VSE/Advanced Functions
: Application Programming:
‘ Macro Reference




SC24-56211-1
File No. S370/4300-30

VSE/Advanced Functions
Application Programming:
Program Product Macro Reference

Program Number 5746-XE8

Version 1 Release 3
Modification Level 5



Second Edition (June 1983)

This is a major revision of SC24-5211-0. This edition applies
to Version 1, Release 3, Modification Level 5 of VSE/Advanced
Functions, Program Number 5746-XE8, and to all subsequent
releases until otherwise indicated in new editions or Technical
Newsletters.

Changes are made periodically to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this document is not intended to state or
imply that only IBM's program product may be used. Any func-
tionally equivalent program may be used instead.

Publications are not stocked at the addresses given below;
requests for copies of IBM publications should be made to your
IBM representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed either to:

IBM Corporation

Dept 812BP

1133 Westchester Avenue
White Plains, NY 10604, USA

or to:

IBM Deutschland GmbH

Dept 3248

Schoenaicher Strasse 220

D-7030 Boeblingen, Federal Republic of Germany

IBM may use or distribute whatever information you supply in any
way it believes appropriate without incurring any obligation to
you.

© Copyright International Business Machines Corporation 1979,
1983



PREFACE

This publication contains, for the experienced programmer, reference
information about data management and system control macros. It
lists all the macros in one alphabetic sequence. For the most part,
restrictions and programming details have been omitted in order to
provide rapid access to the information in this publication. If the
information included herein is not sufficient for your purposes,
refer to the books in the following publications list:

VSE/Advanced Functions Application Programming: Macro User's Guide,
SC24-5210

VSE/Advanced Functions, Data Management Concepts, GC24-5209

0S/VS - DOS/VSE - VM/370 Assembler Language, GC33-4010

The macro notation used is explained in the front of the manual.

Preface iii



iv VSE/Advanced Functions Macro Reference



CONTENTS

Macro Notation e e e e e e e e

Macro Fields
Positional Operands
Keyword Operands
Mixed Format
Notational Conventions
Register Notation .
Operands in (S,address) Notatlon

Macro Description e e e e e e

ASPL
ASSIGN
ATTACH
CALL
CANCEL
CCB .
CCB Format
CDLOAD . .
Return Codes in Reglster 15
CDMOD .
Standard CDMOD Names .
Subset/Superset CDMOD Names
CHAP e e e e
CHECK
CHKPT
CLOSE, CLOSER
CNTRL
COMRG
CPCLOSE . .
Return Codes in Reglster 15
DEQ
DETACH
DFR
DIMOD . .
Standard DIMOD Names .
Subset/Superset DIMOD Names
DISEN .o e e e
DLINT .
Line Informatlon Entrles
Field Information Entries
DRMOD e .
Standard DRMOD Names
DSPLY
DTFCD
DTFCN
DTFDA
DTFDI
DTFDR

Contents

v



DTFDU e 2 |
DTFIS T 1)
DTFMR Y
DTFMT L)
DTFOR e e e e e e e e e e e e e e e e e e e e e e e 106
DTFPH e e e e e e e e e e e e e e e e e e e e e e e 113
DTFPR e 118
DTFPT e e e e e e e e e e e e e e e e e e e e e e e e 124
DTFSD e e e e e e e e e e e e e e e e e e e e e e e 129
DTL e e e e e e e e e e e e e e e e e e e e e e e 135
DUMODFx Coe e e e e e e e e e e e e e e e e 137

Standard DUNOD Names e e e e e e e e e e e e e e e e 138

Subset/Superset DUMOD Names e e e e e e e e e e e e 138
DUMP Coe e e e e e e e e e e e e e e e e e e e e 139
ENDFL e e e e e e e e e e e e e e e e e e e e e e e 140
ENQ Gt e e e e e e e e e e e e e e e e e e e e e e e 141
E0J e e e e e e e e e e e e e e e e e e e e e e e e e 142
ERET e e e h e e e e e e e e e e e e e e e e e e e e 143
ESETL e e e e e e e e e e e e e e e e e e e e e e 144
EXCP e e e e e e e e e e e e e e e e e e e e e e e e 145
EXIT e e e e e e e e e e e e e e e e e e e e e e e e 146
EXTRACT e e e e e e e e e e e e e e 147

Return Codes in Reglster 15 e e e e e e e e e e e 148

Output from EXTRACT ID=BDY e e e e e e e e e e e e 148
FCEPGOUT e e e e e e e e e e e e e e e e e e 150

Exceptional Condltlons e e e e e e e e e e e e e 151

Return Codes in Register 15 e e e e e e e e e e e 151
FEOV e e e e e e e e e e e e e e e e e e e e e e e e 153
FEOVD e e e e e e e e e e e e e e e e e e e e e e e e 154
FETCH e e e e e e e e e e e e e e e e e e e e e e e 155
FREE e e e e e e e e e e e e e e e e e e e e e e e e e 157
FREEVIS e e e e e e e e e e e e 158

Return Codes in Reglster 15 e e e e e e e e e e e 158
GENDTL e e e e e e e e e e e e e s e e e e e e e e e 159
GENIORB e e e e e e e e e e e e e e e e e e e e e e 161
GENL e e e e e e e e e e e e e e e e e e e e e e e e e 163
GET e e e e e e e e e e e e e e e e e e e e e e e e e 164
GETIME e e e e e e e e e e e e e e e e e e e e e e e e 165
GETVIS .o e e e e e e e e e e e e e 167

Return Codes in Reglster 15 e e e e e e e e e e 168
IJBPUB e e e e e e e e e e e e e e e s e e e e e e e e 169
IORB e e e e e e e e e e e e e e e e e e e e e e e e 170
ISMOD .o e e e e e e e e e e e e e e e 173

Standard ISMOD Names e e e e e e e e e e e e e e e e 175

Subset/Superset ISMOD Names e e e e e e e e e e e 176
JDUMP coe . e e e e e e e e e e e e e e e e e e 177
JOBCOM e e e e e e e e e e e e e e s e e e e e e e e e 178
LBRET e e e e e e e e e e e e e e s e e e e e e e e e 179
LFCB e e e e e e e e e e e e e e 181

Return Codes in Reglster 15 e e e e e e e e e e e 182
LITE e e e e e e e e e e e e e e e e e e e e e e e e 184
LOAD e e e e e e e e e e e e e e e e e e e e e e e e e 185
LOCK e e e e e e e e e e e e e e e e 187

Return Codes in Reglster 15 e e e e e e e e e e e e 187

vi VSE/Advanced Functions Macro Reference



MAPBDY
MAPSSID
MODDTL
MRMOD
MTMOD
Standard MTMOD Names

MVCOM

NOTE

OPEN, OPENR

ORMQOD .
Standard ORMOD Names

PAGEIN .
Return Informatlon
PDUMP
PFIX
Exceptional Condltlons
Return Codes in Register 15
PFREE .
Exceptional Condltlons
Return Codes in Register 15
POINTR e e e
POINTS e e e e e
POINTW
POST
PRMOD
Standard PRMOD Names

PRTOV
PTMOD
Standard PTMOD Names

PUT

PUTR

RCB

RDLNE

READ

REALAD

RELEASE

RELPAG
Exceptional Condltlons
Return Codes in Register 15

RELSE

RESCN

RETURN

RUNMODE

SAVE .

SECTVAL

SEQV .

SETDEV

SETFL

SETIME

SETL .

Subset /Superset MTMOD Names

Subset/Superset ORMOD Names

Subset/Superset PRMOD Names

Subset/Superset PTMOD Names

Contents

190
191
192
194
195
197
198
200
201
202
203
204
204
205
206
207
208
209
209
210
211
211
212
213
214
215
216
218
219
220
221
221
222
223
225
226
227
228
230
231
232
233
233
234
235
236
237
238
239
241
242
243
244
245

vii



viii

SETPFA

SETT

STXIT

SUBSID e e e
Return Codes in Register 15

TECB

TESTT

TPIN

TPOUT

TRUNC

TTIMER

UNLOCK e e e e e
Return Codes in Register 15

VIRTAD

WAIT (PIOCS)

WAIT

WAITF

WAITM

WRITE

XECBTAB e
Feedback Information

XPOST e e e e e e
Return Codes in Register 15

XWAIT e e e e e e
Return Codes in Register 15

VSE/Advanced Functions Macro Reference

Appendix A. Control Character Codes
CTLCHR=ASA
CTLCHR=YES

Appendix B.

Interchange (ASCII) e e . .

.

.

American National Standard Code for Information

247
248
249
258
258
259
260
261
262
263
264
265
265
266
267
268
269
270
271
273
275
276
277
278
279

281

281
282

287



FIGURES

-

13.
14.

15.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

31.
32.

33.
34.
35.
36.
37.

—_ O WO~V WN -

Subtask Save Area (128 bytes)

Layout and Contents of the Command Control Block (CCB)
Conditions Indicated by CCB Bytes 2 and 3 .
MICR Document Buffer Format .

CNTRL Macro Command Codes

Character Set Option List .

ASOCFLE Operand Usage With Print Assoclated Flles

Label Extent Information Field e e

COREXIT Routine Functions

DTFDU Error Options .
FilenameC-Status or Condltlon Code Byte 1f IOROUT—ADD
RETRVE, or ADDRTR .
FilenameC-Status or Condltlon Code Byte 1f IOROUT—LOAD
ERREXT Parameter List .

Output Area Requirements for Loadlng or Addlng Records to a
File by ISAM

I/0 Area Requirements for Random or Sequentlal Retrleval by
ISAM .

Work Area Requlrements

Operands to Define a Checkp01nt F11e on Dlsk

DTFPH Table .o e e .

Layout of XTNTXIT Informatlon Area

ASOCFLE Operand Usage with Print Assoclated Flles

Maximum and Assumed Lengths for the IOAREA1l

Worst Case of an Area Not Containing one Full Page

Layout and Contents of the I/O Request Block (IORB)
Layout of Fixlist

Bit Configuration for Pocket nght Sw1tch Area of the 1419
System Actions by Return Code and FAIL Operand

System Actions Depending on Control Definition in DTLs
Field Supplied for SETL Processing by Record ID

Abnormal Termination Codes e e e e e e e e e e e
Effect of an AB, IT, OC, PC, or TT Interrupt During STXIT
Routine Execution . e e e e e e e e e e e e
XECBTAB Feedback Informatlon

Coding Example Showing the Use of XECBTAB w1th TYPE—CHECK
and of XWAIT e e e e e e e e e e e e e e
ASA Control Characters

Stacker Selection Codes

Printer Control Codes

ASCII Character Set .

ASCII to EBCDIC Correspondence

Figures

13
16
31
39
45
57
71
79
83

89
90
91

92

93

96
114
116
117
119
120
150
170
171
184
189
189
246
250

256
275

279
282
283
284
288
289

ix



x VSE/Advanced Functions Macro Reference



SUMMARY OF AMENDMENTS

Version 1, Release 3, Modification Level 5

This edition documents minor changes and additions to the following

macros:

i EXTRACT
. GETIME
° MAPSSID
N STXIT

Additional changes include APAR corrections and various editorial
corrections.

Version 1, Release 3, Modification Level O

For a complete overview of functions and computing services new with
this release of VSE/Advanced Functions, refer to the publication
Introduction to the VSE System.

Technical Newsletter SN33-9293 documents the changes resulting from
the:

. Extension of the record size for DTFDI input files to 81 bytes
. New I/0 error handling concept
° New parameter for the ATTACH macro

Additional changes include APAR corrections and minor technical cor-
rections.

Summary of Amendments xi



xii VSE/Advanced Functions Macro Reference



MACRO NOTATION

There are two different types of macros: data management (IOCS) and
system control macros. The data management macros define the char-
acteristics of a file and identify the I/0 operation to be performed
on the file. The system control macros enable you to make use of
various functions performed by programs and routines of VSE/Advanced
Functions.

All macros are written in assembler format statements, that is, they
consist of a number of fields, such as name field, operation field,
and operand field.

Macro Fields

Macros, like assembler statements, have a name field, operation
field, and operand field. Comments can also be included as in
assembler statements, although certain macros require a comment to
be preceded by a comma if the macro is issued without an operand.
These macros are: CANCEL, DETACH, FREEVIS, GETIME, GETVIS, TESTT,
and TTIMER.

The name field in a macro may contain a symbolic name. Some macros
(for example, CCB, TECB, or DTFxx) require a name.

The operation field must contain the mnemonic operation code of the
macro.

The operands in the operand field must be written in either posi-
tional, keyword, or mixed format.

Positional Operands

In this format, the operand values must be in the exact order shown
in the individual macro discussion. Each operand, except the last,
must be followed by a comma, and no embedded blanks are allowed. If
an operand is to be omitted in the macro, and following operands are
included, a comma must be inserted to indicate the omission. No
commas need to be included after the last operand. Column 72 must
contain a continuation punch (any non-blank character) if the oper-
ands fill the operand field and overflow onto another line.

For example, GET uses the positional format. A GET for a file named
CDFILE using WORK as a work area is written:

GET CDFILE,WORK

Macro Notation 1



Keyword Operands

An operand written in keyword format can have this form:
LABADDR=MYLABELS

where LABADDR is the keyword, MYLABELS is a name you specify, and
LABADDR=MYLABELS is the complete operand.

The keyword operands in the macro may appear in any order, and those
that are not required may be omitted. Different keyword operands
may be written in the same statement, each followed by a comma,
except for the last operand of the macro.

Mixed Format

The operand list contains both positional and keyword operands. The
keyword operands can be written in any order, but they must be writ-
ten to the right of any positional operands in the macro.

For more detailed information on coding macro statements, see
0S/VS-DOS/VSE-VM/370 Assembler Language.

Notational Conventions

The following conventions are used in this book to illustrate the
format of macros:

¢ Uppercase letters and punctuation marks (except as described in
these conventions) represent information that must be coded
exactly as shown.

. Lowercase letters and terms represent information which you must
supply. More specifically, an n indicates a number, an r indi-
cates a decimal register number, and an x indicates an alphamer-
ic character.

i Information contained within brackets [ ] represents an optional
value that can be included or omitted, depending on the require-
ments of the program.

. Options contained within brackets and separated by an OR symbol
(]) represent alternatives, one of which may be chosen. For
example:

[,entrypoint|, (0)]

e An underlined option represents the assumed default value in
case you omit the operand. For example:

[A[B]C]

2 VSE/Advanced Functions Macro Reference



* Options contained within braces { } and separated by an OR sym-
bol (]) represent alternatives, one of which must be chosen.
For example:

{phasename| (1)}
° An ellipsis (a series of three periods) indicates that a vari-

able number of items may be included.

Register Notation

Certain operands can be specified in either of two ways:

* You may specify the operand directly which results in code that,
for example, cannot be executed in the SVA because it is not
reentrant.

. You may load the address of the value into a register before
issuing the macro. This way the generated code is reentrant and
may be executed in the SVA. When using register notation, the
register should contain only the specific address, and
high-order bits should be set to O.

When the macro is assembled, instructions are generated to pass the
information contained in the specified register to IOCS or to the
supervisor. For example, if an operand is written as (8), IOCS or
the supervisor expects information to be stored at the address con-
tained in general register 8. This is an example of ordinary regis-
ter notation.

You can save both storage and execution time by using what is known
as special register notation. In this method, the operand is shown
in the format description of the macro as either (0) or (1), for
example. This notation is special because the use of registers 0
and 1 is allowed only for the indicated purpose.

If special register notation is indicated by (0) or (1) in a macro
format description and you use ordinary register notation, the macro
expansion will contain an extra LR instruction, for example, LR O0,8.

The format description for each macro shows whether special register
notation can be used, and for which operands. The following example
indicates that the filename operand can be written as (1) and the
workname operand as (0):

GET {filename]|(1)}[,workname]|, (0)]
If either of these special register notations is used, your program

must load the designated register before executing the macro expan-
sion. Ordinary register notation can also be used.

Macro Notation 3



Operands in (S,address) Notation

Certain system control macros (for instance, ATTACH, GENIORB, GENL,
LOAD) allow three notations for an operand:

Register notation, as described in the preceding paragraph.

Notation as a relocatable expression which, in the macro expan-
sion, results in an A-type address constant.

Notation in the form (S,address) which, in the macro expansion,
results in the generation of an explicit address, that is, an
assembler instruction address in base-displacement form. Address
can be specified either as a relocatable expression, for
example: (S,RELOC), or as two absolute expressions, the first of
which represents the displacement and the second the base regis-
ter, for example: (S5,512(12)).

Consider using this notation if your program is to be reenterable.
In a reenterable program, macro operands often refer to fields in
dynamic storage. The (S,address) format offers an alternative to
register notation: if two or more of such operands have to be pro-
vided for one macro, there is no need for loading addresses into
that many registers.

4 VSE/Advanced Functions Macro Reference



MACRO DESCRIPTION

ASPL

The ASPL macro generates the parameter list (of 5 bytes length)
which is used to pass information to the ASSIGN macro. For the for-
mat of the parameter list, see VSE/Advanced Functions Application
Programming: Macro User's Guide.

DSECT={NO|YES}: Specify DSECT=YES if you want the parameter
list to be generated as a mapping DSECT. If the operand is omitted,
in-line code is generated.

Macro Description 5



ASSIGN

[name] ASSIGN ASPL={namel|(rl)}
,SAVE={name2| (r2)}

The ASSIGN macro is used to assign and unassign tape, disk, and
unit-record devices dynamically. The system will select a free unit
and assign it temporarily to any free programmer logical unit. Upon
completion of the assignment, the logical and physical unit numbers
to which the unit has been assigned are returned to the user. This
information can be used by the RELEASE macro to release a unit
dynamically when it is no longer needed.

A skeleton example that shows how tape drives are assigned and unas-
signed dynamically is given in VSE/Advanced Functions Application
Programming: Macro User's Guide.

ASPL={namel|(r1)}: Specifies the address of the parameter list,
in which you indicate the function (assign or unassign) to be per-
formed. Use the mapping DSECT generated by the ASPL macro to inter-
pret the fields in the parameter list.

SAVE={name2|(r2)}: Specifies a 72-byte save area that has to be
reserved by the problem program.

Return Codes in Register 15

00 Assignment successful.

04 No free LUB entry found.

08 Device not found in PUB table.

0C cuu has wrong device type.

10 cuu is down.

18 No free tape unit found.

1C Invalid logical unit for unassign.

20 cuu reserved by space management or by pending mount request.
24 Invalid function code.

28 No GETVIS space available.

2C Device to be unassigned is not assigned.

30 Device is owned by another partition.

34 Conflicting I/0 assignment. Device is not assigned.

6 VSE/Advanced Functions Macro Reference



ATTACH

[name] ATTACH {entrypoint| (S,entrypoint)|(rl)}
,SAVE={savearea| (S,savearea)|(r2)}
[ ,ABSAVE={absavearea| (S,absavearea) | (r3)}]
[ ,ECB={ecbname| (S,ecbname) | (r4)}]
[ ,MFG={area| (S,area) | (r6)}]
[ ,RETURN={NO | YES}]

A subtask can be initiated by any other task of the partition with
the ATTACH macro.

The maximum possible number of subtasks that can be initiated in the
system at a time is determined by the NTASKS parameter of the SUPVR
generation macro. The maximum number that can be specified is 208.
Up to 31 subtasks can run concurrently within a partition, provided
the overall limitation of NTASKS is not exceeded.

If the maximum number of subtasks is already attached, any attempt
to attach another subtask will be unsuccessful. This is indicated to
the attaching task by a 1 in high-order bit 0 in register 1. Regis-
ter 1 then points to an unposted ECB in the supervisor that contains
the reason code in byte 3. If byte 3 is zero, the maximum number of
subtasks in the system (NTASKS value) is already attached. A
non-zero value indicates that the maximum number of 31 subtasks is
already running in the partition. The attaching task may use this
ECB to enter a wait state. The ECB will be posted by the system

whenever a task is available for attaching.

If the ATTACH macro successfully initiates a subtask, the attached
task is given the lowest subtask priority. Register 1 of the
attached task contains the address of the attaching task's save
area; the other registers contain the same values as those of the
attaching task at the time when the ATTACH was issued. The address
in register 1 can be used as the second operand of a POST macro lat-
er in the job if task-to-task communication is desired.

Upon return from a successful ATTACH, register 0 of the attaching

task contains the address of the byte immediately following the save
area of the attached task.

If register notation is used in any of the macro operands, register
0 and 1 should not be specified.

entrypoint| (S, entrypoint) |(r1): The operand specifies the

entrypoint of the subtask.

SAVE={savearea|(S,savearea)|(r2)}: The operand must provide the
address of the save area for the subtask. The save area is 128

bytes in length (=16 double words).

Macro Description 7



ATTACH

If an interrupt occurs while the subtask is in control, the system
saves in this save area the subtask's interrupt status information,
general purpose registers, and the floating-point registers (see
Figure 1 ).

Before issuing the ATTACH macro, move the subtask name in the first
eight bytes of the save area. The name is used to identify the sub-
task in the event of a possible abnormal termination condition.

Byte Byte Bj Byte
T T T T T L T T T T T T T T
subtask name interrupt status
0 A N S S S S I S WS WS S N 15
T T T T T Rl T T LR § T T A A
16 — 1
32 registers 47
S through 8
48 | — 63
64— 79

used by VSE floating-
80 } It i 4 ! 1 — 95
T T T T T T T
point
96 p——————+— M
registers used by VSE
112 PR GRS S R S S| U S T S SR S 127

Byte 120 —‘f

Figure 1. Subtask Save Area (128 bytes)

ABSAVE={absavearea|(S,absavearea)|(r3)}: Specify this operand
only if the subtask is to use the attaching task's abnormal termi-
nation routine (see STXIT macro), that is, if it does not provide an
abnormal termination routine of its own. The value specified in this
operand must be the address of a 72-byte (doubleword-aligned) STXIT
save area for the subtask. When an abnormal termination occurs, the
supervisor saves the old PSW and general registers 0 through 15 in
this area before the exit is taken.

ECB={ecbname|(S,ecbname)|(r4)}: The operand must be specified if
other tasks can be affected by this subtask's termination, or if the
ENQ and DEQ macro are used within the subtask. This parameter is the
name of the subtask's event control block (ECB). The ECB may be any
4-byte field where in byte 2, bit 0 is the termination indicator and
bit 1 is the abnormal indicator. The remaining bits of the four
bytes are reserved. At the time a subtask is attached, bits 0 and 1
of byte 2 are set to 0. When a subtask terminates, the supervisor

8 VSE/Advanced Functions Macro Reference



ATTACH

sets byte 2, bit 0 of the ECB to 1. In addition, byte 2, bit 1 is
set to 1 when the subtask terminates abnormally; that is, if task
termination is not the result of issuing the CANCEL, DETACH, RETURN,
DUMP, JDUMP, or EOJ macros.

MFG={area|(S,area)|(r5)}: The operand is required if the program
which issues the ATTACH macro is to be reenterable. It specifies the
address of a 64-byte dynamic storage area, that is, storage which
your program obtained through a GETVIS macro. This area is required
for system use during execution of the macro.

RETURN={NO|YES}: Specify RETURN=YES if you want to activate a
subtask for processing a subroutine or program that is terminated
with a RETURN macro. If RETURN=YES is specified, the ATTACH macro
generates a DETACH macro that will terminate the subtask after the
RETURN macro has been encountered. Registers 14 and 15 are set up
according to standard linkage conventions, that is, register 15 con-
tains the address of the entry point of the routine specified in the
ATTACH macro, and register 14 contains the return address (address
of the DETACH macro generated by the ATTACH macro).

Note: 1If your program uses VSAM files, you should provide a

STXIT AB and PC macro and issue a CLOSE or TCLOSE for the
files before canceling the subtask.

Macro Description 9



CALL

[name ] CALL { entrypo int l ( 15 ) }
[, (parameterlist)]

- o = - = e - " S e T TSGR M R em M e MR Ge R M e D WE G T e s e e W

The CALL macro passes control from one program to a specified entry
point in another program.

entrypoint|(15): Specifies the entry point to which control is
passed. If the symbolic name of an entry point is specified, an
instruction

L 15,=V(entrypoint)

is generated as part of the macro expansion. The linkage editor
makes the called program part of the calling program phase. The
symbolic name must be either the name of a control section (CSECT)
or an assembler language ENTRY statement operand in the called pro-
gram. Control is given to the called program at this address. The
called program resides in storage throughout execution of the call-
ing program. This wastes storage if the called program is not needed
throughout execution of the calling program.

If register 15 is specified, the entrypoint address must have been
loaded into that register. Control is given to the called program at
the address in register 15. Specifying register 15 preceded by a
LOAD macro is most useful when the same program is called many times
during execution of the calling program, but is not needed in stor-
age throughout execution of the calling program.

parameterlist: Specifies one or more addresses (relocatable or
absolute expressions) to be passed to the called program. Terms in
the address must not be indexed. The addresses must be written in a
sublist, with each address separated from the next by a comma. As
part of the macro expansion, a parameter list is generated. It con-
sists of a fullword for each address. Each fullword is aligned on a
fullword boundary and contains the address to be passed in its three
low-order bytes. The high-order bit in the last fullword is set to
1. When the called program is entered, register 1 (the parameter
list register) contains the address of the parameter list.

10 VSE/Advanced Functions Macro Reference



CANCEL

- . - - . . - = e - e e e e S e e e e SR e e Sm N N s G M M R e W e e e e e e
- v . e = - . . = e e R e M e e = e = m e e R e M SN RS R e S e R e e e e e e

Issuing the CANCEL macro in a subtask abnormally terminates the sub-
task without branching to any abnormal termination routine. A CAN-
CEL ALL macro issued in a subtask, or a CANCEL issued in the main
task, abnormally terminates all processing in the partition (job).
Job termination in multitasking causes all abnormal termination
exits (via STXIT AB) to be taken for each task except the one that
issued the CANCEL macro. Once these exits are taken, the job is
terminated. Upon task termination, system messages (using the first
eight bytes of each subtask save area) are issued to identify each
subtask terminated.

If the CANCEL macro is issued without an operand, the macro must not
contain a comment unless the comment begins with a comma. If CANCEL

ALL is issued, the macro may include a comment.

If the DUMP option was specified, and SYSLST is assigned, a system
dump will occur

. if a CANCEL ALL macro is issued by a subtask, or

. if a CANCEL macro is issued by a main task with subtasks
attached.

Note: If your program uses VSAM files, ensure that these
files are closed before you issue this macro.

Macro Description 11



ccB

CCB Format

o - - = = = . e - = - e e = = = e = e G e e e e e e e m e  -

blockname CCB SYSnnn,command-list-name
[,X'nnnn'][,senseaddress]

A CCB (command control block) macro must be specified in your pro-
gram for each I/0 device controlled by physical IOCS macros. The
CCB (see Figure 2 on page 13 ) is necessary to communicate informa-
tion to physical IOCS so that it can perform desired operations (for
example, indicating printer channel 9). The CCB also receives sta-
tus information after an operation and makes this available to your
program. You should ensure proper boundary alignment of the CCB if
this is necessary for your program.

Note: In some applications, it may be preferable to use an
IORB (I/O Request Block) in place of a CCB. Do this by speci-
fying either an IORB or GENIORB macro.

blockname: The CCB macro must be given a symbolic name (blockname).
This name can be used as the operand in the EXCP and WAIT macros
which refer to the CCB.

SYSnnn: This operand specifies the symbolic unit for the actual
I/0 unit with which this CCB is associated. The actual I/O unit can
be assigned to the symbolic unit by an ASSGN job control statement.

command-list-name: This operand specifies the symbolic name of the
first CCW used with a CCB. This name must be the same as the name
specified in the assembler CCW statement that constructs the CCW.

X'nnnn': A hexadecimal value used to set the CCB user option bits.
Column 5 of Figure 3 on page 16 gives the value used to set a user
option bit 'on'. If more than one bit must be set, the sum of the
values is used.

senseaddress: This operand, when supplied, indicates user error
recovery (see Figure 3 on page 16, byte 2, bit 7) and generates a
CCW for reading sense information (as the last field of the CCB).
The name field (sense address) of the area that you supply must have
a length attribute assigned of at least one byte. Physical IOCS
uses this length attribute in the CCW to determine the number of
bytes of sense information you desire.

From the above specifications, the macro sets up an area of either
16 bytes or 24 bytes. For the layout of this area and its contents
see Figure 2 on page 13 and the following description of the indi-
vidual fields.

12 VSE/Advanced Functions Macro Reference



ccB

e e < - i 3

; Transmission
Residual count information CSW status Type code
0 : s ;

reserved CCW address o reserved CCW address in CSW °

8 ! ] i Il Il
T T T T T

optional sense CCW

16 1 1 1 | ! |°|

Figure 2. Layout and Contents of the Command Control Block (CCB)

1. After a record has been transferred, IOCS places the residual
count from the CSW into bytes 0 and 1. By subtracting the resi-
dual count from the original count in the CCW, your program can
determine the length of the transferred record. The field is set
to zero for negative values.

2. Bytes 2 and 3 are used for transmission of information between
physical IOCS and your program. For detailed information on the
use and purpose of the individual bits in this field, see

Figure 3 on page 16 . Your program can test any of the bits in
this field using the mask given in the last column of Figure 3
on page 16 . Your program may test more than one bit by the

hexadecimal sum of the test values.

All bits are set to 0O when your program is assembled unless the
X'nnnn' operand is specified. If this operand is specified, it
is assembled into these two bytes. When your program is being
executed, each bit may be set to 1 by your program (to request
certain functions or specific feedback information) or by phys-
ical IOCS (as a result of having detected a particular
condition). Any bits that can be turned on by physical IOCS dur-
ing program execution are reset to zero by PIOCS the next time
an EXCP macro is executed against the same CCB.

3. Bytes 4 and 5 are set to X'00' whenever an EXCP macro is issued
against the CCB.

The meaning of the bits in these two bytes is as follows:

Macro Description 13



ccB

Byte &4: Byte 5:

o

= attention 0 = program-controlled

interruption

1 = status modifier 1 = incorrect length

2 = control unit end 2 = program check

3 = busy 3 = protection check

4 = channel end 4 = channel data check

5 = device end 5 = channel control check

6 = unit check 6 = interface control check
7 = unit exception 7 = chaining check

If bit 5 of CCB byte 2 is set to 1 and device end results as a
separate interrupt, device end will be posted.

4. Contents of byte 6:

X'Ou' = original CCB

X'4u' = BTAM-ES CCB

X'8u' = user-translated CCB in virtual partition
Note:
If u = 0: the address in byte 7 refers to a system logical
unit.

If u = 1: the address in byte 7 refers to a programmer
logical unit

Contents of byte 7:
Hexadecimal representation of SYSnnn as follows:

SYSRDR = 00 SYS000 = 00
SYSIPT = 01 SYS001 = 01
SYSPCH = 02 SYS002 = 02
SYSLST = 03

SYSLOG = 04

SYSLNK = 05 .

SYSRES = 06 SYS254 = FE
SYSSLB = 07

SYSRLB = 08

SYSUSE = 09

SYSREC = 0A

SYSCLB = OB

SYSDMP = 0C

SYSCAT = 0D

5. Bytes 9-11 contain the address of the CCW (or of the first of a
chain of CCWs) associated with the CCB:

This is a real address if CCB byte 6 = X'8u'.
1

This is a virtual address if CCB byte 6 = X'Ou'.

6. Bytes 13-15 contain either of the following:

14 VSE/Advanced Functions Macro Reference



cCB

The CCW address contained in the CSW at channel-end interrupt
for the I/0 operation involving the CCB; or the address of the
associated channel appendage routine if CCB byte 12 contains
X'40'.

Bytes 16 to 23 are provided only if the sense operand was speci-
fied in the CCB macro. They accommodate the CCW for returning
sense information to your program.

Macro Description 15



ccB

DASD data checks,|Ignore, Retry, or|Retry or Cancel.
3540 data checks, |Cancel.
2671 data checks, |Ignore or Cancel.|Cancel.

1017/1018 data
checks.

5424 /5425 not
ready.

Indicate action

|Return to user.

type messages for|

B | | Condition Indicated | ON Values|Mask for
y | | | for Third|Test
t | | | | Operand |Under
e | Bit | 1 (ON) [ 0 (OFF) | in CCB  |Mask
| | | | Macro | Instr.
2 |0 Traffic Bit |I/0 Completed. |I/0 requested | | x'so'
l (WAIT). |[Normally set at |and not comple— |
] |Channel End. Set |[ted. | |
| |at Device End if | | |
{ |bit 5 is on. | { ;
l |
|1 End of File on | /* or /& on | | | X's40'
| System Input. | SYSRDR or SYSIPT. | |
| |Byte 4, unit ex— | |
| |ception bit is | |
| |also on. | |
| 3211 UCB Parity |Yes | |
| Check (line | | | |
} complete).® | | } |
| |
|2 Unrecoverable |1/0 error passed |No program or | X'20'
| 1/0 Error. |back due to pro— |operator option |
| | gram option or |error was |
} |operator option. |passed back. |
| | |
|3 Accept Unrecove— |Return to user |Operator option: | X'1000' X'10'
| rable I/0 Error |after physical |dependent on the |
| (bit 2 is ON).! |IOCS attempts to |error. |
| |correct I/0 | |
| |error.? 1 |
| | |
|4 Return: |Operator options:|Operator options:| X'0800' X'os'
| ‘
I |
| |
| |
| |
| |
| |
| |
| |
l |

DOC.1?

Figure 3 (Part 1 of 5). Conditions Indicated by CCB Bytes 2 and 3

16 VSE/Advanced Functions Macro Reference



ccB

|
I
|
|
I
|
|
I
|
|
I
|
|
L

|error routine is
|used unless the
|CCB sense address|
|operand is speci-—|
| fied. The latter |

Routine.?! error

recovery.?

