RTE Operating System
Drivers and Device Subroutines
Programming and Operating Manual

HEWLETT (ho; PACKARD

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

Printed in U.S.A. 7/76

PART NO. 92200-93005

LIST OF EFFECTIVE PAGES

Changed pages are identified by a change number adjacent to the page number. Changed information is indicated by a
vertical line in the margin of the page. Original pages (Change 0) do not include a change number. Insert latest changed
pages and destroy superseded pages.

Change 0 (Original) JUL 1976

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1976 by HEWLETT-PACKARD COMPANY

DOCUMENTATION MAP

DOS-RTE
Relocatable
Library

Ref. Manual
24998-90001

START
RTE-1Il General
Information Manual
92060-90009
RTE-II: A Guide

for New Users
92060-90012

BN

]

21MX
Operator's Manual
02108-90004

HP FORTRAN IV
Reference Manual
5951-1321

P

RTE-1I/lIl On-Line
Generator
Reference Manual
92060-90020

RTE-lI Programming
————P and Operating Manual
' 92060-90004
or
RTE-tl Programming

I‘ and Operating Manual
92001-93001

languages

HP FORTRAN
Reterence Manual
02116-9015

A 4 A 4
RTE Interactive . & RTE Operating System
h Batch-Spool Monitor RTE Utility . .
Editor Reference Reference Manual Programs Drivers and Subroutines

Manual
92060-90014

92060-90013

92060-90017

Manual
92200-93005

ALGOL
Reference Manual
02116-9072

quick reference

RTE and BSM
P Pocket Guide -
92060-90010

YOU
ARE
HERE

error messages

RTE ASSEMBLER
Reference Manual
92060-90005

-

Multi-User
Real-Time BASIC
Reference Manual
92060-90016

iii/fiv

CONTENTS

Section 1 Page 1/O Controller Time-Out 2-19
INTRODUCTION Driver Processing of Time-Out 2-19
Purpose 1-1 System Processing of Time-Out 2-20
SCOPE - e v e 1-1 Device Clear 2-20
Supporting Documentation 1-1 Driver Auto Up 2-20
Mapping Subroutine for Drivers
Section 11 Page (RTE-ILT Only)o 2-21
REAL-TIME INPUT/OUTPUT $PVMP Subroutine (Privileged) 2-21
Introduction 2-1 $XDMP Subroutine (Non-Privileged) 2-22
Software 1O Structure 2-1 Power Fail 2-23
Equipment Table................................ 2-1 Sample /0 Driver 2-23
Base Page Communication Area 9.5 Privileged Interrupt Processing 2-23
Logical Unit Numbers 9.5 Privileged Interrupts 2-24
Interrupt Table 2-7 Memory Access by Privileged Interrupt
General Operation of 1/0 Processor 2-7 (RTE-UI Only) ... o 2-24
Standard VO Calls 2-7 Special Processing by CIC 2-25
Class VO Calls 2-8 Privileged Interrupt Routines 2-25
Driver Structure and Operation 2-11 Sample Privileged Driver 2-25
Initiation Section 2-12 Access to Buffer in User Area
Completion Sectionc........ ... 2-16 (RTE-II Only) ... oo 2-27
ILLUSTRATIONS
Title Page Title Page
Expansion of CONWD Word (EQT Word 6) 2-3 IO Driver Completion Section 2-18
Device Reference Table 2-5 RTE Driver Example 2-29
Example of Class I/0 Mailbox Communication2-10 RTE Privileged Driver Example 2-33
1/O Driver Initiation Section 2-13 RTE-HI Privileged Driver Example 2-37
TABLES
Title Page Title Page
Real-Time Executive System Drivers Base Page Communications Area —
(Standard Products) 1-2 I/0 Operationscoviiivivieino... 2-6
Equipment Table 2-2 Glossary of Terms for Class
EQT Word 5, STATUS Table 2-4 Input/Output 2-8

INTRODUCTION

1-1. PURPOSE

The purpose of the Hewlett-Packard Programming and Operating Manual for Real-Time
Executive System Drivers is to enable the user to write relocatable drivers for HP Assembly
language and FORTRAN programs. By these programs, full compatibility and integration can
be accomplished for use on HP 2100 Series Computers and associated equipment operating in a
Real-Time Executive (RTE) environment.

1-2. SCOPE

The manual provides the user with a detailed description of Real-Time Executive System
input/output (I/O) concepts, followed by information on all Hewlett-Packard supplied RTE
drivers and RTE device subroutines contained in the RTE Operating System Driver and
Device Subroutine Package (92062A), as listed in Table 1-1. Included in the manual are full
details on writing driver calls, their sequence, the parameters needed, the required system
operating environment, and techniques for utilizing the drivers.

1-3. SUPPORTING DOCUMENTATION

For complete information regarding Real-Time Executive Software Systems, the reader should
refer to the Software Programming and Operating Manual provided with his system.
Documentation available includes:

a. RTE Operating System Programming and Operating Manuals, as listed in Table 1-1.

b. Real-Time Executive Core-Based Software System Programming and Operating Manual,
HP Part No. 29101-93001.

c. Real-Time Executive BASIC Software Programming and Operating Manual, HP Part No.
29102-93001.

d. Real-Time Executive IIl Software System Programming and Operating Manual, HP Part
No. 92060-90004.

e. Real-Time Executive II Software .System Programming and Operating Manual, HP Part
No. 92001-93001.

1-1

Introduction

Table 1-1. Real-Time Executive System Drivers (Standard Products)

DRIVER MANUAL

NUMBER DESCRIPTION PART NUMBER
00 Multiple-Device System Control 29029-95001
05 HP 2640/2644 Terminal 92001-90015
10 HP 7210 Plotter _—
10 CalComp Plotter 12560-90023
11 HP 2892A Card Reader 09600-93010
12 HP 2607A Line Printer 92200-93001
12 HP 2767A Line Printer —_——
13 HP 91200B TV Monitor 91200-90005
15 HP 7261A Mark Sense Card Reader 09601-93014
23 HP 7970 Series 9-Track Magnetic Tape Units 92202-93001
24 HP 7970 Series 7-Track Magnetic Tape Units 25117-93003
30 Fixed Head Disc _———
31 HP 7900/7901 Moving Head Disc _—
32 HP 7905 Moving Head Disc _———
37 HP 593108, HP-IB 59310-90063

REAL-TIME INPUT/OUTPUT

2-1. INTRODUCTION

In the Real-Time Executive System, centralized control and logical referencing of 1/0 opera-
tions effect simple, device-independent programming. Two terms used in this manual are:

I/O CONTROLLER —- A combination of I/O card, cable, and (for some devices) controller box
used to control one or more 1/O devices on a channel.

I/O DEVICE — A physical unit defined by an EQT entry (/O controller) and subchannel.

Each I/O device is interfaced to the computer through an I/O controller associated with one or
more [/O channels which are linked by hardware to corresponding memory locations for
interrupt processing. By means of several user-defined 1/0 tables, self-contained multi-device
drivers, and program EXEC calls, RTE relieves the programmer of most /O problems. For
further details on the hardware input/output organization, consult the appropriate computer
manuals.

2-2. SOFTWARE 1/0 STRUCTURE

An Equipment Table records each controller’s /O channels, driver, DMA buffering and
time-out specifications. A Device Reference Table assigns one or more logical unit numbers to
each device and points each device to the appropriate Equipment Table entry, allowing the
programmer to reference changeable logical units instead of fixed physical units.

An Interrupt Table directs the system’s action when an interrupt occurs on any channel; RTE
can call a driver (which is responsible for initiating and continuing operations on all devices’
controllers of an equivalent type), schedule a specified program, or handle the interrupt itself.

The programmer requests I/O by means of an EXEC Call in which he specifies the logical unit,
control information, buffer location, buffer length, and type of operation. Other subsystems
may require additional parameters.

2-3. EQUIPMENT TABLE

The Equipment Table (EQT) has an entry for each 1/0 controller recognized by RTE. (These
entries are established by the user when the RTE System is generated.) The 15-word EQT
entries reside in the system, and have the format shown in Table 2-1. The driver returns the

device status to EQT Word 5, bits 0 through 7. Table 2-2 is provided as an aid in determining
the meaning of the bits. Also returned to the driver is EQT Word 6 which is the current I/O

request word as specified in the call. Refer to Figure 2-1 for an explanation of the bits in EQT
Word 6.

2-1

Real-Time Input/Output

When RTE initiates or continues an I/O operation, it places the addresses of the EQT entry for
the device’s controller into the base page communication area (see Table 2-2) before calling the

driver routine.

Table 2-1. Equipment Table

WORD CONTENTS
1501 "3 " 2]11 "0 987765 aT3]2T1To
1 I/O Request List Pointer
2 Driver “Initiation” Section Address
3 Driver “Completion” Section Address
4 D | B PI S| T Unit # Channel #
5 AV EQUIP TYPE CODE STATUS
6 CONWD (Current /O Request Word)
7 Request Buffer Address
8 Request Buffer Length
9 Temporary Storage for Optional Parameter”
10 Temporary Storage for Optional Parameter*
11 Temporary Storage for Driver
12° Temporary Storage for Driver (EQT extension size)
13 Temporary Storage for Driver (EQT extension starting address)
14 Device Time-Out Reset Value
15 Device Time-Out Clock

Where:

W UVvwoO

Unit #

Channel #

AV

*Modified by RTE at each l/O initialization

1 if DMA required

1 if automatic output buffering used

1 if driver is to process power fail

1 if driver is to process time out

1 if device timed out (system sets to zero before each 1/O
request)

Last sub-channel addressed

/0 select code for the I/O controller (lower number if a multi-
board interface)

I/O controller availability indicator:

available for use

disabled (down)

busy (currently in operation)

waiting for an available DMA channel

il

0
1
2
3

2-2

Table 2-1. Equipment Table (Continued)

Real-Time Input/Output

Where: (Continued)

EQUIP TYPE CODE =

Type of devices on this controller. When this octal number is linked
with “DVR”, it identifies the device’s software driver routine as follows

00 to 07
00
01
02
05 sub 0
05 sub 1
05 sub 2

10to 17
10
11
12
15
20 to 37
30
31
32
40 to 77

Il

Il

= unit record devices

I

mini cartridge devices

mark sense card reader
magnetic tape/mass storage devices
fixed head disc or drum
7900 moving head disc
7905 moving head disc

paper tape devices (or system control devices)
teleprinter (or system keyboard control device)
photoreader

paper tape punch

console (or system keyboard control device)

STATUS = Actualphysical status or simulated status at the end of each operation.
For paper tape devices, two status conditions are simulated: Bit 5 = 1
means end-of-tape on input, or tape supply low on output.
CONWD = User control word supplied in the /O EXEC call.
T T T T T T
15|14 13 12 {11 10 9 2 1 0
I_'__—I I— Function S— |_]

