BASIC/1000D
Multi-User Real-Time BASIC

Reference Manual

(D Py

HEWLETT-PACKARD COMPANY
Data Systems Division Update 4 October 1981

11000 Wolfe Road MANUAL PART NO. 92060-90016
Cupertino, California 95014 Printed in U.S.A. April 1980

PRINTING HISTORY

The Printing History below identifies the Edition of this Manual and any Updates that are included. Periodically, Update
packages are distributed which contain replacement pages to be merged into the manual, including an updated copy of this
Printing History page. Also, the update may contain write-in instructions.

Each reprinting of this manual will incorporate all past Updates, however, no new information will be added. Thus, the
reprinted copy will be identical in content to prior printings of the same edition with its user-inserted update information.
New editions of this manual will contain new information, as well as all Updates.

To determine what manual edition and update is compatible with your current software revision code, refer to the
appropriate Software Numbering Catalog, Software Product Catalog, or Diagnostic Configurator Manual.

Sixth Edition Feb 1980
Update 1 ... i Apr 1980
Reprinted o il Apr 1980 (Update 1 incorporated)
Update 2. Oct 1980
Update 3 ... Apr 1981
Update 4o Oct 1981 Include RTE-6/VM information
NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for
errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1981 by HEWLETT-PACKARD COMPANY

i

PREFACE

Multi-User Real-Time BASIC provides an augmented real-time version of the BASIC language with
which as many as four users may code and execute programs simultaneously from different terminals.
The Multi-User Real-Time BASIC subsystem provides functions, subroutines, and statements which
allow you to schedule tasks, control instrument subsystems, the plotter and magnetic tape devices, and
provides many additional capabilities. It may be run under control of the RTE Operating System.

This manual is a reference guide to the BASIC language, the BASIC system commands, and the
subroutines available with the system. You should be familiar with the RTE Operating System. If a
BASIC system has been generated and is available for your use, you will find all the information you
need to create and run BASIC programs in this manual. These manuals are shown in the documenta-
tion maps which follow this preface.

Section I introduces Multi-User Real-Time BASIC and describes some of its general features. Sections
II through VII describe the BASIC programming language. Expressions are defined in Section II and
statements in Section III. Section IV describes statements in relation to strings and special charac-
teristics of string variables and constants. Section V describes functions, lists the functions provided
with BASIC, and tells you how to define your own functions. Both BASIC subroutines embedded in a
BASIC program and external subroutines written in BASIC or other languages are described in
Section VI. Section VII describes disc files and the statements and functions which manipulate files.

Section VIII tells you how to execute the Real-Time BASIC Interpreter. Section IX describes the
commands used to communicate with the Interpreter once it is running. Debugging commands are
described separately in Section X.

Sections XI through XVII deal with the subroutines and statements which schedule tasks and control
specific hardware. Section XI describes real-time task scheduling and the subroutine calls BASIC
provides for this purpose. Bit manipulation functions are described in Section XII. Both commands and
subroutine calls used to read, write, and control magnetic tape devices are described in Section XIIIL
Section XIV provides instructions on generating the Branch and Mnemonic Tables which are required
if external subroutines are used with BASIC. Section XV describes the HP 2313/91000 Subsystem
subroutine calls and configuration. Section XVI describes the HP 6940 Subsystem configuration and
routines. The HP 7210 Plotter subroutine calls are described in Section XVIL

Section X VIII provides instructions on generating the Instrument Table tape which is required if the
instrumentation subroutines are to be used.

Appendix A contains alphabetical summaries of all statements, commands, and library subroutines.
Appendix B describes error messages, Appendix C contains the ASCII character set, and Appendix D
provides instructions for loading the Multi-User Real-Time BASIC software. Appendix E contains
information about HP-IB/BASIC data conversion and subroutine table requirements for calling HP-IB
utility subroutines.

NOTE

All references to RTE include RTE-II, III, IVA, IVB, and 6/VM
unless specifically noted.

Update 4 iii/iv

CONTENTS

Section Page
INTRODUCTION
Features 1-1
Conversational Programming 1-1
Multiple Peripheral Device /O 1-1
Real-Time Task Scheduling 1-1
Program Debugging Aids 1-2
File Capabilities 1-2
Environment 1-2
Hardware 1-2
Software 1-3
Commands and Statements 1-5
Commandsoovviiiie 1-5
Statements 1-5
BASIC Programsccooiiiiiiiiiiinna... 1-6
Character Editing 1-7
Character Editing in Multipoint 1-8
Correction of Typing Errors 1-9
Logical Unit Numbers 1-9
Syntax Conventions.............................. 1-10
Section II Page
EXPRESSIONS
Constants PP 2-1
Numeric Constants 2-1
Floating-Point Numbers 2-2
Literal Stringsl 2-2
Variables........... ... i 2-2
Functions 2-3
OPEratorsvivieeeeie i 2-4
Evaluating Expressions 2-5
Section III Page
STATEMENTS
LET . 3-1
REM .. 3-4
GOTO ... 3-4
END/STOP e 3-5
FOR ... NEXT i 3-6
IF .. .THEN i 3-8
PRINT ... 3-9
PRINT USING ...t 3-11
Numeric Output Formats 3-13
Integers 3-13
Fixed-Point Numbers 3-14
Floating-Point Numbers 3-14
TAB Functionccoiiiiiiiiiiin... 3-15
READ/DATA/RESTORE 3-15
INPUT .. e 3-16
DIM . 3-18
COM . 3-18
PAUSE ... 3-19
WAIT .. 3-20

Section IV Page
STRINGS
String 4-1
String Variable 4-2
Substring 4-2
Strings and Substrings 4-3
String DIM 4-4
String Assignment 4-5
String INPUT 4-6
Printing Strings 4-6
Reading Strings 4-7
String IF 4-8
LEN Function, 4-8
Strings in DATA Statements 4-9
Printing Strings on Files 4-10
Reading Strings from Files 4-10
Decimal String Arithmetic Routines 4-11
Section V Page
FUNCTIONS
System-Defined Functions 5-1
User-Defined Functions 5-2
Section VI Page
SUBROUTINES
GOSUB/RETURN 6-1
CHAIN ... e 6-4
CALL 6-6
FAIL Error Option 6-9
The IERR Function 6-10
SERR ... 6-10
Parameter Conversion 6-10
INVOKE 6-15
Section VII Page
FILES
File Characteristics 7-1
CREATE and PURGE 7-2
FILES Statement 7-2
ASSIGN Statement 7-3
IF END #. .. THEN Statement 7-4
Restoring the Data Pointer 7-5
Serial File READ Statement 7-5
Readinga Record 7-6
Serial File PRINT Statement 7-7
Printing a Record 7-8
TYP Function 7-9
Modifying Records 7-9
Section VIII Page
STARTING UP
Scheduling BASIC 8-1
Using BASIC 8-3
Start Up Options 8-3

CONTENTS (continued)

Section IX Page
OPERATOR COMMANDS

LOAD . .o 9-2
SAVE/CSAVE 9-3
MERGE 9-4
REPLACE e 9-5
DELETE 9-5
CREATE 9-6
PURGE 9-7
RENAME 9-8
RESEQ ...\ 9-8
RUN 9-9
LOCK/UNLOCKt 9-10
BYE . 9-10
LIST . 9-11
*BRBASIC . ..o 9-11
CALLS . 9-12
TABLES ... 9-14
Section X Page
DEBUGGING COMMANDS

TRACE/UNTRACE 10-2
BREAK/UNBREAK it 10-2
RESUME e 10-3
ABORT ... 10-4
SIM/UNSIM . ..o 10-5
SHOW 10-5
SET . 10-6
Section XI Page
REAL-TIME TASK SCHEDULING

Introduction 11-1
Methods of Initiating Tasks 11-1
Priorities . ..o 11-2
Response Time 11-3
The BASIC Scheduler 11-3
DSABL ... 11-5
ENABL ... 11-5
SETP . 11-6
START . . 11-7
TIME .. 11-8
TRAP Statementccooviiiiiiiiiiee.n. 11-9
TRNON .. 11-11
LY S o e 11-12
Program Example, 11-12
Table Preparationcooion.. 11-17
Error Messagesovviiiioeneen i, 11-17
Section XII Page
BIT MANIPULATION OPERATIONS

Bit Manipulation Word Format 12-1
AND .. 12-1
IBCLR ... 12-2
IBSET (Bit Set)vvviiiiiiiiiiiiiiiaean 12-3
IBTST (Bit Test)ovvreieiii e 12-3
vi

IEOR ..ottt 12-4
NOT . 12-5
OR . 12-5
ISETC (Set to Octal) ...t 12-6
ISHFT (Register Shift) 12-6
Branch and Mnemonic Table Preparation 12-7
Section XIII Page
MAGNETIC TAPE I'O
Magnetic Tape Operator Commands 13-1
Magnetic Tape Calls 13-2
MTTRT ... 13-2
MTTRD 13-2
MTTPT .. 13-3
MTTES .. 13-4
Tape Manipulation Errors 13-4
Branch and Mnemonic Table Entries 13-5
Sample Program Using Magnetic Tape............ 13-5
Section XIV Page
SUBROUTINE TABLE GENERATION
RTETG .. e 14-4
Scheduling RTETGt 144
The First RTETG Command 14-5
Other RTETG Commands 14-5
RTETG Output Files............................. 14-7
RTETG Commands Required for
Library Subroutines 14-9
Loading Overlaysooiiiiiio.. 14-9
Error Messages ... 14-10
Replacing a Subroutine 14-12
Section XV Page
HP 2313/91000 DATA ACQUISITION
SUBSYSTEM
Measurement of Analog Input 15-1
Analog Output 15-1
HP 2313/91000 Subsystem Subroutines 15-1
AIRDV (Random Scan) 15-2
AISQV (Sequential Scan) 15-3
AOV (Digital to Analog Conversion) 15-4
NORM .. 15-5
PACER 15-6
RGAIN 15-7
SGAIN ... 15-8
Subsystem Errors o 15-8
Table Preparation 15-9
Subsystem Conceptcii. 15-9
Card Configuration 15-10
Channel Numbering 15-11
Setting Gain ... 15-11

Update 4

CONTENTS (continued)

Section XVI

HP 6940 MULTIPROGRAMMER

SUBSYSTEM

HP 6940 Subsystem Subroutines
DAC

SENSE ..o
WRBIT ...
WRWRD (Write Channel)
Subsystem Errors..........o
Table Preparationccooiiiie...
Card Configuration ...
EXpansionooooiiiiiiiiiii
Channel Numberingt

Section XVII
HP 7210 PLOTTER
AXTS

Section XVIII

INSTRUMENT TABLE GENERATION
Operating Instructions
HP 2313/91000 Configuration Phase
HP 6940 Configuration Phase
Loading the Tapet
Error Messagesovvvveeiiiiiiiee

Section XIX Page
FORMATTED OUTPUT
Specifying Formatted Output 19-1
Using List o 19-1
Format String 19-1
Using Formatted Output 19-2
Number Representation 19-2
Carriage Control 19-4
Literal String 19-4
Delimiters 19-4
Tab Function 19-5
String Representation 19-5
Report Generation 19-8
PRINT USING Format Errors 19-9
Appendix Page
SUMMARY OF STATEMENTS,
COMMANDS, AND SUBROUTINES A-1
Statement SumMmary A-1
Command SUMMAryovvviiiireeeaaaaaanns A-3
Subroutine Summary ... A-5
ERROR MESSAGES B-1
HP CHARACTER SET FOR
COMPUTER SYSTEMS ..., C-1
RTE Special Characters.....................ooo.. C-4
LOADING BASIC SOFTWARE D-1
System Generationl D-1
Loading BASIC and RTETG Under RTE-IL, IIT D-2
Loading BASIC and RTETG Under RTE-1V,
RTE-IVB, and RTE-6/VM D-2A
Set Up Files for Loading Overlays D-2B
System Considerations D-2B
Multiple Copies of BASIC D-3
Summary of Steps Required to
Generate a BASIC System D-4
HP-IB/BASIC DATA CONVERSION E-1
Data Conversion Requests — DCODE E-1
Binary-to-ASCITo i E-2
ASCII-to-Binarycocooviiiiiiiiiiiiiinnnnn E-3
BLEK S .. E-4
DEBS ..o E-5
NUMand CHRS i E-6

Update 4 vii

ILLUSTRATIONS

Title Page Title Page
Typical System 1-3 BASIC and an Overlay in Memory 14-1
RTE Memory Layout with BASIC 1-4 The “Ten Steps” Performed When a Subroutine
Preparing a FORTRAN Function for Use or Function Subprogram is Called by
by BASIC Programcccoviio... 6-7 BASIC . 14-2
Preparing a FORTRAN Subroutine for Use RTETG Commands for Library Subroutines 14-7
by BASIC Program 6-8 HP 2313 Subsystem Configuration................ 15-9
FORTRAN Subroutine to Convert HP 6940 Subsystem Configuration................ 16-8
String Parameter 6-11 Channel Numbers for Additional 6940 16-9
Task State Definitions 11-4 Channel Numbers for Addition of a
Task Scheduling Program Example (Part 1)...... 11-13 6941 Extender 16-9
Structure of Program Example in Figure 11-411-14 Plotter Control Sample Program #1 17-9
Task Scheduling Program Example (Part 2)...... 11-15 Plotter Control Sample Program #2 17-10
16-Bit Word 12-1 Plotter Control Sample Program #2 (Plot) 17-11
Record Positioning Example Using MTTPT 13-3 Print Using Statement Structure 19-1
Tape Control Sample Program 13-5 Dummy TRAP Module........................ ... D-1
TABLES
Title Page Title Page
Statements 3-1 RTETG Error Messages 14-11 l
Operator Commands 9-1 Error Messagescoovviiinniiiiiiiiiinni.. 18-4
Debugging Commands 10-1

viii

Update 4

SECTION

INTRODUCTION

1-1. FEATURES

Multi-User Real-Time BASIC is a subsystem designed for use on RTE disc systems and provides a
simple, easy-to-use augmented real-time version of the BASIC language. As many as four users may
efficiently employ Real-Time BASIC concurrently, each with a uniquely named copy of the Real-Time
BASIC software. Interaction with Multi-User BASIC can be via local or remote terminal devices,
keypunched cards, paper tape, magnetic tape, or disc.

Real-Time BASIC provides you with these capabilities:

e Conversational programming.

e Multiple peripheral device I/O including graphics display.

e Real-time and event task scheduling.

e Dynamic program debugging aids.

e Fast access disc file storage for programs and data.

e Bit manipulation.

e Scheduling of BASIC, FORTRAN, and Assembly language programs.
e Instrumentation I/0 and device subroutine simulation.

e User defined subroutines and functions.

e Character string manipulation.

e Program statement character editing and line resequencing.
1-2. CONVERSATIONAL PROGRAMMING

BASIC is an English-like programming language that is easy to learn and use. You enter programs
directly into the Real-Time BASIC subsystem from a keyboard device. The BASIC Interpreter checks
each statement as it is entered. If the statement contains an error, a message is printed which defines
the error and you can correct it immediately. This type of interaction between you and the Interpreter
is called conversational programming.

Conversational interaction allows you to test your programs step-by-step as they are being prepared.
You are in constant touch with the system, its functioning, and its results. Programming and
debugging are completed quickly, easily, and efficiently.

1-3. MULTIPLE PERIPHERAL DEVICE 1I/O

Multi-User Real-Time BASIC can provide a wide selection of input/output capabilities. It can be used
with either hardcopy or display screen terminals, line printers, tape punches, and magnetic tape units.
Data can be displayed on a hardcopy graphic plotter or TV monitor. The Interpreter also makes use of
the fast-access disc storage capabilities of the RTE Operating System under which it operates.

1-4. REAL-TIME AND EVENT TASK SCHEDULING

Multi-User Real-Time BASIC is called real-time because the order of processing may be governed by
time or by the occurrence of external events rather than by a strict sequence defined in the program
itself. Because these events can occur in random order and require different amounts of processing,
conflicts may arise between tasks. BASIC is capable of resolving these conflicts.

Update 4 1-1

Introduction

BASIC includes statements that assign execution priority to tasks, and statements to schedule
execution of tasks as a function of time. The user can also connect task subroutines to event interrupts
such as contact closures. Each task subroutine that is to be repeated during the course of system
operations specifies the interval between successive executions of the task.

1-5. PROGRAM DEBUGGING AIDS

Multi-User Real-Time BASIC provides commands that enable you to debug a program while it is
running. The path of flow through a program can be displayed, the values of variables can be displayed
and modified, and subroutine calls can be simulated.

1-6. FILE CAPABILITIES

If you need or want a data base external to particular programs, Multi-User Real-Time BASIC
provides a file capability allowing flexible yet straightforward manipulation of large volumes of data
stored on disc files. Extensions to the READ, PRINT, and IF statements provide you with facilities for
reading from or writing onto mass storage files and/or peripheral units.

Internally, files are organized as a collection of records each of 128 16-bit words. Thus, each record of a
file may contain up to 64 numeric quantities. A string data item will occupy 1 + INT [(n + 1)/2] words,
where n is its length in characters and INT truncates the quotient of the expression in brackets to an
integer value.

When manipulated on a record-by-record basis, a file appears as a collection of subfiles which are the
records. The ability to reference any record of the file directly allows you to partition your data and
alter any group without disturbing the rest of the file.

BASIC, FORTRAN, and Assembly language programs can use the same data files but BASIC requires
a special format to which programs in the other languages must conform if BASIC programs are to use

the files. The file must be type 1 with 128 word fixed length records. Each word in the record must be
initialized with all bits equal to 1. In RTE-IVB and 6/VM, BASIC does not recognize type 1 file extents.

1-7. ENVIRONMENT

1-8. HARDWARE
The BASIC Interpreter operates within the RTE hardware environment consisting of an HP 1000 M,

E, or F-Series Computer System. (Refer to the appropriate system Programming and Operating
Manual for equipment configurations and memory requirements.)

Peripheral devices required for BASIC are a system console and a disc drive. Optional devices include
a line printer, card reader, photoreader, plotter, TV monitor, HP 2313 and HP 6940 Subsystems, and
additional discs and terminals.

A typical system configuration is depicted in Figure 1-1.

1-2 Update 4

Introduction

SYSTEM BACKUP

TAPE

DIsC

MAGNETIC Q HP 2313 HP 6340

MAIN PROCESSOR » LINE PRINTER

\ 4

SYSTEM
CONSOLE
v L

REMOTE TERMINALS /

1-9.

Figure 1-1. Typical System
SOFTWARE

The BASIC Interpreter is an option which runs under the RTE operating system. It requires a memory
partition of about 16K words — 12K for the Interpreter and at least 4K for your BASIC program. If
TRAP and Task Scheduling is used, SSGA must be accessed. The subsystem consists of the following
modules and components:

BASIC, the main program and all disc resident segments used for control and I/O.

Segment 1 - Statement syntax checking.
Segment 2 - Program and error listing.

Segment 3 - Pre-execution processing, building symbol tables and intermediate code.
Segment 4 - Execution of Programs.

Segment 5 - Command execution.

Segment 6 - Command execution.

Segment 7 - Tracing, debugging and subroutine simulation.

Segment 8 - Execution of PAUSE, STOP, END, ASSIGN, and CHAIN statement and BYE
command (closing segment).

Each segment is loaded from the disc as required by the BASIC main program.

Branch and Mnemonic Tables, used to link BASIC to subroutines and functions. These tables are
binary disc files, not relocatable modules and are created by a separate table generator program,
RTETG.

Disc Resident User-Written subroutines.

Trap Table Module, used for keeping track of all real-time tasks and traps.

Update 4 1-3

Introduction

Figure 1-2 illustrates the layout of BASIC in the RTE system memory.

BACKGROUND
AREA

RESIDENT
LIBRARY

USER'S PROGRAM

BRANCH AND
MNEMONIC TABLE

DISC RESIDENT
SEGMENTS 1 TO 8

{

BASIC SOFTWARE
(MAIN PROGRAM)

HIGH MEMORY ‘

PROGRAM
PARTITION

BASIC
INTERPRETER

TRAP TABLE

RTE SYSTEM AND DRIVERS

LOW MEMORY

RTE-II, 1Nl

USER'S PROGRAM

BRANCH TABLE AND
MNEMONIC TABLE
(WITH BBUFF)

DISC RESIDENT
SEGMENTS 1 TO 8

BASIC SOFTWARE
(MAIN PROGRAM)

TRAP TABLE

BASE PAGE

RTE-1V, IVB, 6/VM

BASIC
INTERPRETER

SSGA

1-4

Figure 1-2. RTE Memory Layout with BASIC

Update 4

Statements

3-7a. PRINT USING

PRINT USING statements are used to direct output to specific devices and to format that output. The
LU# of the output device is specified in the statement. The format of the data to be output is specified
in the format part of the string following PRINT USING, and the data is specified in a print list
following the format part.

Format

PRINT [#/u] USING format part [;using list]

Parameter

lu an optional numeric tonstant or variable which may be the LU# of the
device, or the type O file in the sixth position in the FILES statement. “lu”
may not be a standard file.

format part either a format string (represented as a literal string or a string variable)
or a statement number referencing an IMAGE statement.

using list an optional parameter list which may include; numeric expressions, string

variables, or print function (TAB), separated by commas. These commas
are delimiters only and have no formatting function. Note that string
variables, not string expressions, are allowed.

NOTE

Use of the carriage control operators #, + and — on non-terminal
devices such as line printers may produce results that are different
from those on a terminal. This is caused by mechanical or programatic
differences in the hardware or software.

