

PREFACE

This manual contains operating and programming information for the Distributed System Interface Kit (HP 91701A/B). The reader is assumed to be familiar with the material presented in the following Hewlett-Packard publications:

- A Pocket Guide to the 2100 Computer**
- Real-Time Executive Software System Manual**
- Real-Time Executive File Manager Manual**
- Basic Control System Manual**
- The HP FORTRAN Programmer's Reference Manual**
- The HP FORTRAN IV Programmer's Reference Manual**
- The HP ALGOL Programmer's Reference Manual**
- The RTE System Cross Loader Manual**
- 12771A Computer Serial Interface Kit Operating and Service Manual**
- 12773A Computer Modem Interface Kit Operating and Service Manual**

TABLE OF CONTENTS

<i>Section</i>		<i>Page</i>
GLOSSARY OF TERMS USED IN THIS MANUAL		vii
I	GENERAL DESCRIPTION	1-1
II	SOFTWARE MODULE DEFINITIONS	2-1
	PART I TCE/1 MODULE DEFINITION	2-3
	PART II TCE/2 MODULE DEFINITION	2-4
	PART III TCE/3 MODULE DEFINITIONS	2-5
	PART IV CENTRAL MODULE DEFINITIONS	2-8
III	APPLICATION PROGRAM PREPARATION	3-1
	PART I TCE/1 APPLICATION PROGRAM PREPARATION	3-2
	PART II TCE/2 APPLICATION PROGRAM PREPARATION	3-5
	PART III TCE/3 APPLICATION PROGRAM PREPARATION	3-8
	PART IV CENTRAL APPLICATION PROGRAM PREPARATION	3-13
IV	SYSTEM OPERATION	4-1
	PART I TCE/1 SYSTEM OPERATION	4-2
	PART II TCE/2 SYSTEM OPERATION	4-3
	PART III TCE/3 SYSTEM OPERATION	4-12
	PART IV CENTRAL SYSTEM OPERATION	4-113
V	PROGRAM-TO-PROGRAM COMMUNICATION	5-1
VI	SYSTEM GENERATION AND INSTALLATION	6-1
	PART I TCE/1 GENERATION AND INSTALLATION	6-2
	PART II TCE/2 GENERATION AND INSTALLATION	6-4
	PART III TCE/3 GENERATION AND INSTALLATION	6-5
	PART IV CENTRAL GENERATION AND INSTALLATION	6-10
VII	SAMPLE PROGRAMS	7-1

APPENDICES

APPENDIX A	Communication Driver Interface	A-1
APPENDIX B	Core Maps	B-1
APPENDIX C	System Tables	C-1
APPENDIX D	Record Formats and Control Blocks	D-1
APPENDIX E	Octal Loader Listings	E-1
APPENDIX F	Conversion Tables	F-1
APPENDIX G	TTY Edit Features	G-1
APPENDIX H	HP Character Set	H-1

LIST OF ILLUSTRATIONS

<i>Figure</i>	<i>Title</i>	<i>Page</i>
1-1	9701 Distributed System Minimum Requirements	1-1
2-1	TCE/1 Terminal Overview	2-3
2-2	TCE/2 Terminal Overview	2-4
2-3	TCE/3 Terminal Overview	2-6
2-4	Central Overview	2-9
2-5	Queue Detail	2-11
2-6	DISP Detail	2-12
2-7	RFAM Detail	2-14
2-8	DISC Detail	2-15
3-1	TCE/1 in an SIO Environment	3-2
3-2	TCE/1 in an SXL-Produced BCS Environment	3-3
3-3	TCE/1 in a PCS-Produced BCS Environment	3-4
3-4	TCE/2 in an SIO Environment	3-5
3-5	TCE/2 in an SXL-Produced BCS Environment	3-6
3-6	TCE/2 in a PCS-Produced Environment	3-7
3-7	Central Program Preparation	3-14
4-1	Remote Request Error Check	4-14
5-1	Block Diagram of Program-to-Program Communication	5-1
5-2	Program Calls for Program-to-Program Communication	5-2
5-3	Remote Request Error Check	5-5
6-1	S-Register for I/O Channel Assignments	6-4
6-2	Moving Head Disc	6-19
6-3	Input/Output Configuration Worksheet for 24K RTE Central	6-20
6-4	Initialization Phase — MH	6-21
6-5	Parameter Input Phase	6-22
6-6	Disc Loading Phase	6-23
6-7	Input/Output Configuration Worksheet for 32K RTE Central	6-47

<i>Figure</i>	<i>Title</i>	<i>Page</i>
6-8	32K Moving Head Disc	6-49
6-9	32K Initialization Phase - MH	6-50
6-10	32K Parameter Input Phase	6-51
6-11	32K Disc Loading Phase	6-52
A-1	Typical Polling Mode Program	A-7
B-1	91701 Terminal Core Allocation	B-2
B-2	24K Central Core Allocation Map	B-3
B-3	32K Central Core Allocation Map	B-4
E-1	BBDL Listing	E-2
E-2	BBL Listing	E-3
E-3	TCE/1 Listing	E-4

LIST OF TABLES

<i>Table</i>	<i>Title</i>	<i>Page</i>
1-1	91701A Distributed System Interface Kit	1-2
1-2	91701B Distributed System Interface Kit	1-3
1-3	91701A/B Distributed System Interface Kit Software	1-4
4-1	Summary of TCE/2 Operator Requests	4-3
4-2	TCE/2 Error Messages	4-9
4-3	Summary of TCE/3 Program Calls	4-15
4-4	Remote File Access File Types	4-17
4-5	Summary of Local Terminal Utility Remote Calls	4-22
4-6	Summary of Terminal Access Monitor Calls	4-23
4-7	Summary of TCE/3 Operator Requests	4-90
4-8	Remote File Management Error Messages	4-110
4-9	TCE/3 Error Messages	4-111
4-10	Summary of RTE Calls	4-114
4-11	Summary of FMP Calls	4-117
4-12	Summary of RTE Operator Requests	4-120
4-13	Summary of FMGR Operator Requests	4-123
4-14	Summary of RTE Error Messages	4-126
4-15	Summary of FMP Error Messages	4-130
6-1	RTGEN Parameter Summary for 91701 Modules	6-11
A-1	D.65 Assembler Calling Sequences	A-5
A-2	D.65 Call Sequences (FORTRAN)	A-6
A-3	BCS Status Bit Descriptions	A-8
A-4	DVR65 Call Sequences (Assembler)	A-9
A-5	DVR65 Call Sequences (FORTRAN)	A-10
A-6	RTE Status Bit Descriptions	A-12
A-7	Data Transmission Mode Compatibility	A-12

<i>Table</i>	<i>Title</i>	<i>Page</i>
C-1	RTE Equipment Table	C-2
C-2	Cartridge Directory	C-3
C-3	File Directory	C-4
D-1	Data Control Block Format	D-2
D-2	File ID Information Format	D-4
F-1	Table of Powers of Two	F-2
F-2	Octal-Decimal Conversion Table	F-3
F-3	ASCII/OCTAL Table	F-4

GLOSSARY OF TERMS USED IN THIS MANUAL

BCS TERMINAL – A terminal whose software includes the Basic Control System. Input/Output is accomplished by BCS compatible drivers. I/O may be buffered or non-buffered.

CENTRAL COMPUTER – The computer which resides at the “hub” of a spoke-configured distributed system. Generally thought of as having the most extensive set of peripherals or resources.

COMMUNICATION LINE – The interconnecting link between communications cards in computers of a distributed system. The link is most commonly a cable comprised of a double set of twisted wire pairs with shielding.

COMMUNICATION SERIAL INTERFACE DRIVER – A communication input/output subroutine which passes preformatted requests and data to and from the serial interface cards connecting computers. See also “Computer Communication.”

COMPUTER COMMUNICATION – The transmission of coded requests and associated blocks of data between computers. The transmission is over communication lines and utilizes communication serial interface I/O cards. The coded requests are typically 20 computer words in length and contain all information required by the receiving computer to reconstitute and execute the request. The data blocks are of varying length.

DISTRIBUTED SYSTEM – Generally used to mean a multi-computer environment. HP 9701 is a Distributed System in the sense that multiple physical terminal computers are tied to a central (host) computer.

DRIVER – Software <input>/<output> routine which performs actual I/O functions on devices. Always written in assembly level language.

HOST SYSTEM – Central computer in which the HP 91701 central software resides.

LOADER – This term is used in two ways in this manual:

1. A program which transforms, or “LOADS,” relocatable object programs into absolute object programs resolving symbolic addresses, external references, segmentation links, and setting indirect addresses for instruction operands that do not reside on the same page as the instruction. Examples are:

SXL – A loader which will generate programs that can be executed in an environment different from that in which it was produced.

RTE Loader – A background disc-resident program that:

- a. Relocates background programs for RTE.
- b. Adds or replaces RTE disc-resident programs.

2. A program which communicates with a storage device for the purpose of transferring another program from the device into execution memory. The storage device may be local or remote. In the remote case the action is referred to as a down-link load.

MASTER/SLAVE RELATIONSHIP – Master/slave relationship dictates the task relationship between computers in a distributed system. The computer which typically issues remote requests (the terminals in a HP 9701 Distributed System) is called the master. The program which executes the requests (the HP 9701 central computer) is called the slave.

MODEM – An electronic device for converting a binary bit pattern to a modulated sine wave for transmission across a telephone line and then back to a bit pattern at the de-modulation end.

MODULE – A unit of software designed to provide a specified response to a given system stimulus. Loosely, a “program.” The total HP 9701 Distributed System software is broken up into modules to facilitate design, production and modification to meet varying installation requirements.

MONITOR – In the HP 91701 context, monitor is used to mean that program module (or modules) which are used to process the requests of the associated stream. The remote file access monitor (RFAM) is an example.

MULTIPROCESSOR INTERLEAVING – Interleaving is a special process of addressing adjacent storage modules in and even/odd fashion.

PROGRAM-TO-PROGRAM COMMUNICATION – The communication between two software modules executing in two different computers. HP 91701 supports the initialization of the program at the central computer from the terminal computer. The format of the requests and data passed between the programs is defined by the user who interfaces directly with the communication serial interface driver. See “Computer Communication.”

PROTECTED AREA OF CORE – The last 64 (decimal) words of 2100 memory are hardware read/write protected. This area contains the communication bootstrap (TCE/1), or the HP Basic Binary Loader (BBL), or the HP Basic Binary Disc Loader (BBDL). See Appendix E.

REMOTE EXEC CALLS – Remote exec calls consist of a

subset of the standard RTE Exec calls performed by a central (host) computer on behalf of a user program requesting service from a remote terminal computer.

REMOTE FILE ACCESS — Remote file access consists of file actions performed by a central (host) computer File Management Package (FMP) on behalf of a user program requesting from a remote terminal computer.

REMOTE PROGRAM LOAD — A three (optionally four) step communication process, remote program loading consists of:

1. A request for a specific program file (stored on mass storage at central) to be loaded into the requesting remote terminal.
2. The access of that file by central station software and outputting absolute format file records.
3. The receiving of those records and their storage by the terminal computer.
4. Optional execution of the received code by transfer to a passed starting address.

ROUND ROBIN DISPATCH — A method of servicing incoming requests which assures equal service to all terminal computers. HP 91701 assures no single terminal computer is allowed two consecutive services while there is a request outstanding on an unserviced computer.

SERIAL INTERFACE — Hard wired interface between two computers. (See "Modem.")

SIO - SUBROUTINES — A group of System Input/Output (SIO) subroutines used to perform basic input/output operations for programs in absolute form.

STREAM TYPE — A group of logically related requests comprise a stream type and are processed by one program monitor. The various aspects of remote file access (remote open, remote close, etc.) comprise the remote file stream.

SUBSTREAM — An identifier assigned to a request by the terminal computer and maintained until status is returned to the terminal user following service.

TABLE DRIVEN MODULE — A design philosophy widely employed in the HP 9701 Distributed System. Table driven modules consist of a relatively simple process module which derives information for a specific action from one or more tables of information and related subroutines.

TERMINAL COMPUTER — A computer (perhaps one of several) connected by a communication line to a (processing center) host computer. The terminal computer is usually dedicated to a specific task and shares central computer resources with other terminals.

TERMINAL OPERATING SYSTEM — Related software modules loaded into a terminal computer in a distributed system which permit:

1. The communication between the terminal computer and the central station computer, and,
2. The communication between the terminal computer and the terminal computer operator.

TERMINAL REQUEST QUEUE — A pool of input/output buffers which contain the incoming requests from time of receipt until the request information is overlayed with completion status information for transmission back to the requesting terminal.

TRANSMISSION LOG — A parameter returned following an I/O transfer to indicate the number of words or characters actually transmitted.

TRANSMISSION PARAMETER BUFFER — The formatted system request passed from computer to computer to facilitate communication. (See "Computer Communication.")

SECTION I

GENERAL DESCRIPTION

INTRODUCTION

This manual describes the HP 91701A/B Distributed Systems Interface Kits as they are used in the HP 9701 Distributed System. Tables 1-1 and 1-2 list the components of the HP 91701A/B Kits.

The HP 9701 Distributed System is composed of a network of minicomputer-based terminals connected and integrated

into a central real-time, multi-programming data processing system. The central system in this configuration is the HP 9600E/F Real-Time Executive (RTE) System. The terminal systems consist of any member of the HP 2100 Series of computers operating in the Basic Control System (BCS) environment. The Distributed System capability results from the HP 91701 Distributed Systems Interface Kit. The component interfaces of the HP 9701 Distributed System are shown in Figure 1-1, below.

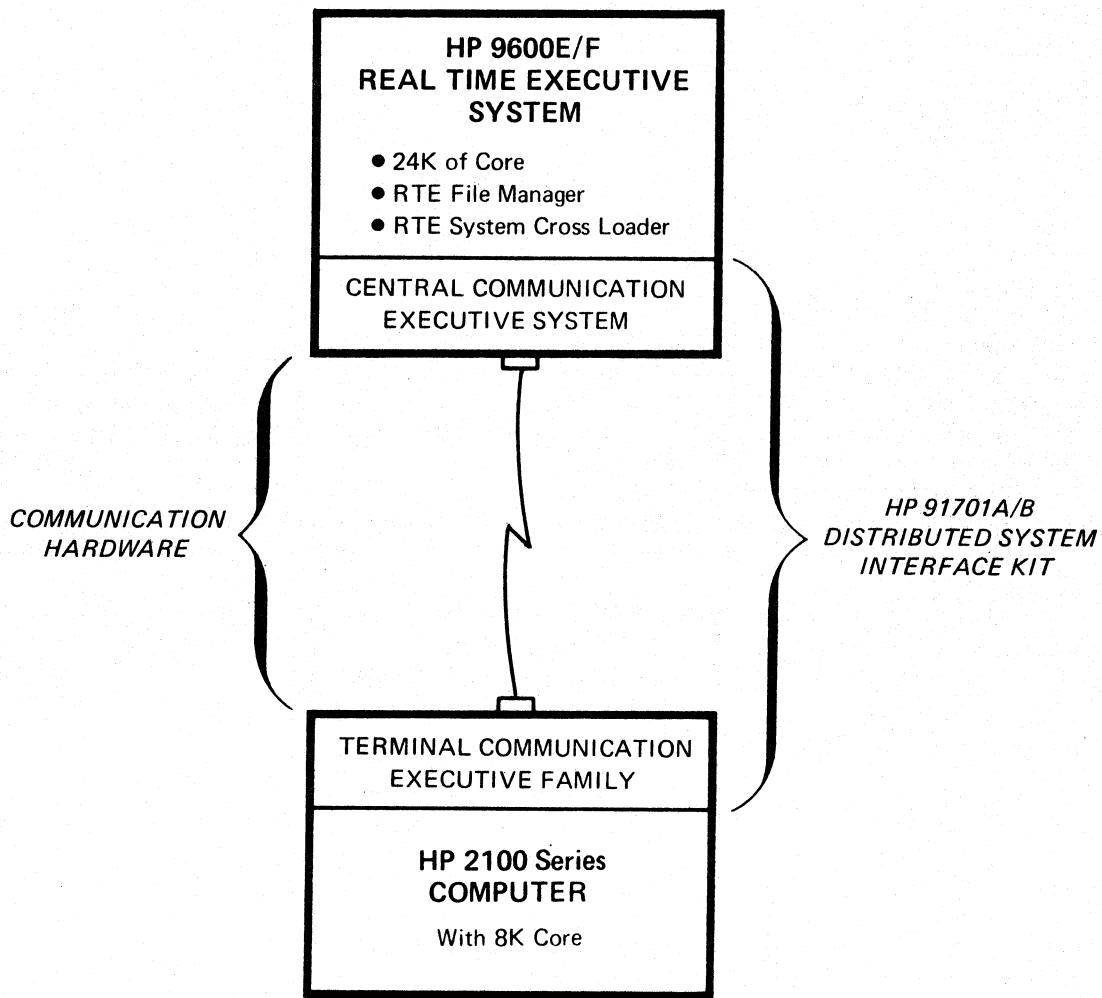


Figure 1-1. HP 9701 Distributed System Minimum Requirements

HP 9701 REQUIREMENTS

The HP 9701 Distributed System requires that the HP 9600E/F RTE at the central have a 24K core size and that the RTE File Manager is part of the user's system. The RTE

System Cross Loader (SXL) assists in the central program development for the remote terminal systems.

For minimal system design, the HP 91701 Distributed System Interface Kit requires as little as 8K core at the remote terminal system.

SYSTEM COMPONENTS

The HP 91701 Distributed System Interface Kit facilitates the integration of the remote terminal systems and the central RTE into a multi-computer distributed system. The HP 91701 Distributed System Interface Kit is available in two models, as shown in Tables 1-1 and 1-2. These models are distinguished by the types of communication hardware provided.

The HP 91701A (Table 1-1) offers the user a hardwire interface between the two computers with the HP 12771A Serial Communication Interface Kit.

The HP 91701B (Table 1-2) offers the user communication between two computers via common carrier telephone lines using user supplied data sets and the HP 12773A Modem Interface Kit.

Table 1-1. 91701A Distributed System Interface Kit

Hardware	Software	Documentation	Options	Additional Requirements
HP 12771A Computer Serial Interface Kit	Distributed System RTE Software Kit Distributed System BCS Software Kit	12771A Computer Serial Interface Kit Operating and Service Manual 91701 Distributed System Kit Manual	020 041 or 042 or 043 or 044 or 045 or 046	9600E RTE System or 9600F RTE System and HP 2100 Series Computer (BCS)

Options:

020	Distributed System Kit (RTE/BCS) for an additional terminal system (after the first) includes hardware for hardwired communications at both ends and an additional terminal communications executive.	043	500-foot communication cable with loose connectors for HP 91701A or HP 91701A-020.
041	250-foot communication cable with loose connectors for HP 91701A or HP 91701A-020.	044	500-foot communication cable with assembled connectors for HP 91701A or HP 91701A-020.
042	250-foot communication cable with assembled connectors for HP 91701A or HP 91701A-020.	045	975-foot communication cable with loose connectors for HP 91701A or HP 91701A-020.
		046	975-foot communication cable with assembled connectors for HP 91701A or HP 91701A-020.

Table 1-2. 91701B Distributed System Interface Kit

Hardware	Software	Documentation	Options	Additional Requirements
12773A 2 each Computer Modem Interface Cards	Distributed System RTE Software Kit Distributed System BCS Software Kit	12773A Computer Modem Interface Kit Operating and Service Manual 91701 Distributed System Kit Manual	020 023	9600E RTE System or 9600F RTE System and HP 2100 Series Com- puter (BCS) Customer Furnished Modems

Options:

020 **Distributed System Kit (RTE/BCS)** for an additional terminal includes hardware to support modem communications at both ends and an additional terminal communication executive.

023 **Distributed System Kit (BCS)** for an additional terminal, with hardware to support modem communication only at the terminal system. Requires previous HP 91701B or HP 91701B-020.

The HP 91701 Distributed System Interface Kit software is described in Table 1-3 below. This list does not include the software for either the HP 9600E/F RTE central, or the HP 9600A BCS terminals.

It should be noted that the RTE Executive, binary tape number 29016-60001, provided with Real-Time Executive Software, must be replaced at system generation with the HP 91701 Distributed System version of this module, binary tape number 29100-60011.

Table 1-3. HP 91701A/B Distributed System Interface Kit Software

Binary Tape Number	Description	Binary Tape Number	Description	Binary Tape Number	Description
RTE CENTRAL		BCS TERMINAL		SIO DRIVERS	
29100-60002	QUEUE	29037-60001	TCE/1 (4K)	29100-60016	Buffered TTY Driver (24K)
29100-60003	DISP	29037-60002	TCE/2 (4K)	29100-60017	TTY Driver LP-Compatible (24K)
29100-60004	TAM (RTE)	29037-60003	TEXEC	29100-60018	System Dump (24K)
29100-60005	RFAM	29037-60004	TAM (BCS)	29100-60019	Photo Reader Driver (24K)
29100-60006	DISC	29037-60005	RFAIN	29100-60020	Tape Punch Driver (24K)
29100-60007	PROGL	29037-60006	.IOC.	29100-60021	HP 2778A Line Printer Driver (24K)
29100-60008	DLIST	29037-60007	D. \emptyset D	29100-60022	HP 2767 Line Printer Driver (24K)
29100-60009	ERR	29037-60008	TCE/1 (8K)	29100-60023	HP 7970 Magnetic Tape Driver (24K)
29100-60010	LSTEN	29037-60009	TCE/2 (8K)	29100-60024	HP 2020 Magnetic Tape Driver (24K)
29100-60011	EXEC	29037-60010	TCE/1 (12K)	29100-60025	HP 3030 Magnetic Tape Driver (24K)
29100-60012	QUDIS (8 terminals)	29037-60011	TCE/2 (12K)		
29100-60013	QUDIS (16 terminals)	29037-60012	TCE/1 (16K)		
29100-60014	QUDIS (32 terminals)	29037-60013	TCE/2 (16K)		
29100-60015	QUDIS (24 terminals)	29037-60014	TCE/1 (24K)		
		29037-60015	TCE/2 (24K)		
		29037-60016	TCE/1 (32K)		
		29037-60017	TCE/2 (32K)		

29100 - 60032 TC3GN

29100 - 60001 SXL

29103 - 60119 BCSGN

SYSTEM DESCRIPTION

MULTI-COMPUTER ENVIRONMENT

The computer network provided by the 9701 system provides the advantage of geographical distribution and the economy of shared peripherals. The multi-computer environment of the 9701A/B also permits parallel processing between the central computer and all terminals.

MULTIPROGRAMMING

The multi-computer network of the 9701 Distributed System maximizes the multiprogramming capability of RTE. The RTE central with its ability to overlap and inter-leave terminal data can make maximum use of shared resources.

CENTRAL PROGRAM PREPARATION

Application programs may be completely prepared at the central computer. This can be done while the central computer is handling communications and processing for other terminal systems. Application programs are written, compiled, configured and relocated on the central disc, ready for immediate load and execution in the terminal system.

REMOTE PROGRAM LOAD

The terminal systems may load programs from the central disc with a single request. This provides a minimum terminal system with a high speed disc capability for program

storage. It provides the ability to use standard test programs at several terminal systems and to have them controlled and maintained centrally. Remote program load also provides the capability for terminal systems with small core to handle large programs which have been segmented and chained.

REMOTE FILE ACCESS

Each terminal system can read or write data to the central disc through the use of Remote File Access commands. This provides a small terminal system with the complete resources of the File Management Package software, central computer mass storage, including high speed disc, and central computer peripheral access.

PROGRAM-TO-PROGRAM COMMUNICATION

Program-to-program communication consists of a dialogue between a program at the central computer and a program at a terminal computer. A communications link is established between the two programs via the BCS Communications Driver (D.65), at the terminal and the RTE Communications Driver (DVR65) at the central computer.

REMOTE I/O

The terminal programmer and operator have access to all logical units defined at the central computer as if they existed at the local terminal. These units normally include disc, teletype, high-speed punch, tape reader, line printer, and magnetic tape.

SECTION II

SOFTWARE MODULE DEFINITIONS

The Distributed System software modules are divided by location into those modules which reside at the terminal computers and those modules which reside at the central computer. The particular modules required in a given terminal configuration are determined by the level of Terminal Communications Executive, (TCE/1, TCE/2 or TCE/3), installed.

This section discusses each of the Terminal Communications Executives separately and outlines the modules required by each. The modules at the central computer are also indicated with discussion of their purpose.

PART I – TCE/1 MODULE DEFINITION

The TCE/1 Overview in Figure 2-1 shows the interface points between the user, the Distributed System software and the central computer. The TCE/1 executive is a modified version of the Basic Binary Loader. It requires no other subroutines. Appendix E provides an octal listing of TCE/1. Section III contains information on running application programs under this terminal executive.

PART II – TCE/2 MODULE DEFINITION

The TCE/2 Overview shown in Figure 2-2 is intended to show the points of interface between the user, the Distributed System terminal software and the central computer software. TCE/2 is a program that requires no other subroutines. Section III contains a discussion of how to run application programs under this executive. Section IV provides information on the operator requests, error codes and initialization procedures for this program.

PART III – TCE/3 MODULE DEFINITIONS

The TCE/3 Overview in Figure 2-3 indicates the interface between the application operator/programmer, the terminal software and the central computer. TCE/3 consists of relocatable BCS modules configured to provide both a self-contained loader and a terminal control program.

The available program calls, operator requests and error messages are provided in Section IV. This section also provides the initialization procedure. Section III contains information on application program code and formats requirements for this program.

PART IV – CENTRAL MODULE DEFINITIONS

The Central Overview in Figure 2-4 shows the interface between 91701 software, the 12771A software, and the

9600E/F software. This also indicates the module interface between the terminal user and the central processing software. What may not be apparent in this figure is that the central user retains the full capability of the 9600 software, (RTE and FMP packages), while adding the 91701 capability.

Section III contains a summary of the application program requirements. Section IV contains summaries of the program calls, operator requests and error messages for both RTE and FMP. If further information is required, the reader is referred to the appropriate system software manual.

PART I

TCE/1 MODULE DEFINITION

TCE/1 is a special 64-word Basic Communications Boot-strap Loader which is used in a way similar to the standard Basic Binary Loader. TCE/1 resides in the protected area of core in place of the standard BBL and is available to restart the terminal in the event of a software crash. TCE/1 can be used to load programs selected by octal number 1 - 77 input through the switch register. The 91701 software at the central computer prefixes PROG to the switch register number and loads program PROG *nn* from the central disc into the terminal computer. The program PROG *nn* must have been previously stored on disc as absolute code. This terminal executive can be used for initial startup and for terminal systems with minimum peripherals. It supports terminal computers with 4K or more of core.

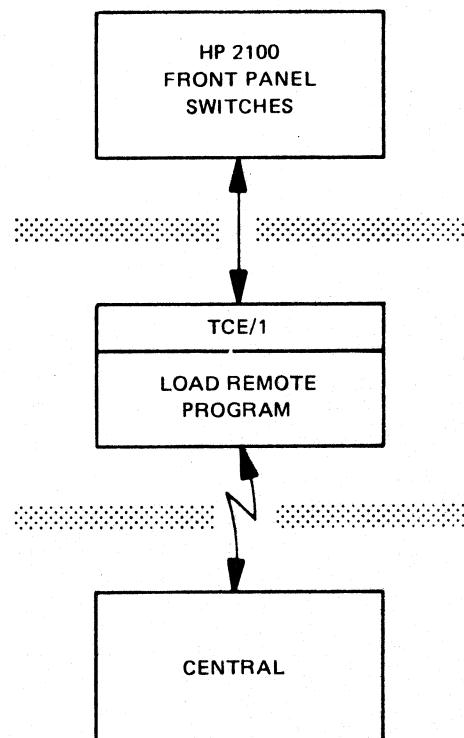


Figure 2-1. TCE/1 Terminal Overview

PART II

TCE/2 MODULE DEFINITION

TCE/2 is a small, simple, non-interrupt executive. It is a stand-alone, self-contained module which resides in high core. While TCE/2 is not a member of the SIO family, it will operate in either a user-supplied SIO, or BCS environment as described in Section III.

This version of the terminal executive combines the ability to load programs from the central computer with the ability to execute them via commands entered through the keyboard. Multiple LOAD commands can be used to test the effects of overlays and patches. The command parameters are made available to the loaded program by passing the address of the parameter list in the B-Register. I/O is internal for communications and CRT/TTY. It supports terminal computers with 4K or more of core. The use of TCE/2 is limited to program load and execution at the terminal computer.

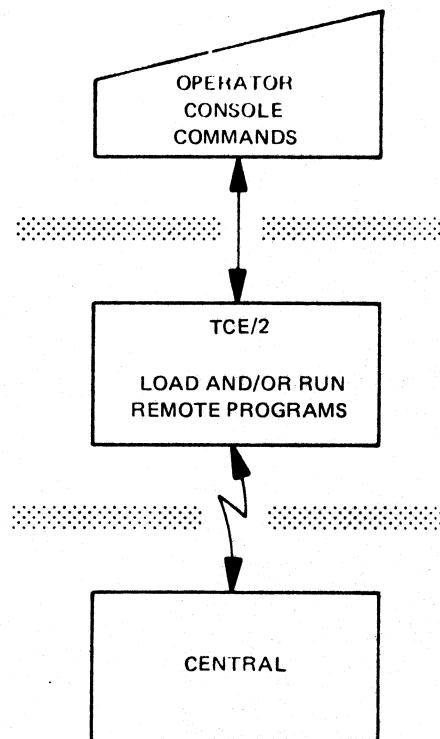


Figure 2-2. TCE/2 Terminal Overview

PART III

TCE/3 MODULE DEFINITIONS

The TCE/3 terminal executive consists of the modules shown in Figure 2-3. These relocatable BCS modules provide the full 91701 capability to the terminal user. TCE/3 is fully upward compatible with TCE/2. In addition to the functions available with TCE/2, the TCE/3 user may do remote file accesses and program-to-program communication.

TCE/3 consists of the following modules:

D.00D	CRT/TTY Driver
TEXEC	Terminal Executive Module
RFAIN	Remote File Access Initiator
#TAM	Terminal Access Monitor
D.65	BCS Communications Driver
.IOC.	BCS I/O Control Subroutine

CRT/TTY DRIVER (D.00D)

A modified version of the standard D.00D-TTY driver is used to perform special functions for TCE/3. It is always enabled for input (even during output). All input interrupts are checked to see if the ESCAPE key was pressed. If the ESCAPE key is pressed, the terminal program is aborted. If any key is pressed during output, I/O stops and the driver "listens" for the next input. If the key pressed was the ESCAPE key, the terminal program is aborted. If the key pressed is anything but ESCAPE, I/O resumes.

RUBOUT (line deletion) and Control H (backspace) are processed during operator input. Input of a carriage return causes completion, and a line feed is output by the driver.

TERMINAL EXECUTIVE (TEXEC)

TEXEC, the interface between the terminal operator and the TCE/3 remote file access modules, provides remote operations through operator requests. This executive accepts all TCE/2 commands and in addition allows: scheduling of programs to be run at the central computer, messages to be sent to the central operator, and a request to be made for the time from central's real-time clock. Disc files at the central computer may be created, renamed, closed and purged.

Terminal operator requests are checked for errors and converted into the corresponding RFAIN calling sequence. TEXEC then performs the call to RFAIN (Remote File Access Initiator). The allowable commands are organized into a mnemonic table, where each ASCII name corresponds to the address of a processing routine.

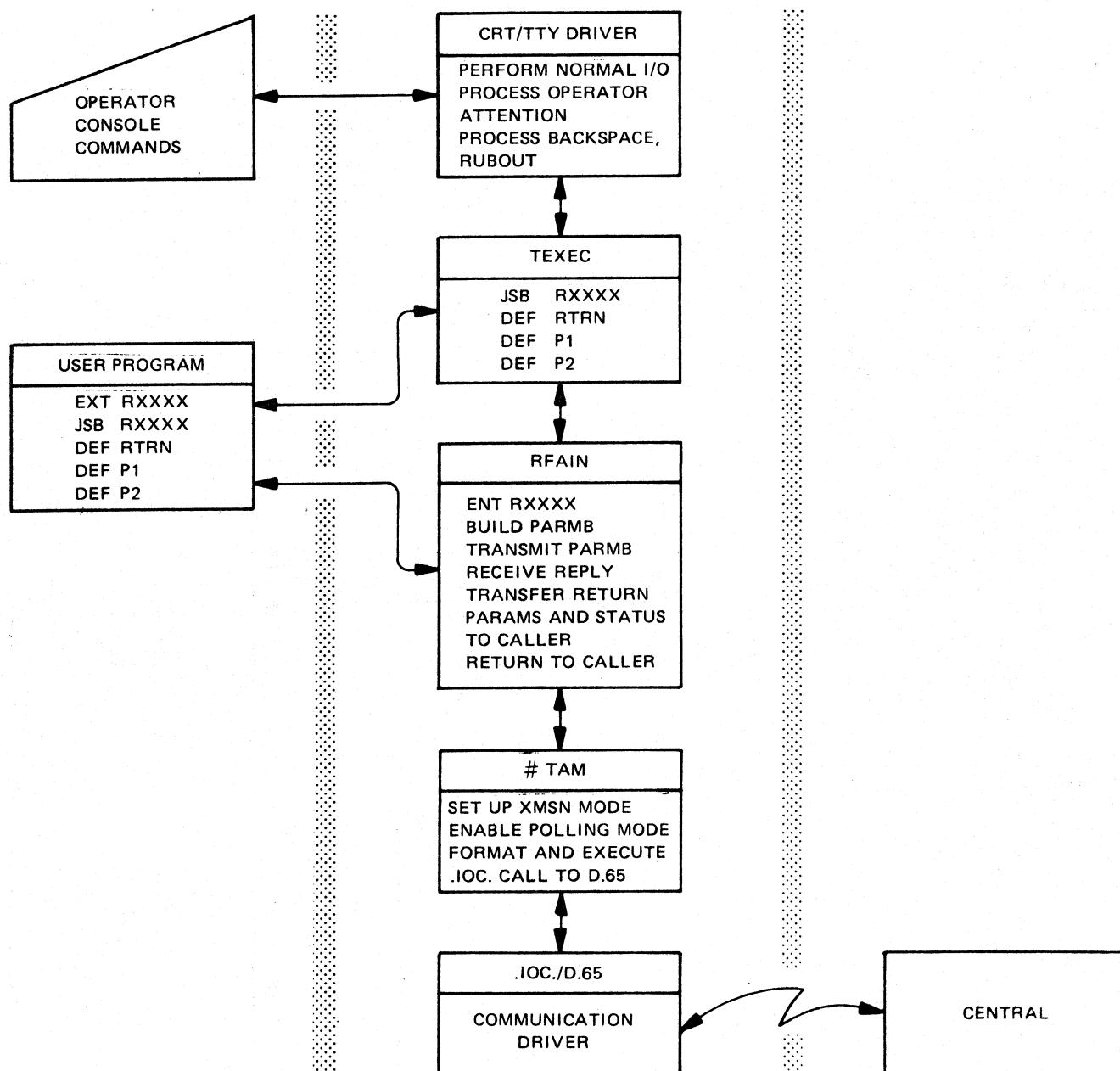


Figure 2-3. TCE/3 Overview

REMOTE FILE ACCESS INITIATOR (RFAIN)

RFAIN contains entry points for remote RTE File Management Package calls, and remote RTE Executive calls. Upon entry into this module, the user's parameter addresses are placed in the Parameter Address Vector table (PAV). An empty entry in the Request Array is obtained and the addresses of the user's return parameters are stored. The index number of the entry becomes the sub-stream number for the call. The Request Array is single entry for BCS terminals.

Information for each remote request is placed in the parameter buffer (PARMB) to be transmitted to the central computer. The PARMB contains: a data stream ID which specifies the class of calls, a subsystem ID which is used as an index to request array entry for multiprogramming terminals, and a function code that corresponds to the particular user and the parameter values required by central to reconstruct this call are placed into PARMB. A call is made to #TAM (Terminal Access Monitor), to transmit PARMB to the central computer. The status of the remote communications and the status of the remote call are returned via #TAM into the associated request array entry's input buffer. When the remote call is completed, the return parameters are transferred to the user and RFAIN returns control to its caller.

TERMINAL ACCESS MONITOR (#TAM)

#TAM is the interface to the BCS D.65 driver, described in Appendix A. It converts user calls to .IOC. formats.

HP 12771A COMPUTER SERIAL INTERFACE KIT DRIVER (D.65)

D.65 is a driver used in the BCS terminal environment to set up calling sequences to .IOC., and to communicate with the RTE communications driver DVR65 at the central computer. D.65 with DVR65 provides the data link between the central computer and all terminal computers. The following calls are legal for D.65:

- Receive or transmit data only
- Receive request only
- Enable Listen mode
- Enable Polling mode
- Transmit STOP reply
- Clear request
- Status request

Appendix A provides a description of driver characteristics, call sequences data transmission mode requirements, and programming techniques.

PART IV

CENTRAL MODULE DEFINITIONS

The primary function of the 91701 software at the central computer is to provide remote data and program storage, and retrieval for the terminal computers. The modules which constitute the 91701 central software are shown in Figure 2-4. The central computer operator and programmer are provided with all of the capability normally found in the RTE and FMP packages. In addition to these functions, the 91701 software provides the ability to do program-to-program communication. A program at central may communicate with a program running at a terminal after the central program initiates the data link and communication.

Figure 2-4 shows an overview of the central computer software and its interface with the terminals. This figure also indicates the relationship that exists in the 9701 system between the 91701 central software and the RTE and FMP subsystems.

The 91701 software at the central computer is composed of the following software modules:

LSTEN	Enable Listen Mode
DVR65	RTE Communications Driver
QUEUE	System Queue Module
DISP	System Request Dispatches
TAM	Telecommunications Access Monitor
RFAM	Remote File Access Monitor
DISC	Disc Service Subroutine
QUDIS	Privileged Queueing/Dequeueing Subroutine
ERR	Error Monitor
PROGL	Program Load
DLIST	Directory List

RTE and FMP are also required and function in the 9701 system as indicated in the discussion in the paragraphs which follow.

ENABLE LISTEN MODE MODULE (LSTEN)

This module is used to configure the 91701 software and establish the communications link between the central computer and the terminals. LSTEN has two options which are used to establish communication links for the entire system or to reinitialize the communication link between central and a single terminal. LSTEN is turned on by operator request from the central computer console.

RTE COMMUNICATIONS DRIVER (DVR65)

DVR65 is a driver used in the RTE central environment to communicate with the BCS environment at the terminals

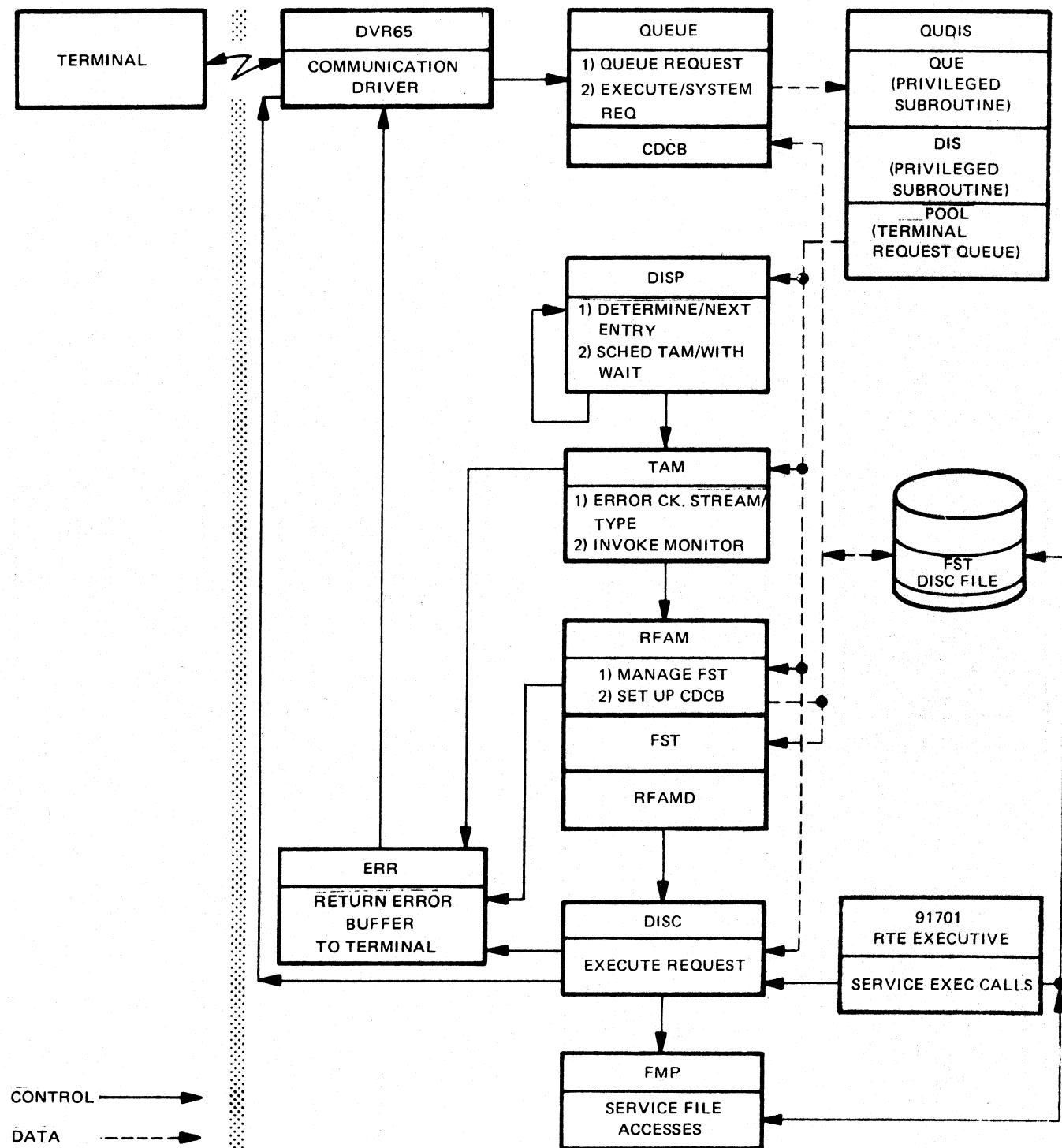


Figure 2-4. Central Overview

through D.65 to recognize the interrupt from a terminal request.

Appendix A describes the driver characteristics, call sequences, data transmission mode requirements and programming techniques executed at the terminal.

SYSTEM QUEUE MODULE (QUEUE)

The module QUEUE shown in Figure 2-5 determines the Logical Unit number of the requesting terminal. It receives all terminal requests for all stream types and places them into a service queue. The queueing scheme is as follows:

- a. Terminals are allowed one service in turn (round-robin fashion).
- b. Hardware priority is maintained. The round-robin begins at the highest priority terminal on each round.

QUEUE is designed in such a way that the mixture of communication executive types is transparent to the system.

QUEUE receives the standard PARMB buffers from TCE/2 or TCE/3, or builds a 20-word PARMB buffer from the one program number input by TCE/1.

QUEUE also decodes and services special system requests that do not require monitor intervention.

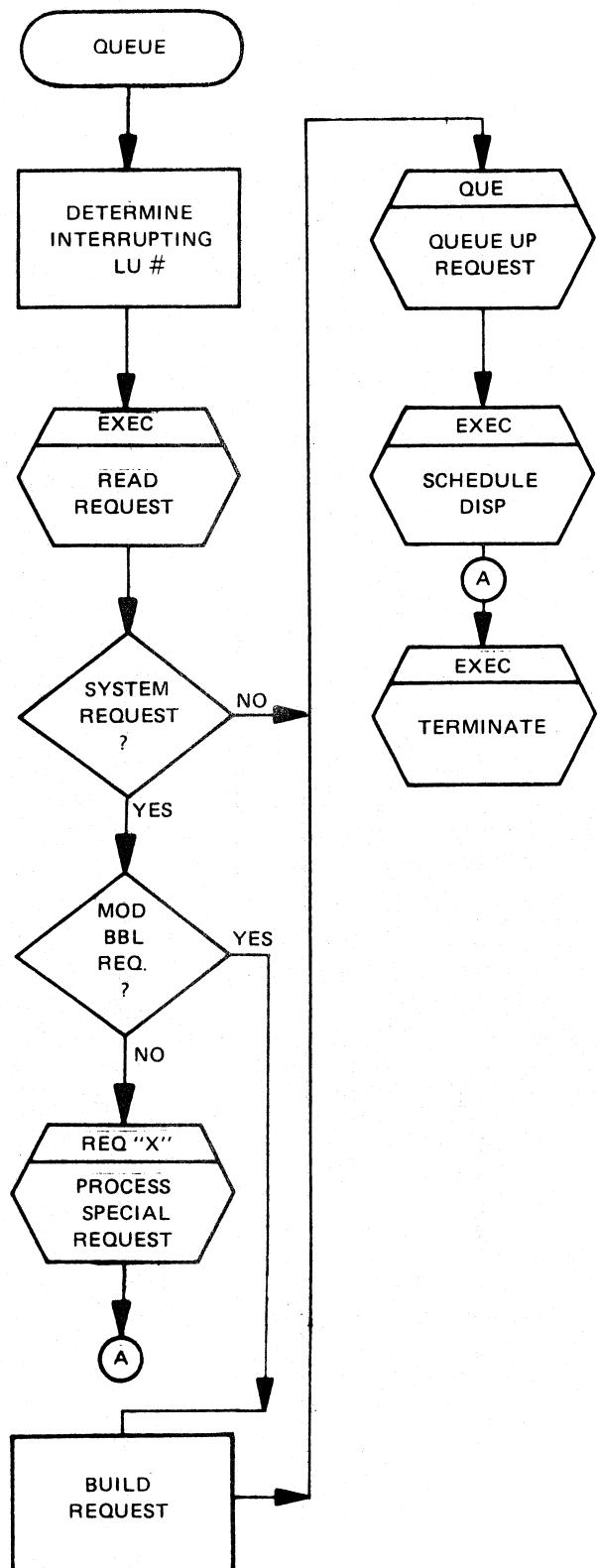


Figure 2-5. Queue Detail

SYSTEM REQUEST DISPATCHER MODULE (DISP)

The module DISP shown below in Figure 2.6 is scheduled at the conclusion of each terminal service operation and at the conclusion of any queueing action. DISP has two functions:

1. Determine the next request to be serviced according to the round robin priority established in QUEUE,
2. Initiate service for the request by scheduling the Telecommunications Access Monitor (TAM).

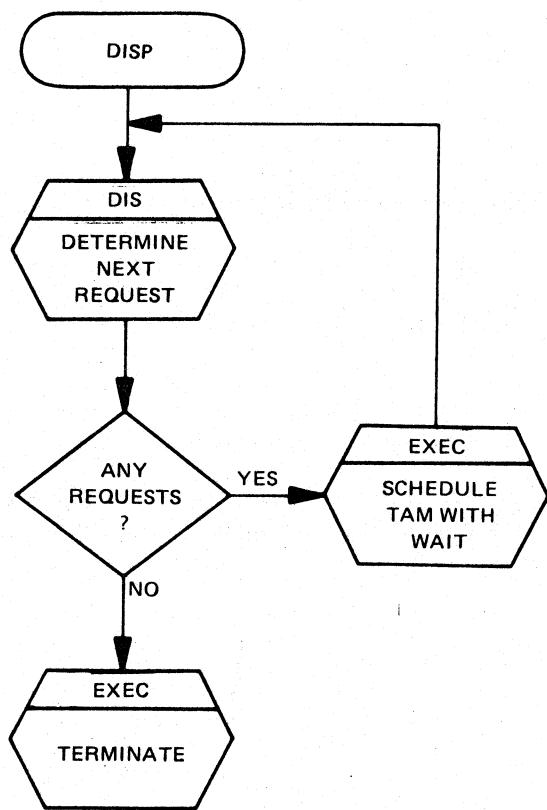


Figure 2-6. DISP Detail

TELECOMMUNICATIONS ACCESS MONITOR (TAM)

The module TAM is scheduled by DISP. It receives a pointer to the request buffer to be serviced. The request buffer is examined and the stream type extracted from the PARMB header. The stream type is utilized as a switch to invoke the monitor required to process the request.

The Distributed System interface (91701) provides a Remote File Access Monitor (RFAM) and an Error Monitor (ERR). Legal Remote File Access stream types cause RFAM to be scheduled. Illegal stream types cause ERR to be scheduled.

REMOTE FILE ACCESS MONITOR (RFAM)

The Remote File Access Monitor is invoked by TAM for Remote File Access and remote EXEC calls.

RFAM, as shown in Figure 2-7, maintains a File State Table (FST) with entries and work areas for each remote file open in the system. The attempt is made to maintain as many FST entries in core as possible to decrease access time.

Those FST entries that cannot be maintained in core (oldest entries) are put in the overflow file and maintained on disc. The location of these entries is made available by the Remote File Access Monitor Directory, which is also maintained by RFAM.

After a file access is cleared through the FST, a processing subroutine (DISC) is called to perform the disc requests.

DISC SERVICE SUBROUTINE (DISC)

DISC, as shown in Figure 2-8, is a table-driven module which is called to examine the transmission parameter buffer (PARMB) and reconstitute it into a File Access calling format so that a local FMP or RTE call can be made for processing call. This is accomplished by extracting the original calling sequence parameters from the PARMB, and using the sub-function number from PARMB as an index into a table of entry points for the appropriate processing subroutine to be called.

Each reconstituted file command is preceded and followed by its pre-process and post-process subroutine. A typical pre-processing subroutine can perform preliminary error checking or data buffer gathering directly from the serial interface driver, DVR65. A typical post-processing subroutine can return status or data on the request directly to the terminal of origin.

ERROR MONITOR (ERR)

The error monitor is scheduled by TAM when a stream type error is detected. It is also scheduled by RFAM or DISC when a completion error is detected in either of these modules. ERR receives the error type that has been detected in the B-Register. ERR returns this information in a completion request to the originating terminal to signal that the request has failed. After transmission of the request, ERR returns control to the module that scheduled it and the servicing of the original request is concluded.

PRIVILEGED QUEUEING/DEQUEUEING SUBROUTINE (QUDIS)

QUDIS consists of two subroutines, each with a separate entry point. The first, QUE, is called from QUEUE; the second, DIS, is called from DISP. QUE receives a request read from the interface and places it in the Terminal Request Queue (POOL) buffer pool for later servicing. QUE also sets an activity flag to indicate a request has been re-

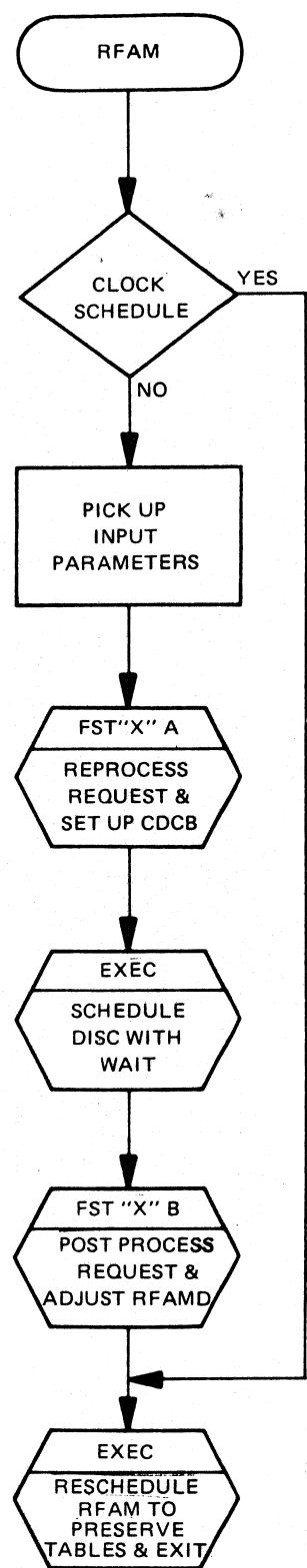


Figure 2-7. RFAM Detail

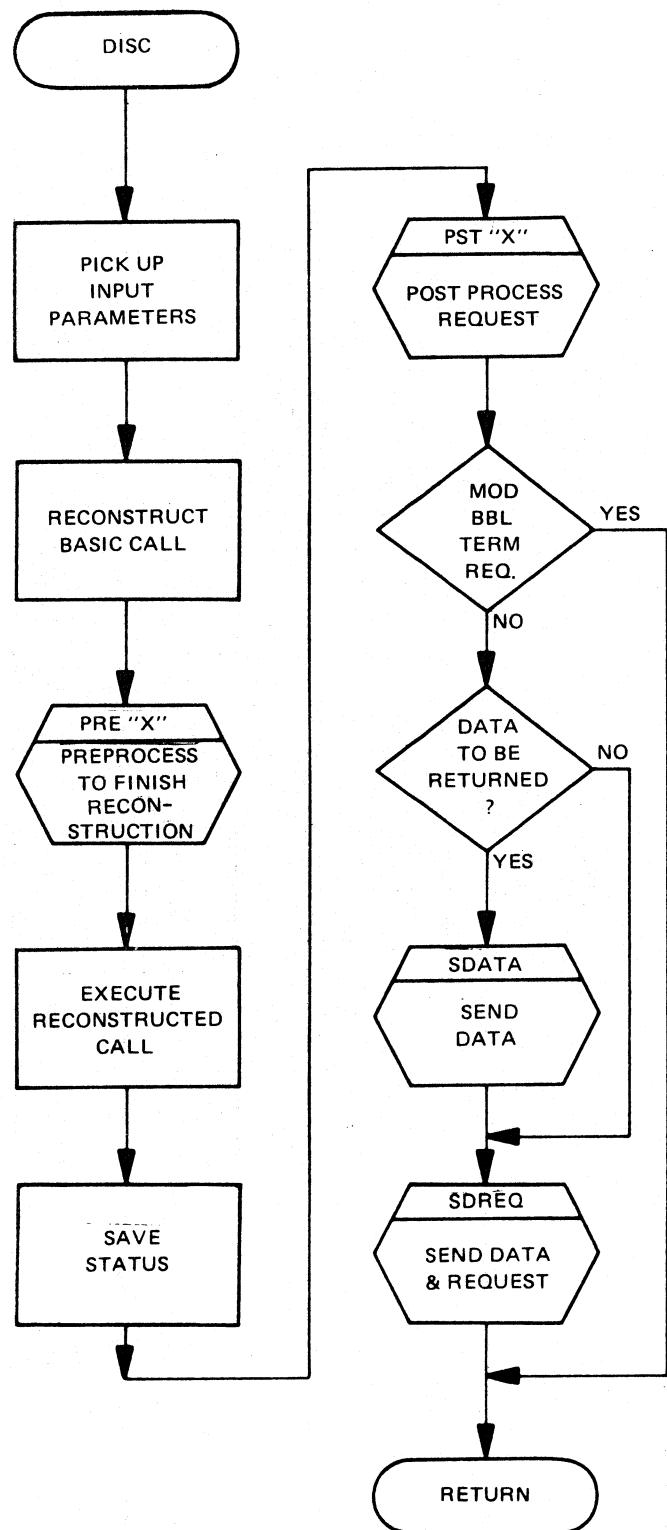


Figure 2-8. DISC Detail

ceived and awaits service. DIS tests all activity flags and determines which one of the outstanding requests are to be returned to DISP for service. DIS clears the activity flag on the request about to be serviced and maintains the round-robin dispatching scheme.

REAL-TIME EXECUTIVE (RTE) – Special RTE EXEC Module Provided With 91701

The central computer programmer and operator have access to the full capability of RTE as described in the **Real-Time Executive System Manual** and as summarized in Section IV of this manual. The remote user has access through the 91701 software to those central computer RTE calls and requests which are meaningful at the terminal. See Section IV for a complete description of the functions available. It should be remembered that the RTE executive module (EXEC) furnished with the 91701 Distributed System Interface Kit must replace the standard RTE executive at system generation.

REAL-TIME EXECUTIVE FILE MANAGER SYSTEM (FMP)

The central computer programmer and operator have access to the full capability of FMP as detailed in the **Real-Time Executive File Manager System Manual** and summarized in Section IV of this manual. The Distributed System Interface software package (91701) allows the remote user access to all of the program callable functions implemented by FMP. The 91701 calling sequences for FMP, however, are modified to include remote status information.

Data buffer length for remote read and write has been limited to 128-word blocks, to simplify buffer management. This constraint can be avoided by the user if a Remote Exec call is invoked to schedule a user program. The data transfer is then accomplished by program-to-program communication.

PROGRAM LOAD (PROGL)

PROGL is provided to handle the terminal user's remote program load request for a complete or partial absolute file load from the central computer. PROGL is scheduled under RTE from the terminal by a Remote Exec call. The name of the program to be loaded is passed to PROGL as an input parameter. The Logical Unit number of the requesting terminal at central is passed to PROGL.

DIRECTORY LIST (DLIST)

DLIST permits the terminal operator to request a partial or complete listing of files currently being maintained by FMP. An optional 6-character filter word, entered by the terminal operator, is used to determine which file information is to be provided for partial listings. An optional cartridge label may also be entered. If the cartridge label is included, only that cartridge is listed.

The HP 91701 interface kit software will fully support a virtually unlimited file list convention through the use of the character filter. When the filter word is entered, only those files whose names contain characters that match the filter characters are output. If the character filter is used, six characters must be entered. Character positions to be ignored are specified by an asterisk (*).

Q

SECTION III

APPLICATION PROGRAM PREPARATION

This section is divided into four parts that describe the procedures, formatting conventions and functions of the TCE/1, TCE/2, TCE/3 executives, and central.

PART I – TCE/1 APPLICATION PROGRAM PREPARATION

This part describes the format for application programs required by TCE/1. It also discusses the configuration of a System Input/Output (SIO) environment and a Basic Control System (BCS) environment in which application programs can be run under TCE/1. Information is provided on how to store application programs on the central disc and how to load them into the terminal computer.

PART II – TCE/2 APPLICATION PROGRAM PREPARATION

Application programs to be run under the TCE/2 executive may be run in an Absolute System Input/Output (SIO) environment, or in a relocatable Basic Control System environment. This part describes the formats for programs to be run in either environment. It describes how to load programs on the central disc and how to bring them down to the terminal to be run.

PART III – TCE/3 APPLICATION PROGRAM PREPARATION

This part describes the application program formats required by the TCE/3 executive. It also describes how to store application programs on the central computer disc and how to load them into a terminal computer to be run under TCE/3. A sample program to list the contents of remote source files is provided on Page 3-8.

PART IV – CENTRAL APPLICATION PROGRAM PREPARATION

Application programs run at the central computer must be in the formats required by the Real-Time Executive System (RTE) and the Real-Time Executive File Manager System (FMP). Execution procedures remain the same as described in the **Real-Time Executive Software System Manual** and in the **Real-Time Executive File Manager Programming and Operating Manual**.

PART I

TCE/1 operates in either an SIO or a BCS environment. If application programs are to be run in an SIO environment, the user should consult the **HP Software Operating Procedures Manual** and the **HP Small Programs Manual**. Additional information on the BCS system may be found in the **HP Basic Control System Manual**.

TCE/1 IN AN SIO ENVIRONMENT

The following requirements must be implemented for TCE/1 to be operable in an S10 environment:

- Application programs must be assembled using the absolute option of the assembler.
- The required SIO drivers must be assembled into a single module with the correct I/O channels and ORG statements for the configuration being used.
- Application program modules are stored on the central computer disc with the FMP store request:

ST,5,PROGnn,BA

where:

LU number 5 is the standard input device.

