

The Computer Journal

Volume 1

April 1958
[0
January 1959

REPRINTED 1970 FOR
Wm. DAWSON & SONS LTD., LONDON

with the permission of the Publishers

Further Autocode Fuacilities for the Manchester (Mercury)
Computer

by R. A. Brooker

Summary: This article is a sequel to an earlier paper,*
facilities of the simplified programming system

part of which described the basic
(Autocode) developed for the Ferranti

Mercury Computer at Manchester University. The present article describes further facilities
of the system and, together with the earlier
gramming manual for the Manchester Mercury

UNROUNDED ARITHMETIC

In those arithmetical instructions involving a variable
expression on the right-hand side, each sum, difference
and product is formed to a maximum precision of 29
binary digits and then rounded off by making the last
digit odd. If required. the rounding operation can be
omitted by using the ~ sign instead of =. In this case
the result will normally be biased, but if the quantities
involved can be expressed in at most 29 significant
binary digits, then the ~ sign provides a means of per-
forming exact arithmetical operations on variables.

Rounding errors will be significant when using the
int pt and f pr instructions. Thus for example:

o~
~o

if x = 3 - 2777, then int pt (x) gives 3
and fr pt (x) gives 227
if x = 3 — 2727, then int pt (x) gives 2
and fr pt (x) gives 1-2-%7
if x = 3 precisely, then int pt (x) gives 3
and fr pt (x) gives 0-2-256,

However, precise whole numbers can only be obtained
as a result of unrounded (=) arithmetical operations
(which include simple transfers, mod and ins pt, but do
not include division in any form) on numbers originally
read in (see Note 4) as integers.

If the “nearest integer to x” is intended, it is sufficient
to use (say)

y=intpt(x + 0-5)

unless x itself is half an odd integer, in which case the
result will again depend critically on rounding errors.

MISCELLANEOUS INSTRUCTIONS
The instructions
i = max (xg, n, m)
i = min (xq, #n, m)
may be used to determine the index of the maximum (or
minimum) element in the range

Kns Xpgls o oy Xpye

Here i denotes any index, x, any first member, and
n, m are indices or whole numbers. If there is no unique

* The Computer Journal, Vol. 1, p. 15.

124

description, amounts to a compact pro-

Computer,

maximum (or minimum) element, then the least index
is taken. The instruction y = $3(n) is equivalent to
y={(-—)". Here y is any variable, and » stands for
any index expression.

STEP-BY-STEP INTEGRATION OF DIFFERENTIAL EQUATIONS

Special facilities are provided for the integration of
differential equations. The equations must be written
in the form

i dy;
Cdx

f: = :::jt:(xryla Yo, o v yn) (Z l: 23 AR n)

involving the special variable x, the main variables
¥i» fi and the index n. In addition the special variable 4
is used for the step length, and the main variables g, h,
(i=1,2,...n) are introduced for “working space.”
The programmer must write a subsequence for cal-
culating the f; in terms of x and the ¥;; this must not
alter y;, g, by, n, h, or x. The entry should be labelled,
and the sequence should terminate with the specialt
instruction 592, 0. With these arrangements the effect

of the instruction
int step ()

(where m is the entry to the subsequence) is to advance
the integration by one step so that the initial and final
values of the independent and dependent variables are
respectively

x x+h
yi{x) yilx + 7).

The method employed is that of Runge-Kutta, with a
truncation error of 0(A%). However, the truncation
error also depends on the higher derivatives of the
function, and for this reason the step length may be
adjusted between steps if desired. The time per step is
(101 4 4T) msec, where T is the time (in msec) of the
subsequence.

T Mercury programmers will recognise this as an ordinary
machine instruction. Subject to certain restrictions it is possible
to include such instructions in an Autocode program, but this is a
topic beyond the scope of the present article since it involves a
detailed knowledge of conventional Mercury programming. The
interested reader may refer to the paper by Fotheringham and
Roberts on p. 128.

Further Autocode Facilities

Example
Integrate the two equations:
d
;]% =y} — 1:23y,p, + 2-47)3

% = 10132 — 0-84p,y, - 1-59)2
for x = 0(-02)1,
with the initial conditions:

(@ x=0; y=0; y,=1
b)) x=0;, yr=1; y,=0.

