PROGRAMMIERSPRACHEN

Eine vergleichende Studie

B. HIGMAN

wJld

H

LEIPZIG

BSB B.G. TEUBNER VERLAGSGESELLSCHAFT
1971

106 9. Vom Maschinencode zu Fortran

Format x.zx.2x, so daB die Auswahl des Formats sich erst nach der
Identifizierung der ersten Ziffer ergibt.

Es sind auch Maschinen mit variabler Befehlslinge bekannt; das
ist gewohnlich dann der Fall, wenn die natiirliche Wortldnge nicht
fir alle Zwecke ausreicht, wihrend andererseits der Gehalt der durch
den Befehl zu iibermittelnden Information variiert. Das Verfahren
zur Feststellung, dal eine gegebene Zeichenfolge unvollstandig ist
und der Erweiterung bedarf, kann sowohl rekursiv als auch nicht-
rekursiv sein. Es gibt eine Maschine, deren Grammatik, wie sie vom
Programmierer gesehen wird, sich etwa in der Form

(Befehl) ::= (Funktionswort)|(Befehl) {Parameterwort>

schreiben 14Bt, wobei die Anzahl der Parameterworte durch die Funk-
tion bestimmt wird. Ziffernorientierte Maschinen kénnen auf einem
dhnlichen Prinzip oder auf der inversen polnischen Notation beruhen.

9.4. Die ersten Autocodes

Man verlifit das Gebiet der symbolischen Assemblersprachen und
begibt sich in den Bereich der Autocodes, sobald man a) dem Compiler
die Verantwortung fiir die Zuweisung der Speicherplitze ubertrigt
und b) auf die umkehrbar eindeutige Zuordnung zwischen den Funk-
tionen der Maschine und den in der Sprache zulédssigen Funktionen
etwa zugunsten einer Bezeichnungsweise verzichtet, die sich der iib-
lichen mathematischen Schreibweise ein wenig ndhert. Auf dieser
Stufe ist jedoch der Freiheitsgrad fiir die Anwendung der mathe-
matischen Schreibweise gewdhnlich fest, wenn nicht sogar sehr eng
begrenzt. Der Name Autocode bezeichnete urspriinglich eine Sprache,
die fir den Computer Mercury (und fiir einen Vorginger dieser
Sprache, bekannt als Manchester-Autocode) bestimmt war. Im all-
gemeinen wird jedoch diese Bezeichnung auf eine Anzahl dhnlicher
Sprachen auch fiir andere Maschinen ausgedehnt, und als Bezeich-
nung fir eine Sprachenstufe umfalt sie zumindest die frithesten
Formen des Fortran. Die zuletzt genannte Sprache, deren Name aus
,»FORmula TRANslator abgeleitet ist, war urspriinglich eine ameri-
kanische Entwicklung fiir TBM-Maschinen. Die am weitesten ver-
breitete Form ist wahrscheinlich das Fortran IT (Rabinowitz, 1962),
und unsere Ausfithrungen beziehen sich, wenn nicht ausdriicklich
das Gegenteil betont wird, auf diese Version. Fortran IV hat von der
Entwicklung des Algol profitiert und beinhaltet viele Eigenschaften,
die wir bei der Betrachtung der Algol-Sprache beschreiben wollen.

9.4. Die ersten Autocodes 107

Bei der Anwendung des Manchester-Autocodes (Brooker, 1956) war
der Programmierer gezwungen, einen Ausdruck der Form

x=a+bXc+d xe (1)
auf die Folge

vl =0 Xc¢

v2 =d Xe

vl=a+ vl

x=vl+ 02 (2)

zuriickzufithren, jedoch war er aller Milthe enthoben, sich mit den
echten Maschinenadressen oder mit solchen Angelegenheiten zu
beschaftigen, wie etwa das anfingliche Loschen der Akkumulatoren
usw., wofiir er die Kenntnis des speziellen Maschinencodes bendtigt
héatte. Es waren auch in gewissen Grenzen Moglichkeiten fiir An-
weisungen der Form

v2 = f(vl)

