

The Computer Journal

Volume 1

April 1958
[0
January 1959

REPRINTED 1970 FOR
Wm. DAWSON & SONS LTD., LONDON

with the permission of the Publishers

The Autocode Programs developed for the Manchester
University Computers
by R. A. Brooker

Summary: The article describes two programs written for the Manchester University
Computers, which enable these machines to accept programs written in a simplified form.

INTRODUCTION

The preparation of programs for an automatic digital
computer is a technique which usually takes several weeks
to become familiar with, depending on the logical com-
plexities of the machine in question. For the casual
user, with a problem that does not require to make full
use of the high speed of such a machine, it is possible to
devise simplified coding procedures which are both
quicker to learn, taking a day or two at most, and easier
to use. These make use of a conversion program which
enables the machine itself to accept “programs” written
in an idealized language or “instruction code” and
convert them to the precise instructions which the
machine eventually obeys. The present article describes
two such conversion programs (or Autocoding programs
as they are sometimes known) written for the Man-
chester University Computers (Ferranti’s, Mark I and
Mercury). The first of these programs, the Mark I
Autocode, is now obsolete, but is of interest because the
difficulties in programming which it was designed to
overcome are characteristic of many machines still in
use, e.g. the Ferranti Mark I*. These programming
difficulties are discussed and compared with those of
Mercury, for which the second autocode programming
system is designed. The second and main part of this
article is a users’ description of this latter program.

THE AUTOCODE PROGRAM FOR THE MARK I COMPUTER

A users’ description of this program has been given
elsewhere (Brooker, 1956). The following “program”
for evaluating the limit of the arithmetric-geometric
sequence

Apy1 = %(an + bn)a er—l = '\/anbm (aO =1, bO = 05)

will give some idea of the “instruction” code, and hence
of the degree of simplicity introduced.

2v =1 sets ag (2 is an entry point)
vy, =0-5 sets by

o, =19 X v, forms a,b,
vy = v, + U, forms a, + b,
vy = v,[2 forms a,,
vy = Fi(v3) forms b,, , where F; is v/
Vg =Y — Uy Apiy = by (>0)

—— 1, v, > 0-000001 tests for convergence
(—>2) starts the program.

The main difficulties encountered in conventional
programming for the Mark I Computer are (1) the scale

15

factor difficulty, (2) the use of the two-level storage
system, and (3) the language difficulty.

The scale factor difficulty arises because the Mark I
is a fixed binary-point machine. It is therefore neces-
sary to arrange the calculation so that all the quantities
remain within the capacity of the storage registers
(40 binary digits) and yet can still be represented to the
required accuracy. This difficulty is normally overcome
by studying the magnitude of the intermediate quantities
arising in the calculation and assigning fixed scale factors
to individual numbers or groups of numbers so that their
maximum values are just within the permitted range,
usually +1. In an autocode program the difficulty can
be removed in one of two ways. The first is to work
throughout with double length arithmetic keeping, say,
40 binary digits for the fractional part of a number, and
40 digits for the integral part. Alternatively, each
number occurring in the calculation may be associated
with its own adjustable scale factor: an interpretive
scheme for doing this has been described by Brooker
and Wheeler (1953). This so-called floating-point tech-
nique requires the use of routines for carrying out
operations of the form @.2? + 5.29, etc., and for this
reason the time of execution of a floating-point instruc-
tion is very long (addition 40 msec, multiplication
24 msec, division 90 msec), compared to that of the
corresponding fixed-point machine instructions. How-
ever, this is partly offset by the fact that fewer instructions
of the floating-point variety are needed. A floating-point
system is, in fact, used in the Mark I Autocode, although
it is the author’s opinion that the former alternative
would have been more generally satisfactory for the
Mark I machine.

