HP 9000 Computer Systems (,5'” ;IE(\;VKLE;S

ASSEMBLY LANGUAGE

Reference Manual

READER COMMENT CARD
HP 9000 Series 800
Assembly Language Reference Manual

92432-90001 November 1988

A reader comment card helps us improve the readability and accuracy of the document.
It is also a vehicle for recommending enhancements to the product or manual. Please
use it to make improvements.

SERIOUS ERRORS such as technical inaccuracies that may render a program or a
hardware device inoperative should be reported to your HP Response Center or directly
to a Support Engineer. An engineer will enter the problem on HP's STARS (Software
Tracking and Reporting System). This will ensure that critical and serious problems
receive appropriate attention as soon as possible.

Editorial suggestions (please give page numbers involved):

Recommended improvements (attach additional information if needed):

Name: Date:

Job Title: Phone:

Company:

Address:

HP 1000 Series ——— (e.g., E-series, A400, A600, etc.)
HP 3000 Series —— (e.g., 37, 68, 930, etc.)
HP 9000 Series - (e.g., 300, 840, etc.)

[[] Check here it you would like a reply.

Hewlett-Packard has the right to use submitted suggestions without obligation, with all such ideas
becoming property of Hewlett-Packard.

ade] pue pjo4

98/6-710G6 eluIope) ‘oupadn)

I anuaAy abpuaunid £8v61
uoisialg ABojouyoa] swalsAs

] Auedwo) piexoed-NeimaH

I 19beuepy synpoid Buiuses sabenbuen

|

I - 33SS34HAAQV AgQ divd 39 T1IM 39V1SOd - —

I #1056 VO ‘ONILH3dND ‘00t "ON LIWH3d SSV1D 1SHId

S3LVIS G3LNN
3HLNI
a3V 4l

AHVSS303N
39V1SOd ON

ade] pue pjo4

HP 9000 Series 800

ASSEMBLY LANGUAGE

Reference Manual

[”F HEWLETT

PACKARD
19483 Pruneridge Ave. Cupertino, CA 95014

Part No. 92432-90001 Printed in U.S.A. November 1988
E1188

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not
be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the 'se or reliability of its software on equipment that
is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced or translated to another language
without the prior written consent of Hewlett-Packard Compary.

Copyright © 1986, 1987, 1988 by HEWLETT-PACKARD COMPANY

Printing History

New editions are complete revisions of the manual. Update packages, which are issued between editions,
contain additional and replacement pages to be merged into the manual by the customer. The dates on
the title page change only when a new edition or a new update is published. No information is
incorporated into a reprinting unless it appears as a prior update; the edition does not change when an
update is incorporated.

The software code printed alongside the date indicates the version level of the software product at the
time the manual or update was issued. Many product updates and fixes do not require manual changes
and, conversely, manual corrections may be done without accompanying product changes. Therefore, do
not expect a one to one correspondence between product updates and manual updates.

First Edition November 1986
Update 1. March 1987
Update | Incorporated May 1987
Second Edition January 1988. 92453-03A.00.03
Third Edition. November 1988. 92453-03A.00.04

Preface

This manual describes the use of the HP Precision Architecture Assembler. Although the manual also
summarizes the machine instruction set, you should refer to the Precision Architecture and Instruction
Reference Manual for a complete description of these instructions. You need to be familiar with the
machine instructions to use the Assembler.

Because the machine instruction set and Assembler directives were designed to optimize the new HP
Precision Architecture, the resulting assembly language is tailored more to the needs of the computer
rather than the programmer. Thus, we do not encourage using the Assembler for production
programming purposes. For those cases, however, where efficiency or control require programming to be
done in assembly language, this manual provides the necessary guidelines.

This manual is organized as follows:

Chapter 1 introduces the Assembler for HP 9000 Series 800 computers.

Chapter 2 explains programming the Assembler for HP-UX.

Chapter 3 describes the HP Precision Architecture Assembler control directives.

Chapter 4 summarizes the mnemonics and instruction format for the HP Precision Architecture

machine instructions.
Chapter § contains several sample assembly language programs.

Chapter 6 describes the assembly (as) command and the ways to invoke the HP Precision
Architecture Assembler under the HP-UX operating system.

Appendix A lists the error messages that the HP Precision Architecture Assembler may generate.

Appendix B lists the complete machine instruction set sorted alphabetically by mnemonic name.
This manual assumes that you are an experienced assembly language programmer. In addition, you should
have detailed understanding of the HP Precision Architecture and hardware features, and a working
knowledge of the HP-UX operating system, program structures, procedure calls, and stack unwind

procedures. Consult the following manuals for additional details on specific subjects:

e HP-UX Reference (09000-90009) -- for information on HP’s implementation of the UNIX* operating
system.

e Precision Architecture and Instruction Reference Manual (09740-90014) -- for information on
architecture and the instruction set.

e Procedure Calling Conventions Manual (09740-90015) -- for complete information about the use of
the procedure calling convention.

*UNIX is a registered trademark of AT&T in the U.S. and other countries.

NOTATION

UPPERCASE

italics

punctuation

{1}

[]

Conventions

DESCRIPTION

Within syntax statements, characters in uppercase must be entered in exactly the
order shown, though you can enter them in either uppercase or lowercase. For
example:

SHOWJOB

Valid entries are: showjob ShowJob SHOWJOB
Invalid entries are: shojwob Shojob SHOW_JOB

Within syntax statements, a word in italics represents a formal parameter or
argument that you must replace with an actual value. In the following example, you
must replace filename with the name of the file you want to release:

RELEASE filename

Within syntax statements, punctuation characters (other than brackets, braces,
vertical parallel lines, and ellipses) must be entered exactly as shown.

Within syntax statements, when several elements within braces are stacked, you must
select one. In the following equivalent examples, you must select ON or OFF:

{ON } ON
SETMSG {OFF) SETMSG QoFF

Within syntax statements, brackets enclose optional elements. In the following
example, brackets around , TEMP indicate that the parameter and its delimiter are not
required:

PURGE filename[,TEMP]

When several elements within brackets are stacked, you can select any one of the
elements or none. In the following equivalent examples, you can select devicename or
deviceclass or neither:

[devicename]

SHOWDEV [deviceclass]

devicename
deviceclass

SHOWDEV [

Conventions (Continued)

NOTATION

[...]

—>

CONTROL)char

DESCRIPTION

Within syntax statements, a horizontal ellipsis enclosed in brackets indicates that you
can repeatedly select elements that appear within the immediately preceding pair of
brackets or braces. In the following example, you can select itemname and its
delimiter zero or more times, each instance of itemname preceded by a comma:

[,itemname][...]

If a punctuation character precedes the ellipsis, you must use that character as a
delimiter to separate repeated elements. However, if you select only one element, the
delimiter is not required. In the following example, the comma does not precede the
first instance of itemname:

[itemname] [,...]

Within syntax statements, a horizontal ellipsis enclosed in parallel vertical lines
indicates that you can select more than one element that appears within the
immediately preceding pair of brackets or braces. However, each element can be
selected only one time. In the following equivalent examples, you must select ,A or
,Bor ,A,B or ,B,A :

Col {ZQ}"“'

If a punctuation character precedes the ellipsis, you must use that character as a
delimiter to separate repeated elements. However, if you select only one element, the
delimiter is not required. In the following example, you must select A or B or A,B
or B,A (the first element is not preceded by a comma):

I et

Within examples, horizontal or vertical ellipses indicate where portions of the
example are omitted.

Within syntax statements, the space symbol A shows a required blank. In the
following example, you must separate modifier and variable with a blank:

SET [(modifier)]A(variable);

The symbol (__) indicates a key on the terminal’s keyboard. For example,
indicates the carriage return key.

(CONTROL)char indicates a control character. For example, (CONTROL)Y means you must
simultaneously press the control key and Y key on the terminal’s keyboard.

NOTATION

base prefixes

Bit (bit:length)

Conventions (Continued)

DESCRIPTION
The prefixes %, #, and $ specify the numerical base of the value that follows:

%num specifies an octal number
#num specifies a decimal number
$num specifies a hexadecimal number

When no base is specified, decimal is assumed.

When a parameter contains more than one piece of data within its bit field, the
different data fields are described in the format Bit (bit:length), where bit is the first
bit in the field and length is the number of consecutive bits in the field. For
example, Bits (13:3) indicates bits 13, 14,and 15:

most significant least significant
0 1311415
Bit(0:1) Bits(13:3)

Contents

Chapter 1

The Assembly Language

Assembler Features 1-2

Structure of the Source Program. 1-3

Symbolsand Constants. e 1-5

Registers and Register MNnemonics.o i it i it i 1-7

EXPressions o ot v it 1-11
Parenthesized Sub~Expressions 1-14

Operands and Completers e 1-1§

Macro Processing. o e e 1-17
Defining New Instructions With Macros 1-17

Chapter 2

Programming for HP-UX

SPACES e e 2-1

SUBSPACES e 2-3

Location COUuNnters. o i it e e e 2-5

Compiler Conventions it e .2-6

System Calls. e e e e 2-8

Assembly LIStIng. e 2-9

Chapter 3

Assembler Directives and Pseudo-Operations

Assembler DIrectives e e 3-4
The .ALIGN Directive e e 3-S5
The .BLOCK and .BLOCKZ Pseudo-Operations 3-6
The .BYTE, .HALF, and . WORD Pseudo-Operations 3-8
The .CALL Directive it e e e e e e 3-9
The .CALLINFO Directive o i e i e e e e 3-13
The .COMM Directive e e e 3-18
The .COPYRIGHT Directive e e e e 3-19
The .DOUBLE Directive o v i e et e e et e e e e 3-20
The .END Directive. e e e e e e e e e e 3-21
The . ENDM directive. e e e 3-22
The .ENTER and .LEAVE Pseudo-Operations 3-23
The .ENTRY and .EXIT Directives o o v i ittt et e 3-24
The EQU Directive. e 3-25§
The .EXPORT and .IMPORT Directives 3-26
The . FLOAT Directive e e e e e e e e e 3-28
The .LABEL Directive e 3-29
The .LISTOFF and .LISTON Directives 3-30
The .LOCCT Directive o e e e e 3-32
The . MACRO DIrective o e e e e e e e e 3-33
The .ORIGIN Directive. e e e 3-36
The .PROC and .PROCEND Directives. 3-37
The .REG Directive. e e e 3-38

11

Contents (continued)

12

The .SPACE DIrective o i e e e e e 3-39
The .SPNUM Directive. . . . o . v o it i e e e e e e e e e e e e e e 3-41
The .STRING and .STRINGZ Pseudo-Operations 3-42
The .SUBSPA Directive. o e e e e e 3-43
The . VERSION DIrective o oot e e e e e e e e e e e e e e 3-45
Programming Aids. e 3-46
Chapter 4
The Instruction Set
Instruction Operands e e e 4-2
Memory Reference Instructionso i 4-3
Load and Store Instructions e 4-4
Load and Store with Base Register Modification Instructions 4-4
Indexed Load Instructions i it i e 4-5
Short Displacement Load and Store Instructions 4-6
Store Bytes Short Instruction 4-17
Immediate InStructions. e e 4-8
Branch InSstructions. i e e 4-9
Unconditional Branch Instructions. 4-9
Conditional Branch Instructions, 4-10
Move and Branch Instructions. 4-11
Compare and Branch Instructions 4-12
Add and Branch Instructions. e 4-14
Branch on Bit Instructions 4-16
Computational Instructions. 4-17
Add InStructions o e e e e 4-18
Shift and Add Instructions. e 4-20
Subtract InStructions e 4-22
Compare and Clear Instructions v i it it i 4-24
Divide Step Instruction. e 4-25
Logical INStructions i it e 4-26
Unit InStructions. o v v i e 4-217
Shift, Extract, and Deposit Instructions. 4-28
System Control InStructions. o e e e 4-30
Assist (Coprocessor) INStructions o v it i i e e 4-33
Coprocessor Operation Instruction. 4-34
Coprocessor Indexed Load and Store Instructions. 4-35
Coprocessor Short Displacement Load and Store Instructions 4-36
Floating-Point Instructions i 4-37
Floating-Point Indexed Load and Store Instructions. 4-38
Floating-Point Short Displacement Load and Store Instructions 4-39
Floating-Point Operation Instructions. 4-39
Floating-Point Compare and Test Instructions 4-41
Pseudo Instructions e e e e 4-43

Contents (continued)

Chapter §

Programming Examples

Binary Search for Highest Bit Position 5-2

COPYING @ SEIING. . . . o o e e e e e e 5-4

Dividing a Double-Word Dividend 5-6

Demonstrating the Procedure Calling Convention. 5-8

Output of thecc -SCommand. 5-9

Chapter 6

Assembling Your Program

Invoking the Assembler 6-1
Using theasCommand e 6-1
Using theccCommand e e 6-3

Error Message Catalog e 6-4

Linking an Assembly Program e e 6-5

Appendix A
Error Messages

Warning MesSages v v it i e e e e e A-2
Error Messages e e A-7
Panic MeSSages e e A-20
User Warnings oot vttt e e e A-22
Limit Errors o A-25
Branching Errors. e A-27

Appendix B
Instruction Summaries

13

Figures and Tables

TABLES
Table 1-1. Integer Constants. v vttt 1-5
Table 1-2. General Registers. 1-8
Table 1-3. Floating-Point Registers 1-8
Table 1-4. Space Registers 1-8
Table 1-5. Control Registers v it e e 1-9
Table 1-6. Procedure Calling Convention Registers. 1-10
Table 1-7. Standard Arithmetic Operators 1-11
Table 1-8. Legal Combinations For Relocatable Terms 1-11
Table 1-9. Available Field Selectors 1-13
Table 2-1. Standard Subspacesand Sort Keys 2-4
Table 3-1. Assembler Directives. i it 3-1
Table 3-2. Compiler Generated Directives 3-3
Table 3-3. Pseudo-Operations v i i it e 3-3
Table 3-4. Predefined Spaces and Subspaces 3-46
Table 4-1. Instruction Operands. 4-2
Table 4-2. Load and Store Instructions 4-4
Table 4-3. Load and Store With Base Register Modification

InStructions e 4-4
Table 4-4. Indexed Load Instructions. 4-5
Table 4-5. Indexed Load Completers. 4-5
Table 4-6. Short Displacement Load and Store Instructions 4-6
Table 4-7. Short Displacement Load and Store Completers. 4-6
Table 4-8. Store Bytes Short Instruction. 4-7
Table 4-9. Store Bytes Short Completers 4-7
Table 4-10. Immediate Instructions 4-8
Table 4-11. Unconditional Branch Instructions 4-9
Table 4-12. Move and Branch Instructions 4-11
Table 4-13. Move and Branch Conditions. 4-11
Table 4-14. Compare and Branch Instructions. 4-12
Table 4-15. Compare and Branch Conditions 4-13
Table 4-16. Add and Branch Instructions. 4-14
Table 4-17. Add and Branch Conditions. 4-15
Table 4-18. Branch on Bit Instructions 4-16
Table 4-19. Branchon Bit Conditions 4-16
Table 4-20. Add Instructions. 4-18
Table 4-21. Add Conditions e e 4-19
Table 4-22. Shift and Add Instructions 4-20
Table 4-23. Shift and Add Conditions. 4-21
Table 4-24. Subtract Instructions. 4-22
Table 4-25. Subtract Conditions. 4-23
Table 4-26. Compare and Clear Instructions. 4-24
Table 4-27. Compare and Clear Conditions.o v v 4-24
Table 4-28. Divide Step Instruction 4-25
Table 4-29. Logical Instructions. i 4-26
Table 4-30. Logical Conditions it 4-26

15

Figures and Tables (Continued)

16

Table 4-31.
Table 4-32.
Table 4-33.
Table 4-34.
Table 4-35.
Table 4-36.
Table 4-37.
Table 4-38.
Table 4-39.
Table 4-40.
Table 4-41.

Table 4-42.

Table 4-43.
Table 4-44.
Table 4-45.

Table 4-46.

Table 4-47.
Table 4-48.
Table 4-49.
Table 4-50.
Table 4-51.

Unit Instructions e
Unit Conditions o vttt e e e e
Shift, Extract, and Deposit Instructions
Shift, Extract, and Deposit Conditions
System Control Completers.
System Control Instructions
Coprocessor Operation Instruction
Coprocessor Operation Completers
Coprocessor Indexed Load and Store Instructions
Coprocessor Indexed Load and Store Completers.
Coprocessor Short Displacement Load and Store

INStructions. e e
Coprocessor Short Displacement Load and Store

Completers. e e e
Floating-Point Indexed Load and Store Instructions
Floating-Point Indexed Load and Store Completers.
Floating-Point Short Displacement Load and Store

InStructions. e e e e e e e
Floating-Point Short Displacement Load and Store

Completers. e
Floating-Point Operation Instructions.
Floating-Point Format Completers.
Floating-Point Compare and Test Instructions.
Floating-Point Compare Conditions
Pseudo-Instructions.

Table 5-1. Register Designations v vt v i ittt e et e e e

Table 6-1. PCC__PREFIX.S Definition Files.

Table B-1. Instructions Arranged by Mnemonic Name.

FIGURES

Figure 1-1. Assembly Language Statements

Figure 3-1. Stack Frame

Figure 4-1. Branch Descriptions. i ittt et e

Chapter 1
The Assembly Language

This chapter provides an introduction to the assembly language for the HP 9000 Series 800 computers.

The HP 9000 Series 800 Assembly Language represents machine language instructions symbolically, and
permits declaration of addresses symbolically as well. The Assembler’s function is to translate an assembly
language program, stored in a source file, into machine language. The result of this translation resides in
a relocatable object file. The object file is relocatable because it can still be combined with other
relocatable object files and libraries. Thus, it is necessary to relocate any addresses that the Assembler
chooses for the symbols in the source program. This process of combining object files and libraries is
performed by the linker, I/d. The linker’s task is to transform one or more relocatable object files into an
executable program file. Every program must be linked before it can be executed, even if the source file
is complete within itself and does not need to be combined with other files.

1-1

The Assembly Language
Assembler Features

The Assembler provides a number of features to make assembly language programming convenient. These
features include:

e Mnemonic Instructions. Each machine instruction is represented by a mnemonic operation code,
which is easier to remember than the binary machine language operation code. The operation code,
together with to output a binary machine instruction to the object file.

e Symbolic Addresses. You can select a symbol to refer to the address of a location in virtual memory.
The address is often referred to as the value of the symbol, which should not be confused with the value
of the memory locations at that address. These symbols are called relocatable symbols because the
actual addresses represented by such symbols are subject to relocation by the linker.

¢ Symbolic Constants. A symbol can also be selected to stand for an integer constant. These symbols are
called absolute symbols because the values of such symbols are not relocatable.

¢ Expressions. Arithmetic expressions can be formed from symbolic addresses and constants, integer
constants, and arithmetic operators. Expressions involving only symbolic and integer constants defined
in the current module, or the difference between two relocatable constants, are called absolute
expressions. They can be used wherever an integer constant can be used. Expressions involving the
sum or difference between a symbolic address and an absolute expression are called relocatable
expressions, or address expressions. The constant part of an expression, the part that does not refer to
relocatable expressions, may use parenthesized subexpressions to alter operator precedence.

o Storage Allocation, In addition to encoding machine language instructions symbolically, storage may
be initialized to constant values or simply reserved. Symbolic addresses, or labels, can be associated
with these memory locations.

¢ Symbol Scope. When two or more object files are to be combined by the linker, certain symbolic
addresses can be defined in one module and used in another. Such symbols must be exported from the
defining module and imported into the using module. In the defining module, the symbol has universal
scope, while in the using module, the symbol is unsatisfied. Other symbols declared in the source
program that are not exported have local scope.

e Subspaces and Location Counters. You can organize code and data into separate subspaces, and into
separate location counters within each subspace. The programmer can move among the subspaces and
location counters, while the Assembler changes the code and data into the correct order.

e Macro Processing. A macro is a user-defined word which calls a sequence of instructions. Including a

macro in a source program causes the sequence of instructions to be inserted into the program wherever
the macro appears.

1-2

The Assembly Language
Structure of the Source Program

An assembly language program is a sequence of statements. There are three classes of statements:

e Instructions
e Pseudo-operations
e Directives

Instructions represent a single machine instruction in symbolic form. Pseudo-operations cause the
Assembler to initialize or reserve one or more words of storage for data, rather than machine instructions.
Directives communicate information about the program to the Assembler, but do not generally cause the
Assembler to output any machine instructions.

An assembly statement contains four fields:

Label
Opcode
Operands
Comments

e o o o

Each of these fields is optional, with the exception of the operands field, which cannot appear without an
opcode field.

The label field is used to associate a symbolic address with an instruction or data location, or to define a
symbolic constant using the .EQU pseudo-operation. This field is optional for all but a few statement
types; if present, the label must begin in column one of a source program line. If a label appears on a line
by itself, or with a comment only, the label is associated with the next address within the same subspace
and location counter. ’

When the label field begins with the "#" character, it is not treated as a label. If "#" is followed by white
space and an integer, the Assembler’s line number counter, used when reporting errors, is reset to the value
of the integer. Otherwise, the line beginning with "#" is ignored.

The opcode field contains either a mnemonic machine instruction, a pseudo-operation code, or the name
of an Assembler directive. It must be separated from the label field by a blank or tab. For certain
machine instructions, the opcode field can also contain completers, separated from the instruction
mnemonic by commas. The completers allowed for each instruction are described in Chapter 4.

The operands field follows the opcode field, separated by a blank or tab. The meaning of the operands
depends on the specific statement type, determined by the opcode. Machine instructions require from
zero to four operands, which can denote register numbers or memory addresses, depending on the specific
instruction.

The comments field is introduced with a semicolon, and causes the Assembler to ignore the remainder of
the source line. A comment can also appear on a line by itself.

Figure 1-1 contains several assembly language statements and identifies each of the four fields described
above.

1-3

The Assembly Language

Label Opcode Operands Comments
JAN .EQU 1 ;declares a symbolic constant
SUM .WORD 0 sreserve a word and set to zero
LOOP LDW 4(%r1),%r2

ADD %r2,%r3,%r4

STW %r4,SUM-$global$ (%dp)

BL LOOP,%r0

Figure 1-1. Assembly Language Statements

Statements are normally written on separate lines. It is sometimes useful, especially when using a macro
preprocessor, to be able to write several statements on one line. This can be done by separating the
statements with the " ! " character. When this feature is used, a label can be placed only on the first
statement of the line, and a comment can only follow the last statement on the line. The .LABEL
directive can override this condition by providing a means for declaring a label within a multi-statement
line. %r is defined in "Registers and Register Mnemonics" later in this chapter.

1-4

The Assembly Language

Symbols and Constants

Both addresses and constants can be represented symbolically. Labels represent a symbolic address except
when the label is on an .EQU directive. If the label is on an .EQU directive, the label represents a
symbolic constant. These symbols are composed of uppercase and lowercase letters, digits, dollar signs, and
underscores. Symbols cannot begin with a digit. The Assembler considers uppercase letters and lowercase
letters in symbols to be distinct. The mnemonics for operation codes, directives, and pseudo-operations
can be written in either case. There is no explicit limit on the length of a symbol. The following are
examples of legal symbols:

$STARTS _start PROGRAM
M$3 $global$ $$mull
main P_WRITE loop1

The following are examples of illegal symbols:

LOOP#1 Contains an illegal character
1st_time Begins with a digit

Integer constants are written in either decimal, octal, or hexadecimal notation. Table 1-1 lists the ranges
of these integer constants.

Table 1-1. Integer Constants

Signed Unsigned
Decimal -21474836438 0

through through

2147483647 4294967295
Octal 020000000000 0

through through

0177777777717 037777777771
Hexadecimal 0x 80000000 0

through through

0x 7FFFFFFF OxFFFFFFFF

1-5

The Assembly Language

The period (.) is a special symbol reserved to denote the current offset of the location counter. It is useful
in address expressions to refer to a location relative to the current instruction or data word. This symbol
is considered relocatable, and can be used anywhere a relocatable symbol can be used, with the exception
of the label field.

NOTE

A symbol whose initial characters are "L$" will not be passed to the linker.
Symbols beginning with "L$" may only be used for local code labels and
absolute values.

1-6

The Assembly Language
Registers and Register Mnemonics

Series 800 processors have four sets of registers:
e General

e Floating-point

e Space

e Control

General registers are the focus of almost all activity. Data is loaded from memory into general registers
and stored into memory from general registers. All arithmetic and logical operations are performed on
the contents of the general registers. Each general register is 32 bits wide. There are 32 general registers,
denoted %r0 through %r31. General register O is special because "writes" into it are ignored, and it always
reads as zero. The remaining general registers can be used normally, with the caution that %r1 is the
implicit target register for the ADDIL instruction, and %r31 is the implicit link register for the BLE
instruction.

The floating-point registers are physically present only on systems with a floating-point coprocessor. On
systems without the coprocessor, their presence and behavior is emulated by the HP-UX operating system.
There are 16 floating-point registers, each capable of holding either a single or double-precision
floating-point number in IEEE format. These registers are denoted %fr0 through %fr15. Registers
%fr1, %fr2 and %fr3 are exception registers and are not available to the programmer. Floating-point
register O contains a permanent floating-point zero when used in an arithmetic operation; when written
or read with floating-point loads or stores, the floating-point status register is actually set.

The space registers form the basis of the virtual memory system. Each of the eight space registers can
hold a 16 or 32-bit space identifier, depending on the hardware model (the Series 840 uses 16-bit space
registers). The space registers are denoted %sr0 through %sr7. Space register O is set implicitly by the
BLE instruction, and space registers 5 through 7 cannot be modified except by the operating system.

The control registers contain system-state information. There are 25 control registers, denoted %cr0 and
%cr8 through %cr31. Of these registers, only %cr11, the shift amount register, and %cr16, the interval
timer, are accessible to the user-level programmer.

Register operands are denoted as integer constants since the Assembler can differentiate between general
registers, space registers, floating-point registers, and literal values from context. In order to make
assembly code more readable, symbolic constants can be defined with the .EQU directive, and used as
register operands. In addition, the Assembler has many predefined mnemonic register names that can be
used instead of integers. These predefined registers have register types associated with them. The only
way to obtain register type checking is to use the .REG directive to assign a predefined register in the
operand field to a user-defined name in the label field. This permits type checking on user-defined
register names. The following example demonstrates correct usage of the .REG directive:

tblptr .REG %r20

Predefined mnemonic registers are shown in the following tables. All of the mnemonics begin with the
% character, so they do not conflict with any programmer-defined symbols.

1-7

The Assembly Language

Table 1-2. General Registers

%r0 %r8 %rlé %r24
%rl %r9 %rl7 %r2S$
%rl %4r10 %r18 %#r26
%r3 %rll %4rl9 %r27
%r4 %rl2 %r20 %r28
%rS %r13 %r2l %r29
%r6 %rl4 %r2l %4r30
%r7 %rl$ %r23 %r3l

Table 1-3. Floating-Point Registers

%fr0 #fr4 %#fr8 #fri2
%4frl VAR %fr9 #frl3
#fr2 #fré %#fr10 %fr14
%fr3 %#fr7 #frll #fr1$

Table 1-4. Space Registers

%sr0 %sr2 %sr4 %sr6

%srl %sr3 %sr S %sr7

1-8

The Assembly Language

Table 1-5. Control Registers

Registers
%cr0
%er8
%er9
%crl0
Zerll
%erl2
%erl3
Z%crlé
%erl$
%erl6
%erl?
%erlé

%crl9

Synonyms Registers Synonyms
sretr %cr20 %isr
%pidr1 Z%cr2l %1or
%pidr2 s%cr2?2 %ipsw
Zccr %cr23 Zeirr
s%sar %cr24 %tr0 %ppda
%pidr3 %cr2$ %trl %hta
%pidr4 %er26 %4tr2
%iva %cri? %tr3
Zeiem %cr28 %trd
%itmr %cr29 %trS
%pcsq %cr30 %tr6é
%pcoq %cr3l %tr7
%iir

1-9

The Assembly Language

A few additional predefined register mnemonics are provided in Table 1-§ to match the standard
procedure calling convention. This is discussed briefly in Chapter 2. For more detailed information see
the Procedure Calling Conventions Manual.

Table 1-6. Procedure Calling Convention Registers

Register Synonyms Description

%rl %rp Return link

%r23 %arg3 Argument word 3

%r24 %arg2 Argument word 2

%#r2$ Z%argl Argument word 1

%r26 %arg0 Argument word O

%r27 %dp Data pointer

%r28 %ret0 Return value

%r29 s%retl %sl Return value, static link
%r30 %sp Stack pointer

%#r3l smrp Millicode return link
#srl s%sret %sarg Return value, argument

The Assembly Language
Expressions

Arithmetic expressions are often valuable in writing assembly code. The Assembler allows expressions
involving integer constants, symbolic constants, and symbolic addresses. These terms can be combined
with the standard arithmetic operators shown in Table 1-6.

Table 1-7. Standard Arithmetic Operators

Operator Operation
+ Integer addition
- Integer subtraction
* Integer multiplication

/ Integer division (result is truncated)

The multiplication and division operators have precedence over addition and subtraction. That is,
multiplications and divisions are performed first from left to right, then additions and subtractions are
performed from left to right. Thus, the expression 2+3#4 evaluates to 14.

Expressions produce either an absolute or a relocatable result. Any operation involving only absolute

terms yields an absolute result. Relocatable terms are allowed only for the + and - operators. The legal
combinations involving relocatable terms are shown in Table 1-7.

Table 1-8. Legal Combinations For Relocatable Terms

Operation Result
Absolute + Relocatable Relccatable
Relocatable + Absolute Relocatable
Relocatable - Absolute Relocatable
Relocatable - Relocatable (defined locally) Absolute

1-11

The Assembly Language

NOTE

The combination "relocatable-relocatable+relocatable" is not permitted.

For example, assume the symbols MONTH and YEAR are relocatable, and JANUARY and FEBRUARY are
absolute. The expressions MONTH+JANUARY and MONTH+FEBRUARY -4 are relocatable, while the expressions
YEAR-MONTH and FEBRUARY-4 are absolute. The expression MONTH+JANUARY#4 is also legal and produces
a relocatable result, because JANUARY#4 is evaluated first, producing an absolute intermediate result that
is added to MONTH. The expression MONTH+YEAR is illegal, because the sum of two relocatable terms is not
permitted.

Because all Series 800 instructions are a single word in length, it is not possible to form a complete 32-bit
address in a single instruction. Thus, it is likely that the Assembler (or linker) may not be able to insert
the final address of a symbol into the instruction as desired. For example, to load the contents of a word
into a register, the following instruction could be used:

LDW START ,%r2

Because the LDW provides only 14 bits for the address of START, the Assembler or linker prints an error
message if the address of START requires more than 14 bits. There are two instructions, LDIL and ADDIL,
whose function is to form the leftmost 21 bits of a 32-bit address. The succeeding instruction, by using
the target of the LDIL or ADDIL as a base register, needs only 11 bits for the remainder of the address.
The Assembler provides special operators, called field selectors, that extract the appropriate bits from the
result of an expression. With the field selectors L% and R%, the previous example can be recoded as
follows:

LDIL L%START ,%r1 ;put left part into ri
LDW RASTART (%r1) ,%r2 ;add r1 and right part

The field selectors are always applied to the final result of the expression. They cannot be used in the
interior of an expression. The field selectors shown are the two most commonly used. Table 1-8 shows
all the available field selectors and their meanings.

The Assembly Language

Table 1-9. Available Field Selectors

Field Selector Meaning

F# Full 32 bits (default)

L% Right-justified, high-order 21 bits

R% Low-order 11 bits

LS% High-order 21 bits after rounding to nearest page

RS% Low-order 11 bits, sign extended

LD% Right-justified, high-order 21 bits after rounding to
next page

RDY% Low-order 11 bits, with negative sign

LR% L%value with constant rounded to nearest multiple
of 8192

RR% R%value with constant rounded to nearest multiple
of 8192, plus the difference of the constant and the
rounded constant.

Since a page is 2048 bytes long, the selectors L%, LS% and LD% extract a page number, and the
corresponding selectors R%, RS% and RD% extract the offset relative to that page. The distinction is
whether the offset is always positive and between 0 and Ox7ff (L%-R%), always negative and between
-0x800 and -1 (LD%-RD%), or between -0x400 and Ox3ff (LS%-RS%). The LR% and RR% prefixes are
used for accessing different fields of a structure, allowing the sharing of the LR% computation. The
distinction is only important when using short addressing near a quadrant boundary, since only the left
part is used to select a space register. Chapter 2 explains this further. Each pair is designed to work
together just as L% and R% did in the previous example.

The field selectors may also be written F”, L", R’, LS’ RS’, LD’, RD’, LR’, and RR".

The Assembly Language

Parenthesized Sub-Expressions

The constant term of an expression may contain parenthesized sub-expressions that alter the order of
evaluation from the precedence normally associated with arithmetic operators. For example:

LABEL1-LABEL2+((6765+(2048-1))/2048) #2048

contains a parenthesized sub-expression that rounds a value up to a multiple of 2048.

Absolute symbols may be equated to constant terms containing parenthesized sub-expressions as in the
following sequence:

1-14

BASE .EQU 0x200
NEL .EQU 24
SIZE .EQU (BASE+4)*N_EL

NOTE

The use of parentheses to group sub-expressions may cause ambiguities in
statements where parenthesized register designators are also expected.

~—

The Assembly Language
Operands and Completers

Machine instructions generally require one, two, or three operands that tell the processor what data to use
and where to store the result. Operands can identify a register, a location in memory, or an immediate
constant (that is, data that is coded into the instruction itself). The operation code determines how many,
and what kinds of operands are required.

The most frequently used machine instructions are those that involve only general registers. Most of
these instructions require three register operands that specify two source registers and one target register.
Each register operand must be an absolute expression whose value is between zero and 31. Typically, the
operand is just an integer constant, which is a symbolic constant that has been equated to a register
number, or a register mnemonic.

Register operands may use typing by means of a predefined or user-defined register name. Users may
define register names with the .REG directive as in the following example:

tblptr .REG %r20

Several instructions also provide access to space and control registers. When a space register is expected, a
register mnemonic or absolute expression whose value is between zero and 7 must be given. For a control
register, the value must be zero, or between 8 and 31. The following examples show a few machine
instructions with register operands:

SCRATCH .EQU %r18
ADD %r3,%r7,%r4 sr3 + r7 -> rd
SuB 1,2,3 srt - r2 -> r3
OR %r7,%r3,%rs8 sinclusive or of r7,r3 -> r8
OR SCRATCH,0,%rT ;copy r18 to r7 (note: r0 = 0)
MTCTL %r2,%sar ;set shift amount register (cri1)
MFSP %srd,%r10 ;fetch contents of sr4

Operands designating memory locations usually consist of an expression and a general register used as a
base register. Some instructions also require a space register designation. In general, such operands are
written in the form expr(sr,gr) or expr(gr), as in the following examples:

local off .EQU -64
LDW 4(%dp) ,%r2
STW %r0,local off-4(0,%sp)
LDW 0(%sr3,%r2),%r9
BLE $$mull (%sr7,0)

Notice that the space register can be omitted on instructions that require it, as in the first LDW instruction
shown in the previous example. If only one register is given, it is assumed to be the general register, and
the space register field in the machine instruction is set to zero. Remember that the register mnemonics
are equivalent to an integer constant. If the second LDW instruction is written as follows:

LDW 0(%r2,%sr3),%r9 swrong !
an error message is displayed.
The expression in a memory operand is either absolute or relocatable. Absolute expressions are

meaningful when the base register contains the address of an array, record, or the stack pointer to which a
constant offset is required. Relocatable expressions are meaningful when the base register is r0, or when

1-15

The Assembly Language

the base register contains the left part of a 32-bit address as illustrated in the following example:

LDIL L%glob, r1 ;set up r1 for STW
STW %r9,R%glob(%r1)

Immediate operands provide data for the machine language instruction directly from the bits of the
instruction word itself. A few instructions that use immediate operands are shown below:

ADDIL L%var,%dp

LDIL L%print ,%r1

ADDI 4,%r3,%rs5

SUBI 0x1C0,%r14,%ret0

Completers are special flags that modify an instruction’s behavior. They are written in the opcode field,
separated from the instruction mnemonic by a comma. The most common type of completer is a
condition test. Many instructions can conditionally trap or nullify the following instruction, depending
on the result of their normal operation. For example, notice the completers in the sequence below:

ADD,NSV %r1,%r2,%r3
BL,N handle_oflo,%r0
OR %r3,%r4,%rs

The ,NSV in the ADD instruction nullifies the BL instruction if no overflow occurs in the addition
operation, and execution proceeds with the OR instruction. If overflow does occur, the BL instruction is
executed, but the ,N completer on the BL specifies that the OR instruction in its delay slot should not be
executed.

