

Maintenance Information

MI
MAPs
START
EXIT
00-02

VOL 01

MI
MAPs
04-0E
2X-4X

VOL 02

MI
MAPs
80-84

VOL 03

MI
MAPs
88
89

VOL 04

MI
MAPs
AX

VOL 05

MI
MAPs
AX

VOL 06

MI
MAPs
CX
DX
EX
F1-F5

VOL 07

MI
MAPs
F7
00-69

VOL 08

MI
MAPs
F7
6A-B5

VOL 09

MI
MAPs
F7
B6-FF

VOL 10

MI
MAPs
F8
FC
FD
FE
INDEX

VOL 11

MI
STM
LOC
REM
ADJ
DIAGN
53 FD
CONFIG

VOL 13

MI
STM FEAT
CA
5424

VOL 14

MI
STM FEAT
LA
OP GUIDE
PDG
DIAGN
CONFIG

VOL 15

MI
POWER
INTRO.
PRINCIP.
DETAILS
REP INFO
REF INFO

VOL 16

MI
GSI
INTRO
MAINT
DIAGN
TOOLS
FRIEND

VOL 17

MI
INSTALL.
MANUAL
PARTS CAT.
OP GUIDE
PACK.
INSTR.

VOL 18

IBM 4331 Processor Power

Preface

This manual contains information necessary for servicing and repairing the IBM 4331 Processor power complex.

The reader must have a basic understanding of IBM System concepts and he must have had CE-training on IBM 4331 Processor. This manual should not be used for self-education or for making changes within the machine.

Organization of the Manual

The manual is divided into sections. The section 'Principles' contains a description of power components and functional principles.

The section 'Details' shows functional flow charts, timing charts and simplified second levels. The second levels are FRU-oriented and provided to give an understanding of the FRU-functions. The second levels usually do not show voltage levels and certain hardware circuits (such as, inverters, drivers), which are not necessary to understand the function. If the CE needs more detailed information, he should refer to the ALD, using the ALD-references given in this manual.

Some pages of this manual are valid for Power Design Level 4 (PDL4) machines as well as for PDL5 machines.

The main difference is PS103 which is installed in PDL4 machines only. On common pages are differences between PDL4 and PDL5 marked by symbols which are explained on the same page. Please help us to improve this manual by giving your comments using the reader's comment form (last sheet of the manual).

Volume Table of Contents

Volume: 16
Title: MI POWER
Machine Type: 4331-2
Power Design Level: 4
B/M Number: 5683366

PAGE NUMBER	PART NO.
0 100	4687033
0 120	8488435
0 500	4008790
1 010	5683423
3 010	5684093
3 030	5684094
3 080	5684079
4 000	8488199
4 008	5684096
4 100	8488688
4 200	8488689
4 310	5684098
4 400	8488691
4 450	5684099
4 500	8488693
4 560	5683417
4 600	8488246
6 050	8488412
6 100	8488696
7 010	5683427
7 120	8488247
7 160	5683426
9 900	5684083
9 990	8488441

Safety

Personal Safety

Personal safety cannot be over-emphasized. To ensure your safety and that of co-workers, always observe the safety precautions given during your safety training and adhere to the following:

General Safety Practices

Observe the general safety practices and the procedure for performing artificial respiration that are outlined in CE Safety Practices card, Order No. S229-1264 (shown here).

Machine Warning Labels

Pay attention to the warning labels placed in hazardous areas of the machines.

Danger

Before switching on power, ensure that no person is exposed to risk and that all equipment covers for hazardous areas are closed.

SAFETY NOTICES

CE SAFETY PRACTICES

All Customer Engineers are expected to take every safety precaution possible and observe the following safety practices while maintaining IBM equipment.

1. You should not work alone under hazardous conditions or around equipment with dangerous voltage. Always advise your manager if you MUST work alone.
2. Remove all power AC and DC when removing or assembling major components, working in immediate area of power supplies, performing mechanical inspection of power supplies and installing changes in machine circuitry.
3. Wall box power switch when turned off should be locked or tagged in off position. "Do not Operate" tags, form 229-1266, affixed when applicable. Pull power supply cord whenever possible.
4. When it is absolutely necessary to work on equipment having exposed operating mechanical parts or exposed live electrical circuitry anywhere in the machine, the following precautions must be followed.
 - a. Another person familiar with power off controls must be in immediate vicinity.
 - b. Rings, wrist watches, chains, bracelets, metal cuff links, shall not be worn.
 - c. Only insulated pliers and screwdrivers shall be used.
 - d. Keep one hand in pocket.
 - e. When using test instruments be certain controls are set correctly and proper capacity, insulated probes are used.
 - f. Avoid contacting ground potential (metal floor strips, machine frames, etc.—use suitable rubber mats purchased locally if necessary).
5. Safety Glasses must be worn when:
 - a. Using a hammer to drive pins, riveting, staking, etc.
 - b. Power hand drilling, reaming, grinding, etc.
 - c. Using spring hooks, attaching springs.
 - d. Soldering, wire cutting, removing steel bands.
 - e. Parts cleaning, using solvents, sprays, cleaners, chemicals, etc.
 - f. All other conditions that may be hazardous to your eyes.
REMEMBER, THEY ARE YOUR EYES.
6. Special safety instructions such as handling Cathode Ray Tubes and extreme high voltages, must be followed as outlined in CEM's and Safety Section of the Maintenance Manuals.
7. Do not use solvents, chemicals, greases or oils that have not been approved by IBM.
8. Avoid using tools or test equipment that have not been approved by IBM.
9. Replace worn or broken tools and test equipment.
10. The maximum load to be lifted is that which in the opinion of you and management does not jeopardize your own health or well-being or that of other employees.
11. All safety devices such as guards, shields, signs, ground wires, etc., shall be restored after maintenance.
12. Each Customer Engineer is responsible to be certain that no action on his part renders product unsafe or exposes hazards to customer personnel.
13. Place removed machine covers in a safe out-of-the-way place where no one can trip over them.
14. All machine covers must be in place before machine is returned to customer.
15. Always place CE tool kit away from walk areas where no one can trip over it (i.e., under desk or table).
16. Avoid touching mechanical moving parts (i.e., when lubricating, checking for play, etc.).
17. When using stroboscope — do not touch ANYTHING — it may be moving.

18. Avoid wearing loose clothing that may be caught in machinery. Shirt sleeves must be left buttoned or rolled above the elbow.
19. Ties must be tucked in shirt or have a tie clasp (preferably non-conductive) approximately 3 inches from end. Tie chains are not recommended.
20. Before starting equipment, make certain fellow CE's and customer personnel are not in a hazardous position.
21. Maintain good housekeeping in area of machines while performing and after completing maintenance.

ARTIFICIAL RESPIRATION

General Considerations

1. Start Immediately, Seconds Count
Do not move victim unless absolutely necessary to remove from danger. Do not wait or look for help or stop to loosen clothing, warm the victim or apply stimulants.
2. Check Mouth for Obstructions
Remove foreign objects — Pull tongue forward.
3. Loosen Clothing — Keep Warm
Take care of these items after victim is breathing by himself or when help is available.
4. Remain in Position
After victim revives, be ready to resume respiration if necessary.
5. Call a Doctor
Have someone summon medical aid.
6. Don't Give Up
Continue without interruption until victim is breathing without help or is certainly dead.

Rescue Breathing for Adults

Victim on His Back Immediately

1. Clear throat of water, food, or foreign matter.
2. Tilt head back to open air passage.
3. Lift jaw up to keep tongue out of air passage.
4. Pinch nostrils to prevent air leakage when you blow.
5. Blow until you see chest rise.
6. Remove your lips and allow lungs to empty.
7. Listen for snoring and gurgling, signs of throat obstruction.
8. Repeat mouth to mouth breathings 10-20 times a minute.
Continue rescue breathing until he breathes for himself.

Thumb and finger positions

Final mouth to mouth position

Reprint Courtesy Mine Safety Appliances Co.

EC 366188 15 Nov 78	EC366189 15 JAN 79		P/N 8488435 Page 2 of 2	0 130
------------------------	-----------------------	--	----------------------------	-------

Copyright Note

Copyright International Business Machines Corporation (date).

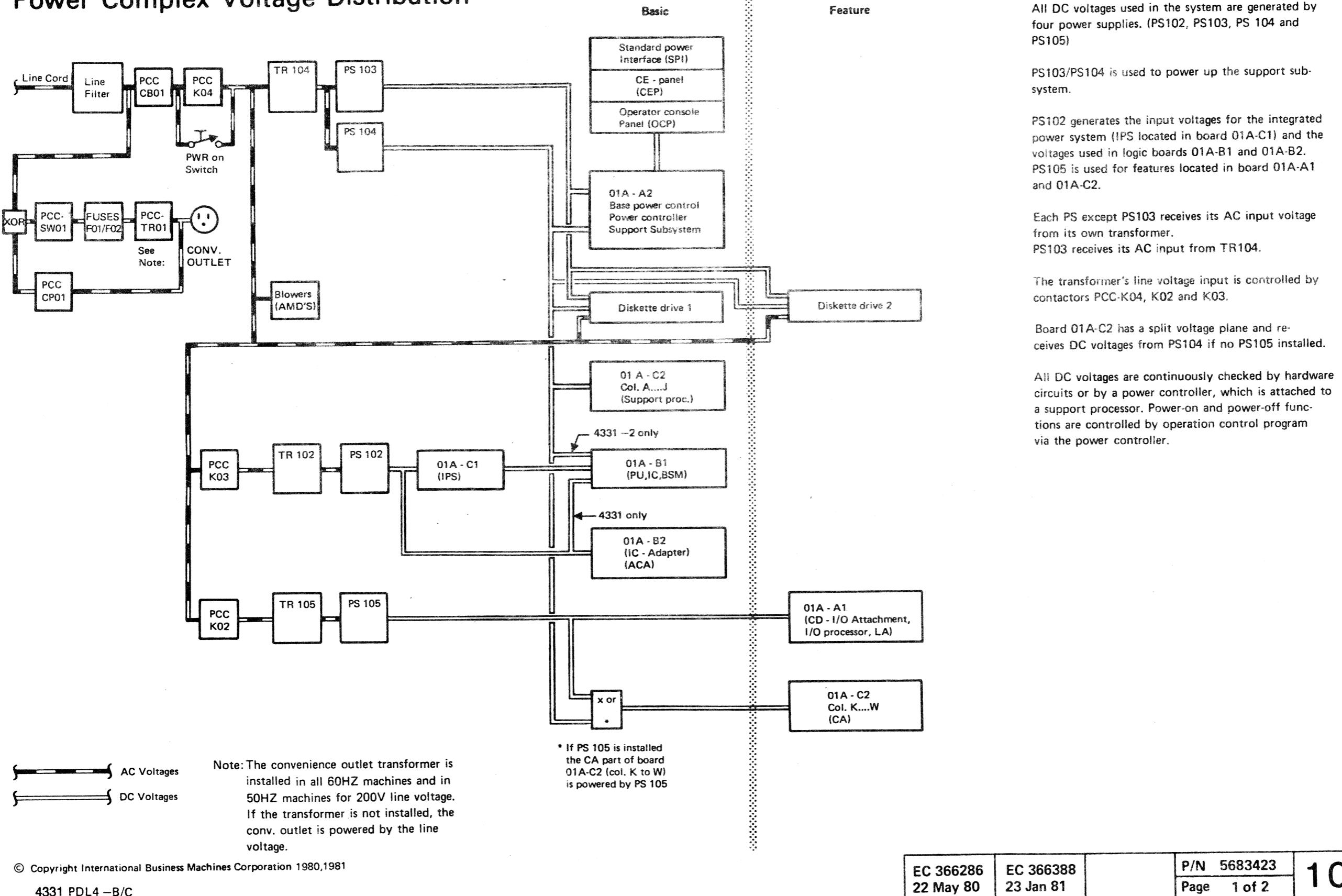
The drawings and specifications contained herein shall not be reproduced in whole or in part without written permission.

IBM has prepared this maintenance manual for the use of IBM customer engineers in order to maintain the specific machines indicated. IBM makes no representations that it is suitable for any other purpose.

Information contained in this manual is subject to change. Any such change will be reported in subsequent revisions.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM branch office servicing your locality.

A form for reader's comments are provided at the back of this publication. If the comment form has been removed, comments may be addressed to (IBM Germany, Publications, Department 3179, 7030 Boeblingen, Schoenaicher Str. 220). Comments become the property of IBM. IBM may use or distribute any information you supply in any way it believes appropriate without incurring any obligation whatever. You may, of course, continue to use the information you supply.


Table of Contents

Cover Page	0100	Voltage Checking during Normal System Operation and Interrupt Generation	4400
Preface	0110	Voltage Checking during Normal System Operation and Interrupt Generation (continued)	4410
Safety	0120	Power-Off Sequence via PC	4450
Copyright	0130	Power-Off Sequence via PC (continued)	4460
Table of Contents	0500	Power-Off Sequence via PC (continued)	4470
Blank Page	0510	Blank Page	4480
Introduction		Power Controller Interface Card (Part 1 of 2)	4500
Power Complex Voltage Distribution	1010	Power Controller Interface Card (Part 2 of 2)	4510
Power Complex Data Flow	1020	Power Controller Sense Card	4550
Principles		Power-On Test	4555
Power Complex Operations	3010	Power Controller Control Table, Mark, Keys	4560
Description of Power Complex Functional Operations	3020	Power Controller Sense Table	4570
Ferro-Resonant Power Supply	3030	Standard Power Interface (SPI)	4600
Integrated Power System	3040	Blank Page	4610
Analog Measurement	3050	Repair Information	
Thermal Switches	3060	Hints for Power Maintenance	6050
EMC Hardware	3080	Hints for Power Maintenance (continued)	6060
EMC Check List	3080	Hints for Power Maintenance (continued)	6070
EMC Grounding	3080	Wiring Check Procedure	6070
ESD Monitor	3085	Hints for Trouble Shooting Intermittent Power Problems	6070
Details		Before Calling for Assistance	6080
Blank Page	4000	Power Test Selection	6100
Sense Points and Voltage Tolerances	4005	Blank Page	6110
Blank Page	4008	Power Controller Status Display	6120
Power-on Sequence Flow Chart	4010	Voltage Measurement Program	6124
Power-on Sequence Timing Chart	4020	Voltage Measurement Display Example	6125
Power-off Sequence Flow Chart	4030	Power Log Display	6130
Power-off Sequence Timing Chart	4040	Ambient Recording Log Display	6140
Blank Page	4050	Ambient Recording Log Display (continued)	6150
Base Power Control	4100	Reference Information	
Blank Page	4110	Connectors	7010
Power Controller Description	4200	Physical locations	7050
Power Controller Data Flow	4210	IPS Board 01A-C1	7120
Power Controller Write/Read Operation	4220	Board 01A-B1	7150
Blank Page	4230	Hints for ALD-usage	7160
Power-On Sequence via PC	4310	Hints for ALD-usage (continued)	7170
Power-On Sequence via PC (continued)	4315	Index	9900
Power-On Sequence via PC (continued)	4320	Index (continued)	9910
Power-On Sequence via PC (continued)	4330	Index (continued)	9920
Power-On Sequence via PC (continued)	4335	Blank Page	9930
Power-On Sequence via PC (continued)	4340		
Power-On Sequence via PC (continued)	4350		
Power-On Sequence via PC (continued)	4360		

EC 366356 28 Mar 80	EC 366407 30 Jun 80	EC 366493 26 Oct 81	P/N 4008790 Page 2 of 2	0 510 B
------------------------	------------------------	------------------------	----------------------------	----------------

This page has been
intentionally left blank

Power Complex Voltage Distribution

© Copyright International Business Machines Corporation 1980,1981

4331 PDL4 -B/C

EC 366286 22 May 80	EC 366388 23 Jan 81		P/N 5683423	1010
Page 1 of 2				F

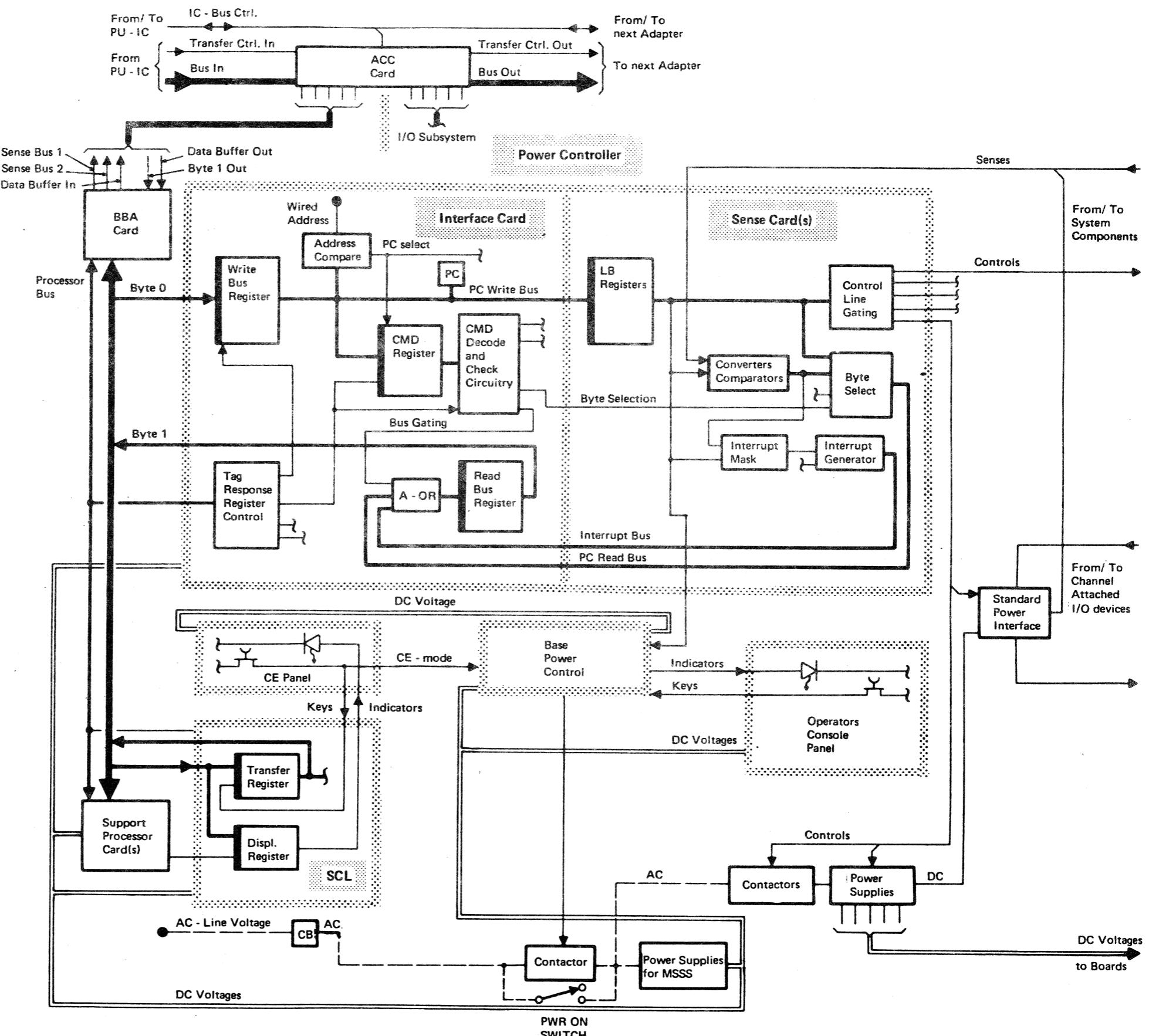
Power

INT

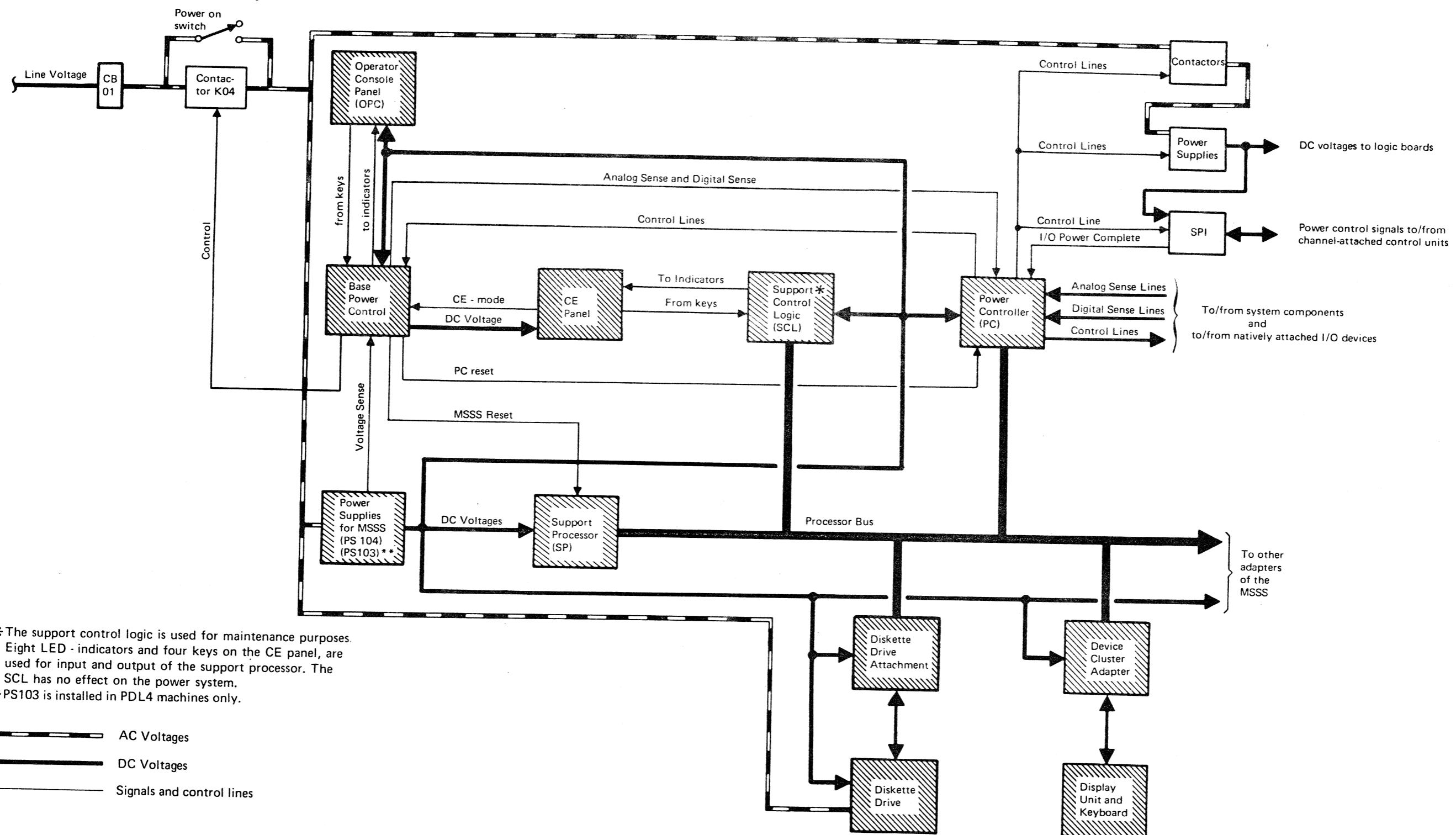
Power Complex Data Flow

The main-sections of the power complex are:

- Power supplies (PS)
- Base power control (BPC)
- Power controller (PC)


Keys, switches and indicator lights are located on the operator console panel (OCP) and on the CE-panel (CEP).

The BPC receives signals from the switches on the OCP, CCP, CEP and from the power controller. The BPC performs a continuous voltage check for all voltages required for the maintenance and service subsystem (MSSS). Power on/off for the MSSS power supply is also controlled by the BPC.


The power controller is attached to the support processor bus. The PC is an adapter, (one byte wide) used to control and monitor most of the functions of the power complex.

The PC consists of one interface card and 2 sense cards.

For more detailed information see corresponding pages of this manual.

Power Complex Operations

*The support control logic is used for maintenance purposes.

Eight LED - indicators and four keys on the CE panel, are used for input and output of the support processor. The SCL has no effect on the power system.

**PS103 is installed in PDL4 machines only.

© Copyright International Business Machines Corporation 1980

4331 PDL5 -D

Power

PCP

EC 366356 28 Mar 80	EC 366407 30 Jun 80		P/N 5684093
			Page 1 of 2

3010

F

EC 366356 28 Mar 80	EC 366407 30 Jun 80		P/N 5684093 Page 2 of 2
			3020

B

Description of Power Complex Functional Operations

The power complex consists of three main sections:

- Power supplies
- Base power control
- Power controller

Power Supplies (PS)

Two types of power supplies (PS) are installed:

- a. Ferro-resonant transformers and rectifiers with capacitors. The DC output voltages are not adjustable.
- b. Series regulators located in logic board 01A-C1 and therefore, are called integrated power system (IPS). The output voltages are adjustable.

Base Power Control (BPC)

The base power control consists of hardware circuits; it controls the power-on function of the power supply which generates all voltages used by the support processor and power controller. The BPC receives control signals from the operator console panel (OCP), the CE panel and the power controller (PC). Three of the indicators on the OCP are controlled by the BPC.

Power Controller (PC)

The power controller is an attachment that controls and monitors all functions of the power complex. The PC input consists of analog and digital sense signals from power supplies, BPC, contactors, and natively attached I/O devices.

The PC output are control lines to system components such as contactors, power supplies, BPC, and for attached I/O devices.

The PC is connected to the processor of the support subsystem via the processor bus. The operation control of the processor in the support subsystem addresses the PC and writes bit patterns into the control registers (latch bytes), or reads sense information from the sense registers. If a serious power failure occurs, the PC issues an interrupt request to the support processor; this causes its operation control to display a reference code on the CRT screen or to power down the system.

Power-On Sequence

The power-on switch on the customer control panel (CCP) must be pressed to start the power-on sequence. The power-on switch overrides the contacts of PCC-K04 and turns on the power supplies PS103 (if present) and PS104 that provides the voltages for the processor of the support subsystem and the power controller, and monitors these voltages continuously. The 'power incomplete' light on the OCP is switched on while the power-on sequence is running.

When the power supply for the support processor and power controller has been switched on and all output voltages are in tolerance, the BPC removes the reset signal to the SP and PC. The SP then starts a Basic Assurance Test to test its internal functions. After successful completion of the test, communications between the SP and the diskette drive adapter and the display unit are tested. If these communications are satisfactory, IML is started and the operation control program is loaded into SP storage.

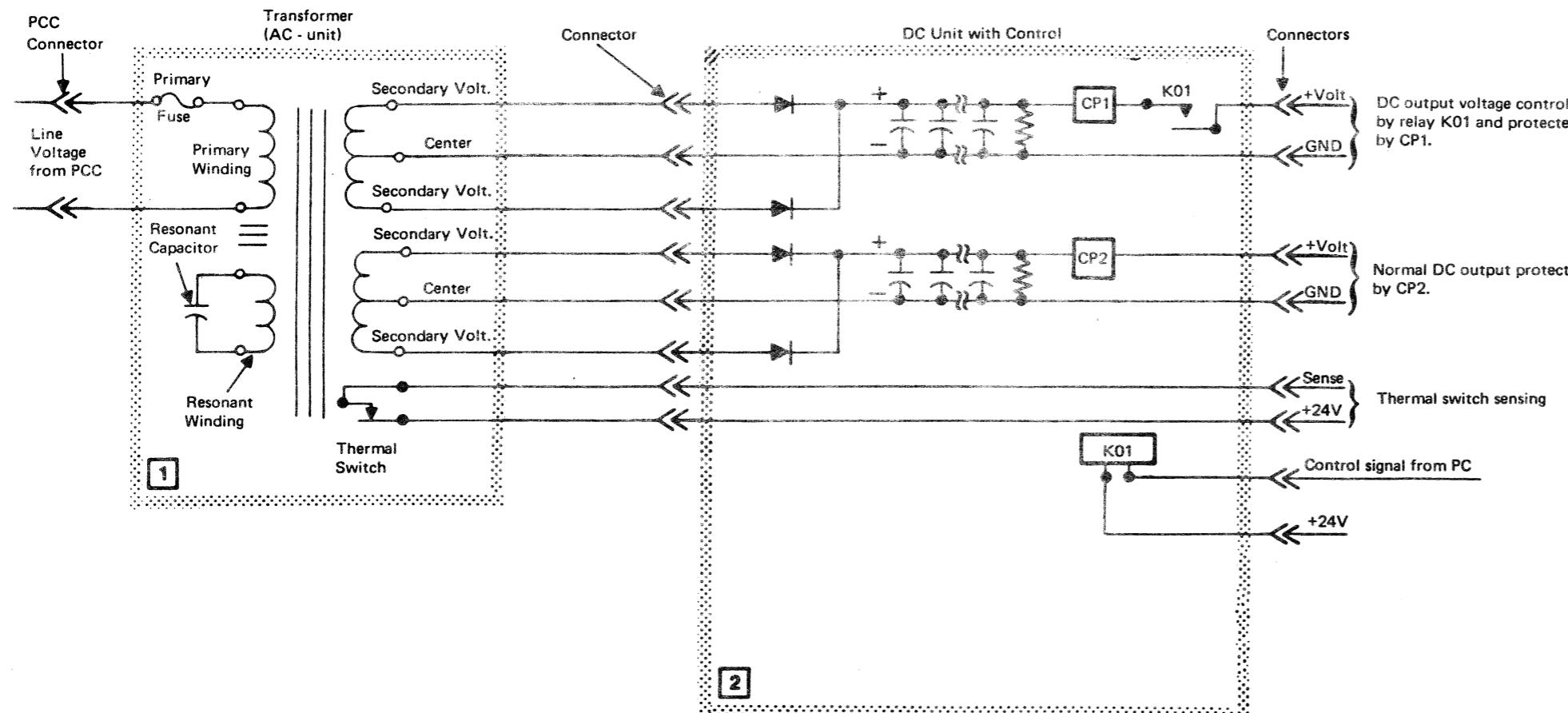
Subsequently, an error action program, an interrupt handler program, a monitoring program, and a power controller test program are loaded and the PC is tested. If an error is detected, a reference code is displayed for quick reference to a MAP chart. If no error is detected, the PC test program is replaced by the power-on program which is executed next.

The monitoring program tests each power supply, that has been started for correct output-voltage levels. After successful execution of the power-on program, the PC activates the 'power complete' signal to the BPC and the 'power complete' light on the OCP is switched on.

During normal system operation, the SP operation control program performs a voltage tolerance check approximately every 256 ms. If an over or undervoltage occurs, the error action program determines whether the entire system or only part of the system is to be switched off; or whether only a warning message is to be displayed on the screen. If the voltages from PS104 and PS103 (if present) are ok, MSSS keeps powered up and a reference code is displayed.

In case of an overvoltage condition of the Integrated Power System (IPS) at component damage level, a SCR is fired, which shorts the power supply output.

Power-off Sequence


The power-off sequence is normally started by pressing the power-off key. Certain error conditions may also initiate the power-off sequence. The power-off sequence is program controlled.

If serious machine errors occur or if components are in danger of being damaged, the power is switched off without sequencing. A malfunction during the power-off sequence will cause an immediate power off without sequencing. The basic check indicator will be switched on after error detection, if possible.

Reactive Power Compensator (RPC)

In order to meet the requirements for single phase line connection, some 4331-2 machines are equipped with a Reactive Power Compensator. The RPC is a capacitor assembly, mounted to the back of the PCC box and connected to connector PCC-09 (see also page 4000 of this manual).

Ferro- Resonant Power Supply

All power supplies within the system, except the IPS are Ferro resonant power supplies. Each power supply consists of an AC-unit (ferro resonant transformer) and a DC-unit with control section.

1 The Transformer converts the input voltage (line voltage or primary voltage) to various output voltages (secondary voltages). In order to keep the output voltage within the specified limits the transformer has a resonant winding with a capacitor. To prevent overheating, a thermal switch is installed inside the transformer. Opening of the thermal switch is sensed by the PC. The operation control program will drop the line voltage input to the transformer. In case of a short circuit or overload the primary fuse will blow.

2 The DC-unit is plugged by connectors to the transformer. The AC voltages from the transformer are rectified by diodes and smoothed by capacitors. The DC output voltages may be controlled by contactors and are protected by circuit protectors (CPs) or fuses.

All cables to the load and control lines, as well as to the sense lines, are pluggable (for quick removal). The only exception are FDS cables which are connected to terminal blocks by screws.

Important Note:
Never operate a Ferro Resonant Transformer with DC unit disconnected. Ferro Resonant Transformer will be damaged.

Integrated Power System

The integrated power system (IPS), located on board 01A-C1, generates the different voltages used for the PU, IC, and BSM. The voltages generated by the IPS are: +4.26V, -6.54V, -4.34V and -1.52V. Power on and power off is controlled by remote start signals from the power controller. Each voltage is generated by one or more (load-dependent) pluggable power modules with SMS sockets. A principle of IPS voltage interconnection is shown on this page and on ALD-YA041.

Power Modules

The power modules are series regulators with two heatsink-mounted power transistors. They are controlled by circuits located on the control cards.

Control Cards

Each voltage has its own control card with SLT socket; the control cards are located on the right of the power modules. They contain additional circuits for overvoltage (OV), undervoltage (UV) and overcurrent (OC) detection. The error signal OV is latched on the card and activates a digital sense line to the power controller. The UV digital sense lines generate an interrupt request to the support processor, via the power controller and starts a timeout circuit on the PC sense card. The operation control program branches to the interrupt handler and to the power-error action program. If the PC interrupt request is not handled within 36ms, the timeout circuit on the PC sense card switches off the system without power-off sequence. The MSSS keeps powered up.

