HEWLETT hp; PACKARD

RTE Assembler

Reference Manual

2

RTE Assembler

Reference Manual

HEWLETT (hp; PACKARD

S

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

Printed in U.S.A. 5/75

PART NO. 92060-90005
PRODUCT NO. 92060A

LIST OF EFFECTIVE PAGES

Pages Effective Date
Title ..o May 1975
Hto Vi May 1975
1-160 146 oo May 1975
2-1t02-7 oo May 1975
3-1t03-18 ... May 1975
4-1t04-22 ... May 1975
ATto A3 e May 1975
B-1toB-10 ..o May 1975
C-1t0C-3 o May 1975
D-1toD-5 May 1975
El1toE-2 ... May 1975
FltoF-12o i May 1975
G1toG-3 ..o May 1975
H-1toH6.......c...ooiiiii i May 1975
I-l1toI-5. . o May 1975

PREFACE

This manual describes the Assembler which is designed to operate under control of the
RTE-III Operating System. (Refer to the Real-Time Executive-III Software System Pro-
gramming and Operating Manual, 92060-90001.)

This manual assumes that the reader is an experienced assembly language program-
mer who is familiar with operating systems.

The Assembler permits the programmer to use all supported machine instructions for
the HP 21MX Computer and it is assumed that object programs produced by the As-
sembler will be executed on an HP 21MX Computer. However, the object program may
be executed on other HP 2100 Series computers (2114, 2115, 2116, or 2100) if the
following machine and pseudo instructions are not used:

Word Processing (described in paragraph 3-5)

Byte Processing (paragraph 3-6)

Bit Processing (paragraph 3-7)

Index Register Group (paragraph 3-11)

Floating Point (paragrah 3-18)

Dynamic Mapping System (paragraph 3-19)

DBL and DBR: Define Left Byte and Define Right Byte (paragraph 4-3)
BYT: Define Octal Byte Constants (paragraph 4-4)

MIC: Define User Instruction (paragraph 4-8)

If the object programs produced by the Assembler are relocated and executed under
control of an operating system other than the RTE Operating System, the following
restrictions apply:

ENT pseudo instructions with absolute or common symbols as operands must not be
used.

I/0 instructions using externally-defined selection codes must not be used.
I/O select codes must not be defined via the ENT pseudo instruction.

Memory reference instructions must not refer to external symbols with offset values.

When assembling programs to be run under control of the Basic Control System (BCS)
(see the Basic Control System Manual, part no. 02116-90017), the following restrictions
also apply:

Absolute operands greater than 77; are illegal in relocatable programs. However,
such usage will not be diagnosed as errors by the loader; instead, it will result in
errors during execution of the object program.

The content of this manual is as follows:

Section I discusses the assembly process in general, program relocation, as-
sembly options, and assembler input and output.

Section II describes the source statement format.
Section III describes all of the available machine instructions.
Section IV describes all of the available assembler pseudo instructions.

In addition, nine appendices are supplied, as follows:

ii

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E
Appendix F
Appendix G
Appendix H

Appendix I

describes the Hewlett-Packard character set.

summarizes all of the available machine and pseudo instructions
(including instruction formats).

presents a one-sentence definition of all available machine and
pseudo instructions, arranged alphabetically by mnemonic.

presents a tabular summary of the binary format of all available
machine instructions.

describes how to run an assembly.

lists and describes all of the assembler error messages.
describes the error messages.

presents relocatable formats.

discusses the RTE Cross Reference Table Generator.

For the programmer’s convenience, a table of the powers of two is contained on the back
cover.

iv

CONTENTS

Section I Page
INTRODUCING THE ASSEMBLER
Assembly Processingc.oiiiiiii... 1-1
Symbolic Addressing 1-1
Memory Addressingccoviiiiinn.. 1-1
Paging ... 1-1
Indirect Addressing 1-2
Program Relocation e e 1-2
Program Location Counter 1-3
Source Program 1-3
Assembly Options........... ..., 1-3
Binary Output.......... ..., 1-3
Symbol Table e 1-3
List OQutput 0 .. 1-6
Section II Page
SOURCE STATEMENT FORMAT
Statement of Characteristics....................... 2-1
Field Delimiters................ccovviino.a... 2-1
Character Setcooiiiiiin ... 2-1
Statement Length 2-1
Label Field i, 2-1
Label Symbol 2-1
Asterisk ... 2-2
Opcode Fieldccoiiiiiinnnn.. 2-2
Operand Field it 2-2
Symbolic Termsccoiiiiiiiiininn... 2-2
Numeric Termscciiina.. .. 2-4
Asterisk i 24
Expression Operators 2-4
Evaluation of Expressions 2-4
Expression Terms 2-4
Absolute and Relocatable Expressions 2-4
Absolute Expressions 2-4
Relocatable Expressions 2-6
Literals ... 2-6
Indirect Addressing 2-6
Clear Flag Indicator 2-7
Comments Field 2-7
Section III Page
MACHINE INSTRUCTIONS
Memory Reference 3-1
Jump and Increment-Skip 3-1
Add, Load and Store 3-1
Logical Operationscccovvvunnn. 3-2
Word Processing (21MX Only) 3-2
Byte Processing 21MX Only) 3-2
Bit Processing 21MX Only) 3-3
Register Reference 3-4
Shift-Rotate Group 3-4
Alter-Skip Groupciiii i 3-4
Index Register Group (21IMX Only).............. 3-5
No-Operation Instruction 3-7
Input/Output, Overflow, and Halt 3-7

Input/Output ..., 3-8
Overflow 3-9
Halt ... 3-9
Extended Arithmetic Unit (EAU) 3-9
Floating Point il 3-10
Dynamic Mapping System (21MX Only) 3-10
Memory Addressingccoinn... 3-11
Status and Violation Registers 3-11
Map Segmentationc.... 3-11
Power Fail Characteristics 3-12
Protected Modeccoiiiiinnnn. 3-12
MEM Violationcoiiuiiin... 3-12
Dynamic Mapping System Instructions 3-12
Section IV Page
PSEUDO INSTRUCTIONS
Assembler Control 4-1
Object Program Linkage 4-5
Address and Symbol Definition 4-11
Constant Definition 4-14
Storage Allocationccccviiiiii... 4-19
Assembly Listing Control 4-19
Arithmetic Subroutine Calls...................... 4-20
“Jump to Microprogram” 4-21
CExample ... 4-21
Combining Multiple Mnemonics................ 4-21
Exampleo 4-21
Defining Constants 4-21
Example 4-22
Appendix A Page
CHARACTER CODES A-1
Appendix B Page
SUMMARY OF INSTRUCTIONS
Machine Instructions B-2
Memory Reference B-2
Jump and Increment-Skip B-2
Add, Load and Store......................... B-2
Logicalcoi i, B-2
Word Processingccouiiii.. B-2
Byte Processingl B-3
Bit Processing oo, B-3
Register Reference, B-3
Shift-Rotatecoiiiiiiiiias. B-3
No-Operationc.covvinnn. B4
Alter-SKipo B4
Index Register B-5
Input/Output, Overflow, and Halt B-6
Input/Output................................ B-6
Overflow . ..o e B-6
Halt ... e B-6
Extended Arithmetic Unit...................... B-6
Floating Point, B-7

