
INSTITUT FÜR VERFAHRENSTECHNIK UNIVERSITÄT

UND -DAMPFKESSELWESEN STUTTGART
PROFESSOR DR.-ING. R. QUACK
7 STUTTGART 80, PFAFFENWALDRING 23

Beschreibung des Macroübersetzers STAGE 2 als

Hilfsmittel zur Realisierung der Prozeßrechner-

sprache PEARL auf dem Prozeßrechner Dietz

'mincal 621'

von

‚Rainer Kluttig und Manfred Alt

Dipl.-Ing. R. Kluttig und Dipl.-Ing. M. Alt sind

Mitarbeiter am Institut für Verfahrenstechnik und

Dampfkesselwesen (Prof. Dr.-Ing. R. Quack) der

Abteilung Automatisierungstechnik und Stromerzeugung

(Priv.-Doz. Dr.-Ing. E. Welfonder)

Der vorliegende Bericht entstand auf der Grundlage

einer Diplomarbeit, die Herr Kluttig unter der Be-

treuung von Dipl.-Ing. Alt, Prof. Lauber (Institut

für Regelungstechnik und Prozeßautomatisierung) und

Dr.-Ing. Welfonder angefertigt hat.

INHALTSVERZEISHNIS:

Kurzfassung

Abstract

1.______ Einleitung

S2______ Macroübersetzer

eel_____ Was_ist_ein_Macroübersetzer?

@.2_____Forderungen an einen Nacraibersetzer

223_____ Der_!!acroübersetzer_STAGE_2

2.3.1 Wirkungsweise

2.5.1.1 Mustererkennung

2.3.1.2 Code-body

Sode-Erzeugunz (Beispiel)

Psrameterumformunzen und Übersetzerfurktionen

Allgemeines

Flag-line

Fehlererkennurs

Ein/Aussabe-Kanäle

Parameterunformung

a) Übertrasen eines Parameters der Winsatezeile in die

Goce-Zeile

b) Übertragen einas Strinss sus dem Speicher des STAgE 2

in die Code-Zeile

c) Übertrasen einss Trennzeichens in die Code-Zeile

d) Behandlung eines Parameters als arithmetis:her Ausdruck

und Übertragen des Ersebnisses in die Code-Zeile

Ir 3 .. * E * + * e) Übertragen der länge eines Parametarstrinss in dia pe

Code-Zeile

Zi — nl lu.

N > FB

2.4.5

2.,4,5

2.4.7

f) Ersetzen eines Parameters durch eine gebildete Zode-

Zeile

5) "Context-gesteuerte Iteration"

h) Umwardlung von Zeichen in ganze Zahlen

Übersetzerfunktioren

a) Beenden der Übersetzung

b) Sofortige Ausgabe einer Zeile

e)'jechsel der Ein/Auszabekanäle und Überzabe vor Ein-

gabetext an bestimmte Ausgabekanüle

d) Ablegen von Information in STAGE 2-Speicher

e) Urbedingter Sprung

f) Bedinster Sprung bei Gleichheit zweier Strings

2) Bedingter Sprung nach Vergleich zweier arithmetischer

Ausdrücke

h) "Zähler-gesteuerte Iteration" \

i) Auslösung eines neuen Iterationsschritts

3) Beenden der Bearbeitung des laufenden lliacros

k) Zurückverfolsen von Fehlern

Rechenzeituntersuchungen für den llacroübersetzer STASE_2

Abhängigkeit der Baumerstellungszeit

Abhängigkeit der Übersetzungsze

Macroschachtelung

Parameterlänge

Vergleiche verschiedener ÜÜbersetzerversionen

Erzebnisse der Rechenzeituntersuchungen

Zusammenfassung der Ergebnisse der kechcenzeitüntersuchunge:

Vergleich des Nacroüubersstzers STAGE 2 wit erderen

Macroübersetzern

3.1

3.2

3.3

3.4,

3.4.1

3.4.2

3.4.3

3.4.4

3.5

3.5.1

3.5.2

3.5.3

3.6

3.5.1

3.6.2

3.9.3

3.6.4

3.8.5

Streng formatgebundene Macrodefinitionen

Freie Definition der Trennzeichen zwischen den Parametern

Verteilter Name

Zusammenfassung des Vergleichs

u mn as wre Ma ar Tun a em men Mail) een man aa rer mn Ma Tui A ur A rn A a Fran me ar a am sr am Tim, am m mare mit Mm am Are Tem ann arm une Muh, ana LE um sanyy Mk rap ar ame mm

um un mu ar mn une wre mu une Zaun aa

Voraussetzungen für die Übersetzung von CIMIC/lL in den

Assemblercode des DIEIZ 521

Implementierung der keferenzen 1 und 2? ir CI#FI?7/1 für

den DI=TZ 621 |

Erkennung der WMOLE des Operanden

Trensferbefehle

Laden in den Akkumulator

Abspeichern aus dem Akkumulator ‘

Laden ins Indexrezister

Absneichern dzs Indexresisters

Arithmetische Befenle

Bildung des Absolutbetrags

Vorzeichenumkehr

Addition, Subtraktion, Lultipliketion, Division und

Exponentiation

Bitonerationen

Komnlementbildung

Lozische Verisnünfunzen

Shift-Befehl

Ausblendbefehle

Verkettunzsbefehle

„Un

3.7 Vergleichsbefehle

3.8 Sprunsbefehle

3.9 Deklarationen

3.9.1 Marken

3.9.2 Platzreservieruns otne Iritialisi>rung

3.9.3 Platzreservierung mit Initialisierung

3.9.4 Feldreservierung ohne Initialisierung

3.9.5 Felöreservierung mit einheitlicher Initialisierung

3.9.5 Felöreservierung mit unterschieclicher Tnitialisicerung

3.9.7 Acre?felder

3.10 Testprogramm

ee

Anbang

Io PEARL ’- Testprozramm

II Macroteil

III CIKWIC/1l - Testorogramn

IV Testprogramm in Assemblercode

Shis paser is a research on the usability of the mscro,rocessor

STAGE 2 for a PEARL-comoiler for small comruters, projecved

by the research groun PfÄ (FEAEL für Kleinrechner). It skal

vransfer an intermediate code into the assenbly lensuage of the

varzet-machine.

[>
 7

At first the characteristics of the macroprocessor are describe

They are comnleted by the results of exsmination of the con-

wting tine.

2y comparing its essential characteristics to those of soLrres-

nonding macroprossessors, wLich are described in th> technical

literature, the basic usability of SITAGE 2 for codezgereratian

4
15 made clear. This is -lsoa shown by the examul» ol a cndezene-

> rator for translatirg C1#&I0/1l into the assembly lansuass of the

we small comnuter DIETZ 621. Us to now a translatior, however, h&s
.

been carried out only or a large commuter (TEC 5500), bacsuse

3TAGE 2 does not yet work or the small ore.

4. Einleitung

Der Einsatz von Digitalrechnern zur Lösung von Prozeßauto-

mationsaufgaben oder zur Experimentsteuerung verlangt bisher

vom Anwender umfangreiche Erfahrung im Umgang mit dem jeweils

eingesetzten Rechnertyp und hohen Programmieraufwand. Um die

stark steigenden Kosten der Software gegenüber der Hardware

zu verkleinern, wurde es notwendig dem Anwender, der mit der

Funktionsweise von Digitalrechnern nicht unbedingt vertraut

sein muß, ähnliche Hilfsmittel zu bieten, wie er sie zur Lö-

sung von kommerziellen und technisch wissenschaftlichen

Problemen mit den höheren Programmiersprachen ALGOL, FORTRAN,

PL/A1 und COBOL besitzt.

Die Erfahrung bei der Bereitstellung sogenannter Programn-

pakete und problemorientierter Programmiersprachen für Teil-

gebiete des Anwendungsfelds hat gezeigt, daß die Schwierig-

keiten beim Einsatz von Digitalrechnern zur Prozeßautomatisie-

rung auf diesem Weg nur unzureichend behoben werden können,

da die Unterschiede in den Aufgabenstellungen eines Anwendungs-

gebietes normalerweise so groß sind, daß nur ein kleiner Teil

des Gebiets, für das ein Paket. oder eine Sprache entwickelt

wurde überdeckt werden kann. Zudem müssen Pakete und problen-

orientierte Programmiersprachen wegen der rasch fortschreitenden

Technologie häufig an den aktuellen Stand der Technik angepaßt

werden.

Als Möglichkeit zur Überwindung der Schwierigkeiten in der

Prozeßprogrammierung wurde die Entwicklung einer Prozeßrech-

nersprache angesehen, die folgende Kriterien erfüllen soll:

Überdeckung eines möglichst weiten Aufgabenbereichs

(d.h. Anwendbarkeit auf möglichst viele Probleme der

Prozeßautomation und Experimentsteuerung)

Implementierbarkeit auf verschiedene Rechner

leichte Erlern- und Anwendbarkeit

leichte Anpassungsfähigkeit der Programme an sich

weiterentwickelnde Technologie

Portabilität von Programmen

(ä.h. Übertragbarkeit auf andere Rechnertypen)

gs Standardisierung der Dokumentation von Programmen

Hierzu wurde in einem vom Bundesministerium, für Bildung und

Wissenschaft geförderten Projekt innerhalb PDV die Realzeit-

sprache PEARL (Process, and Experiment Automation Realtime

Language) entwickelt. Die im Juni 1973 vorgestellte Projekt-

sruppe "PEARL. für Kleinrechner" hat es sich zur Aufgabe ge-

macht, die Implementierbarkeit: dieser Sprache auf die Klein-

rechner (16 K-Worte ä& 16 bit mit externem Massenspeicher)

Mincal 621 (Dietz), Mulby 3 (Krantz) und EPR 1100 (Krupp-Atlas)

zu untersuchen.

PEARL ist eine Programmiersprache für Anwendungen in der in-

dustriellen Prozeßsteuerung und der Experimentiertechnik. Sie

verknüpft zur Formulierung algorithmischer Zusammenhänge er-

forderliche Sprachmittel mit einer hinreichenden Menge grund-

legender Sprachelemente für die Realzeitprogrammierung und er-

laubt so die problemgerechte Aufteilung von Anwendungsproblemen

-9-

in schwach gekoppelte Prozesse und die Beschreibung der

Wechselwirkung von Prozessen mit ihrer Umwelt. Da es un-

möglich erscheint, alle möglichen Hardwarekonfigurationen

zu standardisieren und auf der Stufe einer Programmier-

sprache einheitlich zu beschreiben, wird ein PEARL-Programnm al-

so aufgeteilt in einen maschinenabhängigen, sogenannten

Systemteil, der das Programm mit den aktuellen Peripherie-

elementen verknüpft, und einen maschinenunabhängigen soge-

nannten Problemteil, in dem auf die Hardware nur über Namen

Bezug genommen wird. Auf diese Weise muß bei der Übertragung

eines Programms auf einen anderen Rechnertyp lediglich der

Systemteil modifiziert. werden. PEARL erlaubt außerdem die

Regelung von Automationsprogrammen in Teilprogramme und so-

mit den systematischen Aufbau von Prozeßprogrammen durch die

Möglichkeit ein Objektprogramm aus einer Menge unabhängig

compilierbarer Einheiten, sog. PEARL-Programmoduln aufzu-

bauen. Die zur Lösung eines Automationsproblems erforder-

lichen Programmoduln werden nach ihrer Übersetzung in einem

Bindelauf mit dern Funktionen des Betriebssystems und des

Jeweils erforderlichen Bibliotheksfunktionen verknüpft und

ergeben so die lauffähige Version eines sog. PEARL-Programnm-

systens.

Die Übersetzung von PEARL in die Assemblersprache eines

Zielrechners kann dabei wie in Bild 1, nach der von der

ASME (Arbeitsgemeinschaft Stuttgart, München, Erlangen)

gewählten Methode, ablaufen.

-10-

 CIMIC/

BILD I Compileraufbsu

 Assembler

DIETZ 621

Wie man sieht besteht der ASME-Compiler aus 2 Teilen, einen

zielmaschinenunabhängigen Oberteil und einem zielmaschinen-

abhängigen Unterteil, dem Codegenerator. Im oberen Compiler-

teil’werden bei der Syntaxanalyse alle für die Übersetzung

notwendigen Informationen im Zwischenstring und im Namensbuch

abgelegt. Im nachfolgenden Semantiklauf werden diese Infor-

nationen in die compilerinterne Zwischensprache CIMIC/1l un-

setzt. (siehe Bild 2)

Zwischenstring

Namensbuch

Ne

o

Semaontiklauf

|

Compilerinterne

 Bild 2

Übersetzungsablauf

Zwischensprache
|__cıMmic/ |

-11-

Die Zwischensprache CIMIC/1 ist dabei so definiert, daß sie

bereits mit den Assemblersprachen von Zielrechnern möglichst

gut übereinstimmt und somit der zielmaschinenabhängige Compiler-

aufwand möglichst klein wird.

Der Compilerunterteil übersetzt CIMIC/1 weiter in den Assenm-

blercode der Zielrechner. Er besteht aus einem Steuerteil,

dem Macrogenerator (Macroübersetzer) und dem Macroteil. Der

Macroübersetzer, von der ASME wurde hierzu der Macroüber-

setzer STAGE 2 gewählt, hat die Aufgabe zu einem eingelesenen

CIMIC-Befehl durch Aufruf eines entsprechenden Macrobefehls

den zugehörigen Assemblercode zu generieren. Diese Arbeit soll

sich mit dem Codegenerator beschäftigen. In Abschnitt: 2 werden

zup Codegenerierung verwendbare Macroübersetzer und hierbei

insbesondere der Macroübersetzer STAGE 2 beschrieben.

Ein Codegenerator, der den algorithmischen Teil der compiler-

internen Zwischensprache CIMIC/1 in den Assemblercode des

DIETZ 621 übersetzt, wird in Abschnitt 3 beschrieben. Der

Codegenerator ist in der Lage, Programne mit arithmetischen

Befehlen, Bitoperationen, Vergleichs-, Sprungbefehle und

Deklarationen zu übersetzen.

Als Beispiel zur Prüfung des Codegenerators wurden die zu

einem PEARL-Programm zur Matrizenmultiplikation gehörenden

CIMIC-Befehle in ein Programm im Assemblercode des. DIETZ 621

umgewandelt.

-12-

2.. Macroübersetzer

2.21 Was ist ein Macroübersetzer?

Ein Macrobefehl ist in seiner Grundbedeutung ein Mittel, eine

bestehende Grundsprache durch Einführen neuer Einheiten zu er-

weitern, und zwar sollen diese Einheiten ermöglichen, eine be-

stimmte Befehlsfolge in einem Progrann durch eine einzige An-

weisung zu ersetzen. Diese Befehlsgenerierung übernehmen SO-

genannte Macrogeneratoren, die meist eng mit dem zugehörigen

Assemblerübersetzer verknüpft und deshalb mit diesem als Ein-

heit betrachtet werden können und dann Macroassembler genannt

werden.

”

Für derartige Macrogeneratoren gelten strenge Syntaxregeln,

die durch den Sprachumfang der Grundsprache- (z. B. Assembler-

sprache) vorgegeben sind. Sie können nur Anweisungen der Grund-

sprache in andere Anweisungen der Grundsprache umsetzen. ES

wurde nun eine Reihe von Macroübersetzern entwickelt, die einen

allgemeingültigen Formalismus zum Umsetzen und Verarbeiten von

Zeichenfolgen beinhalten. Sie analysieren eine vom Benutzer erT-

stellte Zeichenfolge (Quellsprache) nach bestinmten Regeln unä

setzen diese in eine Ersatzzeichenfolge (Zielsprache) um. Auf

diese Weise kann der Benutzer Macros in einer für ihn geeignetel

Sprache schreiben und ist nicht an Assemblersprachen und deren

Übersetzer gebunden. Diese. Macrogeneratoren sind also nicht nur

ein Hilfsmittel für das Programmieren in einer bestimmten Spracd

(z.B. Assemblersprache), sondern können auch für Übersetzungs-

arbeiten von höheren Programmiersprachen z.B. zur Übersetzung

-13-

von CIMIC/1 in Assemblercode verwendet werden.

Im allgemeinen haben Macrodefinitionen folgende Form

Macrodefinition: MACRO. NAME (P,; ...; P)

MACROKÖRPER

END

Die Strings MACRO und END begrenzen die Macrodefinition.

NAME stellt den Namen des Macrobefehls dar, und Pa» ...; Pn

sind die formalen Parameter des Macros. Ein Macroaufruf be-

steht aus dem Macronamen und einer Liste aktueller Parameter,

deren Zahl kleiner oder gleich der Zahl der formalen Parameter

sein muß.

In

B Macroaufruf: NAME. (A, , ...; An) m

Wird dem Macrogenerator ein solcher Aufruf eingegeben, so er-

setzt er diesen durch den zugehörigen Macrokörper, wobei in

diesem die formalen durch die aktuellen Parameter ersetzt wer-

den. Ist uen, so werden für die übrigen formalen Parameter vom

Übersetzer nach bestimmten Regeln Werte. erzeugt.

-14-

2.2 Forderungen an einen Macroübersetzer.

Um die Codeerzeugung mittels Macrogeneratoren in einem mög-

lichst weiten Bereich zu ermöglichen, sollten diese möglichst

portabel, d.h. auf beliebigen Rechnern lauffähig und auf be-

liebige Zielsprachen anwendbar sein und außerdem zuverlässig

und schnell arbeiten. Hierzu müssen an einen solchen Über-

setzer folgende Forderungen gestellt werden:

1. Der Übersetzer sollte in einer maschinenunabhängigen

Sprache (z.B. FORTRAN) geschrieben sein.

2. Die Zuordnung der Eingabezeichenfolge zu den ent-

‚sprechenden Macros und somit zur gewünschten Aus-

gabezeichenfolge muß eindeutig sein, d.h. es muß

„ein zuverlässiger Suchalgorithmus existieren.

3. Die Definition der einzelnen Macroköpfe (auch Macro-

körper) soll möglichst formatfrei sein.

4. Der Macroübersetzer soll möglichst wenig Kernspeicher

benötigen und schnell arbeiten.

5. Macroteil und Steuerteil eines Macrogenerators müs-

sen möglichst unabhängig von einander sein.

6. Die Macros müssen möglichst einfache und leicht aus-

führbare Ausgabeanweisungen erlauben.

Nach /2]/ muß man, um einen leistungsfähigen Übersetzer zu er-

-15-

halten, der nicht nur Eingabetext durch Text ersetzt, sondern

2.B. auch Codeoptimierung erlaubt, an diesen weitere Forderungen

stellen.

a) Macroschachtelung, d.h. Aufruf anderer definierter Macros

innerhalb einer Macrodefinition. So kann der Tomnilerauf-

wand stufenweise durch Einführung von Macros, die von be-

reits eingeführten Macros aufgerufen werden, reduziert

werden.

Beispiel: Macro 1 : MACRO ADD, A, B, C

FETCH, A

ADD, B

STORE, C

END

Macro 2 : MACRO COMPLEXADD, A, B, C

ADD, A, B, C

ADD, A+1, B+1, C+

END

b) Abfragen von Bedingungen in den Macros (bedingte Macros)

Um z.B. P+Q+R mit Macro 1 addieren und nach S abspeichern

zu können, müßte der Aufruf lauten:

ADD, P, Q, ACC

ADD, ACC, R,S

wobei ACO für das Arbeitsregister steht. So würde ein un-

-16-

nötiger Speicher- und Ladebefehl generiert. Ein bedingtes

Macros, welches den hier zu erzeugenden Code optimiert und

überflüssige Befehle wegläßt hat die Form:

Macro 3: MACRO ADD, &,B,C,

fir a» acc

IprucH, A.

ADD, B

if C » Acc

STORE, C

END

c) Eindeutige Symbolgenerierung.

Die Notwendigkeit dieser Forderung wird ersichtlich, wenn

man an Marken denkt, die nur innerhalb eines bestimmten

Macros zugänglich sein sollten, bei mehrmaligem Aufruf dieses

Macros aber nicht zu Mehrfachdefinitionen führen dürfen.

Macro 4: MACRO OVERDRAW, X,Y, ACTION

creat 2

FETCH, X

SUB, Y

PLUSJUMP, 2

ACTION

Z: Leerzeile

END

wäre in Macro 4 keine Symbolgenerierung möglich, so müßte

die Marke 2 in der Parameterliste dieses Macros enthalten

sein und ihr müßte bei jedem Aufruf des Macros ein anderer.

-17-

aktueller Parameter zugeordnet werden. In Macro 4 erzeugt

der Macroübersetzer bei jedem Aufruf von sich aus ein

anderes Zeichen.

d) Zusammenfassung von Blöcken.

Steht z.B. in einem Macroaufruf als aktueller Parameter

ein weiterer Macroaufruf mit eigenen aktuellen Parametern,

so muß, um Uneindeutigkeit zu vermeiden, dieser Block

durch besondere Steuerzeichen, wie z.B. Klammern, als Ein-

heit zusammengefaßt werden können.

e) Neue Macrodefinitionen innerhalb eines Macros

Macro 5: MACRO VARIABLE, A.

A: 1 Speicherplatz reserviert

MACRO. A. \

FETCH, A.

END

END

f) Iteration über eine Parameterliste.

Macro 6: MACRO VARIABLES, X

repeat over X

VARIABLE, X

END

Hierbei bedeutet "repeat over X", daß X als Parameter-

liste betrachtet wird, und daß die Auswertung des Macro-

-18-

körpers für jedes Element dieser Liste: vorgenommen wird.

Beispiel: VARIABLES (X,Y,Z)

VARIABLE, X

VARIABLE, Y

VARIABLE, Z

8) Zeitweilige Belegung von Speicherplätzen während eines

Übersetzungslaufes und Ausführung arithmetischer Opera-

tionen, was die Möglichkeiten zur Codeoptimierung verT-

srößert,.

-19-

2.3 Der Macroübersetzer STAGE 2

2.3.1 Wirkunssweise

Mit dem Macroübersetzer STAGE 2, auf den im folgenden näher

Bezug genommen wird, wurde 1968 an der Universität Colorado

von W. N. Waite ein leicht auf verschiedene Rechenanlagen über-

tragbares Programm entwickelt, welch:s den in 2.2 gestellten

Forderungen in hohen laße entspricht. Es analysiert eine vom

Benutzer eingegebene Zeichenfolge (.„uellsprache) nach bestimmten

Rezeln und setzt sie in eine neue Zeichenfolge (7ielsprache)

um, die zur weiteren Bearbeitung (z. B. durch einen Compiler oder

Assembler) bereitgestellt werden kann. Der STAGE 2 ist im Ge-

sensatz zu herkömmlichen Macroübersetzern von den Eissenheiten

der Sprache der verwendeten Rechenanlage unabhängig. Er be-

sitzt ein verallgemeinertes Bin/Ausgabesystem, und die hier

vorliezende Version (STAGE 2-2) wurde schon auf verschiedenen

Rechnern implementiert. Sie steht z. B. als Lochkartendeck in

FÜRTRAN - Version zur Verfügung.

Bei den herkömmlichen NMacroübersetzern, bei denen ein Macro,

wie in Abschnitt 2.1 beschrieben, definiert wird, ist die

Wacrodefinition formatgebunden. Da der STAGE 2 aber für mög-

lichst viele zu übersetzende Sprachen verwendbar sein soll,

wird bei ihm ein sehr allgemein gehaltenes Verfahren der Nuster-

erkennung benutzt. Hier kann die Anfangszeile einer lacrode-

finition, die den Namen des entsprechenden Nacros darstellt,

aus einer beliebizen Zeichenfolge bestehen, die nur durch ein

spezielles Zeichen, die "Source-end-of-line-flag" (SEF), ab-

geschlossen sein muß +). Parameter können an beliebiger Stelle

dieser Zeile durch Parameterplatzhalter, die "Source-parameter-

-flags" (S?F) vorgesehen werden.

Jeder Satz von Macrodefinitionen muß beim STAGE 2 mit einer besonde

ren Zeile, der "flag-line" (s. 2.3.2.2) beginnen, in der dem Üfber-

setzer Sonderzeichen (wie z.B. SEF oder SPF) angegeben werden, wo-

bei deren Definition dem Berutzer überlassen bleibt. Jede einzelne

+) s. Seite 71

-20-

Macrodefinition besteht aus der Anfanzszeile, die der SIAGE 2 e]

Zeilenmuster verwendet, und einem zugehörigen Macrorumpf, dem

Code-body. Jede: Zeile des Code-body muß durch ein weiteres Sonde

zeichen, die "MOl-end-of-line-flag" abges schlossen+). Dieses

Zeichen in einer eigenen Zeile beschlie3t auch eine Macrodefiri-

tion. Beim letzten Code-body eines Satzes von Macrodefinitionen

müssen in dieser Zeile zwei solche Zeichen stehen.

Der letzten Macrodefirition folgen sofort die Nacrosufrufe. Bin

Nacro wird auch hier durch seiren Nanen aufgerufen. Jedoch zehör

hier zum Namen alle Zeichen des Zeilenmusters, mit Ausnahme der

Parameterplatzhalter. Der Aufruf ist hier also nicht fornabgebur

den und kann direkt als Anweisung in der Quellsprache eriolgen,

wobei diese Zeichen für Zeichen mit den vom Benutzer einzezeben®

Zeilenmustern verglichen wird. kann keine Übereinstimmung 887

funden werden, so wird die einzelesene Zeile ohne Änderung viede

ausgegeben. Bei Übereinstimnung der eingelesenen Zeile mit einen

Zeilenmuster werden in den zugehörigen VMacrorumpf die aktuellen

Parameter übergeben, und der iiacroübersetzer steuert denn die zu

gabe des entsprechenden Codes.

Im einfachsten Fall besteht der "Oode-bogy" eines Macros aus Tex

in der Zielaprache, in die die Werte der aktuellen Parameter ein

gesetzt werden. Um aber mehr als bloßes Ersetzen eines Textes

durch einen anderen Text mit einem Übersetzer zu ermöglichen,

wurden von McIlroy /2/ die in 2.2 beschriebenen Forderungen an

"einen Nacroübersetzer gestellt.

Zur Erfüllurg dieser Forderungen besitzt der libersetzer STAGE 2

S mögliche Arten der Parsmeterumformung und 10 Übersetzerfunktio

nen. Durch Parameterumformung werden die aktuellen Parameter

bearbeitet und mit Hilfe der Information aus dem der STASE 2 zur

Verfüzung stehenden Speicher ergänzt und in die suszugebende

Code-Zeile übergeben. Dis Übersetzerfunksionen steuern das Ven

ten des Übersetzers (z.b. Snrünze oder Beenden des Übersetzungs-

vorzangs).

-21-

Im Code -body eines Macros können weitere Macroaufrufe stehen

(Macroschachtelung). Dieser Schachtelung sind nur durch die dem

STAGE 2 zur Verfügung stehende Speicherplatzmerge Grenzen gesetzt.

+) SEF und MCT-end-of-line-flag können fehlen, dann sind aber

alle Leerzeichen bis zum Zeilenende von Bedeutung (z. B.

Lochkartenende) und werden gespeichert.

