
AUTOCODE

ein vereinfachtes Codiersystem für den

MERCURY

Rechner

Instituto de Cálculo
Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

November 1961

VORBEMERKUNG

Wir haben es für sinnvoll erachtet, die Grundregeln der Programmierung im AUTOCODE
Codiersystem auf wenigen Seiten zusammenzufassen. Notwendig ist dies, da die Wissenschafts- und
Industriezentren ihre eigenen Programme entwickeln müssen. Der Gebrauch des im Instituto de
Cálculo der Universidad de Buenos Aires untergebrachten Ferranti – Mercury Rechners soll auf diese
Weise erleichtert werden.

Wir fügen zwei Anhänge hinzu, die wir als sehr nützlich erachten. Sie ermöglichen auch jenen,
die das konventionelle System nicht kennen, eine höhere Flexibilität.

Unser besonderer Dank gilt Frau Dr. Cicely M. Popplewell für das geduldige und sorgfältige
Lesen unseres ersten Entwurfs sowie für ihre vielfältigen Korrekturen. Weiterhin bedanken wir uns bei
Frau Dr. R. Ch. de Guber für ihre wertvolle Zusammenarbeit.

Buenos Aires, Oktober 1961

E. García Camerero

Instituto de Cálculo
Facultad der Ciencias
Exactas y Naturales

I. EINLEITUNG.

1. Allgemeines.

Das Autocode-System besteht wie alle automatischen Codiersysteme aus einem
Übersetzungsprogramm (Compiler), das eine symbolische Sprache (die Programmiersprache von
Autocode), die der mathematischen Sprache sehr ähnelt, in reine Maschinensprache übersetzt. Nach der
Übersetzung fängt die Ausführung des eigentlichen Programms an. Dazu gehört u.a. das Lesen der
numerischen Daten des Problems und der Ausdruck der Ergebnisse.

Der Programmierer benötigt für Autocode weder genaue Kenntnisse der reinen
Maschinensprache noch die genauen funktionellen Details des Mercury. Er muss lediglich die
Autocode-Programmiersprache und die Funktionsweise der idealen Maschine kennen, mit der er
arbeitet. Dies ermöglicht ihm, seine numerischen Berechnungen anzustellen, ohne auf den Rechner, der
sich um die Auflösung kümmert, direkt zugreifen zu müssen.

 2. Der Rechner.

 Unser idealer Rechner besteht wie alle automatische Digitalrechner aus den folgenden Teilen (Abb. 1):
a) einem Speicher
b) einer arithmetischen Einheit
c) einer Steuereinheit
d) einem Eingabe-/Ausgabegerät

Die arithmetische Einheit unseres “idealen Rechners” ist sehr leistungsfähig, da sie neben den
vier grundlegenden Operationen auch eine Reihe komplexer Funktionen durchführen kann.

Die Steuereinheit ist der Kern, der alle die Statements interpretiert und jene ausführt, die eine
eindeutige Logik- und Kontrollstruktur besitzen.

Die Eingabe- und Ausgabegeräte erlauben, das Programm und die Daten in die Maschine
einzugeben und die Ergebnisse in einem Lochstreifen bzw. ausgedruckt zu bekommen.

Der Speicher ist der Ort, an dem während der Ausführung des Programms, die Daten und die
Ergebnisse abgespeichert werden.

Der Autocode-Programmierer muss weder den inneren Aufbau des Eingabe- und Ausgabegeräts
noch der Steuer- und arithmetischen Einheiten kennen. Interessant sind für ihn Aspekte des Speichers.

Der Speicher ist der Ort, in dem Zahlen und Befehle gespeichert werden können. Er ist in
zahlreiche Felder unterteilt, auf denen jeweils eine Zahl oder ein Befehl gespeichert werden kann. Um
sie unterscheiden zu können sind sie nummeriert. Die Nummer entspricht einer Adresse. Folglich wird
jedem Feld zugeordnet. Die eine Nummer entspricht der zuordnenden Adresse, die andere bestimmt
den Inhalt des Feldes, der sowohl ein Befehl als auch ein numerischer Wert sein kann. Ein und dieselbe
Adresse kann unterschiedliche Zahlen zu unterschiedlichen Zeitpunkte haben. Die Adressen wiederum
nehmen eine ähnliche Rolle ein, wie die Variablen in der Algebra. Ebenso wie wir in der Algebra mit
Buchstaben operieren, die, wenn wir numerische Ergebnisse suchen, durch Werte ersetzt werden,
operieren wir mit den Adressen, wobei die Befehle deren Inhalte übernehmen.

- 2 -

Abb. 1. – Funktionelles Diagramm des MERCURY-Rechners für die Wirkungsweise des AUTOCODE-
Autoprogrammierungssystems

Um in Autocode zu programmieren, setzen wir voraus, dass der Speicher in drei Teile geteilt ist
oder dass es drei unterschiedliche Speicher gibt: der aktuelle, in zwei Teile geteilte Speicher (ein Teil
für Befehle, der andere für Zahlen) und der große Speicher.

Der aktuelle Befehlsspeicher setzt sich aus Ferritkernen zusammen, auf die sehr schnell
zugegriffen werden kann. Wenn ein Programm sehr groß ist, muss es in sogenannte Kapitel aufgeteilt
werden, deren Größe auf die Kapazität des aktuellen Befehlsspeichers begrenzt ist. Der aktuelle
Zahlenspeicher, ebenfalls aus Ferritkernen, hat eine Kapazität von 521 Variablen, wie in Abb. 1
dargestellt ist (s. die Abschnitte über Variablen und Indizes).

Der große Speicher, der aus einer magnetischen Trommel mit langsamen Zugriff besteht, hat
eine Kapazität, die den aktuellen Speicher mehrfach enthalten kann.

Nur die im aktuellen Speicher abgespeicherten Befehle werden ausgeführt. Deshalb ist es für
Programme mit mehr als einem Kapitel notwendig, die Methode des schrittweisen Übertragens des
Kapitels unseres Programms vom großen Speicher in den aktuellen Speicher unter Beachtung der
dazugehörenden Variablen und Kostanten zu verwenden. Das rechtfertigt den Namen, den wir dem
aktuellen Speicher gegeben haben.

- 3 -

Abb. 2. – Aktueller Zahlenspeicher. Mit A, B und C sind die Bereiche für die Sondervariablen und
Indizes gekennzeichnet (siehe genauer in Abb. 1).

3. Die Autocode Sprache.

Die Autocode Sprache besteht aus Statements. Der Rechner übersetzt die in jedem Statement
enthaltenen Befehle und setzt diese, sobald das ganze Programm übersetzt ist, um. Die Statements
bestehen aus einem Betriebsteil und einigen Operanden. Diese Statements, konkrete grammatikalische
Sätze der Sprache mit der wir arbeiten, sind unterschiedlicher Art und sie bestehen aus
unterschiedlichen Teilen.

Bezüglich ihrer Betriebsfunktion können sie folgendermaßen klassifiziert werden:
– Arithmetische Befehle
– Steuerbefehle
– Ein- und Ausgabebefehle
– Direktiven

Die grundlegende Teile eines Statements sind:
– Variablen
– Indizes
– Zahlen
– arithmetische Zeichen

- 4 -

– Sonderzeichen
– Wörter
Die Grundelemente sind in allen Fällen Buchstaben, Ziffern und Zeichen; die Gesamtheit dieser

Elemente bildet unser Alphabet, das das folgende ist:

a b c d e f g h I j k l m n o p q r s t u v w x y z π
0 1 2 3 4 5 6 7 8 9 + = ≠ > ≥ (,) → * / Ψ ' ?

Wir möchten darauf hinweisen, dass ebenso wie die Syntax unserer Sprache, also die
Gesamtheit der Regeln, die wir befolgen müssen, wenn wir unserer Statements schreiben, auch die
Orthographie wichtig ist. Daraus folgt, dass wir jeden Teil des Statements in seiner korrekten Form
schreiben müssen, da das Auswechseln eines Buchstabens durch einen anderen oder das Auslassen
eines Zeichen unseres Alphabets, sich von den gewünschten unterscheidende Ergebnisse oder aber das
Anhalten der Maschine verursachen können, da diese das Statement nicht interpretieren kann.

HINWEIS: Die Zeichen, die zurzeit vom Instituto de Cálculo de la Universidad de Buenos Aires
installiert sind, sind Folgende:

Zu beachten ist die spezielle Darstellung der Zeichen π ' Ψ.

II. ELEMENTE DER STATEMENTS

1. Variablen.

Wie schon ausgeführt, können die Felder des Speichers verschiedene Zahlen zu unterschiedlichen
Zeitpunkten abspeichern und die Adressen dieser Felder spielen eine ähnliche Rolle wie die Variablen
in der Algebra. Aus diesem Grund nennen wir in der Autocode-Sprache die Adressen der Felder, in
denen man die verschiedenen Zahlen, die wir beim Rechnen benutzen, abspeichern kann, Variablen. Es
gibt zwei Variablentypen: aktuelle Variablen und Hilfsvariablen. Erstere belegen Plätze des aktuellen
Speichers und gehen bis Platz 509; letztere befinden sich im großen Speicher und reichen bis zu Platz
10.752.

1.1 Aktuelle Variablen.

Die 509 Variablen, die zu unserer Verfügung stehen, sind in zwei Gruppen geteilt: Haupt- und
Sondervariablen.

- 5 -

a) Hauptvariablen.
Es gibt 480 Hauptvariablen, die durch einen der folgenden Buchstaben bestimmt werden können

a b c d e f g h u v w x y z π
ergänzt mit einem Subindex.
Beispiele: a0 vj h32 zr

Bevor man die Hauptvariablen im Programm benutzt, müssen die Felder des Speichers reserviert
werden. Das wird mit dem Symbol → folgendermaßen gemacht:

a → α
b → β
c → γ

…......

Damit werden die Speicherstellen 0 bis α für die Variablen a a0 a1 … aα, die Stellen α + 1 bis α + β + 1
für die Variablen b0 b1 … bβ sowie die Stellen α + β + 2 bis α + β + γ + 2 für die Variablen c0 c1 … cγ

usw. reserviert.

Beispiele: Die Ausdrücke

x → 100
y → 36
z → 1

reservieren die Speicherstellen von 0 bis 100 für die Variablen x0, x1 … x100, die Speicherstelle von 101
bis 137 für die Variablen y1, y2 … y36 und die Speicherstelle 138 und 139 für die Variablen z0 und z1.
Wenn wir nur eine Variable benötigen, benutzen wir die Sondervariablen, die im folgenden Abschnitt
behandelt werden.

b) Sondervariablen.
Es sind 29 Variablen, die durch folgende Buchstaben ohne Subindex dargestellt werden:

a' b' c' d' e ' f' g' h' u' v' w' x' y' z'
a b c d e f g h u v w x y z π

die den festen Stellen zwischen 480 und 508 des aktuellen Speichers umfassen. An der Stelle π=508 ist,
solange man es nicht verändert, die Zahl 3.141 592... abgespeichert.
Die Variablen mit Akzent werden normalerweise für Sonderfälle reserviert. Es gibt keine Variable π'.

1.2. Hilfsvariablen.

Wenn die 509 Variablen, die wir im aktuellen Speicher zur Verfügung haben, nicht ausreichen, ist es
notwendig, die Hilfsvariablen, bestimmte Stellen des großen Speichers, zu benutzen. Diese Variablen
müssen in den aktuellen Speicher zu ihrer Anwendung verschoben werden. Jeder dieser Stellen wird

→

- 6 -

eine Nummer zwischen 0 und 10571 zugewiesen, die ihrer Adresse entspricht. Man kann nicht immer
die 10752 verfügbaren Felder oder Hilfsvariablen benutzen, da die letzten 512n Felder von den
Kapiteln 1, 2, 3...n unseres Programms besetzt sind. (s. IV.3 und Anhang 1).

2. Indizes.

Sie sind die Adressen der 12 letzten Stellen des aktuellen Zahlenspeichers. Wir markieren sie mit den
Buchstaben

 i j k l m n o p q r s t

Diese Buchstaben können nur ganze Zahlen, die zum Intervall (-512, 511) gehören, aufnehmen. Sie
werden hauptsächlich als Subindex verwendet.
Beispiel: Haben wir die Variable ai und der Inhalt des Registers i = 3, entspricht die vorherige Variable
a3.

3. Zahlen.

Die Zahlen sind der Rohstoff, durch die die Befehle wirken und über die diese in die von den Variablen
reservierten Felder eingefügt oder explizit im Programm ausgedrückt werden. Die Zahlen, die explizit
im Programm beinhaltet sind, nennen wir Konstanten und die, die während des Rechenvorgangs
gelesen werden müssen, nennen wir Daten. Die Konstanten füllen Felder des aktuellen
Befehlsspeichers aus. Der aktuelle Zahlenspeicher ist für die Daten, die Teilergebnisse und für die
Lösungen vor ihrem Ausdruck reserviert. Obwohl der Rechner immer mit Gleitkommazahlen im
Intervall 10-70 < | X | < 10+70 arbeitet, können die Daten als Festkommazahlen gelesen werden und
werden fast immer auf dieser Weise ausgedruckt. Die Konstanten müssen immer als Festkomma
geschrieben werden.

