e

O

1130 ALGOL USERS MANUAL

This document is written for the general user of the
compiler., The reference language is described together with the
conventions for wrltlng programs and the use of the input-output pro-
cedures, Information is provided as to the use of the compiler under
Monitor. A list of error messages generated by the.various phases is

provided,

A second document (The internal working of the 1130
ALGOL comoller) is provided for those who wish to write code procedures
and for those who wish to amend the compiler. It contains a detailed
deseription of the workings of the compiler, the method of translation
and 21l the conventions of coding and transmission.

The‘1130 ALGOL compiler requires the following minimum
machine conflguratlon-
- 8K core (the compiler can also work with 16K)
- disk
~ input device - card reader, paper tape reader
or console keyboard

cT "= “output device - printer, paper tape reader or
console printer

INDEX

;1._ Structure of the compiler.
2. Definition of the reference language.
3. Writing conventions.

b Input/output proceduress

a) Standard procedure identifiers
b; Input/output devices

Simple input/output procedures
d) Procedures for array transmission

e) Control procedure
f) Procedures for intermediate storage

5., The practical use of the compiler.

6. Error messages.

1. The structure of the compiler

The compiler proper consists of two parts:

-~ the editor - which reads the source program from cards, paper tape or
keyboard, optionally produces a program listing and stores the ocoded
string onto disk together with the initial translation of the program,
the table of constants and the table of declarations.

- +the generator - which uses the coded string and the table of
declarations to construct the object progrem which is also stored on
disk. Optionally a listing of the object program can be obtained. To
meke it acceptable to the system the object program is next processed by
- +the pre-loader - which combines it with the table of addresses and
the table of constants to an absolute program in -Disk System Format (DsSF).

1.

This object program is not directly executable. It is
nternreted by a third part of the compiler, the interpreter which is
loaded onto core at the same time as the object program.

Source : i { *

Program ; Bditor o e S e e e —-}‘ Generator i

}) i i
Pk e T]
s s4ahle of L . N T
table . i
N declaraty X {
i

i
‘ i

: : g wns of ;c;l;f’ :

— ¥ ’ stan Y ’ UL IS

; T s able S

| Listings ; = - ; coded /{ addre.,.,Ls : P ib " | Listings

! and. i : i i (* l‘ and

~ errorsf i \ _errors
3 .

Bl e e S

T /

. ded de N
CJ t pre-loader
i
§ : ‘ V
iInterpreter ‘_ fm e - = =
— Ly L
- ¢ she
ALGOL v L~ J Monitor system i __ 4 Executable
sub-programs | 1 loader ___ program

Monitor system ?_._..__..___.!..
sub-programs

2, The reference language definition

The principal restrictions with reference to the ALGOL 4o
Report of the language recognised by the compiler are the following:

~ A1l formal parameters of procedures must be .speéified.
—~ Labels cannot be unsigned integers.:
- The declarator own does not exist.

- A goto instruction that po::.nts to an undef:.ned switech is treated
as an error.

- A formal array parameter cannot appear in the value part.
- Only the first five characters of an identifier are significant.

~ Only capital letters are available in identifiers.

More precisely, the restrictions are defined below in terms of the ALGOL
60 Revised Report.

2.1 Delete in the definition off ¢ letter >
"oftof uns [7/3";

2.3 Delete in the definition of «declarator > :
,ﬂOWn“ . .

2,4.3 .© Add in the third sentence ("They ma_jr be chosen freely.."):
" but there is no effective distinction between two
different identifiers whose first five symbols are identieal.”

3.5.1 Delete in the definition of <label> : " <€unsigned
integer> ". .

3.5.5 Delete this paragraph.

Lk.3.5. Replaoce: "egquivalent to a dummy statement" by "undéfined".
L7503 ﬂeplace the second sentence by "It cannot be called by value".
4.7.5.5 " Delete this paragraph.

5. : Delete the first twd sentences of the fourth paragreph.