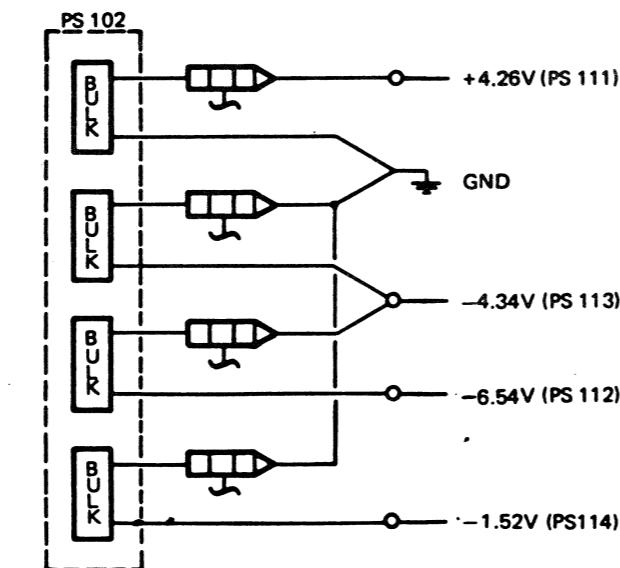
Overvoltage Protection (Crowbar / Sense Card Assembly)

Protection circuits are installed to prevent component damage of the logic circuits in the event of overvoltage from a power module. The protection circuit consists mainly of a silicon controlled rectifier (SCR) for every IPS-generated voltage. If an overvoltage condition of an IPS-generated voltage is detected by the protection circuits, the corresponding SCR is fired to shorten the IPS output. This may blow the corresponding fuse in PS102 and will cause UV and OC detection by the IPS control card. To prevent damage to the power module, if no fuse of PS102 is blown, the power module operates in current limit mode after the SCR has fired. The protection circuit with the SCR, called IPS crowbar/sense card assembly, is located behind the IPS test station on board 01A-C1.

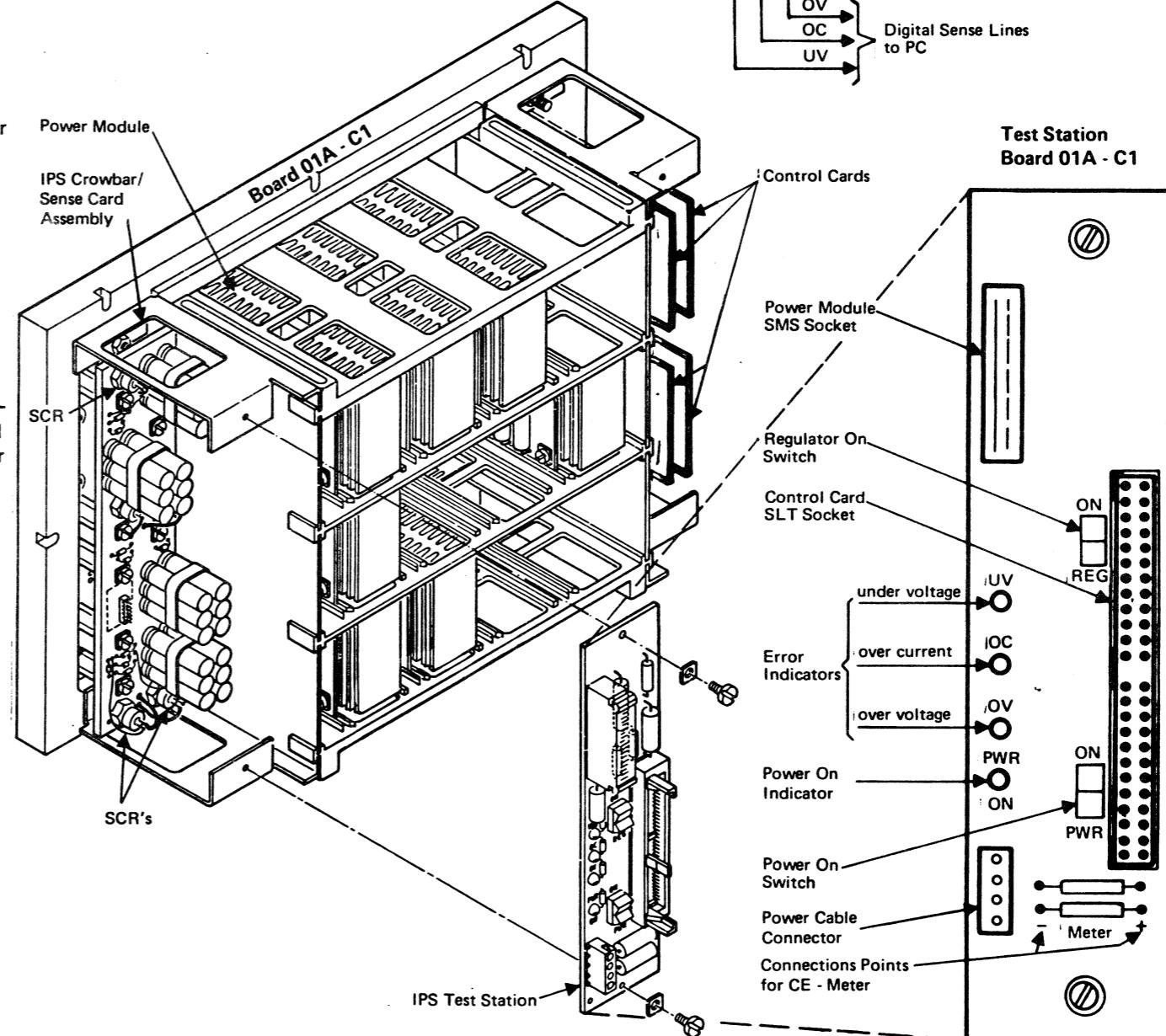
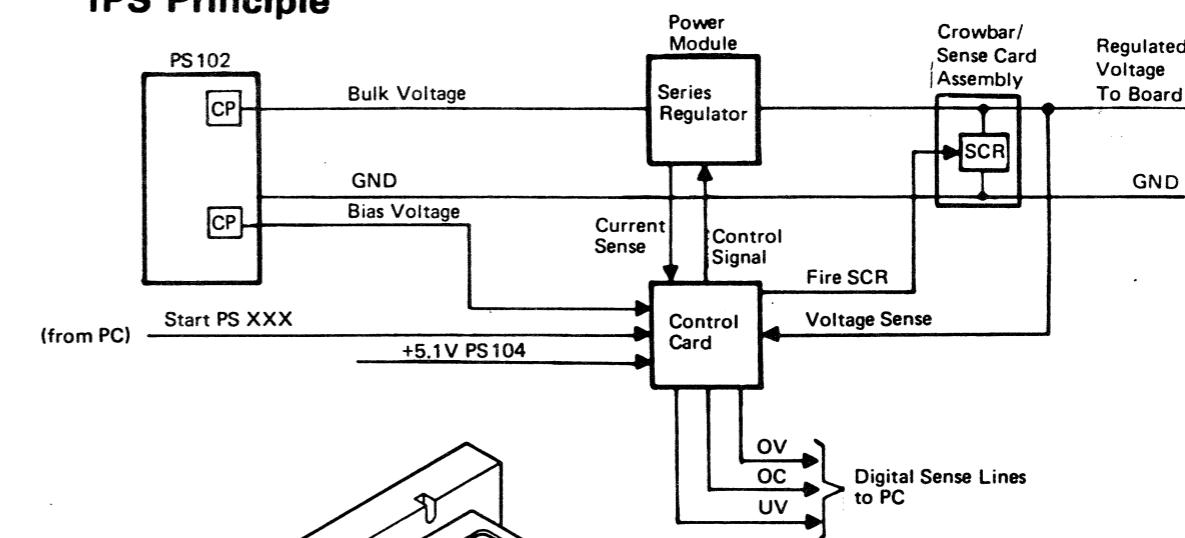
Voltage Adjustment and Jumpering

Each IPS voltage can be adjusted by a potentiometer on the corresponding control card. Voltage adjustment is done with the aid of the voltage measurement program. When control cards have been exchanged, the IPS voltage controlled by this card must be adjusted. All power modules and all control cards are interchangeable. The necessary jumpering for voltage and overcurrent limit (called personalization) is done by board wiring. No additional jumpering is required for card replacement.

Test Station


For power module and control card testing, an IPS-test station is available. The test station is located at the left side of board 01A-C1 and is powered by PS104.

If an IPS power problem is suspected, plug the power module and the corresponding control card into the IPS test station and carry out the procedure shown under MAP 0280. For more detailed information on the principle of interconnection of IPS and on voltage levels with reference to ground, see figure on this page or refer to ALD YA041.



Power-on Sequence

PS111 (+4.26V) is started in two steps. Step 1 generates an output of approximately 1.0V DC. The second step increases the output voltage to its final level. For more detailed information see 'Power On Sequence via PC' in this manual.

IPS Voltage Interconnections

IPS Principle

Analog Measurement

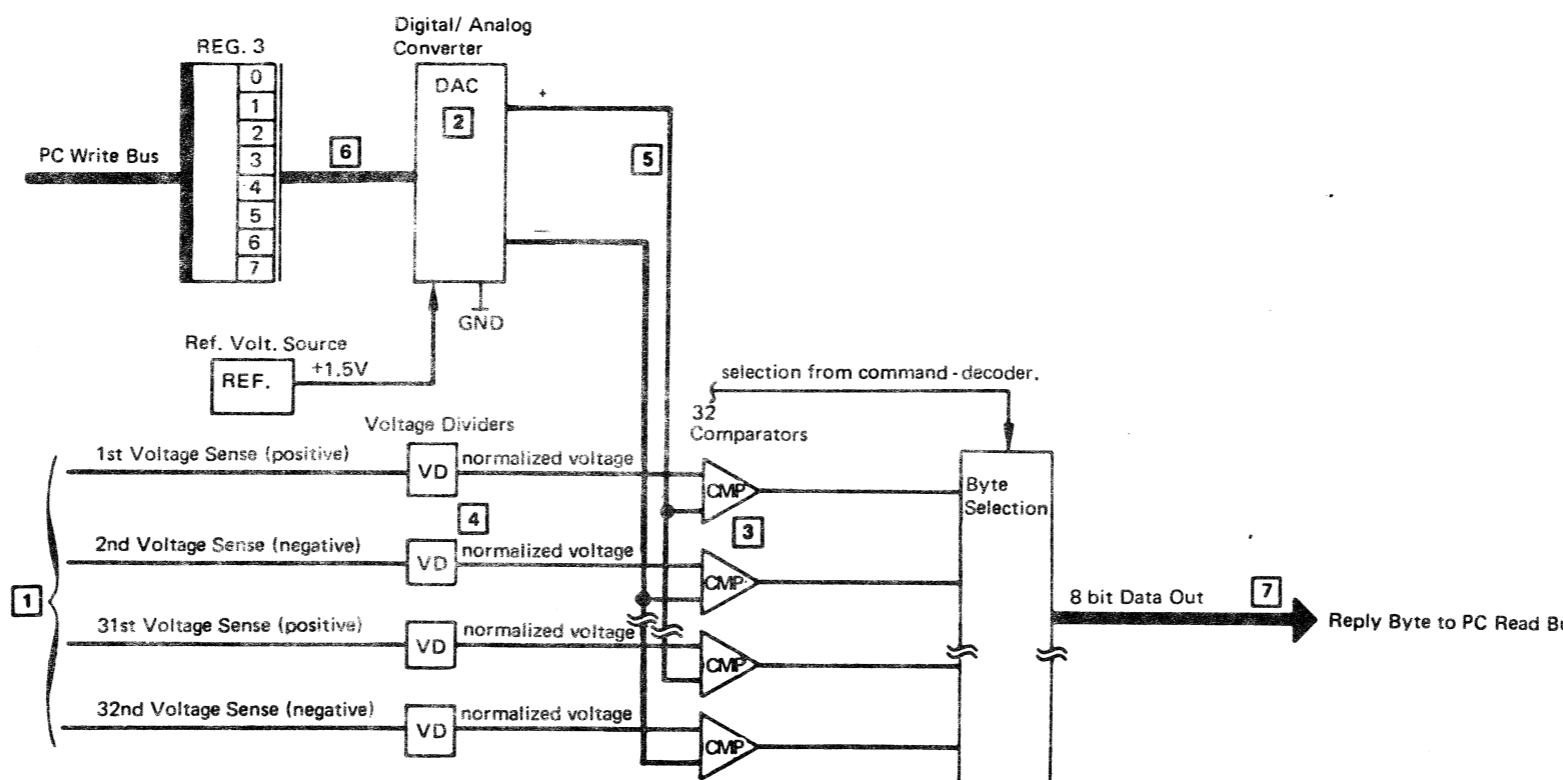
Analog data (voltages) **1** is measured by the power controller with the aid of a digital analog converter (DAC) **2** and comparators **3** on each sense card.

The analog data to be sensed is normalized to 1.5V by voltage dividers **4**. If the sensed voltage is equal to the nominal voltage, the output of the voltage divider is 1.5V. If the sensed voltage is higher or lower than the nominal voltage, the normalized voltage will also be higher or lower than 1.5V. The positive or negative normalized voltages from the voltage dividers are compared by the comparators with the positive and negative voltages from the DAC **5**. The actual positive and negative voltages from the DAC are determined by the bit configuration which was previously written into register 3 by the support processor **6**.

Each binary DAC input will generate a positive and negative DAC output. Both outputs have the same voltage level with reference to ground and are available at the same time. **5**

There is a fixed relation between the digital DAC input and the analog DAC output.

Example: The digital DAC input C8 represents 100 percent nominal voltage = 1.5 V DAC output voltage.

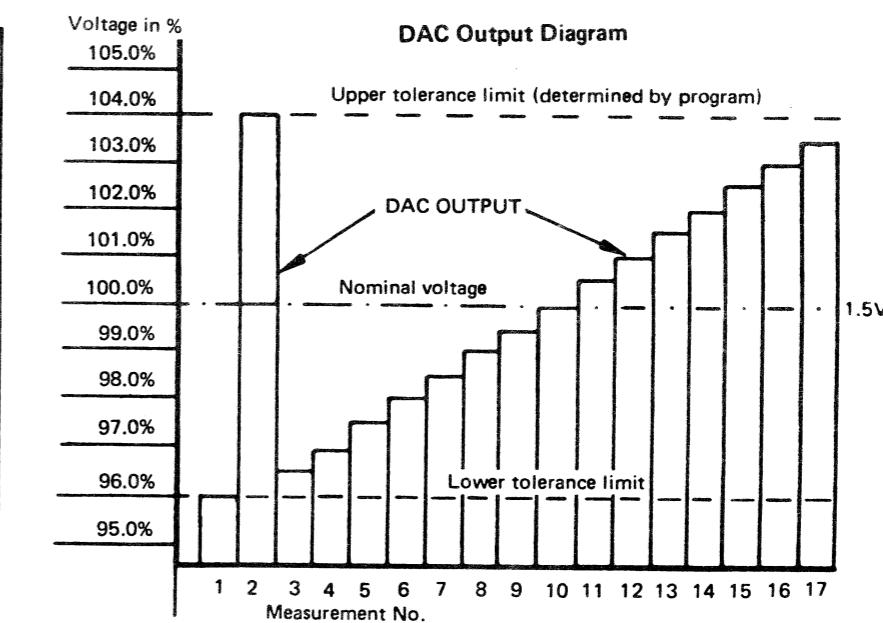

To determine the actual value of a voltage, a string of comparisons with different DAC settings is necessary. The result of each compare, the reply byte, **7** is read and analyzed by the support processor's operation control program. The SP operation control program also determines the next DAC setting. The first two measurements in the example on the right check the specified tolerance limits of ± 4 percent. This procedure is used for the voltage monitoring routine.

The Measurements No. 3 through 17 are used by the voltage measurement program.

To ensure proper function, a DAC test is performed during every power-on test.

-5V from PS104 are measured by every DAC and the results are compared.

If there is a deviation which cannot be accepted by the operation control program, a reference code will be displayed on the screen.



Analog Measurement Example

actual System voltage in %	97	103	95	100	105	100	101.5	98.5
Reply byte (comparator output)	0	1	2	3	4	5	6	7

Meas No.	DAC Input 6 Hex	DAC Input 6 Binary	% Nom Voltage	Reply Byte 7 0 1 2 3 4 5 6 7	Remarks
1	C0	11000000	96.0	11011111	
2	D0	11010000	104.0	00001000	All Voltages, except No. 2 > 96% All Voltages, except No. 4 < 104%
3	C1	11000001	96.5	11011111	
4	C2	11000010	97.0	01011111	Voltage No.0 = 97%
5	C3	11000011	97.5	01011111	
6	C4	11000100	98.0	01011111	
7	C5	11000101	98.5	01011110	Voltage No.7 = 98.5%
8	C6	11000110	99.0	01011110	
9	C7	11000111	99.5	01011110	
10	C8	11001000	100.0	01001010	Voltages No.3 and No.15 = 100%
11	C9	11001001	100.5	01001010	
12	CA	11001010	101.0	01001010	
13	CB	11001011	101.5	01001000	Voltage No.6 = 101.5%
14	CC	11001100	102.0	01001000	
15	CD	11001101	102.5	01001000	
16	CE	11001110	103.0	00001000	Voltage No.1 = 103%
17	CF	11001111	103.5	00001000	Voltage No.4 > 103.5%

The voltage number used in the table above corresponds to bit number in the reply byte.

© Copyright International Business Machines Corporation 1980, 1981

4331 PDL4/5-A

Power

PCP

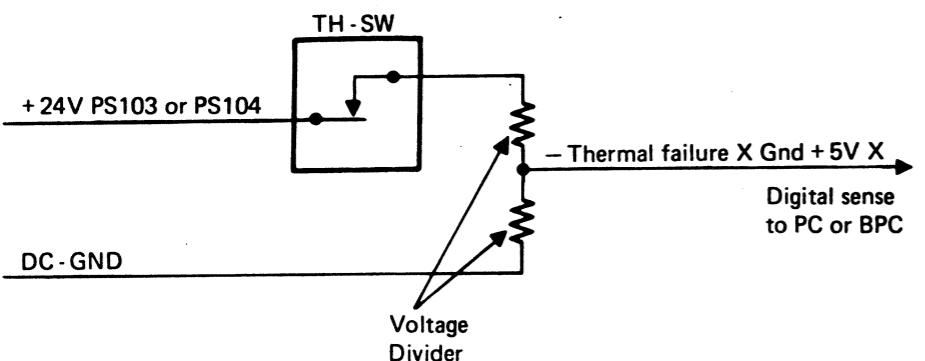
EC 366356 28 Mar 80	EC 366407 30 Jun 80	EC 366390 10 Apr 81	P/N 5684094
Page 3 of 4			3 050 F

Thermal Switches

Thermal Switches

Thermal switches are installed to prevent component damage as result of overheating.

Thermal switches are located on top and bottom of the boards, columns A, B, and C, and inside the windings of the ferro resonant transformers (see) physical locations on page 7050).


The thermal switches are monitored by the operation control program via the power controller (see page 4000).

Six thermal switches of board columns A, B, and C, and 2 thermal switches on top of the ferro stacks are wired in series. Opening of one or more switches will activate a digital sense line to the power controller.

Indicating type thermal switches are installed. After opening of the contact, the red indicator sticks out of the housing. The electrical contact closes after overheating condition disappears, but the red indicator must be reset manually by the CE to allow correct indication for the future.

The thermal switches are connected as shown below.

One additional thermal switch (TH-SW 109) for a lower temperature than all other thermal switches is installed on top of gate 01A. Opening of this switch initiates an ambient log (Reference code with unit type E8. These reference codes are not displayed on the operator console.) The normal machine performance is not affected by TH-SW 109.

EMC Hardware

To achieve the excellent EMC performance the following techniques have been used:

1. High quality shielding of the processor's housing by conductive paint on the machine frame and conductive gaskets in covers to provide continuous contact between machine frame and machine covers.
2. Special design of all cable entries for continuous screening of these sensitive areas.
3. Grounding of all external cable shields next to the I/O connector.
4. Line filter at power cord entry.
5. Shielded MFCU DC-common cable.
6. Grounding of coax cables for display terminals and native printers at the connector plate.
7. Plated connectors for standard interface cables (MPX, BMPX, FTA) and for the MFCU interface cables.
- Note:** Connector blocks for the MFCU are *not interchangeable* with other connector blocks. Otherwise MFCU interface signals will be grounded.
8. Metallic dummy blocks (fillers) are installed in unused I/O interface connector positions.
9. Ground strap from gate 01A (hinge side) to machine frame.
10. Metallic gate cover to screen the gate area.
11. A ferrite core on the MFCU signal flat cables.

Violation of one or more of the above listed items may degrade the machine EMC quality.

EMC Check List

If electrostatic discharge (ESD) phenomena are supposed to cause machine malfunction, the following points have to be checked:

1. Cover gasket must have sufficient contact to the machine frame. There should be no gap. The covers must be adjusted to get a good ground contact.
2. The gate cover must be installed.
3. The shields of all external cables must be grounded next to the cable entry. The ground leads (usually with slip on connectors) must be as short as possible. Check each cable.
4. Aluminium plated connectors must be installed for the standard interface (MPX, BMPX), and for FTA interface. The plating quality may be significantly degraded by climatic stress (dark surface of plating material). Perform a visual inspection.

Connector blocks for the MFCU are not interchangeable with other connector blocks. MFCU interface signals will be grounded if other connector blocks are used for the MFCU. MFCU connector blocks have no red dots at the short side.

Metallic dummy blocks (fillers) must be installed in each unused I/O interface connector position.

Ensure that a sufficient contact exists between all connector blocks and dummy blocks (if present) if the cover of gate 01D is closed.

5. Ensure that the screws of the ground strap between gate 01A (hinge side) and machine frame are tight.

EMC Grounding

EMC design has not been based on particular grounding requirements.

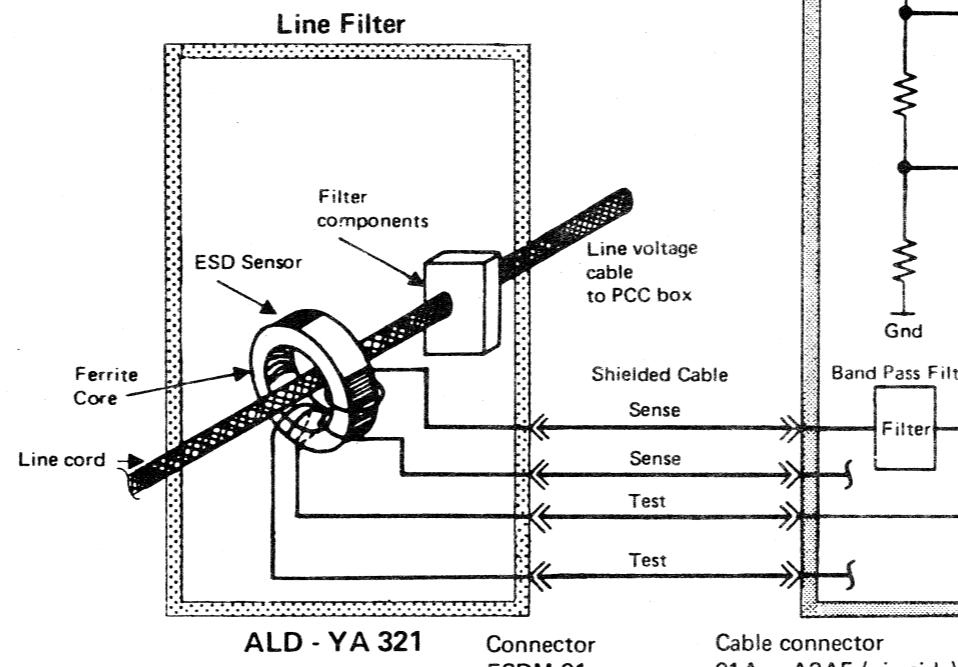
In case of abnormal noise coupling through power cables or signal cables from other electrical equipment, special grounding provisions may present a solution. Support from an EMC specialist should be requested.

ESD Monitor

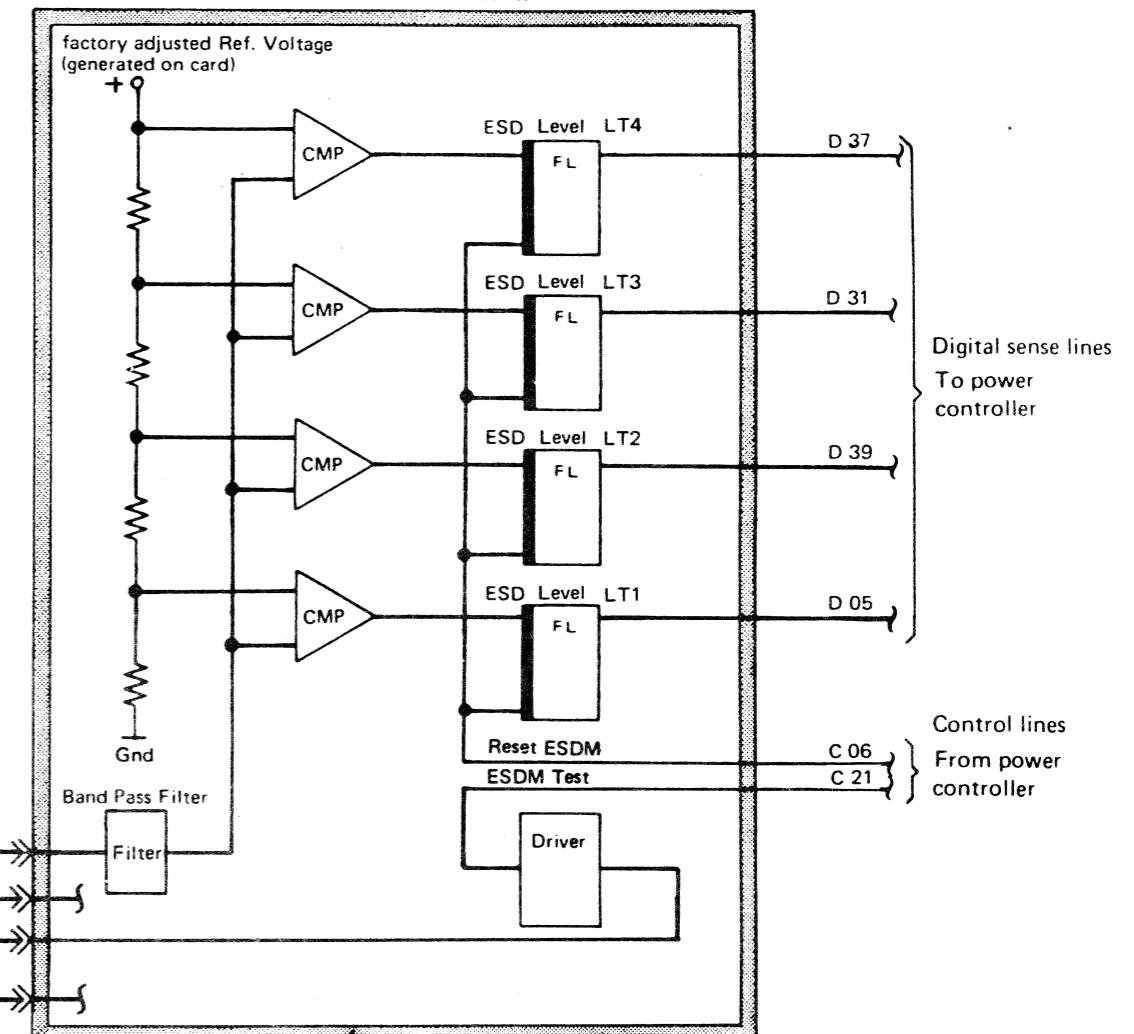
Note: Not all machines have the ESD monitor installed. If no ESD Monitor card is installed in position 01A - A2A5 the current ESD sense level must be set to zero (see 'Ambient Recording Log Display' in this book).

The ESD monitor is used to detect electrostatic discharge (ESD) signals and power line transitions (PLT's) that may cause system malfunction. The error information is sensed by the power controller and logged on the diskette. The logged error records are accessible to the CE.

A current probe is installed inside the line filter. A spike on the line cord caused by ESD or PLT, generates a pulse on the winding of the ferrite core. The pulse passing the band-pass filter is available at the input of four comparators with different predefined switching levels. The switching levels of the comparators are determined by the factory adjusted reference voltage. The reference voltage adjustment must not be changed in the field. The relation of the ESD sense levels is shown in the table. Depending upon the amplitude of the pulse, one or more (up to four) comparators will generate an output signal. Each comparator output will set its corresponding ESD latch.

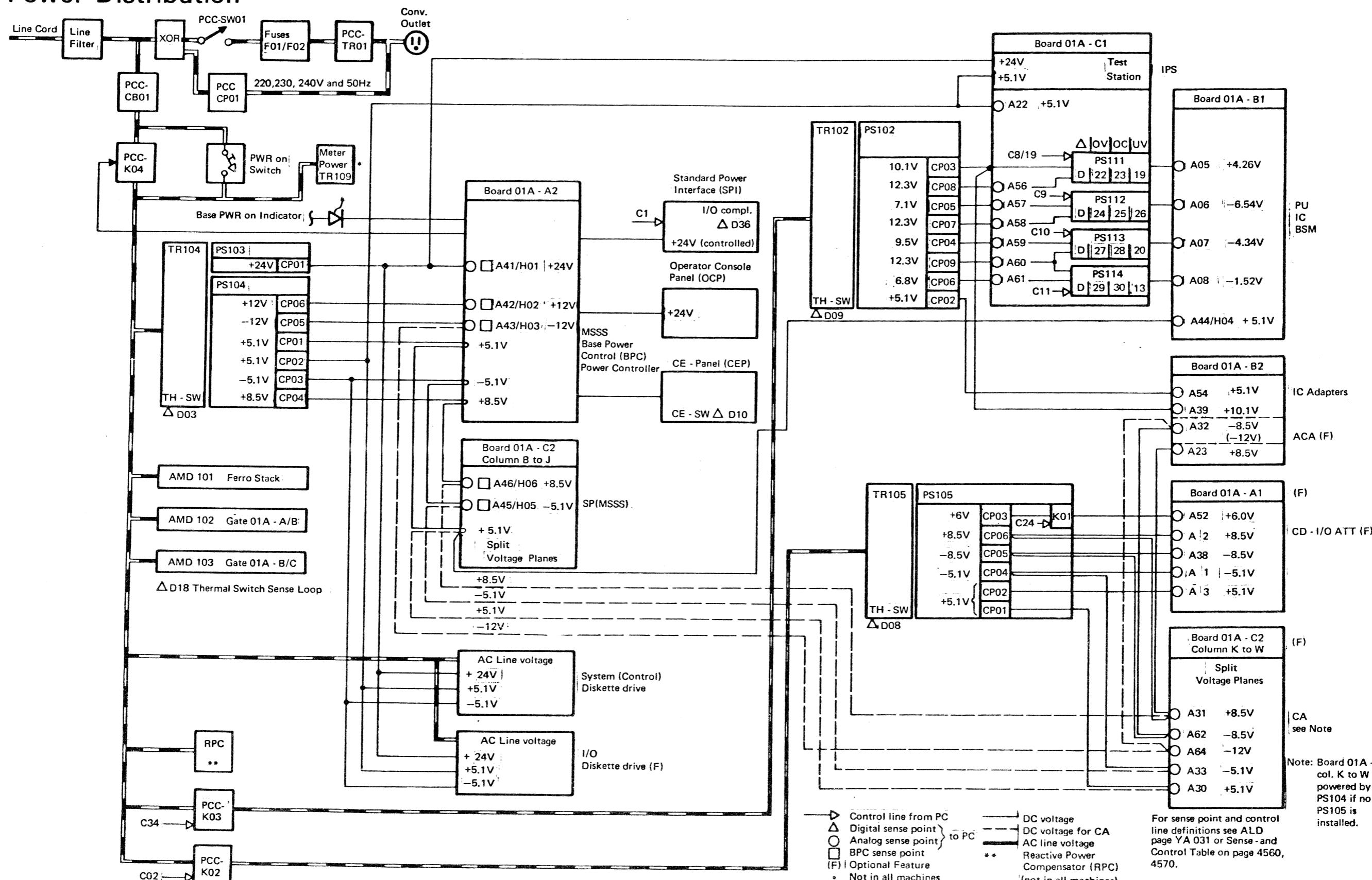

Example: A discharge magnitude of level 1 will set only one latch while a discharge magnitude of level 4 and above will set all four latches.

Each output signal of an ESD latch activates a digital sense line. The operation control program of the support processor reads the status of the ESD latches via the PC sense card and resets the ESD latches. The ESD incident information is added to the ambient log area if the sensed information exceeds the predefined ESD sense level (see description of ambient logs in this book).


E8	x	x	x	x	01
					0 = No ESD incident
					1 = ESD incident level 1
					2 = ESD incident level 2
					3 = ESD incident level 3
					4 = ESD incident level 4
					0 = No ESD latch failing
					1 = ESD latch 1 missing
					2 = ESD latch 2 missing
					3 = ESD latch 3 missing
					0 = No ESD hardware failure
					E = ESD hardware failure } Note 1
					0 = No temperature incident
					F = Temp. exceeded upper limit
					B = Temp. went back to normal

Note: A hardware failure exists, if for a certain ESD level any of the lower ESD level latches is not on.

ESD Latch No.	Digital Sense Line	ESD sensitivity
1	D 05	times 3.0
2	D 39	times 1.5
3	D 31	normal
4	D 37	times 0.6



ESD Monitor card 01A - A2A5

A driver circuit located on the ESD monitor card is used for testing. The driver is controlled by the SP operation control program via the power controller. The total function of the ESD monitor, is tested by the power-on-test 8. Reference codes generated by power-on test 8 have the following format: F708xx81.