GROUPS. A group of one or more format specifications may be enclosed in parentheses which must be
preceded by a repetition factor between 1 and 132 inclusive (e.g., 2(/AX,D/) is equivalent to /AX,D/
//AX,D/). Within the parentheses, the specifications must be separated by commas or slashes and the
group must be set off from other specifications by a comma or slashes, just as if it were a single
specification. Groups can be nested two levels deep.

EXECUTION OF THE PRINT USING STATEMENT. Execution of the PRINT USING statement
commences by examining the format string. The carriage control character, if present, is noted for
termination processing, then each format specification is examined.

If the specification is either a string or a numeric specification, the next item from the using list is
printed according to the specification. If the using list has already been exhausted or is not present, the
statement terminates. If the item does not agree with the specification (i.e., string vs. numeric), an
error message is printed and the program execution terminates.

If the specification is literal, the specified number of blanks (or the contents of the literal string) is
simply printed; the using list is not examined.

3-11

Statements

If the the end of the format string is reached before the end of the using list, processing continues from
the beginning of the format string but after the optional carriage control character (if the format string
contains no string or numeric specifications, the statement terminates).

When all items from the using list have been printed the statement terminates (any remaining literal
specifications are processed if the end of the format string has not been reached for the first time).
Termination consists of printing, carriage return, and linefeed, modified by the carriage control
character.

If the format string is empty or contains only blanks, output consists of only a carriage return, and
linefeed.

Examples

10 PRINT #6 USING 100A$, (2+X), B$

100 IMAGE 3DX,DD.D//SD.DDE
50 PRINT #17 USING “#,3(DD.D2X)";Z1,Z2,Z3

See Chapter 19 for additional information on formatted output.

When printing to a type O file representing the line printer, a blank or control character must follow
the in the format string because control characters are in the first column for line printers (e.g.,
IMAGE “ THIS IS A LINE”,5A).

3-12 Update 4

Statements

The INPUT statement requests data to be input from your terminal for subsequent assignment to a
variable. When the INPUT statement is encountered, the program comes to a halt and a question
mark is printed on the terminal. The program does not continue execution until the input require-
ments are satisfied. A maximum of 80 characters can be input.

Only one question mark is printed for each INPUT statement. The statements:

10 INPUT A, B2, C5, D, E, F, G

and

20 INPUT X

each cause a single question mark to be printed. Note that the question mark generated by statement
10 requires seven input items, separated by commas, while that generated by statement 20 requires
only a single input item. Failure to include commas between input items will result in corrupt input
data.

When you run the program, if you enter data of the wrong type or other invalid input, two question

marks (??) are printed. You may then type the correct input data.

If you want to terminate the program and return control to the BASIC Interpreter, type Control Q (Q°)
or QQ. If you are running from a multi-point terminal, type QQ only.

Example

SLIST
10 FOxk M=1 TO 2
20 INPUT A
30 INPUT A1,B2,C3,20,29,E5
40 PRINT "WHAT VALUE SHOULD BE ASSIGNED IO o ';
50 INPUT R
60 PRINT A3Al13RB2;C33ZA3295E53"n= "5 R
70 NEXT ™M
8» END

>RUN

721

?21314}5}6’7
WHAT VALUE SHOULD BE ASSIGNED IO R ?27

1 2 3 4 5 6 7 = 27

215

22e553e55,4055605,72

78,1

WHAT VALUE SHOULD BE ASSIGNED TO R ?-99

105 2.5 3.5 405 6 7.2
31 r= =99

Update 4 3-17

Statements

3-12. DIM

The DIM (dimension) statement defines the size of an array. DIM statements may also be used with
strings (see Section IV).

Format
DIM X(integer)[,]
DIM X(integer,integer)[, . . .]
Parameters
X array name (A through Z)
integer dimension of array. (The first integer refers to rows and the second to columns).

The DIM statement defines the size of an array. 255 is the maximum dimension allowed. If a variable
is subscripted and has not been defined in a DIM or COM statement, the size of the array is assumed to
be 10. If the reference is to a two dimensional array, the array is assumed to be 10 by 10. An array may
be dimensioned only once. More than one array can be named in a DIM statement; they are separated
by commas.

There is no requirement to use all of the space reserved when you define the array. The maximum
array size depends only upon the maximum available memory in the computer. The DIM statement
can appear anywhere in a program and is not executed.

There is no way to initialize an array before execution. Values must be loaded by FOR loops or by
reading from peripheral devices.

Examples

>LIST
1# DIM F[(2,3]
20 FOr I=1 TO 2
39 FOr J=1 TO 3
40 LET F[{I,Jl=1
50 NEXT J
60 NEXT 1
7% END

>rUN

The size of the F array is defined and the array is initialized to contain all ones.

3-13. COM

The COM statement is used to pass data values between programs. Variables specified in a COM
statement are placed in a common area so that values assigned to these variables in one program will
be retained when transferring to another program with CHAIN. COM areas must be equal in size for
CHAINed or INVOKE’d programs so that common will remain properly aligned.

Format

COM variable list

Parameter variable list list of string or array variables

3-18

FUNCTIONS

A function is the mathematical relationship between two variables, X and Y, for example, that returns
a single value of Y for each value of X. The independent variable is called an argument; the dependent
variable is the function value. To illustrate, in the statement:

100 LET Y = SQR(X)
X is the argument; the function value is the square root of X; and Y takes the value of the positive root.

Two types of functions are used in Multi-User Real-Time BASIC: system defined functions and
user-defined functions.

5-1. SYSTEM-DEFINED FUNCTIONS

Real-Time BASIC provides a variety of functions that perform common operations such as finding the
sine, taking the square root, or finding the absolute value of a number. The resulting value of a
function is always numeric and can be used in the evaluation of an expression. Available system-
defined functions are listed below:

ABS(x) The ABS function gives the absolute value of the expression (x).

ATN(x) ATN is the arctangent function. ATN returns the angular argument of x in radians
adjusted to the appropriate quadrant.

COS(x) The COS function returns the cosine of x expressed in radians.

EXP(x) EXP gives the value of the constant e raised to the power of the expression (x).

IERR(x) This function returns the error code value which may have been set by a user-defined

subroutine or function. See Section VI. x is a dummy argument.
INT(x) The integer function, INT, provides the truncated value of x; x < 32767.

LENx$) Determines length (no. of characters) in character string identified by string variable
x$. See Section IV.

LOG(x) Gives base 10 logarithm of variable or expression.
LN(x) LN provides the logarithm of a positive expression to the base e.
OCT(x) This function prints the octal equivalent of an integer value. The maximum possible

range of the returned variable is 0-177777,. If x is outside the range of —32768 to
32767, 77777, is returned.

RND(x) RND generates a random number greater than or equal to zero and less than 1. The
argument x may have any value. A sequence of random numbers is repeatable upon
each run if the argument is positive. A random sequence can be achieved upon each
run by two RND calls. The first call is issued in the negative value for x, called a seed,
followed by another call with a positive x. If the same seed is used for each run, the
same random sequence is repeated. Also, the same random sequence is restarted after

BREAK/RESUME commands are given during debugging.

Update 4 5-1

Functions

SERR(x)
SGN(x)
SIN(x)
SQR(x)

SWR(x)

TAB(x)

TAN(x)

TIM(x)

TYP(x)

Sets the error code which may be queried with IERR(x). See Section VI.
SGN returns 1 for x >0, 0 for x =0, and —1 for x <0.

The SIN function gives the sine of x expressed in radians.

SQR provides the square root of x. x must be greater than zero.

The SWR function returns the logical value, one or zero, of the Switch Register bit
position specified by x (range = 0 through 15).

The TAB function is used to advance the print position the number of positions
specified by x. x may be equal to 0 through 71. See Section III.

The TAN function returns the tangent of x expressed in radians.
The TIM function returns the current minute, hour, day or year.

= 0, TIM(x) = current minutes (0 to 59)

= 1, TIM(x) = current hour (0 to 23)

= 2, TIM(x) = current day (1 to 366)

= 3, TIM(x) = current year (four digits).

= -1, TIM(x) = current seconds (0 to 59)

= -2 TIM(x) = current tens of milliseconds.

Il

Moo M M X

Il

The TYP function determines the type of the next data item in the specified file. The
three possible reponses are: 1 = next item is a number, 2 = next item is a character
string, 3 = next item is “end of file”, 4 = next item is “end of record”. If x is zero, the
TYP function references the DATA statements and returns the following response:
1 = number, 2 = string, 3 = “out of data” condition.

5-2. USER-DEFINED FUNCTIONS

A user-defined function is one that you define for use in your program. It is called and used the same
way that a system-defined function is. The DEF statement is used to define a new function, that is to
equate the function to a mathematic expression.

Format

X

DEF FNx(y) = expression

Parameters

expression provides a formula such as X*X or X 1TAN(X). Whenever the function is called

stands for a letter (A-Z) that completes the name of the function. Only 26
user-defined functions may be specified: FNA through FNZ.

stands for the variable to which the function is to be applied. Any number,
string, or variable may be used in this position.

in the program, this formula will be evaluated.

5-2

Subroutines

6-3a. INVOKE

The INVOKE statement is used to schedule a second BASIC program from a calling program. The
called program may also call another program and so on. When the currently executing, called
program terminates, control is returned to its calling program.

Format

string variable

INVOKE . .
string literal

[statement number label]

The string variable or literal is the name of a Real-Time BASIC program or the type 6 RTE
program that has been saved with the File Manager ‘SP’ command. This may be a fully
qualified file name (see Section VII, Files). If the optional statement number label is present,
execution begins at the first executable statement at or after the label; the exact label need
not be present in the called program. If omitted, execution begins at the first executable
statement in the called program.

INVOKE calls the program identified by the string expression, and it stores the current program on
disc. When the program called by INVOKE finishes execution, it terminates and automatically
returns to the calling program. The called program may call another program, including the original
calling program, with the INVOKE statement.

Basic data files remain open when one program INVOKES another.

Only variables declared in a COM statement are saved during a INVOKE operation. All variables and
arrays of the current program that were not declared in COM are not available to the new program
when the new program begins execution. All programs must contain the same size COM area and the
same number of file positions in the FILES statements so that common will be properly aligned. Files
declared in INVOKE’d programs correspond to files declared in the main program. Logical units
cannot be defined in a INVOKE’d program unless it is already declared in the main program’s FILES
statement. Refer to the FILES statement, Section 7-3, for examples.

If the programs are CSAVEd, the time required to execute the INVOKE statement is reduced.
Any TRAPS previously enabled will remain enabled.

The calling program and its own local variables are saved on the disc on program tracks in the system
area of the disc. The levels deep of INVOKE is determined by the size of the calling program and the
number of available system tracks. When the available system tracks are used up, the message
“BASIC WAITING TRACKS” is printed. The copy of Multi-User BASIC being used by the operator is
disc track suspended until system tracks become available, or the copy of Multi-User BASIC being
used by the operator is terminated with an OF command (this is not recommended).

When BASIC invokes a program, the LU’s of your terminal and list device are passed. If the devices
are interactive, the echo bit (K-bit) is set.

Update 4 6-15

Subroutines

The non-BASIC program that is INVOKE’d must exist as a type six file for BASIC to schedule it. This
means that after the program to be INVOKE'd is loaded, it must be SP’d with the File Manager SP
command. For example, if EXMPL is the non-BASIC program to be INVOKE’d first load the program
then type,

:SP, EXMPL
EXMPL is now stored as a type six file. BASIC first ‘opens’ the INVOKE’d program to determine its
type. This type could be ASCII (type three or four) and BASIC assumes a BASIC program is to be
INVOKEd. If it is type six, then BASIC schedules the non-BASIC program.

When the user breaks the INVOKE’d program with the system break command (*BR,BASIC), BASIC
returns control to the original program.

6-16 Update 4

SECTION

Vi

FILES

For situations that require permanent data storage external to a particular program, Real-Time
BASIC provides a data file capability. This capability allows flexible direct manipulation of large
volumes of data stored in files.

The simplest approach to files is to treat them as serial storage devices. Visualize a file as a list of data
items, ordered serially. You can read the data in a file and write data to a file with your programs quite
easily without worrying about the internal structure of the file. Several programs may access the same
file along with yours. Each program uses its own data pointer to mark its position in the file, and
functions independently of the other programs.

You may also envision files as structured data bases, internally organized as a collection of records —
each record consisting of 128 16-bit words. Thus each record of a file may hold up to 64 numerical
quantities. A string data item occupies 1 + (n+1)/2 words where n is its length in characters.

To use a file you should be familiar with the CREATE and PURGE commands and with the statements
listed below:

e FILES

e READ#
e PRINT#
e ASSIGN
e IF END

These commands and statements as applicable to files are defined in the remainder of this section.

7-1. FILE CHARACTERISTICS

In order to create and use files, you must understand the following characteristics of Real-Time BASIC
files. The conventions for file creation are the same as RTE File Manager conventions.

e A file name may contain from 1 to 6 characters. The first character may not be a number. Leading
and trailing blanks are ignored. Embedded blanks are not allowed. Any printable ASCII character
except the plus (+), hyphen or minus (—), comma (,), and colon (:) may be used.

e A file may be assigned a security code to control read/write access. The security code may be a
number between —32767 and +32767. A positive code write protects the file. When accessing the
file, you may supply a positive or negative version of the positive security code in order to write on
the file. A negative security code both read and write protects the file. You must provide the
negative code to read or write on a file protected by a negative code. If you do not want to protect the
file, assign a zero security code.

Two ASCII characters may be used in lieu of a positive security code. The first character may not be
a number.

e Each file is assigned a type number. For a complete description of all file types, see the Batch-Spool
Monitor Reference Manual. The types you will be using with BASIC are: type 0, type 1, type 4, and
type 10.

A type O file defines an I/O device. You must create type O files with the File Manager CR command.
After you create a type O file, you can use the file name to reference the device it defines.

Update 4

7-1

Files

A type 1 file contains data. You must create this type of file with a Real-Time BASIC CREATE
command if you are using it with BASIC programs. In RTE-IVB and 6/VM type 1 files are extendable.
BASIC does not recognize type 1 file extents. Extended files should be stored into another file without
extents (e.g., :ST,BIG:::1,BIGG:::1: —1,BN) before running BASIC.

A type 4 file is created when you SAVE a program. You may also create a type 4 file with the File
Manager or Interactive Editor and store source programs or commands in it.

A type 10 file is created when you CSAVE a program.

® When you create or access a file, you can specify the cartridge reference. The cartridge reference can
be a positive integer corresponding to the label of a currently mounted cartridge or a negative
logical unit number referencing a disc. The file will be created on or accessed from the specified
cartridge. If you specify a zero, the cartridges are accessed in the order in which they appear in the
File Manager Cartridge Directory.

NOTE

When obtaining input from devices via type 0 files, you must ensure
that the data is of the correct file type. BASIC cannot determine if a
type O file is of type 3, 4, or 10 format while it reads the records into
memory. Invalid information may corrupt the Interpreter’s own
internal buffers and cause BASIC to execute improperly. This atten-
tion to file formats is especially necessary for the RUN, LOAD, and
MERGE commands and the CHAIN statement.

7-2. CREATE AND PURGE

The CREATE command is used to create a file for use by a program and the PURGE command is used
to remove a file. These commands are described in Section IX, paragraphs 9-6 and 9-7.

7-3. FILES STATEMENT

Every file that is to be accessed by a program must be identified in the program’s FILE statement.

Format

FILES filename, [, filename,, . . . filename, [:security[:cartridge]]]

Parameters

filename, name of file to be referred to by number corresponding to position in FILES
statement, or an asterisk indicating file will be assigned later or zero
indicating position refers to a logical unit.

security optional security code which may be supplied with each filename.

cartridge optional cartridge reference which may be supplied with each filename
(either positive cartridge reference number or negative LU number).

The FILES statement declares which files will be used in a program. Up to four FILES statements can
appear in a program, but only 16 files total can be declared. The files are assigned numbers (from 1 to
16) in the order in which they are declared in the program. In the examples below MATH is file #1 and
#9, FILE27 is #7, and DATA is #10. File position #3 will be assigned to a filename with the ASSIGN
statement. File position #4 is specified as zero to indicate LU4.

7-2 Update 4

Files

Example

75 READ #1,35 A, Bl, C(I,J+2)
80 READ # 1.,d Positions file pointer to record J without reading
any data.

7-9. SERIAL FILE PRINT STATEMENT

The serial file PRINT # statement writes data items on a file, starting at the current position of the
pointer. The items may be numeric or string expressions.

Format
ile n L.

PRINT # ’;‘ue number . o int list [, END]

Parameters

file number a number, variable, or expression whose value is between 1 and 16, indicating
a file’s position in the FILES statement.

lu if a file position corresponding to the file number does not exist in the program
or the file position contains a zero (i.e. FILES 0,FILA), the number is inter-
preted as a logical unit number (lu).

print list series of numeric expressions, numeric or string variables, or string literals.

END optional constant which prints EOF on the file.

The PRINT # statement performs essentially the same operation as the ordinary PRINT statement,
except that data is written to a file or logical unit rather than to a terminal. No line formatting of files
takes place, the comma and semicolon act only as delimiters and may not be used as actual data unless
the lu number refers to a teleprinter or lineprinter. (See the PRINT statement paragraph 3-7). When
printing to the line printer using PRINT #6, BASIC inserts a leading space in column 1 when not a
type O file. The PRINT USING (Section 3-7a) or PRINT to a type O file should be used to control the
line printer.

Writing of the first value begins wherever the file pointer is positioned and new records are used as
necessary. Writing onto a file overlays whatever may have been in that area, including end-of-file
marks. To ensure that a file actually ends with the last item written, the special constant END may be
placed at the end of the print list. END is significant only when it is the last item written on a file.

The END constant should not be used when the PRINT# statement refers to an LU. The interpreter
cannot distinguish the difference between a file number or an LU when the line is evaluated by the
parsing routine. Therefore, a run-time error will occur.

If printing is attempted beyond the physical end of the file, an end-of-file condition occurs. The [F END
statement can be used to specify action in this case, or the program will terminate.

Since character strings vary in length and each string must be wholly contained within a record, some
space in each record may be left unused. You can calculate the number of words occupied by any string
with the formula described in paragraph 1-6.

Update 4 7-7

Files

If the file named in the FILES statement is a type O file, the data is printed to the device corresponding
to the file. See Section IX for more information about type O files.

You should not do a serial read after PRINT without resetting the pointer. For information about
modifying records, see paragraph 7-12.

20 FILES FILA
30 PRINT #1; A,"STRING",A$ The value of A, the string “STRING”, and A$ are

printed on FILA.

20 FILES LINEP LINEP is a type 0 file corresponding to the line
printer.
60 PRINT #1; 'SUMMARY" The string literal SUMMARY is printed on the

line printer.

100 FILES FILEA,FILB,FILC,0,FILD

150 PRINT #4; A,B,C The variables A, B, C are punched on the paper
tape punch, LU 4.

200 PRINT#(I+J); 2,42,A,B,C,D(3,5),END
The items are printed on the file in position I +J
followed by an end-of-file mark.

To advance a page (top-of-form) on a line printer, set up a type O file to the line printer as follows:
10 FILES O,LP
20 PRINT #2;"1"
30 END

where: LP is a type O file for the line printer.

7-10. PRINTING A RECORD

The PRINT # statement may also be used to write items to a designated record.

Format

PRINT # file number, record number; print list

Parameters

file number see paragraph 7-9.

record number a number, variable, or expression indicating on which record the list is
to be printed. Ignored if file number refers to LU number or type 0 file.

print list see paragraph 7-9.

Execution of a print record statement performs the same task as serial PRINT with the exception that
the operation is limited to one record. The entire list of data must fit in one record. An attempt to write
more than one record or more than the record can hold results in an end-of-file condition. The write
begins at the beginning of the record, which is scratched of previous data. Again, the use of the IF END
statement will avoid program termination at the end of the write.

7-8 Update 2

OPERATOR COMMANDS

This section describes the Multi-User Real-Time BASIC commands. Unlike the statements discussed
in earlier sections, commands are not part of a program, nor are they preceded by line numbers. When
entered, a command is executed immediately.

Table 9-1 lists and defines the various operator commands available to you with Multi-User Real-Time
BASIC. Detailed explanations of most of the commands are provided in the remainder of the section.
Additional commands used in specific situations such as program debugging are introduced and
explained in subsequent sections. The TABLES command is described in Section VIII. A complete list
of the commands and their uses is provided in Appendix A.

File characteristics (filename, security, cartridge) are described in Section 7-1.

Table 9-1. Operator Commands

COMMAND FUNCTION

LOAD Loads a source program or a semi-compiled program from a file

SAVE Stores a program on disc as a source program

CSAVE Stores a program on disc in semi-compiled format

MERGE Merges a source program with a program in memory.

REPLACE Replaces a source nrogram on discC.

DELETE Deletes a program from memory

CREATE Creates a data file on a device

PURGE Deletes a program or file from disc

RENAME Removes the name of a file on the disc and replaces it with a new name
RESEQ Renumbers the statements in a prog-am

RUN Loads and executes a program

LOCK Locks a peripheral device to your program

UNLOCK Unlocks a locked device.

BYE Terminates the use of BASIC

LIST Lists a program onto a file.

*BR,BASIC Breaks execution of a program

CALLS Lists all of the mnemonics in the current Mnemonics Table

TABLES Specifies Branch and Mnemonic Table names. (Described in Section VIlI also.)
REWIND Rewinds magnetic tape.*

SKIPF Skips to end of file on magnetic tape.”