PROG nn is the TCE/1 required format for the program name. The variable, nn , may be any number between 0 - 77₈.

BA indicates that the required record format is binary absolute.

- SIO drivers are stored on the central disc in a file separate from the application programs. The file name for the SIO drivers must also be in the PROGnn format.

ST,5,PROGn,BA

The parameters of the STore request for SIO drivers are the same as the parameters used to store the application programs.

- TCE/1 is loaded into terminal core as described in Part I of Section IV.

The resulting terminal core configuration is shown in Figure 3-1.

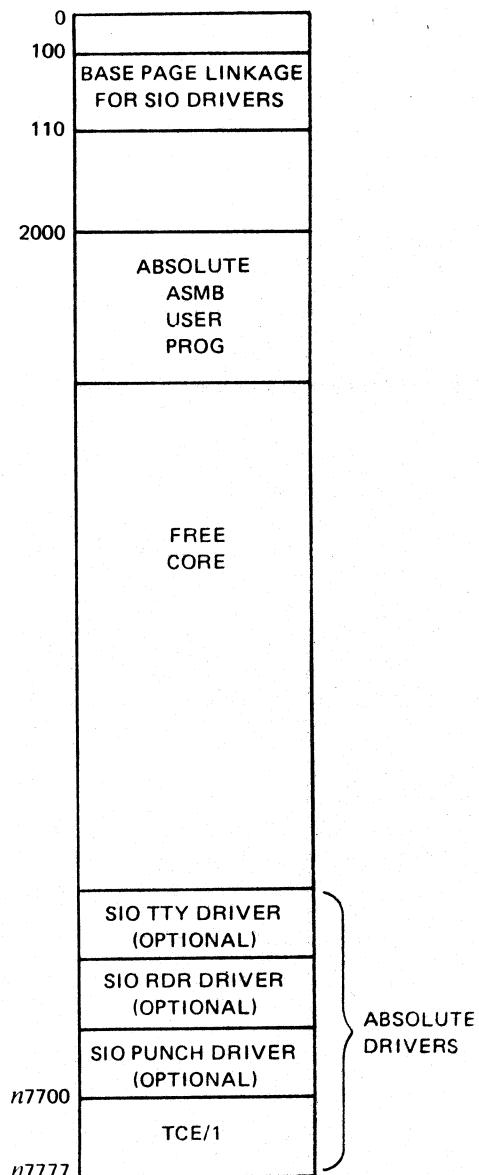


Figure 3-1. TCE/1 in an SIO Environment

TCE/1 IN A BCS ENVIRONMENT

The BCS environment may be configured in one of two ways: by using the SXL Loader, or through the standard PCS. An example of a TCE/1 - BCS environment produced by the SXL Loader is shown in Figure 3-2. An example of a PCS-produced BCS environment is shown in Figure 3-3.

SXL Loader BCS Configuration

Three kinds of modules are required for this configuration:

TCE/1

Application programs

BCS drivers and relocatable library described in the **Basic Control System Manual**.

The modules are loaded onto the central disc using the SXL Loader and brought from the disc into the terminal computer using TCE/1. The sequence of steps used to accomplish this are detailed below.

Load TCE/1 into the terminal computer (if not already in).

Assemble relocatable application programs.

Use the SXL Loader to load application programs and BCS modules onto the central disc.

```
ON,SXL
- OUTPUT ABS ON PROGnn
etc.
```

The output statement must specify absolute format. The file name under which the application program and BCS modules are stored must be in the format PROGnn. See SXL Loader manual for a complete description of commands and the TCE/3 material in this section for a sample command file.

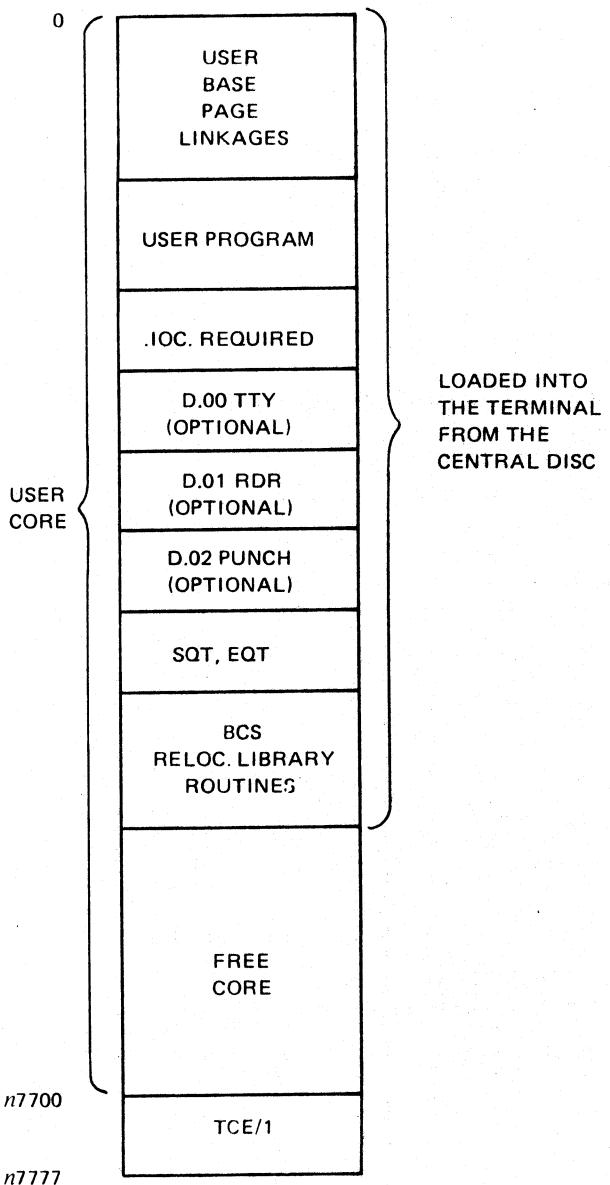


Figure 3-2. TCE/1 in an SXL-Produced BCS Environment

PCS-PRODUCED BCS CONFIGURATION

The required BCS drivers, the BCS Loader and .IOC. are input to the Prepare Control System program described in the **Basic Control System Manual**. The output from this process is an absolute BCS Loader tape which is used to configure the application program.

The BCS Loader tape is input to the computer followed by the application program, assembled in relocatable format. The BCS library is searched to resolve undefined externals and an absolute tape is output. This tape contains the application program linked to the IOC environment with library references resolved.

The absolute user program which results from the PCS process is loaded on the central disc with the File Management Package STore command:

:ST,5,PROGnn,BA

where:

LU number 5 is the standard input device.

PROGnn is the required format for the file name.

BA is the required Binary Absolute record format.

Central files are loaded into the terminal computer by TCE/1 as described in Section IV.

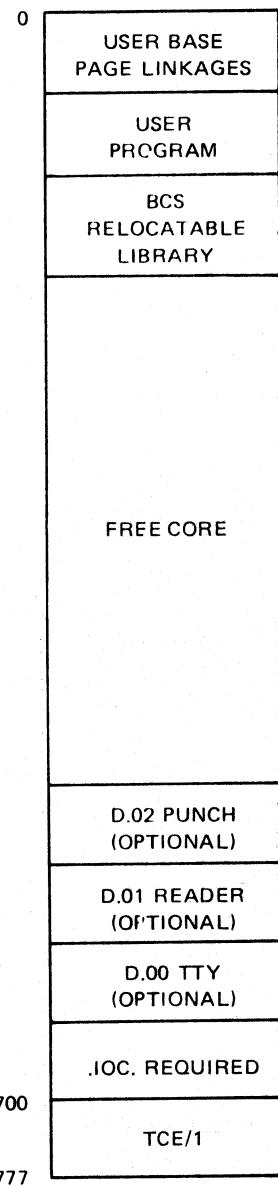


Figure 3-3. TCE/1 in a PCS-Produced BCS Environment

PART II

TCE/2 APPLICATION PROGRAM PREPARATION

TCE/2 operates in either an SIO or a BCS environment. If application programs are to be run in an SIO environment, the user should consult the **HP Software Operating Procedures Manual** and the **HP Small Programs Manual**. Additional information on the BCS system may be found in the **HP Basic Control System Manual**.

TCE/2 IN AN SIO ENVIRONMENT

The following requirements must be implemented for TCE/2 to be operable in an SIO environment.

- The required SIO drivers must be reassembled with the correct I/O channels and ORG statements for the configuration being used. The memory required for the last driver cannot extend beyond location *n6400*.

where *n* = 0 - 4K 3 - 16K
 1 - 8K 5 - 24K
 2 - 12K 7 - 32K

- SIO drivers are stored on the central disc with the FMP STore request:

ST,5 *file name*, BA

where:

LU number 5 is the standard input device.

file name is a name for the file which meets the requirements of the TCE/2 LOAD request described in Section IV of this manual. The file name need not be in the PROG*nn* format required by TCE/1.

BA specifies Binary Absolute record format.

- The parameters of the STore request for application programs are the same as the parameters used to store the SIO drivers.
- TCE/2 is loaded into terminal core as described in Part II of Section IV.
- Application programs are brought into terminal core from the central disc with the TCE/2 LOAD request.

LOAD,*file name* (application program)

LOAD,*file name* (SIO drivers)

The SIO driver file is loaded last so that driver linkages are assured.

The resulting terminal core configuration is shown in Figure 3-4.

- Begin execution of application programs by pressing RUN.

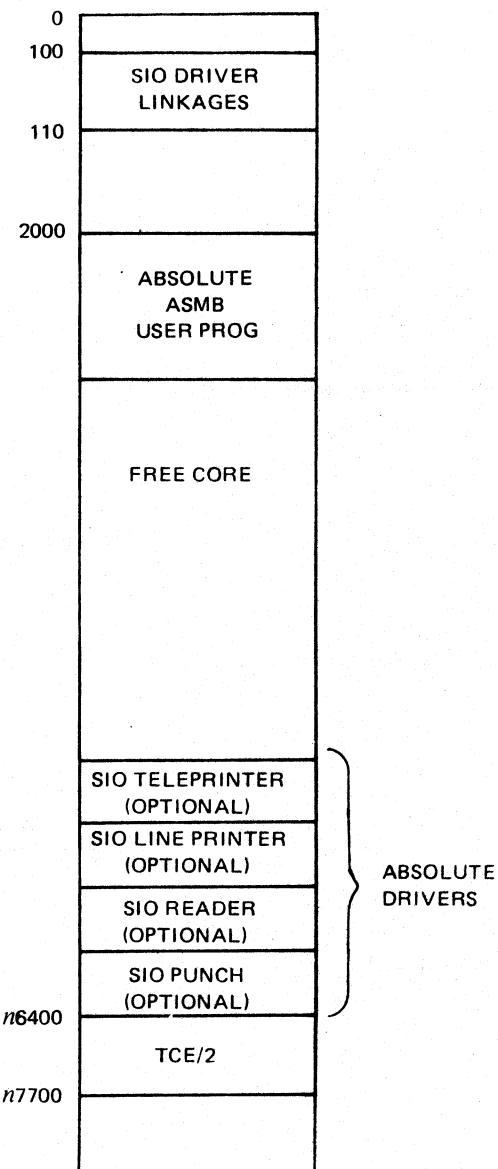


Figure 3-4. TCE/2 in an SIO Environment

TCE/2 in a BCS Environment

The BCS environment for TCE/2 can be configured using either the SXL Loader or the standard PCS. A core map sample for TCE/2 in a BCS environment created by the SXL Loader is shown in Figure 3-5. TCE/2 in a BCS environment produced by PCS is shown in Figure 3-6.

SXL LOADER BCS CONFIGURATION

The process of using the SXL Loader to generate a TCE/2 environment in a BCS configuration is described below. The three types of modules involved are TCE/2, application programs, and the BCS modules.

- TCE/2 must be loaded into terminal core as described in Section VI of this manual.
- Application programs are assembled in relocatable format.
- The preparation of BCS drivers, the BCS Loader, and relocatable library are described in the **Basic Control System Manual**.
- When all of the modules are prepared, they are loaded onto the central disc using the SXL Loader and brought from the disc into the terminal computer by TCE/2. A complete example of the SXL command file is provided in Part III of this section. The TCE/2 requirements for the command file are described below.

```
ON,SXL,1
  - OUTPUT ABS ON program name
  - BOUNDS LWAM = n6377, FWAM = 2000
  - RELOCATE
  etc.
```

The output statement must specify absolute format, the file name under which the application program and BCS modules are stored must be compatible with the TCE/2 LOAD and RUN requests. The BOUNDS statement must specify the starting location, the ending location, and command area to prevent TCE/2 from being overlayed. The RTE System Cross Loader manual should be consulted for a complete description of commands.

Files stored on the central disc are brought into the terminal computer for execution with the TCE/2 RUN request. The SXL Loader automatically sets the starting address of the program at location 2.

The resulting terminal core configuration is shown in Figure 3-5.

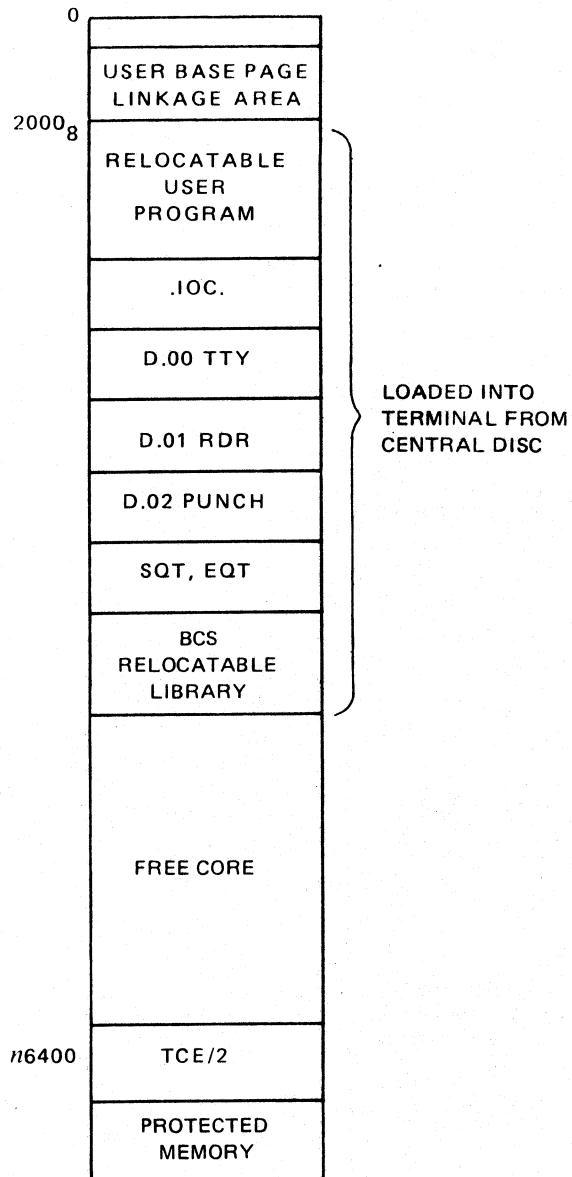


Figure 3-5. TCE/2 in an SXL-Produced BCS Environment

PCS-PRODUCED BCS CONFIGURATION

The required BCS drivers, the BCS Loader and .IOC. are input to the Prepare Control System program described in the **Basic Control System Manual**. The output from this process is an absolute BCS Loader tape which is used to configure the application program.

The BCS Loader tape is input to the computer followed by the application program, assembled in relocatable format. The BCS library is searched to resolve undefined external and an absolute tape is output. This tape contains the application program linked to the IOC environment with library references resolved.

The absolute user program which results from the PCS process is loaded on the central disc with the File Management Package STore command:

:ST,5, *file name*, BA

where:

LU number 5 is the standard input device.

file name is the user defined program name.

BA is the required Binary Absolute record format.

Central files are loaded into the terminal computer by TCE/2 using the LOAD request.

The resulting terminal core configuration is shown in Figure 3-6.

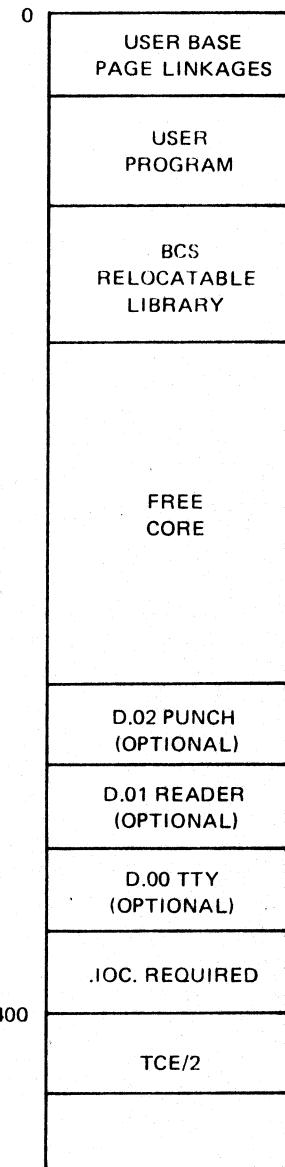


Figure 3-6. TCE/2 in a PCS-Produced Environment

PART III

TCE/3 APPLICATION PROGRAM PREPARATION

The relocatable modules of TCE/3 contain BCS drivers and .IOC. as described in Section VI so that a BCS operating environment is assumed for TCE/3. A complete description of the BCS system is contained in the **HP Basic Control System Manual**.

Application programs are loaded into the computer in relo-

catable formats. The SXL Loader is used to link the application programs, the TCE/3 executive and any library requirements into absolute format which can be run at the terminal. A description of SXL Loader requests used for this purpose is provided below, followed by a sample program to list the contents of remote source files.

ON,SXL,1
 - ECHO ON 6
 - OUTPUT ABS ON LISTER
 - MAP MODULES, GLOBALS
 - TR, TCESNP
 - RELOCATE 9D
 - SEARCH F4MTR
 - SEARCH BCSL IB
 - DISPLAY UNDEFS
 - END

Commands input to the loader are coming from the TTY. Both input commands and resulting output are listed on the line printer.

Output file in absolute format.

Program names and entry points will both be listed.

Transfers control to the loader command file set up by the snap statement at the end of the TCE/3 generation (See Section VI). The TCESNP file sets up entry points to the TCE/3 resident.

Relocates the application program (on the tape reader in this example) from the tape reader to core.

Search libraries to satisfy additional FORTRAN requirements (source code for this example is HP FORTRAN IV).

Search BCS library to satisfy remaining external references.

Display undefineds

The application program can be executed at the terminal with the following request:

RUN LISTER

Listed below is the source code for a sample program to list remote source files resident on the central disc at the terminal CRT. It is this program for which the Loader commands above are used.

```
FTN4,B,L,A
  PROGRAM LISTF
  DIMENSION IBUF(40),NAME(3)
  WRITE(2,101)
101  FORMAT(" UTILITY PROGRAM TO LIST REMOTE SOURCE"/
1" FILES ON TERMINAL TTY.")
  WRITE(2,102)
102  FORMAT(" CENTRAL DISC FILE NAME?")
  READ(1,103) (NAME(I),I=1,3)
103  FORMAT(3A2)
  CALL ROPEN(ISTAT,IERR,NAME)
  IF((ISTAT.EQ.-1).AND.(IERR.GE.0)) GO TO 5
  WRITE(2,104)
104  FORMAT(" REMOTE FILE OPEN ERROR: ABORT")
  GO TO 60
5   DO 10 I=1,40
10   IBUF(I) = 20040B
  CALL RREAD(ISTAT,IERR,NAME,IBUF,40,L)
```

```

    IF((ISTAT.EQ.-1).AND.(IERR.GE.0)) GO TO 20
    WRITE(2,105)
105  FORMAT(" REMOTE FILE READ ERROR: ABORT")
    GO TO 50
20   IF (L.EQ.-1) GO TO 50
    IF (L.LE.34) GO TO 30
    L=34
30   WRITE(2,106) (IBUF(I),I=1,L)
106  FORMAT(" ",34A2)
    CALL ESCON(IV)
    IF (IV) 50,5,50
50   CALL RCLOS(ISTAT,IERR,NAME)
    IF((ISTAT.EQ.-1).AND.(IERR.GE.0)) GO TO 60
    WRITE(2,107)
107  FORMAT(" REMOTE FILE CLOSE ERROR: ABORT")
60   END
ENDS

```

SXL LOADER MAP

***** T=00000 IS ON LU 09

0001	-OUTPUT ABS ON LISTER
0002	-MAP MODULES, GLOBALS ON 4
0003	FILE PROGRAM GLOBAL FIRST LAST BASE PAGE REF.BY
0004	NAME MODULE VARS. ADDRS. ADDRS.
0005	-----
0006	--TR,TCESNP
0007	--BOUNDS FWAM =012151,LWAM=017677,FWABP= 000474,LWABP= 001771,&
0008	--FWAC=000000,LWAC=000000
0009	-- SET LUCC TU 012151
0010	LUCC 012151
0011	-- SET BPLUCC TU 000474
0012	BPLUCC 000474
0013	-- SET #TAM TO 006433
0014	#TAM 006433
0015	-- LINKS START AT 000230, 006433
0016	-- SET D.65 TO 010000
0017	D.65 010000
0018	-- SET ATTEN TO 002103
0019	ATTEN 002103
0020	-- LINKS START AT 000334, 002103
0021	-- SET RLOAD TO 003224
0022	RLOAD 003224
0023	-- SET CHAIN TO 003606
0024	CHAIN 003606
0025	-- SET RNPGM TO 003512
0026	RNPGM 003512
0027	-- SET RMESG TO 003524
0028	RMESG 003524
0029	-- SET IDLE TO 002001
0030	IDLE 002001

0031 -- SET PTPUN TO 003674
0032 PTPUN 003674
0033 -- SET PTPOF TO 003701
0034 PTPOF 003701
0035 -- SET ESCON TO 003706
0036 ESCON 003706
0037 -- SET HALT TO 002001
0038 HALT 002001
0039 -- SET EXEC TO 002001
0040 EXEC 002001
0041 -- SET STOP TO 002001
0042 STOP 002001
0043 -- SET .ENTR TO 005431
0044 .ENTR 005431
0045 -- LINKS START AT 000322, 005431
0046 -- SET \$BUSY TO 006030
0047 \$BUSY 006030
0048 -- LINKS START AT 000120, 006030
0049 -- SET RFATM TO 004561
0050 RFATM 004561
0051 -- LINKS START AT 000205, 004561
0052 -- SET GETLU TO 004576
0053 GETLU 004576
0054 -- LINKS START AT 000227, 004576
0055 -- SET RCRET TO 004641
0056 RCRET 004641
0057 -- LINKS START AT 000223, 004641
0058 -- SET RPURG TO 004670
0059 RPURG 004670
0060 -- LINKS START AT 000226, 004670
0061 -- SET ROPEN TO 004702
0062 ROPEN 004702
0063 -- SET RREAD TO 004715
0064 RREAD 004715
0065 -- SET RWRITE TO 004734
0066 RWRITE 004734
0067 -- SET RPOSN TO 005005
0068 RPOSN 005005
0069 -- SET RWIND TO 005017
0070 RWIND 005017
0071 -- SET RCLOS TO 005027
0072 RCLOS 005027
0073 -- LINKS START AT 000225, 005027
0074 -- SET RNAME TO 005040
0075 RNAME 005040
0076 -- LINKS START AT 000224, 005040
0077 -- SET RCONT TO 005054
0078 RCONT 005054
0079 -- SET RLOCDF TO 005066
0080 RLOCDF 005066
0081 -- SET RAPOS TO 005076
0082 RAPOS 005076
0083 -- SET RSTAT TO 005111
0084 RSTAT 005111
0085 -- SET REXEC TO 005131
0086 REXEC 005131

```

0087  -- LINKS START AT 000207, 005131
0088  -- SET TMOUT TO 007042
0089          TMOUT 007042
0090  -- SET INT65 TO 007020
0091          INT65 007020
0092  -- LINKS START AT 000440, 007020
0093  -- SET .IOC. TO 007074
0094          .IOC. 007074
0095  -- LINKS START AT 000122, 007074
0096  -- SET DMAC1 TO 007311
0097          DMAC1 007311
0098  -- LINKS START AT 000435, 007311
0099  -- SET DMAC2 TO 007312
0100          DMAC2 007312
0101  -- LINKS START AT 000436, 007312
0102  -- SET IOERR TO 007270
0103          IOERR 007270
0104  -- LINKS START AT 000437, 007270
0105  -- SET XSQT TO 007307
0106          XSQT 007307
0107  -- SET XEQT TO 007310
0108          XEQT 007310
0109  -- LINKS START AT 000257, 007310
0110  -- SET .BUFR TO 007242
0111          .BUFR 007242
0112  -- SET 0.00 TO 007313
0113          0.00 007313
0114  -- SET I.00 TO 007445
0115          I.00 007445
0116  -- SET $ESC TO 007736
0117          $ESC 007736
0118  -- LINKS START AT 000121, 007736
0119  -- SET I.65 TO 011004
0120          I.65 011004
0121  -- SET .SQT. TO 012121
0122          .SQT. 012121
0123  -- SET .EQT. TO 012127
0124          .EQT. 012127
0125  -- LINKS START AT 000255, 012127
0126  -- SET .MEM. TO 012140
0127          .MEM. 012140
0128  -- LINKS START AT 000105, 012140
0129  --RELOCATE 90
0130          LISTF 012151 012711 000474 000503
0131          LISTF 012151
0132  --SEARCH F4MTR
0133          F4MTR 012712 012762 000504 000505
0134          .KIO. 012712
0135          .II0. 012721
0136          .RAY. 012730
0137          .IAY. 012743
0138  --SEARCH LIBD
0139          FRMTR 012763 015036 000506 001241
0140          .DIO. 014440
0141          .BIO. 014513

```

0142	.IDI.	014335				
0143	.IDR.	014314				
0144	.IAR.	014374		F4MTR		
0145	.RAR.	014350		F4MTR		
0146	.DTA.	014536		LISTF		
0147	MPY	015037	015147	001242	001241	
0148	.MPY	015037				FRMTR
0149	FLOAT	015150	015154	001242	001241	
0150	FLOAT	015154				FRMTR
0151	.PACK	015155	015261	001242	001241	
0152	.PACK	015155				FRMTR
0153	ULDST	015262	015317	001242	001241	
0154	.ULD	015262				FRMTR
0155	.DST	015272				FRMTR
0156	IFIX	015320	015354	001242	001241	
0157	IFIX	015320				FRMTR
0158	.FLUN	015355	015367	001242	001241	
0159	.FLUN	015355				FRMTR
0160	CLRIO	015370	015374	001242	001241	
0161	CLRIO	015370				LISTF
0162	-DISPLAY UNDEFS					
0163	-END					
0164	NO UNDEFS					
0165	TRANSFER TO	LISTF	012151			
0166	CORE USED	012151	015374	000474	001241	
0167	FREE CORE	015375	017677	001242	001777	
0168	OUTPUT FILE NAME: LISTER					
0169	SEND SXL					

PART IV

CENTRAL APPLICATION PROGRAM PREPARATION

Complete descriptions of application program consideration used at the central computer are provided in the **Real-Time Executive Software System Manual** and the **Real-Time Executive File Manager Manual**.

The process of preparing an application program at the central computer to be run at either the central computer or at a terminal computer is shown in Figure 3-7. The central programming aids which are available as RTE options include the RTE Editor, the RTE FORTRAN compilers, the ALGOL Compiler, the RTE Assembler, the relocatable libraries, and the RTE System Cross Loader (SXL).

The RTE Editor creates, lists and edits source language tapes and disc files. The Editor requires two inputs: an input file containing edit commands, and a symbolic file containing source programs. A complete description of the RTE Editor can be found in the **Real-Time Executive Software System Programming and Operating Manual**.

The FORTRAN compilers accept source modules from either an input device or a source file created by the RTE Editor. The compilers translate the source programs into relocatable object code which can be punched on tape or stored on the load-and-go tracks of the central disc. FORTRAN II is described in the **HP FORTRAN Programmer's Reference Manual**. HP FORTRAN IV is described in the **HP FORTRAN IV Programmer's Reference Manual**. The use of the FORTRAN Compilers in the RTE System is described in the **Real-Time Executive Software System Manual**.

The ALGOL Compiler accepts source modules from either an input device or a source file created by the RTE Editor. The compiler translates the code into relocatable object format and punches it on tape or stores it on the load-and-go tracks of the central disc. A complete description of the ALGOL Compiler is contained in the **HP ALGOL Programmer's Reference Manual**. ALGOL Compiler operation in an RTE environment is described in the RTE Manual.

The RTE Assembler accepts source modules from either an input device or a source file created by the RTE Editor. It translates the source programs into either absolute or relocatable object code. The relocatable code is punched on paper tape or stored on the load-and-go tracks of the central disc, or both. The RTE Assembler is described in the **Assembler Programmer's Reference Manual**. The use of the Assembler is described in the RTE Manual.

The Relocatable Libraries used at the central computer are the standard RTE relocatable libraries described in the RTE Manual. The relocatable libraries used at the terminals are the Basic Control System relocatable libraries described in the **HP Basic Control System Manual**.

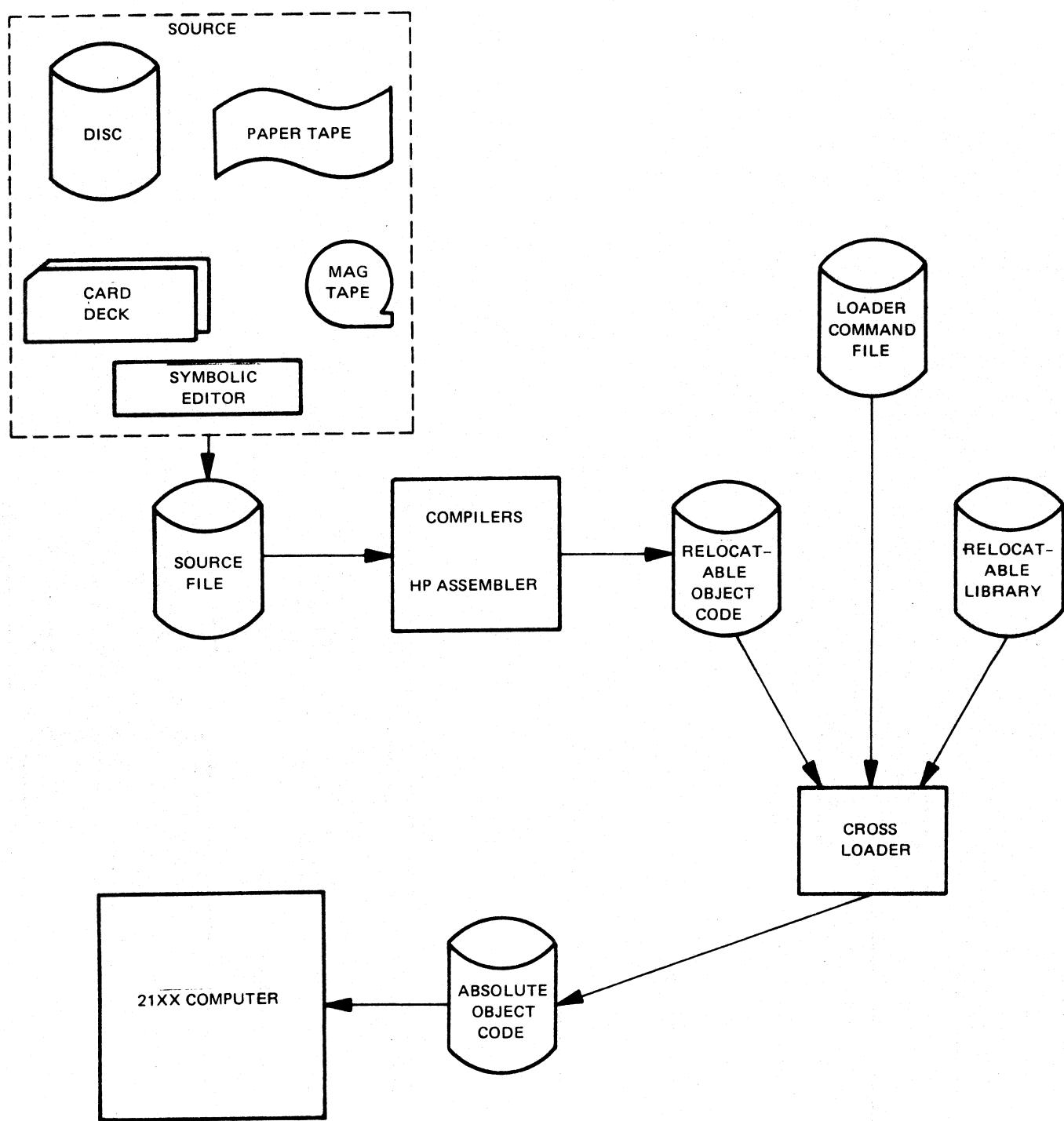


Figure 3-7. Central Program Preparation

The RTE System Cross Loader (SXL) accepts relocatable modules from either an input device, or a file created by the Assembler, ALGOL or FORTRAN Compilers, or load-and-go tracks. The loader links together relocatable program modules, library files and core-resident entry points into executable format. The loader can be used to prepare programs for execution at both the central computer and at terminal computers. A complete description of the SXL Loader is contained in the **RTE System Cross Loader Manual**.

The material which follows assumes that the reader is completely familiar with the **RTE System Cross Loader Manual** and that he wishes to use the SXL Loader specifically in the Distributed System environment.

SXL LOADER USE WITH 91701

The RTE System Cross Loader is used by the Distributed System to relocate code destined for execution in a computer other than the central computer in which the Loader itself runs. To accomplish this, terminal computer configuration parameters must be specified during Phase I of Loader operation. If these parameters are not provided, the Loader will use the indicated default parameters, assuming that the central computer is the target computer. Listed below are the configuration parameters and their default values. All of the assumed values may be redefined by SET or BOUNDS statements.

Core Bounds FWAM, LWAM, FWABP, LWABP, assumed to be the values for the Background Disc Resident (BKDR) area, but may be set differently by either the BOUNDS or SET statement.

FWAM — First word available Memory; relocation of modules normally begins here.

FWABP — First Word Available Base Page. Assumed to be the first word available address for BKDR.

LWAM — Last Word Available Memory, assumed to be the last available address for BKDR.

LWABP — LW Base Page — assumed to be 1647₈ (octal).

COMMON The COMMON area pointers, FWAC and LWAC, default to the contents of LOCC when the first module declaring COMMON is relocated. Note that this means programs are each assumed to require a private area for Common. In order for a program to use the RTE Foreground or Background Common areas, the user must specifically set these pointers (SET or BOUNDS) to the proper value. BKDR programs which attempt to store data into foreground COMMON will violate the memory protect fence; they may "read" data from there, however.

Distributed System user should be aware of two additional points when using the SXL Loader:

- The system library for an EAU (Extended Arithmetic Unit), RTE central computer cannot necessarily be used as the system library for the terminal computer's relocatable binary file.
- Entry points must be defined for the remote monitor system if the Terminal Communications Executive is TCE/3.

Command

ON,SXL,1

OUTPUT ABS ON TESTS

BOUNDS FWAM = 2000,&
LWAM = 37677,LWABP = 17777,&
FWABP = 30,FWAC = 37700,LWAC = &
37677

SET .EQT. TO 33721

SET HALT TO 33701

SET XEQT TO 34156

SET .IOC. TO 33942

MAP MODULES, GLOBALS

RELOCATE TESTR, POWRR, FOURRR, RFTR

SEARCH BCSLIB

DISPLAY UNDEFS

NO UNDEFS

END

The example below shows the commands necessary to relocate modules according to the options set (or defaulted) in Phase 2 of the Loader operation. This example relocates a program from the central computer for a remote BCS terminal computer.

It is assumed that the program TEST makes only simple I/O calls to EXEC, and that an adapter routine named EXEC is available in the library file, so that it is meaningful to relocate this program for execution in a BCS system.

Comments

Turn on the Loader

Programs to be communicated to a remote must be in absolute binary, BBL-compatible format. This File will be known as TESTS.

Define core bounds for target machine

Define entry points in the resident

BCS system of the remote terminal (or use the Loader snap produced when the remote monitor system was generated).

Set memory map flags

Relocate the code

Satisfy externals by searching the terminal computer library

Check that all EXTS are satisfied

Loader output if no UNDEFS exist

End of relocation

At this point, a file called TESTS exists on the disc. It can be punched if desired, or if the communication package is

available, the remote terminal software may request transfer of the program for execution.

SECTION IV

SYSTEM OPERATION

The Distributed System Interface Kit (91701) provides three levels of Terminal Communications Executives (TCE/1, TCE/2, and TCE/3), any of which can be loaded into a given terminal computer. In multi-terminal systems, the EXEC chosen is matched to a given terminal's task and functions independently of all other terminals.

The terminal executives range in complexity from the TCE/1, 64-word communications loading through the TCE/2 loader with keyboard capability, to the TCE/3 interactive system monitor with interactive system capability.

This Section is divided into parts which describe the system operation of each terminal Executive, plus a summary of the system operation at central.

PART I – TCE/1 SYSTEM OPERATION

This part contains a description of the functions and core requirements of TCE/1. It defines the system operating conventions assumed by this terminal executive, describes its error codes and initialization procedures.

PART II – TCE/2 SYSTEM OPERATION

The system operation of TCE/2 includes a description of the interface between TCE/1 and TCE/2, and system operating conventions. This part also includes the TCE/2 Operator Requests, Error Messages and Initialization procedures.

PART III – TCE/3 SYSTEM OPERATION

This part describes the TCE/3 interfaces and system operating conventions. It includes information on the four kinds of program calls: Remote File Access, Remote EXEC Calls, Local Terminal Utility Calls, and Terminal Access Monitor Calls. The TCE/3 Operator Requests and error codes are provided, together with the initialization procedure for TCE/3.

PART IV – CENTRAL SYSTEM OPERATION

This part contains summaries of the FMP and RTE functions available at the central computer. It includes descriptions of the program calls, operator requests and error messages. The central initialization procedure assumes that the RTE generation (RTGEN) process described in Section VI is complete and that it is the 91701 software which is being made operational.

PART I

TCE/1 SYSTEM OPERATION

INTRODUCTION

The TCE/1 executive is a stand-alone, self-contained loader used in place of the Basic Binary Disc Loader (BBDL), or the Basic Binary Loader (BBL). TCE/1 requires no other subroutines. It resides in the protected, highest 64 words of core. TCE/1 is normally resident in a terminal computer of a Distributed System and is used to load programs selected by 6-bit octal number input through the switch register of the terminal. This executive allows maximum application use of available core. It supports 4K terminal systems.

TCE/1 assumes the following system operating conventions:

- Application program code must be in executable format (absolute) and must reside on the central disc under the name PROGXX. The central computer software prefixes PROG to the switch register input at the terminal and loads PROGXX.
- All I/O drivers for remote communication and instrument peripheral I/O must be provided by the user.
- The communications driver at the terminal (D.65) must be compatible with the communications driver at central (DVR65). See Appendix A for further information.
- All error checks for transfers between the central computer and the terminal must be user written.
- If TCE/1 is required to operate in a BCS environment, it is the user's responsibility to generate the BCS.

There is no provision for servicing program calls or operator requests under TCE/1.

ERROR MESSAGES

TCE/1 returns the single error message shown below for the conditions indicated.

HALT 11B This message indicates that a communications hardware malfunction has occurred. The B-Register returns the following information:

- 0 Parity error or address violation.
- -1 Program file does not exist at central.

- 2 Program is not an absolute binary file, or a read error occurred.

The system aborts.

TCE/1 INITIALIZATION

TCE/1 must be toggled in through the switch register using Appendix E or read in from the paper tape provided.

Application programs and SIO drivers are loaded into terminal core from the central computer following the procedure below:

1. Press HALT.
2. Press SWITCH REGISTER.
3. Set DISPLAY REGISTER to desired program number ($\emptyset - 77_8$).
4. Press P-REGISTER.
5. Set DISPLAY REGISTER to $n7700_8$.

where $n = \begin{matrix} \emptyset - 4K & 3 - 16K \\ 1 - 8K & 5 - 24K \\ 2 - 12K & 7 - 32K \end{matrix}$

6. Press LOADER ENABLE, EXTERNAL PRESET and INTERNAL PRESET.
7. Press RUN.

Computer halts with the following in the DISPLAY REGISTER:

102077_8 = Program loaded
 102011_8 = Program not loaded (error)

If 102011_8 HALT, confirm that the program file is on the disc and closed. See TCE/2 error messages in Section IV for additional information.

If 102077 HALT, press P-REGISTER and input the starting address of the program to be run (normally 2_8).

PART II

TCE/2 SYSTEM OPERATION

INTRODUCTION

The TCE/2 is a stand-alone executive which allows application use of all but the uppermost 1K of core, where it resides. It is completely upward compatible with the TCE/3 executive. TCE/2 combines the TCE/1 Loader capability with a functional command repertoire. TCE/2 accepts the operator requests shown from a teletype or equivalent input device. Error messages for this executive are shown in Table 4-1. TCE/2 allows the operator to load and run programs, but does not allow program or file creation or deletion. All application programs to be run at the terminal under TCE/2 may be prepared at the central computer as discussed in Section III of this manual.

TCE/2 assumes the following system operating conventions:

- The communications driver (D.65) supplied by the user at the terminal computer must be compatible with the DVR65 driver at the central computer. (See TCE/2 Generation in Section VI and Appendix A.)
- The TCE/2 executive does not include Basic Control System (BCS), I/O. If it is desirable to use the BCS I/O system at the terminal computer, it is the user's responsibility to generate his own environment. See Section III for more information on Application Program Preparation.

TCE/2 OPERATOR REQUESTS

The TCE/2 operator requests provide direct communication between the operator at the terminal and the 91701 software at the central computer. The table below provides a summary of the requests available in TCE/2.

Table 4-1. Summary of TCE/2 Operator Requests

TCE/2	Function
LOAD	Program load
RUN	Run program at given address
RUN <i>name</i>	Load and run program at terminal
RUNAT	Run program at specified address

TCE/2 is a non-interrupt executive which does not automatically recognize keyboard input while a user program is running. Request recognition and service take place automatically at:

TCE/2 initiation
TCE/2 restart
program jump to an EXEC entry point

At these times a colon is displayed and the TCE/2 executive awaits keyboard input. The keyboard syntax for TCE/2 is described below.

Manual interrupt of TCE/2 is accomplished at any time by the following procedures:

1. Press HALT button.
2. Press P-REGISTER.
3. Clear DISPLAY REGISTER.
4. Set DISPLAY REGISTER to 2_8 or $n6400_8$.

where $n =$ \emptyset - 4K 3 - 16K
 1 - 8K 5 - 24K
 2 - 12K 7 - 32K

5. Press EXTERNAL PRESET, INTERNAL PRESET, and RUN.
6. Input operator request at the display terminal keyboard.

Keyboard input to the TCE/2 is accomplished after the executive returns a colon. TCE/2 waits for an operator request followed by a carriage return. Null input and illegal commands cause SYNTAX ERROR to be displayed, followed by another prompt character.

INPUT REQUEST FORMATS

A blank or a comma delimits a command mnemonic. A comma delimits parameters. Imbedded blanks after the command mnemonic delimiters are ignored. Octal parameters must be preceded with an "@" sign. If an error is made in entering the parameters, a backspace key, or @ H , is struck to delete the last character entered. Pressing RUBOUT deletes the entire line. Each request must be terminated with a carriage return.

LOAD

PURPOSE

Load named program at a terminal computer.

FORMAT

LOAD *name*

WHERE

name is the six ASCII character name of the program to be loaded.

COMMENTS

This request reads absolute binary format records from a remote disc file and stores them into terminal core, according to the load address contained in the record. When the request is complete, the terminal executive displays a prompt character (:) and waits for the next command to be entered.

The request is ignored if it contains a syntax error.

SEQUENCE OF OPERATIONS

1. SYNTAX ERROR is displayed if no program name is contained in the request.
2. RLOAD is called to load the program.
3. A WAIT is entered until completion.
4. A check is made for error codes sent from PROGL at central, or on behalf of PROGL. If PROGL was not dormant, STANDBY is output and another call is made to RLOAD.
5. If any errors occur, the appropriate error message is displayed.
6. IDLE is called.

RUN**PURPOSE**

Causes loaded program to be executed at a terminal computer, using the starting address loaded into location 3.

FORMAT

RUN [* , p1, p2, . . . p5]

WHERE

p1 . . . p5 Optional parameter string whose address is passed in the B-Register to the terminal program when the program begins execution.

RUN * , 5, 9, 400, , 6

or

RUN

COMMENTS

The program to be run is determined by the address last loaded into location 3 when this request is issued.

If this request is issued while a program is running at the terminal, that program is restarted at its initial starting address (assuming no new address has been loaded into location 3).

SEQUENCE OF OPERATIONS

1. Optional parameters are converted to binary.
2. The B-Register is set to the address of the first binary parameter.
3. RNPGM is called to begin execution at the default starting address (location 3).

RUN name**PURPOSE**

Causes the named program to be loaded and then executed at a terminal computer.

FORMAT

RUN name [,p1, p2, p3, p4, p5]

WHERE

name is the ASCII name of the program to be run. This parameter may contain from one to six characters.

p1 . . . p5 an optional parameter string which may be passed to the terminal application program. Each parameter must be a positive integer $\leq 32767_{10}$.

RUN MYPROG , , , , 5

COMMENTS

The address of the binary parameter string is passed to the terminal program in the B-Register when the named program begins execution. If no optional parameters are specified, the B-Register points to a 5-word array of zeros.

SEQUENCE OF OPERATIONS

1. RLOAD is called to load the program and display the appropriate messages if errors occur. If PROGL is not dormant, STANDBY is displayed, and the RLOAD call is repeated until PROGL is dormant.
2. Optional parameters are converted to binary. The B-Register is set to the address of the first binary parameter.
3. RNPGM is called to begin execution at the default start address contained in location 3.

RUNAT

PURPOSE

Causes a program loaded at a terminal computer to be executed at a specified starting address.

FORMAT

RUNAT *nnn* /*p1,p2, . . . p5*/

WHERE

nnn starting address. If the starting address is in octal, it must be preceded with "@."

p1 . . . p5 Each parameter is a positive integer value less than or equal to 32767₁₀.

RUNAT @2000,1,2,3,4,5

COMMENTS

This request assumes that the program to be run has already been loaded as opposed to the RUN *name* request.

SEQUENCE OF OPERATIONS

1. Optional parameters are converted to binary.
2. The B-Register is set to the address of the first binary parameter.
3. RNPGM is called to begin execution at the given starting address.

ERROR MESSAGES

TCE/2 returns the error messages shown in Table 4-2 for the conditions indicated.

Table 4-2. TCE/2 Error Messages

Error Output	Meaning	Action
COM LINE ERR	Communication hardware malfunction. The system aborts.	Reload the system
SYNTAX ERROR	Illegal request	Verify syntax and retry
CAN'T LOCATE	Program to be scheduled at central or loaded at a terminal cannot be found on the central station disc.	Verify program available
PROGL ERROR	File read/write, or close error at a remote computer for a load, or run command. Checksum error.	Verify program type and retry
NO START ADR		Retry with RUNAT request
STANDBY	The central computer is busy at the moment, but will service this request as soon as free.	No additional input is necessary
HALT 13	TCE/2 start address for reconfiguration of I/O channel assignments used without the S-Register being set to new values.	Reset S-Register to correct value. Press RUN.

TCE/2 INITIALIZATION

Load TCE/2 via TCE/1

1. Confirm TCE/1 terminal in protected memory.
2. Press HALT.
3. Press SWITCH REGISTER.
4. Place TCE/2 program number at central in DISPLAY REGISTER.
5. Press P-REGISTER.
6. Place $n7700_8$ in DISPLAY REGISTER

where $n =$ \emptyset - 4K 3 - 16K
 1 - 8K 5 - 24K
 2 - 12K 7 - 32K

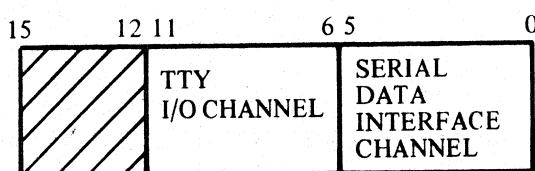
7. Press LOADER ENABLE, EXTERNAL PRESET, INTERNAL PRESET, and RUN.
8. The computer halts with 102077_8 in the DISPLAY REGISTER when TCE/2 is loaded correctly.
9. If the computer halts with 102011_8 in the DISPLAY REGISTER, TCE/2 is not loaded correctly. Confirm that the program file is on the disc, and that the disc is closed. See error message on the preceding page.

Load TCE/2 via Paper Tape

1. Confirm BBL in protected memory.
2. Press HALT.
3. Press SWITCH REGISTER.
4. Clear DISPLAY REGISTER and place TCE/2 Binary Tape in Paper Tape Reader.
5. Press P-REGISTER.
6. Place $n7700_8$ in DISPLAY REGISTER

where $n =$ \emptyset - 4K 3 - 16K
 1 - 8K 5 - 24K
 2 - 12K 7 - 32K

7. Press LOADER ENABLE, EXTERNAL PRESET, INTERNAL PRESET, and RUN.
8. The computer halts with 102077_8 or 102011_8 in the DISPLAY REGISTER when the TCE/2 tape is completed.
9. If the computer halts with 102055_8 or 102011_8 in


the DISPLAY REGISTER, a Paper Tape Read error has occurred. Retry following Steps 2 - 7 above.

Run TCE/2

1. Press P-REGISTER.
2. Set the DISPLAY REGISTER to the Starting Address of 2_8 (0/000/000/000/010)(normal entry).
3. Press INTERNAL PRESET.
4. Press EXTERNAL PRESET.
5. Press RUN.
6. Type in LOAD *name* where *name* is the file name of the application program to be run.

Reconfigure TCE/2 I/O Assignments

1. Press SWITCH REGISTER.
2. Set DISPLAY REGISTER as shown.

3. Press P-REGISTER.
4. Set DISPLAY REGISTER to 100_8 .
5. Press EXTERNAL PRESET, INTERNAL PRESET, and RUN.

PART III

TCE/3 SYSTEM OPERATION

INTRODUCTION

TCE/3 is a stand-alone, self-contained application program which resides in low core (see Terminal Core Map in Appendix B). This terminal executive provides four types of program calls to the user: Remote File Access Calls, Remote EXEC Calls, Local Terminal Utility Calls and Terminal Access Monitor Calls. The functions for each call are described in Table 4-3. The Operator Requests available to the TCE/3 user are listed in Table 4-7. The Remote File Access Call Error Messages, the Remote EXEC Call Error Messages and the TCE/3 Request Error Messages returned by TCE/3 are described beginning on page 4-108. The initialization procedures for TCE/3 begin on page 4-111.

TCE/3 assumes the following system operating conventions:

- Application program code may be prepared for the terminal using the System Cross Loader described in Section III.
- Error check after remote calls are user written. Figure 4-1 provides a suggested format for these checks. Coding sequences are discussed in detail in Section III.
- TCE/3 contains a BCS executive so that BCS drivers are compatible.
- The I/O driver for remote communication is provided within the TCE/3 executive.

TCE/3 contains protection features to avoid having itself destroyed by overlay, or from operator interrupt during remote I/O. TCE/3 protects itself from overlay by comparing the load addresses of user programs against TCE/3's .MEM. table. The Last Word of Available Memory of user core is set dynamically during initial startup to the actual core size of the terminal computer. This feature is provided particularly for cases where there are several terminal computers which contain the TCE/3 version of the Terminal Communications Executive, but where the terminal core sizes vary. TCE/3 is generated for the smallest terminal memory, but still allows user programs to make use of the extra core if TCE/3 is loaded into a larger core sized terminal.

TCE/3 protects itself from destruction by operator interrupt by locking out keyboard interrupt processing while remote I/O is in progress.

A complete Remote File Access or Remote EXEC Call communication process is flagged as being in progress by RFAIN via the flag, \$BUSY. This flag is located internally, but is declared as an entry point. The flag is used rather than a status call to .IOC, because the driver may go non-busy periodically during a remote I/O process.

When the TTY/CRT driver (D.00) gets an operator atten-

tion interrupt, it checks \$BUSY. If \$BUSY is not set, control goes ABORT (the interrupt has been honored). If \$BUSY is set, D.00 sets the \$ESC flag and lets the current operation continue. This means that operator attention has been disabled and the operator must try pressing the key again.

When TEXEC does a program schedule for DLIST and PROGL, it sets \$BUSY. \$BUSY is cleared when the operation is complete. At key points (between records), TEXEC checks \$ESC to see if the operator wishes to abort program-to-program communication. If \$ESC is set, a STOP command is transmitted to the remote program (which terminates itself), both flags are cleared and control goes to ABORT.

A terminal application program which initiates direct program-to-program communication must also set and clear \$BUSY. If operator attention interrupts are to be allowed during the execution of an application program, the user must check \$ESC, and if set; send a STOP, clear flags, and transfer to IDLE. These requirements are due to the fact that TCE/3 has no way of knowing that the application program is doing program-to-program communication.

SUGGESTED INTERFACE CODE FORMAT

The flow chart in Figure 4-1 shows the type of error checks which should be performed for transfers between the terminal and the central computer.

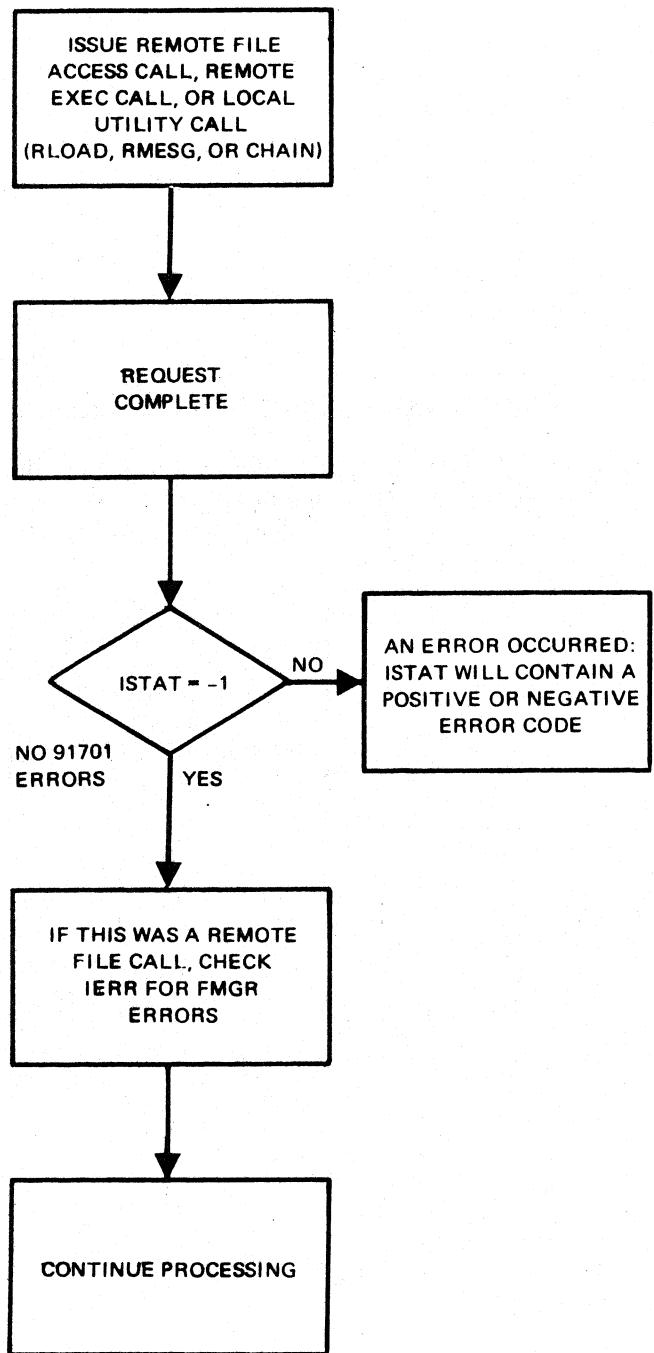


Figure 4-1. Remote Request Error Check

TCE/3 PROGRAM CALLS

TCE/3 provides the user with four kinds of program calls. The Remote File Access program calls interface the terminal user with the Real-Time Executive File Management Package residing at the central computer. The Remote EXEC calls interface the terminal user with the Real-Time

Executive System at the central computer. Terminal Access Monitor calls provide the interface between the terminal user and the communication driver. Local Terminal Utility calls are handled by internal modules of TCE/3. Table 4-3 below gives a summary of all of the calls available through TCE/3.

Table 4-3. Summary of TCE/3 Program Calls

Call	Function	Type	Page No.
CHAIN	Load a program from central and execute at a terminal.	Local Utility	4-24
ESCON	Test for ESCAPE during lockout.	Local Utility	4-27
EXECUTION TIME	Schedule a program for execution at central.	REXEC	4-29
EXTENDED PUT, CONVERSATIONAL	Transmit request and receive or transmit data.	# TAM	4-33
GET DATA STREAM	Receive request or data.	# TAM	4-34
GETLU	Obtain Logical Unit at central for this terminal.	Local Utility	4-35
I/O CONTROL	Perform remote I/O operations at central from terminal.	REXEC	4-37
I/O STATUS	Request information on central devices.	REXEC	4-39
IDLE	Return to terminal monitor.	Local Utility	4-41
PROGRAM SCHEDULE	Schedule program at central.	REXEC	4-42
PTPOF	Enable operator attention processing.	Local Utility	4-44
PTPON	Lock out operator attention processing.	Local Utility	4-46
PUT DATA STREAM	Send data buffer to central.	# TAM	4-47
RAPOS	Position a file at central.	RFA	4-48
RCLOS	Close a file at central.	RFA	4-50
RCONT	Perform control function on type Ø file at central.	RFA	4-52
RCRET	Create a file at central.	RFA	4-54
REMOTE READ	Read remote central I/O device from terminal.	REXEC	4-56
REMOTE WRITE	Write remote central I/O device from terminal.	REXEC	4-59
RLOAD	Load program at terminal from central.	Local Utility	4-61
RLOCF	Location and status from DCB.	RFA	4-63

(Continued)

Table 4-3. Summary of TCE/3 Program Calls (Continued)

Call	Function	Type	Page No.
RMESG	Send message from terminal to central display device.	Local Utility	4-65
RNAME	Close DCB and Rename a file at central.	RFA	4-67
RNPGN	Execute loaded program at terminal.	Local Utility	4-69
ROOPEN	Open file at central.	RFA	4-71
RPOSN	Position to a record at central.	RFA	4-74
RPURG	Delete a file at central.	RFA	4-76
RREAD	Read from central file.	RFA	4-78
RSTAT	Return DISC Directory.	RFA	4-81
RWIND	Rewind central file.	RFA	4-83
RWRIT	Write a record on central file.	RFA	4-85
STOP	Halt data transfer from central.	# TAM	4-87
TIME REQUEST	Request time from central Real-Time clock.	REXEC	4-88

REMOTE FILE ACCESS CALLS (RFA)

All of the features of the File Management Package are available to the terminal programmer using TCE/3. Files on the central disc may be created, purged, opened and closed. Data may be read or written from or onto these disc files from the terminal program. File positioning calls allow the terminal program to rewind a central disc file or position to a specific record. Terminal programs may obtain status on central files and rename them. Access is also provided to the central computer peripherals such as the line printer, paper tape reader and punch.