The second difficulty relates to the physical nature of
the storage facilities. The programmer’s task would be
made easier if, instead of two levels of storage, that is
a small *“fast” working store and a large “slow” auxiliary
store, there was just one single storage medium of
indefinitely large capacity and rapid accessibility. How-
ever, since the adoption of floating-point arithmetic rules
out the need for rapid accessibility, it is possible to regard
the slow store (magnetic drum) as the working store, and
use the fast store to record the interpretive routine for
floating-point arithmetic, together with a trackful each
of numbers and instructions. The content of a track of
the drum is the minimum amount of information that
can be transferred between the two levels of storage in
one operation. Each track of the drum holds 32 num-
bers, so that the locations on 128 tracks can be labeiled
Vo, Vg, Uy, - . . Vypos, the locations vg-v5, being on track 1,

Manchester Autocode Programs

vy,-v6; being on track 2, and so on. To gain access to
any one of them, the interpretive routine first determines
the track on which it lies, then transfers the contents of
the track in question to the fast store, and finally selects
the particular location required. The access time for
any operand is thus at least 40 msec (the time for a
reading transfer), and for the corresponding recording
operation at least 90 msec (the time for a writing transfer).
These figures about match the times of floating-point
operations, although the ratio of access time to computing
time can be reduced still further by eliminating unneces-
sary magnetic transfers when the ““magnetic” address of
any operand involves the same track as the operand
last selected (which may occur in the same instruction
or in the previous instruction). Since operands will be
selected from the “neighbourhood” of previous operands,
this proves a useful time-saving device.

As regards the instructions, one trackful of these is
normally kept in the fast store, and when these have been
used up arrangements are made to replace it by the
contents of the next track, or, in the case of a “‘jump”
instruction, by that of whichever new track is involved.
This means of access to instructions is efficient because
the time taken to transfer each trackful is negligible
compared with the time taken to execute the floating-
point operations which they initiate: the ratio is still
quite reasonable even where ordinary (machine) instruc-
tions are concerned, and indeed this track-changing
business is a characteristic feature of the conventional
programming technique used with the Manchester
machine.

The third difficulty, the use of a strange language, also
arises from the need to partition the fast store (like the
drum) into blocks of 32 numbers for the purpose of
magnetic transfers. As a result one is virtually compelled
to use a scale-of-32 numbering system for all items of
information. For this purpose the 32 symbols

JE@A:SIUSDRINFCKTZLWHYPQ
OBG"MXVE

are employed.t The reasons for this are explained in
ref. (1), and their validity is proved by the fact that
although many alternative schemes have been sug-
gested, none has survived in practice. Nevertheless,
attempts to replace it are natural enough: it does not
encourage beginners when they learn that the instructions

o5 T]
@ETC
RETA

mean ‘“‘add the contents of locations 24 and 34 and
place the result in 44.” For this reason it was decided
to make a complete break with the conventional pro-
gramming style and adopt a language as simple and as
close as possible to elementary arithmetical formulae.
This would be necessary in order to attract the occasional

+t Any set of 32 symbols would suffice but these were chosen
because they occur on the upper case of a standard typewriter.

16

user, since the price paid, in terms of speed, for over-
coming the first two difficulties, means that its use is
more or less confined to ad hoc problems, and problems
which might otherwise have been considered too small
for a large-scale computer. As an extreme example of
what it has been used for, it may be interesting to record
what must surely be one of the smallest genuine calcula-
tions ever done on such a computer—the author was
asked for assistance in calculating the cube root of
0-62315670985. The following program was therefore
prepared and run on the machine, which was fortunately
available at the time.

1 v, = Fy(0-62315670985)
vy = vf3 (Fy = exp
vy == F3(vy)* Fy = log
H * = print)
(=1

It was also considered important (again for psychological
reasons) to make the description as short as possible.
What the author aimed at was two sides of a sheet of
foolscap with possibly a third side to describe an example.
This was achieved [see ref. (1)] although, as time went
on, various special operation codes were added; e.g. for
the solution of differential equations, and arithmetic
with complex numbers, which, together with hints on
coding, brought the total to about nine sides of foolscap.
Nevertheless, these still made a considerably smaller
volume than the conventional programming manual
which proves so indigestible to many would-be machine
users.