00 = Standard Call
01 = Buffered Call
11 = Class Call

01 = READ call
10 = WRITE call
11 = CONTROL call

Figure 2-1. Expansion of CONWD Word (EQT Word 6)

2-3

Real-Time Input/Output

Table 2-2. EQT Word 5, STATUS Table

DEVICE \STATUS

7 6 5 4 3

2 1 0

Teleprinter(s)

Photoreader(s)

Punch(es)
DVRO00

End of
l{e}
Tape

STL TEN

2640 Terminal
2644 Terminal
Cartridge Tape Unit
DVRO05

BF
EOF

CD

TLP EOT RE

LCA

TEN
EOD

CWP CNE/DB

7210 Plotter
DVR10

PD

2892 Card Reader
DVR11

HE

RNR

2767 Line Printer
DVR12

e NE

LCF LCF

2607 Line Printer
DVR12

TOF | DM ON RY | X

X |Auto page eject X

7261 Card Reader
2761 Mark Sense
Reader
DVR15

EOF PF

PF

HE/SF
HE/SF

DE
DE

RNR
RNR

3030 Mag Tape
7970

DVR22

DVR23

EOF | ST EOT TE

I/OR

NW PE DB/OL

2766 Fixed Head
2773 Disc/Drum
DVR30

DR(1) SAC

NR(0)

AF

WE PE DB

7900 Moving Head Disc
DVR31

NR EOT AE

FC

sC DE EE

7905 Moving Head Disc
DVR32

Ps | Fs || HF | FC

SC

NR EE

Where:
PE == Parity Error
HE = Hopper Empty
SF = Stacker Full
RNR = Reader Not Ready

PF = Pick Fail
DE = Data Error
OL = Off Line
ON = On Line

CE = Compare Error
BT = Broken Tape
DB = Device Busy
EOF = End of File
ST = Start of Tape
TE = Timing Error
/IOR = 1/O Reject

is rewinding)

NW = No Write (write enable
ring missing or tape unit

SC == Seek Check

FC = Flagged Track (protected)

AE = Address Error

EOT = End of Track

NR = Not Ready

RY = Ready (0 = power on)

LCF = Last Character Flag

NE = No Error

DR = Disc Ready

SAC = Sector Address Coincidence

(troubleshooting only)

PS = Protect Switch Set

FS = Driver Format Switch is Set

HF = Hardware Fault

AF = Abort Flag | NR (Bit = 7=0) has
occurred during/since last
data transfer|

WE = Currently addressed track
is write enabled

EE = Error exists

TEN = Terminal Enabled

TOF = Top of Form

DM = Demand (1 = Idle)

X = Driver Internal Use

STL = Stall required/In program

PD = Pen Down

CD = Control-D Entered

BF = Buffer Flushed

CNI = Cartridge Not Inserted

EOD = End of Data

CWP = Cartridge Write Protected

LCA = Last Command Aborted

RE = Read Error

TLP = Tape at Load Point

2-4

Real-Time Input/Output

2-4. BASE PAGE COMMUNICATION AREA

A block of storage in base page, starting at 16475, contains the system communication area and
is used by RTE to define request parameters, I/O tables, scheduling lists, operating parame-
ters, memory bounds, etc. The Real-Time Assembler allows absolute references into this area
(i.e., less than 20004) within relocatable programs, so that user programs can read information
from this area, but cannot alter it because of the memory protect feature. The information
pertaining to I/O operation contained in the base page communication area is listed in Table
2-3. (For a complete description of the system communication area, refer to the appropriate
RTE System Software Operating and Service Manual.)

2-5. LOGICAL UNIT NUMBERS

Logical unit numbers from decimal 1 to 63 provide logical addressing of the physical devices
defined by the EQT (I/O controller) and the subchannels (if applicable) and also define the
physical devices’ (LU) status. These numbers are maintained in a two word Device Reference
Table (DRT), which is created at generation, and can be modified by the LU operator request
(see figure 2-2). ‘

DRT word one contains the EQT entry number of the device assigned to the logical unit, and
the subchannel number within the EQT entry. The second DRT word contains the logical
unit’s status (up or down) and a pointer to any downed I/O requests. If the pointer is less than
64, it is the LU number off of which the downed I/O requests are queued. If several LU’s point
to the same device, the requests are queued off the lowest LU number (the major LU). If the
pointer is greater than 64, it points to the device’s downed I/O request list. There are separate
tables for words one and two, with the word two table located in memory immediately
following the word one table. The starting address and length of the word one table are
recorded in the base page. The functions of logical units 0 through 6 are predefined in the RTE
System as:

0 — bit bucket (null device)
1 — system console

2 — reserved for system

3 — reserved for system

4 — standard output unit

5 — standard input unit

6 — standard list unit

Subchannel Number LU Lock Flag EQT Number Word 1

T T N 1 1
15 |14 13 12|11 10 9|8 7 6|5 4 3|2 1 0

F Downed /O Request List Pointer Word 2

F (up/down flag) = O if device is up
1 if device is down

Figure 2-2. Device Reference Table

Logical units 7 through 63 may be assigned for any functions desired, although logical unit 8 is
recommended to be the magnetic tape device. The operator can assign EQT numbers and
subchannel numbers within the EQT entries to the logical unit numbers when the RTE
System is generated, or after the system is running. The user determines the number of logical
units when the system is generated.

2-5

Real-Time Input/Output

Table 2-3. Base Page Communications Area - I/O Operations

OCTAL LOCATION CONTENTS DESCRIPTION
01650 EQTA FWA of equipment table
01651 EQT# No. of EQT entries
01652 DRT FWA of device reference word 1 table
01653 LUMAX No. of logical units (in DRT)
01654 INTBA FWA of interrupt table
01655 INTLG No. of interrupt table entries
01656 TAT FWA of track assignment
01657 KEYWD FWA of keyword block
01660 EQT1
01661 EQT2
01662 EQT3
01663 EQT4
01664 EQT5
01665 EQT6 Addresses of first 11 words of current EQT entry
01666 EQT7
01667 EQTS8
01670 EQT9
01671 EQT10
01672 EQT11
01673 CHAN Current DMA channel number
01674 TBG I/O address of time-base card
01675 SYSTY EQT entry address of system console
01771 EQT12
01772 EQm3 Addresses of last 4 words of current EQT entry
01773 EQT14
01774 EQT15

Real-Time Input/Output

Logical unit numbers are used by executing programs to specify on which device I/O transfers
are to be carried out. In an I/O EXEC Call, the program simply specifies a logical unit number
and does not need to know which actual device or which I/O controller handles the transfer.

2-6. INTERRUPT TABLE

The Interrupt Table contains an entry, established at system generation time, for each I/O
channel in the computer. If the entry is equal to 0, the channel is undefined in the system. If an
interrupt occurs on one of these channels, RTE prints this message:

ILL INT xx

where xx is the octal I/O channel number. RTE then clears the interrupt flag on the channel
and returns to the point of interruption.

If the contents of the entry are positive, the entry contains the address of the EQT entry for the
controller on the channel. If the contents are negative, the entry contains the negative of the
address for the ID segment of a program to be scheduled whenever an interrupt occurs on the
channel.

The interrupt locations in memory contain a JSB $CIC; CIC is the Central Interrupt Control

routine which examines the Interrupt Table to decide what action to take. On a power failure
interrupt RTE halts unless the power fail routine is used. If privileged interrupt processing is
included in the system, the privileged channels bypass $CIC and the interrupt table entirely.

2-7. GENERAL OPERATION OF 1/0 PROCESSOR
2-8. STANDARD I/0 CALLS

A user program makes an EXEC Call to initiate 1/O transfers. If the device’s controller is not
buffered, or in the case of all input transfers, the calling user program is suspended until the
transmission is completed. The next lower priority program is allocated execution time during
the suspension of a higher priority program.

An I/O request (i.e., Read, Write, Control) is channeled to IOC by the executive request
processor. After the necessary legality checks are made, the request is linked into the request
list corresponding to the referenced I/O controller. The parameters from the request are set in
the temporary storage area of the Equipment Table.

If the device’s controller is available (i.e., no prior requests were stacked), the “initiation”
section of the associated driver is called. The initiation section initializes the device’s control-
ler and starts the data transfer or control function. On return from the initiation section, or if
the device’s controller is busy, or a required DMA channel is not available, IOC returns to the
scheduling module to execute the next lower priority program.

If the device’s controller (EQT) or the device (LU) is down, the calling program is automati-
cally suspended in the general wait list (status = 3). While in this list the program is
swappable, and if any LU or EQT is set up the program is automatically rescheduled.

2-7

Real-Time Input/Output

Interrupts from the device’s controller cause the Central Interrupt Control (CIC) module to
call the “completion” section of the driver. At the end of the operation, the driver returns to
CIC and consequently to IOC. 10C causes the requesting program to be placed back into the
schedule list and checks for an /O stacked request. If there are no stacked requests, IOC exits
to the dispatching module (DISP); otherwise, the initiation section is called to begin the next
operation before returning.

2-9. CLASS I/O CALLS

Class I/O consists of unique scheme of programming within the RTE-system to effectively
handle several programs addressing either other programs or I/O devices. The following
description of Class I/O relies upon a Glossary of Terms directly related to Class I/O (see
Table 2-4).

Table 2-4. Glossary of Terms for Class Input/Output

TERM DESCRIPTION

Class An account which is owned by a program which may be used by a
group of programs.

Class Number The account number referred to in number one.

Class Users Programs that use the class number.

Class Request An access to a logical unit number with a class number.

Class Members Logical unit numbers that are currently being accessed in behalf of a

class. Completion of access removes the association between class
number and logical unit number (completion of access is defined as
when the driver completes the request).

Class Queue (Pending) The set of uncompleted class requests.

Class Queue (Completed) The set of all completed class requests where the structure is defined
as first in, first out.

Class numbers are established during system generation after the last system module is
loaded. The generator requests how many class numbers are to be established and the operator
responds with a number between 0 and 255. Once the numbers are established the system
keeps track of them and assigns them (if available) to the calling program when a Class I/O
call is made and the Class Number parameter is set to zero. Once the number has been
allocated, the user can keep it as long as desired and use it to make multiple Class I/0 Calls.
When the user is finished with the number it can be returned to the system for use by some
other Class user. One example of using Class I/O is program-to-program communication. The
example program in Figure 2-3 and described in the following sequence of events shows how
this is accomplished.

a. User Program 1 issues a Class 1/O call with the Class Number parameter set to zero and
the logical unit number portion of the control word parameter set to zero. This causes the
system to allocate a Class Number (if available) and the request to complete immediately.
(Logical unit zero specifies a system “bit bucket” which implies immediate completion).

Real-Time Input/Output

b. User Program 1 now sets bit 14 of the Class Number parameter which specifies that the
Class Number is to be saved, and issues a Class GET call to that Class Number.