File security provided to the terminal programmer is the same as that provided to the File Management Package user at central:

- Each file has a security code.
- Security codes may be positive, negative or zero.
- If the file code is positive and the code at open does not match, the file may be read but not written on.
- If the file code is negative and the code used at open does not match, the file will not be opened.
- If the file code is zero, the file may be opened to any caller with no restrictions.

File types available to the terminal user are the same as those provided by FMP to the central programmer, except zero and negative record lengths, which are not supported at the terminal. Table 4-4 below provides a summary of these types and a brief description of their usage. For more information, the **Real-Time Executive File Manager Manual** should be consulted.

Table 4-4. Remote File Access File Types

Type	Description
0	This file type can only be created at the central computer. The file directory entry is located in the system disc file directory and has special entries relating to the logical unit number and end-of-file code.
1	Type 1 files have fixed record lengths of 128 words. Transfers to or from type 1 files are done directly to or from the user's buffers. Any file type except type 0 may be opened as a type 1 file. It is a fixed length, random access, and non-extendable file.

(Continued)

Table 4-4. Remote File Access File Types (Continued)

Type	Description
2	Type 2 files have user defined record lengths to a maximum of 128 words. Each transfer is one record long, and must go through a packing buffer. Type 2 files are fixed length, random access and non-extendable.
3	Type 3 files are packed on the central disc and contain data, source, relocatable or absolute information. Each transfer is one record long and must go through a packing buffer. These files are random length to a maximum of 128 words, sequential access with automatic extents.
4	These files have the same characteristics as type 3 files, except FMP recognizes type 4 files as containing source programs. Type 4 files are random length to a maximum of 128 words, sequential access, with automatic extents.
5	These files have the same characteristics as type 3 files, except that FMP recognizes type 5 files as containing relocatable binary code. These files are random length, to a maximum of 128 words, sequential access, with automatic extents.
6	These files have the same characteristics as type 3 files. These files are created as type 6, but always accessed as type 1. Type 6 files are random length, to a maximum of 128 words, sequential access, with automatic extents.
7	Type 7 files have the same characteristics as type 3 files, except that FMP recognizes these files as containing absolute binary code. Type 7 files are random length, sequential access, with automatic extents.
>7	Any file type greater than 7 is a user defined file with the same characteristics as type 3 files. FMP will treat these files as random length files with sequential access and automatic extents.

Remote File Access Calls to the File Management Package at the central computer employ a common set of parameters as part of their calling sequence. These common parameters are described below. Parameters that are unique to a call are described within the call itself. It should be noted, if not already obvious from the names, that File Management Calls issued from a terminal are in a different format from File Management calls issued at the central computer. It should also be noted that the TCE/3 user is not responsible for supplying or pointing to the 144 - DCB as is the case with the FMP user at the central computer.

ISTAT Contains the communication status returned by TCE/3 remote central computer. Positive codes are returned **before** transmission begins, negative codes **after** transmission begins.

Legal values for this parameter are:

- 5 RFA busy, or maximum number of remote open files exceeded
- 4 Not used
- 3 Not enough parameters
- 2 Communications line down
- 1 Illegal request code
- 0 Request being processed
- 1 Request completed, no errors
- 2 Not used
- 3 I/O error
- 4 Error in parameters, or program to be scheduled does not exist
- 5 Improper sequence of commands used (file not open to terminal)

IERR The status of the remote file operation returned from the file manager.

Possible values are:

- ≥ 0 None
- 1 Disc down
- 2 Duplicate name
- 3 Backspace Not Legal (Type 0)
- 4 File too long or REC Size Error
- 5 Attempt to read or position to a record not written, or on update, write an illegal length
- 6 Cartridge not found or file not found or no room
- 7 Invalid security code
- 8 File currently open: eight PGM or exclusive or LOCK rejected
- 9 Attempt to open type 0 as type 1 or to use APOSN on type 0

- 10 Not enough parameters
- 11 DCB not open
- 12 SOF or EOF read or sensed
- 13 Cartridge locked
- 14 Directory full
- 15 Illegal name
- 16 Illegal Type or Size = \emptyset (Creat)
- 17 Attempt to Read or Write on type \emptyset which does not support the operation

NAME	ASCII name of file to be accessed. This parameter can be up to six characters in length. If less than six characters, trailing blanks are required.
READ/WRITE BUFFER SIZE	The maximum record size is 128 words for remote file access calls. Zero and negative signs are illegal.

Sequence of Operations for TCE/3 Remote File Access Calls

1. Fetch caller's parameters.
2. Check for enough parameters.
3. Check for legality of parameters.
4. Generate a PARMB request buffer which includes identification and function codes plus all of the user parameters necessary to reconstruct this call at the central computer.
5. Send PARMB to central by issuing a PUT DATA STREAM call to # TAM. This results in a TRANSMIT REQUEST ONLY call to .IOC. If the call is to read or write a data record, a PUT CONVERSATIONAL call is issued to # TAM instead of the PUT DATA STREAM call. The PUT CONVERSATIONAL call results in a TRANSMIT REQUEST AND RECEIVE OR TRANSMIT DATA call to .IOC.
6. Wait for completion, and check for D.65/DVR65 I/O errors.
7. The calling sequence is reconstructed at central and a local call is issued to FMP. A DCB is attached by the 91701 software at central before the local call is issued.
8. See the **Real-Time Executive File Manager System Manual** for the sequence of operations during the FMP call execution.
9. Receive the reply buffer by issuing a GET DATA STREAM call to # TAM. This results in a RECEIVE REQUEST ONLY call to .IOC. Polling mode is pro-

vided by # TAM, which re-issues the .IOC. Call until the reply is received.

10. A check is made for a legal reply.
11. Transfer return parameters from the reply buffer to the user call parameters. Fetch the A-Register and B-Register values from the reply buffer.
12. Return to the caller with the A-Register and B-Register at the terminal mirroring the A- and B-Register values at central when the call was executed.

REMOTE EXEC CALLS (REXEC)

A subset of the standard RTE EXEC calls are available to the terminal programmer to perform functions at the central computer. These calls, in modified formats, call the TCE/3 programmer at the terminal to schedule program execution at the central computer. The terminal program may read or write data on remote I/O devices at the central computer. Remote I/O control calls allow the terminal program to rewind and position magnetic tape, punch paper tape leaders, and control line printer spacing. Terminal programs may obtain identity and status of central computer peripherals using these calls.

Sequence of Operations for TCE/3 Remote EXEC Calls

1. Fetch the caller's parameters.
2. Check for enough parameters.
3. Check parameter legality.
4. Generate a PARMB request buffer, which includes identification and function codes, plus all user parameters necessary to reconstruct this call at the central computer.
5. Send PARMB to central by issuing a PUT DATA STREAM call to # TAM. This results in a TRANSMIT REQUEST ONLY call to .IOC. If the call is to read or write a data record, a PUT CONVERSATIONAL call is issued to # TAM instead of the PUT DATA STREAM. The PUT CONVERSATIONAL results in a TRANSMIT REQUEST AND RECEIVE OR TRANSMIT DATA call to .IOC.
6. Wait for completion, and check for D.65/DVR65 I/O errors.
7. The calling sequence is reconstructed at central and a local call is issued to RTE.
8. See the **Real-Time Executive Software System Manual** for the sequence of operations during the RTE call execution.

9. Receive reply buffer by issuing a GET DATA STREAM call to # TAM. This results in a RECEIVE REQUEST ONLY call to .IOC. Polling mode is provided by # TAM, which re-issues the .IOC. call until the reply is received.
10. A check is made for a legal reply.
11. Transfer return parameters from the reply buffer to the user call parameters. Fetch the A-Register and B-Register values from the reply buffer.
12. Return to the caller with the A- and B-Registers at the terminal set to the same values the A- and B-Registers at central contained when the local call at central was executed.

LOCAL TERMINAL UTILITY CALLS

A set of utility calls are provided to the TCE/3 terminal programmer to facilitate local terminal functions. These calls provide the ability to load a program from the central computer and execute it at the terminal, to test for operator interrupt during remote I/O processing, to obtain the Logical Unit Number assigned to this terminal at the central computer and to send messages to the central computer display device.

The local utility functions are implemented by making sub-routine calls to entry points in the Terminal Executive (TEXEC) Module of TCE/3. Some of these calls result in Remote File Access calls or Remote EXEC calls to RFAIN, and some of the calls are processed directly by TEXEC. The table below shows a summary of the local utility calls and the resulting remote calls, if applicable.

Table 4-5. Summary of Local Terminal Utility Remote Calls

TEXEC Utility	Resulting Remote Call
CHAIN	REXEC (schedule PROGL)
ESCON	None
GETLU	# TAM
IDLE	None
PTPON	None
PTPOF	None
RLOAD	REXEC (schedule PROGL)
RMESG	REXEC (write)
RNPGM	None

TERMINAL ACCESS MONITOR CALLS (# TAM)

A set of program calls are provided to the 91701 Terminal Access Monitor (TAM) for remote communication. TAM performs this communication via .IOC. to D.65. Polling mode is provided to receive "request" calls. The transmission mode is determined internally with TAM. For non-DMA terminals, the transmission mode is "interrupt open loop." Transmission mode for DMA terminals is "DMA open loop." I/O is performed in privileged mode. This module is available to the terminal user for the functions shown in Table 4-6. # TAM calls are not FORTRAN callable.

Status codes are returned according to the success of the operation. On entry to the completion subroutine, or upon return to the caller, if the operation is completed immediately, the A-Register contains the following:

- 3 Communication I/O error
- 1 Request completed, no error
- Ø Request being processed
- 1 Illegal TAM request code
- 2 Communications line down or transmission error
- 3 Not enough parameters in TAM call

Table 4-6. Summary of Terminal Access Monitor Calls

# TAM Function Codes	# TAM Function	D.65 Function
2	STOP	Transmit STOP Reply
5	Get Data Stream	Receive Request Only or Receive Data only
6	Put Data Stream	Transmit Request Only or Transmit Data Only
8	Extended Put, conversational	Transmit Request and Receive or Transmit Data

Appendix A is provided for the user who wishes to provide his own communication link via .IOC. to D.65. Table 4-6 shows the correspondence between # TAM calls and .IOC. calls to D.65.

CHAIN

PURPOSE

Load a program from the central computer into a terminal and execute at the terminal (terminal program may overlay itself).

EXT CHAIN

JSB	CHAIN		Transfer control to TCE/3
DEF	RTN		Point of return if an error occurs
DEF	ISTAT		Communication status
DEF	IERR		Operational status
DEF	IPROG		Program to load and execute
DEF	IADR		Optional start address (see Comments)
DEF	<i>p1</i>		Optional user parameters passed to loaded program
DEF	<i>p5</i>		
RTN	return point		If control reaches this point, an error has occurred.
ISTAT	BSS	1	Status code returned here (see Comments).
IERR	BSS	1	Error code returned here (see Comments).
IPROG	ASC	<i>3, name</i>	Program name.
IADR	OCT	<i>address</i>	Starting address. If a value is not supplied for IADR, the loaded program begins execution at the contents of absolute location 3.
<i>p1</i>	BSS	1	The B-Register points to this parameter string when control is passed to the loaded program.
<i>p5</i>	BSS	1	

COMMENTS

If the starting address is not known and optional parameters are desired, IADR is set to 2.

Legal values for the codes returned in status for this call are:

- 5 = RFA busy
- 4 = Not used
- 3 = Not enough parameters
- 2 = Communications line down
- 1 = Illegal request code
- 0 = Request being processed
- 1 = Request completed, no errors

-2 = Not used

-3 = I/O error

-4 = Error in parameters

-5 = Improper sequence of commands

Legal error codes returned in IERR for this call are:

- 0 = No error
- 1 = Open error on program name (the file probably does not exist on the central disc).
- 2 = File read error at remote
- 3 = Transmission error in data record
- 4 = Transmission error between central and terminal computers

- 5 = File close error at remote
- 6 = Start address not available (no default address provided in location 3)

If no optional parameters are passed in this call, the B-Register points to a 5-word array of zeros when control is passed to the loaded program.

SEQUENCE OF OPERATIONS

1. Get the parameters from the user calling sequence.
2. Call RLOAD to load the program.
3. Call RNPGM to execute the program.
4. If no starting address is specified in the CHAIN call and no defaults exist, return to the caller.

FORTRAN & ALGOL EXAMPLES

THE FOLLOWING EXAMPLES IN FORTRAN AND ALGOL WILL CAUSE THE SEGMENT 'SEG3' TO BE OVERLAYERED BY THE SEGMENT 'SEG4' AND WHILE SPECIFYING THAT 'SEG4'S ABSOLUTE STARTING ADDRESS WILL BE FOUND IN ABSOLUTE MEMORY LOCATION 3 AFTER 'SEG4' IS LOADED, THE FILE NAME 'WORKER' WITH SECURITY CODE 'JB' ON CARTRIDGE '9701' AT CENTRAL WILL BE PASSED TO 'SEG4' AS PARAMETERS AFTER IT OVERLAYS 'SEG3' AT THE TERMINAL .

-----FORTRAN-----

```
FTN,L
PROGRAM SEG3
DIMENSION SEG4(3)
DATA SEG4/2HSE,2HG4,2H /
DATA IPRM1/2HWO/,IPRM2/2HRK/,IPRM3/2HER/,IPRM4/2HJB/,IPRM5/9701/
CALL CHAIN(ISTAT,IERR,SEG4,0,IPRM1,IPRM2,IPRM3,IPRM4,IPRM5)
IF (ISTAT.....)
IF (IERR.....)
END
.
END$
```

```
FTN,L
PROGRAM SEG4
DIMENSION IPRAM(5)
.
CALL RMPAR(IPRAM)
.
END
.
END$
```

-----ALGOL-----

```
HPAL,L,"SEG3"
BEGIN
  INTEGER ARRAY SEG4[1:3] := "SE","G4"," ";
  INTEGER ISTAT,IERR ;
  PROCEDURE CHAIN(ISTAT,IERR,IPROG,IADR,IPRM1,IPRM2,IPRM3,IPRM4,IPRM5) ;
    VALUE IADR,IPRM1,IPRM2,IPRM3,IPRM4,IPRM5 ;
    INTEGER ISTAT,IERR,IPROG,IADR,IPRM1,IPRM2,IPRM3,IPRM4,IPRM5 ;
    CODE ;
```

```
      CHAIN(ISTAT,IERR,SEG4[1],0,"WO","RK","ER","JB",9701) ;
      IF ISTAT..... ;
      IF IERR..... ;
      END$
```

HPAL,L,"SEG4"

BEGIN

```
  INTEGER IPRM1,IPRM2,IPRM3,IPRM4,IPRM5 ;
```

PROCEDURE RMPAR(P) ;

```
  INTEGER P ;
  CODE ;
  RMPAR(IPRM1) ;
```

END\$

ESCON

PURPOSE

Test for ESCAPE key during lockout.

EXT	ESCON	
·		
JSB	ESCON	
DEF	* + 2	
DEF	IND	ESCAPE key indicator
·		
IND	BSS	1
		IND = Ø if key not pressed.
		IND = -1 if key pressed.

COMMENTS

When the test indicates the key was pressed, the terminal program may want to terminate the central program via the STOP command. This call is used in conjunction with PTPON/PTPOF during user program-to-program communication. See PTPON call and TAM (STOP) call.

SEQUENCE OF OPERATIONS

1. Get \$ESC flag.

2. If the flag is zero, the ESCAPE was not pressed, and a zero is returned to the caller.
3. If \$ESC is not zero (the ESCAPE key was pressed), a minus one is returned to the caller.
4. Return.

FORTRAN & ALGOL EXAMPLES

-----FORTRAN-----

```
FTN,L
      PROGRAM REMOT
      .
      CALL ESCON(I)
      IF (I.EQ.-1)CALL IDLE
      .
      END
      .
      END$
```

-----ALGOL-----

```
HPAL,L,"REMOT"
BEGIN
  INTEGER I ;
  PROCEDURE ESCON(I) ;
    INTEGER I ;
    CODE ;
```

```
PROCEDURE IDLE ;
  CODE ;
    • ESCON(I); IF I THEN IDLE ;
  END$
```

EXECUTION TIME (Initial Offset Version)

PURPOSE

To schedule a program for execution at the remote computer at specified time intervals. Execution may be scheduled after an initial offset time (Initial Time Version), or at a particular absolute time (Absolute Start-Time Version). RTE places the requested program in the time list and returns to the terminal calling program.

EXT	REXEC	
JSB	REXEC	Transfer control to remote RTE
DEF	RTN	Point of return
DEF	ISTAT	Communication status
DEF	ICODE	Request code
DEF	IPROG	Remote program to put into time list
DEF	IRESL	Resolution code
DEF	MTPLE	Execution multiple
DEF	IOFST	Initial time offset
RTN	return point	Continue execution.
ISTAT	BSS	1 Communication status returned here.
ICODE	DEC	12 Request code = 12.
IPROG	ASC	xxxxxx is the name of the program to put in time list.
IRESL	DEC	x is the resolution code (see Comments).
MTPLE	DEC	y is the execution multiple (see Comments).
IOFST	DEC	-z z (units set by x) gives the initial offset; the negative sign signals the initial offset version of this call to RTE.

COMMENTS

The resolution code (x) represents the units of time, which when used with the execution interval value, results in the total time interval. Legal values for this parameter are:

1 - tens of milliseconds

2 - seconds

3 - minutes

4 - hours

The execution multiple (y) is a number between 0 and 999 which is used with x to give the actual time interval.

FORTRAN & ALGOL EXAMPLES

THE FOLLOWING EXAMPLES IN FORTRAN AND ALGOL WILLQUEUE THE CENTRAL PROGRAM 'QUIKR' TO BE SCHEDULE'D TEN(10) MILLISECONDS AFTER THE CALL IS RECEIVED, AND SPECIFY THAT IT BE RE-SCHEDULE'D EVERY FIVE MINUTES THEREAFTER. NOTE - 5 MIN := 100 * 60 * 5 := 30000 MILLISEC

-----FORTRAN-----

FTN,L

```
PROGRAM REXUS
DIMENSION QUIKR(3),IREG(2)
EQUIVALENCE (IREG(2),REG,IA),(IREG(2),IB)
DATA QUIKR/2HQU,2HIK,2HR /
REG = REXEC(ISTAT,12,QUIKR,1,30000,-1)
IF (ISTAT....)
IF (IA....)
.
END
END$
```

-----ALGOL-----

HPAL,L,"REXUS"
BEGIN

```
INTEGER ARRAY QUIKR[1:3] := "QU","IK","R" ;
INTEGER ISTAT,IA,IB
.
REAL
PROCEDURE REXEC(ISTAT,ICODE,IPROG,IRESL,MTPLE,IOFST) :
  VALUE ICODE,IRESL,MTPLE,IOFST ;
  INTEGER ISTAT,ICODE,IPROG,IRESL,MTPLE,IOFST ;
  CODE ;
PROCEDURE SEPAR(P1,P2,P3) :
  VALUE P1 ;
  REAL P1 ;
  INTEGER P2,P3 ;
  CODE ;
  SEPAR(REEXEC(ISTAT,12,QUIKR[1],1,30000,-1),IA,IB) ;
  IF ISTAT.... ;
  IF IA.... ;
.
END$
```

EXECUTION TIME (Absolute Start-Time Version)

PURPOSE

The absolute Start-Time Version of the Execution Time call is the same as the Initial Offset Version up to the IOFST parameter. The sign of IOFST must be positive. The positive number in the parameter signals RTE to expect three more parameters.

EXT	REXEC		
JSB	REXEC	Transfer control to remote RTE	
DEF	RTN	Point of return	
DEF	ISTAT	Communication status	
DEF	ICODE	Request code	
DEF	IPROG	Remote program to put into time list	
DEF	IRESL	Resolution code	
DEF	MTPLE	Execution multiple	
DEF	IHRS		
DEF	MINS	Absolute start time on a 24-hour clock	
DEF	ISECS		
DEF	MSECS		
RTN	return point		
ISTAT	BSS	1	Communication status returned here.
ICODE	DEC	2	Request code = 12.
IPROG	ASC	3,xxxxx	xxxxx is the name of the program put in time list.
IRESL	DEC	x	x is the resolution code.
MTPLE	DEC	y	y is the execution multiple.
IHRS	DEC	a	Absolute starting time, in hours,
MINS	DEC	b	minutes,
ISECS	DEC	c	seconds,
MSECS	DEC	d	and tens of milliseconds on a 24-hour clock.

COMMENTS

The resolution code (x) represents the units of time, which when used with the execution interval value, results in the total time interval. Legal values for this parameter are:

1 - tens of milliseconds

2 - seconds

3 - minutes

4 - hours

The execution multiple (y) is a number between 0 and 999 which is used with x to give the actual time interval.

FORTRAN & ALGOL EXAMPLES

THE FOLLOWING EXAMPLES IN FORTRAN AND ALGOL WILL QUEUE THE CENTRAL PROGRAM 'QUIKR' TO BE SCHEDULE'D AT MIDNITE EACH DAY.

-----FORTRAN-----

FTN,L

```
PROGRAM REXUS
DIMENSION QUIKR(3),IREG(2)
EQUIVALENCE (IREG(2),REG,IA),(IREG(2),IB)
DATA QUIKR/2HQU,2HIK,2HR /

REG = REXEC(ISTAT,12,QUIKR,4,24,0,0,0,0)
IF (ISTAT....)
IF (IA....)

.
END
.
END$
```

-----ALGOL-----

HPAL,L,"REXUS"
BEGIN

```
INTEGER ARRAY QUIKR[1:3] := "QU","IK","R" ;
INTEGER ISTAT,IA,IB

REAL
PROCEDURE REXEC(ISTAT,ICODE,IROG,IRESL,MITLE,IHRS,MINS,ISECS,MSECS) :
  VALUE ICODE,IRESL,MITLE,IHRS,MINS,ISECS,MSECS ;
  INTEGER ISTAT,ICODE,IROG,IRESL,MITLE,IHRS,MINS,ISECS,MSECS ;
  CODE ;
PROCEDURE SEPAR(P1,P2,P3) :
  VALUE P1 ;
  REAL P1 ;
  INTEGER P2,P3 ;
  CODE ;
  SEPAR(REEXEC(ISTAT,12,QUIKR[1],4,24,0,0,0,0),IA,IB) ;
  IF ISTAT.....
  IF IA.....
.
END$
```

EXTENDED PUT, CONVERSATIONAL

PURPOSE (Internal TCE Call)

Transmit request and receive or transmit data. CAUTION: This is a special call used by TCE/3 for remote file read/write requests and is included here for reference only. User programs must not make this call.

EXT	# TAM	
.	.	
(A) =	Ø for receive data	
=	1 for transmit data	
JSB	# TAM	Transfer control to TAM
DEF	* + 7	Return address
DEC	8	Function code
DEF	q	Request buffer address
DEC	r	Request buffer length (negative bytes)
DEF	s	Data buffer address
DEC	t	Data buffer length (negative bytes)
DEF	u	Completion subroutine
.	.	
q	BSS	n Request buffer.
s	BSS	m Data buffer.
u	NOP	Routine to which a JSB is performed when I/O is complete.

COMMENTS

This call is used only within TCE/3. It causes an unsolicited interrupt at central for terminal remote file access requests. The request buffer is of a special format that is known to the central QUEUE module.

SEQUENCE OF OPERATIONS

1. Check the number of parameters.
2. Format .IOC. call using the caller's buffer addresses and buffer lengths.

3. Format for .IOC. call and set up for a Transmit Request and Receive or Transmit data call.
4. Issue .IOC. call.
5. Wait for completion.
6. Set the A-register to minus one, or the appropriate # TAM error code.
7. Return.

FORTRAN & ALGOL

This call cannot be made using FORTRAN or ALGOL.

GET DATA STREAM

PURPOSE

This call is used at the terminal to receive the request or the data transfer initiated by a Transmit Request or Transmit Data call at central. The request/data buffer length at the terminal must be exactly the same as the request/data buffer length at central. See the Terminal Receives Data program example in Section VII.

EXT	# TAM	
.	.	
.	.	
(A) =	Ø for receive data	
=	1 for receive request	
JSB	# TAM	Transfer control to TAM
DEF	* + 5	Return address
DEC	5	Function code
DEF	x	Request or data buffer
DEC	y	Buffer length (negative bytes)
DEF	z	Completion subroutine
.	.	
.	.	
x	BSS	n Request or data buffer.
z	NOP	Routine to which a JSB is performed when I/O is complete.
.	.	
.	.	

SEQUENCE OF OPERATIONS

1. Check the number of parameters.
2. Format .IOC. call using the caller's buffer address and buffer length.
3. If "get request," enable the polling mode.
4. Set up mode for .IOC. call, and set up for receive request or receive data.
5. Issue .IOC. call.
6. Wait for completion.
7. Set the A-Register to minus one, or the appropriate #TAM error code.
8. Return.

FORTRAN & ALGOL

This call cannot be made using FORTRAN or ALGOL.

GETLU

PURPOSE

Obtain the logical unit at central for this terminal.

EXT	GETLU		
·			
·			
JSB	GETLU		
DEF	* + 2		
DEF	LU		
·			
·			
LU	BSS	1	Logical Unit number (returned).

SEQUENCE OF OPERATIONS

1. Set \$BUSY flag, if not already set.
2. Send a request to central to return the logical unit number for this terminal.
3. Receive request reply from central.
4. Check for errors; if any, try again.
5. Clear \$BUSY flag if it was clear on entry into GETLU.
6. Fetch the returned logical unit number from the reply buffer and pass it to the user.
7. Return.

FORTRAN & ALGOL EXAMPLES

THE FOLLOWING FORTRAN AND ALGOL EXAMPLES WILL DETERMINE PROGRAMMATICALLY THE LOGICAL UNIT NUMBER OF THE CALLING TERMINAL AT CENTRAL.

-----FORTRAN-----

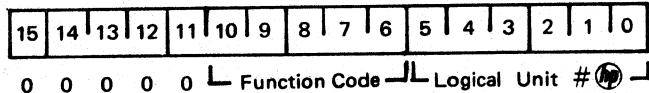
```
FIN,L
      PROGRAM REMOT
      .
      CALL GETLU(LU)
      .
      END
      .
      END$
```

-----ALGOL-----

```
HPAL,L,"REMOT"
BEGIN
  .
  INTEGER LU ;
  .
  PROCEDURE GETLU(LU) ;
  INTEGER LU ;
  CODE ;
```

```
    GETLU(LU) ;  
END$
```

I/O CONTROL


PURPOSE

To carry out various remote I/O control operations at central such as backspace, write end-of-file, rewind, etc.

EXT	REXEC	
JSB	REXEC	Transfer control to remote RTE
DEF	RTN	Point of return
DEF	ISTAT	Communication status
DEF	ICODE	Request code
DEF	ICNWID	Control information
DEF	IPRAM	Optional parameter
RTN	return point	Continue execution
	:	
ISTAT	BSS	1 Communication status returned here.
ICODE	DEC	3 Request code = 3.
ICNWID	OCT	conwd See Control Word.
IPRAM	DEC	n Required to list output line spacing (see Control Word).

CONTROL WORD

The control word value (*conwd*) has two fields:

Function Code (Octal)	Action
00	Unused
01	Write end-of-file (magnetic tape)
02	Backspace one record (magnetic tape)
03	Forward space one record (magnetic tape)
04	Rewind (magnetic tape)
05	Rewind standby (magnetic tape)
06	Dynamic status (magnetic tape)
07	Set end-of-paper tape
10	Generate paper tape leader
11	List output line spacing
12	Write gap (magnetic tape)

The following functions are defined for DVR00, DVR01, and DVR02:

13	Forward space file (magnetic tape)
14	Backward space file (magnetic tape)
20	Enable auxiliary TTY-type device at central to schedule its programs when any key is struck.
21	Disable auxiliary TTY-type device at central to inhibit scheduling of programs.
22	Set time out. The optional third parameter is set as the new time-out interval.
23	Ignore all further action requests until one of the following occurs: <ul style="list-style-type: none"> a. The queue is empty, b. An interrupt request is received, c. A restore control request is received. Restore output processing.
24	Function Code 11 ₈ (list output line spacing) requires the optional parameter IPRAM. IPRAM must designate the number of lines to be spaced on the specified logical unit. A negative parameter specifies a page eject on a line printer.

^(#) Modified to contain request code before entry into driver.

FORTRAN & ALGOL EXAMPLES

THE FOLLOWING EXAMPLES IN FORTRAN AND ALGOL WILL SKIP LEADER ON THE STANDARD INPUT <ICNWD=5> AT CENTRAL, THEN WILL GENERATE A TOP-OF-FORM REQUEST FOR THE STANDARD LIST DEVICE <ICNWD=6> , ALSO AT CENTRAL.

-----FORTRAN-----

FIN,L

PROGRAM REXUS

```
• CALL REXEC(ISTAT,3,5+700B)
IF (ISTAT....)
•
CALL REXEC(ISTAT,3,6+1100B,-1)
IF (ISTAT....)
•
END
•
END$
```

-----ALGOL-----

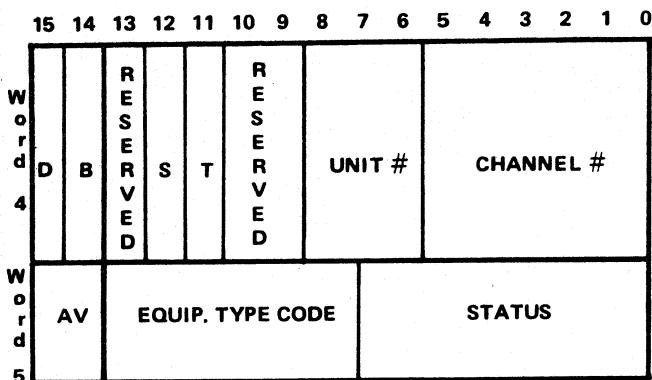
HPAL,L,"REXUS"

BEGIN

```
PROCEDURE REXEC(ISTAT,ICODE,ICNWD,IPRAM) ;
  VALUE ICODE,ICNWD,IPRAM ;
  INTEGER ISTAT,ICODE,ICNWD,IPRAM ;
  CODE ;
  • REXEC(ISTAT,3,5+@700,0) ;
  IF ISTAT.....
  • REXEC(ISTAT,3,6+@1100,-1) ;
  IF ISTAT.....
  •
END$
```

I/O STATUS

PURPOSE


Request information (status condition and device type) about a device assigned to a remote logical unit number.

EXT	REXEC		
	JSB	REXEC	Transfer control to remote RTE
	DEF	RTN	Point of return
	DEF	ISTAT	Communication status
	DEF	ICODE	Request code
	DEF	ICNWD	Control information
	DEF	ISTA1	Status word 1
	DEF	ISTA2	Status word 2 (optional)
RTN	return point		Continue execution
ISTAT	BSS	1	Communication status returned here.
ICODE	DEC	13	Request code = 13.
ICNWD	DEC	<i>n</i>	Remote Logical Unit number.
ISTA1	NOP		Word 5 of remote EQT entry returned here.
ISTA2	NOP		Word 4 of remote EQT entry returned here.

COMMENTS

The second status word is optional in the I/O status EXEC Call.

Words 4 and 5 of EQT entry table contain the following information:

Where:

D = 1	if DMA is required.
B = 1	if automatic output buffering is used.
S = 1	if a driver is to process time-out on this device.
T = 1	if the device time out (System sets to zero before each I/O request).
UNIT =	Last sub-channel addressed.
CHANNEL =	I/O select code for device (lower number if a multi-board interface).
AV =	Availability indicator:
0 =	Available for use
1 =	Disabled (down)
2 =	Busy (currently in operation)
3 =	Waiting for an available DMA channel

EQUIP. TYPE CODE = Type of device. When this number is linked with "DVR," it identifies the device's software driver routine:

00 to 07₈ = paper tape devices (or system control devices)
 00 = teleprinter (or system keyboard control device)
 01 = photo reader
 02 = paper tape punch
 10 to 17 = unit record devices
 10 = plotter
 12 = line printer

20 to 37 = magnetic type/mass storage devices
 30 = fixed head disc or drum
 31 = moving head disc
 40 to 77 = instruments

STATUS = the actual physical status or simulated status at the end of each operation.

FORTRAN & ALGOL EXAMPLES

THE FOLLOWING EXAMPLES IN FORTRAN AND ALGOL WILL OBTAIN THE DEVICE TYPE OF THE STANDARD LIST DEVICE AT CENTRAL.

-----FORTRAN-----

FTN,L
PROGRAM REXUS

```
CALL REXEC(ISTAT,13,6,ISTA1)
IF (ISTAT.....)
  ITYPE = IAND(ISTA1,037400B) / 400B
  .
  END
  .
END$
```

-----ALGOL-----

```
HPAL,L,"REXUS"
BEGIN
  .
  INTEGER ISTAT,ISTA1,ITYPE ;
  .
  PROCEDURE REXEC(ISTAT,ICODE,ICNWD,ISTA1,ISTA2) ;
    VALUE ICODE,ICNWD ;
    INTEGER ISTAT,ICODE,ICNWD,ISTA1,ISTA2 ;
    CODE ;
    .
    REXEC(ISTAT,13,6,ISTA1,ISTA2) ;
    IF ISTAT..... ;
    ITYPE := ISTA1 AND @037400 \ @400 ;
    .
END$
```

IDLE**PURPOSE**

To return to the terminal monitor from a user program.

EXT	IDLE	
.	.	
JSB	IDLE	Transfer control to TCE/3.
DEF	* + 1	The prompt character will be output at the TTY, and TCE/3 will then accept the next operator command.

COMMENTS

Every terminal user program should terminate via a call to IDLE to preserve the continuity of the TCE/3 system.

SEQUENCE OF OPERATIONS

1. Display ":" prompt.
2. Continue in loop waiting for next operator request to be input.

FORTRAN & ALGOL EXAMPLES**-----FORTRAN-----**

```
FTN,L
      PROGRAM REMOT
      .
      CALL IDLE
      .
      END
      .
      END$
```

-----ALGOL-----

```
HPAL,L,"REMOT"
      BEGIN
      .
      PROCEDURE IDLE ;
      CODE ;
      .
      IDLE ;
      .
      END$
```

PROGRAM SCHEDULE

PURPOSE

Schedule a dormant remote program for execution at the central (remote) computer, and optionally to transfer up to five parameters to that program.

EXT	REXEC		
JSB	REXEC		
DEF	RTN	Transfer control to remote RTE	
DEF	ISTAT	Communication status	
DEF	ICODE	Request code	
DEF	INAME	Name of remote program to schedule	
DEF	IPRM1		
			Up to five optional parameters
DEF	IPRM5		
RTN	return point	Continue execution	
ISTAT	BSS	1	Communication status returned here.
ICODE	DEC	10	Request code = 10. No wait.
INAME	ASC	3,xxxxx	xxxxx is the name of the program to schedule.
IPRM1			User specified 5 entry array, values may be positive or negative.
IPRM5			

COMMENTS

If the program to be scheduled is dormant, it is scheduled and a zero is returned to the calling program in the A-Register.

If the program to be scheduled is not dormant, it is not scheduled by this call, and its status (which is some non-zero value) is returned to the calling program in the A-Register.

1 = Scheduled

2 = I/O suspend

3 = Not used

4 = Unavailable memory suspend

5 = Disc allocation suspend

6 = Operator suspend, or programmed suspend (EXEC7 Call).

PARAMETERS

When the scheduled program begins executing, the B-Register contains the address of a five-word list of parameters from the calling program (the parameters equal zero if none were specified).

FORTRAN & ALGOL EXAMPLES

THE FOLLOWING EXAMPLES IN FORTRAN AND ALGOL WILL REMOTELY SCHEDULE THE FILE MANAGER AT CENTRAL, AND PASS TO IT THE NAME OF A TRANSFER FILE 'PACK' WHICH CONTAINS FILE MANAGER INSTRUCTIONS TO PACK THE DISC.

-----FORTRAN-----

FTN,L

```

PROGRAM REXUS
DIMENSION INAME(3),IREG(2)
EQUIVALENCE (IREG(1),REG,IA),(IREG(2),IB)
DATA INAME/2HFM,2HGR,2H /,IPRM1/2HPA/,IPRM2/2HCK/,IPRM3/2H /
      .
      REG = REXEC(ISTAT,10,INAME,IPRM1,IPRM2,IPRM3,0,6)
      IF (ISTAT.....)
      IF (IA.....)
      .
      END
      .
END$
```

-----ALGOL-----

HPAL,L,"REXUS"
BEGIN

```

INTEGER INAME[1:3] := "FM","GR"," ";
INTEGER IA,IB,ISTAT;

REAL
PROCEDURE REXEC(ISTAT,ICODE,INAME,IPRM1,IPRM2,IPRM3,IPRM4,IPRM5) ;
  VALUE ICODE,IPRM1,IPRM2,IPRM3,IPRM4,IPRM5 ;
  INTEGER ISTAT,ICODE,INAME,IPRM1,IPRM2,IPRM3,IPRM4,IPRM5 ;
  CODE ;
PROCEDURE SEPAR(P1,P2,P3) ;
  VALUE P1 ;
  REAL P1 ;
  INTEGER P2,P3 ;
  CODE ;
  SEPAR(REEXEC(ISTAT,10,INAME[1],"PA","CK","",0,6),IA,IB) ;
  IF ISTAT..... ;
  IF IA..... ;
  .
END$
```

PTPOF

PURPOSE

Enable operator attention processing after completion of remote communication.

EXT PTPOF

JSB PTPOF
DEF * + 1

COMMENTS

This call should be made after program-to-program communication is complete and before program exit. See PTPON call.

SEQUENCE OF OPERATIONS

1. Clear \$BUSY flag.
2. Return.

FORTRAN & ALGOL EXAMPLES

THE FOLLOWING FORTRAN AND ALGOL EXAMPLES WILL DEMONSTRATE THE PROPER SEQUENCE OF THE USE OF PTPON AND PTPOF.

-----FORTRAN-----

```
FTN,L
      PROGRAM REMOTE
      .
      CALL PTPON
      .
      C      BEGIN REMOTE COMMUNICATIONS
      .
      C      END REMOTE COMMUNICATIONS
      .
      CALL PTPOF
      .
      END
      .
      ENDS
```

-----ALGOL-----

```
HPAL,L,"REMOT"
      BEGIN
      .
      PROCEDURE PTPOF ;
      CODE ;
      PROCEDURE PTPON ;
      CODE ;
      .
      PTPON ; & BEGIN REMOTE COMMUNICATIONS
      .
```

COMMENT COMMUNICATIONS ENDED ;

• PTPOF ;
END\$

PTPON**PURPOSE**

Lock out operator attention processing during remote communication. Signals program-to-program communication is in progress.

EXT	PTPON
JSB	PTPON
DEF	* + 1

COMMENTS

If operator attention processing is not locked out during remote program-to-program communication, the central program will stay in an I/O suspend loop if the terminal program is aborted. For this reason, this call should be issued immediately before a remote program schedule call if program-to-program communication is to take place. After a request is received, and before data is transmitted or received, a call may be made to ESCON to see if the ESCAPE

key has been pressed. If so, a STOP may be transmitted to the central computer causing the central program to be terminated. See sample program in Section VII.

SEQUENCE OF OPERATIONS

1. Set \$BUSY flag.
2. Return.

FORTRAN & ALGOL EXAMPLES

(See PTPOF)

PUT DATA STREAM

PURPOSE

This call is used at the terminal to send a data buffer in response to a Receive Data call from central. The data buffer length at the terminal must be exactly the same as the data buffer length at central. See Terminal Sends Data program example in Section VII.

EXT	# TAM	
:	:	
(A) =	Ø for send data	
=	1 for send request (user programs must not use this option)	
JSB	# TAM	Transfer control to TAM
DEF	RTN	Return address
DEC	6	Function code
DEF	x	Request or data buffer
DEC	y	Buffer length (negative bytes)
RTN	return point	Continue execution
:	:	
x	BSS	n
		Request or data buffer to be written.

SEQUENCE OF OPERATIONS

1. Check the number of parameters.
2. Format .IOC. call using the caller's buffer address and buffer length.
3. Set up the mode for .IOC. call and set up for transmit request or transmit data.

4. Issue .IOC. call.
5. Wait for completion.
6. Set the A-Register to minus one, or the appropriate #TAM error code.
7. Return.

FORTRAN & ALGOL

This call cannot be made using FORTRAN or ALGOL.

RAPOS

PURPOSE

This routine sets the address of the next record for any remote file except type Ø.

EXT RAPOS

	JSB	RAPOS	Subroutine call
	DEF	RTN	Return address
	DEF	ISTAT	Communication status
	DEF	IERR	Operational status
	DEF	NAME	File name
	DEF	IREC	Record
	DEF	IRS	Optional
	DEF	IOFF	Optional
RTN	return point		Continue execution
ISTAT	BSS	1	Communication status returned here.
IERR	BSS	1	Error code returned here.
NAME	ASC	<i>3, name</i>	File name.
IREC	DEC	<i>a</i>	Record number of next record.
IRS	DEC	<i>b</i>	Relative block address of next record.
IOFF	DEC	<i>c</i>	Block offset of next record.

COMMENTS

The optional parameters IRS and IOFF are not required if a type 1 or 2 file is being positioned. READF or WRITF are the preferred calls to position type 1 or 2 files. RAPOS

will, however, function correctly to allow sequential access of any cartridge file from the specified record.

RAPOS allows random access of sequential files. The parameters needed for RAPOS are relative and are not affected by packing; they are obtained by using a RLOCF call.

FORTRAN & ALGOL EXAMPLES

THE FOLLOWING EXAMPLES IN FORTRAN AND ALGOL WILL REMOTELY POSITION FILE 'NAME' TO THE NEXT RECORD BY ABSOLUTE POSITIONING. THESE EXAMPLES WILL FIRST OBTAIN THE CORRECT POSITIONING INFO FROM THE 'RLOCF' INTRINSIC, AND MERELY PASS THE VALUES FOR THE NEXT RECORD ON TO THE 'RAPOS' INTRINSIC .

-----FORTRAN-----

FTN,L

```
PROGRAM RFA'R,3,99
DIMENSION NAME(3)
```

```
DATA NAME/2HNA,2HME,2H /  
•  
CALL RLOCF(ISTAT,IERR,NAME,IREC,IRS,IOFF)  
IF (ISTAT.....  
IF (IERR.....  
CALL RAPOS(ISTAT,IERR,NAME,IREC,IRS,IOFF )  
IF (ISTAT.....  
IF (IERR.....  
•  
END  
•  
END$
```

-----ALGOL-----

```
HPAL,L,"RFA'R",0,3,99  
BEGIN  
•  
INTEGER ARRAY NAME[1:3] := "NA","ME"," " ;  
INTEGER IREC,IRS,IOFF :  
•  
PROCEDURE RLOCF(ISTAT,IERR,NAME,IREC,IRS,IOFF) ;  
INTEGER ISTAT,IERR,NAME,IREC,IRS,IOFF :  
CODE :  
PROCEDURE RAPOS(ISTAT,IERR,NAME,IREC,IRS,IOFF ) ;  
INTEGER ISTAT,IERR,NAME,IREC,IRS,IOFF :  
CODE :  
•  
•  
RLOCF(ISTAT,IERR,NAME[1],IREC,IRS,IOFF) :  
IF ISTAT.....;  
IF IERR.....;  
RAPOS(ISTAT,IERR,NAME[1],IREC,IRS,IOFF) ;  
IF ISTAT..... ;  
IF IERR..... ;  
•  
END$
```

RCLOS

PURPOSE

This routine closes a remote file and makes the file available to other callers. RCLOS also, optionally, truncates the file size.

EXT	RCLOS	
JSB	RCLOS	Subroutine call
DEF	RTN	Return address
DEF	ISTAT	Communication status
DEF	IERR	Operational status
DEF	NAME	File name
DEF	IRX	Number of blocks, optional
RTN	return point	Continue execution
ISTAT	BSS	1 Communication status returned here.
IERR	BSS	1 Error code returned here.
NAME	ASC	3, name File name.
IRX	DEC	n Truncate option: +n = number of blocks to be deleted from the end of the file when it is closed. -n = retain main file, delete extents. n = Ø = standard close.

COMMENTS

The following conditions must be met for the parameter IRX to be recognized:

- The current position must be in the main file (not an extent).

- The number of blocks to be deleted must be less than or equal to the number of blocks in the file.

If the number of blocks to be deleted equals the number of blocks in the file, the file is purged.

FORTRAN & ALGOL EXAMPLES

THE FOLLOWING EXAMPLES IN FORTRAN AND ALGOL WILL REMOTELY CLOSE THE FILE 'NAME' AND DELETE 10 BLOCKS <IRX>=(10) FROM THE FILE.

-----FORTRAN-----

FTN,L

PROGRAM RFA'R,3,99
DIMENSION NAME(3)

:

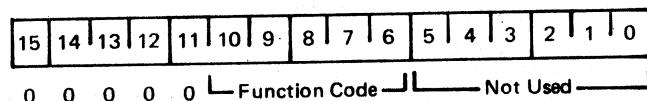
```
DATA NAME/2HNA,2HME,2H /,IRX/10/  
.  
.  
CALL RCLOS(ISTAT,IERR,NAME,IRX)  
IF (ISTAT.....  
IF (IERR.....  
.  
.  
END  
.  
.  
END$
```

----- ALGOL -----

```
HPAL,L,"RFA'R",0,3,99  
BEGIN  
.  
.  
INTEGER ARRAY NAME[1:3] := "NA","ME"," ";  
INTEGER IRX := 10 ;  
.  
.  
PROCEDURE RCLOS(ISTAT,IERR,NAME,IRX) ;  
INTEGER ISTAT,IERR,NAME,IRX ;  
CODE ;  
.  
.  
RCLOS(ISTAT,IERR,NAME[1],IRX) ;  
IF ISTAT.....;  
IF IERR.....;  
.  
.  
END$
```

RCONT

PURPOSE


This routine sends the standard RTE I/O Control request to type 0 (non-disc) remote files. It has no effect on other files.

EXT RCONT

	JSB	RCONT	Subroutine call
	DEF	RTN	Return address
	DEF	ISTAT	Communication status
	DEF	IERR	Operational status
	DEF	NAME	File name
	DEF	ICON1	
	DEF	ICON2	Optional
RTN		return point	Continue execution
	ISTAT	BSS	1 Communication status returned here.
	IERR	BSS	1 Error code or file type returned here.
	NAME	ASC	3, <i>name</i> File name.
	ICON1	OCT	<i>conwd</i> See Control Word below.
	ICON2	DEC	<i>n</i> Required for some functions (see Control Word below).

CONTROL WORD

The control word value (*conwd*) has one field that is ORed with the device logical unit number.

Function Code (Octal)	Action
00	Unused
01	Write end-of-file (magnetic tape)
02	Backspace one record (magnetic tape)
03	Forward space one record (magnetic tape)
04	Rewind (magnetic tape)
05	Rewind standby (magnetic tape)
06	Dynamic status (magnetic tape)
07	Set end-of-paper tape
10	Generate paper tape leader
11	List output line spacing
12	Write gap (magnetic tape)

13 Forward space file (magnetic tape)
14 Backward space file (magnetic tape)

The following functions are defined for DVR00, DVR01 and DVR02:

20	Enable auxiliary TTY-type device at central to schedule its program when any key is struck.
21	Disable auxiliary TTY-type device at central to inhibit scheduling of program.
22	Set time out – the optional third parameter is set as the new time out interval.
23	Ignore all further action requests until: <ul style="list-style-type: none"> a. The queue is empty. b. An input request is received. c. A restore control request is received.
24	Restore output processing (this request is usually not needed).

Function Code 11s (list output line spacing) requires the optional parameter ICON2. ICON2 must designate the number of lines to be spaced on the specified logical unit. A negative parameter specifies a page eject on a line printer.

FORTRAN & ALGOL EXAMPLES

THE FOLLOWING EXAMPLES IN FORTRAN AND ALGOL WILL REMOTELY CONTROL THE FILE 'MT' TO REWIND-STANDBY(MAGNETIC TAPE UNIT) <ICON2>=(OCTAL 500) . IT IS ASSUMED THAT THE FILE 'MT' HAS BEEN PREVIOUSLY CREATED AS A TYPE 0(ZERO) FILE WHICH POINTS TO THE MAGNETIC TAPE UNIT .

-----FORTRAN-----

```
FTN,L
  PROGRAM RFA'R,3,99
  DIMENSION NAME(3)
  .
  .
  DATA NAME/2HMT,2H ,2H /,ICON1/B500/,ICON2/0/
  .
  .
  CALL RCONT(ISTAT,IERR,NAME,ICON1,ICON2)
  IF (ISTAT.....)
  IF (IERR.....)
  .
  .
  END
  .
  .
  ENDS$
```

-----ALGOL-----

```
HPAL,L,"RFA'R",0,3,99
  BEGIN
  .
  .
  INTEGER ARRAY NAME[1:3] := "NA","ME","  ";
  INTEGER ICON1 := @500 ;
  INTEGER ICON2 := 0 ;
  .
  .
  PROCEDURE RCONT(ISTAT,IERR,NAME,ICON1,ICON2) ;
  INTEGER ISTAT,IERR,NAME,ICON1,ICON2 :
  CODE ;
  .
  .
  RCONT(ISTAT,IERR,NAME[],ICON1,ICON2) :
  IF ISTAT.....;
  IF IERR.....;
  .
  .
  ENDS$
```

RCRET

PURPOSE

This routine creates the named file on the specified disc with the requested number of blocks. If the call is successfully completed, the file is left open to the caller.

EXT	RCRET		
	JSB	RCRET	Subroutine call
	DEF	RTN	Return address
	DEF	ISTAT	Communication status
	DEF	IERR	Operational status
	DEF	NAME	File name
	DEF	ISIZE	File size (first word required)
	DEF	ITYPE	File Type
	DEF	IS	Optional security code
	DEF	ILU	Optional Cartridge Label or Logical Unit
RTN	return point		Continue execution
ISTAT	BSS	1	Communication status returned here.
IERR	BSS	1	Error code or number of sectors, if RCRET is successful, returned here.
NAME	ASC	<i>3, name</i>	File name in ASCII.
ISIZE	DEC	<i>a</i>	Number of 128-word blocks in the file. If negative, the remainder of the disc is assumed.
	DEC	<i>b</i>	Record length (for type 2 files only).
ITYPE	DEC	<i>c</i>	File types are defined in Comments.
IS	DEC	<i>d</i>	Security code.
ILU	DEC	<i>e</i>	Logical unit.

COMMENTS

Legal file types are:

- 1 = 128 word record length, random access.
- 2 = user selected record length, random access.
- 3 = (and greater) random record length, sequential access.

4 = source program.

5 = relocatable program.

6 = RTE load module.

7 = absolute program.

> 7 = user defined.

FORTRAN & ALGOL EXAMPLES

THE FOLLOWING EXAMPLES IN FORTRAN AND ALGOL WILL REMOTELY CREATE A TYPE 2 <FIXED LENGTH> FILE CALLED 'NAME' WHOSE SECURITY CODE <IS> WILL BE 'DS' ON CARTRIDGE <ILU> # 0 . THIS FILE 'NAME'

WILL CONSIST OF 10 BLOCKS <ISIZE[1]>, AND EACH RECORD IN THE FILE
WILL BE 100 WORDS LONG <ISIZE[2]>.

-----FORTRAN-----

FTN,L

```
PROGRAM RFA'R,3,99
DIMENSION NAME(3),ISIZE(2)
.
.
DATA NAME/2HNA,2HME,2H/,ISIZE/10,100/
DATA ITYPE/2/,IS/2HDS/,ILU/0/
.
.
CALL RCRET(ISTAT,IERR,NAME,ISIZE,ITYPE,IS,ILU)
IF (ISTAT....)
IF (IERR....)
.
.
END
.
.
END$
```

-----ALGOL-----

HPAL,L,"RFA'R",0,3,99
BEGIN

```

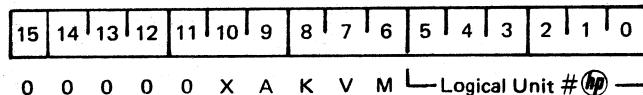
.
.
INTEGER ARRAY NAME[1:3] := "NA","ME"," ";
INTEGER ARRAY ISIZE[1:2] := 10,100 :
INTEGER ISTAT,IERR :
INTEGER ITYPE := 2 :
INTEGER IS := "DS" :
INTEGER ILU := 0 ;

.
.
PROCEDURE RCRET(ISTAT,IERR,NAME,ISIZE,ITYPE,IS,ILU) ;
INTEGER ISTAT,IERR,NAME,ISIZE,ITYPE,IS,ILU :
CODE :
.
.
RCRET(ISTAT,IERR,NAME[1],ISIZE[1],ITYPE,IS,ILU) ;
IF ISTAT..... ;
IF IERR..... ;
.
.
END$
```

REMOTE READ

PURPOSE

To transfer information to or from a remote I/O device.


EXT	REXEC		
JSB	REXEC	Transfer control to remote RTE	
DEF	RTN	Point of return	
DEF	ISTAT	Communication status	
DEF	ICODE	Request code	
DEF	ICNWD	Control information	
DEF	IBUFR	Buffer location	
DEF	IBUFL	Buffer length	
DEF	IPRM1	Optional parameter	
DEF	IPRM2	Optional parameter	
RTN	return point	Continue execution	
ISTAT	BSS	1	Communication status returned here.
ICODE	DEC	1	1 = READ.
ICNWD	OCT	<i>conwd</i>	<i>conwd</i> is described in Comments.
IBUFR	BSS	<i>n</i>	Buffer of <i>n</i> words (128 maximum). ⁵¹²
IBUFL	DEC	<i>n</i> (or -2 <i>n</i>)	Same <i>n</i> ; words (+), or characters (-).
IPRM1	DEC	<i>f</i>	Decimal track number if disc transfer.
IPRM2	DEC	<i>g</i>	Decimal sector number if disc transfer.

COMMENTS

Parameters IPRM1 and IPRM2 are optional, except in the case of disc transfers. If the data transfer involves a disc, IPRM1 is the disc track number and IPRM2 is the disc sector number. In calls to other I/O devices these parameters may have other uses. For example, drive DVR77 (HP 2313A Subsystem) uses IPRM1 for the scanner channel number and IPRM2 for the instrument program word.

CONTROL WORD

The control word (*conwd*) required in the calling sequence contains several fields defining the nature of the data transfer:

Where:

X = 1 for moving head disc write with cyclic checking.

For paper tape devices, X indicates the honest mode.

If X, M and V are set, on input, absolute tape format is expected and handled.

If X and M are set on input, no leader is shipped and the specified number of words are read, or, output, no record terminator is punched (usually in 4 feed frames).

If X is set and M is not, on input; ASCII tape is read, no leader is shipped, bit 8 is stripped, but otherwise all characters are passed to the buffer. The only exception is the line feed which terminates the record.

On output, X rather than M, suppresses the carriage return line feed and forces non-recognition of any trailing left arrow, i.e., the left arrow is transmitted, but CRTL F is not.

A = 1 designates punching ASCII characters on the

(hp) Modified to contain request code before entry into driver.

teleprinter ($M = \emptyset$). ASCII is usually printed, but since it is sometimes desirable to punch ASCII tapes, this option is provided.

$A = \emptyset$ M , determines the mode of transfer.

Where:

$K = 1$ causes keyboard input to be printed as received. If $K = 0$, input from the keyboard is not printed.

$V = 1$, and $M = 1$ cause the length of punched tape input to be determined by the word count in the first non-zero read from the tape.

$V = 0$, and $M = 1$, the length of the punched tape input is determined by the buffer length specified in the EXEC call. M determines the mode of data transfer (if applicable).

$M = 0$ for ASCII

$M = 1$ for binary

In an Assembly Language calling sequence, the buffer length can be a positive number for words (+) or a negative number for characters (-).

End-of-operation information is transmitted to the program in the A- and B-Registers. This A-Register contains word 5 (status word) of the device EQT entry with bits 14 and 15 indicating the end-of-operation status as defined by the driver completion code. Bits 14 and 15 are set to zero if the device is up and set to one if the device is down. The B-Register contains a positive number which is the number of words or characters (depending upon program specification) actually transmitted.

FORTRAN & ALGOL EXAMPLES

THE FOLLOWING EXAMPLES IN FORTRAN AND ALGOL WILL READ A RECORD FROM THE STANDARD INPUT DEVICE <ICNWD=5> AND OUTPUT THE SAME RECORD TO THE STANDARD LIST DEVICE <ICNWD=6>.

-----FORTRAN-----

FTN,L

```

PROGRAM REXUS      512
DIMENSION IBUFR(128)
DIMENSION IREG(2)
EQUIVALENCE (IREG(1),REG,IA),(IREG(2),IB)

REG = REXEC(ISTAT,1,5,IBUFR,128)
IF (ISTAT....)
IF (IAND(IA,377B)....)

REG = REXEC(ISTAT,2,6,IBUFR,IB)
IF (ISTAT....)
IF (IAND(IA,377B)....)

END

END$
```

-----ALGOL-----

HPAL,L,"REXUS"
BEGIN

```

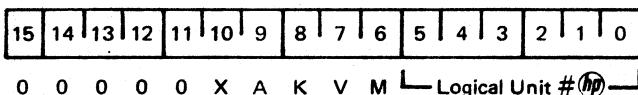
INTEGER ARRAY IBUFR[1:128];
INTEGER IA,IB;
INTEGER ISTAT;
```

```
REAL
PROCEDURE REXEC(ISTAT,ICODE,ICNWD,IBUFR,IBUFL) ;
  VALUE ICODE,ICNWD,IBUFL ;
  INTEGER ISTAT,ICODE,ICNWD,IBUFR,IBUFL ;
  CODE ;
PROCEDURE SEPAR(P1,P2,P3) ;
  VALUE P1 ;
  REAL P1 ;
  INTEGER P2,P3 ;
  CODE ;
  • SEPAR(REEXEC(ISTAT,1,5,IBUFR[1],IBUFR[28]),IA,IB) ;
  IF ISTAT..... ;
  IF IA AND @377 ..... ;
  • SEPAR(REEXEC(ISTAT,2,6,IBUFR[1],IB),IA,IB) ;
  IF ISTAT..... ;
  IF IA AND @377 ..... ;
  •
END$
```

REMOTE WRITE

PURPOSE

To transfer information to or from a remote I/O device.


EXT	REXEC	
JSB	REXEC	Transfer control to remote RTE
DEF	RTN	Point of return
DEF	ISTAT	Communication status
DEF	ICODE	Request code
DEF	ICNWD	Control information
DEF	IBUFR	Buffer location
DEF	IBUFL	Buffer length
DEF	IPRM1	Optional parameter
DEF	IPRM2	Optional parameter
RTN	return point	
ISTAT	BSS	1 Communication status returned here.
ICODE	DEC	2 = WRITE.
ICNWD	OCT	conwd is described in Comments.
IBUFR	BSS	n Buffer of ⁵¹² _n words (128 maximum).
IBUFL	DEC	n (or -2n) Same n; words (+), or characters (-).
IPRM1	DEC	f Decimal track number if disc transfer.
IPRM2	DEC	g Decimal sector number if disc transfer.

COMMENTS

Parameters IPRM1 and IPRM2 are optional, except in the case of disc transfers. If the data transfer involves a disc, IPRM1 is the disc track number and IPRM2 is the disc sector number. In calls to other I/O devices these parameters may have other uses. For example, driver DVR77 (HP 2313A Subsystem), uses IPRM1 for the scanner channel number and IPRM2 for the instrument program word.