BACKF Backspaces to end of file on magnetic tape.”

WEOF Writes end of file on magnetic tape.”

*These commands are described in Section Xl

NOTE: When obtaining input from devices via type 0 files, you must ensure that the data is of the
correct file type. BASIC cannot determine if a type O file is of type 3, 4, or 10 format while it reads the
records into memory. Invalid information may corrupt the Interpreter's own internal buffers and cause
BASIC to execute improperly. This attention to file formats is especially necessary for the RUN,
LOAD and MERGE commands and the CHAIN statement.

Update 4 9-1

Operator Commands

9-1. LOAD

The LOAD command enables you to load all or a portion of a source program or a semi-compiled
program from a specified file.

Format

LOAD [limits] [filename [:security [:cartridge]l]

Parameters

limits beginning and ending line numbers of the portion of the program you want
loaded separated by a comma. Limits are omitted if the entire program is
to be loaded.

filename name of file containing the program or type O file corresponding to a device
from which the program is to be loaded. The default is LU 5 or the LU
number specified as the input parameter in the RUN,BASIC command.

security optional security code. Must use if program saved with security code.

cartridge optional cartridge reference (label or LU number).

The LOAD command reads in all program statements between and including the line numbers
specified as limits. If limits are not specified, the entire program is loaded. Once loaded, a program is
ready for execution or editing.

Examples
>LOAD Loads from LU 5 by default.
>LOAD 150,250 CARD Loads from a file named CARD.

When a syntax error is encountered during the loading of a program, BASIC prints an error and
returns to the command mode.

The correct procedure for recovering from syntax errors during LOAD is illustrated by the following
example:

Given the file TEST::1132 The load procedure is:
10 LET A=1 >LOAD TEST::1132
20 LTE B=A MISSING ASSIGNMENT OPERATOR IN LINE 20
30 LET C=B 20 LTE B=A
99 END >20 LET B=A

>MERGE TEST::1132,21

BASIC READY
SLIST

10 LET A=1
20 LET B=A
30 LET C=B
99 END

Update 4

Operator Commands

9-2. SAVE/CSAVE

The SAVE command stores the BASIC program currently in memory on the disc. CSAVE saves a
program in semi-compiled form for faster loading.

Format

SAVE [limits] [filename [:security [:cartridgel]]

CSAVE [filename [:security [:cartridge]]]

Parameters

limits beginning and ending line numbers of the program to be saved. If specified,
limits must be separated by a comma. If no limits are specified, the entire
program currently in memory is saved.

filename name of the file in which the program is to be saved. If the file already
exists, an error message is printed. If the file does not exist, it is created
and the program is saved. The file is closed when the operation is com-
pleted. If no filename is specified, the program will be output to LU 4 (for
SAVE only) or the LU number specified as the output parameter in the
RUN,BASIC command.

security optional security code.

cartridge optional cartridge reference (label or LU number).

The SAVE and CSAVE commands store program statements on the disc. The SAVE command may
store only the statements between and including the line numbers specified. If limits are not specified,
the entire program is stored.

A SAVEd program can be edited with the Interactive Editor and can also be loaded by BASIC. CSAVE
is used for faster loading and particularly where several large programs are CHAINed together. A
CSAVEd program should always be backed up by a SAVEd version because it is in binary format. If
any modification of the Interpreter or a new system generation takes place, the CSAVEd program
becomes unloadable by the new version of BASIC or the RTE system. CSAVE is used generally for
production programs where no modification is being made and speed of loading and chaining is
important. A program cannot be CSAVEd to an LU or type 0 file.

A CSAVE file is a type 10 file with records possibly being greater than 128 words, each. If you wish to
create another copy of a CSAVE file, you must use the CSAVE command. The RTE File Manager does
not store or copy files with records greater than 128 words.

Rules for naming files and file characteristics are given in paragraph 7-1.

Once stored, the program can be loaded and executed as needed.

When a program containing external subroutines is CSAVEd, the names of the Branch and Mnemonic
Tables are stored with the CSAVEd program. Therefore, if there is more than one copy of that

program, be aware that each version is related to a different set of Branch and Mnemonic Tables and
overlays.

Update 4 9-3

Operator Commands

Examples

>SAVE
>SAVE 100,260

>SAVE PROGA
>CSAVE PROGB

>CSAVE

9-3. MERGE

The current source program is output on LU 4.

Lines 100 through 260 of the current program are
output to LU 4.

The current program is saved in file PROGA.

Semi-compiles and saves program in file

PROGB.

Output semi-compiled form of current program to
LU 4.

The MERGE command merges a source program or portion of a source program with a program in

memory.

Format

Parameters

limits

filename

security

cartridge

MERGE [limits]

[filename [:security [:cartridge]l]

beginning and ending line numbers of the program to be merged. Limits
must be separated by a comma. If no limits are specified the entire pro-
gram is merged.

name of the program to be merged. Program name may be omitted, if
program is to be loaded from the standard input device (LU 5).

optional security code. Must be supplied if program saved with security
code.

cartridge reference (label or LU number).

MERGE merges a BASIC source program with a program in memory. If any line numbers of the
program being entered match those of the program in memory, the like numbered statements of the
program in memory will not be replaced. MERGE is useful if you want to load a program with syntax
errors. You can retype the statements which are in error and edit them, if necessary, and then merge
in the rest of the program. The corrected statements will not be replaced by the ones in error.

Examples
>MERGE Merge source statements from LU 5.
>MERGE 122,190 Merge source statements numbered 120 through
190 from LU 5.
>MERGE PR0OGA Merge source statements from file named
PROGA.

9-4

Operator Commands

Example

P
arameter types Overlay Number

>CALLS / e S

IRSETC(I,I1) F @
IEORCILI) F A
ORC(I,I1) F n
ANDCIL,I) F @
NOT (1) F 7 > F = function
ISHFTCI,I) F O
IBTSTC(I,I) F 7
IRCLR(CILI) F @

ISETC(RA) F 9

DAC(CI,R)Y S @

MPNRM S 2

RDWRDCI,IV) S A
WRWRD(I,I) S 7
RDBITC(I»I»1V) S 72
WRRBIT(1I,1,1I) S A
SENSEC(I,I,I,1I) S A
AISQAV(I,I1,RVA,IV) S 1
AIRDV(I,RA,RVA,IV) S 1
PACERC(I,I»1) S 1

NORM S 1

SGAIN(CI,R) S 1
RGAIN(CI,RV)Y S 1
AOV(I,RA,RA,1IV) S 1
MTTRD(I,RVA,I,IV,IV) S 2
MTTRTC(I,RA,1,IV,IV) S 2
MTTPTC(I,I,1) S 2
MTTFSCI, 1) S 2 L

SFACT(R,R) S 3 S = subroutine
FACT(R,R) S 3
WHERE(RV,RV) S 3
PLOT(R,R,I)> S 3

LLEFT S 3

JRITE S 3

PLTLUJCI) S 3
AXIS(R,R,RA,R,R»RR) S 3
NIJMR(R,R,R,R,R, 1) S 3
SYMB(R,R»R»RAR,I1) S 3
LINES(RA,RA,I,I,I-R) S 3
SCALE(RVA,R,I1,I) S 3
TIME(RV) S 4

SETP(I,I) S 4

_/\

START(I»R)Y S 4
NDSABL(I) S 4
ENABRLCI) S 4
TRNONCI,R) S 4

9-13

Operator Commands

9-16. TABLES

The TABLES command specifies which Branch and Mnemonic tables to use. This command is
necessary if you intend to use external subroutines written in other languages. The Branch and
Mnemonic Tables are created when running the BASIC Table Generator described in Section 14.

Format

TABLES branch filename [:SC[:CR]), mnemonic filename [:SC[:CR]]

branch filename is the name of the file, created by the RTE
BASIC Table Generator,which contains sub-
routine branch information.

mnemonic filename is the name of the file, created by the RTE
BASIC Table Generator, which contains sub-
routine mnemonics.

SC is an optional security code parameter.

CR is an optional positive cartridge number or
negative logical unit number.

The branch and mnemonic files must be unique to each copy of BASIC. If two BASIC programs try to
access the same set of branch and mnemonic files, the error message “FILE CURRENTLY OPEN OR
EXCLUSIVE OR LOCK REJECTED?” is displayed.

9-14 Update 4

Debugging Commands

Format

BREAK statement number label[,statement number label,....statement number label]
UNBREAK statement number label[,statement number label,....statement number label]
BREAK

Parameters
statement number label execution suspends just before this statement. At least one

number must be specified, as many as four may be specified
separated by commas.

Once a breakpoint is reached, execution can only be resumed by entering a RESUME command.
BREAK prompts for commands with two greater than (>) symbols.

To eliminate all breakpoints, enter the command UNBREAK prior to resuming program execution.

To eliminate specific breakpoints, enter the command UNBREAK and the line numbers of the
breakpoints to be deleted.

To obtain a list of currently set breakpoints, enter BREAK with no parameters.

Legal commands that may be entered only during a break are: ABORT, RESUME, SET, and SHOW.
Commands that may be entered during a break as well as other times include: BREAK/UNBREAK,
CALLS, SIM/UNSIM, and TRACE/UNTRACE. If you enter any other command during a break, the

system issues an error message. If you enter more than four statement number labels without using
UNBREAK, an error message is printed.

Examples
>BREAK 30,792,992, 192 Breakpoints are defined for lines 30,70,90, and
»RUN 100.
«BREAK 30 Breakpoint 30 is reached.
>RESUME Resume execution by typing RESUME.
BREAK 70 Breakpoint 70 is reached.
>UNBREAX 992 Delete breakpoint 90.
>RESUME Resume execution.
3REAX 100 Breakpoint 100 is reached.
SEEAX Indicates breakpoints are set at statements 30, 90,
32,0,90,122 and 100.

10-3. RESUME

The RESUME command terminates current debugging activity and resumes execution of the sus-

pended program. This command may be entered only during a break period, or after a subroutine
simulation suspension.

10-3

Debugging Commands

Format

RESUME
RES

There are no attendant parameters to this command.

The RESUME command restarts the program at the location printed when the break occurred. You
may abbreviate the command to RES.

The random number sequence generated by the RND function (see Section V) is restarted upon typing

RESUME. You may wish to avoid setting breakpoints around statements affected by random
numbers.

Example
>BREAY 25,100 Set breakpoints 25 and 100.
*BREAX 25 Breakpoint 25 is reached, program is suspended.
>>RESUME Type RESUME command to resume execution of
program.
*BREAK 120 Breakpoint 100 is reached.
104. ABORT

The ABORT command terminates a suspended program and returns the BASIC Interpreter to a
non-executing program state. ABORT may be entered only during a break period or following a
subroutine simulation suspension.

Format

ABORT

There are no attendant parameters for this command.

When ABORT is entered, the break period is ended and the run terminated. You may now enter any
command legal during normal BASIC operation, but cannot enter commands legal only during a break
period. Break points and trace are unchanged.

Example
>EREAX 25,1020 Set breakpoints 25 and 100.
*BREAX 2% Breakpoint reached, execution suspended.
>>ABORT Type ABORT to terminate program execution.
BASIC READY BASIC is ready for next command.

>

104 Update 4

SUBROUTINE TABLE GENERATION

In order to call external subroutines and functions written in BASIC, FORTRAN, or Assembly
language, you must use the RTE Table Generator to define and generate two tables, the Branch and
Mnemonic Tables, and create overlays which contain the actual subroutines.

When a specific subroutine is called, the module or overlay is loaded from the disc into a partition of
memory. Remember that BASIC resides in another partition. Therefore, BASIC and the overlay reside
in memory concurrently, at least initially. After control is passed to the subroutine, the BASIC
Interpreter may be swapped out to the disc if necessary. All of the information that allows BASIC to
access the correct overlay is contained in the Branch and Mnemonic Tables. Additional information is
contained in the overlay which is used to pass control to the correct subroutine in the overlay.

Figure 14-1 illustrates the relationship of the BASIC Interpreter and a subroutine overlay in memory.

BASIC uses the Branch and Mnemonic Tables to transfer program execution from BASIC to the
subroutine or function and back. It converts parameters and locates the subroutine overlay and the
subroutine within the overlay. First, BASIC looks in the Branch and Mnemonic Tables to locate the
proper overlay and to determine how parameters are to be passed. The parameters are stored in
System Available Memory (SAM), and the overlay is scheduled. The operating system suspends
BASIC and activates the overlay. The overlay obtains the parameters from SAM, stores them in the
area behind the overlay, and transfers to the required subroutine. These steps are reversed when
parameters and control are returned to BASIC. The complete process is detailed in Figure 14-1A.

BASIC
N A BASIC PROGRAM
MEMORY
PARTITION BASIC INTERPRETER
SUBROUTINE C
OVERLAY UBRO
IN A
MEMORY SUBROUTINE B
PARTITION
SUBROUTINE A <—— EXTERNAL SUBROUTINE.
CALSB <—— SYSTEM SUBROUTINE WHICH PASSES PARAMETERS
BETWEEN BASIC AND EXTERNAL SUBROUTINES.
% BAOO <—— OVERLAY PROGRAM CONTAINING ACTUAL ADDRESSES
OF SUBROUTINES.
RTE SYSTEM
LOW
MEMORY

Figure 14-1. BASIC and an Overlay in Memory
Update 4 14-1

Subroutine Table Generation

HIGH
BASIC MEMORY BASIC
CALL SUBROUTINE (PARAMETER 1,...) CALL SUBROUTINE (PARAMETER 1,...)
: USER
PROGRAM
AREA
SYSTEM AVAILABLE MEMORY SYSTEM AVAILABLE MEMORY
OPERATING
SYSTEM
SYSTEM (§¢gié?ESE) SYSTEM
AND Y AND
DRIVERS DRIVERS
BASE PAGE BASE PAGE
Low
MEMORY

2 The subroutine call or FUNCTION subprogram is
referenced in the Branch and Mnemonic Tables to
occurs determine which overlay i1s required. and what
format the parameters are expected to be The pa-
rameters are then stored in System Available Mem

ory (SA M n the required format

1 When a subroutine or FUNCTION subprogram s
encountered in BASIC. the following procedure

PARAMETER & DATA STORAGE AREA PARAMETER & DATA STORAGE AREA PARAMETER & DATA STORAGE AREA

SUBROUTINE n SUBROUTINE n SUBROUTINE n

SUBROUTINE 3 SUBROUTINE 3 SUBROUTINE 3

SUBROUTINE 2 SUBROUTINE 2 SUBROUTINE 2

SUBROUTINE 1 SUBROUTINE 1 SUBROUTINE 1

OVERLAY DIRECTORY & LIBRARY ROUTINES OVERLAY DIRECTORY & LIBRARY ROUTINES OVERLAY DIRECTORY & LIBRARY ROUTINES

SYSTEM AVAILABLE MEMORY SYSTEM AVAILABLE MEMORY SYSTEM AVAILABLE MEMORY
SYSTEM SYSTEM SYSTEM
AND AND AND
DRIVERS DRIVERS DRIVERS
BASE PAGE BASE PAGE BASE PAGE
3. The overlay containing the subroutine or FUNC- 4 The parameters stored in SAM are copied to a 5 The parameters are handled by the subroutne
parameter storage area in the overlay

TION subprogram is brought into memory. BASIC may
be swapped out to the disc.

Figure 14-1A. The “Ten Steps” Performed When a Subroutine or Function Subprogram is

Called by BASIC
14-2 Update 4

Subroutine Table Generation

PARAMETER & DATA STORAGE AREA

e PARAMETER & DATA STORAGE AREA

SUBROUTINE n

SUBROUTINE n

SUBROUTINE 3

SUBROUTINE 3

SUBROUTINE 2

SUBROUTINE 2

SUBROUTINE 1

SUBROUTINE 1

OVERLAY DIRECTORY & LIBRARY ROUTINES

OVERLAY DIRECTORY & LIBRARY ROUTINES

SYSTEM AVAILABLE MEMORY

SYSTEM AVAILABLE MEMORY

SYSTEM
AND
DRIVERS

SYSTEM
AND
DRIVERS

BASE PAGE

BASE PAGE

6. Any information to be returned to the BASIC
program is stored back in the parameter storage

area

7. The parameters stored in the parameter storage
area of the overlay are copied back into S AM

BASIC

CALL SUBROUTINE (PARAMETER 1,...)

BASIC

CALL SUBROUTINE (PARAMETER 1,...)

BASIC

CALL SUBROUTINE (PARAMETER
NEXT INSTRUCTION

SYSTEM AVAILABLE MEMORY

SYSTEM AVAILABLE MEMORY

SYSTEM AVAILABLE MEMORY

SYSTEM SYSTEM SYSTEM
AND AND AND

DRIVERS DRIVERS DRIVERS

BASE PAGE BASE PAGE BASE PAGE

8. Control is returned to BASIC. If BASIC was swap-
ped out. it 1s brought back into memory

9 The parameters stored in S A.M. are copied back to
the respective parameters in the BASIC program

10 The next BASIC instruction line is executed

Figure 14-1A. The “Ten Steps” Performed When a Subroutine or Function Subprogram is
Called by BASIC (continued)

Update 4

14-3

Subroutine Table Generation

14-1. RTETG

The RTE Table Generator (RTETG) operates in batch mode. You can provide the description of a
subroutine or function from a type 3 or 4 disc file or type O file only (for non-interactive devices only,
such as cards, paper tape, or magnetic tape).

You specify:

e the name of the subroutine or function as it is called in your BASIC program,

® the type of each parameter (integer, real, or array) used by the routine,

® the entry point name of the routine if different from the name as used in your BASIC program,
® the name of the file containing the relocatable subroutine,

® overlay groupings.

RTETG processes this information and produces the Branch Table, the Mnemonic Table, relocatable
overlay file, and a FMGR transfer file which is used to load the overlays. Each overlay is a relocatable
program which allows execution to be transferred to the subroutine or function when it is called. When
the overlay is loaded, it is linked to all routines defined as part of the overlay.

Each overlay is named and numbered as %Bxnn, which is the relocatable file name and the program
name. X is the overlay identification letter from A-Z and nn is from 00-31. The maximum number of
overlays handled at one time by RTETG and BASIC is 32. For example, the fourth overlay with ID
letter A would be %BA04. A single overlay may be used for up to 64 subroutines. For efficiency you
should arrange to have all subroutines and functions which are likely to be used consecutively in the
same overlay. For example, the nine bit manipulation functions from %BASLB can be combined into
one overlay. At the same time, do not lump everything into one overlay, or it will not fit into a memory
partition.

As many as 26 pairs of tables and sets of overlays may be defined for each version of BASIC on a
system. Each time you run BASIC, you specify which tables you are using. In this way, you can
optimize efficiency by setting up tables which are appropriate for your program. Overlays and their
corresponding Branch and Mnemonic Tables cannot be shared by another copy of BASIC.

Refer to Appendix D for information on loading RTETG.

14-2. SCHEDULING RTETG

When you schedule RTETG you must specify the name of a file where the commands defining your
subroutines are to be found. The file may be a type 3 or 4 File Manager file or a type 0 file
corresponding to a non-interactive input device such as the card reader or a terminal. You may
optionally specify the logical unit number of the list device where commands will be printed.

The command to start RTETG is:

:RUN,RTETG filename [:security [:cartridge]] [,list]
or

*RUN,RTETG,filename [:security [:cartridge]] [,list]

filename name of a file. (Cannot specify a logical unit number.)
security optional security code. Must be specified if file was created with a security code.
cartridge optional cartridge reference (label or negative LU).

list is the logical unit number of the list device. Default is the user’s terminal.

The RTETG commands are described below.

14-4 Update 4

Subroutine Table Generation

14-3. THE FIRST RTETG COMMAND

The first command you use must specify the files to be created for the Branch Table, the Mnemonic
Table, the transfer file, and an identification letter to identify the set of overlay to be produced. The
command is:

brt [:sc [:er]] ,mnt [:sc [:cr]] ,trf [:sc [:cr]] ID=i [,prior [,sec [,crefll]

brt is the name to be given to the Branch Table file

sc is the security code to be assigned to the file it follows. The value may be an integer
between —32767 and +32767 or two ASCII characters. Default equals 0, no security
code. The first ASCII character may not be a number

cr is the cartridge reference number. A positive integer between 1 and 32767 is the label
of the cartridge on which you want the file to reside. A negative number is the logical
unit number of the cartridge. Default equals 0, use any cartridge.

mnt is the name to be given to the Mnemonic Table file.
trf is the name to be given to the transfer file.
ID=: indicates the upper case alphabetic character (A-Z) to identify your set of overlays

since there may be more than one set of overlays defined in your RTE system. The ID=
must always precede the i parameter.

prior is the priority assigned to the overlay program when it is scheduled. Default is 80.

sec is the security code to be used with the overlay relocatable files. The permissible
values are the same as for the sc parameter.

cref is the cartridge reference number to be used with the overlay relocatable files. Default
is 0, no cartridge reference. The permissible values are the same as for the cr
parameter.

The three file names may be any legal File Manager file names. All files must be unique and not exist
beforehand.

14-4. OTHER RTETG COMMANDS

For each subroutine or function you want to call from a BASIC program, you must use the following
command. If a command takes more than one line, you must continue to enter parameters until an
automatic end of line wraparound to the next line takes place. No carriage return is acceptable at the
end of the first line.