vorgesehen, z.B. in der Bedeutung f = Quadraiwurzel. Im Mercury-
Autocode und in Fortran war die Zurtckfithrung von (1) auf (2) eben-
falls mechanisiert worden, allerdings mit gewissen Einschrankungen,
die sich grundséatzlich aus der Tatsache ergeben haben, dall zur Zeit
ihrer Bekanntgabe die Programmiertechnik, die zur Implementation
rekursiv definierter Ausdriicke bendtigt wird, noch nicht entwickelt
worden war. Es wurden auch Einschrankungen akzeptiert, die sich
aus der Struktur der Maschinen ergaben, fiir die sie entwickelt wurden
(vgl. hierzu das Zitat aus Brooker und Morris weiter unten). Das Auf-
tauchen von Programmierungsverfahren dieser Art brachte eine
derartige Erleichterung gegeniiber der Programmierung in Maschinen-
sprachen (sogar schon bei der Anwendung der symbolischen Assem-
blertechnik), so daff die durch diese Sprachen gesetzten Schranken
erst wesentlich spater bemerkt wurden. Zu der Zeit erwuchs ein grof3es
Interesse seitens der Anwender, die Programme und Programmteile
untereinander austauschten. Als Folgeerscheinung ergab sich eine
Tendenz zur Erweiterung beider Sprachen durch Hinzunahme solcher
zusétzlichen Elemente, die ohne die Grundelemente in ihren Original-
formen zu beeintréchtigen, hinzugefiigt werden konnten.

Im wurspriinglichen Mercury-Autocode standen z.B. die Buch-
staben ¢, 4, . . ., t als ganzzahlige Variable und die anderen als reelle
Variable zur Verfugung, und diese Starrheit ist nie beseitigt worden.
Fortran gewéhrte eine groflere Freiziigigkeit insofern, als Worte aus
mehreren Buchstaben als Namen fir Variable verwendet werden

108 9. Vom Maschinencode zu Fortran

konnten, doch spielten die Anfangsbuchstaben jedes Namens eine
dhnliche Rolle (I bis N fiir ganzzahlige Grofen z.B.), indem sie den
Typ des Namens festlegten. In Fortran IV ist diese Handhabung zwar
durch Vereinbarungen von der Art der in Algol iiblichen iiberholt,
um jedoch soweit wie moglich auch Programme verwenden zu
konnen, die in fritheren Versionen verfal3t waren, wird sie nach wie vor
beibehalten. Interessanterweise hat dies zu einer neuen Konzeption
einer wesentlich weiterreichenden Anwendung gefiihrt (zumindest war
es das erste Beispiel fiir eine derartige Konzeption). Wir meinen damit
die Bereitstellung von globalen Konventionen, die eine ,,Unterlas-
sungsinterpretation® gewéhrleisten, sobald irgendeine Anweisung mit
deklarativem Charakter vergessen worden war. Der grofle Vorteil
einer solchen Konvention besteht darin, daB ein potentieller An-
wender einer Sprache von einem groBen Teil der Lernarbeit entlastet
wird, die er zu leisten héatte, bevor er ein brauchbares Programm
schreiben kann.

Wir wollen auch die Frage der Indizierung betrachten. Im Mer-
cury-Autocode ist die Syntax der Variablen folgendermaBen auf-
gebaut: Wir definieren zunéichst die nachstehenden reprisentativen
Symbole

(a-Buchstabe) ::= alblc|d|e|flg|h|ulv|w|z|y|z
(i-Buchstabe) ::= i|j|k|l|m|n|o|p|q|r|s|t
(n-Buchstabe) ::= (a-Buchstabe)|w
{Vorzeichen) ti= |

die zusétzlichen Strukturen fiir Variable lassen sich nunmehr in der
folgenden Form darstellen:

{ganzzahlige Variable) ::= (;-Buchstabe)

(reelle Variable)> ::= (einfache Variable)|(indizierte Variable)
(einfache Variable) 1= (a-Buchstabe)|(a-Buchstabe)’
(Indizierte Variable) ::= (m-Buchstabe) (Index)

(Index> :1== (ganze Zahl)|<i-Buchstabe)|

((i-Buchstabe) (Vorzeichen) {ganze Zahl>)