CONTROL WORD

The control word (*conwd*) required in the calling sequence contains several fields defining the nature of the data transfer:

Where:

X = 1 for moving head disc write with cyclic checking.

For paper tape devices, X indicates the honest mode.

If X, M and V are set, on input, absolute tape format is expected and handled.

If X and M are set on input, no leader is shipped and the specified number of words are read, or, output, no record terminator is punched (usually in 4 feed frames).

If X is set and M is not, on input; ASCII tape is read, no leader is shipped, bit 8 is stripped, but otherwise all characters are passed to the user buffer. The only exception is the line feed which terminates the record.

On output, X rather than M, suppresses the carriage return line feed and forces non-recognition of any trailing left arrow, i.e., the left

⁽¹⁾ Modified to contain request code before entry into driver.

arrow is transmitted, but CRLF is not.

A = \emptyset M, determines the mode of transfer.

A = 1 designates punching ASCII characters on the teleprinter (M = \emptyset). ASCII is usually printed, but since it is sometimes desirable to punch ASCII tapes, this option is provided.

Where:

K = 1 causes keyboard input to be printed as received. If K = 0 input from the keyboard is not printed.

V = 1, and **M = 1** cause the length of punched tape input to be determined by the word count in the first non-zero read from the tape.

V = 0, and **M = 1**, the length of the punched tape input is determined by the buffer length

specified in the EXEC call. M determines the mode of data transfer (if applicable).

M = 0 for ASCII

M = 1 for binary

In an Assembly Language calling sequence, the buffer length can be a positive number for words (+) or a negative number for characters (-).

End-of-operation information is transmitted to the program in the A- and B-Registers. This A-Register contains word 5 (status word) of the device EQT entry with bits 14 and 15 indicating the end-of-operation status as defined by the driver completion code. Bits 14 and 15 are set to zero if the device is up and set to one if the device is down. The B-Register contains a positive number which is the number of words or characters (depending upon program specification) actually transmitted.

FORTRAN EXAMPLE

(See Remote Read)

ALGOL EXAMPLE

(See Remote Read)

RLOAD

PURPOSE

To load a program from the central computer into a terminal computer.

EXT RLOAD

JSB	RLOAD	Transfer control to TCE/3
DEF	RTN	Point of return
DEF	ISTAT	Communication status returned here (see Comments)
DEF	IERR	Operational status
DEF	IPROG	Name of program to load
DEF	IADR	Starting address returned
RTN	return point	Continue execution
ISTAT	BSS	1 Status code returned here (see Comments).
IERR	BSS	1 Error code returned here (see Comments).
IPROG	ASC	3,xxxxx ASCII program name.
IADR	BSS	1 If the starting address is not available, a Ø is returned in this item.

COMMENTS

Legal values for the codes returned in STATUS for this call are:

5 = RFA busy
 4 = Not used
 3 = Not enough parameters
 2 = Communications line down
 1 = Illegal request code
 Ø = Request being processed
 -1 = Request completed, no errors
 -2 = Not used
 -3 = I/O error
 -4 = Error in parameters
 -5 = Improper sequence of commands

Legal error codes returned in IERR for this call are:

Possible loading status returns are:

Ø = No error
 -1 = Open error on program name (file probably does not exist on central disc)

-2 = File Read error at remote
 -3 = Transmission error for data record
 -4 = Transmission error, occurred when PROGL sent termination status to TCE/3
 -5 = File close error at remote
 -6 = Start address not available (no default address provided in location 3)

SEQUENCE OF OPERATIONS

1. Get user parameters from the calling sequence.
2. Get LU of the terminal from a GETLU call to the central computer.
3. Make a remote EXEC call to schedule PROGL. Pass parameters for LU and program name from the RLOAD call.
4. If PROGL is busy, return to the caller with IERR = 1.
5. Read data sent to the terminal by PROGL and store it into absolute core locations (program loading operation).
6. When the storage operation is complete, pass any error

code to the user call.

7. Save contents of location 3 for a default start address.
8. Return to the caller.

FORTAN & ALGOL EXAMPLES

THE FORTRAN AND ALGOL EXAMPLES WILL LOAD A PROGRAM FILE FROM CENTRAL'S FILE SYSTEM.

-----FORTRAN-----

```
FTN,L
PROGRAM REMOT
DIMENSION IPROG(3)
DATA IPROG/2HIP,2HRO,2HG /

CALL RLOAD(ISTAT,IERR,IPROG,IADR)
IF (ISTAT....)
IF (IERR....)

END

END$
```

-----ALGOL-----

```
HPAL,L,"REMOT"
BEGIN

  INTEGER ARRAY IPROG[1:3] := "IP","RO","G" ;
  INTEGER ISTAT,IERR,IADR ;

PROCEDURE RLOAD(ISTAT,IERR,IPROG,IADR) :
  INTEGER ISTAT,IERR,IPROG,IADR ;
  CODE :

    RLOAD(ISTAT,IERR,IPROG[1],IADR) ;
    IF ISTAT..... ;
    IF IERR..... ;

END$
```

RLOCF

PURPOSE

This routine formats and returns location and status information from the remote DCB.

EXT	RLOCF		
JSB	RLOCF	Subroutine call	
DEF	RTN	Return address	
DEF	ISTAT	Communication status	
DEF	IERR	Operational status	
DEF	NAME	File name	
DEF	IREC	Next record number	
DEF	IRS	Relative block of next record (optional)	
DEF	IOFF	Block offset of next record (optional)	
DEF	JSEC	Number of sectors or extents in the main file (optional)	
DEF	JLU	Returned LU of file device (optional)	
DEF	JTY	Returned file type (optional)	
DEF	JREC	Returned record size (optional)	
RTN	return point	Continue execution	
ISTAT	BSS	1	Communication status returned here.
IERR	BSS	1	Error code returned here.
NAME	ASC	<i>3, name</i>	ASCII File name.
IREC	BSS	1	Next record number returned here.
IRS	BSS	1	IRS includes extent information (i.e., IRS = JSEC*2* Extent number plus relative block in current extent). IRS equals IREC for type 1 files. IRS is not set for a type \emptyset file.
IOFF	BSS	1	Set to \emptyset for type 1 files. Not set for type \emptyset files. Legal values for other file types are: $0 \leq IOFF \leq 128$.
JSEC	BSS	1	Not set for type \emptyset files.
JLU	BSS	1	Used for disc and non-disc.
JTY	BSS	1	Same file type as set in the DCB.
JREC	BSS	1	Same value as directory entry, except: Type 1 files, set to 128 for first read/write access. Type \emptyset files, JREC is the read/write code. Bit 15 = 1 for read legal; bit \emptyset = 1 for write legal.

FORTRAN & ALGOL EXAMPLES

THE FOLLOWING EXAMPLES IN FORTRAN AND ALGOL WILL REMOTELY ACCESS THE DCB MAINTAINED IN CENTRAL FOR FILE 'NAME' TO OBTAIN INFO ABOUT THE NEXT RECORD <IREC>. UPON RETURN, <IREC> WILL CONTAIN THE NEXT RECORD NUMBER; <IRS> WILL CONTAIN THE RELATIVE BLOCK OF THE NEXT RECORD; <IOFF> WILL CONTAIN THE BLOCK OFFSET OF THE NEXT RECORD; <JSEC> WILL CONTAIN THE NUMBER OF SECTORS IN THE MAIN FILE; <JLU> WILL CONTAIN THE CARTRIDGE NUMBER FOR THE FILE; <JTY> WILL CONTAIN THE FILE TYPE; AND <JREC> WILL CONTAIN THE RECORD SIZE FOR A TYPE 2 FILE.

-----FORTRAN-----

```
FTN,L
  PROGRAM RFA'R,3,99
  DIMENSION NAME(3)
  .
  .
  DATA NAME/2HNA,2HME,2H /
  .
  .
  CALL RLOCF(ISTAT,IERR,NAME,IREC,IRS,IOFF,JSEC,JLU,JTY,JREC)
  IF (ISTAT....)
  IF (IERR....)
  .
  .
  END
  .
  .
  END$
```

-----ALGOL-----

```
HPAL,L,"RFA'R",0,3,99
BEGIN
  .
  .
  INTEGER ARRAY NAME[1:3] := "NA","ME"," ";
  INTEGER IREC,IRS,IOFF,JSEC,JLU,JTY,JREC ;
  .
  .
  PROCEDURE RLOCF(ISTAT,IERR,NAME,IREC,IRS,IOFF,JSEC,JLU,JTY,JREC) ;
  INTEGER ISTAT,IERR,NAME,IREC,IRS,IOFF,JSEC,JLU,JTY,JREC ;
  CODE ;
  .
  .
  RLOCF(ISTAT,IERR,NAME[1],IREC,IRS,IOFF,
        JSEC,JLU,JTY,JREC) ;
  IF ISTAT.....;
  IF IERR.....;
  .
  .
  END$
```

RMESG

PURPOSE

Send a message to the operator display device at the central computer.

EXT	RMESG	
JSB	RMESG	Transfer control to TCE/3
DEF	RTN	Point of return
DEF	ISTAT	Communication status
DEF	MSGAD	Message address
DEF	MSGL	Message length
RTN	return point	Continue execution
ISTAT	BSS	1 Communication status returned here.
MSGAD	ASC	<i>n</i> , ASCII message Maximum length is 36 words.
MSGL	DEC	<i>n</i> $n \leq 36$ (positive value).

COMMENTS

The message displayed at central will be preceded with an ID code that identifies to the central operator the terminal that sent the message.

The message format is:

“=T*nn*: ASCII message from terminal *n*.”

Where:

nn = logical unit number of the sending terminal.

SEQUENCE OF OPERATIONS

1. Get user calling parameters.

2. Move user message to the output buffer.
3. Store the ID header in the output buffer.
4. Get the L.U. of the terminal via a GETLU call. Convert the L.U. to ASCII, and store it in the ID header.
5. Set up the total message length.
6. Make a remote EXEC call to write a record on the remote operator display device.
7. Return to caller.

FORTRAN & ALGOL EXAMPLES

THE FOLLOWING EXAMPLES IN FORTRAN AND ALGOL WILL TRANSMIT A MESSAGE TO CENTRAL'S OPERATOR REQUESTING THAT THIS TERMINAL'S MAGNETIC TAPE BE HUNG FOR SUBSEQUENT ACCESS BY THIS TERMINAL.

-----FORTRAN-----

FTN,L

PROGRAM REMOT
DIMENSION MSGAD(36)

```

DATA MSGAD/2HHA,2HNG,2H M,2HAG,2H T,2HAP,2HE ,2H#R,2HAC,2H21 ,
X      2459,2H7 ,2HF0,2HR ,2HTE,2HRM,2HIN,2HAL,2H A,2HCC,2HES,
X      2HS /

CALL RMESG(ISTAT,MSGAD,22)
IF (ISTAT.....)
C   REMOTE STATUS CALL(SEE REXEC(13....))

.
END
.
END$
```

-----ALGOL-----

```

HPAL,L,"REMOT"
BEGIN

INTEGER ARRAY MSGAD[1:36] := "HA","NG"," M","AG"," T","AP","E ",
                           "#R","AC","21","59","7 ","FO","R ","TE",
                           "RM","IN","AL"," A","CC","ES","S " ;
INTEGER ISTAT ;

PROCEDURE RMESGG(ISTAT,MSGAD,MEGL) ;
  VALUE MSGL ;
  INTEGER ISTAT,MSGAD,MEGL ;
  CODE ;

    RMESG(ISTAT,MSGAD[1],22) ;
    IF ISTAT..... :
COMMENT PERFORM REMOTE STATUS (SEE REXEC(13, ....)) ;

.
END$
```

RNAME

PURPOSE

This routine closes the remote DCB (if open) and then renames the specified remote file.

EXT RNAME

	JSB	RNAME	Subroutine call
	DEF	RTN	Return address
	DEF	ISTAT	Communication status
	DEF	IERR	Operational status
	DEF	NAME	Present file name
	DEF	NNAME	New file name
	DEF	IS	Optional security code
	DEF	ILU	Optional cartridge label or logical unit
RTN	return point		Continue execution
ISTAT	BSS	1	Communication status returned here.
IERR	BSS	1	Error code returned here.
NAME	ASC	3, <i>name</i>	The file specified by NAME must not be open to any other program when this call is made.
NNAME	ASC	3, <i>nuname</i>	File's new name.
IS	DEC	<i>a</i>	If NAME has a non-zero security, the proper security code must be furnished.
ILU	DEC	<i>b</i>	If ILU is furnished, only that cartridge is searched for name; otherwise, all mounted cartridges are searched. If all cartridges are searched, only the first file found with the given name will be changed.

FORTRAN & ALGOL EXAMPLES

THE FOLLOWING EXAMPLES IN FORTRAN AND ALGOL DEMONSTRATE HOW TO REMOTELY RENAME THE FILE <NAME[1]> 'NAME' WITH SECURITY CODE <IS> 'DS'. THE EXAMPLE ALSO SPECIFIES THAT THE FILE IS TO BE RENAME'ED <NNAME> 'NNAME'. THE CARTRIDGE IS NOT KNOWN, SO THE PROGRAM SENDS THE FMP A 0(ZERO), THUS RELYING ON THE FMP TO FIND THE FIRST FILE THAT HAS THE NAME 'NAME'.

-----FORTRAN-----

```
FTN,L
PROGRAM RFA'R,3,99
DIMENSION NAME(3),NNAME(3)
```

```
DATA NAME/2HNA,2HME,2H /,NNAME/2HNN,2HAM,2HE /
DATA IS/2HDS/,ILU/0/
```

•

```
CALL RNAME(ISTAT,IERR,NAME,NNAME,IS,ILU)
IF (ISTAT.....)
IF (IERR.....)
•
END
•
END$
```

-----AL GOL-----

```
HPAL,L,"RFA'R",0,3,99
BEGIN
```

```
INTEGER ARRAY NAME[1:3] := "NA","ME"," ";
INTEGER ARRAY NNAME[1:3] := "NN","AM","E ";
INTEGER IS := "DS" ;
INTEGER ILU := 0 ;
```

```
PROCEDURE RNAME(ISTAT,IERR,NAME,NNAME,IS,ILU) :
INTEGER ISTAT,IERR,NAME,NNAME,IS,ILU ;
CODE ;
RNAME(ISTAT,IERR,NAME[],NNAME[],IS,ILU) ;
IF ISTAT.....;
IF IERR.....;
END$
```

RNPGM

PURPOSE

To execute a loaded program at the central computer.

EXT	RNPGM	
.	.	
JSB	RNPGM	Transfer control to TCE/3
DEF	RTN	Point of return
DEF	IADR	Optional starting address
DEF	<i>p1</i>	Optional user parameters passed to the executing program
DEF	<i>p5</i>	
RTN	return point	Continue execution
.	.	
IADR	OCT	xxxxxx
		If IADR is not supplied (user wishes to take default start address contained in location 3), and location 3 is zero, control will return to the caller.
<i>p1</i>	BSS	1
.		The B-Register points to this parameter string when control is passed to the loaded program.
.		
<i>p5</i>	BSS	1

COMMENTS

If the starting address is not known and optional parameters are desired, IADR is set to 2.

SEQUENCE OF OPERATIONS

1. Set B-Register to the address of the first optional parameter. If no options are specified, the parameters are zero.
2. If a start address is specified in the call, a jump is executed to that address.
3. If no start address is specified, a jump is executed to the default start address.
4. If neither a start address nor a default are specified, return to the caller.

FORTRAN & ALGOL EXAMPLES

THE FORTRAN AND ALGOL EXAMPLES BELOW WILL CAUSE A PREVIOUSLY LOADED TERMINAL PROGRAM TO BE EXECUTED STARTING AT THE ADDRESS 'IADR' SUPPLIED BY THE 'RLOAD' INTRINSIC .

-----FORTRAN-----

```
FTN,L
  PROGRAM REMOT
  .
  CALL RNPGM(IADR)
  .
  END
  .
  END$
```

----- ALGOL -----

```
HPAL,L,"REMOT"
BEGIN
PROCEDURE RNPGM(IADR,IPRM1,IPRM2,IPRM3,IPRM4,IPRM5) ;
  VALUE IPRM1,IPRM2,IPRM3,IPRM4,IPRM5 ;
  INTEGER IADR,IPRM1,IPRM2,IPRM3,IPRM4,IPRM5 ;
  CODE ;
    RNPGM(IADR,0,0,0,0,0) ;
END$
```

ROOPEN

PURPOSE

This routine closes the remote DCB (if open), and then opens the named file.

EXT	ROOPEN	
JSB	ROOPEN	Subroutine call
DEF	RTN	Return address
DEF	ISTAT	Communication status
DEF	IERR	Operational status
DEF	NAME	File name
DEF	IOP	Optional open parameters (see Comments)
DEF	IS	Optional security code
DEF	ILU	Optional Cartridge Label or Logical Unit
RTN	return point	Continue execution
ISTAT	BSS	1 Communication status returned here.
IERR	BSS	1 If successful file type; otherwise, error code returned here.
NAME	ASC	3, <i>name</i> File name.
IOP	OCT	<i>a</i> Open option (see Comments).
IS	DEC	<i>b</i> Security code.
ILU	DEC	<i>c</i> Cartridge label.

COMMENTS

The IOP (open option) parameter is defined as follows:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	0	0	0	0	0	X	A	K	V	M	0	0	F	T	U	E

Where:

E = \emptyset for exclusive open (open to all terminals, but not to central programs).

E = 1 for non-exclusive open (open to all terminals and to central programs).

U = \emptyset for non-update open.

U = 1 for update open.

T = \emptyset means file type defined in directory.

T = 1 means force to file type 1 (extents are not addressable).

F = \emptyset uses function code defined in directory.

F = 1 uses function code defined in bits 6 - 10 of

this word for type \emptyset file only.

M = \emptyset for ASCII.

M = 1 for binary.

V = 1, and M = 1, causes the length of punched tape input to be determined by the word count in the first non-zero character read from the tape.

V = 0, and M = 1, the length of the punched tape input is determined by the buffer length specified in the call. M determines the mode of the data transfer (if applicable).

K = 1 causes keyboard input to be printed as received. If K = 0, input from the keyboard is not printed.

A = 1 designates punching ASCII characters on the teleprinter (M = 0). ASCII is usually printed; but since it is sometimes desirable to punch ASCII tapes, this option is provided. (If A = 0, M determines mode of transfer.)

X is used only for type \emptyset files.

When paper tape devices are used, "X", in combination with "M" and "V" will indicate an

honesty mode.

On input, if "X", "M", and "V" are set, absolute binary tape format is expected and handled. If "X" and "M" are set, and "V" is not, leader is not skipped and the specified number of words are read. On output, the record terminator (usually four feed frames) is not punched.

On input, if "X" is set and "M" is not, ASCII tape format is expected. Leader is not skipped, but 8 is stripped, but otherwise, all characters are passed to the user's buffer. The only exception is line-feed, which terminates the record.

On output, carriage return and line-feed are suppressed; trailing left arrow is not (i.e., left arrow is transmitted but carriage return/line feed is not).

- **UPDATE OPEN.** Update implies that a block is read before it is modified so that existing records within the block will not be destroyed. Type 1 files are inherently update files. In type 1 and 2 files the end-of-file is the last word of the last block in the file. However, in other type files it is a special word (-1) for the length of a re-

cord. In order to preserve data in a type 2 file, it should be opened for update whenever any non-sequential accesses are to be performed, and the file is to be modified. That is to say, a type 2 file should be modified in non-update mode only when originally writing the file, or adding to the end of the file; and then only if it is to be written sequentially. Update/non-update has no effect on reading or positioning.

In type 3 and above files, an end-of-file mark is written after each record that is written in the non-update fashion. That is, replace the end-of-file with the new record, followed by an end-of-file.

- **EXCLUSIVE OPEN.** In order to prevent central and terminal programs from destructively interfering with each other, a file may be opened either exclusively or non-exclusively. If one terminal opens a file exclusively, no other terminal or central may open the same file.
- **NON-EXCLUSIVE OPEN.** A non-exclusive open will allow central and terminal programs to open the same file. A non-exclusive open will not be granted if the file is already opened exclusively.

FORTRAN & ALGOL EXAMPLES

THE FOLLOWING EXAMPLES IN FORTRAN AND ALGOL DEMONSTRATE HOW TO REMOTELY OPEN THE FILE <NAME[1]> 'NAME' WITH SECURITY CODE <IS 'DS'. THE EXAMPLE ALSO SPECIFIES THAT THE FILE IS TO BE OPEN'ED EXCLUSIVELY. THE CARTRIDGE IS NOT KNOWN, SO THE PROGRAM SENDS THE FMP A 0 (ZERO), THUS RELYING ON THE FMP TO FIND THE FIRST FILE THAT HAS THE NAME 'NAME'.

-----FORTRAN-----

```
FTN,L
PROGRAM RFA'R,3,99
DIMENSION NAME(3)
.
.
.
DATA NAME/2HNA,2HME,2H  /,IOP/0/,IS/2HDS/,ILU/0/
.
.
.
CALL ROPEN(ISTAT,IERR,NAME,IOP,IS,ILU)
IF (ISTAT.....
IF (IERR.....
.
.
.
END
.
.
.
END$
```

ROPEN

91701

TCE/3 Program Calls

----- ALGOL -----

```
HPAL,L,"RFA'R",0,3,99
BEGIN
  .
  .
  .
  INTEGER ARRAY NAME[1:3] := "NA","ME","  ";
  INTEGER IOP := 0 ;
  INTEGER IS := "DS" ;
  INTEGER ILU := 0 ;

  .
  .
  .
  PROCEDURE ROPEN(ISTAT,IERR,NAME,IOP,IS,ILU) :
  INTEGER ISTAT,IERR,NAME,IOP,IS,ILU ;
  CODE ;
  .
  .
  .
  ROPEN(ISTAT,IERR,NAME[1],IOP,IS,ILU) ;
  IF ISTAT.....;
  IF IERR.....;
  .
  .
  .
END$
```

RPOSN

PURPOSE

This routine allows the next remote read or write to access a given record in any remote file type.

EXT RPOSN

JSB	RPOSN		Subroutine call
DEF	RTN		Return address
DEF	ISTAT		Communication status
DEF	IERR		Operational status
DEF	NAME		File name
DEF	NP		Number of records to skip
DEF	IR		Optional absolute/Relative Counter for NUR
RTN	return point		Continue execution
ISTAT	BSS	1	Communication status returned here.
IERR	BSS	1	Error code returned here.
NAME	ASC	<i>3, name</i>	File name.
NP	DEC	<i>a</i>	The NP (new record) parameter is defined as follows: NP > \emptyset Forward positioning, skip NUR records. NP < \emptyset Backward positioning, skip NUR records. NP = \emptyset No operation. If a type \emptyset file is involved, the motion requested must be legal for the device.
IR	DEC	<i>b</i>	The IR (absolute vs. relative) parameter is defined as follows: IR = \emptyset The new record indicated by NUR is relative to the present position in the file. present IR \neq \emptyset The new record indicated by NUR is the absolute number starting from the first record in the file (record number 1). Note that NUR must be $> \emptyset$.

COMMENTS

Forward positioning on a type \emptyset file is accomplished by reading records until one less than the desired record is read, or an EOF is read. In all cases, EOF terminates positioning.

Type 3 and above files are treated as magnetic tape files. To be correct, a backspace should be issued after an EOF is read, and before continuing to write. This action simulates a magnetic tape, that is, the EOF is spaced over. It is also legal to continue without backspacing.

RPOSN

91701

TCE/3 Program Calls

FORTRAN & ALGOL EXAMPLES

THE FOLLOWING EXAMPLES IN FORTRAN AND ALGOL WILL REMOTELY POSITION THE FILE 'NAME' TO THE PREVIOUS RECORD, RELATIVE <IR>=(0) POSITION <NP>=(-2) .

-----FORTRAN-----

```
FTN,L
      PROGRAM RFA'R,3,99
      DIMENSION NAME(3)
      .
      .
      DATA NAME/2HNA,2HME,2H  /,NP/-2/,IR/0/
      .
      .
      CALL RPOSN(ISTAT,IERR,NAME,NP,IR)
      IF (ISTAT.....)
      IF (IERR.....)
      .
      .
      END
      .
      .
      END$
```

-----ALGOL-----

```
HPAL,L,"RFA'R",0,3,99
BEGIN
  .
  .
  INTEGER ARRAY NAME[1:3] := "NA","ME","  ";
  INTEGER NP := -1 ;
  INTEGER IR := 0 ;
  .
  .
  PROCEDURE RPOSN(ISTAT,IERR,NAME,NP,IR) :
  INTEGER ISTAT,IERR,NAME,NP,IR ;
  CODE :
  .
  .
  RPOSN(ISTAT,IERR,NAME[1],NP,IR) :
  IF ISTAT.....;
  IF IERR.....;
  .
  .
  END$
```

RPURG

PURPOSE

This routine closes the remote DCB (if open), and then purges the named remote file.

EXT	RPURG	
JSB	RPURG	Subroutine call
DEF	RTN	Return address
DEF	ISTAT	Communication status
DEF	IERR	Operational status
DEF	NAME	File to be purged
DEF	IS	Optional security code
DEF	ILU	Optional Cartridge Label or Logical Unit
RTN	return point	Continue execution
ISTAT	BSS	1 Communication status returned here.
IERR	BSS	1 Error code returned here.
NAME	ASC	3, <i>name</i> Name of file to be purged.
IS	DEC	<i>a</i> Security code.
ILU	DEC	<i>b</i> Cartridge Label.

COMMENTS

The file must not be open to any other program when this call is made.

This routine will not purge type 0 (non-disc) files.

If the file being purged is the last file on the disc (excluding a type 6 file), all area from the last unpurged file up to and including the purged file, is returned to the system. If a purged file is not the last file, then its area may be recovered only by packing, or by purging all files after it in the directory. Type 6 file area may only be recovered by packing.

FORTRAN & ALGOL EXAMPLES

THE FOLLOWING EXAMPLES IN FORTRAN AND ALGOL WILL REMOTELY PURGE THE FILE 'NAME' WITH SECURITY CODE <IS> 'DS' ON CARTRIDGE <ILU> # 0 .

-----FORTRAN-----

```
FTN,L
PROGRAM RFA'R,3,99
DIMENSION NAME(3)
.
.
.
DATA NAME/2HNA,2HME,2H  /,IS/2HDS/,ILU/0/
.
.
.
CALL RPURG(ISTAT,IERR,NAME,IS,ILU)
IF (ISTAT.....
```

```
IF (IERR.....  
•  
•  
END  
•  
•  
END$
```

ALGOL

```
HPAL,L,"RFA'R",0,3,99  
BEGIN  
•  
•  
INTEGER ARRAY NAME[1:3] := "NA","ME"," " ;  
INTEGER IS := "DS" ;  
INTEGER ILU := 0 ;  
•  
•  
PROCEDURE RPURG(ISTAT,IERR,NAME,IS,ILU) ;  
INTEGER ISTAT,IERR,NAME,IS,ILU ;  
CODE ;  
•  
•  
RPURG(ISTAT,IERR,NAME[1],IS,ILU) ;  
IF ISTAT.....;  
IF IERR.....;  
•  
•  
END$
```

RREAD

PURPOSE

This routine reads a record from the remote file currently open to the remote DCB, into the user buffer.

EXT RREAD

	JSB	RREAD	Subroutine call
	DEF	RTN	Return address
	DEF	ISTAT	Communication status
	DEF	IERR	Operational status
	DEF	NAME	Name of file
	DEF	IBUF	Data buffer
	DEF	IL	Required read request length
	DEF	L	Optional actual length parameter (returned)
	DEF	N	Optional record number to read
RTN	return point		Continue execution
ISTAT	BSS	1	Communication status returned here.
IERR	BSS	1	Error code returned here.
NAME	ASC	<i>3, name</i>	Name of remote file to be read.
IBUF	BSS	<i>n</i>	
IL	DEC	<i>a</i>	Legal values are > 0 and ≤ 128 .
L	BSS	<i>b</i>	Contains the actual number of words transferred into IBUF.
N	DEC	<i>c</i>	Used only for record types 1 and 2 (see Comments).

COMMENTS

The Request Length (IL) parameter is used differently by different file types:

- FILE TYPE 0. The RREAD routine transfers up to IL words. If the record length is smaller than IL, only the record length is transferred. If the record is smaller, equal or greater than IL, no error is indicated.
- FILE TYPE 1. RREAD reads exactly IL words. Since the record length is fixed at 128 words, IL can be used to transfer less than a full record or more than one record. All records specified by IL, however, must be within the same file.
- FILE TYPE >1. RREAD transfers up to IL words. If the record length is smaller than IL, only the record length is transferred. No error is indicated whether the record is the same size, smaller, or larger than IL.

The actual length (L) parameter can never exceed IL. If L = IL, a check should be made to see if the record being transferred is too long (unless type 1 file is being read). If L = -1, an end-of-file has been reached.

If the random access record number (N) is equal to zero or is not set, the remote file transfer starts at the current record number. If N is positive, the transfer starts at the record number indicated by N. If N is negative, the transfer starts at the current record plus N. Therefore:

File Type	Meaning
0	Not used.
1	N defines the first record transferred, and IL defines the number of records through the length in words.
2	N defines the record to be transferred.
3 and above	Not used.

There are three levels of EOF associated with file types that are defined below:

File Type	Meaning	1 and 2	3 and above
Ø	When an EOF is read, parameter L is set to -1 with no error. Accesses may continue beyond the EOF.	When an EOF is read, parameter IERR is set to -12 indicating an error condition. No accesses beyond the EOF can be made.	The first EOF read causes parameter L to be set to -1 with no error. A read access beyond this EOF causes an error condition (IERR = -12). A write access may continue beyond this EOF with no error.

FORTRAN & ALGOL EXAMPLES

THE FOLLOWING EXAMPLES IN FORTRAN AND ALGOL WILL REMOTELY READ THE BUFFER <IBUF> OF LENGTH <IL> ON TO THE NEXT AVAILABLE RECORD OF FILE <NAME[1]> 'NAME'. THE TRANSMISSION LOG IS RETURNED IN <L>.

-----FORTRAN-----

```
FTN,L
      PROGRAM RFA'R,3,99
      DIMENSION NAME(3),IBUF(100)
      .
      .
      DATA NAME/2HNA,2HME,2H /
      DATA IL/100/,N/0/
      .
      .
      CALL RREAD(ISTAT,IERR,NAME,IBUF,IL,L,N)
      IF (ISTAT.....)
      IF (IERR.....)
      IF (L.....)
      .
      .
      END
      .
      .
      ENDS
```

-----ALGOL-----

```
HPAL,L,"RFA'R",Ø,3,99
  BEGIN
  .
  .
  INTEGER ARRAY NAME[1:3] := "NA","ME"," ";
  INTEGER ARRAY IBUF[1:100] :
  INTEGER IL := 100 ;
  INTEGER L,N := 0 ;
  .
  .
  PROCEDURE RREAD(ISTAT,IERR,NAME,IBUF,IL,L,N) :
  INTEGER ISTAT,IERR,NAME,IBUF,IL,L,N :
  CODE :
```

RREAD

91701

TCE/3 Program Calls

```
RREAD(ISTAT,IERR,NAME(1),IBUF(1),IL,L,N) :  
IF ISTAT..... ;  
IF IERR..... ;  
IF L.....;  
.  
.  
.  
END$
```

RSTAT

PURPOSE

This routine returns information on all cartridge labels in the remote system.

EXT	RSTAT	
JSB	RSTAT	Subroutine call
DEF	RTN	Return address
DEF	ISTAT	Communication status
DEF	IBUF	Buffer
RTN	return point	Continue execution
ISTAT	BSS	1 Communication status returned here.
IBUF	BSS	124 Buffer of 124 words.

COMMENTS

The cartridge status is contained in four-word increments.

Word	Meaning	2	Cartridge label.
0	Logical unit number (first disc).	3	Locking program's ID segment address, or 0 if not locked.
1	Last track for FMP.	4	Logical unit number (second disc).
		124	0 standard terminator (not returned).

FORTRAN & ALGOL EXAMPLES

THE FOLLOWING EXAMPLES IN FORTRAN AND ALGOL WILL DETERMINE THE STATUS OF ALL THE REMOTE FMP'S CARTRIDGES. THESE STATII WILL BE STORED IN THE ARRAY <IBUF> .

-----FORTRAN-----

```
FTN,L
PROGRAM RFA'R,3,99
DIMENSION IBUF(124)
.
.
.
CALL RSTAT(ISTAT,IBUF)
IF (ISTAT....)
.
.
.
END
.
.
.
END$
```

RSTAT

ALGOL

```
HPAL,L,"RFA'R",0,3,99
BEGIN
  .
  .
  INTEGER ARRAY IBUF[1:124] ;
  INTEGER ISTAT ;
  .
  .
  PROCEDURE RSTAT(ISTAT,IBUF) ;
  INTEGER ISTAT,IBUF ;
  CODE ;
  .
  .
  RSTAT(ISTAT,IBUF[1]) ;
  IF ISTAT.....;
  .
  .
  END$
```

RWIND

PURPOSE

This routine rewinds remote type \emptyset files, and sets remote disc files so that the next record is the first record in the file.

EXT	RWIND	
JSB	RWIND	Subroutine call
DEF	RTN	Return address
DEF	ISTAT	Communication status
DEF	IERR	Operational status
DEF	NAME	File name
RTN	return point	Continue execution
ISTAT	BSS	1 Communication status returned here.
IERR	BSS	1 Error code returned here.
NAME	ASC	3, name Name of file to be rewound.

FORTRAN & ALGO EXAMPLES

THE FOLLOWING EXAMPLES IN FORTRAN AND ALGOL WILL REMOTELY REWIND THE FILE 'NAME' TO THE BEGINNING OF THE FILE.

-----FORTRAN-----

```

FTN,L
PROGRAM RFA'R,3,99
DIMENSION NAME(3)
.
.
.
DATA NAME/2HNA,2HME,2H /
.
.
.
CALL RWIND(ISTAT,IERR,NAME)
IF (ISTAT....)
IF (IERR....)
.
.
.
END
.
.
.
END$
```

72010

91701

TCE/3 Program Calls

-----ALGOL-----

```
HPAL,L,"RFA'R",0,3,99
BEGIN
  .
  .
  INTEGER ARRAY NAME[1:3] := "NA","ME","  ";
  .
  .
PROCEDURE RWIND(ISTAT,IERR,NAME) :
  INTEGER ISTAT,IERR,NAME ;
  CODE ;
  .
  .
  .
  RWIND(ISTAT,IERR,NAME[1]) :
  IF ISTAT.....;
  IF IERR.....;
  .
  .
END$
```

RWRIT

PURPOSE

This routine writes a record on the remote file currently open to the remote DCB.

EXT	RWRIT	
JSB	RWRIT	Subroutine call
DEF	RTN	Return address
DEF	ISTAT	Communication status
DEF	IERR	Operational status
DEF	NAME	File name
DEF	IBUF	Data buffer
DEF	IL	Required write request length
DEF	N	Optional random access record number
RTN	return point	Continue execution
ISTAT	BSS	1 Communication status returned here.
IERR	BSS	1 Error code returned here.
NAME	ASC	3, <i>name</i> Name of remote file to be written on.
IBUF	BSS	<i>a</i> Buffer containing data to be written.
IL	DEC	<i>a</i> Legal values are: $> \emptyset - \leq 128$ words (see Comments).
N	DEC	<i>b</i> Record number where transfer is to start for record types 1 or 2 only (see Comments).

COMMENTS

The IL (write request length) parameter takes on different meanings depending on the file type:

File Type	Request Length (IL>0)
0	The routine will write exactly IL words.
1	Data is written in 128-word blocks. For example, IL is rounded up to 128 (1 block), if IL is between 1 and 127.
2	IL is ignored and the true file defined length is used.
>2	The routine will write exactly IL words.

If the random access record number (N) is equal to zero or is absent, the transfer starts at the current record number. If N is positive, the transfer starts at the record number indicated by N. If N is negative, the transfer starts at the current record plus N. Therefore:

File Type	Action
0	Not used.
1	N defines the first record to be written, and IL defines the number of records through the length in words.
2	N defines the record to be transferred.
3 and above	Not used.

FORTRAN & ALGOL EXAMPLES

THE FOLLOWING EXAMPLES IN FORTRAN AND ALGOL WILL REMOTELY WRITE THE BUFFER <IBUF> OF LENGTH <IL> ON TO THE NEXT AVAILABLE RECORD OF FILE <NAME[1]> 'NAME' .

STOP

PURPOSE

This call is used when a transmit request and transmit data call is received and for some reason the terminal program cannot handle it.

EXT	# TAM	
.	.	
JSB	# TAM	Transfer control to TAM
DEF	* + 2	Return address
DEC	2	Function code

COMMENTS

A transmit STOP reply is returned to central to halt the data transfer at this time. The central program should check bit 4 of the EQT status word after completion of data transmission to see if the data was refused by the terminal.

SEQUENCE OF OPERATIONS

1. Format an .IOC. call to transmit a STOP reply.
2. Make the .IOC. call.
3. Wait for completion.
4. Set the A-Register to minus one, or the appropriate #TAM error code.
5. Return.

FORTRAN & ALGOL

This call cannot be made using FORTRAN or ALGOL.

TIME REQUEST

PURPOSE

Requests the current time recorded in the remote real-time clock.

EXT	REXEC	
	JSB	Transfer control to remote RTE
	DEF	RTN Point of return
	DEF	ISTAT Communication status
	DEF	ICODE Request code
	DEF	ITIME Time value array
RTN	return point	Continue execution
ISTAT	BSS	1 Communication status returned here.
ICODE	DEC	11 Request code = 11.
ITIME	BSS	5 Time value array (5 words).

COMMENTS

When RTE returns, the time value array contains the time on a 24-hour clock:

Assembler	FORTRAN/ALGOL		
ITIME or ITIME(1)	= Tens of milliseconds	ITIME+1 or ITIME(2)	= Seconds

ITIME+2 or ITIME(3)	= Minutes
ITIME+3 or ITIME(4)	= Hours
ITIME+4 or ITIME(5)	= Day of the year

FORTRAN & ALGOL EXAMPLES

THE FOLLOWING EXAMPLES WILL DETERMINE APPROXIMATELY HOW MUCH TIME IS REQUIRED FOR THE TERMINAL TO ACCESS CENTRAL'S CLOCK.

-----FORTRAN-----

```

FTN,L
PROGRAM REXUS
DIMENSION ITIME(5),ITIM1(5),ITIM2(5)
DATA ITIME/100,60,60,24,365/
      .
      CALL REXEC(ISTAT,11,ITIM1)
      CALL REXEC(ISTAT,11,ITIM2)
      DO 10 I=1,4
      IF (ITIM1(I).LT.ITIM2(I)) GO TO 10
      ITIM2(I)=ITIME(I)+ITIM2(I)
      ITIM1(I+1)=ITIM1(I+1)-1
10    ITIME(I)=ITIM2(I)-ITIM1(I)
      .
      END
      .
END$
```

----- ALGOL -----

```
HPAL,L,"REXUS"
BEGIN
  INTEGER ARRAY ITIM1[1:5],ITIM2[1:5],ITIME[1:5] := 100,60,60,24,365 ;
  INTEGER I,ISTAT ;
  PROCEDURE REXEC(ISTAT,ICODE,ITIME) ;
    VALUE ICODE ;
    INTEGER ISTAT,ICODE,ITIME ;
    CODE ;
    REXEC(ISTAT,11,ITIM1[1]) ;
    REXEC(ISTAT,11,ITIM2[1]) ;
    FOR I:=1 TO 4
    DO BEGIN
      IF ITIM1[I] > ITIM2[I]
      THEN BEGIN
        ITIM2[I] := ITIM2[I] + ITIME[I] ;
        ITIM1[I+1] := ITIM1[I+1] - 1 ;
      END ;
      ITIME[I] := ITIM2[I] - ITIM1[I] ;
    END ;
  ENDS ;
```

TCE/3 OPERATOR REQUESTS

Operator requests provide direct communication between the operator at the terminal computer and the 91701 operating software. A summary of the commands available to the TCE/3 operator is provided in Table 4-7 below.

Table 4-7. Summary of TCE/3 Operator Requests

TCE/3	Function
LOAD	Program load
RUN	Run program at given address
RUN <i>name</i>	Load & run program at terminal
RUNAT	Run program at octal address
ABORT	Program terminate
TELLOP	Message to central display
TIME	Terminal display time
ON <i>name</i>	Schedule program at central
CREATE <i>name</i>	Create file at central
CLOSE	Close central file
PURGE	Purge central file
DLIST	List directory
RENAME	Rename a file at central

Terminal operator requests are implemented for TCE/3 by breaking apart the syntax string input and building a remote file access, remote EXEC call to RFAIN, or program load request to TEXEC, as required. As part of this process, the message processor converts the appropriate ASCII parameters to binary and error checks them. It then performs the subroutine call to TEXEC or RFAIN.

Request	Resultant Program Call to TEXEC/RFAIN
ABORT	IDLE
CLOSE	RCLOS
CREATE	RCRET
DLIST	REXEC (schedule DLIST)
LOAD	REXEC (schedule PROGL)
ON	REXEC (schedule request)
PURGE	RPURG
RENAME	RNAME
RUN	RNPGM
TELLOP	REXEC (write)
TIME	REXEC (time)

When the remote call is complete, a colon prompt is displayed and control is returned to the terminal keyboard for input (except for RUN).

Keyboard input to TCE/3 is accomplished by pressing the ESCAPE key. The executive responds by returning a colon. It waits for an operator request followed by a carriage return. Null input is ignored and another prompt character is displayed. Illegal requests cause a SYNTAX ERROR to be displayed, followed by another prompt character.

Input requests are error checked for legal syntax. A blank or a comma delimits a command mnemonic. A comma delimits parameters. Imbedded blanks after the command mnemonic delimiters are ignored unless the parameter is a character string as in the TELLOP request. Octal parameters must be preceded with an "@" sign. If an error is made in entering the parameters, the backspace key or CONTROL, then H, are struck to delete the last character entered.

Pressing RUBOUT deletes the entire line. Each request must be terminated with a carriage return. The operator requests are presented in alphabetical order and described in detail in the material that follows.

ABORT**PURPOSE**

Terminate executing of the program at a terminal computer.

FORMAT

ABORT

COMMENTS

This request clears all pending remote calls, clears I/O and returns to the TCE/3 operator prompt loop.

No program name is specified in the request because it causes all programs in the user core area to be aborted.

EXAMPLE: A user program is executing at a terminal and the user decides to quit. He presses the ESCAPE key to get TCE/3's attention. When the colon is displayed, he types ABORT for a graceful exit.

SEQUENCE OF OPERATIONS

1. Clear \$BUSY and \$ESC flags.
2. Call .IOC. to clear the I/O on all logical units.
3. Call RFAIM (special entry point in RFAIM) to terminate all Remote File Access or Remote EXEC activity.
4. Call IDLE.

CLOSE

PURPOSE

Close a file at the central station computer.

FORMAT

CLOSE *name*

WHERE

name is an ASCII file name up to six characters in length. Trailing or leading blanks are not required.

COMMENTS

If the file is already closed when this request is issued, the message UNOPEN FILE is displayed at the terminal. The request is ignored.

SEQUENCE OF OPERATIONS

1. If a file name is not given, display SYNTAX ERROR and call IDLE.
2. Call RCLOS to close the file.
3. If an error occurs, display error message.
4. Call IDLE.

CREATE

PURPOSE

Create a file of specified size and type at the central computer.

FORMAT

`CREATE, name, #blocks[, record size[, type[, security]]]`

WHERE

#blocks Any positive non-zero value.

Record size Valid record sizes are 1 - 128 words for type 2 files (not required otherwise). If a record size of zero is input, a SYNTAX ERROR is returned.

Type The file type can be any of the seven listed below. The default value is 3.

1 = Fixed length random access - 128 word or multiples of 128 words

2 = Fixed length random access - any length

3 = Sequential access, random length, general

4 = Sequential access, random length - source

5 = Sequential access, random length - relocatable

6 = RTE load module

7 = Sequential access, random length - absolute

Security The security code is required to write on a file created with a non-zero code. Default value is zero.

= \emptyset File is not protected and can be read or changed by any user.

> \emptyset File is write protected, but can be read without a security code. If 2's complement of a positive code is used, the file will be opened for both read and write.

< \emptyset File is protected and cannot be opened without the correct security code.

COMMENTS

The TCE/3 CREATE request results in an FMP CREAT program call at central, so that all restrictions for that call also apply to this request.

Example:

CREATE AFILE,10,100,2,7

File name Number of blocks Record length
Security code File Type

SEQUENCE OF OPERATIONS

1. If no file name or number of blocks are specified, SYNTAX ERROR is displayed and a call is made to IDLE.
2. If no record size parameter is given (used for type 2 files only), ignore it. If the record size is given, and it is negative, display SYNTAX ERROR.
3. If no file type is given, type 3 is set as a default.
4. If no security code is given, the default is set to zero.
5. All given parameters are converted to binary.
6. RCRET is called to create a file.
7. If an error occurs, the error message is displayed.
8. Call IDLE.

DLIST**PURPOSE**

Selectively list the file directory.

FORMAT

DLIST [filter] [,label]

WHERE

filter is an optional filter specification. Each character specified in the filter must be matched by value and position with a character in the file name for the file to be listed.

label Cartridge number assigned when FMP is initialized at RTGEN.

COMMENTS

Security codes are ignored for this request.

label can be used to determine how much will be listed:

DLIST = List entire directory on all mounted discs.

DLIST,1 = List only cartridge number 1.

filter is used to determine what data is listed from each cartridge:

AB**** = List all file names starting with "AB."

****CD**** = List names with 3rd, 4th characters equal to "CD."

*******3** = List names ending with "3."

P**1** = List names starting with "P" and ending with "1."

Note: A DLIST request executed at a terminal is not the same as a DL request executed at central.

SEQUENCE OF OPERATIONS

1. Call GETLU to obtain the logical unit at central for this terminal.
2. If a filter is given, a check is made for six characters. If the filter is not 6 characters, SYNTAX ERROR is displayed and IDLE is called.
3. If a cartridge label is given, it is converted to binary.
4. The \$BUSY flag is set.

5. REXEC is called (ICODE = 10) to schedule DLIST at central. The parameters passed are the logical unit number, the filter (using 3 of the 5 optional parameters), and the cartridge label.
6. If DLIST is not dormant when the call is made at central, the schedule call is repeated until it becomes dormant. STANDBY is displayed at the first non-dormant return.
7. Program-to-program communication begins between TCE/3 at the terminal and program DLIST at central:
 - a. The terminal calls #TAM to receive a two-word request from central. Completion occurs when DLIST at central begins execution at central and sends the request. This request tells TCE/3 if a data buffer is to follow and how many words it will contain.
 - b. If no data buffer follows (DLIST at central is finished), \$BUSY is cleared and IDLE is called.
 - c. If a data buffer follows, #TAM is called to read the data. The DLIST program at central formatted an ASCII print line from data in the disc directory, and it is this data that is transmitted.
 - d. The received print line is displayed on the terminal TTY.
 - e. Steps a, b, c, and d are repeated until finished.
8. \$BUSY flag is cleared.
9. IDLE is called.

SAMPLE OUTPUT FORMAT

CR=000001

NAME	TYPE	#BLKS
OVFIL	000001	000050
RNAM	000007	000001
PREC	000007	000001
DOPEN	000007	000001
DCLOS	000007	000001
DPURG	000007	000001
DWRIT	000007	000001
DREAD	000007	000001
DCRET	000007	000001
DTIME	000007	000001
DMSAG	000007	000001
MONLK	000007	000001
MON8	000007	000009
RFAM/R	000005	000041
RFAMS	000005	000041
GENE	000003	000001
JUNK1	000003	000050
JUNK	000001	000001
SHA1	000005	000041
PROG03	000003	000130
JIM1	000003	000001
A1	000003	000001
A2	000003	000001
A3	000003	000001
A4	000003	000001
A5	000003	000001
A6	000003	000001
A7	000003	000001
A8	000003	000001
RISFR	000003	000001
RTSTR	000004	000001

:DLIST A*****

CR=000001

NAME	TYPE	#BLKS
A1	000003	000001
A2	000003	000001
A3	000003	000001
A4	000003	000001
A5	000003	000001
A6	000003	000001
A7	000003	000001
A8	000003	000001

LOAD**PURPOSE**

Load named program at a terminal computer.

FORMAT

LOAD *name*

WHERE

name is the six ASCII character name of the program to be loaded.

COMMENTS

This request reads absolute binary format records from a remote disc file and stores them into terminal core, according to the load address contained in the record. When the request is complete, the terminal executive displays a prompt character (:) and waits for the next command to be entered.

The request is ignored if it contains a syntax error.

SEQUENCE OF OPERATIONS

1. SYNTAX ERROR is displayed if no program name is contained in the request.
2. RLOAD is called to load the program.
3. A WAIT is entered until completion.
4. A check is made for error codes sent from PROGL, or in behalf of PROGL. If PROGL was not dormant, STANDBY is output and another call is made to RLOAD.
5. If any errors occur, the appropriate error message is displayed.
6. IDLE is called.

ON name**PURPOSE**

Schedule a program at central computer.

FORMAT

ON name [p1, p2, p3, p4, p5]

WHERE

name is the name of the program to be scheduled. A maximum of six ASCII characters may be input.

p1 . . . p5 Optional parameters which may be passed to the central computer. Each parameter must be a positive integer with a value less than or equal to 32767_{10} .

COMMENTS

The address of the optional parameter string passed to the central computer is contained in the central computer B-Register when the program begins execution.

The program is placed in the schedule list and executed by priority and core availability. If all terminals input this request at the same time, central run sequence is determined by program priority. Program priority is established when the central program is RTGENed.

The difference between the ON request at the terminal and the ON used by RTE at central is that the terminal version does not have a "NOW" parameter. Both requests are used to schedule programs at central.

SEQUENCE OF OPERATIONS

1. If no *name* is contained in the request, SYNTAX ERROR is displayed and a call is made to IDLE.
2. Optional parameters (if any) are converted to binary.
3. REXEC is called (with ICODE = 10) to schedule the program and pass optional parameters. Parameters are zero if none were specified.
4. If errors occur, the appropriate error message is displayed. If the program to be scheduled is not dormant, the call to schedule the program is repeated until it is dormant.
5. IDLE is called.

PURGE

PURPOSE

Purge a file at the central computer.

FORMAT

PURGE *name* [,*security*]

WHERE

name from one to six ASCII characters

security the security code is required to delete a file created with a non-zero code.

PURGE AFILE, 7

COMMENTS

If the file being purged is the last file on the disc (excluding a type 6 file), all area from the last unpurged or type 6 file up to and including the purged file is returned to the system. If a purged file is not the last file, then its area may be recovered only by packing, or by purging all files after it is in the directory. Type 6 file area may only be recovered by packing.

SEQUENCE OF OPERATIONS

1. SYNTAX ERROR is displayed if no file name is given.
IDLE is called.
2. The default value of zero is set if no security code is given.
3. RPURG is called to purge the file.
4. If errors occur, the appropriate error message is displayed.
5. IDLE is called.

RENAME**PURPOSE**

Rename a file at the central computer.

FORMAT

RENAME *name, newname [,security]*

WHERE

name one to six ASCII character file name.

newname one to six ASCII characters.

security default value is zero.

RENAME AFILE,BFILE,7

COMMENTS

The file specified by *name* must not be open to any other program when this request is issued. If *name* has a non-zero security, the proper security code must be included. All mounted cartridges are searched so that only the first file found with the given name will be changed.

It should be noted that if a file has a security code, and an attempt is made to either change the security code or delete it, using the RENAME request, an RMP error of -7 (bad file security code) will result.

SEQUENCE OF OPERATIONS

1. If either an old file name or a new file name are not given, SYNTAX ERROR is displayed and a call is made to IDLE.
2. A default value of zero is set if no security code is given.
3. RNAME is called to rename the file.
4. If errors occur, the appropriate message is displayed.
5. IDLE is called.

RUN**PURPOSE**

Causes loaded program to be executed at a terminal computer, using the starting address loaded into location 3.

FORMAT

RUN [**p1, p2, ..., p5*]

WHERE

p1 ... p5 Optional parameter string whose address is passed in the B-Register to the terminal program when the program begins execution.

RUN*,5,9,400,,6

or

RUN

COMMENTS

The program to be run is determined by the address last loaded into location 3 when this request is issued.

If this request is issued while a program is running at the terminal, that program is restarted at its initial starting address (assuming no new address has been loaded into location 3).

SEQUENCE OF OPERATIONS

1. Optional parameters are converted to binary.
2. The B-Register is set to the address of the first binary parameter.
3. RNPGM is called to begin execution at the default starting address (location 3).

RUN name**PURPOSE**

Causes the named program to be loaded and then executed at a terminal computer.

FORMAT

RUN name [,p1, p2, p3, p4, p5]

WHERE

name is the ASCII name of the program to be run. This parameter may contain from one to six characters.

p1 . . . p5 an optional parameter string which may be passed to the terminal application program. Each parameter must be a positive integer $\leq 32767_{10}$.

RUN MYPROG,1,2,3,4,5

COMMENTS

The address of the binary parameter string is passed to the terminal program in the B-Register when the named program begins execution. If no optional parameters are specified, the B-Register points to a 5-word array of zeros.

SEQUENCE OF OPERATIONS

1. RLOAD is called to load the program and display the appropriate messages if errors occur. If PROGL is not dormant, STANDBY is displayed, and the RLOAD call is repeated until PROGL is dormant.
2. Optional parameters are converted to binary. The B-Register is set to the address of the first binary parameter.
3. RNPGM is called to begin execution at the default start address (location 3).

RUNAT**PURPOSE**

Causes a program loaded at a terminal computer to be executed at a specified starting address.

FORMAT

RUNAT *nnn* /*p1, p2, ..., p5*/

WHERE

nnn starting address. If the starting address is in octal, it must be preceded with "@."

p1 ... p5 Each parameter is a positive integer value less than or equal to 32767_{10} .

RUNAT@2000,1,2,3,4,5

COMMENTS

This request assumes that the program to be run has already been loaded as opposed to the RUN *name* request.

SEQUENCE OF OPERATIONS

1. Optional parameters are converted to binary.
2. The B-Register is set to the address of the first binary parameter.
3. RNPGM is called to begin execution at the given starting address.

TELLOP ASCII message**PURPOSE**

To send a message to the central computer (operator) display device to perform a central RTE function (ready a peripheral, etc.).

FORMAT

TELLOP ASCII message

WHERE

The message that is displayed at the central computer is prefixed with “=Tnn:” where nn = LU of the sending terminal. This prefix is added by the terminal executive and is not part of the message input.

The maximum length of a message is 72 characters, anything longer is truncated.

COMMENTS

This request is provided to allow communication from the terminal to the central operator.

EXAMPLE:

A terminal program requires output to the central line printer. If the line printer is not ready; the program can communicate via RMESG, or the operator can use TELLOP to tell the central operator to ready the line printer as shown below. The terminal in this example is LU12.

TERMINAL

TELLOP PLEASE READY LINE PRINTER

CENTRAL

=T12: PLEASE READY LINE PRINTER

SEQUENCE OF OPERATIONS

1. If the request does not contain a message, SYNTAX ERROR is displayed.
2. RMESG is called, with pointers to the message address and the word count.
3. The appropriate error message is displayed if an error occurs.
4. IDLE is called.

TIME**PURPOSE**

Print time from central station clock on terminal computer display device.

FORMAT

TIME

COMMENTS

The response is a three-digit day of the year, hours, minutes and seconds of time from a 24-hour clock.

SEQUENCE OF OPERATIONS

1. An REXEC call is made with ICODE = 11 to obtain time value from central real-time clock.
2. The appropriate error message is displayed if an error occurs.
3. The binary values for day/time are converted to ASCII.
4. The time is displayed on the local TTY.
5. IDLE is called.

TCE/3 ERROR MESSAGES

When the TCE/3 discovers an error in a remote call or request, it returns control to the user with ISTAT set to the appropriate error code. It is the user's responsibility to decide whether to ABORT to take corrective action. The ISTAT error codes are:

- 5 = RFA busy
- 4 = Not used
- 3 = Not enough parameters
- 2 = Communications line down
- 1 = Illegal request code
- 0 = Request being processed
- 1 = Request completed, no errors
- 2 = Not used
- 3 = I/O error
- 4 = Error in parameters
- 5 = Improper sequence of commands (file not open to terminals)

REMOTE EXEC ERROR MESSAGES

The following conditions are returned to the terminal programs as STATUS = -4 (error in parameters):

Schedule Requests	INPUT/OUTPUT Requests
Missing parameter	Insufficient number of parameters
Illegal parameter	Illegal logical unit number
Referenced program cannot be scheduled	Logical unit not assigned
Referenced program is not defined	User buffer violates system boundaries
No resolution code in "TIMER" request	Illegal disc track or sector number in disc request Reference to protected track (not assigned to caller or using LGO before assigning Load-and-Go tracks)
	Disc transfer length exceeds tract boundary
	Overflow of Load-and-Go area

In addition to the error code, the following information is returned in the terminal A- and B-Registers:

READ/WRITE

- A-Register = word 5 of the EQT Table (status)
- B-Register = transmission log (number of words transmitted)
- A-Register = 0 implies program scheduled

A-Register $\neq \emptyset$ implies program not scheduled, program status returned instead

- \emptyset - Dormant
- 1 - Scheduled
- 2 - I/O suspend
- 3 - Not used
- 4 - Unavailable memory suspend
- 5 - Disc allocation suspend
- 6 - Operator suspend or programmed suspend

REMOTE FILE ACCESS ERROR MESSAGES

Error messages which result from operator requests to FMP are returned to the terminal operator in the TCE/3 message: "FMP ERR-XX". The XX values (-1 - -17) are listed below in the error Code column.

Error messages which result from program calls to FMP are passed back to the terminal computer programmer via the IERR parameter in the remote calling sequence. The values for IERR (-1 - -17) are listed below, along with the remote calls which may have been issued.

Table 4-8. Remote File Management Error Messages

ERROR CODE	ERROR DESCRIPTION	R CRET	R PURG	R OPEN	R CLOS	R READ	R WRT	R LOC F	R APOS	R WIND	R POSN	R NAME	R CONT
≥0	No error	X	X	X	X	X	X	X	X	X	X	X	X
-1	Disc down	X	X	X	X	X	X			X	X	X	
-2	Duplicate name	X										X	
-3	Backspace not legal											X	
-4	File too long or rec size error	X											
-5	Illegal record no., or attempt to read record not written, or illegal update length						X	X		X		X	
-6	Cartridge not found, or file not found, or no room	X	X	X	X		X						
-7	Invalid security code		X	X			X					X	
-8	File currently open: eight PGM, or exclusive, or lock rejected		X	X								X	
-9	Attempt to open type \emptyset as type 1 or use RAPOS or type \emptyset			X						X			
-10	Not enough parameters	X	X	X	X	X	X	X	X		X	X	
-11	DCB not open				X	X	X	X	X	X	X	X	X
-12	SOF or EOF read or sensed					X	X		X		X		X
-13	Cartridge locked	X	X	X									X
-14	Directory full	X					X						
-15	Illegal name	X											X
-16	Illegal type or size = \emptyset (RCRET)	X	X										
-17	Attempt to read or write or type \emptyset which does not support the operation.				X		X				X		

Table 4-9. TCE/3 Error Messages

Error Output	Meaning	Action
COM PROG ERR	Communications software malfunction	Used for debugging
COM LINE ERR	Communications hardware malfunction. TCE/3 may also indicate computer or communication cards not initialized or not running.	System aborts
SYNTAX ERROR	Illegal request	Verify syntax and retry
CAN'T LOCATE	Program to be scheduled at central or loaded at a terminal cannot be found on the central station disc.	
FMP ERR-XX	File manager error where XX = FMP error code (1 - 17). See RFA error messages for definitions.	See Table 4-8
UNOPEN FILE	Remote file not open to the terminal.	
PROGL ERROR	File read/write, or close error at a remote computer for a load, or run command checksum error.	
RFA BUSY	Either the local or the remote stack is full.	Retry until a slot becomes available
NO START ADR		Retry with RUNAT request
STANDBY	The central computer is busy at the moment, but will service this request as soon as free.	No additional input is necessary
MP VIOLATION	An attempt was made to overlay TCE/3 during a program load operation.	Operation aborted

TCE/3 HALTS

Fatal errors, hardware malfunctions, and software bugs cause a HALT 13B to occur. If such a halt occurs, the A-Register should be examined.

