

[alerranti

SIRIUS COMPUTER

 PROGRAMMING MANUAL

LIST CS 244A

ee

The

FERRANTI

SIRIUS

COMPUTER

|O/-

S
i
s

0
so
e

B
E
B

co
B
O
R
I
C

O
S

S
i
a

psa
i

CONTENTS

Page

SIRIUS

~1.1 Introduction 1

1.2 Numbers within the computer 1

1.3 Addresses 1
1.4 The control unit 2

1.5 Form of instruction 2

1.6 Registers and their contents - notation 3

ARITHMETICAL ORDERS AND JUMP INSTRUCTIONS

2.1 The order code of Sirius 4

2.2 The orders 10 to 14 4

2.3 The orders 60 to 64 oe we o we oe oe we D

2.4 Notation 3

2.5 Some of the orders of group 5 - jump instructions 5

THE ORDERS OF GROUP 0

3.1 The orders of group 0

3.2 N zero or negative

3.3 The orders 05 - 09

SHIFTING, MULTIPLICATION, DIVISION AND COLLATION

4.1 Fractions and scaling .. oe oe oe oe oe oe oe 11

4.2 Multiplication by 10 or shift up we wee we a oe oe 11

4.3 The orders 30 - 33 we o. we we oe os oe oe 11

4.4 The orders 20 - 23 we we a we oe os oe w 12

4.5 The orders 25 - 28 w. we o. we a ee we oe 12

4.6 Simple Shift we we we we we os we o 13

4.7 The order 34 a we a ws we oe oe we os 13

4.8 Division by 10 or shift down. Group 4 orders .. oe oe oe 14

4.9 The overflow indicator .. we oes oe we oe oe 15

4.10 The orders 53 and 58 we ws oe we oe ee we we 16

4.11 Multiplication. The 79 order ws we we we we os 17

4.12 Division we we oe os .. oe 2. .. oe oe 19

4.13 Collation... we oe .e a os ee os os .. 20

MODIFICATION, AND USE OF SUBROUTINES

3.1 Modification we ws os oe oe we oe os oe 22

5.2 Modification of the orders 10-14, 60, 64, 30-34, 50-59, 69 .. os 22

5.3 Use of Accumulator 1 os we oe ve oe o we os 23

5.4 Loop Stop oe oe we we we oe oe oe oe 24

5.5 Counting we ws ws we we oe oe oe ws 24

5.6 Modification of the orders 05-09, 25-29, 68 oe oe oe a 24

5.7 Modification of the orders 00-04, 20-24, 66 a os we oe 25

5.8 Arithmetic in two accwaulators we oe oe we oe oe 26

5.9 Modification of the orders 40, 44, 45 and 49 we oe oe ee 27

5.10 The dummy order 50 ws we we we we oe oe os 28

5.11 The “Wait” order, 99 ee oe oe oe ee ee oe .e 28

Page

5.12 Use of subroutines os os oe oe oe oe oe os 28

5.13 The 69 order oe oe ee eee se oe e oe oe 29

5.14 The 24 and 29 orders oe oe os os oe oe ee oe 29

INPUT AND OUTPUT; THE OPERATORS CONTROL

6.1 Paper Tape and Teleprinter Equipment oe ee oe oe ee 31

6.2 The Tape Code oe oe oe 2 oe os oe oe oe 32

6.3 The Input and Output Orders ee ee ve ee ee oe ve 32

6.4 Speed of Input and Output oe oe ee oe ee ee ve 33

6.5 Code Conversion on Input/Output we a ee we we we 34

6.6 Controls . we we ve oe we we we ws we 35

6.7 Monitoring Facilities we a we oe we o. ws we 37

6.8 Indicator Lights ee we ee ee ee ee . oe we 38

THE INITIAL ORDERS

The need for Parameters a oe oe oe oe oe we 40

Paraneters os we 2+ a o- oe es oe oe 40

Setting Parameters we ae oe we oe os oe we 41

The Purpose and Mode of Action of the Initial Orders .. ee ee 4]

Punching of Numbers oe oe ee es oe ee oe oe 42

Punching of Orders oe oe oe oe ee ee ee oe 43

Directives - Warning Characters E, J, N, Z a oe we ee 44

Use of Input as a Subroutine ee ee oe oe oe oe we 45

CoC

m
a
n

HD
OO

Rm
|

W
h
e

Use of more than one Reader or Punch ee ee oe ee ee 45

Printing out parts of the Store oe oe es oe ee es 45

Checksuus os oe ee oe ee oe a oe ee oe 46

juo
h

fh

wo
_

Punching Conventions and Faults ee oe ee ee ee oe 47

_

Oo
 Stops in Input e ws ee ee ee es ee ee es 48

The Monitor Routine oe oe ee ee a es oe ee 48

jm

fk

CO
p
f

General Description of Assembly oe oe ee oe ee ee 50

jo
n

oO
 Calls for Subroutines oe ee oe oe oe oe ee ee 50

je
k

aj

Pre-set parameters .e oe oe ee oe os oe ee 50

—_

GO
 Layout of a Prograinne Tape os ee ee ee ee os we 51

jo
t

ie
) Sumnary of the effects of the warning characters we oe we 51

-20 Size of Store ee oe os oe ee oe ee oe ee 52 a
N

N
N
N

N
N
N

N
N
N

N
N
N

N
N
N

N
N

pm

oe

FURTHER FEATURES OF THE COMPUTER

8.1 Reasons for this Chapter we oe ee ee ee oe oe 53

8.2 Gaps in the Order Code we .. we .s .. os .s 53

8.3 Digit Representation ve oe oe ee oe oe we oe 04

8.4 Timing oe ws es we oe 2 os oe oe se 30

8.5 Primary Input ee os os oe oe we ee oe oe 56

8.6 Use of Xl oe ws ee oe oe oe os oe oe oe 58

8.7 Properties of the Store Addressing System .. a ws we we 59

8.8 The Collate Orders a oe oe we we we oe oe 599

8.9 Input/Output Codes .. oe we oe a we os we 60

8.10 Behaviour of X0 we a we oe we we ee ws +. 61

8.11 The Accept Instruction Button .. oe oe oe oe es ve 61

8.12 Use of more than one reader or punch, and different tape widths we 62

SIRIUS PROGRAMMING MANUAL

CHAPTER 1

SIRIUS

1.1 INTRODUCTION

1.1.1 Sirius is a small decimal computer. In its basic form it has a store of 20

nickel delay lines, each consisting of 50 locations, giving a total capacity of 1000 |

locations. There are also 9 short delay lines each consisting of one word. Information

is put into the computer and extracted from it by means of 5-channel punched paper tape.

1.1.2 Each location in the computer, whether in the main store or the accumulators,

holds ten decimal digits. These digits will represent either a number or a computer

instruction, and either of these can be called a computer word.

1.2 NUMBERS WITHIN THE COMPUTER

1.2.1 Since each location can hold ten digits the largest number which can be put in

any location is 9999999999, equal to 10'° - 1. If 0 is included then all numbers between

0 and 10!° - 1, that is 10'° numbers, can be expressed in Sirius.

1.2.2 In order to deal with the positive and negative numbers this range is divided

equally. Positive numbers raise little difficulty and are held within the machine as

written i.e. for x positive

0 < x < 4999999999

The convention adopted for negative numbers is to hold them in the machine as the

complement with respect to 107?°, so that for example, -3 is held in the machine as

10+° - 3, appearing in the machine as 9999999997. In other words the convention in

Sirius is for the first digit of a number to include the sign. If the first digit of

x* (the number as held in the machine) is anything from 0 to 4 then x is a positive

number of magnitude x*. If the first digit of x* is anything from 5 to 9 then x is a

negative number of magnitude 10'° - x*. The following are examples of numbers and
the form in which they are held in the machine:-

x : number x* : as held in Sirius

+123 0000000123

+900906 0000900906

-671 9999999329

-3960000000 6040000000

-2183200000 7816800000

-5000000000 5000000000

1.2.3 During the course of calculations numbers may arise which are outside the range

permissible in the computer; this is said to be overflow and a special overflow indica-

tor will be set. Steps can be taken to deal with this situation and will be considered

later.

1.2.4 Note that, although the number -5000000000 can be represented, the number

+5000000000 cannot.

1.3 ADDRESSES

1.3.1 As already mentioned, the working store of:the basic machine has 1000 locations.

Associated with each location are two quantities, the address of the location and the

contents of the location. The addresses run 0,1,2... up to the end of the available

store. The contents of the location is either a decimal number or instruction as

mentioned earlier, e.g. the location whose address is 603 may contain the digits

1246806103. The 9 accumulators are numbered 1 to 9.

1.4 THE CONTROL UNIT

There are only a limited number of types of operations or steps that a computer

can perform. These can be carried out any number of times and in various ways but

each calculation proceeds one step at a time according to the written programme. Th

programme consists of a list of instructions or orders together with some data. The

control unit of the computer selects instructions one by one, usually from consecuti

locations, and as this is going on the address of the location containing the curren

instruction is held in accumulator 1. The instruction itself is put into the order

register by the control unit. As this instruction is carried out the address in

accumulator 1, i.e. the control address, is increased by one before the current

instruction is completed, so that for programming purposes the control address is th

of the next instruction, i.e. the current instruction address plus 1. Care should b

taken therefore not to use the accumulator 1 for ordinary arithmetic as this would

change its contents and cause a transfer to some unwanted instruction. Note that,

although only 4 digits of accumulator 1 at most, are needed for the control address,

is in fact a full 10-digit register.

1.5 FORM OF INSTRUCTION

1.5.1 When the ten decimal digits are interpreted as an instruction they are

treated as four parts as below:

address

digits

The first six digits in the order are the N digits. They can specify an address in

the store and so there could be up to 1,000,000 words of store. As in fact no Siriu

will have as much as this some of the digits in the address will not be used; in th

basic machine with a 1000 word store, for instance, only 3 of 6 N digits are used,

so the largest address is 999. The first digit, Do» is the most significant digit

and the tenth, D,, the least significant. These will often be abbreviated to m.s.

and 1.s. In some orders all six of the N digits are used but this will be explained

later.

1.5.2 The digits D, and D, are called the function digits of the order and determin

the type of operation which the machine will perform, e.g. addition or subtraction o

transfer from one part of the store to another. The function digits are denoted by

and can have values from 00 to 99, e.g. the function 60 has the effect of transferri

the contents of an accumulator to a storage location, and the function 10 adds the

contents of one of the ordinary registers to one of the accumulators.

1.5.3 Most operations also involve a particular accumulator and this is specified b

the A digit, D,. Generally, A can take a value from 2 to 9 inclusive, denoting one

the eight general purpose accumulators.

1.5.4 We can write, for example, A = 3, if we wish to use accumulator 3, and the

digit 3 is put in the A position of the order. The accumulator 1 as already mention

holds the control address. The purpose of the B digit, D,, will be considered later

for the time being B will be put equal to zero.

1.5.5 Although the instruction is held in the machine as above, it is convenient

write it in the following form: -

F A B N *

1.5.6 As an example the function 14 copies the contents of location N to the

accumulator specified under A so that the instruction.

F A B N

14 2 0 231

copies the contents of location 231 into accumulator 2.

1.5.7 It will be noticed that the three left-hand zeros in N are omitted. This |

always be done.

1.6 REGISTERS AND THEIR CONTENTS - NOTATION

1.6.1 The 1000 (or more) locations are usually referred to as the main store; tt

are sometimes called ordinary registers, as opposed to the accumulators which may

called X-registers. The word register alone could mean either an accumulator or ¢

location in the main store.

1.6.2 It is conventional to use capital letters for addresses and small letters t

represent the contents. Thus N denotes a main store address, and n its contents.

contents of an accumulator specified in the A-digit of an order would be a, but it

one were to refer to a specific accumulator it would be more usual to write X8, ar

for instance.

A small letter primed denotes the contents of a register after an instructior

been obeyed, e.g. a’ would denote the contents of the accumulator specified by A <

the operation.

Example: If the number in location 431 is 103 and the number in accumulator 4 is

then if N = 431 we have n = 103 and if A = 4 then a = -23. If now the

function 10 is used to add these numbers and leave the result in accumu.

4 i.e. if the instruction

10 4 0 431

is performed then a’ = 103 - 23 = 80 and n’ = 103 (unaltered).

* The reason for writing instructions this way is that the N part of the instruct:

varies in length and this ensures a neat layout when the programme is typed.

CHAPTER 2

ARITHMETICAL ORDERS & JUMP INSTRUCTIONS

2.1 THE ORDER CODE OF SIRIUS

The part of the order which determines the action performed by the computer is

the function part. The basic functions available on Sirius will now be considered in

some detail.

2.2 THE ORDERS 10 to 14

2.2.1 These are simple addition, subtraction or copying instructions between one of

the ordinary registers in the main store and one of the accumulators. In each case

the result is left in the accumulator and replaces the original contents of the

accumulator, and in all these orders the contents of the main store locations are

unchanged. The function 14 has the effect a’ = n, i.e. the contents of location N are

copied into accumulator A. The original contents of A, namely a, are lost and the

contents of N, namely n, remain unchanged. For example the order

F A B N

14 3 O 249

causes the contents of the location 249 to be copied into accumulator 3.

2.2.2 The function 10 has the effect a’ =a +n, i.e. the contents of location N are

added to the contents of accumulator A and left there, a being lost and n left

unchanged. E.g. the instruction

10 4 0 341

causes the contents of location 341 to be added to accumulator 4 and left in accumulator

4.

2.2.3 The first 5 orders of group 1 may be summarised: -

F Effect Description

10 a’ =atn Add the word in N into A.

11 al =a-n Subtract the word in N from that in A.

12 a’ =-a-n Negate the contents of A and subtract

those of N.

13 al =-at+n Negate the contents of A and add those
of N.

14 a’ =n - Copy the contents of N into A.

Example: c, d, e are stored in locations 300, 301, 302; the quantity (c - d+ e) is

required in accumulator 5.

14 5 0 300 xi =c

11 5 0 301 xi =c-d

10 5 O 302 x' =c-+dte

In order to be obeyed these instructions must be held in three consecutive registers in

the store e.g. 500, 501, 502. These positions may be indicated on the left hand side

as below

500 | 14 5 0 300

501 | 11 5 0 301

502 | 10 5 O 302
2.3 THE ORDERS 60 and 64

These functions transfer or copy from the accumulators into the main store

locations. The function 60 has the opposite effect to 14, i.e. n’ = a, (copy the

contents of accumulator A to storage location N). The original contents of N are

lost and the contents of A remain unchanged.

Example: c, d are two numbers stored in locations 200, 201. Form (c + d) and

(c - d) and store in locations 300, 301.

14 2 0 200 x, =

10 2 Of] 201 | xf=c+d

60 2 0 300 c(300) = ct+d

14 2 0 200 xi=e

11 2 0 201 x,=e-d

60 2 O 301 C(301) =c-d
2.4 NOTATION

2.4.1 In this example the notation C(300) has been used to denote the contents of

storage location 300. It can be used in general, as an alternative to that already

in use, so that C(N) =n, C(A) = a.

2.4.2 The function 64 has the effect n’ = 0. Clear the storage location N. A

convention will be adopted by putting A = 0 in this order, since no accumulator needs

to be referred to with the 64 order.

Example: Clear the location 400

64 0 O 400 C(400) = 0

2.5 SOME OF THE ORDERS OF GROUP 5 - JUMP INSTRUCTIONS

2.5.1 In general the control address in accumulator 1, (which is used as the control

register), is increased by one as each instruction is carried out. This causes the

next instruction selected to be that in the next location in the store. This is not

always convenient. Sometimes it is desirable to cause a jump or break in the sequence

of instructions from those held in consecutive registers. This jump may be either

backwards, in which case certain operations are repeated, or a jump forwards,:.in which

case some operations are omitted. For example, the 55 order is an “unconditional”

jump. In all cases this order causes a jump to be made to the address specified by

the N digits.

Example: If programme is stored with some data in locations 200 onwards, and it is

required to add the constant 0.314159 to the contents of accumulator 3,

and then continue with the programme, then the 55 order may be used to jump

round the data so:-

F A B N

200 /|10 3 O 202 x, = x, + .314159

201 55 0 0 203 jump round data

202 + .314159 (data)

203 60 3 0 301 store Xx, in 301
2.5.2 Sometimes it is necessary to programme two alternative courses of action

depending on whether a particular condition is satisfied or not. If the condition is

satisfied the jump is as described above, that is, to the location specified by N;

otherwise no jump occurs and the computer proceeds sequentially as usual. If the

condition is satisfied the address specified by the N digits of an order is transferred

to the control register and becomes the control address. The instruction in location N

is obeyed, the control address being increased by one to (N + 1) etc., the procedure

then following the normal pattern. Suppose a jump instruction is held in location L,

then the two possibilities may be represented diagrammatically as below: -

(— L : jump instruction

Ltl : . condition not satisfied

> N : . condition satisfied

Nt+1 :

2.5.3 Sometimes a jump instruction is referred to as a ‘transfer of control’. Some

of the jump instructions are summarised below: -

F Effect Description

51 Jump if MSD of a 7 0. Transfer control to the instruction

in location N if the m.s. digit in

A is not zero, otherwise obey the

next instruction.

