
FERRANTI MERCURY COMPUTER

PROGRAMMERS’ HANDBOOK

FERRANTI LIMITED

FERRANTI MERCURY COMPUTER
Seta

PROGRAMMERS’ HANDBOOK

Computer Department

Office and Works: London Computer Centre:
West Gorton, 21 Portland Place,
Manchester 12. London, Wel.

List CS 225A

April 1960

FERRANTI MERCURY COMPUTER

PROGRAMMERS * HANDBOOK

PREFACE

This document is intended as a reference handbook far those who have

learnt to use the Ferranti Mercury Computer in the standard way. This

is to be distinguished from the use of the computer in the simplified

method of the Autocode.

This handbook describes the machine from the user's point of view,

and gives the techniques of what has come to be imown as "conventimal"

programming whereby actual machine instructions are written. This

permits the fullest utilisation of all the facilities of the computer.

It should be emphasised that this document is a handbook rather

than an introduction to programming. Those seeking to learn about using

the computer should first study the Ferranti publication List CS 158

"Ferranti Mercury Computer - Programming Manual".

Even the use of basic machine instructions, however, involves an

input routine for converting them from the external form used in writing

programmes to tne internal form used in the machine. The standard Input

Routine has been developed jointly by Ferranti Ltd. and Manchester

University. It comtains all the facilities of the Manchester University

input routine "PIG 2" plus additional ones for diagnosing programme faults

ete. This handbook describes how programmes are written to make full

use of all the facilities of the standard Input Routine.

ACKNOWLEDGEMENTS

Tne major part of this handbook has been prepared by DreRseBePayne

of the Computing Machine Labaratory of Manchester University. Some

small additions and amendments have been made to bring it into line

with the standard Input Routine.

Contributions to the input programme were made by Dr.ii.de V.Roberts

and Mr.C.E.Phelps (both late of Ferranti Limited).

The query print facility was inspired by methods of checking

programmes used by Dr.AeCurtis, Dr.AeHassitt and Dr.H.E.Wrigley of the

Atomic Energy Research Establishment (Harwell), A similar technigue

is used at the Norwegian Defence Research Establishment.

The Quickies are based on v-routines supplied by Ferranti Ltd.,

Manchester University and the Norwegian Defence Research Establishment.

CS 225

wh

od

od

Od

oe

Od

oe

ok

©
e6©

«©
e6

©
©

©
2

9
C
o
n
y

O
U
I

E
Ga

fh
+s

?
6

e
M
N
N
N
N
N
N

~
J

O
V
N
I

&

Ln

PO

-s

a

Je 1

Dee

Jed

Del

ded

306

Def

508

Je?
3010
5e11
Bete
Jet3
Be 1h.

3045

od

P
R
E

ie

e

77

ow

w
t

w
d

o

&

w
h

ow

e
w

a
t
h

o
k

8
)

M
m
~
J

O
N
A
N

—

L
N

3}

C
a
y

O
W
N

££

ww

p
a
p
a

oO

i é
é

P
R
O
P

Ee
TE
E

CONTENTS

THE FERRANTI MERCURY COMPUTER

General remarks on electronic computers
scales of notation
Forms of storage

The control mit
Instructions
The arithmetic wmit
Representation of numbers
B = registers
Parity digit checking

WRITTEN FORM OF INSTRUCTIONS

Introduction
Layout of instructions.
Long numbers
Short integers
Introduction to symbolic addresses.
Bracket ignare
Even register

THE INSTRUCTION CODE

Abbreviations
Accumulator instructions for addition and
subtraction. Codes 4.0 =~ 13

Accumlator instructions for multiplication
Codes 50 =~ 51

B = instructions far addition and subtraction
Codes 00 = 03, 10, 12 and 13

sac instructions

Jump instructions
Codes 59, 49, 08 = 09, 18, 28 = 29, 38

Backing store instruction
Codes 67 = 69
Input/output instructions
Codes 60 = 63

Miscellaneous instructions
Instruction types

The complete instruction code
Instructions for special equipment
Unspecified instructions :
Times of instructions

Time of Input/Output instructions, etc.

DIRECTIVES AND OTHER ALPHABNTICAL INFORMATION

Introduction
Chapter
Reutine

Quicky
Enter

Across

Down

Up
Title
Firstsectar

Page
sector

Line

Neorrection
Interlude and jum
Wait

Name
Cther directives

ty

P
W
M

e
o

&
C
O
m
n
I
N

a
!

D
O
I

10

40

11

+4

CS225A

a

&
ap

&

&
@

O
N

G
o

Om
eb

Ga

oh

ak

6.1

660

8.1

Bea
8.3
8.4
8.5
8.6
8.7

Il
Tit

VI
VII

SYMBOLIC ADDRESSES

General description

v symbolic addresses
n symbolic addresses
* symbolic addresses
x symbolic addyvesses
Filling in symboi. addresscs

AUTOMATIC .RINTING PACILITISS

Faul. print
Brror print
Asterisk print

Query print

RUNNING A PROGRAMMES

Tape preparation
Layout of the backing sto: *
Layout of the computing si: .¢
Starting procedures
The control desk

PROGRAMMING TECHNIQUES

Introduction
Numerical methods for Compu ers
Use of Beregisters
Subroutines
Gycles
Useful coding tricks
Layout of results

APPENDICES

Details of the accumulator arithmetic

Structure of cues, labels, etc.
Details of Quickies

List of faults

Table of function codes

Tape codes
Control desk

o2
20
oo
ot

oo

S
E
R
G
E

99
o0
o1

2
D0

o6
60
62
O35

67
68

5 225 A

CHAPTER 1

THE FERRANTI MERCURY COMPUTER

1.1 General remarks on electronic computers

A high-speed digital computer is capable of carrying out a
predetermined sequence of elementary arithmetical or logical operations.
Mercury comprises five main parts :;

an input unit whose object is to take in to the computer >
instructions and data which have been punched on paper
tape;

a store to hold numbers read in and generated during the
calculation;

an arithmetic unit in which elementary arithmetical and
logical operations are carried out;

a control unit which selects the next operation to be
performed ;

an output device which gives the result of the caiculation.

1.2 scales of notation

With a human operator it is usual for arithmetic to be done in
the scale of ten. The numbers he writes down consist of groups of the
ten digits 0 - 9, e.g. 273 means 2 x 107 + 7x10+ 3, and there are
also other symbols like decimal points, spaces, etc. In the vast
majority of electronic computers the scale of two or binary scale is
used, numbers consisting of groups of the two digits O and 1 only.
The reason for this is that it easily matches the on-off property of
electronic circuits. With the Mercury Computer a pure binary
representation of numbers is used, so that a binary number 11001

means 4x24 + 1x2° + 0x2" + Ox2 + 14

or 25 in decimal notation.

1.5 Forms of storage

The information store in Mercury consists of two parts; to one,
access is immediate, to the other there may be some delay before the
required information is available. These two parts of the store are
known respectively as the computing store and the backing store.

The computing store is made up of cores, which are small

magnetisable rings of ferrite. Each core represents a single binary
digit: it has two possible states of magnetisation corresponding to
the binary values 0 and 1 of the digit. The capacity of the
computing store is 2048 words each of 20 binary digits; the location
of a word in the computing store is called a register. The computing
store is divided into 52 equal groups of registers known as pages, so
that each page holds 64 words of 20 binary digits. Each register is
identified by a number, known as its address, by which references can be
made to the register. It is convenient to think of the registers of
the computing store as arranged sequentially in the numerical sequence
of their addresses.

Bach instruction occupies one 20-digit word, but words of two
other lengths are also widely used in Mercury: 40-digit words and
10-digit words. The 20-digit registers are coupled in pairs so that
each pair can hold a 40-digit word: such a pair is called a long register,
and a 20-digit register called a medium register to preserve the
distinction. A 20-digit register is also divided to form two short
registers each holding one 10-digit word.

CS 225/

In the writing of a programme, the addresses used are ali addresses
of medium registers: a long register is referred to by the address of
the medium register forming its first half, and a special device is used
to distinguish between the two short registers forming one medium
register. But when such a programme is read into the computer’s store
by the input routine, the input routine has to do some conversion of
these addresses, because the computer itself works in three different
address systems, one for each of the three possible lengths of register,
and it requires the reference to a register to use the address in the
system appropriate to the length of register. The address system for
a particular length of register is obtained by considering the computing
store as a set of registers of this length and numbering them successively
from zero. Thus the first 40 digits of the store form the first 40-digit
register, which has address 0 in the 40-digit address system; if the
computing store is regarded as a set of 20-digit registers these same
40 digits form the first two 20-digit registers, with addresses O and 1
in the 20-digit address system; and in the same way they are also short
registers 0, 1, 2 and 3 in the 10-digit address system. Similarly
the short registers 24, 25, 26, 27, for example (in the computer’s
system of addresses) form medium registers 12, 13 (computer’s addresses)
and long register 6 (computer’s address).

The larger backing store consists of rotating drums, the surfaces
of which are magnetisable and store a total of 655,560 binary digits,
or just over 16,000 long words. Unlike the computing store, direct
access cannot be obtained to individual registers in the backing store
and larger blocks of information must first be transferred to the
computing store. The backing store is divided into 512 sectors
numbered 0 to 511, each the same size as a page of the computing store,
lee. 64 medium registers. The transfer of information from the
backing store is called reading from the drums and the reverse operation
is writing to the drums. Physically, a sector is formed on circumferential
tracks on the drum, the complete sector occupying just less than a
semicircle. On each drum all even numbered sectors effectively begin at
the same angle round the drum and all odd numbered sectors effectively
begin 180 degrees further on. The sectors on each drum are divided into
eight equal groups known as columns.

1.4 The control unit

This unit interprets the information contained in a 20-digit medium
register of the computing store as an instruction in accordance with a
set of rules known as the instruction code of the machine. Instructions
are of the single-address type, usually refer to a register of the
computing store and cause some operation to be done with the contents
of that register. This operation may involve the arithmetic unit, input
or output, a transfer to or from the backing store or the control unit
itself. Normally the control unit selects instructions from consecutive
registers, and when this happens the control address C or CA, i.e.
the medium address in the computing store of the next instruction to be
obeyed, is increased by one after each instruction has been performed.
Certain instructions can, however, transfer control or cause a jump by

replacing C by some address other than C0 +14 from which the next
instruction will be obeyed. Moreover, these transfers of control can
be made conditional on numbers stored in the computer.

165 Instructions

The 20 binary digits of an instruction are divided into

7 function digits which specify the operation

3 Bedigits (see below)

10 address digits.

The ten address digits permit machine addresses O to 1023. Thus
instructions referring to long registers can refer to any part of the

CS 225A

computing store. Instructions referring to medium registers, e.g.
transfers of control, can only refer to one of the 1024 medium
registers in the first half of the computing store. Similarly,
instructions themselves can only be obeyed from the first half of
the computing store as C consists of ten digits. Instructions
referring to short registers can refer to 1024 short registers in
one quarter of the computing store only. With each instruction
referring to a short register a second instruction referring to the
1024 short registers in the second quarter of the computing store
is provided so that together the two instructions can refer to any
short register in the first half of the computing store. Instructions
referring to a short register in the first quarter have 0 for the
first or most significant function digit and those referring to the
second quarter have 1 for the most significant function digit but
are otherwise identical. The only exception is the print instruction
65 (q.v.) where the second instruction of the pair is missing. Care
should be taken if ever it is necessary to use this instruction.

1.6 The arithmetic unit

This part of the machine is concerned with the operations of
addition, subtraction and multiplication and contains a special
40-digit register called the accumulator. Since with most arithmetical
operations two numbers are involved, one of the numbers is first put
into the accumulator and the result of the operation is also placed in
the accumulator. For example, the addition instruction (42) adds
the contents of a long register of the computing store to the contents
of the accumulator leaving the sum in the accumulator; the contents
of the computing store remain unchanged but the original contents of

the accumulator are destroyed.

1.7 Representation of numbers

1.7.1 10 binary digit short integers (fixed-point).

(i) If the rth digit from the right is regarded
as the coefficient of 2F™"* one can represent
all the positive integers O to 1023. The
number is then said to be unsigned or in the
plus convention (+).

(ii) If the most significant digit is regarded as the
coefficient of -2° and the rest of the digits

as coefficients of +2™* one can represent all
the integers from -512 to +511. The number
is then said to be signed or in the plus-minus
convention (+).

For example:
unsigned signed

0 000 000 111 7 7

O 414 441 111 514 511

1 000 000 000 512 ~512

4.444 414 411 1023 of

12722 40-digit long numbers (floating-point). These represent
2% x x where the exponent, y, is ten digitsand the fractional part x,
is thirty digits. One digit of y is reserved to make possible the
accumulator overflow positive test, so that -256 < y < 255. If an
accumulator instruction other than an exact copy (40 and 41) gives an
answer with y > 256 the machine stops automatically. Also, if it
gives an answer with y < =-256 the exponent is automatically increased
to #256, x being unaltered. Otherwise the machine might wrongly
interpret the product of two very small numbers as a large number.

CS 225A

The fractional part, x, represents a signed fraction, the first digit
being the coefficient of -2° but otherwise the rth digit from the
left is the coefficient of +2*7*. Thus

-i1¢xe1- 977°

A number is standardised if the two most significant digits of the
fractional part are different

1.ee@e if wo 4 qe x < =>

or a<x< 1

In this way the maximum number of significant digits are used and the
number is represented uniquely. In the store the four short registers
holding a floating-point number contain y, the least significant 10
digits of x, the middle 10 digits of x and the most significant ten
digits of x in that order.

1.8 BeRegisters

The machine is designed to take advantage of the repetitive nature
of calculations. Thus when adding 100 numbers it is necessary to be
able to tell the machine first how to do one addition and then how to
repeat the operation on the remaining 99 numbers. Beregisters are
devices to facilitate operations of this kind, and in particular to
select successive locations within the stores.

Seven Beregisters are provided, B1 = B7, each of 10 digits, and
the control unit is arranged so that the contents of one of these
registers = that named by the B-digits of the instruction = is
automatically added to the stored or presumptive machine address before
the instruction is obeyed. For instructions referring to long or
medium registers, the effective machine address is interpreted modulo
1024 so that the sign convention of the contents of the B-register is
of no consequence. With instructions referring to short registers
the signed contents of the Beregister are added and the resulting machine
address is interpreted modulo 2048, the machine instructions being
considered to have presumptive machine addresses 1024 to 2047. With
some instructions Bemodification never occurs and if no Beregister is
specified in an instruction no Bemodification occurs. The contents of
BO are always zero, or more correctly, there is no BO. It is possible
to set the contents of, and count in Beregisters.

1.9 Parity digit checking

With every 10-digit word stored in either the computing or the
backing store, there is also stored an extra parity digit which is
set so that the total number of ones is made even. This digit is not
available to programmers but is automatically set when the word is
copied ini». either store. When the word is later copied from the store
the parity is checked and if it is wrong the computer stops. The parity
stop can occur i=

(i) when a short or long word is copied from the computing
store, e.g. for an addition;

(ii) when an instruction in the computing store is obeyed
(the instruction is copied from the computing store
to the control unit);

(iii) when a page of information is written into the backing
store;

(iv) when a sector of information is read fr . the backing
store; the check in this case is against the parity
digit stored with each 10-digit word in the backing

store.
CS 225:.

CHAPTER 2

WRITTEN FORM OF INSTRUCTIONS

| Introduction

Very few instructions are ever actually written in the binary
machine form by programmers. Instead, a convenient shorthand has been
devised for writing instructions, and the machine itself is furniased
with instructions called the Input Routine for translating this into
binary machine instructions. in this way some of the tedious effort
of programming is avoided, and by allowing the machine itself to assist,
programming mistakes are reduced. In the main, one written instruction
corresponds to one machine instruction; there are a few exceptions
such as Quickies (See Chapter 4) where one written instruction causes
the Input Routine to insert perhaps a hundred machine instructions.

Lea Layout of instructions

Just as in the binary machine form, written instructions consist
of c=

function Beregister address

The function is written as two decimal digits and the various operations
that can be specified are described in the instruction code in chapter
5. The corresponding seven binary digits bear little systematic
resemblance to the two decimal digits.

CoBe 99 © O00 000 stop

599 0 000 001 unconditional jump

The Beregister is specified by a single decimal digit in the
range O-«= 7. #£=The address is always written in the medium register
address system. A long register consists of a pair of 20-digit medium
registers and for an instruction referring to a long register the
written address is always the medium register address of the first of
the pair. Thus long register addresses are written as 0, 2, 4, coc,
2046 and must always be even. For instructions referring to short
registers, the written address is the medium register address containing
the short register; a medium register consists of two short registers
and the medium register address alone denotes the first short register
or left half register, while followed by a terminal plus it denotes the
second short register or right haif register. Thus short addresses
are written as

O, O+, 1, T+, eoevcy 1025+

During input the written medium register address is converted into a
machine address by halving or doubling according to the type of
instruction. With instructions referring +o medium registers the
machine address has the same value as the written medium register address.
With short addresses, which are doubled during input, the terminal plus
denotes % e.g. 1+ becomes 3. Also, if the addre
instruction gives a short register in the second quarver of the computing
store, the second of the two machine instructions is selected by
inserting a 1 in the most significant binary function digit position.
Since instructions can only refer to short registers or medium registers
in the first half of the computing store, short addresses must not |
exceed 1023+, and medium addresses must not exceed 1023. Also it is

sometimes convenient to write negative addresses such as =-2, e.g. with
® Bemodified instruction. As a long register address this is synonymous
with 2046, and as a short or medium address «2 is the same as 1022,

CS 2254

the first half of the computing store then being cyclic. The limits
on the written medium register address are i=

Long ~2046 < L < 2046
Medium =-1023 < M «< 1023

Short ~1023+ < H < 1023+

When Bemodification occurs the effective written address is the presumptive
written address plus

2B for long addresses

B for medium addresses

4B+ for short addresses

(c.f. chapter 1) Addresses may also be written in page and line form
€o.g- 1.2 is the medium register address of half register 2+ in
page 1, ine» half register 66+. During input the page number is
multiplied by 64 and the line number added. No restrictions on the
line number are imposed e.g. 1.254 is permitted, provided the resulting
register address satisfies the above inequalities. A minus sign may
come before the page number and refers to the whole fixed numerical
address, but not to a symbolic address (see below) e.g. -1.2 is the
same as 66.

