein- und Ausgidnge

VORBEMERKUNG

Die analogen Ein- und Ausginge sind unterteilt in

- Einkarten=-Interface: mittelschneller ADU
D AU-Spannungsausgang
DAIl-Stromausgang
2fach-DAl-Stromversorgung

- Aualog-MeBs?sfeme: mittelschnelles ADU-System
schnelles ADU-System
integrierendes ADU-System

ANALOGE EINGANGE

Zur Erfassung eines oder mehrerer MeBsignale mu8 das Gleichspannungssignal von
einem Analog-Digital-Umsetzer (ADU) in einen Digitalwert verwandelt werden, der
vom Rechner verarbeitet werden kann.

Abhéngig von den Forderungen: Genauigkeit, MeBgeschwindigkeit und Storsicherheit
ist zu wihlen zwischen:

- ADU (integrierend) mit hoher Aufltsung, mit hoher Stsrunterdrickung
fur Gleichtaki- und Gegentakistérungen, aber mit geringer MefBigeschwin-
digkeit

- ADU (StufenverschliBBlung) geringere Auflosung, hohe MeBgeschwindigkeit,
sehr geringe Unterdrickung von Gegentaktstsrungen und beim Einkarten-
ADU auch sehr geringe Unterdrickung von Gleichtaktstorungen.

Beim integrierenden ADU wird das MeBsignal Uber die Zeit einer Periode der Netz-
frequenz (20 ms) integriert, so daB diese Frequenz, die meist die Hauptgegentakt-
storung darstellt, ausgefiltert wird. Gleichtakistsrungen werden durch einen potential-
freien Eingang unterdrickt. Zur Mefstellenumschaltung wird ein Relais-Multiplexer be-
nutzt.

Bei einem ADU, der nach dem Prinzip der StufenverschliBlung arbeitet, mul das MeB~
signal fur die gesamte Dauer der Umsetzung anliegen. Beim ADU-System wird die MeB-
signalubernahmezeit auf ca. 1/8 der Umsetzzeit verkurzt, wenn ein "Sample and Hold"-
Verstérker eingebaut wird. Hochfrequente Storungen werden wahrend der Ubernahmezeit
durch einen Kondensator integriert. Niederfrequente Gegentaktstdrungen werden nicht
unterdriickt. Die Auswirkung von Gleichtakistsrungen wird durch potentialfreie Eingtinge

- 147 -

verringert (nicht beim Einkarten-ADU). Zur schnellen Mefstellenumschaltung wird ein
Halbleiter-Multiplexer benutzt. Das ADU-System kann mit einer DMA-Steuerung fir
selbstgesteuerte Messungen im Cycle-Stealing=Betrieb ausgestattet werden. Mit dieser
Steuerung ist der ADU in der Lage, selbstindig bis zu 256 aufeinanderfolgende Mes~
sungen durchzufihren. Dies ist in drei Arbeitsweisen moglich:

- Mehrkanal-Messung
Nach jeder Messung wird der MeBstellen-Adre-Zshler inkrementiert

- Einkanal-Messung
Die gewunschte Anzahl von Messungen wird an einer Mefistelle durchgefuhrt.

- Zweikanal-Messung
Die gewunschte Anzahl von Messungen wird abwechselnd zwischen zwei
direkt benachbarten MeBstellen durchgefihri.

Folgende Analog-Eingdnge sind verfigbar:

MITTELSCHNELLER EINKARTEN-AD-UMSETZER (ADE)

- Einkarten-Interface

Analogeingang 12 bit/+10 V, +5 V, +10 V (ADE 12,010/ADE 12,505/
B - ADE 12.1010)

ProzeB-Interface mit Analog-Digital-Umsetzer 12 bit

Konversionszeit ca. 27 us

Eingangsspannung +10 V, +5 V, +10 V, nicht potentialfrei

Eingangswiderstand 100 MOhm

max. Fehler +2 LSB

Adresse des ADE 12: '3A@X..." 3AFX

Datendurchschaltung niederwertige Bits
Datendurchschaltung hoherwertige Bits
Statusregister laden und abfragen

X X X
oo
AN —

Bitzuordnung der Daten:

hoherwertig niederwertig
Bit 76543218 | 7654
Null PROBEREF | FERP
Endwert 11111111 Tt
MSB LSB

Aufbau des Statusregisters:
Bit # Ready
n 'l

IBUSY
"3 LOCK

- 148 -

By fiwet ve
2

o austoain ST 2
£ 0 3 EuALOS oEn BT
&4 surnn Our
29 proLar i
o4 DRIROLARY ssaro

w8 asn
wrse30

wraeto

o aro

Br s sen

uNiPOLAR

15 mIBOLAR wre s80
30 comEin

Y 15 330

241 sevaut
13 ANALOG GND mrit $00

B2 1y BrRos e
Sy Ay

oy A ey
&30 B101YAL BKD. STATGS Az

oy tomegur

538 100k Su SROCK YNIIBY. 57
MADE WS A 4

FLASHAEPQOR O

Analog-Eingang ADE 12,010

- 149 -

EINKARTEN-RELAIS-MULTIPLEXER (MURE 16)

- Einkarten-Interface
16 Eingdnge, dreipolig
HG-Reedrelais

Schaltfrequenz 200 Hz, .

- 150 -

MITTELSCHNELLES ANALOG-MESSYSTEM ADM 621

Auflssung:
Konversionszeit:
Eingangswiderstand:

MeBbereich:

max. Fehler:
Potentialtrennung:

Betriebsarten:

M eBfrequenz:

MeBkandle:

Sample-and-Hold:

Stromversorgung:

Grofe:

MeBanschlisse:

NetzanschluB:

12 bit (StufenverschluBler)

ca. 33 us
100 MOhm

0...+10 V 0 ...+1 VvV (Option) stzl
=5...+ 5 V (Option) -0.5...40.5 V (Option) o “1cp "

-10...+10 V (Option) -1 ...+1 V (Option)
0...+45 V)Option) -2,5...42,5 V (Option)
+2 LSB

zwischen MeBkreis und Logik durch Fotokoppler (Option)

programmgesteuert, oder

selbstgesteuert (Option):

fur Messung mehrerer MeBwerte bzw. MeBkandle und Ablage
der Digitalwerte im Kernspeicher (DMA)

vom Programm vorwthlbar: Speicher-Basisadresse, MefBkanal-
Basisadresse, Blocklinge, Einkanal-Messung/inkrementierende
Mehrkanal -Messung/Zweikanal-Messung

ca. 30 kHz im selbstgesteverten Betrieb mit MOS-FET-
Multiplexer
ca. 200 Hz mit Relais-Multiplexer

1. MOS-FET-Multiplexer (Option)
1...4 Bousteine mit 8 oder 16 Eingingen, einpolig
(max. 64 Kangle)

2. Relais-Multiplexer (Option)
1...4 Bausteine mit 8 Eingtngen, zweipolig
HG-Reedrelais
Die Anzahl der Eingdnge ist durch den unten beschriebenen

Multiplexer-Einschub MU2 auf bis zu 244 Eingtinge erwei-
terbar.

Option
Eingan gswiderstand 104 MOhm

eingebaut

19" -Einbaurahmen, offen (abgeschirmt), konvektionsbeluftet
Hohe 3 Einheiten (ca. 135 mm); Tiefe ca. 230 mm

Uber ruckseitige Steckverbindungn

220 V +10 % 50 Hz ca. 70 VA

- 151 -

MULTIPLEXER MU2

MeBkandle: 1...24 Bausteine mit 8 Eingtngen
(max. 192 Eingiinge)
zweipolig
Relais: HG-Reedrelais
max. 107 Schaltsignale
Schaltfrequenz: max. 200 Hz
Stromversorgung: eingebaut
Grofle: 19" -Einbaurahmen, konvektionsbeluftet

Hohe 3 Einheiten (ca. 135 mm); Tiefe ca. 420 mm
MeBanschlusse: Uber ruckseitige Steckverbindungen

Netzanschluf: 220 V +10 % ca. 10 VA

-152 -

SCHNELLES ANALOG-MESSYSTEM ADS 621

Auflssung:

Konversionszeit:

MeBbereich:

Eingangswiderstand:

Potentialtrennung:

Betriebsart:

Mefifrequenz:

MeBkandle:

Sampe=-and-Hold:

Stromversorgung:

Grole:

MeBanschlisse:

Netzanschluf3:

10 bit (StufenverschliBler)
8 bit (")

ca. 4 us

0...+10 V
-5...+ 5 V (Option)

2.5 kOhm (ohne Sample-and-Hold)
max. Fehler 10 bit +3.5 LSB
8 bit +1.5 LSB

zwischen Mefkreis und Logik durch Fotokoppler (Option)

selbstgesteuert

fur Messungen mehrerer MeBwerte bzw. MeBkantile und Ablage
im Kernspeicher

vom Programm vorwthlbar: Speicher-Basisadresse, MeBkanal-
Basisadresse, Blockldnge, Einkanal/inkrementierende Mehrkanal-
Messung/Zweikanal -Messung

235 kHz (10 bit)

250 kHz (8 bit) } im selbstgesteuerten Betrieb

MOS-FET-Multiplexer (Option)
1...4 Bausteine mit 8 Eingdngen
(max. 32 Kandle)

Option
Eingangswiderstand 10° MOhm

eingebaut

19"~Einbaurahmen, offen (abgeschirmt), konvektionsbeliftet
Hohe 3 Einheiten (ca. 135 mm), Tiefe ca. 250 mm

tber ruckseitige Steckverbindungen

220 V +10 % 50 Hz, ca. 70 VA

- 153 -

Adressen von ADM 621 und ADS 621: "3F@X, ’3F2X..."3F9X

Beim ADM 621 ohne Selbststeuerung:

XXX XX
onouon

G ON -~

Datendurchschaltung niederwertige Bits
Datendurchschaltung hsherwertige Bits
MeBstellenadresse im ADM-Einschub
Statusregister

Mefstellenadresse im MU2-Einschub

Beim ADM 621 und beim ADS 621 mit Selbststeuerung:

XX X X XX

[T I T TR T

AP wN -

MeBstellenadresse im AD-Einschub
Kernspeicher-Basisadresse niederwertige Bits
Kernspeicher-Basisadresse hsherwertige B-its
Blockldngenzdhler

Statusregister

MeBstellenadresse im MU2-Einschub

Die Bitzuordnung der Daten und der Aufbau des Statusregisters beim ADM ohne
Selbststeuerung entsprechen der Festlegung, wie sie oben beim ADE aufgezeigt wurde.
Beim ADM mit Selbststeuerung und beim ADS ist das Statusregister wie folgt aufgebaut:

Bit

g
1
n 3
4
5

o

READY

IBUSY

LOCK

Externe Starterzeugung
Mehrkanal-Messung
Zweikanal-Messung

Bit 5 = @, Bit 6 = @: Einkanal-Messung

Die Bitzuordnung der Multiplexer-Kantle:

1) Im AD-Einschub:

Bit 543214

pgpppgp MU Kan.1
gagg g MU Kan.2
111]]; ;\AUKan.64

- 154 -

2) Im MU2-Einschub:

Bit 76543218

gpppppEpp MU Kan.0
ﬁﬂﬂ”ﬁpﬂl MU Kan.1
YERRBRERE MU Kan.191

Der Ausgangs-Code von ADE, ADM und ADS:

Digitalausgang
ADU-Bit MSB 2 3 4 5 6 7 8/91011 LSB

Rechner-Bit ID7 .6 .5 .4 .3 .2 .1 @|.7 .6 .5 .4

Unipolar (Bindr)
Endwert 111111111111

halber Endwert 100000000000
kleinste digitale Einheit 000000000001
Null 000000000000

Bipolar (Offset Bindr)

positiver Endwert T1111 1111111
1/2 positive kleinste digitale Einheit 100000000000
1/2 negative kleinste digitale Einheit o1T11111111711
negativer Endwert 000000000000

- 155 -

Analog-Mefsystem ADS 621

- 156 -

INTEGRIERENDES MESSYSTEM ADI/200 - ADA 203
ADI/210 - ADA 213

oA pewote

- .. -

A203 DIGITAL VOLTMETER

Typ: ADI/200 AD1/210
ADA/203 ADA/213
Auflssung: 19.999 119.999

Dual-Ramp-Integrierendes Verfahren

MeBbereiche: 10 mV= bis 1000 V=

. | nur bei 100 mv= bfs 1000 V= nur bei
L Ohm b1 10 MORm f ADA/203) L oL Mo, }AD’V 213
Meffolge: 10 Messungen/s 10 (25/100) Messungen/s
Meflkanile: Relais-Multiplexer, 3- bis 8-polig

bis 100 Kandle pro Einschub
(max. 1000 Kandle)

RechneranschluB: tber zwei Einkarten-Interfaces (Einbau in UIE)
Betriebsart: programmgesteuert
GroBe: 19"~Einbaurahmen

ADU: 2 Hsheneinheiten

je Multiplexer-Einschub: 4 Hoheneinheiten

Netzanschluf3: 220 V +10 % 50 Hz

- 157 -

Adresse des ADI: "3F1X

} MeBergebnis

Statusregister
Steuerregister

XX X X X
[T T
O AWl —

Bitzuordnung des MeBergebnisses:

Signal Adresse Bit
Haupt Einer
1001 | 73R 1| g
2 1 1
4 1 2
8 1 3
10" 1 4
2 1 5
4 1 6
8 1 7
1021 2 | g
2 2 1
4 2 2
8 2 3
1031 2 4
2 2 5
4 2 6
8 2 7
1041 3 [/
2 3 1
4 3 2
8 3 3
10°1 3 4
Polarity 3 7

Bitzuordnung des Statusregisters:

Statusregister | Adresse | Bit | Bemerkung
READY [73F14 | @ | Ruckmeldung DVM startet Niv.
1BUSY [73F14 | 1 | startet das DVM
ARM l'r3r14 | 3 | Startverriegelung
RATE Commands | “3F14 | 4 | MeBfolge
,I3F]4 | 5 | "

- 158 -

Bitzuordnung der Steuerregister:

Steuerregister Adresse Bit Bemerkung

Range Code 1 '3F15)

Range Code 2 1 MeBbereichsvorwahl

Range Code 4 2

Data is changed 3 Mefbereich wurde getindert
Slow/Fast 4 langsam/schnel|

Remote 5 Fernbedienung
Mode~-Commands ? } Art der Messung (=, ~ , Ohm)

Codierung der MefBbereiche:

| _Range-Code _ _ _|

MeBbereich 4 _1_2 - l‘—‘|

- | Bit 21Bir TIBit 0

1000 V= 1000 V ~ 10 MOhm Lo !lo o |
100 V= 100V~ T1MOhm ' o Lo [1 |
10V= 10V~ 100kohm |0 L1 10 |
1V= 1V~ 10kOhm ol
100 mV= 100 mV~ 1 kOhm v jo o0
10 mv= - - f o 1y

Codierung der Mefifolge:

Meffolge | Bit 5| Bit 4
10/sec I I
25/sec o |1

100/sec [1 10

Codierung der Art der Messung:

Art der Messung | Bit 7| Bit 6

DC N
AC | 0 | 1
Ohm 1 10

- 159 -

Das Ansprechen und die Adressierung des Relais-Multiplexers erfolgen wie bei digitalen
Ausgingen (Adressen: ’34@X...37FX).

Bitzuordnung der MefBstellen:

MeBstelle I Adresse : Bit
3-stellig, BCD, |
T _I-T— T3 10
0 2 I
10] |
4 2
8 | 3
1 | | 4
10! Z : ! 2
8 | 301 : 7
1 o n2 0
2 2 | 1
10 4 | P
8 | 3,023
|
|
MeBstelle 102 { 10" | 10°
| |
1 : g, 98 | 8
usw. |

- 160 -

ANALOGE AUSGANGE

Zur Ausgabe von Analogwerten durch den Rechner ist eine Umwandlung von Digital-
werten in einem Digital-Analog-Umsetzer (DAU) erforderlich. Der Analogwert kann
als Spannungswert oder als Stromwert ausgegeben werden. Es sind daher drei Typen
von Analogausgéngen verfugbar:

- Analogausgang 10 bit/10V (DAU 1010)
ProzeB-Interface mit 10-bit-Register, Digital-Analog-Umsetzer und
Verstarker
Ausgangsspannung 0...10 V, niederohmig

- Analogausgang 10 bit/20 mA (D Al 1020)
ProzeB-Interface mit 10-bit-Register, Digital-Analog-Umsetzer und

Verstarker
Ausgangsstrom 0...20 mA, max. Birde 400 Ohm

- Analogausgang zweimal 8 bit/20 mA (2-DAI-820)
ProzeB-Interface mit 2 Systemen, je ein 8-bit-Register mit Digital-
Analog-Umsetzer und Verstdrker
Ausgangsstrom 0...20 mA, max. Burde 400 Ohm

Adressen des DAU und des DAIl: “3B@X..."3BFX

X
X

Daten niederwertige Bits, beim 2-ADI-820 Daten des Systems 1
2 Daten htherwertige Bits nach Ausgabe des Analogwertes, beim
2-ADI-820 Daten des Systems 2

o

Die niederwertigen Bits sind kaskadiert und werden gleichzeitig mit den hoherwerti-
gen Bits gewandelt.

Bitzuordnung der Daten:

hoherwertig niederwertig
76543214 [7 6

z.B. Endwert T1111 1171 (11
MsB ‘ LSB

=161 -

Datenfernubertragung

Bei der Datenubertragung von einem Computer zu einem anderen verwendet man bei
groBeren Entfernungen Telefonleitungen. Allerdings ist das nur mit Modems (Modulator/
Demodulator) méglich (bei galvanisch durchverbundener Leitung bis max. 30 km auch
Gleichstromibertragungselemente, z.B. GDN).

Auf der Geriteseite sind diese Einrichtungen mit der genormten Schnitistelle V24
ausgeristet .

Die erhdltlichen Datenubertragungs-Interfaces bedienen folgende V24-Signale:

El Schutzerde Stift-Nr. 1
E2 Betriebserde 7
D1 Sendedaten 2
D2 Empfangsdaten 3
S1 Ubertragungsleitung anschalten 20
S2 Sendeteil einschalten 4
S3 Empfangsteil ausschalten 18
S4 Hohe Ubertragungsgeschwindigkeit 23
einschalten
M1 Betriebsbereitschaft 6
M2 Sendebereitschaft 5
M3 Ankommender Ruf 22
M5 Empfangssignalpegel 8
T2 Sendeschrittakt 15
T4 Empfangsschrittakt 17

Die Datenibertragung erfolgt seriell entweder asynchron oder synchron.
Bei der asynchronen Ubertragung besteht jedes Zeichen aus

1 Startschritt
8 Datenschritten
1 oder 2 Stopschritten

d.h. die Synchronisation erfolgt erneut bei jedem Zeichen. Dieses Verfahren ist nur
bei Ubertragungseinrichtungen méglich, die frequenztransparent sind, d.h. nicht genau
auf eine Frequenz dbgestimmt sind. Dies trifft auf Modems bis 1200 bit/s und auf
Gleichstromubertragungseinrichtungen zu.

Bei der synchronen Ubertragung wird durch eine Synchronisierphase die Synchronitdt von
Sender und Empfinger hergestellt. Jedes Zeichen besteht aus 8 Datenbits. Eine Nach-

synchronisation erfolgt bei Bitwechseln und durch eingefigte Synchronisierzeichen.

Bei der synchronen Datenubertragung wird der Ubertragungstakt entw eder vom jeweiligen
Sender (Eigentakt) oder vom Modem erzeugt (Modemtakt).

- 162 -

Es stehen fur die Datenubertragung folgende Interfaces zur Verfigung:

- DU-Interface Asynchron (1V24/DAS)
8-Kanal-E/A-Schnitistelle nach V24
fur asynchronen Betrieb
110...9600 Bd (fest eingestellt), 10 oder 11 Schritte/Zeichen
(fur asynchrone Dateniibertragung)

- DU-Interface Synchron (1V24/DSM)
8-Kanal-E/A-Schnittstelle nach V24
fur bitsynchronen Betrieb
600...9600 Bd (fest eingestellt)
(fur synchrone Datentbertragung mit Synchronisation durch Modem)

- DU=Interface Synchron E (1V24/DSE)
8-Kanal-E/A-Schnittstelle nach V24
fur bitsynchronen Betrieb
600...9600 Bd (fest eingestellt)
(fur synchrone Datenibertragung mit Eigen-Synchronisation)

Bei der Datenubertragung unterscheidet man zwei Prinzipien:

- Der eine Rechner ist Ubergeordnet und ruft den untergeordneten Rechner
mit einer Sendeaufforderung (Polling) oder einer Empfangsaufforderung
(Selecting).

- Die Rechner sind gleichberechtigt. Der jeweils aktive Rechner baut die
Ubertragung auf (Contention).

Das Polling=Selecting-Prinzip erméglicht auch einen Party-Line-Betrieb, d.h. an einer
Leitung befinden sich mehrere untergeordnete Rechner, die vom Master adressiert werden.

Fur den DIETZ 621 bestehen Programme, die mit Hilfe der o.g. Interfaces die bei
IBM und Siemens gebriuchlichen Prozeduren sowohl fur asynchrone als auch fur synchrone
Datentbertragung im Polling-Selecting- und im Contention-Prinzip bedienen k&nnen. Fur
Polling-Selecting-Betrieb bestehen auch Programme, mit denen der DIETZ 621 unter-
geordnete Rechner auch im Party-Line-Betrieb bedient.

- 163 -

Programmier- Hinweise

VORBEMERKUNG
Dieser Abschnitt enthdlt einige Hinweise fir die Programmierung des DIETZ 621

die sich aus der Multiprogramming=Struktur und der Art der Peripherie~Schaltungen
ergeben und beachtet werden sollten.

PROGRAMM-ANFANG

Jedes Programm sollte mit der Instruktion
ECL

beginnen; damit wird der Ebenenwechsel freigegeben.

Bei Rechnern mit Netzausfallschutz ist eine weitere MaBBnahme vorzusehen. Sobald das
Netz wiederkehrt, werden alle Flip-Flop-Schaltungen nullgesetzt. Das N-Register je-
doch wird auf die Adresse 400’ gesetzt, das ist das erste Byte im ersten Kernspeicher.
Dort ist eine Anfangsroutine vorzusehen, die aus folgenden Elementen besteht:

- DCL-Befehl (Befehlsbyte auf ’483f)

- Laden der Programmstand-Speicherregister
den erwiinschten Anfangsadressen

)

aller benutzten Ebenen mit
- Indirekter Sprung Uber das Programmstand-Speicherregister

Wird irgendeine Ebene gestartet, entweder bei Wiederkehr des Netzes automatisch die
Ebene @ (wenn Netzausfallschutz so beschaltet) oder von auBlen bzw. durch die Rech-
ner-Uhr irgendeine andere Programmebene, so l&uft dieses Programm in der jeweiligen
Ebene richtig und springt dann auf die Anfangsadresse des Programms der gestarteten
Ebene. Dort muB (und dies ist je Ebene vorzusehen) entweder sofort oder nach wei-
teren, vom Benutzer zu bestimmenden Instruktionen der Befehl ECL stehen, um den
DISABLE-Zustand wieder aufzuheben und Multiprogrammierung zu ermsglichen.

N Register-Adressen @@/@1 der einzelnen Ebenen

- 164 -

Beispiel fur eine Anfangsroutine:

ANF: DCL Unterbrechung verhindern

2=%xLDC, @ ,’ 4040 .

2=%STA /@ ’,gﬂgﬁ fur Ebene ﬂ
2=%LDC,(@ ,’ 4980 } u v

2=%STA ,@ ,'gP19

2=%LDA ,(@ ,STAF } Woow

2= STA ,(@ , ' 90OFg

X, 09 Sprung zum Anfang

ANF liegt auf Adresse '40@@. Die Startadressen der Ebenen @ bzw. 1 werden auf
feste Werte ('404% bzw. '408@) gesetzt, wihrend fur Ebene F der Inhalt des Spei-
cherplatzes STAF (+ folgender) als Startadresse mafigebend ist. Fir die Lage der Pro-
grammstandspeicher im Pool ist angenommen, daf8 jede Ebene 16 byte als Register-
platze hat; daraus ergeben sich die absoluten Adressen ’@@@0, ‘@018 bzw. 'goFg
fur die Ebenen @, 1 bzw. F.

RECHNER-UHR

Die Zentraleinheit des DIETZ 621 kann eine Rechner-Uhr (real-time-clock) erhal-
ten. Sie besteht aus einer Untersetzerschaltung, die vom quarzgesteuerten Takigene-
rator des Rechners betrieben wird und in Abstdnden von wahlweise 1, 10, 100 oder
1000 ms den Start einer Ebene bewirkt. Taktabstand und die CNP-Ebene werden
durch Beschaltung in der Zentraleinheit festgelegt.

Die Uhr kann vom Programm her blockiert und freigegeben werden, indem man die
BUS-Adresse ‘3FFF mit @ oder einer rechtsbindigen 1 belegt:

IS'?::% :g3FFF } Uhr AUS (unwirksam)

LDC, @ .1 .
STA ,@ ,’3FFF } Uhr EIN (wirksam)

Durch die Taste RS und durch die Nullstellung bei Netzwiederkehr wird die Uhr in
den AUS-Zustand gebracht.

Da auch Netzausfallschutz, Speicher-Parity und BUS-Kontrolle auf die CNP-Ebene
wirken, ist der Uhr=Start zu identifizieren. Dies geschieht durch einen GL-Befehl,

der in der CNP-Ebene oblauft, bei Uhr=Start Bit 7 = 1 ins Arbeitsregister Ubertrégt
und den Uhr-Start selbsttitig zuriickstellt:

GL , @
BOC, (@ ,’8#, CLCK

Es wird nach CLCK verzweigt, wenn es sich um einen Uhr=-Start handelie.

- 165 -

PROZESS-EIN/AUSGABEN

Fur die ProzeRperipherie des DIETZ 621 d.h. alle Ein/Ausgabeschaltungen, die

sich nicht auf Gerdte, wie z.B. Fernschreiber, Leser, Locher usw. beziehen, sind z.B.
die BUS-Adressen “20@@... " 3FFF vorgesehen, also 8192 verschiedene Adressen. (Bei
eingebauter Uhr ist die letzte dieser Adressen - '3FFF - fir diese reserviert).

Der Datentransfer zwischen CPU und ProzeBperipherie geschieht in der gleichen Wei-

se wie der zwischen CPU und Kernspeicher, d.h. tber den Universal-BUS und die
BUS-bezogenen Befehle.

Beispiele: LDA, @ ,’'2009 Eingabe ’20@F nach @

EXT3: Q ,'2F78 Eingabe von EXT (= ’2F78)
LDA,REG7, "EXT3, IXR + IXR nach REG7

6=%STA, @ ,’3ggF Ausgabe @ (+ 5 folgende Bytes)
nach '300F (+ 5 folgende
Adressen)

Je Adresse konnen Daten von 1 byte Linge ausgetauscht werden; Ein= und Ausgabe
sind in Verbindung mit der gleichen Adresse mdglich, wenn im Interface die entspre-
chenden BUS-Anschlusse beriicksichtigt werden. AuBer dem Befehl LD... konnen auch
die Befehle AD..., SB..., OR..., AN... und EO... verwendet werden, wenn dies
zweckmiBig erscheint. Als Adressierungsarten kommen ...A (absolut) und ...X (indi=-
rekt) in Betracht; im letzteren Falle ist ein 2-byte-Indexregister (gerade Basisadresse)
zu wihlen, in dem die externe Adresse steht.

GERATE-PERIPHERIE

Die Gerdteperipherie des DIETZ 621 hat den BUS-AdrefBbereich ‘19@@..." IFFF.
Dabei ist zu beachten, daB8 bei den meisten Gerdtetypen mehr als ein Flip-Flop~
Register von Byte~Liinge im Interface enthalten und dementsprechend mehrere Adres-
sen vorgesehen sind.

Jedem Gerdt ist eine aus zwei Hexa-Ziffern bestehende Gerdtenummer gg zugeordnet,
jedem Interface-Register eine weitere Hexa-Ziffer f. Aus diesen baut sich die BUS-
Adresse auf:

"1ggf = BUS-Adresse Register f fur Gerdt gg

Damit kdnnen maximal 256 Gerite mit je 16 Interface-Registern von Byte-Linge ange-
sprochen werden. Jedes Interface und damit jedes Gerdt kann, wenn entsprechend
beschaltet, einer bestimmten Programmebene zugeordnet werden. Dadurch vervielfacht
sich die Zaohl der moglichen Gerdte, denn in diesem Falle wird - bei gleicher

- 166 -

Gerste-Nummer - immer jeweils das Interface angesprochen, welches der jeweiligen
Programmebene zugeordnet ist.

Typische Interface-Schaltungen wie die fur den 8-Kanal-Fernschreiber (Teletype ASR
33) und fur den schnellen Streifenleser und -locher haben jeweils 2 Interface-Regi-
ster von Byte-Lidnge mit den Adressen:

"1ggf = Datenregister
"1gg1 = Statusregister

Das Datenregister bewirkt den byte-weisen Datenaustausch zwischen Periphergerdt und
Universal-BUS.

Das Statusregister stevert die Ein/Ausgabe und hat folgende Einzelfunktionen (Beispiel
fur Teletype)s

1l

READY

IBUSY

OBUSY

LOCK

= INITIATE
(nicht benutzt)

Bit

i nn

1

g
1
2
3
4
5...7

IBUSY bzw. OBUSY leitet den Ein- bzw. Ausgabevorgang ein (wenn gleichzeitig
READY ausgeschaltet ist). Ist der Ein- bzw. Ausgabevorgang beendet, z.B. ein
Zeichen ausgedruckt, schaltet sich READY selbsttdtig ein; es bewirkt einen Start der
zugehérigen Programmebene, wenn nicht LOCK gesetzt ist. INITIATE hat eine be-
sondere Funktion: Es lost z.B. bei Lesen den Transport des Streifens aus und muf3 da-
her beim angebauten langsamen Leser des Teletype (angebauter Leser) zugleich

mit IBUSY vom Programm eingeschaltet werden.

Zur Ein/Ausgabe ber die Gerdteperipherie werden im Normalfalle die Makrobefehle

der LIBRARY ausreichen. Jedoch kann der Benutzer anhand der folgenden Beispiele
Ein/Ausgaben auch in Einzelschritten programmieren.

Ein/Ausgabe im Multiprogramming:

Diese auf die Struktur des DIETZ 621 zugeschnittene Betriebsart beruht darauf, daf3
nach Anstof3 des Ein- oder Ausgabevorgangs die jeweilige Programmebene ausgeschal-
tet wird, um anderen Ebenen Gelegenheit zur Benutzung der Recheneinheit zu geben.
Mit Ende des Vorgangs wird die auslosende Ebene wieder gestartet, und das Programm
lauft weiter.

- 167 -

Ausgabe:

Eingabe:

Zunichst wird ein Register XOS mit dem Bitmuster G2@@ @190 (= 'g4)
geladen, um bei jeder folgenden Ausgabe das Statusregister im Inter-
face richtig zu bedienen (OBUSY ein, alle anderen aus):

LDC,XOS, ' @4

Je Ausgabevorgang ist dann zu programmieren (gg = Gerdte~Nummer):

STA,DAT, 1ggfl (Datenregister laden)
STA,XOS, "1ggl (Statusregister laden)
HLT

Der erste Befehl ldadt das Datenregister des Interfaces mit dem im Register
DAT stehenden Byte, der zweite stoBt die Ausgabe an. Dann folgt ein
Halt. Mit Ende des Ausgabezyklus’ wird die Ebene wieder gestartet, und
das Programm lduft weiter.

Zunéchst wird ein Register XIS mit dem Bitmuster @@0@ P10 (= ‘@2)
geladen, entsprechend dem Statusregister-Inhalt bzw. den folgenden
Eingabebefehlen (IBUSY ein, alle anderen aus):

LDC, XIS, 'g2

Dies gilt z.B. fur ?ie Tastatur des Teletype]). Fur dessen Leser
(angebauter Leser)”’ ist stattdessen das Bitmuster gg@1 g@1g (= ' 12)
vorzusehen (zusdtzlich INITIATE ein):

LDC, XIS, 12

Dann folgt je Eingabevorgang (gg = Gerdte~Nummer):

STA,IXS , " 1ggl (Statusregister laden)
HLT
LDA,DAT, " 1ggf (Datenregister holen)

Der erste Befehl lost den Eingabevorgang aus; dann folgt ein Halt. Mit

Ende des Eingabezyklus’ wird die Ebene wieder gestartet, und der dritte
Befehl transferiert den Inhalt des Datenregisters, d.h. das gelesene Byte,
ins Register DAT.

N Makrobefehle K... der LIBRARY
2 Makrobefehle R... der LIBRARY

- 168 -

AbschluB: Nach einer Folge von Ein- oder Ausgaben, in jedem Falle jedoch vor
einem gewunschten Programm=-Halt, mu3 das READY-Bit im benutzten
Interface rickgesetzt werden, da sonst der Halt durch den infolge von
READY dauernd anstehenden Programmstart uberlaufen wird. Dies ge-
schieht z.B. durch die Befehlsfolge (gg = Gertite~Nummer):

Loc, @ ¢
STA , (@ , " 1gg1 (Nullstellen Statusregister)

Bemerkung: Wahrend der oben beschriebenen Ein/Ausgaben darf der Rechner nicht im
DISABLE-Zustand sein, da der Programm-Halt (HLT) nicht wirksam
wirde. Statt LD... konnen bei der Eingabe auch andere BUS-bezogene
Befehle benutzt werden (mit dann anderer Funktion); statt absoluter kann
indirekte Adressierung verwendet werden, ebenfalls Indizierung Uber ein
Indexregister, sofern nur die effektive BUS-Adresse gleich der vom Sta-
tus- oder Datenregister ist.

Ein/Ausgabe mit Warteschleifen:

Diese Betriebsart ist insbesondere dann von Nutzen, wenn ein Gerdte-Interface, dessen
Daten- und Statusregister keiner Ebene fest zugeordnet sind, von einer beliebigen Pro-
grammebene aus bedient werden soll.

Hierbei ist zundchst das LOCK-Bit des Stafusregisters jedesmal zu setzen, um einen
Start der Programmebene, auf die das READY-Flip-Flop des Interfaces im Normalfall
auch bei den Ubrigen nicht ebenen-gebundenen Gerdten wirkt, zu verhindern. Das
bedeutet ein anderes Bitmuster beim Vorbereiten der Register XOS bzw. XIS:

LDC,XOS, 'gC (Ausgabe)
oder LDC,XIS ,’@A (Eingabe ohne INITIATE)
oder LDC,XIS ,’1A (Eingabe mit INITIATE)

Im brigen ist die Programmierung fur Ein- und Ausgabe gleich denen fur Multipro-
gramming-Betrieb, jedoch werden die Halt-Befehle (HLT) ersetzt durch die Befehls-
folge (gg = Gerdte~Nummer):

LOOP: LDA , @, 1ggl (Laden Statusregister)
BNOC, @ ,’#1 ,LOOP (Ruckverzweigen bis READY ge-
setzt)

die so lange als Abfrageschleife lauft, bis mit READY der Vorgang beendetf ist. Im
Prinzip hat diese Betriebsart den gleichen Ablauf wie die Multiprogramming~Ein/
Ausgabe; jedoch ist der Rechner withrenddessen fur alle Programmebenen mit niedri-
gerer Prioritdt gesperrt.

