
Y HEWLETT
PACKAR

HP 3000/930 and HP 9000/840 Computers

Procedure Calling Conventions Manual

HP 3000/930 and HP 9000/840 Computers

Procedure Calling Conventions

Reference Manual

(I packanc

Manual Part Number: 09740-90015 Printed in U.S.A. November 1986

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO
THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-
Packard shall not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains propriety information which is protected by copyright. All rights
are reserved. No part of this document may be photocopied, reproduced or translated to
another language without the prior written consent of Hewlett-Packard Company.

UNIX is a trademark of AT&T Laboratories in the USA and other countries.

Copyright (c) 1982-1986 by HEWLETT-PACKARD COMPANY

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions,

contain additional and replacement pages to be merged into the manual by the customer. The dates on

the title page change only when a new edition or a new update is published. No information 1s

incorporated into a reprinting unless it appears as a prior update; the edition does not change when an

update is incorporated.

The software code printed alongside the date indicates the version level of the software product at the

time the manual or update was issued. Many product updates and fixes do not require manual changes

and, conversely, manual corrections may be done without accompanying product changes. Therefore, do

not expect a one to one correspondence between product updates and manual updates.

First Edition Nov 1986

iW

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the most recent version of each page in the manual. To

verify that your manual contains the most current information, check the dates printed at the bottom of

each page with those listed below. The date on the bottom of each page reflects the edition or subsequent

update in which that page was printed.

Effective Pages Date

all... .. ee Nov 1986

1V

Contents
a

Chapter 1
Overview

Types of Procedure Calls 2.2... 2... eee een 1-3

Chapter 2
Interfaces

Chapter 3
Stack Usage

Leaf / Non-Leaf Procedures ... 0.2.2... 000. eee eens 3-1
Storage Areas Required for Call 000.000 3-2

Frame Marker Area eee eee ee 3-3
Fixed Arguments Area... 0.22. eee ees 3-4
Variable Arguments Area 000.0020 05. beeen teens 3-4

Chapter 4
Register Usage

egister Partitioning 2.0.2.0... tree ee 4-1
Other Register Conventions 0.00. ene 4-4
feturn Values 2.00. entree eee eee 4-4
Summary of Dedicated Register Usage 00... eee 4-5

Chapter 5
Parameter Passing
Value Parameters 00.0... ee eee es 5-1

Inter-Language Parameter Data Types and Sizes0 2.00005. 5-2
Reference Parameters00. 00 ccc etree 5-3
Value-Result and Result Parameters 0.0.0... 0. es 5-3
koutine References 2.0.00. entrees 5-3
Argument Register Usage Conventions0. 0.0 ccs 5-3
Parameter Type Checking0.0 00.00 5-4

Chapter 6
Parameter Relocation

Chapter 7
The Actual Call

Control Flow of a Standard (Local) Procedure Call0......0...05 7-1
Efficiency 0.00.00 cece eee eee eee ees 7-2
The Code Involved in a Simple Local Call -.......0.. 00.00... 7-2

Contents 1

Chapter 8
Inter-Module Procedure Calls

INtroductiOnN 20. nee ee 8-1
Requirements of an External Call0.0.... ne 8-2
Requirements of an External Return0 00... eee. 8-3
Control Flow of an External Call0.00 00.00 een 8-3
Calling Code eee e tet treet eee ey 8-3
Called Code oo... eee. 8-4
Outbound/Inbound Transfer Code Stubs 00.000... cee 8-5

Calling Stub 20.00 8-6
External Procedure Call Millicode (CALLX) 2.0... es 8-7
Called Stub 2.0.0 een 8-7

Inter-Module Cross Reference Table (XRT) 2. eee 8-8
The Layout of the XRT eee eee 8-8
One XRT Entry ... 6000 eee 8-9
Linkage Pointer 000.0 8-10
Linker/Loader Interaction with XRT... 2... ee. 8-10

Stub Conventions for External Calls0.0.....05. ne 8-11
Interface Between Calling and Called Stubs00..00... 8-11

Summary of an External Procedure Call 0.00.00. e eee. 8-12
Dynamic Linking eee ee ee 8-13

Procedure Labels 9.0... eee 8-14

Chapter 9
Millicode Calls
OVELVIEW 0 eee 9-1

Background0...0 0. 0c ee ee tees 9-1
The Millicode Hierarchy0 ents 9-3
DeScriptions 2.0.0... 0 eee eee 9-3
Introduction to Local and External Millicode0.....0.. ... 9-4

Efficiency Factors 2.0.0... eee 9-4
Making a Millicode Call... 2.2... 0.2 ee. 22. 9-5
Nested Millicode Calls 2.0.2... 2000.00.00 eee. Seek 9-5

Chapter 10
Stack Unwinding

INtFOdUCTION oe ete eee 10-1
Requirements for Unwinding from a Local Procedure Call 10-1
Requirements for Performing a Stack Trace 00.0.0. 10-2
Assembler Interaction 0.0.0... 0000 ete ees 10-3
Unwinding From an External Procedure Call 00.00. .0..0.0... 10-3
Unwind Table for Stubs 0.00.10. eee ... 10-3
Unwinding from Stubs 20.6.2 eee 10-4
Calling Situations That May Not Support Unwinding 10-5

Appendix A
Code Examples
Standard Procedure Calls 2.0.0.0... eee Al
DOCUMENTATION 00 eee eee A-6
Code Description ©2000... 00000 eet eee A-6
Other Compiler-Generated Information0....00 0. 2c eee .. A-8
External Calls oo. 00. eee ee A-9
Assembly Documentation ee eee A-12

Appendix B
Summary of Assembler Procedure Control

Contents 3

Overview

Modern programming technique encourages programmers to practice well-structured
decomposition, which entails the use of a greater number of smaller, more specialized
procedures rather than larger, more complex routines. While this creates more adapt-
able and understandable programs, it also increases the frequency of procedure calls,
thus making the efficiency of the procedure calling convention crucial to overall system
performance.

Many modern machines provide instructions to perform many of the tasks necessary to
make a procedure call, but this is not the case in the HP Precision Architecture
(HPPA). Instead of using an architected mechanism, the procedure call is accom-
plished through a software convention which uses the machine’s simple hardwired in-
structions, a solution that ultimately provides more flexibility and efficiency than the
more complex (microcoded) instruction set additions.

Besides the obvious branch-and-return interruption that occurs in the flow of control
as a result of a procedure call, many other provisions must be made in order to
achieve an effective calling convention. The call mechanism must also pass parame-
ters, save the caller’s environment, and establish an environment for the called proce-
dure (the ”callee”). The procedure return mechanism must restore the caller’s previous
environment and save any return values.

Although the Precision Architecture machines are essentially register-based, by conven-
tion a stack is necessary for data storage. As a basis for discussion of the Procedure
Calling Convention, we will first examine a straightforward calling mechanism in this
environment, one in which the calling procedure (caller) acquires the responsibility for
preserving its own state. This simplified model employs the following steps for each
call:

Overview 1-1

NOTE

These steps are NOT the exact implementation used in the
HPPA, but are given as a general basis for the discussion of
the actual Procedure Calling Convention that will follow.)

® Save all registers whose contents must be preserved across _ the procedure call.
This prevents the callee, which will also use and modify registers, from affecting
the caller’s state. | On return, those register values are restored.

® Evaluate parameters in order and push them onto the stack. This makes them
available to the callee, which, by convention, knows how to access them.

® Push a frame marker, which is a fixed-size area containing — several pieces of in-
formation. Included is the static link, | which provides information needed by the

callee in order to address _ the local variables and parameters of the caller, as
well as the return address of the caller.

® Branch to the entry point of the callee.

And to return from a call in this model, it is necessary that:

® The callee extract the return address from the frame marker and branch to it,

and

@ The caller then remove the parameters from the stack and restore all saved reg-
isters before the program flow continue.

This model correctly implements the basic steps needed to execute a procedure call,
but is relatively expensive. The caller is forced to assume all responsibility for pre-
serving its state, which is a conservative and safe approach, but causes an excessive
number of register saves to occur. To optimize the program’s execution, the compiler
makes extensive use of registers to hold local variables and temporary values; these
registers must all be saved at a procedure call and restored at the return. A high
overhead is also incurred by the loading and storing of parameters and linkage infor-
mation. The procedure call convention implemented in the Precision Architecture fo-
cuses on the need to reduce this expense by maximizing register usage and minimizing
direct memory references.

The HPPA compilers attempt to alleviate this problem by introducing a procedure call
mechanism that divides the register sets into “partitions”. The registers are partitioned
into ”caller-saves” (the caller is responsible for saving and restoring them), ”callee-
saves” (the callee must save them at entry and restore them at exit), and ”linkage”
registers. In the general purpose register set, sixteen of the registers comprise the
callee-saves partition and thirteen are available for use as caller-saves registers.

1-2 Overview

Thus the responsibility for saving registers is divided between the caller and the callee,
and some registers are also available for linkage. The floating point registers and
space registers are also partitioned in a similar manner.

The register allocator avoids unnecessary register saves by using caller-saves registers
for values that need not be preserved across a call, while values that must be pre-
served are placed into registers from the callee-saves partition. At procedure entry,
only those callee-saves registers used in the procedure are saved; this minimizes the
number and frequency of register loads and stores during the course of a call. The
register partitions are not inflexible; if more registers are needed from a particular par-
tition than are available, registers can be borrowed from the other partition. The pen-
alty for using these additional registers is that they must be saved and restored, but
this overhead is incurred only in the special circumstance where excess registers are
needed, which happens relatively infrequently.

In the simple model outlined above, all parameters are passed by being placed on the
stack, which is expensive because direct memory references are needed in order to
push each parameter. In the Precision Architecture procedure calling convention, this
problem is lessened by the compilers, which allocate a permanent parameter area (in
memory) large enough to hold the parameters for all calls performed by the procedure,
and minimize memory references when storing parameters by using a combination of
registers and memory to pass parameters. Four registers from the caller-saves parti-
tion are used to pass user parameters, each holding a single 32-bit value or half of a
64-bit value. Since procedures frequently have few parameters, the four registers are
usually enough to accommodate them all. This removes the necessity of storing pa-
rameter values in the parameter area before the call. If more than four 32-bit parame-
ters are passed, the additional ones are stored in the preallocated parameter area, or tf
a parameter is larger than 64 bits, its address is passed and the callee copies it to a
temporary area.

Additional savings on memory access are gained when the callee is a leaf procedure
(one that does not make any other calls). In this situation, the register allocator uses
the caller-saves registers to hold variable values, thus eliminating the need to save
callee-saves registers that it might have used in a non-leaf procedure. Furthermore,
since a leaf procedure will not make subsequent procedure calls, there is no need to
allocate a stack frame for it, because the return address and other values can remain
in registers during the entire life of the call. (Actually, there are rare exceptions to
this; a stack frame may be necessary for a leaf procedure if more local space ts
needed than is available in registers.)

Types of Procedure Calls

Procedure calls can be grouped into three categories, depending on the location of the
callee. The possibilities are:

1. Procedures residing in the same load module (Intra~-Module Call)

2. Procedures residing in other load modules (Inter-Module Call)

3. Operating System or Subsystem procedures

Overview 1-3

NOTE

Throughout the rest of this document, ”Local” is used as a
synonym for "Intra-Module” and ”External” is used inter-
changeably with "Inter-Module” or ”OS/Subsystem”.

In order to simplify code generation, all three types of calls are mapped into the local
(intra-module) case, thus requiring the compiler to recognize only a single type of call.
This is accomplished through the use of two types of stubs” ("calling stubs” and
*called stubs”) which establish the external branching and linking necessary for inter-
module calls. Inter-module calls and specific stub usages are discussed in more detail
in section 8 ("Inter-Module Calls”).

1-4 Overview

Interfaces

'@
) rat)

- }~
4

9)

r
y

—
—
—

|

Figure 2-1. Procedure Call Convention Architected Interfaces.

Figure 2-1 shows the units involved in a procedure call, and the critical interfaces
(numbered) that will be discussed throughout this document, and their definitions fol-
low:

CALLER : The calling code, origin of the call.
CALLEE : The calling code, object of the call.

STUB: A piece of code that may be attached to the caller and/or callee that enables
an otherwise impossible call to occur. Stubs are used primarily with [Inter-Module
calls. See Section 8 for details.

(1) Call : The transfer of program control to the callee.

(2) Entry : The point of entry into the callee.

(3) Exit : The point of exit from the callee.

(4) Return : The point of return of program control to the caller.