¢. The GET call completes (data buffer is returned) and the Class Number is saved in
common.

d. Asecond GET call is issued to the same Class Number. This time user Program 1 suspends
because there is no outstanding I/O call against that Class Number.

e. User Program 2 obtains Program 1’s Class Number from common and issues a Class 1/0
call to that number (specifying logical unit zero for immediate completion). This causes
Program 1 to be rescheduled and it accepts the data passed to it by Program 2.

f. If the same process is repeated for Program 2 and part of the data it passes Program 1 is
Program 2’s Class Number, then complete program-to-program communication is possible
with both programs passing each other’s data.

The system handles a Class 1/0 call in the following manner. When the class user issues a
Class I/0 call and the call is received, the system allocates a buffer from available memory and
puts the call in the header (first 8 words) of this buffer. The call is placed in the pending class
queue and the system returns control to the class user. If this is the only call in the pending
class queue, the driver is called immediately, otherwise the system returns control to the class
user and calls the driver according to program priority. If buffer space is not available, the
class user is memory suspended unless bit 15 (“no wait”) is set. If the “no wait” bit is set,
control is returned to the class user with the A-Register containing a — 2 indicating no memory
available. If the class number is not available or the 1/O device is down, the class user is placed
in the general wait list (status = 3). If the call is successful, the A-Register will contain the
class number on return to the program.

The buffer area furnished by the system is filled with the caller’s data if the request is either a
WRITE or a WRITE/READ call. The buffer is then queued (pending) on the specified logical
unit number. Since the system forms a direct relationship between logical unit numbers and
EQT entries, the buffer can also be thought of as being queued on the EQT entry.

After the driver receives the Class I/O call (in the form of a standard I/O call) and completes,
the system will:

a. Release the buffer portion of the request if a WRITE. The header is retained for the GET
call.

b. Queue the header portion of the buffer in the Completed Class Queue.

c. Ifa GET call is pending on the Class Number, reschedule the calling program. (This means
that if the user issues a Class GET call or examines the Completed Class Queue before the
driver completes, the user has effectively beat the system to the Completed Class Queue.)
Note that the program that issued the Class I/O call and the program that issued the Class
GET call do not have to be the same program.

d. Ifthere is no GET call outstanding, the system continues and the driver is free for other
calls.

2-9

Real-Time Input/Output

FTIN,L

FIN,L

OoOO0On O nNn

PROGRAM PROGA

DIMENSION IBFR(32),INAME(3)
L]
.
.

DO CLASS WRITE/READ TO LU=0,

ICLASs®Q
CALL EXEC(20,@2,18FR,=64,IDUMY,JDUMY,ICLAS)

SCHEDULE RECEIVING PROGRAM AND PASS 1T CLASSY,

INAME(1)3501228

INAME (2)m475078R

INAME(3)s4102008

CALL EXEC(1@,INAME,ICLAS)
°

END

PROGRAM PROGH
DIMENSION IBFR(32),1IPRAM(S)

SAVE CLASS #, IPRAM(1{)
CALL RMPAR(CIPRAM)

ACCEPT DATA FROM PROGA USING CLASS GET CALL
AND RELEASE THE CLASS NUMBER,

CALL EXEC(231,IPRAM(1),1BFR,32)
?
®
L]

2-10

Figure 2-3. Example of Class I/O Mailbox Communication

Real-Time Input/Output

Only after the driver completes can the user effectively issue a Class GET call to check the
Completed Class Queue for a completion. When the user issues the GE'T call, the Completed
Class Queue is checked and one of the following paths is taken.

a. Ifthedriver has completed, the header of the buffer is returned (plus the data). The user
(calling program) has the option of leaving the I/O request in the Completed Class Queue
so as not to lose the data. In this case a subsequent GET call will obtain the same data. Or
the user can dequeue the request and release the Class number.

b. If the driver has not yet completed (GET call beat system to the Completed Class Queue),
the calling program is suspended in the general wait list (status = 3) and a marker so
stating is entered in the Completed Class Queue header. If desired, the program can set the
“no wait” bit to avoid suspension. In any case, when the driver completes, programs
waiting in the general wait list for this class are automatically rescheduled.

2-10. DRIVER STRUCTURE AND OPERATION

An I/O driver, operating under control of the Input/Output Control (RTIOC) and Central
Interrupt Control (CIC) modules of RTE, is responsible for all data transfer between an /O
device and the computer. The device EQT entry contains the parameters of the transfer and
the base page communication area contains the number of the allocated DCPC channel, if
required. It should be noted that RTE operation makes it mandatory that a synchronous device
driver must use a DCPC or privileged interrupt channel for data transfer.

An /O driver always has an initiation section and usually a completion section. If nn is the
octal equipment type code of the device, Ixnn and Cxnn are the entry point names of the two
sections respectively, the DVynn is the driver name.

As shown, the driver name is five characters long, starting with the characters “DV” and

ending with a two-digit octal number (e.g., DVR00). This name is usually obtained from the
software distribution package. The entry point names are four characters in length and start
with either “I” or “C” and usually end with the same two-digit octal number used in the driver

name.

However, since the system generator does not examine the driver’s NAM record, the driver
may in fact be renamed to support more than one device. The rules for the choice of “x” and “y”
above are as follows:

If ((y” is not ((R” then f(x)) — ((y”
If Q(y” iS ((R?’ then ((x?7 —_ “‘))
Using the above rules, a driver named DVR16 has entry points named 1.16 and C.16. A driver

named DVP16 has entry points IP16 and CP16. This allows one driver to support more than
one device type.

Privileged drivers are in a special class. Refer to the end of this section for a discussion of
privileged drivers.

2-11

Real-Time Input/Output

2-11. INITIATION SECTION

The RTIOC module of RTE callstheinitiation section directly when an /O transfer is initiated.
Locations EQT1 through EQT15 of the base page communication area contain the addresses of
the appropriate EQT entry. CHAN in base page contains the number of the DMA channel
assigned to the device’s controller, if needed. This section is entered by a jump subroutine to
the entry point, L.nn. The A-Register contains the select code (channel number) of the channel
(bits 0 through 5 of EQT entry word 4). The driver returns to IOC by an indirect jump through
Lnn.

Before transferring to I.nn RTE places the request parameters from the user program’s EXEC
Call into words 6 through 10 of the EQT entry. The subchannel number is placed into bits 6
through 10 of word 4. Word 6, CONWD, is modified to contain the request code in bits 0 and 1
in place of the logical unit.

Once initiated, the driver can use words 6 through 13 of the EQT entry in any way, but words 1
through 4 must not be altered. The driver updates the status field in word 5, if appropriate, but
the rest of word 5 must not be altered.

2-12. FUNCTIONS OF THE INITIATION SECTION. The initiation section of the

driver operates with the interrupt system disabled (or as if it were disabled, in the case of
privileged interrupt processing; see discussion of special conditions under “Privileged Inter-

rupt Processing”).

The initiation section of the driver is responsible for these functions (as flow-charted in Figure
2-4).

a. Checks for power fail entry by examining bit 15 (= 1) of EQT word 5. This bit is set only on
powerfail entry (see “b” in Power Fail).

e

b. Rejects the request and proceeds to “g” if:

1. The device or controller is inoperable,
2. The request code, or other of the parameters, is illegal.

c. Configures all I/O instructions in the driver to include the select code (and DMA channel)
of the device’s controller.

d. Initializes DMA, if appropriate.

e. Initializes software flags and activates the device’s controller. All variable information
pertinent to the transmission must be saved in the EQT entry because the driver may be
called for another controller before the first operation is complete.

f. Optionally sets the device’s controller time-out clock (EQT 15).

g. Returns to RTIOC with the A-Register set to indicate initiation or rejection and the cause
of the reject:

If A = 0, then operation was initiated.

2-12

Real-Time Input/Output

DO POWER
I.nn FAIL —
RECOVERY

CONFIGURE 1/0
INSTRUCTIONS
FOR DEVICE’S
CONTROLLER

REQUEST ‘A:‘;‘EC(’:? 2, Y
CODE LEGAL
CODES
DEVICE &_ no (A) =3,
CONTROLLER REJECT
8 CODE
Y
INITIALIZE AETUAN
OPERATING, ™
CONDITIONS - |
FLAGS, ETC
A
\
SET BUFFER
ADDRESS,
LENGTH, MODE,
ETC. FOR
TRANSFER
\
ACTIVATE
DEVICE'S
CONTROLLER
y
OPTIONALLY
SET DEVICE'S (A) REGISTER
CONTROLLER > =40R0
TIME-OUT ®
CLOCK (EQT 15)
@IF A = 4 SET B = TRANSMISSION LOG RTE-C-2

Figure 2-4. 1/O Driver Initiation Section
' 2-13

Real-Time Input/Output

If A = 1,2,3, then operation rejected because:

1 — read or write illegal for device,
2 — control request illegal or undefined,
3 — equipment malfunction or not ready,

If A = 4, immediate completion. (Transmission log should be returned in the B-Register
in this case.)

If A = 5, DMA channel required.

2-13. DMA INITIALIZATION. A driver can obtain a DMA channel in two ways:

a. The channel can be assigned during generation by entering a “D” in the driver’s Equip-
ment Table Entry.

b. The driver can dynamically assign a DMA channel as required.

If a driver requires DMA but does not require or use the DMA interrupt, the DMA control
should be cleared after DMA initialization. Further special processing is required in this case.

If a driver requires DMA, and the DMA interrupt, special processing must be included in the
driver. After disabling the interrupt system, initiating DMA and clearing control, the driver
sets a software flag to indicate that a DMA channel is active.

The software flag is either the first or second word of the interrupt table, depending on which
DCPC channel is used. The flag is set by making bit 15 equal to 1.

INTBL (1) — channel 1 (location 6)
INTBL (2) — channel 2 (location 7)

The address of INTBL is contained in the word INTBA in the base page communication area.

When bit 15 is set, the rest of the word must not be altered. The operation can be performed
only if DUMMY is non-zero (meaning the system includes privileged interrupt processing).

The following code demonstrates these principles:

CLF 0 Disable interrupts.

STC DMA, C Initiate DCPC channel

CLA Bypass this section if

CPA DUMMY DUMMY = 0 and special
JMP X processing is not needed.
CLC DMA

LDB INTBA Clear DMA control. Set B =
LDA CHAN address of the appropriate
CPA = D7 entry in the interrupt table.
INB

2-14

Real-Time Input/Output

LDA B/l Set bit 15 of the entry equal
IOR = B100000 .
to 1 and return to the interrupt
STA B/ table. Enable interrupt system
STF 0 e un ph system:
X EQU * Continue processing.

There may be times when a driver will only occasionally need DMA, and thus not want to
always tie up a DCPC channel while it is operating. This may be done in either of two ways:
(Note that in example No. 1, the DCPC channel is always assigned before the driver is entered.
In example No. 2, the DCPC channel is assigned only if the driver requests it.)