FP
name [(p1,p2, . . . ,prs),0V=nn [,SZ=mm] [,SS] [g‘l‘;ﬁ ,g’; (VL] [,ENT=epoint] [,FIL=fname [:scl:cr]]]

BT
name is the subroutine or function name which may be from 1 to 5 characters.
(pl,p2, . .. ,pn) is a list of 1 to 15 parameter types to be passed to the subroutine if it

requires them. The list must be enclosed in parenthesis. If there are no
parameters, do not specify any and do not put any parenthesis. pn equals:

L] tvital

(I=integer, R=real, V=value is returned from the subroutine, A=array
variable) (1 < = n < = 15). For example, SUBX(I) or SUBZ(IV,RVA). To
pass a string variable, RA or RVA should be specified. Note that the simple
variable A is different from Array (A). Default is R for real. Refer to Section
II for a description of variables.

Update 4 14-5

Subroutine Table Generation

From this point, the following parameters may be specified in any order.

OV=nn

SZ=mm

SS
INTG

REAL

FP, FT, BP, or BT

VL
ENT =epoint
FIL=fname
sc

14-6

indicates the overlay in which the subroutine will reside. The OV = must
always precede nn. (0 < = nn < = 31) overlays must be specified in
ascending order.

indicates the number of pages required for the overlay. This parameter is
used for all systems except RTE-II and need appear only once. If it appears
more than once, the largest value supplied is used and a warning is printed.
(1 < =mm < = 32). Specify at least one page more than the actual program
size to allow enough room for parameter passing. The message ERROR NO
MEMORY-1 IN LINE XXX will occur when there is a program call to an
external subroutine and insufficient space is available to store the passed
parameters. The SZ command referring to the flagged subroutine should be
modified to provide for enough space in memory to store the parameters
passed from the calling program.

indicates the overlay is to reference SSGA (not applicable to RTE-IID).

is used to indicate the function value is returned as an integer. If this
parameter is used, the routine is automatically a function.

is used to indicate the function value is returned as a floating point number.
If this parameter is used, the routine is automatically a function.

specifies that the overlay is real-time Permanent, real-time Temporary,
Background Permanent, or Background Temporary. The default is FP.

is used to indicate that the length of the subroutine call parameter list is
variable. BASIC supports the calling of subroutines using a variable length
parameter list only if the subroutine being called has been written to handle
a variable length list. Remember that FORTRAN programs cannot handle a
variable length list. BASIC always passes 15 parameter addresses to the
subroutine. Unused parameters are zeroed out. Each parameter and its type
must be specified in the RTETG command entry. BASIC then will allow
execution of subroutine calling sequences with less than the maximum
number of parameters.

For example, the RTETG command:
SUBX (RA,RA,[IIV), VL,OV=2

will allow BASIC to accept the call:
10 CALL SUBX (A,B,C)

but not the call:
10 CALL SUBX (A,B,C,D,E,F)

specifies the 1 to 5 character subroutine entry point name. If this name is
identical to the first five characters of name, it need not be specified. If it is
different than the first 5 characters of name, it must be specified. ENT =
must precede the entry point name. If greater than 5 characters, an error is
issued.

specifies the name of a File Manager relocatable file where the routine
resides. The FIL=must always precede the file name. If you do not supply a
name when you run the transfer file, the disc resident libraries are searched
for the routine. If the routine is not found, the Loader prompts for the name
at the user’s terminal when you load a program which uses the routine.

is the security code of the file named fhame.

Update 4

cr

Subroutine Table Generation

is the cartridge reference (label or LU) of the cartridge on which the file
named frhame resides.

Constant numbers, string literals, and expressions cannot be used as parameter values when calling a
subroutine if the parameter has been defined as type V (returned from subroutine). Functions cannot
be used in a parameter list.

14-5. RTETG OUTPUT FILES

RTETG creates two separate binary files for the Branch and Mnemonic Tables and stores them in type
7 File Manager files. See the TABLES command in Section IX.

The overlays are produced as separate standard relocatable files named % Bxnn and are stored in type
5 files. The third letter (x) of the program name and the entry point name vary according to the ID
letter supplied with the command which defines the subroutine. The file name also corresponds to the
entry point name. The last two characters of the name (nn), are digits which indicate the overlay
number specified in the OV = command for each subroutine.

RTETG also creates a File Manager transfer file to load the overlays. This transfer file is a type 3 file.
This transfer file is discussed in paragraph 14-7.

First
Command

Data Conversion

Bit Manipulation

HP 6940
Subsystem

HP 2313/91000
Subsystems

Magnetic Tape
Subsystem

Type of

Memory Overlay

Residence Number
BTBL ,MTBL ,TRFL,ID=A \ \
DCODE(RVA,RVA,RA), BP, 0v=0,
NUM(RA) , BP, 0v=0,
CHRS(I ,RVA) BP, 0Ov=0,
IBSETC(I, D), ov=1,
IEORCI,I), ov=1,
ORCI, 1), ov=1,
ANDCI , 1), ov=1,
NOTCD), ov=1,
ISHFTCI, 1), ov=1,
IBTSTCI, D), ov=1,
IBCLRCI,I), ov=1,
ISFIC(RA), ov=1,
DACCI ,R), Dv=2,
MPNRM, Dv=2,
RDWRD(I ,IV), Dv=2,
WRWRDCI , 1), Dv=2,
RDBITCI,I,IV), Dv=2,
WRBITCI,I,1), Dv=2,
SENSECI,I,I,1), Dv=2,
AISQV(I,I,RVA,IV), Dv=3,
AIRDV(I,RA,RVA,IV), DV=3,
PACERCI,I, 1), DV=3,
NORM(CI), DV=3,
SGAINCI ,R), DV=3,
RGAINCI ,RV), DV=3,
AOV(I ,RA,RA,IV), DV=3,
MTTRDCI ,RVA,I,I1V,IV), ov=4,
MTTRTCI ,RA,I,IV,IV), ov=4,
MTTPTCI,I,1), ov=4,
MTTFSCI,I), ov=4,

N

Subroutine P ,Parameters
or Function

Name

Function
Value
is Integer

/

INTG,

INTG,
INTG,
INTG,
INTG,
INTG,
INTG,
INTG,
INTG,
INTG,

Entry Point
Name

\

ENT=DCODE
ENT=NUM
ENT=CHRS

ENT=BBSET
ENT=BEOR
ENT=BIOR
ENT=BAND
ENT=BNOT
ENT=BSHFT
ENT=BBTST
ENT=BBCLR
ENT=ISETC

ENT=DAC,

ENT=MPNRM,
ENT=RDWRD,
ENT=WRWRD,
ENT=RDBIT,
ENT=WRBIT,
ENT=SENSE,

ENT=AISQV,
ENT=AIRDV,
ENT=PACER,
ENT=NORM,
ENT=SGAIN,
ENT=RGAIN,
ENT=A0V,

ENT=MTTRD
ENT=MTTRT
ENT=MTTPT
ENT=MTTFS

Name of File
containing
Routine

FIL=X694BS
FIL=X694BS
FIL=%X694BS
FIL=X694BS
FIL=X694BS
FIL=X694BS
FIL=X694BS

FIL=XA2313
FIL=%XA2313
FIL=XA2313
FIL=XA2313
FIL=XA2313
FIL=XA2313
FIL=XA2313

Figure 14-2. RTETG Commands for Library Subroutines

Update 4

14-7

Subroutine Table Generation

HP IMAGE 1000
(92063A)

DBDEL(CIV,RA),
DBCLSCIV, 1),
DBLCK(CIV, 1),
DBUNLCIV),

SADD(RA,RVA,IV),

Variable
Length
Parameter
List

Decimal SSUB(RA,RVA,IV),
String SMPY(RA,RVA,IV),
Arithmetic SDIV(RA,RVA,IV,IV),
SFDIT(RA,RVA,IV),
String DEB$ (RVA),
Subroutines BLK$(CI ,RVA),

VL, BP, 0V=8,S5S,

VL, BP, 0V=8,SS,

vL, BP, 0V=8,S5S,
BP, 0Vv=8,SS,
BP, 0V=8,SS,
BP, 0v=8,5S,
BP, 0V=8,5S,

BP, 0V=9,
BP, 0OV=9,
BP, 0V=9,
BP, 0OV=9,
BP, 0V=9,

ov=10,
ov=10,

Type of Function
Memory Overlay Value Entry Point
Residence Number is Integer Name
SFACT(R,R), ov=5, ENT=SFACT,
FACT(R,R), ov=s, ENT=FACT,
WHERE(RV,RV), ov=s, ENT=WHERE,
PLOT(R,R, 1), ov=s, ENT=PLOT,
LLEFT, ov=5, ENT=LLEFT,
Plotter URITE, ov=s, ENT=URITE,
Subsystem PLTLUCI), ov=5, ENT=PLTLU,
AXIS(R,R,RA,R,R,R,R), ov=s, ENT=AXIS,
NUMB(R,R,R,R,R, 1), ov=s§, ENT=NUMB,
SYMB(R,R,R,RA,R, 1), ov=5, ENT=SYMB,
LINESC(RA,RA,I,1,1,R), av=s, ENT=LINES,
SCALE(RVA,R,1,1), ov=s, ENT=SCALE,
HPIBCI,I,I), 0v=6,SS, ENT=HPIB
SRQCI,I,RA), ov=6,SS, ENT=SRQ
HPIB SRQSNCI, 1) ov=6,SS,
Subsystem CMDRCI ,RA,RVA), ov=6,SS, ENT=CMDR
CMDWCI ,RA,RA), ov=6,SS, ENT=CMDW
IBERRCI), 0v=6, INTG,SS, ENT=IBERR
IBSTS(1), 0v=6, INTG,SS, ENT=1BSTS
TIME(RV), ov=7,SSs, ENT=TIME,
SETPCI, 1), ov=7,SS, ENT=SSETP,
Task START(I,R), ov=7,SS, ENT=SSTRT,
Scheduling DSABL(I), ov=7,SS, ENT=DSABL,
ENABLCI), ov=7,SS, ENT=ENABL,
TRNONCI ,R), ov=7,SS, ENT=TRNON,
TTYSCI, 1), ov=7,SS, ENT=TTYS,
DBOPNCIVA,RA,RA,I, 1), BP, 0V=8,SS, SZ=13, ENT=DMOPN,
DBINF(I,RA,RVA), BP, 0V=8,SS, SZ=13, ENT=DMINF,
DBFNDCIVA,RA,RA,RA), BP, 0V=8,SS, SZ2=13, ENT=DMFND,

DBGET(IVA,RA,I,RA,RA,RVA,RVA,RVA,RVA,RVA,RVA,RVA,RVA,RVA,RVA),

SZ2=13, ENT=DMGET,

DBUPDCIV,RA,RA,RA,RA,RA,RA,RA,RA,RA,RA,RA,RA,RA,RA),

SZ=13, ENT=DMUPD,

DBPUTCIV,RA,RA,RA,RA,RA,RA,RA,RA,RA,RA,RA,RA,RA,RA),

SZ=13, ENT=DMPUT,

SZ=13, ENT=DMDEL,
SZ=13, ENT=DMCLS,
SZ=13, ENT=DMLCK,
SZ=;3, ENT=DMUNL,

ENT=D.ADD
ENT=D.SUB
ENT=D.MPY
ENT=D.DIV
ENT=D.EDT
ENT=DEB$
ENT=BLKS

Minimum

Number of

Pages

required

for Overlay

Where SS is required as a parameter in the Overlay definition for RTE-Ill and RTE-IV systems only.

Name of File
containing
Routine

FIL=PLOTR
FIL=PLOTR
FIL=PLOTR
FIL=PLOTR
FIL=PLOTR
FIL=PLOTR
FIL=PLOTR
FIL=PLOTR
FIL=PLOTR
FIL=PLOTR
FIL=PLOTR
FIL=PLOTR

FIL=%XTSKSC
FIL=%TSKSC
FIL=%XTSKSC
FIL=XTSKSC
FIL=X%XTSKSC
FIL=XTSKSC
FIL=%TSKSC

FIL=%BAIMG

FIL=XBAIMG
FIL=%BAIMG

FIL=XBAIMG

FIL=%BAIMG

FIL=%XBAIMG

FIL=%BAIMG
FIL=XBAIMG
FIL=%BAIMG
FIL=XBAIMG

92069A IMAGE/1000 is documented in manual part number 92069-90003 and its subroutines are in file %BAIMX.

Figure 14-2. RTETG Commands for Library Subroutines (Continued)

14-8

Update 4

Subroutine Table Generation

14-6. RTETG COMMANDS REQUIRED FOR LIBRARY SUBROUTINES

In order to use the subroutines and functions described in various sections of this manual, you must
enter the subroutine and function names in the Branch and Mnemonic Tables. You may select from
figure 14-2 the commands for the particular subsystems and subroutines you want to use. Always refer
to the appropriate subsystem manual for complete information regarding the subroutines. The com-
mands contain extra spaces for readability. All commands must be entered as one record, terminated
with a carriage return.

The first command specifies a Branch Table named BTBL, a Mnemonic Table named MTBL, a
Transfer File named TRFL, and an A to identify the group of overlays, from %BA00—-%BA10.

The BASIC Interpreter does not check the Branch and Mnemonic Tables before it parses a line to
isolate reserved words. A user function (not a subroutine) included in the Branch and Mnemonic Table
that has the letter combination AND or OR in its function name will not be recognized, e.g.,
SANDR(I), CORE(LI). These examples would be interpreted as S AND R(I), C OR E(I,I). Therefore,
any functions which have these letter combinations in their name should be changed.

14-7. LOADING OVERLAYS

After running RTETG, you are now ready to load the overlays. There must be one ID segment
available for each overlay. The transfer file is a type 3 source file named and created in the first
RTETG command. The transfer file can be used to load the overlays. The loader list device is the same
list device specified in the :RUN,RTETG command, Section 14-2. To run the transfer file:

*RUN,FMGR Schedule FMGR.

‘TR¢trf Type the TRANSFER command with the transfer file name.
:EXIT When FMGR returns a prompt, exit.

$END FMGR

Under RTE-IV, IVB, and 6/VM it is recommended to use the transfer file as a guide to on-line loading
rather than actually running it. This is because certain conditions are assumed when running the
transfer file:

1. The loader list device is the same list device specified in the :RUN,RTETG command.

2. The Subroutine Library, %#BASLB, has already been generated into the disc resident library.
3. The loader is executed without automatic renaming (i.e., :RU,LOADR:IH).
4.

If program type is defaulted in RTETG, the transfer file loads the overlay as a real-time permanent
program. Under Session Monitor, the user capability level must be 60 to load programs perma-
nently with the loader.

5. All overlay programs are loaded at one time with the transfer file.
In RTE-IVB and 6/VM if you on-line load an overlay yourself and save the program as a type 6 file, you
must save the type 6 file on a different disc LU than the overlay relocatable file. In RTE-6/VM, an

overlay must not be loaded as extended background, also you cannot use the multi-level loader.

Below is an example of a RTETG command file, the transfer file and how an overlay was actually
loaded under RTE-IVB.

Update 4 14-9

Subroutine Table Generation

BTBL:AJ:V1l, MTBL:AJ:V1l, TRFL:AJ:V1l, ID=A

BAMY (RVA,RVA,RA), ov=0,SZ=6,BP, ENT=BAMY ,FIL=%BAMY
NUM (RA) , ov=0,SZ=4,INTG, ENT=NUM

CHRS (I,RVA), ov=0,5z=4, ENT=CHRS
IBSET(I,I), ov=1,SZ=4,INTG, ENT=BBSET
IEOR(I,I), ov=1,SZ=4,INTG, ENT=BEOR

OR(I,I), ov=1,SZ=4,INTG, ENT=BIOR

AND(I,I), ov=1,SZ=4,INTG, ENT=BAND

NOT(I), ov=1,SZ=4,INTG, ENT=BNOT
ISHFT(I,I), ov=1,SZ=4,INTG, ENT=BSHFT

:LI,TRFL:AJ:V1
TRFL T=00003 IS ON CR V1 USING 00010 BLKS R=0000

0001 :PU,##.RTG

0002 : ST, %BAO0O : O: O,##.RTG,BR

0003 : DU, $%BAMY : O: O,##.RTG,BR,2,99
0004 :RU,LOADR:IH, ,##.RTG, 1 , BG , PE ;s 6
0005 :PU,##.RTG

0006 : ST, %$BA01 : 0: 0,4%#.RTG,BR

0007 :RU,LOADR:IH, ,##.RTG, 1 , RT, PE rr 4
0008 :PU,##.RTG

0009 HH

To load %BAO0O:

:RU,LOADR

[/LOADR: LIB,%BASLB] if not in Disc Resident Library
/LOADR: LIB,%BAMY subroutine BAMY is in %BAMY
/LOADR: REL,%BA00 load first overlay

/LOADR: END

:SP,%BA00:: -3 save overlay program on LU 3

To load %BAO1:

:RU,LOADR

[/LOADR: LIB,%BASLB] if not in Disc Resident Library
/LOADR: REL,%BAO1 load second overlay

/LOADR: END

:SP,%BA01::—3 save overlay program on LU 3

The subroutines in %BAO01 are in the BASIC Subroutine Library, %BASLB.

14-8. ERROR MESSAGES

Table 14-1 contains a summary of the error messages you may encounter while running RTETG. Each
error is prefixed by * ERROR *.

14-10 Update 4

Subroutine Table Generation

Table 14-1. RTETG Error Messages

MESSAGE

BAD ENTRY POINT NAME

BAD FILE NAME

BAD SECURITY CODE

CANNOT READ COMMAND FILE

CARTRIDGE LOCKED

CARTRIDGE NOT FOUND

COMMAND FILE NOT FOUND

DIRECTORY FULL

DISC DOWN

DUPLICATE FILE NAME

ENTRY POINT NAME TOO LARGE

EOF OR SOF ERROR

FILE OPEN

ILLEGAL FORMAT

ILLEGAL PARAMETER SPECIFICATION

MUST BE NUMERIC LIST DEVICE

MUST SPECIFY A COMMAND FILE

OR LU

NAME TOO LARGE

EXPLANATION AND ACTION

A name contains illegal characters. See the RTE-IV Assembler
Reference Manual “or naming rules.

A name contains illegal characters. See Section 7 for naming
rules.

RTETG cannot access the command file. Create it without a
security code or use the correct one.

If the command file is from a type O file, make sure that it is set up
for reading.

Make sure the disc is not being packed before running RTETG.

Cartridge specified in first command line is not mounted in
system.

Check to make sure the command file name is spelled correctly.

Directory track is full. Purge some files and pack the disc or re-
initialize the disc specifying one more directory track.

Possible disc malfunction. Try to turn disc back on or check out
disc problem.

One of the files to be created is named the same as an existing
file. Use a different name for the file or specify another cartridge.

The entry point name exceeds 5 characters.

Trying to read past the end-of-file mark. If using a logical unit for
input make sure that you are at the beginning of the data

The command file is open and RTETG cannot access it. Use the
File Manager DL command to determine which program has it
open. Decide whether to wait until later or to abort the program
which is using it if the operator has abandoned the run without
terminating the program.

Syntax error in RTETG command. Check for missing commas.
bad characters, misspelled keywords.

There is an error in one of the parameter specifications supplied
within parenthesis following the subroutine name.

The list device specified in the run string must be a logical unit
and not a file.

RTETG is not interactive.

The file name exceeds 6 characters or the subroutine name
exceeds 6 characters.

Update 4 14-11

Subroutine Table Generation

Table 14-1. RTETG Error Messages (Continued)

MEANING EXPLANATION AND ACTION

NOT ENOUGH PARAMETERS You have not supplied all of the required parameters with the
RTETG command.

NOT ENOUGH ROOM ON CARTRIDGE Cartridge specified 's full. Purge and pack the cartridge or
specify another one.

OVERLAY OUT OF NUMERIC ORDER Overlay numbers must be specified in ascending order.

TABLE OVERFLOW You have exeeded the limit of 300 subroutine specifications.

TOO MANY PARAMETERS You have supplied too many parameters with the RTETG
command.

14-9. REPLACING A SUBROUTINE

If a subroutine you have entered in the Branch and Mnemonic Tables does not work properly, you may
need to replace the subroutine or regenerate the tables.

If the problem is in the subroutine itself, the operation is a simple one. First correct the programming
error in the subroutine and purge the old overlay program as shown below. Then reload the overlay.
Now you can again run BASIC with the corrected subroutine.

If there is an error in the specifications of the tables themselves, you must generate them again. To do
so, you must first purge all files created by the Table Generator. For example:

:PU,mnemonic table filename

:PU,branch table filename

:PU,transfer filename

:PU,%BXO00:::5 Purge all overlay relocatable file names, %Bxnn, where x is the ID letter

and nn is the overlay number.
:PU,%Bxnn:::5

Next you must remove the overlay programs. Refer to the appropriate RTE reference manuals for
detailed information about removing programs. The following example can be used as a guideline
when removing programs loaded permanently with the LOADR PE opcode.

RTE-II, III RTE-IV,IVB,6/VM
‘RU,LOADR,, 4 ‘RU.LOADR,,,,PU
PNAME?%Bx00 JLOADR: PNAME?%Bx00
‘RU,LOADR,, 4 ‘RU,LOADR,,, PU
PNAME?%Bxnn /LOADR: PNAME?%Bxnn

If overlay programs were saved with the FMGR SP command, they should be removed.

RTE-IV,IVB,6/VM
:PU,%Bx00:::6

:PU,%ann:::G

After purging all files and programs, correct the RTETG input file, run the Table Generator, and load
the overlay programs.

