

HANDBUCH

IENIE)

Computer
SYSTEME

DIETZ

HANDBUCH

Heinrich Dietz
Industrie-Elektronik
433 Mülheim-Ruhr
Kölner Straße 115
Tel. (02133) 4885 41
Telex 08567 70

Dietz bietet immer etwas mehr

Ausgabe:

Herausgeber:

Druck:

Oktober 1971

Heinrich Dietz

INDUSTRIE-ELEKTRONIK

433 Mülheim a.d. Ruhr, Kölner Straße 115

Telefon: (0 21 33) 4885 41 - Telex: 08 567 70

Hoppe + Werry KG, Mülheim a.d. Ruhr

Inhalt

DIETZ in Kurzform

Über den neuen MINCAL

Computer-Fibel

Struktur

Maschinenbefehle

ASSEMBLER

LIBRARY

MONITOR

Programmier-Hinweise

Bedienung

Aufbau

Anhang

Seite

32

52

76

95

104

108

115

113

121

DIETZ in Kurzform

Die Firma HEINRICH DIETZ INDUSTRIE-ELEKTRONIK besteht seit 1951. Das Pro-
gramm war und ist die industrielle Automation mit elektronischen Mitteln. Diese
Mittel sind heute Computer.

Der Weg führte von elektronisch geregelten Getrieben über Kompensationsmeßgeräte
und Analogrechner zur Digitaltechnik, über den DIGIVERTER (den ersten deutschen
Digitalumsetzer) zu den ZDE-Anlagen und mit dem Aufkommen der Halbleiter als
industrielle Baukomponenten zum COMBIDAT-System.

1965 wird das COMBIDAT-System durch die ersten technischen Kleincomputer aus
Deutschland, die MINCAL-Digitalrechner, erweitert. In dieser Zeit entsteht eine

Rechner-Familie von festprogrammierten Kleincomputern mit der Bezeichnung
MINCAL 0, MINCAL E, MINCAL Q und MINCAL 1 und einem speicherprogram-

mierten Computer, dem MINCAL3.

Auf die Computer der ersten Generation folgt 1968 der MINCAL 4, der erste in
Deutschland entwickelte Prozeßrechner in integrierter Technik. Mit dem MINCAL 4
wurde die Multiprogramming-Struktur und die 19-bit-Wortlänge eingeführt.

Diese beiden Eigenschaften finden sich auch bei dem MINCAL-500-System, das 1969
auf den Markt gebracht wird. Dieses erfolgreiche Prozeßrechner-System umfaßt heute
den festprogrammierten Computer MINCAL 513 und sein speicherprogrammiertes Gegen-
stück, den MINCAL 523. |

Heute entwickeln und fertigen in Mülheim 200 Mitarbeiter nicht nur Computer, son-
dern auch Computer-Peripherie und Standard-Software. Außerdem liefert DIETZ
schlüsselfertige Computer-Anlagen einschließlich Planung, Systemanalyse, Ausarbei-
tung der Anwenderprogramme und der Prozeßperipherie.

DIETZ COMPUTER SYSTEME ist ein Begriff geworden für ein eigenständiges Entwick-
lungskonzept. Auch der MINCAL 621 ist ein Teil dieser Gesamtkonzeption.

Uber den neuen MINCAL

Mit dem MINCAL 621 stellt DIETZ einen neuen Computer der MINCAL-Serie vor.

Das Konzept dieses Computers berücksichtigt die Erfahrungen 7-jähriger erfolgrei-
cher Computer-Entwicklung und verwendet modernste Technologien. Der attraktive
Preis ist nicht durch Weglassen wichtiger Funktionen erreicht worden, sondern durch
eine neuartige Konzeption, die im Bereich der Kleincomputer ganz neue Maßstäbe
setzt.

Multibyte-Struktur: Die gesamte Verarbeitung einschließlich der arithmetischen Be-
fehle ist auf eine beliebige Anzahl von (bis zu 256) Bytes bezogen. Die Länge der
Verarbeitung wird durch einen DO-Befehl bestimmt, der vor dem Multibyte-Befehl
steht. Diese Hardware-Lösung ist flexibel, speichersparend und vor allem schnell.

MOS-Speicher: Es stehen 256 Universalregister zur Verfügung, die als Akkumulator,
Indexregister, schneller Datenspeicher und auch als schneller Programmspeicher ver-
wendet werden können. Bei einem 16-Ebenen-Rechner kann dieser Satz von 256
Universalregistern sogar 16-mal vorhanden sein.

Diese maximal 4096 Register sind in einem superschnellen MOS-Speicher realisiert,
dessen Inhalt vor Verlust bei Netzausfall geschützt werden kann.

Multiprogramming-Struktur: Der MINCAL 621 bietet dem Benutzer bis zu 16 Unter-
rechner mit eigenem Instruktionszähler, eigenen Akkumulatoren, Indexregistern, Da-
tenspeichern und eigener Peripherie. Diese Unterrechner benutzen abwechselnd die
eigentliche Recheneinheit, gesteuert von ihren Prioritäten. Bei entsprechender Prio-
rität kann am Ende jedes Befehls ein anderer Unterrechner oder, besser ausgedrückt,
eine andere Programmebene die Recheneinheit benutzen. Dabei müssen weder von der
Hardware noch durch ein Organisationsprogramm Speicher- oder Register-Inhalte ge-
rettet werden. Jede Ebene verfügt über maximal 256 eigene Register. Multiprogram-
ming ist extrem einfach, denn für jede Aufgabe gibt es eine völlig unabhängige Ebe-
ne.

Universal-BUS: Kernspeicher, Peripherie, Recheneinheit und eventuelle Massenspei-
cher verkehren über einen Universal-BUS miteinander. Programmgesteuerter Datenver-
kehr und direkter Speicherzugriff bedienen sich des gleichen Datenkanals. Die Peri-
pherie und der Speicher werden völlig gleich behandelt, so daß sich die Programmie-
rung von Ein- und Ausgaben vereinfacht und trotzdem an Flexibilität gewinnt. Bei
direktem Speicherzugriff wird die Zentraleinheit nicht berührt und kann bis zu ihrem
nächsten Speicherzugriff intern weiterarbeiten. Natürlich erlaubt das BUS-Konzept
den Anschluß beliebig schneller Speicher.

Flexible Adressierung: Die BUS-bezogenen Befehle können vielfältig adressiert
werden: CONSTANT (die Adreß-Bytes werden unmittelbar als Operand verwertet),
REGISTER (die ebenen-zugehörigen Register werden angesprochen), RELATIVE (der
Operand steht bis zu 127 bytes vor bzw. nach dem Befehl), ABSOLUTE (der ge-
samte Speicherbereich kann durch eine 16-bit-Adresse angesprochen werden. Zu-
sätzlich kann die so gebildete Adresse noch indiziert werden, über eines von ma-
ximal 127 Indexregistern.

Bedingter Sprung: Alle Entscheidungen werden durch bedingte Sprünge gefällt, bei
denen das Programm relativ um bis zu 127 byte vorwärts oder rückwärts verzweigt.
Besondere Befehle testen beliebige Bits oder Bitgruppen auf O- oder 1-Zustand.

Zweiadreß-Befehle: Alle BUS-bezogenen Instruktionen sind Zweiadreß-Befehle, ein
bei Kleincomputern ungewöhnlicher Komfort.

Hardware-Bootstrap: Ein Bootstrap-Programm ist in einem ROM gespeichert und ist
durch Tastendruck aufrufbar.

Zusätzliche Optionen: Interfaces für Standard-Peripherie im Rechner-Gehäuse.
Real-Time-Clock. Netzausfallschutz. Memory Parity. 4, 8 oder 16k byte Kern-
speicher im Rechner-Gehäuse.

Software: Assembler und Makro-Assembler. Bibliothek mit Ein/Ausgabe-Paket, Dop-
pelwort- und Gleitkomma-Paket. Test-Monitor. |

Allgemeine Spezifikationen MINCAL 62]

Typ:

Wortlänge:

Universal-Computer für Prozeßanwendungen, technisch-wissen-
schaftliche Zwecke und allgemeine Datentechnik

8 bit (1 byte)
Ein- und Mehrbyte-Verarbeitung vorgesehen
(Einzelbefehle 1- bis 256-mal ausführbar)

Arbeitsspeicher (Pool): MOS-RAM mit 0,25k byte

Kernspeicher:

Technologie:

Instruktionen:

Instruktionslänge:

Operationsdauer:

Arbeitsregister:

Indexregister:

Ebenen:

erweiterbar auf Ak byte
Zugriffszeit 0,2 us
Vollzyklus 0,4 us
auf Wunsch batteriegepuffert
enthält Register und Datenplätze

4k, 8k oder 16k byte
extern erweiterbar auf 48k byte
Zugriffszeit 0,4 us (4k); 0,3 us (8, 16k)
Vollzyklus 1,0 us (Ak); 0,65 us (8, 16k)
enthält Programm und Daten

integrierte Schaltkreise (TTL, TTL-MSI)

9 BUS-bezogene Befehle mit Register-, relativer, indirekter
oder absoluter sowie indizierter Adressierung

7 Konstantenbefehle
32 bedingte Sprungbefehle
4 Schiftbefehle
1 Mehrfachausführungsbefehl
5 Steuerbefehle
2 Zustandsabfragebefehle

1...5 byte je nach Befehlstyp

min. 1,/ us; max. 8,5 us (bei I us Speicherzyklus)

max. 254 je Ebene oder | fester Akku je Ebene (programmier-
bar) (1...254 byte lang)

max. 127 je Ebene (2 byte oder I byte lang)

2 Programmebenen mit hierarchischer Priorität

erweiterbar auf 16 Ebenen (Option)

Interrupt:

Universal-BUS:

Rechner-Uhr:

(Option)

Bedienungskonsole:
(Option)

Größe:

Netzanschluß:

Interfaces in

Rechner-Gehäuse

(Option)

Wechsel der Programmebene bei Ende jeder Operation möglich
(DO-Befehl und folgender Befehl gelten als 1 Befehl)

Standard-Schnittstelle mit 8-bit-Daten-Ein/Ausgang, 8-bit-
Adreßausgang, Ebenenausgang und Interrupt-Eingang für
Speicher und Peripherie

10 MHz-Quarz (Taktgenerator)
fest einstellbarer Untersetzer für I ms-, 10 ms-, 100 ms- und

I s-Starts

enthält zentrale 8-bit-Anzeige und zentralen 8-bit-Schaltersatz,
ferner Tasten für Laden, Speichern, Start, Stop, Nullsetzen
sowie Bootstrap-ROM

19"-Einschub
5 Einheiten hoch (ca. 225 mm)
ca. 500 mm tief

220 V, 50 Hz einphasig

ca. 150 VA

E/A-Interface für 8-Kanal-Fernschreiber (Teletype)
ASCII-Code, 110 Bd

Interfaces für 8-Kanal-Streifenleser und -Streifenlocher

Computer-Fibel

Dies soll eine kleine Hilfe für alle die Benutzer des MINCAL 621 sein, die noch
keine Erfahrung mit Computern und Computer-Terminologie haben. Ein Computer hat

nichts Geheimnisvolles an sich; um seine Prinzipien zu verstehen und mit ihm um-
zugehen, muß man nur folgerichtig denken und diese Denkschritk sorgfältig formu-
lieren können.

BINÄRZAHLEN

Computer behandeln Zahlen anders, als wir es gewohnt sind. Alle Elemente in einem
Rechner können nur zwei verschiedene Zustände unterscheiden und behandeln:

1. Positive Spannung

2. Keine Spannung

Zwischenwerte kennt ein Computer nicht. Der Zustand: "Es besteht die halbe posi-
tive Spannung" ist nicht möglich, es sei denn, der Computer streikt.

Alle Elemente, die nur zwei Zustände kennen, nennt man DIGITAL. Darum heißt
der Computer auch Digitalrechner.

Der Einfachheit halber nennt man den einen Zustand "1" und den anderen "0".

Rechnen kann man mit O oder 1 erst, wenn man mehrere Elemente miteinander kom-

biniert. Kombinieren wir versuchsweise drei digitale Elemente, drei Lampen, und
überlegen, wie viele Möglichkeiten es gibt, wenn jede Lampe leuchten oder dun-
kel sein kann:

oO 00 oder 000)

o 0% 001
o '0- © 010 2
o 0: 011 3

00 100 4

0% 01008
0-0 110 6
082020 111 7

"Lampe leuchtet" soll einer I und "Lampe ist dunkel" einer O entsprechen.

Das sind 8 verschiedene Kombinationen; allgemein gilt die Regel, daß bei,
n-Elementen 2” Kombinationen möglich sind. In diesem Beispiel sind es 2” = 8
Kombinationen, die wir (rechte Spalte) mit 0 bis 7 bezeichnen. Das sind Zah-
len im üblichen Dezimalsystem, das die Ziffern von O bis 9 benutzt. Von die-
sen zehn Ziffern hat das System seinen Namen (lateinisch zehn = decem).

Links neben den Dezimalzahlen ist eine weitere Zahlenreihe. Jedes Element aber
nimmt nur zwei verschiedene Zustände an (0 und 1). Deshalb spricht man hier
von einem Dual-System (lateinisch zwei = duo). Gebräuchlich ist auch der Aus-
druck BINAR-Zahlen. Einzelne Binärelemente oder Binärstellen werden als BIT
bezeichnet. Es ist ein Kunstwort aus dem Englischen: binary digit = Binärstelle.
Als Hauptwort für die Bezeichnung eines Elementes wird es groß geschrieben
(Bit), als Maßeinheit für die Anzahl von Binärstellen klein (bit).

Zählen und Rechnen mit Binärzahlen erfolgt nach den gleichen Gesetzmäßigkeiten
wie im Dezimalsystem. Beim Zählen z.B. addiert man ganz rechts eine 1 so lange,
bis die letztmöglichen Ziffern erreicht sind. Will man dann weiterzählen, so be-
ginnt man mit der kleinsten Ziffer eine Spalte weiter links. Beim Dezimalsystem
muß man nach der 9 eine neue Spalte "eröffnen", beim Dualsystem nach der 1.
Die einzelnen Spalten haben nun eine unterschiedliche Wertigkeit. Beim Dezimal-
system sind es von rechts beginnend die Wertigkeiten 1, 10, _100, 1000 usw., oder
anders ausgedrückt, die Potenzen zur Basis 10 (10V, 101, 10%, 10° ...).

Beim Dualsystem haben die Spalten die Wertigkeiten I = 20, 2 = 2!, 4 = 22,
8 = 2° usw. Hier sind es also die Potenzen zur Basis 2.

Binärzahlen haben beim Rechnen den großen Vorteil, daß das ganze Einmaleins
heißt:

I mal O0 N o
O und

NI mal 1

Ebenso einfach ist das Addieren und Subtrahieren. Der Nachteil besteht aber dar-

in, daß Binärzahlen leicht sehr lang und unübersichtlich werden.

So sieht binär die Zahl 2819 so aus:

10110000001 1

Da dies sehr unübersichtlich und außerdem schwer zu behalten ist, greift man zur
HEXA-DEZIMAL-Darstellung. Hierbei faßt man jeweils 4 Binärstellen zusammen:

- 10 -

1011 0000 0011

Jedes dieser Päckchen wird nun je nach seinem Inhalt durch eine der Ziffern
0...9 oder A...F ersetzt, wobei folgende Zuordnung gilt:

0000 0
0001 = 1
0010 = 2
0011 = 3
0100 = 4
0001 = 5
0110 = 6
0111 = 7
1000 = 8
1001 = 9
1010 = A (= dezimal 10)
1011 =B (11)
1100 Cl 12)
1101 =D (13)
110 =E (14)
1111 = F (15)

Die Binärzahl aus dem vorigen Beispiel heißt in hexa-dezimaler Schreibweise "BO3";

1011 0000 0011

B 0 3

Natürlich arbeitet der Computer mit Binärzahlen, die hexa-dezimale Schreibweise
ist nur eine Vereinfachung für den Benutzer.

DAS RECHNEN MIT BINÄRZAHLEN

Üblicherweise kann ein Computer, wenn er rechnet, nur addieren. Die Subtraktion
wird durch eine spezielle Addition ersetzt; Multiplikation wird durch wiederholtes
Addieren, Division durch mehrfaches Subtrahieren erzielt. Alle anderen arithmeti-
schen Operationen lassen sich auf die vier Grundrechenoperationen zurückführen.

Wie addiert und subtrahiert man Binärzahlen ?

- 11 -

Nehmen wir 4-stellige Binärzahlen und rechnen 5 +4 = 9:

3 2 21 92

) 1 0 1 (= 5)

0 1 0 0 (= 4)

SG a - Übertrag

1 0071 (= 9)

ode 7/+3 = 10

0 1 ı 1 = 7)

) 0) ı 1 (= 3)

1 0 1 0 (= 10)

Wichtig hierbei ist, daß man beachtet:

I+] =0 + Übertrag und

1 + 1 + Übertrag = 1 + (neuer) Übertrag

Negative Zahlen werden als ZWEIER-KOMPLEMENT der entsprechenden positiven
Zahl dargestellt. Das Zweierkomplement erhält man, indem man alle Bits in ihr
Gegenteil verkehrt (aus einer 0 wird eine 1 und umgekehrt; hier spricht man vom
EINERKOMPLEMENT) und anschließend rechts eine 1 addiert.

Beispiel:

0000 0001 (=])

I111 1110 (= Einerkomplement von |)
also:

ı111 1110

+ 1

I111 1111 (= Zweierkomplement von I)

-12 -

Da das Zweierkomplement eine negative Zahl ist, müßte das Ergebnis bei einer
Addition von +1 und -I Null sein:

0000 0001 (= +1)

+ 1111 1111 (= -1)

D 0000 0000 (= 0)

Wie wir sehen, stimmt die Annahme allerdings nur, wenn man den vordersten Über-
lauf unberücksichtigt läßt.

Der Computer führt nun eine Subtraktion durch, indem er den Subtrahenden nega-
tiv macht und dann addiert.

Beispiel: 19-5 = 14

+35=0000 0101

1111 1010

Iı111 10119

ll
NEinerkomplement von 5

llZweierkomplement von 5

also:

0001 0011 (= +19)

ı111I 1011 (= -5)

0000 1110 (= 14)

Negative Binärzahlen erkennt man daran, daß das äußerste linke Bit gleich ist.

- 3 -

DATEN UND WORTE

Zu den Hauptfunktionen, die ein Computer ausführen kann, gehört das Speichern
von DATEN. Das sind Binärzahlen, aber auch Namen, Texte und Anweisungen,
die der Programmierer dem Computer gibt, damit dieser weiß, was er zu tun hat.
All diese Daten werden in binärer Form gespeichert als irgendein Bit-Muster.

Der Computer hat eine Reihe von Speichermedien. Da sind einmal die Flip-Flop-
Speicher, sehr schnelle, aber dafür ziemlich teure elektronische Speicher. Dann
gibt es den Magnetkernspeicher, der etwas langsamer ist, aber dafür sehr viele
Bits speichern kann. Neuerdings setzt man auch hochintegrierte Flip-Flop-Speicher
in MOS-Technik ein, die genau die Mitte zwischen Kernspeichern und Flip-Flops
bilden.

Bei allen Speichern ist immer eine bestimmte Anzahl von Bits zusammengefaßt. Diese
Bits werden auf einmal abgelegt, addiert oder anderweitig behandelt. Die Anzahl
Bits, die so zusammengefaßt ist, ist von Computer zu Computer unterschiedlich.
Innerhalb eines Computer-Typs ist sie aber für alle Speicher gleich und stellt eine
wichtige Kenngröße dar, die WORTLÄNGE. Ein Päckchen zusammengefaßter Bits
nennt man ein WORT.

Weit verbreitet ist das 8-bit-Wort; man bezeichnet es als "BYTE".

REGISTER UND SPEICHER

Flip-Flop-Speicher von Wortlänge bezeichnet man als REGISTER. Allerdings kommt
es auch vor, daß Register länger als ein Wort sind, z.B. 2-byte-Register (= 16-bit-
Register).

Der KERNSPEICHER ist in der Lage, sehr viele Worte zu speichern. Im allgemeinen
sind es 2 = 4096 Worte (man spricht hier von 4k) oder ein Vielfaches hiervon.
Will man ein bestimmtes Wort herausholen (lesen), so muß man dem Kernspeicher
eine zusätzliche Information, die ADRESSE, geben, damit das richtige Wort gefun-
den wird. Jede SPEICHERZELLE hat also eine feste Adresse, aber einen variablen
Inhalt von Wortlänge.

Adressen sind ebenfalls binär aufgebaut. Bei einem Ak-Speicher sind alle Adressen
durch 12-stellige Binärzahlen - also 12 bit - darstellbar; übersichtlicher bezeichnet
man sie mit 3-stelligen Hexa-Dezimalzahlen:

l. Adresse 0000 0000 0000 000

2. Adresse 0000 0000 0001] 001

USW.

vorletzte Adresse 1111] 1119I 1110 FFF

letzte Adresse 1119I 1 I 11 Iı111I FFF

- 4 -

Inhalt jeder
Zelle:

1 Wort mit

n bit

Der MOS-Speicher ist genauso organisiert wie der Kernspeicher. Aber ein großer

Teil der Adressen erfüllt die gleichen Funktionen, die früher von Flip-Flop-Regi-
stern erfüllt wurden. Deshalb ist es üblich, hier ebenfalls von REGISTERN zu spre-
chen. Register allerdings, deren Inhalt noch in wirkliche Flip-Flop-Register über-

FFF
FFE
FFD
FFC
FFB

FFA
FF?
FF8
FF7
FFö

FF5
FF4

FF3

FF2
FFI

009
008

007
006
005
004
003
002
001

000

ä

tragen werden muß, bevor man mit ihm arbeiten kann.

- 15 -

Adressen der
Speicherzellen
(hexa-dezimal)

4k-Kernspeicher

DAS PROGRAMM

Speichern und Wiederauffinden von Daten ist zwar für einen Computer wesentlich,
aber er kann noch mehr: Mit diesen Daten rechnen, sie manipulieren, ausgeben
oder von außen aufnehmen. Aber all dies muß ihm genau vorgeschrieben werden.
Dann führt er die gegebenen Anweisungen blitzschnell und sklavisch genau aus.

Das Erstellen solcher Anweisungen nennt man PROGRAMMIEREN. Eine Folge von
Anweisungen ist ein PROGRAMM, und die einzelnen Anweisungen werden als
INSTRUKTIONEN bezeichnet.

Ein fertiges Programm nimmt der Computer auf, indem er es Instruktion für Instruk-
tion im Kernspeicher ablegt. Wenn man dann den Rechner startet, liest er die er-
ste Instruktion aus dem Speicher und führt sie aus; dann liest er die zweite Instruk-
tion, führt sie aus, dann die dritte und so fort, bis er schließlich eine Instruktion
findet, die ihm sagt, daß er nun anhalten soll.

Um die Instruktionen aus dem Speicher zu lesen, benötigt der Computer eine Adres-
se. Diese Adresse muß natürlich "mitlaufen" und immer die Instruktion adressieren,
die gerade ausgeführt werden soll. Dieses "Zählen" der Adressen übernimmt der
INSTRUKTIONSZÄHLER (oder auch N-Register).

Die aus dem Speicher gelesenen Instruktionen werden in einem anderen Register ge-
speichert. Dieses Register erzeugt Steuersignale für das RECHENWERK (das eigent-
lich ausführende Organ des Computers) und bestimmt, mit welchen Daten gearbeitet
werden soll.

Kernspeicher

IN |

2.Schritt: l

Ausführen Instruktion 1

und Erhönen von N

um]
1.Schritt:

Lesen Instrukfi Steuersignale

re
|Instruktion | | Instruktion |

Stäbersidnale

N]
|

Instruktion 3
L__-___-», Instruktion 2

3. Schritt: Instruktion |]
Lesen Instruktio

| Instruktion]

- 16 -

Im Kernspeicher des Computers stehen neben den Instruktionen auch die Daten, mit
denen der Computer arbeitet. Natürlich kann nicht direkt im Kernspeicher gerech-
net werden, sondern nur mit den Registern des Rechenwerkes. Das Haupt-Arbeits-
register ist der AKKUMULATOR (oder (Q) -Register). Besonders komfortable Computer
verfügen über mehrere Akkumulatoren, die wahlweise benutzt werden können.

Ein wichtiger Arbeitsvorgang ist der Transport von Daten, z.B. aus dem Speicher
in das (O-Register (LADEN, LOAD) oder aus dem (@) -Register in den Speicher

(SPEICHERN, STORE).

Speicher > Laden aus Adresse M:

p <M>Q)

 Arbeitsregister

Speichern in Adrese M

Speicher , <@>-M

@ Arbeitsregister
(a) ist das Symbol für das Arbeitsregister, M das für einen beliebigen Speicher-

platz, und <....> bedeutet "Inhalt von ...".

Bemerkenswert bei diesen Transportvorgängen ist, daß beim Datenempfang der alte
Inhalt zerstört oder überschrieben wird, beim Senden aber erhalten bleibt. Beim
Transport <M>—>(A) haben anschließend M und (@ den gleichen Inhalt, näm-
lich den ursprünglich nur in M gespeicherten.

