Eerranti

SIRIUS COMPUTER

PROGRAMMING MANUAL

LIST CS 244A

The
FERRANTI
SIRIUS
COMPUTER

10/-

CONTENTS

Page
SIRIUS
1.1 Introduction 1
1.2 Numbers within the computer 1
1.3 Addresses 1
1.4 The control unit 2
1.5 Form of instruction 2
1.6 Registers and their contents - notation 3
ARITHMETICAL ORDERS AND JUMP INSTRUCTIONS
2.1 The order code of Sirius 4
2.2 The orders 10 to 14 4
2.3 The orders 60 to 64 5
2.4 Notation 5
2.5 Some of the orders of group 5 - jump instructions 5
THE ORDERS OF GROUP 0
3.1 The orders of group 0
3.2 N zero or negative
3.3 The orders 05 - 09 9
SHIFTING, MULTIPLICATION, DIVISION AND COLLATION
4.1 Fractions and scaling 11
4.2 Multiplication by 10 or shift up 11
4.3 The orders 30 - 33 - - .. 11
4.4 The orders 20 - 23o .o . .o 12
4.5 The orders 25 - 28 12
4.6 Simple Shifto .oo 13
4.7 The order 34 13
4.8 Division by 10 or shift down. Group 4 orderso .. 14
4.9 The overflow indicatoro 15
4.10 The orders 53 and 58 .oo .. 16
4.11 Multiplication. The 79 order 17
4.12 Divisiono 19
4.13 Collation 20
MODIFICATION, AND USE OF SUBROUTINES
5.1 Modificationo .o .. . 22
5.2 Modification of the orders 10-14, 60, 64, 30-34, 50-59, 69 22
5.3 Use of Accumulator 1 23
5.4 Loop Stopo .o .. 24
5.5 Counting .. -o .. .o . . 24
5.6 Modification of the orders 05-09, 25-29, 68 24
5.7 Modification of the orders 00-04, 20-24, 66 " .o .. . 25
5.8 Arithmetic in two accwmulators . . .o 26
5.9 Modification of the orders 40, 44, 45 and 49o .. 27
5.10 The dummy order 50 28
5.11 The “Wait’” order, 99o . .. 28

Page

5.12 Use of subroutines 28
5.13 The 69 order oo .o 29
5.14 The 24 and 29 orderso 29

INPUT AND OUTPUT; THE OPERATORS CONTROL

6.1 Paper Tape and Teleprinter Equipment 31
6.2 The Tape Codeo .o .o .o .o 32
6.3 The Input and Output Orders .. .o 32
6.4 Speed of Input and Output 33
6.5 Code Conversion on Input/Output .o 34
6.6 Controls 35
6.7 Monitoring Facilities 37
6.8 Indicator Lightsoo - .. 38
THE INITIAL ORDERS

7.1 The need for Parameters .o 40
7.2 Parameters 40
7.3 Setting Parameterso« .. 41
7.4 The Purpose and Mode of Action of the Initial Orders 41
7.5 Punching of Numberso e 42
7.6 Punching of Orders - 43
7.7 Directives - Warning Characters E, J, N, Z 44
7.8 Use of Input as a Subroutineo 45
7.9 Use of more than one Reader or Punch 45
7.10 Printing out parts of the Storeo .. 45
7.11 Checksunso 46
7.12 Punching Conventions and Faults 47
7.13 Stops in Inputo .o 48
7.14 The Monitor Routine 48
7.15 General Description of Assembly 50
7.16 Calls for Subroutines 50
7.17 Pre-set parameterso .. .o 50
7. 18 Layout of a Programme Tape .oo .. .o .. 51
7.19 Sumnary of the effects of the warning characters 51
7.20 Size of Storeo 52

FURTHER FEATURES OF THE COMPUTER

8.1 Reasons for this Chapter 53
8.2 Gaps in the Order Code 53
8.3 Digit Representation 54
8.4 Timingo .o .o .o 55
8.5 Primary Input e .. .o .. .o .o .o .. .o 56
8.6 Use of X1 58
8.7 Properties of the Store Addressing System 59
8.8 The Collate Orders 59
8.9 Input/Output Codes - - 60
8. 10 Behaviour of X0 o 61
8.11 The Accept Instruction Buttono . .o .o .. 61
8.12 Use of more than one reader or punch, and different tape widths .o 62

SIRIUS PROGRAMMING MANUAL
CHAPTER 1

SIRIUS

1.1 INTRODUCTION

1.1.1 Sirius is a small decimal computer. 1In its basic form it has a store of 20
nickel delay lines, each consisting of 50 locations, giving a total capacity of 1000
locations. There are also 9 short delay lines each consisting of one word. Information
is put into the computer and extracted from it by means of 5-channel punched paper tape.

1.1.2 Each location in the computer, whether in the main store or the accumulators,
holds ten decimal digits. These digits will represent either a number or a computer
instruction, and either of these can be called a computer word.

1.2 NUMBERS WITHIN THE COMPUTER

1.2.1 Since each location can hold ten digits the largest number which can be put in
any location is 9999999999, equal to 10'° - 1. If 0 is included then all numbers between
0 and 10%° - 1, that is 10%° numbers, can be expressed in Sirius.

