FERRANTI MERCURY COMPUTER

PROGRAMMERS” HANDBOOK

PERRANTI LIMITED

FERRANTI MERCURY COMPUTER

PROGRAMMERS® HANDBOOK

Computer Department

Office and Works: London Computer Centre:
West Gorton, 21 Portland Place,
Manchester 12, London, W.1.

List CS 2254
Aprdl 1960

FERRANTLI MERCURY COMPUTER

PROGRAMMERS* HANDBOCK

PREFACE

This document is intended as a reference handbook far those who have
learnt to use the Ferranti Mercury Computer in the standard waye. This
is to be distinguished from the use of the computer in the simplified
method of the Autocode.

This handbook describes the machine from the usert's point of view,
and gives the techniques of what has come to be known as "conventicmal"
programming whereby actual machine instructions are written., This
permits the fullest utilisation of all the facilities of the camputer.

It should be emphasised that this doccument is a handbook rather
than an introduction to programming. Those seeking to learn about using
the computer should first study the Ferranti publication List CS 158
"Ferranti Mercury Computer - Programming Manuval",.

Even the use of basic machine instructions, however, involves an
input routine for converting them from the external form used in writing
programmes to the internal form used in the machine., The standard Input
Routine has been developed jointly by Ferranti Litd. and Manchester
Universitys It contains all the facilities of the Manchester University
input routine "PIG 2" plus additional ones for diagnosing programme faults
etce This handbook describes how programmes are written to make full
use of all the facilities of the standard Input Routine,

ACKNOWLEDGEMENTS

The major part of this handbook has been prepared by DreR.B.Payne
of the Computing Machine Labaratory of Manchester University. Some
small additions and amendments have been made to bring it into line
with the standard Input Routine.

Contributions to the input programme were made by Dr.ll.de V.Roberts
and Mr.C,E.Phelps (both late of Ferranti Limited).

The query print facility was inspired by methods of checking
programnes used by Dre.A.Curtis, Dre.d.Hassitt and Dr.H.E.Wrigley of the
Atomic Energy Research Establishment (Harwell), A similar technique
is used at the Norwegian Defence Research Establishment.

The Quickies are based on v-routines supplied by Ferranti Ltd.,
Manchester University and the Norwegian Defence Research Establishment.

CS 225

¢ 9 e

\O O~ AN L\ -

B I . S S e . .Y
L]

¢ @ e o o

3e1
Se2

3¢3
3el
365
346
3e7
3.8
3¢9
3440
3e11
3612
3e13

el
3e45

4.6

CONTHENTS

THE FERRANTI MERCURY COMPUTER

General remarks on electronic computers
Scales of notation

Forms of stcrage

The control wnit

Instructions

The arithmetic wnit

Representation of numbers

B - registers

Parity digit checking

WRITTEN FORM OF INSTRUCTICNS

Introduction

Layout of instructions.

Long numbers

Short integers

Introduction to symbolic addresses
Bracket ignare

Even register

THE INSTRUCTION CODE

Abbreviations
Accumulatar instructions for addition and
subtraction Codes 40 = 43

Accumnlator instructions for multiplication
Codes 50 - 51
B - instructions far addition and subtraction
Codes OO0 = 03, 10, 12 and 13

Sac instructions

Codes 20 - 23, 30, 32 = 33
Junp instructions

Codes 59, 49, QB - 09, 18, 28 = 29, 38
Backing store instruction

Codes 67 = 69

Input/output instructions

Codes 60 = 63

Miscellaneous instructions

Instruction types

The camplete instruction code
Instructions far special equipment
Unspecified instructions

Tires of instructions

Time of Imput/Cutput J.n.;tmc’cmns, etc.

DIKECTIVES AND OTHER ALFHABETICAL INFCRMATION

Introduction
Chapter

Rcutine

Quicky

Enter

Across

Down

Ur

Title
Firstsectar
Page

Sector

Line
Meorrection
Interiude and Jum
Wait

Name:

Cther directives

g
WD NN - (g

(¢ ENENENROLS AT]

10
10

11

CS2254A

Ll »

*

Qﬂ(fl?‘l(ﬂtﬁ:}‘a
O U b =

& ®

®

*

@

COO)CD.O)COCD@
SOOI N -

LY

II
IIT

v
VI
VII

SYMBOLIC ADDRESSES

General descripticu
v symbolic addresses
n symbolic addresses
* symbolic addresses
% symbolic addiesses
Filling in symboi. addres:zs

AUTOMATIC . RINTING FACILITI®S

Faul print
Error priot
Asterisk print
Query print

RUNNING A PROGRAMME

Tape preparation

Layout of the backing sto: -
Layout of the computing si . e
Starting procedures

The control desk

PROGRAMNING TECHNIQUES

Introduction

Numerical methods for Compuiers
Use of B=registers

Subroutines

Cycles

Useful coding tricks

Layout of results

APPENDICES

Details of the accumulator arithmetic

Structure of cues, labels, ete.
Details of Quickies

List of faults

Table of function codes

Tape codes

Control desk

d2
33
33
24

8o

58

4
41

SERES

50
o0
51
52
35

56
60
62
63

67
68

C5 2254

CHAPTER 1

THE FERRANTI MERCURY COMPUTER

11 General remarks on electronic computers

A high-speed digital computer is capable of carrying out a
predetermined sequence of elementary arithmetical or logical operations.
Mercury comprises five main parts :

an input unit whose object is to take in to the computer
instructions and data which have been punched on paper
tape;

a store to hold numbers read in and generated during the
calculation;

an arithmetic unit in which elementary arithmetical and
logical operations are carried out;

a control unit which selects the next operation to be
performed;

an output device which gives the result of the caliculation.

1.2 Scales of notation

With a human operator it is usual for arithmetic to be done in
the scale of ten. The numbers he writes down consist of groups of the
ten digits 0 - 9, e.g. 273 means 2 x 10 + 7 x 10 + 3, and there are
also other symbols like decimal points, spaces, etc. In the vast
majority of electronic computers the scale of two or binary scale is
used, numbers consisting of groups of the two digits O and 1 only.
The reason for this is that it easily matches the on-off property of
electronic circuits. With the Mercury Computer a pure binary
representation of numbers is used, so that a binary number 11001

means Ix2% + 1x2° + O0x2% + 0x2 + 1

or 25 in decimal notation.

163 Forms of storage

The information store in Mercury consists of two parts; to one,
access is immediate, to the other there may be some delay before the
required information is available. These two parts of the store are
known respectively as the computing store and the backing store.

The computing store is made up of cores, which are small
magnetisable rings of ferrite. Each core represents a single binary
digit: it has two possible states of magnetisation corresponding to
the binary values O and 1 of the digit. The capacity of the
computing store is 2048 words each of 20 binary digits; the location
of a word in the computing store is called a register. The computing
store is divided into 32 equal groups of registers known as pages, so
that each page holds 64 words of 20 binary digits. Each register is
identified by a number, known as its address, by which references can be
made to the register. It is convenient to think of the registers of
the computing store as arranged sequentially in the numerical sequence
of their addresses.

Each instruction occupies one 20-digit word, but words of two
other lengths are also widely used in Mercury: 40-digit words and
10-digit words. The 20~digit registers are coupled in pairs so that
each pair can hold a 40-digit word: such a pair is called a long register,
and a 20-digit register called a medium register to preserve the
distinction. A 20-digit register is also divided to form two short
registers each holding one 10-digit word.

CS 225+

In the writing of a programme, the addresses used are all addresses
of medium registers: a long register is referred to by the address of
the medium register forming its first half, and a special device is used
to distinguish between the two short registers forming one medium
register. But when such a programme is read into the computer’s store
by the input routine, the input routine has to do some conversion of
these addresses, because the computer itself works in three different
address systems, one for each of the three possible lengths of register,
and it requires the reference to a register to use the address in the
system appropriate to the length of register. The address system for
a particular length of register is obtained by considering the computing
store as a set of registers of this length and numbering them successively
from zero. Thus the first 40 digits of the store form the first 40-digit
register, which has address O in the 40-digit address system; if the
computing store is regarded as a set of 20-digit registers these same
40 digits form the first two 20-digit registers, with addresses O and 1
in the 20-digit address system; and in the same way they are also short
registers 0, 1, 2 and 3 in the 10-digit address system. Similarly
the short registers 24, 25, 26, 27, for example (in the computer’s
system of addresses) form medium registers 12, 13 (computer’s addresses)
and long register 6 (computer’s address).

The larger backing store consists of rotating drums, the surfaces
of which are magnetisable and store a total of 655,360 binary digits,
or Jjust over 16,000 long words. Unlike the computing store, direct
access cannot be obtained to individual registers in the backing store
and larger blocks of information must first be transferred to the
computing store, The backing store is divided inte 512 sectors
numbered 0 to 511, each the same size as a page of the computing store,
i.e. 64 medium registers. The transfer of information from the
backing store is called reading from the drums and the reverse operation
is writing to the drums. Physically, a sector is formed on circumferential
tracks on the drum, the complete sector occupying just less than a
semicirecle. On each drum all even numbered sectors effectively begin at
th~ same angle round the drum and all odd numbered sectors effectively
begin 180 degrees further on. The sectors on each drum are divided into
eight equal groups known as columns.

1.4 The control unit

This unit interprets the information contained in a 20-digit medium
register of the computing store as an instruction in accordance with a
set of rules known as the instruction code of the machine, Instructions
are of the single-address type, usually refer to a register of the
computing store and cause some operation to be done with the contents
of that register. This operation may involve the arithmetic unit, input
or output, a transfer to or from the backing store or the control unit
itself. Normally the control unit selects instructions from consecutive
registers, and when this happens the control address C or CA, i.e.
the medium address in the computing store of the next instruction to be
obeyed, i: increased by one after each instruction has been performed.
Certain instructions can, however, transfer control or cause a jump by
replacing C by some address other than C + 1 from which the next
instruction will be obeyed. Moreover, these transfers of control can
be made conditional on numbers stored in the computer.

1.5 Instructions

The 20 binary digits of an instruction are divided into
7 function digits which specify the operation
3 B-digits (see below)
10 address digits.

The ten address digits permit machine addresses 0 to 1023. Thus
instructions referring to long registers can refer to any part of the

CS 225A

computing store. Instructions referring to medium registers, e.g.
transfers of control, can only refer to one of the 1024 medium
registers in the first half of the computing store. Similarly,
instructions themselves can only be obeyed from the first half of

the computing store as C consists of ten digits. Instructions
referring to short registers can refer to 1024 short registers in
one quarter of the computing store only. With each instruction
referring to a short register a second instruction referring to the
1024 short registers in the second quarter of the computing store

is provided so that together the two instructions can refer to any
short register in the first half of the computing store. Instructions
referring to a short register in the first quarter have 0 for the
first or most significant function digit and those referring to the
second quarter have 1 for the most significant function digit but
are otherwise identical. The only exception is the print instruction
63 (q.v.) where the second instruction of the pair is missing. Care
should be taken if ever it is necessary to use this instruction.

1.6 The arithmetic unit

This part of the machine is concerned with the operations of
addition, subtraction and multiplication and contains a special
40-digit register called the accumulator. Since with most arithmetical
operations two numbers are involved, one of the numbers is first put
into the accumulator and the result of the operation is also placed in
the accumulator. For example, the addition instruction (42) adds
the contents of a long register of the computing store to the contents
of the accumulator leaving the sum in the accumulator; the contents
of the computing store remain unchanged but the original contents of
the accumulator are destroyed.

1.7 Representation of numbers

1.7.1 10 binary digit short integers (fixed-point).

(1) If the rth digit from the right is regarded
as the coefficient of 2! one can represent
all the positive integers O to 1023.. The
number is then said to be unsigned or in the
plus convention (+).

(ii) If the most significant digit is regarded as the
coefficient of =2° and the rest of the digits

as coefficients of +2¥! one can represent all
the integers from =512 to +511. The number
is then said to be signed or in the plus-minus
convention (#).

For example:

unsigned signed
0 000 000 111 7 7
0 111 111 111 511 511
1 000 000 000 512 =512
1 141 111 111 1023 =1

1.7.2 40-digit long numbers (floating-point). These represent
2Y¥ x x where the exponent, Yy, is ten digitsand the fractional part x,
is thirty digits. One digit of y is reserved to make possible the
accumulator overflow positive test, so that =256 ¢ y < 255, If an
accumulator instruction other than an exact copy (40 and 41) gives an
answer with y > 256 the machine stops automatically. Also, if it
gives an answer with y < =256 the exponent is automatically increased
to =256, x being unaltered. Otherwise the machine might wrongly
interpret the product of two very small numbers as a large nurber.

CS 225A

The fractional part, x, represents a signed fraction, the first digit
being the coefficient of -2° but otherwise the rth digit from the
left is the coefficient of +2'"F. Thus

-1 ¢ x 1 - 2%

A number is standardised if the two most significant digits of the
fractional part are different

i.e. if -’1 € X < "%

or F<x< 1

In this way the maximum number of significant digits are used and the
number is represented uniquely. In the store the four short registers
holding a floating-point number contain y, the least significant 10
digits of x, the middle 10 digits of x and the most significant ten
digits of x in that order.

1.8 B-Registers

The machine is designed to take advantage of the repetitive nature
of calculations. Thus when adding 100 numbers it is necessary to be
able to tell the machine first how to do one addition and then how to
repeat the operation on the remaining 99 numbers. B-registers are
devices to facilitate operations of this kind, and in particular to
select successive locations within the stores.

Seven B-registers are provided, B1 = B7, each of 10 digits, and
the control unit is arranged so that the contents of one of these
registers = that named by the B-digits of the instruction = is
automatically added to the stored or presumptive machine address before
the instruction is obeyed. For instructions referring to long or
medium registers, the effective machine address is interpreted modulo
1024 so that the sign convention of the contents of the B-register is
of no consequence. With instructions referring to short registers
the signed contents of the B-register are added and the resulting machine
address is interpreted modulo 2048, the machine instructions being
considered to have presumptive machine addresses 1024 to 2047. With
some instructions B=modifiication never occurs and if no B-register is
specified in an instruction no B-modif'ication occurs. The contents of
BO are always zero, or more correctly, there is no BO. It is possible
to set the contents of, and count in B-registers.

1.9 Parity digit checking

With every 10-digit word stored in either the computing or the
backing store, there is also stored an extra parity digit which is
set so that the total number of ones is made even. This digit is not
available Lo programmers but is automatically set when the word is
copied inios either store. When the word is later copied from the store
the parity is checked and if it is wrong the computer stops. The parity
stop can occcur :~

(i) when a short or long word is copied from the computing
store, e.g. for an addition;

(ii) when an instruction in the computing store is obeyed
(the instruction is copied from the computing store
to the control unit);

(iii) when a page of information is written into the backing
store;

(iv) when a sector of information is read fr . the backing
store; the check in this case is against the parity
digit stored with each 10-digit word in the backing

store.
CS 225

CHAPTER 2

WRITTEN FORM OF INSTRUCTIONS

2.1 Introduction

Very few instructions are ever actually written in the binary
machine form by programmers. Instead, a convenient shorthand has been
devised for writing instructions, and the machine itself is furnmissed
with instructions called the Input Routine for translating this into
binary machine instructions. In this way some of the tedious effort
of programming is avoided, and by allowing the machine itself to assist,
programming mistakes are reduced. In the main, one written instruction
corresponds to one machine instruction; +there are a few exceptions
such as Quickies (See Chapter 4) where one written instruction causes
the Input Routine to insert perhaps a hundred machine instructions.

22 Layout of instructions

Just as in the binary machine form, written instructions consist
of :=

function B~register address

The function is written as two decimal digits and the various operations
that can be specified are described in the instruction code in chapter
3¢ The corresponding seven binary digits bear little systematic
resemblance to the two decimal digits.,

Cole 99 0 000 000 stop
59 0 000 001 unconditional jump

The B-register is specified by a single decimal digit in the
range 0 = 7, The address is always written in the medium register
address system. A long register consists of a pair of 20=-digit medium
registers and for an instruction referring to a long register the
written address is always the medium register address of the first of
the pair. Thus long register addresses are written as 0, 2, 4, <.,
2046 and must always be even. For instructions referring to short
registers, the written address is the medium register address containing
the short register; a medium register consists of two short registers
and the medium register address alone denotes the first short register
or left half register, while followed by a terminal plus it denotes the
second short register or right haif register. Thus short addresses
are written as

0, Ot, 1, 14, eoeen, 1023+

During input the written medium register address is converted into a
machine address by halving or doubling according (o the type of
instruction. With instructions referring i medium registers the
machine address has the same value as the written medium register address.
With short addresses, which are doubled during input, the terminal plus
denotes % e.g. 1+ becomes 3. Al=o, if the address of a written
instruction gives a short register in the second guarisr of the computing
store, the second of the two machine instructions is selected by
inserting a 1 in the most significant binary function digit position.
Since instructions can only refer to short registers or medium registers
in the first half of the computing store, short addresses must not -
exceed 1023+, and medium addresses must not exceed 1023, Also it is
sometimes convenient to write negative addresses such as =2, e.g. with
8 B~-modified instruction. As & long register address this is synonymous
with 2046, and as a short or medium address =2 is the same as 1022,

CS 2254

the first half of the computing store then being cyclic. The limits
on the written medium register address are :-

Long -2046 < L < 2046
Medium 1025 < M < 1023
Short -1023+ < H < 1023+

When B-modification occurs the effective written address is the presumptive
written address plus

2B for long addresses
B for medium addresses
iB+ for short addresses

(c.f. chapter 1) Addresses may also be written in page and line form
€.8. 1.2+ is the medium register address of half register 2+ in
page 1, i.e. half register 66+, During input the page number is
multiplied by 64 and the line number added. No restrictions on the
line number are imposed e.g. 1.234 is permitted, provided the resulting
register address satisfies the above lnequalities. A minus sign may
come before the psge number and refers to the whole fixed numerical
address, but not to & symbolic address (see below) e.g. =-1.2 is the
same as =66,

2.3 Long numbers

It may be required to include some 40 binary digit long numbers
amongst the instructions. These are distinguished by prefixing thenm
with either + or -« e.g.

+123.456
«~98765
The long number goes into the next available long register, a dummy
instruction, 570, being inserted if an (odd numbered) medium register
is wasted. Similarly, if a short integer (see below) has just been
inserted in a left half register a following instruction goes intc the
next whole register leaving the right half register unaltered (zero).
Long numbers may also be written in the floating decimal form of
fractional part comma (signed) exponent
e.go =123.456,25 means ~123.456 multiplied by 10?°
The accuracy with which written decimal numbers are converted
into floating=-pcint binary numbers is as follows:-
The fractional or fixed point part of the decimal number is read into
the accumulator as an integer. The position of the decimal point

(if any) end the exponent (if any) determine a power of ten by which
the integer is multiplied. Thus

+34000
will be converted less accurately than
+3

All integral numbers less than, and some integral numbers greatef than
+500,000,000 are converted exactly e.g.

