AUTOCODE

ein vereinfachtes Codiersystem fiir den
MERCURY

Rechner

Instituto de Calculo
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires

November 1961

VORBEMERKUNG

Wir haben es fiir sinnvoll erachtet, die Grundregeln der Programmierung im AUTOCODE
Codiersystem auf wenigen Seiten zusammenzufassen. Notwendig ist dies, da die Wissenschafts- und
Industriezentren ihre eigenen Programme entwickeln miissen. Der Gebrauch des im Instituto de
Calculo der Universidad de Buenos Aires untergebrachten Ferranti — Mercury Rechners soll auf diese
Weise erleichtert werden.

Wir fiigen zwei Anhdnge hinzu, die wir als sehr niitzlich erachten. Sie erméglichen auch jenen,
die das konventionelle System nicht kennen, eine hohere Flexibilitét.

Unser besonderer Dank gilt Frau Dr. Cicely M. Popplewell fiir das geduldige und sorgféltige

Lesen unseres ersten Entwurfs sowie fiir ihre vielféaltigen Korrekturen. Weiterhin bedanken wir uns bei
Frau Dr. R. Ch. de Guber fiir ihre wertvolle Zusammenarbeit.

Buenos Aires, Oktober 1961

E. Garcia Camerero

Instituto de Calculo
Facultad der Ciencias
Exactas y Naturales

I. EINLEITUNG.

1. Allgemeines.

Das Autocode-System besteht wie alle automatischen Codiersysteme aus einem
Ubersetzungsprogramm (Compiler), das eine symbolische Sprache (die Programmiersprache von
Autocode), die der mathematischen Sprache sehr dhnelt, in reine Maschinensprache iibersetzt. Nach der
Ubersetzung fangt die Ausfiihrung des eigentlichen Programms an. Dazu gehért u.a. das Lesen der
numerischen Daten des Problems und der Ausdruck der Ergebnisse.

Der Programmierer bendtigt fiir Autocode weder genaue Kenntnisse der reinen
Maschinensprache noch die genauen funktionellen Details des Mercury. Er muss lediglich die
Autocode-Programmiersprache und die Funktionsweise der idealen Maschine kennen, mit der er
arbeitet. Dies ermdglicht ihm, seine numerischen Berechnungen anzustellen, ohne auf den Rechner, der
sich um die Auflésung kiimmert, direkt zugreifen zu miissen.

2. Der Rechner.

Unser idealer Rechner besteht wie alle automatische Digitalrechner aus den folgenden Teilen (Abb. 1):
a) einem Speicher
b) einer arithmetischen Einheit
c) einer Steuereinheit
d) einem Eingabe-/Ausgabegerit

Die arithmetische Einheit unseres “idealen Rechners” ist sehr leistungsfdhig, da sie neben den
vier grundlegenden Operationen auch eine Reihe komplexer Funktionen durchfiihren kann.

Die Steuereinheit ist der Kern, der alle die Statements interpretiert und jene ausfiihrt, die eine
eindeutige Logik- und Kontrollstruktur besitzen.

Die Eingabe- und Ausgabegerdte erlauben, das Programm und die Daten in die Maschine
einzugeben und die Ergebnisse in einem Lochstreifen bzw. ausgedruckt zu bekommen.

Der Speicher ist der Ort, an dem wéahrend der Ausfiihrung des Programms, die Daten und die
Ergebnisse abgespeichert werden.

Der Autocode-Programmierer muss weder den inneren Aufbau des Eingabe- und Ausgabegerits
noch der Steuer- und arithmetischen Einheiten kennen. Interessant sind fiir ihn Aspekte des Speichers.

Der Speicher ist der Ort, in dem Zahlen und Befehle gespeichert werden konnen. Er ist in
zahlreiche Felder unterteilt, auf denen jeweils eine Zahl oder ein Befehl gespeichert werden kann. Um
sie unterscheiden zu kénnen sind sie nummeriert. Die Nummer entspricht einer Adresse. Folglich wird
jedem Feld zugeordnet. Die eine Nummer entspricht der zuordnenden Adresse, die andere bestimmt
den Inhalt des Feldes, der sowohl ein Befehl als auch ein numerischer Wert sein kann. Ein und dieselbe
Adresse kann unterschiedliche Zahlen zu unterschiedlichen Zeitpunkte haben. Die Adressen wiederum
nehmen eine dhnliche Rolle ein, wie die Variablen in der Algebra. Ebenso wie wir in der Algebra mit
Buchstaben operieren, die, wenn wir numerische Ergebnisse suchen, durch Werte ersetzt werden,
operieren wir mit den Adressen, wobei die Befehle deren Inhalte {ibernehmen.

Befehlsspeicher einheit

A=

GROSSER SPEICHER

Eingabe |—— enthalt Zahlen und Befehle

1 1

’ Aktueller) . : 1
Zahlenspeicher [—™ E\ir;liher&atlsch
Ausgabe : |

Abb. 1. — Funktionelles Diagramm des MERCURY-Rechners fiir die Wirkungsweise des AUTOCODE-
Autoprogrammierungssystems

J Aktueller |’ Steuer -

Um in Autocode zu programmieren, setzen wir voraus, dass der Speicher in drei Teile geteilt ist
oder dass es drei unterschiedliche Speicher gibt: der aktuelle, in zwei Teile geteilte Speicher (ein Teil
fiir Befehle, der andere fiir Zahlen) und der groRe Speicher.

Der aktuelle Befehlsspeicher setzt sich aus Ferritkernen zusammen, auf die sehr schnell
zugegriffen werden kann. Wenn ein Programm sehr grol§ ist, muss es in sogenannte Kapitel aufgeteilt
werden, deren Grofe auf die Kapazitit des aktuellen Befehlsspeichers begrenzt ist. Der aktuelle
Zahlenspeicher, ebenfalls aus Ferritkernen, hat eine Kapazitit von 521 Variablen, wie in Abb. 1
dargestellt ist (s. die Abschnitte iiber Variablen und Indizes).

Der grofe Speicher, der aus einer magnetischen Trommel mit langsamen Zugriff besteht, hat
eine Kapazitit, die den aktuellen Speicher mehrfach enthalten kann.

Nur die im aktuellen Speicher abgespeicherten Befehle werden ausgefiihrt. Deshalb ist es fiir
Programme mit mehr als einem Kapitel notwendig, die Methode des schrittweisen Ubertragens des
Kapitels unseres Programms vom groflen Speicher in den aktuellen Speicher unter Beachtung der
dazugehoérenden Variablen und Kostanten zu verwenden. Das rechtfertigt den Namen, den wir dem

aktuellen Speicher gegeben haben.

bt
0'
. » i

Abb. 2. — Aktueller Zahlenspeicher. Mit A, B und C sind die Bereiche fiir die Sondervariablen und
Indizes gekennzeichnet (siehe genauer in Abb. 1).

3. Die Autocode Sprache.

Die Autocode Sprache besteht aus Statements. Der Rechner {ibersetzt die in jedem Statement
enthaltenen Befehle und setzt diese, sobald das ganze Programm {ibersetzt ist, um. Die Statements
bestehen aus einem Betriebsteil und einigen Operanden. Diese Statements, konkrete grammatikalische
Sdtze der Sprache mit der wir arbeiten, sind unterschiedlicher Art und sie bestehen aus
unterschiedlichen Teilen.

Beziiglich ihrer Betriebsfunktion kénnen sie folgendermal$en klassifiziert werden:
Arithmetische Befehle

Steuerbefehle

Ein- und Ausgabebefehle

Direktiven

Die grundlegende Teile eines Statements sind:
— Variablen

— Indizes

— Zahlen

arithmetische Zeichen

— Sonderzeichen

— Worter

Die Grundelemente sind in allen Fallen Buchstaben, Ziffern und Zeichen; die Gesamtheit dieser
Elemente bildet unser Alphabet, das das folgende ist:

abcdefghljklmnopqgrstuvwxyzn
0123456789 +=#>>2=~(,)->*/WV'?

Wir mochten darauf hinweisen, dass ebenso wie die Syntax unserer Sprache, also die
Gesamtheit der Regeln, die wir befolgen miissen, wenn wir unserer Statements schreiben, auch die
Orthographie wichtig ist. Daraus folgt, dass wir jeden Teil des Statements in seiner korrekten Form
schreiben miissen, da das Auswechseln eines Buchstabens durch einen anderen oder das Auslassen
eines Zeichen unseres Alphabets, sich von den gewiinschten unterscheidende Ergebnisse oder aber das
Anhalten der Maschine verursachen konnen, da diese das Statement nicht interpretieren kann.

HINWEIS: Die Zeichen, die zurzeit vom Instituto de Calculo de la Universidad de Buenos Aires
installiert sind, sind Folgende:

——

1

=

o

-

e CD
0 3

L M

F G H OPRRSTUY
s s 6 *>>0(,)~

[J K L WXYZE
n B 9 ¥ X/ xn?

Zu beachten ist die spezielle Darstellung der Zeichen ="' W.

II. ELEMENTE DER STATEMENTS

1. Variablen.

Wie schon ausgefiihrt, konnen die Felder des Speichers verschiedene Zahlen zu unterschiedlichen
Zeitpunkten abspeichern und die Adressen dieser Felder spielen eine dhnliche Rolle wie die Variablen
in der Algebra. Aus diesem Grund nennen wir in der Autocode-Sprache die Adressen der Felder, in
denen man die verschiedenen Zahlen, die wir beim Rechnen benutzen, abspeichern kann, Variablen. Es
gibt zwei Variablentypen: aktuelle Variablen und Hilfsvariablen. Erstere belegen Plitze des aktuellen
Speichers und gehen bis Platz 509; letztere befinden sich im groRen Speicher und reichen bis zu Platz
10.752.

1.1 Aktuelle Variablen.

Die 509 Variablen, die zu unserer Verfiigung stehen, sind in zwei Gruppen geteilt: Haupt- und
Sondervariablen.

a) Hauptvariablen.
Es gibt 480 Hauptvariablen, die durch einen der folgenden Buchstaben bestimmt werden kénnen

abcdefgh UVWXYZT
ergdnzt mit einem Subindex.
Beispiele: ap v; hs, z

Bevor man die Hauptvariablen im Programm benutzt, miissen die Felder des Speichers reserviert
werden. Das wird mit dem Symbol — folgendermafien gemacht:

Damit werden die Speicherstellen 0 bis « fiir die Variablen a aga; ... a,, die Stellen & + 1 bis o + B + 1
fiir die Variablen by b; ... bg sowie die Stellen a + 3 + 2 bis a + B + y + 2 fiir die Variablen ¢y c; ... ¢,
usw. reserviert.

Beispiele: Die Ausdriicke

x — 100
y — 36
z -1

reservieren die Speicherstellen von 0 bis 100 fiir die Variablen xo, X; ... X100, die Speicherstelle von 101
bis 137 fiir die Variablen y, y» ... y3 und die Speicherstelle 138 und 139 fiir die Variablen z, und z;.
Wenn wir nur eine Variable benotigen, benutzen wir die Sondervariablen, die im folgenden Abschnitt
behandelt werden.

b) Sondervariablen.
Es sind 29 Variablen, die durch folgende Buchstaben ohne Subindex dargestellt werden:

1 ' (|

ab'cde'fgh uvwxyz
abcdefgh UVWXYZT

die den festen Stellen zwischen 480 und 508 des aktuellen Speichers umfassen. An der Stelle =508 ist,
solange man es nicht verdndert, die Zahl 3.141 592... abgespeichert.
Die Variablen mit Akzent werden normalerweise fiir Sonderfélle reserviert. Es gibt keine Variable TT'.

1.2. Hilfsvariablen.

Wenn die 509 Variablen, die wir im aktuellen Speicher zur Verfiigung haben, nicht ausreichen, ist es
notwendig, die Hilfsvariablen, bestimmte Stellen des grofen Speichers, zu benutzen. Diese Variablen
miissen in den aktuellen Speicher zu ihrer Anwendung verschoben werden. Jeder dieser Stellen wird

-6-

eine Nummer zwischen 0 und 10571 zugewiesen, die ihrer Adresse entspricht. Man kann nicht immer
die 10752 verfiigbaren Felder oder Hilfsvariablen benutzen, da die letzten 512n Felder von den
Kapiteln 1, 2, 3...n unseres Programms besetzt sind. (s. IV.3 und Anhang 1).

2. Indizes.

Sie sind die Adressen der 12 letzten Stellen des aktuellen Zahlenspeichers. Wir markieren sie mit den
Buchstaben

ijklmnopqrst

Diese Buchstaben kénnen nur ganze Zahlen, die zum Intervall (-512, 511) gehoren, aufnehmen. Sie
werden hauptsédchlich als Subindex verwendet.

Beispiel: Haben wir die Variable a; und der Inhalt des Registers i = 3, entspricht die vorherige Variable
ds,

3. Zahlen.

Die Zahlen sind der Rohstoff, durch die die Befehle wirken und iiber die diese in die von den Variablen
reservierten Felder eingefiigt oder explizit im Programm ausgedriickt werden. Die Zahlen, die explizit
im Programm beinhaltet sind, nennen wir Konstanten und die, die wdhrend des Rechenvorgangs
gelesen werden miissen, nennen wir Daten. Die Konstanten fiillen Felder des aktuellen
Befehlsspeichers aus. Der aktuelle Zahlenspeicher ist fiir die Daten, die Teilergebnisse und fiir die
Losungen vor ihrem Ausdruck reserviert. Obwohl der Rechner immer mit Gleitkommazahlen im
Intervall 107° < | X | < 10" arbeitet, kénnen die Daten als Festkommazahlen gelesen werden und
werden fast immer auf dieser Weise ausgedruckt. Die Konstanten miissen immer als Festkomma
geschrieben werden.

3.1 Festkomma.
<ZEICHEN> <VORKOMMATEIL> <KOMMA> <NACHKOMMATEIL>

Die Darstellung der Festkommazahl ist die iibliche der Dezimalzahlen. Das heift, sie bestehen aus dem
Zeichen, den Vorkommastellen, dem Komma und den Dezimalstellen. In Autocode ist es moglich, das
Pluszeichen, fiihrende Nullen und das Komma einer Ganzzahl wegzulassen. Vor dem Komma kann es
eine beliebige Anzahl von Stellen geben, aber der Nachkommateil darf maximal 24 Stellen enthalten.
Der Rechner operiert in allen Fallen mit den zehn signifikantesten Ziffern.

Beispiele: +3.570 oder 3.57
-0.327 oder -3.27
+321.00 oder 321

3.2 Gleitkommazahl.
<MANTISSE> <KOMMA> <EXPONENT>

-7

Die Gleitkommazahl ist die Kurzschreibweise von Ausdriicken der Art

+a x 10+
(a wird Mantisse und 8 Exponent genannt), die einfach durch

+a, =8
dargestellt werden.
Der Exponent muss eine Ganzzahl und im Bereich -128 bis 127 liegen. In allen Fillen muss er sich auf
den folgenden Bereich erstrecken:
2-256<X<.. 2256
Beispiele: -27, 3 driickt -27x10° oder -27000 aus

+ 0.5, -2 driickt 5x10° oder 0.005 aus

4. Arithmetische Zeichen.

Um die vier arithmetische Grundrechenarten auszudriicken, benutzt man folgende Zeichen oder
Konventionen:

a) Produkt <Aneinanderreihung der Faktoren>

Um das Produkt mehrerer Faktoren auszudriicken, reiht man die unterschiedlichen Faktoren, die an
dem Produkt beteiligt sind, aneinander, ohne dass sie durch ein Zeichen getrennt sind. Die Faktoren
konnen Variablen, Indizes oder Konstanten, aber kein algebraischer Ausdruck sein.

