
HP 9000 Computer Systems i) a
K D

ASSEMBLY LANGUAGE

Reference Manual

READER COMMENT CARD

HP 9000 Series 800

Assembly Language Reference Manual

92432-90001 November 1988

A reader comment card helps us improve the readability and accuracy of the document.

It is also a vehicle for recommending enhancements to the product or manual. Please

use it to make improvements.

SERIOUS ERRORS such as technical inaccuracies that may render a program or a

hardware device inoperative should be reported to your HP Response Center or directly

to a Support Engineer. An engineer will enter the problem on HP’s STARS (Software

Tracking and Reporting System). This will ensure that critical and serious problems

receive appropriate attention as soon as possible.

Editorial suggestions (please give page numbers involved):

Recommended improvements (attach additional information if needed):

Name: Date:

Job Title: Phone:

Company:

Address:

HP 1000 Series (e.g., E-series, A400, A6OO, etc.)

HP 3000 Series (e.g., 37, 68, 930, etc.)

HP 9000 Series (e.g., 300, 840, etc.)

[_] Check here if you would like a reply.

Hewlett-Packard has the right to use submitted suggestions without obligation, with all such ideas

becoming property of Hewlett-Packard.

ade, pue pjo4

9BLE-PLOG6 eluop!eD ‘oulednD
enudsAy eHbpueunld E8r6l

uoisisig ABojouyoe| swayshS
Auedwoy pseyoed-YajmMeH

soBeuew syonpojg Buluses sebenbue 7

- J3SS3YqGGV Ag Givd 38 TIM SDVLSOd — —

vyl0S6 VO ‘ONILYSdND 020! ‘ON LINYAd SSV19 LSHis

VIN Alda’ SSANISNG
SALVLS GaUNA

JdHL NI
GAIIVW Jl

AYVSSSOSN

3DVLSOd ON

ede} pue pjo4

HP 9000 Series 800

ASSEMBLY LANGUAGE

Reference Manual

GY HEWLETT
PACKARD

19483 Pruneridge Ave. Cupertino, CA 95014

Part No. 92432-90001 Printed in U.S.A. November 1988

E1188

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS

MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not

be liable for errors contained herein or for incidental or consequential damages in connection with the

furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the ‘se or reliability of its software on equipment that

is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are

reserved. No part of this document may be photocopied, reproduced or translated to another language

without the prior written consent of Hewlett-Packard Compar y.

Copyright © 1986, 1987, 1988 by HEWLETT-PACKARD COMPANY

Printing History

New editions are complete revisions of the manual. Update packages, which are issued between editions,
contain additional and replacement pages to be merged into the manual by the customer. The dates on
the title page change only when a new edition or a new update is published. No information is
incorporated into a reprinting unless it appears as a prior update; the edition does not change when an
update is incorporated.

The software code printed alongside the date indicates the version level of the software product at the
time the manual or update was issued. Many product updates and fixes do not require manual changes
and, conversely, manual corrections may be done without accompanying product changes. Therefore, do
not expect a one to one correspondence between product updates and manual updates.

First Edition November 1986

Update 1........0.0..002002, March 1987

Update | Incorporated.......... May 1987

Second Edition............. January 19880..2.., 92453-03A.00. 03
Third Edition. November 1988 92453-03A. 00. 04

Preface

This manual describes the use of the HP Precision Architecture Assembler. Although the manual also

summarizes the machine instruction set, you should refer to the Precision Architecture and Instruction

Reference Manual for a complete description of these instructions. You need to be familiar with the

machine instructions to use the Assembler.

Because the machine instruction set and Assembler directives were designed to optimize the new HP

Precision Architecture, the resulting assembly language is tailored more to the needs of the computer

rather than the programmer. Thus, we do not encourage using the Assembler for production

programming purposes. For those cases, however, where efficiency or control require programming to be

done in assembly language, this manual provides the necessary guidelines.

This manual is organized as follows:

Chapter 1 introduces the Assembler for HP 9000 Series 800 computers.

Chapter 2 explains programming the Assembler for HP-UX.

Chapter 3 describes the HP Precision Architecture Assembler control directives.

Chapter 4 summarizes the mnemonics and instruction format for the HP Precision Architecture

machine instructions.

Chapter 5 contains several sample assembly language programs.

Chapter 6 describes the assembly (as) command and the ways to invoke the HP Precision

Architecture Assembler under the HP-UX operating system.

Appendix A lists the error messages that the HP Precision Architecture Assembler may generate.

Appendix B lists the complete machine instruction set sorted alphabetically by mnemonic name.

This manual assumes that you are an experienced assembly language programmer. In addition, you should

have detailed understanding of the HP Precision Architecture and hardware features, and a working

knowledge of the HP-UX operating system, program structures, procedure calls, and stack unwind

procedures. Consult the following manuals for additional details on specific subjects:

e HP-UX Reference (09000-90009) -- for information on HP’s implementation of the UNIEX* operating

system.

e Precision Architecture and Instruction Reference Manual (09740-90014) -- for information on

architecture and the instruction set.

e Procedure Calling Conventions Manual (09740-90015) -- for complete information about the use of

the procedure calling convention.

*UNIX is a registered trademark of AT&T in the U.S. and other countries.

NOTATION

UPPERCASE

italics

punctuation

{ }

[]

Conventions

DESCRIPTION

Within syntax statements, characters in uppercase must be entered in exactly the

order shown, though you can enter them in either uppercase or lowercase. For

example:

SHOWJOB

Valid entries are: showjob ShowJob SHOWJOB

Invalid entries are: shojwob Shojob SHOW JOB

Within syntax statements, a word in italics represents a formal parameter or

argument that you must replace with an actual value. In the following example, you

must replace filename with the name of the file you want to release:

RELEASE filename

Within syntax statements, punctuation characters (other than brackets, braces,

vertical parallel lines, and ellipses) must be entered exactly as shown.

Within syntax statements, when several elements within braces are stacked, you must

select one. In the following equivalent examples, you must select ON or OFF:

{ON } ON
SETMSG {OFF} SETMSG 4 ore

Within syntax statements, brackets enclose optional elements. In the following

example, brackets around , TEMP indicate that the parameter and its delimiter are not

required:

PURGE fzlename[,TEMP]

When several elements within brackets are stacked, you can select any one of the

elements or none. In the following equivalent examples, you can select devicename or

deviceclass or neither:

[devicename]
SHOWDEV [deviceclass]

devicename

deviceclass
SHOWDEV

Conventions (Continued)

NOTATION

[...]

Cl)

CONTROL} char

DESCRIPTION

Within syntax statements, a horizontal ellipsis enclosed in brackets indicates that you

can repeatedly select elements that appear within the immediately preceding pair of

brackets or braces. In the following example, you can select itemname and its

delimiter zero or more times, each instance of itemname preceded by a comma:

[,itemname] [...]

If a punctuation character precedes the ellipsis, you must use that character as a

delimiter to separate repeated elements. However, if you select only one element, the

delimiter is not required. In the following example, the comma does not precede the

first instance of itemname:

[atemname][,...]

Within syntax statements, a horizontal ellipsis enclosed in parallel vertical lines

indicates that you can select more than one element that appears within the

immediately preceding pair of brackets or braces. However, each element can be

selected only one time. In the following equivalent examples, you must select ,A or

»Bor ,A,B or ,B,A:

Cede. (pple

If a punctuation character precedes the ellipsis, you must use that character as a

delimiter to separate repeated elements. However, if you select only one element, the

delimiter is not required. In the following example, you must select A or B or A,B

or B,A (the first element is not preceded by a comma):

Bloc {pple

Within examples, horizontal or vertical ellipses indicate where portions of the

example are omitted.

Within syntax statements, the space symbol A shows a required blank. In the

following example, you must separate modifier and variable with a blank:

SET [(modifier)]A(variable) ;

The symbol (____) indicates a key on the terminal’s keyboard. For example,
indicates the carriage return key.

(CONTROL)char indicates a control character. For example, (CONTROLJ)Y means you must
simultaneously press the control key and Y key on the terminal’s keyboard.

NOTATION

base prefixes

Bit (bit:length)

Conventions (Continued)

DESCRIPTION

The prefixes %, 4, and $ specify the numerical base of the value that follows:

%num specifies an octal number
#num specifies a decimal number

$num specifies a hexadecimal number

When no base is specified, decimal 1s assumed.

When a parameter contains more than one piece of data within its bit field, the

different data fields are described in the format Bit (bit:length), where bit is the first

bit in the field and length is the number of consecutive bits in the field. For

example, Bits (1 3:3) indicates bits 13, 14, and 15:

most significant least significant

0 13)14/15

Bit(0:1) Bits(13:3)

Contents

Chapter 1

The Assembly Language

Assembler Features... 0.0. 1-2

Structure of the Source Program. ... 2... 0.0. ee es 1-3

Symbols and Constants... ee 1-5

Registers and Register Mnemonics. ... 0... 0... 1-7

EXpresSioOnS . 00. 1-11

Parenthesized Sub-Expressions... 2.001 ee 1-14

Operands and Completers... 2... ee ee 1-15

Macro Processing. .. 0... ee 1-17

Defining New Instructions With Macros............ 0.000 eee eens 1-17

Chapter 2

Programming for HP-UX

SpaceS 20 ee 2-1

Subspaces . 0... ee 2-3

Location Counters... . 0... ee 2-5

Compiler Conventions .. 0... 0. es . 2-6

System Calls... 0. ee 2-8

Assembly Listing. 2... 0. 0 eee 2-9

Chapter 3

Assembler Directives and Pseudo-Operations

Assembler Directives... 1... 0. ee Jee On4

The .ALIGN Directive... 0.08. ee 3-5

The .BLOCK and .BLOCKZ Pseudo-Operations..............0 000046 3-6

The .BYTE, .HALF, and .WORD Pseudo-Operations.................. 3-8

The .CALL Directive... ... 2.0... 0.0.2 0c 3-9

The .CALLINFO Directive 0.0.0.0 00.000 cee ee ee 3-13

The .COMM Directive... .. 2.0.0.0... 0 000. cee 3-18

The .COPYRIGHT Directive 2... 0.000.000 cee ee ee 3-19

The .DOUBLE Directive. 0.0... 0... 00. ee ee ee 3-20

The .END Directive... 2... 0.0.0. 0. ce ee 3-21

The .ENDM directive... 0... 0.0.00. 2c 3-22

The .ENTER and .LEAVE Pseudo-Operations.............2.0.00 000. 3-23

The .ENTRY and .EXIT Directives............ 0.0.00. 0000 pees 3-24

The .EQU Directive... 2. 2 ee es 3-25
The .EXPORT and .IMPORT Directives................ 00.02.0000. 3-26

The .FLOAT Directive... 0.0.0.0. 00000. cee 3-28

The .LABEL Directive...0..0.0 0 (2 ce ee 3-29

The .LISTOFF and .LISTON Directives 2... 2. ee ee ee 3-30

The .LOCCT Directive... 2... 0. 2 ee 3-32

The .MACRO Directive .. 2... 0.0 2 3-33

The .ORIGIN Directive... 2.20.20... Fe 3-36

The .PROC and .PROCEND Directives...0.0..0. 00. 0000005. 3-37

The .REG Directive................ ee 3-38

11

Contents (continued)

12

The .SPACE Directive .. 0... 00. 0. ee 3-39

The .SPNUM Directive... . 0.0. ee 3-41

The .STRING and .STRINGZ Pseudo-Operations................... 3-42

The .SUBSPA Directive... . 0... 0.0.0 0.0. ce ee 3-43

The .VERSION Directive .. 0... 0.0.0.0. ee ee 3-4§

Programming Aids... 2... eee 3-46

Chapter 4

The Instruction Set

Instruction Operands... 1... ee 4-2

Memory Reference Instructions 0... ee 4-3

Load and Store Instructions... 2... 0... ee 4-4

Load and Store with Base Register Modification Instructions...... Le ne 4-4

Indexed Load Instructions... 2... 0... ee 4-5

Short Displacement Load and Store Instructions. Le eee 4-6

Store Bytes Short Instruction .. 2... 0. ee ee 4-7

Immediate Instructions... ... 0.0.0.0. ee es 4-8

Branch Instructions... 2... 0. es 4-9

Unconditional Branch Instructions....... be re 4-9

Conditional Branch Instructions0.. 0.00.00 Lens 4-10

Move and Branch Instructions.0..0. 00.0. eee eee ee ee eee 4-11

Compare and Branch Instructions 0.0.00. p eee eee eee 4-12

Add and Branch Instructions...0.0..0 2.0.0.0. eee eee ee es 4-14

Branch on Bit Instructions... . 0.0.2.0... 0.0002 eee es 4-16

Computational Instructions... 2... ne 4-17

Add Instructions... 0... ee 4-18

Shift and Add Instructions... 2... 0. 4-20

Subtract Instructions .. 0... ee 4-22

Compare and Clear Instructions 0.0... ee ee ee 4-24

Divide Step Instruction... 0... ee 4-25

Logical Instructions... 0... 4-26

Unit Instructions. 2... ee ee 4-27

Shift, Extract, and Deposit Instructions...0. 0.000 ee eee ee eee 4-28

System Control Instructions... 0... ee 4-30

Assist (Coprocessor) Instructions... 0... 4-33

Coprocessor Operation Instruction... 0... 0 2 ee en 4-34

Coprocessor Indexed Load and Store Instructions..................00. 4-35

Coprocessor Short Displacement Load and Store Instructions 4-36

Floating-Point Instructions... 0... 2. es 4-37

Floating-Point Indexed Load and Store Instructions................ 4-38

Floating-Point Short Displacement Load and Store Instructions 4-39

Floating-Point Operation Instructions... 0000. ee eee 4-39

Floating-Point Compare and Test Instructions 4-4]

Pseudo Instructions .. 0. 0. ee 4-43

Contents (continued)

Chapter $

Programming Examples

Binary Search for Highest Bit Position.0..0..0 020000020. eee ae $-2

Copying a String. 2. 0. 5-4

Dividing a Double-Word Dividend 20.000. ee ee eee ee 5-6

Demonstrating the Procedure Calling Convention........ 0............. 5-8

Output of the cc -S Command... .. 2... ee ee 5-9

Chapter 6

Assembling Your Program

Invoking the Assembler 2... . 0.0. ee 6-1

Using the asCommand..... 0... ee 6-1

Using the cc Command... .. 2... ee 6-3

Error Message Catalog... 0... 6-4

Linking an Assembly Program Ce 6-5

Appendix A

Error Messages

Warning Messages... 0... ee, A-2

Error Messages... 1 0. ee A-7

Panic Messages... 2... A-20

User Warnings. «2... ee A-22

Limit Errors . 0. 0. ee A-25§

Branching Errors... 1... ee A-27

Appendix B

Instruction Summaries

13

TABLES

Table

Table

Table

Table

Table

Table

Table

Table

Table e
n

e
e

e
e

J
J

O
C
O
N
N
D
N

FP

W
h

Table 2-1.

Table 3-1.

Table 3-2.

Table 3-3.

Table 3-4.

Table 4-1.

Table 4-2.

Table 4-3.

Table 4-4.

Table 4-5.

Table 4-6.

Table 4-7.

Table 4-8.

Table 4-9.

Table 4-10

Table 4-11

Table 4-12

Table 4-13

Table 4-14

Table 4-15

Table 4-16

Table 4-17

Table 4-18

Table 4-19

Table 4-20.

Table 4-21.

Table 4-22.

Table 4-23.

Table 4-24.

Table 4-25.

Table 4-26.

Table 4-27.

Table 4-28.

Table 4-29.

Table 4-30.

Figures and Tables

. Integer Constants... 0 0 1 ee 1-5

. General Registers. 2. 2. 1-8

. Floating-Point Registers .. 0... 1-8

Space Registers .. 0... 1-8

. Control Registers... 0. 0 1-9

. Procedure Calling Convention Registers.................044 1-10

. Standard Arithmetic Operators...0..0 2.0000 eee ee eee 1-11

. Legal Combinations For Relocatable Terms 1-11

. Available Field Selectors 0... 2... 000. eee ee ee 1-13

Standard Subspaces and Sort Keys 0.0.0.0 eee eee es 2-4

Assembler Directives... . 0... 0... 3-1

Compiler Generated Directives... 0.000 eee eee eee 3-3

Pseudo-Operations. . 2... 3-3

Predefined Spaces and Subspaces0.... 00004 ee eee 3-46

Instruction Operands... .. 2. we 4-2

Load and Store Instructions0.0.0.0..00.00. 00000000. 4-4

Load and Store With Base Register Modification

Instructions 2... 0. ee 4-4

Indexed Load Instructions.0. 0.0.0. 000 ce ee eee ee ees 4-5

Indexed Load Completers...0 0... 00. eee eee ens 4-§

Short Displacement Load and Store Instructions 4-6

Short Displacement Load and Store Completers................ 4-6

Store Bytes Short Instruction.0.0.0. 0.2.00 00. 00020048 4-7

Store Bytes Short Completers 0.0... 0000 eee ee ees 4-7

. Immediate Instructions0. 0.0.0.0 00. cee ee ee 4-8

. Unconditional Branch Instructions.............. 2.00000 08. 4-9

. Move and Branch Instructions.0. 0... 000000004 4-11

. Move and Branch Conditions.0..0.0. 0.000 000008 0G 4-11

. Compare and Branch Instructions..................2. 008. 4-12

. Compare and Branch Conditions 0.000000 08. 4-13

. Add and Branch Instructions.0...0. 00. 000.5 4-14

. Add and Branch Conditions...0.0 0.0.0.0. 00 2c eee eens 4-15

. Branch on Bit Instructions0..0. 00000000 2 eee ee 4-16

. Branch on Bit Conditions...0..0.0..0. 0000000. ee eee 4-16

Add Instructions... 0.0... 0.0.0.0. 0c es 4-18

Add Conditions .. 0... 0... ee 4-19

Shift and Add Instructions0..0..0. 0.020000 0000. 4-20

Shift and Add Conditions.0..0.0..0 0.0.00 000000048 4-21

Subtract Instructions... 2... ee 4-22

Subtract Conditions... 0... 0.0.0. 4-23

Compare and Clear Instructions...........0. 0.0.00. 00 5 eee 4-24

Compare and Clear Conditions.........0..0. 0.00000 ee ees 4-24

Divide Step Instruction0..0 0.0.0.0. ee ee ee ee 4-25

Logical Instructions... . 0.0.0.0... 000. cee eee eee eee 4-26

Logical Conditions ... 0.0.0.0... 00 0. eee eee ee 4-26

1S

Figures and Tables (Continued)

16

Table 4-31.

Table 4-32.

Table 4-33.

Table 4-34.

Table 4-35.

Table 4-36.

Table 4-37.

Table 4-38.

Table 4-39.

Table 4-40.

Table 4-41.

Table 4-42.

Table 4-43.

Table 4-44.

Table 4-45.

Table 4-46.

Table 4-47.

Table 4-48.

Table 4-49.

Table 4-50.

Table 4-51.

Unit Instructions . 2... ee

Unit Conditions. 2...

Shift, Extract, and Deposit Instructions

Shift, Extract, and Deposit Conditions....................

System Control Completers... 20... . 00 2 eee eee es

System Control Instructions

Coprocessor Operation Instruction

Coprocessor Operation Completers 0.0000 eee

Coprocessor Indexed Load and Store Instructions

Coprocessor Indexed Load and Store Completers..............

Coprocessor Short Displacement Load and Store

Instructions. . 0... ee

Coprocessor Short Displacement Load and Store

Completers... 2...

Floating-Point Indexed Load and Store Instructions

Floating-Point Indexed Load and Store Completers............

Floating-Point Short Displacement Load and Store

Instructions. . 0... ee

Floating-Point Short Displacement Load and Store

Completers... 0... ee

Floating-Point Operation Instructions... 0020006

Floating-Point Format Completers...............0000005%

Floating-Point Compare and Test Instructions...............

Floating-Point Compare Conditions 00500035

Pseudo-Instructions. .. 0... 0.00.

ee © © © © &¢ © © ¢ # @ © e© 6@ @¢ © @ * @* #* # @ # 8 8 @

© © © e© @¢ © «© #® © ee # @® # © e¢ ee © ¢© ee oo je «#

Table 5-1. Register Designations ... 0... 2. ee

Table 6-1. PCC__PREFIX.S Definition Files................0...00..

Table B-1. Instructions Arranged by Mnemonic Name..................

FIGURES

Figure 1-1. Assembly Language Statements

Figure 3-1. Stack Frame

> 6 © © © © @ #© @© @© © @ ® @ ® e# e@ e@ # ® ee >» %e# ©

ee @© © e© #® © © e¢© ee &® @© © @® *® *# 6 ee @ © e# #® © % e@ * ® e® ® ® © ® ® je ¢e¢ * «@

Figure 4-1. Branch Descriptions... 0... 0. 0. pee eee ee ee ee

Chapter 1
The Assembly Language

This chapter provides an introduction to the assembly language for the HP 9000 Series 800 computers.

The HP 9000 Series 800 Assembly Language represents machine language instructions symbolically, and

permits declaration of addresses symbolically as well. The Assembler’s function is to translate an assembly

language program, stored in a source file, into machine language. The result of this translation resides in

a relocatable object file. The object file is relocatable because it can still be combined with other

relocatable object files and libraries. Thus, it is necessary to relocate any addresses that the Assembler

chooses for the symbols in the source program. This process of combining object files and libraries is

performed by the linker, Id. The linker’s task is to transform one or more relocatable object files into an

executable program file. Every program must be linked before it can be executed, even if the source file

is complete within itself and does not need to be combined with other files.

1-1

The Assembly Language

Assembler Features

The Assembler provides a number of features to make assembly language programming convenient. These

features include:

e Mnemonic Instructions. Each machine instruction is represented by a mnemonic operation code,

which is easier to remember than the binary machine language operation code. The operation code,

together with to output a binary machine instruction to the object file.

e Symbolic Addresses. You can select a symbol to refer to the address of a location in virtual memory.

The address is often referred to as the value of the symbol, which should not be confused with the value

of the memory locations at that address. These symbols are called relocatable symbols because the

actual addresses represented by such symbols are subject to relocation by the linker.

e Symbolic Constants. A symbol can also be selected to stand for an integer constant. These symbols are

called absolute symbols because the values of such symbols are not relocatable.

e Expressions. Arithmetic expressions can be formed from symbolic addresses and constants, integer

constants, and arithmetic operators. Expressions involving only symbolic and integer constants defined

in the current module, or the difference between two relocatable constants, are called absolute

expressions. They can be used wherever an integer constant can be used. Expressions involving the

sum or difference between a symbolic address and an absolute expression are called relocatable

expressions, or address expressions. The constant part of an expression, the part that does not refer to

relocatable expressions, may use parenthesized subexpressions to alter operator precedence.

e Storage Allocation. In addition to encoding machine language instructions symbolically, storage may

be initialized to constant values or simply reserved. Symbolic addresses, or labels, can be associated

with these memory locations.

e Symbol Scope. When two or more object files are to be combined by the linker, certain symbolic

addresses can be defined in one module and used in another. Such symbols must be exported from the

defining module and imported into the using module. In the defining module, the symbol has universal

scope, while in the using module, the symbol is unsatisfied. Other symbols declared in the source

program that are not exported have local scope.

e Subspaces and Location Counters. You can organize code and data into separate subspaces, and into

separate location counters within each subspace. The programmer can move among the subspaces and

location counters, while the Assembler changes the code and data into the correct order.

e Macro Processing. A macro is a user-defined word which calls a sequence of instructions. Including a

macro in a source program causes the sequence of instructions to be inserted into the program wherever

the macro appears.

1-2

The Assembly Language

Structure of the Source Program

An assembly language program is a sequence of statements. There are three classes of statements:

e Instructions

e Pseudo-operations

e Directives

Instructions represent a single machine instruction in symbolic form. Pseudo-operations cause the

Assembler to initialize or reserve one or more words of storage for data, rather than machine instructions.

Directives communicate information about the program to the Assembler, but do not generally cause the

Assembler to output any machine instructions.

An assembly statement contains four fields:

Label

Opcode

Operands

Comments

Each of these fields 1s optional, with the exception of the operands field, which cannot appear without an

opcode field.

The label field is used to associate a symbolic address with an instruction or data location, or to define a

symbolic constant using the .EQU pseudo-operation. This field is optional for all but a few statement

types; if present, the label must begin in column one of a source program line. If a label appears on a line

by itself, or with a comment only, the label is associated with the next address within the same subspace

and location counter.

When the label field begins with the "#" character, it is not treated as a label. If "#" is followed by white

space and an integer, the Assembler’s line number counter, used when reporting errors, is reset to the value

of the integer. Otherwise, the line beginning with "#" is ignored.

The opcode field contains either a mnemonic machine instruction, a pseudo-operation code, or the name

of an Assembler directive. It must be separated from the label field by a blank or tab. For certain

machine instructions, the opcode field can also contain completers, separated from the instruction

mnemonic by commas. The completers allowed for each instruction are described in Chapter 4.

The operands field follows the opcode field, separated by a blank or tab. The meaning of the operands

depends on the specific statement type, determined by the opcode. Machine instructions require from

zero to four operands, which can denote register numbers or memory addresses, depending on the specific

instruction.

The comments field is introduced with a semicolon, and causes the Assembler to ignore the remainder of

the source line. A comment can also appear on a line by itself.

Figure 1-1 contains several assembly language statements and identifies each of the four fields described

above.

1-3

The Assembly Language

Label Opcode Operands Comments

JAN ~EQU 1 ;declares a symbolic constant

SUM » WORD 0 ;reserve a word and set to zero

LOOP LDW 4(%r1) ,%re2

ADD %re,%r3,%r4
STW %r4,SUM-$global$(%dp)
BL LOOP ,%r0

Figure 1-1. Assembly Language Statements

Statements are normally written on separate lines. It is sometimes useful, especially when using a macro

preprocessor, to be able to write several statements on one line. This can be done by separating the

statements with the "!" character. When this feature is used, a label can be placed only on the first

statement of the line, and a comment can only follow the last statement on the line. The .LABEL

directive can override this condition by providing a means for declaring a label within a multi-statement

line. %r is defined in "Registers and Register Mnemonics" later in this chapter.

1-4

The Assembly Language

Symbols and Constants

Both addresses and constants can be represented symbolically. Labels represent a symbolic address except

when the label is on an .EQU directive. If the label is on an .EQU directive, the label represents a

symbolic constant. These symbols are composed of uppercase and lowercase letters, digits, dollar signs, and

underscores. Symbols cannot begin with a digit. The Assembler considers uppercase letters and lowercase

letters in symbols to be distinct. The mnemonics for operation codes, directives, and pseudo-operations

can be written in either case. There is no explicit limit on the length of a symbol. The following are

examples of legal symbols:

$START$ start PROGRAM
M$3 $global$ $$mullI
main P WRITE loop!

The following are examples of illegal symbols:

LOOP# 1 Contains an illegal character

Ist time Begins with a digit

Integer constants are written in either decimal, octal, or hexadecimal notation. Table 1-1 lists the ranges

of these integer constants.

Table 1-1. Integer Constants

Signed Unsigned

Decimal -2147483648 0

through through

2147483647 4294967295

Octal 020000000000 0

through through

017777777777 037777777777

Hexadecimal Ox 80000000 0

through through

Ox 7FFFFFFF OxFFFFFFFF

1-5

The Assembly Language

The period (.) is a special symbol reserved to denote the current offset of the location counter. It is useful

in address expressions to refer to a location relative to the current instruction or data word. This symbol

is considered relocatable, and can be used anywhere a relocatable symbol can be used, with the exception

of the label field.

NOTE

A symbol whose initial characters are "L$" will not be passed to the linker.

Symbols beginning with "L$" may only be used for local code labels and

absolute values.

1-6

The Assembly Language

Registers and Register Mnemonics

Series 800 processors have four sets of registers:

e General

e Floating-point

e Space

e Control

General registers are the focus of almost all activity. Data is loaded from memory into general registers

and stored into memory from general registers. All arithmetic and logical operations are performed on

the contents of the generai registers. Each general register is 32 bits wide. There are 32 general registers,

denoted %r0O through %r31. General register O is special because "writes" into it are ignored, and it always

reads as zero. The remaining general registers can be used normally, with the caution that %r1 is the

implicit target register for the ADDIL instruction, and %r31 is the implicit link register for the BLE

instruction.

The floating-point registers are physically present only on systems with a floating-point coprocessor. On

systems without the coprocessor, their presence and behavior is emulated by the HP-UX operating system.

There are 16 floating-point registers, each capable of holding either a single or double-precision

floating-point number in IEEE format. These registers are denoted %frO through %fri15. Registers

“fri, %fre and %fr3 are exception registers and are not available to the programmer. Floating-point

register O contains a permanent floating-point zero when used in an arithmetic operation; when written

or read with floating-point loads or stores, the floating-point status register is actually set.

The space registers form the basis of the virtual memory system. Each of the eight space registers can

hold a 16 or 32-bit space identifier, depending on the hardware model (the Series 840 uses 16-bit space

registers). The space registers are denoted %sr0O through %sr7. Space register O is set implicitly by the

BLE instruction, and space registers 5 through 7 cannot be modified except by the operating system.

The control registers contain system-state information. There are 25 control registers, denoted %cr0O and

%cr8 through %cr31. Of these registers, only %cr11, the shift amount register, and %cr16, the interval
timer, are accessible to the user-level programmer.

Register operands are denoted as integer constants since the Assembler can differentiate between general

registers, space registers, floating-point registers, and literal values from context. In order to make

assembly code more readable, symbolic constants can be defined with the .EQU directive, and used as

register operands. In addition, the Assembler has many predefined mnemonic register names that can be

used instead of integers. These predefined registers have register types associated with them. The only

way to obtain register type checking is to use the .REG directive to assign a predefined register in the

operand field to a user-defined name in the label field. This permits type checking on user-defined

register names. The following example demonstrates correct usage of the .REG directive:

tbhlptr REG %r20

Predefined mnemonic registers are shown in the following tables. All of the mnemonics begin with the

% character, so they do not conflict with any programmer-defined symbols.

1-7

The Assembly Language

Table 1-2. General Registers

Zr 0 Ar 8 “X16 Zr 24

ar | zr 9 “r17 “25

zr 2 Zr 10 “118 “r 26

Ar 3 zr 1 i “r19 “r27

zr 4 Zr 12 “120 “128

Ar 5 zr 13 “r2 1 Zr 29

Zr 6 Ar 14 “22 Zr 30

“ar 7 “15 Ar 23 Zr 31

Table 1-3. Floating-Point Registers

“Af r0 “fr4 “fr 8 “fri2

“fr | Afr “fr9 “fr 3

“fr 2 “fr6 “*fr10 “fr 14

“fr 3 “fr7 “fri Afri 5

Table 1-4. Space Registers

“sr 0 *sr 2 “sr 4 yAS a)

“sr 1 “sr 3 “sr 5 “sr

1-8

Table 1-5. Control Registers

The Assembly Language

Registers

“AcrO

*cr 8

*”cr9

*Acr1O

“cr 11

Acr12

“%cr1 3

Acrl4

Acr1 §

“cr l6é

“Acr 17

“cr1&

“cr 19

Synonyms

Arctr

“pidr |

“”pidr 2

“CC

“Sar

“pidr 3

“Apidr 4

“1Va

“welem

“zitmr

APCsSq

*PCOg

“llr

Registers

“~cr 20

“cr 2 |

A~cr 22

“~cr23

“~cr 24

“cr 2 5

“cr 26

er27

Acr28

“cr 29

“cr 30

“Acr3}

Synonyms

“1sr

“#10Fr

Z*1IPSW

“eT

ZtrO A~Appda

Atri ~Ahta

Atr 2

Atr 3

“ztr4

Atr 5

Atr6

“tr /

1-9

The Assembly Language

A few additional predefined register mnemonics are provided in Table 1-5 to match the standard

procedure calling convention. This is discussed briefly in Chapter 2. For more detailed information see

the Procedure Calling Conventions Manual.

Table 1-6. Procedure Calling Convention Registers

Register Synonyms Description

“Yr 2 Arp Return link

“123 narg 3 Argument word 3

“AY 24 “Aarg 2 Argument word 2

“Yr 25 ware | Argument word 1

“I 26 narg 0 Argument word 0

ATL? yah) Data pointer

Zr 28 “ret 0 Return value

“Zr 29 “”retl %sl Return value, static link

AY 30 “SP Stack pointer

Ar 3 1 “Amrp Millicode return link

Ast | Asret “~Sarg Return value, argument

The Assembly Language

Expressions

Arithmetic expressions are often valuable in writing assembly code. The Assembler allows expressions

involving integer constants, symbolic constants, and symbolic addresses. These terms can be combined

with the standard arithmetic operators shown in Table 1-6.

Table 1-7. Standard Arithmetic Operators

Operator Operation

+ Integer addition

- Integer subtraction

* Integer multiplication

/ Integer division (result is truncated)

The multiplication and division operators have precedence over addition and subtraction. That 1s,

multiplications and divisions are performed first from left to right, then additions and subtractions are

performed from left to right. Thus, the expression 2+3*4 evaluates to 14.

Expressions produce either an absolute or a relocatable result. Any operation involving only absolute

terms yields an absolute result. Relocatable terms are allowed only for the + and - operators. The legal

combinations involving relocatable terms are shown in Table 1-7.

Table 1-8. Legal Combinations For Relocatable Terms

Operation Result

Absolute + Relocatable Relccatable

Relocatable + Absolute Relocatable

Relocatable - Absolute Relocatable

Relocatable - Relocatable (defined locally) Absolute

1-11

The Assembly Language

NOTE

The combination "relocatable-relocatablet+relocatable" is not permitted.

For example, assume the symbols MONTH and YEAR are relocatable, and JANUARY and FEBRUARY are

absolute. The expressions MONTH+JANUARY and MONTH+FEBRUARY -4 are relocatable, while the expressions

YEAR-MONTH and FEBRUARY -4 are absolute. The expression MONTH+JANUARY*#*4 is also legal and produces

a relocatable result, because JANUARY*4 is evaluated first, producing an absolute intermediate result that

is added to MONTH. The expression MONTH+YEAR is illegal, because the sum of two relocatable terms is not

permitted.

Because all Series 800 instructions are a single word in length, it is not possible to form a complete 32-bit

address in a single instruction. Thus, it is likely that the Assembler (or linker) may not be able to insert

the final address of a symbol into the instruction as desired. For example, to load the contents of a word

into a register, the following instruction could be used:

LDW START ,%r2

Because the LDW provides only 14 bits for the address of START, the Assembler or linker prints an error

message if the address of START requires more than 14 bits. There are two instructions, LDIL and ADDIL,

whose function is to form the leftmost 21 bits of a 32-bit address. The succeeding instruction, by using

the target of the LDIL or ADDIL as a base register, needs only 11 bits for the remainder of the address.

The Assembler provides special operators, called field selectors, that extract the appropriate bits from the

result of an expression. With the field selectors L% and R%, the previous example can be recoded as

follows:

LDIL L&START ,%r 1 sput left part into rt
LOW RASTART (%r1) ,%r2 ;add ri and right part

The field selectors are always applied to the final result of the expression. They cannot be used in the

interior of an expression. The field selectors shown are the two most commonly used. Table 1-8 shows

all the available field selectors and their meanings.

The Assembly Language

Table 1-9, Available Field Selectors

Field Selector Meaning

F% Full 32 bits (default)

LZ Right-justified, high-order 21 bits

RZ Low-order 11 bits

LS% High-order 21 bits after rounding to nearest page

RSZ% Low-order 11 bits, sign extended

LDZ Right-justified, high-order 21 bits after rounding to

next page

RDZ Low-order 11 bits, with negative sign

LRZ% L&%value with constant rounded to nearest multiple

of 8192

RRZ Rzvalue with constant rounded to nearest multiple

of 8192, plus the difference of the constant and the

rounded constant.

Since a page is 2048 bytes long, the selectors L%, LS%, and LD% extract a page number, and the
corresponding selectors R%, RS%, and RD% extract the offset relative to that page. The distinction is
whether the offset is always positive and between Oand Ox7ff (L%-R%), always negative and between
-Ox800 and -1 (LD%-RD%), or between -0x400 and Ox3ff (LS%-RS%). The LR% and RR% prefixes are
used for accessing different fields of a structure, allowing the sharing of the LR% computation. The

distinction is only important when using short addressing near a quadrant boundary, since only the left

part is used to select a space register. Chapter 2 explains this further. Each pair is designed to work

together just as L% and R% did in the previous example.

The field selectors may also be written F’, L’, R’, LS’, RS’, LD’, RD’, LR’, and RR’.

1-13

The Assembly Language

Parenthesized Sub-Expressions

The constant term of an expression may contain parenthesized sub-expressions that alter the order of

evaluation from the precedence normally associated with arithmetic operators. For example:

LABEL1-LABEL2+((6765+ (2048-1)) /2048) #2048

contains a parenthesized sub-expression that rounds a value up to a multiple of 2048.

Absolute symbols may be equated to constant terms containing parenthesized sub-expressions as in the

following sequence:

BASE .EQU 0x200
NEL .EQU 24
SIZE .£QU (BASE+4)#N EL

NOTE

The use of parentheses to group sub-expressions may cause ambiguities in

statements where parenthesized register designators are also expected.

1-14

~~

The Assembly Language

Operands and Completers

Machine instructions generally require one, two, or three operands that tell the processor what data to use

and where to store the result. Operands can identify a register, a location in memory, or an immediate

constant (that is, data that is coded into the instruction itself). The operation code determines how many,

and what kinds of operands are required.