Power Distribution

© Copyright International Business Machines Corporation 1979 1980 1981

Power

DET

EC 366390 10 Apr 81	EC 366493 26 Oct 81		P/N 8488199 Page 1 of 2	4 000
------------------------	------------------------	--	----------------------------	-------

1

Sense Points and Voltage Tolerances

EC 366390 10 Apr 81	EC 366493 26 Oct 81		P/N 8488199	4 005
			Page 2 of 2	B

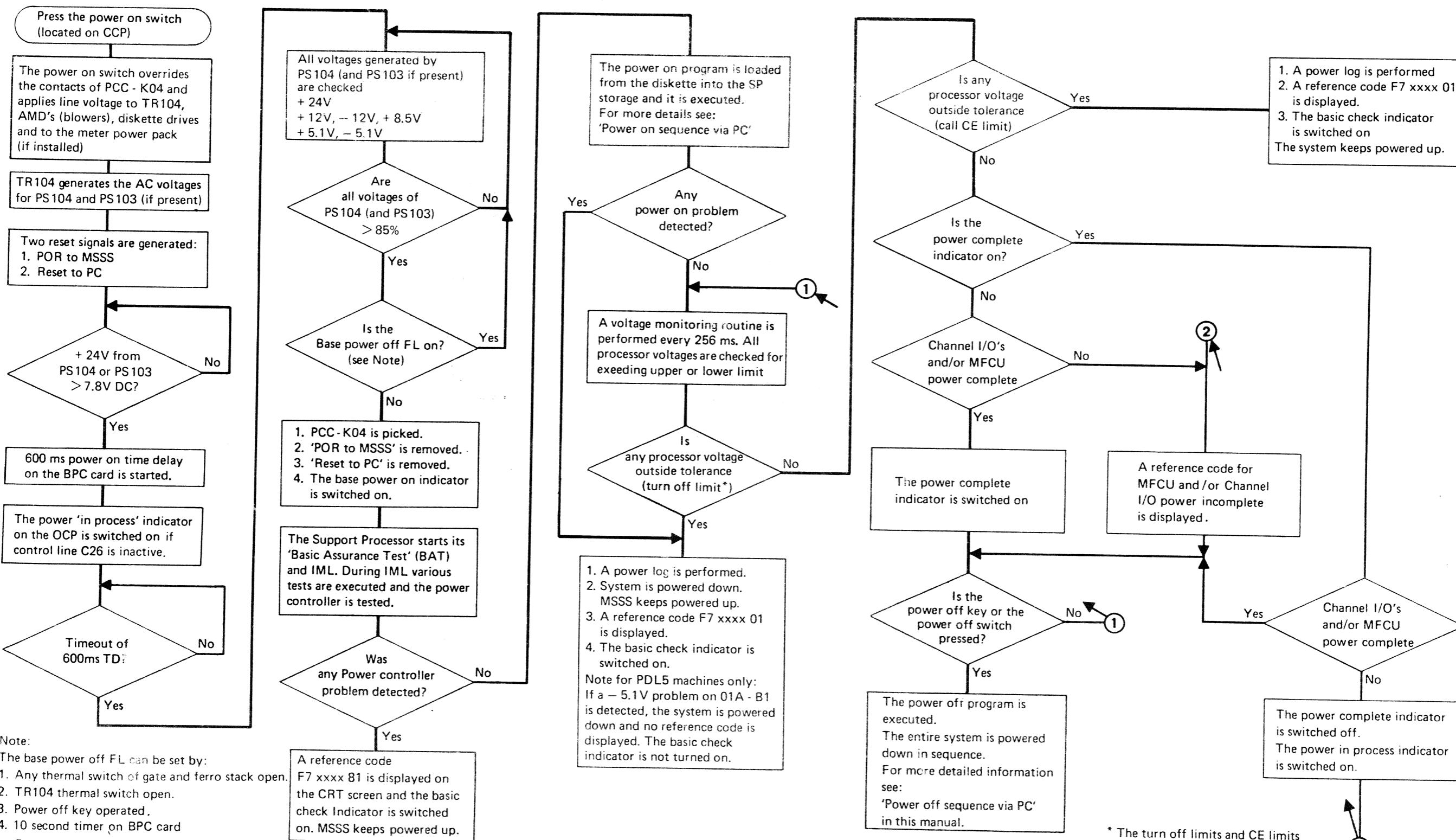
PS	NOMIN. VOLT.	SENSE LINE	SEE NOTE	SENSE POINT ON BOARD NOMIN. VOLT.	SENSE POINT ON CARD. NORM.VOLT.1.5V	ADDR. AND BIT	CALL CE Voltage	TURN-OFF, NORMAL	TURN-OFF, CE-MODE	TURN-ON TIME		
							Lo	Hi	Lo	Hi	Lo	Hi
102	+ 5.1	A54	1	01A-B2B2-A14	01A-A2D2-S05	97-2	4.5	5.5	4.0	5.6	4.0	5.7
	6.8	A61		01A-C1B4-B10	01A-A2D2-D05	87-7	---	---	---	---	4.3	9.5
	7.1	A57		01A-C1B4-B13	01A-A2D2-B11	87-1	---	---	---	---	4.3	9.5
	9.5	A59		01A-C1B4-B03	01A-A2D2-D06	87-6	---	---	---	---	8.2	12.1
	+10.1	A39		01A-B2B2-E14	01A-A2D2-B06	85-6	8.0	11.4	7.0	12.2	6.0	12.8
	12.3	A56	1	01A-C1B4-D05	01A-A2D2-D12	87-3	---	---	---	---	9.8	14.5
	12.3	A58		01A-C1B4-D02	01A-A2D2-B09	87-4	---	---	---	---	9.8	14.5
	12.3	A60		01A-C1B4-D07	01A-A2D2-D07	87-5	---	---	---	---	9.8	14.5
103	+24	A41		01A-A2B3-E14	01A-A2D2-B10	85-1	21.6	26.4	19.2	27.7	14.4	27.7
104	- 5.1	A45	3	01A-C2B3-E01	01A-A2D2-S04	97-1	4.5	5.5	4.0	5.7	3.0	5.8
	- 5.1	A33 *(F)		01A-C2W3-E01	01A-A2D2-S03	97-5	4.5	5.5	4.0	5.7	3.0	5.8
	+ 5.1	A22		01A-C1B4-D03	01A-A2D2-U05	97-3	4.5	5.5	4.0	5.7	3.0	5.8
	+ 5.1	A44	3	01A-B1A1-B14	01A-A2D2-B03	85-3	4.5	5.5	4.0	5.7	3.0	5.8
	+ 5.1	A30 *(F)		01A-C2W2-E14	01A-A2D2-D11	87-2	4.5	5.5	4.0	5.7	3.0	5.8
	+ 8.5	A46		01A-C2B2-A14	01A-A2D2-D02	85-4	7.7	9.4	6.8	9.7	5.1	9.7
	+ 8.5	A31 *(F)		01A-C2W2-A14	01A-A2D2-U02	97-7	7.7	9.4	6.8	9.7	5.1	9.7
	+ 8.5	A23 *(F)	3	01A-B2B3-A01	01A-A2D2-B05	85-7	7.7	9.4	6.8	9.7	5.1	9.7
	-12.0	A43		01A-A2W4-E14	01A-A2D2-P12	97-0	10.8	13.2	9.6	13.7	7.2	13.8
	-12.0	A64 (F)		01A-C2W3-A01	01A-A2D2-S10	95-7	10.8	13.2	9.6	13.7	7.2	13.8
	-12.0	A32 *(F)	4	01A-B2B3-E01	01A-A2D2-U06	95-0	10.8	13.2	9.6	13.7	7.2	13.8
	+12.0	A42		01A-A2B2-A14	01A-A2D2-B02	85-2	10.8	13.2	9.6	13.7	7.2	13.8
105	- 5.1	A01 (F)	2	01A-A1H6-B02	01A-A2D2-P13	97-6	4.5	5.5	4.0	5.7	3.0	5.8
- 5.1	A33 *(F)	3	01A-C2W3-E01	01A-A2D2-S03	97-5	4.5	5.5	4.0	5.7	3.0	5.8	
+ 5.1	A03 (F)	2	01A-A1H6-C02	01A-A2D2-S06	97-4	4.5	5.5	4.0	5.7	3.0	5.8	
+ 5.1	A30 *	2,6	01A-C2W2-E14	01A-A2D2-D11	87-2	4.5	5.5	4.0	5.7	3.0	5.8	
+ 6.0	A52 (F)		01A-A1G6-B04	01A-A2D2-B07	85-0	5.4	6.6	4.8	6.8	3.6	6.9	
- 8.5	A38 (F)	2	01A-A1H6-E02	01A-A2D2-U10	95-6	7.7	9.4	6.8	9.7	5.1	9.7	
- 8.5	A62 (F)	5	01A-C2W3-A01	01A-A2D2-S07	95-5	7.7	9.4	6.8	9.7	5.1	9.7	
- 8.5	A32 *(F)	4	01A-B2B3-E01	01A-A2D2-U06	95-0	7.7	9.4	6.8	9.7	5.1	9.7	
+ 8.5	A02 (F)	2	01A-A1H6-D02	01A-A2D2-B04	85-5	7.7	9.4	6.8	9.7	5.1	9.7	
+ 8.5	A31 *(F)	3	01A-C2W2-A14	01A-A2D2-U02	97-7	7.7	9.4	6.8	9.7	5.1	9.7	
+ 8.5	A23 *(F)		01A-B2B3-A01	01A-A2D2-B05	85-7	7.7	9.4	6.8	9.7	5.1	9.7	
111	+4.26 #	A05	7	01A-B1E4-A02	01A-A2D2-B08	87-0	4.09	4.43	3.62	4.64	2.13	4.73
112	-6.54 #	A06	7	01A-B1E1-B14	01A-A2D2-U11	95-2	6.41	6.67	6.15	6.93	6.08	7.13
113	-4.34 #	A07	7	01A-B1E1-E14	01A-A2D2-S09	95-3	4.17	4.47	3.69	4.73	3.13	4.82
114	-1.52 #	A08	7	01A-B1E4-B02	01A-A2D2-S08	95-4	1.46	1.56	1.29	1.66	1.22	1.73

LINE VOLTAGE TOLERANCES (valid for 50 and 60 HZ)		
Nominal Voltage	Actual Voltage Lo	Actual Voltage Hi
200	180	220
208	182	225
220	193	238
230	201	248
240	210	259

(F) Feature dependent

* Indicates sense points for voltages from PS104 or PS105

Adjustable voltages


This page shows the maximum number of sense points. The actual number of sense points for a specific machine depends on the number of installed features (F), see also the notes on this page and page 4000 of this book.

Notes:

1. Floating bulk and bias voltages for IPS are measured only once during the power-on sequence. The voltage level varies after the IPS power supplies are turned on. A check point list and the IPS voltages are shown on ALD page YA041.
2. This sense point is tied to GND if board 01A-A1 is not installed.
3. This sense point is tied to GND if Communication Adapter (CA) is not installed.
4. The physical sense point 01A-B2B3-E01 (A32) is used by:
-12V from PS104 or by
-8.5V from PS105.
-8.5V from PS105 is present at 01A-B2B3-E01 if PS105 is installed.
-12V from PS104 is present at 01A-B2B3-E01 if PS105 is not installed.
5. The physical sense point 01A-C2W3-A01 is used by the analog sense line A64 (-12V from PS104) or by A62 (-8.5V from PS105).
The sense point is tied to GND if a Communication Adapter (CA) is not installed.
A62 (-8.5V from PS105) is used if PS105 is installed.
A64 (-12V from PS104) is used if PS105 is not installed.
6. This sense point is tied to GND if MFCU (5424) is not installed.
7. The IPS voltages have the nominal voltage levels at the sense point if the IPS voltages are correctly adjusted (no '+' or '-' sign displayed for the IPS voltages in the voltage measurement display).

This page has been
intentionally left blank

Power-On Sequence Flow Chart

Note:
The base power off FL can be set by:

1. Any thermal switch of gate and ferro stack open.
2. TR104 thermal switch open.
3. Power off key operated.
4. 10 second timer on BPC card

© Copyright International Business Machines Corporation 1981

4331 PDL4/5 -A

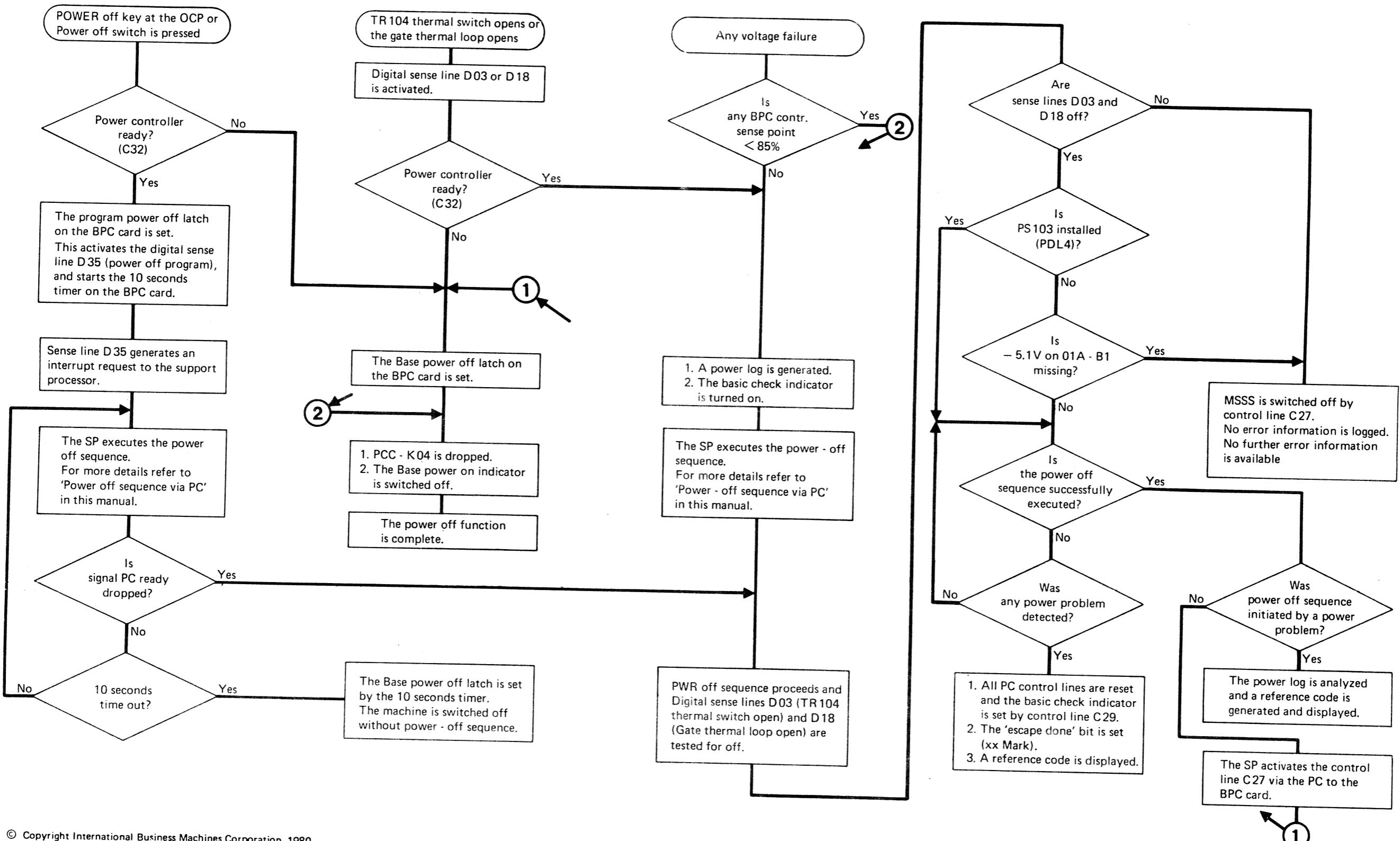
* The turn off limits and CE limit are shown on page 4005.

Power-On Sequence Timing Chart

© Copyright International Business Machines Corporation 1980

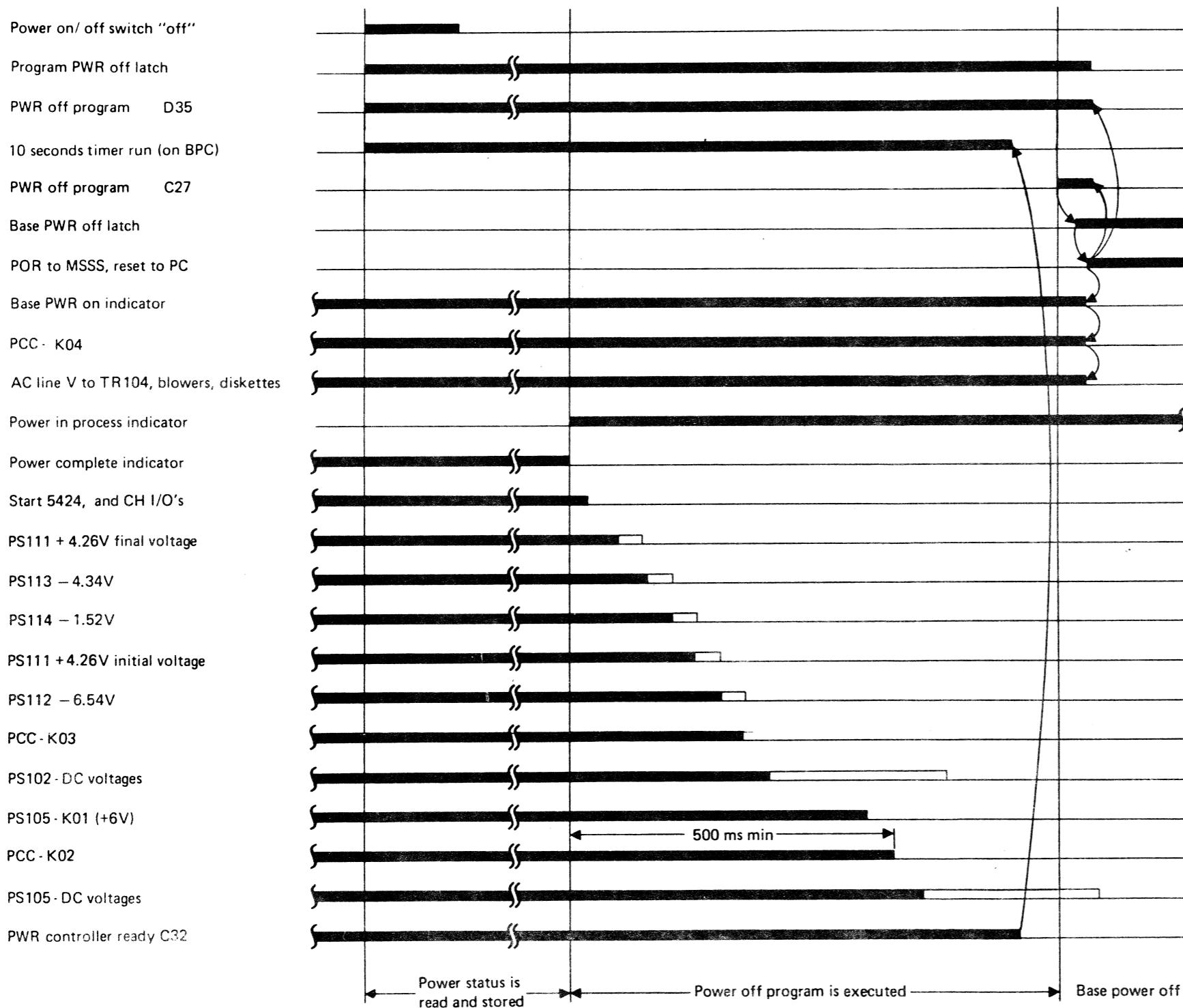
4331 PDL4/5 -A

Power


DET

EC 366356 28 Mar 80		P/N 5684096
		Page 3 of 6

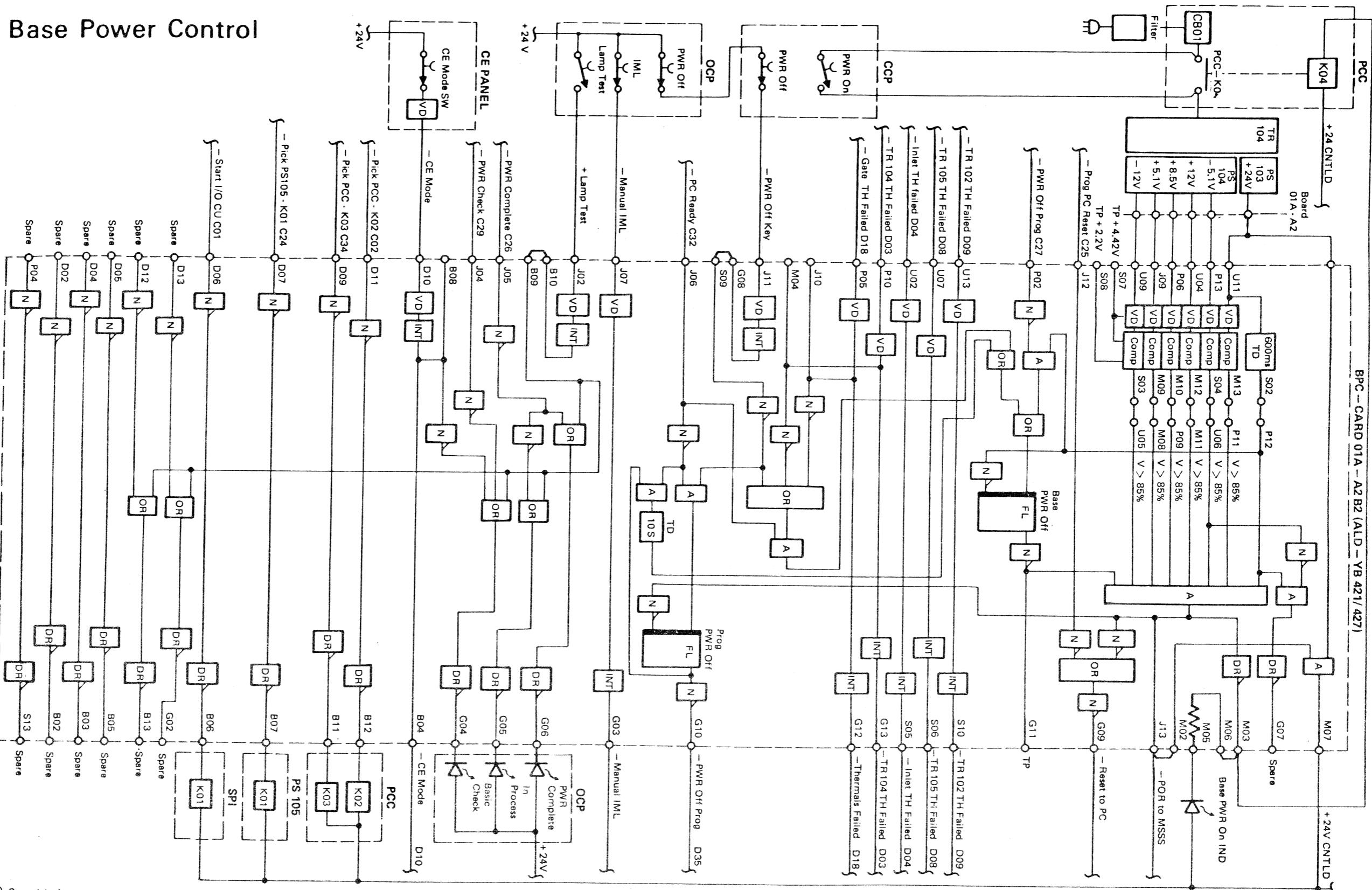
4 020


2

Power-Off Sequence Flow Chart

Power-Off Sequence Timing Chart

(POWER CONTROLLER READY)



EC 366356			P/N 5684096
28 Mar 80			Page 6 of 6
			4 050

B

This page has been
intentionally left blank

Base Power Control

© Copyright International Business Machines Corporation 1979, 1981

DET

EC 366260 28 May 79	EC 366388 23 Jan 81	EC 366493 26 Oct 81	P/N 8488688 Page 1 of 2	4 100
------------------------	------------------------	------------------------	----------------------------	-------

EC 366260 28 May 79	EC 366388 23 Jan 81	EC 366493 26 Oct 81	P/N 8488688 Page 2 of 2	4 110	B
------------------------	------------------------	------------------------	----------------------------	-------	---

This page has been
intentionally left blank

Power Controller Description

PC General Function

The power controller in an adapter is used for control and monitoring of the power complex. The PC is one byte wide and receives commands and data from the support processor via the processor bus 0.

Read data and interrupts are sent to the support processor via the processor bus 1.

The tag-bus signals are used for control and timing purposes.

The PC consists of three cards: One interface card and two sense cards.

Functions of the PC Interface Card

The following functions are performed by the interface card:

- Tag and response control for the processor bus.
- Input from processor bus 0 into the write-bus register.
- Parity check for bytes from bus 0.
- Address match test.
- Input control to the PC-command register.
- Command checking and decoding.
- Machine check and command check generation. (The checks are handled by the support processor.)
- Provides PC status (Machine check, command check and interrupt control bits).
- Read/write strobe generation.
- Register selection and sense byte selection on interface card and on both sense cards.
- Read data transfer control via the Read Bus Register to processor bus 1, including parity generation for read data.
- Interrupt request control to the support processor via the processor bus 1.

Functions of the PC Sense Card

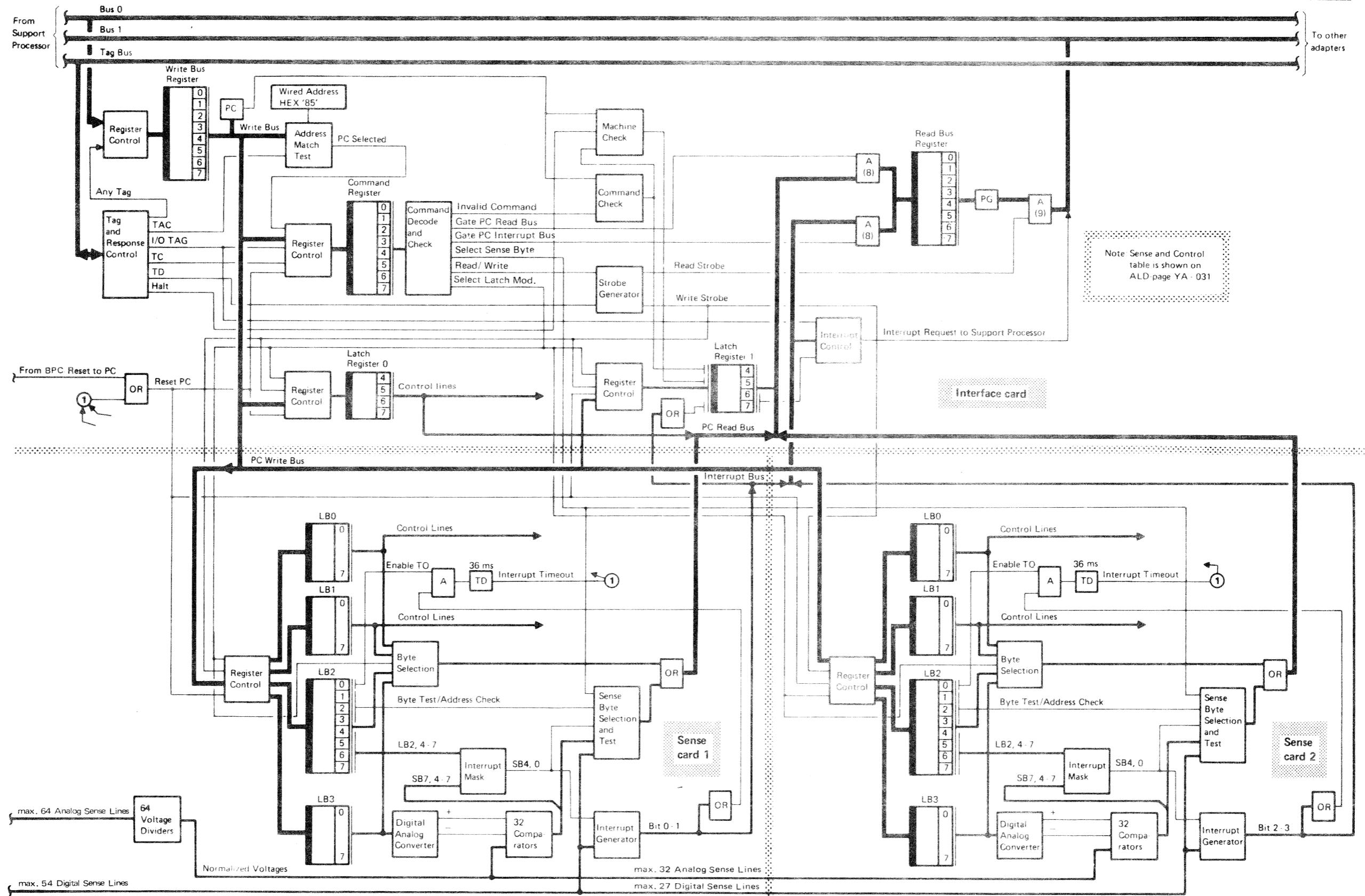
The PC sense cards are used for data input, output and interrupt request generation. Thirty-two analog sense lines and 27 digital sense lines can be wired to one sense card. Four registers (one byte wide) are located on each sense card. The registers, also called latch bytes (LB) receive data from the support processor via the PC interface card.

LB0 and LB1 are used for control signals for the power complex.

LB2 controls the 36ms timeout circuit, the interrupt mask, the byte test and address check. Byte test and address check are test functions used for the power controller diagnostics (see topic PC sense card).

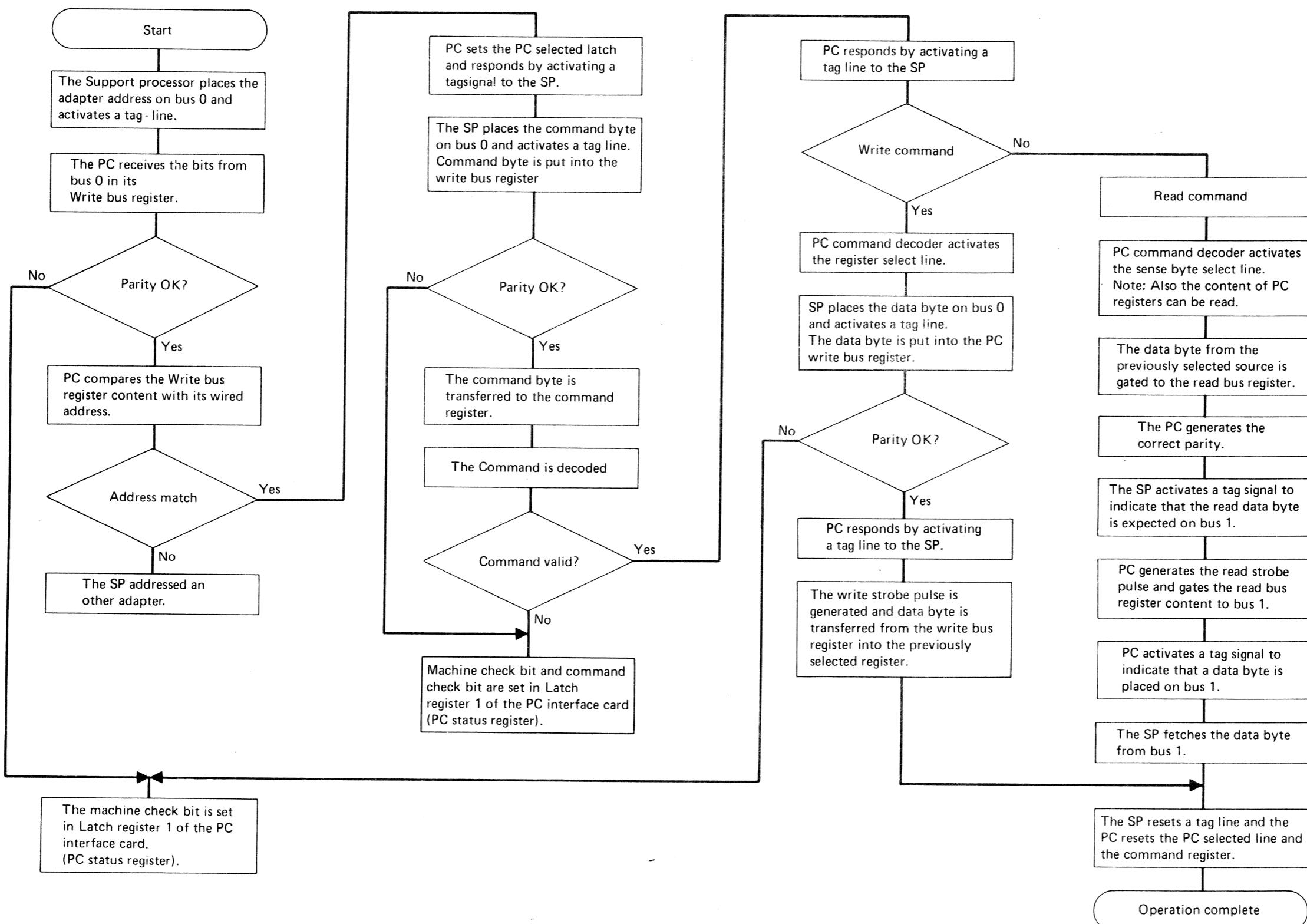
The function of the interrupt generation is described under the topic: Voltage monitoring during normal system operation and interrupt generation.

LB3 contains always the bit pattern for the digital input of the digital-analog converter (see topic analog measurements).


The contents of each register can be read by the support processor as well as the status of the digital sense lines and the output of the 32 comparators.