Beispiele: 3abb 4.2xy xxi wvjwk
Say 2iz; 6jz 6z;
ijk mnanb,
Folgende Ausdriicke sind nicht zuléssig:
a(b+oc)
Ausdriicke der Art 6zj werden, wie nachfolgend aufgezeigt wird, als 6z; interpretiert.

b) Addition _
-+

Die Zeichen + oder — zwischen zwei Elementen bewirken die Addition oder Subtraktion dieser
Elemente. Die Elemente konnen Variablen, Indizes und Konstanten, oder das Produkt mehrerer von
ihnen sein.

Beispiele: 3+v; x+j+k-4.5 jk+pq
ab+2 a'-b'b' 2x;+.25y:-327.6

c) Quotient

Das Zeichen / zwischen dem Dividend und dem Divisor ergibt den Quotient des ersten durch den
zweiten. Der Dividend muss eine Variable, ein Index, eine Konstante oder das Produkt von einigen von
ihnen sein, aber kein Ausdruck, bei dem die Zeichen + oder — beteiligt sind. Der Divisor muss eine
Variable, ein Index oder eine Konstante sein, aber kein Produkt oder Summe davon.

-8-

Beispiele: a/b 3xy/z 3ifi/f;
5.21/m v/q a'b'/c'

Ausdriicke wie

a+b/c+d
werden durch das Autocode-System folgendermalien interpretiert:

a+(b/c)+d.

5. Sonderzeichen und Worter.

AuBer den bis hierhin betrachteten Teilen der Statements existieren Sonderzeichen und Worter, deren
Aufgabe es ist, den Ausdruck des Statements zu erleichtern. Obwohl ihr Gebrauch fast immer der
mathematischen Sprache dhnelt, ist das nicht immer der Fall. Z.B. bilden mehrere Summanden in
Klammern nie einem Faktor, das Komma in einer Zahl stellt nie die Trennung zwischen Vorkomma-
und Dezimalteil dar und der Punkt driickt nie ein Produkt aus. Ein Wort kann ein ganzes Statement
ausdriicken, wie bei einigen Steuerbefehlen, Direktiven oder Namen einer Funktion.

Mercury-Konsole, in der sich das fotoelektrische Lesegerit und der Ausgabelocher erkennen lassen. Die Ergebnisse
konnen in einem Fernschreiber gedruckt werden. Er liegt auf einem Schreibtisch, der rechts daneben steht.

I1I: DIE STATEMENTS

Die Statements der Autocode-Sprache geben den im vorhergehenden Absatz erlduterten
Symbolen Sinn. Letztere allein (auller im Fall der Schliisselworter) haben keinerlei Bedeutung fiir den
Rechner. Laut ihrer Aufgabe im Programm koénnen die Statements (wie schon darauf hingewiesen
wurde) so eingeordnet werden:

Arithmetische Befehle, Steuerbefehle, Ein-/Ausgabebefehle und Direktiven.

1. Arithmetische Befehle.

Die arithmetischen Befehle sind durch das Zeichnen = (%) gekennzeichnet, das den erhaltenen bzw.
enthaltenden Wert des rechten Elementes in der Adresse des linken Elementes abspeichert. Das erste
Element kann nur eine Sonder- bzw. eine allgemeine Variable oder ein Index sein. Jeder dieser beiden
Félle bestimmt die Form des rechten Elementes. Ein Statement kann bis 68 Zeichen (inkl. Leerzeichen)
lang sein.

1.1. Das erste Element ist eine Variable.

Wenn das erste Element eine Variable ist, kann das zweite Element eine der folgenden Formen
annehmen:

a) das zweite Element ist ein algebraischer Ausdruck, an dem sich die vier arithmetischen
Grundoperationen zwischen Variablen, Indizes und Konstanten beteiligen konnen.

Beispiele: y =2x+3.5z/2-i
ws =3.5jx-4.6vo Wi/s-.03272+7.»*+i

Es ist zu anzumerken, dass ein Index oder eine ganze Zahl, die hinter einer Variable stehen, als
Subindex zu betrachten sind. Unser Rechner liest ndmlich alle Zeichen auf der gleichen Ebene. Deshalb
wird das zweite vorherige Beispiel folgendermalien im Rechner geschrieben:

ws =3.5jx-4.6v0 wi/s-.03272+z(s-2)+i
Dieses Beispiel zeigt die Notwendigkeit der Klammern bei arithmetischen Operationen mit Subindex.
Es ist empfehlenswert, die Faktoren jedes Elementes eines algebraischen Ausdrucks in der folgenden

Reihenfolge zu schreiben: Konstante, Indizes, Variablen.

b) das zweite Element ist eine einzelne der folgenden Funktionen einer Variable:

y = U sqrt(x) x>0

y = U sin(x) X in rad

y = U cos(X) X in rad

y =y tan(x) X in rad

y = U exp(x) et x<177

y =y log(x) logx x>0

-10 -

y = ¥ mod(x) x|

y = Y int pt(x) Ganzteil von x
y =y fr pt(x) Bruchteil von x
y = Y sign(x) y=+1

y =y poly(x) ap, n apist die Addresse des ersten Koeffizientes und n der Grad
des Polynom

y = Y parity(n) y=(-1)"

Das Argument vorherigen Funktionen kann eine Variable, ein Index, eine Konstante oder es kann ein
algebraischer Ausdruck unter ihnen sein. Eine Ausnahme ist die Parity-Funktion, deren Argument ein
Index oder ein ganzer algebraischer Ausdruck zwischen Indizes und Ganzzahlen sein muss.

Beispiele: y =y sqrt(xi + 2yj)
y = U sin(mt z/180)

c) Das zweite Element ist eine der nachstehenden Funktionen mit zwei Variablen:

z = | divide(x,y) x/y
z = arctan(x,y) arctg(y/x)
z = radius(x,y) Vxi+y?

beide Argumente kénnen Variablen, Indizes, Konstanten oder auch algebraische Ausdriicke sein.

Beispiele: z =y divide(3ixj + 2iyj, 5i/j)
z = radius(a + b, 6.28)

Nochmals mochten wir hier die Wichtigkeit der korrekten Schreibweise in Autocode betonen.
Insbesondere fiir die Funktionen ist es erforderlich, den griechischen Buchstaben s direkt hinter das
Zeichen = zu setzen, die Funktionen mit dem gleichen Buchstaben in der Liste zu benennen, sowie das
Argument in Klammern setzen.

Es ist zu anzumerken, dass unser Rechner bei allen arithmetischen Befehlen, die durch das Zeichen =
gekennzeichnet sind und deren erstes Element eine Variable ist, die Ergebnisse der vier
Grundrechenarten der Arithmetik (Addition, Subtraktion, Multiplikation, und Division) rundet. Das
Gleiche passiert beim Lesen der nicht ganzen Zahlen. Die Grundoperationen werden ohne Runden
ausgefiihrt, wenn das Zeichen = statt = in einer der oben genannten Befehle benutzt wird.

Es ist zu berticksichtigen, dass weder die Funktionen y = int pt(x), y = ¥ fr pt(x), y = ¥ mod(x), y = ¢
parity(n) und y = ¢ sign(x) noch Ausdriicke der Art y = a jemals gerundet werden. Alle anderen
Funktionen werden immer gerundet. Wenn das Argument der Funktion ein algebraischer Ausdruck ist,
héngt das Runden davon ab, ob das Zeichen = oder ~ benutzt wird.

1.2. Das erste Element ist ein Index.

Falls das erste Element ein Index ist, kann das zweite eine der folgenden Formen annehmen:

a) ein ganzes Polynom von Indizes und ganzen Zahlen im Intervall (-512, 511)

-11 -

Beispiele: i=2j+]
m =15 — st
j=i+2

Folgende Ausdriicke sind nicht zuléssig:

i=v+w
j=i+3.121
k =m/n

b) eine der nachstehenden Funktionen

i =y int pt(x) i-Ganzteil von x
i =Y max(Xp,m,n) m<n
i = Y min(Xo,m,n) m<n

Die x im ersten Beispiel kann irgendeine Variable oder ein algebraischer Ausdruck aus Variablen,
Indizes und Konstanten sein. Im zweiten und dritten Fall driickt i den Subindex der groften oder
kleinsten Zahl aus der Folge XmnXm:1...X...X, aus, die aus X¢X;...X,, p = n entnommen ist. Falls es mehrere
Maxima und Minima gibt, wird das mit dem kleinsten Index ausgewdhlt.

Beispiele: i=yint pt(3x —y)
I =y min(vo, 7, 21)

In arithmetischen Befehlen mit Index als erstem Element wird nie gerundet.

2. Steuerbefehle.

Die Steuerbefehle steuern den Rechenverlauf, indem sie den logischen Ablauf des Programms und die
Datenein- und -ausgabe organisieren oder die externe Steuerung des Programmablaufs erméglichen.
Dieser Abschnitt wird in fiinf Teile geteilt: Schleifen, Spriinge, Spriinge zwischen Kapiteln, Datenein-
und -ausgabe, externe Steuerbefehle.

2.1. Schleifen.

Anweisungsblocke, die wéhrend des Berechnungsverfahrens mehrmals mit verschiedenen Daten
wiederholt werden miissen, werden Schleifen genannt. Um eine Schleife auszufiihren, besitzt das
Autocode-System folgendes untrennbares Befehlspaar:

i=p(qr
repeat

Der erste Befehl, der der “Kopf der Schleife” genannt werden kann, kann eine der folgenden Formen
annehmen:

i=p(qQ)r oderi=p(-q)r

-12 -

und zeigt, dass die Schleife, die im nachsten Befehl anfangt und mit dem Befehl repeat beendet,
dadurch ausgefiihrt wird, dass dem Index i der Anfangswert p und der Endwert r gegeben wird, vom
einem zum anderen {iber den Schritt q oder auch —q gehend. Wenn der Wert r erreicht wird, wird die
Anweisung repeat ignoriert und das Programm lauft sequenziell. Die Buchstaben p, g, r konnen Indizes
oder positive Ganzzahlen im Rang (0, 511) sein. Es ist sicher zu stellen, dass r — p ein Vielfaches von q
ist. Die Zahlen p, g, r miissen positiv sein.

Innerhalb einer Schleife konnen andere Schleifen vorliegen, mit der Einschrdnkung, dass ein
bestimmter Befehl maximal in acht Schleifen enthalten sein darf. Das bedeutet, dass nicht mehr als acht
Schleifen geschachtelt werden kénnen. Man muss auch beachten, dass jeder Kopf der Schleife zu
einem einzigen repeat gehort. Die folgenden Schemata stellen die verschiedenen Félle dar:

i=p(a)r i=p(a)r — 4=p(q)r
[:;;:;? ?M J=n(2)t
repeat E:EL})}E
——" =
repaa;-
[5-1!1!6
| repeat

Wie man sehen kann wird im letzten Beispiel das Wort repeat zwei Mal verwendet, obwohl zwei
Schleifen mit dem gleichen Befehl enden. Jeder Kopf der Schleife braucht sein jeweiliges repeat und
umgekehrt. Folgende Beispiele sind unzuldssig:

-
L}
d
LE
H
\
N
=
e
H

P)
—————————
——— —————
J=l(m)n . repeat
UNZULASSIG
repeat
epeat

2.2. Spriinge.

Wenn man die Reihenfolge des Programms unterbricht, d. h. an einem bestimmten Punkt mit einem
anderen als dem nachfolgenden Befehl fortsetzt, hat man einen Sprung gemacht. Zum Springen braucht
man einen Sprungbefehl und eine Marke, die den Zielbefehl anzeigt. In diesem Abschnitt werden die
Marken und die drei Typen von Sprungbefehle erklart: unbedingter Sprung, bedingter Sprung und

-13 -

mehrfacher Pfad.

a) Marken

Wenn eine Anweisung durch einen anderen als den sequenziellen Pfad erreichbar ist, muss sie markiert
werden. Marken sind positive Ganzzahlen im Rang (1, 127), gefolgt von einer geschlossenen Klammer.
Sie (Nummer und Klammer) werden vor dem Befehl platziert.

Beispiele: 3) y=x+5b
32) i=6
14) z-radius(x,y)

b) Unbedingter Sprung

Der Sprungbefehl jump n, in dem n eine positive ganze Zahl kleiner als 128 ist, bewirkt den Sprung zur
nummerierten Anweisung mit der Marke n). Dieser Sprung kann ohne Unterschied nach vorne oder
nach hinten ausgefiihrt werden.

Beispiele: jump 3 /| —

c) Bedingter Sprung ‘ jump n,,0,f8 ‘

Diese Anweisung bewirkt den Sprung auf die mit der Marke n) gekennzeichnete Anweisung,
vorausgesetzt, dass die Beziehung 0 zwischen o und [existiert.

Der Buchstabe O driickt irgendeines der Symbole = # > > aus. Die Buchstaben o und B konnen beide
Variablen, beide Indizes sowie Variable und Konstante, oder Index und Ganzzahl sein. Es ist jedoch
unmoglich, eine Variable mit einem Index direkt zu vergleichen.

Beispiele: jump 3, a'> a
jump 127, b#i
jump 42, a;>0.01
jump 71, 0.001 = &
jump 26, n >k
jump 5, n#zl
jump 1, 3>k
jump 102, 25=n

Dabei ist anzumerken, dass es nicht sinnvoll ist, einen Sprung durch den Ausdruck = oder # zwischen
zwei Variablen zu bedingen, da es sehr unwahrscheinlich ist, dass diese Gleichheit exakt wéihrend eines
Berechnungsverfahrens vorkommt.

-14 -

n) =m)
jump (n)
Der Sprungbefehl jump (n) erzeugt einen bedingten Sprung mit dem Markenwert n) (n ist immer ein
Index), der zuvor mit dem Befehl n) = m) (m ist eine Ganzzahl) definiert worden sein muss.

Da der Befehl n) = m) sehr langsam ist (17 ms), sollte er nur in unerldsslichen Félle verwendet werden.
Der Befehl n) = Ganzzahl) ist viel schneller (120 ps).

d) Mehrfacher Pfad

Beispiele:)
T m=3 2) m=m+1
1) n)=m jump 1
jump (n) 6f ==
3)
Jump 2
) =
Jump 2
5)

y

1)

2)

20) =
Jump (m)

2.3 Sprung zwischen Kapiteln.

Um vor dem Abschluss eines Kapitels zu einem Befehl in einem anderen Kapitel zu springen, muss
man folgende spezielle Steueranweisungen benutzen: across m/c oder das untrennbare Paar down m/c,

up.

a) Hin (einfache Anderung) ‘ across m/c ‘

Diese Anweisung setzt die Berechnung in der Anweisung der im Kapitel c¢) enthaltenen Marke m fort
(s. Abschnitt Direktive). Dafiir legt sie das Kapitel c¢ im aktuellen Speicher ab und beginnt mit der
Programmausfiihrung auf der Marke m.

down m/c
up

Sie sind zwei untrennbare Anweisungen. Die erste hat die gleiche Wirkung wie across m/c mit der
Besonderheit, dass, wenn bei der Programmausfiihrung die Anweisung up vorgefunden wird,
automatisch die Anweisung down m/c (von der sie ausging) folgt.

b) Riickkehrbefehl (Anderung mit Riickkehr)

Die folgenden Diagramme zeigen einige Moglichkeiten:

-16 -

1. Ebene
N
2. Ebene A
p———t
3. Ebene

1. Ebene HAUPTPROGRAMM

v

2. Eb i | 2 n
ene A
FAREE FAS

3. Ebene

3. Externe Steuerbefehle.

So wird eine Reihe von Anweisungen genannt, deren Zweck ist, beim Steuern des
Berechnungsverfahren durch Tonsignale zu helfen. Einige zeigen ungefdhr an, in welchem Teil des
Programms man sich befindet. Andere weisen darauf hin, wenn ein manueller Befehl notwendig ist
oder wenn die Berechnungen abgeschlossen wurden. Die hier Beschriebenen sind: Hoot, Halt, End.

a) Signal

Dieser Befehl erzeugt tiber den Lautsprecher ein Tonsignal, das eine Sekunde dauert. Auf diese Weise
kann man ein Berechnungsverfahren markieren und weill jederzeit, ob das Programm korrekt
funktioniert.