Each class of machine instructions defines the set of completers that can be used. These are described
with the individual instructions in Chapter 4.

The Assembly Language
Macro Processing

A macro is a user-defined word that calls a sequence of instructions. Including a macro in a source
program causes the sequence of instructions to be inserted into the program wherever the macro appears.

A user may define a word as a macro by using the .MACRO directive.

Detailed information about macro arguments, placement and redefinition of macros, nested macro
definitions, and nested macro calls is in Chapter 3 of this manual.

Defining New Instructions With Macros

If you are testing new CPU’s or coprocessors, you may need to use opcodes that are unknown to the
Assembler. A variant of a macro definition may be used to create a mnemonic for the instruction. After
being defined, the new mnemonic instruction can be invoked as easily as a standard instruction.

Opcodes, subopcodes, completers, and operands are encoded into the instruction word in a bit intensive
manner because all HP Precision Architecture instructions are one word, or 32-bits, in length. Bit fields
do not usually fall on byte or nibble boundaries. A nibble is a half byte.

To write a macro, you must specify explicitly which bit fields are to contain constants and which are to
contain macro arguments. The macroprocessor has no built-in knowledge of instruction formats.
Defining new instructions through macros is only possible because a convenient way to delimit bit fields
has been provided. It is up to the programmer to choose the correct bit field.

Bit positions within the 32-bit word are numbered from zero to 31, from left to right. A bit range is
indicated by the starting bit position followed by the ending bit position. The two bit positions should be
separated by two periods and enclosed in braces. The bit field beginning at bit position 6 and ending at
bit position 10 is represented as:

{6..10}

If the bit field being assigned from is bigger than the bit field being assigned to, then a warning is issued
and the assigned from bit field is truncated on the left. When no bit field is specified for the assigned
from value, low-order bits are used until the value of the assigned from bit field becomes the same as the
width of the assigned to bit field. The assigned to bit field must always be specified.

No sign extension is provided by the Macro-assembler when bit fields are generated.

The Assembly Language

Example

PACK .MACRO BASE ,GREG,SREG,OFFSET
{0..5)=0x3E{26..31)
{6..10)}=BASE{27..31)
{11..15}=GREG{27..31)
{16..17}=SREG{30..31)
{18..31)=OFFSET{18..31)}

.ENDM

The above macro definition defines the macro PACK. The following explanation assumes that PACK is
invoked:

PACK %sp,%r19,%sr0,-52

Bit field O through § contains the six low-order bits cf the new opcode 0x3E, or binary 111110, entered
as a constant in the macro definition. Bit field 6 through 10 contains general register 30, or binary
11110. These are the five low-order bits of the argument BASE in the macro definition. Bit field 11
through 15 contains general register 19, or binary 10011. These are the five low-order bits of the
argument GREG in the macro definition. Bit field 16 through 17 contains space register 0 and represents
the five low-order bits of the argument SREG in the macro definition. Bit field 18 through 31 contains
binary 11111111001100, the OFFSET -52 which was entered as an argument to the macro definition.

Chapter 2
Programming for HP-UX

The Assembler is a flexible tool for writing programs, but every operating system imposes certain
conventions and restrictions on the programs that are intended to run on that system. This chapter
discusses the conventions that must be understood in order to write assembly language programs and
procedures for the HP 9000 Series 800 HP-UX operating system. Several Assembler directives are
mentioned in this chapter to place them in a meaningful context. A full discussion of these directives can
be found in following chapters.

Spaces

Virtual addressing on the HP Precision Architecture is based on spaces. A virtual address is composed of
a space identifier, which is either 16 or 32 bits long (depending on the hardware model), and a 32-bit
offset within the space. Thus, each space can contain up to 4 gigabytes, and there is a large supply of
spaces.

Every program on an HP-UX system is assigned two spaces when it is loaded for execution by the
operating system: one for code, and one for data. The HP-UX operating system makes the code space read
only, so that it can be shared whenever several processes are executing the same program. The data space
1s writable by the new process, and is private to that process; that is, every process has a unique data space.

The actual space identifiers assigned to these two spaces can vary from one execution of the program to
the next; these numbers cannot be determined at compile time or link time. Generally, programmers do
not need to be concerned with the space identifiers, since the operating system places them in two reserved
space registers, where they remain for the duration of program execution. The identifier of the code
space is placed in space register 4 (srd) and the identifier of the data space is placed in srS5.

When writing an assembly language program, declare a space named $TEXT$ for executable code, and a
space named $PRIVATE$ for modifiable data. Constant data, literals that you do not plan to modify
during program execution, can be placed in either space. Placing constant data in the $TEXT$ space
decreases the size of the non-sharable part of your program and improves the overall efficiency of the
operating system.

The particular space registers mentioned above play an important role in virtual addressing. While many
of the branching instructions, such as BL, BLR, and BV, are capable of branching only within the
currently executing code space (called PC~space), two of the branching instructions, BE and BLE, require
that you specify a space register as well as an offset. These instructions allow you to branch to code
executing in a different space. On HP-UX systems, all code for a program is contained in one space, so all
BE and BLE instructions should be coded to use sr4.

In contrast, the memory reference instructions, such as LDW and STW, allow a choice between two forms
of addressing: long and short. With long addressing, you can choose any of the space registers 1 through 3
for the space identifier part of the virtual address. The space offset is formed as the sum of an immediate
displacement and the contents of a general register. With short addressing, one of the space registers

Programming for HP-UX

between 4 through 7 is chosen automatically, based on the high-order two bits of the general register.
Each space addressed by these four space registers is effectively divided into four quadrants, with a
different quadrant of each space accessible via short addressing.

On HP-UX systems, all of a program’s code is placed in the first quadrant of the $TEXT$ space (space
offsets from O through Ox3FFFFFFF). The data is placed in the second quadrant of the $PRIVATES$ space
(space offsets from 0x40000000 through Ox7FFFFFFF). Thus, literal data in the code space and
modifiable data in the data space can be addressed using the short addressing technique, without any
concern for the space registers.

You can define spaces other than $TEXT$ and $PRIVATES in a program file by declaring a special kind of
space called an unloadable space. Unloadable spaces are treated as normal spaces by the linker, but as the
name implies, are not actually loaded when a program is executed. Unloadable spaces are typically used
by compilers to store extra information within a program file. The most common example of an
unloadable space is $DEBUG$, which is used to hold symbolic debugging information.

The sort key attribute allows the programmer to control the placement of a space relative to the other
spaces. The linker places spaces with lower sort keys in front of spaces with higher sort keys.

The .SPACE directive is used to declare spaces. The assembly language programmer is not required to fill
one space before beginning another. When a space is first declared, the Assembler begins filling that
space. The .SPACE directive can also be used to return to a previously declared space, and the Assembler
continues to fill it as if there had been no intervening spaces.

2-2

Programming for HP-UX

Subspaces

While a space is a fundamental concept of the architecture, a subspace is just a logical subdivision of a
space. The Assembler places the program’s code and data into subspaces rather than spaces. Each
subspace belongs to the space that was current when the subspace was first declared. The linker groups
subspaces into spaces as it builds an executable program file. For more details see the id (UTIL) entry in
the HP-UX Reference manual. When the linker combines several relocatable files, it groups the subspaces
from each file by name, so that all subspaces with the same name are placed contiguously in the program.

Subspaces have several attributes. The alignment attribute specifies what memory alignment (in bytes) is
required in the virtual address space. The alignment can be any power of two, from 1 through 2048,
inclusive. Typically, the alignment is 4 or 8 to specify that the beginning of the subspace must be word or
double-word aligned. Normally, the alignment attribute is computed automatically by the Assembler
from the largest . ALIGN directive used within the subspace.

The quadrant attribute assigns the subspace to one of the four quadrants of its space. On HP-UX systems,
all subspaces in the code space must be in quadrant O, and all subspaces in the data space must be in
quadrant 1.

The access rights attribute specifies the access rights that should be given to each physical page in the
subspace. On HP-UX systems, all subspaces in the code space must have access rights of 0x2C (code page
executable at any privilege level). All subspaces in the data space must have access rights of Ox1F (data
page readable and writable at all privilege levels).

The sort key attribute allows the programmer to control the placement of a subspace relative to the other
subspaces in its space. The linker places subspaces with lower sort keys in front of subspaces with higher
sort keys.

The .SUBSPA directive is used to declare a subspace and its attributes. As with spaces, the assembly
language programmer can switch from one subspace to another, and the Assembler will fill each subspace
independently as if the source code had been presented one complete subspace at a time. When the
.SPACE directive is used to switch spaces, the Assembler remembers the current subspace in each space.

Several additional Assembler directives are provided as shorthand to declare and switch to some standard
spaces and subspaces. For example, the .CODE directive switches to the $TEXT$ space and the $CODE$
subspace, and the .DATA directive switches to the $PRIVATES$ space and the $DATA$ subspace.

You can declare as many subspaces as you can use, but the sort key attribute should be used carefully,
because the stack unwind mechanism reserves a range of sort keys (56 through 88) for use with the
$CODES$ subspace. Some of the standard subspaces and sort keys used by the compilers are shown in
Table 2-1. Directives that generate commonly used spaces and subspaces are found in Table 3-4.

2-3

Programming for HP-UX

Table 2-1. Standard Subspaces and Sort Keys

Space Subspace Sort Key Use

STEXTS 8
$MILLICODES$ 8 Millicode library routines
$LITS 16 Literals
$CODES$ 24 Normal code
S$UNWIND STARTS 56 Stack unwind
SUNWINDSMILLICODES$ 62 Stack unwind
$UNWINDS$ 64 Stack unwind
$UNWIND ENDS$ 72 Stack unwind

$PRIVATES 16
$GLOBALS 8 Pascal global variables
$DATAS 24 Normal global and static data
$COMMONS 24 FORTRAN BLOCK DATA
BSS 80 Uninitialized data and common

2-4

NOTE

By linker convention, programs should avoid using sort keys less than 8 in
either space.

Programming for HP-UX
Location Counters

Just as spaces can be divided into subspaces, subspaces can be further divided by using location counters.
You can use up to four location counters in each subspace, and the Assembler fills a separate area for each
location counter. When the assembly is complete, the subspace is formed by concatenating each of these
areas. All references relative to a location counter are relocated so that they are relative to the complete
subspace.

Unlike subspaces, however, the use of location counters is completely local to the Assembler. Once the
subspace is formed at the end of the assembly, the distinction among the individual areas built by location
counters disappears. No further reordering or grouping related to location counters is performed by the
linker.

This facility allows you to assemble related data into disjoint pieces of a subspace while keeping the source
code in a convenient order.

The .LOCCT directive is used to switch from one location counter to another. The Assembler
automatically remembers the previous value of each location counter within each subspace. When the
.SUBSPA directive is used to switch subspaces, the Assembler automatically begins using the location
counter that was last in effect in the new subspace.

2-5

Programming for HP-UX
Compiler Conventions

In order to write assembly language procedures that can both call to and be called from high-level
language procedures, it is necessary to understand the standard procedure calling convention and other
compiler conventions.

On many computer systems, each high-level language has its own calling convention. Consequently, calls
from one language to another are sometimes difficult to arrange, except through assembly code. The
architecture generally prescribes very few operations that must be done to effect a procedure call, and
there is often a pair of machine-language instructions to call a procedure and return from one. The HP
Precision Architecture provides no special procedure call or return instructions. There is, however, a
standard procedure calling convention for all high-level languages as well as the Assembler. It is tuned
for the architecture, and is designed to make a procedure call with as few instructions as possible.

Besides defining a uniform call and return sequence for all languages, the calling convention is important
for other reasons as well. In order to streamline the calling sequence, the return link is not saved on the
stack unless necessary and the previous stack pointer is rarely saved on the stack. Thus, it is not usually
possible to obtain a stack trace at an arbitrary point in the program without some additional static
information about each procedure’s stack frame size and usage. For example, you could not obtain a stack
trace while debugging or analyzing a core dump, or using the try-recover feature in Pascal. Obtaining a
stack trace is made possible by the stack unwind mechanism. It uses special unwind descriptors that
contain the exact static information needed for each procedure. These descriptors are generated
automatically by all high-level compilers as well as the Assembler. Each descriptor contains the starting
and ending address of a procedure’s object code, plus that procedure’s stack frame size, and a few flags
indicating, among other things, whether the return link is saved on the stack. Given the current program
counter and stack pointer, the stack unwind mechanism can determine the calling procedure by finding
the return link either in a register or on the stack. Also, it can determine the previous stack pointer by
subtracting the current procedure’s stack frame size.

The Assembler requires that you follow programming conventions to generate unwind descriptors. The
beginning and end of each procedure must be noted with the .PROC and .PROCEND directives. The
.CALLINFO directive supplies additional information about the procedure, including the stack frame size.
With this information, the Assembler creates the unwind descriptor. It can also generate the standard
entry and exit code to create and destroy the stack frame, save and restore the return link (if necessary),
and save and restore any necessary registers. These code sequences are generated at the points indicated
by the .ENTER and . LEAVE directives.

Arguments to procedures are loaded into general registers 26, 25, 24, and 23; these registers are named,
respectively, %arg0, %argl, %arg2, and %arg3. If more than four words of arguments are required, the
remaining arguments are stored in the caller’s stack frame in the variable argument list. The return value
should be returned in general register 28, called %ret0. General register 29, called %ret1, is used for the
low-order bits of a double-word return value, while %retO contains the high order bits. In addition to
the argument and return registers, the procedure can use registers 19 through 22 and registers 1 and 31 as
scratch registers. Any other registers must be saved before use at entry and restored before exit.

Chapter 3 contains detailed descriptions of the Assembler directives described above. For a more
thorough discussion of the procedure calling conventions, refer to the Procedure Calling Conventions
Manual.

In order for an assembly language prucedure to be callable from another language or another assembly

language module, the name of the procedure must be exported. The .EXPORT directive does this. It also
allows you to declare the symbol type. For procedure entry points, the symbol type should be ENTRY.

2-6

Programming for HP-UX

The Assembler and linker treat all symbols as case sensitive, while some compilers do not. By convention,
compilers that are case insensitive uniformly convert all exported names to lower case. For example, it is
possible to declare a procedure that cannot conflict with Pascal procedure names by using upper case
letters. However, there is an aliasing mechanism in some compilers that allows you to declare a
case-sensitive name for external use. See the appropriate language reference manual for more
information.

Conversely, the .IMPORT directive allows you to reference a procedure name that is exported from
another module, either from the Assembler or the compiler. Once a procedure name has been imported, it
can be referenced exactly as if it were declared in the same module.

Data symbols can be exported and imported just like procedure names. However, not all compilers export
the names of global variables, or provide a mechanism to reference data symbols exported from an
assembly language module. For example, the HP Pascal/HP-UX compiler does not normally do this, while
the C/HP-UX compiler does. FORTRAN 77/HP-UX named common blocks are exported, but the names
of the variables within the common blocks are not.

It was mentioned before that data is allocated beginning from a virtual space offset 0x40000000. For
convenience as well as compatibility with future releases of HP-UX systems, all data in the $PRIVATE$
space must be accessed relative to general register 27, called %dp. Standard run-time startup code, from
the file /lib/crt0.0, must be linked with every program. This startup code declares a global symbol
called $global$ in the $GLOBALS subspace. This code also loads the address of this symbol into the %dp
register before beginning program execution. This register must not be changed during the execution of a
program. Since the %dp register is known to contain the address of $global$, the following single
instruction does the load as long as the displacement from $global$ to the desired location is less than 8
kilobytes:

LDW var-$global$ (%dp),%r3
If the desired location is not known to be close enough to $global$, the following sequence must be used:

ADDIL L%var-$global$,%dp sresult in ri
LDW R%var-$global$(%r1) ,%r3

To access items in the $PRIVATES$ space (global data), the following does not work:

LDIL L%var,%r1 swrong
LDW R%var(%r1) ,%r3 ;wrong

This assumes that the operating system always allocates data at the same virtual space offset
0x40000000.

Uninitialized areas in the data space can be requested with the .COMM (common) request. By convention,
these requests should always be made in the BSS subspace in the $PRIVATE$ space. The BSS should
not be used for anything else. Common requests are passed on to the linker, which matches up all requests
with the same name and allocates a block of storage equal in size to the largest request. If, however, an
exported data symbol is found with the same name, the linker treats the common requests as if they were
imports. FORTRAN 77/HP-UX common blocks are naturally allocated in this way: if a BLOCK DATA
subprogram initializes the common block, all common requests are linked to that initialized block.
Otherwise, the linker allocates enough storage in BSS for the common block. The C/HP-UX compiler
also allocates uninitialized global variables this way. In C, however, each uninitialized global is a separate
common request.

2-7

Programming for HP-UX
System Calls

The HP-UX operating system defines a large set of system calls. Refer to the HP-UX Reference manual
for more information. These system calls can be made indirectly by calling the interface routines in the C
run-time library, or they can be made directly from assembly code. All system calls are funneled through
a single entry point in the system space, which is identified by space register 7. Each system call is
assigned a unique number, which must be loaded into general register 22. The arguments to the system
call should be loaded into general registers 26, 25, 24, and 23, as necessary. When the system call returns,
a status code is returned in register 22. If the status code is zero, the system call succeeded and the return
value, if any, is in register 28. If the status code is nonzero, the system call failed and the error number is
found in register 28. A list of the system call numbers as well as the location of the system call entry
point is in the standard include file /usr/include/sys/syscall.h.

The following example of a code fragment shows a call to the read system call:

OR %r0,%r0,%arg0 ;file descriptor = 0
ADDIL L%buf-$global$,%dp

LDO R%buf-$¢ .obal$(%r1),%arg1 sbuffer address

LDO 10,%arg2 ;length = 10

LDIL L%0xC0000004,%r1

BLE R%0xC0000004 (%sr7,%r1) ;system call entry point
LDO 3,%r22 sjread system call = 3

In the above code, the last instruction loads the constant 3 into register 22, and executes in the delay slot
of the BLE instruction.

2-8

Programming for HP-UX
Assembly Listing

The Assembler’s command line option, -1, causes an assembly listing to the standard output. For each line
of source code, the listing provides the line number, the subspace offset, the hexadecimal representation of
the assembled code (possibly flagged with an asterisk (*) to indicate address relocation), the source text, and
any comments.

Following is a line of assembly language as it appears in the source file:
SAVE LDO VAL(%r0) ,%r20 ;retain value
The above line would appear in the assembly listing as follows:
line no. offset hex representation label opcode operands comment
16 0000004c (341400A) SAVE LDO VAL(%r0),%r20 ;retain value

The choice of line number 16 is arbitrary here. At the end of the assembly listing, a symbol table is
printed showing the name and value of each symbol in the file. A type field for each symbol, indicating
either absolute or relocatable, is included.

Certain types of source lines generate multiple instructions. Macro calls usually expand to several
instructions. The .ENTER and .LEAVE directives each generate more than one HP Precision Architecture
instruction. The predefined subspace directives, such as .CODE and .DATA, result in a space and a
subspace declaration. Procedures in the $CODE$ subspace generate stack unwind descriptors in the
$UNWINDS subspace.

You have the choice of listing a section of assembled code in either the compressed or expanded form.
The placement of the .LISTON and .LISTOFF directives determines which code will be expanded during
listing. The directive .LISTON tells the Assembler to expand the listing of all subsequent source lines
until a .LISTOFF directive is encountered. .LISTOFF stays in effect until the occurrence of a . LISTON
directive. The default is . LISTOFF.

The directives .LISTON and .LISTOFF may be placed anywhere in the source text and always go into
effect immediately. .LISTON and .LISTOFF may be used as often as desired.

2-9

Chapter 3
Assembler Directives and

Pseudo-Operations

A set of Assembler directives allow you to take special programming actions during the assembly process.
These Assembler directives begin with a period (.) to distinguish them from machine instruction opcodes

or extended opcodes.

Table 3-1 lists the Assembler directives described in this chapter.

These directives include those that

establish the procedure calling convention, declare common, and define spaces and subspaces. Table 3-2
lists those directives that are compiler generated and, therefore, are not used by assembly language
programmers. Table 3-3 lists the pseudo-operations that reserve and initialize data areas and generate

entry and exit code.

This chapter also includes Table 3-4 under "Programming Aids" which lists the predefined directives for
establishing standard spaces and subspaces.

Table 3-1. Assembler Directives

Directive Function

.ALIGN Forces location counter to the next larger multiple of the supplied
alignment value.

.CALL Specifies that the next statement is a procedure call.

.CALLINFO Provides information for generating Entry/Exit code sequences and for
creating stack unwind descriptors.

. COMM Requests common storage for a specified number of bytes.

.COPYRIGHT Inserts the specified string into the object module as a copyright notice.

.DOUBLE Initializes a double-word to a floating-point value.

.END Terminates an Assembly language program.

.ENDM Marks the end cf a macro definition.

.ENTER Marks a procedure’s entry point and generates standard entry code.

(Continued on next page)

3-1

Assembler Directives and Pseudo-Operations

Table 3-1. Assembler Directives (Continued)

Directive Function

.EQU Assigns an expression to an identifier.

.EXPORT Makes a specified symbol available to other modules.

.FLOAT Initializes a double-word of storage to a floating-point value.

. IMPORT Specifies that the definition of the given symbol occurs in another module.

.LABEL Permits a label definition to appear within a sequence of directives that
occur on a single line.

.LEAVE Marks a procedure’s exit point and generates standard exit code.

.LISTOFF Controls listing of expanded Assembler instructions.

.LISTON Controls listing of expanded Assembler instructions.

.LOCCT Selects a location counter.

.MACRO Marks the beginning of macro definitions.

.ORIGIN Advances the location counter to a relative location from the beginning of
the current subspace.

.PROC Marks the first statement in a procedure.

.PROCEND Marks the last statement in a procedure.

.REG Attaches a type and number to a user-defined register name.

.SPACE Declares a new space or switches back to a previous space.

.SPNUM Reserves and initializes a word of storage.

.SUBSPA Declares a new subspace or switches back to a previous subspace.

.VERSION Inserts the specified string into the current object module as a user-defined
version identification string.

3-2

Assembler Directives and Pseudo-Operations

Table 3-2. Compiler Generated Directives

Directive Function
.ENTRY Marks the entry point of the current procedure.
JEXIT Marks the return point of the current procedure.

Table 3-3. Pseudo-Operations

Directive Function
.BLOCK and Reserves a block of data storage.
.BLOCKZ
.BYTE Reserves 8 bits (byte) of storage and initializes it to the given value.
.HALF Reserves 16 bits (half word) of storage and initializes it to the given value.
.STRING and Reserves the appropriate amount of storage and initializes it to the given
.STRINGZ string.
.WORD Reserves 32 bits (a word) of storage and initializes it to the given value.

3-3

Assembler Directives and Pseudo-Operations
Assembler Directives

The remainder of this chapter lists the Assembler directives and pseudo-operations in alphabetical order.

NOTE

The similar pseudo-operations, .BYTE, .HALF, and .WORD, are grouped
together under "Byte". The .EXPORT and .IMPORT directives are also
treated as one. Several of the descriptions include sample assembly code
sequences. You can enter these short code sequences, assemble them using
the -1 option then inspect the offsets and field values to see how that
particular directive controls the assembly environment.

3-4

Assembler Directives and Pseudo-Operations

The .ALIGN Directive

The .ALIGN directive advances the current location counter to the next specified "boundary."

Syntax

.ALIGN [boundary]

Parameters
boundary An integer value for the byte boundary to which you want to advance the
location counter. The Assembler advances the location counter to that
boundary. Permissible values must be a power of 2 and can range from one
to 2048. The default value is 8 (doubleword aligned).
Example
.CODE
ADDIL L“$WORDMARK$-$global$,%dp
B page
NOP
.ALIGN 2048
page
ADDI 1,%r1,%r1
.DATA
$WORDMARK$

.WORD OxOFFF
.IMPORT $global$,DATA

This sample program adds a 21 bit field to the data pointer. Then a branch is taken to the label page
that has been page aligned.

3-5

Assembler Directives and Pseudo-Operations

The .BLOCK and .BLOCKZ Pseudo-Operations

The .BLOCK and .BLOCKZ pseudo-operations reserve a block of storage.

Syntax

.BLOCK[Z] [num_bytes]

Parameters

num_bytes An integer value for the number of bytes you want to reserve. Permissible
values range from zero to Ox7FFFFFFF, although the Assembler uses a
default value of zero if you omit specifying a parameter.

Discussion

The .BLOCK pseudo-operation reserves a data storage area but does not perform any initialization. The
.BLOCKZ pseudo-operation reserves a block of storage and initializes it to zero.

When you label a. BLOCK pseudo-operation, the label refers to the first byte of the storage area.

NOTE

Under the present implementation of the Assembler, the .BLOCK
pseudo-operation also initializes the reserved area to zero.

3-6

Assembler Directives and Pseudo-Operations

Example

.SPACE $TEXT$
.SUBSPA $CODE$
.BLOCK 64

swap LDW 0(2),1
STW 1,4(2)
.END
.DATA

wordQ .BLOCK 0X20

word8 .WORD OXFFFF

The first example requests the Assembler to reserve 64 bytes of memory in the SCODES$ subspace. This
area is then followed by a "Load Word" and "Store Word" instruction. The second example reserves 32
bytes of memory in the SDATAS subspace followed by one word intended as an end marker.

3-7

Assembler Directives and Pseudo-Operations

The .BYTE, .HALF, and .WORD Pseudo-Operations

The .BYTE, .HALF, and .WORD pseudo-operations reserve storage and initialize it to the given value.

Syntax
.BYTE
.HALF [init_value] [,init_value]...
.WORD
Parameters
init_value Either a decimal, octal, or hexadecimal number or a sequence of ASCII
characters, surrounded by quotation marks. If you omit the initializing
value, the Assembler initializes the area to zero.
Discussion

The .BYTE pseudo-operation requests 8 bits of storage; the .HALF pseudo-operation requests 16 bits of
storage; and the .WORD pseudo-operation requests 32 bits of storage. If the location counter is not
properly aligned on a boundary for a data item of that size, the Assembler advances the location counter
to the next multiple of that item’s size before reserving the area.

When you label one of these pseudo-operations, the label refers to the first byte of the storage area.
Operands separated by commas initialize successive units of storage.

Example
E .BYTE "
F .WORD -32

.WORD OX6eff1234

The first pseudo-operation allocates a byte labeled "E" and initializes it to the character "[". The next
pseudo-operation advances the current subspace’s location counter to a word boundary, allocates a word of
storage labeled "F" and initializes that word to negative 32 (2’s complement). The last pseudo-operation
initializes a word of storage to the hexadecimal number 6EFF1234.

3-8

Assembler Directives and Pseudo-Operations

The .CALL Directive

The .CALL directive marks the next branch statement as a procedure call, and permits you to describe the
location of arguments and the function return result.

Syntax

.CALL [argument description]

Parameters

argument_description

Allows you to communicate to the linker the types of registers used to pass
floating point arguments and receive floating point return results in the
succeeding procedure call Similarly, this information can be
communicated in the .EXPORT directive.

The linker requires this information because the Procedure Calling
Convention allows floating point arguments and return values to reside in
either general registers or floating point registers, depending on source
language convention. At link time, the linker ensures that both the caller
and called procedure agree on argument location. If not, the linker may
insert code to relocate the arguments (or return result) before control is
transferred to the called procedure or a procedure return is completed.

Up to § argument-descriptions may be present in the .CALL directive;

one for each of the four arguments that may be passed in registers
(arg0-arg3), and one for a return value (retO0).

3-9

Assembler Directives and Pseudo-Operations

The form of the argument-description is:
ARG = location

where ARG may be:

ARGWO The first word in the argument list.
ARGW1 The second word in the argument list.
ARGW2 The third word in the argument list.
ARGW3 The fourth word in the argument list.
RTNVAL The return value for a procedure.
and location may be:
NO The argument word cannot be relocated. This should

be used for all non-floating point arguments; it is the
default assumed when an argument-description is

omitted.
GR The argument word occurs in a general register.
FR The argument word occurs in a floating point register.
FU The argument word occurs in the upper half of a

floating point register.

Assembler Directives and Pseudo-Operations

Example

This program calls printf() with four arguments

whose register locations are described in the .CALL directive.

The format string goes into arg0, not to be relocated.

The string "message" goes into argl, specified as a general register.
The floating-point value 57005.57005 goes into farg2,

specified as a floating-point register.

The hexadecimal number Oxf00d goes into arg3,

specified as a general register.

The return value from printf() is not to be relocated.

we we Wwe we we we we we we

LIT
.ALIGN 8
.WORD 1197387154 3 floating-point literal
.BLOCKZ 12
fp2 .WORD ©
.CODE
main
.PROC
.CALLINFO CALLER,FRAME=24,SAVE_RP
.ENTER
LDIL L’ fp2,%r1
LDO R fp2(1),%r31 s r31 ¢ - floating-point literal address
FLDWS -16(0,%r31) ,%fr4
LDO -64(%sp) ,%r19

FSTWS %fr4,0(0,%r19)
ADDIL L’61453,0

LDO R’61453(%r1),%r20

STW %r20,-68(0,%sp) ; end of stacking floating-point address
ADDIL L’string_area-$global$,%dp

LDO R’string_area-$global$(%ri),%r21 ; point to "message”

STW %r21,-60(0,%sp) ; stack "message' address

LDO -64(%sp) ,%ra2

FLDWS 0(0,%r22) ,%frs
FCNVFF ,SGL,DBL %frs,%fré ; convert floating-point value
ADDIL L’string_area-$global$+8,%dp

LDO R’string _area-$global$+8(%r1),%arg0 ;point to format string
LDW -60(0,%sp) ,%argl ; load "message" argument

FSTDS 38,-16(0,%sp)

FLDWS -12(0,%sp),%fr6 s load floating-point argument

LDWS -16(0,%sp) ,%arg3 ; load hexadecimal argument

LDW -68(0,%sp) ,%r1

STW %r1,-52(0,%sp)

.CALL argw0O=no,argwl=no,argw2=fr,argw3=no,rtnval=no
BL printf,2

NOP

.LEAVE

. PROCEND

.EXPORT main,ENTRY

. IMPORT printf,CODE

.DATA
string area

3-11

Assembler Directives and Pseudo—Operations

.ALIGN 8
.STRINGZ "message"
.STRINGZ "args = %s,%f,%x\n"

. IMPORT $global$,DATA

This example shows the use of the .CALL directive.

Assembler Directives and Pseudo-Operations

The .CALLINFO Directive

.CALLINFO is a required directive that describes the environment of the current procedure. The
information it provides is available to the .ENTER and . LEAVE pseudo-operations to control the entry and
exit code sequences they generate. Additional information is used by the Assembler to direct the creation

of stack unwind descriptors.

Syntax

.CALLINFO [FRAME=number]
[,NO_UNWIND] [,SAVE_SP] [,SAVE_RP]
[,ENTRY_GR=number]
[,ENTRY_FR=number)
[,ENTRY_SR=number] [,CALLER | CALLS] [,NO_CALLS]
[,HPUX_INT]

NOTE

The first parameter in the syntax example is not preceded by a comma, but
the following parameters are preceded by commas. This example uses
FRAME as the first parameter which is an arbitrary choice.

Parameters

FRAME=number

Defines the combined size (in bytes) of the local variable area and variable
argument area needed by the procedure. The .ENTER pseudo-operation
allocates the desired space for local variables below the frame marker and
the .LEAVE pseudo-operation deallocates that space.

The number parameter must be a multiple of eight bytes. If a .CALLINFO
directive lacks this parameter, the Assembler assumes a default frame size
of zero.

The stack frame includes space for local variables and the variable
argument area. The size specified for the frame should not include space
for the stack frame marker or the fixed argument area. Allocation of these
areas is controlled by the CALLER and NO_CALLS parameters. The inclusion
of the CALLER parameter always allocates space for the stack frame marker
and the fixed argument area. (See Figure 3-1.)

A frame marker is required if the assembly routine calls another routine.

3-13

Assembler Directives and Pseudo-Operations

NO_UNWIND

SAVE_SP

SAVE_RP

ENTRY_GR=number

ENTRY_FR=number

ENTRY_SR=number

Because the frame marker contains 32 bytes and the fixed argument list
contains 16 bytes, the frame area is offset from the Stack Pointer by 48
bytes if both of these areas are present. However, the Assembler does not
allocate space for the frame marker and fixed argument list if the
procedure does not call any other routines (see the NO_CALLS parameter).

When the total frame size for a procedure exceeds 8K bytes, the Assembler
uses gr3 to locate the previous frame marker when it encounters an
.ENTER or .LEAVE pseudo-operation. Under these circumstances, changing
the value of gr3 can cause serious consequences.

This is to be used only in the context of stand alone code or any procedure
that does not need to be reliably unwound.

Specifies that the current routine saves the value of Previous SP in its
frame marker at SP-4. Because the Assembler does not automatically save
the Stack Pointer when it generates Entry/Exit code sequences, you must
explicitly save this value in your program when using this key word. (You
can obtain the Previous_SP value from pseudo-register number 64.)

Programming languages, such as Pascal, typically use this value for up-level
display pointers to reference local variables.

Specifies that the frame marker of the previous routine stores the value of
the Return Pointer (RP). The Assembler automatically saves the Return
Pointer when it encounters an .ENTER pseudo-operation, and it restores the
RP value when it encounters a .LEAVE pseudo-operation. Generally, any
procedure that calls other routines should save the RP value.

Specifies the high end boundary of the Entry/Save register partition. The
partition may extend over registers gr3 through gr18. If you omit this
parameter, none of the registers are saved.

When a procedure uses these registers, the Assembler saves their values
when it encounters an .ENTER pseudo-operation and restores these values
when it encounters a .LEAVE pseudo-operation. The called routine saves
these registers upon entry and restores them upon exit, so values in
Entry/Save registers are preserved across a procedure call.

NOTE

See the previous description of the FRAME
parameter regarding the use of gr3.

Specifies the high end boundary of the Entry/Save floating-point register
partition. The partition includes fr12 through fri15 The Assembler
automatically saves these registers when it encounters an .ENTER pseudo-
operation and restores them when it encounters a .LEAVE pseudo-
operation.

Specifies the high end boundary of the space register partition. The

CALLER
or
CALLS

NO_CALLS

HPUX_INT

Assembler Directives and Pseudo-Operations

partition currently contains only sr3. When the .CALLINFO directive
includes this parameter, the Assembler automatically saves the Space
Register when it encounters an .ENTER pseudo-operation and restores this
register when it encounters a . LEAVE pseudo-operation.

Indicates that this procedure calls other routines so it requires space in the
stack for a frame marker and a fixed argument list. (When a program is
assembled using the -f option, this becomes the default case.) The
Assembler allocates this space (48 bytes) when it encounters an .ENTER
pseudo-operation and deallocates this space when it encounters a .LEAVE
pseudo-operation.

The frame marker and fixed argument list area occur at the top of the
stack so you must take this space into account when locating local variables
on the stack. You must allocate an area (using FRAME=) for a variable
argument list when this area is needed.

CALLER does not imply the existence of the parameter SAVE_RP.

The CALLER and CALLS parameters are equivalent.

Indicates that the procedure does not call other procedures and, therefore,
does not require a frame marker on the stack. This is the default case

unless the program is assembled using the -f option.

Specifies that this procedure is an interrupt procedure. This is necessary
for the stack unwind mechanism.

A stack frame consists of a pointer to the top of the frame, a frame marker, a fixed argument list, and a
variable argument list. Figure 3-1 illustrates these areas as an inverted stack.

3-15§

Assembler Directives and Pseudo-Operations

SP-64:
SP-60:
SP-56:
SpP-52:

SP-48:
SP-44:
SP-40:
SP-36:

SP-32:
SP-28:
SP-24:

SP-20:
SP-16:
SP-12:
SP-8:
SP-4:

SP:

Variable Arguments

arg word 7

arg word 6

arg word 5

arg word 4

Fixed Arguments

arg word 3 / ARG3

arg word 2 / ARG2

arg word 1 / ARG1

arg word 0 / ARGO

Frame Marker

{ Reserved

New RP

Static Link
Clean Up
Extension Pointer
Previous SP

Top of Frame

Stack Pointer

Figure 3-1. Stack Frame

Discussion

Assembler Directives and Pseudo-Operations

When a program uses the .CALLINFO directive, all entry and exit code must follow the Procedure Calling
Convention and the Assembler automatically generates the necessary code. The parameters in the
.CALLINFO directive govern the generation of the Entry/Exit code sequence (except for SAVE_SP).