5.1.1. Delete the definition of <local or own type > :
. replace the definition of ¢ type declaration >by:
" « type declaration> " = ¢type> < type list> "

5.1.3 Delete the last sentence.

5.2 Replace in the definition‘ of < array declaration >
o ® ¢ local or own type> " by "< type> ".
5.2,2 Delete the second example.

5.2.5 Delete this paragraph.

5elred Replace the third sentence by:
"All the formal parameters must be specified."

3, Writing Conventions

411 legal EBCDIC characters are recognised if the program
is read from cards. From paper tape or console keyboard only the
characters of the sub set are recognised. In all cases, the characters
t (apostrophe) and @ (commercial at) are equivalent. Only the first four
letters of the basic symbols between apostrophe are signficant. Thus
'BOOL' and 'BOOLEAN' are equivalent. Spaces are only significant within
strings. Thus *'G0 TO' and 'GOTO', (/ and (/ are equivalent. ‘

The various notations recognised for each basic symbol
and shown in the following table can be used together without any

restrictions.

The physical representation of basic symbols

ALGOL Notation . Standard Notation Other Notations

+
+

e NN M
\

3.

C

ALGOQOL Notation

Standard Notation

i Other Notations

———

[T T A N

NH\V‘V

i

< U

o ! 'PgWER'

| 'LESS! {o¢ 'oE

'NJTGREATER® <= 'ING'

. 'EQUAL! = 'EGAL'

{ 'NPILESS! >= 1SUC!
'GREATER' > 'SUP!
'NGTEQUAL * 1= 'DIF!

| 'EQUIV!

. 'IiPL!

'OR! 110!

TAND ! & 'ET!

gt = e

od TF . 'ALLER A'
1R 197! ’
'THEN'! "ALZRS!
'ELSE! "SINgN!
'FﬁR' !th

D" 'FATRE'
'BYFLEAN® 'BYFLEEN' 'BY
'INTEGER! 'ENTIER' 'I! 'B!
'REAL? 'REEL' 'R'
1 ARRAY! {PABLEAU
'SWITCH' ' ATGUILLAGE!
TPRPCEDURE *

t STRING * ' CHAINE *
ILABEL! 'ETTIQUETTE '
'VALUE " 'VALEDR?

1

. ;

 'STEP! 'PAS!
'UNTIL! 1JUSQUA' 'A!
'WHILE ! 'TANT QUE*
% |

/)

!(z;

t)r
N l;‘..

ALGOL Notation Standard Notation Other Notations

begin - | 'BEGIN' 'DEBUT !

end , 1END ¢ . TN

trug "TRUE? o YWRAIY 'T! V!
false : 'F_AL.SE' ‘ TFAUX' 'F!

L. Input/output Procedures

411 data transmissions between an ALGOL program and an
peripheral device must be done by procedure call. The following
~description concerns the standard procedures provided with the compiler.

L. 'Standard procedure identifiers

411 these procedures, except for SYSACT, have an

english name and a french name.

Both names of the same

procedure can be used freely within the same program and
they will always refer to the same procdure., All the
standard procedures are considered to be declared in a

fictional block containing the program.

They are in four catagories:

Procedure identifier French equivalent
Input procedures INSYMBOL ENTSYMBOLE
INREAL ENTREEL
ININTEGER ENTENTIER
INBOOLEAN ENTBOQLEEN _
INARRLY ENTRTABLEAU
| INTARRAY ENTETABLEAD
INBLARRAY ENTBTABLELU
Qutout procedures OUTSYMBOL SORSYMBOLE
OUTREAL SORREEL
OUTINTEGER SORENTIER
QUTBOOLELN SORBOOLEEN
- OUTSTRING SORCHAINE
QUTLRRAY SORRTABLEAD
OUTTARRAY ‘SORETABLEAY
OUTBARRAY SORBTABLEAU
Contfol orocedures SYSACT -

-

Procedure identifier French Equivalent

Procedures for
intermediace storage PUT METTRE

GET - PRENDRE

B. Input/Outvut devices

The first parameter of all the standard procedings for PUT
and GET, is an integer whose value denotes the type of input/
output device concerned. -Transmission between the program and
peripheral is always .one way.