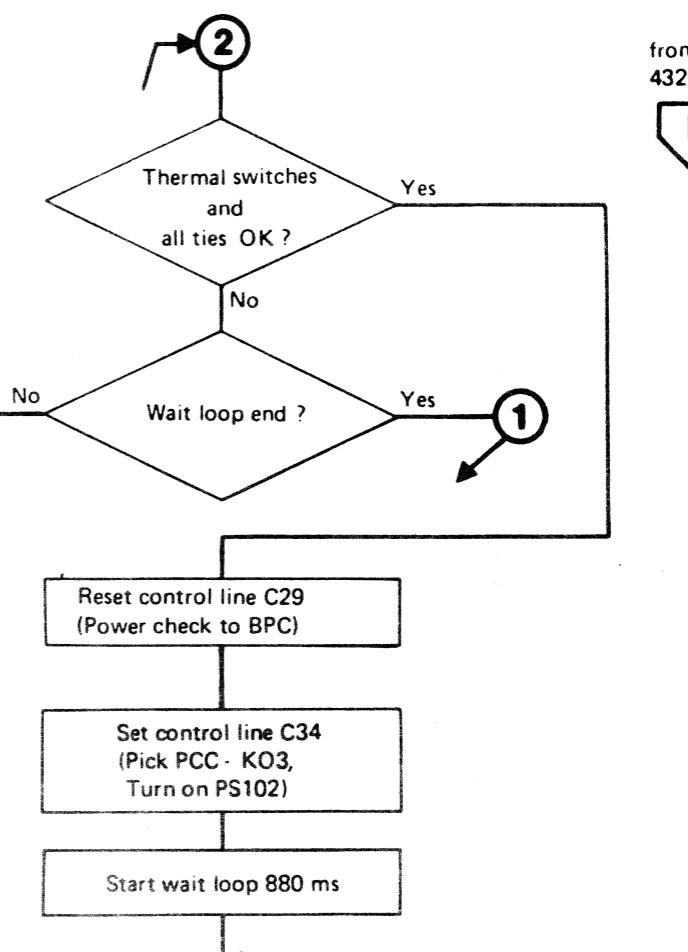
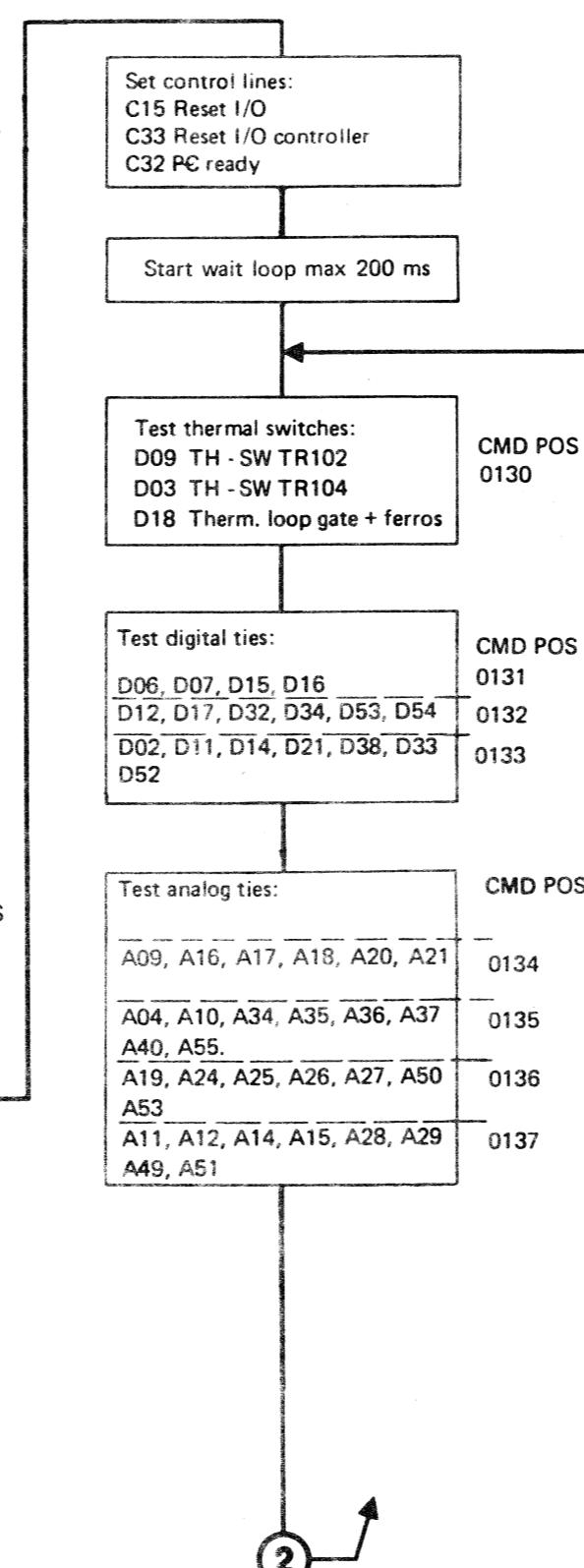
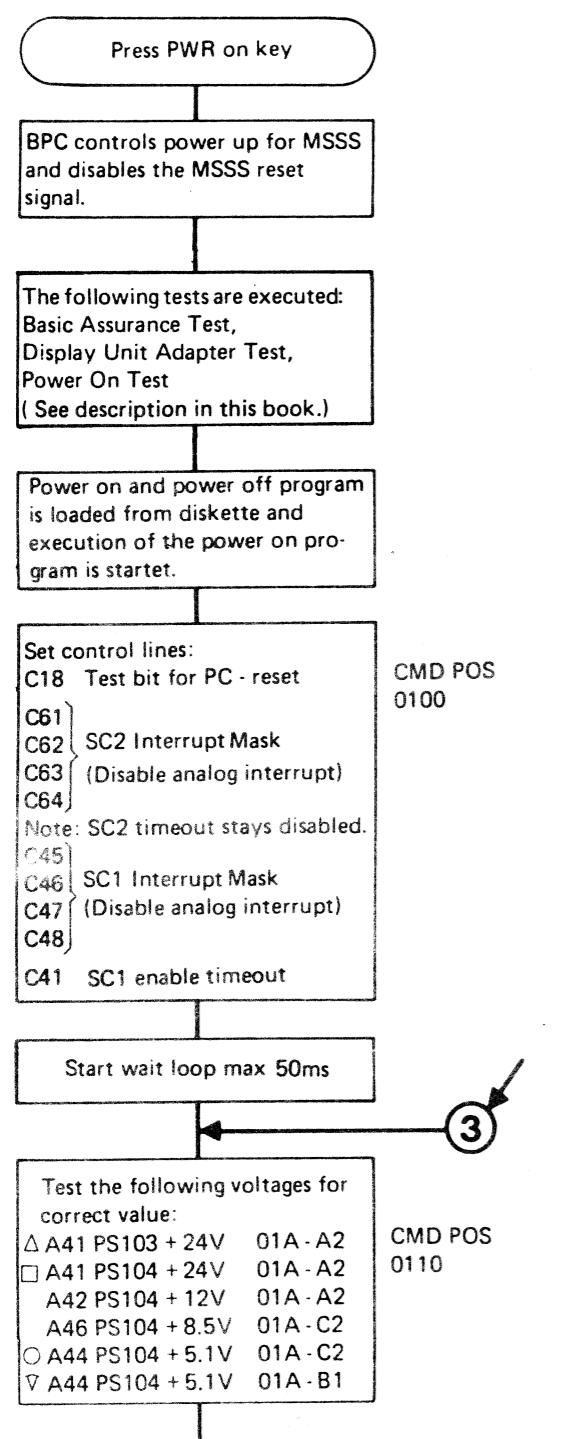
PC Sense Card 2

The PC-sense card 2 is used for the PU-identification and a limited number of power sense and control lines. Most of the sense - and control lines are spare (see sense and control table in this manual).


Power Controller Data Flow

EC 366189
15 Jan 79
P/N 8488689
Page 2 of 4
4 210 B

© Copyright International Business Machines Corporation 1979




Power Controller Write/Read Operation

This page has been
intentionally left blank

Power On Sequence via PC

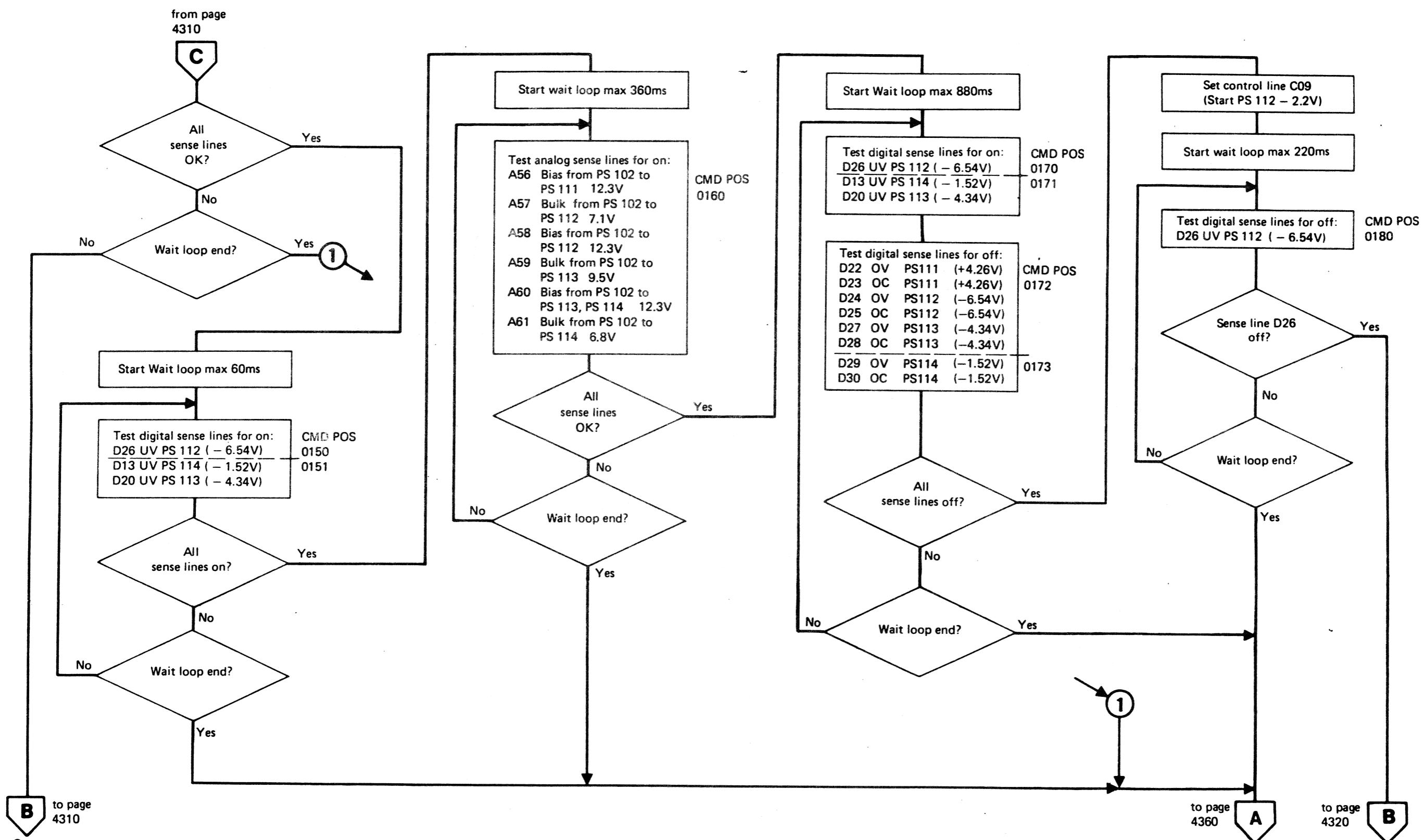
The CMD POS number shown to the right of the flowchart blocks is part of the power log display picture. The number is put into the log display if an error occurs in the corresponding step of the power sequence.

from page
4320

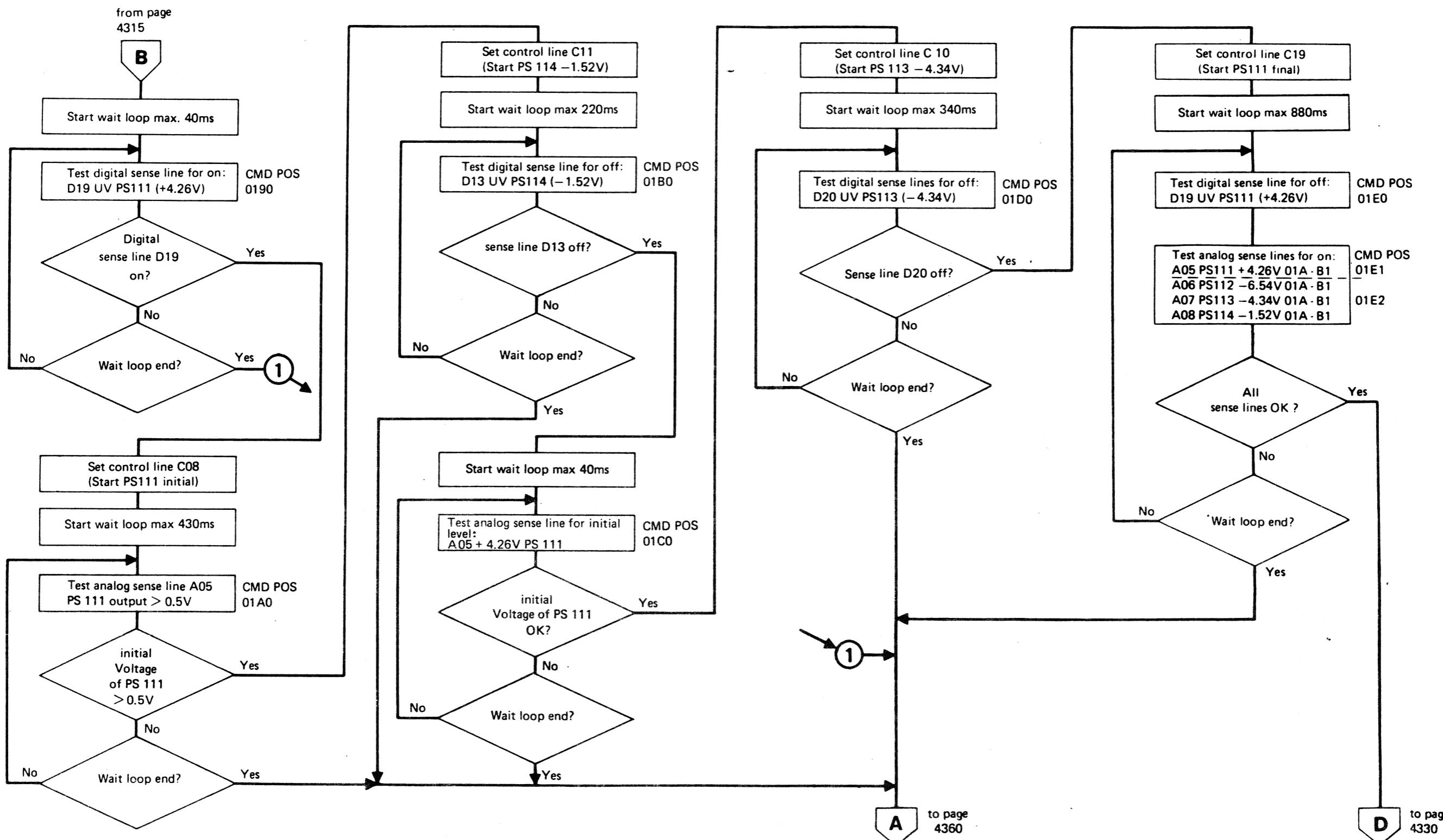
B

Legend:

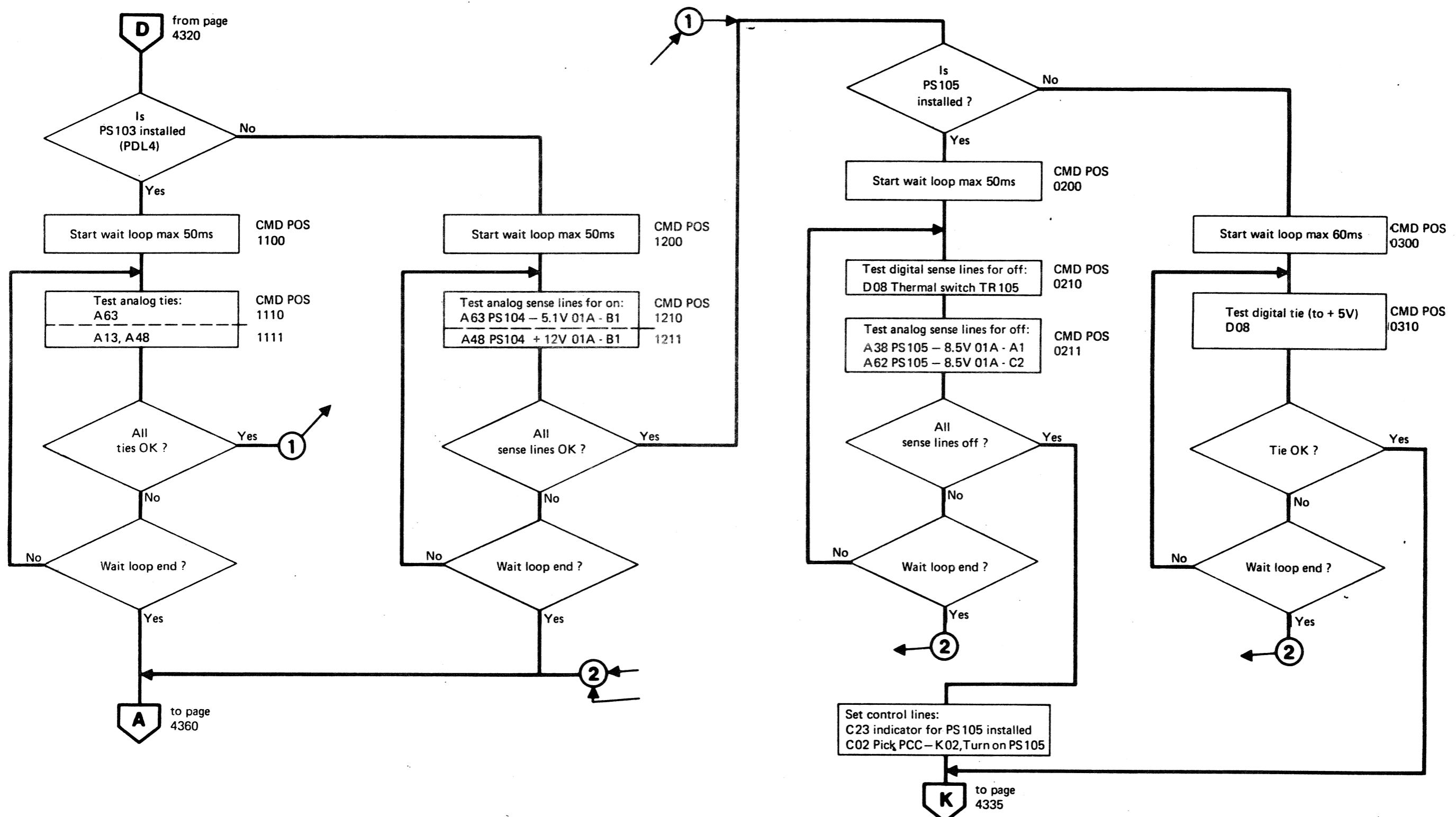
- △ PDL4 only
- PDL5 only
- 4331 - 1 only
- ▽ 4331 - 2 only

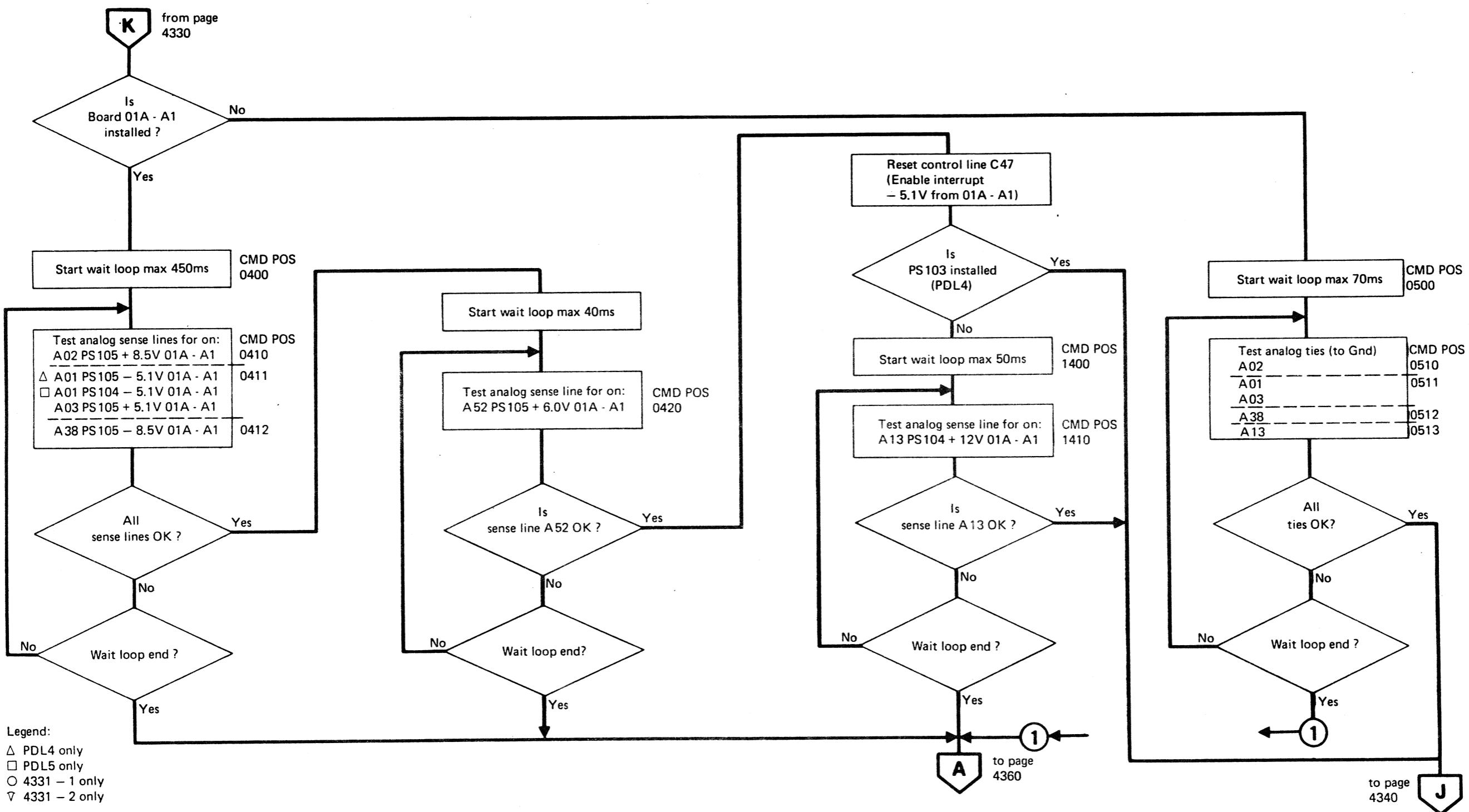

C
to page
4320

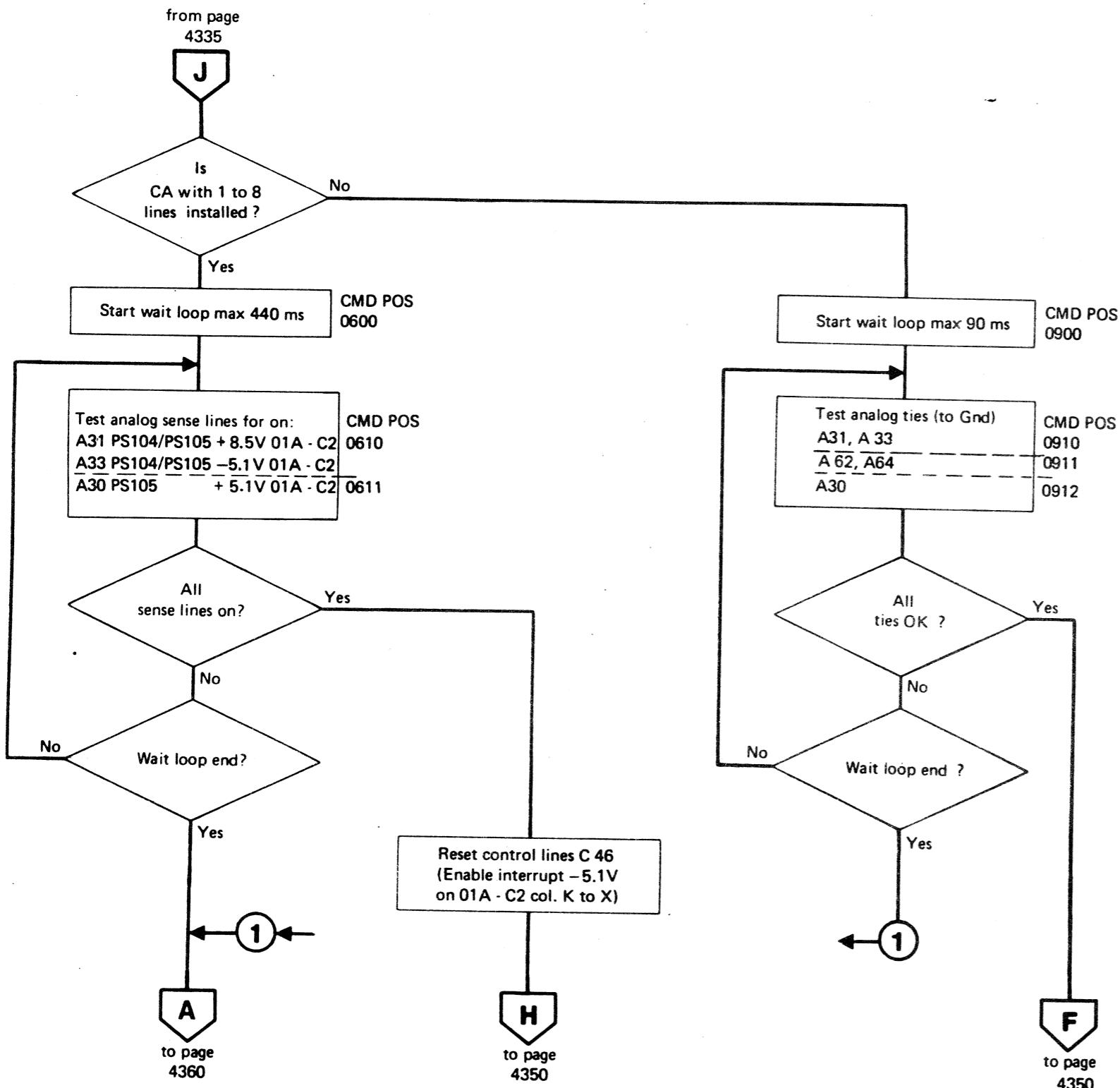
to page
4320

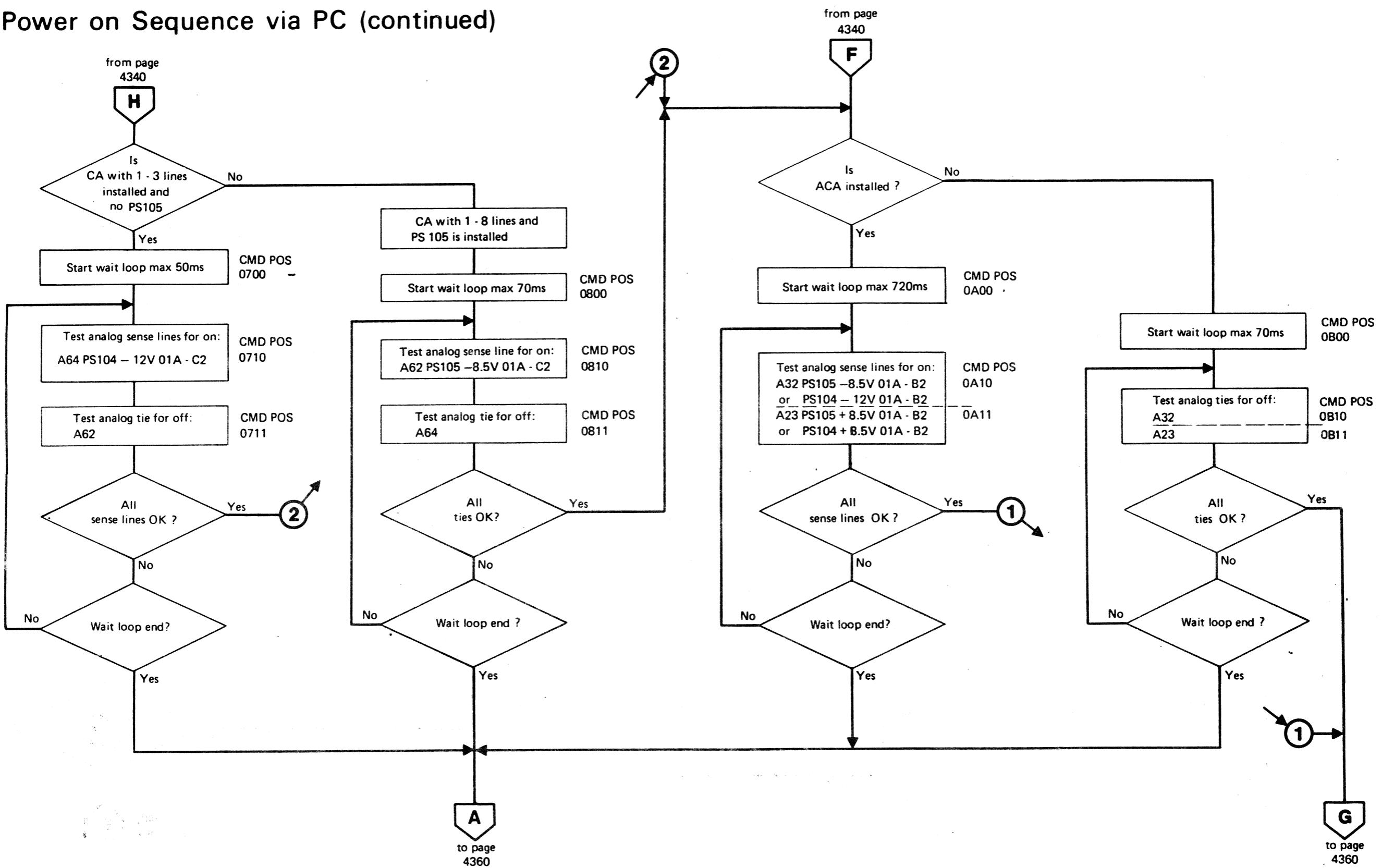

© Copyright International Business Machines Corporation 1980 198

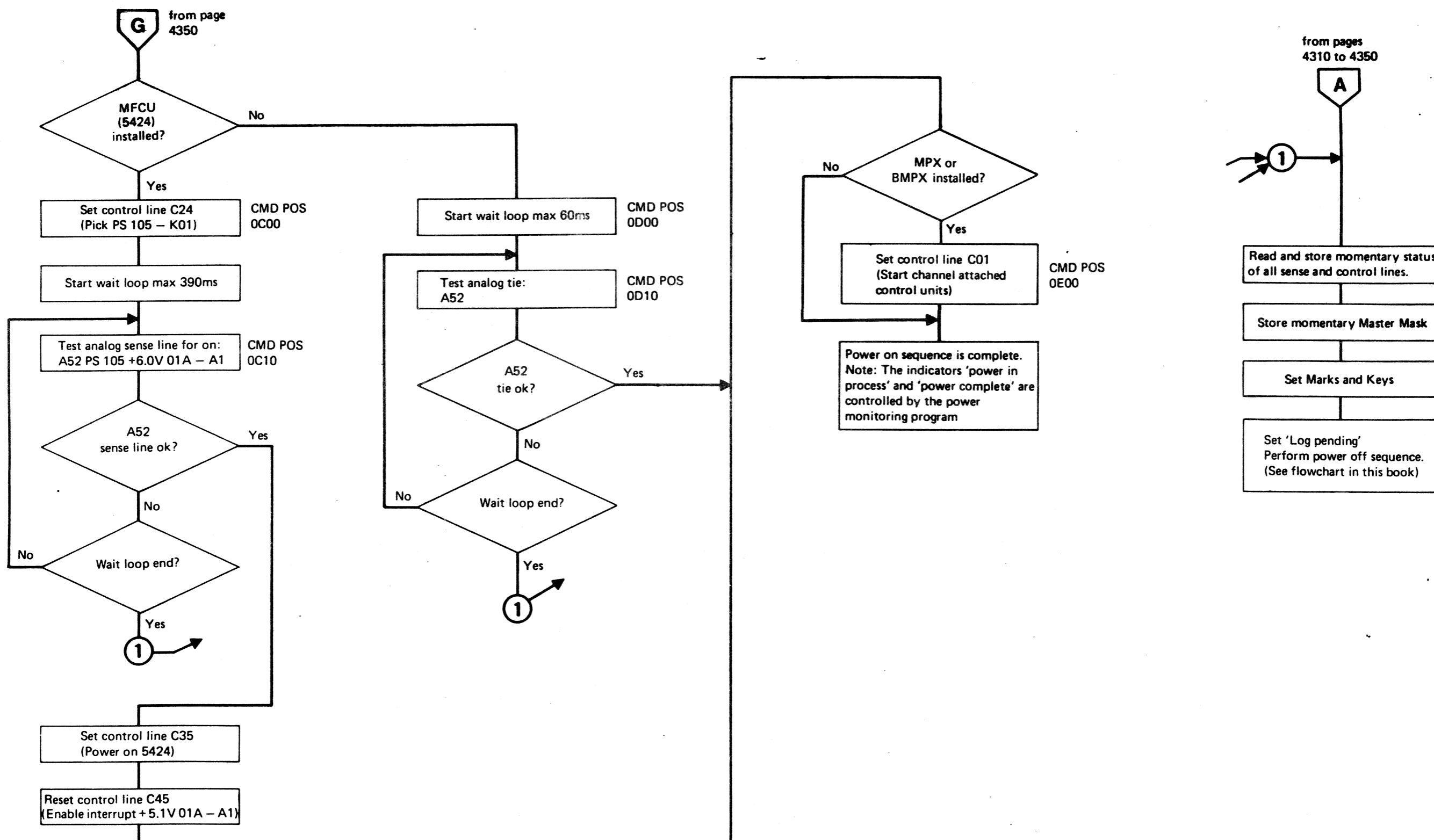
4331 PDL4/5 - A


Power on Sequence via PC (continued)


Power on Sequence via PC (continued)


Power on Sequence via PC (continued)


Power on Sequence via PC (continued)


Power on Sequence via PC (continued)

Power on Sequence via PC (continued)

Power on Sequence via PC (continued)

Voltage Checking During Normal System Operation and Interrupt Generation

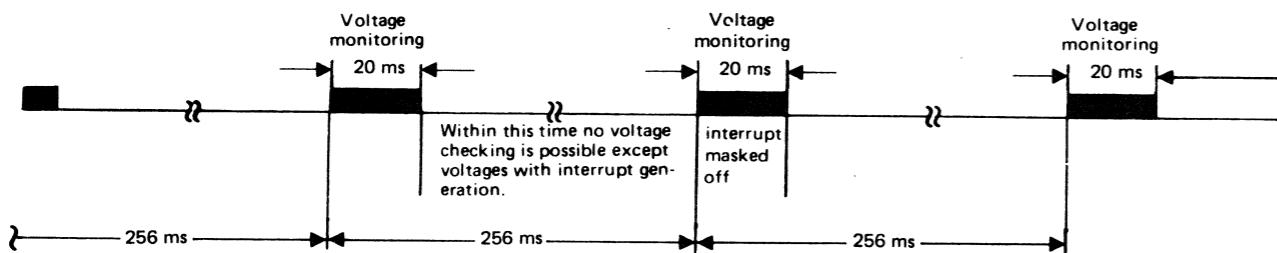
During normal system operation the SP operation control program performs a voltage monitoring routine every 256ms lasting about 20ms. For some voltages it is unacceptable to have a time gap without voltage checking. Therefore, the critical voltages generate an interrupt request to the SP if the voltage drops below a limit defined by the operation control program.

The interrupt generating voltages are shown on ALD page YA031.

