HANDBUCH

i 427
il

Computer
SYSTEME

B EE=a

JTTIITNES Y [0

c S

omputer e oo
Koélner StraBe 115

SYSTE M E 7602133 488541

HANDBUCH

DIETZ

Dietz bietet immer etwas mehr

Ausgabe:

Herausgeber:

Druck:

Oktober 1971

Heinrich Dietz

INDUSTRIE-ELEKTRONIK

433 Miilheim a.d. Ruhr, Kolner Stralle 115
Telefon: (021 33) 488541 - Telex: 08567 70

Hoppe + Werry KG, Miilheim a.d. Ruhr

DIETZ in Kurzform
Uber den neuen MINCAL
Computer-Fibel
Struktur
Maschinenbefehle
ASSEMBLER
LIBRARY

MONITOR
Programmier-Hinweise
Bedienung

Aufbau

Anhang

Inhalt

Seite

32

52

76

95

104

108

115

118

121

DIETZ in Kurzform

Die Firma HEINRICH DIETZ INDUSTRIE-ELEKTRONIK besteht seit 1951. Das Pro-
gramm war und ist die industrielle Automation mit elekironischen Mitteln. Diese
Mittel sind heute Computer.

Der Weg fihrte von elekironisch geregelten Getrieben Uber KompensationsmefBgerdte
und Analogrechner zur Digitaltechnik, tber den DIGIVERTER (den ersten deutschen
Digitalumsetzer) zu den ZDE-Anlagen und mit dem Aufkommen der Halbleiter als
industrielle Baukomponenten zum COMBIDAT-System.

1965 wird das COMBIDAT=-System durch die ersten technischen Kleincomputer aus
Deutschland, die MINCAL-Digitalrechner, erweitert. In dieser Zeit enisteht eine
Rechner-Familie von festprogrammierten Kleincomputern mit der Bezeichnung
MINCAL 0, MINCAL E, MINCAL Q und MINCAL 1 und einem speicherprogram-
mierten Computer, dem MINCAL 3.

Auf die Computer der ersten Generation folgt 1968 der MINCAL 4, der erste in
Deutschland entwickelte ProzeBrechner in integrierter Technik. Mit dem MINCAL 4
wurde die Multiprogramming-Struktur und die 19-bit-Wortldnge eingefuhrt.

Diese beiden Eigenschaften finden sich auch bei dem MINCAL-500-System, das 1969
auf den Markt gebracht wird. Dieses erfolgreiche ProzefBrechner-System umfafit heute
den festprogrammierten Computer MINCAL 513 und sein speicherprogrammiertes Gegen-
stiick, den MINCAL 523.

Heute entwickeln und fertigen in Mulheim 200 Mitarbeiter nicht nur Computer, son-
dern auch Computer-Peripherie und Standard-Software. AuBlerdem liefert DIETZ
schlisselfertige Computer=Anlagen einschlieBlich Planung, Systemanalyse, Ausarbei-
tung der Anwenderprogramme und der ProzefBperipherie.

DIETZ COMPUTER SYSTEME ist ein Begriff geworden fur ein eigenstindiges Entwick-
lungskonzept. Auch der MINCAL 621 ist ein Teil dieser Gesamtkonzeption.

Uber den neuen MINCAL
Mit dem MINCAL 621 stellt DIETZ einen neuen Computer der MINCAL-Serie vor.

D as Konzept dieses Computers berticksichtigt die Erfahrungen 7-jdhriger erfolgrei-
cher Computer-Entwicklung und verwendet modernste Technologien. Der attraktive
Preis ist nicht durch Weglassen wichtiger Funktionen erreicht worden, sondern durch
eine neuartige Konzeption, die im Bereich der Kleincomputer ganz neue Mafstibe
sefzt.

Multibyte-Struktur: Die gesamte Verarbeitung einschlieBlich der arithmetischen Be-
fehle ist auf eine beliebige Anzahl von (bis zu 256) Bytes bezogen. Die Linge der
Verarbeitung wird durch einen DO-Befehl bestimmt, der vor dem Multibyte-Befehl
steht. Diese Hardware-Losung ist flexibel, speichersparend und vor allem schnell.

MOS-Speicher: Es stehen 256 Universalregister zur Verfigung, die als Akkumulator,
Indexregister, schneller Datenspeicher und auch als schneller Programmspeicher ver-
wendet werden konnen. Bei einem 16-Ebenen-Rechner kann dieser Satz von 256
Universalregistern sogar 1é6-mal vorhanden sein.

Diese maximal 4096 Register sind in einem superschnellen MOS=-Speicher realisiert,
dessen Inhalt vor Verlust bei Netzausfall geschiitzt werden kann.

Multiprogramming=Struktur: Der MINCAL 621 bietet dem Benutzer bis zu 16 Unter=-
rechner mit eigenem Instruktionszihler, eigenen Akkumulatoren, Indexregistern, Da-
tenspeichern und eigener Peripherie. Diese Unterrechner benutzen abwechselnd die
eigentliche Recheneinheit, gesteuert von ihren Prioritdten. Bei entsprechender Prio-
ritat kann am Ende jedes Befehls ein anderer Unterrechner oder, besser ausgedrickt,
eine andere Programmebene die Recheneinheit benutzen. Dabei missen weder von der
Hardware noch durch ein Organisationsprogramm Speicher- oder Register-Inhalte ge-
rettet werden. Jede Ebene verfugt tber maximal 256 eigene Register. Multiprogram=-
ming ist extrem einfach, denn fur jede Aufgabe gibt es eine vsllig unabhingige Ebe-
ne.

Universal-BUS: Kernspeicher, Peripherie, Recheneinheit und eventuelle Massenspei-
cher verkehren Uber einen Universal-BUS miteinander. Programmgesteuerter Datenver-
kehr und direkter Speicherzugriff bedienen sich des gleichen Datenkanals. Die Peri-
pherie und der Speicher werden vollig gleich behandelt, so daB sich die Programmie-
rung von Ein- und Ausgaben vereinfacht und trotzdem an Flexibilitdat gewinnt. Bei
direktem Speicherzugriff wird die Zentraleinheit nicht bertihrt und kann bis zu ihrem
néchsten Speicherzugriff intern weiterarbeiten. Naturlich erlaubt das BUS-Konzept
den AnschluB3 beliebig schneller Speicher.

Flexible Adressierung: Die BUS-bezogenen Befehle konnen vielfdltig adressiert
werden: CONSTANT (die AdreR-Bytes werden unmittelbar als Operand verwertet),
REGISTER (die ebenen-zugehsrigen Register werden angesprochen), RELATIVE (der
Operand steht bis zu 127 bytes vor bzw. nach dem Befehl), ABSOLUTE (der ge-
samte Speicherbereich kann durch eine 16-bit-Adresse angesprochen werden. Zu-
sdtzlich kann die so gebildete Adresse noch indiziert werden, Uber eines von ma-
ximal 127 Indexregistern.

Bedingter Sprung: Alle Entscheidungen werden durch bedingte Springe gefallt, bei
denen das Programm relativ um bis zu 127 byte vorwirts oder riickwirts verzweigt.
Besondere Befehle testen beliebige Bits oder Bitgruppen auf O- oder 1-Zustand.

Zweiadref3-Befehle: Alle BUS-bezogenen Instruktionen sind Zweiadre3-Befehle, ein
bei Kleincomputern ungewshnlicher Komfort.

Hardware-Bootstrap: Ein Bootstrap-Programm ist in einem ROM gespeichert und ist
durch Tastendruck aufrufbar.

Zusidtzliche Optionen: Interfaces fur Standard-Peripherie im Rechner-Gehduse.
Real-Time-Clock. Netzausfallschutz. Memory Parity. 4, 8 oder 16k byte Kern-
speicher im Rechner-Gehduse.

Software: Assembler und Makro-Assembler. Bibliothek mit Ein/Ausgabe~Paket, Dop-
pelwort= und Gleitkomma-Paket. Test-Monitor.

Allgemeine Spezifikationen MINCAL 621

Typ: Universal -Computer fir ProzeBanwendungen, technisch-wissen~
schaftliche Zwecke und allgemeine Datentechnik

Wortldnge: 8 bit (1 byte)
Ein- und Mehrbyte=Verarbeitung vorgesehen
(Einzelbefehle 1- bis 256-mal ausfuhrbar)

Arbeitsspeicher (Pool): MOS-RAM mit 0,25k byte
erweiterbar auf 4k byte
Zugriffszeit 0,2 us
Vollzyklus 0,4 us
auf Wunsch batteriegepuffert
enthalt Register und Datenplitze

K ernspeicher: 4k, 8k oder 16k byte
extern erweiterbar auf 48k byte
Zugriffszeit 0,4 us (4k); 0,3 us (8, 16k)
Vollzyklus 1,0 us (4k); 0,65 us (8, 16k)
enthdlt Programm und Daten

Technologie: integrierte Schaltkreise (TTL, TTL-MSI)

Instruktionen: 9 BUS-bezogene Befehle mit Register~, relativer, indirekter
oder absoluter sowie indizierfer Adressierung
7 Konstantenbefehle
32 bedingte Sprungbefehle
4 Schiftbefehle
1 Mehrfachausfihrungsbefehl
5 Steuerbefehle
2 Zustandsabfragebefehle

Instruktionsldnge : 1...5 byte je nach Befehlstyp
Operationsdauer: min. 1,7 us; max. 8,5 us (bei 1 us Speicherzyklus)
Arbeitsregister: max. 254 je Ebene oder 1 fester Akku je Ebene (programmier-

bar) (1...254 byte lang)
Indexregister: max. 127 je Ebene (2 byte oder 1 byte lang)

Ebenen: 2 Programmebenen mit hierarchischer Prioritdt
erweiterbar auf 16 Ebenen (Option)

Interrupt:

Universal -BUS:

Rechner-Uhr:
(Option)

Bedienungskonsole:

(Option)

Grofle:

NetzanschluB3:

Interfaces in
Rechner-Gehtuse
(Option)

Wechsel der Programmebene bei Ende jeder Operation moglich
(DO-Befehl und folgender Befehl gelten als 1 Befehl)

Standard-Schnittstelle mit 8-bit-Daten-Ein/Ausgang, 8-bit-
AdreBausgang, Ebenenausgang und Interrupt-Eingang fur
Speicher und Peripherie

10 MHz-Quarz (Taktgenerator)
fest einstellbarer Untersetzer fur 1 ms-, 10 ms-, 100 ms- und
1 s=Starts

enthdlt zentrale 8-bit-Anzeige und zentralen 8-bit-Schaltersatz,
ferner Tasten fur Laden, Speichern, Start, Stop, Nullsetzen
sowie Boofstrap~-ROM

19"~Einschub
5 Einheiten hoch (ca. 225 mm)
ca. 500 mm tief

220 V, 50 Hz einphasig
ca. 150 VA

E/A-Interface fur 8-Kanal-Fernschreiber (Teletype)
ASClI-Code, 110 Bd

Interfaces fur 8-Kanal-Streifenleser und -Streifenlocher

Computer-Fibel

Dies soll eine kleine Hilfe fur alle die Benutzer des MINCAL 621 sein, die noch
keine Erfahrung mit Computern und Computer-Terminologie haben. Ein Computer hat
nichts Geheimnisvolles an sich; um seine Prinzipien zu verstehen und mit ihm um-
zugehen, muB8 man nur folgerichtig denken und diese Denkschritie sorgfdltig formu=
lieren konnen.

BINARZAHLEN

Computer behandeln Zahlen anders, als wir es gewohnt sind. Alle Elemente in einem
Rechner kénnen nur zwei verschiedene Zustinde unterscheiden und behandeln:

1. Positive Spannung

2. Keine Spannung

Zwischenwerte kennt ein Computer nicht. Der Zustand: "Es besteht die halbe posi-
tive Spannung" ist nicht méglich, es sei denn, der Computer streiki.

Alle Elemente, die nur zwei Zustdnde kennen, nennt man DIGITAL. Darum heif3t
der Computer auch Digitalrechner.

Der Einfachheit halber nennt man den einen Zustand "1" und den anderen "0".

Rechnen kann man mit O oder 1 erst, wenn man mehrere Elemente miteinander kom-
biniert. Kombinieren wir versuchsweise drei digitale Elemente, drei Lampen, und
tberlegen, wie viele Moglichkeiten es gibt, wenn jede Lampe leuchten oder dun-
kel sein kann:

O O O oder 000 0
o o X* 001 1
0 -0 010 2
O X 0r 011 3
-0 © 100 4
g o1 s
X 0- 0 110 6
08 308 r 110 7

"Lampe leuchtet" soll einer 1 und "Lampe ist dunkel" einer O entsprechen.

Das sind 8 verschiedene Kombinationen; allgemein gilt die Regel, daf be§3
n-Elementen 2" Kombinationen msglich sind. In diesem Beispiel sind es 2° = 8
Kombinationen, die wir (rechte Spalte) mit O bis 7 bezeichnen. Das sind Zah-
len im Ublichen Dezimalsystem, das die Ziffern von 0 bis 9 benutzt. Von die-
sen zehn Ziffern hat das System seinen Namen (lateinisch zehn = decem).

Links neben den Dezimalzahlen ist eine weitere Zahlenreihe. Jedes Element aber
nimmt nur zwei verschiedene Zustdnde an (0 und 1). Deshalb spricht man hier
von einem Dual-System (lateinisch zwei = duo). Gebrduchlich ist auch der Aus-
druck BINAR-Zahlen. Einzelne Bindrelemente oder Bindrstellen werden als BIT
bezeichnet. Es ist ein Kunstwort aus dem Englischen: binary digit = Bindarstelle.
Als Hauptwort fur die Bezeichnung eines Elementes wird es grof geschrieben
(Bit), als MaBeinheit fur die Anzahl von Bindrstellen klein (bit).

Zdhlen und Rechnen mit Bindrzahlen erfolgt nach den gleichen GesetzmiBigkeiten
wie im Dezimalsystem. Beim Zuhlen z.B. addiert man ganz rechts eine 1 so lange,
bis die letztmoglichen Ziffern erreicht sind. Will man dann weiterzdhlen, so be-
ginnt man mit der kleinsten Ziffer eine Spalte weiter links. Beim Dezimalsystem
mufl man nach der 9 eine neue Spalte "ersffnen", beim Dualsystem nach der 1.
Die einzelnen Spalten haben nun eine unterschiedliche Wertigkeit. Beim Dezimal-
system sind es von rechts beginnend die Wertigkeiten 1, 10, 100, 1000 usw., oder

anders ausgedrickt, die Potenzen zur Basis 10 (10Y,]O], 102, 103 cel)e
Beim Dualsystem haben die Spalten die Wertigkeiten 1 = 20, 2 = 2‘, = 22,

8 = 2 usw. Hier sind es also die Potenzen zur Basis 2.

Bindrzahlen haben beim Rechnen den groBen Vorteil, dafl das ganze Einmaleins
heif3t:

1 mal O

1l
o

und

Il

1 mal 1

Ebenso einfach ist das Addieren und Subtrahieren. Der Nachteil besteht aber dar-
in, dafl Bindrzahlen leicht sehr lang und unubersichtlich werden.
So sieht bindr die Zahl 2819 so aqus:

101100000011

Da dies sehr unubersichtlich und auBerdem schwer zu behalten ist, greift man zur
HEXA-DEZIMAL-Darstellung. Hierbei faBt man jeweils 4 Bindrstellen zusammen:

- 10 -

1011 0000 0011

Jedes dieser Pickchen wird nun je nach seinem Inhalt durch eine der Ziffern
0...9 oder A...F ersetzt, wobei folgende Zuordnung gilt:

0000
0001
0010
001
0100
0101
0110
011
1000
1001
1010
101
1100
1101
1110
1

(= dezimal 10)
(11)
(12)
(13)
(14)
(15)

L T | T RV A | (I T

TMOO®P> CONOCUAWN—O

Die Bindrzahl aus dem vorigen Beispiel heiflt in hexa~dezimaler Schreibweise “BO3":

1011 0000 0011
—— agad (gl
B 0 3

Natirlich arbeitet der Computer mit Bindrzahlen, die hexa-dezimale Schreibweise
ist nur eine Vereinfachung fur den Benutzer.

DAS RECHNEN MIT BINARZAHLEN

Ublicherweise kann ein Computer, wenn er rechnet, nur addieren. Die Subtrakiion
wird durch eine spezielle Addition ersetzt; Multiplikation wird durch wiederholtes
Addieren, Division durch mehrfaches Subtrahieren erzielt. Alle anderen arithmeti=-

schen Operationen lassen sich auf die vier Grundrechenoperationen zuriickfuhren.

Wie addiert und subtrahiert man Bindrzahlen?

- 11 -

Nehmen wir 4-stellige Bindrzahlen und rechnen 5 + 4 = 9:

o 1 0 1 (= 5)

o 1 0 o0 (= 4)

GD/ ®/= Ubertrag
0 0 1 (= 9)

oder 7 + 3 =

0 1 (=7)

c?f c?f g
0 1 0 (= 10)

Wichtig hierbei ist, da man beachtet:

141 =0 + Ubertrag und
1 4+ 1 + Ubertrag = 1 + (neuer) Ubertrag

Negative Zahlen werden als ZWEIER-KOMPLEMENT der entsprechenden positiven
Zahl dargestellt. Das Zweierkomplement erhdlt man, indem man alle Bits in ihr
Gegenteil verkehrt (aus einer 0 wird eine 1 und umgekehrt; hier spricht man vom

EINERKOMPLEMENT) und anschlieBend rechts eine 1 addiert.

Beispiel:
0000 0001 (=1
alsos 1111 1110 (= Einerkomplement von 1)
1111 1110
+ 1
1111 1111 (= Zweierkomplement von 1)

- 12 -

Da das Zweierkomplement eine negative Zahl ist, muBte das Ergebnis bei einer
Addition von +1 und =1 Null sein:

0000 0001 (= +1)
+ 1111 1111 (= -1)

@ 0000 0000 (= 0)

Wie wir sehen, stimmt die Annahme allerdings nur, wenn man den vordersten Uber-
lauf unberucksichtigt laBt.

Der Computer fthrt nun eine Subtraktion durch, indem er den Subtrahenden nega-
tiv macht und dann addiert.

Beispiel: 19 -5=14

+$=0000 0101
1111 1010

1111 1011

[

Einerkomplement von §

1

Zweierkomplement von 5

also:
0001 0011 (= +19)
11711 1011 (= -5)
0000 1110 (= 14)

Negative Bindrzahlen erkennt man daran, dafB das duBerste linke Bit gleich 1 ist.

- 13 -

DATEN UND WORTE

Zu den Hauptfunktionen, die ein Computer ausfihren kann, gehdrt das Speichern
von DATEN. Das sind Bindrzahlen, dber auch Namen, Texte und Anweisungen,
die der Programmierer dem Computer gibt, damit dieser weifl, was er zu tun hat.
All diese Daten werden in bindrer Form gespeichert als irgendein Bit-Muster.

Der Computer hat eine Reihe von Speichermedien. Da sind einmal die Flip-Flop-
Speicher, sehr schnelle, aber dofur ziemlich teure elektronische Speicher. Dann
gibt es den Magnetkernspeicher, der etwas langsamer ist, aber dafir sehr viele
Bits speichern kann. Neuerdings setzt man auch hochintegrierte Flip=Flop=Speicher
in MOS-Technik ein, die genau die Mitte zwischen Kernspeichern und Flip-Flops
bilden.

Bei allen Speichern ist immer eine bestimmte Anzahl von Bits zusammengefaflt. Diese
Bits werden auf einmal abgelegt, addiert oder anderweitig behandelt. Die Anzahl
Bits, die so zusammengefaB3t ist, ist von Computer zu Computer unterschiedlich.
Innerhalb eines Computer=Typs ist sie aber fur alle Speicher gleich und stellt eine
wichtige KenngroBe dar, die WORTLANGE. Ein Packchen zusammengefaBter Bits
nennt man ein WORT.

Weit verbreitet ist das 8-bit~Wort; man bezeichnet es als "BYTE".

REGISTER UND SPEICHER

Flip=Flop=Speicher von Wortltnge bezeichnet man als REGISTER. Allerdings kommt
es auch vor, dafl Register ldnger als ein Wort sind, z.B. 2-byte-Register (= 16-bit-
Register).

Der KERNEPEICHER ist in der Lage, sehr viele Worte zu speichern. Im allgemeinen
sind es 27 = 4096 Worte (man spricht hier von 4k) oder ein Vielfaches hiervon.
Will man ein bestimmtes Wort herausholen (lesen), so muf8 man dem Kernspeicher
eine zusdtzliche Information, die ADRESSE, geben, damit das richtige Wort gefun-
den wird. Jede SPEICHERZELLE hat also eine feste Adresse, aber einen variablen
Inhalt von Wortldnge.

Adressen sind ebenfalls bindr aufgebaut. Bei einem 4k-Speicher sind alle Adressen
durch 12-stellige Bindrzahlen - also 12 bit - darstellbar; Ubersichtlicher bezeichnet
man sie mit 3-stelligen Hexa-Dezimalzahlen:

1. Adresse 0000 0000 O0OOCOO 000
2. Adresse 0000 0000 00O01 001
Usw.

vorletzte Adresse 1 1 11 1111 1110 FFF
letzte Adresse 1111 T111 1111 FFF

- 14 -

Inhalt jeder
Zelle:
1 Wort mit
n bit

FFF
FFE

FFD
FFC
FFB
FFA
FF9
FF8
FF7
FF6
FF5

FF4
FF3
FF2
FFI

009
008
007
006
005
004
003
002
001
000

Adressen der
Speicherzellen
(hexa-dezimal)

4k~Kernspeicher

Der MOS-Speicher ist genauso organisiert wie der Kernspeicher. Aber ein grofer
Teil der Adressen erfullt die gleichen Funktionen, die friher von Flip~Flop-Regi-
stern erfullt wurden. Deshalb ist es tblich, hier ebenfalls von REGISTERN zu spre-
chen. Register allerdings, deren Inhalt noch in wirkliche Flip-Flop-Register tber-
tragen werden muB, bevor man mit ihm arbeiten kann.

- 15 -

DAS PROGRAMM

Speichern und Wiederauffinden von Daten ist zwar fur einen Computer wesentlich,

aber er kann noch mehr: Mit diesen Daten rechnen, sie manipulieren, ausgeben
oder von auBen aufnehmen. Aber all dies muB ihm genau vorgeschrieben werden.
Dann fihrt er die gegebenen Anweisungen blitzschnell und sklavisch genau aus.

Das Erstellen solcher Anweisungen nennt man PROGRAMMIEREN. Eine Folge von
Anweisungen ist ein PROGRAMM, und die einzelnen Anweisungen werden als

INSTRUKTIONEN bezeichnet.

Ein fertiges Programm nimmt der Computer auf, indem er es Instruktion fur Instruk-
tion im Kernspeicher ablegt. Wenn man dann den Rechner startet, liest er die er-
ste Instruktion aus dem Speicher und fihrt sie aus; dann liest er die zweite Instruk-
tion, fuhrt sie aus, dann die dritte und so fort, bis er schliellich eine Instruktion

findet, die ihm sagt, daB er nun anhalten soll.

Um die Instruktionen aus dem Speicher zu lesen, benttigt der Computer eine Adres-
se. Diese Adresse muf3 natirlich "mitlaufen™ und immer die Instruktion adressieren,

die gerade ausgefihrt werden soll. Dieses "Zdhlen" der Adressen Ubernimmt der

INSTRUKTIONSZAHLER (oder auch N-Register).

Die aus dem Speicher gelesenen Instruktionen werden in einem anderen Register ge-
speichert. Dieses Register erzeugt Steuersignale fir das RECHENWERK (das eigent-
lich ausfuhrende Organ des Computers) und bestimmt, mit welchen Daten gearbeitet

werden soll.

Kernspeicher
LN] I N |
i
[Instruktion 1 . +T [nstrukfion 3
' Instroktion 2 2. Schritt: TnstrukFion 2
{_ TeFroRFionT Ausfihren Instruktion 1 [PSTTUKtion
Lo - »,| Instruktion und Erhshen von N Instruktion 1
1.Schritts)
Lesen Instrukfi um

Steuersignale

ko

Sféuersiénale

Instruktion 3

b », Instruktion 2
3. Schritt: Instruktion 1
Lesen Instruktio

Instruktion

- 16 -

Im Kernspeicher des Computers stehen neben den Instruktionen auch die Daten, mit
denen der Computer arbeitet. Natirlich kann nicht direkt im Kernspeicher gerech-
net werden, sondern nur mit den Registern des Rechenwerkes. Das Haupt-Arbeits-
register ist der AKKUMULATOR (oder (@ -Register). Besonders komfortable Computer
verfugen tber mehrere Akkumulatoren, die wahlweise benutzt werden kdnnen.

Ein wichtiger Arbeitsvorgang ist der Transport von Daten, z.B. aus dem Speicher
in das (@ -Register (LADEN, LOAD) oder aus dem (@ -Register in den Speicher
(SPEICHERN, STORE).

M Speicher 5 Laden aus Adresse M:
P < M>@
@ | Arbeitsregister
. Speichern in Adresse M
M Speicher <@ >+M
| @ | Arbeitsregister

(@ ist das Symbol fir das Arbeitsregister, M das fur einen beliebigen Speicher-
platz, und < ...> bedeutet "Inhalt von ...".