B | Condition Indicated | ON Values|Mask for
y | | for Third|Test
t | | | Operand |Under
e Bit | 1 (ON) | 0 (OFF) | in CCB  |Mask
| | | Macro | Instr.
2 Post at device |Device end condi—|Device end condi-| X'0400' | X'04'
end. Specify this|tion is posted: |[tions are not | |
|  bit to be set on |that is, byte 2, |posted. Traffic I
| for a 2560 or |bit 0 and byte 3,|bit is set at |
| 5424/5425.1 |bits 2 and 6 set |channel end. | |
| |at device end. | | |
| |Also byte &4, bit | |
I IS is set. | |
|
Return: Uncorrec—|Return to user; |Operator option: X'0200' | x'o2'
| table tape read |after physical Ignore or Cancel |
data check (2400 |IOCS attempts to |for tapes, paper | |
series or 3420); |correct 3211%, tape punch(1018), !
| 1018, 2560 data |tape or DASD card punches |
check, 2520 or |error; |other than | |
2540 punch equip—|when 1018 or 2560|2560 and | I
ment check; |data check”; 5424/5425. Retry |
| 2560, 5424/5425 |when 2560 or 5424|or Cancel for |
| read, punch, | /5425 equipment |DASD, 2560, or | |
print data, and |check; | 5424 /5425. | |
print clutch |when 3504, 3505, | | I
equipment checks;|3525, permanent | | I
3881 equipm.check|error (byte 3, | | |
3504, 3505, or |bit 3 is also | | |
3525 perm. errors|on). | | |
DASD read or read| ! | |
verify data check]| | | |
3211 passback re—| | | l
quested;® l | |
3895 error codes | | |
requested’ (data | | |
checks on count | | |
not retained).? | | |
| | |
|A physical 10CS | X'0100' | X'O1'
| |
| |
|
|
l
|
|

|
|
|
l
|
|
User Error |User handles
|
|
|
|
l
|
|

| requires user |
|error recovery. |

Figure 3 (Part 2 of 5). Conditions Indicated by CCB Bytes 2 and 3

Macro Description

17



ccB

1
ON Values|Mask for|

|
| B | | Condition Indicated |
| v | | | for Third|Test
| t | | | Operand |Under
e | Bit | 1 (ON) [ 0 (OFF) | in CCB  |Mask |
| | | Macro |Instr. |
|
| 3 |0 Data check in |Yes—Byte 3, bit 3|No [ X'80'
|  DASD count field.|is off; | |
|  Permanent error |Byte 2, bit 2 is
| for 3330, 3340, |on.
| 3350, 3375. i | |
l | Data check — 1287|Yes |No
| |  or 1288. |
|  MICR — SCU not |Yes No
|  operational. | |
| 3211 Print Check |Yes |No
| (equipment
| check).?®
| 3540 special | Yes No
| | record trans— |
| ferred.’
—] |
1 DASD track Yes No X'40'
overrun.
| 1017 broken tape.|Yes | No
Keyboard correc— |Yes |No
tion 1287 in | |
|  Journal Tape Mode]
3211 print quali—|Yes No
ty error (equip— |
|  ment check).® | |
|  MICR intervention|Yes No
|  required. ] | i
—| |
| |2 End of DASD Cy— |Yes | No X'20'
| linder. | |
|  Hopper Empty |Yes No
| |  1287/1288 Docu— |
| |  ment Mode. | |
| |  MICR — 1255/1259/|Document feeding |No |
|  1270/1275/1419 stopped. |
| disengage. I
| |  1275/1419D, I/0 |Channel data | |
| error in external|check or Busout |
| interrupt routine|check. I
|  3211/2245 line Yes |No
| position |
| | error.>® | |

Figure 3 (Part 3 of 5). Conditions Indicated by CCB Bytes 2 and 3

18 VSE/Advanced Functions Macro Reference



ccB

| no-record—found
|condition occurs
| (disk).

condition (retry
on DASD).?

|condition bit on
|and return to
| |user.

— r

| B | | Condition Indicated | ON Values|Mask for|

| v | | | for Third|Test |

| t | | | | Operand |Under

| e | Bit | 1 (ON) | 0 (OFF) | in CCB  |Mask

| | | | | Macro | Instr.

l |

| 3 |3 Tape read data |Operation was un—|No | | x'1o0'

l |  check (2400 se— |successful. Byte | | | |

| |  ries); 2520, 2540|2, bit 2 is also | | | |

| |  or 3881 equlpment]on Byte 3, bit O] | | l

I |  check; any DASD |is off. | I |

| | data check. | | | |

| | 1017, 1018 data |Yes | No | | |

l check. | | l | |

| 1287, 1288 equip—|Yes |No | |

| ment check. | I | | |

| | 2560, 3203, 5203, |Byte 2, bit 6 is |No | | |

| |  5424/5425 read, |also on. | I I |

| punch, print | | | | |

| data, and print | | l | |

| |  clutch equipment | | | l |

| | checks. | l | | |

| 3504, 3505, 3525 |Byte 2, bit 6 is |No | |

| permanent errors.|also on. | | | |

| 3211 data check/ |Yes |No l | 1

| print check.® | | | I

l 3540 data check. |Yes |No | } %
i l l

| |4 Nonrecovery |For card: unusuall | x'o08'

| |  Questionable | command sequence. | | {

| | Condition. |For DASD, no re— | | | |

l | | cord found. 1287, | | |

| | | 1288 document Jaml | |

| | lor torn tape. l | ‘ |

l | |3211 UCB parity | | |

| | |check (command | | |

I |retry). 5424/5425]| |

% i |not ready. | { |

| |

| |5 No-record-found |Retry command if |Set the nonrecov— X'0004"' | X'04' |

| | |

L | |

I | |

| | |

l |

|
|
l
|
|ery questionable |
l
|
|

Figure 3 (Part 4 of 5).

Conditions Indicated by CCB Bytes 2 and 3

Macro Description 19



ccs

set on if com— |
mand chaining is |
used.?! |

l 1
| B | | Condition Indicated | ON Values|Mask for|
|y | | | for Third|Test |
| t | | | | Operand |Under |
| e | Bit | 1 (ON) | 0 (OFF) | in CCB  |Mask

| | | | | Macro |Instr. |
| |
| 3 |6 Verify error for |Yes. (Set on when|No | | Xx'02' |
| | DASD or Carriage |Channel 9 is | | [ |
| | Channel 9 over— |reached. Only if | | | |
| | flow. |Byte 2, bit 5 is | | | |
| |on). l | | |
| | 1287 document |Yes |No | | |
| | mode: late | | | | |
| | stacker select. | | | | |
| | 1288 End-of-Page |Yes |No | | |
| | (EOP). | | | | l
|—1 | | | | |
| |7 Command Chain |Retry begins at |Retry begins at | X'0001' | X'01' |
| | Retry. Specify |last CCW execu— |first CCW or | | |
| | this bit to be |ted.® 1!° |channel program. | | |
| | l | |
| | l | |
| | l | |
L |

Figure 3 (Part 5 of 5). Conditions Indicated by CCB Bytes 2 and 3

Notes:

1. User Option Bits. Set in CCB macro. Physical IOCS sets the oth-
er bits off at EXCP time and on when the specified condition
occurs.

2. 1/0 program checks and I/0 protection checks always terminate
the program.

3. You may not handle Channel Control Checks and Interface Control
Checks. The occurrence of a channel data check, unit check, or
channel chaining check cause byte 2, bit 2 of the CCB to turn
on, and completion of posting and dequeuing to occur. I/0 pro-
gram and protection checks always cause program termination.
Incorrect length and unit exception are treated as normal condi-
tions (posted with completion). Also, you must request device
end posting (CCB byte 2, bit 5) in order to obtain errors after
channel end.

4. Error correction feature for 1018 is not supported by physical
IOCS. When a 1018 data check occurs and CCB byte 2, bit 6 is
on, control returns directly to you with CCB byte 3, bit 3
turned on.

20 VSE/Advanced Functions Macro Reference



10.

cCB

A line position error on the 3211 can occur as a result of an
equipment check, data check, or FCB parity check.

If an error occurs, physical IOCS updates the CCW address in
bytes 9 through 11 of the CCB that is used for the pertinent I/0
operation. The original CCW address must therefore be restored
before another I/0 operation using the same CCB is issued.

A deleted or bad spot record has been read on a 3540 diskette.
CCW chain broken, after CCW reads special record.

3211 remarks apply also to 321l-compatible printers (that is,
with device type code of PRT1).

3895 error codes are returned in CCB byte 8. Refer to the 3895
Document Reader/Inscriber manuals for information on these error

codes.

For tape error retry, the whole CCW chain is retried.

Macro Description 21



CDLOAD

[name] CDLOAD {phasename| (1)}
[ ,PAGE={NO|YES}]
[ L RETPNF={NO|YES}]

The CDLOAD macro loads the phase specified in the first parameter
from a core image library into the partition GETVIS area. The phase
is loaded only if it is not yet in either the partition GETVIS area
or the SVA. CDLOAD returns control to the phase which issued the
macro.

The CDLOAD macro must not be used for a phase that has been linked
as a member of an overlay structure. Instead, use the LOAD macro
without specifying a load address.

If a phase is to be loaded, CDLOAD determines the size of the phase,
acquires the appropriate amount of GETVIS storage, and loads the
phase into that storage.

After successfully loading the phase or if loading is not required
(because the phase is already in the partition GETVIS area or in the
SVA), registers contain values as follows:

register 0: the load address,
register 1: the entry point,
register 14: the length of the phase.

phasename|(1): For phasename, specify the name of the required
phase. If register notation is used, the register must contain the
address of an 8-byte field that holds the phase name as an alphamer-
ic character string.

PAGE={NO|YES}: 1If you want to have the phase loaded on a page
boundary, specify PAGE=YES.

RETPNF={NO|YES}: Determines whether the issuing phase is can-
celed if the phase to be loaded does not exist in a core image
library. With RETPNF=YES, the phase is not canceled; instead, con-
trol is returned to the issuing phase with the appropriate return
code.

22 VSE/Advanced Functions Macro Reference



CDLOAD

Return Codes in Register 15

After execution of the macro, register 15 contains one of the fol-
lowing return codes:

0 CDLOAD completed successfully.

4 The size of the (real) partition's GETVIS area is OK.
8 Not applicable.

12 Insufficient storage available in the GETVIS area.

16 The partition CDLOAD directory (also known as anchor table) is
full.

20 The phase does not exist in a core image library (this return
code occurs only with RETPNF=YES).

24 A move-mode phase was requested.

32 A hardware (storage) failure occurred in the requested real par-
tition GETVIS area.

Macro Description 23



CDMOD

e e e e e e e e SR e e R R G SR e e e R S M e e SR N R e e e e e e e e e

[name] CDMOD [CONTROL=YES]
[ sCRDERR=RETRY]
[ ,CTLCHR={ASA|YES}]
[ ,DEVICE=nnnn]
[ ,FUNC={R|P|I|RP|RW|RPW|PW}]
[ , IOAREA2=YES]
[ ,RDONLY=YES]
[ ,RECFORM={ FIXUNB | VARUNB | UNDEF } ]
[ s SEPASMB=YES]
[ ,TYPEFLE={ INPUT | OUTPUT |CMBND}]
[ sWORKA=YES]

The CDMOD macro defines a logic module for a card reader/punch file.
If you do not provide a name for the module, IOCS generates a stand-
ard module name.

CONTROL=YES: Include this operand if the CNTRL macro is used
with the module and its associated DTFs. The module also processes
files for which the CNTRL macro is not used.

If this operand is specified, the CTLCHR operand must not be speci-
fied.

This operand cannot be specified if IOAREA2 is used for an input
file or if an input file 1is used in association with a punch file
(when the operand FUNC=RP or RPW is specified) on the 2560, 3525, or
5424/5425; in this case, however, this operand can be specified in
the DTFCD and CDMOD for the associated punch file.

CRDERR=RETRY: Include this operand if error retry routines for
the 2540 and 2520 punch-equipment check are included in the module.
Whenever this operand is specified, any DTF used with the module
must also specify the same operand. This operand does not apply to
an input or a combined file.

CTLCHR={ASA|YES}: Include this operand if first-character
stacker select control is used. ASA denotes the American National
Standards character set, YES the System/370 character set (see
Appendix A). Any DTF to be used with this module must have the same
operand. If CTLCHR is included, CONTROL must not be specified. This
operand does not apply to a combined file or to an input file.

DEVICE={2540]1442|2501|2520|2560P | 2560S | 2596 | 3504 | 3505|3525
5425P|5425S|3881}: Include this operand to specify the I/0 device
used by the module. The 'P' and 'S' included with the '2560' and
'5425' parameters specify primary or secondary input hoppers;

24 VSE/Advanced Functions Macro Reference



CDMOD

regardless of which is specified, however, the module generated will
handle DTFs specifying either hopper. Specify 5425P/S for 5424P/S.
If you omit this operand, 2540 is the default.

Any DTF to be used with this module must have the same operand (ex-
cept as just noted concerning the 'P' and 'S' specification for the
2560 or 5425).

FUNC={R|P|I|RP|RW|RPW|PW}: This operand specifies the type of
file to be processed by the 2560, 3525, or 5424/5425. Any DTF used
with the module must have the same operand. R indicates read, P
indicates punch, and W indicates print.

When FUNC=I is specified, the file will be both punched and inter-
preted; no associated file is necessary to achieve this.

RP, RW, RPW, and PW specify associated files; when one of these
parameters is specified for one file, it must also be specified for
the associated file(s). Associated files can have only one I/0 area
each.

IOAREA2=YES: Include this operand if a second I/O area is used.
Any DTF used with the module must also include the IOAREA2 operand.
This operand is not required for combined files. This operand is
not valid for associated files.

RDONLY=YES: This operand causes a read-only module to be gener-
ated. Whenever this operand is specified, any DTF used with the mod-
ule must have the same operand.

RECFORM={FIXUNB|VARUNB|UNDEF}: This operand specifies the
record format: fixed-length, variable-length, or undefined. Any DTF
used with the module must have the same operand. If TYPEFLE=INPUT,
TYPEFLE=CMBND, or FUNC=I, RECFORM must be FIXUNB. For the 3881, only
RECFORM=FIXUNB is valid, which is also the default.

SEPASMB=YES: Include this operand only if the module is to be
assembled separately. This causes a CATALR card with the module name
(standard or user-specified) to be punched ahead of the object deck
and defines the module name as an ENTRY point in the assembly. If
the operand is omitted, the assembler assumes that the module is
assembled together with the DTF and the problem program.

TYPEFLE={INPUT|OUTPUT|CMBND}: This operand generates a mod-
ule for either an input, output, or combined file. Any DTF used with
the module must have the same operand. For the 3881, only
TYPEFLE=INPUT is valid, which is also the default.

WORKA=YES: This operand must be included if records are to be
processed in work areas instead of in I/O areas. Any DTF used with
the module must have the same operand. This operand is not valid for
the 3881.

Macro Description 25



CDMOD

Standard CDMOD Names

Each name begins with a 3-character prefix (IJC) and continues with
a 5-character field corresponding to the options permitted in the
generation of the module.

CDMOD name = IJCabcde

a RECFORM=FIXUNB (always for INPUT, CMBND, or FUNC=I files)
RECFORM=VARUNB

RECFORM=UNDEF

<™

W

CTLCHR=ASA (not specified if CMBND)
CTLCHR=YES

CONTROL=YES

CTLCHR or CONTROL not specified

N Q>

W uwn

RDONLY=YES and TYPEFLE=CMBND
TYPEFLE=CMBND

RDONLY=YES and TYPEFLE=INPUT
TYPEFLE=INPUT

RDONLY=YES and TYPEFLE=QUTPUT
TYPEFLE=0OUTPUT

W n
OZHITaw

WORKA and IOAREA2 not specified
WORKA=YES

IOAREA2=YES

WORKA and IOAREA2

WORKA=YES not specified (CMBND file only)

wnuwun
NWHE N

DEVICE=2540, 3881

DEVICE=1442, 2596

DEVICE=2520

DEVICE=2501

DEVICE=2540 and CRDERR

DEVICE=2520 and CRDERR

DEVICE=3505 or 3504

DEVICE=3525 and FUNC=R/P or omitted
DEVICE=2560 and FUNC=R/P or omitted
DEVICE=5425 and FUNC=R/P or omitted
DEVICE=3525 and FUNC=RP

DEVICE=3525 and FUNC=RW

DEVICE=3525 and FUNC=PW

DEVICE=3525 and FUNC=I

DEVICE=3525 and FUNC=RPW
DEVICE=2560 and FUNC=RP

DEVICE=2560 and FUNC=RW

DEVICE=2560 and FUNC=PW

DEVICE=2560 and FUNC=I

DEVICE=2560 and FUNC=RPW
DEVICE=5425 and FUNC=RP

DEVICE=5425 and FUNC=RW

DEVICE=5425 and FUNC=PW

DEVICE=5425 and FUNC=I

ZIXAFRUHIDTOHEHEEHEOQEP>POONOOUMPEWNRO

L L L || | (| | (| T I IO O T A [ I

26 VSE/Advanced Functions Macro Reference



CDMOD

= 0 DEVICE=5425 and FUNC=RPW

Subset/Superset CDMOD Names

All but one of the parameters are exclusive (that is, do not allow
supersetting). A module name specifying C (CONTROL) in the b
location is a superset of a module name specifying Z (no CONTROL or
CTLCHR). A module with the name IJCFCIWO is a superset of a module
with the name IJCFZIWO.

. w we m s e e G e Gm e e Em SR G M R Ne W AR D W 6 0N TM W UM e We W W M S e wm e

* ok ok %%
IJCFABBO
VYCTII1
U+HW2
CI1zs3
ZN 4

0O 5

6

7

8

9

A

B

C

M

N

0

+ Subsetting/supersetting permitted.
* No subsetting/supersetting permitted.

- e . - - - e e e - Se e e Sm em e m MR S W e Gw Em Me GRS ee e M W em e ee

Macro Description 27



CHAP

- - - e ee e e e e e e e M e e e e e e = = e e e e e e e e e e
- e . - - . e e e e e e s e e e e e e e e e e e e M e e e M G e e e e s e e e e . e

The CHAP macro lowers the priority of the issuing subtask. This
issuing subtask now becomes the subtask with the lowest priority of
all the subtasks within the partition.

A CHAP macro issued by the main task is ignored.

28 VSE/Advanéed Functions Macro Reference



CHECK

[name] CHECK {filename| (1)}
[,control-address|, (0)]

The CHECK macro prevents processing until data transfer on an 1/0
operation is complete. It may be issued either after a READ or
WRITE macro was issued for a work file, or after a READ was issued
for a MICR file to ensure that data transfer is complete.

Because of differences in the way that IOCS posts CCB transmission
information bits in the DTFs, you should always issue a CHECK macro
to ensure that data transfer is complete before testing these bits.
If the data transfer is completed without an error or other excep-
tional condition, CHECK returns control to the next sequential
instruction. If an error condition is encountered, control is
transferred to the ERROPT address. If ERROPT is not specified,
processing continues at the next instruction. If end-of-file is
encountered, control transfers to the EOFADDR address.

filename|(1): The operand specifies the name of the file associated
with the record to be checked or, if register notation is used, the
register containing a pointer to the field that contains this name.
This name is the same as that specified for the DTFxx header entry
for the file.

Issuing a CHECK macro after a READ on a MICR device allows you to
query the MICR document buffer (see Figure 4 on page 31 ) and to
specify the control-address operand.

control-address|(0): Indicates the address to which control passes
when a buffer is waiting for data or when the file is closed. If
register notation is used, the specified register must point to a
field that contains this address.

The CHECK macro determines whether the MICR document buffer contains
data ready for processing, is waiting for data, contains a special
nondata status, or the file (filename) is closed. If the buffer has
data ready for processing, control passes to the next sequential
instruction. If the buffer is waiting for data, or the file is
closed, control passes to the address specified for control address,
if present. If the buffer contains a special nondata status, con-
trol passes to the ERROPT routine for you to examine the posted
error conditions before determining your action. (See byte 0, bits
2, 3, and 4, of the document buffer). Return from the ERROPT rou-
tine to the next sequential instruction via a branch on register 14,
or to the control address in register O.

Macro Description 29



CHECK

If the buffer is waiting for data, or if the file is closed, and the
control address is not present, control is given to you at your
ERROPT address specified in the DTFMR macro.

If an error, a closed file, or a waiting condition occurs (with no
control-address specified) and no ERROPT address is present, control
is given to you at the next sequential instruction.

If the waiting condition occurred, byte 0, bit 5 of the buffer is

set to 1. If the file was closed, byte 0, bits 5 and 6 of the buff-
er are set to 1.

30 VSE/Advanced Functions Macro Reference



I Buffer Status Indicators

Comment

1
|
The document is ready for processing (you need never test |
this bit). |
Unrecoverable stacker select error, but all document data |
is present. You may continue to issue GETs and READs. I
Unrecoverable I1/0 error. An operator I/0 error message |
|
}
l
|

is issued. The file is inoperative and must be closed.
Unit Exception. You requested disengage and all follow-up
documents are processed. The LITE macro may be issued,
and the next GET or READ engages the device for continued

|
E
|
|
|
!
|
|
|
|
|
| reading.
|
|
|
|
|
|
|
|
|
|

Intervention required or disengage failure. This buffer
contains no data. The next GET or READ continues normal
processing. This indicator allows your program to give
operator information necessary to select pockets for
documents not properly selected and to determine unread
documents.

The program issued a READ, no document is ready for
processing, byte 0, bits 0 to 2 are off, or the file is
closed (byte 0, bit 6 is on). The CHECK macro interrogates
this bit.

| Note: You must test bits 1 through 4 and take appropriate
| action. Any data from a buffer should not be processed

| if bits 2, 3, or &4 are on.

6 The program has issued a GET or READ and the file is
closed. Bit 5 also on.

| 7 Reserved.

|
l
|
|
|
|
|
| 1 0 | Your stacker selection routine turns this bit on to
| indicate that batch numbering update (1419 only) is to be |
performed in conjunction with the stacker selection for |
|
|
|
l
|
|
|
|
j

this document. The document is imprinted with the updated
batch number unless a late stacker selection occurs (byte
3, bit 2).

Reserved.

Note: If bits 6 or 7 (byte 2) are on, bit 0 is ignored by
the external interrupt routine. With the 1419 (dual
address) only, batch numbering update cannot be performed
with the stacker selection of auto-selected documents.

1-7

Figure 4 (Part 1 of 4). MICR Document Buffer Format

Macro Description 31



CHECK

Buffer Status Indicators

Byte| Bit | Comment
|
1
2% 0 | For 1419 or 1275 (dual address) only. An auto—-select

| condition occurred after the termination of a READ but
| before a stacker select command. The document is auto—
| selected into the reject pocket.

1-3 | Reserved.

4 | Data check occurred while reading. You should interrogate
| byte 3 to determine the error fields.

5 | Overrun occurred while reading. Byte 3 should be interrog-—
| ated to determine the error fields. Overruns cause short
| length data fields. When the 1419 or 1275 is enabled for
| fixed—length data fields, bit &4 is set.

6—7 | The specific meanings of bits 6 and 7 depend on the device
|

|

I

|

|

|

l

l

l

l

|

|

|

|

|

| type, the model, and the Engineering Change level of the
| MICR reader; but if either bit is on, the document(s)

| concerned is (are) auto—selected into the reject pocket.
| | 1. 1412 or 1270: Bit 6 on indicates that a late read

| | condition occurred. Bit 7 on indicates that a document
| spacing error occurred. (Unique to the 1270: both the
| document and the previous document are auto—selected
| into the reject pocket when this bit is on. This

| | previous document reject cannot be detected by IOCS,

| | and byte 5 of its document buffer does not reflect that
| the reject pocket was selected).

| 2. 1275 and 1419 (single address) without engineering

|

|

|

|

|

|

|

|

|

|

| change 125358: Bit 6 indicates that either a late read
| condition or a document spacing error occurred. Bit 7
| indicates a document spacing error for the current

| document.

| 3. 1255, 1259, 1275, and 1419 (single or dual address)

| with engineering change 125358: Bit 6 indicates that

| an auto—select condition occurred while reading a

| document. The bit is set at the termination of the

| READ command before the stacker select routine

| receives control. Bit 7 is always zero.

* Byte 2 (bits 4, 5, 6, and 7) contains MICR sense information.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 4 (Part 2 of 4). MICR Document Buffer Format

32 VSE/Advanced Functions Macro Reference



Buffer Status Indicators

)
|
I
I
I
|
|
|
|
I
I
I
I
I
|
|
|
|
I
I
I

|
|
I
|
|
|
I
|
I
I
|
|
|
|
|
|
|
|
I
I
I
|

Byte| Bit Comment
3% 0 Field 6 valid.*¥

1 Field 7 valid.*¥*

2 A late stacker selection (unit check late stacker select
on the stacker select command). The document is
auto—selected into the reject pocket.

3 Amount field valid (or field 1 valid).*%*

4 Process control field valid (or field 2 valid).*¥*

5 Account number field valid (or field 3 valid).**

6 Transit field valid (or field &4 wvalid).**

7 Serial number field valid (or field 5 valid).**

Notes:

1. For the 1270, bits 3-7 are set to zero when the fields
are read without error.

2. For the 1255, 1259, 1275, and 1419, bits 3-7 are set on|
when each respective field, including bracket symbolds, |
is read without error. This applies to bits 0, 1, and
3-7 on the 1259 and 1419 model 32.

3. For the 1255, 1259, 1275, and 1419, unread fields con— |

tain zero bits. Errors are indicated when an overrun or
data check condition occurs while reading the data
field. I

-

st
-

o
b

Byte 3 contains MICR sense information.
Only for the 1259 model 34 or 1419 model 32. Bits 0 and 1 are
not used for other models.

|
|
I
|
|
|
I
I
|
|
|
|
|
|
|

Inserted pocket code determination by your stacker select |
routine. Whenever byte 0, bits 2, 3, or 4 are on, this |
byte is X'00' because no document was read and your
stacker selection routine was not entered. Whenever

auto—-selection occurs, this value is ignored. A no—op |
(X'03') is issued to the device, and a reject pocket value]|
(X'CF') is placed in byte 5. The pocket codes are (byte 2, |

bit 6 or 7 on):

Pocket A: X'AF'¥ Pocket 5: X'SF'

Pocket B: X'BF'#w Pocket 6: X'6F' Except 1270
Pocket 0: X'OF' Pocket 7: X'7F' models 1 and 3
Pocket 1: X'1F' Pocket 8: X'S8F'

Pocket 2: X'2F' Pocket 9: X'9F'

Pocket 3: X'3F' Reject Pocket: X'CF'

Pocket 4: X'4F'

* 1275, 1419, and 1270 models 2 and 4 only.
*% 1275 and 1419 only.

Figure 4 (Part 3 of 4). MICR Document Buffer Format

CHECK

Macro Description 33



| Buffer Status Indicators

Comment

The actual pocket selected for the document. The contents
are normally the same as that in byte 4.

Note:

X'CF' is inserted whenever auto-selection occurs
(byte 2, bit 6; byte 2, bit 7; byte 2, bit 0; or byte
3, bit 2). These conditions may result from late READ
commands, errant document spacing, or late stacker
selection.

a. Start I/0 for stacker selection is unsuccessful
(byte 0, bit 1).

| b. An I/0 error occurs (for example, invalid pocket

code) on the 1419 (dual address) secondary control

unit when selecting this document.

Additional User Work Areas

This additional buffer area can be used as a work area and/or output
area. Its size is determined by the DTFMR ADDAREA operand. The only
size restriction is that this area, plus the 6-byte status indicators|
and data portion must not exceed 256 bytes. This area may be omitted. |

Document Data Area

The document data area immediately follows your work area. The data
is right—adjusted in the document data area. The length of this data |

area is determined by the DTFMR RECSIZE operand. |
J

Figure 4 (Part 4 of 4). MICR Document Buffer Format

34 VSE/Advanced Functions Macro Reference



CHKPT

L e e e R R R R R R e I

. - e e e e me Se e e e e R e e e e S e e R ee e G Ge SR S R e G e S e M s e e WD G e e e e

[name] CHKPT SYSnnn,{restart-address|(rl)}
[ ,end-address]|, (r2)]
[,tpointer]|, (r3)]
[ ,dpointer|, (ré4)]
[,filename]|, (r5)]

The CHKPT macro is used to record the status of your program so that
the program, should its execution be terminated before it has com-
pleted processing, may be restarted using job control. The parti-
tion in which the program is to be restarted must start at the same
location as when the program was checkpointed, and its end address
must not be lower than the end address at checkpoint time. If the
CHKPT macro is successfully executed, control is returned with the
checkpoint number in unpacked decimal format in register 0. If it
is unsuccessful and the checkpoint has not been taken, register 0
contains zero and the reason is printed on SYSLOG.

Note: If a program using routines in the SVA is being check-
pointed, you must make sure that SVA routines occupy the same
locations on restart, should a restart become necessary.

Special register notation cannot be used with any of the CHKPT macro
operands.

All VSAM files must be closed before the CHKPT macro is issued. A
SAM ESDS (supported by the VSE/VSAM Space Management for SAM
feature) cannot be repositioned by the restart program.

SYSnnn: Specifies the logical unit on which the checkpoint infor-
mation is to be stored. It must be an EBCDIC magnetic tape or a
DASD volume.

restart-address|(r1): Specifies a symbolic name of the instruction
(or register containing the address) at which execution is to
restart if processing must be continued later.

end-address|(r2): A symbolic name assigned to (or register con-
taining the address of) the uppermost byte of the program area
required for restart. This address must be higher than the highest
address of storage occupied by any phase loaded into the partition.
The address should be a multiple of 2K. If the address is not a
multiple of 2K, it is rounded to the next 2K boundary. If this
operand is omitted, all storage allocated to the partition (other
than the GETVIS area) is checkpointed.

Macro Description 35



CHKPT

The specified end address is ignored if any GETVIS request was exe-
cuted in the partition. (Note that GETVIS storage may have been
requested by included IBM routines). In this case again, all stor-
age allocated to the partition is checkpointed.

tpointer|(r3): Address of an 8-byte field containing 2 V-type
address constants used in repositioning magnetic tape at restart
time. The address may be a symbolic address or contained in a reg-
ister.

The first constant points to a table containing the file names of
all logical IOCS magnetic tape files to be repositioned. Each file
name points to the corresponding DTF table where IOCS maintains
repositioning information.

The second constant points to a table containing repositioning
information for physical IOCS magnetic tape files to be
repositioned. The entries in the table are:

* TFirst halfword: hexadecimal representation of the logical unit
address of the tape (copy from CCB).

i Second halfword: number of files within the tape (in binary
notation), that is, the number of tape marks between the begin-
ning of the tape and the position at checkpoint.

o Third halfword: number (in binary notation) of physical records
between the preceding tape mark and the position at checkpoint.

If the first, second, or both constants are zero, no tapes are repo-
sitioned.

If the tables are contained in the same source module as the CHKPT
macro, the constants must be defined as A-type constants.

dpointer|(r4): Address of a DASD operator verification table, used
to allow the operator to verify DASD volume serial numbers at
restart time. May be a symbolic address or contained in a register.

The entries in the table must consist of the following two
halfwords:

N The logical unit number (in hexadecimal notation) of each DASD
unit used by your program (copied from CCB bytes 6 and 7).

i Reserved.
There must be one entry for each DASD unit to be verified. At
restart time, the volume serial number of each of these DASD units

is printed on SYSLOG.

filename|(r5): The name of the associated DTFPH; used only for
checkpoint records on disk.

36 VSE/Advanced Functions Macro Reference



CLOSE, CLOSER

- - . - = = . = = = = = e e S e R SR e e e e e em e N e M S G Ge Ne Gm Ne G e Sm e W

[name] CLOSE {filenamel|(rl)}
[,filename2|, (xr2)]...

- = e e S = e G e e eSS e e e G e Ge N e SR G e R e e e e e e e

The format of the CLOSER macro is the same as that of the CLOSE mac-
ro, except that you code CLOSER instead of CLOSE in the operation
field.

The CLOSE or CLOSER macro is used to deactivate previously opened
files; it ends the association between a logical file declared in a
program and a specific physical file on an I/O device.

A file may generally be closed at any time, with the following
exceptions:

o Console files must not be closed; the CLOSE(R) macro is invalid
for files defined by means of the DTFCN.

. Files assigned to an FBA device may not be closed in an ERROPT
routine.

Files (such as on an FBA device) that use control interval format
must be closed in order to ensure that data in the control interval
buffer is physically written on the FBA device.

No further commands can be issued to the closed file until it is
reopened.

When CLOSER is specified, the symbolic address constants that CLOSER
generates from the parameter list are self-relocating. When CLOSE
is specified, the symbolic address constants are not
self-relocating. Throughout the manual the term CLOSE also implies
CLOSER, unless stated otherwise.

filename|(r1): Enter the symbolic name of the file (DTF filename)
to be closed in the operand field. A maximum of 16 files may be
closed with one macro by entering additional filenames. Alterna-
tively, you can load the address of the filename in a register and
specify the register using ordinary register notation. The
high-order 8 bits of this register must be zeros. For CLOSER, the
address of filename may be preloaded into any of the registers 2
through 15. For CLOSE, the address of filename may be preloaded
into register 0 or any of the registers 2 through 15.

Note: 1If CLOSE or CLOSER is issued to an unopened tape input
file, the option specified in the DTF rewind option is per-
formed. If CLOSE or CLOSER is issued to an unopened tape out-
put file, no tapemark or labels are written.

Macro Description 37



CNTRL

- e - e o e = - e e G S R e e TR e SR e e e MR e e N e SR MR S B em M SR M R T R TR SR G T W W e e
- e - - - e - n W e e W = e e e Sm S e G Gm e e e e SR e G G e R R e G W R A G W e e M e e G e e

The CNTRL (control) macro provides commands for magnetic tape units,
card devices, printers, DASDs, and optical readers. Commands apply
to physical nondata operations of a unit and are specific to the
unit involved. They specify such functions as rewinding tape, card
stacker selection, and line spacing on a printer. For optical read-
ers, commands specify marking error lines, correcting a line for
journal tapes, document stacker selecting, or ejecting and incre-
menting documents. The CNTRL macro does not wait for completion of
the command before returning control to you, except when certain
mnemonic codes are specified for optical readers.

The CNTRL macro must not be used for printer or punch files if the
data records contain control characters and the entry CTLCHR is
included in the file definition.

Whenever CNTRL is issued in your program, the DTF CONTROL operand
must be included (except for DTFMT and DTFDR) and CTLCHR must be
omitted. If control characters are used when CONTROL is specified,
the control characters are ignored and treated as data.

The CNTRL macro is ignored if specified for DTFSD or DTFDI DASD
files.

filename|(1): Must be the name of the file specified in the DTF
header entry. It can be specified as a symbol or in register nota-
tion.

code: Is the mnemonic code for the command to be performed. This
must be one of a set of pre-determined codes as shown in Figure 5 on
page 39

n1: Is required whenever a number is needed for stacker selection,
immediate printer carriage control, or for line or page marking on
the 3886.

n2: Applies to delayed spacing or skipping or to timing mark check
on the 3886. In the case of a printer file, the parameters nl and n2
may be required. If nl is omitted and n2 is specified, a comma must
be coded for nl.