52 Jump if a # 0. Transfer control to N if the C(A)

are not zero, otherwise obey the

next instruction.

54 Jump if a < 0. Jump to N if the C(A) are negative,

otherwise obey the next instruction.

55 Unconditional jump. Jump to N in all cases.

56 Jump if MSD of a = 0. Jump to N if the m.s. digit in A is

zero, otherwise obey the next

instruction.

F Effect

57 Jump if a = 0.

59 Jump if a 20,

Description

Jump to N if the C(A) are zero,

otherwise obey the next instruction.

Jump to N if the C(A) are positive or

zero, otherwise obey the next

instruction.

Example 1: c, d, e are stored in locations 200, 201, 202. Form (c - d+ e),

(ignoring overflow).

otherwise, store in location 950, and proceed to instructions in 521.

These instructions are held in locations 500 - 505.

500

501

902

503

504

505

506

921

If negative, jump to the instruction held in 506,

F A B N

144 2 Of 200 | xi=c

11 2 Of 201 | xJ=c-d

10 2 0 202 xe=ec-dte

54 2 O 506 Jump to 506 if c-dte<o0O.

60 2 O 950 Store (c - d + e) in 950

55 0 60 521 Unconditional jump to 521

Example 2: Given two positive numbers p and q in locations 800, 801, store the larger

one in location 850 and the smaller in location 851.

300

309

14 4 0 800 x) = p

11 4 0 801 x =P- 4g

59 4 0 306 Jump if p- q20

10 4 0 801 xi =p, the smaller (p - q + q)

14 5 6~0 801 x, = q, the larger

55 0 0 308 Jump unconditionally to store

P,» q

13 4 OQ 800 xi = q, the smaller (-(p - q) +p)

14 5 0 800 Xe = p, the larger

60 4 0 851 Store smaller in 851

60 5 0 850 Store larger in 850

CHAPTER 3

THE ORDERS OF GROUP 0

3.1 THE ORDERS 00-04

3.1.1 In this group of orders the N digits are used directly as an operand. N, with
its sign extended by four digits to make it a ten digit number, is added into or
subtracted from the contents of an accumulator or its complement.

Acc. D D D D D D D D D D
1 2 3 4 5. 6 7 8 9

The four digits in the dotted section are the sign extension of N. If Ny is 0 to 4,

i.e. if N is positive, they are all zeros, if it is 5 to 9, i.e. if N is negative, they

are all 9’s.

The function 04 has the effect : a’ =N

N, extended to 10 digits, is copied into A, the original contents of A being lost.

Example:

F A B N

)04 5 O | 123456

puts the number 123456 into the least significant end of X5, clearing the first four

digits. Note however that if the first digit of a 6-digit N had been 5 to 9, the

first digits of the 10-digit N used would have been made 9’s.

3.1.2 The first five orders of group 0 can be summarised as follows, with N extended

to 10 digits.

F Effect Description

00 a’ =a+N Add N to a.

01 a' =a-N Subtract N from a.

02 a' = -a -N Negate a, and subtract N from

result.

03 a’ = -a+N Negate a, and add N to result.

04 a’ =N Copy N to A.

Example: Suppose c, d, are stored in locations 305, 306, and it is required to form

(c - 100) in accumulator 3 and -(1001 + d) in accumulator 8.

14 3 0 305 xi = c

01 3 Oj 100 | xf =c - 100

144 8 O}] 30 | xl=d

022 8 o| 1001 | xf=-d - 1001

3.2 N ZERO OR NEGATIVE

3.2.1 If N = 0 in the 04 order, then a’ = 0, i.e. this can be used to clear the

accumulator specified.

3.2.2 N= 0, in either the 02 or 03 order gives a’ = -a, negating the contents of any

accumulator.

3.2.3 If Nis 0, it is usual to leave the N-column blank.

3.2.4 If N is negative the left-hand digits up to the full total of 10 are filled in

with 9’s: this is equivalent to extending the sign of N within the computer. The

programmer merely writes ‘-N’.

e.g. if x, = 7891, the order

F A B N

00 2 0 -197

gives x5 = 7891 - 197 = 7694

held in the computer as:

| 0000007891

9999999803

0000007694

3.3 THE ORDERS 05 - 09

3.3.1 This group of functions is similar to the one above, the N digits being used

directly as an operand. The difference is that the 6 digits are added or subtracted

into the most significant end of the accumulator concerned.

Acc. D

N digits |N

3.3.2 Since the N digits may be regarded as an integer, this is equivalent to

multiplying N by 10” and then adding or-subtracting into the accumulator.

3.3.3 The function 09 has the effect a’ = 10'N.

3.3.4 The six digits forming N are copied into the most significant end of the

accumulator A; or the six digits N are multiplied by 10° and copied into the

accumulator A.

09 7 0 320145

puts the number 320145 into the most significant end of X7 clearing the last four

digits so that

x} = 3201450000

- 10 -

3.3.5 The last five orders of the O-group can be defined as:-

F

05

06

07

08

09

Example 1: Suppose the negative number -3210876600 is held in X3 and it is required

to negate this and add 5000000. The following order will do this

a!’

Effect

10°N

The steps performed are: -

a + 10°N

a - 10'N

-a - 10'N

-a + 10'N

Description

Add N to m.s. end of A.

Subtract N from m.s. end of A.

Negate a and subtract N from m.s.

end of result.

Negate aand add N to m.s. end of

result.

Copy N to m.s. end of A.

F A B N

08 3 «(0 500

x, = 6789123400

-x, = 3210876600

+10"N 000500

x! = 3215876600

Example 2: Two quantities P and I are stored in storage locations 800, 801.

number T, held in 810 is 3, form P + TI, if it is 5 form P - I, if it is 4

take P, and in each case store the result in location 805.

instructions are held in locations 350 onwards.

350

351

352

-—— 353

354

399

356

3957

—— 358

 359

360

 i» 361

14 4 0 800

14 5 60 810

01 > 60 3

57 5 O 359

01 5 O 1

a 5 0 357

11 4 0 801

60 4 0 805

D9 0 60 361

10 4 0 801

60 4 0 805
(next instruction)

re xy = P.

xo = T.

xf =T - 3.

Jump to 359 if T

xi = - 4,

Jump to 357 if T

xh = Pp-f,

Store x, in 805.

Unconditional jump.

xi =P +I.

Store xy in 805.

These

- jl -

CHAPTER 4

SHIFTING, MULTIPLICATION, DIVISION AND COLLATION

4.1 FRACTIONS AND SCALING

4.1.1 Up to now numbers in the computer have been regarded as integers, and have been

restricted to lie in the range

-5000000000 < x < 4999999999

This assumes a decimal point immediately to the right of the least significant digit.

This is only a convention, and we can imagine the decimal point to be between any two

digits in the computer word which are convenient. The difference between 23598 and

23.598 is only a factor of 1000 = 10°. In most problems numbers will have to be

scaled to keep them within a given range in the computer. If the scaling factor is §,

this will mean storing Sx, instead of the number x. Since Sirius is a decimal machine

S will generally be a power of 10.

4.1.2 It is very often convenient to work with numbers in the form of pure fractions.

This is the case when the decimal point is placed immediately to the left of the m.s.

digit. The available range becomes

-. 5000000000 < x < .4999999999

In other words, with this convention, fractions must be numerically less than %, or

equal to -4.

4.1.3 Adopting a similar convention for positive and negative fractions, as for

integers, positive fractions appear in the machine as written, and negative fractions

appear as the complement with respect to 1.

e.g. +.4123 appears as 4123000000

+, 0012368 ” ” 0012368000

-. 3069 ” ” 6931000000

-. 4213604 ” ” 5786396000

-. 000909 ” ” 9990910000

-.5 ” ” 5000000000

4.1.4 As before, a number is positive if the first digit of its representation in the

machine is between 0 and 4 inclusive, or negative if this first digit is between 5

and 9 inclusive.

4.2 MULTIPLICATION BY 10 OR SHIFT UP

All the 30 - 34 and the 20 - 29 functions involve multiplication by 10 and

addition or subtraction. The 30 - 33, 20 - 23, 25 - 28 orders are similar to the

orders 10 - 13, 00 - 03, 05 - 08 respectively; (each can be obtained by adding 20

to the function digits of the simpler orders). A zero is fed in at the least

Significant end of the accumulator, e.g. 0002354812 becomes 0023548120 when multiplied

by 10. It should be noted that overflow may occur with these shift orders. A later

paragraph will show how to deal with this situation.

4.3 THE ORDERS 30 - 33

The first four orders of this group are similar to the corresponding 10 - 13

orders except that the contents of the accumulator are first shifted up one place.

- 12 -

The N digits define an address in the working store, the three least significant digits

only being used. These orders are described below.

F Effect Description

30 a’ =10atn Shift C(A) up one place and add C(N).

31 a’ =10a-n Shift C(A) up one place and subtract C(N).

32 al = -1[0a-n Shift the complement of C(A) up one

place and subtract C(N).

33 a! -10a +n Shift the complement of C(A) up one

place and add C(N).

Example: X6 contains .0012341213 and the constant .2174828483 is stored in location

999. The order

33 6 0 999

NW forms x} = -10(. 0012341213) + .2174828483 = .2051416353.

4.4 THE ORDERS 20 - 23

4.4.1 These orders are similar to those of the 00 - 03 group, except that the contents

of the accumulator are first shifted up one place. N has its sign extended (as in

3.1.1) and is added to or subtracted from the accumulator.

4.4.2 The orders of this group are summarised below, with N extended to 10 digits.

F Effect Description

20 a’ = 10a +N Shift C(A) up one place and add N to A.

21 a’ = 10a-N Shift C(A) up one place and subtract

N from A.

22 a’ = -10a-N Shift complement of C(A) up one place and

subtract N from A.

23 a’ = -10a +, N Shift complement of C(A) up one place and

add N to A.

Example: If the number in X5 is 3624, then the instruction

23 5 O -1

forms +10(3624) + (-1) = -36241.

4.5 THE ORDERS 25 - 28

The orders 25 - 28 are similar to the 05 - 08 orders except that the contents are

first shifted up one place. The six N digits are again treated as an operand but

added to or subtracted from the most significant end of the accumulator. The functions

of this group have the following effect

- 13 -

F Effect Description

25 a’ = 10a + 10°N Shift C(A) up one place and add N to
the m.s. end of A.

26 a’ = 10a - 10'N Shift C(A) up one place and subtract

N from the m.s. end of A.

27 a’ = -10a - 10'N Shift the complement of C(A) up
one place and subtract N from m.s.

end of A.

28 a’ = -10a + 10'N Shift the complement of C(A) up one
place and add N to m.s. end of A.

Example 1: The fraction 0.035 is in accumulator 6; multiply this by 10 and

subtract 0.45. The order

F A B N

26 6 O 450000

forms xf = 10(.035) - .45 = -.10.

Example 2: If x, = .041231 the order

27 3 0 5001

has the effect x) = -,41231 - .005001 = -.417311.

4.6 SIMPLE SHIFT

4.6.1 A simple shift up of one place i.e. multiplication by 10 can be achieved by

putting the N digits equal to zero in any of the orders 20, 21, 25 or 26, e.g. the

order

20 3. «(0

has the effect a’ = 10a.

4.6.2 A simple shift up together with a change of sign, i.e. multiplication by -10,

can be achieved by putting the N digits zero in the 22 or 27 order, e.g.

22 3 O

has the effect a’ = -10a.

4.7 THE ORDER 34

The 34 order has the effect

a’ = 10a + M.S.D. of rn.

- 14 -

This shifts the contents of A up one place and puts the m.s. digit of the contents of

N in the l.s. digit position of A.

Example 1: If x, = 0021312486 and C(499) 4632189106 then the order

F A B N

34 4 0 499

performs the following steps: -

x, : 0021312486

: 0213124860

n : 4632189106

x/ : 0213124864

Example 2: Given a 20-digit number .02341213453100000000 in 400, 401, shift it up

one place and restore it.

14 2 0 400 x5 = .0234121345

34 2 O 401 x) = .2341213453

60 2 O 400 Store in location 400

14 2 O 401 x5 = .3100000000

20 2 O x) = . 1000000000

60 2 0 401 Store in location 401

4.8 DIVISION BY 10 OR SHIFT DOWN. GROUP 4 ORDERS

4.8.1 There are four orders for division by 10.

4.8.2 Division by 10 is a shift of a number one place right, usually said to be a

shift “down’’, since it becomes numerically smaller.

4.8.3 There are two main points to be considered in connection with a shift-down.

First the question of signs, remembering the convention in Sirius that the first

digit determines the sign of a number. In the case of positive numbers, a zero fed

in at the most significant end will maintain the sign and give a correct result.

Negative numbers, on the other hand, must have as their first digit anything from 5

to 9. If a9 is fed in at the most significant end for each shift-down, the correct

arithmetical result will be obtained. Using x to denote any number and x* its

representation in the computer, the following examples should make this clear.

1
x x* — x*

10~

-. 2134800000 7865200000 9786520000

-10121 9999989879 9999998987

-. 0000012136 9999987864 9999998786
4.8.4 The 44 order is a simple shift-down, and has the effect

10

- 15 -

4.8.5 The second point will be noticed from the numerical examples above. The l.s.
digit in x* is dropped when it is shifted down. It is not always desirable that this
should happen. In the second example, a 9 is dropped off, leaving 7 as the last
digit; a more accurate result would be an 8. Another function is provided which
rounds off the last figure in this way. This is the 40 function. The rounding is

performed by adding 5 to the l.s. digit of a number and then shifting right. In the

example quoted, 5 added to the last 2 digits gives 79 + 5 = 84; when the whole

number is shifted, the 4 drops off leaving the 8 as the last digit.

4.8.6 The following are examples of a rounded shift down, if the 40 order is used.

1
x x* io *» rounded

+1 2378 0000012378 0000001238

~456890 9999543110 9999954311

-. 2234249812 7765750188 9776575019
4.8.7 There are four orders altogether for shifting down, as summarised below.

F Effect Description

40 al = tia + 5) Rounded arithmetical shift-down,

10 with sign extension.

44 a’ = =a Unrounded arithmetical shift-down,

| with sign extension.

45 a’ = =p (a + 5) + LSD of N- Rounded shift-down, the l.s. digit

of N being copied to the m.s. digit

of A.

49s a = = a +LSD of N Unrounded shift-down, the l.s.
digit of N being copied to the

m.S. digit of A.

4.8.8 The full use of the 45 and 49 orders will become apparent when modification

(Chapter 5) has been considered. For orindary single-length shifts into 40 and 44

orders will usually be sufficient.

4.9 THE OVERFLOW INDICATOR

4.9.1 Numbers stored in Sirius must lie within the range

“hex <h

if regarded as fractions or in the range

-5000000000 < x < 4999999999

if regarded as integers. But arithmetical operations may cause numbers to arise

which exceed capacity, i.e. overflow.

E.g. .312 + .418 = .730 and + .730 is outside the range, and in fact will be

interpreted as a negative number of magnitude 1 - .730 = .270.

4.9.2 In this case overflow is detected by a change of sign in the result where none

should occur.

- 16 -

4.9.3 Another form of overflow occurs when significant digits are lost, for example
in the shift functions. When 1348900139 is shifted up one place, the first digit is

lost. Moreover a shift may cause a number to change in sign. A negative number -.07

held as .93 when shifted up becomes .3, a positive number, the complement of the

desired one.

4.9.4 All these occurrences are detected by the overflow indicator. This indicator

has only two states, “clear’’, which is the normal state, and “set’’ when overflow

occurs. It remains set until tested by means of either of two special orders, (the

o3 and 58 functions), which then clear the indicator.

4.9.5 The computer will continue to operate even though the overflow indicator is

set. If this is not foreseen by the programmer and steps taken to correct it, the

resulting calculations will usually be meaningless.

4.10 THE ORDERS 53 and 58

4.10.1 These are the two functions which enable the programmer to deal with overflow.

The function 53 has the effect “jump to N if overflow is set and clear the overflow

indicator”. That is if the overflow indicator is set, control is transferred to the

address specified by N, and the indicator is cleared. Otherwise the next instruction

is obeyed. For example the instruction

F A 0O N

53 0 60 303

has the effect, “if the overflow indicator is set jump to obey the instruction held

in location 303, otherwise obey the next instruction’”’.

4.10.2 In this order and the 58 order, the A digit is put equal to zero by

convention, since no accumulator needs to be specified.

4.10.3 The function 58 has the effect “jump to N if overflow is clear, otherwise

clear the overflow indicator’, i.e. if there is no overflow control is transferred

to the address specified by N, otherwise the overflow indicator is cleared and the

next instruction obeyed. e.g. if the order held in register 506 is

506 = [58 0 60 365

the control is transferred to location 365 if overflow is clear, otherwise the next

instruction is taken from 507.

-17-

Example: Two numbers p and gq are stored in locations 500 and 501. Write a programme

to add these numbers and store the result in 502. If overflow should occur

replace p and q by

Pp q
To and 7g: and put the sum P <4 in 502.