Since its completion in 1955 the Mark I Autocode has
been used extensively for about 12 hours a week as the
basis of a computing service for which customers write
their own programs and post them to us. These are then
checked and prepared for the machine, and the results
returned to the customer. The total delay is normally
less than a week, while for members of the University
who are on the spot it is, of course, much less. One
customer’s experience of this Autocode service has been
described by Lunt (1957).

THE MERCURY AUTOCODE

Turning now to the Ferranti Mercury, it is appropriate
to start by considering how the difficulties outlined above
are modified by the design of the machine. Firstly, the
scale factor difficulty has been virtually removed by the
inclusion of built-in floating-point arithmetic. Indeed,
the machine has been criticized in this respect as not
providing fixed-point arithmetic facilities. =~ However,
there would be little point in providing fixed-point
facilities with the 40-digit accumulator because, owing
to the design of the machine, these would be little faster
than the corresponding floating-point operations. The
main advantage of them would be that they could be
made to operate on numbers of 40 digits rather than
30 digits, which is the precision of a floating-point
number. Fixed point arithmetical facilities and logical

Manchester Autocode Programs

operations are provided for 10-digit words, and these
prove quite adequate for the “‘red tape” of organization.

As regards the question of two-level storage, one can
only say that this has been alleviated, but not entirely
removed. The fast store of Mercury amounts to 1024
40-digit registers (but only half this is available for
instructions) which is four times the size of that on the
Mark I computer. The auxiliary magnetic drum store
is still, therefore, essential—and could only be dispensed
with if the fast store were extended to at least 8000
numbers. A feature of Mercury which compares
unfavourably with the Mark I is the ratio of access times
to the two forms of storage. Thus for the Mark I the
time to transfer a trackful (128) of instructions from the
drum to the fast store is 40 msec, and the access time to
each of these instructions within the fast store is approxi-
mately 1 msec. For Mercury, however, the corre-
sponding times are 24 msec, and 0- 1 msec, a ratio which
is six times that of the Mark 1. Fortunately, however,
the larger size of the fast store makes references to the
magnetic drum store considerably less frequent.

Finally, we have to compare the language difficulty of
the two machines. Because of the comparatively large
fast store, the representation of instructions is not
influenced to anything like the same extent by the
physical nature of the auxiliary drum store, and a more
or less conventional decimal code is used both for the
address part, and the function and “B” digits of an

instruction. Thus in place of
o/l T/ we now have 400 24
@ETC 420 34
RET A 410 44

Nevertheless Mercury has its own special difficulties
which arise from using the 10 binary digits of the address
part of an instruction to refer to information in 2048
registers

0,1,2,...,2047.

To overcome this, the address part of an instruction may
refer either to the 1024 double registers (40 binary
digits)

0,2,4,...2046
or the 1024 single registers (20 binary digits)

0,1,2,...1023
or the 1024 half registers (10 binary digits)

0,0+, 1, 1+, ..., 511, 511+

according to the nature of the instruction in question.
In the case of half registers a duplicate set of instructions
is provided which enables the instructions to reach the
second quarter of the store, namely the half registers

512, 5124, .. ., 1023, 1023+4-.

To some extent this feature of the machine can be con-
cealed by writing all addresses in the ““medium’ number
system as above, and arrange for the necessary doubling

C

17

and halving of addresses to be done by the input routine.
Nevertheless it has to be revealed at some stage in a
programming course and can usually be relied on to
mystify pupils for a day or two!