3.1 Festkomma.

<ZEICHEN> <VORKOMMATEIL> <KOMMA> <NACHKOMMATEIL>

Die Darstellung der Festkommazahl ist die übliche der Dezimalzahlen. Das heißt, sie bestehen aus dem
Zeichen, den Vorkommastellen, dem Komma und den Dezimalstellen. In Autocode ist es möglich, das
Pluszeichen, führende Nullen und das Komma einer Ganzzahl wegzulassen. Vor dem Komma kann es
eine beliebige Anzahl von Stellen geben, aber der Nachkommateil darf maximal 24 Stellen enthalten.
Der Rechner operiert in allen Fällen mit den zehn signifikantesten Ziffern.

Beispiele: +3.570 oder 3.57
 -0.327 oder -3.27
 +321.00 oder 321

3.2 Gleitkommazahl.

<MANTISSE> <KOMMA> <EXPONENT>

- 7 -

Die Gleitkommazahl ist die Kurzschreibweise von Ausdrücken der Art
±α x 10±β

(α wird Mantisse und β Exponent genannt), die einfach durch
±α , ±β

dargestellt werden.
Der Exponent muss eine Ganzzahl und im Bereich -128 bis 127 liegen. In allen Fällen muss er sich auf
den folgenden Bereich erstrecken:
2-256<X<.. 2256
Beispiele: -27, 3 drückt -27x103 oder -27000 aus

 + 0.5, -2 drückt 5x10-3 oder 0.005 aus

4. Arithmetische Zeichen.

Um die vier arithmetische Grundrechenarten auszudrücken, benutzt man folgende Zeichen oder
Konventionen:

a) Produkt <Aneinanderreihung der Faktoren>
Um das Produkt mehrerer Faktoren auszudrücken, reiht man die unterschiedlichen Faktoren, die an
dem Produkt beteiligt sind, aneinander, ohne dass sie durch ein Zeichen getrennt sind. Die Faktoren
können Variablen, Indizes oder Konstanten, aber kein algebraischer Ausdruck sein.

Beispiele: 3abb 4.2xy xixi uivjwk
5ay 2izj 6jz 6zj

ijk mnambn

Folgende Ausdrücke sind nicht zulässig:

a (b + c)

Ausdrücke der Art 6zj werden, wie nachfolgend aufgezeigt wird, als 6zj interpretiert.

b) Addition

Die Zeichen + oder – zwischen zwei Elementen bewirken die Addition oder Subtraktion dieser
Elemente. Die Elemente können Variablen, Indizes und Konstanten, oder das Produkt mehrerer von
ihnen sein.

Beispiele: 3+vi x+j+k-4.5 jk + pq
ab+2 a'-b'b' 2xi+.25yi-327.6

c) Quotient

Das Zeichen / zwischen dem Dividend und dem Divisor ergibt den Quotient des ersten durch den
zweiten. Der Dividend muss eine Variable, ein Index, eine Konstante oder das Produkt von einigen von
ihnen sein, aber kein Ausdruck, bei dem die Zeichen + oder – beteiligt sind. Der Divisor muss eine
Variable, ein Index oder eine Konstante sein, aber kein Produkt oder Summe davon.

- +

/

- 8 -

Beispiele: a/b 3xy/z 3ifk/fj

5.21/m v/q a'b'/c'

Ausdrücke wie

a+b/c+d
werden durch das Autocode-System folgendermaßen interpretiert:

a+(b/c)+d.

5. Sonderzeichen und Wörter.

Außer den bis hierhin betrachteten Teilen der Statements existieren Sonderzeichen und Wörter, deren
Aufgabe es ist, den Ausdruck des Statements zu erleichtern. Obwohl ihr Gebrauch fast immer der
mathematischen Sprache ähnelt, ist das nicht immer der Fall. Z.B. bilden mehrere Summanden in
Klammern nie einem Faktor, das Komma in einer Zahl stellt nie die Trennung zwischen Vorkomma-
und Dezimalteil dar und der Punkt drückt nie ein Produkt aus. Ein Wort kann ein ganzes Statement
ausdrücken, wie bei einigen Steuerbefehlen, Direktiven oder Namen einer Funktion.

Mercury-Konsole, in der sich das fotoelektrische Lesegerät und der Ausgabelocher erkennen lassen. Die Ergebnisse
können in einem Fernschreiber gedruckt werden. Er liegt auf einem Schreibtisch, der rechts daneben steht.

- 9 -

III: DIE STATEMENTS

Die Statements der Autocode-Sprache geben den im vorhergehenden Absatz erläuterten
Symbolen Sinn. Letztere allein (außer im Fall der Schlüsselwörter) haben keinerlei Bedeutung für den
Rechner. Laut ihrer Aufgabe im Programm können die Statements (wie schon darauf hingewiesen
wurde) so eingeordnet werden:
Arithmetische Befehle, Steuerbefehle, Ein-/Ausgabebefehle und Direktiven.

1. Arithmetische Befehle.

Die arithmetischen Befehle sind durch das Zeichnen = (≈) gekennzeichnet, das den erhaltenen bzw.
enthaltenden Wert des rechten Elementes in der Adresse des linken Elementes abspeichert. Das erste
Element kann nur eine Sonder- bzw. eine allgemeine Variable oder ein Index sein. Jeder dieser beiden
Fälle bestimmt die Form des rechten Elementes. Ein Statement kann bis 68 Zeichen (inkl. Leerzeichen)
lang sein.

1.1. Das erste Element ist eine Variable.

Wenn das erste Element eine Variable ist, kann das zweite Element eine der folgenden Formen
annehmen:

a) das zweite Element ist ein algebraischer Ausdruck, an dem sich die vier arithmetischen
Grundoperationen zwischen Variablen, Indizes und Konstanten beteiligen können.

Beispiele: y =2x+3.5z/2-i
ws =3.5jx-4.6v0 wi/s-.03272+z(s-2)+i

Es ist zu anzumerken, dass ein Index oder eine ganze Zahl, die hinter einer Variable stehen, als
Subindex zu betrachten sind. Unser Rechner liest nämlich alle Zeichen auf der gleichen Ebene. Deshalb
wird das zweite vorherige Beispiel folgendermaßen im Rechner geschrieben:

ws =3.5jx-4.6v0 wi/s-.03272+z(s-2)+i

Dieses Beispiel zeigt die Notwendigkeit der Klammern bei arithmetischen Operationen mit Subindex.
Es ist empfehlenswert, die Faktoren jedes Elementes eines algebraischen Ausdrucks in der folgenden
Reihenfolge zu schreiben: Konstante, Indizes, Variablen.

b) das zweite Element ist eine einzelne der folgenden Funktionen einer Variable:

y = ψ sqrt(x) x > 0
y = ψ sin(x) x in rad
y = ψ cos(x) x in rad
y = ψ tan(x) x in rad
y = ψ exp(x) ex x < 177
y = ψ log(x) logex x > 0

- 10 -

y = ψ mod(x) |x|
y = ψ int pt(x) Ganzteil von x
y = ψ fr pt(x) Bruchteil von x
y = ψ sign(x) y = ±1
y = ψ poly(x) a0, n a0 ist die Addresse des ersten Koeffizientes und n der Grad

des Polynom
y = ψ parity(n) y = (-1)n

Das Argument vorherigen Funktionen kann eine Variable, ein Index, eine Konstante oder es kann ein
algebraischer Ausdruck unter ihnen sein. Eine Ausnahme ist die Parity-Funktion, deren Argument ein
Index oder ein ganzer algebraischer Ausdruck zwischen Indizes und Ganzzahlen sein muss.

Beispiele: y = ψ sqrt(xi + 2yj)
y = ψ sin(π z/180)

c) Das zweite Element ist eine der nachstehenden Funktionen mit zwei Variablen:

z = ψ divide(x,y) x/y
z = ψ arctan(x,y) arctg(y/x)
z = ψ radius(x,y) √x2+y2

beide Argumente können Variablen, Indizes, Konstanten oder auch algebraische Ausdrücke sein.

Beispiele: z = ψ divide(3ixj + 2iyj, 5i/j)
z = ψ radius(a + b, 6.28)

Nochmals möchten wir hier die Wichtigkeit der korrekten Schreibweise in Autocode betonen.
Insbesondere für die Funktionen ist es erforderlich, den griechischen Buchstaben ψ direkt hinter das
Zeichen = zu setzen, die Funktionen mit dem gleichen Buchstaben in der Liste zu benennen, sowie das
Argument in Klammern setzen.
Es ist zu anzumerken, dass unser Rechner bei allen arithmetischen Befehlen, die durch das Zeichen =
gekennzeichnet sind und deren erstes Element eine Variable ist, die Ergebnisse der vier
Grundrechenarten der Arithmetik (Addition, Subtraktion, Multiplikation, und Division) rundet. Das
Gleiche passiert beim Lesen der nicht ganzen Zahlen. Die Grundoperationen werden ohne Runden
ausgeführt, wenn das Zeichen statt = in einer der oben genannten Befehle benutzt wird.
Es ist zu berücksichtigen, dass weder die Funktionen y = ψ int pt(x), y = ψ fr pt(x), y = ψ mod(x), y = ψ
parity(n) und y = ψ sign(x) noch Ausdrücke der Art y = a jemals gerundet werden. Alle anderen
Funktionen werden immer gerundet. Wenn das Argument der Funktion ein algebraischer Ausdruck ist,
hängt das Runden davon ab, ob das Zeichen = oder benutzt wird.

1.2. Das erste Element ist ein Index.

Falls das erste Element ein Index ist, kann das zweite eine der folgenden Formen annehmen:

a) ein ganzes Polynom von Indizes und ganzen Zahlen im Intervall (-512, 511)

- 11 -

Beispiele: i = 2j + j
m = rs – st
j = i + 2

Folgende Ausdrücke sind nicht zulässig:

i = v + w
j = i + 3.121
k = m/n

b) eine der nachstehenden Funktionen

i = ψ int pt(x) i-Ganzteil von x
i = ψ max(x0,m,n) m<n
i = ψ min(x0,m,n) m<n

Die x im ersten Beispiel kann irgendeine Variable oder ein algebraischer Ausdruck aus Variablen,
Indizes und Konstanten sein. Im zweiten und dritten Fall drückt i den Subindex der größten oder
kleinsten Zahl aus der Folge xmxm+1...x...xn aus, die aus x0x1...xp, p ≥ n entnommen ist. Falls es mehrere
Maxima und Minima gibt, wird das mit dem kleinsten Index ausgewählt.

Beispiele: i = ψ int pt(3x – y)
i = ψ min(v0, 7, 21)

In arithmetischen Befehlen mit Index als erstem Element wird nie gerundet.

2. Steuerbefehle.

Die Steuerbefehle steuern den Rechenverlauf, indem sie den logischen Ablauf des Programms und die
Datenein- und -ausgabe organisieren oder die externe Steuerung des Programmablaufs ermöglichen.
Dieser Abschnitt wird in fünf Teile geteilt: Schleifen, Sprünge, Sprünge zwischen Kapiteln, Datenein-
und -ausgabe, externe Steuerbefehle.

2.1. Schleifen.

Anweisungsblöcke, die während des Berechnungsverfahrens mehrmals mit verschiedenen Daten
wiederholt werden müssen, werden Schleifen genannt. Um eine Schleife auszuführen, besitzt das
Autocode-System folgendes untrennbares Befehlspaar:

Der erste Befehl, der der “Kopf der Schleife” genannt werden kann, kann eine der folgenden Formen
annehmen:

i = p (q) r oder i = p (-q) r

i = p (q) r
repeat

- 12 -

und zeigt, dass die Schleife, die im nächsten Befehl anfängt und mit dem Befehl repeat beendet,
dadurch ausgeführt wird, dass dem Index i der Anfangswert p und der Endwert r gegeben wird, vom
einem zum anderen über den Schritt q oder auch –q gehend. Wenn der Wert r erreicht wird, wird die
Anweisung repeat ignoriert und das Programm läuft sequenziell. Die Buchstaben p, q, r können Indizes
oder positive Ganzzahlen im Rang (0, 511) sein. Es ist sicher zu stellen, dass r – p ein Vielfaches von q
ist. Die Zahlen p, q, r müssen positiv sein.