Also store zero in register 503 if there is no overflow, or the number 1 if

the result has had to be shifted.

F A B N

200 | 64 0 O 503 Put zero in location 503

1 | 14 2 0 500 x; =p

2 |10 2 O 501 x5 =pt+q

r——3 | 58 0 0 213 Jump to 213 if OVR clear

4 |14 2 0 500 x) =p

5 140 2 0 af “i rounded

6 | 60 2 O 500 Store in 500

7 | 14 2 0 501 x} = q

8 | 40 2 O Xa rounded

9 |60 2 0 501 Store in 501

10 =| 10 2 0 500 af = 24 _P
10 10

11 | 04 3 600 1 x, =1

12 | 60 3 O 503 Store in 503.

L_»13 | 60 2 O 502 Store (ptq) or —~(p+q) in 502.
4.11 MULTIPLICATION. THE 79 ORDER

4.11.1 If one multiplies together two decimal numbers each having the same number of

digits one gets a product with twice as many digits e.g.

.38 x .61 = .2318

In the same way the product of two 10-digit fractions will be a 20-digit fraction,

i.e. double the length and will occupy two computer words. Two accumulators are

used to contain the product, although of course the full double-length number is

not always required.

4.11.2 The Sirius the 79 order is used to give a full double-length product. The

m.s. half of this product can be taken as an unrounded single result (e.g. as if the

answer had been taken as .23 in the example above). With integers however, provided

the answer is capable of being held single length, it will be in the l.s. half. For

example, in a 3 digit word machine 024 could be multiplied by 015 to give 000360, and

360 is the single-length answer.

4.11.3 One of the factors, usually called the multiplier, should be placed in x9,

and the other, called the multiplicand, in XB. The resultant double-length product

appears in two accumulators, XA and X9. The order may be summarised

719 (a, x)! = bx x Place the double-length product 9
of 6 and x, in a and x,.

The N digits are not used, and are usually left blank.

- 18 -

Example 1: Two numbers p, g are held in 333 and 334. Form the double length

product and store it in 350, 351.

F A B N

401 |14 4 333 xi =p

402 |14 9 334 af = q

403 | 79 6 (%,, %)' = pq

404 60 6 350 Store m.s. half in 350

o
0
c
U
m
U
C
c
m
W
m
l
m
l
m
l
U
m
M
L
R
C
O
C
O

CO
D

405 |60 9 351 Store l.s. half in 351

Example 2: Two small integers j, k are stored in 900 and 901. Place the product

in 902. Assume that this product is less than 5 x 10° in absolute value

(i.e. it is a single-length number).

14 5 O| 900 | xf=j

14 9 0 901 xi=k

79 #2 5 x= jk

60 9 O 902 Store in 902
Example 3: Two fractions c, d are in the storage locations 703 and 704. Form the

single-length correctly rounded product and store it in 705.

220 | 14 2 0 703 xh = ¢

221 |14 9 0 104 | xf =d

222 | 79 3 2 x, = cd (m.s. half)

——223 |59 9 0 225 Jump if x, > 0

224 | 00 3 0 1 x! = ed +1

L—-»225 | 60 3 0 705 Store cd (rounded) in 705
To form the rounded single-length product from the double length number in accumulators

3 and 9 it is necessary to add one to the l.s. end of accumulator 3 if the m.s.

digit of accumulator 9 is 5 or more. We introduced a convention with single-length

numbers, which treats the left-hand digit in a special way with regard to the sign

of a number; but when double-length numbers are stored in two accumulators, the

left-hand digit in accumulator 9 (i.e. the l.s. half of the number) is merely one

of the digits of the product and has no special significance with regard to signs.

For the purposes of testing its value however, the left-hand digit in accumulator 9

may be considered as obeying the sign convention adopted in Sirius, i.e. if this

left-hand digit is 5 or more the contents of accumulator 9 would be regarded as

negative. Hence the 59 order which is used to test the sign of a number can be

used here to test whether to do a correction in accumulator 3. The two orders held

in locations 223 and 224 will therefore perform the rounding.

4.11.4 The largest number which can be produced as the result of multiplication is

when (in terms of fractions) -0.5 is multiplied by -0.5. This gives the answer

+0.25. As this is within the range of Sirius, the 79 order can never set the OVR.

4.11.5 Care must be taken not to specify B = 9, if the square of a number is required,

Since during multiplication the original contents of accumulator 9 are destroyed.

- 19 ~-

The multiplicand in accumulator B is not destroyed, unless the same accumulator is

specified both in the A and B digits. (This is permissible since the more significant

half of the product does not appear in A until multiplication is complete). If

A = 9 the more significant half of the product appears in accumulator 9, the less

significant half being lost.

4.11.6 To summarise, B must not be equal to 9, but it is permissible to have A equal

to B or A equal to 9. In the latter case the most significant half of the product

appears in accumulator 9, and the least significant half is destroyed.

4.12 DIVISION

4.12.1 It is desirable that the operation of division should be the converse of

multiplication, so that if the product of u and v is divided by v, we should get u as

quotient, i.e.

4.12.2 The product uv is a double length number (20 digits in Sirius) and the

division operation is to divide this double length number (the dividend) by a single

length one (the divisor) to give a quotient and remainder, both single length.

4.12.3 The double length dividend is formed from C(A) and C(9) taken together as a

20 digit number. The divisor is taken from B. The division operation performed is

thus

a+1077?° x

b
9

where X y is taken as positive, i.e. if regarded as a fraction the range is 0 to l

rather than -% to +h.

4.12.4 In general the quotient resulting from such a division will not terminate

exactly, although of course as many digits accuracy as are required can always be

obtained by taking the process sufficiently far. In a computer it is necessary to

terminate the process at some fixed point, and in Sirius a single length, 10 digit,

quotient is obtained. The remainder is then the number which, if treated as a new

dividend, would enable the division to continue; it is always less than the divisor.

4.12.5 The division orders in Sirius work in an unsigned mode; this means that the

correct answers will only be obtained if both divisor and dividend are positive. To

deal with the case where either or both of these may be negative, it is necessary to

use a subroutine for division which will ensure that these are complemented when

necessary before dividing, and that the quotient is complemented if necessary after

dividing.

4.12.6 If negative numbers are used by a division order they will be treated as being
positive, in the range 0 to 1. Thus if we try to divide -.01 by +.4, in the machine

these are represented by

99000000000000000000 (the 20 digit dividend)

and 4000000000 (the 10 digit divisor)

The machine will interpret this as dividing .99 by .4, which overflows, and no
sensible result will be obtained, although the correct answer, -.025, is within
range. Conversely, if we divide +.4 by -.01, there is no correct answer, as -40 is
out of range, but the machine will divide .4 by .99, and obtain a quotient of
- 4040404040. This would appear to be within range, and overflow will not be set.

4.12.7 Bearing in mind the unsigned nature of Sirius division overflow will occur
if the quotient would be +1.0 or more. However, as normally one will in fact be using
the signed convention, the answer is really out of range if it is +.5 or more.

- 20 -

For example if we divide +.3 by +.4, both are positive and the quotient will appear as

7500000000. This is correct only if we ignore the sign convention. To cater for the

two possibilities, two versions of the division order are provided; the 70 order will

set overflow if the quotient is out of range according to the sign convention, i.e.,

if it is greater than or equal to .5, whereas the 75 order will set overflow only if

it is greater than or equal to +1.0.

4.12.8 Once a division overflows neither the quotient nor remainder can be expected

to bear any relation to the correct ones, i.e. the quotient obtained will not

necessarily differ from the correct, but out of range, quotient by a whole number.

4.12.9 Both division orders place the quotient in X9 and the remainder, which is

always positive and less than the divisor, in A. The division orders are summarised

below: -

F Effect — Description

; 107° a! _ at 107*° X 4 — _
70 xi +O Divide the double-length,

° b b unsigned number, in A and X9

by the unsigned number in B

setting the quotient in X9

and the positive remainder

in A. Set overflow if

Set overflow if Xf >

x5 2h.

75 x5 +————- 5 As for 70 order but over-

b flow is set only if

Set overflow if x} 7 1.0 xf > 1.0.

The N address is not used with either of these orders.

Example 1: Two positive integers, c and d, both less than 4999999999 are held in

300 and 301. Form the quotient and remainder on dividing c by d in

X9 and X8 respectively.

F AB N

14 9 QO 300

fpoubte length dividend to (8,9).
04 8 0

14 7 0 301 Divisor to X7%.

70 8 7 Divide, quotient to X9 and remainder to X8.

Example 2: c, d, e are positive fractions in X9, X3 and X4 respectively. Form

the fraction cd/e in X9, setting overflow if the result is out of range.

79 2 38 Form cd in (2, 9)

70 2 4 Quotient to X9.

4.13 COLLATION

4.13.1 It is sometimes necessary to pick out a part of a word for separate treatment

Or examination. This need may arise in many different ways, but the most usual is in
problems involving many small numbers, where it is common practice to “pack’’ two, or
more, Such numbers in one word. The collate order is then necessary to enable the

components of the word to be unpacked.

- 21-

4.13.2 The orders 66 and 68 have been provided to give these facilities; they are

described as “collating’’ orders, or as “and’’ orders. They operate on words digit by

digit, retaining or eliminating (i.e. replacing by zero) each digit according to the

value of the corresponding digit in another word, known as the mask. The mask in

general will consist of only 1’s and 0’s (the effects of using digits other than 1 or

0 in the mask will be explained later). The effect of a collate order can be

illustrated by an example.

OPERAND 1234567809

MASK 0000001111

RESULT 0000007809

4.13.3 The effects of the collate orders are as follows:

F Effect Description

66 a’ =a&N Retain or eliminate the digits in A,

according as to whether the digits

68 a’ = a & 10'N of N (10°N) are 1 or 0 respectively.

Example: Two numbers, c and d, are packed together in X2, c occupying the first

5 digits, and d the second 5. Place c in X3, with the last 5 digits zero,

and d, with the first 5 digits zero, in X2.

F A B N

04 3 2 Place (c, d) into X3

66 2 0] 11111 Retain d in X2

68 3 0 111110 Retain c in X3

The 0432 order will be explained later. It merely places a copy of X2

into X3 in this example.

4.13.4 The full effects of the 66 and 68 orders, and also the related 65 and 67 orders,

are described in 8.8.

- 22+

CHAPTER 5

MODIFICATION

9.1 MODIFICATION

9.1.1 It is often necessary to repeat a set of instructions several times, each time

operating on different storage registers. For instance, if 100 numbers in

consecutive addresses in the store are to be added up, it would be possible to write

out 100 orders to do it, but this would not be an acceptable solution because of the

length and inflexibility of the programme. A means is therefore required for making

a Single order in the store refer to a set of addresses one by one.

9.1.2 In principle this can be done with existing facilities, as it would be possible

to extract an order from the store, add one into its N-address, and plant it back to

be obeyed. If this were done in a loop of instructions, the programme to add up 100

numbers (or indeed any number of numbers) would need half-a-dozen or so orders.

9.1.3 This technique has been used, especially on earlier computers, but is usually

rather inefficient, and would be particularly so in Sirius. There is therefore an

automatic way of doing it, making use of XB, whose purpose has been hitherto

undefined.

5.1.4 This facility is known as modification of orders, and the effect is that 6

(i.e. the contents of XB) is added to N before this is used, either as an address or

as an operand. If XB is zero, 6 is also zero (in most orders) so orders in this form

are aS already stated. (see however 6.6.2).

5.1.5 The process of modification is as follows. N, with its sign extended by four

places to make it a ten digit number, is added to 0; the result of this is then

regarded as the true N to be used. The addition can thus be represented as

N + b

The four digits in the dotted lines are the sign extension of N, and are all 0’s

or all 9’s, depending on whether N is positive or negative. This addition can never

set the overflow register.

5.1.6 (N + 6) only exists in the order register of Sirius; that is the process of

modification has no effect on the order in the store, or on 6. The order obeyed is as

if B were 0, and the N address were N + 0, assuming that 10 digits were available to

hold this.

3.2 MODIFICATION OF THE ORDERS 10 - 14, 60, 64, 30 - 34, 50 - 59, 69

In all these orders, the N-digits specify an address, so only 4 digits (3 if the

store is only 1000 words) are actually used. In the jump orders however (51 - 59, and

69) the whole of (N + b) is placed in X1, if the jump is effective.

- 93 -

Example: If accumulator 2 contains the number 10 then the order

F A B N

11 3. 2 609 abh=a-n

subtracts the contents of location 609 + 10 = 619 from the contents of

accumulator 3.

5.3 USE OF ACCUMULATOR 1

5.3.1 It has been remarked that accumulator 1 is the control register and holds the

control address. For programming purposes this is the address of the next instruction.

This can be useful particularly in the case of the jump instructions. Suppose we put

1 in the B position of the order, that is we specify accumulator 1 in the B position.

Then the effect of this is to add the contents of accumulator 1, namely the control

address, to the N digits (which specify an address when used with jump instructions).

This can be stated:

when B = 1 the effective N address = C(1) + N

The order held in location 303

303 | 55 0 1 1

is an unconditional jump to C(1) + 1 = 304 + 1 = 305, remembering that the control

address is that of the next instruction i.e. current instruction address plus 1.

9.3.2 If this order is used anywhere in the store it means “jump ahead two

instructions’. No actual address is specified. The N is in fact a relative address

relating to the control address. A negative N may be used to jump back to a previous

order e.g.

56 2 1 -3

means “jump back two instructions if the most significant digit in X2 is zero’’.

Example 2 in section 3.3.5 could be re-written without reference to the locations

350 to 361, by using accumulator 1 as a modifier in this way

14 4 0 800 x’ =p

14 ».6 COO 810 xi =

01 5 0 3 Xe =T -3

r— | 57 > 61 o Jump 6 steps ahead if T = 3

01 5 0 1 xe =T-4

57 > 1 1 Jump 2 steps ahead if T = 4

11 4 0 801 x! =P-J

60 4 O| 805 | Store x, in 805

 | 59 0 1 2 Jump 3 steps ahead

>) 10 4 0 801 xP = Pt

60 4 0 805 Store x, in 805

. Navt inetrnuetian

- 24 -

5.4 LOOP STOP

If N = -1 is used with B = 1, and the instruction in location L is

F A B N

L | 55 a | -1

then the effective N address is (L + 1) - 12h, i.e. a jump to the same instruction.

Although strictly speaking the machine is obeying programme, in fact nothing in the

store is changing, and the machine is considered to have stopped. This type of stop

is called a loop stop and is often used at the end of a programme.

5.3 COUNTING

Sometimes it is required to perform an operation a given number of times, say

r, i.e. the operation goes through r cycles. This can be done by putting the number r

into one of the accumulators, to be used as a count. After each operation, r is

reduced by 1 and the result tested to see if it is yet zero.

Example: Form the sum of 10 numbers held in registers 500 - 509, and store the

sum in 525.

200 | 04 2 O 10 xf = 10 (to be used to

count through the set of

numbers).

1 | 04 3 O x; = 0 (modifier)

2 04 4 0 Clear X4 tq add in required

sum

—> 3 10 4 3 500 xf = 0 + C(500), first time

4 00 3 0 1 Add 1 to modifier in X3

5 01 2 0 1 Subtract 1 from X

Lg 52 2 0 203 Jump back to add in next

number if x #0

T 60 4 0 525 Store sum in 525

N.B. This example could be done more economically by using only one accumulator for

both modifying and counting. The counter-modifier is set equal to 9 and we then

work backwards through the store, reducing the count by 1 at each step, until

it becomes negative.

5.6 MODIFICATION OF THE ORDERS 05 - 09, 25 - 29, 68

39.6.1 In these orders N is used directly as an operand, but modification is still

the same, in principle. The contents of the accumulator specified in the B-digit are

added to the N digits, before the execution of the order, so that (N + 6) replaces N,

as the order is carried out. (The order remains unaltered in the storage register

which contains it).

5.6.2 Since, in these orders, the 6 N digits are added to, subtracted from, or

collated into, the m.s. end of C(A) (or 10 x C(A) in the case of the group 2 orders),

it is only the 6 l.s. digits in B which can be added to N. The four m.s. digits are

irrelevant. Modification of the 05 - 09, 25 - 29, 68 orders can be represented as

- 25 -

N |6 digits

Swe b

B 4 c

A |6 1 4

These orders can be re-written as:-

Order Effect

05 a’ = a+ 10" (N + 6)

06 a’ = a- 10" (N+ 5)

07 a’ = -a - 10° (N + b)

08 a’ = -a + 10” (N + b)

09 a’ = 10" (N + b)

25 a’ = 10a + 10" (N + b)

26 a’ = 10a - 10% (N + b)

27 a’ = -100 - 10° (N + b)

28 a’ = -10a + 10" (N + b)

29 a’ = 10a + M.S.D. of 10° (N + b)
in L.S.D. position

68 a’ =a& 10" (N+ b)

Example: If X2 contains the number 11 and X5 the number 3000000023, then the order

F AB N

05 5 2 344 a’ = a + 10° (N + b)

gives xt = 3003550023.