Bemerkenswert bei diesen Transportvorgédngen ist, daB8 beim Datenempfang der alte
Inhalt zerstort oder Uberschrieben wird, beim Senden aber erhalten bleibt. Beim
Transport <M>—=(@ haben anschlieBend M und (@ den gleichen Inhalt, ném-
lich den urspringlich nur in M gespeicherten.

Will der Programmierer Daten aus einer Kernspeicheradresse in eine andere trans-

portieren, so geht das nur Uber das Arbeitsregister. Seine beiden Anweisungen lau-
ten dann in symbolischer Form:

LDA, @ ,Ml
STA, @ ,M2

- 17 -

Symbolisch bedeutet hierbei, daB die Befehle (Laden, Speichern) durch Abkir-
zungen (LDA, STA) und die Adressen durch NAMEN (M1, M2) - anstelle von

z.B. hexa-dezimalen Adressen - angegeben sind. Das Signal (@ bestimmt, mit

welchem Arbeitsregister gearbeitet werden soll. Nur Computer mit mehreren Ar-
beitsregistern benstigen daher diese Angabe.

Wenn der Computer diese beiden Instruktionen ausfuhrt, geschieht folgendes:

'I:AA? 1. Operation
Laden aus Adresse M1
< M]>—>@
@
. 2. Operation
M2 Speichern in Adresse M2
MI <(@ >—=M2
| @ |

An diesem Beispiel kann man erkennen, welche Angaben der Computer benstigt:

- Was ist zu tun? (Laden, Speichern)
Diese Angabe nenni man den BEFEHL

- Um welchen Speicherplatz handelt es sich? (M1, M2)
Diese Angabe nennt man die ADRESSE. Den Inhalt der Adresse, also
der Wert, mit dem gearbeitet wird, bezeichnet man als OPERAND.

- Mit welchem Arbeitsregister soll gearbeitet werden? (@)
Diese Angabe nennt man die zweite Adresse.

- 18 =~

Der Inhalt der (ersten) Adresse heiflt OPERAND.

Beim MINCAL 621 sieht eine Instruktion so aus:

v v v
Befehl AKKUMULATOR ADRESSE
1. Byte: enthdlt den Befehl
2. Byte: enthdlt die Adresse des Arbeitsregisters.

Sie wird nur dann angegeben, wenn man nicht mit dem Standard-
Akkumulator arbeiten will.

3.+4. Byte: enthdlt die Operanden-Adresse.

Der Computer versteht nicht die symbolischen Befehle, sondern nur den MASCHI-
NENCODE. Mit einem Ubersetzungsprogramm, dem ASSEMBLER, wandelt er das

SYMBOLISCHE Programm in Maschinencode um. Fiur die 2 obigen Befehle hatten

wir folgendes Maschinencode-Ergebnis (Voraussetzung: M1 = Speicheradresse 01E2
und M2 = 01E3; @ist der Standard-Akkumulator, deshalb keine 2. Adresse):

Befehl Adresse
I ' | | ’ | L ’ |
8 c 0 1 E 2 DA, @ ,M1)
E c 0 1 E 3 (STA, @ ,M2)

MASCHINENBEFEHLE

Aber was kann der Programmierer dem Computer auBerdem befehlen, was kann der
Computer noch?

Da sind einmal die Befehle Addieren und Subtrahieren. Addieren bedeutet, daf die

Bindrzahl, die in einer Speicheradresse steht, zum Inhalt des Arbeitsregisters ad-
diert wird:

- 19 -

ADA, @ , M3
Addition
e - M3 <@> + < MD>—~@

Befehl Adresse

l } l I J L ‘ | Addierer

Die Subtraktion lduft genauso ab, nur wird zwischen M3 und den Addierer ein
Glied geschaltet, welches das Zweierkomplement des Operanden bildet.

AuBer den arithmetischen Verknupfungen zwischen Operand und Arbeitsregister
gibt es noch die logischen Verknupfungen

Logisches UND: 010011 <@ > ANA, @ , Mn
011101 <Mn>
010001 <(@ > Ergebnis

Beim logischen UND erhdlt man pro Bindrstelle als Ergebnis nur dann eine 1, wenn
beide verknupften Worte an dieser Stelle eine 1 enthielten. In allen anderen Fallen
erhdlt man als Ergebnis eine 0.

Inklusives ODER: 010011 <@ > ORA, @ ,Mn
011101 <Mn>
011111 <(@ > Ergebnis

Bei inklusivem ODER erhdlt man pro Stelle als Ergebnis eine 1, wenn eines der
Worte oder beide an dieser Stelle eine 1 enthielten. Nur wenn beide Bits 0 waren,
erhdlt man als Ergebnis eine 0.

- 20 ~

Exklusives ODER:

010011 <@ > ECA, @ ,Mn
011101 < Mn>
001110 <(@ > Ergebnis

Beim exklusiven ODER erhdlt man pro Stelle als Ergebnis eine 1, wenn die ver-
knupften Worte an dieser Stelle ungleiche Bindrziffern enthielten. Bei gleichen
Bindgrziffern erhdlt man eine 0.

Diese logischen Verknupfungen benstigt man zum Zerschneiden und Zusammensetzen
von Daten und zum Fesistellen, ob zwei Bindrmuster gleich oder ungleich sind.

AuBler den Befehlen, die einen Operanden mit dem Akkumulator verkntpfen, gibt
es auch Befehle, die nur den Inhalt des Arbeitsregisters auf eine bestimmte Weise
verdndern. Hierzu gehoren die Schiebebefehle. Der Inhalt des Akkus laBt sich
rechts oder links verschieben, und das offen und geschlossen. Was hierbei passiert,
kann man am besten an den Beispielen erkennen:

Schiften links offen

10011101 <@> 5LO,
/////////© @
@ 00111010 <@> Ergebnis

Jedes Bit wird um eine Stelle nach links verschoben; das vorderste Bit geht verlo-
ren, und rechts wird eine O ergénzt.
Schiften links geschlossen (Rotieren)

10011101 <«@> SLC, @

AR AR
00111011 <@> Ergebnis

Jedes Bit wird um eine Stelle nach links verschoben; das vorderste Bit wird in die
rechts freiwerdende Stelle Ubertragen.

Entsprechend lguft das Schiften rechts ab:

- 21 -

Schiften rechts offen

©\J°°]]]OI' <@> spo, @
'0100]1]0\ <(@ > Ergebnis

Schiften rechts geschlossen (Rotieren)

10011101 <@ > SRC,(@
NN NN
1001110 <@ > Ergebnis

AuBerdem kennt der Computer noch Instruktionen, mit denen er sich stevern laBt,
z.B. Anhalten nach Erledigung der gestellten Aufgabe (Halt; HLT).

EIN- UND AUSGABE

Der Computer kann Daten von auBen aufnehmen oder seiner Umgebung vermitteln.
Die PERIPHERIE, d.h. die mit dem Computer verbundene Umwelt, wird wie der
Speicher behandelt. Jedes an den Computer angeschlossene Gerdt, mag es nun
eine Schreibmaschine, ein Lochstreifenleser oder -stanzer, eine MeBstelle, eine
Anzeigeeinheit oder sonst etwas sein, bekommt eine EXTERNE ADRESSE (oder
GERATEADRESSE) zugeteilt, und Informationen werden in Form von Worten ausge-
tauscht, ~ wie beim Speicher. Die Verteilung der Daten erfolgt ebenfalls uber das
Arbeitsregister.

Cine typische Befehlsfolge fur einen Ausgabevorgang sieht so aus:

1) Laden Datenwort aus Speicher LDA, @ ,D1
2) Ausgabe Datenwort an Peripherie STA, @ ,P1

D1 = Kernspeicher-Adresse und

P1 = Externe Adresse.

~ 1

1. Schritt] S1

Peripherie
PP]
Q 7 2sehrine | P2

D1

-22 -

Normalerweise verstehen die Peripherie-Gerdte nicht den Bindrcode, mit dem der
Computer rechnet. Sie haben ihren eigenen, z.B. den ASCll-Code. Dieser Code
kommt auch in den Lochstreifen vor, die der Computer liest oder stanzt.

Ein Lochstreifen ist so aufgebaut:

——» Leserichtung

Kandgle <
<«— Transportloch

—Nw H»Oro N

Zeichen

Ein Zeichen auf dem Lochstreifen besteht aus 8 Lochreihen und einem kleineren
Transportloch.

Die 8 Locher (oder Nichi-Lscher) werden mit einem Mal gelesen und in das Ar-
beitsregister Ubernommen:

2/ 20
N N O O A O O

8 o—-—

7 o————

6 o

Kanﬁ|e<ii

3 o-

2 o

1 o—

- 23 -

Jeder Buchstabe und jede Ziffer hat ein bestimmtes Code-Zeichen, zum Beispiel
beim ASCII-Code:

Kanal 87654321 hexa-dez. ASClI-Code~

Bit Ve 0 Darstellung Bedeutung
00110000 30 Ziffer 0
10110001 B1 " 1
10110010 B2 " 2
00110011 33 " 3
10110100 B4 n 4
00110101 35 " 5
00110110 36 u 6
10110111 B7 u 7
10111000 B8 n 8
00111001 39 9
01000001 41 Buchstabe A
0100001 42 " B

Usw .

Der Kanal 8 tragt keine eigentliche Information. Er ist zur Kontrolle da und sorgt
daftr, daB immer eine gerade Anzahl von Lochern gestanzt ist (PARITY-Bit).

Wird z.B. eine Ziffer eingelesen, so interessieren nur die rechten 4 Bit, denn sie
entsprechen genau dem Bindrcode. Also schneidet man die restlichen 4 Bit ab, in-
dem man das ASClI-Zeichen und eine MASKE durch UND verknipft:

35 0011 0101 = Ziffer 5 (ASCII)
OF 0000 1111 = Maske
05 0000 0101 = Ziffer 5 (Bindr)

Bei einer Ausgabe fugt man die fehlenden Bits durch inklusives ODER wieder hinzu:

07 0000 0111 = 7 (Bindr)
BO 1011 0000 = Ergdnzung
B7 1011 0111 = Ziffer 7 (ASCII)

- 24 -

WIR SCHREIBEN EIN PROGRAMM

Um nun all die gesammelten Erkenntnisse anzuwenden, wollen wir jetzt ein klei-
nes Programm schreiben. Und zwar wollen wir 2 Zahlen eingeben, sie zueinander
addieren und das Ergebnis anschlieBend wieder ausgeben.

EAA LDA , (@ ,EXT (Eingabe 1. Zeichen)
ANA,(@ ,MASK (Maske)
STA (@ ,ZWS (Zwischenspeichern)
LDA ,(@ ,EXT (Eingabe 2. Zeichen)
ANA, (@ ,MASK (Maske)
ADA (@ ,ZWS (Addition)
ORA , (@ ,ASCI (Ergtinzung)
STA ,(@ ,EXT (Ausgabe Ergebnis)

MASK: H gF
ASCl: H ,Bg
ZWS: \'%

EXT:

3]

R (Gerite-Adresse)

Hierzu ein paar Hinweise: Das Programm soll einen Namen haben: EAA (Eingabe/
Addieren/Ausgabe), der als MARKE vor die erste Instruktion geschrieben wird.

Da im Programm Zwischenspeicher und Masken benutzt werden, missen diese auch
im Programm definiert werden, jeweils mit einer Linksmaske. Das geschieht mit den
Symbolen V (VARIABLE) und H (Hexa-dezimaler FESTWERT). Mit Q wird dem sym-
bolischen Gerdtenamen EXT die Adresse P@F1 zugewiesen. Die @ (Null) wird durch-
gestrichen, um sie vom O (Oh) zu unterscheiden.

SPRUNGE UND SCHLEIFEN

Was geschieht, wenn der Computer dieses Programm ausgefthrt hat? Er wird weiter-
laufen und MASK als eine Instruktion auffassen. Das aber muB verhindert werden;
andernfalls macht der Computer Unsinn. Ein ordnungsgemiBies Weiterlaufen erreicht
man durch einen SPRUNG (oder VERZWEIGUNG) im Programm, z.B. zum Programm-
teil XYZ.

- 25 -

Eingabe
Addition
Ausgabe

Dann muB an die Stelle der drei Punkichen die Instruktion: JPA, , XYZ gesetzt
werden. Damit wird der Instruktionszdhler auf die Anfangsadresse des Programmteils
XYZ gesetzt.

Oder man kann auch nach EAA zurickverzweigen:

JPA, , EAA

Nun wiederholt sich der beschriebene Vorgang immer wieder.

Eingabe
Addition
Ausgabe

I

Aus dieser Programmschleife kommt der Computer allerdings nie wieder heraus. Er
liest Zahten, adddiert sie und druckt das Ergebnis aus, und das ohne Ende.

Will man nur eine bestimmte Anzahl von Additionen durchfuhren, so muB ein Zish-
ler mitzithlen und bestimmen, wann aufgehsrt werden soll. Dieser Zshler ist das
INDEXREGISTER. Es zdhlt jeden Durchlauf mit, und durch eine ABFRAGE stellt

der Computer fest, ob schon der Endwert, z.B. 100, erreicht ist.

- 26 -

g — IXR

EAA

99 mal

IXR+1 = IXR

Wenn nein, geht das Programm nach EAA zurick, wenn ja - nach dem 99. Durch-
lauf "= nach XYZ.

Das zugehsrige Programm sieht so aus:

LDC,IXR,H#
EAA ...
Programm EAA

IEC ,IXR,100,XYZ
JPA, EAA

LDC,IXR,# bedeutet, daB dés indexregister IXR mit einer Konstanten (CONSTANT) @
geladen wird. Konstante heifit, daf3 die Adresse direkt als Qperand genommen wird
(und nicht ihr Inhalt!).

IEC,1XR,100,XYZ bedeutet: Addiere zu IXR eine 1 und springe, wenn der Inhalt
gleich der Konstanten 100 ist, nach XYZ. Andernfalls laufe weiter auf die nichste

Instruktion.

Solche Schleifenbildungen kommen in Programmen sehr hdufig vor, und deshalb kann
ein Computer gar nicht genug Indexregister haben.

- 927 -

UNTERPRO GRAMME

In unserem Programm EAA stort aber noch, daB die Eingabe zweimal programmiert
worden ist, was Platz kostet. Naturlich kann man das auch Uber eine Programm-
schleife erledigen. Besser ist fur solche Fdlle ein UNTERPROGRAMM, in das man
Uber einen UNTERPROGRAMM-SPRUNG gelangt:

CSA,RET,EIN

Hierbei geschieht zweierlei: Erstens springt das Programm an die Stelle EIN, und
insoweit verhdlt es sich wie ein normaler Sprung. Vorher aber wird der Instruktions-
zihlerstand als RUCKKEHRADRESSE in das Register RET Gbertragen.Am Ende des Un-
terprogramms, das die Befehle fur Eingabe und Abspeichern enthdlt, ist ein RUCK-
SPRUNG ins HAUPTPROGRAMM (an die Stelle nach dem Aufruf CS...) vorzusehen

mit:
JPX,RET

Dies heiBt: Springe indirekt Uber den Inhalt des Registers RET.

INDIREKT bedeutet, dafB nicht zum Register RET gesprungen werden soll, sondern
daB der Inhalt des Registers RET das Sprungziel angibt. Und hier steht ja die Ruck-
kehradresse .

Hieran sieht man, dafB die programmierte Adresse (ndmlich RET) gar nicht die Adres-

se ist, mit der gearbeitet werden soll, Deshalb unterscheidet man auch die' program-
mierte Adresse von der EFFEKTIVEN ADRESSE.

- 28 -

Unterprogramm EIN

3

1 Zeichen
\/1/—\
Maske
v
O

Das Programm EAA sieht nun so aus:
EAA
r EIN
<@- = zws
[EIN
@+ZWS—> @
1 Zeichen

- 29 -

1 Zeichen lesen

Maskierung

Rucksprung

Unterprogramm EIN

Zwischenspeichern

Unterprogramm EIN

Addition

Ausgabe

ADRESSIERUNG

Mit Ausnahme des JPX waren bisher programmierte Adresse und effektive Adresse
gleich. Aber es gibt auch noch andere Fille, wo beide Adressen nicht Uberein-
stimmen; das liegt daran, daB der Computer verschiedene Arten der ADRESSIERUNG
kennt. .

In den ersten Beispielen wurde der Speicher und auch die Peripherie ABSOLUT ad-
dressiert, gekennzeichnet durch den Buchstaben A bei den Befehlen

LDA LOAD ABSOLUTE
oder STA STORE ABSOLUTE

Die absolute Adresse ist 16 bit lang, und damit lassen sich 64k Speicherzellen adres-
sieren. Die effektive Adresse ist gleich der programmierten Adresse.

AuBerdem haben wir beim Rucksprung aus dem Unterprogramm die INDIREKTE Adres-
sierung kennengelernt. Hierbei ist die effektive Adresse gleich dem Inhalt der pro-
grammierten Adresse:

LDX LOAD INDIRECT

Die "CONSTANT-Adressierung" ist ebenfalls schon erldutert worden. Hier ist die
programmierte “Adresse" der Operand selbst:

LbC LOAD CONSTANT

Neben diesen Adressierungsarten gibt es noch die RELATIVE (oder LATERALE) Adres-
sierung. Hierbei geht man von der Annahme aus, dafl viele Speicherpldtze und
Sprungziele in der Nahe der Instruktion stehen. Der Vorteil der relativen Adressie-
rung ist, daB man mit einer 8-bit-Adresse auskommt; und dabei jeden Platz errei-
chen kann, der nicht weiter als 128 Adressen rickwirts bzw. 127 Adressen vorwiris
liegt:

~
+127

Programmstand —» s / > 512 Bytes (relativ adressiert)
/ | -128

N

A

- 30 -

Bei relativer Adressierung ist die effektive Adresse gleich der Adresse der Instruk-

tion + programmierter Adresse:

BLOCKDIAGRAMME

LOAD RELATIVE

Nachzutragen bleibe eine Erkldrung der grafischen Symbole. Sie sind Bestandteile
von BLOCKDIAGRAMMEN (Programmablaufpldnen) und sollen den Programmverlauf
anschaulich darstellen. Die Kdstchen werden durch Pfeile so miteinander verbunden,
wie sie im Programm aufeinanderfolgen. Wichtige Symbole sind:

7 — IXR

EIN

eiche
esen

h 150

ABC

- 3--
26

Allgemeine Verarbeitung:
Ein Kastchen fur alles, woftr es kein spezielles
Késtchen gibt.

Unterprogramm=-Aufruf

Bedingte Verzweigung mit Ausgdngen fur JA und
NEIN

Manuelle Eingabe aus der Peripherie

Ausgabe auf Registriergerit

Lesen oder Stanzen eines Lochstreifens
(im Zweifelsfall hineinschreiben)

Langerer, definierter Programmteil (ROUTINE,
PROZEDUR, ALGORITHMUS), auch Unterprogramm

Verknupfungspunkt (CONNECTOR) bzw. Beginn
eines Programmteils bzw. markanter Punkt im
Programm

Anhalten des Programms; es muB einen Ansto8 von
auBBen bekommen,damit es weitergeht

- 3] -

Struktur
RECHENEINHEIT

Folgende Baugruppen bilden die wesentlichen Bestandteile der Recheneinheit:

A-Register: 8-bit-Register, in das alle gelesenen Daten gelangen und das
als Rechenregister fur arithmetische und logische Operationen
dient. Der Inhalt des A-Registers wird angezeigt, sobald der
Rechner angehalten wird.

B-Register: 8-bit-Register als zweites Rechenregister. Bei Indizierung ent-
halt es die Indexregister-Adresse.

P-Register: 8-bit-Register zur Adressierung des Arbeitsregisters.

M-Register: 16-bit-Register fur die effektive Adresse. Die beiden Halften des
M-Registers konnen angezeigt, und es kénnen die Daten des
Switch-Registers in das M-Register Ubertragen werden.

N-Register: 16-bit-Register, das als Instruktionszdhler dient. Bei angehaltenem
Rechner enthdlt das N-Register die Adresse des Befehls, der als
ndchster ausgefuhrt wird. Der Inhalt des N-Registers kann ange-
zeigt, und es konnen die Daten des Switch-Registers in das N-
Register Ubertragen werden.

SW-Register: 8-bit-Schaltersatz in der Bedienungskonsole (Option). Die Daten
des SW-Registers kdnnen in das M-Register, N-Register oder eine
Speicheradresse Ubertragen werden.

DISPLAY: 8-bit-Lampenfeld in der Bedienungskonsole (O ption) zeigt den
Zustand des F-Kanals an. Bei Stop wird der Inhalt des A-Regi-
sters angezeigt, wenn nicht Uber spezielle Schalter das M-Regi-
ster oder das N-Register angewdhlt ist.

ALU: Arifhmefisch-log‘ische Einheit fur 8 bit. Die ALU ist der zentrale
Verknupfungspunkt des Rechners.

Q-Register: 8-bit-Register fur das Befehls-Byte der Instruktion.

-32 -

Adressen

f

-

UNIVERSAL-BUS

Ebenen Starts

o P

| el

—
PoOOL
(MOS-RAM)
16
" 4
®
] EFI
® ® ® { P-L0GIK e
ALY L'a o st] swr
ZENTRALEINHEIT

Steuersignale

!

0

DISABLE

| !
e— ML | MR e
q
[!
—— Nt | N e D
foispeay] [switen | KONSOLE

BLOCKBILD MINCAL 621

- 33 -

D-Register:

DO-Register:

C-Register:

ROM:

S-Register:

L-Register:

DISABLE:

P-Logik:

8-bit-Register, das in einer DO-Schleife die Zahl der Ausfih-
rungen zithlt.

4-bit-Speicher fur die Steuerinformationen eines DO=-Befehls.

5-bit-Register fur die Adresse der im ROM gespeicherten Mikro-
schritte.

TTL-Read Only Memory, das die Steuersignale (Mikroschritte) fur
den Rechner erzeugt.

16-bit-Register (Option) zur Speicherung der Ebenenstarts. Starts
ksnnen vom Universal-BUS kommen oder programmiert sein. Zu-
rickgestellt werden die Bits des S-Registers nur vom Programm.

4-bit-Register, das die laufende Ebene angibt.

Das DISABLE-Flip-Flop (1-bit-Register) verhindert Ebenenwechsel
bzw. l&Bt im ausgeschalteten Zustand einen Ebenenwechsel zu.

Die Prioritdtslogik ermittelt die hschste gestartete Ebene und setzt
das L-Register entsprechend.

Alle genannten Register sind in Form integrierter Schaltkreise in der Recheneinheit
enthalten. Sie sind fur das Verstdndnis der Rechner-Struktur wichtig, jedoch fur die
Programmierung - mit Ausnahme von N- und SW-Register = nicht von Bedeutung,
da der Benutzer keinen Zugriff zu ihnen hat. Vielmehr arbeitet der Benutzer mit
Speicherpldtzen im Arbeitsspeicher (Pool), die "seine" Register darstellen.

ARBEITSSPEICHER (POOL)

Der Arbeitsspeicher ist ein MOS RAM mit 256 bytes Kapazitdt (erweiterbar auf
insgesamt 4k bytes). Er dient als schneller Datenspeicher; insbesondere aber ent-
hélt er die Arbeits- und Indexregister.

Jeder Programmebene werden (fest einstellbar) 16, 32, 64, 128 oder 256 bytes
zugeteilt; diese Pldtze bilden den "Pool". Registeradressen beziehen sich auf die-
se Bereiche, d.h. je nachdem, in welcher Ebene das Programm lduft, werden un-
terschiedliche Pools benutzt. (Will man diese Niveau-Bindung nicht, benutze man
“absolute" Adressierung).

D ie MOS-RAM-Adressen laufen von @@ bis @FF bei 0,25k (bzw. @@F bis FFF bei
4).

Register- und Pool-Adressen beziehen sich auf den Anfang des jeweiligen Pools.
Im Prinzip sind alle Pool-Adressen von @ bis max. FF anzusprechen (als Pool-
Adressen, spezifizierte Arbeitsregister und Indexregister), jedoch beachte man
folgendes:

Pool-Adressen @@ und @1 nehmen bei Ebenenwechsel den augen-
blicklichen Programmstand auf und sind daher anderweitig nicht
benutzbar.

Pool-Adresse @2 (und - bei Mehrbyte-Operationen - die folgen-
den) stellt den "Akku" dar (fur den Fall, daB kein spezifizier-
tes Arbeitsregister angegeben ist).

Ist der Pool nicht auf 256 byte Linge eingestellt, so reichen Pool-Adressen, die
nicht mehr realisiert sind, in den Pool der nédchsthsheren oder eventuell den Poal
mehrerer hsherer Ebenen. Die Pool-Bereiche schlieBen unmittelbar aneinander an.

KERNSPEICHER

Der Kernspeicher hat 4k, 8k oder 16k (bzw. bei externer Erweiterung bis 48k)
bytes Kapazitdt; seine Adressen laufen von 4038 bis 4FFF, 5FFF oder 7FFF (bzw.
bis FFFF).

Der Kernspeicher enthdlt Programm und Daten in beliebiger Weise.

PROGRAMMEBENEN

Es sind 2 oder 16 verschiedene Programmebenen vorgesehen. Jede Ebene ist dadurch
gekennzeichnet, dafl

ihr ein eigener Bereich (Pool) im Arbeitsspeicher zugeordnet ist,
auf den sich die programmierten Register-Adressen beziehen,

fur sie ein eigener E/A-Kanal aufgebaut werden kann, auf den
sich die Ger&teadressen beziehen (bei Benutzung der Ebenenaus—
gtnge als zusdtzliche AdreBinformation).