The most frequently used machine instructions are those that involve only general registers. Most of

these instructions require three register operands that specify two source registers and one target register.

Each register operand must be an absolute expression whose value is between zero and 31. Typically, the

operand is just an integer constant, which is a symbolic constant that has been equated to a register

number, or a register mnemonic.

Register operands may use typing by means of a predefined or user-defined register name. Users may

define register names with the .REG directive as in the following example:

tblptr .REG %r20

Several instructions also provide access to space and control registers. When a space register is expected, a

register mnemonic or absolute expression whose value is between zero and 7 must be given. For a control

register, the value must be zero, or between 8 and 31. The following examples show a few machine

instructions with register operands:

SCRATCH ~EQU %ri18

ADD %r3 Hr’, %r4 7r3.+ r7 -> r4
SUB 1,2,3 sri - re -> r3

OR Sr? %r3,%r8 sinclusive or of r7?,r3 -> r8
OR SCRATCH ,0,%r7 scopy r18 to r7 (note: rO = 0)
MTCTL %r2,Asar sset shift amount register (cri11)
MFSP %sr4,%r10 ‘fetch contents of sr4

Operands designating memory locations usually consist of an expression and a general register used as a

base register. Some instructions also require a space register designation. In general, such operands are

written in the form expr(sr,gr) or expr(gr), as in the following examples:

local off ~EQU -64

L DW 4(%dp) ,%re
STW %r0, local of f-4(0,%sp)

LDW O0(%sr3,%r2) ,%r9
BLE $$mull (%sr7,0)

Notice that the space register can be omitted on instructions that require it, as in the first LDW instruction

shown in the previous example. If only one register is given, it is assumed to be the general register, and

the space register field in the machine instruction is set to zero. Remember that the register mnemonics

are equivalent to an integer constant. If the second LDW instruction is written as follows:

LDW O(%r2 ,%sr3) ,%r9 swrong !

an error message 1s displayed.

The expression in a memory operand is either absolute or relocatable. Absolute expressions are

meaningful when the base register contains the address of an array, record, or the stack pointer to whicha

constant offset is required. Relocatable expressions are meaningful when the base register is rO, or when

1-15

The Assembly Language

the base register contains the left part of a 32-bit address as illustrated in the following example:

LDIL L%glob,r1 sset up r1l for STW
STW %r9,R%glob(%r1)

Immediate operands provide data for the machine language instruction directly from the bits of the

instruction word itself. A few instructions that use immediate operands are shown below:

ADDIL L%var ,%dp
LDIL L%print ,%r1
ADDI 4.%r3,%r5
SUBI 0x1C0,%r14,%ret0O

Completers are special flags that modify an instruction’s behavior. They are written in the opcode field,

separated from the instruction mnemonic by a comma. The most common type of completer 1s a

condition test. Many instructions can conditionally trap or nullify the following instruction, depending

on the result of their normal operation. For example, notice the completers in the sequence below:

ADD ,NSV %r1.$r2,%r3
BLN handle oflo,%r0
OR %r3,%r4,%r5

The ,NSV in the ADD instruction nullifies the BL instruction if no overflow occurs in the addition

operation, and execution proceeds with the OR instruction. If overflow does occur, the BL instruction 1s

executed, but the ,N completer on the BL specifies that the OR instruction in its delay slot should not be

executed.

Each class of machine instructions defines the set of completers that can be used. These are described

with the individual instructions in Chapter 4.

The Assembly Language

Macro Processing

A macro is a user~defined word that calls a sequence of instructions. Including a macro in a source

program causes the sequence of instructions to be inserted into the program wherever the macro appears.

A user may define a word as a macro by using the .MACRO directive.

Detailed information about macro arguments, placement and redefinition of macros, nested macro

definitions, and nested macro calls is in Chapter 3 of this manual.

Defining New Instructions With Macros

If you are testing new CPU’s or coprocessors, you may need to use opcodes that are unknown to the

Assembler. A variant of a macro definition may be used to create a mnemonic for the instruction. After

being defined, the new mnemonic instruction can be invoked as easily as a standard instruction.

Opcodes, subopcodes, completers, and operands are encoded into the instruction word in a bit intensive

manner because all HP Precision Architecture instructions are one word, or 32-bits, in length. Bit fields

do not usually fall on byte or nibble boundaries. A nibble isa half byte.

To write a macro, you must specify explicitly which bit fields are to contain constants and which are to

contain macro arguments. The macroprocessor has no built-in knowledge of instruction formats.

Defining new instructions through macros 1s only possible because a convenient way to delimit bit fields

has been provided. It is up to the programmer to choose the correct bit field.

Bit positions within the 32-bit word are numbered from zero to 31, from left to right. A bit range is

indicated by the starting bit position followed by the ending bit position. The two bit positions should be

separated by two periods and enclosed in braces. The bit field beginning at bit position 6 and ending at

bit position 10 1s represented as:

{6.. 10}

If the bit field being assigned from is bigger than the bit field being assigned to, then a warning is issued

and the assigned from bit field is truncated on the left. When no bit field is specified for the assigned

from value, low-order bits are used until the value of the assigned from bit field becomes the same as the

width of the assigned to bit field. The assigned to bit field must always be specified.

No sign extension is provided by the Macro-assembler when bit fields are generated.

The Assembly Language

Example

PACK . MACRO BASE ,GREG,SREG, OFFSET

{0..5}=0x3E{26..31}

{6..10}=BASE{27..31}

{11..15}=GREG(27. .31}

{16..17}=SREG{30. .31}

{18..31}=OFFSET{18..31}

.ENDM

The above macro definition defines the macro PACK. The following explanation assumes that PACK is

invoked:

PACK %sp,%r19,%sr0, -52

Bit field O through 5 contains the six low-order bits cf the new opcode O0x3£, or binary 111110, entered

as a constant in the macro definition. Bit field 6 through 10 contains general register 30, or binary

11110. These are the five low-order bits of the argument BASE in the macro definition. Bit field 11

through 15 contains general register 19, or binary 10011. These are the five low-order bits of the

argument GREG in the macro definition. Bit field 16 through 17 contains space register O and represents

the five low-order bits of the argument SREG in the macro definition. Bit field 18 through 31 contains

binary 11111111001100, the OFFSET -52 which was entered as an argument to the macro definition.

Chapter 2

Programming for HP-UX

The Assembler is a flexible tool for writing programs, but every operating system imposes certain

conventions and restrictions on the programs that are intended to run on that system. This chapter

discusses the conventions that must be understood in order to write assembly language programs and

procedures for the HP 9000 Series 800 HP-UX operating system. Several Assembler directives are

mentioned in this chapter to place them ina meaningful context. A full discussion of these directives can

be found in following chapters.

Spaces

Virtual addressing on the HP Precision Architecture is based on spaces. A virtual address is composed of

a space identifier, which is either 16 or 32 bits long (depending on the hardware model), and a 32-bit

offset within the space. Thus, each space can contain up to 4 gigabytes, and there is a large supply of

spaces.

Every program on an HP-UX system is assigned two spaces when it is loaded for execution by the

operating system: one for code, and one for data. The HP-UX operating system makes the code space read

only, so that it can be shared whenever several processes are executing the same program. The data space

is writable by the new process, and is private to that process; that is, every process has a unique data space.

The actual space identifiers assigned to these two spaces can vary from one execution of the program to

the next; these numbers cannot be determined at compile time or link time. Generally, programmers do

not need to be concerned with the space identifiers, since the operating system places them in two reserved

space registers, where they remain for the duration of program execution. The identifier of the code

space is placed in space register 4 (sr4) and the identifier of the data space is placed in sr5.

When writing an assembly language program, declare a space named $TEXT$ for executable code, and a

space named $PRIVATE$ for modifiable data. Constant data, literals that you do not plan to modify

during program execution, can be placed in either space. Placing constant data in the $TEXT$ space

decreases the size of the non-sharable part of your program and improves the overall efficiency of the

operating system.

The particular space registers mentioned above play an important role in virtual addressing. While many

of the branching instructions, such as BL, BLR, and BV, are capable of branching only within the

currently executing code space (called PC-space), two of the branching instructions, BE and BLE, require

that you specify a space register as well as an offset. These instructions allow you to branch to code

executing in a different space. On HP-UX systems, all code for a program is contained in one space, so all

BE and BLE instructions should be coded to use sr4-.

In contrast, the memory reference instructions, such as LDW and STW, allow a choice between two forms

of addressing: long and short. With long addressing, you can choose any of the space registers | through 3

for the space identifier part of the virtual address. The space offset is formed as the sum of an immediate

displacement and the contents of a general register. With short addressing, one of the space registers

2-1

Programming for HP-UX

between 4 through 7 is chosen automatically, based on the high-order two bits of the general register.

Each space addressed by these four space registers is effectively divided into four quadrants, with a

different quadrant of each space accessible via short addressing.

On HP-UX systems, all of a program’s code is placed in the first quadrant of the $TEXT$ space (space

offsets from 0 through Ox3FFFFFFF). The data is placed in the second quadrant of the $PRIVATE$ space
(space offsets from Ox40000000 through Ox7FFFFFFF). Thus, literal data in the code space and

modifiable data in the data space can be addressed using the short addressing technique, without any

concern for the space registers.

You can define spaces other than $TEXT$ and $PRIVATE$ in a program file by declaring a special kind of
space called an unloadable space. Unloadable spaces are treated as normal spaces by the linker, but as the

name implies, are not actually loaded when a program is executed. Unloadable spaces are typically used

by compilers to store extra information within a program file. The most common example of an

unloadable space is $DEBUG$, which is used to hold symbolic debugging information.

The sort key attribute allows the programmer to contro] the placement of a space relative to the other

spaces. The linker places spaces with lower sort keys in front of spaces with higher sort keys.

The .SPACE directive is used to declare spaces. The assembly language programmer is not required to fill

one space before beginning another. When a space is first declared, the Assembler begins filling that

space. The .SPACE directive can also be used to return to a previously declared space, and the Assembler

continues to fill it as if there had been no intervening spaces.

2-2

Programming for HP-UX

Subspaces

While a space is a fundamental concept of the architecture, a subspace is just a logical subdivision of a

space. The Assembler places the program’s code and data into subspaces rather than spaces. Each

subspace belongs to the space that was current when the subspace was first declared. The linker groups

subspaces into spaces as it builds an executable program file. For more details see the Jd (UTIL) entry in

the HP-UX Reference manual. When the linker combines several relocatable files, it groups the subspaces

from each file by name, so that all subspaces with the same name are placed contiguously in the program.

Subspaces have several attributes. The alignment attribute specifies what memory alignment (in bytes) is

required in the virtual address space. The alignment can be any power of two, from 1 through 2048,

inclusive. Typically, the alignment is 4 or 8 to specify that the beginning of the subspace must be word or

double-word aligned. Normally, the alignment attribute is computed automatically by the Assembler

from the largest .ALIGN directive used within the subspace.

The quadrant attribute assigns the subspace to one of the four quadrants of its space. On HP-UX systems,

all subspaces in the code space must be in quadrant O, and all subspaces in the data space must be in

quadrant 1.

The access rights attribute specifies the access rights that should be given to each physical page in the

subspace. On HP-UX systems, all subspaces in the code space must have access rights of Ox2C (code page

executable at any privilege level). All subspaces in the data space must have access rights of Ox1F (data

page readable and writable at all privilege levels).

The sort key attribute allows the programmer to control the placement of a subspace relative to the other

subspaces in its space. The linker places subspaces with lower sort keys in front of subspaces with higher

sort keys.

The .SUBSPA directive is used to declare a subspace and its attributes. As with spaces, the assembly

language programmer can switch from one subspace to another, and the Assembler will fill each subspace

independently as if the source code had been presented one complete subspace at a time. When the

.SPACE directive is used to switch spaces, the Assembler remembers the current subspace in each space.

Several additional Assembler directives are provided as shorthand to declare and switch to some standard

spaces and subspaces. For example, the .CODE directive switches to the $TEXT$ space and the $CODE$

subspace, and the . DATA directive switches to the $PRIVATE$ space and the $DATA$ subspace.

You can declare as many subspaces as you can use, but the sort key attribute should be used carefully,

because the stack unwind mechanism reserves a range of sort keys (56 through 88) for use with the

$CODE$ subspace. Some of the standard subspaces and sort keys used by the compilers are shown in

Table 2-1. Directives that generate commonly used spaces and subspaces are found in Table 3-4.

2-3

Programming for HP-UX

Table 2-1. Standard Subspaces and Sort Keys

Space Subspace Sort Key Use

$TEXTS 8

$MILLICODE$ 8 Millicode library routines

$LITS$ 16 Literals

$CODE$ 24 Normal code

SUNWIND_ START$ 56 Stack unwind

$UNWIND$MILLICODE$ 62 Stack unwind

SUNWIND$ 64 Stack unwind

$UNWIND_ END$ 72 Stack unwind

$PRIVATE$ 16

$GLOBAL$ 8 Pascal global variables

$DATA$ 24 Normal global and static data

$COMMONS$S 24 FORTRAN BLOCK DATA

BSS 80 Uninitialized data and common

2-4

NOTE

By linker convention, programs should avoid using sort Keys less than 8 in

either space.

“ema”

Programming for HP-UX

Location Counters

Just as spaces can be divided into subspaces, subspaces can be further divided by using location counters.

You can use up to four location counters in each subspace, and the Assembler fills a separate area for each

location counter. When the assembly is complete, the subspace is formed by concatenating each of these

areas. All references relative to a location counter are relocated so that they are relative to the complete

subspace.

Unlike subspaces, however, the use of location counters is completely local to the Assembler. Once the

subspace is formed at the end of the assembly, the distinction among the individual areas built by location

counters disappears. No further reordering or grouping related to location counters is performed by the

linker.

This facility allows you to assemble related data into disjoint pieces of a subspace while keeping the source

code in a convenient order.

The .LOCCT directive is used to switch from one location counter to another. The Assembler

automatically remembers the previous value of each location counter within each subspace. When the

.SUBSPA directive is used to switch subspaces, the Assembler automatically begins using the location

counter that was last in effect in the new subspace.

2-5

Programming for HP-UX

Compiler Conventions

In order to write assembly language procedures that can both call to and be called from high-level

language procedures, it is necessary to understand the standard procedure calling convention and other

compiler conventions.

On many computer systems, each high-level language has its own calling convention. Consequently, calls

from one language to another are sometimes difficult to arrange, except through assembly code. The

architecture generally prescribes very few operations that must be done to effect a procedure call, and

there is often a pair of machine-language instructions to call a procedure and return from one. The HP

Precision Architecture provides no special procedure call or return instructions. There is, however, a

standard procedure calling convention for all high-level languages as well as the Assembler. It is tuned

for the architecture, and is designed to make a procedure call with as few instructions as possible.

Besides defining a uniform call and return sequence for all languages, the calling convention is important

for other reasons as well. In order to streamline the calling sequence, the return link is not saved on the

stack unless necessary and the previous stack pointer is rarely saved on the stack. Thus, it is not usually

possible to obtain a stack trace at an arbitrary point in the program without some additional static

information about each procedure’s stack frame size and usage. For example, you could not obtain a stack

trace while debugging or analyzing a core dump, or using the try-recover feature in Pascal. Obtaining a

stack trace is made possible by the stack unwind mechanism. It uses special unwind descriptors that

contain the exact static information needed for each procedure. These descriptors are generated

automatically by all high-level compilers as well as the Assembler. Each descriptor contains the starting

and ending address of a procedure’s object code, plus that procedure’s stack frame size, and a few flags

indicating, among other things, whether the return link is saved on the stack. Given the current program

counter and stack pointer, the stack unwind mechanism can determine the calling procedure by finding

the return link either in a register or on the stack. Also, it can determine the previous stack pointer by

subtracting the current procedure’s stack frame size.

The Assembler requires that you follow programming conventions to generate unwind descriptors. The

beginning and end of each procedure must be noted with the .PROC and .PROCEND directives. The

.CALLINFO directive supplies additional information about the procedure, including the stack frame size.

With this information, the Assembler creates the unwind descriptor. It can also generate the standard

entry and exit code to create and destroy the stack frame, save and restore the return link (if necessary),

and save and restore any necessary registers. These code sequences are generated at the points indicated

by the .ENTER and .LEAVE directives.

Arguments to procedures are loaded into general registers 26, 25, 24, and 23; these registers are named,

respectively, %arg0, %arg1, %arge, and %arg3. If more than four words of arguments are required, the

remaining arguments are stored in the caller’s stack frame in the variable argument list. The return value

should be returned in general register 28, called %retO. General register 29, called %ret1, is used for the

low-order bits of a double-word return value, while %retO contains the high order bits. In addition to

the argument and return registers, the procedure can use registers 19 through 22 and registers 1 and 31 as

scratch registers. Any other registers must be saved before use at entry and restored before exit.

Chapter 3 contains detailed descriptions of the Assembler directives described above. For a more

thorough discussion of the procedure calling conventions, refer to the Procedure Calling Conventions

Manual.

In order for an assembly language prucedure to be callable from another language or another assembly

language module, the name of the procedure must be exported. The .EXPORT directive does this. It also

allows you to declare the symbol type. For procedure entry points, the symbol type should be ENTRY.

2-6

Programming for HP-UX

The Assembler and linker treat all symbols as case sensitive, while some compilers do not. By convention,

compilers that are case insensitive uniformly convert all exported names to lower case. For example, it 1s

possible to declare a procedure that cannot conflict with Pascal procedure names by using upper case

letters. However, there is an aliasing mechanism in some compilers that allows you to declare a

case-sensitive name for external use. See the appropriate language reference manual for more

information.

Conversely, the . IMPORT directive allows you to reference a procedure name that is exported from

another module, either from the Assembler or the compiler. Once a procedure name has been imported, it

can be referenced exactly as if it were declared in the same module.

Data symbols can be exported and imported just like procedure names. However, not all compilers export

the names of global variables, or provide a mechanism to reference data symbols exported from an

assembly language module. For example, the HP Pascal/HP-UX compiler does not normally do this, while

the C/HP-UX compiler does). FORTRAN 77/HP-UX named common blocks are exported, but the names
of the variables within the common blocks are not.

It was mentioned before that data is allocated beginning from a virtual space offset Ox40000000. For

convenience as well as compatibility with future releases of HP-UX systems, all data in the $PRIVATE$

space must be accessed relative to general register 27, called %dp. Standard run-time startup code, from

the file /lib/crtO.o, must be linked with every program. This startup code declares a global symbol

called $global$ in the $GLOBAL$ subspace. This code also loads the address of this symbol into the %dp
register before beginning program execution. This register must not be changed during the execution of a

program. Since the %dp register is known to contain the address of $global$, the following single
instruction does the load as long as the displacement from $global$ to the desired location is less than 8

kilobytes:

LDW var-$global$(%dp) ,%r3

If the desired location is not known to be close enough to $global$, the following sequence must be used:

ADDIL L4var-$global$,%dp ‘result in ri
LDW R%var-$global$(%r1) ,%r3

To access items in the $PRIVATE$ space (global data), the following does not work:

LDIL Lovar,%r1 wrong
LDW R%var(%r1) ,%r3 swrong

This assumes that the operating system always allocates data at the same virtual space offset

O0x40000000.

Uninitialized areas in the data space can be requested with the .COMM (common) request. By convention,

these requests should always be made in the BSS subspace in the $PRIVATE$ space. The BSS should
not be used for anything else. Common requests are passed on to the linker, which matches up all requests

with the same name and allocates a block of storage equal in size to the largest request. If, however, an

exported data symbol is found with the same name, the linker treats the common requests as if they were

imports. FORTRAN 77/HP-UX common blocks are naturally allocated in this way: if a BLOCK DATA

subprogram initializes the common block, all common requests are linked to that initialized block.

Otherwise, the linker allocates enough storage in BSS for the common block. The C/HP-UX compiler
also allocates uninitialized global variables this way. In C, however, each uninitialized global is a separate

common request.

2-7

Programming for HP-UX

System Calls

The HP-UX operating system defines a large set of system calls. Refer to the HP-UX Reference manual
for more information. These system calls can be made indirectly by calling the interface routines in the C
run-time library, or they can be made directly from assembly code. All system calls are funneled through
a single entry point in the system space, which is identified by space register 7. Each system call is
assigned a unique number, which must be loaded into general register 22. The arguments to the system
call should be loaded into general registers 26, 25, 24, and 23, as necessary. When the system call returns,
a status code is returned in register 22. If the status code is zero, the system call succeeded and the return
value, if any, is in register 28. If the status code is nonzero, the system call failed and the error number is
found in register 28. A list of the system call numbers as well as the location of the system call entry
point is in the standard include file /usr/include/sys/syscall.h.

The following example of a code fragment shows a call to the read system call:

OR %r0,%r0,%argO ;file descriptor = 0
ADDIL L%buf-$global$,%dp
LDO RAbuf-$y .obal$(%r1) ,%argt sbuffer address
LDO 10,%arg2 slength = 10
LDIL L%0xC0000004,%r1

BLE R%OxCO000004 (%sr7 ,%r1) ;system call entry point
LDO 3,%re2 sread system call = 3

In the above code, the last instruction loads the constant 3 into register 22, and executes in the delay slot
of the BLE instruction.

2-8

Programming for HP-UX

Assembly Listing

The Assembler’s command line option, -l, causes an assembly listing to the standard output. For each line

of source code, the listing provides the line number, the subspace offset, the hexadecimal representation of

the assembled code (possibly flagged with an asterisk (#) to indicate address relocation), the source text, and

any comments.

Following is a line of assembly language as it appears in the source file:

SAVE LDO VAL(%r0) ,%r2o sretain value

The above line would appear in the assembly listing as follows:

line no. offset hex representation label opcode operands comment

16 0000004c (341400A) SAVE LDO VAL(%r0) ,%r20 ;retain value

The choice of line number 16 is arbitrary here. At the end of the assembly listing, a symbol table 1s

printed showing the name and value of each symbol in the file. A type field for each symbol, indicating

either absolute or relocatable, is included.

Certain types of source lines generate multiple instructions. Macro calls usually expand to several

instructions. The .ENTER and .LEAVE directives each generate more than one HP Precision Architecture

instruction. The predefined subspace directives, such as .CODE and .DATA, result in a space and a

subspace declaration. Procedures in the $CODE$ subspace generate stack unwind descriptors in the

SUNWIND$ subspace.

You have the choice of listing a section of assembled code in either the compressed or expanded form.

The placement of the .LISTON and .LISTOFF directives determines which code will be expanded during

listing. The directive .LISTON tells the Assembler to expand the listing of all subsequent source lines

until a .LISTOFF directive is encountered. .LISTOFF stays in effect until the occurrence of a .LISTON

directive. The default is . LISTOFF.

The directives .LISTON and .LISTOFF may be placed anywhere in the source text and always go into

effect immediately. .LISTON and .LISTOFF may be used as often as desired.

2-9

Chapter 3
Assembler Directives and

Pseudo-Operations

A set of Assembler directives allow you to take special programming actions during the assembly process.

These Assembler directives begin with a period (.) to distinguish them from machine instruction opcodes

or extended opcodes.

Table 3-1 lists the Assembler directives described in this chapter. These directives include those that

establish the procedure calling convention, declare common, and define spaces and subspaces. Table 3-2

lists those directives that are compiler generated and, therefore, are not used by assembly language

programmers. Table 3-3 lists the pseudo-operations that reserve and initialize data areas and generate

entry and exit code.

This chapter also includes Table 3-4 under "Programming Aids" which lists the predefined directives for

establishing standard spaces and subspaces.

Table 3-1. Assembler Directives

Directive Function

. ALIGN Forces location counter to the next larger multiple of the supplied

alignment value.

~CALL Specifies that the next statement is a procedure call.

»CALLINFO Provides information for generating Entry/Exit code sequences and for

creating stack unwind descriptors.

» COMM Requests common storage for a specified number of bytes.

» COPYRIGHT Inserts the specified string into the object module as a copyright notice.

. DOUBLE Initializes a double-word to a floating-point value.

~ END Terminates an Assembly language program.

~ENDM Marks the end cf a macro definition.

~ENTER Marks a procedure’s entry point and generates standard entry code.

(Continued on next page)

3-1

Assembler Directives and Pseudo-Operations

Table 3-1. Assembler Directives (Continued)

Directive Function

~EQU Assigns an expression to an identifier.

~ EXPORT Makes a specified symbol available to other modules.

~ FLOAT Initializes a double-word of storage to a floating-point value.

» IMPORT Specifies that the definition of the given symbol occurs in another module.

~ LABEL Permits a label definition to appear within a sequence of directives that

occur on a single line.

» LEAVE Marks a procedure’s exit point and generates standard exit code.

» LISTOFF Controls listing of expanded Assembler instructions.

. LISTON Controls listing of expanded Assembler instructions.

~ LOCCT Selects a location counter.

. MACRO Marks the beginning of macro definitions.

~ORIGIN Advances the location counter to a relative location from the beginning of

the current subspace.

. PROC Marks the first statement in a procedure.

. PROCEND Marks the last statement 1n a procedure.

.REG Attaches a type and number to a user-defined register name.

~ SPACE Declares a new space or switches back to a previous space.

~SPNUM Reserves and initializes a word of storage.

»SUBSPA Declares a new subspace or switches back to a previous subspace.

» VERSION Inserts the specified string into the current object module as a user-defined

version identification string.

3-2

Assembler Directives and Pseudo-Operations

Table 3-2. Compiler Generated Directives

Directive Function

~ ENTRY Marks the entry point of the current procedure.

~EXIT Marks the return point of the current procedure.

Table 3-3. Pseudo-Operations

Directive Function

. BLOCK and Reserves a block of data storage.

» BLOCKZ

BYTE Reserves 8 bits (byte) of storage and initializes it to the given value.

HALF Reserves 16 bits (half word) of storage and initializes it to the given value.

.STRING and Reserves the appropriate amount of storage and initializes it to the given

~STRINGZ string.

. WORD Reserves 32 bits (a word) of storage and initializes it to the given value.

3-3

Assembler Directives and Pseudo-Operations

Assembler Directives

The remainder of this chapter lists the Assembler directives and pseudo-operations in alphabetical order.

NOTE

The similar pseudo-operations, .BYTE, .HALF, and .WORD, are grouped
together under "Byte". The .EXPORT and .IMPORT directives are also

treated as one. Several of the descriptions include sample assembly code

sequences. You can enter these short code sequences, assemble them using

the -1 option then inspect the offsets and field values to see how that

particular directive controls the assembly environment.

3-4

Assembler Directives and Pseudo-Operations

The .ALIGN Directive

The . ALIGN directive advances the current location counter to the next specified "boundary."

Syntax

ALIGN [boundary]

Parameters

boundary An integer value for the byte boundary to which you want to advance the

location counter. The Assembler advances the location counter to that

boundary. Permissible values must be a power of 2 and can range from one

to 2048. The default value is 8 (doubleword aligned).

Example

. CODE

ADDIL L’ $WORDMARK$-$global$,%dp

B page

NOP

.ALIGN 2048

page

ADDI 1,%r1,%r1

.DATA

$WORDMARK$

~WORD OXOFFF
IMPORT $global$,DATA ©

This sample program adds a 21 bit field to the data pointer. Then a branch is taken to the label page

that has been page aligned.

3-5

Assembler Directives and Pseudo-Operations

The .BLOCK and .BLOCKZ Pseudo-Operations

The .BLOCK and .BLOCKZ pseudo-operations reserve a block of storage.

Syntax

.BLOCK[Z] [num bytes]

Parameters

num bytes An integer value for the number of bytes you want to reserve. Permissible

values range from zero to Ox7FFFFFFF, although the Assembler uses a

default value of zero if you omit specifying a parameter.

Discussion

The .BLOCK pseudo-operation reserves a data storage area but does not perform any initialization. The

. BLOCKZ pseudo-operation reserves a block of storage and initializes it to zero.

When you label a. BLOCK pseudo-operation, the label refers to the first byte of the storage area.

NOTE

Under the present implementation of the Assembler, the .BLOCK

pseudo-operation also initializes the reserved area to zero.

3-6

Assembler Directives and Pseudo-Operations

Example

.SPACE $TEXT$

.SUBSPA $CODE$

.BLOCK 64

swap LDW 0(2),1
STW 1,4(2)

~ END

~DATA

word0 » BLOCK OX20

words » WORD OXF FFF

The first example requests the Assembler to reserve 64 bytes of memory in the $CODE$ subspace. This

area is then followed by a "Load Word" and "Store Word" instruction. The second example reserves 32

bytes of memory in the $DATA$ subspace followed by one word intended as an end marker.

3-7

Assembler Directives and Pseudo-Operations

The .BYTE, .HALF, and .WORD Pseudo-Operations

The . BYTE, .HALF, and .WORD pseudo-operations reserve storage and initialize it to the given value.

Syntax

~ BYTE

HALF [intt value] [,init value]...
. WORD

Parameters

init value Either a decimal, octal, or hexadecimal number or a sequence of ASCII

characters, surrounded by quotation marks. If you omit the initializing

value, the Assembler initializes the area to zero.

Discussion

The .BYTE pseudo-operation requests 8 bits of storage; the .HALF pseudo-operation requests 16 bits of

storage; and the .WORD pseudo-operation requests 32 bits of storage. If the location counter is not

properly aligned on a boundary for a data item of that size, the Assembler advances the location counter

to the next multiple of that item’s size before reserving the area.

When you label one of these pseudo-operations, the label refers to the first byte of the storage area.

Operands separated by commas initialize successive units of storage.

Example

E ~ BYTE mee

F » WORD -32

- WORD OxX6ef fF 1234

The first pseudo-operation allocates a byte labeled "E" and initializes it to the character "[". The next

pseudo-operation advances the current subspace’s location counter to a word boundary, allocates a word of

storage labeled "F" and initializes that word to negative 32 (2’s complement). The last pseudo-operation

initializes a word of storage to the hexadecimal number 6EFF1 234.

3-8

Assembler Directives and Pseudo-Operations

The .CALL Directive

The .CALL directive marks the next branch statement as a procedure call, and permits you to describe the

location of arguments and the function return result.

syntax

.CALL [argument_desertption]

Parameters

argument desertptton Allows you to communicate to the linker the types of registers used to pass

floating point arguments and receive floating point return results in the

succeeding procedure call. Similarly, this information can be

communicated in the . EXPORT directive.

The linker requires this information because the Procedure Calling

Convention allows floating point arguments and return values to reside in

either general registers or floating point registers, depending on source

language convention. At link time, the linker ensures that both the caller

and called procedure agree on argument location. If not, the linker may

insert code to relocate the arguments (or return result) before control is

transferred to the called procedure or a procedure return is completed.

Up to 5 argument-deseripttons may be present in the .CALL directive;
one for each of the four arguments that may be passed in registers

(argO-arg3), and one for a return value (ret0O).

3-9

Assembler Directives and Pseudo-Operations

The form of the argument-description is:

ARG = location

where ARG may be:

ARGWO The first word in the argument list.

ARGW1 The second word in the argument list.

ARGW2 The third word in the argument list.

ARGW3 The fourth word in the argument list.

RTNVAL The return value for a procedure.

and location may be:

NO The argument word cannot be relocated. This should

be used for all non-floating point arguments; it is the

default assumed when an argument-descripttion is
omitted.

GR The argument word occurs in a general register.

FR The argument word occurs 1n a floating point register.

FU The argument word occurs in the upper half of a

floating point register.

Assembler Directives and Pseudo-Operations

Example

This program calls printf() with four arguments
whose register locations are described in the .CALL directive.
The format string goes into arg0, not to be relocated.

The string "“message’ goes into arg1, specified as a general register.
The floating-point value 57005.57005 goes into farge,

specified as a floating-point register.
The hexadecimal number Oxf00d goes into arg3,

specified as a general register.
The return value from printf() is not to be relocated.

w
e

w
e

w
e

w
e

w
e

w
o

w
e

w
e

w
e

~LIT

.-ALIGN 8

»WORD 1197387154 ; floating-point literal
»~BLOCKZ 12

fp2 . WORD 0

. CODE

main

. PROC

~CALLINFO CALLER,FRAME=24,SAVE_RP

~ENTER

LDIL L’fp2,%r1

LDO R’fp2(1) ,%r31 ; r31< - floating-point literal address
FLDWS -16(0,%r31) ,%fr4

LDO -64(%sp) ,%r19

FSTWS §%fr4,0(0,%r19)
ADDIL L°61453,0
LDO R’°61453(%r1) ,%r20

STW %r20,-68(0,%sp) ; end of stacking floating-point address
ADDIL L’string area-$global$,%dp
LDO R’string area-$global$(%r1),%r21 ; point to “message”
STW %r21,-60(0,%sp) ; stack ‘message address
LDO -64(%sp) ,%r2e
FLDWS 0(0,%r22) %fr5

FCNVFF ,SGL,DBL %fr5 ,%fr6 ; convert floating-point value

ADDIL L’string area-$global$+8 ,%dp
LDO R’string area-$global$+8(%r1) ,%argO ;point to format string
LDW -60(0,%sp) ,%arg1 - load “message argument
FSTDS 38,-16(0,%sp)

FLDWS -12(0,%sp) ,%fr6é ; load floating-point argument
LDWS -16(0,%sp) ,%arg3 ; load hexadecimal argument
LDW -68(0,%sp) ,%r1
STW %ri1,-52(0,%sp)
~CALL argw0=no,argwi=no,argwe=fr,argw3=no,rtnval=no

BL printf,2

NOP

» LEAVE

. PROCEND

.EXPORT main, ENTRY

.IMPORT printf,CODE

DATA
string area

3-11

Assembler Directives and Pseudo-Operations

-ALIGN 8

. STRINGZ "message.

.STRINGZ "args = %s,%f,%x\n-
IMPORT $global$,DATA

This example shows the use of the .CALL directive.

3-12

Assembler Directives and Pseudo-Operations

The .CALLINFO Directive

.CALLINFO is a required directive that describes the environment of the current procedure. The

infcrmation it provides is available to the .ENTER and .LEAVE pseudo-operations to control the entry and

exit code sequences they generate. Additional information is used by the Assembler to direct the creation

of stack unwind descriptors.

Syntax

.CALLINFO [FRAME=number]

[,NO UNWIND] [,SAVE_SP] [,SAVE_RP]
[, ENTRY GR=number]
[, ENTRY FR=number]

, [, ENTRY SR=number] {,CALLER | CALLS] [,NO CALLS]

[HPUX INT]

NOTE

The first parameter in the syntax example is not preceded by a comma, but

the following parameters are preceded by commas. This example uses

FRAME as the first parameter which is an arbitrary choice.

Parameters

FRAME=number Defines the combined size (in bytes) of the local variable area and variable

argument area needed by the procedure. The .ENTER pseudo-operation

allocates the desired space for local variables below the frame marker and

the . LEAVE pseudo-operation deallocates that space.

The number parameter must be a multiple of eight bytes. If a .CALLINFO

directive lacks this parameter, the Assembler assumes a default frame size

of zero.

The stack frame includes space for local variables and the variable

argument area. The size specified for the frame should not include space

for the stack frame marker or the fixed argument area. Allocation of these

areas is controlled by the CALLER and NO CALLS parameters. The inclusion

of the CALLER parameter always allocates space for the stack frame marker

and the fixed argument area. (See Figure 3-1.)

A frame marker is required if the assembly routine calls another routine.

3-13

Assembler Directives and Pseudo-Operations

NO_UNWIND

SAVE_SP

SAVE_RP

ENTRY GR=number

ENTRY FR=number

ENTRY SR=number

3-14

Because the frame marker contains 32 bytes and the fixed argument list

contains 16 bytes, the frame area is offset from the Stack Pointer by 48

bytes if both of these areas are present. However, the Assembler does not

allocate space for the frame marker and fixed argument list if the

procedure does not call any other routines (see the NO CALLS parameter).

When the total frame size for a procedure exceeds 8K bytes, the Assembler

uses gr3 to locate the previous frame marker when it encounters an

~ENTER or . LEAVE pseudo-operation. Under these circumstances, changing

the value of gr3 can cause serious consequences.

This 1s to be used only in the context of stand alone code or any procedure

that does not need to be reliably unwound.

Specifies that the current routine saves the value of Previous SP in its

frame marker at SP-4. Because the Assembler does not automatically save

the Stack Pointer when it generates Entry/Exit code sequences, you must

explicitly save this value in your program when using this key word. (You

can obtain the Previous SP value from pseudo-register number 64.)

Programming languages, such as Pascal, typically use this value for up-level

display pointers to reference local variables.

Specifies that the frame marker of the previous routine stores the value of

the Return Pointer (RP). The Assembler automatically saves the Return

Pointer when it encounters an .ENTER pseudo-operation, and it restores the

RP value when it encounters a .LEAVE pseudo-operation. Generally, any

procedure that calls other routines should save the RP value.

Specifies the high end boundary of the Entry/Save register partition. The

partition may extend over registers gr3 through gr18. If you omit this

parameter, none of the registers are saved.

When a procedure uses these registers, the Assembler saves their values

when it encounters an .ENTER pseudo-operation and restores these values

when it encounters a . LEAVE pseudo-operation. The called routine saves

these registers upon entry and restores them upon exit, so values in

Entry/Save registers are preserved across a procedure call.

NOTE

See the previous description of the FRAME

parameter regarding the use of gr3.

Specifies the high end boundary of the Entry/Save floating-point register

partition. The partition includes fri2 through fri5. The Assembler

automatically saves these registers when it encounters an .ENTER pseudo-

Operation and restores them when it encounters a .LEAVE pseudo-

operation.