-17 -

b) Halt

Dieser Befehl bewirkt eine Schleife, die aus folgenden Teile besteht:
* Erzeugung des Tonsignales a
* Erzeugung des Tonsignales b
* Von der Konsole lesen
* Fortsetzung der Schleife, falls eine bestimmte Information in der Konsole fehlt
* Fortsetzung des Berechnungsverfahrens, falls es eine bestimmte Information in der Konsole
gibt

Dieser Befehl weist darauf hin, dass ein Punkt erreicht wurde, an dem man manuell eingreifen muss (s.
Anhang II).

) Ende

Dieser Befehl am Ende des Programms macht durch ein Tonsignal deutlich, dass die Berechnungen
beendet sind und es unmoglich ist, fortzusetzen.

4. Eingabe- und Ausgabebefehle.

Man braucht einige Befehle, um den Dateneingang und -ausgang zu steuern, also die Daten zu
speichern oder die Ergebnisse auf einem Papier auszudrucken. Die Hauptbefehle sind read und print.
Dariiber hinaus gibt es eine andere durch ? bezeichnete, bedingte Ausgabeanweisung und andere
Hilfsanweisungen. newline und space ermdglichen es ndmlich, die gedruckten Zahlen in Form einer
Tabelle anzuordnen. rmp bietet die Gelegenheit, ein Programm wéhrend der Berechnungen zu lesen.

4.1 Eingabe. Es gibt zwei Anweisungen (read (@) und rmp), die das Lesen eines in einem
Eingabeelement platzierten Lochstreifens ermdglichen, je nachdem, ob es sich um ein Daten- oder
Programmband handelt.

a)Daten lesen read(a

Durch diesen Befehl wird die nédchste Zahl des Lochstreifens in der Speicherstelle a abgespeichert,
wobei O eine Variable oder ein Index sein kann. Diese Zahlen konnen als Fest- oder Gleitkommazahl
gelocht werden, wenn a eine Variable ist. Falls es sich einen Index handelt, muss er als Ganzzahl im
Intervall (-512, 511) gelocht werden. Wichtig ist, dass die Zahlen in der erforderten Reihenfolge
gelocht werden.

Beispiel: Wenn die Zahl 2.2575 im Eingabeelement steht, bewirkt die Anweisung

read (ao)
nach einer Umwandlung in eine Gleitkommazahl die Speicherung der Zahl 2.2575 auf der
Speicherstelle ay,

-18 -

b) “Read more programm”

Der Befehl rmp (read more programm) liest und {bersetzt den Programmlochstreifen. Zur
automatischen Fortsetzung des Berechnungsverfahrens muss das Programm, das gerade gelesen wurde,
ein Kapitel O enthalten, der das bestehende Kapitel O zerstort.

4.2 Ausgabe. Die Befehlsausgabe ist durch folgende Befehle geregelt:

a) Ergebnisausdruck ‘ print(a) m, n ‘

Im Befehl print (&) m, n, sind m und n ganze Zahle oder Indizes und Q eine Variable, ein Index, eine
Konstante oder einer der algebraischen Ausdriicke. Wenn m _# 0 wird & als Festkommazahl mit m
Ganzstellen und n Dezimalstellen ausgedruckt. Wenn n = 0 wird der Dezimalteil nicht ausgedruckt.
Wenn m = 0, & = 10" wird a als Gleitkommazahl mit einem dreistelligen Exponent ausgedruckt.
Wenn o ein Index ist, enthdlt der Ausdruck n Nullen als Dezimalteil. Enthdlt die Zahl o einen
Dezimalteil, wird ihr Wert mit einer Abrundung in der letzten Ziffer ausgedruckt.

Beispiele: Sei ap = -3.27721675, wird die Anweisung
print (ap) 2,5
-3.27722

drucken.

newline

b) Tabs
space

Durch die Worter space und newline wird iiber den Fernschreiber auf dem Schriftstiick ein Leerzeichen
und einen Zeilenvorschub eingefiigt. Man muss bei dem tabellarischen Ausdruck der Ergebnisse darauf
beachten, dass die Fernschreibleitung nur 68 Stellen hat und der Rechner automatisch zwei
Leerzeichnen nach jeder Zahl ldsst. Von daher fiillt jede Zahl im allgemeinen Fall m + n + 4 oder m + 3
wenn n = 0 aus. Wenn es als Gleitkommazahl geschrieben werden wiirde, wiirden n + 9 Stellen
ausgefiillt. Wenn die Anzahl der Ganzstellen der zu druckenden Zahl groRer als m ist, werden alle diese
Ziffern ausgedruckt und der Dezimalpunkt wird nach rechts verschoben.

c) Teilausdruck

Das Zeichen ? druckt am Anfang oder Ende einer arithmetischen Anweisung die berechnete Zahl auf
der linken Seite des Fernschreibers, wenn ein Schalter der Konsole sich wihrend der Ubersetzung in
einer bestimmten Position befindet. Wenn die Zahl groRer als 10™ ist, wird sie als Gleitkommazahl
gedruckt. In allen anderen Félle wird sie mit zehn Dezimalstellen gedruckt. Die Indizes werden als
ganze Zahl ohne Komma oder Dezimalteil gedruckt. Es ist unzuldssig, diesen Befehl mit
Leseanweisungen zu benutzen. Dieser Befehl wird besonders wéhrend eines Programmtests verwendet.

-19 -

Beispiel: Drucken ai, bi und ci (i= 0 (1) 99) in Zehnerblécken durch eine Doppelleerzeile getrennt. Die
ai sind zweistellige ganze Zahlen, bi und ci sollen mit einer ganzen Zahl und fiinf Dezimalstellen
vorkommen.

~ j = 0(10)90

k = 3+9
*i = J(1)X
print (ai) 2,0
print (bi) 1,5
print (ci) 1,5
newline

—repeat
newline
newline

— repeat

5. Direktiven.

Im Autocode System gibt es Statements, die wéhrend des Berechnungsverfahrens keine Wirkung
haben. Thre Aufgaben sind die Organisierung des Programms wihrend der Ubersetzung, die Platzierung
von verschiedenen Kapiteln und andere Fahigkeiten, wie u. a. das Schreiben des Programmititels oder
das Ausdrucken der Anzahl der zu einem bestimmten Zeitpunkt im schnellen Speicher verfiigbaren
Felder. Schon bekannt ist eine der gebrduchlichsten Direktiven (durch — dargestellt), die fiir die
Hauptvariablen die entsprechenden Speicherstellen reserviert. Im Folgenden werden die Direktiven
title, chapter, close, variables, p s a betrachtet.

a) Titel

Die title-Direktive druckt auf das Papier des Fernschreibers die Worter, Zahlen und Zeichen, die in die
ndchste Zeile geschrieben werden. Sie wird hauptsdchlich benutzt, um den Titel des Programms, oder
einige Kommentare dazu an die oberste Stelle der Ergebnisse zu schreiben. Falls der Titel mehr als eine
Zeile ausfiillt, soll das Wort title jeder einzelnen Zeile vorangehen.

Beispiel: Wenn man im Programm
title
tab coulombs Funktion
title
delta=0.01 epsilon =0.01

schreibt, erscheint in der Kopfzeile der Tabelle:

tab coulombs Funktion

-20 -

delta=0.01 epsilon =0.01

b Kanitel chapter
) Kapitel close

Das untrennbare Direktivenpaar chapter & und close zeigt den Anfang und das Ende jedes Kapitels, in
dem das Programm geteilt wurde, falls es zu lang war, an. Dies ermoglicht die Lokalisierung jedes
Kapitels im grofen Speicher folgendermallen: wenn der Rechner chapter & liest, reserviert er einen
bestimmten Bereich im groRen Speicher; wenn er close liest, befiehlt er das Ubertragen des aktuellen
Kapitels in die reservierten Speicherstelle. Die Zahl & muss eine Ganzzahl im Bereich (0, 22) sein.

Im besonderen Fall des Kapitels 0 befiehlt die Direktive close nicht nur das aktuelle Kapitel in den
grollen Speicher zu iibertragen, sondern auch dem Programm mit seinem ersten Befehl anzufangen.
Deshalb muss dieses Kapitel als Letztes gelesen werden.

c) Reservierung von Variablen

Die Direktive — reserviert Bereiche im aktuellen Zahlenspeicher, in denen sich die Hauptvariablen
befinden werden. Ihr Gebrauch wurde schon in II-1.1.-a erklart.

d) Beibehaltung der Reservierung ‘ variables ‘
Wenn ein Kapitel mit den gleichen Variablen wie das vorige im Lochstreifen Kapitel o operiert, ist es

nicht notwendig, den Bereich fiir die Variablen nochmal zu reservieren. Es reicht folglich aus, wenn
man die Direktive variables o unter die Direktive des Kapitels schreibt. Es konnte aulerdem eine
andere neue Variable, die nicht in diesem Kapitel enthalten ist, verwenden. Diese neuen Variablen
werden in gewohnter Form durch den Pfeil nach dem Schreiben der variables & reserviert.

e) Verfiigbarer Platz ‘ psa ‘
Aufgrund der unterschiedlichen Lange der Statements ist es unmoglich im Voraus zu wissen, wieviele
von ihnen in ein Kapitel hineinpassen. Wenn man aber die genaue Groéfle des noch zur Verfiigung
stehenden Datensatzes wissen mochte, kann man die Direktive p s a benutzen. Die genannte Direktive,
die an irgendeine Stelle des Programms eingefiigt werden kann, druckt die Nummer des Kapitels und
die GroBe des noch verfligharen Registers aus. Die maximale Anzahl von verwendbaren
Maschinenbefehle pro Kapitel ist 832.

-21 -

f) Quickies W sqrt

Y cos

Y log

Y tan

U radius
Y sin

Uy exp

Y arctan

Die vorhergehenden Namen der Funktionen, die vor der Direktive close enthalten sind, werden als
Direktiven (Quickies) betrachtet. Sie beinhalten wiahrend des Ubersetzungsprozesses die
Berechnungsroutine dieser Funktionen, falls geniigend verfiigbarer Platz im Kapitel vorhanden ist.
Dadurch wird vermieden, dass, jedesmal wenn eine Funktion erscheint, diese Subroutine wahrend des
Berechnungsverfahren vom groflen in den aktuellen Speicher iiberfiihrt werden muss. Die Quickies
miissen geordnet in die Liste eingetragen werden, indem die am haufigsten verwendeten an den Anfang
gesetzt werden. Wenn wihrend der Ubersetzung ein Quickie nicht in das Kapitel iiberfiihrt werden
kann, weil er zu lang ist, priift der Rechner, ob der folgende hineinpasst. Die Anzahl der in jedem
Quickie verwendeten Anweisungen ist folgende:

U sq rt — 48; ¥ cos — 36; U log — 42; ¢ tan — 42; Y radius — 48; ¥ sin — 36; y exp — 50; Y arctan — 58.
Die Quickies s sin und s cos ziehen sich auf die gleiche Subroutine auf, deswegen sollte nur einer von
beiden in der Liste eingetragen werden. Das gleiches gilt fiir die Quickies s sqrt und y radius.

Beispiel: Im folgenden allgemeinen Schema eines Kapitels sieht man die Form und die Position, die die
Quickies ausfiillen.

chapter 2
variables 1
v - 20

X -5
Befehle
Y sqrt

s arctan
close

IV. SPEICHER UND PROGRAMMIERUNG

Bisher lag die Aufmerksamkeit darauf, die verschiedenen Teile des aktuellen Zahlenspeichers
(aktuelle Variablen, Indizes) sowie die Bestandteile eines Statements zu erkldren. Von nun an
beleuchten wir die allgemeine Organisation der Programme und die Erweiterungen, mit denen die
Autocode-Sprache ausgestattet ist. Letztere fordern die Ahnlichkeit der mathematischen Sprache mit
der im besagten System Verwendeten. Zu diesem Zweck beschaftigen wir uns zundchst mit der

-22 -

funktionellen Anordnung des groen Speichers und der Organisation des aktuellen Befehlsspeichers
und nehmen uns danach die oben erwédhnten Erweiterungen und Programme vor.

T

A B c

Abb. 3. — (Vgl. Anhang 1)

1. Aktueller Befehlsspeicher.

Der aktuelle Befehlsspeicher besteht aus drei Teilen, in denen sich die unterschiedlichen Teile des
Programms befinden. In dem ersten sind einige Statements wie u. a. die Division und der
Kapitelwechsel, einige Konstanten und verfiighbarer Platz fiir die Verarbeitung der Subroutine. Der
zweite und grofite Teil enthélt die Anweisungen und Konstanten, die das Programm bilden. Ist genug
Platz, beinhaltet dieser Bereich auch die Subroutine, die die Quickies abruft. Im dritten Teil wird eine
der von Autocode gebrauchten Funktionen nach Bedarf gespeichert (¢ sq rt, ¢ sin, y exp, ...,).
(s. Abb. 3).

2. GroRer Speicher.

Der grolle Speicher besteht aus einer Magnettrommel. Thr Speichervermégen entspricht 13.824 Feldern,
denen jeweils eine Zahl als Adresse zugeteilt wird. Diese Felder sind zwei groen Gruppen zugeteilt, je
nachdem ob die entsprechende Zahl, die ihnen eine Adresse zuweist, positiv oder negativ ist. Jede
Gruppe ist wiederum in verschiedene Bereiche mit unterschiedlichen Aufgaben unterteilt. In die erste
Gruppe gehoren Felder mit positiven Adressen von 0 bis +10751. Sie enthalten Hilfsvariablen und das
vollig autokodierte Programm, welches sich in den letzten Feldern (10751, 10750, ...) befindet. Weil
jedes Kapitel 512 von diesen Feldern ausfiillt, wird der verfiigbare Teil fiir die Variablen 10752-512n
sein, wobei n die Anzahl der Kapitel ist. Zu den Feldern der zweiten Gruppen gehdren die negativen
Adressen, die Zahlen zwischen -1 und -3072 umfassend. Diese Felder bestehen aus folgenden
Bereichen: ein Bereich fiir den Autocode-Ubersetzer (-1 bis -1536); drei Bereiche fiir die zeitweilige
Speicherung, den sogenannten Subkapitelspeicher (-1537 bis -2048), den Speicher des Hauptkapitels
(-2049 bis -2560) und den Sonderspeicher (-2561 bis -3072). Die Verwendung dieser Bereiche wird

-23 -

ndher bei der Behandlung der Programme erkldrt. Falls es notwendig ist, kann auch die Gruppe der
Felder mit negativen Adressen verwendet werden, um die Hilfsvariablen zu speichern. (s. Anhang 1).