Program Notes
chapter 1
-2
g—>2 main directives
h—2
y—=>2
b Z _ (2) 0 sets the number of
x—0 equations, the step
—0 length and the first
i; _ initial conditions
J
2) int step (3) advances the step
newline)
print (x, 1, 2)
space prints with layout
print (yl’ 2: 4)
print (y2s 2> 4)

jump 2,0-99 > x repeat until x = 1

restart prepare to read the
second set of initial
conditions

3) fi=yw1— 128y,)
+ 2-47y,y,
fo=1-01y;y; — 0-84y,y, subsequence to calcu-
+ 1:59y,y, late /1, />

592,0

close

across 1/1 first chapter 0

close starts the calculation

X =

Yy = second chapter 0

y2=0 sets second initial

across 21 conditions

close

stop third chapter 0

close stops the machine,

This example introduces the instruction
restart

which is used to read in further instructions. These will
usually be confined to chapter 0, as in this case, and used
to re-enter an existing program. The restart instruction
may also be used, however, to read in a fresh program.

MULTI-CHAPTER PROGRAMS chapter 1

The diagram shows the general

layout of a program involving three - :
chapters. Each chapter has its own Instructions !

labelling system, and to jump from close
one chapter to another an across
instruction may be used: for example,
one of the form

chapter 2

instructions '

meaning “‘jump to the instruction close
labelled 2 in chapter 3.” Since this is a

across 2/3

. . ol chapter 3
rather long instruction (100 msec) it is —
preferable not to include it within an l directives ‘
inner loop and, as far as possible, parti- ; ;
tion into chapters should correspond lostructions
to distinct parts of the calculation. close

across ?f?
close

“chapter 0” has two special features:

(1) It is entered automatically, at the first instruction,
when the close directive is read.

(2) The directives used are those of the chapter last
read, unless chapter 0 is actually headed “chapter
0,” in which case the directives must be formally
set, either in the usual way or by means of the
variables directive explained in the following
section.

VARIABLE DIRECTIVES

The main variables must be defined at the beginning
of each chapter either explicitly or, if it is a case of
repetition, by means of a directive of the form

variables 2

meaning ‘“‘use the directives set in chapter 2”’—which
of course may have been those used in chapter 1. It
may be necessary to appreciate the significance of the:
variable directives. Thus

chapter 1

a— 99 allocates 0- 99 to ag-aq,
b—99 + memory < 100-199 to by-bq,
¢—>99] locations |200-299 to cy—cqg
chapter 2

¢->99) allocates 0- 99 to cg—cyy
X —49 & memory < 100-149 to xy—x,
y—49] locations | 150-199 to y,—y,.

Thus the “c’s” of chapter 2 are not those of chapter 1;
if it is intended that they should be, then the latter
directives might be recast as follows:

x — 49
y-—>49
7 — 99 (waste)
¢c—99

Further Autocode Fuacilities

LR

A further consequence of this scheme is that “xs,” is
identical with yy, ““xs,” with y,, and so on. Such
“overlapping” references are sometimes useful.

THE AUXILIARY VARIABLES

To supplement the 495 working variables there are
approximately 10,000 auxiliary variables to which
indirect access is possible, the exact number depending
on the requirements of the program.* Such access is a
time-consuming operation, however, and should only
be used when the working variables are insufficient for
the problem in hand.

In order to refer to these variables, fourteen new
working variables

a b d e fg hou
are introduced. These are essentially similar to the
special variables a, b, . . ., z and indeed may be used as
such if desired. It is intended, however, that these
variables will be used to designate groups of auxiliary
variables. This is done by means of instructions in the
program proper (unlike the main variables which are
described by means of directives) which set these variables
to give the address within the auxiliary stores (0, 1, . . .,
10,751) of the first member of an auxiliary group.

Thus, for example, the instructions

[A S
w Xy oz

a =0 or a =0

b" ~ 100 alternatively &' ~ a’ + 100
x' = 200 x'~ b -+ 100
¥y~ 1,200 y' = x" - 1,000

designate two groups a’, b’ of 100 variables, a group x’
of 1,000 variables, and a group y’ of unlimited extent.
In contrast to the main variable directives the quantity
on the right-hand side is the starting-point and not the
extent of the group, although in both cases the extent is
irrelevantif overlappingis allowed. Note that the ~ form
of the arithmetical instructions has been employed
since the quantities in question are whole numbers.

