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Overview 

Modern programming technique encourages programmers to practice well-structured 
decomposition, which entails the use of a greater number of smaller, more specialized 
procedures rather than larger, more complex routines. While this creates more adapt- 
able and understandable programs, it also increases the frequency of procedure calls, 
thus making the efficiency of the procedure calling convention crucial to overall system 
performance. 

Many modern machines provide instructions to perform many of the tasks necessary to 
make a procedure call, but this is not the case in the HP Precision Architecture 
(HPPA). Instead of using an architected mechanism, the procedure call is accom- 
plished through a software convention which uses the machine’s simple hardwired in- 
structions, a solution that ultimately provides more flexibility and efficiency than the 
more complex (microcoded) instruction set additions. 

Besides the obvious branch-and-return interruption that occurs in the flow of control 
as a result of a procedure call, many other provisions must be made in order to 
achieve an effective calling convention. The call mechanism must also pass parame- 
ters, save the caller’s environment, and establish an environment for the called proce- 
dure (the ”callee”). The procedure return mechanism must restore the caller’s previous 
environment and save any return values. 

Although the Precision Architecture machines are essentially register-based, by conven- 
tion a stack is necessary for data storage. As a basis for discussion of the Procedure 
Calling Convention, we will first examine a straightforward calling mechanism in this 
environment, one in which the calling procedure (caller) acquires the responsibility for 
preserving its own state. This simplified model employs the following steps for each 
call: 
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NOTE 

These steps are NOT the exact implementation used in the 
HPPA, but are given as a general basis for the discussion of 
the actual Procedure Calling Convention that will follow.) 

® Save all registers whose contents must be preserved across _ the procedure call. 
This prevents the callee, which will also use and modify registers, from affecting 
the caller’s state. | On return, those register values are restored. 

® Evaluate parameters in order and push them onto the stack. This makes them 
available to the callee, which, by convention, knows how to access them. 

® Push a frame marker, which is a fixed-size area containing — several pieces of in- 
formation. Included is the static link, | which provides information needed by the 

callee in order to address _ the local variables and parameters of the caller, as 
well as the return address of the caller. 

® Branch to the entry point of the callee. 

And to return from a call in this model, it is necessary that: 

® The callee extract the return address from the frame marker and branch to it, 

and 

@ The caller then remove the parameters from the stack and restore all saved reg- 
isters before the program flow continue. 

This model correctly implements the basic steps needed to execute a procedure call, 
but is relatively expensive. The caller is forced to assume all responsibility for pre- 
serving its state, which is a conservative and safe approach, but causes an excessive 
number of register saves to occur. To optimize the program’s execution, the compiler 
makes extensive use of registers to hold local variables and temporary values; these 
registers must all be saved at a procedure call and restored at the return. A high 
overhead is also incurred by the loading and storing of parameters and linkage infor- 
mation. The procedure call convention implemented in the Precision Architecture fo- 
cuses on the need to reduce this expense by maximizing register usage and minimizing 
direct memory references. 

The HPPA compilers attempt to alleviate this problem by introducing a procedure call 
mechanism that divides the register sets into “partitions”. The registers are partitioned 
into ”caller-saves” (the caller is responsible for saving and restoring them), ”callee- 
saves” (the callee must save them at entry and restore them at exit), and ”linkage” 
registers. In the general purpose register set, sixteen of the registers comprise the 
callee-saves partition and thirteen are available for use as caller-saves registers. 
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Thus the responsibility for saving registers is divided between the caller and the callee, 
and some registers are also available for linkage. The floating point registers and 
space registers are also partitioned in a similar manner. 

The register allocator avoids unnecessary register saves by using caller-saves registers 
for values that need not be preserved across a call, while values that must be pre- 
served are placed into registers from the callee-saves partition. At procedure entry, 
only those callee-saves registers used in the procedure are saved; this minimizes the 
number and frequency of register loads and stores during the course of a call. The 
register partitions are not inflexible; if more registers are needed from a particular par- 
tition than are available, registers can be borrowed from the other partition. The pen- 
alty for using these additional registers is that they must be saved and restored, but 
this overhead is incurred only in the special circumstance where excess registers are 
needed, which happens relatively infrequently. 

In the simple model outlined above, all parameters are passed by being placed on the 
stack, which is expensive because direct memory references are needed in order to 
push each parameter. In the Precision Architecture procedure calling convention, this 
problem is lessened by the compilers, which allocate a permanent parameter area (in 
memory) large enough to hold the parameters for all calls performed by the procedure, 
and minimize memory references when storing parameters by using a combination of 
registers and memory to pass parameters. Four registers from the caller-saves parti- 
tion are used to pass user parameters, each holding a single 32-bit value or half of a 
64-bit value. Since procedures frequently have few parameters, the four registers are 
usually enough to accommodate them all. This removes the necessity of storing pa- 
rameter values in the parameter area before the call. If more than four 32-bit parame- 
ters are passed, the additional ones are stored in the preallocated parameter area, or tf 
a parameter is larger than 64 bits, its address is passed and the callee copies it to a 
temporary area. 

Additional savings on memory access are gained when the callee is a leaf procedure 
(one that does not make any other calls). In this situation, the register allocator uses 
the caller-saves registers to hold variable values, thus eliminating the need to save 
callee-saves registers that it might have used in a non-leaf procedure. Furthermore, 
since a leaf procedure will not make subsequent procedure calls, there is no need to 
allocate a stack frame for it, because the return address and other values can remain 
in registers during the entire life of the call. (Actually, there are rare exceptions to 
this; a stack frame may be necessary for a leaf procedure if more local space ts 
needed than is available in registers.) 

Types of Procedure Calls 

Procedure calls can be grouped into three categories, depending on the location of the 
callee. The possibilities are: 

1. Procedures residing in the same load module (Intra~-Module Call) 

2. Procedures residing in other load modules (Inter-Module Call) 

3. Operating System or Subsystem procedures 
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NOTE 

Throughout the rest of this document, ”Local” is used as a 
synonym for "Intra-Module” and ”External” is used inter- 
changeably with "Inter-Module” or ”OS/Subsystem”. 

In order to simplify code generation, all three types of calls are mapped into the local 
(intra-module) case, thus requiring the compiler to recognize only a single type of call. 
This is accomplished through the use of two types of stubs” ("calling stubs” and 
*called stubs”) which establish the external branching and linking necessary for inter- 
module calls. Inter-module calls and specific stub usages are discussed in more detail 
in section 8 ("Inter-Module Calls”). 
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Interfaces 
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Figure 2-1. Procedure Call Convention Architected Interfaces. 

Figure 2-1 shows the units involved in a procedure call, and the critical interfaces 
(numbered) that will be discussed throughout this document, and their definitions fol- 
low: 

CALLER : The calling code, origin of the call. 
CALLEE : The calling code, object of the call. 

STUB: A piece of code that may be attached to the caller and/or callee that enables 
an otherwise impossible call to occur. Stubs are used primarily with [Inter-Module 
calls. See Section 8 for details. 

(1) Call : The transfer of program control to the callee. 

(2) Entry : The point of entry into the callee. 

(3) Exit : The point of exit from the callee. 

(4) Return : The point of return of program control to the caller. 
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Stack Usage 

Leaf / Non--Leaf Procedures 

All procedures can be classified in one of two categories: leaf or non-leaf. For the 
purpose of definition, a leaf procedure is one that makes no additional calls, while a 
non-leaf procedure is one that does make additional routine calls. Although simple, 
the distinction is essential because the two cases entail considerably different 
requirements regarding (among other things) stack allocation and usage. Every 
non-leaf procedure requires the allocation of an additional stack frame in order to 
preserve necessary execution values and arguments, while this is not necessary for a 
leaf procedure. The recognition of a procedure as fitting into either the leaf or 
non-leaf category, as well as the allocation of all necessary stack space, is done at 
compile time. As will become evident throughout this document, it is often the case 
that, due to these stack allocation conventions, much of a callee’s state information is 
saved in the caller’s frame; this is one way in which unnecessary stack usage can be 
avoided. A general picture of the top of the stack for one call, including the frames 
belonging to the caller (previous) and callee (new), is shown in Figure 3-1. 
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| Formal | 
| Arguments | 

J wean nanan nn n= 
Frame 1 | Frame Marker | The return address from the 
(previous) | (ine. RP) | <---~ callee (Frame 2) to the caller 

~ — | (Frame 1), if it is stored to 
—_— _ memory, will be stored here. 

Frame 2 |Register Save | 
(new) | Area | | 

------- : 
~~ : 

| Local | addresses 
| Variables | increasing 

anaes fo 
- | 4 

| Actual | \/ 

| Arguments | 
| _— 

| Frame Marker | 

SP - > 

(Stack Pointer: always points to the first unused byte 

of memory, and is always kept double-word aligned) 

Figure 3-1. General Stack Layout. 

Storage Areas Required for Call 

The elements of a single stack frame that must be present in order for a procedure 
call to occur are shown below. The stack addresses are all given as byte offsets frorn 
the actual SP (stack pointer) value; for example, "SP-36’ designates the address 36 
bytes below the current SP value. 

NOTE 

Fields shown in Table 3-1 are explained in the text 
following the table. 
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Table 3-1. Elements of Single Stack Frame Necessary for Procedure Call. 

ea a eee aa an vO ne eiceemeneticaeasdicanmatime ne tienen tinematcitemnamttaanens tases’ tiemmeslientaretiens te Meera terete! ee me er on ee ee ee 

Offset Contents 

Variable Arguments (optional; any number may be allocated) | 

SP-(4*(N+9)) arg word N 

SP-56 arg word 5 

SP-52 arg word 4 

Fixed Arguments (must be allocated; may remain unused) 

| SP-48 arg word 3 
SP-44 arg word 2 

SP-40 arg word 1 

| SP-36 arg word 0 

Frame Marker 

SP-32 External Data Pointer (DP) (set after Call) 

SP-24 External/stub RP (RP’”) (set after Call) 

SP-20 Current RP (set after Entry) 

SP-16 Static Link (set before Call) 

SP-12 Clean Up (set before Call) 

SP- 8 Calling Stub RP (RP’”) (set after Call) 

SP- 4 Previous SP (set before Call) 

Top of Frame 

| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 

SP-28 External sr4 (set after Call) | 

| 
| 
| 
| 
| 
| 
| 
: 

| SP- 0 Stack Pointer (points to next available address) | 

| 
| | < top of frame > 

sr ese emente army Seen cate seem GO eS me cen cere ere renee cam Seren Se mi em mami ree meme i re ec ee re Se cee ct Se ieee ne me em ay nee enn em mt i ee i ee a ee et i AE EN YT I ORE SLR NE tne OES SOuOL Rune mem ee nm tine ememrw een SRE rene mote 

Frame Marker Area 

This eight-word area is allocated by any non-leaf routine prior to a call. The exact 
size of this area is defined because the caller uses it to locate the formal arguments 
from the previous frame. (Any standard procedure can identify the bottom of its own 
frame, and can therefore identify the formal arguments in the previous frame, because 
they will always reside in the region beginning with the ninth word below the top of 
the previous frame.) 

Previous SP: contains the old (procedure entry) value of the Stack Pointer. It is only 
required that this word be set if the current frame is noncontiguous with the previous 
frame. Calling (a.k.a. Import) Stub RP (RP’’): Reserved for use by a calling stub 
that must store an RP value, so the stub can be executed after the exit from the callee, 

but before return to the caller. See Section 8 for detailed discussion of stubs. Clean 
Up: area reserved for use by language processors; possibly for a pointer to any extra 
information (i.e. on the heap) that may otherwise be lost in the event of an abnormal 
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interrupt. Static Link: Used to communicate static scoping information to the callee 
that is necessary for data access. It may also be used in conjunction with the SL 
register, or to pass a display pointer rather than a static link, or it may remain unused. 
Current RP: reserved for use by the called procedure; this is where the current return 
address can be stored if the procedure wants/needs to use RP (gr2) for any other 
purpose. 