CONTENTS (continued)

Memory Expansioncoia. B-7
Pseudo Instructions B-9
Assembler Controloiia.. B-9
Object Program Linkage B-9
Address and Symbol Definition B-9
Constant Definitioncoviiunn. B-10
Storage Allocation B-10
Assembly Listing Control B-10
Define User Instruction B-10
Appendix C Page
ALPHABETIC LIST OF INSTRUCTIONS C-1
Appendix D Page
CONSOLIDATED CODING SHEETS D-1
Appendix E Page
RUNNING ASSEMBLIES
Assembler I/O E-1
Assembler Operationc...ooiieo... E-1
Messages During Assembly E-2
Appendix F Page
THE FORMATTER
Inputand OQutput.......................iiiin... F-1
Recordsccoiiiiiiiiii it F-1
Formatted Input/Output F-1
Format Specifications F-4
Conversion Specifications F-4
Editing Specifications F-4
E Specification i, F-4
Output ... i F-4
Input F-5
Rules for E Field Input F-5
F Specification ...t F-5
Output ..ot i F-5
Inputcooine F-5
I Specificationccciiiiininennn, F-5
Output......oooiiiiiii i i F-5
Input ... F-6
0, K, and @ Specifications F-6
Output.......coiiiiiiiiii i F-6
Input ... F-6
A and R Specifications F-6
Output ...t i e F-6

vi

Inmput ... F-7
X Specification..............ccopiiiiiiiiiann.. F-7
Output ..ot F-7
Input ... F-7
H and “ ” Specifications (Literal Strings) F-7
Output.......coovii i F-7
Input ... F-8
/Specification F-8
How to Put Formats Together F-8
Free-FieldInput, F-9
Data Item Delimiters F-9
Floating-Point Input F-9
Octal Inputoiii i F-9
Record Terminator F-10
Comments Within Input....................... F-10
Example Calling Sequences F-10
Internal Conversioncccvvon... F-10
Buffered I/O with the Formatter F-11
Appendix G Page
ASSEMBLER ERROR MESSAGES G-1
Appendix H Page
RELOCATABLE FORMATS
NAMRecordcoviiiiiiin it H-1
ENT Recordccoiiiiiiiiiiiiiiiiinnnnn, H-2
EXTRecord.......c..covviiiiiiiiiiiiiiinnn. H-3
DBLRecord..........ovvviiiiiiiie i, H4
ENDRecordcooiviiiiiiii i, H-5
Absolute Tape Format H-6
Appendix I Page
RTE CROSS REFERENCE TABLE
GENERATOR }
Computer Configuration I-1
Functional and Operational Characteristics I-1
Output Formatccoiiiiiiiiiiin.. I-1
Pseudo Processingiiiiiiiia I-1
Double Defined Processingc.... I-1
Undefined Label Processing I-1
Unused Label Processing........................ I-2
Literal Processingcovviiiiiiiinn.n 1-2
Operation Directive, 1-2
Boundscooiiiiiiiiiiii 1-2
Sample Cross-Reference Generation I3

ILLUSTRATIONS

Title Page Title Page
Source Program 1-4 Label RPL Octal Value4-10
Symbol Table Listingcccviun.. 1-5 DEF Examples e .4-11
Label Examplesccoviiiiiiininn. 2-3 Example of Incorrect Address Modification4-11
Label Usage Exampleso.... 2-3 Loader-Assigned Locations for Figure 4-84-12
Symbolic Operand Examples 2-5 Example of Correct Address
Expression Operator Examples 2-5 Modification 4-12
Indirect Addressing Example 2-7 Loader-Assigned Locations for Figure 4-10 4-12
Clear Flag Examples.............................. 2-7 ABS Examplesccooiiiiiiiiiiiii. 4-13
Basic Memory Addressing Scheme 3-11 EQU Example ...ttt .. .4-13
Expanded Memory Addressing Scheme 3-11 EQU Examplescoiiiiiin4-14
Map Segmentationcvviiinnin.. 3-12 ASCExampleccoviiiiiiiiiiniiininn... .4-15
ORB Exampleoooiiiiiiiiiini... 4-2 DEC Examples (Integer) 4-16
ORR Example (with Single ORG) 4-3 DEC Examples (Floating Point)4-16
ORR Example (with Multiple ORG’s) 4-3 DEC Examples (Floating Point) 4-16
IFN/XIF and IFZ/XIF Example 4-4 DEX Memory Format 4-17
IFZ/XIF Examplecooiiiiiiinninnannan... 4-4 DEX Examplescccovviiiiiiniiinnenn... 4-17
COMExamplescoovvniiiiiiiiiieinnn.. 4-6 OCT Examplesccoiviinieeiiiinnninn... 4-18
ENT/EXT Examplesccoviininiuinennon... 4-7 BYT Examplesovivninnnn......4-19
EXT with Offseto, 4-8 ASCII Character Codesccoovviiinnenn.. A-1
ENT in COMmon and ENT Input Calling Sequence Selection F-2
Defining An External I/O Reference 4-8 Output Calling Sequence Selection F-3
EXT, ENT for 1/O Channel e 4-9 Buffered I/O with the Formatter F-12
TABLES
Title Page Title Page
Logical Memory Addresses/Pages 1-2 Legend for Figure A-1cciiive.. A-2
Control Statement Parameters..................... 1-5 HP 7970B BCD-ASCII Conversion................. A-3
MEM Status Register Format 3-11 Base Set Instruction Codes in Binary D-2
MEM Violation Register Format.................. 3-12 Extended Instruction Group Codes in Binary....... D-3

vii

INTRODUCING THE ASSEMBLER

SECTION

The Assembler translates symbolic source language in-
structions into an object program for execution on the com-
puter. The source language provides mnemonic machine
operation codes, assembler-directing pseudo instructions,
and symbolic addressing. The assembled program may be
absolute or relocatable.