5.7 MODIFICATION OF THE ORDERS 00 - 04, 20 - 24, 66

5.7.1 These orders are similar to the O-order and 2-order groups above, except that

the N digits are now added to or subtracted from the l.s. end of the A-accumulator

(or 10 times the A-accumulator). In this case the sign of N is extended to the full

10 digits before operating on the contents of A, and also when the order is modified

the entire contents of the B-accumulator are added to the extended form of N, before

this is added to, subtracted from, or collated into the l.s. end of C(A) or 10 x C(A).

39. %.2 Modification of the 00 - 04, 20 - 24, 66 orders can then be represented like

this:
9

“Extended” N | 4 6

> N+ O

These orders can be re-written: -

Order

00 a’ =

01 a! =

02 a’ =

03 a! =

04 al =

20 a’ =

21 a’ =

22 a!’ =

23 a’ =

24 a!’ =

66 a’ =

Example 1: If X3 contains the number

gives

Example 2: If 1000000

gives

a

x

x

F

a)

Effect

a + (N + b)

a - (N + b)

-a - (N + b)

-a + (N + b)

(N + 6)

10a + (N + 6)

10a - (N + 6)

-10a - (N + 6)

-10a + (N + 6)

10a + M.S.D. of (N + 6) in

L.S.D. position

a & (N + b)

10, X4 the number 120, then the order

A B N

00

4 3 636

"=a + (N + 6)
!
4

f
7

120 + 636 + 10 = 766

is in X3 and -120000089 in X7, then the order

23

7 3 | -3000 | a’ = -10a + (N + 5)

= 1200997890.

3.8 ARITHMETIC IN TWO ACCUMULATORS

In the case when N = 0, the orders 00 - 04 and 20 - 24 reduce to a simplified

form, allowing arithmetical operations between two accumulators. They become: -

Order

00

01

02

03

04

Effect

a+b

a - 6

-a- b

-a+b

b

Order Effect

20 a’ = 10a + b

21 a’ = 10a - b

22 a’ = -10a - 6b

23 a’ = -10a + b

24 a’ = 10a + M.S.D.

of 6 in L.S.D.
position

- 27 -

Example: If small integers c, d, e are stored in locations 355, 356, 357, form d? -

4ce and store in location 499

F A B N

14 2 O 355

14 9 0 357

79 3. 2

04 2 9

00 2 2

00 2 2

14 3 O 356

04 9 3

79 4 3

01 9 2

60 9 90 499

x5 = C¢

x5 =e

x5 = ce

x5 = ce

x5 = 2ce

x5 = 4ce

x) =d

x5 = d

x! = d?

x’ = d* - 4ce

Store in 499

Note that it is faster to form 4ce by doubling ce twice rather than by

multiplication, even though one extra order is required.

5.9 MODIFICATION OF THE ORDERS 40, 44, 45,

5.9.1 There is no modification of the 40 and 44 orders, as the N digits are not used.

5.9.2 The 45 and 49 orders both refer to the least significant digit of N. This is

really (N + 6), and the complete effect of these orders is therefore

45 a!
10

KW

1 (a + 5) + L.S.D. of (N + 6) in M.S.D. position

49 a! =! + L.S.D. of (N + 6) in M.S.D. position

In practice N will usually be zero in these orders, and their effect and description

are then

45 a’

49 a! = 1 a+u.s.p. of b
10

= (a + 5) + L.S.D. of 6 Rounded shift-down of one place,

the l.s. digit of 6 being copied

to the m.s. digit of a.

Unrounded shift-down of one place,

the l.s. digit of b being copied

to the m.s. digit of a.

Example: Shift down, unrounded, by one place, the double-length number in X8 and X9.

49 9

44 8

Shift Ky down, taking

the top digit from the

bottom of Xa.

Shift Xe down one place.

- 28 -

39.10 THE DUMMY ORDER 50

The 50 order is a “dummy”? order. That is there is no effect on anything. It

can be written:

no effect

This order is sometimes used to replace orders which are found to be redundant

during programme development, or may be written into the original programme at points

where expansion may be necessary.

5.11 THE “WAIT” ORDER 99

5.11.1 The 99 function causes the computer to wait. It can be used to make a pause

in the running of a programme. The machine may be re-started by pressing the “continue”

button.

5.11.2 The order can be written as:

99 0 0 Wait

It is often inserted at a point where a data tape has to be read, to enable this

to be placed in the tape-reader.

5.12 USE OF SUBROUTINES

5.12.1 There are a number of processes carried out by computers which are used by more

than one programme, or at different points of the same programme. A piece of programme

which performs a specific operation, such as printing out one number on the teleprinter,

is known as a subroutine. It is in a sense subservient to the main programme, called

the master programme, and it will usually perform its specified operation on numbers

supplied to it by the master programme, and then re-enter (or “return control’? to) the

master programme.

5.12.2 One main programme may employ several subroutines, and in general some of the

subroutines may themselves use subroutines, so that the whole structure may be on

several levels, thus:

MASTER - PROGRAMME

1]

Subroutine

A

1

Subroutine

B

{|

Subroutine

used by

subroutine

B

]

Subroutine

C

i

Subroutine

A

- 29 -

9.12.3 The order needed to call in a subroutine is called the “cue’’ to the subroutine;

it is always an unconditional jump, jumping to the first order (or some other order as

given by the subroutine’s specification) of the subroutine.

5.12.4 When the subroutine has finished its task it must return to the master programme

at the appropriate point. It normally does this by obeying a modified jump instruction;

the N-address in this instruction will be zero and the modifying accumulator will

contain the address of the order in the master programme to which control is to be

returned. The master programme must thus ensure that this modifying accumulator, which

is conventionally X2, but is really determined by the way the subroutine is written,

contains the correct address at the point when the subroutine is entered.

5.12.5 A typical sequence of orders to enter a subroutine starting in word 850 say, is

F A B N

512 |04 2 0 514 Set “link” in X2

513 55 0 0 850 Enter subroutine
SUBROUTINE

RETURNS HERE 9514
The address set in X2, or sometimes X2 itself, is called the “link’’. The order in the

subroutine which finally returns to the master programme will be

55 0 2 Jump to the address

specified in X2.

3.13 THE 69 ORDER

5.13.1 As the two orders given in 5.12.5 are needed every time a subroutine is

entered, an order has been provided which has the effect of both. It is

69 a’ = x, and jump to N

This places the address of the next instruction into A, and jumps. Thus in the master

programme, in the same example as above, we write

512 | 69 2 O 850

and the subroutine will now return to 513, as 513 is placed in X2 by the 69 order.

5.13.2 The 69 order is not quite as flexible as the two separate orders, as it is

only possible to make the subroutine return to the next instruction. In practice

this is the usual requirement, but if it is not, it will be necessary to use two orders

as in 5.12.5.

5.13.3 If X1 is specified in the A part of a 69 order, the machine will stop. This

order has been banned from the code as it could have had no useful effect. This will

be referred to again in Chapter 6.

3.14 THE 24 AND 29 ORDERS

5.14.1 The 24 and 29 orders belong to groups discussed in Chapter 4, but they have

been left until now, as they are really only useful when modified. Their

specification is as follows, regarding (N + 6) as a ten digit number.

- 30 -

It 24 a’ = 10a + D, of (N + })

~

Mi 29 a 10a + D, of (N + b)

Example 1: Suppose X2 contains 1234567890 and X3 contains 9876543210.

Then the effect of

24 3 2 23

is

N 0000000023

b 1234567890

N+b (234567913

——y

a’ 8765432101

If 29 is used instead of 24, the effect is

N 0000000023

b 1234567890

Ntb 1234567913

—\
a’ 8765432105

5.14.2 In practice N is often zero with both these orders. The 24 is needed for a

double-length shift up of one place, when the M.S.D. of the least significant half of

the double-length number has to be transferred into the L.S.D. position of the most

Significant half. The 29 is less common, but is useful in subroutines to extract a

digit from the D, position which has been set there in the main programme.

- 31-

CHAPTER 6

INPUT AND OUTPUT; THE OPERATORS CONTROLS

6.1 PAPER TAPE AND TELEPRINTER EQUIPMENT

6.1.1 The equipment fitted to Sirius, so that orders and numbers can be fed into the

computer and results extracted from it, uses standard five-hole punched paper tape.

This tape has a row of small holes punched ten per inch along its length; these are

called sprocket holes and are used to position the tape and move it. Each sprocket

hole defines the position of a “character’’ which is made up of a maximum of five holes,

each slightly larger than a sprocket hole, punched in a row across the tape and in

line with the corresponding sprocket hole.

6.1.2 The tape is read into the computer by one (or more) Ferranti High-Speed photo-

electric tape-readers type TR5, which can read at a maximum speed of 300 characters

per second. Output is via a Teletype punch (again more than one can be attached)

operating at up to 60 characters per second; this produces five-hole punched paper

tape. This output tape can then be printed out on a page teleprinter, either

immediately, or later. Teleprinters print at 10 characters per second (older types

at 7) so if there is a lot of output from a particular programme it may be impossible

for one teleprinter by the side of the computer to keep up; it would then be usual

to take the tape away from the computer when the programme had finished and print it

out on other equipment.

6.1.3 The input tape for the computer is prepared either on a keyboard perforator or

on a page-teleprinter with re-perforator attachment. Both have keyboards rather like

those on typewriters; when a key is operated the corresponding character is punched

and the tape is advanced to the next sprocket hole position. There is a facility

for back-spacing the tape so that a wrongly punched character can be over-punched by

the “Erase”? character, consisting of 5 holes, and therefore capable of obliterating

any other character. The keyboard perforator produces just a tape; the page tele-

printer with reperforator attachment produces a printed page in addition.

6.1.4 There are 32 (2°) possible characters with the five-hole code used, which is

identical with that used for the Ferranti Pegasus and Mercury computers. Most of the

32 tape characters correspond to two alternative printed characters on the teleprinter

type-face, in much the same way as a typewriter prints both capital and small letters

from one set of keys. These alternative states of the teleprinter are called

figure-shift and letter-shift, and there are two special tape characters called by

these names which set up the teleprinter. Thus, if a figure-shift character is read

from a tape being printed out on a teleprinter, every symbol thereafter will be

printed according to the figure-shift code, until the letter-shift symbol is read.

Then the situation is reversed and everything appears in letter-shift until a figure-

shift is read.

6.1.5 Figure-shift is often denoted by ¢, and letter-shift by A.

6.1.6 In addition to ¢ and A there are two characters which cause no printing; they

control the movement of the paper in the teleprinter. Carriage return (CR) causes

the next character to be printed at the left margin of the same line; line feed (LF)

causes the next character to appear on the next line. CR is almost always followed

immediately by LF to ensure the next character appears at the beginning of the next

line. CR and LF are available only in figure-shift.

- 32 -

FIG: 6.1

Character on tape | Letter-Shift | Figure-Shift | Value inside Computer

100. 00 P 0 00

000. 01 A 1 04

000.10 B 2 05

100.11 S 3 09

001. 00 D 4 10

101.01 U 5 14

101.10 V 6 15

001.11 G 7 19

010. 00 H 8 20

110.01 Y 9 24

110.10 Z + 25

010.11 K - 29

111.00 . . 30

011.01 M LF 34

011.10 N Space 35

111.11 Erase 39

000. 00 Figure-Shift 50

100. 01 Q ? 54

100. 10 R 2 55

000. 11 C * 59

101. 00 T - 60

001. 01 E (64

001.10 F) 65

101.11 W / 69

110.00 X x 70

010.01 I 7 74

010.10 J = 75

110.11 Letter-Shift 79

011.00 L Uv 80

111.01 ? n 84

111.10 £ CR 85

011.11 0 , 89

6.2 THE TAPE CODE

The code used as between the printed symbols, the paper tape, and the values that

arise when a character is read into the computer are shown in Figure 6.1. It is not

strictly necessary for the user to have any knowledge of the appearance of the

characters on the tape, as tape can always be printed out on a teleprinter, but in

practice the user soon learns to recognise the more common characters.

6.3 THE INPUT AND OUTPUT ORDERS

6.3.1 The 71, 72 and 73 orders are provided to enable the programmer to operate the

reader and punch. It will be noted from Fig.6.1 that each tape character is

represented by two decimal digits in the computer; these two digits are always the

two most significant in a word. The action of the three orders is as follows.

T1 Read the character now over the tape reader photocells into

the two most significant digits of XA, then step the tape

on to the next character. The 8 least significant digits

of XA are made zero.

72 Punch out the character determined by the two most

significant digits of XA. The eight least significant

digits of XA are irrelevant.

73 Perform a 72 order, then a 71, using the same XA.

XB and N are irrelevant in these three orders (unless more than one reader or punch

are in use, see 8.11). The 73 order is in practice rarely used.

6.3.2 The input/output orders may be summarised thus -

71 a’ = (TAPE)

72 (TAPE)! = a

73 (TAPE)! = a, then a’ = (TAPE).

Example 1: Read tape, ignoring blank tape (i.e. figure-shift) until a character

other than blank is found. Leave this character in X9. (The code for

blank tape is 50, as in Table 6.1).

F A B N

240 71 9 O Character to X9

241 06 9 0 | 500000 | Subtract 50 from m.s. end

242 57 9 O 240 | Return if blank

243 05 9 O 500000 | Restore character in X9

Exainple 2: Punch CR/LF.

09 9 0 850000 Set CR code in X9

72 9 0 Punch X9

09 9 0 340000 | Set LF code in X9

72 9 0 Punch X9

6.4 SPEED OF INPUT AND OUTPUT

6.4.1 As mentioned above, the tape reader has a maximum physical speed of 300

characters per second; this means that, once a tape read order has been initiated

the next one cannot start until 3-1/3 milliseconds have elapsed. After reading the

character the computer goes on to obey subsequent orders, but if one of these is

found to be another tape read order, and 3-1/3 ms have not elapsed, the computer will

be held up temporarily until the reader has completed the action of stepping on the

tape.

6.4.2 A Similar situation exists with the tape punch, except that the speed is 60

c.p.sS. (110 c.p.s. on later models), and the minimum time between punching successive

characters is consequently 16-2/3 ms. (or 9.1 ms.).

- 34 -

6.5 CODE CONVERSION ON INPUT/OUTPUT

6.5.1 When reading or punching decimal digits it is necessary to convert between the

value inside the computer as given in Fig.6.1 and the actual value of the digit itself.

This can be done very simply as follows.

6.5.2 Input

Form 4 times the value, and take the first digit of the result, thus:-

Tape Character | Value as read | 4 times Value

0 00 00

1 04 16

2 05 20

3 09 36

4 10 40

5 14 56

6 15 60

7 19 76

8 20 80

9 24 96

The digit required thus arises in the M.S.D. position, from which it can be

conveniently picked off and added into the L.S. end of another accumulator.

Example: Write an input loop producing a decimal number in X4. The tape is

assumed to be in figure-shift.

F A B N

04 4 0 Clear X4

rm 71 9 0 Read character

54 9 0 Exit if 50 to 89 (¢ to ,)

00 9 9 Double x,

r7— | 54 9 0 Exit if now 50 or more

(i.e. + to erase).

00 9 9 Double x, again

24 4 9 10 x, + this digit

, 155 0 oO Return

v
The loop is left whenever a character other than a decimal digit occurs. Further

programme is required to deal with the various symbols which could occur. The jump

addresses are left blank as the programme is incomplete.

6.5.3 Output

Form 25 times the value of the digit, plus 15; this is a three digit integer

of which the top two give the correct value for sending to the punch.

FIG: 6.2

THE

5
i

. v2

ot te :
}

CONTROL UNIT AND DISPLAYS.

- 35 -

Decimal Digit | 25d + 15 | Top two digits

0 015 01

1 040 04

2 065 06

3 090 09

4 115 11

5 140 14

6 165 16

7 190 19

8 215 21

9 240 24
It will be noted that the two digits produced by applying this rule are not always

exactly the same as the values given in Fig.6.1. The rule does nevertheless work, as

the series of values in Fig.6.1. has many gaps, and each value not given does lead to

some character being punched when an output order is given. The apparently wrong

values derived from applying the 25d + 15 rule do in fact lead to the correct

character being punched. This will be more fully explained in Chapter 8. A similar

situation cannot of course arise on input; whatever character is read from the tape,

one of the 32 values listed in Fig.6.1. will appear in the specified accumulator.

Example: X6 contains a decimal digit, value 0 to 9 at its l.s. end. Punch this out

on the output tape.

F A B N

09 9 0 025000| .025 to x9

79 6 6 25d to m.s. end of X9

05 9 0 015000; 25d + 15 to m.s. end of X9

12 9 0 Punch X9
Note the position in the word in which the constant 25 has to be placed to ensure 25d

appears in the desired position.

If it is desired to make efficient use of a punch with speed greater than 125 c.p.s.

it is worthwhile to avoid the multiplication order. See programme sheets of library

subroutine S5.