External/Stub RP (RP’), 
External sr4, and 
External DP : all three of these words are reserved for use by the intermodular 
(external) calling mechanism. See Section 8 for more details. 

Fixed Arguments Area 

These four words are reserved for holding the argument registers, should the callee 
wish to store them back to memory so that they will be contiguous with the 
memory~—based parameters. All four words must be allocated for a non-leaf routine, 
but may remain unused. 

Variable Arguments Area 

These words are reserved to hold any arguments that can not be contained in the four 
argument registers. Although only a few words are shown in this area in the diagram, 
there may actually be an unlimited number of arguments stored on the stack, 
continuing downward in succession (with addresses that correspond to the expression 
given in the diagram.) Any necessary allocation in this area must be made by the 
caller. 
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Register Usage 

Register Partitioning 

In order to provide adequate register resources for normal usage, the general and float- 

ing point register sets have been divided into partitions, with each set consisting of 

(among other fixed values) groups designated as Callee-Saves and Caller-Saves. 

Callee-Saves registers are those that the callee saves immediately after procedure en- 

try, if necessary, and restores before exit, and are guaranteed to be preserved across 

procedure calls. Caller-Saves registers are those that the caller will (if necessary) save 

before call and restore after return, and are NOT guaranteed to be preserved across 

calls. 

The Caller-Saves registers may be used as temporaries which need to be saved only if 

they contain values which are live across a call. The Callee-Saves registers may be ac- 

tually used by the callee only if it insures the restoration of their original entry values 

before exit. 

These partitions (along with other dedicated registers) are shown in Figure 4-1 on the 

following page. 
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gro | Value (zero) | 
ams meee me ek me em ter re mee ee ae ee ee cavities eee eine scene seen tee me mn times 

grl | Scratch * | 

gr2. | RP (Return Pointer / Address) | 

gr3 : : 

| Callee Saves | 

DO | | 
gr18s | | 

grig | | 
| Caller Saves | 

gr22 | | 

gr23 | | 
| Arguments * | 

gr26 | | 

gr27 | DP (Global Data Pointer) | 

gr28 | Return Values * | 
gr29 | | 

gr30 | SP (Stack Pointer) | 

gr31 | MRP (Millicode Ret. Ptr)/scratch * | 

( "*" = may also be considered part of the caller-saves partition) 

Figure 4-1. Register Partitioning. 
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Floating Point Registers 

Callee Saves | 

Figure 4-2. Floating Point Registers. 
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Other Register Conventions 

The following are guaranteed to be preserved across calls: 

1. The procedure entry value of SP. 

2. The values of DP, and sr4-7. 

3. The value of fr0, unless it is explicitly modified by the callee. 

The following are NOT preserved across calls: 

1. Any caller-saves registers that are not saved and restored as part of the caller- 
saves partition. 

2. Floating Point registers 1-3 (frl1, fr2, fr3). 

3. Space registers 0-2 (sr0, srl, sr2). 

4. The PSW (Processor Status Word). See Section 2, of the Processor ACD, for fur- 

ther explanation). 

5. Any control registers that are modified by privileged software. (e.g. Protection 
[Ds). 

6. The state (including internal registers) of any special function unit. (e.g. floating 
point coprocessor). 

Return Values 

Values are returned from procedures/functions as listed in Table 4-1. 

Table 4-1. Return Values. 

Type of Return Value Return Register 
eee __. --— | 

Nonfloating Pt. (32-bit) retO (gr28) | 
| Nonfloating Pt. (64-bit) retO (gr28) - high order word | 

retl (gr29) - low order word | 
Floating Pt. (32-bit) fret (fr4) * 

| Floating Pt. (64-bit) | fret (fr4) * 

Space Identifier (32-bit) sret (srl) 

Any >» 64 bits Short pointer in retO (gr28) 

will point to the value 

| | (must assume worst alignment) 
| -- _— _— 

* Although not common, it is possible to return floating point values in general 

registers, as long as the argument relocation bits in the symbol record are set 

correctly. (Refer to Section 6,°’Parameter Relocation’ ,for more details. ) 
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Summary of Dedicated Register Usage 

The following table shows the required conventions regarding argument and return 
value passing. Note that those registers listed in the first section below are the only 
ones that absolutely cannot be used to hold user values (i.e. arguments), but the user 
risks the unintentional destruction of necessary data if he does not adhere to the stan- 
dard conventions. 

Table 4-2. Dedicated Register Usage. 

gro 

gr2 

gr27 

gr30 

Zero Value Register (cannot be modified) 

** RP (return pointer/address for leaf routines) 

DP (global data pointer) 

SP (stack pointer) 

Other registers’ conventional usage: 

gr26 

gr25 

gr24 

gr23 

argo 

argl. 

arg2 

args 

reto 

SL 

retl 

fret. 

fargo 

fargl 

farg2 

farg3 

sarg 

Ssret 

(argument register 1) 
( tt " 2) 

( ! tt 3 ) 

( "WW " 4) 

(function return register - at Exit and Return; | 

OR pointer - at Call and Entry) 

(Static link register - at Call and Entry 

(function return register when 

) OR 

returning 64-bit values - at Exit and Return) | 

(function return register —- at Return) OR 

(floating point argument register 1 - at Call) 
( "! " " WW 2 ) 

( " " " "t 3 ) 

( " " "!t "! 4 ) 

(argument register - at Call) OR 

(function return register - at Exit) 
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NOTE 

If the routine in question is a non-leaf routine, gr2 must be 
stored because of subsequent calls; hence it ts then avail- 
able to be used as a scratch register by the code generators. 
Also, although common, it is not absolutely necessary that 
gr2 be restored before exit; a branch (BV) through another 
register (e.g. gr19) would be acceptable.Type your own text 
here, then cut this text. 
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Parameter Passing 

Value Parameters 

Value parameters are mapped to arg words in the argument list with successive pa- 
rameters mapping to successive argument words, except 64-bit parameters, which must 
be aligned on 64-bit boundaries. Irregularly sized data items should be extended to 32 
or 64 bits. (The practice that has been adopted ts to right-justify the value itself, and 
then left-extend it.) Non-standard length parameters that are signed integers are sign- 
extended to the left to 32 or 64 bits. This convention does not specify how 1-31, 
33-63-bit data items are passed by value (except single ASCII characters). 

Table 5-1 lists the sizes for recognized inter-language parameter data types. The form 
column indicates which of the forms (space ID, nonfloating point, floating point, or 
any) the data type is considered to be. 
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Inter-Language Parameter Data Types and Sizes 

Table 5-1. Parameter Data Types and Sizes. 

| Type Size (bits) Form | 

ASCII character (in 32 Nonfloating Pt. | 
low order 8 bits) | 

Integer 32 Nonfloating Pt. 

or Space ID 

Short Pointer 32 Nonfloating Pt. 

Long Pointer 64 Nonfloating Pt. 

Routine Reference 32 Routine Reference 

(see below for details 

of Routine Reference) 

Long Integer 64 Nonfloating Pt. 

Real 32 Floating Pt. 

Long Real 64 Floating Pt. 

Quad Precision 128 Any 

Space Identifier (SID) (32 Bits): One arg word, callee cannot assume a valid SID. ** 

Nonfloating Point (32 Bits): One arg word. 

Nonfloating Point (64 Bits): Two words, double word aligned, high order word tn an 
odd arg word. This may create a void in the argument list (i.e. an unused register and/ 
or an unused word on the stack.) 

Floating Point (32 Bits): One word, callee cannot assume a valid floating point num- 
ber. ** 

Floating Point (64 Bits): Two words, double word aligned (high order word in odd arg 
word). Callee cannot assume a valid floating point number.** This may create a void 
in the argument list. 

Any >64 Bits: A short pointer (in sr5 - sr7) to the data item value is passed as a non- 
floating point 32-bit value parameter. The callee must copy the accessed portion of 
the value parameter into a temporary register before any modification can be made to 
the (caller’s) data. 
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NOTE 

The point is made that the callee ”cannot assume a valid” 
value in these cases because no specifications are made in 
this convention that would insure such validity. It therefore 
becomes mainly the responsibility of the caller to supply 
valid values, so that the callee does not have to perform 

constant checking on all floating point values and SIDs that 
are passed. 

Reference Parameters 

A short pointer to the referenced data item (in sr4-sr7) is passed as a nonfloating 
point 32-bit value parameter (alignment Is not guaranteed). Note: sr4 can only be 
used if the call is known to be local, because the external calling convention changes 
sr4. See Section 8 (’External Calls”) for further details. 

Value—Result and Result Parameters 

It is intended that language processors can use either the reference or value parameter 
mechanisms for value-result and result parameters. 

Routine References 

This convention requires that routine references (i.e. procedure parameters, function 
pointers, external subroutines) be passed as 32-bit nonfloating point values. 

It is expected that language processors that require a Static link to be passed with a 
routine reference (i.e. Pascal passing level 2 procedures) will pass that static link as a 
separate 32-bit nonfloating point value parameter. A language processor is free to 
maximize the efficiency of static scope linking within the requirements, without impact- 
ing other language processors. 

See Section 8 for further details on Routine References. 

Argument Register Usage Conventions 
Parameters to routines are logically located in the argument list. At the Call interface, 
the first four words of the argument list are passed in registers, depending on the 
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usage and number of the argument. The first four words of the argument list are then 
reserved as spill locations for the stack-based argument registers. These requirements 
imply that the minimum argument list size is 16 bytes; this space must be allocated in 
the frame, but may not actually be utilized. 

The standard register use conventions are shown in Table 5-2. 

Table 5-2. Argument Register Use. 

amen sens See eine en me et mele en ce, oti 

void SID  nonFP- FP32 FP64 | 
ee | 

arg word 3 no reg arg3 arg3 farg3 farg3 {0..31} 
arg word 2 no reg arg2 arg2 farg2 farg3 {32..63} 

arg word 1 no reg argl argl fargl fargl {0..31} 

arg word O no reg sarg argo fargo fargl {32..63} 

mee ey em eee ee eee ee meee ee ee 

definitions: 

void ~ arg word not used in this call 

SID —- space identifier value 
nonFP - any 32-bit or 64-bit nonfloating point 

FP32 —~ 32-bit floating point 

FP64 ~ 64-bit floating point 

Parameter Type Checking 

The compilers generate descriptors for every parameter and argument value which 

contain information defining the type of the value. These descriptors (symbol 

descriptors” and ”argument descriptors”) are then checked by the linker for 
compatibility; if they do not match, a warning is generated. See the Spectrum Object 
File Format File Format ACD for further details on these descriptors. 
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Parameter Relocation 

NOTE 

Parameter relocation is currently (first release) implemented 
only by the linker and assembler, and therefore is not used, 
although it 1s likely that it will be fully implemented and 
utilized in the future. 

The procedure calling convention specifies that the first four words of the argument list 
and the function return value will be passed in registers: floating point for real values, 
general otherwise. However, it would be advantageous to provide an exception to this 
rule in order to support languages that do not require type checking of parameters, 
which can lead to situations where the caller and the callee do not agree on the loca- 
tion of the parameters. Problems such as this occur frequently in the C language, 
where, for example, formal and actual parameter types may be unmatched, due to the 
fact that no type checking occurs. A parameter relocation mechanism alleviates this 
problern, and all parameter type checking becomes language-dependent. 