A-Register	Cause
107700	The protected area of memory was left enabled. Disable and press RUN.
Equipment type code of last EQT	No EQT exists for D.65. TCE/3 must be re-generated.
13B	Unrecognizable reply from central for a RFA request. This is caused by a hardware malfunction or by the destruction of the TCE/3. B-Register contains the address of the reply buffer.
- 1	There is a software bug at central. An error code sent by module ERR from central was one that should not occur.

The B-Register contains the error code. Contact your HP Analyst.

∅ A software bug in TCE/3. An error code generated by the module #TAM was one that should not occur. The B-Register contains the error code. Contact your HP Analyst.

TCE/3 INITIALIZATION

Load TCE/3 via TCE/1

1. Confirm TCE/1 in protected memory.
2. Press HALT.
3. Press SWITCH REGISTER.
4. Place TCE/3 program number in DISPLAY REGISTER (normally 3₈).

5. Press P-REGISTER.
6. Place $n7700_8$ in DISPLAY REGISTER

where $n = \begin{matrix} \emptyset - 4K \\ 1 - 8K \\ 2 - 12K \end{matrix} \quad \begin{matrix} 3 - 16K \\ 5 - 24K \\ 7 - 32K \end{matrix}$

7. Press LOADER ENABLE, EXTERNAL PRESET, INTERNAL PRESET, and RUN.
8. The computer halts with 102077_8 in the DISPLAY REGISTER when TCE/3 is loaded correctly.
9. If the computer halts with 102011_8 in the DISPLAY REGISTER, TCE/3 is not loaded correctly. Reload following Steps 1 - 7 above.

Load TCE/3 via Paper Tape

1. Confirm BBL in protected memory.
2. Press HALT.
3. Press SWITCH REGISTER.
4. Clear DISPLAY REGISTER and place TCE/3 Binary Tape in Paper Tape Reader.
5. Press P-REGISTER.
6. Place $n7700_8$ in DISPLAY REGISTER

where $n = \begin{matrix} \emptyset - 4K \\ 1 - 8K \\ 2 - 12K \end{matrix} \quad \begin{matrix} 3 - 16K \\ 5 - 24K \\ 7 - 32K \end{matrix}$

7. Press LOADER ENABLE, EXTERNAL PRESET, INTERNAL PRESET, and RUN.
8. The computer halts with 102077_8 in the DISPLAY REGISTER when the TCE/3 tape is completed.
9. If the computer halts with 102055_8 or 102011_8 in the DISPLAY REGISTER, a Paper Tape Read error has occurred. Retry following Steps 1 - 7 above.

Run TCE/3

1. Press P-REGISTER.
2. Set the DISPLAY REGISTER to the Starting Address of 2_8 (0/000/000/000/000/010).
3. Press INTERNAL PRESET.
4. Press EXTERNAL PRESET.
5. Press RUN.

Load TCE/3 from TCE/2 and Run

1. Confirm TCE/2 is in core.
2. When the prompt character (:) is received from TCE/2 input the following: RUN PROG \emptyset 3 (it is assumed that TCE/3 is called PROG \emptyset 3).
3. When the prompt (:) is returned, TCE/3 is running.

PART IV

CENTRAL SYSTEM OPERATION

INTRODUCTION

All of the functions normally found in the Real-Time Executive System and the File Management Package are available to the central programmer. A summary of these capabilities are provided under Program Calls below. Additional information can be found in the **Real-Time Executive Software Manual** and the **Real-Time Executive File Manager System Manual**. In addition to the RTE and FMP functions, the central programmer using 91701 software may communicate with a program running at a terminal using the program-to-program feature discussed in Section V of this manual.

Operator requests available to the Distributed System user at the central computer are also exactly those requests normally found in the Real-Time Executive system and the File Management Package interface, FMGR. A summary of these requests are provided in this section. The RTE and FMP manuals should be consulted for complete information.

A summary of RTE and FMP error codes are also provided with an indication of the reason for the error.

Programs may also be prepared at the central computer for execution at a terminal computer through the uses of the RTE Assembler and FORTRAN Compilers with the SXL Loader. Section III should be consulted for more information on this process.

PROGRAM CALLS

The summary of program calls available to the central programmer are divided by subsystem into RTE calls and FMP

calls. Table 4-10 shows a summary of the RTE calls, and Table 4-11 provides a summary of the FMP calls, the functions they perform and the parameters required.

Table 4-10. Summary of RTE Calls

Call	Parameters	Function
DISC ALLOCATION	ICODE = 4 Allocate track to program ITRAK Number of contiguous tracks available ISTRK Starting track number returned IDISC Disc logical unit returned ISECT Number of 64-word sectors returned	Request allocation of contiguous tracks for program.
DISC RELEASE	ICODE = 5 Release program's tracks ITRAK Number of tracks to release ISTRK Starting track number of release returned IDISC Disc logical unit returned	Release some disc tracks assigned to the program.
EXECUTION TIME	ICODE = 12 IPORG Program to be scheduled IRESL Resolution code MTPLE Execution multiple IOFST Units for initial offset or IHRS } MINS } ISECS } MSECS } Define absolute start time	Schedule a program by time.
GLOBAL DISC ALLOCATION	ICODE = 15 Allocate track globally ITRAK Number of contiguous tracks desired ISTRK Starting track returned IDISC Disc logical unit returned ISECT Number of 64-word sectors returned	Request global allocation of contiguous tracks.
GLOBAL DISC RELEASE	ICODE = 16 Release global tracks ITRAK Number of tracks to release ISTRK Starting track number returned IDISC Disc logical unit returned	Global release of some contiguous tracks.

(Continued)

Table 4-10. Summary of RTE Calls (Continued)

Call	Parameters	Function
I/O CONTROL	ICODE = 3 ICNWD Control word IPRAM Optional parameter required for some CONWD's	Carry out I/O functions, such as backspace, write end-of-file, rewind, etc.
I/O STATUS	ICODE = 13 ICNWD Logical unit number ISTA1 Word 5 of EQT entry returned ISTA2 Optional parameter for word 4 of EQT	Request device status.
PROGRAM COMPLETION	ICODE = 6	Signal end of program.
PROGRAM SCHEDULE WITH WAIT	ICODE = 9 INAME Program name <i>p1</i> Optional parameters . . <i>p5</i>	Schedule a program for execution, and optionally, pass parameters to it.
PROGRAM SCHEDULE WITHOUT WAIT	ICODE = 10 INAME Program name <i>p1</i> Optional parameters . . <i>p5</i>	Schedule a program for execution according to its priority.
PROGRAM SEGMENT LOAD	ICODE = 8 INAME Name of segment to load	Load a segment of calling program.
PROGRAM SUSPEND	ICODE = 7	Suspend calling program.
READ	ICODE = 1 ICNWD Control word IBUFR Buffer location IBUFL Buffer length (words/characters) IPRM1 Optional parameter used for disc track in disc call IPRM2 Optional parameter used for disc sector in disc call	Transfer input.

(Continued)

Table 4-10. Summary of RTE Calls (Continued)

Call	Parameters	Function
TIME REQUEST	ICODE = 11 ITIME	Request 24-hour time and day. Time values: tens of milliseconds, seconds, minutes, hours, day returned
WRITE	ICODE = 2 ICNWD IBUFR IBUFL IPRM1 IPRM2	Transfer output. Control word Buffer location Buffer length (words/characters) Optional parameter used for disc track in disc call Optional parameter used for disc sector in disc call

Table 4-11. Summary of FMP Calls

Call	Parameters		Function
APOSN	IREC Record number of next record. IRB Relative block address of next record. IOFF Block offset of next record.		Position File to address of next record.
CLOSE	ITRUN $+n$ = number of blocks to be deleted from the end of the file when it is closed. $-n$ = retain main file, delete extents. $n = \emptyset$ = standard close.		Close a DCB.
CREAT	NAME File name. ISIZE Number of blocks in the file. If the value is negative, all of the disc is implied. ITYPE Record length (type 2 file only). ISECU Security code. ICR Cartridge Label.		Create a file.
FCONT	ICON1 Control information ICON2 Function code		Send RTE control request to type \emptyset file.
FSTAT	ISTAT Buffer of 125 words.		Return cartridge status
LOCF	IREC Next record number. IRB Relative block or next read. FOFF Block offset of next record. JSEC Number of sectors in the file. JLU File logical unit. JTY File type.		Return information on DCB.
NAMF	NAME File's present name. NNAME File's new name. ISECU Security code. ICR Cartridge label.		Rename a specified file.
OPEN	NAME File name. IOPTN Open options. ISECU Security code. ICR Cartridge label.		Open specified file.
POSNT	NUR New record number. IR Absolute/relative control parameter for NUR.		Position the next access to a specific record.
PURGE	NAME File name. ISECU Security code. ICR Cartridge Label.		Purge a specified file.

Table 4-11. Summary of FMP Calls (Continued)

Call	Parameters			Function
READF	IBUF	Data buffer.		
	IL	Read request length.		
	LEN	Actual read length.		
	NUM	Record number to read.		
RWNDF	NO	Optional parameters.		
WRITF	IBUF	Data buffer.		
	IL	Write request length.		
	NUM	Record number to write.		

OPERATOR REQUESTS

Operator requests input through the system input device are used to control the executing Real-Time Executive subsystem and RTE File Manager (FMP). The Distributed System operator at the central computer has full access to all functions available in both subsystems. Central computer operator requests can be used to:

- a. Turn programs on and off
- b. Suspend and restart programs
- c. Examine status of programs and I/O devices
- d. Declare I/O devices up or down
- e. Copy files from one cartridge to another
- f. Dump files
- g. List file contents
- h. Purge files
- i. Create new files
- j. Restore programs

Real-Time Executive Requests

The operator gains the attention of RTE by pressing any key on the console. When RTE responds with an asterisk (*), the operator types any operator request, consisting of a two-character request word and the appropriate parameters separated by commas. Two commas in succession mean that a parameter value is zero. Table 4-12 below provides a summary of all of the RTE operator requests, their functions, and required parameters.

Table 4-12. Summary of RTE Operator Requests

Request Word	Parameters		Function
DN	<i>n</i>	EQT entry number of I/O device to be set down	
EQ	<i>n</i>	EQT entry number of the I/O device	
EQ	<i>n</i> <i>p</i>	EQT entry number of the I/O device Delete/specify buffering	
GO	<i>name</i> <i>p1</i> . . <i>p5</i>	Name of an operator suspended program to be scheduled for execution List of parameters to be passed to the program	
IT	<i>name</i> <i>r</i> <i>mpt</i> <i>hr</i> <i>min</i> <i>s</i> <i>ms</i>	Name of the program to be run Resolution code 1 = tens of milliseconds 2 = seconds 3 = minutes 4 = hours Multiple execution interval value provides number for <i>r</i> units Hours Minutes Seconds Tens of m's } Set initial start time	
LG	<i>n</i>	Number of contiguous tracks to be released. If <i>r</i> = \emptyset , the allocated load-and-go area is released.	
LS	<i>p1</i> <i>p2</i>	Logical unit number of disc containing source file Starting track number of source file (decimal)	
LU	<i>n</i> <i>m</i> <i>p</i>	Logical unit number (decimal) EQT entry number to assign to <i>n</i> , or if zero, releases logical unit number Subchannel number to assign to <i>n</i>	

(Continued)

Table 4-12. Summary of RTE Operator Requests (Continued)

Request Word	Parameters		Function
OF	<i>name</i> <i>p</i> Name of program If <i>p</i> = \emptyset , terminates program and removes from time list. If <i>p</i> $> \emptyset$, $\neq 8$, terminates, removes from list and releases tracks. If <i>p</i> = 8, all of the above, plus removes from core RTE system.		Terminate program or remove background program.
ON	<i>name</i> Name of program <i>NOW</i> Schedules program immediately instead of by clock time <i>p1</i> Optional parameters passed to the program . . <i>p5</i>		Schedule program for execution.
PR	<i>name</i> <i>n</i> Name of program New priority value		Change program priority.
RT	<i>name</i> Name of program whose tracks are to be released		Release disc tracks assigned to program.
SS	<i>name</i> Name of program to be suspended		Suspend program execution.
ST	<i>name</i> Name of program whose status is to be printed		Request program status.
TI			Print time from real-time clock.
TM	<i>day</i> Three-digit day of the year <i>h, min, s</i> The current time on a 24-hour clock		Set real-time clock.
TO	<i>n</i> EQT entry number of the I/O device <i>m</i> Number of 10 ms intervals to be used as the time-out value		Print/change I/O device time-out parameter.
UP	<i>n</i> EQT entry number of the device to be set up		Declare I/O device up.

FMP OPERATOR REQUESTS

Table 4-13 shows a summary of the File Management Package (FMP) operator requests available to the Distributed System operator at the central computer. Complete information for these requests may be found in the **Real-Time File Manager System Manual**.

The operator gains the attention of FMP by scheduling the software module FMGR with an ON FMGR operator request to RTE. FMGR is ready to receive requests when a system generated colon (:) is returned to the initial keyboard input device.

Each command is parsed by a central routine which accepts the conventions described below:

- The leading plus (+) sign in a numeric parameter is ignored. The number is assumed to be positive unless preceded by a minus (-) sign.
- A numeric parameter immediately followed by the letter "B" indicates that the parameter is octal.
- Each FMGR command from a device other than a TTY must be preceded by a colon (:). Entries from a TTY are prompted by a system generated colon – the operator must not enter a second colon.
- Each parameter is tested on the assumption that it is numeric. If the parameter is ASCII, the first six characters are saved. If less than six characters are entered, the parameter is padded with trailing blanks.
- Two commas or colons in a row mean a parameter is assigned its default value.
- Leading blanks and blanks on either side of a comma or semicolon are ignored.
- An EOF encountered on the input device causes a TR with no parameters to be output to the log device.
- All parameters are initially filled with zeros and flagged as not supplied.

Table 4-13. Summary of FMGR Operator Requests

Request Word	Parameters		Function
CL			List disc directory
CO	<i>label 1</i>	Cartridge label or logical unit of present location	Copy all files on one disc to another disc
	<i>label 2</i>	Cartridge label or logical unit of new location	
CR	<i>namr</i>	File name and parameters	Create a file
DC	<i>label</i>	Cartridge label or logical unit	Logically disconnect cartridge from FMP system
DL	<i>label</i>	Cartridge label or logical unit	List file directory
	<i>master security code</i>	Two-character FMP master security code from initialization	
DU	<i>namr1</i>	Name of file or logical unit from which data is transferred	Transfer contents of one file to another file
	<i>namr2</i>	Name of file or logical unit to which <i>namr1</i> is to be transferred	
	<i>record format</i>	Record format of <i>namr2</i>	
	<i>EOF control</i>	Saves or inhibits end-of-file marks on <i>namr2</i>	
	<i>file #</i>	Relative file number of <i>namr2</i> to be written in	
	<i># files</i>	Number of files to be transferred from <i>namr1</i>	
EX			Terminate the file manager (FMGR)
IN	<i>master security code</i>	Two-character FMP master security code from initialization	Initialize a disc
	<i>label 1</i>	Cartridge label or logical unit number	
	<i>label 2</i>	New cartridge reference number	
	<i>id</i>	Cartridge information label	
	<i>1st trk</i>	First track used on cartridge	
	<i>#dir trks</i>	Number of directory tracks	
	<i>#sec/trk</i>	Number of 64-word sectors per track	
	<i>bad tracks</i>	Bad track list	
LI	<i>namr</i>	Name of file or logical unit number	List file contents
	<i>source</i>	ASCII source format	
	<i>Binary</i>	Binary format	
	<i>Directory</i>	Print directory entry, only	

(Continued)

Table 4-13. Summary of FMGR Operator Requests (Continued)

Request Word	Parameters		Function
LL	<i>namr</i>	Name of file or logical unit number	Change assignment of output list device
LO	<i>Lu</i>	Logical unit number of new log device	Change assignment of log device
MC	<i>Lu</i> <i>Last track</i>	Logical unit number of cartridge being mounted Last track on the cartridge available to FMP	Notify FMP cartridge has been mounted
MR	<i>namr</i>	Name of the file or logical unit number to be transferred	Move a relocatable binary file to load-and-go tracks
MS	<i>namr</i> <i>prog name</i> <i>IH</i>	Name of the file or logical unit number to be transferred Logical source (LS) tracks assigned to this program. Default; LS tracks assigned to EDIT. If supplied, the LS word on the base page is not set.	Move a source file to the logical source tracks
PK	<i>label</i>	Cartridge label or logical unit number to be packed	Pack disc
PU	<i>namr</i>	Name of file or logical unit to be purged	Purge a file
RN	<i>namr</i> <i>nuname</i>	Existing file name and parameters New name, unique to the cartridge	Rename a file
RP	<i>namr</i> <i>program</i>	Name of type 6 file to be restored Program name	Restore a program (file) saved by FMP so it can run in the RTE system
SA	<i>LS</i> <i>LG</i> <i>namr</i>	Logical source area Load-and-go area Name of file created by this command, or the logical unit number	Save the logical source or load-and-go area in file
SP	<i>namr</i>	Name of disc resident program	Place a disc resident program into a type 6 file
ST	<i>namr1</i> <i>namr2</i> <i>record format</i>	Name of file or logical unit from which data is transferred Name of file or logical unit to which data is being transferred ASCII, binary relocatable, binary, binary absolute, magnetic tape (ASCII), magnetic tape (SIO), magnetic tape (SIO binary relocatable), magnetic tape (SIO binary absolute) record format for <i>namr1</i>	Transfer records from a file or logical unit number to another file or logical unit number

(Continued)

Table 4-13. Summary of FMGR Operator Requests (Continued)

Request Word	Parameters		Function
ST (Cont'd)	<i>EOF control</i>	Save or inhibit EOF marks on <i>namrl</i>	
	<i>file #</i>	Relative position of file on <i>namrl</i> to be read	
	<i># files</i>	Number of files to be transferred from <i>namrl</i>	
SV	<i>number</i>	New severity code number 0 – Echo commands on log device 1 – Inhibit command echo 2 – Inhibit error messages	Change system log severity code
TR	<i>namr</i> <i>-integer</i>	File name or logical unit number Transfer back a number of <i>namr</i> 's	Transfer control of FMGR to a file name or logical unit number
??	<i>number</i>	Error code number	Expand the last error message

ERROR MESSAGES

Error routines at the central computer perform a variety of checks on system operation and the validity of input messages are produced which inform the programmer or operator of the nature of the trouble when any of these checks fail. Some errors are forgivable and the system attempts to continue operation; others are disastrous and result in bypassing the remainder of the processing and aborting the system. These errors indicate, in general, failures in hardware or system bugs. In addition, error messages are produced by incorrect syntax, illegal parameters, etc. The

tables which follow provide a summary of the error messages available to the programmer operator at the central computer. The RTE and FMP manuals should be consulted for further information.

RTE Error Messages

RTE errors shown in Table 4-14 cause a program to be terminated and any assigned disc tracks to be released. An error message is output on the operator console and RTE proceeds to execute the next program in the scheduled list.

Table 4-14. Summary of RTE Error Messages

Source	Message	Meaning
OPERATOR REQUESTS	OP CODE ERROR	Illegal operator request word
	NO SUCH PROG	The <i>name</i> given is not a main program in the system
	INPUT ERROR	A parameter is illegal
EXEC CALLS	<i>name</i> ABORTED	RTE aborted the program
	MP <i>name address</i> (<i>address</i> is the location that caused the violation).	Memory protect violation that is not an Exec Call
	RQ <i>name address</i> (<i>address</i> location that made the illegal call).	An Exec Call contains an illegal request code
SCHEDULE CALLS	SCØ1	Missing parameter
	SCØ2	Illegal parameter
	SCØ3 INT <i>name</i>	External interrupt attempts to schedule program already scheduled
	SCØ5	Program given is not defined
	SCØ6	No resolution code in Execution Time Exec call
DISC ALLOCATION CALLS (Continued)	DRØ1	Insufficient number of parameters
	DRØ2	Number of tracks is zero, > 255, or < zero; illegal logical unit; or number of tracks to release is zero or negative

Table 4-14. Summary of RTE Error Messages (Continued)

Source	Message	Meaning
DISC ALLOCATION CALLS (Continued)	DR03	Attempt to release track assigned to another program
I/O CALLS	IO01	Not enough parameters
	IO02	Illegal Logical Unit
	IO03	Logical Unit not assigned
	IO04	Illegal user buffer
	IO05	Illegal disc track or sector
	IO06	Reference to a protected track or using load-and-go before assigning load-and-go tracks
	IO07	Driver rejected call
	IO08	Disc transfer longer than track
	IO09	Overflow of load-and-go area
EQUIPMENT MESSAGES	I/O ERR ET EQT #n	End-of-tape condition on device #n
	I/O ERR TO EQT #n	Device #n has timed-out
	I/O ERR PE EQT #n	Parity error in data transmission from device #n
	TR _{nnnn} EQT <i>mm, upp s (or u)</i>	Disc transfer parity error
FORTRAN COMPILER ERROR MESSAGES	I/O ERR ET EQT #n	End of source tape
	IO06	FTN did not define load-and-go tracks
	IO09	FTN overflowed load-and-go tracks
ALGOL MESSAGES (Continued)	I/O ERR ET EQT #n	End of source tape encountered
	NO SOURCE	Source pointer not set for indicated input from disc

Table 4-14. Summary of RTE Error Messages (Continued)

Source	Message	Meaning
ALGOL MESSAGES (Continued)	IO06	HPAL did not define load-and-go tracks
	IO09	HPAL overflowed load-and-go tracks
ASSEMBLER ERROR MESSAGES	I/O ERR ET EQT #n	End of source tape encountered
	\$ END ASMB CS	Error in assembler control statement
	\$ END ASMB XEND	End-of-file condition occurred before END statement
	\$ END ASMB NPRG	Source input for Logical Unit 2 (disc) requested, but no file declared
	IO06	Load-and-go tracks no defined
	IO09	ASMB overflowed load-and-go area
EDITOR ERROR	MEM OVERFLOW	Edit file overflowed available memory
	CS ERR	Illegal edit command
	PARAM ERR	Edit command parameter illegal
	SEQ ERR	Parameter \leq a previous parameter or greater than the range of the symbolic file
	/I ERR	No source statements inserted after /I
	/R ERR	No replacement statements input after /R
	/C OVF	Character overflow (i.e., > 72) in edit statement
	DISK OVF	No disc space for file
	FILE UN	Undefined symbolic file
	L01	Checksum error
RTE RELOCATING LOADER ERROR MESSAGES (Continued)	L02	Illegal record
	L03	Memory overflow

Table 4-14. Summary of RTE Error Messages (Continued)

Source	Message	Meaning
RTE RELOCATING LOADER ERROR MESSAGES (Continued)	L04	Base page linkage area overflow
	L05	Symbol table area overflow
	L06	Common block error <ul style="list-style-type: none"> a. Replacement/addition exceeds allocation b. First program in normal background load didn't declare largest common block
	L07	Duplicate entry points
	L08	No transfer address
	L09	Record out of sequence
	L10	Operator request parameter error
	NO BLANK ID SEGMENTS	No available ID Segment
	WAITING FOR DISC SPACE	Track allocation cannot be made
	UNDEFINED EXTS	Undefined externals
	LOAD	End-of-tape condition detected
	DUPLICATE PROG NAME	Loader changes name of current program by replacing the first two characters with "##"

FMP ERROR MESSAGES

FMP errors, as shown in Table 4-15, may cause FMGR to abort (return control to the RTE system) and leave files that are empty or otherwise incomplete on the system. To purge these files, an ON,FMGR is issued to regain control, and the PURGE request is input.

Except in the above case, an error causes a transfer to the log device without aborting FMGR. Once the transfer is made to the log device, inputs are recognized only from the log device. As many requests as desired may be entered from the log device followed by a TR request (no parameters) to return to the statement following the erroneous statement.

Table 4-15. Summary of FMP Error Messages

Source	Error Number	Meaning
FMGR	001	Disc logical unit error
	002	Initialize LU2
	003	Initialize LU2
	004	Illegal response to 002 or 003
	005	Required track not available
	006	FMGR is suspending itself
	007	Checksum error
	008	D.RTR not found in ID segments
	009	ID segment not found (no implied transfer)
	010	Input error, re-enter statement caused by: Missing initial colon (non-TTY input) Supplied initial colon (TTY input) Command undefined ASCII subparameter in subparameters 3 through 5 Subparameters in other than first two parameters More than 5 subparameters Command too long
	011	Some system ID segments point to the disc to be packed
	012	Duplicate logical unit or label
	013	Transfer stack overflow
(Continued)	014	Program not found in system ID segments. Also, RP, no blank ID segments.

Table 4-15. Summary of FMP Error Messages (Continued)

Source	Error Number	Meaning
FMGR (Continued)	015	Logical Source track report follows (NO implied transfer).
	016	The named file is not a logical unit 2 or 3.
	017	The named ID segment was not set up by FMGR.
	018	The named ID segment shows the program is not dormant.
	019	Checksum or setup code failed. File was not set up by an SProgram command on the current system.
	020	The given logical unit is illegal (creating a type 0 file).
	021	One of the specified discs is not mounted or both specifications refer to the same disc.
	022	The copy has been terminated. (NOTE: This is true of most copy errors regardless of this message being printed.)
	023	The given program name is already defined in a system ID segment.
	024 - 049	Not defined
	050	Illegal number of parameters
	051	Illegal master security code
	052	Wrong logical unit. In response to 002 or 003, or no disc on given LU.
	053	Illegal disc label. Reference label must be positive non-zero integer. Information label must be a legal file name.
	054	Disc not mounted
	055	Missing parameter
	056	Bad parameter. No file tracks (i.e., all directory or last track below first track). ASCII code undefined.
(Continued)	057	Bad track error. Track not within file area or track is in directory area.

Table 4-15. Summary of FMP Error Messages (Continued)

Source	Error Number	Meaning
FMGR (Continued)	Ø58	Load-and-go area is undefined or empty.
	Ø59	Track not available for re-INITIALIZATION (aborts Initialization).
	Ø60	INITIALIZATION will cause loss of all files on this disc. Do you really want to? Answer: YES or NO. Caused by: First track is larger. Directory will extend into a file.
FMP	≥Ø	No error detected
	- 1	Disc down. Possible interface routine cause: CREAT, PURGE, OPEN, CLOSE, READ, WRITE, APOSITION, REWIND, POSITION, RENAME
	- 2	Duplicate name. Interface routines: CREAT, RENAME
	- 3	Backspace not legal (type Ø). Interface routine: POSITION
	- 4	File too long or REC size error (type 2). Interface routine: CREAT
	- 5	Attempt to read or position to a record not written, or on update. Write an illegal record length. Interface routines: READ, WRITE, APOSITION, POSITION
	- 6	Cartridge not found or file not found or no room. Interface routines: CREAT, PURGE, OPEN, CLOSE, WRITE
	- 7	Invalid security code. Interface routines: PURGE, OPEN, WRITE, RENAME
	- 8	File currently open: eight PGM or exclusive or lock rejected. Interface routines: PURGE, OPEN, WRITE, RENAME
	- 9	Attempt to open type Ø as type 1 or to use APOSN on type Ø. Interface routines: OPEN, APOSITION
	-10	Not enough parameters. Interface routines: CREAT, PURGE, OPEN, CLOSE, READ, WRITE, LOCATE, APOSITION, POSITION, RENAME
	-11	DCB not open. Interface routines: CLOSE, READ, WRITE, LOCATE, APOSITION, REWIND, POSITION, CENTRAL
(Continued)		

Table 4-15. Summary of FMP Error Messages (Continued)

Source	Error Number	Meaning
FMP (Continued)	-12	SOF or EOF read or sensed. Interface routines: READ, WRITE, APOSITION, POSITION, CONTROL
	-13	Cartridge locked. Interface routines: CREAT, PURGE, OPEN, RENAME
	-14	Directory full. Interface routines: CREAT, WRITE
	-15	Illegal name. Interface routines: CREAT, RENAME
	-16	Illegal type or size = \emptyset (CREAT). Interface routines: CREAT, PURGE
	-17	Attempt to read or write on type \emptyset which does not support the operation. Interface routines: WRITE, POSITION
	-101	Illegal parameter in D.RTR Call. Possible operator error.
	-102	Illegal D.RTR call sequence (lock not requested first or file not opened exclusively first). Possible operator error.

CENTRAL INITIALIZATION

1. Loading the central system assumes that RTGEN is complete and all programs are loaded on the central disc.
2. Main power on, all peripherals "ON" or "ON-LINE."
3. Mount the system disc and set the switch to "LOAD."
4. Load the RTE Boot Tape into the Paper Tape Reader (to boot RTE into core from the disc using BBL):
 - a. Press SWITCH REGISTER.
 - b. Clear DISPLAY REGISTER.
 - c. Press P-REGISTER.
 - d. Set DISPLAY REGISTER to $n7700_8$.
where $n = 5 - 24K$
 $7 - 32K$
 - e. Press EXTERNAL PRESET, INTERNAL PRESET, LOADER ENABLE and RUN.
5. Press SWITCH REGISTER and clear the DISPLAY REGISTER.
6. Press P-REGISTER and clear the DISPLAY REGISTER.
7. Set the DISPLAY REGISTER 100_8 .
8. Press EXTERNAL PRESET, INTERNAL PRESET and RUN.
9. Turn on the 91701 package.
 - a. Power "ON" terminal computers.
 - b. Enable the central computer system console.
 - c. Type in at the central system console:
ON,LSTEN $p1, p2, p3$ (CR) (LF)
10. See Section VI for LSTEN description.

SECTION V

PROGRAM-TO-PROGRAM COMMUNICATION

Application programs running at a terminal computer may communicate directly with application programs running at the central computer via program-to-program communication. The vehicles for this dialogue are the D.65 BCS Communications driver at the terminal and the DVR65 RTE Communications driver at the central computer. Figure 5-1, below, is a block diagram of the program-to-program communication process. The arrows in the figure represent transmissions across the data link provided by the communications drivers.

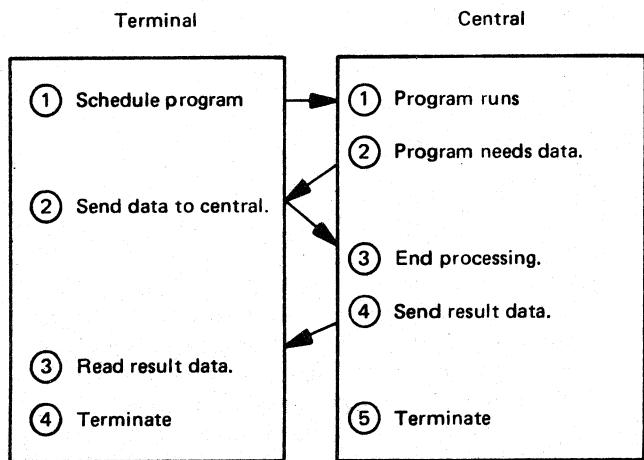


Figure 5-1. Block Diagram of Program-to-Program Communication

The central computer program is remotely scheduled by the terminal and obtains the processing parameters from the terminal, performs the processing, and sends the request to read (write) data back to the terminal. The calling sequences required by the D.65 and DVR65 drivers to communicate across the data link between computers are described in Appendix A.

The process in Figure 5-1 is expanded in Figure 5-2 to show the sequence in which program calls are made.

An example of the use of the program-to-program feature is the case where a small terminal computer is used in a test cell to collect large amounts of data that need extensive processing before it can be output on a central disc file or the central line printer. In this case, the data collection rate at the terminal is so fast that there is no time left to process data. The solution to the problem is for the terminal computer to collect the data and pass it to the larger, more powerful, central computer for processing.

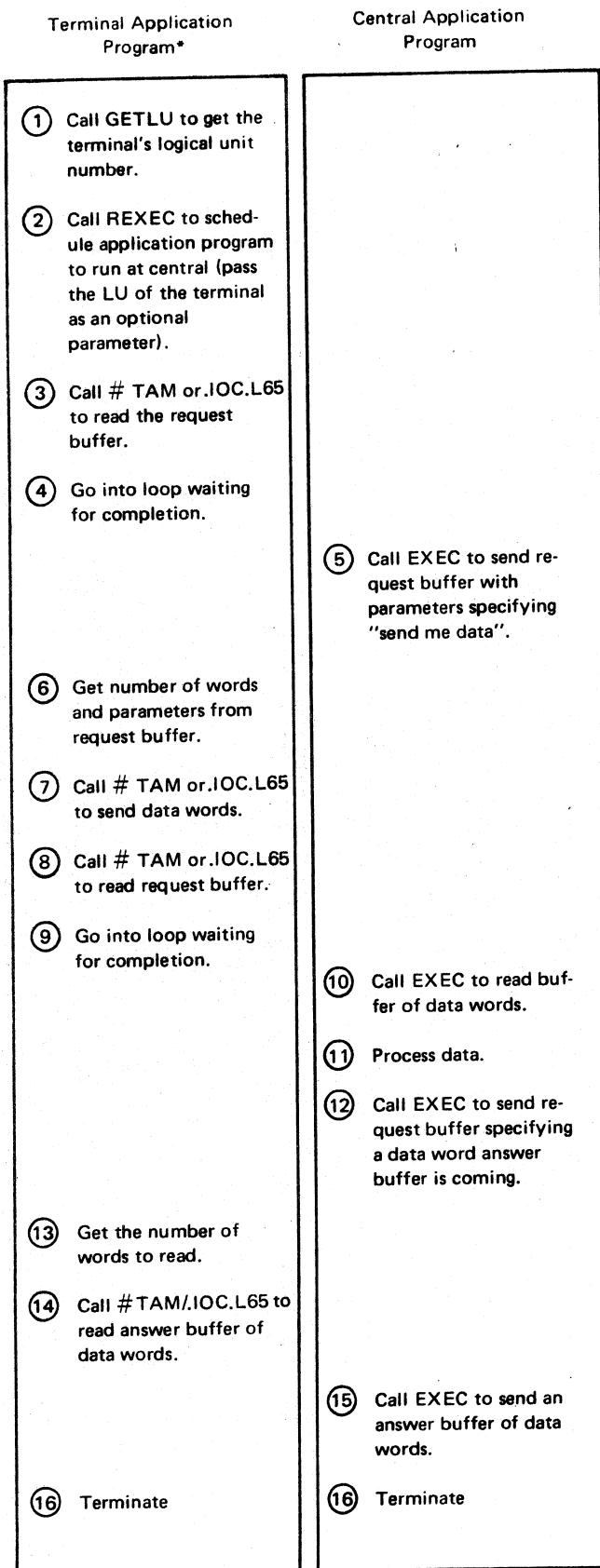


Figure 5-2. Program Calls for
Program-to-Program Communication

* # TAM and .IOC. are not callable from FORTRAN.

The material that follows describes the programming considerations required to implement the program-to-program feature for use with terminal data collection and central processing. The discussion is concerned primarily with terminal programs running under TCE/3. Some exceptions are noted for TCE/1 and TCE/2 usage.

If the terminal program is designed to run under TCE/3, .IOC. and D.65 are core resident within the TCE/3 executive and are callable by application programs. If the terminal program is to be run under either TCE/1 or TCE/2, it must be fully stand-alone, with its own I/O environment including .IOC. and D.65. The SIO and BCS System manuals should be consulted along with the "System Generation" section of this manual.

In order to achieve the degree of interaction required between the terminal program and the central program, they should be designed in parallel, ideally by the same person. The central computer functions as a slave to the terminal computer's processing requests — which means that the terminal computer must initiate all processing.

The Distributed System terminal computer initiates the dialogue by causing the central computer to schedule its dialogue program. If TCE/1 or TCE/2 are in the terminal, this must be done manually by the central operator. If TCE/3 is in the terminal, ESCAPE function processing should be disabled, and the logical unit number of the terminal obtained before a Remote EXEC call is issued to schedule the dialogue program at the central computer. Steps 1 and 2 of Figure 5-2 show the program calls made under TCE/3 to initiate dialogue. The "Terminal Receives Data" and "Terminal Sends Data" program samples at the end of this section show how these steps can be coded.

As mentioned above, the first task of the terminal program running under TCE/3 is to disable processing of the Escape function. Pressing the ESC (Escape) key during Program-to-Program Communication can cause a loss of all data communication paths to central (if DVR65 at central is transmitting to the terminal). The Escape function can be disabled by either calling the utility subroutine, PTPON, or by setting the \$BUSY flag to a non-zero value directly. The sample programs show the code for the call to PTPON. Manually setting the \$BUSY flag is discussed in Section IV. A call to PTPOF to clear the \$BUSY flag and reenable Escape processing should be made before Step 4 of Figure 5-1 is reached.

Terminal processing of a previously pressed ESC key may be done at "safe" points in the program-to-program communication sequence. After a terminal program has read a request and before it receives or transmits data, a program call may be made to ESCON. If the ESC key has been pressed, the terminal program transmits a STOP reply to central which causes the data transfer from central to be refused and the central program to terminate. The terminal program then terminates itself.

The user program at central must be programmed in such a way that upon "completion" of the expected data transfer, a check is made on bit 3 of the EQT status word contained in the A-Register (see Appendix A). If the bit is set, the central program should terminate itself.

Once Escape processing is disabled, the terminal program issues a program call to the utility subroutine GETLU (shown in Step 1 of Figure 5-2). This call is made because the program to be scheduled at the central computer needs to know the logical unit of the terminal with which it will communicate. The logical unit (obtained from the call to GETLU) is passed to the central program as one of the optional parameters in the remote schedule call shown in the program samples. This parameter need not be passed, if the logical unit is fixed at a known value and hard-coded into the central program.

Once the logical unit number is obtained, the terminal program can make the call to REXEC (Step 2 of Figure 5-2) for a remote schedule request. Additional parameters may be passed to the central program at this time. After the call is completed, the terminal program may perform the Remote Request Error Checks shown in Figure 5-3. The remote communication status is obtained by checking the ISTAT parameter. Whether the central program actually got scheduled is determined by checking the A-Register (see the REXEC Program schedule call description in Section IV). If the central program was not dormant (already scheduled or suspended), the schedule call should be repeated until the central program becomes available.

Even though the central program is scheduled to run, there is no guarantee that the program will run immediately. It may have a lower priority than other scheduled programs and have to wait its turn to run. The only way, therefore, that the terminal program can know when the central program is actually ready to communicate is for the terminal program to make a call to receive request and the central program to make a call to send request (Steps 3, 4 and 5 of Figure 5-2). I/O completion does not occur until the central program finally begins execution and sends the first request buffer.

A direct program-to-program communication data link is established between the terminal program and the central program when the first buffer is sent. All ensuing conversation between programs takes place via buffers as shown in Steps 6 - 16 of Figure 5-2 and in the remainder of the code in the sample programs. The contents of the buffers, i.e., conversation contents, are determined by the user. The material which follows describes some of the programming considerations resulting from the format descriptions of DVR65 and D.65 detailed in Appendix A. The use of #TAM calls to replace D.65 calls is also described.

Transmission between the central computer and the terminal takes place in either of two submodes: transmit/receive

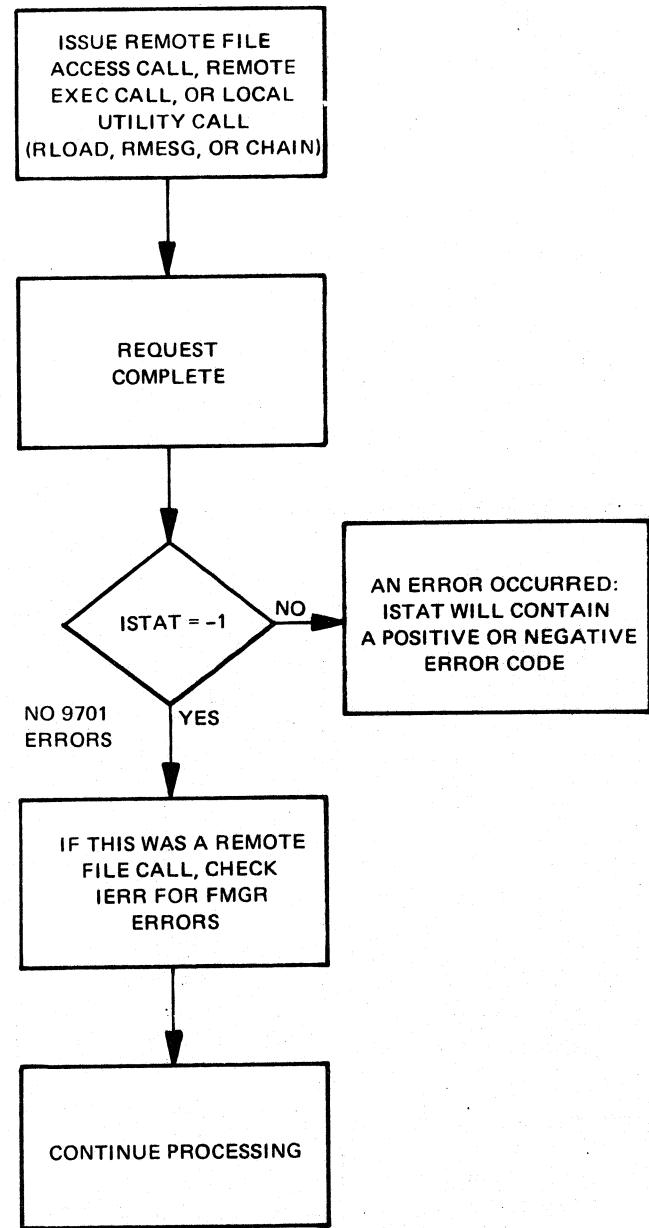


Figure 5-3. Remote Request Error Check

“request,” or transmit/receive “data.” Transmit/receive “data” is the secondary submode. The content of the request buffer is determined by the user. The buffer can be any length (including zero), but it normally contains user program-to-program parameters. Data transmissions are normally confined to the transmit/receive “data” submode.

A “transmit request” call is made by the user program at central, and **NEVER** from the terminal program. This is due to the fact that requests sent to central do not go to the central application program, but to the resident QUEUE module which expects the specific format used for remote file access parameter buffers. If a “transmit request” call is not made in the required format, the results are disastrous. Conversely, a “receive request” can be made only by a terminal program.

A “transmit data” call can be made by either the terminal program or by the central program, as long as the central program initiates the data transmission with a “transmit request” call. The computer that receives the data then performs a “receive data” call. For every data transfer, regardless of direction, central must first send a “request” to the terminal (see Figure 5-2 and sample programs).

Request and data buffer lengths must be exactly the same at both the terminal and at central. If the number of words read is smaller than the number of words sent, the communications drivers will loop trying to send the rest of the buffer. Request buffer lengths are predictable and fixed by the user to known values. Data buffer lengths are usually variable, so that the length of the buffer to be transferred is normally conveyed by the central program in an optional parameter in the request buffer. Data buffer lengths cannot be zero. If the length is sent as a parameter, it is used to configure the “transmit/receive data” call.

The “receive request” call at the terminal may be made in either Listen mode, or Polling mode. These modes should be established in the user’s program before the “receive request” call is made (see enable Listen mode call and enable Polling mode call in Section IV). If Listen mode is used, when the central program transmits a request, a user-written, BCS subroutine is executed at the terminal upon the receipt of the interrupt from central. This subroutine must have an entry point called INT65. See Appendix A for further details.

If Polling mode is used, the terminal user program checks the communication card with a “read request” call. If no request is received, bit 6 of the EQT status word is set (see Appendix C), and the “read request” call must be re-issued. If a request has been received, bit 6 is zero, and processing may continue. See Appendix A for further details.

The TCE/3 resident module #TAM may be used instead of .IOC. calls for terminal program-to-program communications written in HP Assembly Language. The calls to #TAM are

described in Section IV. #TAM converts user calls to the appropriate .IOC. calling sequence for D.65. It automatically determines and sets up the proper transmission mode (interrupt open loop or DMA open loop), and provides polling mode for "receive request" calls.

IMPORTANT

1. A central user program can only transmit a **request**.
A terminal program can only **receive a request**.
2. Request or data buffer length at the terminal must be exactly the same as the corresponding request or data buffer length at central.
3. Protection from ESC key processing should be provided by a call to PTPON before program-to-program communication begins.

SAMPLE PROGRAM

SAMPLE PROGRAM

***** TERMINAL PROGRAM ***** * ***** CENTRAL PROGRAM ABCD *****

EXT PTPON,PTPOF,ESCON, IDLE	*	*	*		
EXT GETLU,REXEC, #TAM	*	*	*		
.	*	*	*		
.	*	*	*		
.	*	*	*		
JSB PTPON	DISABLE OPERATOR	*	*		
DEF **1	ATTENTION.	*	*		
.	*	*	*		
JSB GETLU	GET LOGICAL UNIT	*	*		
DEF **2	AT CENTRAL FOR	*	*		
DEF LU	THIS TERMINAL.	*	*		
.	*	*	*		
JSB REXEC	SCHEDULE ABCD	*	*		
DEF **5	AT CENTRAL.	*	*		
DEF STATS	.	*	*		
DEF B12	.	*	*		
DEF PGNAM	ASCII "ABCD	*	*		
DEF LU	PASSED PARAMETER.	*	*		
.	*	*	*		
SZA	ABCD DORMANT?	*	LDA 1,I		
JMP SCHD	NO, RE-SCHEDULE.	*	STA LU		
.	*	*	*		
CLA,INA	READ REQUEST	*	JSB EXEC	SEND REQUEST	
JSB #TAM	FROM CENTRAL.	*	DEF **6	AND RECEIVE DATA.	
DEF **5	.	*	DEF B1	REQ. CODE = READ.	
DEC 5	.	*	DEF LU	LU OF TERMINAL.	
DEF BUFFR	.	*	DEF PBUFR	PARAM BUFFER.	
DEC -2	1 WORD REQUEST.	*	DEF B4	PARAM BUFFER LENGTH.	
DEF **1	COMPLETOR SUBR.	*	DEF B0	TRANSMISSION MODE.	
.	*	*			
NOP	.	*	SLA,RSS	ANY ERRORS?	
JSB ESCON	CHECK IF OPERATOR	*	JMP ERROR	YES.	
DEF **2	HAS PRESSED	*	.	NO, CONTINUE	
DEF TEMP	ESCAPE KEY.	*	.	PROCESSING.	
LDA TEMP	.	*	.		
SZA	*	ERROR ALF,ALF	WAS STOP COMMAND		
JMP XSTP	YES, SEND STOP.	*	ALF,SLA	RECEIVED?	
.	*	JMP DONE	YES, TERMINATE.		
CLA	SEND DATA TO	*	.	NO, CHECK FOR	
JSB #TAM	CENTRAL.	*	.	OTHER ERRORS.	
DEF **4	.	*			
OCT 6	.	*			
DEF BUFFR	.	*			
DEC -40	20 WORD RECORD.	*			
.	*				
.	*				
.	READ & PROCESS	*	.		
.	TILL DONE.	*	.		
.	*	*	.		
JSB PTPOF	ENABLE OPERATOR	*	DONE	JSB EXEC	TERMINATE ABCD.
DEF **1	ATTENTION.	*		DEF **2	
JSB IDLE	RETURN TO TCE/3.	*		DEF B6	
.	*				
JSB #TAM	TRANSMIT STOP	*	PBUFR	DEF DBUFR	DATA BUFFER.
DEF **2	TO ABCD.	*		DEC 20	(20 WORDS)
DEC 2	.	*		DEF RBUFR	REQUEST BUFFER.
JMP DONE	EXIT.	*		DEC 1	(1 WORD)

SECTION VI

SYSTEM GENERATION AND INSTALLATION

This section is divided into four parts that describe the system generation and installation procedures for the Distributed System.

PART I

TCE/1 GENERATION AND INSTALLATION

The generation of TCE/1 involves loading an absolute assembly language program directly into the computer either by front panel switches or reading paper tapes.

PART II

TCE/2 GENERATION AND INSTALLATION

TCE/2 is an absolute assembly language program. It is available in separate versions for 4K, 8K, 16K, 24K and 32K terminal computers. TCE/2 is loaded into the terminal computer from the central disc, or from paper tape via BBL.

PART III

TCE/3 GENERATION AND INSTALLATION

TCE/3 is a collection of relocatable assembly language modules. The generation of the resident system is performed by the RTE System Cross Loader at the central computer. The relocatable modules that make up TCE/3 are TEXEC, RFAIN, #TAM, .IOC., D.00, D.65 plus any other BCS peripheral or instrument drivers required by a particular configuration.

PART IV

CENTRAL GENERATION AND INSTALLATION

Generation of the 91701 software for the central computer consists of performing an RTE generation which includes the 91701 central program modules, the File Management Package and the RTE System Cross Loader, in addition to the RTE program modules. The minimum and maximum configuration examples show the central generation output for a 24K and a 32K computer.

PART I

TCE/1 GENERATION AND INSTALLATION

TCE/1 is an absolute Assembly Language program. It is loaded into terminal computers with memories larger than 4K via the BBL as described below. Computers with 4K memories require that TCE/1 be loaded via the front panel switches. The octal listing of TCE/1 in Appendix E is provided for this purpose.

1. HALT CPU.
2. Load 4K TCE/1 exchange program tape in photo reader.
3. Set P-Register to starting address of protected bootstrap area (i.e., $\$m7700$).
4. Clear SWITCH REGISTER, press PRESETS, LOADER ENABLE, and RUN.
5. If HALT 77, set P-Register again to starting address of the bootstrap area. If not HALT 77 return to Step 1. Replace I/O assignments as required. See TCE/1 listing in Appendix E.
6. Set switch to nn (PROG nn) for loading the appropriate TCE/1 bootstrap into the protected area.
7. Press PRESETS, LOADER ENABLE, and RUN.
8. If HALT 77, TCE/1 is now the system's bootstrap loader. If not HALT 77, return to Step 4. Replace I/O assignment code as required. See TCE/1 listing in Appendix E.

where $nn = \$ - 77_8$

$m = 1$ for 8K, 2 for 12K, 3 for 16K,
5 for 24K, 7 for 32K

A return from TCE/1 to the BBL is made following the instructions below.

1. HALT CPU.
2. Set P-Register to starting address of protected bootstrap area (i.e., $\$m7700$). Must be greater than 4K.
3. Set SWITCH REGISTER to nn (PROG nn for loading the 4K TCE/1 exchange program.

of 4K TCE /1 (07700)

Clear Location 07727

Replace ~~I/O assignments as required~~

PROGnn must have previously been stored on the central disk via the ENCR command : ST,5,PROGnn,BA

4. Press EXTERNAL PRESET, INTERNAL PRESET, LOADER ENABLE, and RUN, sequentially.
5. If HALT 77, set P-Register to the starting address of the 4K TCE/1 exchange program ($\$07700$). If not a HALT 77, return to Step 2.
6. Set SWITCH REGISTER to nn (PROG nn) for loading the BBL.
7. Press PRESETS, LOADER ENABLE, and RUN.
8. If HALT 77, BBL is now in protected area ($\$m7700$), if not HALT 77, return to Step 5.
9. Reset I/O assignments as required.

where $nn = \emptyset - 77_8$
 $m = 1$ for 8K, 2 for 12K, 3 for 16K,
5 for 24K, 7 for 32K

To change the I/O assignments originally assembled into TCE/1, the procedure below should be followed:

1. Press LOADER ENABLE (light ON).
2. For each of the following addressed, press M, set DISPLAY REGISTER to the address, press MEMORY DATA, and set bits $\emptyset - 5$ of DISPLAY REGISTER to the I/O channel of the remote computer.

$n7700$	$n7745$
$n7701$	$n7754$
$n7702$	$n7756$
$n7742$	$n7757$
$n7743$	$n7763$

where $n = \emptyset$ for 4K, 1 for 8K, 2 for 12K, 3 for 16K, 5 for 24K, 7 for 32K

3. Press LOADER ENABLE (light OFF).

*Clear Location 7727⁸
Replace I/O Assignments as required.*

PART II

TCE/2 GENERATION AND INSTALLATION

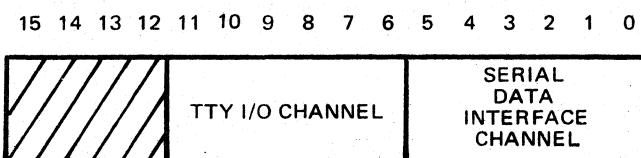
TCE/2 is an absolute assembly language program. It is available in 4K, 8K, 12K, 16K, 24K and 32K versions. TCE/2 resides on the central disc as an absolute file. When it is loaded via TCE/1 or TCE/3 into the terminal computer, it occupies the upper portion of memory next to the protected area (as shown in Table B-1 of Appendix B).

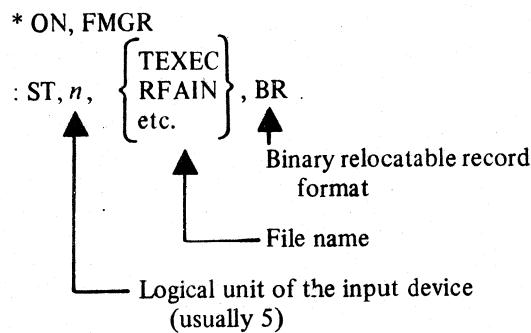
TCE/2 is stored on the central disc by the RTE File Manager following the directions below.

To store TCE/2 on the central disc, place the TCE/2 absolute paper tape in the central reader and use the following commands at the central computer keyboard device:

* ON, FMGR
 : ST, *n*, PROG*nn*, BA
 ↑ ↑ ↑
 ↑ File name
 ↑ Binary absolute record format
 Logical unit number of the input device
 (usually 5)
 : TR Exit from the File Manager

When TCE/2 is loaded into terminal memory, the assembled I/O channel assignments for the Serial Data Interface (SDI) channel and the TTY device may be changed by starting execution at $P = 100_8$ with the S-Register bits 0 - 5 equal to the SDI channel, and bits 6 - 11 equal to the TTY channel as shown in Figure 6-1.




Figure 6-1. S-Register for I/O Channel Assignments

Additional information is provided in Section IV, Part I.

PART III

TCE/3 GENERATION AND INSTALLATION

TCE/3 consists of the following relocatable assembly language modules: TEXEC, RFAIN, #TAM, .IOC., D.00D, D.65 and any other required BCS peripheral or instrument drivers. These modules are stored on the central disc by the RTE File Manager using the following commands:

TCE/3 is generated by the RTE system cross loader either from the files stored on the central disc, or from paper tapes. Although TCE/3 is a BCS environment, SXL is used for generation instead of PCS because of residency requirements and user program interface. TCE/3 modules can be input to the loader as separate relocatable disc files, or as a combined relocatable "library" (see **RTE System Cross Loader Manual** for the appropriate commands).

The SXL Loader command file used to generate TCE/3 contains commands to build the SQT, EQT, interrupt linkages, .MEM. table; to define memory bounds and to produce a resultant command file. This command file is saved on the central disc and used as part of the command file required to configure terminal application programs. It contains information to direct the Loader to set application program core bounds so that TCE/3 is not overlayed. It also indicates where the TCE/3 entry points are located. The Loader output must be in absolute binary format (not core image).

If the command file is on the standard input device, the Loader is turned on with an automatic transfer.

ON,SXL

If the command file is on disc, the Loader is turned on with the commands:

ON,SXL,
- TR,*file name*

The example which follows shows an SXL Loader command file for a minimal TCE/3 generation. It can be modified for a particular terminal configuration. This example assumes 8K memory, TTY (or CRT) in channel 15, remote central computer in channel 13, and the use of the BCS - TTY and communications drivers (D.00D and D.65).

The last command in the input file is the SNAP statement. It produces the partial command file used to prepare the application programs for the terminals.

Statements preceded by a dash (-) indicate input from the system console.

***** T800000 IS ON LU 09

```

0001 -ECHO ON 6
0002 * DEFINE MEMORY BOUNDS FOR TCE/3
0003 -BOUNDS FWAM=2000,LWAM=17677,FWABP=105,LWABP=1777
0004 * PLACE OUTPUT ON FILE ACCESSABLE TO TCE/2 AND TCE/1
0005 -OUTPUT ABS ON PROG10
0006 -MAP ALL
0007 -RELOCATE TEXEC,RFAIN,#IAM,.IOC.,D.00D,D.65
0008 * (THE ABOVE FILES COULD ALL HAVE BEEN COMBINED
0009 * IN A SINGLE "LIBRARY" FILE SUCH AS "TCELIB")
0010 * BUILD BCS SQT (STANDARD EQUIPMENT TABLE)
0011 -SET .SQT. TO LOCC
0012 -SET $(LOCC) TO 7
0013 -SET $(LUCC+1) TO 7
0014 -SET $(LUCC+2) TO 7
0015 -SET $(LUCC+3) TO 7
0016 -SET $(LUCC+4) TO 7
0017 -SET $(LUCC+5) TO 7
0018 * DEFINE # OF EQT (EQUIPMENT TABLE) ENTRIES
0019 -SET .EQT. TO LUCC+6
0020 -SET $(LUCC+6) TO 2
0021 * BUILD LU 7 EQT FOR D.00 (TTY ON CHANNEL 15B)
0022 -SET $(LUCC+7) TO 15
0023 -SET $(LUCC+10) TO 0
0024 -SET $(LUCC+11) TO 6
0025 -SET $(LUCC+12) TO 0.00
0026 * BUILD LU 1AB EQT FOR D.65 (CHANNEL 13B)
0027 -SET $(LUCC+13) TO 13
0028 -SET $(LUCC+14) TO 32400
0029 -SET $(LUCC+15) TO 11
0030 -SET $(LUCC+16) TO 0.65
0031 * SET UP I/O INTERRUPT LINKAGES
0032 -SET $(15) TO 114025
0033 -SET $(25) TO 1.00
0034 -SET $(13) TO 114023
0035 -SET $(23) TO 1.65
0036 * DEFINE MEMORY AVAILABLE TO A USER PROGRAM
0037 -SET FWAM TO LOCC+30
0038 -SET FWABP TO BPLOCC
0039 -SET .MEM. TO LUCC+17
0040 -SET $(LUCC+17) TO LUCC+20
0041 -SET $(LUCC+20) TO FWABP
0042 -SET $(LUCC+21) TO LWABP
0043 -SET $(LUCC+22) TO FWAM
0044 -SET $(LUCC+23) TO LWAM
0045 * SET UP SQT, EQT POINTERS
0046 -SET $(XSQT) TO .SQT.
0047 -SET $(XEQT) TO .EQT.