Innerhalb einer Schleife können andere Schleifen vorliegen, mit der Einschränkung, dass ein
bestimmter Befehl maximal in acht Schleifen enthalten sein darf. Das bedeutet, dass nicht mehr als acht
Schleifen geschachtelt werden können. Man muss auch beachten, dass jeder Kopf der Schleife zu
einem einzigen repeat gehört. Die folgenden Schemata stellen die verschiedenen Fälle dar:

Wie man sehen kann wird im letzten Beispiel das Wort repeat zwei Mal verwendet, obwohl zwei
Schleifen mit dem gleichen Befehl enden. Jeder Kopf der Schleife braucht sein jeweiliges repeat und
umgekehrt. Folgende Beispiele sind unzulässig:

2.2. Sprünge.

Wenn man die Reihenfolge des Programms unterbricht, d. h. an einem bestimmten Punkt mit einem
anderen als dem nachfolgenden Befehl fortsetzt, hat man einen Sprung gemacht. Zum Springen braucht
man einen Sprungbefehl und eine Marke, die den Zielbefehl anzeigt. In diesem Abschnitt werden die
Marken und die drei Typen von Sprungbefehle erklärt: unbedingter Sprung, bedingter Sprung und

- 13 -

mehrfacher Pfad.

a) Marken
Wenn eine Anweisung durch einen anderen als den sequenziellen Pfad erreichbar ist, muss sie markiert
werden. Marken sind positive Ganzzahlen im Rang (1, 127), gefolgt von einer geschlossenen Klammer.
Sie (Nummer und Klammer) werden vor dem Befehl platziert.

Beispiele: 3) y=x+5b
32) i=6
14) z-radius(x,y)

b) Unbedingter Sprung
Der Sprungbefehl jump n, in dem n eine positive ganze Zahl kleiner als 128 ist, bewirkt den Sprung zur
nummerierten Anweisung mit der Marke n). Dieser Sprung kann ohne Unterschied nach vorne oder
nach hinten ausgeführt werden.

Beispiele: jump 3 4)-------
--------- ---------
--------- ---------
3)------ jump 4

c) Bedingter Sprung
Diese Anweisung bewirkt den Sprung auf die mit der Marke n) gekennzeichnete Anweisung,
vorausgesetzt, dass die Beziehung σ zwischen α und β existiert.
Der Buchstabe σ drückt irgendeines der Symbole = ≠ > ≥ aus. Die Buchstaben α und β können beide
Variablen, beide Indizes sowie Variable und Konstante, oder Index und Ganzzahl sein. Es ist jedoch
unmöglich, eine Variable mit einem Index direkt zu vergleichen.

Beispiele: jump 3, a' > ai

jump 127, b ≠ i
jump 42, ai > 0.01
jump 71, 0.001 = ai

jump 26, n > k
jump 5, n ≠ 1
jump 1, 3 ≥ k
jump 102, 25 = n

Dabei ist anzumerken, dass es nicht sinnvoll ist, einen Sprung durch den Ausdruck = oder ≠ zwischen
zwei Variablen zu bedingen, da es sehr unwahrscheinlich ist, dass diese Gleichheit exakt während eines
Berechnungsverfahrens vorkommt.

n)

jump n

jump n,α,σ,ß

- 14 -

d) Mehrfacher Pfad

Der Sprungbefehl jump (n) erzeugt einen bedingten Sprung mit dem Markenwert n) (n ist immer ein
Index), der zuvor mit dem Befehl n) = m) (m ist eine Ganzzahl) definiert worden sein muss.
Da der Befehl n) = m) sehr langsam ist (17 ms), sollte er nur in unerlässlichen Fälle verwendet werden.
Der Befehl n) = Ganzzahl) ist viel schneller (120 μs).

Beispiele:

n) = m)
jump (n)

- 15 -

2.3 Sprung zwischen Kapiteln.

Um vor dem Abschluss eines Kapitels zu einem Befehl in einem anderen Kapitel zu springen, muss
man folgende spezielle Steueranweisungen benutzen: across m/c oder das untrennbare Paar down m/c,
up.

a) Hin (einfache Änderung)

Diese Anweisung setzt die Berechnung in der Anweisung der im Kapitel c) enthaltenen Marke m fort
(s. Abschnitt Direktive). Dafür legt sie das Kapitel c im aktuellen Speicher ab und beginnt mit der
Programmausführung auf der Marke m.

b) Rückkehrbefehl (Änderung mit Rückkehr)

Sie sind zwei untrennbare Anweisungen. Die erste hat die gleiche Wirkung wie across m/c mit der
Besonderheit, dass, wenn bei der Programmausführung die Anweisung up vorgefunden wird,
automatisch die Anweisung down m/c (von der sie ausging) folgt.

Die folgenden Diagramme zeigen einige Möglichkeiten:

across m/c

down m/c
up

- 16 -

3. Externe Steuerbefehle.

So wird eine Reihe von Anweisungen genannt, deren Zweck ist, beim Steuern des
Berechnungsverfahren durch Tonsignale zu helfen. Einige zeigen ungefähr an, in welchem Teil des
Programms man sich befindet. Andere weisen darauf hin, wenn ein manueller Befehl notwendig ist
oder wenn die Berechnungen abgeschlossen wurden. Die hier Beschriebenen sind: Hoot, Halt, End.

a) Signal
Dieser Befehl erzeugt über den Lautsprecher ein Tonsignal, das eine Sekunde dauert. Auf diese Weise
kann man ein Berechnungsverfahren markieren und weiß jederzeit, ob das Programm korrekt
funktioniert.

Hoot

- 17 -

b) Halt
Dieser Befehl bewirkt eine Schleife, die aus folgenden Teile besteht:

• Erzeugung des Tonsignales a
• Erzeugung des Tonsignales b
• Von der Konsole lesen
• Fortsetzung der Schleife, falls eine bestimmte Information in der Konsole fehlt
• Fortsetzung des Berechnungsverfahrens, falls es eine bestimmte Information in der Konsole

gibt

Dieser Befehl weist darauf hin, dass ein Punkt erreicht wurde, an dem man manuell eingreifen muss (s.
Anhang II).

c) Ende
Dieser Befehl am Ende des Programms macht durch ein Tonsignal deutlich, dass die Berechnungen
beendet sind und es unmöglich ist, fortzusetzen.

4. Eingabe- und Ausgabebefehle.

Man braucht einige Befehle, um den Dateneingang und -ausgang zu steuern, also die Daten zu
speichern oder die Ergebnisse auf einem Papier auszudrucken. Die Hauptbefehle sind read und print.
Darüber hinaus gibt es eine andere durch ? bezeichnete, bedingte Ausgabeanweisung und andere
Hilfsanweisungen. newline und space ermöglichen es nämlich, die gedruckten Zahlen in Form einer
Tabelle anzuordnen. rmp bietet die Gelegenheit, ein Programm während der Berechnungen zu lesen.

4.1 Eingabe. Es gibt zwei Anweisungen (read (α) und rmp), die das Lesen eines in einem
Eingabeelement platzierten Lochstreifens ermöglichen, je nachdem, ob es sich um ein Daten- oder
Programmband handelt.

a)Daten lesen
Durch diesen Befehl wird die nächste Zahl des Lochstreifens in der Speicherstelle α abgespeichert,
wobei α eine Variable oder ein Index sein kann. Diese Zahlen können als Fest- oder Gleitkommazahl
gelocht werden, wenn α eine Variable ist. Falls es sich einen Index handelt, muss er als Ganzzahl im
Intervall (-512, 511) gelocht werden. Wichtig ist, dass die Zahlen in der erforderten Reihenfolge
gelocht werden.

Beispiel: Wenn die Zahl 2.2575 im Eingabeelement steht, bewirkt die Anweisung
read (a0)

nach einer Umwandlung in eine Gleitkommazahl die Speicherung der Zahl 2.2575 auf der
Speicherstelle a0.

Halt

end

read(α)

- 18 -

b) “Read more programm”
Der Befehl rmp (read more programm) liest und übersetzt den Programmlochstreifen. Zur
automatischen Fortsetzung des Berechnungsverfahrens muss das Programm, das gerade gelesen wurde,
ein Kapitel 0 enthalten, der das bestehende Kapitel 0 zerstört.

 4.2 Ausgabe. Die Befehlsausgabe ist durch folgende Befehle geregelt:

a) Ergebnisausdruck
Im Befehl print (α) m, n, sind m und n ganze Zahle oder Indizes und α eine Variable, ein Index, eine
Konstante oder einer der algebraischen Ausdrücke. Wenn m ≠ 0 wird α als Festkommazahl mit m
Ganzstellen und n Dezimalstellen ausgedruckt. Wenn n = 0 wird der Dezimalteil nicht ausgedruckt.
Wenn m = 0, α ≥ 1014 wird α als Gleitkommazahl mit einem dreistelligen Exponent ausgedruckt.
Wenn α ein Index ist, enthält der Ausdruck n Nullen als Dezimalteil. Enthält die Zahl α einen
Dezimalteil, wird ihr Wert mit einer Abrundung in der letzten Ziffer ausgedruckt.

Beispiele: Sei a0 = -3.27721675, wird die Anweisung

print (a0) 2,5

-3.27722

drucken.

b) Tabs

Durch die Wörter space und newline wird über den Fernschreiber auf dem Schriftstück ein Leerzeichen
und einen Zeilenvorschub eingefügt. Man muss bei dem tabellarischen Ausdruck der Ergebnisse darauf
beachten, dass die Fernschreibleitung nur 68 Stellen hat und der Rechner automatisch zwei
Leerzeichnen nach jeder Zahl lässt. Von daher füllt jede Zahl im allgemeinen Fall m + n + 4 oder m + 3
wenn n = 0 aus. Wenn es als Gleitkommazahl geschrieben werden würde, würden n + 9 Stellen
ausgefüllt. Wenn die Anzahl der Ganzstellen der zu druckenden Zahl größer als m ist, werden alle diese
Ziffern ausgedruckt und der Dezimalpunkt wird nach rechts verschoben.

c) Teilausdruck
Das Zeichen ? druckt am Anfang oder Ende einer arithmetischen Anweisung die berechnete Zahl auf
der linken Seite des Fernschreibers, wenn ein Schalter der Konsole sich während der Übersetzung in
einer bestimmten Position befindet. Wenn die Zahl größer als 1014 ist, wird sie als Gleitkommazahl
gedruckt. In allen anderen Fälle wird sie mit zehn Dezimalstellen gedruckt. Die Indizes werden als
ganze Zahl ohne Komma oder Dezimalteil gedruckt. Es ist unzulässig, diesen Befehl mit
Leseanweisungen zu benutzen. Dieser Befehl wird besonders während eines Programmtests verwendet.

rmp

print(α) m, n

newline
space

?

- 19 -

Beispiel: Drucken ai, bi und ci (i= 0 (1) 99) in Zehnerblöcken durch eine Doppelleerzeile getrennt. Die
ai sind zweistellige ganze Zahlen, bi und ci sollen mit einer ganzen Zahl und fünf Dezimalstellen
vorkommen.

5. Direktiven.

Im Autocode System gibt es Statements, die während des Berechnungsverfahrens keine Wirkung
haben. Ihre Aufgaben sind die Organisierung des Programms während der Übersetzung, die Platzierung
von verschiedenen Kapiteln und andere Fähigkeiten, wie u. a. das Schreiben des Programmtitels oder
das Ausdrucken der Anzahl der zu einem bestimmten Zeitpunkt im schnellen Speicher verfügbaren
Felder. Schon bekannt ist eine der gebräuchlichsten Direktiven (durch → dargestellt), die für die
Hauptvariablen die entsprechenden Speicherstellen reserviert. Im Folgenden werden die Direktiven
title, chapter, close, variables, p s a betrachtet.

a) Titel
Die title-Direktive druckt auf das Papier des Fernschreibers die Wörter, Zahlen und Zeichen, die in die
nächste Zeile geschrieben werden. Sie wird hauptsächlich benutzt, um den Titel des Programms, oder
einige Kommentare dazu an die oberste Stelle der Ergebnisse zu schreiben. Falls der Titel mehr als eine
Zeile ausfüllt, soll das Wort title jeder einzelnen Zeile vorangehen.