Somit sind 3, 4, (j + 2), (k — 3) samtlich als Indizes zugelassen, jedoch
gilt das nicht fiir (i + §); dieser miite vorher berechnet werden,
etwa durch m =i 4 j. Und wihrend ab das Produkt von ¢ und b
bedeutet, wird a¢ interpretiert als @; (man mub i schreiben, um das
Produkt zu erhalten). In Fortran muf}, da Namen aus mehreren Buch-
staben zugelassen sind, das Multiplikationszeichen explizit angegeben
werden (unter dem Einflu der Lochkartentechnik wurde bierfiir der
Stern gewihlt); Indizes miissen in Klammern gesetzt werden. Die

9.5. Autocode und Fortran 109

kuriose Unterscheidung zwischen a-Buchstaben (a-letters) und =-
Buchstaben im Autocode ,hingt® nach Brooker und Morris (1962)
,,mit der Anordnung des Materials in dem durch sehr kurze Zugriffs-
zeit ausgezeichneten Speicher des Mercury zusammen. Gegenwértig
miissen wir diese Tatsache als eine der vielen ldstigen Eigenschaften
akzeptieren, die leicht in praktischen Autocodes auftreten’. Es wire
wohl richtiger, zu sagen, dall es sich hierbei um eine Erscheinung
handelte, die in allen Sprachen der letzten finfziger Jahre auftrat,
die aber gegenwirtig nicht mehr geduldet werden kann.

Wir werden auch erkennen miissen, dall nur einfache Indizes még-
lich sind, d.h.,das Feld @ (1,1),...,a(3,3) mull als der Vektor
@ {1), ..., a(9) behandelt werden, wihrend auf ¢ (7, s) nur durch die
vorangehende Berechnung m =3 (r — 1)+ s Bezug genommen
werden kann. In Fortran IT waren im Gegensatz hierzu entweder ein
oder zwei Indizes erlaubt, und Fortran IV liel sogar drei Indizes zu.
Indizes von Indizes blieben auch weiterhin der Zukunft vorbehalten.

9.5. Vergleichende Betrachtungen zwischen Autocede und Fortran

Sowohl in Autocode als auch in Fortran waren bedingte Spriinge,
jedoch nicht bedingte Ausdriicke zugelassen. Die Formate waren
jedoch recht verschieden. Im Autocode wurde das einfache ,,JUMP
dabel>” (d.h. ,,SPRUNG (Marke)*) erweitert zu JUMP (Marke),
<arithmetischer Ausdruck) (Relationsoperator) (arithmetischer Aus-
druck).

In Fortran wurde die unbedingte Sprunganweisung ,,GO TO (Marke >
ersetzt durch

IF ({arithmetischer Ausdruck)), (Marke), (Marke), (Marke), wobei
alle drei Marken den Charakter einer Vorschrift hatten, und es wurde
jeweils das erste, zweite oder dritte ausgewihlt je nachdem, ob der
arithmetische Ausdruck kleiner, gleich oder gréfier als Null war.
Fortran IV enthilt Anweisungen folgender Form:

IF (¢{boolscher Ausdruck)) (Anweisung).

Beide Sprachen benutzen gelegentlich auch ganzzahlige Marken.

Beide Sprachen wiederum gewihrleisteten eine komprimierte
Syntax fir die Darstellung von Zyklen. Im Autocode konnte die
einfache Zuweisung eines Wertes zu einem i-Buchstaben (i-letter) zu
der Form

{i-Buchstabe) = (ganzzahliger Wert) ((ganzzahliger Wert))
{ganzzahliger Wert)

110 9. Vom Maschinencode zu Fortran

erweitert und weiter unten durch die Anweisung ,, RETURN*
(Riickkehr) ergénzt werden. Dem i-Buchstaben wurde dann der erste
der ganzzahligen Werte zugewiesen; das Programm wurde sodann bis
zum RETURN ausgefiihrt. Danach wiederholte das Programm diesen
Block von Instruktionen so oft wie notwendig, wobei der ¢-Buchstabe
jedesmal um den zweiten ganzzahligen Wert erhoht wurde, bis schiieB3-
lich der Block mit dem Wert des i-Buchstabens ausgefithrt wurde, der
dem letzten der drei ganzzahligen Werte gleich war; dann wurde das
RETURN ignoriert und das Programm fortgesetzt. In Fortran lautete
die entsprechende Anweisung