3. Hilfsvariablen.

Wenn die 509 aktuellen Variablen nicht ausreichen, kann man als Hilfsvariablen den Bereich der
positiven Adressen im grofen Speicher verwenden, der von den Anweisungen des Programms nicht
benutzt wurde. Diese Variablen werden durch die Zahl ihrer Adressen gekennzeichnet. Da alle Zahlen
durch den aktuellen Speicher hindurch miissen, um verarbeitet werden zu kénnen, muss man iiber
einige Funktionen verfiigen, die die Ubertragungen zwischen dem aktuellen und dem groRen Speicher
ermoglichen. Diese Funktionen sind folgende: ¥ 6 (@) v, n; W 7 () v, n; preserve und restore.

Mit o verweist man auf eine Variable, einen Index, eine Konstante oder einen der algebraischen
Ausdriicke. A nimmt immer einen ganzen Wert und rundet daher den Dezimalteil, wenn es einen gibt.
Statt & werden normalerweise die Sondervariablen mit Akzent verwendet. Mit v wird eine allgemeine
oder Sondervariable angezeigt. Schliellich zeigt n einen Index oder eine Ganzzahl an.

w6(Q)v,n

Die Funktion W 6 (@) v, n, {ibertrdgt den Inhalt der n Felder, die mit der Adresse & anfangen auf die
aktuellen Variablen mit v als Anfangsspeicherplatz, vom grofen in den aktuellen Speicher.

Beispiel: Der Befehl
U 6(10230)Vo, 5

ibertragt den Inhalt der Positionen 10230, 10231,10232, 10233, 10234, auf die Variablen vo, vi, vs, V3,
V3.

Ausdriicke wie folgende sind moglich
6 (V1 + 2Vj)W1, h
6(n)a,l
6 (a') ao, 16

w7(@v,n

Die Funktion 7 (@) v, n iibertragt vom aktuellen in den groBen Speicher den Inhalt der n aktuellen
Variablen mit v als Anfangsspeicherplatz auf die vorzufindenden Hilfsvariablen mit den Adressen von
abisa+n-1.

Beispiel: Der Befehl
¥ 7(10230)Vo, 5

tibertragt den Inhalt von vy, vi, v,, v3, v4 auf die Positionen des groffen Speichers 10230, 10231,10232,
10233, 10234.

-24 -

preserve
restore

Die Anweisung preserve speichert den Inhalt des ganzen aktuellen Zahlenspeichers in einem
bestimmten Bereich des groflen Speichers. Thr untrennbare Befehl restore fiihrt dem aktuellen Speicher
das, was zeitweilig in einem bestimmten Bereich des groen Speichers ausgelagert war, wieder zu. Die
Hauptanwendung dieses Befehlspaars ist die Verwendung von einem down Befehl zwischen beiden.
Das Unterkapitel, das durch down aufgerufen wird, kann seinerseits durch einen weiteren down-Befehl
ein Unter-Unterkapitel aufrufen. Daher kann das Paar preserve-restore verwendet werden, aber nicht in
dem Unter-Unterkapitel. Der Bereich des grollen Speichers, der fiir die zeitweilige Speicherung des
preserve des Hauptkapitels verwendet wird, ist der Unterkapitelspeicher. Es ist zu anzumerken, dass die
Sondervariable T nach jeder der Anweisungen wie preserve, restore, down, up und across die
Konstante 3.141592... enthdlt.

V. ERWEITERUNGEN

Um der mathematischen Sprache &dhnlicher zu sein, wird das Autocode-System mit einigen
Schreibweisen und Funktionen, die Erweiterungen genannt werden, ausgestattet. Sie sind um einiges
leistungsfdhiger als die bisher vorgestellten Sonderanweisungen. An dieser Stelle sehen wir uns vier
Erweiterungstypen genauer an:

1. Doppel-Wort-Arithmetik

2. Komplexe Algebra

3. Matrix-Algebra

4. Integration der Systeme von Differenzialgleichungen

1. Doppel-Wort-Arithmetik.

In den gewohnlichen arithmetischen Statements operiert man mit Zahlen, die maximal neun
signifikante Ziffern (als Gleitkommazahl oder Dezimalkommazahl betrachtet) enthalten. Manchmal
erfordern die Berechnungen, dass man Ergebnisse mit mehr als neun Ziffern erhélt. Dafiir muss man
die so genannte Double-Precision-Technik verwenden, die grundsdtzlich die Ziffern von zwei
verschiedenen Feldern als eine einzige Zahl betrachtet. Zum Beispiel, wenn man mit Double-Precision
die Zahl 0.1237659380857364 ausdriicken mochte, muss man den signifikantesten Teil d.h.
0.12376593 in einem Feld und den weniger signifikanten Teil 80857364 in einem anderen Feld
speichern. Bei einer beliebigen Zahl M nennen wir m1l den signifikanteren und m2 den weniger
signifikanten Teil, deswegen konnte M durch das Paar (m; m;) dargestellt werden. Die arithmetischen
Operationen zwischen Double-Precision-Zahlen wiren folgende:

Addition M (m;,my) + N (ng,nz) = S (s41,52)
in dem:
s; = (my + my)
s1 = (M + mp)1 + (M1 +)

-25-

Produkt M (m;,m2) N (ny,n;) = P (p1,p2)
in dem:
P, = (ml Il1)1
P. = (m1 Hz)l (mz D1)1 (thl)z

Quotient M (m;,my)/N (n3,n:) = Q (q1,q2)
in dem:
q: = (my/m),
q: = ((men; - my H2)/H12)1 + (my/ny)2

In den vorherigen Beispielen driickt der sich auerhalb der Klammer befindende Subindex (1 oder 2)
aus, ob es sich um den signifikanteren oder weniger signifikanten Teil der sich in der Klammer
angegebenen exakten Operation handelt. Man muss beriicksichtigen, dass es manchmal zu einer
Ubertragung des weniger signifikanten Teil in den signifikantesten Teil der oben angefiihrten
Operationen kommen kann. Es ist dariiber hinaus offensichtlich, dass es sinnlos ist, die Double-
Precision-Technik anzuwenden, wenn Rundungsfehler in dem signifikantesten Teil gemacht werden.
Im Autocode-System wird durch eine Erweiterungsanweisung jede einzelne Grundrechenart mit der
Anwendung der Double-Precision-Technik ausgedriickt. Dafiir werden folgende Schreibweisen
verwendet:

’ =((xtY])
Eig.ggL({x.‘f”H(U.V))
((a,B))=((x,Y))=((u,V))
;“'g”‘”}c(? 'g)% .-

ii:BBJEx:Y;)/(Eu:VJ)

Man driickt symbolisch durch ein Aktuellenvariablen-Paar in doppelten Klammern und durch ein
Komma getrennt ((a, b)) eine Double-Precision-Zahl aus, in der der signifikanteste Teil in der aktuellen
Variable a und der weniger signifikante Teil in der Variable b gespeichert sind. Das erste Zeichen zeigt
an, wo die Ergebnisse des zweiten Zeichens gespeichert werden miissen. Aus diesem Grund koénnen a
und b nur aktuelle Variablen sein, wahrend X, u, y, v k alle Variablen sein konnen bzw. x, u kdnnen
Ganzzahlen sein, wenn die entsprechenden Variablen y, v 0 sind.

Der weniger signifikante Teil ist immer positiv.

Die Variablen, die die beiden Teile ausdriicken, miissen nicht unbedingt konsekutiv sein.

In den Double-Precision-Operationen hat das Zeichen ? keine Wirkung.

double length

Wenn man eine der Double-Precision-Erweiterungen in einem Kapitel verwendet, muss man die
double-length-Direktive zwischen den Anfangsdirektiven des Kapitels einschliefen. Die genannte

-26 -

Direktive beinhaltet die Double-Precision-Subroutinen am Anfang des Kapitels.

Beispiel: Im folgenden allgemeinen Schema eines Kapitels wird gezeigt, wo die double-length-
Direktive positioniert ist:

CHAPTER 4

VARIABLES a2

Z=*16

DOUBLE LENGTH
BEFEHLE

XLOG

XEXP

CLOSE

2. Komplexe Algebra. Andere im Autocode-System enthaltene Erweiterungen sind die
Grundoperationen und einige Funktionen mit komplexen Zahlen durch einen einfachen Befehl, wie im
Folgenden gezeigt wird:

Eine komplexe Zahl wird im Autocode-System als ein Variablen- oder Konstantenpaar, die in
Klammern durch ein Komma getrennt sind, definiert. Der erste Teil o (Variable oder Konstante) stellt
den Realteil dar und der zweite Teil 8 (Variable oder Konstante) stellt den Imaginérteil dar.

Beispiel: (A, B) (3.241, 6.742) (X (I + 1), X(I + 2))
(AL BI) (AL -3.94) (AL A(I + 1))

Die Autocode-Sprache ermoglicht folgende Operationen mit komplexen Zahlen:

U,v)= an)

(va)={leJ (AIBJ

(u,v)=(x,Y)=(A,B)

(U,?J=(X,Y)!(A,Bg

U,V}—(X,Y)/(A,B

u,v)= xSQRT(x,Y) U>o
U,V)=xLOG(X,Y) I >V>=-T
(U, v)=xEXP(X,Y) :

U =xRADI US{X Y)

-27 -

Es muss wieder die Wichtigkeit der korrekten Schreibweise festgestellt werden. Es ist auch wichtig
anzumerken, dass bei der Multiplikation das Sternchen verwendet werden muss. Bei komplexen
Operationen hat das Zeichen ? keine Wirkung. Die komplexen Funktionen sqrt, log, exp verwenden die
reellen Funktionen fiir ihre Berechnung: sqrt; sin und cos fiir exp; arctan fiir log. Aus diesem Grund
miissen bei der Verwendung einer komplexen Funktion die entsprechenden reellen Funktionen als
Quickies hinzugefiigt werden.

Beispiel: Ausdrucksberechnung

> iy(2x+iy)
(x-1y)°

Uu+lv =

Dafiir wird folgendermalen vorgegangen:

—

EimgX

£gm=Y

é£3,£4)-xEXP (X,Y)
£5,£6)=(E£3,£4)e(L1,Y)
(£7,£8)=(£5,£6)/(X,£3)
£9,£10)=xSQRT (£7,£8)
U,V)=(£9,£10)/(X,£2)

Am Ende des Kapitels, das dieses Statement enthalten wiirde, sollten folgende Quickies eingefiigt
werden:

U exp
Y sin
Y sqrt

3. Matrizenrechnung. Die Matrizen werden als eine einzige Spalte gespeichert, indem eine Gruppe
Hilfsvariablen benutzt wird. Die erste Stelle einer Matrix A wird durch den Inhalt einer Sondervariable,
normalerweise a', angezeigt. Um das Element a; in einer Matrix der Ordnung m x n zu finden, wird
folgender Ausdruck verwendet:

ay=a'(n(i-1)+(-1)

Das zweite Element driickt aus, dass ab der Anfangsstelle a' (i-1) Blocke, mit (i-1) Zeilen und n-
Elementen pro Zeile durchlaufen wurden. Im Block i (also Zeile i) wurden j-1 Elemente durchlaufen.
Daraus folgt, dass das aktuelle Element a;; ist.

-28 -

Im Autocode-System erfolgt diese Suche sowie die Hauptoperationen zwischen Matrizen wie z. B. das
Lesen und Schreiben, automatisch. Hierfiir ist es mit einigen Funktionen, die von mehreren Parameter
abhédngig sind, ausgestattet. Ein Merkmal der Parameter ist, dass es Ganzzahlen sind, deren Wert
zwischen 8 und 28 liegen kann, je nach Aufgabe, die sie durchfiihren sollen.

Die Parameter sind:

* eine Sondervariable oder eine Ganzzahl, um die Position des ersten Elements der Matrizen, die
von der Funktion bearbeitet werden, im groen Speicher anzuzeigen

* eine Sondervariable oder eine Ganzzahl, um die Gesamtanzahl der Elemente oder die Ordnung
anzuzeigen

¢ ein Index oder eine Ganzzahl, um die Anzahl der Ganzen- oder Dezimalziffern, die wir drucken
wollen, anzuzeigen. (Ein Index oder eine Ganzzahl wird auch verwendet, um die Ordnung einer
Matrix bei der Division anzuzeigen).

* eine Sondervariable, um einen Skalar anzuzeigen

Normalerweise wird eine Variable ohne Akzent benutzt.
Hiernach werden die Funktionsgruppen, die folgende Aufgabe ausfiihren, behandelt:

* eine Matrix als Gleit- oder Festkommazahl drucken

* eine Matrix oder einen Vektor lesen

* Linearkombination zweier Matrizen, auch bei den Einzelfdllen der Diagonal- und
Einheitsmatrix

* Transposition einer Matrix

¢ die Determinanten einer Matrix finden

* Multiplikation und Division von Matrizen

Drucken P 8 (a,u, v, m,n)
P 9(a,uv,n)
Die Funktion {r 8 (@', u, v, m, n) druckt die Matrix A, die im groen Speicher ab der Speicherstelle a'
gespeichert ist, folgendermalSen:

* jede Zeile der Matrix fiillt auf dem Papier eine Spalte v Elementen aus
* nach den v Elementen einer Zeile folgt eine Leerzeile
* nach der Leerzeile folgt die ndchste Zeile der Matrix, getrennt von der vorigen durch einen Tab

* jedes Element wird als Festkommazahl mit Vorzeichen (falls negativ), m Ganzziffern und n
Dezimalziffern gedruckt. Sie werden als Gleitkommazahl geschrieben, wenn ihr Wert groRer als
10" oder wenn m = 0 ist.

Beispiele: Angenommen, dass die Matrix

-29 .

2,512 2,753 -3,104|
A= | |

5,215 -7,126 9,627|
in den Feldern des groen Speichers mit den Adressen 100, 101, 102, 103, 104, 105 und a' in Nummer
100 gespeichert ist; die Funktion s 8 (@', 2, 3, 1, 2) druckt die vorige Matrix folgendermafen aus:

2,51
2,75
-3,10

5,21
-7,13
9,63

Die gleiche Wirkung hétte die Funktion y 8 (100, 3, 2, 1, 2).
Die Funktion ¢ 9 (@', u, v, n) hat die gleiche Wirkung, aber die Zahlen werden als Gleitkommazahl mit

n = 10 Ziffern in der Mantisse und mit einem Exponent kleiner als 70 gedruckt. Sie hat genau die
gleiche Wirkung wie die Funktion ¢ 8 mit m = 0.

Lesen w 10(a" W)

Diese Funktion liest die w gelochten Zahlen auf dem Lochstreifen als Fest- oder Gleitkommazahl und
speichert sie in den Feldern des groBen Speichers, dessen erste Stelle mit der Sondervariablen a'
registriert ist. Wenn w = u.v kann diese Menge an Zahlen als eine Matrix der Ordnung (u x v)

betrachtet werden. In allen Félle kann es als ein w-dimensionaler Vektor betrachtet werden.

Linearkombination

Im Folgenden werden die Funktionen, die die Berechnung der Linearkombination zweier Matrizen
ermoglichen, angegeben. Wegen ihrer verschiedenen Besonderheiten werden sie in drei Gruppe geteilt,
je nachdem, ob es sich um die Linearkombination zweier beliebiger Matrizen, einer beliebigen Matrix
und der Einheitsmatrix, oder einer beliebigen Matrix und der Diagonalmatrix handelt. Natiirlich
miissen die Matrizen in den zwei letzen Beispielen quadratisch sein.