14-12 Update 4

Integer format examples:

DDD
4D .
2DDD equivalent

2D2D

2DX3D
SDDD
S4D
DX3DS

Integer output examples:

Format Specification

4D
S4D
4DS
SD

4D
DXDDD
S10D
DSDDD
SD

4D

Fixed-point format examples:

DDD.DDD
DDD. 3D .
3D. 3D equivalent

3D.DDD

S3D.3D
DXDXDX.DDXD
XD6X4D.8D
DDSDD. 3D

Fixed-point output examples:

Format Specification

3D.4D
4D.2D
4D.3D
SDD2D.D
S2D. 4D
S.4D
D.4D
2D.4D

Floating point format examples:

SD.SDE
DDD.DDDXEX
SD.8DXE
S6DE

S6D.E

S6D. XE
S6D.DDDE

Value

1234
1234
1234
1234
1234.8
1234
1234
1234
-1234
1234.2

Value

465.465
465.465
-465.465
465.465
.465
.465
-.465
-.465

Formatted Output

Format of Output

1234
+1234
1234+
1234
1235
1 234
+1234
1+234
-1234
1234

Format of Qutput

465.4650
465.47
-465.465
+465.5
+0.4650
+.4650
-.4650
-0.4650

19-3

Formatted Output

Floating point output examples:

Format Specification Value Format of Output

SDXE 4.82716 x 1021 +5 E+21

DDDD.DDE SAME 4827.16E+18

SSDX. XSDEX SAME +48 . 27159k +20
SD.SDE SAME +4,.82716E+21
S.10DE3X SAME +.4827159382E +22

19-6. CARRIAGE CONTROL

One of the following optional carriage control characters may appear as the first non-blank character
of a format string:

+ suppressing the line feed
- suppressing the carriage return

suppressing both the carriage return and linefeed

If supplied, the carriage control character must be followed by a comma and at least one slash, format
specification, or group. The specified action occurs at the completion of the PRINT USING statement.
If the carriage control character is not supplied, the default action is a carriage return and a linefeed at
the completion of the PRINT USING statement.

When going to a type O file for the line printer, a blank or carriage control character must be inserted

after the first * in the format string character because control characters are in the first column (e.g.,
IMAGE “ ONE LINE”,5A) for line printers.

Examples:
10 PRINT USING "#,DDD,2X,AA";A,AS$
20 IMAGE -,2A,3X,4D

19-7. LITERAL STRING

A literal string (any combination of characters not including a quote mark and enclosed by quote
marks) can be included as a format specification in an IMAGE statement and is printed as it appears.

Example:

400 IMAGE "“TOTAL = ",X,S3D.2D

19-8. DELIMITERS
A delimiter serves to set off the format specifications and can be either a comma or a slash. A comma
serves no purpose other than to delimit format specifications. A slash can delimit format specifications

and, in addition, generates a carriage return, line feed sequence.

Example:

500 IMAGE -,3A/3D,3D

19-4 Update 4

APPENDIX

ERROR MESSAGES

Four types of errors may cause error messages: command errors, statement syntax errors, compiling
errors, and execution errors resulting from program execution. The error messages are self-
explanatory.

COMMAND ERRORS
Command error messages are printed following the command that caused the error.

BAD OR MISSING FILE SIZE

BAD SEQUENCE NUMBER

BREAKPOINT ALREADY SET

CAN'T EDIT COMMANDS

DEL OR SAVE PROGRAM

DUPLICATE FILE NAME

ILLEGAL FILE TYPE

ILLEGAL TABLE ORDER

INCOMPATIBLE “CSAVE ~ FILE

INVALID COMMAND

INVALID FILE NAME

INVALID LIMITS

INVALID LOGICAL UNIT NUMBER

INVALID LU

INVALID SECURITY CODE

INVALID STATEMENT NUMBER

LU LOCKED OR NO RN AVAILABLE

MORE THAN 4 BREAKPOINTS

NO CALLS DEFINED

NOT ENOUGH ROOM FOR MNEMONIC TABLE

NO TYPE 0 FILE FOUND

PROGRAM FILE IS NOT ON LOGICAL UNIT 2 OR 3
PROGRAM FILE WAS NOT SET UP ON CURRENT SYSTEM
PROGRAM SCHEDULE ERROR

READ FROM WRITE DEVICE OR VICE-VERSA

REQ D ID SEGMENT NOT FOUND OR NONE AVAILABLE
SEQUENCE NUMBER OVERFLOW/OVERLAP

SYNTAX ERRORS

When a syntax error in a statement is detected, an error message is printed. You may type a carriage
return and enter the statement correctly, or type P to have the erroneous statement reprinted for
character editing.

ARRAY TOO LARGE

BAD OR MISSING FILE REFERENCE
CHARACTERS AFTER STATEMENT END
ILLEGAL EXPONENT

ILLEGAL OR MISSING INTEGER
Update 4 B-1

ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
MISSING
MISSING

PARAMETER

READ OR INPUT VARIABLE
STRING RELATIONAL OPERATOR
STRING VARIABLE

ASSIGNMENT OPERATOR

LEFT PARENTHESIS

MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING

OR BAD ARRAY VARIABLE
OR BAD FUNCTION NAME
OR BAD LIST DELIMITER
OR BAD SIMPLE VARIABLE
OR BAD TRAP NUMBER

OR ILLEGAL DATA ITEH
OR ILLEGAL ‘OF°

OR ILLEGAL 'STEP’

OR ILLEGAL SUBROUTINE
OR ILLEGAL SUBSCRIPT
OR ILLEGAL “THEN’
MISSING OR ILLEGAL ‘TO~
MISSING RIGHT PARENTHESIS

NO CLOSING QUOTE

NOT A FORTRAN FUNCTION

NOT A SUBROUTINE CALL

OUT OF STORAGE

PARAMETER NOT STRING

SIGN WITHOUT NUMBER

STRING LONGER THAN 255 CHARACTERS
STRING NCT PERMITTED

TOO MANY PARAMETERS
UNDECIPHERABLE OPERAND

WRONG NUMBER OF CHARACTERS

COMPILING ERRORS

These errors are detected following a RUN command but before execution of the program. If no errors
are detected, the program will be executed. Otherwise, compilation terminates with no attempt to run
the program.

Whenever possible, the line number in which the error occurred will be appended to the message in the
form: IN LINE n.

ARRAY TOO LARGE

BAD FILES STATEMENT

COM STATEMENT OUT OF ORDER
DIMENSIONS NOT COMPATIBLE
FUNCTION DEFINED TWICE
INVALID FILE NAME

INVALID LU

INVALID SECURITY CODE

LAST STATEMENT NOT END
11IISSING SEGMEHNTS

NEXT WITHOUT MATCHING FOR
OUT OF STORAGE

SYMBOL TABLE OVERFLOW

TOO MANY FILES
UNDEFINED STATEMENT
UNMATCHED FOR
VARIABLE DIMENSIONED TWICE

REFERENCED

B-2 Update 4

EXECUTION ERRORS

These errors are detected during program execution and printed as they occur; the run terminates.

The line number where the error occurred is appended to all run error messages in the form: IN LINE
n, where n is the line number of the statement that caused the error.

BAD CHARACTER AFTER REPLICATOR
BAD DATA

BAD EXPONENT

BAD FLOATING POINT SPECIFICATION
END-OF~-FILE/END-OF-RECORD

EXP OUT OF RANGE

FILE NOT OPEN

GOSUBS NESTED 20 DEEP

ILLEGAL CHARACTER IN FORMAT
ILLEGAL FILE TYPE

ILLEGAL FORMAT FOR NUMBER
ILLEGAL FORMAT FOR STRING
ILLEGAL OR MISSING DELIMITER
ILLEGAL TRAP/SEQ NUMBER

MISSING FORMAT SPECIFICATICH
MISSING LEFT PARENTHESIS

MISSING REPLICATOR

MISSING RIGHT PARENTHESIS
MOLTIPLE DECIMAL POINTS
NEGATIVE NUMBER TO REAL POWER
NEGATIVE STRING LENGTH

NO CLOSING QUOTE

NON-CONTIGUOUS STRING
NON-EXISTENT FILE REFERENCED

OUT OF DATA

OUT OF RANGE IN FUNCTION

OUT OF STORAGE

OVERLAY NOT FOUND

PRINT USING IS NOT ALLOWED TO A FILE
REFERENCED STATEMENT NOT DATA
REPLICATOR TOO LARGE

REPLICATOR ZERO

RETURN WITH NO PRIOR GOSU3
SCHEDULED BUT DELETED TASK
STATEMENT REFERENCED NOT IMAGE STMT
STRING OVERFLOW

SUBROUTINE OR FUNCTION TERMINATED ABNORMALLY
SUBSCRIPT OUT OF BOUNDS

00 MANY PARENTHESIS LEVELS

Update 4 B-3

Error Messages

OTHER ERRORS

Errors may also occur when you are accessing files. Appropriate error messages are printed and the
line number is printed if the error occurs during program execution.

If you are operating under RTE-II (92001B), RTE-III (92060B), or RTE-IV (92067A), the error message
“COMMAND FILE NOT FOUND” may also mean that the disc cartridge specified was not found or
that there was not enough room on the cartridge.

When an IONR (I/O Not Ready) message is issued while using default logical units, you must satisfy
the I/O request and make the device ready. For example, if a LOAD command is done from LU 5
(usually the right terminal CTU) and you forgot to insert your mini-cartridge, you will get an IONR
error message. Simply insert the mini-cartridge and “UP,eqt” to continue.

In RTE-IVB session environment, if the message FILE MANAGER ERROR is displayed, consult your
System Manager. This is a result of any FMGR error with an error code value greater than 41. If an /O

request is made to a logical unit not defined under your session, BASIC issues an error message and
allows you to continue.

B-4 Update 4

APPENDIX

LOADING BASIC SOFTWARE

SYSTEM GENERATION

Here is a summary of the items that should be loaded at system generation time:

Resident Library #92101-12002 Always required (unless replaced
by a dummy module at load time).

Subroutine Library #92101-12003 Optional.

Instrument Tables No part number. Required for specific instruments.

ALARM Program #92413-16007 Required for Event Sense.

The BASIC Interpreter and Table Generator must not be loaded during RTE system generation. Refer
to the Summary of Steps section in this appendix.

If you intend to utilize TRAP and task scheduling statements (see Section XI), the BASIC Resident
Library Module (#92101-12002) must be loaded at the time of system generation. This must be done to
satisfy references to external subroutines when the BASIC Interpreter is loaded. During the Parame-
ter Input Phase of RTE-III, IV, IVB, or 6/VM system generation, the following program types must be
changed:

TRAP,30 *Put into SSGA
TTYEV,17 *Memory Resident Program Using SSGA

If you do not require TRAP and task scheduling statement execution, you do not need to include the
BASIC Resident Library in your system generation process. However, to satisfy the external sub-
routine references in the BASIC Interpreter, you do not need to provide a dummy TRAP module when
you load the BASIC software. If you choose to do this, BASIC will operate properly, but TRAP
statements and all time scheduling statements will not function. Further, if you use the dummy TRAP
module, the execution speed of BASIC is improved because the task scheduling table is not scanned
after execution of each scheduling statement. The listing in Figure D-1 shows a dummy TRAP module
or you can use %DTRAP (#92101-16035) provided with your BASIC software.

nANY ASMR,R,L,Q
‘oA PARdQ NAM TRAP
433w

A@A4w DJMMY TRAP MOOULE

pAAS* FOR BASIC INTERPRETER

PAA6% MJST BF LOADED IF TRAP AND TASK S8CHEDULING IS NOT NPESIRER
Aa27% AND IF XRAMLB IS NOT GENERATED INTO THE SYSTEM

Buddw

2029 ENT TRAP
PRI M20272 eAPAUA TRAP NOP

AA11 A3%21 AQALPER 18Z TRAP
AR12 AARZ2 A2NANYR JmP TRAP,I
3013 END TRAP

wx NO ERRORS wTNTAL #»«RTE ASMB 02067=160)11w+

Figure D-1. Dummy TRAP Module.
Update 4 D-1

Loading Basic Software

If the HP 6940 or HP 2313 Subsystem is used, the Instrument Tables produced by the Instrument
Table Generator (see Section X VIII) must be input during system generation and changed to a type 30
(put into SSGA) module (RTE-IIL, IV, IVB, and 6/VM). If the HP 6940 Event Sense interrupts are
required, then the ALARM program (#92413-16007) must also be input at that time.

If the ALARM program is used, the following entries should be made at generation. During the
parameter Input Phase, change the program type:

ALARM,30 *Put into SSGA

In the Interrupt Table:
s¢,PRG,ALARM where sc is the subchannel of the 6940

If you plan to schedule tasks from an auxiliary terminal, you must also include an entry in the
Interrupt Table as follows:

s¢,PRG,TTYEV where sc is the subchannel of the auxiliary terminal.

You will get an undefined external message if you generate in the BASIC memory resident library and
you do not generate in HP 6940 or HP-IB. You can ignore this message if you do not intend to use these
subsystems.

NOTE

If your system has a 2313 and a 6940 and you aire using both the ISA
FORTRAN Extension Package and the BASIC 2313 and 6940
subroutines, the following generation error will be reported:

ERRORO05 # GET! DUPLICATE ENTRY POINT
ERRO8 # GET! DUPLICATE PROGRAM NAME

Ignore this error message: both # GET! routines are identical.

The BASIC Subroutine Library (#92101-12003) should be loaded during system generation but may
be input and stored as a File Manager file. The advantage of loading it at system generation time is
that the Loader automatically searches this library for undefined references. The Subroutine Library
contains HP supplied software for using the HP 2313, HP 6940, HP 7970, BASIC callable task
scheduling routines, and bit manipulation routines. The Resident Library contains all pertinent
routines for handling traps, time scheduled tasks, and searching the trap and task tables. The
Resident Library must be loaded during system generation (see above) to be able to use TRAP and
time scheduling tasks.

LOADING BASIC AND RTETG UNDER RTE-II, lli

When the RTE System is operational with all modules loaded as required, you may load the BASIC
Interpreter (#92101-12001) by using the File Manager and On-line Loader. BASIC must not be
generated during RTE system generation. BASIC can only be added to the system by the On-line
Loader.

Here are the required File Manager commands for RTE-IVIII systems:

:LG,10 Assign 10 LG tracks. (Load and GO)

:MR,lu Input BASIC relocatable tape part 1 of 3.

:MR,lu lu is the logical unit number of the input device (paper tape reader
or mini-cartridge).

:MR,lu Repeat for parts 2 and 3 of the tape.

[:MR,%DTRAP] Dummy Trap module must be specified here if %BAMLB is not

loaded at system generation.

D-2 Update 4

Loading Basic Software

:SA,LG,%BASIC Modules must be merged together

:RU,LOADR,99,1,28,1,2 Loader command for RTE-II. If you are using RTE-III substitute
this command:
‘RU,LOADR,99,1,28,NN001,2 where NN is the number of pages
required for BASIC (at least 10).

:RU,BASIC Start the BASIC Interpreter.

The Branch and Mnemonic Table Generator, RTETG, can be loaded by using the same procedure as
described above using %BATGN (#92101-16008) and %BATG3 (#92101-16024).

To load under RTE-II/III systems:

:LG,

:MR,lu Logical unit of input device containing %BATGN
:MR,lu %BATG3 (#92101-16024)

:SA,LG,%RTETG

:RU,LOADR,99,1,28,1,2

LOADING BASIC and RTETG under RTE-IV, IVB, and 6/VM.

BASIC itself must not be generated into the RTE system. To load under RTE-IV, IVB or 6/VM, use the
loader command file #BASIC (#92101-17001) or the following commands:

:RU,LOADR

LOADR: OP,LB Large background program.

/LOADR: SZ,xx xx is the partition size required. xx must be > 11.
/LOADR: LIB,%DTRAP Load the dummy TRAP module.

/LOADR: REL,%BAIN1
/LOADR: REL,%BAIN2

/LOADR: REL,%BBUFF Mnemonic Table buffer must be relocated
J/LOADR: REL,%BAIN3 in between %BAIN2 and %BAINS.
/LOADR: END Terminate the load.

In RTE-6/VM, do not load BASIC or RTETG as extended background and do not use MLLDR, the
Multi-Level Loader.

Save BASIC and its eight segments with FMGR commands:

:SP,BASIC
:SP,BASC1
:SP,BASC2
:SP,BASC3
:SP,BASC4
:SP,BASC5
:SP,BASC6
:SP,BASC7
:SP,BASCS8

%BBUFF is a module (#92101-16034) containing 500 words of buffer area to add room for the
Mnemonic Table required for external subroutines. Each subroutine needs 5 words from %BBUFF; up
to 100 subroutines can be accessed by BASIC. The external subroutines are located in overlay
programs generated via RTETG (see Section XIV). If you wish to use more subroutines with BASIC,
you can create your own %BBUFF to load with the BASIC Interpreter. & BBUFF (#92101-18034) is
provided for your convenience to alter according to your needs. If you always will use less than 80
subroutines, % BBUFF is not necessary in loading BASIC.

Update 4 D-2A

Loading Basic Software

The Branch and Mnemonic Table Generator, RTETG, is loaded under RTE-IV, IVB, and 6/VM with
the loader command file #RTETG (#92101-17002) or the following commands:

:RU,LOADR

/LOADR: OP,LB

/LOADR: SZ xx override partition size, xx > 11
/LOADR: REL,%2BATGN #92101-16008

/LOADR: REL,%BATG4 #92101-16023

/LOADR: END

Save RTETG and its segments with FMGR commands:

:SP,RTETG
:SP,TG00S
:SP,TG01S
:SP, TG02S

SET UP FILES FOR LOADING OVERLAYS

Next, use the File Manager to load the files used for task scheduling and communication between the
2313 and 6940. The names and part numbers of these files are:

Task Scheduler (#92101-16013)
A2313 (#29102-60016)
A6940 (#29102-16003)

To load the files, use the following File Manager commands:
:ST,lu, SCHREDR,BR (to load the task scheduler file)
:ST,lu,A2313,BR (to load the A2313 file)
:ST,lu,A6940,BR (to load the A6940 file)

Note that lu represents the logical unit number of the input unit, the paper tape reader.

SYSTEM CONSIDERATIONS

You must properly prepare your RTE and BASIC system to obtain multiple terminal operation of
BASIC using the background swapping capabilities of RTE. The steps required are itemized below:

® The RTE Operating System must be generated to allow background swapping.
® Provide at least 11K background (or partition) area and at least 2K foreground (or partition) area.

® Include at least as many keyboard/printer devices during system generation as are required for
BASIC terminals.

® Provide at least 6 ID segments and 11 background or short ID segments for the BASIC Interpreter,
RTETG, and a maximum of 4 overlays.

® Include any instrument drivers at system generation time that might be called by an instrument
device subroutine. Also include the Instrument Table generated with the procedure described in
Section XVIII.

® Prepare the system for use with the Multi-Terminal Monitor or Session Monitor. All requirements
and instructions are included in the appropriate RTE Programming and Operating Manual and
generation reference manuals.

D-2B Update 4

Loading Basic Software

e Communication between BASIC and overlays (refer to Section XIV) is done by means of class /O.
One class number per overlay is recommended.

e System Available Memory (SAM) is needed for parameter passing for external subroutines in
overlays. The area required can be calculated by analyzing the subroutine with the largest amount
of data:

SAM = data +1 — (3*n) words

where data is the total number of words for variables and arrays; n is the number of parameters.

For example, CALL SUB (A(100),I,B) requires:

200 words for real array A
1 word for integer I
2 words for real B
_10 words for parameters (1+3*3)

213 words total for SAM

If you cannaot determine the exact requirements for SAM, a good rule of thumb is 2K words for
SAM.

MULTIPLE COPIES OF BASIC

A copy of BASIC is automatically created for each user under RTE-IVB and 6/VM Session Monitor.
BASIC is renamed to BASxx, where xx is the system LU of your terminal. To execute BASIC, type
:RU,BASIC. To abort or break your BASIC, type the system command OF,BASxx or BR,BASxx.

To prepare multiple copies of BASIC for use with MTM (Multi-Terminal Monitor) terminals, you must
use the following File Manager commands:

:SP,BASIC Save a copy of the BASIC program in a file.
:RN,BASIC,BASIX Rename the file BASIX.

:SP,BASIC Save another copy of the BASIC program.
:RN,BASIC,BASIK Name the file BASIK.

:SP,BASIC Save another copy of the BASIC program.
:RN,BASIC,BASIQ Name the file BASIQ.

There are now four versions of BASIC: one permanent program loaded previously as a permanent
program, BASIX, BASIK, and BASIQ (copies of the program saved in files which can be loaded by
typing the File Manager RUN command). The RUN command creates a temporary ID segment for the
copy of BASIC that you are using.

There are other ways of creating multiple access to the BASIC program including making multiple ID

segments pointing to the same BASIC program file, but the advantage of doing it this way is that you

only have to use the above command sequence once. When you load the RTe system again, the files will

still be available and you can run the various versions of BASIC by typing the File Manager RUN

command.

Each terminal in the system must be enabled with the following File Manager command:
:CN,lu,20B lu is the logical unit number of the terminal.

When the terminals are enabled and multiple copies of the program have been made, you can press

any key on the terminal keyboard and the system prompts with:

lu > lu is the logical unit number of the terminal you are using.

Update 4 D-3

Loading Basic Software

You now have access to the operating system and can execute the BASIC Interpreter by using the RTE
RUN command:

lu >RUN,BASIC Run BASIC with RTE run command.
>BASIC READY BASIC indicates it is ready.
>TABLES branch table,mnemonic table Ifyou are using subroutines, provide the table names.

You can run whichever version of BASIC you want as long as no one else is using it.