It follows from the preceding discussion that a large-
scale autocode program is very appropriate for use
with Mercury. The built-in floating-point arithmetical
facilities mean that the resulting program will not be of
an interpretive nature, but will consist of ordinary
machine instructions and hence will be almost as fast as
a conventional program. The size and accessibility
features of the two levels of storage mean that it is worth
while to accept these and not to disguise them. Indeed,
many problems will be so small that there will be no
need to consider auxiliary storage at all, and therefore
this need only be described for the benefit of “‘advanced”
programmers. With these difficulties removed it is
possible to concentrate on the language question and the
form of presentation of the calculation. Thus instead
of the rather elementary instructions of the Mark I
Autocode, amounting to what is nothing more than a
two- or three-address instruction code, one can instead
arrange to interpret more complicated algebraic formulae.
There is a practical limit as to how far one can go in this
direction because of the restrictions on the number and
style of the symbols available on commercial teleprinter
equipment. Whatis really needed is a “two-dimensional”
teleprinter and corresponding keyboard which will cope
with both affices and suffixes. In the absence of such an
instrument, it is necessary to arrange for a mathematical
expression to be treated as a one-dimensional sequence
of symbols. This does not restrict the programmer
from using affices and suffixes in his manuscript form of
the program, but it does mean that the format of the
expression must be capable of being interpreted unam-
biguously when arranged in one-dimensional form.
Thus, for example, the manuscript form

€ = A1y — b bary
becomes in one-dimensional form
ci = a(i — Da(i + 1) — b(i — D)b(i + 1).

In employing the only two bracket symbols on the
Mercury teleprinter code to designate compound
suffixes in this manner, the possibility of using them in
the conventional way is sacrificed, and as a result the
most complex algebraic expressions which can be
treated by Mercury Autocode must be essentially
parenthesis free. Thus, for example,
bi = ag;—y (ag-n —1)

has to be written as
bi = a(j — Da(j — 1) —a(j — 1).

The introduction of a second style of bracket symbols { }
would remove this difficulty, thus

bi = a(j — D{a(j — 1) — 1}.

Manchester Autocode Programs

THE AUTOCODE SYSTEM FOR THE MERCURY COMPUTER

The following is an account of a proposed Autocode
system for the Manchester Mercury Computer. In this
scheme the program consists of an ordered sequence of
instructions which employ the following symbols:—

abcdefghuvwxyznw
ijkimnopqgrst
0123456789
+toFE=> ()24

The program is ultimately presented to the machine in
the form of a length of perforated paper tape which is
scanned by a photo-electric tape reader, the input unit
of the machine. The program tape is prepared by means
of a manual keyboard perforator on which are engraved
the standard symbols. The material is punched in the
conventional fashion, namely from left to right and down
the column. Each instruction is followed by two special
symbols CR (carriage return) and LF (line feed) which
are provided for this purpose. There is also an erase
symbol >k which is used for overpunching mistakes.

The instructions read from the tape are placed in the
instruction store of the machine. The numerical quan-
tities to which they refer are kept in the working store
of the machine. The program will include instructions
to set the initial values of such quantities, either directly
or by reading them from a further data tape by a process
similar to that by which the instructions themselves were
read into the machine.

The instructions fall into two classes, the arithmetical
instructions which perform the calculation proper, and
the control instructions which “organize” the calculation
(e.g. arrange to repeat cycles of arithmetic, select
alternative courses of action, or, as already mentioned,
read further numerical data into the machine). Instruc-
tions of this latter class are the characteristic features of
automatic calculating machines; they distinguish them
from desk machines which are ‘“‘controlled” by the
operator himself. Both kinds of instruction need to
refer to the working store, so that it is appropriate to
start by describing the notation used to refer to the
numbers stored therein.

THE WORKING QUANTITIES

The numbers recorded in the working store are also of
two kinds, general variables and indices, which, like the
two kinds of instructions, relate mainly to the calculation
proper and its organization. Thus the variables have
numerical values in the range 10770 < |x| < 107° and
are recorded to a precision of eight/nine decimals, while
the indices are restricted to integral values in the range
=512 < i< 511

THE VARIABLES

These are divided into three sets as follows.
The main set consists of 480 variables which can be

18

divided into a maximum of 15 groups associated with
the variable letters,

abcdefghuvwxy:zm.

For example, they can be arranged as a single group of
480 variables

Vo Uy Vg o o v Vggg
in which case the directive
v — 479

is written at the head of the program. Alternatively
they could be arranged in three equal groups, thus

doa;ds ... disg
bo bl b2 . e . b!59
CyCp Ca ... Ci59

the necessary directives being

a-—> 159
b —~ 159
c— 159

It is intended that these groups shall reflect any natural
grouping of the quantities occurring in the problem, and
provided that the total number of variables does not
exceed 480 the number and size of the groups is at the
disposal of the programmer.