```

```

0048 * ADJUST LOCC TO FWA USER MEMORY
0049 -SET LOCC TO FWAM
0050 -DISPLAY UNDEFS ON 5
0051 -DISPLAY UNDEFS
0052 * SAVE SNAP FOR USE IN TERMINAL USER PROGRAM PREPARATION
0053 -SNAP ON 4
0054 -END

```

The SXL output from the TCE/3 generation is shown below. The information output includes core locations of

the generated modules and entry point addresses.

***** T=000000 IS ON LU 09

0001	-- DEFINE MEMORY BOUNDS FOR TCE/3							
0002	--BOUNDS FWAM=2000,LWAM=17677,FWARP=105,LWABP=1777							
0003	--★ PLACE OUTPUT ON FILE ACCESSABLE TO TCE/2 AND TCE/1							
0004	--OUTPUT ABS ON PROG10							
0005	--MAP ALL							
0006	FILE	PROGRAM	GLOBAL	FIRST	LAST	BASE	PAGE	REF. BY
0007	NAME	MODULE	VARS.	ADDRS.	ADDRS.			
0008	-----							
0009	--RELOCATE TEXEC,RFAIN,4TAM,IOC,0.000,0.65							
0010	TEXEC							
0011	TEXEC		002000	004562	000105	000321		
0012	ATTEN		002102					
0013	RLOAD		003223					
0014	CHAIN		003611					
0015	RNPGM		003515					
0016	RMSG		003527					
0017	IDLE		002000					
0018	PTPUN		003677					
0019	PTPOF		003704					
0020	ESCON		003711					
0021	RFAIN							
0022	RFAIN		004563	005444	000322	000432		
0023	.ENTR		005437					TEXEC
0024	\$BUSY		006037					TEXEC
0025	RFATM		004563					TEXEC
0026	GETLU		004600					TEXEC
0027	RCRET		004647					TEXEC
0028	RPURG		004676					TEXEC
0029	ROPEN		004710					
0030	RREAD		004723					
0031	RWRIT		004742					
0032	RPOSN		005013					
0033	RWIND		005025					
0034	RCLOS		005035					TEXEC
0035	RNAME		005046					TEXEC
0036	RCONT		005062					
0037	RLDLF		005074					
0038	RAPUS		005104					
0039	RSTAT		005117					

0040		REXEC	005137	TEXEC	
0041	#TAM				
0042	#TAM		006445 007077 000433 000432	TEXEC	
0043		#TAM	006445		
0044		INTS5	007025		
0045	IUC				
0046	IUC		007100 007316 000433 000432	TEXEC	
0047		IUC.	007100		
0048		DMAC1	007315		
0049		DMAC2	007316		
0050		IOERR	007274		
0051		XSQT	007313		
0052		XEQT	007314	TEXEC	
0053		.BUFR	007246		
0054	D.000				
0055	D.000		007317 010003 000433 000436		
0056		D.00	007317		
0057		I.00	007451		
0058		SESC	007742	TEXEC	
0059	0.65				
0060		0.65	010004 012117 000437 000476		
0061		D.65	010004		
0062		I.65	011003		
0063	-- (THE ABOVE FILES COULD ALL HAVE BEEN COMBINED				
0064	-- IN A SINGLE "LIBRARY" FILE SUCH AS "TCELIB")				
0065	-- BUILD BCS SQT (STANDARD EQUIPMENT TABLE)				
0066	--SET .SQT. TO LOCC				
0067	.SQT. 012120				
0068	--SET \$(LOCC) TO 7				
0069	--SET \$(LOCC+1) TO 7				
0070	--SET \$(LOCC+2) TO 7				
0071	--SET \$(LOCC+3) TO 7				
0072	--SET \$(LOCC+4) TO 7				
0073	--SET \$(LOCC+5) TO 7				
0074	-- DEFINE # OF EQT (EQUIPMENT TABLE) ENTRIES				
0075	--SET .EQT. TO LOCC+6				
0076	.EQT. 012126				TEXEC
0077	--SET \$(LOCC+6) TO 2				
0078	-- BUILD LU 7 EQT FOR D.00 (TTY ON CHANNEL 15B)				
0079	--SET \$(LOCC+7) TO 15				
0080	--SET \$(LOCC+10) TO 0				
0081	--SET \$(LOCC+11) TO 0				
0082	--SET \$(LOCC+12) TO 0.00				
0083	-- BUILD LU 10B EQT FOR D.65 (CHANNEL 13B)				
0084	--SET \$(LOCC+13) TO 13				
0085	--SET \$(LOCC+14) TO 32400				
0086	--SET \$(LOCC+15) TO 0				
0087	--SET \$(LOCC+16) TO 0.65				
0088	-- SET UP I/O INTERRUPT LINKAGES				
0089	--SET \$(15) TO 114025				
0090	--SET \$(25) TO I.00				
0091	--SET \$(13) TO 114023				
0092	--SET \$(23) TO I.65				
0093	-- DEFINE MEMORY AVAILABLE TO A USER PROGRAM				
0094	--SET FWAM TO LOCC+30				
0095	FWAM 012150				

```

0096 --SET FWABP TO BPLJCC
0097           FWABP  000477
0098 --SET .MEM. TO LUCC+17
0099           .MEM.  012137
0100 --SET $(LOCC+17) TO LOCC+20
0101 --SET $(LOCC+20) TO FWABP
0102 --SET $(LOCC+21) TO LWABP
0103 --SET $(LOCC+22) TO FWAM
0104 --SET $(LOCC+23) TO LWAM
0105 --* SET UP SQT, EQT POINTERS
0106 --SET $(XSQT) TO .SQT.
0107 --SET $(XEQT) TO .EQT.
0108 --* ADJUST LOCC TO FWA USER MEMORY
0109 --SET LUCC TO FWAM
0110           LUCL  012156
0111 --DISPLAY UNDEFS ON 6
0112 NO UNDEFS
0113 --DISPLAY UNDEFS
0114 --* SAVE SNAP FOR USE IN TERMINAL USER PROGRAM PREPARATION
0115 --SNAP ON 4
0116 --END
0117 NO UNDEFS
0118 LINKS TABLE
0119   ATEN  AB000332
0120   .ENTR  000321
0121   $BUSY  000120
0122   RFATM  000205
0123   GETLU  000227
0124   RCRET  000223
0125   RPURG  000226
0126   RCLOS  000225
0127   RNAME  000224
0128   REXEC  000207
0129   #1AM   000230
0130   INT65  000442
0131   .IOC.   000122
0132   DMAC1  000437
0133   DMAC2  000440
0134   IOERR  000441
0135   XEQT   000256
0136   SESC   000121
0137   .EQT.   000255
0138   .MEM.   000105
0139 ***** END LOADING *****
0140 TRANSFER TO TEXEC  002550
0141 CORE USED   002000  012143  000013  000476
0142 FREE CORE   012144  077677  000477  001777
0143 OUTPUT FILE NAME:PROG10
0144 ***** RELOCATION COMPLETED SUCCESSFULLY *****

```

Deleted

Locations 2 and 3 of the terminal computer contain a JMP 3,I and the starting address of the last program loaded. When TCE/3 is initially loaded, location 3 contains the TCE/3 start address. Any subsequent program load changes the contents of these locations to the address of the new program.

TCE/3 may be manually restarted at location 2000₈. This causes a transfer to the abort section of TCE/3 and has the same effect as an ABORT command used on an application program.

PART IV

CENTRAL GENERATION AND INSTALLATION

The central 91701 software is generated as part of the standard RTE Generation (RTGEN) process described in the **Real-Time Executive Software System Manual**. This process consists of four phases: (1) Initialization Phase, (2) Program Input Phase, (3) Parameter Input Phase, and (4) Disc Loading Phase. HP 91701 central software is configured into the RTE System during each of these phases. When RTGEN is complete and the system booted, the HP 91701 module LSTEN is scheduled (to complete the communication link between computers), and the terminals are initialized as described in Parts I, II, and III of this Section. Sample configuration work sheets and printouts of the RTGEN process are provided for maximum and minimum HP 9701 Systems in addition to the descriptions which follow.

INITIALIZATION PHASE

The information required by RTGEN is not modified by HP 91701. The user must provide a track map of the system disc space, memory, time base generator channel, swapping option, and program input devices as described in the RTE Manual and as shown in the sample work sheets which follow.

It should be remembered that 24K systems require 24K SIO drivers, and 32K systems require ~~32K~~ SIO drivers.

PROGRAM INPUT PHASE

The relocatable programs for HP 91701 FMP and the SXL Loader (if used) are configured into the system during this phase. Programs are loaded in the following order:

HP 91701 Exec Control (EXEC)

Scheduler (SCHED)

I/O Control (RTIOC)

I/O Drivers (The 24K version of the HP 91701 central cannot accommodate all of the RTE drivers. See 24K core map in Appendix B for driver trade offs.)

System programs written by the user

Foreground core-resident programs

QUEUE

DISP

Foreground disc-resident programs

TAM*

RFAM

DISC

ERR*

PROGL + ~~DISC~~

Deleted

DLIST

*Foreground core-resident where space allows.

Background disc-resident programs
 Assembler (main and its segments)
 FORTRAN (main and its segments) and/or FORTRAN
 FORTRAN IV (main and its segments, but not both)
 FORTRAN IV versions)
 ALGOL (main and segment)
 RTE Relocating Loader
 Editor
 SXL Loader
 FMGR
 Other background disc-resident programs and their respective segments, if any
 LSTEN
 Library programs
 QUDIS
 Utility programs

The central computer portion of the HP 91701 software is configured into a 32K RTE System with the parameters shown in Table 6-1. The parameter overrides required for a 24K system are listed under the PARAMETER INPUT PHASE.

Table 6-1. 32K RTGEN Parameter Summary
for HP 91701 Modules

Module Name	Type	Default Residency	Default Priority
D.RTR	1	Foreground core	1
QUEUE	1	Foreground core	20
QUDIS	6	Library	none
DISP	1	Foreground core	10
TAM	2	Foreground disc	30
RFAM	2	Foreground disc	30
DISC	2	Foreground disc	30
ERR	2	Foreground disc	30
LSTEN	3	Background disc	80
PROGL + DLK 63	3	Background disc	29
DLIST	3	Background disc	31

QUEUE is provided with a priority of 20 which may be changed to meet system requirements as long as its priority remains higher (numerically lower) than the module TAM and lower (numerically higher) than the module DISP. It must be core-resident.

QUDIS is a privileged subroutine.

DISP is provided with a priority of 10 which may be changed to meet system requirements as long as its priority remains higher than the modules TAM and QUEUE.

TAM is provided with a priority of 30 which may be changed as long as it retains the same priority as the modules RFAM, DISC, and ERR.

RFAM is provided with a priority of 30, which may be changed as long as it retains the same priority as TAM, DISC, and ERR.

DISC is provided with a priority of 30, which may be changed as long as it retains the same priority as TAM, RFAM, and ERR.

ERR is provided with a priority of 30, which may be changed as long as it retains the same priority as TAM, RFAM, and DISC.

LSTEN is provided as a background program with a priority of 80, which can be changed to suit the specific system requirements of the user.

PROGL is provided with a priority of 29. ~~It calls sub-routine DLK65, which is part of the HP 12771A Serial Interface Kit, or HP 12773A Modem Interface Kit.~~

DLIST is provided with a priority of 31.

PROGL and DLIST have no specific placement requirements. They can be placed in the user HP 9701 System as either background or foreground programs with varying effects on system throughput. Foreground core-resident is the most advantageous placement, but core limitations often make this impractical. If either or both programs must be made disc resident and no extended background operations are anticipated during the hours of communications activity, the HP 91701 software provides the best remote file access, if they are placed in the background. If extended background activity is anticipated, the best placement is foreground disc resident with priority lower than the module TAM.

The File Management Package is also configured into the RTE System during this phase. The various modules of FMP are numbered according to the order of their loading; other distinctions are as follows:

FMGR

The operator interface MFGR has a priority of 90, is segmented into five parts, and requires at least 5K of background area.

D.RTR

Subroutine D.RTR has a priority of one, requires a few words over 1K of area, and is supplied as a foreground disc resident program. However, to assure minimum response time, the HP 9701 System requires it be made core resident.

This change can be made during the parameter input phase of RTGEN. The only constraint is that D.RTR have a higher priority than any program using the FMP.

PARAMETER INPUT PHASE

During the parameter input phase, the operator can modify the type, priority or execution intervals of any of the programs entered during the program input phase. The program type code for background main programs and their segments cannot be changed without losing their relationship to each other.

Each parameter record is of this general form:

name, type [, priority] [, execution interval]

The types and priorities assembled in the NAM records of the HP 91701 software modules for 32K are shown in Table 6-1. These values can be used as references to make required changes. The overrides required for a 24K RTE central configuration are shown in Table 6-2.

Table 6-2. 24K RTGEN Parameter Overrides

Module Type	Type	Default Residency	Default Priority
D.RTR	1	Foreground core	1
QUEUE	1	Foreground core	20
DISC	2	Foreground disc	30
LSTEN	3	Background disc	90
QUDIS	6	Library	none
DISP	2	Foreground disc	10
TAM	2	Foreground disc	30
ERR	2	Foreground disc	30
RFAM	2	Foreground disc	30
PROGL	2	Foreground disc	35 29
DLIST	2	Foreground disc	35

DISC LOADING PHASE

RTGEN generates three I/O tables during this phase: equipment table, device reference table, and the interrupt table. The material which follows indicates HP 91701 requirements for these tables.

Equipment Table Entries

One Equipment Table Entry (EQT) is required for each terminal in the system. The terminal computer I/O channels must be related to DVR65, and DMA must be specified. The format is:

nn, DVR65, D

where

nn = I/O channel number

Device Reference Table Entries

A unique logical unit number must be assigned to each terminal. The terminals are not required to be in contiguous logical unit sequence.

Interrupt Table Entries

An interrupt on any terminal I/O channel must schedule the module QUEUE. The option PRG is required. The format is

nn, PRG, QUEUE

where

nn is the I/O channel (select code)

When the RTGEN process is complete and the system booted up, FMGR must be initialized; the HP 91701 module LSTEN (used to initialize the communication link between central and the terminal computers) must be initialized to make the HP 91701 system fully operational.

FMGR Initialization

Each time the RTE System is loaded from the disc, the FMGR program is scheduled. The first time that FMGR is scheduled, it detects that the FMP has not been initialized to the system and auxiliary discs. Once this initialization procedure (described in the following steps) takes place, later RTE System loads will still schedule FMGR, but initialization is no longer necessary.

When FMGR is scheduled, it obtains all available tracks on the system and auxiliary discs, and assigns the tracks to itself. FMGR then prints on the system teleprinter (TTY):

FMGR 002

:

This is a request for the user to initialize the system disc (LU2) using the IN Operator Command.

NOTE

The security code entered at this time will be the system master security code. The code can be blank (no security) or any two characters (except a colon, comma, or leading blank). The two characters need not be printing characters. Remember, the code may not be obtained with any FMGR Command once it is set, so be sure to remember it.

After a successful initialization of the system disc, FMGR checks to see if there is an auxiliary disc. If so, FMGR prints on the system TTY:

FMGR 003

:

This is a request for the user to initialize the auxiliary disc (LU3) using the IN Operator Command. If no tracks are to be assigned to the auxiliary disc, its label should be specified as zero. For example:

:IN,JB,-3,Ø

When a successful initialization is completed, FMGR assigns the tracks as per the IN command parameters. FMGR then terminates (no message is printed) and returns control to the RTE System.

If the initialization was not successful, that is, if any tracks were not available, FMGR prints:

FMGR ØØ5
FMGR xxx

ØØ5 identifies the message and xxx is the track's relative position in the track assignment table. This implies the track number is printed for the system disc, and the track number plus the number of tracks on the system disc is printed for the auxiliary disc. Recoveries from this error condition are:

- a. Make the track available and then enter the following system commands:

*RT,D.RTR
*ON,FMGR

This will force the FMGR to re-try the track assignment table setup.

- b. Re-initialize the affected disc declaring the unavailable tracks as bad (message will still be printed but may be ignored).

- c. Re-initialize the affected disc changing the first track to be above the unavailable track.

If the unavailable track is the last system track, procedure "a" must be used; i.e., this track must be available to the FMP.

HP 91701 INITIALIZATION

The HP 91701 module, LSTEN, is used to initialize the communication link between the central computer of the Distributed System and its terminal computers. This is done by initializing the communication cards in both machines. LSTEN is scheduled with an ON,LSTEN request from the central computer. The format for this request is:

ON, LSTEN,*p1,p2,p3*

where

p1 = Logical unit number of the system console.
The default value is the CRT (1).

p2 = Logical unit number of the paper tape reader.
The default value is (5).

p3 = Logical unit number of the paper tape punch.
The default value is (4).

Two commas in a row mean the parameter is not specified and the default is to be used.

If incorrect, but defined, LUs are supplied to any of the LSTEN questions, the following messages are displayed:

INCORRECT INPUT PARAMETERS

LSTEN ABORTED

If undefined LUs are supplied as responses, the following messages are displayed:

IO#3 LSTEN *address*

LSTEN ABORTED

The LSTEN module provides two options: (1) initialize the communication links for the entire system, (2) reinitialize the communication links between the central computer and a single terminal. The first option is used for system start-up. The second option is used to reestablish terminal/central communication any time a terminal program destroys the communication link.

Option 1 requires that the logical unit numbers for all terminals in the communication network be provided. It also requires the input of the maximum number of files concurrently open to all terminals.

Option 2, to reinitialize the communication link between a single terminal and central requires the logical unit number of the terminal.

To initialize system communication links, the following sequence is performed at the central CRT:

OPTION

 1 Standard option to initialize communication links for the system.

 2 Reinitialize communication link for a single terminal. If an incorrect option is specified, the following messages are displayed:

INCORRECT INPUT PARAMETERS
OPTION?

OPTION 1

If the system has not been re-booted since the last time this option was used, the following error message is displayed:

**RE-BOOT REQUIRED FOR THIS OPTION
IS INITIALIZATION INFO ON PAPER TAPE?**

A syntax error in the response causes the question to be re-asked.

YES Read paper tape.

If YES and no tape:

I/O ERR TO EQT *xx*

Where *xx* is the LU number of the paper tape reader.

IO02 LSTEN *address*

LSTEN ABORTED

NO Continue to next statement

If the initialization information is not on paper tape, the following information must be supplied:

ENTER ALL TERMINAL LOGICAL UNIT #'s

Enter the logical unit numbers of all terminals to be initialized for communication. The numbers must be entered in one line, separated by commas and without intervening

CR / **LF** .

If incorrect parameters are entered, the question is re-asked.

If undefined logical unit numbers are input, an IO03 error results and LSTEN aborts.

ENTER MAXIMUM # OF TERMINAL OPEN FILES

Legal values are between 1 and 256.

If zero or a negative value is entered, the question is re-asked.

If a value greater than 256 is input, the following error message is displayed and the question is repeated.

INCORRECT INPUT PARAMETER

If there is not enough room on the disc for the overflow file, the following error message is displayed and LSTEN aborts.

DISC FULL

INITIALIZATION PAPER TAPE DESIRED?**YES**

Produces a paper tape containing logical unit numbers and maximum numbers of open files, which are entered instead of CRT inputs for a rerun of LSTEN. If the punch is off when this answer is entered, I/O ERROR ON EQT *xx* is displayed.

Where *xx* is the LU of the punch.

NO

Continue to next statement.

A syntax error in the response causes the question to be re-asked.

9701 HAS BEEN INITIALIZED AND IS OPERATING

The initialization process is complete and the communication link enabled.

To reinitialize a terminal communication link, the following sequence is performed at the central system console:

OPTION 2

Reinitialize communications link for a single terminal.

TERMINAL LOGICAL UNIT # TO CLEAR?

If the logical unit numbers input is undefined, the following messages are displayed:

IO#3 LSTEN *address*

LSTEN ABORTED

If the logical unit number is incorrect, but system defined, the following message is displayed:

INCORRECT INPUT PARAMETER

The operator must re-enter the parameter with the correct number.

TERMINAL CLEARED AND LSTEN MODE ENABLED

The reinitialization process is complete.

TERMINAL INITIALIZATION

The terminals are initialized as described in the first three parts of this section.

RTGEN SAMPLES

The RTGEN examples which follow are included to show how the 91701 software modules are configured into the Real-Time Executive System. The examples consist of two parts: (1) Configuration worksheets for RTGEN planning, and (2) the RTE generator output listing.

A complete description of the Real-Time Executive Generation process is contained in the **Real-Time Executive System Manual**.

The first example is for a 24K RTE central computer with moving head disc, having the following system configuration: 1 disc platter, 1 magnetic tape, 6 terminal computers (remote CPUs), 1 local CRT, 1 line printer (the HP 2767A Line Printer is driven by DVR00 as if it were an HP 2605A), 1 paper tape punch, 1 photo reader, and 1 system teletype. This example also provides 10 extra ID segments for user programs. The core allocation map for this example is provided in Appendix B.

The configuration worksheets shown here are described in Part 1 of Section VI of the **Real-Time Executive System Manual**.

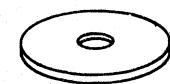
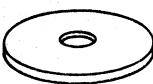
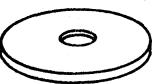
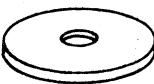
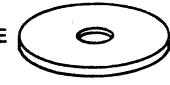
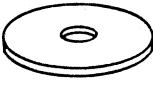
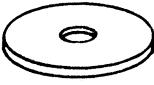







MOVING HEAD DRIVE SUBCHANNEL 0 FIXED NO. OF TRACKS AVAILABLE, NO0 <u>0</u> FIRST TRACK, FT0 <u>0</u>	MOVING HEAD DRIVE SUBCHANNEL 2 NO. OF TRACKS AVAILABLE, NO2 <u>0</u> FIRST TRACK, FT2 <u>0</u>	MOVING HEAD DRIVE SUBCHANNEL 4 NO. OF TRACKS AVAILABLE, NO4 <u>0</u> FIRST TRACK, FT4 <u>0</u>	MOVING HEAD DRIVE SUBCHANNEL 6 NO. OF TRACKS AVAILABLE, NO6 <u>0</u> FIRST TRACK, FT6 <u>0</u>
SUBCHANNEL 1 REMOVABLE NO. OF TRACKS AVAILABLE, NO1 <u>200</u> FIRST TRACK, FT1 <u>0</u>	SUBCHANNEL 3 NO. OF TRACKS AVAILABLE, NO3 <u>0</u> FIRST TRACK, FT3 <u>0</u>	SUBCHANNEL 5 NO. OF TRACKS AVAILABLE, NO5 <u>0</u> FIRST TRACK, FT5 <u>0</u>	SUBCHANNEL 7 NO. OF TRACKS AVAILABLE, NO7 <u>0</u> FIRST TRACK, FT7 <u>0</u>
SYSTEM SUBCHANNEL NUMBER <u>Ø</u>		SCRATCH SUBCHANNEL NUMBER <u>Ø</u>	
AUXILIARY SUBCHANNEL NUMBER <u>NONE</u>		START SCRATCH (I.E., 1ST TRACK = 0) <u>Ø</u>	

Figure 6-2. Moving Head Disc

INPUT/OUTPUT CONFIGURATION WORKSHEET

RTGEN NUMBER 24K

RECORDED BY _____ DATE _____

Figure 6-3. Input/Output Configuration Worksheet for 24K RTE Central

MH. DISC CHNL?	LWA MEM?
<u>2</u> <u>3</u>	<u>57677</u>
# TRKS, FIRST TRK ON SUBCHNL.	PRGM INPT?
<u>0</u>	<u>PT</u>
<u>0</u>	LIBR INPT?
<u>200</u>	<u>MT</u>
<u>1?</u>	PRAM INPT?
<u>0</u>	<u>TY</u>
<u>2?</u>	
<u>3?</u>	
<u>4?</u>	INITIALIZE SUBCHNL.n
<u>5?</u>	(0?)
<u>6?</u>	<u>(1?)</u>
<u>7?</u>	<u>(2?)</u>
<u>8?</u>	<u>(3?)</u>
SYSTEM SUBCHNL?	<u>(4?)</u>
<u>1</u>	<u>(5?)</u>
AUX DISC (YES OR NO)?	<u>(6?)</u>
<u>NO</u>	<u>(7?)</u>
AUX DISC SUBCHNL?	PUNCH BOOT?
	YES
SCRATCH SUBCHNL?	YES
<u>0</u>	
START SCRATCH?	NO
<u>0</u>	
# 128 WORD SECTORS/TRACK?	
<u>48</u>	
TBG CHNL?	
<u>12</u>	
PRIV. INT. CARD ADDR.	
<u>0</u>	
SWAPPING?	
<u>YES</u>	

Figure 6-4. Initialization Phase – MH

NAME, TYPE [, PRIORITY] [, EXECUTION INTERVAL]

<u>D.RIR</u>	,	<u>1</u>	,	<u>1</u>	,
<u>QUEUE</u>	,	<u>1</u>	,	<u>20</u>	,
<u>DISC</u>	,	<u>2</u>	,	<u>30</u>	,
<u>LSTEN</u>	,	<u>3</u>	,	<u>90</u>	,
<u>QUQLS</u>	,	<u>6</u>	,		,
<u>DISP</u>	,	<u>2</u>	,	<u>10</u>	,
<u>TAM</u>	,	<u>2</u>	,	<u>30</u>	,
<u>ERR</u>	,	<u>2</u>	,	<u>30</u>	,
<u>BEAM</u>	,	<u>2</u>	,	<u>30</u>	,
<u>PROGL</u>	,	<u>2</u>	,	<u>35</u>	²⁹
<u>DLIST</u>	,	<u>2</u>	,	<u>35</u>	
<u>FMGR</u>	,	<u>3</u>	,	<u>90</u>	
<u>ASMB</u>	,	<u>3</u>	,	<u>95</u>	
<u>ALGOL</u>	,	<u>3</u>	,	<u>95</u>	
<u>FTN4</u>	,	<u>3</u>	,	<u>95</u>	
<u>EDIT</u>	,	<u>3</u>	,	<u>96</u>	
<u>LOADR</u>	,	<u>3</u>	,	<u>93</u>	
<u>SXL</u>	,	<u>3</u>	,	<u>92</u>	

/E

Figure 6-5. Parameter Input Phase

* INTERRUPT TABLE

<u>10</u>	,	<u>ABS</u>	,	<u>106710</u>
<u>11</u>	,	<u>ABS</u>	,	<u>106711</u>
<u>13</u>	,	<u>EQT</u>	,	<u>1</u>
<u>14</u>	,	<u>ABS</u>	,	<u>106714</u>
<u>15</u>	,	<u>EQT</u>	,	<u>12</u>
<u>16</u>	,	<u>EQT</u>	,	<u>13</u>
<u>17</u>	,	<u>EQT</u>	,	<u>4</u>
<u>20</u>	,	<u>EQT</u>	,	<u>5</u>
<u>21</u>	,	<u>EQT</u>	,	<u>6</u>
<u>22</u>	,	<u>EQT</u>	,	<u>6</u>
<u>23</u>	,	<u>EQT</u>	,	<u>7</u>
<u>24</u>	,	<u>CQT</u>	,	<u>7</u>
<u>25</u>	,	<u>PRG</u>	,	<u>QUEUE</u>
<u>26</u>	,	<u>PRG</u>	,	<u>QUEUE</u>
<u>27</u>	,	<u>PRG</u>	,	<u>QUEUE</u>
<u>30</u>	,	<u>PRG</u>	,	<u>QUEUE</u>
<u>31</u>	,	<u>PRG</u>	,	<u>QUEUE</u>
<u>32</u>	,	<u>PRG</u>	,	<u>QUEUE</u>

* EQUIPMENT TABLE ENTRY

(1)	<u>13</u>	,	<u>DVR00</u>	,	<u>B</u>	,	<u>T</u>	,	<u></u>	<u>T = 9999</u>
(2)	<u>15</u>	,	<u>DVR00</u>	,	<u>B</u>	,	<u>T</u>	,	<u></u>	<u>T = 9999</u>
(3)	<u>16</u>	,	<u>DVR01</u>	,	<u>T</u>	,	<u></u>	,	<u></u>	<u>T = 9999</u>
(4)	<u>17</u>	,	<u>DVR02</u>	,	<u>B</u>	,	<u>T</u>	,	<u></u>	<u>T = 9999</u>
(5)	<u>20</u>	,	<u>DVR00</u>	,	<u>B</u>	,	<u>T</u>	,	<u></u>	<u>T = 100</u>
(6)	<u>21</u>	,	<u>DVR31</u>	,	<u>D</u>	,	<u>T</u>	,	<u></u>	<u>T = 9999</u>
(7)	<u>23</u>	,	<u>DVR23</u>	,	<u>D</u>	,	<u>T</u>	,	<u></u>	<u>T = 9999</u>
(8)	<u>25</u>	,	<u>DVR65</u>	,	<u>D</u>	,	<u></u>	,	<u></u>	<u>T =</u>
(9)	<u>26</u>	,	<u>DVR65</u>	,	<u>D</u>	,	<u></u>	,	<u></u>	<u>T =</u>
(10)	<u>27</u>	,	<u>DVR65</u>	,	<u>D</u>	,	<u></u>	,	<u></u>	<u>T =</u>
(11)	<u>30</u>	,	<u>DVR65</u>	,	<u>D</u>	,	<u></u>	,	<u></u>	<u>T =</u>
(12)	<u>31</u>	,	<u>DVR65</u>	,	<u>D</u>	,	<u></u>	,	<u></u>	<u>T =</u>
(13)	<u>32</u>	,	<u>DVR65</u>	,	<u>D</u>	,	<u></u>	,	<u></u>	<u>T =</u>
(14)	<u>12</u>	,	<u>DVR70</u>	,	<u></u>	,	<u></u>	,	<u></u>	<u>T =</u>

Figure 6-6. Disc Loading Phase

*DEVICE REFERENCE TABLE

1 = EQT #? (SYSTEM TELEPRINTER)

1 , _____

2 = EQT #? (SYSTEM MASS STORAGE)

6 , _____

3 = EQT #? (AUXILIARY MASS STORAGE)

0 , 0 _____

4 = EQT #? (STANDARD PUNCH UNIT)

4 , _____

5 = EQT #? (STANDARD INPUT UNIT)

3 , _____

6 = EQT #? (STANDARD LIST UNIT)

5 , _____

7 = EQT #?

7 , _____

8 = EQT #?

2 , _____

9 = EQT #?

8 , _____

10 = EQT #?

9 , _____

11 = EQT #?

10 , _____

12 = EQT #?

11 , _____

13 = EQT #?

12 , _____

14 = EQT #?

13 , _____

15 = EQT #?

14 , _____

16 = EQT #?

0 , _____

17 = EQT #?

0 , _____

18 = EQT #?

0 , _____

Figure 6-6. Disc Loading Phase (Continued)

INITIALIZATION PHASE

MH DISC CHNL?
21

RTGEN requests the higher priority select code (octal) of the system disc controller.

* TRKS, FIRST TRK ON SUBCHNL? Starting track and number of tracks (decimal) of each sub-channel assigned within this system.
07
0
1?
200,0
2?
/E

START SCRATCH?
0

Relative track number upon which to start disc scratch area.

* 128 WORD SECTORS/TRACK?
48

Number of 128-word sectors (decimal) per logical track

TBG CHNL?
12

Select code for the time base generator (octal).

PRIV. INT. CARD ADR?
0

Address of the privileged interrupt I/O card, if present.

SWAPPING?
YES

Real-time disc resident programs can swap in and out of core according to priority .

LWA MEM?
57677

The last word of available core memory in octal (77677₈ for a 32K computer).

PRGM INPT?
PT

Input unit for relocatable program modules (PT — paper tape, TY — teleprinter, MT — magnetic tape, or DF — disc file).

LIBR INPT?
MT

Input unit for relocatable library programs (same choices as above).

PRAM INPT?
TY

Input unit for parameters describing relocatable programs (PT or TY).

There is a pause here while RTE initializes the system disc.

PUNCH BOOT?
YES

PUNCH BOOT?
YES

PUNCH BOOT?
NO

ERR 08
FUSS
ERR 05
SMBL
*EOT

Paper Tape bootstrap punch option. The first time the tape bootstrap is indicated, the answer should be Yes. One copy of the bootstrap tape is loaded and run from 100₈ to bring the finished system up.

This output results when the RTE Module EXEC is replaced by the 91701 Module EXEC. These errors have no operational effects.

PROGRAM INPUT PHASE

A halt 77 occurs here.

The switch register is set = 2 (for paper tape library input) and the 9701 programs are loaded as follows:

- A. Put LSTEN in paper tape reader, press RUN
- B. Put QUDIS in paper tape reader, press RUN
- C. Put QUEUE in paper tape reader, press RUN
- D. Put DISP in paper tape reader, press RUN
- E. Put ERR in paper tape reader, press RUN
- F. Put TAM in paper tape reader, press RUN
- G. Put RFAM in paper tape reader, press RUN
- H. Put DISC in paper tape reader, press RUN

An EOT (end of tape) is output after each program is loaded.

The system library is mounted and the switch register cleared if on magnetic tape or set equal to 2 for paper tape. When run is pressed, the library is loaded. This operation takes some time and is followed by the EOT message.

After the EOT, the switch register is set to 1, and RUN is pressed. This causes RTGEN to print all undefined externals.

NO UNDEF EXTS

No undefined externals indicates that all is OK. Press RUN to continue.

PARAMETER INPUT PHASE

PARAMETERS

D,RTR,1,1
 QUEUE,1,20
 DISC,2,30
 LSTEN,3,90
 QUDIS,6
 DISP,2,10
 TAM,2,30
 ERR,2,30
 RFAM,2,30
 PROGL,2,35
 DLIST,2,35
 FMGR,3,90
 ASMB,3,95
 ALGOL,3,95
 FTN4,3,95
 EDIT,3,96
 LOADR,3,93
 SXL,3,92
 /E

Operator modifies type, priority, or execution intervals of any programs entered during program input phase (except background main types).

Each parameter record is of the general form:

name, type [,priority] [,execution interval]

OF BLANK ID SEGMENTS?
 10

Number of blank ID segments to be allocated for on-line loading of programs by the relocating loader.

DISC LOADING PHASE

FWA BP LINKAGE?
 33

First word of available core memory in base page (first available octal select code number after last I/O card).

SYSTEM

EXEC (00)	02000
SCHED(00)	03570
RTIOC(00)	10762
DVR00(00)	14043
DVR23(00)	15207
DVR31(00)	16012
DVR65(00)	17203
LT,65	21075
DVR70(00)	21076

RTGEN OUTPUT of memory map beginning with the modules of the Real-Time Executive.

F4D,B(00) 21102

F2E,D(00) 21102

BP LINKAGE 00513

* EQUIPMENT TABLE ENTRY

RTGEN begins generating the equipment table from user information.

13,DVR00,B,T

T *

9999

TTY driver

15,DVR00,B,T

T *

9999

TTY driver

16,DVR01,T

T *

9999

Photo reader

17,DVR02,B,T

T *

9999

Paper tape punch

20,DVR00,B,T

T *

100

TTY driver

21,DVR31,D,T

T *

9999

Moving head disc driver

23,DVR23,D,T

T *

9999

Magnetic tape driver

25,DVR65,D

26,DVR65,D

27,DVR65,D

30,DVR65,D

31,DVR65,D

32,DVR65,D

12,DVR70

Communications serial interface driver (one for each I/O Board)

Dummy driver

/E

*** DEVICE REFERENCE TABLE**

1 * EQT #?

1

2 * EQT #?

6,1

3 * EQT #?

0,0

4 * EQT #?

4

5 * EQT #?

3

6 * EQT #?

5

7 * EQT #?

7

8 * EQT #?

2

9 * EQT #?

8

10 * EQT #?

9

11 * EQT #?

10

12 * EQT #?

11

13 * EQT #?

12

14 * EQT #?

13

15 * EQT #?

14

16 * EQT #?

0

17 * EQT #?

0

Logical Unit numbers 1 through 6 are predefined in the RTE
System as:

- 1 - System teleprinter
- 2 - System mass storage
- 3 - Auxiliary mass storage
- 4 - Standard punch unit
- 5 - Standard input unit
- 6 - Standard list unit

*** INTERRUPT TABLE****10,ABS,106710****11,ABS,106711****13,EQT,1****14,ABS,106714****15,EQT,12****16,EQT,13****17,EQT,4****20,EQT,5****21,EQT,6****22,EQT,6****23,EQT,7****24,EQT,7****25,PRG,QUEUE****26,PRG,QUEUE****27,PRG,QUEUE****30,PRG,QUEUE****31,PRG,QUEUE****32,PRG,QUEUE****/E**

Interrupt table generation requires an entry for each I/O card in ascending order.

Interrupt table complete.

LIBRARY

WUDIS	26373
,ENTR	27075
PRTN	27165

RTGEN outputs the names and entry point addresses of all library routines which are referenced by Real-Time and background programs.

BP LINKAGE 00525

New first word of available core memory in base page.

RT RESIDENTS

RTGEN begins loading the Real-Time disc-resident programs.

QUEUE(20) 27270

D.RTR(01) 30111
 P.PAS 32003

BP LINKAGE 00543

RT DISC RESIDENTS

RTGEN begins loading the Real-Time disc-resident programs.

DISP (10) 32032

TAM (30) 32032

RFAM (30) 32032
 R/WS 37743
 RMPAR 40022
 GETAD 40045

DISC (30) 32032
 RMPAR 33721
 NAMF 33744
 FCNT 34116
 LOCP 34210
 APOSN 34370
 CREAT 34507
 PURGE 34766
 OPEN 35065
 READF 35250
 POSNT 36035
 RWNDF 36272
 CLOSE 36354
 PSTAT 36463
 GETAD 36510
 NAM.. 36526
 P.PAS 36623
 RWSUB 36652
 SOPEN 37120
 R/WS 37275
 RWNDS 37354

ERR (30) 32032
 RMPAR 32153
 GETAD 32176

PROGL(35) 32032
 .EAU. 33175
 CLRIO 33245
 IAND 33250
 RMPAR 33260
 OPEN 33303
 READF 33466
 DLK65 34253
 CLOSE 34325
 GETAD 34434

SOPEN	34452	
R/WS	34627	
P,PAS	34706	
RWSUB	34735	
RWNDS	35203	
DLIST(35)	32032	
FSTAT	33312	
BP LINKAGE	00647	Report of new first word of available core memory in base page.
CHANGE BP LINKAGE?		Linkage area is changed for future addition of larger Real-Time disc-resident programs on-line.
1100		
FWA SY MEM	40063	First word address of system available memory.
CHANGE FWA SYS AV MEM?		An address change would increase the Real-Time disc-resident area for future addition of larger programs.
0		
BG BOUNDARY?		First address of the background area (area from 47000 ₈ to 50000 ₈ is used for temporary storage of output buffers, and reentrant temporaries).
42000		
BG RESIDENTS		
(NONE)		
BG DISC RESIDENTS		Begin load of background disc-resident programs, with names and entry points for mains and subroutines.
ASMB (95)	42000	
ASMBD(99)	46643	
ASMB1(99)	46643	
ASMB2(99)	46643	
ASMB3(99)	46643	
ASMB4(99)	46643	
ASMB5(99)	46643	
ALGOL(95)	42000	
EAU,	54312	
XWRIT	54362	
SREAD	55063	
.OPSY	55621	
ALGL1(99)	55661	
FTN4 (95)	42000	

FTN40(99)	50311
FTN41(99)	50311
FTN42(99)	50311
FTN43(99)	50311
FTN44(99)	50311
FTN45(99)	50311
FTN46(99)	50311
FTN47(99)	50311
FTN48(99)	50311
FTN49(99)	50311
FTN4A(99)	50311
FTN4B(99)	50311
FTN4C(99)	50311
FTN4D(99)	50311
FTN4E(99)	50311
FTN4F(99)	50311
FTN4G(99)	50311
FTN4H(99)	50311
ECIT (96)	42000
SREAD	44411
XWRIS	45147
.OPSY	45437
LOADR(93)	42000
SXL (92)	42000
SGMTH	42047
SPROC	42134
LDUMM	42325
DBUGS	43367
.EAU.	44505
SPTRU	44555
DTSTR	45434

PRFOP	45577
FUSS	46251
JSBES	46317
ULIBR	46324
ALLOC	46372
PUT4	46560
DIAG	46630
PAGER	46654
.DRCT	47737
SG01L(99)	47746
SCNSM	50056
SCNPT	50761
LCRST	51160
SCNMN	51633
FUST	52024
FU5V	52057
NXSY	52123
SNAM	52210
MAT1	52437
MAXR	52600
PARSE	52652
SCGRM	53125
SG02L(99)	47746
SNPST	50056
LDUM2	50255
SNTX	50461
UGRMR	50737
FKDCB	51727
FUST	52011
FU5V	52044
FSEMU	52110
PARSE	52245
FU9	52520
SG03L(99)	47746
ENDR	50056
SWTCH	51047
BLNK	51110
MOVE,	51126
POSN,	51145
RVERF	51212
OCTAQ	51456
MAXR	51546
PDLG	51620
REDGL	52015
.LOCF	52153
READF	52177
R/WS	52764
.XEC	53043
RDOSK	53113

P,PAS	53241
RWSUB	53270
RWNDS	53536

SG04L(99)	47746
ENDR2	50056
.XEC	50476
MSTBL	50546
PRENT	50650
CFXUP	51012
BLOK	51413
CCON	51547
STFM	51572
SNAM	51617
FUST	52046
FUSV	52101
FUSA	52145
BLNK	52210
OCTAQ	52226
MAXR	52316
PBPLK	52370
ABOUT	52444
NXSY	52545
STMA	52632
READF	53022
R/WS	53607
P,PAS	53666
RWSUB	53715
RWNDS	54163

SG05L(99)	47746
LDUM4	50056
RELST	50346
TERMF	50642
FUSV	51670
MSTBL	51734
TRBAK	52036
BLNK	52201
OCTAQ	52217
CLOSE	52307
NXSY	52416
FUST	52503
OPEN	52536
APOSN	52721
FKDCB	53040
MOVE,	53122
R/WS	53141
RMPAR	53220
SOPEN	53243
RWSUB	53420
LOCF	53666
GETAD	54046

RWNDS	54064
P,PAS	54174
 SG06L(99)	47746
DGLST	50056
FUSV	51515
NXSY	51561
CCON	51646
MSTBL	51671
.XEC	51773
,GOTO	52043
UNSTR	52066
OCTAQ	52170
WACTB	52260
MOVE,	52434
LOCF	52453
CLOSE	52633
FKDCB	52742
UIVD	53024
P,PAS	53042
R/WB	53071
 SG07L(99)	47746
LDUM4	50056
XFRST	50346
FUSV	50613
MSTBL	50657
FUST	50761
TRBAK	51014
OPEN	51157
ILOSE	51342
LOCF	51365
FKDCB	51545
MOVE,	51627
BLNK	51646
APDSN	51664
CLOSE	52003
RMPAR	52112
SOPEN	52135
P,PAS	52312
RWSUB	52341
R/WB	52607
GETAD	52666
RWNDS	52764
 SG08L(99)	47746
DSPST	50056
DSUDF	50436
OCTAQ	50652
MSTBL	50742
BLNK	51044
FUSV	51062

FUST	51126
NXSY	51161
CFXUP	51246
UNSTR	51647
CCON	51751
MAXR	51774
PBPLK	52046
ABOUT	52122
READF	52223
R/WS	53010
P,PAS	53067
RWSUB	53116
RWNDS	53364

SG09L (99)	47746
SETSM	50056
FUST	50600
FUSV	50633
STMA	50677
ABOUT	51067
PRENT	51170
CFXUP	51332
BLNK	51733
READF	51751
MAXR	52536
MSTBL	52610
OCTAG	52712
PBPLK	53002
R/WS	53056
P,PAS	53135
RWSUB	53164
RWNDS	53432

SG10L (99)	47746
UTPT	50056
READF	51632
OPEN	52417
CLOSE	52602
MSTBL	52711
ABOUT	53013
MOVE,	53114
BLNK	53133
FUSV	53151
R/WS	53215
P,PAS	53274
RWSUB	53323
RMPAR	53571
SOPEN	53614
MAXR	53771
RWNDS	54043
GETAD	54153

SG11L (99)	47746
NAMR	50056
SCOMM	50635
.LOCF	50736
FU5V	50762
GNNS	51026
MAXR	51077
STMA	51151
SWTCH	51341
RVERF	51402
MOVE,	51646
GET4	51665
POLG	51721
REDGL	52116
POSN,	52254
READF	52321
.XEC	53106
RDDSK	53156
R/WS	53304
P,PAS	53363
RWSUB	53412
RWNDS	53660

SG12L (99)	47746
L001	50056
SKIPR	50355
FUST	50544
STPM	50577
GNNS	50624
STMA	50675
MAT1	51065
RVERF	51226
SWTCH	51472
MOVE,	51533
NXSY	51552
GET4	51637
.XEC	51673
POLG	51743
REDGL	52140
POSN,	52276
.LOCF	52343
READF	52367
RDDSK	53154
R/WS	53302
P,PAS	53361
RWSUB	53410
RWNDS	53656

SG13L (99)	47746
OTPST	50056
LDM12	50416
FUST	50671
FU5V	50724

FKDCB	50770
CREAT	51052
MSTBL	51331
OPEN	51433
BLNK	51616
CLOSE	51634
SOPEN	51743
NAM..	52120
RMPAR	52215
R/WS	52240
RWNDS	52317
GETAD	52427
RWSUB	52445
P,PAS	52713
SG14L(99)	47746
INIT2	50056
AEND	50137
CRDBO	50372
DSUDF	50541
MSTBL	50755
CREAT	51057
.XEC	51336
MOVE..	51406
CPXUP	51425
UNSTR	52026
BLNK	52130
CCON	52146
CLOSE	52171
SOPEN	52300
NAM..	52455
RMPAR	52552
MAXR	52575
PBPLK	52647
ABOUT	52723
R/WS	53024
RWNDS	53103
GETAD	53213
READF	53231
RWSUB	54016
P,PAS	54264
SG15L(99)	47746
CLOP	50056
PKUDF	50073
CLOSE	50157
R/WS	50266
SG16L(99)	47746
UBL	50056
ABOUT	51061
SWTCH	51162

RVERF	51223
FUSV	51467
MAXR	51533
LLINK	51605
READF	52215
POLG	53002
REDGL	53177
POSN.	53335
.LOCF	53402
.XEC	53426
PBPLK	53476
R/WS	53552
P,PAS	53631
RWSUB	53660
RODSK	54126
RWNDS	54254
SG17L(99)	47746
RDCRD	50056
READF	50304
TRBAK	51071
R/WS	51234
P,PAS	51313
RWSUB	51342
OPEN	51610
AP0SN	51773
FKDCB	52112
MOVE,	52174
RWNDS	52213
CLOSE	52323
RMPAR	52432
SOPEN	52455
LOCF	52632
GETAD	53012
SG18L(99)	47746
CRTOP	50056
FUSV	50201
BLNK	50245
MSTBL	50263
CREAT	50365
CLOSE	50644
SOPEN	50753
NAM..	51130
RMPAR	51225
R/WS	51250
RWNDS	51327
GETAD	51437
RWSUB	51455
P,PAS	51723
SG19L(99)	47746
SNPOP	50056

CCON	51367
NXSY	51412
FUSV	51477
FUST	51543
UNSTR	51576
READF	51700
MSTBL	52465
OCTAQ	52567
ABOUT	52657
BLNK	52760
R/WS	52776
P,PAS	53055
RWSUB	53104
MAXR	53352
RWND\$	53424

SG20L(99)	47746
LNKST	50056
MAPST	50137
SGINT	50501
FUSV	50671
DINIT	50735
INIT1	51213
.XEC	51417
MAXR	51467
MOVE,	51541
SYM	51560
MEMR	52361
OPEN	52422
FKDCB	52605
CLOSE	52667
RMPAR	52776
SOPEN	53021
R/WS	53176
GETAD	53255
RWND\$	53273
RWSUB	53403
P,PAS	53651

SG21L(99)	47746
OPLG	50056
SNAM	50637
FUST	51066
FUSV	51121
FUSA	51165
CFXUP	51230
PRENT	51631
MAT2	51773
CCON	52115
BLNK	52140
MSTBL	52156
MAXR	52260

PBPLK	52332
ABOUT	52406
OCTAQ	52507
READF	52577
R/W\$	53364
P,PAS	53443
RWSUB	53472
RWNDS	53740

FMGR (90)	42000
FM,CM	42643
.EAU,	44451
.DRCT	44521
READF	44530
CLOSE	45315
OPEN	45424
R/W\$	45607
P,PAS	45666
RWSUB	45715
RMPAR	46163
SOPEN	46206
RWNDS	46363
GETAD	46473

FMGR0(99)	46511
PK..	46517
CR..	50145
CN..	51251
FM,UT	51313
LOCK,	52436
RWNDF	52506
ID,A	52570
CREA,	52710
NAM..	52762
NAMF	53057
CREAT	53231

FMGR1(99)	46511
.PARS	46537
REA,C	47453
C,TAB	47536
EE..	47617
TR..	47654
SA..	50045
MR..	51007
CREA,	51146
LOCK	51220
READ,	51400
RWNDF	51425
CK,SM	51507

WRLG	51623
CREAT	51641
SREAD	52120
XWRIT	52656
NAM..	53357
,OPSY	53454
FMGR2(99)	46511
IN,IT	46520
IN..	47372
MC..	51210
RC..	51520
FM,UT	51707
INPUT	53032
FIU..	53053
NAM..	53173
J,PUT	53270
LOCK..	53315
MSC..	53365
FMGR3(99)	46511
LI..	46517
DL..	50230
PU..	51453
FM,UT	51676
LOCKF	53021
MSC..	53201
LOCK..	53236
PURGE	53306
FMGR4(99)	46511
ST,DU	46520
CO..	47724
SP..	50431
CREA..	51206
LOCKF	51260
CK,SM	51440
FM,UT	51554
CREAT	52677
RWNDF	53156
ID,A	53240
NAM..	53360
FMGR5(99)	46511
??..	46523
MS..	50564
RP..	51063
CL..	51705
F,UTM	52167
WRISS	52337
INPUT	52376
ID,A	52417

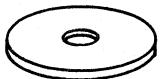
LOCF	52537
FSTAT	52717
ZWRIS	52744

LSTEN(90)	42000
CREAT	44534
CLOSE	45013
RMPAR	45122
PURGE	45145
SOPEN	45244
NAM..	45421
R/WS	45516
GETAD	45575
OPEN	45613
RWNDS	45776
RWSUB	46106
P.PAS	46354

BP LINKAGE 01557

SYSTEM STORED ON DISC
SYS SIZE: 26 TRKS, 029 SECS(10)




The second RTGEN sample is for a 32K RTE central computer with moving head disc. The system configuration for this example is: 8 disc platters, 2 magnetic tapes, 8 remote CPUs (terminal computers), 1 local CRT, 1 line printer (the HP 2767A is driven by DVR00 as if it were an HP 2605A), 1 paper tape punch, 1 photo

reader, and 1 system teletype.

The core allocation map for this example is shown in Appendix B. The configuration worksheets which follow are in the same order as the RTGEN Planning discussion in the **Real-Time Executive Software System Manual**.

INPUT/OUTPUT CONFIGURATION WORKSHEET

Figure 6-7. Input/Output Configuration Worksheet for 32K RTE Central

MOVING HEAD DRIVE	MOVING HEAD DRIVE	MOVING HEAD DRIVE	MOVING HEAD DRIVE
SUBCHANNEL 0	SUBCHANNEL 2	SUBCHANNEL 4	SUBCHANNEL 6
FIXED			
NO. OF TRACKS AVAILABLE, NO0 <u>0</u> FIRST TRACK, FT0 <u>0</u>	NO. OF TRACKS AVAILABLE, NO2 <u>200</u> FIRST TRACK, FT2 <u>0</u>	NO. OF TRACKS AVAILABLE, NO4 <u>200</u> FIRST TRACK, FT4 <u>0</u>	NO. OF TRACKS AVAILABLE, NO6 <u>200</u> FIRST TRACK, FT6 <u>0</u>
SUBCHANNEL 1	SUBCHANNEL 3	SUBCHANNEL 5	SUBCHANNEL 7
REMOVABLE			
NO. OF TRACKS AVAILABLE, NO1 <u>200</u> FIRST TRACK, FT1 <u>0</u>	NO. OF TRACKS AVAILABLE, NO3 <u>200</u> FIRST TRACK, FT3 <u>0</u>	NO. OF TRACKS AVAILABLE, NO5 <u>200</u> FIRST TRACK, FT5 <u>0</u>	NO. OF TRACKS AVAILABLE, NO7 <u>200</u> FIRST TRACK, FT7 <u>0</u>

SYSTEM SUBCHANNEL NUMBER 0 SCRATCH SUBCHANNEL NUMBER 0
 AUXILIARY SUBCHANNEL NUMBER NONE START SCRATCH (I.E., 1ST TRACK = 0) 0

Figure 6-8. Moving Head Disc

MH. DISC CHNL?	LWA MEM?
<u>21</u>	<u>77677</u>
# TRKS, FIRST TRK ON SUBCHNL.	PRGM INPT?
<u>0?</u>	<u>PT</u>
<u>φ</u> <u>0</u>	LIBR INPT?
<u>200</u> <u>1?</u>	<u>MT</u>
<u>200</u> <u>0</u>	PRAM INPT?
<u>200</u> <u>2?</u>	<u>TY</u>
<u>200</u> <u>0</u>	
<u>200</u> <u>3?</u>	INITIALIZE SUBCHNL.n
<u>200</u> <u>0</u>	(0?)
<u>200</u> <u>4?</u>	<u>(1?)</u>
<u>200</u> <u>0</u>	<u>(2?)</u>
<u>200</u> <u>5?</u>	<u>NO</u>
<u>200</u> <u>0</u>	<u>(3?)</u>
<u>200</u> <u>6?</u>	<u>NO</u>
<u>200</u> <u>0</u>	<u>(4?)</u>
<u>200</u> <u>7?</u>	<u>NO</u>
<u>200</u> <u>0</u>	<u>(5?)</u>
SYSTEM SUBCHNL?	<u>NO</u>
<u>1</u>	<u>(6?)</u>
AUX DISC (YES OR NO)?	<u>NO</u>
<u>NO</u>	<u>(7?)</u>
AUX DISC SUBCHNL?	<u>NO</u>
SCRATCH SUBCHNL?	PUNCH BOOT?
<u>1</u>	YES
START SCRATCH?	YES
<u>0</u>	
# 128 WORD SECTORS/TRACK?	NO
<u>48</u>	
TBG CHNL?	
<u>12</u>	
PRIV. INT. CARD ADDR.	
<u>0</u>	
SWAPPING?	
<u>YES</u>	

Figure 6-9. 32K Initialization Phase – MH

NAME, TYPE [,PRIORITY][,EXECUTION INTERVAL]

<u>DRTR</u>	<u>1</u>	<u>1</u>									
<u>QUEUE</u>	<u>1</u>	<u>20</u>									
<u>QUEUE</u>	<u>6</u>										
<u>DISP</u>	<u>1</u>	<u>10</u>									
<u>JAM</u>	<u>1</u>	<u>30</u>									
<u>RFAM</u>	<u>2</u>	<u>30</u>									
<u>DISC</u>	<u>2</u>	<u>30</u>									
<u>ERR</u>	<u>1</u>	<u>30</u>									
<u>LISTEN</u>	<u>3</u>	<u>80</u>									
<u>PROGL</u>	<u>3</u>	<u>29</u>									
<u>DLIST</u>	<u>3</u>	<u>31</u>									

/E

OF BLANK ID SEGMENTS?

40

FWA BP LINKAGE

35

Figure 6-10. 32K Parameter Input Phase

* INTERRUPT TABLE

13 , EQT , 2
15 , EQT , 4
16 , EQT , 5
17 , EQT , 6
20 , EQT , 7
21 , EQT , 1
22 , EQT , 1
23 , EQT , 8
24 , EQT , 8
25 , PRG , QUEUE
26 , PRG , QUEUE
27 , PRG , QUEUE
30 , PRG , QUEUE
31 , PRG , QUEUE
32 , PRG , QUEUE
33 , PRG , QUEUE
34 , PRG , QUEUE

/E

BP LINKAGE
CHANGE BP LINKAGE?

X = 1100
FWA SY MEM

CHANGE FWA AV MEM?

Y = 45000
BG BOUNDARY?

Z = 47000
SYSTEM STORED ON DISC
TRACK SECTOR (10)

* EQUIPMENT TABLE ENTRY

(1) 21 , DVR31 , D , T , T = 9999
(2) 13 , DVR00 , B , T , T = 9999
(3) 15 , DVR00 , B , T , T = 9999
(4) 16 , DVR01 , T , , T = 9999
(5) 17 , DVR02 , B , T , T = 9999
(6) 20 , DVR00 , B , T , T = 100
(7) 23 , DVR23 , D , T , T = 9999
(8) 25 , DVR65 , D , , T =
(9) 26 , DVR65 , D , , T =
(10) 27 , DVR65 , D , , T =
(11) 30 , DVR65 , D , , T =
(12) 31 , DVR65 , D , , T =
(13) 32 , DVR65 , D , , T =
(14) 33 , DVR65 , D , , T =
(15) 34 , DVR65 , D , , T =
(16) 12 , DVR70 , , , T =

/E

Figure 6-11. 32K Disc Loading Phase

* DEVICE REFERENCE TABLE

1 = EQT = ? (SYSTEM TELEPRINTER)
~~2~~ = EQT = ? (SYSTEM MASS STORAGE)
~~3~~ = EQT = ? AUXILIARY MASS STORAGE)
~~4~~ = EQT = ? (STANDARD PUNCH UNIT)
~~5~~ = EQT = ? (STANDARD INPUT UNIT)
~~6~~ = EQT = ? (STANDARD LIST UNIT)
~~7~~ = EQT = ?
~~8~~ = EQT = ?
~~9~~ = EQT = ?
~~10~~ = EQT = ?
~~11~~ = EQT = ?
~~12~~ = EQT = ?
~~13~~ = EQT = ?
~~14~~ = EQT = ?
~~15~~ = EQT = ?
~~11~~ = EQT = ?

16 = EQT = ?
~~12~~ = EQT = ?
~~18~~ = EQT = ?
~~19~~ = EQT = ?
~~20~~ = EQT = ?
~~21~~ = EQT = ?
~~22~~ = EQT = ?
~~23~~ = EQT = ?
~~24~~ = EQT = ?
~~25~~ = EQT = ?
~~26~~ = EQT = ?
~~27~~ = EQT = ?
~~28~~ = EQT = ?
~~29~~ = EQT = ?
 /E

Figure 6-11. 32K Disc Loading Phase (Continued)

INITIALIZATION PHASE

MH DISC CHNL?
21 RTGEN requests the higher priority select code (octal) of the system disc controller.