Zea Long numbers —

It may be required to include some 40 binary digit long numbers
anongst the instructions. These are distinguished by prefixing them
with either + or = Gee |

+123.456

~98765

The long number goes inte the next available long register, a dumny
instruction, 570, being inserted if an (odd numbered) medium register
is wasted. Similarly, if a short integer (see below) has just been
inserted in a left half register a following instruction goes inte the
next whole register leaving the right half register unaltered (zero).
Long numbers may also be written in the floating decimal form of

fractional part comma (signed) exponent

ego 425.456, 25 means -123.456 multiplied by 107°

The accuracy with which written decimal numbers are converted
into floating-pcint binary nunbers is as follows:-
The fractional or fixed point part of the decimal number is read into
the accumulator as an integer. The position of the decimal point
(if any) end the exponent (if any) determine a power of ten by which
the integer is multiplied. Thus |

+e 000

will be converted less accurately than

+9

All integral numbers less than, and some integral numbers greater than

#500,000,000 are converted exactly e.8-

=125456789
Both are converted exactly.

+1,12

CS 225A

For fractional numbers +0.5 is converted exactly but other numbers
may contain errors, sometimes 5 or 4 times the least significant
binary digit. For very large or very small numbers more accurate
routines are available.

aed Short integers

It is sometimes desired to insert 10 binary digit short
integers into half registers. These are distinguished from instructions
by prefixing them with one of the symbols > = or fs 9 CrBe

> 1

= =2o

16.0

The commonest way of inserting short integers is with the symbol =,
when the value of the 10 binary digits in the machine is the same as
the written decimal integer. It is, however, occasionally useful to
have the 10 binary digits in the machine equal to double or half the
written decimal integer, and this can be achieved if the integer is
begun with > or # _ respectively. =2, >1 and £4 are all
equivalent as are also

=-1, >-0+, £#A-2, =1023, > 5114+ and # 2046

Short integers are treated in the same way as the address part of
instructions of type 2, 1 or 4 according as >, = or #€ is used.
(see chapter 3) This also applies to short integers written in terms
of symbolic addresses ‘see below).

20d Introduction to symbolic addresses

It is not always convenient to decide which registers of the
computing store instructions will occupy. If a transfer of control
to another part of the programme is required, it 1s necessary to
specify that address. This can be done by using a label and transferring
control to the register containing the labelled instruction. labels
1 to 99 are available and are written on the right of the instruction.

Coke 400 32 (1

An unconditional jump to the register occupied by this instruction is
writen |

990 vi

The symbolic address vil is just a name for the address of the register
occupied by the instruction labelled 1. During input the Input Routine
converts the symbclic addresses into machine addresses.

206 Bracket ignore

If a left bracket (occurs at the beginning of a line, all
further characters are ignored until the next right bracket) .
The tapes of Library Routines begin with the name of the Routine in
brackets before the x-Routine directive (see Chapter 4;. When a
library tape is copied into a programme, the name in brackets may also
be copied but this name will of course be ignored by the Input Routine.

CS 225A

The bracket ignore facility may be used in testing a programme.
If on the first run it is desired to omit a block of instructions
these can be included on the tape (see chapter 7) but between brackets.
Then for the second run each of the two brackets may be converted into
an erase character using a hand punch.

2e7/ Even register

If an item is required to go in the next available even numbered
register the two characters +) are inserted before it. What
effectively happens is that on reading the + the Input Routine
prepares for a long number by inserting a dummy instruction if necessary
as long numbers always begin in an even register. The right bracket is
then similar to the bracket ignore and need not necessarily be followed
by CR LF.

CS 225°

CHAPTER 38

THE INSTRUCTION CODE

5.1 Abbreviations

A The accumulator or the contents of the accumulator

B Beregistex

Bt B-tesi: register

CG The Control address, CA

D The contents of a Sector of the drum backing store

i The exponent of the accumulator

G A spot on tne Manchester University Graphical output

H Short integer or half register of 10 binary digits

I.,2. Imperial Chemical Industries input/output character

L Long number or long register of 40 binary digits

M Medium register of 20 binary digits

ms. Miliiseconds. 1 ms. = 0.001 seconds

USe Micreseconds. 1 ps. = 0.000,001 seconds

MM, Manchester University magnetic tape input/output character
i

Fh Tne address part of the instruction regarded as short integer

P Fage of the computing store

S Sac or B77 special

ae Sace-test register

a Sector number

t,,t, Paper tape character; +t; input, +t, output

In the notation for describing instructions, values of quantities
after the instruction has been obeyed are distinguished by primes, whereas
values before the instruction is started are unprimed. Quantities which
do not occur ,trimed are not changed by the instruction. It is usual to
writs the function digits and the B-digit together and to separate them
from the address.

3.2 Accumulator instructions for addition and subtraction. Codes 40 -43

Since floatingepoint arithmetic is done in the accumulatoyg it is
often necessary to copy a long number from the computing store into the
accumulatore The instruction

400 32

copies L32 into A. The reverse operation is the 41 instruction
which copies th: contents of the accumulator into the computing store.

Coo 410 34

copies the contents of A into L&4. the instruction 42 adds a long
number from the computing store to the accumulator e.g.

420 40

CS 225."

-~ 10

adds L40 to the accumulator, and the answer also appears in the accumulator
after the operation. Similarly the 45 instruction subtracts a long
number in the computing store from the accumulator.

Using several of these instructions other more complicated
operations can be done e.g. Put x+y+z into L40 where x is in Ld2,
y is in L34 and 2 isin LS.

400 32 A’ = L352 =X

420 34 A‘ = A+ Ls = X+y

420 36 A’ = A+ L36 = X+V+Z

410 40 L40’‘= A = X+y+zZ

The computer obeys the instructions sequentially and after the final
instruction the sum is in L40. With the 42 and 43 instructions
the result is rounded-off and standardised (see appendix 1). Occasionally
the result is required without round off; the 44 instruction gives
unrounded addition and the 45 instruction gives unrounded subtraction.
When doing accumulator arithmetic with exact integers, unrounded instructions
are required but the 30 binary digit fractional part of a floating-point
number is usually a truncated approximation and unrounded instructions
will give biassed results.

ded Accumulator instructions for multiplication. Codes 50 = 51

The multiplication instructions find the product of the accumulator
and a long number from the computing store, putting the result in the
accumulator rounded-off and standardised. The 50 instruction gives
the product and the 51 instruction gives minus the product. Coe

500 32

multiplies the contents of the accumulator by L352.

Examples:=

1. Put xyz into 1L31.0 (where xy and z are located as above)

400 32 A’ = L32 =X

500 34 A’ = Ax L34 = xy
500 36 A’ = Ax L36 == XYZ

410 34.0 131.0’ =A = xyz

2. Find x* - y*

400 32 A‘ = L&2 =X

500 32 A‘ = Ax L32 = x4

410 40 L40 =x"

400 34 A’ = L34 =y

510 34 A' = Ax -L34 = =y?

420 40 A’ = A+ L40 = x* = y*

de4 Beinstructions for addition and subtraction. Codes 00 = 05,

10, 12 and 13

In order to Bemodify the accumulator instructions it is necessary
to be able to put short integers into the B-registers and to add and
subtract in B-registers. The instruction 00 copies a short integer

CS 225A

-~ 114 =

from the half register in the computing store into the B-register
specified by the Bedigits e.g.

007 2 B7° =: H32

The O71 instruction does the reverse operation of copying a B-register
into the computing store. e.g.

O17 32+ H32+' = B7

H52+ is the right half register, HS2 being the left half register.
Instruction 02 adds (fixed=point) a short integer from the computing
store into the specified B-register e.g.

024 1.0 B4" == B4 + H1.0

and the O38 instruction subtracts a short integer in the computing store
from the Beregister eé.g.

034 1023 B4a" = B4 = H1023

The instructions 10 12 and 13 where the decimal codes are ten more
than those above do similar operations but in these instructions the
address part of the instruction is itself regarded as the short integer
with which the operation is performed e.g.

106 25 BG’ = 25

126 1 B6' = BB + 1 = 26

136 5 B6' = B6 - 5 = 21

There is no instruction corresponding to the 0% instruction.
Whenever an operation is done on a Beregister the B-test register is
set (See below).

O00 Sac instructions. Codes 20 - 25, 50, 32 = 35

The above B-instructions are not Bemodified, the Bedigit specifying
on which of the seven B-registers the operation is required. The Sac
instructions, where the decimal codes are twenty more than the B-instructions,
de the same operations except that the operation is always on BY. When
used with these Sac instructions BY is called Sac, an abbreviation for
short accumulator. The Bedigit of the instruction specifies the B-register
by which B-modification is required. Whenever an operation is done on
Sac (Codes 20 - 38) the Sac-test register is set (See below).

566 Jump instructions. . Codes 59, 49, 08 = 09, 18, 28 = 29, 38

The instruction 59 is the unconditional jump or transfer of control,
GC’ — Th CeSe

990 64 C' = 64

Other jump instructions are conditional on the number contained in some
location in the computer. The 49 instruction transfers control if the
accumulator is positive or zero. If the accumulator is negative control
is not transferred and C’ =C +1 in the usual way, i.e. the instruction
in the next register is obeyed. The OS instruction causes control to

jump if the B-test register is positive or zero. The O8 instruction
causes control to jump if the Betest register is not zero and the 18
instruction combines testing and counting by causing control to jump if
Bt £0 and also adding one to the B-register specified by the B-digit
whether or not control gumps. The Sac testing instructions are twenty

more than the corresponding B testing instruction. A Sac instruction sets
st but not Bt. |

CS 225A

It is now possible to programme opera: . which involve counting.

Examples:-

1. Add the muzber in L32 into the accumulator a hundred times

406 100 B6" = 100

420 32 (1 A’ sx A + L32

136 1 B6’ = Bt’ = B6 - 14

080 vi Jump if Bt & 0

In this example the same long number is added to the accumulator each time,

2. Add the hundred (different) numbers in the consecutive long
registers from L16.2 onwards into the accumulator.

106 100 B6’ == 100

426 16.0 (1 A" =A + L16.0 modified by B6

136 4 B6‘ = Bt’ = B6 - 14

080 v1 Jump if Bt & 0

Hach time the addition instruction is obeyed the contents of B6 are one less
and the consecutive long numbers are added, effectively twice the contents of
B6 being added to%16,0. One could of course write out each of the addition
instructions one after the other but the programme would then be unnecessarily
long. Other ways of coding cycles of instructions are described in Chapter
8.

5.7 Backing store instructions. Codes 67 - 69

When reading or writing a sector of the backing store to or from a
page of the computing store it is necessary to specify what are essentially two
addresses, the sector number and the page number. Since each instruction i:
of the one-address type, two instructions are necessary, the first a 67
instruction to select the sector followed by a 68 er 69 instruction which
initiates the reading or writing and in which the page number is specified.
Once a sector is selected several reading or writing transfers can be obeyed
with this sector which remains selected until the next 67 instruction is obeyed

5.8 Input/output instructions to the computing store, 60 - 63

The usual method of getting information into and out of the
Computer is by means of punched paper tape. A stripe across the tape has
five positions, in each of which a hole may be punched: this provides 42 tape
characters, and a character is read into the Computer as five binary digits,
aifor a ,osition in which there is a hole and a 0 for a position in which
there is no hole.

The 60 instruction reads a character fria the input paper tape into
the least significant five digits of a short register in the computing store,
clearing the most significant five digits. The 62 instruction punches on

the paper tape output the least significan: five digits of the address part of
that instruction. The 63 instruction punches the least significant five

digits of a short register of the computing store.

The 61 instruction is not a paper tape instruction; it copies
into a short register in the computing store the binary number read from a
row of ten keys, or handswitches, on the control d= i the computer.

CS 225A

~ 412A =

3.9 Multiple channel input/output to Sac. 90 - 97

The instructions of this group are input and output instructions which
can select which of a number of input and output devices attached to the
Computer is to be operated. The Computer has seven input channels and seven
output channels, and to these are connected devices which handle information in
units of up to 10 binary digits. For example, the 5-channel paper tape
readers and punches handie information 5 bits at a time. It is usual to have
tape readers attached to two of the input channels, though individual Mercury
installations differ in the equipment they have.

Functions 90 and 92 ~- 97 are input functions and function 91 is the
output function. They are all Sac functions: that is to say the input
character is placed in Sac or the output character taken from Sac, unlike the 60

and 63 functions which refer to haif-registers in the computing store.

The b-digit used with any of the functions 90 - 97 is interpreted in
an unusual way, to specify the channel to be used. The seven input channels
and the seven output channels are both numbered 1 - 7, and a channel is
operated by a 9 group instruction with the appropriate b-digit.

If the bedigit in the instruction is zero, “channel 0" is interpreted
as the exponent of the accumulator, so that the instructions in this oase are
not input or output instructions at all; for example, the instruction

90% 0

takes the next character from channel 1 amd places it in Sac, am

900 0

takes the (10-bit) exponent of the accumulator and places it in Sac.

The interpretation of the address digits of an instruction using one
of channels 0 - 3 differs from that of an instruction using one of channels
4-7, In the former case, channels 0 - 3, the number given by the address
digits is added to the input or output information, so that for example if Sac
contains 6, say, the instruction

911 8

will send the Space character, with value 14, to output channel 1.

The output channels 4 - 7 are designed to take not just one device
each, but in fact any number of devices up to 1024, and the n digits in the
instruction are used in this case to determine which of the devices attached

to the channel is to be used,

The 60 function always uses input channel 1, and the 62 and 63 functions

always use output channel 1.

Note:~ itome Mercury computers do not have functions 90 - 97.

5.10 Instruction types

Instructions are classified according to the following types:-

Type 1 C.Bo 59 Ci =n

The machine address has the same value as the written medium ri gister
address. For the written address -1023 <M < 1023. This type also
includes instructions whose address is irrelevant e.g. 99 stop.

Type 2 Coke 63 ré os H

A short address instruction where the written medium register address

CS 225f

-~ 13 =

is doubled but no most significant function digit is inserted. For fixed!
written addresses -511 + < H < 511 + and fleating addresses are modulo 512

Type 3 Cok. 410 Bi’ =n

Fixed written addresses are treated as for type 1. Floating addre sses
are treated as types 1, 2 or 4 according to whether an instruction, short
integer or long number is labelled (See chapter 5).

Type 4 C.8. 40 A‘ = L

Long address instructions where the written medium register address is
halved during input. For fixed numerical addresses - 2046 < L < 2046.

Type 5 Coke 00 B’ =H

short line instructions where the written medium register address is
doubled during input and the most significant function digit inserted

appropriately. There are actually two machine functions for each
decimal function but this need cause no confusion. B-modificatiom
for type 5 and also for the 63 instruction adds 4 B+ to the written medliw
register address (See chapter 2). ~

5-11 The complete instruction code

The following instructions are standard on all full-sized Mercury

computers. Some Mercury Computers have additional auxiliary equipment;
instructions for these special devices are not included here.

Beregister instructions

OO B’ =Bt'= H Type 5 60 us.

The contents of the short register of the computing store are copied to the }
register specified by the Bedigit and the Betest register is also set. The
store register is unaltered.

O1 H’ =B Type 5 60 us.

The contents of the B-register specified by the B-digit are copied to the short
register of the computing store. The B-register itself is unaltered and the
Betest register is not. set.

02 B’ =Bt’=B+H Type 5 60 us.

The contents of the short register are added into the B-register, the store
register being unaltered. Since Beregisters only hold ten binary digits,
the result is the sum modulo 1024.

93 5B’ =Bt'’=B-H Type 5 60 us.

The contents of the short register are subtracted from the Beregister modulo

4024. -

04 B’ =Bt’=B/2-H Type 5 60 us.

The unsigned contents of the Beregister are first helved, the least
significant digit being discarded and the most significant digit becoming zero,

and then the contents of the short register are subtracted modulo 1024.

05 B’ =Bt’=B&H Type 5 60 us.

The logical operation "and" on each of the corresro™cing binary digits of the
B-register and the short register of the computing store gives 1 if both

digits are 14 and O otherwise.

CS 220A

- 14 -

0&0 = 0

0&1 = QO = 1&0

4&4 = 4

which is digit by digit multiplication

eege if B = 10101 07070

and H = 00000 111741

then B&H = 00000 01010

06 B’ =Bt’=BH Type 5 60 use

The logical operation "non-equivalence" on each of the corresponding binary
digits of B and H gives 1 if they are not equal and O if they are equal.

04 0 = 0

oA 1 = 1 = 10

14% 41 = 0

which is digit by digit addition (with no carry)

e.g. if B = 10101 01010

and H = 00000 11117

then BAH = 10101 10104

07 Bt’= B-H Type 5 60 us.

The Betest register is set as with the 03 instruction but the B-register

is unaltered.

08 BtA0O, Cc’ =n Type 1 60 us.

A conditional transfer of control where n is the ten-digit address part
of the instruction.

09 Bt >0 Ci =n Type 1 60 us.

A conditional transfer cf control.

10 . 17 These Beregister instructions are the same as 00 - 07 except
that the address pars of the instruction is itself the integer rn with
which the operation is performed.

10 BY = Bt’ =n ° Type 3 60 use

12 B’ = Be’ =Ben Type 5 60 us.

13 Bl = Bt’=B-n Type 3 60 us.

14 Bi = Bt’ =B/2-n Type 3. 60 us.

15 Bl = Be’ =Bén Type 3 60 us.

16 Bo’ = Bt’ =BEn Type 3 60 us.

17 Be’ =B-n Type 3 60 us.

148 BLA 0, Cl==n; Bi =Bt' =B+1 Type 1 60 use

CS 250A

ie 45 _

The content of the B-test register tefore the instruction is obeyed is tested
and this is not necessarily the content of the b-register specified by the
Bedisiu. 1 is added to the B-register spec:fied by the Bedigit. If Bt=0
then C° =C +1 in tic usual way and B’ = Be’=B+1 ecg.

186 v1 jumps to address v1 if Bt O and

adds 1 to B6

sac instructions

20 - 38 These instructions are the same as 00 - 18 except that the
operations are referred to Sac and the Sac-test register rather than to a
Beregister and Bt. The Bedigit specifies the B-register for B-modification
of the address.

20 S' = St’ =H Type 5 60 ps.

21 H’ =S§ Type 5 60 us.

22 S =St’= S+H Type 5 60 us.

2.3 S' = St’ =S-H Type 5 60 us.

24. S's:St'=_S/2-H Type 5 60 us.

25 S « St’ =S&H Tyo: 5 60 us.

AB S'= 4%’ =«:§ 4H Tyoe — 60 us.

27 ub’ = 5-4 Type 5 60 us.