Specifies the high end boundary of the space register partition. The

CALLER

or

CALLS

NO CALLS

HPUX_INT

Assembler Directives and Pseudo-Operations

partition currently contains only sr3. When the .CALLINFO directive

includes this parameter, the Assembler automatically saves the Space

Register when it encounters an .ENTER pseudo-operation and restores this

register when it encounters a . LEAVE pseudo-operation.

Indicates that this procedure calls other routines so it requires space in the

stack for a frame marker and a fixed argument hist. (When a program 1s

assembled using the -f option, this becomes the default case.) The

Assembler allocates this space (48 bytes) when it encounters an .ENTER

pseudo-operation and deallocates this space when it encounters a .LEAVE

pseudo-operation.

The frame marker and fixed argument list area occur at the top of the

stack so you must take this space into account when locating local variables

on the stack. You must allocate an area (using FRAME=) for a variable

argument list when this area 1s needed.

CALLER does not imply the existence of the parameter SAVE_RP.

The CALLER and CALLS parameters are equivalent.

Indicates that the procedure does not call other procedures and, therefore,

does not require a frame marker on the stack. This is the default case

unless the program is assembled using the -f option.

Specifies that this procedure is an interrupt procedure. This is necessary

for the stack unwind mechanism.

A stack frame consists of a pointer to the top of the frame, a frame marker, a fixed argument list, and a

variable argument list. Figure 3-1 illustrates these areas as an inverted stack.

3-15

Assembler Directives and Pseudo-Operations

3-16

SP-64:

SP-60:

SP-56:

SP-52:

SP-48:

SP-44:

SP-40:

SP-36:

SP-32:

SP-28:

SP-24:

SP-20:

SP-16:

SP-12:

SP-8:

SP-4:

SP:

Variable Arguments

arg word 7
arg word 6

arg word 5

arg word 4

Fixed Arguments

arg word 3 / ARG3
arg word 2 / ARG2
arg word 1 / ARG1
arg word 0 / ARGO

Frame Marker

Reserved

New RP
Static Link
Clean Up

Extension Pointer

Previous SP

Top of Frame

Stack Pointer

Figure 3-1. Stack Frame

Assembler Directives and Pseudo-Operations

Discussion

When a program uses the .CALLINFO directive, all entry and exit code must follow the Procedure Calling

Convention and the Assembler automatically generates the necessary code. The parameters in the

»CALLINFO directive govern the generation of the Entry/Exit code sequence (except for SAVE SP).

Example

CODE ; declare space and subspace

main

. PROC ; delimit procedure entry
»~CALLINFO CALLER,FRAME=0,SAVE_ RP ; no local variables, need return

~ENTER ; insert entry code sequence

ADDIL L’stringinit-$global$,27 ; point to data to be printed
LDO R’stringinit-$global$(1),26 ; place argument to printf

make routine known to linker

external procedure declaration

.EXPORT main,ENTRY

.IMPORT printf,CODE
END

~CALL ; set up for procedure call

BL printf,2 ; call printf, remembering from where

NOP

» LEAVE ; insert exit code sequence

. PROCEND ; delimit procedure end

.DATA ; declare space and subspace

stringinit ; mark use of global data subspace

.STRINGZ “hello world\n' 3; declare some data
~IMPORT $global$,DATA ; get data reference point

CODE ; re-enter code subspace

:

This example uses the C printf routine. It illustrates most of the directives to be used when assembly

language programmers follow the standard procedure calling convention.

3-17

Assembler Directives and Pseudo-Operations

The .COMM Directive

The .COMM directive makes a storage request for a specified number of bytes.

Syntax

label .COMM [num bytes]

Parameters

label Labels the location of the reserved storage.

num bytes An integer value for the number of bytes you want to reserve.

Assembler uses a default value of 4 if the .COMM directive lacks a

num bytes parameter. Permissible values
Ox 7FFFFFFF.

Discussion

The .COMM directive declares a block of storage that may be thought of as a common block. You must

label every .COMM directive. The linker associates the Label with the subspace in which the .COMM
directive is declared and allocates the necessary storage within that subspace.

.COMM appear only in the BSS subspace of the $PRIVATE$ space. If the Label of a .COMM directive
appears in several object modules, the linker uses the maximum size specified in any module when it

allocates the necessary storage in the current subspace.

Example

BSS
mydata .COMM 16

This example reserves 16 bytes of storage for mydata.

3-18

It is recommended that

Assembler Directives and Pseudo-Operations

The .COPYRIGHT Directive

The .COPYRIGHT directive inserts a company name and date into the object module as a copyright notice.

syntax

.COPYRIGHT ‘company name[, date]"’

Parameters

company name, date A sequence of ASCII characters, surrounded by quotation marks. The

string can contain up to 256 characters. When a comma follows the

company name, the next text 1s expected to be the date. The default date is

198%.

Example

COPYRIGHT ‘company name, date"
CODE

~EXPORT main,ENTRY

main

. PROC

~CALLINFO

~-ENTER

LDI 2 .%r5

ADDI 2 .%r5,%r6

~ LEAVE

. PROCEND

This program places a copyright notice in the object file. Once the copyright notice is in the object file,

the HP-UX utility, strings, is used to access it.

NOTE

This directive can appear anywhere in the source file, but may appear only

once.

The following is the standard copyright message placed in the copyright header of the object file:

Copyright company name, date. All rights reserved. No part of this
program may be photocopied, reproduced, or transmitted without

prior written consent of company name.

Assembler Directives and Pseudo-Operations

The .DOUBLE Directive

The .DOUBLE directive initializes a double-word to a floating-point value calculated from the parameters

provided. If the location counter is not aligned on a word double-word boundary, it is forced to the next

multiple of eight. If the statement is labeled, the label refers to the first byte of the storage area.

Syntax

.DOUBLE integer [.’decimal][E’[-’] power]

Parameters

integer Specifies the whole number part of a decimal number.

decimal Specifies the fractional part of a decimal number.

power Specifies the power of ten to raise a decimal number. To raise the decimal
number to a negative power of ten, place a minus sign (-) directly in front

of the power specified.

Discussion

Each of the following examples initializes two words of memory to floating-point quantities: 0.00106

and 400000. 0 respectively.

Example

dec vali .DOUBLE 10.6E-4

dec vale ~.DOUBLE 0.4E6

3-20

Assembler Directives and Pseudo-Operations

The .END Directive

The .END directive terminates an assembly language program.

Syntax

~END

Discussion

This directive is the last statement in an assembly language program. If a source file lacks an .END

directive, the Assembler terminates the program when it encounters the end of the file.

Example

» CODE

~-EXPORT double,ENTRY

. PROC

double

~CALLINFO

~-ENTER

ADD %argd,%argd,%retO
» LEAVE

. PROCEND

~END

A file that omitted the last line of this sample program would produce identical results.

3-21

Assembler Directives and Pseudo-Operations

The .ENDM directive

The .ENDM directive marks the end of a macro definition. The macro definition is entered into the macro

table and the remaining source lines are read in and assembled. An .ENDM directive must always

accompany a .MACRO directive.

Syntax

»ENDM

Example

QUADL .MACRO WD1,WD2,WD3,WD4
-ALIGN 16
»WORD WD!
»-ALIGN 16
»WORD WD2
-ALIGN 16
»WORD WD3
-ALIGN 16
»WORD WD4
»ENDM

This example defines the macro QUADL; it aligns the data specified in the macro parameters on quad word

boundaries.

The .ENDM directive delimits the end of the definition of QUADL.

3-22

Assembler Directives and Pseudo-Operations

The .ENTER and .LEAVE Pseudo-Operations

The .ENTER and .LEAVE pseudo-operations mark a procedure’s entry and exit points. They instruct the

Assembler to generate procedure entry and exit code sequences based on the information provided in the

~CALLINFO directive.

Syntax

-ENTER

» LEAVE

Discussion

The .ENTER pseudo-operation marks an entry point for the current procedure. Every procedure

following the standard procedure calling convention must contain one .ENTER pseudo-operation. The

. LEAVE pseudo-operation marks a procedure’s exit point. Every procedure following the standard

procedure calling convention must contain one .LEAVE pseudo-operation.

When the Assembler encounters an .ENTER pseudo-operation, it generates an entry code sequence

according to the parameters in the .CALLINFO directive for that procedure. Similarly, when the

Assembler encounters a . LEAVE pseudo-operation, it generates an exit code sequence according to the

parameters in the .CALLINFO directive for that procedure.

Example

~SPACE $TEXT$

.SUBSPA $CODE$

entrypt

. PROC

~CALLINFO

~ENTER

SH1ADD %argO,%argi,%retO
» LEAVE

. PROCEND

»~EXPORT entrypt,ENTRY

~ END

This example shows the placement of the .ENTER and . LEAVE pseudo-operations.

3-23

Assembler Directives and Pseudo-Operations

The .ENTRY and .EXIT Directives

~ENTRY and .EXIT are compiler generated directives that mark the entry point and return point of the

current procedure.

Syntax

» ENTRY

~EXIT

Discussion

The . ENTRY directive signifies that the next statement is the beginning of an entry point for the current

procedure. The .EXIT directive signifies that the next statement initiates a return from the current

procedure. These directives are issued by compilers and are not used by assembly language programmers.

Example

»~ENTRY ;

STW 2,-20(0,30) ;

LDO 48 (30) ,30 ;

ADDIL L’$THISMODULE$-$global$,27 ;

~CALL ;

BL printf ,2 ;

LDO R’ $THISMODULE$-$global$(1),26 ;

L$exit1 .
LDW -68(0,30),2 ;

BV 0(2) ;

EXIT ;

This example shows a sequence of compiler-generated assembly code.

3-24

proc entry code follows

stack the return pointer

set up user stack pointer
point to printf data

set up for printf call

call printf thru RP

insert argument to printf

hide from linker
get callee RP

exit thru RP

end of exit sequence

Assembler Directives and Pseudo-Operations

The .EQU Directive

The .EQU directive assigns an expression value to an identifier.

syntax

symbolic_name .EQU value

Parameters

symbolic name Names the identifier to which the Assembler assigns the expression.

value An integer expression. The Assembler evaluates the expression, which must

be absolute, and assigns this value to symbolic name. If the expression
references other identifiers, each identifier must be defined before the .EQU

directive attempts to evaluate the expression.

NOTE

The Assembler prohibits the use of offset values (instruction labels) and

imported symbols as components of an expression.

Example

loci .EQU QO

loce .EQU loci+4

~SPACE $TEXT$

.SUBSPA $CODE$

LDW loc! ,%r1
STW %ri,loc2
~END

This is a valid assembly program because the definition of loc! comes before the definition of loc2.

Reversing the first two statements, however, produces an error condition.

3-25

Assembler Directives and Pseudo-Operations

The .EXPORT and .IMPORT Directives

The .EXPORT and .IMPORT directives allow symbols to be defined in one program but used in other

programs.

Syntax

-EXPORT symbol [,type] [,argument-description]
or

-IMPORT symbol [,type]

Parameters

symbol The name of an identifier whose definition is being exported or imported.

type A linker symbol type that can take one of the following values:

ABSOLUTE Designates an absolute symbol.

DATA Designates a data symbol.

CODE Designates a code location. The location can not be a

procedure entry.

ENTRY Designates the entry point of a procedure.

MILLICODE Locates code for the entry point of a millicode

subroutine.

PLABEL Locates a pointer to a procedure.

PRI_PROG Designates the primary program entry point. The

outerblock of Pascal and the main program in

FORTRAN are type PRI_ PROG.

SEC PROG Designates a secondary program entry point.

3-26

Assembler Directives and Pseudo-Operations

argument-descriptton Allows you to communicate to the linker the types of registers used to
receive floating point arguments and return floating point return results.

Similarly, this information can be communicated in the .CALL directive.

The linker requires this information since the Procedure Calling

Convention allows floating point arguments and return values to reside in

either general registers or floating point registers depending on source

language convention. At link time, the linker ensures that both the caller

and called procedure agree on argument location. If not, the linker may

insert code to relocate the arguments (or return result) before control 1s

transferred to the called procedure or a procedure return is completed.

The form of the argument-descriptton is described in the discussion of
the .CALL directive. Refer to the .CALL directive in this chapter for more

information.

Discussion

Both the .EXPORT and .IMPORT directives use a series of keywords to define a symbol to the linker.

These keywords declare the symbol’s type, and its argument relocation information if the symbol is the

name of a procedure.

Because the .IMPORT directive specifies that another object module contains this symbol’s formal

definition, the Assembler does not associate an imported symbol with any particular subspace.

When an .IMPORT directive lacks a type parameter, the Assembler assigns the type of the current

subspace (either CODE or DATA) to the symbol.

Example

. IMPORT symname,CODE

. CODE

LDIL L’symname ,%r1
BLE,n R’symname(%sr4,%r1)
NOP

~END

This example imports the symbol symname, then loads the right part of symname with respect to gr1 into

gree.

3-27

Assembler Directives and Pseudo-Operations

The .FLOAT Directive

The .FLOAT directive initializes a double-word of storage to a floating-point value calculated from the

parameters provided. If the location counter is not aligned on a word boundary, it is forced to the next

multiple of four. If the statement is labeled, the label refers to the first byte of the storage area.

Syntax

.FLOAT integer [°.’dectmal][’E’[’-"]power]

Parameters

integer Specifies the whole number part of a decimal number.

decimal Specifies the fractional part of a decimal number.

power Specifies the power of ten to raise a decimal number. To raise the decimal

number to a negative power of ten, place a minus sign (-) directly in front

of the power specified.

Discussion

Each of the following examples initializes one word of memory to floating-point quantities: 0.00096 and

3400000. 0 respectively.

Example

factor! .FLOAT 9.6E-4

factore .FLOAT 3.4E6

3-28

Assembler Directives and Pseudo-Operations

The .LABEL Directive

The . LABEL directive permits a label definition to appear within a sequence of instructions that occur on
a single line.

Syntax

.LABEL label id

Parameters

label _ id Names the label identifier.

NOTE

The .LABEL directive is especially useful when using the M4 macroprocessor

or the C pre-processor (cpp). You would normally use this directive in a
DEFINE macro that includes multiple instructions. However, because the

Assembler does not process M4 or cpp style macros, you must run programs

that contain the .LABEL directive through the M4 pre-processor or the C

pre-processor (cpp).

Example

#define Loop(xx) LDO xx(%r0),%r1 ¢ .LABEL Loop ! ADDI,= -1,%r1,%r1 \
' BL Loop,%rO ' NOP ! LDI 1,%retO ; macro

. CODE

step ten

. PROC

»~CALLINFO

»~ENTER

Loop(10)
» LEAVE

. PROCEND

EXPORT step ten,ENTRY

This example defines a CPP macro named Loop.

3-29

Assembler Directives and Pseudo-Operations

The .LISTOFF and .LISTON Directives

The .LISTOFF and .LISTON directives control the expansion of instructions for all macro invocations, all

predefined subspace declarations, and the .ENTER and .LEAVE pseudo-operations. .LISTOFF causes the

Assembler to cease listing expanded instructions until a .LISTON directive is encountered. .LISTON

causes the Assembler to list expanded instructions until a .LISTOFF directive is encountered. The default

is .LISTOFF.

syntax

»LISTOFF
» LISTON

The following is an example of .LISTON in an assembly listing of a procedure containing a macro

invocation.

3-30

Example

line offset

1

2

o
o
m

Bp
W

©

O
N

10

11

12

13

14
15
16

00000000

00000004

00000008

0000000C

00000010
00000014

00000018
OO0000IC

00000020

00000024

00000028

40000000

hexcode

(6BC23FD9)
(37DE0060)
(2B600000)
(683A0000)

(2B600000)
(48340000)

(AESF3FF5)
(08000240)

(4BC23F 79)

(E840c000)

(37CO3FA1)

(00000000)

label

call DECR

LAB

count

Assembler Directives and Pseudo-Operations

opcode

» LISTON

. CODE

.SPACE $TEXT$,

.SUBSPA $CODE§$,

. PROC

»~CALLINFO
~ENTER
STW
LDO
ADDIL
STW
DECR

ADDIL
LDW

ADDIBF ,=

NOP

» LEAVE

LOW

BV

LDO

- PROCEND

» EXPORT

DATA

operands (comment)

SPNUM=0 , SORT=0

QUAD=0 , ALIGN=8 , ACCESS=0Oxec

;proc label

FRAME=0,SAVE_RP

2,-0x14(0,0x1E)
0x30(0x1E),Ox1E
L’ count-$global$,%dp
%argd,R’ count-$global$(%r1)
mark,count;

macro invocation

L’ VAL-$global$,%dp
R’VAL-$global$(%r1) ,%r20o

-1,%r20, LAB

-0x44(0,0x1E),2
0(2)
-0x30(0x1E),0

call _DECR,ENTRY

SPACE $PRIVATE$, SPNUM=1,SORT=16
.SUBSPA $DATA$,

. IMPORT

. WORD
»=LISTOFF

QUAD=1,ALIGN=8
ACCESS=0x 1f
$global$
0

In the above example, if . LISTOFF had been used, the macro invocation DECR, and the directives .CODE,

~DATA, .ENTER, and .LEAVE, would not have been expanded in the assembly listing.

3-31

Assembler Directives and Pseudo-Operations

The .LOCCT Directive

The .LOCCT directive specifies where subsequent code should occur in one of the four location counters of

the current subspace. Note that the . LOCCT directive is not permitted within a procedure.

Syntax

.LOCCT [loc_number]

Parameters

Loc number

Example

~ CODE

» LOCCT

ldvali

LDIL

LDO

» LOCCT

val . WORD

» LOCCT

ldvale

LDIL

LDO

~ LOCCT

vale . WORD

This example uses two location counters to separate code from data.

A location counter number of the current subspace. The permissible values

are 0, 1, 2,and 3. The default is zero.

0

L’val1,%ri19Q
R’val1(%r19) ,%r19
1

57005

0

L’val2,%r20

R’val2(%r20) ,.%r2o
1

61453

In the assembled code, everything

under location counter 0 comes first, followed by everything under location counter 1, and so on.

3-32

Assembler Directives and Pseudo-Operations

The .MACRO Directive

The .MACRO directive marks the beginning of macro definitions.

Syntax

label .MACRO [formal_parameter] [,formal_parameter]...

Parameters

formal_parameter Specifies a string of characters treated as a positional parameter. The ith

actual parameter in a macro invocation is substituted for the zth formal

parameter in the macro declaration wherever the formal parameter appears

in the body of the macro definition.

Normal Assembler syntax is observed within macro definitions except text substitution is assumed for

formal parameters. The following line 1s an example of a macro declaration:

DECR »-MACRO LAB, VAL

LAB and VAL are formal parameters. Their actual values are determined by the first and second

parameters on any invocation of the macro DECR. On the macro invocation, the parameters are delimited

by commas. Successive commas indicate a null parameter, causing the expanded macro to substitute null

for one of its formal parameters. When the number of formal parameters exceeds the number of actual

parameters, null parameters are inserted for the excess parameter positions. When the number of actual

parameters exceeds the number of formal parameters, a warning is issued and the excess parameters are

ignored.

3-33

Assembler Directives and Pseudo-Operations

Example

DECR . MACRO LAB, VAL
SETP ADDIL L’VAL-$global$,%dp

LDW R’VAL-$global$(%r1) ,%r20
LAB

ADDIBF,= -1,%r20,LAB
NOP
~ENDM

The above macro definition defines a simple counter or timer call DECR. Following is an invocation to

DECR:

DECR LOOP ,COUNT

LOOP and COUNT are the actual parameters that are specific to this particular invocation of the macro

DECR.

During macro expansion, textual substitution for positional parameters is performed in the body of the

macro definition. Substitution is performed on strings of characters that are delimited by blanks, tabs,

commas, or semicolons. If the string matches one of the formal parameters, it is replaced with the

corresponding actual parameter.

When a macro definition contains a label, the expanded form of the macro adds a unique suffix to the

label for each instance the macro is invoked. This unique suffix prevents duplicate symbols from

occurring and prevents the label from being referenced from outside the body of the macro definition.

This suffix also contains a number that is used as a counter by the Assembler.

3-34

Assembler Directives and Pseudo-Operations

Examples

PRINT »~MACRO DATA ADDR
ADDIL L°DATA_ ADDR ,%dp
~CALL

BL print ,%rp
LDO R’DATA_ADDR (%r 1),%argO

.ENDM

The above example defines the macro PRINT to call printf. The macro parameter DATA_ADDR is used to
set up the argument to be passed to printf.

STORE »~MACRO REG,LOC
LDIL L’LOC-$global$,%r1
STW REG,R’ LOC-$global$(%r1)

»ENDM

The above example defines the macro STORE. STORE places the contents of the register REG, the first

macro parameter, into the memory address LOC, the second parameter.

NOTE

Although there is no upper limit on the number of parameters or

arguments in a macro definition, no single macro parameter may exceed

200 characters.

Discussion

Macro definitions may appear wherever and however often as necessary within source code. Macro

definitions may occur inside or outside of spaces, subspaces, and procedures.

Since the Assembler always uses the most recently encountered definition, macros may be redefined as

often as desired.

NOTE

A macro may not be defined within the body of another macro definition.

Although nested macro definitions are not allowed, nested macro calls are. A nested macro call occurs

when one macro is invoked within the definition of another macro. A macro may not be invoked within

its own definition. Macros can only be invoked after being defined.

3-35

Assembler Directives and Pseudo-Operations

The .ORIGIN Directive

The .ORIGIN directive advances the location counter to the specified location.

Syntax

ORIGIN [location]

Parameters

Location An integer value for the offset you want to advance the location counter.

Permissible values range from zero to OxX7FFFFFFF. The default value is

zero. The value specified cannot be less than the current value of the

location counter.

When the Assembler encounters an .ORIGIN directive, it issues a . BLOCK

pseudo-operation of a size calculated to advance the location counter to the

requested origin. (See the discussion of the . BLOCK pseudo-operation.)

Example

CODE

XOR %r2i Pree ~re3
B idx

NOP

-ORIGIN 64

idx LDWX %r23(0,0) ,%r3

~END

This sample program does an exclusive OR operation and advances the location counter to 64 bytes where

the label idx is located as a branch target.

3-36

Assembler Directives and Pseudo-Operations

The .PROC and .PROCEND Directives

The .PROC and .PROCEND directives bracket the statements within a procedure.

Syntax

. PROC

. PROCEND

Discussion

The .PROC directive signifies that the next statement is the first statement of a procedure. The

.PROCEND directive signifies that the previous statement was the last statement of the procedure.

Switching spaces or subspaces within a procedure is not permitted.

Every procedure must contain a .CALLINFO directive and normally contains an . ENTER and .LEAVE

pseudo-operation. The only exception to the latter rule occurs in procedures that are either

compiler-generated or created by programmers who are writing their own entry and exit code sequences.

NOTE

Because the .ENTER and .LEAVE pseudo-operations guarantee that the

stack unwind process works correctly, you should consistently use these

directives rather than writing your own entry and exit code sequences.

Example

. CODE

test

. PROC

~.CALLINFO

~-ENTER

COMCLR,= *argd, garg! ,%retO
LDI 1,%retO

» LEAVE

. PROCEND

~-EXPORT test

This template shows a procedure that follows the standard procedure calling convention.

3-37

Assembler Directives and Pseudo-Operations

The .REG Directive

The .REG directive, which must be labeled, attaches a type and number to a user-defined register name. —

The new register name may optionally begin with %.

Syntax

label .REG [typed register]

Parameters

typed_register Must either be one of the predefined Assembler registers or a previously

defined user-defined register name. All predefined Assembler registers

begin with %.

Example

shift .REG %SAR

The example above defines the register shift with control register type and register number eleven. %SAR LL

is a synonym for control register eleven, the shift amount register.

3-38

Assembler Directives and Pseudo-Operations

The .SPACE Directive

The .SPACE directive starts a new space or switches back to an old space.

Syntax

.SPACE name [,SPNUM=value] [,UNLOADABLE]

[,NOTDEFINED] [,PRIVATE] [,SORT=<value>]

Parameters

name

SPNUM=value

UNLOADABLE

NOTDEF INED

PRIVATE

SORT=va lue

Discussion

An identifier that names the new space.

A space number constant that provides a specific number for the current

space. Its use is currently optional and is ignored by the linker. If the first

parameter of the .SPACE directive is an integer, it will be interpreted as

the space number and any remaining parameters will be ignored.

Specifies that the space resides on disk and is not loadable into main

memory. Debugger data is a typical example of an unloadable space.

Specifies that the definition for this space occurs in another object module.

Specifies that other programs cannot share the data in this space.

Enforcement of this directive depends on the operating system.

Provides an integer value for the sort key. The linker orders the spaces in

the output object module according to this key. It is suggested that the

number "8" be used for space $TEXT$ and the number "16" be used for

$PRIVATES.

The first time the Assembler encounters a .SPACE directive with a new name, it uses that name to declare

a new space. As this is the defining occurrence of that space, additional keywords can describe attributes

for that space.

If the Assembler encounters subsequent .SPACE directives with that name, it continues that space. In this

case, where the program is re-entering a previously defined space, the .SPACE directive can only contain

the space name; other Keywords to describe the space are illegal.

3-39

Assembler Directives and Pseudo-Operations

A space can contain from one to four discrete quadrants (See the QUAD parameter of the .SUBSPA

directive.) When you divide a space into multiple quadrants, you must define all the subspaces within

each quadrant as a group. If subspaces for a quadrant are defined individually, program operation 1s

unpredictable. The Assembler, however, does not check for this condition.

Example

.SPACE $TEXT$

.SUBSPA $CODE$, QUAD=0 ,ALIGN=8 , ACCESS=Oxec , SORT =24

.SPACE $PRIVATE$, 1

.SUBSPA $DATA$, QUAD=1 , ALIGN=8 , ACCESS=0x1f,SORT=24

.SUBSPA BSS, QUAD=1 , ALIGN=8 , ACCESS=0x1f,SORT=80, ZERO

~SPACE $myspace$
.SUBSPA $mys pace ADDRESS$; ALIGN=4, ACCESS=0xcdc , UNLOADABLE

The above example shows some of the standard "space" definitions in a typical assembly language program.

3-40

Assembler Directives and Pseudo-Operations

The .SPNUM Directive

The .SPNUM directive reserves a word of storage and initializes it with the space number of the space

named by the operand. Only one operand is allowed and any label present is offset at the first byte of the

storage just initialized.

Syntax

-SPNUM name

Parameters

name Specifies the name of a space whose space number is used to initialize a

word of storage.

Example

~ SPACE $PRIVATE$,SPNUM=1 SORT=16

. SUBSPA $DATA$, QUAD=1, ALIGN=8 , ACCESS=0x1f SORT=24

data_ref

. WORD OxFFFF

LOG ~SPNUM $PRIVATE$

In the above example, the space number of $PRIVATE$, 1, is stored as the address of the symbol LOG by

the .SPNUM directive.

NOTE

Space numbers are ignored by the linker.

3-41

Assembler Directives and Pseudo-Operations

The .STRING and .STRINGZ Pseudo-Operations

The .STRING pseudo-operation reserves storage for a data area and initializes it to ASCII values. The

.STRINGZ pseudo-operation reserves storage the same as .STRING, but appends a zero byte to the data.

This creates a C language type string. If the statement is labeled, the label refers to the first byte of the

Storage area.

syntax

.STRING[Z] “init_value"

Parameters

tntt_ value A sequence of ASCII characters that are surrounded by quotation marks. A

string can contain up to 256 characters.

Specifies a sequence of ASCII characters enclosed in quotation marks. The

quotation marks are not generated into the storage area. The HP-UX style

escape sequences \O, \n, \t, \b, \r, \f, \\, and \" are recognized.
In addition, the escape sequences \X or \x followed by two hexadecimal
digits can be used to represent any 8-bit character (the HP-UX sequence \0O

becomes \X00).

Discussion

The .STRING pseudo-operation requests the required number of bytes to store the string (where each

character is stored in a byte). The .STRINGZ pseudo-operation also requests the required storage for the

quoted string but then appends a zero byte for compatibility with C language strings.

When you label one of these pseudo-operations, the label refers to the first byte of the storage area.

Examples

G ~STRING “A STRING"

This pseudo-operation allocates eight bytes, the first of which is labeled "G", then initializes this area with

the characters: A, "space", S, T, R, I, N, and G.

G ~STRINGZ "A STRING"

This pseudo-operation allocates eight bytes to hold A STRING, allocates an additional byte for the

appended zero, and associates the label "G" with the first byte of this storage area.

3-42

Assembler Directives and Pseudo-Operations

The .SUBSPA Directive

The .SUBSPA directive declares a new subspace or switches back to an old subspace.

Syntax

.SUBSPA name [,QUAD=value]t ,ALIGN=value]
[,ACCESS=value] [,SORT=value]
[,FIRST] [,COMMON] [,ZERO] [,DUP_COMM]

[,CODE ON LY] [,UNLOADABLE]

Parameters

name

QUAD=value

FIRST

ALIGN=value

ACCESS=value

SORT=value

COMMON

ZERO

DUP_COMM

CODE ONLY

An identifier that names the current subspace.

Specifies the quadrant (0 through 3) in which the Assembler should place

this subspace. The default value is zero.

Specifies that the subspace must be allocated exactly at the end of the

specified space. The default is false.

Specifies a value (which must be a power of 2) on which the Assembler

should align the beginning of the subspace. The default value is the largest

alignment requested within that subspace, or one if no alignment requests

exist.

Specifies the 7-bit value for the access rights field in the PDIR (Physical

Page Directory for virtual address mapping). Must be OX2C for code, and

OX1F for data subspaces.

Provides an integer value for the primary sort key. The linker orders the

subspaces in the output object module according to this primary key. If

several subspaces share the same primary key value, the linker lists these

subspaces in the order in which it processes them. It 1s suggested that 24 be

used for both code and data subspaces.

Specifies that this subspace is a common block. The default setting 1s false.

Specifies that this subspace contains all zeros and no data appears in the

output file. The default setting 1s false.

Specifies that the initialized data symbols within this subspace may. have

duplicate names. When you include this parameter, multiple occurrences of

a universal data symbol can exist and the linker does not report a

"Duplicate Definition" error. The default setting 1s false.

Specifies that this subspace contains only code. The default setting is false.

3-43

Assembler Directives and Pseudo-Operations

UNLOADABLE Specifies that this subspace is not loadable into memory. The default

setting is false. Loadable subspaces must reside in loadable spaces, and

unloadable subspaces must reside in unloadable spaces.

Discussion

The first time the Assembler encounters a .SUBSPA directive with a new name, it uses that name to

declare a new subspace. As this is the defining occurrence of that subspace, optional keywords describe

attributes of that subspace.

When the Assembler encounters additional .SUBSPA directives with that name, it continues that subspace.

In this case, the .SUBSPA directive can only contain the subspace name; other keywords to describe the

subspace are illegal.

The $CODE$ subspace uses the stack unwind subspace called $UNWIND$. If other code subspaces have an
associated stack unwind subspace, the Assembler identifies them with names of the form: $UNWIND$

<code_subspace_name>. For subspaces with names of the form $CODE$<mycode>, the Assembler
creates an unwind subspace with the name $UNWIND$<mycode>.

Example

~SPACE $TEXT$, 0

.SUBSPA $CODE$, QUAD=0 , ALIGN=8 , ACCESS=0x2c , SORT=24
~SPACE $PRIVATE$, 1
.SUBSPA $DATA$, QUAD=1 , ALIGN=8 , ACCESS=0x1f,SORT=24

The above example shows some of the standard "subspace" definitions in a typical assembly language

program.

3-44

Assembler Directives and Pseudo-Operations

The . VERSION Directive

The .VERSION directive places the designated string in the current object module for version

identification.

Syntax

.VERSION ‘info_string’

Parameters

info_string A sequence of ASCII characters, surrounded by quotation marks. The
string can contain up to 256 characters.

Discussion

The Assembler places this string in the current object module. A program may contain multiple

. VERSION directives.

Example

» CODE

VERSION "Version 1 of This Simple Sample Program’
SUB %ri9,%r20,%r19
DEP %r19,14,5,%r22
» END

This program inserts version information into the object module, and performs subtract and deposit

Operations. Once the version information is in the object file, the HP-UX utility, strings, is used to access

it.

NOTE

This directive can appear anywhere in the source file, and multiple

occurrences are permitted.

3-45

Assembler Directives and Pseudo-Operations

Programming Aids

The Assembler provides a series of standard space and subspace definitions that you may use to simplify

the writing of an assembly program. These definitions are duplicated in the system file pee_prefix.s.
Because these files are relatively large and may change with new releases of the Assembler, you can view

the most recent version of these files on your terminal screen by typing the command:

more /lib/pcec_prefix.s.

Table 3-4 lists the predefined directives for establishing standard spaces and subspaces.

Table 3-4. Predefined Spaces and Subspaces

Directive Space Name Default Parameters

.FIRST .space $TEXT$, SPNUM=0 ,SORT=8
.subspa $FIRST$, QUAD=0 , ALIGN=2048 , ACCESS=Oxe2c,

SORT=4, FIRST

~REAL .space $TEXT$, SPNUM=0 ,SORT=8

.subspa $REAL$, QUAD=0, ALIGN=8, ACCESS=0x2c,
SORT=4,FIRST,LOCK

~MILLICODE .space $TEXT$, SPNUM=0 ,SORT=8

.subspa $MILLICODE$, QUAD=0 , ALIGN=8 , ACCESS=0Oxec ,SORT=8

LIT .space $TEXT$, SPNUM=0 , SORT=8
.subspa LIT, QUAD=0, ALIGN=8 , ACCESS=0Oxec ,SORT=16

. CODE .space $TEXT$, SPNUM=0 ,SORT=8
.subspa $CODE$, QUAD=0 , ALIGN=8 , ACCESS=0Oxec ,SORT=24

» UNWIND .space $TEXT$, SPNUM=0 ,SORT=8

.subspa $UNWIND$, QUAD=0 , ALIGN=4, ACCESS=0xe2c , SORT =64

RECOVER space $TEXT$, SPNUM=0 , SORT=8
.subspa $RECOVER$, QUAD=0 , ALIGN=4, ACCESS=0x2c ,SORT=80

»~RESERVED .space $TEXT$, SPNUM=0 ,SORT=8

.subspa $RESERVED$, QUAD=0 , ALIGN=8 , ACCESS=0x 73 ,SORT=82

~GATE .space $TEXT$, SPNUM=0 ,SORT=8

.subspa $GATE$, QUAD=0 , ALIGN=8 ,ACCESS=0x4c,
SORT=84,CODE_ONLY

(Continued on next page)

3-46

Assembler Directives and Pseudo-Operations

Table 3-4, Predefined Spaces and Subspaces (Continued)

Directive Space Name Default Parameters

GLOBAL space $PRIVATE$, PRIVATE,SPNUM=1,SORT=16
.subspa $GLOBAL$, QUAD=1 , ALIGN=8 , ACCESS=0x1f, SORT=8
. IMPORT $global$

» SHORTDATA .space $PRIVATE$, PRIVATE ,SPNUM=1 ,SORT=16
.subspa $SHORTDATA$, QUAD=1 , ALIGN=8 , ACCESS=0x 1f , SORT=16

.DATA .space $PRIVATE$, PRIVATE ,SPNUM=1 ,SORT=16
.subspa $DATA$, QUAD=1 , ALIGN=8 , ACCESS=0x 1f , SORT=24

.PFA COUNTER space $PRIVATE$, PRIVATE ,SPNUM=1 ,SORT=16
.subspa $PFA COUNTER$, | QUAD=1,ALIGN=4,ACCESS=0x1f ,SORT=64

.BSS space $PRIVATE$, PRIVATE ,SPNUM=1,SORT=16
.subspa BSS, QUAD=1 , ALIGN=8 , ACCESS=0x If,

SORT=80, ZERO

. PCB .space $PRIVATE$, PRIVATE ,SPNUM=1 ,SORT=16

.subspa PCB, QUAD=1 , ALIGN=8 , ACCESS=0x10,SORT=82

» STACK .space $PRIVATE$, PRIVATE ,SPNUM=1 ,SORT=16
.subspa $STACK$, QUAD=1 , ALIGN=8 , ACCESS=0x1f , SORT=82

HEAP .space $PRIVATE$, PRIVATE ,SPNUM=1 ,SORT=16
.subspa $HEAP$, QUAD=1 , ALIGN=8 , ACCESS=0x 1f , SORT=82

.PFA ADDRESS space PFA, SPNUM=2, PRIVATE ,UNLOADABLE , SORT=64
.subspa $PFA_ADDRESS$, | ALIGN=4,ACCESS=0x2c,UNLOADABLE

. HEADER space $DEBUG$, SPNUM=2, PRIVATE ,UNLOADABLE , SORT=80
.subspa $HEADER$, ALIGN=4, ACCESS=0,UNLOADABLE , FIRST

~GNTT .space $DEBUG$, SPNUM=2, PRIVATE ,UNLOADABLE , SORT=80

.subspa $GNTT$, ALIGN=4, ACCESS=0, UNLOADABLE

~LUNTT space $DEBUG$, SPNUM=2, PRIVATE , UNLOADABLE , SORT=80
.subspa $LNTT$, ALIGN=4, ACCESS=0, UNLOADABLE

»SLT space $DEBUG$, SPNUM=2, PRIVATE ,UNLOADABLE , SORT=80
.subspa SLT, ALIGN=4, ACCESS=0, UNLOADABLE

VT .space $DEBUG$, SPNUM=2, PRIVATE ,UNLOADABLE , SORT=80
.subspa VT, ALIGN=4, ACCESS=0, UNLOADABLE

3-47

Chapter 4

The Instruction Set

The HP Precision Architecture instructions fall into the following major categories:

Memory Reference

Immediate

Branch

Computational

System Control

Assist (coprocessor)

In addition, pseudo-instructions are available to perform commonly used functions that are variations of

the basic instructions.