Interfaces 2-1

aoe

Stack Usage

Leaf / Non--Leaf Procedures

All procedures can be classified in one of two categories: leaf or non-leaf. For the
purpose of definition, a leaf procedure is one that makes no additional calls, while a
non-leaf procedure is one that does make additional routine calls. Although simple,
the distinction is essential because the two cases entail considerably different
requirements regarding (among other things) stack allocation and usage. Every
non-leaf procedure requires the allocation of an additional stack frame in order to
preserve necessary execution values and arguments, while this is not necessary for a
leaf procedure. The recognition of a procedure as fitting into either the leaf or
non-leaf category, as well as the allocation of all necessary stack space, is done at
compile time. As will become evident throughout this document, it is often the case
that, due to these stack allocation conventions, much of a callee’s state information is
saved in the caller’s frame; this is one way in which unnecessary stack usage can be
avoided. A general picture of the top of the stack for one call, including the frames
belonging to the caller (previous) and callee (new), is shown in Figure 3-1.

Stack Usage 3-1

| Formal |
| Arguments |

J wean nanan nn n=
Frame 1 | Frame Marker | The return address from the
(previous) | (ine. RP) | <---~ callee (Frame 2) to the caller

~ — | (Frame 1), if it is stored to
—_— _ memory, will be stored here.

Frame 2 |Register Save |
(new) | Area | |

------- :
~~ :

| Local | addresses
| Variables | increasing

anaes fo
- | 4

| Actual | \/

| Arguments |
| _—

| Frame Marker |

SP - >

(Stack Pointer: always points to the first unused byte

of memory, and is always kept double-word aligned)

Figure 3-1. General Stack Layout.

Storage Areas Required for Call

The elements of a single stack frame that must be present in order for a procedure
call to occur are shown below. The stack addresses are all given as byte offsets frorn
the actual SP (stack pointer) value; for example, "SP-36’ designates the address 36
bytes below the current SP value.

NOTE

Fields shown in Table 3-1 are explained in the text
following the table.

3-2 Stack Usage

Table 3-1. Elements of Single Stack Frame Necessary for Procedure Call.

ea a eee aa an vO ne eiceemeneticaeasdicanmatime ne tienen tinematcitemnamttaanens tases’ tiemmeslientaretiens te Meera terete! ee me er on ee ee ee

Offset Contents

Variable Arguments (optional; any number may be allocated) |

SP-(4*(N+9)) arg word N

SP-56 arg word 5

SP-52 arg word 4

Fixed Arguments (must be allocated; may remain unused)

| SP-48 arg word 3
SP-44 arg word 2

SP-40 arg word 1

| SP-36 arg word 0

Frame Marker

SP-32 External Data Pointer (DP) (set after Call)

SP-24 External/stub RP (RP’”) (set after Call)

SP-20 Current RP (set after Entry)

SP-16 Static Link (set before Call)

SP-12 Clean Up (set before Call)

SP- 8 Calling Stub RP (RP’”) (set after Call)

SP- 4 Previous SP (set before Call)

Top of Frame

|
|
|
|
|
|
|
|
|
|
|

SP-28 External sr4 (set after Call) |

|
|
|
|
|
|
|
:

| SP- 0 Stack Pointer (points to next available address) |

|
| | < top of frame >

sr ese emente army Seen cate seem GO eS me cen cere ere renee cam Seren Se mi em mami ree meme i re ec ee re Se cee ct Se ieee ne me em ay nee enn em mt i ee i ee a ee et i AE EN YT I ORE SLR NE tne OES SOuOL Rune mem ee nm tine ememrw een SRE rene mote

Frame Marker Area

This eight-word area is allocated by any non-leaf routine prior to a call. The exact
size of this area is defined because the caller uses it to locate the formal arguments
from the previous frame. (Any standard procedure can identify the bottom of its own
frame, and can therefore identify the formal arguments in the previous frame, because
they will always reside in the region beginning with the ninth word below the top of
the previous frame.)

Previous SP: contains the old (procedure entry) value of the Stack Pointer. It is only
required that this word be set if the current frame is noncontiguous with the previous
frame. Calling (a.k.a. Import) Stub RP (RP’’): Reserved for use by a calling stub
that must store an RP value, so the stub can be executed after the exit from the callee,

but before return to the caller. See Section 8 for detailed discussion of stubs. Clean
Up: area reserved for use by language processors; possibly for a pointer to any extra
information (i.e. on the heap) that may otherwise be lost in the event of an abnormal

Stack Usage 3-3

interrupt. Static Link: Used to communicate static scoping information to the callee
that is necessary for data access. It may also be used in conjunction with the SL
register, or to pass a display pointer rather than a static link, or it may remain unused.
Current RP: reserved for use by the called procedure; this is where the current return
address can be stored if the procedure wants/needs to use RP (gr2) for any other
purpose.

External/Stub RP (RP’),
External sr4, and
External DP : all three of these words are reserved for use by the intermodular
(external) calling mechanism. See Section 8 for more details.

Fixed Arguments Area

These four words are reserved for holding the argument registers, should the callee
wish to store them back to memory so that they will be contiguous with the
memory~—based parameters. All four words must be allocated for a non-leaf routine,
but may remain unused.

Variable Arguments Area

These words are reserved to hold any arguments that can not be contained in the four
argument registers. Although only a few words are shown in this area in the diagram,
there may actually be an unlimited number of arguments stored on the stack,
continuing downward in succession (with addresses that correspond to the expression
given in the diagram.) Any necessary allocation in this area must be made by the
caller.

3-4 stack Usage

Register Usage

Register Partitioning

In order to provide adequate register resources for normal usage, the general and float-

ing point register sets have been divided into partitions, with each set consisting of

(among other fixed values) groups designated as Callee-Saves and Caller-Saves.

Callee-Saves registers are those that the callee saves immediately after procedure en-

try, if necessary, and restores before exit, and are guaranteed to be preserved across

procedure calls. Caller-Saves registers are those that the caller will (if necessary) save

before call and restore after return, and are NOT guaranteed to be preserved across

calls.

The Caller-Saves registers may be used as temporaries which need to be saved only if

they contain values which are live across a call. The Callee-Saves registers may be ac-

tually used by the callee only if it insures the restoration of their original entry values

before exit.

These partitions (along with other dedicated registers) are shown in Figure 4-1 on the

following page.

Register Usage 4-1

gro | Value (zero) |
ams meee me ek me em ter re mee ee ae ee ee cavities eee eine scene seen tee me mn times

grl | Scratch * |

gr2. | RP (Return Pointer / Address) |

gr3 : :

| Callee Saves |

DO | |
gr18s | |

grig | |
| Caller Saves |

gr22 | |

gr23 | |
| Arguments * |

gr26 | |

gr27 | DP (Global Data Pointer) |

gr28 | Return Values * |
gr29 | |

gr30 | SP (Stack Pointer) |

gr31 | MRP (Millicode Ret. Ptr)/scratch * |

("*" = may also be considered part of the caller-saves partition)

Figure 4-1. Register Partitioning.

4-2 Register Usage

Floating Point Registers

Callee Saves |

Figure 4-2. Floating Point Registers.

Register Usage 4-3

Other Register Conventions

The following are guaranteed to be preserved across calls:

1. The procedure entry value of SP.

2. The values of DP, and sr4-7.

3. The value of fr0, unless it is explicitly modified by the callee.

The following are NOT preserved across calls:

1. Any caller-saves registers that are not saved and restored as part of the caller-
saves partition.

2. Floating Point registers 1-3 (frl1, fr2, fr3).

3. Space registers 0-2 (sr0, srl, sr2).

4. The PSW (Processor Status Word). See Section 2, of the Processor ACD, for fur-

ther explanation).

5. Any control registers that are modified by privileged software. (e.g. Protection
[Ds).

6. The state (including internal registers) of any special function unit. (e.g. floating
point coprocessor).

Return Values

Values are returned from procedures/functions as listed in Table 4-1.

Table 4-1. Return Values.

Type of Return Value Return Register
eee __. --— |

Nonfloating Pt. (32-bit) retO (gr28) |
| Nonfloating Pt. (64-bit) retO (gr28) - high order word |

retl (gr29) - low order word |
Floating Pt. (32-bit) fret (fr4) *

| Floating Pt. (64-bit) | fret (fr4) *

Space Identifier (32-bit) sret (srl)

Any >» 64 bits Short pointer in retO (gr28)

will point to the value

| | (must assume worst alignment)
| -- _— _—

* Although not common, it is possible to return floating point values in general

registers, as long as the argument relocation bits in the symbol record are set

correctly. (Refer to Section 6,°’Parameter Relocation’ ,for more details.)

4-4 Register Usage

Summary of Dedicated Register Usage

The following table shows the required conventions regarding argument and return
value passing. Note that those registers listed in the first section below are the only
ones that absolutely cannot be used to hold user values (i.e. arguments), but the user
risks the unintentional destruction of necessary data if he does not adhere to the stan-
dard conventions.

Table 4-2. Dedicated Register Usage.

gro

gr2

gr27

gr30

Zero Value Register (cannot be modified)

** RP (return pointer/address for leaf routines)

DP (global data pointer)

SP (stack pointer)

Other registers’ conventional usage:

gr26

gr25

gr24

gr23

argo

argl.

arg2

args

reto

SL

retl

fret.

fargo

fargl

farg2

farg3

sarg

Ssret

(argument register 1)
(tt " 2)

(! tt 3)

("WW " 4)

(function return register - at Exit and Return; |

OR pointer - at Call and Entry)

(Static link register - at Call and Entry

(function return register when

) OR

returning 64-bit values - at Exit and Return) |

(function return register —- at Return) OR

(floating point argument register 1 - at Call)
("! " " WW 2)

(" " " "t 3)

(" " "!t "! 4)

(argument register - at Call) OR

(function return register - at Exit)

Register Usage 4-5

NOTE

If the routine in question is a non-leaf routine, gr2 must be
stored because of subsequent calls; hence it ts then avail-
able to be used as a scratch register by the code generators.
Also, although common, it is not absolutely necessary that
gr2 be restored before exit; a branch (BV) through another
register (e.g. gr19) would be acceptable.Type your own text
here, then cut this text.

4-6 Register Usage

Parameter Passing

Value Parameters

Value parameters are mapped to arg words in the argument list with successive pa-
rameters mapping to successive argument words, except 64-bit parameters, which must
be aligned on 64-bit boundaries. Irregularly sized data items should be extended to 32
or 64 bits. (The practice that has been adopted ts to right-justify the value itself, and
then left-extend it.) Non-standard length parameters that are signed integers are sign-
extended to the left to 32 or 64 bits. This convention does not specify how 1-31,
33-63-bit data items are passed by value (except single ASCII characters).

Table 5-1 lists the sizes for recognized inter-language parameter data types. The form
column indicates which of the forms (space ID, nonfloating point, floating point, or
any) the data type is considered to be.

Parameter Passing 5-1

Inter-Language Parameter Data Types and Sizes

Table 5-1. Parameter Data Types and Sizes.

| Type Size (bits) Form |

ASCII character (in 32 Nonfloating Pt. |
low order 8 bits) |

Integer 32 Nonfloating Pt.

or Space ID

Short Pointer 32 Nonfloating Pt.

Long Pointer 64 Nonfloating Pt.

Routine Reference 32 Routine Reference

(see below for details

of Routine Reference)

Long Integer 64 Nonfloating Pt.

Real 32 Floating Pt.

Long Real 64 Floating Pt.

Quad Precision 128 Any

Space Identifier (SID) (32 Bits): One arg word, callee cannot assume a valid SID. **

Nonfloating Point (32 Bits): One arg word.

Nonfloating Point (64 Bits): Two words, double word aligned, high order word tn an
odd arg word. This may create a void in the argument list (i.e. an unused register and/
or an unused word on the stack.)

Floating Point (32 Bits): One word, callee cannot assume a valid floating point num-
ber. **

Floating Point (64 Bits): Two words, double word aligned (high order word in odd arg
word). Callee cannot assume a valid floating point number.** This may create a void
in the argument list.

Any >64 Bits: A short pointer (in sr5 - sr7) to the data item value is passed as a non-
floating point 32-bit value parameter. The callee must copy the accessed portion of
the value parameter into a temporary register before any modification can be made to
the (caller’s) data.

5-2 Parameter Passing

NOTE

The point is made that the callee ”cannot assume a valid”
value in these cases because no specifications are made in
this convention that would insure such validity. It therefore
becomes mainly the responsibility of the caller to supply
valid values, so that the callee does not have to perform

constant checking on all floating point values and SIDs that
are passed.

Reference Parameters

A short pointer to the referenced data item (in sr4-sr7) is passed as a nonfloating
point 32-bit value parameter (alignment Is not guaranteed). Note: sr4 can only be
used if the call is known to be local, because the external calling convention changes
sr4. See Section 8 (’External Calls”) for further details.