-123456789

Both are converted exactly.
+1,12

CS 225A

For fractional numbers +0.5 1is converted exactly but other numbers
may contain errors, sometimes 3 or 4 times the least significant
binary digit. For very large or very small numbers more accurate
routines are available.

ded Short integers

It is sometimes desired to insert 10 binary digit short
integers into half registers. These are distinguished from instructions

by prefixing them with one of the symbols > = or £, e.ge
> 1
= =25
16.0
The commonest way of inserting short integers is with the symbol =,

when the value of the 10 binary digits in the machine is the same as
the written decimal integer. It is, however, occasionally useful to
have the 10 binary digits in the machine equal to double or half the
written decimal integer, and this can be achieved if the integer is
begun with > or # respectively. =2, >1 and # 4 are all
equivalent as are also

=-1, > =0+, #=2, =1023, > 511+ and ## 2046
Short integers are treated in the same way as the address part of
instructions of type 2, 1 or 4 according as >, = or # is used.

(see chapter 3) This also applies to short integers written in terms
of symbolic addresses {see below).

2.5 Introduction to symbolic addresses

It is not elways cenvenient to decide which registers of the
computing store instructions will occupy. If a transfer of control
to another part of the programme is required, it is necessary to
specify that address. This can be done by using a label and transferring
control to the register containing the labelled instruction. Labels
1 to 99 are available and are written on the right of the instruction.

e.ge 400 32 (1

An unconditional jump to the register occupied by this instruction is
written

590 w1
The symbolic address v1 1is just a name for the address of the register

occupied by the instruction labelled 1. During input the Input Routine
converts the symbclic addresses into machine addresses.

2.6 Bracket ignore

If a left bracket (occurs at the beginning of a line, all
further characters are ignored until the next right bracket) .
The tapes of Library Routines begin with the name of {the Routine in
brackets before the x-Routine directive (see Chapter 4, When a
library tape is copied into a programme, the name in brackets may also
be copied but this name will of course be ignored by the Input Routine.
o8

CS 225A

The bracket ignore facility may be used in testing a programme.
If on the first run it is desired to omit a block of instructions
these can be included on the tape (see chapter 7) but between brackets.
Then for the second run each of the two brackets may be converted into
an erase character using a hand punch.

2.7 Even register

If an item is required to go in the next available even numbered
register the two characters +) are inserted before it. What
effectively happens is that on reading the + the Input Routine
prepares for a long number by inserting a dummy instruction if necessary
as long numbers always begin in an even register. The right bracket is
then similar to the bracket ignore and need not necessarily be followed
by CR LF.

CS 225°

CHAPTER &

THE INSTRUCTION CODE

3.1 Abbreviations
A The accumulator or the contents of the accumulator
B B-register

Bt B-test register

C The Control address, CA

D The contents of a Sector of the drum backing store
B The exponent of the accumulator

G A spot on the Manchester University Graphical output
H Short integer or half register cf 10 binary digits
I;,T Imperial Chemical Industries input/cutput character
L Long numbzr or long regisier of 40 binary digits
M Medium register of 20 binary digits

ms. Miliiseconds. 1 ms. = 0.001 seconds

US. Micrcseconds. 1 ps. = 0.000,001 seconds

M.gMo Marchzster University magnetic tape input/output character

51 Tre address part of the instruction regarded as short integer
P rage cof the computing store

A Sac or B7 special

o4, Sac=test register

Z Sector number

t;,t, Feper tape character; t; input, t, output

In the notation for describing instructions, values of quantities
after the instruction has been cbeyed are distinguished by primes, whereas
values before the instruction is started are unprimed. Quantities which
do not occur priued are not changed by the instruction. It is usual to
writc the fun:tion digits and the B-digit together and to separate them
from the address.

3.2 Accumulatar instructions for addition and subtraction. Codes 40 =43

Since floating-point arithmetic is done in the accumulator it is
of'ten necessary to copy a long number from the computing store into the
accumulator. The instruction

400 32

copies L32 into A. The reverse operation is the 41 instruction
which copies th: contents of the accumulator into the computing store.

e.go 410 34

copies the contents of A into L34. The instruction 42 adds a long
number from the computing store to the accumulator e.g.

420 40

CS 225"

- 10 -

adds L40 to the accumulator, and the answer also appears in the accumulator
after the operation. Similarly the 43 instruction subtracts a long
number in the computing store from the accumulator.

Using several of these instructions other more complicated
operations can be done e.g. Put x+y+z into L40 where x 1is in L32,
y is in L34 and 2z 1is in L36.

400 32 A’ = L32 =X

420 34 A' = A+ 134 = X+y
420 36 A" = A+ L36 = X+y+2Z
410 40 L40'= A = X+y+2

The computer obeys the instructions sequentially and after the final
instruction the sum is in L40. With the 42 and 43 instructions

the result is rounded-off and standardised (see appendix 1). Occasionally
the result is required without round off; the 44 instruction gives
unrounded addition and the 45 instruction gives unrounded subtraction.

When doing accumulator arithmetic with exact integers, unrounded instructions
are required but the 30 binary digit fractional part of a floating=point
number is usually a truncated approximation and unrounded instructions

will give biassed results.

3.3 Accumulator instructions for multiplication. Codes 50 - 51

The multiplication instructions find the product of the accumulator
and a long number from the computing store, putting the result in the
accunulator rounded-off and standardised. The 50 instruction gives
the product and the 51 instruction gives minus the product. e.ge.

500 32
multiplies the contents of the accumulator by L32.
Examples: -

1. Put xyz into L31.0 (where xy and z are located as above)

400 32 A’ = L32 =x
500 34 A’ = A x L3 =
500 36 A’ = A x L3 = Xyz
410 31.0 L31.0' = A = Xyz
2. Find ¥ - 3°

400 32 A’ = L32 =x
200 32 A" = AxL32 = x?
410 40 L40 = x*
400 34 A’ = L34 =y
510 34 A' = Ax -L34 = -y?
420 40 A’ = A+ 140 =x* -y

3.4 B-instructions for addition and subtraction. Codes 00 = 03,
10, 12 and 13

In order to B-modify the accumulator instructiorn: it is necessary
to be able to put short integers into the B-registers and to add and
subtract in B-registers. The instruction 00 copies a short integer

CS 225A

- 11 =

from the half register in the computing store into the B-register
specified by the B-digits e.g.

007 32 B7' = H32

The 01 instruction does the reverse operation of copying a B-register
into the computing store. e.ge.

017 32+ H32+' = B7

H32+ is the right half register, H32 being the left half register,
Instruction 02 adds (fixed=-point) a short integer from the computing
store into the specified B-register e.g.

024 1.0 B4' = B4 + H1.0

and the 03 instruction subtracts a short integer in the computing store
from the B-register e.g.

034 1023 B4’ = B4 - H1023

The instructions 10 12 and 13 where the decimal codes are ten more
than those above do similar operations but in these instructions the
address part of the instruction is itself regarded as the short integer
with which the operation is performed e.g.

106 25 B6' = 25
126 1 B6' =B6 + 1 = 26
136 5 B6' =B6 = 5 =21

There is no instruction corresponding to the 01 dinstruction.
Whenever an operation is done on a B-register the B-test register is
set (See below).

Ded Sac instructions. Codes 20 - 23, 30, 32 = 33

The above B-instructions are not B-modified, the B-digit specifying
on which of the seven B-registers the operation is required. The Sac
instructions, where the decimal codes are twenty more than the B-instructions,
de the same operations except that the operation is always on B7. When
used with these Sac instructions BY 1s called Sac, an abbreviation for
short accumulator. The B-digit of the instruction specifies the B-register
by which B-modification is required. Whenever an operation is done on
Sac (Codes 20 - 38) the Sac-test register is set (See below).

3.6 Jump instructions. - Codes 59, 49, 08 - 09, 18, 28 ~ 29, 38

The instruction 89 is the unconditional jump or transfer of control,
C'=n e.g.

590 64 C' =64

Other Jjump instructions are conditional on the number contained in some
location in the computer. The 49 instruction transfers control if the
accumulator is positive or zero., If the accumulator is negative control
is not transferred and C' =C + 1 in the usual way, i.e. the instruc’ion
in the next register is obeyeds The 0% instruction causes control to
jump if the B-test register is positive or zero. The 08 instruction
causes control to jump if the B-test register is not zero and the 18
instruction combines testing and counting by causing control te jump if
Bt # 0 and also adding one to the B-register specified by the B-digit
whether or not control jumps. The Sac testing instructions are twenty
more than the corresponding B testing instruction. A Sac instruction sets
St but not Bt .

CS 225a

It is now possible to programme operai: - which involve counting.
Examples:-

1. Add the number in L32 into the sccumulator a hundred times

106 100 B6’ = 100

420 32 (1 A" = A + L32

136 1 B6" = Bt' =B6 - 1
080 v1 Jump if Bt £ 0

In this example the same long number is added to the accumulator each time,

2. Add the hundred (different) numbers in the consecutive long
registers from L16.2 onwards into the accumulator.

106 100 B6’ = 100

426 16.0 (1 A" = A + L16,0 modified by B6
136 1 B8’ = Bt' = B6 - 1

080 v1 Jump if Bt £ 0

Each time +the addition instruction is obeyed the contents of B6 are one less
and the consecutive long numbers are added, effectively twice the contents of
B6 being added to 16,0. One could of course write out each of the addition
instructions one after the other but the programme would then be unnecessarily
long. Other ways of coding cycles of instructions are described in Chapter
8.

3.7 Backing store instructions. Codes 67 - 69

When reading or writing a sector of the backing store +to or from a
page of the computing store it is necessary to specify what are essentially two
addresses, the sector number and +the page number. Since each instruction i
of the one-address type, two instructions are necessary, the first a 67
instruction to select the sector followed by a 68 er 69 instruction which
initiates the reading er writing and in which the page number is specified.
Once a sector is selected several reading or writing transfers can be obeyed
with this sector which remains selected until the next 67 instruction is obeyed

3.8 Input/output instructions to the computing store, 60 - 63

The usual method of getting information into and out of the
Computer is by means of punched paper tape. A stripe across the tape has
five positions, in each of which a hole may be punched: +this provides 32 tape
characters, and a character is read into the Computer as five binary digits,
a 1 for a josition in which there is a hole and a C for a position in which
there is no hole.

The 60 instruction reads a character fria the input paper tape into
the least significant five digits of a short register in the computing store,
clearing the most significant five digits. The 62 instruction punches on
the paper tape output the least significant five digits of the address part of
that instruction. The 63 instruction punches the least significanmt five
digits of a short register of the computing store.

The 61 instruction is not a paper tape instruction; it copies
into a short register in the computing store the binary number read from a

-

row of ten keys, or handswitches, on the control d&- #i’ the computer.

CS 2254

- 124 -

3.9 Multiple channel input/output to Sac. 90 - 97

The instructions of this group are input and output instructions which
can select which of a number of input and output devices attached to the
Computer is to be operated. The Computer has seven input chammels and seven
output channels, and to these are comnected devices which handle information in
units of wup to 10 binary dlgits. For example, the S5-chamnel paper tape
readers and punches handle information 5 bits at a time. It is usual to have
tape readers attached to two of the input channels, though individual Mercury
installations differ in the equipment they have.

Functions 90 and 92 - 97 are input functions and function 91 is the
output function. They are all Sac¢ functions: that is to say the input
character is placed in Sac or the output character taken from Sac, unlike the 60
and 63 functions which refer +to half-registers in the computing store.

The b-digit used with any of the functions 90 - 97 is interpreted in
an unusuval way, to specif'y tixz chanmnel to be used. The seven input channels
and the seven output chamnels are both numbered 1 - 7, and a channel is
operated by a 9 group instruction with the appropriate b-digit.

If the b-digit in the instruction is >zero, Ychannel O% is interpreted
as the exponent of the accumulator, so that the instructions in this case are
not input or output instructions at all; for example, the instruction
901 0

takes the next character from channel 1 and places it in Sac, amu
900 0

takes the (10-bit) exponent of the accumulator and places it in Sac.

The interpretation of the address digits of an instruction using one
of channels 0 - 3 differs from that of an instruotion using one of channels
4 - 7, In the former case, chammels O - 3, the number given by the address
digits is added to the input or output information, so that for example if Sac
contains 6, say, the instruction

911 8
will send the Space character, with value 14, to output chamnel 1.

The output chammels 4 - 7 are designed to take unot just one device

each, but in fact any number of devices wup to 1024, and the n digits in the

instruction are used in this case to determine which of the devices attached
to the channel is to be used.

The 60 function always uses input chamnel 1, and the 62 and 63 functions
always use output channel 1.

Note:- ciome Mercury computers do not have functions 90 - 97.

3.10 Instruction types

Instructions are classified according to the following types:-

Type 1 €.8 59 C'=n
The machine address has the same value as the written medium rcgister

address. For the written address -1023 < M < 1023, This type also
includes instructions whose address is irrelevant c.g. 99 stop.

Type 2 €ego 63 7' =H
A short address instruction whers the written medium register address
CS 225

- 13 -

is doubled but no most significant function digit is inserted. For fixedj
written addresses =511 + < H < 511 + and flcating addresses are modulo 5

Pype 3 €ege 10 B'=n

Fixed written addresses are treated as for +type 1. Floating addresses
are treated as types 1, 2 or 4 according to whether an instruction, short
integer or long number is labelled (See chapter 5).

Type 4 e.g. 40 A'= 1L

Long address instructions where the written medium register address is
halved during input. For fixed numerical addresses ~ 2046 < L < 2046.

Type S €ego 00 B'=H

Short line dinstructions where the written medium register address is
doubled during input and the most significant function digit inserted
appropriately. There are actually two machine functions for each
decimal functiem but this need cause no confusion. B-modificatiom
for type 5 and also for the 63 instruction adds & B+ to the written medlim
register address (See chapter 2). -

3.11 The complete instruction code

The following instructions are standard on all full-sized Mercury
computers. Some Mercury Computers have additional auxiliary equipment;
instructions for these special devices are not included here.

B-register instructions

00 B’=DBt'= H Type 5 60 us.

The contents of the short register of the computing store are copied to the B-
register specified by the B-digit and the B-test register is also set. The
store register is unaltered.

01 H' =B Type 5 60 us.

The contents of the B-register specified by the B-digit are copied to the short
register of the computing store. The B-register itself is unaltered and the
B-test register is not set.

02 B'=Bt'"=B+H Type5 60 us.

The contents of the short register are added into the B-register, the store
register being unaltered. Since B-registers only hold ten binary digits,
the result is the sum modulo 1024.

33 B'=Bt'=B-H Type 5 60 us.

The contents of the short register are subtracted from the B-register modulo
1024. _

04 B'=Bt'=B/2-H Type 5 60 us.
The unsigned contents of the B-register are first helved, the least

significant digit being discarded and the most significant digit becoming zero,
and then the contents of the short register are subtracted modulo 1024.

05 B'=Bt'=B&H Type b 60 us.
The logical operation "and" on each of the correspr-iing binary digits of the
B-register and the short register of the computing store gives 1 if both
digits are 1 and O otherwise.

CS 225A

- 14 -

0&0 = 0
0&1 = 0 = 1&0
1&1 = 1
which is digit by digit multiplication
eegeo if B = 10101 01010
and H = 00000 117111
then B& = 00000 01010
06 B =Bt'=B#&H Type 5 60 us.

The logical operation "non-equivalence" on each of the corresponding binary
digits of B and H gives 1 if they are not equal and 0 if they are equal.

0&F 0 = 0
0FF 1 = 1 = 14%0
141 = 0
which is digit by digit addition (with no carry)
e.g. if B = 10101 010710
and H = 00000 11117
then B£A#H = 10101 10101
07 Bt'= B-H Type 5 60 us.

The B-test register is set as with the 03 instruction but the B-register
is unaltered.

08 Bt#0, C'=n Type 1 60 yus.

A conditional transfer of control where n is the ten-digit address part
of the instruction.

09 Bt >0 C'=n Type 1 60 us.

A conditional transfer of control.

10 ~ 17 These B-register instructions are the same as 00 - 07 except
that the address part ¢f the instruction is itself the integer n with
which the operation is performed.

10 B’ = Bt'=n - Type 3 60 use.

12 B’ Bt’'’=B +n Type 3 60 ps.

i

13 B’ Bt’' =B =~ n Type 3 60 us.

i

14 B'= Bt'=B/2-n Type 3 60 us.
15 B'= Bt'=B é&n Type 3 60 use
16 B'= Bt' =B #n Type 3 60 us.
17 Bt'=B -n Type 3 60 us.
18 Bt#A 0, C'=n; B =Bt' =5+ 1 Type 1 60 pus.

CS 255A

15 -

The content of the B-test rogister tefare the instruction is obeyed is tested
and this is not necessarily the content of the B-register specified by the

B-digiu. 1 is added to the B-register spec.fied by the B-digit. If Bt =0
then C°' =C + 1 in ti2 usual way and B'= Bt' =B + 1 e.g.
186 v jumps to address v1 if Bt £ 0 and

adds 1 to BE

Sac instructions

20 - 38 These instructions are the same as 00 - 18 except that the
operations are referred to Sac and the Sac-test register rather than to a
B-register and Bt. The B-digit specifies the B-register for B-modification

of the address.

20 = H Type 5 60 uSe
21 H =S Type 5 60 pus.
22 S =8t'= S+H Type 5 60 us.
23 S'=8t"=S -H Type 5 60 us.
24 S St'=85/2-H Type 5 60 us.
25 S =« St'=S&H Tyz: 5 60 us.
B S'="¢4'==34%&H Tyse & 60 pus.
27 ' =5 - H Type 5 60 us.
28 % =0, C'=n Type 1 60 us-
29 St >, C=ow Type 1 60 us.
30 2= St'=n Type 3 60 us.
32 §'=8t" =5 . n Type 3 60 us.
33 8 =8t" =S-n Type 3 60 pse
34 S'=8t" =5/2-n Type 3 60 us.
35 S" =& =S &n Type 3 60 us.
36 8 =8t" =82=mn Type 3 60 pa-
37 St'=3S - n Type 3 60 us.
38 St#0, C'=n; 8= St'=3S+1 Type{ 60 us.
Accumulator instructions
40 A" =1L Type 4 120 pus.