2.3.1.1 Mustererkennune hu,

Wie bereits erwähnt, wird die Anfangszeile einer Macrodefinition

beim STAGE 2 als Zeilenmuster verwendet. Dieses Zeilenmuster be-

steht aus sogenannten festen Zeichenfolgen und Parameterplatzhal-

tern. Beim Vergleichsvorgang werden nun die Zeichen der Eingabe-

zeile mit den festen Zeichenfolgen der Zeilenmuster verglichen uf

bei Übereinstimmung diesen zugeordnet. Den Parameterplatzhalterk

werden dann die restlichen Zeichenfolgen der Eingsabezeile, und

wenn diese nicht vorhanden sind, leere Zeichenfolgen" zugewie-

sen. Diese Zeichenfolgen müssen aber bezüglich Klammern ausse-

slichen sein, d.h. gleich viel linke wie rechte Xlammern enthal-

ten. Die Parameterplatzhalter der Zeilenmuster werden von links

nsch rechts mit 1 beginnend bis höchstens 9 numeriert. (In einen

Zeilenmuster dürfen höchstens neun Parameterplatzhalter auf-

treten.)

Die Yustererkennung, d.h. die Zuordnung von Zeichen der Bingabe-

zeile zu Zeichen des Zeilenmusters oder Paraneterplatzhaltern EU“

nech bestimmten Regeln ablauffen, um Mehrdeutiskeit, d.h. die

Übereinstimmung einer Eingabezeile mit mehreren Zeilenmustern,

zu vermeiden. Hierzu wird die Menge aller deiiniorten Zeilen-

muster zeichenweise baumförmig aufg>gliedert. Jedes Zeichen ent-

spricht einem Zweig des Raumes, die durch Verzweigunsspurktbe

(Knoten) getrennt werden. Von jedem dieser Knoten können beliebiz

viele Zweige ausgehen, aber nur einer kann auf ihn zulaufen. Der

Ursorung des Baums ist die Wurzel (Root).

Das nachfolgende Beisni;l (siche Bild 3) zeigt, wie dieser Baur

aus den mözlichen Zeilermustern aufgebaut wird. Dabei stellt im

Baum c eine Zeilenendemarxe ING und 5 einen Parsmeternlatzhalter 6Fr,

un die Unabhänzigkeit vor den vom Benutzer verwesdeten %eichen

zu. verdeutlichen.

Entspricht nun eine einzezebene Zeile dem Baum von der Wurzel

bis zu einer Zeilenendemarke (c), sa wird sie als Aufruf des

entsprechenden Zeilenmusters erkannt. Die eingegebene Zeile

wird nach folgenden Rezeln mit dem aus den Zeilermustern ent-

Stehenden Baum verglichen. Diese Regeln sind für den Benutzer

nur bei der Deutung unerwartete Ergebnisse des l\ustervergleichs

von Bedeutung.

-23.

EINGEGEBENE ZEILENMUSTER:

(1) SAM=A$&

(2) SAM= !$£

(3) I=!$

(4) I=A$

(5) SAM=!=-!$

(7) I-!elg

AUFGEBAUTER BAUM:

Root T5-A-M-= A-c (1)

prc (2)

l...-.

J-O-E-c (6)

Ip-=7prc (9)

I.oe-eon

A-c(4) Bild 3 Baumaufbau aus Zeilen-

musvern

Regel _l: Regel 2 wird auf die Wurzel des Baumes und das erste

eingelesene Zeichen angewandt.

Regel 2: Alle vom momentan betrachteten Knoten äusgehenden Zweige

werden mit dem eingelesenen Zeichen verglichen. Gibt es

eine Übereinstimmung, so wird über diesen’Zweig zum

nächsten Knoten fortgeschritten, für den dann mit dem

nächsten eingelesenen Zeichen der gleiche Vorgang abläuft.

wird hierbei eine Zeilenendmarke erreicht, so ist eine

Zeile erkannt und wird dem entsprechenden Macro zugeordnet.

Gibt es keine Übereinstimmung, so wird Regel 3 aufgerufen.

-24—

Regel 3: Konnte nach Regel 2 keine Übereinstimmung gefunden wer”

den, und stellt einer der vom betrachteten Knoten auS”

gehenden Zweige einen Parameterplatzhalter dar, SO

wird Regel 2 auf den über diesen Zweig zu erreichenden

Knoten und das eingelesene Zeichen angewandt, während

diesem Zweig ein "Leerstring" zugeordnet wird. Ist dies

nicht der Fall, so wird auf den betrachteten Knoten

Regel 4 angewandt.

Regel 4: Ist dieser betrachtete Knoten die Wurzel, und brachten

Regel 2 und 3 kein Vorrücken auf dem Baum, so wird

der Vergleich als gescheitert betrachtet. Die einge-

lesene Zeile wird nicht erkannt und unverändert ausge-

geben. Sonst wird, wenn der auf den betrachteten Knoten

zulaufende Zweig keinen Parameterpiatzhalter darstellt,

Regel 3 auf den vorigen Knoten und das eingelesene

Zeichen angewandt. Ist dieser Zweig aber.ein Parameter”

platzhalter, so wird Regel 5 auf den momentan betrach-

teten Knoten und das gerade eingegebene Zeichen ange-

wandt. "

°

Regel 5: Dem Substring, der dem Zweig entspricht, der auf den. be-

trachteten Knoten zuläuft, wird der kleinste bezüglich

Klammern ausgeglichene und beim gerade eingelesenen

Zeichen beginnende Substring angehängt. Hiernach wird

Regel 2 auf diesen Knoten und das dem neuen Substring

folgende Zeichen angewandt. Gibt es keinen solchen Sub-

string, so wird Regel 4 auf den vorangehenden Knoten

und das erste eingelesene Zeichen angewandt, das einen

Parameterplatzhalter zugeordnet wurde. Hatte der Platz”

halter zu einem Leerstring gehört, so wird das gerade

eingelesene Zeichen genommen. Der Substring, der dem am

weitesten links stehenden Parameterplatzhalter zugeordne

wurde, wird zu Parameter 1 gemacht usw. Nach der Fest-

legung. der Parameter beginnt die "Auswertung des‘ Macro”

rumpfes.

-25-

START

BEEIETEE

KNd):= ROOT

Ö

NEN |

t:zlet_]

KNEN-1) LIES. ZEIN)

KN NACH ZWix) .

LERRN)=0]
[%:= 0 |]

GUEIN)=ZEN) BR Ka

5 KN_NACH ZWIP)

SU ‘= LEER]

ja L

EINGÄBEZEILE |
ALS

MACROAUFRUF
ERKANNT

‘ I
AUSWERTUNG

Vi DES
NEUE MACROKÖRPERS

lEINGABEZ

\ .Ö

UNVERÄNDERTE
AUSGABE

KEINE
ZUORDNUNG

L___MÖG

=N-1 |]
«

KNÜ): KNOTEN

ZE(): ZEICHEN

ZW): ZWEIG

SUBÜ):SUBSTRING

„BRÜUN): ZWISCHENSPEICHER

FÜR PARAMETER

KL: ZÄHLVARIABLE FÜR
KLAMMERN SRETET

Bitd4 Bu

SUCHALGORITHMUS [ie]
STAGE2

KL:= KL+1

KL:=KL-1

| SUB(N-1) zSUE&N-).ZEUN 1
x

nein KL. 0 ja +

-26-

In Bild 4 ist der nach diesen Regeln ablaufende Suchalgorithuus

des STAGE 2 in leicht vereinfachter Form in einen Flußdiazrann

dargestellt. Die Suche besinnt beim Knoten Kn(1)(iurzel).

Alle von einem Knoten KN(N) ausgehenden Zweige ZU(X) werden mit

dem betrachteten eingelesenen Zeichen ZE(I) verglichen. Bei

Übereinstimmung wird der Suchvorgang abgebrochen und eine Zeile

gilt als erkannt, wenn das eingelesene Zeichen eine Zeilenende-

marke war, sonst wird das einem Zweig entsprechende Zeichen einem

Substring SUB(N) zugeordnet, und der diesen Zweig folzerde Kno- n“s

ten wird KN(N+1), für den wiederum der gleiche Vorgang abläuft.

Kann keine Übereinstimmung zwischen einem Zweig und den betrach-

teten eingelesenen Zeichen gefunden werden, so wird abgefragt,

ob einer der Zweige ZW(X) ein Parameterplatzhalter ist, der dann

eine Kennvariable BR(N) setzt, die im nächsten Schritt abgefrazt

wird. ist BR(N) gleich !, so wird über den zu diesem Parameter-

platzhalter gehörenden Zweig zum Knoten XN(N+1) fortgeschritten

und dem’ Substring SUB(N) wird ein Leerstring zugeordnet. War

BR(N) ungleich !, und ist KN(N) die Wurzel, so ist keine Zu-

ordnung möglich, und die eingelesene Zeile wird unverändert aus-

gezeben.

Ist KN(N) jedoch nicht die Wurzel, so wird so lange zum vorigen

Knoten KN(N-1) zurückgesprungen bis dieser entweder der Wurzel

entspricht, oder von ihm ein Parameterzweig ausgeht. Der diesen

entsprechende Substring wird dann mittels der Xlammerzählvariabler

KL um den kleinsten bezüglich Klammern symmetrischen Eingabestrirg

erweitert. Danach wird der Verzleichsvorgang bei dem diesem ra-

rameterzweig folgenden Knoten mit dem nächsten Eingabezeichen

fortzesetzt.

-27-

Als Beispiel soll das zu der Eingabezeile SAM = (B=C) = A ge-

hörende Zeilenmuster im Baum nach Bild 1 gesucht werden. Regel 1

bewirkt, daß der Vergleichsvorgang beginnt, indem sie Regel 2

aufruft, die dann auf die Wurzel und das erste eingegebene Zei-

chen angewandt wird. Das erste Zeichen der Eingabezeile ist hier

"s", und es gibt einen von der Wurzel ausgehenden Zweig, der "S"

darstellt. "S" wird also diesem Zweig zugeordnet. Da öieser Zweig

keiner Zeilenendemarke entspricht, wird nun Regel 2 auf den über

diesen Zweig erreichten Knoten und das nächste Zeichen der Ein-

gabezeile angewandt, Dies ist "A", und es gibt einen "A"-Zweig,.

der von diesem Knoten ausgeht. Somit kann Regel 2 weiter benutzt

werden.

Dieser Vorgang wiederholt sich für die folgenden Zeichen, bis man
“

zum Knoten nach dem Zeichen "=" gelangt. Für das jetzt eingelesene

Zeichen "C" kann kein entsprechender Zweig gefunden werden, und

wir müssen Regel 3 benutzen. Von diesem Knoten geht ein Parameter-

zweig aus, Diesem wird ein "Leerstring" zugeordnet. Nun wird

Regel 2 auf den über diesen Zweig erreichten Knoten und das ein-

gegebene Zeichen "C" angewandt, aber mit Regel 2 läßt sich auch

hier keine Übereinstimmung finden, so daß man Regel 3 versuchen

muß. Da aber von diesem Knoten kein Parameterzweig ausgeht, müs-

sen wir Regel 4 anwenden. Der betrachtete Knöten ist nicht die

Wurzel, aber der auf ihn zulaufende Ast ist ein Parameterzweig,

so daß Regel 5 dazu benutzt wird, den "Leerstring", der ursprüng-

lich diesem Parameterzweig zugeordnet wurde, zu erweitern. Der

kleinste, bezüglich Klammern ausgeglichene Substring ist "(B= CC)".

Dieser wird Parameter], und Regel 2 wird auf den nächsten Knoten

und das der Klammer ")" folgende Zeichen "=" angewandt. Hier kann

wieder eine Übereinstimmung gefunden werden, aber beim nächsten

eingelesenen Zeichen "A" versagt Regel 2 erneut, so daß wiederum

Regel 3 dazu benutzt wird, um auf dem Baum über einen Parameter-

zweig vorzurücken. Diesem wird wieder ein "Leerstring" zugeordnet.

Auch hier rreicht man mit Regel 2 und 3 keinen Fortschritt. Über

Regel 4 wird dieser "Leerstring" nach Regel 5 um den ausgegli-

chenen Substring "A" erweitert, "A" wird Parameter. 2. ‘Nun wird

Regel 2 auf die "A" folgende Zeilenendemarke angewandt. Es gibt‘

eine Übereinstimmung und die Eingabezeile wird als Aufruf des

. Zeilenmusters (5) erkannt.

-28-

Der hier beschriebene Mustervergleich durch den STAGE 2 erlaubt

formatlosen Aufruf von Macros, verlangt aber, da3 in jeder Zeile

nur eine Anweisung steht. Leerzeichen werden berücksichtist.

Die Richtigkeit des beschriebenen Beispiels soll mit den Zeilen-

muster nach Bild 3 gezeizt werden. Die Code-bodys der einzelnen

Macros werden durch Namen gebildet. Der zum aufzerufenen Macro

gehörende Name wird auf Lochkarte ausgegeben. Mit einer spät®r

beschriebenen Übersetzerfunktion kann jedoch ein anderer Auszabe-

kanal gewählt werden. In der "flag-line" wird vereinbart:

$% als SEF und als MCT-end-of-line-flag

! als SPF

Kacrodefinitionen: Eingabezeile:

SAM=AZ

ANTON 2
Z ’

SAaN=!3

cTTO 8.

SAM=(B = C)=L2

Ausgabe:

2 GISELA

I=!18
KABL 2

3
!=A%

ESON Z

SAM=JOEZ
INSE &
2
I=1=12
NGNIKA &
22

-29-

2.5.1.2 Code-body

Der Code-body ist der Rumpf der Macros. Mit seiner Hilfe setzt

der STAGE 2 die BEingabezeile in Zeilen der Zielsprache um. Hier-

bei werden in diese Zeilen entweder direkt Zeichen der Code-body-

Zeilen, Parameterplatzhaltern zugeordnete Eingabezeichen oder

Zeichen aus einem vom STAGE 2 gebildeten Speicher übertragen.

Jede Zeilenendemarke im Code-body bewirkt auch die Beendizung der

gerade gebildeten Neuzeile. Die weitere Untersuchung des momen-

tan betrachteten Code-bodys wird daraufhin zunächst ausgesetzt,

und der STAGE 2 sucht den Baum daraufhin zunächst nach einem zu

dieser Neuzeile passenden Zeilenmuster ab. Existiert ein solches,

so wird nun zuerst dessen Code-body vollständig untersucht. Wenn

dies geschehen ist oder wenn kein Zeilenmuster gefunden werden

kann, wird der alte Code-body weiteruniersucht.

Da der Gode-body also eigentlich ein Programm zur Bildung neuer

Zeilen ist, müssen in ihm Wertzuweisunzen, Berechnung arithmeti-

scher Ausdrücke bzw. bedingse und unbecingte Sprungbefehle und

Wiederholunssschleifen möslicr sein. Hierzu dienen dem STATE 2

Parameterumformungen bzw. Übersetzerfunktionen, deren Möglich-

keiten in Abschnitt 2.3.2 dargestellt werden. Die Anweisungen

dieses Proxramms zur Bildung der Neuzeilen werden durch den Typ

der Elemente des Code-bodys bestimmt, und zwar gibt es hierbei

vier verschiedene Typen, zu deren Ilnterscheidung in der "flag-line"

die MCT-end-of-line-flasg und das Fluchtsynbol definiert werden

müssen.

einzelne Zeichen (z.B. Ziffern, Buchstaben); H3

2d

u
 oO
 ı

Typ 1 - Zeilenende oder Zeilenendemarke;

Ty» 2 Elemente, die Farameberumwandlunzg bewirken;

Typ 3 Elemente, die Übersetzerfurktionen aufrufen.

Beim Lesen des Code-body wird nun jedes einzelne Zeichen unter-

sucht. Die Wirkung eines Elements vom Typ 1 wurde bereits er-

wähnt. Es bewirkt die Beendigung einer gebildeten Neuzeile und

der Rest der Code-body-Zeile wird überlesen. Beim Auftreten eines

Fluchtsymbols wird sofort das nächste Zeichen untersucht, dem

dann eine spezielle Bedeutung zukommt, wenn es sich entweder un

-30-

eine Ziffer oder einen Buchstaben handelt. Dann werden nämlich

das Fluchtsymbol und die beiden folgenden Zeichen, wobei das zweit®

Zeichen nach dem Fluchtsymbol stets eine Ziffer sein muß, ZU einem

Element vom Typ 2 bzw. Typ 3 zusammengefaßt, das dann entsprechen“

des Verhalten des Übersetzers bewirkt.

Alle übrigen Zeichen im Code-body sind Elemente vom Typ O und

haben keine besondere Funktion. Sie werden wie ein dem Fluchtsymbol

folgendes Fluchtsymbol oder eine diesem folgende Zeilenendmarke

direkt in die Neuzeile übergeben.

2. 5. 1. 3 Code-Brzeusung (Beispiel)

In diesem Abschnitt wird die Code-Erzeugung, d.h. die Bildung von

neuen Ausgabezeilen in der Zielsprache an einem Beispiel verdeut”

licht. Doch zuerst soll das Verhalten des Übersetzers hierbei noch

einmal zusammengefaßt werden.

Nach der, Erkennung eines Zeilenmusters sucht der STAGE 2 den zuge-

hörigen Rumpf nach den verschiedenen Elemente ab. Elemente vom

Typ O werden vom Übersetzer ohne weitere Bearbeitung jn die Code-

Zeilen übertragen. \

Elemente vom Typ 2 signalisieren dem Übersetzer, daß ein aktueller

Parameter auf eine bestimmte Art umgewandelt und das Ergebnis die“

ser Umwandlung an Stelle des Typ 2-Elements in die Code-Zeile über”

tragen werden soll. Dabei bestimmt die erste Ziffer in diesem

Element die Nummer des zu bearbeitenden aktuellen Parameters und

die zweite die Art der Umwandlung (z.B. einfaches Kopieren). Als

Ergebnis des Mustervergleichs können den aktuellen Parametern nur

Nummern von 1 bis 9 zugeordnet werden, trotzdem kann die erste

Ziffer in einem Typ 2-Element auch Null sein. Auf diese Weise kön-

nen in einem Code-body z.B. vom Mustervergleich unabhängige Marken

gebildet werden, denn der Übersetzer setzt an Stelle des Elements

von sich aus Ziffern in die Neuzeile ein. So sind 10 verschiedene

Ziffern in einem Code-body möglich, zu deren Unterscheidung dem

Übersetzer die zweite Kennziffer des Typ 2-Elements dient.

.-31-

Parameterumformung betrifft immer nur einzelne Elemente des Code-

body und ihr Ergebnis wird in die Auszabezeilen übertragen, hat

aber keinen Einflu3 auf den Ablauf des Übersetzungsvorganges. Die-

ser wird durch Übersetzerfunktionen, die durch Typ-3-Elemente auf-

gerufen werden, gesteuert. Durch sie ändert sich das Verhalten des

Übersetzers in Bezug auf einzelne Code-body-Zeilen, einen ganzen

Code-body oder die restlichen Eingabezeilen, indem z.B. der Über-

setzungsvorgang abgebrochen wird. Sie bewirken aber keinen Infor-

mationsfluß in die Ausgabezeilen hinein.

Elemente vom Typ 3 haben das Format eFc, wobei e das Fluchtsymbol

darstellt, und c (0 & c < 9) die auszuführende Funktion bestimmt.

Mit Ausnahme der Funktionen VO und 9 (s. 2.3.2.6 a unä j), bei

denen der laufende "Code-body" endgültig verlassen wird, wird nach

einem Typ-3-Element erst das übernfächste Element untersucht.

Typ-3-Elemente stehen im allgemeinen am Ende einer Code-body-Zeile

und nach der Ausführung der zugehörigen Übersetzerfunktion liegt

eine noch leere Code-Zeile vor, welche wegen der folgenden Zeilen-

endemarke auch leer bliebe. Da diese überlesen wird, kann in die

Neuzeile sofort das Ergebnis der Auswertung der nächsten Tode-body-

Zeile übertragen werden, und somit wird die Ausgabe überflüssiger

Leerzeilen vermieden.

Trifft der Übersetzer auf ein Element vom Tyn 1, so erkennt und

markiert er =in Zeilenende und unterbricht das weitere Absuchen des

Code-body. Alle aktuellen Parameter werd»n gespeichert und die ab-

geschlossene Code-Zeile wird vom STAGE 2 wie eine Eingabezeile den

Mustervergleich unterzogen (Macroschachtelung).

Bei Übereinstimmung mis einem Zeilenmuster ;ird nun zuerst dessen

Sode-body untersucht.

Für das folgende Beisniel gilt:

2 ShF

2 MCT-end-of-line-flag (Tyo-1-Element)

! Fluchtsymbol

! SPF (Parameterplatzhalter)

!d0 (siehe 2.3.2.5,a) Typ-2-Element (mit 124 <9)

bewirkt, da? der aktuelle P«rameter "d" in die Tode-Zeile

kosiert wird.

-32-

IF (s. 2.3.2.6,b) Ty»-3-Element bewirkt, da: die gebildete
Code-Zeile sofort suszezeben (auf Lochkarte), und

der Rest der Code-body-Zeile überiesen wird.

\acro: I=1+1% AEDITION

FEICH !20 g
ADD 130 !F1g
STORK !10 IFIg
3

Eingabezeile: A=B+0%

Ausgabe (auf Lochkarte): FETCH B

ADD C

STORE A

Nachdem die Eingabezeile als Aufruf des obigen Macros erkannt

wurde und die Substrings "A", "B", "C" zu Parameter 1,2,3 ge”

macht wurden, beginnt der STAGE 2 den Code-hody abzusuchen.

Zuerst werden 6 Zeichen vom Typ O (einschließlich Leerzeichen)

erkannt und unverändert in die Code-Zeile übergeben. An Stelle

des folgenden Typ-2-Elements wird der aktuelle Parameter 2,

nämlich "B", übergeben. Es folgt ein Typ-l-Element, d.h. die

Code-Zeile ist abgeschlossen und lautet FETCH B. Nun wird EETCH E

wie eine Eingabezeile dem Mustervergleich unterzogen, jedoch

kann kein entsprechendes Zeilenmuster gefunden werden, so daß

diese Zeile auf Lochkarte ausgegeben wird und der STAGE 2 die

nächste Code-body-Zeile untersucht. In die neue Code-Zeile wird

an Stelle des Typ-2-Elements der aktuelle Parameter C übergeben.

Das folgende Typ-3-Element wirkt auf den Übersetzer ein und die

bestehende Code-Zeile wird ohne nochmaliges Vergleichen sofort

auf Lochkarte ausgegeben, und der: Übersetzer beginnt eine neue

Code-Zeile. Die dem Typ-3-Element folgende Zeilenendemarke wird

überlesen, und in die Code-Zeile wird das Ergebnis der nächsten

Code-body-Zeile übertragen. Das Ende des zu bearbeitenden Macros

wird dem Übersetzer durch eine Zeile mit einer MCT-end-of-line

flag angegeben.

B3-

2.3.2 Parameterumformungen und Übersetzerfunktionen

2.3.2.1 Allgemeines

Für die Formatangaben der Steuerfunktionen des STAGE 2 gelten

folgende Vereinbarungen:

Einzelne Zeichen

(z.B. Großbuchstaben und Ziffern): stehen für sich selbst;

c: steht für beliebige Zeichen,
“ außer Zeilenendemarken;

d: steht für Ziffern zwischen

l und 9, diese eingeschlossen;

e: steht für das Fluchtsymbol;

m,n: stehen für Ziffern zwischen
O und 9, :diese eingeschlossen.

2.3.2.2 Flax-line

Wie bereits erwähnt, muß jeder Satz von Macrodefinitionen mit der

"flag-line" beginnen, deren Zeichen vom Benutzer willkürlich ge-

wählt werden können. Die Bedeutung der einzelnen Zeichen, deren

Reihenfolge einzuhalten ist, soll am folgenden Beispiel gezeigt

werden.

2.B. flag-line: ZIElO (+-8/)

Zeichen im
Position Beispiel Bedeutung

1 ui Zeilenende in der Macrodefinition und im
Macroaufruf (SEF)

2 ! Parameterplatzhalter in der Macrodefinition (SPF}

3 23 Zeilenende im Macrorumpf (MCT end-of-iine flag)

4 ! Fluchtsymbol

5 Oo Null

6 Leerzeichen

7 (linke Klammer

8 + Additionszeichen

9 - Subtraktionszeichen.

fa)

oO

Multiplikationszeichen

Divisionszeichen mr»

D
M

e
n

G
e

 ;

rechte Klammer

5

2.3.2.3 Fehlererkennung

in ihr
Um die Sprachabhängigkeit des STAGE 2 zu bewahren, wurden

nur zwei Möglichkeiten der Fehlererkennung eingebaut:

1. Falsche arithmetische Ausdrücke

2. Unerlaubte Parameterumformungen oder unerlaubte

Kennziffern von Übersetzerfunktionen

DW

Es werden dann die Fehlermeldungen:

XXXXXXXX ERROR IN ARITHMETIC EXPRESSION

XXXXXXXX ERROR IN CONVERSION DIGIT

auf dem Zeilendrucker ausgegeben. Der Fehlermeldung folgt die ,
e

neugebildete Zeile, wie sie zum Zeitpunkt der Fehlererkennung
.. £

stand. Danach wird der Aufruf des laufenden Macros zurückverfold

und ausgegeben.
E22

Eine weitere Fehlermeldung wird ausgegeben, wenn der dem STAGE

zugewiesene Speicherplatz zu gering ist.

XXXXXXXX MEMORY OVERFLOW

%

Dies ist ein Fehler, der zur Beendigung der Übersetzung führt:

während bei den anderen Fehlern die Übersetzung mit dem nächsten

Zeichen des "Code body" weitergeführt wird.

2.3.2.4 Ein/Ausgabe-Kanäle

Die Nummer der Ein/Ausgabe-Kanäle hängt von der Implementierung

des STAGE 2 auf eine bestimmte Rechenanlage ab. Bei der hier vor”

liegenden Version (CD 6600) und in den nachfolgenden Beispielen

gelten die Vereinbarungen.