Value—Result and Result Parameters

It is intended that language processors can use either the reference or value parameter
mechanisms for value-result and result parameters.

Routine References

This convention requires that routine references (i.e. procedure parameters, function
pointers, external subroutines) be passed as 32-bit nonfloating point values.

It is expected that language processors that require a Static link to be passed with a
routine reference (i.e. Pascal passing level 2 procedures) will pass that static link as a
separate 32-bit nonfloating point value parameter. A language processor is free to
maximize the efficiency of static scope linking within the requirements, without impact-
ing other language processors.

See Section 8 for further details on Routine References.

Argument Register Usage Conventions
Parameters to routines are logically located in the argument list. At the Call interface,
the first four words of the argument list are passed in registers, depending on the

Parameter Passing 5-3

usage and number of the argument. The first four words of the argument list are then
reserved as spill locations for the stack-based argument registers. These requirements
imply that the minimum argument list size is 16 bytes; this space must be allocated in
the frame, but may not actually be utilized.

The standard register use conventions are shown in Table 5-2.

Table 5-2. Argument Register Use.

amen sens See eine en me et mele en ce, oti

void SID nonFP- FP32 FP64 |
ee |

arg word 3 no reg arg3 arg3 farg3 farg3 {0..31}
arg word 2 no reg arg2 arg2 farg2 farg3 {32..63}

arg word 1 no reg argl argl fargl fargl {0..31}

arg word O no reg sarg argo fargo fargl {32..63}

mee ey em eee ee eee ee meee ee ee

definitions:

void ~ arg word not used in this call

SID —- space identifier value
nonFP - any 32-bit or 64-bit nonfloating point

FP32 —~ 32-bit floating point

FP64 ~ 64-bit floating point

Parameter Type Checking

The compilers generate descriptors for every parameter and argument value which

contain information defining the type of the value. These descriptors (symbol

descriptors” and ”argument descriptors”) are then checked by the linker for
compatibility; if they do not match, a warning is generated. See the Spectrum Object
File Format File Format ACD for further details on these descriptors.

5-4 Parameter Passing

Parameter Relocation

NOTE

Parameter relocation is currently (first release) implemented
only by the linker and assembler, and therefore is not used,
although it 1s likely that it will be fully implemented and
utilized in the future.

The procedure calling convention specifies that the first four words of the argument list
and the function return value will be passed in registers: floating point for real values,
general otherwise. However, it would be advantageous to provide an exception to this
rule in order to support languages that do not require type checking of parameters,
which can lead to situations where the caller and the callee do not agree on the loca-
tion of the parameters. Problems such as this occur frequently in the C language,
where, for example, formal and actual parameter types may be unmatched, due to the
fact that no type checking occurs. A parameter relocation mechanism alleviates this
problern, and all parameter type checking becomes language-dependent.

The proposed solution to this problem entails the inclusion of an additional code se-
quence, called a relocation stub, which is inserted between the caller and the callee.
When executed, the relocation stub moves any incorrectly located parameters to their
expected location. If a procedure is called with more than one calling sequence, a re-
location stub is needed for each non-matching calling sequence.

In order for the compiler to communicate the location of the first four words of the
parameter list and the location of the function return value to the linker and loader,

ten bits of argument location information have been added to the definitions of a sym-
bol and a fix-up request (as defined in the Spectrum Object File Format ACD). The
following diagram shows the first word of a symbol definition containing the relocation
information. (See section 2.8 of the aforementioned ACD for further details.)

Parameter Relocation 6-1

de ee ee ce ee re ee ee rar re ee ee a mee ee a me nn ee te eR RS et em ne ca seman te meme stm ome comm me tame omen team oom wnt ne emo ew scummy crea eter scummy —egmuir <r Aare come cep rene nee wear

The ten bits of argument location information are further broken down into five loca-

tion values, corresponding to the argument function return values, as shown below:

Bits 22-23 : define the location of parameter list word 0

Bits 24-25 : define the location of parameter list word 1

Bits 26-27 : define the location of parameter list word 2

Bits 28-29 : define the location of parameter list word 3

Bits 30-31 : define the location of the function value return

The value of an argument location is interpreted as follows:

OO Do not relocate

OL arg Argument register

* 10 fr Floating point register (bits 0..31)

* 11 frupper Floating point register (bits 32. .63)

* For return values, ’10’ means a single precision floating point value, and ‘11°

means double precision floating point value.

When the linker links a procedure call, it will generate a relocation stub if the argu-

ment location bits of the fixup request do not exactly match the relocation bits of the

exported symbol, with the exception of the case where either the caller or callee spect-

fies "do not relocate”. The relocation stub will essentially be part of the called proce-

dure, and the linker can optionally add a symbol record for the stub so that it can be

reused. The symbol record will be the same as the original export symbol record, ex-

cept that the relocation bits will reflect the input of the stub, the type would be STUB

and the symbol value will be the location of the relocation stub

6-2 Parameter Relocation

meer

The execution of a relocation stub can be separated into the call path and the return
path. During the call path, only the first four words of the parameter list will be relo-
cated, while only the function return will be relocated during the return path. The con-
trol flow is shown in Figure 6-1.

Relocation Stub

~-----> | relocate args |
| |

Callee cere ene eine era cee i i ee ce se ee ey eee ce ee ee meme Caller

oo

ry

ey
) ee)

?)

>

Re

rm

p
>

~)

ne
 | | | | | ! Vv

Figure 6-1. Parameter Relocation Stub.

If the function return does not need to be relocated, the return path can be omitted
and the branch and link will be changed to a branch. The call path must always be
executed, but if the first four words of the parameter list do not need to be relocated,
it can be reduced to the code required to establish the return path (i.e save RP and
branch and link to the callee).

When multiple stubs occur during a single call (e.g. calling stub and relocation stub),
the stubs can be cascaded (i.e. used sequentially); in such a case, both RP’ and RP”’
would be used. (The relocation stub uses RP’’.)

When the linker makes an object module executable, it will generate stubs for each
procedure that can be called from another object module (i.e. called dynamically). In
addition, a stub will be required for each possible calling sequence. Each of these
stubs will contain the code for both relocation and external return, and will be required
to contain a symbol definition record.

Both calling and called stubs use a standard interface: calling stubs always relocate ar-
guments to general registers, and called stubs always assume general registers.

In order to optimize stub generation, the compilers should maximize the use of the ar-
gument location value 00 (do not relocate). A linker option may be provided that
would allow the user to turn stub generation on or off, depending on known conditions.
Also, a linker option is provided to allow the user to inhibit the generation of stubs for
run-time linking. In this case, if a mismatch occurs, it would be treated as a parame-
ter type checking error (which is totally independent of parameter relocation).

Parameter Relocation 6-3

one

The Actual Call

Control Flow of a Standard (Local) Procedure Call

Figure 7-1 shows the progression of a standard procedure call. To summarize, the
steps involved are:

1. << previously executing caller's code >>

2. (before call) Pass arguments (put into registers and onto stack as necessary) and
save caller-saves registers.

3. (call) Branch (BL) to callee.

4. (after entry) -if it is a non—leaf procedure- Save RP, allocate local frame, and save
callee-—saves registers.

5. << execute body of callee >>

6. (before exit) Restore RP, restore callee-saves registers, and deallocate local frame.

7. (exit) Branch (BV) back to caller.

. (after return) Restore caller-saves registers.

\O

OO

._ << resume execution of caller’s code >>

NOTE

To read diagram, begin at ”Calling Code” and continue
downward, following any arrows that may extend from the
end of a line.

The Actual Call 7-1

|
Calling Code |

Pass arguments |

Save caller-saves registers |

Branch (BL) ---->------ |

|

|
|
|
|

| Restore caller- <-~--~|----- <---- |
| Saves registers | |

|
|
|
|
|
|
|

Called Code <---~---~------

Entry Sequence:

Save RP

Allocate local frame

Save callee-saves registers

Exit Sequence:

Restore RP

Restore callee-saves

registers

Branch (BV) to RP --->-----~-- >

|
|
|
| Deallocate local frame

|
|

aa sere esr aot sabe ene name nan “RL ph et i een eect erat mS me ORME ei tee Seen ote Si deh See SEN, eR SN ne I wu mL ty am, SEERA NN Seow cn ee min

Figure 7-1. Control Flow of a Standard Procedure Call.

Efficiency

The following factors greatly reduce the overhead expense involved in a Precision Ar-
chitecture procedure call:

1. Allocation of the stack frame and saving of one callee-saves register can be accom-
plished in a total of one cycle. (The same is also true for the deallocation of the
frame and restoration of one register.)

bo
 . Even when not optimizing, the delay slot (i.e. the instruction slot following a

Branch instruction) is used for operations such as loading register values and pass-
ing parameters. This instruction slot is initially filled by the compiler with a NOP,
and later replaced by the optimizer whenever possible in order to avoid wasting a
machine cycle.

3. Most of the steps involved in a call are optional if they are unnecessary in a par-
ticular situation. (For example, saving and restoring RP, saving and restoring
callee-saves registers, allocating stack storage space, etc.)

The Code Involved in a Simple Local Call
A simple example is shown below; the procedure and the call to it are shown first in
C (source code) and then in assembly. (NOTE: A more detailed, fully documented ex-
ample is shown in Appendix A (A.1.).

7-2 The Actual Call

proc (50,100); * call to procedure ‘proc’ *\

proc (x,y) * function ‘proc’; returns *\

int x,y; * sum of two numbers *\

1
return x+y;

}

In assembly:

LDI 50, gr26 - load arg word O into gr26

** BL proc, gr2 - branch (call) to ’proc’

LDI 100, gr25 - <delay slot> load arg word 1 into gr25

proc: BV O (gr2) - branch (return) back to caller

ADD gr26,ger25,gr28 ; <delay slot> add arguments, put result into gr28

In instances where the target of the call is out. of the range of the BL

(i.e. greater than 256K bytes), there will be a slightly different code

sequence. If this situation is identified at compile time, the compiler

will generate a two-instruction sequence (LDIL,BLE) that 1S guaranteed to

reach the target, instead of the BL. However, if the information is not known

untii link time (the compiler has already generated the BL), the BL will be

linked to a "long call stub" rather than to the actual procedure. This "stub"

is merely the same two-instruction sequence that would have been used if the

information had been known earlier.

The Actual Call 7-3

Inter-—Module Procedure Calls

Introduction

NOTE

At present (first release), external calls exist ONLY on the
MPE-XL operating system; this is due to the fact that on
the HP-UX OS, all load modules are combined into a single

executable file with no unresolved references. Hence, this
section does not apply to HP-UX.

As mentioned earlier, there are three types of procedure calls that can be executed,

and they can be classified into two groups: intra-module (local) and inter-module (ex-
ternal) calls. Basically, a local call is one in which the caller and the callee reside in
the same load module, and an external call is one in which that is not necessarily the
case. There is one exception to this guideline, however: calls which cross privilege
level boundaries are always treated as external calls, even if the caller and callee are
residing in the same load module. Although external calls are closely related to local
calls, several notable differences exist in storage and access conventions; these are ex-
plained in the following material.

The inter-module (external) calling sequence is distinguished from the intra-module
(local) calling sequence due to the system-wide global virtual addressing of the Preci-
sion Architecture processor and the need for code sharing. Unlike most conventional
systems where each process has a private virtual address space, all processes in a Pre-
cision Architecture system share a finite, although large, number of spaces (2°16 cur-
rently, 2°32 eventually). Therefore, it is undesirable to assign virtual spaces to inactive
program images (i.e. those on disk). Generally, the assignments of virtual spaces to a
program will be delayed until it is activated.

In order to avoid extensive linking at process creation time, it is desirable to have a

central data structure (for each process) that will hold the SIDs assigned to the load
modules used by the process. Consequently, only the entries in this structure will be
updated when virtual spaces are finally assigned to load modules.

Inter-Module Procedure Calls 8-1

Another use for such a central structure is the location of the global data area of a
load module. The offset of the global data area in the private data space of a process
depends on the combination of load modules called by the process. Although each
load module’s code is assigned a unique SID, its data is placed at a process—dependent
offset within the process’ single private data space. In order to share a load module
between multiple processes, all references to the global data area must be relative to a
base register, which in this case is DP (data pointer). The value of a base register can
be stored in a load module’s entry in the central structure. The central structure em-
ployed in this capacity is the Inter-Module Cross Reference Table (XRT), which will
be discussed and diagrammed in detail below.

In terms of the code, an external call uses the same code sequence as a local call, with

the addition of a ”calling stub” (a.k.a. Import Stub) attached to the calling code, and a
"called stub” (a.k.a. Export Stub) attached to the called code. Unlike a local call, exe-
cution is not transferred directly from the caller to the callee; in an external call, a
millicode sequence (CALLX) is employed to locate and branch to the target procedure.
These stubs and the millicode sequence are discussed in greater detail below.