The contents of the 40 - digit long register of the computing store are copied
to the accumulator. No standardisaticu, round-off or accumulator overflow
posit v test .= performed.

41 L ==A Type 4 120 us.

CS 255A

The contents of the agcumulatcer are ocopled to the long register of the
computing store without standardisgiion or round-off. Ho overflow test is
performed.,

42 A" =A+ L Type 4 180 us.
The contents of the long register of the computing store, as a 40-digit
floating-point number, are added into the accumulator with standardisation
and round-off. For details of the floating-point arithmetic see Appendix I.
43 A" = A - L Type 4 180 us.

The contents of the long register are subtracted from the accumulator with
standardisation and round-ofif.

44 A" = A + L wnrounded Type 4 180 us.

The contents of the long register are added to the accumulator with
standardisation but without round-off.

45 A’ = A - L wwounded Type 4 180 us.

The contents of the long resgister are subtracted from the accumulator
with stendardisation but without rowd-off,

46 A’ = A + L unrounded and unstandardised Type 4 180 use

The contents of the long register are added to the accumulator with neither
standardisation nor round-off. The result is shifted down one place and the
exponent adjusted.

47 A" = A - L unrounded and unstandardised Type 4 180 ps.

The contents of the long register are smbtracted from the accumulator with
neither standardisation nor round-off's, The result is shifted down one place
and the exponent adjusted.

48 Shift <31, C°=n Type1 60 us.
A conditional transfer of control depending on the difference of +the exponents
of the accumulator and the long register of the computing store for the last
addition or subtraction. If the difference of the exponents is greater than
3, ¢’ =C + 1 in the usual way,

49 A 20, C'=mn Type 1 60 us.

4 conditional transfer of control. If the accumulator 1is negative
C’'=C + 1 in the usual way.

50 AT = AL Type 4 300 us.

The comtsits of the assuwmulater are multiplied by the contents of the long
register with stendardisation aund rowd-olff,

51 A7 = «AL Typ: 4 300 ps.

Minus the contents of the sscumulator ave mlitiplied by the contents of the
long register with standardisation and rounu-off.

52 A’ = AL unrounded Type 4 300 us.

The cortents of the accumulator are multiplied by the contents of ihe long
line with standardisation but without round-off.

53 A’ = ~AL unrcunied ype 4 300 us.

Minus the contents of the accumuls" . .re multiplied by the contents of the
long register with standardisetion but without round-off.

- 17 =

54 A’ = AL leastsignificant half Type 4 300 pus.

The complete product of the contents of +the accumulator and the contents
of the long register has a sixty digit fractional part; the most
significant half is given bv the 52 instruction. The result of this
instruction is not standardis:d and not rounded-off and is always positive
or ger. (see Appendix I). The exponent is the sum of the two exponents
minus 29,

55 A" = -AL least significant half Type 4 300 us.
The complete product of minus the contents of the accumulator and the
contents of the long register has a sixty digit fractional part; the
most significant half is given by the 53 dinstruction. The result of
this instruction is not stanlardised and not rounded off and is always
positive or zero. The exponent is tle sum of the two exponents minus 29,

57 Dummy Type 1 60 us.
This instruction does nothing other than C’ = C + 1 in the usual way.

58 Hoot Type 1 60 us.
An impulse is applied to the diaphragm of a loud-speaker. By doing
this repeatedly a musical note can be produced to attract the attention
of the operator, e.ge to insert a data tape.

59 C'=n Type 1 60 us.

The unconditional transfer of control.

Input/Output instructions

60 H' =1t Type 5 120 us. (see 3.15)
An input instruction. The five binary digit character which is under
the reading head is copied to the least significant five digits of the
short register of the computing store, clearing the most significant
five digits, and advancing the +tape one character.

61 H’' =hs Type 5 60 use

The +ten binary digits set on the handswitches are copied to the short
register of the computing store.

62 t'=n Type 1 120 us, (see 3.15)

The least significant five binary digits of the address part of the
instruction are punched as one charactcr by the output.

635 t'=H Type 2 120 us. (see 3.15)

The least signficant five binary digits of the short register of the
computing store are punched as one character by the output.

64 Display ‘=1 Type &4 120 us.
The contents of the long register of the computing store are displayed
on the control desk monitors, the exponent as ten binary digits and

the fractional part as thirty binary digits. The instruction must be
repeat.d continuously to give a visible display.

Backing store instructions

67 T'=n Type 1 60 us.
Select sector n for -. transfer of information to or from the backing

CS 2554

- 18 -

storee.
68 P’ =D Type 1 (For the time, see 3,14)

Read the contents of the selected sector to page n where n is the integer
forming the address part of the instruction.

69 D' =P Type 1 (For the time, see 3.14)

Write the contents of page n to the selected sector of the drum.

Exponent instructiocns

These exponent instructions are B-instructions which operate on the
exponernt of the accumulator. The address part of the instructions is added
to the exponent (except for the 71 instruction).

70 B =Bt’'=E+n Type 1 60 pus.

The exponent of the accumulator is copied to the B-register specified by the
B-digite

71 E'=B Type 1 60 us.

The contents of the B-register specified by the B-digit are copied to the
exponent of the accumulator.

The Destandardise Instruction

78 E' = 0.2" unrounded unstandardised Type 1 180 us.
The effect of this instruction is to force the accumulator into an
unstandardised form with a specified exponent: because of the one place
right shift which accompanies all unstandardised operations this exponent is
n+ 1, The value of the contents of the accumulator is unaltered except for
bits which may be lost off the bottom of the argument due to the
destandardisation.

The effect of the 78 instruction is identical with that of adding
to the accumulator with a 46 instruction a number with argument zero and
exponent n. To work properly, then, the original exponent of the accumulator
must be less than or equal to ne.

Multiple Chamnel Input/Outout Instructions

90 - 97 Type 1

b digit =0 b digit =1 to 3 b digit =4 to 7
9 S’=5t'=E +n S'=5t"=I+n S'=8t'=1
91 E'=S+n 0=23+n 0=

(8% = St) (st’ = st) (st’ = st)
92 ¢ =8t' =8 + (E+n) S’ =85t'=8 + I+n§ S'=5t"=5+1I
93 s’mSt':-—s..}Em} §' =8t' =8 -~ (I+n S'=8t'=8-1
94 S' =35t' =5/2 - (B+n) S' =8t'=5/2 - (I+n§ S'=st'=85/2-1
95 S8’ =5t'=235 & (E) S'=8t'"=5S& (L +n S'=5t'"=S¢&1
96 S’ =5t'=2S# (En) S'=8t' =S # (I+n) S'=5t'=5# 1
97 St’ =39S - (E+n) St’ =8 - /I+n) St' =85 -1

E representsthe exponent of the acoumulator, I information (of up to
10 binary digits) from an input channel, and O information (of up to 10 binary
digits) sent to an output chanmnel.

Instructions of this group with zero b-digit take 60 us, and with
non-zero b-digit 120 ys plus waiting time (see 3.15).

The 9 group with b-digit zero sre¢ similar to the 7 group except that
they affeot Sac and the Sac test register instead of a B-register and the B
test register. CS 2254

- 19 -

The Stop Instruction

99 Stop Type 1
This instruction s*ops the computer and lights the 'stop flip flop'

light on the control ccnsole., If the prepulse button 1is pressed the
computer will carry on from the rext instruction.

3,12 Imstructions for special equipment

The above instructions are standard on all full-sized Mercury computers.
Some Mercury computers have additional auxiliary equipment and the instructions
used are included here, Other Mercury computers have twice the standard drum
backing store, viz have 1024 sectors, but no additional instructions are required
for this.

3.12.1 Card input/output and line printer

Two buffer stores are provided, one to hold an exact copy of the
card just read in and the other to hold an exact copy of the card about to be
punched or 1line about %o be printed. Standard cards containing 80 columns and
12 rows are used. (Additional buffer stares provide bit-by-bit checking during
both input and output). The line printer prints one line of 100 characters.
Each card input is read twice, each card punched is read at subsequent reading
station for automatic checking and a self checking code is also employed.

80 Conditioning Type 1 60 us.

The address part of the instruction specifiies whether or not an exact binary
copy of the contents of the computing storg/buffer is required or whether
disciplined code punching is required, and whether card or line printer as
follows:~ '

For an exact binary copy, thz 80 digits in the top row of the card

correspond to the first 8 short registers of a page of the computing store, the
next row to the next 8 short registers, etc. For disciplired codc punching,
the binary equivalents of the characters in each of the 80 column: are
contained in the first 80 short registers of the page.

In the address of a conditioning instruction, the most significant four
digits Ei.e. the page position) concern the style of input, and the remaining

digits (the line position) concern the style of output:-

Page Input
0 Disciplined code input
1 Binary input

Line Output
0 Print line (disciplined)
1 Punch card in disciplined code
5 Punch card in binary code

Modification works as for any type 1 function.

81 Read card Type 1 approximately 53 msec
(see 3.15)

This cories the contents of the input buffer to the page specified by the
address part of the instruction and reads the next card to the buffer.

82 Punch card/print line Type 1 (for time see below)

The page, specified by the address part of the instruction, is copied to the
buffer. The exact contents ot the output buffer store are punched/printed
(if a line is printed, the peper is advanced).

cs 2554

- 20 -

83 Paper throw Type 1

In addition to the normal paper step, paper is fed on (at a rate of about 10
inches per second), stopping at a preset position.

The speeds of the card input/output and line printer are:-

Read card 200 per minute
Punch card 100 per minute
Print line 100 per minute

3.12.2 Magnetic Tape Backing Store

Magnetic tape decks, or mechanisms, are connected to Mercury through a
special control unit; two of these control units can be attached to the
computer and each control can cperate up to four tape decks, giving a maximum
of eight tape mechanisms in all,

The magnetic tape used is pre-addressed, and the possible operations
are rewind, search (for a particular address) and transfers to and from the
computing store. Each control can perform one search or rewind operation and
one transfer simultaneously, and these can take place while the computer is
obeying other programme so long as the computing store requirements deo not
conflicte. If an attempt is made to use a control which is already occupied,
the computer will be held up until that control is free; the new magnetic tape
instruction will then be initiated and computation will proceed simultaneously.
If an attempt is made to use a part of the computing store which is involwved at
the time in a magnetic tape transfer, the computer will stop: +this is known as
the interlock stop. Instructions are provided to test if the transfer part of
each control is busy so that the interlock stop can be avoided by programme.

The magnetic tape operates at a speed of 60 inches/sec. and a reel of
tape can be up to 3000 feet long. The tape has eight tracks, six for
information, one address track and one clock track. Information is stored on
the tape in blocks, addressed sequentially. At the end of each block a 6 digit
check sum is automatically written, and when a block is read from the tape this
check sum is checked; if the check fails the block is re-read. If the check
fails repeatedly the computer indicates a tape failure armd stops.

The principal method of storing information on magnetic tape is in
blocks of 128 forty-bit words, so that one block of information from tape
oocupies 4 pages of the computing store,. Such a block occupies 6.4 inches on
the tape, including its address, and there is a gap of 1 inch between blocks.

A magnetic tape operation is performed by means of two instructions:
the first selects which deck is concerned (and therefore which control) and
the type of operation, and the second gives the required tape or computing store
address (if any) and initistes the operation. The functions are:-

87 Select deck and operation Type 1 €0 usec.
In the address of this instruction, the most significant digit is ignored, the
next three digits give the type of operation required, the next three digits
are ignored and the least significant three specify the deck number.

The types of operation are:«

101 Rewind

001 Search

000 Read from following block
01¢ Write to following block

100 Read from preceding block
110 VWrite to preceding block

The arrangement of digits in the addrsss is chosen so that the address can be
written in page and line form, with the"page" corresponding to the operation
and the "line" to the deck.

CS 2554

This instiruction determines the oifect of:
86 Operate Type 4 120 ec (plus warto~ time, see 3.15)

The 86 instruetion initiat . the operation specified by the last 87
instruction obeyed.

In the case of a transfer to or from the computing store, the address
specifies the register of the ¢/ aputing store from which the transfer is to start:
this address must be the beginnin~ f & page.

In the case of a search operation, the address in the 86 instruction is
the address of a 40-bit word of the computing store; this word must contain the
required block address in the least significant 20 bits of its argument. The
remaining ten bits of the argument, and the ten . xponent bits, are ignored.

In the case of a rewind operation, the address in the 86 instruction
is ignored.

A block of information on tape is read or written in the forwards
direction, sc that after are block has been r:ad the tape is positioned ready for
reading the block immediately following. t is not necessary to give a "select"
instruction for each "operate" if' the same deck and operation are required each
time, so that, for example, successive blocks can be read from one deck by means
of an 86 instruction to select "read from following block" followed by several
"operate's. Blocks cannot be read in the reverse order simply by repeated "read
from preceding block"s because when a block has been read, the "preceding block”
is the block that has Jjust been. read.

The two instructions to avoid the computing store interlock are:-

88 TC 1 busy, C'=n Type 1 60 us.
89 TC 2 ‘usy, C'=n Type 1 60 us.

Each of these causes control to jump if the transfer part of the tape control
concerned is busy. It is of'ten necessary to test whether a particular magnetic
tape operation has finished or not; the time elapsed since the "operate®
instruction is not usually a sufficient guide because there may be an automatic
repeat of the operation due to a checksum failure first time. These two
functions are designed to avoid any reference to a part of the computing store
involved in a tape transfer; any such reference will stop the computer. It is
only in the computing store that any clashing must be avoided - if a tape contrd
is referred to when it is already busy, the computer will be held up until the
control is free to perform the second operation, amd then the programme will
proceed.

The method of storing information on magnetic tape in 128 werd blocks
is known as the 4-page mode: there is an alternative method in which the
blocks on tape are much shorter, known as the Pegasus mode because this type of
tape is compatible with the Ferranti Pzgzsus Computer and the Ferranti Magnetic
Tape Converter, In this mode a block on ma netic tape is 112 6-bit characters
in lengtk and occupics about 3+ inches on the tape, including the address,
with a gap of 1 inch between blocks, In the comouting store of Mercury
this block occupies the first 112 half-registers of a page. On transfer to tape
in this mode, the 6-bit character:s are take from the least significant 6-bits
of successive half registers; on transfer from tope the characters are put
into the least significant six bits of successive half registers, the top four
bits being cleared. In both cases the remuaining 1¢ half registers in the page
are unaltered.

The instructions for using tape in this mode are the same as for the
4-page mode. The mode in which recording on tape is to be done is determined
by a svitch on the tape deck. Since the blocks in the two modes are of
different lengths, the addressing 1n tle {iwo modes i= ' {lerent, so that to be
usable a tape must be addressed in the right mode.

The times given above {or the 1 gaciic tape functions are the times
for which they occupy the central caupuier, af'ter which the %tape operation

CS 255«

- 22 -

proceeds independently.

The times of the tape operations are:-

Read/write next block: 127 msec (four page mode)
53 msec (Pegasus mode)
Read/write preceding block: 234 msec (four page mode)

100 msec (Pegasus mode)

A search takes 127 psec for 4-page block scanned, or 53 msec for
Pegasus-mode block scanned.

A rewind takes up to 5 minutes for a full 3000 ft. reel.

36123 Manchester University Graphical Output

56 ¢' =1L Type 4 120 us.
The contents of the third and fourth short registers composing the long
register, each modulo 256 are the co-ordinates of a point displayed on a
special cathode-ray tube. This may be viewed by the computer operator or
photographed by a camera permanently set up in front of a duplicate
cathode-ray tube.

65 Open shutter Type 1 (for time see below)
For the camera on the Graphical Output, open the shutter.

€6 Close shutter Type 1 (for time see below)

For the camera on the Graphical Output, close the shutter and advance the
film one frame.

Although the machine time for these two instructions is 60 us.,
the shutter actually takes approximately 100 ms. to open or close and
consequently a delay must be programmed.

3¢12.4 Manchester University magnetic tape igput/output.(provisional)

As an alternative to paper tape, there is available a static-
reading magnetic tape system in which input and output operate at 1000
characters per second.

A single tape mechanism is used for both input and output.
Information is recorded on magnetic tape in 5-bit characters at a density of
100 characters per inch; the tape has 8 tracks in all, 5 information tracks,
1 track for parity digits and 2 tracks for additional checkinge. On output,
each character is automatically re-read for checking; if it has been wrongly
written on the tape, the character is repeated in the next position with an
indicatici: in the check tracks that the previous character is wrong, and
this second copy of the character is also re-read and checked.

The maximum length of tape on a spool is 1,800 feet; when running
at full speed the equipment cannot stop on a single character, there being
an overshoot equivalent to about five characters. The tape is primarily
intended for fast recording of results of computation, the tape subsequently
being transcribed to paper tape for printing; it can also be used as an
additional backing store.

The equipment is designed to be connected to the multipl- 1ﬁput/
output channels and to be operated by the 9 group functions. It is
conventional to attach it +to input channcl 3 and output channel 3, leaving
channels 1 and 2 for paper tape equipment.

CS 2554

- 23 -

This magnetic tape equipment is being ¢ loped by New Elecironic
Products Limited to wnom all enquiries stuuld be made.

3,15 Unspecified instructions

The instructions described in the two lists above do not include
2ll of the 128 possible different machine instructions. Of the
remaining machine instructions scme are duplicates of imstructions
described above e.g. 1 000 000 is alsoc a prepulssble stop. Others perform
useless operations or operations which can be done by other instruetions,
whilst others are dummy instructions. However the decimal codes which are
not described above are all comwverted during input into the second
prepulsable stop 1 000 000, the 99 instruction alone being G 000 000.

3e14 Time of the drum transfer instructions. 68 P’ =D and 69 D' =P,

The sectors are arranged on the drum two to a track; the drum is
rotating continucusly and the transfer to or from & particular sectar takes
place while the sector passes under & magnetis head near the surface of the
drum, so that the computer has to wait wntil the beginning of the sector is
in the right place before the transfer can start. The average waiting time
for random access to the drum is half a revolution, i.e. about 8~ msec, and
the +transfer itself takes about 7~ nsec. The physical arrangemenm of thP
sectors om the drum surface is effectlvely as shown in Figure 1,

Figure 1. Section of a drum, perpendicular to the axis of rotation.
beginning of even numbered

/’f»}\,‘\\
sectors
-_,ﬂ—f:ji/ﬂ gap between sectors 960 us.