SUMMARY OF STEPS REQUIRED TO GENERATE A BASIC SYSTEM

The remainder of this appendix contains a sample RTE-II system generation. These are the steps you
must follow to prepare your system:

1. Use the Instrument Table Generator to produce the HP 2313 and/or HP 6940 Instrument Tables if
you intend to use the subroutines related to these instruments. For RTE-III, IV, IVB, and 6/VM
systems the Instrument Tables should have their type changed to program type 30.

2. Prepare answers for RTE system generation (see the RTE Programming and Operating Manual
for detailed instructions). Make sure the Interrupt Table includes ALARM (for 6940) and TTYEV
(for auxiliary teleprinter) if you intend to use them.

3. Generate the RTE system. Be sure to include the BASIC Resident Library (92101-12002) and
BASIC Subroutine Library (92101-12003) and the Instrument Table from step 1. For RTE-III, IV,
IVB, and 6/VM systems, the TRAP, TTYEV and ALARM modules must have their type changed at
system generation during the Parameter Input phase. This is done by using the following

commands:
TRAP,30 Put into SSGA
TTYEV,17 Memory Resident program with SSGA
ALARM,30 Put into SSGA

4. Load the new RTE system. Initialize File Manager (FMGR) with the :IN command. (See the
Batch-Spool Monitor Reference Manual for detailed instructions.)

5. Load BASIC (92101-12001) and create as many copies as necessary.

6. Load the Branch and Mnemonic Table Generator, RTETG (92101-16008); and the RTE-II/III
Transfer File Builder, %BATG3 (92101-16024), or RTE-IV, IVB, 6/VM Transfer File Builder
9%BATG4 (92101-16023).

7. Load these files if needed: Task Scheduler, A2313, A6940 — use the File Manager.

8. Prepare the Branch and Mnemonic Table Generator input (see Section XIV). Run RTETG.

9. Run the transfer file which RTETG creates.

10. Run BASIC.

D-4 Update 4

INDEX

ABORT command, 10-4
ABS function, 5-1
ADC, HP 2313, 15-10
AIRDV (random scan) routine, 15-2
AISQV (sequential scan) routine, 15-3
ALARM program, D-2, D-4
alignment, common area, 3-17
analog input
measurement, 15-1
read randomly, 15-2
analog output, 15-1
AND function, 12-1
AOC-1, -2, -3 errors, 15-8
AOV (digital to analog conversion) routine, 15-4
Instrument Table generation, 18-2
AOV-1, -2 errors, 15-8
argument, function, 5-1
arithmetic operators, 2-4
array
definition, 2-3
initialization, 3-18
maximum, 3-18
size declaration, 3-18
ASCII character set, C-1
ASCII-to-binary data conversion (BASIC/HP-IB), E-3
assignment operator, 3-1
ASSIGN statement, 7-3
associate trap number with task, 11-9
ATN function, 5-1
auxiliary teleprinter interrupt, 11-12
AXIS routine, 17-1
A6940-1, -2 errors, 16-6

BACKF command, 13-1
background memory area, 1-3
BACKSPACE key, 1-9
Basic Binary Loader (BBL), 18-1
BASIC
command file (ASCII), 8-3
components layout, 1-4
copies, D-3
initiate from another program, 8-3
load map, D-22
ordering information, iv
prompt, 8-1
Resident Library, D-1, D-4
Scheduler, 11-3
software, loading, D-2, D-2A, D-2B
software part nos., iv
statement formats, 1-5
Subroutine Library, D-1, D-2, D-4
subsystem modules, 1-3
system generation, D-1, D-4
binary-to-ASCII data conversion (BASIC/HP-IB), E-1
bit clear, function, 12-2
bit manipulation, 12-1
bit set function, 12-3

Update 4

bit test function, 12-3
Boolean operators, 2-5
Branch and Mnemonic Tables
declare, 8-3
generation, 14-1
BR,BASIC, 9-11
example, 11-2
break BASIC program, 9-11
BREAK command, 10-3
break points, 10-3
BYE command, 9-10

Ce, 1-7
call, function, 2-3
CALL statement, 6-6
CALLS command, 9-12

sample, complete system subroutines, D-32
calls, magnetic tape, 13-2
card configuration, HP 6940, 16-7
Cartridge Directory, 7-2
cartridge reference, 7-2
CHAIN statement, 6-4
channel numbering

HP 2313, 15-11

HP 6940, 16-8
character editing, 1-7

with multipoint, 1-8
CHRS, subroutine, 6-8
clear event sense mode, 16-2
CN command, File Manager, D-4
CNTL (control) key, 1-7
column number, 2-3
commands, avoid with real-time processing, 11-3
commands from disc file, 8-3
commands, introduction, 1-5
commands, legal during break, 10-3
command summary, A-3
common area, 3-16

alignment, 3-17
COM statement, 3-16

chain to program, 6-5
compare strings, 4-8
conditional transfer, 3-8
consecutive task initiation, 11-2
constant, 2-1
control characters, editing, 1-7
control H, 1-9
control Q, 3-15, 3-17

break program execution, 9-11
conventions, file creation, 7-1
conversational programming, 1-1
convert digital to analog, 15-4, 16-1
convert parameters, FORTRAN subroutine, 6-12
copies of BASIC, D-3
copy BASIC program to a device, 9-11
correction of typing errors, 1-9

I-1

COS function, 5-1 event interrupt, 11-3

CR (create) command, File Manager, 7-2 event sense
CREATE command, BASIC, 7-2, 9-6 cards, 18-3
CSAVE command, 9-3 interrupt (ALARM program), D-2, D-4
chained program, 6-5 mode, clear, 16-2
file type, 7-2 routine, HP 6940, 16-4
current digital to analog conversion card, 18-3 exclusive or function, 12-4
execute a BASIC program, 9-9
DAC (digital to analog conversion) execute task at specified time, 11-11
cards, 15-10 EXP function, 5-1
Instrument Table generation, 18-2 expansion, HP 6940, 16-8
routine, HP 6940, 16-1 expressions, 2-1, 2-4
DAC-1, -2 errors, 16-6 external event interrupt, 11-2
data conversion requests (BASIC/HP-IB), E-1 external subroutine, parameter conversion, 6-11

data list, 3-13
pointer, 3-14
DATA statement, 3-13

strings, 4-9 FACT (factor) routine, 17-2
decimal string arithmetic, 14-8 FAIL error option, 6-9
debugging activity, terminate, 10-4 features, 1-1
debugging commands, 10-1 fixed point numbers, 2-1, 2-2
default devices, running BASIC with, 8-1 field width, 3-12
DEF FNx statement, 5-2 print format, 3-12
DELETE (DEL) command, 1-5, 9-5 floating point number, 2-2
DEL key, 1-8 print format, 3-12
destination string, 4-5 FOR . . . NEXT statement, 3-6
digital input only cards (Instrument Table formal parameters, 2-3
generation), 18-3 format
digital input/output cards, 18-3 integer, 3-11
digital to analog, 15-4 real type data, 6-10

conversion, 16-1 string data, 6-10
DIM (dimension) statement, 2-3, 3-18 FORTRAN function, prepare and use with BASIC, 6-7
documentation map, v FORTRAN subroutine
DSABL routine, 11-5 convert string parameter, 6-12
dummy TRAP module, D-1, D-2, D-2A prepare and use with BASIC, 6-8
DVR 10 plotter driver, 17-1 file

part number, iv capabilities, 1-2

characteristics, 7-1
editing control characters, 1-7 conventions, 7-1
eliminate break points, 10-3 create data (type 1), 9-6
ENABL routine, 11-5 label, 7-2
end-of-file condition, 7-4 length, 1-2

magnetic tape, 13-1 magnetic tape, 13-1
end-of-record mark, 7-6 organization, 1-2
END statement, 3-5 security code, 7-1
ENTER key, 1-8 types, 7-2
environment, BASIC, 1-2 type 1, 1-2
erase channel/bit to trap no. correspondence, 16-2 File Management Package, 1-3
ERRCD flag, 6-9, 6-10 FILES statement, 7-2

ENABL routine, 11-5 chained programs, 6-5

with tasks, 11-9, 11-17 free format, BASIC, 1-5
ERROR A6940-2 IN LINE, 16-4 format specifications, 3-10a
ERROR MAGTP-n IN LINE, 13-4 format string, 3-10a
error messages formatted output, 19-1

Instrument Table tape generation, 18-4 errors, 19-9

RTETG, 14-11 examples, 19-3

summary of formats, B-1 literal string, 19-4

task, 11-17 number representation, 19-2

2313/91000 subsystem, 15-8 report generation, 19-8

6940 subsystem, 16-6 string representation, 19-5
evaluating expressions, 2-5 functions, 2-3, 5-1

FORTRAN with BASIC, 6-7
[-2 Update 4

gain
allowable for low-level channels, 18-2
set all channels, 15-8
setting, HP 2313/91000, 15-11
setting, request, 15-7

GO command, 3-17

GOSUB statement, 6-1

GOTO statement, 3-4

He, 1-8
hardware, 1-2
hierarchy of operators, 2-5
highest numbered statement, 3-5
high-level input, 15-1
HLMPX (high-level multiplexer), 15-11
differential cards, 18-2
single ended cards, 18-2
HLT07,70, 18-1
home or known state, reset, 15-5
HP 2313/91000 data acquisition subsystem, 15-1
card configuration, 15-10
channel numbering, 15-11
concept, 15-9
configuration, 15-9, 18-1
errors, 15-8
Instrument Table, 18-1
normalize, 15-5
setting gain, 15-11
HP 6940 subsystem, 16-1
card configuration, 16-7
channel numbering, 16-8
clear event sense, 16-2
configuration, 16-8, 18-2
errors, 16-6
expansion, 16-8
Instrument Table generation, 18-1
HP 7210 Plotter, 17-1
sample program, 17-9
symbols (ASCII reference number), 17-8
HP 9600 computer system, 1-2
HP 91000 (Instrument Table generation), 18-2

Ie, 1-7
IBCLR (bit clear) function, 12-2
IBSET (bit set) function, 12-3
IBTST (bit test) function, 12-3
idle-loop, 11-2
ID segment, 14-7
prepare at system generation, D-2B, D-3
IF END # .. THEN statement, 7-4
IF . . . THEN statement, 3-8
strings, 4-8
IEOR (exclusive or) function, 12-4
IERR function, 5-1, 6-10
IMAGE/1000 subroutine calls, 14-8
inclusive or function, 12-5
initialize array, 3-16
initiate BASIC from another program, 8-3
initiating tasks, 11-1
input data, 3-13
IMAGE statement, 19-1

INPUT statement, 3-14
string, 4-5
instrument drivers, prepare at system generation, D-2B |
Instrument Table generation
errors, 18-4
input at system generation, D-1, D-4]
Loading tape, 18-4
operating instructions, 18-1
part numbers, iv
sample, D-5
integer expression, 2-1
integer format, 3-11
interrupt BASIC program or listing, 9-11
interrupt, maximum time to service, 11-3
Interrupt Table system generation, D-14
INT function, 5-1
INVOKE, 6-15, 6-16
non-BASIC program, 6-16
1/O slot, computer, 15-9, 18-3
ISETC function (set to octal), 12-6
ISHFT function (register shift), 12-6
item type, 3-13

jumper W3, 16-4

label, file, 7-2
Last Address Detector (LAD) card, 15-10
layout, BASIC components, 1-4
legal commands during break, 10-3
LEN function, 4-8, 5-1
length, string data item, 1-2
logical, 4-2
physical, 4-2
LET statement, 3-1
strings, 4-5
library subroutines, RTETG commands, 14-9 I
line number, 3-1
LINES routine, 17-2
LIST command, 1-5, 9-11
list subroutine names, 9-12
literal strings, 2-2
LLEFT routine, 17-3
LLMPX (low-level multiplexer), 15-11, 18-2
LN function, 5-1
load and execute BASIC program, 9-9

LOAD command, 9-2 1
load map, BASIC, D-22

loading BASIC software, D-2, D-24, D-2B |
loading Instrument Table tape, 18-4

loading overlays, 14-9 1

loading RTE system, sample, D-22
loading RTETG, D-2
LOCK command, 9-10
LOG function, 5-1
logical expression, order of evaluation, 2-6
logical length of string, 4-2, 4-8
logical operation, 2-4
logical operators, 2-5
logical unit number, 1-9

plotter, 17-5
looping statements, 3-6
lower-case alphabetic character, 4-1
low-level input, 15-1

Update 4 I-3

magnetic tape I/O, 13-1
errors, 13-4
operator commands, 13-1
position, 13-3
read or write record, 13-2
sample program, 13-5
subroutine calls, 13-2
write EOF, 13-4
main memory partition, 1-3
mathematical operation, 2-4
maximum array size, 3-16

maximum number of tasks per program, 11-2

measurement of analog input, 15-1
memory, BASIC and overlays, 14-1
MERGE command, 9-4

methods of initiating tasks, 11-1
minimum width numeric field, 3-11
modifying records, 7-9

MPNRM routine, 16-2

MTTFS routine, 13-4

MTTPT routine, 13-3

MTTRD routine, 13-2

MTTRT routine, 13-2

multi-branch GOSUB statement, 6-1
multi-branch GOTO statement, 3-5
multiple peripheral device 1/0, 1-1
multiple terminal operation (MTM), D-3
multipoint, 1-8

nested loops, 3-7
nesting subroutines, 6-1, 6-4
NEXT statement, 3-6
normalize 2313/91000 subsystem, 15-5
NORM routine, 15-5
Instrument Table, 18-2
NOT function, 12-5
null string, 2-2, 4-1
creating a, 4-3
NUM, integer function, 6-7
NUMB routine, 17-4
numeric constant, 2-1
numeric field, minimum width, 3-11
numeric output formats, 3-11
numeric variables, 2-2

OCT function, 5-1
ordering BASIC, iv
OR function, 12-5
operator commands, 9-1
operators, 2-4

hierarchy of, 2-5
Options, start up BASIC, 8-2
output line format, PRINT statement, 3-9
Overlay Directory, 14-2, 14-3
overlay load maps, D-26
overlay relocatable files, 14-4
overlay, subroutine, 14-1, 14-4

P command, 1-7

pace rate, set HP 2313, 15-6

PACER routine, 15-6
Instrument Table, 18-2

parameter conversion, BASIC/other languages, 6-10

1-4

part numbers, BASIC software, iv
PAUSE statement, 3-19
peripheral devices required, 1-2
PK (pack) command, 9-6, 9-7
PLOT routine, 17-4
plotter

see HP 7210 plotter
Plotter Library part number, iv
PLTLU routine, 17-5
pointer, data list, 3-14
pointer, file data, 7-1
position magnetic tape, 13-3
print format

fixed point numbers, 3-12

floating point numbers, 3-12
PRINT statement, 3-9

string, 4-6
PRINT # statement

print a record, 7-8

serial file, 7-7

strings, 4-10
PRINT USING, 3-11

errors, 19-9

execution, 3-11

statement structure, 19-6

termination, 3-12

using list, 3-11, 19-1, 19-6
priorities, task, 11-2, 11-3, 11-6
program, BASIC, 1-6
program debugging aids, 1-2
program delay, 3-18
program filename, BASIC, 8-4
program name, BASIC, 8-4
prompt character, BASIC, 1-5
PURGE command, 9-7

Q¢, 3-15, 3-17

break program execution, 9-11
question mark prompt, 3-15
quotation marks in string, 4-1

R, 1-7
RDBIT routine, 16-2
RDWRD (read channel) routine, 16-3
read analog input
randomly, 15-2
sequentially, 15-3
read channel, HP 6940, 16-3
read magnetic tape record, 13-2
READ statement (data list), 3-13
strings, 4-7
READ # statement
read a record, 7-6
restore data pointer, 7-5
serial file read, 7-5
strings, 4-10
real-time and event task scheduling, 1-1
real-time, definition of, 11-1
Real-Time Executive II (or III), 1-3
real-time task scheduling, 11-1
real type data format, 6-10

Update 4

record, file, 7-1 SETP routine, 11-6

magnetic tape, 13-1 set
register shift function, 12-6 gain, HP 2313/91000, 15-11
relational operators, 2-4, 3-1 to octal function, 12-6
relay contact, HP 6940, 16-2 task priority, 11-6
1 relocatable file (overlay), 14-4 variable to constant, 10-6
remarks, insertion of, 3-4 SFACT routine, 17-6
REM statement, 3-4 SGAIN routine, 15-8
RENAME command, 9-8 SGN function, 5-2
REPLACE command, 9-5 SHOW command, 10-5
replacing a subroutine, 14-7 SIM command (simulate subroutine call), 10-5
reposition file data pointer, 7-5 SIN function, 5-2
request TIME, real-time clock, 11-8 SIO drivers, 18-1
reschedule task, 11-2 size of array, declare, 3-16
RES command, 1-5 SKIPF command, 13-1
RESEQ command, 9-8 slash (/) control character, 1-7
I Resident Library, BASIC, D-1, D-4 software (BASIC), loading, D-2, D-2A, D-2B
response time, tasks, 11-3 source string, 4-5
restore file data pointer, 7-5 special purpose characters, 4-5
RESTORE statement, 3-13 specify break points, 10-3
RESUME command, 10-3 SQR function, 5-2
RETURN key, 1-5 standard devices, 1-9
RETURN statement, 6-1 starting up BASIC Interpreter, 8-1
return variables, ASSIGN statement, 7-4 START routine, 11-7
REWIND command, 13-1 example, 11-1
RGAIN routine, 15-7 statements, 1-5, 3-1
RND function, 5-1 numbers, 1-5
row number, 2-3 summary, A-1
RTE memory layout with BASIC, 1-4 states, task, 11-3
RTETG (Table Generator program), 14-4 stop program execution, 3-17
commands, 14-5, 14-6, 14-9 STOP statement, 3-5
error messages, 14-11 strings, 4-1
loading, D-2, D-2A, D-2B and substrings, 4-2, 4-3
load map, D-24 array, 2-3
I output files, 14-7 assignment, 4-5
scheduling, 14-4 constant, 3-10
RTE-II system generation sample, D-8 data format, 6-10
RUBOUT key, 1-9 data item length, 1-2
RUN command, 3-14, 9-9, 10-2 DIM statement, 4-4
| running the transfer file, 14-9 IF statement, 4-8
in DATA statement, 4-9
sample and hold amplifier, 15-10 INPUT, 4-6
sample BASIC system generation, D-5 length, 4-8
sample program, magnetic tape, 13-5 PRINT, 4-6
sample program, plotter, 17-9 PRINT #, 4-10
SAVE command, 7-2, 9-3 READ, 4-7, 4-10
SCALE routine, 17-5 READ #, 4-10
schedule disabled task, 11-5 variable, 4-2
schedule task after specified delay, 11-7 subroutine, 6-1
Scheduler, BASIC, 11-3 call simulation, 10-5
scheduling BASIC, 8-1 FORTRAN, prepare and use with BASIC, 6-8
SCHED-2, -3, -4, -5, -6 error, 11-7 HP 2313 subsystem, 15-1
SCHED-3, 11-9 Library, BASIC, D-1, D-2, D-4
security code, file, 7-1 magnetic tape, 13-2
semi-compiled program, 9-3 names, list of external, 9-12
SENSE routine, HP 6940, 16-4 replacing, 14-12
used with trap, 11-9 RTETG commands for library, 14-9
serial file read statement, 7-5 summary, A-5
serial file print statement, 7-7 table generator, 14-1
serial storage devices, 7-1 subscripts, 2-3, 3-3
SERR function, 5-2, 6-10 string, 4-2
SET command, 10-6 substring, 4-2

Update 4

subsystem configuration, HP 6940, 16-8
summary of steps to generate BASIC system, D-4
SUSPEND command, RTE, 11-3
suspended program, terminate, 10-4
suspension message, 10-5
SWR function, 5-2
symbols, plotter (ASCII reference no.), 17-8
SYMB routine, 17-7
syntax conventions, manual, 1-10
system defined functions, 5-1
system generation, D-1

RTE-II sample, D-8
system input/output drivers, 18-1
system pacer, HP 2313, 15-10

TAB function, 3-13, 5-2

Table Generator, instrument, 18-1

Table Generator program, 14-1
see RTETG

TABLES command (relation to CALL statement), 6-6,
8-3, 9-14

TAN function, 5-2

task
associate trap no., 11-9
definition, 11-1
disable specified, 11-5
execute at specified time, 11-11
priority, 11-2
schedule after delay, 11-7
schedule disabled, 11-5
scheduling program, example, 11-13
set priority, 11-6
Scheduler vs. Interpreter, 11-3
states, 11-3, 11-4

teleprinter, allow auxiliary interrupt, 11-12

terminals, enable multiple, D-3

terminal input, 3-14

terminate
BASIC Interpreter, 9-10
debugging activity, 10-3
program, 3-15
subroutine simulation, 10-5
suspended program, 10-4

time delay, WAIT, 3-18

TIME routine, 11-8

TIM function, 5-2

TM command, RTE, 11-1

TRACE command, 10-2

transfer file, File Manager, 14-7
running, 14-9

TRAP
module, system generation, D-14
statement, 11-9, D-1
Table module, 1-3

TRAP-1 error, 11-10
TR command (transfer), File Manager, 14-9
TRNON routine, 11-1
TTYS routine, 11-12
used with trap, 11-9
two question marks, 3-15
TYP function, 5-2, 7-9
types, file, 7-2
type 0, FILES statement, 7-6
type, item, 3-13
typical system, 1-3

unary operators, 2-4
UNBREAK command, 10-3
UNLOCK command, 9-10
UNSIM command, 10-5
UNTRACE command, 10-2
URITE routine, 17-8
user-defined functions, 5-2
user-written subroutines, 1-3
using BASIC, 8-3

value, function, 5-1
variables, 2-2
voltage digital to analog converter card, 18-3

WAIT statement, 3-18

WEOF command, 13-1

WHERE routine, 17-8

words required to store string on file, 4-10
work format, bit manipulation, 12-1
WRBIT routine, 16-5

write bit on HP 6940 channel, 16-5
write EOF to tape, 13-4

write record, magnetic tape, 13-2
write word on HP 6940 channel, 16-6
WRWRD routine, 16-6

W3, jumper, 16-4

X command, editing, 1-7

%BXnn, overlays, 14-4, 14-7
%DTRAP, D-1, D-2, D-2A
16-bit word format, 12-1
2100 and 21MX computer, 1-2
2313 subsystem, 15-1

see HP 2313
6940 subsystem

see HP 6940 subsystem
7210

see HP 7210 Plotter
91000 subsystem, 15-1

DAS card, 15-9

see HP 2313/91000

I-6 Update 2

TECHNICAL MANUAL UPDATE
(92060-90016)

Note that ““*"’ indicates a changed page.