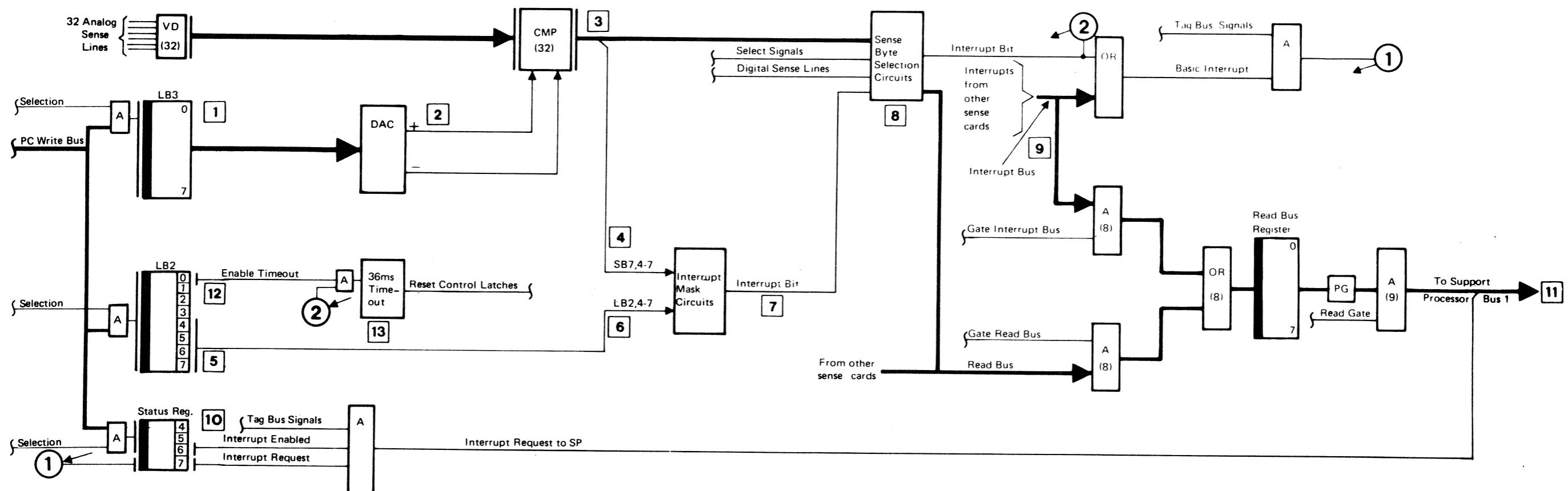
Interrupt Generation

Note: The numbers in boxes refer to the numbers in the diagram on the next page.

At the end of each voltage monitoring routine, a bit pattern for a voltage tolerance of 80 percent is written into LB3 of the sense card **1**. The output of LB3 is used as digital input for the digital analog converter **2**.


The DAC generates a voltage which is determined by its digital input. The DAC output is used by the 32 comparators **3**. The comparators compare the normalized voltages from the sense points with the voltage generated by the DAC, but the compare result is not transferred to the SP because the SP microprogram performs other tasks at this time (main sense loop). The comparator output of four important voltages per sense card, which must be continuously checked, is also wired to the interrupt mask circuit **4**. A four-bit mask is written by the SP into LB2 bits 4 through 7 **5** and the output of bits 4 through 7 is also connected to the mask circuit. If any of the monitored voltages drops below the limit (determined by the digital DAC input), the comparator output changes its level. If an interrupt request from this voltage is allowed by the mask in LB2 bits 4 through 7 **6**, the interrupt mask circuit activates an interrupt bit **7**. The active interrupt bit passes the sense byte selection circuits **8** and enters the interrupt bus **9**. Any active bit on the interrupt bus sets the interrupt bit 7 in the status register **10**.

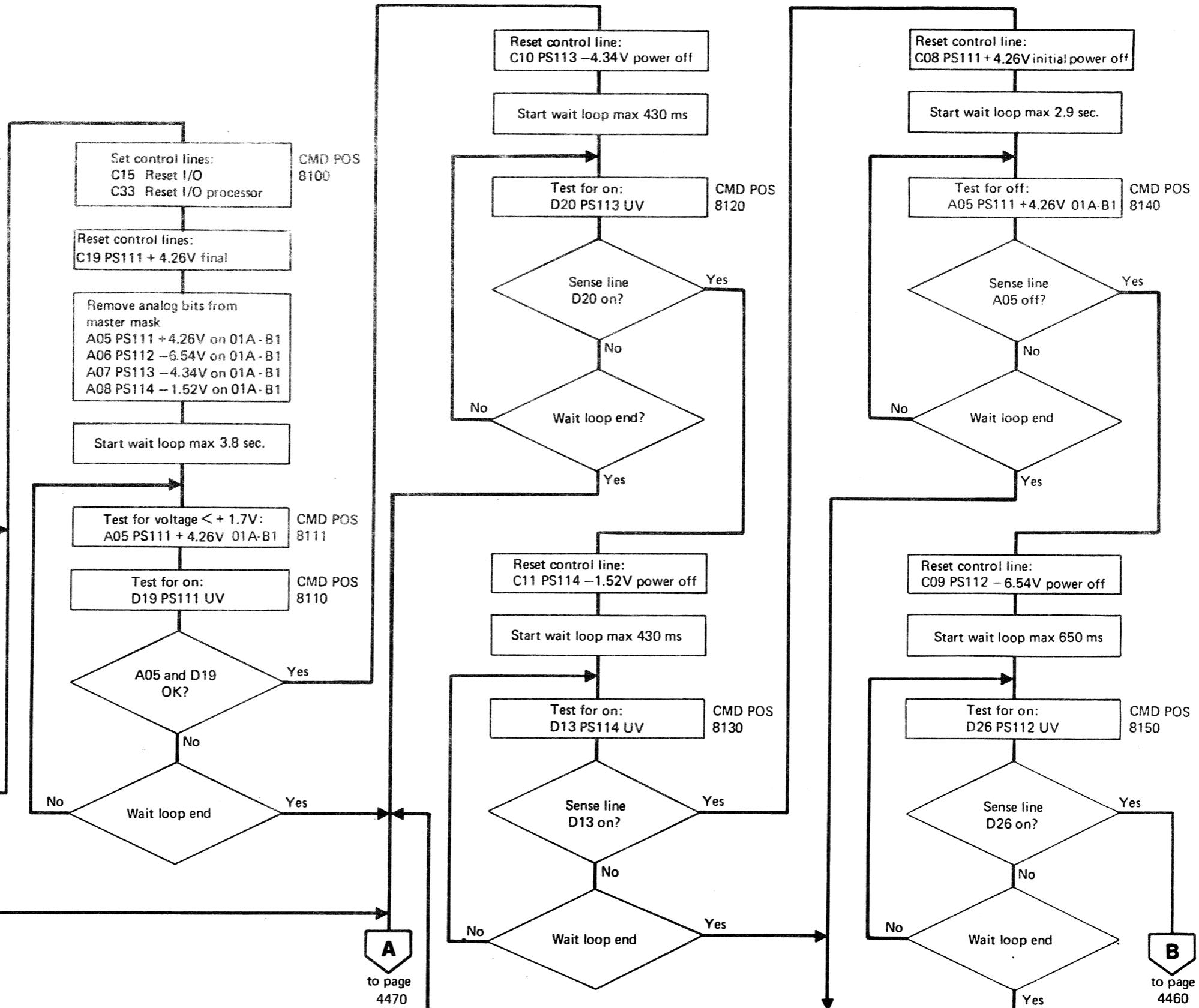
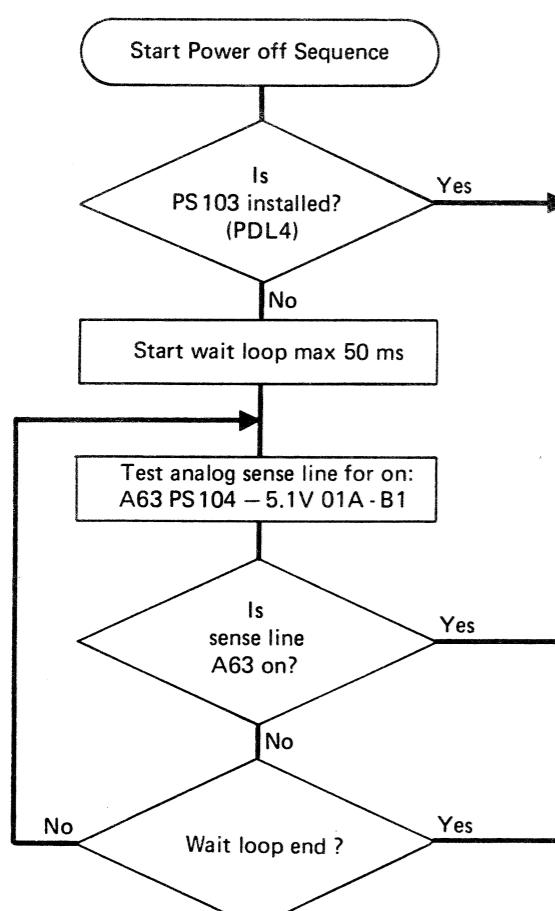
An interrupt request to the support processor is only possible if previous SP operation control program steps have enabled an interrupt request by setting bit 6 in the status register.


If status register bits 6 and 7 are on, an interrupt request to the SP is generated **11**. During interrupt handling, the SP operation control program fetches more detailed error information using PC senses.

Whenever an interrupt bit is activated and the timeout bit 0 in LB2 is on **12**, the 36ms timeout circuit is started **13**.

If the interrupt request to the SP is not handled within 36ms, all power controller control latches are reset. This function has the same effect as emergency power-off. (But PS103 and PS104 are still switched on.) The 36ms timeout circuit is used as backup timer to ensure machine power-off in case of support processor, power controller, or interface problems.

Voltage Checking During Normal System Operation and Interrupt Generation (continued)

Power-Off Sequence via PC

Pressing of the power-off key, or an error condition detected by the power on program, or by the power monitoring program, initiates the power off sequence. During execution of the power off program, there is also a power monitoring periodically performed. Only those voltages which have their corresponding bit in the master mask on are checked by power monitoring.

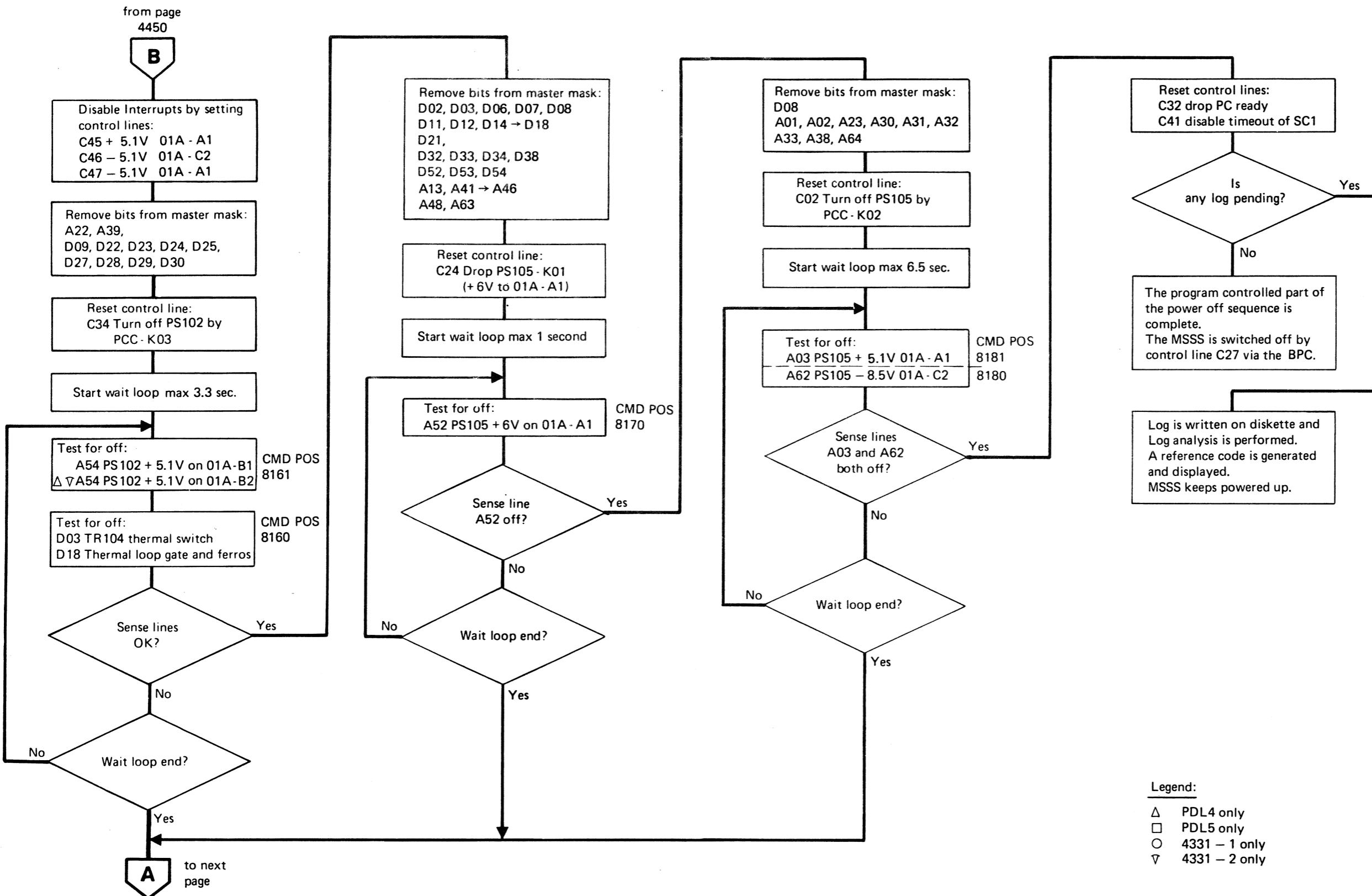
The CMD POS number shown to the right of some flowchart blocks, is part of the Power log display picture. The number is put into the log display if an error occurs in the corresponding step of the power sequence.

The power escape string shown on the last page of the power off sequence is used if a power off function failed. If a thermal failure or a -5.1 V failure on 01A-B1 is detected by the power escape string, the entire processor is switched off and no power log is available.

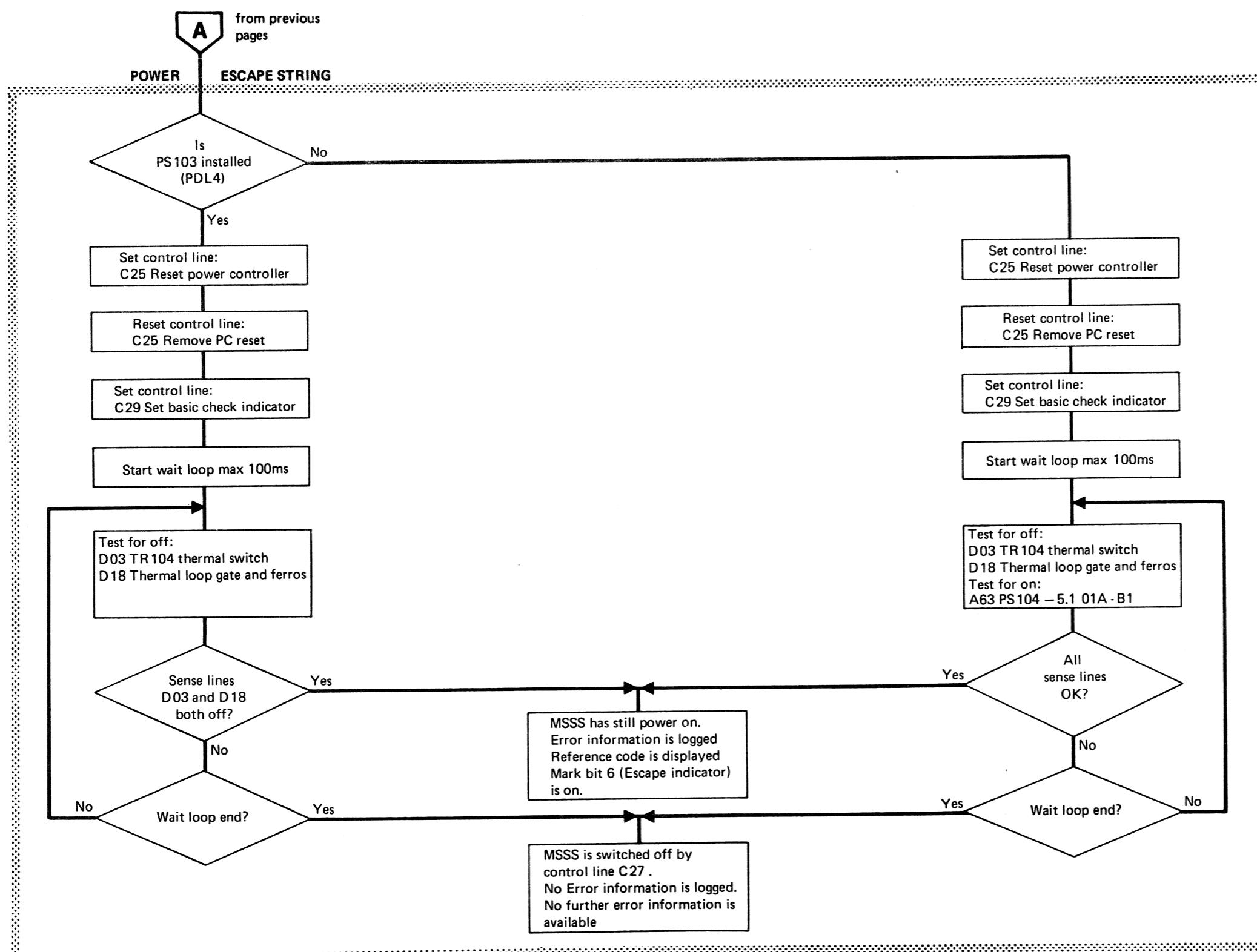
© Copyright International Business Machines Corporation 1980

4331 PDL4/5 -A

Power


DET

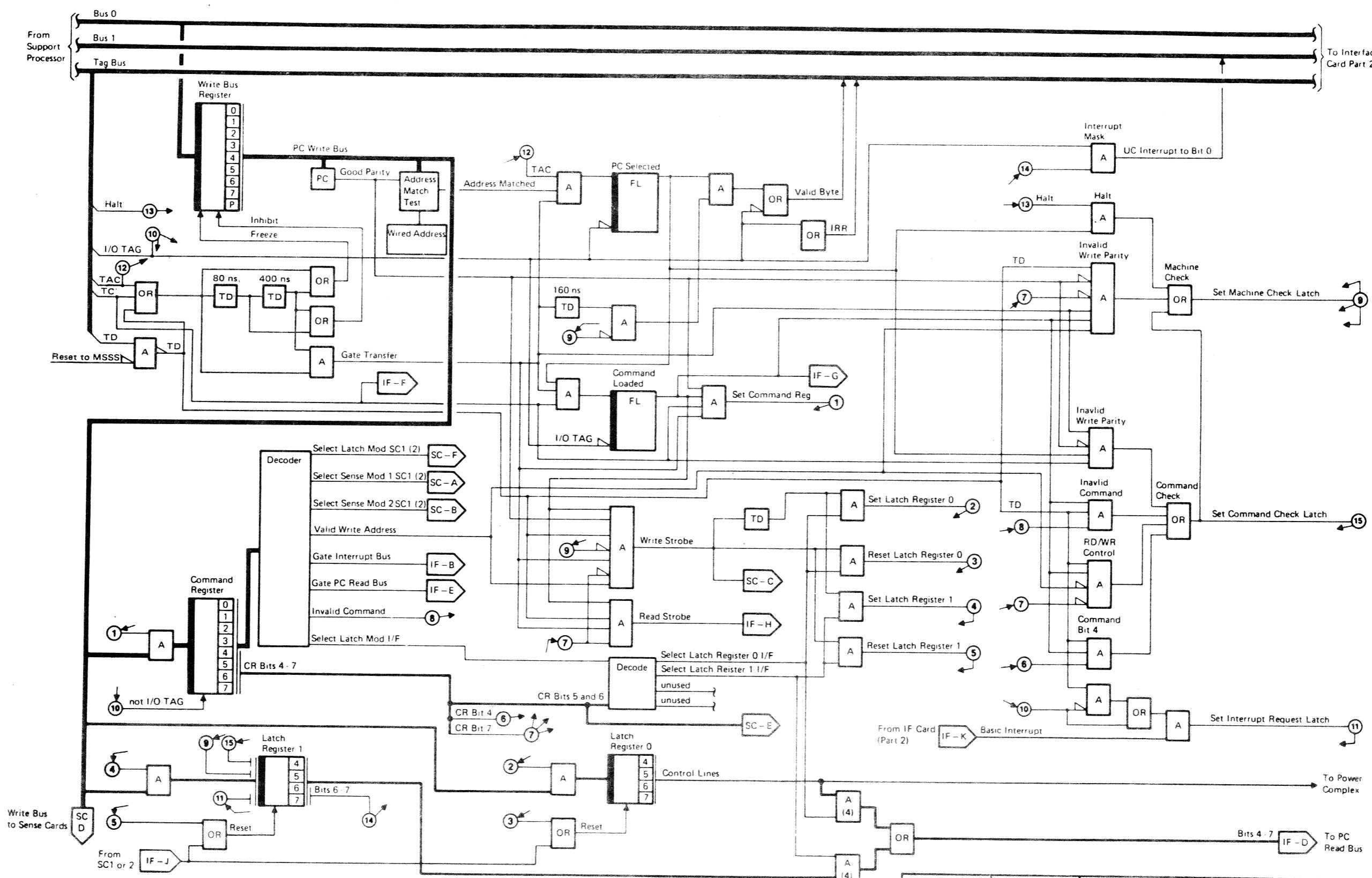
EC 366356
28 Mar 80


P/N 5684099
Page 1 of 4

4 450 F

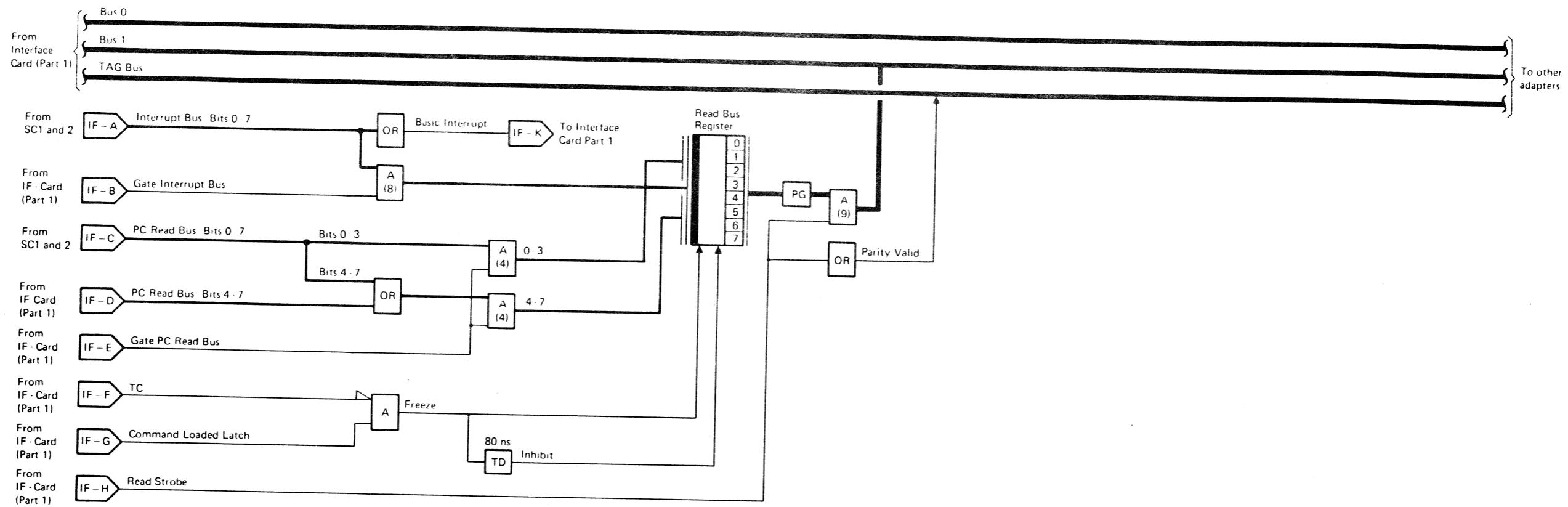
Power off Sequence via PC (continued)

Power off Sequence via PC (continued)



EC 366356		P/N 5684099
28 Mar 80		Page 4 of 4
		4 480

This page has been
intentionally left blank

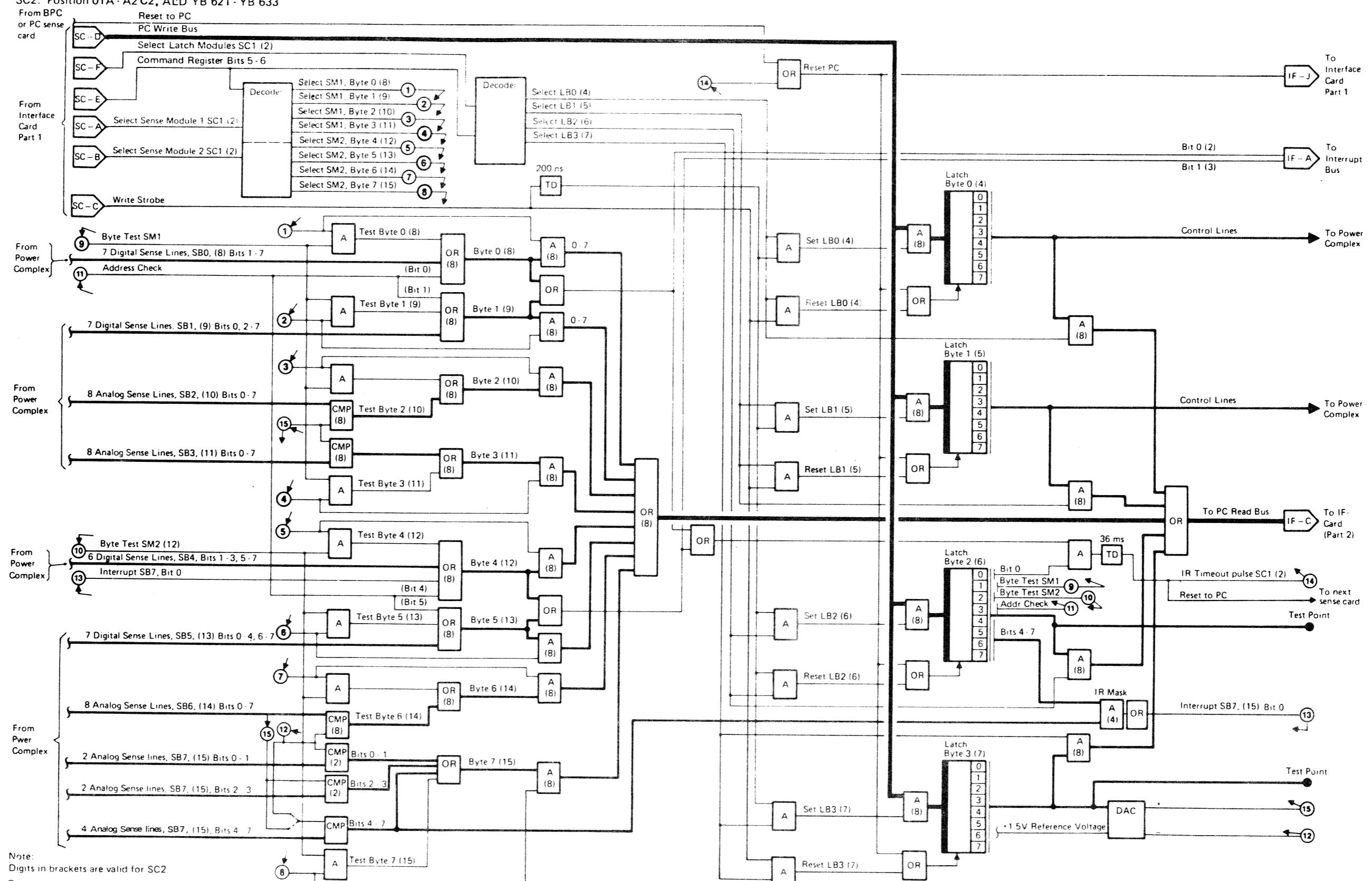

Power Controller Interface Card (Part 1 of 2)

Position 01A - E2, ALD YB 661/679

Power Controller Interface Card (Part 2 of 2)

Position 01A - A2E2, ALD YB 661 - YB 679

Note:


Digits in brackets are valid for SC2

© Copyright International Business Machines Corporation 1979, 1980

4331 PDL4/5 - A

Power Controller Sense Card

SC1: Position 01A - A2D2, ALD YB 641 - YB 653
 SC2: Position 01A - A2C2, ALD YB 621 - YB 633

© Copyright International Business Machines Corporation 1979,
 1980

4331 PDL4/5 - A

Power

DET

EC 366232	EC 366369	EC 366407	P/N 8488693
25 May 79	30 Nov 79	30 Jun 80	Page 3 of 4

4 550

F

Power on Test

The power controller is automatically tested before the power-on sequence is executed.

The power on test is not performed during Re-IML

It is not possible to call the Power on test by the CE. To run the Power on test it is necessary to power down the machine and start a new power on sequence by pressing the power-on switch.

The Power-on test consists of eight single tests which run automatically in ascending order.

A reference code is displayed on the screen if any fault is detected. After an error stop, the test can be repeated by pressing the ENTER key of the keyboard. If a reference code is displayed the CE has the possibility to skip one or more tests and to continue with Power-on test execution. If one or more tests have been skipped the displayed reference code may be misleading or wrong.

Each reference code generated by the Power on Test 1 to 8 has the following format: F7TTXX81. TT is the number of the power on test.

The PC-functions tested by the Power on test are shown in the table on the right. For reference see also diagrams on pages 4500 to 4550.

Test number 8 is the ESD monitor test. This test is only executed if the current ESD sense level is not 0.

There are also machines in the field which have no ESD monitor installed. On those machines must the current ESD sense level always be 0.

For more details see 'ESD Monitor' and 'Ambient Recording Log Display' in this book.

Test No.	Tested function
1	1. Test single reset of control lines. 2. Write '00' to each control byte. Read each control byte and test for '00'.
2	1. Set diagnostic control bits on both PC-sense cards to force 'FF' in each sense byte. 2. Read 'FF' from each sense byte.
3	1. Test 1, Routine 2 is repeated. 2. Check address test lines for zero. 3. Set address test lines and check address check bits for on.
4	1. Test 1, Routine 2 is repeated. 2. Test for -5V present on both sense cards. 3. Test delta of both DAC readings for less or equal to 1.5.
5	1. Test 1, Routine 2 is repeated. 2. Enable analog interrupts. 3. Check if interrupt bit is on.
6	1. Test 1, Routine 2 is repeated. 2. Test if interrupt timeout occurs within specified limits.
7	1. Test 1, Routine 2 is repeated. 2. Test set/reset of control lines.
8	1. Test 1. Routine 2 is repeated. 2. ESD Monitor test. Set / Reset of ESD latches is tested.

Power Controller Control Table, Mark, Keys

Control Lines

		Address	WR	RD	0	1	2	3	4	5	6	7	Card/ Byte
Interface Card	30	31							C 02 Pick PCC-K02	C 24 Pick PS105-K01	C 35 5424 Power on	C 01 I/O CU Power on	IFC/ LB0
	32	33							C 37 Command Check	C 38 Machine Check	C 39 Interrupt Enabled	C 40 Interrupt Request	IFC/ LB1
	34	35							Spare	Spare	Spare	Spare	IFC/ LB2
	36	37							Spare	Spare	Spare	Spare	IFC/ LB3
Sense Card 1	40	41	C 08 Initial pwr.on PS111		C 09 Power on PS 112		C 26 Power Complete	C 10 Power on PS 113	C 27 Power -off Program	C 11 Power on PS114	C 29 Power Check	C 19 Final pwr.on PS111	SC1/ LB0
	42	43	C 31 Power Warning to PU		C 15 Reset I/O		C 33 Reset I/O Controller	C 16 Metering in SP	C 17 PU Check Stop	C 32 PC Ready	C 25 Power controller reset	C 34 Pick PCC - K03	SC1/ LB1
	44	45	C 41 Enable Timeout SC1		C 42 Byte Test SM1, SC1		C 43 Byte Test SM2, SC1	C 44 Address Test SC1	C 45 Disable Interrupt + 5.1V/A1	C 46 Disable Interrupt - 5.1V/C2	C 47 Disable Interrupt - 5.1V/A1	C 48 Disable Interrupt +8.5V/C2	SC1/ LB2
	46	47	C 49 DAC 960.0mV=64%		C 50 DAC 480.0mV=32%		C 51 DAC 240.0mV=16%	C 52 DAC 120.0mV=8%	C 53 DAC 60.0mV=4%	C 54 DAC 30.0mV=2%	C 55 DAC 15.0mV=1%	C 56 DAC 7.5mV=0.5%	SC1/ LB3
Sense Card 2	50	51	C 18 Test bit for PC reset		C 23 Indic.for PS105 inst.		C 05 TOD Clock Indicator	C 06 Reset ESD monitor	C 21 Test ESD monitor	C 22 Spare	C 20 Spare	C 04 Spare	SC2/ LB0
	52	53	C 36 Spare		C 03 Spare		C 07 Spare	C 28 Spare	C 12 Spare	C 13 Spare	C 14 Spare	C 30 Spare	SC2/ LB1
	54	55	C 57 Enable Timeout SC2		C 58 Byte Test SM1, SC2		C 59 Byte Test SM2, SC2	C 60 Address Test, SC2	C 61 Interrupt Mask SC2	C 62 Interrupt Mask SC2	C 63 Interrupt Mask SC2	C 64 Interrupt Mask SC2	SC2/ LB2
	56	57	C 65 DAC 960.0mV=64%, SC2		C 66 DAC 480.0mV=32%, SC2		C 67 DAC 240.0mV=16%, SC2	C 68 DAC 120.0mV=8%, SC2	C 69 DAC 60.0mV=4%, SC2	C 70 DAC 30.0mV=2%, SC2	C 71 DAC 15.0mV=1%, SC2	C 72 DAC 7.5mV=0.5%, SC2	SC2/ LB3

Mark, Keys

Mark and keys are part of the power log display. The bits are written if an error occurs and the power status is saved. The mark and keys are used for reference code generation, as well as controls digital and analog sense lines. Some bits are only used for internal programming information, not for field usage.

	0	1	2	3	4	5	6	7
MARK	Power on and Monitor error	BPC off and Ref-code display	Power on/ off control error	Power on timeout	Early digital or analog LOG done	Power off timeout	Escape done	No interrupt possible by monitor error
KEY	Power on done	Permanent interrupt at the end of power on	Normal Mode error	Early power log	Power off key operated	Invalid string command	Any loop count zero	Monitor control error

For Physical Pin Locations refer to ALD YA 033.