The proposed solution to this problem entails the inclusion of an additional code se- 
quence, called a relocation stub, which is inserted between the caller and the callee. 
When executed, the relocation stub moves any incorrectly located parameters to their 
expected location. If a procedure is called with more than one calling sequence, a re- 
location stub is needed for each non-matching calling sequence. 

In order for the compiler to communicate the location of the first four words of the 
parameter list and the location of the function return value to the linker and loader, 

ten bits of argument location information have been added to the definitions of a sym- 
bol and a fix-up request (as defined in the Spectrum Object File Format ACD). The 
following diagram shows the first word of a symbol definition containing the relocation 
information. (See section 2.8 of the aforementioned ACD for further details.) 
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The ten bits of argument location information are further broken down into five loca- 

tion values, corresponding to the argument function return values, as shown below: 

Bits 22-23 : define the location of parameter list word 0 

Bits 24-25 : define the location of parameter list word 1 

Bits 26-27 : define the location of parameter list word 2 

Bits 28-29 : define the location of parameter list word 3 

Bits 30-31 : define the location of the function value return 

The value of an argument location is interpreted as follows: 

OO Do not relocate 

OL arg Argument register 

* 10 fr Floating point register (bits 0..31) 

* 11 frupper Floating point register (bits 32. .63) 

* For return values, ’10’ means a single precision floating point value, and ‘11° 

means double precision floating point value. 

When the linker links a procedure call, it will generate a relocation stub if the argu- 

ment location bits of the fixup request do not exactly match the relocation bits of the 

exported symbol, with the exception of the case where either the caller or callee spect- 

fies "do not relocate”. The relocation stub will essentially be part of the called proce- 

dure, and the linker can optionally add a symbol record for the stub so that it can be 

reused. The symbol record will be the same as the original export symbol record, ex- 

cept that the relocation bits will reflect the input of the stub, the type would be STUB 

and the symbol value will be the location of the relocation stub 
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The execution of a relocation stub can be separated into the call path and the return 
path. During the call path, only the first four words of the parameter list will be relo- 
cated, while only the function return will be relocated during the return path. The con- 
trol flow is shown in Figure 6-1. 

Relocation Stub 

~-----> | relocate args | 
| | 
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Figure 6-1. Parameter Relocation Stub. 

If the function return does not need to be relocated, the return path can be omitted 
and the branch and link will be changed to a branch. The call path must always be 
executed, but if the first four words of the parameter list do not need to be relocated, 
it can be reduced to the code required to establish the return path (i.e save RP and 
branch and link to the callee). 

When multiple stubs occur during a single call (e.g. calling stub and relocation stub), 
the stubs can be cascaded (i.e. used sequentially); in such a case, both RP’ and RP”’ 
would be used. (The relocation stub uses RP’’.) 

When the linker makes an object module executable, it will generate stubs for each 
procedure that can be called from another object module (i.e. called dynamically). In 
addition, a stub will be required for each possible calling sequence. Each of these 
stubs will contain the code for both relocation and external return, and will be required 
to contain a symbol definition record. 

Both calling and called stubs use a standard interface: calling stubs always relocate ar- 
guments to general registers, and called stubs always assume general registers. 

In order to optimize stub generation, the compilers should maximize the use of the ar- 
gument location value 00 (do not relocate). A linker option may be provided that 
would allow the user to turn stub generation on or off, depending on known conditions. 
Also, a linker option is provided to allow the user to inhibit the generation of stubs for 
run-time linking. In this case, if a mismatch occurs, it would be treated as a parame- 
ter type checking error (which is totally independent of parameter relocation). 
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The Actual Call 

Control Flow of a Standard (Local) Procedure Call 

Figure 7-1 shows the progression of a standard procedure call. To summarize, the 
steps involved are: 

1. << previously executing caller's code >> 

2. (before call) Pass arguments (put into registers and onto stack as necessary) and 
save caller-saves registers. 

3. (call) Branch (BL) to callee. 

4. (after entry) -if it is a non—leaf procedure- Save RP, allocate local frame, and save 
callee-—saves registers. 

5. << execute body of callee >> 

6. (before exit) Restore RP, restore callee-saves registers, and deallocate local frame. 

7. (exit) Branch (BV) back to caller. 

. (after return) Restore caller-saves registers. 

\O
 

OO
 

._ << resume execution of caller’s code >> 

NOTE 

To read diagram, begin at ”Calling Code” and continue 
downward, following any arrows that may extend from the 
end of a line. 
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| 
Calling Code | 

Pass arguments | 

Save caller-saves registers | 

Branch (BL) ---->------ | 

| 

| 
| 
| 
| 

| Restore caller- <-~--~|----- <---- | 
| Saves registers | | 

| 
| 
| 
| 
| 
| 
| 

Called Code <---~---~------ 

Entry Sequence: 

Save RP 

Allocate local frame 

Save callee-saves registers 

Exit Sequence: 

Restore RP 

Restore callee-saves 

registers 

Branch (BV) to RP --->-----~-- > 

| 
| 
| 
| Deallocate local frame 

| 
| 
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Figure 7-1. Control Flow of a Standard Procedure Call. 

Efficiency 

The following factors greatly reduce the overhead expense involved in a Precision Ar- 
chitecture procedure call: 

1. Allocation of the stack frame and saving of one callee-saves register can be accom- 
plished in a total of one cycle. (The same is also true for the deallocation of the 
frame and restoration of one register.) 

bo
 . Even when not optimizing, the delay slot (i.e. the instruction slot following a 

Branch instruction) is used for operations such as loading register values and pass- 
ing parameters. This instruction slot is initially filled by the compiler with a NOP, 
and later replaced by the optimizer whenever possible in order to avoid wasting a 
machine cycle. 

3. Most of the steps involved in a call are optional if they are unnecessary in a par- 
ticular situation. (For example, saving and restoring RP, saving and restoring 
callee-saves registers, allocating stack storage space, etc.) 

The Code Involved in a Simple Local Call 
A simple example is shown below; the procedure and the call to it are shown first in 
C (source code) and then in assembly. (NOTE: A more detailed, fully documented ex- 
ample is shown in Appendix A (A.1.). 
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proc (50,100); \* call to procedure ‘proc’ *\ 

proc (x,y) \* function ‘proc’; returns *\ 

int x,y; \* sum of two numbers *\ 

1 
return x+y; 

} 

In assembly: 

LDI 50, gr26 - load arg word O into gr26 

** BL proc, gr2 - branch (call) to ’proc’ 

LDI 100, gr25 - <delay slot> load arg word 1 into gr25 

proc: BV O (gr2) - branch (return) back to caller 

ADD gr26,ger25,gr28 ; <delay slot> add arguments, put result into gr28 

In instances where the target of the call is out. of the range of the BL 

(i.e. greater than 256K bytes), there will be a slightly different code 

sequence. If this situation is identified at compile time, the compiler 

will generate a two-instruction sequence (LDIL,BLE) that 1S guaranteed to 

reach the target, instead of the BL. However, if the information is not known 

untii link time (the compiler has already generated the BL), the BL will be 

linked to a "long call stub" rather than to the actual procedure. This "stub" 

is merely the same two-instruction sequence that would have been used if the 

information had been known earlier. 
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Inter-—Module Procedure Calls 

Introduction 

NOTE 

At present (first release), external calls exist ONLY on the 
MPE-XL operating system; this is due to the fact that on 
the HP-UX OS, all load modules are combined into a single 

executable file with no unresolved references. Hence, this 
section does not apply to HP-UX. 

As mentioned earlier, there are three types of procedure calls that can be executed, 

and they can be classified into two groups: intra-module (local) and inter-module (ex- 
ternal) calls. Basically, a local call is one in which the caller and the callee reside in 
the same load module, and an external call is one in which that is not necessarily the 
case. There is one exception to this guideline, however: calls which cross privilege 
level boundaries are always treated as external calls, even if the caller and callee are 
residing in the same load module. Although external calls are closely related to local 
calls, several notable differences exist in storage and access conventions; these are ex- 
plained in the following material. 

The inter-module (external) calling sequence is distinguished from the intra-module 
(local) calling sequence due to the system-wide global virtual addressing of the Preci- 
sion Architecture processor and the need for code sharing. Unlike most conventional 
systems where each process has a private virtual address space, all processes in a Pre- 
cision Architecture system share a finite, although large, number of spaces (2°16 cur- 
rently, 2°32 eventually). Therefore, it is undesirable to assign virtual spaces to inactive 
program images (i.e. those on disk). Generally, the assignments of virtual spaces to a 
program will be delayed until it is activated. 

In order to avoid extensive linking at process creation time, it is desirable to have a 

central data structure (for each process) that will hold the SIDs assigned to the load 
modules used by the process. Consequently, only the entries in this structure will be 
updated when virtual spaces are finally assigned to load modules. 
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Another use for such a central structure is the location of the global data area of a 
load module. The offset of the global data area in the private data space of a process 
depends on the combination of load modules called by the process. Although each 
load module’s code is assigned a unique SID, its data is placed at a process—dependent 
offset within the process’ single private data space. In order to share a load module 
between multiple processes, all references to the global data area must be relative to a 
base register, which in this case is DP (data pointer). The value of a base register can 
be stored in a load module’s entry in the central structure. The central structure em- 
ployed in this capacity is the Inter-Module Cross Reference Table (XRT), which will 
be discussed and diagrammed in detail below. 

In terms of the code, an external call uses the same code sequence as a local call, with 

the addition of a ”calling stub” (a.k.a. Import Stub) attached to the calling code, and a 
"called stub” (a.k.a. Export Stub) attached to the called code. Unlike a local call, exe- 
cution is not transferred directly from the caller to the callee; in an external call, a 
millicode sequence (CALLX) is employed to locate and branch to the target procedure. 
These stubs and the millicode sequence are discussed in greater detail below. 

Requirements of an External Call 

An external procedure call requires several extra steps in addition to those necessary 
for a local call, which are outlined below: 

1. The base register pointing to the global data area (DP), the SID contained in sr4, 
and value in gr2 (RP) must all be saved in the caller’s allocated frame area. This 
RP value is referred to as RP’ to distinguish it from the usual RP value associated 
with a local call. The difference between RP and RP’ is as follows: 

RP is renamed RP’ during the calling stub execution, at which time RP becomes 
the location in the called stub to which the target procedure (callee) must return. 
Finally, RP’ is renamed back to RP, and DP and the SID are restored. 

bh
o . The called load module’s entry in the XRT must be located. 

3. The short pointer from the XRT entry must be loaded into DP (this is the DP value 
for the called load module). 

4. The SID from the XRT entry must be loaded into sr4, and the offset of the callee 
must be obtained from the XRT. 

5. An external branch and link to the called procedure must be performed. (Actually, 
an external branch to the CALLX millicode routine that locates the called stub and 
a branch to the called stub of the callee, which then does a local branch and link 
to the callee. Stubs, CALLX and linking will be discussed further in sections 8.7 - 
8.9.) 
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Requirements of an External Return 

In order to return from an external call, it is required that DP, sr4, and RP be re- 

stored. The saved value of RP’ will be loaded into RP (gr2), and the return to the 
caller will be via that register. The DP and SID of the caller will be restored from the 
caller-save area. 

Control Flow of an External Call 

Figure 8-1 shows a simplified external procedure call. It uses the same code sequence 
as the local, but a ”calling stub” is attached to the calling code (the caller) and a 
"called stub” is attached to the entry point of the called code (the callee). Execution 1s 
transferred from the calling code to the called code by executing a millicode sequence 
(CALLX) which uses an XRT to locate and branch to the target procedure. Note: All 
of these elements of an external call are covered in more detail in the following sub- 
sections. 