The source program may be assembled as a complete en-
tity or it may be subdivided into several relocatable sub-
programs (or a main program and several subroutines),
each of which may be assembled separately. When re-
locatable object programs and subprograms are desired to
be executed, they are relocated and linked to one another
by the relocating loader.

Absolute object programs may be loaded by the Basic Bi-
nary Loader or the Basic Binary Disc Loader. There are no
intermediate steps needed to prepare the code before it is
executed.

The Assembler can read the source input from paper tape,
punched cards, magnetic tape or the LS Area of the disc.
The Assembler outputs the resultant object program on
the standard punch output device and/or to the LG Area of
the disc in a format acceptable to the RTE Relocating
Loader.

1-1. ASSEMBLY PROCESSING

The Assembler is a two pass system. A pass is defined as a
processing cycle of the source program input.

In the first pass, the Assembler creates a symbol table from
the names used in the source statements and (if requested)
prints a symbol table listing on the standard list output
device. It also checks for certain possible error conditions
and prints error messages on the console device if neces-

sary.

During pass two, the Assembler again examines’ each
statement in the source program along with the symbol
table and produces the binary object program. It outputs
the object program to the standard punch output device
and/or to the LG Area of the disc. If requested, the Assem-
bler also prints the object program listing on the standard
list output device. Additional error messages may also
be printed on the console device.

If the source input is being read from a non-disc device, it is
written on the disc at the start of pass 1; for pass 2, the
source is then read from the disc. However, if there is not
sufficient space available on the disc to do this, the source
input will have to be read through the non-disc device at
the start of pass 2. In such a case, the Assembler prints
$END ASMB PASS on the console device at the end of
pass 1. The operator responds by reloading the source
input into the non-disc device and then entering GO,
ASMB through the console device.

1-2. SYMBOLIC ADDRESSING

Symbols may be used for referring to machine instructions,
data, constants, and certain other pseudo operations. A
symbol represents the address for a computer word in
memory. A symbol is defined when it is used as a label for a
location in the program, a name of a common storage seg-
ment, the label of a data storage area or constant, the label
of an absolute or relocatable value, or a location external to
the program.

Through use of simple arithmetic operators, symbols may
be combined with other symbols or numbers to form an
expression which may identify a location other than that
specifically named by a symbol. Symbols appearing in
operand expressions, but not specifically defined, and sym-
bols that are defined more than once are considered to be in
error by the Assembler.

1-3. MEMORY ADDRESSING

1-4. PAGING

The computer memory is logically divided into pages of
1024 words each. A page is defined as the largest block of
memory which can be addressed directly by the memory
address bits of a memory reference instruction (single-
length). These memory reference instructions have 10 bits
to specify a memory address, and thus the page size is 1024
locations (2000 octal). Octal addresses for each page, up to
the maximum memory size, are shown in table 1-1.

Provision is made to address directly one of two pages: page
zero (the base page, consisting of locations 00000 through
01777), and the current page (the page in which the in-
struction itself is located). Memory reference instructions
include a bit (bit 10) reserved to specify one or the other of

11

Introducing the Assembler

these two pages. To address locations in any other page,
indirect addressing is used. Page references are specified by
bit 10 as follows:

Logic 0 = page zero (Z)
Logic 1 = current page (C)

1-5. INDIRECT ADDRESSING

All memory reference instructions reserve a bit to specify
direct or indirect addressing. For single-length memory
reference instructions, bit 15 of the instruction word is
used; for extended arithmetic memory reference instruc-
tions, bit 15 of the address word is used. Indirect addressing
uses the address part of the instruction to access another
word in memory, which is taken as a new memory reference
for the same instruction. This new address word is a full 16
bits long, 15 bits of address plus another direct-indirect bit.
The 15-bit length of the address permits access to any
location in memory. If bit 15 again specifies indirect ad-
dressing, still another address is obtained. This multiple-
step indirect addressing may be done to any number of
levels. The first address obtained in the indirect phase
which does not specify another indirect level becomes the
effective address for the instruction. Direct or indirect ad-
dressing is specified by bit 15 as follows:

Logic 0 = direct
Logic 1 = indirect

1-6. PROGRAM RELOCATION
Relocatable programs are relocated at absolute addresses
by the relocating loader.

Relocatable code assumes a starting location of 00000, and
this location is termed the relative, or relocatable origin.
The absolute origin (termed the relocation base) of a re-
locatable program is determined by the loader. The value of
the absolute origin is added to the zero-relative value of
each operand address to obtain the absolute operand ad-
dress. The absolute origin, and thus the values of every
operand address, may vary each time the program is
loaded.

A relocatable program may be composed of several inde-
pendently assembled or compiled subprograms. Each of the
subprograms will have a relative origin of 00000. Each
subprogram is then assigned a unique absolute otigin upon
being loaded.

The operand values produced by the Assembler may be
program relocatable, base page relocatable, or common re-
locatable. Each of these segments of the program has a

1-2

separate relocation base or origin. Operands that are refer-
ences to locations in the main portion of the program are
incremented by the program relocation base; those refer-
ring to the base page, by the base page relocation base; and
those referring to common storage, by the common reloca-
tion base.

If the loader or system generator encounters an operand
that is a reference to a location in a page other than the
current page or base page, a link is established. A link is a
word in the base page or current page which is allocated to
contain the full 15-bit address of the referenced location.
The address of the link is then substituted as an indirect
address in the instruction in the current page. If other
similar references are made to the same location, they are
linked through the same link.

Table 1-1. Logical Memory Address/Pages

MEMORY OCTAL
SIZE PAGE ADDRESSES
0 00000 to 01777
1 02000 to 03777
2 04000 to 05777
4K 3 06000 to 07777
4 10000 to 11777
5 12000 to 13777
6 14000 to 15777
8K 7 16000 to 17777
8 20000 to 21777
9 22000 to 23777
10 24000 to 25777
12K 11 26000 to 27777
12 30000 to 31777
13 32000 to 33777
14 34000 to 35777
16K 15 36000 to 37777
16 40000 to 41777
17 42000 to 43777
18 44000 to 45777
19 46000 to 47777
20 50000 to 51777
21 52000 to 53777
22 54000 to 55777
24K 23 56000 to 57777
24 60000 to 61777
25 62000 to 63777
26 64000 to 65777
27 66000 to 67777
28 70000 to 71777
29 72000 to 73777
30 74000 to 75777
32K 31 76000 to 77777

1-7. PROGRAM LOCATION COUNTER
The Assembler maintains a counter, called the program
location counter, that assigns consecutive memory addres-
ses to source statements.