To specify a particular member of a group (say x’)
the notation

X750 or x, [one dimensionally: x'750, xu]

is employed, where the suffix is essentially a variable
(an index cannot be used because there is no limit to the
size of a group).

The instruction ¢,(x7s0, @y, 10) is an example of an
auxiliary transfer. It means “‘transfer 10 consecutive
variables from the auxiliary store to the working store,
starting at x7so in the former, and at g, in the latter.”
Asaresultay, ay, . . ., ay, are replaced by x750, X751, « - .,
X759. The instruction ¢,(x750, @y, 10) corresponds to
the reverse operation, namely a transfer from the working
store to the auxiliary store. In these instructions x7so

* The number of auxiliary variables is given by 10,751 — 512#,
where n is the highest chapter number. Up to 3,072 further
variables can be obtained subject to certain restrictions on the
program. (Details available on request.)

126

may be replaced by any particular auxiliary variable,
e.g. X, o, and a; by any main variable, e.g. a, or b1y
The third parameter 10 is essentially an index quantity
and may be replaced by an index letter.

Examples of auxiliary transfers are

¢1(x(é7 aop, 400)
qSZ(xg,:’ bh l)
¢2(xhp C(r—l)a t)

An exception to the rule that the second parameter
must be a main variable is provided by the instruction

é1(x750, @, 1)

which replaces the special variable a by x7s0.
The execution time for a group transfer cannot be given
very precisely but is less than

{17[n/32] + 34 + 0.36n} msec.

where [| denotes “integral part of,” and # is the number
of variables transferred.

SUBCHAPTERS

At any point within a chapter it is possible to call in
a “subchapter” and subsequently to return to the
original chapter at the instruction following the point
of departure. This is done by means of a down instruc-
tion in the main chapter and an wup instruction in the
subchapter. For example

down 2/3

calls in chapter 3 as a subchapter and enters it at the
instruction labelled 2. When the subchapter has com-
pleted its task the single word instruction

up

will return control to the main chapter at the instruction
following the original down instruction. Alternatively
the up instruction may be used in any chapter reached
by means of across instructions from the original sub-
chapter. A subchapter may have its own sub-subchapter
but there the regression stops.

THE reset INSTRUCTION

If necessary the working variables (i.e. main and
special) can be preserved during the operation of the
subchapter and subsequently restored on return to the
main chapter. This can be done by means of the single-
word instruction reset used before the down instruction:
the variables are “dumped” on the magnetic drum and
subsequently restored by the corresponding up instruc-
tion. As a consequence, any results calcuiated by the
subchapter would have to be stored as auxiliary variables
if they were to be preserved. However, if subchapters
are designed to select from and return to the drum all
relevant material, they provide a convenient means of
arranging a calculation for possible future use as a
“subprogram.” The subchapters can be written without
defining the auxiliary variables. Instead the special

Further Autocode Facilities

variables a', b’, ¢, etc., can be defined in terms of those
used in the main chapter, by including appropriate
instructions between the reset and down instructions.
Since they follow the reset instruction the original
values of a', b', ¢, etc., will be restored on returning to
the main chapter. In this way each “‘level” of organisa-
tion may use its own frame of reference for the auxiliary
variables. As an example suppose that both the main
chapter and the subchapter employ three groups of
auxiliary variables denoted in both cases by «', &', ¢,
and starting relative to each other as follows:

Asub)y = Cmainy
b(sub) = Auain)
Cisuby = b(main) -+ 50.

These relations may be represented diagrammatically
thus:

main | & F b : ¢
chapter ;— —

sub- / b ig<‘50f>t o [o
chapter —— i

The instructions for calling in the subchapter and
redefining the auxiliary variables are then as follows:

reset

T a

/N ’

a Nc

¢ =~ b + 50
b ~
down ?/?

The special variable = has been used as a “‘shunting
station” since, in any case, it will be reset on entering
the new chapter (# is automatically reset to 3-14159 . . .
as a result of the instructions across, down, up, and reset).