The Instruction Set

Instruction Operands

Table 4-1 lists the instruction operands by class as well as meaning. The table is intended as a reference

for the operands used in the instruction tables throughout this chapter.

Table 4-1. Instruction Operands

Operand Class Meaning

b base register (0 through 31)

d 14 bit displacement

1 5 or 11 bit immediate value

len length of bit field

p bit position indicator

count shift count

r source register:

e general register (0 through 31)

e floating point register (0 through 15)

e control register (0 and 8 through 31)

rl and r2 source register:

e general register (O through 31)

e floating point register (O through 15)

sr space register (0 through 7)

S space register (0 through 3)

t destination register:

e general register (0-31)

e floating-point register (0-15)

e control register (0 and 8-31)

wd word displacement (12 bit immediate)

x index register (general register 0 through 31)

4-2

The Instruction Set

Memory Reference Instructions

The memory reference instructions load values from memory into general registers and store values from
general registers into memory. The displacement or index values can be used to modify the base offset in
a general register.

Memory reference instructions include:

Load and Store

Load and Store With Base Register Modification

Indexed Load

Short Displacement Load and Store

Store Bytes Short

4-3

The Instruction Set

Load and Store Instructions

A value is transferred between memory and a general register.

Table 4-2. Load and Store Instructions

Instruction Name Mnemonic Name Operands

Load Byte LDB d(s,b),t

Load Halfword LDH d(s,b),t

Load Word LDW d(s,b),t

Store Byte STB r,d(s,b)

Store Halfword STH r,d(s,b)

Store Word STW r,d(s,b)

Load and Store with Base Register Modification Instructions

A word 1s transferred between memory and a general register. The base register is pre~decremented if the

displacement is negative; otherwise, the base register is post-incremented.

Table 4-3. Load and Store With Base Register Modification Instructions

Instruction Name Mnemonic Name Operands

Load Word and Modify LDWM d(s,b),t

Store Word and Modify STWM r,d(s,b)

4-4

The Instruction Set

Indexed Load Instructions

A value is read from memory into a general register. The address is formed by the addition of the index

register to the base register. Optionally, the index value may be shifted to reflect an offset corresponding

to the size of the value being read. The base register may be modified after the address has been formed.

Table 4-4, Indexed Load Instructions

Instruction Name Mnemonic Name Operands

Load Byte Indexed LDBX,cmplt x(s,b).t

Load Halfword Indexed LDHxX,cmplt x(s,b),t

Load Word Indexed LDWxX,cmplt x(s,b),t

Load Word Absolute Indexed * LDWAX,cmplt x(b),t

Load and Clear Word Indexed LDCWX,cmplt x(s,b),t

* This instruction may be executed only by code running at the most privileged level.

Table 4-5. Indexed Load Completers

cmplt Description

RS) Shift Index by Data Size,

No Base Register Modification

M No Index Shift,
Base Register Modification

9,M or SM Shift Index by Data Size,

Base Register Modification

none specified No Index Shift,

No Base Register Modification

4-5

The Instruction Set

Short Displacement Load and Store Instructions

A value is transferred between memory and a general register. The address is formed by adding the short

displacement to the base register. A short displacement is one that is between -16 and +15 bytes.

Optionally, the base register may be modified either before or after the address has been formed.

Table 4-6. Short Displacement Load and Store Instructions

Instruction Name Mnemonic Name Operands

Load Byte Short LDBS cmplt d(s,b),t

Load Halfword Short LDHS cmplt d(s,b),t

Load Word Short LDWS,cmplt d(s,b),t

Load Word Absolute Short * LDWAS,cmplt d(b),t

Load and Clear Word Short LDCWS,cmplt d(s,b),t

Store Byte Short STBS,cmplt r,d(s,b)

Store Halfword Short STHS,cmplt r,d(s,b)

Store Word Short STWS,cmplt r,d(s,b)

Store Word Absolute Short * STWAS,cmplt r,d(b)

* This instruction may be executed only by code running at the most

privileged level.

Table 4-7. Short Displacement Load and Store Completers

cmplt Description

MB Modify Before

MA Modify After

none specified No Base Register Modification

4-6

Store Bytes Short Instruction

The Instruction Set

Byte values are written from a general register into memory. The address is formed using the short

displacement, the base register, and the completer. The bytes can be aligned to the beginning or the end

of the word. Optionally, the base register can be modified after the address has been formed.

Table 4-8. Store Bytes Short Instruction

Instruction Name Mnemonic Name Operands

Store Bytes Short STBYS,cmplt r,d(s,b)

Table 4-9. Store Bytes Short Completers

cmplt Description

Beginning case, no modify

Ending case, no modify

Beginning case, modify base

Ending case, modify base

4-7

The Instruction Set

Immediate Instructions

An immediate value is loaded into a general register. Values are computed from either a 21-bit

immediate value, a 21-bit immediate value plus a general register, or a 14-bit immediate value plus a

base register.

Table 4-10. Immediate Instructions

Instruction Name Mnemonic Name Operands

Load Immediate Left LDIL it

Add Immediate Left * ADDIL ifr

Load Offset LDO d(b),t

Load Immediate ** LDI i,t

* The result of the ADDIL operation is placed in general register one.

** The LDI pseudo-instruction generates an LDO 1(0),t instruction.

4-8

The Instruction Set

Branch Instructions

Branch instructions can be conditional or unconditional. Unconditional branches are used to alter the

control flow of a program. Conditional branches perform a function and then branch depending upon

whether a specified condition has been met.

NOTE

When coding branch instructions, including those with nullification

specified, attention should be given to the following instruction in the

source code. All branch instructions consider the instruction that follows

to be in its delay slot. An NOP pseudo-operation may be used to fill the

delay slot when there is no other useful work to be performed.

Unconditional Branch Instructions

Unconditional branch instructions are used to make control transfers, procedure calls, and procedure

returns. Targets for unconditional branches are either local or external. Unconditional local branch

instructions are used for control transfers within a space (intraspace). Unconditional external branch

instructions are used for control transfers into another space (interspace).

Table 4-11. Unconditional Branch Instructions

Instruction Name Mnemonic Name Operands

Branch External BE,n wd(sr,b)

Branch and Link External BLE,n wd(sr,b)

Branch and Link BL,n target,t

Branch and Link Register BLR,n x,t

Branch Vectored BV,n x(b)

Gateway GATE,n target,t

Unconditional Branch * Bn target

* The B pseudo-instruction generates a BL instruction with the link

register t equal to GRO.

4-9

The Instruction Set

Conditional Branch Instructions

Local conditional branches include the following instructions:

e Move and Branch

e Compare and Branch

e Add and Branch

e Branch on Bit

A conditional branch is considered taken if the condition specified by the condition completer is met by

the operands, and/or is met by the results of the function performed.

All conditional branches can be coded with a nullification completer. If nullification is specified, the

instruction following either a taken forward branch or a failing backward branch is nullified. If

nullification is not specified, the following instruction is executed before the branch target, especially in

the case where a branch instruction occupies the delay slot. See the Precision Architecture and Instruction

Reference Manual for the definition of "following instruction".

A forward branch is one to an address that is greater than the address of the instruction in the delay slot

of the branch. A backward branch is one to an address that is less than or equal to the address of the

delay slot. Figure 4-1 identifies which branches are forward branches and which branches are backward

branches.

Branch Backward

Branches

Forward

Branches

Figure 4-1. Branch Descriptions

Delay Slot

4-10

Move and Branch Instructions

A general register or an immediate value is copied to a general register.

determine if the specified condition is met.

Table 4-12. Move and Branch Instructions

The Instruction Set

The value copied is used to

Instruction Name Mnemonic Name Operands

Move and Branch MOVB, cond, n rijyr2,target

Move Immediate and Branch MOVIB, cond, n ir,target

Table 4-13. Move and Branch Conditions

cond Description

never

all bits are equal to 0

leftmost bit is equal to 1

rightmost bit is equal to 1

always

at least one bit is equal to l

leftmost bit is equal to 0

rightmost bit is equal to 0

4-11

The Instruction Set

Compare and Branch Instructions

A general register or an immediate value is compared against a general register. The operands and/or the

result of the comparison are used to determine whether the specified condition is met. The COMBT,

COMIBT, COMBF and COMIBF instructions use only the non-negated completer conditions (never, =, <,

<=, <<, <<=, SV, OD). The COMB and COMIB pseudo-instructions use any of the condition completers.

Table 4-14. Compare and Branch Instructions

Instruction Name Mnemonic Name Operands

Compare and Branch If True COMBT,cond,n rlyr2,target

Compare Immediate and Branch If True COMIBT,cond,n Lr target

Compare and Branch If False COMBF,cond,n rl,r2,target

Compare Immediate and Branch If False COMIBF,cond,n 1r,target

Compare and Branch * COMB,cond,n rl yr2,target

Compare Immediate and Branch ** COMIB,cond,n 1r,target

* The COMB pseudo-instruction generates either a COMBT or COMBEF instruction

depending on the condition.

** The COMIB pseudo-instruction generates either a COMIBT or COMIBF instruction

depending on the condition.

4-12

Table 4-15. Compare and Branch Conditions

The Instruction Set

cond Description

never

= opdl is equal to opd2

< opd 1 is less than opd2 (signed)

<= opd1 is less than or equal to opd2 (signed) Non-negated

<< opd1 is less than opd2 (unsigned)

<<= opd 1 is less than or equal to opd2 (unsigned)

SV opd1 minus opd2 results in overflow (signed)

OD result of opdl minus opd2 is odd

TR always

<> opd1 is less than or greater than opd2

>= opd1! is greater than or equal to opd2 (signed)

> opdl is greater than opd2 (signed) Negated

>>= opd1 is greater than or equal to opd2 (unsigned)

>> opd1 is greater than opd2 (unsigned)

NSV opd1 minus opd2 results in no overflow (signed)

EV result of opd! minus opd?2 1s even

The Instruction Set

Add and Branch Instructions

A general register or an immediate value is added to a general register. The operands and/or the results

of the addition are used to determine whether the specified condition is met. The ADDBT, ADDIBT,

ADDBF and ADDIBF instructions use only the non-negated completer conditions (never, =, <, <=, NUV,

ZNV, SV, OD). The ADDB and ADDIB pseudo-instructions uses any of the condition completers.

Table 4-16. Add and Branch Instructions

Instruction Name Mnemonic Name Operands

Add and Branch If True ADDBT,cond,n rlyr2,target

Add Immediate and Branch If True ADDIBT,cond,n 1r,target

Add and Branch If False ADDBF,cond,n rlyr2,target

Add Immediate and Branch If False ADDIBF,cond,n ir,target

Add and Branch * ADDB,cond,n rlyr2,target

Add Immediate and Branch ** ADDIB,cond,n 1r,target

* The ADDB pseudo instruction generates either a ADDBT or ADDBF instruction,

depending on the condition.

** The ADDIB pseudo-instruction generates either a ADDIBT or ADDIBF instruction,

depending on the condition.

4-14

Table 4-17. Add and Branch Conditions

The Instruction Set

cond Description

never

= opd1 is equal to -opd2

< opd1 is less than -opd2 (signed)

<= opd1 is less than or equal to -opd2 (signed) Non-negated

NUV | opdl + opd2 < 2??? (no unsigned overflow)
ZNV opd! + opd2 < 23? or opd! + opd2 = 0
SV opd1! plus opd2 results in overflow (signed)
OD result of opd1 plus opd2 is odd

TR always

<> opd1 is not equal to -opd2

>= opd1 is greater than or equal to -opd2 (signed)

> opd1 is greater than -opd2 (signed) Negated

UV opdl + opd2 > = 2? ? (unsigned overflow)
VNZ opd1 + opd2 > 27? and opd! + opd2 not = 0
NSV opd1 plus opd2 results in no overflow (signed)

EV result of opd! plus opd2 is even

4-15

The Instruction Set

Branch on Bit Instructions

The bit specified, either as an immediate or in the shift-amount-register (SAR,CR1 1), of a general register

is tested. The result of the test is used to determine whether the specified condition is met.

Table 4-18. Branch on Bit Instructions

Instruction Name Mnemonic Name Operands

Branch on Variable Bit BVB,cond,n r,target

Branch on Bit BB,cond,n r,p,target

Table 4-19. Branch on Bit Conditions

cond Description

< Bit specified is equal to 1

>= Bit specified is equal to 0

4-16

The Instruction Set

Computational Instructions

Computational instructions are composed of the following:

e Add

e Shift and Add

e Subtract

e Compare and Clear

e Divide Step

e Logical

e Unit

e Shift

e Extract

e Deposit

The instructions in this group are organized by the type of condition that can be specified.

After the computational instructions perform a function, the operands and/or the "results" of the function

being performed are used to determine whether the specified condition is met. If the condition is met, the

following instruction 1s nullified.

Some of the computational instructions cause interrupt traps to occur based on overflow and/or condition

detection.

Refer to the "Instruction Operands’ section earlier in this chapter for a description of the instruction

operands.

4-17

The Instruction Set

Add Instructions

Two general registers, or an immediate value and a general register, are added together and the result is

stored in a general register. The operands and/or the results of the addition are used to determine

whether the specified condition is met. If the specified condition is met, the following instruction is

nullified, except for ADDIT and ADDITO where a trap 1s taken.

Table 4-20. Add Instructions

Instruction Name Mnemonic Name Operands

Add ADD,cond rijyr2,t

Add Logical ADDL,cond rijyr2,t

Add and Trap on Overflow ADDO,cond rijyr2,t

Add with Carry ADDC,cond rijyr2,t

Add with Carry and Trap on ADDCO,cond rl jr2,t

Overflow

Add to Immediate and Trap on ADDIT,cond 1r,t

Condition

Add to Immediate and Trap on ADDITO,cond ir,t

Condition or Overflow

Add to Immediate ADDI,cond 1r,t

Add to Immediate and Trap on ADDIO,cond Lr,t

Overflow

4-18

Table 4-21. Add Conditions

The Instruction Set

cond Description

never
= opd1 is equal to -opd2

< opd1 is less than -opd2 (signed)

<= opd1 is less than or equal to -opd2 (signed) Non-negated

NUV | opdl + opd2 < 2? ? (no unsigned overflow)
ZNV opd1 + opd2 < 27? or opd!l + opd2 = 0
SV opd1 plus opd2 results in overflow (signed)

OD result of opd1 plus opd2 1s odd

TR always

<> opd1 is not equal to -opd2

>= opdl is greater than or equal to -opd2 (signed)

> opd1 is greater than -opd2 (signed) Negated

UV opd1 + opd2 > = 2? ? (unsigned overflow)
VNZ opd1 + opd2 > 23? and opd! + opd?2 not = 0
NSV opd1 plus opd2 results in no overflow (signed)

EV result of opd! plus opd2 is even

4-19

The Instruction Set

Shift and Add Instructions

A general register is left-shifted and added to a general register, and the result is stored in a general

register. The operands and/or the results are used to determine whether the specified condition is met.

The following instruction 1s nullified if the specified condition is met. A signed overflow condition can be

detected if any of the bits shifted out are different from the resulting left-most bit after the shift.

Table 4-22. Shift and Add Instructions

Instruction Name Mnemonic Name Operands

Shift One and Add SH! ADD,cond rijr2,t

Shift One and Add Logical SH!1ADDL,cond rl,r2,t

Shift One, Add and Trap on Overflow SH1ADDO,cond rijyr2,t

Shift Two and Add SH2ADD,cond rljr2,t

Shift Two and Add Logical SH2ADDL,cond rijr2,t

Shift Two, Add and Trap on Overflow SH2ADDO,cond rijr2,t

Shift Three and Add SH3ADD,cond ri,r2,t

Shift Three and Add Logical SH3ADDL,cond rljr2,t

Shift Three, Add and Trap on Overflow SH3ADDO,cond rljr2,t

4-20

Table 4-23. Shift and Add Conditions

The Instruction Set

cond Description

never

= opdl is equal to -opd2

< opd1 is less than -opd2 (signed)

<= opd1 is less than or equal to -opd2 (signed) Non-negated

NUV opd1 + opd2 < 2? ? (no unsigned overflow)
ZNV opd1 + opd2 < 27? or opd!l + opd2 = 0
SV opd! plus opd2 results in overflow (signed)

OD result of opd1 plus opd2 is odd

TR always

<> opd1 is not equal to -opd2

>= opd1 is greater than or equal to -opd2 (signed)

> opd1 is greater than -opd2 (signed) Negated

UV opd1 + opd2 > = 2? ? (unsigned overflow)
VNZ opd1 + opd2 > 23? and opdl + opd2 not = 0
NSV opd1 plus opd2 results in no overflow (signed)

EV result of opd! plus opd2 is even

4-21

The Instruction Set

Subtract Instructions

A general register is subtracted from an immediate value or a general register and the result is stored ina

general register. The operands and/or the results of the subtraction are used to determine whether the

specified condition is met. If the specified condition is met, the following instruction 1s nullified, except

for SUBT and SUBTO where a trap 1s taken.

Table 4-24. Subtract Instructions

Instruction Name Mnemonic Name Operands

Subtract SUB,cond rljr2,t

Subtract and Trap on Condition SUBT,cond rljyr2,t

Subtract with Borrow SUBB,cond rir2,t

Subtract and Trap on Overflow SUBO,cond rijr2,t

Subtract and Trap on Condition or Overflow SUBTO,cond rljr2,t

Subtract with Borrow and Trap on Overflow SUBBO,cond rijr2,t

Subtract from Immediate SUBI cond r,t

Subtract from Immediate and Trap on SUBIO,cond r,t

Overflow

4-22

Table 4-25. Subtract Conditions

The Instruction Set

cond Description

never

= opd!1 is equal to opd2

< opd 1 is less than opd2 (signed)

<= opd 1 is less than or equal to opd2 (signed) Non-negated

<< opd1 is less than opd2 (unsigned)

<<= opd1 is less than or equal to opd2 (unsigned)

SV opd1 minus opd2 results in overflow (signed)

OD result of opd1 minus opd?2 1s odd

TR always

<> opd1 is less than or greater than opd2

>= opd1 is greater than or equal to opd2 (signed)

> opd1 is greater than opd2 (signed) Negated

>>= opd1 is greater than or equal to opd2 (unsigned)

>> opd 1 is greater than opd2 (unsigned)
NSV opd1 minus opd2 results in no overflow (signed)

EV result of opd1 minus opd2 1s even

4-23

The Instruction Set

Compare and Clear Instructions

An immediate value or a general register is compared against another general register and zero is loaded

into a third general register. The operands of the comparison are used to determine whether the specified

condition is met. If the specified condition is met, the following instruction is nullified.

Table 4-26. Compare and Clear Instructions

Instruction Name Mnemonic Name Operands

Compare and Clear COMCLR,cond rijr2,t

Compare Immediate and Clear COMICLR,cond 1r,t

Table 4-27. Compare and Clear Conditions

cond Description

never
opdl is equal to opd2

opd1 is less than opd2 (signed)

opd1 is less than or equal to opd2 (signed)
opd1 is less than opd2 (unsigned)
opd1 is less than or equal to opd2 (unsigned)

opd! minus opd2 results in overflow (signed)

result of opd! minus opd2 is odd

Non-negated

always

opd! is less than or greater than opd2

opd! is greater than or equal to opd2 (signed)
opd! is greater than opd2 (signed)

opd1 is greater than or equal to opd2 (unsigned)
opdl is greater than opd2 (unsigned)

opd! minus opd?2 results in no overflow (signed)

result of opd1l minus opd2 is even

Negated

4-24

Divide Step Instruction

The Instruction Set

A divide step operation is performed using two general registers; the intermediate result is stored in a

general register. The operands and/or the results of the divide step operation are used to determine

whether the specified condition is met. The divide step can be used with either the add or subtract

conditions depending upon the stage of the operation.

Table 4-28. Divide Step Instruction

Instruction Name Mnemonic Name Operand

Divide Step DS,cond rlyr2,t

See Table 4-21 or 4-25 for the add or subtract conditions, respectively.

4-25

The Instruction Set

Logical Instructions

A logical operation is performed on two general registers and the result is stored in a general register. The

result of the logical operation is used to determine whether the specified condition is met. The following

instruction is nullified if the specified condition is met.

Table 4-29, Logical Instructions

Instruction Name Mnemonic Name Operands

And Complement ANDCM,cond rijr2,t

And AND,cond rir2,t

Inclusive Or OR,cond rijr2,t

Exclusive Or XOR, cond rijr2,t

Copy * COPY r,t

No Operation ** NOP

* The COPY pseudo-instruction generates the OR r,0,t instruction.

** The NOP pseudo-instruction generates the OR 0,0,0 instruction.

Table 4-30, Logical Conditions

cond Description

never
all bits are equal to 0

leftmost bit is equal to 1

leftmost bit 1s equal to 1, or all bits are equal to 0
rightmost bit is equal to |

Non-negated

always

at least one bit is equal to 1

leftmost bit is equal to 0

leftmost bit is equal to 0, and at least one bit
is equal to |

rightmost bit is equal to 0

Negated

The Instruction Set

Unit Instructions

One or two general registers are operated upon and the result is stored in a general register. The results of

the operation are used to determine whether a specified condition is met. If the specified condition is met,

the following instruction is nullified, except for UADDCMT where a trap is taken.

Table 4-31. Unit Instructions

Instruction Name Mnemonic Name Operands

Unit Exclusive Or UXOR,cond rijyr2,t

Unit Add Complement UADDCM, cond rljr2,t

Unit Add Complement and Trap on Condition UADDCMT, cond rljr2,t

Intermediate Decimal Correct IDCOR,cond r,t

Decimal Correct DCOR, cond r,t

Table 4-32. Unit Conditions

cond Description

never

SBZ some byte zero

SHZ some halfword zero Non-negated

SCD some BCD digit carry

SBC some byte carry

SHC some halfword carry

TR always

NBZ all bytes nonzero

NHZ all halfwords nonzero Negated

NDC no BCD digit carry

NBC no byte carry

NHC no halfword carry

4-27

The Instruction Set

Shift, Extract, and Deposit Instructions

A shift, extract, or deposit operation is performed and the result is stored in a general register. The results

of the operation are used to determine whether a specified condition 1s met. A variable operation may be

performed using the shift-amount-register (SAR, CR 11).

The shift instructions use two general registers to perform a double shift. The amount to be shifted comes

either from the operand list or from the SAR.

The extract instructions isolate a field of the specified length in a general register, right shift to position

the field, and store the result in a general register. The result may be stored as a sign extended value.

The ending position of the field to be extracted may be specified as an operand or from the SAR.

The deposit instructions use an immediate value or a general register to isolate a field of the specified

length, left shift to position the field, and merge the result into a general register. The result may be

merged with the existing bits of the general register or zeros. The ending position of the result field may

be specified as an operand or from the SAR.

4-28

Table 4-33. Shift, Extract, and Deposit Instructions

The Instruction Set

Instruction Name Mnemonic Name Operands

Variable Shift Double VSHD,cond rljr2,t

Shift Double SHD,cond rl yr2,count,t

Variable Extract Unsigned VEXTRU,cond r,len,t

Variable Extract Signed VEXTRS,cond r,len,t

Extract Unsigned EXTRU,cond r.p,len,t

Extract Signed EXTRS,cond r,p,len,t

Variable Deposit VDEP, cond r,len,t

Zero and Deposit ZDEP,cond r,p,len,t

Deposit DEP,cond r,p,len,t

Zero and Variable Deposit ZVDEP,cond r,len,t

Zero and Variable Deposit Immediate ZVDEPI,cond i,len,t

Variable Deposit Immediate VDEPI,cond ilen,t

Zero and Deposit Immediate ZDEPI cond 1,p,len,t

Deposit Immediate DEPI cond 1,p,len,t

Table 4-34. Shift, Extract, and Deposit Conditions

cond Description

never

all bits are equal to 0

leftmost bit 1s equal to |

rightmost bit is equal to 1

always

at least one bit is equal to 1

leftmost bit is equal to 0

rightmost bit 1s equal to 0

4-29

The Instruction Set

System Control Instructions

System control instructions provide special register moves, system mask control, return from interruption,

hash address computation, probe access rights, memory management operations, and implementation-

dependent functions.

Some of the memory management instructions use an optional completer to allow the base register to be

modified after the address has been formed.

Most of these instructions are executed by code that only runs at the most privileged level.

Table 4-35. System Control Completers

complt Address Formation

,M Base Register Modification

none specified No Base Register Modification

4-30

Table 4-36. System Control Instructions

The Instruction Set

Instruction Name Mnemonic Name Operands

Break BREAK 11,12

Return from Interruption RFI

Set System Mask SSM 1, t

Reset System Mask RSM i,t

Move To System Mask MTSM r

Load Space Identifier LDSID (s, b), t

Move To Space Register MTSP r, ST

Move To Control Register MTCTL r,t

Move To Shift Amount Register * MTSAR r

Move From Space Register MFSP sr, t

Move From Control Register MFCTL r,t

Synchronize Caches SYNC

Probe Read Access PROBER (s, b) r,t

Probe Read Access Immediate PROBERI (s, b), 1, t

Probe Write Access PROBEW (s, b), r,t

Probe Write Access Immediate PROBEWI (s,b), 1, t

Load Physical Address LPA, cmplt x (s, b), t

Load Hash Address LHA, cmplt x (s, b), t

Purge Data Translation Lookaside Buffer PDTLB, cmplt x (s, b)

Purge Instruction Translation Lookaside PITLB, cmplt x (sr, b)

Buffer

Purge Data Translation Lookaside Buffer PDTLBE, cmplt x (s, b)

Entry

* The MTSAR pseudo-instruction generates an MTCTLr,11 instruction.

4-31

The Initruction Set

Table 4-36. System Control Instructions (Continued)

Instruction Name Mnemonic Name Operands

Purge Instruction Translation Lookaside PITLBE, cmplt X (sr, b)

Buffer Entry

Insert Data Translation Lookaside Buffer IDTLBA r, (s, b)
Address

Insert Instruction Translation Lookaside IITLBA r, (sr, b)
Buffer Address

Insert Data Translation Lookaside Buffer IDTLBP r, (s, b)

Address

Insert Instruction Translation Lookaside IITLBP r, (sr, b)

Buffer Protection

Purge Data Cache PDC, cmplt x (s, b)

Flush Data Cache FDC, cmplt x (s, b)

Flush Instruction Cache FIC, cmplt x (sr, b)

Flush Data Cache Entry FDCE, cmplt x (s, b)

Flush Instruction Cache Entry FICE, cmplt x (sr, b)

Diagnose DIAG 1

4-32

The Instruction Set

Assist (Coprocessor) Instructions

Coprocessor instructions are used to perform data manipulations on attached special purpose processors,
while incurring minimum overhead in execution rate. Each instruction must specify a unit identifier
between zero and seven to select a coprocessor. The coprocessor instructions include:

e Coprocessor Operation

e Indexed Load and Store

e Short Displacement Load and Store

e The Floating-Point Instruction Set

4-33

The Instruction Set

Coprocessor Operation Instruction

You must explicitly prescribe the binary value for the desired operation as well as the unit number of the

coprocessor.

This instruction uses only completers. Operands are not accepted.

Table 4-37. Coprocessor Operation Instruction

Instruction Name Mnemonic Name

Coprocessor Operation COPR,uid,sop,n

Table 4-38. Coprocessor Operation Completers

Completer Description

uid (0 - 7) Select coprocessor unit number

sop Provides a 22 bit value that the assembler

encodes in the instruction

n If the value is one and the coprocessor

condition is satisfied, the following

instruction is nullified.

NOTE

Identify coprocessor is encoded as COPR,uid,0.

4-34

The Instruction Set

Coprocessor Indexed Load and Store Instructions

A value is transferred between memory and a register. The address is formed by the addition of the index

register to the base register. Optionally, the index value may be shifted to reflect an address

corresponding to the size of the value being transferred and the base register may be modified after the

address has been formed.

Table 4-39. Coprocessor Indexed Load and Store Instructions

Instruction Name Mnemonic Name Operands

Coprocessor Load Word Indexed CLDWX,uid,complt x(s,b),t

Coprocessor Load Doubleword Indexed CLDDX,uid,complt x(s,b),t

Coprocessor Store Word Indexed CSTWX,uid,complt r,x(s,b)

Coprocessor Store Doubleword Indexed CSTDX,uid complt r,x(s,b)

Table 4-40. Coprocessor Indexed Load and Store Completers

complt Description

oS Shift Index by Data Size,

No Base Register Modification

,M No Index Shift

Base Register Modification

,5,M or Shift Index by Data Size

M Base Register Modification

none No Index Shift,

specified No Base Register Modification

4-35

Tine ¢nictian

Coprocessor Short Displacement Load and Store Instructions

A value is transferred between memory and a floating-point register. The address is formed by the

addition of the short displacement to the base register. Optionally, the base register may be modified

either before or after the address has been formed.

Table 4-41. Coprocessor Short Displacement Load and Store Instructions

Instruction Name Mnemonic Name Operands

Coprocessor Load Word Short CLDWS,uid,complt d(s,b),t

Coprocessor Load Doubleword Short CLDDS,uid,complt d(s,b),t

Coprocessor Store Word Short CSTWS,uid,complt r,d(s,b)

Coprocessor Store Doubleword Short CSTDS,uid,complt r,d(s,b)

Table 4-42. Coprocessor Short Displacement Load and Store Completers

complt Description

MB Modify Before

MA Modify After

none specified No Base Register Modification

4-36

The Instruction Set

Floating-Point Instructions

Floating-point instructions are used to perform floating-point arithmetic. The instructions are either
executed directly by a floating-point assist coprocessor or by floating-point emulation software. The
floating-point instructions include:

e Indexed Load and Store

e Short Displacement Load and Store

e Operations

e Compare and Test

4-37

The (netruction Set

Floating-Point Indexed Load and Store Instructions

A value is transferred between memory and a floating-point register. The address is formed by the

addition of the index register to the base register. Optionally, the index value may be shifted to reflect an

address corresponding to the size of the value being transferred and the base register may be modified

after the address has been formed.

Table 4-43. Floating-Point Indexed Load and Store Instructions

Instruction Name Mnemonic Name Operands

Floating-point Load Word Indexed FLDWxX,cmplt x(s,b),t

Floating-point Load Doubleword Indexed FLDDX,complt x(s,b),t

Floating-point Store Word Indexed FSTWX,complt r,x(s,b)

Floating-point Store Doubleword Indexed FSTDX,complt r,x(s,b)

Table 4-44. Floating-Point Indexed Load and Store Completers

complt Description

BS) Shift Index by Data Size,
No Base Register Modification

M No Index Shift

Base Register Modification

"SM" or Shift Index by Data Size

mM Base Register Modification

none No Index Shift,
specified No Base Register Modification

4-38

The Instruction Set

Floating-Point Short Displacement Load and Store Instructions

A value is transferred between memory and a floating-point register. The address is formed by the

addition of the short displacement to the base register. Optionally, the base register may be modified

either before or after the address has been formed.

Table 4-45, Floating-Point Short Displacement Load and Store Instructions

Instruction Name Mnemonic Name Operands

Floating-point Load Word Short FLDWS,cmplt d(s,b),t

Floating-point Load Doubleword Short FLDDS,complt d(s,b),t

Floating-point Store Word Short FSTWS,cmplt r,d(s,b)

Floating-point Store Doubleword Short FSTDS,cmplt r,d(s,b)

Table 4-46. Floating-Point Short Displacement Load and Store Completers

complt Description

,MB Modify Before

MA Modify After

none specified No Base Register Modification

Floating-Point Operation Instructions

Floating-point operation instructions include math functions and data format conversions.

Values from one or two floating-point registers are used to perform an operation and the result is stored

in a floating-point register.

4-39

The Instruction Set

Table 4-47, Floating-Point Operation Instructions

Instruction Name Mnemonic Name Operands

Floating-point Add FADD fmt rijyr2,t

Floating-point Subtract FSUBfmt riljr2,t

Floating-point Multiply FMPY fmt rir2,t

Floating-point Divide FDIV,fmt rijyr2,t

Floating-point Square Root FSQRT fmt r,t

Floating-point Absolute Value FABS fmt r,t

Floating-point Remainder FREM,fmt riyr2,t

Floating-point Round to Integer FRND fmt r,t

Floating-point Copy FCPY,fmt r,t

Floating-point Convert from Fixed-point to FCNVXFssf,df r,t

Floating-point

Floating-point Convert from Floating-point to FCNVFX;sf df r,t

Fixed-point

Floating-point Convert from Floating-point to FCNVFF ssf ,df r,t

Floating-point

Floating-point Convert from Floating-point to FCNVFXT sf ,df r,t

Fixed-point and Truncate

Table 4-48. Floating-Point Format Completers

fmt /df /sf Format or Size Specified

GL or <none> single (32-bit)

DBL double (64-bit)

QUAD quad (128-bit)

4-40

Floating-Point Compare and Test Instructions

The Instruction Set

A floating-point register 1s compared against a floating-point register using the format specified. The

operands and/or the result of the comparison are used to determine whether the specified condition is

met. If the condition is met, the C bit of the floating-point status register is set; otherwise, it is cleared.

A floating-point test instruction is used to nullify the following instruction based on the state of the C

bit. If the C bit is set, the next instruction is skipped; otherwise, it is executed.

Table 4-49. Floating-Point Compare and Test Instructions

Instruction Name Mnemonic Name Operands

Floating-point Compare FCMP,f mt,cond rljyr2

Floating-point Test FTEST

For completer format, refer to Table 4-48.

4-41

The Instruction Set

Table 4-50. Floating-Point Compare Conditions

Relations Invalid

Operation

Except if

Cond Greater Less Equal Unordered Unordered

Than Than To

false? F F F F F

false F F F F T

? F F F T F

*<=> F F F T T

= F F T F F

= F F T F T

?= F F T T F

t<> F F T T T

'?>= F T F F F

< F T F F T

?< F T F T F

!>= F T F T T

'?> F T T F F

= F T T F T

?<= F T T T F

t> F T T T T

'?<= T F F F F

> T F F F T

?> T F F T F

<= T F F T T

1?< T F T F F

= T F T F T

2>= T F T T F

!= T F T T T

'?= T T F F F

<> T T F F T

t= T T F T F

t= T T F T T

'? T T T F F

<=> T T T F T

true? T T T T F

true T T T T T

4-42

Pseudo Instructions

The Instruction Set

Table 4-51 lists the commonly used pseudo instructions that are abbreviations for machine instructions.

These pseudo instructions can be used instead of machine instructions.

Table 4-51. Pseudo-Instructions

Pseudo-Instruction Code Standard Format

B Ww BL w, 0

COMB,cond,n rilyr2,target COMBT,cond,n rljr2,target

COMBF,cond,n rl yr2,target

COMIB,cond,n rlyr2,target COMIBF,cond,n rlr2,target

COMIBT,cond,n rljr2,target

ADDB,cond,n rlr2,target ADDBT,cond,n rlr2,target

ADDBF,cond,n rljyr2,target

ADDIB,cond,n rljr2,target ADDIBT,cond,n rlyr2,target

ADDIBF,cond,n ri r2,target

COPY r,t OR r,0,t

LDI i,t LDO i(0),t

NOP OR 0,0,0

MTSAR r MTCTL r,11

* The supplied completer determines the actual instruction that the Assembler uses in the

You can use the completer for any arithmetic condition or its

COMIB, ADDB, and ADDIB. The false

conditional branch.

negation with the pseudo-instructions COMB,

form of the corresponding actual instruction is assembled if the completer specifies the

negation of a condition. Otherwise, the true form 1s used.

4-43

Chapter 5
Programming Examples

This chapter consists of five programming examples in the assembly language. The first three examples
show typical assembly language code sequences; the last two examples show the correspondence between C,
a higher-level programming language, and assembly language.

Example | calculates the highest bit position set in a passed parameter. A binary search is used to
enhance performance.

Example 2 copies bytes from a source location to a destination location. Both locations and the
number of bytes to copy are passed in as parameters.

Example 3 uses Divide Step to divide a 64-bit signed dividend by a 32-bit signed divisor.

Example 4 uses a procedure call from a C program to the Assembler to verify that the program is
passing the correct argument.

Example 5 shows a C program that generates assembly code to call printf.

5-1

Programming Examples

Binary Search for Highest Bit Position

In Example 1, the Shift Double and Extract Unsigned instructions are used to implement a binary search.

Bits shifted into general register O are effectively discarded.

Example 1

. CODE

.EXPORT post

This procedure calculates the highest bit position

set in the word passed in as the first argument.
If passed parameter is non-zero, the algorithm

starts by assuming it is one.

A binary search for a set bit is then used
to enhance performance.

The calculated bit position is returned to the caller.