The initial value of the program location counter is estab-
lished according to the use of either the NAM or ORG
pseudo operation at the start of the program. The NAM
operation causes the program location counter to be set to
zero for a relocatable program; the ORG operation specifies
the absolute starting location for an absolute program.

Through use of the ORB pseudo operation a relocatable
program may specify that certain operations or data areas
be allocated to the base page. If so, a separate counter,
called the base page location counter, is used in assigning
these locations.

1-8. SOURCE PROGRAM

Figure 1-1 shows an assembler coding form and the code for
a simple program which counts the number of 1’s and 0’sin

| the A-register. The first statement is the control statement,
"and contains the assembly options R (for a relocatable

source program), B (the program is to be punched on the
standard punch device in binary form), L (a program listing
is to be printed on the standard list device), and T (a listing
of the symbol table is to be printed on the standard list
device). See paragraph 1-9 and table 1-2 for a further dis-
cussion of control statement parameters.

Following the control statement, the first statement of the
program (other than remarks or a HED statement) must be
a NAM statement for a relocatable program or an ORG
statement to indicate the origin of an absolute program.
The last statement must be an END statement and may
contain a transfer address for the start of a relocatable
program. Each statement is terminated by an end-of-
statement or end-of-record mark if not on cards.

1-9. ASSEMBLY OPTIONS

The control statement must be the first statement in the
source program and it specifies the desired assembly op-
tions:

Introducing the Assembler

“ASMB,” is in positions 1-5 of the statement. Following
the comma are one or more parameters, in any order: The
parameters are shown in table 1-2. If output to the LG
Area is specified in the ON,ASMB directive
(ON,ASMB, ... ,99), the control statement does not re-
quire th B parameter for relocatable output to be gener-
ated onto the LG Area. (Only specify B if punched form
required.)

Since they contradict one another, F and X must never
appear in the control statement for the same source prog-
ram. If neither A nor R is specified, R is assumed. If T is
omitted, the symbol table listing will not be printed. If B is
omitted, the object program will not be punched on the
standard punch output device (it may, however, be re-
tained in the LG Area of the disc if so specified in the
ON,ASMB RTE directive).

1-10. BINARY OUTPUT

The binary output is defined by the ASMB control state-
ment. The binary output includes the instructions trans-
lated from the source program. It does not include system
subroutines referenced within the source program (arith-
metic subroutine calls, .IOC., .DIO., .ENTR, etc.)

1-11. SYMBOL TABLE

Figure 1-2 shows the symbol table listing produced when
the source program was assembled. Columns 1 through 5
contain the name of the label. The R in column 7 specifies
that the source program is relocatable and columns 9
through 14 contain the location (in octal) where the label
symbol is stored. (In the example shown in figure 1-2, the
locations are relative because the source program is re-
locatable.)

The characters that designate an external symbol or type of
relocation for the Operand field or the symbol are as fol-
lows:

Character Relocation Base
Blank Absolute
R Program relocatable
C Common relocatable
X External symbol
B Base page relocatable
S Substitution code

Introducing the Assembler

9659-0805

¥O438 LNOBNY A8
¥NLIY AS G

ZVHAY =F
1VHaW =1

omi=2

INO =L ¥O !

ot

O VHAY =0

3

0¥z =g

FINE]
T3 LSS5~ 8] (NI (ST [Zw[nop] NISlLEE T *[Ln[a[o]o [dlw
LIv|3[al3]d] [*]3lv|ola] Lo dlojo|1| |dw]d
(|¢|3|vola])] @] 1]} [alx[¥]s] (8] X[[LInvzwlz]so]3]q! x|s|a
oL 2[F7]) [d)3(L]s{1/53]3]-v] |3]1]v]1[ofy Tvly
8] INzZ| [n[olofo] To[L] [t] lafalw| [¥[s[34 a|n |
PINE] Lizlal [2(3[L]s|c[o[3)y|-|v] [S|T] V|5 d|o|olq
(] ve[alLz]7] [H[2[1]mMD] [x] [o[Llw]1| [a]1] |aivioR 9 lal=] [x|a|7
ERIEE R LR ERE R EECEEREEBERELERE CIRE)
diojy] [Lnolofy)
¥3|1/S[Ti9\3[d)- V| 3[H[L] [V[I] [s[3[N[o| [3[o] [3lz(8jwin|A [s[H[1] [nalo[2 ol [Wv]aslofala V| [¥
|LLinv| 70D |LINT|
I N a0 [WVIN
CINMNEINCIZIE S
* * 7 o * * T ey * * * * N ooy
AIN3IWILVIS
h 40 390vd WYHOO¥d _ va awii{«.uonal_

WY04 ONIGOD ¥3ITEWISSY AYVIIOVC-113TMIH

M0255

Figure 1-1. Source Program

14

Introducing the Assembler

Table 1-2. Control Statement Parameters

PARAMETER MEANING

A Absolute assembly. The addresses generated by the Assembler are to be interpreted as absolute
locations in memory. The program is a complete entity; external symbols, common storage refer-
ences and entry points are not permitted. Note that an absolute program cannot be executed on
RTE.

R Relocatable assembly. The object program may be loaded anywhere in memory. All operands
which refer to memory locations are automatically adjusted as the program is loaded. Operands
referring to memory locations greater than 1777, must be relocatable expressions. Programs may
contain external symbols and entry points, and may refer to common storage.

B Binary output. An absolute or relocatable object program is to be output on the standard punch
device.

L List output. A program listing is to be printed on the standard list device. Error messages will still
be printed if “L" is not specified.

T Symbol table print. A listing of the symbol table is to be printed on the standard list output device.

N,Z Selective assembly. Sections of the program are to be included or excluded at assembly time

depending upon the option specified. See the descriptions of the IFN and IFZ pseudo instructions in
Section IV of this manual.

C Cross reference table print. All references to statement labels, external symbols, and user-defined
opcodes are to be listed on the standard list output device after the end of the assembly.

F Floating point instructions. The floating point machine instructions are to be used instead of the
software simulation routines for the following floating point operations: FIX, FLT, FDV, FMP, FAD, and
FSB.