.EXPORT main,ENTRY
.IMPORT printf,CODE
.END

Example
.CODE 3
main
.PROC 3
.CALLINFO CALLER,FRAME=0,SAVE_RP
.ENTER 5
ADDIL L’stringinit-$global$,27
LDO R'stringinit-$global$(1),2
.CALL 3
BL printf,2 3
NOP
.LEAVE ;
. PROCEND 5
.DATA 3
stringinit H
.STRINGZ "hello world\n" ;
.IMPORT $global$,DATA 5
.CODE 3

declare space and subspace

delimit procedure entry
; no local variables, need return
insert entry code sequence
3y point to data to be printed
6 ; place argument to printf
set up for procedure call
call printf, remembering from where

insert exit code sequence
delimit procedure end

declare space and subspace

mark use of global data subspace
declare some data

get data reference point
re-enter code subspace

make routine known to linker
external procedure declaration

This example uses the C printf routine. It illustrates most of the directives to be used when assembly
language programmers follow the standard procedure calling convention.

Assembler Directives and Pseudo-Operations

The .COMM Directive

The .COMM directive makes a storage request for a specified number of bytes.

Syntax

label .COMM [num bytes]

Parameters

label Labels the location of the reserved storage.

num_bytes An integer value for the number of bytes you want to reserve.
Assembler uses a default value of 4 if the .COMM directive lacks a
num _bytes parameter. Permissible values from one
0x 7FFFFFFF.

Discussion

The .COMM directive declares a block of storage that may be thought of as a common block. You must
label every .COMM directive. The linker associates the label with the subspace in which the .COMM
directive is declared and allocates the necessary storage within that subspace.
.COMM appear only in the BSS subspace of the $PRIVATES$ space. If the label of a .COMM directive
appears in several object modules, the linker uses the maximum size specified in any module when it

allocates the necessary storage in the current subspace.

Example

. BSS
mydata .COMM 16

This example reserves 16 bytes of storage for mydata.

3-18

It is recommended that

Assembler Directives and Pseudo-Operations

The .COPYRIGHT Directive

The .COPYRIGHT directive inserts a company name and date into the object module as a copyright notice.

Syntax

.COPYRIGHT ‘“company name[, date]"

Parameters
company name, date A sequence of ASCII characters, surrounded by quotation marks. The
string can contain up to 256 characters. When a comma follows the
company name, the next text is expected to be the date. The default date is
1985.
Example
.COPYRIGHT "company name, date"
.CODE
.EXPORT main,ENTRY
main
.PROC
.CALLINFO
.ENTER
LDI 2,%rS
ADDI 2,%r5,%r6
.LEAVE
.PROCEND

This program places a copyright notice in the object file. Once the copyright notice is in the object file,
the HP-UX utility, strings, is used to access it.

NOTE

This directive can appear anywhere in the source file, but may appear only
once.

The following is the standard copyright message placed in the copyright header of the object file:

Copyright company name, date. All rights reserved. No part of this
program may be photocopied, reproduced, or transmitted without
prior written consent of company name.

Assembler Directives and Pseudo-Operations

The .DOUBLE Directive

The .DOUBLE directive initializes a double-word to a floating-point value calculated from the parameters
provided. If the location counter is not aligned on a word double-word boundary, it is forced to the next
multiple of eight. If the statement is labeled, the label refers to the first byte of the storage area.

Syntax

.DOUBLE integer [.’decimall][E’[-"]power]

Parameters

integer Specifies the whole number part of a decimal number.

decimal Specifies the fractional part of a decimal number.

power Specifies the power of ten to raise a decimal number. To raise the decimal
number to a negative power of ten, place a minus sign (-) directly in front
of the power specified.

Discussion

Each of the following examples initializes two words of memory to floating-point quantities: 0.00106
and 400000. O respectively.

Example
dec_vall .DOUBLE 10.6E-4

dec_val2 .DOUBLE 0.4E6

3-20

Assembler Directives and Pseudo-Operations

The .END Directive

The .END directive terminates an assembly language program.

Syntax

.END

Discussion

This directive i1s the last statement in an assembly language program. If a source file lacks an .END
directive, the Assembler terminates the program when it encounters the end of the file.

Example

.CODE
.EXPORT double,ENTRY
.PROC
double
.CALLINFO
.ENTER
ADD %arg0,%arg0,%ret0
.LEAVE
. PROCEND
.END

A file that omitted the last line of this sample program would produce identical results.

3-21

Assembler Directives and Pseudo-Operations

The .ENDM directive

The .ENDM directive marks the end of a macro definition. The macro definition is entered into the macro
table and the remaining source lines are read in and assembled. An .ENDM directive must always
accompany a .MACRO directive.

Syntax

.ENDM

Example

QUADL .MACRO WD1,WD2,WD3,WD4

.ALIGN 16

.WORD WD1
.ALIGN 16

.WORD WD2
.ALIGN 16

.WORD WD3
.ALIGN 16

.WORD WD4
.ENDM

This example defines the macro QUADL,; it aligns the data specified in the macro parameters on quad word
boundaries.

The .ENDM directive delimits the end of the definition of QUADL.

3-22

Assembler Directives and Pseudo-Operations

The .ENTER and .LEAVE Pseudo-Operations

The .ENTER and .LEAVE pseudo-operations mark a procedure’s entry and exit points. They instruct the
Assembler to generate procedure entry and exit code sequences based on the information provided in the
.CALLINFO directive.

Syntax

.ENTER

.LEAVE

Discussion

The .ENTER pseudo-operation marks an entry point for the current procedure. Every procedure
following the standard procedure calling convention must contain one .ENTER pseudo-operation. The
.LEAVE pseudo-operation marks a procedure’s exit point. Every procedure following the standard
procedure calling convention must contain one . LEAVE pseudo-operation.

When the Assembler encounters an .ENTER pseudo-operation, it generates an entry code sequence
according to the parameters in the .CALLINFO directive for that procedure. Similarly, when the
Assembler encounters a .LEAVE pseudo-operation, it generates an exit code sequence according to the
parameters in the .CALLINFO directive for that procedure.

Example

.SPACE $TEXT$

.SUBSPA $CODE$
entrypt

. PROC

.CALLINFO

.ENTER

SH1ADD %arg0,%argl,%ret0

.LEAVE

. PROCEND

.EXPORT entrypt,ENTRY

.END

This example shows the placement of the .ENTER and . LEAVE pseudo-operations.

3-23

Assembler Directives and Pseudo—OPerations

The .ENTRY and .EXIT Directives

.ENTRY and .EXIT are compiler generated directives that mark the entry point and return point of the
current procedure.

Syntax

.ENTRY

CEXIT

Discussion

The .ENTRY directive signifies that the next statement is the beginning of an entry point for the current

procedure.

The .EXIT directive signifies that the next statement initiates a return from the current

procedure. These directives are issued by compilers and are not used by assembly language programmers.

Example

.ENTRY
STW
LDO
ADDIL
.CALL
BL
LDO
L$exit1
LDW
BV
LEXIT

2,-20(0,30)
48(30),30
L’$THISMODULE$-$global$,27

printf,2
R $THISMODULE$-$global$(1),26

-68(0,30),2
0(2)

we we we we we we we we we we we

This example shows a sequence of compiler-generated assembly code.

3-24

proc entry code follows
stack the return pointer
set up user stack pointer
point to printf data

set up for printf call
call printf thru RP
insert argument to printf
hide from linker

get callee RP

exit thru RP

end of exit sequence

Assembler Directives and Pseudo-Operations

The .EQU Directive

The .EQU directive assigns an expression value to an identifier.

Syntax

symbolic_name .EQU value

Parameters
symbolic_name Names the identifier to which the Assembler assigns the expression.
value An integer expression. The Assembler evaluates the expression, which must

be absolute, and assigns this value to symbolic_name. If the expression
references other identifiers, each identifier must be defined before the .EQU
directive attempts to evaluate the expression.

NOTE

The Assembler prohibits the use of offset values (instruction labels) and
imported symbols as components of an expression.

Example

loc1 .EQU O

loc2 .EQU loci1+4
.SPACE $TEXT$
.SUBSPA $CODE$
LDW loc1,%r1
STW %ri1,loc2
.END

This is a valid assembly program because the definition of loc1 comes before the definition of loc2.
Reversing the first two statements, however, produces an error condition.

3-25

Assembler Directives and Pseudo-Operations

The .EXPORT and .IMPORT Directives

The .EXPORT and .IMPORT directives allow symbols to be defined in one program but used in other
programs.

Syntax

.EXPORT symbol [,typel [,argument-description]
or

.IMPORT symbol [,type]

Parameters
symbol The name of an identifier whose definition is being exported or imported.
type A linker symbol type that can take one of the following values:

ABSOLUTE Designates an absolute symbol.

DATA Designates a data symbol.

CODE Designates a code location. The location can not be a

procedure entry.

ENTRY Designates the entry point of a procedure.

MILLICODE Locates code for the entry point of a millicode
subroutine.

PLABEL Locates a pointer to a procedure.

PRI_PROG Designates the primary program entry point. The

outerblock of Pascal and the main program in
FORTRAN are type PRI_PROG.

SEC_PROG Designates a secondary program entry point.

3-26

argument-description

Discussion

Assembler Directives and Pseudo-Operations

Allows you to communicate to the linker the types of registers used to
receive floating point arguments and return floating point return results.
Similarly, this information can be communicated in the .CALL directive.

The linker requires this information since the Procedure Calling
Convention allows floating point arguments and return values to reside in
either general registers or floating point registers depending on source
language convention. At link time, the linker ensures that both the caller
and called procedure agree on argument location. If not, the linker may
insert code to relocate the arguments (or return result) before control is
transferred to the called procedure or a procedure return is completed.

The form of the argument-description is described in the discussion of
the .CALL directive. Refer to the .CALL directive in this chapter for more
information.

Both the .EXPORT and .IMPORT directives use a series of keywords to define a symbol to the linker.
These keywords declare the symbol’s type, and its argument relocation information if the symbol is the

name of a procedure.

Because the .IMPORT directive specifies that another object module contains this symbol’s formal
definition, the Assembler does not associate an imported symbol with any particular subspace.

When an .IMPORT directive lacks a type parameter, the Assembler assigns the type of the current
subspace (either CODE or DATA) to the symbol.

Example

. IMPORT symname,CODE

.CODE
LDIL
BLE,n
NOP
.END

L symname,%r1
R’ symname (%srd,%r1)

This example imports the symbol symname, then loads the right part of symname with respect to gr1t into

grae6.

3-27

Assembler Directives and Pseudo-Operations

The .FLOAT Directive

The .FLOAT directive initializes a double-word of storage to a floating-point value calculated from the
parameters provided. If the location counter is not aligned on a word boundary, it is forced to the next
multiple of four. If the statement is labeled, the label refers to the first byte of the storage area.

Syntax

.FLOAT integer [’. ’decimal][E"["-"]power]

Parameters

integer Specifies the whole number part of a decimal number.

decimal Specifies the fractional part of a decimal number.

power Specifies the power of ten to raise a decimal number. To raise the decimal
number to a negative power of ten, place a minus sign (-) directly in front
of the power specified.

Discussion

Each of the following examples initializes one word of memory to floating~point quantities: 0.00096 and
3400000. 0 respectively.

Example

factor! .FLOAT 9.6E-4

factor2 .FLOAT 3.4E6

3-28

Assembler Directives and Pseudo-Operations

The .LABEL Directive

The . LABEL directive permits a label definition to appear within a sequence of instructions that occur on
a single line.

Syntax

.LABEL label id

Parameters

label id Names the label identifier.

NOTE

The . LABEL directive is especially useful when using the M4 macroprocessor
or the C pre-processor (cpp). You would normally use this directive in a
DEFINE macro that includes multiple instructions. However, because the
Assembler does not process M4 or cpp style macros, you must run programs
that contain the .LABEL directive through the M4 pre-processor or the C
pre-processor (cpp).

Example

#define Loop(xx) LDO xx(%r0),%r1 ! .LABEL Loop ! ADDI,= -1,%r1,%r1 \
! BL Loop,%r0 ! NOP ! LDI 1,%ret0 ; macro
.CODE
step_ten
.PROC
.CALLINFO
.ENTER
Loop(10)
. LEAVE
. PROCEND
.EXPORT step_ten,ENTRY

This example defines a CPP macro named Loop.

3-29

Assembler Directives and Pseudo-Operations

The .LISTOFF and .LISTON Directives

The .LISTOFF and .LISTON directives control the expansion of instructions for all macro invocations, all
predefined subspace declarations, and the .ENTER and .LEAVE pseudo-operations. .LISTOFF causes the
Assembler to cease listing expanded instructions until a .LISTON directive is encountered. .LISTON
causes the Assembler to list expanded instructions until a . LISTOFF directive is encountered. The default
is .LISTOFF.

Syntax

.LISTOFF
.LISTON

The following is an example of .LISTON in an assembly listing of a procedure containing a macro
invocation.

3-30

Example

line offset

1
2

(o) 24 1 I S VY]

o o~

10

11
12

13

14
15
16

00000000
00000004
00000008
0000000C

00000010

00000014

00000018
0000001C

00000020

00000024
00000028

40000000

hexcode label

call DECR

(6BC23FD9)
(37DE0060)
(2B600000)
(683A0000)

(28600000)
(48340000)
LAB
(AEQF3FFS)
(08000240)

(4BC23F79)

(E840C000)
(37CO3FA1)

(00000000) count

Assembler Directives and Pseudo-Operations

opcode operands (comment)

.LISTON

.CODE

.SPACE $TEXT$, SPNUM=0,SORT=0

.SUBSPA $CODES$, QUAD=0,ALIGN=8,ACCESS=0x2c
. PROC

yproc label
.CALLINFO FRAME=0,SAVE_RP
.ENTER
STW 2,-0x14(0,0x1E)
LDO 0x30(0x1E),0x1E
ADDIL L count-$global$,%dp
STW %arg0,R’ count-$global$ (%r1)
DECR mark,count;

macro invocation
ADDIL L"VAL-$global$,%dp
LDW R’ VAL-$global$(%r1),%r20
ADDIBF,= -1,%r20,LAB
NOP
.LEAVE
LDW -0x44(0,0x1E),2
BV 0(2)
LDO -0x30(0x1E),0
. PROCEND
.EXPORT call DECR,ENTRY
DATA

.SPACE $PRIVATE$, SPNUM=1,SORT=16
.SUBSPA $DATA$, QUAD=1,ALIGN=8
ACCESS=0x1f

. IMPORT $global$
.WORD 0
.LISTOFF

In the above example, if . LISTOFF had been used, the macro invocation DECR, and the directives .CODE,
.DATA, .ENTER, and .LEAVE, would not have been expanded in the assembly listing.

3-31

Assembler Directives and Pseudo-Operations

The .LOCCT Directive

The . LOCCT directive specifies where subsequent code should occur in one of the four location counters of
the current subspace. Note that the .LOCCT directive is not permitted within a procedure.

Syntax

.LOCCT [loc_number]

Parameters

loc_number

Example

.CODE

.LOCCT
ldvalt1

LDIL

LDO

.LOCCT
vali .WORD

.LOCCT
ldval?2

LDIL

LDO

.LOCCT
val2 .WORD

This example uses two location counters to separate code from data.

A location counter number of the current subspace. The permissible values

are 0, 1, 2, and 3. The default is zero

0

L’vall,%r19
R’vall(%r19),%r19
1

57005

0

L"'val2,%r20
R’val2(%r20),%r20
1

61453

In the assembled code, everything

under location counter O comes first, followed by everything under location counter 1, and so on.

3-32

Assembler Directives and Pseudo-Operations

The .MACRO Directive

The .MACRO directive marks the beginning of macro definitions.

Syntax

label .MACRO [formal parameter] [,formal_parameter]...

Parameters

for‘mal_parameter Specifies a string of characters treated as a positional parameter. The ith
actual parameter in a macro invocation is substituted for the ith formal
parameter in the macro declaration wherever the formal parameter appears
in the body of the macro definition.

Normal Assembler syntax is observed within macro definitions except text substitution is assumed for
formal parameters. The following line 1s an example of a macro declaration:

DECR .MACRO LAB,VAL

LAB and VAL are formal parameters. Their actual values are determined by the first and second
parameters on any invocation of the macro DECR. On the macro invocation, the parameters are delimited
by commas. Successive commas indicate a null parameter, causing the expanded macro to substitute null
for one of its formal parameters. When the number of formal parameters exceeds the number of actual
parameters, null parameters are inserted for the excess parameter positions. When the number of actual
parameters exceeds the number of formal parameters, a warning is issued and the excess parameters are
ignored.

3-33

Assembler Directives and Pseudo-Operations

Example
DECR .MACRO LAB, VAL
SETP ADDIL L’VAL-$global$,%dp
LDW R’VAL-$global$(%r1),%r20
LAB
ADDIBF,= -1,%r20,LAB
NOP
.ENDM

The above macro definition defines a simple counter or timer call DECR. Following is an invocation to
DECR:

DECR LOOP,COUNT

LOOP and COUNT are the actual parameters that are specific to this particular invocation of the macro
DECR.

During macro expansion, textual substitution for positional parameters is performed in the body of the
macro definition. Substitution is performed on strings of characters that are delimited by blanks, tabs,
commas, or semicolons. If the string matches one of the formal parameters, it is replaced with the
corresponding actual parameter.

When a macro definition contains a label the expanded form of the macro adds a unique suffix to the
label for each instance the macro is invoked. This unique suffix prevents duplicate symbols from
occurring and prevents the label from being referenced from outside the body of the macro definition.
This suffix also contains a number that is used as a counter by the Assembler.

3-34

Assembler Directives and Pseudo-Operations

Examples

PRINT .MACRO DATA_ADDR
ADDIL L“DATA_ADDR, %dp

.CALL

BL print,%rp

LDO R”DATA_ADDR(%r1),%arg0
.ENDM

The above example defines the macro PRINT to call printf. The macro parameter DATA_ADDR is used to
set up the argument to be passed to printf.

STORE .MACRO REG,LOC

LDIL L’LOC-$global$,%ri
STW REG,R"LOC-$global$(%r1)
.ENDM

The above example defines the macro STORE. STORE places the contents of the register REG, the first
macro parameter, into the memory address LOC, the second parameter.

NOTE

Although there is no upper limit on the number of parameters or
arguments in a macro definition, no single macro parameter may exceed
200 characters.

Discussion

Macro definitions may appear wherever and however often as necessary within source code. Macro
definitions may occur inside or outside of spaces, subspaces, and procedures.

Since the Assembler always uses the most recently encountered definition, macros may be redefined as
often as desired.

NOTE

A macro may not be defined within the body of another macro definition.

Although nested macro definitions are not allowed, nested macro calls are. A nested macro call occurs
when one macro is invoked within the definition of another macro. A macro may not be invoked within
its own definition. Macros can only be invoked after being defined.

3-35§

Assembler Directives and Pseudo-Operations

The .ORIGIN Directive

The .ORIGIN directive advances the location counter to the specified location.

Syntax

.ORIGIN [location]

Parameters
location An integer value for the offset you want to advance the location counter.
Permissible values range from zero to Ox7FFFFFFF. The default value is
zero. The value specified cannot be less than the current value of the
location counter.
When the Assembler encounters an .ORIGIN directive, it issues a . BLOCK
pseudo-operation of a size calculated to advance the location counter to the
requested origin. (See the discussion of the . BLOCK pseudo-operation.)
Example
.CODE
XOR %r21,%r22,%ra3
B idx
NOP
.ORIGIN 64
idx LDWX %r23(0,0),%r3

.END

This sample program does an exclusive OR operation and advances the location counter to 64 bytes where
the label idx is located as a branch target.

3-36

Assembler Directives and Pseudo-Operations

The .PROC and .PROCEND Directives

The . PROC and . PROCEND directives bracket the statements within a procedure.

Syntax

. PROC

. PROCEND

Discussion

The .PROC directive signifies that the next statement is the first statement of a procedure. The
. PROCEND directive signifies that the previous statement was the last statement of the procedure.
Switching spaces or subspaces within a procedure is not permitted.

Every procedure must contain a .CALLINFO directive and normally contains an .ENTER and .LEAVE
pseudo-operation. The only exception to the latter rule occurs in procedures that are either
compiler-generated or created by programmers who are writing their own entry and exit code sequences.

NOTE

Because the .ENTER and .LEAVE pseudo-operations guarantee that the
stack unwind process works correctly, you should consistently use these
directives rather than writing your own entry and exit code sequences.

Example

.CODE
test
.PROC
.CALLINFO
.ENTER
COMCLR,= %arg0,%argt,%ret0
LDI 1,%ret0
.LEAVE
.PROCEND
.EXPORT test

This template shows a procedure that follows the standard procedure calling convention.

3-37

Assembler Directives and Pseudo-Operations

The .REG Directive

The .REG directive, which must be labeled, attaches a type and number to a user-defined register name. —
The new register name may optionally begin with %.
Syntax
label .REG [typed register]
Parameters
typed_r‘egister‘ Must either be one of the predefined Assembler registers or a previously
defined user-defined register name. All predefined Assembler registers
begin with %.
Example
shift .REG %SAR
The example above defines the register shift with control register type and register number eleven. %SAR —
is a synonym for control register eleven, the shift amount register.

3-38

Assembler Directives and Pseudo-Operations

The .SPACE Directive

The .SPACE directive starts a new space or switches back to an old space.

Syntax

.SPACE name [,SPNUM=value] [,UNLOADABLE]
[,NOTDEFINED] [,PRIVATE] [,SORT=<value>]

Parameters
name

SPNUM=value

UNLOADABLE

NOTDEFINED

PRIVATE

SORT=value

Discussion

An i1dentifier that names the new space.

A space number constant that provides a specific number for the current
space. Its use is currently optional and is ignored by the linker. If the first
parameter of the .SPACE directive is an integer, it will be interpreted as
the space number and any remaining parameters will be ignored.

Specifies that the space resides on disk and is not loadable into main
memory. Debugger data is a typical example of an unloadable space.

Specifies that the definition for this space occurs in another object module.

Specifies that other programs cannot share the data in this space.
Enforcement of this directive depends on the operating system.

Provides an integer value for the sort key. The linker orders the spaces in
the output object module according to this key. It is suggested that the
number "8" be used for space $TEXT$ and the number "16" be used for
$PRIVATES.

The first time the Assembler encounters a . SPACE directive with a new name, it uses that name to declare
a new space. As this is the defining occurrence of that space, additional keywords can describe attributes

for that space.

If the Assembler encounters subsequent .SPACE directives with that name, it continues that space. In this
case, where the program is re-entering a previously defined space, the .SPACE directive can only contain
the space name; other keywords to describe the space are illegal.

3-39

Assembler Directives and Pseudo-Operations

A space can contain from one to four discrete quadrants (See the QUAD parameter of the .SUBSPA
directive.) When you divide a space into multiple quadrants, you must define all the subspaces within
each quadrant as a group. If subspaces for a quadrant are defined individually, program operation is
unpredictable. The Assembler, however, does not check for this condition.

Example

.SPACE $TEXTS$
.SUBSPA $CODE$, QUAD=0,ALIGN=8,ACCESS=0x2c,SORT=24

.SPACE $PRIVATES$, 1
.SUBSPA $DATA$, QUAD=1,ALIGN=8,ACCESS=0x1f,SORT=24
.SUBSPA BSS, QUAD=1,ALIGN=8,ACCESS=0x1f,SORT=80, ZERO

.SPACE $myspace$
.SUBSPA $mys pace_ADDRESS$ s ALIGN=4 ACCESS=0xzc,UNLOADABLE

The above example shows some of the standard "space" definitions in a typical assembly language program.

3-40

Assembler Directives and Pseudo-Operations

The .SPNUM Directive

The .SPNUM directive reserves a word of storage and initializes it with the space number of the space
named by the operand. Only one operand is allowed and any label present is offset at the first byte of the
storage just initialized.

Syntax
.SPNUM name
Parameters
name Specifies the name of a space whose space number is used to initialize a
word of storage.
Example
.SPACE $PRIVATE$, SPNUM=1 SORT=16
.SUBSPA $DATA$,QUAD=1, ALIGN=8,ACCESS=0x1f SORT=24
data_ref
.WORD OxFFFF
LOG .SPNUM $PRIVATES

In the above example, the space number of $PRIVATES$, 1, is stored as the address of the symbol LOG by
the .SPNUM directive.

NOTE

Space numbers are ignored by the linker.

3-41

Assembler Directives and Pseudo-Operations

The .STRING and .STRINGZ Pseudo-Operations

The .STRING pseudo-operation reserves storage for a data area and initializes i1t to ASCII values. The
.STRINGZ pseudo-operation reserves storage the same as .STRING, but appends a zero byte to the data.
This creates a C language type string. If the statement is labeled, the label refers to the first byte of the
storage area.

Syntax

.STRING[Z] "init_value"

Parameters

init_ualue A sequence of ASCII characters that are surrounded by quotation marks. A
string can contain up to 256 characters.

Specifies a sequence of ASCII characters enclosed in quotation marks. The
quotation marks are not generated into the storage area. The HP-UX style
escape sequences \0, \n, \t, \b, \r, \f, \\, and \" are recognized.
In addition, the escape sequences \X or \x followed by two hexadecimal

digits can be used to represent any 8-bit character (the HP-UX sequence \0
becomes \X00).

Discussion

The .STRING pseudo-operation requests the required number of bytes to store the string (where each
character is stored in a byte). The .STRINGZ pseudo-operation also requests the required storage for the
quoted string but then appends a zero byte for compatibility with C language strings.

When you label one of these pseudo-operations, the label refers to the first byte of the storage area.

Examples
G .STRING "A STRING"

This pseudo-operation allocates eight bytes, the first of which is labeled "G", then initializes this area with
the characters: A, "space", S, T, R, I, N, and G.

G .STRINGZ "A STRING"

This pseudo-operation allocates eight bytes to hold A STRING, allocates an additional byte for the
appended zero, and associates the label "G" with the first byte of this storage area.

3-42

Assembler Directives and Pseudo-Operations

The .SUBSPA Directive

— The .SUBSPA directive declares a new subspace or switches back to an old subspace.

Syntax

.SUBSPA name [,QUAD=value]t ,ALIGN=value]

[,ACCESS=value] [,SORT=value]
[,FIRST] [,COMMON] [,ZERO] [,DUP_COMM]
[,CODE_ONLY] [,UNLOADABLE]

Parameters
name

QUAD=value

FIRST

ALIGN=value

ACCESS=value

SORT=value

COMMON

ZERO

DUP_COMM

CODE_ONLY

An identifier that names the current subspace.

Specifies the quadrant (O through 3) in which the Assembler should place
this subspace. The default value is zero.

Specifies that the subspace must be allocated exactly at the end of the
specified space. The default is false.

Specifies a value (which must be a power of 2) on which the Assembler
should align the beginning of the subspace. The default value is the largest
alignment requested within that subspace, or one if no alignment requests
exist.

Specifies the 7-bit value for the access rights field in the PDIR (Physical
Page Directory for virtual address mapping). Must be 0X2C for code, and
OX1F for data subspaces.

Provides an integer value for the primary sort key. The linker orders the
subspaces in the output object module according to this primary key. If
several subspaces share the same primary key value, the linker lists these
subspaces in the order in which it processes them. It is suggested that 24 be
used for both code and data subspaces.

Specifies that this subspace is a common block. The default setting is false.

Specifies that this subspace contains all zeros and no data appears in the
output file. The default setting is false.

Specifies that the initialized data symbols within this subspace may. have
duplicate names. When you include this parameter, multiple occurrences of
a universal data symbol can exist and the linker does not report a
"Duplicate Definition" error. The default setting is false.

Specifies that this subspace contains only code. The default setting is false.

3-43

Assembler Directives and Pseudo-Operations

UNLOADABLE Specifies that this subspace is not loadable into memory. The default
setting is false. Loadable subspaces must reside in loadable spaces, and
unloadable subspaces must reside in unloadable spaces.

Discussion

The first time the Assembler encounters a .SUBSPA directive with a new name, it uses that name to
declare a new subspace. As this is the defining occurrence of that subspace, optional keywords describe
attributes of that subspace.

When the Assembler encounters additional . SUBSPA directives with that name, it continues that subspace.
In this case, the .SUBSPA directive can only contain the subspace name; other keywords to describe the
subspace are illegal.

The $CODE$ subspace uses the stack unwind subspace called $UNWIND$. If other code subspaces have an
associated stack unwind subspace, the Assembler identifies them with names of the form: $UNWIND$
<code_subspace _name>. For subspaces with names of the form $CODE$<mycode>, the Assembler
creates an unwind subspace with the name $UNWIND$<mycode>.

Example
.SPACE $TEXTS$, 0
.SUBSPA $CODES$, QUAD=0,ALIGN=8,ACCESS=0x2c,SORT=24
.SPACE $PRIVATE$, 1
.SUBSPA $DATA$, QUAD=1,ALIGN=8,ACCESS=0x1f,SORT=24

The above example shows some of the standard "subspace" definitions in a typical assembly language
program.

3-44

Assembler Directives and Pseudo-Operations

The .VERSION Directive

The .VERSION directive places the designated string in the current object module for version
identification.

Syntax

.VERSION ‘"info_string"

Parameters

info_string A sequence of ASCII characters, surrounded by quotation marks. The
string can contain up to 256 characters.

Discussion

The Assembler places this string in the current object module. A program may contain multiple
.VERSION directives.

Example
.CODE
.VERSION "Version 1 of This Simple Sample Program"
SUB %r19,%r20,%r19
DEP %r19,14,5,%r22
.END

This program inserts version information into the object module, and performs subtract and deposit
operations. Once the version information is in the object file, the HP-UX utility, strings, is used to access
it.

NOTE

This directive can appear anywhere in the source file, and multiple
occurrences are permitted.

3-45§

Assembler Directives and Pseudo-Operations

Programming Aids

The Assembler provides a series of standard space and subspace definitions that you may use to simplify
the writing of an assembly program. These definitions are duplicated in the system file pcc__prefix.s.
Because these files are relatively large and may change with new releases of the Assembler, you can view

the most recent version of these files on your terminal screen by typing the command:

more /lib/pcc_prefix.s.

Table 3-4 lists the predefined directives for establishing standard spaces and subspaces.

Table 3-4. Predefined Spaces and Subspaces

Directive Space Name Default Parameters
.FIRST .space $TEXTS, SPNUM=0,SORT=8
.subspa $FIRSTS, QUAD=0,ALIGN=2048 ,ACCESS=0x2c,
SORT=4,FIRST
.REAL .space $TEXTS, SPNUM=0,SORT=8
.subspa $REALS, QUAD=0,ALIGN=8,ACCESS=0x2c,
SORT=4,FIRST,LOCK
.MILLICODE .space $TEXTS$, SPNUM=0,SORT=8
.subspa $MILLICODES, QUAD=0,ALIGN=8,ACCESS=0x2c,SORT=8
LLIT .space $TEXTS, SPNUM=0,SORT=8
.subspa $LITS, QUAD=0,ALIGN=8 ,ACCESS=0x2c,SORT=16
.CODE .space $TEXTS, SPNUM=0,SORT=8
.subspa $CODES$, QUAD=0,ALIGN=8,ACCESS=0x2c,SORT=24
.UNWIND .space $TEXTS$, SPNUM=0,SORT=8
.subspa $UNWINDS, QUAD=0,ALIGN=4,ACCESS=0x2c,SORT=64
.RECOVER .space $TEXTS, SPNUM=0,SORT=8
.subspa $RECOVERS$, QUAD=0,ALIGN=4,ACCESS=0x2c,SORT=80
.RESERVED .space $TEXTS, SPNUM=0,SORT=8
.subspa $RESERVED$, QUAD=0,ALIGN=8,ACCESS=0x73,SORT=82
.GATE .space $TEXTS, SPNUM=0,SORT=8
.subspa $GATES$, QUAD=0,ALIGN=8 ,ACCESS=0x4c,
SORT=84,CODE_ONLY

3-46

(Continued on next page)

Assembler Directives and Pseudo-Operations

Table 3-4. Predefined Spaces and Subspaces (Continued)

Directive Space Name Default Parameters
.GLOBAL .space $PRIVATES, PRIVATE,SPNUM=1,SORT=16
.subspa $GLOBALS, QUAD=1,ALIGN=8,ACCESS=0x1f,SORT=8
.IMPORT $global$
.SHORTDATA .space $PRIVATES$, PRIVATE,SPNUM=1,SORT=16
.subspa $SHORTDATAS$, QUAD=1,ALIGN=8,ACCESS=0x1f,SORT=16
.DATA .space $PRIVATES$, PRIVATE,SPNUM=1,SORT=16
.subspa $DATAS, QUAD=1,ALIGN=8,ACCESS=0x1f,SORT=24
.PFA_COUNTER .space $PRIVATES$, PRIVATE,SPNUM=1,SORT=16
.subspa $PFA COUNTER$, | QUAD=1,ALIGN=4,ACCESS=0x1f,SORT=64
.BSS .space $PRIVATES, PRIVATE,SPNUM=1,SORT=16
.subspa BSS, QUAD=1,ALIGN=8,ACCESS=0x1f,
SORT=80,ZERO
.PCB .space $PRIVATES$, PRIVATE,SPNUM=1,SORT=16
.subspa PCB, QUAD=1,ALIGN=8 ,ACCESS=0x10,SORT=82
.STACK .space $PRIVATES$, PRIVATE,SPNUM=1,SORT=16
.subspa $STACKS, QUAD=1,ALIGN=8,ACCESS=0x1f,SORT=82
.HEAP .space $PRIVATES$, PRIVATE,SPNUM=1,SORT=16
.subspa $HEAPS, QUAD=1,ALIGN=8,ACCESS=0x1f,SORT=82
.PFA_ADDRESS .space PFA, SPNUM=2,PRIVATE ,UNLOADABLE ,SORT=64
.subspa $PFA_ADDRESS$, | ALIGN=4,ACCESS=0x2c,UNLOADABLE
.HEADER .space $DEBUGS, SPNUM=2, PRIVATE ,UNLOADABLE,SORT=80
.subspa $HEADERS$, ALIGN=4,ACCESS=0,UNLOADABLE ,FIRST
.GNTT .space $DEBUGS, SPNUM=2, PRIVATE ,UNLOADABLE,SORT=80
.subspa $GNTTS, ALIGN=4,ACCESS=0,UNLOADABLE
LLNTT .space $DEBUGS, SPNUM=2,PRIVATE ,UNLOADABLE ,SORT=80
.subspa $LNTTS, ALIGN=4,ACCESS=0,UNLOADABLE
LSLT .space $DEBUGS, SPNUM=2,PRIVATE ,UNLOADABLE,SORT=80
.subspa $SLTS$, ALIGN=4,ACCESS=0,UNLOADABLE
VT .space $DEBUGS, SPNUM=2,PRIVATE ,UNLOADABLE,SORT=80
.subspa VT, ALIGN=4,ACCESS=0,UNLOADABLE

3-47

Chapter 4
The Instruction Set

The HP Precision Architecture instructions fall into the following major categories:
e Memory Reference

e Immediate

e Branch

e Computational

¢ System Control

o Assist (coprocessor)

In addition, pseudo-instructions are available to perform commonly used functions that are variations of
the basic instructions.

The Instruction Set
Instruction Operands

Table 4-1 lists the instruction operands by class as well as meaning. The table is intended as a reference
for the operands used in the instruction tables throughout this chapter.

Table 4-1. Instruction Operands

Operand Class Meaning
b base register (O through 31)
d 14 bit displacement
1 Sor 11 bit immediate value
len length of bit field
p bit position indicator
count shift count
r source register:

o general register (O through 31)
e floating point register (0 through 15)
o control register (0 and 8 through 31)

rl and r2 source register:

o general register (0 through 31)
e floating point register (O through 15)

sr space register (O through 7)
s space register (0 through 3)
t destination register:

e general register (0-31)
o floating-point register (0-15)
e control register (0 and 8-31)

wd word displacement (12 bit immediate)

X index register (general register O through 31)

4-2

The Instruction Set

Memory Reference Instructions

The memory reference instructions load values from memory into general registers and store values from
general registers into memory. The displacement or index values can be used to modify the base offset in
a general register.

Memory reference instructions include:

e Load and Store

e Load and Store With Base Register Modification

e Indexed Load

Short Displacement Load and Store

Store Bytes Short

4-3

The Instruction Set

Load and Store Instructions

A value is transferred between memory and a general register.

Table 4-2. Load and Store Instructions

Instruction Name Mnemonic Name Operands
Load Byte LDB d(s,b),t
Load Halfword LDH d(s,b),t
Load Word LDW d(s,b)t
Store Byte STB r,d(s,b)
Store Halfword STH r,d(s,b)
Store Word STW r,d(s,b)

Load and Store with Base Register Modification Instructions

A word 1s transferred between memory and a general register. The base register is pre-decremented if the
displacement is negative; otherwise, the base register is post-incremented.