¢ zwei beliebige Matrizen

a'= Y 11(b, ', w) A=B +C Ordnung(u,v)
a'= Y 12(b), c', w) A=B -C Ordnung(u,v)
a'= Y 13(b), x, c', w) A=B +xC Ordnung(u,v)
a'= Y 14(b, x, c',w) A=B -xC Ordnung(u,v)
a'= Y 15(b",w) A=B Ordnung(u,v)

Die Sondervariablen a', b', c' enthalten die Adressen des ersten Feldes der Bereiche, die die jeweiligen
Matrizen A, B, C ausfiillen. Die Sondervariable x stellt ein Skalar dar. Die drei Matrizen miissen der

-30 -

gleichen Ordnung sein und w enthélt der Anzahl ihrer Elemente, d. h. w = u.v.

Beispiele: Seien die Matrizen
B= |1 2 2| C= |2 1 1
|2 1 1] 11 2 2|

in den Speicherstellen des groflen Speichers mit den Nummern 20, 21, 22, 23, 24, 25 und 26, 27, 28,
29, 30, 31 gespeichert. Wenn die Sondervariablen b', ¢' und a' die jeweiligen Zahlen 20, 26, 32
enthalten, wird die Funktion

a'=y12 (b, ¢, 6)
in den Speicherstellen 32, 33, 34, 35, 36 folgende Matrix speichern:

A= |11 1 1
S R |

Angenommen, seien die vorigen Bedingungen und sei 0,5 in a gespeichert, dann speichert die Funktion
a'=y 13 (b, a, c,u)
die Matrix

A= |2 2.5 2,5|
2,5 2 2|

in den Speicherstellen 32, 33, 34, 35, 36, 37.

* eine beliebige Matrix und die Einheitsmatrix

a'= Y 17(b', u) A=B +1 Ordnung(u,u)
a'= Y 18(b', u) A=B -1 Ordnung(u,u)
a'= Y 19(b, x, u) A=B +xI Ordnung(u,u)
a'= Y 20(b', x, 1) A=B -xI Ordnung(u,u)

In diesem Fall sind die Matrizen quadratisch und u stellt die Ordnung anstatt der Anzahl der Elemente
dar.

* eine beliebige Matrix und eine Diagonalmatrix
a'= y21(b, d, v A=B +D
a'= y22(b, d,u) A=B -D
a'= Y 23(b, x,d, u) A=B +xD

-31 -
a'= Y 24(b, x, d", u) A=B -xD

Auch in diesem Fall sind die Matrizen quadratisch mit der Ordnung u. Die Diagonalmatrix wird als ein
u-elementiger Vektor in einem Bereich des grollen Speichers, dessen erste Adresse sich in d' befindet,
gespeichert.

Transponierte Matrix

a'=y 16(b", u, v)
Diese Funktion speichert die transponierte Matrix in b' auf die durch a' gezeigten Speicherstellen.
Daraus folgt, dass die Ordnung der zweiten v x u ist, wenn die erste u x v ist.

Determinante
x =y 25(a', u)
Durch diese Funktion wird in x der Wert der Determinanten der Matrix mit der Ordnung u, die sich im
Bereich a' befindet, gespeichert.

Multiplikation und Division

a'= y26(b, ', u, v, w) A(u,v) = B(u,w)C(w,v)
a'= yY27(b, c,u, v, w) A(u,v) = B(u,w)C'(w,v)
a'= 28(b', m, n) A(m,n) = B(m,m)A(m,n)

C' stellt das transponierte C dar. Es ist zu bemerken, dass hier die Ordnung der Matrizen mit m, n statt
u, v (wie bisher) gezeigt wird, denn dafiir werden Indizes oder Ganzzahlen kleiner als 511 verwendet.
Wichtig zu wissen ist auch, dass die Division die Matrix B zerstort.

Beispiel: Wenn man ein Programm entwickeln méchte, um ein lineares Gleichungssystem a;x; = b; mit
Ordnung n < 20 zu lésen und die Losungen mit r Ganzziffern und s Dezimalziffern spaltenweise zu
drucken, wiirde man folgendermalien vorgehen:

-32 -

<HAPTER o
X=*30

READ (N)

READ (R)

READ (S)

Q=NN

ANn=go

Bn=Q

X10 san,QJ

X10 (Bn,N)
Bn=x38 (An,N,N)
X6 (Bm) Xi,N
I=x(z)N

PRINT (X1) R,S
NEW LINE
REPEAT

END

CLOSE
-

4. Integration der Systeme von Differenzialgleichungen. Das Autocode-System ist mit einer

Erweiterung ausgestattet, die durch die Runge-Kutta-Methode die Integration eines Systems von
Differenzialgleichungen ermdglicht, indem die Anweisung (int step (m)) benutzt wird. Dafiir muss man
zuerst die Variablen reservieren, die Parameter (Anzahl von Gleichungen, Lédnge des Schrittes,
Anfangsbedingungen) festlegen und die Gleichungen definieren, wie spéater genauer erklart wird.

Es integriert das System von Differenzialgleichungen int step (m)

fi=dy/dx =1 (X, y1, V2, ... ¥n)

in dem i = (1, 2, 3, ...n). Vorher muss man die Hilfsvariablen f;, y;, g, h; (die zwei letzte als
Arbeitsspeicher) reservieren, die Werte der Indizes n (Anzahl von Gleichungen) und h (Lédnge des
Schrittes) definieren, die Anfangswerte von X, yi, Vo, ... Ya festlegen und die Gleichungen zwischen der
Marke m und der Anweisung 592,0 bestimmen.

Beispiel: Integration des Systems

fi=dy;/dx =(y2+y3)"* &
f,=dy,/ dx =y, " log.x
fy=dy;/dx=6.9 cos (y3+vy4) + X
f;=dys/ dx =y, + yyarctan (y;+ ys)
fs=dys/dx= (aysVa tysy1¥2) / X

-33 -

im Intervall (10, 10.25) mit einem 0.025 Schritt und mit Anfangswerte y:(10) = 0; y>(10) = 0.33; y(10)
= 2; ys(10) = 0. Das Programm zur Integration dieses System wiére folgendes:

CHAPTER o

G5
H=g
Y=g

HFasoa
= 5 .

Kmpp
Timg
Tamg
'l'_:_- ™
T4u;3=
Yemg

1)JNEW LIMNE
I=x(z)

PRINT ETI] 4y
REFPEAT

INT STEP (10)

JUMP 1,10.35>X
END

10)A=XSQRT (YaYa+YaY

BeXEXP {Y1) ala+¥3¥3)
Fr=AB

A=XSQRT (Y1)

B=xL0G (X)

Fa=AB

A=XCOS (Yy4Y4)

Fimtagh+X

A=XARCTAN (1 ,YzeY

It cruvgrer
5=xXDIVIDE (YarvyY

593 ,0 (Ya¥3¥4e¥5ra¥a,x)

XSQRT
XEXP
BLOG
AC0O5
HARCTAM

CLOSE

-34 -

VI. DIE PROGRAMME

Ein ganzes Programm enthdlt verschiedene Teile, die ihrerseits in kleinere Einheiten unterteilt sind.
Das Gesamtprogramm, das aus Unterprogrammen besteht, wird Makroprogramm genannt. Jedes
Unterprogramm setzt sich aus einem oder mehreren Kapiteln zusammen. Die einzelnen
Unterprogramme eines Makroprogramms sind durch ein Unterprogramm - das Hauptprogramm -
miteinander verkniipft. Im Folgenden werden die formalen Konventionen dargestellt, die die Kapitel,
Unterprogramme (oder Programme, falls sie sich nicht auf ein Makroprogramm beziehen) oder die
allgemeine Organisation eines Makroprogramms bei der Programmierung in Autocode ausfiihren.

1. Die Kapitel.

Die Kapitel sind mit drei wesentlichen Teilen ausgestattet: Kopf, Koérper und FuS. Der Kopf und der
FuR bestehen aus Direktiven und werden benutzt, um die Ubersetzung unserer Befehle zu organisieren.
Der Korper ist die Menge der Befehle, die fiir die Programmausfiihrung benutzt werden. Folgendes
Schema zeigt die allgemeine Struktur eines Kapitels:

chapter o
variables [3
V=—b n

Wep D

KOPF

Befehle KORPER

qtﬂ.ﬁkies FUSS
close

In manchen Fillen kénnen die Direktiven variables, — und Quickies ausgelassen werden. Wenn sie
jedoch verwendet werden, ist die im oben genannten Schema angezeigte Reihenfolge zu beachten. In
allen Fallen ben6tigt man die Direktiven chapter a und close.

-35-
Beispiele:
a) Tabellieren der Funktion mit komplexer Variable
w =sinz

(in der w = u + iv und z = x + iy) in den Punkten der Fliche x,y, die auf der Kurve y = x*> + 1 mit einer
Abszisse im Intervall (0,1) und Schritt 0,01 liegen.

CHAPTER 1
£-+3

I=0(1)100
X=e1l

Y=XX+1
£o=XxSIN Ex%
Er=XEXP (Y
£2=. 5/31
U=e5E0L1+£0L2
£0=XCO0S (X)
V=e5L0L1~L0E2
NEWLINE

PRINT (X) 1,1
PRINT(Y) 1,2
SPACE

PRINT (U) 1,3
PRINT (V) 1,3
REPEAT

END

XSIN
XEXP
CLOSE

-36 -

b) Losung des Integrals [, 1 e* dx mit Hilfe der Simpsonregel und mit einem Fehler kleiner als D.

READ (D)
H=2

Fmg

G=o

Nes 1

AmXEXP (1)
E=A+1/A
B=E+ 4
BmB/3
I1)N=maN

Hw o sH

Am, sH=1
GaG+F

Feg
sz (2)N
XmXEXP (A)
FaF+X

Am A+ H
REPEAT
CsE+4F+2G
C=HC/6
Y=XxMOD (B=-C)
B=C

JUMP 1,Y>D
PRINT (C)z,9
END

BEMERKUNG. Es ist zu beachten, dass die geraden Punkte einer Unterteilung mit der geraden und
ungeraden der vorigen Unterteilung zusammenfallen. Deswegen braucht man nur die ungeraden Punkte

jeder neuen Unterteilung.

-37 -

Wir mochten wieder daran erinnern, dass die maximale Anzahl der Maschinenbefehle, die ein Kapitel
ausfiillen kann, 832 ist. Um die Zahlen der benutzten Befehle zu kontrollieren, stehen die Direktive psa
(print space available) zur Verfiigung. Falls es mehr als 832 Befehle gibt, zeigt psa den Fehler an, in
dem die Kapitelnummer sowie die wegen Platzmangel nicht enthaltenden Befehle gedruckt werden.
Jedes Kapitel fiillt, je nach seiner Nummer, einen festen Bereich im groRen Speicher aus. Die gleichen
Marken konnen in verschiedenen Kapiteln verwendet werden. Der erste Befehl eines Kapitels muss
immer markiert werden. Jedes Mal wenn man von einem Kapitel zum ndchsten wechselt, wird in der
Sondervariablen die Zahl 3,1415... wieder eingesetzt. In ein und demselben Kapitel miissen sich immer
die Schleifengrenze i = p(q)r, repeat und die n) = 4) oder n) = m), jump(n) befinden.

2. Die Programme.

Ein Programm kann ein oder mehrere Kapitel beinhalten. Diese Kapitel dienen dazu, bestimmte Phasen
der Berechnung auszufiihren. Es gibt zwei verschiedene Typen: die Unterprogramme und das
Hauptprogramm. Zur Verfiigung steht eine grofSe Anzahl von allgemeingiiltigen Unterprogrammen, die
von Nutzern des Autocode-Systems entwickelt wurden und die eine Bibliothek bilden.

2.1 Die Unterprogramme

Die Unterprogramme sind unabhédngige Recheneinheiten und konnen im Allgemeinen in sehr
unterschiedlichen Makroprogrammen benutzt werden. Ein Unterprogramm ist z. B. die Menge der
Kapitel, die fiir die Berechnung der Eigenvektoren und Eigenwerte einer beliebigen Matrix notwendig
sind. Um ein Programm benutzen zu konnen, braucht es einen Namen, der erméglicht es aufzurufen.
Dariiber hinaus muss es moglich sein darauf hinzuweisen, wo sich die Daten befinden und wohin die
Ergebnisse zu speichern sind. Die erste Voraussetzung wird durch den Titel, die anderen beiden durch
die Parameter erfiillt.

Titel programme - &
Um ein Programm von einem anderen zu unterscheiden und sie in einem Makroprogramm
zusammenfiigen zu koénnen, ist fiir jedes Programm die Direktive programme-a vorgesehen, in der o
eine zwischen 1-1023 enthaltende Ganzzahl sein muss. Die Zahlen gréer als 500 werden
konventionell reserviert, um die Programme der Bibliothek zu identifizieren. Die Benutzung des
Bindestriches zwischen programme und «a ist unerlésslich.

Die Parameter

Die Parameter sind Variablen oder Indizes, deren Werte von dem Fall abhdngen, auf den das Programm
angewendet wird. Der “Name” der Variable oder des Index wird vom Programm festgelegt und der in
der besagten Variablen bzw. im Index gespeicherte Zahlenwert ist durch die konkrete Anwendung des
Programms bedingt. Dafiir werden laut folgender Konvention die Sondervariablen benutzt:

1. - Die individuellen Parameter, die Bereichsdimensionen, usw. werden durch Sondervariablen ohne
Akzent oder Indizes ausgedriickt.

2. - Die Zahlenbereiche (Vektoren, Matrizen, ...) werden durch eine Sondervariable mit Akzent, die die
Adresse des ersten Elementes des Bereiches enthilt, gekennzeichnet.

-38 -

3. - Die Ergebnisse werden auf analoge Weise ausgedriickt, je nachdem, ob sie skalar oder vektoriell
sind.

Es ist zu beriicksichtigen, dass man die Direktive preserve benutzen soll, bevor die Parameter die Werte
annehmen. Ebenso ist es angemessen, restore sofort nach dem Befehl, der das Unterprogramm
ausfiihrt, zu verwenden. Auf diese Weise bleibt der Inhalt des aktuellen Speichers erhalten und die
Zerstorung seines Inhalts wahrend der Ausfithrung des Unterprogramms wird verhindert.

Beispiel: Angenommen, dass das programme-506 die reellen und komplexen Wurzeln eines Polynoms
mit reellem oder komplexem Koeffizient berechnet

Gz + o 2"+ .+ Ozt
Es ist offensichtlich, dass man Folgendes kennen muss, bevor das Unterprogramm anfangt

— den Grad der Gleichung
— den reellen Teil der Koeffizienten
— den Imaginérteil der Koeffizienten

Um das Programm zu beenden, muss man wissen, wo sich Folgendes befindet:

— der reelle Teil der Wurzeln
— der Imaginarteil der Wurzeln
— die Prazision der Wurzeln

Wenn man annimmt, dass in n der Grad der Gleichung, in a' die Adresse des reellen Teils erstes
Element, in b' die Adresse des Imaginérteils des ersten Koeffizientes, in e die Prazision und in ¢’ und d'
die Adresse des reellen und imagindren Teils der Wurzeln gespeichert sind, sind dann die Variablen und

preserve
n==6
c=0.001
a'=100

b' =106

c =112

d =118
down 1/1-506
restore

in dem die Koeffizienten in den Zellen 100-101 des grollen Speichers und die Wurzeln in den Zellen
112-113 des gleichen Speichers abgespeichert werden.

-39 .-

2.2 Das Hauptprogramm

Das Hauptprogramm verkniipft alle Unterprogramme, die an unserem Berechnungsverfahren beteiligt
sind, d. h. es “bildet” die Parameter und befiehlt die Spriinge. Auer den Verkniipfungsoperationen
fiihrt es diejenigen aus, die wegen ihrer Kiirze und Einfachheit kein Sonderprogramm brauchen. Das
Hauptprogramm braucht normalerweise keinen Titel, aufer wenn es durch einen across-Befehl ein
Unterprogramm aufruft.