X No EAU hardware. Signifies that the object program will be executed on a machine which does not

have the Extended Arithmetic Unit (EAU) hardware. This parameter prevents the use of the following
EAU instructions: ASR, ASL, RRR, RRL, LSR, LSL, and SWP. In addition, it causes all occurrences of
the MPY, DIV, DLD, and DST instructions to be substituted with a call to the appropriate subroutine in
the floating point library.

PAGE o0,y
{\Q{vm&,%n

L ASMB,R,B,L,T
LOOP R 902291
COQUNT R 220005
BITe R avretle
RITYI R Q¢riuld
BIT2 R AvQ2186
MORE R Pn@e22
BITI R m22023
LESS1 R arop24
LESS2 R ?mQrp2s
EVEN R QrCn27

*x NO ERXKQORS»

Figure 1-2. Symbol Table Listing

Introducing the Assembler

1-12. LIST OUTPUT

Columns Content

1-4 Source statement sequence number gen-
erated by the Assembler

5-6 Blank

7-11 Location (octal)

13-18 Object code word in octal

19 Relocation or external symbol indicator

20 Blank

21-80 First 60 characters of source statement

Lines consisting entirely of comments (i.e., * in column 1)
are printed as follows:

Columns Content
1-4 Source statement sequence number
5-80 Up to 76 characters of comments

At the end of each pass, the following is printed on the list
device:

1-6

The value nnnn indicates the number of errors. Pass 2
error count includes the total error count of pass 1 and
pass 2. YYMMDD is the year, month, and day of the cur-
rent revision of the software.

If there are errors, the message PG xxx is printed on the list
device immediately preceding the **nnnn ERRORS* mes-
sage, where xxx is the page number where the final error
was detected. The same message appears in the listing
following each error and it points to the page number where
the previous error was detected. The backwards pointer
following the first error in the program is PG 000.

SOURCE STATEMENT FORMAT

SECTION

A source language statement consists of a label, an opera-
tion code, an operand (or operands) and comments. The
label is used when needed as a reference by other state-
ments. The operation code may be a mnemonic machine
operation or an assembly directing pseudo code. An
operand may be an expression consisting of an al-
phanumeric symbol, a number, a special character, or any
of these combined by arithmetic operators. An operand may
also be a literal. Indicators may be appended to an operand
to specify certain functions such as indirect addressing. The
comments portion of the statement is optional.

2-1. STATEMENT OF CHARACTERIS-
TICS

The fields of the source statement appear in the following
order:

1. Label

2. Opcode

3. Operands
4. Comments

2-2. FIELD DELIMITERS

One or more spaces separate the fields of a statement. A
single space as the first character of a statement signifies
that there is no label for this statement.

2-3. CHARACTER SET

The characters that may appear in a statement are as
follows:

A through Z

0 through 9
(period)

* (asterisk)

+ (plus)

- (minus)

, (comma)

= (equals)

() (parentheses)

(space)

Any other ASCII characters may appear in the Comments
field. (See Appendix A.)

The letters A through Z, the numbers 0 through 9, and the
period may be used in an alphanumeric symbol. In the first
position in the Label field, an asterisk indicates a comment;
in the Operand field, it represents the value of the program
location counter for the current instruction. The plus and
minus are used as operators in arithmetic address expres-
sions. The comma separates several operation codes, or an
expression and an indicator in the Operand field. An equals
sign indicates a literal value. The parentheses are used
only in the COM pseudo instruction.

Spaces separate fields of a statement and operands in a
multi-operand field. They may also be used to enhance the
appearance of the listing. Within a field they may be used
freely when following +, —, ,, or (.

2-4. STATEMENT LENGTH

A statement may contain up to 80 characters including
blanks, but excluding the end-of-statement mark.

2-5. LABEL FIELD

The Label field identifies the statement and may be used as
a reference point by other statements in the program.

The field starts in position one of the statement. It is termi-
nated by space. A space in position one signifies that the
statement is unlabeled.

2-6. LABEL SYMBOL

A label may have one to five characters consisting of A
through Z, 0 through 9, and the period.

The Assembler allows the use of certain
other characters in the Label field. How-
ever, they are reserved for use in
Hewlett-Packard programs.

Note:

The first character must be alphabetic or a period. A label of
more than five characters could be entered on the source
statement, but the Assembler flags this condition as an
error and truncates the label from the right to five charac-
ters. Some examples are shown in figure 2-1.

Each label must be unique within the program; two or more
statements may not have the same symbolic name. Names
which appear in the Operand field of an EXT or COM
pseudo instruction may not also be used as statement labels

2-1

Source Statement Format

in the same subprogram. However, names appearing in a
COM pseudo instruction may be defined as entry points in
an ENT pseudo instruction. Some examples are shown in
figure 2-2.

21. ASTERISK

An asterisk in position one indicates that the entire
statement is a comment. Positions 2 through 80 are avail-
able; however, positions 1 through 76 only are printed as
part of the assembly listing. An asterisk within a label is
illegal in any position

2-8 OPCODE FIELD

The operation code defines an operation to be performed by
the computer or the Assembler. The Opcode field follows
the Label field and is separated from it by at least one space.
If there is no label, the operation code may begin anywhere
after position one. The Opcode field is terminated by a space
immediately following an operation code. Operation codes
are organized in the following categories:

Operation codes are discussed in detail in Sections III and
Iv.

2-9. OPERAND FIELD

The meaning and format of the Operand field depend on the
type of operation code used in the source statement. The

2-2

field follows the Opcode field and is separated from it by at
least one space. If more than one operand is required, they
are separated from one another by at least one space.

An Operand may contain an expression consisting of one of
the following:

An expression may be followed by a comma, an indirect
addressing indicator (see paragraph 2-20), and a Clear Flag
indicator (see paragraph 2-21). Programs may also contain
a literal value in the Operand field. (See paragraph 2-19.)

2-10. SYMBOLIC TERMS

A symbolic term may be one to five characters consisting of
A through Z, 0 through 9, and the period. The first charac-
ter must be alphabetic or a period. Some examples are
shown in figure 2-3.

A symbol used in the Operand field must be a symbol thatis
defined elsewhere in the program in one of the following
ways:

The value of a symbol is absolute or relocatable depending
on the assembly option selected by the user. The Assembler
assigns a value to a symbol as it appears in one of the above
fields of a statement. If a program is to be loaded in absolute
form, the values assigned by the Assembler remain fixed. If
the program is to be relocated, the actual value of a symbol
is established on loading. A symbol may be assigned an
absolute value through use of the EQU pseudo instruction.