Will der Programmierer Daten aus einer Kernspeicheradresse in eine andere trans-
portieren, so geht das nur über das Arbeitsregister. Seine beiden Anweisungen lau-
ten dann in symbolischer Form:

LDA,(@ ‚MI
STA, @ ‚M2

- 7 -

Symbolisch bedeutet hierbei, daß die Befehle (Laden, Speichern) durch Abkür-
zungen (LDA, STA) und die Adressen durch NAMEN (MI, M2) - anstelle von
z.B. hexa-dezimalen Adressen - angegeben sind. Das Signal(A) bestimmt, mit
welchem Arbeitsregister gearbeitet werden soll. Nur Computer mit mehreren Ar-
beitsregistern benötigen daher diese Angabe.

Wenn der Computer diese beiden Instruktionen ausführt, geschieht folgendes:

, I. Operation
Laden aus Adresse MI
< Ml>>(@

2. Operation
Speichern in Adresse M2
<(d) >—M2

An diesem Beispiel kann man erkennen, welche Angaben der Computer benötigt:

- Was ist zu tun? (Laden, Speichern)
Diese Angabe nennt man den BEFEHL

- Um welchen Speicherplatz handelt es sich? (MI, M2)
Diese Angabe nennt man die ADRESSE. Den Inhalt der Adresse, also
der Wert, mit dem gearbeitet wird, bezeichnet man als OPERAND.

- Mit welchem Arbeitsregister soll gearbeitet werden? ((@)
Diese Angabe nennt man die zweite Adresse.

- 18 -

Der Inhalt der (ersten) Adresse heißt OPERAND.

Beim MINCAL 621 sieht eine Instruktion so aus:

an mm Mimi mem mn un air Meme emmimme aan

 YV \W ww

Befehl AKKUMULATOR ADRESSE

l. Byte: enthält den Befehl

2. Byte: enthält die Adresse des Arbeitsregisters.
Sie wird nur dann angegeben, wenn man nicht mit dem Standard-
Akkumulator arbeiten will.

3.+4. Byte: enthält die Operanden-Adresse.

Der Computer versteht nicht die symbolischen Befehle, sondern nur den MASCHI-
NENCODE. Mit einem Übersetzungsprogramm, dem ASSEMBLER, wandelt er das
SYMBOLISCHE Programm in Maschinencode um. Für die 2 obigen Befehle hätten
wir folgendes Maschinencode-Ergebnis (Voraussetzung: MI = Speicheradresse O1E2
und M2 = O1E3; (ist der Standard-Akkumulator, deshalb keine 2. Adresse):

Befehl Adresse

8 C 0 1 E 2 LDA,(@ ‚MI)

E C 0 1 E 3 (STA, (@ ‚M2)

MASCHINENBEFEHLE

Aber was kann der Programmierer dem Computer außerdem befehlen, was kann der
Computer noch ?

Da sind einmal die Befehle Addieren und Subtrahieren. Addieren bedeutet, daß die
Binärzahl, die in einer Speicheradresse steht, zum Inhalt des Arbeitsregisters ad-
diert wird:

- 19 -

ADA, (a ‚M3

Addition

<@> + <MD—&

Befehl Adresse

Addierer

ı
|
I!
!

Die Subtraktion läuft genauso ab, nur wird zwischen M3 und den Addierer ein
Glied geschaltet, welches das Zweierkomplement des Operanden bildet.

Außer den arithmetischen Verknüpfungen zwischen Operand und Arbeitsregister
gibt es noch die logischen Verknüpfungen

Logisches UND: 010011 <(d > ANA, (a , Mn

011101 <Mn>

010001 <a > Ergebnis

Beim logischen UND erhält man pro Binärstelle als Ergebnis nur dann eine 1], wenn
beide verknüpften Worte an dieser Stelle eine 1 enthielten. In allen anderen Fällen
erhält man als Ergebnis eine 0.

Inklusives ODER: 010011 <Q > ORA, (@ ,‚Mn

011101 <Mn>

011111 <(d > Ergebnis

Bei inklusivem ODER erhält man pro Stelle als Ergebnis eine I, wenn eines der

Worte oder beide an dieser Stelle eine I enthielten. Nur wenn beide Bits O waren,
erhält man als Ergebnis eine 0.

- 20 -

Exklusives ODER:

010011 <@> EOA, (W ‚Mn

0o11101 <Mn>

001110 <@> Ergebnis

Beim exklusiven ODER erhält man pro Stelle als Ergebnis eine |, wenn die ver-
knüpften Worte an dieser Stelle ungleiche Binärziffern enthielten. Bei gleichen
Binärziffern erhält man eine 0.

Diese logischen Verknüpfungen benötigt man zum Zerschneiden und Zusammensetzen
von Daten und zum Feststellen, ob zwei Binärmuster gleich oder ungleich sind.

Außer den Befehlen, die einen Operanden mit dem Akkumulator verknüpfen, gibt

es auch Befehle, die nur den Inhalt des Arbeitsregisters auf eine bestimmte Weise
verändern. Hierzu gehören die Schiebebefehle. Der Inhalt des Akkus läßt sich
rechts oder links verschieben, und das offen und geschlossen. Was hierbei passiert,
kann man am besten an den Beispielen erkennen:

Schiften links offen

10P I1ı1?,,® <@> sLO,@

Kerr <> Ergebnis

Jedes Bit wird um eine Stelle nach links verschoben; das vorderste Bit geht verlo-
ren, und rechts wird eine 0 ergänzt.

Schiften links geschlossen (Rotieren)

10011101 <(a)> SLC,&
KLIUUL/Y
0011101J <> Ergebnis

Jedes Bit wird um eine Stelle nach links verschoben; das vorderste Bit wird in die
rechts freiwerdende Stelle übertragen.

Entsprechend läuft das Schiften rechts ab:

- 21 -

Schiften rechts offen

OO <@> sro,@

010011TON, <(@> Ergebnis

Schiften rechts geschlossen (Rotieren)

10011101 <a > SRC,@
NNNNNNN
1001110 <(W > Ergebnis

Außerdem kennt der Computer noch Instruktionen, mit denen er sich steuern läßt,
z.B. Anhalten nach Erledigung der gestellten Aufgabe (Halt; HLT).

EIN- UND AUSGABE

Der Computer kann Daten von außen aufnehmen oder seiner Umgebung vermitteln.
Die PERIPHERIE, d.h. die mit dem Computer verbundene Umwelt, wird wie der
Speicher behandelt. Jedes an den Computer angeschlossene Gerät, mag es nun
eine Schreibmaschine, ein Lochstreifenleser oder -stanzer, eine Meßstelle, eine

Anzeigeeinheit oder sonst etwas sein, bekommt eine EXTERNE ADRESSE (oder
GERÄTEADRESSE) zugeteilt, und Informationen werden in Form von Worten ausge-
tauscht, - wie beim Speicher. Die Verteilung der Daten erfolgt ebenfalls über das
Arbeitsregister.

cine typische Befehlsfolge für einen Ausgabevorgang sieht so aus:

1) Laden Datenwort aus Speicher LDA, (@ ‚DI

2) Ausgabe Datenwort an Peripherie STA, (@ ‚Pl

D1 = Kernspeicher-Adresse und

Pl = Externe Adresse.

l. Schritt
Peripherie

AT]

2.Schritt P2
- 22 -

Normalerweise verstehen die Peripherie-Geräte nicht den Binärcode, mit dem der

Computer rechnet. Sie haben ihren eigenen, z.B. den ASCII-Code. Dieser Code

kommt auch in den Lochstreifen vor, die der Computer liest oder stanzt.

Ein Lochstreifen ist so aufgebaut:

—> Leserichtung

Kanäle $
«—— Transportloch

1
M
D
P
O

O
S
I

0
0

f

Zeichen

Ein Zeichen auf dem Lochstreifen besteht aus 8 Lochreihen und einem kleineren

Transportloch.

Die 8 Löcher (oder Nicht-Löcher) werden mit einem Mal gelesen und in das Ar-

beitsregister übernommen:

27 „0

CI LIT rn TI

8—

Vo

6 0—

Kanäle‘, >

30

2 0—
1 0

- 23 -

Jeder Buchstabe und jede Ziffer hat ein bestimmtes Code-Zeichen, zum Beispiel
beim ASCII-Code:;

Kanal

Bit

8765432]
2—2

O
O
0
0
-
0

-
-
—
-
0

O
O
O
O
O
0
O
0
0
O
0
0
0
0
0

—
1
O
O
O
O
0
O
0
0
O
0
0
0

O
O

—
1
.
0
0
0
6
0

O
O
0
0

—
-

—
-
O
0

0
-
0

-
0
—
-
0
O
0
-
—
0

o
O

o
O

o
O

o
O

O
o o
O

ASCII-Code-
Bedeutung

hexa-dez.
Darstellung

30 Ziffer
Bl u

B2 u

33 \

B4 “
35 Ik

36 u

B7 a

B8 u

39 D
O
N
I
O
D
I
P
B
O
D
N
—

O
o

4] Buchstabe

42 "

USW.

>

Der Kanal 8 trägt keine eigentliche Information. Er ist zur Kontrolle da und sorgt
dafür, daß immer eine gerade Anzahl von Löchern gestanzt ist (PARITY-Bit).

Wird z.B. eine Ziffer eingelesen, so interessieren nur die rechten 4 Bit, denn sie
entsprechen genau dem Binärcode. Also schneidet man die restlichen 4 Bit ab, in-
dem man das ASCII-Zeichen und eine MASKE durch UND verknüpft:

= Ziffer 5 (ASCII)

= Maske

= Ziffer 5 (Binär)

Bei einer Ausgabe fügt man die fehlenden Bits durch inklusives ODER wieder hinzu:

07
BO

B7

0000
1011

0111
0000

1011 0111

= 7 (Binär)
= Ergänzung

N Ziffer 7 (ASCII)

- 24 -

WIR SCHREIBEN EIN PROGRAMM

Um nun all die gesammelten Erkenntnisse anzuwenden, wollen wir jetzt ein klei-
nes Programm schreiben. Und zwar wollen wir 2 Zahlen eingeben, sie zueinander
addieren und das Ergebnis anschließend wieder ausgeben.

EAA. LDA ‚(@ ‚EXT (Eingabe 1. Zeichen)
ANA,(a) ‚MASK (Maske)
STA ‚(@ ‚ZWwS (Zwischenspeichern)
LDA ‚(a ‚EXT (Eingabe 2. Zeichen)
ANA, (a) ‚MASK (Maske)
ADA ‚(a) ‚ZWS (Addition)
ORA ‚(a ‚ASCI (Ergänzung)
STA ‚(a) ‚EXT (Ausgabe Ergebnis)

MASK: H ‚fF

ASCI: H ,Bp

ZWS: V

EXT: Q ‚Ber (Geräte-Adresse)

Hierzu ein paar Hinweise: Das Programm soll einen Namen haben: EAA (Eingabe/
Addieren/Ausgabe), der als MARKE vor die erste Instruktion geschrieben wird.

Da im Programm Zwischenspeicher und Masken benutzt werden, müssen diese auch
im Programm definiert werden, jeweils mit einer Linksmaske. Das geschieht mit den
Symbolen V (VARIABLE) und H (Hexa-dezimaler FESTWERT). Mit Q wird dem sym-
bolischen Gerätenamen EXT die Adresse Q@FI zugewiesen. Die £ (Null) wird durch-
gestrichen, um sie vom © (Oh) zu unterscheiden.

SPRÜNGE UND SCHLEIFEN

Was geschieht, wenn der Computer dieses Programm ausgeführt hat? Er wird weiter-
laufen und MASK als eine Instruktion auffassen. Das aber muß verhindert werden;
andernfalls macht der Computer Unsinn. Ein ordnungsgemäßes Weiterlaufen erreicht
man durch einen SPRUNG (oder VERZWEIGUNG) im Programm, z.B. zum Programm-
teil XYZ.

- 25 -

Eingabe
Addition
Ausgabe

Dann muß an die Stelle der drei Pünktchen die Instruktion: JPA, ,„ XYZ gesetzt

werden. Damit wird der Instruktionszähler auf die Anfangsadresse des Programmteils
XYZ. gesetzt.

Oder man kann auch nach EAA zurückverzweigen:

JPA, , EAA

Nun wiederholt sich der beschriebene Vorgang immer wieder.

Eingabe
Addition
Ausgabe

Aus dieser Programmschleife kommt der Computer allerdings nie wieder heraus. Er
liest Zahlen, adddiert sie und druckt das Ergebnis aus, und das ohne Ende.

Will man nur eine bestimmte Anzahl von Additionen durchführen, so muß ein Zäh-
ler mitzählen und bestimmen, wann aufgehört werden soll. Dieser Zähler ist das
INDEXREGISTER. Es zählt jeden Durchlauf mit, und durch eine ABFRAGEstellt
der Computer fest, ob schon der Endwert, z.B. 100, erreicht ist.

- 26 -

99 mal

IXR+T > IXR |

Wenn nein, geht das Programmnach EAA zurück, wenn ja - nach dem 99. Durch-
lauf- nach xXYZ.

Das zugehörige Programm sieht so aus:

LDC ‚,IXR,@
EAA ...

Programm EAA

IEC ‚„IXR,100,XYZ
JA, EAA

LDC,IXR,@ bedeutet, daß das indexregister IXR mit einer Konstanten (CONSTANT) 2
geladen wird. Konstante heißt, daß die Adresse direkt als Operand genommen wird.
(und nicht ihr Inhalt!).

IEC,IXR,100,XYZ bedeutet: Addiere zu IXR eine | und springe, wenn der Inhalt

gleich der Konstanten 100 ist, nach XYZ. Andernfalls laufe weiter auf die nächste

Instruktion.

Solche Schleifenbildungen kommen in Programmen sehr häufig vor, und deshalb kann
ein Computer gar nicht genug Indexregister haben.

- 27 -

UNTERPROGRAMME

In unserem Programm EAA stört aber noch, daß die Eingabe zweimal programmiert
worden ist, was Platz kostet. Natürlich kann man das auch über eine Programm-
schleife erledigen. Besser ist für solche Fälle ein UNTERPROGRAMM, in das man
über einen UNTERPROGRAMM-SPRUNG gelangt:

CSA,RET,EIN

Hierbei geschieht zweierlei: Erstens springt das Programm an die Stelle EIN, und
insoweit verhält es sich wie ein normaler Sprung. Vorher aber wird der Instruktions-
zählerstand als RÜCKKEHRADRESSE in das Register RET übertragen.Am Ende des Un-
terprogramms, das die Befehle für Eingabe und Abspeichern enthält, ist ein RÜCK-
SPRUNG ins HAUPTPROGRAMM (an die Stelle nach dem Aufruf CS...) vorzusehen
mit:

JPX,RET

Dies heißt: Springe indirekt über den Inhalt des Registers RET.

INDIREKT bedeutet, daß nicht zum Register RET gesprungen werden soll, sondern
daß der Inhalt des Registers RET das Sprungziel angibt. Und hier steht ja die Rück-
kehradresse..

Hieran sieht man, daß die programmierte Adresse (nämlich RET) gar nicht die Adres-
se ist, mit der gearbeitet werden soll, Deshalb unterscheidet man auch die program-
mierte Adresse von der EFFEKTIVEN ADRESSE.

- 28 -

Unterprogramm EIN

1 Zeichen lesenSe

Maske Maskierung

+

Rücksprung

Das Programm EAA sieht nun so aus;

EIN Unterprogramm EIN

|

«(> — zws Zwischenspeichern

EIN Unterprogramm EIN

(@+ZWS> (@ Addition

I Zeichen Ausgabe

- 29 -

ADRESSIERUNG

Mit Ausnahme des JPX waren bisher programmierte Adresse und effektive Adresse
gleich. Aber es gibt auch noch andere Fälle, wo beide Adressen nicht überein-
stimmen; das liegt daran, daß der Computer verschiedene Arten der ADRESSIERUNG
kennt.

In den ersten Beispielen wurde der Speicher und auch die Peripherie ABSOLUT ad-
dressiert, gekennzeichnet durch den Buchstaben A bei den Befehlen

LDA LOAD ABSOLUTE
oder STA STORE ABSOLUTE

Die absolute Adresse ist 16 bit lang, und damit lassen sich 64k Speicherzellen adres-
sieren. Die effektive Adresse ist gleich der programmierten Adresse.

Außerdem haben wir beim Rücksprung aus dem Unterprogramm die INDIREKTE Adres-
sierung kennengelernt. Hierbei ist die effektive Adresse gleich dem Inhalt der pro-
grammierten Adresse:

Ox LOAD INDIRECT

Die "CONSTANT-Adressierung" ist ebenfalls schon erläutert worden. Hier ist die
programmierte "Adresse" der Operand selbst:

Ooc LOAD CONSTANT

Neben diesen Adressierungsarten gibt es noch die RELATIVE (oder LATERALE) Adres-
sierung. Hierbei geht man von der Annahme aus, daß viele Speicherplätze und
Sprungziele in der Nähe der Instruktion stehen. Der Vorteil der relativen Adressie-
rung ist, daß man mit einer 8-bit-Adresse auskommt; und dabei jeden Platz errei-
chen kann, der nicht weiter als 128 Adressen rückwärts bzw. 127 Adressen vorwärts
liegt:

N
{

Programmstand —

4 G7 > 512 Bytes (relativ adressiert)

1:50
- 30 -

Bei relativer Adressierung ist die effektive Adresse gleich der Adresse der Instruk-
tion + programmierter Adresse:

BLOCKDIAGRAMME

LOAD RELATIVE

Nachzutragen bleibe eine Erklärung der grafischen Symbole. Sie sind Bestandteile
von BLOCKDIAGRAMMEN (Programmablaufplänen) und sollen den Programmverlauf
anschaulich darstellen. Die Kästchen werden durch Pfeile so miteinander verbunden,

wie sie im Programm aufeinanderfolgen. Wichtige Symbole sind:

EIN

eiche
lesen B

U
T
:

ABC

-

@

Allgemeine Verarbeitung:
Ein Kästchen für alles, wofür es kein spezielles
Kästchen gibt.

Unterprogramm-Aufruf

Bedingte Verzweigung mit Ausgängen für JA und
NEIN

Manuelle Eingabe aus der Peripherie

Ausgabe auf Registriergerät

Lesen oder Stanzen eines Lochstreifens

(im Zweifelsfall hineinschreiben)

Längerer, definierter Programmteil (ROUTINE,
PROZEDUR, ALGORITHMUS), auch Unterprogramm

Verknüpfungspunkt (CONNECTOR) bzw. Beginn
eines Programmteils bzw. markanter Punkt im
Programm

Anhalten des Programms; es muß einen Anstoß von
außen bekommen,damit es weitergeht

- 31 -

Struktur

RECHENEINHEIT

Folgende Baugruppen bilden die wesentlichen Bestandteile der Recheneinheit:

A-Register: 8-bit-Register, in das alle gelesenen Daten gelangen und das
als Rechenregister für arithmetische und logische Operationen
dient. Der Inhalt des A-Registers wird angezeigt, sobald der
Rechner angehalten wird.

B-Register: 8-bit-Register als zweites Rechenregister. Bei Indizierung ent-
hält es die Indexregister-Adresse.

P-Register: 8-bit-Register zur Adressierung des Arbeitsregisters.

M-Register: 16-bit-Register für die effektive Adresse. Die beiden Hälften des
M-Registers können angezeigt, und es können die Daten des
Switch-Registers in das M-Register übertragen werden.

N-Register: 16-bit-Register, das als Instruktionszähler dient. Bei angehaltenem
Rechner enthält das N-Register die Adresse des Befehls, der als
nächster ausgeführt wird. Der Inhalt des N-Registers kann ange-
zeigt, und es können die Daten des Switch-Registers in das N-

Register übertragen werden.

SW-Register: 8-bit-Schaltersatz in der Bedienungskonsole (Option). Die Daten
des SW-Registers können in das M-Register, N-Register oder eine

Speicheradresse übertragen werden.

DISPLAY: 8-bit-Lampenfeld in der Bedienungskonsole (Option) zeigt den
Zustand des F-Kanals an. Bei Stop wird der Inhalt des A-Regi-
sters angezeigt, wenn nicht über spezielle Schalter das M-Regi-
ster oder das N-Register angewählt ist.

ALU: Arithmetisch-logische Einheit für 8 bit. Die ALU ist der zentrale
Verknüpfungspunkt des Rechners.

Q-Register: 8-bit-Register für das Befehls-Byte der Instruktion.

- 2 -

UNIVERSAL-BUS

Ebenen Starts

uam wenn nme amuaait srStee wie eu AAMMEE emmamme Mimi arme wurn semem mumm armen ame aunen ——— mn una er u

L0..L15 S0..S15

 D
| | | DISABLE

Adressen Daten

uPe

POOL

IMOS-RAM)

&

&

DI
® ® © [P-LOGIK

| ALU > N >71 str 1° SR fe

®k Y ZENTRALEINHEIT

[> ÄSteuersignale

Oh

_ L ”
1 ML | MRODOB—

? | ”;
—— ını Ir. RR ee

[SısPCAY) [switch KONSOLE

BLOCKBILD MINCAL

- 33 -

62]

D-Register:

DO-Register:

C-Register:

ROM:

S-Register:

L-Register:

DISABLE:

P-Logik:

8-bit-Register, das in einer DO-Schleife die Zahl der Ausfüh-

rungen zählt.

4-bit-Speicher für die Steuerinformationen eines DO-Befehls.

5-bit-Register für die Adresse der im ROM gespeicherten Mikro-
schritte.

TTL-Read Only Memory, das die Steuersignale (Mikroschritte) für
den Rechner erzeugt.

16-bit-Register (Option) zur Speicherung der Ebenenstarts. Starts
können vom Universal-BUS kommen oder programmiert sein. Zu-
rückgestellt werden die Bits des S-Registers nur vom Programm.

4-bit-Register, das die laufende Ebene angibt.

Das DISABLE-Flip-Flop (1-bit-Register) verhindert Ebenenwechsel
bzw. läßt im ausgeschalteten Zustand einen Ebenenwechsel zu.

Die Prioritätslogik ermittelt die höchste gestartete Ebene und setzt
das L-Register entsprechend.

Alle genannten Register sind in Form integrierter Schaltkreise in der Recheneinheit
enthalten. Sie sind für das Verständnis der Rechner-Struktur wichtig, jedoch für die
Programmierung - mit Ausnahme von N- und SW-Register - nicht von Bedeutung,
da der Benutzer keinen Zugriff zu ihnen hat. Vielmehr arbeitet der Benutzer mit
Speicherplätzen im Arbeitsspeicher (Pool), die "seine" Register darstellen.

ARBEITSSPEICHER (POOL)

Der Arbeitsspeicher ist ein MOS:- RAM mit 256 bytes Kapazität (erweiterbar auf
insgesamt 4k bytes). Er dient als schneller Datenspeicher; insbesondere aber ent-
hält er die Arbeits- und Indexregister. |

Jeder Programmebene werden (fest einstellbar) 16, 32, 64, 128 oder 256 bytes
zugeteilt; diese Plätze bilden den "Pool". Registeradressen beziehen sich auf die-
se Bereiche, d.h. je nachdem, in welcher Ebene das Programm läuft, werden un-
terschiedliche Pools benutzt. (Will man diese Niveau-Bindung nicht, benutze man
"absolute" Adressierung).

Die MOS-RAM-Adressen laufen von AP bis PFF bei 0,25k (bzw. @@P bis FFF bei
Ak).

Register- und Pool-Adressen beziehen sich auf den Anfang des jeweiligen Pools.
Im Prinzip sind alle Pool-Adressen von Q bis max. FF anzusprechen (als Pool-
Adressen, spezifizierte Arbeitsregister und Indexregister), jedoch beachte man
folgendes:

Pool-Adressen 9@ und @l nehmen bei Ebenenwechsel den augen-
blicklichen Programmstand auf und sind daher anderweitig nicht
benutzbar.

Pool-Adresse 92 (und - bei Mehrbyte-Operationen - die folgen-
den) stellt den "Akku" dar (für den Fall, daß kein spezifizier-
tes Arbeitsregister angegebenist).

Ist der Pool nicht auf 256 byte Länge eingestellt, so reichen Pool-Adressen, die
nicht mehr realisiert sind, in den Pool der nächsthöheren oder eventuell den Pool
mehrerer höherer Ebenen. Die Pool-Bereiche schließen unmittelbar aneinander an.

KERNSPEICHER

Der Kernspeicher hat 4k, 8k oder 16k (bzw. bei externer Erweiterung bis 48k)
bytes Kapazität; seine Adressen laufen von 4998 bis AFFF, 5FFF oder 7FFF (bzw.
bis FFFF).

Der Kernspeicher enthält Programm und Daten in beliebiger Weise.