© Copyright International Business Machines Corporation 1980

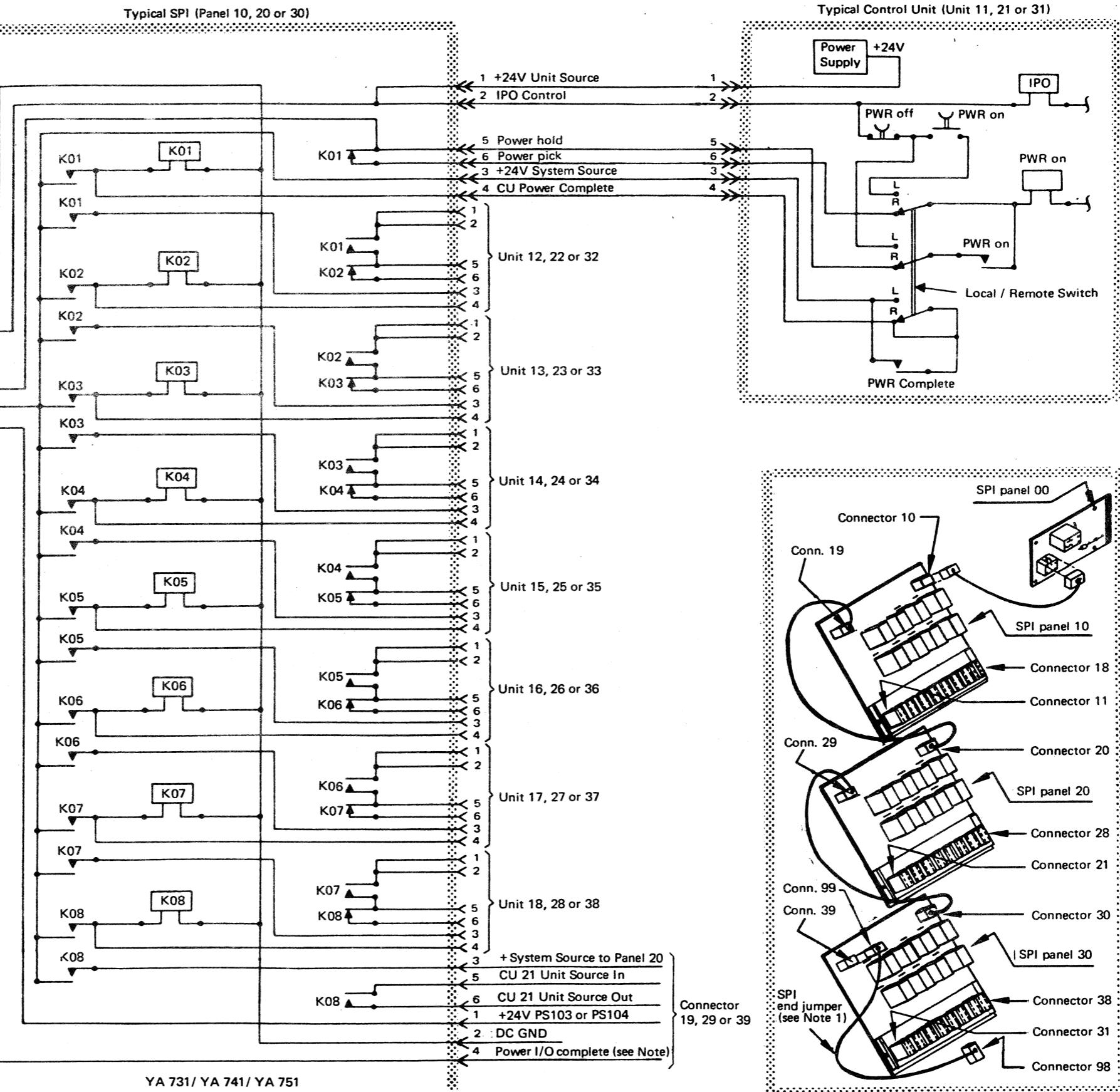
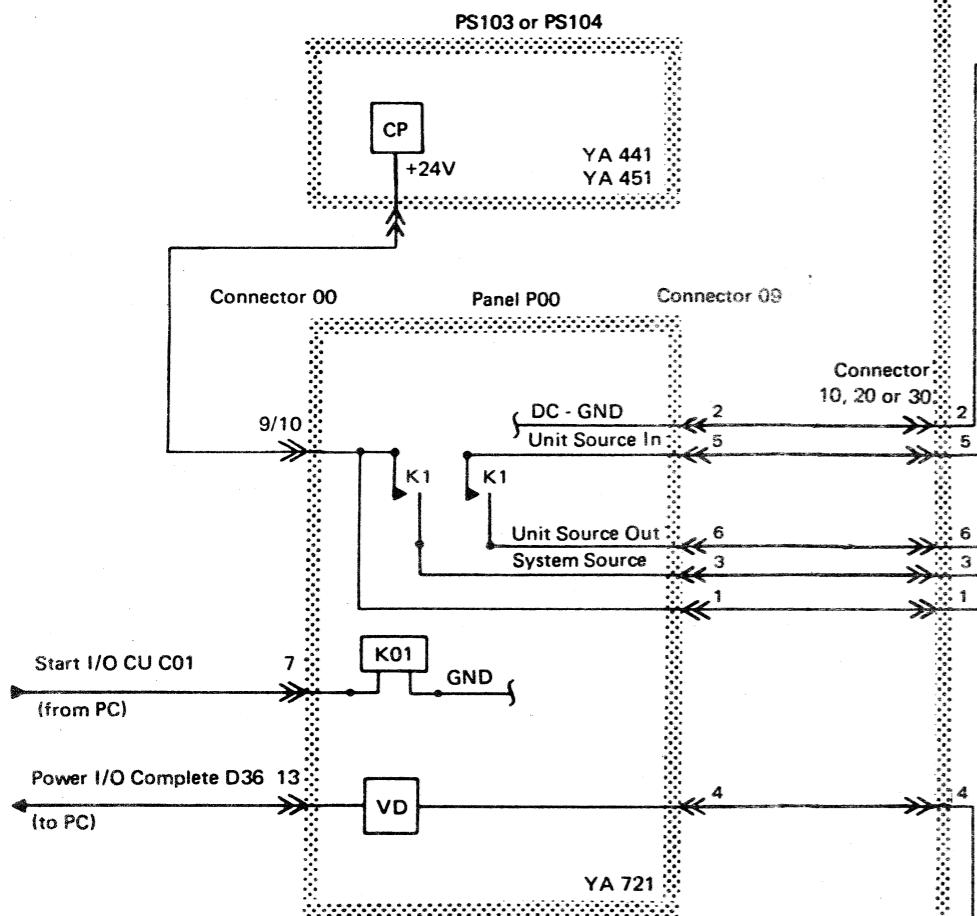
4331 – 2 PDL4 –C

Power

DET

EC 366325 05 Oct 79	EC 366286 22 May 80	EC 366407 30 Jun 80	P/N 5683417	4 560
			Page 1 of 2	F

Power Controller Sense Table



Address WR RD	Bit								Card/ Byte
	0	1	2	3	4	5	6	7	
— 11	Interrupt Request from Sense Byte 0 or 1	Interrupt Request from Sense Byte 4 or 5	Interrupt Request from Sense Byte 8 or 9	Interrupt Request from Sense Byte 12 or 13					SC1/ SC2
— 81	D 57 Address Test, Byte 0, SC1	D 22 0V PS111 (+ 4.26V)	D 23 OC PS111 (+ 4.26V)	D 24 OV PS112 (-2.2V)	D 25 OC PS112 (-2.2V)	D 04 AIR INLET TEMP TOO HIGH	D 27 OV PS113 (-4.34V)	D 28 OC PS113 (-4.34V)	SC1/ SB0
— 83	D 36 I/O Power Incomplete	D 58 Address Test, Byte 1, SC1	D 10 CE Mode Switch on	D 05 ESD level 1	D 29 OV PS 114 (-1.52V)	D 30 OC PS 114 (-1.52V)	D 39 ESD level 2	D 01 MFCU power incomplete	SC1/ SB1
— 85	A 52 +6V PS 105, 01A - A1	A 41 +24V PS 103, 01A-A2	A 42 + 12V PS 104, 01A - A2	A 44 + 5.1V PS104, 01A - B1	A 46 + 8.5V PS 104, 01A - C2	A 02 + 8.5V PS 105, 01A - A1	A 39 + 10.1V PS 102, 01A - B2	A 23 + 8.5V PS104/105,01A-B2	SC1/ SB2
— 87	A 05* + 4.26V PS 111, 01A - B1	A 57 + 7.1V PS 102, 01A - C1	A 30 + 5.1V PS104/PS105, 01A - C2	A 56 + 12.3V PS 102, 01A - C1	A 58 + 12.3V PS 102, 01A - C1	A 60 + 12.3V PS 102, 01A - C1	A 59 + 9.5V PS 102, 01A - C1	A 61 + 6.8V PS 102, 01A - C1	SC1/ SB3
— 91	D 55 # Interrupt SB7 (4 - 7) SC1	D 26 # UV PS 112 (-2.2V)	D 19 # UV PS111 (+ 4.26V)	D 09 # TR102 THSW	D 59 # Address Test, Byte 4, SC1	D 08 # TR105 THSW	D 03 # TR104 THSW	D 18 # Thermal loop	SC1/ SB4
— 93	D 35 # Power off	D 06 # Spare	D 07 # Spare	D 15 # Spare	D 16 # Spare	D 60 Address Test, Byte 5, SC1	D 13 # UV PS114 (-1.52V)	D 20 # UV PS113 (-4.34V)	SC1/ SB5
— 95	A 32 -8.5V PS 105/-12V PS 104 on 01A-B2	A 63 Spare	A 06* - 6.54V PS 112, 01A - B1	A 07* - 4.34V PS 113, 01A - B1	A 08* - 1.52V PS 114, 01A - B1	A 62 - 8.5V PS 105, 01A - C2	A 38 - 8.5V PS 105, 01A - A1	A 64 - 12V PS104, 01A-C2	SC1/ SB6
— 97	A 43 - 12V PS 104, 01A - A2	A 45 - 5.1V PS104, 01A - C2	A 54 + 5.1V PS102 01A - B2	A 22 +5.1V PS104, 01A-C1	A 03 # + 5.1V PS 105, 01A - A1	A 33 # - 5.1V PS104/PS105, 01A - C2	A 01 # - 5.1V PS 105, 01A - A1	A 31 # + 8.5V PS104/105, 01A-C2	SC1/ SB7
— A1	D 61 Address Test, Byte 0, SC2	D 40 CPU Ident. Hdrs. 8	D 41 CPU Idend. Hdrs. 4	D 42 CPU Ident. Hdrs. 2	D 43 CPU Ident. Hdrs. 1	D 44 CPU Ident. Tens 8	D 45 CPU Ident. Tens 4	D 46 CPU Ident. Tens 2	SC2/ SB0
— A3	D 47 CPU Ident. Tens 1	D 62 Address Test, Byte 1, SC2	D 48 CPU Ident. Units 8	D 49 CPU Ident. Units 4	D 50 CPU Ident. Units 2	D 51 CPU Ident. Units 1	D 31 ESD level 3	D 37 ESD level 4	SC2/ SB1
— A5	A 13 Spare	A 48 Spare	A 17 Spare	A 18 Spare	A 20 Spare	A 21 Spare	A 16 Spare	A 09 Spare	SC2/ SB2
— A7	A 04 Spare	A 55 Spare	A 10 Spare	A 40 Spare	A 34 Spare	A 35 Spare	A 36 Spare	A 37 Spare	SC2/ SB3
— B1	D 56 # Interrupt SB7(4-7) Spare	D 34 # Spare	D 32 # Spare	D 53 # Spare	D 63 # Address Test, Byte 4, SC2	D 54 # Spare	D 17 # Spare	D 12 # Spare	SC2/ SB4
— B3	D 52 # Spare	D 11 # Spare	D 14 # Spare	D 21 # Spare	D 38 # Spare	D 64 # Address Test, Byte 5, SC2	D 02 # Spare	D 33 # Spare	SC2/ SB5
— B5	A 19 Spare	A 25 Spare	A 50 Spare	A 24 Spare	A 47 - 5.1V PS104 Voltage Check with A45	A 53 Spare	A 26 Spare	A 27 Spare	SC2/ SB6
— B7	A 28 Spare	A 29 Spare	A 12 Spare	A 11 Spare	A 49 # Spare	A 14 # Spare	A 51 # Spare	A 15 # Spare	SC2/ SB7

Interrupt generating Sense Line

* Adjustable voltages

For physical locations refer to ALD YA 033.

Standard Power Interface (SPI)

This page shows the principle of the standard power interface.

Up to 2 SPI panels can be installed in a 4331 processor while up to 3 SPI panels (10 to 30) can be installed in a 4331-2 processor. Up to 8 control units can be connected to each SPI panel. IPO control is not used.

Note: A jumper assembly (SPI end jumper) must be installed on the last used SPI panel. Connector 99 of the jumper (labeled as SPI connector 09) must be plugged to connector 9 of the last used panel while connector 98 (labeled as SPI connector 01-08) must be plugged to the first unused I/O connector position. If 8 control units are attached to the last panel, the connector 98 stays unused.

Connector Numbering

The first digit of the connector numbering refers to the SPI panel position while the second digit identifies the connector location on the SPI panel.

Example 1:

Connector 29 is the connector number 9 on SPI panel 2.

Example 2:

Connector 10 is the connector number 0 on SPI panel 1.

On the SPI panel the connectors are labeled 0 through 9.

© Copyright International Business Machines Corporation 1979, 1980, 1981

4331 PDL4/5-A

Power

DET

EC 366269 03 Aug 79	EC 366286 22 May 80	EC 366388 23 Jan 81	P/N 8488246	4 600
Page 1 of 2				F

This page has been
intentionally left blank

Hints for Power Maintenance

DANGER

It is not allowed to remove subassemblies from the machine frame under power or to do any service on subassemblies under power outside of its machine frame mount.

Any power repair action should start with use of the corresponding MAP for the displayed reference code. If a power problem is suspected with no reference code displayed, always start with MAP 0200.

For use of the POWER MAPS, you should be familiar with the 'Important Hints for Power MAP Usage' in this section. Other paragraphs in this section give more information about wiring checking, intermittent problem analysis, and action when asked to 'call for assistance'.

Important Hints for Power-MAP Usage

(Valid for reference codes beginning with '02' or 'F7')

MAP Entering

Before entering the power MAP, make sure that all listed cards and cables in board 01A-A2 and 01A-C2 are plugged in and seated correctly.
Board 01A-A2: A2, B2, C2, D2, E2, YM and YD
Board 01A-C2: D2, E2, F2, G2, H2, J2, YJ and YK

Card Plugging

Never remove or insert a card with system power on. Before replacement of any card, check card connectors for bent or broken pins. Also check the wiring side of the board for damage.

Switching off the Line Voltage

Switch off PCC-CB01 before working in any system area where line voltage might be present.

DANGER

PCC-CB01 does not remove power from the convenience outlet circuits. Before working in the PCC-box or fuse replacement of PCC-F01 or PCC-F02, switch off additionally PCC-SW01 (switch for convenience outlet).

PCC-CB01 must also be switched off prior to replacement of transformers or power supplies.

Never remove a primary fuse of any transformer while PCC-CB01 is switched on.

Power-off Key Usage

When the MAP tells you to press the power-off key you have the choice of pressing the power-off key at the OCP (operator console panel) or of pressing the power-off switch at the CCP (customer console panel).

General Logic Probe (GLP)

Probe Switch Setting

When the MAP tells you to 'probe pin XX', connect the main input of the General Logic Probe 2 (GLP2) to the pin XX using the following switch setting of GLP2:

- TECHNOLOGY switch: Multi
- LATCH switch: None
- GATE REF. switch: + 1.4V
- GATING input + and -: Unused

If another switch setting of the probe is required, the switch setting is shown in the MAP.

If the probe gating inputs are used, the gate reference switch must be set to +1.4V.

Connection of Probe Power Cable

The power cable of the probe must be connected to the following pins in card position 01A-A2B2:

- Red lead (positive) to D03, or J03, or P03, or U03
- Black lead (negative) to any D08 pin

IMPORTANT NOTES: There is no standby power present with system power off.

After pressing the power-on switch, both probe indicators will be lit for a short time when the supply voltage raises to its final level. This probe indication must be omitted.

The probe operates without any error approximately one second after the power-on switch was operated.

Hints for Power Maintenance (continued)

General Logic Probe (continued)

Probe main input

The probe main input must be connected to the measurement points called out in the MAP.

A special extension cable for the GLP2 can be used. The main input ground must be connected to DC-ground (usually the D08 pin of a logic card position). Never use a D08 pin in a cable connector position.

The basic shipping group contains two extension wires which may be used for probe measurements.

Floating Signal

If a probed pin does not show an indication on the GLP2, ensure that your GLP2 is operating correctly. Check power connections and apply logical up and down level to the main input of the probe.

For more details refer to 'General Logic Probe 2 Manual' (form number SY27-0127).

If probe functions are correct and a probed pin called out in the MAP does not show an up or a down level indication, the probed pin is floating or the applied voltage level is out of the acceptable limits. In case of floating pin, refer to the ALD-page where the pin is shown and check board wiring and cabling of the floating signal. Apply the 'Wiring Check Procedure' shown in this book.

If no wiring error was detected, replace the card which generates the failing signal.

Power Controller Card Replacement

If the MAP advises you to replace a power controller sense card in position 01A-A2C2 or 01A-A2D2 and no new card is available, you should exchange (swap) both cards and retry power on. If another reference code is displayed after card swap, the defective card has to be replaced before the machine is returned to the customer. If no reference code is displayed after card swap, the defective card has to be replaced as soon as possible. Return the machine to the customer until spare parts are available.

CE-Meter Accuracy Check

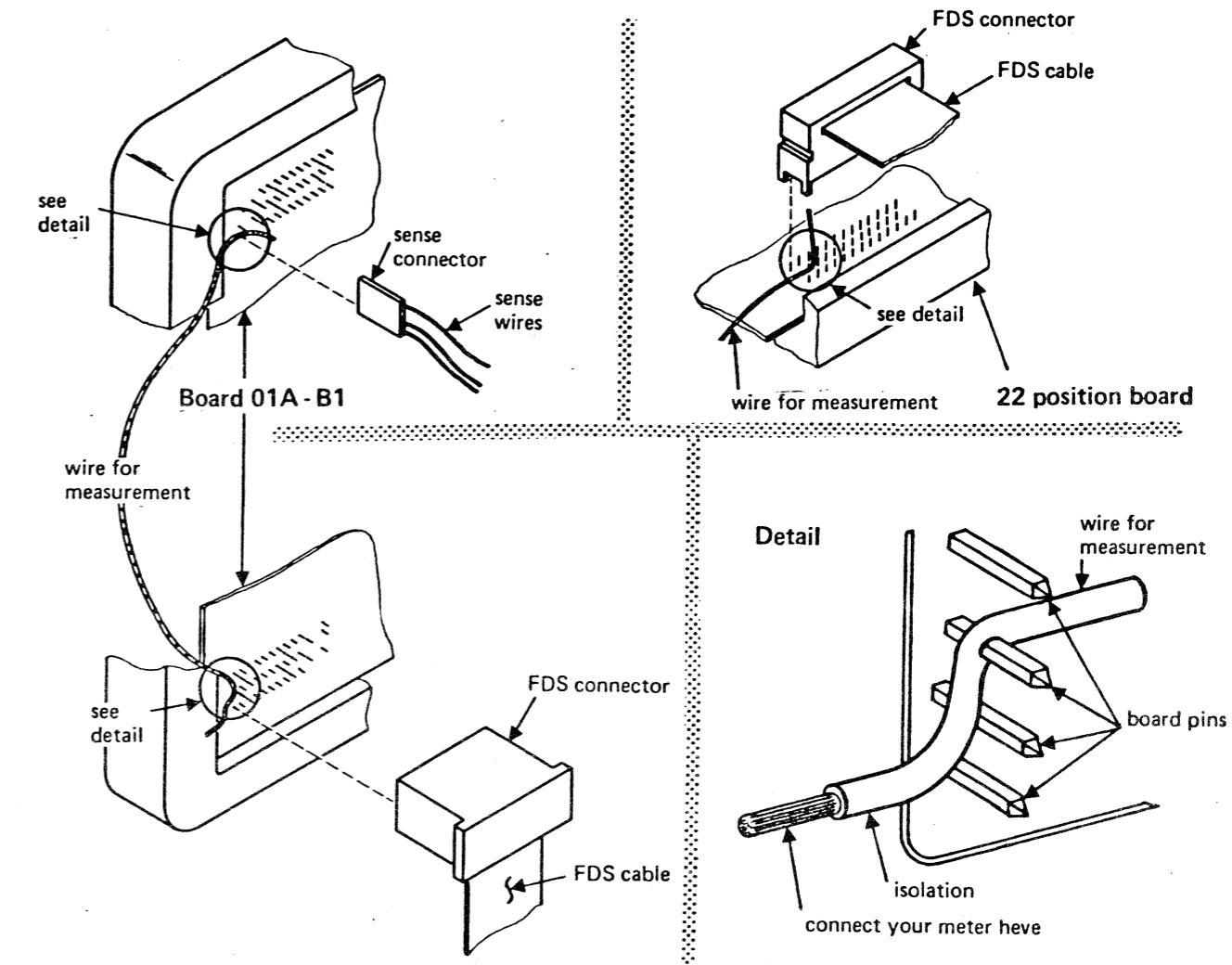
1. To check the accuracy of the CE-meter, connect the plus lead of the meter to 01A-A2C2-S11 or 01A-A2D2-S11 '+3.0V output SCX' and the minus lead of the CE-meter to any D08 pin. The +3.0 V voltage has a accuracy of +/- 1.5 percent.
2. Remove the diskette from the diskette drive.
3. Press power-on switch.
4. Check your meter reading (should be 3.0VDC).

Connectors

If a wiring error is suspected, ensure proper connector seating and good pin contact.

Before FRU-replacement, check the FRU-connectors.

Measurements at Connectors


If the MAP advises you to connect the probe or your CE-meter to a connector pin, do not remove the connector from its position. The connector pins are accessible by the probe tip.

Before starting the measurement, ensure that the probe tip has good contact. For measurements on voltage feeding connectors of boards, the plastic cover of the connector has to be removed.

Measurements at Board Pins

If the MAP advises you to connect your CE-meter to a board pin which is already covered by an FDS connector or by a sense connector, apply the following procedure:

1. Disconnect FDS connector or sense connector.
2. Take a wire from the shipping group, punch a hole into it (use a needle or similar tool) and connect the wire to the pin to be measured as shown on this page. Make sure that the wire does not cause a short between two board pins.
3. Reconnect the previously removed FDS connector or sense connector.
4. Proceed as described in the MAP.

Hints for Power Maintenance (continued)

Signal Names and References

Measurement points used in the MAP have the format shown in the following example:

Connector PS102-02-003.....connector 02 of PS102, pin 003
01A-A2F2-D06.....normal pin counting scheme.
'-power on PS113 C10'.....signal name used in the ALD.
(ALD-YB441).....reference to ALD where the pin is shown.

Termination of Repair Action

After most repair actions, the map leads you to the MAP 0204. If your repairs were successful, the MAP 0204 leads you to MAP 0275 for a final voltage check. Unsuccessful repairs bring you to further repair instructions (if several failures are present), or you return to the first repair instruction (if the trouble was not found and repaired).

If you come to the same repair instruction twice after answering all questions in the MAP correctly, refer to this power manual and try to isolate the faulty part using the ALD, power manual and power programs.

Also suspect an intermittent error (see paragraph 'Before/calling for assistance').

If trouble cannot be found, see paragraph 'Before calling for assistance'.

Never change the error situation by swapping or replacing cards unless stated to do so in the MAP.

Never put cards from a machine back into your spare part set unless you are sure that the card was working properly.

Wiring Check Procedure

Note: This procedure should be entered if MAP for reference codes beginning with 02 or F7 or E8 advises you to check and repair the wiring of a certain net.

- 1.0. The ALD must be used for every wiring check if the net is not shown in the MAP. The necessary ALD references and signal names are shown in the MAP. If the net is shown in the MAP, the signal name is shown at the bottom of the net scheme.
- 2.0. Switch PCC-CB01 off before the wiring check is started.
- 3.0. Remove all cards and cables which are connected to the wiring net to be checked. The physical locations are shown in the ALD.
- 4.0. Use your CE-meter (Range ohm X1) to check electrical connection between all pins which are part of the circuit to be checked. Special care should be taken to ensure good connection between parallel wired connectors used at transformer and power supply outputs. Use ALD references given in the Map. A bad contact may cause an intermittent out-of-tolerance voltage.
- 4.1. Connect one lead or your CE-meter (Range ohm X1) to any D08 pin (DC-Gnd), while the second lead is to be connected to any pin of the wiring net. There should be no electrical connection between the signal wiring and DC-Gnd. If electrical connection exists between signal wiring and DC-Gnd, check carefully the signal wiring for any damage (including bend or broken pins and damaged cables). If the reason for the trouble cannot be detected the board or cabling has to be replaced.
- 5.0. Use blue/white wires to repair a defective board net.
- 6.0. After completion of the wiring check, return to the MAP where you came from. If the wiring check was performed as a fix of the MAP go to MAP 0204, Entry Point A for final check.
- 7.0. If no wiring problem could be detected by the previous procedure, call for assistance (see hints on this page).

Hints for Trouble Shooting Intermittent Power Problems

If an intermittent power failure is suspected, perform the following checks in sequence:

1. Check seating of the voltage feeding connectors on the board and the seating of the sense line connector of the failing voltage (see ALD-YC821 to YC873).
2. Special care should be taken when checking the paddle cards in board 01A-A2 column A.
3. Run voltage measurement program (see MAP 0275) and check for intermittent out of tolerance conditions.
4. Perform IPS service check (see MAP 0280).
5. At the beginning of each power MAP you will find a list of the FRUs which might cause intermittent errors. Replace those FRUs step by step and check them for correct seating and good connections.
6. Intermittent errors may also occur if a diskette drive is exposed to electromagnetic waves. If you suspect those problems, keep the machine covers closed during machine power on time.
7. Perform all checks listed in the EMC check list in this book.
8. Perform the ground check procedure shown in the 'IBM 4331 Processor Installation Manual'.
9. Check all three blowers for correct operation and ensure that the airfilters are clean.

Before Calling for Assistance

This procedure should be followed after MAPs have failed.

1. Before calling for assistance, read carefully the hints for power MAP usage in this book and verify that you have followed each of them.

2. Special care should be taken to check for correct card and connector seating, proper plugging, and for bent or broken pins.

ATTENTION: The power controller top connectors are not interchangeable and must be installed as shown on page 7010 of this book.

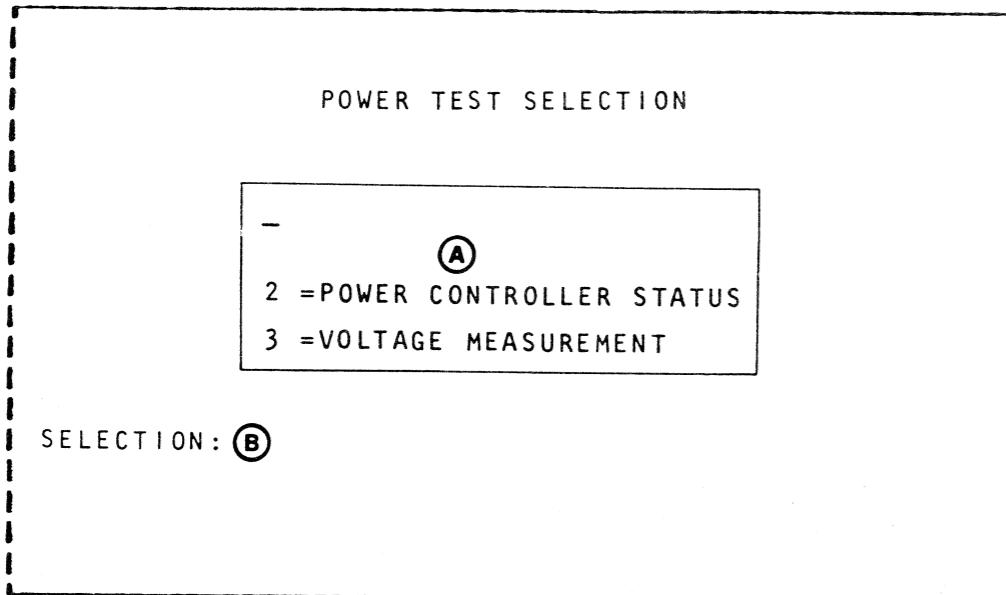
3. Ensure that the correct diskette is installed in your machine. Compare the machine serial number on the diskette label with the machine label.

4. Ensure that the power configurator on the diskettes is correct. To check the power configurator, carry out the following steps:

> Call M/S PROGRAM SELECTION.
> Key in the selection for UTILITIES.
> Select DISKETTE IDENTIFICATION.
> Key in the subselection for DISPLAY CONFIGURATOR.

The bits of the power configurator have the following meaning:
 Bit 0 = Y ...PDL4.....(Power Design Level 4)
 Bit 0 = N ...PDL5.....(Power Design Level 5)
 Bit 1 = Y ...CEC.....(Must always be on)
 Bit 2 = Y ...ACA.....(Auto Call Adapter)
 Bit 3 = Y ...LA.....(Loop Adapter)
 Bit 4 = Y ...MFU.....(5424)
 Bit 5 = Y ...CA 1-3 lines (Communication Adapter)
 Bit 6 = Y ...CA 4-8 lines (Communication Adapter)
 Bit 7 = Y ...SPI.....(Standard Power Interface)

5. Transformer and power supply outputs often use parallel wires and connector pins. If one voltage is out of tolerance (minus signs displayed), ensure that all parallel wired connectors have good electrical connection. Use ALD references given in the MAPs.


6. Ensure that all blowers are running correctly and that all airfilters are clean.

7. If any measured signal that is supposed to change its level, remains up or down, even after cards have been replaced or after the wiring has been checked, suspect short circuit to the failing net. (See ALD references given in the MAP.) Use your CE-meter to isolate the short circuit according to the 'Wiring Check Procedure' shown in this book.
8. Retry power on/power off using the diagnostic-diskette.
9. Call your branch office and ask for MAP chart updates via the reference code data bank. (The reference code of your failure is required.)
10. If all previous actions are not successful replace the power controller cards in positions 01A-A2C2, 01A-A2D2 and 01A-A2E2 and retry power on. If the previous action was not successful use this manual and the ALD and try to isolate the faulty unit.
11. If there is an undervoltage or out of tolerance condition of voltages generated by a ferro resonant power supply and the corresponding MAPs failed, suspect a defective capacitor in the transformer unit of the failing voltage. Replace the transformer unit and retry power on.
12. At the beginning of each power MAP you find a list of FRUs which might cause the detected error. Check those listed FRUs for correct plugging, seating and good connections.
13. If there is an intermittent error, read the 'Hints for Trouble Shooting Intermittent Power Problems' in this book and follow those hints.
14. If no error could be detected, call your field support center for assistance.

Power Test Selection

The following picture appears on screen when you select 'POWER' from the 'IBM MAINTENANCE AND SERVICE PROGRAM SELECTION'.

To run one of the tests listed in this picture go to the respective handling procedure on the following pages.

- (A) Selection codes and names of available programs.
- (B) The digits in front of the test name must be typed in behind the word SELECTION to select the appropriate test.

EC 366338 07 Sep 79	EC 366407 30 Jun 80	EC 366388 23 Jan 81	P/N 8488696	6 110
Page 2 of 8				B

This page has been
intentionally left blank

Power Controller Status Display

Handling - Actions

Handling - Results

Prerequisites:

1. MSSS power on or power complete
2. Diagnostic diskette or control diskette inserted

How to Select the Test

1. Call M/S PROGRAM SELECTION. Hold down ALT key and press DIAG key. **A**
2. Key in selection for 'POWER', press ENTER. **B**
3. Select 'POWER CONTROLLER STATUS', press ENTER. **C**

The support processor performs a continuous reading of the power controller status, control lines, analog and digital sense lines, interrupt byte, mark and keys. (See sense and control tables in this book.)

Run Mode:

Looping

How to Terminate the PC Status Display

If you want to run another test return to M/S PROGRAM SELECTION. Select new test, otherwise perform the following steps:

1. Insert control diskette (if applicable)
2. Return machine

Display Description

The power controller status display shows the momentary power status. The program is continuously looping while reading and displaying the current status of control lines, digital and analog sense lines, status and interrupt byte, and marks and keys.

Screen displays

- A** 'IBM MAINTENANCE AND SERVICE PROGRAM
SELECTION'
- B** 'POWER TEST SELECTION'
- C** 'POWER CONTROLLER STATUS'

Example

LVL: 0001		PWR CONTROLLER STATUS				LOOPING	
STATUS		CTRL		DIGITALS		ANALOG	
33: 00000010		CARD 1	41: 10100000	81: 00000000	85: 11111111		
			43: 00001101	83: 00000000	87: 10110100		
11: 00000000			45: 10000100	91: 00000000	95: 10111100		
			47: 10100000	93: 00000000	97: 11111011		
MARK							
00000000		CARD 2	51: 11000010	A1: 00000000	A5: 00110000		
KEYS			53: 11110001	A3: 00000000	A7: 01010000		
10000000			55: 10001111	B1: 00000000	B5: 10001000		
			57: 10100000	B3: 00000000	B7: 00000000		
MCNT		INTF	30: 00001000				
0000							

CTRL=Control Line
1=Line active
0=Line inactive

Digitals=digital sense lines
1=Line active
0=Line inactive

Analog=analog' sense lines
1=Voltage ok > 80%
0=Voltage < 80%

Sense and Control tables are shown on ALD pages YA031 and YA033 and on pages 4560 and 4570 of this book.

Voltage Measurement Program

Purpose

The voltage measurement program is a customer engineering tool. This program allows a CE to display all analog sense points on the display simultaneously. The measurement program is to be used for voltage adjustments of the IPS-voltages.

The program indicates when a voltage differs from the nominal value by displaying + or - signs on the screen. The greater the voltage difference, the greater the number of + or - signs displayed. Characters + and - are used to indicate whether the voltage is minus or plus with respect to the nominal value. When a measured voltage is exact 100 percent of nominal value neither + or - is displayed. See 'display - example'.

Only those voltage monitoring points represented in the 'Master Mask' can be displayed.