- 169 -

KONSOL-PERIPHERIE

Ein 8-Kanal-Fernschreiber (Teletype ASR 33) mit eingebautem Streifenleser und
-locher sowie ggfs. ie ein schneller Streifenleser und -locher bilden die Standard-
Peripherie eines DIETZ 621 sie werden als Konsol-Peripheriegerdte bezeichnet.
Die Interfaces hierfur haben folgende Spezifikationen:

Fernschreiber: Gerdte-Nummer: !

BUS-Adresse Datenregister: ‘1900
BUS-Adresse Statusregister: 191

Druckwerk: Ausgabe programmieren

Locher: Ausgabe programmieren; Locher vorher manuell
einschalten (Druckwerk lduft mit) 1
Tastatur: Eingabe programmieren ohne INITIATEZ)
Leser: Eingabe programmieren mit INITIATE
Schnelle Loch- Gerdte=Nummer: ‘N

streifengerite: BUS-Adresse Datenregister: '1g1g
BUS-Adresse Statusregister: 1811

Locher: Ausgabe programmieren .
Leser: Eingabe programmieren mit INITIATE)

Die Interface-Register der Konsol-Peripherie sind nicht ebenen-gebunden; das bedeu-
tet, daB3 sie von allen Programmebenen aus bedient werden kénnen (und im ubrigen,
daB die Gerdte-Nummern ’@@ und ‘@1 an kein anderes Gerit gleich welcher Ebene
vergeben werden durfen). Der durch READY bewirkte Start (bei Ende Ein/Ausgabevor-
gang) startet jedoch stets Ebene @.

Die Interfaces hierzu befinden sich auf Platz 1 (Teletype) und 2 (Locher/Leser) in der
Zentraleinheit. Sie konnen auf Wunsch durch Einkarten-Interfaces fur andere periphere
Schnittstellen ersetzt werden. Auf Wunsch kann der durch READY des Interfaces 2
(Gerdgte-Nr. '@1) ausgelsste Start auf eine andere Ebene gelegt werden. Im Ubrigen
bleiben die obengenannten AdreBvereinbarungen usw. bestehen.

N bzw. Makrobefehle K... der LIBRARY
2 bzw. Makrobefehle R... der LIBRARY

- 170 -

ASSEMBLER

VORBEMERKUNG

Der Assembler MINCASS 600 ist ein Programm zur Ubersetzung von symbolischen
Programmen in die Maschinensprache des Computers DIETZ 621. Er steht dem

Benutzer in Form eines Lochstreifens zur Verfigung; nach Einlesen des Lochstrei-
fens in den Kernspeicher (ab Adresse 4f@@) und Betidtigen der Taste ST (Start) an
der Rechner-Konsole ist das System zur Programmumwandlung bereit.

Es sind drei Assembler-Versionen verfugbar, die sich durch zusdtzliche Funktionen
voneinander unterscheiden:

Assembler MINCASS 600
fur Systeme ab 4 kbyte Kernspeicher und Teletype

Editor~Assembler MINCASS 600 E
fur Systeme ab 8 kbyte Kernspeicher mit Teletype
(schnelle Lochstreifenausristung empfohlen)

Makro-Assembler MINCASS 600 M
fur Systeme ab 16 kbyte Kernspeicher mit Teletype und
schneller Lochstreifenausristung

Funktionen, die nur vom Makro~Assembler MINCASS 600 M ausgefihrt werden, sind
im folgenden mit (M) gekennzeichnet; mit (E) solche Funktionen, die zum MINCASS
600 E und MINCASS 600 M gehoren.

Der Assembler benuzt die ersten 256 Bytes (Adresse '@@0@... @FF) des RAMs.

- 171 -

PROGRAMMAUFBAU

Ein symbolisches Programm besteht aus einer Folge von Anweisungen (Statements). Es
gibt verschiedene Typen von Anweisungen:

Steueranweisungen
Wertzuweisungen
Belegungsanweisungen
Maschinen-Instruktionen
Makro-Instruktionen
Kommentare

Anweisungen werden in der Reihenfolge geschrieben, wie sie im Programm nacheinan-
der benstigt werden; der Assembler Ubersetzt das Programm in gleicher Reihenfolge in
Maschinensprache. Zur Niederschrift benutze man die MINCAL 600 Programm-Form-

blatter.

Jede Anweisung besteht aus einer Folge von Buchstaben, Ziffern und Symbolen, wobei
- soweit nicht im einzelnen eingeschrankt - alle 64 druckbaren Zeichen des ASCII-
(1ISO-7-) Codes zuldssig sind. Leerschritte (Space) werden im allgemeinen vom Assem-
ble tberlesen. Steuerzeichen, wie z.B. Wagenricklauf (CR) und Zeilenwechsel (LF)
werden ebenfalls tberlesen. Anweisungen werden voneinander durch Semikolon (;) ge-
trennt und vom Assembler fortlaufend numeriert (0000...9999).

Innerhalb der Anweisungen sind die Zeichen zu Worten zusammengefaf3t, welche die
notwendigen Einzelangaben darstellen. Die Worte werden durch Trennzeichen sepa-
riert. Der generelle Aufbau einer Anweisung ist wie folgt:

LABEL NUMBER INSTR SPEC OPERAND SUPPL
{ Marke} :{ Anzahl }')&('{ Befehl b, { Spezifikation p,{ Operand b, Erginzung};

Im Einzelfalle, insbesondere auch je Anweisungstyp, konnen bestimmte Worte ent-
fallen; die Kommentar-Anweisung besteht nur aus Text, eingeleitet durch einen
Schragstrich (/). Die Worte einer Anweisung haben folgende Bedeutung:

Marke: Hier ist ein Name einzutragen, wenn an anderer Stelle im Programm
auf die Anweisung Bezug genommen wird. Als Trennzeichen steht
hinter der Marke ein Doppelpunkt (:).

Anzahl: Hier ist eine Dezimalzahl z (2...256) einzutragen, wenn Variablen-
oder Konstanten=Strings von mehr als 1 Byte Ltnge vereinbart werden,
oder wenn Mehrfachausfihrung (DO-Befehl) vorgesehen ist. Im letzte~
ren Falle ist ggfs. auch eines der Zeichen >, < oder = hinfer z
notwendig. Statt der Zahl z kann ein Name stehen, dem vorher ein
Wort zugewiesen wurde, oder auch eine Hexa-Zahl (wobei fir z = 256
ein Name mit Nullwert bzw. die Hexa-Zahl ‘@@ stehen muB. Als
Trennzeichen steht (%) oder (&) hinter der Anzahl.

-172 -

" y e e T - g g prp—p——— r— v v y r r—r .
*
™ v ——T T — — —r—— T T T —r — T Ay 2
3 P b & ‘W
—rr — T r T —r 54 T v
v - SIY* UL
rIm T v T — T —r— v v v N‘W —r—r v
T T v v — e \‘ Qlﬁq‘\ % —— —r—
. | .
pe — v — — —— — T — —r— u”“ﬂq‘
P L T T T T ——r— — W1. T
.
7 T T L e e T T e o e e e e B e o T ™ T T T wm.‘ wq_ ST
. .
&,
~N_.. T YT T T LI S AU M I S SN R B B S SR R T T s .l“.! “‘ * ‘&.‘\‘
—r B o a o e S S T T r —r - » — v
w i 2[Y 207 | |
T T T T L S e e e e T T .‘s T T
0z . P, E&£ Ok 4
P A —T T T — —rr T Y
A /
T T — v T v v .1)“!(-‘41 ~ § A D I
T T T T L T L — T T . 4 € —r
o .\
— —— T —r —r T 4 4€ -
2 o i) L4l
P R —r— T L e e T A S e T s B B B e LA —rr - — —— T T
.
PR L e e e e SN s s T L s e e e e S L e e e T - %
.
P v T — A e e e e e e L AL e e v T v v — — 4414
.
T T T a L e LA e o e e o LI At o R & uh i T 1 F
T . .
e B e i e e T e e L - # rd 2 e
__ Eh 2 Hilt
—~— T v T v e o T — — 7 € .
ot N’.l 0 . Q
T v T — - L] 3
T T v T —
T L S e e S s e e e .
ST T L e e e e e e e S A o
PR T T
ST T T T v
. T — — -
T L e L A e e o A
T L e R B e T
T T T T T T
- oL 59 09 3 o5 [0y sefee oej6z|az ez LAED etz u tofs z|
z JR—
™l saion SIN3IWWOD ¥O04 Tddns | b aNvy¥3do |4 23ds || ¥isNI | ¥3EWON |3] 38V |/

&7 133Hs

=S10@)

(@i

w.ma*: INVYN M.N\O#.u:a!ﬂ%f\moomm

s 009 TTVONIW

-173 -

Befehl:

Spezifikation:

Operand:

Ergdnzung:

Jede Anweisung muf3 einen "Befehl" enthalten, der sie kennzeichnet.
Er besteht fur Steuer- und Belegungsanweisungen sowie fur Wertzu=
weisungen aus einem Buchstaben, fir Maschinen- und Makro-Instruk-
tionen aus einem Buchstaben, gefolgt von 1 bis 3 weiteren Buchstaben
oder Ziffern. Es sind nur solche Befehle zuldssig, die in der Befehls-
liste des Assemblers vermerkt oder vom Benutzer als Makrobefehle de-
finiert sind (s. spdter). Als Trennzeichen steht dahinter ein Komma (,).

Enthdlt notwendige Zusatzangaben. Bei Maschinen=Instruktionen sind
dies die gestarteten Ebenen oder das Arbeitsregister; in jedem Falle
konnen Namen, Hexa-Zahlen oder das Akkumulator-Symbol @ verwen-
det werden. Als Trennzeichen steht dahinter ein Komma (,).

Enthdlt bei Maschinen-Instruktionen die Operanden-Adresse oder eine
Konstante. Je nach Bedarf konnen Namen, Dezimalzahlen, Hexa-
Zahlen, Text-Zeichen oder das Symbol @ verwendet werden.

Als Trennzeichen steht dahinter ein Komma (,).

Enthdlt bei bedingten Sprungbefehlen die Sprungadresse (Name), bei
BUS-bezogenen Befehlen das Indexregister (Name, Hexa-Zahl, @).

Den AbschluB3 einer Anweisung bildet ein Semikolon (;). Es muf} unmittelbar auf das
letzte Wort folgen. Wenn Marke oder Anzahl nicht vorgesehen ist, entfallen die zu-
gehsrigen Trennzeichen; fur hinter dem Befehl stehende Worte, die "“leer" bleiben,
mussen Kommata als Trennzeichen vorgesehen werden, wenn danach noch ein "ausge-
fulltes" Wort folgt.

Nach der Anweisung kann ein Kommentar stehen. Er wird durch einen Schrigstrich (/)
- anstelle des Semikolons - eingeleitet und durch ein Semikolon (;) abgeschlossen.

- 174 -

WORTELEMENTE

Worte innerhalb von Anweisungen kdnnen aus folgenden Elementen bestehen:

Namen:

Dezimalzahlen:

Hexa-Zahlen:

Text-Zeichen:

Namen sind symbolische Ersatzbezeichnungen fur Adressen, Festwerte
oder andere Angaben. Sie bestehen aus einem Buchstaben, dem bis

zu 3 weitere Buchstaben oder Ziffern folgen konnen.

Beispiele: A, AB, ABC, ABCD, X1, X999, HI1T, O@g3P.

Jedem Namen muB im Programm ein bestimmter Wert zugewiesen wer=-
den. Das geschieht durch Eintragen des betreffenden Namens als Make
in einer Anweisung, wodurch ihm die (Basis-) Adresse der .betreffenden
Instruktion oder Belegung zugeteilt oder - im Falle der Wertzuweisung
Q - ein bestimmter Wert zugewiesen wird. Ein Name darf in jedem
Programm nur einmal definiert sein.

Dezimalzahlen bestehen aus 1 bis 5 Ziffern, vor denen ein Minuszei-
chen stehen kann. Der Assembler erzeugt aus ihnen die entsprechende

bindre Ganzzahl bzw. deren Zweierkomplement.
Beispiele: 1, 99, 255, 32767, -1, -128, -32768.

Hexa-Dezimalzahlen bestehen aus 2 oder 4 Hexa-Zeichen (Ziffern
0...9, Buchstaben A...F), vor denen ein Apostroph (') steht. Je 2
Hexa-Zeichen faflt der Assembler zu einem Byte zusammen.
Beispiele: ‘@@, 'F3, '1A77.

Hexa-Strings bestehen aus 2, 4, 6, ... Hexa-Zeichen mit Apostroph
davor.

Achtung: Das Byte mit der niedrigsten Adresse steht ganz rechts!

Textzeichen oder -Sirings bestehen aus einem oder mehreren druckbaren
ASClI-Zeichen; davor und danach muB8 ein Anfihrungszeichen (") ste-
hen. Der Assembler reserviert ein Byte je Zeichen. Leerschritte werden
in diesem Falle nicht Uberlesen, sondern als Byte berucksichtigt.

Beispiele: "1", "TEXT", "+12«u A ABC"

ZEICHENVORRAT

Es sind alle druckbaren ASClI-Zeichen mit folgenden Ausnahmen erlaubt:

Semikolon (;) nur fur Anweisungs-Ende

Schragstrich (/) nur fur Kommentar-Anfang

Anfihrungszeichen (") nur fur Text-Anfang und -Ende

Linkspfeil () bzw. Hochpfeil (#) machen davorliegendes Zeichen bzw. Anweisung un-

gultig

Doppelkreuz (1) auBer am Programmanfang verboten
Leerschritte (L) werden - auBer in Text-Strings und Kommentaren - Uberlesen.

- 175 -

GULTIGE ANWEISUNGEN

Steueranweisungen

Stehen am Anfang und Ende eines Programms. Sie belegen keinen Speicherplatz.

H Beginn Programm

(0]

Ursprung Programm

Definiert die Adresse der nichstfolgenden speicherbelegenden Anweisung. Zu
Beginn jedes Programms sollte eine O-Anweisung stehen (sonst Beginn mit ’'@@gd).

Spezifikation: 4-stellige Hexa-Zahl

Beispiel: O, '4F12

Ende Programm

SchlieBt das symbolische Programm ab.

Wertzuweisung

Bewirkt Zuweisung eines Wertes zu einem Namen. Belegt keinen Speicherplatz.

Wertzuweisung

Weist einem Namen, der als Marke vor Q steht, den danach spezifizierten
Wert zu.

Marke: Vorgeschrieben (Name)

Anzahl: Angabe notwendig, wenn der Wert die Kapazitdt eines Bytes uber-
schreitet. Es wird die Anzahl der bendtigten Bytes angegeben (2...256).

Spezifikation: Dezimalzahl,
Hexa=Zahl,
Text,
Name,
Name + Dezimalzahl, oder
Name + Hexa-Zahl,
Name + Name

Die Q-Definition kann im Programm grundsatzlich an beliebiger Stelle stehen. Ausnahme:
Wird der Name in einer weiteren Q-Anweisung oder als Name fur eine Anzahl (DO-
Befehl) oder fur den Akkumulator benutzt, so ist er an beliebiger Stelle vor seiner Be-
nutzung zu definieren. -

- 176 -

Beispiele: A : Q,
ZH15 ¢ 2% Q,
REG3 : Q,
ADR : 2% Q,
X1 Q,
X2 : 12%Q,
NAMTI: Q,
Xyg Q,
XYDl: 2% Q,
AlB Q,
SUM Q,

Belegungsanweisungen

12
-32768
'F3
N

n All
“"ALPHABETw 11"
NAM2
XY 141
XYD+999
AB+'@F
X1+X2

Belegen Speicherplidtze mit Nullinhalt oder Festwerten. Die Anweisungen kénnen mit
Namen als Marken versehen werden. Der Name bezieht sich dann auf die Speicher-
adresse bzw. auf die Basis-Adresse des Byte-Strings.

(M) Zur Definition von Gleitkommazahlen siehe Abschnitt STANDARD PACKS.

\% Variable

Reserviert ein Byte bzw. einen Byte-String im Speicher. Nach dem Assemblie-
ren haben mit V reservierte Bytes Nullinhalt.

Anzahl: Angabe notwendig, wenn mehr als ein Byte reserviert werden soll.
Es wird die Ldnge des Byte-Strings angegeben (2...256).

Beispiele: \
2%V
256 % V
D Dezimalzahl

Reserviert ein oder zwei Bytes im Speicher und belegt sie mit der Bindrzahl,
die der angegebenen Dezimalzahl entspricht.

Anzahl: Angabe notwendig, wenn 2 Bytes belegt werden.

Spezifikation: positive oder negative dezimale Ganzzahl

Beispiele: D,

2% D,
2% D,
2% D,

A Adresse

1

255
-35
9999
-32768
32767

Reserviert ein oder zwei Bytes im Speicher und belegt sie mit einer Adresse.

Anzahl: Angabe, wenn 2

Beispiele:

ytes belegt werden. Spezifikation: Name

2% A,ADDR

A,REG7

- 177 -

H Hexa-Zahl

Reserviert ein Byte bzw. einen Byte-String im Speicher und belegt sie mit 2
Hexa-Zahlen je Byte.

Anzahl: Angabe notwendig, wenn mehr als ein Byte reserviert wird. Es wird
die Linge des Byte-Strings angegeben (2...256).

Spezifikation: 2- ...512-stellige Hexa-Zah! (Leerschritte und Zeilentrennung
werden Uberlesen).
Beispiele: H, 'FF
2% H, ‘@283
4% H, '778899AA

T Text

Reserviert ein Byte bzw. einen Byte-String im Speicher und belegt sie mit
einem druckbaren ASCIl-Zeichen je Byte.

Anzahl: Angabe notwendig, wenn mehr als ein Byte reserviert wird. Es wird
die Linge des Byte-Strings angegeben, die gleich der Zeichenzahl ist (2...256).

Spezifikation: 1 bis 256 druckbare Zeichen (einschlieBlich Leerschritt).

Beispiele: T, nz"
9%T, "+H2uL/0 ABC"

Maschinen=Instruktionen

Die hierzu gehsrenden Anweisungen beziehen sich auf die Maschinenbefehle des
DIETZ 621 (siehe dort). Der Maschinencode wird vom Assembler entsprechend der
Befehlsstruktur und in der Reihenfolge der Anweisungen erzeugt. Zur Mehrfach-Ausfih-
rung einer Instruktion (DO-Befehl) ist in der Anweisung die Anzahl z (2...256) einzu-
tragen, gefolgt von der Angabe, welche Adresse inkrementiert wird, sowie von einem
Trennzeichen, das zugleich die Berucksichtigung des LINK-Bits angibt:

z & n-fache Ausfihrung

z>& " , Operanden-Adresse wird inkrementiert| LINK

z<& " , Register-Adresse " wird nicht
z=& u , beide Adressen " berucksichtigt
z ® "

z>% " , Operanden-Adresse " LINK

Zex n , Register-Adresse " wird

z=% u , beide Adressen " berticksichtigt

- 178 -

Zu Beginn der Anweisung kann als Marke ein Name stehen. |hm wird die Adresse
des Befehls-Bytes zugewiesen, bei Mehrfachausfihrung die Adresse des Befehlsbytes
des davorstehenden DO-Befehls.

Eine vollstandige Anweisung sieht z.B. so aus:

MARK:2=¥ADA ,REGI,ADR, IXRG

Folgende symbolische Befehle sind vorgesehen, geordnet nach Gruppen:

NOP Ebenso: HLT, ECL, DCL
Steuerbefehle
Keine weiteren Angaben.

SEL Ebenso: HSL
Steuerbefehle mit Start einer Programmebene.

Spezifikation: Nummer der gestarteten Programmebene.

Beispiele: SEL,’@B
HSL,LEV3

GS Ebenso: GL

Abfrage Konsolschalter bzw. laufende Programmebene.
Spezifikation: Arbeitsregister.
Beispiele: GS ,®@

GL ,'1A
GL ,REG7

SRO Ebenso: SRC, SLO, SLC
Schiebebefehle .

Spezifikation: Arbeitsregister.
Beispiele: SRO, @

SRC,’1A
SLO, REG7

-179 -

BZ Ebenso: 1Z, BP, IP, BNZ, INZ, BNP, INP
Bedingter Sprung mit Abfrage Register-Inhalt auf Null oder Vorzeichen.

Spezifikation: Arbeitsregister.
Operand: Nicht zulassig (jedoch Komma vorsehen).

Ergdinzung: Sprungadresse (Name).

Beispiele: BZ , @ ., ., SPRG
1z ,"1A , , AD6
BNP, REG7, , X2

BEC Ebenso: IEC, BER, IER, BNEC, INEC, BNER, INER,
BZC, 1ZC, BZR, IZR, BNZC, INZC, BNZR, INZR
BOC, I0C, BOR, IOR, BNOC, INOC, BNOR, INOCR
Bedingter Sprung mit Vergleich zwischen Arbeitsregister-Inhalt einerseits und
Konstante oder Vergleichsregister~Inhalt andererseits.

Spezifikation: Arbeitsregister.
Operand: Konstante oder Vergleichsregister.

Ergdnzung: Sprungadresse (Name).

Beispiele: BEC , @ ,12 ,SPRG
INEC ,"1A ,'FF ,ADé
BZC ,REG7,MA3,X2
IER ,@ ,RG17,NIA
BNOR,’TA ,’A3 ,AD7
INOR ,REG7, @ ,L

LD... Ebenso: AD..., SB..., AN..., OR..., EO..., ST...
BUS-bezogene Befehle (auBer JP und CS).
Als dritter Buchstabe des Befehls ist je nach Adressierungsart C, X, R, L oder A
anzugeben.

Spezifikation: Arbeitsregister.
Operand: Konstante oder Operanden-Adresse (auBer bei ...X).
Ergénzung: Indexregister (wenn indiziert).
Beispiele: ILbC , @ ,25
ADX ,’1A , ,IND2
SBR ,REG7,'FF

ANL , @ ,ADR
ORA ,"1A ,"49A2,"1F

- 180 -

JP... Sprung
Dritter Buchstabe siehe LD...

Spezifikation: nicht zuldssig (jedoch Komma vorsehen)
Operand: Sprungadresse (aufler bei ...X)

Ergdnzung: Indexregister (wenn indiziert)

Beispiele: JPX , ,IND2
JLo, ,SPRG
JPA , AGA2 7 TF

CS... Unterprogramm-Sprung
Dritter Buchstabe siehe LD...

Spezifikation: Arbeitsregister (Riickkehradresse)
Operand: Sprungadresse (auBer bei X)

Ergdnzung: Indexregister (wenn indiziert)
Beispiele: CX , @ ., ,IND2

cst ,'1A ,SPRG
CSA ,RET3 ,’40A2 'if

Bemerkung: Bei Konstanten-Befehlen der Gruppe BEC und LD... ksnnen Konstanten von
bis zu 2 Byte Lange dezimal oder hexa-dezimal als Operanden eingetragen werden,
z.B.:

2=%INEC, @ , ' #9FF, SPRG
2=#ADC , ' 1A, 4096

Fur léngere Konstanten sind Namen vorzusehen, denen Uber eine Q-Anweisung die
entsprechenden Werte zugewiesen werden.

Kommentare

Kommentare dienen zur verbalen Erkldrung des Programms. Sie konnen an beliebigen
Stellen des Programms stehen und haben fur das Programm selbst keine Bedeutung.

Eine Kommentar-Anweisung beginnt mit einem Schrdgstrich (/), gefolgt vom Text aus
beliebigen druckbaren Zeichen, wobei alle Leerschritte beriicksichtigt werden. Der
Kommentar wird mit Semikolon (;) beendet; es ist daher innerhalb des Kommentars
nicht zuldssig.

-181 -

(M) MAKRO-INSTRUKTIONEN

M

=

Symbolische Makro-Anweisungen dienen zur Programmierung von komplexen Befehlen,
die nicht durch einfache Maschinen~-Instruktionen des DIETZ 621 darstellbar sind.
Die Makro-Anweisung ruft ein Unterprogramm auf, welches diesen komplexen Befehl
ausfihrt; danach wird zur folgenden Anweisung zuriickgesprungen.

Der Benutzer kann Makro-Anweisungen auf zweierlei Art gebrauchen:

Standard~Makros zu den MINCAL 600-Bibliotheksprogrammen (LIBRARY)

Selbstdefinierte Makros zu vom Benutzer erstellten Unterprogrammen.

Standard-Makros

Die Standard-Makros sind in der Befehlsliste des MINCASS 600 M Makro-Assemblers
vermerkt; ihre Namen und Funktionen sind im Kapitel LIBRARY ausfuhrlich beschrie-
ben. Sie werden im Programm wie normale Anweisungen geschrieben.

Die Verwendung von Standard-Makrobefehlen setzt voraus, daB zur Ausfihrungszeit
auBer dem Objektprogramm auch die benstigten Teile (Packs) der LIBRARY im Kern-
speicher enthalten sind. Dies kann auf zweierlei Weise sichergestellt werden:

a) Automatisches Hinzufigen der LIBRARY:

Hierbei merkt sich der Assembler wdhrend der Umwandlung die benutzten Stan-
dard-Makros und die zugehorigen Packs der LIBRARY. Nach der Umwandlung
werden in einem Zusatzlauf die Teile der LIBRARY hinzugefiigt, die vom Objekt-
programm ben&tigt werden. Sie stehen dann auf dem Maschinencode=Streifen bzw.
spdter im Kernspeicher unmittelbar hinter dem umgewandelten Programm; ihre Lage
ist daher von dessen Linge und ihre Zusammensetzung von den darin benutzten
Makros bestimmt. Nicht benstigte Packs der LIBRARY werden nicht Ubernommen.

b

~

Vorbestimmte Lage der LIBRARY:

Der Benutzer kann sich dafir entscheiden, die einzelnen Packs der LIBRARY in
vorbestimmte Plitze des Kernspeichers zu legen. In diesem Falle hat er dafur zu
sorgen, daf} sie sich zur Ausfihrungszeit dort befinden, z.B. durch getrenntes
Einlesen; die LIBRARY wird nicht dem Maschinencode-Streifen des umgewandelten
Programms hinzugefigt. -

Im symbolischen Programm ist die Lage der benttigten Packs anzugeben, und zwar
zu Anfang z.B. in folgender Weise:

4+
M;
WRID, * 80EZ;
ARD , ' 8Dfg;

#
(folgt eigentliches symbolisches Programm)

- 182 -

Dies bedeutet, daB das LIBRARY-Pack WRID (beginnend bei Adresse ’8@E@) und
das Pack ARD (beginnend bei ’8D@@) verwendet werden sollen.

Voraussetzung ist, dal die Zuordnung der Packs zu den Makro-Befehlen und ihre
gegenseitige Abhdngigkeit vom Benutzer beachtet werden. Alle benutzten der 7
LIBRARY -Packs sind anzugeben, und zwar in der Reihenfolge WRTH, WRID, WRF,
WRG, ARD, ARF ARG.

(M) Benutzer-Makros
Der Benutzer kann Unterprogrammen, die geirennt zu erstellen, zu testen und in
vorbestimmte Speicherplédtze einzulesen sind, eigene Nomen geben und diese als
Makro-Instruktionen in seinen symbolischen Programmen verwenden.
Benutzer-Makros haben im Programm die Gestalt

XYml

mit folgender Bedeutung:

X Buchstabe } 2 Zeichen vorgeschrieben, kennzeichnen
Y Buchstabe oder Ziffer Unterprogramm

m Adressierungsart .

| Lénge des Ubergebenen Parameters } bei Bedarf

Fur XY sind alle Kombinationen verboten, die fuir Maschinenbefehle oder Standard-
Makros verwendet werden, fur das erste Zeichen (X) in jedem Falle die Buchstaben
W, R und K.

Fur m ist bei Bedarf einer der Buchstaben C, X, R, L oder A einzusetzen (entspre~
chend Konstanten-, indirekter, Register-, relativer oder absoluter Adressierung).

Fur | ist einer der Buchstaben D, F oder G einzusetzen, wenn statt eines Bytes 2,
3 oder 4 aufeinanderfolgende Bytes als Parameter tbergeben werden sollen.

Benutzer-Makros konnen 3 Typen von Hauptprogramm aufrufen:

a) Einfaches Unterprogramm: Es wird kein Parameter ibergeben.
Schreibweise im Programm z.B.: M3;
Erzeugt wird folgende Instruktion:
CSA. (Ruckkehradresse), (Anfangsadresse von M3);

b) Unterprogramm LD-Typ: Vor Aufruf des Programms wird ein Parameter ins
Unterprogramm Ubergeben. Schreibweise im Programm
B.: DMX, @, , X;

Erzeugt wird diese Befehlsfolge:
LDX, (Ubergaberegister), , X;
CSA, (Ruckkehradresse), (Anfangsadresse von DM);

- 183 -

c) Unterprogramm ST-Typ: Nach Ablauf des Unterprogramms wird ein Parameter
ins Hauptprogramm bergeben. Schreibweise im Pro-
gramm z.B.:
H9A, ® , ADDR;
Erzeugt wird diese Befehlsfolge:
CSA, (Ruckkehradresse), (Anfangsadresse von H9);
STA, (Ubergaberegister), ADDR

Wahrend also beim Typ a) nur ein zweistelliger Makro-Name erlaubt ist, ist bei
den Typen b) und c) der Name um die Adressierungsart (m) zu ergdnzen und ein
Hinweis fur die Operandenadresse zu geben; dadurch wird bestimmt, woher der Para-
meter geholt bzw. wohin er gebracht wird. Die Regeln entsprechen genau denen fur
BUS-bezogene Befehle.

Aus formalen Grinden ist bei Makros vom LD- bzw. ST-Typ als Spezifikation das
Zeichen ® einzusetzen. Die Angabe einer Anzahl vor Benutzer-Makros ist verboten.

Ist ein Parameter von 2, 3 oder 4 Byte Ldnge zu Ubergeben, so wird an den Makro-
Namen als 4. Zeichen (I) der Buchstabe D, F oder G angehingt; Beispiel:

DMRG, (@ , OPD;

Erzeugt die Befehlsfolge:

4 = & LDR, (Ubergaberegister), OPD;

CSA, (Ruckkehradresse), (Anfangsadresse von DM);

Zu Beginn des Programms sind die Namen der Benutzer-Makros als Anweisungen mit

dem RuckkehradreB-Register und der Anfangsadresse des zugehorigen Unterprogramms

sowie (fur Falle b und ¢) dem Typ (LD oder ST) undder Adresse des Ubergaberegi-

sters anzugeben; alle AdreBangaben sind dabei Hexa-Zahlen. Dies geschieht z.B. in
folgender Form:

"y

M;

M3, '5A80;" 1E

DM, '588¢,"1C,"18,LD;

H9 ,’5998,’2A," 1F,ST;

i*. T (folgt eigentliches symbolisches Programm)
Typ

Adresse Ubergaberegister
RickkehradreB-Register

Anfangsadresse Urterprogramm

Unter M konnen auBerdem die im vorigen Abs:hnitt beschriebenen Pakete der
LIBRARY erscheinen.

- 184 -

KORREKTUREN

Beim Erstellen von symbolischen Programmen, z.B. off-line mit Hilfe d?s Telef.ype,
kénnen Fehler entstehen, die bereits beim Eintippen erkannt werden. Hierfur sind
Korrekturmioglichkeiten vorgesehen:

Ein Linkspfeil («—) macht das vorangehende Zeichen ungiltig,
mehrere aufeinanderfolgende Linkspfeile («— <—...) die ent-
sprechende Anzahl vorangehender Zeichen. Danach sind die
richtigen Zeichen einzugeben.

Ein Hochpfeil (}) macht die gesamte Anweisung bis zum vorange-
henden Semikolon ungiltig. Danach ist die Anweisung neu einzu-
geben.

Bei Benutzung der einfachsten Assembler-Version MINCASS 600 werden fehl.erhaf.fe
symbolische Lochstreifen mit dieser Methode korrigiert, indem man sie off-line (im
Local-Betrieb) auf dem Teletype dupliziert und &ndert.

HANDHABUNG DES ASSEMBLERS
Jede Programmumwandlung erfordert mindestens 2 Laufe des Assemblers:

ASS dient zum Aufbau der Markenliste sowie zur Erkennung von formalen Fehlern

EXC dient zur Erzeugung eines Lochsireifens, der das Programm in Maschinencode
enthiélt, und zur Fehlererkennung

Nach Start des Rechners meldet sich der Assembler auf dem Teletype mit ¥ und Klingel-
zeichen. Der Benutzer wihlt den Lauf durch Eingabe der Bezeichnung ASS bzw. EXC uber
die Tastafur des Teletype vor; darauf ist einzugeben, wortber das Quellprogramm eingele-
sen wird und wohin das Resultat abgelegt wird:

ASS Eingabe: IKB Tastatur des Teletype
ISB Langsamer Leser (Teletype) } symbolisches Programm
IFB Schneller Leser
Ausgabe: OSB Langsamer Locher (Teletype)
OFB Schneller Locher
EXC Eingabe: ISB Langsamer Leser (Teletype)
IFB Schneller Leser
Ausgabe: OSH Langsamer Locher (Teletype)
OFH Schneller Locher

symbolisches Programm
symbolisches Programm

Maschinencode-Programm

Beispiele: ASS ,IKB,OSB
ASS ,1SB ,OFB
EXC,ISB,OSH
EXC,IFB,OFH

Nach Vorwahl der Betriebsart ist "Wagenriicklauf" einzugeben, und der Lauf beginnt.
Das symbolische Programm, gleichgultig ob tber die Tastatur eingegeben oder als Loch-
streifen eingelesen, hat das vom Assembler vorgeschriebene symbolische Format. Ausge-
lochte Maschinencode-Streifen haben Hexa-Format (s. Anhang).

-185 -

Varianten dieser Betriebsarten sind solche, bei denen nur die Eingabe vorgeschrieben,
die Ausgabe aber weggelassen wird, z.B.:

ASS ,ISB
EXC,1SB

Hierbei erfolgt keine Ausgabe; jedoch werden alle Anweisungen, die formale oder
Adressierungsfehler enthalten, zusammen mit der Anweisungs-Nummer und einem Fehler-
code auf dem Teletype ausgedruckt (siche Fehlerliste).

Im Normalfall wird zu Beginn jedes ASS-Laufs die Markenliste geldscht; jedoch hat
der Benutzer die Moglichkeit, dies zu verhindern; er gibt dann SAV zusitzlich ein:

ASS,SAV, ...