2.3 Die Bibliothek.

Das Computing Machine Laboratory der Manchester Universitdt hat in Zusammenarbeit mit Ferranti
und allen Benutzern des Mercury Rechners(*) eine Bibliothek entwickelt. Sie enthédlt allgemeine
Programme, die in sehr verschiedenen Berechnungsverfahren niitzlich sind und angewendet werden
konnen. Irgendeines dieser Programme kann in unser Makroprogramm zu den gleichen Bedingungen
wie alle anderen Unterprogramme eingefiigt werden. Manche Programme der Bibliothek sind nicht
vollstdndig, wie z. B. das Programm fiir die Berechnung des Integrals einer Funktion, dem eine Routine
zum Generieren des Betreffenden hinzugefiigt werden muss. Um die Programme der Bibliothek nutzen
zu konnen, muss man folglich ihre Spezifikationen also die Parameter, Variablen oder Indizes sowie
ihre Anwendung kennen.

Auf den folgenden Seiten fiigen wir den Bogen mit den Spezifikationen, der dem Programm fiir die
Berechnung der Wurzeln eines Polynoms beiliegt, hinzu.

(*) Computing Machine Laboratory—Manchester University
Computing Center. Oxford University
London University Computing Group
United Kingdom Atomic Energy Authority
United Kingdom Atomic Energy Risley (Industrial Group)
United Kingdom Atomic Energy Harwell
United Winfrith Heath
Royal Aircraft Establishment. Farmboroug
Meteorological Office
Imperial Chemical Industries Ltd.
Associated Electrical Industries Ltd. (AEI)
General Electrical Company Ltd. (GEC)
Shell Petroleum Ltd.
BP Petroleum Ltd.
Comisién Francesa de Energia Atomica. Saclay
Comisién Belga de Energia Atdmica
Comisién Sueca de Energia Atomica
Instituto Noruego de Investigaciones de la Defensa
CERN. Ginebra
Instituto de Calculo. Universidad de Buenos Aires.

-40 -

Titel: Programme-506 Losung algebraischer Gleichungen.
Ziel: Dieses Programm berechnet die Nullen des Polynoms

A -506

n n=-1
e £ +8_2 4+sseten =l
o' 1 n

wobei a; reell oder komplex sein kann.

Beschreibung: Die verwendete Methode ist von D. E. Muller in M.T.A.C., Oktober 1956 (S. 208)
beschrieben.

Jede Wurzel wird durch eine iterative Methode, gefolgt durch die Entfernung des
entsprechenden Faktors der Gleichung, bestimmt. Die erforderte Relativprazision der Wurzeln wird
durch einen Programmparameter e angegeben, der folgendermalen als Konvergenzkriterium verwendet
wird

L(me1)__(m)

gzx{nﬂlj (m)

+ix

wobei x™, x™D zwei sukzessive Iterationen einer Wurzel x sind.
Um vier signifikante Ziffern zu bekommen, muss e=0.001 sein.

Parameter:
n Ordnung der Gleichung (< 116)
e Relativprazision der Wurzeln
a' Die reellen Teile von a; sind in a', a'+1, ... a'tn abgespeichert.
b’ Die imagindren Teile von a; sind in b', b'+1, ... b'+n abgespeichert.
c Die reellen Teile der Wurzeln sind in c', c'+1, ... c'+n-1 abgespeichert.
d' Die imagindren Teile der Wurzeln sind in d', d'+1, ... d'+n-1 abgespeichert.

Eingabe: Das Programm besteht aus einem einzigen Kapitel, das so aufgerufen wird:
1. Durch “down 1/1 — 506”, wenn a; komplex sind
2. Durch “down 2/1 — 506”, wenn a; reell sind (in diesem Fall ist es nicht notwendig, b’
anzugeben)

Zeit: 1 Min. fiir n=25, 4 Min. fiir n=50 und 16 Min. fiir n=100.
Prézision: Siehe Beschreibung oben.

Autor: R. H. Kerr, Universitat Manchester
Datum: 27. April 1959

-41 -

Wihrend den Programmen der Bibliothek eine Nummer zwischen 501 und 1023 zugewiesen wird,
wird unseren Programmen eine Nummer kleiner als 501 zugewiesen. Damit ist es moglich, sie
angesichts jedes konkreten Problems zu unterscheiden. AnschlieBend stellen wir eine Liste mit den
aktuellen Programmen der Bibliothek vor. Allerdings kann sich ihr Inhalt dndern, indem sich die
Anzahl der Programme erh6ht bzw. die Vorhandenen verbessert werden.

Die Liste zeigt die Programmtitel sowie ihren Zweck.

Programme-501 Grenzwerte einer Folge bestimmen
Gegeben seien die (n+1) Elemente einer Folge

do di d2 ... dn.
Dieses Programm berechnet seinen Grenzwert fiirn — oo.

Programme-502 Einfache Quadratur
Dieses Programm berechnet den Wert des Integrals

Jab (%) dx,
wobei f(x) keine Besonderheiten im reellen Intervall (a, b) aufweist.

Programme-503 Quadratur
Dieses Programm berechnet

[0 (b-x)" (x-a)" f(x) dx,
wobei u>-1, v>-1 und f(x) keine Besonderheiten im reellen Intervall (a, b) aufweist.

Programme-504 Quadratur von unendlichen Integralen
Dieses Programm berechnet den Wert des Integrals
Jew f(x) dx,
wobei f(x) keine Besonderheiten im reellen Intervall (c, o) aufweist.

Programme-505 Harmonische Analyse
Gegeben seien fiir die Periode L die Werte einer periodischen Funktion f(x) = f(x+L) in den gleich
getrennten 2n + 1 Punkten
X; = Xo + (r L/2n), r = 0 () 2n.
Das Programm berechnet den Koeffizient der harmonischen Naherung.

2Mr 2r
f(x) = a, + E a_ cos == (x-xo) +D sen =y (:-—:0:} }

1

Programme-506 Losung algebraischer Gleichungen

Dieses Programm berechnet die Nullen des Polynoms
az"+a z"+......+a, =0,
wobei a; reell oder komplex sein kann.

-42 -

Programme-507 Autokorrelation und Kreuzkorrelation
Gegeben seien zwei Folgen (die identisch sein kénnen):
X0 X1 eeeeeee Xp Yo YVi.eeeeei ¥V

Das Programm berechnet die Summen

B -D
8 8

a8 ne-.g

flir S = 0(1) o}

2 2
A = Ty $§ B = x 3 Cm T, $ D= Yy } E= Jg
8 g t* (t+8) s ﬁt- t 8 i‘t- t s :‘b-m B :-m

Programme-508 Losung und Tabellierung eines Systems von Differentialgleichungen
Das Programm l6st und tabelliert das System von Differentialgleichungen

dy;/ dx fi (y1, Y2, V3.-. Vn ; X) i=10)n
mit den Anfangsbedingungen y: (Xo) fiir x = X, in einem einheitlichen Intervall d.

Programme-509 Tabellierung
Dieses Programm tabelliert in zwei Dimensionen die Matrix a;, i=0(1)m, j=0(1)n. (Wenn nicht alle

Sdulen in eine Papierbreite hineinpassen, werden die iiberzdhligen Saulen unter die vorherigen Sdulen
geschrieben).

Programme-510 Losung von Normalgleichungen kleinster Quadrate

Gegeben sei ein System von m linearen Gleichungen mit n Unbekannten (m>n)

Ax=Db,
wobei A = (a ij), x = (xj), und b = (bi), i = 1(I)m, j = 1(I)n. Dieses Programm bildet und berechnet die
Normalgleichungen

A'Ax =A'b.
Programme-511 Eigenvektoren und Eigenwerte einer allgemeinen reellen Matrix

Dieses Programm berechnet die Eigenwerte und Eigenvektoren einer Matrix A, die im groflen Speicher
abgespeichert ist.

Programme-512 Ein-/Ausgabe von Double-Precision-Zahlen

Dieses Programm liest Gleitkommazahlen aus dem Lochstreifen ab und speichert sie in
aufeinanderfolgenden Zellenpaaren des grollen Speichers ab. Es locht auch Double-Precision-Zahlen
mit Festpunkt, die mit gerundetem Dezimalteil in aufeinanderfolgenden Zellenpaaren des grofen
Speichers abgespeichert sind.

-43 -

Programme-515 Losung eines linearen Gleichungssystems mit Double-Precision
Dieses Programm 16st ein lineares Gleichungssystem

dij Xj = bi i= l(l)n,
wobei a;; und b; mit Double-Precision gegeben sind. Die Gleichungen werden zeilenweise
abgespeichert, indem die b; nach den ai, gestellt werden.

Programme-516 Tabellierung der L.ésung eines System von Differentialgleichungen
Dieses Programm ist eine gednderte Version des programme-508.

Programme-518 Division von Matrizen
Dieses Programm berechnet das Gleiche wie die Funktion ys 28, d. h. es priift
A=B'A.
Der einzige Vorteil des Programms liegt darin, dass nicht alle Subroutinen von Erweiterungen fiir
Matrizen gelesen werden miissen.

Programme-519 Reelle uneigentliche Quadratur
Dieses Programm berechnet das uneigentliche Integral I, wie den Grenzwert

b -
I £(x)dx = 1lim t J b f(x)dx
== 00 Ir

a rw

wobei x, = 2"(a-b) + b.

Programme-521 Komplexe uneigentliche Quadratur

Das ist eine Version des Programme-519, das komplexe Werte des Integranden, komplexe Grenzwerte
und eine komplexe Definitionsliicke/Singularitdt akzeptiert. Die Toleranz wird auf das Modulo der
Ergebnisse angewendet.

Programme-522 Texte Ein-/Ausgabe
Dieses Programm liest Texte von einem Lochstreifen, speichert sie ab und locht sie in gewiinschter
Form.

Programme-523 Kleinste-Quadrate-Polynom
Dieses Kapitel passt durch die Methode der kleinsten Quadrate ein Polynom mit Grad k an n Punkte an,
die nicht unbedingt das gleiche Gewicht haben oder auf gleiche Weise getrennt sind.

3. Makroprogramme.

Als Zusammenfassung behandeln wir schlieflich die allgemeine Organisation eines
Berechnungsverfahrens, das mehrere Unterprogramme enthdlt, d. h. ein Makroprogramm. Dafiir
weisen wir darauf hin, dass es in folgenden vier Schritten auszufiihren ist:

a — Ein Blocksdiagramm erstellen, in dem man die wesentlichen Teile des
Berechnungsverfahrens, die auszufiihren sind, angibt

-44 -

b — Die Teile, die sich mit Hilfe der Programmbibliothek behandeln lassen, erkennen und ihre
Spezifikationen verstehen

¢ — Programme fiir die anderen Teile, fiir die es kein geeignetes Programm in der Bibliothek
gibt, schreiben. Dafiir ist es sinnvoll, ein Detail-Diagramm zu erstellen.

d - Das Verkniipfungsprogramm bzw. das Hauptprogramm schreiben und dabei beachten, wie
die Dateneingabe/-ausgabe umgesetzt werden muss. Eigentlich entspricht das Hauptprogramm dem in
a) erwdhnten Blocksdiagramm.

Einige Ausnahmen bei der Benutzung einiger Direktiven und Sprungbefehle in den Makroprogrammen
miissen beachtet werden:

— die Direktive variables kann sich nur auf in einem gleichen Unterprogramm enthaltende Kapitel
beziehen

— die Sprungbefehle zwischen Kapiteln, die zu verschiedenen Unterprogrammen gehoren, miissen
drei Parameter haben: die Marke, das Kapitel, das Programm. Sie nehmen die Form across M/C
— P, down M/C — P an.

Die funktionelle Struktur eines Unterprogrammes ist im Allgemeinen wie im folgenden Schema
gezeigt:

title

Programme—1
Kapitel 1 HAUPTPROGRAMM
Kapitel 2

-

I Kapl“:el h]

Progrimme—2

Kapitel 1

[Kapitel

[}]

UNTERPROGRAMM

Kapitel 3

-45 -

programme=p

Kapitel 1

Kapitel 2

UNTERPROGRAMM

Kapitel K

chapter O

Im Folgenden wird durch ein Beispiel gezeigt, wie ein unvollstindiges Unterprogramm aus der
Bibliothek zu benutzen ist. Es geht darum, durch das Programm A-502 die Funktion y = sin® x im
Intervall (0, m/2) zu integrieren. Dafiir muss man die Funktion spezifizieren, die man am Ende des
Programm-502 - das aus diesem Zweck nicht abgeschlossen ist - integrieren will. Vor der
Programmausfiihrung miissen seine Parameter definiert werden. Laut den Spezifikationen miissen in A
und B die Integrationsgrenzen, in E die angeforderte oder erreichte Prazision, in u' die Adresse des
grollen Speichers, in dem der Wert des Integrals abzuspeichern ist, gestellt werden. Der Aufruf wird
durch den Befehl down 1/1 — 502 ausgefiihrt. Da wir in diesem Fall annehmen, dass unser Ziel nur die
Berechnung des Integralwerts ist, fiigen wir zusétzlich Ausgabebefehle hinzu. Allerdings ist der
Integralwert bei allgemeineren Problemen ein Zwischenwert und deswegen ist sein Ausdruck nicht
notig. Folgende Befehle zeigen schematisch, wie wir vorgehen wiirden:

- 46 -

TITLE
INTEGRAL SINUS-QUADRAT

PROGRAMME — so2
CHAFTER 1

1)

o — o o oy B S e,
S e e . . B — —

s ———— e S ——

Tox)m—————v

upP

—— e . T

— e —— e e e

12015?u,n
X=xS1H{xX)
K=MXK
JUMPIor

CLOSE

CHAPTER o
IFI

A=o

B=f/a

E=.0001

Lti=o

DOWN 1/1=502
x6 (Un) Xo,a2
PRINT ixn; 2,4
PRINT Xz Oy 4

CLOSE

-47 -
ANHANG I

ANMERKUNGEN ZU DEN SPEICHERN

1. DER SCHNELLFE SPEICHER.

Wir haben vorher gesehen, dass der aktuelle oder schnelle Speicher in zwei verschiedenen Teilen —
einen fiir die Befehle und einen fiir die Zahlen- betrachtet werden kann. Jetzt schauen wir im Detail an,
wie beide physisch geteilt sind.

Der Befehlsspeicher besteht aus 16 gleichen Teilen, die Seiten genannt werden und von 0 bis 15
nummeriert sind. Jede Seite setzt sich folgendermallen zusammen:

— aus 32 Registern, deren Speichervermdgen einer Zahl aus 10 Dezimalziffern (40 Binarziffern)
entspricht, die mit geraden Zahlen von 0 bis 62 nummeriert sind

— aus 64 Registern mit Speichervermogen fiir 20 Binarziffern, die einzeln von 0 bis 63
nummeriert sind

— aus 128 Registern mit 10 Binérziffern, die durch die Symbole 0, 0+, 1, 1+,..., 63, 63+
aufsteigend nummeriert sind.