1.2.2 1In order to deal with the positive and negative numbers this range is divided
equally. Positive numbers raise little difficulty and are held within the machine as
written i.e. for x positive

0 < x < 4999999999

The convention adopted for negative numbers is to hold them in the machine as the
complement with respect to 1010, so that for example, -3 is held in the machine as
10'° - 3, appearing in the machine as 9999999997. 1In other words the convention in
Sirius is for the first digit of a number to include the sign. If the first digit of
x* (the number as held in the machine) is anything from O to 4 then x is a positive
number of magnitude x*. If the first digit of x* is anything from 5 to 9 then x is a
negative number of magnitude 101° - x*, The following are examples of numbers and
the form in which they are held in the machine: -

x : number x* : as held in Sirius
+123 0000000123
+900906 0000900906
-671 9999999329
-3960000000 6040000000
-2183200000 7816800000
-5000000000 5000000000

1.2.3 During the course of calculations numbers may arise which are outside the range
permissible in the computer; this is said to be overflow and a special overflow indica-
tor will be set. Steps can be taken to deal with this situation and will be considered
later.

1.2.4 Note that, although the number -5000000000 can be represented, the number
+5000000000 cannot.

1.3 ADDRESSES

1.3.1 As already mentioned, the working store of'the basic machine has 1000 locations.
Associated with each location are two quantities, the address of the location and the
contents of the location. The addresses run 0,1,2... up to the end of the available
store. The contents of the location is either a decimal number or instruction as

mentioned earlier, e.g. the location whose address is 603 may contain the digits
1246806103. The 9 accumulators are numbered 1 to 9.

1.4 THE CONTROL UNIT

There are only a limited number of types of operations or steps that a computer
can perform. These can be carried out any number of times and in various ways but
each calculation proceeds one step at a time according to the written programme. Th
programme consists of a list of instructions or orders together with some data. The
control unit of the computer selects instructions one by one, usually from consecuti
locations, and as this is going on the address of the location containing the curren
instruction is held in accumulator 1. The instruction itself is put into the order
register by the control unit. As this instruction is carried out the address in
accumulator 1, i.e. the control address, is increased by one before the current
instruction is completed, so that for programming purposes the control address is th
of the next instruction, i.e. the current instruction address plus 1. Care should b
taken therefore not to use the accumulator 1 for ordinary arithmetic as this would
change its contents and cause a transfer to some unwanted instruction. Note that,
although only 4 digits of accumulator 1 at most, are needed for the control address,
is in fact a full 10-digit register.

1.5 FORM OF INSTRUCTION

1.5.1 When the ten decimal digits are interpreted as an instruction they are
treated as four parts as below:

' =2
=
>
w

address
digits

The first six digits in the order are the N digits. They can specify an address in
the store and so there could be up to 1,000,000 words of store. As in fact no Siriu
will have as much as this some of the digits in the address will not be used; in th
basic machine with a 1000 word store, for instance, only 3 of 6 N digits are used,
so the largest address is 999. The first digit, Dy, is the most significant digit
and the tenth, Dy, the least significant. These will often be abbreviated to m.s.
and 1.s. In some orders all six of the N digits are used but this will be explained
later.

1.5.2 The digits D, and D, are called the function digits of the order and determin
the type of operation which the machine will perform, e.g. addition or subtraction o
transfer from one part of the store to another. The function digits are denoted by
and can have values from 00 to 99, e.g. the function 60 has the effect of transferri
the contents of an accumulator to a storage location, and the function 10 adds the
contents of one of the ordinary registers to one of the accumulators.

1.5.3 Most operations also involve a particular accumulator and this is specified b
the A digit, D,. Generally, A can take a value from 2 to 9 inclusive, denoting one
the eight general purpose accumulators.

1.5.4 We can write, for example, A = 3, if we wish to use accumulator 3, and the
digit 3 is put in the A position of the order. The accumulator 1 as already mention
holds the control address. The purpose of the B digit, D,, will be considered later
for the time being B will be put equal to zero.

1.5.5 Although the instruction is held in the machine as above, it is convenient
write it in the following form: - ‘

F A B N *

1.5.6 As an example the function 14 copies the contents of location N to the
accumulator specified under A so that the instruction.

F A B N

14 2 0 231

copies the contents of location 231 into accumulator 2.

1.5.7 It will be noticed that the three left-hand zeros in N are omitted. This «
always be done.

1.6 REGISTERS AND THEIR CONTENTS - NOTATION

1.6.1 The 1000 (or more) locations are usually referred to as the main store; tt
are sometimes called ordinary registers, as opposed to the accumulators which may
called X-registers. The word register alone could mean either an accumulator or ¢
location in the main store.

1.6.2 It is conventional to use capital letters for addresses and small letters t
represent the contents. Thus N denotes a main store address, and n its contents.
contents of an accumulator specified in the A-digit of an order would be a, but if
one were to refer to a specific accumulator it would be more usual to write X8, ar
for instance. :

A small letter primed denotes the contents of a register after an instructior
been obeyed, e.g. a’ would denote the contents of the accumulator specified by A ¢
the operation.