UPDATE DESCRIPTION
4 B. Write in ““Update 4" to the following pages and make these corrections:
(Contd)

page 4-3, under the following PRINT statement example, add:

300 PRINT Z$(3]
or

300 PRINT Z$(3,0]

page 9-8, the RESEQ command description of first old number should read:
number of first statement in the program to be renumbered. . .

page 12-1, last sentence of top paragraph should read:

These functions may be incorporated in the BASIC system at table

generation time by placing the proper name, entry point and parameter
conversion in the Branch and Mnemonic table.

page A-2, the reference page number for the PAUSE statement is 3-19.

page A-3, the reference page number for the LOAD command is 9-2.

uU-3/U-4

The following are prior updates merged
together. Pages superseded by the current
update are not included.

Expressions

Simple numeric variables are a single letter (from A to Z) or a letter immediately followed by a digit
(from O to 9

A A0
P P5
X X9

A variable of this type always contains a numeric value that is represented in the computer by a real
floating-point number.

If a variable names an array, it must be subscripted. Only the alphabetic characters A through Z may
be used to name an array. When a variable is subscripted, the variable name is followed by one or two
subscript values enclosed in parentheses. If there are two subscripts, they are separated by a comma. A
subscript may be an integer constant or variable, or any expression that is evaluated to an integer
value:

A1) A (N,M)
P(1,1) P (Q5,N/2)
X(N+1) X (10,10)

A simple variable and a subscripted variable may have the same name with no implied relation
between the two. For example, a simple variable named A is totally distinct from a subscripted
variable named A (1,1).

Simple numeric variables can be used without being declared. Subscripted variables must be declared
with a DIM statement (see Section III) if the array dimensions are greater than 10 rows, or 10 rows and
10 columns. The first subscript is always the row number, the second the column number. The
subscript expressions must result in a value between 1 and the maximum number of rows and
columns.

A variable may also contain a string of characters. This type of variable, a string array, is identified by
a variable name consisting of a letter and $:

A$ P$

The value of a string variable is always a string of characters, possibly null or zero length. If the string
array contains a single character, it need not be declared with a DIM statement (see Section IID.
String arrays differ from numeric arrays in that they have only one dimension. You may optionally
use two subscripts which refer to the first and last characters in the substring you want to reference
(See Section IV, String Arrays). You may also use one subscript to refer to the first character of the
substring. In this case, the last character of the substring will be the last character of the string.
Examples of subscripted string array names (substrings) are:

A$(1,3) Z$(N,N+M) A$(10)

2-6. FUNCTIONS

A function names an operation that is performed using one or more parameter values to produce a
single value result. A numeric function is identified by a three-letter name followed by one or more
formal parameters enclosed in parentheses. If there is more than one, the parameters are separated by
commas. The number and type of the parameters depends on the particular function. The formal
parameters in the function definition are replaced by actual parameters when the function is used.

Since a function results in a single value, a system-defined function (see Section V) can be used
anywhere in an expression where a constant or variable can be used. To use a function, the function
name followed by actual parameters in parentheses (known as a function call) is placed in an
expression. The resulting value is used in the evaluation of the expression.

Update 2 2-3

Expressions

Examples of common functions:

SQR(x) where x is a numeric expression that results in a value = 0. When called,
it returns the square root of x. For instance, if N=2, SQR(N+2) = 2.

ABS(x) where x is any numeric expression. When called, it returns the absolute
value of x. For instance, ABS(-33) = 33.

BASIC provides many built-in functicns that perform common operations such as finding the sine,tak-
ing the square root, or finding the absolute value of a number. The available functions are listed in
Section V. In addition, you may define and name your own functions should you need to repeat a
particular operation. How to write functions is described in Section V, Functions.

2-7. OPERATORS

An operator performs a mathematical or logical operation on one or two values resulting in a single
value. Generally, an operator is between two values, but there are unary operators that precede a
single value. For instance, the minus sign in A - B is a binary operator that results in subtraction of B
from A; the minus sign in -A is a unary operator indicating that A is to be negated.

The combination of one or two operands with an operator forms an expression. The operands that
appear in an expression can be constants, variables, functions, or other expressions.

Operators may be divided into types depending on the kind of operation performed. The main types are
arithmetic, relational, and logical (or Boolean) operators.

The arithmetic operators are:

+ Add (or if unary, positive) A +Bor +A
- Subract (or if unary, negative) A —-Bor -A
* Multiply A XB

/ Divide A+ B

1 or A Exponentiate A®

In an expression, the arithmetic operators cause an arithmetic operation resulting in a single numeric
value.

The relational operators are:

Equal

Less than

Greater than

Less than or equal to

= Greater than or equal to
> or # Not equal

AV AV A
I
> >
WAV AL
Woww W@

When relational operators are evaluated in an expression they return the value 1 if the relation is
found to be true, or the value 0 if the relation is false. For instance, A = B is evaluated as 1 if A and B
are equal in value, as 0 if they are unequal.

2-4

Statements

COM is an array which is placed in a known fixed location in memory. Upon completion of the first
program and the loading of the second program, the first location in the COM area is aligned with the
first location of the second load.

Numeric bounds for arrays and strings are specified as in a DIM statement. Because a variable cannot
be defined in two places at once, if the variable appears in a COM statement, it cannot also be defined
in a DIM statement. An example of how the COM statement might appear in two successive programs

follows.

First Program Second Program
10 COM A(7) 10 COM D(1),C(2),B(4)
Position in Memory First Program Second Program
xxx1 A(1) D(1)
XXX 2 A(2) C)
xxx3 A@3) C(2)
xxx4 A4) B(1)
xxx5 A(5) B(©2)
xxx6 A(6) B@3)
xxx7 A7) B(4)

Remember, it is your responsibility to ensure proper access of common areas.

Common areas are not initialized to UNDEFINED as arrays declared in DIM statements are. You
must not use Common area arrays before initialization or your results will be erroneous.

3-14. PAUSE

The PAUSE statement is used to stop the execution of a program without terminating the program.

Format

PAUSE [n]

Parameter

n optional parameter. If used, the number n will be printed after PAUSE when the
statement is executed.

The PAUSE statement stops a running program without terminating it, that is, without sending it to
end of program. When a PAUSE statement is encountered and executed, the program is halted and the
PAUSE is printed on the terminal. If you wish the program to continue, type GO, otherwise type
Control Q (Q°) thereby instructing the program to terminate and returning control to the BASIC
Interpreter. BASIC is unable to execute real-time tasks during the time that a program is halted by a
PAUSE statement.

Update 2 3-19

Statements

3-15. WAIT

The WAIT statement is used to introduce a program delay. When a WAIT statement is encountered,
program execution is stopped for the number of milliseconds specified, then continued automatically.

Format

WAIT (number of milliseconds)

The WAIT statement introduces a program delay which allows instruments to achieve a steady state.
The number following the word WAIT is the desired delay in milliseconds. Hence the statement:

WAIT (1000)

will delay the program one full second. The range of the number of milliseconds that the program can
wait is from 0 to 32767: the maximum delay is therefore 32.767 seconds.

The time delay produced by WAIT is not precise.

Example

>LIST
1 LET Y=5000
206 LET zZ=1
3@ PRINT #Z;"STATEMENT 2@"
40 VWAIT (Y1)
50 PRINT #7Z;'"STATEMENT 40"
67 GOTO 2
70 E£END
>RUN

3-20

Example

469
479
489
499
509

620
6029

4-12.

PRINT LENC(CAS$)

PRINT LEN(XS$)

PRINT "TEXT"; LENC(CAS$); B$, C

IF LEN(PS$) #5 THEN 600

LET X$CLEN(X$)>+1) = "ADDITIONAL SUBSTRING"

STOP
PRINT '"STRING LENGTH = "3 LEN(PS)

STRINGS IN DATA STATEMENTS

Format

Strings

DATA “string literal” [, string literal”. . .]

The DATA statement specifies data in a program (numeric values may also be used as data).

String values must be enclosed by quotation marks and separated by commas.

String and numeric values may be mixed in a single DATA statement. They must be separated by
commas (example 520 below).

A DATA statement input line may contain a total of 80 characters. Thus, a string literal may contain
80 characters minus the statement number, the word DATA, quotation marks, any blanks or commas
and other string literals included within the input line.

Example

S22 DATA "NQOY IS THE TIME."
519 DATA "HQW', "ARE', "YOU.,"
52¢ DATA S.172, "NAME?", 6.47,50271

Strings

4-13. PRINTING STRINGS ON FILES

Format

string variable
PRINT # filenumber , record number ; substring variable [, . . .]
“string literal”

The PRINT # statement prints string or substring variables or string literals on a file.

String and numeric variables may be mixed in a single file or record within a file (example statement
360 below).

The formula for determining the number of words required for storage of a string on a file is:

number of characters in string
2

1+ if the number of characters is even;

number of characters in string + 1

5 if the number of characters is odd.

1+

If the file number is not equal to a file position as defined in a FILES statement, the output will go to
the logical unit of the same number. When printing to the line printer using PRINT #6, BASIC inserts
a leading space in column 1. The PRINT USING (Section 3-7a) or PRINT to a type 0 file should be used
to control the lineprinter.

Example

352 PRINT #55 "THIS IS A STRING."

355 PRINT #8; C$%$, B%, X$, YS, L%

36@ PRINT #7,3; X$, PSS, “TEXT'", 27.5,R7
365 PRINT #N,E; P$, N, A(5,5), "TEXT"

4-14. READING STRINGS FROM FILES

Format

string variable string variable
substring variable ’substring variable

READ # file number [, record number] ; L...]

4-10 Update 2

Subroutines

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
001e6
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
003y
0040
0041
0042
0043

FTN,L ,M

A0 O0NC0O0ONON 0000000

OO0 n

INTEGER FUNCTION NUM(I)

THIS FUNCTION RETURNS THE NUMERIC VALUE OF THE FIRST CHARACTER
OF THE STRING EXPRESSION ACCORDING TO THE STANDARD CHARACTER CODE.

FOR EXAMPLE:

10 PRINT NUM("A")
20 END

> RUN

65

THE FUNCTION S DESCRIPTION THAT MUST BE INPUT TO THE TABLE
GENERATOR TO CREATE THE PROPER ENTRY IN THE BRANCH AND MNEMONIC
TABLE IS AS FOLLOWS:

NUM (RA), OV=NN, INTG, ENT=NUM, FIL=FILXX

WHERE: RA INDICATES REAL PARAMETER (STRINGS ARE ALWAYS REAL)
NN INDICATES THE OVERLAY NUMBER
FILX INDICATES THE FILE NAME OF THE RELOCATABLE FOR
THIS FUNCTION.

DIMENSION I(2)
RIGHT JUSTIFY CHARACTER BY DIVIDING

RIGHT HALF OF THE FIRST WORD OF A STRING IS THE CHARACTER COUNT
AND MUST NOT BE DISTURBED.

NUM =1(2) /256
RE TU RN
END

Figure 6-1. Preparing a FORTRAN Function for Use by BASIC Program

Update 2 6-7

Subroutines

0001 FTN,L,M

0002 SUBROUTINE CHRS(I,J)

0003 cC

0004 cC

0005 ¢

0006 C

0007 C THIS SUBROUTINE CAUSES THE NUMERIC VALUE OF THE FIRST PARAMETER

0008 C TO REPLACE THE FIRST CHARACTER OF THE SECOND PARAMETER WHICH

0009 C IS A STRING VARIABLE.

0010 cC

0011 c

0012 cC FOR EXAMPLE:

0013 cC

0014 ¢ 10 DIM AS$ (10)

0015 cC 20 AS="YBCDE"

0016 cC 30 CHRS(65,AS)

0017 ¢ 40 PRINT AS

0018 cC 50 END

0019 cC

0020 c >RUN

0021 ¢

0022 ¢ ABCDE

0023 ¢

0024 ¢

0025 ¢

0026 C THE FUNCTION DESCRIPTION THAT MUST BE INPUT TO THE TABLE

G027 C GENERATOR TO CREATE THE PROPER ENTRY IN THE BRANCH AND MNEMONIC

0028 C TABLE IS AS FOLLOW:

0029

0030 cC CHRS(I,RVA), END=CHRS

0031 cC 3 3

0032 ¢ WHERE: I INDICATES AN ITEGER VARIABLE PASSED TO 'CHRS

0033 cC RVA INDICATES A REAL VARIABLE (STRING§ ARE’ALWAYS

0034 ¢ SPECIFIED AS REAL) RETURNED FROM 'CHRS' .

0035 ¢

0036 C

0037 ¢

0038 C

0039 ¢

0040 cC

0041

0042 DIMENSION J(2)

0043 cC ..

0044 C PLACE CHARACTER IN FIRST CHARACTER POSITION OF STRING J

0045 C

0046 C THE RIGHT HALF OF THE FIRST WORD OF A STRING IS THE CHARACTER

0047 C COUNT AND MUST NOT BE DISTURBED.

0048 cC

0049 J (2) =IAND(J (2) ,377B)

0050 J(2)=I0R(I*256,J(2))

0051 RETURN

0052 END

Figure 6-2. Preparing a FORTRAN Subroutine for Use by BASIC Program

6-8 Update 2

Subroutines

6-4. THE FAIL ERROR OPTION

Some of the externally defined subroutines supplied with the Real-Time BASIC Interpreter make
error checks at execution time. For example, the TRNON routine checks both the time schedule table
and the trap table for overflow before adding a new entry. If an execution time error is detected, an
appropriate error message is printed, the ERRCD flag is set, the program is aborted, and the BASIC
Interpreter returns to command input mode.

You may avoid aborting your program by using the FAIL option as part of the subroutine call
statement. Any statement which can appear in an IF statement can be added to the end of a subroutine
CALL statement following the word FAIL:.

For example:

100 CALL TRNON(2000,122536)FAIL: GO TO 9000

If the called subroutine detects an error during execution, the error message is printed but the
Interpreter executes the statement following FAIL: instead of aborting the program. The error
message format is:

ERROR n IN LINE xxx where n is the ERRCD value.

If ERRCD equals zero, the FAIL statement is not executed.

»

The FAIL: option may be used with the following routines:

SETP
TRNON Task
START Control
ENABL Statements
DSABL
RDBIT
RDWRD
WRBIT
WRWRD HP 6940
DAC Calls
MPNRM
SENSE
AISQV
SGAIN
RGAIN HP 2313
AOV Calls
NORM
PACER

-

You can use the FAIL ERROR option in subroutines you write for yourself, as well as in the HP
subroutines listed above. In your own subroutines you also have the option of processing errors
without printing out the error messages. There is no way of avoiding the error message when you are
using the HP subroutines, because these routines call an internal error message routine.

6-9

Subroutines

After execution of a CALL statement, in either an HP subroutine or your own, the interpreter checks
the value of ERRCD. If this value is non-zero, and you have not included the FAIL ERROR option
subroutine CALSB prints the error message:

’

SUB. OR FUNCT. TERMINATED ABNORMALLY IN LINE xxx

and the program aborts. Subroutine CALSB is the parameter-passing linkage between BASIC over-
lays and the subroutine you write in BASIC language. The loader attaches CALSB to your BASIC
routine.

If you do not, in your subroutine, set a non-zero value in ERRCD, there will be no error message and no
abort. If, on the other hand, you do set ERRCD non-zero, you will get the above error message, and the
program will abort. If you set ERRCD non-zero, and also include the FAIL ERROR option in your
CALL statement, the program will not abort and you can additionally interrogate ERRCD in your
program:

10 CALL subroutine FAIL: GO TO 100

100 I = IERRCO)
110 PRINT 1

In statement 100, IERR is the function that interrogates ERRCD. The PRINT statement allows you to
check what may have caused the error in the execution of your routine.

The following is a sample subroutine you might use to set a value in ERRCD:

ASMB,R, L
NAM PASS,7 Subroutine to set ERRCD
ENT PASS
EXT .ENTR,ERRCD
ICODE BSS 1
PASS NOP
JSB .ENTR
DEF ICODE
LDA ICODE,I
STA ERRCD
JMP PASS, I
END

6-10 Update 2

Subroutines

Alternatively, you can use subroutine ERROR to print a BASIC-type error message:

ASMB,R, L
NAM PASS,7 Subroutine to set ERRCD
ENT PASS
EXT .ENTR,ERRCD,ERRUR
ICODE BSS 1
PASS NOP
JSB .ENTR
DEF ICODE
LDA ICODE,I
STA ERRCD
JSB ERROR
DEF #+3
DEF ERRCD
DEF MESS
JMP PASS, I
MESS DEC 4
ASC 2,TEST
END

Using the ERROR subroutine prints an error message of the form:

ERROR TEST—number IN LINE xxx

where number is the value of ERRCD. The following is a FORTRAN subroutine that uses PASS, and a
sample BASIC program to call it:

FTN4,L
SUBROUTINE TRYIT C(IFLAG,ICODE)
C IF IFLAG #0, THEN SET ERRCD TO ICODE
IF CIFLAG.EQ.0) GO TO 900
CALL PASS (ICODE)
900 RETURN
END

10 PRINT “INPUT A,N (A#0: TAKE ERR EXIT/N=ERRCD)";
20 INPUT A,N

30 CALL TRYIT (A,N) FAIL: GO TO SO

40 STOP

S0 PRINT "ERRCD IS NOW *;IERRCO0)

60 END

Notice that ERRCD is examined in BASIC with the function IERR, which has a single dummy
parameter, not used but necessary. Also notice that ERRCD may be set in the BASIC program by the
function SERR, which also has a single dummy parameter.

Update 2 6-11

Subroutines

6-5. THE IERR FUNCTION

Since the action desired may depend on which error occurred, the function IERR is supplied to
interrogate the ERRCD flag. It is a BASIC function and must be used as an operand in an expression.
It returns the value of ERRCD. IERR requires one dummy parameter which is ignored. Any call to
another external subroutine or execution of a PRINT statement resets the value of IERR(x).

Example
120 CALL TRNON(2208@2,124515)FAIL:GOTO 98088 Specify task 2000 to be executed
. at 12:45 and 15 sec. If error, go to
. 9000.

| GOTO 91202 If error is 1, go to 9100.

2 GOTO 92082 If error is 2, go to 9200.

9¢@0 1F IERR(X)
981@ IF IERR(X)

([]

6-6. THE SERR FUNCTION

You may use the SERR function' to set the ERRCD flag to a particular value in a subroutine. For
example, the statement:

110 I= SERR(N) (I is a dummy variable)

sets the ERRCD flag to the value of N. After execution of your subroutine you can examine the error
code by using the IERR function. The value of I is unchanged.

The CALL statement initializes ERRCD to 0, however, you should initialize it at the beginning of your
program and reset it to zero after you have detected an error in a routine and taken appropriate action

to avoid leaving it set in case there are no more CALLs. You initialize the error code as follows:

10 I= SERR (0)

6-7. PARAMETER CONVERSION

BASIC has two data types: number (real) and string. The format of real data is:

S MANTISSA
MANTISSA EXPONENT S

and for string is: 15 87 0

Character

/ Count
/]

1st char. 2nd char.

15 8 7 0

6-12

Operator Commands

Any parameter may be omitted, but all parameters following it must also be omitted.

RESEQ can not be used to change the order of statements in a program. When negative statement
numbers are used in TRAP statements, RESEQ will resequence but it cannot put back the negative
sign. A warning message is issued. Remember to edit those TRAP statements which originally had
negative statement numbers.

Examples

>RESEQ

Renumber entire program in increments of 10.

S>RESEQ 20,5,15,123 —— Statements 15 through 123 are renumbered in
increments of 5 beginning with 20.

>RESEQ 110,5 The entire program is renumbered in incre-
ments of 5 beginning with the number 110.

9-10. RUN

The RUN command enables you to load and execute a program or portion of a program in one
operation.

Format

RUN [limits] [filename [:security [:cartridge]]

Parameters

limits beginning and ending line numbers of the portion of the program to be
executed. Limits must be separated by a comma. If limits are not specified,
the entire program is executed.

filename name of the program (filename) to be loaded and executed. Name is
specified only if the program is not currently in memory.

security optional security code. Must be used if program was saved with security
code.

cartridge optional cartridge reference (label or LU number).

This command loads and executes a program or portion of a program. It can be used for a program
already in memory or a program stored on disc, obviating the LOAD command.