OPERATIONS WITH COMPLEX NUMBERS

Operations with complex numbers written as number
pairs are provided by instructions of the form

v) = (x,)

v) = (x, y) + (a, b)
(ua 7]) = (X,)’) ._ (a’ b)
(u, U) = (xa y) * (a’ b)
(u, v) = (x, ») [(a, b)

(u’

(u,

(u, v) = sq rt (x, ») (v > 0)
(u, v) = log (x,) (m>v>—m)
(u, v) = exp (x, y)

Further functions may be added. Here u, v; x, y; a, b
denote any variables or (except in the case of wu, v)
signed constants.

Examples of instructions in this class are:

(/i &) = (Ji—1» &i—1) + s 1 8u 1))
(x,) =sqrt (1, 1)
(a, b) = log (—0-5, h)

127

QUICKIES

Every time one of the functions
chapter 1

log tan
exp arctan

sqrt cos
radius sin
is referred to, 17 msec are spent in
transferring the necessary set of instruc-
tions (subroutine) from the magnetic
drum to the instruction store. Pro-
vided there is room, however, they can
be included in the chapter itself, and in
this case the average execution time is
reduced from about 23 msec to 6 msec.
Functions treated in this way are known
as quickies. All that is necessary is to
list them (each preceded by ¢) in order of preference at
the end of the chapter in question, immediately before
the close directive (as in the accompanying diagram).
Any functions for which there is not room will be treated
in the usual way.
As regards the complex functions, these involve the
use of certain real functions, as follows:

¢ exp
¢ sq rt
¢ sin

close

J sq rt involves sqrt
complex < exp involves exp, sin, cos
|log involves log, arctan.

Thus in order to treat the complex functions as quickies,
it is sufficient to list the relevant real functions.

Finally, it should be mentioned that sin and cos involve
the same set of instructions, so that if either one is
treated as a quicky the other will be also. The same
applies to sq rt and radius.

NOTES

1. Printing: all numerical values are rounded off by
adding % .107™, m being the number of decimal
places specified.

2. In the case of numbers >10'® an asterisk only is
printed.

3. The ? print facility does not apply to the complex-
number instructions.

4. Numbers may be read either directly, by means of
a read instruction, or implicitly as constants on the
right-hand side of an equation. In either case the
number of digits after the decimal point is limited
to 24 (no limit on integral part).

5. The description of the arcian function (given in the
earlier article) is incomplete. The function cal-
culates an angle in the range (—, =), the quadrant
being determined as if x, y were proportional to the
cosine and sine of the angle respectively.

ACKNOWLEDGEMENTS

The author is indebted to Dr. B. Richards for advice
and assistance at various stages of the work, and has
also benefited from discussions with various friends and
colleagues, in particular Dr. J. Howlett of A.E.R.E.,
Harwell, and Dr. G. E. Thomas of the Central Instrument
Laboratory, 1.C.I., Ltd.

An Input Routine for the Ferranti Mercury Computer
by J. A. Fotheringham and M. de V. Roberts*

Summary: The principal features of an input routine for general use with the Ferranti
Mercury Computer are described. The method of writing programs for input by means
of this routine is given, and the reasons for including the various facilities are discussed.
One of the main features is provision for the liberal use of “‘symbolic addresses.”

1 DESCRIPTION OF THE MACHINE

The Ferranti Mercury Computer has been described
elsewhere (Lonsdale and Warburton, 1956), but it seems
worth while to outline the basic features of the machine
here.

Mercury is a single-address, floating-binary-point
computer with a computing store of 2,048 20-bit registers
(using ferrite cores) and a backing store of up to 65,536
registers (on up to 4 magnetic drums). A register can
hold a single instruction consisting of 7 function digits,
3 B digits and 10 address digits. However, instructions
can only be obeyed from the first half of the high-speed
store. Numbers occupy pairs of registers, 10 bits being
reserved for the exponent and the remainder used for
the mantissa; the first register of each pair must have
an even address. Numbers can be held throughout the
high-speed store. Thus the store can hold 1,024 instruc-
tions and 512 numbers, no instructions and 1,024 num-
bers, or any intermediate combination.