Requirements of an External Call

An external procedure call requires several extra steps in addition to those necessary
for a local call, which are outlined below:

1. The base register pointing to the global data area (DP), the SID contained in sr4,
and value in gr2 (RP) must all be saved in the caller’s allocated frame area. This
RP value is referred to as RP’ to distinguish it from the usual RP value associated
with a local call. The difference between RP and RP’ is as follows:

RP is renamed RP’ during the calling stub execution, at which time RP becomes
the location in the called stub to which the target procedure (callee) must return.
Finally, RP’ is renamed back to RP, and DP and the SID are restored.

bh
o . The called load module’s entry in the XRT must be located.

3. The short pointer from the XRT entry must be loaded into DP (this is the DP value
for the called load module).

4. The SID from the XRT entry must be loaded into sr4, and the offset of the callee
must be obtained from the XRT.

5. An external branch and link to the called procedure must be performed. (Actually,
an external branch to the CALLX millicode routine that locates the called stub and
a branch to the called stub of the callee, which then does a local branch and link
to the callee. Stubs, CALLX and linking will be discussed further in sections 8.7 -
8.9.)

8-2 Inter-Module Procedure Calls

Requirements of an External Return

In order to return from an external call, it is required that DP, sr4, and RP be re-

stored. The saved value of RP’ will be loaded into RP (gr2), and the return to the
caller will be via that register. The DP and SID of the caller will be restored from the
caller-save area.

Control Flow of an External Call

Figure 8-1 shows a simplified external procedure call. It uses the same code sequence
as the local, but a ”calling stub” is attached to the calling code (the caller) and a
"called stub” is attached to the entry point of the called code (the callee). Execution 1s
transferred from the calling code to the called code by executing a millicode sequence
(CALLX) which uses an XRT to locate and branch to the target procedure. Note: All
of these elements of an external call are covered in more detail in the following sub-
sections.

NOTE

To read diagram, follow the arrows and numbers, beginning
with number 1.

Access to

XRT

Load Module A ++ Load Module B

—>—- ++ proc

Calling Stub <--- ++ | -—<-|-------------------- | <-----

| 2 ++

Figure 8-1. Simplified External Procedure Call.

Calling Code
The calling code generated by the compiler to perform a procedure call will be the
same regardless of whether the call is actually local or external. If the linker locates

Inter-Module Procedure Calls 8-3

the procedure being called within the current executable object module, it will make
the call local by patching the BL instruction to directly reference the entry point of the
procedure. If the linker is unable to locate the procedure, it will make the call exter-
nal by attaching a calling stub to the calling code, and patch the BL instruction to
branch to the stub.

Before the call, the calling code must save any caller-saves registers that contain active
data. The parameter list for the callee is stored in the current stack frame between
the register spill area and the frame marker. As in a local call, the parameter list 1s
stored in reverse order, such that the first word is at SP-—36, the second is at SP-40,

etc. Note: the first four words of the parameter list are passed in registers, but the
space for the argument list is allocated, even if it remains unused. Also, all parame-
ters are always passed in general registers, with the linker including any necessary relo-
cation information in the stubs.

Called Code

The called code is responsible for allocating a new stack frame on the top of the stack
(the frame must be double-word aligned); the actual size of the frame will be deter-
mined by the compiler, and will be the summation of:

® The amount of space needed by the register allocator for the register spill area;

® The amount of space needed for the local variables of the current procedure;

® The amount of space needed to store the longest parameter list of any procedure
called by this procedure; and

@® The frame marker has 32 bytes.

If this procedure is callable by a less-privileged procedure, each page of the stack
frame must be PROBEd (a privilege-checking mechanism) before any information is
stored into the frame. The PROBE instructions must be generated by the compiler.
(This is not currently implemented).

When a procedure is entered, gr2 (RP) will contain the offset portion of the return ad-
dress. Whether the procedure was called locally or externally, the two low order bits
of RP will always contain the execution level of the caller. From the source code level
it is difficult, if not impossible, to determine if RP is valid or if it has been stored into

the stack frame. Therefore, compilers that support multiple privilege levels will need
to provide a mechanism for returning the execution level of the caller.

If the current procedure calls another procedure, RP must be saved sometime before
the call, probably in the procedure entry sequence. The called code is responsible for
insuring the validity of its own input. sr5, sr6, and sr7 can only be set by privileged
code and therefore can be assumed to be correct at all times. In addition, DP, LP
(linkage pointer), and sr4 are not changed during a local call, or they are set by the
procedure call millicode during an external call and therefore may also be assumed to
be correct. The value of SP and the parameters passed must be validated by the called
code.

8-4 Inter-Module Procedure Calls

NOTE

Only those fields necessary in the frame marker of the cur-
rent procedure will contain valid data; others will be unde-
fined. For example, during a local call, contents of the ex-
ternal return link pointer field will be undefined.

Outbound/Inbound Transfer Code Stubs

As previously mentioned, the compiler only recognizes a single type of procedure call
(local), a characteristic that is made possible by the use of stubs. Stubs are pieces of
code that are attached to the caller and/or callee that enable the original calling and
called code to remain unchanged through the external call process. There are two types
of stubs used in this procedure calling convention: Outbound (calling) and Inbound
(called). These are defined here, and explained in detail in the following sections.

1. Outbound Transfer Code Stub (Calling Stub) -- a locally—linked stub that enables
inter-module and OS/Subsystem calls to appear (to the compiler) as local calls. If
the linker determines that a call is external, it will attach a calling stub to the pro-
cedure and patch the BL (Branch and Link) instruction to branch to the stub. There
is usually one calling stub for each procedure referenced in the module (which can
accommodate all calls to a specific procedure), but it is possible to have a separate
stub for each CALL to a procedure.

2. Inbound Transfer Code Stub (Called Stub) -- enables a called routine to avoid the
problem of having multiple return sequences (i.e. different for local and external
calls). There is one called stub for each external procedure of a load module. In-
ter-module calls will enter the called stub, which in turn will enter the called proce-

dure (callee). The callee can thus return to its called stub (which is local) rather
than being concerned with the external return. The calling stubs can be generated
by the linker (or obtained from a stub library”) and then linked to their respective
routines.

Inter-Module Procedure Calls 8-5

NOTE

As earlier mentioned, calling and called stubs are some-
times referenced (in other documents) as Import and Export
stubs. There are no different implications attached to either
naming convention; calling and called have been used in

this document in order to (hopefully) improve understan-
dability.

Calling Stub

The calling stub will load gr1 with a pointer to the procedure XRT table entry (XRT
pointer) of the called procedure and then branch to an external procedure call mil-
licode sequence. Since the location of the XRT for an object module may be different
for separate executions of the object module, the XRT entry pointer will be computed
in the calling stub. The XRT entry pointer is computed by adding the XRT entry off-
set to the value of the Linkage Pointer (LP), which is stored at DP-4, pointing to the
base of the XRT for the current object module.

For permanently bound calls to the operating system, a calling stub is not necessary;
instead, the BL instruction in the call is replaced with a BLE instruction that branches

to a system entry point branch table. This eliminates much of the linking that is nor-
mally performed when an object module is loaded.

Although the external procedure call diagram shows that DP, RP’, and sr4 are saved

by the CALLX millicode (see next section for discussion of CALLX), DP and RP’ will
actually be saved in the calling stub, and sr4 will by copied to a general register in the
calling stub. This is done to eliminate two interlocks and fill a branch delay slot that
would otherwise be left unused. The code sequence of the calling stub will be similar
to that shown below:

LDW -4(DP) ,grl - Load LP

STW DP, --32 (SP) - Save DP

ADDIL * L’XRToff,grl > Add XRT offset to LP

LDO * R’ XRToff(grl),grl

LDW 16(grl1),gr20 - Load address of CALLX

STW RP, --24 (SP) ; Save RP”
BE (sr7v,gr20) - Branch to CALLX

MFSP sr4,gr21 * Move sr4 to gr2l

* Can be eliminated in cases where they would effectively be NOPs and

therefore removed by the linker (except in cases where tools are

being used that assume fixed-length stubs).

8-6 Inter-Module Procedure Calls

External Procedure Call Millicode (CALLX)

The CALLX millicode sequence is primarily a transition mechanism that facilitates the
successful location and access of the desired external routine. The address of the
CALLX routine is obtained from the XRT entry, and ts assigned by the loader. Sev-
eral variations of CALLX are available, depending on the possible privilege promo-
tions. It is called from the calling stub, and operates as follows:

1. Saves DP, RP’, and sr4 (if necessary).

2. Alters the privilege level if necessary (Gateway).

3. Checks the XRT pointer to insure that it points to a valid XRT table entry.

4. Loads the LP, DP, Offset and sr4 (of new procedure) values.

5. Branches to the cailed stub in the external module.

Called Stub

A called stub ts used to enable the compiler to generate the same exit code sequence
whether the procedure will be called locally, externally or both. If the linker deter-
mines that a procedure can be called from another object module, it will attach a
called stub to the procedure. The stub will be the external entry and return point for
the procedure. Local calls to the procedure will be unaffected.

Although the stub is the external entry point, its primary purpose is to be executed
during an external procedure call exit/return. The stub is entered before the procedure
so that RP can be set to the address of the stub, which will cause the local return in

the procedure to exit to the stub. When the stub is executed during the return, it will
restore DP and sr4, and return to the caller.

NOTE

The stub executes at the caller’s execution level.

The code sequence for the called stub will be similar to the
following:

Inter-Module Procedure Calls 8-7

MFSP * srO,gro - NOP to identify stub

BL disp,gr2 - Branch to local entry point

DEP gr31,bit31,len2,gr2 - Depcsit caller’s Exec. Level in link

LDW —-28(SP) ,gr2l ' Restore sr4 (part 1)

LDW -24(SP) ,gr2 - Restore return address (RP’”)

MTSP gr2l,sr4 ' Restore sr4 (part 2)

BE O(sr4,gr2) - Branch back to caller

LDW —32(SP) ,gr27 ' Restore DP

* This instruction is not executed; the entry into the stub is actually

at the second instruction. (This instruction is a remnant of an early

stack unwind effort —- it) will be removed in the future.)

Inter-Module Cross Reference Table (XRT)

The Cross Reference Table (XRT) is used to link the external procedure calls of an
object module. Every process has an XRT area reserved from its process space
(pointed to by sr5) for the XRTs of the object modules being executed by the object
module. The table contains a sub-table for each load module referenced during the
process execution. Each sub-table for a load module contains entries for all the proce-
dures called by that load module. A sample XRT is shown in Figure 7 on the next
page (in this example, the process has two load modules: ’A’ and ’B’. ’A’ calls proce-
dures B1, B2 and B3; ’B’ calls procedures Al and A2):

The Layout of the XRT

One XRT might be visualized as shown in Figure 8-2. (This diagram
corresponds to the calling situation described in the last sentence of the previous sec-
tion.)

ee ee me ee re ee re re ere ee ee ee ee ee ee ee ee

#include note2.tag

Figure 8-2. Layout of the XRT.

8-8 inter-Module Procedure Calls

One XRT Entry

An entry for a procedure within a sub-table of a load module in the XRT (e.g. the en-
try for B1) is eight words long, and contains the following information:

1. The SID of the module to which it belongs.

2. The entry offset for the procedure. This is a 32-bit offset, and is the address of

the entry point (relative to the base of the SID of its load module) of the proce-
dure’s called stub. The last two bits (30 and 31) of this word must be zero in or-
der to insure word alignment of the address.

3. The DP value for the load module to which it belongs (the value of the base regis-
ter pointing to the load module’s global data area).

4. The LP value of the module in which the called procedure is contained. This is a
pointer to the beginning of the XRT sub-table of that load module.

5. The address of the CALLX millicode routine(s).

6. ,7., 8. (These three words are presently undefined and are reserved for future use.)

Thus, the XRT entry for procedure B1 (which is called from A and would appear in
A’s sub-table of the XRT) would look as is shown in Figure 8-3.

rr ee ete ree errs me eer eine meri semi ch nt me em eee eri ern SNe eer emi ne ee ee ene eee een ee ne cere farm rm ee en tt ee ee ee

ee mm is ee eee tein mm ee ieee pn en tnt em terns ce seep eminent, em cies emits mum temas etme ats eran vem enue ime ee mee cei neem ne ee ee won

Figure 8-3. One XRT Entry.

Inter-Module Procedure Calls 8-9

** The last two bits of the Entry Point Offset must be set to zero in order to ensure
word alignment.

NOTE

If a load module contains no external references, its sub-ta-

ble in the XRT will be empty.