Example: If the number in location 431 is 103 and the number in accumulator 4 is
then if N = 431 we have n = 103 and if A = 4 then a = -23. If now the
function 10 is used to add these numbers and leave the result in accumu:
4 i.e. if the instruction

10 4 0 431

is performed then a’ = 103 - 23 = 80 and n’ = 103 (unaltered).

* The reason for writing instructions this way is that the N part of the instruct:
varies in length and this ensures a neat layout when the programme is typed.

CHAPTER 2

ARITOMETICAL ORDERS & JUMP INSTRUCTIONS

2.1 THE ORDER CODE OF SIRIUS

The part of the order which determines the action performed by the computer is

the function part. The basic functions available on Sirius will now be considered in
some detail.

2.2 THE ORDERS 10 to 14

2.2.1 These are simple addition, subtraction or copying instructions between one of
the ordinary registers in the main store and one of the accumulators. In each case
the result is left in the accumulator and replaces the original contents of the
accumulator, and in all these orders the contents of the main store locations are
unchanged. The function 14 has the effect a’ = n, i.e. the contents of location N are
copied into accumulator A. The original contents of A, namely a, are lost and the
contents of N, namely n, remain unchanged. For example the order

F A B N

14 3 0 249

causes the contents of the location 249 to be copied into accumulator 3.

2.2.2 The function 10 has the effect a’ = a + n, i.e. the contents of location N are
added to the contents of accumulator A and left there, a being lost and n left
unchanged. E.g. the instruction

10 4 0 341

causes the contents of location 341 to be added to accumulator 4 and left in accumulator
4.

2.2.3 The first 5 orders of group 1 may be summarised:-

F Effect Description

10 a' =a+n Add the word in N into A.

11 a’ =a-n Subtract the word in N from that in A.

12 a’ =-a -n Negate the contents of A and subtract
those of N.

13 a' =-a+n Negate the contents of A and add those
of N.

14 a' =n Copy the contents of N into A.

Example: ¢, d, e are stored in locations 300, 301, 302; the quantity (c - d + e) is
required in accumulator 5.

14 5 0 300 xl=c
11 5 0 301 xl=c-d
10 5 0 302 x! =c-d+e

In order to be obeyed these instructions must be held in three consecutive registers in
the store e.g. 500, 501, 502. These positions may be indic¢ated on the left hand side
as below

500 |14 5 0 300
501 |11 5 0 301
502 |10 5 0 302

2.3 THE ORDERS 60 and 64

These functions transfer or copy from the accumulators into the main store
locations. The function 60 has the opposite effect to 14, i.e. n’ = a, (copy the
contents of accumulator A to storage location N). The original contents of N are
lost and the contents of A remain unchanged.

Example: ¢, d are two numbers stored in locations 200, 201. Form (¢ + d) and
(¢ - d) and store in locations 300, 301.

14 2 0 200 x; =c

10 2 0 201 x) =c+d

60 2 0 300 C(300) = c +d
14 2 0 200 x) =c¢

11 2 0 201 xé =c-d

60 2 0 301 C(301) =c - d

2.4 NOTATION

2.4.1 1In this example the notation C(300) has been used to denote the contents of
storage location 300. It can be used in general, as an alternative to that already
in use, so that C(N) = n, C(A) = a.

2.4.2 The function 64 has the effect n’ = 0. Clear the storage location N. A
convention will be adopted by putting A = 0 in this order, since no accumulator needs

to be referred to with the 64 order.

Example: Clear the location 400

64 0 o0 400 C(400) = 0

2.5 SOME OF THE ORDERS OF GROUP 5 - JUMP INSTRUCTIONS

2.5.1 1In general the control address in accumulator 1, (which is used as the control
register), is increased by one as each instruction is carried out. This causes the
next instruction selected to be that in the next location in the store. This is not
always convenient. Sometimes it is desirable to cause a jump or break in the sequence
of instructions from those held in consecutive registers. This jump may be either
backwards, in which case certain operations are repeated, or a jump forwards,.in which
case some operations are omitted. For example, the 55 order is an “unconditional”
jump. In all cases this order causes a jump to be made to the address specified by
the N digits.

Example: If programme is stored with some data in locations 200 onwards, and it is
required to add the constant 0.314159 to the contents of accumulator 3,
and then continue with the programme, then the 55 order may be used to jump
round the data so:-

200 {10 3 0| 202 | x!=x +.314159

201 55 0 0 203 jump round data
202 + .314159 (data)
203 60 3 0 301 store x, in 301

2.5.2 Sometimes it is necessary to programme two alternative courses of action
depending on whether a particular condition is satisfied or not. If the condition is
satisfied the jump is as described above, that is, to the location specified by N;
otherwise no jump occurs and the computer proceeds sequentially as usual. If the
condition is satisfied the address specified by the N digits of an order is transferred
to the control register and becomes the control address. The instruction in location N
is obeyed, the control address being increased by one to (N + 1) etc., the procedure
then following the normal pattern. Suppose a jump instruction is held in location L,
then the two possibilities may be represented diagrammatically as below: -

— L : jump instruction
L+1 : . condition not satisfied
~ N : . condition satisfied
N+1 :

2.5.3 Sometimes a jump instruction is referred to as a ‘transfer of control’. Some
of the jump instructions are summarised below: -

F Effect Description

51 Jump if MSD of a # 0. Transfer control to the instruction
in location N if the m.s. digit in
A is not zero, otherwise obey the
next instruction.