The B-registers hold 10-bit integers, and although
their main purposes are counting and address modifica-
tion, generous facilities are provided for arithmetic
operations on their contents. An integer from a B-
register can be stored in either half of a storage register
without disturbing the other half, but such access to
half-registers is restricted to the first half of the com-
puting store.

The drums all rotate synchronously with a period of
approximately 17 msec. Information is stored on
“sectors,” each capable of containing 32 numbers (or
64 instructions). There are 1,024 such sectors, two to
each track on a drum. Information is transferred
between the drum and the high-speed store in units of
one sector. In the high-speed store, the transfer must
be started at a register with an address which is a multiple
of 64; it has therefore become general to think of the
high-speed store as divided into “pages” numbered from
0 to 31. A transfer is therefore between a sector on the
drum and a page in the high-speed store. This has led
to an alternative method of addressing a register, namely
in “page and line” form. Thus register 129 may be
referred to as page 2, line 1, or briefly as register 2.1.

2 CHOICE OF PROGRAMMING PHILOSOPHY

Before writing an input routine, one has to decide
which of several existing philosophies to adopt. There
still exists some sympathy with primitive schemes, in
which what appears on the program sheets resembles
very closely what exists in the machine. This approach
becomes desirable if it is intended to make considerable

* Dr. Roberts is now with IBM Corp., New York.

128

use of the cathode-ray tube monitors when de-bugging
a program. However, the adoption of such a scheme
usually makes the writing of a program somewhat
tedious. In the case of Mercury, which has a ferrite core
store, registers can be monitored only singly and while
the computer is stopped; hence the primitive approach
was rejected.

At the other extreme are the “automatic coding” and
similar ambitious projects. It is often stated that such
schemes make programming so easy that a beginner can
be taught in a day, and that mistakes are seldom made.
However, they have the disadvantage that if a mistake
is made it may be difficult to find unless a comprehensive
post-mortem routine is provided, which may be even
more elaborate than the routine that performs the initial
translation. Although automatic coding is highly
suitable for a number of jobs, it was felt that the standard
scheme for general use should not go too far in this
direction. It should be mentioned, however, that an
excellent “Autocode” scheme for Mercury has been
prepared by R. A. Brooker of Manchester University,
and is expected to be extensively used, particularly for
one-off jobs (see Brooker, 1958).

The following compromise was finally adopted.
Programs for Mercury will, for the most part, be written.
instruction by instruction. Thus the programmer can
satisfy himself that he is obtaining the maximum
efficiency where necessary. However, the assembly of
the complete program, the insertion of appropriate
addresses, and most of the other irritating clerical tasks
are performed by the input routine. Satisfactory post-
mortem routines accompanying this scheme are not.
unduly complicated.

3 INSTRUCTION NOTATION

For engineering reasons, the function code of the
machine is not arranged in a way that is easy for a pro-
grammer to learn. Hence it was decided to represent
each function by means of a pair of decimal digits chosen
for easy memorizing. The various functions may thus
be conveniently tabulated in a matrix array. The size
of the matrix is 10 X 10, and each function is specified
by the pair of decimal digits defining the row and the
column containing the function. The arrangement of
the functions is such that, for example, all the operations
on the floating-point accumulator that involve addition
appear in the row which corresponds to the first function
digit 4, etc. The relation between the programmer’s
function code and that of the machine itself is unfor-
tunately not simple.

There is a similar complication in the case of addresses..

Input Routine for Mercury

The ten address digits are clearly not sufficient to specify
a register anywhere in the high-speed store. However,
as a number must occupy a pair of registers the first of
which has an even address, ten digits can be made to
serve the purpose in this case by storing the address
divided by two. (The function part of the instruction,
being of a type referring to numbers, will imply that the
address is in this form.) In the case of jump instructions,
addresses greater than 1,023 are forbidden in any case,
since instructions cannot be obeyed from the second half
of the store, so that the address in a jump order may be
represented and need not be halved.

For operations involving half-registers (such as
operations on B-registers), in order to accommodate the
odd “half” in the address, the latter is stored multiplied
by two. This, however, may cause an overflow, and in
the case of such instructions, one of the function digits
is borrowed to act as an extension of the address.
Again, the function digits will indicate that this is an
instruction of such a type that this situation obtains.
There are therefore effectively three different address
systems in Mercury, one for half-registers, one for
registers, and one for register pairs.