A symbolic term may be preceded by a plus or minus sign. If
preceded by a plus or no sign, the symbol refers to its
associated value. If preceded by a minus sign, the symbol
refers to the two’s complement of its associated value. A
single negative symbolic operand may be used only with
the ABS pseudo operation.

Source Statement Format

HEWLETT-PACKARD ASSEMBLER CODING FORM

IjIOGRAMM(R l DATE l PROGRAM
Lobel Operation Cperond SM"M(N'(W mmmmm
LiD|A o| |L|AlBlE|L T
!
.JA8lcD VIAIL|1D| |LIABIE|L
.|112/3]4 ViaiL1|o| L|aBlE|L
Al.[1]2/3 VIA|L|T|D| L|ABE|L
. VIALII[D| |L|ABE|L
\|. /ABIC TILILEG|AIL| LA[BIEIL] -] |[FIT|ris|T]| |clna|r|ale|TiE|R
NV 1 |
Alg c|l|2]3 1LiL|Elg[A|L| [LIA|BlE[L| |-| |T|olo| |Llo|NjG
TIR|UN|e|ATIE ABlc|i|2
A% B|c ILILEG|AIL] [LIABEIL]| |-| AISTE|RISIK [NO[T
AlL|Llow|E|D] 1 N| LIABIE|L
ABlc Nio| [LAIBEIL] |-| [SIPAlcle] TN |FIR/ST
Po|sE(T]|1lo|N]| -] |AS|SIEMBILER] ATT EMP|T
Tlo| IINTIERPRIET| |ABjc| |Als| [AN] o/P|elo|DIE
| -
~L__| | 1 - 1| L | |
—— | A
Figure 2-1. Label Examples
HEWLETT-PACKARD ASSEMBLER CODING FORM
Label Operation Operand = Comments
1 5 0 15 20 25 30 35 0 45 50 55 60 65 ;
clolw] [alelolw(¢]2le)] Blc]([3]d] T
> 7
L|B] ElQuU| |!|6/@ valL|1|p| |[L|AB|E|L
EWT| |alBlc
Elx[r| XjL|i] x|]2
S|T|alr|T| [LD|A| [L|B VAL|T LIABIE|L
2|5 VIAlL|T |D| [LIAB
X[L|2 ILILEEGJAL] ILABEL| -| |u/SElD] TN E|XT
BlC Tl i lelalale] [LialglelL] -] [ulslein] Ttin] Icfojm
IN[2/5 LiL|LEE|GJAL] [LIAIBE|L| |-| [PRIE|V[T|olV|S|L]Y
\\\\\ DEF|I|N[ED yd
1 H i
\\ L~ ol \N\\\\"‘~ }/ :

Figure 2-2. Label Usage Examples

2-3

Source Statement Format

2-11. NUMERIC TERMS

A numeric term may be decimal or octal. A decimal number
is represented by one to five digits within the range 0 to
32767. An octal number is represented by one to six octal
digits followed by the letter B (0 to 177777B).

If a numeric term is preceded by a plus or no sign, the
binary equivalent of the number is used in the object code.
If preceded by a minus sign, the two’s complement of the
binary equivalent is used. A negative numeric operand
may be used only with the DEX, DEC, OCT, BYT and ABS
pseudo operations.

For a memory reference instruction in an absolute prog-
ram, the maximum value of a numeric operand depends on
the type of machine or pseudo instruction. In a relocatable
program, the value of a numeric operand may not exceed
1777,. Numeric operands are absolute. Their value is not
altered by the assembler or the loader.

2-12. ASTERISK

An asterisk in the Operand field refers to the value in the
program location counter at the time the source program
statement is encountered. The asterisk is considered a re-
locatable term in a relocatable program.

2-13. EXPRESSION OPERATORS

The asterisk, symbols, and numbers may be joined by the
arithmetic operators + and — to form arithmetic address
expressions. The Assembler evaluates an expression and
produces an absolute or relocatable value in the object code.
Some examples are shown in figure 2-4.

2-14. EVALUATION OF EXPRESSIONS

An expression consisting of more than one operand is re-
duced to a single value. In expressions containing more
than one operator, evaluation of the expression proceeds
from left to right. The algebraic expression A-(B—C+5)
must be represented in the Operand field as A-B+C—5.
Parentheses are not permitted in operand expressions.

The range of values that may result from an operand ex-
pression depends on the type of operation. The Assembler
evaluates expressions as follows:t

2-15. EXPRESSION TERMS

The terms of an expression are the numbers and the sym-
bols appearing in it. Decimal and octal integers, and sym-

bols defined as being absolute in an EQU pseudo operation
are absolute terms. The asterisk and all symbols that are
defined in the program are relocatable or absolute depend-
ing on the type of assembly. (RTE Assembler allows ex-
ternals with offset and indirect external references.)

Within a relocatable program, terms may be program re-
locatable or common relocatable or base page relocatable.
A symbol that names an area of common storage is a
common relocatable term. A symbol that is defined in any
statement other than COM or EQU is a relocatable term.
Within one expression all relocatable terms must be prog-
ram relocatable, common relocatable or base page relocat-
able; the types may not be mixed.

ABSOLUTE AND RELOCATABLE
EXPRESSIONS

2-16.

An expression is absolute if its value is unaffected by
program relocation. An expression is relocatable if its
value changes according to the location into which the
program is loaded. In an absolute program, all expressions
are absolute. In a relocatable program, an expression may
be program relocatable, common relocatable, base page
relocatable, or absolute (if less than 20005) depending on
the definition of the terms composing it.

2-17. ABSOLUTE EXPRESSIONS. An absolute ex-
pression may be any arithmetic combination of absolute
terms. It may contain relocatable terms alone, or in combi-
nation with absolute terms. If relocatable terms appear,
there must be an even number of them; they must be of the
same type; and they must be paired by sign (a negative
term for each positive term). The paired terms do not have
to be contiguous in the expression. The pairing of terms by
type cancels the effect of relocation; the value represented
by a pair remains constant.

An absolute expression reduces to a single absolute value.
The value of an absolute multi-term expression may be
negative only for ABS pseudo operations. A single numeric
term also may be negative in an OCT, DEX, BYT, or DEC
pseudo instruction. In a relocatable program the value of an
absolute expression must be less than 2000, for instruc-
tions that reference memory locations (Memory Reference,
DEF, Arithmetic subroutine calls, etc.).