Kanal 1 - Eingabe von Macrodefinitionen und zu übersetzendem

Text (Kartenleser)

Kanal 3 - Ausgabe in der Zielsprache, für Maschinen lesbar

(Lochkarten)

Kanal 4 - Ausgabe von Fehlermeldungen (Zeilendrucker)

-35-

2.3.2,5 Parameterunformung

a) Übertragen. eines Parameters der Bingzabezeile in die

Code-Zeile

Format:

Wirkung:

Beispiel 1:

Macro 1:

Eingabe:

Ausgabe:

Beispiel

Macro

Eingabe:

Ausgabe:

2:

edO

Bei der Bildung der Neuzeile aus einer Code-

Body-Zeile werden die Zeichen edO durch eine

genaue Kopie von Parameter d. ersetzt

I=l + !2

FEICH !20 !F14%

ADD 130 !F142

STORE !1O IF1482

8 | | |
Hier wird noch die Übersetzerfunktion ePl4

verwendet, welche bewirkt, daß die Neuzeilen nicht

noch einmal dem Mustervergleich unterzogen und

sofort auf dem Zeilendrucker ausgegeben werden

(siehe 2.3.2.6,b). \

A=B + 08

FETCH B

ADD c

STORE A

Komplexe Addition (bei gleichzeitiger Verein-

barung von Macro 1)

Z!=1 + 18

110=!20 + 1308

110+1=!120+1 + !30+1%

2

ZA=B +C%$

FETCH B

ADD C

STORE A

FETCH B+l

ADD c+l

STORE A+l

36-2

Beispiel 2 zeigt, wie jede gebildete Neuzeile, wenn dies nicht
ausdrücklich anders vereinbart wird (z.B. mit eFl), erneut dem

Mustervergleichsprozeß unterzogen wird. Wurde die Eingabezeile

als Aufruf des Macros nach Beispiel 2 erkannt, so beginnt der

STAGE 2, eine Code-Zeile zu erzeugen, die aus der ersten Code-

body-Zeile dieses Macros mit den entsprechenden Parametern be

steht. Die Bearbeitung des Code-Body von Macro 2 wird nun unter“

brochen undder STAGE 2 sucht ein der Neuzeile entsprechendes

Zeilenmuster, das mit Macro 1 gegeben ist. Nun wird der Code-body

von Macro 1] bearbeitet. Dort wird durch die später beschriebene

Steuerfunktion eFl verhindert, daß die gebildeten Neuzeilen wieder

als Macroaufruf angesehen werden. Nach Beendigung dieses Vorgangs

kehrt der STAGE 2 wieder in den Code-body von Macro 2 zurück und

verfährt mit Zeile 2 genauso. Hierbei muß noch auf die Pedeutung

der Leerzeichen hingewiesen werden, die dazu benutzt werden, um

zwischen dem + Zeichen im Aufruf des Additionsmacros und dem in

den Addressen der Imaginärteile der Variablen zu unterscheiden.

Sonst entstünde Zweideutigkeit, und man erhielte nicht die er”

wünschten Ausgabezeilen.

b) Übertragen eines Strings aus dem Speicher des

in die Code-Zeile

b.1l) Format: edl

wirkung: Die Zeichen edl werden bei der Bildung einer Neuzeile

durch den Inhalt des Speicherplatzes ersetzt, dessen

Adresse durch Parameter d angegeben wird. Es erfolgt

keine Änderung des Speicherinhalts. Ist der durch d

bestimmte Speicherplatz leer oder nicht vorhanden, so

wird nichts in die Neuzeile übertragen.

Beispiel:

Macro: DRUCKE DEN INHALT VON SPEICHERPLATZ ! AUS 2

IM SPEICHERPLATZ !iO STEHT !l1!F14 &

8

Eingabe: DRUCKE DEN INHALT VON SPEICHERPLATZ SAM AUS 8

Ausgabe: (Nach ‚Belegung von Speicherplatz Sam mit (Anton):

s. später)

IM SPEICHERPLATZ SAM STEHT ANTON

Eingabe:

Ausgabe:

b.2)

Wirkung:

Beispiel:

Macro:

Eingabe:

-37-

DRUCKE DEN INHALT VON SPEICHERPLATZ JOE AUS %

(ohne vorherige Definition von JOE).

IM SPEICHERPLATZ JOE STEHT .

Format: ed2

Wie bei edl wird Parameter d als Symbol für eine Adresse

des STAGE 2-Speichers genommen, deren Inhalt an Stelle

der Zeichen ed2 in die Neuzeile übergeben wird. Ist der

betreffende Speicherplatz leer, so wird auch hier nichts

in die Neuzeile eingesetzt. Wenn Parameter d jedoch

nicht als Symbol einer Speicheradresse definiert ist, so

wird diesem hier von STAGE 2 ein Speicherplatz zugewie-

sen, der mit dem laufenden Inhalt eines "Symbolgenerators"

belegt wird. Dieser wird dann an Stelle von ed2 in die

Neuzeile übergeben und der Inhalt des "Symbolgenerators"

wird um 1 erhöht.

Dies ist eine Möglichkeit Information in den Speicher ein-

zutragen. Eine andere Möglichkeit bietet die Übersetzer-

funktion eF3.

(Weitere Möglichkeit der "Symbolerzeugung" eOm)
x

(relative Adressierung)

REL ADR !=!+!8

FETCH VARS + !22!F148

ADD VARS + 132!F148

‚STORE VARS + !12!F148

REL ADR A=B+C%

Speicherinhalt (A): 5 (Belegung mit später beschriebener Funtion
B,C undefiniert

Symbolgenerator = O

Ausgabe: FETCH VARS + O

ADD VARS + 1

STORE VARS + 3

Nach Behandlung des Macxros:

Speicheradresse {A) : 3

Speicheradresse (B) : O

Speicheradresse (C) : 1

Symbolgenerator = 2

-38-

©) Übertragen eines Trennzeichens in die Code-Zeile

Format:

wirkung:

Beispiel:

Macro:

Eingabe:

Ausgabe:

ed3

An Stelle der Zeichen ed3 wird das Zeichen der Ein”

gabezeile in die Neuzeile eingesetzt, das dort

Parameter d folgt. (Steht Parameter d am Ende der

Eingabezeile, so soll nach /1/ nichts in die Neuzeile

übertragen werden!’Dies kann aber hier nach dem

folgenden Beispiel nicht bestätigt werden).

!BIEIIIS!IPIIIS!IL!Z
+113123133143153163173183193+!F148

3

/B/E/I/S/P/I/E/WE

+BEISPIELS+

&) "Behandlung eines Parameters als arithmetischer Ausdruck

und Übertragen des Ergebnisses in die Code-Zeile

Format:

wirkung:

Beispeile:

Macro:

ed4 oo ‘

An Stelle der Zeichen ed4 wird eine ganze Zahl, der

ein Minuszeichen vorangehen kann, in die Neuzeile

eingesetzt. Diese Zahl ist das ganzzahlige Ergebnis

der Berechnung des durch Parameter d dargestellten

arithmetischen Ausdrucks. Sind in diesem Ausdruck

aufgerufene Speicherplätze leer oder-nicht definiert:

so wird an Stelle des Aufrufs bei der Berechnung des

Aufrufs Null verwendet. Das Ergebnis von d wird stet:

abgeschnitten, so daß eine ganze Zahl ausgegeben wir:

Stellt Parameter d einen unerlaubten arithmetischen

Ausdruck dar, so erfolgt eine Fehlermedlung nach Ab”

schnitt 3.3.

BERECHNE !%
ERGEBNIS !14!F14#

8

Eingabe:

Ausgabe:

Eingabe:

Ausgabe:

Eingabe:

Ausgabe:

Eingabe:

-39-

BERECHNE (3+15) /68

ERGEBNIS 3

BERECHNE 15/68

ERGEBNIS 2

BERECHNE 12-158

ERGEBNIS -3

BERECHNE APFEL+BIRNEXORANGE+43

Speicheradresse (APFEL): -21

Speicheradresse (BIRNE): 1234567890

ORANGE nicht definiert

Ausgabe:

Eingabe:

ERGEBNIS -17

BERECHNE UNSINN

UNSINN nicht definiert

Ausgabe:

Eingabe:

ERGEBNIS O

BERECHNE SAMZ

Speicheradresse (SAM) : ANTON .

Ausgake: KXXXXXXX ERROR IN ARITHMETIC. EXPRESSION

ERGEBNIS

BERECHNE SAMZ

ERGEBNIS SAM O (steht auf Lochkarte)

e) Übertragen der Länge eines ”arameterstrines in die

Code-Zeile

Format: ed5

wirkung: Auch an Stelle dieser drei Zeichen wird eine ganze

Zahl eingesetzt, die angibt, aus wieviel einzelnen

Zeichen der Parameterstring d besteht. Besteht

Parameter d aus überhaupt keinem Zeichen, so wird

die Ziffer O eingesetzt.

Beispiele: .

Macro: WELCHE LAENGE HAT DER 'PARAMETERSTRING !$%

DER STRING BESTEHT AUS !15 ZEICHEN!F148
3

Eingabe:

Ausgabe:

Eingabe:

Ausgabe:

-40-

WELCHE LAENGE HAT DER PARAMETERSTRING JOES

DER STRING BESTEHT AUS 3 ZEICHEN

' WELCHE LAENGE HAT DER PARAMETERSTRING $

DER STRING BESTEHT AUS O ZEICHEN

f) Ersetzen eines Parameters durch eine gebildete Code-Zeile

Format:

Wirkung:

Beispiel:

Macro:

Eingabe:

"Ausgabe:

Erklärung:

ed6

Der Aufruf von ed6 bewirkt, daß die Neuzeile, die

bis zum Aufruf von ed6 entstanden ist als aktueller

Wert von Parameter d genommen wird. Dabei geht der

alte Wert von Parameter d verloren. Das ed6 nach-

folgende Zeichen wird überlesen. Da ed6 meistens

am Ende einer Zeile steht, wird hiermit verhindert,

da? unnötige Leerzeilen ausgezeben werden.

Bei Verwendung von ed6 innerhalb einer Wiederholungs”

schleife muß beachtet werden, daß bei Änderung von

Parameter d der alte Wert jedesmal verlorengeht.

(Siehe ed7 und eFl). Der jeweilige: Wert von Parameter

d steht also weder in der nächsten Schleife, noch

nach Beendigung der ganzen Iteration zur Verfügung.

Es empfiehlt sich also ed6 möglichst nicht in einer

Wiederholungsschleife anzuwenden.

ERSETZE PARAMETER ! DURCH PARAMETER !$8

1201168

PARAMETER 1 !10!F14%

PARAMETER 2 1 20!F148

3

ERSETZE PARAMETER ABC DURCH PARAMETER XYZg

PARAMETER 1 XYZ

PARAMETER 2 XY2

Nachdem der STAGE 2 die Eingabezeile äls Aufruf des

obigen Macros erkannt und ABC Parameter] und XYZ

- Parameter 2 zugeoränet hat, wird die erste Zeile

des Code-body untersucht. e20 wird durch XYZ er-

-41-

setzt. Wird nun ed6 aufgerufen, so steht in der

Neuzeile nur XYZ. Dies wird nun zum neuen Wert von

Parameter 1 gemacht und die Neuzeile ist wieder

leer. Da nun das ed6 folgende Zeichen, die Zeichen-

endemarke überlesen wird, kann sofort die nächste

Code-body-Zeile in die Neuzeile übertragen werden,

und es wird keine überflüssige Leerzeile ausgegeben.

g) "Context-gesteuerte Iteration"”

Format:

Wirkung:

ed?

Durch den Aufruf von ed7 wird eine Wiederholungs-

schleife begonnen und einmal durchlaufen. Zuerst

wird dabei der beim Mustervergleich Parameter d

zugewiesene String gespeichert. Die Zeichen, die

nach ed? in der gleichen Code-body-Zeile stehen,

werden als Trennzeichen vereinbart. Parameter d wird

nun ein bezüglich Klammern ausgeglichener String

zugewiesen, der am Anfang der bis zum Aufruf von

ed7 entstandenen Neuzeile beginnt und bis zum ersten

Trennzeichen geht, das nicht von einer zu diesem

String gehörenden Klammer eingeschlossen wird. Die-

ser String und das folgende Trennzeichen werden nun

aus der Neuzeile gestrichen, und diese wird für den

nächsten Wiederholungsschritt gespeichert. Steht in

dieser Neuzeile beim Aufruf eines neuen Wiederholungs-

schrittes nichts mehr, so wird die Iteration beendet.

Nach jedem Schritt wird die Untersuchung des Code- |

body mit der dem Aufruf von ed? folgenden Zeile fort-

gesetzt.

Steht ed7 am Ende einer Code-body-Zeile, dann sind

keine besonderen Trennzeichen vereinbart. Nun wird

Parameter d bei jedem Iterationsschritt nur ein Zeichen

zugeoränet, das dann anschließend aus der gespeicherten

Neuzeile gestrichen wird. Hier haben Kiammern keine

besondere Bedeutung.

Beispiel]:

Macro:

Eingabe:

Ausgabe:

”

Erklärung:

u2-

KETTENADDITION !=!+1%

FETCH 120!1F14%2

130137+3

ADD 130!F14%

1F8%

STORE !10!F142

3

Die Übersetzerfunktion eF& gibt das Ende des ZU

wiederholenden Bereichs an und bewirkt eiren

neuen Wiederholungsschritb.

KETTENADDITION A=B+ (C+D) +E+Fg

FETCH B
ADD (C+D)

AD E

ADD F

STORE A

Das Macro wird von jeder Eingabezeile aufgerufen,

bei der nach dem Gleichheitszeichen ein oder

mehrere + Zeichen stehen.

Als Ergebnis des Mustervergleichs gilt die Zu-

ordnung:

_ Parameter 1: A

Parameter 2: B

Parameter 3: (C+D) +E+F

Nachdem zuerst die FETCH B-Anweisung ausgegeben

wurde, beginnt der Übersetzer aus der zweiten

Code-body-Zeile eine Neuzeile zu bilden. Beim

Aufruf von ed7 besteht diese aus

(C+D) +E+F

Durch ed7 wird diese Zeile gespeichert und das +

‚als Trennzeichen vereinbart. Der Übersetzer beginnt

nun die Neuzeile nach einem + abzusuchen. Hierbei

wird ein String gebildet, der bezüglich Klammern

ausgeglichen ist und vom Anfang der Neuzeile bis

zum ersten nicht zu diesem String gehörenden +

Zeichen geht. Dieser wird nun Parameter 3 zugeord-

Beispiel 2:

Macro:

-43-

net und einschließlich des folgenden Trennzeichens

aus der Neuzeile gelöscht, die dann für den näch-

sten Wiederholungsschritts gespeichert wird.

Nun ist: Parameter 3: (C+d)

für den nächsten Schritt gespeicherte

Zeile: E+F.

Der neue Wert von Parameter 3 gilt nun bis zum

Aufruf von eF8 und somit wird die Zeile

ADD (C+D) \
ausgegeben.

Die Funktion eF8 untersucht den Rest der gespeicher-

ten Zeile. Ist sie leer, so wird die Wiederholung

beendet. Sonst beginnt ein neuer Wiederholungs-

schritt, indem der Rest der gespeicherten Zeile

untersucht wird.

Ergebnis: Parameter 3 : E

gespeicherte Zeile: F.

Es wird nun ADD E ausgegeben.

Im dritten Wiederholungsschritt steht kein Plus-

zeichen mehr in der gespeicherten Zeile und das

Ende des Strings gilt als Trennzeichen.

Ergebnis: Parameter 3 : F

gespeicherte Zeile: leer.

Es wird ADD F ausgegeben. Beim erneuten Aufruf von

eF8 ist die gespeicherte Zeile leer und die Wieder-

holung wird beendet. Als Parameter 3 wird wieder sein

ursprünglicher Wert (C+D)+E+F abgespeichert.

LISTE !8

110117,8
11O!F148
IFBg

£

44.

Eingabe: LISTE A,B,C,D$

Ausgabe: A

B

c

-D

Eingabe: LISTE A, (B,C) ,‚D.Z

Ausgabe: u.‘

D

Beispiel 3:

Macro: AUFSPALTEN !3

1101178 KEIN TRENNZEICHEN
11O!1F148
1F88
8

 Eingahe: AUFSPALTEN A, {B,C),D%&

Ausgabe: A

=

(
Y
s

V
e

=
. -

v

bh) Umwandlung von Zeichen in ganze Zahlen

Format: edß

Wirkung: Die Zeichen ed8 werden in der erzeugten Neuzeile

durch eine ganze Zahl ersetzt. Diese Zahl resultier,

aus der im STAGE 2 definierte Zahlendarstellung der

entsprechenden Zeichen.

Beispiel 1:

“Macro:

Eingabe:

Ausgabe:

Eingabe:

Ausgabe:

Eingabe:

Ausgabe:

Eingabe:

Ausgabe:

-45-

Parameter d darf also nur ein- einzelnes Zeichen

zugeordnet werden, sonst wird eine Fehlermeldung

nach 2.3.2.3 ausgegeben. / Eu

WELCHE ZAHL ENTSPRICHT !%

110 ENTSPRICHT !18!F14%

8

WELCHE ZAHL ENTSPRICHT Ag

A ENTSPRICHT 1 .

(gilt für CD 6600)

WELCHE ZAHL ENTSPRICHT 08

Q ENTSPRICHT 17

WELCHE ZAHL ENTSPRICHT / &

/ ENTSPRICHT 40

WELCHE ZAHL ENTSPRICHT AB&

KXXXXXXX ERROR IN CONVERSION DIGIT

AB ENTSPRICET ° a

WELCHE ZAHL ENTSPRICHT ABgZ

AB ENTSPRICHT

2.3.2.6 Übersetzerfunktionen

a) Beenden der Übersetzung

Format:

Wirkung:

Beispiel:

Macro:

Eingabe:

Ausgabe:

eFO

Beim Aufruf von eFO wird die Übersetzung sofort be-

endet. Die bis dahin gebildete Neuzeile wird nicht

ausgegeben oder erneut untersucht.

ENDg

END!F14&

IFOg

ENDS

END (und die. Übersetzung wird beendet)

-16-

db) Sofortige Ausgabe einer Zeile (ohne nochmalige Untersuchunt

b.1) Format: eFlm

Wirkung: Wenn die bis zum Aufruf von eFlm gebildete Neu-

zeile nicht leer ist, wird diese auf Kanal m aus”

gegeben, ohne daß sie vom Übersetzer nochmals

untersucht wird. Hierbei muß eFlm am Ende der

Code-body Zeilen stehen, da deren Rest überlesen

wird. .

Ist die gebildete Neuzeile beim Aufruf von eFlm

noch leer, so wird dieser Aufruf als Forderung

nach formatgebundener Ausgabe angesehen. Auch

hier wird der Rest der Zeile überlesen. Die nächs'

Zeile wird dann als Muster für das geforderte

Ausgabeformat genommen, wobei durch jede ziffern”

" kette ein Feld definiert wird, in das die den

Ziffern entsprechenden Parameter übertragen werdei

Ist ein aktueller Parameter hierbei länger als das

für ihn definierte Feld, so wird er auf der recht

Seite abgeschnitten; ist er kürzer, so wird das

Feld rechts mit Leerzeichen aufgefüllt. Sind die

in dieser Musterzeile stehenden Zeichen keine

Ziffern, so werden diese unverändert ausgegeben.

Stehen zwischen zwei Ketten aus lauter gleichen

Ziffern andere Zeichen, so heißt dies, daß für

den entsprechenden Parameter zwei Felder definiert

werden, wobei der Parameter in jedes Feld von vor

eingetragen wird.

Gibt es bei der Verwendung von eFlm als Aufruf für

formatgebundene Ausgabe nach diesem Aufruf keine

weiteren Code-body-Zeilen, so wird "Conversion

error" ausgegeben und die Übersetzung des laufender

-Code-body beendet. Hiernach wird das aufrufende

Macro (oder der Eingabetext, falls kein solches

vorhanden ist) weiterübersetzt.

Die Angabe des Kanals m kann weggelassen werden.

Dann wird Kanal 3 als Ausgabekanal verwendet.

Beispiele:

Macro:

Eingabe:

Ausgabe:

- Macro:

Eingabe:

Ausgabe:

Macro:

Eingabe:

Ausgabe:

Macro:

Eingabe:

Ausgabe:

Macro:

Eingabe:

Ausgabe:

Macro:

Eingabe;

Ausgabe:

-47-

DIREKTE AUSGABEZ

DIESE ZEILE WURDE NICHT WEITER UNTERSUCHT!F148

3

DIREKTE AUSGABE

DIESE ZEILE WURDE NICHT WEITER UNTERSUCHT

GIB AUS !8

!l0O!F142

3

GIB AUS Ag

A

AUSGABE

DIREKTE AUSGABE AUF LOCHKARTEI!IF13

8

AUSGABES

DIREKTE AUSGABE AUF LOCHKARTE

(Wird nur auf Lochkarte ausgegeben)

°

!F148

111111 222222 3333338

FORMAT OTTO,ANTON, VIEL ZU LANGZ

OTTO ANTON VIEL Z

ZWEI MAL !,!8

IF1423

111111 111111 22222 222228

3

ZWEI MAL BEIDE PARAMETER, SIND ZU LANG&

BEIDE BEIDE SIND SIND

MARKE!
1F148

111111 MARKEXxg

8

MARKE ZIEL$

ZIEL MARKEX

b.2) Format:

wirkung:

Beispiel:

Macro:

Eingabe:

Ausgabe:

-48-

eFlmc

Wie bei eFlm, aber Kanal m steht bereits zur

Verfügung, ehe begonnen wird, die Zeile zu

schreiben.

Das eFlmc direkt folgende Zeichen wird liberlese'

STARTE KuNAL a2

REGOUND!F1AFZ .

2

STARTE KANAL 48

REWOUND

(dies ist die erste Zeile auf Kanal 4)

ce) Wechsel der Ein/Ausgabekanäle und Übergabe von Fingahetext

an bestimmte Ausgabekanäle

c.1l). Format:

wirkung:

meF2n

Kanal m wird zum momentanen Eingabekanal ge-

macht, und wenn Parameter I (resultiert aus dem

Mustervergleich) nicht Null ist, wird der ein-

gelesene Text an Kanal n übergeben. Dies ge-

“schieht dann solange bis der Übersetzer auf

eine Eingabezeile trifft, die mit Parameter 1

beginnt. Diese Zeile wird überlesen, und über

den momentanen Eingabekanal wird nun die nächste,

Zeile eingelesen. Die Textübergabe kann auch |

durch ein "end file" auf dem Eingabekanal be-

- endet werden.

Hat Parameter] den Wert Null, dann wird kein

Text übergeben und Kanal m wird zum neuen Ein-

gabekanal. Die Zeichen m oder n können auch weg-

“gelassen werden. Wenn.eF2 dann am Beginn einer

Zeile steht, bleibt der momentane Fingabekanal

erhalten, und wenn es am Ende steht wird Text

auf Kanal 3 ausgegeben.

Die Zeichen meF2n müssen alleine in einer Code-

body-Zeile stehen.

Beispiele:

Macro:

Eingabe:

Ausgabe:

Macro:

Eingabe;

Kanal 1:

Ausgabe:

-49-

UEBERSPRINGE BIS !%

!F208 KANAL O IST NUR ATTRAPPE

8

UEBERSPRINGE BIS KOMMENTARENDE$Z

DIESER TEXT WUERDE

‚NACH KANAL O UEBERGEBEN

KANAL O IST ABER NUR ATTRAPPE

KOMMENTARENDE : ,

DIESE ZEILE WIRD WIEDER AUSGEGEBEN

DIESE ZEILE WIRD WIEDER AUSGEGEBEN. .

UEBERGEBE ! VON KANAL !8
120!1F248 E

B

UEBERGEBE EOF VON KANAL 18°

UNSINN

EOrF

UNSINN

c.2) Format mceF2nc

Wirkung:

Beispiel:

Macro:

Eingabe:

Die gleiche wie bei meF2n, nur daß die beiden

Kanäle bereits vor Beginn der Textübergabe

zur Verfügung stehen. Das mceF2nc folgende

Element wird überlesen, und erst das nächste

Element des Code-body wird wieder untersucht.

Auch hier können die Zeichen m,c und n wegge-

lassen werden.

coPy TO 4 REWOUND UNTIL!Z

!F24RS

8

COPY TO 4 REWOUND UNTIL END DATAg

A

NUR WENN END DATA AM

ZEILENANFANG STEHT WIRD

. DIE UEBERGABE BEENDET. ENDFILE

END DATA STEHT AM ZEILENANFANG

-50-

Ausgabe: N

(Kanal 4) NUR WENN END DATA AM

ZEILENANFANG STEHT WIRD

DIE UEBERGABE BEENDET. .

Macro: DRUCKE BIS ! VON 4 REWOUHDZ
URIF2Ug

8 ı

Eingabe: DRUCKE BIS ENDFILE VON 4 REWOUND

(Kanal 4-enthält die Ausgabe des vorigen Beispiels)

Ausgabe: A

"NUR WENN END DATA AM

ZEILENANFANG STEHT WIRD

DIE UEBERGABE BEENDET

(Ausgabe auf Kanal 4 Zeilendrucker)

"d4) Ablegen von Information im STAGE 2-Speicher

Format: eF3

Wirkung: . Mit Parameter 1 der Eingabezeile wird ein

Speicherplatz adressiert und Parameter 2 wird

zu dessen neuen Inhalt. Der alte Inhalt wird

gelöscht.

Das eF3 direkt folgende Element wird bei der

weiteren Untersuchung des Code-body überlesen

Beispiel:

Macro: ı EQU !8

ıF32

8

Eingabe: OBST EQU ORANGE

Ausgabe: Diese Anweisung bewirkt keine Ausgabe.

Speicheradresse (OBST): ORANGE

Eingabe: SAM EOQU ANTONZ

A EQU 38
APFEL EQU -212

BIRNE EQU 12345678908

Un zqu 18

p Eou 78

le. ; c EouU 58

-51-

e)Unbedinger Sprung

Format: er4

Wirkung:

Beispiele:

Macro 1:

Macro 2:

Eingabe:

u
-

un

Parameter 1 wird als arithmetischer Ausdruck

betrachtet und sein Ergebnis wird in einem

Sprungzähler abgelegt. Ist Parameter 1 kein

.zulässiger arithmetischer Ausdruck, erfolgt

' eine Fehlermeldung.

Das eF4 direkt folgende Element wird bei der

weiteren Untersuchung des Code-bödy Üüberlesen.

KT:

F4 Rn

u Qq
4

TEST SKIP !,1,18
SKIP !108
AB IF148

CD !F148

EF !F148

SKIP 1208

GH !F148

IJ !F148

KL !F148

SKIP 130%

MN IF148

OP !F148

OR !F14$8

ST !F14%

UV !F148

8

TEST SKIP 2,N,N+28

Speicheradresse (N): 1

Ausgabe: EF

Id

KL

st

UV

Eingabe:

Ausgabe:

-52=-°

TESTSKIP 6,2,38

KL

sT

UV

(Der zweite Aufruf des Skip-Macro wird

durch den ersten übersprungen)

£) -Bedingter Sprung bei Gleichheit zweier Strings

Format: eF5K

Wirkung:

Beispiele:

Macro 1:

Macro 2:

Macro 3:

Parameter 1 und 2 werden auf Gleichheit unter

sucht. Wenn K = O und die Parameter 1 und 2

gleich sind, wird der Sprungzähler mit Para”

meter 3 geladen. Ist K = 1, so wird der Sprün‘

zähler mit Parameter 3 geladen, wenn die

Parameter 1 und 2 ungleich sind.

Das eF5K direkt folgende Element wird bei der

weiteren Untersuchung des Code-body überlesen:

Die Parameter 1 und 2 können beliebige String!

sein, aber Parameter 3 muß ein zulässiger

arithmetischer Ausdruck sein, sonst erfolgt

eine Fehlermeldung.