6.6 CONTROLS

6.6.1 All the control buttons used by the programmer during development of programmes

and normal operation of the computer are mounted on a unit which can be moved about on

the desk. The layout of the buttons is shown in Fig. 6.2. There are also two rows of

10 decimal digits built into the main machine facing the operator, together with a

number of lights; the two rows of decimal digits represent two computer words, and the

lights indicate various states of the machine.

6.6.2 The main bank of 100 buttons, arranged in 10 columns of 10, are called the

keyboard, or the handkeys; they represent one computer word, and the buttons in each

column of 10 are interlocked so that only one can be depressed at a time*. There is

* Note that it is mechanically possible to have more than one button in a column down at once if

more than one is pressed simultaneously. This should not be done, as it can lead tocertain forbid:
-_— —~— = L

- 36 -

a bar available to clear the whole keyboard in one operation; otherwise each column

is set individually. During the course of a programme the computer may “read’’ the

keyboard, i.e. a word corresponding to the setting of the keyboard may be obtained.

There are in fact two groups of orders in which the keyboard appears as an operand,

thus -

Function Operation

15 a’ = a+ (K.B.)

16 a’ = a - (K.B.)

17 a’ = -a - (K.B.)

18 a’ = -a + (K.B.)

19 a’ = (K.B.)

35 a’ = 10a + (K.B.)

36 a’ = 10a - (K.B.)

37 a’ = -10a - (K.B.)

38 a’ = -10a + (K.B.)

39 a’ = 10a + M.S.D. of (K.B.) in

LSD position

With all these orders XB must be 0, and N is irrelevant. (The effect of these orders

if XB is not zero will be described in Chapter 8). In practice the programmer usually

wishes merely to read the word on the keyboard straight into an accumulator, and so

will use the 19 order.

6.6.3 The bank of buttons on the right of the control unit consists of 5 pairs and

5 single ones. The pairs are each interlocked so that one or the other must be

depressed, and in effect are two position switches; the single ones are all spring

loaded so that they can be used to give signals to the computer to initiate some

specified action.

6.6.4 When the computer is ready for normal use by a programmer, all the five pairs

should be depressed to the left. The effect of these 5 pairs is as follows.

ISOLATE 0-99/FREE 0-99

ISOLATE 100-199/FREE 100-199

These two pairs enable two sections of 100 words each of the store to be made so that

no order writing into them can have any effect. These two sections taken together are

used by the Initial Orders, to be described in Chapter 7, and it is desirable,

especially with programmes being tried out for the first time, that whatever else they

may do, they cannot accidentally destroy the Initial Orders. A correct programme will

almost certainly in practice work perfectly well whichever way these buttons are set,

but is nevertheless recommended that as a matter of policy, the Initial Orders should

normally be kept isolated.

No K.B. WAIT/K.B. WAIT

There is a facility in the machine which causes the computer to stop whenever control

reaches an address specified on the four l.s. digits of the keyboard. This is useful

when developing programmes, as it enables one to run up to a certain predetermined

point at full speed, then perhaps to look at various accumulators, or to see which way

a critical jump order is going. Normally however, this facility is not required, so

it is only operative if K.B. WAIT is depressed.

AUTO/MANUAL

If this button is in the AUTO position, the computer will obey programme from the store

in the manner described in earlier chapters. It is sometimes useful however to make the

- 37 -

computer obey one or two orders which are not available in the store or on tape; this

can be done by pressing the MANUAL button. In this state the machine will obey orders

from the keyboard. This mode of operating the computer is not usually to be encouraged

for the programmer, as

(a) It is very easy to make a mistake.

(b) There is no record afterwards of what has been done.

(c) Much computer time can be taken up, which may well be wasted if a mistake

is made.

The AUTO/MANUAL button should only be operated if the WAIT button (see below) is down.

WAIT/RUN

This is perhaps the most important button-pair. If WAIT is depressed the machine will

not obey orders, but merely wait until some action is taken by the operator. A

programme which is running can be stopped at any time by pressing WAIT.

6.6.5 Of the five single buttons, only two are in common use.

CLEAR CONTROL

This is usually the first button to be operated when a programmer begins to use the

machine. Its effect is merely to clear X1, the control address, ensuring that when the

machine begins obeying orders, it will enter the Initial Orders; these are arranged

to begin at word 0.

As it would be harmful to clear control during the operation of a programme, it

has been arranged that this button is inoperative if the RUN button is down.

CONTINUE

This button has two uses. If the machine has stopped because of a 99 order or a key-

board wait, pressing this button will cause it to go on from the next order. When the

WAIT button is down however and the machine not obeying programme, pressing this button

will cause one order to be obeyed; this will be the next order in the programme if

the machine is on AUTO, or the order on the keyboard if it is on MANUAL. Used in the

second way, it may be called a single-shot button; this mode of operation can be used

in developing a programme, but, like manual operation, should not be used if it can

be avoided, as considerable amounts of machine time may be used to little or no purpose.

6.6.6 The effects of the other three single buttons, PRIMARY INPUT, INTERRUPT, and

ACCEPT INST. are explained in 8.5, 7.14.6 and 8.11 respectively.

6.7 MONITORING FACILITIES

6.7.1 The upper display always shows the instruction currently being obeyed. If the

machine is obeying a programme it will not usually be possible to read this display

as it will be changing too rapidly. When the machine is stopped for any reason this

display will show the order which was last obeyed. It will be shown in modified forn,

i.e. the N digits will be the actual value that was used in the execution of the order,

not necessarily the value written in the order.

6.7.2 The lower display can show the contents of any accumulator, as selected by

pressing one of the buttons in the lefthand bank on the control unit. This column of

buttons is interlocked in the same way as the columns of the keyboard. Again if the

machine is running it may not be possible to read the display, but if an accumulator

which is changing only rarely is selected, it may be possible. It is frequently useful

to select X1, the control address, on this display.

- 38 -

6.7.3 The bottom button in the display selection bank is labelled DISPLAY. This

really corresponds to accumulator 0 used as a destination; this can only happen when

XO is specified in the A position of an order. Thus the order

F A B N

14 0 0 432

causes the contents of register 432 to appear on the monitor, provided the DISPLAY

button is down. Note that the order must be obeyed at a point in time when the

DISPLAY button is down; it is not sufficient for the order to be obeyed when some

other accumulator is selected, and to then select DISPLAY.

6.8 INDICATOR LIGHTS

6.8.1 There are a number of indicator lights to the right of the displays. The

functions of these are as follows:

Group 1 (Red)

The first four of these (the left-hand group) should all be off before normal

operation of the machine begins.

Not full speed

There is a facility on Sirius to make the machine run at slower speeds than

normal; this is sometimes useful during development of programmes. The facility

is controlled by the left-hand knob on the front edge of the control unit, and

speed can be varied from full down to a few orders a second. This light is on

whenever the machine is set to run at any speed below full.

Parity Off

This light will be on if the store parity check has been rendered inoperative

by a switch at the back of the machine. The facility to inhibit this check is

only for use by the maintenance engineer, and the programmer should not use the

machine if this light is on. (The working of the parity check is explained in 8.3.4).

Primary Input

There are a few orders built into the machine to enable the Initial Orders to

be read in. This will be described more fully later. This light is on whenever the

machine is obeying these orders rather than orders from the store or the keyboard.

Margins On

This light will be on if any of the engineers marginal testing facilities are

Switched on either in the computer itself or in the store cabinet.

Parity Stop

This light comes on if a parity stop occurs. This indicates either a machine

fault, or that the programmer has referred to a non-existent store address, or that

he has attempted to read from an address not written into since the machine was

last switched on. Which of these is the reason can usually be established by

manual inspection of the last two or three instructions obeyed.

6910 Stop

This light comes on when the machine tries to obey a 69 order with X1 specified

in the A position. This will usually be a programme fault.

It should be noted that Parity Stops and 6910 Stops can only be cleared by use of

the ACCEPT INSTRUCTION button (See 8.11).

- 39 -

Group 2 (White)

Input Busy

This light is on whenever the computer is calling for a character from an

input channel, and is held up for it. It therefore flickers continuously during

most input programmes. If it comes on steadily it usually implies a defective

tape reader, or, more commonly, a programme fault leading to a non-existent tape

reader being called for. This can be recognised by examining the read instruction

in the upper display.

Output Busy

This behaves very similarly to the Input Busy light, indicating the state of

the output channels. Note however that this light can be lit due to a programme

attempting to use the punch when this is switched off.

90 Group Wait

This comes on whenever a group 9 instruction (normally 99) is encountered.

The programme carries on on pressing the CONTINUE button.

Keyboard Wait

This comes on whenever the machine stops on a keyboard wait (See 6.6.4 above).

Group 3 (Green)

These six lights give information to the maintenance engineer. The light labelled

OVR SET is the only one normally of any interest to the programmer. (But see 8.11.2).

- 40 -

CHAPTER 7

THE INITIAL ORDERS

7.1 THE NEED FOR PARAMETERS

7.1.1 When writing any programme consisting of more than a few orders it is

inconvenient to have to decide where each part of it is to be stored at the time when

the orders of the programme are being written down. In these circumstances it is

not possible to fill in all the addresses in the orders, as many of these depend on

the actual position of the piece of programme in the store.

7.1.2 Consider for example the orders required to find the modulus of the number

in X8.

F A B N

59 8 0 * Jump if Xe positive

02 8 0 Negate x,
The address marked with an asterisk cannot be filled in until it is known exactly

where the orders are to be stored.

7.1.3 It is of course possible to leave blank all the addresses which cannot be

filled in until the whole programme is written and all decisions on where it is to be

stored have been taken. The process of filling in the correct addresses is however

very tedious, and one in which it is very easy to make errors. Also, if it is later

found that one section of the programme has to be lengthened by a few orders many of

these addresses may have to be changed. To avoid these difficulties parameters have

been introduced.

7.2 PARAMETERS

7.2.1 Parameters allow the programmer to fix on certain reference points in his

programme, and to refer to these by labels. These labels will only be changed into

the true addresses at the last possible moment, as the programme is read off paper

tape and placed in the store of the computer.

7.2.2 Parameters in Sirius are denoted by a small letter “v’’ followed by a number.

Thus the parameters available are vl, v2, etc. These can be written in the N-position

of a Sirius order instead of an absolute address, and each will be changed into an

absolute address, (as allocated by the programmer) as the tape is read. It is

necessary to be able to refer to addresses close to one fixed by a parameter; these

will be referred to by writing, for example, 2vi, if it is necessary to specify an

address 2 further on from that known as v1. Note that 2v1 is not to be interpreted as

2 times vil.

7.2.3 It is now possible to rewrite the two orders above using a parameter. Suppose

the address of the first order to be denoted by v3

v3 59 8 0 2u3 Jump to 2v3 if x

positive

1v3 02 8 0 Negate x,

2u3

- 41 -

7.2.4 The numbers before a parameter can be negative if required. Thus to jump

unconditionally to the order 10 places before that labelled v4, we can write

F AB N

55 0 0 -10v4 Jump to -10v4

7.3 SETTING PARAMETERS

7.3.1 At some stage all parameters referred to on a tape have to be set to the

required value. This is done by writing down an equation of the following form:

v3 =324

This will cause the parameter v3 to be set equal to 324. Once this has been read

an order such as

14 2 0 7Tvu3

will be placed in the store as

14 2 O 331

7.3.2 It is essential that no parameter be referred to on the programme tape before

it has been set by an equation such as the above. In general it is desirable for all

the parameters used to be set by a series of these equations at the beginning of the

programme tape. If it then becomes necessary to reallocate the store used by the

various parts of the programme, only these equations, all occurring together, need

be changed.

7.4 THE PURPOSE AND MODE OF ACTION OF THE INITIAL ORDERS

7.4.1 The Initial Orders are the principal means by which programmes are fed into

the computer; they form a programme occupying the first 200 words of the store. This

programme is normally safeguarded against accidental overwriting as described in 6.6.4.

7.4.2 The Initial Orders fall into two fairly distinct sections; the first, usually

known as INPUT, is designed to read tapes punched in a convenient code and to convert

the information on them into the form required by the computer. The information

punched on the tape consists mainly of orders and numbers intended to be stored; there

are in addition certain “directives’’, which are not stored in this sense, but are used

to control the operation of INPUT. The second part of the Initial Orders is the

MONITOR programme; the purpose and use of this will be described later in this

chapter.

7.4.3 The orders and numbers which are to be placed in the store are punched from the

programme sheets in a natural way which is described in detail below. The way in

which the punching is done is such that the printed version of the tape corresponds

closely to the original programme sheet, i.e. each order or number will be on a

separate line, and there will be spaces between different parts of orders.

7.4.4 To start off a particular programme, the tape is placed in the reader, and the

CLEAR CONTROL button pressed, with the WAIT/RUN button on WAIT. Then on pressing

RUN, (and also CONTINUE if the machine is already on a stop) the machine will begin

to obey the INPUT programme, and this will immediately start to read tape.

- 42 -

7.4.5 The basic information which must always be given to INPUT on any programme

tape is as follows:

1. Where it is to put the orders or numbers it is about to read.

2. When it has reached the end of a tape, and what it should then do.

7.4.6 When one order or number has been read, the resulting word is placed in the

store at an address known as the “Transfer Address” (T.A.); the T.A. is then increased

by one, and INPUT goes on to read the next order or number. Thus orders and numbers

as read from the tape are stored in consecutive locations. It is necessary however to

be able to set the T.A. at the beginning of the tape, or whenever a gap is to be left

between groups of words.

7.4.7 The T.A. in Sirius is treated as parameter 0, i.e. v0, which can be written as

just v. It can thus be set in the same way as a parameter, by an equation e.g.

v=220

This directive will cause the order or number following to be placed in word 220, the

next one to 221 and so on. The only difference between ordinary parameters and the

T.A. is that the latter gives the address of the word about to be stored, and is

stepped on by one automatically after each word. The T.A. can therefore be referred

to in orders e.g. the following order is a loop stop.

F A B N

55 0 0 v Jump to the address of

this order.

7.4.8 When allocating storage space it is necessary to allow for that used by INPUT.

The programme for this always occupies addresses 0-199, and a certain working space

beyond this is used by INPUT to hold the parameters. The T.A., v0, is held in 200, v1

in 201, and so on as far as necessary. The user must therefore not begin his programme

until some way beyond 200; he might start at 220, or, if a lot of parameters were to

be used, at 250. These particular addresses allow space for 19, or 49, parameters, as

well as the T.A. If necessary, the programme can later use the space which was reserved

for parameters, once it has been assembled in the store. Also, if the whole store is

required, it is possible to use the 200 words which INPUT normally occupies. This is

explained more fully in 8.7%. It is not possible, of course, to use INPUT to read

programme into locations 0-200, or into any space occupied by parameters (unless no

further reference occurs on the tape to the parameters concerned).

7.3 PUNCHING OF NUMBERS

Numbers, punched as either integers or fractions, may be read in by INPUT, and

will be stored in accordance with the T.A., The following are specimens of what may be

punched:

On Tape Stored in Machine

125 CR/LF 0000000125

-125 CR/LF 9999999875

0.312 CR/LF 3120000000

Sp Sp +.312 CR/LF 3120000000

-.312 CR/LF 6880000000

7654321012 CR/LF 7654321012

87654321012 CR/LF 7654321012

5000000000 CR/LF 5000000000

-0.5 CR/LF 5000000000

+0.5 CR/LF B3no00anNNNNAN

- 43 -

These do not form a comprehensive list of all possible combinations, as this would be

very long indeed. They do however indicate some of the following rules.

1. All numbers must be terminated with CR/LF.

2. The + sign is optional with positive numbers.

3. Initial Spaces before a number begins (with a sign, a. or a digit) will be

ignored. This makes it possible to lay out the data print-outs if desired.

4. Er (the Erase symbol) is ignored throughout except between CR and LF.

5. In addition to Space, the characters LF and CR/LF will be ignored before a number.

6. There is no check on overflow. A sensible answer cannot be obtained if more than

10 digits are punched with either integers or fractions. The fact that no warning

is given of this makes it undesirable in general to use INPUT for reading large

quantities of data.

7.6 PUNCHING OF ORDERS

7.6.1 The simplest type of order to punch is one in which the N address is zero.

This can then be omitted and the order will consist of four digits, for example:

0490 CR/LF

The four digits must be punched without any intervening spaces and must be terminated

by CR/LF. As with numbers, Erase can occur anywhere except between CR and LF, and the

order may be preceded by Space, LF or CR/LF. There would be no advantage in having any

spaces before an order, however.

7.6.2 If there is anything to be punched in the N position it must be preceded by

Space. (This serves as a signal to INPUT that what follows is to be placed in the N

position of the order; it must be remembered that this in fact occurs before the FAB

when the order is assembled in the word). Thus a simple order with an N-address

could be punched as:

0490 Sp 123 CR/LF

This will appear in the store as 0001230490.

7.6.3 Parameters are punched as they are written, using the small figure-shift v.

Thus possible orders are:

0490 v10

0490 11v16

0490 -11716

The last two N-addresses should be thought of as 11 + v16 and -11 + v16 of course. It

is possible to punch the + sign, but this is unnecessary and contrary to convention.