Table 4-3. Load and Store With Base Register Modification Instructions

Instruction Name Mnemonic Name Operands
Load Word and Modify LDWM d(s,b)t
Store Word and Modify STWM r,d(s,b)

4-4

The Instruction Set

Indexed Load Instructions

A value is read from memory into a general register. The address is formed by the addition of the index
register to the base register. Optionally, the index value may be shifted to reflect an offset corresponding
to the size of the value being read. The base register may be modified after the address has been formed.

Table 4-4. Indexed Load Instructions

Instruction Name Mnemonic Name Operands
Load Byte Indexed LDBX,cmplt x(s,b)t
Load Halfword Indexed LDHX,cmplt x(s,b),t
Load Word Indexed LDWX ,cmplt x(s,b),t
Load Word Absolute Indexed * LDWAX ,cmplt x(b)t
Load and Clear Word Indexed LDCWX cmplt x(s,b),t

* This instruction may be executed only by code running at the most privileged level.

Table 4-5. Indexed Load Completers

cmplt Description

S Shift Index by Data Size,
No Base Register Modification

M No Index Shift,
Base Register Modification

SM or SM Shift Index by Data Size,
Base Register Modification

none specified No Index Shift,
No Base Register Modification

4-5

The Instruction Set

Short Displacement Load and Store Instructions
A value is transferred between memory and a general register. The address is formed by adding the short

displacement to the base register. A short displacement is one that is between -16 and +15 bytes.
Optionally, the base register may be modified either before or after the address has been formed.

Table 4-6. Short Displacement Load and Store Instructions

Instruction Name Mnemonic Name Operands

Load Byte Short LDBS,cmplt d(s,b),t
Load Halfword Short LDHS cmplt d(s,b),t
Load Word Short 1.DWS,cmplt d(s,b),t
Load Word Absolute Short * LDWAS.cmplt d(b),t

Load and Clear Word Short LDCWS cmplt d(s,b),t
Store Byte Short STBS,cmplt r,d(s,b)
Store Halfword Short STHS,cmplt r,d(s,b)
Store Word Short STWS cmplt r,d(s,b)
Store Word Absolute Short * STWAS,cmplt r,d(b)

* This instruction may be executed only by code running at the most
privileged level.

Table 4-7. Short Displacement Load and Store Completers

cmplt Description
,MB Modify Before
JMA Modify After
none specified No Base Register Modification

4-6

The Instruction Set

Store Bytes Short Instruction
Byte values are written from a general register into memory. The address is formed using the short

displacement, the base register, and the completer. The bytes can be aligned to the beginning or the end
of the word. Optionally, the base register can be modified after the address has been formed.

Table 4-8. Store Bytes Short Instruction

Instruction Name Mnemonic Name Operands

Store Bytes Short STBYS cmplt r,d(s,b)

Table 4-9. Store Bytes Short Completers

cmplt Description
,B Beginning case, no modify
E Ending case, no modify
,BM Beginning case, modify base
,JEM Ending case, modify base

4-7

The Instruction Set
Immediate Instructions

An immediate value is loaded into a general register. Values are computed from either a 21-bit
immediate value, a 21-bit immediate value plus a general register, or a 14-bit immediate value plus a
base register.

Table 4-10. Immediate Instructions

Instruction Name Mnemonic Name Operands
Load Immediate Left LDIL Lt
Add Immediate Left * ADDIL ir
Load Offset LDO d(b),t
Load Immediate ** LDI it

* The result of the ADDIL operation is placed in general register one.

** The LDI pseudo-instruction generates an LDO i1(0)t instruction.

4-8

The Instruction Set
Branch Instructions

Branch instructions can be conditional or unconditional. Unconditional branches are used to alter the
control flow of a program. Conditional branches perform a function and then branch depending upon
whether a specified condition has been met.

NOTE

When coding branch instructions, including those with nullification
specified, attention should be given to the following instruction in the
source code. All branch instructions consider the instruction that follows
to be in its delay slot. An NOP pseudo-operation may be used to fill the
delay slot when there is no other useful work to be performed.

Unconditional Branch Instructions

Unconditional branch instructions are used to make control transfers, procedure calls, and procedure
returns. Targets for unconditional branches are either local or external. Unconditional local branch
instructions are used for control transfers within a space (intraspace). Unconditional external branch
instructions are used for control transfers into another space (interspace).

Table 4-11. Unconditional Branch Instructions

Instruction Name Mnemonic Name Operands
Branch External BEn wd(sr,b)
Branch and Link External BLE,n wd(sr,b)
Branch and Link BL,n target,t
Branch and Link Register BLRn x,t
Branch Vectored BV n x(b)
Gateway GATEn target,t
Unconditional Branch * Bn target

* The B pseudo-instruction generates a BL instruction with the link
register t equal to GRO.

4-9

The Instruction Set

Conditional Branch Instructions

Local conditional branches include the following instructions:
e Move and Branch

e Compare and Branch

e Add and Branch

e Branch on Bit

A conditional branch is considered taken if the condition specified by the condition completer is met by
the operands, and/or is met by the results of the function performed.

All conditional branches can be coded with a nullification completer. If nullification is specified, the
instruction following either a taken forward branch or a failing backward branch is nullified. If
nullification is not specified, the following instruction is executed before the branch target, especially in
the case where a branch instruction occupies the delay slot. See the Precision Architecture and Instruction
Reference Manual for the definition of "following instruction".

A forward branch is one to an address that 1s greater than the address of the instruction in the delay slot
of the branch. A backward branch is one to an address that is less than or equal to the address of the
delay slot. Figure 4-1 identifies which branches are forward branches and which branches are backward
branches.

A
Branch Backward
Branches
Delay Slot
Forward
Branches
YV

Figure 4-1. Branch Descriptions

4-10

The Instruction Set

Move and Branch Instructions
A general register or an immediate value is copied to a general register. The value copied is used to

determine if the specified condition is met.

Table 4-12. Move and Branch Instructions

Instruction Name Mnemonic Name Operands
Move and Branch MOVB, cond, n rlr2target
Move Immediate and Branch MOVIB, cond, n irtarget

Table 4-13. Move and Branch Conditions

cond Description
never
= all bits are equal to 0
leftmost bit is equal to 1
oD rightmost bit is equal to 1
TR always
<> at least one bit is equal to 1
= leftmost bit is equal to 0
EV rightmost bit is equal to 0

4

The Instruction Set

Compare and Branch Instructions

A general register or an immediate value is compared against a general register. The operands and/or the
result of the comparison are used to determine whether the specified condition is met. The COMBT,
COMIBT, COMBF and COMIBF instructions use only the non-negated completer conditions (never, =, <,
<= << <<= SV, OD). The COMB and COMIB pseudo-instructions use any of the condition completers.

Table 4-14. Compare and Branch Instructions

Instruction Name Mnemonic Name Operands
Compare and Branch If True COMBT,cond,n rlr2target
Compare Immediate and Branch If True COMIBT,cond,n irtarget
Compare and Branch If False COMBF,cond,n rl,r2target
Compare Immediate and Branch If False COMIBFcond,n irtarget
Compare and Branch * COMB,cond,n rl,r2target
Compare Immediate and Branch ** COMIB,cond,n irtarget

* The COMB pseudo-instruction generates either a COMBT or COMBF instruction
depending on the condition.

** The COMIB pseudo-instruction generates either a COMIBT or COMIBF instruction
depending on the condition.

Table 4-15. Compare and Branch Conditions

The Instruction Set

cond Description
never
= opd1 is equal to opd2
< opd1 is less than opd?2 (signed)
<= opd1 is less than or equal to opd2 (signed) Non-negated
<< opd1 is less than opd2 (unsigned)
<<= opd1 is less than or equal to opd2 (unsigned)
Y% opd1 minus opd2 results in overflow (signed)
oD result of opd1 minus opd?2 is odd
TR always
<> opd1 is less than or greater than opd2
>= opd]1 is greater than or equal to opd2 (signed)
> opd1 is greater than opd?2 (signed) Negated
>>= opd1 is greater than or equal to opd2 (unsigned)
>> opd1 is greater than opd2 (unsigned)
NSV opd 1 minus opd?2 results in no overflow (signed)
EV result of opd1 minus opd?2 is even

4-13

The Instruction Set

Add and Branch Instructions

A general register or an immediate value is added to a general register. The operands and/or the results
of the addition are used to determine whether the specified condition i1s met. The ADDBT, ADDIBT,
ADDBF and ADDIBF instructions use only the non-negated completer conditions (never, = <, <= NUV,
ZNV, SV, OD). The ADDB and ADDIB pseudo-instructions uses any of the condition completers.

Table 4-16. Add and Branch Instructions

Instruction Name Mnemonic Name Operands
Add and Branch If True ADDBT,cond,n rlr2target
Add Immediate and Branch If True ADDIBT,cond,n irtarget
Add and Branch If False ADDBF,cond,n rl,r2target
Add Immediate and Branch If False ADDIBF cond,n irtarget
Add and Branch * ADDB,condn rlr2target
Add Immediate and Branch ** ADDIBcond,n irtarget

* The ADDB pseudo ‘nstruction generates either a ADDBT or ADDBF instruction,
depending on the condition.

** The ADDIB pseudo-instruction generates either a ADDIBT or ADDIBF instruction,
depending on the condition.

Table 4-17. Add and Branch Conditions

The Instruction Set

cond Description
never
= opdl is equal to -opd2
< opd1 is less than -opd?2 (signed)
<= opd1 is less than or equal to -opd2 (signed) Non-negated
NUV | opdl +opd2 < 222 (no unsigned overflow)
ZNV opdl + opd2 < 23?%oropdl +opd2=0
SV opd1 plus opd2 results in overflow (signed)
oD result of opd1 plus opd?2 is odd
TR always
<> opd1 is not equal to -opd2
>= opd1 is greater than or equal to -opd2 (signed)
> opdl is greater than -opd2 (signed) Negated
uv opdl + opd2 > = 2% ? (unsigned overflow)
VNZ opdl +opd2>22%?and opd! + opd2 not =0
NSV opd1 plus opd2 results in no overflow (signed)
EV result of opd1 plus opd2 is even

4-15§

The Instruction Set
Branch on Bit Instructions

The bit specified, either as an immediate or in the shift-amount-register (SAR,CR11), of a general register
is tested. The result of the test is used to determine whether the specified condition is met.

Table 4-18. Branch on Bit Instructions

Instruction Name Mnemonic Name Operands
Branch on Variable Bit BVB,cond,n ritarget
Branch on Bit BB.cond,n r,p,target

Table 4-19. Branch on Bit Conditions

cond Description
< Bit specified is equal to |
>= Bit specified is equal to O

4-16

The Instruction Set
Computational Instructions

Computational instructions are composed of the following:
e Add

Shift and Add

e Subtract

e Compare and Clear
e Divide Step

e Logical

e Unit

e Shift

o Extract

e Deposit

The instructions in this group are organized by the type of condition that can be specified.
After the computational instructions perform a function, the operands and/or the "results" of the function
being performed are used to determine whether the specified condition is met. If the condition is met, the

following instruction is nullified.

Some of the computational instructions cause interrupt traps to occur based on overflow and/or condition
detection.

Refer to the "Instruction Operands" section earlier in this chapter for a description of the instruction
operands.

4-17

The Instruction Set

Add Instructions

Two general registers, or an immediate value and a general register, are added together and the result is
stored in a general register. The operands and/or the results of the addition are used to determine
whether the specified condition is met. If the specified condition is met, the following instruction is
nullified, except for ADDIT and ADDITO where a trap is taken.

Table 4-20. Add Instructions

Instruction Name Mnemonic Name Operands
Add ADD,cond rlr2t
Add Logical ADDL cond rlr2t
Add and Trap on Overflow ADDO,cond rlr2t
Add with Carry ADDCcond rir2t
Add with Carry and Trap on ADDCO,cond rir2t
Overflow
Add to Immediate and Trap on ADDIT,cond ir,t
Condition
Add to Immediate and Trap on ADDITO,cond irt
Condition or Overflow
Add to Immediate ADDIcond Lrt
Add to Immediate and Trap on ADDIOcond Lrt
Overflow

4-18

Table 4-21. Add Conditions

The Instruction Set

cond Description
never
= opd1 is equal to -opd2
< opd]1 is less than -opd2 (signed)
<= opd1 is less than or equal to -opd2 (signed) Non-negated
NUV opd1 + opd2 < 22 ? (no unsigned overflow)
ZNV opdl + opd2 <23 ?oropdl +opd2=0
SV opd1 plus opd2 results in overflow (signed)
oD result of opd! plus opd?2 is odd
TR always
<> opd1 is not equal to -opd2
>= opd1 is greater than or equal to -opd2 (signed)
> opdl is greater than -opd2 (signed) Negated
Uv opdl + opd2 > =22 * (unsigned overflow)
VNZ opdl + opd2 > 232 and opdl + opd2 not =0
NSV opd 1 plus opd2 results in no overflow (signed)
EV result of opd! plus opd?2 is even

The Instruction Set

Shift and Add Instructions

A general register is left-shifted and added to a general register, and the result is stored in a general
register. The operands and/or the results are used to determine whether the specified condition is met.
The following instruction is nullified if the specified condition is met. A signed overflow condition can be
detected if any of the bits shifted out are different from the resulting left-most bit after the shift.

Table 4-22. Shift and Add Instructions

Instruction Name Mnemonic Name Operands
Shift One and Add SH1ADD,cond rir2t
Shift One and Add Logical SH1ADDL cond rlr2t
Shift One, Add and Trap on Overflow SH1ADDOcond rlr2t
Shift Two and Add SH2ADD,cond rlr2t
Shift Two and Add Logical SH2ADDL cond rir2t
Shift Two, Add and Trap on Overflow SH2ADDO,cond rlr2t
Shift Three and Add SH3ADD,cond rir2t
Shift Three and Add Logical SH3ADDL cond rlr2t
Shift Three, Add and Trap on Overflow SH3ADDO,cond rlr2t

4-20

Table 4-23. Shift and Add Conditions

The Instruction Set

cond Description
never
= opdl is equal to -opd2
< opd1 is less than -opd?2 (signed)
<= opd1 is less than or equal to -opd2 (signed) Non-negated
NUV opdl + opd2 < 22 ? (no unsigned overflow)
ZNV opdl +opd2<2%%oropdl +opd2=0
SV opd1 plus opd2 results in overflow (signed)
oD result of opd! plus opd2 is odd
TR always
<> opd1 is not equal to -opd2
>= opd1 is greater than or equal to —opd?2 (signed)
> opd1 is greater than -opd2 (signed) Negated
uv opdl +opd2 > =22 ? (unsigned overflow)
VNZ opdl +opd2>22%?and opdl + opd2 not=0
NSV opd1 plus opd2 results in no overflow (signed)
EV result of opd1 plus opd2 is even

4-21

The Instruction Set

Subtract Instructions

A general register is subtracted from an immediate value or a general register and the result is stored in a
general register. The operands and/or the results of the subtraction are used to determine whether the
specified condition is met. If the specified condition is met, the following instruction is nullified, except
for SUBT and SUBTO where a trap is taken.

Table 4-24. Subtract Instructions

Instruction Name Mnemonic Name Operands

Subtract SUB,cond rir2t
Subtract and Trap on Condition SUBT,cond rir2t
Subtract with Borrow SUBB,cond rlrt
Subtract and Trap on Overflow SUBO,cond rir2t
Subtract and Trap on Condition or Overflow SUBTO,cond rlr2t
Subtract with Borrow and Trap on Overflow SUBBO,cond rirt
Subtract from Immediate SUBI,cond irt

Subtract from Immediate and Trap on SUBIO,cond irt

Overflow

4-22

Table 4-25. Subtract Conditions

The Instruction Set

cond Description
never
= opd1 is equal to opd2
< opd1 is less than opd?2 (signed)
<= opd1 is less than or equal to opd2 (signed) Non-negated
<< opd1 is less than opd2 (unsigned)
<<= opd1 is less than or equal to opd2 (unsigned)
SV opd1 minus opd2 results in overflow (signed)
oD result of opd1 minus opd2 is odd
TR always
<> opd1 is less than or greater than opd2
>= opd1 is greater than or equal to opd2 (signed)
> opd1 is greater than opd2 (signed) Negated
>>= opd1 is greater than or equal to opd2 (unsigned)
>> opd1 is greater than opd2 (unsigned)
NSV opd 1 minus opd2 results in no overflow (signed)
EV result of opdl minus opd2 is even

4-23

The Instruction Set

Compare and Clear Instructions

An immediate value or a general register is compared against another general register and zero is loaded
into a third general register. The operands of the comparison are used to determine whether the specified

condition is met. If the specified condition is met, the following instruction is nullified.

Table 4-26. Compare and Clear Instructions

Instruction Name Mnemonic Name Operands
Compare and Clear COMCLRcond rir2t
Compare Immediate and Clear COMICLRcond it

Table 4-27. Compare and Clear Conditions

cond

Description

never
opd1 is equal to opd2

opd1 is less than opd2 (signed)

opd! is less than or equal to opd2 (signed)
opd1 is less than opd2 (unsigned)

opd1 is less than or equal to opd2 (unsigned)
opd1 minus opd2 results in overflow (signed)
result of opd! minus opd?2 is odd

Non-negated

TR
<>

>=

>>=
>>
NSV
EV

always

opdl is less than or greater than opd2

opd1 is greater than or equal to opd2 (signed)
opdl is greater than opd2 (signed)

opdl is greater than or equal to opd2 (unsigned)
opdl is greater than opd2 (unsigned)

opd] minus opd2 results in no overflow (signed)
result of opd1 minus opd2 is even

Negated

4-24

The Instruction Set

Divide Step Instruction

A divide step operation is performed using two general registers; the intermediate result is stored in a
general register. The operands and/or the results of the divide step operation are used to determine
whether the specified condition is met. The divide step can be used with either the add or subtract
conditions depending upon the stage of the operation.

Table 4-28. Divide Step Instruction

Instruction Name Mnemonic Name Operand

Divide Step DS,cond rir2t

See Table 4-21 or 4-25 for the add or subtract conditions, respectively.

4-28§

The Instruction Set

Logical Instructions

A logical operation is performed on two general registers and the result is stored in a general register. The
result of the logical operation is used to determine whether the specified condition is met. The following

instruction is nullified if the specified condition is met.

Table 4-29. Logical Instructions

Instruction Name Mnemonic Name Operands
And Complement ANDCMcond rir2t
And AND,cond rir2t
Inclusive Or OR,cond rir2t
Exclusive Or XOR,cond rir2t
Copy * COPY rt
No Operation ** NOP

* The COPY pseudo-instruction generates the OR r,0,t instruction.

** The NOP pseudo-instruction generates the OR 0,0,0 instruction.

Table 4-30. Logical Conditions

cond

Description

AR

oD

never

all bits are equal to 0

leftmost bit is equal to 1

leftmost bit is equal to 1, or all bits are equal to 0
rightmost bit is equal to 1

Non-negated

tr
<>

EV

always

at least one bit is equal to 1

leftmost bit is equal to 0

leftmost bit is equal to 0, and at least one bit
is equal to 1

rightmost bit is equal to 0

Negated

4-26

The Instruction Set

Unit Instructions

One or two general registers are operated upon and the result is stored in a general register. The results of
the operation are used to determine whether a specified condition is met. If the specified condition is met,
the following instruction is nullified, except for UADDCMT where a trap is taken.

Table 4-31. Unit Instructions

Instruction Name Mnemonic Name Operands
Unit Exclusive Or UXOR,cond rir2t
Unit Add Complement UADDCM,cond rlr2t
Unit Add Complement and Trap on Condition UADDCMT,cond rlr2t
Intermediate Decimal Correct IDCOR cond rt
Decimal Correct DCOR cond r,t

Table 4-32. Unit Conditions

cond Description
never
SBZ some byte zero
SHZ some halfword zero Non-negated

SCD some BCD digit carry
SBC some byte carry
SHC some halfword carry

TR always
NBZ all bytes nonzero
NHZ all halfwords nonzero Negated

NDC no BCD digit carry
NBC no byte carry
NHC no halfword carry

4-27

The Instruction Set

Shift, Extract, and Deposit Instructions

A shift, extract, or deposit operation is performed and the result is stored in a general register. The results
of the operation are used to determine whether a specified condition is met. A variable operation may be
performed using the shift-amount-register (SAR, CR 11).

The shift instructions use two general registers to perform a double shift. The amount to be shifted comes
either from the operand list or from the SAR.

The extract instructions isolate a field of the specified length in a general register, right shift to position
the field, and store the result in a general register. The result may be stored as a sign extended value.
The ending position of the field to be extracted may be specified as an operand or from the SAR.

The deposit instructions use an immediate value or a general register to isolate a field of the specified
length, left shift to position the field, and merge the result into a general register. The result may be
merged with the existing bits of the general register or zeros. The ending position of the result field may
be specified as an operand or from the SAR.

4-28

Table 4-33. Shift,

Extract, and Deposit Instructions

The Instruction Set

Instruction Name Mnemonic Name Operands
Variable Shift Double VSHD,cond rir2t
Shift Double SHD,cond rl,r2count;t
Variable Extract Unsigned VEXTRU,ond rlen,t
Variable Extract Signed VEXTRS cond rlent
Extract Unsigned EXTRU cond r,p,lent
Extract Signed EXTRS,cond r,plent
Variable Deposit VDEP,cond rlent
Zero and Deposit ZDEP,cond r,p,lent
Deposit DEP,cond r,p,lent
Zero and Variable Deposit ZVDEP,cond r,len,t
Zero and Variable Deposit Immediate ZVDEPIcond Llent
Variable Deposit Immediate VDEPI cond 1len;t
Zero and Deposit Immediate ZDEPIcond 1,p,lent
Deposit Immediate DEPI,cond iplent

Table 4-34. Shift, Extract, and Deposit Conditions

cond

Description

OD
TR
<>
>=

EV

never
all bits are equal to 0
leftmost bit is equal to 1
rightmost bit is equal to 1
always

at least one bit is equal to 1
leftmost bit is equal to O
rightmost bit is equal to O

4-29

The Instruction Set
System Control Instructions

System control instructions provide special register moves, system mask control, return from interruption,
hash address computation, probe access rights, memory management operations, and implementation-
dependent functions.

Some of the memory management instructions use an optional completer to allow the base register to be
modified after the address has been formed.

Most of these instructions are executed by code that only runs at the most privileged level.

Table 4-35. System Control Completers

complt Address Formation
M Base Register Modification
none specified No Base Register Modification

4-30

Table 4-36. System Control Instructions

The Instruction Set

Instruction Name Mnemonic Name Operands
Break BREAK 11,12
Return from Interruption RFI
Set System Mask SSM it
Reset System Mask RSM It
Move To System Mask MTSM r
Load Space Identifier LDSID (s,b), t
Move To Space Register MTSP r, sr
Move To Control Register MTCTL r,t
Move To Shift Amount Register * MTSAR r
Move From Space Register MEFSP sr, t
Move From Control Register MFCTL r,t
Synchronize Caches SYNC
Probe Read Access PROBER (s,b), 1, t
Probe Read Access Immediate PROBERI (s,b), 1, t
Probe Write Access PROBEW (s,b),r,t
Probe Write Access Immediate PROBEWI (s,b), i, t
Load Physical Address LPA, cmplt x(s,b)t
Load Hash Address LHA, cmplt x (s, b)t
Purge Data Translation Lookaside Buffer PDTLB, cmplt x (s, b)
Purge Instruction Translation Lookaside PITLB, cmplt X (sr, b)
Buffer
Purge Data Translation Lookaside Buffer PDTLBE, cmplt x (s, b)

Entry

* The MTSAR pseudo-instruction generates an MTCTL r,11 instruction.

4

31

The Initruction et

Table 4-36. System Control Instructions (Continued)

Instruction Name Mnemonic Name Operands
Purge Instruction Translation Lookaside PITLBE, cmplt X (sr, b)
Buffer Entry
Insert Data Translation Lookaside Buffer IDTLBA r, (s, b)
Address
Insert Instruction Translation Lookaside IITLBA r, (sr, b)

Buffer Address

Insert Data Translation Lookaside Buffer IDTLBP r, (s, b)
Address
Insert Instruction Translation Lookaside IITLBP r, (sr, b)

Buffer Protection

Purge Data Cache PDC, cmplt X (s, b)

Flush Data Cache FDC, cmplt X (s, b)

Flush Instruction Cache FIC, cmplt x (sr, b)
Flush Data Cache Entry FDCE, cmplt x (s, b)

Flush Instruction Cache Entry FICE, cmplt x (sr, b)
Diagnose DIAG i

4-32

The Instruction Set

Assist (Coprocessor) Instructions

Coprocessor instructions are used to perform data manipulations on attached special purpose processors,
while incurring minimum overhead in execution rate. Each instruction must specify a unit identifier
between zero and seven to select a coprocessor. The coprocessor instructions include:

e Coprocessor Operation

e Indexed Load and Store

e Short Displacement Load and Store

e The Floating-Point Instruction Set

4-33

The Instruction Set

Coprocessor Operation Instruction

You must explicitly prescribe the binary value for the desired operation as well as the unit number of the
COProcessor.

This instruction uses only completers. Operands are not accepted.

Table 4-37. Coprocessor Operation Instruction

Instruction Name Mnemonic Name

Coprocessor Operation COPR,uid,sop,n

Table 4-38. Coprocessor Operation Completers

Completer Description

uid (0 - 7) Select coprocessor unit number

sop Provides a 22 bit value that the assembler
encodes in the instruction

n If the value is one and the coprocessor
condition is satisfied, the following
instruction is nullified.

NOTE

Identify coprocessor is encoded as COPR,uid,0.

4-34

The Instruction Set

Coprocessor Indexed Load and Store Instructions

A value is transferred between memory and a register. The address is formed by the addition of the index
register to the base register. Optionally, the index value may be shifted to reflect an address
corresponding to the size of the value being transferred and the base register may be modified after the
address has been formed.

Table 4-39. Coprocessor Indexed Load and Store Instructions

Instruction Name Mnemonic Name Operands
Coprocessor Load Word Indexed CLDWX,uid,complt x(s,b),t
Coprocessor Load Doubleword Indexed CLDDX,uid,complt x(s,b)t
Coprocessor Store Word Indexed CSTWX,uid,complt r,x(s,b)
Coprocessor Store Doubleword Indexed CSTDX,uid,complt r,x(s,b)

Table 4-40. Coprocessor Indexed Load and Store Completers

complt Description

S Shift Index by Data Size,

No Base Register Modification
M No Index Shift

Base Register Modification
,S,M or Shift Index by Data Size
SM Base Register Modification
none No Index Shift,
specified No Base Register Modification

4-35

{0 narrucrion

Coprocessor Short Displacement Load and Store Instructions

A value is transferred between memory and a floating-point register. The address is formed by the
addition of the short displacement to the base register. Optionally, the base register may be modified
either before or after the address has been formed.

Table 4-41. Coprocessor Short Displacement Load and Store Instructions

Instruction Name Mnemonic Name Operands
Coprocessor Load Word Short CLDWS uid,complt d(s,b),t
Coprocessor Load Doubleword Short CLDDS,uid,complt d(s,b),t
Coprocessor Store Word Short CSTWS,uid,complt r,d(s,b)
Coprocessor Store Doubleword Short CSTDS,uid,complt r,d(s,b)

Table 4-42. Coprocessor Short Displacement Load and Store Completers

complt Description
,MB Modify Before
JMA Modify After
none specified No Base Register Modification

4-36

N—

The Instruction Set

Floating—Point Instructions

Floating-point instructions are used to perform floating-point arithmetic. The instructions are either
executed directly by a floating-point assist coprocessor or by floating-point emulation software. The
floating-point instructions include:

e Indexed Load and Store

e Short Displacement Load and Store

e Operations

e Compare and Test

4-37

The Intruction Set

Floating-Point Indexed Load and Store Instructions

A value 1s transferred between memory and a

after the address has been formed.

Table 4-43. Floating-Point

floating-point register. The address is formed by the
addition of the index register to the base register. Optionally, the index value may be shifted to reflect an
address corresponding to the size of the value being transferred and the base register may be modified

Indexed Load and Store Instructions

Instruction Name Mnemonic Name Operands
Floating-point Load Word Indexed FLDWX cmplt x(s,b),t
Floating-point Load Doubleword Indexed FLDDX complt x(s,b),t
Floating-point Store Word Indexed FSTWX complt r,x(s,b)
Floating-point Store Doubleword Indexed FSTDX,complt r,x(s,b)

Table 4-44. Floating-Point

Indexed Load and Store Completers

complt

Description

Shift Index by Data Size,
No Base Register Modification

M

No Index Shift
Base Register Modification

lI’S’MII or
SM

Shift Index by Data Size
Base Register Modification

none
specified

No Index Shift,
No Base Register Modification

4-38

The Instruction Set

Floating-Point Short Displacement Load and Store Instructions
A value 1s transferred between memory and a floating-point register. The address is formed by the

addition of the short displacement to the base register. Optionally, the base register may be modified
either before or after the address has been formed.

Table 4-45. Floating-Point Short Displacement Load and Store Instructions

Instruction Name Mnemonic Name Operands
Floating-point Load Word Short FLDWS cmplt d(s,b),t
Floating-point Load Doubleword Short FLDDS,complt d(s,b)t
Floating-point Store Word Short FSTWS cmplt r,d(s,b)
Floating-point Store Doubleword Short FSTDS,cmplt r,d(s,b)

Table 4-46. Floating-Point Short Displacement Load and Store Completers

complt Description
MB Modify Before
MA Modify After
none specified No Base Register Modification

Floating-Point Operation Instructions
Floating-point operation instructions include math functions and data format conversions.

Values from one or two floating-point registers are used to perform an operation and the result is stored
in a floating-point register.

4-39

The Instruction Set

Table 4-47. Floating-Point Operation Instructions

Instruction Name Mnemonic Name Operands
Floating-point Add FADD fmt rir2t
Floating-point Subtract FSUB,fmt rir2t
Floating-point Mllxltiply FMPY fmt rlr2t
Floating-point Divide FDIV fmt rir2t
Floating-point Square Root FSQRT,fmt rt
Floating-point Absolute Value FABS,fmt rt
Floating-point Remainder FREM,fmt rlr2t
Floating-point Round to Integer FRND,fmt rt
Floating-point Copy FCPY fmt rt
Floating-point Convert from Fixed-point to FCNVXEF sf df r,t
Floating-point
Floating-point Convert from Floating-point to FCNVFXsf df r,t
Fixed-point
Floating-point Convert from Floating-point to FCNVFF sf df rt
Floating-point
Floating-point Convert from Floating-point to FCNVFXTgsf df r,t
Fixed-point and Truncate

Table 4-48. Floating-Point Format Completers

fmt/df /st Format or Size Specified

,SGL or <none> single (32-bit)

,DBL double (64-bit)

QUAD quad (128-bit)

4-40

Floating-Point Compare and Test Instructions

The Instruction Set

A floating-point register is compared against a floating-point register using the format specified. The
operands and/or the result of the comparison are used to determine whether the specified condition is
met. If the condition is met, the C bit of the floating-point status register is set; otherwise, it is cleared.

A floating-point test instruction is used to nullify the following instruction based on the state of the C

bit. If the C bit is set, the next instruction is skipped; otherwise, it is executed.

Table 4-49. Floating-Point Compare and Test Instructions

Instruction Name Mnemonic Name Operands
Floating-point Compare FCMP fmt,cond rir2
Floating-point Test FTEST

For completer format, refer to Table 4-48.

4-41

The Instruction Set

Table 4-50. Floating-Point Compare Conditions

Relations Invalid
Operation
Except if
Cond Greater Less Equal Unordered Unordered
Than Than To
false? F F F F F
false F F F F T
? F F F T F
1e=> F F F T T
= F F T F F
= F F T F T
?= F F T T F
1< F F T T T
12>= F T F F F
< F T F F T
2< F T F T F
1= F T F T T
17> F T T F F
<= F T T F T
?7¢= F T T T F
1 F T T T T
12¢= T F F F F
> T F F F T
?> T F F T F
1= T F F T T
12< T F T F F
>= T F T F T
?>= T F T T F
1= T F T T T
1?= T T F F F
< T T F F T
t= T T F T F
t= T T F T T
r? T T T F F
<=> T T T F T
true? T T T T F
true T T T T T

4-42

Pseudo Instructions

The Instruction Set

Table 4-51 lists the commonly used pseudo instructions that are abbreviations for machine instructions.
These pseudo instructions can be used instead of machine instructions.

Table 4-51. Pseudo-Instructions

Pseudo-Instruction Code Standard Format

B w BL w, 0

COMBcond,n rlr2target COMBT cond,n rlr2target
COMBF cond,n rlr2target

COMIB,cond,n rl,r2target COMIBFcond,n rl,r2target
COMIBT cond,n rlr2target

ADDBcond,n rlr2target ADDBT,cond,n rlr2target
ADDBF,cond,n rl,r2target

ADDIBcond,n rlr2target ADDIBT,cond,n rl,r2target
ADDIBFcond,n rlr2target

COPY rt OR r,0t

LDI it LDO i(0)t

NOP OR 0,0,0

MTSAR r MTCTL r,11

* The supplied completer determines the actual instruction that the Assembler uses in the
You can use the completer for any arithmetic condition or its
COMIB, ADDB, and ADDIB. The false

conditional branch.
negation with the pseudo-instructions COMB,
form of the corresponding actual instruction is assembled if the completer specifies the

negation of a condition. Otherwise, the true form is used.

4-43

Chapter 5
Programming Examples

This chapter consists of five programming examples in the assembly language. The first three examples
show typical assembly language code sequences; the last two examples show the correspondence between C,
a higher-level programming language, and assembly language.

Example 1 calculates the highest bit position set in a passed parameter. A binary search is used to
enhance performance.

Example 2 copies bytes from a source location to a destination location. Both locations and the
number of bytes to copy are passed in as parameters.

Example 3 uses Divide Step to divide a 64-bit signed dividend by a 32-bit signed divisor.

Example 4 uses a procedure call from a C program to the Assembler to verify that the program is
passing the correct argument.

Example § shows a C program that generates assembly code to call printf.

5-1

Programming Examples
Binary Search for Highest Bit Position

In Example 1, the Shift Double and Extract Unsigned instructions are used to implement a binary search.
Bits shifted into general register O are effectively discarded.

Example 1

.CODE
.EXPORT post
b
s This procedure calculates the highest bit position
; set in the word passed in as the first argument.
;y If passed parameter is non-zero, the algorithm
; starts by assuming it is one.
3 A binary search for a set bit is then used
;3 to enhance performance.
k]
’
b

;s The calculated bit position is returned to the caller.

. PROC
post
.CALLINFO SAVE_RP
.ENTER
COMB,=,N %rO,%argO,all_zeros ; No bits set
LDI 31,%ret0 ; assume 2 to the 0 power

if extracted bits non-zero, fall thru to change assumption
else set up 16 low order bits and keep assumption

we we we we

EXTRU, <> %arg0,15,16,%ro0 ; check 16 high order bits
SHD,TR %arg0,%r0,16,%arg0 ; left shift arg0 16 bits
ADDI -16,%ret0,%ret0 ; assume 2 to the 16 power

if extracted bits non-zero, fall thru to change assumption
else set up 8 low order bits and keep assumption

we we we we

EXTRU, <> %arg0,7,8,%r0 ; check next 8 high order bits
SHD, TR %arg0,%r0,24,%arg0 ; left shift arg0 8 bits
ADDI -8,%ret0,%ret0 ; assume 8 higher power of 2

if extracted bits non-zero, fall thru to change assumption
else set up 4 low order bits and keep assumption

we we we we

EXTRU, <> %arg0,3,4,%r0 ; check next 4 high order bits
SHD,TR %arg0,%ro0,28,%arg0 ; left shift arg0 4 bits
ADDI -4.%ret0,%ret0 ; assume 4 higher power of 2

5-2

we we we we

we we we we

Programming Examples

if extracted bits non-zero, fall thru to change assumption
else set up 2 low order bits and keep assumption

EXTRU, <> %arg0,1,2,%r0 ; check next 2 high order bits
SHD,TR %arg0,%r0,30,%arg0 ; left shift arg0 2 bits
ADDI -2,%ret0,%ret0 ; assume 2 higher power of 2

if extracted bit is zero, fall thru and keep assumption
else make conclusion

EXTRU, = %arg0,0,1,%r0 ; check next bit
ADDI -1,%ret0,%ret0 ; next higher power of 2
B,N tally
all zeros
LDI -1,%ret0
tally
.LEAVE
.PROCEND

5-3

Programming Examples

Copying a String

Example 2 contains a section of assembly code that moves a byte string of arbitrary length to an arbitrary

byte address.