Examples
>RUN Executes the program currently in memory.
>RUN PROGA Loads PROGA if not in memory. Executes the
program in either case.
>RUN 50,75, PR0OGB Loads and executes statements 50 through 75 in
PROGB.

Update 2 9-9

Operator Commands

9-11. LOCK/UNLOCK

The LOCK command allows you to use a peripheral device exclusive of all other system users. The
UNLOCK command returns a device to common availability.

Format

LOCK lu
UNLOCK [lu]

Parameter

lu logical unit number of the peripheral device to be locked or unlocked. lu is
optional with the UNLOCK command. If not specified all locked devices
are unlocked.

The LOCK command locks a specified peripheral device to your version of BASIC, so that no other

program can access that device while the lock is in effect. UNLOCK relinquishes your control of the
device.

BASIC automatically unlocks all peripherals at termination of the BASIC Interpreter.

If you attempt to use a device locked by another user, an appropriate error message is generated.

Examples
>LLOCKX 6 Locks the line printer, LU 6.
>UNLOCK Unlocks all locked devices.
9-12. BYE

The BYE command is used to terminate execution of the BASIC Interpreter.

Format

BYE

BASIC is terminated immediately upon entry of the BYE command. Control is returned to the RTE
Operating System or the program that scheduled BASIC (i.e. FMGR or some other calling program).

You should always use BYE (not *OFF,BASIC,1) to terminate your BASIC session so that your files
will be properly closed.

9-10

Real-Time Task Scheduling

11-11. TRAP STATEMENT

The TRAP statement associates a trap number with a task which then may be associated with a
hardware interrupt.

Format

TRAP trapn GOSUB statement number label

Parameters
trapn trap number, a constant between 1 and 16 inclusive.
statement number label first statement number of the associated task.

The trap number is a parameter in the HP 6940 SENSE routine, auxiliary teleprinter TTYS routine
and the HP-IB SRQSN routine. For example:

CALL SENSE(chan,nbit,bit,trapn)
CALL TTYS(u,trapn)
CALL SRQSN(lu,trapn)

When an interrupt to either of these routines occurs, the task associated with the trapn number is
executed and the task is run. The TRAP association statement must already have been executed.

Only one trap number may be associated with each task and vice versa. Any attempt to associate more
than one trap number to a statement number causes a SCHED-3 error, and the ERRCD flag to be set to
3. You may interrogate the ERRCD flag with IERR.

There are two methods of changing the association between a trap number and a task. Assume an
association has been made as follows:

75@ TRAP S5 GOSUS 12920

The first method is to simply assign a new task statement number as follows:

120 TRAP S GOSUB 2290

This forces the old task (1000) into State A (undefined, see figure 11-1), and nullifies any interrupts
that have occurred to trap number 5. All future interrupts to trap number 5 will be transferred to
statement 2000.

The second method is to use a negative statement number as follows:

102 TRAP S5 GOSUB -20022

The minus sign indicates you want to save any interrupts that have occurred to trap number 5. These
interrupts will be transferred to statement 2000. The task at statement 1000 is forced to State A. All
future interrupts to trap number 5 will be transferred to statement 2000.

11-9

Real-Time Task Scheduling

If the error TRAP-1 is printed, the trap number is negative, the task was not found at syntax time, or
the GOSUB part of the statement is missing.

negative sign on those statements. The RESEQ command resequences properly but it can not put back

I After RESEQing TRAP statements with negative statements numbers, remember to put back the

the negative signs.

Examples

B 112 TR4P 3 GOSUR 2200

After executing statement 110, trap number 3 is
associated with task 2000 only.

Do not change two values at once, you will get ambiguous results.

126 TRAP 3 GOSUB 1299
119 TRAP 4 GOSUB 20082
12¢ TRAP 3 GOSUB 20200

5 TRAP 7

GOSUB 170

18 SENSE(S5,4,1,7)

168 GOTO 168
176 CALL WRBIT(2,4,1)

180 PRINT
190 RETURN

RELAY

48 TRAP 7 GOSUB 960
5@ SENSE(S5,1,J,7)
68 CALL WRBIT(2,4,0)

968 PRINT "RELAY CLOSED"

978 TRAP 7

GOSUB 1000

98@ CALL WRBIT(2,4,1)

998 RETURN

1038 CALL WRBIT(2,4,9)

1810 PRINT
1820 STOP

11-10

"RELAY OPEN"

CLOSED"

Statement 120 causes error SCHED-3 since task
2000 is associated with two trap numbers.

Trap 7 transfers to statement 170.

A contact closure on bit 4 of channel 5 on a HP
6940 event sense card traps to statement 170.

This statement writes a bit on a channel.

A message is printed and control returns to the
statement following the one completed before the
interruption.

Set trap 7 to task 960.

First time SENSE interrupt occurs it traps to
statement 960.

Task prints message.
Changes trap 7 so it is associated with task 1000.

The next time statement 50 is executed, the inter-
rupt will trap to statement 1000.

Update 2

Summary of Statements, Commands, and Subroutines

SUBROUTINE SUMMARY

Each subroutine is listed in alphabetical order followed by a brief description and a reference to the
paragraph containing a complete description of the routine.

SUBROUTINE

AIRDV
AISQV
AOV
AXIS

BLK$

CHRS

DAC
DBCLS
DBDEL

DBFND

DBGET

DBINF

DBLCK

DBOPN

DBPUT
DBUNL

DBUPD

DEB$

DSABL

DESCRIPTION
Reads HP 2313 analog input in a random manner.
Reads 2313 analog input sequentially.
Converts digital values to analog output. (2313)
Plots an axis of a graph.

Initializes a string to a specified number of blanks and
resets the logical length of the string.

Places the ASCII character of a specified decimal value
into a string.

Converts digital value to analog output. (6940)
Closes IMAGE data base files.
Deletes existing data records from IMAGE data sets.

Locates the beginning of an IMAGE data chain in prepara-
tion for access to entries in the chain.

Reads data items from IMAGE data sets.

Provides information about the organization and compo-
nents of the IMAGE data base being accessed.

Locks an IMAGE data base temporarily to provide exclu-
sive access.

Initiates access to IMAGE data bases and defines the user’s
mode of access.

Adds new data records to IMAGE data sets.
Unlocks a data base previously locked by a call to DBLCK.

Modifies the values of data items in existing IMAGE data
records.

Deletes leading and trailing blanks from a string.

Disables a specified task.

REFERENCE

15-4

15-5

15-6

17-1

E-4

6-8 &

E-6

16-2

#*Refer to HP IMAGE/1000 Data Base Management System Reference Manual, part no. 92063-90001.

Update 2

A-5

Summary of Statements, Commands, and Subroutines

SUBROUTINE DESCRIPTION REFERENCE

ENABL Enables a specified task, permits scheduling of a pre- 11-7
viously disabled task.

FACT Sets the ratio between the horizontal and vertical axis of a 17-2
graph.

LINES Plots a line and/or symbols through successive data points 17-3
in arrays.

LLEFT Lifts the plotter pen and moves it to the lower-left corner. 17-4

MPNRM Clears the event sense mode and erases the channel/bit to 16-3
trap number correspondence. (6940)

MTTFS Writes an end-of-file and rewinds the magnetic tape. 13-6

MTTPT Positions a magnetic tape forward or backward a certain 13-5

number of files and/or records.

MTTRD Reads a data record from magnetic tape into an array. 13-4

MTTRT Writes a record onto a magnetic tape. 13-3

NORM Normalizes the 2313 Subsystem, resets it to a home or 15-7
known state.

NUM Converts the first character of an ASCII string to its 6-7 &
decimal value. E-6

NUMB Plots a number, with or without decimal point, at a speci- 17-5
fied height, location, and angle.

PACER Sets the pace rate of the HP 2313 Subsystem. 15-8

PLOT Moves the plotter pen from an origin to a destination. 17-6

PLTLU Defines the logical unit number of the plotter for all plotter 17-7
calls.

RDBIT Reads (or checks the state) of a specified bit on a channel. 16-4
(6940)

RDWRD Reads the contents of a channel into a word. (6940) 16-5

RGAIN Reads the gain on a particular channel. (2313) 15-9

SADD Adds one decimal substring to a second decimal substring. *

SCALE Scales an array of numbers to fit a specified graph size. 17-8

SDIV Divides one decimal substring into a second decimal
substring. *

*Refer to HP Decimal String Arithmetic Routines Manual, part no. 02100-90140.
A-6 Update 2

SUBROUTINE

SEDIT

SENSE

SETP

SFACT

SGAIN

SMPY

SSUB

START
SYMB
TIME
TRNON

TTYS

URITE

WHERE
WRBIT

WRWRD

Summary of Statements, Commands, and Subroutines

DESCRIPTION

Edits data in one decimal substring using an edit mask
within a second decimal substring.

Sets up link between event sense and a specified trap.
Senses a change in the bit pattern. (6940)

Sets the priority of a task.

Sets or adjusts the plotter for the particular size paper
being used.

Sets the gain for all channels in a group. (2313)

Multiplies one decimal substring by a second decimal
substring.

Subtracts one decimal substring from a second decimal
substring.

Schedules a task for processing after a specified delay.
Writes characters on a plot.

Returns the time according to the system real-time clock.
Executes a task at a specified time.

Sets up a link between a trap number and a teleprinter
logical unit number.

Moves the plotter pen to the upper right so the paper can be
removed.

Indicates the current position of the plotter pen.
Writes a bit onto a channel. (6940)

Writes the contents of a word onto a channel. (6940)

*Refer to HP Decimal String Arithmetic Routines Manual, part no. 02100-90140.

Update 2

REFERENCE

16-6

11-8

17-9

15-10

11-9
17-10
11-10
11-12

11-13

17-11

17-12
16-7

16-8

A-7/A-8

BASIC/HP-IB DATA CONVERSION

In computer-based HP-IB systems, it is very often necessary to have complete control over
manipulation of numeric data formats for a given HP-IB device. This is particularly true of a device
that requires a stringent fixed data format in order to operate properly. It is equally desirable to have a
free-field conversion capability that will automatically translate different representations of the same
data value. Although normal I/O programming statements provide part of this capability, they are
primarily for I/O and do not provide for simple memory-to-memory conversions. This appendix
provides general data conversion techniques for use in BASIC programming. Included are examples of
converting variables to strings, or strings to variables. These subroutines are included in the BASIC
Subroutine Library, %BASLB.

DATA CONVERSION REQUESTS — DCODE

BASIC subroutine DCODE converts binary numbers into ASCII-coded strings or vice versa.

DCODE(V1,A$,F$)
DCODE(Bs$,V2,F$)

where

V1 = binary variable to be converted.

A$ = string to contain ASCII-coded result. (Note that the string must be predefined as to size and
content, as discussed later.)

B$ = ASCII-coded string to be converted.

V2 = variable to contain binary result.

F$ = format statement by which conversion will occur.

The format specification must be contained within parentheses and may be either of the following:

Fnd = floating point form: n is the number of characters including sign and decimal point; d is
number of digits following the decimal point.

End

Il

E-format floating point form: n is the number of characters including sign, decimal point, E,
and exponent sign; d is number of digits following the decimal point.

BINARY-TO-ASCII

When converting from a binary value to an ASCII string, certain conditions are assumed. The string
variable where the converted results will be stored has been predefined. This means that the length of
the string has been established (by a DIM statement) and that the contents of the string have been
initialized. Thus, when conversion occurs the actual results are placed in the indicated string positions
without regard to the string’s attributes, such as length, current content, etc. This type of operation
facilitates the piecemeal construction of strings as desired. However, this also means that the overall
string requirements be anticipated by the user according to his application as demonstrated in the
examples given later. (Also, refer to Section IV for an in-depth discussion of strings and Sections I, I1I,
V, VI and VII for a discussion of normal language capability.) Two conversion format types are
discussed in the following paragraphs.

Update 2 E-1

Data Conversion

Fn.d (F) FORMAT. When using binary-to-ASCII conversions, the Fn.d format performs certain special
operations. This format specification generates the following:

n-field
——
T XXXXX.XXXX

~——

d-digits

The n-field positions include sign and decimal point as well as the digits. Plus signs are suppressed in
the result but minus signs are always supplied. When the magnitude of the converted value is less
than the n-field specification, the resulting string is always right-justified with the decimal point in
the indicated position. The remainder of the n-field is filled with blank spaces to the left. When the
magnitude of the value matches the exact n-field width and the d-digit sub-field is zero, the decimal
point is suppressed and the result is an integer string. (Note that rounding off always occurs in the
least significant digit of the resulting string.) When the magnitude of the value exceeds the n-field
specification, dollar signs ($) appear in the result. This indicates an impossible conversion format was
specified by the user and a correction should be made in his program. (See example 1 below.)

EXAMPLE 1. Predefined strings and F-format conversions; (A=Dblank).

10 DIM A$(7),Bs$(6) < define string length™>

20 LET A$ = "xxx.xxx" < initialize string content>

30 LET B$ = "“(F7.3)" <~ define format specification

40 DCODE (V,A$,B$) < perform conversion>
variable (V) string result (A$)
1.234 Anl . 234
12.34 Al2.340
123.456 123.456
1234.567 1234.57
-1.3579 A-1.358
12345600 $$$$88$

A special use of the F-format is the production of integer strings. The method consists of defining an
F-format as Fn.0, where n is the exact number of integer digits to be produced. For example, 123.0
would result in an integer string when the F-format is specified as F3.0. (See example 2 below.)

EXAMPLE 2. F-format conversion to produce an integer string.

10 DIM A$C12) < define string length>

20 LET A$ = “INTEGER=xxxx" < initialize string content>

30 DCODE (V,A$(9,12),"(F4.0)") < perform conversion>
variable (V) string result (A$)
1234.0 INTEGER=1234
-765.432 INTEGER=-765

E-2

Data Conversion

En.d (E) FORMAT. Like the F-format, the En.d format conversion also provides special operations.
This format specification generates the following:

n-field
——
+. xxxxxxE+ xx
R

d-digits

The specified n-field positions include mantissa sign, decimal point, all digits, E, exponent sign, and
exponent. A plus sign for the mantissa is always suppressed in the result but a minus sign is supplied.
The decimal point is also supplied, followed by the d-digits. As in the F-format above, the least
significant digit in the resulting string is rounded off. In the exponent part, the E and sign are always
supplied, followed by the two-digit exponent. When the converted value requires fewer positions than
indicated in the n-field, the result is right-justified and filled with blanks to the left. (See example 3.)

EXAMPLE 3. Use of substrings, literals, and E-format conversion.

10 DIM A$(25) < define string length>
20 LET A$=""VALUE IS=+.xxxxE+xx UNITS" < initialize string content™>
30 DCODE (V,A$(10,19),"(E10.40") < perform conversion™

Note the use of substring character positions 10 through 19 to indicate the position in the A$ string
where the results are to be placed. Also, note the use of a string literal for the format specification
instead of a string variable as in example 1.

variable (V) string result (A$)

1.234 VALUE IS .1234E+01 UNITS
12.3 VALUE IS .1230E+02 UNITS
123.456 VALUE IS .1235E+03 UNITS
-.00123 VALUE IS -.1230E-02 UNITS
0 VALUE IS .0000E+00 UNITS

ASCII-TO-BINARY

ASCII-to-binary data conversions provide operations somewhat similar to the reverse conversions
discussed in the preceding paragraphs. In general, the format specifications indicate n-field positions
(columns) of the ASCII string to be converted. Leading and trailing blanks within the n-field are
ignored and may be used as data delimiters by the user. Data conversions occur as described in the
following paragraphs.

Fn.d (F) FORMAT. The Fn.d format describes the floating point form of the string to be converted.
The n-field position establishes the bounds of the string. Within this field, the data conversion takes
place according to the actual decimal point position in the string. If a decimal point is not in the string
then it is assumed to exist according to the d-digit specification as indicated. (See example 4 below.)

E-3

Data Conversion

EXAMPLE 4. ASCII-to-binary conversion by F-format; (A= blank).

10 DIM A$(40),Bs$(6) < define string length>
20 READ #12; AS$ < input string via LU 12>
30 LET B$="(F7.3)>" < define format specifications™>
40 DCODE (As$,V,B$) < perform conversion>
ASCII string (A$) result (V)
123.456 123.456
123.4a1 123.4
A123.4n 123.4
AN 23.4 123.4
-00.123 -.123

En.d (E) FORMAT. The En.d format also uses the n-field to establish string bounds and the
conversion occurs according to the decimal point position in the string. If a decimal point is not
present, then it is assumed to be positioned as specified by the d-digit part of the format. (See example

5.

EXAMPLE 5. ASCII-to-binary conversion by the E-format.

10 DIM A$C40) <~ define string length>
20 READ #12; AS$ < input string via LU 12>
30 DCODE (A$(5,16),"(E12.6)") - perform conversion>

ASCII string (A$)

DCV -.123456E+01
DCV +.123E+03
ABCD1.379E+00

BLK$

BASIC subroutine BLK$ initializes a string to a specified number of blanks and resets the logical

length of the string to the number of blanks.

Format

CALL BLKS$ (number of blanks, string)

result (V)

-1.23456
123.0
1.379

Parameters

number of blanks The string is initialized to the number of blanks specified. The range
is from 1 to 255 and must not exceed the maximum dimensioned
length of the string.

string a valid dimensioned string array.

E-4 Update 2

Data Conversion

BLK$ assumes that the string is a valid string and does not verify the fact.

Examples

DIM Ds$(10)

BLK$C10,D$)

Subroutine BLK$ sets the logical length of string D$ to 10 in the first word and will initialize the
succeeding 10 characters in the string to blanks.

As a second example, suppose you make the following call to BLK$:

DIM F$C10)

BLK$(5,F$)

Subroutine BLK$ sets the logical length of string F$ to 5 in the first word and will initialize the
succeeding five characters to blanks.

If you specify a first parameter for BLK$ less than 1 or greater than 255, the subroutine produces the
following error message:

ILLEGAL FIRST PARAMETER-BLKS

DEBS$

BASIC subroutine DEB$ deletes leading and trailing blanks from a string.
Format

CALL DEBS (string)

Parameters

string a valid dimensioned string array.
DEB$ assumes that the string is a valid string and does not verify. A valid string must contain at least
one non-blank ASCII character.

Examples

10 DIM Bs$(10)

20 LET Bs=" ABCD *
30 DEB$(BS$)

40 PRINT Bs$

S0 END

Update 2 E-5

Data Conversion
Statement 40 will print the string without leading and trailing blanks as follows:
ABCD

DEB$ has changed the logical length from 10 to 4 and the string has been shifted to the left to delete
leading blanks.

If there are blanks embedded in the string, DEB$ does not delete them:

10 DIM Bs$(10)

20 LET Bs=* AB C D "
30 DEB$(BS$)

40 PRINT Bs

S50 END

After the call to DEBS, string B$ prints as follows:
AB C D

Subroutine DEB$ changes the logical length of the string from 10 to 7 and shifts the string to the left,
deleting leading and trailing blanks, but the embedded blanks remain in the string.

There are two error messages that DEB$ can print on the user terminal. The first occurs if the string
passed to the subroutine has not been initialized and therefore has a length of zero:

STRING NOT INITIALIZED-DEBS

The second occurs if the string contains all blanks:

STRING ALL BLANKS-DEBS$

Both messages are for information only. The subroutine takes no action.

NUM and CHRS

Many devices communicate with the RTE Operating System using ASCII characters. Sometimes,
these characters are non-printing or pure binary numbers. BASIC needs a means to convert these

ASCII characters to decimal values or visa versa. This is handled by function NUM and subroutine
CHRS.

The NUM function takes the first character of an ASCII string and converts the character to its
decimal value (See Appendix C for the decimal to ASCII equivalence.)

Format

NUM (string)
Parameters

string a string array, substring array, or string literal.

The string array must be defined before the function NUM is used.

E-6 Update 2

Data Conversion

Examples

The conversion of the first character of a string array to its decimal value would be:

5 DIM As$[10]

10 LET A$="ABCDE"
20 PRINT NUMCA$)
30 END

>RUN
65 the decimal value of the ASCII character A.
A substring example would be:

S DIM A$[10]

10 LET A$=""ABCDE"

20 PRINT NUMCA$(2,2))
30 END

>RUN
66 the decimal value of the second element in A$, an ASCII B.
The conversion of a literal string is:

10 PRINT NUMC"“F'™)
20 END

>RUN
70 the decimal value of the literal string F.

The subroutine CHRS takes the decimal value of an ASCII character and places the ASCII character
in the specified location of a string variable. The string must be defined prior to the call to the
subroutine CHRS.

Format

CALL CHRS (decimal value, string)

Parameters
decimal value a valid specified decimal value of an ASCII character.
string a string array or substring array in which the ASCII character is to be

placed. If a string array is specified, the ASCII character is placed as
the first element of the array. Array subscripts can be specified for any
element except for the first element (i.e., do not use A$[1,1]; use A$).

The string must be defined prior to calling CHRS.

Update 2 E-7

Data Conversion

Examples

The control information for setting the margin on the 9871A line printer is 6 blanks followed by an
escape character (decimal value 27) and an M. The 9871A line printer is LU9 in this case and when the
print is issued to the line printer (file LP), the control sequence is executed as demonstrated by the
listing of the program.

10 DIM As$(10]

20 LET As[1,61=" "
30 CALL CHRS(27,A$(6,61)
40 LET As$[7,71="M"

S50 PRINT #9;As

60 END
>RUN
>LIST LP

10 DIM A$[101]

20 LET As$(1,61=" "
30 CALL CHRS(27,A$[6,61)
40 LET AS$[7,71="Mn

50 PRINT #9;As$

60 END

E-8 Update 2