7.63 ms.

beginning of odd numbered -+
sectors

For transferring several sectors it is consequently quickest to transfer

odd and even numbered sectors altermately (which is done if consecutively
pumbered sectors are transferred), TIn the gap between sectors there is time
for sixteen B-instructions.

3.15 Times of input/output instructions, etc.

In addition to the times given in sections 3.11, 35.12, certain
funckion- may have a varisble waiting time Lecause they refer to equipment
which i. 3%till compieving a previous operaticn, This zpplies yartlcu*arlj
to input and output instructions, where the eguipment concerned is limited by it
speed. For example, a 200 charscter/second tape reader can read a character
every 5 msec, so that after ome input instructic: {itself taking 120 us. only)
the reader will not be ready to obey another imput instruction for 5 msec.

In most zases (and unless otherwise stated), if a second instruction is
encountered too soon the computer is held =p until the equipment is ready and
the instruction is then obeyed.

This affects the timing of functions 60, 62, 63, the input and output
functions of group 9, the card functions, the magnetic tape operate function,
ard the graphical output functions: *heae last form a special case in which
the hold-up is not automatic but the delay must be cammed - see 3,123

CS 2554

- 24 -

CHAPTER 4

DIRECTIVES AND OTHER ALPHABETICAL INFORMATION

44,1 Introduction

As well as actual instructions, it is also necessary to direct the
Input Routine in various ways. This is done by directives such as CHAPTER,
ROUTINE ard ENTER which are usually ordinary English words. To the input
routine only the first letter is relevant, further letters of the word being
ignored, so that spelling mistakes like ACCROSS are allowed. (For Autocode,
however, correct spelling is essential.)

4,2 Chagter

Most programmes cannot be accommodated entirely in the computing
store so are broken up into units called chapters, each of which can be
accommodated in the computing store. The complete programme is stored in
the backing store and the chapters are transferred to the computing store
when required. The beginning of a new chapter is indicated to the Input
Routine by say

CHAPTER 6

or by
c6

since only the first letter is relevant. Chapter numbers can be 1 to 100
and each must have a different number. Unless there is a PAGE directive
(see below) all chapters begin in page 1 and they must not extend beyond
the end of page 15 unless special measures are taken to allow them to do so:
see paragraph 4.13. Chapters are stored in the backing store in the order
that they presented to the machine rather than by chapter numbers; each
begins on a new sector, the next available af'ter the end of the previous
chapter, and occupies only as many consecutive sectors and pages as required
or specified.

4,3 Routine

The chapters of a programme are themselves further divided into units
called routines. The beginning of a routine is indicated by the word ROUTINE,
or the letter R, followed by the routine number. All routines begin on the
next available even register, a dummy instruction, 570, being inserted if
necessary. TIwo kinds of routines exist, distinguished by whether the routine
number is less than 1000 or not.

4,3,1 v-Routines

These are numbered 1 - 999 and each v-routine in the complete
programme must have a different routine number. For each v-routine a new set
of labels 1 to 100 (see chapters 2 and 5) can be used and floating addresses
referring to labels in the same v-routine are vi v2Z v3 etc.whilst floating
addresses referring to labels in another v-routine are written as v2/ 3 say,
neaning the address indicated by label 2 of routine 3, For each v-r~ iine
the label O 1is automatically set to the address of the beginning -’ .ue
routine and this can be referred to by vO or by v alone, zege to transfer
control to the beginning of v-routine 901 the instruction can be

590 v/901

CS 2554

- 25 =

4,3,2 x=Routines

These are numbered from 1000 upwards and the number may contain
a decimal point and fractional pert (several decimal points are permitted)
but not more than 77 digits in 811l. x-Routines are merely a device for
inserting library routines but otherwise dc not concern the programmer.
The library tape is copied on to the progremme tape by means of the tape
copying or reperforating equipment (see chapter 7).

An x-routine does not terminate a v-routine, but rather it is part
of a v-routine. Since it is not possible to label a routine directive
and it is inconvenient to insert v labels (of the current v-routine)
after instructions in an x-routine, it is usual to put the x-routine at
the beginning of a v-routine, e.g.

R 234 v=routine
R 1234 x-routine
500 16x

.

and then 590 v/234 transfers control to the beginning of the x=routine.

On reading the x-routine directive the Input Routine automaticelly
sets the floating address x or =x0 to the address in which the
x=-routine begins c.f. vO0 for v-routines. Thereafter references to
addresses in the x~-routines are written in terms of the floating address
x (see chapter 5). The actual x-routine number (a routine number greater
than or equal to 1000) has no significance to the Input Routine , no
permanent record is kept of x-routines, the address x0 being reset
at the beginning of each x~-routine. Thus two different x-routines in the
one programme may have the same number (though this should rarely be
necessary) and the same x-routine may occur several times in the one
programme, e€.g. in different chapters.

Hereafter the word routine will imply a v-routine.

4.4 Quicky

Many of the commonly used Library routines are stored in the
computer within the Input Routine., If for instance the set of instructions
which replace the contents of the accumulator by its reciprocal (A’ = 1/A)
is required, all the programme need contain is

Q1

Quickies always begin in an even register, a dummy instruction being
inserted if necessary. In appendix 4 a swmmary of details of the quickies
includ s the number of registers occupied and the working space used for
storing intermediate numbers. A fuller description of the quickies is
contained in the Ferranti publication CS 202. It will be seen that all
quickies use at most

(1) The accumulator
(ii) Working space M 32-39
(iii) Sac St Bt.
None of the B-registers 1 to € are altered; some quickies use BS
and B6 during the quicky but the contents on entry are restored before

the exit. The last instruction of the quicky alwsvr transfers control
to the register after the end of the quicky.

Like an x-routine, & quicky is pr:t of a v-routine and as such a
quicky can be labelled, the address indicated being the first (even)

CS 225»

register occupied by the quiiky e.g. if in a progremme the instruction
Q1 (2

ocowrs, then the instruction 590 v2 anywhere in the same v-routine transfers
control to the beginning oi the quicky.

4odod Automatic Quicky Selestion

A reference t6¢ & Jsbel number ir the range 101 to 119 will cause &
quicky to be inserted at the end of the chapter in which the reference cccurs,
and the reference will be interpreted as the address of the first instruction
of the quicky. w101 corresponds te quicky 1, viO2 to quicky 2 and so on.

If several such references to one guicky are made in a chapter, only cre copy
of the quicky is imserted and alli the references refer teo this copys.

The guickies are inserted at the end of the chapter in the order in
which the first referemces to them occur, each quicky beginning in an even
numbered register. In addition to the instructions of the gquicky, a 591 0
instruction is put in at the end of eash quicky, so that it is stored in a "Bl~
closed” form., There is one exception to this: quicky 9 has & 591 3
instruction put in at the enl - this is to conform with the non-standard entry
required by this quicky (see Appendix ITI).

All library routines use the quickies in this "Bl-closed" form and
call for them using the automsilc selection, so that if two library routines in
one chapter require the same quicky, only one copy of the quicky will be
included in the chapter ani boih library routines will use it,

4,5 Enter

" At the end of & programme a directive is required to indicate to the
Tuput Routine thet it must stop compiling and begin obeying the programme.
This is done by the direcctive IENTER followed by an address eo.ge

F v/1

The chapter containing routine 1 (mot necessarily chapter 1) is then
transferred from the backing store to the computing store and control is
transferred to the register indicated by the label 0 (the beginning) of
routine 1.

4,6 Across

With a programme of more than one chapter, it is necessary to be able
to transfer a secomd chapter from the backing store to the computing store when
the instructions of the first chapter have been obeyed. This oan be done by
writing, say,

A vi1/7

wnich when obeyed causes the charter containing routine 7 to be tramsferved
to the computing store and conbrel trapnsferred o the register indicated by
label 1 of routine 7,

4,7 Down

On some occasicns it is desired to call in a second chepter in such
& way that, when this second chapter has been obeyed the originsl chapter is
again transferred to the computing store, and control transferred back to the
plase where the chepter was left., The second chapter is called in by writing

D vi/7
CS 225 A

- 27 -

t is convenient to think of chapters as being on different levels, the
second chapter being a sub-chapter of the first. Sub-chapters can
themselves call in sub-sub-chapters, etc, 9 levels being permitted. A
chapter on a higher level is called a master chapter.

4.8 Up

When a sub-chapter has been completed and it is desired to return
to the master chapter, the word

up

is written. Sub-chapters can call in chapters on the same level by an
ACROSS, the UP always causing a return to the level above at the place

where that level was last left. UP is of course never followed by an

address, whereas ACROSS and DOWN are always followed by an address.

Like quickies, ACROSS and DOWN always begin on an even register,
a dumny instruction being inserted if necessary. For ACROSS and DOWN
four registers of programme are inserted. For UP two registers of
programme are inserted. ACROSS, DOWN, and UP may all be labelled; the
address of the first instruction is indicated., For ACROSS arnd DOWN the
label must follow the address.

An ACROSS or DOWN directive can be written without a v-reference
in its address: for example ACROSS 2.Q/15 will bring down the chapter
containing R15 and enter it at 2.0 - or rather jump to 2.0 whether the new
chapter, in flact, uses page 2 or not.

Pre-set parameters can also be written in ACROSS or DOWN
directives. The routinec number after the solidus only affects a v-
reference if the reference occurs immediately before the solidus: for
example, in

DOV xiv1/10
the vl has the value of label 71 of routire 10, but in
DOWN vix1/10

the v1 has the value of label 1 of the current routine.

The AUROSS, DOWN and UP directives are called "cues".

4,9 Title

All programmes should begin by causing the machine to print out
the title of the programme. The title is printed as it is read in by the
Input Rou*ine and whenever the programme is restarted using key 8 (See chapter
7)e The title must come before the first CHAPTER directive on the tape.
After the first figure shift character following the letter T the title
comprises all characters (erases being ignored) until two consecutive figure
shif't characters occur, i.e. until a length of blank tape. A maximum of
244 characters are permitted in one title but several titles may be included
in one programme (before the first C), each of which is punched during input,
but only the last is stored in the backing store.

T
BILL SMITH

REACTOR 777/4/2 WITH NO COCLING
(FS FS)

CS 2254

- 928 -

It is useful to include a "carriage return®™ and "line feed™ character in the
title before the first word or figure.

4,10 Firstsector

Unless there is a FIRSTSECTOR directive, which must come before the
first CHAPTER directive (but either before or after the title), the firstsector
is taken as 128, On this sector are stored the title and the entry cue only.
The first chapter begins on the next sector (129 if there is no F directive).
This directive is useful if a programme requires a large number of consecutive
sectors of the backing store, including drum 0, for working space. e.go

F 440
c 1

will cause the programme to be stored on sector 440 onwards, the first chapter
beginning on sector 441, It may also be desired to keep two separate
programmes in the backing store simultaneously when they must obviously begin
on different sectors.

The title of a programme is stored in its "first sector" from line 0
ormards; in line 61 is stored a count of the number of character pairs in the
titlee Information about the last ENTER directive obeyed -~ called the "entry
cue” -~ is stored in registers 62, 63 of the "first sector”,

4,11 Page

It may be desired to begin a chapter in some page other than page 1.
(Chapters begin in page 1 if there is no PAGE directive). The PAGE directive
must be written on the same line as the CHAPTIZR directive, the C directive
beginning the line., CeBo

cC2 PS8

As usval, the first page of the chapter, P 8, will be stored on the next
available sector,

This is useful when Chapter 1, say, contains several routines which
are also required in Chapter 2, If these are put at the beginning of Chapter
1 (pages 1 to 7) then Chapter 2 can call in the routines of Chapter 1 by direct
transfers of control without doing a chapter change each time. Care must be
taken that the relevant routines of Chapter 1 are really in the computing store.
When a chapter is transferred to the computing store only the relevant pages
are read down, other pages being unaffected.

It is also possible to predict the highest page of a chapter e.g.
c2 P8~-11

If chapter 2 spreads beyond the end of page 11, then fault 9 is reported by
the Input Routine. This is usefuls-

(i) when pages 12 onwards are being used as working space.

(ii) when the precise sectors cccupied by the chapters are required,
since chapter 2 will now occupy four sectors of the backing
store corresponding to pages 8 to 11 even if the last instruction
of the chapter was only in page %.

(iii) when a lengthy MCORRECTION is anticipated.

If a chapter occupying say pages 8-11 is expected to spread into Page 12 because
of a long correction, allowance must be made for this in the original chapter
directive, for if the chapter as read in only occupies 4 pages, only 4 sectors
will be allowed to it on the drum, and a correction running on to the next
sector will spoil the beginning of the next chapter. Therefore a directive

P 8=12 should be written to ensure that 5 sectors are .eft on the drum for the

chapter,

It is unnecessary to predict = Lighest page 15 for reason (i) alone,
as no chapter may spread beyond ti¢ end of the page 15, A chapter may be
directed to begin in page O, but it camnnot then be transferred from the backing
store to the computing store by ACROSS, DOWN, UP or ENTER which use the

chapter changing sequence, cs 225;

- 29 -

4,12 Sector

If a chapter is required to begin on a particular sector of the
drum e.g., for organising transfers from the drum store to the computing
store without using the chapter changing sequence, then a SLCIOR directive
should be given on the same line as the CHAPTER directive, either pefore
or after a PAGE directive, if any. e.g.

C 3 S 25
will cause Chapter & to be stored on sector f + 25 where [1is the

FIRSTSZCTOR which is usually 128. The sector number is always relative
to the FIRSTSECTCR.

4,13 Line

Usually items within a chapter are stored consecutively in the
computing store, short integers when encountered going into the next
available half register, instructions going inte the next whole register
and long numbers going into the next even numbered register. If the
rext and subsequent items are required to go into some other register,

a LINE directive, fcllowed by an address may be given. The address may
be a fixed numerical address or may consist of a fixed numerical part
and one v floating address only. €.8

L2,0 or L128 These cause subsequent items
to go into registers 128 and
L 50veE 80v6 respectively.

The second kind is useful when it is required to leave some working space
within a routine. A LINE directive may occur anywhere in the middle of

a routine the subsequent items being a continuation of the current routine.
When a new routine is required to begin in a particular register the LINE
directive should be given before the ROUTTIE directive; if the ROUTINE
directive precedes the LINE directive, the address vO dis of course not
the address of the first item written in the routine.

The address after a line directive may contain at most one
symbolic address, which may be a v-reference, a pre-set parameter, or an
* (see 5.4) An * in an L directive refers to what would have been the
next address, so that for example the last instruction of a quicky can
be overwritten by writing LINE-1* immediately after the quicky.

The absolute and symbolic parts of the address in a line
directive may each be greater than 16,0; they, and their sum, are both
interpreted modulo 32.0.

It is important to keep in mind that v-references, preset
parameters and * all take account of half registers. For example, suppose

=2, =7 (3

was written in line 2.20 say, then the value of v3 is 2,20+, A directive
LINE 1v3 would then set the current address to 2.2 +, sc that an instruction
inmediately after the directive would go into 2.%2, not 2.21 as might be
expected. LINE O+v3 would set the curremnt address to 2.21,

With the L directive the highest page occupied by a chapter is
correctly set, (e.g. for later reading the chapter to the computing store).,
However the first page is not necessarily correctly set. If for instance
a directive C1 P2 is later followed by a directive L1.0 then page 2
wrongiy remains the first page and no check for this kind of tlunder is
included.

A chapter can be extended into the second half of the computing
store onlv by the use of a line directive - over-running the end of Page 15
will produce fault 8. Once a chapter has been extended into the secord

CS 225 A

half of the store the only check on its length is ihe "overflow predicted page"
check; there is no check on overflow of page 1.

Instructions, integers and nurbers can be written in the part of a
chapter occupying the second half of the store, anl labels can be set by
bracketing items. However, a label set in the second half of the store can
only usefully be referred to by an accumul~tor instruction, since other
instructions can refer to the first half only of the computing store.

4,14 Mcorrection

This directive is similar to the LINE directive. The address must
contain one cross reference e.g.

Mo 4vi/2

Unlike L, the effect of an M directive is to cause the Input Routine to
terminate the current routine and chapter, It then transfers the relevant
sector of the chapter containing routine 2 to the computing store and causes
the subsequent information to be stored beginning ia the specified address.
After an MCORRECTION all v floating addresses must be cross referemces and
no new labels or new CHAPTER or ROUTINE directives may be given. MCORRECTIONS
should be placed at the end of the tape, immediately before the ENTER
directive.

The MCORRECTION may be used

(1) to rectify a known programming error e.g. an addition
instruction has been incorrectly written as a subtraction

M 4v3/6
420 vi/6
E v/1

(ii) to detect programming errors by doing a running check.
This can be done by writing a special printing routine or
chapter and putting in blisters at the points where a
print-out would be useful e.ge.

C 99 The blisters
R 999
The 4 or 5 instructions
‘ obliterated by the first
. _ MCORRECTION
590 v10
400 32 (1 b
. The 4 instructions
obliterated by the
¢ » second MCORRECTION
590 wv10
106 0 (1o
206 0
., Print page O as short
Q 8 .
integers
176 127
186 11v10

J CS 22564

- 30A -

400 16.6
Prir L16,6 to 9
500 9 deci 1l figures
Q 10
up
M 3v2/6 Call in first blister (DOWN
D v/ 999 takes 4 or 5 registers)
M v/ Call in second blister (DOWN
D v1/999 takes 4 registers here)
E v/1 Enter

The only symbolic address permitted in an M directive is a v-
reference, and there must be ounly one. The address takes account of half-
registers as in L. As in cues, addresses such as 2.0/15 can be written
af'ter M: 1in this case the correction is made to the chapter containing
routine 15 and the correction starts at 2.0.

M corrections cammot be made to programme occupying the second
half of the store. The absolute and symbolic parts of the address in an
M directive are interpreted seperately modulo 16,0, and so is their
total,

If the address after an M is written in the form a.b, without
any v-reference or /, the address is taken to specify sector a, line b.
For example, M129,10 causes the succeeding programme to go on to sector
129 starting at line 10, In the programme following such an M heading
cross references may be used, but no *,

When using correction tapes, it is important to remember that
"Start without Clear" unsets all preset parameters and resets the "first
sector®™ to 128, so that an entry cue at the end of M tape, read in after
"Start without Clear", will overwrite the last two lines of sector 128
unless a new F-directive has been put at the head of the correction

tape.