If P, and P, are program relocatable terms; C, and C,,
common relocatable; and A, an absolute term; then the
following are absolute terms:

fThe evaluation of expressions by the Assembler is compatible with the addressing capability of the hardware instructions (e.g., up to 32K
words through Indirect Addressing). The user must take care not to create addresses which exceed the memory size of the particular

configuration.

24

Source Statement Format

HEWLETT-PACKARD ASSEMBLER CODING FORM
PROGRAMMER I DATE | PROGRAM
5 LDAthZSH mVAL:Z opz:Awo - § ﬂ - o
ADA| (B[, I vialL|z|p| lo|PlE[R|AIND
IMP| [ENTIR]Y VIAIL|T[D]| lo|P|E|R|A|ND /
LIDA| |A[1|2/3/4|+|B|. |1 |~|E|N|T|R]Y VIA|L|I|D| |o|P|E|R|AIND
|
S(TIa| [1|AlBlc TILiLEElg|alL| lolPleirainip] || |Flz|ris|T
CHARale|TIEIR| IMumelelr ,
S|TIA| [ABlc|DIE|F IILL|E|GJAlL| |oPIEIRIAIND| |=| IMO|RIE| |TIHIA|N| [F|I|VIE '
c|H|A|R|Ale|T|E|RS
L
///
| L~
Figure 2-3. Symbolic Operand Examples
LDA SYM+6 ADD 6 TO THE VALUE OF SYM
ADA SYM-3 SUBTRACT 3 FROM THE VALUE OF SYM
JMP 45 ADD 5 TO THE CONTENTS OF THE
PROGRAM LOCATION COUNTER.
STB -A+C-4 ADD - VALUE OF A, THE VALUE OF C
AND SUBTRACT 4.
STA XTA-% SUBTRACT VALUE OF PROGRAM
LOCATION COUNTER FROM VALUE OF
XTA.

Figure 2-4. Expression Operator Examples
2-5

Source Statement Format

The asterisk is program relocatable.

2-18. RELOCATABLE EXPRESSIONS. A relocat-
able expression is one whose value is changed by the loader.
All relocatable expressions must have a positive value.

A relocatable expression may contain an odd number of
relocatable terms, alone, or in combination with absolute
terms. All relocatable terms must be of the same type.
Terms must be paired by sign with the odd term being
positive.

A relocatable expression reduces to a single positive re-
locatable term, adjusted by the values represented by the
absolute terms and paired relocatable terms associated
with it.

IfP,, P,, and P, are program relocatable terms; C,, C, and
Cs, common relocatable; and A, an absolute term; then the
following are relocatable terms:

2-19.

LITERALS

Literal values may be specified as operands in relocatable
programs. (Literals are not allowed in absolute programs.)
The Assembler converts the literal to its binary value,
assigns an address to it, and substitutes this address as the
operand. Locations assigned to literals are those im-
mediately following the last location used by the program.

A literal is specified by using an equal sign and a one-
character identifier defining the type of literal. The actual
literal value is specified immediately following this iden-
tifier; no spaces may intervene.

The identifiers are:

=D a decimal integer, in the range -32767 to 32767,
including zero.t

=F a floating point number; any positive or negative
real number in the range 10738 to 1038, including
zero.t

=B an octal integer, one to six digits, b;b,bsb,bsbyg,
where b; may be 0 or 1, and b,-b, may be 0 to 7.t

=A two ASCII characters.t

=L an expression which, when evaluated, will result in
an absolute value. All symbols appearing in the ex-
pression must be previously defined.

If the same literal is used in more than one instruction or if
different literals have the same value (e.g., =B100 and
=D64), only one value is generated, and all instructions
using these literals refer to the same location.

Literals may be specified only in the following memory
reference, register reference, EAU, and pseudo instruc-
tions:

Examples are as follows:

A-Register is loaded with
the binary equivalent of
7980, ¢ -

Inclusive OR is performed
with contents of A-Register
and 777;.

A-Register is loaded with
binary representation of
ASCII characters NO.

LDB =LZETZ-ZOOM+68 B-Register is loaded with
- the absolute value resulting
from the expression.

LDA =D7980

IOR =BT777

LDA =ANO

FMP =F39.75 Contents of A- and B-
Registers multiplied by
floating point constant
39.75.

2-20. INDIRECT ADDRESSING

The HP computers provide an indirect addressing capabil-
ity for memory reference instructions. The operand portion
of an indirect instruction contains the address of another
location. The secondary location may be the operand or it
may be indirect also and give yet another location, and so
forth. The chaining ceases when a location is encountered
that does not contain an indirect address. Indirect addres-
sing provides a simplified method of address modifications
as well as allowing access to any location in core. See
Section I, paragraph 1-5 for a further discussion of indirect
addressing.

The Assembler allows specification of indirect addressing
by appending a comma and the letter I to any memory

$See CONSTANT DEFINITION, Section IV.

2-6

reference operand other than one referring to an external
symbol. The actual address of the instruction may be given
in a DEF pseudo operation; this pseudo operation may also
be used to indicate further levels of indirect addressing. An
example is shown in figure 2-5.

A relocatable assembly language program, however, may
be designed without concern for the pages in which it will
be stored; indirect addressing is not required in the source
language. When the program is being loaded, the loader
provides indirect addressing whenever it detects an
operand which does not fall in the current page or the base
page. The loader substitutes a reference to a program link
location (established by the loader in either the base page
or the current page) and then stores an indirect address in
the particular program link location. If the program link
location is in the base page, all references to the same
operand from other pages will be via the same link location.

Note: The Basic Control System provides prog-

ram links to the base page only (not the
current page).

2-21. CLEAR FLAG INDICATOR

The majority of the input/output instructions can alter the
status of the input/output interrupt flag after execution or

Source Statement Format

after the particular test is performed. In source language,
this function is selected by appending a comma and a letter
C to the Operand field. Some examples are shown in figure
2-6.

2-22. COMMENTS FIELD

The Comments field allows the user to transcribe notes on
the program that will be listed with source language coding
on the output produced by the Assembler. The field follows
the Operand field and is separated from it by at least one
space. The end-of-record mark, the end-of-statement mark,

@ , or the 80th character of a statement ter-

minates the field. The statement length should not exceed
60 characters, the width of the source language portion of
the listing. A whole line (up to 76 characters), however,
can be specified as a comment by inserting an asterisk in
the first position. On the list output, statements consisting
entirely of comments begin in position 5 rather than 21 as
with other source statements. Any characters beyond the
above limits will not appear on the listing.