38 VSE/Advanced Functions Macro Reference



CNTRL

1BM Unit Mnemonic Code n, n, Command
'2400, 3410, 3420, 8809 Magnetic Tape Units REW Rewind Tape
RUN Rewind and Unload Tape
ERG Erase Gap (Writes Blank Tape)
WTM Write Tapemark
BSR Backspace to Interrecord Gap
BSF Backspace to Tapemark
BSL Backspace Logical Record
FSR Forward Space to Interrecord Gap
FSF Forward Space to Tapemark -
FSL Forward Space Logical Record
1442, 2520 Card Redd Punch SS 1 Select Stacker 1 or 2
2
E Eject to Stacker 1 (1442 only)
2540 Card Read Punch PS 1 Select Stacker 1, 2, or 3 (For 3504, 3505, and 3525, 3 Detaults
3504, 3505 Card Readers 2 to Stacker 2)
3525 Card Punch 3
2560 Multi-Function Card Machine SS 1 Select Stacker 1,2,3,4,0r5
2
3
4
5
2596 Card Read Punch SS 1 Select Stacker 1 for Read, or Stacker 3 for Punch
2 Select Stacker 2 for Read, or Stacker 4 for Punch
5424,5425 Multi - Function Card Unit SS 1 Select Stacker 1,2,3,01 4
2
3
4
See Note
1403, 1443, 3203, PRT1, 3800, 5203 Printers SP c Carriage Space 1, 2, or 3 lines
3526 Carid Punch with Print Feature ! SK c d Skip to Channel ¢ and/or d (For 3525, a Skip to Channel 1 1s
Valid Only for Print Only Files)
1403, 5203 Printers with Universal Character ucs ON Data Checks are Processed with an Operator Indication
Set Feature or 3203, PRT1, or 3800 Printers! OFF Date Checks are ignored and Blanks are Printed
PRT1 Printer ! FOLD Print Upper Case Characters for any Byte with Equivalent Bits 2-7
UNFOLD Print Character Equivalents of any EBCDIC Byte
2311, 2314, 2319, 3330, 3333, 3340, 3344, 3360, SEEK Seek to Address
3375, DASD*
3881 Opuical Mark Reader PS 1 Select Stacker 1 or 2
2
1287 Optical Reader MARK Mark Error Line in Tape Mode
READKB Read 1287 Keyboard in Tape Mode
EJD Eject Document
SSD 1 Select Stacker A, B, Reject, or Alternate Stacking Mode
2
3
4
ESD 1-4 Eject Document and Select Stacker
INC Increment Document at Read Station
1288 Optical Page Reader ESD 1 Select Stacker A
3 Reject Stacker (R)
INC Increment Document at Read Station
3886 Optical Character Reader DMK name (1) Page mark the document when it is stacker selected as specified in
number parameter n ;. B
LMK sz‘;é:) Line mark the document when it is stacker selected as specitied in
number. parameter n .
ESP 1 name (1) | Eject and stacker select the current document to stacker A or B.
2 number | Perform line mark station timing mark check as indicated in
parameter n .

¢ An Integer that Indicates Immediate Printer Control (before printing).

d  An Integer that Indicates a Delayed Printer Control.
1 Note: PRT1 refers to 3211 -compatible printers (that is, with a device type of PRT1).
2Note: This includes the 3350 operating in 3330 compatibility mode.

Figure 5. CNTRL Macro Command Codes

Macro Description 39



COMRG

- o - - - = - s e e e e e Ge = e e e e Se e e em e M R Mm e G e e e e e e S e e e e
- . = e m em e e e em = e e e e e . e e S e em e R S R MR e e e e A e e M e M e e e o

- . - - e e = = e e = e G e SR e e M e e e e G e Mm M e e e e W G e e M e e

The COMRG macro places the address of the communication region of
the partition from which the macro is issued into the specified reg-
ister. If the operand is omitted, register 1 is assumed.

40 VSE/Advanced Functions Macro Reference



CPCLOSE

In spooling programs written in Basic Assembler Language, the
CPCLOSE macro can be used to issue a CPCLOSE command to VM/370 in
order to release a print or punch file for output.

Note: The CPCLOSE macro is valid only if the supervisor was
generated with the VM=YES option specified on the SUPVR macro.

arglist|(r1): This operand specifies a 16-byte argument list whose
format is described below and which must be set up before issuing
the macro. If the argument list name is specified, the system loads
the address into register 1. If a register is specified, it is
assumed to contain the address of the argument list and this address
is loaded into register 1. If no operand is specified, register 1
is assumed to contain the address of the argument list.

|  Hexadecimal | EBCDIC |
0 | device address | device address | Job name

o

2 4 8 15

Device address = unit record device address of the device to be
closed.

Return Codes in Register 15

X'00' - Successful completion of CPCLOSE macro.
X'04' - Device is invalid, no CLOSE is issued.

X'08' - VM=YES support not included in the supervisor.

Macro Description 41



DEQ

(R L R I R R R R R Rl et
- e - - - e = e e GE = e e e W T W Gm e e e Gh G TE Se MR h M W e R S R e ew e e

- . - - = - = o e S e S = e R S A e W SR TS W R Ge R e M TR R m o e L

A task releases a resource by issuing the DEQ macro. If other tasks
are enqueued on the same RCB, the DEQ macro frees from their wait
condition all other tasks that were waiting for that resource. In
such cases, the highest priority task either obtains or maintains
control. A task that attempts to dequeue a resource that was not
enqueued or that was enqueued by another task is abnormally termi-
nated. Dequeuing under these two conditions within an abnormal ter-
mination routine results in a null operation instruction.

rcbname|(0): The operand is the same as that in the ENQ macro and
specifies the address of the RCB.

42 VSE/Advanced Functions Macro Reference



DETACH

- e = - n = e S e e e S e S Gm Ge G R AR S AR M e e e T e Sm e e e
- e e - - - e o e e = . o - Sm e e = = = e S R e S SR N G G R SR e e

The DETACH macro terminates execution of a task. A subtask is
normally terminated by issuing a DETACH macro in the main task or in
the subtask itself.

The DETACH macro sets byte 2, bit 0 of the ECB to 1 (if specified in
the ATTACH macro) to indicate task termination. All tasks waiting
on this ECB are taken out of the wait state, and the highest priori-
ty task obtains control.

If the subtask issues a DETACH macro without an operand, only the
subtask issuing the DETACH macro is terminated. Any subtasks
attached by the terminating subtask are not affected by the termi-
nation.

If the main task issues the DETACH macro without specifying an oper-
and, it will be canceled, that is, all processing in the partition
is terminated abnormally.

SAVE={savearea|(1)}: A subtask may also terminate a subtask it
attached by issuing the DETACH macro with the SAVE operand. If the
main task issues the DETACH macro with the SAVE operand, it can ter-
minate any subtask in the partition. The SAVE operand provides the
address of the savearea specified in the ATTACH macro for the sub-
task to be terminated.

Note: If the subtask being terminated uses VSAM files,

ensure that these files are closed before you issue this
macro.

Macro Description 43



DFR

- - = - - - - = = e e e e S e e = G e e e S R e e M e m M e e e e e

Name Operation Operand
[name] DFR FONT=code
[ ,BCH=n]

[, BCHSER=n]

[ ,CHRSET=n]

[ ,EDCHAR=(X,...)]

[ ,ERASE={NO|YES}]

[, NATNHP={NO|YES}]
[ ,REJECT=x]

- . . - e s e = e e e S M e e e e e e e e e e M e e e M e e e e e e e e

The DFR macro defines attributes common to a group of line types on
a 3886.

FONT=code: Specifies the default font for all fields described by
the format record. The default font is used to read a field unless
another font is specified for an individual field through the DLINT
macro.

This is the only required operand in the DFR macro. The valid codes
and the fonts they represent are:

NUMA  Numeric OCR-A font

ANA1 Alphameric OCR-A font (mode 1)

ANA2 Alphameric OCR-A font (mode 2)

NUMB Numeric OCR-B font (mode 3)

ANB1 Alphameric OCR-B font

NHP1 Numeric hand printing (normal mode)
NHP2 Numeric hand printing (verify mode)
GOTH Gothic font

MRKA  Mark OCR-A font

MRKB Mark OCR-B font

For a description of these fonts, see the appropriate IBM 3886
device manuals.

BCH={1]|2]|3}: 1Indicates that batch numbering is to be performed by
the 3886. Specifying 1, 2, or 3 indicates that documents routed to
a stacker are to be batch numbered. Specifying 1 indicates stacker
A, 2 indicates stacker B, 3 indicates both stackers. If this operand
is specified, the BCHSER operand is invalid. If neither BCH nor
BCHSER are entered, no batch numbering is performed. This operand
is valid only if the serial numbering feature is installed on the
3886. For more information on batch numbering, see the appropriate
IBM 3886 device manuals.

BCHSER={1]2]|3}: 1Indicates that both batch and serial numbering
are to be performed by the 3886. Specifying 1, 2, or 3 indicates

that documents routed to a stacker are to be batch and serial num-
bered. Specifying 1 indicates stacker A, 2 indicates stacker B, 3

44 VSE/Advanced Functions Macro Reference



DFR

indicates both stackers. If this operand is specified, the BCH oper-
and is invalid. If neither BCH nor BCHSER is specified, batch and
serial numbering are not performed. This operand is valid only if
the serial numbering feature is installed on the 3886. For more
information on batch and serial numbering, see the appropriate IBM
3886 device manuals.

CHRSET={0|1]2]|3|4|5}: Specifies which one of the options in
Figure 6 is to be used for recognizing characters. If this operand
is not entered, 0 is assumed.

OCR-A OCR-B
Numeric Numeric | Alphameric
Mode Alphameric Modes Mode Mode
Highspeed Mode 1 Hexa- Format
Printers or (Highspeed) | Mode 2 Highspeed Printers decimal | Record
Typewriters | Printer) (Typewriter) | or Typewriters Code Codes
S S % $ $ 58 00
£ £ £ 3 £ 58 01
¥ ¥ ¥ ¥ ¥ 58 02
N N N 78
s $ $ $ $ 58 03
R R R 58
k k L3 78
0 [ ("] 7C 04
% $ % U Note 58
A A A 78
[ o (o] 7C
0 0 FO 05

Note: In OCR-A font the U is coded as a zero and should be used only in
alphabetic fields.

Figure 6. Character Set Option List

EDCHAR=(x,...): Specifies up to six characters that may be
deleted from any field that is read. The EDCHAR parameter in the
EDITn keyword of the DLINT macro controls this function for individ-
ual fields. If this operand is omitted, no character deletion is
performed. See the note under the REJECT operand discussion for
characters that must be specified in quotes. For example, to specify
the characters &, >, and ), you would code EDCHAR=('&','>',")").

Macro Description 45



DFR

ERASE={NO|YES}: Specifies whether group and character erase sym-
bols are to be recognized as valid symbols. If this operand is not
specified, NO is assumed. For more information on group and charac-
ter erase symbols, see the appropriate IBM 3886 device manuals.

NATNHP={NO|YES}: Specifies which of the numeric hand printing
character set options are used for the numbers 1 and 7. YES indi-
cates that the European Numeric Hand Printing (ENHP) characters 1
and 7 are used; NO indicates the Numeric Hand Printing (NHP) charac-
ters 1 and 7 are used. If this operand is not entered, NO is
assumed.

REJECT=x: Indicates the character that is to be substituted in
the data record for any reject character read by the device. If this
operand is omitted, X'3F' is assumed. Reject characters are charac-
ters that are not recognizable by the device.

Note: This note applies to the keywords REJECT and EDCHAR.
Apostrophes enclosing the character are optional for all char-
acters except special characters used in macro operands. For a
description of these characters, see the manual
0S/VS-DOS/VSE-VM/370 Assembler Language .

46 VSE/Advanced Functions Macro Reference



DIMOD

- - - - = m = = e = e G = e e e R e G R M e M G M e e e e e o

[name] DIMOD [ IOAREA2=YES ]
[ ,RDONLY=YES ]
[, SEPASMB=YES]
[ ,TRC=YES]
[, TYPEFLE={OUTPUT | INPUT}]

The DIMOD macro defines a logic module for a device-independent
file. If you do not provide a name for the module, IOCS generates a
standard module name.

For DASD devices, a user-supplied logic module is not required. If
one is supplied, it is ignored. OPEN always provides linkage to an
IBM-supplied logic module which resides in the SVA.

IOAREA2=YES: Include this operand if a second I/O area is
needed. A module with this operand can be used with DTFDI specifying
either one or two I/0 areas. If the operand is omitted or is
invalid, one I/0 area is assumed.

RDONLY=YES: This operand causes a read-only module to be gener-
ated. Whenever this operand is specified, any DTF used with the mod-
ule must have the same operand.

SEPASMB=YES: Include this operand only if the module is to be
assembled separately. This causes a CATALR card with the module
name (standard or user-specified) to be punched ahead of the object
deck and the module name to be defined as an ENTRY point in the
assembly. If the operand is omitted, the assembler assumes that the
module is assembled together with the DTF and the problem program.

TRC=YES: 1Include this operand to specify whether the module is to
test the table reference character indicator in the DTFDI or ignore
that indicator. If TRC=YES is specified, the generated module can
process output files with table reference characters and those with-
out. If the TRC operand is specified, TYPEFLE=INPUT must not be
specified.

TYPEFLE={OUTPUT|INPUT}: Include this operand to specify
whether the module is to process input or output files. If OUTPUT is
specified, the generated module can process both input and output
files.

Macro Description 47



DIMOD

Standard DIMOD Names

Each name begins with a 3-character prefix (IJJ) followed by a
5-character field corresponding to the options permitted in the gen-
eration of the module.

DIMOD name = IJJabcde

a = F always

b = C RPS=SVA is not specified
=V RPS=SVA

¢ = B TYPEFLE=OUTPUT (both input and output)
= 1 TYPEFLE=INPUT

d = I TIOAREA2=YES
= Z TIO0OAREA2=YES is not specified

e = C RDONLY=YES

o
o

RDONLY=YES is not specified

Subset/Superset DIMOD Names

All of the operands except TRC=YES allow subsetting. A module name
specifying B is a superset of the module specifying I, for example.
IJJFCBID is a superset of the module IJJFCIID.

The IBM-supplied preassembled logic modules do not have TRC=YES. The
system programmer can reassemble them with TRC=YES to support 3800
table reference characters. Although the code that is generated for
a module assembled with TRC=YES is different from the code that is
generated for a module with TRC=NO, the module name is the same. If
some, but not all DIMOD logic modules are reassembled this way, it
may interfere with subsetting or supersetting.

- e n = . = e = e e e e e e R e e e m e S R e R W e e e

+ Subsetting/supersetting permitted.
* No subsetting/supersetting permitted.

- . - - e e SR e W S G e =S G S R R e R R S T R M e

48 VSE/Advanced Functions Macro Reference




DISEN

This macro stops the feeding of documents through the magnetic char-
acter reader or optical reader/sorter. The program proceeds to the
next sequential instruction without waiting for the disengagement to
complete. You should continue to issue GET vr KEAD until the unit
exception bit (byte 0, bit 3), of the buffer status indicators is
set on (see Figure 4 on page 31 ).

filename|(1): Specifies the name of the file to be disengaged. This
name is the same as that specified for the DTFMR header entry for
the file. The operand can be specified either as a symbol or in reg-
ister notation.

Macro Description 49



DLINT

L e e e e L T

[name] DLINT LFR=n,LINBEG=n
[, IMAGE=(NO| YES}]
[ ,NOSCAN=(n, ...)]
[,FLDn=(n,n,NCRIT, xxx) ]
[ ,EDITn=(xxxxxx,EDCHAR) ]
[ , FREND={NO|YES}]

The DLINT macro describes one line type in a format group and the
individual fields in the line.

Line Information Entries

LFR=n: This operand specifies the line format record number for
the line. The decimal number specified must be in the range of 0
through 63. The line format record describes the format of one type
of line; the line format record number is used to identify the line
format record. This number is specified in the READ macro when you
read a line of data from a document.

LINBEG=n: This operand specifies the beginning of a line. The
beginning position is the distance, measured in units of 0.1 inch
(2.54 mm), from the left edge of the document to the left boundary
of the first field. The limiting range of this position is 4 to 85.

IMAGE={NO|YES}: This operand specifies whether the data record
should be in standard mode (IMAGE=NO), or image mode (IMAGE=YES). If
this operand is not specified, IMAGE=NO is assumed.

NOSCAN=(n,...): Specifies an area on the document line that is
to be ignored by the 3886. 'n' is a decimal number indicating the
distance, measured in units of 0.1 inch (2.54 mm), from the left
edge of the document to the right end of the NOSCAN field. The field
immediately to the left of the NOSCAN field must end with an address

delimiter rather than a character delimiter.

Field Information Entries

FLDn=({address-delimiter|character-delimiter}, [field-length]
[,{NCRIT|font-code|NCRIT,font-code}]):Describes each of the
fields in a line. The n in FLDn is a number from 1 through 14 and
the parameters are the same for keywords FLD1 through FLD14. The
following rules apply when specifying these keywords:

i Fields may be described in any order in the macro.

N Each EDITn parameter must follow its associated FLDn parameter.

50 VSE/Advanced Functions Macro Reference



DLINT
o The n suffix need not be 1 for the first field in the line; how-
ever, the n suffix must increase for each field from left to

right on the document line.

address-delimiter

Is a decimal number that specifies the distance, measured in units
of 0.1 inch (2.54 mm), from the left edge of the document to the
right end of the field being defined. The last field in a line must
end with an address delimiter.

character-delimiter

Specifies the character that indicates the end of a field. The char-
acter delimiter is not considered part of the data; it is not
included in the data record nor used in determining the length of
the field.

Apostrophes enclosing the characters are optional for all characters
except 0 through 9, and the special characters used in macro oper-
ands. For these characters, the apostrophes are required. For a
description of these characters, see 0S/VS-DOS/VSE-VM/370 Assembler

Language.

If a field ends with a character delimiter, the next field must be
read using a font from the same font group. The font groups are:

NPH1, NPH2, GOTH

ANA1, ANA2, NUMA, MRKA
NUMB, MRKB

ANB1

field-length

Is a decimal number specifying the length of the field in the edited
record. The length specified cannot be less than 1 or more than 127.
If IMAGE=NO is specified, this parameter is required; if IMAGE=YES
is specified, this parameter is invalid. The length specified in
this parameter refers to the length of the field after any EDITn
options have been performed. The sum of the field lengths for a line
cannot be greater than 130.

NCRIT

Indicates that this is not a critical field. If this parameter is
omitted, the field is assumed to be critical.

font-code
Specifies a font for this field, different from the font specified
in the DFR macro. If this parameter is not specified, the font spec-

ified in the DFR macro is used for the field. For information about
the valid codes, see the DFR macro description.

Macro Description 51



DLINT

EDITn=({code| EDCHAR|code, EDCHAR}): Describes the editing
functions to be performed on the data by the 3886.

The parameters are the same for keywords EDIT1 through EDIT14. There
must be a FLDn keyword corresponding with each EDITn keyword you
specify. If an EDITn keyword is specified, a code, EDCHAR, or both
must be specified. When image mode is used, the EDITn keywords are
invalid.

When the editing functions are completed and the field is greater
than the specified length, the field is truncated from the right and
the wrong length field indicator is set on in the header record. If
only blanks are truncated, the wrong length field indicator is not
set.

code

Specifies the blanks to be removed and the fill characters to be
added to the field, if any. The valid codes and their meanings are:

HLBLOF  All high- and low-order blanks are removed, the data is
left justified, and the field is padded with blanks on the
right (see Note).

ALBLOF All blanks are removed from the data, the data is
left-justified, and the field is padded with blanks on the
right. If code is omitted, ALBLOF is assumed.

NOBLOF No blanks are removed, the data is left-justified, and the
field is padded on the right with blanks.

HLBHIF  All high- and low-order blanks are removed, the data is
right-justified, and the field is padded to the left with
EBCDIC zeros (X'FO') (see Note).

ALBHIF  All blanks are removed, the data is right-justified, and
the field is padded with EBCDIC zeros (X'FO') on the left.

ALBNOF  All blanks are removed; the data must be equal in length to
the field length specified. No padding is done.

Note: Two consecutive embedded blanks is the maximum number
sent.

EDCHAR
Indicates that the characters specified in the EDCHAR keyword of the
DFR macro are to be deleted from the field. If this parameter is

omitted, the characters are not deleted.

If the EDITn keyword is omitted or if EDITn=EDCHAR is specified and
the code is omitted, ALBLOF is assumed.

52 VSE/Advanced Functions Macro Reference




DLINT

FREND={NO|YES}: Indicates whether this is the last DLINT macro
for the format record. NO indicates that more DLINT macros follow;
YES indicates that this is the last one. If this operand is omitted,

NO is assumed.

Macro Description 53



DRMOD

[name] DRMOD [ ,DEVICE=3886]
[ ,RDONLY=YES ]
[, SEPASMB=YES]
[, SETDEV=YES]

The DRMOD macro defines a logic module for a 3886 file. If you do

not provide a name for the module, IOCS generates a standard module
name.

DEVICE=3886: Specifies that the 3886 is the input device. This
operand may be omitted.

RDONLY=YES: This operand generates a read only module.
RDONLY=YES must also be specified in the DTF. For additional pro-

gramming requirements concerning this operand, see the DTFDR RDONLY
operand.

SEPASMB=YES: Must be specified if the I/0 module is to be assem-
bled separately. This entry causes a CATALR card to be punched pre-
ceding the module.

SETDEV=YES: 1Is specified if the SETDEV macro may be used when
processing a file with this I/0 module. If SETDEV=YES is specified
in the DRMOD macro but not in the DTFDR macro, the SETDEV macro can-
not be used when processing that file.

Standard DRMOD Names

Each name consists of eight characters. They are: IJMZxxDO. The
fifth and sixth characters are variables as follows:

A If SETDEV=YES is specified, the fifth character is S; otherwise
it is Z.

i If RDONLY=YES is specified, the sixth character is R; otherwise
it is Z.

Note: Subsetting/supersetting is allowed with the SETDEV
keyword, but not with the RDONLY keyword.

54 VSE/Advanced Functions Macro Reference



DSPLY

The DSPLY macro displays the document field on the 1287 display
scope. A complete field may be keyboard-entered if a 1287 read error
makes this type of correction necessary. An unreadable character may
be replaced by the reject character either by the operator (if proc-
essing in the on-line correction mode) or by the device (if process-
ing in the off-line correction mode). You may then use the DSPLY
macro to display the field in error.

filename|(1): Is the symbolic name specified in the DTFOR header
entry for the 1287 file.

(r2): Specifies a general-purpose register (any from 2 to 12) into
which the problem program places the address of the load format CCW
giving the document coordinates for the field to be displayed. When
the DSPLY macro is used in the COREXIT routine, the address of the
load format CCW can be obtained by subtracting 8 from the 3-byte
address that is right-justified in the fullword location beginning
at filename+32. (The high-order fourth byte of this fullword should
be ignored.) If the DSPLY macro is not used in the COREXIT routine,
you must determine the load format CCW address.

(r3): Specifies a general-purpose register (2 through 12) into

which you place the address of the load format CCW giving the coor-
dinates of the reference mark associated with the displayed field.

Macro Description 55



DTFCD

B e N e R

[name] DTFCD DEVADDR=SYSxxx
, JOAREAl=name
[ ,ASOCFLE=filename]
[ ,BLKSIZE=n]
[ ,CONTROL=YES]
[ ,CRDERR=RETRY]
[ ,CTLCHR={ASA|YES}]
[ ,DEVICE=nnnn]
[ ,EOFADDR=name]
[ ,ERROPT={ IGNORE | SKIP |name}]
[ ,FUNC=xxx]
[ ,IOAREA2=name]
[ ,IOREG=(r)]
[ ,MODE=xx]
[ ,MODNAME=name]
[ ,OUBLKSZ=n]
[ ,RDONLY=YES]
[ ,RECFORM={ FIXUNB | VARUNB | UNDEF } ]
[ ,RECSIZE=(r)]name]
[ ,SEPASMB=YES]
[ ,SSELECT=n]
[ ,TYPEFLE={ INPUT | OUTPUT | CMBND} ]
[ ,WORKA=YES]

This macro defines a file for a card reader or a 3881 Optical Mark
Reader.

If not stated otherwise, the operands of the DTFCD macro can be
specified for all three types of files (INPUT, OUTPUT, CMBND).

ASOCFLE=filename: This operand is used together with the FUNC
operand to define associated files for the 2560, 3525, or 5424/5425.
(For a description of associated files see the VSE/Advanced Func-
tions Application Programming: Macro User's Guide.) ASOCFLE speci-
fies the filename of associated read, punch, or print files (see
Figure 7 on page 57 ), and enables macro sequence checking by the
logic module of each associated file. One filename is required per
DTF for associated files.

This operand applies to input and output files.

BLKSIZE=n: Enter the length of the I/0 area (IOAREAl). If the
record format is variable or undefined, enter the length of the
largest record. If the operand FUNC=I is specified for the 2560 or
3525, the length specified for BLKSIZE must be 80 data bytes if
CTLCHR=YES or if ASA is not specified; if CTLCHR=YES or if ASA is
specified, the length must be 81 bytes.

56 VSE/Advanced Functions Macro Reference



DTFCD

1. If FUNC=PW is specified
a. specify the filename of the print DTFPR in the ASOCFLE operand
I of the punch DTFCD and
b. specify the filename of the punch DTFCD in the ASOCFLE operand|
of the print DTFPR.

- |
|Code in FUNC=| Filename Specification in ASOCFLE=Operand of |
| Operand | |
| |Read DTFCD | Punch DTFCD |Print DTFPR |
| | | | |
| FUNC=PW l |Filename of print |Filename of punch |
| | | DTFPR | DTFCD l
| | | | |
| FUNC=RP |Filename of punch |Filename of read | |
| | DTFCD | DTFCD | |
| l | ! |
| FUNC=RPW |Filename of punch |Filename of print |Filename of read |
| | DTFCD | DTFPR | DTFCD
| I l | '
FUNC=RW |Filename of print | |Filename of read |
| DTFPR | | DTFCD |
|
Examples: |
|
|
|

I
|
2. If FUNC=RPW is specified |
a. specify the filename of the punch DTFCD in the ASOCFLE oper— |

and of the read DTFCD , and |

| b. specify the filename of the print DTFPR in the ASOCFLE operand|
of the punch DTFCD, and |

c. specify the filename of the read DTFCD in the ASOCFLE operand |
of the print DTFPR. J

Figure 7. ASOCFLE Operand Usage With Print Associated Files

CONTROL=YES: This operand is specified if a CNTRL macro is to
be issued for a file. If this operand is specified, CTLCHR must be
omitted.

The CNTRL macro cannot be used for an input file with two I/O areas
(that is, when the IOAREA2 operand is specified), or for an input
file used in association with a punch file (when the operand FUNC=RP
or RPW is specified) on the 2560, 3525, or 5424/5425; in this case,
however, this operand can be specified in the DTFCD for the associ-
ated punch file.

CRDERR=RETRY: This operand applies to card output on the 2520
or 2540. It specifies the operation to be performed if an error is
detected. From this specification, IOCS generates a retry routine
and a save area for the card punch record.

If a punching error occurs, it is usually ignored and operation con-
tinues. The error card is stacked in stacker P1 (punch), while cor-

Macro Description 57



DTFCD

rect cards are stacked in the stacker you select. If the
CRDERR=RETRY operand is included and an error condition occurs, IOCS
also notifies the operator and then enters the wait state. The oper-
ator can either cancel the job, ignore the error, or instruct IOCS
to repunch the card.

CTLCHR={ASA|YES}: This operand is required if first-character
control is to be used on an output file. ASA denotes the American
National Standards character set. YES denotes the System/370 char-
acter set. See Appendix A for the complete list of codes. If this
operand is specified, CONTROL must be omitted.

DEVADDR={SYSIPT|SYSPCH|SYSRDR|SYSnnn}: This operand speci-
fies the logical unit name to be associated with a file. The logical
unit represents an actual I/0 device address and is used in the
ASSGN job control statement to assign an actual I/0 device address
to the file.

SYSIPT, SYSPCH, or SYSRDR must not be specified:

for the 2596

for the 3881

for 1442, 2520, or 2540 combined files (TYPEFLE=CMBND)

for 2560, 3525, or 5424/5425 associated files (FUNC=RP, RW, RPW,
or PW)

if the operand FUNC=I is specified

. if the MODE operand is specified with the C, O, or R parameters.

DEVICE={2540|1442|2501|2520| 2560P | 2560S | 2596 | 3504 | 3505 | 3525 |
5425P |5425S|3881}: This operand specifies the I/0 device associ-
ated with a file. The 'P' and 'S' included with the '2560' and
'5425"' device codes specify primary or secondary input hoppers.
Specify 5425P/S for 5424P/S. 1If the operand is omitted, 2540 is
assumed.

EOFADDR=name: This entry must be included for input and combined
files and specifies the symbolic name of your end-of-file routine.
IOCS automatically branches to this routine on an end-of-file condi-
tion. In your routine you can perform any operations required for
the end of the file (you generally issue a CLOSE instruction for the
file).

I0CS detects end-of-file conditions in the card reader by recogniz-
ing the characters /* punched in card columns 1 and 2 (column 3 must
be blank). If the system logical units SYSIPT and SYSRDR are
assigned to a 5424/5425, I0CS requires that the /* card, indicating
end-of-file, be followed by a blank card. An error condition results
if cards are allowed to run out without a /* trailer card (and with-
out a /& card to indicate end-of-job).

ERROPT={IGNORE|SKIP|name}: This operand specifies the error
exit option used for an input or output file on a 2560, 3504, 3505,
3525, or 5424/5425. IGNORE, SKIP, or the symbolic name of an error
routine can be specified for input files. For output files, only

58 VSE/Advanced Functions Macro Reference




DTFCD

IGNORE can be specified. This operand must be omitted when using
2560 or 5424/5425 associated output files. The functions of these
operands are described below.

IGNORE

The error is to be ignored. When control returns to your program,
register 1 contains the address of the error record and, for output
files, byte 3, bit 3 of the CCB is set on (see Figure 3 on page 16).
You can check this bit and take the appropriate action to recover
from the error. Only one I/0 area and no work area is permitted for
output files. When IGNORE is specified for an input file associated
with a punch file (FUNC=RP or RPW) and an error occurs, a PUT for
the card in error must nevertheless be given for the punch file.

SKIP

The record in error is not to be made available for processing. The
next card is read and processing continues.

name

10CS branches to your routine when an error occurs, where you may
perform whatever actions you desire. Register 1 contains the address
of the record in error, and register 14 contains the return address.
GET macros must not be issued in the error routine for cards in the
same device (or in the same card path for the 2560 or 5424/5425). If
the file is an associated file, PUT macros must not be issued in the
error routine for cards in the same device (for the 2560 or
5424/5425 this applies to cards in either card path). If any other
10CS macros are issued in the routine, register 14 must be saved.

If the operand RDONLY=YES is specified, register 13 must also be
saved. At the end of your routine, return to IOCS by branching to
the address in register 14. If the input file is associated with an
output file (FUNC=RP, RPW, or RW), no punching or printing must be
done for the card in error. IOCS continues processing by reading the
next card.

Note: When ERROPT is specified for an input file and an
error occurs, there is a danger that the /* end-of-file card
may be lost. This is because IOCS, after taking the action for
the card in error specified by the ERROPT operand, returns to
normal processing by reading the next card which is assumed to
be a data card. If this card is in fact an end-of-file card,
the end-of-file condition cannot be recognized.

FUNC={R|P|I|RP|RW|RPW|PW}: This operand specifies the type of
input or output file to be processed by the 2560, 3525, or
5424/5425.

R indicates read.

P indicates punch.

Macro Description 59



DTFCD
W indicates write (print).

When FUNC=I is specified, the file will be both punched and inter-
preted; no associated file is necessary to achieve this. The infor-
mation printed will be the same as the information punched, in
contrast to FUNC=PW, where any relation between the information
printed and the information punched is determined by your program.
When FUNC=I is specified the file can have only one I/0 area.

RP, RW, RPW, and PW are used, together with the ASOCFLE operand, to
specify associated files; when one of these parameters is specified
for one file, it must also be specified for the associated file(s).
Each of the associated files can have only one I/0 area.

IOAREA1=name: This operand specifies the name of the input or
output area used for this file.

If issued for a combined file, this operand specifies the input
area. If IOAREA2 is not specified, the area specified in this oper-
and is used for both input and output.

IOAREA2=name: This operand specifies the name of a second I/0
area. If the file is a combined file and the operand is specified,
the designated area is an output area.

If this operand is specified for the 3881, the IOREG operand must
also be specified.

This operand must not be specified if, for the FUNC operand, any of
the parameters I, RP, RPW, RW, or PW is specified or if, for an out-
put file, ERROPT=IGNORE is specified.

IOREG=(r): If two input or output areas are used instead of a
work area, this operand specifies the register (any of 2 through 12)
into which IOCS puts the address of the record. For output files,
IOCS puts into this register the address where the user can build a
record. This operand cannot be used for combined files.

This operand must be specified for the 3881 if the IOAREA2 operand
is specified.

MODE={E|C|O|R|EOJER|CO|CR}: This operand specifies the mode
used to process an input or output file for a 2560, 3504, 3505, or

3525.

E = normal EBCDIC mode, which is also the default.
C = column binary mode.

0 = optical mark read (OMR) mode.

R = read column eliminate mode.

E is also assumed if only O or R is specified.

60 VSE/Advanced Functions Macro Reference



DTFCD
Valid entries are:
. For the 2560: E and C.
e TFor the 3504 and 3505: E, C, O, R, EO, ER, CO, and CR.
. For the 3525: E, C, R, ER, and CR.

i For SYSIPT, SYSPCH, or SYSRDR: E. O and R (with or without E or
C) cannot be specified for output files.

If 0 or R is specified (with or without E or C), a format descriptor
card defining the card columns to be read, or eliminated, must be
provided. See OMR considerations in the VSE/Advanced Functions
Application Programming: Macro User's Guide for instructions on how
to write this card as well as on how to code and process OMR data.

MODNAME=name: This operand is used to specify the name of the
logic module that is used with the DTF table to process the file. If
the logic module is assembled with the program, MODNAME must specify
the same name as the CDMOD macro.

If this operand is omitted, standard names are generated for calling
the logic module. If two DTF macros call for different functions
that can be handled by a single module, only one module is called.

OUBLKSZ=n: This operand is used in conjunction with IOAREA2, but
only for a combined file. Enter the maximum number of characters to
be transferred at one time. If this entry is not included and
I0OAREA2 is specified, the same length as defined by BLKSIZE is
assumed.

RDONLY=YES: This operand is specified if the DTF is used with a
read-only module. Each time a read-only module is entered, register
13 must contain the address of a 72-byte doubleword-aligned save
area. In the case of double buffering support for the 2501 Card
Reader, the save area must be 76 bytes to include bytes 0 to 3 of
the second CCB generated.

Each task requires its own uniquely defined save area, and each time
an imperative macro (except OPEN or OPENR) is issued, register 13
must contain the address of the save area associated with that task.
The fact that the save areas are unique for each task makes the mod-
ule reentrant (that is, capable of being used concurrently by
several tasks).

If an ERROPT routine issues I/0 macros using the same read-only mod-
ule that caused control to pass to the error routine, your program
must provide another save area. One save area is used for the
normal I/0 operations, and the second for I/0 operations in the
ERROPT routine. Before returning to the module that entered the
ERROPT routine, register 13 must contain the save area address ori-
ginally specified for the task.

Macro Description 61



DTFCD

If this operand is omitted, the module generated is not reenterable,
and no save area is required.

RECFORM={FIXUNB|VARUNB|UNDEF}: This operand specifies the
record format of the file: fixed length, variable length, or unde-
fined. If the record format is fixed unblocked (FIXUNB,) this oper-
and may be omitted. This operand must specify FIXUNB if you also
specified one of the following:

TYPEFLE=INPUT
TYPEFLE=CMBND
FUNC=I
DEVICE=3881

RECSIZE=(r): For undefined records, this operand specifies the
register (any one of 2 through 12) that contains the length of the
output record. You must load the length of each record into the
specified register before you issue the PUT macro for the record.

SEPASMB=YES: Include this operand only if the DTFCD is to be
assembled separately. This causes a CATALR card with the filename to
be punched ahead of the object deck and defines the filename as an
ENTRY point in the assembly. If the operand is omitted, the assem-
bler assumes that the DTF is assembled together with the problem
program.

SSELECT=n: This operand specifies the valid stacker-select char-
acter for a file. If this entry is not specified, cards are selected
into the NR (normal read) or NP (normal punch) stackers. For the
5424/5425, cards from hopper 1 are placed in stacker 1 and cards
from hopper 2 are placed in stacker 5 (or 4).