IF I = 1 SKIP IR.
I P50%
2

IF I Na ! SKIP !$
IF512

2

TEST EF5 !,1,!2

IF !lO = !20 SKIP 130%

AB !7142

cD !F142

Er !IF143

GH !r1a2

IF !lD NE !20 SKIP 130%

' IJ IFl43
KL !IF142
UN IP14%
GP IF1AZ

Eingabe:

Ausgabe:

Eingabe:

Ausgabe:

237 P.ELZER

TEST EF5 ANTON,OTTO, (1+2)8

AB

CD

EF

GH

OP

TEST EF5 ANTON,ANTON, 2+13

GH

Id

KL

MN

OP

8) Bedingter Sprung nach Vergleich zweier arithmetischer

Ausdrücke

Format: eF6K

Wirkung: Parameter 1 und 2 werden als arithmetische

Ausdrücke betrachtet und ihre Ergebnisse mit-

einander verglichen. Abhängig vom Zeichen K

und der relativen Beziehung der Werte von

Parameter 1 und 2 wird der Sprungzähler mit

Parameter 3 geladen. Bedingungen für das Setzen

des Sprungzählers sind:

K = - Parameter 1 < Parameter 2

K = O Parameter 1 = Parameter 2

K = 1] Parameter 1 # Parameter 2

K = + Parameter 1 > Parameter 2

Das eF6K direkt folgende Element wird bei der

weiteren Untersuchung des Code-body überlesen.

Alle Parameter müssen gültige arithmetische

‚Ausdrücke sein, sonst erfoigt eine Fehlermeldung

Beispiele:

Macro 2:

Macro 3:

Macro 4:

Macro 5:

.

IF ILTI

IF6-8

8

IF I LE!

IF !10 LT

. 1F608

3

IF ı GT!
IF6+8

8

IF I GE!
IF !10 GT

ıF608 s |

TEST EF6K

IF !10o LT
AB !F148

. CD !F148

EF !F14$8

IF !10 LE
GH IF148

Id ıF148
KL !F148
IF !10 GT
MN !F148
OP IF148
OR !IF148
IF !10 GE
ST !F148
UV IF148
XY IF148

3

-54-

SKIP !8

SKIP IX

120 SKIP

SKIP !8 .

SKIP I! 8
120 SKIP

120 SKIP

120 SKIP

120 SKIP

130+1%3

130+18

1308

1308

Eingabe:

Ausgabe:

Eingabe:

„55-

TEST EF6K 12,12,23

‚AB

cD

EF

KL

MN

op

OR

xY .

TEST EF6K 2,28,D-C#

Speicheradresse (D): 7

Speicheraäresse (C): 5

Ausgabe: EF
KL
MN
op
OR
sT |
uv
xY |

h) "zähler-gesteuerte Iteration"

Format: er?

Wirkung: Die bis zum Aufruf von eF7 gebildete Neuzeile

wird als arithemtischer Ausdruck berechnet,

und sein Wert wird in einen Iterations-

. zähler geladen. Ist dieser Wert ungleich Null,

so wird eine Iteration ausgelöst und einmal

durchgeführt. Ist der Wert Null, so geschieht

nichts. Auf jeden Fall wird bei der weiteren

‚Untersuchung des Code-body das eF7 folgende

. Element überlesen.

Eine Zähler-gesteuerte Iteration beginnt damit,

daß der Wert des Iterationszählers gespeichert

wird und wird fortgesetzt, indem der Wert des

Iterationszählers um 1 erniedrigt wird. Wenn

Beispiele:

Macro:

' Eingabe:

Ausgabe:

Eingabe: '

Speicheradresse

Ausgabe:

ji), Auslösung

Format: eFß

wirkung:

(N)

-56-

der Wert des Zählers nicht negativ ist, wird

die dem Aufruf von eF7 folgende Code-body-Zeile

untersucht. .

Ist die bis zum Aufruf von eF7? gebildete Zeile

kein gültiger arithmetischer Ausdruck, erfolgt

eine Fehlermeldung.

AUSGABE VON ! ZEILEN, BEGINNEND MIT X8
L1O!F78
zıF148
IF8g
8

AUSGABE VON 5 ZEILEN, BEGINNEND MIT 3

I
K
K

ıH
*

AUSGABE VON N-2 ZEILEN, BEGINNEND MIT x8

3

i

R1

eines neuen Iterationsschritts

' Für die laufende Iteration (Context- oder

Zählergesteuert) wird ein neuer Schritt ausge-

löst. Auch hier wird bei der weiteren Unter-

suchung des Code-body das eF8 folgende Zeichen

überlesen.

wird eF8 am Anfang einer Zeile aufgerufen,

während Zeilen übersprungen werden, so wird

die laufende Iteration beendet. Soll eine

Iterationsschleife nicht verlassen, .sondern nur

um sie herumgesprungen werden, so müssen be-

sondere Maßnahmen getroffen werden. Während des

Springens soll die Zahl der Wiederholungsschritte

Beispiel:

Macro:

Eingabe:

Ausgabe;

Erklärung:

SKIP 18

-37-

beibehalten werden. Diese Zahl wird durch

_ jedes eF7 am Anfang einer Zeile um eins erhöht

‚und durch jedes eF8 am Anfang einer Zeile er-

niedrigt.

Die laufende Iteration wird nur beendet, wenn

eF8 am Anfang einer Zeile steht und die Zahl der

 Wiederholungsschritte O ist. Dabei ist zu be-

achten, daß wenn eF7 am: Anfang einer Zeile

steht, die neu gebildete Zeile noch leer ist

. und daher den Wert O hat. D.h. der Aufruf einer

Zähler-gesteuerten Iteration hat keine Wirkung.

SPALTE AB !8°

.110!17 ‚8

IF 113 = „ SKIP 58
IF7EZ

1101278
120!F148
!F88

110!F148
ıFag

8

SPALTE AB ABC,XYZ JONES,142

ABC

Die erste Code-body-Zeile ist ein Aufruf für
Context-gesteuerte Iteration. Beim Aufruf von
ed7 enthält die gebildete Zeile ABC, xyz JONES,
14 und das Leerzeichen und das Komma werden als
Trennzeichen vereinbart. Der Übersetzer sucht
nun. diese Zeile nach dem ersten Trennzeichen
ab und spaltet ABC als Parameter 1 von ihr ab.

58-

Die nächste Zeile vergleicht das dem neuen

Parameter 1 in der Eingabezeile folgende Zeichen

‘mit ,„ . Hier besteht Gleichheit und die nächsten

5 Code-body-Zeilen werden übersprungen. Die

Iteration wird wegen des Überspringens von eF8

"nicht beendet, da zuvor durch eF7 die Zahl der

wiederholungsschritte erhöht wurde, d.h. insger

samt bleibt sie erhalten. Es wird der laufende

Parameter 1 ABC ausgegeben. Das folgende eF8

‚markiert das Ende der äußeren Schleife und be-

wirkt einen neuen Iterationsschritt.

In diesem Schritt wird nun bis zum nächsten

_ Trennzeichen XYZ von der gespeicherten Zeile als

Parameter 1 abgespalten. XYZ2 folut in der Ein-

gabezeile ein Leerzeichen, und der Sprungbefehl

der zweiten Code-body-Zeile wird nicht ausge-

führt. Der Aufruf von eF7 hat keine Wirkung, da

die gebildete Zeile in diesem Augenblick noch

leer ist. Die nächste: Zeile ist wieder ein Auf-

ruf für Context-gesteuerte Iteration. Als Neu-

zeile, über die die Iteration laufen soll, wird

XYZ gespeichert. Da für die innere Iterations-

schleife kein besonderes Trennzeichen vereinbart‘

ist, wird durch diese in jedem Schritt ein Zeichen

als Parameter 2 abgespalten und ausgegeben. Nach

der Ausgabe von 2 ist die gespeicherte Zeile leer,

und durch eF8 wird die innere Iteration beendet.

Mit der nächsten Code-body-Zeile wird die Ausgabe

von Parameter 1 übersprungen, und das letzte eF3

bewirkt wieder einen neuen äußeren Iterations-

schritt. Dies wiederholt sich solange, bis auch

die für die äußere Iteration gespeicherte Zeile

leer ist. ‘

=39-

3) Beenden der Bearbeitung des laufenden Macro

Format: erF9

Wirkung:

Beispiel:

Macro:

Eingabe:

Ausgabe:

Die Untersuchung des laufenden Macros wird

sofort beendet und der Übersetzer kehrt zum

aufrufenden Macro zurück. Die bis dahin gebil-

dete Zeile geht verloren. eF9 kann bei beding-

ten Sprüngen verwendet werden, wenn nur aus dem

laufenden Macro herausgesprungen, nicht aber

Anweisungen des aufrufenden Macros übersprungen °

werden sollen.

TEST EF9S
HILFSZEILE!F148
DIESE ZEILE GEHT VERLOREN!F9g
DIESE ZEILE WIRD NICHT UNTERSUCHT!F148

8

TEST EF9g

HILFSZEILE \

k) Zurückverfolgen von Fehlern

Format: eFE

Wirkung:

Beispie]:

‚ Macro:

Da dies eigentlich eine ungültige Übersetzerfunk-

tion ist, wird auf Kanal 4 eine Fehlermeldung ge-

geben, der die bis dahin gebildete Neuzeile folgt.

Dann wird der Fehler weiterzurückverfolgt, und

der Aufruf des laufenden Macros, der Aufruf des

diesen Aufru£ bewirkenden Macros usw. werden aus-

gegeben. Die letzte Ausgabezeile ist die Eingabe-

zeile. Auch hier wird das eFE direkt folgende

Element bei der weiteren Untersuchung des Code-

body überlesen..

!ı8
DIE FOLGENDER ZEILE WURDE NISHT ERKRENND:ITEIFOZ

3

Eingabe:

Ausgabe:

-60-

UNSINNZ

XXX ERROR IN CONVERSION DIGIT

- DIE FOLGENDE ZEILE WURDE NICHT ERKANNT

 UNSIBEN

-61-

2.4 Rechenzeituntersuchunsgen für den Macroübersetzer STAGE 2

Un die Rechenzeit für eine Sprachübersetzung mit dem lacroüber-

setzer STAGE 2 optimieren und um Aufschlüsse über die Schnellis-

keit dieses Übersetzers bekommen zu können, wurde am Rechenzen-

trum der Universität Stuttgart auf einer CDC 6600 das Zeitverhal-

ten des Macroübersetzers STAGE 2 bei der Baumerstellung und der

Übersetzung von Macroaufrufen untersucht. Die Baumerstellung ist

deshalb von Bedeutung, weil nicht bei jedem Übersetzerlauf alle

definierten Macros aufgerufen werden, diese aber in die Bauner-

stellung einbezogen werden.

Die folgenden Aussagen wurden aus den Rechenzeiten im Kernspeicher

abgeleitet, die der STÄGE 2 zur Bearbeitung einfach gestalteter

Macrodefinitionen und -aufrufe benötigte. Ähnliche und weiter-

gehende Hinweise zum Aufbau des Macroteils hätte man auch durch

Untersuchung des STAGE 2 - Programms erhalten können. Bei der

Deutung der im folgenden dargestellten Diagramme. mu3 man berück-

Sichtigen, da? sie aus Durchschnrittsrechenzeiten aufgestellt

wurden. Dies wurde nötig, da in die von der CDC 6600 aussedruckte

"Oentral-processor"(CP)-Zeit für ein Programm stets auch ein

unterschiedlicher Rechenzeitanteil eingeht, der durch Prozramn-

unterbrechungen durch andere Programme mit höherer YTriorität ver-

ursacht wird.

Im Einzelnen wurden dabei folgende Punkte untersucht:

2.4.1 Abhängiekeit der Baumerstellunsszeit

ee ee 1 ze

Die Rechenzeit steist pronoGional zur Erhöhung der

Zahl der Macros an. Der Ordinaterabschnit5 entsteht

aus Baunerstellungszeit und der Übersetzungszsit

fur ein benötiztes END-NMacro, ohne das der Übersetzer
einen Fehler meldet.

2)

3)

-62-

Eine Verlängerung der Macroköpfe auf das

Zehnfache zeiszte keinen erkennbaren Bin-

flu? auf die Baumerstellungszeit.

u ann m men Se Au sum Mm Tune de ME ME ums wm: ma a m den Mb mp au u A A m ME MM AM A Sa am ap ar mr ne me

(Die Codezeilen sollen nicht als erneute Wacro-

aufrufe zugelassen sein) (siehe Bild 5).

Nach Erhöhung der Zahl der Codezeilen erszab sich ein

steilerer Anstieg der Rechenzeit mit der Zahl der

kacros als bei der Baumerstellunz für kKacros

ohne Codezeilen, und das Ergebnis 153t vermuten,

daß die Rechenzeit ausgehend von der BaumerstellungS-

. zeit für Macros ohne Codezeilen lincar mit der Zahl

4)

5)

6)

der GSodezeilen ansteigt.

u are wu an. mu mue mutt ayrn mn aa zur A waren MM Ara Ar Me Ma Ma ce a mm a a

Hier konnte kein Einfluß auf die Rechenzeit fest-

gestellt werden.
%

_—

Wie das Ergebnis zeist, werden Paraneterplatzhalter

im Macrokopf offensichtlich wie andere Zeichen te-

handelt. So konnte auch keine Beeinflussung der

Rechenzeit durch die Veränderung ihrer Anzahl fest-

gestellt werden.

Vom Vorbandensein von Elementen von Typ_2_(Parame-
EEE ae Ama mn une. dena wure Mm Amer ar En Mr ud Me Mar Mr An ARE Ti MR Me m a A en a OR ma ee a aa ame nn en

mn mu mr una mein an an um war unse arm m Aa men sm un mi mu m mr Mir Mena man arnn un Mer ann aan an

Srurdsätzlich läßt das Ergebnis erkennen, da? das

Vorhandensein solcher Elemente einen Anstiez der

Baumerstellunzszeit gegenüber Macros mit einfachen

Textzeichen bewirkt. Die Anzahl der Tyn-2-Elemente

ir einer Sodezeile ging in die Rechenzeit nicht ein.

ve
ea

ns

JE

$ dr
ten Macr

ib f % ®

nier

i

def

"der: Rechenz,
‚von der: Zahl. der

x

Codezeilen

e
e
‘
 en

©

ua 4.

.
©

n
n

r
g
.

\

m

w
e
r
e

n
e
n
n
,

v
u

-
rt

©

“8

02:

sen der Rechenzeit h der Schwankun Bereic .
. [

-54-

2.4.2 Abhänsiskeit der Übersetzungszeit

2)

3)

)

5)

&

(um an dan mu Ten arme en A Am A At mn een mn ri Mu mn er ar ara aa ma

Man erhält hier, wenn stets das gleiche Wlacro

(bezüglich der Reihenfolge) aufgerufen wird, eine

lineare Abhängiskeit der Übersetzungszeit von der

Zahl der Macroaufrufe. Der Verlauf der Rechenzeit

entspricht also einer Geraden parallel zu der von

2.4.1,1. (Bild 6 Gerade für O Aufrufe).

KT Te Ta ee rn

Wie Bild 6 zeigt wird für lange Nacroköpfe eine

größere Übersetzungszeit als für kurze Macro-

köpfe nach 2.4.2,1 (Verhältnis 5:1) benötigt.

Dieses Ergebnis 1ä%t sich auch aus dem Suchälgorith-

mus des STAGE 2 ableiten. Es muß eine größere

.Zehl von Eingabezeichen verzlichen werden. Die

Zehl der definierten NMacros hat wiederum keinen

Einfluß auf die Übersetzungszeit.

m m en mm Tu me Cure Aa ma dr a mm. A A Mer Met Mn Mn MER m Fe Ve ak m

Diese beeinflußt die Übersetzungszeit offenbar nicht.

Man erhält Geraden, die zu den in 2.4.1,3 erhaltenen

(Bild 6 - O Aufrufe) etwa im gleichen Abstand paral-

lel laufen wie die Gerade von 2.4.2,1 zu der von

2.4.1,1.

m une ante an Arm rer dmmn mu ame m ar an mums u an ER Mr ar urn Mn dm mais zum, um, DE Ar Aha mm a TR Mur SR Mm A MER mm. OR re a

Der Versuch ergab für den Aufruf des letzten de-

finierten Macros eine erkennbar höhere Pechenzeit

als für den Aufruf des ersten. Diese Abhängiskeit

läßt sich auch aus dem Ablauf des. Mustervergleichs

ableiten.

ee nn
Von_der Zahl der Macroaufrufe_(Bild_ 7).

Hier konnte ein linearer Zusammenhang zwischen

Rechenzeit und der Zahl der Macroaufrufe (bei

gleichbleibender Zahl definierter Macros) festge-

stellt werden.

Ad.

e
r

I
n
:

H

RAR HIrT

ichre

rufe

VEhiU ICH
IR

“
a
r

"Zahl der.

Macmauf

UNI

Z

r

E

un
g
r

de

u

er.

a

rg
get

d

n
s

n
e
d

100.
on

ulm
ap a

n
n

e
i
e
r

eit v

‘

Rschenz
Hannrnanfnmıfe

i
r

.50-:
t. de i

n
l

nn

-55-

2.4.3 Macroschachtelung (Bild 8).

Das Ergebnis zeigt hier, daß sich die Rechenzeit bei mehreren

Macros mit gleichem ifacrokörper durch Verwendung eines Aufruf-

macros für diesen Körper deutlich verringern lä3t. Der An-

stieg der Rechenzeit mit der Zahl der Macros, der wesentlich

durch die Baumerstellung bestimmt wird, verläuft flacher und

für unterschiedliche Codezeilenzahl nahezu parallel zu einer

Geraden, die dem Rechenzeitverlauf für Wacros mit 1 Codezeile

entspricht.

2.4.4 Parameterlänge (Bild 9).

Hier wurde untersucht, ob es günstiger ist, einen Block von

Zeichen eines Macroaufrufs mit einem langen oder mehreren

kurzen Parametern in ein Aufrufmacro im Macroköryer überzeben.

Kan erhielt für einen langen Parameter einen etwas flacheren

Verlauf der Rechenzeitgeraden als bei 9 kurzen Parametern.

. . x
’

2.4,5 Vergleiche verschiedener Übsrsetzerversionen.

1)

2)

Es wurden zwei STAGE 2-Versionen an Hand eines von Waite/l/

erstellten Testprosramns (liegt am IVD vor) zur Verdeutlichung

der Funktionen des STAGE 2 miteinander verglichen. Die auf

dem FTN-Compiler ablauffähige Version benötigte hierzu 2.0

sec, während für die auf dem RUN-Compiler ablauffähige Version

2.8 sec benötigt wurden (CDC 6600).

Als Möglichkeit zur Abschätzung der Schnelligkeit des Macro-

übersetzers STAGE 2 existiert der Vergleich zu einem von Herrn

Mühlhsn Firma ESG, München in FORTRAN erstellten Progranns

zur Übersetzung von 650 CIMIC-Befehlen (liegt am IVD vor).

Hierzu wurden auf der verwerdeten Rechenanlage (SIENENS 404)

60 sec benötigt, während dieser Vorgang mit einer in Assembler

geschriebenen Version des STAGE 2 280 sec dauerte. Die FORTIAN-

Version des STAGE 2 wäre noch um den Faktor % langsamer und

würde auch den dreifechen Speicherplatz benötigen.

T
er:

SEN
INTHE

“Er

ei

rt.
1.

[p»*

mich

7]
Eit

a
r

E
T

FHSFELFe
eat

 er}

Er
ri®
4
}

SIT =

ne nee 1} +
i
T
oo

t
+

R:

ı

?

LE
er

i zu

'O ; i „or ı
schie

ae
ei:

3

au tver]
ärige

i
Parameterl

..

Rechenz r jild 9:

1

 TIOLLTHE-

r
l

N

m

-68-

Bei diesen Vergleich mı? man jedoch berücksichtizen, da®

der Aufwand zum Schreiben des FORTRAK-Übersetzerprozramms

etwa 3 Wochen betrug, und hierbei der zu srzeugende Sode

bereits durch einen STAGE 2 - Lauf bekannt war.

» * > ” <.4.6 Erwebnisse der Rechenzeituntersuchungen

er mean ni rm Mas mar A du oa mi bu act am

kurze Köpfe (O-Codezeilen):

END l Nacero 10 Hacros. °C Macros_. 109 _kacros

SP-Zeit/ 1.312 1.253 1.408 2.244 3.254
sec 1.318 1.417 1.747 2.275 3.571

1.411 1.539 1.604 2.244 3.524

"2 7 sec 1.347 1.403 1.586 2.355 3.320

lanze Könfe (mit Rlanks)

n 1.447 2.340
PP-zeit/ (1.408) (2.278)

bu 1.4493 2.275
(1.492) (2.402)
1.435 2.322
(1.487) (2.275)

3 / sec 1.458 2.312

mit 3 Codezeilen / kurzer Xopf

— — 1.688 3.722 SP=-Zeit/ 1.716 | 3.875 sec _ 1.677 5.574

mit 5 Codezeilen / kurzer Konf + s

2.04 5.141
Or-RZeit/ 1:983 5.264

sec 2.151 5.200

2 / sec 2 . 082 >.20€

-69-

=.——n nn 2 _ iu.

kurzer Kopf / O Codezeilen / 100 Aufrufe:

l Macro 10 Macros 50 Macros 100 Macros

OP-Zeit/ 2-311 2.613 3.660 4.356 ./ 4.467
ec 2333 2.543 3.442 4.511 /- 4.568

2.385 2,655 3.373 ° 4.4566 / 4.446

BTsc 2.303 2.604 "3,095 A.un4. 7 4.527
Aufruf des
letzten
Hacros

kurzer Kopf / 3 Codez. / 100 Aufrufe

_763 2.773 3.195 5.502
cr mei 2.782 3.230 5.234

3.134 3.279 5.275

2 / sec 2.859 3.235 5.337

kurzer Konf / 6 Codez. / 100 Aufrufe

Zei 3.904 7.081 CP geiß/ 3.284 7.072

° 3.947 7.065
2 / sec 3.906 7.073 ..

lanser Konf / 10 Codez. / 100 Aufrufe

na: 2.530 3.424
CP-Zeit/ 5. "536 3.497

sec 2.647 3.564

27 se 2,63€ 3.195

1 Macro / kurzer Kopf

1 Aufruf SO Aufrufe 100 Aufrufe
 203 1.225 1.922 3.311
SPzeit/ 11253 1.750 2.333

1.207 1.844 2.385
 % / sec 1.228 1.839 2.543

-70-

3 Oodez. / Hilfsmacro

1.Macro 10 Macros 50 Nacros

8033.18 7.350
cp zeit/ 2.841 3.155 4.346

2.848 3.128 4.545
a / sec 0.844 3.137 4,300

3 Godez. / ohne Hilfsmacro

- 3.7 3.1 552 Brenn Br ya 22
see 2.767 3.279 5.275

B/ sec 2.761 3.255 5.557

6 Codez. / Hilfsmacro

nn. 3.319 3.579 2,757
SP-Zeit/ 3.264 3.545 4.959

S 2.244 2.558 4,769

£ / sec 3.279 3.561 4.768

6 Dodez. / ohne Hilfsmacro

I 3.197 3.BEa 7.081
r-zeit/ 3.135 2.047 7.972

sec 3,200 3.888 7.065

AT Sec 3.185 3.308 7.073

d) Farameterlänge

N23_Tni A.rEl 2.525 4.739 SP-Zeit/ 3.°7] 4.961 1.E13

Sec 3,936 2,551 4,E05

2 / sec 3.263 3.648 4,7885

y kurze Faraneter

n 293 3.2345 7.657 n.,71
O-Zeit/ 31305 3.567 5.115

BeC Z,40%4 3.674 5.049

hf eec 73.375 7,559 5.054

-71-

2.4.7 Zusammenfessunz der Ergebnisse der Rechenzeituntersuchungen.

Aus den Ergebnissen der Rechenzeituntersuchungen ergeben sich

für die optimale Gestaltung eines Codegenerators folgende

Hinweise:

Ab einer bestimmten Macrozahl (Bild 8) ist es günstiger,

eine größere Anzahl Macros mit wenig Codezeilen als

als eine kleinere mit vielen Codezeilen zu definieren.

Bei häufig in verschiedenen Macros wiederkehrenden

Gruppen von Codezeilen empfiehlt es sich, für diese

ein besonderes Aufrufmacro zu definieren, was die

Zahl der Codezeilen in den einzelnen Macros und somit

auch die Baumerstellungszeit verringert.

Macros, die bei Übersetzerläufen wahrscheinlich

häufig aufgerufen werden, so z.B. Aufrufmacros für

Macrokörper, müssen möglichst bald definiert werden.

Müssen grö3ere Gruppen von Zeichen einer Aufrufzeile

in eine Macrokörperzeile: übergeben werden, um dort

z.B. einen neuen Macroaufruf zu bestimmen, so en-

nfiehlt es sich hierzu möglichst wenige, dafür aber

längere Parameter zu verwenden.

In den Bildern 10 und 11 ist der aus den ürgebnissen nach Bild 6

extrapolierte Verlauf der Rechenzeit für bis zu 500 Macros mit

einer mittleren Codezeilenzshl von 3 Codezeilen und bis zu 600

Aufrufen dargestellt. Hieraus läßt sich die Rechenzeit fur die

Übersetzung eines Testprosramms mit 150 CINMIC-Befehlen mit dem
in Abschnitt 3 beschriebenen Codegenerator bestimmen, der aus
etwa 150 Macros besteht. Berücksichtigt man die Tatsache, daß
die durch CIMIC-Befehle aufserufenen Macros compilerintern im

Mittel 3 weitere Macros aufrufen, so erhält man für nun 450 Macro-

aufrufe bei 150 definierten Macros aus Bild: 10 die Rechenzeit
15.5 sec, was mit den tatsächlich erhaltenen Ergebnissen überein-
stimmt. Bild 12 enthält den Verlauf der Rechenzeit für bis zu 200

definierte Macros mit 0, 1, 3 und 6 Codezeilen und maximal 200
Aufrufen.

o
o
.

“
o
n

I
n
a

e
f

|
‘

e
e

m
e

.

“57
%

n
n

a

M
I
N
F
L
L

N.
j
o

4
i

vw.

200 50 1 00 1

of

mn
09

be
u
 i

z
u
m

\
Ä

e
u
c
h

T
r

k
m

o
n
.

Bu

=:
G
G
»

N

=
z
w

4

"
Ü N ul

el
g
u
n
g
a
m

.
oO

oO
oO

U
T
,

N

-

m
u

.
1

2
.

\
u

ie.

BAUMERSTELLUNGS -
+« ÜBERSETZUNGSZEIT

..

FÜR MACRO

.
‘

3
“

'
‘

©

..

-
-

e
l
ı

Be

.

\
NG

b

en

ETz

u
!
i

4

w
...&.:

ww:
©
:

4

‘

Ü

Ä y

1utı

Br
ua

bi

al
G

3

I:

uN
F

lan

Io:

£ ‘

Bi
T-

®

irn
-

MERS

:

i
en

EFT

BA

 Sb
de

>

een abet

Br

i
r

3 3.

BER
er

L.

| — —+3
lee 200

: Bia! " Baunerstellungs- us Übersetzungszeit \ Zahl der Macros

\ nn für’ 'Macros unterschiedl. Codezeilenzahl i
Sn

&

-75-

2.5 Vergleich des Macroübersetzers STAGE 2 mit anderen

Macroübersetzern “ \

Die dem Macroübersetzer STAGE 2 vergleichbaren Macroübersetzer,

die wie dieser einen allgemeingültigen Formalismus zum Umsetzen

von Zeichenfolgen einer Quellsprache in Zeichenfolgen in einer

Zielsprache beinhalten, unterscheiden sich vor allem in der Art

der Macrodefinitionen und Macroaufrufe und können danach in drei

Gruppen eingeteilt werden.