Beispiel: Wenn man im Programm

title
tab coulombs Funktion
title
delta = 0.01 epsilon = 0.01

schreibt, erscheint in der Kopfzeile der Tabelle:

tab coulombs Funktion

title

- 20 -

delta = 0.01 epsilon = 0.01

b) Kapitel

Das untrennbare Direktivenpaar chapter α und close zeigt den Anfang und das Ende jedes Kapitels, in
dem das Programm geteilt wurde, falls es zu lang war, an. Dies ermöglicht die Lokalisierung jedes
Kapitels im großen Speicher folgendermaßen: wenn der Rechner chapter α liest, reserviert er einen
bestimmten Bereich im großen Speicher; wenn er close liest, befiehlt er das Übertragen des aktuellen
Kapitels in die reservierten Speicherstelle. Die Zahl α muss eine Ganzzahl im Bereich (0, 22) sein.
Im besonderen Fall des Kapitels 0 befiehlt die Direktive close nicht nur das aktuelle Kapitel in den
großen Speicher zu übertragen, sondern auch dem Programm mit seinem ersten Befehl anzufangen.
Deshalb muss dieses Kapitel als Letztes gelesen werden.

c) Reservierung von Variablen
Die Direktive → reserviert Bereiche im aktuellen Zahlenspeicher, in denen sich die Hauptvariablen
befinden werden. Ihr Gebrauch wurde schon in II-1.1.-a erklärt.

d) Beibehaltung der Reservierung
Wenn ein Kapitel mit den gleichen Variablen wie das vorige im Lochstreifen Kapitel α operiert, ist es
nicht notwendig, den Bereich für die Variablen nochmal zu reservieren. Es reicht folglich aus, wenn
man die Direktive variables α unter die Direktive des Kapitels schreibt. Es könnte außerdem eine
andere neue Variable, die nicht in diesem Kapitel enthalten ist, verwenden. Diese neuen Variablen
werden in gewohnter Form durch den Pfeil nach dem Schreiben der variables α reserviert.

e) Verfügbarer Platz
Aufgrund der unterschiedlichen Länge der Statements ist es unmöglich im Voraus zu wissen, wieviele
von ihnen in ein Kapitel hineinpassen. Wenn man aber die genaue Größe des noch zur Verfügung
stehenden Datensatzes wissen möchte, kann man die Direktive p s a benutzen. Die genannte Direktive,
die an irgendeine Stelle des Programms eingefügt werden kann, druckt die Nummer des Kapitels und
die Größe des noch verfügbaren Registers aus. Die maximale Anzahl von verwendbaren
Maschinenbefehle pro Kapitel ist 832.

chapter
close

w

variables

p s a

- 21 -

f) Quickies

Die vorhergehenden Namen der Funktionen, die vor der Direktive close enthalten sind, werden als
Direktiven (Quickies) betrachtet. Sie beinhalten während des Übersetzungsprozesses die
Berechnungsroutine dieser Funktionen, falls genügend verfügbarer Platz im Kapitel vorhanden ist.
Dadurch wird vermieden, dass, jedesmal wenn eine Funktion erscheint, diese Subroutine während des
Berechnungsverfahren vom großen in den aktuellen Speicher überführt werden muss. Die Quickies
müssen geordnet in die Liste eingetragen werden, indem die am häufigsten verwendeten an den Anfang
gesetzt werden. Wenn während der Übersetzung ein Quickie nicht in das Kapitel überführt werden
kann, weil er zu lang ist, prüft der Rechner, ob der folgende hineinpasst. Die Anzahl der in jedem
Quickie verwendeten Anweisungen ist folgende:
 ψ sq rt – 48; ψ cos – 36; ψ log – 42; ψ tan – 42; ψ radius – 48; ψ sin – 36; ψ exp – 50; ψ arctan – 58.
Die Quickies ψ sin und ψ cos ziehen sich auf die gleiche Subroutine auf, deswegen sollte nur einer von
beiden in der Liste eingetragen werden. Das gleiches gilt für die Quickies ψ sqrt und ψ radius.

Beispiel: Im folgenden allgemeinen Schema eines Kapitels sieht man die Form und die Position, die die
Quickies ausfüllen.

chapter 2
variables 1
v → 20
x → 5

ψ sqrt
 ψ arctan

close

IV. SPEICHER UND PROGRAMMIERUNG

Bisher lag die Aufmerksamkeit darauf, die verschiedenen Teile des aktuellen Zahlenspeichers
(aktuelle Variablen, Indizes) sowie die Bestandteile eines Statements zu erklären. Von nun an
beleuchten wir die allgemeine Organisation der Programme und die Erweiterungen, mit denen die
Autocode-Sprache ausgestattet ist. Letztere fördern die Ähnlichkeit der mathematischen Sprache mit
der im besagten System Verwendeten. Zu diesem Zweck beschäftigen wir uns zunächst mit der

ψ sqrt
ψ cos
ψ log
ψ tan
ψ radius
ψ sin
ψ exp
ψ arctan

Befehle

- 22 -

funktionellen Anordnung des großen Speichers und der Organisation des aktuellen Befehlsspeichers
und nehmen uns danach die oben erwähnten Erweiterungen und Programme vor.

 Abb. 3. – (Vgl. Anhang 1)

1. Aktueller Befehlsspeicher.

Der aktuelle Befehlsspeicher besteht aus drei Teilen, in denen sich die unterschiedlichen Teile des
Programms befinden. In dem ersten sind einige Statements wie u. a. die Division und der
Kapitelwechsel, einige Konstanten und verfügbarer Platz für die Verarbeitung der Subroutine. Der
zweite und größte Teil enthält die Anweisungen und Konstanten, die das Programm bilden. Ist genug
Platz, beinhaltet dieser Bereich auch die Subroutine, die die Quickies abruft. Im dritten Teil wird eine
der von Autocode gebrauchten Funktionen nach Bedarf gespeichert (ψ sq rt, ψ sin, ψ exp, …,).
(s. Abb. 3).

2. Großer Speicher.

Der große Speicher besteht aus einer Magnettrommel. Ihr Speichervermögen entspricht 13.824 Feldern,
denen jeweils eine Zahl als Adresse zugeteilt wird. Diese Felder sind zwei großen Gruppen zugeteilt, je
nachdem ob die entsprechende Zahl, die ihnen eine Adresse zuweist, positiv oder negativ ist. Jede
Gruppe ist wiederum in verschiedene Bereiche mit unterschiedlichen Aufgaben unterteilt. In die erste
Gruppe gehören Felder mit positiven Adressen von 0 bis +10751. Sie enthalten Hilfsvariablen und das
völlig autokodierte Programm, welches sich in den letzten Feldern (10751, 10750, …) befindet. Weil
jedes Kapitel 512 von diesen Feldern ausfüllt, wird der verfügbare Teil für die Variablen 10752-512n
sein, wobei n die Anzahl der Kapitel ist. Zu den Feldern der zweiten Gruppen gehören die negativen
Adressen, die Zahlen zwischen -1 und -3072 umfassend. Diese Felder bestehen aus folgenden
Bereichen: ein Bereich für den Autocode-Übersetzer (-1 bis -1536); drei Bereiche für die zeitweilige
Speicherung, den sogenannten Subkapitelspeicher (-1537 bis -2048), den Speicher des Hauptkapitels
(-2049 bis -2560) und den Sonderspeicher (-2561 bis -3072). Die Verwendung dieser Bereiche wird

- 23 -

näher bei der Behandlung der Programme erklärt. Falls es notwendig ist, kann auch die Gruppe der
Felder mit negativen Adressen verwendet werden, um die Hilfsvariablen zu speichern. (s. Anhang 1).

3. Hilfsvariablen.

Wenn die 509 aktuellen Variablen nicht ausreichen, kann man als Hilfsvariablen den Bereich der
positiven Adressen im großen Speicher verwenden, der von den Anweisungen des Programms nicht
benutzt wurde. Diese Variablen werden durch die Zahl ihrer Adressen gekennzeichnet. Da alle Zahlen
durch den aktuellen Speicher hindurch müssen, um verarbeitet werden zu können, muss man über
einige Funktionen verfügen, die die Übertragungen zwischen dem aktuellen und dem großen Speicher
ermöglichen. Diese Funktionen sind folgende: ψ 6 (α) v, n; ψ 7 (α) v, n; preserve und restore.

Mit α verweist man auf eine Variable, einen Index, eine Konstante oder einen der algebraischen
Ausdrücke. Α nimmt immer einen ganzen Wert und rundet daher den Dezimalteil, wenn es einen gibt.
Statt α werden normalerweise die Sondervariablen mit Akzent verwendet. Mit v wird eine allgemeine
oder Sondervariable angezeigt. Schließlich zeigt n einen Index oder eine Ganzzahl an.

Die Funktion ψ 6 (α) v, n, überträgt den Inhalt der n Felder, die mit der Adresse α anfangen auf die
aktuellen Variablen mit v als Anfangsspeicherplatz, vom großen in den aktuellen Speicher.

Beispiel: Der Befehl

ψ 6(10230)V0, 5

überträgt den Inhalt der Positionen 10230, 10231,10232, 10233, 10234, auf die Variablen v0, v1, v2, v3,
v4.

Ausdrücke wie folgende sind möglich

6 (v1 + 2vj)wi, h
6 (n) a, 1
6 (a') a0, 16

Die Funktion 7 (α) v, n überträgt vom aktuellen in den großen Speicher den Inhalt der n aktuellen
Variablen mit v als Anfangsspeicherplatz auf die vorzufindenden Hilfsvariablen mit den Adressen von
α bis α + n – 1.

Beispiel: Der Befehl
ψ 7(10230)V0, 5

überträgt den Inhalt von v0, v1, v2, v3, v4 auf die Positionen des großen Speichers 10230, 10231,10232,
10233, 10234.

ψ 6(α) v, n

ψ 7(α) v, n

- 24 -

Die Anweisung preserve speichert den Inhalt des ganzen aktuellen Zahlenspeichers in einem
bestimmten Bereich des großen Speichers. Ihr untrennbare Befehl restore führt dem aktuellen Speicher
das, was zeitweilig in einem bestimmten Bereich des großen Speichers ausgelagert war, wieder zu. Die
Hauptanwendung dieses Befehlspaars ist die Verwendung von einem down Befehl zwischen beiden.
Das Unterkapitel, das durch down aufgerufen wird, kann seinerseits durch einen weiteren down-Befehl
ein Unter-Unterkapitel aufrufen. Daher kann das Paar preserve-restore verwendet werden, aber nicht in
dem Unter-Unterkapitel. Der Bereich des großen Speichers, der für die zeitweilige Speicherung des
preserve des Hauptkapitels verwendet wird, ist der Unterkapitelspeicher. Es ist zu anzumerken, dass die
Sondervariable π nach jeder der Anweisungen wie preserve, restore, down, up und across die
Konstante 3.141592... enthält.

V. ERWEITERUNGEN
Um der mathematischen Sprache ähnlicher zu sein, wird das Autocode-System mit einigen

Schreibweisen und Funktionen, die Erweiterungen genannt werden, ausgestattet. Sie sind um einiges
leistungsfähiger als die bisher vorgestellten Sonderanweisungen. An dieser Stelle sehen wir uns vier
Erweiterungstypen genauer an:

1. Doppel-Wort-Arithmetik
2. Komplexe Algebra
3. Matrix-Algebra
4. Integration der Systeme von Differenzialgleichungen

1. Doppel-Wort-Arithmetik.

In den gewöhnlichen arithmetischen Statements operiert man mit Zahlen, die maximal neun
signifikante Ziffern (als Gleitkommazahl oder Dezimalkommazahl betrachtet) enthalten. Manchmal
erfordern die Berechnungen, dass man Ergebnisse mit mehr als neun Ziffern erhält. Dafür muss man
die so genannte Double-Precision-Technik verwenden, die grundsätzlich die Ziffern von zwei
verschiedenen Feldern als eine einzige Zahl betrachtet. Zum Beispiel, wenn man mit Double-Precision
die Zahl 0.1237659380857364 ausdrücken möchte, muss man den signifikantesten Teil d.h.
0.12376593 in einem Feld und den weniger signifikanten Teil 80857364 in einem anderen Feld
speichern. Bei einer beliebigen Zahl M nennen wir m1 den signifikanteren und m2 den weniger
signifikanten Teil, deswegen könnte M durch das Paar (m1 m2) dargestellt werden. Die arithmetischen
Operationen zwischen Double-Precision-Zahlen wären folgende:

Addition M (m1,m2) + N (n1,n2) = S (s1,s2)
in dem:
s1 = (m1 + n1)1

s1 = (m2 + n2)1 + (m1 + n1)2

preserve
restore

- 25 -

Produkt M (m1,m2) N (n1,n2) = P (p1,p2)
in dem:
P1 = (m1 n1)1

P1 = (m1 n2)1 (m2 n1)1 (m1n1)2

Quotient M (m1,m2)/N (n1,n2) = Q (q1,q2)
in dem:
q1 = (m1/n1)1

q1 = ((m2n1 - m1 n2)/n1
2)1 + (m1/n1)2

In den vorherigen Beispielen drückt der sich außerhalb der Klammer befindende Subindex (1 oder 2)
aus, ob es sich um den signifikanteren oder weniger signifikanten Teil der sich in der Klammer
angegebenen exakten Operation handelt. Man muss berücksichtigen, dass es manchmal zu einer
Übertragung des weniger signifikanten Teil in den signifikantesten Teil der oben angeführten
Operationen kommen kann. Es ist darüber hinaus offensichtlich, dass es sinnlos ist, die Double-
Precision-Technik anzuwenden, wenn Rundungsfehler in dem signifikantesten Teil gemacht werden.
Im Autocode-System wird durch eine Erweiterungsanweisung jede einzelne Grundrechenart mit der
Anwendung der Double-Precision-Technik ausgedrückt. Dafür werden folgende Schreibweisen
verwendet:

Man drückt symbolisch durch ein Aktuellenvariablen-Paar in doppelten Klammern und durch ein
Komma getrennt ((a, b)) eine Double-Precision-Zahl aus, in der der signifikanteste Teil in der aktuellen
Variable a und der weniger signifikante Teil in der Variable b gespeichert sind. Das erste Zeichen zeigt
an, wo die Ergebnisse des zweiten Zeichens gespeichert werden müssen. Aus diesem Grund können a
und b nur aktuelle Variablen sein, während x, u, y, v k alle Variablen sein können bzw. x, u können
Ganzzahlen sein, wenn die entsprechenden Variablen y, v 0 sind.
Der weniger signifikante Teil ist immer positiv.
Die Variablen, die die beiden Teile ausdrücken, müssen nicht unbedingt konsekutiv sein.
In den Double-Precision-Operationen hat das Zeichen ? keine Wirkung.