Example 1—The DMA flag is set at generation time by entering a “D” in the driver’s
equipment table entry. The driver may return the DCPC channel (before completion if desired)
by clearing the appropriate INTBL word (first or second word of interrupt table). This may be
done as follows:

LDA DMACH Get current channel
LDB INTBA and INTBL address
SLA If Channel 7

INB step address

CLA Clear the

STA B, channel word

Example 2—The DMA flag is not set at generation time as above. In this case the driver is
entered by RTIOC without a channel being assigned. The driver must analyze the request and
determine if a channel is required, and if so, request a channel from RTIOC by returning via
I.XX,I with A=5. RTIOC will assign a channel and recall the driver. The recall completely
resets EQT words 6 through 10. Since it is possible for the calling program to be aborted
between the request for DMA and the resulting recall of the driver, the driver must determine,
independently of its past history, if it has DMA. The following code illustrates these principles:

DLD INTBA,I Come here if DMA required

CPA EQTH Is channel 6 assigned?
JMP CHS6 Yes; go configure

CPB EQTM Is channel 7 assigned?
JMP CH7 Yes; go configure

LDA =B5 No channel so

JMP 1LXXI Request one from RTIOC

In this case the driver must also tell RTIOC that it has a DCPC channel at completion of request.
This is done by setting the sign bit in the A-Register on the completion return to RTIOC. This
bit may be set at all times — even when the driver does not own a DCPC channel. However, if

2-15

Real-Time Input/Output

set when not required, some extra overhead in RTIOC is incurred. The sign bit is set in
addition to the normal completion code. The following code illustrates this principle:

LDA COMCD Get completion code

IOR =B100000 Set the sign bit

JMP C.XX,I Return to RTIOC
NOTE

If your driver wishes to do a series of non-DMA operations, but

still retain the DCPC channel assignment, you must clear bit

15 in the first or second word of the INTBL entry to prevent the
system from restoring DMA. The correct word must be deter-
mined by the driver and is the word described in the above

paragraphs. That is:

INTBL (1) — channel 1 (location 6)
INTBL (2) — channel 2 (location 7)

Programming Hint—A driver may use the following code to determine which DCPC channel it
is using at any time:

DLD INTBA,I Get DMA words

RAL,CLE,ERA Clear sign

RBL,CLE,ERB bits (needed only if driver set the sign bit)
CPA EQTH Channel 6?

JMP CHeé6 Yes

CPB EQT1 Channel 7?

JMP CH7 Yes

JMP NODMA No-no DMA assigned

2-14. COMPLETION SECTION

RTE calls the completion section of the driver whenever an interrupt is recognized on an I/O
controller associated with the driver. Before calling the driver, CIC sets the EQT entry
addresses in base page, sets the interrupt source code (select code) in the A-Register, and

clears the I/O interface or DMA flag. The interrupt system is disabled (or appears to be
disabled if privileged interrupt processing is present). The calling sequence for the completion
section is:

Location Action

Set A-Register equal to interrupt source code

P) JSB C.nn
(P+1) Completion return from C.nn
(P+2) Continuation or error retry return from C.nn

2-16

Real-Time Input/Output

The return points from C.nn to CIC indicate whether the transfer is continuing or has been
completed (in which case, end-of-operation status is returned also).

The completion section of the driver is flowcharted in Figure 2-5 and performs the following
functions in the order indicated.

a.

Checks whether word 1 (controller I/O request list pointer) of the EQT entry equals zero. If
it does, a spurious interrupt has occurred (i.e., no I/O operation was in process on the
controller). The driver ignores the interrupt, sets EQT 15 (time-out clock) to zero to
prevent time-out, and makes a continuation return. If not zero, the driver configures all
I/O instructions in the completion section to reference the interrupting controller, and then
proceeds to “b”.

If both DMA and the device controller completion interrupts are expected and the device
controller interrupt is significant, the DMA interrupt is ignored by returning to CIC in a
continuation return.

Performs the input or output of the next data item if the device is driven under program
control. If the transfer is not completed, the driver proceeds to “f’.

If the driver detects a transmission error, it can re-initiate the transfer and attempt a
retransmission. A counter for the number of retry attempts can be kept in the EQT. The
return to CIC must be (P+2) as in “f’.

At the end of a successful transfer or after completing the retry procedure, the following

information must be set before returning to CIC at (P+ 1):

1. Set the actual or simulated device controller status into bits 0 through 7 of EQT
word 5.

2. Set the number of words or characters (depending on which the user requested)

transmitted into the B-Register.

3. Set the A-Register to indicate successful or unsuccessful completion and the reason:

A equals 0 for successful operation,
A does not equal 0 for unsuccessful:

1 — device or controller malfunction or not ready,
2 - end-of-tape (information),

3 — transmission parity error,

4 — device time-out.

Clears the device controller and DMA control, if end-of-operation, or sets the device
controller and DMA for the next transfer or retry. If not end-of-operation (i.e., a continua-
tion exit is to be made), the driver can again optionally set the device controller time-out
clock. Returns to CIC at:

(P+1) — completion with the A- and B-Registers set as in “e”.
(P+2) — continuation; the registers are not significant.

2-17

Real-Time Input/Output

C.nn
YES
NO
CONFIGURE /0O
INSTRUCTIONS SET EQT15
FOR DEVICE'S =0
CONTROLLER
YES DO TIME- RETURN
our TO
PROCESSING P+2
NO A
Cevicr OPTIONALLY
) SET DEVICE'S
CONTROLLER
TRANSFER YES | CONTROLLER
8Y DMA INTERRUPT
REQUIRED, TIME-OUT
CLOCK (EQT 15)

|

TRANSFER NEXT
D‘:‘TP‘S/'\TTEEM' END OF RETRY RE-INITIALIZE
OPERATION
INDEXES. REQUIRED CONDITIONS
FLAGS, ETC
OPTIONALLY
SET DEVICE'S UPDATE
CONTROLLER STATUS IN |-&
TIME-OUT EQT (5)
CLOCK (EQT 15)
. AR
RETURN WO(BR,DS%R (A) = og'\fce's RETURN
o CHARACTERs [| COMPLETION =8 \tRoLler [] To
P+2 CODE P
TRANSFERRED CONTROL
RTE-C-3

Figure 2-5. 1/0O Driver Completion Section

2-18

Real-Time Input/Output

2-15. 1/0 CONTROLLER TIME-OUT

Each I/O controller can have a time-out clock that will prevent indefinite I/O suspension.
Indefinite I/O suspension can occur when a program initiates I/O, and the device’s controller
fails to return a flag (possible hardware malfunction or improper program encoding). Without
the controller time-out, the program which made the I/O call would remain in I/O suspension
indefinitely awaiting the operation done indication from the device’s controller. With respect
to privileged drivers, the time-out parameter must be long enough to cover the period from 1/0
initiation to transfer completion.

Two words, EQT 14 and EQT 15, of the EQT entry for each I/O controller function as a
controller time-out clock. EQT 15 is the actual working clock, and before each I/O transfer is
initiated, is set to a value m, where m is a negative number of 10 ms time intervals. If the
controller does not interrupt within the required time interval, it is to be considered as having
“timed out”. The EQT 15 clock word for each controller can be individually set by two methods.

a. The system inserts the contents of EQT 14 into EQT 15 before a driver (initiation or
completion section) is entered. EQT 14 can be preset to m by entering (T=) m during the
EQT entry phase of generation, or it can be set or modified on-line with the TO operator
request.

b. When the driver initiates I/O, and expects to be entered due to a subsequent interrupt, the
driver can set the value m into EQT 15 just before it exits. This value m can be coded
permanently into the driver or else passed to the driver as an I/O call parameter.

NOTE

The system always inserts the contents of EQT 14 into EQT 15
before entering a driver except on initialization if EQT 15 is
not zero, it is not reset. However, a time-out value inserted
directly into EQT 15 by the driver overrides any value previ-
ously set by the system (from EQT 14).

2-16. DRIVER PROCESSING OF TIME-OUT

A driver indicates to the system that it wants to process time-out by setting bit 12 in EQT word
4. The system never clears this bit so it need be set only once. In this case when a controller
times out, the following action takes place.

a. Bit 11 in EQT word 4 is set.
b. Thedriver is entered at C.nn with the A-Register set to the select code (from EQT word 4).

¢. Thedriver must recognize that the entry is for time-out by examining bit 11 of EQT word 4
and do whatever is necessary. The driver should then clear bit 11 in the event it is entered
again prior to completion of the operation so that it knows why it is being entered on the
next call. (RTIOC will clear this bit prior to entering the driver at I.nn.)

d. Thedriver may continue or complete the operation. If it completes the operation it may set
the A-Register to 4 to indicate time-out.

2-19

Real-Time Input/Output

e. If the A-Register is set to 4, RTIOC will issue the message
WO TOL #x E #y S #z

where

x is the EQT number, y is the LU number, and z is the subchannel. The LU is set down.

2-17. SYSTEM PROCESSING OF TIME-OUT

In the case where the driver does not set bit 12 of EQT word 4, the following actions take place
on time-out.

a. The calling program is rescheduled, and a zero transmission log is returned to it.

b. The LU is set to the down status, and bit 15 in the second word of the device’s LU entry is
set to one. An error message is printed; e.g.,

/O TO L #x E #y S #z

c. The system issues a CLC to the controller’s select code(s) through the EQT number located
in the interrupt table.

Due to the system issuing a CLC to the device’s select code, each controller interface card
requires an entry in the interrupt table during generation. If an I/O card did not normally
interrupt, and therefore did not have an entry in the interrupt table, and the controller had
timed out, the system would not be able to issue a CLC to the I/O card.

A time-out value of zero is equivalent to not using the time-out feature for that particular
controller. If a time-out parameter is not entered, its value remains zero and time-out is
disabled for the controller.

2-18. DEVICE CLEAR

If an I/O suspended program is aborted while waiting for a controller, the system clears the
controller by sending a clear control request (00) to the driver. If the controller can be cleared
without interrupt (i.e., immediately), the driver should return with A-Register = 2 or 4. If an
interrupt is required, the driver should return with A-Register = 0. In this latter case the
system will force a 1-second time-out for the controller. If the interrupt is not serviced before

this time-out, the system will process it as in step “c” above. Note that the driver is not allowed
to process time time-out.

2-19. DRIVER AUTO UP

A driver has the capability of automatically “uping” itself through a JMP instruction. For
example, if a driver makes a not ready, parity error, EOT, or time-out return to the system,
and subsequently detects an interrupt (or time-out) entry which signals that the controller is
now ready, it may “up” itself as follows:

JMP $UPIO
2-20

Real-Time Input/Output

The device’s EQT and any of the EQT’s downed LU’s will be upped. If any request is pending
the system will call the driver at I.xx.