Zusdtzlich kann mit PRO das Drucken eines Protokolls auf dem Teletype vorgewihlt
werden, z.B.:

ASS, ISB,PRO
ASS, IFB, OFB,PRO
EXC,IFB,OFH,PRO

Das gedruckte Protokoll hat je Zeile folgendes Format (1 Zeile = 1 Anweisung):

Fehlercode (2 Ziffern oder Leerschritt)

Leerschritt

Anweisungs-Nummer (4 Ziffern)

Leerschritt

(Basis-) Adresse (4 Hexa-Ziffern)

Leerschritt

Marke (4 Zeichen)

. falls vorhanden
Anzahl (4 Zeichen)

Zusatzzeichen (>,<, = oder Leerschritt) falls vorhanden
Trennzeichen (% oder &)

Befehl (4 Zeichen)

Spezifikation (4 Zeichen)

, oder ldngere
Operand (6 Zeichen) Spezifikation
Ergdnzung (4 Zeichen)

Leerschritt

Maschinencode (max. 8 Hexa-Ziffern-Paare, durch je 1 Leerschritt

getrennt; die Paare entsprechen erzeugten Bytes in
aufsteigender Adreflreihenfolge; nur bei EXC-Lauf).

- 186 -

Spezifikationen mit mehr als 16 Zeichen und Maschinencode-Strings mit mehr als
8 byte werden in Folgezeilen spaltengerecht fortgesetzt.

Kommentare werden unter Weglassung des einleitenden Schragstrichs mit Beginn der
Markenspalte als besondere Zeilen ausgedruckt.

(E) EDITOR-BETRIEB

Die Assembler MINCASS 600 E und M erlauben dartb erhinaus die Korrektur fehler-
hafter symbolischer Programme wihrend eines Assembler-Laufs. Korrekturen werden
vor dem Lauf eingegeben und in zwei Pufferbereiche A (fur Korrekturvorschriften)
und B (fur neue symbolische Anweisungen) eingegeben. Danach wird der Lauf (ASS,
evtl. auch EXC) ausgefuhrt; die vorgegebenen Korrekturen werden dabei automatisch

ausgefuhrt.

Zur Eingabe der Korrekturen wird durch Eintippen von

COR, kk

oder COR

(danach Wagenriicklauf) die zugehsrige Betriebsart vorgewdhlt. kk ist eine zweistel-
lige Dezimalzahl; sie gibt die GriBe des Pufferbereichs A an, d.h. die maximale
Anzahl der folgenden Korrekturvorschriften. Diese werden dann in folgender Weise

eingegeben:

Anweisung m loschen
Anweisung m bis n lschen

Anweisung m @ndern danach jeweils Eingabe der
Anweisung m bis n @ndern neuen Anweisung(en) in ubli-
cher symbolischer Form. Anwei-
sungen durch Semikolon (;) ge-
trennt. Nach letzter Anweisung
Doppelkreuz (3f) statt Semikolon
eingeben.

Nach m neue Anweisung(en)
einfigen

m, n sind bis zu 4-stellige Dezimalzahlen; sie entsprechen den Anweisungsnummern
des zu korrigierenden Lochstreifens bzw. auf dem zugehtrigen Protokoll.

Wird kein kk eingegeben, gilt die in einer friheren Anweisung gemachte GréBe des
Pufferbereichs und der Korrekturvorschriften.

AuBerdem gibt es folgende Kommandos fur die Uberprifung bzw. Anderung des Kor-

rekturpuffers:

3
3

m

3

m

n

oOonOn mrrr

Listen aller eingegebenen Korrekturen
Listen der Korrektur zu Anweisung m
Listen der Korrekturen zu Anweisungen m bis n

Loschen aller eingegebenen Korrekturen
Loschen der Korrektur zu Anweisung m
Loschen der Korrekturen zu Anweisungen m bis n

Dies bezieht sich sowohl auf Korrekturvorschriften als auch auf neue Anweisungen,
die mit COR in den Puffer eingegeben worden sind.

- 187 -

Nach D, A, |, L und C ist Wagenricklauf zu betdtigen. Durch Eingabe von 3
wird die Betriebsart beendet.

Ein danach ausgefihrter Assembler-Lauf beriicksichtigt automatisch die eingegebenen
Korrekturen und fihrt zu einem berichtigten Lochstreifen bzw. Protokoll.

Sind sehr viele Korrekturen ndtig, so kann der hierfir benstigte Speicherraum da-
durch geschaffen werden, daB die Markenliste nicht aufgebaut wird. Man fuhrt einen
reinen Korrekturlauf (anstelle eines Assemblerlaufs) durch, indem man die Eingabe
ASS weglaBt und durch Eingabe von

ISB, OSB oder
IFB, OFB

diese Betriebsart vorwihlt (mit Wagenricklauf danach).

Bei spiele fur Korrekturvorschriften und -anweisungen:

2-19 D Anweisung 2 bis 10 lsschen

12 A Anweisung 12 @ndern:

H126: CSA,’18,UP18 (neue Anweisung)

335 1 hinter Anweisung 335 einfugen:
XAB : LDC, @ ,"T" (neve Anweisung)

489 D Anweisung 408" lsschen

1928-1921 A Anweisung 1020 und 1921 dndern:
NOP (neue Anweisung)

NOP (neve Anweisung)

WEITERE FUNKTIONEN
(E) Die dem Assembler zur Verfigung stehende SpeichergrsBBe kann durch Eingabe von

ADR, (Endadresse = 4-stellige Hexa-Zahl)

bestimmt werden. Dies ist zu Beginn durchzufihren; andernfalls wird ‘5FFF (Ende
8 kbyte-Speicher) als Endadresse genommen.

(M) Der Protokollausschrieb erfolgt in Abschnitten von DIN A4-BlattgroBe. Auf jedem
Blatt steht zu Anfang die Blatt~Nummer sowie der Programmname. Dieser kann bis
zu 48 Zeichen haben und vom Benutzer durch

COM, (Programmname)
eingegeben werden.
(M) Nach EXC-Lauf eines Programms, in dem Standard-Makros vorkommen, fordert der
Rechner durch Ausdrucken von LIB auf, einen Maschinencode-Streifen mit der

LIBRARY in den (schnellen) Leser einzulegen. Nachdem dies geschehen ist, wird
mit Wagenrucklauf bestdtigt und die LIBRARY (bzw. Teile davon) dupliziert.

- 188 -

FEHLERLISTE

Fehlercode

Al Parity-Fehler

22 Name mehrfach definiert

23 Name beginnt nicht mit Buchstabe

84 Speicheruberlauf

25 Befehl nicht zulassig

26 DO-Befehl falsch bzw. falsche Anzahl

19 Name nicht definiert

1 Operand hat falsche Lange

12 AdreBabstand fur relative Adressierung zu grof3

13 Konstante (Eingabe als Operand) zu lang

14 Hexa-Zah! enthdlt unerlaubtes Zeichen

15 Hexa-Zahl endet zu frih

16 Additive Q-Definition langer als 32 byte

17 Textstring als Operand zu lang

18 Textstring in Definition zu 'lang

19 F- oder G-Format falsch

21 Komma fehlt nach Befehl

22 Semikolon oder Schragstrich fehlt.

23 Anweisung endet zu frih

24 Leerspalte ist nicht leer

25 Angabe in einer Spalte fehlt

28 O-Anweisung setzt AdreBzahler zurick (Warnung)
(M) 49 Makro enthilt unerlaubte Anzahl-Angabe
(M) 41 Makro enthélt andere Spezifikation als (@
(M) 42 Formatangabe unzuldssig

ASSEMBLER-DATEN

MINCASS 600 bei 4k: max. 65 Namen; bei 8k: max. 880 Namen in Markenliste
MINCASS 600 E bei 8k: max. 610 Namen; bei 16k: max. 1425 Namen in Markenliste

MINCASS 600 M bei 16k: max. 815 Namen in Markenliste

Zugrunde gelegt sind Namen mit 2-byte-Werten (z.B. Adressen), die 5 Byte in Marken-
liste einnehmen. Namen mit n-byte-Werten erfordern 44n bytes, wodurch sich die o.a.
Anzahl von Namen erniedrigt.

Beim MINCASS 600 E/M sind auBerdem die Korrekturpuffer in Abzug zu bringen (9 byte
je Korrekturvorschrift sowie 1 byte je Zeichen fur neue Anweisungen).

- 189 -

PROGRAMM-BEISPIEL

Aufgabenstellung:

In den Zellen mit den symbolischen Adressen ZAHL bis ZAHL + 99 stehen 100 Werte,
deren Summe in der Zelle mit der symbolischen Adresse SUM abgelegt werden soll.

Ein Uberlauf soll beriicksichtigt werden.

Das Programm beginnt mit der symbolischen Adresse ANF und wird durch einen Sprung
nach Zelle ENDE verlassen.

Blockdiagramm:

ANF

SUM& g
1< g

SUM«~ <SUM>
HZah)+ <1>

[~ >+ 1

-190 -

Programm:

0000

0001
0292
2003
0004

2085
0006
20087
02008
2809
0010
2011

6000
6085
600A
600E
6012
6013

0 »'6000 v
SUMMATION MIT UEBERLAUF;

I H Q » 33
SUM Q s 43
ZAHL: 2% Q 2 '40003
/
3
ANF @ 6<&LDC 1 » 23 19 96 81 03 @0
L1 H LDA ,'07 ,ZAHL 1 3 8F 87 00 40 @3
2=xADR ,SUM » 15 1E 95 24 07
INEC>»1 s 100,L1 5 5B 03 64 F4
END HLT 82
JPL » s ANF H F8 EC
A\ Z 3 / —
symbolischer Befehl Maschinencode

Kernspeicher-Adresse des 1. Befehls-Bytes

Zeilennummer des Protokolls

Erlduterungen:

Zu Zeile 8: Die O-Zuweisung legt die Programm-Anfangsadresse fest.

Zu Zeile 1 - 2: Den symbolischen Namen | und SUM wird der Wert 3 bzw. 4 zuge-
wiesen.

Zy Zeile 3: Dem Namen ZAHL wird der 2 Byte groe Wert ‘400 zugewiesen.

Zu Zeile 5: Das Register | (= Register '@3) und die 5 folgenden Register
(Register ‘P4...’@8) werden mit § geladen.

Zu Zeile 6: Die Adresse ZAHL (= “4900) wird mit dem Register | (= “#3) indi-
ziert: ZAHL + <I> .,

Der Inhalt der sich daraus ergebenden Adresse wird in das Register
%7 geladen.

Zu Zeile 7: Der 2 Byte groBe Inhalt der Register ‘@7 und @8 wird zum 2 Byte-
Inhalt der Register SUM und SUM + 1 addiert (Register ‘@8 hat
immer Nullinhalt).

Zu Zeile 8: Der Inhalt des Registers | wird um 1 erhsht und auf 188 (= ’64) ge-

pruft. Wenn er nicht 180 ist, verzweigt das Programm zur Marke L1
(= Adresse ‘6@85).

=191 -

LIBRARY

VORBEMERKUNG

Die Bibliothek (LIBRARY) des DIETZ 621 Computers besteht aus Unterprogrammen,
die umfangreichere Funktionen erfillen als einzelne Maschinenbefehle. Die Unter-
programme werden durch Makro-Anweisungen aufgerufen; hierfur ist der Makro-As-
sembler MINCASS 600 M zu benutzen. Jedoch konnen sie auch - fir den Benutzer
umstandlicher - mit Unterprogrammaufrufen unter Ubergabe des Operanden mit einfa-
chen Assemblerbefehlen bedient werden.

Die Unterprogramme der Bibliothek sind entsprechend ihrer Funktion zu Paketen
(PACKS) zusammengefaf3t:

WRTH (Ein/Ausgabe von Text und Hexa-Zahlen)
WRID (Ein/Ausgabe von 1- und 2-byte-Ganzzahlen)
WRF (Ein/Ausgabe von 3-byte-Gleitkommazahlen)
WRG (Ein/Ausgabe von 4-byte-Gleitkommazahlen)
ARD (Doppelbyte-Arithmetik)

ARF (3-byte-Gleitkomma=Arithmetik)

ARG (4-byte-Gleitkomma=Arithmetik)

WRID bedingt das Vorhandensein von ARD, WRF das von ARF, WRG das von ARG.

Die Unterprogramme benutzen als Variablenspeicher die Register der jeweiligen Ebene;
sie konnen daher im Multiprogramming von beliebig vielen Ebenen gleichzeitig be-
nutzt werden. Je Ebene muBl ein Pool von 4 Bytes (Register-Adressen @@...30 zur
Verfigung stehen; dieser Bereich, einschlieBlich dem Akkumulator (@, kann durch

die Unterprogramme vertindert werden.

Die vollistandige LIBRARY ist ca. 6.8 kbyte lang.

PAKET WRTH (Linge ‘@120)
Dieses Unterprogramm-Paket dient zur Ein- und Ausgabe von Text und H;xa—Zuhlen
in Verbindung mit Fernschreibern, Lochstreifengerdten und anderen, zeichenweise

arbeitenden Periphergerdten im ASCll-Code.

Der Aufbau der zugehsrigen Maokro-Anweisungen ist:

¢ Anzahl}* <1CBefeh|1> , {Ger'dt} , <f:Oper<:nd:|> , {Indexregister}

~192 -

Folgende Befehle sind vorgesehen:

RTm Lesen Text

WTm Schreiben Text

RHm Lesen Hexa

WHm Schreiben Hexa

KTm Eingabe Text ber Tastatur
KHm Eingabe Hexa Uber Tastatur

Lesen bedeutet Eingabe Periphergerit und Abspeichern in der effektiven Adresse,
Schreiben den umgekehrten Vorgang. Fur m ist einer der Buchstaben C, X, R, L
oder A entsprechend der gewiinschten Adressierungsart einzusetzen; die Operanden-
Adresse wird wie Ublich programmiert, ebenso das eventuelle Indexregister, mit des-
sen Inhalt sie modifiziert wird.

Bei Text (T) wird ein Byte unverdndert als ASClI-Zeichen behandelt; im Falle von
Hexa (H) werden die linke und rechte Halfte (in dieser Reihenfolge) eines Bytes
zwei ASClI-Zeichen (0...9, A...F) zugeordnet, indem die zusdtzlichen 4 Bit des
ASClI-Codes abgeschniften bzw. ergdnzt werden.

Die Gerdtenummer wird als Spezifikation dem Befehl mitgegeben, wobei dort entwe-

der eine zweistellige Hexa-Zahl oder ein Name steht, der entsprechend definiert ist.
Wird z.B. 'F3 als Gerdtenummer programmiert, so wird das Gerdt mit der BUS-Adres-
se 1F3@ angesprochen.

Vor dem Befehl kann die Anzahl der ein- oder ausgegebenen Zeichen bestimmt wer-
den (2...256), wenn es sich um mehr als eins handelt. Bei Text-Befehlen entspricht
dem ein gleich langer Operanden-String, wobei das Basis-Byte, welches auch das
zeitlich zuerst behandelte Zeichen enthilt, programmiert wird. Bei Hexa-Befehlen
ist die Ldnge des Operanden=Strings halb so groB.

Achtung: Die ein- oder auszugebenden Zeichen benutzen den Pool. Die Ubergabe
erfolgt im Intern-Format ab Register 1 (bei WHm, WTm, KTm, RTm) bzw. ob
Register ‘18 (KHm, RHm). Das bedeutet, daBl durch die Ubergabe alle Register
"1 - "1 + N-1 (bzw. "18 + N-1) belegt werden. Sind nur die Register bis ’3F
fur die LIBRARY reserviert, so lassen sich maximal 28 d.i. 40 Bytes durch einen
Aufruf ubertragen.

Text- und Hexa-Zeichen werden, als Konstanten verwendet, zweckmdBig mit den
Definitionen T und H programmiert. Fir die Ausgabe von ASCli-Steuerzeichen (z.B.
Wagenricklauf) ist Text-Ausgabe von Konstanten zweckmiBig, die als Hexa-Zahlen
eingegeben werden.

Beispiele:
RTA ,’F3 ,ADDR Lesen 1 Textzeichen von ‘F3 nach ADDR
6=% RHR ,’@@ ,REG1 u 6 Hexa-Zeichen von @@ nach REG1
WTL ,DEV,CHAR Schreiben 1 Textzeichen aus CHAR nach DEV
2= % WTC,FS2 ,'@A@D Ausgabe Wagenriicklauf/ Zeilenvorschub auf FS2
WTC,FS2 ,"X" Schreiben "X" auf FS2

-193 -

Die Ausgabe der Zeichen erfolgt im ASCII-(1SO-7~) Code mit geradzahliger Paritit.
Bei der Eingabe wird auf diese Paritdt geprift; fehlerhafte Zeichen werden zwar ab-
gelegt, jedoch wird dann ein Register-Byte ‘@8 auf FF gesetzt; der Benutzer kann
dieses Byte nach Ablauf des Makrobefehls im Hauptprogramm abfragen. Im Normal-
fall hat das Register '@#8 Nullinhalt.

Achtung: Bei der Ubergabe von Hexa-Konstanten werden die Bytes zeitlich in
aufsteigender AdreBreihenfolge behandelt (d.h. von rechts nach links!).

PAKET ARD (Lange ’00CO)

Mit diesem Unterprogramm-Paket ksnnen Doppelbyte~Ganzzahlen arithmetisch behan~
delt sowie ein- und ausgegeben werden, einschlieBlich der Umwandlungen von Bindr-
in Dezimalzahlen und umgekehrt.

Einbyte-Ganzzahlen sind stets positiv: n P 22| o...255
Doppelbyte~Ganzzahlen sind positiv oder n |2l e———20| -3768
negativ (Zweierkomplement) und umfassen ntl | p Y — 28 32767

16 bit (niedriges Byte = Basis-Byte): Vonzzeichen

Folgende arithmetischen Befehle sind fur Doppelbyte~Ganzzahlen vorgesehen:

MPmD
DVmD

Multiplizieren Doppelbyte
Dividieren "

Als Arbeitsregister wird stets der Akkumulator (@ benutzt. Der Operand kann wie bei
BUS-bezogenen Befehlen ublich addiert werden; fur m ist C, X R, L oder A einzu-
setzen.

Die Multiplikation ergibt ein 4-byte-Produkt:

@ |7 2] n |7 Pl @ |7 P
@ +1 : Bl o+l r 3l @ + _2?6_ 4-Byte-
@ +2 2 Produkt
vZ vZ | =%
@ +3 ; 231
vz
Akku —_— Akku

- 194 -

Bei der Division ergibt sich ein 4-Byte-Quotient mit Mittelkomma:

@ |3 Pl n |7
@+l[Bl o

VZ VZ
Akku /

Beide Operationen laufen vorzeichenr

Pl @ |59 76
21 @ 1|7 T8 Bruchteil
@ +2[7 277
@43y B }Ganzzahl-
t Teil
vZ
Operand —» Akku

ichtig ab.

Um dem Benutzer einen symbolisch vollstindigen Satz von Doppelbyte-Befehlen an
die Hand zu geben, sind im Makro-Assembler noch folgende Befehle vorgesehen:

LD mD Laden
STmD Speichern
ADmD Addieren

SB mD Subtrahieren

Doppelbyte (Operand — Akku)

(Akku —s Adresse)
(Akku + Operand — Akku)
(Akku - Operand — Akku)

Es werden jedoch keine Unterprogramme hierfur benutzt; vielmehr erzeugt der As-

sembler hieraus Maschinenbefehle mit

vorgeschaltetem DO-Befehl .

Die Angabe einer Anzahl ist nicht zuldssig, so daB sich fur diese Anweisungs-

Gruppe folgender Aufbau ergibt:

{ Befehld , @ , ¢ Operand b , ¢ Indexregister p

Beispiele fur Doppelbyte-Anweisungen:

LDCD , @ ,-25¢00
STXD , @,,IND

ADRD , @ ,REG7, IXR1
SBLD , @ ,CONS
MPAD, @ ,ADDR, ' AB
DWRD, @ ,’Al

Anmerkung:
Es werden in diesem Paket die Register

~-25000 — Akku
Akku — < IND>
Akku + Operand — Akku

Akku - Operand — Akku
Akku - Operand — Akku
Akku : Operand — Akku

bis einschlieBlich ’1F belegt.

- 195 -

PAKET WRID (Linge ’#300)

Zu diesem Paket gehsren folgende Ein/Ausgabe- und Konversionsbefehle:

RD mD Lesen Doppelbyte-Ganzzahl

WD mD Schreiben Doppelbyte-Ganzzahl

RA mD Konversion ASCIl — Bingr

WAmD " Bingr — ASCII Doppelbyte-
RB mD " BCD — Bindr Ganzzahl
WB mD " Bindr — BCD

Die ersten beiden Befehle haben den Aufbau

{ Anzahip £ { Befehl b , { Gerditd , 4 Operand} , { Indexregister

und bewirken das Lesen eines ASClI-Zeichen=Strings mit Ganzzahl-Bedeutung,
Umwandlung in eine bindre Doppelbyte~Zahl und Abspeichern in der angegebenen
(sowie der ndchsthdheren) Adresse; beziehungsweise beim Schreiben den umgekehr-
ten Vorgang. Dabei ist das Periphergerdt sowie die Zahl der ASCll-Zeichen anzu-
geben, die gelesen bzw. ausgegeben werden sollen:

-12345 Anzahl
_2 11}
uut_lu35 "

Luw=32768 "

O O N O

W nonn

Beim Schreiben werden fihrende Nullen mit Leerschritten unterdrickt; fur positives
Vorzeichen steht ein Leerschritt. Gelesen wird hochstens die angegebene Stellen-
zahl; jede Nicht-Ziffer nach einer Ziffer fihrt jedoch schon zur Beendigung des
Lesevorgangs (Ausnchme: Return, Line-feed, Rubout).

Hinsichtlich Paritdts-Erzeugung und -Prifung des ASCII-Codes gelten die Bemerkungen
des vorigen Abschnitts; das Fehler-Register hat die Adresse ’14.

Mit den restlichen 4 Befehlen, die den Aufbau

{ Befehl> ,@, ¢ Operand» , 4 Indexregister

haben, ksnnen Gunzzahlen, die als ASClI- oder BCD-Zeichen im Akkumulator und
den nichsthsheren 5 Bytes stehen, in bindre Doppelbyte-Zahlen umgewandelt und in
der effektiven Adresse abgelegt werden; ebenso ist der umgekehrte Vorgang miglich.

- 196 -

Lage der Zeichen im Akkumulator: @ Vorzeichen
@ + 104
inhalt: ASCII-Zeichen @ +2 102 Betrag
bzw. BCD (‘#...'9) @ +3 102
@ +4 10!
Vorzeichen: - oder Leerschritt (ASCII) @ 45 100
bzw. ‘@D oder ‘@@ (BCD)
Beispiele fur Doppelbyte-Ein/Ausgabe- und Konversionsbefehle:
68 RDAD ,DEV,ADDR 6-Zeichen-Zahl von DEV nach ADDR (bindr)
98 WDCD, 'F3 ,-32768 -32768 auf 'F3 9-stellig ausgeben
RAXD , @,,IND @(ASCII) — <IND>(bintr)
WARD, @, REG7 REG7 (bindr) —@ (ASCII)
RBAD , @ , '2F@8 @ (BCD) — ' 2F@8 (binr)
WBLD , @, VAR,IXR Operand (bindr)— (@ (BCD)

Bestandteil des WRID-Pakets sind schlieBlich noch Ein/Ausgabe- und Konver-

sionsbefehle fur Einbyte-Ganzzahlen:

RI'm Lesen Einbyte-Ganzzahl

Wim Schreiben Einbyte~Ganzzahl

RAm Konversion ASCI|— Bindr

WAmM u Bindr — ASCII Einbyte~
RB m " BCD — Bindr Ganzzahl
WBm u Bindr — BCD

Sie entsprechen villig den Doppelbyte-Befehlen; jedoch werden nur positive Zahlen
behandelt, die maximal 3 geltende Ziffern haben, nur 3 Akkumulator-Bytes

(@bis @+ 2) belegen und in bindrer Form ein Byte einnehmen.

0 102
Q@+ 10!
Beispiele hierfur: @ +2 100
28RIA ,DEV,ADDR 2-stellige Ganzzahl von DEV nach ADDR
68WIC,’F3,125 vwuwol 25 auf 'F3 ausgeben
RAX, @,,IND
‘%AAR: g :55%78 siehe Doppelbyte-Beispiele

WBL , @ , VAR, IXR

Anmerkung: Es werden in diesem Paket die Register bis einschlieBlich '23 belegt.

-197 -

PAKETE ARF UND ARG (Lénge ’§24%, '§25@ ohne Funktionen)

(Lange der Funktionen ’@g74f)
Diese Unterprogramm-Pakete geben dem Benutzer die Moglichkeit, mit Gleitkomma-
Zahlen zu rechnen. Es gibt 2 interne Darstellungen von Gleitkomma-Zahlen mit
unterschiedlicher Genauigkeit:

F-Typ (2-Byte-Mantisse): :+] i g_ } Mantisse M
n+2 Exponent E
G-Typ (3-Byte-Mantisse): n é)_
n+l P Mantisse M
n+2 2]
n+3 Exponent E

Die Mantissen sind Doppelbyte= bzw. 3-Byte-Ganzzahlen; sie ksnnen positiv oder
negativ sein. Exponenten sind positive oder negative Einbyte-Ganzzahlen (Bereich
=128 ... 127) zur Basis 2. Eine Gleitkommazahl hat daher den Wert

M - 2F (M = Mantisse; E = Exponent)

Das niedrige Mantissen-Byte ist stets das Basis-Byte.

Als arithmetische Befehle sind vorgesehen:

ADmF Addieren Gleitkomma F- Typ
SB mF Subtrahieren *

MPmF Multiplizieren "
DVmF Dividieren " "
ADmG Addieren Gleitkomma G-Typ
SB mG Subtrahieren "

MPmG Multiplizieren " "
DVmG Dividieren " "

-198 -

(Gleitkomma G-Typ)

POmG Potenzieren " "
SQ Wurzel " "
Si Sinus " "
cO Cosinus " "
TA Tangens " "
AT Arcus Tangens " "
LO Logarithmus u n
EX Exponent . "
RN Random O0...1 "
IT Integer " "
SG Signum " "
AB Absolut " "

Dazu gibt es noch 3- und 4-byte-Transportbefehle, die jedoch nicht als Unterpro-
gramme existieren, sondern vom Makro~Assembler als Maschineninstruktionen mit
vorgeschaltetem DO-Befehl erzeugt werden:

LDmF Laden Gleitkomma F-Typ
STmF Speichern " u
LDmG Laden Gleitkomma G-Typ
STmG Speichern " n

Der Aufbau der Anweisungen ist in allen Fallen:

{ Befehl> , @, 4 Operand p , { Indexregister

und entspricht hinsichtlich der Adressierungsart den Doppelbyte~Befehlen. Als Ar-
beitsregister kann wiederum nur der Akkumulator @ angegeben werden; das nie-
drigste Byte der Mantisse belegt @ selbst; es folgen das bzw. die hsheren Bytes und

schlieBlich der Exponent in (@+ 2) bzw. (@ + 3).

Einige Beispiele:

LDLF ,@ ,CONS
STXG ,@ ,,IND
ADRG , @ ,REG7
SBLF ,(@ ,VAR,IXR
MPAG, (@ ,ADDR
DWRF , @ ,’Al

- 199 -

SEITE @000

2000 0 214000 3
o] 2B} /
BEISPIEL FUER ERWEITERTE LIBRARY:
2002 /
X=ABSCSIN(M* Qe 1)) %%e 3/5.23
2003 /
>
pO04 4000 ANF : 2=%WTC »0 > 'PARD 1E 81 190 @D QA FD QE
40 00 1¢ 02
2005 400C 8 $KERG» 0 s H FD 28 75 43 00 10 08
IF 94 E4 g2
P0B6 4018 MPAG, @ »CONLI 1F 04 8D @9 4D 40 FD
A3 45
2007 4022 sI - FD 30 03 48
2008 4026 AR 3 FD @A F3 47
2009 4p2A POAGs e »CON2 3 IF @4 8D @9 51 408 FD
E9 49
0010 4034 DVAG, e »CON3 3 IF 04 8D 909 55 4@ FD
25 46
2011 403E 156 SWERG, 2 »@ H IF @4 84 92 FD 2A 93
20 10 @F 96
2012 404A JPA » ANF H FC 00 40
@013 404D CON1: G 2013 66 66 66 E6
@014 4p51 coN2: G 233 CC CC 4C Es8
#B15 4955 CON3: G 2525 33 33 53 EC
2016 A H

Zur Definition von Gle
Belegungs~-Anweisungen:

F
G

Als Spezifikation steht

itkomma-Festwerten kennt der Makro-Assembler folgende

Belegt 3 Bytes mit einer Gleitkomma=-Zahl vom F-Typ
Belegt 4 Bytes mit einer Gleitkomma=-Zahl vom G-Typ

dahinter entweder eine beliebige Dezimalzahl (F-Format)

oder eine solche mit einer Zehnerpotenz (E-Format); zum Beispiel:

F,-123.45 (F-Format)
F,.31415E-81 (= 0.31415-10"Y) (E-Format)
F,2g. (F-Format)
G,2859.6792 (F-Format)
G,-2.8596702E03 (E-Format)

Anmerkung: Es werden bei AD, SB, MP und DV die Register bis einschlieSlich ’1F

belegt. Die Funktionen belegen die Register bis einschlieBlich *37.

- 200 -

59

oe

1E

2c

1E

49

PAKET WRF UND WRG (Lange ‘@4Fg, ’@520)

Diese Pakete erlauben die Ein/Ausgabe von Gleitkomma-Zahlen mit folgenden Makro-
befehlen:

RF mF Lesen Gleitkomma-Zahl F-Typ im F=Format
WFmF Schreiben " " "
REmF Lesen " " im E-Format
WEmF Schreiben " " "

RF mG Lesen Gleitkomma-Zahl G=Typ im F-Format
WFmG Schreiben " " "

RE mG Lesen " " E-Format
WEmG Schreiben " " "

Prinzipiell entsprechen sie den Befehlen fur die Doppelbyte-Ein/Ausgabe; der Be-
nutzer hat jedoch die Wahl zwischen zwei externen Darstellungen (F- und E-For=
mat). AuBerdem ist neben der Anzahl der insgesamt gelesenen oder geschriebenen
Zeichen (w) noch die Zahl der Stellen hinter dem Dezimalpunkt (d) anzugeben,

in diesem Falle mit ¥ als Trennzeichen, also:

w-.-dy¥
Beispiele hierfur:

7.29RFAF ,DEV,ADDR Lesen 7 Zeichen, 2 Dezimalen, F-Format
14.79WERG, 'F3 ,REG7,IXR Schreiben 14 Zeichen, 7 Dezimalen, E-Format

Hinzu kommen als Konversionsbefehle:

RA mF Konversion ASCII— Bindr

WAmF " Bindr — ASCII Gleitkommazahl
RB mF " BCD —= Bindr F-Typ

WB mF " Bindr — BCD

RA mG Konversion ASCIlI— Bindr

WAmMG " Bindr — ASCII Gleitkommazahl
RB mG u BCD —= Binér G-Typ

WBmG " Bindr — BCD

- 201 -

F-Format(a®
D 4]
(@ +2
Q@ +3
QA +4
@ 45
@ +6
(@ +7
@ +8

Beispiele fur Gleitkomma-Konversionsbefehle:

RAAF , @ ,ADDR, IXR
WBXG, @ ,, IND

104 G-Format (@

Vorzeichen
Exponent

Vorzeichen

(@ (ASCIIl) — Adresse (bindr, F-Typ)
Operand (bindr, G-Typ) — (@ (BCD)

@ +1
@42
@ +3
@ 44
@ 45
@ 46
@47
@ 48
@ +9
@ +10

Vorzeichen

} Exponent
Vorzeichen

Bezuglich Paritdtserzeugung und ~Prisfung des ASCII-Codes siehe vorigen Abschnitt.

Anmerkung: Diese Pakete belegen die Register bis einschlieBSlich ’33.

LESEN OHNE INITIATE

Alle gerdtebezogenen Lesebefehle R... der LIBRARY beziehen sich auf Eingaben,
die ein INITIATE erfordern (s. HINWEISE FUR DIE PROGRAMMIERUNG), also z.B.

den Leser am Fernschreiber.

Wo dies nicht erforderlich ist, z.B. bei Eingaben uber die Tastatur des Fernschreibers,
ist im Makrobefehl der Buchstabe K anstelle von R zu verwenden, zum Beispiel;

6% KDAD,DEV,ADDR, IXR
7.2 KFRF ,DEV,REG7

-202 -

LISTE DER UNTERPROGRAMME

WRTH
WHm
WTm
KHm
RHm
KTm
RTm

WRID

Wim
WAm
WBm
WDmD
WAmD
WBmD
Klm
Rim
RAm
RBm
KDmD
RDmD
RAmD
RBmD

WRF

WEmF
WFmF
WAmF
WBmF
KEmF
KFmF
REmF
RFmF
RAmF
RBmF

Schreiben Hexa
Schreiben Text
Eingabe Hexa
Lesen Hexa
Eingabe Text
Lesen Text

Schreiben Ein-Byte-Ganzzahl

Konversion Ein-Byte Bindr—s ASCII
Konversion Ein-Byte Bindr —BCD

Schreiben Doppelbyte - Ganzzahl
Konversion Doppelbyte Bindr — ASCII
Konversion Doppelbyte Bindr—BCD
Eingabe Ein-Byte - Ganzzahl

Lesen Ein-Byte-Ganzzahl

Konversion Ein-Byte-Ganzzahl ASCIl— Bindr
Konversion Ein-Byte-Ganzzahl BCD — Bindr
Eingabe Doppelbyte-Ganzzahl

Lesen Doppelbyte~Ganzzahl

Konversion Doppelbyte ASCIl— Binar
Konversion Doppelbyte BCD —* Bindr

Schreiben E-Format F-Format
Schreiben F-Format "
Konversion Bindr —ASCII
Konversion Bindr —BCD
Eingabe E-Format
Eingabe F-Format

Lesen E-Format

Lesen F-Format
Konversion ASCII —Bindr "
Konversion BCD —Bingr

- 203 -

WRG

WEmG Schreiben E-Format G-Format
WFmG Schreiben F-Format u
WAmG Konversion Bindr — ASCII "
WBmG Konversion Bindr—BCD "
KEmG Eingabe E-Format "
KFmG Eingabe F-Format "
REmG Lesen E-Format "
RFmG Lesen F-Format "
RAMG Konversion ASCII — Bingr "
RBmG Konversion BCD -» Bindr "
a0
MPmD Funktion A* B Doppelbyte
DVmD Funktion A/B Doppelbyte
ARF
MPmF Funktion A* B F-Typ
DVmF Funktion A/B F-Typ
SBmF Funktion A-B F-Typ
ADmF Funktion A+B F-Typ
26
MPmG Funktion(@* B G-Typ
DVmG Funktion @ /B G-Typ
SBmG Funktion(@ -B G-Typ
ADmG Funktion/@+B G-Typ
RN Funktion Random zwischen @ und 1
AT Arctan (@)
SG SIGN (@)
AB Absolut (@)
SQ Wurzel (@)
TA TAN (@)
co COs @)
N | SIN (@)
POmG @4 B
EX EXP (@)
LO LOGE (@)
IT INT (@)

- 204 -

MONITOR

VORBEMERKUNG

MONITOR ist ein Programm zum Testen von Programmen, die im Kernspeicher des
DIETZ 621 abgelegt sind.