Example 2

We We Wwe we we we We we we we we we we

.CODE

.EXPORT
rflect

. PROC

.CALLINFO

.ENTER
COMB,=,N
COMB, ¢,N
OR

OR
EXTRU, =
B, N

ADDIBT, <,N

chunkify
LDWN

LDW
LDW
LDW
STW
STWM

STW
ADDIBF , <
STW
chekchunk
ADDIBT, <
COPY

5-4

rflect,ENTRY

ENTRY_GR=6,SAVE_RP

%arg2,%ro0,fallout
%arg?2,%r0,choke
%arg0,%arg1,%r6
%r6,%arg2,%ré
%r6,31,2,%r0
onebyte
-16,%arg2,chekchunk

16 (%arg0) ,%ré

-12(%arg0) ,%rS
-8(%arg0),%r4
-4(%arg0),%r3
%r5,4(%argt)
%r6,16(%arg1)

%r4,-8(%arg1)
-16,%arg2,chunkify
%r3,-4(%argt)

12,%arg2,exeunt
%r0,%ret0

we we we we we we we

We we we Wwe we we we we we we we

The routine rflect copies bytes from the source location
to the destination location.

The first parameter is the source address and the second
parameter is the destination address.

The third parameter is the number of bytes to copy.

For performance, larger chunks of bytes are handled differently.

done, count is zero

caller error, neg count
source and dest

count

2 low order bits = 07

yes, skip this branch

no, skip chunkify if count<O

word 1- > tempi

point ahead 4 words 1in source
place mark 3 wds back- >temp2
place mark 2 wds back- >temp3
place mark 1 wds back- >temp4
dest wd 2 <-temp2

dest wd 1 <-templ

point ahead 4 words in dest
dest wd 3 <-temp3

loop if count > O

dest wd 2 <-templ

go if count < -12
clear rtnval

subchunk
LDWS,MA

ADDIBF,<
STWS,MA

B
CoPY

onebyte
LDBS,MA
onemore
STBS,MA
ADDIBF ,=,N

LDBS,MA

fallout
B
COPY

choke
B
LDI

exeunt
.LEAVE
.PROCEND

4(%arg0) ,%r6
-4,%arg2,subchunk
%r6,4(%argt)

exeunt
%ro,%ret0
1(%arg0),%ré

%r6,1(%argt)
-1,%arg2,onemore

1(%arg0) ,%r6

exeunt
%ro0,%ret0

exeunt
14,%ret0

we we we we we

we we we we weo

Programming Examples

word- >templ

point ahead 4 bytes in source
go if count<4

dest< -templ

point ahead 4 bytes in dest

all done
clear rtnval

templ < -byte,bump src pointer

dest<-tempi,bump dest pointer
decrement count

compare for O.

delay slot

templ <-byte,bump src pointer

5-5

Programminﬁ Examples

Dividing a Double-Word Dividend

Example 3 contains the code sequence to divide a 64-bit signed dividend by a 32-bit signed divisor using

the DS (Divide Step) instruction. Table 5-1 lists the registers that this program uses.

Example 3

start
MOVB,>=

ADD

SuB

SsuBB
check_mag

SUBT,=

DS

ADD
DS, <<

B,n

ADDC
DS

ADDC
DS
ADDC
DS
ADDC
ADDB,>=,n
ADD, <
ADD,tr
ADDL
finish
ADD,>=
SUB
XOR,>=
SUB

5-6

dvdu,rem,check_mag

0,dvdl,quo
0,quo,quo
O,rem,rem

0,dvr,tp

0,tp,0;

quo,quo,quo
rem,dvr,rem

min_ovfl

quo,quo,quo
rem,dvr,rem

;repeat divide step sequence

quo,quo,quo
rem,dvr,rem
quo,quo,quo
rem,dvr,rem
quo,quo,quo
rem,0,finish
dvr,0,0
rem,dvr,rem
rem,tp,rem

dvdu,0,0
0,rem,rem
dvdu,dvr,0
0,quo,quo

we we we we weo

Ve we we we we W we we we we we e

we we we we we we we we we

Move upper dividend

check for < O
Move lower dividend always
Get absolute value of

the dividend in rem,quo

Check 0, clear carry,
negate the divisor
and trap if dvr = 0
Set V-bit to the complement
of the divisor sign
Shift msb bit into carry
1st divide step, if carry
out msb of quotient = 0
Abs (quotient) > 2##31
deal with elsewhere
Shift quo with/into carry
2nd divide step

Shift quo with/into carry
31st divide step
Shift quo with/into carry
32nd divide step,
Shift last quo bit into quo
Branch if pos. rem
If dvr > 0, add dvr

for correcting rem.
Else add absolute value dvr

Set sign of rem
to sign of dividend
Get correct sign of quo
based on operand signs

Table §-1. Register Designations

Programming Examples

Register Purpose
Designations
dvr Register holding divisor.
dvdu, dvd1 Pair of registers holding dividend.
tp Temporary register.
quo Register holding quotient.
rem Register holding remainder.

5-7

Programming Examples

Demonstrating the Procedure Calling Convention

In Example 4, a C program calls an assembly language program to test if .ENTER and . LEAVE are working
correctly. The assembly language program checks to see if the C program has passed the value zero in
ARGO. The assembly language program then returns the value RETO to the calling program.

Example 4

C Program Listing

#include <stdio.h>
int errorcount = 0;

main ()

{

int toterr = 0y

printf("TESTING FEATURE 000");
fflush(stdout);

if(feat000(000) !'= -9) ++errorcount;

printf("

% errors\n",errorcount);

toterr += errorcount;
errorcount = 0;

Assembly Program Listing

5-8

; Assembler Module that passes results back to
3y the C driver module

myfeat
success

feat000

exit

.EQU 000
.EQU -9
.CODE

.IMPORT errorcount ,DATA
.SUBSPA $CODE$

.EXPORT featO00,ENTRY

. PROC

.CALLINFO

.ENTER

COMIB,<> myfeat,arg0,exit
LDI O,retO

LDI success,ret0
.LEAVE

. PROCEND

.END

Output of the cc -S Command

Example §shows how a simple C program generates assembly language code.

Programming Examples

The program calls the

printf routine. To run the assembled code, you need to link to the file /l1ib/crt0.0 and the C library
file. Remember that the 1d command requires that you link the crt0.o file first.

Example 5

C Program Listing

main ()

{

printf ("Hello World\n");

}

Assembly Program Listing From the C Compiler

main

Lfexiti

.SPACE

$TEXTS

.SUPSPA $CODE$,QUAD=0,ALIGN=8,ACCESS=44,CODE_ONLY

. PROC
.CALLINF
.ENTRY
STW

LDO
ADDIL
.CALL

BL

LDO

LDW

BV

CJEXIT
LDO

. PROCEND

O CALLER,FRAME=0,SAVE_RP

2,-20(0,30)

48(30),30

L $THISMODULE$-$global$,27
ARGWO=GR

printf,2

R $THISMODULE$-$global$(1),26

-68(0,30),2
0(2)

-48(30),30

.SPACE $TEXT$

.SUBSPA LIT,QUAD=0,ALIGN=8,ACCESS=44

.
1]

.
’

Ve We we e we we we e we we we we we

C runtime interface

delimit procedure

no locals, need return

proc entry code follows
stack the return pointer

set up user stack pointer
point to printf data

set up for printf call

call printf thru ret pointer
insert argument to printf
hide from linker

get callee return pointer
exit thru return pointer

end of exit sequence

stack pointer -> stack frame

.SUBSPA $CODE$,QUAD=0,ALIGN=8,ACCESS=44,CODE_ONLY

.SUBSPA $UNWIND$,QUAD=0,ALIGN=8,ACCESS=44

.SUBSPA
.SPACE

.SUBSPA $DATA$,QUAD=1,ALIGN=8 ,ACCESS=31

$CODE$
$PRIVATES

5-9

Programming Examples

$THISMODULES$; demarks local data
.ALIGN 8
.STRINGZ "Hello World\n" ; local data
.SUBSPA BSS,QUAD=1,ALIGN=8,ACCESS=31,ZERO
.IMPORT $global$,DATA 3y global data reference point

.SPACE $TEXT$
.SUBSPA $CODE$

.EXPORT main,PRIV_LEV=3,RTNVAL=GR ; for linking this routine
. IMPORT printf,CODE ; external proc declaration
.END

Chapter 6
Assembling Your Program

This chapter describes two different ways you can invoke the Assembler and the various command line
options controlling its behavior. It also contains a brief description of the interface between the
Assembler and linker, and things you should remember to facilitate the running of an assembly program.

Invoking the Assembler

You may invoke the Assembler directly by using the as command. Or, you may invoke the Assembler
through the cc command which processes the assembly source using the C pre-processor. The next two
sections describe these pathways.

Using the as Command

The as command is the standard command for invoking the Assembler on the HP Precision Architecture
system.

Syntax

as [[option] ... [file] ...]

The as command resides in the /bin directory. If your programming environment does not establish a
path to this directory, you must include the pathname as the first part of the as command. For example:

/bin/as -1 line.s box.s draw.s

Parameters

option Serves as a flag to the Assembler to take some special action. The as
command supports the following flags:

-e Specifies that the Assembler should tolerate one
million errors before terminating the assembly process.
Without this option, the Assembler terminates a
program after 100 errors.

Assembling Your Program

file

6-2

-o filename

-u

-v filename

Specifies that procedures can call other procedures as
the default condition. Normally, the Assembler
assumes that procedures do not call other procedures.
(See the CALLS and NO_CALLS parameters for the
.CALLINFO directive.).

Lists the assembled program on the standard output
device. This listing shows instruction offsets and the
values stored in each field.

Assigns the specified name to the output file.

Prevents the Assembler from creating stack unwind
descriptors. This option precludes the use of the
.ENTER and .LEAVE directives within a program.

Names a file to which the Assembler writes cross-
reference information; this includes the source file and
the line number for each appearance of all symbols.

Names an input or output file. You can include multiple input files to the
as command. The Assembler converts this stream of input files to a single

output file.

Assembler input files must include the suffix .s. The name for the output
file corresponds to the name of the last input file, except the Assembler
changes the suffix of that file’s name to .o.

Assembling Your Program

Using the cc Command
You can also use the cc command to run the Assembler on files that end with a .s suffix. The cc
command appends the system file pcc_prefix.s to the front of the file and pipes the file through the C
pre-processor before passing the file to the Assembler.
The system file pcc_prefix.s contains the following configuration files:

hard_reg.h

soft_reg.h
std_space.h

These files are in the directory /usr/include. Table 6-1 describes the contents of each file.

NOTE

The Assembler automatically supports the different definitions that the
pcc_prefix.s file contains and provides them as programming aids
without requiring that you include this file as an input file to the as
command. Refer to "Registers and Register Mnemonics" in Chapter 1 and
"Programming Aids" in Chapter 3 for more information.

Table 6-1. PCC__PREFIX.S Definition Files

File Name Contents
hard_reg.h Set of .EQU’s for hardware registers.
soft _reg.h Set of register definitions that follows the Procedure Calling Convention.
std_space.h Set of space and subspace definitions that most Assembly programs use.

6-3

Assembling Your Program

The cc command normally strips all as command options from the command line. Therefore, when you
want to retain one of these options, you must include the flag -wa,<opt>,... on the cc command line
(where <opt> names the Assembler option you want to preserve).

You can use the C pre-processor (cpp) with assembly language programs to include C-type macros,
including directives. You can use an exclamation point (!) as a statement terminator to include multiple
statements in the body of one macro definition. Furthermore, you can use the .LABEL directive to
declare labels within a macro definition.

NOTE

If you use cpp, C-style comments should only be used on separate lines.

Error Message Catalog

The operating system stores the text for the Assembler error messages in a file with the pathname:

/lib/as_msgs.cat.

6-4

Assembling Your Program
Linking an Assembly Program

The relocatable object file produced by the Assembler must be processed by the linker, 1d, before it can be
executed. The linker merges relocatable object files, searches libraries for any routines that are referenced
by the user’s code, assigns final addresses to all program symbols, and produces an executable program file.

For the simplest assembly program, the command:

1d myfile.o
is all that is required when myfile.o is the name of the relocatable file produced by the Assembler. The
linker produces a program file called a.out, provided that myfile.o did not contain any references to
imported symbols. To select a program file name other than a.out, the command:

1d myfile.o -o myfile
can be used. The -o option specifies the name myfile for the program file.
In practice, however, a single stand-alone assembly program is extremely uncommon. Most assembly
language code declares procedures that are called from high-level language programs. In addition,
assembly language code often calls procedures in high-level languages. In these cases, the link command
must include a special start-up file called /1ib/crt0.o, as well as additional relocatable object files and
the high-level language libraries. For example, a C program that calls some assembly language code
should be linked as follows:

ld /lib/crt0.o0 prog.o asm.o -lc -o myprog

In this example, prog.o is the output of the C/HP-UX compiler, asm.ois the output of the Assembler,
the -1c option tells the linker to search the C library, and the -o option names the program file myprog.

When the assembly language procedures are written to be called from a high-level language, the
high-level language compiler is usually the easiest interface to the linker. The above example could also
have been linked with the command:

cC prog.o asm.o -0 myprog
The cc command always runs the linker with the appropriate files and options for linking a C program.

Similarly, the pc and f77 commands should be used when the main program is in Pascal or FORTRAN 77
respectively.

6-35

Appendix A
Error Messages

This appendix lists all error messages that originate from the HP Precision Architecture Assembler.
The Assembler error messages are divided into the following categories:

¢ Warning Messages -~ flag conditions that cause errors in program execution.

o Error Messages -- cause the asseml;ly process to terminate abnormally.

o Panic Messages -- cause the assembly process to abort immediately.

e User Warnings -- cause the assembler to produce an object file and possibly to take a specified
corrective action.

e Limit Errors -- caused by running into assembler limits or running out of memory.
¢ Branching Errors -- prevent the assembler from creating an object file.
The symbol "<operand>" used in the error messages designates the Assembler source element that is the

subject of the error. When an error message is printed during assembly operation, the "<operand>"
designation is replaced by the appropriate source element.

Error Messagcs

Warning Messages

1 MESSAGE -L option is obsolete and ignored
CAUSE -L appeared as a command line argument.
ACTION Remove -L option from command line argument list.
2 MESSAGE Value of <operand> for 5-bit field not in [0..31]
(truncated)
CAUSE Second operand of EXTRS, BB, or DEP instruction not between zero and
31 inclusive. The Assembler truncates the value to be the <operand>
value MOD 32.
ACTION To avoid truncation, specify legal value.
3 MESSAGE Extract/Deposit field size of <operand> not in [1..32]
(set to 32)
CAUSE Operand field 3 of EXTRS or DEP instruction not between 1 and 32
inclusive.
ACTION To override the default value of 32, use legal value in operand field 3.
4 MESSAGE Value of <operand> for short signed immed. < -16 (set
to -16)
CAUSE This message may appear for one of three reasons:
1) First operand of a deposit immediate instruction (DEPI, VDEPI,
ZDEPI, or ZVDEPI) or a conditional branch immediate instruction
(ADDIBF, ADDIBT, COMIBF, COMIBT, or MOVIB) is less than -16.
2) Address offset of first operand of a load short instruction (LDBS,
LDCWS, LDHS, LDWAS, or LDWS) is less than -16.
3) Address offset of second operand of a store short instruction (STBS,
STBYS, STHS, STWAS, or STWS) is less than -16.
ACTION Change indicated operand so its value falls between -16 and +15

inclusive.

Error Messages

MESSAGE

CAUSE

ACTION

Value of <operand> for short signed immed. > 15 (set to
15)

This message may appear for one of three reasons:
1) First operand of a deposit immediate instruction (DEPI, VDEPI,
ZDEPI, or ZVDEPI) or a conditional branch immediate instruction

(ADDIBF, ADDIBT, COMIBF, COMIBT, or MOVIB) is greater than 18.

2) Address offset of first operand of a load short instruction (LDBS,
LDCWS, LDHS, LDWAS, or LDWS) is greater than 15.

3) Address offset of second operand of a store short instruction (STBS,
STBYS, STHS, STWAS, or STWS) is greater than 15.

Change above operand to value between -16 and +19§ inclusive.

MESSAGE

CAUSE

ACTION

Keyword <operand> is obsolete and ignored

Keyword DUMMY used with .SPACE directive or keywords ALONE or
ATTEND used with .SUBSPACE directive are obsolete.

Remove obsolete keywords.

MESSAGE

CAUSE

ACTION

Space characteristics may not be changed after first
declaration

New values assigned to keywords for a space previously declared with a
.SPACE directive. This message appears whenever a keyword is
assigned a value, even if the values remain the same.

Use desired values for keywords on first declaration of space. Specify
keyword values on first declaration of space only.

MESSAGE

CAUSE

ACTION

Subspace characteristics may not be changed after first
definition

New values assigned to keywords for a subspace previously declared
with a .SUBSPACE directive.

Use desired values for keywords on first declaration of subspace.
Specify keyword values on first declaration of space only.

Error Messages

9 MESSAGE Size omitted - zero assumed
CAUSE .COMM directive used without an integer argument.
ACTION Use the .COMM directive to issue a storage request for the number of
bytes desired.
10 MESSAGE Alignment omitted - 8 assumed
CAUSE .ALIGN directive used without a power of two integer argument.
ACTION Use a power of two integer argument with .ALIGN.
1 MESSAGE Missing value - zero assumed
CAUSE .ORIGIN or .EQU directive used without an integer argument.
ACTION Specify the actual value of the location offset or identifier desired.
12 MESSAGE Size omitted - 4 assumed
CAUSE . BLOCK directive used without an integer argument.
ACTION Specify the actual number of bytes to be reserved for uninitialized
storage.
13 MESSAGE Use of GR3 when frame>=8192 may cause conflict
CAUSE General register 3 used in an instruction within a procedure where
keyword frame set above 8192. Note: gr3is used as a base register for
large frames.
ACTION Use general register other than gr3.
14 MESSAGE KEEP should not be in force for this statement
CAUSE .KEEP directive outside of a procedure.
ACTION Remove .KEEP directive.

Error Messages

15 MESSAGE Procedure makes calls but is not flagged as CALLER in
.CALLINFO
CAUSE Missing CALLER keyword in a procedure containing .CALL.
ACTION Add CALLER keyword to .CALLINFO directive.
16 MESSAGE Value for <operand> must be in range 0..3 (set to 3)
CAUSE Illegal privilege level specified.
ACTION Change the privilege level specification.
17 MESSAGE Existing register name, number, and type are being
overwritten
CAUSE Name (label) used with .REG directive was previously defined.
ACTION Use a different name in the label part to avoid overwriting previous
definition.
18 MESSAGE Error message file cannot be located
CAUSE Error message catalog is not in the user path.
ACTION Ensure as_msgs.cat is in the user path or make /lib/as_msgs.cat
accessible.
19 MESSAGE Defining register missing or defining register has no
type
CAUSE Parameter to .REG is not one of the predefined Assembler registers nor
1s it a previously defined (with the .REG directive) register.
ACTION Either use one of the predefined Assembler registers or define register

type using the .REG directive.

Error Messages

20 MESSAGE General register expected in this field - <operand>
CAUSE Wrong register type used.
ACTION Use a general register.
21 MESSAGE Space register expected in this field - <operand>
CAUSE Wrong register type used.
ACTION Use a space register.
22 MESSAGE Control register expected in this field - <operand>
CAUSE Wrong register type used.
ACTION Use a control register.
23 MESSAGE Floating point register expected in this field -
<operand>
CAUSE Wrong register type used.
ACTION Use a floating point register.
24 MESSAGE Location counter must be in range 0..3 (set to 0) -
<argument>
CAUSE Argument to . LOCCT is not within 0.. 3 range.
ACTION Change argument to . LOCCT to be within O.. 3 range.

Error Messages

Error Messages

1000 MESSAGE Unterminated quoted string
CAUSE String specified as in .STRING, without trailing quotes.
ACTION Add trailing quotes to string.
1001 MESSAGE Undefined register symbol
CAUSE Parenthesized instruction operand does not have a corresponding .EQU
directive.
ACTION Equate register symbols to values zero through 31.
1002 MESSAGE Undefined completer
CAUSE Invalid value in instruction completer field.
ACTION Use only those completers specified in the Precision Architecture and
Instruction Reference Manual.
1003 MESSAGE Improper completer specified
CAUSE Completer used with an instruction which does not take completers.
ACTION Use completers only with instructions specified for them in the
Precision Architecture and Instruction Reference Manual.
1004 MESSAGE Output file name missing
CAUSE -0 option given to Assembler but not followed by a filename.
ACTION Place desired output filename after -o option.

Error Messages

1005 MESSAGE Unable to open xref file: <operand>
CAUSE A file specified with the -v option is not writable.
ACTION Use a different filename.
1006 MESSAGE XREF file name missing after -v
CAUSE Filename omitted from command line.
ACTION Provide a filename after -v to dump the cross-reference information.
1007 MESSAGE Label not allowed here in this expr
CAUSE 1) Register specified by identifier.
2) An expression contains the sequence immediate-operator-label.
ACTION 1) Use integer values for registers.
2) Use labels only as first term when combining with immediate values.
1008 MESSAGE Illegal symbol in expression
CAUSE An expression contains a sequence other than label-operator term or
term-operator-term.
ACTION Place operators +, ~-, * / between a label and a term or a term and a
term.
1009 MESSAGE Field selector not allowed in pc_relative expression
CAUSE Field selector, such as L” or R” used on an expression contained in a
branch instruction.
ACTION Omit field selector from branch instruction.

Error Messages

1010 MESSAGE String not allowed in pc_relative expression
CAUSE String used as the target of a branch instruction.
ACTION Target branch to an expression beginning with a label or "."
1011 MESSAGE "." allowed in pc_rel expression only
CAUSE “" used as an operand in a nonbranch, external branch or vectored
branch.
ACTION Use "." only in branch instructions other than branch external or branch
vectored.
1012 MESSAGE PC_relative expression must begin with . or label
CAUSE Branch target poorly formed.
ACTION Use label or "." as first term of branch target expression.
1013 MESSAGE Second label not allowed in pc_relative expression
CAUSE Branch target poorly formed: label-operator-label.
ACTION Use an offset in place of second label.
1014 MESSAGE Labels may not be added - only subtracted
CAUSE Attempt to form an expression using sum of two labels.
ACTION Use an offset in place of second label.
1015 MESSAGE Unexpected end of expression
CAUSE Nothing follows a +, -, /, or * in an expression.
ACTION Place meaningful terms, integers, or labels after operator.

Error Messages

1016 MESSAGE General register <operand> is out of range
CAUSE Register number specified greater than 31.
ACTION Use register number between zero and 31.
1017 MESSAGE Value of <operand> for space register not in [0..3]
CAUSE Load or privileged store instruction references a space register greater
than 3.
ACTION Change space register number to a legal value.
1018 MESSAGE Value of <operand> for space register not in [0..7]
CAUSE Branch or privileged instruction uses space register greater than 7.
ACTION Change space register number to a legal value.
1019 MESSAGE Opcode not defined
CAUSE Characters in opcode field do not comprise legal machine instruction or
directive.
ACTION Starting in column 2, use only defined opcodes and directives.
1020 MESSAGE Number required for keyword value
CAUSE A .CALLINFO keyword is set equal to a nonnumeric argument.
ACTION Ensure .CALLINFO keywords are assigned numeric values.
1021 MESSAGE Unrecognized value for keyword
CAUSE Illegal assignment to an ARGW or RTNVAL keyword in .CALL or
.EXPORT directive.
ACTION Use "NO" "GR", "FR", or "FU" appropriately.

Error Messages

1022 MESSAGE This statement must occur within a declared subspace
CAUSE Instruction or directive present before .SUBSPA directive.
ACTION Use .SUBSPA directive before issuing instruction or data.
1023 MESSAGE Directive not allowed inside a procedure
CAUSE Use of .LOCCT, .SPACE, or .SUBSPA within a procedure.
ACTION Do not attempt to change location counter, space or subspace within a
procedure.
1024 MESSAGE Space name required
CAUSE .SPACE directive not followed by a valid name.
ACTION Follow .SPACE directive with a name starting with an alphabetic
character.
1025 MESSAGE Unrecognized keyword
CAUSE Directive, such as .SPACE, .SUBSPA or .CALLINFO, followed by a
keyword not specified in Assembler manual.
ACTION Follow directives with legal keywords separated by commas.
1026 MESSAGE Name previously defined
CAUSE Subspace name matches a space name.
ACTION Choose subspace names different from space names.
1027 MESSAGE This item must be declared within a space
CAUSE A directive, such as .SUBSPA, is used before the first . SPACE directive.
ACTION Place .SPACE directive prior to offending directive.

Error Messages

1028 MESSAGE Subspace name required
CAUSE .SUBSPA directive parameter list does not begin with a valid name.
ACTION .SUBSPA must be followed by name beginning with an alphabetic
character or "§".
1029 MESSAGE This statement must appear within a procedure
CAUSE Directive, such as .CALLINFO, .ENTER, or .LEAVE, is used outside of a
procedure.
ACTION Use procedure related directives only within a procedure.
1030 MESSAGE Only one .CALLINFO per procedure
CAUSE Multiple .CALLINFO directives between successive . PROC directives.
ACTION Place all desired keywords in one .CALLINFO directive for the
procedure.
1031 MESSAGE Value for <operand> must be >=0
CAUSE In a .CALLINFO directive, FRAME 1is assigned an identifier equated to a
negative value.
ACTION Use only nonnegative FRAME values.
1032 MESSAGE Value for <operand> must be in range 3..19
CAUSE In a .CALLINFO directive, ENTRY _GR is assigned a value less than 3
or greater than 19.
ACTION Assign ENTRY__GR a value between 3 and 19 inclusive. Note: Use of

value zero is also legal here.

N—

Error Messages

1033 MESSAGE Value for <operand> must be in range 12..31
CAUSE Ina .CALLINFO directive, ENTRY _FR is assigned a value less than 12
or greater than 31.
ACTION Set ENTRY__FR to a value between 12 and 31 inclusive. Note: Use of
value zero is also legal here.
1034 MESSAGE ENTRY_SR must be 3 or not specified
CAUSE .CALLINFO contains keyword specifying saved space register other than
three.
ACTION Omit ENTRY SR keyword as other space registers do not require
saving.
1037 MESSAGE Nested .PROC
CAUSE . PROC directive present within . PROC - . PROCEND sequence.
ACTION Insert . PROCEND between successive . PROCs or remove any unnecessary
. PROCs.
1038 MESSAGE Variable name missing
CAUSE Label omitted in .COMM or .EQU directive.
ACTION Use label with all .COMM or . EQU directives.
1039 MESSAGE Missing string constant
CAUSE .STRING, .STRINGZ, .VERSION, or .COPYRIGHT directive present
without a string operand.
ACTION Add missing quoted string after directive.

Error Messages

1040 MESSAGE Only one copyright message permitted
CAUSE Multiple copyright directives present.
ACTION Combine messages and use one copyright directive.
1041 MESSAGE Export name required
CAUSE .EXPORT directive not followed by an identifier.
ACTION Follow .EXPORT directive with a legal identifier that must begin with
an alphabetic character, an underscore, or a dollar sign.
1042 MESSAGE Import name required
CAUSE . IMPORT directive not followed by a legal identifier.
ACTION Add missing identifier after . IMPORT directive.
1043 MESSAGE <operand> not permitted for export
CAUSE .EXPORT directive not followed by a legal identifier.
ACTION Provide appropriate identifier after . EXPORT directive.
1044 MESSAGE Name required for label definition
CAUSE .LABEL directive not followed by legal identifier.
ACTION Add missing identifier after . LABEL directive
1045 MESSAGE Name to be defined by .LABEL must appear as operand.
CAUSE Identifier present in column one in a .LABEL directive.
ACTION Place identifier after . LABEL, not before it.

SN—

Error Messages

1046 MESSAGE Duplicate definition of symbol
CAUSE A label was used more than once.
ACTION Give labels unique names.
1047 MESSAGE Unmatched .PROCEND
CAUSE Two . PROCEND directives present without . PROC directive in between.
ACTION Each procedure should begin with a single .PROC and end with a
. PROCEND.
1048 MESSAGE A procedure may not be empty
CAUSE . PROC followed by . PROCEND with no executable code between.
ACTION Use at least .CALLINFO, .ENTER, and .LEAVE within procedure body.
1049 MESSAGE Procedure does not have .CALLINFO
CAUSE Missing .CALLINFO directive between . PROC and . PROCEND.
ACTION Insert .CALLINFO following .PROC.
1050 MESSAGE Illegal symbol in label position
CAUSE Character present in column one which is not alphabetic, underscore, or
dollar sign.
ACTION Use only legal identifiers in label field.
1051 MESSAGE Illegal symbol in opcode position
CAUSE A sequence of characters starting in column two or beyond does not
begin with an alphabetic character or a period.
ACTION Use only prescribed opcodes and directives starting in column two or

beyond.

Error Messages

1052 MESSAGE Directive name not recognized
CAUSE A sequence of characters starting in column two or beyond, beginning
with a period, does not correspond to a prescribed directive.
ACTION When beginning with a period, use only prescribed directives starting in
column two or beyond.
1054 MESSAGE Unexpected items at end of line
CAUSE Legal operands are followed by trailing characters or operators.
ACTION Examine entire sequence of operands for syntactic integrity.
1056 MESSAGE Label must be defined within a declared subspace
CAUSE Label present prior to a . SUBSPA directive.
ACTION Place label after issuing . SUBSPA directive.
1056 MESSAGE Empty source file(s)
CAUSE No space has been declared.
ACTION Use at least one .SPACE directive.
1057 MESSAGE Missing .PROCEND
CAUSE Last procedure in program does not end with . PROCEND.
ACTION Add .PROCEND directive to last procedure in program.
1059 MESSAGE Divide by zero
CAUSE Attempt to perform a division operation with a zero divisor.
ACTION Be sure value for divisor can not become equal to zero.

Error Messages

1060 MESSAGE Argument 1 or 3 in FARG upper
CAUSE Using the FU value with the ARGW1 or ARGW3 keywords.
ACTION Only use the FU value with ARGWO or ARGW2 keywords.
1061 MESSAGE Closing parenthesis is missing in expression
CAUSE Mismatched parenthesis.
ACTION Insert closing parenthesis at the end of the expression.
1062 MESSAGE Macro parameters must be separated by commas
CAUSE Formal parameters to .MACRO or actual parameters to a macro call are
not separated by commas.
ACTION Insert commas between parameters.
1063 MESSAGE Unterminated macro definition
CAUSE A .MACRO directive is not matched with an .ENDM directive.
ACTION Terminate the macro definition with an .ENDM directive.
1064 MESSAGE Poorly formed macro parameter
CAUSE Formal parameter to the macro definition is not 1in an
Assembler-accepted form.
ACTION Change the form of the formal parameter to an acceptable form.
1065 MESSAGE Poorly formed .FLOAT or .DOUBLE argument
CAUSE The floating point number that was used as the argument to .FLOAT or
.DOUBLE 1s not in the right format.
ACTION Use the correct floating point format for the argument.

Error Messages

1066 MESSAGE Poorly formed bit field specifier
CAUSE Bit field is not being specified in the form {x..y} where x and y are
natural numbers.
ACTION Specify bit fields in the correct form.
1067 MESSAGE Bit field too wide for instruction field
CAUSE Mismatched bit field declaration and use.
ACTION Use the same length for both the bit field being assigned to and the bit
field being assigned from.
1068 MESSAGE Brace outside of macro definition
CAUSE Opening or closing braces are being used outside a macro definition.
ACTION Remove opening or closing braces or use them before the . ENDM.
1069 MESSAGE Equal sign required in bit field assignment
CAUSE Missing operator = for assigning one bit field to another.
ACTION Insert equal sign (=) for bit field assignment.
1070 MESSAGE Bit range must be within {0..31}
CAUSE Range specified in bit field is not 0..31.
ACTION Ensure bit field range is within 0..31.

Error Messages

1071 MESSAGE Opening brace expected in bit range designator
CAUSE Missing opening brace to specify a bit field.
ACTION Use correct format for bit field specification.

1072 MESSAGE Ending brace expected in bit range designator
CAUSE Missing closing brace to specify a bit field.
ACTION Use correct format for bit field specification.

1073 MESSAGE Unmatched .ENDM
CAUSE No .MACRO was recognized as corresponding to the . ENDM.
ACTION Either remove the unmatched .ENDM or insert a .MACRO in appropriate

position preceding the .ENDM.

1074 MESSAGE Illegal expression type for plabel
CAUSE More than one label was found in a plabel expression.
ACTION Use only one label in a procedure label expression.

1075 MESSAGE Undefined field selector
CAUSE Illegal field selector is being used.
ACTION Use correct field selector.

Error Messages

Panic Messages

2000 MESSAGE Exceeded maximum error count
CAUSE More than 100 errors were detected and the -e option was not invoked.
ACTION Use -e option to permit up to a million errors.
2001 MESSAGE Bad option - <operand>
CAUSE An option flag was used on the command line that does not correspond
to an option in the Assembler manual.
ACTION Use only prescribed options.
2002 MESSAGE Unable to open input file: <operand>
CAUSE Requested input file is either nonexistent or unreadable.
ACTION Checl_(for presence of requested input file and examine read-write
permissions.
2003 MESSAGE Unable to open output file: <operand>
CAUSE 1) Output file exists and is not writable.
2) File system error.
ACTION 1) Make output file writable.
2) Contact HP-UX system administrator.
2004 MESSAGE Free storage exhausted
CAUSE Assembler cannot allocate memory for its internal structures.
ACTION Break up the program into smaller modules. If this doesn’t work,

contact HP-UX system administrator.

A-20

N—

Error Messages

2005 MESSAGE Internal instruction parsing error on <operand>
CAUSE Assembler has an internal defect.
ACTION Contact HP-UX system administrator.
2006 MESSAGE Unable to regain access to source file for listing
CAUSE Not able to access source file for reading.
ACTION Check for existence of source file and permission to read it.
2007 MESSAGE Unable to access temporary file to build listing
CAUSE Not able to write to the temporary listing file. Could be a file system
error.
ACTION Call HP-UX system administrator.
2008 MESSAGE Unterminated macro definition
CAUSE Macro definition is not complete until a .ENDM is encountered.
ACTION Insert .ENDM at the end of the macro definition.

A-21

Error Messages

User Warnings

Errors 7100 through 7199 are user warnings. The assembler will proceed, and produce an object file, in
some cases taking the described form of corrective action.

7100 MESSAGE code subspace has no unwind subspace

CAUSE No unwind subspace was specified for the code subspace.

ACTION Contact HP-UX system administrator.

7101 MESSAGE Improper completer, <completer>, given for opcode
[opcode] - ignored

CAUSE The completer given is not valid for the opcode.

The assembler generates object code as if the completer were not given.

ACTION You should either remove the completer or give a correct completer.

7102 MESSAGE Immediate value of <constant> for 5-bit field in
<opcode> not in [0..31] (truncated)

CAUSE The constant was given as an operand for the opcode, and is larger than
the 5-bit field allows.

The lower five bits of the given constant are used.

ACTION You should change the value to within the limits (0 through 31) or use
a different instruction.

7103 MESSAGE Extract/deposit of <constant> for field size in
[opcode] not in [1..32] (set to 32)

CAUSE The constant was given as a field size for the extract or deposit
instruction with the specified opcode, and is larger than the S-bit field
allows.

The constant is set to 32 unless you take some action.
ACTION You should change the value to within the limits (1 through 32), or use

a different instruction.

A-22

Error Messages

7104 MESSAGE Immediate value of <constant> for <opcode> is less than
-16 (set to -16)
CAUSE The constant was given as an operand for the opcode, and is smaller
than the 5-bit signed field allows.
ACTION You should change the value to within the limits (-16 through 15), or
use a different instruction.
7105 MESSAGE Immediate value of <constant> for <opcode> is greater
than 15 (set to 15)
CAUSE The constant was given as an operand for the opcode, and is larger than
the 5-bit signed field allows.
ACTION You should change the value to within the limits (=16 through 185), or
use a different instruction.
7106 MESSAGE DSR value of <constant> for <opcode> not in [0..3] -
truncated
CAUSE A data space register value other than 0,1,2, or 3 was given for the
specified opcode.
ACTION You should change the value to within the limits (O through 3).
7107 MESSAGE CSR value of <constant> for <opcode> not in [0..7] -
truncated
CAUSE A data space register value (constant) other than zero through 7 was
given for the specified opcode.
ACTION You should change the value to within the limits (0 through 7).