28 Se =0, C’ =n Type 1 60 us;

29 St 2b, Coxe fype 1 60 us.

50 2" = St’ =n Type 3. 60 use

32 S'=St' =S5 .n Type 3 60 us.

33 S'=$t' =S-n Type 3. 60 36

34 S'=$t' =S/2-n ‘Type 3 60 us.

35 S° = St’ =S&n Type 3. 60 US.

36 S'=St' =S/2=n Type 3 60 us,

37 St‘=S-n Type 3 60 us.

38 st &0, Co=n; Si = St'=S+1 Type 1 60 us.

Accumulator instructions

40 A’ al Type 4 120 us.

The contents of the 40 - digit long register of the computing store are copied

to the accumulator. No standardisaticn, round-off or accumulator overflow

posit ~. test .» performed.

41 Lo =A Type 4 120 us.

CS 255A

The contents of the accumulator are copied to the long register of the
computing store without standardisation or roundeoff. No overflow test is
performed.

42 AS =A + TL Type 4 180 us.

The contents of the iong register of the computing store, as a 40-digit
floating-point number, are added into the accumulator with standardisation
and roundoff. For details of the floating-point arithmetic see Appendix I.

45 As = A-L Type 4 180 us.

The contents of the long register are subtracted from the accumulator with
standardisation and round-oiT.

44. A° =A +L unrounded Type 4 180 us.

The contents of the long register are added to the accumulator with
standardisation but without round<-clT.

45 A° = A » L unmrounded Type 4 180 us.

The contents of the long resister are subtracted from the accumulator
with standardisation but without round-off,.

46 <A’ =A + L unmrounded and unstandardised Type 4 180 us.

The contents of the long register are added to the accumulator with neither
standardisation nor round-off. The result is shifted down one place and the
exponent adjusted.

47 <A* =A - L uerounded and unstandardised Type 4 180 us.

The contents of the iong register «sre subtracted from the accumulator with

neither standardisation nor round-off. The result is shifted down one place
and the exponent adjusted.

48 Shift < 31, CC" =n Type i 60 us.

A conditional transfer of control depending on the difference of the exponents
of the accumulator and the long register of the computing store for the last
addition or subtraction. If the difference of the exponents is greater than
Si, C’ = C+ %4 din the usual way.

49 A>O, C' =n Type 71 60 us.
ein

& conditional transfer of control. If the accumulator is negative
C’ =C +4 in the usual way.

5O A’ = AL Type 4 300 us.

The contasts of the ascuaulator are multiplied by the contents of the long
register with stendardisation and roundoff.

St A” se @ AL Type 4 300 use

Minus the contents of the ascwaulator are m itiplied by the contents of the
long register with standardisation and rounu-off.

52 A’ = AL wunrounded Type 4 3060 us.

The cortents of the accumulator are multiplied by the contents of the long
line with standardisation but without round-off,.

53 A’ = ~AL umrounied “Uype 4 300 us.

Minus the contents of the accumuls’... ure multiplied by the contents of the
long register with standardisation but without round-off.

- 17 «

54 A’ = AL least significant half Type 4 300 us.

The complete product of the contents of the accumulator and the contents
of the Long register has a sixty digit fractional part; the most
Significant half is given by the 52 instruction. The result of this
instruction is not standardis2:d and not rounded-off and is always positive
or zerc (see Appendix I). The exponent is the sum of the two exponents
minus 29.

55 A‘ = -AL least significant half Type 4 300 us.

the complete product of minus the contents of the accumulator and the
contents of the long register has a sixty digit fractional part; the
most significant half is given by the 535 instruction. The result of
this instruction is not stamardised and not rounded off and is alwavs

positive or zero. The exponent is tle sum of the two exponents minus 29,

o7 =©6©Dummy Type 14 60 use

This instruction does nothing other than C‘’ =C +1 in the usual way.

58 Hoot Type 1 60 uSe

An impulse is applied to the diaphragm of a loud-speakere By doing
this repeatedly a musical note can be produced to attract the attention
of the operator, eege to insert a data tape.

59 C’ =n Type 1 60 us.

The unconditional transfer of control.

Input/Output instructions

60 H’ =t Type 5 120 us. (see 3.15)

An input instruction. The five binary digit character which is under
the reading head is copied to the least significant five digits of the
short register of the computing store, clearing the most significant
five digits, and advancing the tape one character.

61 H’ =hs Type 5 60 Se

The ten binary digits set on the handsvwitches are copied to the short
register of the computing store.

62 +t’ =n Type 1 120 us. (see 3,15)

The least significant five binary digits of the address part of the

instruction are punched as one character ‘»y the output.

65 +t’ =H Type 2 120 us. (see 3.15)

The least signficant five binary digits of the short register of the
computing store are punched as one character by the output.

64 Display ‘=L Type 4 120 us.

The contents of the long register of the computing store are displayed
on the control desk monitors, the exponent as ten binary digits and
the fractional part as thirty binary digits. The instruction must be

repeat .d continuously to give a visible display.

Backing store instructions

67 T’ =n Type 4 60 use

Select sector n for = transfer of information to or from the backing

CS 2554

-~ 18 -

StOre e

68 P’ =D Type 1 (For the time, see 3.14)

Read the contents of the selected sector to page n where n is the integer
forming the address part of the instruction.

69 D’ =P Type 1 (For the time, see 3.14)

Write the contents of page n to the selected sector of the drum.

Exponent instructions

These exponent instructions are Beinstructions which operate on the
exponent of the accumulator. The address part of the instructions is added
to the exponent (except for the 71 instruction).

70 B’ =Bt’ =E+n Type 1 60 us.

The exponent of the accumulator is copied to the Beregister specified by the
Bedigit @

71 3b’ =B Type 1 60 us.

The contents of the Beregister specified by the B-digit are copied to the
exponent of the accumulator.

The Destandardise Instruction

78 &§* = 0.2" wmrounded unstandardised Type 1 180 us.
The effect of this instruction is to force the accumulator into an
unstandardised form with a specified exponent: because of the one place
right shift which accompanies all unstandardised operations this exponent is
n+. The value of the contents of the accumulator is unaltered except for
bits which may be lost off the bottom of the argument due to the
destandardisation.

The effect of the 78 instruction is identical with that of adding
to the accunulator with a 46 instruction a number with argument zero and
exponent ne To work properly, then, the original exponent of the accumulator

must be less than or equal to ne

Multiple Channel Input/Outout Instructions

90 - 97 Type 1

b digit = 0 b digit =1 to 3 b digit = 4 to 7
90 S’ = St’ =Etn Si = St’ =I-+n S’ = St’ =I
91 EB’ =S+tn O=S+n O=S

(se! os St) (st’ — St) (st’ = St)

92 © =St’ =S + (itn) S’' = St’ =S+ i+n) S' = St’ =S +I
93 5) = St’ = 8. then’ ssc. tan S'= St’ =S-TI
94 S‘ = St’ = S/2—- (Ein) 9S’ = St’ =S/2 - (T+) S' = St' =S/2-I1
95 S’ = St’ =S & (E+n) S'=Sst’=S&(L+n S'=St'’=SéI
96 S' =St’ =S# (En) S' = St’ =S £ (I+n) S’=St’=s# I
97 St’ =S - (Etn) St’ =S - fItn) St’ =S-I

E represents the exponent of the acoumulator, I information (of up to
10 binary digits) from an input channel, and O information (of up to 10 binary
digits) sent to an output channel.

Instructions of this group with zero bedigit take 60 us, and with
nonezero b-digit 120 us plus waiting time (see 3.15).

The 9 group with bedigit zero are similar to the 7 group except that
they affect Sac and the Sac test register instead of a Beregister and the B
test register. CS 2254

~ 19 -

The Stop Instruction

99 Stop Type 1

This instruction stops the computer and lights the ‘stop flip flop'
light on the control console. If the prepulse button is pressed the
computer will carry on from the rext instruction.

5.12 Instructions for special equipment

The above instructions are standard on all full-sized Mercury computers.
Some Mercury computers have additional auxiliary equipment and the instructions
used are included here. Other Mercury computers have twice the standard drum
backing store, viz have 1024 sectors, but no additional instructions are required
for this.

3.12.1 Card input/output and line printer

Two buffer stores are provided, one to hold an exact copy of the
card just read in and the other to hold an exact copy of the card about to be
punched or line about to be printed. Standard cards containing 80 columns and
12 rows are used. (Additional buffer stares provide bit-by~bit checking during
both input and output). The line printer prints one line of 100 characters.
Bach card input is read twice, each card punched is read at subsequent reading

station for automatic checking and a self checking code is also employed.

80 Conditioning Type 1 60 use

The address part of the instruction specifies whether or not an exact binary
copy of the contents of the computing store/buffer is required or whether
disciplined code punching 1s required, and whether card or line printer as
follows:-~ |

For an exact binary copy, the 80 digits in the top row of the card
correspond to the first 8 short registers of a page of the computing store, the
next row to the next 8 short registers, etc. For disciplired code punching,
the binary equivalents of the characters in each of the 80 column: are
contained in the first 80 short registers of the page.

In the address of a conditioning instruction, the most significant four
digits tee the page position) concern the style of input, end the remaining

digits (the line position) concern the style of output:-

Page Input

0 Disciplined code input
4 Binary input

Line Output

0 Print line (disciplined)
1 Punch card in disciplined code
5 Punch card in binary code

Modification works as for any type 1 function.

81 Read card Type 1 approximately 55 msec
(see 5615)

This cories the contents of the input buffer to the page specified by the

address part of the instruction and reads the next card to the buffer.

82 Punch card/print line Type 1 (for time see below)

The page, specified by the address part of the instruction, is copied to the

buffer. The exact contents of the output buffer store are punched/ printed
(if a line is printed, the paper is advanced).

CS 2554

- 20 -

80 Paper throw Type 1

In addition to the normal paper step, paper is fed on (at a rate of about 10
inches per second), stopping at a preset position.

The speeds of the card input/output and line printer are:-

Read card 200 per minute

Punch card 100 per minute

Print line 100 per minute

SelZ2e2 Magnetic Tape Backing Store

Magnetic tape decks, or mechanisms, are connected to Mercury through a
special control unit; two of these control units can be attached to the
computer and each control can operate up to four tape decks, giving a maximum
of eight tape mechanisms in all.

The magnetic tape used is pre-addressed, and the possible operations
are rewind, search (for a particular address) ami transfers to and from the
computing store. kach control can perform one search or rewind operation and
one transfer simultaneously, and these can take place while the computer is
obeying other programme so long as the computing store requirements do not
conflict. If an attempt is made to use a control which is already occupied,
the computer will be held up until that control is free; the new magnetic tape
instruction will then be initiated and computation will proceed simultaneously.
If an attempt is made to use a part of the computing store which is involved at
the time in a magnetic tape transfer, the computer will stop: this is known as
the interlock stop. Instructions are provided to test if the transfer part of
each control is busy so that the interlock stop can be avoided by programme.

The magnetic tape operates at a speed of 60 inches/sec. and a reel of
tape can be up to 3000 feet long. The tape has eight tracks, six for
information, one address track and one clock track. Information is stored on
the tape in blocks, addressed sequentially. At the end of each block a 6 digit
check sum is automatically written, and when a block is read from the tape this
check sum is checked; if the check fails the block is re-read. If the check
fails repeatedly the computer indicates a tape failure and stops.

The principal method of storing information on magnetic tape is in
blocks of 128 forty-bit words, so that one block of information from tape
occupies 4 pages of the computing store. Such a block occupies 6.4 inches on
the tape, including its address, and there is a gap of 1 inch between biocks.

A magnetic tape operation is performed by means of two instructions:
the first selects which deck is concerned (and therefore which control) and
the type of operation, and the second gives the required tape or computing store
address (if any) and initiates the operation. The functions are:-

87 Select deck and operation Type 1 60 usec.

in the address of this instruction, the most significant digit is ignored, the
next three digits give the type of operation required, the next three digits
are ignored and the least significant three specify the deck number.

The types of operation arei-~

10% Rewind
001 search |
000 | Read from following block
010 Write to following block
100 Read from preceding block —
170 Write to preceding block

The arrangement of digits in the address is chosen so that the address can be
written in page and line form, with the"page" corresponding to the operation
and the “line" to the deck. |

CS 2554

hy
 This instruction determines the etfect of:

36 Operate Type 4 120 ec (plus waitous time, see 3.15)

The 66 instruction initiat . the operation specified by the last 87
instruction obeyed.

In the case of a transfer to or from tne computing store, the address
specifies the register ov the c aputine store from which the transfer is to start:

aa this address must be the beginnine of 4 vare.

In the case of a search operation, the address in the &6 instruction is
the address of a 40-bit word of the computing store; this word must contain the
required block address in the least significant 20 bits of its argument. The
remaining ten bits of the argument, anc the ten .xponent bits, are ignored.

In the case of a rewind operation, the address in the 86 instruction
is ignored.

A block of information on tape is read or written in the forwards
direction, so that after are block has been rad the tape is positioned ready for
reading the block immediately following. It is not necessary to give a "select"
instruction for each “operate” if the same deck and operation are required each
time, so that, for example, successive blocks can be read from one deck by means
of an 86 instruction to select "read from following block" followed by several

"operate"'s. Blocks cannot be read in the reverse order simply by repeated "read
from preceding block"s because when a block has been read, the "preceding block"
is the block that has just been read.

The two instructions to avoid the computing store interlock are:-

88 TC 1 busy, Ci =n Type 1 60 US.
89 TC 2 vusy, C’ =n Type 1 60 use

Bach of these causes control to jump if the transfer part of the tape control
concerned is busy. It is often necessary to test whether a particular magnetic
tape operation has finished or not; the time elapsed since the "operate"
instruction is not usually a sufficient guide because there may be an automatic
repeat of the operation due to a checksum failure first time. These two
functions are designed to avoid any reference to a part of the computing store
involved in a tape transfer; any such reference will stop the computer. It is

only in the computing store that any clashing must be avoided ~ if a tape contra
is referred to when it is already busy, the computer will be held up untii the
control is free to perform the second operation, ami then the programme will
proceed.

The method of storing information on magnetic tape in 128 werd blocks
is known as the 4—page mode: there is an alternative method in which the
blocks on tape are much shorter, known as the Pegasus mode because this type of
tape is compatible with the Ferranti Pegasus Computer and the Ferranti Magnetic
Tape Converter, In this mode a block on maznetic tape is 112 6-bit characters
in length and occupies abcut 35> inches on the tape, including the address,
with a gap of 17 inch between blocks. in the comouting store of Mercury
this block occupies the first 112 half-registers of a page. On transfer to tape
in this mode, the 6-bit cheracters are take* from the least significant 6-bits
of successive half registers; on transfer Prom tape the characters are put
into the least significant six bits of successive half registers, the top four
bits being cleared. In both cases the remaining 1c half registers in the page

are unaltered.

The instructions for using tape in this mode are the same as for the
4-page mode. The mode in which recording on tape is to be done is determined
by a sv itch on the tape deck. Since the blocks in the two modes are of
different lengths, the addressing 1n tie two modes is ““trerent, so that to be

usable a tape must be addressed in the right mode.

The times given above for the mignciic tape functions are the times

for which they occupy the central co:outer, atter which the tape operation

CS 255 +

- 22 =

proceeds independently.

The times of the tape operations are:-

Read/write next block: 127 msec (four page mode)
53 msec (Pegasus mode)

Read/write preceding block: 234 msec (four page mode)
100 msec (Pegasus mode)

A search takes 127 msec for 4—page block scanned, or 55 msec for
Pegasus-mode block scanned.

A rewind takes up to 5 minutes for a full 35000 ft. reel.

501225 Manchester University Graphical Output

56 G’ = Type 4 120 pse

The contents of the third and fourth short registers composing the long
register, each modulo 256 are the co-ordinates of a point displayed on a
special cathode-ray tube. This may be viewed by the computer operator or
photographed by a camera permanently set up in front of a duplicate
cathode-ray tube.

65 Open shutter Type 1 (for time see below)

For the camera on the Graphical Output, open the shutter.

66 Close shutter Type 1 (for time see below)

For the camera on the Graphical Output, close the shutter and advance the
film one frame.

Although the machine time for these two instructions is 60 us.,
the shutter actually takes approximately 100 ms. to open or close and
consequently a delay must be programmed.

del2e4 Manchester University magnetic tape input/output (provisional)

As an alternative to paper tape, there is available a static-
reading magnetic tape system in which input and output operate at 1000
characters per second.

A single tape mechanism is used for both input and output.
Information is recorded on magnetic tape in 5-bit characters at a density of
100 characters per inch; the tape has 8 tracks in all, 5 information tracks,
1 track for parity digits and 2 tracks for additional checking. On output,
each character is automatically re-read for checking; if it has been wrongly
written on the tape, the character is repeated in the next position with an
indication in the check tracks that the previous character is wrong, and
this second copy of the character is also re-read and checked.

The maximum length of tape on a spool is 1,800 feet; when running
at full speed the equipment cannot stop on a single character, there being
an overshoot equivalent to about five characters. The tape is primarily

intended for fast recording of results of computation, the tape subsequently
being transcribed to paper tape for printing; it can also be used as an
additional backing store.

The equipment is designed to be connected to the multip!- aaput/
output channels and to be operated by the 9 group functions. it is
conventional to attach 1t to input channel 3 and output channel 5, leaving
channels 1 and 2 for paper tape equipment.

CS 2554

-~ 20 =

This magnetic tape equipment if bvelng co ss oped by New Klectronic
Products Limited to wnom all enquiries sh.s.uid be made.

Oe15 Unspecified instructions

The instructions deseribed in the two lists above do not include
ell of the 728 possible diitferent machine instructions. Of the
remaining machine instructions some are duplicates of instructions
described. above e.g. 1 000 000 is alse a prepulsable stop. Others perform
useless operations or operations which can be done by other instructions,
whilst others are dummy instructions. However the decimal codes which are

not described above are all converted during input into the second
prepulsable stop 1 000 000, the 99 instruction alone being 6 000 000.

3.14 Time of the drum transfer instructions. 68 P’ =D and 69 D’ = P,

The sectors are arranged on the drum two to a track; the drwa is
rotating continuously and the transfer to or from a particular sector takes
place while the sector passes under a magnetic head near the surface of the
drum, so that the computer has to wait until the beginning of the sector is
in the right place before the transfer can start. The average waiting time
for ranéom access to the drum is half a revolution, i.e. about B= msec, and

the transfer itself takes about 7; msec. The physical arrangement of “the

sectors on the drum surface is effectively as shown in Figure 1.