Wenn man eine der Double-Precision-Erweiterungen in einem Kapitel verwendet, muss man die
double-length-Direktive zwischen den Anfangsdirektiven des Kapitels einschließen. Die genannte

double length

- 26 -

Direktive beinhaltet die Double-Precision-Subroutinen am Anfang des Kapitels.

Beispiel: Im folgenden allgemeinen Schema eines Kapitels wird gezeigt, wo die double-length-
Direktive positioniert ist:

2. Komplexe Algebra. Andere im Autocode-System enthaltene Erweiterungen sind die
Grundoperationen und einige Funktionen mit komplexen Zahlen durch einen einfachen Befehl, wie im
Folgenden gezeigt wird:

Eine komplexe Zahl wird im Autocode-System als ein Variablen- oder Konstantenpaar, die in
Klammern durch ein Komma getrennt sind, definiert. Der erste Teil α (Variable oder Konstante) stellt
den Realteil dar und der zweite Teil β (Variable oder Konstante) stellt den Imaginärteil dar.

Beispiel: (A, B) (3.241, 6.742) (X (I + 1), X(I + 2))
(AI, BI) (AI, -3.94) (AI, A(I + 1))

Die Autocode-Sprache ermöglicht folgende Operationen mit komplexen Zahlen:

(α,ß)

- 27 -

Es muss wieder die Wichtigkeit der korrekten Schreibweise festgestellt werden. Es ist auch wichtig
anzumerken, dass bei der Multiplikation das Sternchen verwendet werden muss. Bei komplexen
Operationen hat das Zeichen ? keine Wirkung. Die komplexen Funktionen sqrt, log, exp verwenden die
reellen Funktionen für ihre Berechnung: sqrt; sin und cos für exp; arctan für log. Aus diesem Grund
müssen bei der Verwendung einer komplexen Funktion die entsprechenden reellen Funktionen als
Quickies hinzugefügt werden.

Beispiel: Ausdrucksberechnung

Dafür wird folgendermaßen vorgegangen:

Am Ende des Kapitels, das dieses Statement enthalten würde, sollten folgende Quickies eingefügt
werden:

ψ exp
ψ sin
ψ sqrt

3. Matrizenrechnung. Die Matrizen werden als eine einzige Spalte gespeichert, indem eine Gruppe
Hilfsvariablen benutzt wird. Die erste Stelle einer Matrix A wird durch den Inhalt einer Sondervariable,
normalerweise a', angezeigt. Um das Element aij in einer Matrix der Ordnung m x n zu finden, wird
folgender Ausdruck verwendet:

aij = a' (n (i – 1) + (j – 1))

Das zweite Element drückt aus, dass ab der Anfangsstelle a' (i-1) Blöcke, mit (i-1) Zeilen und n-
Elementen pro Zeile durchlaufen wurden. Im Block i (also Zeile i) wurden j-1 Elemente durchlaufen.
Daraus folgt, dass das aktuelle Element aij ist.

- 28 -

Im Autocode-System erfolgt diese Suche sowie die Hauptoperationen zwischen Matrizen wie z. B. das
Lesen und Schreiben, automatisch. Hierfür ist es mit einigen Funktionen, die von mehreren Parameter
abhängig sind, ausgestattet. Ein Merkmal der Parameter ist, dass es Ganzzahlen sind, deren Wert
zwischen 8 und 28 liegen kann, je nach Aufgabe, die sie durchführen sollen.
Die Parameter sind:

• eine Sondervariable oder eine Ganzzahl, um die Position des ersten Elements der Matrizen, die
von der Funktion bearbeitet werden, im großen Speicher anzuzeigen

• eine Sondervariable oder eine Ganzzahl, um die Gesamtanzahl der Elemente oder die Ordnung
anzuzeigen

• ein Index oder eine Ganzzahl, um die Anzahl der Ganzen- oder Dezimalziffern, die wir drucken
wollen, anzuzeigen. (Ein Index oder eine Ganzzahl wird auch verwendet, um die Ordnung einer
Matrix bei der Division anzuzeigen).

• eine Sondervariable, um einen Skalar anzuzeigen

Normalerweise wird eine Variable ohne Akzent benutzt.

Hiernach werden die Funktionsgruppen, die folgende Aufgabe ausführen, behandelt:

• eine Matrix als Gleit- oder Festkommazahl drucken
• eine Matrix oder einen Vektor lesen
• Linearkombination zweier Matrizen, auch bei den Einzelfällen der Diagonal- und

Einheitsmatrix
• Transposition einer Matrix
• die Determinanten einer Matrix finden
• Multiplikation und Division von Matrizen

Drucken

Die Funktion ψ 8 (a', u, v, m, n) druckt die Matrix A, die im großen Speicher ab der Speicherstelle a'
gespeichert ist, folgendermaßen:

• jede Zeile der Matrix füllt auf dem Papier eine Spalte v Elementen aus
• nach den v Elementen einer Zeile folgt eine Leerzeile
• nach der Leerzeile folgt die nächste Zeile der Matrix, getrennt von der vorigen durch einen Tab
• jedes Element wird als Festkommazahl mit Vorzeichen (falls negativ), m Ganzziffern und n

Dezimalziffern gedruckt. Sie werden als Gleitkommazahl geschrieben, wenn ihr Wert größer als
1016 oder wenn m = 0 ist.

Beispiele: Angenommen, dass die Matrix

ψ 8 (a', u, v, m, n)
ψ 9 (a', u, v, n)

- 29 -

|2,512 2,753 -3,104|
A= | |

|5,215 -7,126 9,627|
in den Feldern des großen Speichers mit den Adressen 100, 101, 102, 103, 104, 105 und a' in Nummer
100 gespeichert ist; die Funktion ψ 8 (a', 2, 3, 1, 2) druckt die vorige Matrix folgendermaßen aus:

2, 51
2,75
-3,10

5, 21
-7,13
9,63

Die gleiche Wirkung hätte die Funktion ψ 8 (100, 3, 2, 1, 2).

Die Funktion ψ 9 (a', u, v, n) hat die gleiche Wirkung, aber die Zahlen werden als Gleitkommazahl mit
n = 10 Ziffern in der Mantisse und mit einem Exponent kleiner als 70 gedruckt. Sie hat genau die
gleiche Wirkung wie die Funktion ψ 8 mit m = 0.

Lesen
Diese Funktion liest die w gelochten Zahlen auf dem Lochstreifen als Fest- oder Gleitkommazahl und
speichert sie in den Feldern des großen Speichers, dessen erste Stelle mit der Sondervariablen a'
registriert ist. Wenn w = u.v kann diese Menge an Zahlen als eine Matrix der Ordnung (u x v)
betrachtet werden. In allen Fälle kann es als ein w-dimensionaler Vektor betrachtet werden.

Linearkombination
Im Folgenden werden die Funktionen, die die Berechnung der Linearkombination zweier Matrizen
ermöglichen, angegeben. Wegen ihrer verschiedenen Besonderheiten werden sie in drei Gruppe geteilt,
je nachdem, ob es sich um die Linearkombination zweier beliebiger Matrizen, einer beliebigen Matrix
und der Einheitsmatrix, oder einer beliebigen Matrix und der Diagonalmatrix handelt. Natürlich
müssen die Matrizen in den zwei letzen Beispielen quadratisch sein.

• zwei beliebige Matrizen
a' = ψ 11(b', c', w) A = B + C Ordnung(u,v)
a' = ψ 12(b', c', w) A = B - C Ordnung(u,v)
a' = ψ 13(b', x, c', w) A = B + xC Ordnung(u,v)
a' = ψ 14(b', x, c',w) A = B - xC Ordnung(u,v)
a' = ψ 15(b',w) A = B Ordnung(u,v)

Die Sondervariablen a', b', c' enthalten die Adressen des ersten Feldes der Bereiche, die die jeweiligen
Matrizen A, B, C ausfüllen. Die Sondervariable x stellt ein Skalar dar. Die drei Matrizen müssen der

ψ 10(a', w)

- 30 -

gleichen Ordnung sein und w enthält der Anzahl ihrer Elemente, d. h. w = u.v.

Beispiele: Seien die Matrizen

B= |1 2 2| C= |2 1 1|
|2 1 1| |1 2 2|

in den Speicherstellen des großen Speichers mit den Nummern 20, 21, 22, 23, 24, 25 und 26, 27, 28,
29, 30, 31 gespeichert. Wenn die Sondervariablen b', c' und a' die jeweiligen Zahlen 20, 26, 32
enthalten, wird die Funktion

a' = ψ 12 (b', c', 6)

in den Speicherstellen 32, 33, 34, 35, 36 folgende Matrix speichern:

A= |-1 1 1|
|1 -1 -1|

Angenommen, seien die vorigen Bedingungen und sei 0,5 in a gespeichert, dann speichert die Funktion

a' = ψ 13 (b', a, c', u)

die Matrix

A= |2 2,5 2,5|
|2,5 2 2|

in den Speicherstellen 32, 33, 34, 35, 36, 37.

• eine beliebige Matrix und die Einheitsmatrix
a' = ψ 17(b', u) A = B + I Ordnung(u,u)
a' = ψ 18(b', u) A = B - I Ordnung(u,u)
a' = ψ 19(b', x, u) A = B + xI Ordnung(u,u)
a' = ψ 20(b', x, u) A = B - xI Ordnung(u,u)

In diesem Fall sind die Matrizen quadratisch und u stellt die Ordnung anstatt der Anzahl der Elemente
dar.

• eine beliebige Matrix und eine Diagonalmatrix
a' = ψ 21(b', d', u) A = B + D
a' = ψ 22(b', d', u) A = B - D
a' = ψ 23(b', x, d', u) A = B + xD

- 31 -

a' = ψ 24(b', x, d', u) A = B - xD

Auch in diesem Fall sind die Matrizen quadratisch mit der Ordnung u. Die Diagonalmatrix wird als ein
u-elementiger Vektor in einem Bereich des großen Speichers, dessen erste Adresse sich in d' befindet,
gespeichert.
Transponierte Matrix

Diese Funktion speichert die transponierte Matrix in b' auf die durch a' gezeigten Speicherstellen.
Daraus folgt, dass die Ordnung der zweiten v x u ist, wenn die erste u x v ist.

Determinante

Durch diese Funktion wird in x der Wert der Determinanten der Matrix mit der Ordnung u, die sich im
Bereich a' befindet, gespeichert.

Multiplikation und Division

a' = ψ 26(b', c', u, v, w) A(u,v) = B(u,w)C(w,v)
a' = ψ 27(b', c', u, v, w) A(u,v) = B(u,w)C'(w,v)
a' = ψ 28(b', m, n) A(m,n) = B-1(m,m)A(m,n)

C' stellt das transponierte C dar. Es ist zu bemerken, dass hier die Ordnung der Matrizen mit m, n statt
u, v (wie bisher) gezeigt wird, denn dafür werden Indizes oder Ganzzahlen kleiner als 511 verwendet.
Wichtig zu wissen ist auch, dass die Division die Matrix B zerstört.

Beispiel: Wenn man ein Programm entwickeln möchte, um ein lineares Gleichungssystem a ixi = bi mit
Ordnung n ≤ 20 zu lösen und die Lösungen mit r Ganzziffern und s Dezimalziffern spaltenweise zu
drucken, würde man folgendermaßen vorgehen:

a' = ψ 16(b', u, v)

x = ψ 25(a', u)

- 32 -

4. Integration der Systeme von Differenzialgleichungen. Das Autocode-System ist mit einer
Erweiterung ausgestattet, die durch die Runge-Kutta-Methode die Integration eines Systems von
Differenzialgleichungen ermöglicht, indem die Anweisung (int step (m)) benutzt wird. Dafür muss man
zuerst die Variablen reservieren, die Parameter (Anzahl von Gleichungen, Länge des Schrittes,
Anfangsbedingungen) festlegen und die Gleichungen definieren, wie später genauer erklärt wird.

Es integriert das System von Differenzialgleichungen

fi = dyi / dx = fi (x, y1, y2, … yn)

in dem i = (1, 2, 3, ...n). Vorher muss man die Hilfsvariablen fi, yi, gi, hi (die zwei letzte als
Arbeitsspeicher) reservieren, die Werte der Indizes n (Anzahl von Gleichungen) und h (Länge des
Schrittes) definieren, die Anfangswerte von x, y1, y2, … yn festlegen und die Gleichungen zwischen der
Marke m und der Anweisung 592,0 bestimmen.