Parameters are sometimes required negatively and the following type of order is

permissible;

0490 -vil

Note however that -0v1ll is interpreted as -O+v11l, i.e. vl1l.

7.6.4 It is occasionally useful to punch a. in an order. This occurs most

frequently with 05 - 09 and 25 - 29 orders. An example is:

0950 .23

This is equivalent to

0950 230000

- 44 -

and appears in the store as

2300000950

7.6.5 In a few orders the N-address is made up of two, or even more, parts of the

type already described. In fact, as INPUT just adds together all the parts of an

order, (including FAB treated as one part), there is no limit on the number of parts

than can be punched. The following are examples, showing what is stored in each case.

v1=440

v6=250 ~

1086 .2vl 2004401086

2874 -v6v1. 62 6201902874

1234 -1-v6.2 1997491234

Orders as complicated as the last two will be very uncommon in practice.

7.7 DIRECTIVES - WARNING CHARACTERS E,J,N, Z.

7.7.1 An equation punched on a programme tape is an instance of what is known as a

“directive’’. The essential feature of a directive is that it is not itself stored, but

gives information to INPUT concerning the programme. There are several other

directives, all of which are introduced by a single letter. This letter is called

a “warning character’’. All warning characters must be punched as:

Letter-shift, Warning character, Figure-shift.

Erase will not be ignored between the Letter-shift and Figure-shift.

7.7.2 The most important warning character is E. This is followed by an address, and

instructs INPUT to enter (E for Enter) the programme already in the store at this

address. This directive will thus appear on the programme tape after all the orders

of the programme, usually the end of the programme tape. After reading the directive,

but before obeying the first order specified, INPUT will come to a 99 wait, in order

for any necessary tape changing to be done. A small example of a complete programme

tape can now be given:

v=250

5500 v

E 250

This programme consists merely of a loop stop in word 250, but this does illustrate the

basic layout of a typical programme tape.

7.7.3 The warning character J (for “Jump’’) has the same effect as E, except that the

99 wait does not occur. This is useful for entering what are known as “interludes”.

An interlude is a programme, usually very short, which is obeyed during INPUT to do

some small piece of calculation which does not form part of the main programme. It

is also possible to use J to enter a programme which does not read tape, or which has

its data on the end of the programme tape, but in general the E-directive is the

recommended way of entering a programme.

7.7.4 It is good practice for each tape used in a problem to have a name. The

warning character N (for Name) is used for this. The name of the tape is punched,

usually at its head, preceded by a letter N: the name is terminated by a few blanks.

When the N is read by INPUT the name following it is copied on to the output tape: in

this way a record is kept of the names of all tapes fed into the machine.

7.7.5 Like the other warning characters N must be punched as AN; INPUT will then

read and copy the tape until a non-blank character is encountered (note that Erase is

- 45 -

not ignored here); it then punches this character and all succeeding characters on

the input tape until it reaches two consecutive blanks, of which it punches the first.

Note that N must always be followed by at least one ¢& This means that, if the name

sequence is to start in letter-shift, the input tape must be punched A NGA. Normally

however the name begins with CR/LF, which must be in figure-shift.

7.7.6 For example, if the name of the tape is

LRGW 13A

the following should be punched:

AND CR/LF ALRGWD Sp 13 AAgp

Two ®s are sufficient to terminate the name; in practice several are usually

obtained by pressing the run-out key for a second or two.

7.7.7 It is often necessary to cause the machine to halt during input without

entering the programme: in these circumstances E is not what is wanted, and the

warning character Z has been provided. This is not followed by any address, and

on being read causes a 99 wait. On pressing the CONTINUE button, INPUT will carry

on reading tape.

7.8 USE OF INPUT AS A SUBROUTINE

7.8.1 It is possible to use INPUT as an ordinary subroutine during the course of a

programme - e.g. to read in further numbers. INPUT can be entered by the following

order:

6920 144

This sets a link in X2, and INPUT immediately begins to read tape in the ordinary way.

It will return to the Master Programme when the warning character L is read from

tape (L for Link). Like Z, L is not followed by an address. The T.A. (and any

other parameters) can be set from the tape read by INPUT as usual or alternatively

they can be set by the Master Programme before entering INPUT. The T.A. can be

placed in word 200, v1 in 201 and so on. INPUT used as a subroutine uses all the

accumulators.

7.9 USE OF MORE THAN ONE READER OR PUNCH

7.9.1 It is possible to make INPUT use any reader or punch when more than one of

either of these is attached to a particular machine. (See 8.11 for how extra readers

and punches are called for by programmes).

7.9.2 When INPUT is entered at word 0, i.e. after pressing CLEAR CONTROL, the reader

and punch used are specified by the two most significant digits of the keyboard. D

selects the input channel and D, the output channel. Thus if these two digits are

clear on entry to INPUT, the first tape reader and the first punch will be used.

0

7.9.3 When INPUT is entered as a subroutine the selection is done in a similar manner
by the two most significant digits of X2. Thus to enter INPUT to use tape reader 1

and punch 2, the following orders can be used.

0510 .12

6920 144

If INPUT is only going to be used to read in, the 2nd digit of X2 is immaterial.

7.9.4 The warning character T (T for Tape-Reader) can be used to select a new input
channel at any point of a tape. T must be followed by a single digit. Thus if T2

occurs on a tape being read on tape reader 0, INPUT will begin to read on input

channel 2 at this point. If later T O occurs on this tape, INPUT will revert to the

first reader.

7.10 PRINTING OUT PARTS OF THE STORE

7.10.1 As explained in Section 6.7 it is possible to examine any word in the store

by using the DISPLAY facility. This operation is not to be encouraged when there are

more than one or two words to be examined, as it is relatively slow, and a proper

record of what was seen cannot be guaranteed, as it is very easy to look at the wrong

word, or write down the contents wrongly. A facility whereby chosen words can be

printed out in a simple form has therefore been provided as part of the Initial

Orders.

7.10.2 This is done by the warning character P (P for Print or Punch), followed by

an address. This will cause the contents of this address to be punched out, on the

selected output channel, as 10 decimal digits. As an example, if P 252 is read off

the input tape, the following might be punched:

v=252

1234567890

The “v=252”? gives the address and 1234567890 is the contents.

7.10.3 Alternatively P may be followed by two addresses separated by a dash (minus).

Then all words between these two addresses, inclusive, are punched. Each word whose

address is a multiple of 10 will be preceded by an extra CR/LF, so that the words will

be laid out in blocks of 10. Thus the effect of P 257-261 might be:

v=257

1234567890

9876543210

1414141414

3213213213

1111111111

7.10.4 The method of indicating addresses has been chosen so that the output tape can

later be fed back into the machine. This facility is useful when certain numbers have

to be carried forward from one programme to another, to be run on a different occasion,

and when the numbers in themselves are not of great interest outside the machine.

7.11 CHECKSUMS

7.11.1 The majority of errors which occur on the input of paper tape to the computer

arise through the loss or gain of a single hole in the tape. The paper tape code, as

shown in Figure 6.1, has therefore been chosen so that the most commonly used

characters (the first 16 figure-shift characters) each have an odd number of holes.

These are referred to as the “checked” characters, and have the property that it is

impossible for any one of them to be changed into any other by the loss or gain of a

Single (or odd number) of holes.

7.11.2 In general, INPUT only accepts “checked’’ characters, or where “unchecked”

characters are accepted, they have to be punched in combination with some other

characters. Thus CR (which has an even number of holes) must always be followed

immediately by LF, and Letter-shift must always have a Figure-shift exactly two

characters later. Any apparently wrong combination will be rejected by INPUT, a

loop stop occurring, so that there are safeguards against most reading errors.

- 47 -

7.11.3 There is however a further type of fault which occurs when a character on the

tape is read twice, or omitted altogether. This fault is not common, but cannot

usually be detected by the method just described. It is therefore desirable to have

a further check on the accuracy with which any given tape.has been read, and this is

done by having a checksum at the end of it. INPUT always builds up a sum of everything

it reads, and at the end of a tape a warning character C (C for check) is punched,

followed by this sum. The action of C is to bring INPUT to a stop if the sums do not

agree, and to go on reading tape otherwise.

7.11.4 If C is to be used at the end of a tape, it is necessary for the checksum to

be clear at the beginning. This is done by the warning character K, not followed by

an address. kK should be punched at the beginning of any tape which is to have a

checksum, either before or after any N-sequence which may be present. The checksum is

also cleared whenever INPUT is entered via the CLEAR CONTROL button, or as a sub-

routine, and when a T-directive is encountered.

7.11.5 The actual sum formed for checking is not a straight-forward sum of the words

read, but depends on the number of characters and their value in a fairly complicated

manner. It is not necessary however for the user to understand exactly how the check-

sum is formed beyond knowing that it gives a check which is effectively foolproof against

any type of reading error.

7.11.6 At some stage the checksum has to be put upon the input tape. To do this the

18 symbols as follows should first be punched on it, just before the EH, J or Z ending

the tape.

CR/LF ACh - PPPSPSHHHP CR/LF

This tape should be read in and will come to a loop stop after reading the above

characters. The 10 digits of X4 should then be noted down, and hand-punched over the

10 figure-shifts. The tape should then be capable of being read from the beginning

and passing through this sequence, and is then a checked tape.

7.11.7 The checksum facility is of course optional, but should normally be used with

programme tapes which are to be used for productive work. It is not usually worth-

while to put the checksum on the tape until the programme is fully developed.

7.12 PUNCHING CONVENTIONS AND FAULTS

7.12.1 As explained INPUT is arranged to come to a loop stop if certain combinations

of characters are read from tape. Such a loop stop may indicate either a tape-reader

fault or a punching error. Most of the punching rules have already been given, but

there are a few further points to be noted.

7.12.2 Blank tape (figure-shifts) can be read anywhere between words, but not within

them. Once blank tape has been encountered however, INPUT will not accept any item

which does not begin with CR/LF or A. When blank tape is being read, Erase, Space and

LF are ignored, but will not introduce a new word or directive. This point is important,

as the omission of CR/LF before a new item after blank tape is very common error.

7.12.3 All addresses after warning characters must be terminated by CR/LF. This is

not necessary with warning characters which do not have addresses. In general, direc-

tive addresses are made up of sub-items in the same way as ordinary words, except that

Space does not cause what follows to be shifted up four places, and acts merely as a

termination of a sub-item. Thus the following could be punched:

E.2v4 (Equivalent to Ev4, but .2

appears in X1 on entry).

EK v3-v4

E 2 3 (Equivalent to E5, because

of the Space between 2 and 3)

- 48 -

Note that - cannot be used in the P directive except to separate two addresses. Thus:

P -2u3

is not possible.

7.12.4 Spaces are not permitted immediately preceding the = symbol in an equation.

7.13 STOPS IN INPUT

7.13.1 There is one 99 wait order in INPUT, which is obeyed by both E and Z directives.

This order is in 81, and the control number in X1 appearing on the monitor is therefore

82. The N-digits of the upper display show the address at which the entry is being

made for E and 150 for Z. For example, if E 253 is encountered, the upper display

shows: -

0002539904

7.13.2 When any sequence of characters is rejected as an error, INPUT jumps to loop

stop order, 6901 -1, in location 91. This order causes a continuous note on the

hooter. The M.S.D. of the upper display indicates the cause of error, as follows:-

1 Blank tape after warning character requiring address

2 Sum-check failure

3 = not preceded by v, or is preceded by space

4 CR not followed by LF

5 Warning character not followed by

figure-shift

6 Figure-shift in middle of digits

7 Impermissible character

8 Digit in blank tape

9 Letter-shift or Line Feed amongst digits.

7.14 THE MONITOR ROUTINE

7.14.1 The Monitor Routine forms the second part of the Initial Orders, and is

mainly for use when developing programmes. Its general mode of operation allows a

programme already running on the machine to be interrupted by the operator, and for

return to be made to this programme exactly where it was stopped, after the contents of

various registers have been punched out or displayed.

7.14.2 The Monitor Routine is entered by pressing the button labelled INTERRUPT. It

will almost immediately come to a 9 group order stop (the order is actually 9090909090

for easy recognition on the display). At this point the keyboard should be set up to

call for the operations required, the digits being used as follows:

Do Select mode of operation (see below)

D, Number of punch to be used

D, - D, A main store address

D, - D, A parameter number

7.14.3 There are five modes of operation specified by D,

D ,=0 Punch continuously starting at the specified address

D =1 Punch one location only, from the specified address

D,=5 DISPLAY the contents of the specified address

D ,=8 Special monitoring (see (iv) below)

TY - Datariwn tna tha nmi rinal NrArYYRA mma

- 49 -

The address specified will usually be an absolute address, as set on D,-D,. In this

case D, to D, must be clear. It is desired to add a parameter to this absolute value,

the parameter’s number should be set on D, to D5. Thus v0 cannot be used, but there is

no effective upper limit on the parameter number.

7.14.4 When the keyboard has been set up, the CONTINUE button should be pressed.

(i) If D,=0, words will be punched out from the specified address, until D, is

changed. Then the Monitor Routine will again come to the 9090909090 stop.

(ii) If Dy=1, one word will be punched out from the specified address, then the

9090909090 stop will occur. If the CONTINUE button is again pressed, the contents of

the next location will be punched, and so on, until the keyboard is changed. If the

change is just setting D,=9, continuous punching from the address reached (i.e. some-

where beyond the address still specified on the keyboard) will begin, and (i) above

applies. Any other change will cause a completely new operation to begin.

(iii) If D,=5, the contents of the specified address will be displayed, (provided

the DISPLAY button is down), then the 9090909090 stop will occur. If the CONTINUE

button is again pressed, the contents of the next location will be displayed, and so

on. Any change to the keyboard will cause a new operation to be initiated.

(iv) If D,=8, control will jump to word 989 in a 1000 word store machine (in

general to the address 10 words before the last word in the store). This is for use

only if the user has provided a special monitoring programme of his own, to print out

certain locations in a special way for example. This monitoring programme must begin

in 989; this is effectively the last word of store available for ordinary use, so it

will have to contain an unconditional jump to where the monitoring programme really

begins. To return to the point at which interruption occurred in the main programme

the following orders should be used:

1450 -5v9890

5500. 42

The first order is only needed if the monitoring programme has used X5.

(v) If D,=9, control will be returned to the original programme, with the

accumulators and overflow indicator set to their values when the INTERRUPT button was

pressed.

7.14.5 On entering the Monitor Routine, the accumulators (including the control

register) and a word indicating the state of the overflow indicator are placed in the

last 10 words of the store. This is necessary so that they can be later restored on

return to the main programme, but it is often very useful to print or display then.

Thus on a 1000 word store machine, the locations 990 - 999 might be punched, and

would give information as follows:

990 Zero if OVR clear at point where

programme ‘was left, but all 9’s

if set.

991 - 999 Values of X1 to x9.

It should be noted that these 10 locations will always be overwritten once INTERRUPT

is pressed.

7.14.6 The exact action of the INTERRUPT button is as follows. The contents of X1 is

placed in word 1 of the store (this can be done whether or not 0-99 are isolated), and

a jump to word 2 occurs. The Monitor Routine therefore begins in word 2, and the

contents of word 1 are immediately moved to word 991 (in a 1000 word store machine).

If the INTERRUPT button is pressed when the Monitor Routine is already in operation, all

the original accumulators etc. will be lost, and it will not be possible to return to

the original programme at the exact point where it was left.

- 50 -

7.14.7 The form of the punching done by the Monitor Routine is in general the same as

that for the warning character P. Thus each new operation will cause v=A to be punched

where A is the address of the word which follows, each word will appear as 10 digits,

and there will be an extra line feed before each word whose address is a multiple of 10.

7.15 GENERAL DESCRIPTION OF ASSEMBLY

7.15.1 A complete programme is made up of two parts, a main programme written

specially for the job, and a selection from the available library subroutines. The

task of linking these parts together, both when writing the main programme and also

when producing the programme tape, can involve a considerable amount of effort, and the

Assembly programme has been provided to reduce this as much as possible. In particular,

it makes it unnecessary for the user to decide where each individual subroutine is to

be stored, or to edit the tapes of library subroutines into his own programme tape.

7.15.2 The function of Assembly is to select from the library those subroutines needed

by the programme. The library subroutines are all punched on one long tape. Assembly

scans this tape, selects the subroutines needed and places them in the store, the

other subroutines on the library tape being read but not placed in the store.

7.15.3 In order that the master programme may refer to the subroutines selected from

the library Assembly arranges to set a parameter to the address of the first location

occupied by each routine.

7.15.4 The procedure usually adopted when Assembly is used is as follows: -

(a) First read Assembly programme into the store; this will occupy a certain

amount of space at the top of the store.

(b) Tell Assembly which subroutines are required.

(c) Instruct Assembly to select the routines and place them in the store.

(d) Read the master programme into the store. This may, if necessary, overwrite

the Assembly programme.

7.16 CALLS FOR SUBROUTINES

%.16.1 The warning character S is used to indicate to Assembly which library routines

are needed by the master programme. Each S directive specifies one library subroutine

number and one parameter number. It is this parameter that will be set to the

address of the first location occupied by the subroutine. This directive is written as

indicated below where n represents the routine number and v the parameter number.