Figure 1. Section of a drum, perpendicular to the axis of rotation.

beginning of even numbered
beginning of odd numbered -~ sectors

sectors

gap between sectors 960 us.

%e63 MSe

For transferring several sectors it is consequently quickest to transfer
odd and even numbered sectors alternately (which is done if consecutively
pumbered. sectors are transferred). In the gap between sectors there is time
for sixteen Beinstructions.

3.15 Times of input/output instructions, etc.

In addition to the times given in sections 5,11, 3.12, certain
function: may have a variable waiting time vecause they refer to equipme
which i: still compic:ing a previous operation. This appiles particularly

to input and output instructions, where the equipment concerned is limited by is.

speed, For example, a 200 character/second taps reader can read a character

every 5 msec, so that after one input instructic.: (itself taking 720 us. only)

the reader will not be ready to obey another input instruction for 5 msec.

In most cases (and. unless otherwise stated), if a second instruction is

encountered toc soon the computer is held uo until the equipment is ready anc

the instruction is then obeyed.

This affects the timing of functions 60, G2, 65, the input and output

functions of group 9, the eard functions, the magnetic tape operate function,

and the graphical output functions: thes e last form a special case in which

the hold-up is not automatic but the deley must be .,~ammed - see Dele do

CS 2554

-~ 24 .

CHAPTER 4

DIRECTIVES AND OTHER ALPHABETICAL INFORMATION

461 Introduction

As well as actual instructions, it is also necessary to direct the
Input Routine in various ways. This is done by directives such as CHAPTER,
ROUTINE and ENTER which are usually ordinary English words. To the input
routine only the first letter is relevant, further letters of the word being
ignored, so that spelling mistakes like ACCROSS are allowed. (For Autocode,
however, correct spelling is essential.)

4.2 Chapter

Most programmes cannot be accommodated entirely in the computing
store so are broken up into units called chapters, each of which can be
accommodated in the computing store. The complete programme is stored in
the backing store and the chapters are transferred to the computing store
when required. The beginning of a new chapter is indicated to the Input
Routine by say

CHAPTER 6

or by

C6

since only the first letter is relevant. Chapter numbers can be 1 to 100
and each must have a different number. Unless there is a PAGE directive
(see below) all chapters begin in page 1 and they must not extend beyond
the end of page 15 unless special measures are taken to allow them to do so:
see paragraph 4.15. Chapters are stored in the backing store in the order
that they presented to the machine rather than by chapter numbers; each
begins on a new sector, the next available after the end of the previous
chapter, and occupies only as many consecutive sectors and pages as required

or specified.

4.9 Rout ine

The chapters of a programme are themselves further divided into units
called routines. The beginning of a routine is indicated by the word ROUTINE,
or the letter R, followed by the routine number. All routines begin on the
next available even register, a dummy instruction, 570, being inserted if
necessary. Two kinds of routines exist, distinguished by whether the routine
number is less than 1000 or not.

Andel v-Routines

These are numbered 1 - 999 and each v-routine in the complete
programme must have a different routine number. For each v-routine a new set
of labels 1 to 100 (see chapters 2 and 5) can be used and floating addresses
referring to labels in the same v-routine are vi v2 v5 etcewhilst floating
addresses referring to labels in another v-routine are written as v2/3 say,
meaning the address indicated by label 2 of routine 3. For each vere “ine
the label O is automatically set to the address of the beginning ~~" we
routine and this can be referred to by vO or by v alone. c.g. to transfer
control to the beginning of v-routine 907 the instruction can be

590 v/907

CS 2554

= 25 «

4.5.2 x-Routines

These are numbered from 1000 upwards and the number may contain
a decimal point and fractional pert (several decimal points are permitted)
but not more than 77 digits in all. x-Routines are merely a device for
inserting library routines but otherwise do not concern the programmer.
The library tape is copied on to the programme tape by means of the tape
copying or reperforating equipment (see chapter 7).

An x-routine does not terminate a v-routine, but rather it is part
of a v-routine. Since it is not possible to label a routine directive
and it is inconvenient to insert v labels (of the current v-routine)
after instructions in an x-routine, it is usual to put the x-routine at
the beginning of a v-routine, e.g.

R 234 v-routine

R 1234 x-routine

500 16x

and then 590 v/234 transfers control to the beginning of the x-routine.

On reading the x-routine directive the Input Routine automatically
sets the floating address x or x0 to the address in which the
x-routine begins c.f. vO for v-routines. Thereafter references to
addresses in the x-routines are written in terms of the floating address
x (see chapter 5). The actual x-routine number (a routine number greater

than or equal to 1000) has no significance to the Input Routine , no
permanent record is kept of x-routines, the address xO being reset
at the beginning of each x-routine. Thus two different x-routines in the
one programme may have the same number (though this should rarely be
necessary) and the same x-routine may occur several times in the one
programme, e.g. in different chapters.

Hereafter the word routine will imply a v-routine.

4.4 Quicky

Many of the commonly used Library routines are stored in the
computer within the Input Routine. If for instance the set of instructions
which replace the contents of the accumulator by its reciprocal (A’ = 1/A)
is required, all the programme need contain is

Q 1

Quickies always begin in an even register, a dummy instruction being
inserted if necessary. In appendix 4 a summary of details of the quickies
incluc~s the number of registers occupied and the working space used for
storing intermediate numbers. A fuller description of the quickies is
contained in the Ferranti publication CS 202. It will be seen that ail

quickies use at most

(2) The accumulator

(ii) Working space M 32-39

(iii) Sac St Bt.

None of the Beregisters 1 to 6 are altered; some quickies use 85
and B6 during the quicky but the contents on entry are restored before
the exit. The last instruction of the quicky alwe»* transfers control
to the register after the end of the quicky.

Like an x-routine, a quicky is gst of a v-routine and as such a
quicky can be labelled, the address indicated being the first (even)

CS 2254

‘ear

register occupied by the quiuky e.g. if im a pregramme the instruction

Q 4 {2

occurs, then the instruction 90 v2 anywhere in the same v-routine transfers
control to the beginning oi the quicky>.

4g tee Automatic Quicky Selection

A reference to @ label mimcer ir the range 701 to 1719 will cause a
guicky to be inserted at the end of the chapter in which the reference cccurs,
and the reference will be intervreted as the address of the first instruction
of the quickye wi01 corresponds te quicky 1, vi02 to quicky 2 and so ons
if several such references te one geuicky are made in a chapter, only one copy
of the quicky is inserted and all the references refer to this copy.

The quickies are inserted at the emi of the chapter in the order in
which the first references to them occur, each quicky beginning in an even
mumbered register. in addition to the instructions of the quicky, a a91 0
instruction is put in at the end of each quicky, so that it is stored in a “Bi-
closed" form, There is one exception to this: gquicky 9 has a 591 5
instruction put in at the eni - this is to conform with the non-standard entry
required by this quicky (see Appendix ITI).

All library routines use the quickies in this "Bl-ciesed" form and
call for them using the automatic selection, so that if two library routines in
one chapter require the same quicky, only one copy of the quicky will be
included in the chapter ani boii library routines will use it,

4,5 Enter

' At the end of « prcgramme a directive is required to indicate to the
Input Routine thet it must stop compiling and begin obeying the programme.
This is done by the direotive ENTE followed by an addre

ER v/1

The chapter containing routine i (not necessarily chapter 1) is then
transferred from the backing store to the computing store and control is
transferred to the register indicated by the label 0 (the beginning) of
routine 1.

4,6 Aeross

With a programme of more than one chapter, it is necessary to be able
to transfer a second chapter from the backing store to the computing store when
the instructions of tne first chapter have been obeyed. This san be done by
writing, say,

A WA f7

which when obeyed causes the charter containing routine 7 te be transferred.
to the computing store and comtrei transferred co the register indicated by
Label 4 of routine 7,

4.7 Down

On some occasions it is desired to call. in a second chapter in such
a way that, when this second chapter has been obeyed the original chapter is
again transferred to the computing store, and control transferred back to the
place where the chapter was left. The second chapter is called in by writing

B vi/7
mn
WV S 225 A

~ 27 -

% is convenient to think of chapters as being on divferent levels, the
second chapter being a sub~chapter of the first. Sub-chapters can
themselves call in sub-sub-chapters, etc. 9 levels being permitted. A
chapter on a higher level is called a master chapter.

4.8 Up

When a sub-chapter has been completed and it is desired to return
to the master chapter, the word

UP

is written. Sub-chapters can call in chapters on the same level by an
ACROSS, the UP always causing a return to the level above at the place

where that level was last left. UP is of course never followed by an
address, whereas ACROSS and DOWN are always followed by an address.

Like quickies, ACROSS and DOWN always begin on an even register,
a dummy instruction being inserted if necessary. For ACROSS and DOWN
four registers of programme are inserted. For UP two registers of
programme are inserted. ACROSS, DOWN, and UP may all be labelied; the
address of the first instruction is indicated. For ACROSS and DOWN the
label must follow the address.

An ACROSS or DOWN directive can be written without a v~reference
in its address: for example ACROSS 2.0/15 will bring down the chapter
containing R15 and enter it at 2.0 - or rather jump to 2.0 whether the new
chapter, in fact, uses page 2 or not.

Pre-set parameters can also be written in ACROSS or DOWN
directives. The routine number after the solidus only affects a v-
reference if the reference occurs immediately before the solidus: for
example, in

DOWN x1ivi/10

the vi has the value of label 1 of routine 10, but in

DOWN vixi/410

the vil has the value of label 1 of the current routine.

The ACROSS, DOWN and UP directives are called "cues".

4,9 Title

All programmes should begin by causing the machine to print out
the title of the programme. The title is printed as it is read in by the
Input Routine and whenever the programme is restarted using key 8 (See chapter

7)e Lhe title must come before the first CHAPTER directive on the tape.
After the first figure shift character following the letter T the title
comprises all characters (erases being ignored) until two consecutive figure
shift characters occur, i.e. until a length of blank tape. A maximum of
244 characters are permitted in one title but several titles may be included
in one programme (before the first C), each of which is punched during input,
but only the last is stored in the backing store.

T

BILL SMITH

REACTOR 777/1/2 WITH NO COOLING

(FS FS)

CS 2254

~ 283 —

It is useful to include a "carriage return" and “line feed” character in the
title before the first word or figure.

4.10 Firstsector

Unless there is a FIRSTSECTOR directive, which must come before the
first CHAPTER directive (but either before or after the title), the firstsector
is taken as 128, On this sector are stored the title and the entry cue only.
The first chapter begins on the next sector (129 if there is no F directive).
This directive is useful if a programme requires a large number of consecutive
sectors of the backing store, including drum 0, for working spaces. €e&e

F 440

G4

will cause the programme to be stored on sector 440 onwards, the first chapter
beginning on sector 441. It may also be desired to keep two separate
programmes in the backing store simultaneously when they must obviously begin
on different sectors.

The title of a programme is stored in its “first sector" from line 0
onwards; in line 61 is stored a count of the number of character pairs in the
title. Information about the last ENTER directive obeyed - called the “entry
cue" ~ is stored in registers 62, 65 of the "first sector".

4.1 4 Page

it may be desired to begin a chapter in some page other than page 1.
(Chapters begin im page 1 if there is no PAGE directive). The PAGE directive
must be written on the same line as the CHAPTER directive, the C directive
beginning the line. Ce Ge

C2 P8

As usual, the first page of the chapter, P 8, will be stored on the next
available sector.

This is useful when Chapter 1, say, contains several routines which
are also required in Chapter 2. If these are put at the beginning of Chapter
1 (pages 1 to 7) then Chapter 2 can call in the routines of Chapter 1 by direct
transfers of control without doing a chapter change each time. Care must be
taken that the relevant routines of Chapter 1 are really in the computing store.
When a chapter is transferred to the computing store only the relevant pages
are read down, other pages being unaffected.

It is also possible to predict the highest page of a chapter ee8.

C2 P8- 1%

If chapter 2 spreads beyond the end of page 11, then fault 9 is reported by
the Input Routine. This is useful:-

(1) when pages 12 onwards are being used as working space.

(ii) when the precise sectors occupied by the chapters are required,
since chapter 2 will now occupy four sectors of the backing
store corresponding to pages 8 to 11 even if the last instruction
of the chapter was only in page Ge

(iii) when a lengthy MCORRECTION is anticipated.

If a chapter occupying say pages 8-11 is expected to spread into Page i2 because
f a long correotion, allowance must be made for this in the original chapter
directive, for if the chapter as read in only occupies 4 pages, only 4 sectors
will be allowed to it on the drum, amd a correction running on to the next
sector will spoil the beginning of the next chapter. Therefore a directive
P &—12 should be written to ensure that 5 sectors aye .ueft on the drum for the
chapters

It is umnecessary to predict 2 nighest page 15 for reason (i) alone,
as no chapter may spread beyond the end of the page 15. A chapter may be
directed to begin in page 0, but it cannot then be transferred from the backing
store to the computing store by ACROSS, DOWN, UP or ENTER which use the

chapter changing sequence. CS 225)

_ 29.

be 2 sector

if a chapter is required to begin on a particular sector of the
arum e.g. for organising transfers from the drum store to the computing
store without using the chapter changing sequence, then a SuCTOR directive
should be given on the same Jine as the CHAPTER directive, either before
or after a PAGE directive, if anye Cefs

C 3 5 25

will cause Chapter 3 to be stored on sector f + 25 where f is the
FIRSTSaCLIOR which is usually 128. The sector number is always relative
to the FIRSTSECTOR.

4.13 Line

Usually items within a chapter are stored consecutively in the
computing store, short integers when encountered going into the next
available half register, instructions going into the next whole register
and long numbers going into the next even numbered register. If the
next and subsequent items are required to go into some other register,
a LINE directive, followed by an address may be given. ‘The address may
be a fixed numerical address or may consist of a fixed numerical part
and one v floating address only. €¢efe

L2,0 or L128 These cause subsequent items
to go into registers 128 and

L 30vc6 oOv6 respectively.

The second kind is useful when it is required to leave some working space
within a routine. A LINE directive may occur anywhere in the middle of
a routine the subsequent items being a continuation of the current routine.
wnen a new routine is required to begin in a particular register the LIN
directive should be given before the ROUTINE directive; if the ROUTINE
directive precedes the LINE directive, the address vO is of course not
the address of the first item written in the routine.

The address after a line directive may contain aft most one
symbolic address, which may be a v-reference, a pre-set parameter, or an
* (see 5.4). An *inanL directive refers to what would have been the
next address, so that for example the last instruction of a quicky can
be overwritten by writing LINE-1* immediately after the quicky.

The absolute and symbolic parts of the address in a line
directive may each be greater than 16.0; they, and their sum, are both
interpreted modulo 32.0.

It is important to keep in mind that v-references, preset
parameters and * all take account of half registers. For example, suppose

=2, =7 (3

was written in line 2.20 say, then the value of v5 is 2.20+. A directive
LIN® tv5 would then set the current address to 2.21 +, se that an instruction
immediately after the directive would go into 2.42, not 2.21 as might be
expected. LINE 04+v3 would set the current address to 2.21.

With the L directive the hishest nage occupied by a chapter is
correctly set, (e.g. for later reading the chapter to the computing store),
However the first page is not necessarily correctly set. If for instance
a directive Ci F2 is later followed by a directive L1.0 then page 2
wrongly remains the first page and no check for this kind of blunder is
ine luded.

A chapter can be extended into the second haif of the computing
store only by the use of a line directive ~ over-running the end of Page 15
wilt produce fault 8. Once a chapter has been extended into the secom

CS 225 A

-W OO -

§ half of the store the only. check on its length is tne “overflow predicted page"
check; there is no check on overflow of page 31.

Instructions, integers and numbers can be written in the part of a
chapter occupying the second half of the store, ani labels can be set by
bracketing items. However, a labcl set in the second half of the store can
only usefully be referred to by an accumulstor instruction, since other ©
instructions can refer to the first half only of the computing store.

4,14 Mcorrection

This directive is similar to the LINE directive. The address must

contain one cross reference €.f.

M 41/2

Unlike L, the effect of an M directive is to cause the Input Routine to
terminate the current routine and chapter. It then transfers the relevant
sector of the chapter containing routine 2 to the computing store and causes
the subsequent information to be stored beginning in the specified address.
After an MCORRECTION all vw floating addresses must be cross refererces and
no new labels or new CHAPTER or ROUTINE directives may be given. MCORRECTIONS
should be placed at the end of the tape, immediately before the ENTER
directive.

The MCORRECTION may be used

(i) to rectify a known programming error e.g. an addition
instruction has been incorrectly written as a subtraction

M 43/6

420 vi/6

E v/1

(ii) to detect programming errors by doing a running check.
This can be done by writing a special printing routine or
chapter and putting in blisters at the points where a
print-out would be useful e.g.

C 99 The blisters

R 999
-

The 4 or 5 instructions
° obliterated by the first
° e MCORRECTION

590 v0

400 32 (4 "]

° The 4 instructions
obliterated by the

° - second MCORRECTION

090 vi0

106 0 (100
206 0

. Print page O as short
Q 8 .

integers
176 127

186 ‘tvi0 CS 2254

_ SOA -

400 16.6
Priz L16.6 to 9

o00 9 deci il figures
Q 10

UP

M 3v2/6 Call in first blister (DOWN

D v/999 takes 4 or 5 registers)

M v/11 Call in second blister (DOWN

D vit/999 takes 4 registers here)

E w/1 Enter

The only symbolic address permitted in an M directive is a v-
reference, and there must be only one. The address takes account of half-
registers as in L. As in cues, addresses such as 2.0/15 can be written
after M: in this case the correction is made to the chapter containing
routine 15 and the correction starts at 2.0.

M corrections carmot be made to programme occcupying the second
half of the store. The absolute and symbolic parts of the address in an
M directive are interpreted seperately modulo 16.0, and so is their
total.

If the address after an M is written in the form a.b, without
any v-reference or /, the address is taken to specify sector a, line b.
For example, M129.10 causes the succeeding programme to go on to sector
129 starting at line 10, In the programme following such an M heading

cross references may be used, but no *,

When using correction tapes, it is important to remember that
"Start without Clear" unsets all preset parameters and resets the "first
sector" to 128, so that an entry cue at the end of M tape, read in after
"Start without Clear", will overwrite the last two lines of sector 128
unless a new F-directive has been put at the head of the correction
tape e

An M correction is not fully compiled until the start of the
next directive is read, so that an M tape should finish either with an
ENTER or with a dummy directive, such as Me.