While provision has been made for a programmer to
work in terms of these three systems if he wishes, it was
thought that normally a unified address system would be
preferable. This system is that referring to single regis-
ters, and normally all addresses are written in this way.

The input routine examines the function part of each
instruction to determine how the address part should be
stored. In the case of half-registers, however, it is then
also necessary to specify the half of the register to which
the instruction is intended to refer. The programmer
indicates this by inserting the symbol -+ following the
address if the right-hand half is required, and omitting
this symbol if the left-hand half is required. As has
been mentioned earlier, addresses may be written in
“page and line” form as an alternative to the normal
consecutive decimal numbering of the registers. Negative
addresses are also allowed, and are interpreted modulo
1,024. The reason for this will be seen below.

Between the function and address parts of each
instruction, a B-digit is always inserted. The value O
indicates that no B-register is involved; otherwise the
value of the digit (from 1 to 7) specifies which B-register
is involved.

As an example of a simple instruction, the following
will cause the number in registers 2,046 and 2,047 to be
copied into the accumulator.

400 2,046
or 400 31.62
or 400 30.126, etc.

4 ROUTINES AND SYMBOLIC ADDRESSES

Regardless of the characteristics of the computer
employed, the concept of a routine is basic to the whole
art of programming. It is natural to break the problem
up into self-contained sections and to concentrate

D

129

attention on these individually. Thus one of the chief
aims in designing the input routine has been to make
the preparation of routines and their assembly into a
complete program as easy as possible. The programmer
is relieved as far as possible of the tedious clerical and
organizational tasks. In general it is possible to set
about writing a routine for Mercury without having to
consider its ultimate position in the machine or, within
wide limits, its length.

The most important step taken in this direction was
the decision to adopt a flexible system of symbolic (or
“floating””) addresses. The basic philosophy behind
symbolic addresses is that when a reference is made to
some item « from an instruction b in another part of the
program, then rather than referring in b either to the
absolute address of a in the fast store or to the address
of a relative to the start of its routine, a is labelled and
the address in b refers to the label. This facility avoids
the need for numbered program sheets; in fact, ordinary
squared paper is recommended for Mercury pro-
gramming. Furthermore, if a correction has later to be
inserted, no address has to be changed.

This idea has been discussed elsewhere (Wilkes, 1953),
but there are several points that are worth mentioning in
the case of Mercury. For Mercury, items of information
are labelled by terminating them with the symbol (
followed by an integer. The address part of any instruc-
tion in the same routine referring to this item is then
written as » followed by the same integer. Suppose, for
example, that it is required to instruct the machine to
copy into the accumulator a constant, say —2-67, held
in another part of the routine. The necessary function
for this is 40. Thus the instruction

400 vl

will have the effect of copying —2-67 into the accumu-
lator, provided that somewhere in the routine

—2-67 (1
has been inserted.

In a long program, if all the symbolic addresses are to
be kept distinct from one another, they tend to become
long and unwieldy. A further difficulty that arises is
that if two routines which have been written on different
occasions are brought together in the same program,
it may turn out that the same symbolic addresses have
been used in both. These difficulties have been overcome
in Mercury by associating the symbolic addresses with
routines rather than with complete programs. Symbolic
addresses, in the simple form described above, only refer
to labels within the same routine. Up to 64 labels are
allowed within a routine (and as many references to
them as are necessary, which may well be more than 64).
Each routine is given a number which serves to identify it.
(A routine is numbered simply by writing at its head the
word ROUTINE, or just R, followed by its number,
which is a small integer.) If it is required to refer to a
label which appears in another routine, the symbolic
address is followed by the number of the routine con-
taining the label, and is separated from it by the symbol [,

Input Routine for Mercury

To illustrate this, suppose that in the last example the
constant had been contained in routine No. 10. Then
in any other routine the instruction

400 v1/10

would have served to copy the constant into the
accumulator. This facility is far more often used for
jumps between routines than for collecting constants,
but nevertheless this example is valid.

Provision has been made for such routines to be
numbered up to 999. This is, of course, a very much
larger number than will ever be used in one program;
however, it gives a useful degree of latitude in the num-
bering scheme. There is an overall limit of 1,024 on the
total number of different symbolic addresses that may
be used in one program.