This operand must not be specified for combined files, for files on
the 3881, for 2560, 3525, or 5424/5425 read files associated with
punch files (FUNC=RP or FUNC=RPW); in this case the SSELECT=n oper-
and may be specified for the associated output file. For further
information, see the CNTRL macro.

When this operand is used with a device other than a 1442 or 2596,
the program ignores CONTROL=YES with input files.

TYPEFLE={INPUT|OUTPUT|CMBND}: This operand specifies wheth-
er a file is input, output, or combined. A combined file can be
specified for a 1442 or 2520 or for a 2540 with the punch-feed-read
feature. TYPEFLE=CMBND is applicable if both GETs and PUTs are
issued for the same card file.

Only TYPEFLE=INPUT can be specified for the 3881. If OUTPUT or CMBND
is specified, the DTF defaults to DEVICE=2540 and a non-executable
CDMOD logic module is produced. The MNOTE 'IMPROPER DEVICE. 2540
ASSUMED.' is then printed at assembly time. If the operand is omit-
ted, INPUT is assumed.

62 VSE/Advanced Functions Macro Reference




DTFCD

WORKA=YES: 1If I/0 records are processed in work areas instead of
in the I/0 areas, specify this operand. You must set up the work
area in storage. The address of the work area, or a general-purpose

register which contains the address, must be specified in each GET
and PUT macro.

If ERROPT=IGNORE is specified for an output file or if DEVICE=3881,
WORKA=YES must not be specified.

Macro Description 63



DTFCN

- = . e e e e = e e e e S e e e e e e = e e e e R Gm S e e e m SR M M T e s G R e e e W e = -

- - . - e e e = e e e e Ge SR G e R e Se Sk e e e SR Ee G SR e e M Sm e e R R M e e e

[name] DTFCN DEVADDR=SYSxxx
,I0AREAl=name
[ ,BLKSIZE=n]
[, INPSIZE=n]
[ , MODNAME=name ]
[ ,RECFORM={FIXUNB |UNDEF}]
[ , RECSIZE=(1)]
[ , TYPEFLE={ INPUT | OUTPUT | CMBND} ]
[ ,WORKA=YES]

The DTFCN macro defines an input or output file that is processed on
a 3210 or 3215 console printer-keyboard, or a display operator con-
sole. DTFCN provides GET/PUT logic as well as PUTR logic for a file.

BLKSIZE=n: This operand specifies the length of the I/O area; if
the PUTR macro is used (TYPEFLE=CMBND is specified), this operand
specifies the length of the output part of the I/0 area. For the
undefined record format, BLKSIZE must be as large as the largest
record to be processed. The length must not exceed 256 characters.

If the console buffering option is specified at system generation
time and the device is assigned to SYSLOG, physical IOCS can
increase throughput for each actual output record not exceeding 80
characters. This increase in throughput results from starting the
output I/0 command and returning to the program before output com-
pletion. Regardless of whether or not output records are buffered
(queued on an I/0 completion basis), they are always printed or dis-
played in a first-in-first-out (FIFO) order.

DEVADDR={SYSLOG|SYSnnn}: This operand specifies the logical
unit name associated with the file. DEVADDR=SYSLOG must be specified
to obtain partition identification prefixes (BG, F1, F2, F3, ... Fn)
for message identification.

DEVADDR=SYSLOG must be specified if your DTFCN macro includes
TYPEFLE=CMBND.

INPSIZE=n: This operand specifies the length of the input part of
the I/0 area for PUTR macro usage.

IOAREA1=name: This operand specifies the name of the I/0 area
used by the file. For PUTR macro usage, the first part of the I/O
area is used for output, and the second part is used for input. The
lengths of these parts are specified by the BLKSIZE and INPSIZE
operands respectively. The I/O area is not cleared before or after a
message is printed, or when a message is canceled and reentered on
the console.

64 VSE/Advanced Functions Macro Reference




DTFCN

MODNAME=name: This operand specifies the name of the logic mod-
ule generated by this DTFCN macro. If this entry is omitted, stand-
ard module names are generated for the logic module.

A module name must be given when two phases (each containing a DTFCN
macro) are link-edited into the same program. Under such conditions,
omission of this operand results in unresolved address constants.

RECFORM={FIXUNB|UNDEF}: This operand specifies the record
format of the file: fixed length or undefined. FIXUNB must be spec-
ified if TYPEFLE=CMBND is specified. FIXUNB is assumed if the
RECFORM operand is omitted.

RECSIZE=(r): For undefined records, this operand is required for
output files and is optional for input files. It specifies a general
register (2 to 12) that contains the length of the record. On
output, you must load the length of each record into the specified
register before you issue a PUT macro. If specified for input files,
I0CS provides the length of the record transferred to storage.

TYPEFLE={INPUT|OUTPUT|CMBND}: This operand specifies a file
as input, output, or combined. If INPUT is specified, code is gener-
ated for both input and output files. If OUTPUT is specified, code
is provided for output files only.

CMBND must be specified if you use the PUTR macro. CMBND specifies
that coding be generated for both input and output files; in addi-
tion, coding is generated to allow usage of the PUTR macro to ensure
that messages requiring operator action are not deleted from the
console. When CMBND is specified, DEVADDR=SYSLOG must also be speci-
fied.

WORKA=YES: This operand indicates that a work area is used with

the file. A GET or PUT macro moves the record to or from the work
area. A PUTR macro moves the record from and to the work area.

Macro Description 65



DTFDA

Name Operation Operand

[name] DTFDA BLKSIZE=n
,ERRBYTE=name
, J0AREAl=name

, SEEKADR=name
,TYPEFLE={ INPUT | OUTPUT}
[ ,AFTER=YES]

[ ,CONTROL=YES]

[ ,DEVADDR=SYSnnn ]
[ ,DSKXTNT=n]

[ ,ERREXT=YES]

[ ,FEOVD=YES]

[ ,HOLD=YES]

[ , IDLOC=name]

[ ,KEYARG=name]

[ ,KEYLEN=n]

[ ,LABADDR=name]

[ ,READID=YES]

[ ,READKEY=YES]

[ ,RECFORM=xxxxxX]
[ ,RECSIZE=(r)]

[ ,RELTYPE={DEC|HEX}]
[ ,SEPASMB=YES]

[ , SRCHM=YES]

[ ,TRLBL=YES]

[ ,VERIFY=YES]

[ ,WRITEID=YES]

[ ,WRITEKY=YES]

[ ,XINTXIT=name]

The DTFDA macro defines a file for Direct Access Method (DAM) proc-
essing. DAM does not support FBA devices.

If not stated otherwise, the operands of the DTFDA macro can be
specified for both input and output files.

AFTER=YES: This operand must be included for output files if any
records (or an additional record) are written in a file by a format-
ting WRITE (count, key, and data) following the last record previ-
ously written on a track. The remainder of the track is erased. That
is, whenever either of the macros

WRITE filename,AFTER

WRITE filename,RZERO

is used in a program, this operand is required.

66 VSE/Advanced Functions Macro Reference



DTFDA

BLKSIZE=n: This operand indicates the size of the I/0 area by
specifying the maximum number of characters that are transferred to
or from the area at any one time. When undefined, variable length ox
spanned records are read or written, the area must be large enocugh
to accommodate the largest record.

For details on how to compute n, see VSE/Advanced Functions Applica-
tion Programming: Macro User's Guide. ’

I0CS uses this specification to construct the count field of the CCW
for reading or writing records.

CONTROL=YES: 1Include this operand if a CNTRL macro is issued
for this file. The CNTRL macro for seeking on a disk allows you to
specify a track address on which access movement should begin for
the next READ or WRITE macro. While the arm is moving, you may proc-
ess data and/or request I/0 operations on other devices.

DEVADDR=SYSnnn: This operand must specify the symbolic unit
(SYSnnn) associated with a file if the symbolic unit is not provided
via an EXTENT job control statement. If such a unit is provided, its
specification overrides the DEVADDR parameter. This specification,
or symbolic unit, represents an actual I/0 address and is used in
the ASSGN job control statement to assign the actual I/0 device
address to the file.

Note: EXTENT job control statements provided for DAM must be
supplied in ascending order, and the symbolic units for
multi-volume files must be assigned in consecutive order.

DSKXTNT=n: This operand indicates the maximum number of extents
(up to 256) that are specified for a file. When this operand is usad
together with FIXUNB, VARUNB, or UNDEF specified in the RECFORM
operand, it indicates that a relative ID is used in the SEEKADR and
IDLOC locations. If DSKXTNT=n is omitted, a physical ID is assumed
in the SEEKADR and IDLOC locationms.

If RECFORM=SPNUNB is specified, DSKXTNT is required. If relative
addressing is used, the RELTYPE operand must also be specified.

ERRBYTE=name: This operand is required for IOCS to supply indi-~
cations of exceptional conditions to your program. The name of a
2-byte field (in which IOCS can store the error-condition or status
codes) is entered.

ERREXT=YES: This operand enables unrecoverable I/0 errors (oc-

curring before a data transfer takes place) to be indicated to your
program. This error information is indicated in the bytes named in

the ERRBYTE operand and is available after the WAITF macro has been
issued.

FEOVD=YES: This operand is specified if code is generated to

handle end-of-volume records. It should be specified only when
reading a file which was built using DTFSD and the FEOVD macro.

Macro Description 67



DTFDA

HOLD=YES: This operand provides for the track hold function,
which is to be specified at system generation time. If the operand
is omitted, the track hold function is not performed. For details,
see VSE/Advanced Functions Application Programming: Macro User's
Guide.

IDLOC=name: This operand is included if you want IOCS to supply
the ID of a record after each READ or WRITE (ID or KEY) is
completed. Specify the name of a record reference field in which
I0CS is to store the ID. WAITF should be used before referencing
this field. Do not specify the same field for IDLOC and SEEKADR.

Note: When the record to be read or written is the last
record of the cylinder, an end-of-cylinder indication is
posted in ERRBYTE1l, bit 2, but the address returned is that of
the first record of the next cylinder. If, in addition, the
end-of-volume indication is posted, the address returned in
IDLOC is all 1 bits.

IOAREA1=name: This operand must be included to specify the name
of the input/output area used for the file. IOCS routines transfer
records to or from this area. The specified name must be the same as
the name used in the DS instruction that reserves this area of stor-
age.

KEYARG=name: This operand must be included if records are iden-
tified by key; that is, if either of the macros

READ filename,KEY
WRITE filename,KEY

is used in a program, this entry and the corresponding KEYLEN oper-
and are required. KEYARG specifies the name of the key field in
which you supply the record key to IOCS.

The KEYARG operand is required for formatting WRITE (WRITE
filename ,AFTER) operations for files containing keys if
RECFORM=VARUNB or SPNUNB. It is required also when the macro

READ filename,ID

is specified and if KEYLEN is not zero. When record reference is by
key, IOCS uses this specification at assembly time to construct the
data address field of the CCW for search commands.

KEYLEN=n: This operand must be included if record reference is by
key or if keys are read or written. It specifies the number of bytes
in each key. All keys must be the same length. If this operand is
omitted, IOCS assumes a key length of zero.

If there are keys recorded on DASD and this entry is absent, a WRITE
ID or READ ID writes or reads the data portion of the record.

68 VSE/Advanced Functions Macro Reference




DTFDA

When record reference is by key, IOCS uses this specification to
construct the count field of the CCW for this file. IOCS also uses
this in conjunction with IOAREA1l to determine where the data field
in the I/0 area is located.

LABADDR=name: You may require one or more user labels in addi-
tion to the standard file label. If so, you must include your own
routine to check, or write, the labels. The name of such a routine
is specified in this operand. IOCS branches to this routine after it
has processed the standard label.

READID=YES: This operand must be included for an input file if,
in your program, the macro 'READ filename,ID' is used.

READKEY=YES: This operand must be included for an input file
if, in your program, the macro 'READ filename,KEY' is used.

RECFORM={FIXUNB|SPNUNB|UNDEF|VARUNB}: This operand speci-
fies the type of records in the input or output file. The specifica-
tions are:

FIXUNB For fixed-length records. All records are considered
unblocked. If you want blocked records, you must provide
your own blocking and deblocking.

SPNUNB For spanned records. This specification is for unblocked
variable-length logical records of less than 32,768 bytes
per record.

UNDEF For undefined records. This specification is required only
if the records are of undefined format.

VARUNB For variable-length records. This specification is for
unblocked variable-length records.

For a definition of record formats see VSE/Advanced Functions, Data
Management Concepts.

RECSIZE=(r): This operand must be included if undefined records
are specified (RECFORM=UNDEF). It specifies the number of the gener-
al-purpose register (any of 2 through 12) that contains the length
of each individual input or output record.

Whenever an undefined record is read, IOCS supplies the length of
the data area for that record in the specified register.

When an undefined record is written, you must load the length of the
data area of the record (in bytes) into this register, before you
issue the WRITE macro for the record. IOCS adds the length of the
key when required.

When records are written (AFTER specified in the WRITE macro), IOCS
uses the length to construct the count area written on DASD. IOCS
adds the length of both the count and the key when required.

Macro Description 69



DTFDA

RELTYPE={DEC|HEX}: This operand specifies whether the zoned
decimal (DEC) or hexadecimal (HEX) form of the relative ID is to be
used. When FIXUNB, VARUNB, or UNDEF is specified in the RECFORM
operand, RELTYPE should be supplied only if the DSKXTNT operand
(relative ID) is specified. If omitted, a hexadecimal relative ID is
assumed. However, if DSKXINT is also omitted, a physical ID is
assumed in the SEEKADR and IDLOC addresses.

I1f RECFORM=SPNUNB is specified, the RELTYPE operand is required
when relative addressing is used. If RELTYPE is omitted, a physical
ID is assumed in the SEEKADR and IDLOC addresses.

SEEKADR=name: This operand must be included to specify the name
of your track-reference field. In this field, you store the track
location of the particular record read or written. IOCS refers to
this field to determine which volume and which track contains the
desired record. Whenever records are to be located by searching for
a specified ID, the track-reference field must also contain the num-
ber of the record on the track.

SEPASMB=YES: Include this operand only if the DTFDA is to be
assembled separately. This causes a CATALR card with the filename to
be punched ahead of the object deck and the filename to be defined
as an ENTRY point in the assembly. If the operand is omitted, the
assembler assumes that the DTF is assembled together with the prob-
lem program.

SRCHM=YES: 1If records are identified by key, this operand may be
included to cause IOCS to search multiple tracks for each specified
record. The macros

READ filename,KEY
WRITE filename,KEY

cause I0OCS to search the track specified in the track-reference
field and all following tracks in the cylinder, until the record is
found or the end of the cylinder is reached. If the file ends before
the end of the cylinder and the record is not found, the search con-
tinues into the next file, if any, on the cylinder. EOC, instead of
NRF, is indicated. Without SRCHM=YES, each search is confined to the
specified track.

TRLBL=YES: This operand, if specified with the LABADDR operand,
indicates that user standard trailer labels are to be read or writ-
ten following the user standard header labels on the user label
track. Both operands must be specified for trailer label processing.

TYPEFLE={INPUT|OUTPUT}: This operand must be included to
indicate how standard volume and file labels are to be processed.
INPUT indicates that standard labels are to be read; OUTPUT indi-
cates that standard labels are to be written.

70 VSE/Advanced Functions Macro Reference



DTFDA

VERIFY=YES: This operand is included if you want to check the
parity of disk records after they are written. If this operand is
omitted, any records written on a disk are not verified.

WRITEID=YES: This operand must be included if the DASD storage
location for writing any output record or updating an input file is
specified by a record ID (identifier); that is, whenever the macro

WRITE filename,ID
is used in the program, this operand is required.

WRITEKY=YES: This operand must be included if the DASD location
for writing any output record or updating an input file is specified
by record key, that is, whenever

WRITE filename,KEY
is used.

XTNTXIT=name: This operand is included if you want to process
label extent information. It specifies the name of your extent exit
routine. During an OPEN, IOCS branches to your routine after each
specified extent is checked. Upon entering your routine, IOCS
stores, in register 1, the address of a l4-byte field that contains
the label extent information (in binary form) retrieved from the
format 1 and format 3 labels. If user labels are present, the user
label track is returned as a separate extent and the lower limit of
the first normal extent is increased by one track. The format of
this field is shown in Figure 8 . Return to IOCS by use of the LBRET
macro. Registers 2 through 13 are available in the XTNTXIT routine.
Within the routine you cannot issue a macro that calls a transient
routine (such as OPEN, CLOSE, DUMP, PDUMP, CANCEL, CHKPT, etc.).

Bytes |Contents

0 |Extent type code (as specified in the EXTENT statement).
1 |Number of extent (as determined by the EXTENT statement

2-5 |Lower limit of the extent (cchh).

6—9 |Upper limit of the extent (cchh).

10—11 |Symbolic unit number (in hexadecimal format).
12—13 |Not used.

|
|

|

l

|

| | sequence).
|

|

|

|

|

Figure 8. Label Extent Information Field

Macro Description 71



DTFDI

- - o - o - - n e em e o e m e S e e e s e e e e e S e Mm L R Gm M m he e Ge e em e SR M s T

Name Operation Operand

[name] DTFDI DEVADDR=SYSxxx
,IOAREAl=name
[,CISIZE=n]

[ ,EOFADDR=name]

[ ,ERROPT={ IGNORE | SKIP |name}]
{ , I0AREA2=name]

[, IOREG=(x)]

[ s MODNAME=name ]

[ ,RDONLY=YES]

[ ,RECSIZE=n]

[ , SEPASMB=YES]

[ ,TRC=YES]

[ ,WLRERR=name]

The DTFDI macro provides device independence for system logical
units.

CISIZE=n: This operand specifies the FBA control interval size.
The value n must be an integral multiple of the FBA physical block
size and, if greater than 8K, must be a multiple of 2K. The maximum
value is 32768 (32K), except when assigned to SYSLST or SYSPCH, when
the maximum is 30720 (30K).

If CISIZE is omitted, CISIZE=0 is assumed. For FBA devices, control
interval size may be overridden for an output file at execution time
by specifying the CISIZE parameter of the DLBL control statement.
For an input file, the CISIZE value in the format-1 label is used.
If the CISIZE value is zero, then OPEN calculates a value based on
the RECSIZE value specification.

DEVADDR={SYSIPT|SYSLST|SYSPCH|SYSRDR}: This operand must
specify the symbolic unit associated with this system file. Only the
system names shown above may be specified. The logical device
SYSLST must not be assigned to the 2560 or 5424/5425.

EOFADDR=name: This operand specifies the name of your
end-of-file routine. It is required only if SYSIPT or SYSRDR is
specified.

10CS branches to this routine when it detects an end-of-file condi-
tion. In this routine, you can perform any operations necessary for

the end-of-file condition (you generally issue the CLOSE macro).

An end-of-file condition exists when the following occurs for either
SYSIPT or SYSRDR:

o for a card reader, a /* in positions 1 and 2 of the record.

72 VSE/Advanced Functions Macro Reference




DTFDI
. for tape, a /* in positions 1 and 2 of the record or a tapemark.

i for disk, a /* in positions 1 and 2 of the record or an
end-of-file record.

If the system logical units SYSIPT and SYSRDR are assigned to a
5424/5425, I0CS requires that the /* card, indicating end-of-file,
be followed by a blank card. An error condition results if the
records are allowed to run out without a /* card (and without a /&
card, if end-of-job). IOCS detects the end-of-file condition on
diskette units by recognizing that end-of-data has been reached on
the current volume and that there are no more volumes available.

ERROPT={IGNORE|SKIP|name}: This operand does not apply to out-
put files. For output files for most devices, the job is automat-
ically terminated after IOCS has attempted to retry writing the
record; for 2560 or 5424/5425 output files, normal error recovery
procedures are followed.

This operand applies to wrong-length records if WLRERR is omitted.
If both ERROPT and WLRERR are omitted and wrong-length recoxrds
occur, IOCS ignores the error.

ERROPT specifies the function to be performed for an error block. If
an error is detected when reading a magnetic tape, or a disk or a
diskette volume, IOCS attempts to recover from the error. If the
error is not corrected, the job is terminated unless this operand is
included to specify other procedures to be taken. The three specifi-
cations are described below.

IGNORE
The error condition is to be ignored. The address of the error
record is made available to you for processing (see CCB Macro).

SKIP
The error block is not to be made available for processing. The
next record is read and processing continues.

name

IOCS is to branch to your routine when an error occurs, where you

" may perform whatever functions are desired or simply note the error
condition. The address of the error record is supplied in register
1. The contents of the IOREG register may vary and should not be
used for error records. Also, you must not issue any GET
instructions in your error routine. If you use any other IOCS
macros, you must save the contents of register 1l4. You must also
save the contents of register 13. At the end of the error routine,
return to IOCS by branching to the address in register 14. The next
record is then made available for processing.

IOAREA1=name: This operand must specify the name of the input or

output area used with the file. The input and/or output routines
transfer records to or from this area.

Macro Description 73



DTFDI

If the DTFDI macro is used to define a printer file, or a card file
to be processed on a 2540, 2560, 3525, or 5424/5425, the first byte
of the output area must contain a control character.

IOAREA2=name: Two input or output areas can be allotted for a
file to permit overlapped GET or PUT processing. If this operand is
included, it specifies the name of the second I/J area.

IOREG=(r): When two I/O areas are used, this operand specifies
the general purpose register (any of 2 through 12) that points to
the address of the next record. For input files, it points to the
logical record available for processing. For output files, it points
to the address of the area where you can build a record. If omitted,
and two I/0 areas are used, register 2 is assumed.

MODNAME=name: This operand may be used to specify the name of
the logic module used with the DTF table to process the file. If the
logic module (DIMOD) is assembled with the program, the MODNAME
parameter in this DTF must specify the same name as the DIMOD macro.

If this entry is omitted, standard names are generated for calling
the logic module. If two different DTF macros call for different
functions that can be handled by a single module, only one
standard-named module is called.

This operand is ignored for all DASD devices. An IBM-supplied module
is always used for these devices.

RDONLY=YES: This operand is specified if the DTF is to be used
with a read-only module. Each time a read-only module is entered,
register 13 must contain the address of a 72-byte doubleword-aligned
save area. Each task should have its own uniquely defined save area,
and each time an imperative macro (except OPEN, OPENR or LBRET) is
issued, register 13 must contain the address of the save area asso-
ciated with that task. The fact that the save areas are unique for
each task makes the module reentrant (that is, capable of being used
concurrently by several tasks).

If an ERROPT or WLRERR routine issues I/0 macros using the same
read-only module that caused control to pass to either error
routine, the program must provide another save area. One save area
is used for the initial I/0 operations, and the second for I/0 oper-
ations in the ERROPT or WLRERR routine. Before returning to the mod-
ule that entered the error routine, register 13 must be set to the
save area address originally specified for the task.

If the operand is omitted, the module generated is not reenterable
and no save area need be established.

This operand is ignored for all DASD devices. For these devices a
read-only module is always supplied.

RECSIZE=n: This operand specifies the length of the record. For
input files (SYSIPT and SYSRDR), the maximum allowable record size

74 VSE/Advanced Functions Macro Reference




DTFDI

is 81 bytes. You should always specify the maximum of 81 bytes (and
an I/0 area of 81 bytes) to ensure device independence when reading
data. The first byte of the I/0 area will always contain the first
data byte, regardless of whether the input consisted of 80 data
bytes and one control character or of 80 data bytes only. For out-
put files, RECSIZE must include one byte for control characters. The
maximum length specification is 121 for SYSLST and 81 for SYSPCH.

For disk files, 121 must be specified for SYSLST, and 81 for SYSPCH.
For printers and punches, DIMOD assumes a S/370-type control charac-
ter if the character is not a valid ASA character. The program
checks ASA control characters before S/370-type control characters.
Therefore, if it is a valid ASA control character (even though it
may also be a S/370-type control character), it is used as an ASA
control character. Otherwise, it is used as a S/370-type control
character.

Control character codes are listed in Appendix A; note, however:
. 2520 stacker selection codes must be used for the 1442.

. 2540 stacker selection 3 must not be used if device independence
is to be maintained.

If this operand is omitted, the following is assumed:
80 bytes for SYSIPT.
80 bytes for SYSRDR.
81 bytes for SYSPCH.
121 bytes for SYSLST.

SEPASMB=YES: Include this operand only if the DTFDI is to be
assembled separately. This causes a CATALR card with the filename to
be punched ahead of the object deck and defines the filename as an
ENTRY point in the assembly. If the operand is omitted, the assem-
bler assumes that the DTF is assembled together with the problem
program.

TRC=YES: This operand applies to the IBM 3800 Printing Subsystem.
TRC=YES specifies that a table reference character is included as
the first byte of each output data line (following the optional
print control character). The printer uses the table reference char-
acter (0, 1, 2, or 3) to select the character arrangement table cor-
responding to the order in which the table names have been specified
with the CHARS parameter on the SETPRT job control statement (or
SETPRT macro instruction).

If the device allocated is not a printer and TRC=YES is specified,
the table reference character is treated as data when a PUT is
issued. If the device is a non-3800 printer, the table reference
character is removed and not printed.

Macro Description 75



DTFDI

WLRERR=name: This operand applies only to input files on devices
other than diskette units. It specifies the name of your routine to

which IOCS branches if a wrong-length record is read on a tape or
disk device.

If this operand is omitted and a wrong-length error occurs, the
ERROPT routine will be invoked if it is available.

76 VSE/Advanced Functions Macro Reference



DTFDR

[name] DTFDR COREXIT=name
,DEVADDR=SYSxxx
,EOFADDR=name
,EXITIND=name
,FRNAME=name
,FRSIZE=n
,HEADER=name
, JOAREAl=name
[ ,BLKSIZE=n]

[ ,DEVICE=3886]
[ ,MODNAME=name ]
[ ,RDONLY=YES]

[ ,SEPASMB=YES]
[ ,SETDEV=YES]

You must use the DTFDR macro to define each 3886 file in your pro-
gram.

BLKSIZE=nnn: Specifies the length of the area named by the
IOAREA1 keyword. The length of the area must be equal to the length
of the longest record to be passed from the 3886.

If this operand is omitted, the maximum length of 130 is assumed.

Note: LIOCS does not allow you to block records read from
the 3886.

COREXIT=name: Provides the symbolic name of your error cor-
rection routine. LIOCS branches to this routine whenever an error is
indicated in the EXITIND byte.

You can attempt to recover from various errors that occur on the
3886 through the COREXIT routine you provide. Your COREXIT routine
receives control whenever one of the following conditions occurs:

Incomplete scan

Line mark station timing mark check error
Nonrecovery error

Permanent error

Note: If any of these errors occur while the file is being
opened, the COREXIT routine does not receive control and the
job is canceled.

Figure 9 on page 79 describes normal functions for the COREXIT rou-

tine for the various error conditions and provides the exits that
must be taken from the COREXIT routine.

Macro Description 77



DTFDR

Error messages are provided to describe errors to the operator dur-
ing program execution.

DEVADDR=SYSxxx: Specifies the symbolic unit to be associated
with the logical file. The symbolic unit is associated with an actu-
al I/0 device through the job control ASSGN statement.

DEVICE=3886: Indicates that 3886 is the I/O device for this file.
This operand may be omitted.

EOFADDR=name: Specifies the symbolic address of your end-of-file
routine. LIOCS branches to this routine whenever end of file is
detected on the 3886.

EXITIND=name: Specifies the symbolic name of the l-byte area in
which the completion code is returned to the COREXIT routine for
error handling from an I/O operation.

The completion codes are:

Dec Hex Meaning

240 X'Fo' No errors occurred. (This code should not be present
when the COREXIT routine receives control.)

241 X'F1' Line mark station timing mark check error.
242 X'F2' Nonrecovery error. Do not issue the CNTRL macro to
eject the document from the machine. Have the operator

remove the document.

243 X'F3' Incomplete scan.

244  X'F4'  Line mark station timing mark check and equipment
check.
249 X'F9' Permanent error.

Note: If any of these errors occur while the file is being
opened, the COREXIT routine does not receive control and the
job is canceled.

FRNAME=phasename: Specifies the phase name of the format record
to be loaded when the file is opened.

FRSIZE=n: Specifies the number of bytes to be reserved in the DTF
expansion for format records. The number must equal at least the
size of the largest DFR macro expansion and its associated DLINT
macro expansions, plus four. This size is printed in the ninth and
tenth bytes of the DFR macro expansion.

If you use the SETDEV macro in your program to change format

records, you can reduce the library retrieval time by specifying a
size large enough to contain all the frequently used format records.

78 VSE/Advanced Functions Macro Reference



DTFDR

|Error  |Normal COREXIT Function |Exit to
| |
X'F2' |Eliminate the data that has |Routine in your program to read
|been read from this document|the next document.
|and prepare to read the next|
|document (see Note 1). |

I
|
| |
| |
| |
a :
| | |
|X'F4' or|Do whatever processing is | Your end—of—job routine. |
|X'F9' |necessary before the job is |
I |canceled (see Note 1). | |
| | |
|X'F1' |Do any processing that may |Branch to the address in reg. 14|
| |be required. The document |to return to the instruction |
| |may have been read incor— |following the macro causing the |
| |rectly; you may want to de— |error. |
| |lete all data records read | |
I |in (see Note 2). | |
| | | |
|X'F3' |Rescan the line using anoth—|Branch to the address in reg. 14|
| |er format record or using |to return to the instruction |
| | image processing and editing|following the macro causing the |
| |the record in your program |error.
| | (see Note 2).
| |
Notes:

1. If, in your COREXIT routine, you issue an I/0 macro to the 3886 and
an error occurs during that operation, control is returned to the
beginning of the COREXIT routine. You must take precautions in the
COREXIT routine to prevent looping in this situation. If no errors
occur control returns to the instruction following the I/O macro.

2. If, in your COREXIT routine, you issue an I/0 macro to the 3886,
control always returns to the instruction following the macro.
You should then check the completion code to determine the outcome
of the operation.

Figure 9. COREXIT Routine Functions

The area should then be equal to the sum of the format record sizes,
plus four bytes for each format record. When the SETDEV macro is
issued, the format record is loaded into this area from the core
image library if it is not already present in the area.

HEADER=name: Specifies the symbolic name of the 20-byte area to
receive the header record from the 3886.

Macro Description 79



DTFDR

IOAREA1=name: Specifies the symbolic name of the input area to
be used for the file. The area must be as large as the size speci-
fied in the BLKSIZE parameter. If BLKSIZE is not specified, the
input area must be 130 bytes.

MODNAME=name: This operand may be used to specify the name of
the logic module used with the DTF table to process the file. If the
logic module (DRMOD) is assembled with the program, the MODNAME
parameter in this DTF must specify the same name as the DRMOD macro.

If this entry is omitted, standard names are generated for calling
the logic module. If two different DTF macros call for different
functions that can be handled by a single module, only one
standard-named module is called.

RDONLY=YES: This operand is specified if the DTF is used with a
read-only module. Each time a read-only module is entered, register
13 must contain the address of a 72-byte doubleword-aligned save
area. Each DTF should have its own uniquely defined save area.

Each time an imperative macro (except OPEN or OPENR) is issued using
a particular DTF, register 13 must contain the address of the save
area associated with that DTF.

If a COREXIT routine issues I/0 macros using the same read-only mod-
ule that caused control to pass to either error routine, your pro-
gram must provide another save area. One save area is used for the
normal I/0 operations, and the second for I/O operations in the
COREXIT routine. Before returning to the module that entered the
COREXIT routine, register 13 must contain the save area address ori-
ginally specified for that DTF.

If this operand is omitted, the module generated is not reenterable,
and no save area is required.

SEPASMB=YES: Specifies that the DTF is to be assembled separate-
ly. If this operand is specified, a CATALR card with the filename
is punched before the deck and the filename is defined as an ENTRY
point for the assembly.

SETDEV=YES: Specifies that the SETDEV macro is issued in your
program to load a different format record into the 3886.

80 VSE/Advanced Functions Macro Reference




DTFDU

Name Operation Operand

[name] DTFDU EOFADDR=name
,IOAREAl1=name
,RECSIZE=n

[ ,CMDCHN=n]

[ ,DEVADDR=SYSxxx]

[ ,DEVICE=3540]

[ ,ERREXT=YES]

[ ,ERROPT={ IGNORE | SKIP |name}]
[ ,FEED={YES|NO}]

[ ,FILESEC=YES]

[, IOAREA2=name]

[, IOREG=(r)]

[ ,MODNAME=name]

[ ,RDONLY=YES]

[ , SEPASMB=YES]

[, TYPEFLE={ INPUT | OUTPUT}]
[ ,VERIFY=YES]

[ ,VOLSEQ=YES]

[ ,WORKA=YES]

[ ,WRTPROT=YES]

The DTFDU macro defines sequential (consecutive) processing for a
file contained on a diskette.

CMDCHN=n: This operand is specified to indicate the number of
Read/Write CCWs to be command chained. Valid entries are 1, 2, 13,
or 26; 1 is assumed if this operand is omitted. For each CCW speci-
fied by this operand, one record is processed (for example, if you
code CMDCHN=13, 13 records are command chained and are processed -
read or written - as a group). For entries of 2, 13, or 26, either
the IOREG operand or the WORKA operand must be specified.

DEVADDR=SYSxxx: This operand specifies the symbolic unit
(SYSxxx) associated with the file if an EXTENT job control statement
is not provided. An EXTENT statement is not required for
single-volume input files. If an EXTENT statement is provided, its
specification overrides any DEVADDR specification. SYSxxx represents
an actual I/O device address, and is used in the ASSGN job control
statement to assign the actual I/0 device address to this file.

DEVICE=3540: This operand specifies that the file to be processed
is on the 3540. This operand may be omitted.

EOFADDR=name: This operand specifies the symbolic name of your
end-of-file routine. IOCS automatically branches to this routine on
an end-of-file condition. You can perform any operations required
for the end-of-file in this routine (you will generally issue the
CLOSE macro). »

Macro Description 81




DTFDU

ERREXT=YES: This operand enables your ERROPT routine to return
to DUMODFx with the ERET macro. It also enables permanent errors to
be indicated to your program. For ERREXT facilities, the ERROPT
operand must be specified. However, to take full advantage of this
option, use the ERROPT=name operand.

ERROPT={IGNORE|SKIP|name}: Specify this operand if you do not
want a job to be terminated when a permanent error cannot be cor-
rected in the diskette error routine. If attempts to reread a chain
of records are unsuccessful, the job is terminated unless the ERROPT
entry is included. Either IGNORE, SKIP, or the name of an error rou-
tine can be spacified. The functions of these parameters are
described below.

IGNORE

The error condition is ignored. The records are made available for
processing. On output, the error condition is ignored and the
records are considered written correctly.

SKIP

No records in the error chain are made available for processing. The
next chain of records is read from the diskette, and processing con-
tinues with the first record of that chain. On output, the SKIP
option is the same as the IGNORE option.

name
IOCS branches to your error routine named by this parameter regard-
less of whether or not ERREXT=YES is specified. In this routine you
can process or make note of the error condition as desired.