An M correction is not fully compiled until the start of the
next directive is read, so that an M tape should finish either with an
ENTER or with a dummy directive, such as M-

4,15 Interlude and Jump

These directives permit a short burst of computing while the
programne tape is being read in (c.f. chapter O of Autocode). The
interlude is commenced by the directive

INTERLUDE

Subsequent items go into registers 1,0 onwards, but must not extend
beyond the end of page 13, and are stored on sectors 114 to 126. The
interlude is terminated and entered by a directive

JUMP

which reads the interlude from the backing store te the computing store
and transfers control to register 1,0, To reti . .rom obeying the
interlude to reading more of the main programse at the point where it
was interrupted, control is transferred to register 15.0. e.g. to set
x1 equal to the value of vl of the current routine (i.e. x1' =v1):-

CS 225A

- 3 -

INTERLUDE

400 27.56
410 24,46
590 15,0
JUMP

The interlude may use pages O to 14 as working space. The
usual entries are in registers O to 12 of page O but the remainder of
page O and page 14 are not cleared and contain junk. The Page O used
during input is stored on sector 127,

Labels during the interlude are labels of the current routine
of the main programme, and a ROUTINE directive in the interlude terminates
this current routine. Quickies and LINE directives are permitted, but
it is not possible to write ACROSS or DOWN in an interlude (without a
special device since cues are filled in at the ends of chapters). A
CHAPTER directive must not be given in an interlude., A second interlude
is written on the same sectors of the backing store, overwriting the
first interlude. An interiude may be entered any number of times by
directive JUMP alone,

Details, contained in appendix 2, enable interludes to be
written for:-
(FIRSTSECTOR x1)

(SECTOR x1)

(PAGE x1 - x2)

(x1 = current sector)
(clear labels list only)
(Print preset parameters)
(Print selected labels)
(2= -x1)

(x3 = x2 times x1)

etec. etce

4,16 Wait

The directive WAIT, or the figure shift symbol —», interrupts
the programme input and produces a repeated hoot. When handswitch O
is depressed and released, input carries on from where it left off.,

This WAIT hoot can be put in anywhere, even half-way through
an instruction, but it is mostly used at natural breaks such as the ends
of chapters. : It is often a good idea to put a WAIT hoot symbol on the
programme tape immediately before the Enter directive, so that if
necessary a correction tape can be read in before the Enter is obeyed.

A correction tape should of course finish with a copy of the Enter
directive or, when it becomes one of several, another WAIT,

4,17 Name

The directive NAME or N causes the succeeding characters on the
programme tape to be copied on to the output tape, up to the first CR
symbol, but only if * printing is set; otherwise the characters up to CR
are ignored. [Erases are not copied to the punch. The Name directive
provides a form of title which does not get stored. Each library tape
has a name sequence at the beginning.

4,18 Other Directives

Another use of the letters L, P and S is described in section
5.5.1 (page 35). See also section 6.4 (page 41) for the use of the letter
shift character "?%,
CS 2264

- 32 -

CHAPTER &

SYMBOLIC ADDRESSES

5.1 General description

One kind of symbolic address was introduced in chapter 2 (q.v.).
These v symbolic addresses are usually specified by a label after an
instruction. It is also possible to specify a v symbolic address by
labelling a short integer or a long number e.g.

= 25 (2
+5.1416 (3
and also by labelling the groups of instructions, QUICKY ACROSS DOWN

ond UP in which case t he label must fecllow the quicky number or the
address, Finally, a v symbolic address may be set by an equation e.g.

vl = 66

This is not an instruction occupying a register but rather is a
directive to the Input Routine. The ways a symbolic address may be
specifiied are classified by the item labelled:-

Item 1 Long number labelled

Item 2 Instruction labelled

Item 3 Integer labelled

Item 4 Equation set.
If QUICKY, ACROSS, DOWN or UP are labelled this is classified as
item 4 and vO the address of the beginning of a v-routine is also

treated as if it were equation set. The item labelled is significant
with a symbolic address of type 3 instructions only.

The address part of an instruction can be composed of any number
of symbolic addresses which are added together e.g.

400 v1x2 (see below)

An address may also contain one fixed numerical part which must be
written first e.g.

590 2v3
tran: "srs control to the second register after the label 3 arnd
400 =4vi

copies to the accumulator the long number which is 4 medium registers
back from the label 1, the minus sign referring to the fixed numerical
part only. One label may also be included, the label and symbolic
addresses appearing in any order. However the advantage of occasionally
saving a few milliseconds of input time is dubious and labels are best put
well to the right of the address,

When a long number is labelled 1, the four short integers
comprising it are referred to as v1, O+vl, 1v1 and 1+vi respectively.
When an instruction is labelled 2, the function and B-disiis are referred
to as v2 and the address of the instruction as O+vi e.g.

016 0+v2
CS 225A

- 33 -

Short integers may themselves be written in terms of symbolic
addresses and are always treated as the address part of instructions,

> as type 2 instructions
= as type 1 instructions
and # as type 4 instructions
eogo ==V1, %6"2
With directives ACROSS, DOWN, ENTER and MCORRECTION the symboliec
address must specify a routine which in turn specifies the chapter.
Consequently the permitted address is restricted to

(1) a fixed numerical address (optional) together with one
v symbolic address which is a cross reference e.g.

A vA
A avi/2
(ii) a fixed numerical address together with a routine number e.g.

E 1.0/1

transfers down the chapter containing routine 1 and transfers
control to register 64,

With the LINE directive the address may consist of a fixed
nunerical part followed by one v symbolic address only €.ge

L 4v
or a preset parameter or an asterisk, With L and M the symbolic address
must of course be a backward reference, i.e. the symbolic address must

have been previously set by an item further back on the tape.

5.2 v symbolic addresses

These symbolic addresses are associated with labels. One
hundred different v symbolic addresses are permitted with each v-routine
(though usually only about ten are used). In a complete programme the
total number of different v labels set must not exceed 1023. V101 to
v119 correspond to quickies 1-19 (see section 4.4.1 above).

53 n symbolic addresses

This symbolic address is minus the corresponding v address e.g.
vi =6
then 400 nl

if

has address equivalent to the written register address -6 or 2042. This
kind of symbolic address is particularly useful when say, the number of
long numbers in a list is required e.g.

+1e1 (1

=162

+10 (2
then 300 venl

CS 225 A

puts the number of long numbers minus 1 into Sac (Since long numbers
are labelled the medium register addresses are halved during input - see
later). n on its own or n0 is minus the address in which the routine

begins.

5.4 * symbolic addresses

The relative address asterisk is set to the address of the item
(an instruction or short integer) in which it occurs. It is equivalent
to v1(1 but has the advantage that a label is not used. e.g.

590 2%*

transfers control to the address occupied by the next but one instruction.
Similarly a continuous hoot at an audible frequency might be

580 0 Hoot
300 -25 S’ ==~25

380 * Jumps to itself 25 times taking 1% ms.
590 =3* Jump back 3

With all symbolic addresses it is recommended that the fixed numerical
part should be kept small or the advantage of symbolic addresses are
diminished; the appropriate item should be labelled.

5.5 x symbolic addresses

(i) x-Routines (qg.v.) are written in terms of a special
symbolic address x or x0. This address is automatically
set to the address of the beginning of each x-routine.

The address x0 can only be set in this way; it cannot
be set by an equation. Instructions of an x-routine

might be
400 48x
590 7x

(ii) Preset parameters x1 to x100. It is sometimes
convenient to have symbolic addresses which are not
associated with any particular routine and which are
easily varied. These preset parameters are always
set by an equation e.g.

x99 = 6

which is usually conveniently placed at cor near the
beginning of the tape. The preset parameters may
however be set or reset at any time.

e.gs A general routine might be written to solve
simultaneous equations in which the coefficients are
stored in consecutive long registers in the computing
store. The medium register address in which the first
coefficient is stored might be specified by the value of
x1 and an instruction of the routine might be

406 x1

CS 225A

- 55 ~

Also, the number of eqguations which = %o be solved might be
specifiied by the value of x2 and an instruction of the
routine might be

106 <ix2

(The distinction between an integer and an address is rather
arbitrary c.f. instructions of which the address part is
regarded as an integer.)
The equation setting a preset parameter may contain on the
right hand side a preset parameter which has been previously

set. Cole
x2 = Jxl
sets x2 +to 3 plus the value of x1. Any muber of preset

parameters may occur on the right hand side, but only one
fixed nmumerical part which must come first e.g.

x2 = x4 x6x7x7

the sum being implied. t is not possible to subtract
preset parameters in this way but in the rare cases when
it is desired it can be done by using an intermediate n e.g.

v99 = x2

300 x1n99
puts x1 - x2 into Sac. Preset parameters may alsoc be
included in the right hand side of an equation setting a

v symbolic address but in neither x nor v setting
equation may a v, n or * occur on the right hand side.

5.51 L, P and S on the right hand side of equations.

The letters L, P and S can be written on the right-hand side of
equations, and have value the curremt line, page and sector respectively.
At most one can appear in any one equation, and must follow any absolute
or other symbolic part of the right-hand side.

L has the value the address of the next register, taking account
of half-registers, P and S the current page and sector nmumbers respectively.

After the last item of a page has been read, the register
indicator in the input routine is advanced, but the page and sector irdicators
are not changed until the start of the next item, so that P anl S give the psge
and sector of the last item read.

L, P and S can be used in equations setting x and v symbolic addresses.

5.6 F: .ling in symbolic addresses

Like all written information which is fed into the computer via
the Input Routine a symbolic address is a kind ¢f shorthand for the binary
digits of the machine address into which it is translated. It is however
often convenient to think of symbolic addrssses as the equivalent written
medium register address. Just as a writton register address is sometimes
halved or doubled during input accordiing to the type of the instruction,
so also symbolic addresses are similarly halved or doubled, For type 3
instructions e.ge B’ = n the symbolic address is halved if a long number
is labelled, doubled if a short integer is labelled, and has the same value
as the equivalent written medium register address if an instructicn is
labelled or if the symbolic address is cguation set. The following are always
regarded as equation set:=-

CS 2254

- 36 -

v0, *, x and x1 t0x100 as well as v1 tovilU when & QUICKY, ACROSS,
DOWN or UP is labelled.

For a general written address the fixed numerical part is read first.
This must be consistent wit the size of the machine so that for

type 1 instructions -1023 < M < 1023
type 2 instructions -51+ < H < 51+
type 3 instructions -1023 < M < 1023
type 4 instructions -2046 < L < 2046
type & instructions -1023+ < H < 1023

(If any ot these inequalities is not satisfied this is what is called

address overflow). The fixed numerical part is then appropriately halved
or doubled if necessary and stored as a short integer. If the result is not
an exact integer (+ counts as %) this is what is called address underflow.

A general address may also consist of several symbolic addresses. These

are treated in the order that they oceur. If the value of the address has
not been previously set details of this forward reference are stored for fillin:
in later. If the value of the address has been set for each symbolic adiress
part it is appropriately halved or doubled and then added to the machine
address so far and stored as a short inmteger., The integral part of the result
is then taken, any halves or quarters being discarded. The result is taken as
modulo 1024 except in the case of type 5 instructions so that with symbolic
addresses, after the fixed numerical part of the address has been read both
overflow and underflow are ignored. It is convenient to regard symbolic
addresses or the equivalent medium register address as being

nodule 1024 for type 1 instructions

modulo 512 for type 2 instructions

modulo 1024 for type 3 instructions

modulo 2048 for type 4 instructions

modulo 1024 for type 5 instructions
This information is summarised in table 1 for the symbolic address of an
instruction. M is the equivalent medium register address, and the entry for
the type of imstruction and the item labelled is the value of the machine

ediresss Type 5 instructions are here regarded as constituting one machine
instruction with an address of 11 binary digits.

Table 1.

T =1 T = 2 t = t=4 L=

C’ n or "= T'=H or ™" B'=n ‘=L or A" B=K
modulo 1024 512 1024 2048 1024
i==1
mmber { M 2M Y2 M/ 2 2M
i=2
instruction (M oM M W] 2M
i=23
integer (] oM oM (weT 2M
i=4 { —
eguation set EM] 28 EM___E M/2:i 2M

CS 2254

- 37 -

ihe square brackets denote "the integral part of" =nd could enclose every entry
but have been omitted in those cases when a half or quarters eannot arise in
finding the machine address. i denotes the item number (sse sec. 5.1.).

If something differemt from the above is required to be done to the
written medium register addrsss, one of the characters > = or # may be inserted
before the complete address, The type of the instruction is then changed to
type 2, type 1, or type 4 respectively. Thus the address is treated as a
short integer though of course the item remains an instruction. The characters
> = or # are rarely required before =n address and the temptation to insert them
unnecessarily should be resisted as errors are easily made by doing so. The
cases when they are essential are usually with instructions of type 3 e.g. when
a long mumber is input as 4 short integers one of which is labelled 1, then

106 # w1
406 ©

puts the long number of which the labelled short integer is part, into the
accunulator.

A preset parameter must not be reset in terms of itself, that is to
say the same x parameter must not appear on both sides of an equation, If
such an equation is written, it will reset the preset parameter to a wrong
value.

CS 225~

CHAPTER 6

AUTOMATIC PRINTING FACILITIES

6o Fault print

During input varicus obvious programming blunders are detected by
the Input Routine which immediately prints:-

FAULT n

where n indicates the particular fault as listed below and comes to a

99 stop so that & mark can be made on the tape. The fault number n

is, at this stage, alsc contained in SAC and the last figure shift character
read is in B6. Except for fault 9, on giving a prepulse the Input
Programme ignores all further characters until the next carriage return,
printing out the characters ignored, and then continues reading the tape
in the normal way. A fault 9 for overflow of the predicted page is
reported at the end of the chapter, which is indicated by the next CHAPTER
or ENTER directive, and comes to a 99 stop. On giving a prepulse it
continues to read the C or E directive and the programme will be
composed correctly if the overflow of the predicted page does not matter.

6.1.1 Fault 1 Address underflow

This occurs when a fixed numerical address or the fixed numerical
part of & general floating address is not an even whole register address
for type 4 dinstructions, or is a right half register address for types

1, or 3 instructions e.g.
400 41 For both of these fault 1 1is reported.
300 O+v1

When the written medium register address is appropriately halved or doubled
the machine address must be a whele integer.

6.1.2 Fault 2 Address overflow

This occurs with a fixed numerical address or the fixed numerical
part of a general floating address which does not satisfy

-1023 € ¥ < 1023 f'or types 1 and 3 instructions
=511+ < H € 511+ for type 2 instructions
-2046 ¢ L < 2046 for tyr . 4 instructions

~1023+¢ H € 1023+ for type 5 instructions

6,7.% Fault 3 Spurious character

This is reported when a character cccurs in a position where it
cannot be correct e.g. the v in

40v 2
will cause fault 3 to be reported, As with all faults, when a
character is reported as spurious the character itself is necessarily at
fault if', and only if, all the preceding characters of that item are

correct :.g. an instruction

300 O+v

CS 225A

is reported as fault 1 for address underflow when '+ may be that the
actual fault is that the function digits should have been 20, Vhen
the machine itself is not functioning correctly it is found that fault
3 1is reported more often than other faults.

6e1ed Fault 4 Label set twice

A v-floating address is specified twice e.g., if two labels with
the same number occur in the same v-routine, fault 4 1is reported when the
second label is read. TFault 4 also occurs when two routines have the
same number, as then v0 is set twice.

6.1.5 Fault 5 Label not set

With an L or M directive the v-floating address must have been
previously specified; if not, fault 5 is reported. Other references
~ to v-floating addresses which are not specified do not cause a fault stop
but when the ENTER directive is read the Input Routine prints ee.ge.

v6/1 NOT SET

followed by the address of the offenling reference in the form Sector . line.
Af'ter each there is a high pitched hoot lasting a second but the programme
is entered. This may be useful when a programme is being tested in
sections e.g. suppose routine 25 has not been written but is called in
bty 590 v/25. Since v/25 is not set , when this instruction is obeyed
control is transferred to register O which contains a dummy instruction

and the machine comes to a 99 stop in register 1 when routine 25

would have been reached.

8.1.6 Fault 6 Preset parameter not set

Unlike v-floating addresses, in a reference to a preset parameter
x1 to x100 the preset parameter must always have been previously specified
(by an equation).

61,7 Fault 7 Too many referenees

Backward referecnces are filled in immediately but details of each
forward reference are kept in a list and the reference is filled in at
the end of the routine containing the label, If the mmber of unfilled
references exceeds 278, fault 7 is reported. This fault is rare and
has so fer only ocourred in programmes specially written to produce this
fault.

6.1.8 Fault 8 Overflow page 15, or Interlude too long

Fault 8 is reported if a chapter extends beyond the end of page 15
without a line directive to the seconi half of the computing store. The
feault is reported after the first digit of the instruction after the end of
page 15 hrs been re=d, or after the =, >, #, +, or - introducing an integer
or floating-point number., If the tape is pulled back to the CR terminating
tae previocus item before the prepulse is given, the rest of the chapter will
be compiled in the second half of the store.

) Interludes may not go beyond the end of page 13. (See paragraph
4,15),

66149 TFault 9 Overflow predicted page

If a PAGE directive specifies the highest page of a chapter and if
the chapter extends beyond the end of the specified page then fault 9 is
reported at the end of the chapter.

6.,1.10 Fault 10 Title too long

Since the title is stored <n» the first sector of the programme the
number of characters in the title is limited to 244 cheracters., Fault 10
is of'ten reported when the FS FS terminating the title is omitted so that

the first chapter is wrongly read as a TITLE.
CS 225..

6.,1.11 Fault 11 Wrong quicky number

Vot all the Quicky numbers 1 to 20 are used and if e.g. the
unspecified

Q3
is wr.tten fault 1 is roported.

If a non-existent quicky is called for by the automatic selection,
esr. VI03, fault 11 is reported at the ecnd of the chapter, and the reference
remains as to an unsct label. No more filling in of guickies will be done
at the e¢né of the ctapter.