Sn- v

7.16.2 The programme tape will have near its beginning several of these directives

each selecting one particular library subroutine. Each such directive is known as a

Call. Assembly will not accept a Call that nominates parameter v0. There may be more

than one Call for the same library subroutine but Assembly will only read one copy of

it into the store. All parameters nominated will, however, be set.

7.17 PRE-SET PARAMETERS

7.17.1 A pre-set parameter is a special item of data required by some library sub-

routines which must be provided before the subroutine can be read into the store.

Such items of data may be the number of figures to be printed after the decimal point

or the number of rows in a matrix; the items required (if any) for any particular

subroutine will be stated in its specification.

7.17.2 The list of pre-set-parameters should be written immediately after the Call

for the subroutine concerned. No other numbers or orders may be written between Calls.

- 51 -

If there is more than one Call for a subroutine requiring one or more pre-set

parameters the list selected will be the first list provided.

7.17.3 Each subroutine that requires a list of pre-set parameters has stored with it

an optional list. This list will only be used if no list for the subroutine concerned

is provided on the main programme tape. If a parameter list is provided it must be of

the length required by the subroutine. It is not possible to take some parameters from

one list and some from another.

7.18 LAYOUT OF A PROGRAMME TAPE

7.18.1 The main programme tape must always be read on channel 0. It will usually

be headed by a name sequence, and this should be followed by a T-directive selecting

the reader on which the library tape is to be read. This can be any available

channel. After the T-directive will come a directive setting the T.A. for wherever

Assembly is to place the subroutines, and then a number of Calls, including any

necessary parameter lists. The Calls are terminated by a second T-directive,

identical with the first, then the main programme.

7.18.2 A specimen layout for a programme tape using Assembly is as follows: -

N

SPECIMEN PROGRAMME

T5

v=250

$5 - 2

$240 - 4

2 a
-0. 11243

T5

Main Programme.

On the first T5 the library tape is selected, the Assembly programme (which is at the

beginning of the library tape) is read to the top of the store, and is entered. It

uses the Initial Orders as a subroutine to read the directive setting the T.A. and

the Calls. From these Assembly builds up a list of what subroutines are required,

and holds any parameter lists read. On the second T5, control reverts to the library

tape, more Assembly programme is read into the top of the store, and Assembly begins

to scan the subroutines on the library tape. Those not called for are ignored, and

those required are stored in accordance with the T.A. Thus in the example above

either S5 or S240 will begin in word 250; which one comes first does not affect the

user, but it will in fact be the one which occurs first on the library tape. The

main programme can then refer to the first word of S5 as v2, and that of S240 as v4.

7.18.3 On a Sirius with only one tape reader, the same procedure is effectively

followed, but a certain amount of tape-changing is necessary. The Assembly programme

must be read in first. Then must come the main programme tape. The first T5 will

cause a 99 wait (T followed by a number is arranged to be equivalent to Z on a machine

with only one input channel); at this wait press the CONTINUE button. Assembly will

then read the Calls, and wait on the second T. At this point insert the library tape,

and CONTINUE. A further wait will occur when all the subroutines required have been

selected, and the main programme can then be read.

7.18.4 Whilst Assembly is operating a certain amount of printing will normally take

place. Each time a required subroutine is formed the following will be printed: -

Snm- vA

nis the number of the subroutine, v the number of the nominated parameter, and A the

address of the first word to be occupied by the subroutine (i.e. the value of the

- 52 -

nominated parameter). The list of subroutines will be preceded by the word ASSEMBLY,

and the date on which the library tape was compiled (this identifies the library tape

used). This printing will only take place if the least significant digit of the

keyboard is in the range 0 to 4.

7.19 SUMMARY OF THE EFFECTS OF THE WARNING CHARACTERS

7. The effects of all the warning characters are summarised below. An * indicates

that an address or number must always follow the character.

C* Introduces a checksum.

E* Wait, then Enter programme.

J* Enter programme (as E, but no wait).

K Clear checksum.

L Obey Link. Should only occur on tapes being read by INPUT as a subroutine.

Otherwise a jump will occur to the address which was on the keyboard when

INPUT was last entered via CLEAR CONTROL.

N Introduces Name.

P* Punch out from one or more storage locations.

S* Call for a library subroutine. This should only occur when INPUT is being

used as a subroutine by Assembly. Otherwise it has the effect of L.

T* Select specified input channel. (Equivalent to Z in a Sirius with only one

input channel).

Z Wait.

7.20 SIZE OF STORE

7.20.1 It is often necessary for a programme to take into account the size of the

store of the machine on which it is being run. For example it might wish to use some

locations at the end of the store as a dump, to leave the maximum space for data. To

avoid the need to have different sets of programme tapes for machines with different

sizes of stores, location 90 always holds an integer giving the size of store for the

machine concerned. Then only the Initial Orders tape has to be different for

different machines, as programmes can refer to this word as necessary. The reference

can be direct, but it is usually more convenient to do it by writing v9890, which

effectively causes the contents of 90 to be used as a parameter.

7.20.2 An example of this technique occurs above, in 7.14.4, where the order

1450 -5v9890

occurred. On a 1000 word store v9890 is 1000, so the address in the order is 995, but

on a 4000 word store it would be 3995, v9890 being 4000. Thus in each case the last

word but 4 in the store is obtained.

7.20.3 The last ten words of the store are regarded as being available for use by

interludes etc., in particular they are used by the Monitor Routine. It is therefore

advisable for the ordinary programmer to refrain from using them if possible.

~ 53 -

CHAPTER 8

FURTHER FEATURES OF THE COMPUTER

8.1 REASONS FOR THIS CHAPTER

There are certain features of Sirius which are only of use in special circumstances,

and to avoid the main part of this manual being unduly long, they have been left until

this point. This Chapter then can be omitted at a first reading, or indeed left entirely

to be used only for reference purposes.

8.2 GAPS IN THE ORDER CODE

8.2.1 It will have been noticed that of the 100 possible functions 0-99, by no means

all have been covered. All the unmentioned functions do in fact have some effect, as

follows.

if 15 a at 0b

146 a’ =a- Ob

17 a’ =-a- 6

18 a’ =-a+ 6

19 a’ =5

35 a’ = 10a+ 6

36 a’ = 10a- 6b

37 a’ = -10a - 5

38 a’ = -10a + 5

39 a’ = 10a + MSD of 6 in LSD position

8.2.2 These orders however differ in two ways from most others. Firstly, if B = 0,

the number on the keyboard is obtained, and not just zero. Thus with B = O they are a

special case, as described earlier in 6.6.2. Secondly these orders can never set the

overflow indicator, whatever the result of the operation performed. If B is not zero,

all the effects of these orders can be obtained by using the corresponding 00 - 04 and

20 - 24 orders with N = O, apart from the fact that these latter orders can set overflow.

The 15 - 19 and 35 - 39 orders with B not zero, are thus not often required, and are

only used in special circumstances. One reason for using them is obviously when over-

flow indicator setting is not wanted; another is when the N digits of the order are

to be used for some purpose unconnected with the order e.g. to form a constant in which

only the first six digits matter. Then the fact that these orders ignore N is useful.

8.2.3 41, 42 and 43 have exactly the same effect as 40, and 46, 47 and 48 are the same

as 45.

8.2.4 61, 62 and 63 are the same as 60. A full explanation of the 65, 66, 67 and 68

orders will be given later in the Chapter.

8.2.5 The 74 gives what is known as half-signed multiplication. That is, although 6

is treated as a signed number, Xo is taken as being a positive number in the range 0

to 1. If the number in X9 is in the range 0 to 0.4999999999, the 74 order will give

exactly the same answer as the 79 order. The difference between the orders is best

shown by an example, as follows. Suppose we have .2000000000 in X8 and .7000000000 in

X9. If we multiply these using a 79 order the number in X9 is taken to be -0.3, by the

Sign convention, and the product is 0.2 x -0.3 = -.06, and the answer appears in the

computer as

94000000000000000000

- 54 -

If however we use a 74 order the number in X9 is interpreted as +0.7 and the product

is

0.2 x 0.7 = 0.14, appearing as

14000000000000000000

8.2.6 The 74 order is of use in double and multi-length working, e.g. if a double-

length number is to be multiplied by a single-length one, the least significant half

of the double-length number is effectively unsigned, and an order which treats it as

such is useful.

8.2.7 76, 77 and 78 are the same as 71, 72 and 73 respectively.

8.2.8 All the 8 group orders are dummies.

8.2.9 All the 9 group are the same, having no effect other than causing a wait:

8.2.10 In general the user should avoid the completely redundant orders described, and

use only the recommended one, as the redundant ones are liable to be changed into

something else if modifications are made to the machine.

8.3 DIGIT REPRESENTATION

8)3.1 For all ordinary purposes the programmer can look on the decimal digit as being

the basic unit of the Sirius word; there are however some special circumstances in

which a knowledge of how this digit is represented inside the machine is useful.

8.3.2 The Sirius word consists of 40 binary (scale of two, rather than denary, scale

of ten) digits, usually called bits. These are to be looked on as 10 groups of 4, each

representing one decimal digit. Four binary digits however give rise to 16, i.e.

2x 2x2 x 2, possibilities whereas only 10 are required. The values of these four bits

are, in order 5, 4, 2, 1 and this leads to the following code.

0 0000

1 0001

2 0010

3 0011 0101
0110

4 0100 O11t

5 1000 Unused 4 4101

6 1001 1110
1111

7 1010 .

8 1011

9 1100

8.3.3 The 5, 4, 2, 1 code is of course potentially ambiguous, in that for example 5

can be represented in two ways, 0101 and 1000. This difficulty is avoided by applying

the convention that the 5 bit is used in the representation of any digit greater than

or equal to 5. The six unused combinations are called trans-decimal digits; they

can only be introduced from the keyboard (see footnote to 6.6.2) or by machine mal-

functioning. In the latter case a parity failure (see 8.3.4 below) will probably

occur at the same time.

8.3.4 With each 40 bit Sirius word in the main store is associated a further bit,

called the parity bit. This bit is not available to the programmer in any way, but

it is used to give a check against any malfunctioning of the machine which might lead

to bits changing in the store. Whenever a 40 bit word is written into the main store,

the machine also computes whether the number of one bits in this word is odd or even;

if odd the associated parity bit is made zero, if even it is made one. Whenever a

- 55 -

word is read from the store, the machine checks that the total number of one bits in

the 40 bit word and the parity bit taken together is odd; if it is not the machine

stops with the PARITY STOP light on. The check is also applied when writing into

the store, on the word which is already there.

8.3.5 This check in practice is a very powerful check on the correct working of the

store; as it is completely automatic it does not affect the writing of programmes in

any way.

8.4 TIMING

8.4.1 Sirius is a serial machine, that is the 40 bits of a word pass through the

arithmetic unit one at a time in sequence. The speed of the machine is basically

determined by the frequency with which this occurs, and in Sirius this is once every

two millionths of a second. A word therefore passes through the machine in 80 millionths

of a second, or 80 micro-seconds, written as either 80us or .080 ms. (ms. for milliseconds,

or thousandths of a second). S80us is the basic unit of time in the machine as far as

the programmer is concerned, called the word-time. The basic frequency is usually

expressed by saying the machine works at % megacycle, or 500 kilocycles, a second.

8.4.2 We now have to consider the timing of the store. The 9 accumulators 1 to 9 are

stored in delay lines each with a cycle time of one word-time. This means they are

effectively available at any time, or have zero access time. The main store however

consists of delay lines each holding 50 words, cycling in 50 word-times, i.e. 4 ms.

Thus any particular word in the main store is available only once in every 50 word-times.

Now when the machine is obeying programme from the store, orders will normally come

from consecutive addresses in it, and it is clearly desirable that as far as possible

orders become available at exactly the time required. The majority of orders in fact

require 3 word-times, or .240 ms. to be obeyed, and to conform with this it is arranged

that addresses in the long delay lines are staggered at intervals of 3 word times. Thus

the addresses in the first long line begin -

0

17

34

1

18

35

2

19

36

3

coming back to O again after a total of 50 addresses. So if the machine obeys an

order out of word 0 taking 3 word times, the next order from word 1 is available just

as it is required and no time is lost.

8.4.3 The orders taking 3 word times in all circumstances are 00 - 09, 15 - 29,

30 - 50 and 65 - 68. The other orders fall into several groups for timing purposes,

and will be dealt with separately.

8.4.4 The orders 10 - 14, 30 - 34, 60 and 64 all require access to a storage location

specified in the order. Such an order cannot therefore be executed until the required

address becomes available. This can turn up anything from 0 to 49 word-times later.

It it comes up in O word-times i.e. at the instant it is required, the order will take

3 word-times in the same way as the orders described in 8.4.3. In general however a

certain time will elapse before the address is found, and the order will then be

completed. By this time however the next order will no longer be coming available at

the instant it is required, so the machine will have to wait for this. The consequence

is in fact that in 49 cases out of 50 these orders will take 53 word-times rather than 3,

i.e. 4 ms. extra should be allowed for access time.

- 56 -

8.4.5 In general the 4 ms. access time to the store cannot be avoided, but in some
circumstances it is possible to arrange that the number being extracted is in exactly
the right timing position. The access is required in all cases at the third of the
three-word times, e.g. an order in location 0 will be obeyed in 3 word-times if (and
only if) the location to which access is required is in 34, or 84 or 134 etc.
(As all the long lines are in phase addresses differing by 50 all become available at
the same time).

8.4.6 The jump orders (51 to 59 and 69) require 3 word times like “ordinary’’ orders
(i.e. those described in 8.4.3.) if the jump is not made. If it is made, i.e. if the
necessary condition is satisfied, access is required to the address in the main store
which is being jumped to, but unlike the orders discussed in 8.4.4, there is no question
of continuing with the orders subsequent to the jump order. Thus anything from 0 to 49

word-times can be lost with effective jump orders.

8.4.7 The time loss with an effective jump will only be zero if the jump is to an

order whose address differs from that of the jump order by one, plus a multiple of 50.

For example, a jump order in location 23 can jump without loss of time of 74, or 124

etc. If a jump is made to an order a few locations further on (up to 16 in fact) the

time will be the same as if all the intervening orders had been obeyed as if they were

Ordinary orders. If the jump is a few locations back, as occurs in a loop of programme,

the effect is that the loop requires 4 ms. (plus allowance for any accesses etc.

involved in the orders in the loop). This is true for a loop of up to 16 orders,

including the jump. To obey 17 orders requires a minimum of 51 word times, so they

cannot be executed in one cycle time of a long line.

8.4.8 The three orders which operate external devices, 71, 72 and 73 take 3 word times

in principle, but in fact times here are usually governed by the maximum physical speeds

at which the device can move. Thus if two 71 orders occur close together after a

period during which no reading of the tape has occurred, the first will take three word-

times, but the second may be reached before the tape has finished moving on to the next

character position. When this has occurred the order will be obeyed, but by this time

the following order is no longer immediately available and at least 4 ms. will be lost.

The situation is similar with tape punch orders.

8.4.9 The time taken for multiplication depends on the actual number in x9. If then

A is the sum of the digits of this number (e.g. if the number is 0001234567, A is 28),

the time the machine actually spends multiplying is given by

Time = .160 (A + 11) ms.

The time lost to the computer however depends on a similar consideration to that

involved in the store access type of order, and as the machine must ultimately return

to the following order, the time must be 3 word-times, plus a multiple of 4 ms.

Consideration of the above formula then shows that multiplication must take 4, 8, 12

or 16 ms. over and above the usual 3 word-times. For small positive numbers the time

will be 4 ms. and it is probable that the majority of multiplication orders will not

exceed 8 ms. as bearing in mind that numbers have to be scaled anyway, it is not

unusual to find the first few decimal digits of a number are zero.

8.4.10 As the time depends only to the contents of X9, it is always advantageous to

place the number likely to be the smaller of the two factors in X9, but if nothing is

known about the relative magnitudes this cannot be done.

8.4.11 The time for division depends entirely on the digits of the quotient, and the

formula is exactly the same as for multiplication. All the other considerations

mentioned in 8.4.9 apply.

8.5 PRIMARY INPUT

8.5.1 The nickel delay line store is volatile, that is it will not hold information

when the machine is switched off. The primary input facility has been provided to

- 57 -

enable the Initial Orders to be put into the machine, and consists of a few orders

which are permanently wired in, as follows.

—p 7140 Read character

1544

1544

} Double it, twice

Test “sign’’ of character read

N

“Checked’’ “Unchecked”’ character

character om ,

3954 Build up word EXIT

[| ¢ J in X5 if two
consecutive

6051 Store Word “unchecked”

Add 1 to X1, to step T.A. characters,

and obey one

<— more order.

8.5.2 The “specification” of primary input is thus as follows.

“Checked’”’ characters (i.e. O to Erase, including all the decimal digits)

are converted and a word built up in X5. This word is stored whenever an

“unchecked” character (figure-shift to,) is read, according to a transfer

address in X1. This is then stepped on by 1. If a second unchecked

character is now read the process terminates, and the machine reverts to

normal operation (depending on the setting of the MANUAL/AUTO and WAIT/RUN

keys), otherwise a further word begins to build up.