Das Programm in einer Ebene wird von seinem duBleren Signal, durch die Fertig-
meldung eines ihr zugeordneten Peripheriegerdtes, oder durch das in einer anderen
Ebene laufende gestartet. Luuft das Programm in keiner anderen oder in einer nie-
drigeren Ebene, so wird die gestartete Ebene sofort bzw. mit Ende der laufenden
Operation aktiv und fuhrt die ndchste Instruktion aus (deren Adresse in Platz @@/@1

des Pools gespeichert war). Mit einem Halt wird das Programm angehalten, und eine
niedrigere Ebene kann weiterlaufen.

Start Ebene 1

[o.on—N iy [iz [{ [[HALT [N=o001]

[T r=oon osio=] o]

00,01 = Pool-Adressen 00,01 der Ebene 0
00,014 = n 00,01 ® v

in = Instruktion n eines Programms

Durch Setzen von DISABLE kann der Ebenenwechsel (d.h. die Unterbrechung des

Programms durch Start einer htheren Ebene) verhindert und wieder zugelassen wer-
den.

Die Ebenen-Struktur erlaubt einfache Multiprogrammierung.

Hat der Computer mehrere, vollig unabhidngige Aufgaben zu erledigen, so wird man
jeder Aufgabe eine Ebene zuteilen. Man hat nur darauf zu achten, dal Aufgaben,
die eine besonders schnelle Reaktion verlangen, einer Ebene mit hoher Prioritat zu-
geordnet werden. Jede Ebene hat ihr eigenes Programm und eigene Datenspeicher.

- 36 -

Bei Ein~ und Ausgaben muB durch Anhalten der Ebene auf das Peripheriegerdt ge-
wartet werden, damit die Zentraleinheit fur die anderen Ebenen frei wird.

Besonders geeignet ist die Struktur des MINCAL 621 auch fur die Bearbeitung von
mehreren vollig gleichen Aufgaben, bei denen nur die Peripheriegerdte und die
Daten unterschiedlich sind. In diesem Falle gentgt es, ein Programm zu haben,

das alle Ebenen benutzen. Nur bei Ansprechen der Peripheriegerdte benstigt man
eine zusdtzliche Information, denn bei gleichem Programm haben die Peripherie~
gerdte auch die gleichen Adressen. Diese zusdtzliche Information liefert der Ebenen-
(Level=) Ausgang, der als zusitzliche AdreBinformation verwertet wird. Bei den Da-
tenspeichern erhdlt man ebenengebundene Adressen durch Register-Adressierung.

Da die Riuckkehradressender Unterprogramme ebenengebunden abgelegt werden, kon-
nen auch Unferprogramme von mehreren Ebenen benutzt werden.

Will man von einer Ebene aus andere Ebenen steuern, so geschieht dies von der
hochsten Ebene aus.

REGISTER

Mit "Registern” sind Speicherpldtze im jeweiligen Pool gemeint. Sie werden ver-
wendet als:

Arbeitsregister: Die Mehrzahl der Befehle bezieht sich auf ein Arbeitsregister,
das verdndert, verglichen, geladen, transferiert oder sonstwie
behandelt wird. Hierfur dient entweder der "Akkumulator" @
(Pool-Adresse @2) oder das in einem besonderen Byte "spezifi-
zierte" Register (mit einer beliebigen Pool-Adresse). Damit
stehen max. 254 Arbeitsregister bereit.

Indexregister: Wenn BUS-bezogene Befehle indiziert sind, dient die in einem
besonderen Byte angegebene Pool-Adresse und folgende Adresse
als Indexregister (2-byte-Indexregister). Ist die angegebene Pool-
Adresse ungerade, wird nur diese Adresse als Indexregister ver=
wendet (1 byte-Indexregister). Damit stehen max. 127 Indexre-
gister zur Verfugung.

Ruckkehradressen: Sie werden beim Unterprogrammsprung im spezifizierten Register
sowie dem darauffolgenden Platz aufgehoben und beim Rucksprung
dort wiedergeholt.

Pool-Adressen: Niveaugebundene Adressen (bei BUS-bezogenen Befehlen).

- 37 -

ADRESSIERUNG

Die BUS-bezogenen Befehle ksnnen wie folgt adressiert werden:

unmittelbar (CONSTANT)

niveaugebunden (REGISTER) wahlweise
relativ (RELATIVE)

voll (ABSOLUTE)

nicht-indiziert hlwei
indiziert wantwelse

CONSTANT bedeutet, daB die AdreBbytes als Konstanten verwendet werden. In Ver-
bindung mit einem DO-Befehl kann es auch ein Siring von Konstanten sein.

REGISTER bezieht sich auf den Pool der jeweiligen Ebene.

RELATIVE bedeutet um einen Betrag von maximal =128 bzw. +127 bytes verschoben,
bezogen auf das Byte, in dem die AdreBdifferenz angegeben ist.

ABSOLUTE bedeutet, daf8 jedes Byte des gesamten Speicherbereichs durch eine 16-
bit-Adresse erreicht werden kann.

Indizierung bedeutet Addition des Indexregister-Inhaltes zur berechneten Adresse
(#...65535 bei 2-byte-Indexregister; @...255 bei 1-byte-Indexregister). Mit 2-
byte-Indexregistern lassen sich negative Indizes darstellen.

Indizierung in Verbindung mit CONSTANT fuhrt zu indirekter Adressierung mit dem
angegebenen Indexregister als indirekte Adresse.

MEHRFACHAUSFUHRUNG (DO=-BEFEHL)

Ein besonderer Befehl (DO) erlaubt es, die folgende Instruktion 2- bis 256-mal auszu-
fuhren. Eine eventuell zum Befehl gehorende AdreBrechnung wird allerdings nur ein-
mal durchgefihrt.

Ergdnzend kann man angeben, ob die Registeradresse (<&), die Operationsadresse

(>&) oder beide (=&) bei jedem Durchlauf inkrementiert werden, ferner ob das

Ubertragungsbit (LINK) bertcksichtigt werden soll (% statt &).

Der DO-Befehl kann sinnvoll auf Befehlsgruppen angewendet werden:
Schiebebefehle

Bedingte Sprungbefehle
BUS-bezogene Befehle

- 38 -

Schiebebefehle werden durch vorgeschaltetes "DO" zum 1-byte-Mehrbitschieben be-
nutzt, indem die Registeradresse nicht inkrementiert (also die Mehrfachausfihrung
auf 1 byte abgewendet wird) und kein Uberlauf bericksichtigt wird.

4&S1LO , @ 4-bit-1-byte-Linksschieben (Akku)

1-byte-Mehrbit-Rotieren wird durch DO ohne Registerinkrement und ohne Beriicksich-
tigung des Uberlaufs erzielt:

2&SRC , @ 2-bit-1-byte-Rechts-Rotieren (Akku)

Mehrbyte-1-bit-Schieben erhdlt man, indem der DO-Befehl die Registeradresse inkre=
mentiert und auBerdem den Uberlauf berticksichtigts

2<%SRO,REG 1-bit-2-byte-Rechtsschieben (2 Registerplitze)

Wichtig hierbei ist, daB8 beim Linksschieben als erstes Byte (Basis-Byte) das mit der
niedrigeren Adresse (und den niedrigwertigen Stellen) geschoben wird und dann das
ndchsthshere Byte.

Beim Rechtsschieben wird dagegen beim Byte mit der hichsten Adresse (und den
hoherwertigen Stellen) begonnen und dann mit dem nichstniedrigeren Byte weiter~
gearbeitet. Im Falle des Rechtsschiebens (und nur dann) dekrementiert der Rechner
die Registeradresse. Im Maschinencode sind also die Basis-Bytes bei Rechts- und
Linksschieben unterschiedlich (nicht dagegen bei Benutzung des Assemblers).

Will man beim Schieben von einem oder mehreren Bytes einen Gesamtuberlauf beriicksichti-
gen, so mu3 1 Byte mehr als gewiinscht geschoben werden. Der Inhalt dieses Bytes

ist vorher zu [6schen. AnschiieBend kann in diesem Byte der Uberlauf abgefragt

werden.

Programmiert man beim Mehrbyte-Schieben den Uberlauf nicht, so werden die be-
nachbarten Bytes unabhingig voneinander um 1 bit verschoben.

Bedingte Sprungbefehle mit vorgestelltem DO dienen zu folgenden Zwecken:

Abfrage eines Strings von Register - Bytes auf Null/nicht Null.
Hierzu ist DO mit Inkrementieren der Registeradresse zu programmieren (der Uber-
lauf ist hierbei irrelevant):

3<& BZ,REG,ADR Sprung nach ADR, falls sowohl REG als
auch die beiden folgenden Bytes Nullin-
halt haben

-39 -

Vergleich eines Register-Strings mit einer im Befehl angegebenen Konstanten und
Verzweigung, falls der Inhalt aller Register-Bytes gleich der Konstanten ist. Zu
program mieren ist: DO mit Inkrementieren Registeradresse:

4<& BEC, @ ,ADR Sprung nach ADR, wenn der Inhalt des
Akkus und der drei folgenden Bytes gleich
der Konstanten ist.

Will man einen String von Register-Bytes mit einem anderen Register vergleichen,
programmiert man:

4<& BER, @ , ADR

Vergleich eines Register-Strings mit einem Konstanten-String (im Befehl). Hierbei
wird das erste Register-Byte mit der ersten Konstanten, das zweite Register-Byte mit
der zweiten Konstanten, das zweite Register-Byte mit der zweiten Konstanten usw.
verglichen. Verzweigt wird, wenn in allen Fdllen Gleichheit besteht. Voraussetzung:
D O mit Inkrementieren beider Adressen:

2=& BEC,REG,ADR Sprung nach ADR, REG, wenn Register- und
Konstanten-String gleich.

Die Instruktion sieht in diesem Falle folgendermaBen aus:

n T Befehl

n+l r Basisadresse Register

n+2 g Konstante (niedriges Byte = Basis-Byte)
n+3 o] Konstante (hohes Byte)

n+4 d Sprungweite

Will man einen String von Register-Bytes mit einem anderen Register-String verglei-
chen, programmiert man:

2=& BER ,REG,ADR

- 40 -

BUS-bezogene Befehle mit vorgestelltem DO erfullen z.B. folgende Funktion:

Arithmetische Mehrbyte-Operationen sind durch einen DO-Befehl mit Inkrementieren
sowohl der Registeradresse als auch der Operandenadresse sowie mit Beriicksichtigung
des Uberlaufs darstellbar:

2=% ADL,REG, ADR Doppel-Byte-Addition
3=% SBL ,REG,ADR 3-byte~Subtraktion

Will man hierbei ein mdgliches Uberschreiten des Zahlenbereichs in positiver oder
negativer Richtung bericksichtigen (Gesamt-Uberlauf), so muB3 je ein Byte mehr
verarbeitet werden.

Nicht moglich ist es allerdings, auf diese Weise zu 2 Bytes ein einzelnes Byte zu
addieren.

Programmiert man z.B. nur das Inkrementieren der Registeradresse, aber nicht der
Operandenadresse, wird derselbe Operand zundchst zum ersten Byte, anschliefiend
zum zweiten Byte und eventuellen weiteren einzeln addiert.

Bei der Verarbeitung werden die Adressen grundsdtzlich inkrementiert (Ausnahme:
Rechtsschieben). Das fuhrt dazu, dafl das Byte mit der niedrigeren Adresse auch
die niedriger wertigen Stellen enthalten muf3:

Byte n+2 Byte n+l Byte n
C l C l L]
235 216 2 15 28 27 2O

Statt des Operanden kann in allen obengenannten Fdllen auch mit einem Konstan-
ten-String gearbeitet werden.

Blockweiser Transfer 16t sich durch Laden oder Speichern mit vorangestelltem DO

(mit Inkrementieren Register und Operandenadresse) realisieren; er fuhrt zur Uber-
tragung von Registerbereichen in den Kernspeicher oder umgekehrt:

256=& STA,@%,ADR Speichern gesamter Pool in Kernspeicher
256=8& LDA,#8,ADR Laden gesamter Pool aus dem Kernspeicher

- 4] -

Wird die Registeradresse nicht inkrementiert, so laBt sich z.B. ein Kernspeicherbe-
reich mit dem gleichen Inhalt laden:

LDC,REG,¥ Loschen von 256 byte
256>& STA ,REG,ADR Kernspeicher

Anstelle von Operanden kann auch mit Konstanten oder Konstanten=Strings gearbeitet
werden:

2¢<& LDC,REG,# Loschen von 20 bytes im Pool

SinngemdB 1aBt sich der DO-Befehl auch in Verbindung mit logischen Verknupfungen
verw enden:

2=& ANA, @ ,ADR 2 byte UND=-Verknupfung

7>& ORL ,REG,ADR 7 byte des Kernspeichers werden mit dem
Register REG durch ODER verknupft
3<& ANC,REG,ADR Maskierung von 3 Register-Bytes mit der

gleichen Maske ADR

- 42 -

BEFEHLSAUFBAU

Instruktionen werden beim MINCAL 621 durch ein oder mehrere aufeinanderfolgende
Bytes dargestellt. Das erste Byte enthdlt den Befehl sowie ggfs. einige zusdtzliche
Angaben, z.B. Uber die Art der Adressierung; in den Folgebytes stehen weitere An-
gaben, welche die Instruktion nther beschreiben, z.B. Register- und Operanden-
adressen, Konstanten, Sprungweiten usw.

Der Befehlsaufbau ist fur die Befehlsgruppen im folgenden kurz skizziert; niheres
entnehme man dem Abschnitt MASCHINENBEFEHLE.

7 0
Steuerbefehle: n 0000...L Befehl
nkl b1 Ebene
Mehrfachausfishrung: n 0001...Z Befehl
ntl 0z Anzahl
Zustandsabfrage : n 00100..5S Befehl
ntl L s Arbeitsregister
Schiebebefehle: n 00101 ..5S Befehl
ntkl s Arbeitsregister
Bedingter Sprung: n 01..... S Befehl
ntl L s Arbeitsregister)
n+2 | r E Referenzregister
n+3 d Sprungweite
BUS-bezogene Befehle: n T..... XS Befehl
n+l s i Arbeitsregister)
n+2 | a 1 AdreBangabe 1
n+3 b Adrelangabe 2
L .|
n+4 ! X | Indexregister

*)

oder Konstante bzw. Konstanten=String von z byte Linge bei vorgeschaltetem
DO-Befehl

Eine DO-~Instruktion muf3 unmittelbar vor dem Befehlsbyte der Instruktion liegen,
deren Mehrfachausfihrung er bewirken soll.

- 43 -

UNIVERSAL-BUS

Der Universal-BUS ist ein Datenkanal, der alle Systemkomponenten des Computers
MINCAL 621 miteinander verbindet. Dieser eine Datenkanal erfullt sowohl Aufga-
ben des programmgesteverten Datentransfers und des direkten Speicherzugriffs. Die
Datenibertragung erfolgt bit-parallel jeweils zwischen einem aktiven Element und
einem passiven Element des Universal-BUS.

Das aktive Element belegt den Universal-BUS ~ bei mehreren aktiven Elementen
entscheidet eine Rangordnung, ob eine Belegung maglich ist -, adressiert ein pas-
sives Element und bestimmt die Art der Datenubertragung. Das passive Element quit-
tiert durch ein Fertig-Signal den Aufruf, und erst dann gibt das aktive Element den
BUS frei.

Will ein passives Element eine Anforderung stellen, so kann es das nur tber einen
Interrupt (Ebenenstart). Hierauf wird die Datenverbindung von der CPU (Rechner-
Zentraleinheit) zum passiven Element hergestellt.

Zu den aktiven Elementen des Universal-BUS’ zdghlen die CPU und alle Interfaces,
die einen direkten Speicherzugriff haben. Diese Interface~Schaltungen wirken je-

doch als passive Elemente, wenn sie die Ausgangsdaten und eine Arbeitsanweisung
von der CPU erhalten.

Alle anderen Interfaces und auch die Speicher gelten grundsitzlich als passive
Elemente.

AuBer einigen Steuerleitungen sind alle Signalleitungen bidirektional; Eingangs-
und Ausgangssignal sind somit identisch.

Der Universal-BUS hat folgende Signalleitungen:

DO...D7 8 Datenleitungen zum Datentransport zwischen einem aktiven und
einem passiven Element.

T Zuordnung Wertig-
keit und Datenlei=
fungen

AQ...Al5 16 AdreBleitungen zur Anwahl von Systemkomponenten durch ein
aktives Element. Einzelne Komponenten kénnen mehrere Adressen
haben (z.B. Kernspeicher).

15 8 .7

-— 2

~

2 20 Zuordnung Wertig-
[Byte n+l 1 [Byten | keit und AdreBlei-

A5 e—— A8 A7 «—— A0 tungen

LO...L15

S0...S15

RK

BE

GE

16 Level-Leitungen zur Anwahl von ebenen-gebundenen Kompo-
nenten. Diese Leitungen gehen nur von der CPU aus; sie sind
nicht bidirektional .

16 Startleitungen (Interrupt-Leitungen) zum Starten einer Rechner-
Ebene. Diese Leitungen gehen nur zur CPU. Sie sind nicht bidi-
rektional .

1 Richtungskennzeichen gibt an, ob der Datenflu8 von dem aktiven
zum passiven Element verlaufen soll oder in entgegengesetzter
Richtung (0 V = aktiv—spassiv).

1 Nullstelleitung. Mit dieser Leitung werden alle Flip-Flops in
den Ausgangszustand gebracht. Sie kommt von der CPU (Taste in
Bedienungsfeld bzw. Nullstellung bei wiederkehrendem Netz).

1 Fertigleitung. Uber die Fertigleitung quittiert das passive Ele-
ment den Datenverkehr.

1 Belegt-Leitung. Diese Leitung wird von einem aktiven Element
beschaltet, solange es den BUS belegt.

1 Gewinscht-Leitung. Uber diese Leitung meldet ein aktives Ele-
ment einen Belegungswunsch an.

Alle Leitungen haben bei nicht belegtem BUS ein positives Potential. Bei belegtem
BUS haben die Signale folgende Bedeutung:

v O

- 45 -

UNIVERSAL-BUS

L T 1T 1 1T

cPU Ke.rn- Y- Platterd
speiche Inteffae
Interf
———
weitere Komponenten
Adresse
0000 ¥
4k } MOS-RAM
1000 :
4k } Gerdte~Peripherie
2000 . t
Pl
3000 18k — —] ProzefB-Peripherie
4000
sk |
5000 |--——4d8k 4--
l Kernspeicher 1
6000 |-—————~-T— —— (in CPU-Gehéuse)
16k
8000
= Kernspeicher 2
216k Kernspeicher 3
FFFF

AdreBschema des MINCAL 621

- 46 -

BUS-Leitung

BUS-Element
SN 74132 SN 7438
Empfangs- Sendedaten

daten

Fur die Ankopplung an den BUS werden als Empfangsschaltung Schmitt-Trigger
(SN 74 132) und fir die Sendeschaltung Open=-Collector-Buffer (SN 7438) ver-

wendet.

Nachstehende Zeitdiagramme sollen den Datenverkehr zwischen aktivem und pas-
sivem Element erldutern. Dabei ist vorausgesetzt, dafl der BUS nicht belegt ist
und auch kein Belegungswunsch eines anderen aktiven Elements vorliegt.

Senden des aktiven Elements:

Signale des aktiven Elements
g n Elemen GE
T N e

AQ...Al5 -
\
o AN

\]
RK \ | \
[0..05 | N “
\
——————————————————————— cH- =
N
4 ¥
Signale des passiven Elements F

- 47 -

Senden des passiven Elements:

Signale des aktiven Elements GE

4
A\ 'IL
RK \ I
\ I\
Lo...us__ > M
e Nl
\ |
[
DO...D8 F
Signale des passiven Elements <4 v

F L

Das Signal "Fertig" wird erzeugt, nachdem die Adressen stabil anstehen und eine
eingestellte Zeit abgelaufen ist. Die Daten werden mit der Adresse direkt durch-
geschaltet.

Prioritdten bei mehreren aktiven Elementen werden durch die GE-Leitung ermittelt.
Diese Leitung beginnt bei dem dktiven Element mit der hdchsten Prioritdt und endet
bei der CPU, die immer die niedrigste Prioritdt hat.

aktives aktives
CPU Element 1 T Element n
[
L . | LCE]
BE

Das aktive Element mit der hochsten Prioritdt kann den BUS belegen, nachdem es
eine bestimmte Zeit (mindestens 200 ns) die GE-Leitung beschaltet hat. Auf jeden
Fall aber muB das GE-Signal so lange erzeugt werden, bis ein eventuell anstehen-
des BE-Signal verschwindet. Dann kann der BUS mit einem BE-Signal belegt und
GE abgeschaltet werden

b M | —

\
GE «—2> 200ns
BUS-Belegung durch BUS-Belegung durch Element
beliebiges Element mit hochster Priorirat

- 48 -

Element mit niedriger

GE1 ; 4 Prioritat
/ /
/)
GEn Element mit hochster

Prioritat

BUS-Belegung durch Element mit
hadchster niedrigerer

Ein aktives Element, das nicht die hochste Prioritat hat, darf den BUS nur belegen,
wenn es mindestens 200 ns das GE-Signal erzeugt hat und hierbei nicht durch ein
GE eines aktiven Elements mit hoherer Prioritdt unterbrochen worden ist.

Sobald solch ein Signal empfangen wird, muR GE weggeschaltet werden. Es darf
erst dann weider erzeugt werden, wenn kein hoherwertiges GE mehr vorliegt.
Erst nach mindestens 200 ns erfolgreichem Beschalten von GE darf der BUS belegt
werden.

Die CPU erzeugt kein GE-Signal. Sie belegt den BUS, wenn kein GE- und kein
BE-Signal ansteht.

- 49 -

FERTIG Vg TAKT FUR DATENUBERNAHME
N 1 1l
—
—_ —t—
2.B. SN 7474 R ca. 50ns
SN 74123
_
R ca.100ns
LO-L15 SN 74123
ADRESS- DEVICE
AQ- A15 DEKODIE- . .
RUNG Zeitstufe eines Interfaces
23
DATEN-AUSGABE
S0-S15
-
T
L1)
BUS AR RENRE x[%]5]a] RUCKMELDUNG
DATEN-REGISTER o |Nj~lo|g B 8 E
. Jl—lolx
C_“S é; STATUS-REGISTERC
D0-D7 DATEN-EINGABE
RK
FE Zeit-
Stufe
Lo-Lis ADRESS- |-
A DEKODIE-
0-AI1S RUNG

Ankopplung eines Interfaces an den Universal -BUS

- 50 -~

INTERFACE-SCHALTUNGEN

Als Interfaces werden Schaltungen bezeichnet, die an den Universal-BUS ange-
schlossen sind und irgendwelche peripheren Geriite stevern, z.B. Fernschreiber,
Locher und Leser, aber auch MeBgerdte und andere Prozefperipherie.

Je nach angeschlossenem Gerdtetyp sind die Interface~Schaltungen unterschiedlich;
jedoch gibt es, vor allem auf der dem BUS zugewandten Seite, gemeinsame Merk-
male, die im folgenden kurz beschreiben sind.

Wesentliche Funktionsgruppen sind:
Datenregister: 8-bit-Flip-Flop-Speicher, vom BUS aus einschreib- und abfragbar.

Halt Daten fur das periphere Gerdt bereit (Ausgang) bzw. tber-
nimmi sie von ihm (Eingabe).

Statusregister: 8-bit~Flip-Flop-Speicher, vom BUS aus einschreib- und abfraghar,
mit den Funktionen:

READY (Fertigmeldung vom Gerdt, lost Start der Ebene aus)
OBUSY (Ausgabe)

IBUSY (Eingabe)

LOCK (verhindert Ebenenstart durch READY)

- bis zu 4 weitere Funktionen je nach Art des peripheren Gertits

AdreBdekodierung: Entschlusselt die Adresse A; verknipft sie u.U. mit einer Pro-
grammebene L und wihlt damit die beiden Register an, deren
Adressen bis auf die letzte Stelle (AO) identisch sind (Status-
register: A0 = 0; Datenregister: A0 = 1).

Zeitstufe: Bestimmt die Dauer der Transferzeit zwischen CPU und Interface
Uber den BUS.

Eine Datenausgabe zu einem Gertt erfolgt, sobald OBUSY eingeschaltet und
READY ausgeschaltet ist. Die Gerdte-Rickmeldung schaltet READY ein. Hiermit
wird die Ausgabe unterbunden und ein START erzeugt.

Die Eingabe erfolgt sinngemdf durch Setzen von IBUSY.

Nur, wenn die Adressen mindestens 100 ns anstehen, wird ein Ubernahmetakt und
das Signal FE erzeugt. Verschwinden die Adressen, bevor die 100 ns abgelaufen
sind, so werden die Monoflops zuriickgestellt, und ein Ubernahmetakt wird nicht
erzeugt.

Bei langem BUS empfiehlt es sich, die Wartezeit zu verldngern.