NOTE 

To read diagram, follow the arrows and numbers, beginning 
with number 1. 

Access to 

XRT 

Load Module A ++ Load Module B 

—>—- ++ proc 

Calling Stub <--- ++ | -—<-|-------------------- | <----- 

| 2 ++ 

Figure 8-1. Simplified External Procedure Call. 

Calling Code 
The calling code generated by the compiler to perform a procedure call will be the 
same regardless of whether the call is actually local or external. If the linker locates 
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the procedure being called within the current executable object module, it will make 
the call local by patching the BL instruction to directly reference the entry point of the 
procedure. If the linker is unable to locate the procedure, it will make the call exter- 
nal by attaching a calling stub to the calling code, and patch the BL instruction to 
branch to the stub. 

Before the call, the calling code must save any caller-saves registers that contain active 
data. The parameter list for the callee is stored in the current stack frame between 
the register spill area and the frame marker. As in a local call, the parameter list 1s 
stored in reverse order, such that the first word is at SP-—36, the second is at SP-40, 

etc. Note: the first four words of the parameter list are passed in registers, but the 
space for the argument list is allocated, even if it remains unused. Also, all parame- 
ters are always passed in general registers, with the linker including any necessary relo- 
cation information in the stubs. 

Called Code 

The called code is responsible for allocating a new stack frame on the top of the stack 
(the frame must be double-word aligned); the actual size of the frame will be deter- 
mined by the compiler, and will be the summation of: 

® The amount of space needed by the register allocator for the register spill area; 

® The amount of space needed for the local variables of the current procedure; 

® The amount of space needed to store the longest parameter list of any procedure 
called by this procedure; and 

@® The frame marker has 32 bytes. 

If this procedure is callable by a less-privileged procedure, each page of the stack 
frame must be PROBEd (a privilege-checking mechanism) before any information is 
stored into the frame. The PROBE instructions must be generated by the compiler. 
(This is not currently implemented). 

When a procedure is entered, gr2 (RP) will contain the offset portion of the return ad- 
dress. Whether the procedure was called locally or externally, the two low order bits 
of RP will always contain the execution level of the caller. From the source code level 
it is difficult, if not impossible, to determine if RP is valid or if it has been stored into 

the stack frame. Therefore, compilers that support multiple privilege levels will need 
to provide a mechanism for returning the execution level of the caller. 

If the current procedure calls another procedure, RP must be saved sometime before 
the call, probably in the procedure entry sequence. The called code is responsible for 
insuring the validity of its own input. sr5, sr6, and sr7 can only be set by privileged 
code and therefore can be assumed to be correct at all times. In addition, DP, LP 
(linkage pointer), and sr4 are not changed during a local call, or they are set by the 
procedure call millicode during an external call and therefore may also be assumed to 
be correct. The value of SP and the parameters passed must be validated by the called 
code. 

8-4 Inter-Module Procedure Calls



NOTE 

Only those fields necessary in the frame marker of the cur- 
rent procedure will contain valid data; others will be unde- 
fined. For example, during a local call, contents of the ex- 
ternal return link pointer field will be undefined. 

Outbound/Inbound Transfer Code Stubs 

As previously mentioned, the compiler only recognizes a single type of procedure call 
(local), a characteristic that is made possible by the use of stubs. Stubs are pieces of 
code that are attached to the caller and/or callee that enable the original calling and 
called code to remain unchanged through the external call process. There are two types 
of stubs used in this procedure calling convention: Outbound (calling) and Inbound 
(called). These are defined here, and explained in detail in the following sections. 

1. Outbound Transfer Code Stub (Calling Stub) -- a locally—linked stub that enables 
inter-module and OS/Subsystem calls to appear (to the compiler) as local calls. If 
the linker determines that a call is external, it will attach a calling stub to the pro- 
cedure and patch the BL (Branch and Link) instruction to branch to the stub. There 
is usually one calling stub for each procedure referenced in the module (which can 
accommodate all calls to a specific procedure), but it is possible to have a separate 
stub for each CALL to a procedure. 

2. Inbound Transfer Code Stub (Called Stub) -- enables a called routine to avoid the 
problem of having multiple return sequences (i.e. different for local and external 
calls). There is one called stub for each external procedure of a load module. In- 
ter-module calls will enter the called stub, which in turn will enter the called proce- 

dure (callee). The callee can thus return to its called stub (which is local) rather 
than being concerned with the external return. The calling stubs can be generated 
by the linker (or obtained from a stub library”) and then linked to their respective 
routines. 
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NOTE 

As earlier mentioned, calling and called stubs are some- 
times referenced (in other documents) as Import and Export 
stubs. There are no different implications attached to either 
naming convention; calling and called have been used in 

this document in order to (hopefully) improve understan- 
dability. 

Calling Stub 

The calling stub will load gr1 with a pointer to the procedure XRT table entry (XRT 
pointer) of the called procedure and then branch to an external procedure call mil- 
licode sequence. Since the location of the XRT for an object module may be different 
for separate executions of the object module, the XRT entry pointer will be computed 
in the calling stub. The XRT entry pointer is computed by adding the XRT entry off- 
set to the value of the Linkage Pointer (LP), which is stored at DP-4, pointing to the 
base of the XRT for the current object module. 

For permanently bound calls to the operating system, a calling stub is not necessary; 
instead, the BL instruction in the call is replaced with a BLE instruction that branches 

to a system entry point branch table. This eliminates much of the linking that is nor- 
mally performed when an object module is loaded. 

Although the external procedure call diagram shows that DP, RP’, and sr4 are saved 

by the CALLX millicode (see next section for discussion of CALLX), DP and RP’ will 
actually be saved in the calling stub, and sr4 will by copied to a general register in the 
calling stub. This is done to eliminate two interlocks and fill a branch delay slot that 
would otherwise be left unused. The code sequence of the calling stub will be similar 
to that shown below: 

LDW -4(DP) ,grl - Load LP 

STW DP, --32 (SP) - Save DP 

ADDIL * L’XRToff,grl > Add XRT offset to LP 

LDO * R’ XRToff(grl),grl 

LDW 16(grl1),gr20 - Load address of CALLX 

STW RP, --24 (SP) ; Save RP” 
BE (sr7v,gr20) - Branch to CALLX 

MFSP sr4,gr21 * Move sr4 to gr2l 

* Can be eliminated in cases where they would effectively be NOPs and 

therefore removed by the linker (except in cases where tools are 

being used that assume fixed-length stubs). 

8-6 Inter-Module Procedure Calls



External Procedure Call Millicode (CALLX) 

The CALLX millicode sequence is primarily a transition mechanism that facilitates the 
successful location and access of the desired external routine. The address of the 
CALLX routine is obtained from the XRT entry, and ts assigned by the loader. Sev- 
eral variations of CALLX are available, depending on the possible privilege promo- 
tions. It is called from the calling stub, and operates as follows: 

1. Saves DP, RP’, and sr4 (if necessary). 

2. Alters the privilege level if necessary (Gateway). 

3. Checks the XRT pointer to insure that it points to a valid XRT table entry. 

4. Loads the LP, DP, Offset and sr4 (of new procedure) values. 

5. Branches to the cailed stub in the external module. 

Called Stub 

A called stub ts used to enable the compiler to generate the same exit code sequence 
whether the procedure will be called locally, externally or both. If the linker deter- 
mines that a procedure can be called from another object module, it will attach a 
called stub to the procedure. The stub will be the external entry and return point for 
the procedure. Local calls to the procedure will be unaffected. 

Although the stub is the external entry point, its primary purpose is to be executed 
during an external procedure call exit/return. The stub is entered before the procedure 
so that RP can be set to the address of the stub, which will cause the local return in 

the procedure to exit to the stub. When the stub is executed during the return, it will 
restore DP and sr4, and return to the caller. 

NOTE 

The stub executes at the caller’s execution level. 

The code sequence for the called stub will be similar to the 
following: 
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MFSP * srO,gro - NOP to identify stub 

BL disp,gr2 - Branch to local entry point 

DEP gr31,bit31,len2,gr2 - Depcsit caller’s Exec. Level in link 

LDW —-28(SP) ,gr2l ' Restore sr4 (part 1) 

LDW -24(SP) ,gr2 - Restore return address (RP’” ) 

MTSP gr2l,sr4 ' Restore sr4 (part 2) 

BE O(sr4,gr2) - Branch back to caller 

LDW —32(SP) ,gr27 ' Restore DP 

* This instruction is not executed; the entry into the stub is actually 

at the second instruction. (This instruction is a remnant of an early 

stack unwind effort —- it) will be removed in the future.) 

Inter-Module Cross Reference Table (XRT) 

The Cross Reference Table (XRT) is used to link the external procedure calls of an 
object module. Every process has an XRT area reserved from its process space 
(pointed to by sr5) for the XRTs of the object modules being executed by the object 
module. The table contains a sub-table for each load module referenced during the 
process execution. Each sub-table for a load module contains entries for all the proce- 
dures called by that load module. A sample XRT is shown in Figure 7 on the next 
page (in this example, the process has two load modules: ’A’ and ’B’. ’A’ calls proce- 
dures B1, B2 and B3; ’B’ calls procedures Al and A2): 

The Layout of the XRT 

One XRT might be visualized as shown in Figure 8-2. (This diagram 
corresponds to the calling situation described in the last sentence of the previous sec- 
tion. ) 
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#include note2.tag 

Figure 8-2. Layout of the XRT. 
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One XRT Entry 

An entry for a procedure within a sub-table of a load module in the XRT (e.g. the en- 
try for B1) is eight words long, and contains the following information: 

1. The SID of the module to which it belongs. 

2. The entry offset for the procedure. This is a 32-bit offset, and is the address of 

the entry point (relative to the base of the SID of its load module) of the proce- 
dure’s called stub. The last two bits (30 and 31) of this word must be zero in or- 
der to insure word alignment of the address. 

3. The DP value for the load module to which it belongs (the value of the base regis- 
ter pointing to the load module’s global data area). 

4. The LP value of the module in which the called procedure is contained. This is a 
pointer to the beginning of the XRT sub-table of that load module. 

5. The address of the CALLX millicode routine(s). 

6. ,7., 8. (These three words are presently undefined and are reserved for future use.) 

Thus, the XRT entry for procedure B1 (which is called from A and would appear in 
A’s sub-table of the XRT) would look as is shown in Figure 8-3. 

rr ee ete ree errs me eer eine meri semi ch nt me em eee eri ern SNe eer emi ne ee ee ene eee een ee ne cere farm rm ee en tt ee ee ee 

ee mm is ee eee tein mm ee ieee pn en tnt em terns ce seep eminent, em cies emits mum temas etme ats eran vem enue ime ee mee cei neem ne ee ee won 

Figure 8-3. One XRT Entry. 
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** The last two bits of the Entry Point Offset must be set to zero in order to ensure 
word alignment. 

NOTE 

If a load module contains no external references, its sub-ta- 

ble in the XRT will be empty. 

Linkage Pointer 

A single value, the Linkage Pointer, resides in the word directly below the global data 
area of a load module, at the location pointed to by DP-4. This pointer is private to 
the load module, and is a short pointer to the beginning of the load module’s XRT 
sub-table. An entry for a called procedure in the XRT is pointed to as follows: 

1. The LP points to the beginning of the sub-table in the XRT of the load module 
containing the called procedure. 

2. The calling stub for the caller has the offset to the called procedure’s entry relative 
to the XRT sub-table of the caller’s load module. This offset, added to the LP 
value, provides a pointer into the called procedure’s entry. This LP-relative XRT 
offset is assigned by the linker. 