Beispiel: Integration des Systems

int step (m)

- 33 -

im Intervall (10, 10.25) mit einem 0.025 Schritt und mit Anfangswerte y1(10) = 0; y2(10) = 0.33; y4(10)
= 2; y5(10) = 0. Das Programm zur Integration dieses System wäre folgendes:

- 34 -

VI. DIE PROGRAMME

Ein ganzes Programm enthält verschiedene Teile, die ihrerseits in kleinere Einheiten unterteilt sind.
Das Gesamtprogramm, das aus Unterprogrammen besteht, wird Makroprogramm genannt. Jedes
Unterprogramm setzt sich aus einem oder mehreren Kapiteln zusammen. Die einzelnen
Unterprogramme eines Makroprogramms sind durch ein Unterprogramm - das Hauptprogramm -
miteinander verknüpft. Im Folgenden werden die formalen Konventionen dargestellt, die die Kapitel,
Unterprogramme (oder Programme, falls sie sich nicht auf ein Makroprogramm beziehen) oder die
allgemeine Organisation eines Makroprogramms bei der Programmierung in Autocode ausführen.

1. Die Kapitel.

Die Kapitel sind mit drei wesentlichen Teilen ausgestattet: Kopf, Körper und Fuß. Der Kopf und der
Fuß bestehen aus Direktiven und werden benutzt, um die Übersetzung unserer Befehle zu organisieren.
Der Körper ist die Menge der Befehle, die für die Programmausführung benutzt werden. Folgendes
Schema zeigt die allgemeine Struktur eines Kapitels:

In manchen Fällen können die Direktiven variables, → und Quickies ausgelassen werden. Wenn sie
jedoch verwendet werden, ist die im oben genannten Schema angezeigte Reihenfolge zu beachten. In
allen Fällen benötigt man die Direktiven chapter α und close.

- 35 -

Beispiele:

a) Tabellieren der Funktion mit komplexer Variable

w = sin z

(in der w = u + iv und z = x + iy) in den Punkten der Fläche x,y, die auf der Kurve y = x2 + 1 mit einer
Abszisse im Intervall (0,1) und Schritt 0,01 liegen.

- 36 -

b) Lösung des Integrals ∫-1, 1 ex dx mit Hilfe der Simpsonregel und mit einem Fehler kleiner als D.

BEMERKUNG. Es ist zu beachten, dass die geraden Punkte einer Unterteilung mit der geraden und
ungeraden der vorigen Unterteilung zusammenfallen. Deswegen braucht man nur die ungeraden Punkte
jeder neuen Unterteilung.

- 37 -

Wir möchten wieder daran erinnern, dass die maximale Anzahl der Maschinenbefehle, die ein Kapitel
ausfüllen kann, 832 ist. Um die Zahlen der benutzten Befehle zu kontrollieren, stehen die Direktive psa
(print space available) zur Verfügung. Falls es mehr als 832 Befehle gibt, zeigt psa den Fehler an, in
dem die Kapitelnummer sowie die wegen Platzmangel nicht enthaltenden Befehle gedruckt werden.
Jedes Kapitel füllt, je nach seiner Nummer, einen festen Bereich im großen Speicher aus. Die gleichen
Marken können in verschiedenen Kapiteln verwendet werden. Der erste Befehl eines Kapitels muss
immer markiert werden. Jedes Mal wenn man von einem Kapitel zum nächsten wechselt, wird in der
Sondervariablen die Zahl 3,1415... wieder eingesetzt. In ein und demselben Kapitel müssen sich immer
die Schleifengrenze i = p(q)r, repeat und die n) = 4) oder n) = m), jump(n) befinden.

2. Die Programme.

Ein Programm kann ein oder mehrere Kapitel beinhalten. Diese Kapitel dienen dazu, bestimmte Phasen
der Berechnung auszuführen. Es gibt zwei verschiedene Typen: die Unterprogramme und das
Hauptprogramm. Zur Verfügung steht eine große Anzahl von allgemeingültigen Unterprogrammen, die
von Nutzern des Autocode-Systems entwickelt wurden und die eine Bibliothek bilden.

2.1 Die Unterprogramme

Die Unterprogramme sind unabhängige Recheneinheiten und können im Allgemeinen in sehr
unterschiedlichen Makroprogrammen benutzt werden. Ein Unterprogramm ist z. B. die Menge der
Kapitel, die für die Berechnung der Eigenvektoren und Eigenwerte einer beliebigen Matrix notwendig
sind. Um ein Programm benutzen zu können, braucht es einen Namen, der ermöglicht es aufzurufen.
Darüber hinaus muss es möglich sein darauf hinzuweisen, wo sich die Daten befinden und wohin die
Ergebnisse zu speichern sind. Die erste Voraussetzung wird durch den Titel, die anderen beiden durch
die Parameter erfüllt.

Titel
Um ein Programm von einem anderen zu unterscheiden und sie in einem Makroprogramm
zusammenfügen zu können, ist für jedes Programm die Direktive programme- α vorgesehen, in der α
eine zwischen 1-1023 enthaltende Ganzzahl sein muss. Die Zahlen größer als 500 werden
konventionell reserviert, um die Programme der Bibliothek zu identifizieren. Die Benutzung des
Bindestriches zwischen programme und α ist unerlässlich.

Die Parameter
Die Parameter sind Variablen oder Indizes, deren Werte von dem Fall abhängen, auf den das Programm
angewendet wird. Der “Name” der Variable oder des Index wird vom Programm festgelegt und der in
der besagten Variablen bzw. im Index gespeicherte Zahlenwert ist durch die konkrete Anwendung des
Programms bedingt. Dafür werden laut folgender Konvention die Sondervariablen benutzt:

1. - Die individuellen Parameter, die Bereichsdimensionen, usw. werden durch Sondervariablen ohne
Akzent oder Indizes ausgedrückt.

2. - Die Zahlenbereiche (Vektoren, Matrizen, …) werden durch eine Sondervariable mit Akzent, die die
Adresse des ersten Elementes des Bereiches enthält, gekennzeichnet.

programme - α

- 38 -

3. - Die Ergebnisse werden auf analoge Weise ausgedrückt, je nachdem, ob sie skalar oder vektoriell
sind.
Es ist zu berücksichtigen, dass man die Direktive preserve benutzen soll, bevor die Parameter die Werte
annehmen. Ebenso ist es angemessen, restore sofort nach dem Befehl, der das Unterprogramm
ausführt, zu verwenden. Auf diese Weise bleibt der Inhalt des aktuellen Speichers erhalten und die
Zerstörung seines Inhalts während der Ausführung des Unterprogramms wird verhindert.
Beispiel: Angenommen, dass das programme-506 die reellen und komplexen Wurzeln eines Polynoms
mit reellem oder komplexem Koeffizient berechnet

α0 zn + α1 zn+1 + … + αn-1 z + αn

Es ist offensichtlich, dass man Folgendes kennen muss, bevor das Unterprogramm anfängt

– den Grad der Gleichung
– den reellen Teil der Koeffizienten
– den Imaginärteil der Koeffizienten

Um das Programm zu beenden, muss man wissen, wo sich Folgendes befindet:

– der reelle Teil der Wurzeln
– der Imaginärteil der Wurzeln
– die Präzision der Wurzeln

Wenn man annimmt, dass in n der Grad der Gleichung, in a' die Adresse des reellen Teils erstes
Element, in b' die Adresse des Imaginärteils des ersten Koeffizientes, in e die Präzision und in c' und d'
die Adresse des reellen und imaginären Teils der Wurzeln gespeichert sind, sind dann die Variablen und
Indizes n, e a', b', c', d' die Parameter des programme-506. Beim konkreten Fall einer Gleichung
sechsten Grades muss man Folgendes schreiben, bevor das Unterprogramm aufgerufen wird

preserve
n = 6
c = 0.001
a' = 100
b' = 106
c' = 112
d' = 118
down 1/1-506
restore

in dem die Koeffizienten in den Zellen 100-101 des großen Speichers und die Wurzeln in den Zellen
112-113 des gleichen Speichers abgespeichert werden.

- 39 -

2.2 Das Hauptprogramm

Das Hauptprogramm verknüpft alle Unterprogramme, die an unserem Berechnungsverfahren beteiligt
sind, d. h. es “bildet” die Parameter und befiehlt die Sprünge. Außer den Verknüpfungsoperationen
führt es diejenigen aus, die wegen ihrer Kürze und Einfachheit kein Sonderprogramm brauchen. Das
Hauptprogramm braucht normalerweise keinen Titel, außer wenn es durch einen across-Befehl ein
Unterprogramm aufruft.

2.3 Die Bibliothek.

Das Computing Machine Laboratory der Manchester Universität hat in Zusammenarbeit mit Ferranti
und allen Benutzern des Mercury Rechners(*) eine Bibliothek entwickelt. Sie enthält allgemeine
Programme, die in sehr verschiedenen Berechnungsverfahren nützlich sind und angewendet werden
können. Irgendeines dieser Programme kann in unser Makroprogramm zu den gleichen Bedingungen
wie alle anderen Unterprogramme eingefügt werden. Manche Programme der Bibliothek sind nicht
vollständig, wie z. B. das Programm für die Berechnung des Integrals einer Funktion, dem eine Routine
zum Generieren des Betreffenden hinzugefügt werden muss. Um die Programme der Bibliothek nutzen
zu können, muss man folglich ihre Spezifikationen also die Parameter, Variablen oder Indizes sowie
ihre Anwendung kennen.
Auf den folgenden Seiten fügen wir den Bogen mit den Spezifikationen, der dem Programm für die
Berechnung der Wurzeln eines Polynoms beiliegt, hinzu.

- 40 -

Titel: Programme-506 Lösung algebraischer Gleichungen.
Ziel: Dieses Programm berechnet die Nullen des Polynoms

wobei ai reell oder komplex sein kann.

Beschreibung: Die verwendete Methode ist von D. E. Muller in M.T.A.C., Oktober 1956 (S. 208)
beschrieben.

Jede Wurzel wird durch eine iterative Methode, gefolgt durch die Entfernung des
entsprechenden Faktors der Gleichung, bestimmt. Die erforderte Relativpräzision der Wurzeln wird
durch einen Programmparameter e angegeben, der folgendermaßen als Konvergenzkriterium verwendet
wird

wobei x(m), x(m+1) zwei sukzessive Iterationen einer Wurzel x sind.
Um vier signifikante Ziffern zu bekommen, muss e=0.001 sein.

Parameter:
n Ordnung der Gleichung (≤ 116)

e Relativpräzision der Wurzeln

a' Die reellen Teile von ai sind in a', a'+1, … a'+n abgespeichert.

b' Die imaginären Teile von ai sind in b', b'+1, … b'+n abgespeichert.

c' Die reellen Teile der Wurzeln sind in c', c'+1, … c'+n-1 abgespeichert.

d' Die imaginären Teile der Wurzeln sind in d', d'+1, … d'+n-1 abgespeichert.

Eingabe: Das Programm besteht aus einem einzigen Kapitel, das so aufgerufen wird:
1. Durch “down 1/1 – 506”, wenn ai komplex sind
2. Durch “down 2/1 – 506”, wenn ai reell sind (in diesem Fall ist es nicht notwendig, b'

anzugeben)

Zeit: 1 Min. für n=25, 4 Min. für n=50 und 16 Min. für n=100.

Präzision: Siehe Beschreibung oben.
Autor: R. H. Kerr, Universität Manchester
Datum: 27. April 1959

A -506

- 41 -

Während den Programmen der Bibliothek eine Nummer zwischen 501 und 1023 zugewiesen wird,
wird unseren Programmen eine Nummer kleiner als 501 zugewiesen. Damit ist es möglich, sie
angesichts jedes konkreten Problems zu unterscheiden. Anschließend stellen wir eine Liste mit den
aktuellen Programmen der Bibliothek vor. Allerdings kann sich ihr Inhalt ändern, indem sich die
Anzahl der Programme erhöht bzw. die Vorhandenen verbessert werden.
Die Liste zeigt die Programmtitel sowie ihren Zweck.

Programme-501 Grenzwerte einer Folge bestimmen
Gegeben seien die (n+1) Elemente einer Folge

a0 a1 a2 … an.
Dieses Programm berechnet seinen Grenzwert für n → ∞.

Programme-502 Einfache Quadratur
Dieses Programm berechnet den Wert des Integrals

∫a, b f(x) dx,
wobei f(x) keine Besonderheiten im reellen Intervall (a, b) aufweist.

Programme-503 Quadratur
Dieses Programm berechnet

∫a, b (b-x)u (x-a)v f(x) dx,
wobei u>-1, v>-1 und f(x) keine Besonderheiten im reellen Intervall (a, b) aufweist.

Programme-504 Quadratur von unendlichen Integralen
Dieses Programm berechnet den Wert des Integrals

∫c,∞ f(x) dx,
wobei f(x) keine Besonderheiten im reellen Intervall (c, ∞) aufweist.