52 Jump if a # 0. Transfer control to N if the C(A)
are not zero, otherwise obey the
next instruction.

54 Jump if a < 0. Jump to N if the C(A) are negative,
otherwise obey the next instruction.

55 Unconditional jump. Jump to N in all cases.

56 Jump if MSD of a = 0. Jump to N if the m.s. digit in A is

zero, otherwise obey the next
instruction.

F Effect Description
57 Jump if a = 0. Jump to N if the C(A) are zero,
otherwise obey the next instruction.
59 Jump if a 2 0. Jump to N if the C(A) are positive or
zero, otherwise obey the next
instruction.
Example 1: ¢, d, e are stored in locations 200, 201, 202. Form (¢ - d + e),
(ignoring overflow). If negative, jump to the instruction held in 506,
otherwise, store in location 950, and proceed to instructions in 521.
These instructions are held in locations 500 - 505.
F A B N
500 |14 2 0 200 xé =c
501 |11 2 0 201 xé =c-d
502 10 2 0 202 xé =c-d+e
503 |54 2 0 506 Jump to 506 if ¢ - d + e < 0.
504 |60 2 0 950 Store (¢ - d + e) in 950
505 | 55 0 O 521 Unconditional jump to 521
506
521
Example 2: Given two positive numbers p and q in locations 800, 801, store the larger

one in location 850 and the smaller in location 851.

300

309

14 4 0 800 x; =p

11 4 0 801 xﬁ =p-gq

59 4 0 306 Jump if p - q=20

10 4 0 801 x; = p, the smaller (p - q + q)

14 5 0 801 xé = g, the larger

55 0 0 308 Jump unconditionally to store
p, q

13 4 0 800 x) = q, the smaller (-(p - q) +p)

14 5 0 800 x; = p, the larger

60 4 0 851 Store smaller in 851

60 5 0 850 Store larger in 850

CHAPTER 3

THE ORDERS OF GROUP 0

3.1 THE ORDERS 00-04

3.1.1 1In this group of orders the N digits are used directly as an operand. N, with
its sign extended by four digits to make it a ten digit number, is added into or
subtracted from the contents of an accumulator or its complement.

Acc. D.|D D,|D.{D,|D D D

1 2 3 4 5 6 7 8 9

The four digits in the dotted section are the sign extension of N, 1If N, is 0 to 4,
i.e. if N is positive, they are all zeros, if it is 5 to 9, i.e. if N is negative, they
are all 9’s.

The function 04 has the effect : a’ = N
N, extended to 10 digits, is copied into A, the original contents of A being lost.

Example:

F A B N

04 5 0 | 123456

puts the number 123456 into the least significant end of X5, clearing the first four
digits. Note however that if the first digit of a 6-digit N had been 5 to 9, the
first digits of the 10-digit N used would have been made 9’s.

3.1.2 The first five orders of group 0 can be summarised as follows, with N extended
to 10 digits.

F Effect Description

00 a’ =a+N Add N to a.

01 a' =a-N Subtract N from a.

02 a' = -a - N Negate a, and subtract N from
result.

03 a’ = -a + N Negate a, and add N to result.

04 a’ =N Copy N to A.

Example: Suppose ¢, d, are stored in locations 305, 306, and it is required to form
(¢ - 100) in accumulator 3 and -(1001 + d) in accumulator 8.

14 3 0| 305 | xf=c¢

01 3 0 100 x] = ¢ - 100

4 8 0| 306 | x/=4d

02 8 0 1001 xé = - d - 1001

3.2 N ZERO OR NEGATIVE

3.2.1 If N =0 in the 04 order, then a’ = 0, i.e. this can be used to clear the
accumulator specified.

3.2.2 N =0, in either the 02 or 03 order gives a’ = -a, negating the contents of any
accumulator.

3.2.3 If N is 0, it is usual to leave the N-column blank.

3.2.4 If N is negative the left-hand digits up to the full total of 10 are filled in
with 9’s: this is equivalent to extending the sign of N within the computer. The
programmer merely writes ‘-N.

e.g. if x, = 7891, the order

F A B N

00 2 0 -197

gives xé = 7891 - 197 = 7694

held in the computer as:
0000007891
9999999803

0000007694

3.3 THE ORDERS 05 - 09

3.3.1 This group of functions is similar to the one above, the N digits being used
directly as an operand. The difference is that the 6 digits are added or subtracted
into the most significant end of the accumulator concerned.

Acc. |D,|D,|D,|D,|D,|Dg|Dg|D,|Dg|Dg

N digits | N

3.3.2 Since the N digits may be regarded as an integer, this is equivalent to
multiplying N by 10* and then adding or-subtracting into the accumulator.

3.3.3 The function 09 has the effect a’ = 10"N.
3.3.4 The six digits forming N are copied into the most significant end of the

accumulator A; or the six digits N are multiplied by 10" and copied into the
accumulator A.

09 T 0 320145

puts the number 320145 into the most significant end of X7 clearing the last four
digits so that

x! = 3201450000

- 10 -

3.3.5 The last five orders of the 0-group can be defined as:-

F Effect Description

05 a’ = a+ 10°N Add N to m.s. end of A.