4.15 Interlude and Jump

These directives permit a short burst of computing while the
programme tape is being read in (c.f. chapter 0 of Autocode). The
interlude is commenced by the directive

INTERLUDE

Subsequent items go into registers 1.0 onwards, but must not extend
beyond the end of page 15, and are stored on sectors 114 to 126. The
interlude is terminated and entered by a directive

JUMP

which reads the interlude from the backing store to the computing store
and transfers control to register 1.0. To retvr. .rom obeying the
interlude to reading more of the main programme at the point where it
was interrupted, control is transferred to register 15.0. e.g. to set
x1 equal to the value of vi of the current routine (i.e. x1’ = v1):-

CS 225A

- O1 =

INTERLUDE

400 27906

410 24.46

990 15.0

JUMP

The interlude may use pages 0 to 14 as working space. The
usual entries are in registers 0 to 12 of page O but the remaimer of
page O and page 14 are not cleared and contain junk. The Page O used
during input is stored on sector 127,

Labels during the interlude are labels of the current routine
of the main programme, and a ROUTINE directive in the interlude terminates
this current routine. Quickies and LINE directives are permitted, but

it is not possible to write ACROSS or DOWN in an interlude (without a
special device since cues are filled in at the enis of chapters). A
CHAPTER directive must not be given in an interlude. A second interlude
is written on the same sectors of the backing store, overwriting the
first interlude. An interlude may be entered any number of times by
directive JUMP alone.

Details, contained in appendix 2, enable interludes to be
written for:-

(FIRSTSECTOR x1)

(SECTOR x1)
(PAGE x1 = x2)

(x1 = current sector)

(clear labels list only)

(Print preset parameters)

(Print selected labels)

(x2= =x!)
(x3 = x2 times x1)

etc. CtCe

4.16 Wait

The directive WAIT, or the figure shift symbol ~, interrupts
the programme input and produces a repeated hoot. When handswitch 9
is depressed and released, input carries on from where it left off.

This WAIT hoot can be put in anywhere, even half-way through
an instruction, but it is mostly used at natural breaks such as the ends
of chapters. : It is often a good idea to put a WAIT hoot symbol on the
programme tape immediately before the Imter directive, so that if
necessary a correction tape can be read in before the Enter is obeyed.
A corre:tion tape should of course finish with a copy of the Enter
directive or, when it becomes one of several, another WAIT.

4,17 Name

The directive NAME er N causes the succeeding characters on the
programme tape to be copied on to the cutnut tape, up to the first CR
symbol, but only if * printing is set; otherwise the characters up to CR
are ignored. Erases are not copied to the punch. The Name directive
provides a form of title which does not get stored. Each library tape

has a name sequence at the beginning.

4.18 Other Directives

Another use of the letters L, P and S is described in section
5e5e1 (page 35). See also section 6.4 (page 41) for the use of the letter
shift character "?". |

CS 2254

~ 32 =

CHAPTER 95

SYMBOLIC ADDRESSES

Sei General description

One kind of symbolic address was introduced in chapter 2 (q.v.).
These v symbolic addresses are usually specified by a label after an
instruction. It is also possible to specify a v symbolic address by
labelling a short integer or a long number e.g.

= 25 (2

#521416 (3

and also by labelling the groups of instructions, QUICKY ACROSS DOWN
ond UP in which case the label must follow the quicky number or the
Aaddresse Finally, a v symbolic address may be set by an equation e.g.

vl = 66

This is not an instruction occupying a register but rather is a
directive to the Input Koutine. The ways a symbolic address may be
specified are classified by the item labelled:-

Item 1 Long number labelled

Item 2 Instruction labelled

Item 3. Integer labelled

item 4 Equation set.

if QUICKY, ACROSS, DOWN or UP are labelled this is classified as
item 4 and vO the address of the beginning of a v-routine is also
treated as if it were equation set. The item labelled is significant
with a symbolic address of type 45 instructions only.

The address part of an instruction can be composed of any number
of symbolic addresses which are added together e.g.

400 v1x2 (see below)

An address may also contain one fixed numerical part which must be
written first e.g.

590 avs

tran: ses control to the second register after the label 5 and

400 -—4v1

copies to the accumulator the long number which is 4 medium registers
back from the label 1, the minus sign referring to the fixed numerical
part only. One label may also be included, the label and symbolic
addresses appearing in any order. However the advantage of occasionally
saving a few milliseconds of input time is dubious and labels are best put

well to the right of the address.

When a long number is labelled 1, the four short integers
comprising it are referred to as vi, O+v1, ivi and ‘4tvi respectively.
When an instruction is labelled 2, the function and Bedir’ts are referred
to as v2 and the address of the instruction as O+va e.g.

O16 O+v2

CS 225A

wm 43 =

Short integers may themselves be written in terms of symbolic
addresses and are always treated as the address part of instructions,

> as type 2 instructions

= as type 1 instructions

and fas type 4 instructions

Ce8e =vi, # 6v2

With directives ACROSS, DOWN, ENTER and MCORRECTION the symbolic
address must specify a routine which in turn specifies the chapter.
Consequently the permitted address is restricted to

(i) a fixed numerical address (optional) together with one
v symbolic address which is a cross reference e.8.

A vA

A 4v1/2

(ii) a fixed numerical address together with a routine number e.g.

EB 1.0/1

transfers down the chapter containing routine 1 and transfers
control to register 64.

With the LINE directive the address may consist of a fixed
numerical part followed by one v symbolic address only e.g.

L 4vi

or a preset parameter or an asterisk. With L and M the symbolic address
must of course be a backward reference, ise. the symbolic address must
have been previously set by an item further back on the tape.

Dea Vv syubolic addresses

These symbolic addresses are associated with labels. One
hundred different v symbolic addresses are permitted with each v-routine
(though usually only about ten are used). In a complete programme the
total number of different v labels set must not exceed 1023. vi01 to
vi19 correspond to quickies 1-19 (see section 4.4.1 above).

ed mn symbolic addresses

This symbolic address is minus the corresponding v address e.g.

vi = 6

then 400 ni

if

has address equivalent to the written register address -~6 or 2042. This
kind of symbolic address is particularly useful when say, the number of
long numbers in a list is required eog.

+124 (1

-1.2

+10 (2

then 500 v2ni

CS 225 A

puts the number of long numbers minus 1 into Sac (Since long numbers
are labelled the medium register addresses are halved during input - see
later). nonits own or nO is minus the address in which the routine
begins.

564 * symbolic addresses

The relative address asterisk is set to the address of the item
(an instruction or short integer) in which it occurs. It is equivalent
to vi(1 but has the advantage that a label is not used. ecg.

990 2*

transfers control to the address occupied by the next but one instruction.
Similarly a continuous hoot at an audible frequency might be

5980 0 Hoot

S00 -25 S‘ = -25

580 * Jumps to itself 25 times taking 14 ms.

590 =35* Jump back 3

With all symbolic addresses it is recommended that the fixed numerical
part should be kept small or the advantage of symbolic addresses are
diminished; the appropriate item should be labelled.

5.9 x symbolic addresses

(i) x=Routines (q.v.) are written in terms of a special
symbolic address x or x0. This address is automatically
set to the address of the beginning of each x-routine.

The address x0 can only be set in this way; it cannot
be set by an equation. Instructions of an x-routine
might be

400 48x

590 ‘7x

(ii) Preset parameters xi to x100. It is sometimes
convenient to have symbolic addresses which are not
associated with any particular routine and which are
easily varied. These preset parameters are always
set by an equation ecg.

x99 = 6

which is usually conveniently piaced at or near the
beginning of the tape. The preset parameters may
however be set or reset at any time.
€ege A general routine might be written to solve
simultaneous equations in which the coefficients are
stored in consecutive long registers in the computing
store. The medium register address in which the first
coefficient is stored might be specified by the value of
x1 and an instruction of the routine might be

406 x1

CS 225A

- 3 ~

Also, the number of equations which = to be solved might be
specified by the value of x2 and an instruction of the
routine might be

106 = Ie

(The distinction between an integer and an address is rather
arbitrary c.f. instructions of which the address part is
regarded as an integer,)
The equation setting a preset parameter may contain on the
right hand side a preset parameter which has been previously
set. Ge ke

x2 == Sxl

sets x2 to 3 plus the value of xi. Any mumber cf preset
parameters may occur on the right hand side, but only one
fixed mumerical part wnich must come first eeg.

x2 x= Ox x6x7x7

the sum being implied. ~ is not possible to subtract
preset parameters in this way but in the rare cases when
it is desired it can be done by using an intermediate n e.g.

v99 = xZ

300 xitnd99

puts x1 - x2 into Sace Preset parameters may also be
included in the right ham side of an equation setting a
v symbolic address but in neither x nor v_ setting
equation may a v, n or * occur on the right hand side.

DeDe1 L, P and 5 on the right hand side of equations.

The letters L, P and S can be written on the right-hand side of
equations, and have value the current line, page and sector respectively.
At most one can appear in any one equation, and must follow any absolute
or other symbolic part of the right-hand side.

L has the value the address of the next register, taking account
of half-registers, P and S the current page and sector numbers respectively.

After the last item of a page has been read, the register
indicator in the input routine is advanced, but the page and sector ircicators
are not changed until the start of the next item, so that P aml S sive the pace
and sector of the last item read.

L, P and S can be used in equations setting x anu v symbolic addresses,

oeo6 Fo ling in symbolic addresses

Like all written information which is fed into the computer via
the Input Routine a symbolic address is a kind «f shorthand for the binary
digits of the machine address into which it is translated. It is however
often convenient to think of symbolic addresses as the equivalent written
medium register address. Just as a writ’en register address is sometimes
halved or doubled during input according to the type of the instruction,
so also symbolic addresses are similarly halved or doubled. For type 5
instructions eege B’ =n the symbolic address is halved if a long number
is labelled, doubled if a short integer is labelled, and has the same value
as the equivalent written medium register address if an instruction is
labelled or if the symbolic address is equation set. The following are aiways
regarded as equation set:-

- 36 -~

vO, *, x and x1 tox100 as well as vi tovi0v when e QUICKY, ACROSS,
DOWN or UP is labelled,

For a general written address the fixed numerical pvart is read first.
This must be consistent wit» the size of the machine so that for

type 1 instructions “1025 < M < 1023

type 2 instructions -olle < H << Stt+

typos 5 instructions “1023 <s M s 1025

type 4 instructions 2046 < L < 2046

type Oo instructions ml0Z5 < H << 1023

(If any ot these inequalities is not satisfied this is what is called
address overflow). The fixed numerical part is then appropriately halved
or dcuoled if’ necessary and stored as a short integer. If the result is not
an exact integer (+ counts as +) this is what is called address underflow,
A general address may also consist of several symbolic addresses. These
are treated in the order that they occur. If the value of the address has
not been previously set details of this forward reference are stored for fillins
in later. If the value of the address has been set for each symbolic address
part it is appropriately halved or doubled and then added to the machine
address so far and stored as a short integer. The integral part of the result
is then taken, any halves or quarters being discarded. The result is taken as
modulo 1024 except in the case of type 5 instructions so that with symbolic
addresses, after the fixed numerical part of the address has been read both
overflow and underflow are ignored. It is convenient to regard symbolic
addresses or the equivalent medium register address as being

modulo 1024 for type 1 instructions

modulo 512 for type 2 instructions

modulo 1024 for type 3 instructions

modulo 2048 for type 4 instructions

modulo 1024 for type 5 instructions

This information is summarised in table 1 for the symbolic address of an
instruction. Mis the equivalent medium register address, and the entry for
the type of instruction and the item labelled is the value of the machine
address. Type 5 instructions are here regarded as constituting one machine
instruction with an address of 11 binary digits.

Table 1 *

t= 1 == 2 t= t= 4 | t= 5
C’ nor "=" T‘=H or ">" | Ben] A’=L or "4 Boel

modulo 1024 012 | 1024 2048 1024

—

number { M 2M M2 M/ 2 2M

i = 2
instruction (M aM M Low 25j aM

j= 3
integer ([Ww] 2M 2M (M/2] 2M

i= 4 | om | equation set Tw] OM Pw} we] 2M
CS 225A

~ 37 -

fhe square brackets denote “the integral part of" and could enclose every entry
but have been omitted in those cases when a half or quarters eannot arise in
finding the machine address. i denotes the item mumber (sse sec. 5.1.).

If something different from the above is required to be done to the
written medium register address, one of the characters >= or # may be inserted
before the complete address. The type of the instruction is then changed to
type 2, type 1, or type 4 respectively. Thus the address is treated as a
short integer though of course the item remains an instruction. The characters
> = or # are rarely required before an address and the temptation to insert them

unnecessarily should be resisted as errors are easily made by doing so. The
cases when they are essential are usually with instructions of type 3 e.g. when
a long mmber is input as 4 short integers one of which is labelled 1, then

106 £€ vi

406 0

puts the long number of which the labelled short integer is part, into the
accumulator.

A preset parameter must not be reset in terms of itself, that is to
say the same x parameter must not appear on both sides of an equation. If
such an equation is written, it will reset the preset parameter to a wrong
value.

CS 2254

CHAPTER 6

IC PRINTING FACILITIES

Get Fauit print

During input various obvious programming blunders are detected by
the Input Routine which immediately prints:-

FAULT on

where n indicates the particular fault as listed below and comes to a
99 stop so that a mark can be made on the tape. The fault number n
is, at this atage, also contained in SAG and the last figure shift character
read is in B6. Except for fault 9, on giving a prepulse the Input :
Programme ignores all further characters until the next carriage return,
printing out the characters ignored, and then continues reading the tape
in the normal way. A fault 9 for overflow of the predicted page is
reported at the end of the chapter, which is indicated by the next CHAPTER
or ENTER directive, and comes to a 99 stop. On giving a prepulse it
continues to read the C or E directive and the programme will be
composed correctly if the overflow of the predicted page does not matter.

6.1.14 Fault 1 Address underflow

This occurs when a fixed numerical address or the fixed numerical
part of a general floating address is not an even whole register address
for type 4 instructions, or is a right half register address for types
1, or 5 instructions e.g.

400 44
For both of these fault 1 is reported.

300 O+v4

When the written medium register address is appropriately halved or doubled
the machine address must be a whole integer.

6.21.2 Fault 2 Address overflow

This occurs with a fixed numerical address or the fixed numerical
part of a general. floating address which does not satisfy

“1023 < M < 1023 for types 1 and 5 instructions

~Si14 < H < 5114 for type 2 instructions

~2046 <L < 2046 fo

~1023+< H < 102% for type 5 instructions

*y
 typ: 4 instructions

6.7.2 Fault 3 Spurious character

This is reported when a character occurs in a position where it
cannot be correct e.g. the v in

40v 2

will cause fault 3 to be reported, As with all faults, when a
character is reported as spurious the character itself is necessarily at
Pault if, and only if, all the preceding characters of that item are
correct 2.8. an instruction

500 O+y7

CS 225A

is reported as fault 1 for address underflow when |°*%) may be that the
actual fault is that the function digits should have been 20. When
the machine itself is not functioning correctly it is found that fault
2 is reported more often than other faults.

6ele4 Fault 4 Label set twice

A v-floating address is specified twice e.g. if two labels with
the same number occur in the same v-routine, fault 4 is reported when the
second label is read. Fault 4 also occurs when two routines have the
same number, as then vO is set twice.

6.1.5 Fault 5 Label not set

With an L or M directive the v-floating address must have been
previously specified; if not, fault 5 is reported. Other references
to v-floating addresses which are not specified do not cause a fault stop
but when the ENTER directive is read the Input Routine prints eeg.

v6/i NOT SET

followed by the address of the offemling reference in the form Sector . line.
After each there is a high pitched hoot lasting a second but the programme
is entered. This may be useful when a programme is being tested in

sections ¢.g. suppose routine 25 has not been written but is called in
by 590 v/25. Since v/25 is not set, when this instruction is obeyed
control is transferred to register 0 which contains a dummy instruction
and the machine comes to a 99 stop in register 1 when routine 25
would have been reached.

6.1.6 Fault 6 Preset parameter not set

Unlike vw-floating addresses, in a reference to a preset parameter
x1 to x100 the preset parameter must always have been previously specified
(by an equation).

661.7 Fault 7 Too many referenees

Backward references are filled in immediately but details of each
forward reference are kept in a list and the reference is filled in at
the end of the routine containing the label. If the mumber of unfilled
references exceeds 278, fault 7 is reported. This fault is rare and
has so far only occurred in programmes specially written to produce this
faulte

6.1.8 Fault 8 Overflow page 15, or Interlude too long

Fault 3 is reported if a chapter extends beyond the end of page 15
without a line directive to the secormi half of the computing store. The
fault is reported after the first digit of the instruction after the end of
page 15 hrs been reed, or after the =, >, 4, +, or - introducing an integer
or floating-point number, If the tape is pulled back to the CR terminating
tae previous item before the prepulse is given, the rest of the chapter will
be compiled in the second half of the store.

Interludes may not go beyond the end of page 13. (See paragraph

60.1.9 Fault 9 Overflow predicted page

If a PAGE directive specifies the highest page of a chapter and if
the chapter extends beyond the end of the specified page then fault 9 is
reported at the end of the chapter.

6.1.10 Fault 10 Title too long

Since the title is stored <» the first sector of the programme the
number of characters in the title is limited to 244 characters, Fault 10
is often reported when the FS FS terminating the title is omitted so that
the first chapter is wrongly read as a TITLE.

CS 225..

6ato44 Fault 11. Wrong qiicky number

Not all the Quicky numbers 14 to 20 are used and if e.g. the
unspecified

Q3

is wr.tten fault :1 is reported,

if a non-existent quicky is called for by the automatic selection,
ees, WIOS, Pault 11 is reported at the end of the chapter, and the reference
remains 4s to an unsct Inbel. No more filling in of guickies will be done
at the cond cof the chspter.

Cele’2 Fault 12 Tco many labels

Details of every vefloating address which is specified are kept
in a 18. with space for 1023 labels. Fault 12 will be reported at the em
2° the vrontine in which the 102452 is set.

Co1,1S #ault 13 Chapter numbers, parameter numbers or label
numbers over 100

The chapter list and preset parameter list have spaces for numbers
i ~ 160 and the label list of any given routine has only spaces fer numbers
1 =- 100,

6o1,i14 Fault 14 2? mumber greater than 10

If the number written efter a ? is greater than 10, fault 14 is
reported (see section 6445}.