Programme- 505 Harmonische Analyse
Gegeben seien für die Periode L die Werte einer periodischen Funktion f(x) = f(x+L) in den gleich
getrennten 2n + 1 Punkten
 xr = x0 + (r L/2n), r = 0 (l) 2n.
Das Programm berechnet den Koeffizient der harmonischen Näherung.

Programme-506 Lösung algebraische r Gleichungen

Dieses Programm berechnet die Nullen des Polynoms
a0 zn + a1 zn-1 + ….... + an = 0,

wobei ai reell oder komplex sein kann.

- 42 -

Programme-507 Autokorrelation und Kreuzkorrelation
Gegeben seien zwei Folgen (die identisch sein können):

x0 x1 ….... xn y0 y1 ….... yn.

Das Programm berechnet die Summen

Programme-508 Lösung und Tabellierung eines Systems von Differentialgleichungen
Das Programm löst und tabelliert das System von Differentialgleichungen

dyi / dx fi (y1, y2, y3 …. yn ; x) i = 1(l) n
mit den Anfangsbedingungen yi (x0) für x = x0 in einem einheitlichen Intervall d.

Programme-509 Tabellierung
Dieses Programm tabelliert in zwei Dimensionen die Matrix aij, i=0(l)m, j=0(l)n. (Wenn nicht alle
Säulen in eine Papierbreite hineinpassen, werden die überzähligen Säulen unter die vorherigen Säulen
geschrieben).

Programme-510 Lösung von Normalgleichungen kleinster Quadrate
Gegeben sei ein System von m linearen Gleichungen mit n Unbekannten (m>n)

A x = b,
wobei A = (a ij), x = (xj), und b = (bí), i = l(l)m, j = l(l)n. Dieses Programm bildet und berechnet die
Normalgleichungen

A'Ax = A'b.

Programme-511 Eigenvektoren und Eigenwerte einer allgemeinen reellen Matrix
Dieses Programm berechnet die Eigenwerte und Eigenvektoren einer Matrix A, die im großen Speicher
abgespeichert ist.

Programme -512 Ein-/Ausgabe von Double-Precision-Zahlen
Dieses Programm liest Gleitkommazahlen aus dem Lochstreifen ab und speichert sie in
aufeinanderfolgenden Zellenpaaren des großen Speichers ab. Es locht auch Double-Precision-Zahlen
mit Festpunkt, die mit gerundetem Dezimalteil in aufeinanderfolgenden Zellenpaaren des großen
Speichers abgespeichert sind.

- 43 -

Programme-515 Lösung eines linearen Gleichungssystems mit Double-Precision
Dieses Programm löst ein lineares Gleichungssystem

aij xj = bí i = l(l)n,
wobei aij und bí mit Double-Precision gegeben sind. Die Gleichungen werden zeilenweise
abgespeichert, indem die bí nach den ain gestellt werden.

Programme-516 Tabellierung der Lösung eines System von Differentialgleichungen
Dieses Programm ist eine geänderte Version des programme-508.

Programme-518 Division von Matrizen
Dieses Programm berechnet das Gleiche wie die Funktion ψ 28, d. h. es prüft

A = B-1 A.
Der einzige Vorteil des Programms liegt darin, dass nicht alle Subroutinen von Erweiterungen für
Matrizen gelesen werden müssen.

Programme-519 Reelle uneigentliche Quadratur
Dieses Programm berechnet das uneigentliche Integral I, wie den Grenzwert

wobei xn = 2-n(a-b) + b.

Programme-521 Komplexe uneigentliche Quadratur
Das ist eine Version des Programme-519, das komplexe Werte des Integranden, komplexe Grenzwerte
und eine komplexe Definitionslücke/Singularität akzeptiert. Die Toleranz wird auf das Modulo der
Ergebnisse angewendet.

Programme-522 Texte Ein-/Ausgabe
Dieses Programm liest Texte von einem Lochstreifen, speichert sie ab und locht sie in gewünschter
Form.

Programme-523 Kleinste -Quadrate-P olynom
Dieses Kapitel passt durch die Methode der kleinsten Quadrate ein Polynom mit Grad k an n Punkte an,
die nicht unbedingt das gleiche Gewicht haben oder auf gleiche Weise getrennt sind.

3. Makroprogramme.

Als Zusammenfassung behandeln wir schließlich die allgemeine Organisation eines
Berechnungsverfahrens, das mehrere Unterprogramme enthält, d. h. ein Makroprogramm. Dafür
weisen wir darauf hin, dass es in folgenden vier Schritten auszuführen ist:

a – Ein Blocksdiagramm erstellen, in dem man die wesentlichen Teile des
Berechnungsverfahrens, die auszuführen sind, angibt

- 44 -

b – Die Teile, die sich mit Hilfe der Programmbibliothek behandeln lassen, erkennen und ihre
Spezifikationen verstehen

c – Programme für die anderen Teile, für die es kein geeignetes Programm in der Bibliothek
gibt, schreiben. Dafür ist es sinnvoll, ein Detail-Diagramm zu erstellen.

d - Das Verknüpfungsprogramm bzw. das Hauptprogramm schreiben und dabei beachten, wie
die Dateneingabe/-ausgabe umgesetzt werden muss. Eigentlich entspricht das Hauptprogramm dem in
a) erwähnten Blocksdiagramm.
Einige Ausnahmen bei der Benutzung einiger Direktiven und Sprungbefehle in den Makroprogrammen
müssen beachtet werden:

– die Direktive variables kann sich nur auf in einem gleichen Unterprogramm enthaltende Kapitel
beziehen

– die Sprungbefehle zwischen Kapiteln, die zu verschiedenen Unterprogrammen gehören, müssen
drei Parameter haben: die Marke, das Kapitel, das Programm. Sie nehmen die Form across M/C
– P, down M/C – P an.

Die funktionelle Struktur eines Unterprogrammes ist im Allgemeinen wie im folgenden Schema
gezeigt:

- 45 -

Im Folgenden wird durch ein Beispiel gezeigt, wie ein unvollständiges Unterprogramm aus der
Bibliothek zu benutzen ist. Es geht darum, durch das Programm A-502 die Funktion y = sin2 x im
Intervall (0, π/2) zu integrieren. Dafür muss man die Funktion spezifizieren, die man am Ende des
Programm-502 - das aus diesem Zweck nicht abgeschlossen ist - integrieren will. Vor der
Programmausführung müssen seine Parameter definiert werden. Laut den Spezifikationen müssen in A
und B die Integrationsgrenzen, in E die angeforderte oder erreichte Präzision, in u' die Adresse des
großen Speichers, in dem der Wert des Integrals abzuspeichern ist, gestellt werden. Der Aufruf wird
durch den Befehl down 1/1 – 502 ausgeführt. Da wir in diesem Fall annehmen, dass unser Ziel nur die
Berechnung des Integralwerts ist, fügen wir zusätzlich Ausgabebefehle hinzu. Allerdings ist der
Integralwert bei allgemeineren Problemen ein Zwischenwert und deswegen ist sein Ausdruck nicht
nötig. Folgende Befehle zeigen schematisch, wie wir vorgehen würden:

- 46 -

- 47 -

ANHANG I

ANMERKUNGEN ZU DEN SPEICHERN

1. DER SCHNELLE SPEICHER.

Wir haben vorher gesehen, dass der aktuelle oder schnelle Speicher in zwei verschiedenen Teilen –
einen für die Befehle und einen für die Zahlen- betrachtet werden kann. Jetzt schauen wir im Detail an,
wie beide physisch geteilt sind.
Der Befehlsspeicher besteht aus 16 gleichen Teilen, die Seiten genannt werden und von 0 bis 15
nummeriert sind. Jede Seite setzt sich folgendermaßen zusammen:

– aus 32 Registern, deren Speichervermögen einer Zahl aus 10 Dezimalziffern (40 Binärziffern)
entspricht, die mit geraden Zahlen von 0 bis 62 nummeriert sind

– aus 64 Registern mit Speichervermögen für 20 Binärziffern, die einzeln von 0 bis 63
nummeriert sind

– aus 128 Registern mit 10 Binärziffern, die durch die Symbole 0, 0+, 1, 1+,... , 63, 63+
aufsteigend nummeriert sind.

Daher kann man sagen, dass die Indizes die Register 58, 58+, 59, 59+, 60, 60+, 61, 61+, 62, 62+, 63,
63+ der Seite 0 ausfüllen, wie in der Abbildung 4 dargestellt ist. Das gleiche Bild zeigt außerdem, dass
die Register 4-31 die Divisionbefehle enthalten und die Register 32, 34, 36, 38 als Arbeitsplatz benutzt
werden können (s. Benutzung von konventionellen Befehlen in Autocode). Die Seite 1 ist für
Sonderübertragungen für das Ziehen einer komplexen Quadratwurzel reserviert. Die Seite 15 wird
benutzt, um eine Funktion, die kein Quickie ist, abzuspeichern. Auf den Seiten 2 bis 14 wird die einem
unserer Kapitel entsprechende übersetzte Information wie folgt abgespeichert: ab dem Register 0 der 2.
Seite, die Befehle; ab dem Register 62 der Seite 14 rückwärts, die Konstanten, die ausdrücklich in
unserem Kapitel dargestellt sind. Falls es genügend Platz geben würde, befinden sich Quickies-
Funktionen im restlichen Platz zwischen dem letzten Befehl und der letzten Konstante.

Der Zahlenspeicher besteht aus 16 Seiten, die von 16 bis 31 nummeriert sind. Die Sondervariablen
haben auf der Seite 31 ihren festen Platz. Die Register 0, 2, 4, … 54 entsprechen den Variablen a' b' …
z. Wenn sie nicht verändert wird, enthält die Variable π die Konstante 3.141592 und ist im Register 56
abgespeichert. In den Registern 58, 60, 62 werden die Konstante 0, -1, -4.108 abgespeichert.
Folgendes ist anzumerken: Wenn ein preserve Befehl gezeigt wird, werden die Indizes die Register 58,
58+, … 63+ der Seite 31 ausfüllen, bevor der ganze Inhalt vom Zahlenspeicher zum großen Speicher
übertragen wird.
Die Seiten 16 bis 30 enthalten die Sondervariablen in der Reihenfolge, die vor den Befehlen jedes
Kapitels durch die Direktive → bestimmt wurde. In der Abbildung 5 sind links vom Register der Seite
16 die Stellen dargestellt, die den Variablen des Beispiels auf Seite 33 entsprechen. Rechts kann man
erkennen, dass die gleichen Stellen den ersten zwanzig reservierten Variablen des Beispiels auf Seite 35
entsprechen.

- 48 -

- 49 -

- 50 -

2. DER GROSSE SPEICHER.

In I.2., in II.1.2 und in IV wurde der große Speicher im Rahmen der grundsätzlichen Nutzung
von Hilfsvariablen ausführlich behandelt. In diesem Anhang werden die verschiedenen Teile genauer
erläutert, um ihn besser zu gebrauchen, sowie um bestimmte manuelle Operationen (wie in Anhang 2)
zu erleichtern. Darüber hinaus wird der Programmierer auf diese Weise informiert, wie der Speicher
genau benutzt wird.

1. - Physische Beschreibung: Der große Speicher besteht aus zwei Magnettrommeln, die Trommel 0
(Drum 0) und Trommel 1 (Drum 1) genannt werden. Jede Trommel ist in acht Bereiche (von 0 bis 7)
eingeteilt und jeder Bereich besteht aus 32 Sektoren. Die Sektoren sind vom Bereich 0 der Trommel 0
bis zum Bereich 7 der Trommel 1 von 0 bis 511 durchnummeriert. Die Sektoren des Bereichs 2 der
Trommel 1 würden sich zum Beispiel zwischen dem Sektor 320 und dem Sektor 351 befinden.

Jeder Bereich kann durch einen Isolationsschlüssel, der die gleiche Zahl des Bereichs hat
(s. Abb. 6), isoliert werden. Diese Isolation verhindert eine Übertragung vom schnellen Speicher zum
isolierten Bereich des großen Speichers. Eine Übertragung in die umgekehrte Richtung ist trotzdem
möglich. Damit wird sichergestellt, dass der isolierte Bereich gegen Programmierungs- bzw.
Ausführungsfehler geschützt wird. Individuelle Sektoren können nicht isoliert werden. In jeder
Trommel gibt es eine Glimmlampe, das bei einer Übertragung angeschaltet und nicht ausgeschaltet
wird, solange keine Übertragung über die andere Trommel erfolgt. Dadurch erkennt man, welche
Trommel als letzte operiert hat.

2. - Funktion. Der große Speicher hat drei Hauptfunktionen:

1. - Abspeicherung des Übersetzungsprogramms AUTOCODE INPUT
2. - Abspeicherung der verschiedenen Kapitel des übersetzten Programms
3. - Abspeicherung der Zwischenwerte der Berechnung

2.1. Das Übersetzungsprogramm besteht aus zwei Teilen: eine wird nur während der
Übersetzungsphase und der andere auch während der Ausführungsphase (z. B. die Subroutine für die
Berechnung der Elementarfunktionen) gebraucht. Der erste Teil ist in den Sektoren 80 bis 127 und der
zweite in den Sektoren 0 bis 31 gespeichert. Beide füllen zusammen die Bereiche 0 und 3 und den
Bereich 2 nur partiell aus. Die Routine für die Erweiterung für Matrizen, die in den Sektoren 480 bis
511 gespeichert werden, können als Teil des AUTOCODE INPUTS betrachtet werden.