2-20. MAPPING SUBROUTINES FOR DRIVERS (RTE-IIl ONLY)

There are two routines supplied with the RTE-III System that may be called by a driver to load
the User Map to describe a certain program. $PVMP may be called by privileged drivers and
$XDMP may be called by non-privileged drivers.

2-21. $PVMP SUBROUTINE (PRIVILEGED)

The $PVMP subroutine may be called by a privileged driver to load the User Map to describe a
certain program. This routine is necessary only if the privileged driver needs to access a buffer
in a user program. This routine is a type 8 module which means it is not re-entrant. A Type 8
module is loaded with each driver that calls it even though only one copy of the relocatable is
input to RTGEN. Note that this routine should be used only by privileged drivers.

The calling sequence is as follows:

!EXT SPVMP Normal privileged entry Code (save regis-
ters, etc)
SSM DMSST Save DMS status at interrupt
LDA MAPAD Address of map storage area
IOR SIGN Set sign bit indicating store in memory
USA Store user map in memory
LDA IDADR Get ID segment address of program
JSB $PVMP Go set user map
SZA,RSS Check for error return
JMP ERROR
UJP CONT Enable user map and continue
CONT Processing for privileged interrupt
EXIT LDA MAPAD Address of map storage area
USA Restore original map
JRS DMSST RTN Restore DMS status at interrupt and
continue
RTN Restore registers and memory protect status
. then return to point of interrupt
MAPAD
MAPAD DEF MAP
MAP BSS 32 Map save area
SIGN ocCT 100000
IDADR BSS 1 Storage for ID segment address
DMSST BSS 1 Storage for DMS status at interrupt

$PVMP will check to see if the program is resident in memory. If it is not, the User Map will
not be reloaded and the A-Register will be zero on return. If the program is resident, the User

2-21

Real-Time Input/Output

Map will be loaded and the A-Register will be non-zero on return. Note that any privileged
driver using this routine must save the contents of the User Map before calling this routine
and must restore the contents before returning to the point of interrupt.

2-22. $XDMP SUBROUTINE (NON-PRIVILEGED)

The $XDMP subroutine may be called by a non-privileged driver to load the User Map to
describe a certain program. Since the system will enter the driver with the map enabled which
describes the buffer of the current /O call, this routine is necessary only for those drivers
which must access another buffer which is contained in a user program. Note that this routine
is intended for the use of non-privileged drivers only and is included as part of the system. The
calling sequence is as follows:

EXT $XDMP

. Normal driver processing

RSA Get DMS status

RAL,RAL Position current status in upper bits

STA DMSST Save status for later

LDA MAPAD Address of map storage area

IOR SIGN Set sign bit indicating store in memory

USA Store user map in memory

LDA IDADR Get ID segment address of program

JSB $PVMP Go set user map

SZA,RSS Check for error return

JMP ERROR

UJP CONT Enable user map and continue
CONT

Process buffer under User Map

EXIT LDA MAPAD Address of map storage area

USA Restore original map

JRS DMSST NXT Restore earlier DMS status and

continue

NXT . Proceed with normal processing
MAPAD DEF MAP
MAP BSS 32 Map storage area
SIGN OCT 100000
IDADR BSS 1 Storage for ID segment address
DMSST BSS 1 Storage for DMS status

The routine will check to see it the program is resident in memory. If it is not, the User Map
will not be reloaded, and the A-Register will be zero on return. If the program is resident, the
User Map will be reloaded and the A-Register will be non-zero on return.

Note that any driver using this routine must save the contents of the User Map before calling
this routine and must restore the contents before exiting.

2-22

Real-Time Input/Output

2-23. POWER FAIL

The system power fail routine, if loaded at generation, will perform the following steps:

a. When power comes on, it will restart the real-time clock, set up a time-out entry (T'O) back
to its EQT, and then return to the power fail interrupt location.

b. When the EQT entry times out, the system will check EQT word 5 bit 14 and 15 of each I/O
controller. The status of bits 14 and 15 will indicate whether the I/O controller is “down” or
“busy”. The system will also check bit 13 of EQT word 4 (set by driver) which indicates if
the driver is to process the power fail.

c¢. If the I/O controller was busy when the power failed and the power fail bit is set when
power resumes, the driver is entered at I.nn and the EQT is not reset. If the power fail bit is
not set, the controller is set “down”. The system then sets the controller “up”, resets the
EQT, and enters the driver at I.nn.

In other words, if the controller was reading or writing data when the power failure occurred
and the driver is designed to handle power fail, when power resumes the controller driver has
the responsibility to recover from the power fail in the best possible manner. If the controller
was busy when power failure occurred and the controller driver is not written to handle power
failure, the routine attempts to restart the 1/O operation.

If the controller or device was down when the power failed and the power fail bit is set or not
set, when power resumes the system “ups” the device, resets the EQT and enters the driver at
Lnn. In other words, if the controller or device was down when power failed, when power
resumes the system “ups” the controller and device and attempts to start the operation, if any,
in the /O request list. An HP-supplied program called AUTOR will be scheduled. AUTOR will
send the time of power failure to all teletypes on the system (which re-enables all terminals).
AUTOR is written in FORTRAN, with the source tape supplied so the user can easily modify
the program to suit his individual needs.

2-24. SAMPLE |/O DRIVER

The sample driver shown in Figure 2-6 demonstrates the principles involved in writing an I/O
driver for the RTE System. Note that this driver is for tutorial purposes only and not one of the
drivers supplied with the system.

2-25. PRIVILEGED INTERRUPT PROCESSING

When a special I/O interface card, HP 12610, is included in the system, RTE allows a class of
privileged interrupts to be processed independently of regular RTE operation, with a minimal
delay in responding to interrupts. The presence and location of the special I/O card is selected
at system generation time. Its actual hardware location is stored in the word DUMMY in base
page (or if not available, zero).

The special I/O card physically separates the privileged interrupts from the regular system-
controlled interrupts. When an interrupt occurs the card has its flag set which enables the card

2-23

Real-Time Input/Output

to hold off non-privileged, lower priority interrupts. This means that the system does not
operate with the interrupt system disabled, but in a hold-off state. Furthermore, the privileged
interrupts are always enabled when RTE is running, and can interrupt any process taking
place.

2-26. PRIVILEGED INTERRUPTS

The privileged interrupts are processed in two ways:

a. Through a privileged driver which has in general the structure of a standard I/O driver
plus a special privileged interrupt processor routine.

b. Through a special routine embedded in the system area.

Note that the routines which handle privileged interrupts must be completely independent of
RTE (i.e., they cannot use any system functions).

If the first method is used, the calling program can make a standard I/O call to the privileged
device. The calling program will be suspended for the time it takes to do the transfer, after
which it will be rescheduled. To the calling program, there is no difference between a
privileged type device I/O call and a non-privileged (standard) type device I/O call. If the
privileged driver is assigned a time-out parameter, the parameter must be long enough to
cover the period from I/O initiation to transfer completion.

If the second method is used, a “JSB--,I” in the interrupt location (set by using “ENT,name”
when configuring the interrupt table) channels the special interrupt directly to the entry point
of its associated special routine. CIC and the rest of RTE are not aware of these interrupts. CIC
sets a software flag in base page (MPTFL) indicating the status of the memory protect fence.

If MPTFL equals zero, the memory protect was “ON” at the time of the interrupt. Any special
interrupt routine must restore the status of memory protect and (for RTE-III) the dynamic
mapping system immediately before returning to the point of interruption by a “JMP---I”.

If MPTFL equals one, RTE itself was executing when the privileged interrupt occurred, and
memory protect was “OFF”. The special routine must not restore memory protect in this case.

2-27. MEMORY ACCESS BY PRIVILEGED INTERRUPT
(RTE-IIT ONLY)

A privileged interrupt routine, whether embedded directly within the system or within a

privileged driver, must save and restore all registers which are used (including index regis-
ters), restore memory protect to its original state (word MPTFL contains this status), and

restore the status of the Dynamic Mapping System. If the privileged driver wants to access a
buffer within a disc resident program, the User Map will have to be saved and restored. In

addition, it will have to be loaded to describe the correct partition. However, if the driver limits
its access to a buffer in either common or the subsystem global area, the driver may access that
buffer while in the System Map if the generation option to include common and SSGA in the
System Map was exercised. That is, if the program the driver is servicing puts a buffer in the
common area, then the driver can access that data through the System Map which is enabled
by the interrupt. Note that no standard HP software uses common; it is reserved for the user.

2-24

Real-Time Input/Output

2-28. SPECIAL PROCESSING BY CIC

The Central Interrupt Control (CIC) module is entered on all normal (non-privileged) inter-
rupts. CIC disables the entire interrupt system (including privileged), saves registers, issues a
clear flag instruction (CLF) to the interrupt location, sets the memory protect “OFF”
(MPTFL=1), and checks the DUMMY word. If the DUMMY word is zero, the hardware
interrupt system is left disabled and normal processing continues. If non-zero, a set control
instruction (STC) is issued to the I/O location specified (this assumes that the flag on the
special I/O card is set). The STC holds off lower priority interrupts until the control flip-flop is
cleared on the special card.

If DUMMY is non-zero, CIC also clears the control flip-flop on each DCPC channel to defer

DMA completion interrupts, and enables the interrupt system (a NOP in the interrupt location
for the special card causes its interrupts to be ignored). The DMA transfer itself is not affected,
only the completion interrupt.

Interrupt processing continues and control is passed to a driver, timer routine, scheduler, or
other appropriate executive module. Privileged interrupts can occur during this processing.
RTE returns to user program processing through the interrupt return module, $IRT.

$IRT briefly disables the entire interrupt system. Each active DCPC channel is reset (STC) to
allow it to interrupt. User register values are restored, and the memory protect system is
inactivated. The User Map (for RTE-II]) is enabled and control is transferred to the user
program with the interrupt system on.

2-29. PRIVILEGED INTERRUPT ROUTINES

A privileged interrupt routine, whether embedded directly within the system or within a
privileged driver, must save and restore all registers, and restore memory protect to its
original state (word MPTFL contains this status) and (for RTE-III) restore the status of the
Dynamic Mapping System. This is because any interrupt automatically disables memory
protect. The privileged interrupt routine must not use any features or requests of RTE, or
either DCPC channel. It can communicate with normal user programs by use of the appropri-
ate COMMON region. Flags, parameters, control words, etc., can be set and monitored by
either routine in the pre-defined locations in COMMON. The starting address of the COM-
MON region is available in base page. A normal user program can be scheduled to run at
periodic time intervals to scan and set indicators in COMMON.

2-30. SAMPLE PRIVILEGED DRIVER

The following discussion describes Figure 2-7, an example of a privileged driver, generalized to
DVRXX, which is controlling a device operating in the privileged mode. Figure 2-8 shows a
similar driver written specifically for RTE-III.

The device transfers one word of data each time it interrupts, and the data is stored into the
buffer passed to the driver via the call parameters. Also passed to the driver is the number of
data words to be input from the privileged device, this being the length of the data buffer.