- 51 -

Maschinenbefehle

STEUERBEFEHLE 0000
Befehle NOP Keine Operation 00000000
SEL Start Ebene 00000001
HLT Halt 00000010
HSL Halt, Start Ebene 00000011
ECL Unterbrechung zulassen 00000100
DCL Unterbrechung verhindern 00001000
Lidnge 2 byte (SEL, HSL)

1 byte (tbrige)

Die Steuerbefehle bewirken Start einer Programmebene, Anhalten des laufenden Programms
sowie Aus- und Einschalten des DISABLE-Zustands. Der Befehl NOP (leeres Befehlsbyte)
hat keine Funktion und wird Ubersprungen.

Die Anwendung der DO-Instruktion auf Steuerbefehle ist nicht sinnvoll.

- 52 -

NOP Keine Operation n 00000000 Befehl

Funktion; Dieses Befehlsbyte wird Ubersprungen.

SEL Start Ebene n [00000001] Befehl
n¥l | Ebene

Funktion: Die im folgenden Byte als rechtsbindige Hexazahl @...F angegebene Ebene |
wird gestartet.

HLT Halt n 000000 10| Befehl

Funktions Das Programm in der laufenden Ebene wird angehalten.

HSL Halt, Start Ebene n 0000001 1] Befehl
n+l | Ebene

Funktion: Das Programm in der laufenden Ebene wird angehalten. Die im folgenden
Byte als rechtsbindige Hexazahl @...F angegebene Ebene | wird gestartet.

ECL Unterbrechung zulassen n 00000100 Befehl

Funktion: Dieser Befehl stellt den Normalzustand her, in dem das Programm der
jeweiligen Ebene durch den Start jeder hoheren Ebene unterbrochen werden
kann.

DCL Unterbrechung verhindern n 0000 1000| Befehl

Funktion: Dieser Befehl stellt den DISABLE-Zustand her, in dem das Programm der
jeweiligen Ebene nicht durch Aktivieren einer htheren Ebene unterbrochen
werden kann. Durch ECL wird dieser Zustand beendet.

Vor jedem Halt-Befehl (HLT, HSL) ist der DISABLE-Zustand durch ECL zu
verhindern, da sonst der Halt nicht wirksam wird.

- 53 =

MEHRFACHAUSFUHRUNG (DO) 0001

Befehle: z& 0001000.
z % mit L 00010071
z>& M+ 0001010.
z>% M+1, mit L 0001011.
z<& R+1 0001100.
Z<% R+1, mit L 0001101,
z=& R+1, MH 0001110.
z=% R+1, MH1, mit L 00011 11.
Anzahl: z =2 L s e . 0
z =3...25% ... 1
Lange: 1 byte (z = 2): n Befehl
oder :
2 byte (z = 3...256): n 0001 ... 1| Befehl
n+1 z Anzahl

Eine DO-Instruktion bewirkt, daB die folgende Instruktion mehrfach ausgefihrt wird.
Die Anzahl der AusfGhrungen z kann von 2 bis 256 gewihlt werden. Bei z = 2 ist

nur das Befehlsbyte vorhanden; dartberhinaus steht z als rechtsbiindige Bindrzahl im
folgenden Byte, wobei zu beriicksichtigen ist, daB Nullinhalt des Folgebytes 256malige
Ausfihrung bedeutet.

Im DO-Befehl kann angegeben werden, ob das LINK-Bit (L) bericksichtigt wird (Uber-
lauf bei Schiebebefehlen, Mehrbyte-Addieren und Subtrahieren), und ob bei jeder
Ausfihrung die Operanden-Adresse (M) oder die Arbeitsregister-Adresse (R) um 1 erhsht
wird. Beim Befehl SR (Schieben rechts) wird die Arbeitsregister-Adresse um 1 erniedrigt,
wenn R angegeben ist.

Der DO-Befehl fuhrt nur zur mehrmaligen Wiederholung des Ausfihrungsteils der folgen-
den Instruktion, nicht zur Wiederholung der vorher ablaufenden AdreBrechnung.

Zwischen einem DO-Befehl und beendeter Ausfihrung der nachfolgenden Instruktion kann
das Programm nicht durch Wechsel der Programmebene unterbrochen werden.

- 54 -

z&

Funktion:

Z%

Funktion:

z>&

Funktion:

Z>%

Funktion:

z<&

Funktion:

Z< ¥

Funktion:

DO z-mal n 0001000 .| Befehl

z ' Anzahl

Die folgende Instruktion wird z-mal ausgefihrt. LINK wird nicht bericksich-
tigt; keine Adresse wird inkrementiert.

DO z-mal mit Link n [0001001 .| Befehl

n+1 L z] Anzahl

Die folgende Instruktion wird z-mal ausgefihrt. LINK wird beriicksichtigt;
keine Adresse wird inkrementiert.

DO z-mdl n 0001010 .| Befehi

mit Inkrementieren Adresse L | Anzahl

>
*
N

Die folgende Insiruktion wird z-mal ausgefihrt. Nach jeder Ausfihrung wird
die Operanden-Adresse M um 1 erhsht.

DO z-mal mit Link n 000101 1.| Befehl
z

! | Anzahl

mit Inkrementieren Adresse ntl

Die folgende Instruktion wird z-mal ausgefthrt. LINK wird bertcksichtigt;
nach jeder Ausfihrung wird die Operanden-Adresse M um 1 erhsht.

DO z-mal n 0001100 .| Befehl
mit Inkrementieren Register nt+l ! z | Anzahl

Die folgende Instruktion wird z-mal ausgefuhrt. Nach jeder Ausfihrung wird
die Adresse des Arbeitsregisters um 1 erhoht.

DO z-mal mit Link n 0001101 .| Befehl

mit Inkrementieren Register ntl L z 1 Anzahl

Die folgende Instruktion wird z-mal ausgefthrt. LINK wird bertcksichtigt;
nach jeder Ausfuhrung wird die Adresse des Arbeitsregisters um 1 erhoht.

- 55 -

z=&

Funktion:

Funktion:

DO z-mdl n 0001110 . Befehl
mit Inkrementieren Register n+1 z Anzahl

mit Inkrementieren Adresse

-
I
!
I
|
|
|
I
!
L

Die folgende Instruktion wird z-mal ausgefihrt. Nach jeder Ausfihrung wer-
den die Adresse des Arbeitsregisters und die Operanden-Adresse um 1 erhsht.

DO z-mal mit Link n Befehl
n+1 z Anzahl

Inkrementieren Register und
Die folgende Instruktion wird z-mal ausgefuhrt. LINK wird bericksichtigt;

nach jeder Ausfuhrung werden die Adresse des Arbeitsregisters und die
Operanden-Adresse um 1 erhoht.

- 56 -

ZUSTANDSABFRAGE 00100. .5

Befehle: GS Schalter abfragen 0010001 .
GL Ebene abfragen 0010010.
Arbeitsregister: Akkumulator @ L. L. 0
Spezifiziertes Register s 1
Lénge: 1 byte (@) n 00100 . . 0| Befehl
oder
2 byte (s) n 00100 .. 1] Befehl
n+l s Arbeitsregister

Diese Befehlsgruppe ubertrigt Informationen von den Konsol-Tasten bzw. die Nummer der
laufenden Programmebene in das Arbeitsregister. Als Arbeitsregister kann entweder der
Akkumulator @ oder ein beliebig spezifiziertes Register s angegeben werden, dessen
Adresse dann im Folgebyte steht.

Die Anwendung der DO-Instruktion auf diese Befehle ist nicht sinnvoll.

- 57 -

GS

Funktion:

GL

Funktion:

Schalter abfragen n 0010001Ss Befehl

n+l s | Arbeitsregister

Das tber die 8 Daten-Schalter 7...0 der Rechnerkonsole eingegebene Byte
wird in das Arbeitsregister Ubertragen.

Nur wirksam, wenn Rechner mit Konsole ausgestattet.

Ebene abfragen n 00100105 Befehl

n+l s | Arbeitsregister

r

Die Nummer der laufenden Programmebene wird als rechtsbiindige Hexa-Zahl
@...F in das Arbeitsregister Ubertragen.

- 58 -

SCHIEBEBEFEHLE 00101..5

Befehle: SRO Schieben rechts offen 00.
SRC Schieben rechts zyklisch 01.
SLO Schieben links offen 10.
SLC Schieben links zyklisch 11.
Arbeitsregister: Akkumulator @ .. oL 0
Spezifiziertes Register s 1
Lange: 1 byte (@) n 00101..0 Befehl
oder
2 byte (s) n 00101 .. 1] Befehl
n+l s Arbeitsregister

Diese Befehlsgruppe bewirkt offenes oder zyklisches Schieben des Arbeitsregister-Inhalts
um 1 bit nach rechts oder links. Als Arbeitsregister kann entweder der Akkumulator oder
ein beliebig spezifiziertes Register s angegeben werden, dessen Adresse dann im Folgebyte
steht.

In Verbindung mit einer geeigneten DO-Instruktion ist offenes und zyklisches Mehrbit-

Schieben eines Register-Bytes moglich, sowie offenes Schieben des Inhalts eines Mehrbyte~
Register-Strings um 1 bit.

-~ 59 -

SRO

Funktion:

z& SR

z<% SR

SRC

Funktion:

z& SRC

SLO

Funktion:

z& SL

z<% SR

SLC

Funktion:

z<x SLC

Schieben rechts offen n 00101005 Befehl

ntl | s | Arbeitsregister

Der Inhalt des Arbeitsregisters wird um 1 bit offen nach rechts verschoben.
Bit 7 wird zu Null, und der vorherige Inhalt von Bit O geht verloren.

Ein vorgeschalteter DO-Befehl z& bewirkt offenes Rechts=Schieben des
Arbeitsregister~Inhalts um z bit.

Ein vorgeschalteter DO-Befehl z bewirkt offenes Rechts-Schieben eines
Register-Srings von z byte Linge um 1 bit. Als Arbeitsregister-Adresse ist
die um (z-1) erhshte Basis~Adresse des Register=Strings anzugeben (gilt nicht
fur symbolische Programmierung).

Schieben rechts zyklisch n 0010101S| Befehl

ntl s Arbeitsregister

Der Inhalt des Arbeitsregisters wird um 1 bit zyklisch nach rechts verschoben.
Bit 7 erhalt den vorherigen Inhalt von Bit O.

Ein vorgeschalteter DO-Befehl z& bewirkt zyklisches Rechts=Schieben des
Arbeitsregister-Inhalts um z bit.

Schieben links offen n 0010110S Befehl

ntl s _ Arbeitsregister

Der Inhalt des Arbeitsregisters wird um 1 bit offen nach links verschoben.
Bit O wird zu Null, und der vorherige Inhalt von Bit 7 geht verloren.

Ein vorgeschalteter DO-Befehl z& bewirkt offenes Links-Schieben des Ar-
beitsregister~Inhalts um z bit.

Ein vorgeschalteter DO-Befehl z bewirkt offenes Links-Schieben eines
Register-Srings von z byte Linge um 1 bit. Als Arbeitsregister-Adresse ist
die Basis-Adresse des Register-Strings anzugeben.

Schieben links zyklisch n 00101 1 1St Befehl

n+tl s 1 Arbeitsregister

Der Inhalt des Arbeitsregisters wird um 1 bit zyklisch nach links verschoben
Bit O erhdlt den vorherigen Inhalt von Bit 7.

Ein vorgeschalteter DO-Befehl z bewirkt zyklisches Links-Schieben des
Arbeitsregister-Inhalts um z bit.

- 40 -

BEDINGTE SPRUNGBEFEHLE 01 .. N.1S

Befehlsgruppen:

Sprung:

Inkrementieren:

Arbeitsregister:

Abfrage auf Null/Positiv 0100.
Abfrage auf Gleichheit 0101

Abfrage auf Testbits o1 1.

wenn Bedingung erfullt

wenn Bedingung nicht erfullt R
nein e e e ... 0.
ja B
Akkumulator @ ce e e ... 0
Spezifiziertes Register s e e e e]

Diese Befehlsgruppe fragt den Inhalt des Arbeitsregisters auf bestimmte Kriterien ab.
Je nachdem, ob sie erfullt sind oder nicht, verzweigt das Programm auf eine entfernte
Stelle; andernfalls wird es mit der folgenden Instruktion fortgesetzt.

Abfrage-Kriterien sind:

Nullinhalt (alle Bits sind 0),
positiver Inhalt (Bit 7 ist 0);

Gleichheit mit einer Konstanten c;
Gleichheit mit Inhalt eines Referenzregisters r;

Vorhandensein bestimmter Bitmuster (Testbits), wobei deren
Stellung durch eine Maske vorgegeben wird, die als Kon-
stante ¢ oder als Inhalt eines Referenzregisters r vorhanden ist.

Vor Abfrage kann das Arbeitsregister inkrementiert, d.h. sein Inhalt um 1 erhsht werden.

Durch diese Befehle wird der Inhalt des Arbeitsregisters - abgesehen von der eventuellen
Inkrementierung = nicht vertndert.

Die relative Sprungweite d steht im letzten Byte der Instruktion und bezieht sich auf
dessen Adresse, wobei d eine Zweierkomplementzahl bildet. Damit kann das Programm
maximal um 128 byte zurick bzw. 127 byte vorwdrts springen.

DO-Befehle:

Eine vorgeschaltete DO-Instruktion z<» (bei Abfrage auf Null-
inhalt eines Registers) bzw. z=% (bei den Ubrigen Befehlen)
bewirkt Abfrage eines Arbeitsregister-Strings von z byte Lidnge, bzw.
dessen Vergleich mit einem ebenso langen Konstanten- oder Register=
String.

Dabei sind die Basis-Adressen der Register-Strings anzugeben.

Bei Abfrage auf Null ist die Bedingung erfillt, wenn alle Bytes
Nullinhalt haben.

Bei Vergleichs- und Testbit-Abfragen ist die Bedingung insgesamt
erfullt, wenn sie in allen Bytes erfullt ist.

Inkrementierung bezieht sich auch bei vorgeschaltetem DO nur auf
das Basis-Byte des betreffenden Registers.
- 61 =

Lange: Abfrage auf Null/positiv: 2 byte (@)

3 byte (s)

Ubrige Befehle: 3 byte (@)

4 byte (s)

n
n+l

n
n+1
n+2

n
n+1
n+2

n

n+l
n+2
n+3

.. 0

Befehl
Sprungweite

Befehl
Arbeitsregister
Sprungweite

Befehl
Konstante/Register
Sprungweite

Befehl
Arbeitsregister
Konstante/Register
Sprungweite

Bei einem vorgeschalteten DO-Befehl z=% ist statt einer Konstanten c ein
Konstanten=-String von z Bytes in der Instruktion enthalten, vom Basis-Byte

an in Richtung aufsteigender Adressen.

Vereinbarung: Befehle mit Verneinung ("Sprung wenn nicht ..

.") fuhren in all den Fallen

zum Verzweigen, wo der entsprechende nicht verneinte Befehl das Programm
unverzweigt weiterlaufen ldBt, und umgekehrt.

- 62 -

BZ

Funktion:

Funktion:

BP

Funktion:

Funktion:

BNZ

Funktion:

INZ

Funktion:

Sprung wenn Null 0100000 S| Befehl

! s | Arbeitsregister

a1 sprungweite

Das Programm verzweigt, wenn das Arbeitsregister Nullinhalt hat.

Inkrementieren, 010000T1S Befehl

Sprung wenn Null ! s | Arbeitsregister

I T

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn das
Arbeitsregister Nullinhalt hat.

Sprung wenn positiv 01000105 Befehl

! s i Arbeitsregister

a1 pungweite

Das Progromm verzweigt, wenn das Arbeitsregister positiven Inhalt hat.

Inkrementieren, 010001 1S Befehl

Sprung wenn positiv ! s | Arbeitsregister

[Spungueide

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn das
Arbeitsregister positiven Inhalt hat.

Sprung wenn nicht Null 010010058 Befehl

| s ' Arbeitsregister

1 Soungwene

Das Programm verzweigt, wenn das Arbeitsregister nicht Nullinhalt hat.

Inkrementieren, 0100101S Befehl

[l

Sprung wenn nicht Null I s i Arbei tsregister

T Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn das
Arbeitsregister nicht Nullinhalt hat.

- 63 -

BNP

Funktion:

INP

Funktion:

BEC

Funktion:

IEC

Funktion:

BER

Funktion:

Sprung wenn nicht positiv 01001105 Befehl

! s i Arbeitsregister

— T— T

Das Programm verzweigt, wenn das Arbeifsregister nicht positiven Inhalt hat.

Inkrementieren, 0100111S Befehl
Sprung wenn nicht positiv ! s i Arbeitsregister
[sprongweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn das
Arbeitsregister nicht positiven Inhalt hat.

Sprung wenn gleich Konstante 01010005 Befehl

| s | Arbeitsregister
[Konstante
d Sprungweite

Das Programm verzweigt, wenn der Inhalt des Arbeitsregisters gleich der Kon-
stanten c ist.

Inkrementieren, 0101001S Befehl

Sprung wenn gleich Konstante ! s Arbeitsregister
[Konstante
d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn der
Inhalt des Arbeitsregisters gleich der Konstanten c ist.

Sprung wenn gleich Register 0101010S Befehl

! s ! Arbeitsregister
r Register
d Sprungweite

Das Programm verzweigt, wenn der Inhalt des Arbeitsregisters gleich dem des
Referenzregisters r ist.

IER

Funktion:

BNEC

Funktion:

INEC

Funktion:

BNER

Funktion:

INER

Funktion;

Inkrementieren, Befehl
Sprung wenn gleich Register

! s Arbeitsregister
r Register
d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn der
Inhalt des Arbeitsregisters gleich dem des Referenzregisters r ist.

Sprung wenn nicht gleich Konstante 01011005 Befehl

| s ¢ Arbeitsregister
c Konstante
d Sprungweite

Das Programm verzweigt, wenn der Inhalt des Arbeitsregisters nicht gleich
der Konstanten c ist.

Inkrementieren, 0101101S Befehl

Sprung wenn nicht gleich Konstante 1 s I Arbeitsregister
c Konstante
d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn der
Inhalt des Arbeitsregisters nicht gleich der Konstanten c ist.

Sprung wenn nicht gleich Register 0101110S Befehl

. s | Arbeitsregister
r Register
d Sprungweite

Das Programm verzweigt, wenn der Inhalt des Arbeitsregisters nicht gleich
dem des Referenz-Registers r ist.

Inkrementieren, 0101111 S] Befehl

Sprung wenn nicht gleich Register s ! Arbeitsregister
r Register
d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn der
Inhalt des Arbeitsregisters nicht gleich dem des Referenz-Registers r ist.

- 65 -

BZC

Funktion:

1zC

Funktion;

BZR

Funktion:

I1ZR

Funktion:

BNZC

Funktion:

Sprung wenn alle Testbits Null 01100005 Befehl
maskiert mit Konstante] s I Arbeitsregister
c Konstante

d Sprungweite

Das Programm verzweigt, wenn alle durch die Konstante c¢ vorgegebenen
Testbits des Arbeitsregisters Null sind.

Inkrementieren, 01100015 Befehl

Sprung wenn alle Testbits Null ! s i Arbeitsregister
maskiert mit Konstante c Konstante
d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn alle
durch die Konstante c vorgegebenen Testbits des Arbeitsregisters Null sind.

Sprung wenn alle Testbits Null 0110010S Befehl

maskiert mit Register s Arbeitsregister
r Register
d Sprungweite

Das Programm verzweigt, wenn alle durch das Referenzregister r vorgegebenen
Testbits des Arbeitsregisters Null sind.

Inkrementieren, 0110011S Befehl

Sprung wenn alle Testbits Null ! s i Arbeitsregister
maskiert mit Register r Register
d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn alle
durch das Referenzregister r vorgegebenen Testbits des Arbeitsregisters Null
sind.

Sprung wenn nicht alle Testbits Null 0110100S5S| Befehl

maskiert mit Konstante i s i Arbeitsregister
c Konstante
d Sprungweite

Das Programm verzweigt, wenn nicht alle durch die Konstante c¢ vorgegebenen
Testbits des Arbeitsregisters Null sind.

- 66 ~

INZC

Funktion:

BNZR

Funktion:

INZR

Funktion:

BOC

Funktion:

10C

Funktion:

Inkrementieren, 011010158 Befehl

Sprung wenn nicht alle Testbits Null | s I Arbeitsregister
maskiert mit Konstante c Konstante
d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn nicht
alle durch die Konstante ¢ vorgegebenen Testbits des Arbeitsregisters Null sind.

Sprung wenn nicht alle Testbits Null 011011058 Befehl
s

maskiert mit Register ! Arbeitsregister
r Register
d Sprungweite

Das Programm verzweigt, wenn nicht alle durch das Referenzregister r vorge-
gebenen Testbits des Arbeitsregisters Null sind.

Inkrementieren, 0110111s Befehl

Sprung wenn nicht alle Testbits Null 1 s ' Arbeitsregister
maskiert mit Register r Register
d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn nicht
alle durch das Referenzregister r vorgegebenen Testbits des Arbeitsregisters
Null sind.

Sprung wenn alle Testbits Eins 01110005S| Befehl

maskiert mit Konstante i s I Arbeitsregister
c Konstante
d Sprungweite

Das Programm verzweigt, wenn alle durch die Konstante ¢ vorgegebenen Test-
bits des Arbeitsregisters Eins sind.

Inkrementieren, 01110015 Befehl,

Sprung wenn alle Testbits Eins | s ! Arbeitsregister
maskiert mit Konstante c Konstante
d Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn alle
durch die Konstante ¢ vorgegebenen Testbits des Arbeitsregisters Eins sind.

- 67 -

BOR Sprung wenn alle Testbits Eins 0111010S| Befehl
i

maskiert mit Register ! s Arbeitsregister
r Register
d Sprungweite
Funktion: Das Programm verzweigt, wenn alle durch das Referenzregister r vorgegebenen

Testbits des Arbeitsregisters Eins sind.

IOR Inkrementieren, 0111011s Befehl

Sprung wenn alle Testbits Eins ! 5 I Arbeitsregister
maskiert mit Register r Register
d Sprungweite
Funktion: Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn alle
durch das Referenzregister r vorgegebenen Testbits des Arbeitsregisters Eins
sind.
BNOC Sprung wenn nicht alle Testbits Eins 01111005S]| Befehl
maskiert mit Konstante ! s Arbeitsregister
c Konstante
d Sprungweite
Funktion: Das Programm verzweigt, wenn nicht alle durch die Konstante ¢ vorgegebenen

Testbits des Arbeitsregisters Eins sind.

INOC Inkrementieren, 011110158 Befehl

Sprung wenn nicht alle Testbits Eins | s ! Arbeitsregister
maskiert mit Konstante c Konstante
d Sprungweite
Funktion: Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn nicht

alle durch die Konstante ¢ vorgegebenen Testbits des Arbeitsregisters Eins sind.

BNOR Sprung wenn nicht alle Testbits Eins, 0111110858 Befehl

maskiert mit Register 1 s v Arbeitsregister
r Register
Sprungweite
Funktion: Das Programm verzweigt, wenn nicht alle durch das Referenzregister r vorge-

gebenen Testbits des Arbeitsregisters Eins sind.

- 68 -

INOR

Funktion:

Inkrementieren,

Sprung wenn nicht alle Testbits Eins

maskiert mit Register

OT11111s

(S '
r

d

Befehl
Arbeitsregister
Register
Sprungweite

Das Arbeitsregister wird inkrementiert. Das Programm verzweigt, wenn nicht
alle durch das Referenzregister r vorgegebenen Testbits des Arbeitsregisters

Eins sind.

Bei den bedingten Sprungbefehlen mit Testbit-Abfrage (BZC...INOR) werden die Bits
des Arbeitsregisters Uberpriift, die in der "Maske" gleich 1 sind, wobei die Maske als
Konstante im Befehl oder als Varicble in einem Referenzregister enthalten ist. Bits mit
Nullinhalt in der Maske spielen keine Rolle.

Beispiele:

a) Maske
Arbeitsregister

b) Maske
Arbeitsregister

c) Maske
Arbeitsregister

—_ O
o o
-_ O
O -

o o
—_— O
-_— O
O —

o o
—_ O
[eNe)

Fur die einzelnen Befehle bedeutet dies:

BZ.. /IZ... :
BNZ../INZ..:
BO.. /10.. :
BNO../INO..:

Programm verzweigt bei

—

o~ O —

[]

—_——
[e]

o o
O —

- 49 -

o —

—_——

[eN o]

alle Testbits @

nicht alle Testbits @
nicht alle Testbits 1

alle Testbits 1

a) , lduft weiter bei b)c)
b)C), 1 n (])
C) , n u Cl)b)
ap), " "9

BUS-BEZOGENE BEFEHLE ... o xs]

Befehle: LD Laden 1000 .
AD Addieren 1001.
SB Subtrahieren 1010.
AN UND 1011,
OR Inklusives ODER 1100.
EO Exklusives ODER 1101.
ST Speichern T110. ...
JP Sprung T111...0
CS Unterprogramm=-Sprung T111. .01
Adressierungs
..C Konstante (unmittelbar)000.
.. X indirekt (Uber Register x)001.
..R Register 01
.. L relativ 10
A absolut 11
Indizierung: nicht indiziert .. L. 0.
indiziert Uber Indexregister x 1.
Arbeits-
register: Akkumulator @ oL 0
Spezifiziertes Register s 1

Diese Befehlsgruppe setzt das Arbeitsregister mit einer BUS -Adresse (effektive Adresse)
in Beziehung, d.h. mit einem Byte des MOS-RAM-Pools, des Kernspeichers oder Fest-
speichers, oder mit der Peripherie des Rechners. Hierzu gehtren auBlerdem Sprung und
Unterprogramm-Sprung auf eine beliebige Adresse des Kern- oder Festspeichers sowie des

MOS-RAMs.
Adressierungsmoglichkeiten sind:

..C Konstante: Der Operand steht als Konstante in der Instruktion
(nicht sinnvoll bei JP und CS)

X indirekt: Die effektive Adresse steht in einem Indexregister X
..R Register: Die effektive Adresse ist ein Register r
L relativs Die effektive Adresse ist um die Differenz d entfernt

von dem Byte, in dem d steht
(maximal 128 byte zurick bzw. 127 byte vorwirts)

- A absolut: Die effektive Adresse ist in Form von 2 Bytes (16 bit)
in der Instruktion angegeben.