PROGRAMMEBENEN

Es sind 2 oder 16 verschiedene Programmebenen vorgesehen. Jede Ebene ist dadurch
gekennzeichnet, daß

ihr ein eigener Bereich (Pool) im Arbeitsspeicher zugeordnetist,
auf den sich die programmierten Register-Ädressen beziehen,

für sie ein eigener E/A-Kanal aufgebaut werden kann, auf den
sich die Geräteadressen beziehen (bei Benutzung der Ebenenaus-
gänge als zusätzliche Adreßinformation).

Das Programm in einer Ebene wird von seinem äußeren Signal, durch die Fertig-
meldung eines ihr zugeordneten Peripheriegerätes, oder durch das in einer anderen
Ebene laufende gestartet. Läuft das Programm in keiner anderen oder in einer nie-
drigeren Ebene, so wird die gestartete Ebene sofort bzw. mit Ende der laufenden
Operation aktiv und führt die nächste Instruktion aus (deren Adresse in Platz QQ/A1
des Pools gespeichert war). Mit einem Halt wird das Programm angehalten, und eine
niedrigere Ebene kann weiterlaufen.

Start Ebene |]

[oon-n] 5 |] i2]FfInacı [n=ooon]

| in. [n—000r| 00,010N] ins]£

00,019 = Pool-Adressen 00,01 der Ebene 0

00,01, = a 00,01 " vo]

In = Instruktion n eines Programms

Durch Setzen von DISABLE kann der Ebenenwechsel (d.h. die Unterbrechung des
Programms durch Start einer höheren Ebene) verhindert und wieder zugelassen wer-
den.

Die Ebenen-Struktur erlaubt einfache Multiprogrammierung.

Hat der Computer mehrere, völlig unabhängige Aufgaben zu erledigen, so wird man
jeder Aufgabe eine Ebene zuteilen. Man hat nur darauf zu achten, daß Aufgaben,
die eine besonders schnelle Reaktion verlangen, einer Ebene mit hoher Priorität zu-
geordnet werden. Jede Ebene hat ihr eigenes Programm und eigene Datenspeicher.

- 36 -

Bei Ein- und Ausgaben muß durch Anhalten der Ebene auf das Peripheriegerät ge-
wartet werden, damit die Zentraleinheit für die anderen Ebenen frei wird.

Besonders geeignet ist die Struktur des MINCAL 621 auch für die Bearbeitung von
mehreren völlig gleichen Aufgaben, bei denen nur die Peripheriegeräte und die
Daten unterschiedlich sind. In diesem Falle genügt es, ein Programm zu haben,
das alle Ebenen benutzen. Nur bei Ansprechen der Peripheriegeräte benötigt man
eine zusätzliche Information, denn bei gleichem Programm haben die Peripherie-
geräte auch die gleichen Adressen. Diese zusätzliche Information liefert der Ebenen-
(Level-) Ausgang, der als zusätzliche Adreßinformation verwertet wird. Bei den Da-
tenspeichern erhält man ebenengebundene Adressen durch Register-Adressierung.

Da die Rückkehradressen der Unterprogramme ebenengebunden abgelegt werden, kön-
nen auch Unterprogramme von mehreren Ebenen benutzt werden.

Will man von einer Ebene aus andere Ebenen steuern, so geschieht dies von der
höchsten Ebene aus.

REGISTER

Mit "Registern" sind Speicherplätze im jeweiligen Pool gemeint. Sie werden ver-
wendet als:

Arbeitsregister: Die Mehrzahl der Befehle bezieht sich auf ein Arbeitsregister,
das verändert, verglichen, geladen, transferiert oder sonstwie

behandelt wird. Hierfür dient entweder der "Akkumulator" (@

(Pool-Adresse 92) oder das in einem besonderen Byte "spezifi-
zierte" Register (mit einer beliebigen Pool-Adresse). Damit
stehen max. 254 Arbeitsregister bereit.

Indexregister: Wenn BUS-bezogene Befehle indiziert sind, dient die in einem
besonderen Byte angegebene Pool-Adresse und folgende Adresse
als Indexregister (2-byte-Indexregister). Ist die angegebene Pool-
Adresse ungerade, wird nur diese Adresse als Indexregister ver-

wendet (1 byte-Indexregister). Damit stehen max. 127 Indexre-
gister zur Verfügung.

Rückkehradressen: Sie werden beim Unterprogrammsprung im spezifizierten Register
sowie dem darauffolgenden Platz aufgehoben und beim Rücksprung
dort wiedergeholt.

Pool-Adressen: Niveaugebundene Adressen (bei BUS-bezogenen Befehlen).

- 37 -

ADRESSIERUNG

Die BUS-bezogenen Befehle können wie folgt adressiert werden:

unmittelbar (CONSTANT)
niveaugebunden (REGISTER) wahlweise
relativ (RELATIVE)
voll (ABSOLUTE)

nicht-indiziert I .
2 1e.e wahlweise
indiziert

CONSTANT bedeutet, daß die Adreßbytes als Konstanten verwendet werden. In Ver-
bindung mit einem DO-Befehl kann es auch ein String von Konstantensein.

REGISTER bezieht sich auf den Pool der jeweiligen Ebene.

RELATIVE bedeutet um einen Betrag von maximal -128 bzw. +127 bytes verschoben,
bezogen auf das Byte, in dem die Adreßdifferenz angegebenist.

ABSOLUTE bedeutet, daß jedes Byte des gesamten Speicherbereichs durch eine 16-
bit-Adresse erreicht werden kann.

Indizierung bedeutet Addition des Indexregister-Inhaltes zur berechneten Adresse
(%...65535 bei 2-byte-Indexregister; 9...255 bei 1-byte-Indexregister). Mit 2-
byte-Indexregistern lassen sich negative Indizes darstellen.

Indizierung in Verbindung mit CONSTANTführt zu indirekter Adressierung mit dem
angegebenen Indexregister als indirekte Adresse.

MEHRFACHAUSFÜHRUNG (DO-BEFEHL)

Ein besonderer Befehl (DO) erlaubt es, die folgende Instruktion 2- bis 256-mal auszu-
führen. Eine eventuell zum Befehl gehörende Adreßrechnung wird allerdings nur ein-
mal durchgeführt.

Ergänzend kann man angeben, ob die Registeradresse (<&), die Operationsadresse
(> &) oder beide (=&) bei jedem Durchlauf inkrementiert werden, ferner ob das
Übertragungsbit (LINK) berücksichtigt werden soll (* statt &).

Der DO-Befehl kann sinnvoll auf Befehlsgruppen angewendet werden:

Schiebebefehle
Bedingte Sprungbefehle
BUS-bezogene Befehle

- 38 -

Schiebebefehle werden durch vorgeschaltetes "DO" zum 1-byte-Mehrbitschieben be-
nutzt, indem die Registeradresse nicht inkrementiert (also die Mehrfachausführung
auf 1 byte abgewendet wird) und kein Überlauf berücksichtigt wird.

48SLO ,@ 4-bit-1-byte-Linksschieben (Akku)

I-byte-Mehrbit-Rotieren wird durch DO ohne Registerinkrement und ohne Berücksich-
tigung des Überlaufs erzielt:

2&SRC ‚,@ 2-bit-1-byte-Rechts-Rotieren (Akku)

Mehrbyte-1-bit-Schieben erhält man, indem der DO-Befehl die Registeradresse inkre-
mentiert und außerdem den Überlauf berücksichtigt:

2SRO,REG I-bit-2-byte-Rechtsschieben (2 Registerplätze)

Wichtig hierbei ist, daß beim Linksschieben als erstes Byte (Basis-Byte) das mit der
niedrigeren Adresse (und den niedrigwertigen Stellen) geschoben wird und dann das
nächsthöhere Byte.

Beim Rechtsschieben wird dagegen beim Byte mit der höchsten Adresse (und den
höherwertigen Stellen) begonnen und dann mit dem nächstniedrigeren Byte weiter-
gearbeitet. Im Falle des Rechtsschiebens (und nur dann) dekrementiert der Rechner
die Registeradresse. Im Maschinencode sind also die Basis-Bytes bei Rechts- und
Linksschieben unterschiedlich (nicht dagegen bei Benutzung des Assemblers).

Will man beim Schieben von einem oder mehreren Bytes einen Gesamtüberlauf berücksichti-
gen, so muß 1 Byte mehr als gewünscht geschoben werden. Der Inhalt dieses Bytes
ist vorher zu löschen. Anschließend kann in diesem Byte der Überlauf abgefragt
werden.

Programmiert man beim Mehrbyte-Schieben den Überlauf nicht, so werden die be-
nachbarten Bytes unabhängig voneinander um 1 bit verschoben.

Bedingte Sprungbefehle mit vorgestelltem DO dienen zu folgenden Zwecken:

Abfrage eines Strings von Register - Bytes auf Null/nicht Null.

Hierzu ist DO mit Inkrementieren der Registeradresse zu programmieren (der Über-

lauf ist hierbei irrelevant):

3<& BZ,REG,ADR Sprung nach ADR, falls sowohl REG als

auch die beiden folgenden Bytes Nullin-
halt haben

- 39 -

Vergleich eines Register-Strings mit einer im Befehl angegebenen Konstanten und
Verzweigung, falls der Inhalt aller Register-Bytes gleich der Konstanten ist. Zu
programmieren ist: DO mit Inkrementieren Registeradresse:

4<& BEC, & ‚ADR Sprung nach ADR, wenn der Inhalt des

Akkus und der drei folgenden Bytes gleich
der Konstanten ist.

Will man einen String von Register-Bytes mit einem anderen Register vergleichen,
programmiert man:

4<& BER, @, ADR

Vergleich eines Register-Strings mit einem Konstanten-String (im Befehl). Hierbei
wird das erste Register-Byte mit der ersten Konstanten, das zweite Register-Byte mit
der zweiten Konstanten, das zweite Register-Byte mit der zweiten Konstanten usw.
verglichen. Verzweigt wird, wenn in allen Fällen Gleichheit besteht. Voraussetzung:
DO mit Inkrementieren beider Adressen:

2=& BEC,REG,ADR Sprung nach ADR, REG, wenn Register- und

Konstanten-String gleich.

‚Die Instruktion sieht in diesem Falle folgendermaßen aus:

n Befehl
n+]1 Basisadresse Register

n+2 Konstante (niedriges Byte = Basis-Byte)
n+3 Konstante (hohes Byte)
n+4 Sprungweite

Will man einen String von Register-Bytes mit einem anderen Register-String verglei-
chen, programmiert man;

2=& BER ,‚REG,ADR

- 40 -

BUS-bezogene Befehle mit vorgestelltem DO erfüllen z.B. folgende Funktion:

Arithmetische Mehrbyte-Operationen sind durch einen DO-Befehl mit Inkrementieren
sowohl der Registeradresse als auch der Operandenadresse sowie mit Berücksichtigung
des Überlaufs darstellbar:

2=%ADL,REG,ADR Doppel-Byte-Addition
3=%* SBL ‚REG,ADR 3-byte-Subtraktion

Will man hierbei ein mögliches Überschreiten des Zahlenbereichs in positiver oder
negativer Richtung berücksichtigen (Gesamt-Überlauf), so muß je ein Byte mehr
verarbeitet werden.

Nicht möglich ist es allerdings, auf diese Weise zu 2 Bytes ein einzelnes Byte zu
addieren.

Programmiert man z.B. nur das Inkrementieren der Registeradresse, aber nicht der

Operandenadresse, wird derselbe Operand zunächst zum ersten Byte, anschließend
zum zweiten Byte und eventuellen weiteren einzeln addiert.

Bei der Verarbeitung werden die Adressen grundsätzlich inkrementiert (Ausnahme:
Rechtsschieben). Das führt dazu, daß das Byte mit der niedrigeren Adresse auch
die niedriger wertigen Stellen enthalten muß:

Byte nt2 Byte n+1 Byte n

2 „16 2 15 „8 07 „2

Statt des Operanden kann in allen obengenannten Fällen auch mit einem Konstan-
ten-String gearbeitet werden.

Blockweiser Transfer läßt sich durch Laden oder Speichern mit vorangestelltem DO
(mit Inkrementieren Register und Operandenadresse) realisieren; er führt zur Über-
tragung von Registerbereichen in den Kernspeicher oder umgekehrt:

256=& STA,P%,ADR Speichern gesamter Pool in Kernspeicher

256=& LDA,A®,ADR Laden gesamter Pool aus dem Kernspeicher

- 41 -

Wird die Registeradresse nicht inkrementiert, so läßt sich z.B. ein Kernspeicherbe-
reich mit dem gleichen Inhalt laden:

LDC,REG ‚£ Löschen von 256 byte
256>& STA ‚REG,ADR Kernspeicher

Anstelle von Operanden kann auch mit Konstanten oder Konstanten-Strings gearbeitet
werden:

2f<& LDC,REG,@ Löschen von 20 bytes im Pool

Sinngemäß läßt sich der DO-Befehl auch in Verbindung mit logischen Verknüpfungen
verwenden:

2=& ANA, @ ‚,ADR 2 byte UND-Verknüpfung

/>& ORL ‚REG,ADR 7 byte des Kernspeichers werden mit dem
Register REG durch ODER verknüpft

3<& ANC,REG,ADR Maskierung von 3 Register-Bytes mit der
gleichen Maske ADR

- 2 -

BEFEHLSAUFBAU

Instruktionen werden beim MINCAL 621 durch ein oder mehrere aufeinanderfolgende
Bytes dargestellt. Das erste Byte enthält den Befehl sowie ggfs. einige zusätzliche
Angaben, z.B. über die Art der Adressierung; in den Folgebytes stehen weitere An-
gaben, welche die Instruktion näher beschreiben, z.B. Register- un« Operanden-
adressen, Konstanten, Sprungweiten usw.

Der Befehlsaufbau ist für die Befehlsgruppen im folgenden kurz skizziert; näheres
entnehme: man dem Abschnitt MASCHINENBEFEHLE.

7 0

Steuerbefehle: n |0000...L| Befehl
n+H ı8.202. Ebene

Mehrfachausführung: n 10001... Z| Befehl
a Be Er Anzahl

Zustandsabfrage: n 00100.. S| Befehl
aa Arbeitsregister

Schiebebefehle: n [0 0101.. S| Befehl
nl ı___S_._203 Arbeitsregister

Bedingter Sprung: n 10 l2o.2o... S| Befehl
nt ı8_....1 Arbeitsregister
nt+2 4 r 1 Referenzregister
n+3 d | Sprungweite

BUS-bezogene Befehle: n 122.2.2.X5 Befehl
n+l ı S i Arbeitsregister «)
n+2 1 a 1 Adreßangabe |
n+3 onbb] Adreßangabe 2
n+4 x | Indexregister

*) oder Konstante bzw. Konstanten-String von z byte Länge bei vorgeschaltetem
DO-Befehl

Eine DO-Instruktion muß unmittelbar vor dem Befehlsbyte der Instruktion liegen,
deren Mehrfachausführung er bewirken soll.

- 43 -

UNIVERSAL-BUS

Der Universal-BUS ist ein Datenkanal, der alle Systemkomponenten des Computers
MINCAL 621 miteinander verbindet. Dieser eine Datenkanal erfüllt sowohl Aufga-
ben des programmgesteuerten Datentransfers und des direkten Speicherzugriffs. Die
Datenübertragung erfolgt bit-parallel jeweils zwischen einem aktiven Element und
einem passiven Element des Universal-BUS.

Das aktive Element belegt den Universal-BUS - bei mehreren aktiven Elementen
entscheidet eine Rangordnung, ob eine Belegung möglich ist -, adressiert ein pas-

sives Element und bestimmt die Art der Datenübertragung. Das passive Element quit-
tiert durch ein Fertig-Signal den Aufruf, und erst dann gibt das aktive Element den
BUS frei.

Will ein passives Element eine Anforderung stellen, so kann es das nur über einen
Interrupt (Ebenenstart). Hierauf wird die Datenverbindung von der CPU (Rechner-
Zentraleinheit) zum passiven Element hergestellt.

Zu den aktiven Elementen des Universal-BUS’ zählen die CPU und alle Interfaces,

die einen direkten Speicherzugriff haben. Diese Interface-Schaltungen wirken je-
doch als passive Elemente, wenn sie die Ausgangsdaten und eine Arbeitsanweisung
von der CPU erhalten.

Alle anderen Interfaces und auch die Speicher gelten grundsätzlich als passive
Elemente.

Außer einigen Steverleitungen sind alle Signalleitungen bidirektional,; Eingangs-
und Ausgangssignal sind somit identisch.

Der Universal-BUS hat folgende Signalleitungen:

DO...D7 8 Datenleitungen zum Datentransport zwischen einem aktiven und
einem passiven Element.

7 0
f To ; Zuordnung Wertig-

57 50 keit und Datenlei-
“ tungen

A0D...AIS 16 Adreßleitungen zur Anwahl von Systemkomponenten durch ein
aktives Element. Einzelne Komponenten können mehrere Adressen
haben (z.B. Kernspeicher).

„15 3.7
Im 4 EEE 2° Zuordnung Wertig-2 2

| Byte n+1 | | _Bytenn | keit und Adreßlei-

AI5 A8 A7 AO fungen

N
)

LO...L15

5S0...515

RK

BE

GE

16 Level-Leitungen zur Anwahl von ebenen-gebundenen Kompo-
nenten. Diese Leitungen gehen nur von der CPU aus; sie sind

nicht bidirektional.

16 Startleitungen (Interrupt-Leitungen) zum Starten einer Rechner-
Ebene. Diese Leitungen gehen nur zur CPU. Sie sind nicht bidi-
rektional.

1 Richtungskennzeichen gibt an, ob der Datenfluß von dem aktiven
zum passiven Element verlaufen soll oder in entgegengesetzter
Richtung (0 V = aktiv—epassiv).

I Nullstelleitung. Mit dieser Leitung werden alle Flip-Flops in
den Ausgangszustand gebracht. Sie kommt von der CPU (Taste in
Bedienungsfeld bzw. Nullstellung bei wiederkehrendem Netz).

I Fertigleitung. Über die Fertigleitung quittiert das passive Ele-
ment den Datenverkehr.

1 Belegt-Leitung. Diese Leitung wird von einem aktiven Element
beschaltet, solange es den BUS belegt.

l Gewünscht-Leitung. Über diese Leitung meldet ein aktives Ele-
ment einen Belegungswunsch an.

Alle Leitungen haben bei nicht belegtem BUS ein positives Potential. Bei belegtem
BUS haben die Signale folgende Bedeutung:

n
o

- 45 -

UNIVERSAL-BUS

| | | |

CPU Kern- m-| Platter

speiches Inteıfoxe
Interf

Adresse

0000 °

4k

1000 !

4k
2000 z ?

4k |
3000 --- -2&%k---—

2000 |
ak |

soo }-+---48 4---

60 |-----—--L. ___

16k

8000 |

2xl6k

FFFF |

weitere Komponenten

u

MOS-RAM

Geräte-Peripherie

Prozeß-Peripherie

Kernspeicher |
(in CPU-Gehäuse)

Kernspeicher 2
Kernspeicher 3

Adreßschema des MINCAL 621

- 46 -

BUS-Leitung

mumme Mimimmnd Mmrmab Mer Jim Mrmmin wine Mad arm ulm mm dis uni Amine Amis aM map MTMUAR mu mmmA am ma

BUS-Element

SN 74132 SN 7438

Empfangs- Sendedaten
daten

Für die Ankopplung an den BUS werden als Empfangsschaltung Schmitt-Trigger
(SN 74 132) und für die Sendeschaltung Open-Collector-Buffer (SN 7438) ver-

wendet.

Nachstehende Zeitdiagramme sollen den Datenverkehr zwischen aktivem und pas-
sivem Element erläutern. Dabei ist vorausgesetzt, daß der BUS nicht belegt ist
und auch kein Belegungswunsch eines anderen aktiven Elements vorliegt.

Senden des aktiven Elements:

 Signale des aktiven Elements GE |

BE | |

KORB] rn
A\

D0..D8 | \\ fl
\ j

|RK | N N

[0.115 | x u

amem man Mmme wma Mmmme Diem ME jmmiile dm mm aim gl email mini amenimn wimme wien emmide min ann u ARE ame

F \h-

Signale des passiven Elements

- 47 -

Senden des passiven Elements:

Signale des aktiven Elements GE |

BE |

L0...sl If
777-2______ .--_-L_______

I

D0...D8 Ni
Signale des passiven Elements «

F

Das Signal "Fertig" wird erzeugt, nachdem die Adressen stabil anstehen und eine
eingestellte Zeit abgelaufen ist. Die Daten werden mit der Adresse direkt durch-

geschaltet.

Prioritäten bei mehreren aktiven Elementen werden durch die GE-Leitung ermittelt.
Diese Leitung beginnt bei dem aktiven Element mit der höchsten Priorität und endet
bei der CPU, die immer die niedrigste Priorität hat.

aktives aktives

RU Element |] Element n

[|]

| . | L_SE______

 BE

Das aktive Element mit der höchsten Priorität kann den BUS belegen, nachdem es
eine bestimmte Zeit (mindestens 200 ns) die GE-Leitung beschaltet hat. Auf jeden
Fall aber muß das GE-Signal so lange erzeugt werden, bis ein eventuell anstehen-
des BE-Signal verschwindet. Dann kann der BUS mit einem BE-Signal belegt und
GE abgeschaltet werden

BE nm I
\

GE —> 2000—y

N V

BUS-Belegung durch Element
mit höchster Priorirät

WW

BUS-Belegung durch
beliebiges Element

- 48 -

\ Element mit niedriger
GEI 1 4 Priorität

/ u
/ L

GEn | | Element mit höchster
Priorität

UV , N V +

BUS-Belegung durch Element mit
hächster niedrigerer

Ein aktives Element, das nicht die höchste Priorität hat, darf den BUS nur belegen,

wenn es mindestens 200 ns das GE-Signal erzeugt hat und hierbei nicht durch ein
GE eines aktiven Elements mit höherer Priorität unterbrochen worden ist.

Sobald solch ein Signal empfangen wird, muß GE weggeschaltet werden. Es darf
erst dann weider erzeugt werden, wenn kein höherwertiges GE mehr vorliegt.
Erst nach mindestens 200 ns erfolgreichem Beschalten von GE darf der BUS belegt
werden.

Die CPU erzeugt kein GE-Signal. Sie belegt den BUS, wenn kein GE- und kein
BE-Signal ansteht.

- 49 -

TAKT FÜR DATENÜBERNAHME

_ FERTIG N di
\J TO

_ .—— 0

z.B. SN 7474 R ca.S0ns
SN 74123

- +-—
R ca.!00ns

LO-L1I5
SN 74123

ADRESS- DEVICE |

AO-A15 DEKODIE- . .
RUNG Zeitstufe eines Interfaces

(\
DATEN-AUSGABE

S0-S15 .

Ä
7]
ILL] .

BUS | | 1 | [0 xIr1ala] RÜCKMELDUNG
DATEN-REGISTER na INI-jolo a 2 =
LL| | | -41-10|&

N N STATUS-REGISTER 1

DO-D7 DATEN-EINGABE

RK

FE | Zeit-

Stufe

a1 ADRESS- HH
| DEKODIE-

AO-A1I5 [N

V Ankopplung eines Interfaces an den Universal-BUS

- 50 -

INTERFACE-SCHALTUNGEN

Als Interfaces werden Schaltungen bezeichnet, die an den Universal-BUS ange-
schlossen sind und irgendwelche peripheren Geräte steuern, z.B. Fernschreiber,
Locher und Leser, aber auch Meßgeräte und andere Prozeßperipherie.

Je nach angeschlossenem Gerätetyp sind die Interface-Schaltungen unterschiedlich;
jedoch gibt es, vor allem auf der dem BUS zugewandten Seite, gemeinsame Merk-
male, die im folgenden kurz beschreiben sind.

Wesentliche Funktionsgruppen sind:

Datenregister: 8-bit-Flip-Flop-Speicher, vom BUS aus einschreib- und abfragbar.
Hält Daten für das periphere Gerät bereit (Ausgang) bzw. über-
nimmt sie von ihm (Eingabe).

Statusregister: 8-bit-Flip-Flop-Speicher, vom BUS aus einschreib- und abfraghar,
mit den Funktionen:

READY (Fertigmeldung vom Gerät, löst Start der Ebene aus)
OBUSY (Ausgabe)
IBUSY (Eingabe)

- LOCK (verhindert Ebenenstart durch READY)
- bis zu 4 weitere Funktionen je nach Art des peripheren Geräts

Adreßdekodierung: Entschlüsselt die Adresse A; verknüpft sie u.U. mit einer Pro-
grammebene L und wählt damit die beiden Register an, deren
Adressen bis auf die letzte Stelle (AO) identisch sind (Status-
register: AD = 0; Datenregister: AO = |).

Zeitstufe: Bestimmt die Dauer der Transferzeit zwischen CPU und Interface

über den BUS.

Eine Datenausgabe zu einem Gerät erfolgt, sobald OBUSY eingeschaltet und
READY ausgeschaltet ist. Die Geräte-Rückmeldung schaltet READY ein. Hiermit
wird die Ausgabe unterbunden und ein START erzeugt.