Zuynichst wird das Monitor-Programm in einen freien Kernspeicherbereich geladen, das
N-Register der Ebene f tber die Bedienungskonsole auf die Anfangsadresse dieses Be-
reichs gesetzt und der Rechner gestartet.

Der Monitor meldet sich dann mit MON und verlangt mit LEV: zundchst die Angabe
der Ebene, auf der der Monitor laufen soll. Der Benutzer mu8 durch eine vierstellige
Eingabe @@l die Ebene | als Hexazahl angeben, auf der der Monitor und das zu te-
stende Programm laufen soll.

Durch Betitigen von RUBOUT kann die Eingabe wiederholt werden (dies gilt auch fur
alle folgenden Kommandos).

Als ndchstes verlangt der Monitor mit BUF: die Anfangsadresse des Insert-Puffer-Be-
reichs.

Der Benutzer kann durch eine 4-stellige Hexa-Adresse nnnn die Anfangsadresse eines
Bereichs (Insert-Puffers) angeben, in den spdter einzufigende Maschinencode-Bytes
abgelegt werden sollen. Wird statt nnnn ein= eingegeben, so wird der Insert-Puffer
unmittelbar an den Monitor angehdngt.

Danach gibt der Monitor ein Klingelzeichen und % aus zum Zeichen, daf die Eingabe
eines Steuerbefehls erwartet wird (dies gilt auch fur alle folgenden Eingaben).

Nun kann das zu testende Programm iUber eine der Einlese-Betriebsarten in den Kern-
speicher gelesen werden (siehe EIN/AUSGABE).

STEUERKOMMANDOS
Das zu testende Programm wird mit
aaaa S (cr)
" gestartet, wobei die Startadresse aaaa wie bei allen AdreBangaben als 4-stellige Hexa-
zahl einzugeben ist. (cr) bedeutet Wagenriicklaut . Die Startadresse muf3 dem Basis-Byte
eines Instruktionsstrings entsprechen. Verdnderungen des Benutzerprogramms durch einge-

baute Monitor-Halts oder Inserts sind zu beachten.

Ist der angesprochene Befehl durch einen vorher eingebauten Monitor-Halt Uberdeckt,
so gibt der Monitor die Fehlermeldung

HK (Halt - Kollision)

und fuhrt den Start nicht aus.

- 205 -

L&uft das Programm spdter auf einen vorher eingebauten Halt, so druckt der Monitor
dessen Adresse aus und erwartet einen neuen Steuerbefehl. Das zu testende Programm
kann dann durch eines der folgenden Kommandos wieder angestofen werden:

N (cr): néchste Instruktion ausfihren, dann wieder anhalten

G (cr): weiterlaufen bis zum ndchsten Monitor-Halt

Alle eingebauten Halts (8 byte lang), die durch einen N=-Schritt beruhrt werden,
werden ausgebaut. Ist der durch einen N=Schritt auszufihrende Befehl ein bedingter
Sprung, so wird vor Ausfuhrung des Befehls sowohl hinter dem Befehl als auch am
Sprungziel ein Halt eingebaut. Daher mussen bei N-Halts 2 der 5 moglichen Halts
reserviert werden, d.h. N wird nicht ausgefihrt, wenn mehr als 3 andere Halts schon
eingebaut sind. Dies wird durch Drucken eines Fragezeichens angezeigt. Die durch N
eingebauten Halts werden zu Beginn des ndchsten N=-Schritts wieder ausgebaut.

Durch das Kommando
E (cr)

wird der Monitorbetrieb beendet. E baut alle Halts und Inserts aus und setzt die no-
tigen Merkerzellen im Monitor so, daB8 durch einen Start tUber die Rechner-Konsole
der Monitorbetrieb wieder aufgenommen werden kann.

War der Monitor auf einer hsheren Ebene als @ gelaufen, so wird sich nach E (cr) der
Monitor noch einmal auf der Startebene @ melden, so daB dort noch einmal E (cr) ge-
geben werden muf.

MONITOR-HALT

Das zu testende Programm kann an beliebigen Stellen angehalten werden. Sie werden
durch die Eingabe

aaaa H (cr)

vorbereitet, wobei acaa die Haltadresse ist. Sie muB einem Befehlsbyte bzw. dem eines
vorgeschalteten DO-Befehls entsprechen (d.h. dem Basis-Byte eines Instruktionsstrings
laut Assembler-Protokoll). Das Programm hilt dann nach Ausfihrung des davorliegenden
Befehls an. Halts nach unbedingten Springen und Ebenenwechsel-Befehlen (zu hsheren
Ebenen) sind wirkungslos; ebenfalls nach bedingten Spriingen, wenn verzweigt wird.

Als Halt wird vom Monitor im Benutzerprogramm ein 8 byte langer Befehlsstring einge-
baut:

‘g2 = & STA, (@ ,BPP Ruckkehr-Register fur Benutzer retten;
CSA,(@ ,HASU UP-Sprung nach Menitor;

- 206 -

Veriinderungen des Benutzerprogramms durch eingebaute Halts sind zu beachten.
Ein Halt einzubauen, ist in 3 Fallen verboten:

a) Der einzubauende Halt wirde sich mit einem schon eingebauten Halt Gberschnei-~
den. Fehlermeldung: HK (Halt - Kollision)

b) Es sind schon 5 Halts eingebaut. Fehlermeldung: HU (Halt - Uberlauf)
c) Halt-Adresse < '400@@. Fehlermeldung: HV (Halt verboten).
Es konnen bis zu 5 Haltbefehle eingebaut werden.

Zu Beginn eines G-Schrittes wird der Halt, auf dem weitergestartet wird, zundchst
ausgebaut, um die urspringlichen Benutzer-Befehle ausfihren zu kénnen; bei Erreichen
des ndchsten Monitor-Halts wird dieser Halt dann wieder eingebaut. Daraus ergibt
sich, daB in Programmschleifen immer mindestens 2 Halts vorzusehen sind.

Durch den Befehl
H (cr) (ohne AdreBangabe)

wird eine Liste der Adressen aller eingebauten Halts abgerufen.

Haltbefehle kann man einzeln mit
aaaa D (cr)

wieder eliminieren. Ist der durch aaaa spezifizierte Halt nicht vorhanden, so gibt der
Monitor die Fehlermeldung HN (Halt nicht vorhanden) aus.

Durch D (cr) werden simtliche vorgesehenen Halts wieder ausgebaut.

ABFRAGEN, ANDERN, EINFUGEN

Nach Eingabe von
aaaa L (cr)

wird der Inhalt eines Register~ oder Speicherplatzes aaaa ausgedruckt; nach Eingabe von

aaaa-bbbb L (cr)

- 207 -

der Inhalt sdmtlicher Adressen von aaaa bis bbbb einschlieBlich. Je Byte wird eine
2-stellige Hexazahl gedruckt; ein Leerschritt trennt sie vom ndchsten Byte. Zu Be-
ginn jeder Zeile wird die Adresse des néchsten Bytes angegeben.

Durch Betdtigen der Taste WRU kann der Bediener das Ausdrucken des niichsten Byte-
Inhalts anfordern. Das kann beliebig wiederholt werden, wobei jeweils die ndchsthshe-
re Adresse abgefragt wird. Beendet wird der L-Zustand durch Eingabe vond3f . Jedes
andere eingegebene Zeichen wird uberlesen.

Die Adressen aaaasind, auch wenn sie sich auf den Pool beziehen, immer absolute,
nicht niveau-gebundene Adressen. Dies gilt auch fir die folgenden Kommandos.

Durch das Kommando

aaaa A (cr)
XX

wird der Inhalt der Adresse aaaa durch xx ersetzt; durch

aaaa-bbbb A (cr)
XX Yy «..F

die Adressen aaaa bis bbbb durch einen String (xx yy ...). Einzugeben sind je Byte
2 Hexa-Ziffern. Die einzelnen Bytes kénnen durch Leerschritt oder CR, LF getrennt
sein oder unmittelbar hintereinander eingegeben werden. Wird der String vorzeitig
durch 3 beendet, so bekommen die restlichen Bytes Nullinhalt. Eingabe von RUBOUT
loscht bereits angefangene Bytes. Hat man eine Zahl eingegeben, die keine Hexazahl
sein kann, so gibt der Monitor ein Fragezeichen (?) aus und erwartet eine neue Ein-
gabe des letzten Bytes. Die vorhergehenden Byte-Inhalte werden davon nicht berhrt.

SchlieBlich besteht die Moglichkeit, durch

aaaa | (cr)
XX YY oo FH

im Programm (beginnend bei Adresse aaaa) einen Byte-String (xx yy ...) einzufigen;
er wird in dem eingangs erwshnten Pufferbereich abgelegt. Fur die Eingabe von Byte-
Strings gilt das bei A beschriebene Vorgehen.

Durch das Kommando | wird an der Stelle aaaa ein 3 byte langer Befehl (JPA,,Puffer)
eingebaut. Alle durch diese 3 Bytes berthrten Befehle werden ausgebaut und im Insert-
Puffer vor den einzubauenden Insert-String gelegt. Am Ende des Insert-Strings steht ein
JPA auf dem niichsten Befehl hinter den ausgebauten Befehlen.

Die Anzahl der Bytes, die pro Insert im Puffer gebraucht werden, berechnet sich fol-

gendermaBlen: Anzahl der eingefigten Bytes + Anzahl der ausgebauten Bytes + 9.
Der Insert-Bereich wird folgendermafBlen aufgebaut:

- 208 -

[1-Adresse

Anzahl ausgebaute Bytes
Differenz der Adressen I1 - 12
ausgebaute Befehle

eingebaute Befehle

Riicksprung

1. Einfigung

12~ Adresse

2. Einfugung

Warnung:

a) Relativ adressierte Befehle dirfen durch | nicht aus dem Benutzerprogramm in den
Puffer verlegt werden.

b) Vertnderungen des Benutzerprogramms durch eventuell eingebaute Halts sind zu be-
achten.

Es sind beliebig viele Einfugungen méglich; auf das Puffer~Ende wird nicht gepruft.

Mit dem Kommando
aaaa U (cr)

kann jede einzelne Einfugung rickgéngig gemacht werden.

Die Eingabe
U (cr)

loscht alle Einfigungen.

EIN/AUSG ABE

Fur die Ein- und Ausgabe der zu testenden Programme oder von Programmteilen halt
der MONITOR folgende Kommands bereit:

aaaa bbbb ISH Einlesen Uber langsamen Leser (Konsol-Teletype)

aaaa bbbb IFH " " schnellen Leser
aaaa bbbb OSH Ausstanzen auf langsamem Locher (Konsol-Teletype)
aaaa bbbb OFH " " schnellem Locher

Mit aaaa ist die erste, mit bbbb die letzte Adresse des Kernspeicher-Bereichs gemeint.

Gelesene und gelochte Streifen haben Hexa-Format (s. Anhang).

- 209 -

DBOS

VORBEMERKUNG

Die Grundfunktionen des DIETZsystems 621 werden durch DBOS (Disk Based Operating
System) gewihrleistet. Es bildet das Grund-Betriebssystem, das bei allen Hardware- und
Software-Konfigurationen vorhanden ist und auf dem die erweiterten Betriebssysteme
aufbauen. :

DBOS hat folgende Funktionen:

Benutzer-/System-Dialog uber Konsolgeriit
Dateiverwaltung tber Konsolgerat
Dateizugriff (sektorweise) vom Programm
Behandlung von Systemfehlern :

Die DBOS-Funktionen sind bei den DIETZsystemen 621 C und 621 D identisch.

SYSTEM-DIALOG

Unter DBOS kann der Benutzer im Dialog Programme aus Platten-Dateien in den Kernspeicher
laden, zur Ausfihrung bringen und wieder auf die Platte zuriickschreiben.

Die Kommandos hierfur lauten:

GET, u,f, (a) Programm laden
RUN, u,f, (d) Programm laden und zur Ausfihrung bringen
PUT,u,f, (a) Programm zurtckschreiben

Dabei bedeuten:

= Plattenspeicher-Nr. (unit)

v =
f = Dateiname (max. é Zeichen)
a = Kernspeicher-Basisadresse

(falls nicht angegeben, wird ndchste freie Adresse benutzt).

Falls mehrere Programmsegmente geladen werden sollen, so geschieht dies durch eine Folge von
GET-Kommandos. PUT erlaubt das Riickschreiben modifizierter Programme. Mit RUN wird

ein Programm geladen und die Kontrolle an dieses bergeben; bei dessen Ende wird in DBOS
zurtickgesprungen, und das System ist wieder im Dialog-Betrieb.

- 210 -

D ATEI-VERWALTUNG

DBOS erlaubt die Reservierung und Behandlung von Dateien auf den Plattenspeichemn.
Dateien sind unter einem Dateinamen f zugreifbar, bestehen aus einer ganzen Zahl L von
Sektoren zu je 128 byte und konnen vollstindige Programme, Programm-Moduln oder Daten
enthalten.

Dateien werden im Dialog-Betrieb des DBOS reserviert, geloscht usw. Hierzu dienen die
Kommandos:

CREA ,u,f ,L Ersffnen einer Datei von L Sektoren Lange unter
dem Namen f

KILL ,u,f Loschen der Datei f

ALTR ,u,f1,f2 Andern des Datei-Namens f1 in 2

LENG,u,f ,L Kirzen der Datei-Lange auf L Sektoren

PROT ,u,f ,p Eingabe eines Schutzzeichens (Schreibschutz)

LIST ,u, Listen der ersffneten Datei-Namen und der

zugehdrigen Parameter
(bzw. der Parameter einer bestimmten Datei f)

Die Funktionen CREA, KILL, ALTR und LENG kénnen auch als Befehle vom Benutzerpro-
gramm aus gegeben werden.

D ATEI-ZUGRIFF VOM PROGRAMM
Zu Platten-Dateien kann vom Benutzer-Programm sektorweise lesend oder schreibend zuge-
griffen werden. Vorher ist jedoch die Datei mit

OPEN (u,f,w)

zu offnen; dabei wird ihr eine Arbeits-Nummer w zugewiesen, mit der im folgenden gear-
beitet wird. Der eigentliche Zugriff erfolgt durch die Befehle

GFB(w, q,s,1) Lesen von | Sektoren ab Sektor s in Kemspeicher-Feld a
PFB (w,q,s, 1) Schreiben von | Sektoren ab Sektor s aus Kernspeicher-
Feld a

D urch den Befehl

CLSE (w)

wird die Datei wieder geschlossen und die Nummer w freigemacht.

=211 -

Die Arbeits-Nummer w lduft von 0 bis 7; d.h. es kénnen bis zu 8 Dateien gleichzeitig
bearbeitet werden.

Bei Multiprogramming-Systemen unter MPOS kdnnen insgesamt 32 Dateien gleichzeitig
ersffnet sein und bearbeitet werden. Der Lese-/Schreib-Zugriff tber GFB bzw. PFB er-
folgt dabei nacheinander von den verschiedenen Ebenen aus in ihrer zeitlichen bzw. prio-
ritdren Reihenfolge.

Beispiel: Datei mit 6 Sektoren Lange. Zugriff auf Sektoren 3 und 4 (s = 3, | = 2):

Lo T v [2 V3 Fl47] 5 |
lSekfoil -— 122 —=

= 128 byte

- Datei f

SYSTEMFEHLER

DBOS umfaBt Routinen zur Feststellung und Behandlung von Systemfehlern, insbesondere

Netzausfall und -wiederkehr
Kernspeicher-Parity
BUS-Fehler
Plattenzugriffs-Fehler, '

die entweder zu einer Riickkehr in den DBOS-Dialogbetrieb mit Ausgabe entsprechender
Fehlermeldungen auf dem Konsolgerit fuhren oder vom Benutzer vorgesehene, auf seine
speziellen Bedurfnisse zugeschnittene Routinen ansprechen.

-212 -

LISTE DER DBOS-FUNKTIONEN

Name Kommando Programmbefehl Bedeutung

CREA X X Datei ersffnen

KiLL x x Datei loschen

ALTR X X Dateinamen @ndern
LENG x X Dateildnge kirzen
PROT x Dateischutz eingeben
LIST x Dateiparameter listen
GET X Programm laden
RUN x Programm laden und starten
PUT X Programm ablegen
OPEN x Datei &ffnen

CLSE x Datei schlieien

GFB x Block lesen

PFB x Block schreiben

- 213 -

DFMS

VORBEMERKUNG

DFMS (Disk File Management System) ist ein komfortables Zugriffs- und Verwaltungssystem
fur Platten-Dateien. Es schlieBt alle Funktionen des Grund-Betriebssystems DBOS ein, ent-
halt jedoch eine Reihe von zusitzlichen Funktionen, insbesondere:

- Ersffnen von vortbergehenden Dateien (temporary files)

- Datei-Schutzfunktionen

- Strukturierung von Dateien in Sdtze (records)

- Satz-Zugriff Uber Satz-Nummern oder Satz-Schlussel (keys)

- Exklusiver Zugriff zu Sdtzen

- Lesen und Schreiben von Datei-Inhalten mit sequentiellem oder Random-Zugriff.

Die Funktionen des DFMS sind bei den DIETZsystemen 621 C und 621 D identisch; jedoch
kommt vor allem letzteres wegen seiner groBeren Plattenspeicher-Kapazitst fur das DFMS
in Betracht.

DFMS ist vor allem in Verbindung mit C-BASIC und FORTRAN [V zur Behandlung kommer-
ziell-administrativer und technisch-wissenschaftiicher Datenbestinde auf Plattenspeichern ge-
eignet.

DATEI-STRUKTUREN

DFMS erlaubt den Aufbau von Dateien, die

- aus nur einem Satz

- aus mehreren Sdtzen gleicher Lénge
(mit Zugriff uber die Satz-Nummer)

- aus mehreren Sdtzen gleicher Linge sowie einem Schlusselverzeichnis
(Index-Datei mit Zugriff tber keys)

bestehen .

Art und GroBe der Dutei werden bei der Ersffnung definiert. Jeder Satz hat die GroRe
eines oder einer ganzen Zahl von Sektoren von je 128 byte.

Jede Datei hat einen Namen f, der max. é Zeichen lang ist; unter Angabe des Namens

und der Plattenspeicher-Nummer u kann zur Datei zugegriffen werden. Die Auswahl des
Satzes erfolgt entweder Uber die Satz-Nummer r oder auch - im Falle der Index-Datei -

-214 -

Uber einen Schlussel k. Das Schiusselverzeichnis wird durch einen gesonderten Befehl
ersffnet, in dem insbesondere die Liénge der Schlussel (bis zu 60 Zeichen) angegeben
ist.

1 Satz
<——— =L Sektoren ——=
| | Ein-Satz-Datei
=0 I Mehr-Satz-Datei
1
2
R
KEY ADR Index-Datei
v T T
Schlusselverzeichnis Datei

D ATEI-VERWALTUNG IM KOMMANDO-BETRIEB

Der Benutzer kann wie unter DBOS im Dialog Dateien erdffnen, loschen, umbenennen,
das Dateiverzeichnis ausdrucken, Programme holen und ablegen, indem er eines der
Kommandos

CREA LIST
KILL GET
ALTR RUN
LENG PUT
PROT

benutzt. CREA beinhaltet zusatzlich die Angabe der Satz-Anzahl R.

-215 -

Hinzu kommt das Kommando

CRIN

fur das Ersffnen des Schlusselverzeichnisses einer Index-Datei.

Im Kommando-Betrieb ersffnete Dateien haben stets dauemden Charakter (permanent files);
sie sind explizit durch KILL zu l8schen.

DATEI-VERWALTUNG DURCH PROGRAMMBEFEHLE

Permanente Dateien kdnnen auBer durch Dialog-Kommandos auch im Programm verwaltet
werden; dazu dienen die Befehle

CREA(u,f ,L,R) Ersffnen einer Datei mit Namen f auf Plattenspeicher u
mit R Sdtzen zu je L Sektoren

KILL (u,f) Lsschen der Datei f auf Plattenspeicher u

ALTR (u,f1,£2) Andern des Datei-Namens f1 in f2

CRIN(u,f ,K) Ersffnen eines Schlusselverzeichnisses zur Datei f mit

der Schlussel-Lange K

Daneben kann das Programm Dateien auch vortbergehend ersffnen ("temporary" oder "scratch
files"); dies geschieht durch den Befehl

OPNW(u,w,L,R) Voribergehendes Ersffnen einer Datei mit der Arbeits-
Nummer w

Eine so ersffnete Datei wird entweder durch den Befehl

CLSE(w) Datei w schlieen

geldscht oder dadurch, daB das Programm beendet wird und die Kontrolle wieder von DBOS
Ubernommen wird. Durch den Befehl

CTLG(w, f) Eintragen unter Name f in Datei-Verzeichnis

wird jedoch eine vorubergehend erdffnete Datei zu einer permanenten Datei.

-216 -

Ende CREA KILL KILL

Programm

OPNW CLSE

TEMPORARY | CTLG PERMANENT CRIN

FILE FILE INDEX

ALTR LENG PROT

D ATEI-ZUGRIFF VOM PROGRAMM

Bevor mit einer permanenten Datei gearbeitet werden kann, ist sie zu &ffnen durch

OPEN(u,f,w)

wobei ihr eine Arbeits-Nummer w zugeteilt wird, auf die alle folgenden Befehle Bezug
nehmen. Entsprechendes gilt fur voribergehend ersffnete Dateien und den zugehsrigen
Befehl

OPNW (u,w, L,R)

Durch den Befehl

CLSE(w)

wird eine Datei wieder geschlossen, die Arbeits-Nummer w freigegeben und die Datei,
falls sie vorUbergehend ersffnet war, wieder geloscht.

- 217 -

Eine gesffnete Datei kann mit den Befehlen

GFB(w,q,s, 1) Lesen
PFB (w,a,s,l) Schreiben
sektorweise gelesen bzw. beschrieben werden, wie unter DBOS beschrieben.

Stattdessen gibt es jedoch auch die Maglichkeit der sequentiellen Beschreibung des
Datei-Inhaltes. Hierzu dienen die Befehle

RD (w,a,n) Lesen n Zahlenwerte in Speicherfeld a

WR (w,a,n) Schreiben n Zahlenwerte in Speicherfeld a

RDS (w,a,n,c) Lesen n Zeichen bzw. bis Zeichen "c"

WRS (w,a,n,c) Schreiben n Zeichen bzw. bis Zeichen "c"

SKP (w,n,z2) :L?berspringen z mal n Zahlenwerte (vor- oder riickwiirts)
SKPS(w,n,c,z) Uberspringen z mal n Z ichen bzw. z mal tber Zeichen

"c" (vor- oder ruckwirts)

SETP (w,n,z) Setzen Pointer auf absolute Position (z mal n byte) im Satz
BKSP (w) Setzen Pointer auf Satzanfang
[| Datei-Satz
RO skp KD 1 _-=""| setp Beispiel fur
L SKP -~ sequentielle
WR WR E Behandlung
1
REW

Alle vorgenannten Befehle beziehen sich auf den Zugriff innerhalb eines Satzes. Nach
OPEN bzw. OPNW steht der Datei-Zeiger (Pointer) am Anfang des ersten Satzes der
Datei. Zur Auswahl eines beliebigen Satzes dient der Befehl

SREC(w,r) Satz r selektieren

-218 -

Alle kinftigen Befehle beziehen sich dann auf diesen Satz, wobei am Satzanfang
begonnen wird. Stattdessen kann auch mit

NREC (w) Springen zum ndchsten Satzanfang

die Behandlung des folgenden Satzes eingeleitet werden.

Im Falle von Index-Dateien wird der gewinschte Satz Uber
SKEY (w,k) Satz zu Schlussel k selektieren

angesprochen und der Pointer auf dessen Anfang gestellt.

Zur Behandlung des Satzschlussel-Verzeichnisses dienen folgende Befehle:

ENTK (w, k) Schlussel k eintragen

ALTK (w,k1,k2) Schlussel k1 in k2 umbenennen

DELK (w,k) Schlussel k lsschen

GTFK (w,aq)’ Ersten Schlussel aus Verzeichnis lesen
GTNK (w,q) Nachsten Schlussel aus Verzeichnis lesen

In Multiprogramming-Systemen kann einem Programm Uber die Befehle

EREC (w, 1) Exklusiver Zugriff zu Satz r
EKEY (w, k) " nomon gemdB Schlussel k

der alleinige Zugriff zu einem Satz erteilt werden; diese Befehle verhindem den Zugriff
von jeder anderen Programmebene aus, entsprechen im uUbrigen jedoch den Befehlen SREC
bzw. SKEY. Zur gleichen Zeit kann eine Programmebene nur zu einem Satz den aus-
schlieBlichen Zugriff haben; die Exklusivifdt endet mit Anwahl eines anderen Satzes oder
mit SchlieBen der Datei tber CLSE.

-219 -

FEHLERMELDUNGEN

Fehler bei der Dateibehandlung im Programm, z.B.

Ersffnung doppelt definierter Dateinamen

- Zugriff zu nicht existierenden oder geschiitzten Dateien

- Zugriff zu exklusiv beanspruchten oder nicht vorhandenen Satzen
Uberschreiten der Satz- bzw. Dateilénge

werden im DFMS festgestellt und abfragbar gemacht, so da8 das Benutzer-Programm in
geeigneter Weise darauf reagieren kann.

LISTE DER DFMS-FUNKTIONEN

Name Kommando Programmbefehl Bedeutung

CREA x x (permanente) Datei ersffnen

CRIN x x Schlusselverzeichnis ersffnen

KILL x x Datei loschen

ALTR x x Dateinamen &ndern

LENG x X Dateildnge kirzen

PROT x Dateischutz eingeben

LIST x Dateiparameter listen

GET x Programm laden

RUN x Programm laden und starten.

PUT x Programm ablegen

OPNW X Datei voriibergehend ersffnen

OPEN x Datei &ffnen

CLSE x Datei schlieflen

CILG X Datei permanent machen

SREC x Satz nach Nummer anwighlen

EREC x v " exklusiv anwghlen
SKEY x Satz nach Schlussel anwihlen

EKEY X "o " exklusiv anwihlen
GFB x Block lesen) Rand

PFB x Block schreiben) Hondom

RD x Lesen Zahl 7

WR x Schreiben Zahl

RDS X Lesen Zeichen

WRS x Schreiben Zeichen Sequentiell
SKP x S pringen Gber Zahl - e
SKPS x Springen Uber Zeichen

SETP X Pointer versetzen

BKSP x Zuriick zu Satzanfang

N REC x Vor zu ndchsten Satzbeginn J
ENTK x Key einfragen

ALTK x Key dndern

DELK x Key loschen

GTFK x Ersten Key lesen

GTNK x Néchsten Key lesen

-220 -

MPOS
VORBEMERKUNG

Bei Multiprogramming-Anwendungen des DIETZsystems werden

- die Programmauftrags-Verwaltung und
- die Verwaltung gemeinsamer Betriebsmittel (Ressourcen)

durch MPOS (Multi Program Operating System) geregelt. Dieses Betriebssystem, das stark
durch die Programmebenen-Struktur des DIETZ 621 unterstitzt wird, ist bei Multipro-
gramming-Betrieb von BASIC und C-BASIC implementiert und ist zugleich ein Bestandteil
des fur MARS 600 und BASEX verwendeten Echtzeit-Betriebssystems RTOS.

EBENEN-STRUKTUR

Multiprogramming hedeutet gleichzeitiger Ablauf mehrerer Programme, die gemeinsame
Ressourcen (CPU, Kemspeicher, Plattenspeicher, Peripherie) benutzen.

Beim DIETZsystem 621 belegt jedes dieser Programme eine "Ebene" mit einem eigenen
Register-Satz (von 128 byte GrdBe), in dem der Programm-Kontext enthalten ist. Die
Ebenen und damit die Programme haben unterschiedliche Prioritdt, so daB8 im Regelfall
ein Programm auf der Ebene | die Programme auf den Ebenen O...(I-1) unterbricht, so-
bald es lauft, d.h. die CPU benutzt.

Es wird unterschieden zwischen Benutzer-Ebenen, auf denen Anwender-Programme laufen
ksnnen, und System-Ebenen, die dem Betriebssystem vorbehalten sind. Je nach System-
Konfiguration sind 6 oder 12 Benutzer-Ebenen verfugbar:

CNP
MPOS I System-Ebenen
zunehmende T 1

Priotitat T0
9
8
CNP | System- 7
MPOS | Ebenen [
5] 5

4 4 I Benutzer-Ebenen
3 Benutzert 3
2 I~ Bbenen 5
1 1
0 0

8 Ebenen 16 Ebenen

-221 -

Benutzer-Ebene 0 ist dadurch gekennzeichnet, daB ein Uber DBOS (sowie bei Netzwieder-
kehr mit automatischem Restart) gerufenes Programm zundchst in dieser Ebene lauft (von der
aus dann alle anderen Benutzer-Ebenen dktiviert werden kénnen).

Zwei bzw. vier Ebenen sind dem Benutzer nicht zuginglich; eine dieser System-Ebenen ist

fur Funktionen des MPOS reserviert, die andere (CNP) fur die Erkennung von Systemfehlern
(die in DBOS ausgewertet werden) sowie (im Falle des RTOS) fir die Echtzeit-Uhr.

PROGRAMM-AUFTRAGE
Zur Synchronisation der Abldufe in einem Multiprogramming-System besteht unter MPOS die

Méglichkeit, von der laufenden Ebene aus ein Programm in einer anderen Ebene I, begin-
nend an der Stelle n, zu aktivieren. Die Befehle hierzu lauten z.B.

in MARS 600: XP,1,n
in BASIC/BASEX: START I:n

Lauft kein anderes Programm in der Zielebene |, so wird es umgehend aktiviert; andern-
falls wird es in eine Warteschlange eingereiht, die vom MPOS gesteuert abgearbeitet wird.

Jedes Programm meldet sich beim MPOS ab, sobald es beendet ist; der zugehsrige Befehl
lautet

in MARS 600: EJ
in BASIC/BASEX: STOP

Beispiel fur Programm-Aufirage von Ebene 1 an Ebene 4

Warteschlange

STOP STOP
n EANNNNNNNNN 4
START 4:n START 4:n’

JAAA Y L /2 7. 28

-222 -

RESSOURCE-VERWALTUNG

Eine zweite Funktion des MPOS ist die Verwaltung von Ressourcen, die von mehreren
Programmebenen benutzt werden.

Die Plattenspeicher des DIETZsystems 621 sind gemeinsame Betriebsmittel. Sie werden in
der Weise verwaltet, daB jeweils ein Plattenzugriff entsprechend dem jeweiligen Programm-
befehl abgewickelt wird, bevor eine andere Ebene zur Plaite zugreifen kann. Liegen Zu-
griffs-Befehle von mehreren Ebenen vor, so werden sie in absteigender Reihenfolge der
Prioritdten nacheinander abgearbeitet.

MPOS regelt auBerdem den exklusiven Zugriff zu einem Satz einer Datei, der von jeder
Ebene aus einmal gleichzeitig msglich ist.

In ghnlicher Weise wie der Platten-Zugriff werden das unter RTOS ansprechbare Analog-
MeBsystem und chnliche, mit direktem Speicherzugriff arbeitende Systeme verwaltet.

Peripherie-Gerdte, wie Drucker, Bildschirm-Terminals usw. sind beim DIETZsystem 621
von allen Benutzer-Ebenen aus anzusprechen. Fur den Fall, daB Konflikte (gleichzeitiger
Zugriff mehrerer Ebenen auf ein. Peripheral) “zu befurchten sind, kann das betreffende
Periphergerdt mit der Gerdte-Nummer d vom Benutzer-Programm zur alleinigen Benutzung
angefordert und spiter wieder freigegeben werden; dazu dienen die Programmbefehle

PREQ(d) Ressource d anfordem und belegen, wenn frei
PREL (d) Ressource d freigeben
RRQW (d) Ressource d anfordern, belegen wenn frei bzw .warten bis frei

Diese Befehle kdnnen zur Verwaltung nicht nur von Periphergerdten, sondern auch belie-
biger anderer Betriebsmittel im Sinne von Semaphoren verwendet werden, z.B. von Pro-
grammen, Speicherbereichen usw.

-223 -

RTOS
VORBEMERKUNG

RTOS (Real Time Operating System) ist ein Echtzeit-Betriebssystem, das ProzeBanwendungen
des DIETZsystems 621 unterstUtzt und in Verbindung mit den Programmiersprachen MARS 600
und BASEX arbeitet.

Es bietet - neben denen des MPOS - folgende Funktionen:

Laufende Fihrung der Echtzeit
Verwaltung von Zeitauftrigen

- Verwaltung von Interrupts
Behandlung der Prozefperipherie.

MARS 600 und BASEX benutzen zwei Versionen des RTOS, die geringfugige Unterschiede
aufweisen, in den Grundzigen jedoch identisch sind. Die einzelnen Programmbefehle sind
den Sprachbeschreibungen zu entnehmen; im folgenden werden BASEX-Beispiele herangezogen.

EBENEN-AUFTEILUNG

Unter RTOS werden die Programmebenen des DIETZsystems 621 bestimmten Funktionen zuge-
ordnet:

- Systemebenen: wie MPOS
- Benutzer-Ebenen: 2 oder 4 Interrupt-Auftragsebenen
1 Zeitauftrags-Ebene
3 oder 7 allgemeine Benutzer-Ebenen

Je nach Systemkonfiguration ergibt sich folgende Aufteilung:

CNP
MPOS - System-Ebenen
INTER- g ‘
RUPT- 5
AUFTR. ;
CNP ZEITAUFTR.
MPOS]» System-Ebenen I Benutzer-Ebenen
INTERR. . 2 '
AUFTR. 7] ALLG.
ZETTAUFTR. Benutzer-Ebenen BENUTZE 3
ALLG. 2 2
BENUTZER 1 1
0 0
8 Ebenen 16 Ebenen

-224 -

ECHTZEIT-UHR
Unter RTOS wird laufend die Echtzeit gefthrt. Sie wird von der quarzgesteuerten Uhr der

CPU abgeleitet und ist mit einer Auflésung von 1, 10, 100 oder 1000 ms verfugbar (kon-
figurationsabhdngig) . Zu Beginn der Programmausfuhrung lauft die Echtzeit-Uhr von Null an.

ZEITAUFTRAGS-VERWALTUNG

Das System kann von beliebigen Benuizer-Ebenen aus veranlat werden, zu vorgegebenen
Zeiten bestimmte, programmierte Funktionen (Zeitauftrags-Routinen) durchzufihren.