TRKS, FIRST TRK ON SUBCHNL? Starting track and number of tracks (decimal) of each subchannel assigned within this system.
1?
2?
3?
4?
5?
6?
7?
8?
9?
10?
11?
12?
13?
14?
15?
16?
17?
18?
19?
20?
21?
22?
23?
24?
25?
26?
27?
28?
29?
30?
31?
32?
33?
34?
35?
36?
37?
38?
39?
40?
41?
42?
43?
44?
45?
46?
47?
48?
49?
50?
51?
52?
53?
54?
55?
56?
57?
58?
59?
60?
61?
62?
63?
64?
65?
66?
67?
68?
69?
70?
71?
72?
73?
74?
75?
76?
77?
78?
79?
80?
81?
82?
83?
84?
85?
86?
87?
88?
89?
90?
91?
92?
93?
94?
95?
96?
97?
98?
99?
100?
101?
102?
103?
104?
105?
106?
107?
108?
109?
110?
111?
112?
113?
114?
115?
116?
117?
118?
119?
120?
121?
122?
123?
124?
125?
126?
127?
128?
129?
130?
131?
132?
133?
134?
135?
136?
137?
138?
139?
140?
141?
142?
143?
144?
145?
146?
147?
148?
149?
150?
151?
152?
153?
154?
155?
156?
157?
158?
159?
160?
161?
162?
163?
164?
165?
166?
167?
168?
169?
170?
171?
172?
173?
174?
175?
176?
177?
178?
179?
180?
181?
182?
183?
184?
185?
186?
187?
188?
189?
190?
191?
192?
193?
194?
195?
196?
197?
198?
199?
200?
201?
202?
203?
204?
205?
206?
207?
208?
209?
210?
211?
212?
213?
214?
215?
216?
217?
218?
219?
220?
221?
222?
223?
224?
225?
226?
227?
228?
229?
230?
231?
232?
233?
234?
235?
236?
237?
238?
239?
240?
241?
242?
243?
244?
245?
246?
247?
248?
249?
250?
251?
252?
253?
254?
255?
256?
257?
258?
259?
260?
261?
262?
263?
264?
265?
266?
267?
268?
269?
270?
271?
272?
273?
274?
275?
276?
277?
278?
279?
280?
281?
282?
283?
284?
285?
286?
287?
288?
289?
290?
291?
292?
293?
294?
295?
296?
297?
298?
299?
300?
301?
302?
303?
304?
305?
306?
307?
308?
309?
310?
311?
312?
313?
314?
315?
316?
317?
318?
319?
320?
321?
322?
323?
324?
325?
326?
327?
328?
329?
330?
331?
332?
333?
334?
335?
336?
337?
338?
339?
340?
341?
342?
343?
344?
345?
346?
347?
348?
349?
350?
351?
352?
353?
354?
355?
356?
357?
358?
359?
360?
361?
362?
363?
364?
365?
366?
367?
368?
369?
370?
371?
372?
373?
374?
375?
376?
377?
378?
379?
380?
381?
382?
383?
384?
385?
386?
387?
388?
389?
390?
391?
392?
393?
394?
395?
396?
397?
398?
399?
400?
401?
402?
403?
404?
405?
406?
407?
408?
409?
410?
411?
412?
413?
414?
415?
416?
417?
418?
419?
420?
421?
422?
423?
424?
425?
426?
427?
428?
429?
430?
431?
432?
433?
434?
435?
436?
437?
438?
439?
440?
441?
442?
443?
444?
445?
446?
447?
448?
449?
450?
451?
452?
453?
454?
455?
456?
457?
458?
459?
460?
461?
462?
463?
464?
465?
466?
467?
468?
469?
470?
471?
472?
473?
474?
475?
476?
477?
478?
479?
480?
481?
482?
483?
484?
485?
486?
487?
488?
489?
490?
491?
492?
493?
494?
495?
496?
497?
498?
499?
500?
501?
502?
503?
504?
505?
506?
507?
508?
509?
510?
511?
512?
513?
514?
515?
516?
517?
518?
519?
520?
521?
522?
523?
524?
525?
526?
527?
528?
529?
530?
531?
532?
533?
534?
535?
536?
537?
538?
539?
540?
541?
542?
543?
544?
545?
546?
547?
548?
549?
550?
551?
552?
553?
554?
555?
556?
557?
558?
559?
550?
551?
552?
553?
554?
555?
556?
557?
558?
559?
560?
561?
562?
563?
564?
565?
566?
567?
568?
569?
570?
571?
572?
573?
574?
575?
576?
577?
578?
579?
580?
581?
582?
583?
584?
585?
586?
587?
588?
589?
580?
581?
582?
583?
584?
585?
586?
587?
588?
589?
590?
591?
592?
593?
594?
595?
596?
597?
598?
599?
590?
591?
592?
593?
594?
595?
596?
597?
598?
599?
600?
601?
602?
603?
604?
605?
606?
607?
608?
609?
610?
611?
612?
613?
614?
615?
616?
617?
618?
619?
620?
621?
622?
623?
624?
625?
626?
627?
628?
629?
630?
631?
632?
633?
634?
635?
636?
637?
638?
639?
640?
641?
642?
643?
644?
645?
646?
647?
648?
649?
650?
651?
652?
653?
654?
655?
656?
657?
658?
659?
660?
661?
662?
663?
664?
665?
666?
667?
668?
669?
670?
671?
672?
673?
674?
675?
676?
677?
678?
679?
680?
681?
682?
683?
684?
685?
686?
687?
688?
689?
690?
691?
692?
693?
694?
695?
696?
697?
698?
699?
690?
691?
692?
693?
694?
695?
696?
697?
698?
699?
700?
701?
702?
703?
704?
705?
706?
707?
708?
709?
710?
711?
712?
713?
714?
715?
716?
717?
718?
719?
720?
721?
722?
723?
724?
725?
726?
727?
728?
729?
730?
731?
732?
733?
734?
735?
736?
737?
738?
739?
740?
741?
742?
743?
744?
745?
746?
747?
748?
749?
750?
751?
752?
753?
754?
755?
756?
757?
758?
759?
760?
761?
762?
763?
764?
765?
766?
767?
768?
769?
770?
771?
772?
773?
774?
775?
776?
777?
778?
779?
780?
781?
782?
783?
784?
785?
786?
787?
788?
789?
790?
791?
792?
793?
794?
795?
796?
797?
798?
799?
790?
791?
792?
793?
794?
795?
796?
797?
798?
799?
800?
801?
802?
803?
804?
805?
806?
807?
808?
809?
810?
811?
812?
813?
814?
815?
816?
817?
818?
819?
820?
821?
822?
823?
824?
825?
826?
827?
828?
829?
830?
831?
832?
833?
834?
835?
836?
837?
838?
839?
840?
841?
842?
843?
844?
845?
846?
847?
848?
849?
850?
851?
852?
853?
854?
855?
856?
857?
858?
859?
860?
861?
862?
863?
864?
865?
866?
867?
868?
869?
870?
871?
872?
873?
874?
875?
876?
877?
878?
879?
880?
881?
882?
883?
884?
885?
886?
887?
888?
889?
880?
881?
882?
883?
884?
885?
886?
887?
888?
889?
890?
891?
892?
893?
894?
895?
896?
897?
898?
899?
890?
891?
892?
893?
894?
895?
896?
897?
898?
899?
900?
901?
902?
903?
904?
905?
906?
907?
908?
909?
910?
911?
912?
913?
914?
915?
916?
917?
918?
919?
910?
911?
912?
913?
914?
915?
916?
917?
918?
919?
920?
921?
922?
923?
924?
925?
926?
927?
928?
929?
930?
931?
932?
933?
934?
935?
936?
937?
938?
939?
940?
941?
942?
943?
944?
945?
946?
947?
948?
949?
950?
951?
952?
953?
954?
955?
956?
957?
958?
959?
960?
961?
962?
963?
964?
965?
966?
967?
968?
969?
970?
971?
972?
973?
974?
975?
976?
977?
978?
979?
980?
981?
982?
983?
984?
985?
986?
987?
988?
989?
980?
981?
982?
983?
984?
985?
986?
987?
988?
989?
990?
991?
992?
993?
994?
995?
996?
997?
998?
999?
990?
991?
992?
993?
994?
995?
996?
997?
998?
999?
1000?
1001?
1002?
1003?
1004?
1005?
1006?
1007?
1008?
1009?
1010?
1011?
1012?
1013?
1014?
1015?
1016?
1017?
1018?
1019?
1020?
1021?
1022?
1023?
1024?
1025?
1026?
1027?
1028?
1029?
1030?
1031?
1032?
1033?
1034?
1035?
1036?
1037?
1038?
1039?
1040?
1041?
1042?
1043?
1044?
1045?
1046?
1047?
1048?
1049?
1050?
1051?
1052?
1053?
1054?
1055?
1056?
1057?
1058?
1059?
1060?
1061?
1062?
1063?
1064?
1065?
1066?
1067?
1068?
1069?
1070?
1071?
1072?
1073?
1074?
1075?
1076?
1077?
1078?
1079?
1080?
1081?
1082?
1083?
1084?
1085?
1086?
1087?
1088?
1089?
1080?
1081?
1082?
1083?
1084?
1085?
1086?
1087?
1088?
1089?
1090?
1091?
1092?
1093?
1094?
1095?
1096?
1097?
1098?
1099?
1090?
1091?
1092?
1093?
1094?
1095?
1096?
1097?
1098?
1099?
1100?
1101?
1102?
1103?
1104?
1105?
1106?
1107?
1108?
1109?
1110?
1111?
1112?
1113?
1114?
1115?
1116?
1117?
1118?
1119?
1110?
1111?
1112?
1113?
1114?
1115?
1116?
1117?
1118?
1119?
1120?
1121?
1122?
1123?
1124?
1125?
1126?
1127?
1128?
1129?
1120?
1121?
1122?
1123?
1124?
1125?
1126?
1127?
1128?
1129?
1130?
1131?
1132?
1133?
1134?
1135?
1136?
1137?
1138?
1139?
1130?
1131?
1132?
1133?
1134?
1135?
1136?
1137?
1138?
1139?
1140?
1141?
1142?
1143?
1144?
1145?
1146?
1147?
1148?
1149?
1140?
1141?
1142?
1143?
1144?
1145?
1146?
1147?
1148?
1149?
1150?
1151?
1152?
1153?
1154?
1155?
1156?
1157?
1158?
1159?
1150?
1151?
1152?
1153?
1154?
1155?
1156?
1157?
1158?
1159?
1160?
1161?
1162?
1163?
1164?
1165?
1166?
1167?
1168?
1169?
1160?
1161?
1162?
1163?
1164?
1165?
1166?
1167?
1168?
1169?
1170?
1171?
1172?
1173?
1174?
1175?
1176?
1177?
1178?
1179?
1170?
1171?
1172?
1173?
1174?
1175?
1176?
1177?
1178?
1179?
1180?
1181?
1182?
1183?
1184?
1185?
1186?
1187?
1188?
1189?
1180?
1181?
1182?
1183?
1184?
1185?
1186?
1187?
1188?
1189?
1190?
1191?
1192?
1193?
1194?
1195?
1196?
1197?
1198?
1199?
1190?
1191?
1192?
1193?
1194?
1195?
1196?
1197?
1198?
1199?
1200?
1201?
1202?
1203?
1204?
1205?
1206?
1207?
1208?
1209?
1200?
1201?
1202?
1203?
1204?
1205?
1206?
1207?
1208?
1209?
1210?
1211?
1212?
1213?
1214?
1215?
1216?
1217?
1218?
1219?
1210?
1211?
1212?
1213?
1214?
1215?
1216?
1217?
1218?
1219?
1220?
1221?
1222?
1223?
1224?
1225?
1226?
1227?
1228?
1229?
1220?
1221?
1222?
1223?
1224?
1225?
1226?
1227?
1228?
1229?
1230?
1231?
1232?
1233?
1234?
1235?
1236?
1237?
1238?
1239?
1230?
1231?
1232?
1233?
1234?
1235?
1236?
1237?
1238?
1239?
1240?
1241?
1242?
1243?
1244?
1245?
1246?
1247?
1248?
1249?
1240?
1241?
1242?
1243?
1244?
1245?
1246?
1247?
1248?
1249?
1250?
1251?
1252?
1253?
1254?
1255?
1256?
1257?
1258?
1259?
1250?
1251?
1252?
1253?
1254?
1255?
1256?
1257?
1258?
1259?
1260?
1261?
1262?
1263?
1264?
1265?
1266?
1267?
1268?
1269?
1260?
1261?
1262?
1263?
1264?
1265?
1266?
1267?
1268?
1269?
1270?
1271?
1272?
1273?
1274?
1275?
1276?
1277?
1278?
1279?
1270?
1271?
1272?
1273?
1274?
1275?
1276?
1277?
1278?
1279?
1280?
1281?
1282?
1283?
1284?
1285?
1286?
1287?
1288?
1289?
1280?
1281?
1282?
1283?
1284?
1285?
1286?
1287?
1288?
1289?
1290?
1291?
1292?
1293?
1294?
1295?
1296?
1297?
1298?
1299?
1290?
1291?
1292?
1293?
1294?
1295?
1296?
1297?
1298?
1299?
1300?
1301?
1302?
1303?
1304?
1305?
1306?
1307?
1308?
1309?
1300?
1301?
1302?
1303?
1304?
1305?
1306?
1307?
1308?
1309?
1310?
1311?
1312?
1313?
1314?
1315?
1316?
1317?
1318?
1319?
1310?
1311?
1312?
1313?
1314?
1315?
1316?
1317?
1318?
1319?
1320?
1321?
1322?
1323?
1324?
1325?
1326?
1327?
1328?
1329?
1320?
1321?
1322?
1323?
1324?
1325?
1326?
1327?
1328?
1329?
1330?
1331?
1332?
1333?
1334?
1335?
1336?
1337?
1338?
1339?
1330?
1331?
1332?
1333?
1334?
1335?
1336?
1337?
1338?
1339?
1340?
1341?
1342?
1343?
1344?
1345?
1346?
1347?
1348?
1349?
1340?
1341?
1342?
1343?
1344?
1345?
1346?
1347?
1348?
1349?
1350?
1351?
1352?
1353?
1354?
1355?
1356?
1357?
1358?
1359?
1350?
1351?
1352?
1353?
1354?
1355?
1356?
1357?
1358?
1359?
1360?
1361?
1362?
1363?
1364?
1365?
1366?
1367?
1368?
1369?
1360?
1361?
1362?
1363?
1364?
1365?
1366?
1367?
1368?
1369?
1370?
1371?
1372?
1373?
1374?
1375?
1376?
1377?
1378?
1379?
1370?
1371?
1372?
1373?
1374?
1375?
1376?
1377?
1378?
1379?
1380?
1381?
1382?
1383

INITIALIZE SUBCHNL:

2?

NO

3?

NO

4?

NO

5?

NO

6?

NO

7?

NO

PUNCH BOOT?

YES

PUNCH BOOT?

YES

PUNCH BOOT?

NO

ERR 08

FLSS

ERR 05

SMRL

*EOT

Initialize subchannels in addition to system, auxiliary and peripherals.

Paper tape bootstrap punch option. The first time the tape bootstrap is indicated, the answer should be Yes. One copy of the bootstrap tape is loaded and run from 100₈ to bring the finished system up.

These error outputs result from replacing the RTE Module EXEC with the 91701 Module EXEC. The error output has no operational effect.

PROGRAM INPUT PHASE

A halt 77 occurs here.

The switch register is set = 2 (for paper tape library input) and the 9701 programs are loaded as follows:

- A. Put LSTEN in paper tape reader, press RUN
- B. Put QUDIS in paper tape reader, press RUN
- C. Put QUEUE in paper tape reader, press RUN
- D. Put DISP in paper tape reader, press RUN
- E. Put ERR in paper tape reader, press RUN
- F. Put TAM in paper tape reader, press RUN
- G. Put RFAM in paper tape reader, press RUN
- H. Put DISC in paper tape reader, press RUN

An EOT (end of tape) is output after each program is loaded.

The system library is mounted and the switch register cleared if on magnetic tape or set equal to 2 for paper tape. When run is pressed, the library is loaded. This operation takes some time and is followed by the EOT message.

After the EOT, the switch register is set to 1, and RUN is pressed. This causes RTGEN to print all undefined externals.

NO UNDEF EXTS

No undefined externals indicates that all is OK. Press run to continue.

PARAMETER INPUT PHASE

PARAMETERS

D.RTR,1,1
 QUEUE,1,2ⁿ
 QUDIS,^s
 DISP,1,10
 TAM,1,3ⁿ
 RFAM,2,3ⁿ
 DISC,2,3ⁿ
 ERR,1,3ⁿ
 LISTEN,3,8ⁿ
 PROGL,3,2ⁿ
 DLIST,3,3ⁿ
 /E

Operator modifies type, priority, or execution intervals of any programs entered during program input phase (except background main types).

Each parameter record is of the general form:

name, type [,priority] [,execution interval]

OF BLANK ID SEGMENTS?

48

Number of blank ID segments to be allocated for on-line loading of programs by the relocating loader.

DISC LOADING PHASE

FWA BP LTPAGE?

35

First word of available core memory in base page (first available octal select code number after last I/O card).

SYSTEM

EXEC (V4) 0200K

RTGEN OUTPUT of memory map beginning with the modules of the Real-Time Executive.

SCHED(04) 0357ⁿ

RTIOC(04) 10762

DVR40(04) 14743

DVR23(04) 15207

DVR31(04) 16012

DVR65(04) 17203
LT.65 21E75

DVR70(04) 21E76

F4D.R(04) 21102

F2E.D(04) 21102

BP LINKAGE CRS15

★ EQUIPMENT TABLE ENTRY

21,DVR31,R,T
T =
9999

New first word of available core memory in base page.

13,DVR26,R,T
T =
9999

RTGEN begins generating the equipment table from user information.

15,DVR05,R,T
T =
9999

TTY driver

16,DVR01,T
T =
9999

Photo reader

17,DVR02,R,T
T =
9999

Paper tape punch

20,DVR04,R,T
T =
100

Line printer driver

23,DVR23,R,T
T =
9999

Magnetic tape driver

25,DVR65,R

Communications serial interface driver
(one for each IO board)

26,DVR65,D

27,DVR65,D

30,DVR65,D

31,DVR65,D

32,DVR65,D

33,DVR65,D

34,DVR65,D

12,DVR7A

Dummy driver

/E

* DEVICE REFERENCE TABLE

1 = EOT #?

2

2 = EOT #?

1,1

3 = EOT #?

0,0

4 = EOT #?

5

5 = EOT #?

4

6 = EOT #?

6,1

7 = EOT #?

7,0

8 = EOT #?

7,1

9 = EOT #?

0

10 = EOT #?

3

11 = EOT #?

16

12 = EOT #?

8

13 = EOT #?

9

14 = EOT #?

10

15 = EOT #?

11

16 = EOT #?

12

17 = EOT #?

13

Logical Unit numbers 1 through 6 are predefined in the RTE System as:

- 1 - System teleprinter
- 2 - System mass storage
- 3 - Auxiliary mass storage
- 4 - Standard punch unit
- 5 - Standard input unit
- 6 - Standard list unit

18 = E01 #?

14

19 = E01 #?

15

20 = E01 #?

1,3

21 = E01 #?

1,2

22 = E01 #?

1,3

23 = E01 #?

1,4

24 = E01 #?

1,5

25 = E01 #?

1,6

26 = E01 #?

1,7

27 = E01 #?

0

28 = E01 #?

0

29 = E01 #?

0

30 = E01 #?

/E

* INTERRUPT TABLE

13,E01,2

15,E01,4

16,E01,3

17,E01,5

20,E01,7

21,E01,1

Interrupt table generation requires an entry for each I/O card in ascending order.

22,ENT,1
 23,ENT,6
 24,ENT,9
 25,PRG,NUELIE
 26,PRG,NUELIE
 27,PRG,NUELIE
 28,PRG,NUELIE
 29,PRG,NUELIE
 30,PRG,NUELIE
 31,PRG,NUELIE
 32,PRG,NUELIE
 33,PRG,NUELIE
 34,PRG,NUELIE

/E

Interrupt table complete.

LIBRARY

ROUTS	32172
.ENTR	32674
PRTN	32764

RTGEN outputs the names and entry point addresses of all library routines which are referenced by Real-Time and background programs.

EP LINKAGE 42527

New first word of available core memory in base page.

RT RESIDENTS

RTGEN begins loading the Real-Time core-resident programs.

QUEUE(2-) 31467

DISP (1+) 31710

TAM (3-) 31741

ERR (3+1)	32101
RMPAR	32222
GETAE	32245

D.RIP(11)	32263
P.PAS	34155

PP LINKAGE 4225

RT DISC RESIDENTS

RTGEN begins loading the Real-Time disc-resident programs.

RF&M (30)	34204
R/WB	42115
RMPAR	42174
GETAD	42217

DJSC (30)	34204
RMPAR	36073
NAME	36116
FCONT	36276
LOCF	36362
APOSN	36542
CREAT	36651
PURGE	37146
OPEN	37237
READF	37422
PUSNT	40207
RWNDF	40444
CLOSE	40526
FSTAT	41635
GETAD	40662
NAME..	40700
D,PAS	40775
RWSUB	41024
\$OPEN	41272
R/WB	41447
RWNDF	41526

RP LINKAGE 342743

Report of new first word of available core memory in base page.

CHANGE OF LINKAGE?
11%

Linkage area is changed for future addition of larger Real-Time disc-resident programs on-line.

FWA SY MEM 42235

First word address of system available memory.

CHANGE FWA SYS AV MEM
45000

Address change is to increase the Real-Time disc resident area for future addition of larger programs.

BG BOUNDARY?
47000First address of the background area (area from 47000₈ to 50000₈ is used for temporary storage of output buffers, and reentrant temporaries).

BG RESIDENTS

(NONE)

BG DTSC RESIDENTS

Begin load of background disc-resident programs, with names and entry points for mains and subroutines.

PROGL (20)	47200
LEAU.	50143
CLRIO	50213
1AND	50216
RMPAR	50226
OPEN	50251
READF	50434

DLK05	51221
CLOSE	51273
GETAC	51402
\$OPEN	51420
R/LK	51575
P,PAS	51654
RNSUB	51703
RWNDS	52151
DLIST(31)	47400
ESTAT	52260
ASMB (99)	47400
ASMBD(99)	53643
ASMB1(99)	53643
ASMB2(99)	53643
ASMB3(99)	53643
ASMB4(99)	53643
ASMB5(99)	53643
ALGOL(99)	47400
.EAU.	51312
%WRIT	51362
SRFAD	62463
.OPSY	62621
ALGL1(99)	62661
FTN4 (99)	47400
FTN40(99)	55311
FTN41(99)	55311
FTN42(99)	55311
FTN43(99)	55311
FTN44(99)	55311
FTN45(99)	55311
FTN46(99)	55311
FTN47(99)	55311
FTN48(99)	55311

FTN49(94)	55311
FTN4A(94)	55311
FTN4H(94)	55311
FTN4C(94)	55311
FTN4D(94)	55311
FTN4E(94)	55311
FTN4F(94)	55311
FTN4G(94)	55311
FTN4H(94)	55311
EDIT (94)	47VVB
SREAD	51411
ZWRIS	52147
.OPSY	52437
LOADR (94)	47VVB
SXL (94)	47VVB
SGM1R	47V47
SPROC	47134
LDUMM	47325
DBUGS	57367
.EAU.	51305
SPTH1	51555
PTSTR	52434
PRFLP	52577
FU55	53251
JSBES	53317
ULIBR	53324
ALLOC	53372
PUT4	53560
DIAG	53630
PAGER	53654
.DRCT	54737
SGP1L(94)	54746
SCNSM	55056
SCNP1	55761
LCRST	56160
SCNNM	56633
FUST	57024
FUSV	57057
NXSY	57123
SNAM	57216

MAT1	57437
MAXR	57696
PARSF	57652
SEGKM	57125
SGN2L (88)	54746
SNFST	55056
UDUM2	55255
3NTX	55461
UGRMP	55737
FKDCR	56727
FUST	57111
FUSV	57144
FSEM	57110
PARSE	57245
FUP	57520
SGN3L (90)	54746
ENDR	55056
SWTCH	55477
BLNK	56110
MOVE.	56126
POSM.	56145
RVERF	56212
OCTAO	56456
MAXR	56546
PULG	56620
REDGL	57115
.LOCF	57153
READF	57177
R/W	57764
.XEC	60043
RODSK	60113
P.PAS	60241
RNSUB	60270
RNPLX	60536
SGN4L (91)	54746
ENDR2	55056
.XEC	55476
MSTBL	55546
PREN	55650
CFXUF	56112
BLOK	56413
CCON	56547
STEN	56572
SNAM	56617
FUST	57046
FUSV	57101
FUSA	57145
BLNK	57210
OCTAO	57226
MAXR	57316

PHPLK	57370
ABOUT	57444
NXSY	57545
STMA	57632
READF	60022
R/W\$	60607
P,PAS	60666
RNSUB	60715
RWND\$	61153

SG0SL(97)	54746
LDUMA	55056
FELST	55346
TERMF	55642
FUSV	56670
MSTBL	56734
TRBKF	57036
BLNK	57201
OCTAB	57217
CLOSE	57307
NXSY	57416
FUST	57503
OPEN	57536
APPDN	57721
FKDCH	60049
MOVE,	60122
R/W\$	60141
RMPAF	60220
SOPEN	60243
RNSUB	60420
LOCF	60666
GETAB	61046
RWNUS	61064
P,PAS	61174

SGP0L(98)	54746
DGLST	55056
FUSV	56515
NXSY	56561
CCON	56646
MSTBL	56671
.YEC	56773
.GOTO	57043
UNSTR	57066
OCTAB	57174
WACTA	57261
MOVE,	57434
LOCF	57453
CLOSE	57633
FKDCH	57742
DIVD	60024
P,PAS	60442
R/W\$	60571

SGN7L (94) 54746
 LOUHA 55456
 XFRST 55346
 FUSV 55613
 MSTBL 55657
 FUST 55761
 TWRK 56014
 OPEN 56157
 ILOSE 56342
 LOOF 56365
 FKOCH 56545
 MOVE. 56627
 BLNK 56646
 APPSN 56684
 CLOSE 57003
 RMPAR 57112
 \$OPEN 57135
 P.PAS 57312
 RWSUB 57341
 R/W# 57607
 GETAD 57666
 RWND\$ 57704

SGN8L (94) 54746
 DSPS1 55456
 DSUDF 55436
 OCTAD 55652
 MSTBL 55742
 BLNK 56444
 FUSV 56462
 FUST 56126
 NXSY 56151
 CFXUP 56246
 UNSTH 56647
 CCON 56751
 MAXH 56774
 PBPLK 57046
 ABOUT 57122
 READF 57223
 R/W# 57410
 P.PAS 57467
 RWSUB 57416
 RWND\$ 57364

SGN9L (94) 54746
 SETSM 55456
 FUST 55600
 FUSV 55633
 STNA 55677
 ABOUT 56767
 PRENT 56170
 CFXUP 56332
 BLNK 56733

READF	56251
MAXR	57536
MSTBL	57610
OCTAP	57712
PRPLK	58882
R/W%	59856
P,PAS	60135
RWSUR	60164
RWNDS	60432

SG1NL(99)	54746
GTPT	55856
READF	56632
OPEN	57417
CLOSE	57602
MSTBL	57711
ABOUT	60013
MOVE,	60114
BLNK	60133
FUSV	60151
R/W%	60215
P,PAS	60274
RWSUR	60323
RMPAR	60571
SOPEN	60614
MAXR	60771
RWNDS	61043
GETAD	61153

SG11L(99)	54746
NAMR	55056
SCOMM	55635
.LOCF	55736
FU5V	55762
GNNS	56026
MAXR	56077
STMA	56151
SWTCH	56341
RVERF	56402
MOVE,	56646
GET4	56865
PULG	56721
REDGL	57116
POSH,	57254
READF	57321
.XEC	58106
RUDSK	58156
R/W%	58304
P,PAS	58363
RWSUR	58412
RWNDS	58650

SG12L (S*)	54746
1001	55456
SKIPR	55355
FUST	55544
STEM	55577
GNNS	55624
STMA	55675
MAT1	56455
RVERF	56226
SWTCH	56472
MOVE.	56533
MXSY	56552
GET4	56637
.XEC	56673
POLG	56743
RENGI	57140
POSM.	57276
.LOGF	57343
READF	57367
ROOSK	58154
R/WB	58302
P.PAS	58361
RWSUR	58414
RWNDS	58656

SG13L (S*)	54746
OTPST	55456
LDM12	55416
FUST	55671
FUSV	55724
FKDCP	55770
CREAT	56452
MSTBL	56531
OPEN	56433
BLNK	56616
CLOSE	56634
SOPEN	56743
NAM..	57120
RMPAF	57215
R/WB	57240
PANL3	57317
GETAB	57427
RWSUR	57445
P.PAS	57713

SG14L (S*)	54746
INIT2	55456
AEND	55132
CRDRC	55372
DSUUF	55541
MSTBL	55755
CREAT	56457
.XEC	56636

MOVE.	56406
CFXLF	56425
UNSTR	57426
BLNK	57130
CCON	57146
CLOSE	57171
\$OPEN	57300
NAM..	57455
RMPRF	57552
MAXR	57575
PBPLK	57647
ABOUT	57723
R/W\$	60024
RWND*	60103
GETAL	50213
READF	60231
RWSUB	61016
P.PAS	51264

SG15L(99)	54746
CLOP	55056
PKJUF	55073
CLOSE	55157
R/W\$	55266

SG16L(99)	54746
DBL	55056
ABOUT	56061
SWTCH	56162
RVERF	56223
FUSV	56467
MAXR	56533
LLINK	56605
READF	57215
POLG	60002
REDGL	60177
PUSH.	60335
•LOCF	64492
•XEC	60426
PBPLK	60476
R/W\$	60552
P.PAS	60631
RWSUB	60664
ROOSK	61126
RWND*	61254

SG17L(99)	54746
RDCHR	55056
READF	55394
TRBAK	56471
R/W\$	56234
P.PAS	56313
RWSUB	56342

OPEN	56614
APOSN	56773
FDOPEN	57112
MOVE.	57174
RWNLIS	57213
CLOSE	57323
RMPAR	57432
SOPEN	57455
LOCF	57532
SETAD	60012
SG18L(93)	54746
CRTOP	55056
FUSV	55201
BLNK	55245
MSTBL	55263
CREAT	55365
CLOSE	55644
SOPEN	55753
NAM..	56130
RMPAR	56225
R/WB	56250
RWNLIS	56327
SETAD	56437
PWSUP	56455
P..PAS	56723
SG19L(94)	54746
SNPUP	55056
CCON	56367
NXSY	56412
FUSV	56477
FUST	56543
UNSTE	56576
READF	56700
MSTBL	57455
OCTAD	57567
ABOUT	57657
BLNK	57764
R/WB	57776
P..PAS	58155
RWSUP	58184
MAXR	58352
RWNLIS	58424
SG20L(95)	54746
LNKST	55256
MAPST	55132
SGINT	55501
FUSV	55671
DINIT	55735
INITI	56213
.XEC	56417

MAXR	56467
MOVE.	56541
SYM	56569
MEMR	57361
OPEN	57422
FKDCE	57605
CLOSE	57667
RMPAR	57776
SOPEN	60021
R/W*	60176
GETAD	60255
RANDS	60273
RWSUP	60403
P,PAS	60651

SG21L(99)	54746
OPLG	55056
SNAM	55637
FUST	56066
FUSV	56121
FUSA	56165
CFXUP	56230
PRENT	56631
HATZ	56773
CCON	57115
BLNK	57140
MSTBL	57156
MAXR	57269
PBPLK	57332
ABOUT	57406
OCTAD	57507
READF	57577
R/W*	60364
P,PAS	60443
RWSUP	60472
RANDS	60740

FMGR (SV)	47000
FM,CM	47643
.EAU.	51451
.DRCT	51521
READF	51530
CLOSE	52315
OPEN	52424
R/W*	52607
P,PAS	52666
RWSUP	52715
RMPAR	53163
SOPEN	53206
RANDS	53363
GETAD	53473

FMGRW(99) 53511
 PK.. 53517
 CR.. 55145
 CN.. 55251
 FM,UT 56313
 LOCK. 57436
 RWNDF 57506
 IO,A 57570
 CREA. 57710
 NAM.. 57762
 NAME 57457
 CREAT 60231

FMGR1(99) 53511
 PARS 53537
 REA,C 54453
 C,TAB 54536
 EE.. 54617
 TR.. 54654
 SA.. 55445
 MR.. 56407
 CREA. 56146
 LOCK 56220
 READ. 56400
 RWNDF 56425
 CK,SP 56507
 WRLG 56623
 CREAT 56641
 SREAD 57120
 ZARIT 57656
 NAM.. 57357
 OPSY 57454

FMGR2(99) 53511
 IN,IT 53520
 IN.. 54372
 KC.. 56210
 RC.. 56520
 FM,LT 56707
 IPUT 56432
 FID. 56453
 NAM.. 58173
 J,PUT 58270
 LOCK. 60315
 MSC. 62365

FMGR3(99) 53511
 LI.. 53517
 DL.. 55230
 PU.. 56453
 FM,UT 56676
 LOCK 56621
 MSC. 56201

LOCK. 5V236
PURGE 5P386

FMGR4(99) 53511
ST.DU 53520
CO.. 54724
SP.. 55431
CREA. 56206
LOCK 56268
CK.SN 56440
FM.UT 56554
CREAT 57677
PRNDF 58156
ID.A 58240
NAM.. 58360

FMGR5(94) 53511
??.. 53523
MS.. 55564
PP.. 56463
CL.. 56705
F.UTM 57167
WRIS 57337
INPUT 57376
ID.A 57417
LOCK 57537
FSTAT 57717
ZWRIS 57744

LSTEN(80) 47V00
CREAT 51534
CLOSE 52013
RMPAR 52122
PURGE 52145
\$OPEN 52244
NAM.. 52421
R/W# 52516
GETAD 52575
OPEN 52613
RANDS 52776
RWSUB 53126
P.PAS 53354

BP LTNKAGE - 1633

SYSTEM STORED ON DISC
SYS SIZE: 25 TRKS, 1002 SECS(14)

SECTION VII

SAMPLE PROGRAMS

The sample programs in this section are provided to illustrate coding sequences for various HP 91701 system concepts discussed in this manual. Examples 1 and 2 illustrate program-to-program communication between a program at the central computer and a program at a terminal. Examples 3 and 4 illustrate the master/slave concept which exists in the HP 91701 software. The terminal computer provides the data which the central computer processes. Example 4 is provided to illustrate some of the material described in Appendix A.

EXAMPLE I

Terminal Receives Data

This example shows the code which can be used at the terminal and at central to produce program-to-program communication. The data transmission in this example is from the central computer to the terminal. The data block transfer must be initiated at central by a "transmit request" which

must then be received by the terminal. Code is included in this example to permit the terminal operator to abort the program at the terminal and terminate central. The actual program-to-program communication is accomplished via #TAM calls instead of calls directly to D.65 via .IOC.

***** TERMINAL PROGRAM *****			***** CENTRAL PROGRAM ABCD *****		
		*			*
EXT PTPON,PTPOF,ESCON, IDLE		*			*
EXT GETLU,RExec, #TAM		*			*
.		*			*
.		*			*
.		*			*
JSB PTPON	DISABLE OPERATOR	*			*
DEF **1	ATTENTION.	*			*
		*			*
JSB GETLU	GET LOGICAL UNIT	*			*
DEF **2	AT CENTRAL FOR	*			*
DEF LU	THIS TERMINAL.	*			*
		*			*
SCHD JSB REXEC	SCHEDULE ABCD	*			*
DEF **5	AT CENTRAL.	*			*
DEF STATS		*			*
DEF B12		*			*
DEF PGNAM	ASCII "ABCD".	*	.		*
DEF LU	PASSED PARAMETER.	*	.		*
		*	.		*
SZA	ABCD DORMANT?	*	LDA 1,I	GET PASSED LU.	*
JMP SCHD	NO, RE-SCHEDULE.	*	STA LU		*
		*			*
CLA,INA	READ REQUEST	*	JSB EXEC	SEND REQUEST	*
JSB #TAM	FROM CENTRAL.	*	DEF **6	AND DATA.	*
DEF **5		*	DEF B2	REQ. CODE = WRITE.	*
DEC 5		*	DEF LU	LU OF TERMINAL.	*
DEF BUFFR		*	DEF PBUFR	PARAM BUFFER.	*
DEC -2	1 WORD REQUEST.	*	DEF B4	PARAM BUFFER LENGTH.	*
DEF **1	COMPLETOR SUBR.	*	DEF B10	TRANSMISSION MODE.	*
		*	.		*
NOP		*	SLA,RSS	ANY ERRORS?	*
JSB ESCON	CHECK IF OPERATOR	*	JMP ERROR	YES.	*
DEF **2	HAS PRESSED	*	.	NO, CONTINUE	*
DEF TEMP	ESCAPE KEY.	*	.	PROCESSING.	*
LDA TEMP		*	.		*
SZA		*	ERROR ALF,ALF	WAS STOP COMMAND	*
JMP XSTP	YES, SEND STOP.	*	ALF,SLA	RECEIVED?	*
		*	JMP DONE	YES, TERMINATE.	*
CLA	READ DATA FROM	*	.	NO, CHECK FOR	*
JSB #TAM	CENTRAL.	*	.	OTHER ERRORS.	*
DEF **5		*	.		*

OCT 5 *
DEF BUFFR *
DEC -40 20 WORD RECORD. *
DEF **1 COMPLETOR SUBR. *
*
• READ & PROCESS * •
• TILL DONE. * •
* •
DONE JSB PTPOF ENABLE OPERATOR *DONE JSB EXEC TERMINATE ABCD.
DEF **1 ATTENTION. * DEF **2
JSB IDLE RETURN TO TCE/3. * DEF B6
*
XSTP JSB #TAM TRANSMIT STOP *PBUFR DEF DBUFR DATA BUFFER.
DEF **2 TO ABCD. * DEC 20 (20 WORDS)
DEC 2 * DEF RBUFR REQUEST BUFFER.
JMP DONE EXIT. * DEC 1 (1 WORD)

EXAMPLE II

Terminal Sends Data

This example shows code which can be used to produce program-to-program communication initiated by the terminal to send data to the central computer. The data block transfer must be initiated at central by a "transmit request,"

which must then be received by the terminal. The data transfer is then made from the terminal to central (in contrast to Example 1). Transmission across the data link is also accomplished via #TAM calls rather than D.65.

***** TERMINAL PROGRAM *****			***** CENTRAL PROGRAM ABCD *****		
EXT PTPON,PTPOF,ESCON, IDLE	*	*	JSB EXEC	SEND REQUEST	AND RECEIVE DATA.
EXT GETLU,REXEC,#TAM	*	*	DEF **6	DEF B1	REQ. CODE = READ.
.	*	*	DEF LU	DEF LU	LU OF TERMINAL.
.	*	*	DEF PBUFR	DEF B4	PARAM BUFFER.
.	*	*	DEF B0	DEF B0	PARAM BUFFER LENGTH.
JSB PTPON	DISABLE OPERATOR	*	LDA 1,I	GET PASSED LU.	TRANSMISSION MODE.
DEF **1	ATTENTION.	*	STA LU		
JSB GETLU	GET LOGICAL UNIT	*			
DEF **2	AT CENTRAL FOR	*			
DEF LU	THIS TERMINAL.	*			
SCHD JSB REXEC	SCHEDULE ABCD	*			
DEF **5	AT CENTRAL.	*			
DEF STATS		*			
DEF B12		*			
DEF PGNAM	ASCII "ABCD".	*	JSB EXEC	SEND REQUEST	
DEF LU	PASSED PARAMETER.	*	DEF **6	DEF B1	
SZA	ABCD DORMANT?	*	DEF B1	REQ. CODE = READ.	
JMP SCHD	NO, RE-SCHEDULE.	*	DEF LU	LU OF TERMINAL.	
		*	DEF PBUFR	PARAM BUFFER.	
CLA,INA	READ REQUEST	*	DEF B4	PARAM BUFFER LENGTH.	
JSB #TAM	FROM CENTRAL.	*	DEF B0	TRANSMISSION MODE.	
DEF **5		*			
DEC 5		*			
DEF BUFFR		*			
DEC -2	1 WORD REQUEST.	*			
DEF **1	COMPLETOR SUBR.	*			
NOP		*			
JSB ESCON	CHECK IF OPERATOR	*	SLA,RSS	ANY ERRORS?	
DEF **2	HAS PRESSED	*	JMP ERROR	YES.	
DEF TEMP	ESCAPE KEY.	*	•	NO, CONTINUE	
LDA TEMP		*	•	PROCESSING.	
SZA		*			
JMP XSTP	YES, SEND STOP.	*	*ERROR ALF,ALF	WAS STOP COMMAND	
		*	ALF,SLA	RECEIVED?	
CLA	SEND DATA TO	*	JMP DONE	YES, TERMINATE.	
JSB #TAM	CENTRAL.	*	•	NO, CHECK FOR	
DEF **4		*	•	OTHER ERRORS.	
OCT 6		*			
DEF BUFFR		*			
DEC -40	20 WORD RECORD.	*			

DONE	JSB PTPOF	ENABLE OPERATOR	*DONE	JSB EXEC	TERMINATE ABCD.
	DEF **1	ATTENTION.	*	DEF **2	
	JSB IDLE	RETURN TO TCE/3.	*	DEF B6	
			*		
XSTP	JSB #TAM	TRANSMIT STOP	*PBUFR	DEF DBUFR	DATA BUFFER.
	DEF **2	TO ABCD.	*	DEC 20	(20 WORDS)
	DEC 2		*	DEF RBUFR	REQUEST BUFFER.
	JMP DONE	EXIT.	*	DEC 1	(1 WORD)

EXAMPLE III

Enable Polling Mode

The code sequence shown in this example is used by a terminal program to receive a request via the Polling mode (rather than the Listen mode). The .IOC. calls to D.65 are described in Appendix A. The Interrupt Special Open

Loop is included here to illustrate the communication between a DMA central and a non-DMA terminal described in Appendix A.

JSB .IOC.	ENABLE POLLING MODE
OCT 303YY	
JMP *-2	
RECV	JSB .IOC. RECEIVE REQUEST
OCT 101YY	
JMP *-2	
DEF BUFF	
DEC 3	
JSB .IOC.	STATUS REQUEST
OCT 400YY	
SSA	COMPLETE? (A)=EOT STATUS WORD
JMP *-3	NO,KEEP WAITING
ALF,ALF	YES;WAS REQUEST RECEIVED?
RAL	(IF NOT,BIT 6 IS SET)
SSA	
JMP RECV	NO,REPEAT READ CALL
ALF,ALF	YES,CHECK FOR ERRORS
RAR	(IF NONE,BIT 0 IS SET)
SLA	
JMP ERROR	ERROR:GO CHECK
<continue>	NO ERROR,CONTINUE.
•	
•	
BUFF OCT 42	INTERRUPT SPECIAL OPEN LOOP
DEF IRBUF	
DEC IRBFL	
IRBUF BSS 5	5-WORD REQUEST BUFFER
IRBFL DEC 5	

EXAMPLE IV

Central Processes Data

This example is provided to show a FORTRAN coding sequence and to illustrate terminal collection and central processing of data. The terminal program accepts up to 128 numbers, converts them to binary and sends one record

across to the central computer. The terminal program schedules a central program (DEMOC) to read the file and do the processing.

```

PAGE 0001          (FTN4--RELEASE 24177B--JULY, 1971)

0001  C
0002  C
0003  C
0004  C
0005  C      TERMINAL PROGRAM
0006  C
0007  C
0008  C
0009  C
0010  PTN4,L
0011  C      PROGRAM NUMB
0012  C      PROGRAM TO READ IN NUMBER FROM REMOTE TERMINAL
0013  DIMENSION IARRY(128),INAM(3),ISIZE(2),IPNAM(3),IREG(2)
0014  INTEGER OUT,OK
0015  EQUIVALENCE (REG,IREG),(IA,IREG(1)),(IB,IREG(2))
0016  INAM(1)=2HFI
0017  INAM(2)=2HLE
0018  INAM(3)=2H##
0019  OUT=2
0020  IN=1
0021  IEND=9999
0022  OK=-1
0023  WRITE(OUT,10)
0024  10  FORMAT ("PROGRAM TO ACCEPT NUMBERS FROM A REMOTE TERMINAL"/
0025  1"AND STORE THE NUMBERS ON A FILE AT THE CENTRAL ."/
0026  2"INPUT NUMBERS, TERMINATE ENTRIES WITH 9999.  MAX OF 128 NUMBERS"/
0027  ICNT=1
0028  100 ICNT=ICNT+1
0029  READ (IN,*) INUMB
0030  WRITE (OUT,20)INUMB
0031  20  FORMAT (I4)
0032  IARRY(ICNT)=INUMB
0033  IF (INUMB=IEND) 105,110,105
0034  105 IF (ICNT=128) 100,110,110
0035  110 ICNT=ICNT-1
0036  IARRY(1)=ICNT
0037  CALL ROPEN(ISTAT,IERR,INAM)
0038  IF ((ISTAT.EQ.OK).AND.(IERR.GE.0)) GO TO 120
0039  WRITE (OUT,30)
0040  30  FORMAT("OPEN ERROR, PROGRAM ABORTED")
0041  GO TO 9990
0042  120 CALL RWRIT(ISTAT,IERR,INAM,IARRY,ICNT)
0043  IF ((ISTAT.EQ.OK).AND.(IERR.GE.0)) GO TO 130
0044  WRITE(OUT,40)

```

```

0035  40  FORMAT("WRITE ERROR, PROGRAM ABORTING")
0046  GO TO 9990
0047  130  CONTINUE
0048  WRITE(OUT,60)
0049  60  FORMAT("DO YOU WANT TO SCHEDULE CENTRAL PROGRAM-YES ON NO?")
0050  READ (IN,70) IARRY(1)
0051  70  FORMAT(A2)
0052  IF (IARRY (1).NE.2HYE) GO TO 9990
0053  CALL RCLOS(ISTAT,IERR,INAM)
PAGE 0002  NUMB      (FTN4--RELEASE 24177B--JULY, 1971)
0054  IF((ISTAT.EQ.0K).AND.(IERR.GE.0)) GO TO 140
0055  WRITE(OUT,50)
0056  50  FORMAT("CLOSE ERROR, PROGRAM ABORTING")
0057  GO TO 9990
0058  140  CONTINUE

```

```

0059  ICODE=10
0060  WRITE (OUT,95)
0061  95  FORMAT ("INPUT NAME OF PROGRAM TO SCHEDULED" )
0062  C  READ PROGRAM NAME FROM TTY
0063  READ (IN,96) IPNAM
0064  96  FORMAT (3A2)
0065  REG= REXEC(ISTAT,ICODE,IPNAM)
0066  IF (ISTAT.EQ.0K) GO TO 150
0067  WRITE(OUT,80) ISTAT
0068  80  FORMAT("SCHEDULE COMM LINE ERROR",I6,"ABORTING")
0069  GO TO 9990
0070  150  CONTINUE
0071  IF (IA.EQ.0) GO TO 9990
0072  WRITE (OUT,90)
0073  90  FORMAT ("PROGRAM BUSY...ABORTING")
0074  9990 CALL IDLE
0075  END
** NO ERRORS*
PAGE 0003  NUMB      (FTN4--RELEASE 24177B--JULY, 1971)
0076  ENDS

```

```

PAGE 0001      (FTN4--RELEASE 24177B--JULY, 1971)
0001  C
0002  C
0003  C
0004  C
0005  C      CENTRAL PROGRAM
0006  C
0007  C
0008  C
0009  C
0010  C
0011  FTN4,L

```

```

0012      PROGRAM DEMOC
0013  C  PROGRAM TO READ FROM A FILE CALLED FILE## AND PRINT THE NUMBER
0014  C  SQUARE OF THE NUMBER, AND THE SQUARE ROOT OF THE NUMBER.
0015  C  DIMENSION IDC8(144),INAM(3),IBUF(128)
0016  C  INTEGER CRT,LPT
0017  C  CRT=6
0018  C  LPT=6
0019  C  INAM(1)=2HFI
0020  C  INAM(2)=2HLE
0021  C  INAM(3)=2H##
0022  C  WRITE (LPT,10)
0023  10  FORMAT("1NUMBER      SQUARE      SQUARE ROOT      CUBE      CUBE ROOT"/
0024  C  CALL OPEN (IDCB,IERR,INAM)
0025  C  IF(IERR,GE,0) GO TO 100
0026  C  WRITE (CRT,20)
0027  20  FORMAT(" OPEN ERROR, ABORTING")
0028  C  GO TO 9990
0029  100 CALL READF (IDCB,IERR,IBUF)
0030  C  IEOF=-12
0031  C  IF (IERR=IEOF) 105,9900,105
0032  105 CONTINUE
0033  C  IF (IERR,GE,0) GO TO 110
0034  C  WRITE (CRT,30) IERR
0035  30  FORMAT (" READ ERROR, ABORTING...ERROR WORD=",I8)
0036  C  GO TO 9900
0037  110 DO 120 I=2,IBUF(1)
0038  C  INUM=IBUF(I)
0039  C  ANUM=INUM
0040  C  ANUMS=ANUM*ANUM
0041  C  ANUMQ=ANUM*ANUM
0042  C  ANSR=0
0043  C  ANQR=0
0044  C  IF (INUM) 130,130,140
0045  140  CONTINUE
0046  C  ANSR=ANUM**1./2.
0047  C  ANQR=ANUM**1./3.
0048  130  CONTINUE
0049  C  WRITE (LPT,40) INUM,ANUMS,ANSR,ANUMQ,ANQR
0050  40  FORMAT (1X,I6,3X,F8.0,4X,F11.4,2X,F8.0,3X,F9.4)
0051  120  CONTINUE
0052  C  GO TO 100
0053  9900 WRITE(CRT,50)
0054  C  PAGE 0002 DEMOC      (FTN4--RELEASE 24177B--JULY, 1971)
0055  50  FORMAT(" END OF PROGRAM"////////)
0056  C  9990 CALL CLOSE(IDCB)
0057  C  END
** NO ERRORS*
      PAGE 0003 DEMOC      (FTN4--RELEASE 24177B--JULY, 1971)

```

APPENDIX A

COMMUNICATION DRIVER INTERFACE

This appendix has been taken from the Computer Serial Interface Kit Manual HP 12771A, Section III. It is reproduced here as an aid to the user in the construction of communication driver interfaces.

APPENDIX A

COMMUNICATION DRIVER INTERFACE

INTRODUCTION

Two general-purpose software drivers are furnished which were designed to satisfy the requirements of a wide variety of applications. This section describes driver characteristics, call sequences to the drivers, data transmission mode compatibility, and programming techniques.

DRIVER CHARACTERISTICS

The task of the drivers is to accurately transfer a word from storage in one computer system to storage in another computer system. To effect such transfers, the driver for one computer system must communicate with the driver in the other computer system, effectively using the hardware interface between computers. Since one computer may be BCS configured and the other may operate in the RTE environment, BCS and RTE drivers communicate in the same way.

CLOSED LOOP OPERATION

In closed loop operations, both cards are in the receive operating mode. The RTE driver does not use this mode for data transmissions. Both drivers use this mode for request transmissions. The transmitting computer, using one of the drivers and user-written software, transmits two driver parameters followed by the user's request parameters.

Driver parameters are two words generated by the transmitting driver for interpretation by the receiving driver. These words precede every request transmission. One word advises the request buffer length of the request transmission to follow; the second reports the data transmission mode and if data is to follow. The receiving driver checks the buffer length and data transmission mode compatibility. Data transmission mode compatibility is described later in this section.

The requests make possible the two-way communication between the user-written software in one computer and the user-written software in another computer. Request parameters provide information such as the name of the buffer to be transmitted or that is requested, the desired transmission mode (when more than one is compatible), and the length of the data block. The drivers place no restrictions on the number, format, or information content of request parameters. A request must always precede the transmission of a data block. The request may be originated by the transmitting software and immediately followed by data or by the receiving software which requested data.

The word "data" used in this section implies the information, other than requests, to be transferred from one computer to another. Data may be one word or a block of words. The data may be a user-written test program, data linearization or modification factors, data from a data acquisition system, etc.

For each word transmitted in closed loop, the receiving card checks parity. The driver software checks parity by reading the card status word. If parity is not correct, a reply to the transmitting software directs retransmission of the word. If a parity error has not occurred, the card directs transmission of the next word or ends transmission at the end of the block. The transmitting software will always wait for a reply.

OPEN LOOP OPERATION

In open loop operation, the transmitting card is in the transmit operating mode and the receiving card is in the receive operating mode. Open loop is used only for data transmissions. The words which comprise the data are transmitted with approximately ten microseconds between words. The receiving software does not reply to the words received; the transmitting software does not wait for a reply. The receiving card, however, checks parity. After receipt of the last word, the transmitting card is set to the receive operating mode and the receiving software checks parity. If any one parity error occurred during the entire open loop transmission, the transmitting software is directed to return to open loop operation and to retransmit the entire block of data words.

DMA SPECIAL OPEN LOOP OPERATION

In DMA special open loop operation, both cards are in the receive operating mode. Special open loop is used only when the transmitting computer has DMA and the receiving computer does not. The transmitting software, after transmission of a word, waits for a reply before transmitting the next word. The receiving software always directs that the next word be transmitted and never requests retransmission of the previous word. This allows a computer having the DMA capability to have transmission communication with a non-DMA (interrupt) computer. After receipt of the last word, the receiving software checks parity. If any parity error occurred during the entire open loop transmission, the transmitting software is directed to return to DMA special open loop operation and to retransmit the entire block of data words.

DATA TRANSMISSION MODES

The choice of data transmission mode is determined by system hardware (DMA or no DMA) and system operating requirements. Compatible modes are shown in Table A-7. If DMA is available, the most efficient mode is DMA open loop write to DMA open loop read. DMA is always present in the RTE system and is always used. DMA may or may not be present in a BCS system.

When transferring between a computer with DMA and a computer without DMA, the most efficient mode is DMA to dedicated open loop. This will provide the same data transfer rate as DMA to DMA at the cost of turning off the interrupt system during data transfer.

When transferring between DMA and non-DMA computers where the program cannot allow the interrupt system to be turned off in the non-DMA computer, two modes are available. They are Interrupt open loop write to DMA open loop read and DMA special open loop write to Interrupt Special open loop read.

When transferring between two non-DMA computers, the primary decision will be whether to turn the interrupt off and use a dedicated mode (provides same speed as DMA) or to leave the interrupt on in one or both computers and use the slower interrupt mode.

BCS DRIVER D.65

Open and closed loop transmissions are accomplished using interrupt, dedicated (SFS), or DMA transfers. The request receiving driver checks data transmission mode compatibility between transmitter and receiver as described later in this section. The Assembler calling sequences to the driver are summarized in Table A-1. To make a FORTRAN call possible, a subroutine named L65 is provided to set up the proper IOC calling sequences. The FORTRAN calls are summarized in Table A-2.

TRANSMIT REQUEST AND RECEIVE OR TRANSMIT DATA

This call, item 1 of Tables A-1 and A-2, must be used to pass data. The second computer will read the request with a Receive Request Only call, and after examination of the request parameters, will take appropriate action.

If one computer makes a transmit request and transmit data call, and another computer after reading the request does not wish to (or cannot) transfer the data at this time, it must reply with a STOP before other calls will be allowed by the driver. This problem is most likely to occur when polling, where the polling computer reads the request but wishes to poll another device before handling a data transfer requested by the first device. If this is attempted, the program will hangup. When the first request includes a data transfer, the transfer must be accomplished or rejected before other calls to the driver are allowed.

If, when reading the request, the driver in the second computer finds that the Receive Request call specified no or too small of a request buffer, the request will be rejected. Status in both computers would be Request Not Accepted.

After the request is read, the user program must now decide its course of action. The user has the option of declining the data transfer (too large, didn't specify size, program doesn't exist) by sending a STOP reply (Status in # 1 would show Data Transmission not initiated) or accepting with a Receive Data call.

If the data transfer request is to be accepted, the user makes a Receive or Transmit Data call. At this time the driver in the request receiving computer checks the data transmission mode information received from the initiating computer against the mode information contained in the Receive or Transmit Data call. If it finds the modes incompatible, it will send a STOP reply to the initiating computer and return to the user's program with status showing Incompatible Mode. The driver in the initiating computer will return with Data Transfer Not Initiated bit set.

NOTE

The data buffer length must be exactly the same on both ends. Therefore, if it is not known by prior definition, the length of the data block should be passed in the request parameters, retrieved by the user program in #2, and inserted in its Receive Data call.

RECEIVE OR TRANSMIT DATA ONLY

This call, item 2 of Tables A-1 and A-2, will be used to handle the data transfer requested by the Transmit Request and Receive or Transmit Data call.

NOTE

The data buffer length must be exactly the same as the data buffer length in the Transmit Request and Receive or Transmit Data call.

RECEIVE OR TRANSMIT REQUEST ONLY

This call, item 3 of Tables A-1 and A-2 can be used in various ways.

a. A Receive Request call is used to handle the request portion of a Transmit Request and Receive or Transmit Data call generated in a remote computer.

b. A Transmit Request call can be used to pass information contained in the request parameter buffer to a remote computer that would accept the information with a Receive Request call.

c. The Receive Request call is used in the BCS polling mode operation.

ENABLE LISTEN MODE

This call, item 4 of Table A-1 and A-2, enables the software listen mode. The software listen mode or the software polling mode should be established early in the user's program to allow the driver to handle requests from the other computer.

Listen mode allows a user-written BCS subroutine to be executed upon reception of an interrupt from a remote computer. The subroutine to be executed must have an entry point called INT65. Subroutine can be written in Assembler language or FORTRAN. Subroutine can have no arguments or parameters, and it must not call IOC., any library subroutines that are used anywhere else in the system, or any other non-reentrant subroutine.

Assembler language constraint is that the entry point of INT65 must be followed with a BSS of 2. Another is that before leaving INT65, the return point must be incremented by one, thus returning to P+2.

Subroutine INT65 communicates with D.65 through DIR65 and DRL65. If INT65 is written in Assembler, DIR65 must be included when user programs are loaded. If INT65 is written in FORTRAN, DIR65 and DRL65 must be included at BCS system generation. In Assembler, driver calls are made to DIR65. In FORTRAN, driver calls are made to DRL65.

If more than one computer serial interface card requires a listen mode environment, additional requirements must be met. The primary requirement is that D.65, DIR65 and perhaps DRL65 must be repeated for each computer serial interface card, requiring listen mode. BCS generation does not allow duplicate drivers; therefore, the additional drivers must be entered with new designators. This is done by changing the name of D.65 to D.XX, where XX is 40 to 77 and not used by any other driver in the system. The names of DIR65 and DRL65 must also be changed to XX. All entry and exit points must be changed to reflect the new number. Subroutine INT65 must be written as INTXX and its references to DIRXX and DRLXX must use the same number.

The user-written subroutine INT65 will normally read the request, set things in order, and read the transmitted data or transmit data. Since calls to IOC (or any of the standard features of BCS) may not be made (during the running of program INT65), driver D.65 provides call sequences which are direct calls to the driver. These calls are like the Assembler calls to D.65 in Table A-1 but are called by a JSB to DIR65. A FORTRAN example is provided in the description of the sample program at the end of this section. The format is as follows:

NAM	INT65	
NOP		
NOP		
NOP		
JSB	DIR65	
OCT	XX1YY	
JMP	Reject Address	
DEF	BUFF	
DEC	3	
•		
•		
BUFF	OCT	IMODE
DEF		IDBUF
DEC		IDBFL
•		
•		
ISZ	INT65	
JMP	INT65,I	

ENABLE POLLING MODE

The polling mode (item 5 of Tables A-1 and A-2) is available to BCS and D.65 only. This mode allows D.65 to service as many computer serial interface cards as are installed in the computer card cage. In the polling mode, the user's program checks each communication card with a Read Request call. If no request has been received, the driver returns with status bit 6 set denoting "No Request Received". If a request has been received, the driver will handle the request as a normal request transfer.