Linkage Pointer

A single value, the Linkage Pointer, resides in the word directly below the global data
area of a load module, at the location pointed to by DP-4. This pointer is private to
the load module, and is a short pointer to the beginning of the load module’s XRT
sub-table. An entry for a called procedure in the XRT is pointed to as follows:

1. The LP points to the beginning of the sub-table in the XRT of the load module
containing the called procedure.

2. The calling stub for the caller has the offset to the called procedure’s entry relative
to the XRT sub-table of the caller’s load module. This offset, added to the LP
value, provides a pointer into the called procedure’s entry. This LP-relative XRT
offset is assigned by the linker.

The reason for the indirection employed by using the LP is that load modules can be
shared by different processes whose XRTs may also be different. To allow the same
code to reference the same load module in different processes’ XRTs, it is necessary to
provide a uniform interface to the XRT entries; this is provided by the LP.

In addition to the XRT area in the process space, there is an XRT area in the system
Space (pointed to by sr7) that is reserved for the XRTs of system load modules. Like
any other load module, a system load module also uses LP to locate its XRT. The
system XRT area can also contain a special XRT that is used for calling system proce-
dures by intrinsic number.

Linker/Loader Interaction with XRT

The XRT will be set up by the loader. The values in the XRT will be supplied by the
loader, based on the mapping of the files relevant to the process into virtual memory
(i.e. SID allocation, the data offsets in sr5 space, etc). The linker may provide some
of the values that are to be contained in sr5, based on the information it may have at
link time concerning the specific load modules that are involved in the process’ exe-
cutable image.

8-10 Inter-Module Procedure Calls

When a process is loaded, the loader will protect all the pages in the XRT to read
level 3, write level 0. Although it is not necessary, the process protection [D will be
assigned to the pages of the process XRT area. The protection of the LP will be the
same as the object module specifies for its global data area. Since the LP ts set when-
ever an object module is called by an untrusted procedure, it does not need any special
protection.

The XRT of every process and the system XRT must be at the same offset of their
corresponding quadrant, and every XRT must be the same length. These two restric-
tions allow the procedure call millicode to use a very simple masking algorithm to per-
form bounds checking on any XRT pointer used with an external call. The location
and size of the area can be changed when the system is restarted, but the new values
must be reflected in the procedure call millicode (because it uses constant values to do
bounds checking on the XRT entry pointer).

Stub Conventions for External Calls

By providing a consistent interface between calling and called stubs across implementa-
tions, code portability (i.e. moving executable files between operating system imple-
mentations) can be achieved at the load module level. This means that load modules
can be relocated without relinking, and, eventually, that common tools can be shared.
In the case of a distributed (i.e. commercially-owned) system, it means that an appli-
cation can use an executable file without having to copy it over to its own mass stor-
age system (which it may not even have) and subsequently having to also relink it. If
the specifications below are not followed for the implementation of this interface,
relinking will always be necessary in order to move a program between different oper-
ating systems, or even different versions of the same OS.

Interface Between Calling and Called Stubs

The exact distribution of all operations between the calling and called stubs, or
whether or not the calling stub uses a centralized system routine to accomplish these
tasks, is not architected. Much more importantly, and specified in detail, is the work
that the called stub can expect to have already been done before it is entered. Adher-
ing to these requirements facilitates the loading of DP, LP, and SID (if desired) of the
called load module. These expectations are as follows:

1. gr1 contains a pointer to the called procedure’s XRT entry. (This is actually the
called procedure’s XRT entry in the sub-table of the calling load module.)

Inter-Module Procedure Calls 8-11

NOTE

Recall that the caller’s LP points to the caller’s XRT
sub-table, which contains entries for all of the routines that
may be called. The offset into that sub-table, which
indexes to the called routine’s entry, is bound as an
immediate in the calling stub. The pointer to the specific
XRT entry is calculated as follows:

(caller’s LP value) + (offset to called procedure’s

entry) = (pointer to callee’s entry in XRT sub-table of

caller)

This pointer is the value that should be found in grl

when the called stub is entered.

2. The SID of the called load module has been loaded into sr4. (The called stub is

free to check the validity of that SID, to reload it, or to leave it as is. The impor-

tant point is the assumption that it has already been loaded, and DOES NOT need

to be checked.)

Summary of an External Procedure Call

Figure 8-4 shows a detailed picture of the flow of control associated with an external

procedure call.

8-12

NOTE

To read diagram, begin at the upper left-hand corner
(Calling Code”), and read downward; whenever an arrow
extends from a line, follow it, and continue downward from

the point where the arrow ends.

Inter-Module Procedure Calls

Load Module A
ee ees ce ee ee ee

Pass arguments

Save Caller-saves registers
BL (to Calling Stub) ---->--- |
Restore Caller <----- <----

saves registers

|
--~>-|--Calling Code |

|
|

Calling Stub <------------~--- | Ext. Proc. Call Millicode
Load XRT Pointer
Load address of CALLX

BE (to CALLX) ----------- ya a

|
|
|
|
|
| |
| ---> CALLX |
| Save DP, RP’, sr4 |

—--— - | *Gateway |

| |
| |
| |
| |
|
|
|
|
|

*Check XRT pointer

Load LP

Load DP

Load offset

Load sr4

BE (called stub) --|-->--

Store LP

Load Module B

Called Code <-—----- —~-—-~—~~

Save RP

Allocate local frame

Save callee-saves regs. * can be removed in

cases where security

levels do not change

Restore RP

Restore Callee-saves regs.

Deallocate local frame

BV (to RP) ---- a

i | | | | | A | | } | { | | | |

|
|
|
|
|

. |
teturn |

|
|
|
|
|
|
|

BL (to callee) ---- >-—

Restore DP, sr4 <---~--- |

Restore RP’ |

BE (sr4, RP’) -—---->----~------|-----

Figure 8-4. Summary of External Procedure Call.

Dynamic Linking

Dynamic linking is run-time linking to routines, which may be necessary due to run-
time routine calls. A run-time procedure call is one where the target procedure is un-
known at compile time, or where the target of a procedure call can change while the
code is executing. Dynamic linking will be carried out through explicit protocols (e.g.
the FINDPROC system call in MPE-XL).

Inter-Module Procedure Calls 8-13

If the dynamically called routine resides in a load module that has not yet been loaded,
the load module is loaded dynamically. In order to dynamically load a load module, a
global data area for it may need to be allocated in sr5 space. This data space is allo-
cated by the loader, and may be allocated from any unused virtual space in sr5.

Procedure Labels

A procedure label is a specially-formatted variable that is used to link dynamic proce-
dure calls. The format of a procedure label is shown below:

bits--> 2 28 lil
en ee ee ee ee ee ee — ek ee Fee ee ren Oi eR ce eee re

| SID | Address Part |L|x|
— ee _— eee me ee ea es ee een ome nen et ore

Procedure Label

The X field in the address section of the procedure label ts the XRT flag, which is
used by compilers to determine if the procedure label is local (off) or external (on).
In the case of a local procedure label, the address part will be a pointer to the entry
point of the procedure, while in the external case, the address part will be a pointer to
an XRT entry for the procedure.

The L field in the address part of the procedure label is the static link flag, which is
used by the compilers to indicate whether or not a static link must be passed on a call.

8-14 Inter-Module Procedure Calls

NOTE

In the current (first release) implementation, the L-bit
is never turned ”on” and ts therefore effectively unused.
This situation may result in a future change in either the
specification or the implementation itself.

The dynamic procedure call millicode will actually deter-
mine if a procedure label is local or external, and take the
appropriate action. (A local procedure label can only be
used to call procedures within the current object module.)
The following pseudo-code sequence demonstrates the proc-
ess used for dynamic calls (note the similarity between this
sequence and the calling stub sequence):

IF (X-bit in Plabel) = O THEN

Branch Vectored using Plabel

ELSE BEGIN

Clear X-bit;:

Calculate address of XRT entry (LP + Plabel value)

Save DP;

Load address of CALLX;

Save RP’;

Move sr4 to old DP register;

Branch to CALLX;

END.

NOTE

The X and L flags must be zero during an external call, or
they will cause a misaligned data reference trap when ac-
cessing the XRT. (As earlier mentioned, the L flag is cur-
rently unused, so it must be assumed to be zero).

An external procedure label can be used in conjunction with the external procedure
call millicode to call any procedure within the process or the operating system (subject
to XLeast checking to insure adequate execution level). The procedure call millicode

Inter-Module Procedure Calls 8-15

only uses the address part of the procedure label, but it may point to either the
process or system XRT.

The procedure FINDPROC may be used to get an external procedure label for any
level 1 procedure in a process. If the compiler or linker determines the need for an
external label, it is communicated to the loader by a normal tmport request or an
explicit call to FINDPROC.

Although a procedure label pointing to a system XRT entry is valid for all processes, it
will be unloaded when its reference count drops to zero. Therefore, these procedure
labels should not be considered as global procedure labels. The procedure
GET SYS LABEL will return a global procedure label for any procedure in a system
object module, but it requires privilege level 1 to be called.

8-16 Inter-Module Procedure Calls

Millicode Calls

Overview

Background

In a complex instruction set computer, it is relatively easy at system design time to
make frequent additions to the instruction set based almost solely on the desire to
achieve a specific performance enhancement, and the presence of microcode easily fa-
cilitates such developments. In a reduced instruction set computer, however, this
microcode has been eliminated because it has been shown to be potentially detrimental
to overall system performance (not only is instruction decode complicated, but the ba-
sic cycle time of the machine may be lengthened).

So while the functionality of these complex microcoded instructions (e.g. string moves,
decimal arithmetic) is still necessary, a RISC-based system is confronted with a classic
space-time dilemma: if the compilers are given sole responsibility for generating the
necessary sequences, the resulting in-line code expansion becomes a problem, but if
procedure calls to library routines are used for each operation, the overhead expense
incurred (i.e. parameter passing, stack usage, etc) is unacceptable.

In an effort to retain the advantages associated with each approach, the alternative con-
cept of ’millicode” was developed. Millicode is the Precision Architecture’s simulation
of complex microcoded instructions, accomplished through the creation of assembly-
level subroutines that perform the desired tasks. While these subroutines perform
comparably to their microcoded counterparts, they are architecturally similar to any
other standard library routines, differing only in the manner in which they are ac-
cessed. As a result, millicode is portable across the entire family of HPPA machines,
rather than being unique to a single machine (as is usually the case with traditional
microcode).

There are many advantages to implementing complex functionality in millicode, most
notably cost reduction and increased flexibility. Because millicode routines reside in
system space like other library routines, the addition of millicode has no hardware
cost, and consequently no direct influence on system cost. It is relatively easy and in-
expensive to upgrade or modify millicode, and it can be continually improved in the
future. Eventually, it may be possible for individual users to create their own mil-
licode routines to fit specific needs.

Millicode Calls 9-1

Because it is costly to architect many variations of an instruction, most fixed instru
ction sets contain complex instructions that are overly general. Examples of this are
the MVB (move bytes) and MVW (move words) instructions on the HP3000, which are
capable of moving any number of items from any arbitrary source location to any tar-
get location. Although the desired functionality is achieved with such generalized com-
plex instructions, the code that is produced often lacks the optimization that could have
been achieved if all information available at compile time had been utilized. On
microcoded machines, this information (concerning operands, alignment, etc) is lost

after code generation and must be recreated by the microcode during each execution,
but on the Precision Architecture machines, the code generators can apply such infor-
mation to select a specialized millicode routine that will produce a faster run-time exe-
cution of the operation than would be possible using a generalized routine. For exam-
ple, the Move routines can execute much faster if they can assume a specified align-
ment, and therefore eliminate any error checking of that type.

The size of millicode routines and the number that can exist are not constrained by
considerations of the size of available control store, because millicode resides in the

system as subroutines in normally managed memory, either in virtual memory where it
can be paged into and out of the system as needed, or in resident memory, as per-
formance considerations dictate. A consequence of not being bound by restrictive
space considerations is that compilers can be developed with many more specialized
instructions in millicode than would be possible in a microcoded architecture, and thus
are able to create more optimal solutions for specific source code occurrences.

Millicode routines are accessed through a mechanism similar to a procedure call, but
with several significant differences. In general terms, the millicode calling convention
stresses simplicity and speed, utilizing registers for all temporary argument storage and
eliminating the need for the creation of excess stack frames. Thus, a great majority of
the overhead expense associated with a standard procedure call is avoided, thereby re-
ducing the cost of execution. (However, there are exceptions to these conventions,

which are discussed in more detail throughout this chapter.)