Die Eingabe erfolgt sinngemäß durch Setzen von IBUSY.

Nur, wenn die Adressen mindestens 100 ns anstehen, wird ein Übernahmetakt und

das Signal FE erzeugt. Verschwinden die Adressen, bevor die 100 ns abgelaufen
sind, so werden die Monoflops zurückgestellt, und ein Übernahmetakt wird nicht
erzeugt.

Bei langem BUS empfiehlt es sich, die Wartezeit zu verlängern.

- 51 -

Maschinenbefehle

 STEUERBEFEHLE [0000....|

Befehle NOP Keine Operation 00000000
SEL Start Ebene 00000001
HLT Halt 00000010
HSL Halt, Start Ebene 00000011
ECL Unterbrechung zulassen 00000100
DCL Unterbrechung verhindern 00001000

Länge 2 byte (SEL, HSL)
1 byte (übrige)

Die Steuerbefehle bewirken Start einer Programmebene, Anhalten des laufenden Programms
sowie Aus- und Einschalten des DISABLE-Zustands. Der Befehl NOP (leeres Befehlsbyte)
hat keine Funktion und wird übersprungen.

Die Anwendung der DO-Instruktion auf Steuerbefehle ist nicht sinnvoll.

- 52 -

NOP Keine Operation n !00000000| Befehl

Funktions Dieses Befehlsbyte wird übersprungen.

SEL Start Ebene n 00000001| Befehl
n#+] | Ebene

Funktion: Die im folgenden Byte als rechtsbündige Hexazahl B...F angegebene Ebene|
wird gestartet.

HLT Halt n [000000 10| Befehl

Funktionge Das Programm in der laufenden Ebene wird angehalten.

HSL Halt, Start Ebene n 0000001 1| Befehl
n#+l | Ebene

Funktions Das Programm in der laufenden Ebene wird angehalten. Die im folgenden

Byte als rechtsbündige Hexazahl @...F angegebene Ebene | wird gestartet.

ECL Unterbrechung zulassen n 0000010 0| Befehl

Funktions Dieser Befehl stellt den Normalzustand her, in dem das Programm der
jeweiligen Ebene durch den Start jeder höheren Ebene unterbrochen werden
kann.

DCL Unterbrechung verhindern n 10 000100 0| Befehl

Funktions Dieser Befehl stellt den DISABLE-Zustand her, in dem das Programm der
jeweiligen Ebene nicht durch Aktivieren einer höheren Ebene unterbrochen
werden kann. Durch ECL wird dieser Zustand beendet.

Vor jedem Halt-Befehl (HLT, HSL) ist der DISABLE-Zustand durch ECL zu
verhindern, da sonst der Halt nicht wirksam wird.

- 53 -

I
)

o
O

o
OMEHRFACHAUSFÜHRUNG (DO)

Befehle: z& 0001000.

z%* mit L 0001001.
z>& M+I 0001010.
z>* M+1, mit L 0001011.
z<& R+1 0001100.
Zz<% R+l, mit L 0001101.
zZ R+l, M+ 0001110.
z=* R+l, MHI, mit L 0001111.

Anzahl: ee0

ee1

Länge: | byte (z = 2): n 10001... 0| Befehl
oder

2 byte (z = 3...256): n 0001... 1} Befehl
n+1 z Anzahl

Eine DO-Instruktion bewirkt, daß die folgende Instruktion mehrfach ausgeführt wird.
Die Anzahl der Ausführungen z kann von 2 bis 256 gewählt werden. Bei z = ist
nur das Befehlsbyte vorhanden; darüberhinaus steht z als rechtsbündige Binärzahl im
folgenden Byte, wobei zu berücksichtigen ist, daß Nullinhalt des Folgebytes 256malige
Ausführung bedeutet.

Im DO-Befehl kann angegeben werden, ob das LINK-Bit (L) berücksichtigt wird (Über-
lauf bei Schiebebefehlen, Mehrbyte-Addieren und Subtrahieren), und ob bei jeder
Ausführung die Operanden-Adresse (M) oder die Arbeitsregister-Adresse (R) um I erhöht
wird. Beim Befehl SR (Schieben rechts) wird die Arbeitsregister-Adresse um 1 erniedrigt,
wenn R angegebenist.

Der DO-Befehl führt nur zur mehrmaligen Wiederholung des Ausführungsteils der folgen-
den Instruktion, nicht zur Wiederholung der vorher ablaufenden Adreßrechnung.

Zwischen einem DO-Befehl und beendeter Ausführung der nachfolgenden Instruktion kann
das Programm nicht durch Wechsel der Programmebene unterbrochen werden.

- 54 -

z&

Funktion:

Zzx*

Funktion:

z>&

Funktion:

Z>%*

Funktion:

z<&

Funktion:

Z<%X

Funktion:

DO z-mal n 10001000 .| Befehl

n+1 | zZ ı Anzahl

Die folgende Instruktion wird z-mal ausgeführt. LINK wird nicht berücksich-
tigt; keine Adresse wird inkrementiert.

DO z-mal mit Link n

n+1
 0001001 .| Befehl
' z | Anzahl

Die folgende Instruktion wird z-mal ausgeführt. LINK wird berücksichtigt;
keine Adresse wird inkrementiert.

 DO z-mal n [0001010.| Befehl
lmit Inkrementieren Adresse n+l | z u Anzahl

Die folgende Instruktion wird z-mal ausgeführt. Nach jeder Ausführung wird
die Operanden-Adresse M um 1 erhöht.

.| BefehlDO z-mal mit Link n 0001011

' | Anzahlmit Inkrementieren Adresse n+l ı z

Die folgende Instruktion wird z-mal ausgeführt. LINK wird berücksichtigt;
nach jeder Ausführung wird die Operanden-Adresse M um 1 erhöht.

DO z-mal n
mit Inkrementieren Register

0001100.) Befehl
| Anzahl

Die folgende Instruktion wird z-mal ausgeführt. Nach jeder Ausführung wird
die Adresse des Arbeitsregisters um | erhöht.

DO z-mal mit Link n [0001101 .| Befehl
i lmit Inkrementieren Register n+1 zZ __.] Anzahl
_L__-—_-.-.

Die folgende Instruktion wird z-mal ausgeführt. LINK wird berücksichtigt;
nach jeder Ausführung wird die Adresse des Arbeitsregisters um] erhöht.

- 55 -

Zz=&

Funktion:

Funktion:

DO z-mal n |0001110 .| Befehl
mit Inkrementieren Register n+1 zZ Anzahl
mit Inkrementieren Adresse

Die folgende Instruktion wird z-mal ausgeführt. Nach jeder Ausführung wer-
den die Adresse des Arbeitsregisters und die Operanden-Adresse um | erhöht.

DO z-mal mit Link n [0001111 ..| Befehl

IInkrementieren Register und n+1 z ı Anzahl

Die folgende Instruktion wird z-mal ausgeführt. LINK wird berücksichtigt;
nach jeder Ausführung werden die Adresse des Arbeitsregisters und die
Operanden-Adresse um | erhöht.

- 56 -

ZUSTANDSABFRAGE 00100..J5

Befehle: GS Schalter abfragen 001000].
| GL Ebene abfragen 0010010.

Arbeitsregister: Akkumulator © 00 0
Spezifiziertes Register s 0... 0000. 1

Länge: | byte (®) n 100100. .0| Befehl
oder

2 byte (s) n 00100... 1| Befehl
n+1 S Arbeitsregister

Diese Befehlsgruppe überträgt Informationen von den Konsol-Tasten bzw. die Nummer der
laufenden Programmebene in das Arbeitsregister. Als Arbeitsregister kann entweder der
Akkumulator @ oder ein beliebig spezifiziertes Register s angegeben werden, dessen
Adresse dann im Folgebyte steht.

Die Anwendung der DO-Instruktion auf diese Befehle ist nicht sinnvoll.

- 57 -

GS

Funktion:

GL

Funktion:

Schalter abfragen n |00 100015} Befehl
n+1 S \ | Arbeitsregister

Das über die 8 Daten-Schalter 7...O der Rechnerkonsole eingegebene Byte
wird in das Arbeitsregister übertragen.

Nur wirksam, wenn Rechner mit Konsole ausgestattet.

Ebene abfragen n |0010010S| Befehl
n+1 S | Arbeitsregister

Die Nummer der laufenden Programmebene wird als rechtsbündige Hexa-Zahl
%...F in das Arbeitsregister übertragen.

- 58 -

SCHIEBEBEFEHLE 00o101..sS|j

Befehle: SRO Schieben rechts ffen 2.2.2.0. 00.
SRC Schieben rechts zyklisch 01.
SLO Schieben links offen 2.0.20. 10.
SLC Schieben links zyklish ıı.

Arbeitsregister: Akkumlator® er en)
Spezifiziertes Register s 2.2220. 1

Länge: I byte (®) n 00101. .0| Befehl
oder
2 byte (s) n 00101. 1) Befehl

n+1 S Arbeitsregister

Diese Befehlsgruppe bewirkt offenes oder zyklisches Schieben des Arbeitsregister-Inhalts
um 1 bit nach rechts oder links. Als Arbeitsregister kann entweder der Akkumulator oder
ein beliebig spezifiziertes Register s angegeben werden, dessen Adresse dann im Folgebyte
steht.

In Verbindung mit einer geeigneten DO-Instruktion ist offenes und zyklisches Mehrbit-
Schieben eines Register-Bytes möglich, sowie offenes Schieben des Inhalts eines Mehrbyte-
Register-Strings um 1 bit.

- 59 -

SRO

Funktion:

z& SR

z<x% SR

SRC

Funktion:

z& SRC

sLO

Funktion:

z& SL

z<* SR

SLC

Funktion:

z<x SLC

Befehl
Arbeitsregister

 00101005]
|

Schieben rechts offen n

n+1 S |

Der Inhalt des Arbeitsregisters wird um 1 bit offen nach rechts verschoben.
Bit 7 wird zu Null, und der vorherige Inhalt von Bit O geht verloren.

Ein vorgeschalteter DO-Befehl z& bewirkt offenes Rechts-Schieben des
Arbeitsregister-Inhalts um z bit.

Ein vorgeschalteter DO-Befehl z bewirkt offenes Rechts-Schieben eines
Register-Srings von z byte Länge um 1 bit. Als Arbeitsregister-Adresse ist
die um (z-1) erhöhte Basis-Adresse des Register-Strings anzugeben (gilt nicht
für symbolische Programmierung).

Befehl
Arbeitsregister

 Schieben rechts zyklisch n 00101015
n+l | S 1

Der Inhalt des Arbeitsregisters wird um I bit zyklisch nach rechts verschoben.
Bit 7 erhält den vorherigen Inhalt von Bit 0.

Ein vorgeschalteter DO-Befehl z& bewirkt zyklisches Rechts-Schieben des
Arbeitsregister-Inhalts um z bit.

 Schieben links offen n 10 010110 S| Befehl
DH 1.0.0.0:s___....,.. Arbeitsregister

Der Inhalt des Arbeitsregisters wird um 1] bit offen nach links verschoben.
Bit O wird zu Null, und der vorherige Inhalt von Bit 7 geht verloren.

Ein vorgeschalteter DO-Befehl z& bewirkt offenes Links-Schieben des Ar-
beitsregister-Inhalts um z bit.

Ein vorgeschalteter DO-Befehl z bewirkt offenes Links-Schieben eines
Register-Srings von z byte Länge um 1 bit. Als Arbeitsregister-Adresse ist
die Basis-Adresse des Register-Strings anzugeben.

Befehlooıo111S5]
Arbeitsregister

Schieben links zyklisch n
a S |

Der Inhalt des Arbeitsregisters wird um 1 bit zyklisch nach links verschoben
Bit O erhält den vorherigen Inhalt von Bit 7.

Ein vorgeschalteter DO-Befehl z bewirkt zyklisches Links-Schieben des
Arbeitsregister-Inhalts um z bit.

- 60 -

BEDINGTE SPRUNGBEFEHLE o1ı..N.1Ts]

Befehlsgruppen:

Sprung:

Inkrementieren:

Arbeitsregister:

Abfrage auf Null/Positiv 0100.
Abfrage auf Gleichheit 0101.
Abfrage auf Testbits o11

wenn Bedingung erfüllt0.
wenn Bedingung nicht erfüllt ee |

nein 20.0. .0.
ja ee...

Akkumulator ® a ı
Spezifiziertes Register s een]

Diese Befehlsgruppe fragt den Inhalt des Arbeitsregisters auf bestimmte Kriterien ab.
Je nachdem, ob sie erfüllt sind oder nicht, verzweigt das Programm auf eine entfernte
Stelle; andernfalls wird es mit der folgenden Instruktion fortgesetzt.

Abfrage-Kriterien sind:

Nullinhalt (alle Bits sind O0),
positiver Inhalt (Bit 7 ist 0);

Gleichheit mit einer Konstanten c;
Gleichheit mit Inhalt eines Referenzregisters r;

Vorhandensein bestimmter Bitmuster (Testbits), wobei deren
Stellung durch eine Maske vorgegeben wird, die als Kon-
stante c oder als Inhalt eines Referenzregisters r vorhanden ist.

Vor Abfrage kann das Arbeitsregister inkrementiert, d.h. sein Inhalt um | erhöht werden.

Durch diese Befehle wird der Inhalt des Arbeitsregisters - abgesehen von der eventuellen
Inkrementierung - nicht verändert.

Die relative Sprungweite d steht im letzten Byte der Instruktion und bezieht sich auf
dessen Adresse, wobei d eine Zweierkomplementzahl bildet. Damit kann das Programm
maximal um 128 byte zurück bzw. 127 byte vorwärts springen.

DO-Befehle: Eine vorgeschaltete DO-Instruktion z<x (bei Abfrage auf Null-
inhalt eines Registers) bzw. z=* (bei den übrigen Befehlen)
bewirkt Abfrage eines Arbeitsregister-Strings von z byte Länge, bzw.
dessen Vergleich mit einem ebenso langen Konstanten- oder Register-
String.

Dabei sind die Basis-Adressen der Register-Strings anzugeben.

Bei Abfrage auf Null ist die Bedingung erfüllt, wenn alle Bytes
Nullinhalt haben.

Bei Vergleichs- und Testbit-Abfragen ist die Bedingung insgesamt
erfüllt, wenn sie in allen Bytes erfüllt ist.

Inkrementierung bezieht sich auch bei vorgeschaltetem DO nur auf
das Basis-Byte des betreffenden Registers.

- 61 -

Länge: Abfrage auf Null/positiv; 2 byte (@)

3 byte (s)

übrige Befehle: 3 byte (@)

4 byte (s)

n

n+1

n

n+1

n+2

n

n+1l

n+2

n

n+l

n+2

n+3

. 8

Befehl
Sprungweite

Befehl
Arbeitsregister
Sprungweite

Befehl
Konstante/Register
Sprungweite

Befehl
Arbeitsregister
Konstante/Register
Sprungweite

Bei einem vorgeschalteten DO-Befehl z=* ist statt einer Konstanten c ein
Konstanten-String von z Bytes in der Instruktion enthalten, vom Basis-Byte
an in Richtung aufsteigender Adressen.

Vereinbarung: Befehle mit Verneinung ("Sprung wenn nicht .. .") führen in all den Fällen
zum Verzweigen, wo der entsprechende nicht verneinte Befehl das Programm
unverzweigt weiterlaufen läßt, und umgekehrt.

- 62 -

BZ

Funktion:

Funktion:

BP

Funktion:

Funktion:

BNZ

Funktion:

INZ

Funktion:

Befehl
Arbeitsregister
Sprungweite

Sprung wenn Null 01000005}
ı S

[d |

Das Programm verzweigt, wenn das Arbeitsregister Nullinhalt hat.

Inkrementieren, |01000015| Befehl
Sprung wenn Null In S I Arbeitsregister

\ d | Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn das
Arbeitsregister Nullinhalt hat.

Sprung wenn positiv |0100010S]| Befehl
u s ı Arbeitsregister
| d | Sprungweite

Das Programm verzweigt, wenn das Arbeitsregister positiven Inhalt hat.

Inkrementieren, [0 1000115 Befehl
Sprung wenn positiv 5 Arbeitsregister

| d Sprungweide
Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn das
Arbeitsregister positiven Inhalt hat.

Sprung wenn nicht Null |0100100S| Befehl
\ S _ı Arbeitsregister
W d | Sprungweite

Das Programm verzweigt, wenn das Arbeitsregister nicht Nullinhalt hat.

Inkrementieren, |0 100.10 15S| Befehl
Sprung wenn nicht Null | s i Arbeitsregister

| d | Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn das
Arbeitsregister nicht Nullinhalt hat.

- 63 -

BNP

Funktion:

INP

Funktion:

BEC

Funktion:

IEC

Funktion:

BER

Funktion:

Sprung wenn nicht positiv 10 100110 S| Befehl
| 5 U Arbeitsregister

| d | Sprungweite

Das Programm verzweigt, wenn das Arbeitsregister nicht positiven Inhalt hat.

Sprung wenn nicht positiv S Arbeitsregister

Sprungweite

Inkrementieren, 10 100111 S| Befehl
I I

| |

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn das
Arbeitsregister nicht positiven Inhalt hat.

Sprung wenn gleich Konstante 0101000 S| Befehl
| S I Arbeitsregister

c Konstante
d Sprungweite

Das Programm verzweigt, wenn der Inhalt des Arbeitsregisters gleich der Kon-
stanten c ist.

Inkrementieren, 0101001S| Befehl
Sprung wenn gleich Konstante ' 5 Arbeitsregister

c Konstante

d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn der
Inhalt des Arbeitsregisters gleich der Konstanten c ist.

Sprung wenn gleich Register 10 101010 Ss] Befehl
S __t Arbeitsregister
r Register

d Sprungweite

Das Programm verzweigt, wenn der Inhalt des Arbeitsregisters gleich dem des
Referenzregisters r ist.

IER

Funktion:

BNEC

Funktion:

INEC

Funktion:

BNER

Funktion:

INER

Funktion:

Inkrementieren, [0 101011 S| Befehl
s a

Sprung wenn gleich Register Arbeitsregister

r Register

d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn der
Inhalt des Arbeitsregisters gleich dem des Referenzregisters r ist.

Sprung wenn nicht gleich Konstante |0 101100 S| Befehl

| 5 ı Arbeitsregister

c Konstante

d Sprungweite

Das Programm verzweigt, wenn der Inhalt des Arbeitsregisters nicht gleich
der Konstanten c ist.

Inkrementieren, 10 101101 S| Befehl
Sprung wenn nicht gleich Konstante 1! s ı Arbeitsregister

c Konstante
d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn der

Inhalt des Arbeitsregisters nicht gleich der Konstanten c ist.

Sprung wenn nicht gleich Register 10 101110 S| Befehl

S I Arbeitsregister
r Register

d Sprungweite

Das Programm verzweigt, wenn der Inhalt des Arbeitsregisters nicht gleich
dem des Referenz-Registers r ist.

Inkrementieren, 0101111 Befehl
Sprung wenn nicht gleich Register S ı Arbeitsregister

r Register

Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn der
Inhalt des Arbeitsregisters nicht gleich dem des Referenz-Registers r ist.

- 65 -

BZC

Funktion:

Izc

Funktion:

BZR

Funktion:

IZR

Funktion:

BNZC

Funktion:

Sprung wenn alle Testbits Null 10 110000S]| Befehl
maskiert mit Konstante ı Arbeitsregister

c Konstante

d Sprungweite

Das Programm verzweigt, wenn alle durch die Konstante c vorgegebenen
Testbits des Arbeitsregisters Null sind.

Inkrementieren, 10 110001 S| Befehl
Sprung wenn alle Testbits Null ı Arbeitsregister
maskiert mit Konstante c Konstante

d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn alle
durch die Konstante c vorgegebenen Testbits des Arbeitsregisters Null sind.

Sprung wenn alle Testbits Null 10 110010S| Befehl
maskiert mit Register S ı Arbeitsregister

r Register

d Sprungweite

Das Programm verzweigt, wenn alle durch das Referenzregister r vorgegebenen
Testbits des Arbeitsregisters Null sind.

Inkrementieren, 10 110011 3 Befehl
Sprung wenn alle Testbits Null S ı Arbeitsregister
maskiert mit Register r Register

 d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn alle
durch das Referenzregister r vorgegebenen Testbits des Arbeitsregisters Null
sind.

Sprung wenn nicht alle Testbits Null |0 110100S| Befehl
maskiert mit Konstante | S ı Arbeitsregister

c Konstante

d Sprungweite

Das Programm verzweigt, wenn nicht alle durch die Konstante c vorgegebenen
Testbits des Arbeitsregisters Null sind.

- 66 -

INZC

Funktion:

BNZR

Funktion:

INZR

Funktion:

BOC

Funktion:

IOC

Funktion:

 Inkrementieren, [o1 1010185] Befehl
I

Sprung wenn nicht alle Testbits Null Arbeitsregister
maskiert mit Konstante c Konstante

d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn nicht
alle durch die Konstante c vorgegebenen Testbits des Arbeitsregisters Null sind.

Sprung wenn nicht alle Testbits Null [0 110110 S| Befehl

maskiert mit Register | s Arbeitsregister
r Register

d Sprungweite

Das Programm verzweigt, wenn nicht alle durch das Referenzregister r vorge-
gebenen Testbits des Arbeitsregisters Null sind.

Inkrementieren, I0O 110111 5| Befehl
Sprung wenn nicht alle Testbits Null i Ss ı Arbeitsregister
maskiert mit Register r Register

d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn nicht
alle durch das Referenzregister r vorgegebenen Testbits des Arbeitsregisters
Null sind.

Sprung wenn alle Testbits Eins 0 111000S| Befehl
maskiert mit Konstante 1 S | Arbeitsregister

c Konstante

d Sprungweite

Das Programm verzweigt, wenn alle durch die Konstante c vorgegebenen Test-
bits des Arbeitsregisters Eins sind.

Inkrementieren, |0 111001 5| Befehl
Sprung wenn alle Testbits Eins \ s ı Arbeitsregister
maskiert mit Konstante c Konstante

d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn alle
durch die Konstante c vorgegebenen Testbits des Arbeitsregisters Eins sind.

- 6/ -

BOR

Funktion:

IOR

Funktion:

BNOC

Funktion:

INOC

Funktion:

BNOR

Funktion:

Sprung wenn alle Testbits Eins |o1ı11010S| Befehl
1

maskiert mit Register s Arbeitsregister
r Register

d Sprungweite

Das Programm verzweigt, wenn alle durch das Referenzregister r vorgegebenen

Testbits des Arbeitsregisters Eins sind.

Inkrementieren, ß 111011 S] Befehl
Sprung wenn alle Testbits Eins | S I Arbeitsregister
maskiert mit Register r Register

d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn alle
durch das Referenzregister r vorgegebenen Testbits des Arbeitsregisters Eins
sind.

Sprung wenn nicht alle Testbits Eins 10 Iı11100S$| Befehl

maskiert mit Konstante s I Arbeitsregister
c Konstante

d Sprungweite

Das Programm verzweigt, wenn nicht alle durch die Konstante c vorgegebenen
Testbits des Arbeitsregisters Eins sind.

Inkrementieren, 10 111101 s| Befehl
Sprung wenn nicht alle Testbits Eins i S | Arbeitsregister
maskiert mit Konstante c Konstante

d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn nicht
alle durch die Konstante c vorgegebenen Testbits des Arbeitsregisters Eins sind.

Sprung wenn nicht alle Testbits Eins, 10 IIT170 S] Befehl
” %

maskiert mit Register S ı Arbeitsregister
r Register

Sprungweite

Das Programm verzweigt, wenn nicht alle durch das Referenzregister r vorge-
gebenen Testbits des Arbeitsregisters Eins sind.

- 68 -

INOR Inkrementieren,

[oT ı U 1115| Befehl

Sprung wenn nicht alle Testbits Eins s ı Arbeitsregister
maskiert mit Register r Register

d Sprungweite

Funktion: Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn nicht
alle durch das Referenzregister r vorgegebenen Testbits des Arbeitsregisters
Eins sind.

Bei den bedingten Sprungbefehlen mit Testbit-Abfrage (BZC...INOR) werden die Bits
des Arbeitsregisters überprüft, die in der "Maske" gleich I sind, wobei die Maske als
Konstante im Befehl oder als Variable in einem Referenzregister enthalten ist. Bits mit
Nullinhalt in der Maske spielen keine Rolle.

Beispiele:e a) Maske 00011010
Arbeitsregister 10100001 alle Testbits Q

b) Maske 00011010
Arbeitsregister 01101000 nicht alle Testbits 9

nicht alle Testbits 1

c) Maske 00011010
Arbeitsregister 01011110 alle Testbits 1

Für die einzelnen Befehle bedeutet dies;

BZ.. /IZ...: Programm verzweigt bei a) , läuft weiter bei b)c)
BNZ. ./INZ. .: n u b)c), u u n a)

BO... /IO.. : " " co), " " a)b)
BNO../INO..: u n a)b), u u u c)

- 69 -

 BUS-BEZOGENE BEFEHLE 1 en x Ss]

Befehle: LD Laden 1000.
AD Addieren 1001.
SB Subtrahieren 1010.
AN UND 1011.
OR Inklusives ODER 1100.
EO Exklusives ODER 1101.
ST Speichern ı1110....
JP Sprung ı111...0
c5 Unterprogramm-Sprung I111...1I

Adressierung:
..C Konstante (unmittelbar)000.
..X indirekt (über Register x)001.
.«R Register 01
.L relativ 10
A absolut 11]

Indizierung: nicht ndiziertt 00 0.
indiziert über Indexregister x 2.000. ı.