2.5.1 Streng formatgebundene Macrodefinitionen

In diesem Abschnitt wird im Wesentlichen auf Beschreibungen des

GPM (general purpose macrogenerator) von Strachey /4/ und der

Macrosprache 320/330 von Siemens /10/ Bezug genommen. Macroaufrufe

bestehen hier aus einem Macronamen und einer Liste aktueller

Parameter, die durch Kommata von einander getrennt sind (vgl. 2.1),

während beim STAGE 2 auf diese scharfe Trennung in Namen und

Parameterliste verzichtet wird. Der STAGE 2 erlaubt sogenannte

verteilte Namen, d.h. eine ganze Eingabezeile wird als Macronamen

angesehen, der an beliebigen Stellen von Parametern durchsetzt

sein kann,

Im Gegensatz zum STAGE 2 wird bei den hier betrachteten Übersetzern

nicht jede beliebige Eingabezeile als möglicher Macroaufruf aus-

gewertet. Die Eingabezeichenfolge wird von’ links nach rechts

untersucht und solange unbearbeitet ausgegeben, bis der Übersetzer

ein sogenanntes Macroelement erkennt. Dies ist eine Zeichenfolge,

die zwischen zwei bestimmten Steuerzeichen (z.B. $ und ;) steht.

Diese besondere Kennzeichnung der Macroelemente bringt den Vorteil,

daß solche Macroaufrufe an beliebiger Stelle eines Programms in

Verbindung mit oder an Stelle eines Symbolstrings stehen können,

während der STAGE 2 immer eine gesamte Eingabezeile bearbeitet,

die er entweder nicht als Macroaufruf erkennt und deshalb

unverändert ausgibt, oder die er vom ersten Zeichen bis zu einer

Zeilenendemarke als Macroaufruf auswertet. Text nach der Zeilen-

endemarke geht für die Ausgabe verloren.

-76-

Auch bei diesen Übersetzern wird der gesamte Aufruf (einschließlich

Steuerzeichen) durch die zuvor definierte Ersatzzeichenfolge

ausgetauscht, wobei die formalen Parameter der Macrodefinition

durch die aktuellen Parameter des Aufrufs ersetzt werden. Als

aktuelle Parameter können wie beim STAGE 2 auch erneute Macroaufrufe

stehen, die z.B. durch Klammern als solche zusammengefaßt werden

und gegebenenfalls mit den nötigen Steuerzeichen versehen sein

müssen. Die Verarbeitung solcher Macroaufrufe ist beim STAGE 2

umständlicher, da hier der ein Macro. aufrufende Parameter erst

in eine besondere Zeile des Macrokörpers kopiert werden muß. Diese

kann dann wieder mit der Liste der definierten Macros verglichen

werden. Beim STAGE 2 übergibt man jedoch üblicherweise Macros

nicht als Parameter in ein anderes Macro, sondern sieht diese

schon bei der Definition als Macrokörperzeile vor, wenn Macro-

schachtelung beabsichtigt wird.

Eine Entsprechung zu der Parameterumformung und den Übersetzer-

funktionen des STAGE 2 besitzen diese Übersetzer mit den in

Maschinencode fest einprogrammierten Basismacros. Diese Basis-

macros haben jedoch eine fundamentalere Bedeutung, denn sie

müssen viele Funktionen des Übersetzers steuern, die beim

STAGE 2 automatisch ablaufen, und erlauben so in gewisser

Weise eine höhere Flexibilität,

Auch Macrodefinitionen müssen über ein solches Basismacro

ablaufen. EimeMacrodefinition hat die Form :

$DEF ‚Name ‚Rumpf;

Hierbei ist DEF der Name des aufgerufenen Basismacros, das den

Namen und den Rumpf des zu definierenden Macros als aktuelle

Parameter 1 und 2 enthält und einander zuordnet. Da auf diese

Weise eine Macrodefinition eigentlich nur ein Macroaufruf ist,

kann diese bei diesen Übersetzern an beliebiger Stelle eines

Programms erfolgen und sogar in einen aktuellen Parameter eines

Aufrufs eingeschlossen sein. Solche Definitionen sind dann nur

vorübergehend, da die Liste der aktuellen Parameter nach Auswertung

des Aufrufs verloren geht. Diese flexible Macrofefinition ist

-77-

beim STAGE 2 nicht möglich, da hier zuerst alle Macros mit den

zugehörigen Körpern als Block definiert werden müssen und dann
erst die Aufrufe folgen können. Jedoch ist beim.STAGE 2 die
Zuordnung von Macronamen und Rumpf übersichtlicher und einfacher
und der Rumpf kann leicht zu einem umfangreichen Programm zur
Codeerzeugung ausgebaut werden.

Die Übernahme von aktuellen Parametern aus dem Macroaufruf bei
der Auswertung eines Macrorumpfes erfolgt beim STAGE 2 über

eine entsprechende Parameterumformung wie beim GPM durch Bezug-
nahme auf die Stellung des aktuellen Parameters im Macroaufruf.

Bei der Macrosprache 320/330 besteht außerdem noch die Möglichkeit,

einen Parameter durch ein Basismacro über ein Kennwort anzusprechen.

Entscheidender Vorteil des STAGE 2 gegenüber den beiden Vertretern

dieser Gruppe ist seine hohe Portabilität. Er erlaubt nicht nur
formatfreiere und übersichtlichere Textverarbeitung (Macroaufruf),
indem zu verarbeitender Text und Steuerzeichen, die beim STAGE 2

frei definiert werden können, nicht in so hohem Maße vermischt
werden müssen, sondern ist z.B. auch auf jeden Rechner übertragbar,

der einen FORTRAN-Compiler besitzt. Dagegen ist. die Macrosprache

320/330 an bestimmte Rechnertypen der Fa. Siemens gebunden

(Übersetzerprogramm SM 30 für den Prozeßrechner 330, Programm SUMU

für die Prozeßrecher 304, 305 und 306) und der GPM, der in CPL

oder einer bestimmten Maschinensprache (z.B. Titan, Atlas)

geschrieben ist, müßte erst auf die zu verwendente Rechenanlage

implementiert werden. Nach Angaben des Autors /4/ würde hierzu

bei einem geeigneten Rechner von einem erfahrenen Programmierer

eine Woche benötigt.

2,5.2 Freie Definition der Trennzeichen zwischen den Parametern

Bei den Macroübersetzern von Abschnitt 2.5.1 hat ein Macroaufruf
die Form : \

$ Name, par 1, par 2, ... ,parn;
wobei die Kommata als Trennzeichen zwischen den aktuellen Paramete
und das Semikolon als Schlußzeichen des Macroaufrufs fest vorgegeb

-78-

sind, während diese beim Macroübersetzer ML/I von P.J.Brown /11

vom Benutzer bei der Definition eines Maeros bestimmt werden

können, Auch hier wird Eingabetext, wenn er als Macroaufruf

erkannt wird (vgl. 2.5.1), in Ausgabetext umgewandelt. Jedoch

wird der Eingabetext nicht wie beim STAGE 2 als Folge von

Einzelzeichen untersucht, sondern dieser wird von Trennzeichen

zu Trennzeichen zu Einheiten zusammengefaßt. Als solche Trenn”

zeichen sind beliebige Zeichenfolgen erlaubt, die der Benutzer

zusammen mit dem Namen definieren muß. Dabei muß für jedes

einzelne Trennzeichen ein oder mehrere Folgetrennzeichen

angegeben werden.

Beispiel für den Aufruf eines Macros mit dem Namen IF

IF Argument i Argument 2 THEN Argument 3 END

oder ;

IF Argument 1 = Argument 2 THEN Argument 3 ELSE Argument END

Hierbei. ist IF der Name und =, THEN, END bzw. ELSE, END sind die

anzugebenden Trennzeichen.

Bezüglich Macroschachtelung und dem Übersetzer fest einprogram-

mierter Basismacros gelten ähnliche Aussagen wie für die in

Abschnitt 2.5.1 beschriebenen Übersetzer. Der Übersetzer ML/I

wurde bisher auf den Rechenanlagen PDP-7 und Atlas 2 implementiert

und benötigte dort 3000 Speicherworte.

2,5.3 Verteilter Name

Zu dieser Gruppe gehört außer dem Macroübersetzer STAGE 2 der

ebenfalls von Waite entwickelte Übersetzer LIMP (Language-Independert

Macro Processor) /6/. Die Anlage dieses Übersetzers ähnelt der

des STAGE 2 weitgehend und ist wohl eine seiner Vorstufen. Er

kennt nur wenige Arten der Parameterumformung und keine Übersetzer-

funktionen. Statt dessen müssen die Zeilen der Macrokörper als

Anweisungen einer SNOBOL ähnlichen Sprache geschrieben werden.

Dieser Übersetzer kann keine Alternative zum STAGE 2 darstellen, da

er gegenüber diesem keine Vorteile bietet, sondern nur höheren

-79-

Programmieraufwand erfordert. Seine wesentlichen Merkmale wurden

bereits mit dem STAGE 2 beschrieben.

Das Gleiche gilt auch für den von R.J.Orgass und W.M.Waite ent-
wickelten Übersetzer SIMCMP (Simple Compiler). Es handelt sich
hierbei um einen einfachen, nach dem Prinzip des STAGE 2
arbeitenden Übersetzer, der dazu verwendet werden kann, leistungs-

fähigere Übersetzer wie z.B. den STAGE 2 im Bootstrapverfahren

auf eine Rechenanlage zu bringen. Er wurde schon auf mehreren

Rechnern implementiert (IBM 7044, IBM 360/50 und CDC 6400) und

in /8/ ist der SIMCMP-Algorithmus in FORTRAN angegeben.

2.5.4 Zusammenfassung des Vergleichs

Für die Verwendung des Macroübersetzers STAGE 2 spricht außer

seiner Portabilität (FORTRAN-Version) auch seine Benutzer-

freundlichkeit. Der Anwender kann z.B. zur Übersetzung von

CIMIC/1 Macros in dieser Sprache definieren und direkt aufrufen,

und den zugehörigen Macrokörper leicht und übersichtlich zu

einem leistungsfähigen Programm zur Codeerzeugung ausbauen,

ohne daß er eine Sprache zur Textverarbeitung, wie sie zum

Beispiel im Macro-Generator System von Krupp-Atlas /12/ oder

mit TRAC /5/ vorgestellt wird, erlernen muß , mit der er sich

einen Macroübersetzer konstruieren könnte.

Wie vorteilhaft es ist, wenn man Macros formatfrei definieren und

aufrufen, man also direkt mit der Quellsprache (z.B. CIMIC/A)

arbeiten kann, soll am folgenden Beispiel eines Additionsmacros

gezeigt werden, das die Anweisung A=B+C in die Befehle FETCH B,
ADD C und STORE A umsetzen soll.

GPM ML/I STAGE 2
SDEF,ADDITION, MCDEF ADDITION=+;AS !=1+18

[FETCH n2; <FETCH :A2; FETCH! 208
ADD 3; ADD :A3; ADD 1308
STORE 11;]; STORE :Al; STORE!108

>; 3
SADDITION,A,B,C;

AzB+c 8 ADDITION A=Bt+C;

-80-

Wie man sieht, kann mit dieser Anweisung nur mit dem Übersetzer

STAGE 2 direkt ein Makro aufgerufen werden. Für ML/I muß diesem

Befehl erst ein Name vorausgestellt werden, und beim GPM ist

eine direkte Verarbeitung dieses Befehls überhaupt nicht möglich.

Ein Nachteil des STAGE 2 ist sein hoher Speicherplatz-und Rechen“

zeitbedarf. Jedoch wie hoch dieser gegenüber anderen Übersetzern

ist, kann nicht beurteilt werden, da diese an bestimmte Rechner

gebunden und nicht auf der CDC 660 lauffähig sind.

-81-

5. Codegenerator für den betriebssystemunabhängigen Teil von

CIMIC/A

Nach der Beschreibung von CIMIC/1 in /1% liegt den CIMIC-

Anweisungen ein abstrakter Rechner zugrunde, dessen program-

mierbare Teile aus

- Akkumulator

- Indexregister

- Speicher

bestehen.

Der Akkumulator dient zur Aufnahme von Operanden aller in

CIMIC zulässigen Datentypen und enthält das Ergebnis der

mit disen Daten und ggfs. Operanden im Speicher ausgeführten

Operationen.
x

Das Indexregister kann INTEGER-Gößen aufnehmen. Manipulationen

dieser Größen sind mit speziellen Indexregisterbefehlen mög-

lich.

Der Speicher enthält die Programmvariablen und Programmkon-

Stanten. Die Adressierung des Speichers erfolgt über symbolische

Adressen, zu denen feste und variable Offsets addiert werden

können.

CIMIC-Anweisungen haben das Grundformat

Instr:: = operation u Inoaelu{ vaterencef h

-22-

Die Wirkung einer CIMIC-Anweisung wird durch den Operations-

code bestimmt

operation;: = { opcode/opcodel!

Wird dem Operationscode, "I" hinzugefügt, so wird die Opera-

tion nicht mit dem durch die Referenzen bezeichneten Operanden

sondern mit dessen Adresse ausgeführt.

r ande it
Das Mode-Feld spezifiziert den Typ des Operanden. Ineranden MI

unterschiedlichem Mode können eine unterschiedliche Anzahl von

Wörtern für ihre Darstellung im Zielrechner benötigen, und eine

bestimmte CIMIC-Anweisung kann in Abhängigkeit vom Mode zu Ver-

schiedenen Befehlsfolgen führen.

Das Referenz-Feld enthält Hinweise auf die Operanden in Form

von symbolischen Namen. Es treten verschiedene Kategorien von

Referenzen auf. Für die im Folgenden ausgewählten CIMIC-Be-

fehle sind jedoch nur die Referenzen 1 und 2 von Bedeutung»

Referenzen zü Programmkonstanten:

reference 1:: = ; reference Aa/reference Ab}

Referenzen zu normalen Konstanten bestehen aus dem Schlüssel-

wort CONST, dem symbolischen Namen, sowie der Angabe der Kon-

stanten:

reference 4a:: = CONST « symbol ()ı- type „ value

-83_

Mit "type" wird die Art der Konstante angegeben

type ır =: {as}

Der Wert einer Konstante vom Typ A ist unabhängig von der

Zielmaschine, während eine Konstante vom Typ E zielrechner-

abhängig und mit der Adreßstruktur des Zielrechner verknüpft

ist. Die Konstante vom Typ E wird dargestellt in Form eines

Produkts einer ganzen Zahl mit einem MODE-Identifier. Der

Wert eines solchen MODE-Identifier ist die Anzahl der Adreß-

einheiten, die für die Darstellung des betreffenden MODE in

dem jeweiligen Zielrechner benötigt werden.

Referenzen zu VAL-Größen bestehen aus einem Schlüssenwert

2.B. VLLOC für lokale VAL-Größen, aus dem symbolischen Namen,

einem festen Offset und gefs. dem Zeichen "+".

reference 1b :: = [nanoe

wos u symbol ([fix o£tser)

Das Symbol ergibt eine Basisadresse. Ein verhandener fester

Offset ist eine Konstante, die zu dieser Basisadresse addiert

wird. Dieser Offset ist eine Konstante vom Typ E. Folgt ein

Pluszeichen, so wird der Inhalt des Indexregisters als variabler

Offset ebenfalls zu Basisadresse addiert. Referenzen zu Variar-

blen und Feldelementen enthalten ein Schlüsselwort z.B. LOCAL.

für lokale Variable oder Feldelemente, sowie ein Symbol, einen

festen Offset und ggfs. das Pluszeichen:

LOCAL. -

reference 2 :: =]PARAM | u symbol (Trix ortser)) us

\ARG

84.

3.1 Voraussetzungen für die {!bersetzung von CINWIS/l in den

Assemblercode des DIETZ 821.

ber DIETZ 621 ist ein Kleirrechner mit 4,8,16 oder 52 Kbyte

Kernspeicher und einem Halbleiter-Speicher (Foo!) mit extren

kurzer Zugriffszeit, in dem sich Register, Datennuffer und

schnellaufende Prorramme

wortlänge, zZ. B. bei der

Textverarbeitung, 15 bit

befinden. Er arbeitet mit variabler

Prozetrechnersprache BASEX 8 bit für

für Proze?tdaten, 32 bit für Rechen-

größten. Der Rechner hat bis zu 16 unabhängige Programmebenen

mit eisenen Registern und Datenkanälen. Jede Prozrammebene VEer-

fugt über bis zu 256 Register. Als Arbeitsrezister dient der

Akkumulator (,„ Pool-Adresse '02) und eventuell die folzenden

Rezister. Werden Befehle indiziert, so dient die in einem be-

sonderen Byte anzegebene Pool-Adresse und die folgende Adresse

als Indexregister (2-Byte-Indexregisser). Ist die angegeben®

Fool-Ldresse ungerade, wird nur diese Adresse als Irdexre rister

verwerdet (1-Byte-Indexregister).

Far die ‘!bersetzung von TTiIC/l in den Assenblercode des DIETZ

<£21 wurden die folgenden Voraussetzungen fastgelest:

-1) Darstellung von ILT, DUR, CTO und BIT-Zrö}en

durch 2 Byte (D-Tyv).

Darstellung von REAL-Grö 3en durch 4 Byte

(G-Ty:)
: Darstelluny von CHAR-IröVen mit 5 Bit je Zeichen

Auf dem DI&lZ 621 sollen richt mehrere Wodule

zleichzeitig laufen können, d. h. SLu34l

Grö’en sind nicht zulässiz.

-3) Konstanten wird der in CLAIC nitgegebene Nase

zugewiesen. Üperationen mit R.’AL-"nustunsen

können deshalb wie VariebtlenoneraGtionen be-

hardclt werden. Die übrizsen köanstartenonera-

tionen sird als solche au! des LIuiZ 5821 direx

ausfütrbar.

-85-

-4) CLOCK- und DURATION-Grö3en werden intern als

Festkommazahlen in Sekunden dargestellt.

-5) Als Indexregister fur den abstrakten Rechner

werden die Register mit den Pool-Adressen

"40 und '4l verwendet (2-Byte-Indexregister),

d.h. es ist positive und negative Indizierung

möglich. Alle Integerzahlen (2-Byte-Darstellung)

und alle Adressen (2 Byte) sind erfaßt.

Zur Übergabe von Variablen für Bibliotheks-

programme werden 64 Bytes des jeweiligen

Pools benötigt (Adresse '00 bis '3F).

-5) Marken der Form Zdd, wobei d für eine Ziffer

steht, werden für die Übersetzung benötist

und sird reserviert.

Im folgenden verwendete Hilfsmacros sind in Abschnitt 2.3 be-

schrieben.

3.2 Implementierung der Referenzen 1 und 2 in CINIC/l für den

DIETZ 621.

Bei der Implementierung der Referenzen zu Konstanten, Referenz 1,

muß zwischen REAL-Größen (G-Typ) und Grö3en in 2-Byte-Darstellung

(D-Typ) unterschieden werden. D-Typ-Größen können direkt als Kon-

Stante behandelt werden, während REAL-Größen wie Variable, Refe-
renz 2, behandelt werden müssen.

Zur Übersetzung der Referenzen l und 2 werden 6 Macros und einige
Hilfsmacros benötigt, mit denen der Wert von Konstanten vom Typ

E schon bei der Übersetzung berechnet und in eine direkt ladbare

Form gebracht wird. Zur Erklärung der Funktion der Referenz-Nacros

müssen erst noch Macros zur Unterscheidung des MODE und Macros

für spezielle Befehle definiert werden. In den Refererz-iacros

übergibt Parameter 1 die Befehlsart, Parameter 2 das Arbeitsre-

sister und Parameter 3 den MODE (entweder D für 2-Byte-Größen

ode G für 4-Byte-Grö?en) in den zu erzeugenden Assemblerbefehl.

ERREFIP OK

IF tan = DT SKIp 2

10A130, 120, Any ty 1a
SKI 38

Ir !50 NE FIEF SEIF 1$
IAliAe>

IOEt30, 17H HAOSIEIAR

verrr it to) 8

IFGYERSE

KITFIRER

1100230, 120, I!R1s t FlAG
$.

URINSEME

IF I2I NF
Eintzet

yomt2ıtıcs

hit? Ecu 1145
$

EGRAKLEIMTRFE

tal20 10%

KHIEF FCEL 1108
€

mn} ,

RIFF FEN 1115

€

CHEKLIIMENS

HliY EC ,0108

&

KIY.LCIIEENE

kKify FU 2%

vi

SKIP 18

IUKEF 12 10) ®
!10R130H 170 1305 1148

“
>

vYEHrF12 Id 8

110A130,120, 1409, HA0S E F13

-86-

Soll die Operation mit einer KSAL-Kon-

stante ausgeführt werden, 50 wird der

Operand über das ihm zugeordnete Symbol

aufgerufen. 2-Byte-Grö?ten, durch D gekenn-

zeichnet, werden als Konstante behandelt.

Für Konstanten vom Typ 5 mu? erst der

Wert des Operanden berschnet werden. Dies

geschieht mit Hilfe des STAGE 2 über
eines der nebenstenenden HilfsmacroS-

Sie rufen den #ert des im STASE 2 -

Speicher abzelezten MOiN-Identifiers auf

und lesen den Wert der dann berechneten

Konstante im STAGE 2 - Sreicher unter

HILF ab.

Heferenz lb und 2. Der Overand wirä als

Variable behandelt und über das Symbol

durch seine absolute Adresse angesprochen.

Der durch dieses Refeerenzmscro aufze-

rufene Befehl wird mit Cen Indexre-

gister '40 indiziert, d.h. der Inhalt

des Indexregisters wird zu der durch das Symbol anzegebenen Basis-

adresse addiert.

KORFF ID IE 8
IHOVEMS

RE a2 SE 1PDO OA FIN“

ss
1104130170, 140 !AZE NE

Der in dieser Referenz enthaltene Fix

offset wird zuerst vom SläGk 2 berech-

net und im STAGE 2 - Speicher urter

HILF abgelezst. Der Inhalt dieses Speiche

wird dann mit einem Ass:mblarbefehl in das Hilfsindexrezister '42

-87-

Seladen und der erzeugende Befehl wird dann mit diesem Index-
Texister indiziert.

IERFFA12 HT ac wu Bu

!SOMEMS ’ Auch hier wird der Fix Offset berech-

[ID Ta2 KRFI2D ya HILE 8$ net und in das Hilfsindexregister
O=FADR,»'AP,’a0zı 148 ,

r = 1-

1104130, 120, 140, "42:1 8148 42 geladen, zu an n .
addier halt des Indexregsisters

wird. Der zu erzeugende Assembler-

befehl wird dann mit Register '42

indiziert.

3.3 Erkennung der MODE des Overanden.

Da Operanden mit unterschiedlichem MODE in unterschiedlicher

Wortlänge dargestellt werden und zum Teil eine Vorbehandlung

benötigen, die durch den STAGE 2 durchgefuhrt werden kann, sind

folgende Macros nötig:

E PoDR tt 8 Dieses Macro erkennt einen Befehl
10 @ REF 12 D 130 8
$ mit einem Operanden von KODE INT

und übergibt in das den entsprechen-

den Befehl erzeusende Referenz-

macro den Kennbuchstaben D (?-Byte-Darstellung). Das Gleiche be-

wirkt dieses Wacro fur Variable vom xÖDE CLO oder DUR als Operan-

den.

I BODE RFAL I $ Oneranden von No u
110 @ EEF 12G 120 $ | MODE REAL mu der
3 Kennbuchstabe G zugeordnet werden

(4-Byte-Darstellunz).

I MODE CRO IE) A Het 5 CLOCK-Größen werden als Festkomma-
FVALDUR 130°3600+140BCO+ 1508 \
110 @ RhE 12 D t?00) a STackpmn s Zahlen in Sekunden dargestellt
$ (2 Byte - D). Der Wert der Uhr-

EVALDUR #6 zeit in Sekunden für Konstante
STACKDUR FOU 1148 . ; “ wird durch den STAGE 2 über das

. Macro EVALDUR berechnet und unter
STACKTUR im STAGE 2 - Speicher abgelegt.

t FODR DUR It) ALS

DUNALION 1508

110 © PEF 12 D 1200) A STACKDON &

’

LUHATION YhnS$

FYALDUR 110836005

®

TURATION IBERS IMINS

FVALDORN 110OFSC00+ 20 FEOS

5
DIRATION ERS ISFOS

FrYALDUI 1IORSEHO+!203
5

EPHALION

FVYALDUR

IEHS IRIN IEEOS
VOFBEDO+POFCOH+ ISCH

5
TIRATTON PINS
FIALDUER 110HEOS
;
EURATION WIN ISECS
FYALDER 1108E0+1205
i
LTPATION I5}0$
FYALDUR 1108

I FORE BIT) 85
KITIT Pcu 1208
110n@ EFF 12 D 150 8
g

ist somit abfragbar.

I 2ODE RITEH
"TTL Fo 120%
SPLLSEIZEN 165

ty A Htapı 8 *

R#FEAF EITEIST 149 17-1208

EEFAK SEJA P1 NZ ES Bass Be 47
LTORE KEXA KL 52 RB Rai
10@UrE 12D 1300) A BILD

HARLSEIZET 85
v ma Gh
»10tr71
»]+1 FA 03
Yar$
-
>

EI ERGA 86

wtje Fe 12085

I FEou 114

3

SFPRK RITLIST N 08
1 ob 124%
191178

“T+1 BER 1108
Irrh

&

%

KRBES KIO

-28-

Auch DURATION-Konstanten müssen

erst vom STAG:ı, 2 in Sekurden ul-

gewandelt werden. Dies geschieht

uber ein entsprechendes DURATION-

Macro.

Variable vom löbs BIT werden in

2 Byte dargestellt. Fur evertuell

nachfolgende BIl-Cperationen wird

die Lönze der Bitkette im STYGE 2 -

Sseicher unter Bi:L abgelerst und

Bil HIFI PIE 1 IEE

Da der DIETZ 521 mur Dezimal- und

Rexadezimalzahlen verarkeiten xann,

mu? der Onerand des GIYITS-Befshls

erst durch den SIAGE TAGE 2 in eine ent-

sprechende Hexadezim=1lzahl umze-

wandelt werden. Dbierzu wird der

einzelnen Biüis auf-

zespalten, die vom SIAGE 2 in der

Sneicherplätzen Bl bis B15 abgelezt

und dann zu 4-er-Bitnustern zusan-

üOnerand ir die

mengefa?t werden. Die Zuoränung die

Bitmuster zu Hexezatlen wird über

-89-

BRFAR HEXA 5 on .