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

. PROC

post

»CALLINFO SAVE _RP

~ENTER

COMB,=,N %rO,%argO0,all zeros - No bits set
LDI 31,%reto * assume 2 to the O power

if extracted bits non-zero, fall thru to change assumption

else set up 16 low order bits and keep assumption

w
e

w
e

w
e

w
e

EXTRU, <> %argQ,15,16,%r0 ; check 16 high order bits
SHD,TR %arg0,%r0,16,%argOd ; left shift argO 16 bits
ADDI -16,%ret0,%retO ; assume 2 to the 16 power

if extracted bits non-zero, fall thru to change assumption

else set up 8 low order bits and keep assumption

w
e

W
e

w
e

w
e

EXTRU, <> %arg0,7,8,%r0 ; check next 8 high order bits
SHD,TR %argO0,%r0,24,%argO ; left shift argO 8 bits
ADDI -8, %ret0,%retO ; assume 8 higher power of 2

if extracted bits non-zero, fall thru to change assumption

else set up 4 low order bits and keep assumption

w
e

w
e

w
e

w
e

EXTRU, <> %arg0,3,4,%r0 ; check next 4 high order bits
SHD,TR %argO0 ,%r0,28,%argO ; left shift argO 4 bits
ADDI -4,%ret0,%reto ; assume 4 higher power of 2

S-2

w
e

w
e

w
e

w
e

Programming Examples

if extracted bits non-zero, fall thru to change assumption

else set up 2 low order bits and keep assumption

EXTRU, <> %arg0,1,2,%r0 * check next 2 high order bits
SHD,TR %argd ,%r0,30,%argd ; left shift argO 2 bits
ADDI -2 , %ret0 ,%retO * assume 2 higher power of 2

if extracted bit is zero, fall thru and keep assumption

else make conclusion

EXTRU,= %argd,0,1,%r0 * check next bit
ADDI -1 ,%retO,%retO * next higher power of 2
B,N tally

all zeros
LDI -1,%ret0O

tally

~ LEAVE

. PROCEND

5-3

Programming Examples

Copying a String

Example 2 contains a section of assembly code that moves a byte string of arbitrary length to an arbitrary

byte address.

Example 2

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
o
e

w
e

w
e

W
e

W
e

» CODE

» EXPORT

rflect

. PROC

~CALLINFO

~ENTER
COMB,=,N
COMB,<,N
OR
OR
EXTRU,=
B,N
ADDIBT,<,N

chunkify

LDWN

LDW
LDW
LDW
STW
STWM

STW

ADDI BF , <

STW

chekchunk

ADDIBT,<

COPY

5-4

rflect ,ENTRY

ENTRY GR=6,SAVE_RP

%arg2,%r0,fallout
Marge ,%r0, choke
%argd ,%argl ,%r6
%r6 ,Zarge ,%r6
%r6,31,2,%r0
onebyte

-16,%arg2,chekchunk

16(%arg0d) ,%r6

-12(%argO) ,%r5
-8(%argO) ,%r4
-4(%arg0) ,%r3

hr ,4(%argt)
%r6,16(%arg1)

%r4,-8(%arg1)
-16 %arg2,chunkify

fr3,-4(Rarg!)

12,%arg2,exeunt
%r0,%retO

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

The routine rflect copies bytes from the source location

to the destination location.

The first parameter is the source address and the second

parameter is the destination address.

The third parameter is the number of bytes to copy.

For performance, larger chunks of bytes are handled differently.

done, count is zero

caller error, neg count

source and dest

count

2 low order bits = Q?

yes, skip this branch

no, skip chunkify if count<0O

word 1- > temp!

point ahead 4 words in source

place mark 3 wds back- >temp2

place mark 2 wds back- >temp3

place mark 1 wds back- >temp4

dest wd 2 <-tempe

dest wd 1 <-temp!

point ahead 4 words in dest

dest wd 3 <-temp3

loop if count > 0

dest wd 2 <-temp!

go if count < -12

clear rtnval

subchunk

LDWS ,MA

ADDIBF , <
STWS ,MA

COPY

onebyte

LDBS ,MA

onemore

STBS ,MA

ADDIBF ,=,N

LDBS ,MA

fallout

B

COPY

choke

B

LDI

exeunt

. LEAVE

. PROCEND

4(%arg0) ,%r6

-4,%arg2,subchunk
%r6,4(%arg1)

exeunt

%rO0 %retO

1(%argO) ,%r6

%r6,1(%argt)
-1,%arg2,onemore

1(fargO) ,fr6

exeunt

%rO0,%retO

exeunt

14,%ret0O

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
o

w
e

Programming Examples

word- >temp1

point ahead 4 bytes in source

go if count<4
dest< -temp!

point ahead 4 bytes in dest

all done

clear rtnval

temp1 < -byte,bump src pointer

dest<-temp1,bump dest pointer

decrement count

compare for QO.

delay slot

temp1 <-byte,bump src pointer

5-5

Programming Examples

Dividing a Double-—Word Dividend

Example 3 contains the code sequence to divide a 64-bit signed dividend by a 32-bit signed divisor using

the DS (Divide Step) instruction. Table 5-1 lists the registers that this program uses.

Example 3

start

check mag

finish

5-6

ADDC
DS
9 eo @

ADDC

DS

ADDC

DS

ADDC

ADDB,>=,n

ADD, <

ADD,tr

ADDL

ADD, >=
SUB
XOR, >=
SUB

dvdu,rem,check mag

0,dvdl,quo

O,quo,quo

O,rem,rem

O,dvr,tp

0,tp,0;

quo,quo,quo

rem,dvr,rem

min _ovfl

quo,quo,quo

rem,dvr,rem

;repeat divide step sequence

quo,quo,quo

rem,dvr,rem

quo,quo,quo

rem,dvr,rem

quo,quo,quo

rem,0O,finish

dvr,0,0

rem,dvr,rem

rem,tp,rem

dvdu,0,0

O,rem,rem

dvdu,dvr,0O

0,quo,quo

w
e

w
e

w
e

w
e

w
e

@
2
e

w
e

w
e

O
e

W
e

w

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

Move upper dividend

check for < Q

Move lower dividend always

Get absolute value of

the dividend in rem,quo

Check O, clear carry,

negate the divisor

and trap if dvr = 0

Set V-bit to the complement

of the divisor sign
Shift msb bit into carry

ist divide step, if carry
out msb of quotient = 0

Abs (quotient) > 2##31
deal with elsewhere

Shift quo with/into carry
end divide step

Shift quo with/into carry
31st divide step

Shift quo with/into carry
32nd divide step,

Shift last quo bit into quo

Branch if pos. rem

If dvr > 0, add dvr

for correcting rem.
Else add absolute value dvr

Set sign of rem
to sign of dividend

Get correct sign of quo

based on operand signs

Table 5-1. Register Designations

Programming Examples

Register Purpose

Designations

dvr Register holding divisor.

dvdu, dvd Pair of registers holding dividend.

tp Temporary register.

quo Register holding quotient.

rem Register holding remainder.

5-7

Programming Examples

Demonstrating the Procedure Calling Convention

In Example 4, a C program calls an assembly language program to test if .ENTER and . LEAVE are working

correctly. The assembly language program checks to see if the C program has passed the value zero in

ARGO. The assembly language program then returns the value RETO to the calling program.

Example 4

C Program Listing

#include <stdio.h>

int errorcount = 0;

main ()

{
int toterr = 0;

printf('TESTING FEATURE 000’);

fflush(stdout);
if(feat000(000) t= -9) ++errorcount;
printft(’ %d errors\n',errorcount);
toterr += errorcount;

errorcount = 0;

Assembly Program Listing

; Assembler Module that passes results back to

; the C driver module

myfeat ~EQU 000

success .EQU -9

. CODE

. IMPORT errorcount ,DATA

.SUBSPA $CODE$

~EXPORT featO00,ENTRY

. PROC

~CALLINFO

featO0O .ENTER

COMIB,<> myfeat,argO,exit

LDI O,retO

LDI success,ret0O

exit ~ LEAVE

. PROCEND

~END

$-8

Output of the cc -S Command

Example 5 shows how a simple C program generates assembly language code.

Programming Examples

The program calls the

printf routine. To run the assembled code, you need to link to the file /lib/ert0O.o and the C library

file. Remember that the 1d command requires that you link the crt0.o file first.

Example 5

C Program Listing

main ()

{

}
printf (“Hello World\n');

Assembly Program Listing From the C Compiler

.SPACE $TEXT$
» SUPSPA $CODE$, QUAD=0 , ALIGN=8 , ACCESS=44,CODE_ONLY

main ; C runtime interface

» PROC w
e

-CALLINFO CALLER,FRAME=0,SAVE_RP no locals,

~ ENTRY proc entry

STW 2,-20(0,30)

LDO 48 (30) ,30

ADDIL L’ $THISMODULE$-$global$,27
~CALL ARGWO=GR set up for

w
e

w
e

w
o

w
n

w
e

w
e

w
e

w
o

w
e

w
e

w
e

w
o

w
e

delimit procedure

need return

code follows

stack the return pointer

set up user stack pointer
point to printf data

printf call

call printf thru ret pointer

return pointer

stack pointer -> stack frame

BL printf,2

LDO R’ $THISMODULE$-$global$(1),26 insert argument to printf
L$exitt hide from linker

LOW -68(0,30),2 get callee

BV 0(2) exit thru return pointer
~EXIT end of exit sequence

LDO -~48 (30) ,30

» PROCEND

~SPACE $TEXT$
.SUBSPA LIT,QUAD=0, ALIGN=8 , ACCESS=44
» SUBSPA $CODE$, QUAD=0 , ALIGN=8 , ACCESS=44, CODE ONLY
.SUBSPA $UNWIND$, QUAD=0, ALIGN=8, ACCESS=44
.SUBSPA $CODE$
-SPACE $PRIVATE$
.SUBSPA $DATA$, QUAD=1 , ALIGN=8 , ACCESS=31

5-9

Programming Examples

$THISMODULE$; demarks local data

-ALIGN 8

.STRINGZ “Hello World\n" * local data

.SUBSPA BSS,QUAD=1 , ALIGN=8 , ACCESS=31 , ZERO

. IMPORT $global$,DATA ; global data reference point

.SPACE $TEXT$

.SUBSPA $CODE$

»EXPORT main,PRIV_ LEV=3,RTNVAL=GR ; for linking this routine

~ IMPORT printf,CODE ; external proc declaration

~END

Chapter 6
Assembling Your Program

This chapter describes two different ways you can invoke the Assembler and the various command line

options controlling its behavior. It also contains a brief description of the interface between the

Assembler and linker, and things you should remember to facilitate the running of an assembly program.

Invoking the Assembler

You may invoke the Assembler directly by using the as command. Or, you may invoke the Assembler

through the cc command which processes the assembly source using the C pre-processor. The next two

sections describe these pathways.

Using the as Command

The as command is the standard command for invoking the Assembler on the HP Precision Architecture

system.

Syntax

as [[option] ... [file] ...]

The as command resides in the /bin directory. If your programming environment does not establish a

path to this directory, you must include the pathname as the first part of the as command. For example:

/bin/as -1 line.s box.s draw.s

Parameters

option Serves as a flag to the Assembler to take some special action. The as
command supports the following flags:

-e Specifies that the Assembler should tolerate one

million errors before terminating the assembly process.

Without this option, the Assembler terminates a

program after 100 errors.

Assembling Your Program

file

6-2

-o filename

-Uu

-v filename

Specifies that procedures can call other procedures as

the default condition. Normally, the Assembler

assumes that procedures do not call other procedures.

(See the CALLS and NO CALLS parameters for the

.CALLINFO directive.).

Lists the assembled program on the standard output

device. This listing shows instruction offsets and the

values stored in each field.

Assigns the specified name to the output file.

Prevents the Assembler from creating stack unwind

descriptors. This option precludes the use of the

~-ENTER and .LEAVE directives within a program.

Names a file to which the Assembler writes cross-

reference information; this includes the source file and

the line number for each appearance of all symbols.

Names an input or output file. You can include multiple input files to the

as command. The Assembler converts this stream of input files to a single

output file.

Assembler input files must include the suffix .s. The name for the output

file corresponds to the name of the last input file, except the Assembler

changes the suffix of that file’s name to .o.

Assembling Your Program

Using the cc Command

You can also use the cc command to run the Assembler on files that end with a .s suffix. The cc

command appends the system file pcc_prefix.s to the front of the file and pipes the file through the C

pre-processor before passing the file to the Assembler.

The system file pcc_prefix.s contains the following configuration files:

hard _reg.h

soft _reg.h

std space.h

These files are in the directory /usr/include. Table 6-1 describes the contents of each file.

NOTE

The Assembler automatically supports the different definitions that the

pec prefix.s file contains and provides them as programming aids

without requiring that you include this file as an input file to the as

command. Refer to "Registers and Register Mnemonics" in Chapter | and

"Programming Aids" in Chapter 3 for more information.

Table 6-1. PCC_PREFIX.S Definition Files

File Name Contents

hard_reg.h Set of .EQU’s for hardware registers.

soft_reg.h Set of register definitions that follows the Procedure Calling Convention.

std_space. h Set of space and subspace definitions that most Assembly programs use.

6-3

Assembling Your Program

The cc command normally strips all as command options from the command line. Therefore, when you

want to retain one of these options, you must include the flag -wa,<opt>,... on the cc command line

(where <opt> names the Assembler option you want to preserve).

You can use the C pre-processor (cpp) with assembly language programs to include C-type macros,

including directives. You can use an exclamation point (!) as a statement terminator to include multiple

statements in the body of one macro definition. Furthermore, you can use the .LABEL directive to

declare labels within a macro definition.

NOTE

If you use cpp, C-style comments should only be used on separate lines.

Error Message Catalog

The operating system stores the text for the Assembler error messages in a file with the pathname:

/lib/as_msgs.cat.

6-4

Assembling Your Program

Linking an Assembly Program

The relocatable object file produced by the Assembler must be processed by the linker, 1d, before it can be

executed. The linker merges relocatable object files, searches libraries for any routines that are referenced

by the user’s code, assigns final addresses to all program symbols, and produces an executable program file.

For the simplest assembly program, the command:

ld myfile.o

is all that 1s required when myfile.o is the name of the relocatable file produced by the Assembler. The

linker produces a program file called a.out, provided that myfile.o did not contain any references to

imported symbols. To select a program file name other than a.out, the command:

ld myfile.o -o myfile

can be used. The -o option specifies the name myfile for the program file.

In practice, however, a single stand-alone assembly program is extremely uncommon. Most assembly

language code declares procedures that are called from high-level language programs. In addition,

assembly language code often calls procedures in high-level languages. In these cases, the link command

must include a special start-up file called /lib/crt0O.o, as well as additional relocatable object files and

the high-level language libraries. For example, a C program that calls some assembly language code

should be linked as follows:

ld /lib/ert0.o prog.o asm.o -le -o myprog

In this example, prog.o is the output of the C/HP-UX compiler, asm.o is the output of the Assembler,

the -lc option tells the linker to search the C library, and the -o option names the program file myprog.

When the assembly language procedures are written to be called from a high-level language, the

high-level language compiler is usually the easiest interface to the linker. The above example could also

have been linked with the command:

cc prog.o asm.o -o myprog

The cc command always runs the linker with the appropriate files and options for linking a C program.

Similarly, the pe and f77 commands should be used when the main program is in Pascal or FORTRAN 77

respectively.

6-5

Appendix A

Error Messages

This appendix lists all error messages that originate from the HP Precision Architecture Assembler.

The Assembler error messages are divided into the following categories:

e Warning Messages -- flag conditions that cause errors in program execution.

e Error Messages ~-- cause the assembly process to terminate abnormally.

e Panic Messages -- cause the assembly process to abort immediately.

e User Warnings -- cause the assembler to produce an object file and possibly to take a specified

corrective action.

e Limit Errors -- caused by running into assembler limits or running out of memory.

e Branching Errors -- prevent the assembler from creating an object file.

The symbol "<operand>" used in the error messages designates the Assembler source element that is the

subject of the error. When an error message is printed during assembly operation, the "<operand>"

designation is replaced by the appropriate source element.

Error Messages

Warning Messages

1 MESSAGE -L option is obsolete and ignored

CAUSE -L appeared as a command line argument.

ACTION Remove -L option from command line argument list.

2 MESSAGE Value of <operand> for 5S-bit field not in [0..31]
(truncated)

CAUSE Second operand of EXTRS, BB, or DEP instruction not between zero and

31 inclusive. The Assembler truncates the value to be the <operand>

value MOD 32.

ACTION To avoid truncation, specify legal value.

3 MESSAGE Extract/Deposit field size of <operand> not in [1..32]
(set to 32)

CAUSE Operand field 3 of EXTRS or DEP instruction not between 1 and 32

inclusive.

ACTION To override the default value of 32, use legal value in operand field 3.

4 MESSAGE Value of <operand> for short signed immed. < -16 (set

to -16)

CAUSE This message may appear for one of three reasons:

1) First operand of a deposit immediate instruction (DEPI, VDEPI,
ZDEPI, or ZVDEPI) or a conditional branch immediate instruction

(ADDIBF, ADDIBT, COMIBF, COMIBT, or MOVIB) is less than -16.

2) Address offset of first operand of a load short instruction (LDBS,

LDCWS, LDHS, LDWAS, or LDWS) is less than -16.

3) Address offset of second operand of a store short instruction (STBS,
STBYS, STHS, STWAS, or STWS) is less than -16.

ACTION Change indicated operand so its value falls between -16 and +15

inclusive.

Error Messages

MESSAGE

CAUSE

ACTION

Value of <operand> for short signed immed. > 15 (set to

15)

This message may appear for one of three reasons:

1) First operand of a deposit immediate instruction (DEPI, VDEPI,

ZDEPI, or ZVDEPI) or a conditional branch immediate instruction
(ADDI BF, ADDIBT, COMI BF, COMIBT, or MOVIB) is greater than 15.

2) Address offset of first operand of a load short instruction (LDBS,

LDCWS, LDHS, LDWAS, or LDWS) is greater than 15.

3) Address offset of second operand of a store short instruction (STBS,
STBYS, STHS, STWAS, or STWS) is greater than 15.

Change above operand to value between -16 and +15 inclusive.

MESSAGE

CAUSE

ACTION

Keyword <operand> is obsolete and ignored

Keyword DUMMY used with .SPACE directive or keywords ALONE or

ATTEND used with .SUBSPACE directive are obsolete.

Remove obsolete keywords.

MESSAGE

CAUSE

ACTION

Space characteristics may not be changed after first

declaration

New values assigned to keywords for a space previously declared with a

.SPACE directive. This message appears whenever a keyword is

assigned a value, even if the values remain the same.

Use desired values for keywords on first declaration of space. Specify

keyword values on first declaration of space only.

MESSAGE

CAUSE

ACTION

Subspace characteristics may not be changed after first

definition

New values assigned to keywords for a subspace previously declared

with a .SUBSPACE directive.

Use desired values for keywords on first declaration of subspace.

Specify keyword values on first declaration of space only.

Error Messages

9 MESSAGE Size omitted - zero assumed

CAUSE .COMM directive used without an integer argument.

ACTION Use the .COMM directive to issue a storage request for the number of

bytes desired.

10 MESSAGE Alignment omitted - 8 assumed

CAUSE . ALIGN directive used without a power of two integer argument.

ACTION Use a power of two integer argument with .ALIGN.

11 MESSAGE Missing value - zero assumed

CAUSE ~ORIGIN or .EQU directive used without an integer argument.

ACTION Specify the actual value of the location offset or identifier desired.

12 MESSAGE Size omitted - 4 assumed

CAUSE . BLOCK directive used without an integer argument.

ACTION Specify the actual number of bytes to be reserved for uninitialized

storage.

13 MESSAGE Use of GR3 when frame>=8192 may cause conflict

CAUSE General register 3 used in an instruction within a procedure where

keyword frame set above 8192. Note: gr3 is used as a base register for

large frames.

ACTION Use general register other than gr3.

14 MESSAGE KEEP should not be in force for this statement

CAUSE . KEEP directive outside of a procedure.

ACTION Remove .KEEP directive.

Error Messages

15 MESSAGE Procedure makes calls but is not flagged as CALLER in

~CALLINFO

CAUSE Missing CALLER keyword in a procedure containing .CALL.

ACTION Add CALLER keyword to .CALLINFO directive.

16 MESSAGE Value for <operand> must be in range 0..3 (set to 3)

CAUSE Illegal privilege level specified.

ACTION Change the privilege level specification.

17 MESSAGE Existing register name, number, and type are being

overwritten

CAUSE Name (label) used with .REG directive was previously defined.

ACTION Use a different name in the label part to avoid overwriting previous

definition.

18 MESSAGE Error message file cannot be located

CAUSE Error message catalog is not in the user path.

ACTION Ensure as_msgs.cat is in the user path or make /lib/as_msgs.cat
accessible.

19 MESSAGE Defining register missing or defining register has no

type

CAUSE Parameter to .REG is not one of the predefined Assembler registers nor

is it a previously defined (with the .REG directive) register.

ACTION Either use one of the predefined Assembler registers or define register

type using the .REG directive.

Error Messages

20 MESSAGE General register expected in this field - <operand>

CAUSE Wrong register type used.

ACTION Use a general register.

21 MESSAGE Space register expected in this field - <operand>

CAUSE Wrong register type used.

ACTION Use a space register.

22 MESSAGE Control register expected in this field - <operand>

CAUSE Wrong register type used.

ACTION Use a control register.

23 MESSAGE Floating point register expected in this field -

<operand>

CAUSE Wrong register type used.

ACTION Use a floating point register.

24 MESSAGE Location counter must be in range 0..3 (set to 0) -

<argument >

CAUSE Argument to . LOCCT is not within 0..3 range.

ACTION Change argument to .LOCCT to be within 0..3 range.

Error Messages

Error Messages

1000 MESSAGE Unterminated quoted string

CAUSE String specified asin .STRING, without trailing quotes.

ACTION Add trailing quotes to string.

1001 MESSAGE Undefined register symbol

CAUSE Parenthesized instruction operand does not have a corresponding .EQU

directive.

ACTION Equate register symbols to values zero through 31.

1002 MESSAGE Undefined completer

CAUSE Invalid value in instruction completer field.

ACTION Use only those completers specified in the Precision Architecture and

Instruction Reference Manual.

1003 MESSAGE Improper completer specified

CAUSE Completer used with an instruction which does not take completers.

ACTION Use completers only with instructions specified for them in the

Precision Architecture and Instruction Reference Manual.

1004 MESSAGE Output file name missing

CAUSE -o option given to Assembler but not followed by a filename.

ACTION Place desired output filename after -o option.

Error Messages

1005 MESSAGE Unable to open xref file: <operand>

CAUSE A file specified with the -v option is not writable.

ACTION Use a different filename.

1006 MESSAGE XREF file name missing after -v

CAUSE Filename omitted from command line.

ACTION Provide a filename after -v to dump the cross-reference information.

1007 MESSAGE Label not allowed here in this expr

CAUSE 1) Register specified by identifier.

2) An expression contains the sequence immediate-operator-label.

ACTION 1) Use integer values for registers.

2) Use labels only as first term when combining with immediate values.

1008 MESSAGE Illegal symbol in expression

CAUSE An expression contains a sequence other than label-operator term or

term-operator-term.

ACTION Place operators +, -, *, / between a label and a term or a term and a

term.

1009 MESSAGE Field selector not allowed in pe relative expression

CAUSE Field selector, such as L’ or R” used on an expression contained in a

branch instruction.

ACTION Omit field selector from branch instruction.

Error Messages

1010 MESSAGE String not allowed in pe relative expression

CAUSE String used as the target of a branch instruction.

ACTION Target branch to an expression beginning with a label or "."

1011 MESSAGE “." allowed in pe_rel expression only

CAUSE "."" used as an operand in a nonbranch, external branch or vectored

branch.

ACTION Use "." only in branch instructions other than branch external or branch

vectored.

1012 MESSAGE PC_ relative expression must begin with . or label

CAUSE Branch target poorly formed.

ACTION Use label or "." as first term of branch target expression.

1013 MESSAGE Second label not allowed in pec relative expression

CAUSE Branch target poorly formed: label-operator-label.

ACTION Use an offset in place of second label.

1014 MESSAGE Labels may not be added - only subtracted

CAUSE Attempt to form an expression using sum of two labels.

ACTION Use an offset in place of second label.

1015 MESSAGE Unexpected end of expression

CAUSE Nothing follows a +, -, /, or * in an expression.

ACTION Place meaningful terms, integers, or labels after operator.

Error Messages

1016 MESSAGE General register <operand> is out of range

CAUSE Register number specified greater than 31.

ACTION Use register number between zero and 31.

1017 MESSAGE Value of <operand> for space register not in [0..3]

CAUSE Load or privileged store instruction references a space register greater

than 3.

ACTION Change space register number to a legal value.

1018 MESSAGE Value of <operand> for space register not in [0..7]

CAUSE Branch or privileged instruction uses space register greater than 7.

ACTION Change space register number to a legal value.

1019 MESSAGE Opcode not defined

CAUSE Characters in opcode field do not comprise legal machine instruction or

directive.

ACTION Starting in column 2, use only defined opcodes and directives.

1020 MESSAGE Number required for keyword value

CAUSE A .CALLINFO keyword is set equal to a nonnumeric argument.

ACTION Ensure .CALLINFO keywords are assigned numeric values.

1021 MESSAGE Unrecognized value for keyword

CAUSE Illegal assignment to an ARGW or RTNVAL keyword in .CALL or

. EXPORT directive.

Use "NO", "GR", "FR", or "FU" appropriately. ACTION

Error Messages

1022 MESSAGE This statement must occur within a declared subspace

CAUSE Instruction or directive present before .SUBSPA directive.

ACTION Use .SUBSPA directive before issuing instruction or data.

1023 MESSAGE Directive not allowed inside a procedure

CAUSE Use of . LOCCT, .SPACE, or .SUBSPA within a procedure.

ACTION Do not attempt to change location counter, space or subspace within a

procedure.

1024 MESSAGE Space name required

CAUSE SPACE directive not followed by a valid name.

ACTION Follow .SPACE directive with a name starting with an alphabetic

character.

1025 MESSAGE Unrecognized keyword

CAUSE Directive, such as .SPACE, .SUBSPA, or .CALLINFO, followed by a

keyword not specified in Assembler manual.

ACTION Follow directives with legal keywords separated by commas.

1026 MESSAGE Name previously defined

CAUSE Subspace name matches a space name.

ACTION Choose subspace names different from space names.

1027 MESSAGE This item must be declared within a space

CAUSE A directive, such as . SUBSPA, is used before the first . SPACE directive.

ACTION Place .SPACE directive prior to offending directive.

Error Messages

1028 MESSAGE Subspace name required

CAUSE . SUBSPA directive parameter list does not begin with a valid name.

ACTION .SUBSPA must be followed by name beginning with an alphabetic

character or "$".

1029 MESSAGE This statement must appear within a procedure

CAUSE Directive, such as .CALLINFO, .ENTER, or .LEAVE, is used outside of a

procedure.

ACTION Use procedure related directives only within a procedure.

1030 MESSAGE Only one .CALLINFO per procedure

CAUSE Multiple .CALLINFO directives between successive . PROC directives.

ACTION Place all desired keywords in one .CALLINFO directive for the

procedure.

1031 MESSAGE Value for <operand> must be >=0

CAUSE Ina .CALLINFO directive, FRAME is assigned an identifier equated to a

negative value.

ACTION Use only nonnegative FRAME values.

1032 MESSAGE Value for <operand> must be in range 3..19

CAUSE In a .CALLINFO directive, ENTRY_ GR 1s assigned a value less than 3
or greater than 19.

ACTION Assign ENTRY GR a value between 3 and 19 inclusive. Note: Use of

value zero 1s also legal here.

ed

Error Messages

1033 MESSAGE Value for <operand> must be in range i2..31

CAUSE In a .CALLINFO directive, ENTRY _ FR is assigned a value less than 12
or greater than 31.

ACTION Set ENTRY_ FR to a value between 12 and 31 inclusive. Note: Use of
value zero 1s also legal here.

1034 MESSAGE ENTRY SR must be 3 or not specified

CAUSE ».CALLINFO contains keyword specifying saved space register other than

three.

ACTION Omit ENTRY SR keyword as other space registers do not require

Saving.

1037 MESSAGE Nested .PROC

CAUSE . PROC directive present within . PROC - .PROCEND sequence.

ACTION Insert . PROCEND between successive .PROCs or remove any unnecessary

» PROCs.

1038 MESSAGE Variable name missing

CAUSE Label omitted in .COMM or .EQU directive.

ACTION Use label with all .COMM or .EQU directives.

1039 MESSAGE Missing string constant

CAUSE »STRING, .STRINGZ, .VERSION, or .COPYRIGHT directive present

without a string operand.

ACTION Add missing quoted string after directive.

Error Messages

1040 MESSAGE Only one copyright message permitted

CAUSE Multiple copyright directives present.

ACTION Combine messages and use one copyright directive.

1041 MESSAGE Export name required

CAUSE . EXPORT directive not followed by an identifier.

ACTION Follow .EXPORT directive with a legal identifier that must begin with

an alphabetic character, an underscore, or a dollar sign.

1042 MESSAGE Import name required

CAUSE . IMPORT directive not followed by a legal identifier.

ACTION Add missing identifier after . IMPORT directive.

1043 MESSAGE <operand> not permitted for export

CAUSE . EXPORT directive not followed by a legal identifier.

ACTION Provide appropriate identifier after .EXPORT directive.

1044 MESSAGE Name required for label definition

CAUSE . LABEL directive not followed by legal identifier.

ACTION Add missing identifier after . LABEL directive

1045 MESSAGE Name to be defined by .LABEL must appear as operand.

CAUSE Identifier present in column one in a .LABEL directive.

ACTION Place identifier after . LABEL, not before it.

Error Messages

~— 1046 MESSAGE Duplicate definition of symbol

CAUSE A label was used more than once.

ACTION Give labels unique names.

1047 MESSAGE Unmatched .PROCEND

CAUSE Two .PROCEND directives present without .PROC directive in between.

ACTION Each procedure should begin with a single .PROC and end with a

.» PROCEND.

1048 MESSAGE A procedure may not be empty

CAUSE . PROC followed by . PROCEND with no executable code between.

ACTION Use at least .CALLINFO, .ENTER, and .LEAVE within procedure body.

a 1049 MESSAGE Procedure does not have .CALLINFO

CAUSE Missing .CALLINFO directive between .PROC and .PROCEND.

ACTION Insert .CALLINFO following . PROC.

1050 MESSAGE Illegal symbol in label position

CAUSE Character present in column one which 1s not alphabetic, underscore, or

dollar sign.

ACTION Use only legal identifiers in label field.

1051 MESSAGE Illegal symbol in opcode position

CAUSE A sequence of characters starting in column two or beyond does not

begin with an alphabetic character or a period.

ACTION Use only prescribed opcodes and directives starting in column two or

beyond.

ed

A-15

Error Messages

1052 MESSAGE Directive name not recognized

CAUSE A sequence of characters starting in column two or beyond, beginning

with a period, does not correspond to a prescribed directive.

ACTION When beginning with a period, use only prescribed directives starting in

column two or beyond.

1054 MESSAGE Unexpected items at end of line

CAUSE Legal operands are followed by trailing characters or operators.

ACTION Examine entire sequence of operands for syntactic integrity.

1055 MESSAGE Label must be defined within a declared subspace

CAUSE Label present prior to a .SUBSPA directive.

ACTION Place label after issuing .SUBSPA directive.

1056 MESSAGE Empty source file(s)

CAUSE No space has been declared.

ACTION Use at least one .SPACE directive.

1057 MESSAGE Missing .PROCEND

CAUSE Last procedure in program does not end with . PROCEND.

ACTION Add .PROCEND directive to last procedure in program.

1059 MESSAGE Divide by zero

CAUSE Attempt to perform a division operation with a zero divisor.

ACTION Be sure value for divisor can not become equal to zero.

Error Messages

1060 MESSAGE Argument 1 or 3 in FARG upper

CAUSE Using the FU value with the ARGW1 or ARGW3 keywords.

ACTION Only use the FU value with ARGWO or ARGW?2 keywords.

1061 MESSAGE Closing parenthesis is missing in expression

CAUSE Mismatched parenthesis.

ACTION Insert closing parenthesis at the end of the expression.

1062 MESSAGE Macro parameters must be separated by commas

CAUSE Formal parameters to .MACRO or actual parameters to a macro call are

not separated by commas.

ACTION Insert commas between parameters.

1063 MESSAGE Unterminated macro definition

CAUSE A .MACRO directive is not matched with an .ENDM directive.

ACTION Terminate the macro definition with an .ENDM directive.

1064 MESSAGE Poorly formed macro parameter

CAUSE Formal parameter to the macro definition is not in an

Assembler-accepted form.

ACTION Change the form of the formal parameter to an acceptable form.

1065 MESSAGE Poorly formed .FLOAT or .DOUBLE argument

CAUSE The floating point number that was used as the argument to .FLOAT or

. DOUBLE is not in the right format.

ACTION Use the correct floating point format for the argument.

Frror Messages

1066 MESSAGE Poorly formed bit field specifier

CAUSE Bit field is not being specified in the form {x..y} where x and y are

natural numbers.

ACTION Specify bit fields in the correct form.

1067 MESSAGE Bit field too wide for instruction field

CAUSE Mismatched bit field declaration and use.

ACTION Use the same length for both the bit field being assigned to and the bit

field being assigned from.

1068 MESSAGE Brace outside of macro definition

CAUSE Opening or closing braces are being used outside a macro definition.

ACTION Remove opening or closing braces or use them before the .ENDM.

1069 MESSAGE Equal sign required in bit field assignment

CAUSE Missing operator = for assigning one bit field to another.

ACTION Insert equal sign (=) for bit field assignment.

1070 MESSAGE Bit range must be within {0..31}

CAUSE Range specified in bit field is not 0.. 31.

ACTION Ensure bit field range is within 0.. 31.

Error Messages

1071 MESSAGE Opening brace expected in bit range designator

CAUSE Missing opening brace to specify a bit field.

ACTION Use correct format for bit field specification.

1072 MESSAGE Ending brace expected in bit range designator

CAUSE Missing closing brace to specify a bit field.

ACTION Use correct format for bit field specification.

1073 MESSAGE Unmatched .ENDM

CAUSE No .MACRO was recognized as corresponding to the . ENDM.

ACTION Either remove the unmatched .ENDM or insert a .MACRO in appropriate

position preceding the .ENDM.

1074 MESSAGE Illegal expression type for plabel

CAUSE More than one label was found in a plabel expression.

ACTION Use only one label in a procedure label expression.

1075 MESSAGE Undefined field selector

CAUSE Illegal field selector is being used.

ACTION Use correct field selector.

A-19

Error Messages

Panic Messages

2000 MESSAGE Exceeded maximum error count

CAUSE More than 100 errors were detected and the -e option was not invoked.

ACTION Use -e option to permit up to a million errors.

2001 MESSAGE Bad option - <operand>

CAUSE An option flag was used on the command line that does not correspond

to an option in the Assembler manual.

ACTION Use only prescribed options.

2002 MESSAGE Unable to open input file: <operand>

CAUSE Requested input file is either nonexistent or unreadable.

ACTION Check for presence of requested input file and examine read-write

permissions.

2003 MESSAGE Unable to open output file: <operand>

CAUSE 1) Output file exists and is not writable.

2) File system error.

ACTION 1) Make output file writable.

2) Contact HP-UX system administrator.

2004 MESSAGE Free storage exhausted

CAUSE Assembler cannot allocate memory for its internal structures.

ACTION Break up the program into smaller modules. If this doesn’t work,

contact HP-UX system administrator.

A-20

Error Messages

2005 MESSAGE Internal instruction parsing error on <operand>

CAUSE Assembler has an internal defect.

ACTION Contact HP-UX system administrator.

2006 MESSAGE Unable to regain access to source file for listing

CAUSE Not able to access source file for reading.

ACTION Check for existence of source file and permission to read it.

2007 MESSAGE Unable to access temporary file to build listing

CAUSE Not able to write to the temporary listing file. Could be a file system

error.

ACTION Call HP-UX system administrator.

2008 MESSAGE Unterminated macro definition

CAUSE Macro definition is not complete until a .ENDM is encountered.

ACTION Insert .ENDM at the end of the macro definition.

Error Messages

User Warnings

Errors 7100 through 7199 are user warnings. The assembler will proceed, and produce an object file, in

some cases taking the described form of corrective action.

7100 MESSAGE code subspace has no unwind subspace

CAUSE No unwind subspace was specified for the code subspace.

ACTION Contact HP-UX system administrator.

7101 MESSAGE Improper completer, <completer>, given for opcode

[opcode] - ignored

CAUSE The completer given is not valid for the opcode.

The assembler generates object code as if the completer were not given.

ACTION You should either remove the completer or give a correct completer.

7102 MESSAGE Immediate value of <constant> for 5-bit field in

<opcode> not in [0..31] (truncated)

CAUSE The constant was given as an operand for the opcode, and 1s larger than

the 5-bit field allows.

The lower five bits of the given constant are used.

ACTION You should change the value to within the limits (0 through 31) or use

a different instruction.

7103 MESSAGE Extract/deposit of <constant> for field size in

[opcode] not in [1..32] (set to 32)

CAUSE The constant was given as a field size for the extract or deposit

instruction with the specified opcode, and is larger than the S-bit field

allows.

The constant 1s set to 32 unless you take some action.

ACTION You should change the value to within the limits (1 through 32), or use

a different instruction.

A-22

Error Messages

7104 MESSAGE Immediate value of <constant> for <opcode> is less than

-16 (set to -16)

CAUSE The constant was given as an operand for the opcode, and is smaller

than the 5-bit signed field allows.

ACTION You should change the value to within the limits (-16 through 15), or
use a different instruction.

7105 MESSAGE Immediate value of <constant> for <opcode> is greater

than 15 (set to 15)

CAUSE The constant was given as an operand for the opcode, and 1s larger than

the 5-bit signed field allows.

ACTION You should change the value to within the limits (-16 through 15), or
use a different instruction.

7106 MESSAGE DSR value of <constant> for <opcode> not in [0..3] -

truncated

CAUSE A data space register value other than 0,1,2, or 3 was given for the

specified opcode.

ACTION You should change the value to within the limits (0 through 3).

7107 MESSAGE CSR value of <constant> for <opcode> not in [0..7] -
truncated

CAUSE A data space register value (constant) other than zero through 7 was

given for the specified opcode.