The guidelines for the inclusion of a routine in the millicode library are not completely
determined, but the general considerations are frequency of usage, processor expense
(number of cycles necessary for execution), and size. Most routines perform common,
specific tasks (such as integer multiply or divide), and require very little or no memory
access.

9-2 Millicode Calls

The Millicode Hierarchy

In an effort to define and classify the various types of millicode, Figure 9-1 shows a
conceptual schematic layout of the existing millicode ”family”. The labels in the
boxes are briefly described following the diagram, and will be discussed in greater de-
tail throughout the remainder of the chapter.

MILLICODE

|
|

| |
| |

| Local | | External |

|
|

| |

| system | | system |
| independent | | dependent |

| |

| | | | |

| A | | B | | c | | Compat. | | Other |

Figure 9-1. Millidcode Overview.

Descriptions

Local: The millicode routines contained in the executable code of each process requir-
ing them (i.e. not shared). Similar to local library routines, but with the faster access
advantage.

External: True, shared millicode, residing in system space.

System Dependent: Millicode which is useful to only one operating system; can be
used at the discretion of the operating system.

System Independent: Millicode which is intended to run on more than one operating
system (i.e., routines required by language code generators).

Millicode Calls 9-3

Compatibility Mode: System dependent code (on MPE-XL) which assists both the emu-
lator and translator.
System Dependent -- Other: Additional system dependent routines.

A, B, C : Classes of millicode that differ by location in virtual space and accessibility.
The classifications are made on the basis of performance and size considerations.

Introduction to Local and External Millicode

As pictured in Figure 10 (tree diagram in the main introduction), millicode is generally
divided into two main categories: local and external. Although it appears that the two
types are co-existing, this is NOT the case; at present (first release) all millicode is
local, whereas in the future it is likely that the great majority, if not all, of millicode
will be external.

The two types of millicode are easily differentiated by the way in which they are ac-
cessed and used; local millicode is linked with and executed by any process that re-
quires it, while external millicode is handled in much the same manner as a standard
shared library (i.e. one system-resident copy that is shared by all processes as is nec-
essary).

Efficiency Factors

There are several conditions that contribute to the increased efficiency of millicode
calls. The primary one is the fact that any standard routine that makes only millicode
calls is considered to be a leaf routine, thereby eliminating the overhead expense (i.e.
frame allocation) that would have been added by the presence of another standard pro-
cedure call. A higher percentage of leaf routines improves overall efficiency, since a
standard procedure call is much more costly than a millicode call. (in terms of stack
frame allocation and usage, etc). This and other major factors contributing to this effi-
clency are summarized below:

1. The compiler is able to identify whether a routine is a leaf or not; it only builds a
complete stack frame for non-leaf routines. In the diagram below, a stack frame 1s
created upon the call to Proci in both Fig. A and Fig. B. In Fig. A, another frame
is then allocated for Proc2 when the compiler realizes that Proc2 will be subse-
quently calling Proc3, whereas in Fig. B, no additional frame is necessary because
the compiler realizes that Proc2 is only making a millicode call.

Procl Procl

|
|

Proc2 Proc2

|

Proc: Millicode

(Fig. A) (Fig. B)

9-4 Millicode Calls

2. More parameters can be passed in registers to a millicode routine than to a stan-
dard proc call. (See Millicode document, section 4,
for more details of register usage and parameter passing.)

3. The compiler knows more about millicode routines at compile time than it does
about user-defined procedures, so it can perform some
inter-procedural optimizations which cross the millicode call.

4. The millicode calling mechanism is often faster than the standard procedure call; a
millicode routine is called through a branch (BL)
directly to the routine or to a pointer to the routine.

Making a Millicode Call

A call to a millicode routine can only be made from assembly language (no high-level
language access), and it is made through a branch directly to the routine or to a
branch to the routine.

It is intended that the standard register conventions be followed, with two exceptions:

1. The return address (MRP) is carried in gr31; and

2. The return value is carried in gr29.
There are, however, many non-standard practices regarding millicode
register usage; see the Millicode document for further details.

Local millicode can be accessed with three different methods, depending on its lo-

cation relative to currently executing code.

These three methods are:

1. A standard Branch and Link (BL), if the millicode is within 256K bytes of the
caller,

2. A BLE instruction, if the millicode is within 256K bytes of a predefined code base
register, and

3. The two-instruction sequence (LDIL,BLE) that can reach any possible address, or a
BL with a linker-generated stub.

Nested Millicode Calls

Millicode routines may call other millicode routines, but (at present) cannot call other
standard user--defined routines. In order for nested millicode calls to occur, however,

Millicode Calls 9-5

the millicaller must allocate a stack frame for the millicallee, and, upon call to the mil-

licallee, save the MRP in the static link word (SP-20) of the frame marker area of the
new frame. The layout of a frame generated for a nested millicode call is shown in
Figure 9-2.

| Formal |
| Arguments |

Frame 1 | | Frame Marker |
(procedure) | (ince. srQ) |

a i eet ee ee nt ee ee te eee

* | Registers to |
| be saved |

(millicallee)| * | Local |

|
|

|
Frame 2 ----~ |

|
|
|
|

* | Actual | * these three regions are optional
| Arguments |

| Frame Marker |
| (inc. MRP) |

SP -----— > —- ee

(stack pointer)

Figure 9-2. Millicode Stack Storage Layout.

9-6 Millicode Calls

10
Stack Unwinding

Introduction

Stack unwinding is the Precision Architecture’s implementation of procedure traceback
and context restoration, a process that has many possible applications for any execut-
ing program, both at the system level and the user interface. Unwinding is necessary
because in the event of any type of interruption of execution, there is insufficient infor-
mation immediately available to perform a comprehensive stack trace, which is the ba-
sic operation behind state restoration.

Other processes that are heavily dependent on the presence of the unwinding facility
are system dump analysis, which is performed specifically to determine the cause of
system crashes, debugging, and certain language-specific features such as the escape
and the non-local GOTO in Pascal. A dump analysis examines all system processes
that were running at the time of the crash, an operation which encompasses multiple
stack traces. Debugging is the analysis of the current and past status of a program,
either at the system or user level, with the objective of locating an unintended occur-
rence (i.e. an error).

This section will detail the specifications that must be followed in order to enable stack
unwinding of procedure calls that are assumed to conform to the other aspects of the
calling convention. For a more thorough discussion of stack unwinding, refer to the
Stack Unwinding document.

Requirements for Unwinding from a Local Procedure Call

Unwinding is dependent upon the ability to identify each instruction in an entry or exit
sequence that modifies SP, and the point at which RP gets restored in an exit se-
quence. Furthermore, it is necessary that all registers be saved in the specified areas,
and that any other necessary conditions (i.e. procedure-specific) be satisfied.

In order to guarantee unwindability, the standard procedure call convention (as de-
scribed earlier in this document) must be followed by both the caller and callee. It is
mandatory that the procedure entry and exit sequences conform to the standard specifi-
cations, a condition that is insured by the compilers.

Stack Unwinding 10-1

All compiled code will automatically conform to these requirements, but handcoded
routines must also meet these standards. (It is the responsibility of the author of the
code to use the assembler directives .ENTER, .LEAVE and .CALLINFO to generate
the standard entry/exit sequences, or to hand-code the correct entry/exit sequences.)

See the Appendices of the Stack Unwind document for examples of standard entry/exit
sequences.

Requirements for Performing a Stack Trace

The minimum requirements to successfully perform a stack trace are as follow:

1. The specified point of the interrupt must lie within a standard code sequence, as
specified above.

2. Call-save registers must be saved and restored across a call.

3. Unwind table entries must be generated for each routine, and for any discontinuous
sections of code.

4. The frame size must be as stated in the unwind descriptor (see section 2.2 of Stack
Unwind for details of unwind descriptors).

5. The RP (or MRP) must conform to the specifications stated in the unwind descrip-
tor.

The minimum requirements to successfully perform an escape or a non-local GOTO
are as follows:

1. All requirements for a stack trace (as above) must be met.

2. The state of the entry-save registers must conform to the specifications given in the
unwind descriptor.

10-2 Stack Unwinding

Assembler Interaction

The .ENTER and .LEAVE directives will cause an entry/exit sequence to be produced
by the assembler. The assembler generates these according to the .CALLINFO direc-
tive, which causes the necessary information (assuming it is available) to be put into
the unwind descriptor. The unwind descriptor is a two-word structure which lies in the
four-word unwind table. The table is formatted as follows:

a i ee ne me ee ee er

| word #1 | .PROC (start address of the procedure)

| word #2 | .PROCEND (end address of the procedure)

| word #3 | \
-- .CALLINFO (unwind descriptor)

eee rr eee ert met ee te ete ore ae

See Sections 2.1 and 2.2 of the Stack Unwind document for further discussion

of unwind tables and descriptors.

Unwinding From an External Procedure Call

Unwind Table for Stubs

The linker builds two-word unwind descriptors for stubs. Each type of stub involves
its own unwind descriptor, and there is a different type of descriptor used for each
type of stub. The unwind descriptor for a stub contains the following information:

word 1: address of the first instruction of the stub
word 2:

bits 0..4 - reserved

bits 5..7 -— type of stub

bits 8..10 - reserved

bits 11..15 -— used only for parameter relocation stub;

contains the number of the instruction

which stores RP on the stack in the stub.

bits 16..31 — length (# of words) of stub area

Stack Unwinding 10-3

NOTE

In some cases, a contiguous sequence of calling, called, or

long branch stubs can be covered by a single unwind de-
scriptor.

The unwind, stub and recover tables are pointed at by the
UNWIND and RECOVER subspaces, and arranged in code
space as follows:

UNWIND START --~------- > ee

| unwind |
| table |

UNWIND END --------- > --- ee
| linker |
| table |

RECOVER START ------- > Hn a
recover |

| table |

RECOVER END --------- > Hee

Unwinding from Stubs

Calling Stubs: None of the significant registers are modified; RP still contains the re-
turn address.

Called Stubs: All significant registers are on the stack. RP and DP are

stored by calling stub, and SID is stored by CALLX.

Their locations are:

RP > SP-24

SID > SP-28
DP : SP-32

Parameter Relocation Stubs: It must be determined (from the unwind

descriptor) if the current address is before or after

the instruction which stores RP on the stack. If it

is before, RP still contains the return address;

otherwise the return address will be stored on the stack.

Long Branch Stubs: No changes have been made.

10-4 Stack Unwinding

Calling Situations That May Not Support Unwinding

The main type of call from which unwindability cannot be guaranteed is one to mil-
licode, because the assembler cannot automatically generate the standard entry and exit
sequences for millicode routines that utilize stack space. This does not present a major
problem, however, because relatively few millicode routines necessitate the creation of

a stack frame (see section 3 of Millicode document). It is possible, however, to sup-
port unwinding from such situations (i.e. nested millicode calls), provided that the mil-
licode routine which will use stack space is written so that it will independently gener-
ate the correct entry and exit sequences. It is the responsibility of the author of the
specific routine to incorporate these provisions into the actual code.

Other instances in which unwinding may fail:

1. Procedures that have multiple entry points. (secondary entry/exit sequences).

2. Code sequences in which the DP is modified. As a precaution, the DP must never
be altered by user code, only by system code as is absolutely necessary.

For more details on Unwinding, see the Stack Unwind document.

Stack Unwinding 10-5

Code Examples

Standard Procedure Calls

The assembly listing on the following pages was produced by the Pascal compiler
(WITHOUT optimization) when given the source code shown below. The approxi-
mately equivalent C and FORTRAN source code is shown on the next two pages, and
significant differences are noted (either in the source code or the documentation of the
assembly code) where appropriate.

2K ko oR KK ok ok ok ok OK ok ko Kook ook ok ok OK KK OK OK OK OK OK OK KOK KOK KOK KOK KK KK KOK KK KK KEK KKK KKK KR KKK KKK KKK KEK

program test;

function mul (a,b : integer):

begin

mul := a * b;

end;

procedure proca (a,b

VAR c,d

e,f

begin

Cc :i= at b;

d := mul(a,b):

end:

procedure one;

var a,b,c,d,e,f : integer;

begin

ais 93

b := 10;

proca (a,b,c,d,e,f);
e := c +d;

f := e;

end;

begin
one;

end.

integer;

integer;

integer) ;

integer;

Code Examples A-1

C Source Code Equivalent

#include <stdio.h>

main()
f

L

one () ;
‘

one ()

int a, b, c, d, e, f;

a= 9;

b = 10;
proca (a, b, &c, ad, e, f);

e=c +d;
f =e:

}

proca(a, b, c, d, @, f)
int a, b, *c, *d, @2, f;

{
*c = a + bd;

*d = mul (a,b);

}

mul(a,b)

int a,b:

return (a*b):;

FORTRAN Source Code Equivalent

call one

end

subroutine one
integer*4 a,b,c,d,e,f

a= 5

b = 10

call proca(a,b,c,d,e,f) --> Note:

e=ct+d

f=e

return

end

subroutine proca(a,b,c,d,e,f)

integer*4 a,b,c,d,e.f

c=ar+b

d = mul(a,b)

return

A--2 Code Examples

In FORTRAN, all parameters are passed

by reference, so it is impossible to

Simulate the difference between

Pascal’s VAR and Value parameters.

end

function mul(a,b)

integer*4

mul = a*b

return

end

a,b

Assembly Listing

NOTE

The numbers and letters in parenthesis are used as labels
for the documentation that follows the listing.