Daher kann man sagen, dass die Indizes die Register 58, 58+, 59, 59+, 60, 60+, 61, 61+, 62, 62+, 63,
63+ der Seite 0 ausfiillen, wie in der Abbildung 4 dargestellt ist. Das gleiche Bild zeigt auSerdem, dass
die Register 4-31 die Divisionbefehle enthalten und die Register 32, 34, 36, 38 als Arbeitsplatz benutzt
werden konnen (s. Benutzung von konventionellen Befehlen in Autocode). Die Seite 1 ist fiir
Sonderiibertragungen fiir das Ziehen einer komplexen Quadratwurzel reserviert. Die Seite 15 wird
benutzt, um eine Funktion, die kein Quickie ist, abzuspeichern. Auf den Seiten 2 bis 14 wird die einem
unserer Kapitel entsprechende iibersetzte Information wie folgt abgespeichert: ab dem Register O der 2.
Seite, die Befehle; ab dem Register 62 der Seite 14 riickwarts, die Konstanten, die ausdriicklich in
unserem Kapitel dargestellt sind. Falls es geniigend Platz geben wiirde, befinden sich Quickies-
Funktionen im restlichen Platz zwischen dem letzten Befehl und der letzten Konstante.

Der Zahlenspeicher besteht aus 16 Seiten, die von 16 bis 31 nummeriert sind. Die Sondervariablen
haben auf der Seite 31 ihren festen Platz. Die Register 0, 2, 4, ... 54 entsprechen den Variablen a' b’ ...
z. Wenn sie nicht verdndert wird, enthdlt die Variable m die Konstante 3.141592 und ist im Register 56
abgespeichert. In den Registern 58, 60, 62 werden die Konstante 0, -1, -4.10° abgespeichert.

Folgendes ist anzumerken: Wenn ein preserve Befehl gezeigt wird, werden die Indizes die Register 58,
58+, ... 63+ der Seite 31 ausfiillen, bevor der ganze Inhalt vom Zahlenspeicher zum groen Speicher
iibertragen wird.

Die Seiten 16 bis 30 enthalten die Sondervariablen in der Reihenfolge, die vor den Befehlen jedes
Kapitels durch die Direktive — bestimmt wurde. In der Abbildung 5 sind links vom Register der Seite
16 die Stellen dargestellt, die den Variablen des Beispiels auf Seite 33 entsprechen. Rechts kann man
erkennen, dass die gleichen Stellen den ersten zwanzig reservierten Variablen des Beispiels auf Seite 35
entsprechen.

-48 -

i e p—" e T P ——
TR
BT A=
i¥o
z
L
B
F]
M
:]
])
B L £
] |1 —
ok K
T I [EF WY
. NITMBVIHVALINVH e
N L il
.“.__.. L Y
W RIw
- Fi, WH|
—ﬁ e TN
-.‘ ‘m
5 9H
K | eirdfaed
L
“- LF I
LI IR LS
_.H Pt
cwedjicd |0f'd 8248 d £Z2d|92°d|52d|r2'd nu.m‘um.m. I7d _-_.n__-_.n_ L1d|Sd

-50 -

2. DER GROSSE SPEICHER.

In I.2., in I1.1.2 und in IV wurde der groRe Speicher im Rahmen der grundsatzlichen Nutzung
von Hilfsvariablen ausfiihrlich behandelt. In diesem Anhang werden die verschiedenen Teile genauer
erldutert, um ihn besser zu gebrauchen, sowie um bestimmte manuelle Operationen (wie in Anhang 2)
zu erleichtern. Dariiber hinaus wird der Programmierer auf diese Weise informiert, wie der Speicher
genau benutzt wird.

1. - Physische Beschreibung: Der groe Speicher besteht aus zwei Magnettrommeln, die Trommel 0
(Drum 0) und Trommel 1 (Drum 1) genannt werden. Jede Trommel ist in acht Bereiche (von 0 bis 7)
eingeteilt und jeder Bereich besteht aus 32 Sektoren. Die Sektoren sind vom Bereich 0 der Trommel 0
bis zum Bereich 7 der Trommel 1 von 0 bis 511 durchnummeriert. Die Sektoren des Bereichs 2 der
Trommel 1 wiirden sich zum Beispiel zwischen dem Sektor 320 und dem Sektor 351 befinden.

Jeder Bereich kann durch einen Isolationsschliissel, der die gleiche Zahl des Bereichs hat
(s. Abb. 6), isoliert werden. Diese Isolation verhindert eine Ubertragung vom schnellen Speicher zum
isolierten Bereich des groRen Speichers. Eine Ubertragung in die umgekehrte Richtung ist trotzdem
moglich. Damit wird sichergestellt, dass der isolierte Bereich gegen Programmierungs- bzw.
Ausfithrungsfehler geschiitzt wird. Individuelle Sektoren koénnen nicht isoliert werden. In jeder
Trommel gibt es eine Glimmlampe, das bei einer Ubertragung angeschaltet und nicht ausgeschaltet
wird, solange keine Ubertragung iiber die andere Trommel erfolgt. Dadurch erkennt man, welche
Trommel als letzte operiert hat.

2. - Funktion. Der grofe Speicher hat drei Hauptfunktionen:

1. - Abspeicherung des Ubersetzungsprogramms AUTOCODE INPUT
2. - Abspeicherung der verschiedenen Kapitel des iibersetzten Programms
3. - Abspeicherung der Zwischenwerte der Berechnung

2.1. Das Ubersetzungsprogramm besteht aus zwei Teilen: eine wird nur wihrend der
Ubersetzungsphase und der andere auch wihrend der Ausfiihrungsphase (z. B. die Subroutine fiir die
Berechnung der Elementarfunktionen) gebraucht. Der erste Teil ist in den Sektoren 80 bis 127 und der
zweite in den Sektoren 0 bis 31 gespeichert. Beide fiillen zusammen die Bereiche 0 und 3 und den
Bereich 2 nur partiell aus. Die Routine fiir die Erweiterung fiir Matrizen, die in den Sektoren 480 bis
511 gespeichert werden, kénnen als Teil des AUTOCODE INPUTS betrachtet werden.

-51-

TINN T3NNOHL

SNI3 13WNOHL
L 9 5 r £ 4 I 0 L § 4 ¥ £ 4 I
L¥r3| SIPS 85 S eI B IEINTEIES
¢ ¥ 3|99 dlor-3jziallyr] 91731 81°3]02)
29¥°S |oob's |B9E'e [vees [voe's [2L2s Yorz s (02 (9015 byl g
1905|686 ¢ | (%S |96 'Y | cog's|IL2'F WEEZ 3|02 5 SLI'S |&vls
EJ1 S 2|14 (63|11 3E1all g1 L1’ 617211273
i : -] W= | 7106
YPv'S| PBE'S 256 9| o7 | G2 S| SIS | Y2 LE | 2618 | 0918 | 9118 _
it5- 0% [BLR- 3 LFY-NP|SHe¥BE K9E25K [1SEOLE] I€-757 HC[EE-261] 1c1-091B2 - 81 (L1 - 96{EE- V[- BE

0 73SSNTHIS

NIHOLA3S

-52 -

2.2. Die iibersetzten Kapitel werden im grollen Speicher ihrer Nummer gemall abgespeichert. Auf diese
Weise entsprechen dem Kapitel 0 die Sektoren 464 bis 479, dem Kapitel 1 die Sektoren 448 bis 463
und dem Kapitel 21 (am moglichen Maximum) die Sektoren 128 bis 143. Unabhdngig von der
Lesereihenfolge der Kapitel werden sie immer an der zu ihrer Nummer passenden Stelle abgespeichert.
Wegen der Einzigartigkeit des Kapitels 0, dessen close den Beginn der Berechnungen auslost, muss
dieses immer an der letzten Stelle gelesen werden. Die Makros, die aus mehreren Programmen
bestehen, konnen mehrere Kapitel mit der gleichen Nummer enthalten. Die Stelle der Kapitel des ersten
Programms entspricht genau der oben genannten Beschreibung. Die Stelle des ndchsten Programms
wird berechnet, indem man das Kapitel 1 als folgendes zu dem zuletzt gelesenen Kapitel des vorigen
Programms betrachtet. Es existiert nur ein Kapitel 0, das immer die gleiche Stelle ausfiillt. Der grole
Speicher kann maximal 22 Kapitel (inkl. Kapitel 0) enthalten.

2.3. Die Stelle der Hilfsvariablen interessiert uns am meisten, um unser Programm besser organisieren
zu konnen und die Zerstérung einiger Kapitel durch die Ubereinanderstellung von Zahlen zu
verhindern. Wie wir bereits erfahren haben, besitzen die Variablen numerische Adressen, die sich
zwischen 0 und 10751 und zwischen -1 und -3072 befinden. Die Variablen 0 bis 10751 nehmen die
gleichen Bereiche ein wie die Kapitel 21 bis 1 (s. Abb. 5). Die Variablen -1 bis -3072 werden je nach
Adressbereich in vier Gruppen geteilt. Die erste (-1 bis -1536) zerstort bei der Benutzung das in 2.1.
erwahnte Ubersetzungsprogramm; die Gruppe von -1537 bis -2048 ist bei preserve Befehl auf dem
Niveau von Unterkapiteln (2. Ebene) nicht zu verwenden; die Gruppe von -2049 bis -2560 darf nicht
benutzt werden, wenn der Befehl preserve sich auf Kapitel-Niveau (1. Ebene) befindet; die Gruppe von
-2561 bis -3072 ist auszuschliefen, falls Erweiterungen fiir Matrizen benutzt werden bzw. es im
Programm den Befehl rmp gibt.

Diese letzten Beschrankungen hdngen mit der Existenz von drei Speicherbereichen zusammen. Zwei
von ihnen werden MASTER und UNTERKAPITEL genannt und belegen jeweils die Sektoren von 48
bis 63 und 64 bis 79. Sie speichern den Inhalt des aktuellen Speichers von Zahlen, die durch den Befehl
preserve geordnet werden. Das dritte, das Sonderspeicherbereich genannt wird, speichert den Inhalt des
aktuellen Befehlsspeichers wédhrend der Anwendung von Erweiterungen fiir Matrizen oder wéhrend
einer neuen durch rmp ausgeldsten Ubersetzung ab.

Die Abbildung zeigt in schematischer Form jeden Hauptteil des groRfen Speichers. Thre Anwendung
empfiehlt sich bei der Organisation von Makroprogrammen, die mehrere Programme und
Hilfsvariablen bzw. die Befehle down und preserve verwenden. Tabelle I gibt die Zahl der ersten
Hilfsvariable jedes Sektors sowie die nach Bereich gruppierten Sektoren an. Diese Tabelle ist niitzlich,
weil sie sich auf die Bereiche bezieht, die wir isolieren, sowie auf die Sektoren, die wir durch post-
mortem oder andere Erweiterungen drucken méchten.

-53-

TABELLE I

Die ungeraden Spalten zeigen die Nummern der Sektoren an. Die geraden Spalten weisen die Nummer
der ersten Hilfsvariablen des zu ihrer Linken angezeigten Sektors auf. Acht Reihen bilden zusammen
einen Bereich, dessen Nummer an seinem Kopf anzuzeigen ist. Diese Nummern stimmen mit
denjenigen der entsprechenden Isolationsschliissel iiberein.

TROMMEL 0

1
32 3072 40 -—-2816 48 —23560 56 2304
33 —-3040 41 2784 49 2528 57 2272
34 —3008 42 2752 50 —2496 58 2240
35 2976 43 2720 51 —2464 59 2208
36 2944 44 2688 52 2432 60 —-2176
37 2912 45 2656 53 2400 61 —-2144
38 —2EBRO 46 —-2624 54 —2368 62 -2112
39 —2RB48 47 —-2592 55 —2336 63 2080
2
64 —2048 T2 1792 B0 —1536 28 —1280
65 —2016 73 —1760 81 —1504 29 —1248
66 —1984 74 —1728 82 —1472 90 —1216
67 —1952 75 —1696 83 —1440 91 —1184
68 —1920 7o —lo64 84 —1408 92 —1152
69 —1BEE 77 —1632 B5 —137¢6 93 —1120
70 —1856 78 —1600 Be —1344 94 —1088
71 —1824 79 —1568 B7 —1312 95 —1056
3

96 —1024 104 —7e68 112 —512 120 —256

97 —992 105 —736 113 —480 121 —224

98 —960 106 —704 114 —448 122 —192

99 —928 107 —672 115 —4l16 123 —160
100 —896 108 —a40 116 —384 124 —128
101 —EBo64 109 —aD8 117 —352 125 —96
102 —832 110 —576 118 =320 126 —64

103 —8B00 111 —544 119 —288 127 —32

128
129
130
131
132
133
134
135

160
161
162
163
164
165
166
167

192
193
194
195
196
197
198
199

224
225
226
227
228
229
230
231

32

4
128
160
192
224

1024
1056
1088
1120
1152
1184
1216
1248

2048
2080
2112
2144
2176
2208
2240
2272

3072
3104
3136
3168
3200
3232
3264
3296

136
137
138
139
140
141
142
143

168
169
170
171
172
173
174
175

200
201
202
203
304
205
206
207

232
233
234
235
236
237
238
239

256
2BE
320
152
384
416
448
480

1280
1312
1344
1376
1408
1440
1472
1504

2304
2336
2368
2400
2432
2464
2496
2528

3328
3360
3392
3424
3456
3488
3520
3552

-54 -

144
145
146
147
148
149
150
151

176
177
178
179
180
181
182
183

208
209
210
211
212
213
214
215

240
241
242
243
244
245
246
247

512
544
576
608
640
672
704
736

1536
1568
1600
1632
1664
1696
1728
1760

2560
2592
2624
2656
2688
2720
2752
2784

3584
i6le
3648
3680
3712
3744
3776
3808

152
153
154
155
156
157
158
159

184
185
186
187
188
189
190
191

216
217
218
219
220
221
222
223

248
249
250
251
252
253
254
255

ToR
SO0
#32
Hod
"6
Q28
Qa0
992

1792
1824
1856
1888
1920
1952
1984
2016

2816
2848
2880
2912
2944
2976
3008
3040

3840
A872
3904
3936
3968
4000
4032
4064

256
257
258
259
260
261
262
263

288
289
290
291
292
293
294
295

320
321
322
323
324
325
326
327

252
53
354
a55
i56
57
58
359

4096
4128
4160
4192
4224
4256
4288
4320

5120
5152
5184
216

5248
5280
5312
5344

6144
6176
6208
6240
6272
6304
6336
6368

7168
7200
7232
T264
T296
T32H
7360
7392

264
265
266
267
268
269
270
271

296
297
pAE
299
300
301
302
303

328
329
330
331
332
333
334
335

360
361
362
363
364
365
366
367

-55-

TROMMEL 1

4352
4384
4416
4448
4480
4512
4544
4576

5376
5408
5440
5472
5504
5536
5568
5600

6400
6432
6464
6496
6528
6560
6592
6624

7424
7456
T4EE
7520
7552
7584
7616
7648

273
273
274
275
276
277
278
279

304
305
306
307
308
309
310
311

336
337
338
339
340
341
342
343

368
369
370
a7
372
373
374
375

4608
4640
4672
4704
4736
4768
4800
4832

5632
5664
5696
5728
5760
5792
5824
5856

6656
H6eRE
6720
6752
6784
6816
6848
6880

T6R0
7712
7744
7776
TROB
T840
T8T2
7904

280
281
282
283
284
2B5
286
27

312
313
314
315
3l6
317
31E
319

344
345
346
347
348
349
350
351

376
377
378
379
380
3E1
382
3E3

4864
4896
4928
4960
4992
5024
5056
SO8E

SEER
5920
5952
SUR4
6016
6048
6080
6112

6912
6944
6976
7008
7040
7072
7104,
7136

7936
7968
=000
B032
B064
B096
128
5160

184
385
386
387
388
389
390
391

416
417
418
419
420
421
422
423

448
444
450
451
452
453
454
455

8192
8224
8256
B28E
8320
8352
B3R4
8416

9216
9248
9280
9312
9344
9376
9408
9440

10240
10272
10304
10336
10368
10400
10432
10464

392
393
394
395
396
397
398
399

424
425
426
427
428
429
430
431

456
457
458
459
460
461
462
463

8448
8480
8512
8544
8376
8608
8640
8672

9472
9504
9536
9568
9600
9633
Y664
9696

10496
10528
10560
10592
10624
10656
10688
10720

-56-

400
401
402
403
404
405
406
407

432
433
434
435
436
437
438
439

8704
8736
B768
8800
8832
8864
8806
8028

9728
9760
9792
9824
9856
ORER
9920
9952

408
409
410
411
412
413
414
415

440
441
442
443
444
445
446
447

8960
8992
9024
9056
YORE
9120
9152
9184

9984
10016
10048
10080
10112
10144
10176
10208

-57-

ANHANG 2
KONVENTIONELLE BEFEHLE, DIE VON AUTOCODE AKZEPTIERT WERDEN.