Og fs Error Print

Whereas a fault print indicates certain programming blunders which
are detected during the input of the programme, some programming blunders
are deteoted during the actual running of the programme. Many of the
quickies evaluate elementary functions of the long number in the accumulator
over a restricted range. If the Quicky is entered with the aecumulator
combents out of range, control is directed to a part of the input programme
for an error print e.g. Q12 finds the square root of a pesitive number or
zero aon. calls in the error print if it is entered with a negative number in
the accumulator. The word ERROR, the quicky number, the contents ef Bi te
BE and the contents of the accumilator as four short integers (in the order
exponent, least significant ten binary digits of the fractional part, middle
tea binary digits and most si icant ten binary digits i-e. HO, HOt, Ht,
Hi+s if the number were in LO) are printed and the machine comes to a hoot

SEOD o

Tt may be that an error print has been anticipated by tt»: pr %mmer
(or has . curred wien the programme was last run) and further nrinted
information is required. This can be arranged by writing a printing rc
which begins in register 64, If at the hoot stop, key 9 of the sandsw.
is tapped or if the handswitches are negative, ccntrol is directed to regisi.
64, At this stage, the contents of the accumulator, Bi to B6 and page O are
restored to their values on entering the error print, but 5, St, Bt and T,
the selected sector are changed, The errer print routines all work in page

0 which is temporarily stored on sector 479.

It is also possible for a programmer to arrange to call in the error
print if something goes wrong with one of his own routines. This is done
by putting an identification mumber in Sac or B7 and transferring control to
register 9. The number in Sac will be printed as the quicky number. As a
prelude to doing a postmortem it may be useful to print out the B-registers
ano the accumulator by transferring contro] to register 9 by a manual
ingiruction and so doing an error print.

CS 2254

=m Tw

6.5 Asterisk print

It is frequently desirable to know the equivalent fixed mmerical
addresses for the v-floating addresses and the sectors on which each
chapter is stored e.g. to identify an error print when 5B? gives the
address at which the quicky was called in as a closed subroutine. I’,
and only if, there is an * on the tape at the beginning of a line the
following information is subsequently printed during input.

(i) At each chapter directive:-

The letter C, the chapter number, the sector on which
it begins and the first page.

(ii) At each routine directive:-

The letter R, the routine number and the register
address in which it begins i.e» wO. The register
address of the other labels can be found by counting
the registers from the beginning of the routine.

A second asterisk at the beginning of a line causes Fault 3 to be printed.

A binary tape is also provided which when read in by binary input
prints the addresses of all the labels aml interludes can also print labels.

6.4 Query print

In testing a programme it is often desired to print out information
at various stages and with the query print this may be done with little
programming effort. The information that is printed is determined by
the query number which is set by a directive e.w.g.

? 3S

for printing the contents of BS. The places in the programme where the
actual printing is desired are specified by a single figure - shift
character n at the beginning of an item e.g.

420 vi

n

410 40

For all query numbers i= 10, except ? 8, the n at the begiming of an
item causes 12 or 13 instructions to be inserted in the programme, 4
dummy being needed if the register is odd; ? 8 is a special case (see
table 2) for which only 35 instructions are inserted for the no I? there

is no query directive, or if there is a directive ?0, then no printing is
done amd the n at the beginning of an item is ignored. During @ query
print, subroutines of the Input Routine are obeyed in page 0, the contents
of which are temporarily stored on sector 479. At the end of the query
print the Beregisters including Sac, the Betest register, the accumulator
and page 0 are restored. However the Sac-test register may not be
restored and T, the sector selected, is changed to 479.

The n need not be followed by a carriage return ani line feed
so that if the line feed of the CR LF terminating an item is converted
into an n by inserting the most significant digit with a hand punch,
that item is then terminated by the CR alone and n at the beginning of
the next item is obtained. Thus a query print can be inserted without
reperforating the programme tape. However it may be desired to print
different information at each point when it is conve ..nmt to set the
query number just before each print 6.2.

26,

29, n
| CS 225 4

~ 42 -

(The cone terminates the query directive so the n is at the beginning of
an item).

With each query print a letter of the alphabet is printed, letters
being allocated in the order that the n’s occur on the programme tane,
excluding n s which are ignored, For ?8 this is all the printing that is
done. For other ?s the letter is immediately followed by the state of the
Betest register, +, -, or 0, and on the next line the "return address"
preceded by M. The "return address" is the address of the last of the
inserted instructions. The remaining information printed is shown in Table
Ze

TABLE 2.

Query Number Information printed

the contents of B1

the contents of B2

the contents of BS

the contents of B4

contents of BS

the cortents of B6

the contents of B7

(letter only)

the aecumulator as 4 short

integers

the B registers, and the
accumulator as 4 short
integers

oO

a
o
n

oO
oO

fF
G&G

HS
—+

oh

©

A ? mumber bigger than 10 gives fault 14.

When using the query print oare must be taken to allow for the
inserted instructions when referring to registers by use of nearby
symbolic address. For example, in

490 2*

noz0 2

M410 (0. 52

the 490 jump is to two registers further on, which will be the 410
instruction only if no extra instructions have been inserted for the n;3
if instru:‘tions have been inserted, the jump is into them.

An n calling for ? printing camnot be written in Page 0. This
is detected as fault 5.

Several ? directives can be given in one programme tape, amd an
nis interpreted according to the last ? directive.

If handswitch 4 is set when an n is read at the beginning of an
item, any ? directive is over-ridden and the n is ignored. This means
that a programme with several ns calling for query printing can be read
in without any of the printing routines. However, if handswitch 4 is set
when the Initial Transfer Button is pressed, it has a uifferent meaning
(see 7.4.6), so it must be set after the Initial Transfer Button is
pressed. | |

CS 2252.

CHAPTER 7

RUNNING A PROGRAMME

Tole Tape preparation

The written programme must first be transferred to paper tape.
To do this sets of tape editing equipment are available separate from the
computer itself. The complete set consists of a keyboard similar to
that on a typewriter, a punch, a teleprinter and a tape reader. When a
key 1s pressed the corresponding character is punched on a tape and is
also printed on a roll of paper. For letters a special character called

letter shift must first be punched and followed by a figure shift
character when it 1s required to return to figures. The keyboard has
a locking device to ensure that the shift characters are not omitted.
If a mistake is noticed it may be possible to back space and convert the
wrong characters into “erases". The tape reader is used to copy tapes
e.g. the library tapes or for correcting part of a tape (the corrected
tape can be joined with opaque sellotape); a facsimile of the tape
going though the reader is produced by the punch and a printed version is
produced by the printer. The punch may be switched off so that only the
printed version is obtained e.g. to print results from the output of
the computer.

Bach item or line of the written programme, e.g. an instruction
or a directive is followed by the two characters "carriage return" and
"line feed" in that order. Except for long numbers, items may also be
terminated by a comma. After the item has been terminated all further
CR’s or LF’s are ignored until the next item is commenced. Items are
commenced by a decimal digit for instructions, a plus or minus for long
numbers, a > = or # for short integers or a letter shift character
for directives. Between items FS or blank tape, and LF is ignored
but once an item has been started an unnecessary figure shift or line feed
is a spurious character producing fault 3. The characters space and
erase are ignored everywhere, and it is usual to separate the three digits of
the function and Beregister from the address by a single space. It is
also convenient to insert about three spaces before each label. Reasons
for this are:-

(i) The labels are easily located on the print out.

(ii) In finding an item on the tape in order to correct it
with a hand punch, the nearest label can first be
easily located by the adjacent block of spaces.

702 Layout of the backing store

The Input Routine occupies sectors OQ to 65 and may be isolated
by the switches on drum 0 for columns 0,1, 2 and 3: (or columns 0
and ‘4 on the new large drums) so that it cannot be overwritten. If the
Input Routine is overwritten it may itself be read in, a tape being provided
on which instructions are coded in binary suitable for a short input programme
which is on sector 1, sectors 0 and 1 being permanently isolated.
While the Input Routine is being read in lists of labels etc. are compiled
on sectors 64 to 113, interludes are stored on sectors 114 to 126,
and sector 127 is used to store page O during input, (during a fault
print or an interlude). When the programme is entered the Chapter Changing
Sequence is transferred to sector 478 and sector 479 is frequently used
to store the contents of page O during the running of the programme e.g.
during chapter changing and automatic printing. On sectors 480 to 511
are usually kept the engineers test routines, these being isolated by the
switches on columns 6 and 7 of drum 3 (column 7 of drum 1. on the new
large drums).

CS 225A

7e3 Layout of the computing store

When a programme is entered «ne following is put in Page 0:-

Register

0 +0

4

2 =1

3

4 670

5 690 |
lrary to the chapter changing sequence

6 670

7 680

097 0 Return

9 670 479

10 6900 somntry to the Error print
44 «670~«OOSs

12 680 0
The long numbers +0 and -1 are frequently useful and are used

by many of the quickies. The computing store from line 0.14 onwards is
cleared to programme zero (990 0) and Beregisters 1-6 are clear. ‘The
vacant space in page O from register 15 is available for ad hoc working
space but it must be remembered that the contents of Page 0 are destroyed
whenever the initial transfer button is pressed. Registers 52 to 59 are
used by quickies and some library x-routines may also use registers 24 to
Si. It is generally advisable for programmers to avoid these registers
and use only registers 13 to 23 and 40 to 63 in page 0 except for very
short term work.

74 Starting procedures

The programme tape is piece” in the reader and the initial
transfer button pressed. This transi». > “= eontents ef sector 0 to page
0, transfers control to register 0, and obeys the first instruction which
is

610 2+

which reads the handswitches. This is the only time (except after an error
print) that the Input Routine reads the handswitches so they can immediately
be set if required during the running of the programme. Depending on the
initial setting if the handswitches varicus. modes of starting are available.
Except for key 9 only the most significant key which is non-zero is
relevant i.e. if two keys are set to the “one"™ position the least
significant is ignored. The most significant key in the “one* position
has the following effect.

CS 2204

~ 45 «=

Tote Keys all in the zero position Star. ~lear

This is the normal way of starting. The backing store from sectors
64 to 5Sii is first cleared to programme zero 990 0 everywhere. Just
before the programme is entered the computing store is cleared to programme
zero, but the labels list, stce, are left on sectors 64 to 127.

Jeoteea Key OQ Start no clear

This is the same as start clear except that the backing store,
including the labels list etce, is not first cleared. This may be used to
re-enter a programme by reading an ENTER directive from tape (assuming the
labels list etc., to be intact) perhaps with an MCORRHCTION or at the
beginning of a second data tape. Unless the required FIRSTSECTOR directive
is given the new entry cue is stored on the usual sector 128. It is
possible to re-enter the programme at various different points.

7e4e5 Key 1 Engineers’ tests

These are a programme of routines designed to check that the various
parts of the machine are functioning correctly. Key 1 should be returned
to zero and the prepulse button pressed. The engineers’ tests can be run
whenever the machine would be otherwise idle.

70404 Key 2 Tele-input

A short input routine stored on sector 1, which is normally isolated,
for reading binary tapes. This is a fast compact input routine for reading
in data or fully developed programme. Tapes for input by tele-input are
usually produced by the computer by means of tele-output, described in the
next section.

7e405 Key 3 Tele-output

This and the following settings require key tapping to indicate
required sectors on the drum. The bottom row of 10 keys on the control
console are numbered 0-9, and have two "set" positions, up and down, as well
as the central “unset” position. The down position is spring loaded so that
if a key is pressed down it returns to the “unset" position as soon as it is
releasede “Handswitch tapping" refers to a procedure whereby a three decimal
digit sector number is indicated by pressing and releasing three keys in
succession; three digits must always be given so that sector 99 say is specified
by pressing ("tapping") first key 0, then key 9, and then key 9 again. ‘The
handswitch tapping routine is included in the programme on sector 23; it is
obeyed in page 0.

Tele-output is a routine for punching out specified sectors of the
drum in binary, in a form suitable for re-input by tele-input. The information
on the output tape corresponding to each sector has a few characters at each
end which tele-input will interpret as information about where the sector is to
go; between each sector of information tele-output leaves one inch of blank
tape. With each sector of information is also punched a check sum, the value

of which is checked by tele-input when it reads in the tape.

To punch out information from the drum, using tele-output, key 5 is
set to the up position and the Initial Transfer Button pressed. Key 5 is then
return to zero am two three-digit sector: numbers are tapped, the first and
last sectors respectively that are required to be punched out on the binary
tape. These sectors are then punched out with a leader of 10" of blank tape;
after the punching tele-output re-enters the handswitch tapping programme,
waiting for a third number to be tapped, the “first sector" number.

(i) if this third number is tapped as zero, (0, 0, 0) tele-output
punches out a single character, te)l*. nput’s hoot loop
character, When tele-input ccues to this character on re-
input of the tape, it comes to a hoot stop.

CS 225-

(41) if the third number tapped is not zero, it is assumed that the
information punched out included a programme, and that the
third mumper tapped is the number of this programme’s "first
sectcr", Instead of a hoot loop character there is punched
on the tose a sequence of characters which when read by tele-
input, cause che programe to be entered according to the
entry cue stored in lines 62, 63 of its "first sector".
(see section 4.10).

In both cases, 1" of erases is punched at the very end of the tape.

If’ several groups of sectors are to be punched out, the entry
warning sequence is only wanted at the end of the last group. This can be
achieved by re-entering tele-output after each group (except the last) has
been punched: when tele~-output re-enters the handswitch tapping programme after
punching out a group of sectors, instead of tapping a sector number handswitch
2 should be re-set and the Initial Transfer Button pressed, to re-enter tele-
utput for more punching.

See also section 7.4.12 for another mode of operation for tele-
outpute

7e4e5 Key 4 Rescue

This is used to preserve the contents of the computing store by writing
it to some convenient part of the drum.

Key 4 is returned to zero and ome three-digit sector number is
tapped; the contents of the computing store are written to this sector and the
51 following sectors and the programme comes to a hoot stop. Since page 0 is
destroyed when the Initial Transfer Button is pressed, what is copied on to the
sector tapped on the handswitches is sector 479, that is the contents af page 0 al
the last chapter change. Pages 1~31 go to the next 31 sectors unscathed.

7Ve4e7 Key 5 Post mortem instructions

This is for printing out the instructions in the computing store or on
the drum in the usual decimal form of two function digits, a bedigit, and a fixed
rnumerical register address.

Key 5 is returned to zero and a three digit number is tapped. If this
number is in the range 0-51, it is taken as a page number, if in the range 52-999
it is taken as a sector number, and the conients of that page or sector are
printed out as instructions. Sectors 0-31 cannot be “post-mortemed"; since
they will usually contain part of the Input Routine this is little loss.

After punching out the contents of one page or sector, the programme
comes to a 99 stop; on a prepulse the rext page or sectcr is printed out, and
soon. After page 31, sector 32 is punshed; after sector 999, sector 1000.

.. the first seven binary digits in a medium register do not
correspond. ‘to a function in the decimal function code, the contents of that
register are printed out as two (ten~bit) integers.

7e4e8 Key 6 Post mortem integers

As key 5 except that the contents of the page or sector are
interpreted as i0-bit integers. Two integers are printed to a line, each

preceded by "=".

7et4e9 Key 7 Post mortem floating point numbers

As key 5 except that the contents of the page or sector are
interpreted as floating point mumbers. Numbers are printed in floating decinal
fors, an argument followed by a comma and a decimal exponent. An * “:cicates
thet the following number is in the store in an unstandardised form. Numbers

CS 2554

~ 47

ere normally printed four to a line, but if e 40-''t word is encountered whose
“exponent” is outside the permissible range -256 to +255, it is printed as
four short integers on the left hand side of the page as for key 6, and so
spoils the lay-out.

7 e 4. 4 0 Key 8 Re stert

This can also be used to re-enter a programme stored in the backing
store. Key 8 is returned to zero and the FIRSTSECTOR is indicated by
tapping a three-decimal-digit number. The title is first printed and the
programme entered using the entry cue stored on the FIRSTSECTOR so that the
labels list is net required.

Toke tt Key 9 Sector enter

The sector indicated by the number (in binary) on the remaining nine
keys is read to page 0 and entered at line 65. An example is that with ke
9 and key O up Binary input (stored on sector 1) is entered.

7o4ei2 Key 9 Entry to Tele-output

Tele-~output as described in section 7.4.5 uses sectors 0, 2 and 5.
However, the part of its programme which is on sector 0 can be used by itself
to give a simipler form of tele-output which is available when sectors 2 and
© have been overwritten by other programme.

For this mode of entry, sector 0 is entered by Key 9, so that key
9 only is set and the Initial Transfer Button pressed. The programme comes
immediately to a 99 stop: the number of the first sector to be punched
should be set up in binary on the handswitches and a prepulse given. The
programme now comes to another 99 stop, and the last sector te be punched
should be set up in the same way. On a prepulse, those sectors are punched
out in binary and the programme comes to a third 99 stop. If more punching
is required, tele-output should be re-entered by setting key 9 amd pressing
the Initial Transfer Button; if no more punching is required a prepulse should
be given, when the hoot loop character is punched following by 1" of erases.

720 The Control Desk

For normal running the switches on the control desk (see diagram in
appendix VII) are set as follows:-

write current on, to permit writing to the backing store

hoot on

inhibit parities off, to stop the computer if a parity check fails

manual/automatic to auto

handswitch stop off

single/continuous to continucus

handswitches all zero, for start clear

The function keys and address keys are irrelevamns.

The programme tape is inserted in the reader, the intial transfer

button is pressed and the single/contimuov: switch is turned to continuous,
(if it was on single).

The computer may stop for the following reasons:-

(i} A 99 stop instruction is obeyed (or the other
ad * «a ® eg: 4

prepulsable stop instraction is om. jocd).

ii) A parity failure

CS 2254

- 474A -

(iii) Accumulator overflow

‘iv) The optional stop. With the handswitch stop switch on,
the computer stops when the instruction, in the register
indicated by the setting (in binary) of the ten address
keys, has bec.» obeyed (see below for exceptions).

(v) A backing store read or write transfer is attempted with
a non-existent sector, eeg.e sector 512.

(vi) A Loop stops where an instruction transfers control to
itself, c.g. 590 *

(vii; “he single/continuous switch is turned to "single".
This interrupts the control unit and individual instructions
can be obeyed one at a time by pressing the prepulse button.
In this way a programme stored in the computer can be obeyed
but the time taken is at least 1,000 times the ‘time taken on
"continuous" so this is not recommended.

For stops (i) to (iv) the stop flip flop lights up, The
computer will resume operation when the prepulse button is pressed. For
stops (v) and (vi) the prepulse button is of no avail, but the computer
will resume operation if the initial transfer button is pressed. On
"single" most instructions require one prepulse (here defined as one pressing
of the prepulse button); the 60, 62 and 63 instructions require two
prepulses. Similarly with the optional stop on these instructions the
computer stops twice. The optional stop should not be used on a 68 or 69
instruction. If it is used no drum transfer takes place (a modification
of the computers is pending).