‘ 411 peripherals used by the program must be defined before
(”/ compilation by a control card *E/S or *IOCS (see Section 5).
. The numbers associated with the peripherals are as follows:

£ Card Reader.

1 Printer.

2 Paper Tape Reader.

3 Paper Tape Punch,

L4 Console Keyboard.

3 . R 5 Qonsgle Printer.
’ 6 Card Punch.
' If the value of the parameter is negative or greater than
- 6 or gorresponds to a device not defined by a *E/S or *I0CS

card/hl cause an error at program execution.

C. The simple input/output procedures

(“w o _ | Each device has associated with it

. a record pointer, S,
a character pointer, R;
a record length, P, and in the case of the printer
a page length, Q. |

"~ VWhen gach character is transmitted, R: = R + 1
When R = P then S: =S+ 1 and R: =1 (i.e. the character
pointer is reset). The incréase in S implies the physical
transmission of a recoxrd.

In the case of the printer, if the record pointer, S,
which is equivalent to a line of output, equals the value Q,
a new page is started and S is reset to 1.

Llso each device has a number, K, associated with it.
This indicates the number of spaces whlch can be used as a
delimiter between numbers.,

The initial values of all these internal parameters are

6a

‘'showvm below:

i i ; i Lo
Device Character i Record i Record Page { Space
{ Pointer, . Pointer, ; Length, | Length, | Delimiter
R B S P 8 K

| Cerd Reader 80 1 80 * 2
1 | Printer 1 ! 120 Go 2 -
2 | Paper Tape Reader 80 1 80 ® -2
3 | Peper Tape Punch 1 1 80 . * 2
L | Keyboard I/P 120 4 1 120 * 2
5 | Keyboard 0/P : 1 1 126 * , 2
6 | Card Punch 1 L 80] 2

:) 4

 a) Procedures INSYNBOL and OUTSYMBOL

Their speoifioa%ions are:
procedure INSYMBOL (N, STR, D); value N; integer N, D;

stringz STR; :
procedure OUTSYMBOL (¥, STR, S); value N, S; integer N, S;
string STR; .

The first parameter defines the device concerned; the second
parameter is a string which is used as a dictionary: the charact-
ers are numbered from left to right starting from 1. By means of
this numbering, the procedure INSYMBOL assigns to its third
parameter the number corresponding to the appearance in the
string of the character read in from the device in question. If
this character does not appear in the string, the value returned
is zero., Conversely, the procedure OUTSYMBOL sends the
appropriate device the character, whose position in the string
corresponds to the value of the third parameter, If this third -
‘parameter is @ or greester thaa the length of the string, the
procedure transmits a blank, ,

Finally, both‘procedures_inorease the character pointer by
ohe, '

Example: for 1: =1 step 1 until 15 do
begin

. L]
INSYMBOL (f, “ABCDEFGHIJKL, , V);
OUTSYMBOL (1, *123456789¢+" ,V);
end; :

Ic

Example:

If the following character string appeared on a card during
imput: ‘ .

veo - AXBIDA+LEFMISFK.,., this example would output:
oo 1RUMINEEBi B+ s o

b) Procedures INRELL and OUTRELL

Their specifications are: ‘
- vrocedure INREAL (N, D); value N; real D;

e p————————

procedure OUTREAL (N, S); value N, S; integer N; real S;

The procedure INREAL scans the input character string from
the relevant device until it finds a number written according
to the ALGOL definition. During this scan the first syntactic-—
ally incorrect character met is used as the delimiter. The end
of a record er & succession of K consecutive spaces also serve
as delimiters. If the collection of characters found before
one of these delimiters does not form a symtastically correct
number, the scan starts again. :