If ERREXT is not specified, register 1 contains the address of the
first record in the error chain. When processing in the ERROPT rou-
tine, reference records in the error chain by referring to the
address supplied in register 1. The contents of the IOREG register
or work area are variable and should not be used to process error
records. Also, GET macros must not be issued for records in the
error chain. If any other IOCS macros (excluding ERET if
ERREXT=YES) are used in this routine, the contents of register 13
(with RDONLY) and 14 must be saved and restored after their use. At
the end of the routine, return control to IOCS by branching to the
address in register 14. For a read error, IOCS skips that error
chain of records, and makes the first record of the next chain
available for processing in the main program.

If ERREXT is specified, register 1 contains the address of a two
part parameter list containing the 4-byte DTFDU address and the
4-byte address of the first record in the error chain. Register 14
contains the return address. Processing is similar to that described
above except for addressing the records in error.

At the end of its processing, the routine returns to LIOCS by issu-
ing the ERET macro.

For an input file, the program:

82 VSE/Advanced Functions Macro Reference




DTFDU

. skips the error chain and reads the next chain with an ERET
SKIP,

. ignores the error with an ERET IGNORE,

e it makes another attempt to read the error chain with an ERET
RETRY.

For an output file the only acceptable parameters are IGNORE or
name, and the program

o ignores the error condition with ERET IGNORE or ERET SKIP,

° attempts to write the error chain with an ERET RETRY. Bad spot
control record (1, 2, 13, or 26 records depending on the CMDCHN
specification) are written at the current diskette address, and
the write chain is retried in the next 1, 2, 13, or 26 (depend-
ing on the CMDCHN specification) sectors on the disk.

The DTFDU error options are shown in Figure 10 .

terminate the job, |specify nothing.

skip the error record, | specify ERROPT=SKIP.

process the error record, | specify ERROPT=name.

|

| To

|

| To

|

|To ignore the error record, |specify ERROPT=IGNORE.
l

| To

|

|After processing the record, to leave the error—processing
| routine and

|To skip the (input) record, |execute ERET SKIP.

|To ignore the record, | execute ERET IGNORE.
l
|To retry reading or writing |execute ERET RETRY.

|the record, i
|

- - e — ]

Figure 10. DTFDU Error Options

FEED={YES|NO}: 1If YES is specified and IOCS detects an
end-of-file condition, the diskette being processed is fed to the
stacker and a new diskette is fed to the disk drive (providing
another diskette is still in the hopper). If NO is specified, the
diskette is left mounted for the next job. If the operand is
omitted, YES is assumed.

FILESEC=YES: This operand applies to output only. On output it
causes OPEN to set the security flag in the file label. For subse-

Macro Description 83



DTFDU

quent input, the security flag causes an operator message to be
written. The operator must then reply in order to make the file
available to be read.

Note: When this operand is used with WRTPROT=YES, the reuse
of the diskette is prevented.

IOAREA1=name: This operand specifies the symbolic name of the
I/0 area used by the file. IOCS either reads or writes records using
this area. Note that you should provide an I/0 area equal in size to
the result obtained from multiplying the RECSIZE entry by the CMDCHN
entry.

IOAREA2=name: 1If two I/0 areas are used by GET or PUT, this
operand is specified. You should provide an I/0 area equal in size
to the result obtained from multiplying the RECSIZE entry by the
CMDCHN entry.

IOREG=(r): This operand specifies the general purpose register
(any one of 2 to 12) in which IOCS puts the address of the logical
record that is available for processing. At OPEN time, for output
files, IOCS puts the address of the area where the user can build a
record in this register. The same register can be used for two or
more files in the same program, if desired. If this is done, the
problem program must store the address supplied by IOCS for each
record. If this operand is specified, omit the WORKA operand.

This operand must be specified if the CMDCHN factor is 2 or higher
and records are processed in one I/0 area, or if two I/0 areas are
used and records are processed in both I/0 areas.

MODNAME=name: This operand specifies the name of the logic mod-
ule which is to process the file. If the logic module is assembled
with the program, MODNAME must specify the same name as the DUMODFx
macro. If this operand is omitted, standard names are generated for
calling the logic module. If two DTF macros call for different func-
tions that can be handled by a single module, only one module is
called.

RDONLY=YES: This operand is specified if the DTF is used with a
read-only module. Each time a read-only module is entered, register
13 must contain the address of a 72-byte double-word aligned save
area. Each task should have its own uniquely defined save area.
When an imperative macro (except OPEN, OPENR) is issued, register 13
must contain the address of the save area associated with the task.
The fact that the save areas are unique for each task makes the mod-
ule reentrant (that is, capable of being used concurrently by
several tasks).

If an ERROPT routine issues I/0 macros using the same read-only mod-
ule that caused control to pass to the error routine, your problem
program must provide another save area. One save area is used for
the normal I/0 operations, and the second for input/output oper-

84 VSE/Advanced Functions Macro Reference



DTFDU

ations in the ERROPT routine. Before returning to the module that
entered the ERROPT routine, register 13 must be set to the save area
address originally specified for that DTF.

If this operand is omitted, the generated module is not reentrant
and no save area need be established.

RECSIZE=n: This operand specifies (in bytes) the length of each
record in the input/output area (1 to 128 bytes).

SEPASMB=YES: Include this operand only if the DTFDU is to be
assembled separately. This causes a CATALR card with the filename to
be punched ahead of the object deck and the filename to be defined
as an entry point in the assembly. If the operand is omitted, the
assembler assumes that the DTF is assembled together with the prob-
lem program.

TYPEFLE={INPUT|OUTPUT}: This operand indicates whether the
file is an input or output file.

VERIFY=YES: This operand specifies that the input on a 3741/3742
must be verified before processing may continue. If VERIFY=YES is
not specified, it is assumed that the input need not be verified. If
VERIFY=YES is specified and the input is not verified, the job is
canceled and message 4n57I is issued. If the operand is specified
for an output file, it will be ignored.

VOLSEQ=YES: This operand is only valid on input. If specified,
it causes OPEN to ensure that the volume sequence numbers of a
multi-volume file are in ascending and sequential order. However,
if the volume sequence number of the first volume processed is
blank, no volume sequence checking is done.

WORKA=YES: If I/0 records are processed or built in work areas
instead of in the I/0 areas, specify this operand. You must set up
the work area in storage. The address of the work area, or a gener-
al register containing the address, must be specified in each GET or
PUT macro. For a GET or PUT macro, IOCS moves the record to or from
the specified work area.

When this operand is specified, the IOREG operand must be omitted.

WRTPROT=YES: This operand indicates that an output file will be
created with Write-Protect (meaning that the file cannot be over-
written). For 3540 support, this has no effect on subsequent input
processing of the file.

Note: When this operand is used with FILESEC=YES, the reuse
of the diskette is prevented.

Macro Description 85



DTFIS

e e = an e e e e e e e e e e e e S e e n e R e e M S e G S AR R R e e R M TE M e e T e M M W e e

[name] DTFIS DSKXTNT=n
, JIOROUT=xxxXxXxX
,KEYLEN=n
,NRECDS=n
,RECFORM={FIXUNB|FIXBLK}
,RECSIZE=n
[ ,CYLOFL=n]
[ ,DEVICE=nnnn]
[ L ERREXT=YES]
[ ,HINDEX=nnnn]
[ ,HOLD=YES]
[ , INDAREA=name]
[ , INDSKIP=YES]
[, INDSIZE=n]
[ , IOAREAL=name]
[ , IOAREAR=name]
[ , IOAREAS=name]
[ ,JOAREA2=name]
[, IOREG=(1)]
[ ,IOSIZE=n]
[ ,KEYARG=name]
[ ,KEYLOC=n]
[ ,MODNAME=name ]
[ ,MSTIND=YES]
[ ,RDONLY=YES]
[ , SEPASMB=YES]
[ ,TYPEFLE={RANDOM | SEQNTL|RANSEQ}]
[ ,VERIFY=YES]
[ ,WORKL=name ]
[ ,WORKR=name ]
[ ,WORKS=YES]

The DTFIS macro defines a DASD file for the Indexed Sequential
Access Method.

CYLOFL=n: This operand must be included if cylinder overflow
areas are reserved for a file. Do not include this entry if no over-
flow areas are reserved.

When a file is loaded or when records are added, this operand is
required to reserve the areas for cylinder overflow. It specifies
the number of tracks to be reserved on each cylinder. The maximum
number of tracks that can be reserved on each cylinder is:

86 VSE/Advanced Functions Macro Reference



DTFIS

for 2311 8
for 2314, or 2319 18
for 3330 or 3333 17
for 3340 10

DEVICE={2311]2314|3330|3340}: This operand specifies the unit
that contains the prime data area and overflow areas for the logical
file. For ISAM the prime data area and the overflow areas must be
on the same device type, and, for a 3340, the data modules must be
of the same size (35 or 70MB). If the operand is omitted, 2311 is
assumed.

DSKXTNT=n: This operand must be included to specify the maximum
number of extents for this file. The number must include all the
data area extents if more than one DASD area is used for the data
records, and all the index area and independent overflow area
extents that are specified by EXTENT job control statements. Thus
the minimum number specified by this entry is 2: one extent for one
prime data area, and one for a cylinder index. Each area assigned to
an ISAM file is considered an extent.

Note: Master and cylinder indexes are treated as one area.
When there is one master index extent, one cylinder index
extent, and one prime data area extent, DSKXTNT=2 could be
specified.

ERREXT=YES: This operand is required for IOCS to supply your
program with detailed information about unrecoverable I/0 errors
occurring before a data transfer takes place, and for your program
to be able to use the ERET imperative macro to return to IOCS speci-
fying an action to be taken for an error condition.

Some error information is available for testing by your program
after each imperative macro is executed, even if ERREXT=YES is not
specified, by referencing field filenameC. Filename is the same name
as that specified in the DTF header entry for the file. One or more
of the bits in the filenameC byte may be set to 1 by IOCS. The mean-
ing of the bits varies depending on which parameter was specified in
the IOROUT operand; Figure 11 on page 89 shows the meaning if
IOROUT=ADD, RETRVE, or ADDRTR was specified; Figure 12 on page 90
shows the meaning if IOROUT=LOAD was specified.

If ERREXT=YES is not specified, IOCS returns the address of the DTF
table in register 1, as well as any data-transfer error information
in filenameC, after each imperative macro is executed;
non-data-transfer error information is not given. After testing
filenameC, return to IOCS by issuing any imperative macro except
ERET; no special action is taken by IOCS to correct or check an
error.

If ERREXT=YES is specified, IOCS returns the address of an ERREXT
parameter list in register 1 after each imperative macro is
executed, and information about both data-transfer and
non-data-transfer errors in filenameC. The format of the ERREXT

Macro Description 87




DTFIS

parameter list is shown in Figure 13 on page 91 . After testing
filenameC and finding an error, return to IOCS by using the ERET
imperative macro; IOCS takes the action indicated by the ERET oper-
and. If HOLD=YES (and ERREXT=YES), ERET must be used to return to
I0CS to free any held track.

In your program, you should check byte 16, bit 7 of the DTF for a
blocksize compatibility error when adding to, or extending a file.
If the blocksize of your program is not equal to the blocksize of
the previously built file, this bit will be set to 1.

HINDEX={2311]2314]3330|3340}: This entry specifies the unit con-
taining the highest index.

Placing the highest index on a separate unit is recommended only if
that unit is physically separate from the unit(s) holding the track
indexes and the data of the file, and if it has its own access mech-
anism. If this operand is omitted, 2311 is assumed.

HOLD=YES: This operand provides for the track hold option for
both data and index records. If the HOLD operand is omitted, the
track hold function is not performed. Because track hold cannot be
performed on a LOAD file, HOLD=YES cannot be specified when
IOROUT=LOAD.

If HOLD=YES and ERREXT=YES, your program must issue the ERET macro
to return to the ISAM module to free any held tracks.

INDAREA=name: This operand specifies the name of the area
assigned to the cylinder index. If specified, all or part of the
cylinder index resides in virtual storage thereby increasing
throughput. If this operand is included, INDSIZE must be included.

If the area assigned to INDAREA is large enough for all the index
entries to be read into virtual storage at one time and the index
skip feature (INDSKIP) is not specified, no presorting of records
need be done. If the area assigned to INDAREA is not large enough,
the records processed should be presorted to fully utilize the resi-
dent cylinder index.

INDSKIP=YES: When cylinder index entries reside in virtual stor-
age, this operand specifies the index skip feature. This feature
allows ISAM to skip any index entries preceding those needed to
process a given key. If the index skip operand is omitted, the cyl-
inder indexes are processed sequentially.

This operand may be specified only with the INDAREA and INDSIZE
operands and increases throughput only when:

. The records are presorted.

i The allocated virtual storage is insufficient for storing all of
the cylinder index.

. One or more large segments of the file are not referenced.

88 VSE/Advanced Functions Macro Reference



| SEQNTL (RANSEQ) when KEY is specified, or after GKEY.
|This may also be a hardware error.

|
4 |Illegal ID |The ID specified to the SETL in SEQNTL (RANSEQ) is

T 1
|Bit| Cause | Explanation I
|—1 | l
| 0 |DASD error |An uncorrectable DASD error has occurred (except I
| I |wrong length record.)

|—| | |
| 1 |Wrong length|A wrong length record has been detected during an |
| | record |1/0 operation. |
|—1 | i
| 2 |End of file |The EOF condition has been encountered during execut—|
| | |ion of the sequential retrieval function. |
|—1 | l
| 3 |No record |The record to be retrieved has not been found in the

i | found |file. This applies to RANDOM (RANSEQ) and to SETL in
|

L

|—1

\

|

|specified |outside the prime file limits.

5 |Duplicate |The record to be added to the file has a duplicate

|
|

|

|

|

|

|

|

|

|

| | |
|

|

|

|

|

|

|

|

| record | record key of another record in the file.
6 |Overflow |An overflow area in a cylinder is full, and no inde—
| |area full | pendent overflow area has been specified; or an inde-

| | pendent overflow area is full, and the addition can-—
I |not be made. You should assign an independent over—
| | flow area or extend the limit.

Overflow | The record being processed in one of the retrieval
| functions (RANDOM/SEQNTL) is an overflow record.

L

Figure 11. FilenameC-Status or Condition Code Byte if IOROUT=ADD, RETRVE, or
ADDRTR

INDSIZE=n: This operand specifies the length (in bytes) of the
index area assigned in virtual storage to the cylinder index by
INDAREA. The minimum you can specify is:

n=(m+3) (keylength+6)
where
the number of entries to be read into virtual storage at a time.

the number of dummy entries.
a pointer to the cylinder.

m

3
6
If m is set equal to the number of prime data cylinders+l, the

entire cylinder index is read into virtual storage at one time. The
maximum value for n = 32767.

Macro Description 89




Explanation

|
l
DASD error |An uncorrectable DASD error has occurred (except
|wrong length record).
— l
1 |Wrong length|A wrong length record has been detected during an I1/0
| record |operation.
i |
2 |Prime area |The next to the last track of the prime data area has
| full |been filled during the load or extension of the file.
|You should issue the ENDFL macro, then do a load ex—
|tend on the file with nex extents given.

o

|
|
|
3 |Cylinder |The cylinder index area is not large enough to con—
| index area |tain all entries needed to index each cylinder speci—
| full | fied for the prime data area. This condition can oc—
| |cur during the execution of the SETFL. You must ex—
| |tend the upper limit of the cylinder index by using a
| |new extent card.
| |
4 |Master index|The master index area is not large enough to contain
| full |all the entries needed to index each track of the cy—
| |linder index. This condition can occur during SETFL.
| |You must extend the upper limit, if you are creating
| |the file, by using an extent card. Or, you must re—
{ |organize the file and assign a larger area.
|
5 |Duplicate |The record being loaded is a duplicate of the pre—
| record |vious record.
| |
6 |Sequence |The record being loaded is not in the sequential
| check |order required for loading.

7 |Prime data |There is not enough space in the prime data area to
|area |write an EOF record. This condition can occur during
|overflow |the execution of the ENDFL macro.

Figure 12. FilenameC-Status or Condition Code Byte if IOROUT=LOAD

The resident index facility is suppressed if this operand is
omitted, the minimum requirement is not met at assembly time, or an
unrecoverable read error is encountered while reading the index.

IOAREAL=name: This operand must be included when a file is cre-
ated (loaded) or when records are added to a file. It specifies the
name of the output area used for loading or adding records to the
file. The specified name must be the same as the name used in the DS
instruction that reserves the area of storage. The ISAM routines
construct the contents of this area and transfer records to DASD.

90 VSE/Advanced Functions Macro Reference



Bits Contents

DTF address

Virtual storage address of the record in error

DASD address (mbbcchhr) of the error where m
is the extent sequence number and r is a re-—
cord number which can be inaccurate if a read
error occurred during a read of the highest |
level index.

Data record

Track index record
Cylinder index record
Master index record
Type of operation:
Not used

Not used

Read

Write

w N =

~NoNu &

|
| |
| |
| |
| |
( |
| i
| i
| |
| |
| l
| |
| |
| Record identification: %
|

| |
| |
| i
| l
| l
| |
| |
l '
| |
| Command code of failing CCW }

Figure 13. ERREXT Parameter List

This output area must be large enough to contain the count, key, and
data areas of records. Furthermore, the data-area portion must pro-
vide enough space for the sequence-link field of overflow records
whenever records are added to a file (see Figure 14 on page 92 ).

If IOAREAL is increased to permit the reading and writing of more
than one physical record on DASD at a time, the JOSIZE operand must
be included when records are added to the file. In this case, the
IOAREAL area must be at least as large as the number of bytes speci-
fied in the IOSIZE operand.

When simultaneously building two ISAM files using two DTFs, do not
use a common IOAREAL. Also, do not use a common area for IOAREAL,
IOAREAR, and IOAREAS in multiple DTFs.

IOAREAR=name: This operand must be included whenever records are
processed in random order. It specifies the name of the input/output
area for random retrieval (and updating). The specified name must
be the same as that used in the DS instruction that reserves this
area of storage.

Macro Description 91



DTFIS

OUTPUT AREA REQUIREMENTS (IN BYTES)
FUNCTION
Count Key Sequence Link Data

Load Unblocked Records 8 Key Length - Record Length
Load Blocked Records 8 Key Length —_ Record Length x Blocking Factor
Add Unblocked Records 8 Key Length 10 Record Length

8 Key Length —_— Record Length x Blocking Factor
Add Blocked Records OR*

8 Key Length 10 Record Length
* Whichever Is Larger

Figure 14. Output Area Requirements for Loading or Adding Records to a File by
ISAM

The I/0 area must be large enough to contain the data area for
records. Furthermore, the data-area portion must provide enough
space for the sequence-link field of overflow records (see Figure 15
on page 93 ).

IOAREAS=name: This operand must be included whenever records are
processed in sequential order by key. It specifies the name of the
input/output area used for sequential retrieval (and updating). The
specified name must be the same as that used in the DS instruction
that reserves this area of storage.

This I/0 area must be large enough to contain the key and data areas
of unblocked records and the data area for blocked records. Further-
more, the data-area portion must provide enough space for the

sequence-link field of overflow records (see Figure 15 on page 93 ).

IOAREA2=name: This operand permits overlapping of I/0 with
indexed sequential processing for either the load (creation) or
sequential retrieval functions. Specify the name of an I/0 area to

be used when loading or sequentially retrieving records. The I/0

area must be at least the length of the area specified by either the -
IOAREAL operand for the load function or the IOAREAS operand for the
sequential retrieval function. If the operand is omitted, one I/0
area is assumed. If TYPEFLE=RANSEQ, this operand must not be speci-
fied.

IOREG=(r): This operand must be included whenever records are
retrieved and processed directly in the I/0 area. It specifies the
register that ISAM uses to indicate which individual record is
available for processing. ISAM puts the address of the current
record in the designated register (any of 2 through 12) each time a
READ, WRITE, GET, or PUT is executed.

92 VSE/Advanced Functions Macro Reference




DTFIS

1/0 AREA REQUIREMENTS (IN BYTES)

FUNCTION
Count Key Sequence Link Data

Key Length for sequential 10

unblocked records Record Length

Retrieve Unblocked Records o

Record Length (inciuding keys) x
Blocking Factor
-

— — —

Retrieve Blocked Records OR
—_ _ 10 Record Length

* Whichever Is Larger

Figure 15. I/0 Area Requirements for Random or Sequential Retrieval by ISAM

IOROUT={LOAD|ADD|RETRVE|ADDRTR}: This entry must be
included to specify the type of function to be performed. The param-
eters have the following meanings:

LOAD
To build a logical file on a DASD or to extend a file beyond the
highest record presently in a file.

ADD
To insert new records into a file.

RETRVE
To retrieve records from a file for either random or sequential
processing and/or updating

ADDRTR
To both insert new records into a file (ADD) and retrieve records
for processing and/or updating (RTR).

IOSIZE=n: This operand specifies the (decimal) number of bytes in

the virtual-storage area assigned for the add function using

IOAREAL. The number n can be computed using the following formula:
n = m(keylength+blocksize+40)+24

where m is the maximum number of physical records that can be read

into virtual storage at one time; 40 is the sum of 8 for the count

field and 32 for an ISAM CCW; 24 is another ISAM CCW. The number n
must be at least equal to

(keylength+blocksize+74)

This formula accounts for a needed sequence link field for unblocked
records or short blocks (see Figure 14 on page 92 and Figure 15 ).

Macro Description 93




DTFIS

If the operand is omitted, or if the minimum requirement is not met,
no increase in throughput is realized.

The number n should not exceed the track capacity because throughput
cannot be increased by specifying a number larger than the capacity
of a track.

KEYARG=name: This operand must be included for random READ/WRITE
operations and sequential retrieval initiated by key. It specifies
the symbolic name of the key field in which you must supply the
record key to ISAM.

KEYLEN=n: This operand must be included to specify the number of
bytes in the record key.

KEYLOC=n: This operand must always be specified if
RECFORM=FIXBLK. It supplies ISAM with the high-order position of the
key field within the data record. That is, if the key is recorded in
positions 21-25 of each record in the file, this operand should
specify 21.

ISAM uses this specification to locate (by key) a specified record
within a block. The key area of a block of records contains the key
of the highest record in the block. To search for any other records,
ISAM locates the proper block and then examines the key field within
each record in the block.

MODNAME=name: This operand may be used to specify the name of
the logic module used with the DTF table to process the file. If the
logic module is assembled with the program, the MODNAME in the DTF
must specify the same name as the ISMOD macro. If this entry is
omitted, standard names are generated for calling the logic module.
If two DTF macros call for different functions that can be handled
by a single module, only one module is called.

MSTIND=YES: This operand is included whenever a master index is
used or is to be built for a file. The location of the master index
is specified by an EXTENT job control statement.

NRECDS=n: This operand specifies the number of logical records
in a block (called the blocking factor). It is required only if
RECFORM=FIXBLK. For FIXBLK, nh must be greater than 1; for FIXUNB, n
must be =1.

RDONLY=YES: This operand is specified if the DTF is used with a
read-only module. Each time a read-only module is entered, register
13 must contain the address of a 72-byte doubleword-aligned save
area. Each task should have its own uniquely defined save area. Reg-
ister 13 must contain the address of the save area associated with
the task each time an imperative macro (except OPEN, OPENR, LBRET,
SETL, or SETFL) is issued. The fact that the save areas are unique
for each task makes the module reentrant (that is, capable of being
used concurrently by several tasks).

94 VSE/Advanced Functions Macro Reference




DTFIS

RECFORM={FIXUNB|FIXBLK}: This operand specifies whether
records are blocked or unblocked. FIXUNB is used for unblocked
records, and FIXBLK for blocked records. If FIXBIK is specified, the
key of the highest record in the block becomes the key for the block
and must be recorded in the key area.

The specification that is included when the logical file is loaded
onto a DASD must also be included whenever the file is processed.

Records in the overflow area(s) are always unblocked, but this has
no effect on this operand. RECFORM refers to records in the prime
data area only.

RECSIZE=n: This operand must be included to specify the number of
characters in the data area of each individual record. This operand
should specify the same number for additiomns and retrieval as indi-
cated when the file was created.

SEPASMB=YES: Include this operand only if the DTFIS is to be
assembled separately. This causes a CATALR card with the filename to
be punched ahead of the object deck and defines the filename as an
ENTRY point in the assembly. If the operand is omitted, the assem-
bler assumes that the DTF is assembled together with the problem
program.

TYPEFLE={RANDOM|SEQNTL|RANSEQ}: This operand must be
included when IOROUT=RETRVE or IOROUT=ADDRTR. The operand specifies
the type(s) of processing performed by your program for the file.

RANDOM is used for random processing. Records are retrieved in ran-
dom order specified by key.

SEQNTL is used for sequential processing. Your program specifies the
first record retrieved, and thereafter ISAM retrieves records in
sequential order by key. The first record is specified by key, ID,
or the beginning of the logical file (see 'SETL Macro').

RANSEQ is used if both random and sequential processing are to be
performed for the same file. If RANSEQ is specified, the IOAREA2
operand must not be specified.

TYPEFLE is not required for loading or adding functions.

VERIFY=YES: Use this operand if you want to check the parity of
disk records after they are written. If this operand is omitted, any
records written on a disk are not verified.

WORKL=name: This operand must be included whenever a file is
created (loaded) or records are added to a file. It specifies the
name of the work area in which you must supply the data records to
ISAM for loading or adding to the file. The specified name must be
the same as the name used in the DS instruction that reserves this
area of storage.

Macro Description 95




DTFIS

This work area must provide space for one logical record when a file
is created (for blocked records: data; for unblocked records: key
and data).

The original contents of WORKL are changed due to record shifting in
the ADD function.

WORKR=name: When records are processed in random order, this
operand must be included if the individual records are to be proc-
essed in a work area rather than in the I/0 area. It specifies the
name of the work area. This name must be the same as the name used
in the DS instruction that reserves this area of storage. This area
must provide space for one logical record (data area). When this
entry is included and a READ (or WRITE) macro is executed, ISAM
moves the individual record to (or from) this area.

WORKS=YES: When records are processed in sequential order, this
operand must be included if the individual records are processed in
work areas rather than in the I/0 area. Each GET and PUT macro must
specify the name of the work area to or from which ISAM is to move
the record. When processing unblocked records, the area must be
large enough for one record (data area) and the record key (key
area). For blocked records, the area must be large enough for one
logical record (data area) only. The work area requirements are as
shown in Figure 16

|
| |Unblocked | Blocked
{ | Records |Records
| |
| Load | (KL+DL) or 10% |DL or 10%
| ADD | (KL+DL) or 10% DL or (KL+10)%*
|Random Retrieve | DL | DL |
| Sequential Retrieve |KL+DL | DL

l

|K = Key D = Data L = Length l
|* whichever is greater I
|

Figure 16. Work Area Requirements

96 VSE/Advanced Functions Macro Reference




DTFMR

- . = e = e e = e e e S e e e e e e e e R e M M SE e e e e e e e

[name] DTFMR DEVADDR=SYSxxx
, IOAREAl1=name
[ ;ADDAREA=n]
[ ,ADDRESS=DUAL]
[ ,BUFFERS={25|n}]
[ ,ERROPT=name ]
[ ,EXTADDR=name]
[ , IOREG=(r)
[ ,MODNAME=name ]
[ ,RECSIZE={80|n}]
[ , SECADDR=SYSnnn]
[ , SEPASMB=YES]
[ ,SORTMDE={ON | OFF } ]

- . . e = e = e e e e M e e e A e e e e e e S e e S G e e e Gm GE SR m Mm MR e e M em W e

DTFMR defines an input file processed on a 1255, 1259, or 1419 mag-
netic character reader, or a 1270 or 1275 optical character
reader/sorter.

ADDAREA=n: This operand must be included only if an additional
buffer work area is needed. The parameter n specifies the number of
additional bytes you desire in each buffer. The sum of the ADDAREA
and RECSIZE specifications must not exceed 250. This area can be
used as a work area and/or output area and is reset to binary zeros
when the next GET or READ for the file is executed.

ADDRESS=DUAL: This operand must be included only if the 1419 or
1275 contains the dual address adapter. If the single address adapt-
er is used, this operand must be omitted.

BUFFERS={25|n}: This operand is included to specify the number
of buffers in the document buffer area. The limits for n are 12 and
254. 25 is assumed if this operand is omitted.

DEVADDR=SYSxxx: This operand is required and specifies the sym-
bolic unit to be associated with the file. The symbolic unit repres-
ents an actual I/0 device address used in the ASSGN job control
statement to assign the actual I/0 device address to the file.

ERROPT=name: This operand may be included only if the CHECK mac-
ro is used. The name parameter specifies the name of the routine
that the CHECK macro branches to if any error condition is posted in
byte 0, bits 2 to 4 (and bit 5, if no control address is specified
in the CHECK macro) of the buffer status indicators. It is your
responsibility to exit from this routine (see the 'CHECK Macro'.)

EXTADDR=name: This operand specifies the name of your stacker
selection routine to which control is given when an external inter-

Macro Description 97




DTFMR

rupt is encountered while reading and sorting the documents
internally. This operand may be omitted only when you specify
SORTMDE=0FF .

IOAREA1=name: This operand is required and specifies the name of
the document buffer area that will be used by the file. Figure 4 on
page 31 shows the format of the document buffer area.

IOREG={(2)|(r)}: This operand specifies the general-purpose reg-
ister (one of 2 to 12) that the IOCS routines and your routines use
to indicate which individual document buffer is available for proc-
essing. IOCS puts the address of the current document buffer in the
specified register each time a GET or READ is issued. Register 2 is
assumed if this operand is omitted.

The same register may be specified in the IOREG entry for two or
more files in the same program, if desired. In this case, your pro-
gram may need to store the address supplied by IOCS for each record.

MODNAME=name: This operand specifies the name of the logic mod-
ule generated by MRMOD. If the operand is omitted, IOCS generates
the standard system module name.

RECSIZE={80|n}: This operand specifies the actual length of the
data portion of the buffer. The record size specified must be the
size of the largest record processed. If this operand is omitted, a
record size of 80 is assumed. The sum of the ADDAREA and RECSIZE
specifications must not exceed 250.

SECADDR=SYSnnn: This operand specifies the symbolic unit to be
associated with the secondary control unit address if the 1419 or
1275 with the dual address adapter and LITE macro are utilized. The
operand should be omitted if the pocket LITE macro is not being
used.

SEPASMB=YES: Include this operand only if the DTFMR is to be
assembled separately. This causes a CATALR card with the filename to
be punched ahead of the object deck and defines the filename as an
ENTRY point in the assembly. If the operand is omitted, the assem-
bler assumes that the DTF is assembled together with the problem
program.

SORTMDE={ON|OFF}: This operand specifies the method of sorting
done on the 1419. SORTMDE=ON indicates that the program sort mode is
being used. SORTMDE=OFF indicates that sorting is under control of
the magnetic character reader. If the operand is omitted, the pro-
gram sort mode is assumed.

98 VSE/Advanced Functions Macro Reference




DTFMT

R e e e I L

[name] DTFMT BLKSIZE=n
, DEVADDR=SYSxxx
,EOFADDR=name
,FILABL={NO|STD|NSTD}
, JOAREAl1=name
[ ,ASCII=YES]
[ ,BUFOFF=n]
[ ,CKPTREC=YES]
[ ,ERREXT=YES]
[ ,ERROPT={ IGNORE | SKIP |name}]
[ ,HDRINFO=YES]
[ ,IOAREA2=name]
[ ,IOREG=(r)]
[ ,LABADDR=name ]
[ ,LENCHK=YES]
[ ,MODNAME=name ]
[ ,NOTEPNT={YES | POINTS}]
[ ,RDONLY=YES]
[ ,READ={FORWARD | BACK}]
[ ,RECFORM=xxxxxX]
[ ,RECSIZE={n| (r)}]
[ ,REWIND={ UNLOAD |NORWD} ]
[ ,SEPASMB=YES]
[ ,TPMARK={ YES |NO}]
[, TYPEFLE={ INPUT | OUTPUT | WORK}]
[ ,VARBLD=(r)]
[ ,WLRERR=name ]
[ ,WORKA=YES]

The DTFMT macro defines a magnetic tape file.

If not otherwise stated, the operands of the DTFMT macro can be
specified for all three types of files (input, output, or work).

ASCII=YES: This operand specifies that processing of ASCII tapes
is required (see Appendix B). If this operand is omitted, EBCDIC
processing is assumed. ASCII=YES is not permitted for work files.

BLKSIZE=n: Enter the length of the I/O area. If the record format
is variable or undefined, enter the length of the largest block of
records. If a READ or WRITE macro specifies a length greater than n
for work files, the record to be read or written will be truncated
to fit in the I/O area. The maximum block size is 32,767 bytes.
The minimum size of a physical tape record (gap to gap) is 12 bytes.
A record of eleven bytes or less is treated as noise.

Macro Description 99



DTFMT

For output processing of variable records, the minimum physical
record length is 18 bytes. If less than 18 bytes are specified for
variable blocked or variable unblocked records, BLKSIZE=18 is
assumed.

For output processing of spanned records, the minimum physical
record length is 18 bytes. If SPNBLK or SPNUNB and TYPEFLE=OUTPUT
are specified in the DTFMT and the BLKSIZE is invalid or less than
18 bytes, an MNOTE is generated and BLKSIZE=18 is assumed.

For ASCII tapes, the BLKSIZE includes the length of any block prefix
or padding characters present. If ASCII=YES and BLKSIZE is less
than 18 bytes (for fixed-length records only) or greater than 2048
bytes, an MNOTE is generated because this length violates the limits
specified by American National Standards Institute, Inc.

BUFOFF={0|n}: For ASCII tapes, this operand indicates the length
of the block prefix. Enter the length of the block prefix if proc-
essing of the block prefix is required. This operand can only be
included when ASCII=YES is specified; it is not allowed for work
files. The contents of this field are not passed on to you.

n can have the following values:
Value Condition

0-99 If TYPEFLE=INPUT

0] IF TYPEFLE=0QUTPUT

4 I1f TYPEFLE=OUTPUT and RECFORM=VARUNB or VARBLK. In this case,
the program automatically inserts the physical record length
in the block prefix.

CKPTREC=YES: This operand is necessary if an input tape has
checkpoint records interspersed among the data records. IOCS
bypasses any checkpoint records encountered. This operand must not
be included when ASCII=YES.

DEVADDR={SYSRDR|SYSIPT|SYSPCH|SYSnnn|SYSLST}: This oper-
and specifies the symbolic unit to be associated with the file. An
ASSGN job control statement assigns an actual channel and unit num-
ber to the unit. The ASSGN job control statement contains the same
symbolic name as DEVADDR. When processing ASCII tapes, you must
specify a programmer logical unit (SYSnnn).

EOFADDR=name: This operand specifies the name of your
end-of-file routine. IOCS automatically branches to this routine on
an end-of-file condition. This entry must be specified for input and
work files.

In your routine, you can perform any operations required for the end
of file (generally you issue the CLOSE macro for the file). IOCS
detects end-of-file conditions in magnetic tape input by reading a

100 VSE/Advanced Functions Macro Reference




DTFMT

tapemark and EOF when standard labels are specified. If standard
labels are not specified, IOCS assumes an end-of-file condition when
the tapemark is read, or, if the unit is assigned to SYSRDR or
SYSIPT, when a /* is read. You must determine, in your routine, that
this actually is the end of the file.