- 70 -

Indizierung ist bei Register-, relativer und dbsoluter Adressierung moglich. in diesem
Falle wird der Inhalt des Indexregisters x zur effektiven Adresse addiert. Dabei ist
folgendes zu beachten:

Ist fur das Indexregister eine gerade Adresse x angegeben, so wird das
Doppelbyte x (niedrige Stellen) und x+1 (hohe Stellen) als Index verwen-
det. Der Index ist eine 16-bit-Zweierkomplement-Zahl; daher ist positive
und negative Indizierung moglich (~32768...65535).

Ist dagegen eine ungerade Adresse x angegeben, so wird nur das Byte x
als Index verwendet. Der Index ist eine 8=bit~Zahl, mit der nur positive
Indizierung maglich ist (0...127).

Fur die indirekte Adressierung bedeutet das, dafl im ersten Falle eine volle
16~bit-Adresse in x, x+l enthalten ist, wdhrend im zweiten Falle nur die
8 bit in x wirksam sind, d.h. hiermit konnen nur die absoluten Adressen

2903. . .HOFF angesprochen werden.

Zu beachten ist, daB angegebene Register und Indexregister ebenen-gebunden sind,
d.h. ihre dbsolute Adressen sind um die jeweilige Ebenen-Adresse gegeniber der ange-
gebenen Adresse verschoben.

DO-Befehle: Die Anwendung von DO-Instruktionen auf die Befehle LD, AD, SB, AN,

Lange:

OR, EO und ST ist sinnvoll; die haufigsten Anwendungen sind spater
im einzelnen angegeben.

Konstante: 2 byte (@) n [1...0000] Befeh
n+l c Konstante
3 byte (s) n [1T...000171] Befehl
n+1 s Arbeitsregister
n+2 c Konstante
indirekt: 2 byte (@) n [1...0010] Befehl
n+l X Indexregister
3 byte (s) n [1...70011] Befehl
n+l s Arbeitsregister
n+2 X Indexregister
Register: 2...3 byte (@) n [1...01Xx0]| Befehl
n+l r Register
(X=T)— nt2_ x| Indexregister
3...4 byte (s) n [1...01X1] Befehl
n+l s Arbeitsregister
n+2 r Register
(X=1) — nt3, x Indexregister

- 71 -

relativ: 2...3 byte (@)
(x=) —

3...4 byte (s)
(X=1) —=

absolut: 3...4 byte (@)
(X=1)—

4...5 byte (s) —

(X=1)—=

n
n+1
n+2

n
n+1
n+2
n+3

n

n+1
n+2
n+3

n
n+l
n+2
n+3
n+4

Befehl
Differenz
Indexregister

Befehl
Arbeitsregister
Differenz
Indexregister

Befehl

Adresse niedrig
Adresse hoch
Indexregister

Befehl
Arbeitsregister
Adresse niedrig
Adresse hoch
Indexregister

Bei einem vorgeschalteten DO-Befehl ist statt einer Konstanten ¢ ein Konstanten-String
von z Bytes in der Instruktion enthalten, vom Basis-Byte aus in Richtung aufsteigender

Adressen.

- 72 -

LD Laden 1000. .XS
L~ ~

Funktion: Das Arbeitsregister wird mit dem Inhalt der effektiven Adresse (Operand)
geladen.

z<& LD.. Ein vorgeschalteter DO-Befehl z<& bewirkt Laden der z Bytes eines Arbeits-
register-Strings mit stets demselben Operanden-Byte.

z=& LD.. Ein vorgeschalteter DO-Befehl z=& bewirkt Laden eines Arbeitsregister-Strings
von z Byte Linge mit einem Operanden-String derselben Linge.

AD.. Addieren 1001°. . XS
— ~
Funktion: Zum Arbeitsregister-Inhalt wird der Inhalt der effektiven Adresse (Operand)
addiert.

z=% AD.. Ein vorgeschalteter DO-Befehl z=x bewirkt Addieren eines Operanden=Strings
von z Byte Ldnge zu einem Arbeitsregister derselben Lénge.

SB.. Subtrahieren 1010. .XS
L— ~

Funktion: Vom Arbeitsregister-Inhalt wird der Inhalt der effektiven Adresse (Operand)
subtrahiert.

z=%SB.. Ein vorgeschalteter DO-Befehl z=x bewirkt Subtrahieren eines Operanden-
Strings von z Byte Liénge von einem Arbeitsregister der gleichen Linge.

AN.. UND TO011..XS

L~ ~

Funktion: Der Arbeitsregister-Inhalt wird mit dem Inhalt der effektiven Adresse (Ope-
rand) in UND=-Verkniipfung gebracht; das Ergebnis steht im Arbeitsregister.

z<& AN.. Ein vorgeschalteter DO-Befehl z<& bewirkt, daB die z Bytes eines Arbeits-
register-Strings mit stets demselben Operanden-Byte in UND-Verknipfung
gebracht werden.

z=& AN.. Ein vorgeschalteter DO-Befehl z=& bewirkt UND-Verkntpfung zwischen

einem Arbeitsregister- und einem Operanden-String von jeweils z Byte
Lange.

- 73 -

OR..

Funktion:

z<& OR..

EO..

Funktion:

z<& EO..

z=& EO..

ST..

Funktion:

Inklusives ODER 1100..XS5
— ~
Der Arbeitsregister-Inhalt wird mit dem Inhalt der effektiven Adresse
(Operand) in inklusive ODER-Verkniipfung gebracht; das Ergebnis steht
im Arbeitsregister.

Ein veorgeschalteter DO-Befehl z<& bewirkt, dafl die z Bytes eines Arbeits-
register-Strings mit stets demselben Operanden-Byte in inklusive ODER-Ver-
knupfung gebracht werden.

Ein vorgeschalteter DO-Befehl Z=& bewirkt inklusive ODER~Verknupfung
zwischen einem Arbeitsregister~ und einem Operanden=String von jeweils
z Byte Ldnge.

Exklusives ODER 1101..XS

I~ ~

Der Arbeitsregister-Inhalt wird mit dem Inhalt der effektiven Adresse
(Operand) in exklusive ODER-Verknipfung gebracht; das Ergebnis steht
im Arbeitsregister.

Ein vorgeschalteter DO-Befehl z<& bewirkt, daB8 die z Bytes eines Arbeits-
register=Strings mit stets demselben Operanden-Byte in exklusive ODER-Ver-
knupfung gebracht werden.

Ein vorgeschalteter DO-Befehl z=& bewirkt exklusive ODER-Verkniipfung
zwischen einem Arbeitsregister- und einem Operanden=-String von jeweils
z Byte Lidnge.

Speichern 1110..XS5S
L~ ~
Der Inhalt des Arbeitsregisters wird in der effektiven Adresse abgespeichert.

Bei Konstanten~Adressierung (STC) wird der Inhalt innerhalb der Instruktion
abgespeichert (an die Stelle eines Konstanten-Bytes).

Ein vorgeschalteter DO-Befehl z-& bewirkt Speichern des immer gleichen
Arbeitsregister=Inhalts in z aufeinanderfolgenden Bytes eines AdreB~Strings.

Ein vorgeschalteter DO-Befehl z=& bewirkt Speichern eines Arbeitsregister-
Inhalts von z Byte Linge in einem gleich langen AdreB-String.

- 74 -

JP.. Sprung 1T111..X0

b~ ~

Funktion: Das Programm verzweigt zur angegebenen Adresse, indem der Instruktionszdhler
auf deren Wert gesetzt wird.

Cs.. Unterprogramm~-Sprung 1111, .X1

L~ -~

Funktion: Der Inhalt des Instruktionszshlers, bezogen auf das letzte Byte der Instruktion
und um 1 erhsht, wird im Arbeitsregister s gespeichert (Ruckkehradresse =
Adresse des Befehlsbytes der auf CS folgenden Instruktion). Dann verzweigt
das Programm zur angegebenen Adresse.

Die Ruckkehr aus dem Unterprogramm (zur auf CS folgenden Instruktion) wird

an dessen Ende durch einen indirekten Sprungbefehl Uber das Ruckkehr-AdreB3-~
register s (JPX, s) programmiert.

-75 -

ASSEMBLER

VORBEMERKUNG

Der Assembler MINCASS 600 ist ein Programm zur Ubersetzung von symbolischen
Programmen in die Maschinensprache des Computers MINCAL 621. Er steht dem

Benutzer in Form eines Lochstreifens zur Verfigung; nach Einlesen des Lochstrei-
fens in den Kernspeicher (ab Adresse 4@@@) und Betdtigen der Taste ST (Start) an
der Rechner-Konsole ist das System zur Programmumwandlung bereit.

Es sind zwei Assembler-Versionen verfugbar:
Einfacher Assembler MINCASS 600
fur Systeme mit 4k byte Kernspeicher und Teletype
Makro~Assembler MINCASS 600 M

fur Systeme ab 8k byte Kernspeicher mit Teletype und
schneller Lochstreifenausrustung

Funktionen, die nur vom Makro-Assembler MINCASS 600 M ausgefiihrt werden, sind
im folgenden mit +) gekennzeichnet.

=76 -

PROGRAMMAUFBAU

Ein symbolisches Programm besteht aus einer Folge von Anweisungen (Statements). Es
gibt verschiedene Typen von Anweisungen:

Steueranweisungen
Wertzuweisungen
Belegungsanweisungen
Maschinen-Instruktionen
Makro-Instruktionen
Kommentare

Anweisungen werden in der Reihenfolge geschrieben, wie sie im Programm nacheinan-
der benstigt werden; der Assembler Ubersetzt das Programm in gleicher Reihenfolge in
Maschinensprache. Zur Niederschrift benutze man die MINCAL 600 Programm=-Form-

bldtter.

Jede Anweisung besteht aus einer Folge von Buchstaben, Ziffern und Symbolen, wobei
- soweit nicht im einzelnen eingeschrdankt - alle 64 druckbaren Zeichen des ASCII-
(1SO-7-) Codes zuldssig sind. Leerschritte (Space) werden im allgemeinen vom Assemb-
ler Uberlesen. Steuerzeichen, wie z.B. Wagenricklauf (CR) und Zeilenwechsel (LF)
werden ebenfalls tberlesen. Anweisungen werden voneinander durch Semikolon (;) ge-
trennt und vom Assembler fortlaufend numeriert (0000...9999).

Innerhalb der Anweisungen sind die Zeichen zu Worten zusammengefaBt, welche die
notwendigen Einzelangaben darstellen. Die Worte werden durch Trennzeichen sepa-
riert. Der generelle Aufbau einer Anweisung ist wie folgt:

LABEL NUMBER INSTR SPEC OPERAND SUPPL
{ Marke} :{ Anzahl }z{ Befehl b, { Spezifikation p,{ Operand p,{ Ergéinzung}h;

Im Einzelfalle, insbesondere auch je Anweisungstyp, ksnnen bestimmte Worte ent-
fallen; die Kommentar-Anweisung besteht nur aus Text, eingeleitet durch einen
Schragstrich (/). Die Worte einer Anweisung hahen folgende Bedeutung:

Marke: Hier ist ein Name einzutragen, wenn an anderer Stelle im Programm
auf die Anweisung Bezug genommen wird. Als Trennzeichen steht
hinter der Marke ein Doppelpunkt (:).

Anzahl s Hier ist eine Dezimalzahl z (2...256) einzutragen, wenn Variablen-
oder Konstanten-Strings von mehr als 1 Byte Ldnge vereinbart werden,
oder wenn Mehrfachausfihrung (DO-Befehl) vorgesehen ist. Im letzte~
ren Falle ist ggfs. auch eines der Zeichen >, < oder = hinter z
notwendig. Statt der Zahl z kann ein Name stehen, dem vorher ein
Wort zugewiesen wurde. Als Trennzeichen steht (%) oder (&) hinter
der Anzahi.

- 77 -

—8[-

O SRS U5 N N E— -
e N — SN B E— —
T T T T Y T —r T M L —r T —r T +H— H——ry —r—r —r—r
e —— — oy axaltPand]

o YT T T Ty T A 8 LU SUNL SR SEED Siun SN S ERNR SHNS SHED SN NN SUN SN SN SEN AN T RANRS l‘v'wv‘fv‘v |-zm§<
S e —— e : 4 ‘ 2 2o
LMK MAAAEAEARS IREARAREANS A i u RSN W
‘|111 T T YTV T LZNNE SHND BN Shun SAus SNEE SNES SENE SEEE Buun v LA R S v Y A avvh‘ o7;”>z :rvzv
A S WOBE AN
ol T R e e e e e S S e LA B m o o e S e e B e e e e B Ty r..ww,wlvp:;),d" T Ty
roy BEAEI S e a a S e — T T T T ’W'V'¢' ';7314 LM z 1T
T v T LENNE SN SRS SEND SNES § T T LA B B LA A SR BEE SNE SNEN BENE SEED BENE SN SN § L NN B S '!1'!‘ LA H'ﬂ'7 ﬁina"avvvﬂl
N DA A A "z'v"""p':y'_ﬁp‘paw;['r‘:"yv
[RAAN AEAEARSASAARRERARRARARAAEAREARARRARAN RARE RRRSRN -V -7/ N AR NNGSE N

—r— T T ™7 VT Ty LAN S Sam LANND S Snn S Sun Sam s LA T ¥ ~—1¢ 7

' SRR DN N D gg' ﬁagiio
REAS RARRSMARARASEASMMAMSNMMM D N . gt §§§\1
R ———————— - : pipeH T o v
S it NURMNH § EMN NI E— R
T e g NN EI NN T RE LW
A R T TSNE NSA N3 IN3LSJ] pEd _INMNHIBREY AW WWea99ag
- 23 $9 2] £33 [29 sy 09 e cejez|ez %4124 RE4 eifLtyen gy L8t AN
: S3IION SiNINAHOD ¥O4 Yddns | $ ONVY¥340] 2345 | H1S NI | ¥38nTN 1D hEL-R RN

TP 133K DEYED]

JN3LSAS '

%NV% INVN vi-cy_h 3iva ‘z NOA Nﬁi‘NS—LOd WVYY90ud

wwsoss 009 TVONIN

Befehl:

Spezifikation:

Operand:

Ergdnzungs

Jede Anweisung muf3 einen "Befehl" enthalten, der sie kennzeichnet.
Er besteht fur Steuer- und Belegungsanweisungen sowie fur Wertzu-
weisungen aus einem Buchstaben, fir Maschinen- und Makro-Instruk=
tionen aus einem Buchstaben, gefolgt von 1 bis 3 weiteren Buchstaben
oder Ziffern. Es sind nur solche Befehle zuldssig, die in der Befehls-
liste des Assemblers vermerkt oder vom Benutzer als Makrobefehle de-
finiert sind (s. spdter). Als Trennzeichen steht dahinter ein Komma (,).

Enthdlt notwendige Zusatzangaben. Bei Maschinen=Instruktionen sind
dies die gestarteten Ebenen oder das Arbeitsregister; im letzteren Falle
ksnnen Namen, Hexa-Zahlen oder das Akkumulator-Symbol @ verwen=
det werden. Als Trennzeichen steht dahinter ein Komma (,).

Enthalt bei Maschinen-Instruktionen die Operanden-Adresse oder eine
Konstante. Je nach Bedarf kénnen Namen, Dezimalzahlen, Hexa-
Zahlen, Text-Zeichen oder das Symbol @ verwendet werden.

Als Trennzeichen steht dohinter ein Komma (,).

Enthdlt bei bedingten Sprungbefehlen die Sprungadresse (Name), bei
BUS-bezogenen Befehlen das Indexregister (Name, Hexa-Zahl, @).

Den Abschlufl einer Anweisung bildet ein Semikolon (;). Es kann unmittelbar auf das
letzte Wort folgen. Wenn Marke oder Anzahl nicht vorgesehen ist, entfallen die zu-
gehorigen Trennzeichen; fur hinter dem Befehl stehende Worte, die "leer" bleiben,
mussen Kommata als Trennzeichen vorgesehen werden, wenn danach noch ein "ausge-
fulltes" Wort folgt.

- 79 -

WORTELEMENTE

Worte innerhalb von Anweisungen konnen aus folgenden Elementen bestehen:

Namen:

Dezimalzahlen:

Hexa=Zahlens

Text-Zeichen:

Akkumulator:

Namen sind symbolische Ersatzbezeichnungen fur Adressen, Festwerte
oder andere Angaben. Sie bestehen aus einem Buchstaben, dem von
bis zu 3 weitere Buchstaben oder Ziffern folgen konnen.

Beispiele: A, AB, ABC, ABCD, X1, X999, HIT, O#3p.

Jedem Namen muB im Programm ein bestimmter Wert zugewiesen wer-
den. Das geschieht durch Eintragen des betreffenden Namens als Marke
in einer Anweisung, wodurch ihm die (Basis~) Adresse der betreffenden
Instruktion oder Belegung zugeteilt oder - im Falle der Wertzuweisung
Q - ein bestimmter Wert zugewiesen wird. Ein Name darf in jedem
Programm nur einmal definiert sein.

Dezimalzahlen bestehen aus 1 bis 5 Ziffern, vor denen ein Minuszei~
chen stehen kann. Der Assembler erzeugt aus ihnen die entsprechende
bindre Ganzzahl bzw. deren Zweierkomplement.

Beispiele: 1, 99, 255, 32767, -1, -128, -32768.

Hexa-Dezimalzahlen bestehen aus 2, 4 oder mehr Zeichen (Ziffern
0...9, Buchstaben A...F), vor denen ein Apostroph (') steht. Je 2
Hexa-Zeichen faBt der Assembler zu einem Byte zusammen.

Beispiele: '@@, 'F3, "1A77, '1200FF.

Textzeichen oder -Sirings bestehen aus einem oder mehreren druckbaren
ASClI-Zeichen; davor mu8 ein Anfthrungszeichen (") stehen. Der
Assembler reserviert ein Byte je Zeichen. Leerschritte werden in die-
sem Falle nicht Uberlesen, sondern als Byte bertcksichtigt.

Beispiele: "1, "TEXT, "+12o/ ABC.

Fur den Akkumulator ist statt der Register-Adresse '@2 das Zeichen @
zu verwenden.

- 80 -

GULTIGE ANWEISUNGEN

Steueranweisungen

Stehen am Anfang und Ende eines Programms. Sie belegen keinen Speicherplatz.

O Ursprung Programm

Definiert die Adresse der nichstfolgenden speicherbelegenden Anweisung. Zu
Beginn jedes Programms mufl eine O-Anweisung stehen.

Spezifikation: 4-stellige Hexa-Zahl

Beispiel: O, '4F12

z Ende Programm

SchlieBt das symbolische Programm ab.

Wertzuweisung

Bewirkt Zuweisung eines Wortes zu einem Namen. Belegt keinen Speicherplatz. Muf}
im Programm (beliebig weit) vor der Stelle stehen, an welcher der Name benutzt wird.

Q Wertzuweisung

Weist einem Namen, der als Marke vor Q steht, den danach spezifizierten
Wert zu.

Marke: Vorgeschrieben (Name)

Anzahl: Angabe notwendig, wenn der Wert die Kapazitidt eines Bytes tber-
schreitet. Es wird die Anzahl der benétigten Bytes angegeben (2...256).

Spezifikation: Dezimalzahl,
Hexa-Zahl,
Text,
Name,
Name + Dezimalzahl, oder
Name + Hexa-Zahl,
Name + Name

- 81 -

Beispiele:

Belegungsanweisungen

A : Q,
ZH15 ¢ 2% Q,
REG3 Q,
ADR 2% Q,
X1 Q,
TX2 12% Q,

12

-32768

'F3

'OFAL
"ALPHABETL1!]
NAM2

XY 1+1

XYD+999
AB+’QF

X1+X2

Belegen Speicherplidtze mit Nullinhalt oder Festwerten. Die Anweisungen kdnnen mit
Namen als Marken versehen werden. Der Name bezieht sich dann auf die Speicher-
adresse bzw. auf die Basis-Adresse des Byte-Strings.

+) zur Definition von Gleitkommazahlen siehe Abschnitt STANDARD PACKS.

\% Variable

Reserviert ein Byte bzw. einen Byte-String im Speicher. Nach dem Assemblie-
ren haben mit V reservierte Bytes Nullinhalt.

Anzahl: Angabe notwendig, wenn mehr als ein Byte reserviert werden soll.
Es wird die Lidnge des Byte-Strings angegeben (2...256).

Beispiele:

D Dezimalzahl

\'
2%V
256 %V

Reserviert ein oder zwei Bytes im Speicher und belegt sie mit der Bindrzahl,
die der angegebenen Dezimalzahl entspricht.

Anzahl: Angabe notwendig, wenn 2 Bytes belegt werden.

Spezifikation: positive oder negative dezimale Ganzzahl

Beispiele:

A Adresse

2% D,
2% D,
2% D,

1

255
-35
9999
-32768
65535

Reserviert ein oder zwei Bytes im Speicher und belegt sie mit einer Adresse.
Anzahl: Angabe, wenn 2 Bytes belegt werden. Spezifikation: Name

Beispiele:

2% A,ADDR
A,REG7

- 82 -

H Hexa-Zahl

Reserviert ein Byte bzw. einen Byte-String im Speicher und belegt sie mit 2
Hexa-Zahlen je Byte.

Anzahl: Angabe notwendig, wenn mehr als ein Byte reserviert wird. Es wird
die Linge des Byte-Strings angegeben (2...256).

Spezifikation: 2- ...512~stellige Hexa-Zahl.
Beispieles H 'FF

2% H, @283
4% H, '778899AA

T Text

Reserviert ein Byte bzw. einen Byte-String im Speicher und belegt sie mit
einem druckbaren ASCli-Zeichen je Byte.

Anzahl: Angabe notwendig, wenn mehr als ein Byte reserviert wird. Es wird
die Lange des Byte-Strings angegeben, die gleich der Zeichenzahl ist (2...256).

Spezifikation: 1 bis 256 druckbare Zeichen (einschliellich Leerschritt).

Beispiele: T, "z
9% T, "+12u/u ABC

Maschinen-Instruktionen

Die hierzu gehsrenden Anweisungen beziehen sich auf die Maschinenbefehle des
MINCAL 621 (siehe dort). Der Maschinencode wird vom Assembler entsprechend der
Befehlsstruktur und in der Reihenfolge der Anweisungen erzeugt. Zur Mehrfach-Ausfih-
rung einer Instruktion (DO-Befehl) ist in der Anweisung die Anzahl z (2...256) einzu-
tragen, gefolgt von der Angabe, welche Adresse inkrementiert wird, sowie von einem
Trennzeichen, das zugleich die Beriicksichtigung des LINK-Bits angibt:

z & n-fache Ausfihrung

z>& , Operanden-Adresse wird inkrementiert| LINK

z<& " , Register-Adresse n wird nicht
z=& " , beide Adressen " beriicksichtigt
z * n

Z< % " , Operanden-Adresse n : LINK

Z> 3% " , Register-Adresse " wird

z=% " , beide Adressen n beriicksichtigt

- 83 -~

Zu Beginn der Anweisung kann als Marke ein Name stehen. |hm wird die Adresse
des Befehls-Bytes zugewiesen, bei Mehrfachausfihrung die Adresse des Befehlsbytes
des davorstehenden DO-Befehls.

Eine vollstdndige Anweisung sieht z.B. so aus:

MARK:2=¢ADA ,REGI,ADR, IXRG
Folgende symbolische Befehle sind vorgesehen, geordnet nach Gruppen:

NOP Ebenso: HLT, ECL, DCL
Steuerbefehle
Keine weiteren Angaben.

SEL Ebenso: HSL
Steuerbefehle mit Start einer Programmebene.

Spezifikation: Nummer der gestarteten Programmebene.

Beispiele: SEL,’'@B
HSL,LEV3

GS Ebenso: GL
Abfrage Konsolschalter bzw. laufende Programmebene.

Spezifikation: Arbeitsregister.
Beispiele: GS ,®@

GL,1A
GL ,REG7

SRO Ebenso: SRC, SLO, SLC
Schiebebefehle.

Spezifikation: Arbeitsregister.
Beispiele: SRO, @

SRC,"1A
SLO, REG7

- 84 -

BZ Ebenso: 1Z, BP, IB, BNZ, INZ, BNP, INP
Bedingter Sprung mit Abfrage Register-Inhalt auf Null oder Vorzeichen.

Spezifikation: Arbeitsregister.
Operand: Nicht zuldssig (jedoch Komma vorsehen).

Ergtinzung: Sprungadresse (Name).