If there is no operand present, the Comments field should
be omitted in the NAM and END pseudo operations and in
the input/output statements, SOC, SOS, and HLT. If a
comment is used, the Assembler attempts to interpret it as
an operand. This limitation applies also to multi-operand
instructions.

AB LDA SAM, I
AC ADA SAM, I
AD I1SZ SAM

SAM DEF ROGER

EACH TIME THE ISZ IS EXECUTED,
THE EFFECTIVE OPERAND OF AB AND
AC CHANGE ACCORDINGLY.

Figure 2-5. Indirect Addressing Example

STC 13B,C

SET CONTROL AND CLEAR THE FLAG OF SELECT CODE 13 (OCTAL)
OTB 16B,C CLEAR FLAG OF SELECT CODE 16 (OCTAL) ALONG WITH OUTPUT TO DEVICE

Figure 2-6. Clear Flag Examples

2-7

MACHINE INSTRUCTIONS

SECTION

The Assembler language machine instruction codes take
the form of three-letter mnemonics. Each source statement
corresponds to a machine operation in the object program
produced by the Assembler.

Notation used in representing source language instruction
is as follows:

label Optional statement label

m Memory location — an expression

I Indirect addressing indicator

sc Select code — an expression

C Clear interrupt flag indicator

comments Optional comments

[1 Brackets defining a field or portion of a
field that is optional

{ } Brackets indicating that one of the set
may be selected.

lit literal

3-1. MEMORY REFERENCE

The memory reference instructions perform arithmetic,
logical, jump, word manipulation, byte manipulation, and
bit manipulation operations on the contents of memory
locations and the registers. An instruction may directly
address the 2048,, words of the current and base pages. If
required, indirect addressing may be used to refer to all
32,768,, words of memory. Expressions in the Operand field
are evaluated modulo 2.

External memory references may be made with + or —
offsets, with indirects or both.

If the program is to be assembled in relocatable form, the
Operand field may contain relocatable or absolute expres-
sions; however, absolute expressions must be less than
2000 in value. If the program is to be assembled in absolute
form, the Operand field may contain any expression which
is consistent with the location of the program. Literals may
not be used in absolute programs. Absolute programs must
be complete entities; they may not refer to external sub-
routines or to common storage. ’

3-2. JUMP AND INCREMENT-SKIP

Jump and Increment-Skip instructions may alter the nor-
mal sequence of program execution.

|
comments

label i JMP i m [,I]

Jump to m. Jump indirect inhibits interrupt until the
transfer of control is complete, or three levels of indirecting
have occurred.

I
l comments

label i JSB i m [,I]

Jump to subroutine. The address for label+1 is placed into
the location represented by m and control transferstom+1.
On completion of the subroutine, control may be returned
to the normal sequence by performing a JMP m,I.

label 1SZ m [,I] comments

Increment, then skip if zero. ISZ adds 1 to the contents of m.
If m then equals zero, the next instruction in memory is
skipped.

3-3. ADD, LOAD AND STORE

Add, Load, and Store instructions transmit and alter the
contents of memory and of the A- and B-Registers. A lit-
era, indicated by “lit”, may be either =D, =B, =A, or =L
type. See Section II, paragraph 2-19 for a further discus-
sion of literals.

| I
label ADA l l E [’I]” comments
Add the contents of m to A.
[
label ADB ii LI ll comments
Add the contents of m to B.
1 i
label LDA E L] } l comments

Load A with the contents of m.

1
label l LDB I Im L] }l comments

lit

Load B with the contents of m.
31

Machine Instructions

label STA m [,I] comments
Store contents of A in m.
label STB m [,I] comments

Store contents of B in m.

In each instruction, the contents of the sending location is
unchanged after execution.

3-4. LOGICAL OPERATIONS

The logical instructions allow bit manipulation and the
comparison of two computer words.

[| 1
AND ‘ { m [’I]}

label comments

lit

The logical product (“AND”’) of the contents of m and the
contents of A are placed in A.

| |]
m [,I]
XOR ‘ lit, }

The modulo-two sum (exclusive “or’’) of the bits in m and
the bits in A is placed in A.

1 1 [
m [I]
lit

IOR
The logical sum (inclusive “or”’) of the bits in m and the
bits in A is placed in A.

|] |
m [I]
lit

CPA
Compare the contents of m with the contents of A. If they
differ, skip the next instruction; otherwise, continue.

label comments

label comments

label comments

CPB I ‘m L] :

label comments

lit

Compare the contents of m with the contents of B. If they
differ, skip the next instruction; otherwise, continue.

3-5. WORD PROCESSING (21MX ONLY)

The word processing instructions allow the user to move a
series of data words from one array in memory to another or
to compare (word-by-word) the contents of two arrays in
memory.

3-2

label MVW

‘ literal
comments

m [I]

Move words. The A-register contains the starting (lowest)
word address of the source array. The B-register contains
the starting (lowest) word address of the destination array.
The number of words to be moved is specified by literal or by
the value contained in m [I]. The specified number of
words are moved from the source array into the destination
array. As each word is moved, the A- and B-registers are
incremented by one. The source array is not altered.

label

literal }
comments

!
CMW l { m [I]

Compare words. The A-register contains the starting
(lowest) word address of array #1. The B-register contains
the starting (lowest) word address of array #2. The
number of word comparisons to be performed is specified
by literal or by the value contained in m [,I]. The two
arrays are compared word-by-word beginning at the
specified addresses. The operation is finished when an in-
equality is detected or when the specified number of word
comparisons have been performed. When the operation is
finished, the A-register contains the word address of the
last word in array #1 which was compared; the B-register
contains the starting address of array # 2 incremented by
the “count” parameter (literal or the value inm [I]). If the
two arrays are equal, execution proceeds at the next se-
quential source language instruction (P+ 3). If array #1is
“less than” #2, execution proceeds at instruction P+4. If
array #1is “greater than” array #2, execution proceeds at
instruction P+5. The two arrays are not altered.

3-6. BYTE PROCESSING (21MX ONLY)

The byte processing instructions allow the user to copy a
data byte from memory into the A- or B-register, copy a
data byte from the A- or B-register into memory, copy a
series of data bytes from one array in memory to another,
compare (byte-by-byte) the contents of two arrays in mem-
ory, or scan an array in memory for particular data bytes.

A byte address is defined as two times the word address of
the memory location containing the particular data byte.
If the byte location is the low order half of the memory
location (bits 0-7), bit 0 of the byte a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>