The reason for the indirection employed by using the LP is that load modules can be 
shared by different processes whose XRTs may also be different. To allow the same 
code to reference the same load module in different processes’ XRTs, it is necessary to 
provide a uniform interface to the XRT entries; this is provided by the LP. 

In addition to the XRT area in the process space, there is an XRT area in the system 
Space (pointed to by sr7) that is reserved for the XRTs of system load modules. Like 
any other load module, a system load module also uses LP to locate its XRT. The 
system XRT area can also contain a special XRT that is used for calling system proce- 
dures by intrinsic number. 

Linker/Loader Interaction with XRT 

The XRT will be set up by the loader. The values in the XRT will be supplied by the 
loader, based on the mapping of the files relevant to the process into virtual memory 
(i.e. SID allocation, the data offsets in sr5 space, etc). The linker may provide some 
of the values that are to be contained in sr5, based on the information it may have at 
link time concerning the specific load modules that are involved in the process’ exe- 
cutable image. 
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When a process is loaded, the loader will protect all the pages in the XRT to read 
level 3, write level 0. Although it is not necessary, the process protection [D will be 
assigned to the pages of the process XRT area. The protection of the LP will be the 
same as the object module specifies for its global data area. Since the LP ts set when- 
ever an object module is called by an untrusted procedure, it does not need any special 
protection. 

The XRT of every process and the system XRT must be at the same offset of their 
corresponding quadrant, and every XRT must be the same length. These two restric- 
tions allow the procedure call millicode to use a very simple masking algorithm to per- 
form bounds checking on any XRT pointer used with an external call. The location 
and size of the area can be changed when the system is restarted, but the new values 
must be reflected in the procedure call millicode (because it uses constant values to do 
bounds checking on the XRT entry pointer). 

Stub Conventions for External Calls 

By providing a consistent interface between calling and called stubs across implementa- 
tions, code portability (i.e. moving executable files between operating system imple- 
mentations) can be achieved at the load module level. This means that load modules 
can be relocated without relinking, and, eventually, that common tools can be shared. 
In the case of a distributed (i.e. commercially-owned) system, it means that an appli- 
cation can use an executable file without having to copy it over to its own mass stor- 
age system (which it may not even have) and subsequently having to also relink it. If 
the specifications below are not followed for the implementation of this interface, 
relinking will always be necessary in order to move a program between different oper- 
ating systems, or even different versions of the same OS. 

Interface Between Calling and Called Stubs 

The exact distribution of all operations between the calling and called stubs, or 
whether or not the calling stub uses a centralized system routine to accomplish these 
tasks, is not architected. Much more importantly, and specified in detail, is the work 
that the called stub can expect to have already been done before it is entered. Adher- 
ing to these requirements facilitates the loading of DP, LP, and SID (if desired) of the 
called load module. These expectations are as follows: 

1. gr1 contains a pointer to the called procedure’s XRT entry. (This is actually the 
called procedure’s XRT entry in the sub-table of the calling load module.) 
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NOTE 

Recall that the caller’s LP points to the caller’s XRT 
sub-table, which contains entries for all of the routines that 
may be called. The offset into that sub-table, which 
indexes to the called routine’s entry, is bound as an 
immediate in the calling stub. The pointer to the specific 
XRT entry is calculated as follows: 

(caller’s LP value) + (offset to called procedure’s 

entry) = (pointer to callee’s entry in XRT sub-table of 

caller) 

This pointer is the value that should be found in grl 

when the called stub is entered. 

2. The SID of the called load module has been loaded into sr4. (The called stub is 

free to check the validity of that SID, to reload it, or to leave it as is. The impor- 

tant point is the assumption that it has already been loaded, and DOES NOT need 

to be checked.) 

Summary of an External Procedure Call 

Figure 8-4 shows a detailed picture of the flow of control associated with an external 

procedure call. 

8-12 

NOTE 

To read diagram, begin at the upper left-hand corner 
(Calling Code”), and read downward; whenever an arrow 
extends from a line, follow it, and continue downward from 

the point where the arrow ends. 
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Load Module A 
ee ees ce ee ee ee 

Pass arguments 

Save Caller-saves registers 
BL (to Calling Stub) ---->--- | 
Restore Caller <----- <---- 

saves registers 

| 
--~>-|--Calling Code | 

| 
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Calling Stub <------------~--- | Ext. Proc. Call Millicode 
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BE (to CALLX) ----------- ya a 

| 
| 
| 
| 
| 
| | 
| ---> CALLX | 
| Save DP, RP’, sr4 | 

—--— - | *Gateway | 

| | 
| | 
| | 
| | 
| 
| 
| 
| 
| 

*Check XRT pointer 

Load LP 

Load DP 

Load offset 

Load sr4 

BE (called stub) --|-->-- 

Store LP 

Load Module B 

Called Code <-—----- —~-—-~—~~ 

Save RP 

Allocate local frame 

Save callee-saves regs. * can be removed in 

cases where security 

levels do not change 

Restore RP 
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BV (to RP) ---- a 

i | | | | | A | | } | { | | | | 

| 
| 
| 
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. | 
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| 
| 
| 
| 
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| 
| 

BL (to callee) ---- >-— 

Restore DP, sr4 <---~--- | 

Restore RP’ | 

BE (sr4, RP’) -—---->----~------|----- 

Figure 8-4. Summary of External Procedure Call. 

Dynamic Linking 

Dynamic linking is run-time linking to routines, which may be necessary due to run- 
time routine calls. A run-time procedure call is one where the target procedure is un- 
known at compile time, or where the target of a procedure call can change while the 
code is executing. Dynamic linking will be carried out through explicit protocols (e.g. 
the FINDPROC system call in MPE-XL). 
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If the dynamically called routine resides in a load module that has not yet been loaded, 
the load module is loaded dynamically. In order to dynamically load a load module, a 
global data area for it may need to be allocated in sr5 space. This data space is allo- 
cated by the loader, and may be allocated from any unused virtual space in sr5. 

Procedure Labels 

A procedure label is a specially-formatted variable that is used to link dynamic proce- 
dure calls. The format of a procedure label is shown below: 

bits--> 2 28 lil 
en ee ee ee ee ee ee — ek ee Fee ee ren Oi eR ce eee re 

| SID | Address Part |L|x| 
— ee _— eee me ee ea es ee een ome nen et ore 

Procedure Label 

The X field in the address section of the procedure label ts the XRT flag, which is 
used by compilers to determine if the procedure label is local (off) or external (on). 
In the case of a local procedure label, the address part will be a pointer to the entry 
point of the procedure, while in the external case, the address part will be a pointer to 
an XRT entry for the procedure. 

The L field in the address part of the procedure label is the static link flag, which is 
used by the compilers to indicate whether or not a static link must be passed on a call. 
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NOTE 

In the current (first release) implementation, the L-bit 
is never turned ”on” and ts therefore effectively unused. 
This situation may result in a future change in either the 
specification or the implementation itself. 

The dynamic procedure call millicode will actually deter- 
mine if a procedure label is local or external, and take the 
appropriate action. (A local procedure label can only be 
used to call procedures within the current object module.) 
The following pseudo-code sequence demonstrates the proc- 
ess used for dynamic calls (note the similarity between this 
sequence and the calling stub sequence): 

IF (X-bit in Plabel) = O THEN 

Branch Vectored using Plabel 

ELSE BEGIN 

Clear X-bit;: 

Calculate address of XRT entry (LP + Plabel value) 

Save DP; 

Load address of CALLX; 

Save RP’; 

Move sr4 to old DP register; 

Branch to CALLX; 

END. 

NOTE 

The X and L flags must be zero during an external call, or 
they will cause a misaligned data reference trap when ac- 
cessing the XRT. (As earlier mentioned, the L flag is cur- 
rently unused, so it must be assumed to be zero). 

An external procedure label can be used in conjunction with the external procedure 
call millicode to call any procedure within the process or the operating system (subject 
to XLeast checking to insure adequate execution level). The procedure call millicode 
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only uses the address part of the procedure label, but it may point to either the 
process or system XRT. 

The procedure FINDPROC may be used to get an external procedure label for any 
level 1 procedure in a process. If the compiler or linker determines the need for an 
external label, it is communicated to the loader by a normal tmport request or an 
explicit call to FINDPROC. 

Although a procedure label pointing to a system XRT entry is valid for all processes, it 
will be unloaded when its reference count drops to zero. Therefore, these procedure 
labels should not be considered as global procedure labels. The procedure 
GET SYS LABEL will return a global procedure label for any procedure in a system 
object module, but it requires privilege level 1 to be called. 
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Millicode Calls 

Overview 

Background 

In a complex instruction set computer, it is relatively easy at system design time to 
make frequent additions to the instruction set based almost solely on the desire to 
achieve a specific performance enhancement, and the presence of microcode easily fa- 
cilitates such developments. In a reduced instruction set computer, however, this 
microcode has been eliminated because it has been shown to be potentially detrimental 
to overall system performance (not only is instruction decode complicated, but the ba- 
sic cycle time of the machine may be lengthened). 

So while the functionality of these complex microcoded instructions (e.g. string moves, 
decimal arithmetic) is still necessary, a RISC-based system is confronted with a classic 
space-time dilemma: if the compilers are given sole responsibility for generating the 
necessary sequences, the resulting in-line code expansion becomes a problem, but if 
procedure calls to library routines are used for each operation, the overhead expense 
incurred (i.e. parameter passing, stack usage, etc) is unacceptable. 

In an effort to retain the advantages associated with each approach, the alternative con- 
cept of ’millicode” was developed. Millicode is the Precision Architecture’s simulation 
of complex microcoded instructions, accomplished through the creation of assembly- 
level subroutines that perform the desired tasks. While these subroutines perform 
comparably to their microcoded counterparts, they are architecturally similar to any 
other standard library routines, differing only in the manner in which they are ac- 
cessed. As a result, millicode is portable across the entire family of HPPA machines, 
rather than being unique to a single machine (as is usually the case with traditional 
microcode). 

There are many advantages to implementing complex functionality in millicode, most 
notably cost reduction and increased flexibility. Because millicode routines reside in 
system space like other library routines, the addition of millicode has no hardware 
cost, and consequently no direct influence on system cost. It is relatively easy and in- 
expensive to upgrade or modify millicode, and it can be continually improved in the 
future. Eventually, it may be possible for individual users to create their own mil- 
licode routines to fit specific needs. 
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Because it is costly to architect many variations of an instruction, most fixed instru 
ction sets contain complex instructions that are overly general. Examples of this are 
the MVB (move bytes) and MVW (move words) instructions on the HP3000, which are 
capable of moving any number of items from any arbitrary source location to any tar- 
get location. Although the desired functionality is achieved with such generalized com- 
plex instructions, the code that is produced often lacks the optimization that could have 
been achieved if all information available at compile time had been utilized. On 
microcoded machines, this information (concerning operands, alignment, etc) is lost 

after code generation and must be recreated by the microcode during each execution, 
but on the Precision Architecture machines, the code generators can apply such infor- 
mation to select a specialized millicode routine that will produce a faster run-time exe- 
cution of the operation than would be possible using a generalized routine. For exam- 
ple, the Move routines can execute much faster if they can assume a specified align- 
ment, and therefore eliminate any error checking of that type. 

The size of millicode routines and the number that can exist are not constrained by 
considerations of the size of available control store, because millicode resides in the 

system as subroutines in normally managed memory, either in virtual memory where it 
can be paged into and out of the system as needed, or in resident memory, as per- 
formance considerations dictate. A consequence of not being bound by restrictive 
space considerations is that compilers can be developed with many more specialized 
instructions in millicode than would be possible in a microcoded architecture, and thus 
are able to create more optimal solutions for specific source code occurrences. 