OK KR OK KOK OK OOK KKK KOK KK KOK KOK KK KOK KK KKK KKK KOK KK KKK KKK OK KKK KOK KOK KOK OK KOK KKK OK KK KOK KKK KK KKK

$LO

$L1

$L1000

$L1000

mu 1

(a)

(D)
$CODE$, QUAD=0 , ALIGN=8, ACCESS=44 , CODE. ONLY

(C)
.CALLINFO CALLER, FRAME=—8, ENTRY SR=1

00002711 (dummy

. EQU --48

. EQU -40

.EQU --48

. EQU --80

.SPACE $TEXTS

.SUBSPA

. PROC

ENTRY

. EXPORTED

L.DO 40(30) ,30

STW 26,-76(0, 30)

STW 25,—-80(0, 30)

LDW -76(0,30) , 26

.CALL

BL $$mulol, 31

LDW -80(0,30) , 25

STW 29,-40(0, 30)

LDW -40(0,30) ,28

label)

BV 0(2)

EXIT

LDO -40(30) ,30

:

,]

. PROCEND: 1n=25, 26; out=28;

(11)

(12)

(13)
(d)

Code Examples A-3

proca

. PROC (C)

.CALLINFO CALLER, FRAME=0,ENTRY SR=1,SAVE_RP

. ENTRY

; . EXPORTED

STW 2,-20(0, 30) ; (7)

LDO 48(30) ,30

STW 26, -84(0, 30) (8)

STW 25 ,-88(0, 30)

STW 24,-92(0, 30)

STW 23,-96(0, 30) ;

LDW -84(0,30),1 (9)

LDW ~88(0,30) ,31 ;

ADDO 1,31,19

LDW -—92(0,30) ,20 ;

STW 19 ,0(0, 20)

LDW —~84(0,30) ,26 (10)

CALL ; in=25,26; out=28;

BL mul , 2

LDW —88(0,30) ,25

LDW ~96(0,30) ,21 ; (14)

STW 28,0(0,21)

00002712 (dummy label)

LDW —~68(0,30) ,2 ; (15)
BV 0(2) ;

EXIT : (d)

LDO ~48(30) ,30 ;

.PROCEND; in=23,24,25, 26;

one

. PROC (C)

.CALLINFO CALLER, FRAME=32,SAVE_ RP

. ENTRY

: . EXPORTED

STW 2,-20(0, 30) (3)

LDO 80(30) ,30

LDI 5,22 (4)

STW 22,-60(0, 30) ;
LDI 10,1

STW 1,-64(0, 30) ;

LDW -60(0,30) ,26 ; (5)

LDW —-64(0,30) ,25

LOO —68(30) , 24

LDO —-72(30) , 23

LDW —-76(0,30) ,31 ;

LOW -—80(0,30) ,19

STW 31,-52(0, 30) ;

STW 19,-56(0, 30)

. CALL * in=23,24,25, 26; (6)

BL proca,2

NOP

LDW —-76(0,30) ,20 (16)

A-4 Code Examples

00002713

PROGRAM
_Start

LDW -80(0,30) ,21 ;

ADDO 20,21,22

STW 22,-76(0, 30)

LDW -76(0,30),1

STW 1 ,-80(0, 30)

(dummy label)

LDW -100(0,30) ,2 (17)

BV 0(2) :

EXIT ; (d)

LDO -80(30) ,30

-PROCEND

. PROC (Cc)

.CALLINFO CALLER, FRAME=0, SAVE SP,SAVE_ RP

. ENTRY

. EXPORTED

STW 2,-20(0, 30) ; (1)

LDO 48(30) ,30

oOTW ,-4(0, 30)

< calls to system process initialization procedures >
< these would not appear in the C compiler output >

CALL (2)
BL one, 2

NOP

< calls to system process termination procedures >
V < these would not appear in the C compiler output

LDW -68(0,30) ,2 ; (19)

BV 0(2)

.EXIT (d)

LDO -48(30) ,30

. PROCEND - 1n=24,25, 26;

(e)
.SUBSPA SUNWINDS , QUAD=0 , ALIGN=8 , ACCESS=44

. WORD mu l

. WORD mul+40 ; = 0x28

. WORD 32768 - = 0x8000

. WORD a) * = QOx5

. WORD proca

< unwind table information continues >

.SPACE $TEXTS (Dd)

.SUBSPA SCODES

.EXPORT mul ,ARGWO=GR ,ARGW1=GR ,RTNVAL=GR (f)

Code Examples A-5

< .EXPORT list continues >

< . IMPORT list begins > (g)

. IMPORT $$mulol , MILLICODE

. END

Documentation

Code Description

NOTE

The relevant assembler directives are summarized in Appen-
dix B (page 60), and the other compiler-generated informa-
tion 1s briefly explained following the code comments.

(Numbers below correspond to those accompanying the blocks of code; they appear in
the order in which they would be executed. In other words, the code documentation
follows the program flow of control.)

1. The beginning of the main program block (note that the main program is handled
in much the same manner as a standard procedure). Because other procedures will
be subsequently called, it is necessary to store the Return Address and allocate a
stack frame. The Return Pointer (RP), which is currently in gr2, is first stored onto
the stack at SP-20, and then SP (gr30) is incremented (by 48 bytes) in order to cre-
ate the new frame. Also, the ’Previous SP’ field is initialized to zero (recall that
grQ is the zero value register), in order to signify the termination point for stack
unwinding. (In the compiled C code, this initialization would not appear because the
outer block is handled differently.)

. CALL to the procedure ’one’. The return pointer (RP), which is the address of the
second instruction following the BL, is put into gr2. The delay slot (i.e. the instruc-
tion following the branch) 1s followed by a NOP because there is no operation that
the compiler could have inserted there.

. ENTRY to procedure ’one’. Again, this is a non-leaf procedure, so it is necessary
to store RP onto the stack at SP-20 and then allocate a new frame by incrementing
SP (this time the increment is 80 bytes in order to accommodate the local vari-
ables).

. The immediate values 5 and 10 are loaded into gr22 and grl respectively, and these
registers are stored onto the stack at SP-60 and SP-64. This block correspond to
Statements ’a:=5’ and ’b:=10’.

A-6 Code Examples

5.

10.

11.

Loading arguments (into caller-saves registers). This can be divided into three
categories. First, the values stored on the stack at SP-60 and SP-64 (corresponding
to ’a’ and ’b’) are loaded into arg0 and arg! (gr26 and gr25). Second, the ad-
dresses SP-68 and SP-72 are loaded into arg2 and arg3 (gr24 and gr23). Corre-
sponding to variables ’c’ and ’d’, these two arguments are loaded with addresses

rather than actual values due to the fact that they are being passed by reference
(i.e. VAR parameters). Third, the values stored on the stack at SP-76 and SP-80
(corresponding to ’e’ and ’f’) are loaded into gr31 and grl19 respectively (these two
are serving as scratch registers), and then stored onto the stack at SP-52 and
SP-56. Note that these two parameters must be stored onto the stack because the
argument registers have already been filled. (In the compiled FORTRAN code, it
would become evident that all parameters are passed by reference, as in the Second
category above, as Is dictated by the FORTRAN language.)

. CALL to procedure ’proca’. Note that the CALL directive is followed by a note
indicating that arguments will be passed to the procedure in gr23-26. The delay
slot is filled with a NOP, although it could have been filled with another operation
(e.g. one of the preceding STW or LDW instructions). As with all BL instructions,
the return address is simultaneously loaded into gr2 (or gr31 for millicode).

. ENTRY to procedure ‘proca’. As before, this is a non-leaf procedure, so it is nec-

essary to store RP at (SP-20) and allocate an additional stack frame by increment-
ing SP (48 bytes in this case).

. The values held in the four argument registers (gr26-23) are stored onto the stack
in the fixed arguments area of the PREVIOUS (caller’s) frame. This is determined
by subtracting the size of the current frame (48 bytes) from the offset (84, 88...),
and using the result as the offset into the previous frame. These words correspond
to the parameters ’a’ through ’d’. (Note that these Store operations are actually
unnecessary, and would probably be removed by the optimizer.)

. The words at SP-84 and SP-88 (parameters ’a’ and 'b’) are loaded into gr1 and
gr31 respectively and the add operation (a+b) is performed, with the result being
put into gri9. After SP-92 (which contains the address of ’c’) is loaded into gr20,
the gr19 value is stored at that address.

CALL to function ’mul’. After the two parameters (‘a’ and ’b’) are loaded into
arg0 and arg 1 (gr26 and gr25), the branch is made to ’mul’, and the return address
is put into gr2. Note that in this case, the delay slot is filled with an operation (the
loading of the ’b’ value).

ENTRY to function ’mul’ and CALL to millicode routine ’mulol’. Although ‘mul’ ts
a leaf routine (it makes only a millicode call), a temporary local frame is allocated
because the function return value will later be temporarily stored onto the stack,
but RP is not stored onto the stack because no additional procedure calls will be
made. (This temporary frame is actually unnecessary, and would be removed by the
optimizer.) The two arguments (’a’ and ’b’, in arg0 and argl are stored onto the
stack, and then reloaded into registers in order to be sent to the millicode routine
that will perform the multiply operation. Then the branch is made to the millicode
routine ($$mulol’), with the return address being stored in gr31 (MRP).

Code Examples A-7

12.

13.

14.

15.

17.

18.

NOTE

This code would be further optimized by accessing the argu-
ments directly from the registers in which they enter ’mul’,
thereby eliminating the argument stores and loads.

The millicode return value (in gr29) is stored onto the stack, and subsequently
loaded into gr28, which is the procedure return register (ret0). This sequence
would probably be optimized to be a simple COPY 29,28’ instruction.

EXIT from function ’mul’. Deallocate the local frame, and return back to the
caller (proca’). The BV (Branch Vectored) instruction, which also uses gr2 as the
return pointer, accomplishes this return.

RETURN from ’mul’ to ’proca’. The value stored at SP-96 (the address of ’d’) is
loaded into gr21, and then the return value (in gr28) is stored at that address.

EXIT from procedure ’proca’. The return address is loaded into gr2 from the ’RP’
field of the Previous frame, and the branch is made to that address. The delay slot
is filled with the instruction that deallocates the local frame by decrementing SP.

.RETURN from ’proca’ to ’one’. The values stored at SP-68 and SP-72 (the cur-
rent values of ’c’ and ’d’) are loaded into gr20 and gr21, and the add operation
(c+d) is performed, with the result being put into gr22. This result is then stored
onto the stack at SP-76, which 1s the location assigned to ’e’. Finally, the value

stored in the ’e’ word is reloaded (into grl), and then stored into SP-80, which is
the location of ’f’. (This is the ’f:=e’ operation.)

EXIT from ’one’. The return address is taken from its memory location (SP-100)
and loaded into gr2, the local frame is deallocated by decrementing SP, and the
branch is taken to the return point in the main program.

EXIT from main program. The return address (i.e. to the system) is loaded into
gr2, the local frame is deallocated by decrementing SP, and the branch is made to
the system address.

Other Compiler--Generated Information

(Letters correspond to those accompanying directive blocks.)

a.

b.

The .EQU directives indicate the size of each stack frame that is built within the
process.

SPACE and .SUBSPA specify the proper space and subspace in the system that
contains the current information.

A-8 Code Exarnples

. This four-directive sequence appears at the beginning of every procedure. The di-
rectives are summarized in Appendix B.

. The directives .EXIT and .PROCEND appear at the end of every procedure. Their
functions are summarized in Appendix B.

. The information necessary for stack unwinding is stored here.

. The .EXPORT list, which is the list of all procedures contained within this process
that can be globally accessed.

. The .IMPORT list, which is the list of all procedures that this process is dependent
upon (includes the system initialization and process termination procedures men-
tioned in the main program code).

External Calls

The assembly code on the page after next was produced by the MPE-XL Pascal com-
piler from the Pascal source code shown on the next page. A few additional notes con-
cerning the code sample:

In the source code, an external call situation has been simulated by assuming that
the callee (’one’) resides in a different load module than the caller (two’).