ERREXT=YES: This operand enables your ERROPT or WLRERR routine
to return to IOCS by means of the ERET (error return) macro. It also
enables nonrecoverable I/0 errors other than tape read data checks
to be indicated to your program. If ERREXT=YES is specified, the
ERROPT=name operand must also be specified.

ERROPT={IGNORE|SKIP|name}: This operand specifies functions to
be performed when a tape read data check or (when ERREXT=YES is
specified) a tape write check (non-recoverable I/0 error) is
encountered. Either IGNORE, SKIP, or the symbolic name of an error
routine can be specified. The functions of these specifications
are:

IGNORE

The error condition is completely ignored, and the records are made
available for processing. When reading spanned records, the entire
spanned record or a block of spanned records is returned to the user
rather than just the one physical record in which the error
occurred.

On output, the error is ignored and the physical record containing
the error is treated as a valid record. The remainder, if any, of
the spanned record segments are written, if possible.

SKIP

No records in the error block are made available for processing. The
next block is read from tape, and processing continues with the
first record of that block. The error block is included in the block
count. When reading spanned records, the entire spanned record or a
block of spanned records is skipped rather than just one physical
record.

On output, the error is ignored and the physical record containing

the error is treated as a valid record. The remainder, if any, of

the spanned record segments are written.

name

I0CS branches to your error routine named by this parameter

. only when a tape read data check is encountered (ERREXT=YES not
specified), or

. when an unrecoverable I/0 error is encountered (ERREXT=YES spec-
ified).

Macro Description 101




DTFMT

In your error routine, you can process or make note of the error
condition as desired.

The ERROPT operand applies to wrong-length records if the WLRERR
operand is not included. If both ERROPT and WLRERR are omitted and
wrong-length records occur, IOCS assumes the IGNORE option.

Note: For ASCII tapes, the pointer to the block in error
indicates the first logical record following the block prefix.

FILABL={NO|STD|NSTD}: This operand specifies what type of
labels are to be processed. STD indicates standard labels, NO indi-
cates no labels, and NSTD indicates nonstandard labels. You must
furnish a routine to check or create the nonstandard labels by using
your own I/0 area and an EXCP macro to read or write the labels. The
entry point of this routine is the operand of LABADDR.

The specification FILABL=NSTD is not permitted for ASCII files (that
is, when ASCII=YES). Labels and tape data are assumed to be in the
same mode.

HDRINFO=YES: This operand, if specified with FILABL=STD, causes
I0CS to print standard header label information (fields 3-10) on
SYSLOG each time a file with standard labels is opened. It also
prints the filename, logical unit, and device address each time an
end-of-volume condition is detected. Both FILABL=STD and HDRINFO=YES
must be specified for header label information to be printed.

IOAREA1=name: This operand specifies the name of the I/0 area.
When variable-length records are processed, the size of the I/0 area
must include four bytes for the block size. This operand does not
apply to work files.

IOAREA2=name: This operand specifies the name of a second I/0
area. When variable-length records are processed, the size of the
I/0 area must include four bytes for the blocksize. This operand
does not apply to work files.

IOREG=(r): This operand specifies the register in which IOCS
places the address of the logical record that is available for proc-
essing if:

two input or output areas are used.

blocked input or output records are processed in the I/O area.
variable unblocked records are read.

undefined records are read backwards.

neither BUFOFF=0 nor WORKA=YES is specified for ASCII files.

For output files, IOCS places, in the specified register, the
address of the area where you can build a record. Any of registers 2
to 12 may be specified.

This operand cannot be used if WORKA=YES.

102 VSE/Advanced Functions Macro Reference



DTFMT

LABADDR=name: Enter the symbolic name of your routine to proc-
ess user-standard or nonstandard labels. For ASCII tapes, this
operand may be used only for writing and checking user standard
labels that conform to American National Standards Institute, Inc.,
standards. You must process these labels in EBCDIC. Non-standard
user labels are not permitted. This operand does not apply to work
files.

LENCHK=YES: This operand applies only to ASCII tape input if
BUFOFF=4 and RECFORM=VARUNB or VARBLK. It must be included if the
block length (specified in the block prefix) is to be checked
against the physical record length. If the two lengths do not macch,
the action taken is the same as described under the WLRERR operand,
but the WLR bit (byte 5, bit 1) in the DTF is not set.

MODNAME=name: This operand specifies the name of the logic mod-
ule used with the DTF table to process the file. If the logic module
is assembled with the program, this operand must specify the same
name as the MODNAME operand of the MTMOD macro. If this operand is
omitted, standard names are generated for calling the logic module.
If two DTF macros call for different functions that can be handled
by a single module, only one module is called. For example, if one
DTF specifies READ=FORWARD and another specifies READ=BACK, only one
logic module capable of handling both functions is called.

NOTEPNT={POINTS|YES}: If the parameter YES is specified, the
NOTE, POINTW, POINTR, or POINTS macros can be issued for a tape work
file. If POINTS is specified, only POINTS macros can be issued for
tape work files. The NOTEPNT operand must not be specified for ASCII
tape files because ASCII work files are not supported.

RDONLY=YES: This operand is specified if the DTF is used with a
read-only module.

READ={FORWARD|BACK}: This operand specifies, for input and
work files, the direction in which the tape is read. If READ=BACK is
specified and a wrong-length record smaller than the I/0 area is
encountered, the record is read into the I/0 area right-justified.

RECFORM={FIXUNB |FIXBLK|VARUNB|VARBLK|SPNBLK|SPNUNB|
UNDEF}: This operand specifies the type of EBCDIC or ASCII
records in the input or output file. Enter one of the following
parameters:

FIXUNB For fixed-length unblocked records (default)

FIXBLK For fixed-length blocked records

VARUNB For variable-length unblocked records

VARBLK  For variable-length blocked records

SPNBLK For spanned variable-length blocked records (EBCDIC only)

Macro Description 103



DTFMT

SPNUNB  For spanned variable-length unblocked records (EBCDIC only)
UNDEF For undefined records
Work files may use only FIXUNB or UNDEF.

RECSIZE={n|(r)}: For fixed-length blocked records, RECSIZE is
required. It specifies the number of characters in each record.

When processing spanned records, you must specify RECSIZE=(r) where
r is a register that contains the length of each record.

For undefined records, this entry is required for output files but
is optional for input files. It specifies a general register (any of
2 to 12) that contains the length of the record. On output, you must
load the length of each record into the register before you issue a
PUT macro.

Spanned-record output requires a minimum record length of 18 bytes.
A physical record less than 18 bytes is padded with binary zeros to
complete the 18-byte requirement. This applies to both blocked and
unblocked records. If specified for input, IOCS provides the length
of the record transferred to virtual storage. This operand does not
apply to work files.

REWIND={UNLOAD|NORWD}: 1If this specification is not included,
tapes are automatically rewound to load point, but not unloaded, on
an OPEN or OPENR or a CLOSE or CLOSER macro or on an end-of-volume
condition. If other operations are desired for a tape input or out-
put file, specify:

UNLOAD
to rewind the tape on an OPEN and to rewind and unload on a CLOSE or
on an end-of-volume condition.

NORWD

to prevent rewinding the tape at any time. This option positions the
read/write head between the two tapemarks that indicate the
end-of-file condition.

SEPASMB=YES: Include this operand only if the DTFMT is to be
assembled separately. This causes a CATALR card with the filename to
be punched ahead of the object deck and the filename to be defined
as an ENTRY point in the assembly. If the operand is omitted, the
assembler assumes that the DTF is assembled together with the prob-
lem program.

TPMARK={YES|NO}: A tapemark is normally written for an output
file if nonstandard labels are specified (FILABL=NSTD). If no
tapemark is desired, TPMARK=NO should be specified. If TPMARK=NO is
specified together with FILABL=STD, the former specification is
ignored. If FILABL=NO is specified or the FILABL operand is omitted,
TPMARK=YES must be specified for IOCS to write a tapemark ahead of
the first data record.

104 VSE/Advanced Functions Macro Reference



DTFMT

TYPEFLE={INPUT|OUTPUT|WORK}: Use this operand to indicate
whether the file is used for input or output. If INPUT is specified,
the GET macro is used. If OUTPUT is specified, the PUT macro is
used. If WORK is specified, the READ/WRITE, NOTE/POINTx, and CHECK
macros are used.

The specification of WORK in this operand is not permitted for ASCII
files.

VARBLD=(r): This entry is required whenever variable-length
blocked records are built directly in the output area (no work area
is specified). It specifies the number (r) of a general-purpose reg-
ister (any of 2 to 12) that always contains the length of the avail-
able space remaining in the output area.

I0CS calculates the space still available in the output area, and
supplies it to you in the VARBLD register after the. PUT macro is
issued for a variable-length record. You can then compare the length
of the next variable-length record with the available space to
determine whether the record will fit in the remaining area. This
check must be made before the record is built. If the record does
not fit, issue a TRUNC macro to transfer the completed block of
records to the tape. The current record is then built as the first
record of the next block.

WLRERR=name: This operand applies only to tape input files. It
specifies the name of your routine to receive control if a
wrong-length record is read. If the WLRERR entry is omitted but a
wrong-length record is detected by IOCS, one of the following condi-
tions results:

. If the ERROPT entry is included for this file, the wrong-length
record is treated as an error block, and handled according to
your specifications for an error (IGNORE, SKIP, or name of error
routine).

L If the ERROPT entry is not included, IOCS assumes the IGNORE
option of ERROPT.

WORKA=YES: If I/0O records are processed in work areas instead of
in the I/0 areas, specify this operand. You must set up the work
areas in virtual storage. The symbolic address of the work area, or
a general-purpose register containing the address, must be specified
in each GET or PUT. Omit IOREG if this operand is included.
WORKA=YES is required for spanned record processing. It does not
apply to work files.

Macro Description 105




DTFOR

[name] DTFOR COREXIT=name
,DEVADDR=SYSxxx
,EOFADDR=name
,IOAREAl=name
[ ,BLKFAC=n]

[ ,BLKSIZE=n]

[ , CONTROL=YES]
[ ,DEVICE=xxxxx]
[ ,HEADER=YES]

[ ,HPRMTY=YES]

[ , IOAREA2=name]
[,IOREG=(x)]

[ ,MODNAME=name ]
[ ,RECFORM={ FIXUNB | FIXBLK|UNDEF} ]
[ ,RECSIZE=(n)]
[ , SEPASMB=YES]
[ ,WORKA=YES]

@ e o o = - = - = = e E e EE ... EEEEmEESEE®®--—-==m= =SS

This macro is used to define an input file to be processed on a 1287
optical reader or 1288 optical page reader. The macro is not used
for the 3881 optical mark reader; for the 3881, use the DTFCD macro.

If not otherwise stated, the operands of the DTFOR macro can be
specified for all three types of devices (1287T, 1287D, and 1288).

BLKFAC=n: For the 1287T, undefined journal tape records are
processed with greater throughput speeds when this operand is
included. This is accomplished by reading groups of lines as blocked
records. When undefined records are processed, BLKFAC specifies the
blocking factor (n) that determines the number of lines read
(through CCW chaining) as a block of data by one physical read.
Deblocking is accomplished automatically by IOCS when the GET macro
is used. The BLKFAC parameter is not used with RECFORM=FIXBLK,
because the blocking factor is determined from the BLKSIZE and
RECSIZE parameters. If the operand is included for FIXBLK, FIXUNB,
or document processing, the operand is noted (in an MNOTE) and
ignored.

BLKSIZE={38|n} This operand indicates the size of the input area
specified by IOAREAl. 38 is the default. For journal tape process-
ing, BLKSIZE specifies the maximum number of characters that can be
transferred to the area at any one time.

When undefined journal tape records are read, the area must be large
enough to accommodate the longest record to be read if the BLKFAC
parameter is not specified. If the BLKFAC parameter is specified,
the BLKSIZE value must be determined by multiplying the maximum

106 VSE/Advanced Functions Macro Reference




DTFOR

length that must be accommodated for an undefined record by the
blocking factor desired. A BLKSIZE value smaller than this results
in truncated data.

If two input areas are used for journal tape processing (IOAREA1l and
IOAREA2), the size specified in this entry is the size of each I/0
area.

CONTROL=YES: This entry must be included if a CNTRL macro is
issued for a file. A CNTRL macro issues orders to the optical reader
to perform nondata operations such as line marking, stacker select-
ing, document incrementing, etc.

COREXIT=name: COREXIT provides an exit to your error correction
routine for the 1287 ~r 1288. After a GET, WAITF, or CNTRL macro is
executed (to increment or eject and/or stacker select a document),
an error condition causes an error correction routine to be entered
with an error indication provided in filename+80. The byte at
filename+80 contains the following codes indicating the conditions
that occurred during the last line or field read. The byte should
also be tested after issuing the optical reader macros DSPLY, RESCN,
RDINE, CNTRL READKB, and CNTRL MARK. More than one error condition
may be present.

Code
Dec Hex Meaning

1 x'o1l' A data check has occurred. Five read attempts for
journal tape processing or three read attempts for
document processing were made.

2 x'o2' The operator corrected one or more characters from the
keyboard (1287T) or a hopper empty condition (see
HPRMTY=YES operand) has occurred (1287D).

4 X'04' A wrong-length record condition has occurred (for
journal tapes, five read attempts were made; for docu-
ments, three read attempts were made). Not applicable
for undefined records.

8 x'o8' An equipment check resulted in an incomplete read (ten
read attempts were made for journal tapes or three for
documents).

If an equipment check occurs on the first character in
the record, when processing undefined journal tape
records, the RECSIZE register contains zero, and the
IOREG (if used) points to the rightmost position of
the record in the I/0 area. You should test the
RECSIZE register before moving records from the work
area or the I/0 area.

16 x'10' A nonrecoverable error occurred.

Macro Description 107



DTFOR

32 Xx'20' For the 1288, reading in unformatted mode, the
end-of-page (EOP) condition has been detected.
Normally, on an EOP indication, the problem program
ejects and stacker selects the document.
After issuing one of the macros CNTRL ESD, CNTRL SSD,
CNTRL EJD in your COREXIT routine, a late stacker
selection condition occurred.
For the 1287, a stacker select was given after the
allotted elapsed time and the document was put in the
reject pocket.

64 X'40' The 1287D scanner was unable to locate the reference
mark (for journal tapes, ten read attempts were made;
for documents, three read attempts were made).

The byte filename+80 can be interrogated to determine the reason for
entering the error correction routine. Choice of action in your
error correction routine is determined by the particular
application.

If you issue I/0 macros to any device other than the 1287 and/or
1288 in the COREXIT routine, you must save registers 0, 1, 14, and
15 upon entering the routine, and restore these registers before
exiting. Furthermore, if I/0 macros (other than the GET, WAITF,
and/or READ, which cannot be used in COREXIT) are issued to the 1287
and/or 1288 in this routine, you must also save and later restore
registers 14 and 15 before exiting. All exits from COREXIT should be
to the address specified in register 14. This provides a return to
the point from which the branch to COREXIT occurred. If the command
chain bit is on in the READ CCW for which the error occurred, IOCS
completes the chain upon return from the COREXIT routine.

Note: Do not issue a GET, READ, OPEN, or WAITF macro to the
1287 or 1288 in the error correction routine. Do not process
records in the error correction routine. The record that
caused the exit to the error routine is available for process-
ing upon return to the mainline program. Any processing
included in the error routine would be duplicated after return
to the mainline program.

When processing journal tapes, a nonrecovery error (torn tape, tape
jam, etc.) normally requires that the tape be completely
reprocessed. In this case, your routine must not branch to the
address in register 14 from the COREXIT routine or a program loop
will occur. Following an unrecoverable error:

. the optical reader file must be closed.

. the condition causing the nonrecovery must be cleared.

. the file must be reopened before processing can continue.

If a nonrecoverable error occurs while processing documents (indi-

cating that a jam occurred during a document incrementation opera-

108 VSE/Advanced Functions Macro Reference




DTFOR

tion, or a scanner control failure has occurred, or an end-of-page
condition, etc.), the document should be removed either manually or
by nonprocess runout. In such cases, your program should branch to
read the next document.

If the 1287 or 1288 scanner is unable to locate the document refer-
ence mark, the document cannot be processed. In this case, the docu-
ment must be ejected and stacker selected before attempting to read
the following document or a program loop will result.

Whenever a nonrecoverable error occurs, your COREXIT routine must
not branch to the address in register 14 to return to IOCS. Instead,
the routine should ignore any output resulting from the document.

Eight binary error counters are used to accumulate totals of certain
1287 and 1288 error conditions. Each of these counters occupies four
bytes, starting at filename+48. Filename is the name specified in
the DTF header entry. The error counters are:

Counter
and Address Contents

1 filename+48 Equipment check (see Note, below).

2 filename+52 Equipment check uncorrectable after ten read
attempts for journal tapes or three read attempts
for documents (see Note, below).

3 filename+56 Wrong-length records (not applicable for undefined
records).

4 filename+60 Wrong-length records uncorrectable after five read
attempts for journal tapes or three read attempts
for documents (not applicable for undefined
records).

filename+64 Keyboard corrections (journal tape only).

filename+68 Journal tape lines (including retried lines) or doc-
ument fields (including retried fields) in which
data checks are present.

7 filename+72  Lines marked (journal tape only).

8 filename+76 Count of total lines read from journal tape or the

number of CCW chains executing during document proc-
essing.

N n

Note: Counters 1 and 2 apply to equipment checks that result
from incomplete reads or from the inability of the 1287 or
1288 scanner to locate a reference mark (when processing docu-
ments only).

All the previous counters contain binary zeros at the start of each
job step. You may list the contents of these counters for analysis
at end of file, or at end of job, or you may ignore the counters.
The binary contents of the counters should be converted to a print-
able format.

Macro Description 109




DTFOR

DEVADDR=SYSnnn: This operand specifies the logical unit
(SYSnnn) to be associated with the file. The logical unit repres-
ents an actual I/0 device address used in the ASSGN job control
statement to assign the actual I/0 device address to this file.

DEVICE={1287D|1287T}: This operand specifies the I/0 device
associated with this file. 1287D specifies a 1287/ or 1288 document
file. 1287T specifies a 1287 journal tape file.

From this specification, IOCS sets up the device-dependent routines
for this file. For document processing you must code the CCWs.

If this operand is omitted, 1287D is assumed.

EOFADDR=name: This operand specifies the name of your
end-of-file routine. IOCS automatically branches to this routine on
an end-of-file condition.

When reading data from documents, you can recognize an end-of-file
condition by pressing the end-of-file key on the console when the
hopper is empty. When processing journal tapes on a 1287, you can
detect an end-of-file by pressing the end-of-file key after the end
of the tape is sensed.

When IOCS detects an end-of-file condition, it branches to your rou-
tine specified by EOFADDR. You must determine whether the current
roll is the last roll to be processed when handling journal tapes.
Regardless of the situation, the tape file must be closed for each
roll within your EOF routine. If the current roll is not the last,
OPEN must be issued. The OPEN macro allows header (identifying)
information to be entered at the reader keyboard and read by the
processor when using logical IOCS.

The same procedure can be used for 1287 processing of multiple jour-
nal tape rolls, as well as the method described under 'OPEN Macro'
in the section 'Imperative Macros'.

HEADER=YES: This operand cannot be used for 1288 files. This
operand is required if the operator is to key in header
(identifying) information from the 1287 keyboard. The OPEN routine
reads the header information only when this entry is present. If the
entry is not included, OPEN assumes no header information is to be
read. The header record size can be as large as the BLKSIZE entry
and is read into the high-order positions of IOAREAL.

HPRMTY=YES: This operand is included (for the 1287D or 1288) if
you want to be informed of the hopper empty condition. This condi-
tion occurs when a READ is issued and no document is present, and is
recognized at WAITF time. When a hopper empty condition is detected,
your COREXIT routine is entered with X'02' stored in filename+80.

This operand should be used when processing documents in the
time-dependent mode of operation, which allows complete overlapping
of processing with reading. See the appropriate IBM 1287 device

110 VSE/Advanced Functions Macro Reference




DTFOR

manuals for processing details. With this method of processing,
specifying HPRMTY=YES allows you to check for a hopper empty condi-
tion in your COREXIT routine. You can then select into the proper
hopper the previously ejected document before return from COREXIT
(via register 14).

IOAREA1=name: This operand is included to specify the name of
the input area used by the file. When opening a file and before
each journal tape input operation to this area, the designated area
is set to binary zeros and the input routines then transfer records
to this area. For document processing, the area is cleared only when
the file is opened.

IOAREA2=name: A second input area can be allotted only for a
journal tape file (on a 1287T). This permits an overlap of data
transfer and processing operations. The specified second I/0 area is
set to binary zeros before each input operation to this area occurs.

IOREG={(2)|(r)}: This operand specifies a general-purpose regis-
ter (any one of 2 to 12) that the input routines use to indicate the
beginning of records for a journal tape file (on a 1287T). The same
register may be specified in the IOREG operand for two or more files
in the same program, if desired. In this case, your program may need
to store the address supplied by IOCS for each record. Whenever this
entry is included for a file, the DTFOR entry WORKA must be omitted,
and the GET macro must not specify a work area.

A read by an optical reader is accomplished by a backward scan. This
places the rightmost character in the record into the rightmost
position of the I/O area and subsequent characters in sequence from
right to left. The register defined by IOREG indicates the leftmost
position of the record.

MODNAME=name: This operand may be used to specify the name of
the logic module used with the DTF table to process the file. If the
logic module (ORMOD) is assembled with the program, the MODNAME
parameter in this DTF must specify the same name as the ORMOD macro.

If this entry is omitted, standard names are generated for calling
the logic module. If two different DTF macros call for different
functions that can be handled by a single module, only one
standard-named module is called.

RECFORM={FIXUNB|FIXBLK|UNDEF}: This operand specifies the
type of records in an optical reader file. One of the following may
be specified:

FIXUNB For fixed-length unblocked records (default).
FIXBLK For fixed-blocked records in journal

tape mode.
UNDEF For undefined records.

RECSIZE={n|[(3)|(r)]}: For fixed-length unblocked records, this
operand should be omitted and no register is assumed.

Macro Description 111




DTFOR

For fixed-length blocked records (journal tape mode), this operand
must be included to specify the number, n, of characters in an indi-
vidual record. The input routines use this number to deblock
records, and to check the length of input records. If this operand
is omitted, an MNOTE is flagged in the macro assembly and
fixed-length unblocked records are assumed.

For undefined journal tape records, this entry specifies the number
(r) of the general-purpose register in which IOCS provides the
length of each input record. For undefined document records,
RECSIZE contains only the length of the last field of a document
read by the CCW chain that you supply. Any one of registers 2
through 12 may be specified, but if the operand is omitted, register
3 is assumed.

Note: When processing undefined records in document mode,
you gain complete usage of the register normally used in the
RECSIZE operand. You can do this by ensuring that the
suppress-length-indication (SLI) flag is always on when proc-
essing undefined records.

SEPASMB=YES: Include this operand only if the DTFOR is to be
assembled separately. This causes a CATALR card with the filename to
be punched ahead of the object deck and the filename to be defined
as an ENTRY point in the assembly. If the operand is omitted, the
assembler assumes that the DTF is assembled together with the prob-
lem program.

WORKA=YES: Input records (journal tape on a 1287T only) can be
processed in work areas instead of in the input areas. If this is
planned, the operand WORKA=YES must be specified, and you must set
up the work area in storage. The symbolic name of the work area, or
a general-purpose register containing the address of the work area,
must be specified in each GET macro. When GET is issued, IOCS
left-justifies the record in the specified work area. Whenever this
operand is included for a file, the DTFOR IOREG operand must be
omitted.

112 VSE/Advanced Functions Macro Reference




DTFPH

[name] DTFPH TYPEFLE={ INPUT | OUTPUT}
[ ,ASCII=YES]
[,CISIZE=n]
[ ,CCWADDR=name ]
[ ,DEVADDR=SYSxxx]
[ ,DEVICE=xxxx]
[ ,HDRINFO=YEE]
[ , LABADDR=name]
[ ,MOUNTED={ALL|SINGLE}]
[ , XTNTXIT=name ]

- om o o - . - - s = e e = e = e S e A AR SR S G G M e R M e W Se e e e e e s e e

When physical IOCS macros (EXCP, WAIT, etc.) are used in a program,
DASD, diskette, or tape files with standard labels need to be
defined by the DTFPH macro (DTFxx macro for a file handled by phys-
ical I0CS). DTFPH must also be used for a checkpoint file on a
disk.

Figure 17 on page 114 shows which of the DTFPH entries can or must
be coded to define a checkpoint file on disk.

ASCII=YES: This operand is required to process ASCII tape files
(see Appendix B). If this operand is omitted, EBCDIC processing is
assumed.

CCWADDR=name: This operand allows you to use the CCB generated
within the first 16 bytes of the DTFPH table. CCWADDR specifies the
symbolic name of the first CCW used with the CCB generated within
the DTFPH macro. This name must be the same as the name specified
in the assembler CCW statement that constructs the CCW.

If this operand is omitted, the location counter value of the
CCB-CCW table address constant is substituted for the CCW address.

CISIZE=n: This operand specifies the FBA Control Interval size.
The value n must be an integral multiple of the FBA physical block
size and, if greater than 8K, must be a multiple of 2K. The maximum
value is 32768 (32K) except when assigned to SYSLST or SYSPCH, when
the maximum is 30720 (30K).

If CISIZE is omitted, CISIZE=0 is assumed. For FBA devices, control
interval size may be overridden for an output file at execution time
by specifying the CISIZE parameter of the DLBL job control
statement. For an input file, the CISIZE value in the format-1 label
is used.

DEVADDR=SYSxxx: This operand must specify the symbolic unit

(SYSxxx) associated with the file if a symbolic unit is not provided
via an EXTENT job control statement. If a symbolic unit is provided,

Macro Description 113




DTFPH

i Operand | Optional | Required i
I CCWADDR=name } X I i
{ CISIZE=n I x I {
I DEVADDR=SYSnnn I x I I
I DEVICE=2311, 2314, 3330, } % x I
| 3340, 3350, DISK | | |
i LABADDR=name I X : I
i MOUNTED=SINGLE { % X I
i TYPEFLE=OUTPUT } { x i

Figure 17. Operands to Define a Checkpoint File on Disk

its specification overrides a DEVADDR specification. This specifica-
tion, or symbolic unit, represents an actual I/0 address, and is
used in the ASSGN job control statement to assign the actual I/O
device address to this file.

If SYSLST or SYSPCH are used as output tape units and alternate tape
switching is desired upon detecting a reflective spot, the SEOV mac-
ro must be used (see 'SEOV Macro'). When processing ASCII tape
files, the only valid specification is a programmer logical unit
(that is, SYSnnn).

DEVICE={TAPE|DISK|2311|2314|3330|3340|3350|3540}: TAPE is the
default, so if the file is contained on DASD or diskette, enter the
proper identification.

TAPE applies to 8809 and any 2400/3400-series tape unit, and is the
only valid entry in this operand for ASCII files.

DISK is a general DASD device specification including CKD and FBA
devices. When specified, a specific device type is not required.
The actual DASD device is determined when the file is opened.

HDRINFO=YES: This operand causes IOCS to print standard header
label information (fields 3-10) on SYSLOG each time a file with
standard labels is opened. Likewise, the filename, symbolic unit,
and device address are printed each time an end-of-volume condition
is detected. If HDRINFO=YES is omitted, no header or end-of-volume
information is printed.

LABADDR=name: This operand does not apply to diskette
input/output units.

114 VSE/Advanced Functions Macro Reference



DTFPH

You may require one or more DASD or tape labels in addition to the
standard file labels. If so, you must include your own routine to
check (on input) or build (on output) your label(s). Specify the
symbolic name of your routine in this operand. IOCS branches to this
routine after the standard label is processed.

LABADDR may be included to specify a routine for your header or
trailer labels as follows:

¢ DASD input or output: header labels only.
e Tape input or output: header and trailer labels.

Thus, if LABADDR is specified, your header labels can be processed
for an input/output DASD or tape file, and your trailer labels can
be built for a tape output file. Physical IOCS reads input labels
and makes them available to you for checking, and writes output
labels after they are built. This is similar to the functions per-
formed by logical IOCS.

If physical IOCS macros are used for a tape file, an OPEN must be
issued for the new volume. This causes IOCS to check the HDR1 label
and provides for your checking of user standard labels, if any.

When physical IOCS macros are used and DTFPH is specified for stand-
ard tape label processing, FEOV must not be issued for an input
file.

MOUNTED={ALL|SINGLE}: This operand does not apply to diskette
input/output units.

This operand must be included to specify how many extents (areas) of
the file are available for processing when the file is initially
opened. This operand must not be specified for tape.

ALL is specified if all extents are available for processing. When a
file is opened, IOCS checks all labels on each disk pack and makes
available all extents specified by your control statements. Only one
OPEN is required for the file. ALL should be specified whenever you
plan to process records in a manner similar to the direct access
method.

After an OPEN is performed, you must be aware that the symbolic unit
address of the first volume containing the file is in bytes 30 and
31 of the DTFPH table rather than in the CCB. Therefore, place this
symbolic address into bytes 6 and 7 of the associated CCB before you
issue an EXCP against this CCB in your program.

SINGLE is specified if only the first extent on the first volume is
available for processing. SINGLE should be specified when you plan
to process records in sequential order. IOCS checks the labels on
the first pack and makes the first extent specified by your control
statements available for processing. You must keep track of the
extents and issue a subsequent OPEN whenever another extent is

Macro Description 115




DTFPH

required for processing. You will find the information in the DTFPH
table helpful in keeping track of the extents. The contents of the
DTFPH is shown in Figure 18 on page 116

Bytes Contents
0-15 CCB (symbolic unit has been initialized
in the CCB).
54--57 Extent upper limits (cchh).
58-59 Seek address. For a disk it must be
60—63 Extent lower limit (cchh for CKD).

For FBA devices, the extent upper limit
is the first physical block number of
the last CI. If the number of blocks per
CI is greater than 1, the extent upper
limit could differ between the format-1
label and the DTF entry.

|
|
|
|
|
|
| zero.
|
|
|
|
|
|
|

Figure 18. DTFPH Table

On each OPEN after the first, IOCS makes available the next extent
specified by the control cards. When you issue a CLOSE for an output
file, the volume on which you are currently writing records is indi-
cated, in the file label, as the last volume for the file.

TYPEFLE={INPUT|OUTPUT}: This operand must be included to
specify the type of file: input or output.

XTNTXIT=name: This operand does not apply to diskette
input/output units.

This entry is included if you want to process label extent informa-
tion. It specifies the symbolic name of your extent routine. The
DTFPH operand MOUNTED=ALL must also be specified for the file.

Whenever XTNTXIT is included, IOCS branches to your routine during
the initial OPEN for the file. It branches after each specified
extent is completely checked and after conflicts, if any, have been
resolved.

When your routine receives control, register 1 contains the address
of a l4-byte area from which you can retrieve label extent informa-
tion (in binary form). The layout of this area is shown in Figure 19
on page 117

Return to IOCS by using the LBRET macro.

116 VSE/Advanced Functions Macro Reference



DTFPH

Bytes Contents
0 Extent type code.
1 Extent sequence number.
2

i
|
|
|
-5 | Lower limit of the extent.
|
|
|
I

6—9 Upper limit of the extent.
10-11 Symbolic unit.

12 Contains zero.

13 Not used.

I B

Figure 19. Layout of XTNTXIT Information Area

Macro Description 117



DTFPR

- e - e - e e e e e e e M e G me e e e e e e e e R e e e m SR e e e Sm G Mm e M e R T M e e e e

[name] DTFPR DEVADDR=SYSxxx
, JOAREAl=name
[ ,ASOCFLE=filename]
[ ,BLKSIZE=n]
[ ,CONTROL=YES]
[ ,CTLCHR={YES |ASA}]
[ ,DEVICE=nnn]
[ ,ERROPT={RETRY | IGNORE | name } ]
[ , FUNC=xxxx]
[ ,IOAREA2=name]
[, IOREG=(r)]
[ ,MODNAME=name]
[ ,PRINTOV=YES]
[ ,RDONLY=YES]
[ ,RECFORM={ FIXUNB | VARUNB | UNDEF } ]
[ ,RECSIZE=(r)]
[ ,SEPASMB=YES]
[ ,STLIST=YES]
[ ,TRC=YES]
[,UCS={ON|OFF}]
[ ,WORKA=YES]

DTFPR is used to define an output file for a printer.

ASOCFLE=filename: This operand is used together with the FUNC
operand to define associated files for the 2560, 3525, or 5424/5425.
(For a description of associated files see VSE/Advanced Functions
Application Programming: Macro User's Guide.) ASOCFLE specifies the
filename of an associated read and/or punch file, and enables macro
sequence checking by the logic module of each associated file. One
filename is required per DTF for associated files.

Figure 20 on page 119 defines the filename specified by the ASOCFLE
operand for each of the associated DTFs.

BLKSIZE=n: This operand specifies the length of IOAREAl. The max-
imum values which may be specified in this operand and the lengths
assumed when it is omitted are given for the different devices in
Figure 21 on page 120

CONTROL=YES: This operand is specified if the CNTRL macro will
be issued for the file. If this operand is specified, omit CTLCHR.
This operand is not allowed for the 2560 or 5424/5425.

CTLCHR={YES|ASA}: This operand is specified if first-character

control is used. ASA specifies the American National Standards
Institute, Inc. character set. CTLCHR=YES specifies the §/370 char-

118 VSE/Advanced Functions Macro Reference



DTFPR

Code in FUNC=Operand|

Filename Specification in ASOCFLE=Operand of

Read DTFCD

Punch DTFCD

Print DTFPR

FUNC=RPW

Filename of
Punch DTFCD

Filename of
Print DTFPR

Filename of
Read DTFCD

FUNC=PW

Filename of
Print DTFPR

Filename of
Punch DTFCD

| FUNC=RW

Filename of
Print DTFPR

Filename of
Read DTFCD

| | |
| | I
| | |
I | |
I l 1
| | |
| | |
I | l

1.

2.

| Examples:

FUNC=PW is specified,

specify the filename of the print DTFPR in the ASOCFLE operand
of the punch DTFCD and

specify the filename of the punch DTFCD in the ASOCFLE operand
of the print DTFPR.

FUNC=RPW is specified,

specify the filename of the punch DTFCD in the ASOCFLE operand
of the read DTFCD,
specify the filename of the print DTFPR in the ASOCFLE operand
of the punch DTFCD, and

specify the filename of the read DTFCD in the ASOCFLE operand
of the print DTFPR.

If
a.

b.

If
a.

b.

C.

and

Figure 20. ASOCFLE Operand Usage with Print Associated Files

acter set. See Appendix A for a list of codes. If this parameter is
specified, omit CONTROL. This operand must not be specified for the
2560 or 5424/5425.

If CTLCHR=ASA is specified for the 3525, the + character is not
allowed. To print on the first line of a card, you must issue
either a space 1 command or a skip to channel 1 command. For 3525
print associated files, you must issue a space 1 command to print on
the first line of a card.

DEVADDR={SYSLOG|SYSLST|SYSnnn}: This operand specifies the
symbolic unit to be associated with the printer. SYSLOG and SYSLST
must not be specified for the 2245, 2560, 3525, or 5424/5425.