Ein Zeitauftrag lautet beispielsweise:
188 AFTER 258 : LET OUTB(2)=1 (Nach 250 ms Bit-Ausgang 2 setzen).
Zeitauftrags-Routinen laufen in einer eigens dafir reservierten Benutzer-Ebene mit relativ

hoher Prioritit ab.

Es konnen gleichzeitig bis zu 40 Zeitaufirdge gefthrt werden. Werden zwei oder mehr
Zeitaufirage zur gleichen Zeit oktuell, so werden sie nacheinander abgearbeitet.

INTERRUPT-VERWALTUNG

Interrupts im Sinne des RTOS sind statistisch auftretende Signale aus dem ProzeB, die auf
Interrupt-Eingtdinge wirken und auf die das System in vorbestimmter Weise zu reagieren hat;
die Reaktion besteht aus einer programmierten Interrupt-Routine.

Das System kann von beliebigen Benutzer-Ebenen aus beauftragt werden, einen eintreffen-
den Interrupt mit einer bestimmten Reaktion zu beantworten. Beispiele fur Interrupt-Auftrage:

209 ON INT 6 : LET A = INA(3) (Bei Auftreten von Interrupt 6: Analog-
eingang 3 nach A).

358 ON INT 1 : GOTO 508 (Bei Auftreten von Interrupt 1:

58¢ CALL HLTC(@) Zshleingang @ schlieBen und

518 LET Z12 = INC(9) Zshlerinhalt nach Z12).

-225 -

Interrupt-Routinen laufen in 2 bzw. 4 hierfur reservierten Benutzer-Ebenen mit hoher
Prioritat. Je nach ihrer Nummer sind die Interrupt-Eingénge einer dieser Ebenen zuge-
ordnet und haben damit untereinander verschiedene Prioritdt bei der Ausfuhrung der zu-
gehsrigen Routinen.

Interrupt-Eingdnge kdnnen einzeln maskiert und wieder gesffnet werden:

DISAB 1,2 (Interrupt 1 und 2 verhindern)
ENAB 2 (Interrupt 2 zulassen)

Auch bei maskiertem Eingang werden eintreffende Interrupts gespeichert; sie werden bei
Wiederzulassung sofort wirksam. Bei Beginn der Programm-Ausfthrung sind alle Interrupt-
Eingtinge maskiert; erwiinschte Interrupts sind durch ENAB zuzulassen.

Treffen mehrere Interrupts, die zur gleichen Ebene gehdren, gleichzeitig cder wihrend des
Laufs einer Interrupt-Routine auf einer Ebene ein, so werden sie nacheinander in der Rei-
henfolge steigender Nummern abgearbeitet. Dagegen unterbrechen Interrupts, die zu einer
hsheren Ebene gehsren, Interrupt-Routinen in niedrigen Ebenen (sowie eine eventuell lau-
fende Zeitauftrags-Routine und Programme in den allgemeinen Benutzer-Ebenen).

PROZESSPERIPHERIE

Das RTOS unterstutzt die gesamte ProzeBperipherie des DIETZsystems 621; jedoch werden
im allgemeinen nur die |/O-Treiber in das RTOS aufgenommen, welche die jeweilige
Systemkonfiguration benttigt.

AuBer den oben erwihnten Interrupt-Eingtngen sind u.a. folgende ProzeBanschlusse an-
sprechbar:

- Statische digitale Eingtinge: INB(x) Bitweise Abfrage
INW(x) Wortweise Abfrage binar
IND(x) " " BCD
- Speichernde digitale Ausginge: OUTB(x) Bitweise Ausgabe
OUTW(x) Wortweise Ausgabe bindr
OUTD(x) " " BCD
- Einkanal-Analogeingdnge: INA(x)
- Einkanal-Analogausginge: OUTA(x)

- 226 -

Bemerkung:

Analog-Mefsysteme:

- Zghleingtinge:

- Zeitausgdnge:

wouw o

o o X

CALL ADCS (a,q,k)
CALL ADCD (q, q,k)
CALL ADCM(a, q,k)

QUTC(x)
INC (x)
CALL ACTC (%)
CALL HLTC (%)

OUTT(x)
CALL ACTT (x)

Nummer des Ein-/Ausgangs
Speicherfeld

Anzahl MeBwerte

(Basis-) Mefkanal

- 227 -

Einkanal-Messung
Doppelkanal-Messung
Mehrkanal-Messung

Setzen
Abfragen
Offnen
Schlielen

Setzen
Aktivieren

MARS 600

MARS 600 (Makro-Assembler fur Realtime-Systeme) bietet die Msglichkeit, DIETZ 621~
Systeme fur Echtzeit- und ProzeBbetrieb zu programmieren.

MARS 600 ist eine Erweiterung der Assembler-Sprache des DIETZ 621; alle Elemente des
Assemblers MINCASS 600 M sind darin enthalten (siche Abschnitt ASSEMBLER). MARS &400-
Programme stitzen sich auf das Echtzeit-Betriebssystem RTOS.

Im folgenden sind alle Makrobefehle aufgefuhrt, die fur MARS 600 spezifisch sind.

PROGRAMMBEGINN UND -ENDE

Diese Befehle dienen zum Initialisieren bestimmter Funktionen des Betriebssystems, zum
Abschlul von Auftragsprogrammen und zur Beendigung des Gesamtprogramms:

BGN Initialisiert Teilfunktionen des Betriebssystems (z.B. System-Uhr)

EJ Beendet ein durch XP, XD, XT oder X! ausgelsstes Auftragspro-
gramm; die betreffende Ebene meldet sich beim Betriebssystem ab
und wird fur ein anderes Programm frei.

END Ende des Gesamtprogramms (mit Ruckgabe der Kontrolle an DBOS).

PROGRAMM-VERWALTUNG

Von jeder Benutzer-Ebene aus kdnnen Programme gestartet werden, die in anderen Benutzer-
Ebenen (auBer in den Zeit- und Interrupt-Ebenen) laufen. Sofern die beauftragte Ebene frei
ist (und in keiner anderen hoheren Ebene ein Programm dktiv ist), wird das Auftragsprogramm
unverziiglich begonnen; andernfalls wird es in eine Warteschlange von Programmen eingereiht,
die nacheinander abgearbeitet werden.

XPm, @ , | In Ebene | wird ein Programm gestartet, das an der
2% A, addr Stelle addr beginnt

ZEITVERWALTUNG

Die in RTOS laufend gefthrte Systemzeit, die von der quorzgesteuerten Rechner-Uhr gesteuert
wird, erlaubt die Erteilung von Programmauftrigen, die mit einer angebbaren Verzsgerung
oder zu einem bestimmten Zeitpunkt ausgefthrt werden. AuBerdem kann die Systemzeit ab-
gefragt und neu gesetzt werden.

-228 -

XDm, @,h
2% A, addr

XTm,@,h
2%A, addr

SEC
MIN
HOUR
TIME

INTERRUPT-VERWALTUNG

Realtivzeit-Auftrag. Lost nach einer Zeitverzdgerung t
ein Programm auf der Zeitebene aus, das an der Stelle
addr beginnt. Die Zeit t (ms) steht in @ (bei h = 0)
bzw. in @ und @+1 (bei h = 1).

Absolutzeit-Auftrag. Lost zum Zeitpunkt T der System-
Uhr ein Programm auf der Zeitebene aus, das an der
Stelle addr beginnt. Die Zeit T steht in @ und hat die
Bedeutung Sekunden (h = 0), Minuten (h = 1) oder
Stunden (h = 2).

Liefert den Sekunden-Teil der Systemzeit (in @).
Liefert den Minuten-Teil der Systemzeit (in @).
Liefert den Stunden-Teil der Systemzeit (in @).

Setzt den Sekunden-, Minuten- und Stunden-Teil der
Systemzeit auf den Inhalt von @, @+1 und @ +2.

Auf externe Interrupts reagiert das System durch Auftragsprogramme, die durch einen Makro-
befehl der Interrupt-Nummer i zugewiesen werden und die bei Eintreffen des Interrupts auf

einer der Interrupt-Ebenen ablaufen:

i= g...31
i=232... 63
i=64... 95
i=96...123

Interrupt-Ebene 1

n
N zunehmende Prioritdt

HWN

Gleichzeitig eintreffende Interrupts, die zu einer Ebene gehdren, werden in der Reihenfolge
zunehmender Nummern i nacheinander abgewickelt.

Weitere Makrobefehle dienen zum Maskieren und Offnen der Interrupt-Eingtéinge sowie zum
Lsschen gespeicherter Interrupts. Zu Programmbeginn sind alle Interrupts maskiert.

Xim, @,i
2% A, addr

Elm, @,i
Dim, @,
Clm, @,i

Weist dem Interrupt i ein Auftragsprogramm zu, das
bei addr beginnt.

Offnet den Interrupt-Eingang i.

SchlieBlt (maskiert) den Interrupt-Eingang i.

Loscht einen eventuell gespeicherten Interrupt am
Eingang i.

(Auch bei maskiertem Eingang wird ein eintreffender
Interrupt gespeichert. Cl ist im Normalfall nicht n&tig ,

da bei Beginn eines Inferrupt-Aufiragsprogramms der
Interrupt-Speicher automatisch gelsscht wird).

- 229 -

DIGITALE EIN/AUSGANGE

Die folgenden Befehle dienen zur Behandlung von statischen digitalen Eingsngen und
speichernden digitalen Ausgingen. Jeweils 16 davon befinden sich auf einem Einkarten-
Interface, das bei wortweiser (16-bit-weiser) Behandlung durch seine Nummer x (x = 0,
1, 2...) gekennzeichnet ist. Jedes Bit der Interfaces kann auch einzeln behandelt werden;
seine Nummer y ist anzugeben (y = 0...15 fur x = 0; y = 16...31 fur x = 1, usw.).

Wm , @,x Wortweise Abfrage von Eingang x nach @, @ +1

Bm ,@,y Bitweise Abfrage von Eingang y nach @ (Bit 0)

TBm , @,y Testen von Bit-Eingang y. Falls Ergebnis = 1, Sprung
2% A, addr nach der Stelle addr; sonst Fortsetzung des Programms

mit dem ndchsten Befehl.

OWm,@ ,x Wortweise Ausgabe von @ , @ +1 nach Ausgang x.
OBm ,@,y Bitweise Ausgabe von @(Bit 0) nach Ausgang y
ABm , @,y Bit-Ausgang y auf 1 Setzen.

CBm ,@,y Bit-Ausgang y nullstellen.

ZAHLEINGANGE UND ZEITAUSGANGE

Mit den folgenden Befehlen werden 16-bit-Zshleingdnge und 16-bit-Zeitausgdange (Timer)
behandelt, die sich auf Einkarten-Interfaces befinden und die durch eine Nummer x (x = 0,
1, 2...) gekennzeichnet sind.

ICm ,@ ,x Wortweise Abfrage von Zshler x nach @, @ +1

OCm, @ ,x Wortweise Ausgabe von @, @ +1 nach Zashler x
CCm, @ ,x Zshler x nullsetzen

ACm, @ ,x Zghleingang x ffnen

HCm, @ ,x Zshleingang x schliefen

OTm, @ ,x Wortweise Ausgabe von @, @+1 nach Zshler x
ATm ,@ ,x Timer x auslgsen

- 230 -

WATCHDOG

Die Watchdog enthilt eine Zeitschaltung, die vom Programm laufend angestoBen werden
soll. Unterbleibt der AnstoB fur eine langere als die eingestellte Zeit, z.B. durch einen
Fehler, so wird ein Alarmkontakt betatigt.

AW

ANALOGE EIN/AUSGANGE

AnstoBen Watchdog

Die folgenden Befehle dienen zur Abfrage von Einkanal-Analogeingdngen (12 bit) und
Einkanal-Analysenausgingen (10 bit), die sich auf Einkarten-Interfaces befinden und - ge-
trennt - durch Nummer x (x = 0, 1, 2...) gekennzeichnet sind. Ein weiterer Makrobefehl
stevert das mit bis zu 64 MeBkantdlen ausgeristete Analog-MeBsystem (12 bit).

1Am ,@ ,x
OAm,@ ,x

GAm, @, h-

2% A, addr
D,k
D,q

Abfrage Analogeingang x nach @ , (@+1 (rechtsbindig)

Ausgabe von @ , @ +1 (rechtsbindig) nach Analogaus-
gang x

Auslosung des Analog-Mefsystems. Es werden q Mef3-
werte des Kanals k bzw. ab Kanal k in ein Speicher-
feld ubertragen, das an der Stelle addr beginnt.

Es bedeutet h = 0: Einkanal-Messung (nur k)
h = 1: Zweikanal-Messung (k,k+1,k, k+1,...)
h = 2: Mehrkanal-Messung (k,k+1,k+2,...)

Enthalt das MeBsystem keinen Selbststever-(DMA-) Zusatz,
so sind fur h statt 0/1/2 die Konstanten 3/4/5 anzuge-
ben.

Bei Zweikanal-Messung sind fur k nur gerade Zahlen
0, 2, 4, ...) erlaubt.

Im Speicherfeld sind 2 Bytes je MeBwert zu reservieren;
die Werte werden dort rechtsbiindig abgelegt.

- 231 -

SYSTEMFEHLER

Bei Systemfehlern (sich ankundigender Netzausfall, BUS-Fehler, Kemspeicher-Parity-Fehler)
wird die hdchste Ebene des Systems aktiviert. Der Benutzer kann angeben, welche Fehler-
behandlungsprogramme in einem solchen Fall ausgefuhrt werden sollen. Dies geschieht durch
Makrobefehle, die vom Benutzer-Programm einmal durchlaufen werden sollen und die den
Fehlern bestimmte Sprungadressen zuweisen.

POWF Bei Netzausfall: Fehlerprogramm ab Stelle addr
2%A, addr
BUSF Bei BUS-Fehler: Fehlerprogramm ab Stelle addr
2%A, addr
MEMF Bei Speicher-Fehler: Fehlerprogramm ab Stelle addr
2%A, addr
HINWEISE
@ bedeutet Akkumulator (Register-Adresse ‘02)
@ +] n " +] (n n 103)
@ +2 n u +2 (n u 104)

m bezeichnet die Adressierungsart (C, X, R, L oder A). Beispiele fur IAm,@ ,x:

IAC,@,3 x =3 (Konstante)

I1AX, @, ,'5F x = << '5F>> (Indexregister '5F)
IAR,@ ,REG x = < REG > (Register REG)

IAA, @,ADR x = <ADR > (Absolute Adresse ADR)

MARS 600 benutzt die ersten 64 Register jeder Benutzer-Ebene (‘fi...’3F). Die restlichen
64 Register ("4f...7F) stehen dem Benutzer zur freien Verfugung. AuBerdem werden der
Akkumulator @ ('f§2) sowie gofs. die folgenden Register-Platze (‘63, ‘@4, ...) bei den
MARS-Makrobefehlen haufig zur Ubergabe von Daten benutzt.

-232 -

LISTE DER MAKROBEFEHLE

Makro Bedeutung

BGN Begin

EJ End Job

END End

XD Execute with Delay
XT Execute at Time
SEC Seconds

MIN Minutes

HOUR Hours

TIME Time

X1 Execute on Interrupt
El Enable Interrupt
Dl Disable Interrupt
Cl Clear Interrupt
XP Execute Program
w In Word

1B In Bit

B Test Bit

oW Out Word

OB Out Bit

AB Activate Bit

CB Clear Bit

IC In Counter

OocC Out Counter

cC Clear Counter
AC Activate Counter
HC Halt Counter
o1 Out Timer

AT Activate Timer
AW Activate Watchdog
1A In Andlog

OA Out Analog

GA Get Analog
POWF Power Failure
BUSF Bus Failure
MEMF Memory Failure

-233 -

BEISPIEL EINES MARS 600-PROGRAMMS

SEITE 0eoo

anen
agnl
aga2
aen3
na04
a0a5
2276
anaT
noes
2029
@210
2211
ae12
728313
2014
7@1S
7A16
na17
2013
fa19
aeena
ga21
aa22
2023
an24
nEes
7aA26
ane7
aRes
229
2030
72831
aAR32
an33
2034
7n35
aa36
2037
2339
@739

4000
4004
4NAR
490D
apla
am16
491D
47 1F
4026
402D
4734
4238

4m3C
4043
4045

4949
4050
4952

4056
4p59
475D
4064
4066

4¢64
476D
4074
407TR
40T F

4083
4086
405D
4094
402938

2%

2%

2%

o%

2%

2%

nGN
XIC

XIC
XIC
EIC
EIC
EIC
END
XPC
a
EJ
XPC

a
EJ

PRIt

H

s 8
2INTO
» 8

5 INTI1
s @

» ENDE
> @

@

Q

Ve we %

@
sLEV1

3

2

Ed

E]

s

E
E]

LDC »'41 »
LDCD» @

XDC
A
EJ

2<xLDC

owce
ABF

> 8
» OUTZ

.
»

» @
J@
» @

INEC, "41

EJ

LDC
jacye
owe

3

s 'an
s @
J@

INEC, "4

EJ
b4

.
>
.
>

>

s

v e

k4
E]
2
E]

‘41
' aF

(SN
e e

. e

v

e e

255, kB

-234 -

.

41
80

aa
3A

30
a9
a9
41

3A F

a4e

79
ag
3a

9C
a0

21

a7

40
FD
FD

FD

FD
FD
DE
43

34
34
3A
34

3A
34

34

3A

3A
3A

3A

Cca

ca

Ca

ED
15

6C
E@

49

43

49
49
49

43

49

4n
4B

BASIC

BASIC ist eine intemational gebrduchliche, am Dartmouth-College entwickelte Programmier-
sprache fur mathematische und technisch-wissenschaftliche Aufgaben. Sie ist besonders leicht
erlernbar und bietet dem Benutzer die Muglichkeit, im Dialogbetrieb zu arbeiten.

Im folgenden ist BASIC so beschrieben, wie es in den DIETZ 621-Systemen implementiert
ist,

BASIC-STATEMENTS

REM m REM Kommentar

Dient zur Einfugung von Bemerkungen; wird bei Ausfuhrung Ubergangen.
Beispiel:

A FEM ANIS3aV3 2 VULLSETZEN

LET m LET Variable = Ausdruck
m LET Variable 1 = Ausdruck 1, Variable 2 = Ausdruck 2, ...

Weist einer oder mehreren Variablen den Wert eines Ausdrucks zu.
Beispiele:

107 LET A=5.072
705 LET ¥9202=X221 &VD (IVR(2) OF INEC17)2
265 LET J=W+IVAC1),V=N+1

INPUT m INPUT Variable 1, Variable 2, ...
m INPUT "Text", Varaibale 1, Variable 2, ...

Bewirkt Eingabe von Daten tber ein Periphergerat, das mit PRINT DEV
spezifiziert werden kann. Die Daten werden den Variablen nachein -
ander zugewiesen. Ein zwischen Anfuhrungszeichen stehender Text

wird vorher auf dasselbe Gerdt ausgegeben.

Beispiele:

1722 INPUT X, Y5 3AY%M
1250 INPIT 2%
1220 INPUT "SOVNTFOLLWEFRT ", KdT

-235 -

PRINT

DATA

READ

m PRINT "Text"

m PRINT Ausdruck 1, Ausdruck 2, ...

m PRINT "Text", Ausdruck 1, Ausdruck 2, ...
m PRINT DEV (Gerdt) ...

m PRINT FMT (Format) ...

m PRINT TAB (Spalten) ...

m PRINT

Bewirkt Ausgabe von Daten auf einem Periphergerdt, das mit DEV
spezifiziert werden kann. Zwischen Anfuhrungszeichen stehende Texte
werden direkt ausgegeben. Bei Ausdrucken wird der Wert berechnet und
dieser ausgegeben, wobei das Format Uber FMT spezifizierbar ist. TAB
laBt so viel Leerspalten, wie der dahinter in Klammemn stehende Ausdruck
ergibt. PRINT ohne weitere Angaben bedeutet "Leerzeile".

Beispiele:

737 PRINT "EFGERNIS"

740 PRINT As R, Cs AkP+C

755 PRPINT "FFGERVIS"; AxF+CsTY3

77-00 PEINT FMTC(FSe 2)3A, R FMT(EL12. 330
777 PPINT TAR(C3Z2xSINC(X)+325); "x"
737 PHINT

275 PFINT DEUC6); "MFSSPEOGFAMNY"

m DATA Konstante 1, Konstante 2, ...

Ersffnet eine Liste von Konstanten, die durch READ Variablen zugewie-
sen werden. Die Konstanten aller DATA-Anweisungen gehtren zu einem
Block in der Reihenfolge der Auflistung bzw. der Zeilen-Nummern.
Beispiele siehe READ,

m READ Variable 1, Variable 2

Weist den Variablen Konstanten aus dem DATA-Block zu.
Beispiele:

57 DATA 17075 56245~ 00203

105 DATA "AP", 3¢ 14165 3276%,471151
267 READ H,VU1,U2

275 RFAD TEXTS

325 RFAD PI,P215,FEDCs EINS

- 236 -

Zugewiesen wird:

190—+H, 5.24—V1, -0.0003 »V2
AB — TEXT
3.1416 -+ PI, 32768-= P215, 4711 —EDC, 1-—»EINS

RES m RES
m RES n

Setzt den DATA-Zeiger auf den Beginn des ersten DATA-Feldes zuriick
bzw. auf das DATA-Feld mit der Nummer n. Die ndchste READ-Anwei~
sung liest wieder von dort.

Beispiele:

4p® RES
450 RES 267

GOTO m GOTO n
m GOTO Ausdruck OF nl, n2

Setzt das Programm bei der Anweisung mit der Nummer n fort. In der
Form des berechneten GOTO wird das Programm an der Stelle n1, n2,...
fortgesetzt, je nachdem, ob der Wert des Ausdrucks gleich 1, 2, ...

ist. Ist der Wert des Ausdrucks kleiner als 1 oder gréBer als die An-
zahl der Nummemn, wird die darauf folgende Anweisung ausgefuhrt.
Beispiele:

32 30TC 14¢
127 30TO 2+1IN4(7) OF 1€2,225 155

GOSuB m GOSUB n
m GOSUB Ausdruck OF nl, n2, ...

Ruft ein Unterprogramm auf, das mit der Anweisung n beginnt. Nach
Ruckkehr aus dem Unterprogramm (durch RETURN) wird die Anweisung
mit der auf m folgenden Nummer ausgefthrt. Das berechnete GOSUB
entspricht dem berechneten GOTO.

Beispiele:

2A5 G0SUR a4 OF 312,327, 3305 355
6en 3 0SUF 1335

-237 -

RETURN

FOR

NEXT

m RETURN

Bewirkt den Rucksprung aus einem Unterprogramm.
Beispiel:

333 RETURY

m IF Bedingung THEN n

Verzweigt zur Anweisung n, wenn die Bedingung erfullt ist; andernfalls
wird die Anweisung mit der auf m folgenden Nummer ausgefuhrt. Als
Bedingung kann eine Gleichung oder eine Ungleichung eingesetzt wer-
den, aber auch ein Boole’scher Ausdruck (erfullt, wemn Wert = 1) oder
ein arithmetischer Ausdruck (erfullt, wenn Wert ungleich 0).

Beispiele:

PR IF X/5>=N THEV 60

8@ IF A OF P ORF INEB(2) THEV 35
152 IF X12-1 THEN 125

252 IF INW(6 =2 THEN 310

307 IF 3*xINAC1)+612<10424 THEN 332

m FOR Laufvariable = Ausdruck 1 TO Ausdruck 2
m FOR Laufvariable = Ausdruck 1 TO Ausdruck 2 STEP Ausdruck 3

Ersffnet eine Programmschleife; die zu Anfang auf den Wert des
Ausdrucks 1 gesetzte Laufvariable wird durch die Anweisung NEXT so
oft um 1 bzw. den Wert des Ausdrucks 3 erhsht, bis der Wert des
Ausdrucks 2 erreicht oder Uberschritten ist; danach wird die Schleife
beendet.

Beispiele siehe NEXT.

m NEXT Laufvariable
SchlieBt eine Programmschleife formal ab. Nach dem letzten Durchlauf

wird die Anweisung mit der auf m folgenden Nummer ausgefuhrt.
Beispiele:

15¢ FOR I=1 TO 4
155 LET Z(I)=INW(2+1)
160 NEXT 1

- 238 -

DIM

CHAR

DEF

CALL

END

m DIM Feld 1, Feld 2, ...

Reserviert im Speicher ein- und zweidimensionale Felder von Zahlen-
variablen, Einzelvariablen und Overlay-Felder fur Programmoduln.
Beispiel:

417 DIM RC39), AFFY(5, 1@)5 AC134)

m CHAR String 1, String 2, ...

Reserviert im Speicher Stringvariablen.
Beispiel:

30 CHAP TX$C12), TOTO$C(32)

m DEF FN... (Argument) = Ausdruck

Definiert eine Funktion. Nach FN steht Name. Das Argument ist eine
Variable, die im Ausdruck rechts vom Gleichheitszeichen wieder vor-
kommen muB8. FN... wird im Augenblick des sptteren Aufrufs der durch
den jeweiligen Wert der Variablen bestimmte Ausdruck zugewiesen.
Beispiel:

175 DEF FNDFCER(X)=1e 42k SIN(X)*EXP(~=¢ 5%X)

m CALL Name
m CALL Name (Parameter)

Ruft eine Systemprozedur auf, die mit der Ubergabe von bis zu 4

Parametern verbunden sein kann.
Beispiel:

27 CALL LDSTCAC(2)sFE$,4)

m END

Beendet den AusfUhrungsbetrieb und l&Bt das System in den Bedienungs-
betrieb zuruckkehren.
Beispiel:

IAAA FND

- 239 -

WEITERE SPRACHELEMENTE VON BASIC

Namen:

Zahlenvariablen:

Stringvariablen:

Zahlenkonstanten:

Stringkonstanten:

Operatoren:

Funktionen:

Klammerung:

Buchstaben, u.U. gefolgt von bis zu 3 Buchstaben oder Ziffern.

Gekennzeichnet durch Namen. K&nnen einfach oder doppelt
indiziert sein. Interne Darstellung als Gleitkomma-Zahlen

3 l;yfe Mantisse, 1 byte Exponent; Genauigkeit der Mantisse
10-/, Exponent]0.'!'.40).

Gekennzeichnet durch Namen mit Suffix $. Bestehen aus 2 oder
mehr Zeichen. In Teilstrings zerlegbar, z.B. A% (p,l).

In beliebigem Format anzugeben.
ASCll-Zeichen in Anfuhrungszeichen eingeschlossen, z.B. "ABC",

+ Addition

- Subtraktion

* Multiplikation
/ Division

L) Potenzierung
NOT Negation
AND Konjunktion
OR Disjunktion

MIN Minimum
MAX Maximum

< kleiner

< = kleiner oder gleich
= gleich

4 ungleich

> = gréBer oder gleich
> groBer

& Stringverkettung

ABS Absolutwert
INT Ganzzahl-Teil
SGN Vorzeichen
SQR Quadratwurzel
SIN Sinus

CcOs Cosinus

TAN Tangens

ATN Arcustangens
LOG Naturlicher Logarithmus
EXP Exponentialfunktion

RND Zufallsfunktion

mit runden Klammem beliebig zulussig

- 240 -

PROGRAMM-SEGMENTIERUNG

Bei plattenunterstitzten Systemen ist es mdglich, BASIC-Programme zu segmentieren. Diese
bestehen aus einem residenten Teil ROOT), der nacheinander verschiedene Programmteile
(SEGMENTE) von der Platte in einen Overlay-Bereich ladt und zur Ausfthrung bringt.

ROOT

LINK ENDS

1 2 3 4 5 SEGMENTE

Zu beachten ist, dal nur ein Overlay-Bereich existiert, d.h. sich zur gleichen Zeit nur

1 Segment im Speicher befinden kann; auBerdem kdnnen Segmente keine weiteren Segmente

rufen. Dies gilt auch fur Multiprogramming-Anwendungen von BASIC unter MPOS, wo seg-

mentierte Programme zweckmiBig nur in einer Ebene laufen und die Programme aller anderen
Ebenen resident zu halten sind.

Die zugehsrigen Statements lauten:

LINK m LINK Name

L&dt das Segment mit dem angegebenen Namen und bringt es,
beginnend mit m, zur AusfUhrung.
Beispiel:

65¢ LINK ADAM

ENDS m ENDS

Bewirkt die Ruckkehr in die Root und zur Ausfuhrung des auf
LINK folgenden Statements.

Zur Generierung bzw. Verkettung eines segmentierten Programms dienen spdter beschriebene
Kommandos.

-241-

D ATEI-ZUGRIFFS-BEFEHLE

Die unter dem Basis-Betriebssystem bzw. dem Datei-Verwaltungssystem zulassigen Zugriffs-
befehle sind in Abschnitt DBOS undDFMS beschrieben. Sie werden mit CALL... (...)
aufgerufen.,

SYSTEMPROZEDUREN IN BASIC

BASIC enthalt in der Grundversion folgende Systemprozeduren:

String~/Zahl-Umspeicherung: CALL LDST (a,bg,I) Der String bg wird mit dem Inhalt
des Zahlenfeldes a geladen; es
werden | Bytes ubertragen.

CALL STST (a,bg, 1) Der Inhalt des Strings bg wird im
Zahlenfeld a gespeichert; es werden
| Bytes Ubertragen.

MULTIPRO GRAMMING-BASIC

BASIC kann unter MPOS in mehreren Benutzer-Ebenen laufen. In dieser Multiprogramming-
Version von BASIC sind folgende Systemvariablen bzw. Systemprozeduren zusdtzliche vorge-
sehen:

Ebenen-Bindung: LEV Liefert die Nummer der laufenden
Ebene.
(Verwendbar z.B. als ebenen-abhan-
giger Index).

Ressource-Verwaltung: CALL PREQ (d) Fordert das Peripheral d fur die
laufende Ebene an und belegt es,
wenn frei.

CALL PREL (d) Gibt das Peripheral d frei.

- 242 -

KOMMANDOS

LIST Gesamtes Programm listen

LIST m, Programm ab Anweisung m listen

LIST m,n Programm von Anweisung m bis n listen

LIST m Anweisung m listen

SCRATCH Gesamtes Programm |&schen

DELETE m, Programm ab Anweisung m l8schen

DELETE m,n Programm von Anweisung m bis n lsschen

DELETE m Anweisung m lsschen

RUN Programm starten (bei der niedrigsten Anweisungsnummer)
RUN m, Programm ab Anweisung m starten

RUN m,n Programm starten bei Anweisung m (stoppt bei Anweisung n)
RUN m Programm starten bei Anweisung m

Kommandos fur die. Erzeugung segmentierter Programme:

LOAD Name Root bzw. Segment laden
SAVE Name " " " ablegen

INIT Segmentiertes Programm verketten (initialisieren)
ROOT? Name

SEGMENT? Name 1

SEGMENT? Name 2 Dialog

SEGMENT? 4

KORREKTUREN

-— Eliminiert vorangehendes Zeichen

-— -— Eliminiert 2 vorangehende Zeichen

RUBOUT Eliminiert alle vorangehenden Zeichen der Zeile

- 243 -

BASIC-Beispiel 1

LIST

120 REM PROGRAMMBEI SPIEL 2 MC6

110 DEF FNF(X)=SIN(X)*EXP(=« 1%X)

115 FOR I=0 TO 15 STEP «5

120 PRINT TAB(30e«5+1S5«FNFCI)) 3 ™"
142 NEXT I

159 END
*READY
RUN
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*READY

- 244 -

BASIC-Beispiel 2

LIST

1 REM PROGRAMMBEISPIEL 11 MC6
10 REM "EWIGER KALENDER"

20 PRINT "WELCHES DATUM '}

30

INPUT KsMsC

35 LET K1=KsM1=M,Cl=C
40 LET C=C/100,D=INT(e 1+10@%(C-INTC(C)>))»C=INT(C)
5¢ LET M=M-2

60

IF M>@ THEN 100

7@ LET M=M+12,D=D~1

80

IF D>¢ THEN 100

99 LET D=99,C=C-1

100
105
106
107
119

LET X=INT((26%M=-2)/10)+K+D+INTCC/4)+INT(D/4)~2%C
IF X<6 THEN 11@

LET X=X-7

GOTO 185

PRINT "AM";K13"e";M13"«"3C13"IST"s

120 GOTO X+1 OF 140,150,160, 170,180,190, 130
130 PRINT °** SAMSTAG"
135 GOTO 20

140 PRINT ' SONNTAG"
145 GOTO 20

150 PRINT ** MONTAG"

155 GOTO 20

168 PRINT ' DIENSTAG"
165 GOTO 20

178 PRINT ' MITTWOCH"
175 GOTO 2@

18@ PRINT ' DONNERSTAG"
185 GOTO 20

190 PRINT " FREITAG"
200 GOTO 20

219 END

*READY

RUN

WELCHES DATUM ?1,4, 1973

M1

«4 +1973 IST SONNTAG

WELCHES DATUM 29,4, 1973
AM29 <4 <1973 IST SONNTAG
WELCHES DATUM ?30,4,1973
AM30 «4 « 1973 IST MONTAG
WELCHES DATUM ?1,5,1973

AM1

e5 «1973 IST DIENSTAG

WELCHES DATUM ?STOP

*READY

- 245 -

BASEX

BASEX ist eine am Physikalischen Institut der Universitdt Freiburg entwickelte Programmier-
sprache fur Echtzeit-Anwendungen. Sie enthdlt auBer dem kompletten Sprachumfang von
BASIC weitere Sprachelemente fur Echtzeit-Verarbeitung im Multiprogramming sowie fur
ProzeB-Ein/Ausgaben.

Im folgenden ist BASEX so beschrieben, wie es in den DIETZ 621-Systemen implementiert

ist. BASEX wird vom Echtzeit-Betriebssystem RTOS unterstitzt, das Bestandteil jedes BASEX-
Systems ist.

STATEMENTS AUS BASIC

REM Kommentar

LET Wert-Zuweisung

INPUT Eingabe in Periphergerdt

PRINT Ausgabe auf Periphergerdit

DATA Konstanten-Liste

READ Lesen aus Konstanten-Liste

RES Versetzen Zeiger Konstanten-Liste

GOTO Sprung
GOsSuUB Unterprogramm-Sprung
RETURN Rucksprung aus Unterprogramm

IF Bedingte Verzweigung

FOR Schleifen-Beginn

NEXT Schleifen-AbschluB

DIM Reservierung dimensionierter Zahlen-Variablen
CHAR Reservierung von String-Variablen

DEF Definition Funktion

CALL Aufruf Systemprozedur

END Ende Programm

Einzelheiten siehe Abschnitt BASIC,

- 246 -

ZUSATZLICHE STATEMENTS IN BASEX

ON INT m ON INT Interrupt: Auftragsanweisung

Ordnet einem durch seine Nummer bzw. den Wert eines entsprechenden
Ausdrucks angegebenen Interrupt-Eingang eine Routine zu, die aus der
Auftragsanweisung besteht bzw. (bei GOTO), mit ihr beginnt und die
bei Auftreten des Interrupts ausgefuhrt wird.