06 a' = a - 10N Subtract N from m.s. end of A.

07 a’ = -a - 10"N Negate a and subtract N from m.s.

end of result.

08 a' = -a + 10"N Negate a and add N to m.s. end of
result.
09 a’ = 10N Copy N to m.s. end of A.

Example 1: Suppose the negative number -3210876600 is held in X3 and it is required
to negate this and add 5000000. The following order will do this

F A B N
08 3 0 500
The steps performed are:-
x, = 6789123400
-x, = 3210876600

+10"N 000500

3215876600

R
]

Example 2: Two quantities P and I are stored in storage locations 800, 801. If a
number T, held in 810 is 3, form P + I, if it is 5 form P - I, if it is 4
take P, and in each case store the result in location 805. These
instructions are held in locations 350 onwards.

350 14 4 0 800 xﬁ = P.
351 |14 5 0 810 xl =T,
352 |01 5 0 3 x! =T - 3.
——353 |57 5 0 359 Jump to 359 if T = 3.
354 |01 5 0 1 x{ =T - 4.
—355 |57 5 0 357 Jump to 357 if T = 4.
356 11 4 0 801 xa =P -1
L*35'7 60 4 0 805 Store x, in 805.
—358 |55 0 0 361 Unconditional jump.
»359 |10 4 0 801 xi =P+ 1.
360 |60 4 0 805 Store x, in 805.
L+361 (next instruction)

- 11 -

CHAPTER 4

SHIFTING, MULTIPLICATION, DIVISION AND COLLATION

4.1 FRACTIONS AND SCALING

4.1.1 Up to now numbers in the computer have been regarded as integers, and have been
restricted to lie in the range

-5000000000 < x < 4999999999

This assumes a decimal point immediately to the right of the least significant digit.
This is only a convention, and we can imagine the decimal point to be between any two
digits in the computer word which are convenient. The difference between 23598 and
23.598 is only a factor of 1000 = 10°. In most problems numbers will have to be
scaled to keep them within a given range in the computer. If the scaling factor is S,
this will mean storing Sx, instead of the number x. Since Sirius is a decimal machine
S will generally be a power of 10.

4.1.2 It is very often convenient to work with numbers in the form of pure fractions.
This is the case when the decimal point is placed immediately to the left of the m.s.
digit. The available range becomes

-. 5000000000 < x < .4999999999

In other words, with this convention, fractions must be numerically less than %, or
equal to .

4.1.3 Adopting a similar convention for positive and negative fractions, as for
integers, positive fractions appear in the machine as written, and negative fractions
appear as the complement with respect to 1.

e.g. +.4123 appears as 4123000000
+. 0012368 ” ” 0012368000

-.3069 ” ” 6931000000

-.4213604 ” i 5786396000

-. 000909 ” ” 9990910000

-5 "” ” 5000000000

4.1.4 As before, a number is positive if the first digit of its representation in the
machine is between 0 and 4 inclusive, or negative if this first digit is between 5
and 9 inclusive.

4.2 MULTIPLICATION BY 10 OR SHIFT UP

All the 30 - 34 and the 20 ~ 29 functions involve multiplication by 10 and
addition or subtraction. The 30 - 33, 20 - 23, 25 - 28 orders are similar to the
orders 10 - 13, 00 - 03, 05 - 08 respectively; (each can be obtained by adding 20
to the function digits of the simpler orders). A zero is fed in at the least
significant end of the accumulator, e.g. 0002354812 becomes 0023548120 when multiplied
by 10. It should be noted that overflow may occur with these shift orders. A later
paragraph will show how to deal with this situation.

4.3 THE ORDERS 30 - 33

The first four orders of this group are similar to the corresponding 10 - 13
orders except that the contents of the accumulator are first shifted up one place.

- 12 -

The N digits define an address in the working store, the three least significant digits
only being used. These orders are described below.

F Effect Description

30 a’ = 10a + n Shift C(A) up one place and add C(N).

31 a’ =10a-n Shift C(A) up one place and subtract C(N).
32 a’ = -10a - n Shift the complement of C(A) up one

place and subtract C(N).

33 a' = -10a + n Shift the complement of C(A) up one
place and add C(N).

Example: X6 contains .0012341213 and the constant .2174828483 is stored in location
969. The order

33 6 0 999

"

forms xé = -10(.0012341213) + .2174828483 = .2051416353.

4.4 THE ORDERS 20 - 23
4.4.1 These orders are similar to those of the 00 - 03 group, except that the contents
of the accumulator are first shifted up one place. N has its sign extended (as in

3.1.1) and is added to or subtracted from the accumulator.

4.4.2 The orders of this group are summarised below, with N extended to 10 digits.

F Effect Description
20 a’ = 10a + N Shift C(A) up one place and add N to A.
21 a’ = 10a - N Shift C(A) up one place and subtract
N from A.
22 a’ = -10a - N Shift complement of C(A) up one place and

subtract N from A.

23 a’ = -10a + N Shift complement of C(A) up one place and
add N to A.

Example: If the number in X5 is 3624, then the instruction

23 5 0 -1

forms -10(3624) + (-1) = -36241.