- 51 -

- 52 -

2.2. Die übersetzten Kapitel werden im großen Speicher ihrer Nummer gemäß abgespeichert. Auf diese
Weise entsprechen dem Kapitel 0 die Sektoren 464 bis 479, dem Kapitel 1 die Sektoren 448 bis 463
und dem Kapitel 21 (am möglichen Maximum) die Sektoren 128 bis 143. Unabhängig von der
Lesereihenfolge der Kapitel werden sie immer an der zu ihrer Nummer passenden Stelle abgespeichert.
Wegen der Einzigartigkeit des Kapitels 0, dessen close den Beginn der Berechnungen auslöst, muss
dieses immer an der letzten Stelle gelesen werden. Die Makros, die aus mehreren Programmen
bestehen, können mehrere Kapitel mit der gleichen Nummer enthalten. Die Stelle der Kapitel des ersten
Programms entspricht genau der oben genannten Beschreibung. Die Stelle des nächsten Programms
wird berechnet, indem man das Kapitel 1 als folgendes zu dem zuletzt gelesenen Kapitel des vorigen
Programms betrachtet. Es existiert nur ein Kapitel 0, das immer die gleiche Stelle ausfüllt. Der große
Speicher kann maximal 22 Kapitel (inkl. Kapitel 0) enthalten.

2.3. Die Stelle der Hilfsvariablen interessiert uns am meisten, um unser Programm besser organisieren
zu können und die Zerstörung einiger Kapitel durch die Übereinanderstellung von Zahlen zu
verhindern. Wie wir bereits erfahren haben, besitzen die Variablen numerische Adressen, die sich
zwischen 0 und 10751 und zwischen -1 und -3072 befinden. Die Variablen 0 bis 10751 nehmen die
gleichen Bereiche ein wie die Kapitel 21 bis 1 (s. Abb. 5). Die Variablen -1 bis -3072 werden je nach
Adressbereich in vier Gruppen geteilt. Die erste (-1 bis -1536) zerstört bei der Benutzung das in 2.1.
erwähnte Übersetzungsprogramm; die Gruppe von -1537 bis -2048 ist bei preserve Befehl auf dem
Niveau von Unterkapiteln (2. Ebene) nicht zu verwenden; die Gruppe von -2049 bis -2560 darf nicht
benutzt werden, wenn der Befehl preserve sich auf Kapitel-Niveau (1. Ebene) befindet; die Gruppe von
-2561 bis -3072 ist auszuschließen, falls Erweiterungen für Matrizen benutzt werden bzw. es im
Programm den Befehl rmp gibt.
Diese letzten Beschränkungen hängen mit der Existenz von drei Speicherbereichen zusammen. Zwei
von ihnen werden MASTER und UNTERKAPITEL genannt und belegen jeweils die Sektoren von 48
bis 63 und 64 bis 79. Sie speichern den Inhalt des aktuellen Speichers von Zahlen, die durch den Befehl
preserve geordnet werden. Das dritte, das Sonderspeicherbereich genannt wird, speichert den Inhalt des
aktuellen Befehlsspeichers während der Anwendung von Erweiterungen für Matrizen oder während
einer neuen durch rmp ausgelösten Übersetzung ab.

Die Abbildung zeigt in schematischer Form jeden Hauptteil des großen Speichers. Ihre Anwendung
empfiehlt sich bei der Organisation von Makroprogrammen, die mehrere Programme und
Hilfsvariablen bzw. die Befehle down und preserve verwenden. Tabelle I gibt die Zahl der ersten
Hilfsvariable jedes Sektors sowie die nach Bereich gruppierten Sektoren an. Diese Tabelle ist nützlich,
weil sie sich auf die Bereiche bezieht, die wir isolieren, sowie auf die Sektoren, die wir durch post-
mortem oder andere Erweiterungen drucken möchten.

- 53 -

TABELLE I

Die ungeraden Spalten zeigen die Nummern der Sektoren an. Die geraden Spalten weisen die Nummer
der ersten Hilfsvariablen des zu ihrer Linken angezeigten Sektors auf. Acht Reihen bilden zusammen
einen Bereich, dessen Nummer an seinem Kopf anzuzeigen ist. Diese Nummern stimmen mit
denjenigen der entsprechenden Isolationsschlüssel überein.

TROMMEL 0

- 54 -

- 55 -

TROMMEL 1

- 56 -

- 57 -

ANHANG 2

KONVENTIONELLE BEFEHLE, DIE VON AUTOCODE AKZEPTIERT WERDEN.

Zur Erhöhung ihrer Flexibilität kann die Autocode-Sprache in konventionelle Sprache1

geschriebene Befehle mit einigen Varianten akzeptieren. Die Varianten lassen sich wie folgt
unterscheiden, je nachdem, ob die verwendeten Adressen (Variablen, Indizes oder Marken) in
konventioneller Sprache oder in Autocode geschrieben sind.

1. Adresse in Autocode.

Wenn der Operand ein von Autocode verwendeter Index, eine Variable oder eine Marke ist, wären die
Befehle in konventioneller Sprache wie folgt:

 FB(α) α = eine beliebige Hauptvariable, Sondervariable oder Konstante
FB(i) i = ein Index oder eine Ganzzahl
FB(m) m = eine Marke

Im ersten Fall geht es um Operationen mit großen Zahlen (40 bits), die auf konventionellem Code mit
den Zahlen 40 bis 45 und 50 bis 55 bezeichnet werden. Bei Gebrauch von Variablen mit variablem
Index (wie xi, y (j+1)) muss das B-Zeichen gleich Null sein.
Im zweiten Fall sind die anwendbare Codes durch die Zahlen 00 bis 07 und 20 bis 27 angezeigt.
Im dritten Fall kann die Funktion eine beliebige Sprungfunktion (jump-Funktion) sein.

Beispiele:

a) Folgende Ausdrücke sind möglich:

411(x)
422(zs)
510(xi)
200(k)

b) Um die Werte des Polynoms

y = a0 x10 + a1 x9 + … + a10

1 Diese Anmerkungen dienen denjeniegen, die schon die konventionelle Sprache kennen. Wir möchten daran erinnern,
dass der Befehl lautet:

F-B D
F, das durch zwei Dezimalziffern ausgedrückt wird, stellt die Zielfunktion dar. B ist durch eine einzige Dezimalziffer
ausgedrückt und stellt das Register B dar, das am Befehl teilnimmt. D (das auf unterschiedliche Weise dargestellt
werden kann) ist die Adresse des Operanden.

- 58 -

zu berechnen, geht man folgendermaßen vor:
400(a0)
i = 1 (1) 10
500(x)
420(ai)

repeat
410(y)

2. Adresse in k onventioneller Sprache.

Der Teil des Befehls, der im vorigem Abschnitt in Klammern ausgedrückt wurde, kann nur Adresse
zeigen. Deshalb ist es nicht möglich, die besagte Konvention für diejenigen Befehle anzuwenden, in
denen diese Ziffer eine Konstante zeigt. Die folgende Konvention lässt sich bei jeglichem Befehl
anwenden:

FB, α α = eine Ganzzahl oder eine absolute Adresse

Die Art der Adresse Seiten-Register (2.16 +) und die Symbole ≠ und = können benutzt werden.
Floating bzw. relative Adresse sind nicht zulässig.

Beispiele:

a) Sind zulässig

321, 28
400, 2
512, 2.16
590, 1.0

Sind nicht zulässig

400, v1
430, 2x1

b) Um das Polynom

y = a0 x10 + a1 x9 + … + a10

zu berechnen, geht man folgendermaßen vor:
400(a0)
300, – 9

 1) 500(x)
427(a10)
380(i)
410(u)

- 59 -

3. Anwendung von Erweiterungen in k onventioneller Sprache für die Ausgabe.

Eine der wichtigsten Anwendungen ist das Erreichen einer Flexibilität in der Ausgabe bei der
Anwendung vom Befehl 620, n. Dieser Befehl locht im Ergebnis-Lochstreifen das durch n bezeichnete
Zeichen (s. Tabelle II), in dem n der Wert jeder Lochung in Binärzahlen zeigt. Es wird laut angehängter
Tabelle erläutert. Es ist wichtig, sich die Bedeutung der Zeichen 0 (FS) und 27 (LS) zu merken, denn
sie müssen vor jeder Zahlengruppe (oder vor Sonderzeichen) oder vor jeder Buchstabengruppe gelocht
werden.

Beispiel: Wenn man während des Verfahrens die Ergebnisse auf diese Weise

CASO N [Fall N]
a1 = entsprechender Wert a2 = entsprechender Wert

schreiben möchte, schreibt man

- 60 -

- 61 -

Inhaltsverzeichnis
I. EINLEITUNG..1

1. Allgemeines. ...1
 2. Der Rechner..1
3. Die Autocode Sprache. ...3

II. ELEMENTE DER STATEMENTS...4
1. Variablen. ..4

1.1 Aktuelle Variablen. ..4
1.2. Hilfsvariablen. ..5

2. Indizes. ...6
3. Zahlen. ..6

3.1 Festkomma. ..6
3.2 Gleitkommazahl. ..6

4. Arithmetische Zeichen. ...7
5. Sonderzeichen und Wörter. ..8

III: DIE STATEMENTS...9
1. Arithmetische Befehle. ...9

1.1. Das erste Element ist eine Variable. ...9
1.2. Das erste Element ist ein Index. ...10

2. Steuerbefehle. ...11
2.1. Schleifen. ..11
2.2. Sprünge. ..12
2.3 Sprung zwischen Kapiteln. ..15

3. Externe Steuerbefehle. ..16
4. Eingabe- und Ausgabebefehle. ...17
5. Direktiven. ..19

IV. SPEICHER UND PROGRAMMIERUNG..21
1. Aktueller Befehlsspeicher. ..22
2. Großer Speicher. ...22
3. Hilfsvariablen. ..23

V. ERWEITERUNGEN...24
1. Doppel-Wort-Arithmetik. ..24

VI. DIE PROGRAMME..34
1. Die Kapitel. ..34
2. Die Programme. ..37

2.1 Die Unterprogramme ...37
2.2 Das Hauptprogramm ..39
2.3 Die Bibliothek. ...39
3. Makroprogramme. ..43

ANHANG I..47
ANMERKUNGEN ZU DEN SPEICHERN..47

1. DER SCHNELLE SPEICHER..47
2. DER GROSSE SPEICHER...50

ANHANG 2 ..57
KONVENTIONELLE BEFEHLE, DIE VON AUTOCODE AKZEPTIERT WERDEN.......................57

1. Adresse in Autocode. ..57

- 62 -

2. Adresse in konventioneller Sprache. ..58
3. Anwendung von Erweiterungen in konventioneller Sprache für die Ausgabe.59

	I. EINLEITUNG.
	1. Allgemeines.
	2. Der Rechner.
	3. Die Autocode Sprache.

	II. ELEMENTE DER STATEMENTS
	1. Variablen.
	1.1 Aktuelle Variablen.
	1.2. Hilfsvariablen.

	2. Indizes.
	3. Zahlen.
	3.1 Festkomma.
	3.2 Gleitkommazahl.

	4. Arithmetische Zeichen.
	5. Sonderzeichen und Wörter.

	III: DIE STATEMENTS
	1. Arithmetische Befehle.
	1.1. Das erste Element ist eine Variable.
	1.2. Das erste Element ist ein Index.

	2. Steuerbefehle.
	2.1. Schleifen.
	2.2. Sprünge.
	2.3 Sprung zwischen Kapiteln.

	3. Externe Steuerbefehle.
	4. Eingabe- und Ausgabebefehle.
	5. Direktiven.

	IV. SPEICHER UND PROGRAMMIERUNG
	1. Aktueller Befehlsspeicher.
	2. Großer Speicher.
	3. Hilfsvariablen.

	V. ERWEITERUNGEN
	1. Doppel-Wort-Arithmetik.

	VI. DIE PROGRAMME
	1. Die Kapitel.
	2. Die Programme.
	2.1 Die Unterprogramme

	2.2 Das Hauptprogramm
	2.3 Die Bibliothek.
	3. Makroprogramme.

	ANHANG I
	ANMERKUNGEN ZU DEN SPEICHERN
	1. DER SCHNELLE SPEICHER.
	2. DER GROSSE SPEICHER.

	ANHANG 2
	KONVENTIONELLE BEFEHLE, DIE VON AUTOCODE AKZEPTIERT WERDEN.
	1. Adresse in Autocode.
	2. Adresse in konventioneller Sprache.
	3. Anwendung von Erweiterungen in konventioneller Sprache für die Ausgabe.