I FUb 08 den STAGE 2 - Speicher vorgenommen.
11011783 2. . ; ;

i ; ang einer jeden
FRXAMEML 1108 Hierfür wird zu inf 5 d

'r&$ Übersetzung zu jedem möglichen Bit-
$

*

muster die entsprechende Hexadezi-
HEXAMEBL Von ng

HRXAMEM2 1111?71 8211418
$

HEXAMEM2 8
BI+1 EQOA t118
$

STOEE EFXA tt 1 88
FILFZ2 BOU "tı11211311a18

ß

malzahl abgespeichert.

3.4 Transferbefehle.

3.4.1 Laden in den Akkumulator.

Für 2-Byte-Grö?en werden die Register '02 und '03 und bei 4-Byte-
Größen die Register '02 bis '05 als Arbeitsregister belegt. So-
mit ist z.B. der Befehl "Akkumulator laden" vom MODE abhängig.

LOAD 1 18 INT
LD MODR 110 130 $ REAL | :
$. LOAD TCLO {reference ıv2tg

DUR

IT(length)

Beispiel:
un me a vn Aha an u nn an

Eingabezeile: LÖAD INT LOCAL IOOL(3=«INT)Z2

Hilfsmacros:

PrOBE to og LEER IP EN) n saruyni
IE IP Sr SKI 16 OK RFEAIRN a0 5 IHONMDME '

i DB AP EEE AP EA HILE 8 BITEFEE
PIORESN POSTS TARIFE MNGHIZIEIOE

EILE Fe te
&
”

8

Ausgabezeile für den DIETZ 621:

LDA,®,I0ol,'4a2;

Beim Laden einer CHAR-Größe werden lediglich die Länge und der
Name der Zeichenfolge im STAGH 2 - Speicher bei Adresse THARIL

und CHAR1l eingetrazen. Diese sind dann bei nachfolzsenden Verket-
tungs- oder STORS-Befehlen abfragbar.

KOAD CFARLHI tt) 5
NULL EQU 08 CHAR sefer CHAKLI Bon yon LOAD THAR(length) [reference ı/2}2

CHAR1 EQU 1308
$

-90-

3.4.2 Abspeichern aus dem Akkumulator.

Dieser Befehl wird, wenn keine Pypkonversion nötig ist, wie

folet übersetzt:

OF [Bar |

mn so 8 STORE | BI2(length)t freference1/212

CLö "

 DUR

Der Inhalt des Akkumulators wird nicht verändert, deshalb kann

Ger folsende Befehl dieses hiacro ebenfalls verwenden.

au tt fIRT }

EHORE FOR IRGAL

’ STN ‘Bit(lensth)! reference yAr
ICLO | \
\DUR 5

Bei Tynkonversion müssen folgende Fälle unterschieden werden:

1) Die im Akkumulator stehende Gleitkommazahl wird um-

SPORE ET EC REAG $ gewandelt in eine Festkomnazahl und

a m dann abgespeichert.
oo. nn Bei der T'mwandlung mu’ zuerst ge-

nn rars Irlas pruft werden, ob die im Akkumulator

ARSIFIAS stehende Gleitkommazehl die für

a nosızıas 2-Byte-Zahlen erlaubte Größe

Pesto, ’On,YOADBSIRI48 (32 767) übersteist. Yenn ja, wird

as eine Fehlermeldung (ERl) ausgegeben,

7100: WDREAETA2HIFIGS und das Programm angehalten, sonst

Titr1as - wird durch eine Bibliotheksfunktion

der ganzzahli:e Wert der Gleitkommaz=ehl im Zkkumulator

(Reg. '02 und '03) eingetragen und von dort aus ahze-

sneichert.

eo
.

.. “

‚INT,

STORR ?DUR, symbol(lFix offset) [+] C KEALZ
ISLO:

2) Die in Akkumulator stehende Festkosmnzahl wird in

SNORF EFAL E ION 8 eine Gleitkommazshl umgewandelt und
UPS ANBLENG INT KFALS
Ss ENEF 12C 120 8
’ Da es hierzu für den DIEIZ 6?1 keine
WASBISUO IST Le

as Bibliotheksfunktion gibt, muß die
LECHYOBSOTIFIAS Umwandlung schrittweise vorgenommen
ABCHIOAROSIE1AR

BNCH'NS EZ IEIAS

dann abgespeichert.

werden.

Darstellung von

2-Byte-Zahlen

-91-

Darstellung von

4-Byte-Gleitkommazahlen

‘a2 - "02 2
'03 YZ 7 ‚03 Mantisse

Bild 13 "o4yz
105 Exponent

Hierzu mu3 das Vorzeichen aus Reg. '03 nach Reg. 'O4
Sebracht werden. Das bisherige Vorzeichenbit in Reg.
'03 und die Bits O bis 6 in Reg. '04 sowie Reg. '05
müssen O gesetzt werden

- IND
STORE REAL .-symbol(fix offset)[+] C fe

DU

3) Fälle, in denen keire Umwandlung notwendig ist, da
intern INT, DUR und CLO als Festkommazahlen dargestellt

@RFF 12 D 130 5 INT _ „jImm
STORE {CLO| symbol(fix offset) [+ or 2

DUR UR
Die Abspeicherung von CHAR-Größen wird bei der Beschreibung der
Verkettungsbefehle mitbehandelt.

3.4.3 Laden ins Indexresister.

DE IT N 45 Der zuzehörige Befehl kann über
ED YO KRF 12.9 ron $ ein entsprechendes Referenzmacro

mit Register '40 als Arbeitsre-

gister ohne Benutzunz des Akkumu-

lators erzeust werden.

LDX Imp [referencel/2fg

5.4.4 Absneichern des Indexrexisters.

STY Int ro0s
ST 10 HRR 12 DiIen s$ Auch hier mu? der Akkumulator nicht

benützt werden. Es kann direkt aus
dem Indexregister abgespeichert wer
den.

STX ımm {reference ı/2}8

-92-

3.5 Arithmetische Befehle.

REAL-Zahlen (Gleitkommazahlen) und Ganzzshlen werden nach Bild 13

dargestellt (Abschritt 3.4.2).

3.5.1 Bildung des Absolutbetrass.

Der Absolutbetrag von REAI-Zahlen kann über eine Bibliotheks-

funktion gebildet werden.

ARS HFAL t
ARSIF1AS - ; ABS RRAL 8

Bei nezetiven Integserzahien mu? über das Hacro "NEG IMi 2" das

Vorzeichen unsekehrt werden.

ARS INT ß
1P,'05 »Z/rODS 2143 .

A di
NEG INT 5 ABS INT 8
z100: NOPFIEFIAS
v
3.5.2 Vorzeichenumkehr.

Bei P®=AL-Größen wird Bit 7 von Resister '04 (Bild 13), das das

‘ Vorzeichen der ijantisse ansibt,

NFG HEART. 5 invertiert, d.h. zu Bit 7 mu? 1
ABO 'DASTEOFIFIAT .

e addiert werden.

NEG REAL %

Für die Vorzeichenumkehr der Integerzahl z gilt:

ven DT ; -z2 =(2-1), d.h. bei der Vor-

VORZEICHENUMKFHH &$ zeichenumkehr mu? das Einerkomple-

; mant der Zahl (z - 1) gebildet

VORZFIEHFNUNKREI 18 j werden, was einer exklusiven ÜDER-

BEI Verknüpfuns der jeweiligen Resister

wit 1111 1111 gleichbedeutend ist.

NiG IKT &

-93.

3.5.3 Addition, Subtraktion, Multiplikation, Division und

INT, CLO und DUR werden als 2-Byte-Ganzzahlen und REAL-Zahlen
als 4-Byte-Gleitkommazahlen dargestellt. Die Zuordnung zur rich-
vigen Darstellung wird über das "lNODE-Macro" vorgenommen.

Für die Addition gilt also:

Ba In f Ad "
"

10 130 3 ADD ur freference ı/2}8
SAL,

und für die Subtraktion:

INT Sub te 05 \
SE NODR 110 150 8 SUB DE {reference 1/8

HAL

Für die Multinlikation können Bibliotheksbefehle zur Multipli-

kation von Gleitkommazahlen bzw. Ganzzahlen verwendet werden,

Jedoch mu3 man berücksichtigen, daß bei der 2-Byte-Multiplikation

ein 4-Byte-Ganzzahl-Produkt ent- MPYYoa ag
15 ODE t10 150 5 steht, das nicht gröler als die

ll NE 2 SKIE 7 .. aa ;
A=HSPR DO, TARLIEIAS grö3tmögliche 2-Byte-Ganzzehl sein

A=HSEC 5, PHKSIF1AS darf, sonst mu3 eine Fehlermeldung
BNP, * $ \ Bi ‚'05 »2:00s !714 ir , - D=34TC,°00, "0A0D5 IF148 (ER1L) ausgegeben und das Programm

ZE=#YTA,'OOJER1FTF14$ angehalten werden. Zu dieser Über-
IFA» »ENDESSF148 vn ; nt 7100: 4=&LDKsG, Ars IF148 prüfunz mu? der Akkumulatorinhalt

OkKr OS, OSS I F1A8 vorübergehend in den Rezistern '46&
i

ff. abgelegt werden. Bei erlaubter

'05) Gröte des krodukts mu? das Vorzeichenbit (Bit 7 ir. Reg.

nach Bit 7 in Reg. '03 gebracht werden.

INI
T

MEY In {reference 1/2} 8

REAL

Bei der Division von 2-Byte-Ganzzahlen entsteht ein 4-Byte-Quotien

nit Mittelkomma:

—{I4-

= MTX| Bruch-
Darstellung des 4-Byte yuotienten: "orlzı_ u.a, DrD

103 A Al teil

'04 Fu ! Ka! Ganz-

osiw2l | | il 1b. teil

Der Rruchteil wird abzeschnitten, d.h. die Register '05 und "O4

werden nach Res. '03 bzu. '02 geladen

ıverıs (xp \
IN KOBF 0 130 $ sr r Be
I? t11 NE 2 SFIF As DIV Dur reference 1/2732

Bhr'03n »7IO0S U F1AE (er
LIED WI OA FIAR

i

r

Zur Exponentiation kann ein vorhandener Bibliotheksbefehl fur

4-Byte-Gleitkommazahlen verwendet

werden.

" . r \
a RAL 120 ; EXP REAL {reference 1/2)%
- .
”

PL 2-Byte-Ganzzahlen müssen zuerst in

VPWANDLUNG INT KFALE 4-Byte-Gleitkonmazahlen umgevurdelt
Jap, 'aprır]as

{I KODF tin I%0 8
DR ANDETNC INT FrALS der in 2-Eyte Ganzzahlen zuruckver-

su MODE 110 130 8
IC FODF EFAL 1308

und nach ausgeführter Operation wie-

wandelt vorden.

UMTANDIENG FEAT INIS pn)

° EXr (iu Dererence var
un

Addition und Subtraktion nit dem Indexregister können direkt Ir

Indexresister ausseführt werden.

SEX IN 8
. . i . , R\ Ki 40 LER PD 120 8 ADX IND {reference 1/2r2

e
,

SRF IST N 9S [BR

1

Gleiches zilt für die Addition des Akkumulstorirhalts zum Index-

resister. Der Akkurulatorinhalt bleibt hierbei erhalten.

PUERY INT $
2=KADR, AO, 02H 18148 ADDAX INT 8

-95-

Zur Multiplikation ist ein Bibliotheksbefehl nötig, der nur im

Akkumulator ausgeführt werden kan. Hierzu mu? der Akkumulatorin-

halt gerettet werden. Die Operation kann dann mit Macro
NPX INT 8 15 "ypy ! ! !2" bebandelt werden.

4=#STR 1,1425 17145
ESFLDES@,'A05 1 F148

MPY INT 110 1208 MPX IN? {reference ı/2}8 ZSHSTN@,TAOSIFIA$
ASHLDFA@, AP; 1F148

3.6 Bitoperationen,

Für Bitketten werden 16 Bit belegt, d.h. Reg. '02 und '03 werden
benützt,

3.5.1 Komplementbildung.

Bei der Komplementbildung werden die Register '02 und '03 durch

exklusives ODER mit 1111 1111 verknüpft. Hierbei wird nicht berück-

Sichtist, daß Bitketten auch weniger als 16 Bit lang sein können.

NoT KEITH }
2<&ROC »@, "FF5IE148 NOT BIT(lenrgth) 2

3.5.2 Logische Verknüpfungen.

Bei der AND-, ODER- und Exklusiv-ODER-Verknüpfung wird bei einer

Konstanten als Operand über das entsprechende MODE-Macro zuerst

vom STAGE 2 eine Hexazahl gebildet. Sonst wird die Adresse des

Operanden angesprochen. Die Verknüpfungen sind 16-Bit-Verknüpfungen

Bitvariablen werden 16 Bits zugewiesen. Nicht beleste Bits haben

dabei Nullinhalt.

ANDI S$ |
AN MODE 110 130 8 AND BIT(length) reference1/2} g
:

tr
UR EL! (length) [reference1/2 2 OF MODE 110 130 5

2 =

FXOR LI 3 EXOR BIl(1ensth){reterence1/2}g BO MODE 110 130 8
>

T
T.

?

7

im

-96-

Ist der Overand kleiner 0, so wird nach links geshiftet, sonst

nach rechts. Die Zahl der Bits um die geschoben wird, wird durch

der Betrag des ÖOperanden

2-Byte-Ganzzahl) in dio

Vorzeichen des Oneranden

bestimmt. Hierzu sird der Ünerand

riifsregister '42 und’ '43 geladen. Das

stent dann in Bit 7 von Register '#5.

Hat Rezister '43 positiven Inhalt (Sprung nach NMerke Z!00),

sn wird die in den Resistern '02 und
spIFrT IMG OR
N TA2 EFF I2D 20 8 ”

FF, '@R, »2100s 17148
YOVZEICHFNUMKTHR Y@28

Zıvie Z<HSRO,@, 17148

PRAERG, AZ, 1SIFIAS

F<ERNZ,'40ı ‚zınız 75

Jr 71035 1714%

P<ZFSTO,ESEFIAS

rt, 42,15 19148

<iRY7,'22, ‚,ztc0stE14%

OPSIEIAE

21305 N

u
n

N

7
3
53.0.4 Ausblendbefehle.

Der Ünerand a ist eine Irterer-Sröle nit 1Sa& rn, vobein

I:rge der Bitkette im Akkumulabor ist. D-s Ergebnis ist das

Bit des Akkumulatorinhalts von rechts bzw.

Yo 008

Tı 'A2 EFF 1? D 8%0 5

1608 FFOSt@2, 1, 71015 1 FA
ESHSKO,’YAPI1SEZIAS

FHSKOsäs Pa.

JvAs ‚710021 Pj45

71912 SORSIRTAR

aha tt Ta N

Karen
rap EFF 1? b 1505

120: 2<#k7,'82 vzrarsirte

PERENRO rap, 15 te

FeREto ng hT1AR

Js ‚z}00s 1145

tale NORSEEIEB
Er, 7. "> i:

'03 stehende 16-Bitkette offen

nach links geschoben, sonst mu 3

der Betrag des Oneranden gebildet

werden, der die Zahl der Bits angiot

um die dann die Rezister '02 und

'03 offen nach recuts reshiftet werden.

SHIFT IUT :referen.. 1/28

die

&-te

links.

Das gewünschte Bit wird durch Rechts-

schieben nach Bit U vou Rez. '02

zebracht. Die restlichen Bits des

Akkumulators werden Rull gesctzt.

Rsir rw {vroference 1/24

Das gewunschte Pit wird hier durch

zszlisches lLirksscrieben nach Bit

OÖ vor Resister '02 zetracht.

LBIE I? (references 1/r}E

-97-

3.6.5 Verkettungsbefehle.

on retten von Bitfolgen können nur Bitketten von maximal

Pehlermeldunz (nn werden. Bei längeren Bitketten erfost eine

bung wird q 8 (ER2) und das Programm wird angehalten. Zur Verke-

er Onerand in die Hilfsregister '42 und '43 geladen,
und der Akkumulator um die Länge des Operanden nach links gescho-

ben. Danach wird der Inhalt der Re- zone ren ı DR
ri IT or. . . . 1D tt or 16 SFIP 55 gister '42 und '43 mit den Regis-
nF 12 a5 ..
t101F75 05 tern '02 und '03 ODäR-verknüpft.

Ir8% ZRSLO,@SIFLAS Die erzeugte Bitkette steht dann

 Z=RORK as TA2L I FIAS rechtsbündiz in den Registern '02

Sr 38 und '03.
SSEWTE ION, FOAODFIRIAS
SESFYTALTODSERPEIEIAR CONG BIf(length) [reference 12\ 8 JPA, »ENDFIIFI48S

Bei .. Bo Verkettungsbefehl für Zeichenfolgen wird nur der Name und

ie Zeichenzahl des Operanden unter CHAR2 bzw. CHARL2 im STAGE 2-
Speicher eingetragen. Diese beiden Informationen werden zusammen mi 2.

van dem beim Laden eirer CHAR-Grö3e eingetragenen Informationen eim-nachfolgenden STORE-Befehl abgefragt, der erst die eigent- liche Verkettung bewirkt.
ONE Chan na) 5
CHAR2 ROU 1308

CHAKL2 Fan 1105 CONC CHAR(length) {reference 172] 8

Beim STORB-Befehl werden die zu verknüpfenden Zeichenketten nach-

Cinander Zeichen für Zeichen in den Akkumulator geladen und von
dort aus nach dem bei der Basisadresse Symbol beginnenden Adress-
bereich geladen.

STORE cHAktıı v0) 8
e<a] DE !A2sDETE145 a Bu - r

CHARLIIF?R ‚STORE CHAR(length) {reference 1/2t3
MEMORYCH CHAKT 130 AP
IFEs

CHAKHLPIEFS
MEMORYCH CHAR? 130 "AA

ZeitädC, Aa, 1; Fila
ıvaS$

&

MEMORYCH I 118

LDA»O, 10, 130: F145

STAr®s 170, MAPS IF14A5

PeHADC 42,15 1 F148

-98-

3.7 Vergleichsbefehle.

Beim Vergleichsbefehl wird ein Kennwort im Akkumulator abgelegt,

das der nachfolgende bedingte Sprungbefehl auswertet.

Beim Versleich von INT-, DUR-, CLO- und REAL-Gröten wird der

Operand vom Akkumulatorinhalt subtrahiert.

vRrp KFALE NOS
Sk FODE RFAL 120 N Darstellung von REAL-Größen nach

Se#Rzı9h »zyoostrles Bild 13. Wenn die Mantisse des Er-
LDESD, 045 714% . »leich Kull
Okt isn O15 IR148 sebnisses (REAL-GröNe) unzlei

7100: NOPSIF14$ ist, wird das Vorzeichen-Bit von
$

Reg. 'O4 nach Bit 7 in Rez. '02 ge-

bracht. Außerdem wird zur sicheren

Kennzeichnung eines positiven Ergebnisses der Subtraktion Bit 0

in Rezister 'O2 nach 1 gesetzt.

CMP REAL (reference 1/2}3

Entsprechendes gilt für 2-RByte-Ganzzahlen.

ARE, Im: SR MODE, 110 130 8 \ }
. . MD :
2<#R7 8, »ZIO0SYF1A8 CMP TDUR! {reference 1/2

LIES, NOBS FTSE

OFC SER O1SER14S

2200: MOPS!F14S
&

OSLO) ”

Beim Vergleich von BIT-Grö?en (2-Byte-Darstellunz) werden Urerand

und Akkumulator (2 Bytes) mit Exklusiv-OD&R verknüpft. Bei Gleich-

heit haben Register 'o2 und '03 Nullinhalt. Durch anschlie?ende

ODER-Verknüpfung wird in Register '02 ein entsprechendes Kennwort

abgelegt. (O bei Gleichheit, =O bei Ungleichheit)

cvp PT (e!)ı 1%

"O0 MOPRF ti) ri £ . , N noası as ChP BIP(lenzth) {reference 1/2: 8
$

Entsprochend wird beim Vergleich von .CHAR-Größen verfahren, wobei

die Ketten zeichenweise mit Exklusiv-ODSR verknüpft werden. Der

Vergleich wird nur bei gleicher Zeichenzahl auszseführt und bei

den ersten beiden ungleichen Zeichen abgebroch:n. Eegister '02

ERPp CHAM EC) 4 hat dann eiren Inhalt = 0.

IF !10 ECUAL CHALLL SKIP 23
LEG GLS I F14$

.

rin ae CHP CHARClenzth) {reference 1/32
Z<ELDEH"AAN051F14$

COMPCHAR CHARI !30 1108

COMPCHAR 1 9 ng -99-
t . 2101: DDAs@, 111,744; 17143

1DAr 42,120, 7445 17145 FOR @,ta2sıp1as
NZ, ,21005 1 714% ZZHINRO,T4A 130 Inn 41 130,201; 2100: Nopsılas — OLhIRNS

3.8 Sprungbefehle.

nn 08, in dem durch einen vorhergehenden Vergleichsbefehl

negative ort abgelegt wurde, wird auf Nullinhalt, positives oder

ung Steht Vorzeichen abgefragt. Das Kennwort wird nicht verändert

= einem nachfolgenden Sprungbefehl noch zur Verfügung.

De

.. ” , T Onerand des Sprungbefehls ergibt die Sprungadresse. Für die
„. „ellung von Sprungbefehlen gibt es in CINIC/l zwei Möglich-
Seiten,

Direkte Angabe der Sprungadresse:

opcode,I INSTR CODE symbol() 3

wobei symbol eine durch LOC (vgl. 3.9.1) definierte

Marke ist;

oder Referenz zu einem Speicherplatz, der die Sprung-

adresse enthält (vzl. 3.9.7).

opcode ADDR CODE {reference 38

Zur Erzeugung des Assemblercodes für den DIETZ 621 sind die folse

den Macros nötig, die unbedingte Sprungbefehle enthalten. Diese

werden durch die entsprechenden CIMIC/l-Sprungbefehle in Abhängi
keit vom in Register "02 abgelegten Kennwort aufgerufen.
JPA»T INSTR CODE 10) &

JPAr »t10S 17148 opeode,I INSTR CODE symbol() % s

Die durch eine Referenz zu einen Speicherplatz angezebene Sprur
adresse wird in die Register '42 und '43 geladen, auf die sich
der unbedingte Sprungbefehl über indirekte Adressierung bezieh
JPA ADDR CODE 0) 8

PeÄLDA1 42, 1105 F145
JPX» ‚’azy 7148

$

JPA ADDR CODE tt) 8 Der Fix offset bzw. der Inhalt
2=&UDAs "a2, 1108 ! F14$ Ind

12OMEMS ndexresister oder beide werder
der durch symbol angegebenen 4:

FIx OFFSET HILFS
"a2sır148 ,

JPXr “2 addiert. $

-100-
FIX OFFSET !$

Zethlt, a2, 1115 17148

$
JPA ADDRK COLF !O)+ $

P=RLBAN AP, 105 1148 | fg o
PERTENTERPE HEUT SUTTER opcode ADDR TODE ! reference 28

JEFS vYe2sıF1a8 JPA ADDR OoLF Ic)+ &

Zeälba, ar 1105 114%
LZOMENS
FIX OFFSKT BILKE

Perblie, a7, rYADEINIAE
JE25 v’AZSIEIAS

a
8

Für den unbedinsten Sprungbefehl gilt somit:

Jept 8 ah
Jratıı 8 sup fReferenz zum Sorunzielf2
s

Die bedingten Sprunzbzfehle fragen zuerst das in Resister '02

stehende Kennwort ab und bewirken bei erfüllter Bedingung eirin

unbedingten Sprung.

Sprung bei Gleichheit
arch 8

BNZ Eh „ZInDstF14% r -
JrAtıN 8 JEg ; Referenz zum Sprungziel'2
71002 NOPSIFIAS -
s
Sprung bei Unzleichheit ‘
Jart 8

37,85 »Zz1005 17148 r _

mare 8 JNE | Referenz zum Sprungziel' 2
7100: NOPSEF148 -
5 .

Saruns, wenn der Akkumulatorinhalt größer oder zleich dem Ünersn-

den des CMP-Befehls war (Bit 7 Res. '02 = OÖ).
JoHt b

BNP “321003 1E 148
um

Jeanıo 8 , JGE {Referenz zum Sorungziel’ 2
7100: NORsIF1A - x
:
Sprung, wenn der Akkumulatorinhalt kleiner oder gleich dem Ope-

randen war. (Bit 7 Eeg. '02 = 0 oder alle Bits = 0).
Jin 8

kPr©, »Z100Ss 1F145
Jratıo 3 JLE “Referenz zum Sprungsiel"
7101: NOPzEF148
JECHO $
:
‚Sorunz, wenn der Akkumulatorinkalt sröter als der Onerand war.

(3it 7 = O, aber nicht »lle anderen Bits = 0).

IETE 5
N . > 2.33 Krin s710nStF143 JG? {Referenz zum Sprurrzieltf
7,8, ‚72005 1F]48$ " -

TrAtIO 8
7'002 NOFFF148
$

-101-

. and war
Sprung, wenn Ger Akkumulatorinhalt kleiner als der Operan

IT 5
BP,@, Zt003 1F14$ { z zum Sorungziel}g

JPAtıo 5 ’ 14 JLT {Referen
2100: Nopsıpıas s

3.9 Deklarationen.

3.9.1 Marken.

CIMIC/l-Narken werden an eine Leeranweisung gebunden.
oc t0) $

Flat LOC symbol() & 11111: Nopss
5

. » . * x une. 3.9.2 Platzreservierung ohne Initialisierung

3 ögli j werden AlS Schlüsselwörter sind nur LOCAL und MOLUL möglich. Beide

Bleich behandelt.
Für INT, cLo DUR, BIT und REAL-Größen wird eine dem Wert 0 ’ ’

R MODE-Identifiers (im STAGE 2-Speicher abgelegt) entsprechende
Anzahl von Bytes reserviert und mit Null vorbelest.

SPAcFr vr ct) 8 Ba on]
ö 15 . } \
re Sr SPACE ICLO Banuz symbol() 2%
130: t118V5 1 P148 DUR

BII() $

CHAR-Größen werden mit 1 Byte je Zeichen dargestellt. Es wird eine
der Lönge der Zeichenkette entsprechende Zahl von Bytes reser-
viert und mit Null vorbelegt.

x ECHARLII I I) $ THODUL. 130: ostsee SPACE CHAR Lengen){HODUL| symbol()Z $

3.9.3 Platzreservieruns nit Initialisierung.

Hier wird für eine Größe durch eine dem jeweiligen MODE entsprect
de Belesungsanweisung eine Anzahl von Bytes mit dem angegebenen Wert vorbelegt, der gegebenenfalls mittels dem STAGE 2 in eine für den DIEI!Z direkt ladbare Form. gebracht wird.

-102-

kuterdem ist vorzesehen, da? bei Feldelementen (Schlüsselwort EIEM)

kein Name vorgestellt wire.
SPACE INT CO NOy Aa 8
IF 110 = EIEM SKIP >$
IPazt?es
sxıp 18

I26S
1>0 ZRDISASIF148

i
n

SPAOF INT E IC) pong
VONSERS
SFAGF IST 110 1200) A Hiny$
i

SEAUFE REAL E IO) A 98

ir 110 = ELEM SKIP 25

I70:1?7€E3

EXIP 18

t7e°

I70 GotAOSıF1AS
$

SPACE CEARLEI ECO A IS

IF 120 = RLEF SKIP 28
NSDStSEs

ERIP IE

Se
30 ORT ,"tanr; IF148
$

Rei CLO- und DUR-Größen, für die 2 Bytes reszıviert werder,

Ger Wert mittels STAGE 2 in Sekunden umserechnet.

conar)
} LUCaL

SPACE INT4 VLLOS
[cn

symbol() A value

Spaow I Are = symbol() 3 value?