Instructions can be obeyed manually by turning the manual/autoswitch
) manual The 20 binary digits of the instruction are set up on the

function and address keys and a prepulse given. Manual instructions are
mainly used by the maintenance engineers.

CS 220A

CHAPTER 8

PROGRAMMING TECHNIQUES

8.1 Introduetion

This chapter contains details of some coding tricks for Mercury
and also some general strategy for writing programmes. These have

evolved from several years of work by many experienced programmers and are
intended to assist the beginner. It is not suggested that these are the
only methods, for better methods can be found for individual programmes,
and, of course, each of us prefers certain ways of doing certain things.
Some of the procedures described are more or less standard on all similar
computers.

Be2 Numerical methods for computers

Before actually coding up a problem it is advisable to consider

the numerical methods available. Methods suitable for hand computing
are not always satisfactory, e.g. relaxation. The time taken by the
computer should first be estimated; an abnormally long calculation may
indicate an unsuitable method rather than a large problem, and a certain
amount of common sense is required. Many of the frequently used numerical

methods are available as library routines, the Ferranti library for Mercury
containing x-routines for Runge-Kutta, Gauss integration, interpolation, etc.

In this section Mercury is regarded as being principally a scientific
computer. For commercial work and for data processing additional equipment
for input, output and backing store vastly increases the range of problems
in these fields which can be easily tackled.

8.2.1 Runge-Kutta for differential equations

A powerful method of calculating a function is to solve the
ordinary differential equation which it satisfies. This is particularly
useful when, as it usually happens, the explicit formula for the function
is most unpleasant. Physical problems usually give rise to a differential
equation; the explicit solution is frequently no use whatever for
evaluating the solution numerically. The commonly used method of Runge-
sutta modified by Gill solves a set of simultaneous first order differential
equations; a second order equation may be easily converted into two

simultaneous first order equations, and similarly an nth order equation is
solved as n simultaneous first order equations. The error for each step
is O(h°) where h is the step length, so care must be taken with the
choice of step length and the solution can be checked by repeating it with
twice the step length. Variable-step methods also exist. The direction
of integration is sometimes important e.g. when solving an equation to find
the solution which ~ e”* for large x it is useless to proceed far in
the direction of x increasing if another (unwanted) solution ~~ et*,
Small errors introduced in the first few steps would eventually exceed the

desired solution. If the boundary conditions are not all given at the
same point, severai solutions may be found by starting with arbitrary
conditions at one point and the required solution obtained by interpolation,

or by adjusting starting conditions at both ends so that the solutions meet
in the middle.

if for the equations

dy,

ZOU f1(X, Yt» Ya)

dy |
~ = f, (x, V3 Y,)

GS 225

- 49 .

the value of x is required when y, =b say, then the last step can be
performed with the equations

fa ao.

where the independent variable is changed to y,, and with the step
length b-=-y,-. For programming this, it is simplest to solve

 OYa = f,, Ya = f, and a
ax ax dx

and then for the last step solve

Sys fi Gye 4 dx 1
dy. P. dy dy P.

Other methods of solving differential equations are the Adams
Bashforth method and of course by Taylor series, the latter being
particularly useful for simple equations with polynomial coefficients.

8.2.2 Matrices

It should be remembered that the inversion of a matrix is more
difficult than the solution of a set of linear equations. Both are

usually done by pivotal condensation always using the largest remaining
element for the pivot. Iterative methods are often prohibitively slow.

8.2.5 Integration or quadrature

The Gauss-type methods are recommended for evaluating a definite
integral. The results may be checked by using methods of different
orders. Simpson’s rule may only occasionally be usefully employed.

8.2.4 Integral equations

These are often best solved by first reducing them to simultaneous
linear equations. Iterative methods, even if known to be convergent,
usually take considerably longer.

8.2.0 Partial differential equations

For elliptic equations the straightforward method of reiaxation
is not suitable for a computer and the Liebmann process, in which all
the points are relaxed in turn, is superior. Improvements on the
Liebmann process have recently been discovered e.g. sweeping
alternately by rows and columns. For parabolic and hyperbolic equations
finite difference methods can be used (perhaps involving matrix inversions)
or for the latter the method of characteristics.

8.2.6 Series expansions

A function f(x) can be expressed as

N-1
f ™ (0)x"

f(x) = | ~ + Ry

0

if sufficient derivatives exist and are continuous. However this
truncated Taylor series is not the best approximation which can be used
for calculating f(x). If f(x) is expanded in Chebychev polynomials
(perhaps with minor variations) the power series obtained can be shown
to have a smaller error over any given range |x| < a than any other

CS 225;

- 50 -

power series of the same degree. Thus if the desired accuracy is obtained
by N terms of a Taylor series, the same accuracy can usually be obtained
with a Chebychev series of fewer terms. The Chebychev coefficients can
be calculated or may be available in tables. Many of the quickies use
such methods.

8.2.7 Slowly convergent series

OO

To find) “ary by evaluating and adding successive

terms is far too slow and would take several hours on Mercury, even though
the series is convergent. The Euler-Maclaurin summation formula or other
formulae may sometimes be used to speed up the convergence.

8.2.8 Interpolation

Linear interpolation is seldom adequate. Formulae for higher order
interpolation can only be used if the function is suitably continuous. If
there are discontinuities in the function the higher the order of the
interpolation the less accurate the results and one may be forced to use
linear interpolation. A library routine exists for inverse interpolation,
viz. for finding x such that f(x) =0, and this can be used for
finding the zeros of a polynomial and the roots of a transcendental
equation.

8.2.9 References

Gill, S. (1951) Proc. Camb. Phil. Soc., 47, pp 96 - 108

Hartree, D.R. (1955) “Numerical Analysis" Oxford Univ. Press

Hildebrand, F.B. (1956) “Introduction to Numerical Analysis"
McGraw Hill.

Lanczos, C. (1957) "Applied Analysis" Pitman.

8.5 Use of Beregisters

Since BY can be used as Sac certain operations can be done on it
which cannot be done on other B-registers. Sac should consequently be
used for short jobs whenever possible but it is not suitable for long term
work and its contents are destroyed by all the quickies and also during
chapter changing. If a second Beregister is required for a short job
B6 should be used and so on working down through the B-eregisters. B1
is conventionally used for closing subroutines. It is rarely possible
to have a new B-register for every count in the programme so it is
necessary to use some Beregisters again and again.

8.4 Subroutines

Just as with subchapters, when a particular group of instructions
are required to be obeyed at two or more places in the same chapter, it
is ddvisable to write them down once only terminated with the instruction

594 0

At each of the places where they are required the two instructions

101 2* Set Bt to the return address

990 Jump to the subroutine

CS 225

will cali in the subroutine. When the instructions of the subroutine have
been obeyed the closing instruction returns control to the master routine.
If the subroutine itself call in another subroutine the first can begin
with

O11 O+vi

which plants the contents of Bi on entry in the address part of the closing
instruction

590 0 (1

which will then return control to the correct place in the master. Except
for short subr utines it is in fact an excellent habit always to begin by
planting Bi as above. Bl can then also be used for short jobs within
the subreutine.

Since quickies are used frequently they are often used twice in a
chapter and many programmers assign the routine number the quicky number
plus 900 and close the quicky. eg.

R 901

Q1

sof 0

With Q9, Bi must first be set by 101 * and the contents of B1 are
then used to pick up the programme parameters m and n in the next but
one register. 9 is therefore used closed as

R 909

QS

391 3

In connection with Q1 it will be noticed that on Mercury the time
taken to perform a division is roughly ten tines that for a multiplication.
The number of divisions should be kept as few as possible e.g. if both

4 4 1 4
- and =r are required then = may be first found using Qi and —>

x

found by multiplying — vy itself.

8.9

Often an operation represented by a group of instructions, some
perhaps B-modified, is required to be done say p tme. A count is
is first set in a Beregister and one of the Betest instructions used.
Some ways this counting can be done are represented diagramatically by

106 p 106 p-1 106 1 106 1 =p
Operation (i Operation (1 Operation (1 Operation (1

136 14 156 1 176 p 186 vi

080 vi 090 vi 186 vi

The last two using the 18 instruction, are recommended, and for the

fourth it is of course necessary that the operation does not change Bt.
If Bt is changed by the operation the instruction 176 0 can be included
before the 18 instruction. e.g to add long numbers in consecutive
long registers the first of which is labelled 1 and the last labelled

2 use

CS 225°.

= 52 =

400 0 Clear A

106 vin2 B6‘ =‘1-p if there are p numbers

426 v2 Add a number

186 -1* Repeat

The corresponding programme for adding short integers in Sac is

300 O

106 vin2

226 v2

186 -1*

8.6 Useful coding tricks

The following are some coding tricks which have come to the author’s
notice and many of them are used in the quickies and in the Input Routine
itself. It is usually difficult to name the original author as there may
be several and also a minor variation may or may not be regarded as changing
the “ownership". Some of these are useful coding but others are perhaps
just tricks.

8.6.1 Change the sign of the accumulator if it is negative

jee. A’ = {Al

490 2* Jump if A>O

920 2 Multiply by <1

Note that multiplying negatively by plus one or by using rounded multiplication,
minus the contents of the accumulator will not in general be exact.

8.6.2 Change the sign of B6. i.e. B6’ = -B6

166 -=1 Non-equivalent with -1

126 1

(If B6 is -512 this gives B6’ = -512)

8.6.3 Double Sac i.e. S*' = 2S

527 0

8.6.4 Multiply Sac by ten i.e. S’ =108

210 24% Store Sac in the address of the third
instruction

527 0 Sac x 2

427 0 Sac x 4 + Sac

S27 0 Sac x 10

It is usually unnecessary to store short integers anywhere other than in
the address part of instructions.

8.6.5 Put -xi to Sac

557 x1

8.6.6 Put -xi to St without changing Sac

377 =x

CS 220;

8.6.7 Put +x1 to Bt without changing any B-register

100 x1 or 170 xi

Although the attempted operation on BO cannot really be done and always
leaves zero in BO, the B-test register is set as with normal B-registers.
Similarly the instructions 000 and 070 are sometimes useful.

8.6.8 Halve B6 signed i.e. B6’ = $B6+

126 512

146 256

8.6.9 Put n in B6 where B5 = 2

106 -1 B6! = =1

145 0 BS‘ == 435

186 ~-1* Jump if B5 40; add one to B6

(0 is put in B6 if B5=0)

8.6.10 Eriksen converter

For a five digit character in B6, change the most significant digit
if the character has an even number of ones in the least significant four
digits.

506 16 S° = B6 + 16

166 16 Change the most significant digit

357 =1 Remove the least significant digit of Sac

280 =-2* Repeat if Sac #0

By this the copy of a tape character representing a decimal digit is converted
to the binary form of that digit, the other figure shift characters become
integers in a sensible order.

8.6.11 Pick up into Sac the programme parameter n after the

instructions 101 *, 590 v/2, =n

R 2

O11 2+* Store B11

4
006 14+ B6' = 92 BA

126 0O

206 8.2 S' =; if 4.0 < BI < 12.0

wm 4.0 Jump if Bi is as above
090 2%
206 2 4.0 or S'=n if O< 8B

<

8.6.12

(i)

(ii)

8.6.15

- 54 =

Convert the short integer in Sac into a floating-point

long number

Sac signed or on the plus-minus convention 512 < 8S < 511

+)=9, =0,=0, =0 (4

210 vi Store Sac

400 v1 Transfer to 4 (not yet standardised)

440 0 Standardise A by adding zero

sac unsigned or on the plus convention 0 < 58S < 1023

+)=19, =0, =0(1, =0

210 vi

400 vi

440 0

Convert the long number in the accumulator into a short integer

+) = 29,=0,=0, = 640 (1

440 vi This gives a long number with exponent 29
so that the required short integer is in the.
least significant ten digits of the
fractional part

410 32

200 32+ Integer to Sac

If the accumulator contains a positive number which is an integer greater than
1023 but less than 2°° the result is the integer modulo 1024.

8.6.14

8.6.15

8.6.16

Find the integral part of A

+)=29, =0,=0,=0 (1

440 vi

Find the fractional part of A

+) = 29,=0, =0, =0 (1

410 32 Store A=x

440 yi A = [x]

520 2 A’ == [x]

440 32 A’ =the fractional part of x

Multiply two short integers together i.e. B4’ = BD, x B6,

(B5 and B6 unsigned)

+) = 0, = 0(1, = 0, =0

O15 vi BS to the least significant ten digits
of the fractional part of A

400 vi

016 vi

540 vi This least significant half multiplication
410 32 instruction is unstandardized.

004 32+

CS 22544

- 55 ~

6.6.17 Store Bt in Sac ise. S=1if BRE>O, S=O if BRE=O,

S==i if Bt < 0

300-1 Shs ot
090 2 Jump if Bt > 0
590 2” Jump

187 * Add 1 to B7 (obeyed twice if Bt> 0)

The reverse operation of putting Sac into Bt is

210 144.™

1906 oO

&.Se18 Forward reference to vreset parameter

4. forward reference to a preset parameter is effectively obtained by

300 vi/99

and then later

R 99

vi = x1

&.6.19 Clutched count

Calculates decimal digit by repeated subtraction of ea power of 10
and leaves decimal digit in teleprinter code in 8=line. Junk is left
in the mest significant five bits of the Beeline.

105 543

125 177

450 vi subtract power of 10

490 ~-2*

125 464 adjust "76" hole of character

T 090 —-1*

625 0 punch digit

440 yi restore A > 0

8.7 Layout of results

Finally, a little effort in laying out results is well rewarded.
The following may be included:-

1) A heading, and a page number

(ii) Several numbers per line

(iii) An extra line feed every fifth line

(iv) Several extra line feeds at the end of a page.

(c\) FERRANTI LTD. 1958.

Not to be reproduced in whole or
RAB/JAF/WYC in part without the prior written
27.11.58 permission of Ferranti Lid. CS 2254

~ 5G =

APPENDIZ I
DETAILS OF THE ACCUMULATOR ARTTHMETIv

Add and Subtract

The 40 and 41 ins ructicns scopy to and from the accumulator exactly;
there is no standardisation, .ound-off, or test for accumulator overflow.

The 42 instruction adds a long mmber from the computing store to the
long number in the accumulator, The long number from the computing store is
first taken into the arithmetic unit. The exponent of this number is compared
with the exponent of the contents of the accumulator, and the argument of the
number with the smaller exponent is shifted down by a mumber of places equal
to the difference between the exporents, copies of the sign digit being fed
in from the left. The two arguments are then added as fixed-point numbers*,
and the result of this sum is rounded off by putting a one in the least
significant digit position, whether or not there was a one there before.
This rounded argument is taken into the accumulator with the larger exponent
and the resulting floating-point mumber is standardised so that the argument
is in the range

4 . wex<ed

4 .

by shifting the argument and adjusting the exponent appropriately. If
this process involves a shift up, zeres are fed in belew the round-off digit;
if it involves a shift down the argument is again rounded since the original
round-off digit is lost. To allow for this, the fractional part of the
accumulator is provided with an extra digit position beyond that which is
usually thought of as the most significant, but the programmer does not have
access to this digit. In most cases the two numbers to be added are both in
standardised form; if not the addition is still as above and some significant
digits may be lost.

The 45 instruction is similar to the 42 instruction except that it
subtracts instead of adds. The stages are:-

Negate the store operand

ohift down one argument a number of places equal to
the difference of the exponents

Add fixed-point

Round-off

Standardise, rounding again if this involves a shift
down

The 44 instruction is the same as the 4z inst.uction except that there is no
reund-off. The stages aicia

wn zument a i1umber of places equal to the
qdifference of the exponents

LLXe
G—PO

L ats

StaMiar
dise

The 45 instruction is the same as the 45 instruction except that there is
no round-off.

* Note: if the difference between the exponents’ .. or greater, noe
addition is done, and the larger mer.ver is taken as the answer’.

CS 2254

-» 57 «

The 46 instruction adds a long number from the computing store to the
long nUmber in the accumulator without either round-off or standardisation.
The stages are :-

shift down one argument a number of places equal to the
difference of the exponents

add fixed-point

shift down one place, without rounding, and increase the
exponent by one. This extra shift is to prevent the
argument of the result being too large.

The 47 instruction does a subtracticn in a similar way, the answer
being unrounded and unstandardised.

Example :

The 44 instruction, unrounded addition,

A’ =A lL

A =15

L =3

let xA, yA; xL, yl denote the arguments and exponent of the numbers in
the accumulator and computing store register respectively.

Then xA = 0. 11110 0, yA = 0000000001

xL =0. 11000 0, yL = 0000000010

(i) shift the argument of the number with the smaller
exponent:

xA’ = 0.011110 0

(ii) add the argument fixed point:

xA* = (0)1.0011100, yA’ = 0000000010

(iii) standardise:

xA* = 0.10011100, yA’ = 0000000011

which is the standardised floating-point representation
7

te

Multiplication

The product of two thirty-digit fixed-point numbers is a sixty-digit
fixed-point number. The instructions 50 51 S52 and 53 give vhe thirty
most significant digits (excluding the most significant digit itself) and
the 54 and 55 instruction give the least significant 29 digits as in
figure Ze. |

CS 225A

- 58 =

Figure 2

most | least
Significant significant
end ; end i

59 ' 58 ' 57 «56 29 ' 28 QO!

t binary

extra point

digit

¢ 00 digits ———___ ¢ 29 digits ———-——»
most significant half least significant half

The SO instruction for the product of the long number in the computing
store gives the most significant half of the product with the 99 digit
going into the accumulator’s extra digit position and with exponent equal
to the sum of the two exponents. This is rounded-off then standardised,
and if standardising involves a shift down it is rounded again. The 51
instruction for negative multiplication begins with a sixty digit negative
product but is otherwise the same as the 50 instruction. The stages
are i-

take the most significant half

round-off

standardise, rounding again if this involves a shift
down

The 52 instruction is the same as the 50 instruction except that there
1s no rounding-off. The stages are :-

take the most significant half

standardise

The 535 instruction begins with the sixty digit negative product but is
otherwise the same as the 952 instruction. The 54 instruction gives
the least significant 29 digits of the product and a OQ in the most
significant digit position. The exponent is the sum of the exponents
of the two numbers minus 29 and the result is neither rounded-off nor
standardised. The So. instruction gives the least significant 29 digits
of the negative product with O in the most significant digit position
and with exponent the sum of the two exponents minus 29. The result is

neither rounded-off nor standardised. Thus the 54 and 55 instructions
always give a number which is greater than or equal to zero.