ACTION You should change the value to within the limits (0 through 7).

A-23

Error Messages

7108 MESSAGE The value <constant> did not fit into a <field size>

bit field at offset <offset> (op code - [opcode])

CAUSE During object file generation, a symbol reference (such as branch label

or load offset) being resolved to a constant could not be resolved within

the field of the referencing instruction. The value of the actual

constant being placed into the instruction is given, as well as the size of

the field, the offset from the beginning of the subspace of the offending

instruction, and the opcode of the offending instruction.

ACTION You must remove the reference, or use a different instruction sequence

that can accommodate the size of the constant.

7109 MESSAGE Tried to define the value of non-absolute symbol

<symbol-name>

CAUSE You used a .EQU directive to define a symbol that was already defined

as a non-absolute symbol, such as DATA or ENTRY.

ACTION You must either remove or change the symbol name in the .EQU

directive, or resolve the inconsistency with the other uses of that

symbol.

A-24

Limit Errors

Error Messages

Errors 7200 through 7299 are fatal errors that you may be able to work around. They involve running

into assembler limits or running out of memory.

7200 MESSAGE internal table overflow

CAUSE Too many labels in the object file.

ACTION Split the file. Make global variable and procedure names shorter. This

should rarely happen.

7201 MESSAGE new slc_ block: out of memory

CAUSE The assembler attempted to allocate some dynamic memory, and the

system was unable to provide the memory.

ACTION 1) Check the system limits because other processes that allocate dynamic

memory might also be running. More memory might be available at

another time.

2) Break your assembly file into smaller pieces, and assemble them

separately.

7202 MESSAGE init link: Out of memory

CAUSE The assembler attempted to allocate some dynamic memory, and the

system was unable to provide the memory.

ACTION 1) Check the system limits because other processes might be running

that also allocate dynamic memory. More memory might be available

at another time.

2) Break up your assembly file into smaller pieces and assemble them

separately.

A-25

Error Messages

7203 MESSAGE allocate bytes: Out of memory

CAUSE The assembler attempted to allocate some dynamic memory, and the

system was unable to provide the memory.

ACTION 1) Check the system limits because other processes might be running

that also allocate dynamic memory. More memory might be available

at another time.

2) Break up your assembly file into smaller pieces, and assemble them

separately.

7204 MESSAGE error in writing to output file.

CAUSE The assembler cannot write to the object file.

ACTION Contact HP-UX system administrator to check for file system errors.

Error Messages

Branching Errors

Errors 7400 through 7405 are branching errors that prevent the assembler from creating an object file.

You must correct these errors to assemble your program.

7400 MESSAGE Procedure number <number> has no label known to linker

CAUSE You used the .PROC directive to specify the beginning of a procedure,

but have not exported a procedure label. This is necessary for creating

unwind tables.

ACTION You need to export a label for the procedure.

7401 MESSAGE Attempt to set location counter backward with .ORIGIN

value of <constant>

CAUSE You specified a value for the .ORIGIN directive that causes the location

of the following item to be earlier than the previous item.

ACTION You must either delete items before the .ORIGIN directive to adjust the

offset of the immediately preceding item, or adjust the value on the

ORIGIN directive.

7402 MESSAGE Procedure call to non entry point: <label name>

CAUSE You used the .CALL directive to mark a procedure call to a label that is

not an entry point. It must be marked with either .ENTER or . ENTRY.

ACTION You must either remove the .CALL directive, change the target on the

.CALL directive, or place a .ENTER or .ENTRY at the target.

7403 MESSAGE undefined label - <label name>

CAUSE You used the given label in an expression, such as a branch instruction

or a .WORD directive, but the label was never defined.

ACTION Remove the reference to the label. Or define it by exporting it or using

it as a label on an instruction or data item.

Error Messages

7404 MESSAGE branch target .-<constant> unresolvable, instruction

number <number>

CAUSE You specified a negative displacement from the current location, and

there is no instruction there.

ACTION You must place an instruction at the target of the branch, or change the

constant in the branch.

7405 MESSAGE branch target .+<constant> unresolvable, instruction

number <number>

CAUSE You specified a branch to the current location plus a constant, but there

is no instruction there.

The sequence number of the branch instruction within its subspace is

given.

ACTION You must place an instruction at the target of the branch, or change the

constant in the branch.

Appendix B

Instruction Summaries

Table B-1 lists the different Assembler machine instructions, alphabetically, by their mnemonic names.

Table B-1. Instructions Arranged by Mnemonic Name

Mnemonic Name Operands Instruction Name

ADD,cond rlor2,t Add

ADDB,cond,n rl r2,target Add and Branch *

ADDBF,cond,n rijr2,target Add and Branch If False

ADDBT,cond,n rlr2,target Add and Branch If True

ADDC,cond r1jr2,t Add With Carry

ADDCO,cond rijr2,t Add With Carry and Trap On Overflow

ADDI,cond Lr,t Add To Immediate

ADDIB,cond,n ir2,target Add Immediate and Branch #*

ADDIBF,cond,n ir2,target Add Immediate and Branch If False

ADDIBT,cond,n ir2,target Add Immediate and Branch If True

ADDIL LI Add Immediate Left

ADDIO,cond Lr,t Add To Immediate and Trap On Overflow

ADDIT,cond ir,t Add To Immediate and Trap On Condition

ADDITO,cond Lr,t Add to Immediate and Trap On Condition or

Overflow

ADDL,cond rir2,t Add Logical

ADDO,cond rlr2,t Add and Trap On Overflow

*Pseudo instruction. (continued on next page)

Instruction Summaries

Table B-1. Instructions Arranged by Mnemonic Name (continued)

Mnemonic Name Operands Instruction Name

AND,cond rljyr2,t And

ANDCM,cond rijyr2,t And Complement

Bun target Branch *

BB,cond,n rl,p,target Branch On Bit

BE,n wd(sr,b) Branch External

BL,n target,t Branch and Link

BLE,n wd(sr,b) Branch and Link External

BLR,n x,t Branch and Link Register

BREAK 11,12 Break

BV,n x(b) Branch Vectored

BVB,cond,n rli,target Branch On Variable Bit

CLDDS,uid,cmplt i(s,b),t Coprocessor Load Doubleword Short

CLDDX,uid,cmplt x(s,b),t Coprocessor Load Doubleword Indexed

CLDWS,uid,cmplt d(s,b),t Coprocessor Load Word Short

CLDWX,uid,cmplt x(s,b),t Coprocessor Load Word Indexed

COMB, cond,n rlr2,target Compare and Branch *

COMBF,cond,n rlr2,target Compare and Branch If False

COMBT,cond,n rljyr2,target Compare and Branch If True

COMCLR, cond rljyr2,t Compare and Clear

COMIB,cond,n ir2,target Compare Immediate and Branch *

COMIBF,cond,n 1r2,target Compare Immediate and Branch If False

COMIBT,cond,n ir2,target Compare Immediate and Branch If True

COMICLR,cond Lr,t Compare Immediate and Clear

*Pseudo instruction.

B-2

(continued on next page)

Instruction Summaries

Table B-1. Instructions Arranged by Mnemonic Name (continued)

Mnemonic Name Operands Instruction Name

COPR,uid,sop,n Coprocessor Operation

COPY r,t Copy *

CSTDS,uid,cmplt r,d(s,b) Coprocessor Store Doubleword Short

CSTDX,uid,cmplt r,x(s,b) Coprocessor Store Doubleword Indexed

CSTWS,uid,cmplt r,d(s,b) Coprocessor Store Word Short

CSTWX,uid,cmplt r,x(s,b) Coprocessor Store Word Indexed

DCOR, cond rt Decimal Correct

DEP,cond r,p,len,t Deposit

DEPI,cond i,p,len,t Deposit Immediate

DIAG 1 Diagnose

DS,cond rilr2t Divide Step

EXTRS,cond r,p,len,t Extract Signed

EXTRU,cond r,p,len,t Extract Unsigned

FABS,fmt rt Floating-point Absolute Value

FADD fmt rljr2,t Floating-point Add

FCMP,f mt,cond rijr2 Floating-point Compare

FCNVFF sf ,df r,t Floating-point Convert from Floating-point to

Floating-point

FCNVFX;sf,df r,t Floating-point Convert from Floating-point to

fixed-Point

FCNVFXT sf,df r,t Floating-point Convert from Floating-point to

Fixed-point and Truncate

FCNVXF sf,df r,t Floating-point Convert from Fixed-point to

Floating-point

FCPY,fmt r,t Floating-point Copy

*Pseudo instruction. (continued on next page)

Instruction Summaries

Table B-1. Instructions Arranged by Mnemonic Name (continued)

Mnemonic Name Operands Instruction Name

FDC,cmplt x(s,b) Flush Data Cache

FDCE,cmplt x(s,b) Flush Data Cache Entry

FDIV,fmt rljyr2,t Floating-point Divide

FIC,cmplt x(sr,b) Flush Instruction Cache

FICE,cmplt x(sr,b) Flush Instruction Cache Entry

FLDDS,cmplt d(s,b),t Floating-point Load Doubleword Short

FLDDX,cmplt x(s,b),t Floating-point Load Doubleword Indexed

FLDWS,cmplt d(s,b),t Floating-point Load Word Short

FLDWxX,cmplt x(s,b),t Floating-point Load Word Indexed

FMPY,fmt rljyr2,t Floating-point Multiply

FREM,fmt rijyr2,t Floating-point Remainder

FRND, fmt r,t Floating-point Round to Integer

FSQRT,fmt r,t Floating-point Square Root

FSTDS,cmplt r,d(s,b) Floating-point Store Doubleword Short

FSTDX,cmplt r,x(s,b) Floating-point Store Doubleword Indexed

FSTWS,cmplt r,d(s,b) Floating-point Store Word Short

FSTWX,cmplt r,x(s,b) Floating-point Store Word Indexed

FSUB fmt ri,r2,t Floating-point Subtract

FTEST Floating-point Test

GATE,n target,t Gateway

IDCOR,cond r,t Intermediate Decimal Correct

IDTLBA r,(s,b) Insert Data Translation Lookaside Buffer Address

(continued on next page)

Instruction Summaries

Table B-1. Instructions Arranged by Mnemonic Name (continued)

Mnemonic Name Operands Instruction Name

IDTLBP r,(s,b) Insert Data Translation Lookaside Buffer Protection

IITLBA r,(sr,b) Insert Instruction Translation Lookaside Buffer

Address

IITLBP r,(sr,b) Insert Instruction Translation Lookaside Buffer
Protection

LDB d(s,b),t Load Byte

LDBS,cmplt d(s,b),t Load Byte Short

LDBX,cmplt x(s,b),t Load Byte Indexed

LDCWS,cmplt d(s,b),t Load and Clear Word Short

LDCWX,cmplt x(s,b),t Load and Clear Word Indexed

LDH d(s,b),t Load Half word

LDHS,cmplt d(s,b),t Load Halfword Short

LDHX,cmplt x(s,b),t Load Halfword Indexed

LDI i,t Load Immediate *

LDIL i,t Load Immediate Left

LDO d(b),t Load Offset

LDSID (s,b),t Load Space Identifier

LDW d(s,b),t Load Word

LDWAS,cmplt d(b),t Load Word Absolute Short

LDWAX,cmplt x(b),t Load Word Absolute Indexed

LDWM d(s,b),t Load Word and Modify

LDWScmplt d(s,b),t Load Word Short

LDWX,cmplt x(s,b),t Load Word Indexed

*Pseudo instruction. (continued on next page)

Instruction Summaries

Table B-1. Instructions Arranged by Mnemonic Name (continued)

Mnemonic Name Operands Instruction Name

LHA,cmplt x(s,b),t Load Hash Address

LPA,cmplt x(s,b),t Load Physical Address

MFCTL r,t Move From Control Register

MFSP srt Move From Space Register

MOVB,cond,n rlyr2,target Move and Branch

MOVIB,cond,n ir2,target Move Immediate and Branch

MTCTL r,t Move To Control Register

MTSAR r Move To Shift Amount Register *

MTSM r Move To System Mask

MTSP r,sr Move To Space Register

NOP No Operation *

OR,cond rljyr2,t Inclusive OR

PDC, cmplt x(s,b) Purge Data Cache

PDTLB,cmplt x(s,b) Purge Data Translation Lookaside Buffer

PDTLBE,cmplt x(s,b) Purge Data Translation Lookaside Buffer Entry

PITLB,cmplt x(sr,b) Purge Instruction Translation Lookaside Buffer

PITLBE,cmplt x(sr,b) Purge Instruction Translation Lookaside Buffer

Entry

PROBER (s,b),r,t Probe Read Access

PROBERI (s,b),1,t Probe Read Access Immediate

PROBEW (s,b),r,t Probe Write Access

PROBEWI (s,b),1,t Probe Write Access Immediate

RFI Return From Interruption

*Pseudo instruction. (continued on next page)

Instruction Summaries

Table B-1. Instructions Arranged by Mnemonic Name (continued)

Mnemonic Name Operands Instruction Name

RSM it Reset System Mask

SH!1ADD,cond r1jr2,t Shift One and Add

SH1ADDL,cond riljyr2,t Shift One and Add Logical

SH!1ADDO,cond rljyr2,t Shift One, Add and Trap On Overflow

SH2ADD,cond rl jr2,t Shift Two and Add

SH2ADDL,cond riljyr2,t Shift Two and Add Logical

SH2ADDO,cond rijyr2,t Shift Two, Add and Trap On Overflow

SH3ADD,cond rijr2,t Shift Three and Add

SH3ADDL,cond rijr2,t Shift Three and Add Logical

SH3ADDO,cond rijr2,t Shift Three, Add and Trap On Overflow

SHD,cond rljr2,count,t Shift Double

SSM i,t Set System Mask

STB r,d(s,b) Store Byte

STBS,cmplt r,d(s,b) Store Byte Short

STBYS,cmplt r,d(s,b) Store Bytes Short

STH r,d(s,b) Store Halfword

STHS,cmplt r,d(s,b) Store Half word Short

STW r,d(s,b) Store Word

STWAS,cmplt r,d(b) Store Word Absolute Short

STWM r,d(s,b) Store Word and Modify

STWS cmplt r,d(s,b) Store Word Short

SUB,cond rijr2,t Subtract

SUBB,cond rj jr2,t Subtract With Borrow

SUBBO,cond riljr2,t Subtract With Borrow and Trap On Overflow

(continued on next page)

Instruction Summaries

Table B-1. Instructions Arranged by Mnemonic Name (continued)

Mnemonic Name Operands Instruction Name

SUBI cond ir,t Subtract from Immediate

SUBIO,cond Lr,t Subtract from Immediate and Trap On Overflow

SUBO,cond rijr2,t Subtract and Trap On Overflow

SUBT,cond rijr2,t Subtract and Trap On Condition

SUBTO,cond rljr2,t Subtract and Trap On Condition or Overflow

SYNC Synchronize Caches

UADDCM,cond rljr2,t Unit Add Complement

UADDCMT, cond rljr2,t Unit Add Complement and Trap On Condition

UXOR,cond r1jr2,t Unit Exclusive Or

VDEP,cond r,len,t Variable Deposit

VDEPI,cond ilen,t Variable Deposit Immediate

VEXTRS,cond r,len,t Variable Extract Signed

VEXTRU,cond r,len,t Variable Extract Unsigned

VSHD,cond rljr2,t Variable Shift Double

XOR cond r1jr2,t Exclusive Or

ZDEP,cond r,p,len,t Zero and Deposit

ZDEPI,cond 1,p,len,t Zero and Deposit Immediate

ZVDEP,cond r,len,t Zero and Variable Deposit

ZVDEPI,cond ilen,t Zero and Variable Deposit Immediate

SPECIAL CHARACTERS

.ALIGN directive, 3-5

.BLOCK pseudo-operation, 3-6

.BLOCKZ pseudo-operation, 3-6

.BSS predefined space directive, 3-47

.BYTE pseudo-operation, 3-8

.CALL directive, 3-9

.CALLINFO directive, 3-13

.CODE predefined space directive, 3-46

.COMM directive, 3-18

.COPYRIGHT directive, 3-19

.DATA predefined space directive, 3-47

.DOUBLE directive, 3-20

.END directive, 3-21

.ENDM directive, 3-22

.ENTER pseudo-operation, 3-23

-ENTRY directive, 3-24

.EQU directive, 3-25

.EXIT directive, 3-24

.EXPORT directive, 3-26

.FIRST predefined space directive, 3-46

.FLOAT directive, 3-28

.GATE predefined space directive, 3-46

.GLOBAL predefined space directive, 3-47

.GNTT predefined space directive, 3-47

.HALF pseudo-operation, 3-8

.HEADER predefined space directive, 3-47

.HEAP predefined space directive, 3-47

-IMPORT directive, 3-26

.LABEL directive, 3-29

.LEAVE pseudo-operation, 3-23

.LISTOFF directive, 3-30

.LISTON directive, 3-30

.LIT predefined space directive, 3-46

.LNTT predefined space directive, 3-47

.LOCCT directive, 3-32

.MACRO directive, 3-33

.MILLICODE predefined space directive, 3-46

.ORIGIN directive, 3-36

.PCB predefined space directive, 3-47

.PFA__ADDRESS predefined space directive, 3-47

.PFA__COUNTER predefined space directive, 3-47

.PROC directive, 3-37

.PROCEND directive, 3-37

.REAL predefined space directive, 3-46

.RECOVER predefined space directive, 3-46

.REG direcctive, 3-38

.RESERVED predefined space directive, 3-46

-SHORTDATA predefined space directive, 3-47

Index

INDEX - 1

Index

.SLT predefined space directive, 3-47

SPACE directive, 3-39

.SPNUM directive, 3-41

.STACK predefined space directive, 3-47

STRING pseudo-operation, 3-42

.STRINGZ pseudo-operation, 3-42

.SUBSPA directive, 3-43

.UNWIND prefined space directive, 3-46

. VERSION directive, 3-45

.VT predefined space directive, 3-47

. WORD pseudo-operation, 3-8

A

absolute result, 1-11

add and branch instructions, 4-14

add instructions, 4-18

arithmetic expressions, 1-11

as command, 6-1

assembler directives, 3-1, 3-4

assembler features, 1-2

assembler, 1-1

invoking, 6-1

machine language, 1-1

relocatable object file, 1-1

source file, 1-1

assembling your program, 6-1

assembly language program, |I-1

assembly language, programs and procedures, 2-1

assembly listing, 2-9

assembly programming for HP-UX, 2-1

assist (coprocessor) instructions, 4-33

B

base register modification, 4-4

branch instructions, 4-9

add, 4-14

coding, 4-9

compare, 4-12

conditional, 4-10

move, 4-11

unconditional, 4-9

branch on bit instructions, 4-16

branching errors, A-27

byte values, 4-7

C

calling conventions, 2-6

cc command, 6-3

INDEX-2

Index

coding branch instructions, 4-9

commands

as, 6-1

cc, 6-3

comments field, 1-3

compare and branch instructions, 4-12

compare and clear instructions, 4-24

compiler conventions, 2-6

compiler generated directives, 3-3

computational instructions, 4-17
conditional branch instructions, 4-10

control registers, 1-7

coprocessor indexed load and store instructions, 4-35

coprocessor operation instruction, 4-34

coprocessor short displacement load and store instructions, 4-36

D

defining new instructions, 1-17

delay slot, 4-9

deposit instruction, 4-28

directives

_ALIGN, 3-5
.CALL, 3-9
-CALLINFO, 3-13
.COMM, 3-18
.COPYRIGHT, 3-19
. DOUBLE, 3-20
.END, 3-21
.ENDM, 3-22
.ENTRY, 3-24
-EQU, 3-25
EXIT, 3-24
.EXPORT, 3-26
.FLOAT, 3-28
IMPORT, 3-26
.LABEL, 3-29
.LISTOFF, 2-9, 3-30
LISTON, 2-9, 3-30
.LOCCT, 3-32
.MACRO, 3-33
ORIGIN, 3-36
.PROC, 3-37
.PROCEND, 3-37
.REG, 1-7, 1-15, 3-38
SPACE, 3-39
.SPNUM, 3-41
.SUBSPA, 3-43
. VERSION, 3-45

divide step instruction, 4-25

dp register, 2-7

INDEX - 3

Index

E

error message catalog, 6-4

error messages, A-1, A-7

expressions, 1-2

absolute result, 1-11

integer constants, 1-11

relocatable result, 1-11

symbolic addresses, 1-11

symbolic constants, 1-11

extract instruction, 4-28

F

field selectors, 1-12

fields

comments, 1-3

label, 1-3

opcode, 1-3

operands, 1-3

floating-point compare and test instructions, 4-41

floating-point indexed load and store instructions, 4-38

floating-point instructions, 4-37

floating-point operation instructions, 4-39

floating-point registers, 1-7

floating-point short displacement load and store instructions, 4-39

G

general registers, 1-7

global symbol, 2-7

H

hard_ reg.h, 6-3

high-level language procedure, 2-6

immediate instructions, 4-8

indexed load instructions, 4-5

initialize pseudo-operations, 3-8, 3-42

instruction operands, 4-2

instructions, 4-1

add and branch, 4-14

add, 4-18

assist (coprocessor), 4-33

branch on bit, 4-16

compare and branch, 4-12

compare and clear, 4-24

INDEX-4

computational, 4-17

conditional branch, 4-10

coprocessor indexed load and store, 4-35
coprocessor operation, 4-34

coprocessor short displacement load and store, 4-36

deposit, 4-28

divide step, 4-25

extract, 4-28

floating-point compare and test, 4-41

floating-point indexed load and store, 4-38

floating-point operation, 4-39

floating-point short displacement load and store, 4-39

floating-point, 4-37

immediate, 4-8

indexed load, 4-5

load and store, 4-4

logical, 4-26

move and branch, 4-11

pseudo instructions, 4-43

shift and add, 4-20
shift, 4-28

short displacement load and store, 4-6

store bytes short, 4-7

subtract, 4-22

system control, 4-30

unconditional branch, 4-9

unit, 4-27

invoking the assembler, 6-1

L

label field, 1-3

limit errors, A-25

linker, 1-1

program file, 1-1

linking an assembly program, 6-5

listing, assembly, 2-9

load and store instructions, 4-4

load and store, base register modification, 4-4

location counters, 2-5

local to assembler, 2-5

logical instructions, 4-26

macros, 1-17

.ENDM directive, 3-22

.MACRO directive, 3-33

defining new instructions, 1-17

processing, 1-2, 1-17

memory reference instructions, 4-3

mnemonic instructions, 1-2

Index

INDEX-5

Index

mnemonics, register, 1-7

move and branch instructions, 4-11

N

new instructions, 1-17

O

opcode field, 1-3

operands and completers, 1-15

operands field, 1-3

operators, 1-11

field selectors, 1-12

)

panic messages, A-20

parenthesized sub-expressions, 1-14

parenthesized subexpressions, 1-2

pec__prefix.s files, 6-3
predefined spaces and subspaces, 3-46

processing, macros, 1-2

program examples, 5-1

program file, 1-1

programming aids, 3-46

.BSS, 3-47

.CODE, 3-46

.DATA, 3-47

FIRST, 3-46

.GATE, 3-46

.GLOBAL, 3-47

.GNTT, 3-47

.HEADER, 3-47

HEAP, 3-47

.LIT, 3-46

.LNTT, 3-47

.MILLICODE, 3-46

.PCB, 3-47

.PFA__ADDRESS, 3-47

.PFA__ COUNTER, 3-47

.REAL, 3-46

.RECOVER, 3-46

.RESERVED, 3-46

.SHORTDATA, 3-47

SLT, 3-47

STACK, 3-47

.UNWIND, 3-46

VT, 3-47

pseudo instructions, 4-43

pseudo-instructions, 4-1

INDEX-6

pseudo-operations, 3-1, 3-3

.BLOCK, 3-6

.BLOCKZ, 3-6

.BYTE, 3-8

.ENTER, 3-23

.HALF, 3-8

.LEAVE, 3-23

STRING, 3-42

.STRINGZ, 3-42

. WORD, 3-8

R

register typing, 1-7, 1-15

register, mnemonics, 1-7

registers

control, 1-7

floating-point, 1-7

general, 1-7

procedure calling convention, 1-10

space, 1-7

relocatable object file, 1-1

relocatable result, 1-11

result

absolute, 1-11

relocatable, 1-11

S

shift and add instructions, 4-20

shift instruction, 4-28

short displacement load and store instructions, 4-6

soft reg.h, 6-3
sort keys, 2-3

source file, 1-1

source program, 1-3

structure, 1-3

space identifiers, 2-1

space registers, 1-7, 2-1

space
offsets, 2-2

quadrant, 2-2

unloadable, 2-2
spaces, 2-1

code, data, 2-1

special equate files, 6-3

statements

directives, 1-3

instructions, 1-3

pseudo-operations, 1-3

std space.h, 6-3

storage allocation, 1-2

Index

INDEX-7

Index

store bytes short instructions, 4-7

sub-expressions, parenthesized, 1-14

subexpressions, parenthesized, 1-2

subspaces and location counters, 1-2

subspaces, 2-3

access rights, 2-3

alignment, 2-3

attributes, 2-3

quadrant, 2-3

sort key, 2-3

subtract instructions, 4-22

symbol scope, 1-2

symbol type, 2-6

symbol, case sensitive, 2-6

symbolic addresses, 1-2

symbolic constants, 1-2

symbols and constants, 1-5

symbols

illegal, 1-5

legal, 1-5

system calls, 2-8

system space, 2-8

system control instructions, 4-30

T

typing, 1-7, 1-15

U

unconditional branch instructions, 4-9

unit instructions, 4-27

unloadable space, 2-2

unwind descriptors, 2-6

uppercase and lowercase, 1-5

user warnings, A-22

V

virtual address, 2-1

W

warning messages, A-2

INDEX-8

Product Line Sales/Support Key
Key Product Line
A Analytical
CM Components

C Computer Systems

Electronic Instruments & Measurement Systems

Personal Computation Products

E
M Medical Products
P
* Sales only for specific product line

** Support only for specific product line

IMPORTANT: These symbols designate general product line capability. They do not insure sales or
support availability for all products within a fine, at ail locations.Contact your local sales office for

information regarding locations where HP support is available for specific products.

HEADQUARTERS OFFICES
If there is no sales office listed for your area, contact one of these

headquarters offices.

ASIA
Hewlett-Packard Asia Ltd.

47/F, 26 Harbour Rd.,

Wanchai, HONG KONG

G.P.0. Box 863. Hong Kong
Tel: 5-8330833

Telex: 76793 HPA HX

Cable: HPASIAL TD

CANADA
Hewlett-Packard (Canada) Ltd.

6877 Goreway Drive

MISSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430
Telex: 069-8644

EASTERN EUROPE
Hewlett-Packard Ges.m.b.h.

Liebigasse 1

P.O.Box 72

A-1222 VIENNA, Austria

Tel: (222) 2500-0

Telex: 13 4425 HEPA A

NORTHERN EUROPE
Hewlett-Packard S.A.

V. D. Hooplaan 241

P.O.Box 999

NL-118 LN 15 AMSTELVEEN

The Netherlands

Tel: 20 5479999

Telex: 18919 hpner

SOUTH EAST EUROPE
Hewlett-Packard S.A.

World Trade Center

110 Avenue Lours-Casai
1215 Cointrin. GENEVA, Switzerland

Tel: (022) 98 96 51
Telex: 27225 hpser
Mail Address:

P.O. Box

CH-1217 Meyrin 1

GENEVA
Switzerland

MIDDLE EAST
AND CENTRAL AFRICA
Hewlett-Packard S.A.

Middle East/Central

Africa Sales H.Q.

7, rue du Bois-du-Lan

P.O. Box 364

CH-1217 Meyrin 1
GENEVA

Switzerland
Tel: (022) 83 12 12

Telex: 27835 hmea ch

Telefax: (022) 83 15 35

UNITED KINGDOM
Hewlett-Packard Ltd.

Nine Mile Ride

WOKINGHAM

Berkshire. RG113LL

Tel: 0344 773100

Telex: 848805/8488 14/8489 12

UNITED STATES OF
AMERICA
Customer Information Center

(800) 752-0900

6:00 AM to 5 PM Pacific Time

EASTERN USA
Hewiett-Packard Co.

4 Choke Cherry Road

ROCKVILLE, MD 20850

Tel: (301) 948-6370

MIDWESTERN USA
Hewlett-Packard Co.

5201 Toliview Drive

ROLLING MEADOWS, IL 60008

Tal: (312) 255-9800

SOUTHERN USA
Hewlett-Packard Co.

2000 South Park Place

ATLANTA, GA 30339

Tel: (404) 955-1500

WESTERN USA
Hewlett-Packard Co.

5161 Lankershim Bivd.

NORTH HOLLYWOOD, CA 91601

Tel: (818) 505-5600

OTHER
INTERNATIONAL
AREAS
Hewlett-Packard Co.

Intercontinental Headquarters

3495 Deer Creek Road

PALO ALTO, CA 94304

Ted: (415) 857-1501

Telex: 034-8300

Cable: HEWPACK

ALGERIA
Hewlett-Packard Trading S.A.
Bureau de Liaison Alger
Villa des Lions

9. Hai Galloul

02-BORDJ EL BAHAI
Tel: 76 03 36
Telex: 63343 dlion dz

SALES & SUPPORT OFFICES

ANGOLA
Telectra Angola LDA

Empresa Técnica de Equipamentos

16 rue Cons. Julio de Vilhema

LUANDA

Tel: 355 15,355 16

Telex: 3134

EP

ARGENTINA
Hewlett-Packard Argentina S.A.
Montaneses 2140/50

1428 BUENOS AIRES

Tel: 541-11-1441

Telex: 22796 HEW PAC-AR

A.C,E,P

Biotron S.A.C.1.M.e.!.

Av. Paso Colon 221, Piso 9

1399 BUENOS AIRES

Tal: 541-333-490,

541-322-587

Telex: 17595 BIONAR

M

Laboratorio Rodriguez

Corswant S.R_L.

Misiones, 1156 - 1876

Bernal, Oeste

BUENOS AIRES

Tel: 252-3958, 252-4991

A

Intermaco S.R.L.

Florida 537/71

Galeria Jardin - Local 28

1005 BUENOS AIRES

Tel: 393-447 1/1928

Telex. 22796 HEW PAC-AR

P (Calculators)

Argentina Esanco S.R.L.
A/ASCO 2328

1416 BUENOS AIRES

Tel: 541-58-1981, 541-59-2767

Telex: 22796 HEW PAC-AR

A

All Computers S.A.

Montaneses 2140/50 5 Piso

1428 BUENOS AIRES

Tel: 781-4030/4039/783-4886

Telex: 18148 Ocme
p

AUSTRALIA

Adelaide, South

Australia Office
Hewlett-Packard Australia Ltd.

153 Greenhill Road

PARKSIDE, S.A. 5063

Tel: 61-8-272-5911

Telex: 82536

Cabie: HEWPARD Adelaide

A*.C.CM.E.P

Brisbane, Queensiand

Office
Hewlett-Packard Australia Ltd.

10 Payne Road

THE GAP, Queensiand 4061

Tel: 61-7-300-4133

Telex: 42133

Cabie: HEWPARD Brisbane

A.C,CM.E.M.P

Canberra, Australia
Capital Territory
Office
Hewlett-Packard Australia Ltd.

Thynne Street, Fern Hill Park
BRUCE, A.C.T. 2617
P.O. Box 257,

JAMISON, A.C.T. 2614

Tel: 61-62-80-4244

Telex: 62650

Cable: HEWPARD Canberra

C.CM.E.P

Meibourne, Victoria
Office
Hewlett-Packard Australia Ltd.

31-41 Joseph Street

P.O. Box 221

BLACKBURN, Victoria 3130

Tel: 6 1-3-895-2895
Telex: 31-024

Cable: HEWPARD Melbourne

A,C.CM,E,M,P

Perth, Western Australia
Oftice
Hewiett-Packard Australia Ltd.

Herdsman Business Park

CLAREMONT, W.A. 6010
Tel: 61-9-383-2 188

Telex: 93859

Cabie: HEWPARD Perth

C.CM,E.P

Sydney, New South
Wales Office
Hewlett-Packard Australia Ltd.

17-23 Talavera Road

P.O. Box 308

WORTH RYDE, N.S.W. 2113

Tel: 61-2-888-4444

Telex: 21561

Cable: HEWPARD Sydney
A.C,CM.E.M,P

AUSTRIA
Hewlett-Packard Ges.m.b.h.

Verkaufsbuero Graz

Grottenhofstrasse 94

A-8052 GRAZ

Tel: 43-3 16-29 1-5660

Telex: 312375

CE

Hewlett-Packard Ges.m.b.h.

Liebigasse 1

P.O. Box 72

A-1222 VIENNA

Tel: 43-222-2500

Telex: 134425 HEPA A

A,C,CM,E.M,P

BAHRAIN
Green Saion

P.O. Box 557

MANAMA

Tel: 255503-250950

Telex: 84419
p

Arranged alphabetically by country

Wael Pharmacy

P.O. Box 648

MANAMA

Tal: 256123

Telex: 8550 WAEL BN

E,.M

Zayani Computer Systems

218 Shaik Mubarak Building
Government Avenue

P.O. Box 5918

MANAMA

Tel: 276278

Telex: 9015 plans bn
p

BELGIUM
Hewlett-Packard Beigium S.A./N.V.
Bivd de la Woluwe, 100

Woluwedal

B-1200 BRUSSELS

Tel: (02) 32-2-761-31-11

Telex: 23494 hewpac

A.C.CM,E.M,P

BERMUDA
Applied Computer Technologies

Atlantic House Building
P.O. Box HM 2091

Par-La-Ville Road

HAMILTON 5
Tel: 295-1616
Telex: 380 3589/ACT BA
p

BOLIVIA
Arretiano Lida

Av. 20 de Octubre #2125

Casilla 1383

LA PAZ

Tel: 368541

M

BRAZIL
Hewlett-Packard do Brasil S.A.

Alameda Rio Negro, 750-i. AND.

ALPHAVILLE

06400 Barueri SP

Tel: (011) 421.1311

Telex: (011) 71351 HPBR BR

Cable: HEWPACK Sao Paulo

CM.E

Hewlett-Packard do Brasil S.A.

Praia de Botafago 228-A-614

6. AND.-CONJ. 601

Edificio Argentina - Ala A
22250 RIO DE JANEIRO, RJ

Tel: (021) 552-6422

Telex: 21905 HPBR BR

Cable: HEWPACK Rio de Janeiro

E

Van Den Cientifica Ltda.

Rua Jose Bonifacio, 458

Todos os Santos

20771 RIO DE JANEIRO, RJ

Tel: (021) 593-8223

Telex: 33487 EGLB BR

A

ANAMED |.C.E.I. Ltda.

Rua Vergueiro, 360
04012 $A0 PAULO, SP

Tel: (011) 572-1106

Telex: 24720 HPBR BR

M

Datatronix Electronica Ltda.

Av. Pacaembu 746-C11

SAO PAULO, SP

Tel: (118) 260111

CM

BRUNEI
Komputer Wisman Sdn Bhd

G6, Chandrawaseh Cmpix,
Jalan Tutong

P.O. Box 1297,
BANODAR SER] BEGAWAN
NEGARA BRUNI DARUSSALAM
Tel: 673-2-2000-70/267 11

C.E.P

CAMEROON
Beriac

Tel: 420153

Telex: 5351

C.P

CANADA
Alberta
Hewlett-Packard (Canada) Ltd.

3030 3rd Avenue N.E.

CALGARY, Alberta T2A 677

Tel: (403) 235-3100

A,C,CM.E°.M,P°

Hewiett-Packard (Canada) Ltd.

11120-178th Street

EDMONTON, Alberta T5S 1P2

Tel: (403) 486-6666

A,C,CM.E.M.P

British Columbia
Hewlett-Packard (Canada) Ltd.

10691 Shellbridge Way

RICHMOND,
British Columbia V6X 2W8

Tel: (604) 270-2277

Telex: 610-922-5059

A,C.CM,E°,M.P°

Hewlett-Packard (Canada) Ltd.

121 - 3350 Douglas Street
VICTORIA, British Cotumbia V8Z 311

Tel: (604) 38 1-66 16

C

Manitoba
Hewlett-Packard (Canada) Ltd.

1825 inkster Bivd.

WINNIPEG, Manitoba R2X 1R3
Tel: (204) 694-2777
A.C,CM,E.M,P°

New Brunswick
Hewlett-Packard (Canada) Ltd.
814 Main Street

MONCTON, New Brunswick E1C 1E6

Tel: (506) 855-2841

C

Nova Scotia
Hewlett-Packard (Canada) Ltd.

Suite 111

900 Windmill Road

DARTMOUTH, Nova Scotia B3B 177

Tel: (902) 469-7820

C.CM,E*.M,P°

Ontario
Hewlett-Packard (Canada) Ltd.

3325 N. Service Rd., Unit W03

BURLINGTON, Ontario L7N 3G2

Tel: (416) 335-8644

C.M’

Hewlett-Packard (Canada) Ltd.
552 Newbold Street

LONDON, Ontario N6E 285

Tel: (519) 686-9 181

A,C,CM,E°.M.P°

Hewlett-Packard (Canada) Ltd.

6877 Goreway Drive

MISSISSAUGA, Ontario L4V 1M8

Tel: (416) 678-9430

Telex: 069-83644

A,C,CM.E.M,P

Hewlett-Packard (Canada) Ltd.

2670 Queensview Dr.

OTTAWA, Ontario K2B 8K1

Tel: (613) 820-6483

A,C,CM,E*.M,P*

Hewlett-Packard (Canada) Ltd.