Gele’2 TFault 12 Tco many labels

Details of every v-floating address which is specified are kept
in a lisi with space for 1023 labels. Fault 12 will be reported at the end
,” the vontine in which the 1024%R is set,

£.1.13 #ault 13 Chapter numbers, parameter numbers or label
numbers over 100

The chapter list and preset parameter list have spaces for numbers
1 - 160 and the label list of any given routine has only spaces for numbers
1 - 100,

6,1,74 Fault 14 ? mmber greater than 10

If the number written after a ? is greater than 10, fault 14 is
reported (see section 6.4.).

flea Error Print

Whereas a fault print indicates certain programming blunders which
are detected during the input of the programme, some programming blunders
are deteoted during the actual running of the programme. Many of the
quickies evaluate elementary functions of the long number in the accumulator
over & restriocted range. If the Quicky is entered with the ascumulator
arnbents out of range, contrel is directed to a part of the input programme
for an error print e.g. Q12 finds the square root of a pesitive number or
zers an: calls in the error print if it is entered with a negative number in
the accumulator. The word ERROR, the quicky number, the contents of Bl to
B& ard the contents of the accumulator as four short integers (in the order
exporent, least significant ten binary digits of the fractional part, middle
tea binary digits and most significent ten binary digits i.e. HO, HO+, I,
Hi+ if the number were in L0O) are printed and the machine comes tc a hoot
St‘.)pw

Tt may be that an error print has been anticipated by t"» pr ~mmer
{or has + cwrred when the programme was last run) and further printed
information 1s required. This can be arranged by writing a printing ro
which begins in register 64, If at the hoot stop, key 9 of the .aandsw.
is tapped or if the handswitches are negative, ccntrol is directed to regist.
64, At this stage, the contents of the ascumulator, B1 to B6 and page 0 ar:
restored to their values on entering the error print, but S, St, Bt and T,
the selected sector are changed, The errcr print routines all work in page
¢ which is temporarily stored on sector 479.

It is also possible for a programmer to arrange to call in the error
print if something goes wrong with one of his own routines. This is done
by putiing an identification mumber in Sac or B7 amd transferring comtrol teo
register 9, The number in Sac will be printed as the quicky number. As a
prelule to doing a postmortem it may be useful te print out the B-registers
ang the accumulator by transferring control to register 9 by a manual
instruetior and so doing an error print.

CS 2251

- 47 -

6.3 Asterisk print

It is frequently desirable to know the eguivalent fixed numeriocal
addresses for the v-floating addresses and tke sectors on which each
chapter is stored e.g. to identify an error print when B?1 gives the
address at which the quicky was called in as a closed subroutine. If,
and only if'y; there is an * on the tape at the beginning of a line the
following information is subsequently printed during input.

(1) At each chapter directive:-
The letter C, the chapter number, the sector onm which
it begins and the first page.

(i1} At each routine directive:-

The letter R, the routine number and the register
address in which it begins i.es v0. The register
address of the other labels can be found by counting
the registers from the beginning of the routine.

A second asterisk at the beginning of a line causes Fault 3 to be printed.

A binary tape is also provided which when read in by binary input
prints the addresses of all the labels ard interludes can also print labels.

6.4 Query print

In testing a programme it is of'ten desired to print out information
at various stages and with the query print this may be done with little
programming effort. The information that is printed is determined by
the query number which is set by a directive e.g.

? 3
for printing the contemts of B3, The plases in the programme where the

aotual primting is desired are specified by a single figure - shif't
character n at the beginning of an item e.g.

420 v
n
410 40

For all query numbers 1- 10, except ? 8, the n at the begimning of an
item causes 12 or 13 instructions to be inserted in the programme, &
dummy being needed if the register is odd; ? 8 is a special case (cee
table 2) for which only 3 instructions are inserted for the n. If there
is no query directive, or if thereis a directive 7?0, then no printing is
done and the n at the beginning of an item is ignored. During a query
print, subroutines of the Input Routine are obeyed in page 0, the contents
of which are temporarily stored on sector 478, At the end ef the query
print the B-registers including Sac, the B-test register, the accumulstor
and page O are restored. However the Sac-test rogister may net be
restored and T, the sector selected, is changed to 479.

The n need not be followed by a carriage return and line feed
so that if the line feed of the CR LF terminating an item is converted
into an n by inserting the most significant digit with a hand punch,
that item is then terminated by the CR alone and n at the beginning of
the next item is obtained. Thus a query print can be inserted without
reperforating the programme tape. However it may be desired to print
different information at each point when it is conve . .ut to set the
query number Jjust before each print e.g.

6, u

?9, n
CS 225 2

- 42 -

(The oorgma terminates the query directive so the n is at the beginning of
an item).

With each query print a letter of the alphabet is printed, letters
being allocated in the order that the n’'s occur on the programme tape,
excluding n s which are ignored., For 2?8 +this is all the printing that is
done. For other ?s the letter is immediately followed by the state of the
B-test register, +, -, or 0, and on the next line the "return address"
preceded by M. The "return address™ is the address of the last of the
inserted instructions. The remaining information printed is shown in Table
2.

TABLE 2

-

Query Number Information printed

the contents of Bl
the contents of B2
the contents of B3
the contents of B4
contents of BS
the comtents of B6
the contents of B7
(letter only)

the aecumulator as 4 short
integers

the B registers, and the
accunulator as 4 short
integers

O 0 90 O ¢ R DO =
®

-
o

A ? number bigger than 10 gives fault 14,

When using the query print ocare must be taken to allow for the
inserted instructions when referring to registers by use of nearby
symbolic address., For example, in

490 2%
n520 2
410 0,32

the 490 jump is to two registers further on, which will be the 410
instruction only if no extra instructions have been inserted for the nj;
if instructions have been inserted, the jump is into them.

An n calling for ? printing camnot be written in Page 0. This
is detected as fault 3.

Several ? directives can be given in ore programme tape, and an
n is interpreted according to the last ? directive.

If handswitch 4 is set when an n is read at the beginning of an
item, any ? directive is over-ridden and the n is ignored. This means
that a programme with several ns calling for query printing can be read
in without any of the printing routines. However, if handswitch 4 is set
when the Initial Transfer Button is pressed, it has a uifferent meaning
(see 7.4.6), so it must be set after the Initial Transfer Button is
pressed.

CS 225

- 43 -

CHAPTER 7

RUNNING A PROGRAMME

7ele Tape preparation

The written programme must first be transferred to paper tape.
To do this sets of tape editing equipment are available separate from the
computer itself'« The complete set consists of a keyboard similar to
that on a typewriter, a punch, a teleprinter and a tape reader. When a
key is pressed the corresponding character is punched on a tape and is
also printed on a roll of paper. For letters a special character called
letter shift must first be punched and followed by a figure shift
character when it is required to return to figures. The keyboard has
a locking device to ensure that the shift characters are not omitted.
If a mistake is noticed it may be possible to back space and convert the
wrong characters into "erases"™. The tape reader is used to copy tapes
e.g. the library tapes or for correcting part of a tape (the corrected
tape can be joined with opaque sellotape); a facsimile of the tape
going though the reader is produced by the punch and a printed version is
produced by the printer. The punch may be switched off so that only the
printed version is obtained e.g. to print results from the output of
the computer.

Bach item or line of the written programme, e.g. an instruction
or a directive is followed by the two characters "carriage return" and
"line feed" in that order. Except for long numbers, items may also be
terminated by a comma. After the item has been terminated all further
CR’s or LF’s are ignored until the next item is commenced. Items are
commenced by a decimal digit for instructions, a plus or minus for long
numbers, a > = or # for short integers or a letter shift character
for directives. Between items FS or blank tape, and LF 1is ignored
but once an item has been started an unnecessary figure shift or line feed
is a spurious character producing fault 3. The characters space and
erase are ignored everywhere, and it is usual to separate the three digits of
the function and B-register from the address by a single space. It is
also convenient to insert about three spaces before each label. Reasons
for this are:-

(1) The labels are easily located on the print out.

(ii) In finding an item on the tape in order to correct it
with a hand punch, the nearest label can first be
easily located by the adjacent block of spaces.

7.2 Layout of the backing store

The Input Routine occupies sectors 0 to 63 and may be isolated
by the switches on drum O for columns 0, 1, 2 and 3: (or columns O
and 1 on the new large drums) so that it cannot be overwritten. If the
Input Routine is overwritten it may itself be read in, a tape being provided
on which instructions are coded in binary suitable for a short input programme
which is on sector 1, sectors 0 and 1 being permanently isolated.
While the Input Routine is being read in lists of labels etc. are compiled
on sectors 64 to 113, interludes are stored on sectors 114 to 126,
and sector 127 is used to store page 0 during input, (during a fault
print or an interlude). When the programme is entered the Chapter Changing
Sequence is transferred to sector 478 and sector 479 1is frequently used
to store the contents of page 0 during the running of the programme e.ge.
during chapter changing and automatic printing. On sectors 480 to 511
are usually kept the engineers test routines, these being isolated by the
switches on columns 6 and 7 of drur 3 (column 7 of drum 1 on the new
large drums).

CS 225A

7.5 Layout of the computing store

When a programme is entered the following is put in Page 0:=-

0 +0 }

Register

—h

2 -1 }
3
4 670 479 |
5 690 0 ‘
w Lntry to the chapter changing sequence
6 670 478
7 680 0

8 597 0 Return
9 670 479
10 690 0 . Entry to the Error print
11 670]

12 680 0

The long mumbers +0 and -1 are frequently useful and are used
by many of the quickies., The computing store from line 0,14 onwards is
cleared to programme zero (990 0) and B-registers 1 - 6 are clear. The
vacant space in page O from register 13 is available for ad hoc working
space but it must be remembered that the contents of Page 0 are destroyed
whenever the initial transfer button is pressed. Registers 32 to 39 are
used by quickies and some library x-routines may &also use registers 24 to
3. It is generally advisable for programmers to avoid these registers
and use only registers 13 to 23 and 40 to 63 in page 0 except for very
short term work.

7.4 Starting procedures

The programme tape is placc” in the reader and the initial
transfer button pressed., This trans: .- ™ contents of sector 0 to page
0, transfers comtrol to register O, and cbeys the first instruction which
is

610 2+

which reads the handswitches., This is the ouly time (except after an errar
print) that the Input Routine reads the handswitches so they can immediately
be set if required during the running of tiie programme. Deperding on the
initial setting if the handswitches varicu. modes of starting are available.
Except for key 9 only the most significamt key which is non-zero is
relevant i.e. if two keys are set to the "one™ position the least
significant is ignored. The most significant key in the "one®™ position
has the following effect.

CS 2254

7e4e1 Keys all in the zero position Stari “lear

This is the normal way of starting. The backing store from sectors
64 to 511 is first cleared to programme zero 990 O everywhere. Just
before the programme is entered the computing store is cleared to programme
zero, but the labels list; ~tc., are left on sectors 64 to 127,

To4e2 Key O Start no clear

This is the same as start clear except that the backing store,
including the labels list etces, is not first cleared. This mgy be used to
re-enter a programme by reading an ENTER directive from tape (assuming the
labels list etcs, to be intact) perhaps with an MCORRECTION or at the
beginning of a second data tape. Unless the required FIRSTSECTOR directive
is given the new entry cue is stored on the usual sector 128. It is
possible to re-enter the programme at various different pointse

7e4e3 Key 1 Engineers’ tests

These are a programme of routines designed to check that the various
parts of the machine are functioning correctly. Key 1 should be returned
to zero and the prepulse button pressed. The engineers’ tests can be run
whenever the machine would be otherwise idle.

7.4.4 Key 2 Tele~input

A short input routine stored on sector 1, which is normally isolated,
for reading binary tapes. This is a fast compact input routine for reading
in data or fully developed programme. Tapes for input by tele-input are
usually produced by the computer by means of tele-output, described in the
next section.

7.4.5 Key 3 Tele-output

This and the following settings require key tapping to indicate
required sectors on the drum. The bottom row of 10 keys on the comtrol
console are numbered 0-9, and have two "set™ positions, up and down, as well
as the central "“unset" position, The down pesition is spring loaded so that
if a key is pressed down it returns to the ™unset" position as soon as it is
released. "Handswitch tapping®™ refers to a procedure whereby a three decimal
digit sector nmumber is indicated by pressing and releasing three keys in
succession; three digits must always be given so that sector 99 say is specified
by pressing (“tapping") first key O, then key 9, and then key 9 again. The
handswitch tapping routine is included in the programme on sector 2; it is
obeyed in page 0.

Tele-output is a routine for punching out specified sectors of the
drum in binary, in a form suitable for re-input by tele-input: The informaticn
on the output’ tape corresponding to each sector has a few characters at each
end which tele-input will interpret as information about where the sector is to
go; between each sector of information tele-output leaves ore inch of blank
tape. With each sector of information is also punched a check sum, the value
of which is checked by tele-input when it reads in the tape.

To punch out information from the druim, using tele-output, key S is
set to the up position and the Initial Transfer Button pressed. Key 3 is then
return to zero and two three-digit sector numbers are tapped, the first and
last sectors respectively that are reguired to be punched out on the binary
tape. These sectors are then punched out with a leader of 10" of blank tape;
af'ter the punching tele-output re-enters the handswitch tapping programme,
waiting for a third number to be tapped, the "first sector" number.

(1) if this third number is tapped as zero, (0, 0, 0) tele-output
punches out a single character, tels .nput’s hoot loop
character. Vhen tele~input ccues to this character on re-
input of the %tape, it comes to a hoot stop.

CS 225~

- 48 -

(ii} if the third number tapped is not zero, it is assumed that the
information punched out included a programme, and that the
third number tapped is the mumber of this programme’s "first
sector"”., Instead of a hoot loop character there is punched
on the t-se a sequence of characters which when read by tele-
input, czuse lhe Lrogramme to be entered according to the
entry cue stored in lines 62, 63 of its "first sector".

(see section 4.10).

In both cases, 1" of erases is punched at the very end of the tape.

If several groups of sectors are to be punched out, the entry
warning sequence is only wanted at the end of the last group. This can be
achieved by re-entering tele-output after each group (except the last) has
been punched: when tele-output re-enters the handswitch tapping programme after
punching out a group of sectors, instead of tapping a sector number handswitch
5 should be re-set and the Initial Transfer Button pressed, to re-enter tele-
utput for more punchinge.

See also section 7.4.12 for another mode of operation for tele-
outpute.

7446 Key 4 Rescue

This is used to preserve the contents of the computing store by writing
it to some convenient part of the drum.

Key 4 is returned to zero and ore three-digit sector number is
tapped; +the contents of the computing store are written to this sector and the
31 following sectors and the programme comes to a hoot stop. Since page 0 is
destroyed when the Initial Transfer Button is pressed, what is copied on to the
sector tapped on the handswitches is sector 479, that is the contents of page 0 al
the last chapter change. Pages 1-31 go to the next 31 sectors unscathed.

7.4.,7 Key & Post mortem instructions

This is for printing out the instructions in the computing store or on
the drum in the usual decimal form of two function digits, a B-digit, and a fized
rumerical register address.

Key 5 is returned to zero and a three digit number is tapped. If this
number is in the range 0-31, it is taken as a page number, if in the range 32-999
it is taken as a sector number, and the contents of that page ar sector are
printed out as instructions. Sectors 0-31 cannot be "post-mortemed"; since
they will usually contain part of the Input Routine this is little loss.

After punching out the contents of one page or sector, the programme
comes to a 99 stop; on a prepulse the rext page or secicr is printed out, and
so on., After page 31, sector 32 is punched; after seotor 999, sector 1000,

©? the first seven binary digits in a medium register do noct
correspond to a function in the decimal function code, the contents of that
register are printed out as two (ten-bit) integers.

748 Key 6 Post mortem integers

As key 5 except that the contents of the page or sector air-
interpreted as 10-bit integers. Two integers are printed to a line, esch
preceded by =",

7¢4¢9 Key 7 Post mortem floating point numbers

As key O except that the contents of the page or sector are
interpreted as floating point numbers., TWumiers are printed in floating decimal
£or, an argument followed by a comma and a decimal exponent. An * i.dicates
that the following number is in the store in an unstandardised form., Numbers

CS 255~

- 47 -

are normally printed four to a line, but if & 40-! 't word is encountered whose
"exponent" is outside the permissible range -256 to +255, it is printed as
four short integers on the left hand side of the page as for key 6, and so
spoils the lay-out.

7.4.,10 Key 8 Rest:rt

This can also be used to re-enter a programme stored in the backing
store. Key 8 is returned to zero and the FIRSTSECTOR is indicated by
tapping a three-decimal~digit number., The title is first printed and the
programme entered using the emtry cue stored on the FIRSTSECTOR so that the
labels list is net required.

7.4.,11 Key 9 _Sector enter

The sector indicated by the number (in binary) on the remaining nine
keys is read to page 0 and entered at line 63. An example is that with key
9 and key O up Binary input (stored on sector 1) is entered.

7:4+12 Key 9 Entry to Tele=-output

Tele-output as described in section 7.4.5 uses sectors 0, 2 and 3.
However, the part of its programme which is on sector O can be used by itself
to give a simipler form of tele-output which is available when sectors 2 and
S5 have been overwritten by other programme.

For this mode of entry, sector 0 is entered by Key 9, so that key
9 only is set and the Initial Transfer Button pressed. The programme cores
immediately to a 99 stop: the number of the first sector to be punched
should be set up in binary on the handswitches and a prepulse given. The
programme now comes to another 99 stop, and the last sector to be punched
should be set up in the same way. On a prepulse, those sectors are punched
out in binary and the programme comes to a third 99 step. If more punching
is required, tele-output should be re-entered by setting key 9 and pressing
the Initial Transfer Button; if no more punching is required a prepulse shculd
be given, when the hoot loop character is punched following by 1" of erases.,

7«5 The Control Desk

For normel running the switches on the control desk (see diagram in
appendix VII) are set as follows:-

write current on, to permit writing to the backing store

hoot on
inhibit parities off, to stop the computer if a parity check fails

manual/automatic to auto

handswitch stop off

single/continuous to continuocus

handswitches all zero, for start clear

The function keys and eddress keys are irrelevani.

The programme tape is inserted in the reader, the intiel transfer
button is pressed and the singlq/continuou% switch is turned to continuous,
(if it was on single).

The computer may stop for the following reasons:-

(i) A 99 stop instruction is obeyed (or the other
urepulsable stop instruction iz obh ed).

(ii) A parity failure
CS 225A

- 474 -

(iii) Accumulator overflow

{iv) The optional stop. With the handswitch stop switch on,
the computer stops when the instruction, in the register
indicated by the setting (in binary) of the ten address
keys, has bec: obeyed (see below for exceptions).

(v) A backing store read or write transfer is attempted with
a non-existent sector, e.g. sector 512.

(vi} A loop stop, where an instruction transfers control to
itself, c.g. 590 *

(vii, "he single/continuous switch is turned to "single™.
This interrupts the control unit and individual instructions
can be obeyed one at a time by pressing the prepulse button.
In this way a programme stored in the computer can be obeyed
but the time taken is at least 1,000 times the :time taken on
"contimous" so this is not recommended.

For stops (i) to (iv) the stop flip flop lights up, The
computer will resume operation when the prepulse button is pressed., For
stops (v) and (vi) the prepulse button is of no avail, but the computer
will resume operation if the initial transfer button is pressed. On
"single™ most instructions require one prepulse (here defined as one pressing
of the prepulse button); the 60, 62 and 63 instructions require two
prepulses. Similarly with the optional stop on these instructions the
computer stops twice., The optional stop should not be used on a 68 or 69
instruction., If it is used no drum transfer takes place (a modification
of the computers is pending).