Notes

1. During primary input X1 is unchanged other than when an unchecked character

is read.

2. X5 is never cleared, so it is essential to have 10 characters in each word to

be stored.

3. Erase is not ignored. Together with +,-, ., LF, and Space it is ‘‘converted”

into a decimal digit and stored. If an error is made in preparing a tape for primary

input the recommended action is to start that particular word again (after first

back-spacing and erasing the error if it is an unchecked character). The effect of

this when the tape is read is that the wrong characters are pushed off the top end of

the word, and only the last ten digits punched remain.

4. The usual form of punching for primary input is a string of ten digit words

each followed by CR/LF. The CR acts as the unchecked character terminating the word,

and the LF is a checked character which gets pushed off the top end of the following

word.

Oo. Primary input tapes must not be inserted on initial blank tape. A string

of LF’s is recommended, followed immediately by the first digit of the first word.

6. Any two consecutive unchecked characters can be used to terminate primary

input. It is suggested that two arrow symbols be used as standard.

7. It is recommended that the machine be set to MANUAL and WAIT for primary

input. In these circumstances one order from the keyboard will be obeyed at the end

of primary input. If the machine is on AUTO and RUN it will enter programme just

beyond the last word read in, and this may lead to chaotic effects. The keyboard
chantld ha cat nn ae a neafunl ardar fenrh aa an antrv tn the nrooramme \ ar a harmless

- 58 -

8. Primary input is operated by setting the required initial transfer address

(if reading in the Initial Orders this is zero, and so can be set by the CLEAR CONTROL
button, otherwise X1 must be set to the required address by a manual order), then
pressing the PRIMARY INPUT button. On completion of reading the tape, X1 should show

the address following the last word read in, e.g. if the Initial Orders are being read

to 0 to 199, X1 should contain 200 when the end of the tape is reached. This point

should always be checked, as it is in fact a powerful check on the correctness of the

reading of the tape. (Since any “single-hole’”’ error changes a “checked” into an

unchecked character or vice versa, it will cause one too few or too many words to be

stored. Thus there must be compensating errors for the reading to be in error and yet

X1 to be correct. As these are very rare in practice, the check is a powerful one).

8.5.3 The method of reading in the Initial Orders by primary input is therefore as

follows.

1. Ensure the machine is set to MANUAL and WAIT, the keyboard is clear, that K.B. WAIT

if off (otherwise a keyboard wait occurs before reading tape) and that 0-99 and

100-199 are free.

2. Press CLEAR CONTROL, insert Initial Orders tape in reader on LF, and press

PRIMARY INPUT button.

3. The tape will now be read and the primary input light will be on, until almost the

end of the tape when a stop will occur. At this point X1 should show 200. If not

repeat.

4. If X1 is correct set both isolation buttons and the short programme at the end of

the Initial Orders tape should be read in the ordinary way. This forms a sum check

of the Initial Orders, and if they are correct, prints out “The Initial Orders are

in’. If this does not happen some error has occurred and should be investigated.

If it does the machine is ready for ordinary work.

Note

If this operation is carried out with either or both isolation buttons set to

ISOLATE, the computer will go through the motions of reading the tape, but the

information read will not be stored. This feature applies generally; if an order

6020 150 for example is obeyed when 100-199 are isolated, the machine will not stop or

give any alarm signal but will go on without having obeyed the order.

8.6 USE OF Xl

X1 always contains the address of control in its l.s. 4 digits, but the ms.

6 may be used for any purpose to which the programmer is able to put them. The

following points should be noted.

1. An order such as 0410 N is effectively an unconditional jump to N.

2. An order such as 0510 N has no effect on control, as only the m.s. 6 digits of X1

are affected. 0910-N would however clear the l.s. 4 digits of X1, and thereby jump

to word 0 in the Initial Orders.

3. On effective jump orders, the whole contents of X1 are changed (to N + b).

4. When an order is obeyed, as far as the programmer is concerned X1 contains the

address of the next instruction.

o. If X1 is used as a modifier in a jump instruction a “relative jump’ facility is

obtained. Thus the order 5501 1 always jumps two instructions further on, and

9901 -1 is a loop stop. This is true wherever these orders are in the store,

and this is an alternative to using preset parameters when writing programmes,

such as general purpose sub-routines to be obeyed anywhere in the store. Each of

these methnde hae adwantagcaac annnrAinag tn rirenmetanrac

- 59 -

8.7 PROPERTIES OF THE STORE ADDRESSING SYSTEM

8.7.1 In a Sirius with just 1000 words of store, the addressing system only takes

note of 3 decimal digits. This has the effect of making the store circular as it were;

e.g. if an address 1002 is specified anywhere, word 2 is obtained. This is very con-

venient in practice, as if a programme requires more than 800 words of store, but less

than 1000, it is possible to read the programme in starting at 200, to refer to

addresses up to 1199, then to free locations 0-199 before running the programme. The

machine then uses 0-199 for 1100-1199. The programme will of course destroy the

Initial Orders but these can be put back very quickly later.

8.7.2 In a Sirius with more than 1000 words of store, the store is circular with

respect to 10000. Thus in such a machine address 10243 will be interpreted as 243.

If the amount of store present is less than 10000, reference to non-existent locations

will lead to a parity failure, so that the programmer has an immediate warning if he

attempts to refer to non-existent store.

8.8 THE COLLATE ORDERS

8.8.1 So far the 66 and 68 orders have been mentioned. 65 and 67 can be paired with

these, i.e. 65 and 66 use (N + 6) as a mask, and 67 and 68 use (N + 0) x 10°.

8.8.2 The four orders in fact work up bit by bit from the l.s. end through each digit

of a, the rule being that with the 66 and 68 orders bits are rejected from the operand

(a) until a “one”? bit is found in the corresponding position of the mask, and are

thereafter retained; with 65 and 67 bits are retained until a one is found, and then

rejected. This is done for each digit. The results clearly depend on the way digits

are represented by bits in Sirius and can best be shown in a table.

Digits appearing in result for 66 and 68 orders

“Mask” digit (from N + 6)

0 1 2 3 4 5 6 %7 8 9

1;0/1;0;1;0;0;1 04] 1 4 0

“Operand’ 2}0/;/2,2),;2;]0/{]0j);2 |2 4,2 | 0

digit 3}0;3 /2;3;)0/;/;0j;3 |2;]3 /]0

(from A) 4| 0 | 4 | 4 4 4 0 ;4|,4 | 4 4

5/0;);5 }/5),5),5)5 |5 |5 15] 5

- 60 -

Digits appearing in result for 65 and 67 orders

“Mask” digit (from N + 6)

0 1 2 3 4 5 6 7 8 9

1;1;0/]1/;07;7;1;,17;7 04; 14;07) 1

2;2/;0;0/;0;2]2; 0; 0/;0 41 2

“Operand’ 3/3 };0);1;0;{3 ;,3;,0j/; 1 404, 8

digit 4;4;0,;,0j,;0;0j,;4;]0j;,0j,01]0

(from A) 5/5 |0;0;0/;]0j;0/]0j, 0j;,0 7] 0

6;6 ;0;1;0;1);1;,90; 1]0+); 1

7; 7/0]0;]0;,2 },2;]0;] 04,07; 2

8.9 INPUT/OUTPUT CODES

8.9.1 To appreciate how the machine codes for tape characters arise it is necessary

to consider the decimal digit representation. We shall describe the internal Sirius

process in terms of an input instruction.

8.9.2 The five channels read from the tape provide 5 bits, a one for a hole, a zero

for no hole. The 32 possibilities are as shown in the left column of Fig. 6.1.

Adjustment is then made to this 5 bit binary number as follows.

1. If the number of one bits is odd, the m.s. bit (if any) is removed from the

character. (All the 16 so-called checked characters have an odd number of holes).

2. If the number of one bits is even, the m.s. bit is made one, if it is not one

already. (The 16 unchecked characters are all of this form).

The result of this adjustment is a rather different column of binary numbers, and in

fact they correspond to 0-31 in order. These five bits are placed into five bit

positions of the specified accumulator as shown.

PAN\\N
TTT] delle

Tape character

(as adjusted)

~~ Ax J
a 4 we

D D, etc.
D 1 0

8.9.3 Consideration of this diagram will show that any decimal digit except 4 or 9

can occur in the first position, but only 0, 4, 5 or 9 in the second position. In

fact the machine codes shown in Table 6.1 are generated.

8.9.4 On output the same correspondence is used, with:the adjustment of the m.s. bit

reversed. The two l.s. bits of the second character are not however used, so it is

possible for them to have any values. Thus the exact codes of Table 6.1 are not

necessary for correct punching, providing the first six bits are correct. The

- 61 -

second bit of the first character is not punched, but it is not ignored by the

mechanism which adjusts the m.s. bit. It must therefore be zero.

8.10 BEHAVIOUR OF XO

8.10.1 When O appears in the B position of the order, zero is obtained except for

orders 15-19, 35-39, 70, 74, 75 and79; for these 6 is the number set up on the

keyboard when the order is obeyed. B is only used as a source in Sirius, so there can

be no question of what happens to numbers sent to B.

8.10.2 The situation is more complicated if A is 0. A equal to 0 as a source gives

the number on the keyboard. Thus the order 6000 250 writes this number into location

250. This is not often required, and the more common way of obtaining the keyboard

is by the order 1920, placing the number into accumulator 2. As a destination, A equal

to 0 is DISPLAY, i.e. the result of the operation carried out by the order appears on

the lower display if the button labelled DISPLAY in the left hand column of ten is

down. Using A equal to 0 as a destination also gives a single pip on the hooter; by

varying the lengths of loops in which this occurs notes of various pitches can be

obtained. The volume of the hooter can be controlled by the right hand knob on the

front edge of the control unit.

8.10.3 Thus the following orders have effects as indicated.

0000 Add the number on the K.B. to zero and send to DISPLAY (i.e.

display (K.B.))

0000 123 Display (K.B.) + 123

1000 234 Display (K.B.) + contents of register 234

1400 330 Display contents of register 330

5700 400 Jump to 400 if (K.B.) is zero.

The first four of these also give a pip on the hooter.

8.11 THE ACCEPT INSTRUCTION BUTTON

8.11.1 It is a useful operation to change the contents of a given register. This can

of course be done by punching a piece of paper tape, to be read by INPUT, and this is

the recommended procedure, but it is sometimes justifiable to do it manually, using the

facilities of the keyboard.

8.11.2 Using the fact that XA = 0 as a source gives the number on the keyboard, the

order 6000 N can be obeyed manually to change the contents of address N. As it

stands however it is useless as this order itself has to be on the keyboard as it is

obeyed, and in general this will not be what the operator wishes to place in address N.

To get around this difficulty the ACCEPT INSTRUCTION button has been provided. The

machine must be on MANUAL and WAIT, and the instruction 6000 N, where N is the address

whose contents are to be changed, set up on the keyboard. On pressing ACCEPT

INSTRUCTION, this order goes into the order register, and will appear on the upper

display. The engineers light labelled “C’’ will also come on at this point. The order

however will not have been obeyed, so the required new contents for N can now be set on

the keyboard. On pressing CONTINUE, the order will be obeyed and the contents of the

keyboard will go to N. The “C’” light will go off as CONTINUE is pressed.

8.11.3 Any instruction can be obeyed in this way, but there is no purpose in doing so

in general. The ACCEPT INSTRUCTION button is also used for releasing the machine from

- 62 -

certain inoperable states which can arise from various forms of misoperation. Such

states are usually recognised by the fact that the machine cannot be made to obey

instructions. If such a state arises, the machine should be set to MANUAL and WAIT,

and the keyboard must be clear, or have some harmless instruction on it. Pressing

ACCEPT INSTRUCTION followed by CONTINUE should make the machine workable. If not

there is a machine fault.

8.12 USE OF MORE THAN ONE READER OR PUNCH, AND DIFFERENT TAPE WIDTHS

8.12.1 If more than one reader is attached, the readers will be called 0, 1, 2 etc.

The one which is used by a particular 71 order then depends on the N digits of the

order. Thus 7120 1 will read from tape reader 1. The order is subject to

modification in the usual way, so if X3 contains 1, 7123 will read from tape reader 1.

It is thus possible to write a piece of input programme capable of using any tape

reader, depending on the contents of a specified accumulator.

8.12.2 The same applies if there is more than one punch; the punch used is specified

by the (N + b) with the 72 order.

8.12.3 In practice Sirius has two input sockets. Channels 0 to 4 are on one socket,

and 5 to 9 on the other. If more than two input devices are attached, some form of

branched cable or junction box is required, but if there are just two, one can be

plugged directly to each socket, and their numbers will be O and 5. The situation is

the same with output devices.

8.12.4 It is occasionally necessary to use paper tape with more than 5 tracks on Sirius.

The TRO readers as normally supplied can in fact cope with up to 8 tracks, and are

adjustable for 5, 7 or 8 tracks. The full codes which can be generated will not be

given here, but the user can work out what happens by considering the diagram in 8.9.2

together with the following information.

1. The “3-hole”’ side of the tape is always in the same position. Therefore the

locations of the first five tracks of any width of tape, starting from the

“3-hole’ edge, can be deduced from the diagram.

2. Continuing across the tape, the 6th, 7th and 8th tracks are directed into

bit-positions as follows:

6th Track “4” bit of D,

7th Track “5” bit of D,

8th Track “1” bit of D,

It is thus apparent that any possible 7-track tape can be read, but 8-track tape is

subject to the limitation that the 8th track cannot have a hole at the same time as

the 4th and 5th tracks. This is so with most 8-track codes in use.

8.12.5 The user of tape with more than 5 tracks should note that the adjustment

described in 8.9.2 is still carried out, and this must be allowed for in determining

the internal representation of any tape code. In particular, with 7-track odd-parity

tape, all characters coming in should be positive, and this fact can be used to check

the accuracy of reading of such tape.

- 63 -

FERRANTI SIRIUS COMPUTER BASIC ORDER CODE

10 DECIMAL DIGITS TTT TI tt I

N iS a main

A and B are

n, a, 6 are

 ~~ ~w fF ay ol eY

N F A B

store address or a constant, with its sign extended if necessary.

accumulators

contents of N, A, B respectively

a’is the contents of A after the operation

In all orders up to 69, 6 is added to N before the order is obeyed. This is the basic

order code, and only includes the commonly used functions.

00 a’ =a+N 20 a’ = 10a +N

Ol a’ =a -N 21 a’ = 10a -N
02 a’ = -a-N 22 a’ = -10a -N

03 a! = -a+N 23 a’ = -10a +N

04 a’ = N 24 a’ = 10a +, M.S.D. of N

05 a’ = a + 10'N 25 a’ = 10a + 10°N
06 a’ = a - 10'N 26 a’ = 10a - 10°N
07 a’ = -a - 10'N 27 a’ = -10a - 10°N
08 a’ = -a + 10"N 28 a’ = -10a + 10°N
09 a’ = 10'N 29 a’ = 10a + M.S.D. of 10'N

10 a’ =atn 30 a’ = 10a +n

ll a’ =a-n - 31 a’ = 10a-n

12a’ =-a-n 32 a’ = -1l0a-n

13 a’ = -atn 33 a’ = -10a +n
14a’ =n 34 a’ = 10a + M.S.D. of n

40 a’ = (a + 5)/10 Arithmetical Shift down (Rounded).

44 a’ = a/10 Arithmetical Shift down (Unrounded).

45 a’ = (a + 5)/10 + L.S.D. of N (Rounded),

49 a’ = a/10 + L.S.D. of N (Unrounded).

50 Dummy 55 Jump to N unconditionally

ol Jump to N if M.S.D. of 56 Jump to N if M.S.D. of a = 0

a #0

52 Jump to N if a # 0 57 Jump to N if a = 0

o3 Jump to N if OVR set 58 Jump to N if OVR clear

54 Jump to N if a< 0 59 Jump to N if a20

Orders 53 and 58 clear the OVR

60 n’ =a 70 x} = quotient, a’ = remainder

on dividing (a, x.) by

64 n’ =0. 6b. Unsigned

66 a’ = a&N 71 a’ = TAPE
68 a’ = a & 10'N 72 (TAPE)’ = a
69 a’ = x, and jump to N 73 (TAPE)’ = a and a’ = TAPE
99 Wait 19 (a,x,)’ = 5b x X 4

Accumulator 1 is the control register and contains the address of the next

instruction.

Accumulator 0 = 0 when used as B, = keyboard or display when used as A (with some

exceptions).

(This Library Document (LD11) supersedes List CS 244).

Ferranti Ltd

COMPUTER DEPARTMENT

London Computer Centre:

68 NEWMAN STREET, LONDON, W.1

Telephone MUSeum 5040

and

21 PORTLAND PLACE, LONDON, W.1

Telephone LANgham 9211

Offices, Laboratories, and Works:

WEST GORTON, MANCHESTER, 12.

Telephone EASt 1301

Research Laboratories:

WESTERN ROAD, BRACKNELL, BERKS.

(Cc) FERRANTI LTD 1962