The procedure OUTRELL outputs the value of its second
parameter to the relevant device in the following standard
formet: + X.XXXXXXXX + YY where the X are the significant
digits and YY the exponent., After the number the procedure
outputs K spaces (unless there are less than K characters
before the end of the record).

for i: =1 step1 until 5 do

begin

INREAL (g, V);

OUTREAL (1,V)

end; ,

If the following string appeared on a card during input:
vool y=wf3L 5WIBABC + = 7,484 - '1X..., the example would
transmit (assuming K = 2):

A 5 L R 1 PO 1 B

¢) Procedures ININTEGER snd OUTINTEGER

Their specifications are:
procedure ININTEGER (N,D); value N; integer N, D;
procedure OUTINTEGER (N, S); velue N, S; integer N, S;

The action of these procedures is identical to INREAL and
OUTRELL except that the number read in by ININTEGER is con-
verted to type integer and the number output by OUTINTEGER is

aligned to the right in a 6 character field preceded by a '
sign.

d) Procedures INBOOLEAN and OUTBOOLEAN

Their specifications are:

procedure INBOOLEAN (N, D); value N; integer N; boolean D;

%roiedurg OUTBOOLEAN (N, 8); value N, S; integer N;
boolean S;

8.

Example

ExamEle

These procedures work in the same way as the preceding
ones. INBOOLELN searches for the characters 'TRUE' and 'FALSE!
OUTBOOLELN outputs one or other of these symbols. The treat-
ment of blanks is the seme as for the preceding procedures.

e) Procedure’ QUTSTRING

Its specification is:

procedure OUTSTRING (N, STR); value N; integer N; string STR;

This procedure transmits one by one the characters in the

:string which make up the second parameter; the text thus formed

can span over several records. It is not terminated by K blank
separators,

 OUTSTRING (1, ®Arconw?); OUTSTRING (1,6 REPORT ®);

This would transmi’ to the output line the following characters:
++o ALGOL“REPORT ... ' o

D, Procedures for array transmission

Their specifications are as follows:

procedure INARRAY (N, D); value N; integer N; array D;

prooeduze OUTARRAY (N, S); value N; integer N; array S;
procedure INTARRAY (N, D); value N; integer N; integer

array D;

procedure OUTTARRAY (N, S); value N; integer N; integer
array S;

procedure INBARRAY (N, D); value N; integer N; boolean

array D;

procedure OUTBARRAY (N, S); value N; integer N;_boolean
array S; '

These proocedures transfer the complete contents of the array
which is their second parsmeter, by repetative calls of their

corresponding simple procedures.

Tf an array T is declared: "] T1 : S1, I2 : S2, ...fg", the
instruction: "INARRAY (@, T);™ is cquivalent to the Block:

begin integer Ki, K2, ...;

for Kl: = I1 step1 wuntil 81 do
for K2: = I2 step 1 until §2 do

WREAL (4, 7| K1, K2, ... |)

E. Control Procedure

The procedure SYSACT allows access or modification to
"system paramcters" associated with each input/output device,
The system parameters are as follows:

9.

character vpoin'ber.

-v]

record pointer,
record length,
numher of lines per page (printer only)

T o T B)

nunber of blank separators,
The specification of the procedure SYSACT 1is as follows:

orocedure SYSACT (N, F, Quantity); value N, F; integer N, F,
Quantity; ‘
" The first par umbter specifies the device soncerned,

The second paraueter specifies the nature of the requlred
operation aocord:mg to the table below.

]

‘Value of B | Letion by SYSACT
1 Quantity : = R.
2 R : = Quantity. R must be less or equal to P,
‘ If Quantity is less than pres-
ent R then the pointer goes to
v character, R of record S +
3 - Quantity : = S, ‘
I Same effect as for F = 14.
5 Quantity : = P.
6 P : = Quantity; P must + £ to the initial ’
. value. o
7 ' Quantity : = @Q No effed: exoept for the
8 Q@ : = Quantity printer.
9 ' Qua.n tity ¢ =K.
i0 : = QUaptity
11 No effect. Only applicable on 360,
12 No effect. Only applicable on 360.
13 | Error, ‘
14 Jump "Quantity" records.
15 Jump to the head of the next page (no effect
: except on the printer), then the same effect
: as for F= 1l4.