Arbeits-
register: Akkumulator ee 0

Spezifiziertes Register s 000. 1

Diese Befehlsgruppe setzt das Arbeitsregister mit einer BUS -Adresse (effektive Adresse)
in Beziehung, d.h. mit einem Byte des MOS-RAM-Pools, des Kernspeichers oder Fest-
speichers, oder mit der Peripherie des Rechners. Hierzu gehören außerdem Sprung und

Unterprogramm-Sprung auf eine beliebige Adresse des Kern- oder Festspeichers sowie des

MOS-RAMs.

Adressierungsmöglichkeiten sind:

..Cc Konstante: Der Operand steht als Konstante in der Instruktion
(nicht sinnvoll bei JP und CS)

..X indirekt: Die effektive Adresse steht in einem Indexregister X

.«R Register: Die effektive Adresse ist ein Register r

-L relativ; Die effektive Adresse ist um die Differenz d entfernt
von dem Byte, in dem d steht
(maximal 128 byte zurück bzw. 127 byte vorwärts)

A absolut: Die effektive Adresse ist in Form von 2 Bytes (16 bit)
in der Instruktion angegeben.

- 70 -

Indizierung ist bei Register-, relativer und absoluter Adressierung möglich. In diesem
Falle wird der Inhalt des Indexregisters x zur effektiven Adresse addiert. Dabei ist
folgendes zu beachten:

Ist für das Indexregister eine gerade Adresse x angegeben, so wird das

Doppelbyte x (niedrige Stellen) und x+1 (hohe Stellen) als Index verwen-
det. Der Index ist eine 16-bit-Zweierkomplement-Zaohl; daher ist positive
und negative Indizierung möglich (-32768...65535).

Ist dagegen eine ungerade Adresse x angegeben, so wird nur das Byte x

als Index verwendet. Der Index ist eine 8-bit-Zahl, mit der nur positive
Indizierung möglich ist (0...127).

Für die indirekte Adressierung bedeutet das, daß im ersten Falle eine volle
16-bit-Adresse in x, x+l enthalten ist, während im zweiten Falle nur die
8 bit in x wirksam sind, d.h. hiermit können nur die absoluten Adressen

AaBR...BRFF angesprochen werden.

Zu beachten ist, daß angegebene Register und Indexregister ebenen-gebunden sind,
d.h. ihre absolute Adressen sind um die jeweilige Ebenen-Adresse gegenüber der ange-
gebenen Adresse verschoben.

DO-Befehle: Die Anwendung von DO-Instruktionen auf die Befehle LD, AD, SB, AN,

Länge:

OR, EO und ST ist sinnvoll; die häufigsten Anwendungen sind später
im einzelnen angegeben.

Konstante: 2 byte (@) n |1...0000 Befehl
n+1 c Konstante

3 byte (s) n |1...0001 Befehl
n+]1 s Arbeitsregister
n-+2 c Konstante

indirekt: 2 byte (@) n |11...0010) Befehl
n+] x Indexregister

3 byte (s) n |1...0011) Befehl
n+1 S Arbeitsregister
n+2 x Indexregister

Register: 2...3 byte (@) n |1...0T1X 0| Befehl
n+l r Register

X)—nt2__.%7. Indexregister

3...4 byte (s) n [1.2.0 1X 1] Befehl
n+]1 S Arbeitsregister
n+2 r Register

X) —nt3__.%0.5. Indexregister

- 71 -

relativ: 2...3 byte (@)

(X=1)—
3...4 byte (s)

(X=1) —

absolut: 3...4 byte (@)

(X=1)—

4...5 byte (s) —

(X=1)—

Befehl

Differenz

Indexregister

Befehl
Arbeitsregister
Differenz
Indexregister

Befehl
Adresse niedrig
Adresse hoch
Indexregister

Befehl
Arbeitsregister
Adresse niedrig
Adresse hoch
Indexregister

Bei einem vorgeschalteten DO-Befehl ist statt einer Konstanten c ein Konstanten-String
von z Bytes in der Instruktion enthalten, vom Basis-Byte aus in Richtung aufsteigender
Adressen.

- 72 -

LD

Funktion:

z<& LD..

z=& LD..

AD..

Funktion:

z=*#AD..

SB..

Funktion:

z=+5B..

AN..

Funktion:

z<& AN..

z=& AN..

1000..xXS

nn a

Das Arbeitsregister wird mit dem Inhalt der effektiven Adresse (Operand)
geladen.

Laden

Ein vorgeschalteter DO-Befehl z<& bewirkt Laden der z Bytes eines Arbeits-
register-Strings mit stets demselben Operanden-Byte.

Ein vorgeschalteter DO-Befehl z=& bewirkt Laden eines Arbeitsregister-Strings
von z Byte Länge mit einem ÖOperanden-String derselben Länge.

Addieren 1001..XxXS

 nn Po

Zum Arbeitsregister-Inhalt wird der Inhalt der effektiven Adresse (Operand)
addiert.

Ein vorgeschalteter DO-Befehl z=% bewirkt Addieren eines Operanden-Strings
von z Byte Länge zu einem Arbeitsregister derselben Länge.

1010..XS

nn rd

Vom Arbeitsregister-Inhalt wird der Inhalt der effektiven Adresse (Operand)
subtrahiert.

Subtrahieren

Ein vorgeschalteter DO-Befehl z=x bewirkt Subtrahieren eines Operanden-
Strings von z Byte Länge von einem Arbeitsregister der gleichen Länge.

1011..XxXS

nn Dt

UND

Der Arbeitsregister-Inhalt wird mit dem Inhalt der effektiven Adresse (Ope-
rand) in UND-Verknüpfung gebracht; das Ergebnis steht im Arbeitsregister.

Ein vorgeschalteter DO-Befehl z<& bewirkt, daß die z Bytes eines Arbeits-
register-Strings mit stets demselben Operanden-Byte in UND-Verknüpfung
gebracht werden.

Ein vorgeschalteter DO-Befehl z=& bewirkt UND-Verknüpfung zwischen
einem Arbeitsregister- und einem Operanden-String von jeweils z Byte

Länge.

- /3 -

OR..

Funktion:

z<& OR..

z=& OR..

EO..

Funktion:

z<& EO..

z=& EO..

ST..

Funktion:

z>& ST..

z=& ST..

Inklusives ODER 1100..XxXS

Der Arbeitsregister-Inhalt wird mit dem Inhalt der effektiven Adresse
(Operand) in inklusive ODER-Verknüpfung gebracht; das Ergebnis steht
im Arbeitsregister.

Ein vorgeschalteter DO-Befehl z<& bewirkt, daß die z Bytes eines Arbeits-
register-Strings mit stets demselben Operanden-Byte in inklusive ODER-Ver-
knüpfung gebracht werden.

Ein vorgeschalteter DO-Befehl Z=& bewirkt inklusive ODER-Verknüpfung
zwischen einem Arbeitsregister- und einem Operanden-String von jeweils
z Byte Länge.

Exklusives ODER ı101..XS

N Fe

Der Arbeitsregister-Inhalt wird mit dem Inhalt der effektiven Adresse
(Operand) in exklusive ODER-Verknüpfung gebracht; das Ergebnis steht
im Arbeitsregister.

Ein vorgeschalteter DO-Befehl z<& bewirkt, daß die z Bytes eines Arbeits-
register-Strings mit stets demselben Operanden-Byte in exklusive ODER-Ver-
knüpfung gebracht werden.

Ein vorgeschalteter DO-Befehl z=& bewirkt exklusive ODER-Verknüpfung
zwischen einem Arbeitsregister- und einem Operanden-String von jeweils

z Byte Länge.

Speichern 1110..xXS
> nJ

Der Inhalt des Arbeitsregisters wird in der effektiven Adresse abgespeichert.
Bei Konstanten-Adressierung (STC) wird der Inhalt innerhalb der Instruktion
abgespeichert (an die Stelle eines Konstanten-Bytes).

Ein vorgeschalteter DO-Befehl z>& bewirkt Speichern des immer gleichen
Arbeitsregister-Inhalts in z aufeinanderfolgenden Bytes eines Adreß-Strings.

Ein vorgeschalteter DO-Befehl z=& bewirkt Speichern eines Arbeitsregister-
Inhalts von z Byte Länge in einem gleich langen Adreß-String.

- 7A -

JP,.

Funktion:

cs..

Funktion:

Sprung

Das Programm verzweigt zur angegebenen Adresse, indem der Instruktionszähler
auf deren Wert gesetzt wird.

Unterprogramm-Sprung

Der Inhalt des Instruktionszählers, bezogen auf das letzte Byte der Instruktion
und um] erhöht, wird im Arbeitsregister s gespeichert (Rückkehradresse
Adresse des Befehlsbytes der auf CS folgenden Instruktion). Dann verzweigt
das Programm zur angegebenen Adresse.

Die Rückkehr aus dem Unterprogramm (zur auf CS folgenden Instruktion) wird
an dessen Ende durch einen indirekten Sprungbefehl über das Rückkehr-Adreß-
register s (JPX, s) programmiert.

-75-

Iıı1. .Xx 0

 nt rund]

Iıır. X 1

 N u

ASSEMBLER

VORBEMERKUNG

Der Assembler MINCASS 600 ist ein Programm zur Übersetzung von symbolischen
Programmen in die Maschinensprache des Computers MINCAL 621. Er steht dem
Benutzer in Form eines Lochstreifens zur Verfügung; nach Einlesen des Lochstrei-
fens in den Kernspeicher (ab Adresse AQ@@) und Betätigen der Taste ST (Start) an
der Rechner-Konsole ist das System zur Programmumwandlung bereit.

Es sind zwei Assembler-Versionen verfügbar:

Einfacher Assembler MINCASS 600
für Systeme mit 4k byte Kernspeicher und Teletype

Makro-Assembler MINCASS 600 M
für Systeme ab 8k byte Kernspeicher mit Teletype und
schneller Lochstreifenausrüstung

Funktionen, die nur vom Makro-Assembler MINCASS 600 M ausgeführt werden, sind
im folgenden mit +) gekennzeichnet.

- /6 -

PROGRAMMAUFBAU

Ein symbolisches Programm besteht aus einer Folge von Anweisungen (Statements). Es
gibt verschiedene Typen von Anweisungen:

Steueranweisungen

Wertzuweisungen

Belegungsanweisungen
Maschinen-Instruktionen
Makro-Instruktionen
Kommentare

Anweisungen werden in der Reihenfolge geschrieben, wie sie im Programm nacheinan-
der benötigt werden; der Assembler übersetzt das Programm in gleicher Reihenfolge in
Maschinensprache. Zur Niederschrift benutze man die MINCAL 600 Programm-Form-
blätter.

Jede Anweisung besteht aus einer Folge von Buchstaben, Ziffern und Symbolen, wobei
- soweit nicht im einzelnen eingeschränkt - alle 64 druckbaren Zeichen des ASCII-
(ISO-7-) Codes zulässig sind. Leerschritte (Space) werden im allgemeinen vom Assemb-
ler überlesen. Steuerzeichen, wie z.B. Wagenrücklauf (CR) und Zeilenwechsel (LF)
werden ebenfalls überlesen. Anweisungen werden voneinander durch Semikolon (;) ge-
trennt und vom Assembler fortlaufend numeriert (0000...9999).

Innerhalb der Anweisungen sind die Zeichen zu Worten zusammengefaßt, welche die
notwendigen Einzelangaben darstellen. Die Worte werden durch Trennzeichen sepa-
riert. Der generelle Aufbau einer Anweisung ist wie folgt:

LABEL NUMBER INSTR SPEC OPERAND SUPPL

{ Marked :dAnzahl P3L Befehl }, (Spezifikation },{Operand),4 Ergänzung};

Im Einzelfalle, insbesondere auch je Anweisungstyp, können bestimmte Worte ent-
fallen; die Kommentar-Anweisung besteht nur aus Text, eingeleitet durch einen
Schrägstrich (/). Die Worte einer Anweisung haben folgende Bedeutung:

Marke: Hier ist ein Name einzutragen, wenn an anderer Stelle im Programm
auf die Anweisung Bezug genommen wird. Als Trennzeichen steht
hinter der Marke ein Doppelpunkt (:).

Anzahl: Hier ist eine Dezimalzahl z (2...256) einzutragen, wenn Variablen-
oder Konstanten-Strings von mehr als 1 Byte Länge vereinbart werden,
oder wenn Mehrfachausführung (DO-Befehl) vorgesehen ist. Im letzte-
ren Falle ist ggfs. auch eines der Zeichen >, < oder = hinter z
notwendig. Statt der Zahl z kann ein Name stehen, dem vorher ein
Wort zugewiesen wurde. Als Trennzeichen steht (x) oder (&) hinter
der Anzahi.

- 71 -

6

8

4

’

%

z

c

I

b

8 wW

ss 0% c 82 KZIZZIIZ Bil 9 cıjzıı Wa Ä

a
n

SıH3nnO) BOJ Jaans | ONVU3d0O | 2345 8} wısai BIIRtN
 —F 1334S YaAEn Invon anvN Ta or—H 31v0 T non N#7nalog N VY9OUd

ass 32 009 TVONIW

Befehl: Jede Anweisung muß einen "Befehl" enthalten, der sie kennzeichnet.
Er besteht für Steuer- und Belegungsanweisungen sowie für Wertzu-
weisungen aus einem Buchstaben, für Maschinen- und Makro-Instruk-
tionen aus einem Buchstaben, gefolgt von 1 bis 3 weiteren Buchstaben
oder Ziffern. Es sind nur solche Befehle zulässig, die in der Befehls-
liste des Assemblers vermerkt oder vom Benutzer als Makrobefehle de-
finiert sind (s. später). Als Trennzeichen steht dahinter ein Komma (,).

Spezifikation: Enthält notwendige Zusatzangaben. Bei Maschinen-Instruktionen sind
dies die gestarteten Ebenen oder das Arbeitsregister; im letzteren Falle
können Namen, Hexa-Zahlen oder das Akkumulator-Symbol @ verwen-
det werden. Als Trennzeichen steht dahinter ein Komma(,).

Operand: Enthält bei Maschinen-Instruktionen die Operanden-Adresse oder eine
Konstante. Je nach Bedarf können Namen, Dezimalzahlen, Hexa-
Zahlen, Text-Zeichen oder das Symbol @ verwendet werden.
Als Trennzeichen steht dahinter ein Komma ((,).

Ergänzung; Enthält bei bedingten Sprungbefehlen die Sprungadresse (Name), bei
BUS-bezogenen Befehlen das Indexregister (Name, Hexa-Zahl, @).

Den Abschluß einer Anweisung bildet ein Semikolon (;). Es kann unmittelbar auf das
letzte Wort folgen. Wenn Marke oder Anzahl nicht vorgesehen ist, entfallen die zu-
gehörigen Trennzeichen; für hinter dem Befehl stehende Worte, die "leer" bleiben,
müssen Kommata als Trennzeichen vorgesehen werden, wenn danach noch ein "ausge-
fülltes" Wort folgt.

- 79 -

WORTELEMENTE

Worte innerhalb von Anweisungen können aus folgenden Elementen bestehen:

Namen:

Dezimalzahlen:

Hexa-Zahlen;

Text-Zeichen:

Akkumulator:

Namen sind symbolische Ersatzbezeichnungen für Adressen, Festwerte
oder andere Angaben. Sie bestehen aus einem Buchstaben, dem von
bis zu 3 weitere Buchstaben oder Ziffern folgen können.
Beispiele: A, AB, ABC, ABCD, X1, X999, HIT, Oß3SP.
Jedem Namen muß im Programm ein bestimmter Wert zugewiesen wer-
den. Das geschieht durch Eintragen des betreffenden Namens als Marke
in einer Anweisung, wodurch ihm die (Basis-) Adresse der betreffenden
Instruktion oder Belegung zugeteilt oder - im Falle der Wertzuweisung
Q - ein bestimmter Wert zugewiesen wird. Ein Name darf in jedem
Programm nur einmal definiert sein.

Dezimalzahlen bestehen aus 1 bis 5 Ziffern, vor denen ein Minuszei-

chen stehen kann. Der Assembler erzeugt aus ihnen die entsprechende
binäre Ganzzahl bzw. deren Zweierkomplement.
Beispiele: |, 99, 255, 32767, -1, -128, -32768.

Hexa-Dezimalzahlen bestehen aus 2, 4 oder mehr Zeichen (Ziffern
0...9, Buchstaben A...F), vor denen ein Apostroph (’) steht. Je 2
Hexa-Zeichen faßt der Assembler zu einem Byte zusammen.
Beispiele: ’@@, ’F3, ’1A77, "I2RM@FF.

Textzeichen oder -Strings bestehen aus einem oder mehreren druckbaren
ASCII-Zeichen; davor muß ein Anführungszeichen (") stehen. Der
Assembler reserviert ein Byte je Zeichen. Leerschritte werden in die-
sem Falle nicht überlesen, sondern als Byte berücksichtigt.
Beispiele: "1, "TEXT, "+12u/u ABC.

Für den Akkumulator ist statt der Register-Adresse ’@2 das Zeichen ®
zu verwenden.

- 80 -

GÜLTIGE ANWEISUNGEN

Steueranweisungen

Stehen am Anfang und Ende eines Programms. Sie belegen keinen Speicherplatz.

OÖ Ursprung Programm

Definiert die Adresse der nächstfolgenden speicherbelegenden Anweisung. Zu
Beginn jedes Programms muß eine O-Anweisung stehen.

Spezifikation: 4-stellige Hexa-Zahl

Beispiel: OÖ, 74F12

Z Ende Programm

Schließt das symbolische Programm ab.

Wertzuweisung

Bewirkt Zuweisung eines Wortes zu einem Namen. Belegt keinen Speicherplatz. Muß
im Programm (beliebig weit) vor der Stelle stehen, an welcher der Name benutzt wird.

Q Wertzuweisung

Weist einem Namen, der als Marke vor Q steht, den danach spezifizierten
Wert zu.

Marke: Vorgeschrieben (Name)

Anzahl; Angabe notwendig, wenn der Wert die Kapazität eines Bytes über-
schreitet. Es wird die Anzahl der benötigten Bytes angegeben (2...256).

Spezifikation: Dezimalzahl,
Hexa-Zahl,
Text,

Name,
Name + Dezimalzahl, oder
Name + Hexa-Zahl,

Name + Name

- 81 -

Beispiele: A :
ZHI5 : 2%
REG3 :

ADR
TxX1
TX2
NAMI;

xXYl :

XYDI:
AIB
SUM

N x

u
0
}

a
a

=

12x

=
Ds

“

N x

P
O
P
P
O
P
D
P
D
O
D
E
D
O
D
O

a
)

Belegungsanweisungen

12

-32768

’F3

'BFA6

"ALPHABETÜIT!

NAM2

xYl-+l

XxXYD-+999

AB+ 'PF
X1+X2

Belegen Speicherplätze mit Nullinhalt oder Festwerten. Die Anweisungen können mit
Namen als Marken versehen werden. Der Name bezieht sich dann auf die Speicher-
adresse bzw. auf die Basis-Adresse des Byte-Strings.
+) zur Definition von Gleitkommazahlen siehe Abschnitt STANDARD PACKS.

V Variable

Reserviert ein Byte bzw. einen Byte-String im Speicher. Nach dem Assemblie-
ren haben mit V reservierte Bytes Nullinhalt.

Anzahl: Angabe notwendig, wenn mehr als ein Byte reserviert werden soll.
Es wird die Länge des Byte-Strings angegeben (2...256).

Beispiele: V

2% V

256% V

D Dezimalzahl

Reserviert ein oder zwei Bytes im Speicher und belegt sie mit der Binärzahl,
die der angegebenen Dezimalzahl entspricht.

Anzahl: Angabe notwendig, wenn 2 Bytes belegt werden.

Spezifikation: positive oder negative dezimale Ganzzahl

Beispiele: D,

2xD,
2%D,

2%*D,

A Adresse

1
255
-35
9999
-32768
65535

Reserviert ein oder zwei Bytes im Speicher und belegt sie mit einer Adresse.
Anzahl: Angabe, wenn 2

Beispiele:

ytes belegt werden. Spezifikation: Name

2%* A,ADDR
A,REG7

- 82 -

H Hexa-Zahl

Reserviert ein Byte bzw. einen Byte-String im Speicher und belegt sie mit 2
Hexa-Zahlen je Byte.

Anzahl: Angabe notwendig, wenn mehr als ein Byte reserviert wird. Es wird
die Länge des Byte-Strings angegeben (2...256).

Spezifikation: 2- ...512-stellige Hexa-Zahl.

Beispiele; H, "FF
2%H, ’22B3
4% H, 778899AA

T Text

Reserviert ein Byte bzw. einen Byte-String im Speicher und belegt sie mit
einem druckbaren ASCII-Zeichen je Byte.

Anzahl; Angabe notwendig, wenn mehr als ein Byte reserviert wird. Es wird
die Länge des Byte-Strings angegeben, die gleich der Zeichenzahl ist (2...256).

Spezifikation: 1 bis 256 druckbare Zeichen (einschließlich Leerschritt).

Beispiele: T, "Z
94T, "+l2u/u ABC

Maschinen-Instruktionen

Die hierzu gehörenden Anweisungen beziehen sich auf die Maschinenbefehle des
MINCAL 621 (siehe dort). Der Maschinencode wird vom Assembler entsprechend der
Befehlsstruktur und in der Reihenfolge der Anweisungen erzeugt. Zur Mehrfach-Ausfüh-
rung einer Instruktion (DO-Befehl) ist in der Anweisung die Anzahl z (2...256) einzu-
tragen, gefolgt von der Angabe, welche Adresse inkrementiert wird, sowie von einem
Trennzeichen, das zugleich die Berücksichtigung des LINK-Bits angibt;

z& n-fache Ausführung
z>& " ‚ Operanden-Adresse wird inkrementiert| LINK
z<& " ‚ Register-Adresse " wird nicht
z=& " ‚ beide Adressen " berücksichtigt
zZ %* u

Zz<% u ‚, Operanden-Adresse n LINK

Zz>% " ‚ Register-Adresse " wird

z=x* “ ‚ beide Adressen N berücksichtigt

- 83 -

Zu Beginn der Anweisung kann als Marke ein Name stehen. Ihm wird die Adresse
des Befehls-Bytes zugewiesen, bei Mehrfachausführung die Adresse des Befehlsbytes
des davorstehenden DO-Befehls.

Eine vollständige Anweisung sieht z.B. so aus:

MARK:2=XADA ‚REGI,ADR, IXRG

Folgende symbolische Befehle sind vorgesehen, geordnet nach Gruppen:

NOP Ebenso: HLT, ECL, DCL
Steuerbefehle
Keine weiteren Angaben.

SEL Ebenso: HSL

Steuerbefehle mit Start einer Programmebene.

Spezifikation; Nummer der gestarteten Programmebene.

Beispiele: SEL,’2B

HSL,LEV3

GS Ebenso: GL

Abfrage Konsolschalter bzw. laufende Programmebene.

Spezifikation: Arbeitsregister.

Beispiele: GS,@®

GL ,IA

GL ‚REG?

SRO Ebenso: SRC, SLO, SLC

Schiebebefehle.

Spezifikation: Arbeitsregister.

Beispiele: SRO, @

SRC ‚1A
SLO, REG?

- HU-

BZ

BEC

LD...

Ebenso: IZ, BP, IB, BNZ, INZ, BNP, INP
Bedingter Sprung mit Abfrage Register-Inhalt auf Null oder Vorzeichen.

Spezifikation: Arbeitsregister.

Operand: Nicht zulässig (jedoch Komma vorsehen).

Ergänzung: Sprungadresse (Name).

Beispiele: BZ, @ + , 5SPRG

ZZ, 1A ,, AD6

BNP, REG7, ,„X2

Ebenso: IEC, BER, IER, BNEC, INEC, BNER, INER,
BZC, IZC, BZR, IZR, BNZC, INZC, BNZR, INZR
BOC, IOC, BOR, IOR, BNOC, INOC, BNOR, INOR

Bedingter Sprung mit Vergleich zwischen Arbeitsregister-Inhalt einerseits und
Konstante oder Vergleichsregister-Inhalt andererseits.

Spezifikation: Arbeitsregister.

Operand: Konstante oder Vergleichsregister.

Ergänzung: Sprungadresse (Name).

Beispiele: BEC,@ ‚12 ,‚SPRG
INEC ,'1A ‚,'FF ‚,AD6
BZC ‚REG7,MA3 ,X2

ER ,®@ ,‚RG17,NIA
BNOR, IA ,’A3 ‚AD?
INOR ‚REG7, @ ‚L

Ebenso: AD..., SB..., AN..., OR..., EO..., ST...