Beispiele: BZ , @ ., , SPRG
1z ,”1A , , ADé6
BNP, REG7, , X2

BEC Ebenso: IEC, BER, IER, BNEC, INEC, BNER, INER,
BZC, 1ZC, BZR, IZR, BNZC, INZC, BNZR, INZR
BOC, I0C, BOR, IOR, BNOC, INOC, BNOR, INOR
Bedingter Sprung mit Vergleich zwischen Arbeitsregister-Inhalt einerseits und
Konstante oder Vergleichsregister-Inhalt andererseits.

Spezifikation: Arbeitsregister.
Operand: Konstante oder Vergleichsregister.

Ergdnzung: Sprungadresse (Name).

Beispiele: BEC , @ ,12 ,bSPRG
INEC ,"TA ,'FF ,ADé6
BZC ,REG7,MA3,X2
IER ,@ ,RG17,NI1A
BNOR,1A ,’A3 ,AD7
INOR ,REG7, @ ,L

LD... Ebenso: AD..., SB..., AN..., OR..., EO..., ST...
BUS-bezogene Befehle (auBer JP und CS).
Als dritter Buchstabe des Befehls ist je nach Adressierungsart C, X, R, L oder A
anzugeben.

Spezifikation: Arbeitsregister.
Operand: Konstante oder Operanden~Adresse (auBer bei ...X).
Ergdnzung: Indexregister (wenn indiziert).
Beispiele: IDC , @ ,25 ,
ADX ,"1A , ,IND2
SBR ,REG7,'FF ,

ANL , @ ,ADk |,
ORA ,"1A ,’49A2,"1F

- 85 -

+)

JP...

cs...

Sprung
Dritter Buchstabe siehe LD...

Spezifikation: nicht zuldssig (jedoch Komma vorsehen)
Operand: Sprungadresse (auBler bei ...X)

Ergtinzung: Indexregister (wenn indiziert)

Beispiele: JPX -, , ,IND2
JPL o, ,SPRG
RA -, , ABA2 7 1F

Unterprogramm~-Sprung
Dritter Buchstabe siehe LD...

Spezifikation: Arbeitsregister (Rickkehradresse)
Operand: Sprungadresse (aufler bei X)

Ergiinzung: Indexregister (wenn indiziert)
Beispiele: CSX , @ ,IND2

csL ,’1A ,SPRG
CSA ,RET3 ,’4fA2,/1F

Bemerkung: Bei Konstanten-Befehlen der Gruppe BEC und LD... kdnnen Konstanten von
bis zu 2 Byte Ldnge dezimal oder hexa-dezimal als Operanden eingetragen werden,

z.B.:

2=INEC, @, '#0FF,SPRG
2=*ADC ,’1A,4096

Fur langere Konstanten sind Namen vorzusehen, denen Uber eine Q-Anweisung die
entsprechenden Werte zugewiesen werden.

Makro-Instruktionen

Symbolische Makro-Anweisungen dienen_zur Programmierung von komplexen Befehlen,
die nicht durch einfache Maschinen-Instruktionen des MINCAL 621 darstellbar sind.
Die Makro-Anweisung ruft ein Unterprogramm auf, welches diesen komplexen Befehl
ausfihrt; danach wird die folgende Anweisung ausgefihrt.

Der Benutzer kann Makro-Anweisungen auf zweierlei Art gebrauchen:

Standard=-Makros zu den MINCAL 600-Bibliotheksprogrammen (LIBRARY)

Selbstdefinierte Makros zu vom Benutzer erstellten Unterprogrammen.

- 86 -

Die Standard-Makros sind in der Befehlsliste des MINCASS 600 M Makro-Assemblers
vermerkt und im Abschnitt "Programm-Bibliothek" ausfihrlich beschrieben.

Will der Benutzer eigene Makro-Anweisungen definieren, so ist folgendes zu beachten:

Die erforderlichen Unterprogramme sind entweder getrennt zu erstellen und zu testen;
sie sind dann spdter in vorbestimmte Speicherbereiche einzulesen. Oder sie sind an
irgendeiner Stelle im Programm symbolisch programmiert.

Zu Beginn eines Programms, das davon Gebrauch macht, sind die Makro-Anweisungen
zu definieren, und zwar noch vor der O-Anweisung. Dies wird eingeleitet durch eine
M-Anweisung (Buchstabe M ohne weitere Angaben). Dann folgt eine Liste der im Pro-
gramm benutzten Makrobefehle, zusammen mit der absoluten Einsprungadresse in das
Unterprogramm.

Beispiel: M
XY ,PACK
AB3Z, ' AFg@
HJK ,A205

Dies bedeutet, dafl ein Makrobefehl (AB3Z) vorkommt, der einen Unterprogrammsprung
zur festen Adresse '4F@J bewirkt, wihrend zwei weitere Makrobefehle (XY und HJK)
Unterprogramme aufrufen, die im symbolischen Programm definiert sind, wobei PACK

und A205 die Namen fur die Einsprungstellen sind.

Als Makrobefehle ksnnen beliebige Folgen von 2, 3 oder 4 Zeichen verwendet werden,
allerdings mit Einschrinkungen:

Das erste Zeichen muB ein Buchstabe sein; R, K, W sind nicht zuldssig.

Die Zeichenfolge darf keiner Anweisung fur Maschinen-Instruktionen und
keiner Makro~Anweisung fur die Bibliotheksprogramme entsprechen.

Als erste 2 Zeichen sind LD, ST, AD, SB, MP und DV verboten.

Als drittes Zeichen sind C, X R, L und A, als viertes Zeichen D, F und G
bei der Definition verboten; im Programm k&nnen sie vorkommen und bewirken
dann Holen eines Operanden vor Eintritt in das Unterprogramm (s. spdter).

Wird z.B. im Programm der Makrobefehl HJK verwendet ohne weitere Angaben, so
wird ein Unterprogrammsprung mit der symbolischen Entsprechung

CSA,RET, A205

erzeugt, was einem Unterprogrammsprung nach A2@5 ohne Ubergabe eines Operanden
entspricht; die Ruckkehradresse steht in RET.

- 87 -

Stattdessen kann eine Makro-Anweisung mit Ubergabe eines Operanden programmiert
werden, dessen Adressierungsart und Lange durch Ergtinzen zweier Buchstaben zum
definierten Makrobefehl (der dann 2 Zeichen haben muB) bestimmt wird; hinzu kommen
Angaben Uber Operandenadresse und eventuelle Indizierung. So erzeugt die Makro-An-
weisung

XYm , ADR, IXR
eine Befehlsfolge mit der symbolischen Entsprechung

LDm ,OPD ,ADR,IXR
CSA ,RET ,PACK

wobei in m je nach Adressierungsart der Buchstabe C, X, R, L oder A steht. Ist ein
viertes Zeichen | vorhanden,

XYml , ADR, IXR
so entsteht die Befehlsfolge

z=»Dm ,OPD ,ADR,IXR
CSA ,RET ,PACK

wobei z =2, 3 oder 4 ist, wenn fur | der Buchstabe D, F oder G eingesetzt wird.
Diese Form von Makrobefehlen erlaubt es, vor Eintritt in das Unterprogramm einen
Operanden von 1...4 byte Ldnge zu Ubergeben, der beliebig adressierbar ist.

OPD und RET sind festgelegte Registerplatze bzw. -Strings, die auch von den Makro-
befehlen der Bibliothek benutzt werden. Es ist daher nicht zweckmdBig, in vom Be-
nutzer definierten Unterprogrammen Makrobefehle der Bibliothek zu benutzen, ohne
den Inhalt dieser Register vorher zu retten.

Kommentare

Kommentare dienen zur verbalen Erklérung des Programms. Sie kdnnen an beliebigen
Stellen des Programms stehen und haben fur das Programm selbst keine Bedeutung.

Eine Kommentar-Anweisung beginnt mit einem Schrégstrich (/), gefolgt vom Text aus
beliebigen druckbaren Zeichen, wobei alle Leerschritte bericksichtigt werden. Der
Kommentar wird mit Semikolon (;) beendet; es ist daher innerhalb des Kommentars
nicht zuldssig.

- 88 -

+) KORREKTUREN

Beim Erstellen von symbolischen Programmen, z.B. off-line mit Hilfe des Teletype,
ksnnen Fehler enistehen, die bereits beim Eintippen erkannt werden. Hierfur sind
Korrekturmsglichkeiten vorgesehen:

Eingabe eines waagerechten Pfeils («—) macht das vorangehende Zeichen
ungultig. Danach das richtige Zeichen eingeben.

Eingabe eines senkrechten Pfeils (4) macht die gesamte Anweisung bis zum
letzten Semikolon ungiltig. Danach die Amweisung neu eingeben.

-89 -

HANDHABUNG DES ASSEMBLERS

Jede Programmumwandlung erfordert mindestens 2 Ldufe des Assemblerss

ASS dient zum Aufbau der Markenliste sowie zur Erkennung von formalen
Fehlern

EXC dient zur Erzeugung eines Lochstreifens, der das Programm in Maschi-
nencode enthalt.

Der Benutzer wihlt den Lauf durch Eingabe der Bezeichnung ASS bzw. EXC tber
die Tastatur des Teletype vor; darauf ist einzugeben, wortber das Quellprogramm

eingelesen wird und wohin das Resultat abgelegt wird:

ASS Eingabe: IKB

I1SB
+) IFB
+) ICB

Ausgabe: OSH

+) OFH
+) OCH

EXC Eingabe: ISB

+) IFB
+) ICB

Ausgabe: OSH

Beispiele: ASS
+) ASS
+) ASS

+) OFH

,1KB, ISB
, ISB,OFB
, IFB,OCB

EXC, ISB,OSH
+) EXC, IFB,OFH
+) EXC, ICB,OFH

Tastatur des Teletype
Langsamer Leser (Teletype)

Schneller Leser
Kernspeicher

Langsamer Locher (Teletype)

Schneller Locher
Kernspeicher

Langsamer Leser (Teletype)

Schneller Leser
Kernspeicher

Langsamer Locher (Teletype)

Schneller Locher

symbolisches
Programm

symbolisches
Programm

symbolisches
Programm

Maschinencode-
Programm

Nach Vorwahl der Betriebsart ist "Wagenricklauf" einzugeben, und der Lauf beginnt.
Das symbolische Programm, gleichgultig ob tber die Tastatur eingegeben, als Loch-

streifen eingelesen oder erzeugt oder im Kernspeicher abgelegt,
ler vorgeschriebene symbolische Format.
Hexa=Format (s.

Anhang).

- 90 -

hat das vom Assemb-
Ausgelochte Maschinencode-Streifen haben

Varianten dieser Betriebsarten sind solche, bei denen nur die Eingabe vorgeschrieben,
die Ausgabe aber weggelassen wird, z.B.:

ASS ,ISB
EXC,ISB
+) EXC,ICB

Hierbei erfolgt keine Ausgabe; jedoch werden alle Anweisungen, die formale oder
Adressierungsfehler enthalten, zusammen mit der Anweisungs-Nummer und einem Fehler-
code auf dem Teletype ausgedruckt (siehe Fehlerliste).

Im Normalfall wird zu Beginn jedes ASS-Laufs die Markenliste gelsscht; jedoch hat
der Benutzer die Moglichkeit, dies zu verhindern; er gibt dann ein:

ASS,SAV, ...

Eine weitere Betriebsart bewirkt Drucken eines Protokolls auf dem Teletype. Hierzu
ist PRO und die Quelle des symbolischen Programms einzugeben, z.B.:

PRO, ISB
PRO, IFB
PRO, ICB

Das gedruckte Protokoll hat je Zeile folgendes Format (1 Zeile = 1 Anweisung):

Anweisungs=Nummer (4 Ziffern)

Leerschritt

Fehlercode (2 Ziffern oder 2 Leerschritte)

(Basis~) Adresse (4 Hexa-Ziffern)

Leerschritt

Marke (4 Zeichen)

. falls vorhanden
Anzahl (4 Zeichen)

Zusatzzeichen (>,<, = oder Leerschritt) } falls vorhanden
Trennzeichen (% oder &)

Befehl (4 Zeichen)

Spezifikation (4 Zeichen)

, oder ldngere
Operand (6 Zeichen) Spezifikation
Ergtnzung (4 Zeichen)

Leerschritt

Maschinencode (max. 8 Hexa-Ziffern-Paare, durch je 1 Leerschritt

getrennt; die Paare entsprechen erzeugten Bytes in
aufsteigender AdrefBreihenfolge)

- 91 -

+) Spezifikationen mit mehr als 16 Zeichen und Maschinencode-Strings mit mehr als
8 byte werden in Folgezeiten spaltengerecht fortgesetzt.

Kommentare werden unter Weglassung des einleitenden Schrigstrichs mit Beginn
der Markenspalte ausgedruckt.

+) Der Protokollausdruck erfolgt abschnittweise, so dafl das Endlospapier in DIN A4~

Bldtter geschrieben werden kann. Am Kopf jedes Blattes wird dessen Nummer sowie
der Programmname gedruckt.

Assembler-Laufe ksnnen auch zur Korrektur von symbolischen Programmen benutzt wer-
den.

Hierzu wird vor dem betreffenden Lauf das Kommando

COR

eingegeben. Mit dieser Betriebsart wird ein Pufferbereich im Speicher angesprochen,
der die notwendigen Korrekturen in Form symbolischer Anweisungen enthdlt. Weitere
Kommandos sind in diesem Zusammenhang:

L Ausdruck aller Anweisungen im Pufferbereich
+ m,L " Anweisung m "
+) n,m,L " Anweisungen m bis n "
C Loschen aller Anweisungen im Pufferbereich
+) m,C " Anweisung m "
+) m,n,C " Anweisungen m bis n L
+) ,D Lodschen Anweisung m im Quellprogramm
+ m,n,D n Anweisungen m bis n "
danach
m,A Andern Anweisung m im Quellprogramm neuve An-
n,m,A " Anweisungen m bis n " w eisungen
eingeben

+) m,l Einfigen einer Anweisung nach m im Quellprogramm

4 Ende der Betriebsart
m, n sind jeweils vierstellige Anweisungs=Nummern.

Nach der Betriebsart C wird ein never Assembler-Lauf gewshlt (ASS, evtl. auch EXC);
die im Pufferbereich enthaltenen Korrekturen werden dabei beruicksichtigt.

- 92 -

+) Zu Beginn des Assembler-Betriebs kann der Benutzer durch Eingeben 4-stelliger
Hexa-Zahlen die maximale vom Assembler benutzte Speicheradresse (ADR), die
GroBe des Pufferbereichs (BUF) und die Linge der Markenliste (LAB) vertindern
den Programmnamen (NAM) mit max. 16 ASCll-Zeichen eingeben.

+) Nach einem EXC-Lauf kann mit LIB ein Streifen eingelesen und ein Duplikat
erstellt werden, das zusdtzlich die Bibliotheksprogramme enthilt. Diese schlieflen
sich damit an das eigentliche Programm an, wobei jedoch nur die PACKS ange-
hdngt werden, die von im Programm enthaltenen Makrobefehlen benutzt werden.

- 93 -

FEHLERLISTE

Fehlercode Bedeutung

o9 Allgemeiner Syntaxfehler

4l u " am Befehlsbeginn
72 Marke mehrfach definiert

23 Uberlauf Markenliste

24 Anzahl zu groB

o5 Syntaxfehler Anzahl

26 Name fur Anzahl nicht definiert

g7 Befehl nicht zuldssig

@8 Syntaxfehler im Operanden

9 Registeradresse grofer als 1 Byte

11 " nicht definiert

12 Operandenadresse syntaktisch zu lang
13 " zu lang entsprechend DO-Befehl
14 " nicht definiert

16 Indexregister-Adresse grofer als 1 Byte
17 " nicht definiert
29 Uberlauf allgemein

22 Spezifikation fehlt

23 " hat falsche Ldnge

24 Marke vor Q-Anweisung fehlt

- 94 -

LIBRARY

VORBEMERKUNG

Die Bibliothek (LIBRARY) des MINCAL 621 Computers besteht aus Unterprogrammen,
die umfangreichere Funktionen erfillen als einzelne Maschinenbefehle. Die Unter-
programme werden durch Makro~Anweisungen aufgerufen; hierfur ist der Makro-As-
sembler MINCASS 600 M zu benutzen. Jedoch konnen sie auch - fur den Benutzer
umstandlicher = mit Unterprogrammaufrufen unter Ubergabe des Operanden mit einfa-
chen Assemblerbefehlen bedient werden.

Die Unterprogramme der Bibliothek sind entsprechend ihrer Funktion zu Paketen
(PACKS) zusammengefaBi:

READ/WRITE PACK : (Ein/Ausgabe von Text und anderen Zeichen)
DOUBLE BYTE PACK : (Doppelbyte-Arithmetik mit Ein/Ausgabe)
FLOATING POINT PACK: (Gleitkomma-Arithmetik mit Ein/Ausgabe)
Das zweite Paket bedingt Vorhandensein des ersten; das letzte setzt beide anderen
voraus.
Die Unterprogramme benutzen als Variablenspeicher die Register der jeweiligen Ebene;
sie konnen daher im Multiprogramming von beliebig vielen Ebenen gleichzeitig be-
nutzt werden. Je Ebene muB ein Pool von 32 Bytes (Register-Adressen @@...10) zur

Verfugung stehen; dieser Bereich, einschlieBlich dem Akkumulator (@, kann durch
die Unterprogramme vertindert werden.

READ/WRITE PACK
Dieses Unterprogramm-Paket dient zur Ein- und Ausgabe von Text und Hexa-Zahlen
in Verbindung mit Fernschreibern, Lochstreifengerdten und anderen, zeichenweise

arbeitenden Periphergerdten im ASClI-Code.

Der Aufbau der zugehorigen Makro-Anweisungen ist:

§ Anzahlp* { Befehl} , { Gerait} , {Operand} , {Indexregister}

- 95 -

Folgende Befehle sind vorgesehen:

RTm Lesen Text
WTm Schreiben Text
RHm Lesen Hexa
WHm Schreiben Hexa

Lesen bedeutet Eingabe Periphergerdt und Abspeichern in der effektiven Adresse,
Schreiben den umgekehrten Vorgang. Fir m ist einer der Buchstaben C, X, R, L
oder A entsprechend der gewiinschten Adressierungsart einzusetzen; die Operanden-
Adresse wird wie Ublich programmiert, ebenso das eventuelle Indexregister, mit des-
sen Inhalt sie modifiziert wird.

Bei Text (T) wird ein Byte unverdndert als ASClI-Zeichen behandelt; im Falle von
Hexa (H) werden die linke und rechte Hulfte (in dieser Reihenfolge) eines Bytes
zwei ASCIll-Zeichen (8...9, A...F) zugeordnet, indem die zusdtzlichen 4 Bit des
ASClI-Codes abgeschnitten bzw. ergdnzt werden.

Die Gerdtenummer wird als Spezifikation dem Befehl mitgegeben, wobei dort entwe-

der eine zweistellige Hexa-Zahl oder ein Name steht, der entsprechend definiert ist.
Wird z.B. 'F3 als Gerdtenummer programmiert, so wird das Gerdt mit der BUS-Adres-
se fF3@ angesprochen.

Vor dem Befehl kann die Anzahl der ein- oder ausgegebenen Zeichen bestimmt wer-
den (2...256), wenn es sich um mehr als eins handelt. Bei Text-Befehlen entspricht
dem ein gleich langer Operanden-String, wobei das Basis-Byte, welches auch das
zeitlich zuerst behandelte Zeichen enthdlt, programmiert wird. Bei Hexa-Befehlen
ist die Linge des Operanden-Strings halb so grof3.

Text- und Hexa-Zeichen werden, als Konstanten verwendet, zweckmifBig mit den
Definitionen T und H programmiert. Fur die Ausgabe von ASCIll-Steuerzeichen (z.B.
Wagenricklauf) ist Text-Ausgabe von Konstanten zweckmdBig, die als Hexa-Zahlen
eingegeben werden.

Beispiele:
RTA ,’F3 ,ADDR Lesen 1 Textzeichen von 'F3 nach ADDR
6% RHR ,’@@ ,REG] " 6 Hexa-Zeichen von @@ nach REG1
WTL ,DEV, CHAR Schreiben 1 Textzeichen aus CHAR nach DEV
2 x WTC,FS2 ,’@A@D Ausgabe Wagenriicklauf/Zeilenvorschub auf FS2
WTC,FS2 ,"X Schreiben "X" auf FS2

Die Ausgabe der Zeichen erfolgt im ASCII-(ISO-7-) Code mit geradzahliger Paritat.
Bei der Eingabe wird auf diese Paritit gepruft; fehlerhafte Zeichen werden zwar ab-
gelegt, jedoch wird dann ein Register-Byte ERR auf 1 gesetzt; der Benutzer kann
dieses Byte nach Ablauf des Makrobefehls im Hauptprogramm abfragen.

—96_

DOUBLE BYTE PACK

Mit diesem Unterprogramm-Paket ksnnen Doppelbyte=Ganzzahlen airhtmetisch behan-
delt sowie ein- und ausgegeben werden, einschlieB8lich der Umwandlungen von Bindr=
in Dezimalzahlen und umgekehrt. Hinzu kommen Konversions- und Ein/Ausgabebefeh-

le fur EinbyteGanzzahlen.

Einbyte-Ganzzahlen sind stets positiv: n 27 Pl o0...255
Doppelbyte=-Ganzzahlen sind positiv oder n _2_7_ - .'é)_ -32768
negativ (Zweierkomplement) und umfassen ntl| g 25— B 32768
16 bit (niedriges Byte = Basis-Byte): Vorzeichen

Folgende arithmetischen Befehle sind fir Doppelbyte~Ganzzahlen vorgesehen:

MPmD Multiplizieren Doppelbyte
DVmD Dividieren "

Als Arbeitsregister wird stets der Akkumulator benutzt. Der Operand kann wie bei
BUS-bezogenen Befehlen tblich addiert werden; fur m ist C, X R, L oder A einzu-
sefzen.

Die Multiplikation ergibt ein 4-byte-Produkt:

@ |7 2l 0 |Z 2l @ |7 ?
@ +1 '9 B n+1 jf Bl @ + ‘2?6' 4-Byte-
@ +2 2 Produkt
VZ \4 F———= 31
@ +3 % 234
vVZ
Akku : Operand —_— Akku

Bei der Division ergibt sich ein 4-Byte-Quotient mit Mittelkomma:

@ |3 Pl on |7 Pl @ |7 76 } .
@ +1 T—_—_‘f 3 B @ 4 __2-] "—‘——2.8;" Bruchteil
VZ V4 @ +2 -i—————zg-j }anzzahl-
Teil
i \V4
Akku / Operand ——» Akku

- 97 -

Beide Operationen laufen vorzeichenrichtig ab.

Um dem Benutzer einen symbolisch vollstindigen Satz von Doppelbyte-Befehlen an
die Hand zu geben, sind im Makro-Assembler noch folgende Befehle vorgesehen:

LDmD Laden Doppelbyte (Operand —» Akku)

STmD Speichern " (Akku — Adresse)
ADmD Addieren " (Akku + Operand — Akku)
SB mD Subtrahieren " (Akku = Operand — Akku)

Es werden jedoch keine Unterprogramme hierfir benutzt; vielmehr erzeugt der As-
sembler hieraus Maschinenbefehle mit vorgeschaltetem DO-Befehl.

Die Angabe einer Anzahl ist nicht zuldssig, so daB sich fur diese Anweisungs~
Gruppe folgender Aufbau ergibt:

{ Befehl P , @ , ¢ Operand } , 4 Indexregister }

Beispiele fir Doppelbyte-Anweisungen:

LDCD , @ , -25020 ~25000 — Akku

STXD , @ ,IND Akku — < IND >

ADRD , @ ,REG7 ,IXR1 Akku + Operand — Akku
SBLD , @ ,CONS Akku - Operand — Akku
MPAD, (@ ,ADDR,’ AB Akku - Operand — Akku
DVRD, @ ,’Al Akku : Operand — Akku

Zum Doppelbyte-Paket gehsren ferner folgende Ein/Ausgabe- und Konversionsbe-
fehle:

RD mD Lesen Doppelbyte=~Ganzzahl

WD mD Schreiben Doppelbyte-Ganzzahl

RA mD Konversion ASCII — Bindar

WAmD " Bindr — ASCII Doppelbyte-
RB mD " BCD ~—> Bindr Ganzzahl
WB mD " Bindr —=BCD

Die ersten beiden Befehle haben den Aufbau

{ Anzahl b % 4 Befehl b , { Gerdtd , 4 Operandp , { Indexregister P

- 98 -

und bewirken das Lesen eines ASClI-Zeichen=Sirings mit Ganzzahl-Bedeutung,
Umwandlung in eine bindre Doppelbyte=Zahl und Abspeichern in der angegebenen
(sowie der ntichsthsheren) Adresse; beziehungsweise beim Schreiben den umgekehr-
ten Vorgang. Dabei ist dos Periphergerit sowie die Zahl der ASCli-Zeichen anzu-
geben, die gelesen bzw. ausgegeben werden sollen:

-12345 Anzahl
-2 n
wuuw 35 n

www=-32768 "

oo
OO N O

Beim Schreiben werden fihrende Nullen mit Leerschritten unterdriickt; fir positives
Vorzeichen steht ein Leerschritt. Gelesen wird hochstens die angegebene Stellen-
zahl; jede Nicht-Ziffer nach einer Ziffer fihrt jedoch schon zur Beendigung des
Lesevorgangs.