4.5 THE ORDERS 25 - 28

The orders 25 - 28 are similar to the 05 - 08 orders except that the contents are
first shifted up one place. The six N digits are again treated as an operand but
added to or subtracted from the most significant end of the accumulator. The functions
of this group have the following effect

- 13 -

F Effect Description

25 a’ = 10a + 10"N shift C(A) up one place and add N to
the m.s. end of A.

26 a' = 10a - 10"N shift C(A) up one place and subtract
N from the m.s. end of A.

27 a’ = -10a - 10"N Shift the complement of C(A) up
one place and subtract N from m.s.
end of A.

28 a’ = -10a + 10"N Shift the complement of C(A) up one

place and add N to m.s. end of A.

Example 1: The fraction 0.035 is in accumulator 6; multiply this by 10 and
subtract 0.45. The order

F A B N

26 6 0 450000

forms x; = 10(.035) - .45 = -.10.
Example 2: If X, = .041231 the order
27 3 0 5001
has the effect xé = -,41231 - .005001 = -.417311.

4.6 SIMPLE SHIFT

4.6.1 A simple shift up of one place i.e. multiplication by 10 can be achieved by
putting the N digits equal to zero in any of the orders 20, 21, 25 or 26, e.g. the
order

20 3 0

has the effect a’ = 10a.

4.6.2 A simple shift up together with a change of sign, i.e. multiplication by -10,
can be achieved by putting the N digits zero in the 22 or 27 order, e.g.

22 3 0

has the effect a’ = -10a.

4.7 THE ORDER 34
The 34 order has the effect

a’ = 10a + M.S.D. of n.

- 14 -

This shifts the contents of A up one place and puts the m.s. digit of the contents of
N in the l.s. digit position of A.

]

Example 1: If x, = 0021312486 and C(499) 4632189106 then the order

F A B N

34 4 0 499

performs the following steps: -

x, : 0021312486
: 0213124860
n : 4632189106

x! . 0213124864

Example 2: Given a 20-digit number .02341213453100000000 in 400, 401, shift it up
one place and restore it.

14 2 0 400 x . 0234121345

!
2

34 2 0 401 x) = .2341213453

60 2 0 400 Store in location 400

14 2 0 401 x£ = .3100000000
20 2 0 xé = .1000000000
60 2 0 401 Store in location 401

4.8 DIVISION BY 10 OR SHIFT DOWN. GROUP 4 ORDERS
4.8.1 There are four orders for division by 10.

4.8.2 Division by 10 is a shift of a number one place right, usually said to be a
shift “down’’, since it becomes numerically smaller.

4.8.3 There are two main points to be considered in connection with a shift-down.
First the question of signs, remembering the convention in Sirius that the first
digit determines the sign of a number. 1In the case of positive numbers, a zero fed
in at the most significant end will maintain the sign and give a correct result.
Negative numbers, on the other hand, must have as their first digit anything from 5
to 9. If a 9 is fed in at the most significant end for each shift-down, the correct
arithmetical result will be obtained. Using x to denote any number and x* its
representation in the computer, the following examples should make this clear.

* _1__ *

o x 10"
-. 2134800000 7865200000 9786520000
-10121 9999989879 9999998987
-. 0000012136 9999987864 9999998786

4.8.4 The 44 order is a simple shift-down, and has the effect

10

- 15 -

4.8.5 The second point will be noticed from the numerical examples above. The 1.s.
digit in x* is dropped when it is shifted down. It is not always desirable that this
should happen. In the second example, a 9 is dropped off, leaving 7 as the last
digit; a more accurate result would be an 8. Another function is provided which
rounds off the last figure in this way. This is the 40 function. The rounding is
performed by adding 5 to the l.s. digit of a number and then shifting right. In the
example quoted, 5 added to the last 2 digits gives 79 + 5 = 84; when the whole
number is shifted, the 4 drops off leaving the 8 as the last digit.

4.8.6 The following are examples of a rounded shift down, if the 40 order is used.

1
x x* ia—x*, rounded
+12378 0000012378 0000001238
~-456890 9999543110 9999954311
-. 2234249812 7765750188 9776575019

4.8.7 There are four orders altogether for shifting down, as summarised below.

F Effect Description

40 a' = L+ 5) Rounded arithmetical shift-down,
10 with sign extension.

44 a’ = f%«: Unrounded arithmetical shift-down,

with sign extension.

45 al = f%—(a +5) + LSD of N Rounded shift-down, the 1l.s. digit
of N being copied to the m.s. digit
of A.

49 a' =L a+LSDof N Unrounded shift-down, the 1.s.

10 digit of N being copied to the
m. s. digit of A.

4.8.8 The full use of the 45 and 49 orders will become apparent when modification
(Chapter 5) has been considered. For orindary single-length shifts into 40 and 44
orders will usually be sufficient.
4.9 THE OVERFLOW INDICATOR
4.9.1 Numbers stored in Sirius must lie within the range

L x < Y
if regarded as fractions or in the range

-5000000000 < x < 4999999999

if regarded as integers. But arithmetical operations may cause numbers to arise
which exceed capacity, i.e. overflow.

E.g. .312 + ,418 = .730 and + .730 is outside the range, and in fact will be
interpreted as a negative number of magnitude 1 - .730 = .270.

4.9.2 1In this case overflow is detected by a change of sign in the result where none
should occur.