BUS-bezogene Befehle (außer JP und CS).

Als dritter Buchstabe des Befehls ist je nach Adressierungsart C, X, R, L oder A

anzugeben.

Spezifikation: Arbeitsregister.

Operand: Konstante oder Operanden-Adresse (außer bei ...X).

Ergänzung: Indexregister (wenn indiziert).

Beispiele: LDC , a, ,
ADX ‚1A, ‚IND2

SBR ,REG7T,'FF ,
ANL ,@ ‚ADk ,
ORA „1A „’ABA2 ‚IF

- 85 -

JP... Sprung
Dritter Buchstabe siehe LD...

Spezifikation: nicht zulässig (jedoch Komma vorsehen)

Operand: Sprungadresse (außer bei ...X)

Ergänzung: Indexregister (wenn indiziert)

Beispiele: JPX , ‚IND2

JL , ‚SPRG
JA , ‚'ABA2 ,’IF

CS... Unterprogramm-Sprung
Dritter Buchstabe siehe LD...

Spezifikation: Arbeitsregister (Rückkehradresse)

Operand: Sprungadresse (außer bei X)

Ergänzung: Indexregister (wenn indiziert)

Beispiele: CcxX ,@ , ‚IND2
CSL ,’1A ,SPRG
CSA ‚RET3 ,’4QA2 ,‚’IF

Bemerkung: Bei Konstanten-Befehlen der Gruppe BEC und LD... können Konstanten von
bis zu 2 Byte Länge dezimal oder hexa-dezimal als Operanden eingetragen werden,
z.B.:

2=&INEC,@ ‚'BRFF,SPRG
2=xADC ,‚'1A,4096

Für längere Konstanten sind Namen vorzusehen, denen über eine Q-Anweisung die
entsprechenden Werte zugewiesen werden.

Makro-Instruktionen

Symbolische Makro-Anweisungen dienenzur Programmierung von komplexen Befehlen,
die nicht durch einfache Maschinen-Instruktionen des MINCAL 621 darstellbar sind.
Die Makro-Anweisung ruft ein Unterprogramm auf, welches diesen komplexen Befehl
ausführt; danach wird die folgende Anweisung ausgeführt.

Der Benutzer kann Makro-Anweisungen auf zweierlei Art gebrauchen:

Standard-Makros zu den MINCAL 600-Bibliotheksprogrammen (LIBRARY)

Selbstdefinierte Makros zu vom Benutzer erstellten Unterprogrammen.

- 86 -

Die Standard-Makros sind in der Befehlsliste des MINCASS 600 M Makro-Assemblers
vermerkt und im Abschnitt "Programm-Bibliothek" ausführlich beschrieben.

Will der Benutzer eigene Makro-Anweisungen definieren, so ist folgendes zu beachten:

Die erforderlichen Unterprogramme sind entweder getrennt zu erstellen und zu testen;
sie sind dann später in vorbestimmte Speicherbereiche einzulesen. Oder sie sind an
irgendeiner Stelle im Programm symbolisch programmiert.

Zu Beginn eines Programms, das davon Gebrauch macht, sind die Makro-Anweisungen
zu definieren, und zwar noch vor der O-Anweisung. Dies wird eingeleitet durch eine
M-Anweisung (Buchstabe M ohne weitere Angaben). Dann folgt eine Liste der im Pro-
gramm benutzten Makrobefehle, zusammen mit der absoluten Einsprungadresse in das
Unterprogramm.

Beispiel: M
XY „PACK
AB3Z, ’AF@@
HJK ‚A285

Dies bedeutet, daß ein Makrobefehl (AB3Z) vorkommt, der einen Unterprogrammsprung
zur festen Adresse ’4FQP bewirkt, während zwei weitere Makrobefehle (XY und HJK)
Unterprogramme aufrufen, die im symbolischen Programm definiert sind, wobei PACK
und A2@5 die Namen für die Einsprungstellen sind.

Als Makrobefehle können beliebige Folgen von 2, 3 oder 4 Zeichen verwendet werden,
allerdings mit Einschränkungen:

Das erste Zeichen muß ein Buchstabe sein; R, K, W sind nicht zulässig.

Die Zeichenfolge darf keiner Anweisung für Maschinen-Instruktionen und
keiner Makro-Anweisung für die Bibliotheksprogramme entsprechen.

Als erste 2 Zeichen sind LD, ST, AD, SB, MP und DV verboten.

Als drittes Zeichen sind C, X R, L und A, als viertes Zeichen D, F und G
bei der Definition verboten; im Programm können sie vorkommen und bewirken
dann Holen eines Operanden vor Eintritt in das Unterprogramm (s. später).

Wird z.B. im Programm der Makrobefehl HJK verwendet ohne weitere Angaben, so
wird ein Unterprogrammsprung mit der symbolischen Entsprechung

CSA,RET, A295

erzeugt, was einem Unterprogrammsprung nach A2@5 ohne Übergabe eines Operanden

entspricht; die Rückkehradresse steht in RET.

- 87 -

Stattdessen kann eine Makro-Anweisung mit Übergabe eines Operanden programmiert
werden, dessen Adressierungsart und Länge durch Ergänzen zweier Buchstaben zum
definierten Makrobefehl (der dann 2 Zeichen haben muß) bestimmt wird; hinzu kommen
Angaben über Operandenadresse und eventuelle Indizierung. So erzeugt die Makro-An-
weisung

XYm , ADR,IXR

eine Befehlsfolge mit der symbolischen Entsprechung

LDm ‚OPD ,‚ADR,IXR
CSA ‚RET ,PACK

wobei in m je nach Adressierungsart der Buchstabe C, X, R, L oder A steht. Ist ein

viertes Zeichen | vorhanden,

XYml , ADR,IXR

so entsteht die Befehlsfolge

z=*LDm ‚,OPD ,‚ADR,IXR

CSA ‚RET ,PACK

wobei z = 2, 3 oder 4 ist, wenn für | der Buchstabe D, F oder G eingesetzt wird.
Diese Form von Makrobefehlen erlaubt es, vor Eintritt in das Unterprogramm einen
Operanden von 1...4 byte Länge zu übergeben, der beliebig adressierbar ist.

OPD und RET sind festgelegte Registerplätze bzw. -Strings, die auch von den Makro-
befehlen der Bibliothek benutzt werden. Es ist daher nicht zweckmäßig, in vom Be-
nutzer definierten Unterprogrammen Makrobefehle der Bibliothek zu benutzen, ohne
den Inhalt dieser Register vorher zu retten.

Kommentare

Kommentare dienen zur verbalen Erklärung des Programms. Sie können an beliebigen
Stellen des Programms stehen und haben für das Programm selbst keine Bedeutung.

Eine Kommentar-Anweisung beginnt mit einem Schrägstrich (/), gefolgt vom Text aus
beliebigen druckbaren Zeichen, wobei alle Leerschritte berücksichtigt werden. Der
Kommentar wird mit Semikolon (;) beendet; es ist daher innerhalb des Kommentars
nicht zulässig.

- 88 -

+) KORREKTUREN

Beim Erstellen von symbolischen Programmen, z.B. off-line mit Hilfe des Teletype,
können Fehler entstehen, die bereits beim Eintippen erkannt werden. Hierfür sind
Korrekturmöglichkeiten vorgesehen;

Eingabe eines waagerechten Pfeils («—) macht das vorangehende Zeichen
ungültig. Danach das richtige Zeichen eingeben.

Eingabe eines senkrechten Pfeils (%) macht die gesamte Anweisung bis zum
letzten Semikolon ungültig. Danach die Amweisung neu eingeben.

- 89 -

HANDHABUNG DES ASSEMBLERS

Jede Programmumwandlung erfordert mindestens 2 Läufe des Assemblers;

ASS dient zum Aufbau der Markenliste sowie zur Erkennung von formalen
Fehlern

EXC dient zur Erzeugung eines Lochstreifens, der das Programm in Maschi-
nencode enthält.

Der Benutzer wählt den Lauf durch Eingabe der Bezeichnung ASS bzw. EXC über
die Tastatur des Teletype vor; darauf ist einzugeben, worüber das Quellprogramm
eingelesen wird und wohin das Resultat abgelegt wird;

ASS Eingabe: IKB Tastatur des Teletype
ISB Langsamer Leser (Teletype) symbolisches

+) IFB Schneller Leser Programm
+) ICB Kernspeicher

Ausgabe: OSH Langsamer Locher (Teletype) .
+) OFH Schneller Locher symboTsches
+) OCH Kernspeicher Soromm

EXC Eingabe: ISB Langsamer Leser (Teletype) .
+) IFB Schneller Leser eymnelisehes
+) ICB Kernspeicher rogramm

Ausgabe: OSH Langsamer Locher (Teletype) Maschinencode-
+) OFH Schneller Locher Programm

Beispiele: ASS ,‚IKB,ISB

+) ASS ,ISB,OFB
+) ASS ,IFB,OCB

EXC , ISB,OSH
+) EXC, IFB,OFH

+) EXC, ICB,OFH

Nach Vorwahl der Betriebsart ist "Wagenrücklauf" einzugeben, und der Lauf beginnt.
Das symbolische Programm, gleichgültig ob über die Tastatur eingegeben, als Loch-
streifen eingelesen oder erzeugt oder im Kernspeicher abgelegt, hat das vom Assemb-
ler vorgeschriebene symbolische Format. Ausgelochte Maschinencode-Streifen haben

Hexa-Format (s. Anhang).

- 90 -

Varianten dieser Betriebsarten sind solche, bei denen nur die Eingabe vorgeschrieben,
die Ausgabe aber weggelassen wird, z.B.:

ASS ‚ISB
EXC,ISB

+) EXC,ICB

Hierbei erfolgt keine Ausgabe; jedoch werden alle Anweisungen, die formale oder
Adressierungsfehler enthalten, zusammen mit der Anweisungs-Nummer und einem Fehler-
code auf dem Teletype ausgedruckt (siehe Fehlerliste).

Im Normalfall wird zu Beginn jedes ASS-Laufs die Markenliste gelöscht; jedoch hat
der Benutzer die Möglichkeit, dies zu verhindern; er gibt dann ein:

ASS,SAV,...

Eine weitere Betriebsart bewirkt Drucken eines Protokolls auf dem Teletype. Hierzu
ist PRO und die Quelle des symbolischen Programms einzugeben, z.B.:

PRO, ISB
PRO, IFB
PRO,ICB

Das gedruckte Protokoll hat je Zeile folgendes Format (1 Zeile = 1 Anweisung):

Anweisungs-Nummer (4 Ziffern)
Leerschritt
Fehlercode (2 Ziffern oder 2 Leerschritte)
(Basis-) Adresse (4 Hexa-Ziffern)
Leerschritt
Marke (4 Zeichen)
. falls vorhanden

Anzahl (4 Zeichen)
Zusatzzeichen (>,< , = oder Leerschritt) falls vorhanden
Trennzeichen (* oder &)
Befehl (4 Zeichen)

Spezifikation (4 Zeichen) Ä
, oder längere

Operand (6 Zeichen) Spezifikation

Ergänzung (4 Zeichen)
Leerschritt

Maschinencode (max. 8 Hexa-Ziffern-Paare, durch je 1 Leerschritt

getrennt; die Paare entsprechen erzeugten Bytes in

aufsteigender Adrefßreihenfolge)

- 91 -

+) Spezifikationen mit mehr als 16 Zeichen und Maschinencode-Strings mit mehr als
8 byte werden in Folgezeiten spaltengerecht fortgesetzt.

Kommentare werden unter Weglassung des einleitenden Schrägstrichs mit Beginn
der Markenspalte ausgedruckt.

+) Der Protokollausdruck erfolgt abschnittweise, so daß das Endlospapier in DIN A4-

Blätter geschrieben werden kann. Am Kopf jedes Blattes wird dessen Nummer sowie
der Programmname gedruckt.

Assembler-Läufe können auch zur Korrektur von symbolischen Programmen benutzt wer-
den.

Hierzu wird vor dem betreffenden Lauf das Kommando

COR

eingegeben. Mit dieser Betriebsart wird ein Pufferbereich im Speicher angesprochen,
der die notwendigen Korrekturen in Form symbolischer Anweisungen enthält. Weitere
Kommandos sind in diesem Zusammenhang:

L Ausdruck aller Anweisungen im Pufferbereich
+) m,L a Anweisung m e
+) n,m,L " Anweisungen m bis n i

C Löschen aller Anweisungen im Pufferbereich
+) m,C " Anweisung m "
+) m,n,C " Anweisungen m bis n "

+) m,D Löschen Anweisung m im Quellprogramm \
+) m,n,D " Anweisungen m bis n

danach
m,A Ändern Anweisung m im Quellprogramm , neue An-

n,m,Ä " Anweisungen m bis n " weisungen

eingeben
+) m,l Einfügen einer Anweisung nach m im Quellprogramm |

+ Ende der Betriebsart

m, n sind jeweils vierstellige Anweisungs-Nummern.

Nach der Betriebsart C wird ein neuer Assembler-Lauf gewählt (ASS, evtl. auch EXC);
die im Pufferbereich enthaltenen Korrekturen werden dabei berücksichtigt.

- 9 -

+) Zu Beginn des Assembler-Betriebs kann der Benutzer durch Eingeben 4-stelliger
Hexa-Zahlen die maximale vom Assembler benutzte Speicheradresse (ADR), die
Größe des Pufferbereichs (BUF) und die Länge der Markenliste (LAB) verändern
den Programmnamen (NAM) mit max. 16 ASCII-Zeichen eingeben.

+) Nach einem EXC-Lauf kann mit LIB ein Streifen eingelesen und ein Duplikat
erstellt werden, das zusätzlich die Bibliotheksprogramme enthält. Diese schließen
sich damit an das eigentliche Programm an, wobei jedoch nur die PACKS ange-
hängt werden, die von im Programm enthaltenen Makrobefehlen benutzt werden.

- 93 -

FEHLERLISTE

Fehlercode

29

22
23
24

Bedeutung

Allgemeiner Syntaxfehler
5 " am Befehlsbeginn

Marke mehrfach definiert
Überlauf Markenliste
Anzahl zu groß
Syntaxfehler Anzahl
Name für Anzahl nicht definiert
Befehl nicht zulässig
Syntaxfehler im Operanden

Registeradresse größer als 1 Byte
" nicht definiert

Operandenadresse syntaktisch zu lang
" zu lang entsprechend DO-Befehl
" nicht definiert

Indexregister-Adresse größer als 1 Byte
" nicht definiert

Überlauf allgemein

Spezifikation fehlt
a hat falsche Länge

Marke vor Q-Anweisung fehlt

- 4 -

LIBRARY

VORBEMERKUNG

Die Bibliothek (LIBRARY) des MINCAL 621 Computers besteht aus Unterprogrammen,
die umfangreichere Funktionen erfüllen als einzelne Maschinenbefehle. Die Unter-
programme werden durch Makro-Anweisungen aufgerufen; hierfür ist der Makro-As-
sembler MINCASS 600 M zu benutzen. Jedoch können sie auch - für den Benutzer
umständlicher - mit Unterprogrammaufrufen unter Übergabe des Operanden mit einfa-
chen Assemblerbefehlen bedient werden.

Die Unterprogramme der Bibliothek sind entsprechend ihrer Funktion zu Paketen

(PACKS) zusammengefaßt:

READ/WRITE PACK : (Ein/Ausgabe von Text und anderen Zeichen)

DOUBLE BYTE PACK : (Doppelbyte-Arithmetik mit Ein/Ausgabe)

FLOATING POINT PACK: (Gleitkomma-Arithmetik mit Ein/Ausgabe)

Das zweite Paket bedingt Vorhandensein des ersten; das letzte setzt beide anderen
voraus.

Die Unterprogramme benutzen als Variablenspeicher die Register der jeweiligen Ebene;
sie können daher im Multiprogramming von beliebig vielen Ebenen gleichzeitig be-
nutzt werden. Je Ebene muß ein Pool von 32 Bytes (Register-Adressen AP...12) zur
Verfügung stehen; dieser Bereich, einschließlich dem Akkumulator (a), kann durch
die Unterprogramme verändert werden.

READ/WRITE PACK

Dieses Unterprogramm-Paket dient zur Ein- und Ausgabe von Text und Hexa-Zahlen
in Verbindung mit Fernschreibern, Lochstreifengeräten und anderen, zeichenweise
arbeitenden Periphergeräten im ASCII-Code.

Der Aufbau der zugehörigen Makro-Anweisungen ist:

X Anzahl * {Befehlp , Gerät} , fOperand} , Xindexregisterb

- 9-

Folgende Befehle sind vorgesehen:

RTm Lesen Text

WTm Schreiben Text

RHm Lesen Hexa

WHm Schreiben Hexa

Lesen bedeutet Eingabe Periphergerät und Abspeichern in der effektiven Adresse,
Schreiben den umgekehrten Vorgang. Für m ist einer der Buchstaben C, X, R, L
oder A entsprechend der gewünschten Adressierungsart einzusetzen; die Operanden-
Adresse wird wie üblich programmiert, ebenso das eventuelle Indexregister, mit des-
sen Inhalt sie modifiziert wird.

Bei Text (T) wird ein Byte unverändert als ASCII-Zeichen behandelt; im Falle von
Hexa (H) werden die linke und rechte Hälfte (in dieser Reihenfolge) eines Bytes
zwei ASCII-Zeichen (B...9, A...F) zugeordnet, indem die zusätzlichen 4 Bit des
ASCII-Codes abgeschnitten bzw. ergänzt werden.

Die Gerätenummer wird als Spezifikation dem Befehl mitgegeben, wobei dort entwe-
der eine zweistellige Hexa-Zahl oder ein Name steht, der entsprechend definiert ist.
Wird z.B. ’F3 als Gerätenummer programmiert, so wird das Gerät mit der BUS-Adres-
se ÖF3@ angesprochen.

Vor dem Befehl kann die Anzahl der ein- oder ausgegebenen Zeichen bestimmt wer-
den (2...256), wenn es sich um mehr als eins handelt. Bei Text-Befehlen entspricht
dem ein gleich langer Operanden-String, wobei das Basis-Byte, welches auch das
zeitlich zuerst behandelte Zeichen enthält, programmiert wird. Bei Hexa-Befehlen
ist die Länge des Operanden-Strings halb so groß.

Text- und Hexa-Zeichen werden, als Konstanten verwendet, zweckmäßig mit den
Definitionen T und H programmiert. Für die Ausgabe von ASClIlI-Steuerzeichen (z.B.
Wagenrücklauf) ist Text-Ausgabe von Konstanten zweckmäßig, die als Hexa-Zahlen
eingegeben werden.

Beispiele:

RTA ‚,’F3 ‚ADDR Lesen I Textzeichen von ’F3 nach ADDR

6% RHR ‚’@@ ‚REGI " 6 Hexa-Zeichen von P% nach REGI
WTL ,DEV,CHAR Schreiben 1] Textzeichen aus CHAR nach DEV

2% WTC,FS2 ‚'QAPD Ausgabe Wagenrücklauf/Zeilenvorschub auf FS2
WTC,FS2 "X Schreiben "X" auf FS2

Die Ausgabe der Zeichen erfolgt im ASCII-(ISO-7-) Code mit geradzahliger Parität.
Bei der Eingabe wird auf diese Parität geprüft; fehlerhafte Zeichen werden zwar ab-
gelegt, jedoch wird dann ein Register-Byte ERR auf 1 gesetzt; der Benutzer kann
dieses Byte nach Ablauf des Makrobefehls im Hauptprogramm abfragen.

- 096 -

DOUBLE BYTE PACK

Mit diesem Unterprogramm-Paket können Doppelbyte-Ganzzahlen airhtmetisch behan-
delt sowie ein- und ausgegeben werden, einschließlich der Umwandlungen von Binär-
in Dezimalzahlen und umgekehrt. Hinzu kommen Konversions- und Ein/Ausgabebefeh-
le für EinbyteGanzzahlen.

Einbyte-Ganzzahlen sind stets positiv: n 17 P| 0...255

Doppelbyte-Ganzzahlen sind positiv oder n 7 — 2 -32768
negativ (Zweierkomplement) und umfassen n+1/a Da 32768

16 bit (niedriges Byte = Basis-Byte): —
Vorzeichen

Folgende arithmetischen Befehle sind für Doppelbyte-Ganzzahlen vorgesehen:

MPmD Multiplizieren Doppelbyte
DVmD Dividieren "

Als Arbeitsregister wird stets der Akkumulator benutzt. Der Operand kann wie bei
BUS-bezogenen Befehlen üblich addiert werden; für m ist C, X R, L oder A einzu-
setzen.

Die Multiplikation ergibt ein 4-byte-Produkt:

@® |7 2| n |? 2| @
(a + 2] Hl 4 2] @ + 2 4-Byte-

@) +2 Produkt
VZ Vz (@W) +3

Akku " Operand — Akku

Bei der Division ergibt sich ein 4-Byte-Quotient mit Mittelkomma:

@ |2 2| n |/ 2 o@ |3 |
@ +] 4 2) 7 2] @ +12 58] jpruchteil

1 79
VZ Vz @ +2 2 a |Ganzzchl-

4 Teil
Vz

Akku / Operand — Akku

- 97.

Beide Operationen laufen vorzeichenrichtig ab.

Um dem Benutzer einen symbolisch vollständigen Satz von Doppelbyte-Befehlen an
die Hand zu geben, sind im Makro-Assembler noch folgende Befehle vorgesehen:

LD mD Laden

ST mD Speichern
ADmD Addieren

SB mD Subtrahieren

Doppelbyte (Operand — Akku)
(Akku —-- Adresse)
(Akku + Operand — Akku)
(Akku - Operand — Akku)

Es werden jedoch keine Unterprogramme hierfür benutzt; vielmehr erzeugt der As-
sembler hieraus Maschinenbefehle mit vorgeschaltetem DO-Befehl.

Die Angabe einer Anzahl ist nicht zulässig, so daß sich für diese Anweisungs-
Gruppe folgender Aufbau ergibt:

Befehl$ „ @,d Operandp , X Indexregister }

Beispiele für Doppelbyte-Anweisungen:

LDCD , ® ‚-250@@
STXD ,@ ‚IND
ADRD , @ ‚REG7 ‚IXRI
SBLD ,@ ‚CONS
MPAD, (@ ‚ADDR,’AB
DVRD,@ ‚Al

-25000 — Akku
Akku — <IND>
Akku + Operand— Akku
Akku - Operand — Akku
Akku - Operand — Akku
Akku : Operand —Akku

Zum Doppelbyte-Paket gehören ferner folgende Ein/Ausgabe- und Konversionsbe-
fehle:

RD mD Lesen Doppelbyte-Ganzzahl
WD mD Schreiben Doppelbyte-Ganzzahl

RA mD Konversion ASCII — Binär

WAmD " Binär — ASCII Doppelbyte-
RB mD N BCD —> Binär Ganzzahl
WB mD " Binär —BCD

Die ersten beiden Befehle haben den Aufbau

X Anzahl x d Befehl , X Gerät ,„ X Operand} , d Indexregister $

-98 -

und bewirken das Lesen eines ASCII-Zeichen-Strings mit Ganzzahl-Bedeutung,
Umwandlung in eine binäre Doppelbyte-Zahl und Abspeichern in der angegebenen
(sowie der nächsthöheren) Adresse; beziehungsweise beim Schreiben den umgekehr-
ten Vorgang. Dabei ist das Periphergerät sowie die Zahl der ASCII-Zeichen anzu-
geben, die gelesen bzw. ausgegeben werden sollen:

- 12345 Anzahl = 6
- 2 u = 2

vouu35 =6

9uuuo-327638 " =

Beim Schreiben werden führende Nullen mit Leerschritten unterdrückt; für positives
Vorzeichen steht ein Leerschritt. Gelesen wird höchstens die angegebene Stellen-
zahl; jede Nicht-Ziffer nach einer Ziffer führt jedoch schon zur Beendigung des
Lesevorgangs.

Hinsichtlich Paritäts-Erzeugung und -Prüfung des ASCII-Codes gelten die Bemerkungen
des vorigen Abschnitts.

Mit den restlichen 4 Befehlen, die den Aufbau

X Befehlp ,(@, X Operandp , Indexregister

haben, können Genzzahlen, die als ASCII- oder BCD-Zeichen im Akkumulator und
den nächsthöheren 5 Bytes stehen, in binäre Doppelbyte-Zahlen umgewandelt und in
der effektiven Adresse abgelegt werden; ebenso ist der umgekehrte Vorgang möglich.