3790 Victoria Park Ave.

WILLOWDALE, Ontario M2H 3H7

Tel: (416) 499-2550

C.E

Quebec
Hewlett-Packard (Canada) Ltd.

17500 Trans Canada Highway
South Service Road

KIRKLAND, Quebec H9J 2X8

Tel: (514) 697-4232

Telex: 058-21521

A,C.CM,E,M.P°

Hewlett-Packard (Canada) Ltd.

1150 rue Claire Fontaine

QUEBEC CITY, Quebec G1R 5G4

Tel: (418) 648-0726

C

Hewlett-Packard (Canada) Ltd.

130 Robin Crescent

SASKATOON, Saskatchewan S7L 6M7

Tel: (306) 242-3702

C

CHILE
ASC Ltda.
Austria 2041

SANTIAGO
Tel: 223-5946, 223-6148
Telex: 392-340192 ASC CK

C.P

Jorge Caicagni y Cia
Av. Italia 634 Santiago
Casilla 16475

SANTIAGO 9
Tel: 9-011-562-222-0222
Telex: 392440283 JCYCL CZ
CM,E.M

Metrolab S.A.
Monjitas 454 of. 206

SANTIAGO
Tel: 395752, 398296
Telex: 340866 METLAB CK
A

Otympia (Chile) Ltda.
Av. Rodrigo de Araya 1045
Casilla 256-V
SANTIAGO 21
Tel: 225-5044
Telex: 340892 OLYMP

Cable: Otympiachile Santiagochile
C.P

CHINA, People’s
Republic of
China Hewlett-Packard Co., Ltd.

47/F China Resources Bidg.
26 Harbour Road

HONG KONG

Tel: §-8330833

Telex: 76793 HPA HX

Cable: HP ASIA LTD

A*.M°

China Hewlett-Packard Co., Ltd.

P.O. Box 9610. Beijing

4th Floor, 2nd Watch Factory Main

Shuang Yu Shou, Bei San Huan Road
Hai Dian District

BENING
Tel: 33-1947 33-7426
Telex: 22601 CTSHP CN
Cable: 1920 Beijing
A.C,CM,E.M.P

China Hewlett-Packard Co., Ltd.
CHP Shanghai Branch
23/F Shanghai Union Building
100 Yan An Rd. East
SHANG-HAI
Tel: 265550
Telex: 33571 CHPSB CN
Cable: 3416 Shanghai
A.C.CM.E.M.P

COLOMBIA
Instrumentacion

H. A. Langebaek & Kier S.A.

Carrerra 4A No. 52A-26

Apartado Aereo 6287

BOGOTA 1. D.E.

Tel: 212-1466

Telex: 44400 INST CO

Cable: AARIS Bogota
CM.E.M

Nefromedicas Ltda.

Calle 123 No. 9B-31

Apartado Aereo 100-958

BOGOTA D.E.. 10

Tel: 213-5267, 213-1615

Telex: 43415 HEGAS CO

A

Compumundo

Avenida 15 # 107-80

BOGOTA D.E.

Tel: 57-2 14-4458

Telex: 39645466 MARCO
*)

Carvajal, S.A.

Calle 29 Norte No. 6A-40

Apartado Aereo 46

CALI

Tel: 9-0 11-57-3-62 1888

Telex: 39655650 CUJCL CO

C.E.P

CONGO
Seric-Congo
B. P. 2105

BRAZZAVILLE
Tel: 815034

Telex: 5262

COSTA RICA
Cientifica Costarricense S.A.

Avenida 2, Calle 5

San Pedro de Montes de Oca

Apartado 10159

SAN JOSE
Tel: 9-011-506-243-820

Telex: 3032367 GALGUR CR

CM.E.M

O. Fischei R. Y. Cia. S.A.

Apartados 434- 10174

SAN JOSE

Tel: 23-72-44

Telex: 2379

Cable: OFIR

A

CYPRUS
Telerexa Ltd.

P.O. Box 1152

Valentine House

8 Stassandrou St.

NICOSIA

Tel: 45 628, 62 698

Telex: 5845 tirx cy

E.M.P

DENMARK
Hewlett-Packard A/S

Kongevejen 25

OK-3460 BIRKEROD

Tel: 45-02-8 1-6640

Telex: 37409 hpas dk

A,C,CM.E.M,P

Hewlett-Packard A/S

Rolighedsvej 32

DOK-8240 RISSKOV, Aarhus

Tel: 45-06- 17-6000

Telex: 37409 hpas dk

C.E

DOMINICAN REPUBLIC
Microprog S.A.
Juan Tomas Mejia y Cotes No. 60
Arroyo Hondo

SANTO DOMINGO
Tel: 565-6268
Telex: 4510 ARENTA DR (RCA)
p

ECUADOR
CYEDE Cia. Ltda.
Avenida Eloy Alfaro 1749

y Belgica
Casilla 6423 CCI

QUITO
Tel: 9-0 11-593-2-450975
Telex: 39322548 CYEDE ED
EP

Medtronics

Valladolid 524 Madrid

P.O. 9171, QUITO

Tel: 2-238-951

Telex: 2298 ECUAME ED

A

Hospitalar S.A.

Robles 625

Casilla 3590

QUITO

Tel: 545-250, 545-122

Telex: 2485 HOSPTL ED

Cable: HOSPITALAR-Quito

M

Ecuador Overseas Agencies C.A.
Calle 9 de Octubre #8 18

P.O. Box 1296, Guayaquil

QUITO

Tel: 306022

Telex: 3361 PBCGYE ED

M

EGYPT
Sakrco Enterprises

P.O. Box 259
ALEXANDRIA
Tel: 802908, 808020, 805302
Telex: 54333

C

International Engineering Associates
6 El Gamea Street
Agouza

CAIRO
Tel: 71-21-68 134-80-940
Telex: 93830 IEA UN

Cable: INTEGASSO
E

Sakrco Enterprises

70 Mossadak Street

Dokki, Giza

CAIRO

Tel: 706 440, 701 087

Telex: 9337

C

$.S.C. Medical

40 Gezerat El Arab Street

Mohandessin

CAIRO

Tel: 803844, 805998, 810263

Telex: 20503 SSC UN
M°

EL SALVADOR
IPESA de Ei Salvador S.A.

29 Avenida Norte 1223

SAN SALVADOR

Tel: 9-0 11-503-266-858

Telex: 301 20539 IPESA SAL

A.C,.CM.E,P

ETHIOPIA
Seric-Ethiopia

P.O. Box 2764
ADDIS ABABA
Tel: 185114

Telex: 21150

C.P

FINLAND
Hewlett-Packard Finland

Field Oy

Niittylanpolku 1O

00620 HEL SINK!

Tel: (90) 757-1011

Telex: 122022 Field SF

CM

Hewlett-Packard Oy

Piispankalliontie 17

02200 ESPOO

Tel: (90) 887-21

Telex: 121563 HEWPA SF

A,C,E,M, P

FRANCE
Hewlett-Packard France

Z.!. Mercure B

Rue Berthelot

13763 Les Milles Cedex

AIX-EN-PROVENCE

Tel: 33-42-59-4102

Telex: 410770F

A,C.E.M

Hewlett-Packard France

64, Rue Marchand Sailiant

F-61000 ALENCON

Tel: (33) 29 04 42
C° e

Hewlett-Packard France

Batiment Levitan

2585. route de Grasse

Bretelle Autoroute

06600 ANTIBES

Tel: (93) 74-59-19

C

FRANCE (Cont'd)
Hewlett-Packard France

28 Rue de la République

Boite Postale 503

25026 BESANCON CEDEX, FRANCE
Tel: (81) 83-16-22

Telex: 361157

C.E°

Hewlett-Packard France

ZA Kergaradec
Rue Fernand Forest

F-29239 GOVEESNOU

Tel: (98) 41-87-90

E

Hewlett-Packard France

Chemin des Mouilles

Boite Postale 162

69131 ECULLY Cedex (Lyon)

Tel: 33-78-33-8125

Telex: 3106 17F

A,C,E,M.P°

Hewlett-Packard France

Parc d'activites du Bois Briard

2 Avenue du Lac

F-91040 EVRY Cedex

Tel: 3311/6077 9660

Telex: 6923 15F

C

Hewlett-Packard France

Application Center

5, avenue Raymond Chanas

38320 EYBENS (Grenoble)

Tel: (75) 62-57-98

Telex: 980124 HP GRENOB EYBE

C

Hewlett-Packard France

Rue Fernand. Forest

Z.A. Kergaradec
29239 GOUESNOU

Tel: (98) 41-87-90

Hewlett-Packard France

Parc Club des Tanneries

Batiment B4

4, Rue de la Faisanderie

67381 LINCOLSHEIM

(Strasbourg)
Tel: (88) 76-15-00

Telex: 89014 1F

C.E°.M*,P°

Hewlett-Packard France

Centre d'affaires Paris-Nord

Batiment Ampére

Rue de la Commune de Paris

Boite Postale 300

93153 LE BLANC-MESNIL

Tel: (1) 6865-44-52

Telex: 211032F

C.E.M

Hewlett-Packard France
Parc d'activites Cadéra

Quartier Jean-Mermoz

Avenue du Président JF Kennedy

33700 MERIGNAC (Bordeaux)
Tel: 33-56-34-0084
Telex: 550105F
C.E.M

Hewlett-Packard France

3, Rue Graham Bell

BP 5149

57074 METZ Cedex

Tel: (87) 36-13-31

Telex: 860602F

C.E

Hewlett-Packard France

Miniparc-ZIRST

Chemin du Vieux Chéne

38240 MEYLAN (Grenoble)

Tel: (76) 90-38-40

980124 HP Grenobe

C

Hewlett-Packard France

Bureau vert du Bois Briand

Cheman de la Garde

- CP 212 212

44085 NANTES Cedex

Tal: (40) 50-32-22

Telex: 711085F

A.C,E,CM* P

Hewlett-Packard France

125, Rue du Faubourg Bannier

45000 ORLEANS
Tel: 33-38-62-203 1

E,P°

Hewlett-Packard France
Zone industrielle de Courtaboeuf

Avenue des Tropiques

91947 LES ULIS Cedex (Orsay)

Tel: 33-6-907 7825

Telex: 600048F

A,C,CM.E.M.P*°

Hewlett-Packard France

15, Avenue de L’Amiral-Bruix

75782 PARIS Cedex 16

Tel: 33- 15-02-1220

Telex: 613663F

C,P°

Hewlett-Packard France
242 Ter. Ave J Mermoz

64000 PAU

Tel: 33-59-80-3802

Telex: 550365F

C.E°

Hewlett-Packard France

6, Place Sainte Croix

86000 POITIERS

Tel: 33-49-41-2707

Telex: 792335F

C,E°

Hewlett-Packard France

47, Rue de Chativesie

51100 REMS

Tel: 33-26-88-69 19

C, P°

Hewlett-Packard France

Parc d'activités de la Poterie

Rue Louis Kerautei-Botmel

35000 RENNES

Tel: 33-99-5 1-4244

Telex: 7409 12F

A’ .C,E.M,P°

Hewlett-Packard France

98 Avenue de Bretagne

76100 ROVEN

Tel: 33-35-63-5766

Telex: 770035F

CE

SALES & SUPPORT OFFICES /|
Arranged alphabetically by country

Hewlett-Packard France

4, Rue Thomas-Mann

Boite Postale 56

67033 STRASBOURG Cedex

Tel: (88) 28-56-46

Telex: 890 141F

C.E.M,P*

Hewlett-Packard France

Le Peripoie Ill

3, Chemin du Pigeonnier de la Cepi¢re
31081 TOULOUSE Cedex

Tel: 33-6 1-40-1112

Telex: 53 1639F

A.C,E.M.P*

Hewlett-Packard France

Les Cardoulines

Batiment B2

Route des Dolines

Parc d'activite de Valbonne

Sophia Antipolis

06560 VALBONNE (Nice)

Tel: (93) 65-39-40

C .

Hewlett-Packard France

9, Rue Baudin

26000 VALENCE

Tel: 33-75-42-7616
Cc ee

Hewlett-Packard France

Carolor

ZAC de Bois Briand

57640 VIGY (Metz)

Tel: (8) 771 20 22

C

Hewiett-Packard France

Parc d'activité des Pres

1, Rue Papin Cedex

59658 VILLENEUVE D'ASCQ

Tel: 33-20-9 1-4125

Telex: 160124F

C.E.M,P

Hewlett-Packard France

Parc d'activités Paris-Nord 11

Boite Postale 60020

95971 Roissy Charles de Gaulle

VILLEPINTE

Tel: (1) 48 63 80 80

Telex: 211032F

C,E.M.P°

GABON
Sho Gabon
P.O. Box 89

LIBREVILLE

Tel: 721 484

Telex: 5230

GERMAN FEDERAL
REPUBLIC
Hewlett-Packard GmbH

Vertriebszentrum Mitte

Hewlett-Packard-Strasse

0-6380 BAD HOMBURG

Tel: (06172) 400-0

Telex: 410 844 hpbhg
A.C,.E.M.P

Hewlett-Packard GmbH

Geschaftssteile

Keithstrasse 2-4

D- 1000 BERLIN 30

Tei: (030) 21 99 04-0

Telex: 018 3405 hpbin d

A,C.E.M.P

Hewlett-Packarc GmbH

Verbindungsstelie Bonn
Friedrich-Ebert-Allee 26

5300 BONN

Tel: (0228) 234001

Telex: 8869421

Hewlett-Packard GmbH

Vertriebszentrun Sudwest

Schickardstrasse 2

D-7030 BOBLINGEN

Postfach 1427

Tel: (0703 1) 645-0

Telex: 7265 743 hep

A,C,CM,E.M,P

Hewlett-Packard GmbH
Zeneralbereich Mktg
Herrenberger Strasse 130
D-7030 BOBLINGEN
Tel: (07031) 14-0
Telex: 7265739 hep

Hewlett-Packard GmbH

Geschaftsstelle

Schleefstr. 28a

D-4600 DORTMUND-4 1

Tel: (0231) 45001

Telex: 822858 hepdod

AC.E

Hewlett-Packard gmbH

Reparaturzentrum Frankfurt

Berner Strasse 117

6000 FRANKFURT/MAIN 60

Tal: (069) 50000 1-0

Telex: 413249 hpftm

Hewlett-Packard GmbH

Vertriebszentrum Nord

Kapstadtring 5

D-2000 HAMBURG 60

Tel: 49-40-63-804-0

Telex: 021 63 032 hphh d

A.C,E.M.P

Hewlett-Packard GmbH

Geschaftssteile

Heidering 37-39

D-3000 HANNOVER 61

Tel: (0511) 5706-0

Telex: 092 3259 hphan

A,C,CM,E.M,P

Hewlett-Packard GmbH

Geschaftsstelle
Rossiauer Weg 2-4

D-6800 MANNHEIM
Tel: 49-062 1-70-05-0
Telex: 0462105 homhm

A.C.E

Hewlett-Packard GmbH

Geschaftsstelle

Messerschmittstrasse 7

0-7910 NEU ULM

Tel: 49-073 1-70-73-0

Telex: 0712816 HP ULM-D

A.C.E°

Hewlett-Packard GmbH

Geschaftsstelle

Emmericher Strasse 13

D-8500 NURNBERG 10
Tet: (0911) 5205-0

Telex: 0623 860 hpnbg

C.CM,E,M,P

Hewlett-Packard GmbH

Vertriebszentrum Ratingen

Berliner Strasse 111

D-4030 RATINGEN 4

Postfach 31 12

Tel: (02102) 494-0

Telex: 589 070 hprad

A.C.E.M,P

Hewlett-Packard GmbH

Vertriebszentrum Muchen

Eschenstrasse 5

D-8028 TAUFKIRCHEN

Tel: 49-89-6 1-2070

Telex: 0524985 hpmch

A.C.CM,.E.M.P

Hewlett-Packard GmbH

Geschaftsstelle

Ermlisaliee

7517 WALDBRONN 2

Postfach 1251

Tel: (07243) 602-0

Telex: 782 838 hepk

A.C.E

GREAT BRITAIN
See United Kingdom

GREECE
Hewlett-Packard A.E.

178, Kifissias Avenue

6th Floor

Halandri-ATHENS

Greece

Tel: 301116473 360, 301116726 090
Telex: 221 286 HPHLGR

A,C.CM**,E.M.P

Kostas Karaynnis S.A.

8, Omirou Street

ATHENS 133

Tel: 32 30 303, 32 37 371

Telex: 215962 RKAR GR

A.C*.CM.E

impexin

Intelect Div.

209 Mesogion

11525 ATHENS

Tel: 647448 1/2

Telex: 216286
p

Haril Company

38, Mihalakopoulou

ATHENS 612

Tel: 7236071

Telex: 218767
M*

Hellamco

P.O. Box 87528

18507 PIRAEUS

Tel: 4827049

Telex: 241441

A

GUATEMALA
IPESA DE GUATEMALA

Avenida Reforma 3-48, Zona 9

GUATEMALA CITY

Tel: 316627, 317853,6647 1/5

9-0 11-502-2-3 16627

Telex: 3055765 IPESA GU

A.C.CM,E.M.P

HONG KONG
Hewlett-Packard Hong Kong, Ltd.
G.P.0. Box 795
5th Floor, Sun Hung Kai Centre
30 Harbour Road, Wan Chai
HONG KONG
Tet: 852-5-832-32 11
Telex: 66678 HEWPA HX
Cable: HEWPACK HONG KONG
E,C.P

CET Ltd.
10th Floor, Hua Asia Bidg.
64-66 Gloucester Road
HONG KONG
Tel: (5) 200922

Telex: 85148 CET HX
CM

Schmidt & Co. (Hong Kong} Ltd.
18th Floor, Great Eagle Centre
23 Harbour Road, Wanchai
HONG KONG
Tel: 5-8330222
Telex: 74766 SCHMC HX

A.M

ICELAND
Hewlett-Packard iceland

Hoefdabakka 9

112 REYKJAVIK

Tel: 354- 1-67-1000

Telex: 37409

A,C,CM,E,M.P

INDIA
Computer products are sok through
Blue Star Ltd.Ail computer repairs

and maintenance service is done

through Computer Maintenance Corp.

Biue Star Ltd.

B. D. Patel House

Near Sardar Patel Colony
AHMEDABAD 380 014

Tel: 403531, 403532

Telex: 0121-234

Cabie: BLUE FROST

A.C,CM,E

Blue Star Ltd.

40/4 Lavelle Road
BANGALORE 560 001
Tel: 57881, 867780
Telex: 0845-430 BSLBIN

Cable: BLUESTAR

A.C°,CM.E

Blue Star Ltd.

Band Box House

Prabhadevi

BOMBAY 400 025

Tel: 4933101, 4933222

Telex: 011-71051

Cable: BLUESTAR

A.M

Blue Star Ltd.

Sahas

414/2 Vir Savarkar Marg
Prabhadevi

BOMBAY 400 025

Tel: 422-6155

Telex: 011-71193 BSSS IN

Cable: FROSTBLUE

A,CM,E.M

Blue Star Ltd.
é'/an, 19 Vishwas Colony

Alkapuri, BORODA, 390 005
Tel: 65235, 65236

Cable: BLUE STAR
A

Biue Star Ltd.

7 Hare Street

P.O. Box 506

CALCUTTA 700 001

Tel: 230131, 230132

Telex: 03 1-61120 BSNF IN

Cadie: BLUESTAR

A.M.C,E

Blue Star Ltd.

133 Kodambakkam High Road

MADRAS 600 034
Tel: 472056, 470238
Telex: 041-379
Cable: BLUESTAR
A.M

Blue Star Ltd.
13 Community Center
New Friends Colony

NEW DELHI 110 065
Tel: 682547
Telex: 031-2463

Cable: BLUEFROST

A,C*,CM.E.M

Blue Star Ltd.

15/16 C Wellesley Ad.

PUNE 411011

Tel: 22775

Cable: BLUE STAR

A

Blue Star Ltd.

2-2-47/1108 Bolarum Rd.

SECUNDERABAD 500 003

Tel: 72057, 72058

Telex: 0155-459

Cable: BLUEFROST

AC,E

Biue Star Ltd.

T.C. 7/603 Poornima

Maruthunkuzhi

TRIVANDRUM 695 013

Tel: 65799, 65820

Telex: 0884-259

Cable: BLUESTAR

E

Computer Maintenance Corporation

Ltd.
115, Sarojini Devi Road
SECUNDERABAD 500 003
Tel: 310-184, 345-774

Telex: 031-2960
C° e

INDONESIA
BERCA indonesia P.T.

P.0.Box 496/Jkt.

Jl. Abdu! Muis 62

JAKARTA

Tel: 21-373009

Telex: 46748 BERSAL IA

Cable: BERSAL JAKARTA
p

BERCA indonesia PT.

P.O.Box 2497/Jkt

Antara Bldg., 12th Floor
Jl. Medan Merdeka Selatan 17

JAKARTA-PUSAT

Teal: 21-340417

Telex: 46748 BERSAL IA

A,C,E,.M,P

BERCA indonesia P.T.

Jalan Kutai 24

SURABAYA

Tel: 67118

Telex: 31146 BERSAL SB

Cable: BERSAL-SURABAYA

A*,E.M,P

IRAQ
Hewlett-Packard Trading S.A.

Service Operation

Al Mansoor City 9B/3/7

BAGHDAD
Tel: 55 1-49-73
Telex: 212-455 HEPAIRAQ IK

Cc

IRELAND
Hewlett-Packard Ireland Ltd.

Temple House, Temple Road

Blackrock, Co. DUBLIN

Tet: 88/333/99

Telex: 30439

C,E,P

Hewlett-Packard Ltd.

75 Belfast Rd, Carrickfergus
Belfast BT38 BPH

NORTHERN IRELAND

Tel: 09603-67333

Telex: 747626

M

ISRAEL
Eldan Electronic Instrument Ltd.

P.0.Box 1270
JERUSALEM 9 1000
16, Ohaliav St.

JERUSALEM 94467
Tet: 533 221, 553 242
Telex: 25231 AB/PAKRD IL

A.M

Computation and Measurement

Systems (CMS) Ltd.
11 Masad Street

67060 .
TEL-AVIV

Tel: 388 388

Telex: 33569 Motil IL

C.CM.E,P

ITALY
Hewlett-Packard Italiana S.p.A

Traversa 99C

Via Giulio Petroni, 19

|-70124 BARI

Tel: (080) 41-07-44

C.M

Hewlett-Packard Italiana S.p.A.
Via Emilia, 51/C

1-400 11 BOLOGNA Anzola Dell'Emilia

Tel: 39-051-731061

Telex: 511630

C.E,.M

Hewlett-Packard Italiana S.p.A.

Via Principe Nicola 43G/C

1-95 126 CATANIA
Tel: (095) 37-10-87
Telex: 970291
C

Hewlett-Packard Italiana S.p.A.

Via G. di Vittorio 10

20094 CORSICO (Milano)
Tel: 39-02-440835 1

Hewlett-Packard Italiana S.p.A.
Viale Brigata Bisagno 2
16129 GENOVA
Tel: 39-10-541141

Telex: 215238

Hewlett-Packard Italiana S.p.A.

Viale G. Modugno 33
|-16156 GENOVA PEGLI
Tet: (010) 68-37-07

Telex: 215238
C.E

Hewlett-Packard Italiana S.p.A.

Via G. di Vittorio 9

|-20063 CERNUSCO SUL

NAVIGLIO

(Milano)

Tel: (02) 923691

Telex: 334632

A,C,CM,E,M,.P

Hewlett-Packard Italiana S.p.A.

Via Nuova Rivottana 95

20090 LIMITO (Milano)

Tel: 02-92761

Hewlett-Packard Italiana S.p.A.

Via Nuova San Rocco a

Capodimonte, 62/A
1-80 13 1 NAPOLI

Tel: (081) 7413544

Telex: 710698

A**C,E.M

Hewlett-Packard Italiana S.p.A.

Via Orazio 16

80122 NAPOLI

Tel: (081) 7611444

Telex: 710698

Hewlett-Packard Italiana S.p.A.

Via Peilizzo 15

35128 PADOVA

Tel: 39-49-664-888

Telex: 430315

A,C,E.M

Hewlett-Packard Italiana S.p.A.

Viale C. Pavese 340

1-00 144 ROMA EUR

Tal: 39-65-48-3 1

Telex: 610514

A,C,E.M,P°

Hewlett-Packard Italiana S.p.A.

Via di Casellina 57/C
500518 SCANDICCI-FIRENZE
Tel: 39-55-753863
C,E.M

Hewlett-Packard Italiana S.p.A.

Corso Svizzera, 185
|- 10144 TORINO

Tel: 39- 11-74-4044

Telex: 221079

A’ CE

IVORY COAST
S.1.T.E.L.

Societe Ivoirienne de

Telecommunications

Bd. Giscard d'Estaing

Carrefour Marcory

Zone 4.A.

Boite postale 2580

ABIDJAN 01

Tel: 353600

Telex: 43175

E

SLT.

immeubie ‘Le General’’

Av. du General de Gaulle

01 BP 161

ABIDJAN 01

Tel: 321227

Telex: 22149

C.P

JAPAN
Yokogawa-Hewlett-Packard Ltd.
152-1, Onna

ATSUGI, Kanagawa, 243

Tel: (0462) 25-0031

C,CM.E

Yokogawa-Hewlett-Packard Ltd.

Meiji-Seimei Bidg. 6F
3-1 Motochiba-Cho
CHIBA, 280
Tel: (0472) 25 7701
CE

Yokogawa-Hewlett-Packard Ltd.
Yasuda-Seimei Hiroshima Bidg.
6-11, Hon-dori, Naka-ku
HIROSHIMA, 730
Tet: (082) 241-0611

Yokogawa-Hewlett-Packard Ltd.

Towa Building

2-2-3 Kaigan-dori, Chuo-ku
KOBE, 650
Tel: (078) 392-4791

C.E

Yokogawa-Hewlett-Packard Lid.

Kumagaya Asahi 82 Bidg.

3-4 Tsukuba

KUMAGAYA, Saitama 360
Tal: (0485) 24-6563

C.CM.E

Yokog Hewlett-Packard Ltd.

Asahi Shinbun Daiichi Seimei Bidg.
4-7, Hanabata-cho

KUMAMOTO, 860

Tal: 96-354-7311

C.E

Yokogawa-Hewlett-Packard Ltd.

Shin-Kyoto Center Bidg.

614, Higashi-Shiokoji-cho
Karasumea-Nishiiru

KYOTO, 600
Tel: 075-343-092 1
C.E

Yokogawa-Hewlett-Packard Ltd.
Mito Mitsui Bidg.
1-4-73, Sanno-maru

MITO, Ibaraki 310

Tel: (0292) 25-7470
C,CM.E

Yokogawa-Hewlett-Packard Ltd.

Meiji-Seimei Kokubun Bidg.
7-8 Kokubun, 1 Chome, Sendai

MIY AGI, 980

Tet: (0222) 25-1011

C.E

Yokogawa-Hewlett-Packard Ltd.

Gohda Bidg. 2F
1-2-10 Gohda Okaya-Shi
Okaya-Shi

NAGANO, 394
Tel: (0266) 23 0851
CE

Yokogawa-Hewlett-Packard Ltd.

Nagoya Kokusai Center Building
1-47-1, Nagono, Nakamura-ku

NAGOYA, AICHI 450
Tel: (052) 571-5171
C,CM,E,.M

Yokogawa-Hewlett-Packard Ltd.
Sai-Kyo-Ren Building
1-2 Dote-cho
OOMIYA-SHI SAITAMA 330
Tel: (0486) 45-803 1

JAPAN (Cont'd)
Yokogawa-Hewlett-Packard Ltd.

Chuo Bidg., 5-4-20 Nishi-Nakajima
4-20 Nishinakajima, 5 Chome,

Yodogawa-ku

OSAKA, 532
Tel: (06) 304-602 1
Telex: YHPOSA 523-3624
C.CM.E.M,P°

Yokogawa-Hewlett-Packard Ltd.
1-27-15, Yabe

SAGAMIHARA Kanagawa, 229
Tel: 0427 59-1311

Yokogawa-Hewilett-Packard Ltd.

Hamamtsu Motoshiro-Cho Daichi

Seimei Bidg 219-21, Motoshiro-Cho
Hamamatsu-shi
SHIZUOKA, 430
Tel: (0534) 56 1771

C.E

Yokogawa-Hewlett-Packard Ltd.
Shinjuku Daiichi Seimei Bidg.
2-7-1, Nishi Shinjuku

Shinjuku-ku, TOKYO 163
Tet: 03-348-4611
C.E.M

Yokogawa Hewlett-Packard Ltd.

9-1, Takakura-cho

Hachioji-shi, TOKYO, 192

Tel: 81-426-42-1231

C.E

Yokogawa-Hewiett-Packard Ltd.

3-29-21 Takaido-Higashi, 3 Chome
Suginami-ku TOKYO 168

Tel: (03) 331-6111
Telex: 232-2024 YHPTOK

C.CM.E,P°

Yokogawa Hokushin Electric
Corporation

Shinjuku-NS Bidg. 10F
4-1 Nishi-Shinjuku 2-Chome

Shinjuku-ku

TOKYO, 163
Tel: (03) 349-1859
Telex: J27584
A

Yokogawa Hokushin Electric Corp.
9-32 Nokacho 2 Chome
Musashino-shi

TOKYO, 180
Tel: (0422) 54-1111
Telex: 02822-421 YEW MTK J

A

Yokogawa-Hewlett-Packard Ltd.

Meiji-Seimei

Utsunomiya Odori Building
1-5 Odori, 2 Chome

UTSUNOMIYA, Tochigi 320
Tel: (0286) 33-1153
C.E

Yokogawa-Hewlett-Packard Ltd.

Yasuda Seimei Nishiguchi Bidg.
30-4 Tsuruya-cho, 3 Chome

Kanagawa-ku, YOKOHAMA 221
Tel: (045) 312-1252

C.CM.E

JORDAN
Scientific and Medical Supplies Co.

P.O. Box 1387

AMMAN
Tel: 24907. 39907

Telex: 21456 SABCO JO
C.E.M.P

KENYA
ADCOM Lid., Inc., Kenya

P.0.Box 30070
NAIROBI
Tel: 331955
Telex: 22639
E.M

KOREA
Samsung Hewlett-Packard Co. Ltd.
Dongbang Yeoeuido Building

12- 16th Floors
36-1 Yeoeuido-Dong
Youngdeungpo-Ku

SEOUL
Tel: 784-4666, 784-2666
Telex: 25166 SAMSAN K
C,CM,E,M.P
Young In Scientific Co., Ltd.
Youngwha Building

547 Shinsa Dong, Kangnam-Ku
SEOUL 135
Tel: 546-7771
Telex: K23457 GINSCO
A

Dongbang Healthcare
Products Co. Ltd. .
Suite 301 Medical Supply Center

Bidg. 1-31 Dongsungdong
Jong Ro-gu, SEOUL
Tel: 764-1171, 741-1641

Telex: K25706 TKBKO

Cabie: TKBEEPKO

M

KUWAIT
Al-Khaldiya Trading & Contracting

P.O. Box 830
SAFAT
Tel: 424910, 411726
Telex: 22481 AREEG KT
Cable: VISCOUNT
E.M.A

Gulf Computing Systems
P.O. Box 25125
SAFAT
Tel: 435969
Telex: 23648
p

Photo & Cine Equipment

P.O. Box 270

SAFAT

Tel: 2445111

Telex: 22247 MATIN KT

Cable: MATIN KUWAIT
)

W.J. Towell Computer Services

P.O. Box 5897
SAFAT
Tel: 2462640/1
Telex: 30336 TOWELL KT

C

SALES & SUPPORT OFFICES
Arranged alphabetically by country

LEBANON
Computer Information Systems S.A.L.

Chammas Building
P.O. Box 11-6274 Dora

BEIRUT

Tel: 89 40 73

Telex: 42309 chacis le

C.E.M,P

LIBERIA
Unichemicals Inc.

P.O. Box 4509

MONROVIA

Tel: 224282

Telex: 4509

E

LUXEMBOURG
Hewlett-Packard Beigium S.A./N.V.

Bivd de la Woluwe, 100

Woluwedal

B- 1200 BRUSSELS

Tal: (02) 762-32-00

Telex: 23-494 paloben bru

A.C.CM,E,.M,P

MADAGASCAR
Technique et Precision

12, rue de Nice

P.O. Box 1227

101 ANTANANARIVO

Tel: 22090

Telex: 22255
p

MALAYSIA
Hewlett-Packard Sales (Malaysia)

Sdn. Bhd.

9th Floor

Chung Khiaw Bank Building
46, Jalan Raja Laut

50736 KUALA LUMPUR, MALAYSIA

Tel: 03-2986555

Telex: 31011 HPSM MA

A.C.E,M,P°

Protel Engineering
P.O.Box 1917

Lot 6624, Section 64
23/4 Pending Road

Kuching, SARAWAK
Tel: 36299

Telex: 70904 PROMAL MA

Cable: PROTELENG
A.E.M

MALTA
Philip Toledo Ltd.

Kirkirkara P.O. Box 11

Notabile Rd.

MRIEHEL

Tel: 447 47, 455 66, 4915 25

Telex: Media MW 649

E.M.P

MAURITIUS
Blanche Birger Co. Ltd.
18, Jules Koenig Street
PORT LOUIS
Tel: 20828
Telex: 4296
)

MEXICO
Hewlett-Packard de Mexico,

S.A. deC.V.

Rio Nio No. 4049 Desp. 12

Fracc. Cordoba

JUAREZ

Tel. 161-3- 15-62
p

Hewlett-Packard de Mexico,

S.A. de C.V.

Condominio Kadereyta

Circuito del Mezon No. 186 Desp. 6
COL. DEL PRADO - 76030 Qro.

Tel: 463-6-02-71
p

Hewlett-Packard de Mexico,

S.A. de C.V.

Monti Morelos No. 299

Fraccionamiento Loma Bonita 45060

GUADALAJARA, Jalisco

Tel: 36-3 1-48-00

Telex: 0684 186 ECOME
p

Microcomputadoras

Hewlett-Packard, S.A.

Monti Petvoux 115

LOS LOMAS, Mexico, D.F.

Tal: 520-9127
p

Microcomputadoras Hewlett-Packard,

S.A. de C.V.

Monte Peivoux No. 115

Lomas de Chapultepec, 11000

MEXICO, D.F.

Tel: 520-9127
p

Hewlett-Packard de Mexico,

S.A. de C.V.

Monte Pelvoux No. 111

Lomas de Chapultepec

11000 MEXICO, DF.

Tel: §-40-62-28, 72-66, 50-25

Telex: 17-74-507 HEWPACK MEX

A.C,CM,E.M,P

Hewlett-Packard De Mexico (Polanco)

Avenida Ejercito Nacional #579

20a,3€F piso
Colonia Granada 11560

MEXICO D.-F.

Tel: 254-4433
p

Hewlett-Packard de Mexico,

S.A. de C.V.

Czda. dei Valle

409 Ote. 4th Piso

Colonia del Vaile

Municipio de Garza

Garcia Nuevo Leon

66220 MONTERREY, Nuevo Leén

Tel: 83-78-42-40

Telex: 382410 HPMY

C

infograficas y Sistemas
del Noreste, S.A.

Rio Orinoco #171 Oriente

Despacho 2001

Colonia Del Valle

MONTERREY
Tel: 559-4415, 575-3837
Telex: 483164

AE

Hewlett-Packard de Mexico,
S.A. de C.V.

Blvd. Independencia No. 2000 Ote.

Col. Estrella
TORREON, COAH.
Tel: 171-18-21-99
p

MOROCCO
Etablissement Hubert Dolbeau & Fils

81 rue Karatchi

B.P. 11133

CASABLANCA

Tel: 3041-82, 3068-38

Telex: 23051, 22822

E

Gerep

2, rue Agadir

Boite Postale 156

CASABLANCA 01

Tat: 272093, 272095

Telex: 23 739
Pp

Sema-Maroc

Dept. Seric

6, rue Lapebie

CASABLANCA

Tel: 260980

Telex: 21641

C.P

NETHERLANDS
Hewlett-Packard Nederland 6 V.

Startbaan 16

NL-1187 XR AMSTEL VEEN

P.O. Box 667

NL-1180 AR AMSTELVEEN

Tel: (020) 547-6911

Telex: 13 216 HEPA NL

A.C,CM,E.M.P

Hewlett-Packard Nederland B.V.

Bongerd 2
P.O. Box 41

NL 2900AA CAPELLE A/D WSSEL

Tel: 31-20-5 1-6444

Telex: 21261 HEPAC NL

C.E

Hewlett-Packard Nederland B.V.

Pastoor Petersstraat 134-136

P.O. Box 2342

NL 5600 CH EINDHOVEN

Tat: 31-40-32-6911

Telex: 51484 hepae ni

CEP

NEW ZEALAND
Hewlett-Packard (N.Z.) Ltd.

5 Owens Road

P.O. Box 26-189

Epsom, AUCKLAND

Tel: 64-9-687- 159

Cable: HEWPAK Auckland

C,.CM,E.P°

Hewlett-Packard (N.Z.) Ltd.

184-190 Willis Street

WELLINGTON
P.O. Box 9443

Courtenay Piace, WELLINGTON 3

Tel: 64-4-887- 199

Cable: HEWPACK Wellington
C,CM.E.P

Northrop instruments & Systems Ltd.

369 Khyber Pass Road»

P.O. Box 8602

Northrop instruments & Systems Ltd.
11¢ Mandeville St.