Figure A-1 provides an abbreviated example of a program which may be used to poll three computer serial interface cards. The example includes only the complete polling of the card in I/O slot 15 and omits program segments where actions taken depend on user/programmer requirements and decisions. A useful addition to the program shown would be a counter which allows the clearing of the device and the re-enabling of the polling on an error to occur a limited number of times before remedial action is indicated.

TRANSMIT STOP REPLY

This call (item 6 of Tables A-1 and A-2) is returned when a request is read and the driver cannot handle it. Possible reasons for transmitting a STOP are:

- A request parameter is in error.
- A transmit request and transmit data call is received. For some reason, the driver cannot handle the call. A transmit STOP reply is returned to halt the data transfer at this time.

Table A-1. D.65 Assembler Calling Sequences

1. Transmit Request and Receive or Transmit Data			2. Receive or Transmit Data Only			3. Receive or Transmit Request Only		
JSB .IOC.			JSB .IOC.			JSB .IOC.		
OCT XX1YY			OCT XX1YY			OCT XX1YY		
JMP Reject Address			JMP Reject Address			JMP Reject Address		
DEF BUFF			DEF BUFF			DEF BUFF		
DEC 5			DEC 3			DEC 3		
⋮			⋮			⋮		
BUFF OCT IMODE			BUFF OCT IMODE			BUFF OCT IMODE		
DEF IDBUF			DEF IDBUF			DEF IRBUF		
DEC IDBFL			DEC IDBFL			DEC IRBFL		
DEF IRBUF								
DEC IRBFL								

Where:

XX = 10 for READ (receive)

XX = 20 for WRITE (transmit): See note.

YY = Device reference number

IDBUF = Buffer for data storage

IDBFL = Data buffer length; a positive number of words

IRBUF = Buffer for request storage

IRBFL = Request buffer length; a positive number of words

IMODE = Two octal digits, AB, where "A" is the data transmission mode and "B" is the driver submode.

A = 0 for DMA open loop (READ and WRITE)

A = 1 for DMA special open loop (WRITE only)

A = 2 for dedicated open loop (READ and WRITE)

A = 3 for interrupt open loop (WRITE only)

A = 4 for interrupt special open loop (READ only)

A = 5 for interrupt closed loop (READ and WRITE)

B = 0 for call sequence "1" above

B = 1 for call sequence "2" above

B = 2 for call sequence "3" above

4. Enable Listen Mode			5. Enable Polling Mode			6. Transmit STOP reply		
JSB .IOC.			JSB .IOC.			JSB .IOC.		
OCT 302YY			OCT 303YY			OCT 301YY		
JMP Reject Address			JMP Reject Address			JMP Reject Address		
7. Clear Request			8. Status Request			NOTE		
JSB .IOC.			JSB .IOC.			The XX of the OCT pseudo instruction is 21 for buffered IOC transmissions and 31 for items 4, 5, and 6. For example, 211YY for item 1 instead of 201YY and 312YY for item 4 instead of 302YY.		
OCT 000YY			OCT 400YY					
Where:								
YY = Device reference number.								

Table A-2. D.65 Call Sequences (FORTRAN)

Call	Calling Sequence
1. Transmit Request and Receive or Transmit Data	CALL L65 (IRW, IDVN, IMODE, IDBUF, IDBFL, IRBUF, IRBFL)
2. Receive or Transmit Data Only	CALL L65 (IRW, IDVN, IMODE, IDBUF, IDBFL)
3. Receive or Transmit Request Only	CALL L65 (IRW, IDVN, IMODE, IRBUF, IRBFL)

Where:

IRW = Request code

IRW = 1 for READ (receive)

IRW = 2 for WRITE (Transmit)

IDVN = Device reference number.
See note 1.

IDBUF = Buffer for data storage

IDBFL = Data Buffer length; a positive number of words

IRBUF = Buffer for request storage;

IRBFL = Request buffer length; a positive number of words

IMODE = Two octal digits, AB, where "A" is the data transmission mode and "B" is the driver submode.

A = 0 for DMA open loop (READ and WRITE)

A = 1 for DMA special open loop (WRITE only)

A = 2 for dedicated open loop (READ and WRITE)

A = 3 for interrupt open loop (WRITE only)

A = 4 for interrupt special open loop (READ only)

A = 5 for interrupt closed loop (READ and WRITE)

B = 0 for call sequence "1" above

B = 1 for call sequence "2" above

B = 2 for call sequence "3" above

Call	Calling Sequence
4. Enable Listen Mode	CALL L65 (IRW, IDVN)
5. Enable Polling Mode	CALL L65 (IRW, IDVN)
6. Transmit STOP Reply	CALL L65 (IRW, IDVN)
7. Clear Request	CALL L65 (IRW, IDVN)
8. Status Request	CALL L65 (IRW, IDVN, ISTAT, ITRLG)

Where:

IRW = Request code

IRW = 6 for transmit STOP reply

IRW = 0 for clear request

IDVN = Device reference number. See note 2.

IRW = 3 for status request

ISTAT = EQT entry word 2 returned for status call

IRW = 4 for enable polling mode

ITRLG = EQT entry word 3 returned for status call

IRW = 5 for enable listen mode

NOTES: 1. If buffered IOC is used, the priority bit 9 of the IDVN word must be set for WRITE requests.
 2. If buffered IOC is used, the priority bit 9 of the IDVN word must be set for items 4, 5 and 8 (IRW = 5, 4, or 3).

```

FTN,A,B,L
C COMPUTER SERIAL INTERFACE CARDS ARE IN
C T/O SLOTS 15, 16, 17. THIS IS A POLLING
C MODE EXAMPLE. CLEAR DRIVER AND INITIALIZE
C CARDS WITH CLEAR REQUESTS-IRW=0
    CALL L65(0,15B)
    CALL L65(0,16B)
    CALL L65(0,17B)
C ENABLE POLLING MODE-IRW=4
    CALL L65(4,15B)
    CALL L65(4,16B)
    CALL L65(4,17B)
C POLL SLOT 15 WITH RECEIVE REQUEST ONLY
    CALL L65(1, 15B, 12, IRBUF, 3)
C CHECK DEVICE STATUS
    10 CALL L65(3, 15B, ISTAT, ITRLG)
C IF DEVICE IS BUSY CHECK STATUS AGAIN
    20 IF(ISTAT) 10, 30
C CHECK FOR SUCCESSFUL COMPLETION
    30 IF(CIAND (ISTAT, 1)) 100, 100, 40
C A STATEMENT LABELLED 40 MUST INITIATE APPROPRIATE
C ACTION. FOR EXAMPLE, CHECK ITRLG FOR NUMBER OF
C REQUEST PARAMETERS PASSED. INTERPRET REQUEST PARAMETERS
C AND TAKE ACTION. IF THE CALL IS A REQUEST AND
C DATA TRANSFER CALL, THE DATA TRANSFER MUST BE DONE
C OR REJECTED BEFORE POLLING CAN CONTINUE.
    .
    .
    .
C IF NOT SUCCESSFUL COMPLETION, CHECK BIT 6 OF ISTAT
C TO SEE IF REQUEST WAS RECEIVED
    100 IF (CIAND (ISTAT, 100)) 120, 120, 200
C IF BIT 6=1, NO REQUEST WAS RECEIVED. A STATEMENT
C LABELLED 200 SHOULD CONTINUE USER PROGRAM. IF BIT
C 6=0, CHECK BIT 7 FOR BROKEN LINE AND BIT 5 FOR
C PARITY ERROR
    120 IF (CIAND (ISTAT, 24000)), 130, 200, 130
C FOR EITHER ERROR CLEAR THE DEVICE AND RE-ENABLE
C POLLING
    130 CALL L65 (0, 15B)
    140 CALL L65 (4, 15B)
    GO TO 200
200 CONTINUE
C POLL SLOT 16, THEN SLOT 17 AS FOR SLOT 15
    CALL L65 (1, 16B, 12, IRBUF, 3)
    .
    .
    .

```

Figure A-1. Typical Polling Mode Program

c. A system is too busy to receive or transmit data at this time.

CLEAR REQUEST

This is a standard BCS clear request to terminate any request being processed and clear the driver. This call must be used carefully. The call clears the driver and initializes the I/O card. Communication with the other computer, if in process, will be disrupted. This call also turns off the listen mode or polling mode. This call should be the first call to the driver after computer power turn on.

STATUS REQUEST

The user-written program should check status after the use of any call which results in the transmission or reception of data or request parameters. The calls are items 1, 2, 3, and 6 of Table A-1 and A-2. The status request returns with EQT entry word 2 and 3. The bits of interest are bit 15 and bits 0 through 7 of EQT entry word 2. See Table A-3.

First check that bit 15 is clear (the computer serial interface card is not busy). Status is not updated by the driver until the request is terminated because of completion or because of an error. Then check that bit 0 is set to verify satisfactory completion of the call. The program may then be continued. If bit 0 is clear denoting an unsatisfactory completion, a jump to a user-written subroutine to check the remaining bits is required.

EQT entry word No. 3 is the transmission log. Bit 15 is 1 at all times for this application and must be masked before operating on the transmission log. Bits 0 through 14 is a log of the number of words transmitted. The value is given as a positive integer. The value is stored only when the request is completed, that is, when all data is transmitted or a transmission error is detected.

RTE DRIVER DVR65

All data transmissions are accomplished using DMA transfers. The request receiving driver checks data transmission mode compatibility between transmitter and receiver. The Assembler calling sequences are summarized in Table A-4. To make a FORTRAN call possible, a subroutine named DLK65 is provided to set up proper IOC calling sequences. The FORTRAN calls are summarized in Table A-5.

TRANSMIT REQUEST AND RECEIVE OR TRANSMIT DATA.

This call, item 1 of Tables A-4 and A-5, must be used to pass data. The second computer will read the request with a Receive Request Only call and, after examination of the request parameters, will take appropriate action.

If one computer makes a Transmit Request and Transmit Data call, and the other computer after reading the request does not wish to (or cannot) transfer the data at this time,

Table A-3. BCS Status Bit Descriptions

Bit	Set Bit Denotes	Descriptions
0	Request Success-fully completed.	Call has been completed; no errors detected.
1	Request Not Accepted.	Request buffer length too long for receiving computer or receiving computer not initialized to accept requests.
2	Transmission Mode Incompatible.	Transmitter and receiver data transmission modes are not compatible. This bit is set in request receiving computer only. Sending computer will get Data Transmission Not Initiated bit set.
3	Data Trans-mission Not Initiated.	Data transmission mode incompatible (request originating computer only) or data transmission refused by STOP reply.
4	Simultaneous Request.	Response to a request was another request. Both transmitter and receiver will show the same status. Both may try again or one may wait, and one try again as determined by user's program.
5	Parity Error.	Eight consecutive parity errors have been detected. Request is terminated. Line may be open or hardware has failed.
6	No Request Received.	Used in polling mode. A receive request call has been made when there was no request to read.
7	Broken line.	Communication line is open or power removed from remote computer. BCS turns device off.

it must reply with a STOP before other calls to the device will be allowed. If any other action is attempted, bit 1, Request Not Initiated, of the status word will be set. When the first request includes a data transfer, the transfer must be accomplished or rejected before other calls to the driver are allowed.

If when reading the request, the driver in the second computer finds that the Receive Request call specified no or too small of a request buffer, the request will be rejected. Status in both computers would be Request Not Accepted.

Table A-4. DVR65 Call Sequences (Assembler)

1. Transmit Request and Receive or Transmit Data	2. Receive or Transmit Data Only	3. Receive or Transmit Request Only	
JSB EXEC DEF *+6 DEF IRW DEF IDVN DEF BUFF DEF BUFFL DEF IMODE ● BUFF DEF IDBUF DEC IDBFL DEF IRBUF DEC IRBFL BUFFL DEC 4	JSB EXEC DEF *+6 DEF IRW DEF IDVN DEF IDBUF DEF IDBFL DEF IMODE ●	JSB EXEC DEF *+6 DEF IRW DEF IDVN DEF IRBUF DEF IRBFL DEF IMODE ●	
<p>Where:</p> <p>IRW = Request code.</p> <p>IRW = 1 for READ (receive)</p> <p>IRW = 2 for WRITE (transmit)</p> <p>IDVN = Device reference number.</p> <p>IDBUF = Buffer for data storage</p> <p>IDBFL = Data buffer length</p> <p>IRBUF = Buffer for request storage</p> <p>IRBFL = Request buffer length</p>			
<p>IMODE = Two octal digits, AB, where "A" is the data transmission mode and "B" is the driver submode.</p> <p>A = 0 for DMA open loop (READ and WRITE)</p> <p>A = 1 for DMA special open loop (WRITE only)</p> <p>B = 0 for call sequence "1" above</p> <p>B = 1 for call sequence "2" above</p> <p>B = 2 for call sequence "3" above</p>			
4. Enable Listen Mode	5. Transmit STOP Reply	6. Clear Request	7. Status Request
JSB EXEC DEF *+3 DEF RCODE DEF CONWD ● RCODE OCT 3 CONWD OCT 1YY	JSB EXEC DEF *+3 DEF RCODE DEF CONWD ● RCODE OCT 3 CONWD OCT 0YY	JSB EXEC DEF *+3 DEF RCODE DEF CONWD ● RCODE OCT 3 CONWD OCT 2YY	JSB EXEC DEF *+5 DEF IRW DEF IDVN DEF ISTA1 DEF ISTA2
<p>Where:</p> <p>YY = Device reference number</p> <p>IRW = Request code.</p> <p>IRW = 13 for status request</p> <p>IDVN = Device reference number.</p>			<p>ISTA1 = EQT entry word 5 returned for status call</p> <p>ISTA2 = EQT entry word 4 returned for status call</p>

Table A-5. DVR65 Call Sequences (FORTRAN)

Call	Calling Sequence
1. Transmit Request and Receive or Transmit Data	CALL DLK65 (IRW, IDVN, IDBUF, IDBFL, IRBUF, IRBFL, IMODE)
2. Receive or Transmit Data Only	CALL EXEC (IRW, IDVN, IDBUF, IDBFL, IMODE)
3. Receive or Transmit Request Only	CALL EXEC (IRW, IDVN, IRBUF, IRBFL, IMODE)

Where:

IRW = Request code

IMODE = Two octal digits, AB, where "A" is the data transmission mode and "B" is the driver submode

IRW = 1 for READ (receive)

IDVN = Device reference number

A = 0 for DMA open loop (READ and WRITE)

IDBUF = Buffer for data storage

A = 1 for DMA special open loop (WRITE only)

IDBFL = Data buffer length; a positive number of words

B = 0 for call sequence "1" above

IRBUF = Buffer for request storage

B = 1 for call sequence "2" above

IRBFL = Request buffer length; a positive number of words

B = 2 for call sequence "3" above

Call	Calling Sequence
4. Enable Listen Mode	CALL EXEC (IRW, ICNWD)
5. Transmit STOP Reply	CALL EXEC (IRW, ICNWD)
6. Clear Request	CALL EXEC (IRW, ICNWD)
7. Status Request	CALL EXEC (IRW, IDVN, ISTA1, ISTA2)

Where:

IWR = Request code

ICNWD = Control word with device reference number YY in octal, e.g., 113B

IRW = 3 for clear request

ICNWD = 0YY for transmit STOP reply

IRW = 3 for enable listen mode

ICNWD = 1YY for enable listen mode

IRW = 3 for transmit STOP reply

ICNWD = 2YY for clear request

IRW = 13 for status request

ISTA1 = EQT entry word 5 returned for status call

IDVN = Device reference number

ISTA2 = EQT entry word 4 returned for status call

After the request is read, the user program must now decide its course of action. The user has the option of declining the data transfer (too large, didn't specify size, program doesn't exist) by sending a STOP reply (Status in #1 would show Data Transmission not initiated) or accepting with a Receive Data call.

If the data transfer request is to be accepted, the user makes a Receive or Transmit Data call. At this time the driver in the request receiving computer checks the data transmission mode information received from the initiating computer against the mode information contained in the Receive or Transmit Data call. If it finds the modes incompatible, it will send a STOP reply to the initiating computer and return to the user's program with status showing Incompatible Mode. The driver in the initiating computer will return with Data Transfer Not Initiated bit set.

NOTE

The data buffer length must be exactly the same on both ends. Therefore, if it is not known by prior definition, the length of the data block should be passed in the request parameters, retrieved by the user program in #2, and inserted in its Receive Data call.

RECEIVE OR TRANSMIT DATA ONLY

This call, item 2 of Tables A-4 and A-5, will be used to handle the data transfer request by the Transmit Request and Receive or Transmit data call.

NOTE

The data buffer length must be exactly the same as the data buffer length in the Transmit Request and Receive or Transmit Data call.

RECEIVE OR TRANSMIT REQUEST ONLY

This call, item 3 of Tables A-4 and A-5 can be used in various ways.

- A Receive Request call is used to handle the request portion of a Transmit Request and Receive or Transmit Data call generated in a remote computer.
- A Transmit Request call can be used to pass information contained in the request parameter buffer to a remote computer that would accept the information with a Receive Request call.

ENABLE LISTEN MODE

This call, item 4 of Tables A-4 and A-5, enables the software listen mode. This call enables the driver to accept requests from the other computer on interrupts. If this call is made after the driver has been enabled, it will have no effect.

TRANSMIT STOP REPLY

This call (item 5 of Tables A-4 and A-5) is returned when a request is read and the driver cannot handle it. Possible reasons for transmitting a STOP are:

- A request parameter is in error.
- A transmit request and transmit data call is received. For some reason, the driver cannot handle the call. A transmit STOP reply is returned to halt the data transfer at this time.
- A system is too busy to receive or transmit data at this time.

CLEAR REQUEST

The clear request is used to clear busy flags in the device equipment table. If the interrupt scheduled program was aborted while the driver was handling that device, the clear call needs to be executed on that device to allow normal operation to resume. The clear call is also used if the RTE has downed the device; i.e., open line. A suggested method for implementation of the clear call is a special program, activated only from the system console, that issues a clear call to the device. To make this program general purpose, i.e., applicable to all computer serial interface cards in the computer, it could request the device reference number to be input from the system console. The clear call can also be used to disable the listen mode and proceed to a polling mode.

POLLING MODE

DVR65 now has a polling mode capability. The Clear Request is used to disable the listen mode and proceed to a polling mode. This mode allows DVR65 to service as many computer serial interface cards as are installed in the computer card cage. In the polling mode, the user's program checks each communication card with a Read Request call. If no request has been received, the driver returns with status bit 2 set denoting "No Request Received". If a request has been received, the driver will handle the request as a normal request transfer.

STATUS CALL

The call to EXEC for status returns EQT word 5 and EQT word 4. It does not return with the transmission log. If more than one program is using the same device, the status returned may apply to an I/O call made by the other program rather than the I/O call that preceded the status call in this program. To by-pass these areas, another means of obtaining status is provided.

When the RTE returns to a program from an I/O call, it returns with EQT word 5 in the A Register and the transmission log in the B Register. If the program is written in Assembler language, all one needs to do is save the A and B Registers in some storage location.

Table A-6. RTE Status Bit Descriptions

Bit	Set Bit Denotes	Status Description
0	Request Completed.	Call has been completed with no errors detected.
1	Request Not Initiated.	Request not initiated because driver is busy or is currently receiving or replying to a request.
2	Request Not Accepted or Received.	Request buffer length too long for receiving computer or receiving computer is not initialized to accept the request. In polling mode Request not received.
3	Transmission Mode Incompatible.	Transmitter and receiver data transmission modes are not compatible. This bit is set in the request receiving computer only. Sending computer will get the Data Transmission Not Initiated bit set.
4	Data Transmission Not Initiated.	Data transmission mode incompatible (request originating computer only) or data transmission rejected by a STOP reply.
5	Simultaneous Requests	Response to a request was another request. Both transmitter and receiver will show the same status. Both may try again or, one may wait and the other may try again as determined by user's program.
6	Parity Error	Eight consecutive parity errors have been detected. Request is terminated. (Line may be open or hardware has failed.)
7	Broken Line	Communication line is open or power is removed from the remote computer. RTE down the device.

If the program is in FORTRAN, the information can be saved as follows:

```
DIMENSION IREG(2)
EQUIVALENCE (REG, IA, IREG(1)),
              (IB, IREG(2))
```

Locations IA and IB will then contain the status word and transmission log, respectively, then driver calls are made as:

```
REG=EXEC (as required for type of call
desired)
or
REG=DLK65 (IRW, IDVN, IDBUF, IDBFL,
IRBUF, IRBFL, IMODE)
```

See Table A-6 for RTE status bits.

Check that bit 0 is set to verify satisfactory completion of the call. The program may then be continued. If bit 0 is clear denoting an unsatisfactory completion, a jump to a user-written subroutine to check the remaining bits is recommended.

DATA TRANSMISSION MODE COMPATIBILITY

When the driver transmits request parameters, the desired data transmission mode is included. The receiving driver stores the request parameters and, when called to transmit or receive data, compares the choice of transmission mode with the previously entered transmission mode for compatibility. If the transmission modes are not compatible, the receiving driver rejects the call.

Data transmission mode compatibility is summarized in Table A-7. A data receiver must be in a data transmission mode which allows it to keep pace with the data transmitter.

Table A-7. Data Transmission Mode Compatibility

1. DMA Open Loop (WRITE) requires a compatible:
a. DMA Open Loop (READ) or
b. Dedicated Open Loop (READ).
2. Dedicated Open Loop (WRITE) requires a compatible:
a. DMA Open Loop (READ) or
b. Dedicated Open Loop (READ).
3. Interrupt Open Loop (WRITE) requires a compatible:
a. DMA Open Loop (READ) or
b. Dedicated Open Loop (READ).
4. DMA Special Open Loop (WRITE) requires a compatible Interrupt Special Open Loop (READ).
5. Interrupt Closed Loop (WRITE) requires a compatible Interrupt Closed Loop (READ).

APPENDIX B**CORE MAPS**

This Appendix contains the following:

- B-1 91701 Terminal Core Allocation Map
- B-2 24K Central Core Allocation Map
- B-3 32K Central Core Allocation Map

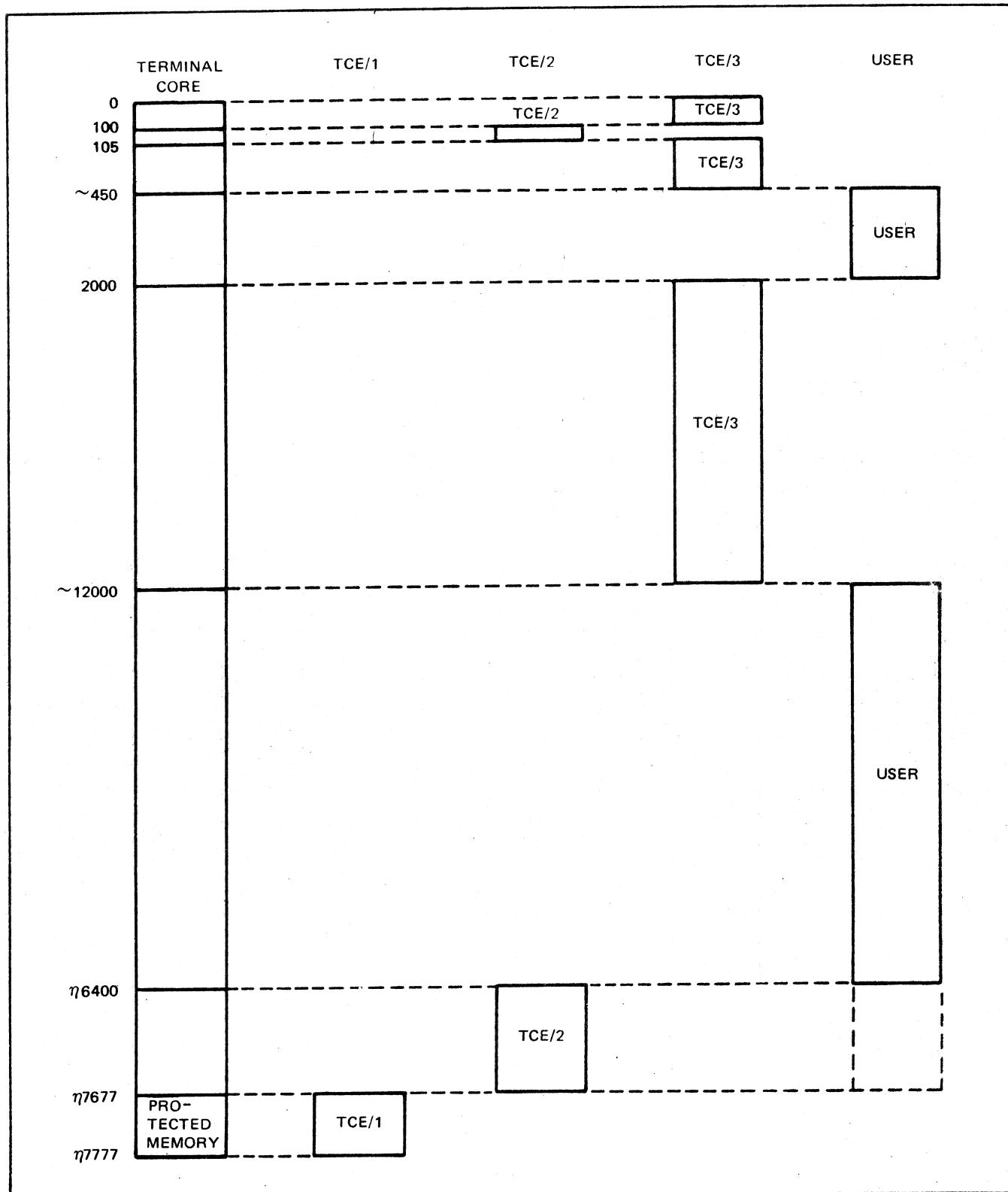


Figure B-1. 91701 Terminal Core Allocation

	BASIC BINARY LOADER	
57700		
46354	LSTEN FMGR SXL LOADER RTE LOADER EDITOR 91701 PROGRAMS FORTRAN IV ALGOL ASMB	BACKGROUND DISC RESIDENT
42000		
	SYSTEM AVAILABLE MEMORY	BUFFER AREA
33312		
	USER AREA 91701 TERMINAL CONTROL PROGRAMS	FOREGROUND DISC RESIDENT
32032		
	D.RTR QUEUE	FOREGROUND CORE RESIDENT
27270		
	PRTN .ENTR QUDIS	RESIDENT LIBRARY
26373		
		SYSTEM TABLES
21102		
21076	DVR70 DLK65 DVR65 DVR31 DVR23 DVR00	SYSTEM I/O DRIVERS
14043		
10762	RTIOC SCHED EXEC	SYSTEM PROGRAMS
2000		
1650	SYSTEM POINTERS	
1100	BKDR LINKS	
413	FGDR LINKS	
407	FGCR LINKS	BASE PAGE
375	LIBRARY LINKS	
100	SYSTEM LINKS	
0	INTERRUPT LINKS	

Figure B-2. 24K Central Core Allocation Map

	BASIC BINARY LOADER	
77700		
77677	LSTEN FMGR SXL LOADER RTE LOADER EDIT FORTRAN IV ALGOL ASMB DLIST PROGL	BACKGROUND DISC RESIDENT
47000		
	SYSTEM AVAILABLE MEMORY	
42235		BUFFER AREA
	USER AREA 91701 PROGRAMS	
		FOREGROUND DISC RESIDENT
34204	D.RTR ERR TAM DISP QUEUE	FOREGROUND CORE RESIDENT
31067		RESIDENT LIBRARY
30172		SYSTEM TABLES
21076 17203 16012 15207 14043	DVR70 DVR65 DVR31 DVR23 DVR00	SYSTEM I/O DRIVERS
10762 3570 2000	RTIOC SCHED EXEC	SYSTEM PROGRAMS
1650 1100 753 730 375 100 0	SYSTEM POINTERS BKDR LINKS FGDR LINKS FGCR LINKS LIBRARY LINKS SYSTEM LINKS INTERRUPT LINKS	BASE PAGE

Figure B-3. 32K Central Core Allocation Map

APPENDIX C

SYSTEM TABLES

This Appendix contains the following tables:

- C-1. RTE Equipment Table (EQT)
- C-2. Cartridge Directory
- C-3. File Directory

Table C-1. RTE Equipment Table

The Equipment Table (EQT) contains an entry for each device recognized by RTE (these entries are established by the user when the RTE System is generated). These EQT entries reside in the permanent core-resident part of the system and have the format:

WORD	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	DEVICE SUSPEND LIST POINTER															
2	DRIVER "INITIATION" SECTION ADDRESS															
3	DRIVER "COMPLETION" SECTION ADDRESS															
4	D	B	RE-SERVED	S	T	RESERVED		UNIT #		CHANNEL #						
5	AV	EQUIP. TYPE CODE					STATUS									
6	CONWD (CURRENT I/O REQUEST WORD)															
7	REQUEST BUFFER ADDRESS															
8	REQUEST BUFFER LENGTH															
9	TEMPORARY, DISC TRACK #, OR OPTIONAL PARAMETER															
10	TEMPORARY, DISC SECTOR #, OR OPTIONAL PARAMETER															
11	TEMPORARY STORAGE FOR DRIVER															
12	TEMPORARY STORAGE FOR DRIVER															
13	TEMPORARY STORAGE FOR DRIVER															
14	DEVICE TIME-OUT VALUE															
15	DEVICE TIME-OUT CLOCK															

Legend:

D = 1 if DMA is required.
 B = 1 if automatic output buffering is used.
 S = 1 if a driver is to process time-out on this device.
 T = 1 if the device timed out (system sets to zero before each I/O request).
 UNIT = fast sub-channel addressed.
 CHANNEL = I/O select code for the device (lower number if a multi-board interface).
 AV = Available indicator.
 Ø = Available for use.
 1 = Disabled (down).
 2 = Busy (currently in operation).
 3 = Waiting for an available DMA channel.

EQUIP. TYPE CODE = Type of device. When this number is linked with "DVR", it identifies the device's software driver routine:
 ØØ to 07 = Paper tape devices (or system control devices)
 00 = Teleprinter (or system keyboard control device).
 01 = Photo reader.
 02 = Paper tape punch.
 1Ø to 17 = Unit record devices.
 10 = Plotter.
 12 = Line printer.
 2Ø to 37 = Magnetic tape/Mass storage devices.
 30 = Fixed head disc or driver.
 31 = Moving head disc.
 4Ø to 77 = Instruments.

Table C-2. Cartridge Directory

The Cartridge Directory is located on the first two sectors of the last track on the system cartridge (LU2). It contains big pointers to all mounted cartridges within FMD.

<u>Sectors</u>	<u>Word</u>	<u>Contents</u>
Ø/1	Ø	LU first cartridge
	1	Last track for FMP
	2	Label word
	3	Lock word
	4	LU second cartridge etc. ⋮
		Ø – end of cartridge spec (up to 31 cartridges)
124	Ø	
125		Set up (initialized) code word
126		Set up security code
127		Spare

Word 125 is the sum of the words in locations 1650 through 1657, and 1742 through 1764.

This order of cartridges can be changed. Refer to the RC Command in the Central Computer operator Requests.

Lock word is either Ø (not locked), or ID segment address of locking program. Only FMGR locks the cartridge in supported software. Locked cartridges are available only to the locker; to others they are considered not mounted.

Table C-3. File Directory

The first entry in Each File Directory is the specification entry for the cartridge itself. Each entry is 16 words long in the format shown below. The directory starts on the last FMP track of each cartridge in sector 0 for all but the system cartridge (LU2), on which it starts in the next logical directory block.

WORD	
SPECIFICATION ENTRY	0 SIX CHARACTER
	1 INFORMATION
	2 PACK LABEL
	3 LABEL WORD (POSITIVE INTEGER)
	4 FIRST AVAILABLE TRACK
	5 NEXT AVAILABLE SECTOR
	6 NUMBER OF SECTORS PER TRACK
	7 LAST AVAILABLE TRACK FOR FILES
	8 NEGATIVE OR NUMBER OF TRACKS IN DIRECTORY
	9 NEXT AVAILABLE TRACK
	10 FIRST BAD TRACK (OR ZERO)
	11 SECOND BAD TRACK (OR ZERO)
	12 THIRD BAD TRACK (OR ZERO)
	13 FOURTH BAD TRACK (OR ZERO)
	14 FIFTH BAD TRACK (OR ZERO)
	15 SIXTH BAD TRACK (OR ZERO)

Each cartridge has a short label (one word) and a long label. The short label is used for addressing the cartridge; the long label (six ASCII characters), is never used by the FMP and is only used for further ID when listing directories.

The sign bit is set on word 1.

The directory sector address is obtained from the block address by the following formula:

Sector address = (block *14) mode #S/T
where #S/T is the number of sectors per track. Directory blocks are 128 words long.

File entries succeed the specification entry. There is a sixteen word file entry for each file. Words 3 and 7 are different for type 0 files.

Table C-3. File Directory (Continued)

WORD	
FILE ENTRY	0 NAME (CHARACTERS 1 AND 2 OR FILE NAME)
	1 NAME (CHARACTERS 3 AND 4 OR FILE NAME)
	2 NAME (CHARACTERS 5 AND 6 OR FILE NAME)
	3 FILE TYPE
	4 TRACK
	5 EXTENT/SECTOR
	6 NUMBER OF SECTORS IN FILE
	7 RECORD LENGTH (TYPE 2 FILES ONLY)
	8 SECURITY CODE
	9 OPEN FLAG
	10 OPEN FLAG
	11 OPEN FLAG
	12 OPEN FLAG
	13 OPEN FLAG
	14 OPEN FLAG
	15 OPEN FLAG
WORD	
TYPE 0 FILE ENTRY	0 NAME (CHARACTERS 1 AND 2 OF FILE NAME)
	1 NAME (CHARACTERS 3 AND 4 OF FILE NAME)
	2 NAME (CHARACTERS 5 AND 6 OF FILE NAME)
	3 Ø (TYPE)
	4 LOGICAL UNIT NUMBER
	5 END OF FILE NUMBER
	6 SPACING LEGAL CODE
	7 READ/WRITE CODE
	8 SECURITY CODE
	9 OPEN FLAG
	≈
	15 OPEN FLAG

Legend:

END OF FILE NUMBER is specified at creation.

Table C-3. File Directory (Continued)

Legend (Continued):

SPACING LEGAL CODE

Bit 15 = 1 Backspace legal

Bit \emptyset = 1 Forward space legal

READ/WRITE CODE

Bit 15 = 1 input legal

Bit \emptyset = 1 output legal

If word 1 = \emptyset the end of the directory reached.

If word 1 = -1, the entry was purged.

The open flags are either zero (not open), or are the ID address of the program the file is opened to.

Each time a file is opened the ID tables for each program that already has the file open are checked to see if the program is dormant. If dormant, i.e., if the point of suspension is zero, or if open to the caller, the open flag is set to zero. This does not close the DCB, nor does it post a possibly unwritten record.

APPENDIX D

RECORD FORMATS AND CONTROL BLOCKS

This Appendix contains the following:

- D-1 Data Control Block Format**
- D-2 File ID Information Format**

Table D-1. Data Control Block Format

The Data Control Block (DCB) is a 144-word array which the central user must supply and which the 91701 software provides at the terminal. One DCB is required for each open file. The DCB is used to 1) prevent unnecessary directory accesses, 2) keep track of current position

within a file, and 3) provide a packing/unpacking buffer. The DCB is free for other use after a PURGE, CLOSE and NAMF call at central. Once a file is open, the DCB is used to reference the file, the name no longer being needed or used.

WORD	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	TRACK OR LOGICAL UNIT OF FILE DIRECTORY															
1	OFFSET OR SECTOR OF FILE DIRECTORY ENTRY															
2	FILE TYPE															
3	TRACK															
4	SECTOR															
5	NUMBER OF SECTORS IN FILE															
6	TYPE 2 FILE RECORD LENGTH															
7	STANDARD DCB	SECURITY CODE														OPEN MODE
8		NUMBER OF SECTORS PER TRACK														
9		OPEN/CLOSE FLAG														
10		CURRENT TRACK LOCATION														
11		CURRENT SECTOR LOCATION														
12		LOCATION OF NEXT WORD														
13	BUFFER FLAG	READ FLAG														WRITE FLAG
14		RECORD COUNT														
15		EXTENT NUMBER														
16		BUFFER 128 WORDS														
143																

LEGEND:

SECURITY CODE

1 = Codes Agree
0 = Codes Do Not Agree

BUFFER FLAG

0 = Not In Core
1 = In Core

OPEN MODE

1 = Update Open
0 = Standard Open

READ FLAG

1 = If EOF Read
0 = If EOF Not Read

OPEN-CLOSE FLAG

open = ID Segment Address
close ≠ ID Segment Address

WRITE FLAG

1 = Written On
0 = Not Written On

Table D-1. Data Control Block Format (Continued)

WORD	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	TRACK OR LOGIC UNIT OF FILE DIRECTORY															
1	OFFSET OR SECTOR OF FILE DIRECTORY ENTRY															
2	FILE TYPE															
3	0															
4	LOGICAL UNIT NUMBER															
5	END-OF-FILE CODE															
6	LEGAL SPACE CODE															
7	READ/WRITE CODE															
8	NUMBER OF SECTORS PER TRACK															
9	OPEN/CLOSE FLAG															
10	CURRENT TRACK NUMBER															
11	CURRENT SECTOR NUMBER															
12	LOCATION OF NEXT WORD															
13	BUFFER FLAG	READ FLAG														WRITE FLAG
14	RECORD COUNT															
15	EXTENT NUMBER															
16	BUFFER 128 WORDS															
143																

LEGEND:

END-OF-FILE CODE

01xx for Magnetic Tape

10xx for Paper Tape

11xx for Line Printer

NOTE: xx = Logical Unit Number

LEGAL SPACE CODE

1 = Backspace Legal
1 = Forward Legal Space

READ/WRITE CODE

Bit 15 = 1 Input Legal
Bit 0 = 1 Output Legal

There are three basic kinds of disc files:

FIXED RECORD LENGTH FILES

Type 1 and 2 files will be written as presented. They will be packed and may cross sector and track boundaries.

RANDOM LENGTH FILES

Type 3 and above records will be preceded and followed by a length word which contains the length of the record

exclusive of the two length words. A 0 length record will consist of two zero words. An end of file will be indicated by a -1 for the length.

SAVE PROGRAM FILES

Save program files are created by the SP File Manager command as type 6 files; however, they will always be accessed as type 1.

Table D-2. File ID Information Format

The first two sectors of any file are used to store ID information on the program as follows:

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0																
	-1 (EOF IF NOT FORCED TO TYPE 1)															
1																
	NOT USED															
5																
6																
7																
	PRIMARY ENTRY POINT															
8																
	NOT USED															
13																
14																
	PROGRAM TYPE															
15																
16																
17																
	TIME PARAMETERS															
21																
22																
	LOW MAIN ADDRESS															
23																
	HIGH MAIN ADDRESS															
24																
	LOW BASE-PAGE ADDRESS															
25																
	HIGH BASE-PAGE ADDRESS															
26																
	NOT USED															
27																
	NOT USED															
28																
	CHECKSUM OF WORDS 0 THROUGH 27															
29																
	SYSTEM SETUP CORE WORD (SAME AS DISC DIRECTORY WORD 125)															
30																
	NOT USED															
127																
●																
●	THE REST OF THE FILE WILL BE AN EXACT COPY OF THE ORIGINAL PROGRAM TRACKS.															
●																

APPENDIX E

OCTAL LOADER LISTINGS

This Appendix contains the following:

- E-1 Fixed-Head Central BBDL Listing
- E-2 Moving-Head Central BBL Listing
- E-3 TCE/1 Listing

APPENDIX E
FIXED-HEAD CENTRAL BBDL LISTING

Figure E-1 below is an octal listing of the Basic Binary Disc Loader used for fixed-head RTE configurations. It resides in the protected, highest 64 words of core in the central computer. If the loader is destroyed in core, it can be replaced through the switch register using this listing. The operator simply replaces symbolic items with the value appropriate to the configuration.

	B							
	0	1	2	3	4	5	6	7
0m7700:	107700	002401	063726	006700	017742	007306	027713	002006
0m7710:	027703	102077	027700	077754	017742	017742	074000	077757
0m7720:	067757	047755	002040	027740	017742	040001	177757	037757
0m7730:	000040	037754	027720	017742	054000	027702	102011	027700
0m7740:	102055	027700	000000	006600	1037cc	1023cc	027745	1074cc
0m7750:	002041	127742	005767	027744	000000	1z0100	0200nn	000000
0m7760:	107700	063756	102606	002700	1026qq	001500	102602	063777
0m7770:	102702	102602	103706	1027nn	067776	074077	024077	177700

Figure E-1. BBDL Listing

Legend: A + B = Memory Address

- m** = 1 for 8K, 3 for 16K, 5 for 24K, 7 for 32K memory
- nn** = first disc channel
- qq** = second disc channel
- cc** = photoreader or teleprinter address
- z** = 6 for 8K, 4 for 16K, 2 for 24K, 0 for 32K memory

MOVING-HEAD CENTRAL BBL LISTING

Figure E-2 below is an octal listing of the Basic Binary Loader used for RTE Moving head disc systems at central, and for non-disc minimally-configured terminal computers. It resides in the protected, highest 64 words of core and is used for paper tape loading.

	B								
	0	1	2	3	4	5	6	7	
A	0m7700:	107700	063770	106501	004010	002400	006020	063771	073736
	0m7710:	006401	067773	006006	027717	107700	102077	027700	017762
	0m7720:	002003	027712	003104	073774	017762	017753	070001	073775
	0m7730:	063775	043772	002040	027751	017753	044000	000000	002101
	0m7740:	102000	037775	037774	027730	017753	054000	027711	102011
	0m7750:	027700	102055	027700	000000	017762	001727	073776	017762
	0m7760:	033776	127753	000000	1037cc	1023cc	027764	1025cc	127762
	0m7770:	173775	153775	1n0100	177765	000000	000000	000000	000000

Figure E-2. BBL Listing

Legend: A + B = Memory Address

cc = channel number of Punched Tape Reader

mm = \emptyset for 4K, 1 for 8K, 3 for 16K, 5 for 24K, 7 for 32K memory

n = 7 for 4K, 6 for 8K, 4 for 16K, 2 for 24K, \emptyset for 32K memory

TCE/1 LISTING

Figure E-3 below is an octal listing of the TCE/1 used in terminal computers. It normally resides in the protected, highest 64-words of terminal cord replacing BBL. If TCE/1 is destroyed in core, it can be replaced through the switch register using this listing. The operator simply replaces symbolic items with values appropriate to the configuration.

		B							
		0	1	2	3	4	5	6	7
	0m7700:	1077cc	1035cc	1025cc	067774	017741	067732	017741	007104
	0m7710:	017741	005323	106401	017741	017753	017753	017753	006021
	0m7720:	027765	017753	005727	007004	077775	017753	077776	047777
	0m7730:	017753	002041	177776	037776	067776	037775	027727	017753
	0m7740:	027714	000000	1066cc	1023cc	027743	1025cc	053772	127741
	0m7750:	053773	027742	027770	000000	1023cc	027754	1065cc	1035cc
	0m7760:	002020	002300	063772	1026cc	127753	017753	006021	002040
	0m7770:	102011	102077	170360	007417	170017	000000	000000	1z0100

Figure E-3. TCE/1 Listing

Legend: A + B = Memory Address

m = 1 for 8K, 3 for 16K, 5 for 24K, 7 for 32K memory

cc = remote computer channel

z = 6 for 8K, 4 for 16K, 2 for 24K, \emptyset for 32K memory

APPENDIX F

CONVERSION TABLES

This Appendix contains the following:

- F-1. Table of Powers of Two
- F-2. Octal-Decimal Conversion Table
- F-3. ASCII/OCTAL Table

Table F-1. Table of Powers of Two

2^n	n	2^n
1	0	1.0
2	1	0.5
4	2	0.25
8	3	0.125
16	4	0.062 5
32	5	0.031 25
64	6	0.015 625
128	7	0.007 812 5
256	8	0.003 906 25
512	9	0.001 953 125
1 024	10	0.000 976 562 5
2 048	11	0.000 488 281 25
4 096	12	0.000 244 140 625
8 192	13	0.000 122 070 312 5
16 384	14	0.000 061 035 156 25
32 768	15	0.000 030 517 578 125
65 536	16	0.000 015 258 789 062 5
131 072	17	0.000 007 629 394 531 25
262 144	18	0.000 003 814 697 265 625
524 288	19	0.000 001 907 348 632 812 5
1 048 576	20	0.000 000 953 674 316 406 25
2 097 152	21	0.000 000 476 837 158 203 125
4 194 304	22	0.000 000 238 418 579 101 562 5
8 388 608	23	0.000 000 119 209 289 550 781 25
16 777 216	24	0.000 000 059 604 644 775 390 625
33 554 432	25	0.000 000 029 802 322 387 695 312 5
67 108 864	26	0.000 000 014 901 161 193 847 656 25
134 217 728	27	0.000 000 007 450 580 596 923 828 125
268 435 456	28	0.000 000 003 725 290 298 461 914 062 5
536 870 912	29	0.000 000 001 862 645 149 230 957 031 25
1 073 741 824	30	0.000 000 000 931 322 574 615 478 515 625
2 147 483 648	31	0.000 000 000 465 661 287 307 739 257 812 5
4 294 967 296	32	0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592	33	0.000 000 000 116 415 321 826 934 814 453 125
17 179 869 184	34	0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368	35	0.000 000 000 029 103 830 456 733 703 613 281 25
68 719 476 736	36	0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472	37	0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944	38	0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888	39	0.000 000 000 001 818 989 403 545 856 475 830 078 125

Table F2. Octal-Decimal Conversion Table

OCTAL	DEC.	OCTAL	DEC.	OCTAL	DEC.	OCTAL	DEC.
.000	.000000	.100	.125000	.200	.250000	.300	.375000
.001	.001953	.101	.126953	.201	.251953	.301	.376953
.002	.003906	.102	.128906	.202	.253906	.302	.378906
.003	.005859	.103	.130859	.203	.255859	.303	.380859
.004	.007812	.104	.132812	.204	.257812	.304	.382812
.005	.009765	.105	.134765	.205	.259765	.305	.384765
.006	.011718	.106	.136718	.206	.261718	.306	.386718
.007	.013671	.107	.138671	.207	.263671	.307	.388671
.010	.015625	.110	.140625	.210	.265625	.310	.390625
.011	.017578	.111	.142578	.211	.267578	.311	.392578
.012	.019531	.112	.144531	.212	.269531	.312	.394531
.013	.021484	.113	.146484	.213	.271484	.313	.396484
.014	.023437	.114	.148437	.214	.273437	.314	.398437
.015	.025390	.115	.150390	.215	.275390	.315	.400390
.016	.027343	.116	.152343	.216	.277343	.316	.402343
.017	.029296	.117	.154296	.217	.279296	.317	.404296
.020	.031250	.120	.156250	.220	.281250	.320	.406250
.021	.033203	.121	.158203	.221	.283203	.321	.408203
.022	.035156	.122	.160156	.222	.285156	.322	.410156
.023	.037109	.123	.162109	.223	.287109	.323	.412109
.024	.039062	.124	.164062	.224	.289062	.324	.414062
.025	.041015	.125	.166015	.225	.291015	.325	.416015
.026	.042968	.126	.167968	.226	.292968	.326	.417968
.027	.044921	.127	.169921	.227	.294921	.327	.419921
.030	.046875	.130	.171875	.230	.296875	.330	.421875
.031	.048828	.131	.173828	.231	.298828	.331	.423828
.032	.050781	.132	.175781	.232	.300781	.332	.425781
.033	.052734	.133	.177734	.233	.302734	.333	.427734
.034	.054687	.134	.179687	.234	.304687	.334	.429687
.035	.056640	.135	.181640	.235	.306640	.335	.431640
.036	.058593	.136	.183593	.236	.308593	.336	.433593
.037	.060546	.137	.185546	.237	.310546	.337	.435546
.040	.062500	.140	.187500	.240	.312500	.340	.437500
.041	.064453	.141	.189453	.241	.314453	.341	.439453
.042	.066406	.142	.191406	.242	.316406	.342	.441406
.043	.068359	.143	.193359	.243	.318359	.343	.443359
.044	.070312	.144	.195312	.244	.320312	.344	.445312
.045	.072265	.145	.197265	.245	.322265	.345	.447265
.046	.074218	.146	.199218	.246	.324218	.346	.449218
.047	.076171	.147	.201171	.247	.326171	.347	.451171
.050	.078125	.150	.203125	.250	.328125	.350	.453125
.051	.080078	.151	.205078	.251	.330078	.351	.455078
.052	.082031	.152	.207031	.252	.332031	.352	.457031
.053	.083984	.153	.208984	.253	.333984	.353	.458984
.054	.085937	.154	.210937	.254	.335937	.354	.460937
.055	.087890	.155	.212890	.255	.337890	.355	.462890
.056	.089843	.156	.214843	.256	.339843	.356	.464843
.057	.091796	.157	.216796	.257	.341796	.357	.466796
.060	.093750	.160	.218750	.260	.343750	.360	.468750
.061	.095703	.161	.220703	.261	.345703	.361	.470703
.062	.097656	.162	.222656	.262	.347656	.362	.472656
.063	.099609	.163	.224609	.263	.349609	.363	.474609
.064	.101562	.164	.226562	.264	.351562	.364	.476562
.065	.103515	.165	.228515	.265	.353515	.365	.478515
.066	.105468	.166	.230468	.266	.355468	.366	.480468
.067	.107421	.167	.232421	.267	.357421	.367	.482421
.070	.109375	.170	.234375	.270	.359375	.370	.484375
.071	.111328	.171	.236328	.271	.361328	.371	.486328
.072	.113281	.172	.238281	.272	.363281	.372	.488281
.073	.115234	.173	.240234	.273	.365234	.373	.490234
.074	.117187	.174	.242187	.274	.367187	.374	.492187
.075	.119140	.175	.244140	.275	.369140	.375	.494140
.076	.121093	.176	.246093	.276	.371093	.376	.496093
.077	.123046	.177	.248046	.277	3/3036	.377	.498046

Table F-3. ASCII/OCTAL Table

ASCII Character	First Character Octal Equivalent	Second Character Octal Equivalent	ASCII Character	First Character Octal Equivalent	Second Character Octal Equivalent
A	040400	000101	/	027000	000056
B	041000	000102	.	027400	000057
C	041400	000103	:	035000	000072
D	042000	000104	;	035400	000073
E	042400	000105	<	036000	000074
F	043000	000106	=	036400	000075
G	043400	000107	>	037000	000076
H	044000	000110	?	037400	000077
I	044400	000111	@	040000	000100
J	045000	000112	[055400	000133
K	045400	000113	\	056000	000134
L	046000	000114]	056400	000135
M	046400	000115	↑	057000	000136
N	047000	000116	←	057400	000137
O	047400	000117	ACK	076000	000174
P	050000	000120	①	076400	000175
Q	050400	000121	ESC	077000	000176
R	051000	000122	DEL	077400	000177
S	051400	000123	NULL	000000	000000
T	052000	000124	SUM	000400	000001
U	052400	000125	EOA	001000	000002
V	053000	000126	EOM	001400	000003
W	053400	000127	EOT	002000	000004
X	054000	000130	WRU	002400	000005
Y	054400	000131	RU	003000	000006
Z	055000	000132	BELL	003400	000007
0	030000	000060	FE ₀	004000	000010
1	030400	000061	HT/SK	004400	000011
2	031000	000062	LF	005000	000012
3	031400	000063	V _{TAB}	005400	000013
4	032000	000064	FF	006000	000014
5	032400	000065	CR	006400	000015
6	033000	000066	SO	007000	000016
7	033400	000067	SI	007400	000017
8	034000	000070	DC ₀	010000	000020
9	034400	000071	DC ₁	010400	000021
space	020000	000040	DC ₂	011000	000022
!	020400	000041	DC ₃	011400	000023
"	021000	000042	DC ₄	012000	000024
#	021400	000043	ERR	012400	000025
\$	022000	000044	SYNC	013000	000026
%	022400	000045	LEM	013400	000027
&	023000	000046	S ₀	014000	000030
,	023400	000047	S ₁	014400	000031
(024000	000050	S ₂	015000	000032
)	024400	000051	S ₃	015400	000033
*	025000	000052	S ₄	016000	000034
+	025400	000053	S ₅	016400	000035
,	026000	000054	S ₆	017000	000036
-	026400	000055	S ₇	017400	000037

APPENDIX G

TTY EDIT FEATURES

This Appendix contains the following:

- G-1. 91701 TCE/3 D.00D TTY Driver Features
- G-2. 91701 TCE/2 TTY Driver Features
- G-3. 91701 Operator Commands Syntax for TCE/2 and TCE/3

91701 TCE/3 D.00D TTY Driver Features

A modified version of the standard BCS D.00 TTY driver is used to perform special functions for TCE/3. The calling sequences to .IOC. are the same as for the standard D.00 driver. The added features are:

- a. Keyboard input can be terminated by pressing carriage return. The driver outputs the line feed. Input of a line feed is ignored.
- b. Deletion of an entire input line (buffer load) is accomplished by pressing RUBOUT. The driver outputs a backslash, carriage return and line feed.
- c. Deletion of a character is accomplished by pressing BACKSPACE, or by holding the CTRL key down while pressing H. For the latter, the driver outputs a back-arrow.
- d. If the last character of an output buffer is a back-arrow, the carriage return-line feed is suppressed.
- e. Operator attention is accomplished by pressing the ESC (Escape) key. The driver may either be doing output, or it is enabled for input; if the latter, there may or may not be a request for input currently pending. If the driver doing

output, it is not possible using the standard buffered interface hardware, to identify which character was struck on the keyboard, although the fact that some character was struck can be determined. Therefore, when some key is struck during output, the output is suspended, and the teleprinter thrown into non-echo input. If the next key struck is ESC (Escape), control is passed to the TCE/3 operator prompt section; if the next key struck is not ESC, the output is resumed (useful to stop the CRT so it can be read). If the driver is not doing output, it is enabled for input. If input has not been requested, characters input other than ESC are echoed but otherwise ignored; the ESC key causes transfer to the TCE/3 operator prompt. If input is requested, characters other than ESC are stored in the requestor's buffer.

- f. The printing of an output line may be terminated prematurely by the operator with no effect on subsequent operation. Pressing any key causes the output to stop, as explained above. If the RUBOUT key is then pressed, it will cause the driver to output a backslash, carriage return and line feed. The only effect the caller will see is a reduced character count in the EQT status word.

91701 TCE/2 TTY Driver Features

An abbreviated version of the standard SIO non-interrupt TTY driver is coded in-line with TCE/2. It looks the same to the operator as the TCE/3 BCS D.00D driver except for the operator attention (Escape) feature and operator cancellation of output. If the user wishes to use this driver, the calling sequences are as follows:

Input from keyboard:

LDA record size in words (positive)
LDB buffer address
JSB 104B,I

On return, (B) = # characters input

Output to teleprinter:

LDA record size in words (positive)
LDB buffer address
JSB 102B,I

Note that although locations 102B and 104B are assembled with driver linkages, they are not used by TCE/2 and are available to user programs for other purposes.

- a. Keyboard input is terminated by pressing carriage return. The driver outputs the line feed. Input of a line feed is ignored.
- b. Deletion of an entire line (buffer load) is accomplished by pressing RUBOUT. The driver outputs a back-slash, carriage return and line feed.
- c. Deletion of a character is accomplished by pressing BACKSPACE or by holding the CTRL key down while pressing H. For the latter, the driver will output a back-arrow.
- d. If the last character of an output buffer is a back-arrow, the carriage return-line feed is suppressed.

91701 Operator Commands Syntax for TCE/2 and TCE/3

The keyboard syntax for TCE/2 and TCE/3 is described below.

- a. Operator commands may be input when the prompt character (colon (:)) is displayed. This is accomplished by pressing the ESC (Escape) key in TCE/3; in TCE/2, by manually restarting at the TCE/2 start address.
- b. Null input and illegal commands cause "SYNTAX ERROR" to be displayed, and another prompt character output.
- c. A blank or a comma delimits a command mnemonic (LOAD, RUN, TELLOP, etc.). Imbedded blanks within the mnemonic are not allowed.

- d. A comma delimits parameters. Imbedded blanks after the command mnemonic delimiter are ignored unless the parameter is a character string, as in the TELLOP request. Octal parameters must be preceded with an "@" sign. Except for TELLOP, parameters must be positive numeric integers less than or equal to 32767 decimal or 77777 octal.
- e. If an error is made in entering the parameters, the rubout and backspace features of the TTY driver may be used.
- f. Each request must be terminated by entering a carriage return.

APPENDIX H
HP CHARACTER SET

HP CHARACTER SET

RTE SPECIAL CHARACTERS

Mnemonic	Value	Use
SOM (Control A)	1	Backspace
S1 (2600 Backspace) (Control Y)	31	Backspace
EOT (Control D)	4	Simulated End Tape

b ₇	0	0	0	0	1	1	1	1
b ₆	0	0	1	1	0	0	1	1
b ₅	0	1	0	1	0	1	0	1
b ₄	0	0	0	0	NULL	DC ₀	B	0
b ₃	0	0	1	0	SOM	DC ₁	!	1
b ₂	0	1	0	0	EOA	DC ₂	"	2
b ₁	0	1	1	0	EOM	DC ₃	##	3
b ₀	0	1	0	0	EOT	DC ₄ (STOP)	\$	4
	0	1	0	1	WRU	ERR	%	5
	0	1	1	0	RU	SYNC	8	6
	0	1	1	1	BELL	LEM (APOS)	7	G
	1	0	0	0	FE ₀	S ₀	H	W
	1	0	0	1	HT	S ₁	X	I
	1	0	1	0	SK	S ₂	Y	E
	1	0	1	1	LF	S ₃	Z	D
	1	0	1	1	VTAB	S ₄	C	9
	1	0	0	0	FF	S ₅	K	ACK
	1	0	0	1	CR	S ₆	M	①
	1	1	0	0	SO	S ₇	N	ESC
	1	1	1	0	SI	S ₈	O	DEL

Standard 7-bit set code positional order and notation are shown below with b₇ the high-order and b₀ the low-order, bit position.

EXAMPLE: The code for "R" is: b₇ b₆ b₅ b₄ b₃ b₂ b₁ b₀

LEGEND

NULL	Null/Idle	DC ₁ -DC ₃	Device Control
SOM	Start of message	DC ₄ (Stop)	Device control (stop)
EOA	End of address	ERR	Error
ECM	End of message	SYNC	Synchronous idle
EOT	End of transmission	LEM	Logical end of media
WRU	"Who are you?"	S ₀ -S ₇	Separator (information)
RU	"Are you...?"	b	Word separator (space, normally non-printing)
BELL	Audible signal	<	Less than
FE ₀	Format effector	>	Greater than
HT	Horizontal tabulation	↑	Up arrow (Exponentiation)
SK	Skip (punched card)	↓	Left arrow (Implies/Replaced by)
LF	Line feed	↖	Reverse slant
VTAB	Vertical tabulation	↗	Acknowledge
FF	Form feed	ACK	Unassigned control
CR	Carriage return	Ø	Escape
SO	Shift out	ESC	Delete/Idle
SI	Shift in	DEL	
DC ₀	Device control reserved for data link escape		