5 THE ORGANIZATION OF A COMPLETE PROGRAM

When all the routines for a program have been
written, they have to be assembled and arranged within
the machine. The important consideration at this stage
is the best possible use of the computing store. It was
felt that if only one routine was held in the high-speed
store at a time there would be certain programs for
which this system would be very inefficient. A part of
the computing store would have to be reserved throughout
for numerical data, and it would be difficult to provide
adequately for a short routine operating on a large set
of data (such as pivotal condensation of a large matrix)
and a long routine performing many operations on
relatively little data within the same program. While
the object of the input routine was to simplify the
clerical work required from the programmer, this should
not be at the expense of the speed at which the compiled
program would run.

On the other hand, an input program which assessed
the space and data required by each routine and planned
the routines to fit into the computing store in the best
possible way would be almost an autocode. The com-
piling would need to take account, among other things,
of which routines used other routines and how often.
It was felt that this part of the organization of a program
was best left to the programmer himself.

The programmer, then, has to collect his routines into
groups, and in general one of these groups will be held
in the computing store at a time. The groups have
been given the name of CHAPTERS. The length of a
chapter will be decided principally by the amount of
data it requires in the fast store, and it may contain one
or several routines.

The start of a new chapter is indicated by the heading
CHAPTER on the program tape. The assembly of
routines within a chapter is done as economically as
possible by the input routine, and the chapter is then
stored on the drum on an integral number of sectors.
Consecutive chapters from the input tape will normally
be stored in consecutive sectors, unless the programmer
indicates otherwise.

Each CHAPTER heading on the program tape is

130

followed by a serial number by which that chapter can
be identified. The input routine keeps a list of the
sectors at which the chapters start, and a list of which
chapter contains each routine of the program. The
number of chapters in a program is limited to 63, but it
is expected that many programs will only be one or two
chapters long.

The input routine is designed on the assumption that
one page of the computing store is reserved throughout
the running of the program for working space and for
a short sequence of instructions by which new chapters
are brought automatically into the computing store when
required. This set of instructions is known as the
Chapter Changing Sequence, and it occupies the first
half of page 0. The programmer indicates his desire to
change chapters by punching ACROSS followed by a
symbolic address which specifies a routine and the point
at which it is entered. The input routine interprets this
from the lists it has kept and inserts the correct instruc-
tions in the program; these instructions transfer control
to the Chapter Changing Sequence, which brings into
the computing store the whole chapter containing the
required routine and enters it at the specified address.

A refinement of this facility has been included which
enables the programmer to use a chapter (or part of a
chapter) as a closed subroutine. A chapter used in this
way is called a sub-chapter. If the word DOWN is
used instead of ACROSS, the Chapter Changing
Sequence stores a link to re-enter the original chapter
at the instruction after the DOWN. At the end of the
sub-chapter the word UP is punched on the tape; this
is translated during input into instructions which cause
the Chapter Changing Sequence to obey this link.

All the programmer has to do, therefore, is to arrange
his program in chapters. The input routine will then
store them and arrange for their transfer to the computing
store at the appropriate times, also printing out, if
required, where on the drum each chapter starts, and to
which part of the computing store each chapter and
routine will be brought. These locations will normally
be arranged automatically by the input routine, but any
or all of them can be specified on the program tape if
required.

6 COMMON SUBROUTINES

Mercury has a fairly powerful order code, but basic
functions such as exponential and cosine, and input and
output subroutines, have to be programmed. A frequent
practice is to keep a library of program tapes for these
functions, and to copy the required subroutines on to
the final input tape, adding to the labour involved in
preparing tapes. In Mercury, subroutines for the most
frequently used of these functions are permanently
stored on the drum, and can be automatically inserted
in the program during input. They have come to be
called quickies, and provision has been made for thirty
quickies, of which the first twenty will be standard and
the remaining ten reserved for the particular requirements
of individual users.