The concepts behind such a driver are as follows:

a. It is called by standard EXEC I/O call.
2-25

Real-Time Input/Cutput

b. The calling program is placed into I/O suspension.

c. Thisdevice controller’s trap cell is changed from “JSB CIC” to “JSB P.XX” where P.XX is
the entry point to the privileged routine within the driver.

d. Each time the device’s controller interrupts, the RTIOC overhead is circumvented because
the privileged routine P.XX is entered directly.

e. After each interrupt, if another data point is still required to satisfy the buffer length, the
‘device’s controller is again encoded to subsequently interrupt, and the privileged routine is
exited.

f. When the entire data buffer has been filled, the driver needs a way to communicate to the
Executive that the transfer is complete. This is accomplished by allowing the driver to
time-out. The time-out causes RTIOC to re-enter the driver at C.XX.

g. C.XXreturns the transmission log, via the B-Register, and a successful completion indica-
tion, via the A-Register, to RTIOC.

h. RTIOC then reschedules the program which called the driver through its normal I/O
completion machinery.

A standard RTE driver uses the EQT for all its temporary storage so that the same driver can
be driving more than one device controller simultaneously. A privileged driver, however,
cannot do this because it can never know the state of pointers to the EQT while it is running
since it is running independently of the Executive. The privileged driver keeps its temporary
storage internally, and therefore can control only one device controller. For each device
controller the driver will control, the driver must be reassembled with all names DVRXX and
$JPXX (for this example) changed to another number. Then one driver per device controller
must be loaded into the system at generation time.

2-31. INITIATION SECTION, L.XX. Refer to the partial listing of the sample privileged
driver (Figure 2-6). A standard I/O call to input from the device controller causes the calling
program to be I/O suspended and driver to be entered at 1. XX. The request code is checked for
validity.

Because this driver can control just one device controller (unlike standard drivers) there is no
need to configure it more than once. Therefore, the first time the driver is entered, it is
configured and the switch at “FIRST” is cleared to that on all subsequent entries the config-
uration code is not executed.

The modification of the device controller trap cell is performed just once, after the configuring
routine, and is not modified again on all later entries into the initiator. The trap cell is altered
so that the device controller interrupts will be channeled to the P.XX subroutine instead of to
RTIOC. The “JSB P.XX” instruction and its associated base page link are established via the
small program “$JPXX” (see listing).

A counter, which is incremented in routine P.XX, is established for the number of readings to
be taken; the buffer address for the storage of the data is saved, and the device controller is set
up to initiate a reading and is encoded. The initiator then exits.

2-32. PRIVILEGED SECTION, P.XX. When the device controller interrupts, P.XX is
entered as a result of the controller’s trap cell modification.

2-26

Real-Time Input/Output

Because entry is made directly into P.XX the routine must do the housekeeping which RTIOC

does when entered from an interrupt. Before P.XX can turn the interrupt system back on for

higher priority interrupts, it must ensure that the DMA channels cannot interrupt, save the

old memory protect status, and set its new status. For RTE-III, it must also save the dynamic
mapping system status at time of interrupt.

P.XX then loads and stores the data in the next unfilled buffer word. If there is yet another
data point to be taken, P.XX sets up the device controller for the next reading, disables the
interrupt system, encodes the device controller, restores memory protect status and its flag,
turns the interrupt system back on, and exits. This basically resets the system to its state
before P.XX was entered.

When the last reading is taken, P.XX disables the interrupt system, turns off the device
controller, and sets up the driver for an immediate time-out. Before P.XX exits, it restores
memory protect status and its flags, and turns the interrupt system back on, and (RTE-III
only) restores the dynamic mapping system status.

2-33. COMPLETION SECTION, C.XX. The status of the device controller and the driver
is now unchanged until the TBG interrupts. The TBG interrupt will cause a time-out (this is
because — 1 is set in EQT word 15), which will cause RTIOC to pass control to C.XX which
returns a transmission log and a normal completion indication to RTIOC.

RTIOC then goes to its /O completion section which reschedules the calling program and
processes the controller request list as if it were a standard (non-privileged) controller.

2-34. ACCESS TO BUFFER IN USER AREA (RTE-IIT ONLY)

If the sample privileged driver described above were written to access a buffer within the user
program area instead of common, the following changes would be necessary: (The caution note
on the sample also applies here, since information is stored in the driver).

1. LXX — The ID segment address of the calling program would have to be saved. This would
be done as follows:

1.XX STA SCODE Save select code
LDA 1717B Get ID Segment address
STA IDADR Save it

2. P.XX — In addition to saving and restoring the DMS status, the User Map would have to
be saved, reloaded to describe the user, and restored on exit. This would be done as follows:

P.XX

P.X1 SSM DMSTS Save DMS status
LDA MAPAD Get address of map storage area
IOR SIGN Set sign bit indicating store to memory

(37w SEC) USA Save user map
LDA IDADR Get ID segment address
(100 SEC) JSB $PVMP Call routine to set map

UJP CONT Enable user map and jump to CONT

2-27

Real-Time Input/Output

CONT LDA MPTFL

EXIT1 LDA MAPAD Get address of map storage area
USA Restore user map
LDA EOSV ‘

MPADR DEF MAP Address of save Map area

IDADR BSS 1 Save ID segment address

MAP BSS 32 Save map area

DMSST BSS 1 Save DMS status

SIGN OCT 100000 Sign Bit

The subroutine $PVMP is a Type 8 subroutine and is loaded with each driver that accesses it.
It is not re-entrant.

The times given in the example are approximate.
It is recommended that privileged drivers be designed for user communication through com-

mon or subsystem global. If this is done, the driver does not have the overhead of map
switching; it simply saves and restores the state of the machine (including DMS status).

2-28

Real-Time Input/Output

JIMBY

o201
oena
pead
o024
2008
pvos
eae7
oAn8
Qe
LY
2011}
o012
0013
o0y4
0415
0016
0017
0o18
0019
oz
po21
po2
0023
0024
0e28%
veze
ee2?
vogs
eo2e
Qa3
0031
0032
2233
2034
ee3s
o036
e0y7
2038
2039
0040
eedl
o4
2043
0044
0045
P46
aa47
2048
0049
0ese
2es51
e@52
2053
0084
o058
Q056

TaQQP23 IS ON CRPPPAV2 USING PQ@24 BLKS Ru=gprooQ
ASMB,R,L
HED w»w RT EXEC DRIVER <70» G,P,R. (CUTPUT) wn
NAM DVR7®
)
.
ENT 1,70,C.70

.ll'.l.‘ll’!“‘llI'Ill‘."l‘"'.“t.‘I‘Il’..‘.‘l!'tlll

ODRIVER 7@ OPERATES UNDER THE CONTROL CF THE
1/0 CONTROL MODULE OF THE REAL=TIME EXECLTIVE,
TH18 DRIVER IS RESPONSIBLE FOR CONTROLLING
QUTPUT TKANSMISSION TO A 16 BIT EXTERMNAL
DEVICE. «78> IS THE EQUIPMENT TYPE COCE ASSIGNED
GENERALLY TO THESE DEVICES, I.7@ IS THE
ENTRY POINT FOR THE #«INITIATION» SECTION AND C,7€
I8 THE »COMPLETION® SECTION ENTRY,

= THE INITIATION SECTION IS CALLED PROM 1/0
CONTROL TO INITIALIZE A DEVICE AND INITIATE
AN OUTPUT UPERATION,

1/0 CONTKOL SETS THE ADDRESS CF EACK WCRD OF TrE
18 WORD EGT ENTRY (FOR THE CEVICE) IN THE SYSTEN

COMMUNICATIONS AWKEA FOR BOTK INITIATOR AND CONTINLATCR

SECTIONS, THE DRIVER REFERENCES TO THE EQT ARES
wEGTL THRU EWTiSe

CALLING SEQUENCE?

(A) = SELECT COOE OF TWE 1/0 GCEVICE,
P JSB 1,70
Pel =«RETURNe

(A) = @, OPERATION INITIATED
(A) s REJECT CUDE

1. ILLEGAL REQUEST
2. ILLEGAL MODE

»THE COMPLETION S8ECTION IS CALLED BY CENTRAL
INTERRUPT CONTROL 70O COUNTINUE OR COMPLETE
AN OPERATION,

CALLING SEQUENCES
(A) = SELECT CODE OF THE I/0 DEVICE.
P JSB C,7v
P+l «COMPLETIOM RETURN=
P+2 CONTINUATION RETURN=
(A) » 0, SUCCESSFUl. COMPLETICON WITH

(B) = # OF WORDS TRANSMITTED,
(A) = 2, TRANSMISSION ERROR DETECTED

Figure 2-6. RTE Driver Example (Sheet 1 of 4)

2-29

Real-Time Input/Output

2087

oese

0ese
2062

peél
J'd.}]
0063
0064
2065
068
Bo&7
L1
pA6e
o709
2071
0072
2073
0074
0075
peze
per7
2078
0079
0080
posl
1LY
083
o84
Qo8sd
p086
pos7
po88
poas
2090
0291
nee2
2093
o94
0099
D096
0897
p298
0099
o100
"RY"}

p1oe
p1ed
0io4
o10d

0106
0107

108
aies
0140

P11l

n112

2113

2114

" (B), SAME AS FOR (A)s@
|
" = CONTINUATION RETURNI REGISTERS
" MEANINGLESS
[]
% =RECORU FORMATe
]
» THIS DRIVER PROVIDES A 16 BIT BINARY
* WORL TRANSFER ONLY.
MED <« ORIVER 7¢ wINITIATICN# SECTICN »
" wkew IMITIATION SECTIUN www
w
1.70 NOP ENTRY FROM 10C
»
J88 SETIU SET I1/0 INSTRUCTIONS FCR DEVICE
[]
LDA EGTE,I GEY CONTROL wCRD CF REGUEST,
AND 383 1SOLATE,
[]
CPa =Bi IF REQUEST IS FOR INPLT
JMP 1,77,1 THEN REJECT,
CPA =R2 PROCESS FOR WRITE REGUEST
JMP D, X1 GO TO WRITE REQUEST

: REQUESY ERRONe CAUBE WEJECT RETLRN TC I/C CONTROL.