DO (Marke) (ganzzahlige Variable) = (ganzzahliger Ausdruck .
{ganzzahliger Ausdruck), (ganzzahliger Ausdruck)

mit der Schrittweite als drittes Element auf der rechten Seite, wobei
die Marke die letzte Instruktion vor dem Riickkehrpunkt identifiziert,
der etwa durch die Scheinanweisung ,,CONTINUE* (fortsetzen) dar-
gestellt werden konnte, falls es unzweckméafig erscheint, eine aus-
zufithrende Instruktion hierzu mit einer Marke zu versehen. Der
-Buchstabe in einer solchen syntaktischen Konstruktion ist unter
dem Namen Laufvariable bekannt. Die genaue in Anwendung kom-
mende Syntax ist verhdltnismiBig uninteressant, die Semantik
jedoch enthélt allerhand Klippen. Was geschieht z.B., wenn die
Laufvariable innerhalb des zu wiederholenden Blocks verdndert wird —
wird der gedinderte Wert bei Hinzunahme der néichsten Schrittweite
akzeptiert, annulliert, oder ist ein derartiges Manéver itberhaupt un-
zuldssig? In welcher Weise wird der abschlieBende Test durchgefiihrt?
Im Autocode konnte die zweite Variable positiv oder negativ sein,
der abschliefende Test jedoch wurde auf Gleichheit vorgenommen,
und eine Schleife wie etwa = 1(2)6 wirde immer wieder mit
den Werten 7=1,3,5,7,... durchgefuhrt. In Fortran wurde auf
»grofer als™ getestet, wodurch diese Klippe umgangen wurde, doch
muflten alle drei Variablen positiv sein. Welchen Wert hat die
Laufvariable beim Verlassen des Zyklus — den letzten akzeptierten
oder den ersten zuriickgewiesenen? Fragen dieser Art konnten viel
Raum beanspruchen und haben heute nur noch historisches Inter-
esse. Wichtig ist, dafBl ihre Bedeutung heute erkannt worden ist,
und die Beantwortung solcher Fragen bildet einen Teil der Spezi-
fikation einer jeden heute vorzuschlagenden Sprache, wihrend frither
die Beantwortung solcher Fragen der Konstruktion zumeist des
ersten Compilers fir diese Sprache iiberlassen wurde.

Beide Sprachen sehen eine natiirliche Behandlung von Unter-
programmen und Funktionen vor, wobei die Parameter, wenn es nur

9.5. Autocode und Fortran 111

irgend moglich ist, bei der Berechnung bis auf die Stufe einer Ma-
schinenadresse oder auf einen einzigen Wert im Falle eines Ausdrucks
abgebaut werden, bevor in das Unterprogramm eingesprungen wird.
Es handelt sich hier also in Wirklichkeit um den Sachverhalt, den
man seit dieser Zeit als Aufruf durch einen einfachen Namen bezeich-
net hat.

Sobald indizierte Variable mit einbegriffen werden, muf3 der
Maschine ein gewisser Hinweis iiber den erforderlichen Speicher-
bedarf gegeben werden, in dem man die Anzahl der Komponenten
spezifiziert, die jede Variable durchlaufen kann. Im Autocode ge-
schah das durch Hinweise der Form a — 20, wobei vorausgesetzt
wurde, daB zusdtzlich zu den einfachen Variablen ¢ und o’ Speicher-
raum fiir einen Vektor a, dessen Indizes von 0 bis 20 liefen, bendtigt
wurde. Eine Folge solcher Hinweise veranlafite eine fortlaufende Zu-
weisung von Speicherplitzen. Wire z.B. auf unser ¢ — 20 der Hin-
weis ¢ — 5 gefolgt, so wiirde ein Aufruf von a,, auf ¢; fithren. Hin
solcher Aufruf wire zwar normalerweise das Ergebnis eines Program-
mierungsfehlers, doch wurden solche Moglichkeiten auch gelegentlich
ausgenutzt. Das entsprechende Programmierungselement in Fortran
war die ,,Dimensionsanweisung” (DIMENSIONSstatement), die etwa
in der Form

DIMENSION 4 (2, 3)

besagte, dall 4 den Namen wnichl einer einfachen Variablen (im
Gegensatz zu Autocode) oder einer Funktion darstellle, sondern ein
Feld kennzeichnete, dessen Indizes die Werte von 1 bis 2 und die Werte
von 1 bis 3 durchliefen. Ein Uberschreiten der angegebenen Grenzen
wurde signalisiert.