Lage der Zeichen im Akkumulator: @ 100

@ + 10
Inhalt: ASCII-Zeichen | @ +2 102 Betrag

bzw. BCD (’@...’9) @ +3 10,
@ +4 10

Vorzeichen: - oder Leerschritt (ASCII) @ +5 Vorzei-
bzw. ’5 oder ’ß (BCD) chen

Beispiele für Doppelbyte-Ein/Ausgabe- und Konversionsbefehle:

6xRDAD ‚DEV,ADDR 6-Zeichen-Zahl von DEV nach ADDR (binär)
9xWDCD,’F3 ‚-32768 -32768 auf ’F3 9-stellig ausgeben

RAXD, @ ,,IND @(ASCH)— <IND>(binär)
WARD, @, REG? REG7 (binär) > (@(ASCII)
RBAD , @, ’2Fg8 @ (BCD) —’2F@8 (binär)
WBLD, @, VAR,IXR Operand (binär)— (@ (BCD)

- 9.

Bestandteil des Doppelbyte-Pakets sind schließlich noch Ein/Ausgabe- und Konver-
sionsbefehle für Einbyte-Ganzzahlen:

Ri m Lesen Einbyte-Ganzzahl
WIm Schreiben Einbyte-Ganzzahl

RAm Konversion ASCII— Binär
WAm " Binär — ASCII Einbyte-
RB m " BCD — Binär Ganzzahl
'WBm " Binär — BCD

Sie entsprechen völlig den Doppelbyte-Befehlen; jedoch werden nur positive Zahlen
behandelt, die maximal 3 geltende Ziffern haben, nur 3 Akkumulator-Bytes
(@bis @+ 2) belegen und in binärer Form ein Byte einnehmen.

Beispiele hierfür:

24RIA ‚DEV ADDR 2-stellige Ganzzahl von DEV nach ADDR
6*%WIC ,’F3,125 vuul25 auf ’F3 ausgeben

RAX , @,,IND
WAR, @ ‚REG7
RBA , @ ‚’2F@8
WBL, @ ‚VAR,IXR

siehe Doppelbyte-Beispiele

FLOATING POINT PACK

Dieses Unterprogramm-Paket gibt dem Benutzer die Möglichkeit, mit Gleitkomma-
Zahlen zu rechnen, sie zu konvertieren sowie ein- und auszugeben. Es gibt 2 in-
terne Darstellungen von Gleitkomma-Zahlen mit unterschiedlicher Genauigkeit:

F-Typ (2-Byte-Mantisse): IE j 2 Mantisse M

n-+2 Exponent E

G-Typ (3-Byte-Mantisse): n
n+1 3 Mantise M
n+2

n+3 Exponent E

- 100 -

Die Mantissen sind Doppelbyte- bzw. 3-Byte-Ganzzahlen; sie können positiv oder
negativ sein. Exponenten sind positive oder negative Einbyte-Ganzzahlen (Bereich
-128 ... 127) zur Basis 2. Eine Gleitkommazahl hat daher den Wert

M - „E (M = Mantisse; E = Exponent)

Das niedrige Mantissen-Byte ist stets das Basis-Byte.

Als arithmetische Befehle sind vorgesehen;

ADmF Addieren Gleitkomma F-Typ
SB mF Subtrahieren "
MPmF Multiplizieren " "
DVmF Dividieren " n

ADmG Addieren Gleitkomma G--Typ

SB mG Subtrahieren "
MPmG Multiplizieren " "
DVmG Dividieren " "

Dazu gibt es noch 3- und 4-byte-Transportbefehle, die jedoch nicht als Unterpro-
gramme existieren, sondern vom Makro-Assembler als Maschineninstruktionen mit

vorgeschaltetem DO-Befehl erzeugt werden:

LDmF Laden Gleitkomma F-Typ
STmF Speichern " "

LDmG Laden Gleitkomma G--Typ
STmG Speichern "

Der Aufbau der Anweisungen ist in allen Fällen:

dBefehl® ,(@, 4 Operand $, & Indexregister }

und entspricht hinsichtlich der Adressierungsart den Doppelbyte-Befehlen. Als Ar-
beitsregister kann wiederum nur der Akkumulator (Q angegeben werden; das nie-
drigste Byte der Mantisse belegt (Wselbst; es folgen das bzw. die höheren Bytes und
schließlich der Exponent in (@+ 2) bzw. (@ + 3).

- 101 -

Einige Beispiele:

LDLF ‚@ ‚„CONS
STXG ,@& ‚‚IND
ADRG ‚,@ ‚REG?
SBLF ,(@ „VAR,IXR
MPAG, (W ‚ADDR
DVRF ,@,’Al

Zur Definition von Gleitkomma-Festwerten kennt der Makro-Assembler folgende
Belegungs-Anweisungen:

F Belegt 3 Bytes mit einer Gleitkomma-Zahl vom F-Typ
G Belegt 4 Bytes mit einer Gleitkomma-Zahl vom G-Typ

Als Spezifikation steht dahinter entweder eine beliebige Dezimalzahl (F-Format)
oder eine solche mit einer Zehnerpotenz (E-Format); zum Beispiel:

F ,-123.45 (F-Format)
F ,.31415E-91 (= 0.31415-10"!) (E-Format)
F ‚2. (F-Format)
G ,2859.67@2 (F-Format)
G,-2.8596702E93 (E-Format)

Folgende Ein/Ausgabe-Befehle sind vorgesehen:

RF mF Lesen Gleitkomma-Zahl F-Typ im F+Format
WFmF Schreiben " "

RE mF Lesen " " im E-Format
WEmF Schreiben " " .

RF mG Lesen Gleitkomma-Zahl G+Typ im F-Format
WFmG Schreiben " " "
RE mG Lesen " u E-Format

WEmG Schreiben u " u

Prinzipiell entsprechen sie den Befehlen für die Doppelbyte-Ein/Ausgabe; der Be-
nutzer hat jedoch die Wahl zwischen zwei externen Darstellungen (F- und E-For-
mat). Außerdem ist neben der Anzahl der insgesamt gelesenen oder geschriebenen
Zeichen (w) noch die Zahl der Stellen hinter dem Dezimalpunkt (d) anzugeben,
in diesem Falle mit $ als Trennzeichen, also:

w.d$f

- 102 -

Beispiele hierfür:

7.2$RFAF ‚DEV,ADDR Lesen 7 Zeichen, 2 Dezimalstellen, F-Format
14.7/WERG, ’F3 ‚REG7,IXR Schreiben 14 Zeichen, 7 Dezimalstellen, E-For-

mat

Hinzu kommen als Konversionsbefehle:

RA mF Konversion ASCH Binär

WAmF " Binär ASCH Gleitkommazahl
RB mF “ BCD Binär F-Typ
WBmF n Binär ASCII

RA mG Konversion ASCII Binär

WAmG " Binär ASCHI Gleitkommazahl
RB mG " BCD Binär G-Typ
WBmG " Binär BCD

Im Aufbau und Funktion entsprechen diese Befehle denen für Doppelbyte-Ganzzahlen.
Die Lage der Stellen im Akkumulator-String ist wie folgt: Die wichtigste Mantissen-
stelle belegt (@ , es folgen 4 Bytes (F) bzw. 7 Bytes (G) für die höheren Mantissen-
stellen, dann das Vorzeichen der Mantisse, zwei Bytes für die beiden Exponenten-

stellen und das Vorzeichen des Exponenten.

Beispiele für Gleitkomma-Konversionsbefehle:

RAAF , (a ,ADDR,IXR & (ASCII)— Adresse (binär, F-Typ)
WBXG, (a) ‚‚IND Operand (binär, G-Typ) — (a (BCD)

Bezüglich Paritätserzeugung und -Prüfung des ASCII-Codes siehe READ/WRITE PACK.

LESEN OHNE INITIATE

Alle gerätebezogenen Lesebefehle R... der LIBRARY beziehen sich auf Eingaben,
die ein INITIATE erfordern (s. HINWEISE FÜR DIE PROGRAMMIERUNG), also z.B.
den Leser am Fernschreiber oder schneller Lochstreifenleser.

Wo dies nicht erforderlich ist, z.B. bei Eingaben über die Tastatur des Fernschreibers,
ist im Makrobefehl der Buchstabe K anstelle von R zu verwenden, zum Beispiel:

KTA ,’F3 , ADDR
6%*KDAD,DEV,ADDR,IXR

7.2 KFRF ‚DEV,REG7

- 103 -

MONITOR

VORBEMERKUNG

Der MONITOR ist ein Programm zum Austesten von Programmen, die im Kernspei-

cher des MINCAL 621 abgelegt sind. Das zu testende Programm läuft unter Steue-
rung des MONITORS ab, bleibt an vereinbarten Stellen stehen, so daß der Benut-
zer Register- und Speicherplätze auf ihren Inhalt untersuchen oder diesen verändern
sowie Befehle ein- oder ausbauen kann. Der Dialog erfolgt über den Konsol-Fern-
schreiber.

Außerdem enthält der MONITOR Routinen zur Ein- und Ausgabe des Kernspeicher-
Inhalts über Konsol-Fernschreiber und schre Ile Lochstreifengeräte.

MONITORsetzt 32 oder mehr Register je Ebene voraus.

TESTBEGINN

Zunächst wird das MONITOR-Programm in einen freien Kernspeicher-Bereich gela-
den, das N-Register der Ebene ß über die Bedienungskonsole auf die Anfangsadresse
dieses Bereichs gesetzt und der Rechner gestartet. Der MONITOR meldet sich durch
Klingelzeichen zum Zeichen, daß eine Eingabe erwartet wird. (Das geschieht für
alle folgenden Eingaben).

Der Bediener gibt am Konsol-Fernschreiber mit

LEV | (er)

die Programmebene ein, in welcher der MONITOR laufen soll; für I ist eine der
Hexa-Ziffern 9...F einzusetzen. Der MONITOR muß stets auf der gleichen : Ebene
laufen wie das zu testende Programm.

Zur Bestätigung ist dann "Wagenrücklauf" (cr) einzugeben; jedes andere Zeichen er-
klärt die Eingabe für ungültig. (Das gilt auch für alle im folgenden genannten Kom-
mandos).

Dann kann mit

BUF nnnn (cr)

die Länge eines Pufferbereichs angegeben werden, in den später einzufügende Ma-
schinencode-Bytes eingegeben werden können; für nnnn ist eine entsprechende 4-
stellige Hexa-Zahl zu wählen. Andernfalls wird eine Standard-Pufferlänge benutzt.

Schließlich wird das zu testende Programm über eine der Einlese-Betriebsarten in

den Kernspeicher gelesen (siehe EIN/AUSGABE).

- 104 -

STEUERKOMMANDOS

Das zu testende Programm wird mit

aaca 5 (cr)

gestartet, wobei für aaaa die Startadresse als 4-stellige Hexa-Zahl einzugeben
ist.

Läuft das Programm später auf einen vom MONITOR vorgewählten Halt, so kann
es durch eines der folgenden Kommandos wieder angestoßen werden:

N (cr) Nächste Instruktion ausführen, dann wieder anhalten
G (cr) Weiterlaufen bis zum nächsten Monitor-Halt

Das Kommando

E (cr)

beendet den Monitor-Betrieb. Er kann durch Starten über die Rechner-Konsole wieder

aufgenommen werden.

MONITOR-HALT

Das zu testende Programm kann an beliebigen Stellen angehalten werden; sie werden
durch die Eingabe

aaaa H (cr)

vorbereitet, wobei aaaa die Haltadresse ist. Sie muß einem Befehlsbyte bzw. dem
eines vorgeschalteten DO-Befehls entsprechen (d.h. dem Basis-Byte eines Instruk-
tions-Strings laut Assembler-Protokoll). Das Programm hält dann nach Ausführung des
davorliegenden Befehls an. Halts nach unbedingten Sprüngen und Ebenenwechsel-
Befehlen (zu höheren Ebenen) sind wirkungslos; ebenfalls nach bedingten Sprüngen,
wenn verzweigt wird.

Es können bis zu 5 Haltbefehle eingebaut werden; in Programmschleifen sind stets
mindestens 2 Halts vorzusehen.

- 105 -

Haltbefehle kann man einzeln mit

acaa D (cr)

wieder eliminieren. Durch

D (cr)

werden sämtliche vorgesehenen Halts wieder gelöscht.

ABFRAGEN, ÄNDERN UND EINFÜGEN

Sobald das zu testende Programm auf einen Monitor-Halt läuft, wird ein Kommando
des Bedieners erwartet.

Nach Eingabe von

aaaa L (cr)

wird der Inhalt eines Register- oder Speicherplatzes aaaa ausgedruckt; nach Eingabe
von

aaaa bbbb L (cr)
xx

der Inhalt sämtlicher Adressen von aaaa bis bbbb einschließlich. Je Byte wird eine
zweistellige Hexa-Zahl gedruckt; ein Leerschritt trennt sie vom nächsten Byte.

Nach Ausgabe eines Einzelbytes (aaaa L) kann der Bediener durch Betätigen der
Taste WRU Ausdrucken des nächsten Byte-Inhalts anfordern; das kann beliebig wie-
derholt werden, wobei jeweils die nächsthöhere Adresse abgefragt wird. Beendet
wird dieser Vorgang durch Eingeben von # .

Durch das Kommando

aaca A (cr)
xx

wird der Inhalt der Adresse aaaa durch xx ersetzt; durch

aaga bbbb A (cr)
xy ...H#

- 106 -

die Adressen aaa bis bbb durch einen String (xx yy ...). Einzugeben sind je Byte
zwei Hexa-Ziffern, mit oder ohne Leerschritte zwischen den Bytes. Wird der String
vorzeitig durch 4 beendet, so bekommen die restlichen Bytes Nullinhalt.

Nach Ändern eines Einzelbytes (aaa A) kann durch Taste WRU der nächste Platz
aufgerufen und mit einer zweistelligen Hexa-Zahl geändert werden. Auch dieser
Vorgang ist beliebig fortzusetzen; er wird durch Eingabe von # beendet.

Schließlich besteht die Möglichkeit, durch

aaaa I (cr)
xx Yy 2...

an beliebiger Stelle im Programm (beginnend bei Adresse aaaa) einen Byte-String
(xx yy ...) einzufügen; er wird in dem eingangs erwähnten Pufferbereich abgelegt.
Es können mehrere Einfügungen vorgenommen werden; ihre Zahl ist nur durch die
Größe des Pufferbereichs begrenzt.

Mit dem Kommando

aaaa U (cr)

kann jede einzelne Einfügung rückgängig gemacht werden; die Eingabe

U (er)

löscht alle Einfügungen.

EIN/AUSGABE

Für die Ein- und Ausgabe der zu testenden Programme oder von Programmteilen hält

der MONITOR folgende Kommandos bereit:

aaaa bbbb ISH Einlesen über langsamen Leser (Konsol-Teletype)
aaaa bbbb IFH " " schnellen Leser
aaaa bbbb OSH Ausstanzen auf langsamen Locher (Konsol-Teletype)
aaaa bbbb OFH " " schnellen Locher

Mit aaaa ist die erste, mit bbbb die letzte Adresse des Kernspeicher-Bereichs gemeint.

Gelesene und gelochte Streifen haben Hexa-Format (s. Anhang).

- 107 -

Programmier- Hinweise

VORBEMERKUNG

Dieser Abschnitt enthält einige Hinweise für die Programmierung des MINCAL 621,
die sich aus der Multiprogramming-Struktur und der Art der Peripherie-Schaltungen
ergeben und beachtet werden sollten.

PROGRAMM-ANFANG

Jedes Programm sollte mit der Instruktion

ECL

beginnen; damit wird der Ebenenwechsel freigegeben.

Bei Rechnen mit Netzausfallschutz ist eine weitere Maßnahme vorzusehen. Sobald das
Netz wiederkehrt, werden alle Flip-Flop-Schaltungen nullgesetzt. Das N-Register je-
doch wird auf die Adresse ’4W00 gesetzt, das ist das erste Byte im ersten Kernspeicher.
Dort ist eine Anfangsroutine vorzusehen, die aus folgenden Elementen besteht;

- DCL-Befehl (Befehlsbyte auf ’4209)

- Laden der Programmstand-Speicherregister aller benutzten Ebenen mit
den erwünschten Anfangsadressen

- Indirekter Sprung über das Programmstand-Speicherregister

Wird irgendeine Ebene gestartet, entweder bei Wiederkehr des Netzes automatisch die
Ebene ß (wenn Netzausfallschutz so beschaltet) oder von außen bzw. durch die Rech-
ner-Uhr irgendeine andere Programmebene, so läuft dieses Programm in der jeweiligen
Ebene richtig und springt dann auf die Anfangsadresse des Programms der gestarteten

Ebene. Dort muß (und dies ist je Ebene vorzusehen) entweder sofort oder nach wei-
teren, vom Benutzer zu bestimmenden Instruktionen der Befehl ECL stehen, um den

DISABLE-Zustand wieder aufzuheben und Multiprogrammierung zu ermöglichen.

" Register-Adressen SQ/P1 der einzelnen Ebenen

- 103 -

Beispiel für eine Anfangsroutine;

ANF DCL Unterbrechung verhindern
2=*LDC,(@ ,’404% .
2=xSTA ,@ ‚De für Ebene

2=%*LDC ‚(@ ’ 4aB8p } u n]

2=%STA ‚,@ ‚dig
2=% LDA ‚@ ‚STAF) n it F

2=* DA ,(@ ‚'ARFp
JPX , , N) Sprung zum Anfang

ANF liegt auf Adresse ’4PWV. Die Startadressen der Ebenen P bzw. | werden auf
feste Werte ("4040 bzw. ’408P) gesetzt, während für Ebene F der Inhalt des Spei-
cherplatzes STAF (+ folgender) als Startadresse maßgebend ist. Für die Lage der Pro-
grammstandspeicher im Pool ist angenommen, daß jede Ebene 16 byte als Register-
plätze hat; daraus ergeben sich die absoluten Adressen Pad, "AWid bzw. ’PRFR
für die Ebenen $, 1 bzw. F.

RECHNER-UHR

Die Zentraleinheit des MINCAL 621 kann eine Rechner-Uhr (real-time-clock) erhal-
ten. Sie besteht aus einer Untersetzerschaltung, die vom quarzgesteuerten Taktgene-
rator des Rechners betrieben wird und in Abständen von wahlweise 1, 10, 100 oder
1000 ms den Start einer Ebene bewirkt. Taktabstand und gestartete Ebene werden
durch Beschaltung in der Zentraleinheit festgelegt.

Die Uhr kann vom Programm her blockiert und freigegeben werden, indem man die
BUS-Adresse ’3FFF mit 9 oder einer rechtsbündigen 1 belegt:

no Fer ' Uhr AUS (unwirksam)

LDC,@ ‚|
STA ,& ‚'SFFF } Uhr EIN (wirksam)

Durch die Taste RS und durch die Nullstellung bei Netzwiederkehr wird die Uhr in
den AUS-Zustand gebracht.

- 109 -

PROZESS-EIN/AUSGABEN

Für die Prozeßperipherie des MINCAL 621, d.h. alle Ein/Ausgabeschaltungen, die
sich nicht auf Geräte, wie z.B. Fernschreiber, Leser, Locher usw. beziehen, sind
die BUS-Adressen ’2@@@...’3FFF vorgesehen, also 8192 verschiedene Adressen. (Bei
eingebauter Uhr ist die letzte dieser Adressen - '3FFF - für diese reserviert).

Der Datentransfer zwischen CPU und Prozeßperipherie geschieht in der gleichen Wei-
se wie der zwischen CPU und Kernspeicher, d.h. über den Universal-BUS und die
BUS-bezogenen Befehle.

Beispiele: LDA, (W ,’200@ Eingabe ’2P@% nach (@

EXT3: Q ,'2F78 Eingabe von EXT (= ’2F78)
LDA,REG7 ‚ ’EXT3,IXR + IXR nach REG7

6=%STA, (@ ,’S3A@F Ausgabe (@ (+ 5 folgende Bytes)
nach ’3@@F (+ 5 folgende
Adressen)

Je Adresse können Daten von 1 byte Länge ausgetauscht werden; Ein- und Ausgabe
sind in Verbindung mit der gleichen Adresse möglich, wenn im Interfacedie entspre-
chenden BUS-Anschlüsse berücksichtigt werden. Außer dem Befehl LD... können auch
die Befehle AD..., SB..., OR..., AN... und EO... verwendet werden, wenn dies
zweckmäßig erscheint. Als Adressierungsarten kommen ...A (absolut) und ...X (indi-
rekt) in Betracht; im letzteren Falle ist ein 2-byte-Indexregister (gerade Basisadresse)
zu wählen, in dem die externe Adresse steht.

GERÄTE-PERIPHERIE

Die Geräteperipherie des MINCAL 621 hat den BUS-Adreßbereich ’109@...’IFFF.
Dabei ist zu beachten, daß bei den meisten Gerätetypen mehr als ein Flip-Flop-
Register von Byte-Lünge im Interface enthalten und dementsprechend mehrere Adres-
sen vorgesehen sind.

Jedem Gerät ist eine aus zwei Hexa-Ziffern bestehende Gerätenummer gg zugeordnet,
jedem Interface-Register eine weitere Hexa-Ziffer f. Aus diesen baut sich die BUS-
Adresse auf:

"Iggf = BUS-Adresse Register f für Gerät gg

Damit können maximal 64 Geräte mit je 16 Interface-Registern von Byte-Lünge ange-
sprochen werden. Jedes Interface und damit jedes Gerät kann, wenn entsprechend
beschaltet, einer bestimmten Programmebene zugeordnet werden. Dadurch vervielfacht
sich die Zahl der möglichen Geräte, denn in diesem Falle wird - bei gleicher

- 110 -

Geräte-Nummer - immer jeweils das Interface angesprochen, welches der jeweiligen
Programmebene zugeordnetist.

Typische Interface-Schaltungen wie die für den 8-Kanal-Fernschreiber (Teletype ASR
33) und für den schnellen Streifenleser und -locher haben jeweils 2 Interface-Regi-

ster von Byte-Länge mit den Adressen;

"Igg® = Datenregister
"Iggl = Statusregister

Das Datenregister bewirkt den byte-weisen Datenaustausch zwischen Periphergerät und
Universal-BUS.

Das Statusregister steuert die Ein/Ausgabe und hat folgende Einzelfunktionen:

Bit 9 = READY
1 = IBUSY
2 = OBUSY
3 = LOCK
4 = INITIATE
5...7 = (nicht benutzt)

IBUSY bzw. OBUSY leitet den Ein- bzw. Ausgabevorgang ein (wenn gleichzeitig
READY ausgeschaltet ist). Ist der Ein- bzw. Ausgabevorgang beendet, z.B. ein
Zeichen ausgedruckt, schaltet sich READY selbsttätig ein; es bewirkt einen Start der
zugehörigen Programmebene, wenn nicht LOCK gesetzt ist. INITIATE hat eine be-
sondere Funktion: Es löst z.B. bei Lesen den Transport des Streifens aus und muß da-
her beim angebauten langsamen Leser des Teletype und beim schnellen Leser zugleich
mit IBUSY vom Programm eingeschaltet werden.

Zur Ein/Ausgabe über die Geräteperipherie werden im Normalfalle die Makrobefehle
der LIBRARY ausreichen. Jeeoch kann der Benutzer anhand der folgenden Beispiele
Ein/Ausgaben auch in Einzelschritten programmieren.

Ein/Ausgabe im Multiprogramming:

Diese auf die Struktur des MINCAL 621 zugeschnittene Betriebsart beruht darauf, daß
nach Anstoß des Ein- oder Ausgabevorgangs die jeweilige Programmebene ausgeschal-
tet wird, um anderen Ebenen Gelegenheit zur Benutzung der Recheneinheit zu geben.
Mit Ende des Vorgangs wird die auslösende Ebene wieder gestartet, und das Programm
läuft weiter.

- 111 -

Ausgabe:

Eingabe:

Zunächst wird ein Register XOS mit dem Bitmuster PAR Kid (= ’AA)
geladen, um bei jeder folgenden Ausgabe das Statusregister im Inter-

face richtig zu bedienen (OBUSY ein, alle anderen aus);

LDC,XOS, 4

Je Ausgabevorgang ist dann zu programmieren (gg = Geräte-Nummer):

STA,DAT ‚’1Iggf (Datenregister laden)
STA,XOS,’Iggl (Statusregister laden)
HLT

Der erste Befehl lädt das Datenregister des Interfaces mit dem im Register
DAT stehenden Byte, der zweite stößt die Ausgabe an. Dann folgt ein
Halt. Mit Ende des Ausgabezyklus’ wird die Ebene wieder gestartet, und
das Programm läuft weiter.

Zunächst wird ein Register XIS mit dem Bitmuster PQOQ Auie (= ’22)
geladen, entsprechend dem Statusregister-Inhalt bzw. den folgenden
Eingabebefehlen (IBUSY ein, alle anderen aus):

LDC,XI5,’22

Dies gilt z.B. für die Tastatur des Teletype) Für dessen Leser, ebenso
für den schnellen Leser 2), ist stattdessen das Bitmuster Baal Bid (= ’12)
vorzusehen (zusätzlich INITIATE ein):

LDC,X1S,’12

Dann folgt je Eingabevorgang (gg = Geräte-Nummer):;

STA,IXS ‚’Iggl (Statusregister laden)

HLT
LDA,DAT, ’Iggß (Datenregister holen)

Der erste Befehl löst den Eingabevorgang aus; dann folgt ein Halt. Mit
Ende des Eingabezyklus’ wird die Ebene wieder gestartet, und der dritte
Befehl transferiert den Inhalt des Datenregisters, d.h. das gelesene Byte,
ins Register DAT.