" LDA =2B2 SET Am2 FOR ILLEGAL CONTRL REG,
JMP 1.70,1 “EX]T=

: WRITE REJUEST PROCESSING

;.Xl LDa EQT7,1 GET WEQUESY BLFFER ACORESS

§Ta EQTY,] AND 8ET AS CLRREMT ADCRESS
LDA EQTS,! GET BUFFER LENGTH

CMa,INA SET NEGATIVE AND SAVE

STA EQTIB,1 AS CURRENT BUFFER LENGTH,
3ZA CHECK LENGTFH

JMP D, X3 NON=ZERO

L.DA ®B4 IMMEDTIATE CCMPLETION

CL8 SET TLOG IN B=REG

JMP 1,70,1 IF ZERO

%
* CALL COMPLETION SECTION TO WRITE FIRST WORD,
]

D.X3 LDA P2 ADJUST RETURN
STA C,7@ TO INITIATCR SECTION,
JMP D,Xx2 GO TL COMPLETION SECTICN
"
IEXIT CLA KETURN TO I/0 CONTROL WITH
JMP J1.70,1 OPERATIUN INITIATED,
®
HED < DRIVER 72 wCOMPLETION SECTION® >
"
v wwexr COMPLETION SECTION wmuw
®
C.78 NOQOP ENTRY
LDB EQGTY,1I SPUR]IOUS
57268,RS88 INTERRUPT?

2-30

Figure 2-6. RTE Driver Example (Sheet 2 of 4)

Real-Time Input/Output

0118
0116
9117
0118
nLLe
o120
il
0122

2123
124
p12d
2126
0127
0128
0129
2130
2131
2132
8133
134
2138
0136
0137
0138
8139
2140
2141
0142
143
Pldd
01435
0148
0147
2148
0149
215¢
0151
182
2153
0154
0153
0156
0167
188
2159
vieo
0161
o162
0163
0164
0168
0166
0167
168
2169
eiye
21714

JMP
JSB

0.X2 CLA
CPA
JMP

LOB

182
LDA
182
NOP

0TA
STC
RS8S
SPUR] 8T8

- & %
s a

N +-=

I8¢

JMP
"

HED
"

SPUR|
SETIO

EaTio,1
1.3
EQT9,I
EGT9,I

Byl
EQT10,1

Q
¢,C

EQTLS,]

C.70
Ca70,1

YES = IGNORE

SET I/Q0 INSTRUCTICNS FCR DEVICE

IF CURKENY BUFFER LENGTH ® @,
THEN,GO TO
STATUS SECTICN,

GET CUKRENT BUFFER ADDRESS
ADL 1 FOR NEXT WORD
GET wORD :

AND INGEX WORD COUNMNT
IGNORE P+1 IF LAST WCRC,

UUTPUT WORD TC INTERFACE
TURN DEVICE ON
ZERN TIMEeQUT CLOCK WCRE

ADJUST RETURN TC Pe2
“EX]Tw

< DRIVER 7@ «COMPLETICN SECTION® >

* STATUS AND CUMPLETION SECTION,

L

I.3 LIA
AND
8TA
LDA
AND
10R
8TA

CLA
cPB
LDA
LoB
"
1.4 cLc
"

JMP

*

]

« SUBROUTINE <SETIO> CUNFIGURES I/0 IMSTRUCTIONS,
*

8

ETIO NOP
I0R
STA

ADA
STA

ADA
STA

9

sB77

8

EQTS, I
8B177490
-}

EQTS,I

®B4
882
EQT8,1
("]
Ce72,1

LIA
I.3

sp100
1.1

sBilo0
I.2

GET STATUS WCRD
STRIP OFF BITS
AND SAVE IN B
REMOVE PREVICLS
STATUS BITS
SET NEw
STATUS BITS

SET NORMAL RETURN CONC
ERROR STATUS BIT CN?

YES, SET ERROR RETURN

SEY1 (B) s TRANSMISSION LOG
CLEAR DEVICE

=EXIT FOR COMPLETION

COMBINE LIA WITH 1/0
SELECT CODE AND SET,

CONSTRUCT OTA INSTRUCTICN

CONSTRUCT 8TC,C IMNSTRUCTIOM

Figure 2-6. RTE Driver Example (Sheet 3 of 4)

2-31

Real-Time Input/Output

0172
2173
174
0178
ei7¢6
0177
0178
0479
o180
018}
o182
0183
p184
188
186
o187
o188
o189
0190
P19l
0192
01983
0194
0195
0196
2197
0198
p199
p2ee
02a!
0202
2203
p2p4
o208
0206
a207
0208
0209
0210

»

L AR 0 2 3 I 2

A
N =~
>»

L]

IOR sB4qp0

8TA

JMP SETIO,I

I.4

CONSTRUCT CLC INSTRUCTION

*RETURN=

HED « DRIVER 7@ #CUMPLETICN SECTICNx >

EQU @
EQU |}

LIA @

DEF IEXITel

CONSTANT AND STORAGE AREA

A=REGISTER
B=REGISTER

sxw SYSTEM ANO BASE PAGE CUMMUNICATIONS AREA waw

»

* Re

"
EQT1
EqT2
EQTI
EQT4
EQTS
EQT6
EQT?7
EQTS8
EQTS
EQT1O
EQT1}
EQTL2
EQT13
EQT14
EQTYLS
"

*

EQU 16508

EQU
EQuU
eQu
EQu
EQU
EQU
EQu
EQU
EQuU
EQu
EGU
EQu
EQu
EQU
EQU

END

o *8

«*9

o*l0
o*id
o*l2
o*13
o*14
«o*15
o *16
o *17
«*18
«*81
0 ®82
«*83
.*84

I/0 MOUULE/DRIVER COMMUNICATION

2-32

Figure 2-6. RTE Driver Example (Sheet 4 of 4)

Real-Time Input/Output

JIMB2

o0wnl
pnee
©veesd
004
e0es
oResd
eoe7
nooe
ues
©vatp
0211
a2
o113
2014
0015
oni6
oy’
evy8
0019
0029
"1 3
e0nea
0023
0024
0028
0026
voz7
po2s
0029
2032
Po31
pvde
2033
0o34
"LRAL]
2436
0e37
o038
0039
eo40
0041
pv42
0v4d
Pn44
@045
0846
p047
2048
2u49
pus5e
"'}
pos5e
nas3
nus3d4
VY1)

A
"
"
"
*
]

— % % % 2 % % % % ¥ & N % & ¥ 8§ & N T HE*HERER

R
P

TeR283 1S UN CHNAPAZ2 (ISTNG MOP21 BLKS Rs¢mp@

SMB,R,L,T,B

OKIVEK WITW PRIVILEGED INTERRUPT

NAM DVRxX
ENT T xX,PeXX,CqXX
EXT $JPXX

CALLING SEANUENCE?

J8B EXEC CaLL EXEC

DEF %<5 RETURN POINT

DEF wCODE REQUEST CODE

DEF CONWU CUNTKOL wORD

DEF BUFFR ADDRESS OF BUFFER
DEF LENTH LENGTH OF BUFFER

CAUTIONI THIS DRIVER WILL NCT wORK WITk MORE THAN
UNE SUBSYSTEM, IF MGRE THAN ONE SUBSYSTEM
EXISTS IN A SYSTEM, BOTH DVRXX ANC $SJPXX MUSY
BE RE=ASSEMBLED wITH ALL THE NAMES CCNTAINING
'XX'! CHANGED TO SOME OTWER MNUMBER, THEN ONE

ODRIVER PER SUBSYSTEM MUST BF PUT INTC THE SYSTEV

AT GENERATION TIME,

INITIATION SECTION

JXX NOP
8Ta SCODE SAVE SELECT CCOE
LDA EGTS,I KEQUEST CODE TO A
AND M77
CPA =B} READ REQUEST?
IMP w43 YES
EJCT CLA,INA NO = ERROR
JMP 1.xX,1 KEJECT RETURN
IRST KSS CONFIGURE FIRST
JMP INIT TIVE ONLY
LDa SCODE
10R LIA CONFIGURE
STA [0V 10 INSTRUCTIONS
L[]
)
LDA $JPXX SET TRAP CELL TO

STA SCUNE,!I JSB P, XX
LDA EQTAE,] CLEAR EQTA4 BIT12
I0OR BITH2 TO ALLOW NORMAL
XQR BIT12 TIme OUT,

Figure 2-7. RTE Privileged Driver Example (Sheet 1 of 4)

2-33

Real-Time Input/Output

2056 STA EOTa,1

057 LDa EQT1S SAVE EQTLS

0058 STA EQLS AND EWT4 ACORESSES
2059 LDA ERTA4 FOR LATER,

069 STA EG4

PR64 CLA SEY S0 AS NOT 7O
0062 STA FIRST CUNFIGURE AGAIN
263 !

0064 INIT LDA EGTSH,I NUMBER OF CONVERSIUNS TO A
2065 CMA, INA NEGATE FUR

P66 8TA CVCTR CONVERSION COUNTER
1114 88A,RSS REJECT 1IF

o068 JMP REJCT NUMBER <mp

0069 LDA EQT7,1 SAVE DATA BUFFER
pe7e STA DAPTR ADDRESS FOR P, XX
2071 JSB READ START A READING
ea72 101 $TC 10,C ENCNDE DEVICE

P07 JMP T.XX,I RETURN

0074

2073 READ NOP KOUTINE CONTAINING
paze . CONFIGURED IO

0077 . INSTRUCTIONS TO
pare . SEY UF THE DEVICE
0079 JMP READ,I TO INITIATE CNE READING
o080 =

0281 w PRIVILEGED INTERRUPT ROUTINE

pgsz

2083 P,XX NOP

o084 CLF ¢ TURN OFF INTERRUPTS
paes CLC o TURN OFF

‘I'L].] cLC 7 DMA INTERRUPTS
pos? STA ASY]

o088 STB BSV A

e289 ERA,ALS v

0090 30C E

009 INA

0092 §TA EOSV REGISTERS

2093 LDA MPTPL SAVE MEMORY

0094 STA MPFSV PROTECY FLAG

0098 CLA,INA TURN OFF MEMQRY
0096 8TA MPTFL PROTECT FLAG

' STF @ TURM ON INTERRUPTS
p098 w

0099 . LOAD IN DATA

0100 s FROM CEVICE

eiel ° VIA I0 INSTRUCTICNS
@108 w

2103 STA DAPTR, 1 S8TORE IN DATA BUFFER
0104 182 CVCTR LASY CONVERSION
o108 RSS NO

pLes JMP DONE YES

0107 ISZ DAPTR SEY LP FOR

p108 JSB READ NEXT CONVERSION
0109 CLF 2 TURN OFF INTERRUPTS
0148 1I04 8$TC I10,C ENCODE DEVICE

11y »

2112 EXIT LDA MPFSYV wWAS MEMORY

P13 8ZA PROTECT ON?