F. Procedures for intermediate storage

The two procedures PUT and GET allow the use of the disk as
work space during the emscution of a program,

Their specifications are as follows:
procedure PUT (N, LIST); value N; integer N; procedure LIST;

10.

. (M\ :

Example:

Qyooedufe GET (N, LIST); value N; integer N; procedure LIST;

The first parameter is a sector number on disk (the number
relative to the start of the werk area).

The second is & list procedure which is used to commimni-
cate with the elements to be transmitted. In the boly of this
procedure, each element to be transmitted appears as a call of
the procedure given as the paremeter of the list procedure.

To transmit onto sector 10, the values of A, B and C, one can
write: :

wpyT (14, LIST);" the procedure list having the declaration:

procedure LIST (SiND); procedure SEND;

procedure
begin

SEND (4); SEND (B); SEND (C)
end; ' '

To insert into array T, previously written values starting
from sector N one can write : "GET (N, ARRAY);" the procedure
ARRAY having the declaration:

Brocedure ARRAY (mm), procedure ELEMENT;

begin
integer I;
for I : =1 stepd until M do ELEMENT (7| I |)

end;

or even, more simply

- procedure ARRAY (ELEMENT); procedure ELEMENT;
ELEMENT (T);

Each call of GET or PUT starts transmission automatically
at the begining of a sector, Trarsmission can continue over
several consecutive secgments. Thus it is important to keep

“count of the actual number of machine words transmitted by each

call., An integer or boolean each occcupy one word, & real
quantity two words and a string two characters per word,

The following list procedure will trepsmit 76 words:

begin , _
integer array A [:1 : Zﬁ:] ; array B[: 1 : iﬁ:] ;
boolean P, Q;

procedure LIST (FETCH); procedure FETCH;

begin
integer I; |
for I : =1 steptuntil 10 do

11.

begin
FErCH (B 1, I |); FETCH (B\L s, I])

end;
FETCH (P); FETCH (A); FETCH (Q);
FETCH (*+/SMALL\~STRING . OF W/ CHARACTERS.”)

end;

5. The practical use of the compiler

. The ALGOL compilep is inserted in the general organisatioﬁ
of the 1130 Monitor System. Once put onto disk, it is used in the same
way -as the FORTRAN compiler or ASSEMBLER,

‘The compiler is called by the control card: kﬁ%&?&é&-\
7/ XEQ ECiaL (‘&%W@m‘%
Othercontrol cards may appear between thls first card and
__the program to be compiled. They are recognised by an asterlsk in column
-1 and mey be any of the following:

o~

*LIST SOURCE PROGRAM or
*LISTER PROGRAMME SOURCE
When reading in the program from the paper tape,
this card causes a program listing to be output to the
printer during the editor phase. Each line is preceded
by the semi colon count at the end of the previous line.
*LIST IDENTIFIERS or
*LISTER IDENTIFICATEURS
This card requests a listing of the table of
identifiers on the system output device (1132 printer or
the console printer) at the end of each block.
*LIST OBJECT PROGRLM ox
'\ N
C _ *LISTER PROGRAMME OBJEQT
This card requests a program listing on the system
output device during generation.
- *LIST ALL or
'*LISTER TOUT

This card replaces the three preceding ones.

#AME XXXXX or
#ANOM XXXXX

This card defines the name of the generated program.
(iny 5 characters in columns 6 to 1% or 7 to 11).

#%* Header Information:

~The information contained between columns 3 to 80 of
this card is printed at the head of every page of listing

12,

of the source progran.

% T00S (PRINTER, CONSOLE, CLRDS, PAFERTAPE) o
* E/S (IMPRIMANTE, PUPITRE, CARDS, RUBAN)

This card defincs the input/output devices used
by the object progranm. Only enter those devices actually
used as this avoids the unnecessary loading of sub programs
and the reservation of unuscd work areas. .