) Makrobefehle K... der LIBRARY

2) Makrobefehle R... der LIBRARY

- 112 -

Abschluß: Nach einer Folge von Ein- oder Ausgaben, in jedem Falle jedoch vor
einem gewünschten Programm-Halt, muß das READY-Bit im benutzten
Interface rückgesetzt werden, da sonst der Halt durch den infolge von
READY dauernd anstehenden Programmstart überlaufen wird. Dies ge-
schieht z.B. durch die Befehlsfolge (gg = Geräte-Nummer):

LDC,(@ ‚Q
STA, (a ‚’Iggl (Nullstellen Statusregister)

Bemerkung: Während der oben beschriebenen Ein/Ausgaben darf der Rechner nicht im
DISABLE-Zustand sein, da der Programm-Halt (HLT) nicht wirksam
würde. Statt LD... können bei der Eingabe auch andere BUS-bezogene
Befehle benutzt werden (mit dann anderer Funktion), statt absoluter kann
indirekte Adressierung verwendet werden, ebenfalls Indizierung über ein
Indexregister, sofern nur die effektive BUS-Adresse gleich der vom Sta-
tus- oder Datenregister ist.

Ein/Ausgabe mit Warteschleifen:

Diese Betriebsart ist insbesondere dann von Nutzen, wenn ein Geräte-Interface, dessen
Daten- und Statusregister keiner Ebene fest zugeordnet sind, von einer beliebigen Pro-
grammebene aus bedient werden soll.

Hierbei ist zunächst das LOCK-Bit des Statusregisters jedesmal zu setzen, um einen
Start der Programmebene, auf die das READY-Flip-Flop des Interfaces im Normalfall
auch bei den übrigen nicht ebenen-gebundenen Geräten wirkt, zu verhindern. Das
bedeutet ein anderes Bitmuster beim Vorbereiten der Register XOS bzw. XIS:

LDC,XOS,’PC (Ausgabe)

oder LDC,XIS ‚BA (Eingabe ohne INITIATE)
oder LDC,XIS ‚’1A (Eingabe mit INITIATE)

Im übrigen ist die Programmierung für Ein- und Ausgabe gleich denen für Multipro-
gramming-Betrieb, jedoch werden die Halt-Befehle (HLT) ersetzt durch die Befehls-
folge (gg = Geräte-Nummer):

LOOP: LDA ,@ ‚’Iggl (Laden Statusregister)
BNOC,& , ’ßl ,‚,LOOP (Rückverzweigen bis READY ge-

setzt)

die so lange als Abfrageschleife läuft, bis mit READY der Vorgang beendet ist. Im
Prinzip hat diese Betriebsart den gleichen Ablauf wie die Multiprogramming-Ein/
Ausgabe; jedoch ist der Rechner währenddessen für alle Programmebenen mit niedri-
gerer Priorität gesperrt.

- 113 -

KONSOL-PERIPHERIE

Ein 8-Kanal-Fernschreiber (Teletype ASR 33) mit eingebautem Streifenleser und
-locher sowie ggfs. je ein schneller Streifenleser und -locher bilden die Standard-
Peripherie eines MINCAL 621; sie werden als Konsol-Peripheriegeräte bezeichnet.
Die Interfaces hierfür haben folgende Spezifikationen:

Fernschreiber: Geräte-Nummer: 99

BUS-Adresse Datenregister: ’ 100%

BUS-Adresse Statusregister: ’ 101

Druckwerk: Ausgabe programmieren

Locher: Ausgabe programmieren; Locher vorher manuell
einschalten (Druckwerk läuft mit) 1)

Tastatur: Eingabe programmieren ohne INITIATE,,
Leser; Eingabe programmieren mit INITIATE

Schnelle Lochstrei- Geräte-Nummer: ’'9
fengeräte: BUS-Adresse Datenregister: ’1@1Q

BUS-Adresse Statusregister: ’1@11

Locher; Ausgabe programmieren 2)

Leser: Eingabe programmieren mit INITIATE

Die Interface-Register der Konsol-Peripherie sind nicht ebenen-gebunden; das bedeu-
tet, daß sie von allen Programmebenen aus bedient werden können (und im übrigen,
daß die Geräte-Nummern ’AP und ’P1 an kein anderes Gerät gleich welcher Ebene
vergeben werden dürfen). Der durch READY bewirkte Start (bei Ende Ein/Ausgabevor-
gang) startet jedoch stets Ebene 9.

" bzw. Makrobefehle K... der LIBRARY

2) bzw. Makrobefehle R... der LIBRARY

- 114 -

Bedienung

Zur Kontrolle des Computers ist eine Bedienungskonsole vorgesehen, über die die
wichtigen Register und Zustände angezeigt werden und außerdem Daten eingegeben
werden können. Der Computer kann aber auch ohne Bedienungskonsole betrieben
werden.

L__1-) T-T-T- IT 01

© st |colHt|Rs| Beforloekew Nm! 7lsisjs|3[2J:1Jo

fe

m: mincal 62I

Über ein 8-bit-Schalter-Register (Switch-Register) - Schalter 0...7 - können Daten
in bestimmte Flip-Flop-Register, in Pool-Adressen und in BUS-Adressen gegeben wer-
den.

Über dem Schalter-Register befindet sich ein 8-bit-Lampenfeld, das den Zustand von
Flip-Flop-Registern, Pool-Adressen und BUS-Adressen anzeigt.

Links neben dem Switch-Register ist ein 4-bit-Schalterfeld, über das das N-Register
(Instruktionszähler) und das M-Register angewählt werden können. Da beide Register
2-byte-Länge haben, wird jeweils die rechte Hälfte (NR, MR) mit den niedrigwer-
tigen Bits oder die linke Hälfte (NL, ML) angewählt.

Die angewählten Register werden in dem Lampenfeld angezeigt. Bei Betätigen der
Taste SW (aus dem Schalterfeld links neben der Registeranwahl) wird der Inhalt des
Switch-Registers in das angewählte Register übertragen und gleichzeitig angezeigt.
Sind weder ML, MR noch NL, NR angewählt, wird das A-Register angezeigt.

Durch gleichzeitiges Betätigen von NR und ML wird das B-Register und durch Betä-
tigen von NR und MR das P-Register angezeigt.

Im dritten Schalterfeld von rechts sind außer der Taste SW (Switch) noch die Tasten
DE (Deposit), DI (Display) und BS (Bootstrap) enthalten.

- 115 -

Durch Betätigen der Taste DE wird der Inhalt des Switch-Registers in die Adresse
übertragen, die durch das M-Register angewählt wird.

Mit der Taste DI wird der Inhalt der Adresse angezeigt, die durch das M-Register
angewählt ist (Voraussetzung: Tasten NL, NR, ML und MR sind in Ruhestellung).

Mit dem Schalter BS wird das eingebaute Bootstrap-Programm angewählt. Dieses
Programm wird ausgeführt, wenn man zusätzlich die Taste ST (START) im Schalter-
feld ganz links betätigt.

Im Schalterfeld ganz links gibt es folgende Tasten und Schalter;

RS (Reset): Hiermit werden alle Flip-Flops des Rechners in die Ausgangsstellung ge-
bracht.

Schalter HT (Halt): Ein laufendes Programm kann mit diesem Schalter angehalten wer-
den. Das N-Register, Pool- und BUS-Adressen lassen sich in diesem Zustand anzeigen
und ändern.

Betätigt man dann die Taste GO (Go), so wird eine Instruktion ausgeführt; danach
wird wieder angehalten.
Wird der Schalter HT wieder in die Ruhestellung gebracht, so läuft nach Betätigen
der Taste GO das Programm weiter.
Läuft kein Programm (die Lampe über der Taste ST leuchtet in diesem Falle nicht),
so führt ein Betätigen der Taste GO bei gleichzeitig eingelegtem Schalter HT zur

Inkrementierung des M-Registers.

Mit der Taste ST (Start) wird die Ebene P des Computers gestartet. Die Lampe über
dieser Taste leuchtet auf, sobald eine Ebene gestartet wurde und das Programm läuft.

Links auf der Bedienungskonsole ist ein Schlüsselschalter mit 3 Stellungen: In der
1. Stellung ist der Computer ausgeschaltet, in der 2. Stellung ist das Netz einge-
schaltet, und die Lampe über dem Schalter leuchtet. In der 3. Stellung ist das Netz
eingeschaltet (Lampe leuchtet), aber alle Schalter und Tasten der Bedienungskonsole
sind verriegelt.

Läuft das Programm, so sind auch bei nicht verriegelter Bedienungskonsole alle Schal-
ter und Tasten wirkungslos (Ausnahme: HT).

Nach dem Einschalten der Spannung mit dem Schlüsselschalter (die Lampe über dem
Schalter leuchtet) ist der Computer betriebsbereit, und ein Programm kann über die
Taste ST oder von außen über einen BUS-Start gestartet werden; danach leuchtet
die Lampe über der Taste ST.

Während das Programm läuft, wird über das Lampenfeld der F-Kanal des Rechners
angezeigt. Ist der Schalter HT nach unten geschaltet, so hält das Programm an. Im

N-Register steht die Adresse des Befehlsbytes der Instruktion, die als nächste ausge-
führt wird.

- 116 -

Bei angehaltenem Rechner können alle Flip-Flop-Register ohne Einfluß auf das Pro-
gramm verändert werden. Bei Ändern des N-Registers wird das Programm bei der
neuen Adresse fortgesetzt. Der Inhalt von N muß das Befehlsbyte einer Instruktion
adressieren.

Bei angehaltenem Rechner (oder wenn kein Programm läuft) können Pool- und BUS-
Adressen angezeigt und geändert werden: Die niedrigwertigen 8 Bits der gewünsch-
ten Adresse werden im Switch-Register eingestellt (Schalter betätigt = 1). Danach
wird MR angewählt und durch Betätigen der Taste SW der Inhalt des Switch-Regi-
sters nach MR übertragen. Dieser Wert wird gleich angezeigt. Dann stellt man die
8 höherwertigen Bits der Adresse im Switch-Register ein, bringt MR in die Ausgangs-
stellung und schaltet ML ein. Durch erneutes Betätigen der Taste SW wird dieser
Wert übernommen und angezeigt. Danach wird auch ML in die Ruhelage gebracht.
Durch Betätigen der Taste DI wird nun der Inhalt der eingegebenen Adresse im Lam-
penfeld angezeigt. Will man diesen Wert ändern, so stellt man den neuen Wert im
Switch-Register ein und betätigt die Taste DE. Zur Kontrolle kann man anschlie-
ßend noch DI betätigen.

Will man mehrere aufeinanderfol gende Adressen anzeigen oder ändern, kann man bei
ausgeschaltetem Programm und nach Einlegen des Schalters HT mit der Taste GO das
M-Register um jeweils I erhöhen. Mit SW wird nur die Ausgangsadresse in M einge-
geben und anschließend auf die beschriebene Weise erhöht.

Über den eingebauten "Bootstrap" kann ein Ladeprogramm (Lader) eingelesen werden.
Hierzu legt man den Lochstreifen mit dem Lader in den Leser des Teletype oder den
schnellen Leser ein (jeweils auf den Zufuhrbereich). Nach Betätigen des Schalters BS
und der Taste ST wird der Lochstreifen in die ersten 256 Bytes des MOS-RAMs einge-
lesen (bei der schnellen Lochstreifeneinheit muß außerdem der Schalter 4 des Switch-
Registers eingelegt werden). Nach dem Einlesen des Laders ist die Adresse PAWP über
die Bedienungskonsole mit dem Wert PORAIEAR (binär) geladen. Startet man dann über
die Taste ST den Rechner, wird das Ladeprogramm ausgeführt.

- 117 -

Aufbau

Der MINCAL 621 besteht aus einem geschlossenen Gehäuse, das vorne von der
Frontplatte (oder einer Blindplatte) abgeschlossen wird. Hinten befindet sich der
Netzanschlußstecker. Hier werden auch die Kabel eingebauter Interfaces und das
BUS-Kabel herausgeführt.

Die Kühlluft für den Rechner wird von vorn angesaugt (unter der Frontplatte). Sie
geht durch einen Filter, das leicht gereinigt werden kann, an den Komponenten
des Computers vorbei und wird nach hinten herausgeblasen.

In dem Gehäuse befindet sich unten der Kernspeicher (oder ein ROM), der waage-
recht eingebaut ist. Darüber ist die CPU waagerecht montiert, die auch die Stecker
für die Frontplatte, den Kernspeicher und die senkrecht gesteckten Leiterplatten für
Optionen, für das MOS-RAM, die Ebenensteuerung und die Interfaces (bzw. den
BUS) enthält.

Über der CPU befindet sich die hochklappbare Stromversorgung.

Stecker für
b hvon oben gesenen Interfaces bzw.

BUS

nd

nu u |
Stromver-

sorgungs- I”Kernspeicher-
Stecker Stecker

|
STROMVERSORGUNG on |

Klapprichtung au
der Stromver-

sorgung
U MOS-RAM-
_ t 4 Stecker

Stecker für
CPU en 77° Optionen

| Frontplatten-
[7 Stecker

TT I
— LLIIJ [ILS DIL [LIT IIITIJ 0 Frontplatte

- 113 -

Bei der Stromversorgung blickt man auf die Leiterseite des Regelbausteins der Strom-
versorgung.

Auf der Leiterseite sind die wichtigsten Meßpunkte durch Beschriftung gekennzeich-
net.

Bei der Inbetriebnahme des Rechners sind folgende Meßpunkte auf ihre Sollwerte
gegen den Massemeßpunkt ("L" Telefonbuchse) zu überprüfen:

Bezeichnung

+Z
+T
+R
-R
+Z
2
+H
-H

Meßwert Toleranz Bemerkung

+5 V +2% Telefonbuchse
+12 V +5% Meßöse
+18 V +20 % "
-18 V +20 % "
+5 V +2% "
-5 V +2% "
+15 V +2% "
-15 V +2% "

Für die Betriebsspannungen befinden sich Potentiometer an der zur Frontplatte zeigen-
den Leiterplattenkante. Von der Frontplatte aus gesehen haben diese Potentiometer von
links nach rechts folgende Reihenfolge:

Bezeichnung

+Z
s%*

N*

+T

+Zp

+B%*
=Zg

-B*

-H -

+H

Funktion

Spannungshöhe der +Z
Strombegrenzung der +Z
Ansprechschwelle des Netzausfallschutzes
Spannungshöhe der +T

u n +Zp

ua 1 +B

u u -Zp

n u _B

n " —_H

u 1 +H

* Diese Potentiometer dürfen nicht verstellt werden!

Folgende Spannungen werden durch Überspannungsschutzschalter überwacht:

- 119 -

Bezeichnung Einschaltstellung

+Z Knebel zeigt zur Rückwand
+H u u 11 u

-H Stift ist eingedrückt
+T [1 Rt at

nn‘-Z,

Netzsicherungen

Zwischen Stromversorgung und Rückwand befinden sich zwei Sicherungen.
Eine defekte Sicherung wird durch Aufleuchten der Sicherungsschraubkappe angezeigt.

Die rechte Sicherung (von der Frontplatte gesehen) ist für den Transformator Tr. |
(+Z; +T; RR).

Die linke Sicherung ist für den Transformator Tr.2 (-R; +Zp; -Zp; +H; -H).

Sicherungen zum Schutz der Batterien

Auf der Bestückungsseite des Regelbausteins befinden sich zwei Schmelzsicherungen.
Sie schützen die Batterien vor einem Kurzschluß im Entladezustand.

- 120 -

Anhang

MINCAL 62]

Konsole:

MOS-RAM:

Kernspeicher:

Ebenen:

Parity/Clock:

Pufferung:

Netzausfallschutz:

Interfaces:

OPTIONEN (Zentraleinheit)

Frontplatte mit Bedienungskonsole
einschließlich Bootstrap-Loader

Erweiterung um 1 bis 7 Einheiten zu je 256 Byte (bis Ak Byte)
(je 2k auf einer MOS-RAM-Karte)

4k byte/1 us (erfordert Stromversorgung Typ 1)
8k byte/0.65 ps
16k byte/0.65 u. (erfordert Stromversorgung Typ 2)

2 oder 16 Programmebenen
Angabe der Register-Byte je Ebene erforderlich (16, 32,
64, 128 oder 256)

Paritäts-Erzeugung und -Prüfung je Byte für Kernspeicher
(9. Bit ist stets vorhanden)
Angabe, ob Rechner-Stop oder Start Ebene bei Parity-
Fehler erfolgen soll
+

Echtzeit-Uhr (von 10 MHz der CPU abgeleitet)
Angabe über Periode (1, 10, 100, 1000 ms) und gestartete
Ebene erforderlich

Eingebaute Batterie-Pufferung für MOS-RAM bei Netzausfall
(überbrückt 24h bei Ik MOS-RAM)

Schützt Kernspeicher-Inhalt bei Netzausfall. Bei Wieder-
kehr des Netzes Wiederstart bei Adresse ’1000 möglich
(Ebene f)

Die CPU enthält Einbauraum für 3 Interface-Karten,

einschließlich einer eventuellen Anschlußkarte für den

Universal-BUS

- 121 -

OPERATIONSZEITEN MINCAL 62]

Befehlsgruppe Operationsdauer (us) + je Mehrfachausführung (us)

min. max. min. max.

Steuerbefehle 1.7 2.4

DO 1.7 2.4

Zustandsabfrage 1.9 2.6

Schiebebefehle 2.5 3.2 1.2 1.2

Bedingter Sprung 1.9 6.0 0.6 1.5

BUS-bezogene Befehle 2.8 8.5 1.2 1.7

Die Dauer der Befehle ist innerhalb der angegebenen Grenzen im wesentlichen von der
Anzahl der abgefragten Bytes, d.h. der Länge der Instruktions-Strings abhängig; außer-
dem hängt sie davon ab, ob Operanden im POOL (MOS-RAM) oder im Kernspeicher
liegen.

BUS-Befehle, die sich auf die Peripherie beziehen, verlängern sich um die je Inter-
face eingestellte BUS-Transferzeit, wenn diese größer als 1 us ist.

Die oben angegebenen Zeiten gelten für den 4k-Kernspeicher mit I us Zykluszeit.

- 122 -

HEXA-FORMAT-LOCHSTREIFEN

nm s _ NUL-

Lochung
00000.oo0o

2°°00.000 RUBOUT- |,Streifen-
7 0000.0007 Lochung vorlauf

00000.o0o0o
) . o
00 . 9 1. Byte AB

o 0 . „eerschritt
oo oo

oo oo | 2. Byte 3C
o o . Leerschritt

nn n

9 00 o

o 00 o Byte mit Adresse ...F 12
o oo . eerschritt
5 o.0o 0 }Wagenrücklauf
5 o 0.0 Zeilenwechse|
5 oo oo
Ö oo .00 Byte mit Adresse ...Q FF

oo Leerschrit

000 o
oo oo | letztes Byte 9E
oo . Leerschritt

_\ Streifen-Nachlauf
_ _ (NUL-Lochung) nr

Inhalt

/ N

c
o 7654.32]Konal

Pa
ri

tä
ts

bi
t

-

Tr
an

sp
or

tl
oc

h-

- 123 -

‘3cöN

n©
5B

uay2ıa
°

y
2
1
8
z

NO®Roc

Ö
-
Q
x
©IBan

OD©o°UIUI<

o
n°X

u
s
y
2
ı
o
7

.32]87654.32]87654

)
®

®
®

®
]

®
®

©
®

©
®

®
®

®
e
o

se
.

®
e
i
®

e
e

®
.
@

o
e
.
»

®
®

e
s

8
®

®
.
.
s
“
s
®

ee
8
1
8
2
8

©
®

®
e
.
.
.
,
.
—
’
,
"
.
.
:

e
e
i
l
s
j
i
e
i
e
i
o
r
e
,
e
o

©
so
e
.
.
.
.
©
.

e
.
i
®
@

®
e
ı
8

oe
o
/
|
e
;
i
8
8

©
.
,
e
o
,
e
i
e
i

si
8
8

os
©

.
e
.
.
.
.
.
.
.

oO
oO

0
1
0

0
1
0

oO
6)

0
1
0

oO
0
:
0

oO
0
1
0

B
S
<
a
V
A
u
V
I
_
A
Y
X
A
Z
S
Z
O
L
I
L
n
H
-
D
>
S
X
>

N
U
u
-
n
=
*
|

®
®

®
®

®
®

®
@

®
®

®
®

®
®

®
.
|
e

s
o

®
“
.
.
o

s
e

®
e
;
®

s
e
o

s
e
e

®
®

s
e
o
e

e
i
e
j
e
i
e

e
i
o
.
.
;
.
.
.
e

®
/

©
e
e
.
e
i
o
e
o
'
i
e
i
e
|
®

.
e
e
.
i

e
o
i
e
i
o
e
i
e
l
o
|
/
i
o
!
/
e

e
i
e
i
9
o

0
/
8
;

@e

.
.
©
.

.
o

.
o
e
.
o
.
.
o
.
.
.
,
.
S
C
S
I
E
I
e
©

.
“
i
e
o
e
i
s
j
e
i
e
i

oe;
9
8
j
e
i
o
|
)
e

e
.
o
‚
e
a
ı
e
o
i
e
i
s
’
i
e

oO
oO

0
1
0

1
0

oO
oO

o
O
I
O
o

oO
0
I
0

oO
0
0

I
-

F
H
N
o
ö
n
K
r

-
N
G

n
n
n
o

N
o

.
V
ı
i
N
e
o

Transport-
lochung

Parity-
Bit

Transport-
lochung

Parity-
Bit

o e = Dateninhalt |]u (Zeichen 94P)
bedeutet Leerschritt Lochung im Streifen

Stromschritt (MARK)

- 124 -

Zeichen

NULL
SOM
EOA
EOM
EOT
WRU
RU
BELL
FEQ
H-TAB
LINE FEED
V-TAB
FORM
RETURN
so
SI
DCR
X-ON
TAPE ON
X-OFF
TAPE OFF
ERROR
SYNC
LEM

sp
S]
52
53
54
55
56
57

ACK
ALT MODE
ESC
RUB OUT

ASCII-Code Steuerzeichen

Kanal

87654.32] Bedeutung

o ®
fo) o

sie
° .\®

.\e e

.|ee
o .|e oe
o e|.

e|. ®
eo’. |e Zeilenvorschub

o e. joe
..e

o e.o| e Wagenrücklauf
o ei. oe

e. eo ee
© ®

o ®
o o

o ® ee
. |.e

o . |./o je
o oe |./ee

. |.jeeie
ee.

° ee. e
° .eo. e

.ie.| |oieo
o eie|.io

eeo.e |e
ee. ele

o eo ./ooie

ole/eiele|.|®
eoo0o.e ie
eieieo . eo
.sioo. eo.

Parity- Transport-
Bit lochung

oe = Dateninhalt]
Lochung im Streifen
Stromschritt (MARK)I

o
n

- 125 -

Bohrungen für

Teleskopschiene

Abmessungen MINCAL 621

- 126 -

Steckerbelegung: Universal-BUS

2a 2c la Ic

OV 1 S3 +45 V 1 +5 V
O0 V 2 S2 +12 V 2 +12 V
0 V 3 S] -5 V 3 -5 V
0 V 4 so -12 V 4 -12 V
BE 5 GE L15 5 L15
FE 6 RK 114 6 L14
N 7 frei L13 7 113
D7 8 " L12 8 L12
D6 9 " L11 9 [11
D5 10 u L1O 10 L1O
D4 1] u L 9 11 L 9
D3 12 u L 8 12 L 8
D2 13 " L7 13 L7
DI 14 " L 6 14 L 6
DO 15 u L5 15 L5
A15 16 A15 L 4 16 L 4
AI1l4 17 A14 L 3 17 L 3
A13 18 A13 L2 18 L2
Al2 19 Al2 L1 19 L1
All 20 All LO 20 LO
AI1O 2] A10 O0 V 2] S15
A 9 22 A 9 0 V 22 S14
A8 23 A838 0 V 23 S13
A7 24 A7 0 V 24 S12
A6 25 A 6 0 V 25 sıl
A535 26 A5 0 V 26 S10
A 4 27 AA4 O0 V 27 Ss 9
A 3 28 A3 0 V 28 Ss8
A2 29 A2 0 V 29 S7
Al 30 Al 0 V 30 Ss 6
AO 3] AO 0 V 31 55
0 Vv 32 0 V 0 V 32 S 4

Stecker 2 Stecker

32 1 32 1

Leiterplatte Bestückungsseite

Leiterplatte

! |
32 a

32 c Stecker
- 127 -

Stecker für BUS-Anschluß:

Stecker an Interface:

ERNI Federleiste

Typ: STV-N-364
Best.-Nr... 9722.343.00]

ERNI Messerleiste

Typ: STV-P-364
Best.-Nr.: 97.22.333.001

- 128 -