Beispiele:

510 OV INT 3: LET WX=INW(6)
527 OV INT V: GOTO S50

ENAB m ENAB Interrupt 1, Interrupt 2, ...

LaBt die angegebenen Interrupts zu.
Beispiel:

655 FNVAP 3,8

DISAB m DISAB Interrupt 1, Interrupt 2, ...
Verhindert das Wirksamwerden der angegebenen Interrupts.
Beispiel:

535 DISAR 8

AFTER m AFTER Zeit: Auftragsanweisung

Gibt dem System den Auftrag, nach der als Festwert oder in Form eines
Ausdrucks angegebenen Zeit (in ms) eine Routine auszufthren, die aus
der Auftragsanweisung besteht bzw. (bei GOTO) mit ihr beginnt.
Beispiele:

305 AFTFR 335t LET OUTR(12)=0
825 AFTEF 127@A-MSEC: GOTO 12@

WAIT m WAIT Ausdruck

LBt das Programm anhalten, bis der Wert des Ausdrucks ungleich Null
geworden ist. Soll nur in Ebene @ verwendet werden.
Beispiel:

372 JAIT INRCS)

- 247 -

EQUI

EQUO

PUT

START

STOP

m EQUI Name = % Hexa-String F27C %

Ordnet einem Namen, der als Prozelvariable vom Eingabe-Typ (oder
als Systemprozedur in Verbindung mit PUT) im Programm auftritt, ein
im Maschinencode als Hexa-String formuliertes Programm zu.
Beispiel:

IS5 EQUT INXY=%190430A03AQ4F27C%
156 PRINT INYY

m EQUO Name = % Hexa-String F27C %

Ordnet einem Namen, der als Prozefivariable vom Ausgabe-Typ (oder
als Systemprozedur in Verbindung mit PUT) im Programm auftritt, ein
in Maschinencode als Hexa-String formuliertes Programm zu.
Beispiel:

? EOTQ CLFP=ZFCRAL1R34F27C2Z
1

17
171 LET CLE®2=1

m PUT Name

Ruft eine parameterlose Systemprozedur auf, die mit EQUO definiert
ist.
Beispiel:

A15 PIIT CLFP

m START Ausdruck: n

Startet in der Ebene, die dem Wert des Ausdrucks entspricht, ein
Programm, das mit der Zeilen-Nummer n beginnt.
Beispiel:

2rM STAFT 2:605

m STOP

Beendet das Programm in der jeweiligen Ebene.
Beispiel:

682 STOP

- 248 -

SYSTEMVARIABLEN UND SYSTEMPROZEDUREN

Systemvariablen sind im BASEX-System vorprogrammierte Funktionen mit Variablen-Charakter,
die unter ihren Namen (mit oder ohne Index) dem Benutzer-Programm zur Verfugung stehen.
Sie liefern entweder einen Zdhlenwert innerhalb eines Ausdrucks, oder ihnen wird ein Wert
zugewiesen.)

Systemprozeduren sind ebenfalls im BASEX-System enthaltene Funktionen, die unter ihren
Namen mit CALL aufgerufen werden, ggfs. mit Ubergabe von bis zu 4 Parametern. Sie
dienen u.a. zur Initialisierung von Ein/Ausgabe-Vorgsngen .

Zeitvariablen: MSEC Liefert die Absolutzeit in ms
SEC n " n u s
MIN n n n n min
HOUR n n n n h
Ebenen-Bindung: LEV Liefert die Nummer der laufenden Ebene
Digitale Eingdnge: INW (x) Wortweise bindre Eingabe (16 bit)
IND(x) Wortweise BCD-Eingabe "
INB(x) Bitweise Eingabe
Digitale Ausgtinge: OUTW(x) Wortweise bindre Ausgabe (16 bit)
OUTD(x) Wortweise BDE-Ausgabe "
OUTB(x) Bitweise Ausgabe
Zshleingdnge: INC(x) Abfragen Zshlerinhalt (16 bit)
OUTC(x) Setzen Zishlerinhalt "
CALL ACTC(x) Zshleingang &ffnen
CALL HLTC(x) Zihleingang schlieflien
Zeitausgdnge: OUTT(x) Setzen Timer-Inhalt (16 bit)
CALL ACTT(x) Starten Timer
Analog-Eingdnge: INA(x) Eingabe Analogwert (12 bit)
Analog-Ausginge: OUTA(x) Ausgabe Analogwert (10 bit)

Analog-MeBsystem: CALL ADCS(a,k,q) Einkanal -Messung
CALL ADCD(a,k,q) Zweikanal-Messung
CALL ADCM(a,k,q) Mehrkanal-Messung

Bemerkung: Nummer des jeweiligen Ein/Ausgangs
Feldname fur Puffer-Bereich
(Basis-) MeBkanal

Anzahl Messungen

£ X a X

- 249 -

PROGRAMM-SEGMENTIERUNG

(sieche Abschnitt BASIC).

WEITERE SPRACHELEMENTE VON BASEX

(siche Abschnitt BASIC).

KOMMANDOS UND KORREKTUREN

(siche Abschnitt BASIC).
AuBerdem gibt es das Kommando TIME:

TIME (er) Die Systemzeit in Stunden, Minuten und Sekunden wird ausgedruckt.
TIME hsm:s(cr) Die Systemzeit wird auf die eingegebene Stunde, Minute und Sekunde
gesetzt.

- 250 -

BASEX-BEISPIELE

Beispiele fur Interrupt-Programmierung:

9608 REM AUFTRAG FUER INTERRUPT 0
0695 ON INT @: LET OUTB(6)=0

9630 REM AUFTRAG FUER INTERRUPT §
9645 ON INT 8: CALL ADCM(ARRY,1,18)
9650 REM INTERRUPTS 3 UND 8 ZULASSEN
9655 ENAB 3,8

9680 REM INTERRUPT 8 VERHINDERN

@685 DISAB 8

Der Analogeingang 1 ist wiederholt in einem zeitlichen Abstand zu messen, der dem
Inhalt der Variablen DELT entspricht, und zwar so lange, bis der Bit-Eingang 14 nicht
mehr erregt ist; anschlieBend wird der Mittelwert gebildet:

9835 LET N=0,W=0

9840 AFTER DELT:GOTO 852
9850 IF INB(14)=0 THEN 874
9855 LET W=W+INAC1),N=N+1
9860 AFTER DELT:GOTO 850
2865 STOP

0878 LET W=W/N

9875 STOP

Um 12000 ms Absolutzeit soll der Zihleingang 2 gedffnet, 1000 ms spiter wieder ge-
schlossen und der Inhalt abgefragt werden. Hierbei wird in der Zeitroutine der Auftrag
fur eine zweite gegeben:

9825 AFTER 12000-MSEC:GOTO 1292
21208 CALL ACTC(2)

@125 AFTER 1000: GOTO 149

2130 STOP

@140 CALL HLTC(2)

9145 LET X=INC(2)

@147 STOP

- 251 -

C-BASIC

Mit C-BASIC (Commercial BASIC) steht fur das DIETZsystem 621 eine erweiterte Version
der Programmiersprache BASIC zur Verfigung, die zur Lésung kommerziell-administrativer
Aufgaben geeignet ist und vor allem bei interaktiven, dialogfshigen Systemen ihre Anwen-
dung findet.

C-BASIC enthalt den vollen Sprachumfang von BASIC, arbeitet im Einbenutzer-Betrieb oder
im Multiprogranming unter MPOS und benutzt das Basis-Betriebssystem DBOS sowie das Da-
teiverwaltungssystem DFMS.

Im folgenden sind nur die Elemente von C-BASIC beschrieben, die iber den Umfang von
BASIC hinausgehen.

KOMMERZIELLE ZAHL

C-BASIC sieht als dritten Datentyp - neben Strings und einfachen Zahlen - die kommerzielle
Zahl (X-Zahl) vor.

Die X-Zahl kann 16-stellige, vorzeichenbehaftete Dezimalwerte darstellen mit fester Lage
des Dezimalpunktes. Intern belegt sie 8 Bytes.

Li 7 9|9 9|9 9|9 9‘9 9 ' 9 9[9 9|9 9J

Der Zahlenbereich betragt somit:

minimal -7 999 999 999.99 9999
maximal +7 999 999 999.99 9999

Die wesentlichen Operationen, die in C-BASIC mit der X-Zahl méglich sind, umfassen:

- Wertzuweisung

- Addition

- Subtraktion

- Multiplikation

- Division

- Rundung in angegebener Stelle

- Konversion X-Zahl in einfache Zahl
- " einfache Zahl in X-Zahl
- " X-Zahl in String
- " String in X-Zahl

- Vergleich

- 252 -

FORMAT-MASKEN

In C-BASIC wird die Ein-/Ausgabe von X-Zdhlen uber Format-Masken gesteuert. Die
Masken geben das Format an, in dem eine X-Zahl auf einem Periphergerdt (Bildschirm,
Drucker usw.) prdsentiert wird.

Die Format-Maske besteht aus einer Folge von Steuerzeichen, welche die Art der externen
Darstellung angeben. Folgende Zeichen sind vorgesehen:

Ziffernstelle

Ziffernstelle mit Unterdriickung fuhrender Nullen
Ziffemstelle mit Schutzstern bei fuhrenden Nullen
Vorzeichen-Stelle (- wenn negativ, Leerstelle wenn positiv)
Vorzeichen-Stelle (- wenn negativ, + wenn positiv)

Komma (Dezimalpunkf)

Leerstelle vor/hinter der Zahl zur Feldbegrenzung

bzw. innerhalb der Zahl zur Tausender-Trennung

S 4+ 1 XN O

C

Beispiele von Format-Masken fur die Zahl 1234.567898:

Maske: 999999,999999
Darstellung: 001234,567890
Maske: -9999,99
Darstellung: ul1234,56
Maske: 222 999,99+ u

Darstellung: vul234,56+0u

Maske: *%%999, 99u
Darstellung: *%1234,56u

Maske: +uZZZuZZ2 9,99 vu u
Darstzllungiuuu+1u234,56 uu u

Maske: ZZ2uZZ9
Darstellung: o u 1. 234

- 253 -

BILDSCHIRM-BEFEHLE

Zur Erleichterung der Bildschirm-Ein-/Ausgabe, die vor allem bei dialogfshigen Systemen
" von Bedeutung ist, enthdlt C-BASIC eine Reihe von Steuerbefehlen fur alphanumerische
Bildschirm-Terminals.

Diese Befehle umfassen u.a.:

- Positionierung des Cursors in Ausgangsstellung (erste Spalte der ersten Zeile)

- Positionierung des Cursors auf eine vorgegebene Spalte einer angegebenen Zeile
- Zeile loschen

- Zeile einfugen

- Loschen des Bildschirm-Inhaltes

- Loschen des Foreground-Inhaltes

Umschalten auf Foreground

- Umschalten auf Background

Auslssen der Ubertragung (Bildschirm-Inhalt senden)

- 254 -

FORTRAN IV

FORTRAN 1V ist eine problemorientierte Programmiersprache, die u.a. fur die Lssung
von mathematischen Aufgaben und fur technisch-wissenschaftliche Anwendungen geeignet
ist.

Der Sprachumfang von FORTRAN 1V ist im folgenden so beschrieben, wie er fur das
DIETZsystem 621 implementiert ist.

Er entspricht den einschldgigen ISO- bzw. ASA-Normen wund ist mit IBM 1130/1800
FORTRAN kompatibel.

GRUNDZUGE

Das FORTRAN-Quellprogramm besteht aus einer Folge von Textzeilen, die

- Kommentare
- Anweisungen (Statements) mit beliebig vielen Folgezeilen
- END-Zeilen

sein konnen. Vor jeder Anweisung kann eine Anweisungs-Nummer n stehen. Das Quell-
programm wird von einem Ubersetzer (Compiler) in ein Objektprogramm (Maschinencode)
Ubersetzt, das vom Computer direkt ausgefthrt werden kann. Der Compiler fuhrt syntak-
tische und lexigraphische Analysen durch, bei denen u.a. formale Fehler erkannt und dem
Benutzer gemeldet werden.

Das Quellprogramm wird in den Programmeinheiten Ubersetzt, die jeweils durch eine END-
Zeile abgeschlossen sind. Die Objektprogramme sind verschiebbar und kénnen durch den
LINKING LOADER zu einem Gesami-Programm verkettet oder mit anderen Benutzer- oder
Bibliotheksprogrammen verbunden werden.

Ein FORTRAN-Programm kann aus folgenden Programmeinheiten bestehen:

- Hauptprogramm
- Subprogrammen (externe Funktionen, Unterprogramme)
- Datenspezifikations-Programmen

Fur die Korrektur fehlerhafter FORTRAN-Quellprogramme steht ein TEXT-EDITOR zur
Verfugung.

- 255 -

FORTRAN-STATEMENTS

Arithmetische Ergibtanweisung:

Boole’sche Ergibtanweisung:

STOP-Anweisung:

PAUSE-Anweisung:

Unbedingte Sprunganweisung:

Aufruf-Anweisung:

Variable = arithmetischer Ausdruck
Feldelement = arithmetischer Ausdruck

Variable = Boole’scher Ausdruck
Feldelement = Boole’scher Ausdruck

STOP
STOP Oktalzahl

PAUSE
PAUSE Oktalzahl

GOTO

CALL Subroutine-Name

CALL Subroutine-Name (Liste der aktuellen Parameter)

Rucksprung~Anweisung: RETURN

Arithmetische Wennanweisung: IF (arithmetischer Ausdruck) nl1, n2, n3

Boole’sche Wennanweisung: IF (Boole’scher Ausdruck) ausfuhrbare Anweisung

Berechnete Sprunganweisung:
Gesetzte Sprunganweisung:

Laufanweisung:

Leeranweisung:

Eingabe-Anweisung:

Ausgabe-Anweisung:

Ruckspulanweisung:
Rucksetzanweisung:
Dateiabschlu-Anweisung:

Formatanweisung:

GOTO (n1, n2, ...), Variable

GOTO Variable, (n1, n2, ...)

DO n Laufvariable = Anfangswert, Endwert
DO n Laufvariable = Anfangswert, Endwert, Schrittweite

CONTINUE

READ (Gerit)

READ (Gerit) Eingabeliste

READ (Gerst, Format)

READ (Gerat, Format) Eingabeliste

WRITE (Gerat) Ausgabeliste
WRITE (Gerat, Format) Ausgabeliste

REWIND Gerdt
BACKSPACE Gerat
ENDFILE Gerat

FORMAT Formatspezifikation

- 256 -

Feldanweisung:

Bereichsanweisung:

A quivalenzanweisung:

Typenenweisungen:

EXTERNAL-Anweisung:
Anfangswert-Anweisung:

Formelfunktionen:

Funktionsanweisung:

Unterprogramm-Anweisung:

Datenspezifikations-Anweisung:

Sprungzielzuweisung:

DIMENSION Liste der Felderklarungen

COMMON Bereichsliste
COMMON/Bereichsname/Bereichsliste

EQUIVALENCE (Aquivalenzliste 1), (Aquivalenzliste 2), ...

INTEGER Namensliste

REAL Namensliste

DOUBLE PRECISION Namensliste
COMPLEX Namensliste
LOGICAL Namensliste

EXTERNAL Liste der Unterprogramm-Namen

DATA Numensliste/Konstantenliste, ...

Funktionsname (Liste der formalen Parameter) = arithmetischer
Ausdruck

Funktionsname (Liste der formalen Parameter) = Boole’scher
Ausdruck

FUNCTION Funktionsname (Liste der formalen Parameter)
Typangabe FUNCTION Funktionsname (Liste der formalen
Parameter)

SUBROUTINE Unterprogramm-N ame
SUBROUTINE Unterprogramm-Name (Liste der formalen
Parameter)

BLOCK DATA

ASSIGN Anweisungs-Nummer TO einfache Variable

- 257 -

WEITERE SPEZIFIKATIONEN VON FORTRAN

Z eichenvorrat:

Anweisungsnummer:

O peratoren:

Datentypen:

Konstanten:

Name:

Dateneinheiten:

A usdriicke:

Formatumwandlungs-
schlussel:

AIBICIDIEIFIGIHIT1JIK [LIMN|O[p|QR|s|T|u|v]w|x|Y|Z]
o112 314]51 61 78] 9
=1 =pl /1) Bl

max. 5 Ziffern

-]/ *
AT, [JLE.| .EQ. | .NE.l .GT.| .GE.
NOT. | .AND. | .OR.

Integer (ganze Zahl) 16 bit

Real (reelle Zahl) 24 bit Mantisse, 8 bit Exponent
Double (erhsht genaue Zahl) 56 bit ", 8 bit "
Complex (komplexe Zahl)

Literal

Boole’sche Zahl

ganze Zahl Beispiel: 56

reelle Zahl " : =6.75 | -3E+116
erhsht genaue Zahl " i -f.475669231D13
komplexe Zahl " : (-6E4, .9576)
Oktalzahl " 76507
Hollerith-Konstante " : 1PHERGEBNIS=
Boole’sche Zahl " : .TRUE. | .FALSE.

Buchstabe, gefolgt von bis zu 5 Buchstaben oder Ziffern.
Bezeichnet eine Variable, ein Zahlenfeld, ein Feldelement,
einen COMMON-Bereich, eine Funktion oder ein Unterprogramm.

einfache Variable Name
Zahlen-Feld Name
Feldelement Name (Indexliste aus max. 3 Indizes)

COMMON -Bereich
Externe Dateneinheit (z.B. Datei, Satz)

arithmetische Ausdrucke
Boole’sche Ausdrucke

Fw.d F-Format
Ew.d E-Format
Gw.d G-Format
Dw.d D-Format
Iw |-Format
Lw L-Format
Aw A-Format
nH Literal H-Format
nX Leerstellen
/ neve Zeile

- 258 -

Standardfunktionen:

EXP
DEXP
CEXP

ALOG
DLOG
CLOG

ALOGI10
DLOGI10

SIN
DSIN
CSIN

COs
DCOs
CCOs

TANH

SQRT
DSQRT
CSQRT

ATAN
DATAN

ATAN2
DATAN2

ABS
1ABS
DABS
CABS

AINT
INT
IDINT

AMOD
MOD
DMOD

AMAXO0
AMAX1
MAXO0
MAX1
DMAXI

Exp.-Funktion Parameter:

Nat. Logarithmus

10er-Logarithmus
n

Sinus
un

Cosinus
n

Tangens Hyp.

Quadratwurzel

Arcus Tangens
n

Arcus Tangens Quotient
"

Absolutwert

Ganzzahl-Teil

Modulo-Fkt.

Maximalwert
"

- 259 -

gx~”®~” OHO—R O O= [eRvAL ~ ONOURm”® ONOUR™® O NoO»x® MNHOoO=

o—=

om—m—

Ergebnis

g—~ ——XxXR RPYU—TH@ UI® O NP ® NHOUO*P MOHOP® OU* @ MNHOF OHOR

oO——=® =

Erklgrung: |

R
D
C

nonon

Integer
Real

Double
Complex

AMINO
AMINI1
MINO
MINT1
DMINT1

FLOAT
IFIX
SIGN
ISIGN
DSIGN

DIM
IDIM

SNGL
DBLE

REAL
AIMAG

CMRLX
CONJG

Minimalwert
"

Konversion
Konversion

Vorzeichen
n

Min. -Diff.

Konversion
Konversion

Realteil
Imagindrteil

Konversion
kompl. Konjugation

- 260 -

Parameter:

I
R
I
R
D

on »®o —=»

0=

Ergebnis:

O——=®=

A A

00

UTILITIES

Fur das DIETZsystem 621 stehen benutzer-orientierte Dienstprogramme (Utilities) zur
Verfiigung.

Sie werden bei Bedarf unter DBOS von der Platte abgerufen und fishren Funktionen aus,

die der Benutzer von Zeit zu Zeit braucht, z.B. um sein System zu reorganisieren, Da-
teien zu kopieren usw. Utilities haben im Betriebssystem den Rang von Benutzerprogrammen.

PACK

Das Dienstprogramm PACK dient zur Reorganisation eines Plattenspeichers, dessen Nummer u
anzugeben ist.

PACK verdichtet den Plattenspeicher-Inhalt, indem es alle Dateien des Speichers lickenlos
aneinanderreiht.

Der Raum, den mit KILL geloschte Dateien physisch einnehmen, wird dabei vom Inhalt der
dohinterstehenden Dateien aufgefullt.

Auf diese Weise entsteht ein zusammenhiingender freier Raum auf dem Plattenspeicher.

Aufrufs RUN, PACK
Dialog: UNIT? u
CcopPY

Mit dem Dienstprogramm COPY konnen Datei-Inhalte von einer Datei in eine andere
Ubertragen werden bzw. von anderen Gertiten eingelesen oder auf ihnen ausgegeben werden.

Quell-Datei (source) und Ziel-Datei (destination) sind dabei anzugeben.

Die File-Namen und die Unit-Nummem beim Plattenspeicher sind anzugeben; die Ziel-Datei
ist gofs. vorher zu erdffnen.

Aufruf: RUN, COPY

Dialog: FROM DEV-TYP:DSK
SOURCE UNIT? vl
SOURCE FILE? f1
TO DEV-TYP:DSK
DESTINATION UNIT? o2
DESTINATI ILE?

- 261 -

MINCTEST 600

MINCTEST 600 ist ein Diagnostik-Programm zur Uberprifung der Funktionen der Zentral-
einheit DIETZ 621.

Es besteht aus zwei unabhdngigen Teilen:

- Einzelbefehlstest
- Endprifung.

EINZELBEFEHLSTEST
Dieser Programmteil Uberprift die einzelnen Befehlsabldufe der Zentraleinheit. Es besteht
aus insgesamt 81 Einzeltests, die systematisch aufeinander aufbauen und mit denen jeder

einzelne Befehl, jede Adressierungsart usw. getestet werden.

Das Programm arbeitet im Dialog mit dem Benutzer, der die gewiinschten Tests einleitet
und dann der Erfolg bzw. MiBlerfolg des Tests in Klartext gemeldet werden.

Voraussetzung fur den Test ist ein funktionstichtiger Hardware-Bootstrap in der Zentralein-
heit, ein Konsolgerdt (mit Streifenleser oder getrenntem schnellem Lochstreifen-Leser).

ENDPRUFUNG

Dies ist ein zusammenhingendes Programm, das nacheinander alle wichtigen Teile der Zen-
traleinheit, wie Kernspeicher, RAM, Ebenen-Logik, BUS-Schnitistelle usw. uberpruft und
den erfolgten Test meldet.

Danach gibt das Programm automatisch die Rechner-Konfiguration aus (z.B. SpeichergrsBen,
Ebenen-Zahl und -Belegung, usw.).

SchlieBlich geht das Programm in einen Dauertest unter worst-case-Bedingungen uber.

- 262 -

DIETZsystem 621

VORBEMERKUN G

Mit dem DIETZsystem 621 steht ein standardisiertes Computer-System fur universellen
Einsatz auf der Basis des DIETZ 621 zur V rfigung. Es bildet ein abgeschlossenes
Hardware-/Software-System mit Konfigurations-Maglichkeiten fur nahezu jeden Anwen-
dungsfall.

SYSTEM-EIGENSCHAFTEN

Zwei Versionen des DIETZsystems 621 sind verfugbar; sie unterscheiden sich durch Art
und Umfang des Systemspeichers und umfassen in der Grundausfihrung:

- DIETZsystem 621 C: - Zentraleinheit mit
1 Kbyte RAM + 32 Kbyte Kemspeicher,
Netzausfallschutz, Echtzeituhr, Bedienungskonsole
- DIETZdisk 256 Kbyte (System)
- DIETZdisk 256 Kbyte (Benutzer)
- Konsoldrucker 50 Z/s 80 Z/Z| mit Tastatur
- Systemschrank

- DIETZsystem 621 D: - Zentraleinheit mit
1 Kbyte RAM + 32 Kbyte Kernspeicher,
Netzausfallschutz, Echtzeituhr, Bedienungskonsole
- Wechselplattenspeicher 2.4 Mbyte (System)
- DIETZdisk 256 Kbyte (Benutzer)
- Konsoldrucker 50 Z/s 80 Z/Z| mit Tastatur
- Systemschrank

Die Grundsysteme ksnnen modular um Periphergerdte, ProzeBanschlusse und Datenfern-
Ubertragungs-Anschlisse erweitert werden.

Die zum DIETZsystem gehsrende Basis-Software erlaubt das Programmieren in folgenden
Sprachen:

- Assembler MINCASS 600

- MARS 600 fur Echtzeit-Anwendungen

- BASIC fur technisch-wissenschaftliche Anwendungen

- BASEX fur Echtzeit-Anwendungen

- C-BASIC fur kommerzielle Anwendungen

- FORTRAN IV fir technisch-wissenschaftliche Anwendungen.

- 263 -

Beide Versionen (621 C und D) werden vom Basis-Betriebssystem DBOS unterstitzt. In
Multiprogramming-Anwendungen wird das Betriebssystem MPOS verwendet. Es erlaubt
den gleichzeitigen Betrieb von é oder 12 unabhingigen Benutzerprogrammen, die in

den hierarchisch gegliederten Hardware-Programmebenen des Computers laufen.

Im Falle von Echtzeit-Anwendungen, z.B. beim Einsatz als ProzeBrechner, wird das
Echizeit-Betriebssystem RTOS verwendet, das die Zeitverwaltung, Interrupt-Verwaltung
und ProzeB-Ein/Ausgabe steuert und zusitzlich das MPOS beinhaltet.

Ein weiterer Bestandteil der Software ist das Dateiverwaltungs-System DFMS, mit dem
die Programm- und Datenbesttinde sowohl der System- als auch der Benutzer-Platte ver-
waltet werden.

Dadurch, daf beide Systemversionen plattenorientiert sind, bieten sie dem Benutzer ein
hohes MaB an Bedienungs- und Programmierungskomfort. Dieser wird noch erhsht durch
die Moglichkeit, das Benutzer-Plattenlaufwerk zur Ein- und Ausgabe von Programmen und
Daten auf DIETZdisk-Kassetten zu verwenden, mit den diesem Medium eigenen Vorziigen
hinsichtlich einfacher Handhabung, robuster Ausfuhrung, groBer Zuverlussigkeit und
schnellem Zugriff.

Typische Einsatzgebiete des DIETZsystems 621 sind v.a.:

- ProzeBrechner-Aufgaben in Industrie, Medizin, Forschung und Lehre

- Rechensystem fur technisch-wissenschaftliche Anwendungen

Interaktives Computersystem fir kommerziell-administrativen Einsatz

Intelligentes Terminal, Front-End-Prozessor und Datenkonzentrator in Datenfernver-
arbeitungs-Systemen.

DIE GRUNDAUSFUHRUNG

Die Grundausfihrung besteht korperlich aus einem 19"-Systemschrank (einfache Breite),
in dem sich Zentraleinheit und Plattensystem befinden und in dem Einbauraum fiur weitere
Einheiten vorhanden ist. Getrennt davon steht der Konsoldrucker, uber den der System-
Dialog gefuhrt wird; er steht aber auch fur die Verwendung im Benutzer-Programm zur
Verfigung.

Der System-Plattenspeicher enthalt

- das Betriebssystem DBOS

- weitere Betriebssysteme, soweit implementiert
- Dateien mit systemgebundenen Programmen

- Dateien des Benutzers.

- 264 -

Zwischen 621 C und D besteht hier kein Unterschied, abgesehen von Kapazitit,
technischer Ausfuhrung und Zugriffsgeschwindigkeit. Beim 621 C wird das DBOS durch
einen Hardware-Bootstrap von der Platte geladen, wihrend dies beim 621 D nach
Einschalten des Netzes automatisch geschieht.

Die Benutzer-Platte enthdlt Dateien gleicher Struktur wie der Systemspeicher. Sie dient
zum Einlesen neuver Programme und zur Archivierung von Benutzerprogrammen (d.h. als
Ersatz fur die friher Ubliche Lochstreifen-Peripherie). AuBlerdem kann der Benutzer auf
dieser Platte Daten abspeichern oder von ihr lesen.

In der Grundausfuhrung sind 8 Hardware-Ebenen mit je 128 Registern vorgesehen; unter

MPOS bzw. RTOS sind é davon als Benutzer-Ebenen (@...5) verwendbar; die restlichen
zwei sind System-Ebenen.

HARDWARE-ERWEITERUN GEN

Die Grundausfihrung des DIETZsystems 621 C und D ist systematisch erweiterbar, so da3
fur jeden Bedarfsfall das passende Gesamtsystem konfiguriert werden kann.

Folgende Erweiterungen sind msglich:
- Halbleiter-Speicher (RAM): - Erweiterung auf 2 Kbyte = 16 Ebenen
(12 Benutzer-, 4 Sysiem-Ebenen)

- Kernspeicher: - Erweiterung auf 48 Kbyte
(in Speichererwei terungs-Einschub SPE-621)

Plattenspeicher (nur 621 D): - Erweiterung auf 4.8, 7.2 oder 9.6 Mbyte
(erfordert zweiten Systemschrank)

- Prozessoren: - Festkomma-Rechenwerk (MP/DV)
- Gleitkomma-Prozessor
(in Speichererweiterungs-Einschub SPE-621)

Periphergerite: - Bildschirm-Terminal BTH 1000
- Bildschirm-Terminal BTH 2000
- weitere Konsoldrucker PH 50 mit/ ohne Tastatur
- 8-Kanal-Fernschreiber ASR 33/V24 und /LS
- Schnelldrucker TAL 2200
- Lochkarten-Stapelleser MDS 6042
- 8-Kanal-Streifenleser LE 125
- 8-Kanal-Streifenlocher LO 75
- Alphanum./graph. Bildschirmgerdt TEK 4010
- Speicheroszillograph TEK 611
- Digitalplotter DP-10, -1, -3

- Magnetband-Laufwerke
(1. ...4 anschlieBbar, erforderlich Controller,

in eigenem Systemschrank)

- 265 -

- ProzeBanschlusse: -

- DFU-Anschlusse: -

Im Systemschrank der Grundausfuhrung ist

Interrupt-Eingdnge

Statische digitale Eingdnge
Speichernde digitale Ausgdnge
Zihleinggnge

Zeitausgdnge

Watchdog-Ausgang
Einkanal-Analogeingtinge
Einkanal-Analogausgdnge
Mittelschnelles Analog-MeBsystem

Schnelles Analog-MeRsystem
Integrierendes Mefsystem

in zweitem
[Systemschrank

Datenfernibertragungs-Interface (V24/asynchron
und synchron)

Einbauraum fur die Speicher-Erweiterung (SPE-621)

enthalten; ferner fur eine Universal-Interface-Einheit (UIE-621), die 12 Platze fur Einkarten-

Interfaces bereithalt .

Bei Bedarf mussen weitere UIEs fur Einkarten-Interfaces vorgesehen werden, die in einem
zweiten Systemschrank untergebracht werden.

PROGRAMMIERSPRACHEN

Fur das DIETZsystem 621 C und D stehen

6 Programmiersprachen zur Auswahl, die je nach

Bedarf zur Anwendung kommen. Dabei ist zu beachten, daf3

- das System entweder unter DBOS im System-Bedienungsbetrieb oder unter Kontrolle
eines Benutzerprogramms lguft (wobei BASIC, BASEX und C-BASIC einen zusdtzlichen

"Command-Mode" kennen);

- das Benutzerprogramm einschlieBlich aller (ggfs. im Multiprogramming paralle! laufen-
den) Teile einen einheitlichen Programm-Kontext (Job) bildet;

- jedes Benutzerprogramm aus einer der verfigbaren Sprachen hervorgehen mu3 (was
den Einbau von Maschinencode-Prozeduren in BASIC, BASEX, C-BASIC und ‘FOR-

TRAN nicht ausschlielt;im tbrigen

umfaBt MARS 600 alle Assembler-Befehle).

Bei der Wahl der geeigneten Programmiersprachen ist im ubrigen auf folgende Umstidnde zu

achten:

- 266 -

- Assembler:

- MARS 600:

- BASIC und C-BASIC:

- BASEX:

- FORTRAN IV:

BETRIEBSSYSTEME

Alle System-Ressourcen sind ansprechbar, jedoch unter
Beachtung entsprechender VorsichtsmaBinahmen hinsicht-
lich Konfliktfdllen und, z.B. bei der ProzeBperipherie,
nur mit Kenntnis der absoluten Adressen sowie in
Einzelbefehls-Schritten. Multiprogramming ist moglich
nach vom Benutzer festgelegten Regeln.

Alle System-Ressourcen sind verfugbar, groBtenteils Uber

Moakros. Multiprogramming ist so vorgesehen, wie durch

RTOS/MPOS geregelt. Ruckgriff auf RTOS-Funktionen ist
moglich.

Alle System-Ressourcen sind verfigbar, jedoch nicht die
ProzeBperipherie (kein Ruckgriff auf RTOS-Funktionen).

Unterschieden wird:

- Single-User-Betrieb (kein Multiprogramming)

- Multiprogramming-Betrieb unter MPOS.
BASIC-Programme auf allen Benutzer-Ebenen msglich
(ausgelsst vom Hauptprogramm in Ebene f@). Segmen-
tierte Progromme laufen nur auf einer Ebene.

Alle System-Ressourcen sind verfigbar.
Multiprogramming ist so vorgesehen, wie durch RTOS/
MPOS geregelt. Ruckgriff auf RTOS-Funktionen moglich.

Alle System-Ressourcen sind verfugbar, jedoch nicht die
ProzeBperipherie (auler durch vom Benutzer eingebaute
Maschinencode-Programme) .

Single-User-Betrieb (kein Multiprogramming).

Dos plattenorientierte Basis-Betriebssystem DBOS des DIETZsystems 621 unterstitzt den
Benutzer-/System-Dialog und erlaubt in einer einfachen Form die Verwaltung der Platten-

dateien und den Zugriff zu ihnen.

Dariberhinaus sind folgende Betriebssysteme je nach Anwendungsfall und verwendeter Pro-
grammiersprache zusidtzlich implementierbar:

- DFMS:

Komfortables Datei-Verwaltungs- und Zugriffs-System
(Ein- und Mehrsatz-Dateien, Index-Dateien; sequen-
tieller und Random-Zugriff; Datei-Schutzfunktionen).

- 267 -

- MPOS: Multiprogramming-Betriebssystem
(Programm-Auftragsv erwaltung, Ressource-Verwaltung)

- RTOS: Echtzeit-Betriebssystem
‘ (Fuhrung der Systemzeit; Zeitauftrags- und Interrupt-
Verwaltung; Behandlung der Prozefperipherie).

Die folgende Tabelle enthilt die moglichen Betriebssystem-Konfigurationen (x = Standard;
o = Option).