Example:

o1 instruction,

A’ = -AL

when A = a

L=%

Lee xA = 0.1001002 O yA = 0000000010

x =0.10 cocccces O y = 0000000000

First stage : take the most significant half :-

yA’= yA + y = 0000000010

CS 225A .

- 59 -

60 digit product — =-O0 6 01 001 0 e oe @#eeeeee¢s 0

— +4 4 e@ 4 01 4 4 0 @o@eee721#e 08 ¢e 80 @ 0

xA’= 1.101110200., 0

Second stage: round=-off :-=

xA‘= 1.101110 eeececccee OF

Third stage: standardise :-

xA‘= 1.01110 eocveseeee O10

i.e At = 42 + awe

yA’

yA’

= 0000000010

= 0000000001

CS 229

APPENDIX If

STRUCTURE OF CUES, LABELS, ETC.

Cues

The directives ACROSS and DOWN become on input

+)300 4%

590 4

followed by a long register storing the cue for the next chapter as
follows:-

HO =first sector minus first page

HO+ =first page. The 9512 digit is ; i SCN

H1 = last page

Hi+ = entry register

The directive UP becomes the two instructions

500 1

090 4

Labels list

While a routine is being read in, its labels are stored in the computing

store with label n in L(27.54 + 2n). At the end of the routine, indicated
by another directive R, ©, etc., the labels are packed in the order of
increasing n into consecutive long registers on sectors 64 to 95
immediately after those of the previous routine. Each label is composed
as follows :-=

HO = routine number

HO+ = label number

Hi = medium register address of item labelled

Hi+ =item. Digits 0-4 address overflow
digits 5-8 32x. item
digit 9 0 for left half register,

1 for right half

Routine List

The routine list on sectors 96 to 111 has a 20 digit entry in the
nth medium register corresponding to routine n as follows:-

HO = long address of vC in labels list (0 to 1023)
HO+ = chapter number

Chapter list

The chapter list on sectors 112 and 113 has a 20 digit entry in

the nth medium register corresponding to chapter n as follows:-

HO = first sector

HO+ = 52 x first page + last page

During the chapter the entry in HO+ is the first page.
CS 2254

- 61 -

Freset parameter list

The values of the preset par eters are kept in the computing store,
the entry in L(24.44 + 2n) correspc jing to preset parameter n, the
entry for n=O being the x0 of x-routines. These are stored in the
same way a8 v~labels, address in the second half of the computing store
are permitted.

Reference list

vefloating addresses are filled in by the Input Programme as folicws:-

(i) Backward references to a previous label in the present routine
or a label in a previous routine sare filled in immediately.

(ii) Forward references to labels in routine r are stored in the
reference list and are filled in at the end of routine r.

(iii) References for cues are also stored in the reference list
(type 6). These are not filled in as above, but are filled
in at the end of the second of the two chapters involved.
References not filled in are stored in long registers from
L16.0 to L24.42 as follows:-

HO == routine number

HO+ = 8 x label number + type

Hi = short address. The 512 digit is , ify &

if n es
Hi+ = sector

Entries in page O during input

H56 query number

HO6+ A,B,etc., for the query print

HO? predicted last page

H57+ | #FIRSTSECTOR

H58 asterisk print. -1 if no asterisk
O if asterisk

H58+ highest page so far

H59 next position in labels list (long address)

H59+ sector in page 371

H60+ next position in reference list (long address)

H61 i present item

H6éi+ h next half register is. .u.ge 1 (short address)

H6Z page being assembled y

H62+ s_ sector being assembled

ad r current routine

n6o+ Cc current chapter

Sectors 0 to 5

With only sectors O- 5 of the Input Routine intact, the following
starting procedures are available:

Key 2 for binary input

Key 3 for binary output

Key 8 for restart

Key 9 for sector e:.ser.

These sectors inciude the Chapter Changing Sequence and the Error Print Sequence,
so that a programme car. be run using only these sectors.

CS 225. .

-~ 62 =

APPENDIX III

Details of Quickies

Quicky Specification store Working | B-line Notes
Number Registers Space Used

, 4
4 A => 24 o2 = 3D | Sac A must be standardised

Bt St Error print if |A|<2775°

2 A’ = 35 32 = 35 | Sac A must be standardised

Bt St brror print if A <0

4. A’ = eA 47 52 - 35 | SacSt Error print if eA>275°

o A’ =tan A 62 52 = 37 | Sac St

6 A* = sin Aor 39 32 = 37 | Sac St Enter at 2nd instruction
cos A for cos A

7 A’ =cos A 37 52 = 37 | Sac St

* 8 Punch Sac + 32 sac St Prints Sac as an integer
Bt in the range -512 to

+014

* 9 Punch Acc fixed 50 52 —- 55 | Sac St Enter with 101 * 590 -
point Bt =m, —n where m and n

are the number of digits
before and after the
decimal point

* 10 Punch Acc floating 102 32 = 5) | Sac St Enter with Sac = number
point Bt of decimal digits

* 44 Punch Sac + d4 - Sac St Prints Sac as an
unsigned integer in the
range 0 = 1023

42 A’ =NA 55 32 = 37 | Sac St | Error print if A <0
Bt

14 A’ = loge A 435 32 = 55] Sac St Error print if A < 0

15 A‘ =arctan y/x 14 52 = 87 | Sac St Error print if 0/0
y =Lo2, Bt Range O = Zar
x = 154

76 A’ = arcsin A 47 02 << 90} Sac St Error print if |A|>1

“ Range ~~+a e 2° 3

18 Read integer to 08 = sac St Reads short integers
Sac Bt beginning with +- or

decimal digit and
terminating with CR or
So. Ignores FS LF ER
and also CR and Sp
between numbers

see List CS 202A for up-to-date details of Quickies.
CS 2254

- 62a =

Quicky Specification Store Working | Beeline Notes
Number Registers Space Used

19 Reac. fixed or 150 52 = 36 | Sac St [Reads numbers in form:-
floating point Bt Sign integral part
decimal number | decimal point fractional
to Acc part comma sign exponent

CR LF or Sp Sp

The signs, the integral
part, the decimal point
and fractional part, the
comma and the exponent
may be omitted when not
required.

FS ER Sp(single) are
ignored, also CR LF Sp
when between numbers.

* Note 1: In Quickies 8, 9, 10 and 11 each number is preceded by FS CR LF CR
and terminated by Sp Sp. To print on the same line enter at the fifth

instruction.

2: Alterations are at present being made to the Quicky programmes which
will usually reduce slightly the number of store registers used.

CS 225A

Ze

Oe

4.

De

96

10.

41.

12.

15.

14,

- 63 ~

APPENDIX IV

LIST OF FAULTS

Address underflow

Address overflow

Spurious character, (including Chapter directive in
Interlude)

Label set twice

Label not set

Preset parameter not set

Too many references

Overflow page 15, interlude too long

Overflow predicted page

Title too long

Wrong quicky number

Too many labels

Chapter numbers, parameter numbers, or label numbers
over 100.

Query number too large.

CS 225 4

APPENDIX V 5.1 TABLE OF FUNCTION CODES

0 2 3 4 5 6 7 8 9
~via S/O Ye \ . ‘, ‘ - Ne oe ore evo oe © FN "

o | B’= Bt‘=H AER =\\\B'= Be = \p'= Bt ‘= PRS PT EE We -H\ Bt #0, iBt > 0,
B+H B-H 2B - B&H B #H c’ =n C’ =n

NN \. A, wae Neen de \ Ly anne \ aan By yee esse \ dees 7 a WAV . _ hn

\ ore \ tot, ‘oe 1 s\\ 7 \ - A\ \ 1 | Ble Bt‘=n \ B's: Bt’= \B‘= Bt’=: |[B’= Bt‘= \|B’= Bt’= \ \|B’= Be‘=\} Bt‘= B- n Bt Zo,
\ | Benj Ben 43 on B&én \ Bn N Cars

\ B’ = Bt’= Bet
MAVALAY W\\ A \ XY AAK Li \\AVVLAVALA wa \\)))\ rererererenanenann

2 | S‘=St’=H |H =S§ S'=: St'= |[S‘= St’= [S‘'=St’= |S‘= St’= S‘= St’= | St‘’=S-H | Ste # oa, St >0,
| S+H S-H 38 - H S&H S 4H Ci= on Ci’ =n

3 | S'= St‘=n S‘s= St‘= |[S'= St’= |[S‘= St‘= |S’= St'= S‘= St‘= | St’=S-n | St 0,
S+n S 48 -n S&n S €@n C’ =n;

S’ == St’= S+1

4, A‘=L Li’ =A A‘= A+ L {A’=A-L]A’= wAtL Am AHL A‘-=za+L] A’s=A-L {SHIFT < 31, Azo,
e ‘

NR OUNDED UNROUNDED AND C=n Cc =n
UNSTANDARDISED

5) A't=AxL [A's -AD /AS@ AXxL fats -Aad [AR Ax LIAS AxL |G’ =2 DUMMY {HOOT Ci’ =n

UNROUNDED LEAST-STIG HALF

6 Hi = t, H’ = hs ti =n t (=H Display=L] 0 P EN CLOSE] T’ =n P’ =D D’ =P
° SHUTTER _ SHUTTER

7 | B’= Bt ‘= Een[E’ =B \|B'= Bt‘=) Bie: Bt‘= \|B'= Bt‘= |B’ Bt’= \ | B’= Bt'= \ Bt ‘= B-(Ein)| A‘’= A+0.2"
. B+E4n|B(E +n) [28-(5 + n)jB& (E + n) BA (Een),) unrounded,

\ | \ unstandardised

A Who nhuhouf uh ony sise . right shift. NOOO MOODY ight
8 {CONDITIONING {READ CARD | PUNCH CARD| PAPER MAG~SELECT |TC1 BUSY, TC2 BUSY,

6A . or THROW OPERATE Ci =n Ci’ =n
0 PRINT LINE
bo
on aa VNUN’ NA fo 2 AS Mn ee te nee VOY YN >.” eee

> 9 [Ss'= Hm NS. = § \ S'= St'= S'= St'=4S’=St’'= \VS‘= St‘= \st= 3 St ‘= St'= S-(Ten) STOP
I St’ ©. \ ~ S&(I ’ MN Fr ARES \pee ta 8 (I +n)| 2 S-(Ten) J SA(T + mn) \IS (ONAN \\ QQ |

NOTES: 1) A function is’ devined by a ROW digit followed 2) Some codes are unassigned. All 3) Shaded squares represent function
by a COLUM Gigit. Ceo 59 denotes C’ = n these are at present stop functions. codes which are not Bemodificable.

Table of function codes.

00

01

O02

06

O04

O05

O06

07

08

09

10

11

12

13

14

15

16

17

18

19

051

042

050

O59

054

056

052

0956

007

020

0711

4100

010

015

014

013

O12

O16

017

400

00

of

o2

oo

of.

Oo

o6

o7

o8

og

0714

062

070

075

O74

073

O72

076

027

040

031

400

050

055

054

0335

032

056

037

100

Decimal /Octal

- 65 =

60

61

62

65

64

65

66

67

68

69

70

741

72

75

74

79

76

77

78

79

002

O22

125

025

065

164

165

004

024

005

444

025

110

115

114

113

112

116

144

100

80

81

82

85

84.

85

86

87

88

89

90

91

92

95

94

95

96

97

98

99

126

124

105

104

100

100

161

160

421

120

134
137
130
135
134
133

132
136
400

000

In the octal codes the seven binary function digits are grouped one three
three,

Qed

Eefe

40 (A=L) is 041 joe. 0 100 001

Table of function codes. Octal /Decimal

000 99 040 29 100 140

001 59 041 40 101 447 57

002 60 042 01 102 60% 142 01*

0035 | 045 41 103 145 56

004 67 044 42 104 83 144 78
O05 69 045 43 405 82 145

006 55 046 44 4106 146 46

007 08 047 45 107 147 47

O10 12 C50 02 110 72 150 02*

017 10 057 00 411 70 4.1 00%

012 16 052 06 112 76 152 06*

015 15 053 05 113 75 155 05*

O14 14 054 04 114 74 154 04*

015 135 055 03 115 73 155 03*

O16 17 056 07 116 77 456 07*

017 18 057 417 157

CS 2254

O20

021

022

023

024

025

026

027

050

0351

052

055

054

O59

056

057

2

30

36

oo

o4

30

of

38

060

061

062

065

064

065

066

067

070

071

072

075

074

075

076

O77

58

21

530

51

oa

O95

22

20

26

20

24.

20

al

120

121

122

125

124

125

126

127

130

131

41352

133

154

135

136

137

- 66 =

89
88
et*

81

62

80

92

90

96

95

94

95

97

91

160

161

162

163

164

165

166

167

4170

171

172

175

174

175

176

177

87
86
24%

65

66

22*

20*

26*

20*

24a*

25*

27*

* Refer to addresses in the second quarter of the computing store.

cs 225 A

- 67 «

APPENDIX VI

TAPE CODES

PRINTER
TAPE VALUE

FIGS. | LETS.

0 FIG. SHIFT.

- ® 4 A

.® 2 2 B

-0@ 3 * C

e. 4 4 D

e. @ 5 (E

e.e 6) F

@.08 7 7 G

®. 8 8 H

@.e 9 A L

o .® 10 = J

@ .00 41 K

eo. 12 V L

ee. @ 13 LF M

00.0 14 SP N

@0.00 15 ; 0

eo . 16 Q P

® . © 17 > Q

e .@ 13 2 R

@ .00 19 } S

@ 8. 20 ~ T

© ©. @ 21 5 U

@ 8.6 22 6 V

@ 0.00 23 / W

ee . 24 x X

6 . ®@ 20 9 Y

ao .@ 26 + Z

ce .0@ 27 LeiT. SHIFT.

eee. 28 . .

©80. @ 29 n ?

@€0.0 o0 GOR £

000.00 31 ER ER

CS 225A

 s
o
c
t
t
e
e
n
e
e

APPENDIX VII

MERCURY CONTROL PANEL.

SAC TEST, CJ
“LEAR FUNCTION.
TAPE.

OFF, T
o
 a

ACC / MULT.

OFF.
ADDRESS. MOOT INITIAL ~ HANDSWITCH

MAG. STOP.
SHIFT. STOP

TRANSFER.

SINGLE. | % 3! FLIP. FLOP,

PREPULSE) 8 7 a 5 4 3 2 0 INHIBIT /
PARITY

ES INPUT. PARITIES.
STOP,

(OFF.]

INDE &

Abbreviations
Accumulator

arithmetic
instructions

overflow

Across

Addition.
Address

ective

symbolic

relative
underfl oy

"And! operation
Arithmetic unit
Asterisk printing

relative address

Automatic gquicky selection

Beregisters

instructions
modification

Backing stare
use by Input Routine

Binary
function codes
input and output (tele)

Bracket ignore

Card input/output
Cathode ray tube monitars

outout

Chapter directive
extension

overflow
Checks (Parity)

Coding tricks
Colum
Computing Store

state on entry to a programme

Control sddress

Control desk

Control unit
Correction

Cues
sirnucture of

Cycles

Destandardise instruction
Differential equations

Digit binary

Directives
Display
Down

Drum store
transfers

use by Input Routine

Dummy instruction

33 1D

By 4A
25, 60

o 3 10, 56

6, 38

fs 32

13

A
Dep
26

10
ling Dy 4O

1, 12, 23

u
r

=
wm

AO

Gt

ek

AQ

Bo

®
 oO
 oo —

9 =f ND

S
R

o
s

.s
1

ON

ow
te

f
NO

=»

RS

o
e

‘ On

©

mea
d

LA

INQ

ee

ON

on
!

es
 ho

LN

a

CS 225 A

Engineers! tests
Enter directive

sector enter
Error print
Even register

Fault printing
Firstsector directive
Toating point representation
Floating point to integer conversion
Fractional part of the mumber in the accumilatar
Function codes = decimal

binary

types

Graphical output

Half register
Handswitches

tapping
Hoot

Input Routine
Input instructions (paper tape)
Instruction code

vypes

unspecified
Instructions
Integers
Integer to floating point conversion
Integration
Interlude
Interpolation

Jump directive
Jump instructions

Labels
set twice
not set
too many

Layout of results
Line directive
Line printer
Lists
logical operations on integers

Magnetic tape~backing store
Magnetic *:... (Manchester University)
Normal “austructions
Matrices
Mcorrec tion
Modification
Monitors
Multiple channel input and output
Multiplication

instructions

of interers

Page
45
26
L/

38, 63

Al,

12A, 3/7

22

1

17) 4b
46
17

5
42, 12A, 17, 15
6h,
142A, 37
25
2,5
3, 7

5h.
49
304A
50

304
2, 14

7, 32, 60
39, 63
39, 63
40, 63
5D
29, 35
19
6C, 64
135, 14

aid
22
17h
19
30

47
142A, 18

Dh

CS 2254

vame dairective
‘Not equivalent’ operation
Notation
nesymbolic addresses
Numbers, representation of
Numerical methods

Operating procedure
Output (Paper tape)
Overflow accumulator

address
chapter

Page directive
Paper tape code

editing
preparation

Parity digit
Partial differential equations
Post moartems
Preset parameters

not set
Printing: asterisk

error
fault

query
Printer
Punched card input/output

Quadrature
Query print

Quicky
automatic selection

non-existent

References - too many
Registers
Relative address asterisk
Rescue

Restart

Rounded arithmetic

Routine

v-routine

x=-youtine

Runge-Kutta process

pac instructions
sector

directive
entry

series expansion
Signed representation of integers
special equipment
spurious character
otarting procedures
Stor instruction

handswi teh
in progranme

12, 12a, 17, 18
3, 47A

39, 63

255 35

39, 63

25, 62

40, 63

39, 63

16, 56

44, 124, 15, 18
2, 12, 23

29, 35

38, 63

CS 2254

» tore
oubroutines
subtraction floating point
symbolic addresses

filling in

Tape - see Paper Tape or Magnetic Tape
Tapping (handswitches)
Tele-input
Tele-output

sector entry to tele<output
Test routines
Times of instructions
Title

too long
Track
Types of instruction

Underflow (addresses)
Unrounded arithmetic
Unsigned representation of integers
Unspecified instructions
Unstandardised functions

Up directive

v-routine
-symbolic address

Wait directive
Waiting time - drum

- input/output equipment

x=routine
-symbolic address

x preset parameter

Page

50
10,
ts

35

56
32

Df
60

32