Figure 2-7. RTE Privileged Driver Example (Sheet 2 of 4)
2-34

Real-Time Input/Output

0114
2118
2116
8117
P18
2119
2120
2121t
9122
0123
0124
P12
2126
0127
0128
01260
2130
2131
2132
2133
0134
2135
2136
2137
2138
2139
2149
2141
0142
0143
0144
0145
2146
0147
0148
0149
0152
2151
0152
2153
0154
2159
2156
2157
2158
2159
0160
0161
2162
2163
2164
2165
2166
0167
2168
0169
0170
0171

JMP
(o).]
LDA
984
87C 6
INB
LOA
88A
$TC 7
LOA
CLu
SLA,EILA
STF 1

LOB BSV
LDa MPFSvV
STA MPTFL
SZA

Jup EXIT2
LDA ASYV
STF @

STC §

JMP PoxX,I
LDA aSy
8TF ¢

JMP P.xX,1

EXITY

ExIT2

OONE
107

CLF
CLC IO
CCa
STA
LDA
10w
§TA
JMP

EQ1S,1
Ewd, I
BIT12
£Q4,1I
EXIT

O = » & »

« XX NOP
CLA
LDB EGTS8,!

JMP CoxX, 1

» % % =

"
SCODE OCT ¢
CVCTR QCT @

[
LIA LIA
M77 ocT
DAPTR DEF
ASY 0CT
BSv ocT

S SSNS

NO, FORGET DOMA'S
TURN
DMA'S
BACK
ON
1F
THEY
WERE
ON
RESTORE
E AND
0
FLAGS
RESTORE B

RESTORE MEMORY PRCTECY

FLAG IN SYSTEM
MEMORY PKROTECT ON7
NO

YES, NESTORE A
TURN ON INTERRUPTS
SET MEMONY PRCTECT
RETURN
KESTORE A
TURN ON INTERRUPTS
RETURN

TURN OFF INTERRUPTS
TURN QOFF DEVICE
SET TIME OUT FOR
ONF TICK AND SET
BIT12 IN EQT4 8O
RTIOC WILL CALL
C.xx ON TIME OUT,
GO TO EXIT

COMPLETION SECTION

SET UP FOR NORMAL RETLRN

TRANSMISSION LOG TC
KETURN

CONSTANTS AND TEMPORARIES

Figure 2-7. RTE Privileged Driver Example (Sheet 3 of 4)

2-35

Real-Time Input/Output

@172 EOSV 0CY @
8173 MPFSV OCT @
0174 EQ4 NOP

0173 EOG15 NOP

9176 BIT12 OCT 10000

2177 =»

0178 »

0179 w» SYSTEM COMMUNICATICON AREA
2180 «

pi81 EQU 16588

L]
0182 INTBA EQU ,+4
0183 EQT4 EQU ,+11t
2184 EQT6 EQU ,+13
9185 EQT7 EQU ,+14

p186 EQT8 EQU ,+15
N187 EQTI5D EQU 17748
21868 Xxa EAU . +49
2188 «x8B EGu .+50
v19@ xEu EQu ,+51
2191 MPTFL EQU ,+8n

n192 A EQU @
2193 B EQu 1
0194 END

Figure 2-7. RTE Privileged Driver Example (Sheet 4 of 4)
2-36

Real-Time Input/Output

Te@oAn4 I8 ON CRAPOQ2 USING 0p@23 BLKS RID20Y

ASMB,R,L,T,8
L]
L
* DRIVER WITH PRIVILEGED INTERRUPY
[]
w
NAM DVRXX
ENT I,XX,P,XX,CqXX
EXT SJPXX

CALLING SEQUENCEY

JSB EXEC CaLlL EXEC

DEF we5 RETURN POINY

DEF RCODE REQUEST COOE

DEF CONWD CONTROL WORD

DEF BUFFR ADDRESS OF BUFFER
DEF LENTH LENGTH OF BUFFER

AT GENERATION TIME,

INITIATION SECTION

— % B % % % ¥ * % & % % & P F S RS S E R SRR W

o XX NOP

STA SCODE SAVE SELECT CODE
LDA EQT6E,1 REQUEST CODE 10 A
AND M77
CPA =By READ REQUEST?
JMP &3 YES

REJCT CLA,INA NO = ERROR
JMP 1,.XX,1 REJECY RETURN

FIRST RSS CONFIGURE FIRSTY
JMP INIT TIME ONLY

*
LDA SCODE
IOR L1Ia CONFIGURE
STA 0@ I0 INSTRUCTIONS
]
.
[]
LDA $JPXX SET TRAP CELL YO

STA SCODE,!I JSB P XX
LDA EQT4,! CLEAR EQT4 BIYTY2

10R BIT12 TO ALLOW NORMAL
XOR BITt2 TIME OUT.

STA EQTA4,I

LOA EQTY5 SAVE EQT1S

STA EQ5 AND EQT4 ADDRESSES

CAUTIONS THIS DRIVER WILL NOT WORK WITH MORE THAN
ONE SUBSYSTEM, IF MQORE THAN ONE SUBSYSTEM
EXISTS IN A SYSTEM, BOTH DVRXX AND $JPXX MUST
BE RE=ASSEMBLED WITH ALL THE NAMES CONTAINING
'XX! CHANGED TO SOME OTHER NUMBER, THEN ONE
DRIVER PER SUBSYSTEM MUSY BE PUYT INTO THE SYSTEM

Figure 2-8. RTE-III Privileged Driver Example (Sheet 1 of 4)

2-37

Real-Time Input/Output

LOA EQT4 FOR LATER,
STA EQ4
CLA SET SO AS NOT YO
8TA FIRST CONFIGURE AGAIN
]
INIT DA EQTS,I NUMBER OF CONVERSIONS TO A
CMA, INA NEGATE FOR
8TA CVCTR CONVERSION COUNTER
8SA,R88 REJECY IF
JMP REJCT NUMBER <=9
LDA EQT7,1 SAVE DATA BUFFER
STA DAPTR ADDRESS FOR P,XX
JSB READ START A READING
10¢ STC 1Io,C ENCODE DEVICE
JMP I, XX, 1 RETURN
“
READ NOP ROUTINE CONTAINING
. CONFIGURED 10
. INSTRUCTIONS TO
. SET UP THE DEVICE
JMP READ,I YO INITIATE ONE READING
[]
« PRIVILEGED INTERRUPT ROUTINE
[]
P.XX NOP
CLF @ TURN OFF INTERRUPTS
CLC 6 TURN OFF
cLe 7 DMA INTERRUPTS
STA ASV)
$TB BSV A
ERA, ALS v
soc E
INA
STA EOSV REGISTERS
8TX XSV SAVE INDEX
STY YSvy REGISTERS
P.X1 _SSM DMSTS SAVE DMS STATUS
CONT LDA MPTFL SAVE MEMORY
STA MPFSV PROTECT FLAG
CLA, INA TURN OFF MEMORY
STA MPTFL PROTECT FLAG
STF @ TURN ON INTERRUPTS
]
. LOAD IN DATA
. FROM DEVICE
. VIA 10 INSTRUCTIONS
1]
STA DAPTR,1 SYORE IN DATA BUFFER
1SZ CVCTR LAST CONVERSION
RSS NO
JMP DONE YES
ISZ DAPTR SET UP FOR
JSB READ NEXT CONVERSION
CLF @ TURN OFF INTERRUPYS
104 S§TC 10,C ENCODE DEVICE
»
EXIT LDA MPEFSY WAS MEMORY
SZA PROTECT ON?
JMP EXITY NO, FORGET DMA'S
LDB INTBA TURN

Figure 2-8. RTE-III Privileged Driver Example (Sheet 2 of 4)

2-38

Real-Time Input/Output

LDA B,1 DMA'S
SSA BACK
STC 6 ON
INB IF
LOA B,1I THEY
$SA WERE
sTc 7 ON

EXIT1 LDA EOSV RESTORE
cLo E AND
SLA,ELA 0
STF FLAGS
LDB BSY RESYORE B8
LDX XSV RESTORE INDEX
LDY Y8y REGISTERS
LDA MPFSYV RESTORE MEMORY PROTECT
STA MPTFL FLAG IN SYSTEM
SZA MEMORY PROTECT ON?
JMP EXIT2 NOD
JRS DMSTS EX1

EX1 LDA ASV YES, RESTORE A

STF 0 TURN ON INTERRUPTS
$TC 5 SET MEMORY PROTECT
JMP P.XX, I RESTORE DMS

« STATUS AND

* RETURN

EXIT2 LDA ASY RESTORE A
STF @ TURN ON INTERRUPTS
JRS DMSTS P,XX,1 RESTORE DMS

* STATUS AND

* RETURN

b

DONE CLF ® TURN QFF INTERRUPTS

107 cLC 10 TURN OFF DEVICE
CCA SET TIME OUY FOR
STA EQ15,! ONE TICK AND SET
LDA EQ4,I BITi2 IN EQT4 8O
I0R BIT1Q RTI0C WILL CALL
STA EG4,! C.XX ON TIME OUT,
JMP EXIT G0 YO EXIY

w

[]

* COMPLETION SECTION

L]

*

CoXX NOP
CLA SET UP FOR NORMAL RETURN
LDB EGTA,1 TRANSMISSION LOG TO B
JMP C,XX,1 RETURN

*

*

* CONSTANTS AND TEMPORARIES

*

w

SCODE OCT @

CVCTR OCT B
L]
L]
[]

LIA LIa @

M?? oCT 77

DAPTR DEF @

Figure 2-8. RTE-III Privileged Driver Example (Sheet 3 of 4)

2-39

Real-Time Input/Output

ASY ocT @
BSY 0CY @
EOSv oOCT 0o
MPFSV OCY @
EQ4 NOP
EQ1S NOP

BIT12 OCT foem@
»

SYSTEM COMMUNICATION AREA

* ® B

. EQu 16508
INTBA EQU ,+4
EQTY4 EQU ,+11
EOT6 EQU .+13
EQY? EQU ,+14
EQT8 EQU ,+15
EQT1S EQU 17748
X A EQU ,49
X8 EQU ,+50
XEQ EQU ,+51
MPYFL EQU ,+80

A EQu @
b Equ 1
END

JIMB3 Tzuunra IS UN CRANIAS LSING @AWY BLKS R=avne

wrtnl ASMb,R,L,B

NANL NAM $JPXX
PNy EMNT $JPXX
Iy EXT P, XX

ANRS $JPXX JSH P, XX

2000 END

Figure 2-8. RTE-III Privileged Driver Example (Sheet 4 of 4)
2-40

READER COMMENT SHEET

RTE Operating System

Drivers and Device Subroutines

92200-93005 Jul 1976

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

Is this manual technically accurate?

Is this manual complete?

Is this manual easy to read and use?

Other comments?

FROM:

Name

Company

Address

FIRST CLASS
PERMIT NO. 141

CUPERTINO
CALIFORNIA

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States Postage will be paid by

Manager, Technical Publications
Hewlett-Packard Company

Data Systems Division

11000 Wolfe Road

Cupertino, California 95014

	I - Introduction
	Purpose
	Scope
	Supporting Documentation

	II - Real-Time Input/Output
	Introduction
	Software I/O Structure
	General Operation of I/O Processor
	Driver Structure and Operation
	Mapping Subroutine for Drivers (RTE-III only)
	Power Fail
	Sample I/O Driver
	Privileged Interrupt Processing