The assembly listing has been abbreviated to include only the code associated di-
rectly with the source code. In the complete listing, there would be calling and
called stubs for all calls to process initialization and termination procedures (which
occur in the outer block/main program as noted below) preceding the section of
code shown here.

Because the use of the CALLX millicode is transparent to the user, it has been just
referenced as being ’in system space’ to avoid all of the excess detail that would be
necessary to use actual addressing. A similar liberty has been taken in a few other
cases; where actual offsets appear in the code, they have been eliminated to
achieve simplicity.

The code sample is accompanied (in the left margin) by arrows that follow the flow
of control. These arrows function exactly as those used in the flow diagrams in the
text; in this case, the starting point is in the main program block, near the bottom

of the code sample. Furthermore, all ’critical points’ have been labeled with num-
bers and documented on the page following the assembly code (just as was done in
the local call example).

The assembly code is lightly documented; the code used in the stubs 1s documented
in detail in sections 8.7.1 - 8.7.3, and the small amount of code present other than
in stubs is basically the same as that used in any local procedure call.

Code Examples A-9

ce eCSSSSS SSCS SSSSSLSS SSP OSSPSLOESSSESSSSSSSSSSSSSSSSSESS SSE SESS SSS SSS SS SS S :

Pascal Source Code

program extcall;

(* procedure ‘one’ iS in module 2; therefore an external call

is necessary in order for the call from “two” to be successful *)

procedure one (a,b : integer) ;
begin

end;

(* procedure “two” iS in module 1, 1.e. the same module

as the main program block. ‘Bar’ calls ‘one’ *)}

procedure two;

begin

one (1,2);

end;

begin

two;

end.

Assembly Code

NOTE

The numbers in parenthesis follow the flow of C and are
used as labels for the documentation that follows.

A-10 Code Examples

cee ee re i ee ee ae ee ee eee

| CALLX millicode | (7)
| (in system space) |

MFSP srO,gro (8)
BL [“one’ addr] ,gr2 (9)

DEP gr31,31,2,gr2

LDW -28(sr0,gr30) ,gr21 (12)

LDW -24(sr0,gr30) ,gr2

MTSP gr21,sr4

BE O(sr4,gr2) (13)

LDW -32(sr0,¢gr30) ,gr27

LDW -4(sr0,gr27) ,grl (5)

STW gr27,-32(sr0, gr30)

ADDIL L%Ox0O, grl

LDO 160(grl),grl

LDW 16(sr0,grl),gr20o

STW gr2,-24(sr0,gr30)

BE O(sr7,gr20) (6)

MF SP sr4,ger2l

STW gr26,-—-36(sr0,gr30) (10)

STW gr25,-40(sr0O, gr30)

BV grO(gr2) (11)

NOP

STW gr2,-20(sr0,gr30) (3)

L.DO 48(gr30) ,gr30

NOP

LDO 1(grO) ,gr26
BL {stub addr }} gr2 (4)

LDO 2(grO) ,gr2s5

LDW -68(sr0,gr30) ,gr2 (14)

BV grO(gr2) (15)

LDO -48(gr30) ,gr30

STW gr2,-20(sro, gr30) (1) <--~— **F*** Start Here

LDO 48(gr30) ,gr30

gr0,-4(sr0,gr30)

calls to system initialization procedures >>

BL (stub addr J}, gr2 (2)

(16)

‘ calls to system process termination procedures >>

Code Examples

KOK KK *

A-11

Assembly Documentation

1.

10,

11.

12.

Start of outer block/main program. RP is saved, the stack frame is allocated, and
the unwind delimiter is initialized.

_Call to procedure ’two’. This is a local call, so the branch goes directly to the pro-
cedure, with no stub interaction.

. Entry to procedure ’two’. RP is saved, the frame is allocated, and the constant val-
ues 1 and 2 are loaded into argument registers 1 and 2 (gr26 and gr25).

. Branch to Calling Stub. As far as the procedure ’two’ is concerned, this is the call

to the procedure ’one’, but the branch actually goes to the calling stub that is nec-
essary because this is an external procedure call.

. Entry to Calling Stub attached to ’two’. The calling stub performs as is docu-
mented in detail in section 8.7.1 of the text.

_Call to CALLX rnillicode. The Branch External instruction is used in order to

reach the CALLX millicode routine.

. Execution of CALLX millicode; it performs exactly as is documented in section
8.7.2 of the text, and then branches to the called stub that is attached to procedure
, »]

one .

. Entry to called stub attached to procedure ’one’. The first instruction here is effec-
tively a NOP used to identify the beginning of the stub.

. Branch to procedure ’one’. The standard Branch and Link instruction is used to
reach the actual code for the external procedure ’one’.

Entry to procedure ’one’. The arguments in gr26 and gr25 are stored onto the
stack (this is not necessary, and only remains because the code has not been opti-
mized.

Exit from ’one’ / Branch back to called stub. The standard return instruction (BV)
is used here, although the branch is actually going to the called stub, and not di-
rectly to the caller.

Re-entry to called stub. The remainder of the called stub performs as is docu-
mented in detail in section 8.7.3 of the text.

A-12 Code Examples

13.

14.

16.

Exit from called stub / branch back to procedure ‘two’. The Branch External in-
struction is used to reach to actual code for the procedure ’two’ (the caller).

Return to procedure ’two’ from called stub. The previous RP is loaded into gr2
from the stack, and the frame is deallocated.

.Exit from procedure ‘two’ / branch back to main program block. The standard pro-
cedure return is made, because this is a local return.

Return to main program block from procedure ’two’. After return, calls are made
to the system process termination procedures, and then the frame is deallocated
and the return is made to the system.

Code Examples A-13

ogee

Summary of Assembler Procedure Control

The following table summarizes the Precision Architecture assembler directives that are
used to control procedure calling:

Directive | Function |

| . CALL | Specifies that the next statement. isa procedure call. |

| .CALLINFO | Provides information necessary for generating Entry and |

| | Exit code sequences and for creating unwind descriptors. |

| . ENTRY | Marks the entry point of the current procedure. |
| | (compiler-generated) |

| . EXIT | Marks the return point of the current procedure. |
| | (compiler-generated) |

| . KEEP | Marks the beginning of a procedure’s entry code. |
| | (compiler-generated) |

.EKEEP | Marks the end of a procedure’ Ss entry code. |

| (compiler-generated) |

| ENTER | Marks the entry point of the procedure being called: |
| | causes the assembler to produce the entry code sequence. |

ese atone samme ne 5> tn rm eam seems me ems Ge, ee me ree amine neh any ORR ea eee te eh cern tree wee mt en “an me ce ee Sine en Sem ee ee eet cen OE ty ene cree me Cee een ML cM Set nme ern CON. MERI FORE mip, “A Seth nr wm et huts AR mits pa Sa a neem em:

| . LEAVE | Marks the exit point of the procedure being called; |
| | causes the assembler to produce the exit code sequence. |

ae nes ae Atm cme cote mS mene cme ci ee me me atm tte cnn OS rite ree me crm seth ett ci A “ei me enn me see emis ine etme SEN me Sm ree A ee te Semen nS misty et ray SS com ore eee SOG SAO mS crty cmt MR YN ee ot I SE SA YEE ARIF ntmIRS Seni Sune mA ee ute sem me

ne eee mete mn ese cement seer STR es ee em oe mem em mien een remnant emer ie te creme Serer nrc tee eatin meme ere eter te ne tte em ey Sever em en rm a me unt mets mens nn wee ine ei ERS NN eS Se iS AL Sem SnD SE km ee ASIEN we LE NL eM sm ne te

Summary of Assembler Procedure Control Directives B-1

READER COMMENT SHEET

HP 3000/930 and HP 9000/840 Computers

Procedure Calling Conventions
Reference Manual

09740-90015 November 19386

We welcome your evaluation of this manual. Your comments and suggestions help us to improve our

publications. Please explain your answers under Comments, below, and use additional pages if necessary.

Is this manual technically accurate? L] Yes LJ No

Are the concepts and wording easy to understand? LC] Yes L] No

Is the format of this manual convenient in size, arrangement, and readability? L] Yes LJ No

Comments:

This form requires no postage stamp if mailed in the U.S. For locations outside the U.S., your local HP

representative will ensure that your comments are forwarded.

FROM: Date

Name

Company

Address

FOLD FOLD
ae we we we eee Oe Oe ee ee ee we Om

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

we Re ee BE OO ORD HE OO OO OH OS SH STEP CH SH SH OH AMAT SEH eM ewaZen en eanwawdewtawrensanerae

SERRE EREES
~ BUSINESS REPLY MAIL oor

SERRE
FIRST CLASS PERMIT NO. 718 CUPERTINO, CALIFORNIA PTT TT TTT.

TTT TTT ELT PT Pir etic i et

POSTAGE WILL BE PAID BY ADDRESSEE SHGGREGREEEE
j SERRE

Publications Manager SERRE

Hewlett-Packard Company PTT PEELE Ge

ITG Hardware Documentation SERRE

19447 Pruneridge Avenue SERRE

Cupertino, California 95014

FOLD FOLD

READER COMMENT SHEET

HP 3000/930 and HP 9000/840 Computers

Procedure Calling Conventions
Reference Manual

09740-90015 November 1986

We welcome your evaluation of this manual. Your comments and suggestions help us to improve our

publications. Please explain your answers under Comments, below, and use additional pages if necessary.

Is this manual technically accurate? [| Yes LJ No

Are the concepts and wording easy to understand? a Yes LJ No

Is the format of this manual convenient in size, arrangement, and readability? L) Yes LJ No

Comments:

This form requires no postage stamp if mailed in the U.S. For locations outside the U.S., your local HP

representative will ensure that your comments are forwarded.

FROM: Date

Name

Company

A.ddress

— ae ow se arses em woe (coenem, ememne armmens wena nt mm SE Re a ee ee I ee cme ED GREED FUR SE So sey

FOLD
meme wewe sew atv en Bee Ow OT we Be ee Oe OF Be we ee ee ewe we -

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 718 CUPERTINO, CALIFORNIA

POSTAGE WILL BE PAID BY ADDRESSEE

FOLD

Publications Manager
Hewlett-Packard Company
ITG Hardware Documentation
19447 Pruneridge Avenue
Cupertino, California 95014

Se 8 @u me ew arent eaer ae ween nan SSB we we en ee ee os Be owe

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

READER COMMENT SHEET

HP 3000/930 and HP 9000/8400 Computers

Procedure Calling Conventions
Reference Manual

09740-90015 November 1986

We welcome your evaluation of this manual. Your comments and suggestions help us to improve our

publications. Please explain your answers under Comments, below, and use additional pages if necessary.

Is this manual technically accurate? LJ Wes LJ No

Are the concepts and wording easy to understand? LJ Yes LJ No

Is the format of this manual convenient in size, arrangement, and readability? LJ Yes LJ No

Comments:

This form requires no postage stamp if mailed in the U.S. For locations outside the U.S., your local HP

representative will ensure that your comments are forwarded.

FROM: Date

Name

Company

Address
eee RUS rN ime Se Ee ee RS Ge erED me A Gm

ee eee en SHEE CURE, OES mtn emt er re en CE eh SRS GETTER GES GEN cuneER eEeD

FOLD
Cw OO ee RE EE Re Oe we we we em we ree ee ee

NO POSTAGE
NECESSARY
If MAILED

IN THE
UNITED STATES

we ee Se Ow OR SH Ke EB e BD en BO ee Be Se BE eS SOF SK HE HEE OM KO ee Oe ow aw

. BERGER REEE

BUSINESS REPLY MAIL a a an ann
| BERGER

FIRST CLASS PERMIT NO. 718 CUPERTINO, CALIFORNIA TTT TTT Tt.

eee eR SERRE RRREEs

POSTAGE WILL BE PAID BY ADDRESSEE SESRERRRERES
. . ERERRRRRREEE

Publications Manager PT TTT iL Pra

Hewlett-Packard Company PPT TY TTT ire
ITG Hardware Documentation PTY TT TT iti td
19447 Pruneridge Avenue PTT Te TT Tt
Cupertino, California 95014

FOLD FOLD

Manual Part Number 09740-90015 f} HEWLETT
Printed in U.S.A., November 1986 iP PACKARD

	Procedure Calling Conventions Manual
	Contents
	1. Overview
	2. Interfaces
	3. Stack Usage
	4. Register Usage
	5. Parameter Passing
	6. Parameter Relocation
	7. The Actual Call
	8. Inter-Module Procedure Calls
	9. Millicode Calls
	10. Stack Unwinding
	A. Code Examples
	B. Summary of Assembler Procedure Control