Hinsichtlich Paritdats-Erzeugung und -Prifung des ASClI-Codes gelten die Bemerkungen
des vorigen Abschnitts.

Mit den restlichen 4 Befehlen, die den Aufbau

{ Befehl> ,@, ¢ OperandP , Indexregister

haben, konnen Genzzahlen, die als ASCIl- oder BCD-Zeichen im Akkumulator und
den néchsthsheren 5 Bytes stehen, in bindre Doppelbyte-Zahlen umgewandelt und in
der effektiven Adresse abgelegt werden; ebenso ist der umgekehrte Vorgang moglich.

Lage der Zeichen im Akkumulator: @]O?
@ + 10
Inhalt: ASCII-Zeichen @ +2 102 { Betrag
bzw. BCD (‘F...’9) @ +3 107
@ +4 10
Vorzeichen: - oder Leerschritt (ASCII) @ +5 Vorzei-
bzw. 5 oder '@ (BCD) chen
Beispiele fur Doppelbyte-Ein/Ausgabe- und Konversionsbefehle:
6xRDAD ,DEV,ADDR 6-Zeichen-Zahl von DEV nach ADDR (bingr)
9xWDCD, 'F3 ,-32768 -32768 auf 'F3 9-stellig ausgeben
RAXD , @ ,,IND @ (ASCIH) — <IND>(binr)
WARD, @ , REG7 REG7 (bingr) — @ (ASCII)
RBAD , @, ’2Fg8 @ (BCD) — ' 2FP8 (bindr)
WBLD , @, VAR,IXR Operand (bintr)— @ (BCD)

- 99 -

Bestandteil des Doppelbyte-Pakets sind schlieBlich noch Ein/Ausgabe- und Konver-
sionsbefehle fur Einbyte~Ganzzahlen:

Rl m Lesen Einbyte=-Ganzzahl

Wim Schreiben Einbyte=-Ganzzahl

RAm Konversion ASCII— Bindr

WAm " Bindr — ASCII Einbyte=
RB m " BCD —= Bindr Ganzzahl
WBm " Bindr — BCD

Sie entsprechen v&llig den Doppelbyte-Befehlen; jedoch werden nur positive Zahlen
behandelt, die maximal 3 geltende Ziffern haben, nur 3 Akkumulator-Bytes
(@bis @+ 2) belegen und in bindrer Form ein Byte einnehmen.

Beispiele hierfir:

2xRIA ,DEV,ADDR 2-stellige Ganzzahl von DEV nach ADDR
6%WIC ,’F3,125 wwwl 25 auf "F3 ausgeben
RAX, @,,IND

WAR, @ ,REG7
RBA , @ ,'2F@8
WBL , @ , VAR, IXR

sieche Doppelbyte=-Beispiele

FLOATING POINT PACK

Dieses Unterprogramm-Paket gibt dem Benutzer die Moglichkeit, mit Gieitkomma-
Zahlen zu rechnen, sie zu konvertieren sowie ein- und auszugeben. Es gibt 2 in-
terne Darstellungen von Gleitkomma-Zahlen mit unterschiedlicher Genauigkeit:

F-Typ (2-Byte-Mantisse): :+] ______g_ } Mantisse M
n+2 Exponent E
G-Typ (3-Byte-Mantisse): n ‘_—:p_
n+l . x| Mantisse M
n+2 26
n+3 Exponent E

- 100 -

Die Mantissen sind Doppelbyte= bzw. 3-Byte-Ganzzahlen; sie kénnen positiv oder
negativ sein. Exponenten sind positive oder negative Einbyte-Ganzzahlen (Bereich
=128 ... 127) zur Basis 2. Eine Gleitkommazahl hat daher den Wert

M - 2F (M = Montisse; E = Exponent)

Das niedrige Mantissen-Byte ist stets das Basis-Byte.

Als arithmetische Befehle sind vorgesehen:

ADmF Addieren Gleitkomma F- Typ
SB mF Subtrahieren "

MPmF Multiplizieren " u
DVmF Dividieren " "
ADmG Addieren Gleitkomma G-Typ
SB mG Subtrahieren "

MPmG Multiplizieren " u
DVmG Dividieren " "

Dazu gibt es noch 3- und 4-byte-Transportbefehle, die jedoch nicht als Unterpro-
gramme existieren, sondern vom Makro-Assembler als Maschineninstruktionen mit
vorgeschaltetem DO-Befehl erzeugt werden:

LDmF Laden Gleitkomma F-Typ
STmF Speichern " u
LDmG Laden Gleitkomma G- Typ
STmG Speichern u

Der Aufbau der Anweisungen ist in allen Fallen:

4 Befehld , @), 4 Operand 3 , { Indexregister P

und entspricht hinsichtlich der Adressierungsart den Doppelbyte-Befehlen. Als Ar-
beitsregister kann wiederum nur der Akkumulator @ angegeben werden; das nie-
drigste Byte der Mantisse belegt (@ selbst; es folgen das bzw. die hsheren Bytes und
schlieBlich der Exponent in (@+ 2) bzw. (@ + 3).

- 101 -

Einige Beispiele:

LDLF ,(@ ,CONS
STXG ,@ ,,IND
ADRG , @ ,REG7
SBLF ,(@ ,VAR,IXR
MPAG, @ ,ADDR
DVRF , @ ,’Al

Zur Definition von Gleitkomma-Festwerten kennt der Makro-Assembler folgende
Belegungs~Anweisungen:

F Belegt 3 Bytes mit einer Gleitkomma-Zahl vom F-Typ
G Belegt 4 Bytes mit einer Gleitkomma=-Zahl vom G-Typ

Als Spezifikation steht dahinter entweder eine beliebige Dezimalzahl (F-Format)
oder eine solche mit einer Zehnerpotenz (E-Format); zum Beispiel:

F ,-123.45 (F-Format)
F,.31415E-01 (= 0.31415-10"") (E-Format)
F,20. (F-Format)
G,2859.6792 (F-Format)
G,~2.85967@2E@3 (E-Format)

Folgende Ein/Ausgabe-Befehle sind vorgesehen:

RF mF Lesen Gleitkomma=Zahl F-Typ im F=Format
WFmF Schreiben u " u

RE mF Lesen n u im E-Format
WEmF Schreiben " u n

RF mG Lesen Gleitkomma-Zahl G=Typ im F-Format
WFmG Schreiben u n u

RE mG Lesen u " E-Format
WEmG Schreiben n u u

Prinzipiell entsprechen sie den Befehlen fur die Doppelbyte~Ein/Ausgabe; der Be-
nutzer hat jedoch die Wahl zwischen zwei externen Darstellungen (F- und E-For-
mat). AuBerdem ist neben der Anzah! der insgesamt gelesenen oder geschriebenen
Zeichen (w) noch die Zaohl der Stellen hinter dem Dezimalpunkt (d) anzugeben,

in diesem Falle mit ¥ als Trennzeichen, also:

w.d¥

- 102 -

Beispiele hierfur:

7.29RFAF ,DEV,ADDR Lesen 7 Zeichen, 2 Dezimalstellen, F-Format
14.7YWERG, 'F3 ,REG7,IXR Schreiben 14 Zeichen, 7 Dezimalstellen, E-For-
mat

Hinzu kommen als Konversionsbefehle:

RA mF Konversion ASCIl Binar

WAmF " Bingr ASCII Gleitkommazahl
RB mF " BCD Bindr F-Typ

WB mF u Binar ASCII

RA mG Konversion ASCII Bindr

WAmG " Binar ASCII Gleitkommazahl
RB nG " BCD Bindr G-Typ

WBmG n Bindr BCD

Im Aufbau und Funktion entsprechen diese Befehle denen fur Doppelbyte~Ganzzahlen.
Die Lage der Stellen im Akkumulator-Siring ist wie folgt: Die wichtigste Mantissen=-
stelle belegt @ , es folgen 4 Bytes (F) bzw. 7 Bytes (G) fur die hsheren Mantissen-
stellen, dann das Vorzeichen der Mantisse, zwei Bytes fur die beiden Exponenten-
stellen und das Vorzeichen des Exponenten.

Beispiele fur Gleitkomma=-Konversionsbefehle:

RAAF , (@ ,ADDR,IXR (@ (ASCII) — Adresse (bindr, F-Typ)
WBXG, @ ,,IND Operand (bindgr, G-Typ) — (@ (BCD)

Bezuglich Paritdtserzeugung und -Prisfung des ASClI-Codes sieche READ/WRITE PACK.

LESEN OHNE INITIATE

Alle gerdtebezogenen Lesebefehle R... der LIBRARY beziehen sich auf Eingaben,
die ein INITIATE erfordern (s. HINWEISE FUR DIE PROGRAMMIERUNG), also z.B.

den Leser am Fernschreiber oder schneller Lochstreifenleser.

Wo dies nicht erforderlich ist, z.B. bei Eingaben Gber die Tastatur des Fernschreibers,
ist im Makrobefehl der Buchstabe K anstelle von R zu verwenden, zum Beispiel:

KTA ,’F3 , ADDR
6%KDAD,DEV, ADDR, IXR
7.25 KFRF ,DEV,REG7

~ 103 ~

MONITOR
VORBEMERKUNG

Der MONITOR ist ein Programm zum Austesten von Programmen, die im Kernspei-
cher des MINCAL 621 dbgelegt sind. Das zu testende Programm l&uft unter Steue-
rung des MONITCRS ab, bleibt an vereinbarten Stellen stehen, so dafl der Benut-
zer Register- und Speicherpldtze auf ihren Inhalt untersuchen oder diesen verdndern
sowie Befehle ein- oder ausbauen kann. Der Dialog erfolgt Uber den Konsol-Fern-
schreiber.

AuBerdem enthdlt der MONITOR Routinen zur Ein- und Ausgabe des Kernspeicher-
Inhalts tber Konsol=Fernschreiber und schrelle Lochstreifengerdte.

MONITOR setzt 32 oder mehr Register je Ebene voraus.

TESTBEGINN

Zunéichst wird das MONITOR-Programm in einen freien Kernspeicher-Bereich gela-
den, das N-Register der Ebene @ uber die Bedienungskonsole auf die Anfangsadresse
dieses Bereichs gesetzt und der Rechner gestartet. Der MONITOR meldet sich durch
Klingelzeichen zum Zeichen, daf eine Eingabe erwartet wird. (Das geschieht fur

alle folgenden Eingaben).

Der Bediener gibt am Konsol-Fernschreiber mit
LEV | (cr)

die Programmebene ein, in welcher der MONITOR laufen soll; fur | ist eine der
Hexa~Ziffern @...F einzusetzen. Der MONITOR muB stets auf der gleichen Ebene
laufen wie das zu testende Programm.

Zur Bestdtigung ist dann "“Wagenricklauf" (cr) einzugeben; jedes andere Zeichen er-
klart die Eingabe fur ungiltig. (Das gilt auch fur alle im folgenden genannten Kom-

mandos).

Dann kann mit
BUF nnnn (cr)

die Ldnge eines Pufferbereichs angegeben werden, in den spdter einzufigende Ma-
schinencode-Bytes eingegeben werden kdnnen; fur nnnn ist eine entsprechende 4-
stellige Hexa-Zahl zu wihlen. Andernfalls wird eine Standard-Pufferlénge benutzt.

SchlieBlich wird das zu testende Programm uUber eine der Einlese-Betriebsarten in
den Kernspeicher gelesen (sieche EIN/AUSGABE).

- 104 -

STEUERKOMMANDOS

Das zu testende Programm wird mit

aaaa S (cr)

gestartet, wobei fur aaaa die Startadresse als 4-stellige Hexa-Zahl einzugeben
ist.

Lauft das Programm spiter auf einen vom MONITOR vorgewihlten Halt, so kann
es durch eines der folgenden Kommandos wieder angestoen werden:

N (cr) Nidchste Instruktion ausfUhren, dann wieder anhalten
G (cr) Weiterlaufen bis zum niéchsten Monitor-Halt

Das Kommando
E (cr)

beendet den Monitor-Betrieb. Er kann durch Starten tber die Rechner-Konsole wieder
aufgenommen werden.

MONITOR-HALT

Das zu testende Programm kann an beliebigen Stellen angehalten werden; sie werden
durch die Eingabe

aaaa H (er)

vorbereitet, wobei aaaa die Haltadresse ist. Sie muB einem Befehlsbyte bzw. dem
eines vorgeschalteten DO-Befehls entsprechen (d.h. dem Basis-Byte eines Instruk=-
tions=Strings laut Assembler-Protokoll). Das Programm hdlt dann nach Ausfihrung des
davorliegenden Befehls an. Halts nach unbedingten Spriingen und Ebenenwechsel-
Befehlen (zu hoheren Ebenen) sind wirkungslos; ebenfalls nach bedingten Spriingen,
wenn verzweigt wird.

Es konnen bis zu 5 Haltbefehle eingebaut werden; in Programmschleifen sind stets
mindestens 2 Halts vorzusehen.

- 105 -

Haltbefehle kann man einzeln mit
aaaa D (cr)
wieder eliminieren. Durch
D (cr)

werden sdmtliche vorgesehenen Halts wieder gelsscht.

ABFRAGEN, ANDERN UND EINFUGEN

Sobald das zu testende Programm auf einen Monitor=Halt [&uft, wird ein Kommando
des Bedieners erwartet. :

Nach Eingabe von
aaaa L (cr)

wird der Inhalt eines Register- oder Speicherplatzes aaaa ausgedruckt; nach Eingabe
von

aaaa bbbb L (cr)
XX

der Inhalt sdmtlicher Adressen von aaaa bis bbbb einschliellich. Je Byte wird eine
zweistellige Hexa-Zahl gedruckt; ein Leerschritt trennt sie vom nichsten Byte.

Nach Ausgabe eines Einzelbytes (aaaa L) kann der Bediener durch Betdtigen der
Taste WRU Ausdrucken des niichsten Byte=-Inhalts anfordern; das kann beliebig wie-
derholt werden, wobei jeweils die ndchsthshere Adresse abgefragt wird. Beendet

wird dieser Vorgang durch Eingeben von 4 .

Durch das Kommando

aaaa A (cr)
XX

wird der Inhalt der Adresse aaaa durch xx ersetzt; durch

aaaa bbbb A (cr)
XX YY ... F

- 106 -

die Adressen aaa bis bbb durch einen String (xx yy ...). Einzugeben sind je Byte
zwei Hexa-Ziffern, mit oder ohne Leerschritte zwischen den Bytes. Wird der String
vorzeitig durch 4= beendet, so bekommen die restlichen Bytes Nullinhalt.

Nach Andern eines Einzelbytes (aca A) kann durch Taste WRU der nichste Platz
aufgerufen und mit einer zweistelligen Hexa-Zahl gedndert werden. Auch dieser
Vorgang ist beliebig fortzusetzen; er wird durch Eingabe von # beendet.

SchlieBlich besteht die Moglichkeit, durch

aaaa | (cr)
XX yy ...4F

an beliebiger Stelle im Programm (beginnend bei Adresse aaaa) einen Byte-Siring
(xx yy ...) einzufigen; er wird in dem eingangs erwihnten Pufferbereich abgelegt.
Es konnen mehrere Einfugungen vorgenommen werden; ihre Zahl ist nur durch die
GrofBe des Pufferbereichs begrenzi.

Mit dem Kommando
aaaa U (er)

kann jede einzelne Einfugung riickgingig gemacht werden; die Eingabe
U (cr)

loscht alle Einfugungen.

EIN/AUSGABE

Fur die Ein- und Ausgabe der zu testenden Programme oder von Programmteilen halt
der MONITOR folgende Kommandos bereit:

aaaa bbbb ISH Einlesen Uber langsamen Leser (Konsol-Teletype)
aaaa bbbb 1FH " " schnellen Leser

aaaa bbbb OSH Ausstanzen auf langsamen Locher (Konsol-Teletype)
aaaa bbbb OFH " " schnellen Locher

Mit caaa ist die erste, mit bbbb die letzte Adresse des Kernspeicher-Bereichs gemeint.

Gelesene und gelochte Streifen haben Hexa-Format (s. Anhang).

- 107 -

Programmier- Hinweise

VORBEMERKUNG

Dieser Abschnitt enthalt einige Hinweise fur die Programmierung des MINCAL 621,
die sich aus der Multiprogramming=Struktur und der Art der Peripherie=Schaltungen
ergeben und beachtet werden sollten.

PROGRAMM-ANFANG

Jedes Programm sollte mit der Instruktion
ECL

beginnen; damit wird der Ebenenwechsel freigegeben.

Bei Rechnen mit Netzausfallschutz ist eine weitere Maflnahme vorzusehen. Sobald das
Netz wiederkehrt, werden alle Flip-Flop~Schaltungen nullgesetzt. Das N-Register je-
doch wird auf die Adresse ‘400 gesetzt, das ist das erste Byte im ersten Kernspeicher.
Dort ist eine Anfangsroutine vorzusehen, die aus folgenden Elementen bestehts

- DCL-Befehl (Befehlsbyte auf ’499d)

- Laden der Progromms'rand-Speicherregisfer])al|er benutzten Ebenen mit
den erwinschten Anfangsadressen

- Indirekter Sprung Uber das Programmstand-Speicherregister

Wird irgendeine Ebene gestartet, entweder bei Wiederkehr des Netzes automatisch die
Ebene @ (wenn Netzausfallschutz so beschaltet) oder von auBlen bzw. durch die Rech-
ner-Uhr irgendeine andere Programmebene, so lduft dieses Programm in der jeweiligen
Ebene richtig und springt dann auf die Anfangsadresse des Programms der gestarteten
Ebene. Dort muB (und dies ist je Ebene vorzusehen) entweder sofort oder nach wei-
teren, vom Benutzer zu bestimmenden Instruktionen der Befehl ECL stehen, um den
DISABLE-Zustand wieder aufzuheben und Multiprogrammierung zu ermsglichen.

N Register-Adressen @@/@1 der einzelnen Ebenen

- 108 -

Beispiel fur eine Anfangsroutine:

ANF DCL @ Unterbrechung verhindern
2=%|DC, , 440 .
2=%STA . @ 'l fur Ebene #
2=%LDC, (@ , 4989 boee
2=%STA ,@ ,’'g91¢
2=%LDA (@ ,STAF }
2=%1DA,@ ,’9oF0
JPX , , o9 Sprung zum Anfang

n i F

ANF liegt auf Adresse '40@@. Die Startadressen der Ebenen @ bzw. 1 werden auf
feste Werte ('404% bzw. '4080) gesetzt, wihrend fur Ebene F der Inhalt des Spei-
cherplatzes STAF (+ folgender) als Startadresse maflgebend ist. Fiur die Lage der Pro-
grammstandspeicher im Pool ist angenommen, dafl jede Ebene 16 byte als Register-
platze hat; daraus ergeben sich die absoluten Adressen ‘@00d, ‘0010 bzw. ’'@oFg
fur die Ebenen @, 1 bzw. F.

RECHNER-UHR

Die Zentraleinheit des MINCAL 621 kann eine Rechner-Uhr (real-time-clock) erhal-
ten. Sie besteht aus einer Untersetzerschaltung, die vom quarzgesteuerten Takigene-
rator des Rechners betrieben wird und in Abstinden von wahlweise 1, 10, 100 oder
1000 ms den Start einer Ebene bewirkt. Taktabstand und gestartete Ebene werden
durch Beschaltung in der Zentraleinheit festgelegt.

Die Uhr kann vom Programm her blockiert und freigegeben werden, indem man die
BUS-Adresse ‘3FFF mit @ oder einer rechtsbindigen 1 belegt:

é?f:@ ,"Z3FFF } Uhr AUS (unwirksam)

@ 7
LDC,@ ,1

STA @ , ' 3FFF } Uhr EIN (wirksam)

Durch die Taste RS und durch die Nullstellung bei Netzwiederkehr wird die Uhr in
den AUS-Zustand gebracht.

- 109 -

PROZESS-EIN/AUSGABEN

Fir die ProzeBperipherie des MINCAL 621, d.h. alle Ein/Ausgabeschaltungen, die
sich nicht auf Gerdte, wie z.B. Fernschreiber, Leser, Locher usw. beziehen, sind
die BUS-Adressen '200@. ..’ 3FFF vorgesehen, also 8192 verschiedene Adressen. (Bei
eingebauter Uhr ist die letzte dieser Adressen = ’'3FFF - fir diese reserviert).

Der Datentransfer zwischen CPU und ProzeBperipherie geschieht in der gleichen Wei-

se wie der zwischen CPU und Kernspeicher, d.h. tber den Universal-BUS und die
BUS-bezogenen Befehle.

Beispiele: LDA, @ ,’200¢ Eingabe ’20@@ nach (@

EXT3: Q ,’2F78 Eingabe von EXT (= '2F78)
LDA,REG7, "EXT3,IXR + IXR nach REG7

6=%STA, @ ,’300F Ausgabe @ (+ 5 folgende Bytes)
nach '3@g0F (+ 5 folgende
Adressen)

Je Adresse konnen Daten von 1 byte Linge ausgetauscht werden; Ein- und Ausgabe
sind in Verbindung mit der gleichen Adresse moglich, wenn im Interface die entspre-
chenden BUS-Anschlisse bericksichtigt werden. AuBer dem Befehl LD... konnen auch
die Befehle AD..., SB..., OR..., AN... und EO... verwendet werden, wenn dies
zweckmifBlig erscheint. Als Adressierungsarten kommen ...A (absolut) und ...X (indi-
rekt) in Betracht; im letzteren Falle ist ein 2-byte-Indexregister (gerade Basisadresse)
zu wdhlen, in dem die externe Adresse steht.

GERATE-PERIPHERIE

Die Geridteperipherie des MINCAL 621 hat den BUS-AdreBbereich “100@..." 1FFF.
Dabei ist zu beachten, daB bei den meisten Gerdtetypen mehr als ein Flip~Flop-
Register von Byte-Liinge im Interface enthalten und dementsprechend mehrere Adres-
sen vorgesehen sind.

Jedem Gertit ist eine aus zwei Hexa-Ziffern bestehende Gerdtenummer gg zugeordnet,
jedem Interface~Register eine weitere Hexa-Ziffer f. Aus diesen baut sich die BUS-
Adresse auf:

"1ggf = BUS-Adresse Register f fur Gerdt gg

Damit kdnnen maximal 64 Gerdte mit je 16 Interface-Registern von Byte-Ldnge ange-
sprochen werden. Jedes Interface und damit jedes Gerdt kann, wenn entsprechend
beschaltet, einer bestimmten Programmebene zugeordnet werden. Dadurch vervielfacht
sich die Zahl der msglichen Geridte, denn in diesem Falle wird ~ bei gleicher

- 110 -

Gerdte-Nummer - immer jeweils das Interface angesprochen, welches der jeweiligen
Programmebene zugeordnet ist.

Typische Interface-Schaltungen wie die fur den 8-Kanal-Fernschreiber (Teletype ASR
33) und fur den schnellen Streifenleser und =locher haben jeweils 2 Interface-Regi-
ster von Byte-Ldnge mit den Adressen:

"1ggd = Datenregister
"1gg1 = Statusregister

Das Datenregister bewirkt den byte-weisen Datenaustausch zwischen Periphergerit und
Universal-BUS.

Das Statusregister steuert die Ein/Ausgabe und hat folgende Einzelfunktionen:

Bit

= INITIATE
..7 = (nicht benutzt)

IBUSY bzw. OBUSY leitet den Ein~ bzw. Ausgabevorgang ein (wenn gleichzeitig
READY ausgeschaltet ist). Ist der Ein- bzw. Ausgabevorgang beendet, z.B. ein
Zeichen ausgedruckt, schaltet sich READY selbsttitig ein; es bewirkt einen Start der
zugehtrigen Programmebene, wenn nicht LOCK gesetzt ist. INITIATE hat eine be-
sondere Funktion: Es lést z.B. bei Lesen den Transport des Streifens aus und muB3 da-
her beim angebauten langsamen Leser des Teletype und beim schnellen Leser zugleich
mit IBUSY vom Programm eingeschaltet werden.

Zur Ein/Ausgabe Uber die Geriteperipherie werden im Normalfalle die Makrobefehle

der LIBRARY ausreichen. Jeeoch kann der Benutzer anhand der folgenden Beispiele
Ein/Ausgaben auch in Einzelschritten programmieren.

Ein/Ausgabe im Multiprogramming:

Diese auf die Struktur des MINCAL 621 zugeschnittene Betriebsart beruht darauf, daf
nach Anstof3 des Ein- oder Ausgabevorgangs die jeweilige Programmebene ausgeschal-
tet wird, um anderen Ebenen Gelegenheit zur Benutzung der Recheneinheit zu geben.
Mit Ende des Vorgangs wird die auslosende Ebene wieder gestartet, und das Programm
lauft weiter.

- 111 -

Ausgabe:

Eingabe:

Zunidchst wird ein Register XOS mit dem Bitmuster J@0 #1900 (= 'g4)
geladen, um bei jeder folgenden Ausgabe das Statusregister im Inter-
face richtig zu bedienen (OBUSY ein, alle anderen aus):

LDC,XOS, ' g4

Je Ausgabevorgang ist dann zu programmieren (gg = Gerdte~Nummer):

STA,DAT, ' 1gg@ (Datenregister laden)
STA,XQOS, "1ggl (Statusregister laden)
HLT

Der erste Befehl ladt das Datenregister des Interfaces mit dem im Register
DAT stehenden Byte, der zweite stoBt die Ausgabe an. Dann folgt ein
Halt. Mit Ende des Ausgabezyklus’ wird die Ebene wieder gestartet, und
das Programm lauft weiter.