PROGRAMMIER-
SPRACHE BETRIEBSSYSTEM
DBOS DFMS MPOS RTOS
ASSEMBLER X o
MARS 600 X o . .
BASIC Single-User x °
Multipro-
. X o x
gramming
BASEX X o y N
C-BASIC Single User x x
Multipro-
. x x x
gramming
FORTRAN 1V x °

- 268 -

~—awwpiBoidisuslq — e ———49Z}3519q —e= swwpJbolg-iazinuag

*iboisd -uBosd ‘iBosd ‘ibBoid
I_.—_DE IOC0<< I:_D<< IOCOE

- 269 -

> > E £ £ £ o
129 waissz131a Wi SECE 2B I2E 08| ol |xE IBE |88
NINOILVINDIINON-WWVEDO¥d £5 125 K| Z 5 29128 |28 |28 |£o
-] = = o o o 9 =
N Tlesizg T
SW4Q SKW4a SW40
SOly SOy
L |
SOdNW SOdW SOdW SOdKW
< L L _ [_ |
8 [P m = 9 (=4 ﬂ £ " 4s. m |45 W
= .W@ s 23 m.um. S Hm 8 4 Al Al 4shg| [ashg| |tashg| |tashg| [tushg| {is4s
€8 |5 | |55 g g5 |22 Nvy| [NVd| | DIs| |Dis| | Dis| | Dis| |xas| | 009
51 - =8 SOl 22| 58 o4 [¥od| |-ve| |-va| |-va| |-va| [-va| [sPwW

so4d

FOREGROUND-BACK GROUND-BETRIEB

Mit den DIETZsystemen 621 C und D ist eine bestimmte Form des Foreground-/Background-
Betriebs zuldssig und leicht implementierbar.

Unter Verwendung einer entsprechenden Hardware-Konfiguration, welche ausreichende
Speicherkapazitat und Ebenen-Zahl gewdhrleistet, ist es méglich,

- im "Hintergrund" BASIC-, BASEX-, C-BASIC- oder FORTRAN |V-Programme in
beliebiger Folge zu erstellen, zu compilieren, zu edieren und zur Ausfthrung zu
bringen, wihrend

- im "Vordergrund" ein in Assembler geschriebenes, ausgetestetes Benutzer-Programm
oder ein DIETZ-Anwendersystem (z.B. eine Terminal-Emulation) lduft, wobei hier-
fir eine oder mehrere getrennte Ebenen mit hoher Prioritdt reserviert sind.

Foreground- Foreground-
System = Peripherie
Plattenspeicher Background-

System
BASIC Background-
BASEX > Peripherie
C-BASIC
FORTRAN 1V

o \' (Background-)
DBOS l Konsolgerdt

Foreground- und Background-Bystem benutzen getrennte Peripherie-Einheiten; die Platten-
speicher sind jedoch Ressourcen, die beiden Systemen gemeinsam sind. Das Konsolgert
ist dem Background-System zugeordnet.

-270 -

KON FIGURATIONSLISTE GRUNDSYSTEM + ZENTRALE ERWEITERUNGEN

Einbau Soft-

Bem.
Ort) Groe| ware o

V-Bez T-Bez Baugruppe

$621C DIETZsystem 621C/Grundausfuhrung mit: S1 S
- Zentraleinheit 32KB + 1 KB RAM (8 Ebenen)
- DIETZdisk-Doppellaufwerk 2 x 256 KB
- Mosaikdrucker-Terminal 50 Z/s 80 Z/Z|

mit Tostatur
- 19" -Systemschrank

S621D DIETZsystem 621D/Grundausfuhrung mit: S1 S
- Zentraleinheit 32 KB + 1 KB RAM (8 Ebenen)
- DIETZdisk-Einfachlaufwerk 256 KB
- Wechselplattenspeicher 2.4 M8 mit Controller
- Mosaikdrucker-Terminal 50 Z/s 80 Z/ZI

mit Tastatur
- 19"-Systemschrank

S621C1 DIETZsystem 621C wie oben, jedoch: N S 1)
- zus.Bildschirm-Terminal BTH 1000 als Konsole
- Mosaikdrucker ohne Tastatur

S621D1 DIETZsystem 621D wie oben, jedoch: S1 S 1)
- zus.Bildschirm-Terminal BTH 1000 als Konsole
- Mosaikdrucker ohne Tastatur

5621C2 DIETZsystem 621C wie oben, jedoch: N S 1)
- zus,Bildschirm=Terminal BTH 2000 als Konsole
- Mosaikdrucker ohne Tastatur

S621D2 DIETZsystem 621D wie oben, jedoch: S1 S 1)
- zus,.Bildschirm-Terminal BTH 2000 als Konsole
- Mosaikdrucker ohne Tastatur

RL-ET6 Erweiterung auf 2KB RAM/16 Ebenen MC
SPE-621 Speichereinheit GI [E5 2)
KS-E48 Kemspeicher-Erweiterung auf 48KB SPE| MI S
GKE-621 Gleitkomma-Prozessor SPE| M1 S
FKP-621 Festkomma-Prozessor UIE| B2 S
EWP4.8 Plattenspeicher-Erweiterung auf 4.8 MB SYS| E6 S 3)
EWP7.2 " " " 7.2 MB SYS| EI1C S
EWP9.6 " " " 9.6 MB SYS| E14 S
UIE-621/S Universal-Interface-Einheit SGT ES 4)

mit Stromversorgung, Device-Selector, BUS- oder

AnschluB und AnschluBsteckern; fur 12 Einkarten- | SYS

Interfaces
SYS-EA 19" -Systemschrank (Erweiterung) S1 5)

Bemerkungen: 1) Bildschirm statt Mosaikdrucker-Terminal als Dialog-Konsole, + Mosaik-

drucker als Konsol-Hardcopy

2) fur KS-E48 und GKE-621

3) nur bei 621D

4) 1 x im Grund-Systemschrank, Rest in Erweiterungs-Schriinken. Enthalt
12 Platze "B"

5) ein- oder mehrfach notig

-271 -

KONFIGURATIONSLISTE PERIPHERGERATE

Einbau Soft
V-Bez T-Bez Baugruppe Ort | GroBe| ware Bem
PH50 Mosaikdrucker-Terminal 50 Z/s 80 Z/Z| S
mit Tastatur

1V24/PH50| 602 000 | + Interface UIE| Bl

PH50 RO Mosaikdrucker 50 Z/s 80 Z/ZI ohne Tastatur S
1V24/PH50| 602 000 | + Interface UIE| Bl
BTH2000 Bildschirm-Terminal 27 ZI 74 Z/Z1 F/B S
1V24/DIS | 602 000 + Interface UIE| Bl
BTH1000 Bildschirm-Terminal 12 Z1 80 Z/ZI S
1V24/DIS | 602 000 | + Interface UIE| Bl

LE 125 8-Kanal-Streifenleser 125 Z/s mit Spuler E5 T
ILE/LO 602 005 + Interface UIE| Bl

LO 75 8-Kanal-Streifenlocher 75 Z/s E6 T
ILE/LO 602 005 | + Interface UIE| BI1
MDS6042 Lochkarten-Stapelleser 400 K/min 80 Sp/K T
IKLE 601 045 + Interface UIE| BI1
TAL2200 Mosaik-Schnelldrucker 200 ZI/min 132 Z/Z1 T
ITAL2200 | 602 017 | + Interface UIE| BI1
TEK4010 Alphanum. /graphisches Bildschirm-Terminal T
V24 602 000 | + Interface UIE| BI]
TEK6T1 Graphisches Speicher-Display T
IAXY 601 043 | + Interface UIE| B1
XYS-A4 XY-Schreiber DIN A4 T
1AXY 601 043 | + Interface UIE| B1
XYS-A3 XY -Schreiber DIN A3 T
1AXY 601 043 | + Interface UIE| Bl

DP-10 Inkremental-Plotter DIN A4 T
IPLOT 601 044 | + Interface UIE| BI1

DP-1 Inkremental-Plotter DIN A3 T
IPLOT 601 044 | + Interface UIE| B1

DP-2 Inkremental-Plotter DIN A2 T
IPLOT 601 044 | + Interface UIE| BI

-272 -

KONFIGURATIONSLISTE MAGNETBAND-SYSTEME

Einbau Soft-

V-Bez T-Bez Baugruppe Ort |GroBe| ware Bem
MBE7840-9 9-Spur-Laufwerk 800 cpi 7" Spulen SYS| E5 T 1)
MBE-621/800P + Controller SYS| E3

9-Spur-Laufwerk 800 cpi 10.5" Spulen (Master) | SYS T b))
MBE-621/800 + Controller SYS| E3
9-Spur-Laufwerk 800 cpi 10.5" Spulen (Slave) SYS T 1)2)
9-Spur-Laufwerk 1600 cpi 10.5" Spulen (Master)| SYS T b))
MBE-621/1600 + Controller SYS| E3
9-Spur-Laufwerk 1600 cpi 10.5™ Spulen (Slave) SYS T 1)2)
Bemerkungen: 1) Einbau in eigenem Systemschrank empfohlen
2) bis zu 3 Slaves
KONFIGURATIONSLISTE DFU-SCHNITTSTELLEN
Einbau Soft-

V-Bez T-Bez Baugruppe Ort GriBe | ware Bem
1V24/DAS | 602 003 | V24-DFU-Interface asynchron UIE| Bl 1)
1V24/DSM | 602 004 "o " bi tsynchron/Modemtakt UIE| Bl 1)
IV24/DSE_ | 602 005| v v " " /Eigentakt UIE| B2 1

Bemerkung: 1) Software (DFU-Prozeduren) gegen Mehrpreis
ERLAUTERUNGEN
Spalte Einbauart: MC Zentraleinheit MC-621
SPE Speichereinheit SPE-621
UIE Universal-Interface-Einheit UIE -621
ADM Analog-Meflsystem ADA-621
MUl MefBstellen-Umschalter MUL-3
G Grund-Schrank 621 C/D
SYS Erweiterungsschrank SYS-E
Spalte EinbaugrsBe: Sl 19" ~Systemschrank (einfache Breite)
E... Einschub (... Einheiten hoch)
M1 Speicherkarte (1 Platz)
B... Baustein in UIE (... Platze breit)
Software: S Standard-Software
E von E?d%hercl-Trelber unterstitzt
von unterstitzt

-273 -

KONFIGURATIONSLISTE PROZESS-PERIPHERIE

Einbau Soft- B
V-Bez T-Bez Baugruppe Ort Grofle ware em
PDSE8/5 601 020 | 8- blt |nterrupt Elngang TTL UIE | B R
PDSE8/12.60{ 601 026 HTL UIE | B1 R
PDSE8/FK |601 027 " " " Fotokoppler UIE | B1 R
PDSE8/R 601 024 " " " Relais UIE | B1 R
PDSE8/FL [601 080 " " " Fotokoppler 2-pol/bit UIE | BI R 1)
PDSE16/5 601 088 | 16-bit-Interrupt-Eingang TTL UIE | Bl R 2)
PSSE14/5 601 010 lé-brf Dlgvfalemgang TTL UIE | B1 R
PSSE16/12.60601 016 HTL UIE | B1 R
PSSE16/FK |601 017 " " Fotokoppler UIE | Bl R
PSSET4/R 601 014 " " Relais UIE | Bl R
PSSET&/FL 601 082| " " Fotokoppler 2-pol/bit UIE | B1 R 1)
PSSE32/5 601 085 | 32-bit-Digitaleingang TTL UIE | Bl R k]
PSSA16 601 030 16 bl’r-Dlglfaluusgong TTL UIE | BT R)]
PSSA16/FK |601 033 Fotokoppler UIE | Bl R 4
PSSA16/R - | 601 036 v " Relais UIE | B1 R
PSSA32 601 086 | 32-bit-Digitalausgang TTL UIE | BI R 3)
PIZET6 601 060 | Té-bit-Zshleingang UIE | BI R
PISA16 601 061 | 16-bit-Zeit-Steverausgang 1 MHz TTL UIE | B1 R 5)
PWDOG 601 070 | Watchdog-Ausgang UIE | B1 R
ADE12.010 [401 000 Elnkonul-Analogelngang 12 blf 0...10V UIE [B2 R
ADE12.505 {601 001 " -5...5V UIE | B2 R
ADE12.1010 | 601 002 " " " -10...10 V UIE | B2 R
MUET6R 601 087 | 16fach-Relais-Multiplexer 3-polig UIE | B1 R
DAU1010 601 041 Anulog-Ausgung 10 bit 0 10V UIE | Bl R
DAI1020 601 042 " .20 mA UIE | BI R
ADM621S Mittelschnelles Anclog-MeBsysfem 12 bit SYS|E3 R
MUM/E16 16-Kanal-Multiplexer (MOS) ADM R 6)
ADM-S&H Sample-&Hold-Zusatz ADM R
ADI200 Infegnerendes MeBsystem 19,999 DC SYSTE2
ADI210 " 119.999 DC SYS | E2
ADA203 " " 19.999 DC/AC/R SYS | E2
ADA213 " " 119.999 DC/AC/R SYS | E2
PADI 601 009 | + Interface zu ADI/ADA UIE | B1
MUI-3 MeRBstellenumschalter SYS | E4
PIMUI 601 047 | + Interface zu MUI UIE | B1
MUI-3/E10 10-Kanal-Multiplexer (Relais) MUI 7)
Bemerkungen: 1) 2-poliger, passiver Eingang/bit (5 V) "1" wenn OV

2) unter RTOS nicht gemischt mit €-bit-Interrupt-Eingingen
3) unter RTOS nicht gemischt mit 16-bit-Ein/Ausgtingen
4) Open-Collector-Ausfihrung. Andere Version auf Anfrage
5) andere Versionen (10 MHz; Fotokoppler) auf Anfrage

6) max. 4 je ADM
7) max. 10 je MUI

- 274 -

Grundkonfigu-
ration

DIETZsystem 621 C

Platten-
Konfiguration
DIETZsystem 621 D

Sonder-Konfiguration
Konsol-Peripherie

.

DIETZdisk 2x256 KB
User SEstem
MINCAL 621)
Zentraleinheit O K?nsToldrucker
32 Kb mit Tastatur
50 Z/s 80 Z/ZI

rJ{___:___ R E—'._j-‘ Prozefsignale

UIE
| . "
| Universal-Interf.-Einh k== Periphergerte

1
| E/A-Interfaces E{-k‘ DFU-Anschlul

|
BUS (z.B. zu Magnetband-System

Wechsel- I I
plattenspeicher Iy
Pyl
2.4 MB I
DIETZdisk
256 KB
MINCAL 621
Zentraleinheit Konsoldrucker
32 KB mit Tastatur
|
BUS
l Bildschirm-
Konsole
MINCAL 621 / 1000/2000 Zei-
Zentraleinheit | chen
| Hardcopy
50 Z/s 80 Z/ZI

- 275 -

MINCAL 621
Zentraleinheit
32 KB

Femmm— = N

| Analog- DIETZdisk 2x256 KB
: MeBsystem —
[e
{ SPE

| Erweiterung auf 48 KB
I UIE GK=~Prozessor

|

I

|

Fm— -

! UIE

|

! UIE E/A-Interfaces

|

b -

|r Platten: sp_e icher- Wechsel-

| Erweiterung Plaﬂ‘enspeicher

[gl egltnnplington B N s ——

l 2.4 MB

I -

| == MINCAL 621

| 2.4 M8 Zentral einheit

| e e 3 32 KB

: 2.4 MB

; Analog- DIETZdisk 256 KB
MeBsystem A—

L

| SPE

| UIE Erweiterung auf 48 KB

| GK-Prozessor

|

| Platten-Controller

- ————— -

: UIE

I UIE E/A-Interfaces

- 276 -

Aufbau
DIETZsystem
621 C

Aufbau
DIETZsystem
621 D

Prozefiterminal-System 6150

Haufig besteht die Aufgabe, mehrere voneinander undbhingige ProzeBrechner zu instal-
lieren, die eine gewisse rdumliche Nachbarschaft haben. Ein Beispiel ist die Automati-
sierung von Gerdten, Labors und Versuchsanordnungen im Fachbereich einer Hochschule.
Jedes System soll Zugriff zu Programmen und Dateien in einem Grofiraumspeicher haben
und gelegentlich leistungsfahige Periphergerdte benutzen. Hier liegt der Gedanke nahe,
die aufwendige Speicher- und Geriteperipherie an einer zentralen Stelle verfugbar zu
halten.

Das ProzeBterminal-System 6150 ist die Konsequenz aus diesen Uberlegungen. Es umfafit

- bis zu 16 ProzefBterminals 6155 mit DIETZ 621

- ein Poolsystem 1621, das sternférmig mit den Terminals verbunden ist.

Die ProzeBterminals verhalten sich wie Stand-alone-tinheiten des DIETZsystems 621
der Benutzer arbeitet im Dialog uUber Konsol-Fernschreiber an den Terminals, und diese
fuhren alle ProzeR- und Verarbeitungsprogramme aus.

Einige Aufgaben jedoch werden vom Poolsystem Ubernommen:

- Es enthidlt einen Plattenspeicher (Kapazitdt 2.4...9.6 Mbyte), der die
Programme der verschiedenen Benutzer enthilt und in dem Dateien aufgebaut
sind, die von den Benutzern wie Ublich definiert und angesprochen werden.

- Es ubernimmt die Ausfihrung groBerer Programme, aktiviert durch die Terminals

- Es hdlt leistungsfahige Periphergerdte bereit, die von den Terminals nach
Bedarf angesprochen werden konnen, z.B.:

- einen Zeilendrucker (300...350 Zeichen/min; 132 Z/Zeile)
- ein 9-Spur-Magnetbandgerdt (10.5" Spulen)
- einen Digital-Plotter fur graphische Ausgaben.

Das Poolsystem, das einen Computer vom Typ MINCAL 1600 enthélt, fuhrt keine Real-
time-Verarbeitung von BASEX-Programmen aus; jedoch kann mit Hilfe der Konsol-Peri-
pherie - Konsol-Fernschreiber sowie Streifenleser und -locher - zusttzlich Batch-Verar-
beitung in Assembler, FORTRAN oder BASIC durchgefuhrt werden.

D aten, Programme und Kommandos werden zwischen Poolsystem und Terminals tber
Zweidraht-Leitungen mit einer Ubertragungsrate von 2400 Bd ausgetauscht. Die maximale
Entfernung betrdgt je nach Kabeltyp bis zu 300 m; dariberhinaus muB3 eine spezielle
Leitungsanpassung vorgenommen werden.

Die ProzeBterminals werden automatisch vom Poolsystem mit dem Betriebssystem geladen,
sobald sie eingeschaltet werden; hierfur ist ein spezieller Festprogrammspeicher im Ter-
minal vorgesehen.

- 277 -

Schnelldrucker

Magnetband{g =, _—
S = o

] T &\ Streifen-
1621 /@ leser

Poolsystem — ||E \) Streifen-

TR\

Platten-
speicher

Fernschreiber

6155 . . 6155
P 8- Q(Welfere (weitere Prozefie
roze Periphergerdte) Periphergertte) .
erminal terminal
Prozef} Prozef
16 PROZESS-TERMINALS -

6150
PROZESSTERMINAL-SYSTEM

- 278 -

Computer-Fibel

Dies soll eine kleine Hilfe fur alle die Benutzer des DIETZ 621 sein, die noch
keine Erfahrung mit Computern und Computer-Terminologie haben. Ein Computer hat
nichts Geheimnisvolles an sich; um seine Prinzipien zu verstehen und mit ihm um-
zugehen, muB man nur folgerichtig denken und diese Denkschritie sorgfiltig formu=
lieren konnen.

BINARZAHLEN

Computer behandeln Zahlen anders, als wir es gewohnt sind. Alle Elemente in einem
Rechner konnen nur zwei verschiedene Zustdnde unterscheiden und behandeln:

1. Positive Spannung

2. Keine Spannung

Zwischenwerte kennt ein Computer nicht. Der Zustand: "Es besteht die halbe posi-
tive Spannung" ist nicht méglich, es sei denn, der Computer streikt.

Alle Elemente, die nur zwei oder mehr diskrete Zustdnde kennen, nennt man
DIGITAL. Darum heifit der Computer auch Digitalrechner.

Der Einfachheit halber nennt man den einen Zustand "1" und den anderen "0".

Rechnen kann man mit O oder 1 erst, wenn man mehrere Elemente miteinander kom-
biniert. Kombinieren wir versuchsweise drei digitale Elemente, drei Lampen, und
tberlegen, wie viele Moglichkeiten es gibt, wenn jede Lampe leuchten oder dun-
kel sein kann:

O O O oder 000 0
o o X 001 1
o - o 010 2
0 X - 011 3
-0 o 100 4
1r 0 Xt 101 5
O 0- 0 110 6
08 0 11 7

® - 279 -

"Lampe leuchtet" soll einer 1 und "Lampe ist dunkel" einer O entsprechen.

Das sind 8 verschiedene Kombinationen; allgemein gilt die Regel, daf3 be%
n-Elementen 2" Kombinationen maglich sind. In diesem Beispiel sind es 2° = 8
Kombinationen, die wir (rechte Spalte) mit 0 bis 7 bezeichnen. Das sind Zah-
len im gblichen Dezimalsystem, das die Ziffern von 0 bis 9 benutzt. Von die-
sen zehn Ziffern hat das System seinen Namen (lateinisch zehn = decem).

Links neben den Dezimalzahlen ist eine weitere Zahlenreihe. Jedes Element aber
nimmt nur zwei verschiedene Zustdnde an (0 und 1). Deshalb spricht man hier
von einem Dual-System (lateinisch zwei = duo). Gebrduchlich ist auch der Aus-
druck BINAR-Zahlen. Einzelne Bindrelemente oder Bindrstellen werden als BIT
bezeichnet. Es ist ein Kunstwort aus dem Englischen: binary digit = Bindrstelle.
Als Hauptwort fur die Bezeichnung eines Elementes wird es groB geschrieben
(Bit), als MaBeinheit fur die Anzahl von Bindrstellen klein (bit).

Zdhlen und Rechnen mit Bindrzahlen erfolgt nach den gleichen GesetzmidBigkeiten
wie im Dezimalsystem. Beim Zdhlen z.B. addiert man ganz rechts eine 1 so lange,
bis die letztmoglichen Ziffern erreicht sind. Will man dann weiterzshlen, so be-
ginnt man mit der kleinsten Ziffer eine Spalte weiter links. Beim Dezimalsystem
muBl man nach der 9 eine neue Spalte “ersffnen", beim Dualsystem nach der 1.
Die einzelnen Spalten haben nun eine unterschiedliche Wertigkeit. Beim Dezimal-
system sind es von rechts beginnend die Wertigkeiten 1, 10, _100, 1000 usw., oder
anders ausgedriickt, die Potenzen zur Basis 10 (100, IO], 102, 10° ...).
Beim Qualsysfem haben die Spalten die Wertigkeiten 1 = 20, 2 = 2], 4 = 22,
8 = 2° usw. Hier sind es also die Potenzen zur Basis 2.

Bindrzahlen haben beim Rechnen den grofien Vorteil, daB das ganze Einmaleins
heiB3t:

Tmal 0 =0 wund

Tmal 1 =1

Ebenso einfach ist das Addieren und Subtrahieren. Der Nachteil besteht aber dar-
in, daB Bindrzahlen leicht sehr lang und unubersichtlich werden.
So sieht bindr die Zahl 2819 so aus:

101100000011

Da dies sehr unubersichtlich und auBerdem schwer zu behalten ist, greift man zur
HEXA-DEZIMAL-Darstellung. Hierbei faBit man jeweils 4 Bindrstellen zusammen:

- 280 - »

1011 0000 0011

Jedes dieser Pickchen wird nun je nach seinem Inhalt durch eine der Ziffern
0...9 oder A...F ersetzt, wobei folgende Zuordnung gilt:

0000 = O
0001 = 1
0010 = 2
0011 = 3
0100 = 4
0101 = 5
0110 = 6
ot = 7
1000 = 8
1001 = 9
1010 = A (= dezimal 10)
1011 = B (1)
1100 = C (12)
1101 = D (13)
1Mo = (14)
" = rF 15)

Die Bindrzahl aus dem vorigen Beispiel heift in hexa-dezimaler Schreibweise "B03":

1011 0000 0011
—— Natgtad —
B 0 3

Natirlich arbeitet der Computer mit Bindrzahlen, die hexa-dezimale Schreibweise
ist nur eine Vereinfachung fur den Benutzer.

DAS RECHNEN MIT BINARZAHLEN

Ublicherweise kann ein Computer, wenn er rechnet, nur addieren. Die Subtraktion
wird durch eine spezielle Addition ersetzt; Multiplikation wird durch wiederholtes
Addieren, Division durch mehrfaches Subtrahieren erzielt. Alle anderen arithmeti-

schen Operationen lassen sich auf die vier Grundrechenoperationen zuriickfihren.

Wie addiert und subtrahiert man Bindrzahlen?

- 281 -

Nehmen wir 4-stellige Bindrzahlen und rechnen 5 + 4 = 9:

B 22 2 P

o 1 0 1 (= 5)

o 1 0 o0 (= 4)

d ®/ = Ubertrag
0 0 1 =9

oder 7 + 3 =10
0 1 1 1 (=7)
oRetol
l 0 1 0 (= 10)

Wichtig hierbei ist, daB man beachtet:

1T+1

0 + Ubertrag und
1 + 1 + Ubertrag = 1 + (neuer) Ubertrag

Negative Zahlen werden als ZWEIER-KOMPLEMENT der entsprechenden positiven
Zahl dargestellt. Das Zweierkomplement erhdlt man, indem man alle Bits in ihr
Gegenteil verkehrt (aus einer O wird eine 1 und umgekehrt; hier spricht man vom
EINERKOMPLEMENT) und anschlieBend rechts eine 1 addiert.

Beispiel:

0000 0001 (
1111 1110 (
1141 1110

D]

Einerkomplement von 1)

I

also:

T111 1111

—~
1}

Zweierkomplement von 1)

-282 -

Da das Zweierkomplement eine negative Zahl ist, muflte das Ergebnis bei einer
Addition von +1 und -1 Null sein:

0000 0001 (= +1)
+ 1110 1111 (= -1

@ 0000 0000 (=0)
Wie wir sehen, stimmt die Annahme allerdings nur, wenn man den vordersten Uber-
lauf unberiicksichtigt laBt.

Der Computer fihrt nun eine Subtraktion durch, indem er den Subtrahenden nega-
tiv macht und dann addiert.

Beispiel: 19-5=14

n

+$=0000 0101
1111 1010

1111 1011

i

Einerkomplement von 5

n

Zweierkomplement von 5

also:
0001 0011 (= +19)
1111 1011 (= -5)
0000 1110 (= 14)

Negative Bindrzahlen erkennt man daran; daB das duBerste linke Bit gleich 1 ist.

- 283 -

DATEN UND WORTE

Zu den Hauptfunktionen, die ein Computer ausfuhren kann, gehtrt das Speichern
von DATEN. Das sind Bindrzahlen, aber auch Namen, Texte und Anweisungen,
die der Programmierer dem Computer gibt, damit dieser weil, was er zu tun hat.
All diese Daten werden in bindrer Form gespeichert als irgendein Bit-Muster.

Der Computer hat eine Reihe von Speichermedien. Da sind einmal die Flip-Flop-
Speicher, sehr schnelle, daber dafir ziemlich teure elektronische Speicher. Dann
gibt es den Magnetkernspeicher, der etwas langsamer ist, aber dafir sehr viele
Bits speichern kann. Neuerdings setzt man auch hochintegrierte Flip-Flop=Speicher
in IC-Technik ein, die genau die Mitte zwischen Kernspeichern und Flip~Flops
bilden.

Bei allen Speichern ist immer eine bestimmte Anzahl von Bits zusammengefaflt. Diese
Bits werden auf einmal abgelegt, addiert oder anderweitig behandelt. Die Anzahl
Bits, die so zusammengefaflt ist, ist von Computer zu Computer unterschiedlich.
Innerhalb eines Computer-Typs ist sie aber fur alle Speicher gleich und stellt eine
wichtige KenngrsBe dar, die WORTLANGE. Ein Pédckchen zusammengefafter Bits
nennt man ein WORT.

Weit verbreitet ist das 8-bit-Wort; man bezeichnet es als "BYTE".

REGISTER UND SPEICHER

Flip-Flop-Speicher von Wortldnge bezeichnet man als REGISTER. Allerdings kommt
es auch vor, daB Register ldnger als ein Wort sind, z.B. 2-byte-Register (= 16-bit-
Register).

Der KERI}IEPEICHER ist in der Lage, sehr viele Worte zu speichern. Im allgemeinen
sind es 2'“ = 4096 Worte (man spricht hier von 4k) oder ein Vielfaches hiervon.
Will man ein bestimmtes Wort herausholen (lesen), so muB man dem Kernspeicher
eine zusdtzliche Information, die ADRESSE, geben, damit das richtige Wort gefun-
den wird. Jede SPEICHERZELLE hat also eine feste Adresse, aber einen variablen
Inhalt von Wortldnge.

Adressen sind ebenfalls bindr aufgebaut. Bei einem 4k-Speicher sind alle Adressen
durch 12-stellige Bindrzahlen - also 12 bit ~ darstellbar; Gbersichtlicher bezeichnet
man sie mit 3-stelligen Hexa-Dezimalzahlen:

1. Adresse 0000 0000 O00O00O 000
2. Adresse 0000 0000 0001 001
UswW.

vorletzte Adresse 1 111 1111 1110 FFE
letzte Adresse 1111 1111 1111 FFF

- 284 -

FFF } Adressen der

FFE Speicherzellen
FFD (hexa~dezimal)
FFC
FFB
FFA
FF9

FF7

Inhalt jeder FFé
Zelle: FF5
1 Wort mit FF4
n bit FF3
FF2
FF1 4k~Kernspeicher

009
008
007
006
005
004
003
002
001
000

Der RAM-Speicher ist genauso organisiert wie der Kernspeicher. Aber ein groBer
Teil der Adressen erfullt die gleichen Funktionen, die friher von Flip-Flop-Regi-
stern erfUllt wurden. Deshalb ist es Ublich, hier ebenfalls von REGISTERN zu spre-
chen. Register allerdings, deren Inhalt noch in wirkliche Flip-Flop-Register uber-
tragen werden muB3, bevor man mit ihm arbeiten kann.

- 285 -

DAS PROGRAMM

Speichern und Wiederauffinden von Daten ist zwar fir einen Computer wesentlich,
aber er kann noch mehr: Mit diesen Daten rechnen, sie manipulieren, ausgeben
oder von auBlen aufnehmen. Aber all dies muB3 ihm genau vorgeschrieben werden.
Dann fiihrt er die gegebenen Anweisungen blitzschnell und sklavisch genau aus.

Das Erstellen solcher Anweisungen nennt man PROGRAMMIEREN. Eine Folge von
Anweisungen ist ein PROGRAMM, und die einzelnen Anweisungen werden als

INSTRUKTIONEN bezeichnet.

Ein fertiges Programm nimmt der Computer auf, indem er es Instruktion fur Instruk-

tion im Kernspeicher ablegt. Wenn man dann den Rechner startet, liest er die er-

ste Instruktion aus dem Speicher und fuhrt sie aus; dann liest er die zweite Instruk-
tion, fuhrt sie aus, dann die dritte und so fort, bis er schlieBlich eine Instruktion

findet, die ihm sagt, daB er nun anhalten soll.

Um die Instruktionen aus dem Speicher zu lesen, bendtigt der Computer eine Adres-
se. Diese Adresse mufl natirlich "mitlaufen™ und immer die Instruktion adressieren,
die gerade ausgefuhrt werden soll. Dieses "Zghlen" der Adressen Gbernimmt der

INSTRUKTIONSZAHLER (oder auch N-Register).

Die aus dem Speicher gelesenen Instruktionen werden in einem anderen Register ge-
speichert. Dieses Register erzeugt Steuersignale fur das RECHENWERK (das eigent-
lich ausfihrende Organ des Computers) und bestimmt, mit welchen Daten gearbeitet
werden soll.

Kernspeicher
l N | L N |
i '
: Instruktion 3 2.Schritt: +1 Instruktion 3
:_ ::::zt:z: ? Ausfihren Instruktion 1 :ns:rut?on ?
e " nstruktion
1. Schritt: zgd]Erhohen von N
Lesen Instrukfi st anal
euersignale

okt

Instruktion 3

b », Instruktion 2
3. Schritt: Instruktion 1
Lesen Instruktio

Instruktion

- 286 -

Im Kernspeicher des Computers stehen neben den Instruktionen auch die Daten, mit
denen der Computer arbeitet. Naturlich kann nicht direkt im Kernspeicher gerech-
net werden, sondern nur mit den Registern des Rechenwerkes. Das Haupt-Arbeits—
register ist der AKKUMULATOR (oder (@ -Register). Besonders komfortable Computer
verfigen Uber mehrere Akkumulatoren, die wahlweise benutzt werden konnen.

Ein wichtiger Arbeitsvorgang ist der Transport von Daten, z.B. aus dem Speicher
in dos (@ -Register (LADEN, LOAD) oder aus dem (@ -Register in den Speicher
(SPEICHERN, STORE).

M Soeicher Laden aus Adresse M:
P < M >@
@ | Arbeifsregister
r~ ~
Speichern in Adresse M
M Speicher <@ >~M
| @ | Arbeitsregister

(@ ist das Symbol fur das Arbeitsregister, M das fur einen beliebigen Speicher-
platz, und < ...> bedeutet "Inhalt von ...".

Bemerkenswert bei diesen Transportvorgingen ist, daBl beim Datenempfang der alte
Inhalt zerstort oder Uberschrieben wird, beim Senden aber erhalten bleibt. Beim
Transport <M>—+(@ haben anschlieBend M und (@ den gleichen Inhalt, ndm-
lich den urspriinglich nur in M gespeicherten.

Will der Programmierer Daten aus einer Kernspeicheradresse in eine andere trans-

portieren, so geht das nur Uber das Arbeitsregister. Seine beiden Anweisungen lau-
ten dann in symbolischer Form:

LDA, @ , Ml
STA, @ ,M2

- 287 -

Symbolisch bedeutet hierbei, daf8 die Befehle (Laden, Speichern) durch Abkur-
zungen (LDA, STA) und die Adressen durch NAMEN (M1, M2) - anstelle von

z.B. hexa-dezimalen Adressen - angegeben sind. Das Signal (@ bestimmt, mit

welchem Arbeitsregister gearbeitet werden soll. Nur Computer mit mehreren Ar-
beitsregistern benstigen daher diese Angabe.

Wenn der Computer diese beiden Instruktionen ausfuhrt, geschieht folgendes:

A':ﬁ 1. Operation
Laden aus Adresse MI
< M'|>->@
@
L 2. Operation
M2 Speichern in Adresse M2
M1 <@ >—=+M2

An diesem Beispiel kann man erkennen, welche Angaben der Computer benétigt:

- Was ist zu tun? (Laden, Speichern)
Diese Angabe nennt man den BEFEHL

- Um welchen Speicherplatz handelt es sich? (M1, M2)
Diese Angabe nennt man die ADRESSE. Den Inhalt der Adresse, also
der Wert, mit dem gearbeitet wird, bezeichnet man als OPERAND.