Instructions can be obeyed manually by turning the manual/autoswitch
to mamial. The 20 binary digits of the instruction are set up on the
function and address keys and a prepulse given. Manual instructions are
mainly used by the maintenance engineers.

CS 225A

CHAPTER 8

PROGRAMMING TECHNIQUES

8.1 Introduction

This chapter contains details of some coding tricks for Mercury
and also some general strategy for writing programmes. These have
evolved from several years of work by many experienced programmers and are
intended to assist the beginner. It is not suggested that these are the
only methods, for better methods can be found for individual programmes,
and, of course, each of us prefers certain ways of doing certain things.
Some of the procedures described are more or less standard on all similar
computers.

8.2 Numerical methods for computers

Before actually coding up a problem it is advisable to consider
the numerical methods available. Methods suitable for hand computing
are not always satisfactory, e.g. relaxation. The time taken by the
computer should first be estimated; an abnormally long calculation may
indicate an unsuitable method rather than a large problem, and a certain
amount of common sense is required. Many of the frequently used numerical
methods are available as library routines, the Ferranti library for Mercury
containing x-routines for Runge-Kutta, Gauss integration, interpolation, etc.

In this section Mercury is regarded as being principally a scientific
computer. For commercial work and for data processing additional equipment
for input, output and backing store vastly increases the range of problems
in these fields which can be easily tackled.

8.2.17 Runge-Kutta for differential equations

A powerful method of calculating a function is to solve the
ordinary differential equation which it satisfies. This is particularly
useful when, as it usually happens, the explicit formula for the function
is most unpleasant. Physical problems usually give rise to a differential
equation; the explicit solution is frequently no use whatever for
evaluating the solution numerically. The commonly used method of Runge-
Xutta modified by Gill solves a set of simultaneous first order differential
equations; a second order equation may be easily converted into two
simultaneous first order equations, and similarly an nth order equation is
solved as n simultaneous first order equations. The error for each step
is 0(h®) where h is the step length, so care must be taken with the
choice of step length and the solution can be checked by repeating it with
twice the step length. Variable-step methods also exist. The direction
»f integration is sometimes important e.g. when solving an equation to find
the solution which ~ e™X for large x 1t is useless to proceed far in
the direction of x increasing if another (unwanted) solution ~ etX,
Small errors introduced in the first few steps would eventually exceed the
desired solution. If the boundary conditions are not all given at the
same point, several solutions may be found by starting with arbitrary
conditions at one point and the required solution obtained by interpolation,
or by adjusting starting conditions at both ends so that the solutions meet
in the middle.

If for the equations

dy1

E‘xf“ = £;(x, y1, 3’2)

dy,

dx = fg(x’ 1"1’ yg)

CS 225

- 49 -

the value of x is required when y, =b say, then the last step can be
performed with the equations

dy, - f1 & _ 1
dy, fa dy, T

where the independent variable is changed to y,, and with the step
length b - y,. For programming this, it is simplest to solve

Eﬁ:fi,%=fz and x _ gy
dx dx dx

and then for the last step solve

dy, fa dy, dy, f,

Other methods of solving differential equations are the Adams
Bashforth method and of course by Taylor series, the latter being
particularly useful for simple equations with polynomial coefficients.

8.2.2 Matrices

It should be remembered that the inversion of a matrix is more
difficult than the solution of a set of linear equations. Both are
usually done by pivotal condensation always using the largest remaining
element for the pivot. Iterative methods are of'ten prohibitively slow.

8.2.3 Integration or quadrature

The Gauss~type methods are recommended for evaluating a definite
integral. The results may be checked by using methods of different
orders. Simpson’s rule may only occasionally be usefully employed.

8.2.4 Integral equations

These are often best solved by first reducing them to simultaneous
linear equations. Iterative methods, even if known to be convergent,
usually take considerably longer.

8.2.5 Partial differential equations

For elliptic equations the straightforward method of relaxation
is not suitable for a computer and the Liebmann process, in which all
the points are relaxed in turn, is superior. Improvements on the
Liebmann process have recently been discovered e.g. sweeping
alternately by rows and columns. For parabolic and hyperbolic equations
finitc difference methods can be used (perhaps involving matrix inversions)
or for the latter the method of characteristics.

8.2.6 Series expansions

A function f(x) can be expressed as

N-1 n n
f go!x
f(x) = =3 + Ry
0

if sufficient derivatives exist and are continuous. However this
truncated Taylor series is not the best approximation which can be used
for calculating f(x). If f(x) is expanded in Chebychev polynomials
(perhaps with minor variations) the power series obtained can be shown
to have a smaller error over any given range |x| < a than any other

CS 225

- 50 =

power series of the same degree. Thus if the desired accuracy is obtained
by N terms of a Taylor series, the same accuracy can usually be obtained
with a Chebychev series of fewer terms. The Chebychev coefficients can
be calculated or may be available in tables. Many of the quickies use
such methods.

8.2.7 Slowly convergent series

o0
To find E ;5;;- by evaluating and adding successive

terms is far too slow and would take several hours on Mercury, even though
the series is convergent. The Euler-Maclaurin summation formula or other
formulae may sometimes be used to speed up the convergence.

8.2.8 Interpolation

Linear interpolation is seldom adequate. Formulae for higher order
interpolation can only be used if the function is suitably continucus. If
there are discontinuities in the function the higher the order of the
interpolation the less accurate the results and one may be forced to use
linear interpolation. A library routine exists for inverse interpolation,
viz. for finding x such that f(x) =0, and this can be used for
finding the zeros of a polynomial and the roots of a transcendental
equation.

8.2.9 References

Gill, S. (1951) Proc. Camb. Phil. Soc., 47, pp 96 - 408
Hartree, D.R. (1955) "Numerical Analysis" Oxford Univ. Press

Hildebrand, F.B. (1956) "Introduction to Numerical Analysis"
McGraw Hill

Lanczos, C. (1957) "Applied Analysis" Pitman.

8.3 Use of B-registers

Since B7 can be used as Sac certain operations can be done on it
which cannot be done on other B-registers. Sac should consequently be
used for short jobs whenever possible but it is not suitable for long term
work and its contents are destroyed by all the quickies and also during
chapter changing. If a second B-register is required for a short job
B6 should be used and so on working down through the B-registers. B1
is conventionally used for closing subroutines, It is rarely possible
to have a new B-register for every count in the programme so it is
necessary to use some B-registers again and again.

8.4 Subroutines
Just as with subchepters, when a particular group of instructions
are required to be obeyed at two or more places in the same chapter, it
is dadvisable to write them down once only terminated with the instruction
591 0

At each of the places where they are required the two instructions

101 2% Set B1 to the return address
590 Jump to the subroutine

CS 225

will call in the subroutine. When the instructions of the subroutine have
been obeyed the closing instruction returns control to the master routine.
If the subroutine itself call in another subroutine the first can begin
with

01 O+vt

which plants the contents of B1 on entry in the address part of the closing
instruction

50 0 (1

which will then return control to the correct place in the master. Except
for short subr utines it is in fact an excellent habit always to begin by
planting B1 as above. B1 can then also be used for short jobs within
the subrcutine.

Since quickies are uscd frequently they are often used twice in a
chapter and many programmers assign the routine number the quicky number
plus 900 and close the gquicky. e.g.

R 901

Q1

591 0
With Q9, B1 must first be set by 101 * and the contents of B1 are
then used to pick up the programme parameters m and n in the next but
one register. Q9 is therefore used closed as

R 909

Q9

591 3

In connection with @1 it will be noticed that on Mercury the time

taken to perform & division is roughly ten tines that for a multiplication.
The number of divisions should be kept as few as possible e.g. if both

;{- and -:-;-,- are required then :'f may be first found using Q1 and 23-
X

found by multiplying %» by itself.

8¢5 Cxcles

Often an operation represented by a group of instructions, some
perhaps B-modified, is required to be done say p t me . A count is
is first set in a B-register and one of the B-test instructions used.
Some ways this counting can be done are represented diagramatically by

106 p 106 p - 1 106 1 106 1 - p
Operation (1 Operation (1 Operation (1 Operation (1
136 1 136 1 176 p 186 v

080 wvi 090 w1 186 vi

The last two using the 18 instruction, are recommended, and for the
fourth it is of course necessary that the operation does not change Bt.

If Bt is changed by the operation the instruction 176 0 can be included
before the 18 instruction. e.g to add long numbers in consecutive
long registers the first of which is labelled 1 and the last labelled

2 use

CS 225-.

- 52 =

400 O Clear A

106 vin2 B6' = 1=-p if there are p numbers
426 v2 Add a number

186 =1* Repeat

The corresponding programme for adding short integers in Sac is

300 O
106 vin2
226 v2
186 -1%

8.6 Useful coding tricks

The following are some coding tricks which have come to the author’s
notice and many of them are used in the quickies and in the Input Routine
itself. It is usually difficult to name the original author as there may
be several and also a minor variation may or may not be regarded as changing
the "ownership". Some of these are useful coding but others are perhaps
Jjust tricks.

8.6.1 Change the sign of the accumulator if it is negative
ie. A = |a]

490 2% Jump if A > O
520 2 Multiply by -1

Note that multiplying negatively by plus one or by using rounded multiplication,
minus the contents of the accumulator will not in general be exact.

80602 Change the Sign Of B6. ioeo B6' = "B6

166 -1 Non-equivalent with -1
126 1

(If B6 is =512 this gives B6' = -512)

8.6.3 Double Sac i.e. S' =28

327 0

8.6.4 Multiply Sac by ten i.e. S’ =108

210 2+% Store Sac in the address of the third
instruction

327 0 Sac x 2

327 0 Sac x 4 + Sac

327 O Sac x 10

It is usually unnecessary to store short integers anywhere other than in
the address part of instructions.

8.6,5 Put =-x1 +to Sac

337 xi1

8.6.6 Put -x1 +to St without changing Sac

377 xi

CS 225,

8.6.7 Put

*x1 to Bt without changing any B-register

100

x1 or 170 xi

Although the attempted operation on BO cannot really be done and always

leaves zero in BO,

the B-test register is set as with normal B-registers.

Similarly the instructions 000 and 070 are sometimes useful.

8.6.8 Halve B6 signed i.e. B6' = 3B64+

126
146

8.6.9 Put

512
256

n in B6 where BR5 = 2B

106
145
186
(0 is put in B6

-1 B6' = -1

0 B5’ = 1B5

-1% Jump if B5 # 0; add one to B6
if B5 =0)

8.6,10 Eriksen converter

For a five digit character in B6, change the most significant digit
if the character has an even number of ones in the least significant four

digits.
306
166

357
280

16 S’ =B6 + 16

16 Change the most significant digit

-1 Remove the least significant digit of Sac
-2 Repeat if Sac # 0

By this the copy of a tape character representing a decimal digit is converted
to the binary form of that digit, the other figure shif't characters become
integers in a sensible order.

8.6.11 Pick up into Sac the programme parameter n after the

instructions 101 * 590 v/2, =n

R 2
011
006
126
206
171
090
206

2+* Store B1

*
T+ B6' =2 B1
0
8.2 S’ =: if 4.0 < B1 ¢ 12.0
4.0 }Jump if B1 is as above
o

S"=n if 0 < B1 < 4.0 or
12.0 € B1 € 15.63

8.6.12

(1)

(11)

8.6.13

- 54 -

Convert the short integer in Sac into a floating=-point

long number

Sac signed or on the plus-minus convention =512 < S < 511

+)=9’=O:=Os=0 (1

210 v Store Sac
400 1 Transfer to £ (not yet standardised)
440 O Standardise A by adding zero

Sac unsigned or on the plus convention 0 < S < 1023

+) =19, =0, =0(1, =0

210 vi
400 v
440 0

Convert the long number in the accumulator into a short integer

+) =29, =0,=0, =640 (1

440 1 This gives a long number with exponent 29
so that the required short integer is in the
least significant ten digits of the
fractional part

410 32
200 32+ Integer to Sac

If the accumulator contains a positive number which is an integer greater than
1023 but less than 2%° the result is the integer modulo 1024.

8.6,14

8.6.15

8.6,16

Find the integral part of A

+)=29, =0,=0,=0 (1
440 vi

Find the fractional part of A

+)=29,=0, =0, =0 (1

410 32 Store A =x

440 1 Al = Eﬂ

520 2 A== [x]

440 32 A’ = the fractional part of x

Multiply two short integers together i.e. B4’ = B5, x B6,

(B5 and B6 unsigned)

*):0’:0(13 =0,=0

015 wvi BS5 to the least significent ten digits
400 v of the fractional part of A

016 v1

540 v1 This least significant half multiplication
410 32 instruction is unstanderdized.

004 32+

CS 2254\

- 55 =

8.6,17 Store Bt 3in Sac i.,e. S=13fBt >0, S=0if Bt =0,
S==1 if Bt < 0

300 -1 §' = =1

090 2* Jugp if Bt » 0

500 2% Jump

187 * 2dd 1 to B7 (obeyed twice if Bt > 0)

The reverse operation of putting Sac into Bt 1is

210 14%
100 ¢

8:8.18 Forward reference to preset parameter

A forward reference to a preset parameter is effectively obtained by
300 vi/99
and then later

R 98¢
vl = xi

£.6.19 Clutched count

Czlculates decimal digit by repeated subtraction of & power of 10
and leaves decimal digit in teleprinter code in B-line. Junk is left
in the most significant five bits of the B-line.

105 543
rb 126 177
450 i subtract power of 10
— 490 -2%
- 125 464 adjust "M€" hole of character
— 090 -1%
625 0 punch digit
440 1 restore A 5 0

8.7 Layout of results

Finally, a little effort in lasing out results is well rewarded.
The following may be included:=-

.+) A heading, and a page number
(ii) Several numbers per line
(iii) An extra line feed every fifth line

(iv) Several extra line feels at the end of a page.

@ FERRANTI LTD. 1958,

Not to be reproduced in whole or
RAB/JAF/WYC in part without the prior writien
27,11.58 permission of Fervanti Ltd. C3 2254

- 58 =

APFENDIX I
DETAILS OF THE ACCUMULATOR ARITHMETIo

Add ard Subtract

The 40 and 41 ins ructions oopy to and from the accumulator exactly;
there is no standardisation, . cund-off, or test for accurulator overflow.

The 42 instruction adds a long mumber from the computing store to the
long number in the accumulator, The long number from the computing store is
first taken into the arithmetic unit. The exponent of this number is compared
with the exponent of the contents of the accumulator, and the argument of the
number with the smaller exponent is shifted down by a mumber of places equal
to the difference between the exporents, copies of the sign digit being fed
in from the left., The two arguments are then added as fixed-point numbers®,
and the result of this sum is rounded off by putting a one in the least
significent digit position; whether or not there was a one there before,

This rounded argument is taken intoc the accumulator with the larger exponent
and the resulting floating-point number is standardised so that the argument
is in the range

z<x <

or -z >xz -1,
by shifting the argument and adjusting the exponent appropriately. If
this process involves a shif't up, zerss are fed in below the round-off digit;
if it involves a shif't down the argument is again rounded since the original
round-off digit is lost. To allow for this, the fractionsl part of the
accumulater is provided with an extra digit position beyond that which is
usually thought of as the most significant, but the programmer does not have
acoess to this digit. In most cases the two numbers to be added are both in

standardised form; if not the addition is still as agbove and some significant
digits may be lost.

The 43 instruction is similar to the 42 instruction except that it
subtracts instead of adds. The stages ars:~

Negate the store operand

Shif't down one argument a number of places equal to
the difference of the exponents

Add fixed-point
Round-off

Standardise, rounding again if this involves a shift
down

The 44 instruction is the same as the 4Z instruction except that there is no
round-off. The stagcs zici=

Shift down owne ergument a rumber of pleces equal to the
difference of the exponents

Add fixed-point
Standardise

The 45 instruction is the same as the 43 instruction except that there is
no round-off,

Note: if the difference between the exponents’i .. or greater, ne
addition is done, and the larger me Ler is taken as the answer.

CS 2254

- 57 -

The 46 instruction adds a long number from the computing store to the
long number in the accumulator without either round-off or standardisation.

The stages are :i-

shif't down one argument a number of places equal to the
difference of the exponents

add fixed-point

shif't down one place, without rounding, and increase the
exponent by one. This extra shift is to prevent the
argument of the result being too large.

The 47 instruction does a subtracticn in a similar way, the answer
being unrounded and unstandardised.

Example:
The 44 instruction, unrounded addition,

A =A+ L

7
L =3

let xA, yA; xL, yL denote the arguments and exponent of the numbers in
the accumulator and computing store register respectively.

Then xA =0, 11110 O, yA = 0000000001
xL = 0. 11000 O, yL = 0000000010

(1) shift the argument of the number with the smaller
exponent:

XA’ = 0.011110 0
(11) add the argument fixed point:

xA’ = (0)1.0011100, yA’ = 0000000010
(iii) standardise:

xA’ = 0,10011100, yA' = 0000000011

which is the standardised floating~point representation
7

4§ .

Multiplication

The product of two thirty-digit fixed-point numbers is a sixty-digit
fixed-point number. The instructions 50 51 52 and 63 give vhe thirty
most significant digits (excluding the most significant digit itself) and
the 54 and 85 instruction give the least significant 29 digits as in
figure 2.

CS 225A

- 58 =

Figure 2

most least
significant significant
end| J end '
59 ' 58 1 57 56 29'28 o'

T binary
extra point

digit

——— 30 digits — ¢ 29 digits ——

most signifiicant half least significant half

The S0 instruction for the product of the long number in the computing
store gives the most significant half of the product with the &9 digit
going into the accumulator’s extra digit position and with exponent equal
to the sum of the two exponents. This is rounded=-off then standardised,
and if standardising involves a shif't down it is rounded again. The &1
instruction for negative multiplication begins with a sixty digit negative

product but is otherwise the same as the 50 instruction. The stages
are :=-
take the most significant half
round-off
standardise, rounding again if this involves a shif't
down

The 52 instruction is the same as the 80 instruction except that there
is no rounding=-off. The stages are :=-

take the most significant half
standardise

The 53 instruction begins with the sixty digit negative product but is
otherwise the same as the 52 instruction. The 54 instruction gives

the least significant 29 digits of the product and a 0 in the most
significant digit position. The exponent is the sum of the exponents

of the two numbers minus 29 and the result is neither rounded=-off nor
standardised. The 55 instruction gives the least significant 29 digits
of the negative product with O 1in the most significant digit position
and with exponent the sum of the two exponents minus 29. The result is
neither rounded-off nor standardised. Thus the 54 and 55 instructions
always give a number which is greater than or equal to zero.