P.O. Box 8388

CHRISTCHURCH

Tel: 488-873

Telex: 4203

A\M

Northrop instruments & Systems Ltd.

Sturdee House

85-87 Ghuznee Street

P.O. Box 2406

WELLINGTON

Tel: 850-091

Telex: NZ 3380

A\M

NIGERIA
Elmeco Nigeria Ltd.

45 Saka Tirubu St.

Victoria island

LAGOS

Tel: 61-98-94

Telex: 20-117

E

NORTHERN IRELAND
See United Kingdom

NORWAY
Hewlett-Packard Norge A/S
Folke Bernadottes vei 50

P.O. Box 3558

N-5033 FYLLINGSDALEN (Bergen)
Tel: 0047/5/16 55 40
Telex: 76621 hpnas n

C.E.M

Hewlett-Packard Norge A/S
Osterndaien 16-18

P.O. Box 34

N- 1345 OESTERAAS
Tel: 47-2-17-1180

Telex: 76621 hpnas n

A.C,CM.E.M,P

Hewlett-Packard Norge A/S

Boehmergt. 42
Box 2470

N-5037 SOLHEIMSVIK
Tel: 0047/5/29 00 90

OMAN
Khimjil Ramdas

P.O. Box 19

MUSCAT/SULTANATE OF OMAN

Tel: 795 901

Telex: 3489 BROKER MB MUSCAT
p

Suhail 8 Saud Bahwan

P.O.Box 169

MUSCAT/SULTANATE OF OMAN

Tet: 734 201-3

Telex: 5274 BAHWAN MB

E

imtac LLC

P.O. Box 9196

MINA AL FAHAL/SULTANATE

OF OMAN

Tel: 70-77-27, 70-77-23

Telex: 3865 Tawoos On

A,C,M

PAKISTAN
Mushko & Company Ltd.

House No. 16, Street No. 16

Sector F-6/3

ISLAMABAD

Tel: 824545

Telex: 54001 Muski Pk

Cable: FEMUS Islamabad

A,E,P*

Mushko & Company Ltd.

Oosman Chambers

Abdullah Haroon Road

KARACHI 0302

Tel: 524131, 524132

Telex: 2894 MUSKO PK

Cable: COOPERATOR Karachi

A.E,P*

PANAMA
Electronico Balboa, S.A.

Calle Samuel Lewis, Ed. Alfa

Apartado 4929

PANAMA CITY

Tel: 9-011-507-6366 13

Telex: 368 3483 ELECTRON PG

CM,E,M,P

PERU
Cia Electro Médica S.A.

Los Flamencos 145, Ofc. 301/2

San Isidro

Casilla 1030

LIMA 1

Tel: 9-011-511-4-4 14325, 41-3705

Telex: 39425257 PE PB SIS

CM.E.M,P

SAMS S.A.

Arenida Republica de Panama 3534

San Isidro, LIMA

Tel: 9-011-5 11-4-229332/4 13984/

413226

Telex: 39420450 PE LIBERTAD

A.C,P

PHILIPPINES
The Online Advanced Systems Corp.

2nd Floor, Electra House

115-117 Esteban Street

P.O. Box 1510

Legaspi Village, Makati

Metro MANILA

Tel: 8 15-38-10 (up to 16)

Telex: 63274 ONLINE PN

A,C,E,M.P

PORTUGAL
Mundinter intercambio

Mundial de Comercio S.A.R.L.

Av. Antonio Augusto Aguiar 138

Apartado 2761

LISBON

Tel: (19) 3-21-31, 53-21-37

Telex: 16691 munter p

M

Soquimica

Av. da Liberdade, 220-2

1298 LISBOA Codex

Tel: 56-21-82

Telex: 13316 SABASA

A

Telectra-Empresa Técnica de

Equipmentos Eléctricos S.A.R.L.

Rua Rodrigo da Fonseca 103

P.O. Box 2531

LISBON 1

Tel: (19) 68-60-72

Telex: 12598

CM.E

C.P.C.S.1.

Rua de Costa Cabral 575

4200 PORTO

Tel: 499174/495173

Telex: 26054

C.P

PUERTO RICO
Hewlett-Packard Puerto Rico

101 Munoz Rivera Av

Esu.CalleOchoa _
HATO REY, Puerto Rico 00918

Tel: (809) 754-7800

A,C,CM.M.E,P

QATAR
Computer Arabia

P.O. Box 2750

DOHA

Tel: 428555

Telex: 4806 CHPARB
re)

Nasser Trading & Contracting

P.0.Box 1563
DOHA
Tel: 422170
Telex: 4439 NASSER DH

M

SAUDI ARABIA
Modern Electronics Establishment

Hewlett-Packard Division

P.O. Box 281

Thuobah

AL-KHOBAR 31952

Tel: 895-1760, 895-1764

Telex: 671 106 HPMEEK SJ

Cable: ELECTA AL-KHOBAR

C,E,M

Modern Electronics Establishment

Hewlett-Packard Division

P.O. Box 1228

Redec Plaza, 6th Floor

JEDDAH

Tel: 644 96 28

Telex: 4027 12 FARNAS SJ

Cable: ELECTA JEDDAH

A,C,CM,E,M,P

Modern Electronics Establishment

Hewlett-Packard Division

P.O.Box 22015

RIYADH 11495

Tel: 491-97 15, 491-63 87

Telex: 202049 MEERYD SJ

C.E,M

Abdul Ghani E! Ajou Corp.
P.O. Box 78
RIYADH
Tel: 40 41717

Telex: 200 932 EL AJOU
*)

SCOTLAND
See United Kingdom

SENEGAL
Societe Hussein Ayad & Cie.
76, Avenue Georges Pompidou

B.P. 305

Cable: AYAD-Dakar

E

Moneger Distribution S.A.

1, Rue Parent

B.P. 148

DAKAR

Tel: 215 671

Telex: 587
p

Systeme Service Conseil (SSC)

14, Avenue du Parachots

DAKAR ETOME

Tel: 219976

Telex: 577

C.P

SINGAPORE
Hewlett-Packard Singapore (Sales)

Pte. Ltd.
1150 Depot Road

SINGAPORE, 04 10
Tel: 4731788
Telex: 34209 HPSGSO RS
Cable: HEWPACK, Singapore
A,C,E.M,P

Dynamar International Ltd.

Unit 05-11 Block 6
Kolam Ayer Industrial Estate

SINGAPORE 1334
Tel: 747-6188
Telex: 26283 RS
CM

SOUTH AFRICA
Hewlett-Packard So Africa (Pty.) Ltd.
P.O. Box 120

Howard Place, CAPE PROVINCE

7450 South Africa

Tel: 27 121153-7954

Telex: 57-20006

A,C,CM,E,M.P

Hewlett-Packard So Africa (Pty.) Ltd.

2nd Floor Juniper House

92 Overport Drive

DURBAN 4067

Tel: 27-3 1-28-4178

Telex: 6-22954

C

Hewlett-Packard So Africa (Pty.) Ltd.
Shop 6 Linton Arcade

511 Cape Road
Linton Grange

PORT ELIZABETH 6001
Tel: 27141130 1201

Telex: 24-2916

C

Hewlett-Packard So Africa (Pty.) Ltd.
Fountain Center

Kalkoen Str.

Monument Park Ext 2

PRETORIA 0105

Tel: (012) 45 5725

Telex: 32163

C.E

Hewlett-Packard So Africa (Pty.) Ltd.

Private Bag Wendywood
SANDTON 2144
Tel: 27-11-802-5111, 27-11-802-5125

Telex: 4-20877 SA

Cable: HEWPACK Johannesburg
A,C,CM,E.M,P

SPAIN
Hewlett-Packard Espariola, S.A.

Cate Entenza, 321

E.-BARCELONA 29

Tel: 3/322 24 51, 32173 54

Telex: 52603 hpbee

A.C,E.M,P

Hewlett-Packard Espafiola, S.A.

Calle San Vicente S/N

Edificio Albia |-7B

48001 BILBAO

Tel: 4/423 83 06

A,C,E.M

Hewlett-Packard Espaflola, S.A.

Crta. N-VI, Km. 16, 400

Las Rozas

E-MADRID

Tel: (1) 637.00.11

Telex: 23515 HPE

C.M

Hewlett-Packard Espafola, S.A.

Avda. S. Francisco Javier, S/N

Planta 10. Edificio Sevilla 2

E-SEVILLA 5, SPAIN
Tel: 54/64 44 54

Telex: 72933

A.C,M,P

Hewlett-Packard Espasiola, S.A.

Isabel La Catolica, 8

E-46004 VALENCIA
Tel: 34-6-361 1354

Telex: 63435

C.P

Hewlett-Packard Espasiola, S.A.
Av. de Zugazarte, 8
Las Arenas-Guecho
E-48930 VIZCAYA
VIZCAYA
Tel: 34-423-83 06

Telex: 33032

SWEDEN
Hewlett-Packard Sverige AB

Ostra Tullgatan 3
S-20011 MALMO
Box 6132

Tel: 46-40-702-70
Telex: (854) 17886 (via Spanga

office)

CP

Hewlett-Packard Sverige AB

Elementvagen 16
S-7022 7 OREBRO
Tat: 49-0 19- 10-4820

Telex: (854) 17886 (via Spanga office)

C

Hewlett-Packard Sverige AB

Skalhottsgatan 9, Kista
P.O. Box 19

S- 16303 SPANGA
Tel: (08) 750-2000
Telex: (854) 17886
Telefax: (08) 7527781

A.C,CM,E.M,P

Hewlett-Packard Sverige AB
Box 266

Topasgatan 1A

S-42123 VASTRA-FROLUNDA
(Gothenburg)

Tel: 46-03 1-89- 1000

Telex: (854) 17886 (via Spanga

office)

A,C,CM,E,.M,P

SUDAN
Mediterranean Engineering

& Trading Co. Ltd.

P.O. Box 1025

KHARTOUM
Tel: 41184

Telex: 24052
C.P

SWITZERLAND
Hewlett-Packard (Schweiz) AG

Clarastrasse 12
CH-4058 BASEL
Tel: 41-6 1-33-5920
A.C,E,P

Hewlett-Packard (Schweiz) AG
7, rue du Bois-du-Lan

Case postaie 365-1366
CH-1217 MEYRIN 1

Tel: (004 1) 22-83- 11-11
Telex:27333 HPAG CH

A,C,CM,E,M,P

SWITZERLAND (Cont'd) TOGO
Hewlett-Packard (Schweiz) AG

Allmend 2

CH-8967 WIDEN
Tel: 44-87-31-2111

Telex: 53933 hpag ch
Cable: HPAG CH

A.C.CM.E.M.P

Hewlett-Packard (Schweiz) AG

Schwamendingenstrasse 10

CH-8050 ZURICH

Tel: 41-1-3 15-8181

Telex: 823 537 HPAG CH

C.P

SYRIA
Genera! Electronic Inc.

Nuri Basha Ahnaf Ebn Kays Street

P.O. Box 5781

DAMASCUS

Tal: 33-24-87

Telex. 44-19-88

Cable: ELECTROBOR DAMASCUS

E

Middle East Electronics

P.O.Box 2308

Abu Rumaneh

DAMASCUS

Tel: 33 45 92

Telex: 411771 Meesy

M

TAIWAN
Hewlett-Packard Taiwan Ltd.

THM Office

2, Huan Nan Road

CHUNG LI, Taoyuan

Tel: (034) 929-666

C

Hewlett-Packard Taiwan Ltd.

Kaohsiung Office

11/F, 456, Chung Hsiao 1st Road

KAOHSIUNG

Tel: (07) 2412318

CE

Hewlett-Packard Taiwan Ltd.
8th Floor, Hewlett-Packard Building

337 Fu Hsing North Road

TAIPEI

Tel: (02) 712-0404

Telex: 24439 HEWPACK

Cable:-HEWPACK Taipei

A.C,CM.E.M.P

Ing Lin Trading Co.

3rd Floor. No. 7. Sect. 2

Jen Ai Road

TAIPEI 100

Tel: (02) 394-8191

Telex: 22894 SANKWANG

A

THAILAND
Unimesa Co. Ltd.

30 Patpong Ave., Suriwong

BANGKOK 5S,
Tel: 235-5727, 234-0991/3
Telex: 84439 Simonco TH

Cable: UNIMESA Bangkok
A.C.E.M

Bangkok Business Equipment Ltd.

5/_-6 Dejo Road

BANGKOK

Tal: 234-8670, 234-867 1

Telex: 87699-BEQUIPT TH

Cable: BUSIQUIPT Bangkok
p

Societe Africaine De Promotion

immeuble Sageb

Rue d’Atakpame

P.O. Box 4150

LOME

Tel: 21-62-88

Telex: 5357
p

TRINIDAD & TOBAGO
Caribbean Telecoms Ltd.

Corner McAllister Street &

Eastern Main Road, Laventille

P.O. Box 732

PORT-OF-SPAIN

Teal: 624-4213

Telex: 22561 CARTEL WG

Cable: CARTEL, PORT OF SPAIN

CM.E.M,P

Computer and Controls Ltd.

P.O. Box 51

1 Taylor Street

PORT-OF-SPAIN

Tel: (809) 622-77 19/622-7985

Telex: 38722798 COMCON WG

LOOGO AGENCY 1264

A.P

Feral Assoc.

8 Fitzgerald Lane

PORT-OF-SPAIN

Tel: 62-36864, 62-39255

Telex: 22432 FERALCO

Cable: FERALCO

M

TUNISIA
Tunisie Electronique S.A.R.L.

31 Avenue de la Liberte

TUNIS

Tel: 280-144

C.E.P

Tunisie Electronique S.A.R.L.

94, Av. Jugurtha, Mutuelleville
1002 TUNIS-BEL VEDERE

Tel: 280144

Telex: 13238

C.E.P

Corema S.A.
1 ter. Av. de Carthage

TUNIS
Tel: 253-821
Telex: 12319 CABAM TN

M

TURKEY
E.M.A

Mediha Eldem Sokak No. 41/6

Yenisehir

ANKARA

Tel: 319175

Tefex: 42321 KTX TR

Cable: EMATRADE ANKARA

M

Teknim Company Ltd.

Iran Caddes: No. 7

Karaklidere

ANKARA

Tel: 275800

Telex: 42155 TKNM TR

C.E

Kurt & Kurt AS.

Mithatpasa Caddesi No. 75

Kat 4 Kizilay
ANKARA

Tel: 318875/6/7/8

Telex: 42490 MESR TR

A

SALES & SUPPORT OFFICES
Arranged alphabetically by country

Saniva Bilgisayar Sistemieri A.S.

Buyukdere Caddes: 103/6

Gayrettepe

ISTANBUL

Tel: 1673180

Telex: 26345 SANI TR

OR

Best Inc.

Esentepe, Gaveteciler Sites:

Keskin Katem

Sokak 6/3, Gayrettepe

ISTANBUL

Tel: 172 1328, 173 3344

Telex: 42490

A

UNITED ARAB
EMIRATES
Emitac Ltd.

P.O. Box 1641

SHARJAK

Tel: 591181

Telex: 68136 EMITAC EM

Cable: EMITAC SHARJAH

E.C.M.P.A

Emitac Ltd.

P.O. Box 2711

ABU DHABI

Tel: 8204 19-20

Cabie: EMITACH ABUDHABI

Emitac Ltd.

P.O. Box 8391

DUBAI,

Tel: 377591

Emitac Ltd.

P.O. Box 473

RAS AL KHAIMAH

Tel: 28133, 21270

UNITED KINGDOM

ENGLAND

Hewlett-Packard Ltd.

Miller House

The Ring, BRACKNELL

Berks RG12 1XN

Tel: 44/344/424-898

Telex: 848733

E

Hewlett-Packard Ltd.

Elstree House. Elstree Way

BOREHAMWOOD, Herts WD6 1SG

Tel: 01 207 5000

Telex: 89527 16

CE

Hewlett-Packard Ltd.

Oakfield House, Oakfield Grove

Clifton BRISTOL, Avon BS8 2BN

Tel: 44-272-736 806

Telex: 444302

C.E,P

Hewlett-Packard Ltd.

9 Bridewell Place

LONDON EC4V 68S

Tel: 44-0 1-583-6565

Telex: 298163

CP

Hewlett-Packard Ltd.

Pontefract Road

NORMANTON, West Yorkshire WF6 1RN

Tel: 44/924/895 566

Telex: 557355

CP

Hewlett-Packard Ltd.

The Quadrangle

106-118 Station Road

REDHILL, Surrey RH1 1PS

Tel: 44-737-686-55

Telex: 947234

C.E,P

Hewlett-Packard Ltd.

Avon House

435 Stratford Road

Shirley, SOLIMULL, West Midlands

B90 4BL

Tel: 44-2 1-745-8800

Telex: 339105

C.E.P

Hewlett-Packard Ltd.

Heathside Park Road

Cheadie Heath, Stockport

SK3 ORB. United Kingdom
Tel: 44-06 1-428-0828

Telex: 668068

A.C.E.M.P

Hewlett-Packard Ltd.

Harmon House

No. 1 George Street
UXBRIDGE, Middiesex UX8 1YH

Tel: 895 720 20

Telex: 893134/5

C.CM.E.M.P

Hewlett-Packard Ltd.
King Street Lane
Winnersh, WOKINGHAM
Berkshire RG 11 5AR
Tel: 44/734/784774
Telex: 8471789
A,C,E.M,P

NORTHERN IRELAND
Hewiett-Packard (Ireland) Ltd.

Carrickfergus Industrial Centre
75 Belfast Road, Carrickfergus
CO. ANTRIM BT38 8PM
Tel: 09603 67333
C.E

Cardiac Services Company

95A Finaghy Road South
BELFAST, BT 10 OBY
Tel: 0232-625566
Telex: 747626

M

SCOTLAND
Hewlett-Packard Ltd.

1/3 Springburn Place
College Mitton North

EAST KILBRIDE, G74 5NU
Tel: 041-332-6232
Telex: 779615

C.E

Hewlett-Packard Ltd.

SOUTH QUEENSFERRY

West Lothian, EH30 9TG

Tel: 031331 1188

Telex: 72682 HPSQFYG

C.CM.E.M,P

UNITED STATES
Hewlett-Packard Co.

Customer Information Center

Tel: (800) 752-0900

Hours: 6:00 AM to 5:00 PM

Pacific Time

Alabama
Hewlett-Packard Co.

2100 Riverchase Center

Building 100 - Suite 118
BIRMINGHAM, AL 35244

Tel: (205) 988-0547

A.C.M,P°

Hewlett-Packard Co.

420 Wynn Drive

HUNTSVILLE, AL 35805

Tel: (205) 830-2000

C.CM.E.M°

Alaska
Hewlett-Packard Co.

4000 Old Seward Highway

Suite 101

ANCHORAGE, AK 99503
Tel: (907) 563-8855

C.E

Arizona
Hewlett-Packard Co.

8080 Pointe Parkway West

PHOENIX, AZ 85044

Tel: (602) 273-8000

A,C,CM,.E,M,P

Hewlett-Packard Co.

3400 East Britannia Dr.

Bidg. C. Suite 124

TUCSON, AZ 85706
Tal: (602) 573-7400

C.E.M°"

California
Hewlett-Packard Co.

99 South Hill Or.

BRISBANE, CA 94005

Tel: (415) 330-2500

C

Hewlett-Packard Co.

1907 North Gateway Bivd.

FRESNO, CA 93727

Tel: (209) 252-9652

C.M

Hewlett-Packard Co.

1421S. Manhattan Av.

FULLERTON, CA 92631

Tal: (7 14) 999-6700

C.CM.E.M

Hewlett-Packard Co.

7408 Hollister Ave. #A

GOLETA, CA 93117

Tel: (805) 685-6 100

C.E

Hewlett-Packard Co.

2525 Grand Avenue

LONG BEACH, CA 90815 °
Tel: (213) 498-1111

C

Hewlett-Packard Co.

5651 West Manchester Ave.

LOS ANGELES, CA 90045
Tel: (213) 337-8000

Hewlett-Packard Co.

3155 Porter Drive

PALO ALTO, CA 94304

Tel: (415) 857-8006

CE

Hewlett-Packard Co.

5725 W. Las Positas Bivd.

PLEASANTON, CA 94566

Tel: (415) 460-0282

C

Hewlett-Packard Co.

4244 So. Market Court, Suite A

SACRAMENTO, CA 95834

Tel: (916) 929-7222

A*.C.E.M

Hewlett-Packard Co.

9606 Aero Drive

SAN DIEGO, CA 92123

Tel: (619) 279-3200

C.CM.E.M

Hewlett-Packard Co.

3003 Scott Boulevard

SANTA CLARA, CA 95054

Tel: (408) 988-7000

Telex: 910-338-0586

A.C.CM.E

Hewlett-Packard Co.

2150 W. Hillcrest Dr.

THOUSAND OAKS, CA 91320

(805) 373-7000

C.CM,E

Colorado
Hewlett-Packard Co.

2945 Center Green Court South

Suite A

BOULDER, CO 80301

Tel: (303) 499-6655

AC.E

Hewlett-Packard Co.

24 Inverness Place, East

ENGLEWOOD, CO 80112

Tel: (303) 649-5000

A.C,CM.E.M

Connecticut
Hewlett-Packard Co.

500 Syivan Av.

BRIDGEPORT, CT 06606

Tel: (203) 371-6454

CE

Hewlett-Packard Co.

47 Barnes Industrial Road South

WALLINGFORD, CT 06492

Tet: (203) 265-7801

A,C,CM.E.M

Florida
Hewlett-Packard Co.

2901 N.W. 62nd Street

FORT LAUDERDALE, FL 33309

Tel: (305) 973-2600

C.E.M.P°

Hewlett-Packard Co.

6800 South Point Parkway

Suite 301

JACKSONVILLE, FL 32216

Tel: (904) 636-9955
C ° iM ee

Hewlett-Packard Co.

255 East Drive, Suite B

MELBOURNE, FL 32901

Tet: (305) 729-0704

CM.E

Hewlett-Packard Co.

6177 Lake Ellenor Drive

ORLANOO, FL 32809

Tel: (305) 859-2900

A,C,CM.E,P*

Hewlett-Packard Co.
4700 Bayou Bivd.

Building 5
PENSACOLA, FL 32503
Tal: (904) 476-8422
A.C.M

Hewlett-Packard Co.

5550 W. Idlewild. #150

TAMPA, FL 33614

Tet: (813) 884-3282

C,E.M,P

Georgia
Hewlett-Packard Co.

2015 South Park Place

ATLANTA, GA 30339

Tel: (404) 955-1500

Telex: 810-766-4890

A.C,CM.E.M,P°

Hewlett-Packard Co.

3607 Parkway Lane

Suite 300

NORCROSS, GA 30092

Tel: (404) 448-1894

C.E.P

Hawaii
Hewlett-Packard Co.

Pacific Tower

1001 Bishop St.

Suite 2400

HONOLULU, HI 96813

Tel: (808) 526-1555

A.C.E.M

idaho
Hewlett-Packard Co.

11309 Chinden Bivd.

BOISE, ID 83714

Tel: (208) 323-2700

C

lilinois
Hewlett-Packard Co.

2205 E. Empire St.
P.O. Box 1607

BLOOMINGTON, IL 61702-1607

Tel: (309) 662-9411

A.C.E.M°°

Hewlett-Packard Co.

525 W. Monroe, #1308

CHICAGO, IL 60606

Tel: (312) 930-00 10

C

Hewlett-Packard Co.

1200 East Diehi Road

NAPERVILLE, iL 60566

Tel: (312) 357-8800

C

Hewlett-Packard Co.

5201 ToNview Drive

ROLLING MEADOWS, IL 60008
Tel: (312) 255-9800

Telex: 910-687-1066
A.C.CM,E.M

indiana
Hewlett-Packard Co.

11911.N. Meridian St.

CARMEL, IN 46032
Tel: (317) 844-4100

A,C,CM.E.M

Hewlett-Packard Co.

111 E. Ludwig Road

Suite 108

FT. WAYNE, IN 46825
Tel: (219) 482-4283

C.E

lowa
Hewlett-Packard Co.

4070 22nd Av. SW

CEDAR RAPIDS, IA 52404
Tel: (319) 390-4250

C.E.M

Hewlett-Packard Co.

4201 Corporate Dr.

WEST DES MOINES, IA 50265

Tel: (515) 224-1435
AvoCM"®

Kansas
Hewlett-Packard Co.

North Rock Business Park

3450 N. Rock Rd.

Suite 300

WICHITA, KS 67226

Tal: (316) 684-8491

C.E

Kentucky
Hewiett-Packard Co.

305 N. Hurstbourne Lane,

Suite 100

LOUISVILLE, KY 40223

Tei: (502) 426-0100

A,C.M

Louisiana
Hewlett-Packard Co.

160 James Drive East

ST. ROSE, LA 70087

P.O. Box 1449

KENNER, LA 70063

Tel: (504) 467-4100

A.C,E.M.P

Maryland
Hewlett-Packard Co.

3701 Koppers Street

BALTIMORE, MD 21227
Tel: (301) 644-5800
Telex: 710-862-1943
A,C,CM.E.M

Hewlett-Packard Co.

2 Choke Cherry Road

ROCKVILLE, MD 20850
Tel: (301) 948-6370
A.C,CM,.E.M

Massachusetts
Hewlett-Packard Co.

1775 Minuteman Road

ANDOVER, MA 01810
Tel: (617) 682-1500
A.C.CM,E.M.P°

Hewlett-Packard Co.

29 Burlington Mall Rd

BURLINGTON, MA 01803-4514
Tel: (617) 270-7000
CE

Michigan
Hewlett-Packard Co.

4326 Cascade Road S.E.

GRAND RAPIDS, Mi 49506
Tel: (616) 957-1970
C.M

Hewlett-Packard Co.
39550 Orchard Hill Place Drive

NOVI, MI 48050

Tel: (313) 349-9200

A.C.E.M

Hewlett-Packard Co.

560 Kirts Rd.

Suite 101

TROY, Mi 48084

Tel: (313) 362-5 180

C

Minnesota
Hewlett-Packard Co.

2025 W. Larpenteur Ave.

ST. PAUL, MN 55113
Tel: (612) 644-1100
A.C.CM.E.M

Missouri
Hewlett-Packard Co.

1001 €. 10 1st Terrace Suite 120

KANSAS CITY, MO 64 131-3368
Tel: (816) 941-0411

A.C.CM.E.M

Hewlett-Packard Co.

13001 Hollenberg Drive

BRIDGETON, MO 63044

Tal: (314) 344-5100

A,C.E.M

Nebraska
Hewlett-Packard

11626 Nicholas St.

OMAMA, NE 68154

Tel: (402) 493-0300
C.E.M

New Jersey
Hewlett-Packard Co.

120 W. Century Road

PARAMUS, NJ 07652
Tel: (201) 265-5000
A.C,CM.E.M

Hewlett-Packard Co.

20 New England Av. West

PISCATAWAY, NJ 08854
Tel: (201) 562-6 100
A.C.CM.E

New Mexico
Hewlett-Packard Co.

7801 Jefferson N.E.

ALBUQUERQUE, NM 87 109

Tal: (505) 823-6 100

C.E.M

Hewlett-Packard Co.
1362-C Trinity Dr.

LOS ALAMOS, NM 87544
Tel: (505) 662-6700

C.E

New York
Hewlett-Packard Co.

5 Computer Drive South

ALBANY, NY 12205
Tel: (518) 458-1550
A.C.E.M

Hewlett-Packard Co.

9600 Main Street

CLARENCE, NY 14031
Tel: (716) 759-8621

C.E.M

Hewlett-Packard Co.

200 Cross Keys Office Park

FAIRPORT, NY 14450

Tel: (716) 223-9950
A,C.CM,.E.M

Hewlett-Packard Co.

7641 Henry Clay Bivd.

LIVERPOOL, NY 13088
Tel: (315) 451-1820
A.C,CM.E.M

Hewlett-Packard Co.

No. 1 Pennsyivania Plaza

55th Floor

34th Street & 7th Avenue

MANHATTAN NY 10119

Tet: (212) 971-0800

C.M°

Hewlett-Packard Co.

15 Myers Corner Rd.

Hollowbrook Park. Suite 2D

WAPPINGERS FALLS, NY 12590

Tel: (914) 298-9125

CM.E

Hewlett-Packard Co.

2975 Westchester Ave

PURCHASE, NY 10577

Tel: (914) 935-6300

C.CM.E

Hewlett-Packard Co.

3 Crossways Park West

WOODBURY, NY 11797

Tel: (516) 682-7800

A,C.CM.E.M

North Carolina
Hewlett-Packard Co.

305 Gregson Dr.

CARY, NC 27511

Tel: (919) 467-6600
C.CM.E.M,P°

Hewlett-Packard Co.

9401 Arrow Point Bivd

Suite 100

CHARLOTTE, NC 28217

Tel: (704) 527-8780
Cc

Hewlett-Packard Co.

5605 Roanne Way

GREENSBORO, NC 27420
Tel: (919) 852-1800

A.C,CM.E.M.P°

Ohio
Hewlett-Packard Co.

2717 S. Arlington Road

AKRON, OH 44312
Tal: (216) 644-2270

C.E

Hewlett-Packard Co.

4501 Erskine Road

CINCINNATI, OH 45242
Tel: (513) 891-9870

C.M

Hewlett-Packard Co.

15885 Sprague Road

CLEVELAND, OH 44136
Tel: (216) 243-7300

A.C.CM.E.M

Hewlett-Packard Co.

9080 Springboro Pike

MIAMISBURG, OH 45342
Tal: (513) 433-2223

A.C.CM,E*,M

Hewlett-Packard Co.

One Maritime Plaza, 5th Floor

720 Water Street

TOLEDO, OH 43604

Tel: (419) 242-2200

C

Hewlett-Packard Co.

675 Brooksedge Bivd.

WESTERVILLE, OH 43081
Tet: (614) 891-3344

C.CM.E°

Oklahoma
Hewlett-Packard Co.

3525 N.W. 56th St.

Suite C- 100

OKLAHOMA CITY, OK 73112
Tet: (405) 946-9499

C,E°.M

UNITED STATES
(Cont'd)

Hewiett-Packard Co.

6655 South Lewis,

Suite 105

TULSA, OK 74136
Tel: (9 18) 481-6700
A°* C.E.M*,P°

Oregon
Hewlett-Packard Co.

9255 S. W. Pioneer Court

WILSONVILLE, OR 97070
Tel: (503) 682-8000
A,C,E°.M

Pennsylvania

Hewlett-Packard Co.

Heatherwood industrial Park

50 Dorchester Rd.

Route 22

HARRISBURG, PA 17112-2799
Tel: (717) 657-5900

C

Hewlett-Packard Co.

111 Zeta Drive

PITTSBURGH, PA 15238

Tel: (412) 782-0400

A.C.E.M

Hewlett-Packard Co.

275C Monroe Boulevard

VALLEY FORGE, PA 19482

Tel: (215) 666-9000

A,C,CM.E.M

South Carolina
Hewlett-Packard Co.

Brookside Park, Suite 122

1 Harbison Way

COLUMBIA, SC 29212
Tel: (803) 732-0400
C.M

Hewlett-Packard Co.
545 N. Pleasantburg Dr.

Suite 100
GREENVILLE, SC 29607
Tel: (803) 232-8002
C

Tennessee
Hewlett-Packard Co.

One Energy Centr. Suite 200
Pellissippi Pkwy.

KNOXVILLE, TN 37932

Tel: (615) 966-4747

A.C,E.M.P

Hewiett-Packard Co.

3070 Directors Row

Directors Square

MEMPHIS, TN 38131

Tel: (901) 346-8370

A.C.E.M

Hewlett-Packard Co.

44 Vantage Way,

Suite 160
NASHVILLE, TN 37226

Tel: (615) 255-1271

A.C,E.M.P

Texas
Hewlett-Packard Co.
1826-P Kramer Lane

AUSTIN, TX 78758
Tel: (512) 835-6771

C.E,P°

Hewlett-Packard Co.

5700 Cromo Dr

EL PASO, TX 79912
Tel: (9 15) 833-4400
C.E e M ee

Hewlett-Packard Co.
3952 Sandshell Drive
FORT WORTH, TX 76137

Tel: (817) 232-9500
C

Hewlett-Packard Co.

10535 Harwin Drive

HOUSTON, TX 77036
Tel: (713) 776-6400
A,C,E,M,P°

Hewlett-Packard Co.

3301 West Royal Lane

IRVING, TX 75063

Tel: (214) 869-3377

CE

Hewlett-Packard Co.

109 E. Toronto, Suite 100

McALLEN, TX 78501

Teal: (512) 630-3030

C

Hewlett-Packard Co.

930 E. Campbell Rd.

RICHARDSON, TX 75081
Tel: (214) 231-6101
A,C,CM.E.M,P°

Hewlett-Packard Co.

1020 Centrai Parkway South
SAN ANTONIO, TX 78232

Tel: (512) 494-9336

A,C,E.M,P°

Utah
Hewlett-Packard Co.

3530 W. 2100 South St.

SALT LAKE CITY, UT 84119

Tel: (801) 974-1700

A.C,E,M

Virginia
Hewlett-Packard Co.

840 Greenbrier Circle

Suite 101

CHESAPEAKE, VA 23320

Tel: (804) 424-7105

C.E.M

Hewlett-Packard Co.

4305 Cox Road

GLEN ALLEN, VA 23060

Tel: (804) 747-7750

A,C,E.M,P°

SALES & SUPPORT OFFICES
Arranged alphabetically by country

Hewlett-Packard Co.

Tanglewood West Bidg.

Suite 240

3959 Electric Road

ROANOKE, VA 24018

Tel: (703) 774-3444

C.E,P

Washington
Hewlett-Packard Co.
15615 S.E. 37th Street

BELLEVUE, WA 98006
Tel: (206) 643-4004
A,C,CM,E,M

Hewlett-Packard Co.
1225 Argonne Rd
SPOKANE, WA 99212
Tel: (509) 922-7000
C

West Virginia
Hewlett-Packard Co.

501 56th Street
CHARLESTON, WV 25304
Tel: (304) 925-0492
A.C.M

Wisconsin
Hewlett-Packard Co.

275 N. Corporate Dr.

BROOKFIELD, W! 53005
Tel: (414) 784-8800

A,C,E°.M

URUGUAY
Pablo Ferrando S.A.C. e |.

Avenida Italia 2877

Casilla de Correo 370

MONTEVIDEO

Tel: 59-82-802-586

Telex: 398802586

A.CM,E.M

Olympia de Uruguay S.A.

Maquines de Oficina

Avda. dei Libertador 1997

Casilla de Correos 6644
MONTEVIDEO
Tel: 91-1809, 98-3807
Telex: 6342 OROU UY
Pp

VENEZUELA
Hewlett-Packard de Venezuela C.A.

3A Transversal Los Ruices Norte

Edificio Segre 2&3
Apartado 50933

CARACAS 1050
Tel: (582) 239-4 133
Telex: 251046 HEWPACK
A.C.CM,E.M,P

Hewlett-Packard de Venezuela, C.A.

Centro Ciudad Comercial Tamanaco

Nivel C-2 (Nueva Etapa)

Local 53H05

Chuao, CARACAS

Tel: 928291
p

Albis Venezolana S.R.L.

Av. Las Marias, Ota. Alix,

El Pedregal
Apartado 81025

CARACAS 1080A

Tel: 747984, 742146

Telex: 24009 ALBIS VC

A

Tecnologica Medica del Caribe, C.A.

Muiticentro Empresarial dei Este

Ave. Libertador

Edif. Libertador

Nucleo 'C"’ - Oficina 51-52

CARACAS

Tet: 339867 /333780

M

Hewlett-Packard de Venezuela C.A.

Residencias Tia Betty Local 1

Avenida 3 y con Calle 75

MARACAIBO, Estado Zulia

Apartado 2646

Tel: 58-2-6 17-5669

Telex: 62464 HPMAR

C.E°

Hewlett-Packard de Venezuela C.A.

Urb. Lomas de Este

Torre Trebo!l — Piso 11

VALENCIA, Estado Carabobo

Apartado 3347

Tel: (5841) 222992

CP

YUGOSLAVIA
Do Hermes

General Zdanova 4

YU-11000 BEOGRAD

Tel: (011) 342 641

Telex: 11433

A,C,E.M,P

Do Hermes

Celovska 73

YU-6 1000 LJUBLJANA

Tel: (061) 553 170

Telex: 31583

A,C,E.M,P

Elektrotehna

Titova 51

YU-6 1000 LJUBLJANA

CM

Do Hermes

Kralja Tomisiava 1

YU-7 1000 SARAJEVO

Tal: (071) 35 859

Telex: 41634

c*"P

ZAIRE
Computer & Industrial Engineering
25, Avenue de ja Justice
B.P. 12797

KINSHASA, Gombe
Tel: 32063
Telex: 21552
C.P

ZAMBIA
R.J. Tilbury (Zambia) Ltd.
P.O. Box 32792
LUSAKA
Tel: 215590
Telex: 40128
E

ZIMBABWE
Field Technical Sales (Private) Limited

45, Kelvin Road North

P.O. Box 3458
SALISBURY
Tel: 705 231
Telex: 4-122 RH
EP

September 1987

Part No. 92432-90001 f) HEWLETT
Printed in U.S.A. November 1988 @ PACKARD
E1188

	ASSEMBLY LANGUAGE Reference Manual
	Contents
	1. The Assembly Language
	2. Programming for HP-UX
	3. Assembler Directives and Pseudo-Operations
	4. The Instruction Set
	5. Programming Examples
	6. Assembling Your Program
	A. Error Messages
	B. Instruction Summaries
	Index