ID.

- u. -

i GUN x N

LO AL]

SPACE REALÄVLLUC| symbol() a value
MOLUL
VL=OD

{car sr
' LOS z Au

SPACE CHAR(length)“ VLIL.I0 symbol() A
il oL! de A lu

erar] veluod

wird

Hiergyu werden

die in Abschnitt 3.3 beschrieberen Hilfsmacros verwendet. In

STAGR 2 - Speicher wird in Adresse DUHNTI!T 1 abzelezt. Diese

Sneicheradresse. kann bei Feldreservierun: mit Iritialisierurz

abzefrazt werden, womit die mehrxzlige Umrechnur.; des zleichen

Werts in Sekunden vermieden werden kann.

BRACH CLO I tt A ehe!

PTARDUR RHFSEOO+IA0FED+IAOS

CLOSPACE 110 120 STAGKDURE

!

ETOSPACE I I 1 5

I1Y 110 = ELRM SKIP 28

120: 176%

SXIF 18

1205

!20 ZED,IALSIF148

LORTEST EOU 18
‘

N N
SONST

LOSAL!
"AOE CLO\LLOTT synbol.() A clock

IMUOLULN
KIT .inT
LOL}

SPACE DUR I ty a -103-
" ’s CONST NURA \ VON

N 1508 LOCAL ‚«lospic !10 120 STACKDURS SPACh DURfVLLOCF sybol() A durationz
KODUL
VLiÄÄOD

Bei BIT-Größen wird aus dem Bitmuster mittels STAGE 2 eine
Hexadezimalzahl berechnet (vgl. 3.3). Die mehrmalige Umrechnung
des gleichen Bitmusters bei Feldreservierung mit Initialisierung

Wird durch Ablegen von 1 in Adresse BIMTEST im STAGE 2 - Speicher
verhindert,

nt rervens Tocatı 0.0 5 RLEN SKIP 29 SPACE BIT(length)]VLLOC}Fsymbol()
SKIP 1 VoLon A x bit-

m ZFRNTISLIALISLIEIFIFIAS

Auf die Verarbeitung von Oktalzahlen

wurde verzichtet.

SPACE BITLN) 9 90) A nızBıs
NULLSETZEN 168
RREAK-BITLIST 140 17-1108
BREAK HRXA BL 52 3% KA8B5 Be R7 Ra@BQ BIO Bil B12#B13 R14 BIR BIE$
SPACE HFXA 120 130 Bi B2 B3 Bat
RITTEST Eou 15
$, ‘

Da der DIETZ 621 Konstantenoperationen für 2-RByte Ganzzahlen und
Hexszahlen direkt ausführen kann, Könnte durch Verwendung ent-

Sprechender Macros auf die Platzreservierung für Konstanten vom

MODE INT, CLO, DUR und BIT verzichtet werden.

5.9.4 Feldreservierung ohne Initialisierung.

Mit bereits in Abschnitt 3.2 beschriebenen Nacros wird durch den

STAGE 2 die Zahl der zu reservierenden Bytes, die mit O vorbelest
werden, aus der Zahl der Feldelemente und dem Wert des NODE-Iden-
tifiers berechnet.

SPACE tr tt) 5

taomEME

FIFLDSPACR !10 130 HILFE

$

FIELDSPACE I 1 15

IF 110 = ELEM SKIP 28

I2n:!2E$
SKIP 18

1268

'20 IZ1#V5 17148
$

-104-

3.9.5 Feldreservierung mit einheitlicher Initialisieruns.

Hierzu werden für jedes Feldelemenrt die in Abschnitt 3.9.3 be-

schriebenen Macros aufgerufen, wobei mit dem STAGE 2 eine Itera-

tion über die Zahl der Feldelemente durchgeführt wi:d. Nur den

ersten Element eines Feldes wird dessen Name zugeordnet (Schlüs-

selwort ELEM). Durch Abfragen des Inhalts der SUAGE 2 - Speiche-

@dressen BITTEST und DUWTETT werden überflüssige Urmrechrunzen

vermieden (vgl. 3.9.3).

SFACR EP IOHRID A 05 \
VURTEST POU 08 (zuar)
BIITFST FOU 08 JENE! Se onuE AD FrS SPACH T BIT Local synbol(lenzth)
IF DEPIEST FOUAL 0 SKIP 28 Dur [EIS 4 vsluef LLOSPACHR 120 130 STACKDURS S1O nn

LxIp 58 ‚CHAR
IF BITTEST FOGAL O SKIP 28
SPACK HRYA !20 130 #1 R2 RZ has
SKIP 23
SPACF 110 120 1300) A 160S
ELEMI?GS
IF,
x

3.9.6 -Feldreservierung mit unterschiedlicher Initislisierurz.

Hierbei wird beim einleitenden Befehl nur der Name in den SIAGE 2-

Speicher eingetragen. Dieser wird nach dem ersten Feldelement nit

Blanks überschrieben. Außerdem wird beim ersten Feldelement als

Schlüsselwort für die Referenz ELEM eingetragen.

N .[REA1!
SpacH I ot Helena 5 IND ;
FELD ECU 1308 DuiL onen 173 ERL KEN 1208 SPACE nr) Tirgnazt Symbol(lenzth)+
s ol \ ıLOGA u ‘

BILD; °
CHAR}

sei Feldelementen werden die in 3.9.3 aufsefuhrten :\!acros aulge-

rufen mit Name "Blanks" und Schlüsselwert "ELum".

spacer ! tt) 8 "ran VERFELDO 110 FEL FELD 8808 er!
FELD EAU $ on DUR *Honun. FFEL Ei ELFPS DL £ECE I01,09 TOO! (lensth) &

t [ar I° ie ET
BERFFLEO I EN 88 ICHER
SpACE 110 121 31tla0) 5

5

,

SPACE I tery ang NEHFELDL 110 Fer 2 |
BED au 0 BEL FELD 130 149 1508
FEL EOU FLEMS
8

FEBRELDI GG nn ag SPACH "10 121 131014081507 A 108

SPACE 1 term omg IF !eı yE SKIP ı8
BITiees
!50rte1 15685
MEMFELDI 110 FEL FELD 130 140 1548 FELD EQu 8
FEL EOU ELEMS

$

3.9.7 Adre?felder

-105-

REAL)

02 Lone) lueg . DUR FJMOL length) A value
SPACE Toro [em (

BIr
CHAR)

Adreßfelder werden entsprechend 3.9.6 behandelt. Es werden 2
Bytes reserviert und mit den angegebenen Adressen belest. Die

5°Speicherten Adressen werden z.B. als Sprungziel fur die in
3.8 beschriebenen Sprungbefehle verwendeb.

SPACE ADDR I ttteı)a 8
FELD FOU 1208
FEL FOU ADDRS
8 ”

SPACE ADDR I (1 A 98
MFMADDE FEL FELD 1208
FELD FU $
FFL EQU ELEMS
€

MEMADDR 9 0 93
IF 110 = ELEM SKIP 28
'I2l:tzes
SKIP 18

1268
'20 ZHA,ISOSIF1AS
$

SPACE ADDR CODE [symbol] (Bize])
8%

A valu

-106-

.10 Testprogramn.

ur Erzeuzuns einer lauffähigen Assemblerversion eires bereits

n CIFIC/l übersetzten PEFARI-Testnrogramms zur Matrizenmulti-

‚likation waren noch folszende weitere Macros

HART 0) 8
ıF Rot 1108 Nr nd esen Macr zu Beginn des san ECH 08 Nit diesem Macro, das B

ın91 ECT 13
110 FC 28

nötig.

Testprogramas auis:rulen wird, wer-

11 ROU 38 den alle zur Übers :»tzung nötigen
’, DU ‘

„100 Reit 48 Größen im STAre > - Speicher eirge-

10 nd trasen (z.B Auordnung vor Bitnustern
v ı% >

cı1ı EOU 78 zu Hexadezimalzehlen, Wert vor KOLE-

had Raul os Identifiern). Es erzeust außerden

1910 EOU AS

1100 ren cs semblerprosrarms und für der in

1101 Pa0 DS

En ns Fehlermeldungen wird Tpyeicher"lstz

‚NT ROU-2S vorbelest.
210 EOU 2$

voR FON 2%

„IT EOG 2%

HALL FU #8

E22 0,'40005 !F14#
tik: Zrc,'000D0O7FEFSIFIES

Enle 2BFT,"RFERLERS INTe-ZibL 700 TROELGIFTAS Fat

“2: ZERTSMÖRFEHLER: BITKEIIEN 70 LANGES IMIGR
“
’

den Coce für den !nfanz eines AS-

ganzen Prozramn benötisten Text v3n

START symbol() ‚2

yerur 8
“1714 “ .

znostriet Xommentarmacro

z Mit Ciesen Kzceros wird der Oods fir
FD ANFS 3 on
: ürs Ende eires Asreublarrrosrzm®s

EeIZEUg

Euyp ts
"SER 2 EILTSIF1AS

JPhs „sılsırıas FLNISH syebol(l) 2
4317145
1705

:$

LINK Task MODEL tt) 5
NOP5 1 F14$

BEGIN TASK MODUL, tg
NOPSIF148

LEVEL 18
s

TERM Task MODUL ttı) 5 ; NOP5tF148

END Task MODUL tt) 5
; NOP5IF14$

-107-

Für eine Reihe von CIrIC/l-Befehlen,

für die kein besöimnter Assembler-

code nötizt ist, wird eine Leeran-

weisung erzeust.

Zur Ausgabe von Größen auf dem Teletype wurden folzende Ausgabe-
macros Seschrieben; -
Jede Ausgabe beginnt mit Wagenrücklauf und Zeilenvorschub.
RFORUS

Zzito, ’00, "maopsı Auen tP143 sOrSISNERG, "00, "025 1 F145

FFORMg

2=#YTC, "00, "0AOD5 IF
un

IF1a EIBWDRD, "00, 025 17148

’

FIRS

2=#UTC,’00,TOAODSIEI4E
S'$NDRD, "00, "4051 145
FIEXTS

Z=#UTC, 00, '0AODSIFIAS
LDC 42,05 15148

sat CHARLI-1 CHAR1S$

TEXT U N
CHARLL!F7S
2:00: WTA, "00,120, "425 1145

Z=RADC "425 17148
BNEC» "42, 114,21005 1F14$

FBIT$S

SEHNTCH 00, 'DANDSIFI4S
2=H/HR, 00, 03517148

; 2Z=#/RR1 00, '025 17148

FCLOS

FFORMS

A=S#HUTCHTOOS"SEC"HIFIAS
5

FDURS

FCLOS
$

Ausgabe der im Skkumulator stehenden

Gleitkommazahl.

Ausgabe der im Akkumulator stehenden

Ganzzahl.

Ausgabe einer im Indexregister stehen-'

den Ganzzahl.'‘

Ausgabe von Text. Der der Anfanssad-

resse entsprechende Name ist unter

CHARl im STAGE 2 - Speicher abgelest.

Ausgabe der Bitkette im Akkumulator.

Ausgabe einer im Akkumulator stehen-

den GLC- bzw. DUR-Größe in Sekunden.

-108-

4, Zusammenfassung

en In dieser Arbeit wurde dor von der ASKE zur Überscetmung

von CIKIC/1 in die Assembler Sor&che eines Zielvechners

pexiählte Kacroübersetzer STAGE 2 untersucht.

Beine Eirenscheiten sind in Abschritv 2.3 nıch /1/ auslöhnlich

beschrieben und konnten ar Tänd von Anzerdunrgsbeisplelen mil

ciner FÜRTARLE-Yersion des Übersetzers uf der OEI 6600 besuntizt

werden. Er hot sich hierbei herauszestellt, Ca9 der Nerraüber-

setzer 324332 die in Ahschritt 3.2 zusemenzustellten Fordamun

gen an einen Übersetzer weitgehend erfüllt und dureh Toast ein-

prasrenmierte übersetzerfunkbionen und Perancterunfornung eus“

reichen‘ viele Mglichkeiten zur Codeoptimierung bin ob. .

Der Verzleich mit anderen Kuacroübersetzern in Abschuitt 2.5 zeizt 0 Abschnitt .n 501305

de? der STAIE 2 von den daxrb betrachteten Übersetzere vezen sei-

ner Sprachunsbhängiskeit, seiner Bemutzerfreundlichkeit und vor v

allem wegen seiner Fortabilität am ehesten zut Übersetzung von

CL:SIS/1l in Assemblercode in Frage kommt. Unbefriedisgend bei.

diesen Verzleich und bei im Rahmen dieser Arbeit aurchze=-

führten Rechenzeituntersuchungen war, daß keine anderen

auf der ODO 6500 lauffähigen Übersetzer vorlagen, soda? keine

Aus sagen über Rechenzeit- urd Speichorbedarf des STITE 2 in VEr-

gleich zu diesen gemacht werden konnten.

kus den in Abschnitt 2.5 zusamzengestellten Ergebnissen von Recher-

zeituntersuchungen ergaben sich Ankaltspurkte für die bezüslich

Rechenzeit optimale Erstellung eines Codegenerators mit dem STuGE £

unrd Ri ehtwerte für den Rechenzeitbedarf von Übersetzungen.

Der in abschnitt 3 beschriebene Macroteil eines Codezgencrators

zur Übersetzuns von CIEIC/1L-Progrannen in Assenblercode wurde

auf der CDS 6500 mit einem Testprograrn zur Natvizenmultiplik

tion überprüft (siehe Anhang). Allerdings isb der hierbei ahze Mom 7
Ann

-109-

‘

-ebzte Code noch nicht optimal und enthält zum Teil noch über-

flüssige Anweisungen, die z.B. durch einen Optimierungslauf be-

seitigt werden könnten. Zur Übersetzung von Programmen mit einen

Solchen Codegenerator direkt auf einem Kleinrechner mu3 ver-

Sucht werden, den STAGE 2 ebenfalls in den Assemblercode des
jeweiligen Rechners zu übersetzen, da die FORTRAN-Version einen

für diese Rechnerklasse unerträglichen Aufwand an Rechenzeit und

Speicherplatz erfordet.

-110-

LITERATURVERZEICHNIS:

/1/

/2/

/3/

7/4]

/3/

/5/

/7/

/8/

/W

/10/

/11/

2.0. Poole, W.i. Waite. The STATE 2 Necronrocessor

user Reference Wamal.

M.T. NcIlroy. Macro extensions of vonniler languazes.

Somm. Adi. 3 (April, 1950).

M.I. Halpern. XPOP: a metalanguage without meta-

physics. Proc. AFI?S 1954 Fall Joint

SDomputer Conference, Vol. 25, p- 57.

5%. Strachey. A general purpose macrogenerator.

Somnuter J., 8 (October, 1455) ». 25.

C.F. kooers. TFAC, sa procedure-deseribting lanzusze

for the reactive tyne writer. Conr. 40,

4 (March, 1966) p. 215.

W.M. Waite. A language-independent macro „rocessor.

Comm. ACH, 10 (duly, 14°7).

?.J. Brown. Ihe :iII/I macro npnrocessar. Torw. ACı,

1C (Oetober, 1967) ». Sl.

R.d. Orzass, W.&. Waite. A base for zobile

prosramminz system. Gonm. Au, 12

(September, 196%) n. 507.

[AP

R.E. Griswöold, I.?. Folensky. Strirz pattern

matching in the prosram -irg lar usgse

SEIBCL. Unveröfftentlicrv.

P.T. Brown. #L/I user's manual. Uriversity Netı.

L2st, Gambricze, Enziand, July 1969.

siemens 35), Benutzerhandbuch.

-111-

/12/ 8.-n. Worm. Makro-Generator System für EPR 1100.

Krupp Atlas-Elektronik, Brennen Juli 197%.

/13/ D. Gries. Compiler construction for digital

computers. Cornell University.

(John Wiley & Sons, Inc., Kew York).

/14/ ASMG-interne Notiz: CIWIC/1 vom Juli 1974.

/15/ KSWS-interne Notiz: PEARL-Subset für die erste
Entwicklungsstufe. (30. 95. 1974).

/16/ M. Alt. Beschreibung der Code-Erzeu:ung für den

Prozeßrechner AEG 60-10 aus der Prozeß-

recrnersprache PEARL.

ASWE-Bericht vom 3. 159. 1974.

/17/ DIETZ 621, Hardbuch 4/74.

/18/ J. Brandes, S. Eichentopf, P.,Elzer, L. Frevert,

V. Haase, H. Mittendorf, 5%. Müller, P.

Rieder. PkARL, the concenat of a process-

and experiment-oriented prozrammins lan-

guage. Elektronische Datenvererbeitung,

Hett 10/1970

/193/ B. Eichenauer, V. Haase, P. Holleczek, K. Kreuter,

G. Nüller. P&sARL, eire proze?- und

exneriizentierte Programmiersprache.

Anzewandte Informatik 9/73.

-112-

Anhang I: PIMRL - Testprosramn (matrizenmultiplikation)

ru arı
“tu. de

yet erıten Y
PaZOX PER Zr

mu.
mir ”

Km FL

Au)

251)

(120)

Cs)

Pe

..
z

V
I
I

a
n

N

o
e

nn

—

_ w&

14

15

un

\ I: Su

2
m

n
o
m

u

“2

9
“r
zZ

rn -
2.0 Ss

SILGRT

SLONRTS
mean
“besdda

m.

in2Ds

IERLSNIERtSLDIERCI
m/f.

SAT IST
LUIT

SLIL)

IL Clles les 1ie,

Inu ClesCle2S3e)3

REN 0 m” ’

1) i3e>» 00),

en | 3.

Anhanz IT: Macroteil

LIRIO (4-87)
t yon 18
IF3$
s
SKIP ıs
1748
ß

IF ti = 8 SKIp 18
17508
s
IFANE RE SKIP 18
IFS1$
;

IF! RODAL 8 SKIP 18
IFEOt
s
IF GT N SKIP 18

„Irc+s

»

s

terra ııat 8

IF 130 = D SKIP 2$
11041301120, 1405 1F148

SKIP 38
IE !50 NE HILF SKIP 18

I51156$

1190130, 120, 505 F14$

8
tiRrFıi2t ot 3

HOFFEN
HILFISES

1100130, 120, 1515 1 F145

s
tRINMEME .
IF t2ı NR SKIF 18

BITtzet
nortzıtıcı
HILF FOU t148

$
PECHARULIMFRS
HoRtzor1es
HILF FOU 1108
s
IMENS
HILF Fau H118
s
CHAHLEINMEMS
HILF KOU !108
ß

KITELIMENMS
HILF FOU 28,
s
YEREFRI2 FO $

110A130.120, 3403 1148

8
yo REF 12 t0)+ e

H10At30.70, 140,405 8F14$

-114-

PVIRRFI? EHEN $
t50Or ERS
ID ’AARFFIP DO OAHITE SS

110A230, 120, 140 YAPr Ela
$
PURRFIZ IE NEN s
15OREMS
LD 'A2 EEFI2D GO) AHILE SS

P=RADR AP, NAanstpjat
1104130, 170, a0 ,"a2sıyıas

$
LVODENL 8
NOO@HFF 12 D 130 $
$

PODE RFAL I $
NYOGCHhLFAI2C 120 €
$
I KODR CTLO IC A drtıı 5
FYALDUE I30F3C00+1ANSCO+tA0S
110 & KEF 12 D 1201) A STACKDER 8
—.
STI 1$S
STORE 1108 -
t

EVALRDDR 18
STACKDUR FOU 1148.
ß . .

I FOBE RIED TE,
KIEL Eou 1208
10 @ EEFA2D ISO. £
eo -
I BODE DIR ADD ALS
BÜRATION 1508
!10 @ REF 12 D 1201) A STACKDUR
& .

BUNATION ThRSS
EVALDUR 110836008
3
DURATION IRRS HIN
FVALDUK 1I0F3C00+120°C08
t
DUKATION ERS SECHS
FYALDER 1107360041208
&

DURATION tERS teiy ISEc$
FYALDUR 1LO®3EON+ROREO+ISNS
$

DURATION HIN
EVALDUR 1IOREOS
s

DURATION tRIN 15208

FVALDUR 110°E0+1208
s

DURATION !SYot
FVALDER 8108
; .

MODE BITEID IC A ktepı $
RITL FOU 1708
KULLSPIZEN 10T

RRFAK BITLIST 940 17-1208
BREAK NIEJA BI 2 ES Raums bG R7 Npena 210 J11 Kizelis H14 715 Kies
STORE BEFIA El 52 33 Bat

"10 HFF 125 IS000 A hILY2 8
8

NUELSETZEN 18

1 EoU 08
1101778

Bl+1 EOA 08
For
ß

RI EOA 18
Bt1a Kol 1208

. -115-

I EOU 1148
s

BREAK BITLIST 8 1$
I EQu 1248
1101178
BI+l FCA 1108
tFes
;

BREAK HEXA 18
I Füu 08
t1011783
HEXAFFML 1108
IF8$
$

HEXANEKL EI 0 68
HEXAMFFZ 1111 211318418
s

BEXANFFZ 18
BI#+1 EOA t118
$

STORE ERYA Et 0 18
HILFZ EGU "111211311418
ß

LOAD ı 1 48
LED MODE 110 130 $
s

LOAD CHARtII I 10) 5

NULL EcuU 08
CHARL1 EOU 1208
CHARL Eot 1308
%

STORE LE 18
ST MODE 10 !30 8
:

STORE RFAL ! ic I 8
UFWANDLUNG IST ERALS
ST@ERFFI12G 120 $

$
UMWANDELUNG INT HEALS

LDR»'04, "033 1 F148

LDC»’05,0: 17148

ANC,» OL» BOSIFI48

ANC +03, 785 8 F14$

ß .

STORE I! IE EC KEAL $

UMWANDLUNG REAL INT$

ST@kEF ı2D 130 58

: .

UMWANDLUNG REAL INT$

STRG AM !A23 1 F1AS

ABSEF148

SBEC MO," 7FFFSIFIAS

BNP»'055 ‚2200: 1F14$

Z=ANTO 00, DAODSLFI4S

2E=RUTAr00,FiRLE I FIG

JIPAr ‚ENDESIF1AS

zr00: LOhG @, a2; 1 F3a8
ITsIF14$

$
st I tr ıcth 5

ST@RFEF12D !30 3

‘

px Int t 18

LD ‘40 KEF 12 D 120 s

s

sm mr

st 's0 hEF 12 D 120 ß

s
ABS KFAL 8

ABIIFIAS

$
ARS INT s

BP,*03, s2H00S 1 148°
NEG INT s
21003 NAPStFIAs
‘

NFEG REAT 5

ADESNOAN POS -
ß

SEG INT 8

VORZEICHENUPKERR &s
s

VORZEICHENUNKEHR 48

2=#5170,110, 00013 1F14$
@<EOCs 110, FF IFIAS

°

mir
AD FODE 110 !30 $
s

sub ı 1 65
SR MODE 110 tan &
s

KpyYve as
MP NODE 110 !30 $

IF II NE 2 SKIP 7%

A=SHSTR OÖ, MEI FIAS

4=HSEC 5, PhKS IF14$

BNP,'05, ‚21005 17138
2=EBRETCHN00HYOAONSIFIAS
ZE=FSTAr 00» ER1S I PIZ

JPAr sENDESSFIAS
2100: 4=FLDR@, "946 1 F145

ORKR» 03, 055 1145
5

pivıvıs
DV MODE 110 130 $
IF II NE 2 SKIF 38

BP+'05> 210051 145 -
2=rrlios 041

21002 LDRD,O,'OSSIFIAS
s

EXP REAL ! 85
FO MODE REAL 120 8
%
EXP ii tt
UMKANDLUSG INT KFALS

SseRSTRı@ "A251 8148
LD MODE !10 130 £
UMFANDLUNG INT RRALS
ST KODE 110 130 $
BO FODE RFAL 130 $
UPGANDLIIG KEAL INTE

s

4D2 117 0 185

AD '40 REF 12 D !20 $
‘

SBX INT I 1$
SB 'AO KEF 12 D 120 $
8

MPX IST I 18

4=RSsTRıa, Apr iyjas
Z=eHLDRSEr tA0S I F1A$

PPY INT 110 1708

PSRSTRE,TADSIFIAE
4=HLDR2 !A2S 17148

%
ADDAX INT s

2=#HADR»!A01 025 1148
$
NOT BITIN s

2<?FOCH@, " FFSIFISS
s .
ıNhDdDiıIıı &$
AN HODE tıo Ia0 $

S116-

-117-

8

OR MODE 110 150 5

FOR gg

EO MODE 110 130 $
s
SHIFT INT 5
ID a2 REF 12 D 130 $

FP,*43 10051 VORZEICHFRUNKEHR a
2101: 2<USR0.@strjas

ZZ#SPO
a2, 1317148

S<EBNZı'A2, ‚z1013 17148

JPA, „21033 1F148
2100: 2<uspo,äsıpıas

Z=EHSyo,tap,ıstr1as
A<HRNZ, A 1005 114

2105: NOPHIFIaS TO

RBIT INT er 8
LD "ap REF 12 D 150 $
2100: BEC,'A2,1, 210151 F145

Z=RSkc,ta2, 1517143
ZERSHO DS IFIAS
JPAr ‚2800517148

zo: NOPSIFIAR \

EBIT IST 8
LD 'aa RFF 12 D 150 8
2100: 2<#B27,'42, ‚ztorzirias

2Q=RSPO,tA2, 1517148
Z<UStc,&sthras
JPAr 200, I FA

z101: NOP:EFIMS

conc RBITery oe 8
IF MO+RITL GT 16 SKIP 56
LD '42 REF 12 D 130 $
1101F78

Z<#SL0,@: 1 F148
IFB$

Z=RORR @s tA25 1 F148
SKIP 38

2=#11C0,°00, "OAODE!FIAE
ZB=HUTA, "OD »ER2STFI14E
JPAs „ENDESTF1AS

$ -

CoNc CHARITE I OD 6
CHAK2 EQU 1308
CHARL2 FOU 1108
s
STORR CHAKLOI E 10) 8

4<?21D0, 42,05 1F148
CHARL1IF7S
MEMORYCH CHARI 130 '428
I F8$
CHARLZ!F?S
MEMORYCH CHAU? 130 "448

ZeuADC,’44 151 F14$
IFaS
s
MEMORYCH I 8 8

LDA1@,110,1305 1FjAa5

STAr@, 170, 423 1 F1A8

ZeRADE "4215 8148

‘

cHPp REAL I

SB MODE RFAL !20 s

3«22710% »2100: tF148

LDR»@,'04 5 1 Fi48

OR @, 015 1F14$

-118-

2100: NOP;1FIAS
s
ci $
SR MONE 110 130 s

Z<ER7Z IE, » zEOOS EF1AS

LORD OSSIFIGS
ORG HEH N O1S I F1A$

200: NOPsStF14S$
$

cmPp RITEII 5
FO BODF (ty H Lj

ORR»@, 035 17148
s

GRP CHAR) Lt 85
IF t10 EQUAL CHAkLı SKIP 28

LIE Dr15 17148

SKIP 25

A<PLDC, "AAO IP148
COPPCHAR CHAR1 130 1038
$

COMPCHAR I 1 88

21015 LDAs@s 1111 '44 5 17148
LDAr '#2,120, 443 15148

EOM@,'a2sı 148
NFATOH »ZI00S IFJA8
Z=RINECH'AA NEO ZOG FIAS

Z100: NOFSEF148
‘

IPAsI INSTR CODR It) 8
JPA, st105 17148

‘
IPA ADDR CODE !0) 8

' 2=?LDA, "42, 1105 I 7145
JPXs r’a2sır14$

ß

IPA ADDR CODE tt) &

. =? LA NA2, 10H IFIat
t20KEr

FIX OFFSET MILES
JPY ‚rarstyıas

3 x

FIX OFFSET 16
PILZINARLPIEBEERF STE

$
JPA ADDR CODE !+ $

=? LDAr "42, 1105 1 Fla$
2=EADR, 42, !A0sIF1d$
JPX%r s’a2sıF1a$

$
IPA ADDR CODE ItU)+ $

2=PLDAN AZ, 1105 17148
tZ0RE$
FIX OFESPT kILFE

Z=FADR,tA2,TAOSFIAS
JPXr „'azsıFıa$

s

JEpt 8

JPAI1O 8
g

JEOl $

‘ BNZ:@, »ZzI00s 1F14$
JPANIO $
71002 NOPSIF1AS
‘

Jar 8
EYAICH »2100s 17148

Jpatı0 8%

21002 NOPSIFIAR
ß
JCHt $

BHP Ds „ZI00r tF14$
JpAaN1O 8

en -119-

2100: NOPsIFIAS
;
JERE 8

BPı@, »21005 1145

JPAlıO $

2101: NOPzIF14$
JEOIID $
$

JETt $

BNPı®O, 21003 17148
BZ1ı@, 200, 1 Fi4$

JPANIO 8
2100: NOPFTF14$
8

JLTE 8

BPıO» »2:00; 17148

JPAIIO 8
21002 NOPsIFIAE
$

LOG It) 8
IF148 -

11111: NOPss
ß

SPACE t CONST 8
$

SPACE tr I) 8
IF HI ER SKIP 18
BITIIGE
130: tI1@Vstr1as
s
SPACR CHARLHI Et) 8
1302 110BV5IF148
8
SPACE INT I It) A 18
IF t10 = ELEM SKIP 28
120: 1268
SKIP 18