A-23

Error Messages

7108 MESSAGE The value <constant> did not fit into a <field size>
bit field at offset <offset> (op code - [opcode])

CAUSE During object file generation, a symbol reference (such as branch label
or load offset) being resolved to a constant could not be resolved within
the field of the referencing instruction. The value of the actual
constant being placed into the instruction is given, as well as the size of
the field, the offset from the beginning of the subspace of the offending
instruction, and the opcode of the offending instruction.

ACTION You must remove the reference, or use a different instruction sequence
that can accommodate the size of the constant.

7109 MESSAGE Tried to define the value of non-absolute symbol
<symbol-name>
CAUSE You used a .EQU directive to define a symbol that was already defined
as a non-absolute symbol, such as DATA or ENTRY.
ACTION You must either remove or change the symbol name in the .EQU
directive, or resolve the inconsistency with the other uses of that
symbol.

A-24

Limit Errors

Error Messages

Errors 7200 through 7299 are fatal errors that you may be able to work around. They involve running
into assembler limits or running out of memory.

7200 MESSAGE internal table overflow

CAUSE Too many labels in the object file.

ACTION Split the file. Make global variable and procedure names shorter. This
should rarely happen.

7201 MESSAGE new slc_block: out of memory

CAUSE The assembler attempted to allocate some dynamic memory, and the
system was unable to provide the memory.

ACTION 1) Check the system limits because other processes that allocate dynamic
memory might also be running. More memory might be available at
another time.

2) Break your assembly file into smaller pieces, and assemble them
separately.
7202 MESSAGE init_link: Out of memory

CAUSE The assembler attempted to allocate some dynamic memory, and the
system was unable to provide the memory.

ACTION 1) Check the system limits because other processes might be running

that also allocate dynamic memory. More memory might be available
at another time.

2) Break up your assembly file into smaller pieces and assemble them
separately.

Error Messages

7203 MESSAGE allocate bytes: Out of memory

CAUSE The assembler attempted to allocate some dynamic memory, and the
system was unable to provide the memory.

ACTION 1) Check the system limits because other processes might be running
that also allocate dynamic memory. More memory might be available
at another time.

2) Break up your assembly file into smaller pieces, and assemble them
separately.
7204 MESSAGE error in writing to output file.
CAUSE The assembler cannot write to the object file.
ACTION Contact HP-UX system administrator to check for file system errors.

A-26

Error Messages

Branching Errors

Errors 7400 through 7405 are branching errors that prevent the assembler from creating an object file.
You must correct these errors to assemble your program.

7400 MESSAGE Procedure number <number> has no label known to linker
CAUSE You used the .PROC directive to specify the beginning of a procedure,
but have not exported a procedure label. This is necessary for creating
unwind tables.
ACTION You need to export a label for the procedure.
7401 MESSAGE Attempt to set location counter backward with .ORIGIN
value of <constant>
CAUSE You specified a value for the .ORIGIN directive that causes the location
of the following item to be earlier than the previous item.
ACTION You must either delete items before the .ORIGIN directive to adjust the
offset of the immediately preceding item, or adjust the value on the
.ORIGIN directive.
7402 MESSAGE Procedure call to non entry point: <label name>
CAUSE You used the .CALL directive to mark a procedure call to a label that is
not an entry point. It must be marked with either .ENTER or .ENTRY.
ACTION You must either remove the .CALL directive, change the target on the
.CALL directive, or place a .ENTER or .ENTRY at the target.
7403 MESSAGE undefined label - <label name>
CAUSE You used the given label in an expression, such as a branch instruction
or a .WORD directive, but the label was never defined.
ACTION Remove the reference to the label. Or define it by exporting it or using

1t as a label on an instruction or data item.

Error Messages

7404 MESSAGE branch target .-<constant> unresolvable, instruction
number <number>

CAUSE You specified a negative displacement from the current location, and
there is no instruction there.

ACTION You must place an instruction at the target of the branch, or change the
constant in the branch.

7405 MESSAGE branch target .+<constant> unresolvable, instruction
number <number>

CAUSE You specified a branch to the current location plus a constant, but there
is no instruction there.

The sequence number of the branch instruction within its subspace is
given.

ACTION You must place an instruction at the target of the branch, or change the
constant in the branch.

A-28

Appendix B

Instruction Summaries

Table B-1 lists the different Assembler machine instructions, alphabetically, by their mnemonic names.

Table B-1. Instructions Arranged by Mnemonic Name

Mnemonic Name Operands Instruction Name
ADD,cond rir2t Add
ADDBond,n rlr2target Add and Branch *
ADDBFcond,n rl,r2target Add and Branch If False
ADDBT,cond,n rlr2target Add and Branch If True
ADDCcond rir2t Add With Carry
ADDCO,cond rlr2t Add With Carry and Trap On Overflow
ADDI cond ir,t Add To Immediate
ADDIBcond,n 1r2target Add Immediate and Branch *
ADDIBF cond,n 1,r2target Add Immediate and Branch If False
ADDIBT cond,n 1,r2,target Add Immediate and Branch If True
ADDIL 1r Add Immediate Left
ADDIO,cond ir,t Add To Immediate and Trap On Overflow
ADDIT,cond it Add To Immediate and Trap On Condition
ADDITO,cond ,r,t Add to Immediate and Trap On Condition or

Overflow

ADDL cond rir2t Add Logical
ADDO,cond rir2t Add and Trap On Overflow

*Pseudo instruction.

(continued on next page)

Instruction Summaries

Table B-1. Instructions Arranged by Mnemonic Name (continued)

Mnemonic Name Operands Instruction Name
ANDcond rlr2t And
ANDCM,cond rlr2t And Complement
B,n target Branch *
BB,cond,n rl,ptarget Branch On Bit
BE.n wd(sr,b) Branch External
BL,n targett Branch and Link
BLEn wd(sr,b) Branch and Link External
BLRn x,t Branch and Link Register
BREAK 11,12 Break
BV,n x(b) Branch Vectored
BVB,condn rltarget Branch On Variable Bit
CLDDS,uid,cmplt i(s,b)t Coprocessor Load Doubleword Short
CLDDX,uid,cmplt x(s,b),t Coprocessor Load Doubleword Indexed
CLDWS,uid,cmplt d(s,b),t Coprocessor Load Word Short
CLDWX uid,cmplt x(s,b),t Coprocessor Load Word Indexed
COMB,cond,n rl,r2target Compare and Branch *
COMBF,cond,n rlr2target Compare and Branch If False
COMBT,cond,n rlr2target Compare and Branch If True
COMCLR cond rir2t Compare and Clear
COMIBcond,n ir2target Compare Immediate and Branch *
COMIBF,cond,n ir2target Compare Immediate and Branch If False
COMIBT cond,n 1,r2target Compare Immediate and Branch If True
COMICLR cond irt Compare Immediate and Clear

*Pseudo instruction. (continued on next page)

B-2

Instruction Summaries

Table B-1. Instructions Arranged by Mnemonic Name (continued)

Mnemonic Name Operands Instruction Name

COPRuid,sop,n Coprocessor Operation

COPY rt Copy *

CSTDS,uid,cmplt r,d(s,b) Coprocessor Store Doubleword Short

CSTDX,uid,cmplt r,x(s,b) Coprocessor Store Doubleword Indexed

CSTWS, uid,cmplt r,d(s,b) Coprocessor Store Word Short

CSTWX uid,cmplt r,x(s,b) Coprocessor Store Word Indexed

DCORcond r,t Decimal Correct

DEP,cond rplent Deposit

DEPI cond i,plent Deposit Immediate

DIAG i Diagnose

DS,cond rlr2t Divide Step

EXTRS,cond r,plen;t Extract Signed

EXTRU,ond r,plent Extract Unsigned

FABS fmt rt Floating-point Absolute Value

FADD fmt rir2t Floating-point Add

FCMP fmt,cond rir2 Floating-point Compare

FCNVFF sf df rt Floating-point Convert from Floating-point to
Floating-point

FCNVFXsf df rt Floating-point Convert from Floating-point to
fixed-Point

FCNVFXTsf df rt Floating-point Convert from Floating-point to
Fixed-point and Truncate

FCNVXFsf,df rt Floating-point Convert from Fixed-point to
Floating-point

FCPY fmt rt Floating-point Copy

*Pseudo instruction.

(continued on next page)

Instruction Summaries

Table B-1. Instructions Arranged by Mnemonic Name (continued)

Mnemonic Name Operands Instruction Name
FDC,cmplt x(s,b) Flush Data Cache
FDCE,cmplt x(s,b) Flush Data Cache Entry
FDIV fmt rir2t Floating-point Divide
FIC,cmplt x(sr,b) Flush Instruction Cache
FICE cmplt x(sr,b) Flush Instruction Cache Entry
FLDDS,cmplt d(s,b)t Floating-point Load Doubleword Short
FLDDX,cmplt x(s,b),t Floating-point Load Doubleword Indexed
FLDWS,cmplt d(s,b)t Floating-point Load Word Short
FLDWX cmplt x(s,b),t Floating-point Load Word Indexed
FMPY fmt rlr2t Floating-point Multiply
FREM fmt rlr2t Floating-point Remainder
FRND,fmt r,t Floating-point Round to Integer
FSQRT,fmt r,t Floating-point Square Root
FSTDS,cmplt r,d(s,b) Floating-point Store Doubleword Short
FSTDX,cmplt r,x(s,b) Floating-point Store Doubleword Indexed
FSTWS,cmplt r,d(s,b) Floating-point Store Word Short
FSTWX cmplt r,x(s,b) Floating-point Store Word Indexed
FSUB,fmt rir2t Floating-point Subtract
FTEST Floating-point Test
GATEn target,t Gateway
IDCOR cond r,t Intermediate Decimal Correct
IDTLBA r,(s,b) Insert Data Translation Lookaside Buffer Address

(continued on next page)

Instruction Summaries

Table B-1. Instructions Arranged by Mnemonic Name (continued)

Mnemonic Name Operands Instruction Name

IDTLBP r,(s,b) Insert Data Translation Lookaside Buffer Protection

IITLBA r,(sr,b) Insert Instruction Translation Lookaside Buffer
Address

IITLBP r,(sr,b) Insert Instruction Translation Lookaside Buffer
Protection

LDB d(s,b),t Load Byte

LDBS cmplt d(s,b)t Load Byte Short

LDBX,cmplt x(s,b),t Load Byte Indexed

LDCWS cmplt d(s,)b)t Load and Clear Word Short

LDCWX cmplt x(s,b),t Load and Clear Word Indexed

LDH d(s,b),t Load Halfword

LDHS cmplt d(s,b)t Load Halfword Short

LDHX,cmplt x(s,b),t Load Halfword Indexed

LDI it Load Immediate *

LDIL Lt Load Immediate Left

LDO d(b),t Load Offset

LDSID (s,b)t Load Space Identifier

LDW d(s,b)t Load Word

LDWAS cmplt d(b),t Load Word Absolute Short

LDWAX cmplt x(b),t Load Word Absolute Indexed

LDWM d(s,b)t Load Word and Modify

LDWS,cmplt d(s,b)t Load Word Short

LDWX,cmplt x(s,b),t Load Word Indexed

*Pseudo instruction.

(continued on next page)

B-5

Instruction Summaries

Table B-1. Instructions Arranged by Mnemonic Name (continued)

Mnemonic Name Operands Instruction Name
LHA cmplt x(s,b),t Load Hash Address
LPA cmplt x(s,b)t Load Physical Address
MFCTL r,t Move From Control Register
MFSP sr,t Move From Space Register
MOVBcond,n rl,r2target Move and Branch
MOVIB,cond,n i,r2 target Move Immediate and Branch
MTCTL r,t Move To Control Register
MTSAR r Move To Shift Amount Register *
MTSM r Move To System Mask
MTSP r,sr Move To Space Register
NOP No Operation *
OR cond rlr2t Inclusive OR
PDC,cmplt x(s,b) Purge Data Cache
PDTLB,cmplt x(s,b) Purge Data Translation Lookaside Buffer
PDTLBE,cmplt x(s,b) Purge Data Translation Lookaside Buffer Entry
PITLB,cmplt x(sr,b) Purge Instruction Translation Lookaside Buffer
PITLBE,cmplt x(sr,b) Purge Instruction Translation Lookaside Buffer
Entry
PROBER (s,b)rt Probe Read Access
PROBERI (s,b)1,t Probe Read Access Immediate
PROBEW (s,b)rt Probe Write Access
PROBEWI (s,b),,t Probe Write Access Immediate
RFI Return From Interruption
*Pseudo instruction. (continued on next page)

Instruction Summaries

Table B~1. Instructions Arranged by Mnemonic Name (continued)

Mnemonic Name Operands Instruction Name
RSM it Reset System Mask
SH1ADDccond rlr2t Shift One and Add
SH1ADDL cond rir2t Shift One and Add Logical
SH1ADDO,cond rir2t Shift One, Add and Trap On Overflow
SH2ADD cond rir2t Shift Two and Add
SH2ADDL cond rl,r2t Shift Two and Add Logical
SH2ADDO,cond rlr2t Shift Two, Add and Trap On Overflow
SH3ADD,cond rir2t Shift Three and Add
SH3ADDL cond rir2t Shift Three and Add Logical
SH3ADDO,cond rlr2t Shift Three, Add and Trap On Overflow
SHD,cond rl,r2countt Shift Double
SSM 1t Set System Mask
STB r,d(s,b) Store Byte
STBS,cmplt r,d(s,b) Store Byte Short
STBYS,cmplt r,d(s,b) Store Bytes Short
STH r,d(s,b) Store Halfword
STHS,cmplt r,d(s,b) Store Halfword Short
STW r,d(s,b) Store Word
STWAS,cmplt r,d(b) Store Word Absolute Short
STWM r,d(s,b) Store Word and Modify
STWS cmplt r,d(s,b) Store Word Short
SUB,cond rir2t Subtract
SUBB,cond rlr2t Subtract With Borrow
SUBBO,cond rir2t Subtract With Borrow and Trap On Overflow

(continued on next page)

Instruction Summaries

Table B-1. Instructions Arranged by Mnemonic Name (continued)

Mnemonic Name Operands Instruction Name
SUBI,cond ir.t Subtract from Immediate
SUBIO,cond Lr,t Subtract from Immediate and Trap On Overflow
SUBO,cond rir2t Subtract and Trap On Overflow
SUBT,cond rir2t Subtract and Trap On Condition
SUBTO,cond rlr2t Subtract and Trap On Condition or Overflow
SYNC Synchronize Caches
UADDCM,cond rlr2t Unit Add Complement
UADDCMT cond rlr2t Unit Add Complement and Trap On Condition
UXOR cond rlr2t Unit Exclusive Or
VDEP,cond rlent Variable Deposit
VDEPI cond Llen,t Variable Deposit Immediate
VEXTRS,cond rlen;t Variable Extract Signed
VEXTRU cond rlent Variable Extract Unsigned
VSHD,cond rlr2t Variable Shift Double
XORcond rlr2t Exclusive Or
ZDEPcond r,plent Zero and Deposit
ZDEPI cond 1plent Zero and Deposit Immediate
ZVDEP,cond rlent Zero and Variable Deposit
ZVDEPIcond 1lent Zero and Variable Deposit Immediate

SPECIAL CHARACTERS

.ALIGN directive, 3-5

.BLOCK pseudo-operation, 3-6

.BLOCKZ pseudo-operation, 3-6

.BSS predefined space directive, 3-47

.BYTE pseudo-operation, 3-8

.CALL directive, 3-9

.CALLINFO directive, 3-13

.CODE predefined space directive, 3-46
.COMM directive, 3-18

.COPYRIGHT directive, 3-19

.DATA predefined space directive, 3-47
.DOUBLE directive, 3-20

.END directive, 3-21

.ENDM directive, 3-22

.ENTER pseudo-operation, 3-23

.ENTRY directive, 3-24

.EQU directive, 3-2§

.EXIT directive, 3-24

.EXPORT directive, 3-26

.FIRST predefined space directive, 3-46
.FLOAT directive, 3-28

.GATE predefined space directive, 3-46
.GLOBAL predefined space directive, 3-47
.GNTT predefined space directive, 3-47
.HALF pseudo-operation, 3-8

.HEADER predefined space directive, 3-47
.HEAP predefined space directive, 3-47
.IMPORT directive, 3-26

.LABEL directive, 3-29

.LEAVE pseudo-operation, 3-23

.LISTOFF directive, 3-30

.LISTON directive, 3-30

.LIT predefined space directive, 3-46

.LNTT predefined space directive, 3-47
.LOCCT directive, 3-32

.MACRO directive, 3-33

.MILLICODE predefined space directive, 3-46
.ORIGIN directive, 3-36

.PCB predefined space directive, 3-47
.PFA__ADDRESS predefined space directive, 3-47
.PFA__COUNTER predefined space directive, 3-47
.PROC directive, 3-37

.PROCEND directive, 3-37

.REAL predefined space directive, 3-46
.RECOVER predefined space directive, 3-46
.REG direcctive, 3-38

.RESERVED predefined space directive, 3-46
.SHORTDATA predefined space directive, 3-47

Index

INDEX-1

Index

.SLT predefined space directive, 3-47
.SPACE directive, 3-39

.SPNUM directive, 3-41

.STACK predefined space directive, 3-47
.STRING pseudo-operation, 3-42
.STRINGZ pseudo-operation, 3-42
.SUBSPA directive, 3-43

.UNWIND prefined space directive, 3-46
.VERSION directive, 3-45

. VT predefined space directive, 3-47
.WORD pseudo-operation, 3-8

A

absolute result, 1-11
add and branch instructions, 4-14
add instructions, 4-18
arithmetic expressions, 1-11
as command, 6-1
assembler directives, 3-1, 3-4
assembler features, 1-2
assembler, 1-1
invoking, 6-1
machine language, 1-1
relocatable object file, 1-1
source file, 1-1
assembling your program, 6-1
assembly language program, 1-1
assembly language, programs and procedures, 2-1
assembly listing, 2-9
assembly programming for HP-UX, 2-1
assist (coprocessor) instructions, 4-33

B

base register modification, 4-4
branch instructions, 4-9

add, 4-14

coding, 4-9

compare, 4-12

conditional, 4-10

move, 4-11

unconditional, 4-9
branch on bit instructions, 4-16
branching errors, A-27
byte values, 4-7

C

calling conventions, 2-6
cc command, 6-3

INDEX-2

Index

coding branch instructions, 4-9
commands
as, 6-1
cc, 6-3
comments field, 1-3
compare and branch instructions, 4-12
compare and clear instructions, 4-24
compiler conventions, 2-6
compiler generated directives, 3-3
computational instructions, 4-17
conditional branch instructions, 4-10
control registers, 1-7
coprocessor indexed load and store instructions, 4-35
coprocessor operation instruction, 4-34
coprocessor short displacement load and store instructions, 4-36

D

defining new instructions, 1-17

delay slot, 4-9

deposit instruction, 4-28

directives
.ALIGN, 3-5
.CALL, 3-9
.CALLINFO, 3-13
.COMM, 3-18
.COPYRIGHT, 3-19
.DOUBLE, 3-20
.END, 3-21
.ENDM, 3-22
.ENTRY, 3-24
.EQU, 3-25
.EXIT, 3-24
.EXPORT, 3-26
.FLOAT, 3-28
.IMPORT, 3-26
.LABEL, 3-29
.LISTOFF, 2-9, 3-30
.LISTON, 2-9, 3-30
.LOCCT, 3-32
.MACRO, 3-33
.ORIGIN, 3-36
.PROC, 3-37
.PROCEND, 3-37
.REG, 1-7, 1-15, 3-38
.SPACE, 3-39
.SPNUM, 3-41
.SUBSPA, 3-43
.VERSION, 3-45§

divide step instruction, 4-295

dp register, 2-7

INDEX-3

Index

E

error message catalog, 6-4
error messages, A-1, A-7
expressions, 1-2
absolute result, 1-11
integer constants, 1-11
relocatable result, 1-11
symbolic addresses, 1-11
symbolic constants, 1-11
extract instruction, 4-28

F

field selectors, 1-12
fields

comments, 1-3

label, 1-3

opcode, 1-3

operands, 1-3
floating-point compare and test instructions, 4-41
floating-point indexed load and store instructions, 4-38
floating-point instructions, 4-37
floating-point operation instructions, 4-39
floating-point registers, 1-7
floating-point short displacement load and store instructions, 4-39

G

general registers, 1-7
global symbol, 2-7

H

hard_reg.h, 6-3
high-level language procedure, 2-6

immediate instructions, 4-8
indexed load instructions, 4-5
initialize pseudo-operations, 3-8, 3-42
instruction operands, 4-2
instructions, 4-1
add and branch, 4-14
add, 4-18
assist (coprocessor), 4-33
branch on bit, 4-16
compare and branch, 4-12
compare and clear, 4-24

INDEX-4

computational, 4-17
conditional branch, 4-10
coprocessor indexed load and store, 4-35
coprocessor operation, 4-34
coprocessor short displacement load and store, 4-36
deposit, 4-28
divide step, 4-25
extract, 4-28
floating-point compare and test, 4-41
floating-point indexed load and store, 4-38
floating -point operation, 4-39
floating-point short displacement load and store, 4-39
floating-point, 4-37
immediate, 4-8
indexed load, 4-95
load and store, 4-4
logical, 4-26
move and branch, 4-11
pseudo instructions, 4-43
shift and add, 4-20
shift, 4-28
short displacement load and store, 4-6
store bytes short, 4-7
subtract, 4-22
system control, 4-30
unconditional branch, 4-9
unit, 4-27
invoking the assembler, 6-1

L

label field, 1-3
limit errors, A-25
linker, 1-1

program file, 1-1
linking an assembly program, 6-95
listing, assembly, 2-9
load and store instructions, 4-4
load and store, base register modification, 4-4
location counters, 2-95

local to assembler, 2-5
logical instructions, 4-26

macros, 1-17
.ENDM directive, 3-22
.MACRO directive, 3-33
defining new instructions, 1-17
processing, 1-2, 1-17
memory reference instructions, 4-3
mnemonic instructions, 1-2

Index

INDEX-$

Index

mnemonics, register, 1-7
move and branch instructions, 4-11

N

new instructions, 1-17

o)

opcode field, 1-3
operands and completers, 1-15
operands field, 1-3
operators, 1-11
field selectors, 1-12

P

panic messages, A-20
parenthesized sub-expressions, 1-14
parenthesized subexpressions, 1-2
pcc__prefix.s files, 6-3
predefined spaces and subspaces, 3-46
processing, macros, 1-2
program examples, 5-1
program file, 1-1
programming aids, 3-46

.BSS, 3-47

.CODE, 3-46

.DATA, 3-47

.FIRST, 3-46

.GATE, 3-46

.GLOBAL, 3-47

.GNTT, 3-47

.HEADER, 3-47

.HEAP, 3-47

.LIT, 3-46

.LNTT, 3-47

.MILLICODE, 3-46

.PCB, 3-47

.PFA__ADDRESS, 3-47

.PFA__COUNTER, 3-47

.REAL, 3-46

.RECOVER, 3-46

.RESERVED, 3-46

.SHORTDATA, 3-47

.SLT, 3-47

.STACK, 3-47

.UNWIND, 3-46

.VT, 3-47
pseudo instructions, 4-43
pseudo-instructions, 4-1

INDEX-6

pseudo-operations, 3-1, 3-3
.BLOCK, 3-6
.BLOCKZ, 3-6
.BYTE, 3-8
.ENTER, 3-23
.HALF, 3-8
.LEAVE, 3-23
.STRING, 3-42
.STRINGZ, 3-42
.WORD, 3-8

R

register typing, 1-7, 1-15
register, mnemonics, 1-7
registers
control, 1-7
floating-point, 1-7
general, 1-7
procedure calling convention, 1-10
space, 1-7
relocatable object file, 1-1
relocatable result, 1-11
result
absolute, 1-11
relocatable, 1-11

S

shift and add instructions, 4-20
shift instruction, 4-28

short displacement load and store instructions, 4-6

soft reg.h, 6-3
sort keys, 2-3
source file, 1-1
source program, 1-3
structure, 1-3
space identifiers, 2-1
space registers, 1-7, 2-1
space
offsets, 2-2
quadrant, 2-2
unloadable, 2-2
spaces, 2-1
code, data, 2-1
special equate files, 6-3
statements
directives, 1-3
instructions, 1-3
pseudo-operations, 1-3
std__space.h, 6-3
storage allocation, 1-2

Index

INDEX-7

Index

store bytes short instructions, 4-7
sub-expressions, parenthesized, 1-14
subexpressions, parenthesized, 1-2
subspaces and location counters, 1-2
subspaces, 2-3

access rights, 2-3

alignment, 2-3

attributes, 2-3

quadrant, 2-3

sort key, 2-3
subtract instructions, 4-22
symbol scope, 1-2
symbol type, 2-6
symbol, case sensitive, 2-6
symbolic addresses, 1-2
symbolic constants, 1-2
symbols and constants, 1-§
symbols

illegal, 1-5

legal, 1-5
system calls, 2-8

system space, 2-8
system control instructions, 4-30

T

typing, 1-7,1-18§

U

unconditional branch instructions, 4-9
unit instructions, 4-27

unloadable space, 2-2

unwind descriptors, 2-6

uppercase and lowercase, 1-5

user warnings, A-22

\Y

virtual address, 2-1

w

warning messages, A-2

INDEX-38

Product Line Sales/Support Key

Key Product Line

A Anslytical

CM Components

Computer Systems

Medical Products

Personal Computation Products
Sales only for specific product line

cwgpmo

Electronic instruments & Measurement Systems

** Support only for specific product line
IMPORTANT:These symbols designate general product line capability. They do not insure sales or
support availability for all products within a Wne, at all locations.Contact your local sales office for
information regarding locations where HP support is availabie for specific products.
HEADQUARTERS OFFICES

If there is no sales office listed for your area, contact one of these

headquarters offices.

ASIA

Hewiett-Packard Asia Ltd.
47/F, 26 Harbour Rd.,
Wanchai, HONG KONG
G.P.0. Box 863. Hong Kong
Tel: 5-8330833

Telex: 76793 HPA HX
Cable: HPASIAL TD

CANADA

Hewiett-Packard (Canada) Ltd.
6877 Goreway Drive
MISSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430

Telex: 069-8644

EASTERN EUROPE
Hewlett-Packard Ges.m.b.h.
Liebigasse 1

P.0.Box 72

A-1222 VIENNA, Austria

Tel: (222) 2500-0

Telex: 13 4425 HEPA A

NORTHERN EUROPE
Hewlett-Packard S.A.

V. D. Hooplaan 241

P.0.Box 999

NL-118 LN 15 AMSTELVEEN
The Netherlands

Tel: 20 5479999

Telex: 18919 hpner

SOUTH EAST EUROPE
Hewlett-Packard S.A.

World Trade Center

110 Avenue Lours-Casai

1215 Cointrin, GENEVA, Switzerland
Tel: (022)98 96 51

Telex: 27225 hpser

Mail Address:

P.0. Box

CH-1217 Meyrin 1

GENEVA

Switzerland

MIDDLE EAST
AND CENTRAL AFRICA
Hewlett-Packard S.A.
Middie East/Central
Africa Sales H.Q.

7. rue du Bois-du-Lan
P.O. Box 364

CH-1217 Meyrin 1
GENEVA

Switzerland

Tel: (022) 83 12 12
Telex: 27835 hmea ch
Teletax: (022) 83 15 35

UNITED KINGDOM
Hewlett-Packard Ltd.

Nine Mile Ride

WOKINGHAM

Berkshire, RG113LL

Tel: 0344 773100

Telex: 848805/848814/848912

UNITED STATES OF
AMERICA

Customer Information Center
(800) 752-0900

6:00 AM to 5 PM Pacific Time

EASTERN USA
Hewiett-Packard Co.

4 Choke Cherry Road
ROCKVILLE, MD 20850
Tel: (301) 948-6370

MIDWESTERN USA
Hewlett-Packard Co.

5201 Tollview Drive

ROLLING MEADOWS, IL 60008
Tel: (312) 255-9800

SOUTHERN USA
Hewlett-Packard Co.

2000 South Park Place
ATLANTA, GA 30339

Tel: (404) 955-1500

WESTERN USA
Hewiett-Packard Co.

5161 Lankershim Bivd.

NORTH HOLLYWOOD, CA 91601
Tel: (818) 505-5600

OTHER
INTERNATIONAL
AREAS

Hewlett-Packard Co.
Intercontinental Headquarters
3495 Deer Creek Road

PALO ALTO, CA 94304

Tel: (415) 857-1501

Telex: 034-8300

Cable: HEWPACK

ALGERIA
Hewlett-Packard Trading S.A.
Bureau de Liaison Alger

Villa des Lions

9. Hai Gallou!

DZ-BORDJ EL BANRI

Tel: 76 03 36

Tetex: 63343 dlion dz

SALES & SUPPORT OFFICES

Arranged alphabetically by country

ANGOLA

Telectra Angola LDA

Empresa Técnica de Equipamentos
16 rue Cons. Julio de Vilhema
LUANDA

Tel: 35515,35516

Telex: 3134

EP

ARGENTINA

Hewlett-Packard Argentina S.A.

Montaneses 2140/50

1428 BUENOS AIRES

Tel: 541-11-1441

Telex: 22796 HEW PAC-AR

ACEP

Biotron S.A.C.IM.e.l.

Av. Paso Colon 221, Piso 9

1399 BUENOS AIRES

Tel: 541-333-490,
541-322-587

Telex: 17595 BIONAR

M

Laboratorio Rodriguez

Corswant S.R.L.

Misiones, 1156 - 1876

Bernal, Oeste

BUENOS AIRES

Tel: 252-3958, 252-4991

A

Intermaco S.R.L.

Florida 537/71

Galeria Jardin - Local 28

1005 BUENOS AIRES

Tel: 393-4471/1928

Telex. 22796 HEW PAC-AR

P (Calculators)

Argentina Esanco SR.L.

A/ASCO 2328

1416 BUENOS AIRES

Tel: 541-58-1981, 541-59-2767

Telex: 22796 HEW PAC-AR

A

All Computers S.A.

Montaneses 2140/50 5 Piso

1428 BUENOS AIRES

Tel: 781-4030/4039/783-4886

Telex: 18148 Ocme

[

AUSTRALIA
Adelaide, South
Australia Office
Hewlett-Packard Australia Ltd.
153 Greenhill Road
PARKSIDE, S.A. 5063

Tel: 61-8-272-5911

Telex: 82536

Cable: HEWPARD Adelaide
A*CCMEP

Brisbane, Queensiand
Office

Hewlett-Packard Australia Ltd.
10 Payne Road

THE GAP, Queensiand 4061
Tel: 61-7-300-4133

Telex: 42133

Cabie: HEWPARD Brisbane
ACCMEMP

Canberra, Australia
Capital Territory
Office

Hewlett-Packard Australia Ltd.
Thynne Street, Fern Hill Park
BRUCE,A.C.T. 2617

P.0. Box 257,

JAMISON, A.C.T. 2614

Tel: 61-62-80-4244

Telex: 62650

Cable: HEWPARD Canberra
CCMEP

Melbourne, Victoria
Office

Hewlett-Packard Australia Ltd.
31-41 Joseph Street

P.0. Box 221

BLACKBURN, Victoria 3130
Tel: 61-3-895-2895

Telex: 31-024

Cable: HEWPARD Meibourne
ACCMEMP

Perth, Western Australia
Office

Hewiett-Packard Australia Ltd.
Herdsman Business Park
CLAREMONT, W.A. 6010

Tet: 61-9-383-2188

Telex: 93859

Cable: HEWPARD Perth
CCMEP

Sydney, New South
Wales Office
Hewlett-Packard Australia Ltd.
17-23 Talavera Road

P.0. Box 308

NORTH RYDE, N.S.W. 2113
Tel: 61-2-888-4444

Telex: 21561

Cable: HEWPARD Sydney
ACCMEMP

AUSTRIA
Hewiett-Packard Ges.m.b.h.
Verkaufsbuero Graz
Grottenhofstrasse 94
A-8052 GRAZ

Tel: 43-316-291-5660
Telex: 312375

CE

Hewlett-Packard Ges.m.b.h.
Liebigasse 1

P.0.Box 72

A-1222 VIENNA

Tel: 43-222-2500

Telex: 134425 HEPA A
ACCMEMP

BAHRAIN
Green Salon

P.O. Box 557
MANAMA

Tel: 255503-250950
Telex: 84419

P

Wael Pharmacy

P.0. Box 648

MANAMA

Tel: 256123

Telex: 8550 WAEL BN
EM

Zayani Computer Systems
218 Shaik Mubarak Building
Government Avenue

P.0. Box 5918

MANAMA

Tel: 276278

Tetex: 9015 pians bn

p

BELGIUM

Hewiett-Packard Beigium S.A./N.V.
Bivd de la Woluwe, 100

Woluwedal

B-1200 BRUSSELS

Tei: (02) 32-2-761-31-11

Telex: 23494 hewpac
ACCMEMP

BERMUDA

Applied Computer Technologies
Atlantic House Building

P.0. Box HM 2091

Par-La-Ville Road

HAMILTON 5

Tel: 295-1616

Telex: 380 3589/ACT BA

]

BOLIVIA

Arreilano Ltda

Av. 20 de Octubre #2125
Casilla 1383

LAPAZ

Tel: 368541

M

BRAZIL

Hewlett-Packard do Brasil S.A.
Alameda Rio Negro, 750-1. AND.
ALPHAVILLE

06400 Barueri SP

Tel: (011) 421.1311

Telex: (011) 71351 HPBR BR
Cable: HEWPACK Sao Paulo
CME

Hewilett-Packard do Brasil S.A.
Praia de Botafago 228-A-614
6. AND.-CONJ. 601

Edificio Argentina - Ala A
22250 RIO DE JANEIRO, RJ

Tel: (021) 552-6422

Telex: 21905 HPBR BR

Cable: HEWPACK Rio de Janeiro
E

Van Den Cientifica Ltda.

Rua Jose Bonifacio, 458
Todos os Santos

20771 RO DE JANEIRO, RJ

Tei: (021) 593-8223

Telex: 33487 EGLB BR

A

ANAMED I.C.E.I. Ltda.

Rua Vergueiro, 360

04012 SAO PAULO, 8P

Tel: (011) 572-1106

Telex: 24720 HPBR BR

M

Datatronix Electronica Ltda.
Av. Pacaembu 746-C11

SAO PAULO, 8P

Tel: (118) 260111

c™

BRUNEI

Komputer Wisman Sdn Bhd
G6. Chandrawaseh Cmplix,
Jalan Tutong

P.0. Box 1297,

BANOAR SERI BEGAWAN
NEGARA BRUNI DARUSSALAM
Tel: 673-2-2000-70/267 11
CEP

CAMEROON
Beriac

B.P.23

DOUALA

Tel: 420153

Telex: 5351

c.P

CANADA

Alberta

Hewlett-Packard (Canada) Ltd.
3030 3rd Avenue N.E.
CALGARY, Alberta T2A 677
Tel: (403) 235-3100
ACCME'MP*
Hewilett-Packard (Canada) Ltd.
11120-178th Street
EDMONTON, Aiberta T5S 1P2
Tel: (403) 486-6666
ACCMEMP

British Columbia
Hewlett-Packard (Canada) Ltd.
10691 Shellbridge Way
RICHMOND,

British Columbia V6X 2W8

Tel: (604) 270-2277

Telex: 610-922-5059
ACCME* MP*
Hewlett-Packard (Canada) Ltd.
121 - 3350 Douglas Street
VICTORIA, British Columbia V82 3L1
Tel: (604) 381-6616

4

Manitoba
Hewilett-Packard (Canada) Ltd.
1825 inkster Bivd

WINNIPEG, Manitoba R2X 1R3
Tel: (204) 694-2777
ACCMEMP*

New Brunswick
Hewiett-Packard (Canada) Ltd.

814 Main Street

MONCTON, New Brunswick E1C 1E6
Tel: (506) 855-2841

c

Nova Scotia
Hewlett-Packard (Canada) Ltd.
Suite 111

900 Windmill Road

DARTMOUTH, Nova Scotia B3B 1P7
Tet: (302) 469-7820

CCME MP*

Ontario

Hewtett-Packard (Canada) Ltd.
3325 N. Service Rd., Unit W03
BURLINGTON, Ontario LN 3G2
Tel: (416) 335-8644

cM™*

Hewlett-Packard (Canada) Ltd.
552 Newbold Street

LONDON, Ontario N6E 2S5

Tel: (519) 686-9181

ACCME' MP*

Hewlett-Packard (Canada) Ltd.
6877 Goreway Drive
MISSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430

Telex: 069-83644

ACCMEMP

Hewlett-Packard (Canada) Ltd.
2670 Queensview Dr.