IDEVICE={1403l1443|2245|2560P|2560$|3203|3211|3525|3800|5203|
5425P|5425S|PRT1}: This operand specifies which device is used
for the file. The 'P' and 'S' included with the "2560" and "5425"
parameters specify primary or secondary input hoppers. Specify
5425P/S for 5424(P/S). '"PRT1" refers to a 3211 or 321l-compatible
printer. For a list of PRT1 printers, see VSE/Advanced Functions,
System Control Statements, SC33-6095.

Macro Description 119




DTFPR

Devices | Maximum length | Length assumed
| (in bytes) which | (in bytes)?
| can be specified!|
| |

1403-1, -4 | 100°% | 121
| I

1403-6, -7 | 120°% | 121
I |

1403-2, -3, | 132 | 121

-5, -8, -9 ’ 1

1443 | 144 | 121
| |

2560 | 384 64
|

3203 | 132 121
|

PRT1 | 1323 121
|

3525 | 64 64
I

3800/3200 | 384 136
| (without TRC)* (without TRC)*
| |

5203 i 132 | 96
|

5424/5425 | 128 96

e e ——————————————— e ———————————————————_————

b ————— e e —————————————————————————————_——

RECFORM is FIXUNB or UNDEF and operand CTLCHR is
not specified.

The parameter BLKSIZE=n is omitted.

150 if the feature is available in a 3211.

For a 3800, the maximum length is 385 if TRC=YES
is used, and the assumed length is 137.

Maximum print position of the device.

Notes:

If CTRCHR=YES/ASA is specified, add 1 byte to

the maximum length which can be specified.

If RECFORM=VARUNB is specified add 4 bytes to

the maximum value which can be specified.

For the 2245, if RECFORM=VARUNB and CTLCHR=YES/ASA
are specified, the maximum blocksize is 805 bytes.

Figure 21. Maximum and Assumed Lengths for the IOAREA1l

If the DEVICE operand is omitted, 1403 is assumed.

120 VSE/Advanced Functions Macro Reference



DTFPR

ERROPT={RETRY|IGNORE|name}: This operand specifies the action
to be taken in the case of an equipment error. The functions of the
parameters are described below.

RETRY

Can be specified for a PRT1 printer only. RETRY indicates that if an
equipment check with command retry is encountered, the command is
retried once. If the retry is unsuccessful, a message is issued and
the job is canceled.

IGNORE

Can be specified only for the 3525. IGNORE indicates that the error
is to be ignored. The address of the record in error is put in reg-
ister 1 and made available for processing. Byte 3, bit 3 of the CCB
is also set on (see Figure 3 on page 16); you can check this bit and
take the appropriate action to recover from the error. IGNORE must
not be specified for files with two I/O areas or a work area.

name

Can be specified only for a PRT1 printer. If an equipment check with
command retry is encountered, the command is retried once. If the
retry is unsuccessful a message is issued and the job canceled. With
other types of errors (for these see the CCB, Figure 3 on page 16 )
an error message is issued, error information is placed in the CCB,
and control is given to your error routine, where you may perform
whatever actions are desired. If any IOCS macros are issued in the
routine, register 14 must be saved; if the operand RDONLY=YES is
specified, register 13 must also be saved. To continue processing at
the end of the routine, return to IOCS by branching to the address
in register 14.

FUNC={W[T]|RW[T]|RPW[T]|PW|[T]}: This operand specifies the
type of file to be processed by the 2560, 3525, or 5424/5425. W
indicates print, R indicates read, P indicates punch, and T (for the
3525 only) indicates an optional 2-line printer.

RW[T], RPW[T], and PW[T] are used, together with the ASOCFLE
operand, to specify associated files; when one of these parameters,
other than T, is specified for a printer file it must also be speci-
fied for the associated file(s). Note: Do not use T for associated
files; it is valid only for printer files.

If a 2-line printer is not specified for the 3525, multi-line print
is assumed. T is ignored if CONTROL or CTLCHR is specified.

IOAREA1=name: This operand specifies the name of the output
area.

IOAREA2=name: This operand specifies the name of a second output
area.

Macro Description 121




DTFPR

IOREG=(r): If two output areas and no work areas are used, this
operand specifies the register into which IOCS will place the
address of the area where you can build a record. For (r) specify
one of the registers 2 to 12.

MODNAME=name: This operand may be used to specify the name of
the logic module that is used with the DTF table to process the
file. If the logic module is assembled with the program, MODNAME
must specify the same name as the PRMOD macro. If this operand is
omitted, standard names are generated for calling the logic module.
If two DTF macros call for different functions that can be handled
by a single module, only one module is called.

PRINTOV=YES: This operand is specified if the PRTOV macro is
included in your program. This operand is not allowed for the 2560
or 5424/5425.

RDONLY=YES: This operand is specified if the DTF is used with a
read-only module. Each time a read-only module is entered, register
13 must contain the address of a 72-byte doubleword-aligned save
area. Each task requires its own uniquely defined save area. Each
time an imperative macro (except OPEN or OPENR) is issued, register
13 must contain the address of the save area associated with the
task. The fact that the save areas are unique for each task makes
the module reentrant (that is, capable of being used concurrently by
several tasks).

If an ERROPT routine issues I/0 macros which use the same read-only
module that caused control to pass to either error routine, your
program must provide another save area. One save area is used for
the normal I/0, and the second for I/0 operations in the ERROPT rou-
tine. Before returning to the module that entered the ERROPT
routine, register 13 must be set to the save area address originally
specified for the task.

If this operand is omitted, the module generated is not reenterable
and no save area need be established.

RECFORM={FIXUNB|UNDEF|VARUNB}: The operand RECFORM=FIXUNB
is specified whenever the record format is fixed. When the record
format is FIXUNB, this entry may be omitted.

The entry RECFORM=UNDEF is specified whenever the record format is
undefined. If the output is variable and unblocked, enter VARUNB.

RECSIZE=(r): This operand specifies the general register (any one
of 2 to 12) that will contain the length of an output record of
undefined format. The length of each record must be loaded into the
register before issuing the PUT macro.

SEPASMB=YES: Include this operand only if the DTFPR is to be
assembled separately. This causes a CATALR card with the filename to
be punched ahead of the object deck and the filename to be defined

122 VSE/Advanced Functions Macro Reference




DTFPR

as an ENTRY point in the assembly. If the operand is omitted, the
assembler assumes that the DTF is assembled together with the prob-
lem program.

STLIST=YES: Include this operand if the selective tape listing
feature (1403 only) is used. If this entry is specified, the
CONTROL, CTLCHR, and PRINTOV entries are not valid and will be
ignored if specified. If this operand is specified, RECFORM must
have the parameter FIXUNB.

TRC=YES: This operand applies to the 3800 Printing Subsystem;
DEVICE=3800 should be specified. TRC=YES specifies that a table ref-
erence character is included as the first byte of each output data
line (following the optional print control character). The printer
uses the table reference character to select the character arrange-
ment table corresponding to the order in which the table names have
been specified with the CHAR parameter on the SETPRT job control
statement (or SETPRT macro instruction).

If a printer other than a 3800 is specified on the DEVICE parameter,
any table reference character sent to that printer is treated as
data.

UCS={OFF|ON}: For a printer with the universal character set
feature, or for a 3800 Printing Subsystem, this operand determines
whether data checks occurring in case of unprintable characters are
indicated to the operator or printed as blanks. The entry is espe-
cially useful if you are using first-character forms control and
have modules that cannot process the CNTRL macro. If the operand is
omitted, OFF is the default.

ON
Data checks are processed with an operator indication.

OFF
Data checks are ignored and blanks are printed for the unprintable

character.

WORKA=YES: If output records are processed in work areas instead
of in the I/0 areas, specify this operand. You must set up the work
area in storage. The address of the work area, or a general-purpose
register which contains the address, must be specified in each PUT
macro.

Macro Description 123




DTFPT

- - e - en - e e e . = e Nm = e O e e A e e M e Am wm e e M e e e s e e e e e e R R G M e e e e

[name] DTFPT BLKSIZE=n
, DEVADDR=SYSxxx
,JOAREAl=name
[ ,DELCHAR=X'"nn"']
[ ,DEVICE=nnnn]
[ ,EOFADDR=name ]
[ ,EORCHAR=X"nn"']
[ ,ERROPT={ IGNORE | SKIP|name}]
[ ,FSCAN=name]
[ ,FTRANS=name]
[ ,IOAREA2=name]
[, IOREG=(r) ]
[ ,LSCAN=name]
[ ,LTRANS=name]
[ ,MODNAME=name ]
[ ,OVBLKSZ=n]
[ ,RECFORM=xxxxxXx]
[ , RECSIZE=(x)]
[ ,SCAN=name]
[ s SEPASMB=YES]
[ s, TRANS=name]
[ ,WLRERR=name]

The DTFPT macro is used to define an input or output file on a paper
tape I/0 device.

BLKSIZE=n: This operand specifies the length of the input or out-
put area. The maximum block size is 32,767 bytes.

DELCHAR=X'nn' This operand specifies the configuration of the
delete character and must be used for output files only, that is,
when DEVICE=1018 is specified. The constant X'nn' consists of two
hexadecimal digits. The delete character is used in the error
recovery procedure, and you must specify the correct configuration
in accordance with the number of tracks of the output tape, as fol-
lows:

X'1F' for five tracks.
X'3F' for six tracks.

X'7F' for seven tracks.
X'FF' for eight tracks.

Note: The delete character is required only if the 1018 has
the error correction feature.

124 VSE/Advanced Functions Macro Reference




DTFPT

DEVADDR=SYSxxx: This operand specifies the logical unit
(SYSnnn) associated with this file. An actual channel and unit are
assigned to the unit by an ASSGN job control statement. The ASSGN
statement contains the same symbolic name as DEVADDR.

DEVICE={2671]1017]1018}: This operand is required only to specify
the paper tape I/0 device. If this entry is omitted, 2671 is
assumed.

EOFADDR=name: This operand specifies the name of your
end-of-file routine. IOCS automatically branches to this routine on
an end-of-file condition if the end-of-file switch is set on. The
routine can execute any operation required for the end-of-file,
issue the CLOSE macro for the file, or return to IOCS by branching
to the address in register 14. In the latter case, IOCS reads in the
next record. The end-of-file condition cannot occur on the 1018.

EORCHAR=X'nn': This operand specifies the user-defined
end-of-record (EOR) character, where nn is two hexadecimal digits.
It must be used for output files with undefined record format only.
I0CS writes this character after the last character of the undefined
record.

ERROPT={IGNORE|SKIP|name}: This operand is specified if you do
not want a job terminated when the standard recovery procedure can-
not recover from a read or write error. If the ERROPT entry is omit-
ted and a read or write error occurs, I0CS terminates the job.

For input files, IGNORE allows IOCS to handle the record as if no
errors were detected. If SKIP is specified, IOCS skips the record in
error and reads the next record.

For output files with shifted codes, ERROPT cannot be specified. For
unshifted codes, the options ERROPT=IGNORE and ERROPT=name can be
specified. IGNORE allows IOCS to handle the record as if no errors
were detected.

The ERROPT=SKIP option is ignored and causes IOCS to terminate the
job.

If two I/0 areas are used, the CLOSE macro checks the last record,
and the option ERROPT=name is treated as option ERROPT=IGNORE.

For name, specify the symbolic address of your error routine that
will process errors. On an error condition, IOCS reads or writes the
complete record, including the error character(s), and then branches
to the error routine. At the end of the error routine, return to
I0CS by branching to the address in register 14. The next record is
then read or written. You must not issue any GET or PUT macros for
records in the error block. If the error routine contains any other
10CS macros, the contents of register 14 must be saved and restored.

FSCAN=name: This operand must be included for every output file
using a shifted code. Omit this operand for an input file. The

Macro Description 125




CTFPT

operand specifies the name of a scan table in your program used to
select groups of figures. This table must conform to the specifica-
tions of the machine instruction TRT. The entry in the table for
each letter character must be the letter shift character, and all
other entries must be hexadecimal zero. Any deviation from this
results in incorrect translation.

FTRANS=name: This operand must be included for every input file
using a shifted code and is not permitted for output files. It spec-
ifies the name of a figure shift table in your program. This table
must conform to. the specifications of the machine instruction TR.

IOAREA1=name: This operand specifies the name of an input or
output area.

IOAREA2=name: This operand specifies the name of a second input
or output area. When this operand is specified, IOCS overlaps the
1/0 operation in one area with the processing of the record in the
other.

IOREG=(r): This operand must be included if two input or output
areas are used. For input, it specifies the register into which IOCS
puts the address of the logical record available for processing. For
output, it specifies the register that contains the address of the
area in which your program can build a record. Any register from 2
to 12 may be specified.

LSCAN=name: This operand must be included for every output file
using a shifted code and is not permitted for input files. It speci-
fies the name of a scan table in your program used to select groups
of letters. This table must conform to the specifications of the
machine instruction TRT. The entry in the table for each figure
character must be the figure shift character, and all other entries
must be hexadecimal zero. Any deviation from this results in incor-
rect translation.

LTRANS=name: This operand must be included for every input file
using a shifted code and is not permitted for output files. It spec-
ifies the name of a letter shift table in your program. This table
must conform to the specifications of the machine instruction TR.

MODNAME=name: This operand specifies the name of the logic mod-

ule used with the DTF table to process the file. If the logic module
is assembled with the program, the MODNAME operand in this DTF must

specify the same name as the PTMOD macro. If the operand is omitted,
I0CS generates standard names for calling the logic module.

OVBLKSZ=n: For input files, this operand specifies the number of
characters to be read (before translation and compression) to
produce the number of characters specified in the BLKSIZE entry.
OVBLKSZ is used only when SCAN=name and RECFORM=FIXUNB are both
specified. If OVBLKSZ is omitted, IOCS assumes that the number of
characters to be read is equal to the number specified in the
BLKSIZE entry. The maximum value is 32,767 bytes.

126 VSE/Advanced Functions Macro Reference



DTFPT

For output files, OVBLKSZ specifies the number of characters indi-
cated in the BLKSIZE entry, plus the number of shift characters to
be inserted. If the size of OVBLKSZ is large enough to allow the
insertion of all the shift characters required to build the output
record, a single WRITE operation results from a PUT macro. On the
other hand, if the size of OVBLKSZ (which must be at least one posi-
tion larger than BLKSIZE) does not permit the insertion of all the
shift characters, several WRITE operations result from a PUT macro.
OVBLKSZ is used only when LSCAN and FSCAN are specified with the
FIXUNB format. If OVBLKSZ is specified with UNDEF format, it is
ignored.

RECFORM={FIXUNB|UNDEF}: This operand specifies the record
format for the file. Specify either format for shifted or unshifted
codes. If the record format is FIXUNB, this entry may be omitted.

RECSIZE=(r): This operand specifies the number of a register (any
one of 2 to 12) that contains the length of the input or output
record. This entry is optional for input files. If present, IOCS
loads the length of each record read into the specified register. If
input files contain shift codes or other characters requiring
deletion, IOCS loads the compressed record length into the specified
register.

For output files, this entry must be included for undefined records.
Before translation, your program must load each record length into
the designated register before issuing the PUT macro for the record.

SCAN=name: This operand must be included for all input files
using shifted codes. It may also be included if you wish to delete
certain characters from each record. The SCAN entry specifies the
symbolic name of a table provided by your program. This table must
conform to the specifications of the machine instruction TRT. It
must contain nonzero entries for all delete characters and, where
appropriate, for the figure and letter shift characters.

The table entry for the figure shift character must be X'04'; for
the letter shift character, the entry must be X'08'; delete entries
must be X'0C'. All other entries in the table must be X'00'. Other-
wise, incorrect translation results and a program check may occur.

The table must be large enough to hold the maximum value of coding
for the tape being processed; that is, 255 bytes for 8-track tape.
This prohibits erroneous coding on the tape from causing a scan
function beyond the limits of the scan table.

SEPASMB=YES: Include this operand only if the DTFPT is assembled
separately. This causes a CATALR card with the filename to be
punched ahead of the object deck and the filename to be defined as
an ENTRY point in the assembly. If the operand is omitted, the
assembler assumes that the DTF is being assembled with the problem
program and no CATALR card is punched.

Macro Description 127




DTFPT

TRANS=name: The TRANS operand specifies the symbolic name of a
table provided within your program. This table must conform to the
specifications of the machine instruction TR. For input files,
include this entry if a nonshifted code is to be translated into
internal system code. Omit the FTRANS and LTRANS entries if this
entry is present. If none of these three entries is present, no
translation takes place. For output files, include this entry if the
internal system code is translated into a shifted or nonshifted
code, depending on whether the FSCAN and LSCAN entries are present
or omitted.

WLRERR=name: Applies only to paper tape input files when
RECFORM=UNDEF is specified.

When IOCS finds a wrong-length record, it branches to the symbolic
name specified in the WLRERR entry. If this entry is omitted and the
ERROPT entry is included, IOCS considers the error uncorrectable and
uses the ERROPT option specified. Absence of both ERROPT and WLRERR
entries causes the wrong-length record to be accepted as a normal
record. IOCS detects overlength undefined records when the incoming
record fills the input area. The input area must, therefore, be at
least one position longer than the longest record anticipated.

At the end of the WLRERR routine, return to IOCS by branching to the
address in legister 14. The next IOCS read operation will normally
cause the remainder of the overlength, undefined record to be read.
If any other IOCS macros are included in the record-length error
routine, the contents of register 14 must be saved and restored.

Note: A wrong-length condition appears during the first read
operation on a 1017 if the combined length of the tape leader
and the first record is greater than the length of the longest
record anticipated (the length specified in BLKSIZE).

128 VSE/Advanced Functions Macro Reference




DTFSD

[name] DTFSD BLKSIZE=n
,EOFADDR=name
[,CISIZE=n]

[ ,DELETFL=NO]

[ ,DEVADDR=SYSxxx]

[ ,ERROPT={ IGNORE | SKIP |name} ]
[ ,FEOVD=YES]

[ ,HOLD=YES]

[, IOAREAl=name]

[ ,IOAREA2=name]

[ ,IOREG=(1)]

[ , LABADDR=name ]

[ ,PWRITE=YES]

[ ,RECFORM=xxxxxX ]

[ ,RECSIZE={n]| (r)}]

[ , SEPASMB=YES]

[ ,TRUNCS=YES]

[ ,TYPEFLE={ INPUT | OUPUT | WORK}]
[ ,UPDATE=YES]

[,VARBLD=(r)]

[,VERIFY=YES]

[ ,WLRERR=name]

[ ,WORKA=YES]

The DTFSD macro defines a DASD file for sequential (consecutive)
processing. Only IBM standard label formats are processed.

BLKSIZE=n: Enter the length of the I/0 area. If the record format
is variable or undefined, enter the length of the I/O area needed
for the largest block of records.

For input files with fixed-length blocked records, BLKSIZE must be
an integer multiple of RECSIZE; for output files, eight bytes must
be added for IOCS to construct a count field.

If the file is on an FBA device, the DTF BLKSIZE determines the log-
ical block size. For FBA DASD, the maximum value is 32,761 (that is,
seven bytes less than the maximum CISIZE). The BLKSIZE value for
output files must include eight bytes for a count field to provide
compatibility between FBA and CKD DASD.

The DTFSD BLKSIZE specification can be overridden by the BLKSIZE
operand of the DLBL job control statement if RECFORM=xxxBLK. For an
output file, the records are blocked according to the size specified
by the appropriate BLKSIZE operand (from the DLBL statement if it
was specified; otherwise from the DTFSD). For an input file, the
BLKSIZE s»>ecification must match the format of the data as it
resides on the disk.

Macro Description 129




DTFSD

To use the DLBL BLKSIZE operand:

The device must be a CKD device or it is ignored.

d Partition GETVIS space for a DTF extension and new buffers must
be available.

e DTFSD RECFORM=xxxBLK must have been specified.

CISIZE=n: This operand specifies the control interval size for an
FBA device assigned to a non-system file logical unit. If assigned
to a system file (SYSRDR, SYSIPT, SYSLST, or SYSPCH), or to a CKD
DASD file, the operand is ignored. The value n must be a multiple of
the FBA block size and, if greater than 8K, must be a multiple of
2K. The maximum value is 32,768 (32K) except when assigned to
SYSLST or SYSPCH, when the maximum is 30,720 (30K).

If CSIZE is omitted, CISIZE=0 is assumed. For an FBA device, con-
trol interval size may be overridden for an output file at execution
time by specifying the CISIZE parameter on the DLBL control state-
ment. For an input file, the CISIZE value in the format-1 label is
used. If zero, then OPEN calculates a value based on the BLKSIZE
specification on the DTF.

DELETFL=NO: Specify this operand if the CLOSE macro is not to
delete the format-1 and format-3 label for a work file. The operand
applies to work files only.

DEVADDR=SYSxxx: This operand must specify the symbolic unit
associated with the file if an extent is not provided. A job control
EXTENT statement is not required for single-volume input files. If
an EXTENT statement is provided, its specification overrides any
DEVADDR specification. SYSnnn represents an actual I/0 address, and
is used in the ASSGN job control statement to assign the actual I/0
device address to this file.

EOFADDR=name. This operand specifies the name of your
end-of-file routine (for input or work files). IOCS automatically
branches to this routine on an end-of-file condition. In this rou-
tine, you can perform any operations required at end of file (you
generally issue the CLOSE macro).

ERROPT={IGNORE|SKIP|name}: This operand is specified if a job
is not to be terminated when a read or write error cannot be cor-
rected in the disk error routines. The disk error routines normally
retry failing I/0 operations several times before considering the
error unrecoverable. Once the error is considered unrecoverable,
the job is terminated unless the ERROPT operand is specified. The
functions of the parameters are explained below.

IGNORE

The error condition is ignored. The records are made available for
processing. When reading spanned records, the whole spanned record
or block of spanned records is returned, rather than just the one
physical record in which the error occurred.

130 VSE/Advanced Functions Macro Reference




DTFSD

On output, the physical record or control interval in which the
error occurred is ignored as if it were written correctly. If possi-
ble, any remaining spanned record segments are written.

SKIP

No records in the error block or control interval are made available
for processing. The next block or control interval is read from the
disk, and processing continues with the first record of that block.
When reading spanned records, the whole spanned record or block of
spanned records is skipped, rather than just one physical record.

On an UPDATE=YES file, the physical record or control interval in
which the error occurred is ignored as if it were written correctly.
If possible, any remaining spanned record segments are written.

name

I0CS branches to your error routine named by this parameter. In this
routine you can process or make note of the error condition as
desired, but you should not issue any imperative macro instructions
for the file invoking the error exit.

FEOVD=YES: This operand is specified if a forced end of volume
for disk feature is desired. It forces the end-of-volume condition
before physical end of volume occurs. When the FEOVD macro is
issued, the current volume is closed, and I/0 processing continues
on the next volume. This operand does not apply to work files.

HOLD=YES: This operand may be specified only if the track hold
function was specified at system generation time and if it is
employed when a data input file or a work file is referenced for
updating.

IOAREA1=name: This operand specifies, for an input or output
file, the symbolic name of the I/O area used by the file. It is not
required if WORKA=YES or IOREG=(r) is specified for any input or
output file.

If both IOAREAl=name and WORKA=YES are specified on an FBA file,
IOAREA1l is ignored.

Note: 1If the BLKSIZE is overridden by the DLBL statement,
and the value is greater than the value specified in the DTF,
OPEN issues a GETVIS for the space of the larger I/0 area and
the specified one is not used.

For variable-length or undefined records, this area must be large
enough to contain the largest block or record.

IOAREA2=name: If two I/0 areas are used by GET or PUT, this
operand is specified. When variable length records are processed,

Macro Description 131




DTFSD

the size of the I/0 area must include four bytes for the block size.
For output files, the I/0 area must include eight bytes. This oper-
and is ignored if IOAREAl is not specified.

IOREG=(r): This operand specifies, for an input or output file,
the general purpose register (any of 2 to 12) in which IOCS puts the
address of the logical record that is available for processing. At
OPEN time, for output files, IOCS puts into the register specified
the address of the area where you can build a record. The same reg-
ister may be used for two or more files in the same program, if
desired. If this is done, the program must store the address sup-
plied by IOCS for each record.

This operand must be specified if

° Blocked input or output records are processed in one I/0 area,

or
e If two I/0 areas are used and the records are processed in both
I/0 areas.

For an FBA file, the register specified by IOREG will point directly
to data in the control interval buffer.

LABADDR=name: Specifies, for an input or output file, the name
of the routine in which you process your own labels.

PWRITE=YES: This operand is specified if formatting output oper-
ations to an FBA device (PUT for data files or WRITE SQ for work
files) are to cause a physical write for each logical block. If
omitted, the physical write takes place only when the control inter-
val buffer is full.

RECFORM={FIXUNB |FIXBLK|VARUNB|VARBLK|SPNUNB|SPNBLK]
UNDEF}: This operand specifies the type of records for input or
output. Enter one of the following parameters:

FIXUNB For fixed-length unblocked records

FIXBLK For fixed-length blocked records

VARUNB For variable-length unblocked records

VARBLK For variable-length blocked records

SPNUNB For spanned variable-length unblocked records

SPNBLK For spanned variable-length blocked records

UNDEF For undefined records

I1f RECFORM=SPNUNB or RECFORM=SPNBLK is specified and RECSIZE=(r) is
not specified, an assembler diagnostic (MNOTE) is issued, and regis-

ter 2 is assumed. If WORKA=YES is omitted, an MNOTE is issued and
WORKA=YES is assumed. If RECFORM is omitted, FIXUNB is assumed.

132 VSE/Advanced Functions Macro Reference



DTFSD

If RECFORM=xxxBLK is specified, you can override the BLKSIZE value
with the BLKSIZE operand on the DLBL statement at execution time.

For work files, use FIXUNB or UNDEF only.

RECSIZE={n|(r)}: For fixed-length blocked records, RECSIZE is
required. It specifies the number of characters in each record.

Register notation must be used when processing spanned or undefined
records. When processing undefined records and variable-length
spanned records, RECSIZE is required for output files and is
optional for input files. The operand is invalid for work files. It
specifies a general register (any one of 2 to 12) that contains the
length of the record. On output, you must load the length of each
record into the designated register before issuing a PUT macro. If
specified for input, IOCS provides the length of the record trans-
ferred to virtual storage.

SEPASMB=YES: Include this operand only if the DTFSD is to be
assembled separately. This causes a CATALR card with the filename to
be punched ahead of the object deck and the filename to be defined
as an ENTRY point in the assembly. If the operand is omitted, the
assembler assumes that the DTF is assembled together with the prob-
lem program. The operand does not apply to work files.

TRUNCS=YES: This operand is specified if FIXBLK DASD files con-

tain short blocks embedded within an input file or if the input file
was created with a module that specified TRUNCS. This entry is also

specified if the TRUNC macro is issued for a FIXBLK output file. The
operand does not apply to work files.

TYPEFLE={INPUT|OUTPUT|WORK}: Use this operand to indicate
whether the file is an input or an output or a work file. If INPUT
or OUTPUT is specified, the GET or PUT macros, respectively, can be
used. If WORK is specified, the READ and WRITE, NOTE and POINTx, and
CHECK macros must be used, and RECFORM must be either FIXUNB or
UNDEF. If the operand is omitted, INPUT is assumed.

UPDATE=YES: This operand must be included if the DASD input or
work file is updated - that is, if disk records are read, processed,
and then re-written in the same disk record locations from which
they were read. CLOSE writes any remaining records in sequence onto
the disk.

This operand is invalid for a file on a DASD assigned to a system
logical unit (SYSRDR, SYSIPT, SYSLST, or SYSPCH). If a PUT is
attempted to an input file, the job will be terminated.

VARBLD=(r): Whenever variable-length blocked records are built
directly in the output area (no work area specified), this entry
must be included. It specifies the number (r) of a general-purpose
register (any one of 2 to 12), which will always contain the length
of the available space remaining in the output area.

Macro Description 133




DTFSD

10CS calculates the space still available in the output area, and
supplies it to you in the designated register after the PUT macro is
issued for a variable-length record. You then compare the length of
your next variable-length record with the available space to deter-
mine if the record fits in the area. This check must be made before
the record is built. If the record does not fit, issue a TRUNC macro
to transfer the completed block of records to the file. Then, the
present record is built at the beginning of the output area in the
next block.

VERIFY=YES: This operand is included if you want to check the
parity of disk records after they are written. If this operand is
omitted, any records written on a disk are not verified.

WLRERR=name: This operand applies only to disk input files. It

does not apply to undefined records. WLRERR specifies the symbolic
name of your routine to receive control if a wrong-length record is
read.

If the WLRERR operand is omitted but a wrong-length record is
detected by IOCS, one of the following conditions results:

. If the ERROPT entry is included for this file, the wrong-length
record is treated as an error block and handled according to
your specifications for an error (IGNORE, SKIP, or name of error
routine).

i If the ERROPT entry is not included, the error is ignored.

Undefined records are not checked for incorrect record length. The
record is truncated when the BLKSIZE specification is exceeded.

WORKA=YES: If records of an input or output file are processed
or built in work areas instead of I/O areas, specify this operand.
You must set up the work area in storage. The address of the work
area, or a general-purpose register which contains the address, must
be specified in each GET or PUT macro. For a GET or PUT macro, 10CS
moves the record to, or from, the specified work area. WORKA=YES is
required for SPNUNB and SPNBLK. When this operand is specified for a
file, the IOREG operand must be omitted. For spanned records, the
work area must be sufficiently long to hold the longest spanned
record.

134 VSE/Advanced Functions Macro Reference




DTL

[name] DTL NAME=resourcename
[ ,CONTROL={E|S}]
[ ,LOCKOPT={1]2}]
[ ,KEEP={NO|YES}]
[ , OWNER={ TASK|PARTITION}]
[ ,SCOPE={INT|EXT}]

The DTL (Define The Lock) macro generates a control block which is
used by the LOCK/UNLOCK macros to enqueue/dequeue a resource access
request. The control block, commonly called 'DTL', is generated at
the time of program assembly.

NAME=resourcename: Specifies the name by which the resource is
known to the system for the purpose of access share control. It is
by this name that the system controls shared access of the resource
as requested by active tasks via the LOCK macro. These tasks may
all be active in one partition, or they may be distributed over
several partitions; the resource-share control extends across parti-
tions.

The name may be up to twelve bytes long. If it is shorter, it is
padded with blanks. Note that the name must not begin with any of
the characters A through I or V, because these characters are
reserved for IBM usage.

CONTROL={E|S}: Defines how the named resource can be shared
while your program owns it, which is determined by this specifica-
tion and your specification for the operand LOCKOPT. A specifica-
tion of E means the resource is enqueued for exclusive use; a
specification of S means the resource is enqueued as shareable.

LOCKOPT={1]2}: This operand, together with the CONTROL
parameter, determines how the system controls shared access in
response to a LOCK request.

d LOCKOPT=1 and CONTROL=E: No other task is allowed to use the
resource concurrently.

e  LOCKOPT=1 and CONTROL=S: Other 'S' users are allowed concurrent
access, but no concurrent 'E' user is allowed.

. LOCKOPT=2 and CONTROL=E: No other 'E' user gets concurrent
access; however, other 'S' users can have access to the
resource.

e  LOCKOPT=2 and CONTROL=S: Other 'S' users can have concurrent
access and, in addition, one 'E' user is allowed.

Macro Description 135




DTL

A1l users of a particular resource have to use the same LOCKOPT
specification when they lock the resource. (Exception: if
LOCKOPT=1 and CONTROL=E, the lock status may be modified.)

KEEP={NO|YES}: This operand may be used to lock the named
resource beyond job step boundaries. Only a main task should use
this operand. KEEP=NO indicates that the named resource once
locked, is to be released automatically at the end of the particular
job step. With KEEP=YES, a named resource that is locked remains
locked across job steps; it will be automatically released at
end-of-job.

If a job terminates abnormally, all resources with KEEP=YES are
unlocked by the abnormal termination routine.

OWNER={TASK|PARTITION}: Defines whether the named resource,
once locked, can be unlocked only by the task which issued the cor-
responding LOCK request (OWNER=TASK), or whether it can be unlocked
by any task within the partition (OWNER=PARTITION).

When OWNER is defined as PARTITION, a LOCK request for the resource
must not specify FAIL=WAIT or FAIL=WAITC because deadlock prevention
(return code 16) is not supported with OWNER=PARTITION.

SCOPE={INT|EXT}: This operand may be used for locking resources
across systems. SCOPE=EXT specifies that the lock is used across
systems. You may omit the parameter if you want to lock your
resources only on one system since the default is SCOPE=INT (that
is, the locking applies to one system only).

136 VSE/Advanced Functions Macro Reference



DUMODFx

[name] DUMODFx ERREXT=YES
,ERROPT=YES
[ ,RDONLY=YES]
[, SEPASMB=YES]

The DUMODFx macro defines a logic module for a diskette file.

Two categories of file characteristics are defined for diskette unit
module generation macros:

. DUMODFI - Diskette Unit MODule, Fixed length records, Input
file.

. DUMODFO - Diskette Unit MODule, Fixed length records, Output
file.

ERREXT=YES: Include this operand if permanent errors are
returned to a problem program ERROPT routine or if the ERET macro is
used with the DTF and module. The ERROPT operand must be specified
for this module.

ERROPT=YES: This operand applies to both DUMODFx macros. This
operand is included if the module handles any of the error options
for an error chain. Logic is generated to handle any of the three
options (IGNORE, SKIP, or name) regardless of which option is speci-
fied in the DTF. This module also processes any DIF in which the
ERROPT operand is not specified.

If this operand is not included, your program is canceled whenever a
permanent error is encountered.

RDONLY=YES: This operand causes a read-only module to be gener-
ated. If this operand is specified, any DTF used with this module
must have the same operand.

SEPASMB=YES: Include this operand only if the logic module is to
be assembled separately. This causes a CATALR card with the filename
to be punched ahead of the object deck and the filename to be
defined as an ENTRY point in the assembly. If the operand is
omitted, the assembler assumes that the DTF is assembled together
with the problem program.

Macro Description 137




DUMODFx

Standard DUMOD Names

Each name begins with a 3-character prefix (IJN) and continues with
a 5-character field corresponding to the options permitted in the
generation of the module, as shown below.

DUMODFx name = IJNabcde

a =D always
b =1 DUMODFI
= 0 DUMODFO
¢ = C ERROPT=YES and ERREXT=YES

ERROPT=YES
Z neither is specified

o
tx1

d = Z always

RDONLY=YES
RDONLY not specified

N =

Subset/Superset DUMOD Names

The following chart shows the subsetting and supersetting allowed
for DUMOD names.

+ Subsetting/supersetting permitted

* No subsetting/supersetting permitted

138 VSE/Advanced Functions Macro Reference




DUMP

This macro provides a hexadecimal dump of the following:

d The contents of the entire supervisor area and the used part of
the system GETVIS area, or of some supervisor control blocks
only (see Note below).

e The contents of the partition that issued the macro.
. The contents of the registers.

Note: The dump includes the contents of some supervisor con-
trol blocks only, rather than the entire supervisor area, if
the STDOPT job control command specifies DUMP=PART or NO, or
if a job control statement // OPTION PARTDUMP or NODUMP is
submitted.

In addition, the macro causes the job step to be terminated if DUMP
was issued by the main (or only) task of the program. If DUMP was
issued by a subtask, the macro causes that subtask to be detached
without terminating the main task in the partitiomn.