Millicode routines are accessed through a mechanism similar to a procedure call, but 
with several significant differences. In general terms, the millicode calling convention 
stresses simplicity and speed, utilizing registers for all temporary argument storage and 
eliminating the need for the creation of excess stack frames. Thus, a great majority of 
the overhead expense associated with a standard procedure call is avoided, thereby re- 
ducing the cost of execution. (However, there are exceptions to these conventions, 

which are discussed in more detail throughout this chapter. ) 

The guidelines for the inclusion of a routine in the millicode library are not completely 
determined, but the general considerations are frequency of usage, processor expense 
(number of cycles necessary for execution), and size. Most routines perform common, 
specific tasks (such as integer multiply or divide), and require very little or no memory 
access. 
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The Millicode Hierarchy 

In an effort to define and classify the various types of millicode, Figure 9-1 shows a 
conceptual schematic layout of the existing millicode ”family”. The labels in the 
boxes are briefly described following the diagram, and will be discussed in greater de- 
tail throughout the remainder of the chapter. 

MILLICODE 

| 
| 

| | 
| | 

| Local | | External | 

| 
| 

| | 

| system | | system | 
| independent | | dependent | 

| | 

| | | | | 

| A | | B | | c | | Compat. | | Other | 

Figure 9-1. Millidcode Overview. 

Descriptions 

Local: The millicode routines contained in the executable code of each process requir- 
ing them (i.e. not shared). Similar to local library routines, but with the faster access 
advantage. 

External: True, shared millicode, residing in system space. 

System Dependent: Millicode which is useful to only one operating system; can be 
used at the discretion of the operating system. 

System Independent: Millicode which is intended to run on more than one operating 
system (i.e., routines required by language code generators). 
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Compatibility Mode: System dependent code (on MPE-XL) which assists both the emu- 
lator and translator. 
System Dependent -- Other: Additional system dependent routines. 

A, B, C : Classes of millicode that differ by location in virtual space and accessibility. 
The classifications are made on the basis of performance and size considerations. 

Introduction to Local and External Millicode 

As pictured in Figure 10 (tree diagram in the main introduction), millicode is generally 
divided into two main categories: local and external. Although it appears that the two 
types are co-existing, this is NOT the case; at present (first release) all millicode is 
local, whereas in the future it is likely that the great majority, if not all, of millicode 
will be external. 

The two types of millicode are easily differentiated by the way in which they are ac- 
cessed and used; local millicode is linked with and executed by any process that re- 
quires it, while external millicode is handled in much the same manner as a standard 
shared library (i.e. one system-resident copy that is shared by all processes as is nec- 
essary). 

Efficiency Factors 

There are several conditions that contribute to the increased efficiency of millicode 
calls. The primary one is the fact that any standard routine that makes only millicode 
calls is considered to be a leaf routine, thereby eliminating the overhead expense (i.e. 
frame allocation) that would have been added by the presence of another standard pro- 
cedure call. A higher percentage of leaf routines improves overall efficiency, since a 
standard procedure call is much more costly than a millicode call. (in terms of stack 
frame allocation and usage, etc). This and other major factors contributing to this effi- 
clency are summarized below: 

1. The compiler is able to identify whether a routine is a leaf or not; it only builds a 
complete stack frame for non-leaf routines. In the diagram below, a stack frame 1s 
created upon the call to Proci in both Fig. A and Fig. B. In Fig. A, another frame 
is then allocated for Proc2 when the compiler realizes that Proc2 will be subse- 
quently calling Proc3, whereas in Fig. B, no additional frame is necessary because 
the compiler realizes that Proc2 is only making a millicode call. 

Procl Procl 

| 
| 

Proc2 Proc2 

| 

Proc: Millicode 

(Fig. A) (Fig. B) 
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2. More parameters can be passed in registers to a millicode routine than to a stan- 
dard proc call. (See Millicode document, section 4, 
for more details of register usage and parameter passing.) 

3. The compiler knows more about millicode routines at compile time than it does 
about user-defined procedures, so it can perform some 
inter-procedural optimizations which cross the millicode call. 

4. The millicode calling mechanism is often faster than the standard procedure call; a 
millicode routine is called through a branch (BL) 
directly to the routine or to a pointer to the routine. 

Making a Millicode Call 

A call to a millicode routine can only be made from assembly language (no high-level 
language access), and it is made through a branch directly to the routine or to a 
branch to the routine. 

It is intended that the standard register conventions be followed, with two exceptions: 

1. The return address (MRP) is carried in gr31; and 

2. The return value is carried in gr29. 
There are, however, many non-standard practices regarding millicode 
register usage; see the Millicode document for further details. 

Local millicode can be accessed with three different methods, depending on its lo- 

cation relative to currently executing code. 

These three methods are: 

1. A standard Branch and Link (BL), if the millicode is within 256K bytes of the 
caller, 

2. A BLE instruction, if the millicode is within 256K bytes of a predefined code base 
register, and 

3. The two-instruction sequence (LDIL,BLE) that can reach any possible address, or a 
BL with a linker-generated stub. 

Nested Millicode Calls 

Millicode routines may call other millicode routines, but (at present) cannot call other 
standard user--defined routines. In order for nested millicode calls to occur, however, 
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the millicaller must allocate a stack frame for the millicallee, and, upon call to the mil- 

licallee, save the MRP in the static link word (SP-20) of the frame marker area of the 
new frame. The layout of a frame generated for a nested millicode call is shown in 
Figure 9-2. 

| Formal | 
| Arguments | 

Frame 1 | | Frame Marker | 
(procedure) | (ince. srQ) | 

a i eet ee ee nt ee ee te eee 

* | Registers to | 
| be saved | 

(millicallee)| * | Local | 

| 
| 

| 
Frame 2 ----~ | 

| 
| 
| 
| 

* | Actual | * these three regions are optional 
| Arguments | 

| Frame Marker | 
| (inc. MRP) | 

SP -----— > —- ee 

(stack pointer) 

Figure 9-2. Millicode Stack Storage Layout. 
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10 
Stack Unwinding 

Introduction 

Stack unwinding is the Precision Architecture’s implementation of procedure traceback 
and context restoration, a process that has many possible applications for any execut- 
ing program, both at the system level and the user interface. Unwinding is necessary 
because in the event of any type of interruption of execution, there is insufficient infor- 
mation immediately available to perform a comprehensive stack trace, which is the ba- 
sic operation behind state restoration. 

Other processes that are heavily dependent on the presence of the unwinding facility 
are system dump analysis, which is performed specifically to determine the cause of 
system crashes, debugging, and certain language-specific features such as the escape 
and the non-local GOTO in Pascal. A dump analysis examines all system processes 
that were running at the time of the crash, an operation which encompasses multiple 
stack traces. Debugging is the analysis of the current and past status of a program, 
either at the system or user level, with the objective of locating an unintended occur- 
rence (i.e. an error). 

This section will detail the specifications that must be followed in order to enable stack 
unwinding of procedure calls that are assumed to conform to the other aspects of the 
calling convention. For a more thorough discussion of stack unwinding, refer to the 
Stack Unwinding document. 

Requirements for Unwinding from a Local Procedure Call 

Unwinding is dependent upon the ability to identify each instruction in an entry or exit 
sequence that modifies SP, and the point at which RP gets restored in an exit se- 
quence. Furthermore, it is necessary that all registers be saved in the specified areas, 
and that any other necessary conditions (i.e. procedure-specific) be satisfied. 

In order to guarantee unwindability, the standard procedure call convention (as de- 
scribed earlier in this document) must be followed by both the caller and callee. It is 
mandatory that the procedure entry and exit sequences conform to the standard specifi- 
cations, a condition that is insured by the compilers. 
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All compiled code will automatically conform to these requirements, but handcoded 
routines must also meet these standards. (It is the responsibility of the author of the 
code to use the assembler directives .ENTER, .LEAVE and .CALLINFO to generate 
the standard entry/exit sequences, or to hand-code the correct entry/exit sequences.) 

See the Appendices of the Stack Unwind document for examples of standard entry/exit 
sequences. 

Requirements for Performing a Stack Trace 

The minimum requirements to successfully perform a stack trace are as follow: 

1. The specified point of the interrupt must lie within a standard code sequence, as 
specified above. 

2. Call-save registers must be saved and restored across a call. 

3. Unwind table entries must be generated for each routine, and for any discontinuous 
sections of code. 

4. The frame size must be as stated in the unwind descriptor (see section 2.2 of Stack 
Unwind for details of unwind descriptors). 

5. The RP (or MRP) must conform to the specifications stated in the unwind descrip- 
tor. 

The minimum requirements to successfully perform an escape or a non-local GOTO 
are as follows: 

1. All requirements for a stack trace (as above) must be met. 

2. The state of the entry-save registers must conform to the specifications given in the 
unwind descriptor. 
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Assembler Interaction 

The .ENTER and .LEAVE directives will cause an entry/exit sequence to be produced 
by the assembler. The assembler generates these according to the .CALLINFO direc- 
tive, which causes the necessary information (assuming it is available) to be put into 
the unwind descriptor. The unwind descriptor is a two-word structure which lies in the 
four-word unwind table. The table is formatted as follows: 

a i ee ne me ee ee er 

| word #1 | .PROC (start address of the procedure) 

| word #2 | .PROCEND (end address of the procedure) 

| word #3 | \ 
-- .CALLINFO (unwind descriptor) 

eee rr eee ert met ee te ete ore ae 

See Sections 2.1 and 2.2 of the Stack Unwind document for further discussion 

of unwind tables and descriptors. 

Unwinding From an External Procedure Call 

Unwind Table for Stubs 

The linker builds two-word unwind descriptors for stubs. Each type of stub involves 
its own unwind descriptor, and there is a different type of descriptor used for each 
type of stub. The unwind descriptor for a stub contains the following information: 

word 1: address of the first instruction of the stub 
word 2: 

bits 0..4 - reserved 

bits 5..7 -— type of stub 

bits 8..10 - reserved 

bits 11..15 -— used only for parameter relocation stub; 

contains the number of the instruction 

which stores RP on the stack in the stub. 

bits 16..31 — length (# of words) of stub area 
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NOTE 

In some cases, a contiguous sequence of calling, called, or 

long branch stubs can be covered by a single unwind de- 
scriptor. 

The unwind, stub and recover tables are pointed at by the 
UNWIND and RECOVER subspaces, and arranged in code 
space as follows: 

UNWIND START --~------- > ee 

| unwind | 
| table | 

UNWIND END --------- > --- ee 
| linker | 
| table | 

RECOVER START ------- > Hn a 
recover | 

| table | 

RECOVER END --------- > Hee 

Unwinding from Stubs 

Calling Stubs: None of the significant registers are modified; RP still contains the re- 
turn address. 

Called Stubs: All significant registers are on the stack. RP and DP are 

stored by calling stub, and SID is stored by CALLX. 

Their locations are: 

RP > SP-24 

SID > SP-28 
DP : SP-32 

Parameter Relocation Stubs: It must be determined (from the unwind 

descriptor) if the current address is before or after 

the instruction which stores RP on the stack. If it 

is before, RP still contains the return address; 

otherwise the return address will be stored on the stack. 