OTTAWA, Ontario K2B 8K1

Tel: (613) 820-6483

ACCME' MP*
Hewlett-Packard (Canada) Ltd.
3790 Victoria Park Ave.
WILLOWDALE, Ontario M2H 3H7
Tel: (416) 499-2550

CE

Quebec

Hewlett-Packard (Canada) Ltd.
17500 Trans Canada Highway
South Service Road
KIRKLAND, Quebec HSJ 2X8
Tel: (514) 697-4232

Telex: 058-21521
ACCMEMP*
Hewlett-Packard (Canada) Ltd.
1150 rue Claire Fontaine
QUEBEC CITY, Quebec G 1R 5G4
Tel: (418) 648-0726

C

Hewlett-Packard (Canada) Ltd.
130 Robin Crescent

SASKATOON, Saskatchewan S7L 6M7

Tel: (306) 242-3702
c

CHILE

ASC Ltda.

Austria 2041

SANTIAGO

Tel: 223-5946, 223-6148
Telex: 392-340192 ASC CK
CP

Jorge Calcagni y Cia

Av. ltalia 634 Santiago
Casilla 16475

SANTIAGO 9

Tel: 9-011-562-222-0222
Telex: 392440283 JCYCL CZ
CMEM

Metrolab S.A.

Moniitas 454 of. 206
SANTIAGO

Tel: 395752, 398296

Telex: 340866 METLAB CK
A

Otympia (Chile) Ltda.

Av. Rodrigo de Araya 1045
Casilla 256-V

SANTIAGO 21

Tel: 225-5044

Telex: 340892 OLYMP
Cable: Olympiachile Santiagochite
cP

CHINA, People’s
Republic of

China Hewlett-Packard Co., Ltd.
47/F China Resources Bldg.

26 Harbour Road

HONG KONG

Tel: 5-8330833

Telex: 76793 HPA HX

Cable: HP ASIA LTD

A M

China Hewlett-Packard Co.. Ltd.
P.0. Box 9610. Beijing_
4th Floor, 2nd Watch Factory Main

Shuang Yu Shou. Bei San Huan Road

Hai Dian District
BEWING

Tel: 33-1947 33-7426
Telex: 22601 CTSHP CN
Cable: 1920 Beijing
ACCMEMP

China Hewilett-Packard Co., Ltd.
CHP Shanghai Branch

23/F Shanghai Union Building
100 Yan An Rd. East
SHANG-HAI

Tel: 265550

Telex: 33571 CHPSB CN

Cable: 3416 Shanghai
ACCMEMP

COLOMBIA
Instrumentacion

H. A. Langebaek & Kier S.A.
Carrerra 4A No. 52A-26
Apartado Aereo 6287
BOGOTA 1.D.E.

Tel: 212-1466

Telex: 44400 INST CO
Cable: AARIS Bogota
CMEM

Nefromedicas Ltda.
Calle 123 No. 9B-31
Apartado Aereo 100-958
BOGOTADE. 10

Tel: 213-5267, 213-1615
Telex: 43415 HEGAS CO
A

Compumundo

Avenida 15 # 107-80
BOGOTADE.

Tel: 57-214-4458

Telex: 39645466 MARCO
-]

Carvajal, S.A.

Calie 29 Norte No. 6A-40
Apartado Aereo 46

CALI

Tel: 9-011-57-3-621888
Telex: 39655650 CUJCL CO
CEP

CONGO
Seric-Congo
B.P.2105
BRAZZAVILLE
Tel: 815034
Telex: 5262

COSTA RICA
Cientifica Costarricense S.A.
Avenida 2, Calle 5

San Pedro de Montes de Oca
Apartado 10159

SAN JOSE

Tel: 9-011-506-243-820
Telex: 3032367 GALGUR CR
CMEM

0. Fischei R. Y. Cia. S.A.
Apartados 434-10174
SAN JOSE

Tel: 23-72-44

Telex: 2379

Cable: OFIR

A

CYPRUS
Telerexa Ltd.

P.0. Box 1152
Valentine House

8 Stassandrou St.
NICOSIA

Tel: 45 628. 62 698
Telex: 5845 tirx cy
EMP

DENMARK
Hewiett-Packard A/S
Kongevejen 25
DK-3460 BIRKEROD
Tel: 45-02-81-6640
Telex: 37409 hpas dk
ACCMEMP

Hewlett-Packard A/S
Rolighedsvej 32

DK-8240 RISSKOV, Aarhus
Tel: 45-06-17-6000

Telex: 37409 hpas dk

CE

DOMINICAN REPUBLIC

Microprog S.A.

Juan Toméas Mejia y Cotes No. 60
Arroyo Hondo

SANTO DOMINGO

Tel: 565-6268

Telex: 4510 ARENTA DR (RCA)

[

ECUADOR

CYEDE Cia. Ltda.

Avenida Eloy Alfaro 1749

y Belgica

Casilla 6423 CCI

QuITo

Tel: 9-011-593-2-450975
Telex: 39322548 CYEDE ED
EP

Medtronics

Valladolid 524 Madrid
P.0. 9171, QUITO

Tel: 2-238-951

Telex: 2298 ECUAME ED
A

Hospitalar S.A.

Robles 625

Casilla 3590

Quiro

Tel: 545-250, 545-122
Telex: 2485 HOSPTL ED
Cable: HOSPITALAR-Quito
M

Ecuador Overseas Agencies C.A.
Calle 9 de Octubre #818
P.O. Box 1296, Guayaquil
QuITo

Tel: 306022

Telex: 3361 PBCGYE ED

M

EGYPT

Sakrco Enterprises

P.0. Box 259

ALEXANDRIA

Tel: 802908, 808020, 805302
Telex: 54333

C

International Engineering Associates
6 EI Gamea Street

Agouza

CAIRO

Tel: 71-21-68134-80-940

Telex: 93830 IEA UN

Cable: INTEGASSO

E

Sakrco Enterprises
70 Mossadak Street
Dokki, Giza

CAIRO

Tel: 706 440, 701087
Telex: 9337

c

S.S.C. Medical

40 Gezerat El Arab Street
Mohandessin

CAIRO

Tel: 803844, 805998, 810263
Telex: 20503 SSC UN

M

EL SALVADOR
IPESA de El Saivador S.A.
29 Avenida Norte 1223

SAN SALYADOR

Tel: 9-011-503-266-858
Telex: 30120539 IPESA SAL
ACCMEP

ETHIOPIA
Seric-Ethiopia
P.O. Box 2764
ADDIS ABABA
Tel: 185114
Telex: 21150
cpP

FINLAND
Hewlett-Packard Finland
Field Oy

Niittylanpolku 1O

00620 HELSINKI

Tel: (90) 757-1011

Telex: 122022 Field SF
C™m

Hewlett-Packard Oy
Piispankalliontie 17
02200 ESPOO

Tel: (90) 887-21

Telex: 121563 HEWPA SF
A CEMP

FRANCE
Hewiett-Packard France
Z.|. Mercure B

Rue Berthelot

13763 Les Milles Cedex
AIX-EN-PROVENCE

Tel: 33-42-59-4102
Telex: 410770F

ACEM

Hewiett-Packard France
64, Rue Marchand Saillant
F-61000 ALENCON

Tel: (33) 29 04 42

c*

Hewlett-Packard France
Batiment Levitan

2585. route de Grasse
Bretelle Autoroute
06600 ANTIBES

Tel: (93) 74-59-19

c

FRANCE (Cont'd)

Hewlett-Packard France

28 Rue de la République
Boite Postale 503

25026 BESANGON CEDEX, FRANCE
Tel: (81) 83-16-22

Telex: 361157

CE*

Hewiett-Packard France

ZA Kergaradec

Rue Fernand Forest
F-29239 GOUEESNOU

Tel: (98) 41-87-90

E

Hewlett-Packard France
Chemin des Mouilles

Boite Postale 162

69131 ECULLY Cedex (Lyon)
Tel: 33-78-33-8125

Telex: 310617F

ACEMP*
Hewilett-Packard France
Parc d'activites du Bois Briard
2 Avenue du Lac

F-91040 EVRY Cedex

Tel: 3311/6077 9660

Telex: 6923 15F

c

Hewlett-Packard France
Application Center

5, avenue Raymond Chanas
38320 EYBENS (Grenoble)
Tel: (76) 62-57-98

Telex: 980124 HP GRENOB EYBE
4

Hewlett-Packard France
Rue Fernand. Forest

Z.A. Kergaradec

29239 GOUESNOU

Tel: (98) 41-87-90
Hewlett-Packard France
Parc Club des Tanneries
Batiment B4

4, Rue de la Faisanderie
67381 LINCOLSHEIM
(Strasbourg)

Tel: (88) 76-15-00

Telex: 89014 1F
CE' M° P
Hewlett-Packard France
Centre d'affaires Paris-Nord
Bétiment Ampére

Rue de la Commune de Paris
Boite Postale 300

93153 LE BLANC-MESNIL
Tel: (1) 865-44-52

Telex: 211032F

CEM

Hewlett-Packard France

Parc d'activités Cadéra

Quartier Jean-Mermoz

Avenue du Président JF Kennedy
33700 MERIGNAC (Bordeaux)
Tel: 33-56-34-0084

Telex: 550 105F

CEM

Hewlett-Packard France
3, Rue Graham Bell

BP 5149

57074 METZ Cedex

Tel: (87) 36-13-31

Telex: 860602F

CE

Hewlett-Packard France
Miniparc-ZIRST

Chemin du Vieux Chéne
38240 MEYLAN (Grenoble)
Tel: (76) 90-38-40
980124 HP Grenobe

c

Hewtett-Packard France
Bureau vert du Bois Briand
Cheman de la Garde
-CP212212

44085 NANTES Cedex

Tel: (40) 50-32-22

Telex: 711085F

ACECM* P

Hewlett-Packard France

125, Rue du Faubourg Bannier
45000 ORLEANS

Tel: 33-368-62-2031

EP*

Hewlett-Packard France

Zone Industrielle de Courtaboeuf
Avenue des Tropiques

91947 LES ULIS Cedex (Orsay)
Tel: 33-6-907 7825

Telex: 600048F
ACCMEMP**

Hewlett-Packard France
15, Avenue de L'Amiral-Bruix
75782 PARIS Cedex 16
Tel: 33-15-02-1220
Telex: 613663F

cp

Hewlett-Packard France
242 Ter. Ave J Mermoz
64000 PAU

Tel: 33-59-80-3802
Telex: 550365F

CE*

Hewlett-Packard France
6. Place Sainte Croix
86000 POITIERS

Tei: 33-49-41-2707
Telex: 792335F

CE

Hewlett-Packard France
47, Rue de Chativesle
51100 REMS

Tel: 33-26-88-6919
C.p

Hewlett-Packard France
Parc d'activités de |a Poterie
Rue Louis Kerautei-Botmel
35000 RENNES

Tel: 33-99-51-4244
Telex: 740912F
A*CEMP*
Hewlett-Packard France
98 Avenue de Bretagne
76100 ROVEN

Tel: 33-35-63-5766
Tetex: 770035F

CE

SALES & SUPPORT OFFICES

Arranged alphabetically by country

Hewlett-Packard France

4. Rue Thomas-Mann

Boite Postale 56

67033 STRASBOURG Cedex
Tel: (88) 28-56-46

Telex: 89014 1F

CEMP*

Hewilett-Packard France

Le Péripole Il

3, Chemin du Pigeonnier de la Cépiére
31081 TOULOUSE Cedex
Tel: 33-61-40-1112

Telex: 531639F

ACEMP*
Hewlett-Packard France
Les Cardoulines

Batiment B2

Route des Dolines

Parc d'activite de Valbonne
Sophia Antipolis

06560 VALBONNE (Nice)

Tel: (93) 65-39-40

c .
Hewlett-Packard France

9, Rue Baudin

26000 VALENCE

Tel: 33-75-42-7616

Cre

Hewlett-Packard France
Carolor

ZAC de Bois Briand

57640 VIGY (Metz)

Tel: (8) 77120 22

C

Hewlett-Packard France
Parc d'activité des Pres

1, Rue Papin Cedex

59658 VILLENEUVE D'ASCQ
Tel: 33-20-91-4125

Telex: 160124F

CEMP

Hewtett-Packard France
Parc d'activités Pans-Nord 11
Boite Postale 60020

95971 Roissy Charles de Gaulle
VILLEPINTE

Tel: (1) 48 63 80 80

Telex: 211032F

CEMP*

GABON
Sho Gabon
P.0. Box 89
LIBREVILLE
Tel: 721484
Telex: 5230

GERMAN FEDERAL
REPUBLIC

Hewlett-Packard GmbH
Vertriebszentrum Mitte
Hewilett-Packard-Strasse
D-6380 BAD HOMBURG
Tel: (06172) 400-0
Telex: 410 844 hpbhg
ACEMP
Hewlett-Packard GmbH
Geschiftsstelle
Keithstrasse 2-4

D- 1000 BERUN 30

Tel: (030) 2199 04-0
Teiex: 018 3405 hpbin d
ACEMP

Hewlett-Packarc GmbH
Verbindungsstelie Bonn
Friedrich-Ebert-Allee 26
5300 BONN

Tel: (0228) 234001
Telex: 8869421
Hewlett-Packard GmbH
Vertriebszentrun Sidwest
Schickardstrasse 2
D-7030 BOBLINGEN
Postfach 1427

Tel: (0703 1) 645-0
Tetex: 7265 743 hep
ACCMEMP

Hewlett-Packard GmbH
Zeneralbereich Mktg
Herrenberger Strasse 130
D-7030 BOBLINGEN

Tel: (07031) 14-0

Telex: 7265739 hep
Hewiett-Packard GmbH
Geschiftsstelle

Schieefstr. 28a

D-4600 DORTMUND-4 1
Tel: (0231) 45001

Telex: 822858 hepdod
ACE

Hewlett-Packard gmbH
Reparaturzentrum Frankfurt
Berner Strasse 117

6000 FRANKFURT/MAMN 80
Tel: (069) 500001-0

Telex: 413249 hpftm

Hewilett-Packard GmbH
Vertriebszentrum Nord
Kapstadtring 5

D-2000 HAMBURG 60
Tel: 49-40-63-804-0
Telex: 02163 032 hphh d
ACEMP
Hewlett-Packard GmbH
Geschiftssteile
Heidering 37-39
D-3000 HANNOVER 61
Tel: (0511) 5706-0
Telex: 092 3259 hphan
ACCMEMP

Hewiett-Packard GmbH
Geschiiftsstelle
Rosslaver Weg 2-4
D-6800 MANNHEIM

Tel: 49-0621-70-05-0
Telex: 0462105 hpmhm
ACE

Hewlett-Packard GmbH
Geschéftsstelle
Messerschmittstrasse 7
D-7910 NEU LM

Tel: 49-0731-70-73-0
Telex: 0712816 HP ULM-D
ACE’

Hewlett-Packard GmbH
Geschiftsstelle
Emmericher Strasse 13
D-8500 NURNBERG 10
Tet: (0911) 5205-0
Telex: 0623 860 hpnbg
CCMEMP

Hewlett-Packard GmbH
Vertriebszentrum Ratingen
Berliner Strasse 111
D-4030 RATINGEN 4
Postfach 31 12

Tel: (02102) 494-0
Telex: 589 070 hprad
ACEMP
Hewlett-Packard GmbH
Vertriebszentrum Muchen
Eschenstrasse 5
D-8028 TAUFKIRCHEN
Tel: 49-89-61-2070
Telex: 0524985 hpmch
ACCMEMP
Hewiett-Packard GmbH
Geschiftsstelle
Ermlisaliee

7517 WALDBRONN 2
Posttach 1251

Tel: (07243) 602-0
Telex: 782 838 hepk
ACE

GREAT BRITAIN
See United Kingdom

GREECE

Hewiett-Packard A.E.

178, Kifissias Avenue

6th Floor

Halandri-ATHENS

Greece

Tel: 301116473 360, 301116726 090
Telex: 221286 HPHLGR

ACCM** EMP

Kostas Karaynnis S.A.
8, Omirou Street
ATHENS 133

Tel: 32 30 303, 32 37 371
Telex: 215962 RKAR GR
AC'CME

Impexin

Intetect Div

209 Mesogion

11525 ATHENS

Tel: 6474481/2

Teiex: 216286

[

Haril Company

38, Mihalakopoulou
ATHENS 612

Tel: 7236071

Telex: 218767

e

Hellamco

P.O. Box 87528
18507 PIRAEUS

Tel: 4827049

Telex: 241441

A

GUATEMALA

IPESA DE GUATEMALA
Avenida Reforma 3-48, Zona 9
GUATEMALA CITY

Tel. 316627, 317853.66471/5
9-011-502-2-316627

Telex: 3055765 IPESA GU
ACCMEMP

HONG KONG

Hewlett-Packard Hong Kong, Ltd.

G.P.0. Box 795

5th Floor, Sun Hung Kai Centre
30 Harbour Road, Wan Chai
HONG KONG

Tel: 852-5-832-3211

Telex: 66678 HEWPA HX
Cabie: HEWPACK HONG KONG
ECP

CET Ltd.

10th Floor, Hua Asia Bldg.
64-66 Gloucester Road

HONG KONG

Tel: (5) 200922

Telex: 85148 CET HX

Cc™m

Schmidt & Co. (Hong Kong) Ltd.
18th Floor, Great Eagle Centre
23 Harbour Road, Wanchai
HONG KONG

Tel: 5-8330222

Telex: 74766 SCHMC HX

AM

ICELAND
Hewlett-Packard iceland
Hoefdabakka 9

112 REYKJAVIK

Tel: 354-1-67-1000
Telex: 37409
ACCMEMP

INDIA

Computer products are sold through
Blue Star Ltd.All computer repairs
and maintenance service is done
through Computer Maintenance Corp.

Blue Star Ltd.

B. D. Patel House

Near Sardar Patel Colony
AHMEDABAD 380 014
Tel: 403531, 403532
Telex: 0121-234

Cable: BLUE FROST
ACCME

Biue Star Ltd.

40/4 Lavelle Road
BANGALORE 560 001
Tel: 57881, 867780
Telex: 0845-430 BSLBIN
Cable: BLUESTAR
AC'CME

Blue Star Ltd.

Band Box House
Prabhadevi

BOMBAY 400 025

Tel: 4933101, 4933222
Telex: 011-71051

Cable: BLUESTAR

AM

Blue Star Ltd.

Sahas

414/2 Vir Savarkar Marg
Prabhadevi

BOMBAY 400 025

Tel: 422-6155

Telex: 011-71193 BSSS IN
Cable: FROSTBLUE
ACMEM

Biue Star Ltd.

Kz'an, 19 Vishwas Colony
Alkapuri, BORODA, 390 005
Tel: 65235, 65236

Cable: BLUE STAR

A

Blve Star Ltd.

7 Hare Street

P.0. Box 506
CALCUTTA 700 001
Tel: 230131, 230132
Telex: 031-61120 BSNF IN
Cable: BLUESTAR
AMCE

Biue Star Ltd.

133 Kodambakkam High Road
MADRAS 600 034

Tel: 472056, 470238
Telex: 041-379

Cable: BLUESTAR
AM

Blue Star Ltd.

13 Community Center
New Friends Colony
NEW DELMI 110 065
Tel: 682547

Telex: 031-2463
Cable: BLUEFROST
AC'CMEM

Blue Star Ltd.

15/16 C Wellesiey Rd.
PUNE 411011

Tel: 22775

Cable: BLUE STAR

A

Blue Star Ltd.
2-2-47/1108 Bolarum Rd.
SECUNDERABAD 500 003
Tei: 72057, 72058

Telex: 0155-459

Cable: BLUEFROST
ACE

Biue Star Ltd.

T.C. 7/603 Poornima
Maruthunkuzhi
TRIVANDRUM 695 013
Tel: 65799, 65820

Telex: 0884-259

Cable: BLUESTAR

E

Computer Maintenance Corporation
Ltd.

115, Sarojini Devi Road
SECUNDERABAD 500 003

Tel: 310-184, 345-774

Telex: 031-2960

c

INDONESIA
BERCA indonesia P.T.
P.0.Box 496/Jkt.

JI. Abdul Muis 62
JAKARTA

Tel: 21-373009

Telex: 46748 BERSAL IA
Cable: BERSAL JAKARTA
P

BERCA indonesia P.T.
P.0.Box 2497/Jkt

Antara Bidg., 12th Floor

JI. Medan Merdeka Selatan 17
JAKARTA-PUSAT

Tel: 21-340417

Telex: 46748 BERSAL IA
ACEMP

BERCA indonesia P.T.

Jalan Kutai 24

SURABAYA

Tel: 67118

Telex: 31146 BERSAL SB
Cable: BERSAL-SURABAYA
A EMP

IRAQ

Hewlett-Packard Trading S.A.
Service Operation

Al Mansoor City 9B/3/7
BAGHOAD

Tel: 551-49-73

Telex: 212-455 HEPAIRAQ IK
(4

IRELAND
Hewlett-Packard Ireland Ltd.
Temple House, Tempie Road
Blackrock, Co. DUBLIN

Tet: 88/333/99

Telex: 30439

CEP

Hewilett-Packard Ltd.

75 Beifast Rd, Carrickfergus
Betfast BT38 8PH
NORTHERN IRELAND

Tel: 09603-67333

Telex: 747626

M

ISRAEL

Eidan Electronic Instrument Ltd.

P.0.Box 1270

JERUSALEM 91000

16, Ohaliav St.
JERUSALEM 94467

Tet: 533 221, 553 242
Telex: 25231 AB/PAKRD IL
AM

Computation and Measurement
Systems (CMS) Ltd.

11 Masad Street

67060

TEL-AVIV

Tel: 388 388

Telex: 33569 Motil IL
CCMEP

ITALY

Hewlett-Packard haliana S.p.A
Traversa 99C

Via Giulio Petroni, 19

1-70124 BAR!

Tel: (080) 41-07-44

CM

Hewlett-Packard Italiana S.p.A.
Via Emilia, 51/C

1-40011 BOLOGNA Anzola Deil'Emilia

Tel: 39-051-731061

Telex: 511630

CEM

Hewlett-Packard taliana S.p.A.
Via Principe Nicola 43G/C
1-95126 CATANIA

Tei: (095) 37-10-87

Telex: 970291

c

Hewlett-Packard Italiana S.p.A.
Via G. di Vittorio 10

20094 CORSICO (Milano)

Tei: 39-02-4408351
Hewlett-Packard Italiana S.p.A.
Viale Brigata Bisagno 2

16129 GENOVA

Tel: 39-10-541141

Telex: 215238
Hewlett-Packard ltaliana S.p.A.
Viale G. Modugno 33

1-16156 GENOVA PEGL!

Tel: (010) 68-37-07

Telex: 215238

CE

Hewlett-Packard Italiana S.p.A.
Via G. di Vittorio 9

1-20063 CERNUSCO SUL
NAVIGLIO

{Milano)

Tel: (02) 923691

Telex: 334632

ACCMEMP
Hewlett-Packard Italiana S.p.A.
Via Nuova Rivottana 95

20090 LIMITO (Milano)

Tel' 02-92761

Hewlett-Packard Italiana S.p.A.
Via Nuova San Rocco 8
Capodimonte, 62/A

1-8013 1 NAPOUI

Tel: (081) 7413544

Telex: 710698

A" CEM

Hewlett-Packard Italiana S.p.A.
Via Orazio 16

80122 NAPOL!

Tel: (081) 7611444

Telex: 710698

Hewlett-Packard Italiana S.p.A.
Via Peilizzo 15

35128 PADOVA

Tel: 39-49-664-888

Telex: 430315

ACEM

Hewlett-Packard Italiana S.p.A.
Viale C. Pavese 340

1-00 144 ROMA EUR

Tel: 39-65-48-31

Telex: 610514

ACEMP*

Hewlett-Packard ltaliana S.p.A.
Via di Casellina 57/C

5005 18 SCANDICCI-FIRENZE
Tel: 39-55-753863

CEM

Hewlett-Packard Italiana S.p.A.
Corso Svizzera, 185

1-10 144 TORINO

Tel: 39-11-74-4044

Telex: 221079

A'CE

IVORY COAST
SITEL

Societe Ivoirienne de
Telecommunications
Bd. Giscard d'Estaing
Carretour Marcory
Zone 4.A.

Boite postale 2580
ABIDJAN 01

Tel: 353600

Telex: 43175

E

ST

immeuble “Le General"
Av. du General de Gaulle
01BP 161

ABIDJAN 01

Tel: 321227

Telex: 22149

CP

JAPAN

Yokogawa-Hewlett-Packard Ltd.

152-1, Onna

ATSUGL, Kanagawa, 243
Tel: (0462) 25-003 1
CCME

Yokogawa-Hewlett-Packard Ltd.
Meiji-Seimei Bidg. 6F

3-1 Motochiba-Cho

CHIBA, 280

Tel: (0472) 25 7701

CE

Yokogawa-Hewiett-Packard Ltd.
Yasuda-Seimei Hiroshima Bidg.
6-11, Hon-dori, Naka-ku
HIROSHIMA, 730

Tel: (082) 241-0611
Yokogawa-Hewlett-Packard Ltd.
Towa Building

2-2-3 Kawgan-dori, Chuo-ku
KOBE, 650

Tel: (078) 3924791

CE

Yokogawa-Hewiett-Packard Lid.
Kumagaya Asahi 82 Bidg.

3-4 Tsukuba

KUMAGAYA, Saitama 360

Tel: (0485) 24-6563

CCME
Yokogawa-Hewiett-Packard Ltd.
Asahi Shinbun Daiichi Seimei Bidg.
4-7, Hanabata-cho

KUMAMOTO, 860

Tel: 96-354-7311

CE

Yokogawa-Hewiett-Packard Ltd.
Shin-Kyoto Center Bidg.

614, Higashi-Shiokoji-cho
Karasuma-Nishiiru

KYOTO, 600

Tel: 075-343-0921

CE

Yokogawa-Hewlett-Packard Ltd.
Mito Mitsui Bidg.

1-4-73, Sanno-maru

MITO, Ibaraki 310

Tel: (0292) 25-7470

CCME
Yokogawa-Hewilett-Packard Ltd.
Meiji-Seimei Kokubun Bidg.

7-8 Kokubun, 1 Chome, Sendai
MIYAGL, 980

Tet: (0222) 25-1011

CE

Yokogawa-Hewlett-Packard Ltd.
Gohda Bidg. 2F

1-2-10 Gohda Okaya-Shi
Okaya-Shi

NAGANO, 394

Tel: (0266) 23 0851

CE

Yokogawa-Hewiett-Packard Ltd.
Nagoya Kokusai Center Building
1-47-1, Nagono, Nakamura-ku
NAGOYA, AICH! 450

Tel: (052) 571-5171

CCMEM
Yokogawa-Hewlett-Packard Ltd.
Sai-Kyo-Ren Building

1-2 Dote-cho

OOMIYA-SHI SAITAMA 330

Tel: (0486) 45-8031

JAPAN (Cont'd)

Yokogawa-Hewiett-Packard Ltd
Chuo Bidg., 5-4-20 Nishi-Nakajima
4-20 Nishinakajima, 5 Chome,
Yodogawa-ku

OSAKA, 532

Tel: (06) 304-6021

Telex: YHPOSA 523-3624
CCMEMP*
Yokogawa-Hewlett-Packard Ltd.
1-27-15, Yabe

SAGAMIMARA Kanagawa, 229
Tel: 0427 59-1311
Yokogawa-Hewlett-Packard Ltd.
Hamamtsu Motoshiro-Cho Daichi
Seimei Bldg 219-21, Motoshiro-Cho
Hamamatsu-shi

SHIZUOKA, 430

Tel: (0534) 56 1771

CE

Yokogawa-Hewlett-Packard Ltd.
Shinjuku Daiichi Seime: Bidg.
2-7-1, Nishi Shinjuku
Shinjuku-ku,TOKYO 163

Tel: 03-348-4611

CEM

Yokogawa Hewlett-Packard Ltd.
9-1, Takakura-cho

Hachioji-shi, TOKYO, 192

Tel: 81-426-42-1231

CE

Yokogawa-Hewiett-Packard Ltd.
3-29-21 Takaido-Higashi, 3 Chome
Suginami-ku TOKYO 168

Tel: (03) 331-6111

Telex: 232-2024 YHPTOK
CCMEP*

Yokogawa Hokushin Electric
Corporation

Shinjuku-NS Bidg. 10F

4-1 Nishi-Shinjuku 2-Chome
Shinjuku-ku

TOKYO, 163

Tel: (03) 349-1859

Telex: J27584

A

Yokogawa Hokushin Electric Corp.
9-32 Nokacho 2 Chome
Musashino-shi

TOKYO, 180

Tel: (0422) 54-1111

Telex: 02822-421 YEW MTK J

A

Yokogawa-Hewlett-Packard Ltd.
Meiji-Seimei

Utsunomiya Odori Building

1-5 Odori, 2 Chome
UTSUNOMIYA, Tochigi 320

Tet: (0286) 33-1153

CE

Yokogawa-Hewlett-Packard Ltd.
Yasuda Seimei Nishiguchi Bidg.
30-4 Tsuruya-cho, 3 Chome
Kanagawa-ku, YOKOHAMA 221
Tel: (045) 312-1252

CCME

JORDAN

Scientific and Medical Supplies Co.

P.0. Box 1387

AMMAN

Tel: 24907, 39907

Telex: 21456 SABCO JO
CEMP

KENYA

ADCOM Ltd., Inc., Kenya
P.0.Box 30070

NAIROBI

Tel: 331955

Telex: 22639

EM

KOREA

Samsung Hewlett-Packard Co. Ltd.

Dongbang Yeoeuido Building
12-16th Floors

36-1 Yeoeuido-Dong
Youngdeungpo-Ku

SEOUL

Tel: 784-4666, 784-2666
Telex: 25166 SAMSAN K
CCMEMP

Young In Scientific Co., Ltd.
Youngwha Building

547 Shinsa Dong, Kangnam-Ku
SEOUL 135

Tel: 546-7771

Telex: K23457 GINSCO

A

Dongbang Healthcare

Products Co. Ltd.

Suite 301 Medical Supply Center
Bidg. 1-31 Dongsungdong

Jong Ro-gu, SEOUL

Tel: 764-1171, 741-1641

Telex: K25706 TKBKO

Cable: TKBEEPKO

M

KUWAIT
Al-Khaldiya Trading & Contracting
P.0. Box 830

SAFAT

Tel: 424910, 411726
Telex: 22481 AREEG KT
Cable: VISCOUNT
EMA

Gulf Computing Systems
P.0. Box 25125

SAFAT

Tel: 435969

Telex: 23648

[

Photo & Cine Equipment
P.0. Box 270

SAFAT

Tet: 2445111

Telex: 22247 MATIN KT
Cabile: MATIN KUWAIT
P

W.J. Towell Computer Services
P.0. Box 5897

SAFAT

Tel: 2462640/1

Telex: 30336 TOWELL KT

c

SALES & SUPPORT OFFICES

Arranged alphabetically by country

LEBANON

Computer Information Systems S.A.L.
Chammas Building

P.0. Box 11-6274 Dora

BEIRUT

Tel: 894073

Telex: 42309 chacis le

CEMP

LIBERIA
Unichemicals Inc.
P.O. Box 4509
MOKROVIA

Tel: 224282
Telex: 4509

E

LUXEMBOURG
Hewlett-Packard Beigium S.A./N.V.
Bivd de la Woluwe, 100

Woluwedal

B-1200 BRUSSELS

Tel: (02) 762-32-00

Telex: 23-494 paloben bru
ACCMEMP

MADAGASCAR
Technique et Precision
12, rue de Nice

P.0. Box 1227

101 ANTANANARIVO
Tel: 22090

Telex: 22255

[

MALAYSIA
Hewlett-Packard Sales (Malaysia)
Sdn. Bhd.

9th Floor

Chung Khiaw Bank Building

46, Jalan Raja Laut

50736 KUALA LUMPUR, MALAYSIA
Tel: 03-2986555

Telex: 31011 HPSM MA
ACEMP*

Protel Engineering

P.0.Box 1917

Lot 6624, Section 64

23/4 Pending Road

Kuching, SARAWAK

Tet: 36299

Telex: 70904 PROMAL MA

Cable: PROTELENG

AEM

MALTA

Philip Toledo Ltd.
Kirkirkara P.0. Box 11
Notabile Rd.

MRIEHEL

Tel: 447 47, 455 66, 4915 25
Telex: Media MW 649
EMP

MAURITIUS
Blanche Birger Co. Ltd.
18, Jules Koenig Street
PORT LOUIS

Tel: 20828

Telex: 4296

p

MEXICO
Hewlett-Packard de Mexico,
S.A.deC.V.

Rio Nio No. 4049 Desp. 12
Fracc. Cordoba

JUAREZ

Tel: 161-3-15-62

[

Hewlett-Packard de Mexico,
S.A.deC.v.

Condominio Kadereyta

Circuito del Mezon No. 186 Desp. 6
COL. DEL PRADO - 76030 Qro.

Tel: 463-6-02-71

P

Hewlett-Packard de Mexico,
SA. deCV.

Monti Morelos No. 299
Fraccionamiento Loma Bonita 45060
GUADALAJARA, Jalisco

Tel: 36-31-48-00

Telex: 0684 186 ECOME

(]

Microcomputadoras
Hewlett-Packard, S.A.

Monti Peivoux 115

LOS LOMAS, Mexico, D.F.

Tei: 520-9127

P

Microcomputadoras Hewiett-Packard,
S.A.deC.V.

Monte Peivoux No. 115
Lomas de Chapultepec, 11000
MEXICO, D.F.

Tei: 520-9127

P

Hewiett-Packard de Mexico,
S.A.deC.V.

Monte Peivoux No. 111

Lomas de Chapultepec

11000 MEXICO, D.F.

Tel: 5-40-62-28, 72-66, 50-25
Telex: 17-74-507 HEWPACK MEX
ACCMEMP

Hewlett-Packard De Mexico (Polanco)
Avenida Ejercito Nacional #579
2aer pisy

Colonia Granada 11560

MEXICO DF.

Tel: 254-4433

[

Hewiett-Packard de Mexico,
S.A deCVv.

Cada. del Valle

409 Ote. 4th Piso

Colonia del Valle

Municipio de Garza

Garcia Nuevo Leon

66220 MONTERREY, Nuevo Ledn
Tel: 83-78-42-40

Telex: 382410 HPMY

4

Infograficas y Sistemas

del Noreste, S.A.

Rio Orinoco #171 Oriente
Despacho 2001

Colonia Del Valie
MONTERREY

Tel: 559-4415, 575-3837
Telex: 483164

AE

Hewlett-Packard de Mexico,
S.A.deCV

Bivd. Independencia No. 2000 Ote.
Col. Estrella

TORREON, COAN.

Tel: 171-18-21-99

P

MOROCCO
Etablissement Hubert Dolbeau & Fils
81 rue Karatchi

B.P. 11133
CASABLANCA

Tel: 3041-82, 3068-38
Telex: 23051, 22822
E

Gerep

2. rue Agadir

Boite Postale 156
CASABLANCA 01

Tel: 272093, 272095
Telex: 23 739

p

Sema-Maroc
Dept. Seric

6. rue Lapebie
CASABLANCA
Tel: 260980
Telex: 21641
CpP

NETHERLANDS
Hewlett-Packard Nederland B.V
Startbaan 16

NL-1187 XR AMSTELVEEN

P.0. Box 667

NL-1180 AR AMSTELVEEN

Tel: (020) 547-6911

Telex: 13216 HEPANL
ACCMEMP

Hewlett-Packard Nederland B.V
Bongerd 2

P.O. Box 41

NL 2900AA CAPELLE A/D WSSEL
Tel: 31-20-51-6444

Telex: 21261 HEPAC NL

CE

Hewlett-Packard Nederland B.V
Pastoor Petersstraat 134-136
P.O. Box 2342

NL 5600 CH EINDHOVEN

Tel: 31-40-32-6911

Telex: 51484 hepae nl

CEP

NEW ZEALAND
Hewlett-Packard (N.Z.) Ltd.
§ Owens Road

P.O. Box 26-189

Epsom, AUCKLAND

Tel: 64-9-687-159

Cable: HEWPAK Auckland
CCME.P*

Hewlett-Packard (N.Z.) Ltd.
184-190 Willis Street
WELLINGTON

P.O. Box 9443

Courtenay Place, WELLINGTON 3
Tel: 64-4-887-199

Cable: HEWPACK Wellington
CCMEP

Northrop Instruments & Systems Ltd.
369 Khyber Pass Road _

P.0. Box 8602

AUCKLAND

Tel: 794-091

Telex: 60605

AM

Northrop Instruments & Systems Ltd.