- 16 -

4.9.3 Another form of overflow occurs when significant digits are lost, for example
in the shift functions. When 1348900139 is shifted up one place, the first digit is
lost. Moreover a shift may cause a number to change in sign. A negative number -.07
held as .93 when shifted up becomes .3, a positive number, the complement of the
desired one.

4.9.4 All these occurrences are detected by the overflow indicator. This indicator
has only two states, “clear’’, which is the normal state, and “set’ when overflow
occurs. It remains set until tested by means of either of two special orders, (the
53 and 58 functions), which then clear the indicator.

4.9.5 The computer will continue to operate even though the overflow indicator is
set. If this is not foreseen by the programmer and steps taken to correct it, the
resulting calculations will usually be meaningless.

4.10 THE ORDERS 53 and 58

4.10.1 These are the two functions which enable the programmer to deal with overflow.
The function 53 has the effect “jump to N if overflow is set and clear the overflow
indicator’”. That is if the overflow indicator is set, control is transferred to the
address specified by N, and the indicator is cleared. Otherwise the next instruction
is obeyed. For example the instruction

F A O N

53 0 0 303

has the effect, “if the overflow indicator is set jump to obey the instruction held
in location 303, otherwise obey the next instruction”.

4.10.2 In this order and the 58 order, the A digit is put equal to zero by
convention, since no accumulator needs to be specified.

4.10.3 The function 58 has the effect “jump to N if overflow is clear, otherwise
clear the overflow indicator’, i.e. if there is no overflow control is transferred
to the address specified by N, otherwise the overflow indicator is cleared and the
next instruction obeyed. e.g. if the order held in register 506 is

506 |58 0 0 365

the control is transferred to location 365 if overflow is clear, otherwise the next
instruction is taken from 507.

- 17 -

Example: Two numbers p and g are stored in locations 500 and 501. Write a programme
to add these numbers and store the result in 502. If overflow should occur
replace p and q by

p
1p and 15, and put the sum_l’l*_oq in 502.

Also store zero in register 503 if there is no overflow, or the number 1 if
the result has had to be shifted.

F A B N
200 |64 0 o0 503 Put zero in location 503
1 (14 2 0 500 zé =p
2 10 2 0 501 xé =p+gq
——3 |58 0 0 213 Jump to 213 if OVR clear
4 |14 2 0 500 xé =p
5 |40 2 0 x) =LO, rounded
6 |60 2 0 500 Store in 500
7T |14 2 0 501 x) = q
8 |40 2 0 x! ={%, rounded
9 |60 2 0 501 Store in 501
10 |10 2 0 500 x) =4 4+ P
10 10
11 |04 3 0 1 x) =1
12 | 60 3 0 503 Store in 503.
13 |60 2 0 502 Store (p+q) or-l%(p+q) in 502.

4.11 MULTIPLICATION. THE 79 ORDER

4.11.1 If one multiplies together two decimal numbers each having the same number of
digits one gets a product with twice as many digits e.g.

.38 x .61 = .2318

In the same way the product of two 10-digit fractions will be a 20-digit fraction,
i.e. double the length and will occupy two computer words. Two accumulators are
used to contain the product, although of course the full double-length number is
not always required.

4.11.2 The Sirius the 79 order is used to give a full double-length product. The
m.s. half of this product can be taken as an unrounded single result (e.g. as if the
answer had been taken as .23 in the example above). With integers however, provided
the answer is capable of being held single length, it will be in the 1l.s. half. For
example, in a 3 digit word machine 024 could be multiplied by 015 to give 000360, and
360 is the single-length answer.

4.11.3 One of the factors, usually called the multiplier, should be placed in X9,
and the other, called the multiplicand, in XB. The resultant double-length product
appears in two accumulators, XA and X9. The order may be summarised

79 (a, xg)’ =bxx Place the double-length product

9
of band x; in a and x,.

The N digits are not used, and are usually left blank.

- 18 -

Example 1: Two numbers p, g are held in 333 and 334. Form the double length
product and store it in 350, 351.

F A B N
401 |14 4 0 333 x} =p
402 |14 9 o0 331 x! =gq
403 79 6 4 (%, xg)’ = pg
404 |60 6 O 350 Store m.s. half in 350
405 |60 9 O 351 Store 1l.s. half in 351

Example 2: Two small integers j, k are stored in 900 and 901. Place the product
in 902. Assume that this product is less than 5 x 10° in absolute value
(i.e. it is a single-length number).

14 5 0 900 x! =]

14 9 0 901 x! =k

79 2 5 x) = jk

60 9 0 902 Store in 902

Example 3: Two fractions c, d are in the storage locations 703 and 704. Form the
single-length correctly rounded product and store it in 705.