Zundchst wird ein Register XIS mit dem Bitmuster @00F go1g (= '@2)
geladen, entsprechend dem Statusregister=Inhalt bzw. den folgenden
Eingabebefehlen (IBUSY ein, alle anderen aus):

LDC, XIS, ' @2

Dies gilt z.B. fur die Tastatur des Teletype]). Fur dessen Leser, ebenso
fur den schnellen Leser 2), ist stattdessen das Bitmuster @@01 gF18 (= 12)
vorzusehen (zusatzlich INITIATE ein):

LDC, XIS, 12

Dann folgt je Eingabevorgang (gg = Gerdte=Nummer)s

STA,IXS , " 1ggl (Statusregister laden)
HLT
LDA,DAT, ' 1gg@ (Datenregister holen)

Der erste Befehl lost den Eingabevorgang aus; dann folgt ein Halt. Mit

Ende des Eingabezyklus’ wird die Ebene wieder gestartet, und der dritte
Befehl transferiert den Inhalt des Datenregisters, d.h. das gelesene Byte,
ins Register DAT.

N Makrobefehle K... der LIBRARY
2) Makrobefehle R... der LIBRARY

- 112 -

AbschluB: Nach einer Folge von Ein- oder Ausgaben, in jedem Falle jedoch vor
einem gewinschten Programm=-Halt, muB3 das READY-Bit im benutzten
Interface rickgesetzt werden, da sonst der Halt durch den infolge von
READY dauernd anstehenden Programmstart Uberlaufen wird. Dies ge-
schieht z.B. durch die Befehlsfolge (gg = Gerdte~Nummer):

LbC, @ ¢
STA, (@ ,” 1ggl (Nullstellen Statusregister)

Bemerkung: Wahrend der oben beschriebenen Ein/Ausgaben darf der Rechner nicht im
DISABLE-Zustand sein, da der Programm=-Halt (HLT) nicht wirksam
wirde. Statt LD... konnen bei der Eingabe auch andere BUS-bezogene
Befehle benutzt werden (mit dann anderer Funktion); statt absoluter kann
indirekte Adressierung verwendet werden, ebenfalls Indizierung Uber ein
Indexregister, sofern nur die effektive BUS-Adresse gleich der vom Sta-
tus- oder Datenregister ist.

Ein/Ausgabe mit Warteschleifen:

Diese Betriebsart ist insbesondere dann von Nutzen, wenn ein Gerdte-Interface, dessen
Daten- und Statusregister keiner Ebene fest zugeordnet sind, von einer beliebigen Pro-
grammebene aus bedient werden soll.

Hierbei ist zundchst das LOCK=-Bit des Statusregisters jedesmal zu setzen, um einen
Start der Programmebene, auf die das READY-Flip=Flop des Interfaces im Normalfall
auch bei den Ubrigen nicht ebenen-gebundenen Gerdten wirkt, zu verhindern. Das
bedeutet ein anderes Bitmuster beim Vorbereiten der Register XOS bzw. XIS:

LDC,XOS,'#C (Ausgabe)
oder LDC,XIS ,'8A (Eingabe ohne INITIATE)
oder LDC,XIS ,"1A (Eingabe mit INITIATE)

Im tbrigen ist die Programmierung fur Ein- und Ausgabe gleich denen fur Multipro-
gramming-Betrieb, jedoch werden die Halt-Befehle (HLT) ersetzt durch die Befehls-
folge (gg = Gerdte-Nummer):

LOOP: LDA , @ ,'lggl (Laden Statusregister)
BNOC, @ ,’#1 ,LOOP (Ruckverzweigen bis READY ge-
setzt)

die so lange als Abfrageschleife lauft, bis mit READY der Vorgang beendet ist. Im
Prinzip hat diese Betriebsart den gleichen Ablauf wie die Multiprogramming-Ein/
Ausgabe; jedoch ist der Rechner wihrenddessen fur alle Programmebenen mit niedri-
gerer Prioritdt gesperrt.

- 113 -

KONSOL-PERIPHERIE

Ein 8-Kanal-Fernschreiber (Teletype ASR 33) mit eingebautem Streifenleser und
~locher sowie ggfs. je ein schneller Streifenleser und ~locher bilden die Standard-
Peripherie eines MINCAL 621; sie werden als Konsol-Peripheriegerdte bezeichnet.
Die Interfaces hierfir haben folgende Spezifikationen:

Fernschreiber: Gerdte~Nummer: ' od
BUS-Adresse Datenregister: * 190
BUS-Adresse Statusregister: ’1g@1

Druckwerk: Ausgabe programmieren
Locher: Ausgabe programmieren; Locher vorher manuell
einschalten (Druckwerk lduft mit) 1
Tastatur: Eingabe programmieren ohne INITIATEZ)
Leser: Eingabe programmieren mit INITIATE

Schnelle Lochstrei- Gerdte~Nummer: ‘o
fengerdte: BUS-Adresse Datenregister: ‘1810
BUS-Adresse Statusregister: “1¢11

Locher: Ausgabe programmieren 2)
Lesers Eingabe programmieren mit INITIATE

Die Interface~Register der Konsol-Peripherie sind nicht ebenen-gebunden; das bedeu-
tet, daBl sie von allen Programmebenen aus bedient werden ksnnen (und im uUbrigen,
daB die Gerdte~-Nummern ‘@@ und ‘@1 an kein anderes Gerit gleich welcher Ebene
vergeben werden durfen). Der durch READY bewirkte Start (bei Ende Ein/Ausgabevor-
gang) startet jedoch stets Ebene @.

D bzw. Makrobefehle K... der LIBRARY
2 baw. Makrobefehle R... der LIBRARY

- 14 -

Bedienung

Zur Kontrolle des Computers ist eine Bedienungskonsole vorgesehen, uber die die
wichtigen Register und Zustinde angezeigt werden und auBerdem Daten eingegeben
werden konnen. Der Computer kann aber auch ohne Bedienungskonsole betrieben
werden.

pet

O §

T T] I I T 1 1 1 1
Go[HT[Rs| lem DEISﬁ NLINRIMLIMR’ 7lslslalal2]t]o

CEEETeE muncal 627

Uber ein 8-bit-Schalter-Register (Switch-Register) - Schalter 0...7 - konnen Daten
in bestimmte Flip-Flop-Register, in Pool-Adressen und in BUS-Adressen gegeben wer-
den.

Uber dem Schalter-Register befindet sich ein 8-bit-~Lampenfeld, das den Zustand von
Flip-Flop-Registern, Pool-Adressen und BUS-Adressen anzeigt.

Links neben dem Switch-Register ist ein 4-bit-Schalterfeld, tber das das N-Register
(Instruktionszahler) und das M-Register angewdhlt werden konnen. Da beide Register
2-byte-Ltnge haben, wird jeweils die rechte Hdlfte (NR, MR) mit den niedrigwer-
tigen Bits oder die linke Halfte (NL, ML) angewihlt.

Die angewihlten Register werden in dem Lampenfeld angezeigt. Bei Betdtigen der

Taste SW (aus dem Schalterfeld links neben der Registeranwahl) wird der Inhalt des
Switch-Registers in das angewihlte Register Ubertragen und gleichzeitig angezeigt.
Sind weder ML, MR noch NL, NR angewthlt, wird das A-Register angezeigt.

Durch gleichzeitiges Betdtigen von NR und ML wird das B-Register und durch Betd-
tigen von NR und MR das P-Register angezeigt.

Im dritten Schalterfeld von rechts sind auBer der Taste SW (Switch) noch die Tasten
DE (Deposit), DI (Display) und BS (Bootstrap) enthalten.

- 115 -

Durch Betdtigen der Taste DE wird der Inhalt des Switch=Registers in die Adresse
Ubertragen, die durch das M-Register angewdhlt wird.

Mit der Taste DI wird der Inhalt der Adresse angezeigt, die durch das M-Register
angewiihlt ist (Voraussetzung: Tasten NL, NR, ML und MR sind in Ruhestellung).

Mit dem Schalter BS wird das eingebaute Bootstrap-Programm angewthlt. Dieses
Programm wird ausgefthrt, wenn man zusatzlich die Taste ST (START) im Schalter-
feld ganz links betdtigt.

Im Schalterfeld ganz links gibt es folgende Tasten und Schalter:

RS (Reset): Hiermit werden alle Flip-Flops des Rechners in die Ausgangsstellung ge-
bracht.

Schalter HT (Halt): Ein loufendes Programm kann mit diesem Schalter angehalten wer-
den. Das N-Register, Pool- und BUS~Adressen lassen sich in diesem Zustand anzeigen
und &ndern.

Betdtigt man dann die Taste GO (Go), so wird eine Instruktion ausgefthrt; danach
wird wieder angehalten.

Wird der Schalter HT wieder in die Ruhestellung gebracht, so lauft nach Betdtigen
der Taste GO das Programm weiter.

Lauft kein Programm (die Lampe tber der Taste ST leuchtet in diesem Falle nicht),
so fuhrt ein Betdtigen der Taste GO bei gleichzeitig eingelegtem Schalter HT zur
Inkrementierung des M-Registers.

Mit der Taste ST (Start) wird die Ebene @ des Computers gestartet. Die Lampe uber
dieser Taste leuchtet auf, sobald eine Ebene gestartet wurde und das Programm lauft.

Links auf der Bedienungskonsole ist ein Schlusselschalter mit 3 Stellungen: In der

1. Stellung ist der Computer ausgeschaltet, in der 2. Stellung ist das Netz einge-
schaltet, und die Lampe Uber dem Schalter leuchtet. In der 3. Stellung ist das Netz
eingeschaltet (Lampe leuchtet), aber alle Schalter und Tasten der Bedienungskonsole
sind verriegelt.

Lguft das Programm, so sind auch bei nicht verriegelter Bedienungskonsole alle Schal-
ter und Tasten wirkungslos (Ausnahme: HT).

Nach dem Einschalten der Spannung mit dem Schlusselschalter (die Lampe tber dem
Schalter leuchtet) ist der Computer betriebsbereit, und ein Programm kann tber die
Taste ST oder von auBlen Uber einen BUS-Start gestartet werden; danach leuchtet
die Lampe Uber der Taste ST.

Wahrend das Programm l&guft, wird tber das Lampenfeld der F-Kanal des Rechners
angezeigt. Ist der Schalter HT nach unten geschaltet, so hdlt das Programm an. Im
N-Register steht die Adresse des Befehlsbytes der Instruktion, die als néchste ausge=-
fuhrt wird.

- 116 -

Bei angehaltenem Rechner konnen alle Flip-Flop-Register ohne EinfluB auf das Pro-
gramm verdndert werden. Bei Andern des N-Registers wird das Programm bei der
neuen Adresse fortgesetzt. Der Inhalt von N muB das Befehlsbyte einer Instruktion
adressieren.

Bei angehaltenem Rechner (oder wenn kein Programm l&uft) konnen Pool- und BUS-
Adressen angezeigt und gedndert werden: Die niedrigwertigen 8 Bits der gewunsch-
ten Adresse werden im Switch-Register eingestellt (Schalter betdtigt = 1). Danach
wird MR angewihlt und durch Betdtigen der Taste SW der Inhalt des Switch-Regi-
sters nach MR Ubertragen. Dieser Wert wird gleich angezeigt. Dann stellt man die
8 hoherwertigen Bits der Adresse im Switch-Register ein, bringt MR in die Ausgangs-
stellung und schaltet ML ein. Durch erneutes Betdtigen der Taste SW wird dieser
Wert Ubernommen und angezeigt. Danach wird auch ML in die Ruhelage gebracht.
Durch Betdtigen der Taste DI wird nun der Inhalt der eingegebenen Adresse im Lam-
penfeld angezeigt. Will man diesen Wert &ndern, so stellt man den neuen Wert im
Switch-Register ein und betdtigt die Taste DE. Zur Konirolle kann man anschlie-
Bend noch DI betdtigen.

Will man mehrere aufeinanderfol gende Adressen anzeigen oder dndern, kann man bei
ausgeschaltetem Programm und nach Einlegen des Schalters HT mit der Taste GO das
M-=Register um jeweils 1 erhshen. Mit SW wird nur die Ausgangsadresse in M einge-
geben und anschlieBend auf die beschriebene Weise erhshi.

Uber den eingebauten "Bootstrap" kann ein Ladeprogramm (Lader) eingelesen werden.

Hierzu legt man den Lochstreifen mit dem Lader in den Leser des Teletype oder den

schnellen Leser ein (jeweils auf den Zufuhrbereich). Nach Betdtigen des Schalters BS
und der Taste ST wird der Lochstreifen in die ersten 256 Bytes des MOS-RAMs einge~-
lesen (bei der schnellen Lochstreifeneinheit muf3 auBerdem der Schalter 4 des Switch-
Registers eingelegt werden). Nach dem Einlesen des Laders ist die Adresse @@0f tber
die Bedienungskonsole mit dem Wert @@0100% (bindr) geladen. Startet man dann Uber
die Taste ST den Rechner, wird das Ladeprogramm ausgefihrt.

- 117 -

Aufbau

Der MINCAL 621 besteht aus einem geschlossenen Gehiuse, das vorne von der

Frontplatte (oder einer Blindplatte) abgeschlossen wird. Hinten befindet sich der
NetzanschluBstecker. Hier werden auch die Kabel eingebauter Interfaces und das
BUS-Kabel herausgefuhrt.

Die Kuhlluft fur den Rechner wird von vorn angesaugt (unter der Frontplatte). Sie
geht durch einen Filter, das leicht gereinigt werden kann, an den Komponenten
des Computers vorbei und wird nach hinten herausgeblasen.

In dem Gehduse befindet sich unten der Kernspeicher (oder ein ROM), der waage-
recht eingebaut ist. Daruber ist die CPU waagerecht montiert, die auch die Stecker
fur die Frontplatte, den Kernspeicher und die senkrecht gesteckten Leiterplatten fur
Optionen, fur das MOS-RAM, die Ebenensteverung und die Interfaces (bzw. den
BUS) enthalt.

Uber der CPU befindet sich die hochklappbare Stromversorgung.

Stecker fur

von oben gesehen Interfaces bzw.
BUS

—
—
Stromver-
sorgungs— IT~Kernspeicher-
Stecker Stecker
STROMVERSORGUNG
Klapprichtung -
der Stromver-
sorgung
 ees——
\ MOS-RAM-
~ —— Stecker
Stecker fur
CPU &——————="T7 Optionen
‘ Frontplatten=
[1+ T1 Stecker
T T L et Frontplatte

- 118 -

Bei der Stromversorgung blickt man auf die Leiterseite des Regelbausteins der Strom-
versorgung.

Auf der Leiterseite sind die wichtigsten Mefpunkte durch Beschriftung gekennzeich-
net.

Bei der Inbetriebnahme des Rechners sind folgende MeBpunkte auf ihre Sollwerte
gegen den MassemeBpunkt (* L™ Telefonbuchse) zu uberprifen:

Bezeichnung MeBwert Toleranz Bemerkung
+Z VvV + 2% Telefonbuchse
+T +12 vV 5% MeBsse
R +18 Vv +20 % "

-R -18 v +20 % "
+Zy +5V 2% u
-Zp -5V + 2% n
+H +15 Vv + 2% "
-H -15 v 2% "

Fur die Betriebsspannungen befinden sich Potentiometer an der zur Frontplatte zeigen-
den Leiterplattenkante. Von der Frontplatte aus gesehen haben diese Potentiometer von
links nach rechts folgende Reihenfolge:

Bezeichnung Funktion

+Z Spannungshshe der +Z
S* Strombegrenzung der +Z
N * Ansprechschwelle des Netzausfallschutzes
+T Spannungshshe der +T
+ZB i n +ZB
+B* n n _l_B
_Z n n _Z
'B'E' n u _BB
_H n n _H
+H n n +H

* Diese Potentiometer durfen nicht verstellt werden!

Folgende Spannungen werden durch Uberspannungsschutzschalter tberwacht:

- 119 -

Bezeichnung Einschaltstellung

+Z Knebel zeigt zur Rickwand
+H uw n un 113
-H Stift ist eingedrickt
+T n n un
+Z n u n
B n i
_ZB n

Netzsicherungen

Zwischen Stromversorgung und Ruckwand befinden sich zwei Sicherungen.
Eine defekte Sicherung wird durch Aufleuchten der Sicherungsschraubkappe angezeigt.

Die rechte Sicherung (von der Frontplatte gesehen) ist fur den Transformator Tr.1
(+Z; +T; +R).

Die linke Sicherung ist fur den Transformator Tr.2 (-R; +Zp; -Zp; tH; -H).

Sicherungen zum Schutz der Batterien

Auf der Bestiickungsseite des Regelbausteins befinden sich zwei Schmelzsicherungen.
Sie schitzen die Batterien vor einem KurzschluBB im Entladezustand.

- 120 -

Anhang

MINCAL 621 OPTIONEN (Zentraleinheit)

Konsole: Frontplatte mit Bedienungskonsole
einschlieBlich Bootsirap-Loader

MOS-RAM: Erweiterung um 1 bis 7 Einheiten zu je 256 Byte (bis 4k Byte)
(je 2k auf einer MOS-RAM-Karte)

Kernspeicher: 4k byte/1 us (erfordert Stromversorgung Typ 1)
8k byte/0.65 ps

16k byte/0.65 us} (erfordert Stromversorgung Typ 2)

Ebenen: 2 oder 16 Programmebenen
Angabe der Register-Byte je Ebene erforderlich (16, 32,
64, 128 oder 256)

Parity/Clock: Paritdts-Erzeugung und -Prifung je Byte fur Kernspeicher
(9. Bit ist stets vorhanden)
Angabe, ob Rechner-Stop oder Start Ebene bei Parity-
Fehler erfolgen soll
+
Echtzeit-Uhr (von 10 MHz der CPU dbgeleitet)
Angabe Uber Periode (1, 10, 100, 1000 ms) und gestartete
Ebene erforderlich

Pufferung: Eingebaute Batterie-Pufferung fir MOS-RAM bei Netzausfall
(uberbrisckt 24h bei 1k MOS-RAM)

Netzausfal Ischutz: Schitzt Kernspeicher=Inhalt bei Netzausfall. Bei Wieder-
kehr des Netzes Wiederstart bei Adresse ’1000 moglich
(Ebene #)

Interfaces: Die CPU enthdlt Einbauraum fur 3 Interface-Karten,

einschlieBllich einer eventuellen AnschluBkarte fur den
Universal-BUS

- 121 -

OPERATIONSZEITEN MINCAL 621

Befehlsgruppe

Steuerbefehle

DO

Zustandsabfrage
Schiebebefehle
Bedingter Sprung
BUS-bezogene Befehle

Operationsdauer (us) + je Mehrfachausfihrung (us)

min.

1.7
1.7
1.9
2.5
1.9
2.8

max. min.
2.4
2.4
2.6
3.2 1.2
6.0 0.6
8.5 1.2

max.

1.2
1.5
1.7

Die Dauer der Befehle ist innerhalb der angegebenen Grenzen im wesentlichen von der
Anzahl der abgefragten Bytes, d.h. der Linge der Instruktions-Strings abhdngig; auBer-
dem hingt sie davon ab, ob Operanden im POOL (MOS-RAM) oder im Kernspeicher

liegen.

BUS-Befehle, die sich auf die Peripherie beziehen, verlingern sich um die je Inter-
face eingestellte BUS-Transferzeit, wenn diese grofler als 1 us ist.

Die oben angegebenen Zeiten gelten fir den 4k-Kernspeicher mit 1 us Zykluszeit.

- 122 -

HEXA-FORMAT-LOCHSTREIFEN

L)

r~ . e NUL"'
} Lochung
00000 .000O0
L 2°c°ce0-000] } RUBOUT- & Streifen-
~] Lochung vorlauf
©00000.000
00000 .000
o . o
oo . 1. Byte AJ
o o . Leerschntf
oo oo
oo) } 2. Byte 3C
o o . Leerschrxff
L~ S~
o0 oo ov
o oo o } Byte mit Adresse ...F 12
. o o . Leerschnﬂ“
E o .o o | Wagenricklauf
5 o o. o Zellenwechsel
5 oo .00
8 oo oo } Byte mit Adresse ...J FF
o o Leerschntf
oo0o0 o
oo o o } letztes Byte 9E
o o . LeerschrIH
Streifen-Nachlauf
- O (NUL=Lochung) ——
Inhalt
Kanal 87654i32]
: 3
- o
8 T
5 g
5 5
o =

- 123 -

T
<
T
pV4

f=

[

S

o uayoia

0 yo197

N

[

0

O

e

X

1%

2

Bom

[a)

[

el

(e}

O

lh..

O

1%]

<
T
<
O
p%4

COLUMUN

321

87654.

321

87654.

L] @ e [@ ® ® ® ® ® L] ® ® [] ®

® e [AR] [AN] [BN J [BN] e e e e e

e o e [2N BN BK] ® o e e ® [I I L]

[AE 2N BN BN BN BN BN } (2N BN BN AN BN J

[A B BK RN BN BK BN] [AN 2N BN AN BK J

[2R BN 2N } (2R BE AR BN BE BN B BN BN BEK BN AN BN BN BN BN BN BN] (28 BN BN BN BN J
o (o] olo [ol Ko o] (o) (e R e} (o] o] [o] [eR o)

Lo k

B<L<aVoawuw 0T e 12 Z0a 0 xuni-D>2 Nuw~m<}

® [] ® ® ® ® e ® [] ® ® [] ® ® ®

(2K] L BN J [AR J L BK] [3K J ®l e L BN] [BK]

[2K 2R J [BK BN BNE J [BE BN BN] [X BN B¥ J

[A EK EE R BE EE BN] [K B BN BN NK J

[ZX BE BN BR BE BE BN) [AN BN BE BN BE]

[JE BE AN] [JE BE BE B BE BN BN BE BN B BN B RE AN BN BE BN BN) [AN BN BE BN BK J
o [(o Ne] (o Ne] [e] (o) ojo o] (o] (o) [e Ko

J =z ARSI o~ K+ =1 NN T ON VA o

I

I

Parity -

Lo
c
o 5
o
w

20
o O
c 2
=

1

>
B oae
5 m
o

Transport=-
lochung

Bit

o e = Dateninhalt 1

w (Zeichen @4¢)
bedeutet Leerschritt

Lochung im Streifen

Stromschritt (MARK)

- 124 -

Zeichen

NULL
SOM
EOA
EOM
EOT

WRU

RU

BELL

FE@
H-TAB
LINE FEED
V-TAB
FORM
RETURN
SO

sl

DCP
X-ON
TAPE ON
X-OFF
TAPE OFF
ERROR
SYNC
LEM

4
S
52
53
54
s5
56
57

ACK

ALT MODE
ESC

RUB OUT

ASCIl1-Code Steuerzeichen

Kanal
87654 .321 Bedeutung
o ®
o °

ele
o ®

e |e

ole
° ole|e
o ®f.

o . ®

o.| |e Zeilenvorschub
[o . |ele

®|. o
o o .|o] [e Wagenricklauf
o o . ele

ol . olele
o °

° ®

° ®
o ° ele

® °
o . NED
o ° ole

® olole

ole|.
o ole|. ®
o ele[. | o

ole|.| [o]e
o ole|. |0

olo|.le| |o

ole|.|[e]e
o ole|.[o|0le
ole[ele|e].]e
o[ofolo|.[0| [o
olelo|e|. 0|0
olo(o[o|.[e]e|e

Parity= Transport-
Bit lochung

o e = Dateninhalt 1
Lochung im Streifen
Stromschritt (MARK)

on

- 125 -

Steckerbelegung: Universal -BUS
2a 2c la 1lc
oV 1 S3 +5 Vv 1 +5 Vv
oV 2 S2 +12 VvV 2 +12 Vv
ov 3 S1 -5V 3 -5V
(VY 4 SO =12 v 4 -12 v
BE 5 GE L15 5 L15
FE 6 RK L14 6 L14
N 7 frei L13 7 L13
D7 8 " L12 8 L12
D6 9 n L1 9 L1
D5 10 u L10 10 L10
D4 n u L9 11 L9
D3 12 u L8 12 L8
D2 13 " L7 13 L7
D1 14 " Lé 14 L6
DO 15 u L5 15 L5
Al15 16 Al15 L4 16 L 4
Al4 17 Al4 L3 17 L3
Al3 18 A13 L2 18 L2
Al12 19 Al12 L1 19 L1
All 20 All LO 20 LO
A0 21 A10 ov 21 515
A9 22 A9 ov 22 S14
A8 23 A8 oV 23 513
A7 24 A7 (VY 24 S12
A6 25 Aé oV 25 ST
A5 26 A5 0v 26 S10
A 4 27 A4 oV 27 S9
A3 28 A3 ov 28 S8
A 2 29 A2 0V 29 S7
Al 30 Al oV 30 Sé
A0 31 AO ov 31 S5
oV 32 ov 0V 32 S 4
Stecker 2 Stecker
32 1 32 1
Leiterplatte Bestiickungsseite
Leiterplatte
b g
32 a
32 c Stecker

- 127 -

Stecker fur BUS-Anschluf3:

Stecker an Interface:

ERNI Federleiste
Typ: STV-N-364
Best.=Nr.: 9722.343.001
ERNI Messerleiste

Typ: STV-P-364
Best.~Nr.: 97.22.333.001

- 128 -