Example:
51 instruction,
A’ = -AL
when A = 2-;:
L =3
i'eo XA=O.10010 I EREEEE R 0 yA=OOOOOOOO1O
X _ 0010 eecseecove 0 y= OOOOOOOOOO

First stage : take the most significant half :-

yA'=yA + y = 0000000010
CS 225A

- 59 -

60 digit prOduct =-00001001O edecscsscean O
=+11o101110 e0scscecesve O
}CA‘=1.101110 ee s 000000 e 0

Second stage: round=-off :=-

XA'=10101110 o;-ooaooooolo1 yA' =OOOOOOOO10

Third stage: standardise :-
XA'=1.01110 KRR 010 yA' =OOOOOOOOO1
. ' 1 1
1.Ceo A =1‘8- + -é—_TB-

CS 225

APPENDIX II

STRUCTURE OF CUES, LABELS, ETC.

Cues

The directives ACROSS and DOWN become on input

+)300 4*
590 4

followed by a long register storing the cue for the next chapter as
follows: =~

HO = first sector minus first page
0 if ACROSS
1

HO+ = first page. The 512 digit is if DOWN
H1 = last page

H1+ = entry register
The directive UP becomes the two instructions

300 1
590 4

Labels list

While a routine is being read in, its labels are stored in the computing
store with label n in L(27.54 + 2n). At the end of the routine, indicated
by another directive R, C, etc., the labels are packed in the order of
increasing n into consecutive long registers on sectors 64 to 95
immediately after those of the previous routine. Each label is composed
as follows :=

HO = routine number
HO+ = label number

H1 = medium register address of item labelled

H14+ = item. Digits 0 - 4 address overflow
digits 5 = 8 32 x item
digit 9 0 for left half register,
1 for right half

Routine iist

The routine list on sectors 96 to 111 has a 20 digit entry in the
nth medium register corresponding to routine n as follows:-

HO = long address of v0 in labels list (0 to 1023)

HO+ = chapter number

Chapter list

The chapter list on sectors 112 and 113 has a 20 digit entry in
the nth medium register corresponding to chapter n as follows:=-

HO = first sector
HO+ = 32 x first page + last page

During the chapter the entry in HO+ is the first page.
CS 225+

- 61 -

Preset parameter list

The values of the preset par meters are kept in the computing store,
the entry in L(24.44 + 2n) correspc ling to preset parameter n, the
entry for n =0 being the x0 of x-routines. These are stored in the
same way as v-labels, address in the second half of the computing store
are permitted.

Reference list

v-floating addresses are filled in by the Input Programme as follows:-

(i) Backward references to a previous label in the present routine
or a label in a previous routine are {illed in immediately.

(ii) Forward references to labels in routine r are stored in the
reference list and are filled in at the end of routine r.

(iii) References for cues are also stored in the reference list
(type 6). These are not filled in as above, but are filled
in at the end of the second of the two chapters involved.
References not filled in are stored in long registers from
L16.0 to L24.42 as follows:~-

HO = routine number
HO+ = 8 x label number + type
H1 = short address. The 512 digit is ?if;’l

H1+ = sector

Entries in page 0 during input

H56 query number

H56+ A,B,etc., for the query print
HS7 predicted last page

H57+ FIRSTSECTOR

H58 asterisk print. -1 if no asterisk
0 if asterisk

H58+ highest page so far
H59 next position in labels list (long address)
H59+ sector in page &1

H60+ next position in reference list (long address)

He1 i present item
H61+ h next half register i _.ge 1 (short address)
HE2 # wpage being assembled
H62+ s sector being assembled
] r current routine
HES+ ¢ cuwrrent chapter

Sectors (O to &

With only sectors O - § of the Input Routine intact, the following
starting procedures are available:

Key 2 for binary input
Key & for binary output
Key 8 for restart

Key 9 for sector e:.ier.

These sectors inciude the Chapter Changing Sequence and the Error Print Sequence;

so that a programme car be run using only these sectors.
CS 225:.

- 62 -

APPENDIX III

Details of Quickies

Quicky Specifiication Store Working | B~line Notes
Humber Registers Space Used
.1
1 A =7 24 32 - 35 | Sac A must be standardised
Bt St Error print if |A|<2~3%3
2 A’ == 33 32 = 35 | Sac A must be standardised
Bt St Error print if A O
4 A’ =eh 47 32 - 35 | SacSt Error print if eA»23?5¢
o A’ =tan A 62 32 = 37 | Sac St
6 A’ = sin A or a9 52 = 37 | Sac St Enter at 2nd instruction
cos A for cos A
7 A" =cos A 37 32 - 37 | Sac St
* 8 Punch Sac % 32 Sac St Prints Sac as an integer
Bt in the range =512 to
+511
* 9 Punch Acc fixed &0 32 = 35 | Sac St Enter with 101 * 590 -
point Bt =m, =n where m and n
are the number of digits
before and af'ter the
decimal point
* 10 Punch Acc floating 102 32 = 3 | Sac St Enter with Sac = number
point Bt of decimal digits
* 11 Punch Sac + 4 Sac St Prints Sac as an
unsigned integer in the
range 0 - 1023
12 A’ =AA 56 32 - 37 | Sac St Error print if A < O
Bt
14 A’ =1logg A 43 32 = 35| Sac St Error print if A < O
15 A’ = arctan y/x 74 32 - 37 | Sac St | Error print if 0/0
y =1L, Bt Range 0 = 2w
x = L34
16 A’ =arcsin A 47 %2 = 35 | Sac St | Error print if |A]>1
. Range - 2 +Z
g 2% 2
18 Read integer to o8 Sac St Reads short integers
Sac Bt beginning with + - or
decimal digit and
terminating with CR or
So. Ignores FS LF ER
and also CR and Sp
between numbers

See List CS 202A for up-to-date details of Quickies.

CS 2254

- 628 -

Quicky Specif'ication Store Working | B-line Notes
Number Registers Space Used
19 Reac fixed or 150 32 - 36 | Sac St |Reads numbers in form:-
floating point Bt sign integral part
decimal number decimal point fractional
to Ace part comma sign exponent
CR LF or Sp Sp
The signs, the integral
part, the decimal point
and fractional part, the
comma and the exponent
may be omitted when not
required.
FS ER Sp(single) are
ignored, also CR LF Sp
when between numbers.
®* Note 1: In Quickies 8, 9, 10 and 11 each number is preceded by FS CR LF CR
and terminated by Sp Sp. To print on the same line enter at the fifth
instruction.
2: Alterations are at present being made to the Quicky programmes which

will usually reduce slightly the number of store registers used.

CS 225A

2.

e

4.
Se
6.
7.
8.
9.
10.
1.
12.

13.

14,

- 63 -

APPENDIX IV

LIST OF FAULTS

Address underflow
Address overflow

Spurious character, (including Chapter directive in
Interlude)

Label set twice

Label not set

Preset parameter not set

Too many references

Overflow page 15, interlude too long
Overflow predicted page

Title too long

Wrong quicky number

Too many labels

Chapter numbers, parameter numbers, or label numbers
over 100.

Query number too large.

CS 225 A

APPENDIX V

5.1 TABLE OF FUNCTION CODES

0 2 3 4 5 6 7 8 9
3 T—_— e T \\\kgk_t‘*‘\\ —— T — TERIr———
0 B-—-B‘c—-H \\B—-Bt'—»:\Ba—JBt—u B'==1B ‘= B::Bt \\iB’_—Bt'_a Bt'=B - H B'?#o, Bt > o,
H B-H 2B - H B&H B c C’' =
\\‘ \‘ \ \\ \\ \\\ \\\\ \ X‘BA_+\‘ N N *\‘ 3\‘ AN r\ NN N \ \ N %\H\ x . X\\\\‘\‘\\\ \=‘ \11\ n
1 | B'=Bt'=n \ B'=Bt'= B'=Bt'= |B'=3Bt'=\|B'=Bt'= B'=Bt'=\] Bt'=B - n\\ B \\
\ | B+ ny B~n B -n Bé&n B#n C'-::ua,
} B! = Bt —-B+1
2 | 8'=St'=H H =8 8= St'= |8'=St'= |s'=St’= |S'=5t'= S'=S8t'= | St'=S-H | St# o, St > o,
S +H S-H %5 = H S &H S#H C'=n C'=n
3]8=5t'=n S'=St'= |S'=5St'= |S’=5St'= |S'=5st'= S'=5St'= | St'=8S-n | St# o,
S+n S-n 43S - n Sé&n S#n c‘=n;
S’ = St'= S+1
4 | A'=1L L'=4 A=A +L|A'=A<L A=A +L A=A -L JA'=4+L] A'=A-1L SHIFT < 31 A 2o,
UNROYINDED UNROUNDED AND C=n ¢ =n
UNSTANPARDISED
5| A'=AxL ‘= AL A=A x L fa= -AxL [A'=AxL jJA'=AxL |¢' == DUMMY |[HOOT C’'=n
UNROUNDED LEAST-SIG HALF
6 | H' =t, H'=hs |t =n t'=H Display=L{ 0 P E I CLOSE| T =n P’ =D D' =P
* © ° SHUTTER SHUTTER
7 | B'= Bt'= E+n|E" B'=Bt'= |B'= Bt'= \|B'= Bt'= YB'=Bt'= \ B'=Bt'= \ Bt'= B-(E+n)| A'= 4+0.2"
B+ E+n]|B-(E+n) [238-(E + n)|B & (E + n) | B# (E+n), \ unrounded,
\ unstandardised
e RN
ight shift.
N JANEEVANERARREEL SEERRUIRRRRN ARRAR righ 3
8 |CONDITIONING |READ CARD |{PUNCH CARD| PAPER MAG-SELECT |TC1 BUSY, TC2 BUSY,
I or THROW OPERATE C'=n C'=n
8 PRINT LINE
[3;] r*\\\‘ \\\‘ N\) W N B S ¥ \\\“1‘\\\\ NN\ ‘xvv*(\\f‘\\\\“\
» 9 |8'=St'= = s\\ S'= St'= A St’ =S S'=8t'= S'= t = \s‘”_ St'= |\ St’= S-{TI+n) STOP
St = = I \S— I I S&(I + I+n)y \
Ny Toem \JSE= 7 NP+ mINN S-(T + 0] & 5= (Tem) § S&(T XE?\ e S NRERRNY
NOTES 1) A function 1§ deizned by a ROW digit followed 2) Some codes are unassigned.

by a COLUMN

digite.

€Ceo

59 denotes C’

= n

A1l
these are at present stop functions.

3) Shaded squares i-present function
codes which are not B-modificable.

Table of function codes.

- 65 =

Decimal/Octal

00
01
02
03
04
05
06
07
08
09

10
1
12
13
14
15
16
17
18
19

051
042
050
055
054
053
052
056
007
020

011
100
010
015
014
013
012
016
017
100

20
21
22
23
24
25
26
27
28
29

30
31
52
33
o4
35

071
062
070
075
074
073
072
076

100

50
51
o2
53
o4
55
o6
57
58
59

064
065
066
067
026
006
143
141
060
001

60
61
62
63
64
65
66
67
68
69

70
71
72
75
74
75
76
77
78
79

002
022
125
025
063
164
165
004
024
005

111

023
110
115
114
113
112
116
144
100

80
81
82

85
84
85
86
87

88
89

90
91
92
93
94
95
96
97
o8
99

126
124
105
104
100
100
161
160
121
120

131
137
130
135
134
133
132
136
100
000

In the octal codes the seven binary function digits are grouped one three

three,

5.3

€ele
40 (A=1L) is 041 i.e. 0 100 001
Table of function codes. Octal/Decimal
000 99 040 29 100 140
001 59 041 40 101 141 57
002 60 042 01 102 60* 142 O1*
003 043 41 103 143 56
004 67 044 42 104 83 144 78
005 69 045 43 105 82 145
006 55 046 44 106 146 46
007 08 047 45 107 147 47
010 12 050 02 110 72 150 02*%
011 10 051 00 111 70 101 00%
012 16 052 06 112 76 152 06*
013 15 053 05 113 75 153 05*%
ci4 14 054 04 114 74 154 04*
015 13 055 03 115 73 155 03*
ol6 17 056 07 116 77 156 O7*
017 18 057 117 157

CS 2254

036
037

32
30
36
b
34
33
37
38

060
061
062
063
064
065
066
067

070
071
072
073
074
075
076
077

58

21
64
50
51
52
53

22
20
26
25
24
25
27

120
121
122
123
124
125
126
127

130
131
132
133
134
135
136
137

- 66 =

89
88
61%

81
62
80

92
90
96
95
94
93
97
o1

160
161
162
163
164
165
166
167

170
171
172
173
174
175
176
177

87
86
21*

66

22%
20*
26*
25*
24*
23%
27%

¥* Refer to addresses in the second quarter of the computing store.

csS 225 A

- 67 -

APPENDIX VI
TAPE CODES
PRINTER
TAPE VALUE
FIGS. | LETS.
. 0 FIG, SHIFT.
. ® 1 1 A
.0 2 B
.00 3 C
o. 4 4 D
°. ® 5 (E
°.0 6) F
e.00 7 7 G
.. 8 8 H
°o . 0 9 # I
o .0 10 = J
° .00 1 - K
eo. 12 v L
ee. o 13 LF M
ee.0 14 SP N
®0.00 15 s 0
o . 16 0 P
e . o 17 > Q
o .o 18 > R
e .o0 19 o] S
o 0. 20 - T
o 0. 0 21 5 U
® 9.0 22 6 v
® o.00 29 / W
% . 24 x X
6 . © 25 9 Y
90 .o 26 + Z
co .90 27 LET. SHIFT.
000. 28 . .
0e6. © 29 n ?
#€0.0 30 CR £
000.00 3 ER ER

CS 225A

“LEAR
TAPE.

O

INITIAL
TRANSFER.

O

PREPULSE

PARITY
STOP

S\
J

MANLUAL

AUTO

SINGLE.

CONTINUOUS

X

HANDSWITCH
STOP,

O

D

APPENDIX VY

MERCURY CONTROL PANEL.

IR

FUNCTION.

IRIRIRinigg RNl

100000001

| OFF.

ON
OFF D
WRITE
CURRENT.

ON
OFF. D
HOOT

U

INHIBIT

PARITIES,

SAC TEST

”0 #0

B TEST
%0 0

SHIFT STOP

” 31 FLIP. FLOP.

INCREASE VOLUME .
/ \

INDE &

Abbreviations

Accumlator
srithmetic
instructicns
overfiowv

Across

Addition

Address
dimits
in Line directive
overflow
symbolic
relative
underilow

'Angd’ operation

Arithmetic unit
Asterisk printing

relative address
Antomstic quicky selection

B-registers

instructions

modification
Backing stare

use by Input Routine
Binary

function codes
input and output (tele)
Bracket ignore

Card input/cutput
Cathode ray tube monitars
output
Chapter directive
extension
overflow
Checks (Parity)
Coding tricks
Colum
Computing Store
gtate on entry to a programre
Control sddress
Control desk
Control unit
Carrection
Cues
gtrmaturs of
Cycles

Destandardise instruction
Differential equations

Digit binary
parity
Directives
Display
Down
Drum store
transfers

ugse by Input Routine
Dummy instruction

el
MO

56

9y 15

3, L7A
26, 60

9y 10, 56

29
38

38
13
41
26

b

10
}-P" 59 10
1, 12, 23
L3

12, 23
43

CS 225 A

Engineers! tests
Enter directive
sector entexr
Error print
Even register

Fault printing
Firstsectar directive
Toating point representation
Floating point to integer conversion
Fractional part of the number in the accumilatar
Function codes = decimal
binary
types

Graphical output

Half register
Handswitches

tapping
Hoot

Input Routine
Input instructions (paper tape)
Instruction code

types

unspecified
Instructions
Integers
Integer to floating point conversion
Integration
Interlude
Interpolation

Jump directive
Jump instructions

Labels
set twice
not set
too many
Layout of results
Line directive
Line printer
Lists
logical cperations on integers

Magnetic tape~backing store
Magnetic 4 (Manchester University)
Normal ustructions
Matrices
Mcorrection
Modification
Monitors
Multiple channel input and output
Multiplication

instructions

of integers

Page
45
26
Yy

38, 63
25

3, 6
Sk

54

Al

65

124, >7

22

1
17, b
L5
17

5
12’ 12A, 17’ 15
64

12A, 37
23
2, 5
S 7
Sk
49
30A
50

304
2, 11

7, 32, 60
39, 63

39, 63

L0, 63

55

29, 35

19

6C, 61

13, ik

&
22
LA
L9
30

17
124, 18

10, 17
5k

Cs 2254

Tame directive

'"Not equivalent' operation
Notation

n-gymbolic addresses
Numbers, reprecsentation of
Nurericel methods

Operating procedure

Output (Paper tape)

Overflow accumuletor
address
chapter

Page directive
Paper tape code
editing
preparation
Parity digit
Partial differential equations
Post mortems
Preset parameters
not set
Printing: asterisk
error
feault
query
Printer
Punched card input/output

Quadrature

Query rprint

Quicky
autanatic selection
non-existent

References - too many
Registers

Relative address asterisk
Rescue

Restexrt
Rounded arithmetic
Routine
v~routine
X=poutine

Runge-Kutta process

Sac instructions
Sector
directive
entry
Series expansion
Signed representation of integers
Special equipment
Spurious character
Starting procedures
Stop instruction
handswiteh
in programme

11,

29,
L
LS

19
38,
Ly
19
L7A
L7

128, 17, 18
L7A
63

35

63

62
63

63

56

124, 15, 18
12, 23
35

63

Store

Subroutines

Subtraction fleating point

Symbeolic addresses
£illing in

Tape = see Paper Tape or Masnetic Tape
Tapping (handswitches)
Tele~input
Tele-~output
sector entry to tele-output
Test routines
Times of instructions
Title

too long
Track
Types of instruction

Underflow (addresses)

Unrounded arithmetic

Unsigned representation of integers
Unspecified instructions
Unstandardised functions

Up directive

v=-routine
-symbolic address

Wait directive
Weiting time - drum
- input/output equipment

x=routine
-symbolic address
X preset parameter

Page

50

10,
7,

25

L5
L5
L5
Ly
L5
e3
27
39,
2

b4

12

56
32

63
23

32