Handling

Select program from the power test selection menu. When called, the program may loop while displaying all voltages.

To select a single voltage the ENTER key must be pressed to enter stop mode for selection.

After a single voltage has been selected, by typing address and bit of the voltage (see page 4570) press ENTER key to continue.

The program again loops, and spreads the voltage graph, as seen in the example.

When adjustment is complete, press ENTER key to return to the normal mode.

CE-Mode on

If a voltage exceeds the normal off limit, the machine will be powered down with CE-mode off. CE-mode on will raise the power down threshold to the component damage level. The displayed normal off threshold is not modified by the CE-mode.

Program Handling - Actions

Prerequisites:

1. MSSS power on for MSSS voltage measurement only
or
power complete for measurement of all system voltages.
2. Diagnostic diskette or control diskette inserted.

How to Select the Program

1. Call M/S PROGRAM SELECTION. Hold down ALT key and press DIAG key.
2. Key in selection for 'POWER', press ENTER.
3. Select Voltage Measurement and press ENTER.

How to Terminate the Measurement Program

1. Call M/S PROGRAM SELECTION if you want to run other tests
or
insert control diskette (if not inserted) and return machine to customer.

Program Handling - Results

Display-Description

(See display example on the next page.)

Voltage Adjustments

Only 4 voltages generated by the IPS are adjustable (see table on the next page). The MAP 0279 shows the voltage adjustment procedure.

Physical Sense Points

See ALD pages YA821 to YA873 and YA031 to YA033. A sense point table is shown also on page 4005 of this manual.

Voltage Measurement Display Example

1 If a voltage exceeds the CALL CE limit, a reference code is displayed and the error condition is logged. The machine is not powered down if the voltages are below the normal off limit.

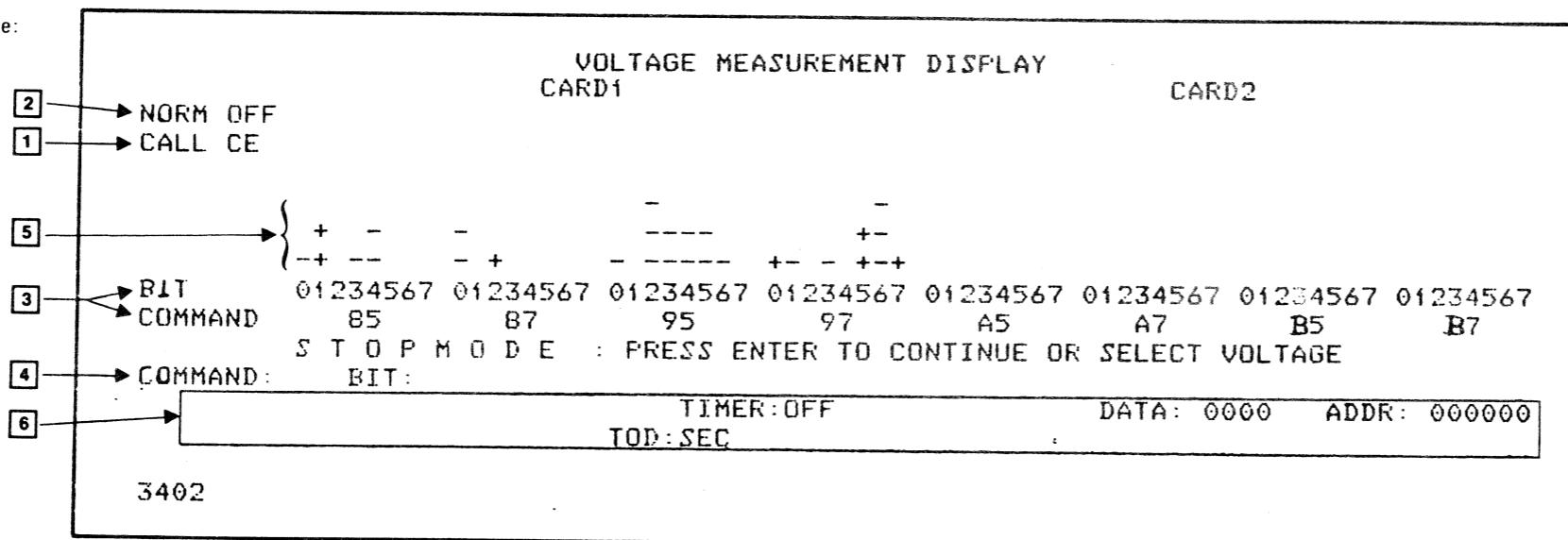
2 If any voltage exceeds the normal off limit, a reference code is displayed, the error condition is logged and the machine is powered down if CE-mode is off.

If the support processor voltages are ok, the MSSS keeps powered up. With CE-mode on, the machine will be powered down if the component damage level of any voltage is reached or exceeded (see page 4005).

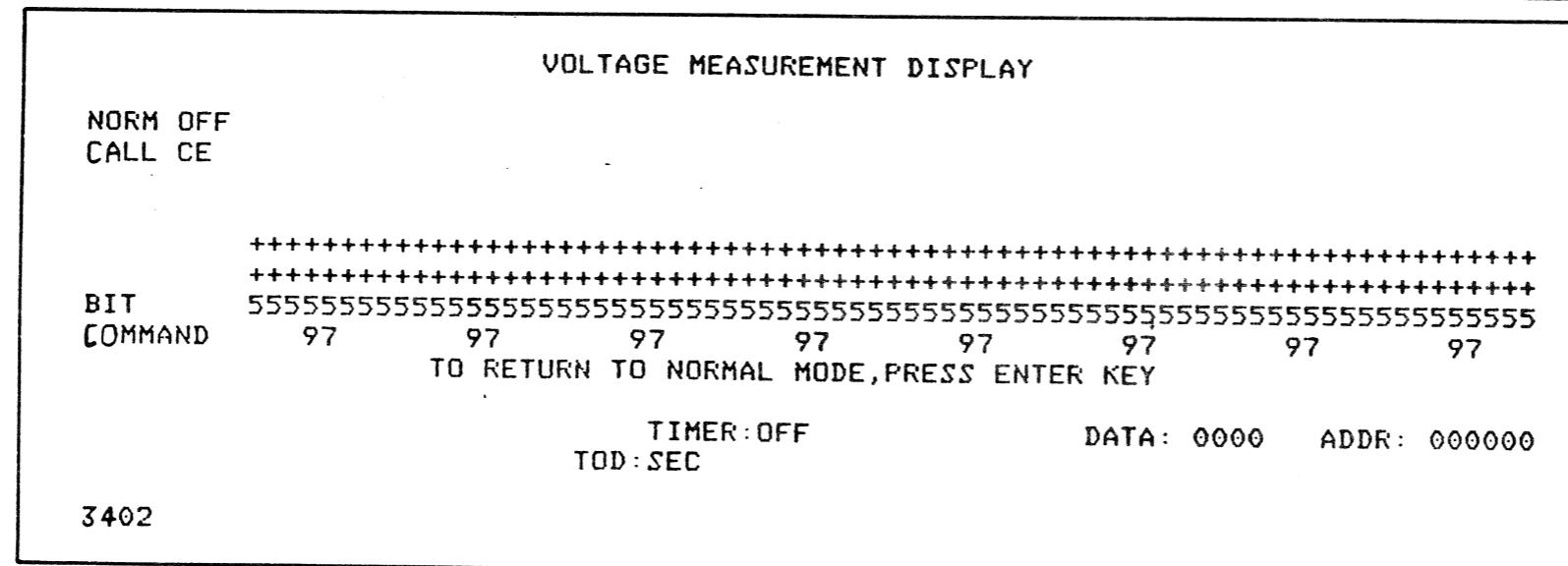
3 The meaning of the command bits are shown in the sense table on page 4570 of this book.

4 For expanded display enter command and bit here.

5 Relative percentage above (+) or below (-) nominal value. Percentage per displayed sign varies from address to address.


6 This information is not used for the voltage measurement program.

Adjustable voltages:


Command	Bit	Voltage	PS-No
87	0	+4.26	111
95	2	-6.54	112
95	3	-4.34	113
95	4	-1.52	114

If -6.54V is out of tolerance, adjust -4.34V (95-3) first.
For adjustment procedure see MAP 0279.

Normal Display Example:

Expanded Display Example:

Power Log Display

Log Handling - Actions

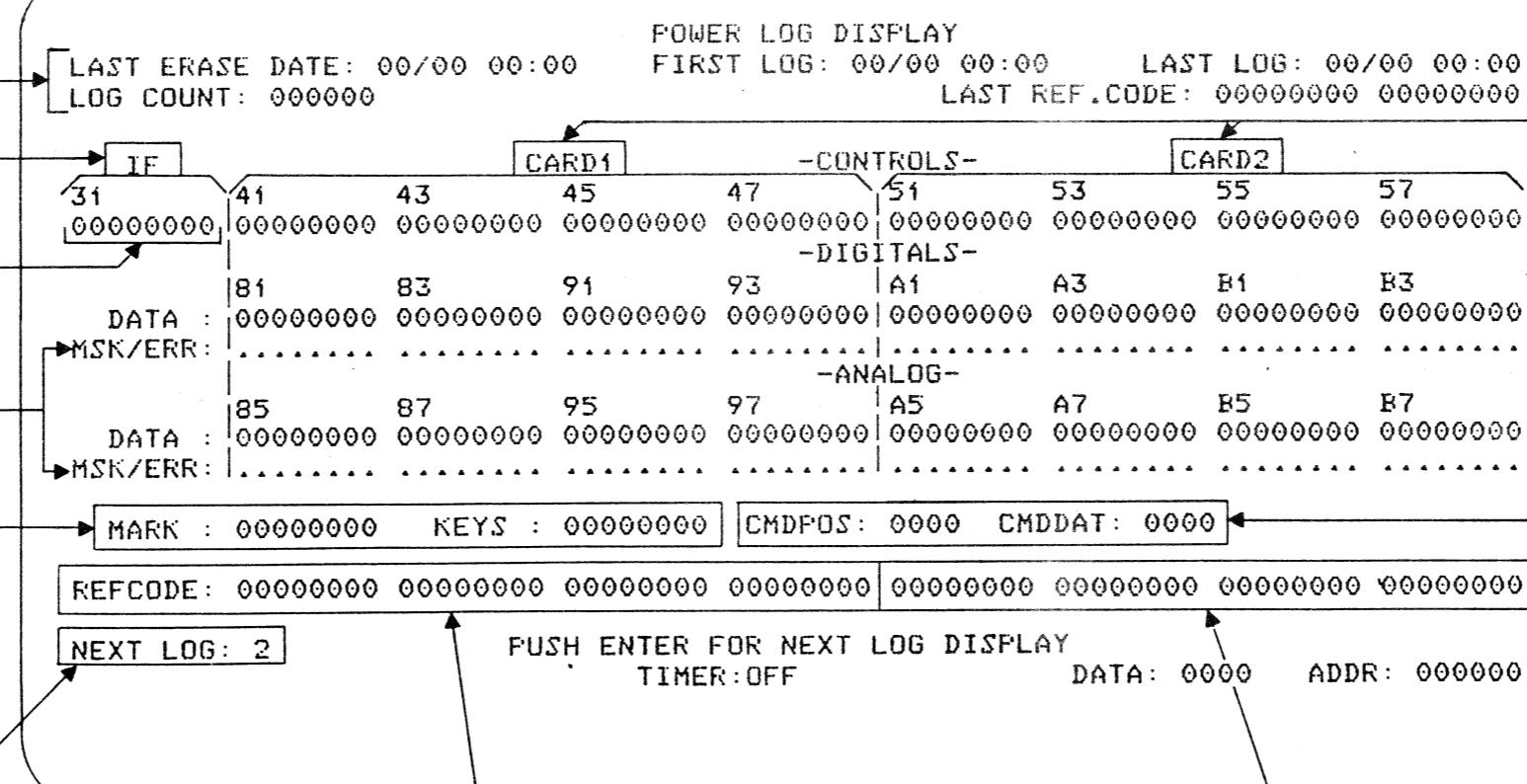
Prerequisites:

1. MSSS power on or power complete
2. Insert control diskette

How to Select the Log

1. Call M/S PROGRAM SELECTION. Hold down ALT key and press DIAG key. **A**
2. Key in selection for 'DETAILED LOG DISPLAY', press ENTER. **B**
3. Key in selection for 'POWER LOG', press ENTER **C**

C Example


header (common format for all detailed logs)

PC interface card

Interface card control register

shows the bit configuration of the master mask:
1 = active bit
* = bit which caused the error (monitor error)

contains supplementary log information used for reference code generation (see sense and control table)

Log 2 will be displayed after pushing ENTER.
Pushing ENTER after log display 4 brings back log display 1, and so on.

For reference codes 1-4 detailed logs are available, which can be displayed in sequence 1-4. The reference code corresponding to the current log display is always intensified displayed.

Log Handling - Results

Screen displays:

A 'IBM MAINTENANCE AND SERVICE PROGRAM SELECTION'
B 'DETAILED LOG DISPLAY SELECTION'
C 'POWER LOG DISPLAY'
(see example)

PC sense cards 1 and 2

addresses and bits of control lines, digital sense lines, and analog sense lines.
(see Sense and Control Table in ALD or in this manual)

Indicates timeout error conditions during the power on/off sequence:

CMD POS xxxx
points to the failing power sequence step
(see flowchart 'Power on sequence via PC')

CMDDAT xxxx
address } of failing data } byte

For reference codes 5-8 no detailed logs are available.

Ambient Recording Log Display

The ambient recording log display consists of two parts:

1. Up to 96 temperature logs are available (see example on page 6150).
2. Up to 96 ESD incidents are logged and displayed as shown on page 6150.

The corresponding reference codes are not displayed in line 23 of the operator console screen.

Temperature and ESD incidents are added to the corresponding log area in ascending order. The latest log always has the highest sequence number. If 96 logs are already available and a new log is pending, all old logs are shifted and the new log is written into position 96.

If an ESD log is wrong (ESD latch missing which means a hardware failure) the ESD monitor is automatically disabled up to the next IML and the wrong ESD log is intensified displayed.

If the ESD monitor is disabled, a message is added to the Ambient Recording Log display:

'Currently no ESD monitoring'.

The ESD monitor can be manually disabled by setting the current ESD sense level to 0.

To enable the ESD monitor again after a manual disabling, select a valid ESD-sense level (1 to 4).

Log Handling - Actions

Prerequisites:

1. MSS power on or power complete
2. Insert control diskette (the diagnostic diskette may also be used).

How to Select the Log

1. Call M/S PROGRAM SELECTION. Hold down ALT key and press DIAG/MODE SEL key. **A**
2. Key in selection for 'DETAILED LOG DISPLAY', press ENTER. **B**
3. Key in selection for 'AMBIENT RECORDING' press ENTER. **C**
The Temperature Log display on the screen shows up to 48 temperature logs. If more than 48 temperature logs are available, press ENTER for next temperature log display (see example on next page).
4. Press ENTER for ESD log display. **D**
Up to 48 are shown in the ESD log picture. If more than 48 logs are available, press ENTER for next ESD log picture which shows the logs 49 to 96.

How to Terminate the Log Display

1. Press ALT key and hold press DIAG key. The 'IBM MAINTENANCE and SERVICE PROGRAM SELECTION' is displayed on the screen.

Log Handling - Results

Screen displays:

- A** 'IBM MAINTENANCE AND SERVICE PROGRAM SELECTION'
- B** 'DETAILED LOG DISPLAY SELECTION'
- C** 'AMBIENT RECORDING LOG DISPLAY'
(Temperature Log, see example on next page)
- D** 'AMBIENT RECORDING LOG DISPLAY'
(ESD LOG, see example on next page)

Ambient Recording Log Display (continued)

Temperature Log Display

Temperature exceeded upper limit (U = UP)

Temperature went back to normal (D = Down)

Time stamp
The difference between the first and second stamp is the duration of high ambient temperature.

Log numbering (48 per display)

Information whether additional logs exist or not

AMBIENT RECORDING LOG DISPLAY											
LAST ERASE DATE: 04/06 09:10				FIRST LOG: 04/07 09:36				LAST LOG: 04/07 18:02			
LOG COUNT: 000031				LAST REF. CODE E8000401 00000000							
TEMP	DATE	TIME	TEMP	DATE	TIME	TEMP	DATE	TIME	TEMP	DATE	TIME
U..D	MM/DD	HH:MM	U..D	MM/DD	HH:MM	U..D	MM/DD	HH:MM	U..D	MM/DD	HH:MM
01*	04/07	15:53	13.....	25.....	37.....
02**	04/07	18:02	14.....	26.....	38.....
03.....	15.....	27.....	39.....
04.....	16.....	28.....	40.....
05.....	17.....	29.....	41.....
06.....	18.....	30.....	42.....
07.....	19.....	31.....	43.....
08.....	20.....	32.....	44.....
09.....	21.....	33.....	45.....
10.....	22.....	34.....	46.....
11.....	23.....	35.....	47.....
12.....	24.....	36.....	48.....
ALL TEMPLOGS DISPLAYED				CURR. STATUS: E8000401				PRESS ENTER FOR ESD/LOG DISPLAY			
CURRENT MINIMUM ESD-SENSE LEVEL: 3 CHANGE MINIMUM ESD-SENSE LEVEL TO:											
TIMER: OFF				DATA: ADDR:							
TOD: SEC											

Current ambient status during Log display.
Only the reference code is displayed. The information is not logged (see reference code directory E8XX).

ESD Log information (see next figure).

ESD Log Display

ESD Level
4 = highest level
1 = lowest level
(see description of ESD Monitor in this book)

ESD incident level 3

ESD incident level 4

Log numbering
(48 logs per display)

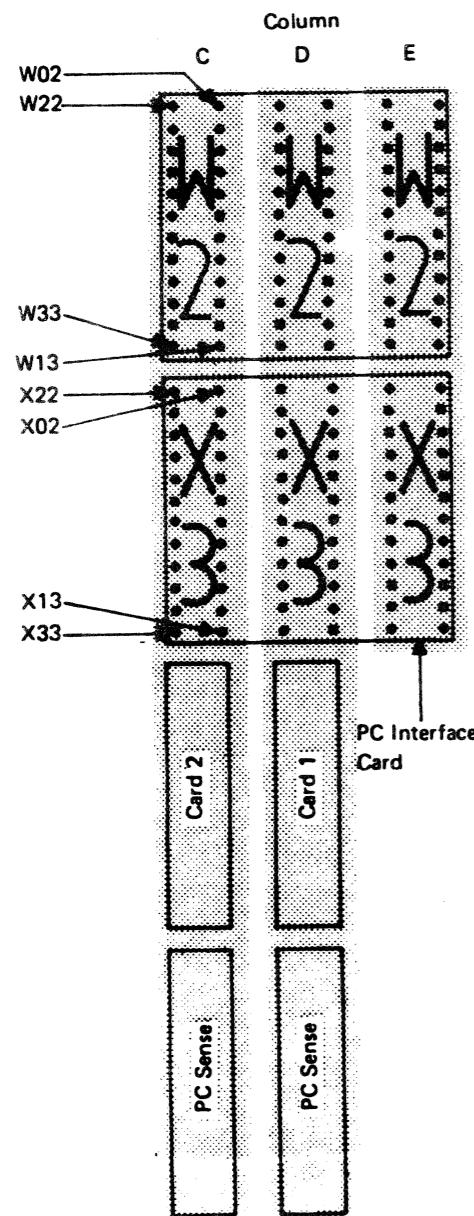
Time stamp
MM = month
DD = day
HH = hour
MM = minute

Shows the minimum ESD sense level. Sense level 3 means: No ESD incident below level 3 is logged. Only ESD incidents with level 3 and 4 will appear in the log picture.

AMBIENT RECORDING LOG DISPLAY											
LAST ERASE DATE: 04/06 09:10				FIRST LOG: 04/07 09:36				LAST LOG: 04/07 18:02			
LOG COUNT: 000031				LAST REF. CODE E8000401 00000000							
ESD	DATE	TIME	ESD	DATE	TIME	ESD	DATE	TIME	ESD	DATE	TIME
4321	MM/DD	HH:MM	4321	MM/DD	HH:MM	4321	MM/DD	HH:MM	4321	MM/DD	HH:MM
01***	04/07	09:36	13.....	25.....	37.....
02***	04/07	09:41	14.....	26.....	38.....
03.....	15.....	27.....	39.....
04.....	16.....	28.....	40.....
05.....	17.....	29.....	41.....
06.....	18.....	30.....	42.....
07.....	19.....	31.....	43.....
08.....	20.....	32.....	44.....
09.....	21.....	33.....	45.....
10.....	22.....	34.....	46.....
11.....	23.....	35.....	47.....
12.....	24.....	36.....	48.....
ALL ESD LOGS DISPLAYED				CURR. STATUS:				PRESS ENTER FOR TEMPLOG DISPLAY			
CURRENT MINIMUM ESD-SENSE LEVEL: 3 CHANGE MINIMUM ESD-SENSE LEVEL TO:											
TIMER: OFF				DATA: ADDR:							
TOD: SEC											

Information for additional logs.

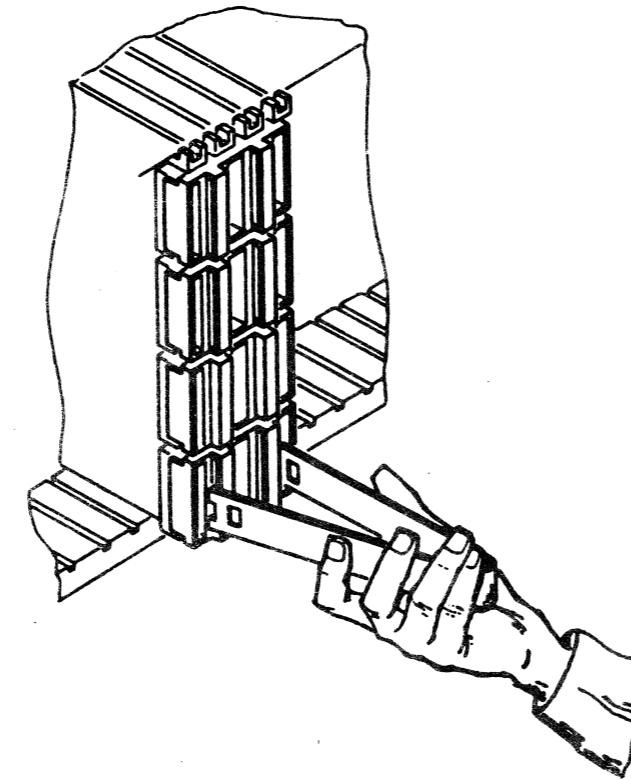
ESD sense level can be set to each valid level 0 to 4. Do not modify the sense level unless instructed to do so by MAP's or by an FSC specialist.


Current ambient status during log display.
Only the reference code is displayed (see Reference code directory (E8XX). The error information is not logged.

Connectors

PC Top Connectors

The interconnection of the power-controller interface card and sense cards is done by two different top connectors. The top connectors are labeled W2 and X3 and are not interchangeable. The connector identification can be seen through the slots of the top connector housing.

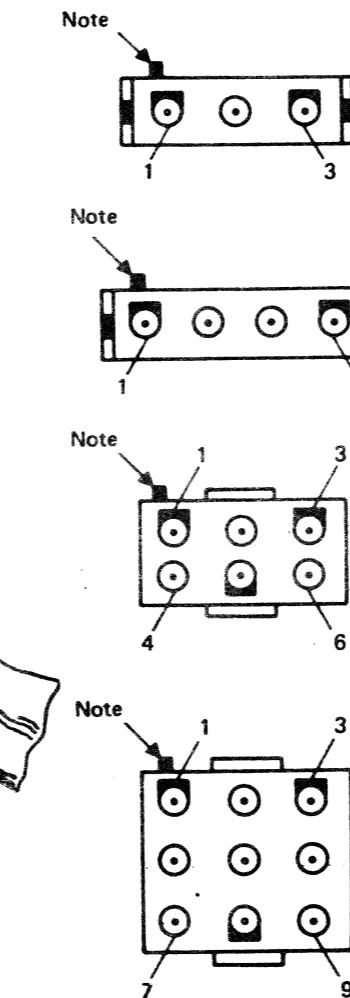

An additional pin identification is printed next to pins W22, W33, X22 and X33. The connectors must be plugged as shown on the following figure.

Top Connector Extraction

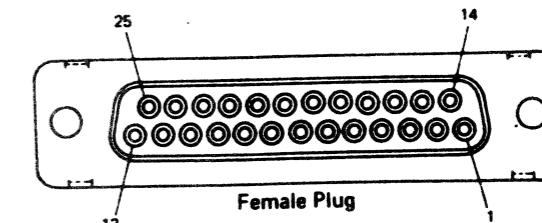
Top connectors can be easily extracted using the extraction tool P/N 454065 which was originally designed for extraction of wire contact relays.

The tool is part of the CE tool set and should be handled as shown below.

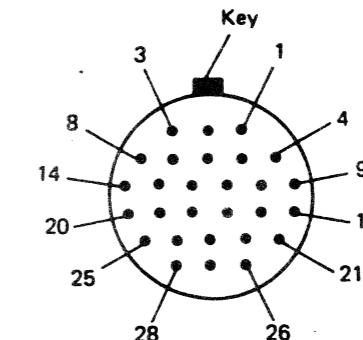
AC-Connector for Diskette Drives

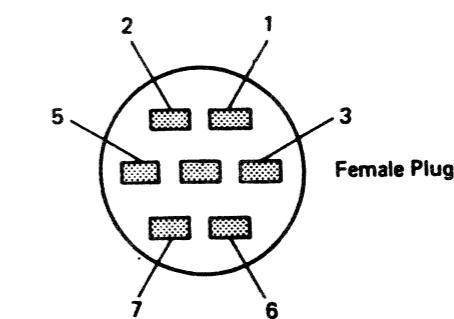

1,3 = line voltage
5 = Gnd

If the diskette drive motor or its AC cable must be replaced, ensure that the ground connectors have correct contact.

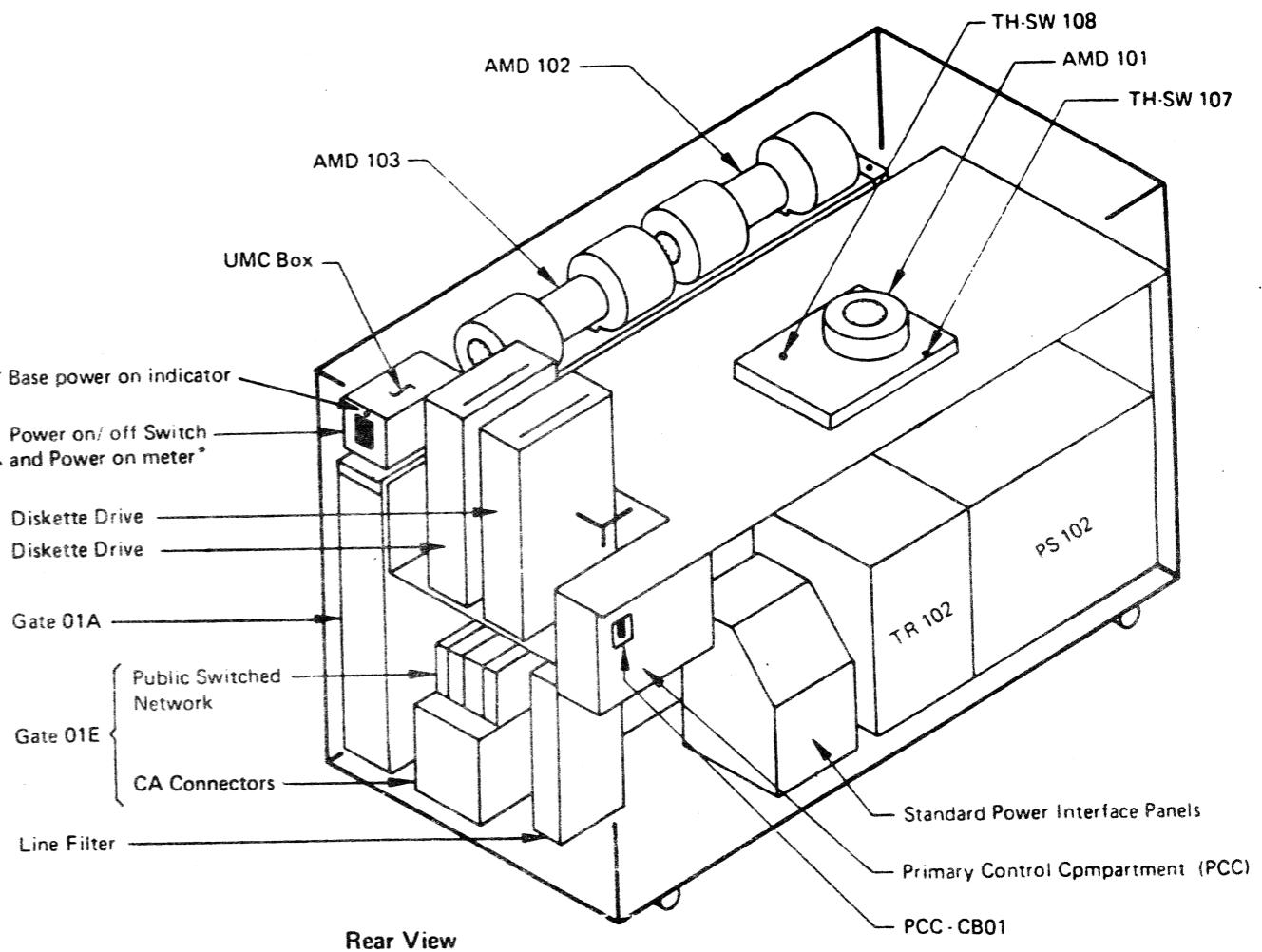
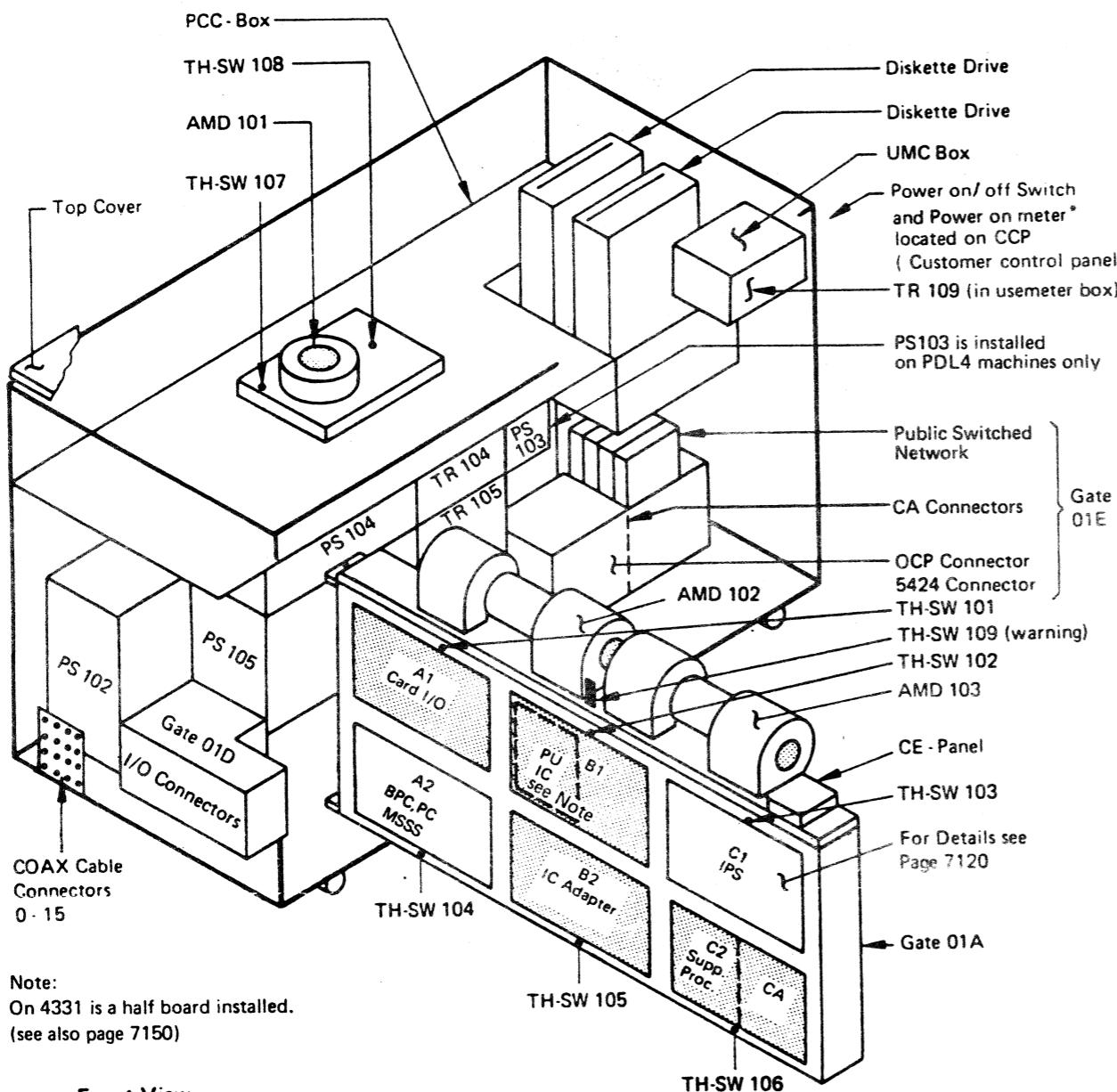

Power Connectors

The various Field Replaceable Units (FRU's) of the power complex are interconnected by connectors with up to 15 pins.


The pin counting scheme on the following figure shows the pin side view (male plug).