In addition to the main variables, there are fifteen
special variables represented by the letters

abcdefghuvwxyzxw

employed without a suffix. These will be a common
feature to every program which cares to use them.
The special variable = may be assumed to have the
value 3-14159 . . . until otherwise altered.

The auxiliary variables will not be introduced here
because for a large number of applications the main
(and special) variables will be sufficient.

INDICES
These quantities are represented by the 12 letters

ijklmnopgrst.

Although permitted integral values in the range
—512 < i < 511, emphasis is placed on positive values
because they are primarily intended to be combined
with variables in the form, for example,

X; OF X(n—1 OF X(si50)

to represent a free suffix; that is, these expressions may
represent any one of the variables

Xo X1 X3+«

depending on the particular value of the index in question.
Thus if n = 4, then x(,_;) will refer to x;. The last
two expressions illustrate the most general form which
a suffix may take, namely (index + integer). In calcula-
tions of a repetitive nature an index will assume a range

Manchester Autocode Programs

of values, and to arrange this it is necessary to be able
to compute with indices as separate items in much the
same way as variables.

In preparing the input tape, all expressions are recorded
in a one-dimensional form, thus x,, x;, and x. sq) appear
as x3, xi, and x(s + 50), respectively. Consequently it
is not possible to distinguish, in a product, between, say,
xi meaning x; and xi meaning “x times i”’. In order to
resolve this difficulty, a convention will be introduced
later for ordering the factors in a product.

NUMERICAL VALUES

Explicit numerical values will have to be introduced
into the program at some stage, so that it is necessary to
explain how these are written. The standard form is

integral part decimal point fractional part

omitting what is unnecessary. Thus, as is the case in
writing suffixes, the decimal point can be omitted in
whole numbers. However, absolute standardization of
form is not necessary and, for example, the number 15
may also be written as

15- 150 015-0

All these and similar variations will be accepted by the
machine.
Similarly 4/2 to six significant figures may be written

1-41421 01-41421 001-4142100 etc.

In the case of the number 1-414213562372095, however,
only the first ten significant figures will be treated, and
the remaining figures will be ignored (although they will
be read from the tape).

THE ARITHMETICAL INSTRUCTIONS

The basic form of the instructions for computing
variables may be illustrated by the following example :—

Yy = 2Ny 11y + aunt + ma, + 0-01m +- 0-01n

which gives the new value of the variable to be altered
(in this case y) in terms of other quantities.

In general, the right-hand side may involve any
number of products which may each have any number
of factors either variables, indices, or constants. As
already mentioned, it is necessary to distinguish in the
“one-dimensional” form

y = 2mna(m + 1) + amn + man + 0-01m + 0-01n

between am meaning a, and a X m. The convention
adopted is that an index immediately following a variable
letter is treated as a suffix so that the above expression is
interpreted as

y=2XmxXnXampy+ (@, X n -+ mx a,)
+ (0-01 x m) + (0-01 X n).

Further examples of instructions in this general class
are:

a=0 x,=x,-+1 x,=2Xx¢+ nh

19

As a further refinement a quotient sign (solidus) may
be inserted before the last factor in any product. Thus
u=xla -+ y[b+ zfc

v = 2mufn
are possible instructions.

The basic form of the instructions for computing

indices may be illustrated by the following example:
i=2mn+m-+n+1

The only difference between this and the previous class
of instruction is that the quantities on the right-hand side
are restricted to indices or whole numbers, and the use
of the solidus is not permitted. Further examples of
instructions in this class are:

i=0 n=n-+1

and

r=10p +¢

FUNCTIONS

The following equations are a means of introducing
certain elementary functions into the program. Hence
the L.H.S. y stands for any variable, and the argument x
for any R.H.S. expression.

y = sq rt (x)

y = sin (x)

y = cos (x)

y = tan (x)

y = exp (x)

y = log (x) i.e. log to base e
y=mod (x) i.e. modulus of

y = int pt (x) i.e. integral part of
y=frpt(x) ie. fractional part of.