Input Routine for Mercury

The quickies are open subroutines which (apart from
those concerned with input and output) replace the
content of the accumulator by some function of itself.
To incorporate a quicky in his program the programmer
simply writes QUICKY (or Q) followed by the number
of the quicky required; the input routine then copies the
quicky in at that point. For example, Q4 replaces the
content of the accumulator by its exponential. The
function codes for copying a number into and from the
accumulator are 40 and 41 respectively, so that to
replace the number in location N by its exponential the
programmer would write

400 N
Q4
410 N

Quickies are also included for input and output of
numbers in fixed-point, floating-point, and integer form.

If the same quicky is used more than once in a pro-
gram it may be uneconomical to insert it each time.
It is, however, very easy to turn a quicky into a closed
subroutine. The return address is stored in a B-register
—conventionally B-register 1—and the quicky is made
into a routine ending in a modified jump. The function
code for an unconditional jump is 59, and the third
digit of an instruction specifies a modifier, so that

R 20
Q4
91 0

makes routine 20 a closed subroutine which replaces the
content of the accumulator by its exponential and
returns control to the address specified in Bl.

7 DIRECTIVES

A directive takes the form of a single English word
on the program tape. Only the first letter of the word
is in fact identified, and the rest may be omitted. For
example, the word WAIT (or simply W) will, when
read, cause the input routine to stop. Several directives
have already been mentioned, such as R(OUTINE),
C(HAPTER), U(P), Q(UICKY). One important
directive is E(NTER), followed by either an absolute or
a symbolic address. This should appear at the end of
a program tape. It transfers control to the Chapter
Changing Sequence to bring the appropriate chapter
into the high-speed store and enter it at the specified
address; the entry cue is also stored to allow subsequent
re-entry to the program.

The directives have been chosen as far as possible to

REFERENCES

make their operations self-explanatory, and their number
has been kept to a minimum. There are in all fifteen.

8 OTHER FACILITIES

No attempt was made to deal efficiently with the
input of large quantities of data by the input routine
itself. However, it is very useful to be able to store a
few constants with a program, and attention has been
paid to making these easy to insert. So long as it is
preceded by a sign, a number written in most of the usual
forms will be accepted by the input routine and stored.
For example, +2, +2-0, +0-2;,1 and +2-0,,0 will all
be read in and stored as the number -2 in floating-
point form. (The lowered 10 is a symbol incorporated
in the tape code to indicate that a decimal exponent
follows.) Like instructions, constants can be labelled
and referred to by symbolic addresses.

Another facility which is of considerable use in the
organization of data is the provision of 25 preset para-
meters. These are denoted on the tape by x1, x2, . ..
x25. They are set by equations such as x3 == 12, and
can be re-set to new values at any point on the program
tape. Preset parameters, once set, can be either stored
as integers or used in the address parts of instructions,
being interpreted as integers or addresses depending on
the function code used in the instruction. Thus if the
equation x1 = 1,846 appears in the program, then the
instruction 400 x1 copies into the accumulator the
number in the register pair 1,846, 1,847. Preset para-
meters can be used while writing the program, and the
equations setting them to their correct values inserted
afterwards at the head of the tape.

Among other facilities provided by means of directives
are printing titles, inserting corrections to a program
in the store, printing out the computing store addresses
of routines and the drum store addresses of chapters,
and overriding the normal assembly performed by the
input routine.

9 CONCLUSION

It has been found that programmers learn the essen-
tials of the scheme very quickly. It is quite possible
for the scheme to be used in a primitive fashion by a
beginner, or for an experienced programmer to use the
more elaborate facilities provided. The latter have not
all been mentioned here, for it would then also be
necessary to describe Mercury in detail.

The authors’ acknowledgments are due to Dr. S. Gill,
on whose ideas much of the Mercury Input Routine is
based. They would also like to thank Messrs. Ferranti
Ltd. for permission to publish this paper.

BROOKER, R. A. (1958). ““The Autocode Programs developed for the Manchester University Computers,” The Computer Journal,

Vol. 1, p. 15.

LonspALE, K., and WARBURTON, E. T. (1956). “Mercury: A High Speed Digital Computer,” Proc. LE.E., Vol. 103, Part B,

Supplement No. 2, p. 175.

WILKES, M. V. (1953). “The use of a ‘Floating Address’ System for Orders in an Automatic Computer,” Proc. Camb. Phil.

Soc., Vol. 49, p. 84,