Long Branch Stubs: No changes have been made. 
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Calling Situations That May Not Support Unwinding 

The main type of call from which unwindability cannot be guaranteed is one to mil- 
licode, because the assembler cannot automatically generate the standard entry and exit 
sequences for millicode routines that utilize stack space. This does not present a major 
problem, however, because relatively few millicode routines necessitate the creation of 

a stack frame (see section 3 of Millicode document). It is possible, however, to sup- 
port unwinding from such situations (i.e. nested millicode calls), provided that the mil- 
licode routine which will use stack space is written so that it will independently gener- 
ate the correct entry and exit sequences. It is the responsibility of the author of the 
specific routine to incorporate these provisions into the actual code. 

Other instances in which unwinding may fail: 

1. Procedures that have multiple entry points. (secondary entry/exit sequences). 

2. Code sequences in which the DP is modified. As a precaution, the DP must never 
be altered by user code, only by system code as is absolutely necessary. 

For more details on Unwinding, see the Stack Unwind document. 
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Code Examples 

Standard Procedure Calls 

The assembly listing on the following pages was produced by the Pascal compiler 
(WITHOUT optimization) when given the source code shown below. The approxi- 
mately equivalent C and FORTRAN source code is shown on the next two pages, and 
significant differences are noted (either in the source code or the documentation of the 
assembly code) where appropriate. 

2K ko oR KK ok ok ok ok OK ok ko Kook ook ok ok OK KK OK OK OK OK OK OK KOK KOK KOK KOK KK KK KOK KK KK KEK KKK KKK KR KKK KKK KKK KEK 

program test; 

function mul (a,b : integer): 

begin 

mul := a * b; 

end; 

procedure proca ( a,b 

VAR c,d 

e,f 

begin 

Cc :i= at b; 

d := mul(a,b): 

end: 

procedure one; 

var a,b,c,d,e,f : integer; 

begin 

ais 93 

b := 10; 

proca (a,b,c,d,e,f); 
e := c +d; 

f := e; 

end; 

begin 
one; 

end. 

integer; 

integer; 

integer) ; 

integer; 
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C Source Code Equivalent 

#include <stdio.h> 

main() 
f 

L 

one () ; 
‘ 

one () 

int a, b, c, d, e, f; 

a= 9; 

b = 10; 
proca (a, b, &c, ad, e, f); 

e=c +d; 
f =e: 

} 

proca(a, b, c, d, @, f) 
int a, b, *c, *d, @2, f; 

{ 
*c = a + bd; 

*d = mul (a,b); 

} 

mul(a,b) 

int a,b: 

return (a*b):; 

FORTRAN Source Code Equivalent 

call one 

end 

subroutine one 
integer*4 a,b,c,d,e,f 

a= 5 

b = 10 

call proca(a,b,c,d,e,f) --> Note: 

e=ct+d 

f=e 

return 

end 

subroutine proca(a,b,c,d,e,f) 

integer*4 a,b,c,d,e.f 

c=ar+b 

d = mul(a,b) 

return 

A--2 Code Examples 

In FORTRAN, all parameters are passed 

by reference, so it is impossible to 

Simulate the difference between 

Pascal’s VAR and Value parameters.



end 

function mul(a,b) 

integer*4 

mul = a*b 

return 

end 

a,b 

Assembly Listing 

NOTE 

The numbers and letters in parenthesis are used as labels 
for the documentation that follows the listing. 

OK KR OK KOK OK OOK KKK KOK KK KOK KOK KK KOK KK KKK KKK KOK KK KKK KKK OK KKK KOK KOK KOK OK KOK KKK OK KK KOK KKK KK KKK 

$LO 

$L1 

$L1000 

$L1000 

mu 1 

(a) 

(D) 
$CODE$ , QUAD=0 , ALIGN=8, ACCESS=44 , CODE. ONLY 

(C) 
.CALLINFO CALLER, FRAME=—8, ENTRY SR=1 

00002711 (dummy 

. EQU --48 

. EQU -40 

.EQU --48 

. EQU --80 

.SPACE $TEXTS 

.SUBSPA 

. PROC 

ENTRY 

. EXPORTED 

L.DO 40(30) ,30 

STW 26,-76(0, 30) 

STW 25,—-80(0, 30) 

LDW -76(0,30) , 26 

.CALL 

BL $$mulol, 31 

LDW -80(0,30) , 25 

STW 29,-40(0, 30) 

LDW -40(0,30) ,28 

label) 

BV 0(2) 

EXIT 

LDO -40(30) ,30 

: 

,] 

. PROCEND: 1n=25, 26; out=28; 

(11) 

(12) 

(13) 
(d) 
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proca 

. PROC (C) 

.CALLINFO CALLER, FRAME=0,ENTRY SR=1,SAVE_RP 

. ENTRY 

; . EXPORTED 

STW 2,-20(0, 30) ; (7) 

LDO 48(30) ,30 

STW 26, -84(0, 30) (8) 

STW 25 ,-88(0, 30) 

STW 24,-92(0, 30) 

STW 23,-96(0, 30) ; 

LDW -84(0,30),1 (9) 

LDW ~88(0,30) ,31 ; 

ADDO 1,31,19 

LDW -—92(0,30) ,20 ; 

STW 19 ,0(0, 20) 

LDW —~84(0,30) ,26 (10) 

CALL ; in=25,26; out=28; 

BL mul , 2 

LDW —88(0,30) ,25 

LDW ~96(0,30) ,21 ; (14) 

STW 28,0(0,21) 

00002712 (dummy label) 

LDW —~68(0,30) ,2 ; (15) 
BV 0(2) ; 

EXIT : (d) 

LDO ~48(30) ,30 ; 

.PROCEND; in=23,24,25, 26; 

one 

. PROC (C) 

.CALLINFO CALLER, FRAME=32,SAVE_ RP 

. ENTRY 

: . EXPORTED 

STW 2,-20(0, 30) (3) 

LDO 80(30) ,30 

LDI 5,22 (4) 

STW 22,-60(0, 30) ; 
LDI 10,1 

STW 1,-64(0, 30) ; 

LDW -60(0,30) ,26 ; (5) 

LDW —-64(0,30) ,25 

LOO —68(30) , 24 

LDO —-72(30) , 23 

LDW —-76(0,30) ,31 ; 

LOW -—80(0,30) ,19 

STW 31,-52(0, 30) ; 

STW 19,-56(0, 30) 

. CALL * in=23,24,25, 26; (6) 

BL proca,2 

NOP 

LDW —-76(0,30) ,20 (16) 
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00002713 

PROGRAM 
_Start 

LDW -80(0,30) ,21 ; 

ADDO 20,21,22 

STW 22,-76(0, 30) 

LDW -76(0,30),1 

STW 1 ,-80(0, 30) 

(dummy label) 

LDW -100(0,30) ,2 (17) 

BV 0(2) : 

EXIT ; (d) 

LDO -80(30) ,30 

-PROCEND 

. PROC (Cc) 

.CALLINFO CALLER, FRAME=0, SAVE SP,SAVE_ RP 

. ENTRY 

. EXPORTED 

STW 2,-20(0, 30) ; (1) 

LDO 48(30) ,30 

oOTW ,-4(0, 30) 

< calls to system process initialization procedures > 
< these would not appear in the C compiler output > 

CALL (2) 
BL one, 2 

NOP 

< calls to system process termination procedures > 
V < these would not appear in the C compiler output 

LDW -68(0,30) ,2 ; (19) 

BV 0(2) 

.EXIT (d) 

LDO -48(30) ,30 

. PROCEND - 1n=24,25, 26; 

(e) 
.SUBSPA SUNWINDS , QUAD=0 , ALIGN=8 , ACCESS=44 

. WORD mu l 

. WORD mul+40 ; = 0x28 

. WORD 32768 - = 0x8000 

. WORD a) * = QOx5 

. WORD proca 

< unwind table information continues > 

.SPACE $TEXTS (Dd) 

.SUBSPA $S$CODES 

.EXPORT mul ,ARGWO=GR ,ARGW1=GR ,RTNVAL=GR (f) 
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< .EXPORT list continues > 

< . IMPORT list begins > (g) 

. IMPORT $$mulol , MILLICODE 

. END 

Documentation 

Code Description 

NOTE 

The relevant assembler directives are summarized in Appen- 
dix B (page 60), and the other compiler-generated informa- 
tion 1s briefly explained following the code comments. 

(Numbers below correspond to those accompanying the blocks of code; they appear in 
the order in which they would be executed. In other words, the code documentation 
follows the program flow of control.) 

1. The beginning of the main program block (note that the main program is handled 
in much the same manner as a standard procedure). Because other procedures will 
be subsequently called, it is necessary to store the Return Address and allocate a 
stack frame. The Return Pointer (RP), which is currently in gr2, is first stored onto 
the stack at SP-20, and then SP (gr30) is incremented (by 48 bytes) in order to cre- 
ate the new frame. Also, the ’Previous SP’ field is initialized to zero (recall that 
grQ is the zero value register), in order to signify the termination point for stack 
unwinding. (In the compiled C code, this initialization would not appear because the 
outer block is handled differently.) 

. CALL to the procedure ’one’. The return pointer (RP), which is the address of the 
second instruction following the BL, is put into gr2. The delay slot (i.e. the instruc- 
tion following the branch) 1s followed by a NOP because there is no operation that 
the compiler could have inserted there. 

. ENTRY to procedure ’one’. Again, this is a non-leaf procedure, so it is necessary 
to store RP onto the stack at SP-20 and then allocate a new frame by incrementing 
SP (this time the increment is 80 bytes in order to accommodate the local vari- 
ables). 

. The immediate values 5 and 10 are loaded into gr22 and grl respectively, and these 
registers are stored onto the stack at SP-60 and SP-64. This block correspond to 
Statements ’a:=5’ and ’b:=10’. 
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5. 

10. 

11. 

Loading arguments (into caller-saves registers). This can be divided into three 
categories. First, the values stored on the stack at SP-60 and SP-64 (corresponding 
to ’a’ and ’b’) are loaded into arg0 and arg! (gr26 and gr25). Second, the ad- 
dresses SP-68 and SP-72 are loaded into arg2 and arg3 (gr24 and gr23). Corre- 
sponding to variables ’c’ and ’d’, these two arguments are loaded with addresses 

rather than actual values due to the fact that they are being passed by reference 
(i.e. VAR parameters). Third, the values stored on the stack at SP-76 and SP-80 
(corresponding to ’e’ and ’f’) are loaded into gr31 and grl19 respectively (these two 
are serving as scratch registers), and then stored onto the stack at SP-52 and 
SP-56. Note that these two parameters must be stored onto the stack because the 
argument registers have already been filled. (In the compiled FORTRAN code, it 
would become evident that all parameters are passed by reference, as in the Second 
category above, as Is dictated by the FORTRAN language.) 

. CALL to procedure ’proca’. Note that the CALL directive is followed by a note 
indicating that arguments will be passed to the procedure in gr23-26. The delay 
slot is filled with a NOP, although it could have been filled with another operation 
(e.g. one of the preceding STW or LDW instructions). As with all BL instructions, 
the return address is simultaneously loaded into gr2 (or gr31 for millicode). 

. ENTRY to procedure ‘proca’. As before, this is a non-leaf procedure, so it is nec- 

essary to store RP at (SP-20) and allocate an additional stack frame by increment- 
ing SP (48 bytes in this case). 

. The values held in the four argument registers (gr26-23) are stored onto the stack 
in the fixed arguments area of the PREVIOUS (caller’s) frame. This is determined 
by subtracting the size of the current frame (48 bytes) from the offset (84, 88...), 
and using the result as the offset into the previous frame. These words correspond 
to the parameters ’a’ through ’d’. (Note that these Store operations are actually 
unnecessary, and would probably be removed by the optimizer.) 