11C Mandeville St.
P.0. Box 8388
CHRISTCHURCH
Tel: 488-873
Telex: 4203

AM

Northrop Instruments & Systems Ltd.

Sturdee House

85-87 Ghuznee Street
P.0. Box 2406
WELLINGTON

Tel: 850-091

Telex: NZ 3380

AM

NIGERIA
Eimeco Nigenia Ltd.
45 Saka Tirubu St.
Victoria Island
LAGOS

Tel: 61-98-94
Telex: 20-117

E

NORTHERN IRELAND
See United Kingdom

NORWAY
Hewlett-Packard Norge A/S
Folke Bernadottes vei 50
P.0. Box 3558

N-5033 FYLLINGSDALEN (Bergen)
Tel: 0047/5/16 55 40

Telex: 76621 hpnas n

CEM

Hewiett-Packard Norge A/S
Osterndalen 16-18

P.0. Box 34

N-1345 OESTERAAS

Tel: 47-2-17-1180

Telex: 76621 hpnas n
ACCMEMP

Hewdett-Packard Norge A/S
Boehmergt. 42

Box 2470

N-5037 SOLHEIMSVIK

Tel: 0047/5/29 00 90

OMAN

Khimjil Ramdas

P.0. Box 19

MUSCAT/SULTANATE OF OMAN
Tel: 795 901

Telex: 3489 BROKER MB MUSCAT
P

Suhail & Saud Bahwan

P.0.Box 169
MUSCAT/SULTANATE OF OMAN
Tel: 734 201-3

Telex: 5274 BAHWAN MB

E

Imtac LLC

P.0. Box 9196

MINA AL FAHAL/SULTANATE
OF OMAN

Tel: 70-77-27, 70-77-23
Telex: 3865 Tawoos On
ACM

PAKISTAN

Mushko & Company Ltd.
House No. 16, Street No. 16
Sector F-6/3

ISLAMABAD

Tel: 824545

Telex: 54001 Muski Pk
Cable: FEMUS Islamabad
AEP*

Mushko & Company Ltd.
Oosman Chambers

Abdullah Haroon Road
KARACHI 0302

Tel: 524131, 524132

Telex: 2894 MUSKO PK
Cable: COOPERATOR Karachi
AEP*

PANAMA

Electronico Baiboa, S.A.

Calle Samuel Lewis, Ed. Alfa
Apartado 4929

PANAMA CITY

Tel: 9-011-507-6366 13

Telex: 368 3483 ELECTRON PG
CMEMP

PERU

Cia Electro Médica S.A.

Los Flamencos 145, Ofc. 301/2
San Isidro

Casilla 1030

LIMA 1

Tel: 9-011-511-4-414325, 41-3705
Telex: 39425257 PE PB SIS
CMEMP

SAMS S.A.

Arenida Republica de Panama 3534
San Isidro, LIMA

Tel: 9-011-511-4-229332/4 13984/
413226

Telex: 39420450 PE LIBERTAD
ACP

PHILIPPINES

The Online Advanced Systems Corp.
2nd Floor, Electra House

115-117 Esteban Street

P.0. Box 1510

Legaspi Village, Makati

Metro MANILA

Tel: 815-38-10 (up to 16)

Telex: 63274 ONLINE PN

ACEMP

PORTUGAL

Mundinter Intercambio
Mundial de Comércio S.A.R.L.
Av. Antonio Augusto Aguiar 138
Apartado 2761

LISBON

Tel: (19) 53-21-31, 53-21-37
Telex: 16691 munter p

M

Soquimica

Av. da Liberdade, 220-2

1298 LISBOA Codex

Tel: 56-21-82

Telex: 13316 SABASA

A

Telectra-Empresa Técnica de
Equipmentos Eléctricos S.A.R.L.
Rua Rodrigo da Fonseca 103
P.0. Box 2531

USBON 1

Tel: (19) 68-60-72

Telex: 12598

CME

c.pPCS.L

Rua de Costa Cabral 575
4200 PORTO

Tel: 499174/495173

Telex: 26054

CcP

PUERTO RICO
Hewiett-Packard Puerto Rico
101 Munoz Rivera Av

Esu. Calle Ochoa

MATO REY, Puerto Rico 00918
Tei: (809) 754-7800
ACCMMEP

QATAR
Computer Arabia
P.0. Box 2750
DOHA

Tel: 428555

Telex: 4806 CHPARB
p

Nasser Trading & Contracting
P.0.Box 1563

DOHA

Tel: 422170

Telex: 4439 NASSER DH

M

SAUDI ARABIA
Modern Electronics Establishment
Hewlett-Packard Division
P.0. Box 281

Thuobah

AL-KHOBAR 31952

Tel: 895-1760, 895-1764
Telex: 671 106 HPMEEK SJ
Cable: ELECTA AL-KHOBAR
CEM

Modern Electronics Establishment
Hewtett-Packard Division
P.0. Box 1228

Redec Plaza, 6th Floor
JEDOAH

Tel: 644 96 28

Telex: 4027 12 FARNAS SJ
Cabile: ELECTA JEDDAH
ACCMEMP

Modern Electronics Establishment
Hewlett-Packard Division
P.0.Box 22015

RIYADH 11495

Tel: 491-97 15, 491-63 87
Telex: 202049 MEERYD SJ
CEM

Abdul Ghani E! Ajou Corp.
P.0.Box 78

RIYADH

Tel: 4041717

Telex: 200 932 EL AJOU

p

SCOTLAND
See United Kingdom

SENEGAL

Societe Hussein Ayad & Cie.
76, Avenue Georges Pompidou
B.P. 305

DAKAR

Tel: 32339

Cable: AYAD-Dakar

E

Moneger Distribution S.A.

1, Rue Parent

B.P. 148

DAKAR

Tel: 215671

Telex: 587

P

Systeme Service Conseil (SSC)
14, Avenue du Parachots
DAKAR ETOLE

Tel: 219976

Telex: 577

cp

SINGAPORE
Hewlett-Packard Singapore (Sales)
Pte. Ltd.

1150 Depot Road
SINGAPORE, 0410

Tel: 4731788

Telex: 34209 HPSGSO RS
Cable: HEWPACK, Singapore
ACEMP

Dynamar International Ltd.
Unit 05-11 Block 6

Kolam Ayer Industrial Estate
SINGAPORE 1334

Tel: 747-6188

Telex: 26283 RS

C™

SOUTH AFRICA
Hewlett-Packard So Africa (Pty.) Ltd.
P.0. Box 120

Howard Place, CAPE PROVINCE
7450 South Atrica

Tel: 27 121153-7954

Telex: 57-20006

ACCMEMP

Hewiett-Packard So Africa (Pty.) Ltd.
2nd Floor Juniper House

92 Overport Drive

DURBAN 4067

Tel: 27-31-28-4178

Telex: 6-22954

c

Hewlett-Packard So Africa (Pty.) Ltd.
Shop 6 Linton Arcade

511 Cape Road

Linton Grange

PORT ELIZABETH 6001

Tel: 27141130 1201

Telex: 24-2916

c

Hewlett-Packard So Africa (Pty.) Ltd.
Fountain Center

Kalkoen Str.

Monument Park Ext 2

PRETORIA 0105

Tel: (012) 45 5725

Telex: 32163

CE

Hewlett-Packard So Africa (Pty.) Ltd.
Private Bag Wendywood

SANDTON 2144

Tel: 27-11-802-5111, 27-11-802-5125
Telex: 4-20877 SA

Cable: HEWPACK Johannesburg
ACCMEMP

SPAIN

Hewlett-Packard Espafola, S.A.
Calle Entenza, 321
E.-BARCELONA 29

Tel: 3/322 24 51,32173 54
Telex: 52603 hpbee

ACEMP

Hewlett-Packard Espafiola, S.A.
Calle San Vicente S/N

Edificio Albia I-7B

48001 BILBAO

Tel: 4/423 83 06

ACEM

Hewilett-Packard Espafiola, S.A.
Crta. N-VI, Km. 16, 400

Las Rozas

E-MADRID

Tel: (1)637.00.11

Telex: 23515 HPE

CM™M

Hewlett-Packard Espadola, S.A.
Avda. S. Francisco Javier, S/N
Planta 10. Edificio Sevilla 2
E-SEVILLA §, SPAN

Tei: 54/64 44 54

Telex: 72933

ACMP

Hewlett-Packard Espaiiola, S.A.
Isabel La Catolica, 8

E-46004 VALENCIA

Tel: 34-6-361 1354

Telex: 63435

CP

Hewlett-Packard Espafola, S.A.
Av. de Zugazarte, 8

Las Arenas-Guecho

E-48930 VIZCAYA

VIZCAYA

Tel: 34-423-83 06

Telex: 33032

SWEDEN

Hewiett-Packard Sverige AB
Ostra Tuligatan 3

5-20011 MALMO

Box 6132

Tel: 46-40-702-70

Telex: (854) 17886 (via Spdnga
office)

cP

Hewlett-Packard Sverige AB
Elementvagen 16

S-7022 7 GREBRO

Tel: 49-019-10-4820

Telex: (854) 17886 (via Spanga office)
c

Hewlett-Packard Sverige AB
Skathoftsgatan 9, Kista
P.0.Box 19

S-16393 SPANGA

Tei: (08) 750-2000

Telex: (854) 17886

Telefax: (08) 7527781
ACCMEMP
Hewiett-Packard Sverige AB
Box 266

Topasgatan 1A

$-42123 VASTRA-FROLUNDA
(Gothenburg)

Tel: 46-031-89-1000

Telex: (854) 17886 (via Spanga
office)

ACCMEMP

SUDAN
Mediterranean Engineering
& Trading Co. Ltd.

P.0. Box 1025

KHARTOUM

Tel: 41184

Telex: 24052

CcpP

SWITZERLAND
Hewlett-Packard (Schwez) AG
Clarastrasse 12

CH-4058 BASEL

Tel: 41-61-33-5920

ACEP

Hewlett-Packard (Schwez) AG
7, rue du Bois-du-Lan

Case postale 365-1366
CH-1217 MEYRIN 1

Tel: (0041) 22-83-11-11
Telex:27333 HPAG CH
ACCMEMP

SWITZERLAND (Cont'd) TOGO

Hewlett-Packard (Schweiz) AG
Allmend 2

CH-8967 WIDEN

Tel: 41-87-31-2111

Telex: 53933 hpag ch

Cable: HPAG CH
ACCMEMP
Hewiett-Packard (Schweiz) AG
Schwamendingenstrasse 10
CH-8050 ZURICH

Tel: 41-1-315-8181

Telex: 823 537 HPAG CH

CP

SYRIA

General Electronic Inc.

Nuri Basha Ahnaf Ebn Kays Street
P.0. Box 5781

DAMASCUS

Tel: 33-24-87

Telex: 44-19-88

Cable: ELECTROBOR DAMASCUS
E

Middle East Electronics
P.0.Box 2308

Abu Rumaneh
DAMASCUS

Tel: 334592

Telex: 411 771 Meesy
M

TAIWAN
Hewlett-Packard Taiwan Ltd.
THM Office

2, Huan Nan Road

CHUNG LI, Taoyuan

Tel: (034) 929-666

c

Hewlett-Packard Taiwan Ltd.
Kaohsiung Office

11/F. 456, Chung Hsiao 1st Road
KAOHSIUNG

Tel: (07) 2412318

CE

Hewiett-Packard Taiwan Lid
8th Floor. Hewlett-Packard Building
337 Fu Hsing North Road
TAIPEI

Tel: (02) 712-0404

Telex: 24433 HEWPACK
Cable:HEWPACK Taipei
ACCMEMP

Ing Lih Trading Co.

3rd Floor, No. 7. Sect. 2

Jen A Road

TAIPE! 100

Tel: (02) 394-8191

Telex: 22894 SANKWANG

A

THAILAND

Unimesa Co. Ltd

30 Patpong Ave., Suriwong
BANGKOK 5,

Tel: 235-5727, 234-0991/3
Telex: 84439 Simonco TH
Cable: UNIMESA Bangkok
ACEM

Bangkok Business Equipment Ltd
5/2-6 Dejo Road

BANGKOK

Tel: 234-8670, 234-8671
Telex: 87699-BEQUIPT TH
Cable: BUSIQUIPT Bangkok
[

Societe Africaine De Promotion
Immeuble Sageb

Rue d'Atakpame

P.0. Box 4150

LOME

Tel: 21-62-88

Telex: 5357

[

TRINIDAD & TOBAGO
Caribbean Telecoms Ltd.

Corner McAllister Street &

Eastern Main Road, Laventille

P.0. Box 732

PORT-OF-SPAIN

Tel: 624-4213

Telex: 22561 CARTEL WG

Cable: CARTEL, PORT OF SPAIN
CMEMP

Computer and Controls Ltd
P.0.Box 51

1 Taylor Street
PORT-OF-SPAIN

Tel: (809) 622-7719/622-7985
Telex: 38722798 COMCON WG
LOOGO AGENCY 1264

AP

Feral Assoc.

8 Fitzgerald Lane
PORT-OF-SPAIN

Tel: 62-36864, 62-39255
Telex: 22432 FERALCO
Cable: FERALCO

M

TUNISIA

Tunisie Electronique S.A.R.L.
31 Avenue de la Liberte
TUNIS

Tel: 280-144

CEP

Tunisie Electronique S.A.R.L.
94, Av. Jugurtha, Mutuellevilie
1002 TUMS-BEL VEDERE

Tel: 280144

Telex: 13238

CEP

Corema S.A.

1ter. Av. de Carthage
TUNIS

Tel: 253-821

Telex: 12319 CABAM TN
M

TURKEY

EMA

Mediha Eidem Sokak No. 41/6
Yenisehir

ANKARA

Tel: 319175

Telex 42321 KTX TR

Cable: EMATRADE ANKARA
M

Teknim Company Ltd.
Iran Caddesi No. 7
Karaklidere

ANKARA

Tel: 275800

Telex: 42155 TKNM TR
CE

Kurt 8 Kurt AS.
Mithatpasa Caddesi No. 75
Kat 4 Kizilay

ANKARA

Tel: 318875/6/7/8
Telex: 42490 MESR TR
A

SALES & SUPPORT OFFICES

Saniva Bilgisayar Sistemieri A.S.
Buyukdere Caddes: 103/6
Gayrettepe

ISTANBUL

Tel: 1673180

Telex: 26345 SANI TR

ce

Best inc.

Esentepe. Gazeteciler Sites:
Keskin Kalem

Sokak 6/3, Gayrettepe
ISTANBUL

Tel: 172 1328, 173 3344
Telex: 42490

A

UNITED ARAB
EMIRATES

Emitac Ltd.

P.O. Box 1641

SHARJAK

Tel: 591181

Telex: 68136 EMITAC EM
Cable: EMITAC SHARJAH
ECMPA

Emitac Ltd.

P.0. Box 2711

ABU DHABI

Tel: 820419-20

Cable: EMITACH ABUDHABI
Emitac Ltd

P.O. Box 8391

DUBAI

Tel: 377591

Emitac Ltd.

P.0. Box 473

RAS AL KHAIMAH

Tel 28133, 21270

UNITED KINGDOM
ENGLAND
Hewlett-Packard Ltd.

Miller House

The Ring, BRACKNELL

Berks RG12 1XN

Tel: 44/344/424-898

Telex: 848733

E

Hewlett-Packard Ltd

Elstree House. Elstree Way
BOREHAMWOOD, Herts WD6 1SG
Tel: 01207 5000

Telex: 8952716

CE

Hewlett-Packard Ltd.

Oakfield House, Oakfield Grove
Clitton BRISTOL, Avon BS8 2BN
Tel: 44-272-736 806

Telex: 444302

CEP

Hewlett-Packard Ltd.

9 Bridewell Place

LONDON EC4V 6BS

Tel: 44-01-583-6565

Tetex: 298163

cpP

Hewlett-Packard Ltd.
Pontefract Road

NORMANTON, West Yorkshire WF6 1RN

Tel: 44/924/895 566
Telex: 557355
cp

Hewtett-Packard Ltd.

The Quadrangle

106- 118 Station Road
REDMILL, Surrey RH1 1PS
Tel: 44-737-686-55

Telex: 947234

CEP

Hewlett-Packard Ltd.
Avon House

435 Stratford Road
Shirley, SOLINULL, West Midlands
B90 4BL

Tel: 44-21-745-8800
Telex: 339105

CEP

Hewilett-Packard Ltd.
Heathside Park Road
Cheadie Heath, Stockport
SK3 ORB. United Kingdom
Tel: 44-061-428-0828
Telex: 668068

ACEMP

Hewlett-Packard Ltd.
Harmon House

No. 1 George Street
UXBRIDGE, Middlesex UX8 1YH
Tel: 895 720 20

Telex: 893134/5
CCMEMP
Hewlett-Packard Ltd.
King Street Lane
Winnersh, WOKINGHAM
Berkshire RG11 5AR
Tel: 44/734/784774
Telex: 8471789
ACEMP

NORTHERN IRELAND
Hewlett-Packard (Ireland) Ltd.
Carrickfergus Industrial Centre
75 Belfast Road, Carrickfergus
CO. ANTRIM BT38 8PM

Tel: 09603 67333

CE

Cardiac Services Company
95A Finaghy Road South
BELFAST, BT10 OBY

Tel: 0232-625566

Telex: 747626

M

SCOTLAND
Hewilett-Packard Ltd.

1/3 Springburn Place
College Milton North
EAST KILBRIDE, G74 5NU
Tel: 041-332-6232

Telex: 779615

CE

Hewlett-Packard Ltd.
SOUTH QUEENSFERRY
West Lothian, EM30 9TG
Tel: 0313311188

Telex: 72682 HPSQFYG
CCMEMP

Arranged alphabetically by country

UNITED STATES
Hewlett-Packard Co.
Customer Information Center
Tel: (800) 752-0900
Hours: 6:00 AM to 5:00 PM
Pacific Time
Alabama
Hewlett-Packard Co.
2100 Riverchase Center
Building 100 - Suite 118
BIRMINGHAM, AL 35244
Tel: (205) 988-0547
ACMP*
Hewiett-Packard Co.

420 Wynn Drive
HUNTSVILLE, AL 35805
Tel: (205) 830-2000
CCMEM*

Alaska
Hewlett-Packard Co.
4000 Old Seward Highway
Suite 101

ANCHORAGE, AK 99503
Tel: (907) 563-8855

CE

Arizona
Hewlett-Packard Co.
8080 Pointe Parkway West
PHOENIX, AZ 85044

Tei: (602) 273-8000
ACCMEMP
Hewiett-Packard Co.
3400 East Britannia Dr
Bidg. C. Suite 124
TUCSON, AZ 85706

Tel: (602) 573-7400
CEM*"

California
Hewlett-Packard Co.

99 South Hill Or.
BRISBANE, CA 94005

Tel: (415) 330-2500

c

Hewlett-Packard Co.
1907 North Gateway Bivd
FRESNO, CA 93727

Tel: (209) 252-9652

CM

Hewiett-Packard Co.
1421 S. Manhattan Av.
FULLERTON, CA 92631
Tel: (714) 999-6700
CCMEM
Hewiett-Packard Co.
7408 Hollister Ave. #A
GOLETA,CA 93117

Tel: (805) 685-6 100

CE

Hewiett-Packard Co.
2525 Grand Avenue
LONG BEACH, CA 90815~
Tel: (213) 498-1111

c

Hewiett-Packard Co.
5651 West Manchester Ave.
LOS ANGELES, CA 90045
Tei: (213) 337-8000
Hewlett-Packard Co.
3155 Porter Drive

PALO ALTO, CA 94304
Tel: (415) 857-800C

CE

Hewett-Packard Co.
5725 W. Las Positas Bivd.
PLEASANTON, CA 94566
Tel: (415) 460-0282

c

Hewlett-Packard Co.
4244 So. Market Court, Suite A
SACRAMENTO, CA 95834
Tel: (916) 929-7222
A'CEM
Hewiett-Packard Co.
9606 Aero Drive

SAN DIEGO, CA 92123
Tel: (619) 279-3200
C.CMEM
Hewlett-Packard Co.
3003 Scott Boulevard
SANTA CLARA, CA 95054
Tel: (408) 988-7000

Telex: 910-338-0586
ACCME
Hewlett-Packard Co.
2150 W. Hilicrest Dr.
THOUSAND OAKS, CA 91320
(805) 373-7000

CCME

Colorado
Hewlett-Packard Co.
2945 Center Green Court South
Suite A

SOULDER, CO 80301

Tel: (303) 499-6655

ACE

Hewlett-Packard Co.

24 Inverness Place, East
ENGLEWOOD, CO 80112
Tel: (303) 649-5000
ACCMEM
Connecticut
Hewilett-Packard Co.

500 Sylvan Av.
BRIDGEPORT, CT 06606
Tel: (203) 371-6454

CE

Hewlett-Packard Co.

47 Barnes Industrial Road South
WALLINGFORD, CT 06492
Tel: (203) 265-7601
ACCMEM

Florida
Hewlett-Packard Co.
2901 N.W. 62nd Street
FORT LAUDERDALE, FL 33309
Tel: (305) 973-2600
CEMP*
Hewlett-Packard Co.
6800 South Point Parkway
Suite 301
JACKSONVILLE, FL 32216
Tel: (904) 636-9955

C* M

Hewlett-Packard Co.

255 East Drive, Suite B
MELBOURNE, FL 32901
Tei: (305) 729-0704

CME

Hewtett-Packard Co.
6177 Lake Ellenor Drive
ORLANDO, FL 32809

Tel: (305) 859-2900
ACCMEP’

Hewilett-Packard Co
4700 Bayou Bivd
Building §
PENSACOLA, FL 32503
Tel: (304) 476-8422
ACM
Hewlett-Packard Co.
5550 W. Idiewild. #150
TAMPA, FL 33614

Tet (813) 884-3282
CEMP

Georgia
Hewlett-Packard Co.
2015 South Park Place
ATLANTA, GA 30339
Tel: (404) 955-1500
Telex: 810-766-4890
ACCMEMP*
Hewiett-Packard Co.
3607 Parkway Lane
Suite 300

NORCROSS, GA 30092
Tel: (404) 448-1894
CEP

Hawaii
Hewlett-Packard Co.
Pacific Tower

1001 Bishop St

Suite 2400
HONOLULU, HI 96813
Tel: (808) 526- 1555
ACEM

Idaho
Hewlett-Packard Co.
11309 Chinden Bivd.
BOISE, ID 83714

Tel: (208) 323-2700
c

llinois
Hewtett-Packard Co.
2205 E. Empire St.
P.0. Box 1607
BLOOMINGTON, IL 61702-1607
Tel: (309) 662-9411
ACEM**
Hewiett-Packard Co
525 W. Monroe, #1308
CHICAGO, IL 60606
Tel: (312) 930-0010

c

Hewilett-Packard Co.
1200 East Diehi Road
NAPERVILLE, IL 60566
Tei: (312) 357-8800

c

Hewlett-Packard Co.
5201 Tokview Drive
ROLLING MEADOWS, IL 60008
Tel: (312) 255-9800
Telex: 910-687- 1066
ACCMEM

Indiana
Hewilett-Packard Co
11911 N. Meridian St.
CARMEL, IN 46032
Tel: (317) 844-4100
ACCMEM
Hewlett-Packard Co.
111 E. Ludwig Road
Suite 108

FT. WAYNE, IN 46825
Tel: (219) 482-4283
CE

lowa

Hewlett-Packard Co.
4070 22nd Av. SW
CEDAR RAPIDS, IA 52404
Tel: (319) 390-4250
CEM

Hewlett-Packard Co.

4201 Corporate Dr.

WEST DES MOINES, IA 50265
Tel: (515) 224-1435

A CM*

Kansas
Hewiett-Packard Co.
North Rock Business Park
3450 N. Rock Rd.

Suite 300

WICHITA, KS 67226

Tel: (316) 684-8491

CE

Kentucky
Hewiett-Packard Co.

305 N. Hurstbourne Lane,
Suite 100

LOVISVILLE, KY 40223
Tel: (502) 426-0100
ACM

Louisiana
Hewlett-Packard Co.
160 James Drive East
ST. ROSE, LA 70087
P.O. Box 1449
KENNER, LA 70063
Tel: (504) 467-4100
ACEMP

Maryland
Hewlett-Packard Co.
3701 Koppers Street
BALTIMORE, MD 21227
Tel: (301) 644-5800
Telex: 710-862-1943
ACCMEM

Hewlett-Packard Co.

2 Choke Cherry Road
ROCKVILLE, MD 20850
Tel: (301) 948-6370
ACCMEM

Massachusetts
Hewlett-Packard Co
1775 Minuteman Road
ANDOVER, MA 01810
Tel: (617) 682-1500
ACCMEMP*

Hewiett-Packard Co.

29 Burlington Mall Rd
BURLINGTON, MA 01803-4514
Tel: (617) 270-7000

CE

Michigan
Hewlett-Packard Co.
4326 Cascade Road S.E.
GRAND RAPIDS, M| 49506
Tel: (616) 957-1970

CM

Hewlett-Packard Co.
39550 Orchard Hill Place Drive
NOVI, MI 48050

Tel: (313) 349-9200
ACEM
Hewlett-Packard Co.
560 Kirts Rd.

Suite 101

TROY, MI 48084

Tel: (313) 362-5180
c

Minnesota
Hewlett-Packard Co.
2025 W. Larpenteur Ave.
8T.PAUL, MN 55113
Tel: (612) 644-1100
ACCMEM

Missouri

Hewlett-Packard Co.

1001 E. 101st Terrace Suite 120
KANSAS CITY, MO 64131-3368
Tel: (816) 941-0411
ACCMEM

Hewlett-Packard Co.

13001 Hollenberg Drive
BRIDGETON, MO 63044

Tel: (314) 344-5100

ACEM

Nebraska
Hewiett-Packard
11626 Nicholas St.
OMANA, NE 68154
Tel: (402) 493-0300
CEM

New Jersey
Hewlett-Packard Co.
120 W. Century Road
PARAMUS, NJ 07652
Tel: (201) 265-5000
ACCMEM
Hewlett-Packard Co.

20 New England Av. West
PISCATAWAY, NJ 08854
Tet: (201) 562-6 100
ACCME

New Mexico
Hewlett-Packard Co.
7801 Jetferson N.E.
ALBUQUERQUE, NM 87109
Tet: (505) 823-6100
CEM

Hewiett-Packard Co.
1362-C Trinity Dr.

LOS ALAMOS, NM 87544
Tel: (505) 662-6700

CE

New York
Hewiett-Packard Co.

5 Computer Drive South
ALBANY, NY 12205

Tel: (518) 458-1550
ACEM
Hewlett-Packard Co.
9600 Main Street
CLARENCE, NY 14031
Tel: (716) 759-8621
CEM

Hewlett-Packard Co.
200 Cross Keys Office Park
FAIRPORT, NY 14450
Tel: (716) 223-9950
ACCMEM
Hewlett-Packard Co.
7641 Henry Clay Bivd.
LIVERPOOL, NY 13088
Tel: (315) 451-1820
ACCMEM
Hewilett-Packard Co.

No. 1 Pennsyivania Plaza
55th Floor

34th Street & 7th Avenue
MANHATTAN NY 10119
Tel: (212) 971-0800

CM™*

Hewilett-Packard Co

15 Myers Corner Rd.
Hollowbrook Park, Suite 20
WAPPINGERS FALLS, NY 12580
Tel: (914) 298-9125
CME

Hewlett-Packard Co.
2975 Westchester Ave
PURCMASE, NY 10577
Tel: (914) 935-6300
CCME
Hewiett-Packard Co.

3 Crossways Park West
WOODBURY, NY 11797
Tel: (516) 682-7800
ACCMEM

North Carolina
Hewlett-Packard Co
305 Gregson Dr.
CARY,NC 27511

Tel: (919) 467-6600
CCMEMP*
Hewlett-Packard Co.
9401 Arrow Point Bivd
Suite 100

CHARLOTTE, NC 28217
Tel: (704) 527-8780

c

Hewlett-Packard Co.
5605 Roanne Way
GREENSBORO, NC 27420
Tel: (919) 852-1800
ACCMEMP*

Ohio
Hewiett-Packard Co.
2717 S. Arlington Road
AKRON, OH 44312

Tel: (216) 644-2270

CE

Hewlett-Packard Co
4501 Erskine Road
CINCINNAT], OH 45242
Tei: (513) 891-9870
CM

Hewett-Packard Co.
15885 Sprague Road
CLEVELAND, OH 44136
Tel: (216) 243-7300
ACCMEM
Hewlett-Packard Co.
9080 Springboro Pike
MIAMISBURG, OH 45342
Tel: (513) 433-2223
ACCME'M
Hewiett-Packard Co.
One Maritime Plaza, 5th Floor
720 Water Street
TOLEDO, OH 43604
Tel: (419) 242-2200

c

Hewiett-Packard Co.
675 Brooksedge Bivd.
WESTERVILLE, OH 43081
Tel: (614) 891-3344
CCME*

Oklahoma
Hewiett-Packard Co.

3525 N.W. 56th St

Suite C-100

OKLAHOMA CITY, OK 73112
Tel: (405) 946-9499

CE'M

UNITED STATES
(Cont'd)
Hewlett-Packard Co.
6655 South Lewis,

Suite 105

TULSA, OK 74136

Tel: (918) 481-6700

A" CEM'P*
Oregon
Hewlett-Packard Co.
9255 S. W. Pioneer Court
WILSONVILLE, OR 97070
Tel: (503) 682-8000
ACE'M
Pennsylvania
Hewiett-Packard Co.

Heatherwood Industrial Park

50 Dorchester Rd.
Route 22

HARRISBURG, PA 17112-2799

Tel: (717) 657-5900

c

Hewilett-Packard Co.
111 Zeta Drive
PITTSBURGH, PA 15238
Tel: (412) 782-0400
ACEM
Hewiett-Packard Co.
275C Monroe Boulevard
VALLEY FORGE, PA 19482
Tel: (215) 666-3000
ACCMEM

South Carolina
Hewlett-Packard Co.
Brookside Park, Suite 122
1 Harbison Way
COLUMBIA, SC 29212
Tel: (803) 732-0400
cM

Hewiett-Packard Co.
545 N. Pleasantburg Dr.
Suite 100

GREENVILLE, SC 29607
Tei: (803) 232-8002

[+

Tennessee
Hewlett-Packard Co.
One Energy Centr. Suite 200
Pellissippi Pkwy.
KNOXVILLE, TN 37932
Tel: (615) 966-4747
ACEMP
Hewlett-Packard Co.
3070 Directors Row
Directors Square
MEMPHIS, TN 38131
Tel: (901) 346-8370
ACEM
Hewlett-Packard Co.
44 Vantage Way,
Suite 160

NASHVILLE, TN 37228
Tel: (615) 255-1271
ACEMP

Texas
Hewiett-Packard Co.
1826-P Kramer Lane
AUSTIN, TX 78758
Tet: (512) 835-6771
CEP*
Hewiett-Packard Co.
5700 Cromo Dr

EL PASO, TX 79912
Tel: (915) 833-4400
CE'M*
Hewiett-Packard Co.
3952 Sandshel! Drive
FORT WORTH, TX 76137
Tel: (817) 232-9500
c

Hewiett-Packard Co.
10535 Harwin Drive
HOUSTON, TX 77036
Tel: (713) 776-6400
ACEMP*
Hewlett-Packard Co.
3301 West Royal Lane
RVING, TX 75063
Tel: (214) 869-3377
CE

Hewett-Packard Co.
109 E. Toronto, Suite 100
McALLEN, TX 78501
Tel: (512) 630-3030
(4

Hewlett-Packard Co.

930 E. Campbeli Rd.
RICHARDSON, TX 75081

Tel: (214) 231-6101
ACCMEM.P*
Hewlett-Packard Co.

1020 Central Parkway South
SAN ANTOMIO, TX 78232
Tei: (512) 494-9336
ACEMP*

Utah

Hewiett-Packard Co.

3530 W. 2100 South St.
SALT LAKE CITY, UT 84119
Tel: (801) 974-1700
ACEM

Virginia
Hewlett-Packard Co.
840 Greenbrier Circle
Suite 101
CHESAPEAKE, VA 23320
Tel: (804) 424-7105
CEM

Hewlett-Packard Co.
4305 Cox Road

GLEN ALLEN, VA 23060
Tel: (804) 747-7750
ACEMP*

SALES & SUPPORT OFFICES

Arranged alphabetically by country

Hewiett-Packard Co.
Tanglewood West Bidg.
Suite 240

3959 Electric Road
ROANOKE, VA 24018
Tel: (703) 774-3444
CEP

Washington
Hewlett-Packard Co.
15815 S.E. 37th Street
BELLEVUE, WA 98006
Tel: (206) 643-4004
ACCMEM
Hewlett-Packard Co.
1225 Argonne Rd
SPOKANE, WA 99212
Tel: (509) 922-7000

c

West Virginia
Hewlett-Packard Co.
501 56th Street
CHARLESTON, WV 25304
Tel: (304) 925-0492
ACM

Wisconsin
Hewlett-Packard Co.
275 N. Corporate Dr.
BROOKFIELD, W! 53005
Tel: (414) 784-8800
ACE'M

URUGUAY

Pablo Ferrando S.A.C. e 1.
Avenida Italia 2877
Casilla de Correo 370
MONTEVIDEO

Tel: 59-82-802-586

Telex: 398802586
ACMEM

Olympia de Uruguay S.A.
Maguines de Oficina
Avda. del Libertador 1997
Casilla de Correos 6644
MONTEVIDEO

Tel: 91-1809, 98-3807
Telex: 6342 OROU UY

[

VENEZUELA

Hewlett-Packard de Venezuela C.A.
3A Transversal Los Ruices Norte

Edificio Segre 2 & 3
Apartado 50933
CARACAS 1050

Tel: (582) 239-4133
Telex: 251046 HEWPACK
ACCMEMP

Hewilett-Packard de Venezuela, C.A.
Centro Ciudad Comercial Tamanaco
Nivel C-2 (Nueva Etapa)

Local 53H05

Chuao, CARACAS

Tel: 928291

[

Albis Venezolana S.R.L.

Av. Las Marias, Ota. Alix,

El Pedregal

Apartado 81025

CARACAS 1080A

Tel: 747984, 742146

Telex: 24009 ALBIS VC

A

Tecnologica Medica del Caribe, C.A.
Multicentro Empresarial dei Este
Ave. Libertador

Edif. Libertador

Nucieo “C" - Oficina 51-52
CARACAS

Tel: 339867/333780

M

Hewlett-Packard de Venezuela C.A.
Residencias Tia Betty Local 1
Avenida 3 y con Calle 75
MARACAIBO, Estado Zulia
Apartado 2646

Tel: 58-2-617-5669

Telex: 62464 HPMAR

CE’

Hewlett-Packard de Venezuela C.A.
Urb. Lomas de Este

Torre Trebol — Piso 11

VALENCIA, Estado Carabobo
Apartado 3347

Tel: (5841) 222992

CP

YUGOSLAVIA
Do Hermes

General Zdanova 4
YU-11000 BEOGRAD
Tel: (011) 342 641
Telex: 11433
ACEMP

Do Hermes

Celovska 73
YU-61000 LIUBLJANA
Tel: (061) 553 170
Telex: 31583
ACEMP
Elektrotehna

Titova 51

YU-61000 LIUBLJANA
C™

Do Hermes

Kralja Tomisiava 1
YU-71000 SARAJEVO
Tel: (071) 35 859
Telex: 41634

cp

ZAIRE

Computer & Industrial Engineering
25, Avenue de la Justice

B.P. 12797

KINSHASA, Gombe

Tel: 32063

Telex: 21552

cpP

ZAMBIA

R.J. Tilbury (Zambia) Ltd.
P.0. Box 32792

LUSAKA

Tel: 215590

Telex: 40128

E

ZIMBABWE

Field Technical Sales (Private) Limited
45, Keivin Road North

P.O. Box 3458

SALISBURY

Tei: 705 231

Telex: 4-122 RH

EP

September 1987

Part No. 92432-90001 ,;] HEWLETT
Printed in U.S.A. November 1988 (,” PACKARD

E1188

	ASSEMBLY LANGUAGE Reference Manual
	Contents
	1. The Assembly Language
	2. Programming for HP-UX
	3. Assembler Directives and Pseudo-Operations
	4. The Instruction Set
	5. Programming Examples
	6. Assembling Your Program
	A. Error Messages
	B. Instruction Summaries
	Index