1268
120 2uD,Isastr1as
;
SPACE INT IE IOV BE 18
I30NEMS$
SPACE INT !10 1200) A KILFS
s
SPACE REAL I II) A 18
IF 110 = RLEM SKIP 28
120:1268
SKIP 18 *

1268
120 G113051F148
$

SPACR CHAR! I OD A 86
IF 120 = RLEM SKIP 28
130:1368$
SKIP 18

1368
30 110R7 "AO" I F148

SPACR CLO I NE) A fetztt
s
EVALDUR 130#3600+140*60+1508
CLOSPACRK !10 120 STACKDURE
s
crospach I ti $
IF 110 = ELEM SKIP 28
120:126$
SKIP 18

1268
120 ZeDs1315tF148$
DURTFST EOU 18
s
SPACE DUR I IOI A HS
DURATION 1308

-120-

gwsraon 110 120 STACKDURS

SPACE RITLYI EEE) A Propis
NULLSETZEN 168
BRPEAK BITLIST 140 17-1108
BREAK hEXA Kl B2 33 R42B5 BER? RR®BO BIO Bil B12®B13 14 515 BI6S
SPACE HFYA 120 150 R1 B2 33 has
RITTEST FOU 1%
s
SPACR TEXA LIE 8 8
IF 10 = ELEN SKIP 28
120:1268
SKIP 18

1268
120. ZEN," IZ1HA1NE11E15 1 F148
$ »

SPACE EI HIN) 5
LAOHENS
FIELDSPACH 110 !30 HILFS
$
FIELDSPACR #8 18
IF 110 = BLFM SKIP 28
120:1268

15

SKIP 18
1268 °

120 Z18Vs 1F14$
&

SPACE tb tem) A
DURTEST ECU 05
BITTEST EOU 03
t401F75
IF DURTEST EQUAL 0 SKIP 28

CIOSPACE !20 !30 STACKDURS
SKIP 58
IF BITIEST FOUAL 0 SKIP 28

SPACE HRXA 120 150 E1 BZ 233 148
SKiP 2$
SPACE t10 120 !300) A 1608

ELEMI2G$

IF8$
s

SPACR I t IE N)+ $
FFLD EOU 1308
FFL FOU 1208
$

SFACR I (HD &
KE#MFELDO 110 FEL FELD 1308
FELD ECU Fe
FFEL EOU ELEFS
g

MEMFFELDO I I 0 88
SPACE t10 !2ı I31lta0) &

ß
SPACE I UF A US
MEMFFLDI 110 FEL FELD 130 !40 1505

FELD EOU 8

FEL EOU RLEMS
ß

MEMFELDI DE EEE NS
SPACE 110 t21 !3rltao#t5ol A 1608

$
SPACE I Et temtı E tEi 8

IF !Gı NE SKIP 18
BITIERS
t50#rIc1156$
MEMERLDI 110 FEL FELD 130 140 1548

FELD FOU s
FEL EOU ELEMS
%
SPACE ADDR I It) 5
FELD EOU 1208
FEL EOU ADDRE

-121-

urach ADDR CC) A 08
ENADDR FEL FELD 12

FELD Fau s m
FEL EGU ELEMS
°.

MEMADDR 8 0 15
IP 110 = ELEM SKIP 25
121:1268$
SKIP 15

t2686
jo ZRA,T3OSEF14S

EFORMS

2Z=#FUTC, 00, 0AODS IFI14$
„OrSTENERG,TOD, "0251 F146

FFORNS
Z=HUTC,"00, "OAODEIFI4S

SHSEDRD. 00, 02517198

FIRS

2=RET0,'00s 0OAODSIF14$
GISWDRD,'00, "40H 1 FI4$
®

FTEXTS

Z=PETC, 00, "0AODStFIAS
LDC,'A2,05 7148

TEXT CHARLI-1 CHARIS
8

TAT Tr HR
CHAKLIIFTS
“2100: WTA»'00,120, 425 7143

Z=#rAns 42; 114
BNEC»'42,114,21003 1F148

s
„FBITS

=#XTC,°00,°0AODSIFI48
2=®uhl, "00, "083 1P14$

; Z=®WRR, 00, "025 1F148

FCLOS
FFORMS

; 4=#UTCH"OO,"SPC"5EF1AS

FDURS
FCLO$
$.

START 100 8
ANF FOU 1108
0000 FOU 085
0001 Fou 18
0010 Fou 25
0011 Fou 36
0100 Rau 4$
0101 Rau 5$
0110 EoU 68
0111 Fau 75
1000 FOU &$
1001 Rau 98
1010 Fat AS
1011 Fou Bs
1100 EQU C$
1101 EoU DS
1110 FOU FE
111 EoU rs
INT FOU 28
CLo kou 28
DUR Fau 2$
BIT RQU 28
REAL FOU 43

Er 0,'40005 1148

-122-

‘

t651L:@, 11051148
t10: SRCD +8, 1105 1F145

PRK: 4R0,N00007FEFSIF148
ER1: ZERTS"FFERLERS INTe-ZAHL ZU GROSS#"31F14$
ER2: ZURTATHRFENLERE BITKETTEN ZU BAIGHMSEFIAS

‘
ver
1120517148
$

LINE 18
+ LINE 1105 1F148
$.

18 ’

DIR FOLGENDE ZEILE WURDE NICHT ERKANNT. ET14$
11017148
s
LINK TASK MODUL IC) $

NOFS !F148

$
BEGIN TASK MODUL EI)

NOP:IF148
‘

LEVEL 15

8 -

TERM TASK FODUL It) &
NOPS IF14$

5
END TASK MODUL EN) $ ”

NOP;IFI4S
$
FINISB I0 &
END ANFS
$.

END 18
ENDE 2 HITS FIR

JbAs stiilstr1at
zs:F14$
trbs
s$

ea

STAHT MAMI) SS
SPACH INT COSSt TEGACO E REALS

SPACE 117 Goyst IKeit) A 28

SPACE INT CONSY IFSPE) RS

SPACE INT COSSY IKEREI A 18

SPACH REAL CONST KSOLUDI A 118

SPACE YEAL CONST KOOet) A 215

SPACE REAL COSST KO) A 1268
SPACH KRATL CONST KOIGUF A 228

SPACH REAL CONST KOPIE A 13-5
SPAUR ENAL CONST KOnet) A 2543

SPACE KTAL OCNST KOSIEI A 1

SPACR KEAL CONST KISS) A Art

SPACH KEAL GONST KOSOO) A +5

SFPACH IE CONST KORS0) A 23

SPACE INT CONST KösslO) A553

SPACF INT CONST KOASUOI A 15

SPACE RRAT CONST Kuü5zU) A Ost

LINE 58

LINE as
RFGIN TASK MODUL NO100)

LEVEL 18

SPACH REAL LOCAL NOOLISPREATL)

SPACK REAL LOCAT NOOZISFEFATI

SPACE KEAL LOCAL NOOSERFUTAL)I

SPACE INT LOCAL NOVAaU)
SPACH INT LOCAL NOGARU)
SPACE INT LOCAL NONCO
SFACE INT LOCAL NOOTU)

SPACE INT LOCAL NOORU)
SPACE IP LOCAL K0O09SU)
LINK TASK NOLUL NO100)

LOAD REAL, CONST KOOJE) A 118

STORE KEAL LOCAL 10010 53

LOAD REAL ceisy KOOcOl A 21+$

STORE HRAL LOCAL NOOILIFREAL)

LOAD REAL CONST KO1I 0) A 12»

STORE KRAL TOCAL NOOLLZFREATI

LOAD REAL CONST KOISEI A ZU

STORF'RFAL LOCAL NOOLIS*ERAL)

LOAD REAL CONST KOZi1U) A 15+5

STORE KEAL LOCAL NUOLIAFRFAL)

LINE 5
LOAD REAL CONST Knast) A 23.5

STORE KEAL LOCAL NOOLISFREAL)

LOAD REAL CONST KO310) A 1+8

STORE REAL TOCAL N00?U)

LOAN REAL CONST KOSSU) A 2e$

STORE REAL LOCAL NOOZLIFREALI

LINE 6
LINE 7
LOAD REAL CONST KÜOSOL) A Seb

STORE REAL TOCATL NOOPLZFREAL)

LOAD INT CONST KOASU)I A 28

STN INT LOCAL 0070) 8

SINN INT LOCAL NaoBU) 5

STOORR INT LocAL Mooot)
LIINE B$

R
T

re

Ve
r

m;

u \ u \ -123-

m
n
 <

<
1e
r

Anhang _IIT: “CIMIC/I - Testprogramm (Matrizenmul tiplikation)

-124-

LINE Los
LOAD INT CONST IKESC) A 18
100 B001l) ©
STN INT LOCAL NOS) $
CHP INT LOCAL NO0rI) $
JCT»1 INSTE CODE 10020)
LINE 118
LOAD INT CONST IKESEI A 18
LOT Loost) $
STY INT LOCHL SOOct) 8
CKP INT LGCAL N0090) 8
IGT»I INSTR CODK LO0AU) $
LINE 128
LIX INT LOCAL NOOSU0) 8
LOAD INT LOCAL NOOSU) 8
MPY INT CONST IKEIU) A 28
ADDAX INT $
SEX INT CONST TIKSIC) A 28
KPX INT CONST IEOAUI FE REALS
LOAD REAL CONST KOS2U) A 0.8
STORE REAL LOCAL NOOSI-1LFRRALI+ $
LINE 158 .
LOAD INT CONST IKBBU) A 18$
LOC Loos) 3

8

STN INT LOCAL N0040) $
CHp INT LOCAL Noast) 3
ICT,I INSTR CODE Love)
‚LINE 148
LDX INT LOCAL Noost) 8
LOAD INT LOCAL N004 0) $
MPY INT CONST IKB1U) A 28

‚ADDAX DIT $
"SBX INT CENST IKBILI A 28
MEX INT CONST IFEOAU) R REANS
LOAD REAL LOCAL NOOLI-LEREALI+ 8
STORE KEAL LOCAL KO00U) $
LDX INT LOCAL N0040) $
LOAD INT LOCAL NOOSt) $
MPY INT CONST IKEZU) A 38
ADDAX INW $
SBX INT'CONST IKEZI) A 38
MPX INT CONST IROA() E REALS
LOAD REAL LOCAL KGGO0) 8
MPY REAL LOCAL NUOZL-1ERRALI+ 8
STORF BEAT, TOCAL KOOOLLEREAL) 8
LDX INT LOCAL N0OSt) 8
LOAD INT LOCAL MOOS) 8
MPY INT CONST IKAIU) A 28
ADDAX I® s
SBX INT CONST IKELC) A 28
MEX TUT CONST IEOAUI E KEATS
LOAD REAL LOCAL NOOSC-1EREANI+ 8
ARD REAT, LOCAL KODOLAARFALI 8
STORE KEAL LOCAL ROCOL2FRBALI 8

-125-

EDX INT LOSAL NO050) 5
LOAD INT LOCAL Node) 8
MEY INT CONST IKRIU) A 28
ADDAX INT 5
SEX INT CONST IKBIEI A 28
MPX INT CONST IEOAU) E RFALS
LOAD RRAT. LOCAL KOOOLPFREALI 8
STORE REAL LOSAL NDOS-1®RFATIT
LOAD INT LOCAL N00a0) 8
ADD INT CONST TKEBO A
JMPıI INSTH copE Wwost) 8
LOC 10061) $
LINE 158
LOAD INT noCAL yoact) 5
ADD INT CONST IKBSCH A U
JMPsT INSTR GORE LOOSO) 5
LOet 100411 8
LINE 168 ;
LOAD INT LocAL NooO50) 8

ADD INT CONst IKBSU) A 18

IMP,»T INSTR CODE LOOIU) 8

LOC 1mo2t) 8
BINE #178
LINE Rs"
LOAD REAL LOCAL NO030) 5

RFORMS
LOAD REAL LOCAL NOODSIEREAL)

EFORMS
LOAD REAL LOCAL NOOSTZERFRL) 5

EFORMS
TERM TASK KODUT No100l $

- SPACE KEAL LOCAL ROOOLSFREALI 8

END TASK MODUL NC100) 8

FINISH KATHUO 8
LINE 198

SEITE SEGO Anhang IV: Testprogramm zur Matrizenmultiplikation

Q „ranen : in Assemblercode.
CSL „€ INT

66
Sul ' .

EBC2 WRTILE . SEC ES uf T,
392 :
* So

04

Ko

ke

gi PEK 3: ir Q . NETF3

WON Ei. 0 EE8& T s SERLERG INT.-ZAUL ZU 61055: 203

65605 Er2 20 Roc T „ FEHLET: LITSETTEN ZU LANGEN

"EHEG IEGZ: ck D . 43

1307 Inch: 2 D 5 23

FACD RUÜS? ex D > er

HIGD 111039: es D > 1;

eI1E nools G ll}

511 NEOOS G „else;

EGAL \ Kell: G „iEes

€515 xö16: G „22.3

CArA sel: G „130

ELLE NERO: G „ale,

316 KESl: G „ler:

6517 KESS: G »2e35

CHILE NECGE G >33

ec1e kat en D . 25

NET kcAaoe Eu D > 35

ce2] KA: 2: D > 13

322 K552: G Be};

ERS /
LINT 3

LHOL /

S
u
r
 2 oO

TG

“e
o

EG2 3
6932: NEBlE Du V 3
£527 "NCS2: Du V 3
aGPpE NEnNS: EV 3
562% NSGA: En
BESE RLAUGE 2x VW 3 \
BE21 "NAG6: or V 3
E32 NSET: ex U 3
ES% NEGE: mV 3
E34 NE99: 2x V 3
GUEE NOP 3
E36 LDAG> € „KESI 5
653537 STAG, € REEL 3
5538 LDAG> © sKREG 3

0,32 . LICD, '42 s 43

EL STAG>C „NZSl »"'4235
1.541 LLAG,C Keil 3
FGAL LDCD, 42 5 85
05 STAG,C NS >42 53

BGH .DAG, C „KR16 5
EeAS LICH, 'A2 5 125
SEAG STAG,O „NSEL „42 3
5047 LEAG,C sNE2L 3
Dat LOCL, !'22 5 165
zenc STLSSL „USE star
ryS5r /

LINZ 55
rn51 LEASC „KCEG 3
552 LOCH 42» 2635
HESS STAG,C sn sr AR 3
1254 LING, sKISI 3
zese STRG,E BJEO2 3
ESG LENG> EC ‚1255 ;

5957 LECD, '42 > 43
NBESU Zu STRGSL NMoeeB sta2 5
NS /

SEITE Gegı
J 2

L269 Va -127-

. LINE 73
6261 LDAG,SG sKB2I 5
162 LDOCD, 'a2 83
6263 STAG>C .UGE2 »'42
ae LDCue , 25

6 STADE .NGR6 3
Lan STADE .NGES 35
26.57 STAD,E »DNERh 5
VWVoo /

LINE 85
06569 /

LINE 95
6576 /

LINE 195
8c71 LDICDEC 15
8672 LSSl: WOP 3
6973 STAL,C .NEBS 5
ee7 a SBADE .»NGBA 5
6=75 D<HEZ se >» „Zi
8576 LDR sc »'93 53
8677 Zi: HOP 5
6878 ENP »E8 > „22
6279 ° BZ se» „22
6385 JPN >» ‚LEG2 5
LEE 22: NOP 3
E82 /

LINE 115
2663 LECD,C >» 1;
zERa . 1883: NOP 3
BT3S STAD € „NB69 3
G68G SBAD>C »NSB6 3
6687 DExMZ >68 > ‚293
ELBE - LDR se »'03 73
EG89 23 : NOP 3
6595 ENP „E s „Zu

EB. DZ oo »G > „zu
E92 JPA » ‚Lepa 5
0393 Zu 8. NOP 5

uuyA /

LINE 125
6995 . LDAD, 'AR »NGEE 5
9396 LDADE >»NEBO 5
6207 MHPCD,C R 85

E698 uUex&SBC „se >»PPX 3
2399 hassIen ,„02 0 »'46 53
SIEGE ENP „55 5 25
BIS. S=KWUTC „'ÜG „'BAGD 3

gıs2 DR=KUTA "86 „ER ;
G163 JPA >» „ENDE 3
E194A 25 : U=8LDR „GC „ "46 3

9165 0nn „33 "053
196 Bean „tan s 82 53
2167 SEC "An 5 23
EICH wenSTE „C „rär ’

. E169 BesLIn yaE oo »tan 93
gli NPCDE 5 45
ill WasSuc se »PFKR 3

Gil 4U=SHSTN »C "46 ’

all3 ENP „95 > „26
grla 2a TO „SR ST BRGD 3

&@115 2gznllTa „ICE „EN 3
g1l6 JPA » ENDE 3
6117 26: MaRLDE su >03

“.

us

4

”
u
s

%s

K
s

u.

“e
o

SLITE 5662

El1B,
g119
EI2E
Sı1E1
6122
G123
9124
5125

2125

2127

RI2E

B1E2O

G13C

eisSl

61352

5123

G134A

2135

c136

137

GLSE

2139

ErLaf

eıal

Ej42

E43

GI4d

Z}4s .

glas

2147

KIA

E149 .
G155
8151
7152
61535
3154

c155
2156
5157
"H15&
5150
"616%
G161
5160
A165
H1684

2165
ish
107

168
3169
G170G

sıl7l
#172

5173

9174

©1175

O17G
177

ORT

2S=ASTE »6

4=sLLINn „€

LDAG>G

LOCD,'A2

D=EHNINn „'42

STAG,C

„583

/

LIGSE 155

LECL,C

NER 5

STALL, U

LEGES5:

SEADG

a<sklz »€

LION „&®

27: OR 3

DI „ec

SZ »G6
. PA»

zE 5: NOP 3

LINE 125
LDAD ne

ran

LEIADE

UPON,

u=xSEc „E

u=sxsTT €

ENWNP „'‘55

2=EHUTC „ '!0Z

2B=HUTA „'568

JPA »

29 ; A=&LDR €

ORR "893

SErADR „Y49

SECD, *A4E

«STAR

LER

EPCD,

=xSBC

STR

EMP

=+VUTC

=HUTA

JPA

=*_LDR

OER

STR

=sLDR

LECL,

NED. !

s

D
a
m
.

D
a

A
L
L

LDAGS,E

STAG,L

LER, AC

LEAD, C

UPC, C

uexsSEC „LC

U=:STR sc

SUP „15

2=m1!TC „ 'TC

28=HUTR 2'505

JPA »

zii: 4=sLDR „U
DOFR » "53

B=HNADR „2 '48

-128-

.„'55

„tab

„ram

„u6h2

E

„räuß

„ICE De 72 3

„1.567

„1695

>

„'83

-’
J

>
3
9

S
a
n

=
eo

b
e

ie

V
o

Y
o

k
n

K
r

'5AGD

„ERl

„ENDE

„'uo

»'65

„'ce

- -

k
a

t
e

v
o

v
e

W
e

u
s

J

ke

be

u
be

be

un

be

Gr

>

Ge

us

be

he

D

">

a

hs

ko

ke

>

1
Ve

ke

be

ke

hs

k
e

b
a

b
e

w
o

v
e

k
e

u

W
e

b
e

h
o

b
e

"ao

‚42

zıiı

“a

%
e

er
We

“e
o

w
e

v

.

wet yon

6188:
glel...
2182
81893
8184

8185
186
0187
BIGS

EIE9

C195

“ı91
6192

6193

6194

E195

2196

2107

2198

8199

GE6Y
g2e1

seca

D
o

I
I
I

O
D

D
n
u
a
n
m
n
m
r
o
n

0

D
ı
Y
M
I
a
m

m

IV
O

on

27
 >

7

SECD, '49

4ensn „oo

2==LLR ‚€

HPCD,@

4=xSBC ,@

4LExSTR „©

BNP „'65

ZERUTC „'00

2S=EHUTA „'E0

JrA

A=%LDT

OFR

KSTN

LER „0

LDAG,€

LECE, 1242

«ALT „42

.EPNG,E

ORR ,'93

LECD, '22

STAG>E€

LDAD, '48

LDAD,E

MPCE,E

*SEC „Ü

STT „Ee

BEP "65

2=EKUTC „'06

BEEAUTA Zt

JPA

4=xLDR

OFR „'83

2=xADR „'45

SECD, !28
4U=4STR „Ee

2=xLEDR „E

EPCI, €

"SLC

„SIT 5

ENP

=»UTC

2E=RUVTA

“ PA

4=sLLR

ORR

2==STE

4=xLDR

LDCD,

2=xAER

LDAG»

LODCR,

NEAG»

LDIE,

STAG»

LOSE,

LEAD

„PCR,

4=%SDBC

4=xSTR

ENP

2=x11TC

25=31ITA

PA

A=&LDN

Zl CE
one 23

„ce

H
N

i
d ii

u 2 [$»
}

a=

d=

213: e

a
u

u
3

> »
m

2

=
D

N
D
O
D
I
N
D

“
T
I

N

e
m

’
n

m
c
r

n
e
n

-

he
r

a
u

u
u

>
 215:

s 3

„az 3.

„'4aß 3

’ 43

„PRK 3

"46 5

s „212

» 'BNAGD 3

„iErRl 5

„ENDE 53

„'äaß 5

„rES 5

„'Yhe 5

„tun 3;

„ROBZ 3

» -45

„thin ’

„Nea2 »'a2

„'e5 3

» &;

„RE0g >, '’42

„NS 53

„N2389 3

> 25

»PRFK 3
„'46 3

» „213

„'BNGD 3

„EnR] 5

„ENDE 3

„'k6 3

„+55 5

»„'822 5

s &5

„42 3

„he 5

s. 45

„PRK 3

„'4u0 3

> ‚„Ziä

„'DRZD :

„ER1 3

„ENDE 3

"48 3

"65 5

„'’4u9 3

„'u2 3

» -43

„'Liß 3

„nacz „a8
3 43

‚Peze „+42
> 55

„BesB „taz
„HIER 53

„NEC9 93
> 23

„PR 3

„a6 5

, „218
„’eAcD 53

‚„ıenl :

„DE 3

„tu .F

.

J

7

Dr
}

“

“e
e

w
e

»
.

SEITE DBEA

b2sA

H2A5

URAN

7267

2a,

ZEIT
cent .
end

D
u

I

“n

I
I

D
D
V
D
D
N
D
M
M
N

en

[ö
r

a
r
m
e
n

an

B
I
O

D
I
D
I

m
a
n

1

c
n
a
s
i
n
?
n

or

Zr

D
O
I
S
I
A
N

2

O
D
 22

I
A

D
m
M
m
M
m
L
r
O
t
)

N
O
R
D
E
N

m
a
m
m
a

x

G2TTC
G271
9272 .
8273
G27 A

275 »
ERTO
5277
5276
52712

B25R

b2el
ganz

3

REES

2207

G2zG
B2C9
0293
2291
G292
02095
G2e64

295.
28206
0227

ORN s

E=kADR >»

SUCD,
u= MSTN ’

e=xsLDR s!

HPCos

A=N:SC en, wa ’

+,

,

’

Ye re }

UPA
IG :' Z4=3LER,

OFT.»

ReuSTn
L4=sLER >

LECD,

LENG,

LOCD,

EEHANE >

STAG,

„LOAD,
ADC,

JPA ,
LEO: HOP 3

155

LEAD,

ADCD,

JPA »

LS94: NOP 3
/

LINES 155
TATı

L. Kind N

ADCD,

JPA >»

1622: WO? 3

/
LIH E 175

/
LINE 18;

LENG,

" 2=xtTC 5
15.5 SYERG,

LECL,

LENG,

. DEMO 5

15.5 ZWENG,

LDCD,

LDAG,

UTC »

SUERG,

NOP

Vv

NOP

HLT

JPA

Z

sr,
 Per

15.5

Peös: 128

ENDE:

a

b
o

V
s

V
e

v
r

K
U
L
T

GM

G
L

-130-

"95 5
ran ; GE

235

>

"h2 ;

ınG 5

45
mr. .

aha -

"6 3
4,

IUNED 5
mn . Zi. B]

ESEL 3

, er 3

un ;

van s

"22 3
cs
ur

EG s

-45

45 5

253 5

NEE7T 53
” *

15

LEGS 5

»NGEO 5
- .

, 1;

.

x ti m

a v

v m a
 Ss

_

„NER3 53

„'ENSD 3

„’EEZ 3

_ 43

sYLuy 9

„'EAED 3

.„'52 ’

, 35
„NEBEN 2

„'GLrSD 5

„'82 3

„UNTa .
.

"42

a2

.
s

us

“s

v
e