. The words at SP-84 and SP-88 (parameters ’a’ and 'b’) are loaded into gr1 and 
gr31 respectively and the add operation (a+b) is performed, with the result being 
put into gri9. After SP-92 (which contains the address of ’c’) is loaded into gr20, 
the gr19 value is stored at that address. 

CALL to function ’mul’. After the two parameters (‘a’ and ’b’) are loaded into 
arg0 and arg 1 (gr26 and gr25), the branch is made to ’mul’, and the return address 
is put into gr2. Note that in this case, the delay slot is filled with an operation (the 
loading of the ’b’ value). 

ENTRY to function ’mul’ and CALL to millicode routine ’mulol’. Although ‘mul’ ts 
a leaf routine (it makes only a millicode call), a temporary local frame is allocated 
because the function return value will later be temporarily stored onto the stack, 
but RP is not stored onto the stack because no additional procedure calls will be 
made. (This temporary frame is actually unnecessary, and would be removed by the 
optimizer.) The two arguments (’a’ and ’b’, in arg0 and argl are stored onto the 
stack, and then reloaded into registers in order to be sent to the millicode routine 
that will perform the multiply operation. Then the branch is made to the millicode 
routine ($$mulol’), with the return address being stored in gr31 (MRP). 
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12. 

13. 

14. 

15. 

17. 

18. 

NOTE 

This code would be further optimized by accessing the argu- 
ments directly from the registers in which they enter ’mul’, 
thereby eliminating the argument stores and loads. 

The millicode return value (in gr29) is stored onto the stack, and subsequently 
loaded into gr28, which is the procedure return register (ret0). This sequence 
would probably be optimized to be a simple COPY 29,28’ instruction. 

EXIT from function ’mul’. Deallocate the local frame, and return back to the 
caller (proca’). The BV (Branch Vectored) instruction, which also uses gr2 as the 
return pointer, accomplishes this return. 

RETURN from ’mul’ to ’proca’. The value stored at SP-96 (the address of ’d’) is 
loaded into gr21, and then the return value (in gr28) is stored at that address. 

EXIT from procedure ’proca’. The return address is loaded into gr2 from the ’RP’ 
field of the Previous frame, and the branch is made to that address. The delay slot 
is filled with the instruction that deallocates the local frame by decrementing SP. 

.RETURN from ’proca’ to ’one’. The values stored at SP-68 and SP-72 (the cur- 
rent values of ’c’ and ’d’) are loaded into gr20 and gr21, and the add operation 
(c+d) is performed, with the result being put into gr22. This result is then stored 
onto the stack at SP-76, which 1s the location assigned to ’e’. Finally, the value 

stored in the ’e’ word is reloaded (into grl), and then stored into SP-80, which is 
the location of ’f’. (This is the ’f:=e’ operation.) 

EXIT from ’one’. The return address is taken from its memory location (SP-100) 
and loaded into gr2, the local frame is deallocated by decrementing SP, and the 
branch is taken to the return point in the main program. 

EXIT from main program. The return address (i.e. to the system) is loaded into 
gr2, the local frame is deallocated by decrementing SP, and the branch is made to 
the system address. 

Other Compiler--Generated Information 

(Letters correspond to those accompanying directive blocks.) 

a. 

b. 

The .EQU directives indicate the size of each stack frame that is built within the 
process. 

SPACE and .SUBSPA specify the proper space and subspace in the system that 
contains the current information. 

A-8 Code Exarnples



. This four-directive sequence appears at the beginning of every procedure. The di- 
rectives are summarized in Appendix B. 

. The directives .EXIT and .PROCEND appear at the end of every procedure. Their 
functions are summarized in Appendix B. 

. The information necessary for stack unwinding is stored here. 

. The .EXPORT list, which is the list of all procedures contained within this process 
that can be globally accessed. 

. The .IMPORT list, which is the list of all procedures that this process is dependent 
upon (includes the system initialization and process termination procedures men- 
tioned in the main program code). 

External Calls 

The assembly code on the page after next was produced by the MPE-XL Pascal com- 
piler from the Pascal source code shown on the next page. A few additional notes con- 
cerning the code sample: 

In the source code, an external call situation has been simulated by assuming that 
the callee (’one’) resides in a different load module than the caller (two’). 

The assembly listing has been abbreviated to include only the code associated di- 
rectly with the source code. In the complete listing, there would be calling and 
called stubs for all calls to process initialization and termination procedures (which 
occur in the outer block/main program as noted below) preceding the section of 
code shown here. 

Because the use of the CALLX millicode is transparent to the user, it has been just 
referenced as being ’in system space’ to avoid all of the excess detail that would be 
necessary to use actual addressing. A similar liberty has been taken in a few other 
cases; where actual offsets appear in the code, they have been eliminated to 
achieve simplicity. 

The code sample is accompanied (in the left margin) by arrows that follow the flow 
of control. These arrows function exactly as those used in the flow diagrams in the 
text; in this case, the starting point is in the main program block, near the bottom 

of the code sample. Furthermore, all ’critical points’ have been labeled with num- 
bers and documented on the page following the assembly code (just as was done in 
the local call example). 

The assembly code is lightly documented; the code used in the stubs 1s documented 
in detail in sections 8.7.1 - 8.7.3, and the small amount of code present other than 
in stubs is basically the same as that used in any local procedure call. 
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ce eCSSSSS SSCS SSSSSLSS SSP OSSPSLOESSSESSSSSSSSSSSSSSSSSESS SSE SESS SSS SSS SS SS S : 

Pascal Source Code 

program extcall; 

(* procedure ‘one’ iS in module 2; therefore an external call 

is necessary in order for the call from “two” to be successful *) 

procedure one (a,b : integer) ; 
begin 

end; 

(* procedure “two” iS in module 1, 1.e. the same module 

as the main program block. ‘Bar’ calls ‘one’ *)} 

procedure two; 

begin 

one (1,2); 

end; 

begin 

two; 

end. 

Assembly Code 

NOTE 

The numbers in parenthesis follow the flow of C and are 
used as labels for the documentation that follows. 
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cee ee re i ee ee ae ee ee eee 

| CALLX millicode | (7) 
| (in system space) | 

MFSP srO,gro (8) 
BL [“one’ addr] ,gr2 (9) 

DEP gr31,31,2,gr2 

LDW -28(sr0,gr30) ,gr21 (12) 

LDW -24(sr0,gr30) ,gr2 

MTSP gr21,sr4 

BE O(sr4,gr2) (13) 

LDW -32(sr0,¢gr30) ,gr27 

LDW -4(sr0,gr27) ,grl (5) 

STW gr27,-32(sr0, gr30) 

ADDIL L%Ox0O, grl 

LDO 160(grl),grl 

LDW 16(sr0,grl),gr20o 

STW gr2,-24(sr0,gr30) 

BE O(sr7,gr20) (6) 

MF SP sr4,ger2l 

STW gr26,-—-36(sr0,gr30) (10) 

STW gr25,-40(sr0O, gr30) 

BV grO(gr2) (11) 

NOP 

STW gr2,-20(sr0,gr30) (3) 

L.DO 48(gr30) ,gr30 

NOP 

LDO 1(grO) ,gr26 
BL {stub addr }} gr2 (4) 

LDO 2(grO) ,gr2s5 

LDW -68(sr0,gr30) ,gr2 (14) 

BV grO(gr2) (15) 

LDO -48(gr30) ,gr30 

STW gr2,-20(sro, gr30) (1) <--~— **F*** Start Here 

LDO 48(gr30) ,gr30 

gr0,-4(sr0,gr30) 

calls to system initialization procedures >> 

BL ( stub addr J}, gr2 (2) 

(16) 

‘ calls to system process termination procedures >> 

Code Examples 

KOK KK * 
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Assembly Documentation 

1. 

10, 

11. 

12. 

Start of outer block/main program. RP is saved, the stack frame is allocated, and 
the unwind delimiter is initialized. 

_Call to procedure ’two’. This is a local call, so the branch goes directly to the pro- 
cedure, with no stub interaction. 

. Entry to procedure ’two’. RP is saved, the frame is allocated, and the constant val- 
ues 1 and 2 are loaded into argument registers 1 and 2 (gr26 and gr25). 

. Branch to Calling Stub. As far as the procedure ’two’ is concerned, this is the call 

to the procedure ’one’, but the branch actually goes to the calling stub that is nec- 
essary because this is an external procedure call. 

. Entry to Calling Stub attached to ’two’. The calling stub performs as is docu- 
mented in detail in section 8.7.1 of the text. 

_Call to CALLX rnillicode. The Branch External instruction is used in order to 

reach the CALLX millicode routine. 

. Execution of CALLX millicode; it performs exactly as is documented in section 
8.7.2 of the text, and then branches to the called stub that is attached to procedure 
, »] 

one . 

. Entry to called stub attached to procedure ’one’. The first instruction here is effec- 
tively a NOP used to identify the beginning of the stub. 

. Branch to procedure ’one’. The standard Branch and Link instruction is used to 
reach the actual code for the external procedure ’one’. 

Entry to procedure ’one’. The arguments in gr26 and gr25 are stored onto the 
stack (this is not necessary, and only remains because the code has not been opti- 
mized. 

Exit from ’one’ / Branch back to called stub. The standard return instruction (BV) 
is used here, although the branch is actually going to the called stub, and not di- 
rectly to the caller. 

Re-entry to called stub. The remainder of the called stub performs as is docu- 
mented in detail in section 8.7.3 of the text. 
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13. 

14. 

16. 

Exit from called stub / branch back to procedure ‘two’. The Branch External in- 
struction is used to reach to actual code for the procedure ’two’ (the caller). 

Return to procedure ’two’ from called stub. The previous RP is loaded into gr2 
from the stack, and the frame is deallocated. 

.Exit from procedure ‘two’ / branch back to main program block. The standard pro- 
cedure return is made, because this is a local return. 

Return to main program block from procedure ’two’. After return, calls are made 
to the system process termination procedures, and then the frame is deallocated 
and the return is made to the system. 
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Summary of Assembler Procedure Control 

The following table summarizes the Precision Architecture assembler directives that are 
used to control procedure calling: 

Directive | Function | 

| . CALL | Specifies that the next statement. isa procedure call. | 

| .CALLINFO | Provides information necessary for generating Entry and | 

| | Exit code sequences and for creating unwind descriptors. | 

| . ENTRY | Marks the entry point of the current procedure. | 
| | (compiler-generated) | 

| . EXIT | Marks the return point of the current procedure. | 
| | (compiler-generated) | 

| . KEEP | Marks the beginning of a procedure’s entry code. | 
| | (compiler-generated) | 

.EKEEP | Marks the end of a procedure’ Ss entry code. | 

| (compiler-generated) | 

| ENTER | Marks the entry point of the procedure being called: | 
| | causes the assembler to produce the entry code sequence. | 

ese atone samme ne 5> tn rm eam seems me ems Ge, ee me ree amine neh any ORR ea eee te eh cern tree wee mt en “an me ce ee Sine en Sem ee ee eet cen OE ty ene cree me Cee een ML cM Set nme ern CON. MERI FORE mip, “A Seth nr wm et huts AR mits pa Sa a neem em: 

| . LEAVE | Marks the exit point of the procedure being called; | 
| | causes the assembler to produce the exit code sequence. | 

ae nes ae Atm cme cote mS mene cme ci ee me me atm tte cnn OS rite ree me crm seth ett ci A “ei me enn me see emis ine etme SEN me Sm ree A ee te Semen nS misty et ray SS com ore eee SOG SAO mS crty cmt MR YN ee ot I SE SA YEE ARIF ntmIRS Seni Sune mA ee ute sem me 
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