Zur Erhohung ihrer Flexibilitit kann die Autocode-Sprache in konventionelle Sprache'
geschriebene Befehle mit einigen Varianten akzeptieren. Die Varianten lassen sich wie folgt
unterscheiden, je nachdem, ob die verwendeten Adressen (Variablen, Indizes oder Marken) in
konventioneller Sprache oder in Autocode geschrieben sind.

1. Adresse in Autocode.

Wenn der Operand ein von Autocode verwendeter Index, eine Variable oder eine Marke ist, wdren die
Befehle in konventioneller Sprache wie folgt:

FB(a) o = eine beliebige Hauptvariable, Sondervariable oder Konstante
FB(i) i = ein Index oder eine Ganzzahl
FB(m) m = eine Marke

Im ersten Fall geht es um Operationen mit groen Zahlen (40 bits), die auf konventionellem Code mit
den Zahlen 40 bis 45 und 50 bis 55 bezeichnet werden. Bei Gebrauch von Variablen mit variablem
Index (wie Xx;, y ¢+1)) muss das B-Zeichen gleich Null sein.

Im zweiten Fall sind die anwendbare Codes durch die Zahlen 00 bis 07 und 20 bis 27 angezeigt.

Im dritten Fall kann die Funktion eine beliebige Sprungfunktion (jump-Funktion) sein.

Beispiele:
a) Folgende Ausdriicke sind moglich:
411(x)
422(z;)
510(xi)
200(k)
b) Um die Werte des Polynoms

y=a0X1°+a1X9+...+a10

1 Diese Anmerkungen dienen denjeniegen, die schon die konventionelle Sprache kennen. Wir méchten daran erinnern,
dass der Befehl lautet:
F-BD
F, das durch zwei Dezimalziffern ausgedriickt wird, stellt die Zielfunktion dar. B ist durch eine einzige Dezimalziffer
ausgedriickt und stellt das Register B dar, das am Befehl teilnimmt. D (das auf unterschiedliche Weise dargestellt
werden kann) ist die Adresse des Operanden.

-58 -

zu berechnen, geht man folgendermalien vor:
400(80)
i=1(1)10
500(x)
420(81)

repeat
410(y)

2. Adresse in konventioneller Sprache.

Der Teil des Befehls, der im vorigem Abschnitt in Klammern ausgedriickt wurde, kann nur Adresse
zeigen. Deshalb ist es nicht méglich, die besagte Konvention fiir diejenigen Befehle anzuwenden, in
denen diese Ziffer eine Konstante zeigt. Die folgende Konvention ldsst sich bei jeglichem Befehl
anwenden:

FB, o o = eine Ganzzahl oder eine absolute Adresse

Die Art der Adresse Seiten-Register (2.16 +) und die Symbole # und = kodnnen benutzt werden.
Floating bzw. relative Adresse sind nicht zuldssig.

Beispiele:
a) Sind zuldssig

321, 28
400, 2
512, 2.16
590, 1.0

Sind nicht zuldssig

400, v1
430, 2x1

b) Um das Polynom
y:aoX10+81X9+ ... tap

zu berechnen, geht man folgendermalien vor:
400(a0)
300,-9
1) 500(x)
427(al0)
380(i)
410(uv)

-59.

3. Anwendung von Erweiterungen in konventioneller Sprache fiir die Ausgabe.

Eine der wichtigsten Anwendungen ist das Erreichen einer Flexibilitdt in der Ausgabe bei der
Anwendung vom Befehl 620, n. Dieser Befehl locht im Ergebnis-Lochstreifen das durch n bezeichnete
Zeichen (s. Tabelle II), in dem n der Wert jeder Lochung in Binédrzahlen zeigt. Es wird laut angehéngter
Tabelle erldutert. Es ist wichtig, sich die Bedeutung der Zeichen 0 (FS) und 27 (LS) zu merken, denn
sie miissen vor jeder Zahlengruppe (oder vor Sonderzeichen) oder vor jeder Buchstabengruppe gelocht
werden.

Beispiel: Wenn man wéhrend des Verfahrens die Ergebnisse auf diese Weise

CASO N [Fall N]
al = entsprechender Wert a2 = entsprechender Wert

schreiben mochte, schreibt man

newline

52{_‘,, 27 Buchst. folgen
620,13 e
620,1 a
620,19 8

620, 5 e

620,0 Ziffern folgen
620,14 Leerzeichen
52{}, 14 Leerzekchen

print (u) 2,0

newline

620,27 Buchst. folgen
620,1 a

620,0 Zahien folgen
620,1 1
620,10 -

print (al)2,4
620,27 Buchst. folgen

620,1 a
620,0 Zahlen folgen
620,2 2
620,10 =

print (a2) 2,4

-60 -

LOCH- — DRUCKER
ATREFEN ZIFFERN/BUCHST)
0 ABB. .%HIFT.
. 1 1 A
. 2 B
T o] c
.. : & & D
o = | 2 (E
T &) F
0w 7 7 &
.. B 8 H
LI 9 # I
.8 10 = Pl
. B 11 - E
. 12 v L
.. 2 13 LF [}
(T 14 3P N
LTt 15 o o
. . 16 (v} F
. . » 17 > Q
. .0 18 » R
(T 19 3 3
- 20 — T
L PO g 5 u
L T) i 3] v
. .0 23 Fi W
", . 24 x K
o, a9 @ 4
. .. a6 * z
e .00 a? LET. SHIPT.
(IT W 28 " *
ses. & 20 n ?
.8 S0 CR s
sue.ae g ER ER

TABELLE II

-61-

Inhaltsverzeichnis
L EINLEITUNG.....coiiittiee ettt ettt ettt e eeetee e e eeetvaeeeeeaaaeeeeesssseeeeesssseeeeessssseeeasssssesessasessaeeeseeesnesnssssssnnes 1
1. ALLGEIMEINES. ...neeeieiiiieeieeete ettt ettt ettt e et e e st e e bt e s bt e st e st e e bt e eabe e st e sabe e steeabeessbeeesansaeenans 1
2. DET RECHINIOT.......uviiiiiciieee ettt ettt e e et e e eeaae e e e e aaaeeeeeesaaeeeeensaeseeenssaseeeenssasaneeeeeens 1
S B TS AN § 1T TloTa (] o) Tl <RSP SURR 3
II. ELEMENTE DER STATEMENTSoooiiitiiieeeeeee ettt e et e e eeeaaeeeeeenaeeeesessneeeeensnsseeeeeens 4
1§ F=10) 1<) VOO RRRORRRRRRROt 4
1.1 AKtuelle Variablen.ooouiiiiiiiiiieeeie ettt eeate e e et aar e e e e e e e e e e e eeeeeennnnes 4
I S H TN 7] =10 (<) s R 5
2. INAIZES. oot e e e et e e e e e e bt e e e eebaaeeeanaaaeeeeetrraaaaeeeeeeeeaaaannrrrrraaes 6
27111 1<) s KRR 6
3.1 FOSTKOIMIMA. ..eeeiiiviiiiieiiiiee ettt ettt ceete et e e e eetae e e e e staeeeeesreeeeensbaseeeesaseeeesssseseeessseeeennrneens 6
S @113 2Ce) 10 anT: V2= o | RS 6
4. ArithmetiSChe ZEIChEN.oooouiiiieeee et eeeta e e eeaae e e e eeabareeeearaeeeens 7
5. SONAErZeiChen UNA WOTLEL.ccciiieiiieiieeeee et eeee e e eee sttt ee e e e e eessesasbsareeeeeesssssssssssssssssessssssseennnes 8
IIL: DIE STATEMENTS. ...ttt ettt eetee e eete e ettt e e eeaae e e e eetaaeeeeeasseeeeensssseeeesaseeesessseeeeensrsseeeeeeas 9
1. ArithmetiSChe BefEhI.ooiieeeiiiiieeeeeeeee ettt e et e s e s e e e e e s ssasssaeeeeeeeas 9
1.1. Das erste Element ist €ine Variable.ccoovviiiiiiiiiiiiiiiieceeiiee ettt eee e e e eeeeeeanannes 9
1.2. Das erste Element iSt €iN INAEX.cciiiiieiiuiiiiiiiiiiieeccieeeeeeee et eeeesese s s s e e s eeeeeaeesseneees 10
2. STEUETDEIENIE. ...t e et e et e e e aa e e e e ettt e e e e e e e e eeeeennnranes 11
B B Tal 11 1< 1<) o VO UURRURRRTN 11
2.2, SPITUIIZE. «..eeeeieeeeiiieeeeeittee e et eeeesttee e e s ttee e ettt eeeesasteeeesassteesessssaeessssstaeessssaeesssssraeesassnnnsnsnnnnne 12
2.3 Sprung zwischen Kapiteln.cccoceriiiiiiiiieeieieeteeete ettt sttt 15
3. EXterne SteUeTDEfERLe.ooioeieieeeeeeee e e et e eaanes 16
4. Eingabe- und Ausgabebefehle.cociiiiiiiiieieiceeeee e 17
D DATEKIIVEIL. .evvveieeeeiieee ettt ettt ee e e e abae e e eetaaeeeeesaeeeeessbaseeeessseeeeessaseeeenssareeeeseeeennnn 19
IV. SPEICHER UND PROGRAMMIERUNGcccottttiiiteeetieetteeeeeeieeeeeeeereeeeesaeeeeessseesssnannesessesssssssnns 21
1. Aktueller BefehlSSPEICHET.ccuiecuiiriiiiieeieeiteeeeee ettt ettt e eae e saeeba e st e e nsaee s 22
2. GIORBET SPEICRET. ...ccuviieiieiieeece ettt ettt e s e et e e e e e e be e taeeabe e saeenseasseenseensaeensseeennnses 22
S = B1 57 1w E=1 0] 1<) s RO USRNSSR 23
V. ERWEITERUNGEN......coittttiiiiiiiiie ettt eeeeeeeeeteeeeessaeeeeeesaseessessssesssssassessssssssssssssssssssssssesesssesnnnns 24
1. Doppel-Wort-ATIthMEetiK.c.cooiieiiiiieiieeeeeet ettt et sre e e s b e e sta e e e ateeessnseaens 24
VI. DIE PROGRAMME......ootiiiiieeie ettt ettt eeeateeeeeiaaeeseeeaaatesssnaseessssssessssssssesssssssseessssssseesesesessens 34
1. DiHE KAPILEL. eviieeiieiieeieeieeee ettt ettt ettt ettt e et e e st e et e e bt e et be e sae et e e aeeesbeeeesbaeeensbeeennsreeenne 34
2. DI PrOZIAIMIITIC. ..ottt ettt ettt ettt e e et e s s bt e e et ae e s e sbaeeesenraeesesnsreeeseensnaeesennnnne 37
2.1 Die UNLEIPIOGIAITIITICcceerurteeeerreeeeariureeeeenereeeeesseeeeesssseeesssssreeesssssseesssssseesssssseesssssssnsnsnssnne 37
2.2 Das HaUPLPIOGIAITIITYveeiiiiiieeiiiireeeeeiiteeeeiiteeeeeitteeesenreeesesnsaeeesenraeessennraeesesnnnsssseneaeeeeeesssssens 39
2.3 Die BIDHOtNEK.uvveiiieeeieeeeee et et e e e e et aaaaaaeeeeeean 39
3. MaKIOPIOGIAIMIITIE.ccoutiiiieeiieeiienite ettt et e st e et e et e e bt e s at e st e e s st e s bt e st e et e e s st e sabe e st esabeestesansaeeennees 43
ANHANG Lottt eeete e eette e e e eeaaa e e e eeaae e e eeestaeeeeesaeseeensbaseeeesaseeeenssseseeenssasreeaeeaeeeeenns 47
ANMERKUNGEN ZU DEN SPEICHERN........oitittitiiiiieeeeeeteeeeeeeeeeeeeeieeeeeesaaeeesesaneesssnsnnssessessessseens 47
1. DER SCHNELLE SPEICHER.........coiittiiiiieee ettt eeeitee e eetvee e eesataeeeeesaaeeeenssaeeeeeannns 47
2. DER GROSSE SPEICHER.........ccoottiiiiiiteee ettt e ettt e eeeaaee e e eeaaeeeessaaseessesanesesesnnnseessssnsaseeees 50
ANHANG 2 oottt eeete et e et e e e eeaae e e eeesaaeeeeesaseeeessaeeeeesaaeeeesssaeseeasssassssraaaaeeeeeeeennnns 57
KONVENTIONELLE BEFEHLE, DIE VON AUTOCODE AKZEPTIERT WERDEN...........cuu...... 57

AN | STl 1o W U100 16 (< RURRPRRR 57

-62 -

2. Adresse in konventioneller SPrache.cc.oocuiiiiiiiiiiiiceecccee e e 58
3. Anwendung von Erweiterungen in konventioneller Sprache fiir die Ausgabe.cccccecverueenennee. 59

	I. EINLEITUNG.
	1. Allgemeines.
	2. Der Rechner.
	3. Die Autocode Sprache.

	II. ELEMENTE DER STATEMENTS
	1. Variablen.
	1.1 Aktuelle Variablen.
	1.2. Hilfsvariablen.

	2. Indizes.
	3. Zahlen.
	3.1 Festkomma.
	3.2 Gleitkommazahl.

	4. Arithmetische Zeichen.
	5. Sonderzeichen und Wörter.

	III: DIE STATEMENTS
	1. Arithmetische Befehle.
	1.1. Das erste Element ist eine Variable.
	1.2. Das erste Element ist ein Index.

	2. Steuerbefehle.
	2.1. Schleifen.
	2.2. Sprünge.
	2.3 Sprung zwischen Kapiteln.

	3. Externe Steuerbefehle.
	4. Eingabe- und Ausgabebefehle.
	5. Direktiven.

	IV. SPEICHER UND PROGRAMMIERUNG
	1. Aktueller Befehlsspeicher.
	2. Großer Speicher.
	3. Hilfsvariablen.

	V. ERWEITERUNGEN
	1. Doppel-Wort-Arithmetik.

	VI. DIE PROGRAMME
	1. Die Kapitel.
	2. Die Programme.
	2.1 Die Unterprogramme

	2.2 Das Hauptprogramm
	2.3 Die Bibliothek.
	3. Makroprogramme.

	ANHANG I
	ANMERKUNGEN ZU DEN SPEICHERN
	1. DER SCHNELLE SPEICHER.
	2. DER GROSSE SPEICHER.

	ANHANG 2
	KONVENTIONELLE BEFEHLE, DIE VON AUTOCODE AKZEPTIERT WERDEN.
	1. Adresse in Autocode.
	2. Adresse in konventioneller Sprache.
	3. Anwendung von Erweiterungen in konventioneller Sprache für die Ausgabe.