The program to be compiled must be terminated by the
card: / /+/FAL '

When this card is read, the editing phase is terminated.
If no errors have becn detected, the compiler then passes to the
generation phase, which finishes all being well with the message "BONNE
COMPILATION", This message means that the program has been compiled but
it does not mean that there have been no crrors. The pre-loader cones
lost and then the compilex returns control to the system monitor, at
which point the object program is in the work ares on disk,. It is then
possible to directly execute the program by inserting an XEQ card or to

. save it by a DUP card,

As the utility sub program used by the object program is

 always DISKO, the XEQ card must have a zero in column 19.

Exemples:
/ /v 3J0B

e /A ORER E AL
~/ T0CS (PRINTER, CARDS)
LIST SOURCE PROGRAM
YFLIST IDENTIFIERS
geNAME TEST | - "
'BEGIN'!
ALGOL PROCRAM
lEN'D_t

/ /WFLL
/ /-DUP
&f- STORE WS UA TEST
/ /HXEQ TEST L #1 #
3¢ LOCAL TEST, PRNT 1, CARD f, HOLE B

. progrem data

/ /¥1J0B T
: :
'BEGIN'

!ENDI
13.

A
.

/ /~ELL
/ /XEQ g

data

?
/ AwJ0B

6. Error Messages

Errors can be deleted at three different times:
e) during the editing phase (reading the source
program),
b) during generation (producing the object program),
¢) during interpretation (executing the objzct
program). - ’ ' o

The error messages produced in the three cases are very
different in nature and significance., Their common characteristic is that

~they output the current semi colon count which allows the user to pinpoint

the place where the error occured.

L. Error messages fron the editor

These/%?gnted onto the system output device in the following
format: ’ o -

"ERREUR zz *PV* yyyy "

wherg z;x is the error number

yyyy is the semi colon count

PV is "point-virgule" (semi colon).

The table below is a list of the existing error numbers, the reason fo£

“ feilure and the resultant action of the editor. The errors marked with

an asterisk are not considered serious enough to, prevent the generation
of the object program. Errors marked with a double asterisk are
catastrophic and will cause an immediate stop in translation and will
return control to the Monitor System. The other errors do not stop the
editing phase but will stop generation of the object deck.

NumBer . Type of error Action teken by editor

0] Illegal character in a cbmpound, teken as a terminating
basic symbol apostrophe.

02 Illegal character in a comment taken as the end of the
between procedure paremeters. comitent.

03 _ Unrecognised character ignored

05 Unrecognised compound basic ignored
symbol .

o7 No apostrophe after '(fo%lowing charecter taken

as b .

14,

15.

Nunmber Type of error Lction taken by editar
08 Apostrophe out of context ignored
09 No apostrophe after. / fol]iowing character taken
- as ' : ‘
10 *x / / card out of context fatal
11 Illegal character after period ignored
12 More than one decimal point in ignored
~ & number
16 *® Integer constant > 32767 or
< - 32768 taken as real
17 ** Overflow in table of constants fatal
18 * Real congtant toe large ‘ ’
(> 1038 Maximum taken
19 * Real constant too small ,
' (>, 3® | Minimun taken
20 ** Too many semi colons in a pro- fatal
' gran
LO ** Stack overflow (declarations
ané tracketing of instructions
and expressions) fatal
L x=% Too many identifiers fatal
12 Multiple declaration ignored
L3 ** Too many declarations in one
-~ block (> 123 words where an
integer, a boolean or an array
require one word and a real two)| fatal
Lk e Too many labels, switches or
Coe procedures (total> 1024)~ -+ | fatal
L7 Extra end _ ignored
L8 Blocks rested too deep (> 16) fatal
] u9 w Too many parameters in a
procedure (> 41) fatal
50 end,), —(, or ; missing symbol assumed
51 No identifier after switch Jump to next semi colon
b2 No : = in a switch declaration as for 51
53 integer,' real or boolean foll-
owed by a compound basic '
symbol other then array or . :
procedure as for 51
5l Tdentifier missing from a
declaration as for 51
55 - Separator nissing from &
- declaration as for 51
56' - Separator other than; or , in
a declaration taken as ;