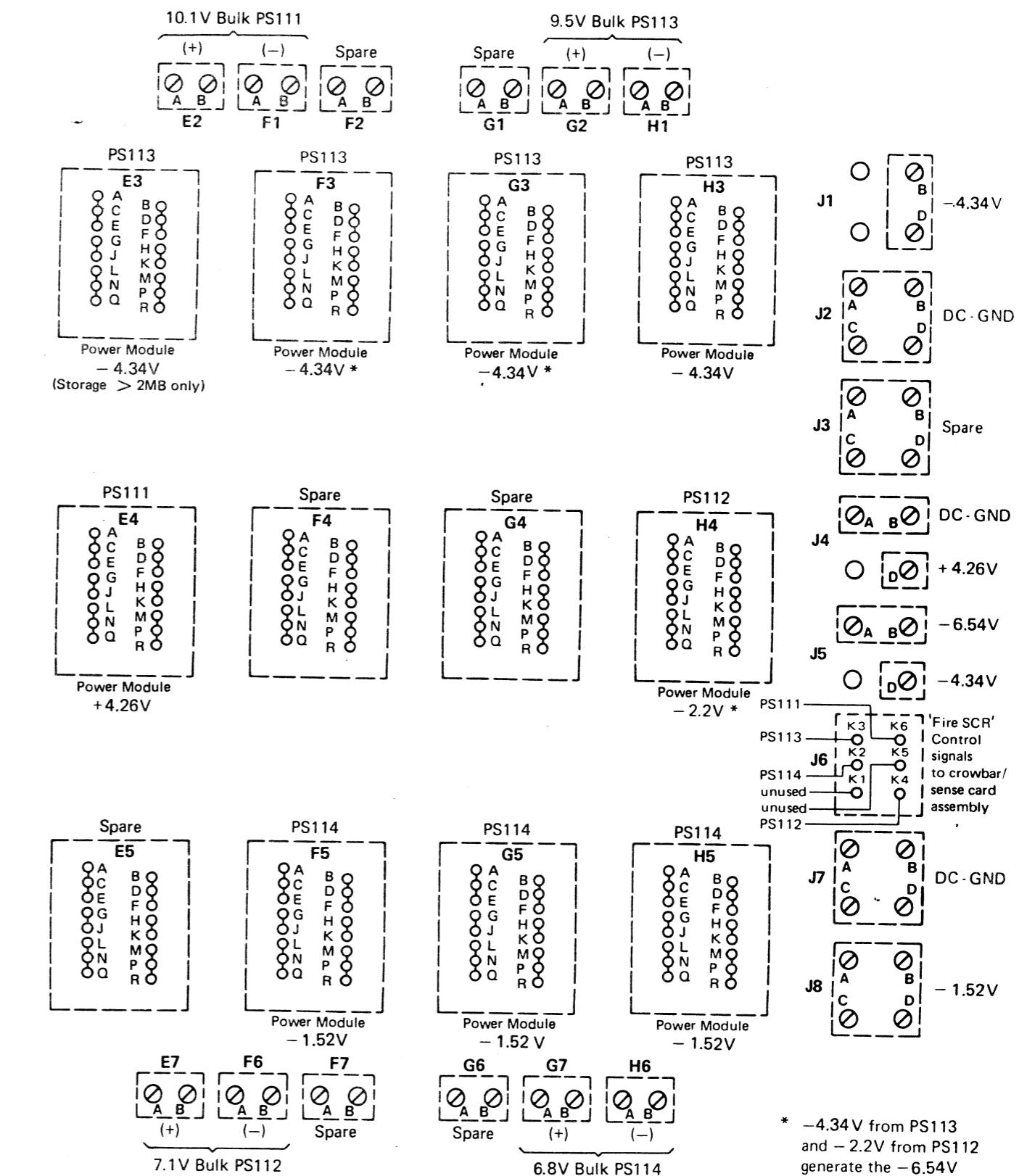
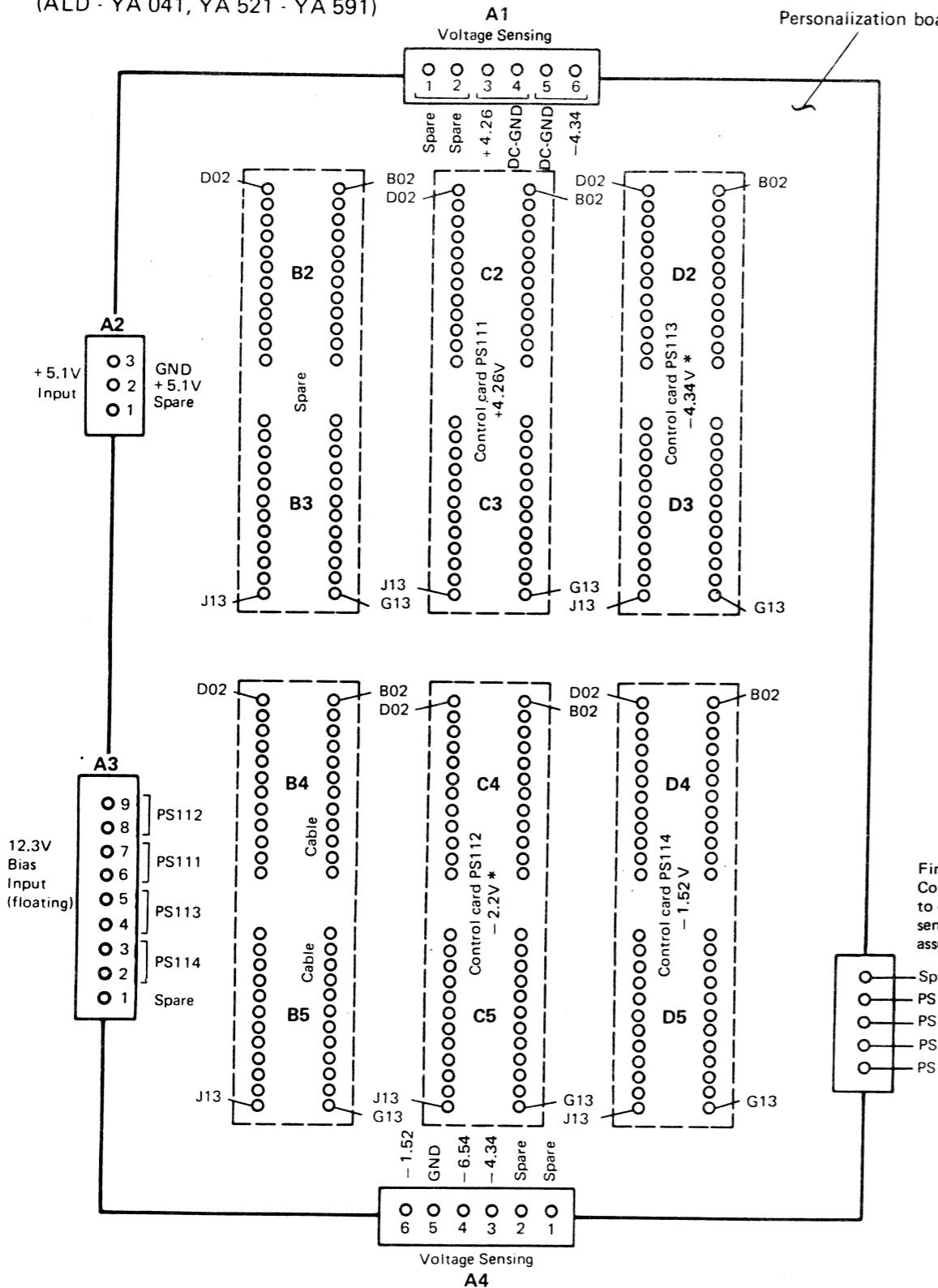

OCP-Connector (Located in Keyboard Housing)

CCP-Connector (Located Next to Connector Compartment 01E)



MFCU DC-GND Connector

The pin counting scheme of connectors with more than 9 pins is similar.

Note: This mark on the connector housing identifies pin number 1. The identification is valid for male as well as for female plugs.



Physical Locations

* not installed in all machines

IPS Board 01A-C1 (pin side view)

(ALD - YA 041, YA 521 - YA 591)

© Copyright International Business Machines Corporation 1979, 1980, 1981

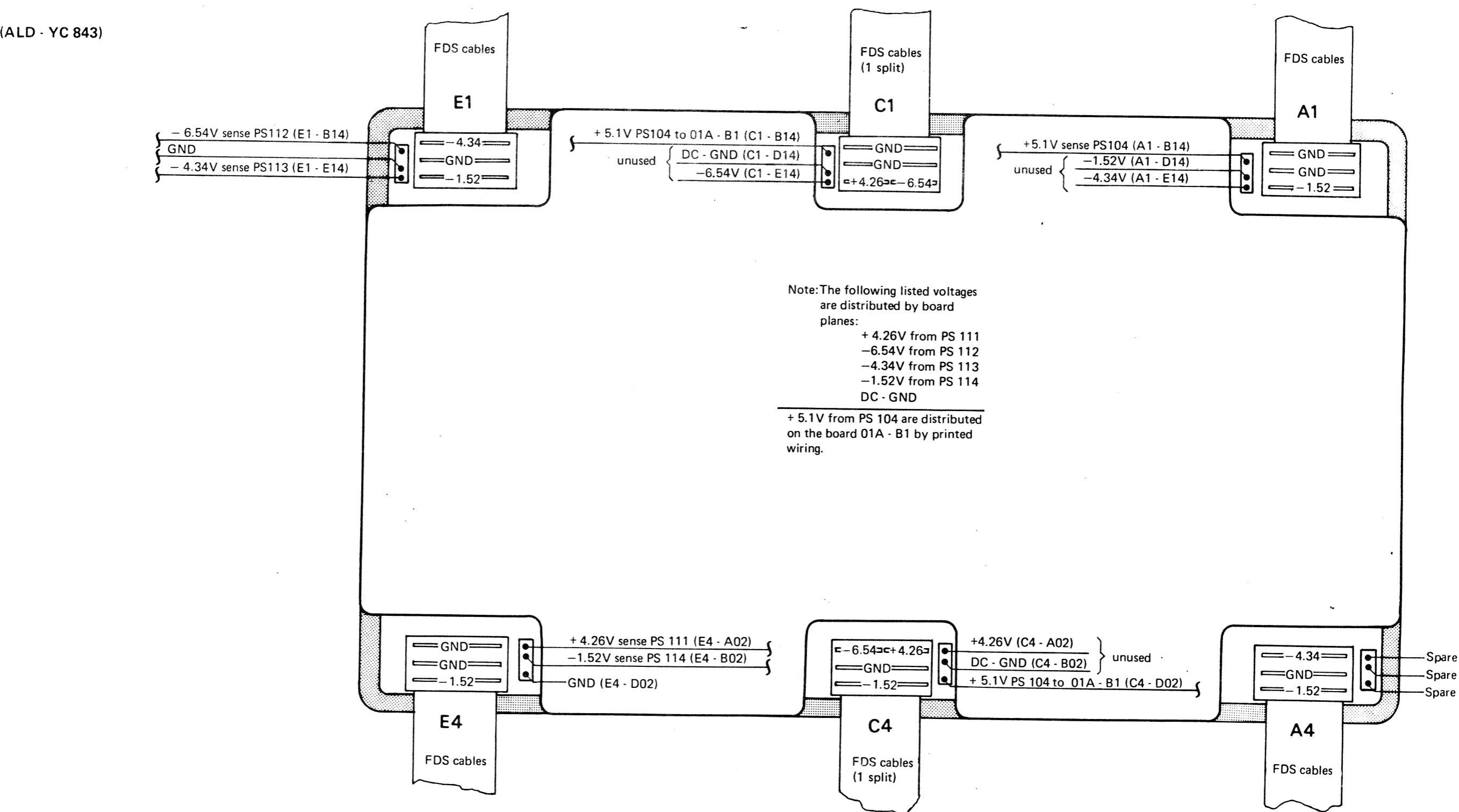
4331 -2 PDL4 -C

Power

EC 366388
23 Jan 81

EC 366390
10 Apr 81

P/N 8488247
Page 1 of 2

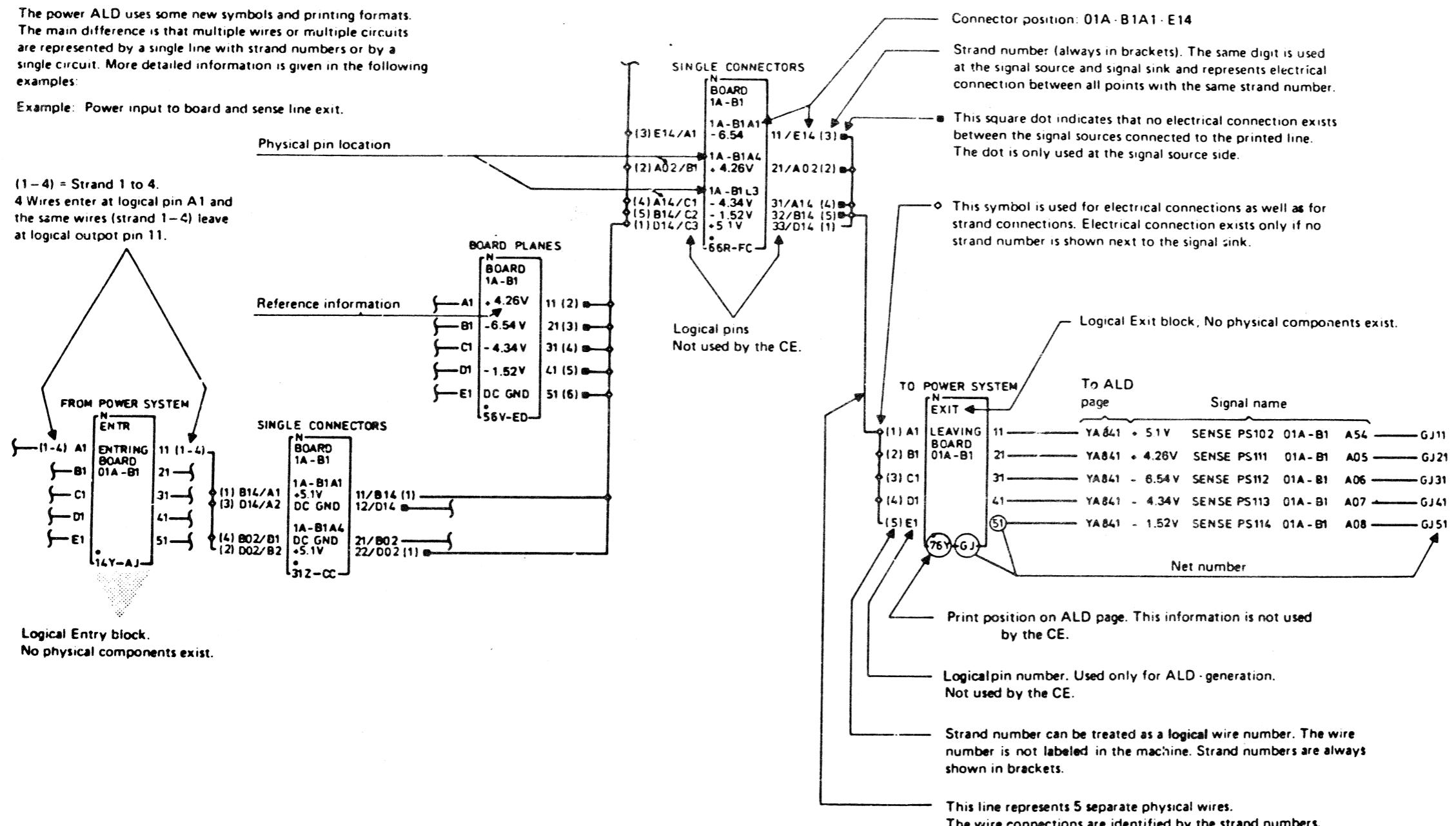

7 120

REF

Board 01A-B1 (pin side view)

Sense and Voltage connectors

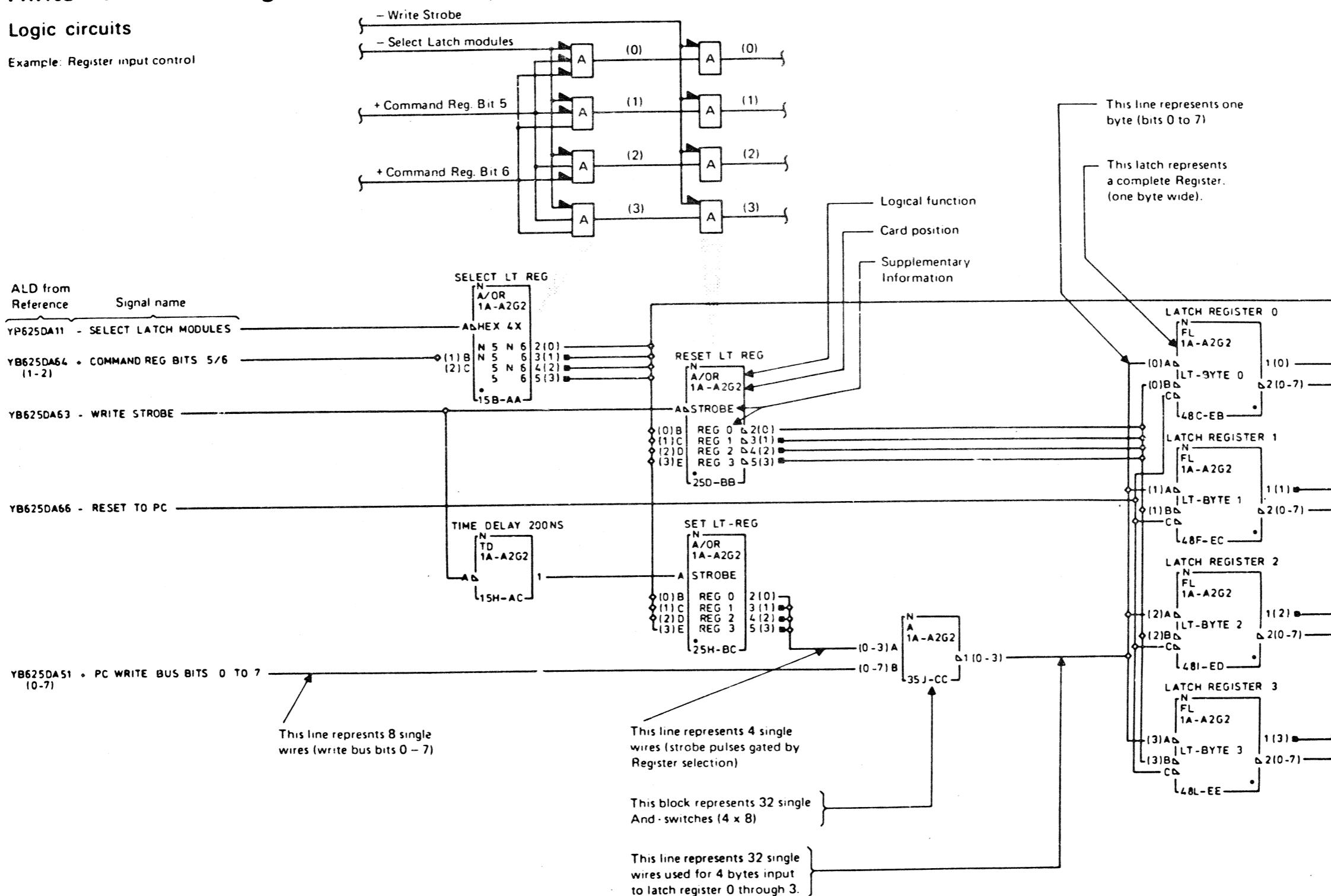
(ALD - YC 843)



Hints for ALD Usage

1. Wiring

The power ALD uses some new symbols and printing formats. The main difference is that multiple wires or multiple circuits are represented by a single line with strand numbers or by a single circuit. More detailed information is given in the following examples:


Example: Power input to board and sense line exit.

Hints for ALD Usage

Logic circuits

Example: Register input control

Index

AC-CONNECTOR	7010	COMMAND CHECK	4210	HINTS FOR POWER MAINTENANCE	6050
ADDRESS CHECK	4550	COMMAND CHECK	4500	HINTS FOR TROUBLE SHOOTING INTERMITTENT	
ADDRESS MATCH TEST	4500	COMMAND DECODE	4210	POWER PROBLEMS	6070
ALD	7160	COMMAND LOADED	4500	I/O CONNECTORS	7050
AMBIENT LOG DISPLAY	6140	COMMAND REGISTER	4210	I/O TAG	4500
AMBIENT LOG DISPLAY	6150	COMMAND REGISTER	4500	IMPORTANT HINTS FOR POWER MAP-USAGE	6050
AMD 101	4000	COMPARATORS	4210	INHIBIT	4500
AMD 101	7050	CONNECTION OF PROBE POWER CABLE	6050	INTEGRATED POWER SYSTEM	3040
AMD 102	4000	CONNECTORS	6060	INTERFACE CARD	1020
AMD 102	7050	CONTROL CARD PS 111	7120	INTERFACE CARD	4210
AMD 103	4000	CONTROL CARD PS 112	7120	INTERMITTENT POWER PROBLEMS	6070
AMD 103	7050	CONTROL CARD PS 113	7120	INTERRUPT BIT	4410
ANALOG MEASUREMENT	3050	CONTROL CARD PS 114	7120	INTERRUPT BUS	4210
ANALOG MEASUREMENT EXAMPLE	3050	CONTROL CARDS	3040	INTERRUPT BUS	4410
ANALOG SENSE LINES	3010	CONTROL LINES	3010	INTERRUPT BUS	4510
ANALOG SENSE LINES	4210	CONTROL LINES	4550	INTERRUPT CONTROL	4210
ANALOG SENSE LINES	4550	CONTROL LINES TO POWER SYSTEM	4210	INTERRUPT ENABLED	4410
ASSISTANCE	6080	CONTROL UNIT	4600	INTERRUPT GENERATOR	4210
BAND PASS FILTER	3080	COVER PAGE	0000	INTERRUPT GENERATION	4400
BASE POWER CONTROL	3010	CROWBAR/SENSE CARD ASSEMBLY	3040	INTERRUPT MASK	4210
BASE POWER CONTROL	3020	CU POWER COMPLETE	4600	INTERRUPT MASK	4500
BASE POWER CONTROL	4100	DAC	3050	INTERRUPT MASK CIRCUITS	4410
BASE POWER ON INDICATOR	4020	DAC	4410	INTERRUPT REQUEST	4410
BASE POWER ON INDICATOR	7050	DAC OUTPUT DIAGRAM	3050	INTERRUPT REQUEST TO SP	4410
BASE PWR OFF LATCH	4040	DEVICE CLUSTER ADAPTER	3010	INTERRUPT REQUEST LATCH	4500
BASE PWR ON INDICATOR	4000	DESCRIPTION OF POWER COMPLEX FUNCTIONAL		INTERRUPT TIMEOUT	4210
BASE PWR ON INDICATOR	4040	OPERATIONS	3020	INVALID COMMAND	4500
BASIC INTERRUPT	4410	DIGITAL ANALOG CONVERTER	3050	IPO CONTROL	4600
BASIC INTERRUPT	4500	DIGITAL ANALOG CONVERTER	4210	IPS	4000
BASIC INTERRUPT	4510	DIGITAL SENSE LINES	3010	IPS BOARD 01A-C1	7120
BAT, IML	4020	DIGITAL SENSE LINES	4210	IPS CROWBAR / SENSE CARD ASSEMBLY	3040
BEFORE CALLING FOR ASSISTANCE	6080	DIGITAL SENSE LINES	4550	IPS OVERVOLTAGE PROTECTION	3040
BIAS INPUT	7120	DISKETTE DRIVE	3010	IPS POWER MODULES	3040
BOARD 01A-A1	4000	DISKETTE DRIVE	7050	IPS PRINCIPLE	3040
BOARD 01A-A2	4000	DISKETTE DRIVE ATTACHMENT	3010	IPS TEST STATION	3040
BOARD 01A-B1	4000	DISKETTE DRIVE 1	4000	IPS VOLTAGE ADJUSTMENT AND JUMPERING	3040
BOARD 01A-B1	7150	DISKETTE DRIVE 2	4000	IPS VOLTAGE INTERCONNECTIONS	3040
BOARD 01A-B2	4000	ENABLE TIMEOUT	4410	IPS: +4.26 V FINAL	4020
BOARD 01A-C1	4000	EMC HARDWARE	3080	IPS: +4.26 V FINAL	4040
BOARD 01A-C2	4000	EMC CHECK LIST	3080	IPS: +4.26 V INITIAL	4020
BPC POWER ON	4020	ESD MONITOR	3085	IPS: +4.26 V INITIAL	4040
BPC, PC	7050	ESD LOG	6150	IPS: -1.52V	4020
BUS 0	4500	FERRO-RESONANT SUPPLY	3030	IPS: -1.52V	4040
BUS 0	4510	FIRE SCR	7120	IPS: -4.34V	4020
BUS 1	4500	FLOATING SIGNAL	6060	IPS: -4.34V	4040
BUS 1	4510	FREEZE	4500	IPS: -6.54V	4020
BYTE SELECTION	4210	FUNCTIONS OF THE PC INTERFACE CARD	4200	IPS: -6.54V	4040
BYTE TEST	4550	FUNCTIONS OF THE PC SENSE CARD	4200	IR MASK	4550
CA CONNECTORS	7050	GATE INTERRUPT BUS	4500	IR TIMEOUT PULSE	4550
CARD PLUGGING	6050	GATE PC READ BUS	4500	IRR	4550
CE-METER ACCURACY CHECK	6060	GATE TRANSFER	4500	LATCH BYTE	4550
CE-PANEL	3010	GATE 01A	7050	LATCH REGISTER	4210
CE-PANEL	4000	GATE 01D	7050		
CE-PANEL	7050	GATE 01E	7050		
CMD POS	4310	HALT	4500		
CMD POS	4450	HINTS FOR ALD USAGE	7160		

© Copyright International Business Machines Corporation 1979,1980,1981

4331 PDL4-B/C

Power

EC 366369 30 Nov 79	EC 366390 10 Apr 81		P/N 5684083
			Page 1 of 4

9900

REF

Index (continued)

LINE FILTER	3080	POWER COMPLEX VOLTAGE DISTRIBUTION	1010	PS 104	7050
LINE FILTER	7050	POWER COMPLEX DATA FLOW	1020	PS 105	4000
MACHINE CHECK	4500	POWER COMPLEX OPERATIONS	3010	PS 105	4020
MACHINE CHECK	4210	POWER CONNECTORS	7010	PS 105	4040
MAP ENTERING	6050	POWER CONTROLLER	1020	PS 105	7050
MARK	4560	POWER CONTROLLER	3010	PS 111	4000
MEASUREMENTS AT CONNECTORS	6060	POWER CONTROLLER	3020	PS 111	7120
METER POWER PACK	4000	POWER CONTROLLER DESCRIPTION	4200	PS 112	4000
MFCU DC-GND CONNECTOR	7010	POWER CONTROLLER DATA FLOW	4210	PS 112	7120
OCP CONNECTOR	7050	POWER CONTROLLER WRITE/READ OPERATION	4220	PS 113	4000
OCP CONNECTOR	7010	POWER CONTROLLER INTERFACE CARD	4500	PS 113	7120
OPERATOR CONSOLE PANEL	3010	POWER CONTROLLER SENSE CARD	4550	PS 114	4000
OPERATOR CONSOLE PANEL	4000	POWER CONTROLLER DIAGNOSTICS	4555	PS 114	7120
OVERVOLTAGE PROTECTION	3040	POWER CONTROLLER CONTROL TABLE	4560	PWR CONTR. READY	4020
PARITY VALID	4510	POWER CONTROLLER SENSE TABLE	4570	PWR CONTR. READY	4040
PC CONTROL CARDS	3040	POWER CONTROLLER CARD REPLACEMENT	6060	PWR ON SWITCH	4000
PC GENERAL FUNCTION	4200	POWER CONTROLLER STATUS DISPLAY	6120	READ BUS	4410
PC INTERFACE CARD	1020	POWER CONTROLLER TOP CONNECTORS	7010	READ BUS REGISTER	4210
PC INTERFACE CARD	4210	POWER I/O COMPLETE	4600	READ BUS REGISTER	4410
PC INTERFACE CARD	4500	POWER DISTRIBUTION	4000	READ BUS REGISTER	4510
PC READ BUS	4210	POWER IN PROCESS INDICATOR	4020	READ GATE	4410
PC READ BUS	4510	POWER IN PROCESS INDICATOR	4040	READ STROBE	4500
PC READ BUS	4550	POWER LINE TRANSITIONS (PLT,s)	3085	READ STROBE	4510
PC SELECTED	4500	POWER LOG DISPLAY	6130	REGISTER CONTROL	4210
PC SENSE CARD 1	4210	POWER METER	7050	RESET CONTROL LATCHES	4410
PC SENSE CARD 2	4200	POWER MODULES	3040	RESET PC	4210
PC SENSE CARD 2	4210	POWER SUPPLIES (PS)	3020	RESET PC	4550
PC SENSE CARD(S)	1020	POWER TEST SELECTION	6100	RESET TO PC	4040
PC TOP CONNECTORS	7010	POWER-OFF KEY USAGE	6050	RESET TO PC	4550
PC WRITE BUS	4210	POWER-OFF SEQUENCE FLOW CHART	4030	RESET TO POWER CONTROLLER	4020
PC WRITE BUS	4500	POWER-OFF SEQUENCE VIA PC	4450	SCR	3040
PC WRITE BUS	4550	POWER-OFF SEQUENCE	3020	SELECT LATCH MOD	4500
PCC	7050	POWER-OFF SEQUENCE TIMING CHART	4040	SELECT LATCH MODULES	4550
PCC-CB01	4000	POWER-ON SEQUENCE	4020	SELECT LATCH REGISTER	4500
PCC-CB01	7050	POWER-ON SEQUENCE VIA PC	4310	SELECT SENSE MODULE	4550
PCC-K04	4000	POWER-ON SEQUENCE	3020	SENSE BYTE SELECTION	4210
PCC-K04	4040	POWER-ON SEQUENCE FLOW CHART	4010	SENSE BYTE SELECTION	4410
PCC-K04 CONNECTIONS	7010	POWER-ON SEQUENCE TIMING CHART	4020	SENSE CARD 1	4210
PCC-K02	4000	POWER-ON TIME DELAY	4020	SENSE CARD 2	4210
PCC-K02	4020	POWER-ON/OFF SWITCH	4020	SENSE CARD(S)	1020
PCC-K02	4040	POWER-ON/OFF SWITCH	4040	SENSE POINTS	4005
PCC-K03	4000	POWER-ON/OFF SWITCH	7050	SIGNAL NAMES AND REFERENCES	6070
PCC-K03	4040	PREFACE	0010	SPI PANEL	4600
PHYSICAL LOCATIONS	7050	PROBE MAIN INPUT	6060	STANDARD POWER INTERFACE (SPI)	4000
PICK PCC-K04	4020	PROBE SWITCH SETTING	6050	STANDARD POWER INTERFACE (SPI)	4600
PICK PCC-K03	4020	PROCESSOR BUS	3010	START CH I/O'S	4020
PICK PCC-K02	4020	PROGR. PWR OFF LATCH	4040	START I/O CU	4600
PICK PS105-K01	4020	PS 102	4000	START 5424	4020
PLT	3085	PS 102	4020	START 5424, CH I/O'S	4040
PC CONTROL CARDS	3040	PS 102	4040	STATUS REGISTER	4410
POR TO MSSS	4020	PS 102	7050	STROBE GENERATOR	4210
POR TO MSSS	4040	PS 103	4000	SUPPORT CONTROL LOGIC	3010
POWER COMPLETE INDICATOR	4020	PS 103	7020	SUPPORT PROCESSOR	1020
POWER COMPLETE INDICATOR	4040	PS 103	7050	SUPPORT PROCESSOR	3010
		PS 104	4000	SWITCHING OFF THE LINE VOLTAGE	6050
		PS 104	4020	TABLE OF CONTENTS	0500
				TAG AND RESPONSE CONTROL	4210

Index ,continued,

TAG BUS	4500
TAG BUS	4510
TEMPERATURE LOG	6150
TERMINATION OF REPAIR ACTION	6070
TEST BYTE	4550
TEST STATION	3040
TEST STATION	4000
TH-SW 101	7050
TH-SW 102	7050
TH-SW 103	7050
TH-SW 104	7050
TH-SW 105	7050
TH-SW 106	7050
TH-SW 107	7050
TH-SW 108	7050
TH-SW 109 (WARNING)	7050
THERMAL SWITCHES	3060
TR 102	4000
TR 102	7050
TR 104	4000
TR 104	7050
TR 105	4000
TR 105	7050
TR 109	7050
UMC BOX	7050
POWER-METER	7050
VALID BYTE	4500
VALID WRITE ADDRESS	4500
VOLTAGE ADJUSTMENT AND JUMPERING	3040
VOLTAGE MEASUREMENT PROGRAM	6124
VOLTAGE MEASUREMENT DISPLAY	6125
VOLTAGE MONITORING	4400
VOLTAGE TOLERANCES	3040
WIRING CHECK PROCEDURE	6080
WRITE BUS REGISTER	4210
WRITE BUS REGISTER	4500
WRITE STROBE	4500
WRITE STROBE	4550
36MS TIMEOUT	4410
5424 CONNECTOR	7050

EC 366369 30 Nov 79	EC 366390 10 Apr 81		P/N 5684083	9 930
			Page 4 of 4	B

This page has been
intentionally left blank

READER'S
COMMENT
FORM

This form may be used to communicate your views about this publication.

They will be sent to the author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation whatever. You may, of course, continue to use the information you supply.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

Cut or Fold Along Line

READER'S
COMMENT
FORM

This form may be used to communicate your views about this publication.

They will be sent to the author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation whatever. You may, of course, continue to use the information you supply.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

Please fill in

Subject: _____ Page No.: _____

Document Title: _____ P/N: _____

Number of latest Technical Update (if any) concerning this publication (EC): _____
(REA): _____

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will forward your comments.)

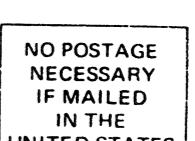
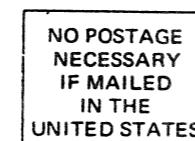
Please fill in

Subject: _____ Page No.: _____

Document Title: _____ P/N: _____

Number of latest Technical Update (if any) concerning this publication (EC): _____
(REA): _____

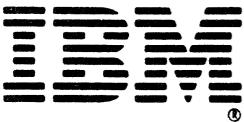
Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will forward your comments.)



EC366188 15 Nov 78	EC366189 15 JAN 79	EC 366272 31 Oct 79	P/N 8488441
Page 2 of 2			9 995

B

Reader's Comment Form

Cut or Fold Along Line


Fold and tape **Please Do Not Staple** **Fold and tape** **Fold and tape** **Please Do Not Staple** **Fold and tape**

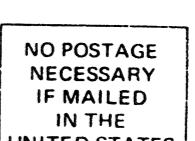
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 812B
1133 Westchester Avenue
White Plains, New York 10604

Fold and tape**Please Do Not Staple****Fold and tape**


International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

Reader's Comment Form

Fold and tape **Please Do Not Staple** **Fold and tape** **Fold and tape** **Please Do Not Staple** **Fold and tape**

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 812B
1133 Westchester Avenue
White Plains, New York 10604

Fold and tape**Please Do Not Staple****Fold and tape**

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601