Schlielich muBten wegen des geringen Umfanges des Hauptspei-
chers des Mercury die Autocodeprogramme in ,Kapitel” unterteilt
werden, wobei jedes so zu bemessen war, daf es im Hauptspeicher
untergebracht werden konnte (falls ein Kapitel diese Grenzen iiber-
schritt, wurde auf ein Signal des Monitorsystems hin das Programm
an den Programmierer zur Korrektur zuriickgegeben). Jedes Kapitel
hatte seine eigenen Marken, und es waren spezielle Anweisungen,
,,across” oder ,,down‘, fiir den Ubergang in andere Kapitel vor-
handen (, down‘‘ implizierte einen Riicksprung ,up‘ zu einem spé-
teren Zeitpunkt). Das Kapitel 0 war stets das letzte Kapitel des
Programms und bildete das Signal dafiir, dall die Ausfithrungsphase
in Angriff zu nehmen war. Ein Fortran-Programm wies in seiner Or-
ganisation durch Namen bezeichnete Unterprogramme und ein Haupt-

112 9. Vom Maschinencode zu Fortran

programm ohne Namensbezeichnung auf. Durch ,,CALL (Unter-
programm)‘“ (Aufruf) wurde ein Absprung in ein Unterprogramm
bewirkt und durch ,, RETURN® der Riicksprung ins aufrufende Pro-
gramm. Es war stets ein Argument der Fortran-Anhinger, daB kein
Programm mehr als einmal iibersetzt werden mulite, denn ein voll-
stindiges Programm konnte aus einzelnen in Fortran geschriebenen
Teilen und bereits in Maschinencode compilierten Teilen zusammen-
gesetzt werden. Diese MaBnahme wurde getroffen, weil die Compi-
lierung mitunter recht langsam vor sich gehen konnte. Durch eine
Vereinbarung, die mit ,,COMMON‘ (gemeinsam) eingeleitet wurde,
wurde gekennzeichnet, dall eine Variable nicht nur eine lokale Be-
deutung fir ein Unterprogramm hatte, sondern eine globale Geltung
besall. Zu dieser Konzeption wurde noch eine durch das Wort
»EQUIVALENT (gleichwertig) eingeleitete Vereinbarung hinzu-
gefiigt, die es gestattete, dall manche Speicherbereiche in verschie-
denen Routinen durch verschiedene Namen aufgerufen werden
konnten. Ungliicklicherweise haben verschiedenartige Interpreta-
tionen des Zusammenspiels zwischen diesen beiden Vereinbarungs-
arten zu einer Inkompatibilitdt zwischen Fortran IT und Fortran IV
gefiihrt, so dall Programme des Fortran IT nicht immer durch einen
Fortran IV-Compiler iibersetzt werden konnen, obwohl es sich bei der
ersten um eine Teilsprache der zweiten handelt.

Im Ergebnis dieser Schwierigkeit, ferner veranlaBt durch eine
Anzahl lokaler Spielarten, wurde 1962 eine Kommission eingesetzt,
so dafl im Jahre 1964 der Entwurf einer Standardspezifikation fiir
zwei Sprachen Fortran und Basic Fortran verdffentlicht wurde (Hei-
sing, 1965). Diese beiden Sprachen sind soweit wie nur irgend mog-
lich mit den verschiedenen existierenden Versionen von Fortran IV
bzw. Fortran IT kompatibel, und Basic Fortran ist als eine echte
Untermenge von Fortran definiert. Diese Fortran-Spezifikation ist
ein Dokument, das etwa 16000 Worte enthilt, wihrend das Doku-
ment fiir Basic Fortran eine gekiirzte Kopie mit einigen sich aus der
Kiirzung ergebenden Modifikationen darstellt (die Anzahl der Worte
des vorliegenden Buches liegt bei etwa 60000).

9.6. Jovial

Im Jahre 1958 haben die Kommissionen, die an der Erarbeitung des
Algol beteiligt waren, einen Interimbericht verdffentlicht, der, wie
sich nachtraglich herausstellte, zwei Hauptergebnisse gezeitigt hat.