[

(4%

Type of error Action teken by editor

Nunmber
57 - begin ommitted gssumed
58 Declarator out of context ignored
59 (missing assumed
60 Separator missing after :]in
' an array declaration -
61 ~ Separator other than ; or , 4
in an array declaration as for 56
62 [nissing | | assumed
63 .1‘ or) missing) inserted
64 Separator other than, or[j in
. an array bound pair list -as for 51
€5 ~No) after a procedure identi~ 1
fier ' _ as for 51
66 Identifier missing from a ,
paraneter list - as for 51 .
67 Separator other then , or) in
v e parameter list taken as) |
69 ; missing after) in a procedure
, declaration ‘ assumed
70 Identifier missing after code code ignored
71 Specification of an identifier
which is not a paraneter ignored
72 Multiple specification of an
identifier ignored
73 No specificétion for a para-— :
neter | parameter assumed integer
99 Tllegal control card ignored

B, ZError messages from the generator

These are printed on the system output device in the
following format:

"ERREUR AAAA

PV NNNN

ETAT = XX, SYMB = T N (BE) zza"

where
LLAA is the type of error (syntactic, sementic or type),
NNNN is the current semi colon count,
XX is the current stéte.

T, N and ZZZ indicate the nature of the current syntactioal
unit, BB only appears if this unit is a declared identifier.

16.

The progrem logic manual 'La Notice de Fonctionnement !
contains the meaning of the various codes appearing in the
nessage.

In general if T = L4 and N = 3 the syntactio unit is a
basic symbol (not an identifier or constant) and ZZZ describes
this basic symbol according to the following table.

Number , Symbol 't Number | Symbol
— . .
1 - | 25 K
P2 { - 28 :
3 . - unary 29 ;
4 X | 130 5 at the end
P 5 K './ | Io)f'o:edure
6 : 31 b= |
7 Loy 33 | step
8 < 3k until
P2 < 35 while
10 = 37 4 (
Y > 38)
12 > 39 ;
13 # oo b
1 - LU .
15 A 45 hegin
16 v 46 end
17 o 50 arre
18 = 5 switch
19 | gofo .52 procsdure
20 | if 56 code
21 then ’
22 else
23 for ‘
2l do

A semantic error is an error detected by an empty element im
the decision table.

L type error corresponds to a type incompatibility of ‘an
identifier or expression with the current situation.

A syntactic error is one dekcted in any other way.
In addition the generator detects non-declaration of

o

identifiers by the message "IDENTICATEUR NCN DECLARE". ZZZ
contains the static number of this identifier which corres-
ponds to that provided by the editor in the table of
identifiers. The errors, '

ERREUR DISQUE (Disk faultj,
DISQUE DE BORDE (Disk overflow),
PILES DE BORDEES (Stack overflow),
SOUS-PLSSEMENT PILE (Stack underflow),
ERRCK SYSTEM (System fault),

speek for themselves and always cause a catastrbphic failure.

C. Error nessages during execution

The detection of an error during the execution of the

program causes & small final phase to be loaded which prints

out on the system output device the appropriate error message
accompanied by the ourrent semicolon count in the following
format ‘
ERREUR DETECTEE PAR sazy AU POINT-VIRGULE YYUY 2Z..sseZ
332 i3 the program name which has found the error.
e.g. INTAL if it is the interpreter
‘ EREAL if it is a stendard function ete. -

yyyy is the semi colon count

ZZ ,...z 1s the appropriate error message.

Lfter outputting these messages, the 1130 stops: If the
operator sets the keyboard keys to a non zero number and
restarts the user can obtain a hexadecimal dump of the
execution stack which contains all the variables and
arrays being used by the program.

18.