Examples of instructions in this class are
u = cos (Ix[a + my[b -+ nz[c)
a = log (xx + yy)
w = sq rt (xxx)
X, = cos (nd)
The following class of instructions involves functions of

two variables, which may each be replaced by R.H.S.
expressions.

ie. x/y
i.e. arctan (y/x)

ie. v/(x2 + »2).

Examples of instructions in this class are:

z = divide (x, y)
z = arctan (x, y)
z = radius (x, »)

z =divide (x + y, x —»)
arctan (aa — bb, 2ab)
radius (x;, y;)

U =
a; =
Finally, there is the instruction i/ = int pt (x) for con-

verting a variable (or any R.H.S. expression) to an
index (the largest whole number less than x is taken).

THE CONTROL INSTRUCTIONS

These are the instructions which organize the calcula-
tion and which, for this reason, are sometimes known
as the “red tape.”

Manchester Autocode Programs

The most important instructions in this class are the
Jump instructions. Arithmetical instructions are normally
obeyed in the order in which they are listed, but from
time to time it is necessary to select alternative courses
of action as in the following sequence of instructions for
calculating:

()_#(ex,x<0 Jump 1,x>0 ____
f,x—Ll-i—sinx,x>0 f=exp (x)
jump 2 —
) f=sin(x) <
f=1+f |
) L

In this example the first instruction is a conditional
jump, i.e. if the condition (in this case x > 0) is satisfied
then control “jumps” to the instruction labelled 1) and
then continues to obey instructions from there onwards;
otherwise, if the condition is not satisfied, then the next
instruction is obeyed in the usual way. Any instruction
can be labelled in this way with an integer in the range
1-120 inclusive.

The second jump instruction in the above example is
an unconditional juomp and needs no further explanation.
The general form of a conditional jump instruction is

jumpm, o> B (or # = >)

where 7 is a specific label and «, S are the quantities
being compared. These must be either both variables
(including a numerical constant) or both indices (including
a numerical integer). It is not possible to compare a
variable directly with an index without first converting
the index to variable form. Examples of conditional
jump instructions are

jump 8, 1-41421 > ¢
jump 97, r =

Jump I, x>y
jump 50, 7 % 2

Associated with the above are the instructions

jump (@) n)=3 n)=m

where n, m denote any index letters.

The instruction 7) = 3 makes a subsequent jump (n)
equivalent to jump 3. One use for this will be to mark
the point of return when calling in a subsequence, thus

main sequence subsequence
—_— > 10) —
n) = !
jump 10—
3) — < —
[jump (n)

20

In the same way the instruction #) = m makes a jump (n)
instruction transfer control to one of several different
points depending on the computed value of m. This
device is known as a multi-way switch.

CYCLES OF OPERATIONS
Two special instructions are provided to simplify
cycles of operations. These take the form

i= p(g)r or

> >

i = p(—q)r

r
|
|
l

S ———

— repeat —— repeat

and arrange to execute the intervening instructions for
values of 7 running from p by increments of q (or —¢q)
to r. Any index may be used in place of i and D, q,r,
may be any integers or other indices, subject of course
to the restriction that r — p is a multiple of g, otherwise
the cycle will continue indefinitely. Cycles within cycles
are permitted up to a nest of 8 deep. The following
sequence,

x=0 Y4y =y 1o
b= ,?.(I)n ay 4ap2 i
[——~+ p=1i—1
! Jj=1)p ay G2 . Yo
(T q=np+j—1 AN ‘
(X =x 4 a, \\
‘ ———— repeat ‘ N
L repeat Auy Ay .

for example, illustrates a cycle within a cycle (for cal-
culating the sum of the off-diagonal elements of a sym-
metric matrix).