- Mit welchem Arbeitsregister soll gearbeitet werden? ((@)
Diese Angabe nennt man die zweite Adresse.

-288 -

Der Inhalt der (ersten) Adresse heilt OPERAND.

Beim DIETZ 621 sieht eine Instruktion so aus:

[! I | |
v A -\ v
Befehl AKKUMULATOR ADRESSE
1. Byte: enthélt den Befehl
2. Byte: enthdlt die Adresse des Arbeitsregisters.

Sie wird nur dann angegeben, wenn man nicht mit dem Standard-
Akkumulator arbeiten will.

3.+4. Byte: enthdlt die Operanden-Adresse.

Der Computer versteht nicht die symbolischen Befehle, sondern nur den MASCHI-
NENCODE. Mit einem Ubersetzungsprogramm, dem ASSEMBLER, wandelt er das

SYMBOLISCHE Programm in Maschinencode um. Fur die 2 obigen Befehle hiitten

wir folgendes Maschinencode-Ergebnis (Voraussetzung: M1 = Speicheradresse 01E2
und M2 = O1E3; @ist der Standard-Akkumulator, deshalb keine 2. Adresse):

Befehl Adresse
[' | | ' | | ']
8 c E 2 0 1 (DA, @ , M)
E C E 3 0 1 (STA, @ ,M2)

MASCHINENBEFEHLE

Aber was kann der Programmierer dem Computer auBlerdem befehlen, was kann der
Computer noch?

Da sind einmal die Befehle Addieren und Subtrahieren. Addieren bedeutet, daB die

Bindrzahl, die in einer Speicheradresse steht, zum Inhalt des Arbeitsregisters ad-
diert wird:

- 289 -

ADA, @ ,M3
Addition
—————— - M3 <@> + < MD>—@
|
Befehl Adresse
LT |] Addierer
|
| A
! I @] !
| /“
L _____________________________________ 7/

Die Subfraktion lduft genauso ab, nur wird zwischen M3 und den Addierer ein
Glied geschaltet, welches das Zweierkomplement des Operanden bildet.

AuBer den arithmetischen Verknupfungen zwischen Operand und Arbeitsregister
gibt es noch die logischen Verknipfungen

Logisches UND: 010011 <@ > ANA, @ , Mn
011101 <Mn>
010001 <(@ > Ergebnis

Beim logischen UND erhdlt man pro Bindrstelle als Ergebnis nur dann eine 1, wenn
beide verkniipften Worte an dieser Stelle eine 1 enthielten. In allen anderen Fallen
erhdlt man als Ergebnis eine 0.

Inklusives ODER: 010011 <@ > ORA, @ ,Mn
011101 <Mn>
011111 <(@ > Ergebnis

Bei inklusivem ODER erhdlt man pro Stelle als Ergebnis eine 1, wenn eines der
Worte oder beide an dieser Stelle eine 1 enthielten. Nur wenn beide Bits 0 waren,
erhdlt man als Ergebnis eine 0.

-290 -

Exklusives ODER:

010011 <@ > ECA, @ ,Mn
011101 <Mn>
001110 <@ > Ergebnis

Beim exklusiven ODER erhdlt man pro Stelle als Ergebnis eine 1, wenn die ver-
knupften Worte an dieser Stelle ungleiche Bindrziffern enthielten. Bei gleichen
Bindgrziffern erhdlt man eine 0.

Diese logischen Verkniupfungen benstigt man zum Zerschneiden und Zusammensetzen
von Daten und zum Feststellen, ob zwei Bindrmuster gleich oder ungleich sind.

AuBler den Befehlen, die einen Operanden mit dem Akkumulator verknipfen, gibt
es auch Befehle, die nur den Inhalt des Arbeitsregisters auf eine bestimmte Weise
vertdndern. Hierzu gehdren die Schiebebefehle. Der Inhalt des Akkus l&Bt sich

rechts oder links verschieben, und das offen und geschlossen. Was hierbei passiert,
kann man am besten an den Beispielen erkennen:

Schiften links offen

10011101 <@> SLO, @
/////////©
@ 00111010 <«(@> Ergebnis

Jedes Bit wird um eine Stelle nach links verschoben; das vorderste Bit geht verlo-
ren, und rechts wird eine O ergdnzt.
Schiften links geschlossen (Rotieren)

10011101 <@> SLC, @

NIRRT
00111011 <@ > Ergebnis

Jedes Bit wird um eine Stelle nach links verschoben; das vorderste Bit wird in die
rechts freiwerdende Stelle tbertragen.

Entsprechend lduft das Schiften rechts ab:

- 291 -

Schiften rechts offen

1
1
1100111071, <@> sRo,@
©\\\\\\\\\
'01001110:® <(@ > Ergebnis

Schiften rechts geschlossen (Rotieren)

10011101 SRC, @
NN <@ >
1001110 <@ > Ergebnis

AuBlerdem kennt der Computer noch Instruktionen, mit denen er sich steuern lafit,
z.B. Anhalten nach Erledigung der gestellten Aufgabe (Halt; HLT).

EIN- UND AUSGABE

Der Computer kann Daten von auBlen aufnehmen oder seiner Umgebung vermitteln.
Die PERIPHERIE, d.h. die mit dem Computer verbundene Umwelt, wird wie der
Speicher behandelt. Jedes an den Computer angeschlossene Gerdt, mag es nun
eine Schreibmaschine, ein Lochsireifenleser oder -stanzer, eine MeBstelle, eine
Anzeigeeinheit oder sonst etwas sein, bekommt eine EXTERNE ADRESSE (oder
GERATEADRESSE) zugeteilt, und Informationen werden in Form von Worten ausge-
tauscht, - wie beim Speicher. Die Verteilung der Daten erfolgt ebenfalls tUber das
Arbeitsregister.

Eine typische Befehlsfolge fur einen Ausgabevorgang sieht so aus:

1) Laden Datenwort aus Speicher LDA, @ ,D1
2) Ausgabe Datenwort an Peripherie STA, @ ,P1

D1 = Kernspeicher-Adresse und

P1 = Externe Adresse.

1. Schritt S1
Peripherie
D1
L PT]
[@ J 2.$Chl‘iff

-292 -

Normalerweise verstehen die Peripherie-Gerite nicht den Bindrcode, mit dem der
Computer rechnet. Sie haben ihren eigenen, z.B. den ASCll-Code. Dieser Code
kommt auch in den Lochstreifen vor, die der Computer liest oder stanzt.

Ein Lochstreifen ist so aufgebaut:

—= Leserichtung

Kangle <
<«— Transportloch

—“NWwW OO NO®

—_—

Zeichen

Ein Zeichen auf dem Lochstreifen besteht aus 8 Lochreihen und einem kleineren
Transportloch.

Die 8 Locher (oder Nicht-Lscher) werden mit einem Mal gelesen und in das Ar-
beitsregister Ubernommen:

Kandle<

N WhH OGO N 0

i

=

-293 -

Jeder Buchstabe und jede Ziffer hat ein bestimmtes Code-Zeichen, zum Beispiel
beim ASClI-Code:

Kanal 87654321 hexa-dez. ASClI-Code-

Bit Ve 0 Darstellung Bedeutung
00110000 730 Ziffer g
10110001 Bl " 1
10110010 B2 " 2
00110011 '33 u 3
10110100 B4 " 4
00110101 '35 u 5
00110110 36 u 6
10110111 'B7 " 7
10111000 B8 “ 8
00111001 ’39 9
01000001 741 Buchstabe A
01000010 "42 " B

UsSW.

Der Kanal 8 trigt keine eigentliche Information. Er ist zur Konirolle da und sorgt
dafir, daB immer eine gerade Anzahl von Lochern gestanzt ist (PARITY-Bit).

Wird z.B. eine Ziffer eingelesen, so interessieren nur die rechten 4 Bit, denn sie
entsprechen genau dem Bindrcode. Also schneidet man die restlichen 4 Bit ab, in-
dem man das ASClI-Zeichen und eine MASKE durch UND verknipft:

r35 0011 0101 = Ziffer 5 (ASCII)
'gF 0000 1111 = Maske
‘g5 0000 0101 = Ziffer 5 (Bindr)

Bei einer Ausgabe fiigt man die fehlenden Bits durch inklusives ODER wieder hinzu:

‘g7 0000 0111 =7 (Bindr)

4.7 1011 0000 = Ergdinzung

'B7 1011 0111 = Ziffer 7 (ASCII)
Bemerkung:

Um bei der Schreibweise von Zahlen die dezimale von der hexa-dezimalen Darstellung
un{grscheiden zu kdnnen, wird eine hexa-dezimale Zahl 10 als ’1@ gekennzeichnet

(10 = 161).

Ebenfalls wird die Null (@) durchgestrichen, um sie von dem Buchstaben O unterschei-
den zu konnen.

- 294 -

WIR SCHREIBEN EIN PROGRAMM

Um nun all die gesammelten Erkenntnisse anzuwenden, wollen wir jetzt ein kleines
Programm schreiben. Und zwar wollen wir 2 Zahlen eingeben, sie zueinander addie-
ren und das Ergebnis anschlieend wieder ausgeben.

Diese Aufgabenstellung ist noch sehr leicht zu iiberschauen, und man kdnnte sie daher
sofort mit den bekannten symbolischen Befehlen programmieren.

Trotzdem wollen wir uns bereits bei dieser Aufgabe wie echte Programmierer verhalten;
denn bei denen kommt zuerst das Blockdiagramm, um stets die Ubersicht zu behalten.

In Blockdiagrammen verwenden wir graphische Symbole fur einzelne Aufgaben. Die
Kastchen werden durch Pfeile so miteinander verbunden, wie sie im Programm aufein-
anderfolgen. Wichtige Symbole sind:

7 — IXR Allgemeine Verarbeitung:

Ein Kéastchen fur alles, wofur es kein spezielles
Kastchen gibt.

EIN Unterprogramm=-Aufruf

Bedingte Verzweigung mit Ausgdngen fur JA und
NEIN

Manuelle Eingabe aus der Peripherie

Ausgabe auf Registriergerdt

ciche Lesen oder Stanzen eines Lochstreifens
esen (im Zweifelsfall hineinschreiben)

L5

Ldngerer, definierter Programmteil (ROUTINE,

ABC PROZEDUR, ALGORITHMUS), auch Unterprogramm

Verknipfungspunkt (CONNECTOR) bzw. Beginn
eines Programmteils bzw. markanter Punkt im
Programm

Anhalten des Programms; es muf3 einen Anstof8 von
auBen bekommen,damit es weitergeht

-o- G-

-295 -

Unser Blockdiagramm des Losungsweges sieht also folgendermaB3en aus:

1.Zeichen

einlesel

Maskieren

Zwischen-
speichern

2.Zeichen

\ein/leﬁ&_\

Maskieren

Addition

Ergénzen zu
einem

ASCIlI-Zeiche

Ausgabe

- 296 -

Nachdem wir durch das Blockdiagramm den genauen Ablauf des Programms festgelegt
haben, kénnen wir nun die symbolischen Befehle schreiben.

EAA. LDA , (@ ,EXT (Eingabe 1. Zeichen)
ANA,(@ ,MASK (Maske)
STA (@ ,ZWS (Zwischenspeichern)
LDA (@ ,EXT (Eingabe 2. Zeichen)
ANA, (@ ,MASK (Maske)
ADA (@ ,ZWS (Addition)

ORA , (@) ,ASCI (Ergénzung)

STA ,(@ ,EXT (Ausgabe Ergebnis)

.

MASK: H ,'@F
ASCI: H '8¢
ZWS: \%2

EXT: 2*Q PRI (Gerite-Adresse)

Hierzu ein paar Hinweise: Das Programm soll einen Namen haben: EAA (Eingabe/
Addieren/Ausgabe), der als MARKE vor die erste Instruktion geschrieben wird.

Da im Programm Zwischenspeicher und Masken benutzt werden, mussen diese auch

im Programm definiert werden, jeweils mit einer Linksmarke. Das geschieht mit den
Symbolen V (VARIABLE) und H (Hexa-dezimaler FESTWERT). Mit Q wird dem sym-
bolischen Gerdtenamen EXT die Adresse FOF1 zugewiesen.

SPRUNGE UND SCHLEIFEN

Was geschieht, wenn der Computer dieses Programm ausgefuhrt hat? Er wird weiter-
laufen und MASK als eine Instruktion auffassen. Das aber muBl verhindert werden;
andernfalls macht der Computer Unsinn. Ein ordnungsgemifes Weiterlaufen erreicht
man durch einen SPRUNG (oder VERZWEIGUNG) im Programm, z.B. zum Programm-
teil XYZ.

- 297 -

Eingabe
Addition
Ausgabe

Dann muB an die Stelle der drei Punkichen die Instruktion: JPA, , XYZ gesetzt
werden. Damit wird der Instruktionszchler auf die Anfangsadresse des Programmteils
XYZ gesetzt.

Oder man kann auch nach EAA zurickverzweigen:

JPA, , EAA

Nun wiederholt sich der beschriebene Vorgang immer wieder.

Eingabe
Addition
Ausgabe

]

Aus dieser Programmschleife kommt der Computer allerdings nie wieder heraus. Er
liest Zahlen, adddiert sie und druckt das Ergebnis aus, und das ohne Ende.

Will man nur eine bestimmte Anzahl von Additionen durchfihren, so muB ein Zigh-
ler mitzdhlen und bestimmen, wann aufgehért werden soll. Dieser Zshler ist das
INDEXREGISTER. Es zahlt jeden Durchlauf mit, und durch eine ABFRAGE stellt

der Computer fest, ob schon der Endwert, z.B. 100, erreicht ist.

-298 -

g — IXR

EAA 100 mal

IXR+1 = IXR

ia @

nein

Wenn nein, geht das Programm nach EAA zurick, wenn ja - nach dem 100. Durch-
lauf - nach XYZ.

Das zugehtrige Programm sieht so aus:

LDC,IXR,0
EAA ...
Programm EAA

IEC ,IXR,100,XYZ
JPA, EAA

LDC,IXR,# bedeutet, daB das Indexregister IXR mit einer Konstanten (CONSTANT) @
geladen wird. Konstante heiflt, daB die Adresse direkt als Operand genommen wird
(und nicht ihr Inhaltl).

IEC,IXR,100,XYZ bedeutet: Addiere zu IXR eine 1 und springe, wenn der Inhalt
gleich der Konstanten 100 ist, nach XYZ. Andernfalls laufe weiter auf die nichste

Instruktion.

Solche Schleifenbildungen kommen in Programmen sehr hdufig vor, und deshalb kann
ein Computer gar nicht genug Indexregister haben.

- 299 -

UNTERPRO GRAMME

In unserem Programm EAA stort aber noch, daB die Eingdbe zweimal programmiert
worden ist, was Platz kostet. Natirlich kann man das auch tber eine Programm-
schleife erledigen. Besser ist fur solche Fille ein UNTERPROGRAMM, in das man
Uber einen UNTERPROGRAMM-SPRUNG gelangt:

CSA,RET,EIN

Hierbei geschieht zweierlei: Erstens springt das Programm an die Stelle EIN, und
insoweit verhdlt es sich wie ein normaler Sprung. Vorher aber wird der Instruktions-
zghlerstand als RUCKKEHRADRESSE in das Register RET Ubertragen.Am Ende des Un-
terprogramms, das die Befehle fur Eingabe und Abspeichern enthilt, ist ein RUCK-
SPRUNG ins HAUPTPROGRAMM (an die Stelle nach dem Aufruf CS...) vorzusehen

mit:
JPX, , ,RET

Dies heif3t: Springe indirekt tber den Inhalt des Registers RET.

INDIREKT bedeutet, daB nicht zum Register RET gesprungen werden soll, sondern
daB der Inhalt des Registers RET das Sprungziel angibt. Und hier steht ja die Rick-
kehradresse .

Hieran sieht man, daB die programmierte Adresse (ndmlich RET) gar nicht die Adres-
se ist, mit der gearbeitet werden soll, Deshalb unterscheidet man auch die program-
mierte Adresse von der EFFEKTIVEN ADRESSE.

- 300 -

Unterprogramm EIN

7

1 Zeichen 1 Zeichen lesen

:

Maske Maskierung

v
Q Rucksprung

Das Programm EAA sieht nun so aus:

EIN Unterprogramm EIN
<(@> —> ZWs Zwischenspeichern
r EIN Unterprogramm EIN

@+ZWS>@ Addition
1 Zeichen Ausgabe

- 301 -

ADRESSIERUNG

Mit Ausnahme des JPX waren bisher programmierte Adresse und effektive Adresse
gleich. Aber es gibt auch noch andere Fille, wo beide Adressen nicht tberein-
stimmen; das liegt daran, daB8 der Computer verschiedene Arten der ADRESSIERUNG
kennt.

In den ersten Beispielen wurde der Speicher und auch die Peripherie ABSOLUT ad-
dressiert, gekennzeichnet durch den Buchstaben A bei den Befehlen

LDA LOAD ABSOLUTE
oder STA STORE ABSOLUTE

Die absolute Adresse ist 16 bit lang, und damit lassen sich 64k Speicherzellen adres-
sieren. Die effektive Adresse ist gleich der programmierten Adresse.

AuBerdem haben wir beim Rucksprung aus dem Unterprogramm die INDIREKTE Adres-
sierung kennengelernt. Hierbei ist die effektive Adresse gleich dem Inhalt der pro-
grammierten Adresse:

LDX LOAD INDIRECT

Die "CONSTANT-Adressierung” ist ebenfalls schon erldutert worden. Hier ist die
programmierte “Adresse” der Operand selbst:

LbC LOAD CONSTANT

Neben diesen Adressierungsarten gibt es noch die RELATIVE (oder LATERALE) Adres-
sierung. Hierbei geht man von der Annahme aus, daf3 viele Speicherplitze und
Sprungziele in der Nuhe der Instruktion stehen. Der Vorteil der relativen Adressie~
rung ist, daB man mit einer 8-bit-Adresse auskommt; und ddbei jeden Platz errei-
chen kann, der nicht weiter als 128 Adressen ruckwirts bzw. 127 Adressen vorwirts

liegt: ~

v +127

7

~

Programmstand —» > 256 Bytes (relativ adressiert)

V-128

-302 -

Bei relativer Adressierung ist die effektive Adresse gleich der Adresse der Instruk-
tion + programmierter Adresse:

LDL LOAD RELATIVE

-303 -

Tabellen

vorn hinten
Leiterseite Bauelementseite Leiterseite Bauelementseite
2A 2C 1A 1C
+Z 1 +Z +Z 1 +Z
BE 2 GE 2
FE 3 3
4 4
5 5
6 6
RK 7 7
8 8
9 D8 9
Al5 10] Lgg D7 10 | sgg
Al4 1l Dé 1 | sg1
Al3 12 {gg D5 12 §g2
Al2 13 3 D4 13] S@3
All 14 Lg4 D3 14 | Sg4
Alg 15 Lg5 D2 15] sgs
2,%9 16] Lg6 DI 16| S@6
8 17] W7 Dy 17 | 97
Ag7 18| W8 18 | 78
Agé 191 Lgo N 19| P9
A5 20| Lig 20| S8
AP4 21 L1l STPX 21] S
AZ3 22] Li2 | STWD 22| Ss12
Ag2 23] L13 23| Si13
1 24 L14 24 | S14
%ﬁ 25 L15 25 | SIS
26 B 26
27 27
28 28
29 29
30 30
31 31
L [ao] 1 L [Is2] 1+
202 192
Bemerkung: Alle Signale (auBer RK) mit negativer Logik (0 V wenn ange~
wihlt).

Steckerbelegung: UNIVERSAL-BUS-AnschluB8 (Zentraleinheit DIETZ 621)

- 304 -

oben unten

Leiterseite Bauelementseite Leiterseite Bauelementseite

1A . 1C 2A 2¢C
+Z 1 Dg +2Z 1 |
OP 2 | DI 1593 2 | 12
1Dg7 3 | D2 IRM@3 3 | L3
ID17 4 D3 ISg4 4 | 1g4
IDg6 5 | D4 IRM@4 5| Lgs
D16 6 | D5 15¢5 6 | Lgs
D@5 7 | Dé IRM@5 7| g7]
D15 8 | D7 1586 8 | Lgs

[15p% 9 | D8 RMB6 | | 9 | L9

D14 101 AP 1587 o] Ly !
D@3 11 [Agl | IRM@7 1] oL]
D13 12] AR 1598 12] L12
Dg2 13 | A93 RMZ8 | 13] L13]
D12 14| Ad4 1599 14] L4]
IDA1 15| A% IRM@9 15] LI15]
D11 16 | Afé 1519 16| sgg
IDgP 17| A#7 RMIZ | [17 | g]
ID1g 18 | Ag8 IS11 18 | sg2
IRK 19 | A99 IRM11 19] sg3
IN 20] Ag 201 Sp4
TFT 21 | Al 21| 85
1AZ8 22 A2 | 22| sgs
1AgT 23| A3 23| sg7
1AZ2 24 | A4 ‘ 24 | @8
AG3_ | |25 | A5 25 | 5§59
1509 26 | RK i 26| Sig
RM#P | 27| N i 27| sn
1531 28 | STPX 28| Si2
RM@1 29 | BE - 29| si13
1592 30 | GE 30| s14 ||
RM@2 | 31| FE 31| si15

L 32] Lg@ iy 32 L
Mini- Universal- Mini- Universal-
BUS BUS BUS BUS

Bemerkung: Alle Signale (cuBer RK, IRK) mit negativer Logik (OV wenn
angewdhlt)

Steckerbelegung: DEVICE-SELECTOR (Universal~Interface~Einschub)

- 305 -

oben unten

Leiterseite Bauelementseite Leiterseite Bauelementseite
1A icC 2A 2C
+7 1 +7 +7 1 +7
2 2
+12 V 3 +12 V 3
4 4
=12 VvV 5 -12 v 5
6 6
IDP 17 IDP 7
D@7 8 ID17 8
-l 9 e 9 1
IDg6 10 ID16 10
| IDg5 | |11] ID15 Lt
ol 12 . 12
1Dg4 13| IDl4 1131
D@3 14 | ID13 14]
| L [lis] L 1 s]
D@2 16 ID12 16
| IDAT 17f o L]
ogg | 18] Dig 18 |
Lo f19] L [118}
TAZE 20 | 1A%0 20
1Ag1 21 1Ag1 21
-’ 221 L i 22
IAZ2 23 | 1A®2 i 23
1AB3 24 | IAZ3 24
IRK 25 | IRK 25 1]
L 26 L |V 261V
IN 27 IN UexT 27 Uex 1
‘ o 28 L U'ex 2 28 Uex 2
IFT 29 IFT Uex 3 29 Uex 3
1SXY 30 ISXY _#U ex 4 30| Uex4
T IRMXY T T3 IRMXY Uex5 31 U ex 5
L 32 L L 32 L
Mini-BUS fur gerdtespezifische Signale

Bemerkung: Alle Signale (auBer IRK) mit negativer Logik (0 V wenn
angewihlt)

Uex 1 ... Uex §sind gedruckte Verbindungen, die fur alle
Steckplitze einheitlich fir externe Spannungsversorgung ver-
schaltet werden kénnen,

V ist eine gedruckte Verbindung von A- und B-Seite

Steckerbelegung: EINKARTEN-INTERFACE (Mini-BUS).

- 306 -

HEXA-FORMAT-LOCHSTREIFEN

. A NUL-
[~ } Lochung
00000 .000
SEARRREARY RUBOUT- & Streifen-
~] Lochung vorlauf
©0000.000
00000 .000
o o . Leerschritt
o . o | A 1. Byte A
oo . g
o o . Leerschritt
oo oo |3 2. Byte 3C
(2 ° ° 2 ¢
r,c; o . Leerschritt
o oo . o |1 } Byte mit Adresse ...F 12
> | © oo . o 2
:Df © .0 o | Wagenricklauf
:«S o o. o Zeilenwechsel
5 o o . Leerschritt
8 oo oo F Byte mit Adresse ...J FF
oo .00 F

=

r; o . Leerschritt
o0 o0 . o |9

o o .o o |E

letztes Byte 9E

Streifen-Nachlauf
(NUL=Lochung) ——
Inhalt

N §
f
—_— N

©

Kanal 7654 .321

Paritdtsbit -
Transportloch-

- 307 -

Zeichen

Kanal

87654 .32

U fo] |e

! ° °
" Y °
|o] |e oo
$ ° .[e
% |of| |e .le| |o
& (o] | ole
! ° .[e]ofe
(o lof.

) [of e [ef. °
* (o] [e] [o].] |e
+ o [of.] [o]e
, lo] le]| Je].]e
- o |of.[e] Jo
. o [of.[e]e
/ [ol [e] [e]-le]e
') oo

1 (o] [e]e °
2 [of [e]e °
3 ole ole
4 ol [e|e] |.]e
5 oo [.[o] Jo
é oo ole
7 |o| |e|e olofe
8 o] [e]|e]e

9 olo]e|. °
: olefe|.| [0
; lo] [e|efe].[[e]e
< oleo|o|.]l®
= o] |e|e]e].]e] |e
> |o| |e|ejef.|e|e
? olo|e|.[o]0]e

I T

Parity- Transport-
Bit lochung

w (Zeichen 20)
bedeutet Leerschritt

- 308 -

Zeichen

Kanal

87654 .321 Hexa

@ [o]e 49
A ° o| 41
B ° .| Je 42
C |o|e eje| 43
D * . 44
E |ole o| |o| 45
F [o]|e ele 46
G . olo[e]| 47
H . of . 48
I [ole o. o| 49
J |oje ol.| |@® 4A
K ° o .| [o]o| 4B
L Jole o.|e 4C
M ° o|.[e] |@] 4D
N . of.|e|® 4E
O |cle o|.|e|0]|0]| 4F
P o [o® 50
Q |o|e| |® ol 51
R |oje| |e ° 52
S of | ele| 53
T fjole| |e ° 54
U o |o o| |o| 55
\% o |o ole| | 56
W [o|e]| |e ole|e| 57
X |ole| [e|e]. 58
Y o] |ofo]. o| 59
z o| |oof. 5A
L |ofe| [e|e|.| [e|e| 5B
\ o |ofef.]e 5C
] j[o|e]| |e|e|.]e] |e] 5D
t [oje]| |e|e|.|e|e 5E
-— o| [o|o|.|0|0®|®| 5F

I I

Parity= Transport-
Bit lochung

o e = Dateninhalt 1
= Lochung im Streifen
= Stromschritt (MARK)

ASClI-Code Steuerzeichen

Kanal
Zeichen 87654 .321 Hexa Bedeutung
NULL o
SOM o - ol 41
EOA o BED 22
EOM .| |e}je] g3
EOT o e 24
WRU e (o] &5
RU .[e]e g6
BELL ° Jelele] 97
FEg ° ° 28
H-TAB Y o B9
LINE FEED . ° oA Zeilenvorschub
V-TAB [. ole| g8
FORM o|.|® #gc
RETURN o o[.[e] o] #D Wagenricklauf
e}) o .lele g€
N o .le|oje| @F
ple’] ° ° [’}
X-ON ° o 11
TAPE ON ° ° 12
X~-OFF [° ole 13
TAPE OFF o |.|e 14
ERROR o of |.[o] |0 15
SYNC [3) ol [.|lof® 16
LEM of |.lof[efe] 17
5) ole|. 18
Sl o ole|. . 19
S2 o ole[.| fo 1A
S3 oje|.| [o]e 1B
S4 o NOBRD 1C
S5 ofe[.[o] |0 1D
Sé olof.|ele 1E
S7 [<) oje|.|o|0]0® 1F
ACK o|le|e|e]e].|e 7C
ALT MODE olofele|.|o] | 7D
ESC olejoje|.|e]e 7E
RUB OUT ole(e|e|e|.]e[e|e]| 7F
t

Parity- Transport=
Bit lochung
o e = Dateninhalt 1
= Lochung im Streifen
= Stromschritt (MARK)

- 309 -

2n n 2-n
1 0 1,0
2 1 0,5
4 2 0,25
8 3 0,125
16 4 0,062 5
32 5 0,031 25
64 6 0,015 625
128 7 0,007 812 5
256 8 0,003 906 25
512 9 0,001 953 125

1024 10 0,000 976 562 5

2 048 1 0,000 488 281 25

4 096 12 0,000 244 140 625

8 192 13 0,000 122 070 312 5
16 384 14 0,000 061 035 156 25
32 768 15 0,000 030 517 578 125

65 536 16 0,000 015 258 789 062 5

131 072 17 0,000 007 629 394 531 25
262 144 18 0,000 003 814 697 265 625
524 288 19 0,000 001 907 348 632 812 5
1048 576 | 20 0,000 000 953 674 316 406 25
2 097 152 | 21 0,000 000 476 837 158 203 125
4 194 304 | 22 0,000 000 238 418 579 101 562 5
8 388 608 23 0,000 000 119 209 289 550 781 25
16 777 216 | 24 0,000 000 059 604 644 775 390 625

33 554 432 | 25 ,000 000 029 802 322 387 695 312 5

67 108 864 | 26
134 217 728 | 27
268 435 456 | 28

0

,000 000 014 901 161 193 847 656 25

,000 000 007 450 580 596 923 828 125

,000 000 003 725 290 298 461 914 062 5
536 870 912 | 29 ,000 000 001 862 645 149 230 957 031 25

1073 741 824 | 30 ,000 000 000 931 322 574 615 478 515 625

4 294 967 296 | 32 ,000 000 000 232 830 643 653 869 628 906 25

8 589 934 592 | 33 ,000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 | 34 ,000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 | 35 ,000 000 000 029 103 830 456 733 703 613 281 25
,000 000 000 014 551 915 228 366 851 806 640 625

0
0
0
0
0
0,0
2 147 483 648 | 31 0,000 000 000 465 661 287 307 739 257 812 5
0,0
0
0
0
0

68 719 476 736 | 36

- 310 -

NOTIZEN

BEFEHLSTABELLE

- 320 -

Symbol . BEFEHLSBYTE String Symbol. BEFEHLSBYTE String
Befehle hexa binte 2 Befehle hexa bintr 1 2 3
'NOP g9 | 00000000 82 .@ | 48] 01000000]
SEL,I #1] ooodoool 1 s | 41] 01000001 s | d
HLT g2] 000dooi10 TZ @ | 42[01000010 d
HS Ll #3] 00000011 1 s | 43] 01000011 s | d
ECL g4 00000100 B e [44]07 d
s | 45] 01000101 s | d
TP @ | 4601000110 d
s | 47]ot00p111 s | d
DCL g8 | 00001000 BNZ ,@ | 48] 01001000 d
s | 49 010001001 s | d
TNZ ,@ | 4A| 01001010 d
s |48 0100h011 s | d
BNP ,@ | 4C| 010001100 d
s | 4D} 0100101 s | d
INP ,@ | 4E | 01001110 d
s L4Flotodini s 1 d
7 & 9 | 00010000 "BEC ,@ | 58] 01010000 c | d
z 8 11} oooijooor z s | 51]01010001 s | ¢
2 - 12 [00010010 TEC ,@ | 5201010010 c |4
z » 13] oooloo1d z |+ |53]o01010011 s | ¢
278 T4 | 00010100 BER ,@ | 54] 01010100 T | d
24 15 | 0001j0101 z s |55]o0t010101 s | r
D) T6] 00010110 TER ,@ | 56] 0101pt110 r | d
z> » 17] 0000111 z s 57jololptil 3 T
2<& T8 | 6001[1000 BNEC,® | 58| 010111000 cld
z<8 19 | 00011001 z s | 59]01011001 s | ¢
2<% TA[00011010 [TNEC, @ | 5A[01011010 c | d
zew 18 } 00011011 z s |58]o101iom s | ¢
2=8 TC] 60011100 BNER ,@ | 3¢ | 010 r [d
2=8 10] ooo0ifi101 z s |sploioiinon s |t
2= TE | 00011110 TNER ,@ | 5E | 01011110 r | d
z=e 18 L 000111 z s IsFlorolning s | r
BZC ,® | 6F| 011 c | d
] 61101100001 s c
[Gs . & 22 010 TZC , @ [62[01100010 c 1 d
s 23 011 5 s Je3]oriopon s | ¢
oL, © 24 100 BZR ,@ | 64 | 01100100 r | d
s 25 101 s] 65101100101 3 r
TR @ [36[0T10pTT10 r | d
s Jez]oriopin s | r
[S%0, @ 28 | 0010[1000 [BNZC, @ | 68 | 0110{1000 c | d
s 29 | 0010001 3 s Jes]oriopoot s | ¢
SRC, @ 2A] 0010[1010 TNZC,@ [6A[01101010 c | d
s 28 | 001001011 s é8 01101011 s | ¢
S0, @ 2C| 001001100 [BNZR, @ | 6C| 01101100 r | d
s 20| o001 101 3 épjorionion s | r
SIC.,® 2€ 1110 TNZR,® |6E[O1101110 r [d
s 2F | oo101111 3 s _Jerlonanin s | r
BSC ,@ | 78 | 01710000 c 1 d
. s 171] 01110001 s | ¢
Nty R ToC % |72 [oTTie0T <4
o hexa nte s | 73aloinjoons s | c
LD. 8.] to0d....]. BOR ,@ | 74 [01110100 r | d
AD. 9.} ro001... s | 75]o1ior01 s v
B . A.|014.... TOR ,@ |76[0t1yoi10 v | d
AN. 8. |w0.... s |7z jonnjoin s | r
OR. c.|1od.... BNOG, @ | 78 | 0111]100 c] d
EO. p. | 1noi.... s |79 01111001 s | c
ST. E. | 1d.... st TNOC, @ | 7A[01111010 <14
. oo o, L o s J7sjoinfon s | c
s F. .l [BNOR, @ | 7C | 01111100 r 1 d
'Lﬁ.. 0]J0000] < s J7o]orinion s | r
| I 1] ... Jooo1 s lc TNOR, @ | 7E [O1TIIT10 r | d
. X® 2]po010 x : s J7rfornnfiin s | v
s .31 ... oo s | x
TRke |p100 T
s 5]0101 s |r
K@ S ... pT10 r_Ix },,,,
s Tl ... et s |¢ x
T Le 8][1000 d
s 9101001 s |d
T L® Alio10 d |x a Adresse niedrig
s Blho0 s |d | x b Adresse hoch
LA €| ...1100 a |b ¢ Komstante
s D] ... 1101 s |a b d Differenz/Sprungweite
. A E]Ji110 alb X . r Referenzregister
s N T LA s J[a] b[x s Arbeitsregister
x Indexregister
z Anzchl

dietz
Seit vielen Jahren Computer-Hersteller.

Spezialisiert auf Echtzeit-Systeme.

Computer, Peripherals, Systeme, Packages,
anwendungsorientierte Systeme.