220 | 14 2 0 703 x) =c

221 14 9 0 704 x; =d

222 |79 3 2 xé = ¢d (m.s. half)
——223 | 59 9 0 225 Jump if x, > 0

224 | 00 3.0 1 xf =cd + 1
L—» 225 60 3 0 705 Store cd (rounded) in 705

To form the rounded single-length product from the double length number in accumulators
3 and 9 it is necessary to add one to the 1l.s. end of accumulator 3 if the m.s.
digit of accumulator 9 is 5 or more. We introduced a convention with single-length
numbers, which treats the left-hand digit in a special way with regard to the sign
of a number; but when double-length numbers are stored in two accumulators, the
left-hand digit in accumulator 9 (i.e. the l.s. half of the number) is merely one
of the digits of the product and has no special significance with regard to signs.
For the purposes of testing its value however, the left-hand digit in accumulator 9
may be considered as obeying the sign convention adopted in Sirius, i.e. if this
left-hand digit is 5 or more the contents of accumulator 9 would be regarded as
negative. Hence the 59 order which is used to test the sign of a number can be
used here to test whether to do a correction in accumulator 3. The two orders held
in locations 223 and 224 will therefore perform the rounding.

4.11.4 The largest number which can be produced as the result of multiplication is
when (in terms of fractions) -0.5 is multiplied by -0.5. This gives the answer
+0.25. As this is within the range of Sirius, the 79 order can never set the OVR.

4.11.5 Care must be taken not to specify B = 9, if the square of a number is required,
since during multiplication the original contents of accumulator 9 are destroyed.

- 19 -

The multiplicand in accumulator B is not destroyed, unless the same accumulator is
specified both in the A and B digits. (This is permissible since the more significant
half of the product does not appear in A until multiplication is complete). If

A = 9 the more significant half of the product appears in accumulator 9, the less
significant half being lost.

4.11.6 To summarise, B must not be equal to 9, but it is permissible to have A equal
to B or A equal to 9. 1In the latter case the most significant half of the product
appears in accumulator 9, and the least significant half is destroyed.

4.12 DIVISION

4.12.1 It is desirable that the operation of division should be the converse of
multiplication, so that if the product of u and v is divided by v, we should get u as
quotient, i.e.

4.12.2 The product uv is a double length number (20 digits in Sirius) and the
division operation is to divide this double length number (the dividend) by a single
length one (the divisor) to give a quotient and remainder, both single length.

4.12.3 The double length dividend is formed from C(A) and C(9) taken together as a
20 digit number. The divisor is taken from B. The division operation performed is
thus

a + 107%° xy
b

where x, is taken as positive, i.e. if regarded as a fraction the range is 0 to 1
rather than -% to +%,

4.12.4 1In general the quotient resulting from such a division will not terminate
exactly, although of course as many digits accuracy as are required can always be
obtained by taking the process sufficiently far. In a computer it is necessary to
terminate the process at some fixed point, and in Sirius a single length, 10 digit,
quotient is obtained. The remainder is then the number which, if treated as a new
dividend, would enable the division to continue; it is always less than the divisor.

4.12.5 The division orders in Sirius work in an unsigned mode; this means that the
correct answers will only be obtained if both divisor and dividend are positive. To
deal with the case where either or both of these may be negative, it is necessary to
use a subroutine for division which will ensure that these are complemented when

necessary before dividing, and that the quotient is complemented if necessary after
dividing.

4.12.6 If negative numbers are used by a division order they will be treated as being
positive, in the range 0 to 1. Thus if we try to divide -.01 by +.4, in the machine
these are represented by

99000000000000000000 (the 20 digit dividend)
and 4000000000 (the 10 digit divisor)

The machine will interpret this as dividing .99 by .4, which overflows, and no
sensible result will be obtained, although the correct answer, -.025, is within
range. Conversely, if we divide +.4 by -.01, there is no correct answer, as -40 is
out of range, but the machine will divide .4 by .99, and obtain a quotient of
.4040404040. This would appear to be within range, and overflow will not be set.

4.12.7 Bearing in mind the unsigned nature of Sirius division overflow will occur
if the quotient would be +1.0 or more. However, as normally one will in fact be using
the signed convention, the answer is really out of range if it is +.5 or more.

-2 -

For example if we divide +.3 by +.4, both are positive and the quotient will appear as
7500000000. This is correct only if we ignore the sign convention. To cater for the
two possibilities, two versions of the division order are provided; the 70 order will
set overflow if the quotient is out of range according to the sign convention, 1i.e.,
if it is greater than or equal to .5, whereas the 75 order will set overflow only if
it is greater than or equal to +1.0.

4.12.8 Once a division overflows neither the quotient nor remainder can be expected
to bear any relation to the correct ones, i.e. the quotient obtained will not
necessarily differ from the correct, but out of range, quotient by a whole number.

4.12.9 Both division orders place the quotient in X9 and the remainder, which is
always positive and less than the divisor, in A. The division orders are summarised
below: -

F Effect Description

, 10710 o7 R 10°10 %, o
70 x! + = Divide the double-length,

’ b b unsigned number, in A and X9
by the unsigned number in B
setting the quotient in X9
and the positive remainder
in A. Set overflow if

Set overflow if x) > %

x5 2 h
10710 o a + 10710 %,
75 x; + = As for 70 order but over-
b b flow is set only if
Set overflow if x] > 1.0 xg > 1.0.

The N address is not used with either of these orders.
Example 1: Two positive integers, ¢ and d, both less than 4999999999 are held in
300 and 301. Form the quotient and remainder on dividing ¢ by d in

X9 and X8 respectively.

F A B N

14 9 O 300
]Double length dividend to (8,9).

04 8 0
14 7T 0 301 Divisor to X7.
70 8 7 Divide, quo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>