INPUT FROM A DATA TAPE

Instructions are provided to read numerical informa-
tion from the input tape into the computing store
These are

read (x)

read ()

which mean “read the next number on the tape and set
the specified variable (or index) to this value.” As each
number is read the tape is advanced to bring the next
number to the reading station. Numbers must there-
fore be punched in the order in which they are required.
Each number is written in the manner already described
(preceded by minus sign if ncgative) and terminated by
CR LF (or a double space SP SP).

OUTPUT

To print results the simplest procedure is to write a ?
symbol after the arithmetical instruction giving the
relevant value of the quantity in question, e.g.

x=2zyy — 1? i=14+17

Manchester Autocode Programs

This will cause the new value of x (or i) to be printed
immediately after computation. Each number is printed
on a new line to 10 decimal places, so that results
obtained. in this fashion will be listed in a single column
at the left-hand margin of the page.

In case the results are required in tabular form, the
following instructions are provided:

print (x, n, m)
space
newline

print (i, n, m)

The print instruction causes the value of x (or i) to be
printed in fixed decimal point style with n and m positions
allowed, respectively, for the integral and fractional
parts (n, m < 15). One figure is always printed before
the decimal point, but other non-significant zeros are
suppressed. If negative a minus sign appears before
the first digit printed. Each number is automatically
followed by two spaces, but extra spaces can be “pro-
grammed” by means of the space instruction. The
instruction newline combines the operations of line feed
and carriage return.

All numbers printed by the machine can subsequently
be read in again by means of the read instructions,
i.e. input and output are complementary.

CONCLUSION

To illustrate the foregoing description the program
for a small computation job is given below, together
with the necessary input directives which make up the
program tape.

. 1. 1.
Tabulate y = sinx — zsin 3x+§sm 5x —.

+ (Z’/T‘l?:‘*)‘ sin (4n -+])X
fi -0, o T and for specific values of n
or x TR T RRE p .
chapter 1
11 1) m=14n-+1 19
2 r = 1(1)20 1
15 x = rmf20 (5-5 msec)
3 newline (90 msec)
7 print (r, 2, 0) (150 msec)
4 y=20 4
2 k= 12m 1
13 u = sin (kx) (12 msec)
14 y=ulk —y (55 msec)
4 repeat 5
2 space (60 msec)
7 print (y, 1, 9) (420 msec)
4 repeat 4
1 stop 1
close
2 n=15 starting 2
4 across 1/1 | sequence (100 msec)
close for case
n=15

21

The program proper needs no explanation. The numbers
on the left give the number of registers occupied by each
instruction in the instruction store, while those on the
right give the execution time in units of 60 usec, unless
otherwise stated. It is hoped that these will serve in
place of detailed rules as a general guide to the length
and speed of a program. The rest of the program tape,
namely

chapter 1

close

n=15
across 1f1

close

is concerned with the input organization. This some-
what elaborate format is necessary to deal with larger
programs which, for technical reasons, have to be par-
titioned into chapters, each chapter being restricted in
length to 896 registers. Very many programs, however,
will not extend beyond one chapter, and for these the
above format can be used without further explanation.
The starting sequence is really a chapter by itself which
is entered automatically by the final close directive. In
this case there are just the two instructions

n=15
across 1/1

which first set #» and then “jump to the instruction
labelled 1 in chapter 1" and hence initiate the calculation
proper.

It is hoped to give details of further facilities, including
partitioning into chapters, the auxiliary variables,
solution of differential equations, etc., in a further paper.

REFERENCES

1. BROOKER, R. A.
“The Programming Strategy Used with the Manchester
University Mark 1 Computer,” Proc. LE.E., Vol. 103,
Part B, Supplement No. 1, p. 151 (1956).
2. BROOKER, R. A., and WHEELER, D. J.
“Floating Operations on the EDSAC,” Mathematical
Tables and other Aids to Computation, Vol. 7, p. 37 (1953).
3. LunT, S.

“Process Development and Plant Design,” Trans. Soc.
Instrument Technology, Vol. 9, p. 87 (1957).