The dump provided by the macro is always directed to SYSLST, which
must be opened if disk or tape; if SYSLST is a tape, that tape must
be positioned as desired.

If DUMP is issued by a job running in real mode, the storage con-
tents of the partition are dumped only up to the limit as determined
by the SIZE parameter of the EXEC job control statement, plus the
storage obtained dynamically through the GETVIS macro. If SIZE was
not specified, the entire partition will be dumped. If DUMP is
issued by a program running in virtual mode, the entire partition is
dumped.

Macro Description 139




ENDFL

- - - - - = e - = . e S e em e e R e e GE R e R SR e R e e e e
- . - . . e T e e e e e G em e e e Se e SR e e = SR e M e e

The ENDFL (end file load mode) macro ends the mode initiated by the
SETFL macro. The ENDFL macro must be issued only after a SETFL and
before a CLOSE.

The ENDFL macro performs an operation similar to CLOSE for a blocked
file. It writes the last block of data records, if necessary, and
then writes an end-of-file record after the last data record. Also,
it writes any index entries that are needed followed by dummy index
entries for the unused portion of the prime data extent.

filename|(0): The name of the file to be loaded is the only parame-
ter required, and is the same as the name specified in the DTFIS
header entry for the file. The filename can be specified either as a
symbol or in register notation. Register notation is necessary if
your program is to be self-relocating.

140 VSE/Advanced Functions Macro Reference



ENQ

- - - e 4 = = e = = . . = e = e W e Ge e MR S e e MR M e M e T = =S
- - - G - = o = = = = e e e = e e m e Ge e e M e M M e M M M e e

A task protects a resource by issuing an ENQ (enqueue) macro. When
the RCB, (identified by the rcbname) is enqueued, the task request-
ing the resource is either queued and executed, or if the requested
resource is held by another task, is placed in a wait condition.
When the task holding that resource completes, that task issues the
DEQ (dequeue) macro. All other tasks that are then waiting for the
dequeued resource are freed from their wait condition, and the high-
est priority task either obtains or maintains control.

If a task is terminated without dequeuing its queued resources, any
task subsequently trying to enqueue that resource is abnormally ter-
minated. If a task issues two ENQs without an intervening DEQ for
the same resource, the task is canceled. Also, any task that does
not control a resource but attempts to dequeue that resource is ter-
minated, unless DEQ appears in the abnormal termination routine. If
DEQ appears in the abnormal termination routine, it is ignored.

Although the main task does not require the program to set up an
intertask communication ECB to enqueue and dequeue, every subtask
using that facility must have the ECB operand in the ATTACH macro,
and that ECB must not be used for any other purpose. Also, a
resource can be protected only within the partition containing the
ECB.

Note: Do not use the ENQ macro in your AB exit routine for a

resource that is held by the main task, since a deadlock may
occur.

Macro Description 141




EOJ

- e = e e om W e ws T m en e e e e R R A R R R e SR M e R R R R e G R e e N e e W e
e e e e e i R R R R

B e I N R e e N R N

Issue the EOJ macro in the main task or in the only program within a
partition, to inform the system that the job step is finished. If a
subtask issues an E0J, the subtask is detached and the remainder of
the partition continues. If the main task issues EO0J, all abnormal
termination exits (via STXIT AB) are taken for the subtasks still

attached.

142 VSE/Advanced Functions Macro Reference




ERET

- - e e . . e om s e s Ee G Gm e e a e e e SR e e R e W Mm W M e R SR S SR A e e e e
- - - = - n e e e e - - e = = e e e e M= e e e e M RS M e e e MR Em s

This macro enables your program's ERROPT or WLRERR routine to return
to I0OCS and specify an action to be taken. The macro applies to
DTFSD files and to DTFIS, DTFMT and DTFDU files with the ERREXT
operand specified.

SKIP: Passes control back to the logic module to skip the block of
records or control interval in error and process the next one. For
disk or diskette output, an ERET SKIP is treated as an ERET IGNORE.

IGNORE: Passes control back to the module to ignore the error and
continue processing.

RETRY: Causes the module to retry the operation that resulted in

the error. With MTMOD for any error or with SD wrong-length record
errors, RETRY cancels the job with an invalid SVC message.

Macro Description 143




ESETL

The ESETL (end set limit) macro ends the sequential mode initiated
by the SETL macro. If the records are blocked, ESETL writes the
last block back if a PUT was issued.

filename|(1): Is the same name as the name specified in the DTFIS
header entry. The name can be specified as a symbol or in register
notation. Register notation is necessary if your program is to be
self-relocating.

Note: If ADDRTR and/or RANSEQ are specified in the same DTF,
ESETL should be issued before issuing a READ or WRITE; another
SETL can be issued to restart sequential retrieval. Sequential
processing must always be terminated by issuing an ESETL
macro.

144 VSE/Advanced Functions Macro Reference




EXCP

@ o o - - . = = = = - = e = e eSS e =SS
S ittt il adiedidiedh et

The EXCP (execute channel program) macro requests physical IOCS to
start an input/output operation for a particular I/0 device.

Physical IOCS determines the device from the CC3 or IORB control
block specified by blockname. Physical IOCS places the block in a
queue of such blocks and returns control to the problem program.
Physical IOCS causes the channel program to be executed as soon as
the channel and device are available. I/0 interruptions are used to
process 1/0 completion and to start I1/0 requests if the channel or
device was busy at the time the EXCP was executed.

blockname|(1): Is the virtual address of the control block estab-
lished for the device. It can be given as a symbol or in register
notation.

REAL: Indicates that the addresses in the CCWs and the address in
the control block pointing to the first CCW have already been
translated into real addresses; the operand causes the CCW trans-
lation routine to be skipped. (For a program running in real mode,
the operand is ignored.)

In your program, the EXCP macro with the REAL operand must be pre-
ceded by the PFIX macro that causes the system

d to page in those program pages which contain the pertinent con-
trol block, channel program, I/0O areas, and IDA (indirect
address) words (if used) and

. to fix these pages in their page frames.

Notes:

1. In S/370 mode with option REAL, if the I/0 area being used
crosses page boundaries, the data address in the appropriate
CCW(s) must point to the required indirect data address words
within your program; in addition, bit 37 (the IDA bit) of these
CCWs must be set to 1. If REAL is not specified, the IDA bit
must be set to O.

2. A channel program has to start with:

. a long seek command in the case of a CKD DASD.
4 a define extent command in the case of an FBA DASD.

The data chaining and, in S/370 mode, also the IDA bit must be
set to zero for these commands.

Macro Description 145




EXIT

The EXIT macro is used to return control from your exit control or
MR routine to the instruction in your interrupted program immediate-
ly after the instruction where the interruption occurred. For AB,
control is returned to the instruction following the EXIT AB macro.
Your routine is specified in the STXIT macro (for MR, in the DTFMR
macro). The operands have the following meanings:

AB Exit from your abnormal task termination routine of your main
task.

IT Exit from your interval timer routine.

MR Exit from your stacker selection routine (MICR document process-
ing) to the supervisor.

OC Exit from your routine which handles the operator attention
interrupt.

PC Exit from your program check routine.

TT Exit from your task timer routine.

The EXIT macro should be issued only in the corresponding (AB, IT,
MR, OC, PC, TT) routine; a program check may occur if this rule is

not observed.

Detailed information on the save area and the interrupt status is
given in VSE/Advanced Functions Diagnosis: Service Aids, SC33-6099.

For AB, the cancel condition and ABEND indication of the affected
task are reset. The EXIT AB macro may be used only in main tasks.
In a subtask, it would result in an illegal SVC. You have to make
sure that the abnormal termination condition has been cleared up by
your abnormal task termination routine before using the EXIT AB mac-
ro.

For IT, OC, PC, and TT, the interrupt status information and regis-
ters are restored from the save area; thus, the save area contents
are not over-written.

146 VSE/Advanced Functions Macro Reference




EXTRACT

-—-----—-_-——------—_--—----------------—_---------—---_--_-_-

To display partition boundaries:

(name] EXTRACT ID=BDY
,AREA={namel| (S,namel)| (r1)}
,LEN={length| (r2)}
[ ,MFG={name3| (r3)}]
[ ,MODE={T|P}]

To display unit information:

[name] EXTRACT ID=PUB
,AREA={namel| (S,namel) | (r1)}
,LEN={length]| (r2)}
[ ,MFG={name3| (r3)}]
[,PID={name4|(S,name4)|(r4)}]
[ ,SEL={name5 | (S,name5) | (r5)}]
[,DISP={name6|(S,nameé)l(r6)}]

-.._—---—-------_..-.---_------_--_--_—_-—------_-------------—_-

The EXTRACT macro may be used to retrieve and display partition
boundaries or unit information (from the PUB table). The informa-
tion retrieved can be interpreted with the help of the two macros
MAPBDY and IJBPUB.

ID={BDY|PUB}: Specifies the information to be retrieved. BDY
extracts partition boundaries, whereas PUB displays unit
information.

AREA={name1|(S,name1)|(r1)}: Specifies the address of the area
where the extracted information is to be stored.

LEN={length|(r2)}: Specifies the length of the area as an integer,
a selfdefining term, or as a value in a register. The default
length is 1 byte.

MFG={name3|(r3)}: The MFG operand is required if the program is
to be reenterable. It specifies the address of a 64-byte dynamic
storage area, that is: storage which your program obtained through a
GETVIS macro. The area is required for system use during execution
of the macro.

PID={name4|(S,name4)|(r4)}: Specifies the address of a two-byte
field containing the PIK of the partition for which the information
is retrieved. If this operand is omitted, the identifier of the
partition issuing the request is taken as the default.

SEL={name5|(S,name5) | (r5)}: Specifies the address of a halfword

containing the logical unit number in the same format as the logical
unit number in the CCB.

Macro Description 147




EXTRACT

DISP={name6|(S,name6) |(r6)}: Defines the offset within the PUB
table entry of the specified device. DISP may be specified as a
number, a register containing the displacement value, or the field
name in the DSECT generated by the IJBPUB macro.

MODE={T|P}: MODE=T indicates that the temporary boundaries of the
issuing partition are to be returned. PID may not be specified in
this case, since a snapshot of any other partition's temporary
boundaries is unreliable.

If the partition is executing in real mode, the boundaries of the
real partition (which, in ECPS:VSE mode, is contained in the corre-
sponding virtual partition) are returned.

MODE=P indicates that the permanent boundaries of the issuing parti-
tion or the partition indicated by PID are to be returned. They
correspond to the latest allocation and may not have been used by
the active job yet.

Return Codes in Register 15

0 The requested information has been extracted.
4 The partition specified is not supported in the system.

8 The logical unit specified exceeds the range of the logical
units for the specified partition.

12 The LUB is not assigned or ignored.
16 The length parameter is found to be zero, negative, or below the

minimum; or the DISP specification exceeds the length of the PUB
entry.

OQutput from EXTRACT ID=BDY

The output from the EXTRACT macro is described by the following map-
pings, MAPBDY and MAPBDYVR.

1. Temporary Boundaries (MODE=T):

[label] MAPBDY [DSECT=YES]

MAPBDY:

Label Bytes Description

PBEGIN 4 Partition start address, corresponding to prob-
lem program save area address (field PIB SAVE).

PENDLOG 4 Logical end of partition (last addressable byte,

GETVIS area excluded), corresponding to field

148 VSE/Advanced Functions Macro Reference




PGEND 4
PFIXLMT 4
PFIXCNT 4
MBDYLEN

EXTRACT

PPEND in the partition communication region.
Physical end of partition (last addressable
byte, GETVIS area included).

PFIX limit (K-bytes) or zero (real mode).
PFIX count (number of PFIXed pages).
EQU*-PBEGIN  MAPBDY area length

2. Permanent Boundaries (MODE=P):

[label] MAPBDYVR [DSECT=YES]

MAPBDYVR:

Label Bytes

VPBEGIN 4
VPEND 4
VPGEND 4
RPBEGIN 4
RPEND 4
VBDYLEN

Description

Virtual partition start address (corresponding
to latest allocatiomn).

Virtual partition logical end address

(last addressable byte, GETVIS area excluded).
Virtual partition physical end address (last
addressable byte, GETVIS area included,
corresponding to latest allocation).

Real partition start address (corresponding
to latest allocation).

Real partition end address (last addressable
byte, corresponding to latest allocation).
EQU*-VPBEGIN MAPBDYVR area length

If 'label' is omitted, the default is MAPBDY and MAPBDYVR.
DSECT=YES generates a DSECT; if omitted, inline code is generated.

Macro Description 149




FCEPGOUT

You can code the macro in either of the following two formats:

e e e e e = e e e e e e e e e e e Gm e e e e e M e R e e e W e e e W o e

[name] FCEPGOUT beginaddr,endaddr
[ ,beginaddr,endaddr]

[name] FCEPGOUT {listname| (1)}

T e e am e e e Gn e e D e Ge SR e R e e e G R R e T e e e e em e e G e e N e G ee 4D e e e e T e e

The FCEPGOUT macro causes a specific area in real storage to be
paged-out at the next page fault. This request is ignored if the
specified area does not contain a full page. This can happen up to
an area size of 4K minus 2 bytes (see Figure 22 ).

First byte of page n

Starting address of specified
area (length=4k -2 bytes)

End address of specified area
Last byte of page n+1 ———

Figure 22. Worst Case of an Area Not Containing one Full Page

If your supervisor was generated with VM=YES (in the SUPVR gener-
ation macro), execution of the macro results in a null operation;
the return code is set to zero.

beginaddr: Points to the first location of the area to be paged
out.

endaddr: Points to the last location of the area to be paged out.

listname|(1): Is the symbolic name of a list of consecutive 8-byte
entries as shown below.

150 VSE/Advanced Functions Macro Reference




FCEPGOUT

X'00' | address constant | length minus 1

0

|

|

|

1 4 7

where:

address constant

length

1

Address of the first byte
of the area to be paged out.

A binary constant indicating
the length of the area to be
paged out.

A non-zero byte following an entry indicates the end of the list.
Register notation may also be used.

Exceptional Conditions

For

Return Codes in

The program is running in real mode.

The page(s) referenced by the macro is (are) outside of the
requesting partition.

A page handling request is pending for the referenced page(s).
The page(s) is (are) not in real storage.
The page(s) is (are) fixed.

those pages the FCEPGOUT request will be ignored.

Register 15

0

All specified pages have been forced for page-out or the request
has been ignored because the issuing program is running in real
mode.

The begin address is greater than the end address, or a negative
length has been found.

At least one of the requested pages does not belong to the par-
tition in which the issuing program is running. The FCEPGOUT
request has only been executed for those pages which belong to
the partition of the issuing program.

a. At least one of the requested pages is temporarily fixed

(via CCW-translation) and/or PFIXed. The FCEPGOUT request has
only been executed for the unfixed pages.

Macro Description 151




FCEPGOUT

b. A page handling request (page fault, temporary fix, PFIX)
for at least one of the requested pages is pending (caused by
asynchronous processing within a partition). The FCEPGOUT
request has not been executed for those pages which are involved
in a page handling request.

16 List of areas that are to be paged out is not completely in the
requesting program's partition. The request is ignored.

Any combination of return codes 0, 2, 4, and 8 is possible.

152 VSE/Advanced Functions Macro Reference




FEOV

@ o - - = = - . - = = - = e e eSS
S U e ettt el

The FEOV (force end-of-volume) macro is used for files on magnetic
tape (programmer logical units only) to force an end-of-volume con-
dition before sensing a reflector mark. This indicates that process-
ing of records on one volume is considered finished, but that more
records for the same logical file are to be read from, or written
on, a following volume. For system units, see the SEOV macro.

When physical IOCS macros are used and DTFPH is specified for stand-
ard label processing, FEOV may be issued for output files only. In
this case, FEOV writes a tapemark, the standard trailer label, and
any user-standard trailer labels if DTFPH LABADDR is specified.
When the new volume is mounted and ready for writing, IOCS writes
the standard header label and user-standard labels, if any.

filename|(1): The name of the file is the only parameter required.

The name can be specified either as a symbol or in register
notation.

Macro Description 153




FEOVD

- e e e e e e e e Gm e e e M e N e e e e R e e Me e e N e Ge e Se M e W e e e e e e

The FEOVD (force end-of-volume for disk) macro is used for either
input or output files to force an end-of-volume condition before it
actually occurs. This indicates that processing of records on one
volume is finished, but that more records for the same logical file
are to be read from, or written on, the following volume. If
extents are not available on the new volume, or if the format-1
label is posted as the last volume of the file, control is passed to
the EOF address specified in the DTF.

filename|(1): The name of the file is the only required operand.
The name can be specified either symbolically or in register nota-
tion.

154 VSE/Advanced Functions Macro Reference




FETCH

[name] FETCH {phasename| (S,address) | (1)}
[,entrypoint| (S,entrypoint)|(0)]
[,LIST={1istname|(S,listname)[(rl)}]
[,SYS=YES]

[ ,DE=YES]
[ ,MFG={area| (S,area)|(x2)}]

The FETCH macro loads and gives control to the phase specified in
the first operand. If the phase is in the SVA, it is not loaded
into the partition, but control is given to the phase. For informa-
tion on how to load phases into the SVA and how to write
SVA-eligible (reenterable) phases see VSE/Advanced Functions, System
Management Guide, SC33-6094.

phasename|(S,address)|(1): For phasename specify the name of the
required phase. If DE=YES is not specified, the address as speci-
fied in (S, address) or as loaded into a register points to an
8-byte field that contains the phase name. If DE=YES, the operand
has a different meaning; refer to the discussion of the DE operand.

entrypoint|(S,entrypoint) | (0): Control is passed to the address
specified by the entrypoint parameter. If this parameter is not
specified or invalid, control is passed to the entrypoint determined
at link-edit time.

If entrypoint is given in register notation, register 1 must not be
used. You preload the register with the entrypoint address.

With S-type notation, the entrypoint is derived from base register
and displacement, for example (S, offset (reg)). If, instead, a sym-
bolic name is used for entrypoint, the macro expansion results in a
V-type address constant. The entrypoint does not have to be identi-
fied by an EXTRN statement.

LIST=(listname| (S, listname)|(r1)}: For listname specify the name of
your local directory list generated in the partition by the GENL
macro. When this operand is included, the system scans the local
directory list for the required phasename before it initiates a
search for this phase name in the pertinent core image library
directory.

SYS=YES: If SYS=YES is specified, the system scans the system
directory list (SDL) in the SVA and the system core image library
before the private core image library (if a private CIL is assigned
at all). If nothing is specified, the private CIL takes precedence.

DE=YES: This operand is useful if your program frequently fetches
one specific phase. DE=YES is invalid if LIST is specified.

Macro Description 155




FETCH

DE=YES indicates that your program contains a 38-byte field where
you have placed a single directory entry (like those generated by
the GENL macro). If this directory entry is active, the directory
scan mechanism is bypassed; if not, the entry will be filled in by
the supervisor after which it is active.

If the first operand is written as phasename (instead of S-type or
register notation) a directory entry will be generated within the
macro expansion. The generated directory entry will contain the
phasename in the first 8 bytes. If you specify DE=YES and if you
use (S, address) or register notation for the first operand, you
must set aside the 38-byte field yourself and point to it via this
operand. The directory entry must contain the phase name in the
first 8 bytes (left-justified and padded with blanks), X'OD' at dis-
placement X'OB', and X'00' at displacement X'10'.

MFG={area|(S,area)|(r2)}: The operand MFG is required if the pro-
gram which issues the FETCH macro is to be reenterable. It specifies
the address of a 64-byte dynamic storage area, that is, storage
which your program obtained through a GETVIS macro. This area is
required for system use during execution of the macro.

156 VSE/Advanced Functions Macro Reference




FREE

The FREE macro, used in conjunction with the HOLD=YES option of a
DTFxx macro, frees a portion of a DASD device that is being held
under DASD record (track) protection. On a CKD device, that pro-
tected portion is a track; on an FBA device, it is an integral num-
ber of contiguous FBA blocks. On an FBA device, or a DTFSD or DTFDI
file assigned to a CKD disk, the FREE macro is treated as a null
operation; all holding and freeing of FBA block ranges or CKD tracks
for DTFSD and DTFDI are performed implicitly by LIOCS.

The same track (or blocks) can be held more than once without an
intervening FREE if the hold requests are from the same task. The
same number of FREEs must be issued before the track (or block) is
completely freed. However, a task is terminated if more than 16
hold requests are recorded without an intervening FREE, or if a FREE
is issued to a file that does not have a hold request for that track
(or block). For situations that require the use of the FREE macro,
refer to VSE/Advanced Functions Application Programming: Macro
User's Guide.

filename|(1): This operand is the same as the name specified in the
DTF header entry.

Macro Description 157




FREEVIS

[name] FREEVIS [ADDRESS={namel| (1)}]
[ , LENGTH={name2| (0) }]
[,SVA={YES |NO}]

- - - e - e e e e . e e e G G e e Ee G G2 e Ge M G D SR Gn Ge G e S R e G e e e e e e e Ge e e e

The FREEVIS macro releases a block (or blocks) of virtual storage
that as obtained by the GETVIS macro.

If you code the macro without any operand, the system assumes that
the start address of the block to be released is contained in regis-
ter 1 and that the length of this block was placed into register O.
If the macro is issued without an operand, the macro must not con-
tain a comment unless the comment begins with a comma.

ADDRESS={namel|(1)}: The start address of the virtual storage
block to be released in the GETVIS area may be specified either in a
4-byte field addressed by namel or in a register.

LENGTH={name2|(0)}: The length of the virtual storage block to
be released may be specified in a 4-byte field addressed by name2 or
in a register. The length is specified in number of bytes. The
smallest unit of virtual storage that can be released by FREEVIS is
(a) 128 bytes if the GETVIS area is part of a partition or (b) 16
bytes if the GETVIS area is part of the SVA. If the specified
length is not a multiple of 128 or 16, respectively, it is rounded
to the next higher integral multiple of 128 or 16.

SVA={YES|NO}: SVA=YES can be specified only in a program that is
executed with storage protection key zero. If SVA=YES is specified,
the system tries to find the block that is to be released in the
SVA, otherwise in the pertinent partition.

Return Codes in Register 15

FREEVIS completed successfully.
The size of the (real) partition GETVIS area is OK.
The specified length is smaller than zero.

2 The specified address is not within the GETVIS area or the
address is not (a) a multiple of 128 bytes if the GETVIS area is
part of a partition, or (b) a multiple of 16 bytes if the GETVIS
area is in the SVA.

16 The specified storage block to be released (ADDRESS+LENGTH)

exceeds the GETVIS area.

20 Invalid FREEVIS option.

- oo PO

158 VSE/Advanced Functions Macro Reference




GENDTL

- o - o e = - = o = e e e e = e e s e Gm e e Sm G e e e e e e Gm eSS

- = = = = = e = = = T e R R e EEEEEmE S e EERoEnS e e ee =S

[name] GENDTL [ADDR={namel| (S,namel)| (rl)}]
[ ,CONTROL={E|S}]
[ ,KEEP={NO|YES}]
[, LENGTH={NO| YES}]
[, LOCKOPT={1]2}]
[ ,NAME={name2| (S,name2) | (r2)}]
[,OWNER={TASK | PARTITION}]
[, SCOPE={ INT|EXT}]

The GENDTL macro generates a control block which is used by the
LOCK/UNLOCK macros to enqueue/dequeue a resource access request.
The control block, commonly called 'DTL' (Define The Lock), is gen-
erated at the time of program execution. Space for the DTL is
either provided by the program, or it is to be acquired by the sys-
tem.

ADDR={name1|(S,name1)|(r1)}: Specifies the address of the area
where the DTL is to be built. If this operand is omitted, storage
is allocated in the partition's GETVIS area by an implicit GETVIS
request. After a successful GETVIS, the system places the DTL's
address in register 1. Register 15 contains the return code set by
the implicit GETVIS request.

CONTROL={E|S}: Defines how the named resource can be shared
while your program owns it, which is determined by this specifica-
tion and your specification for the operand LOCKOPT. A specifica-
tion of E means the resource is enqueued for exclusive use; a
specification of S means the resource is enqueued as sharable.

KEEP={NO|YES}: This operand may be used to lock the named
resource beyond job step boundaries. Only a main task should use
this operand. KEEP=NO indicates that the named resource once
locked, is to be released automatically at the end of the particular
job step. With KEEP=YES, a named resource that is locked remains
locked across job steps; it will be automatically released at
end-of-job.

If a job terminates abnormally, all resources with KEEP=YES are
unlocked by the abnormal termination routine.

LENGTH={NO|YES}: If LENGTH=YES is specified, the GENDTL macro
returns the length of the DTL in register 0. With LENGTH=NO, regis-
ter 0 remains unchanged.

LOCKOPT={1]|2}: This operand, together with the CONTROL parameter

determines how the system controls shared access in response to a
LOCK request:

Macro Description 159




GENDTL

. LOCKOPT=1 and CONTROL=E: No other task is allowed to use the
resource concurrently.

. LOCKOPT=1 and CONTROL=S: Other 'S' users are allowed concurrent
access, but no concurrent 'E' user is allowed.

* LOCKOPT=2 and CONTROL=E: No other 'E' user gets concurrent
access; however, other 'S' users can have access to the
resource.

*  LOCKOPT=2 and CONTROL=S: Other 'S' users can have concurrent
access and, in addition, one 'E' user is allowed.

All users of a particular resource have to use the same LOCKOPT
specification when they lock the resource. (Exception: If
LOCKOPT=1 and CONTROL=E, the lock status may be modified.)

NAME={name2|(S,name2)|(r2)}: Specifies the address of the area
where a 12-byte long resource name is stored. If the name is short-
er than 12 bytes, it must be padded with blanks. It is by this name
that VSE controls shared access of the resource as requested by
active tasks via the LOCK macro. These tasks may all be active in
one partition, or they may be distributed over several partitionms;
the resource-share control extends across partitions.

Note that the name must not begin with any of the characters A
through I or V, since these characters are reserved for IBM usage.

OWNER={TASK|PARTITION}: Defines whether the named resource,
once locked, can be unlocked only by the task which issued the cor-
responding LOCK request (OWNER=TASK), or whether it can be unlocked
by any task within the partition (OWNER=PARTITION).

When OWNER is defined as PARTITION, a LOCK request for the resource
must not specify FAIL=WAIT or FAIL=WAITC because deadlock prevention
(return code 16) is not supported with OWNER=PARTITION.

SCOPE={INT|EXT}: This operand may be used for locking resources
across systems. SCOPE=EXT specifies that the lock is used across
systems. You may omit the parameter if you want to lock your
resources only on one system since the default is SCOPE=INT (that
is, the locking applies to one system only).

160 VSE/Advanced Functions Macro Reference



GENIORB

[name] GENIORB CCW={namel| (S,namel) | (r1)}
, {DEVICE=SYSxxx|
LOGUNIT={name2| (S,name2) | (r2)}}
[ ,ADDRESS={name3| (S,name3) | (r3)}]
[ ,LENGTH=fieldlength]
[ ,ECB={name&| (S,name&) | (r4)}]
[ ,ERREXIT={name5 | (S,name5)| (r5)}]
[ ,FIXLIST={name6| (S,name6) | (r6)}]
[ ,FIXFLAG=(option,...)]
[, IOFLAG=(option,...)]

The GENIORB macro generates an IORB (Input/Output Request Block).
The block is generated at the time of program execution. For the

layout and contents of an IORB, see Figure 23 on page 170 . The

IORB is an alternative to the CCB; instead of specifying a CCB in
the EXCP macro, the address of an IORB is given.

The IORB requires the specification of areas to be page-fixed for
the I/0 operation. Such areas include the IORB and the channel pro-
grams themselves and all input/output areas. Specifying those areas
frees the page-fixing routines from having to scan the channel pro-
grams to determine which areas are to be fixed.

After execution of the macro:

. register 1 contains the address of the IORB, and
e register 15 contains the return code from an implicit GETVIS.

For a detailed display in your assembly, showing the IORB fields and
their meaning, issue the IORB macro with the (only) operand
DSECT=YES.

CCWw={name1|(S,name1)|(r1)}: This operand gives the name of the
first CCW used with the IORB. The name must be the same as the name
specified in the assembler CCW statement that builds the CCW.

DEVICE=SYSxxx: This operand specifies the logical unit for the
actual I/0 unit with which the IORB is associated.

LOGUNIT={name2|(S,name2)|(r2)}: This operand describes the
device in logical unit format. It points to a halfword with the
same format as a logical unit number (bytes 6 and 7) in a CCB; see
Figure 2 on page 13 provided in context with the discussion of the
CCB macro.

Macro Description 161




GENIORB

ADDRESS={name3|(S,name3)|(r3)}: If specified, this operand
gives the name of the area in which the IORB is to be generated. If
the ADDRESS operand is specified, the LENGTH operand should be spec-
ified as well.

Omitting the ADDRESS operand indicates that the required area is to
be obtained through an implicit GETVIS issued by the system.

LENGTH=fieldlength: This operand gives the length of the field
provided for IORB generation. The value must be given as a
self-defining term. If this operand is omitted, a default value
equal to the length of the IORB will be used; however, the assembler
issues an MNOTE. If the ADDRESS operand is omitted, LENGTH is not
used.

ECB={name4|(S,name4)|(r4)}: This operand specifies the address
of the ECB to be posted when I/0 is complete. For a more detailed
description of the ECB operand, refer to the IORB macro.

ERREXIT={name5|(S,name5)|(r5)}: ERREXIT is the address of a
routine to be executed should the system be unable to obtain the
required virtual storage. If the ERREXIT operand is omitted, failure
to obtain virtual storage causes the system to cancel the program
(task).

FIXLIST, FIXFLAG, IOFLAG: For a description of those operands,
refer to the IORB macro.

162 VSE/Advanced Functions Macro Reference




GENL

[name] GENL phasenamel,phasename2,. ..
[ ,ADDRESS={area| (S,area)|(rl)}
, LENGTH=number]
[ ,ADDRESS={DYNAMIC|DYN}
[ ,ERREXIT={addr | (S,addr) | (xr2)}]]

The GENL macro generates a local directory in the partition. It
saves access time if you load the same phases more than once in the
course of program execution.

The generated directory entries are 38 bytes long and have the fol-
lowing structure: The first 8 bytes contain the phase name
(left-adjusted and padded with blanks if necessary); the next 4
bytes contain X'0000000D'; the remaining bytes contain X'00'.

phasenamel,phasename2,...: Specify, for these parameters, the
names of phases, for which entries in a local directory list are to
be built. The list will be generated in alphameric sequence. You may
specify up to 200 phase names, but no more than a total of 200 oper-
ands.

ADDRESS={area|(S,area)|(r1)},LENGTH=number: If the ADDRESS
operand is omitted, the assembler builds a 38-byte entry within the
macro expansion for each of the specified phases and inserts the
pertinent phase name in the entry. The rest of the entry is filled
in by the supervisor when the phase is called by a FETCH or LOAD
macro, with the LIST option for the first time. When, subsequently,
the phase is called again, the entry is active.

Coding ADDRESS in conjunction with LENGTH indicates that the direc-
tory is to be built, during execution, at a location within your
program whose address is given by the ADDRESS operand.

LENGTH gives the length of the field provided for the generation of
the directory. If LENGTH is too short the assembler issues an MNOTE.

ADDRESS={DYNAMIC|DYN}[,ERREXIT={addr|(S, addr)| (r2)}]: Cod-
ing ADDRESS=DYNAMIC (a short form, ADDRESS=DYN, is allowed) directs
the system to acquire, through a GETVIS, as much dynamic storage as
needed. Note that in this case the contents of registers 0, 1, 14,
and 15 will be over-written by execution of the macro.

ERREXIT is the address of a routine to be executed should the

implicit GETVIS fail. If the ERREXIT operand is omitted, an unsuc-
cessful GETVIS will cause the task to be canceled.

Macro Description 163




GET

i i i S e e e R R

[name] GET {filename| (1)}
[ ,workname|, (0)]

GET makes the next sequential logical record from an input file
available for processing in either an input area or in a specified
work area. It is used for any input file in the system, and for any
type of record: blocked or unblocked, fixed or variable length, and
undefined.

If GET is used with a file containing checkpoint records, the check-
point records are bypassed automatically.

filename|(1): This operand must be the same as the name of the DTF
macro for the file from which the record is to be retrieved. The
filename can be specified as a symbol or in (special or ordinary)
register notation (to make your program self-relocating). The
high-order bits of the register must be zero, or unpredictable
results may occur.

workname|(0): This operand specifies a work area name or a regis-
ter (in either special or ordinary register notation) containing the
address of the work area. The work area address should never be pre-
loaded into register 1.

The operand is used if records are to be processed in a work area
which you define yourself (for example, using a DS instruction).
Specifying a work area causes GET to move each individual record
from the input area to the work area. If the operand is specified,
all GETs for the named file must use either a register or a
workname.

The workname operand is not valid for the 3881. Also, you cannot
specify the WORKA operand in the DTFCD for the 3881.

In conjunction with optical reader input, GET can be used only to
retrieve records from a journal tape on a 1287.

164 VSE/Advanced Functions Macro Reference




GETIME

- - - - wn = e = e = = = e = A e e e W Gm e e e e e e e M e W M ML W R e e e e e e e -

[name] GETIME [ STANDARD | BINARY | TU |MIC]
[,LOCAL[ , GMT]
[ ,CLOCK=YES]
[ ,MFG={area| (S,area)|(r)}]

The GETIME macro obtains the time-of-day at any time during program
execution.

STANDARD and LOCAL are assumed if no operands are given. If the mac-
ro is issued without an operand, the macro must not contain a com-
ment unless the comment begins with a comma.

As long as no DATE job control statement is supplied, the calendar
date and the system date in the communication region are updated
every time GETIME is issued. Those dates are therefore accurate at
any given moment. However, when the job stream contains a DATE job
control statement, only the system date in the communication region
is updated when GETIME is used; the calendar date is not changed in
that case.

STANDARD|BINARY|TU|MIC: If STANDARD is specified, the
time-of-day is returned in register 1 as a packed decimal number of
the form hhmmss, where hh is hours, mm is minutes, and ss seconds,
with the sign in the low-order half-byte. The time-of- day may be
stored and unpacked or edited.

If BINARY is specified, the time-of-day is returned in register 1 as
a binary integer in seconds.

If TU is specified, the time-of-day is returned in register 1 as a
binary integer in units of 1/300 seconds.

If MIC is specified, the time-of-day is returned in registers O and
1 as a binary integer in microseconds. Bit 51 of the register pair
indicates one microsecond.

LOCAL|GMT: Specify LOCAL to obtain the local time or GMT if, in
your program, you want to use Greenwich Mean Time.

CLOCK=YES: 1Indicates that registers 0 and 1 contain, as input to
GETIME, a value that was obtained by means of a STCK (store clock)
instruction. This value is transformed into time and date as defined
by the other operands and any associated job control statements. On
output, register 1 contains the time, and registers 14 and 15 the
date (in the form mmddyy00 or ddmmyy0O).

MFG={area|(S,area)|(r)}: The MFG operand is required if the pro-
gram is to be reenterable and if option STANDARD applies (with the

Macro Description 165




GETIME

options BINARY, TU, or MIC, reentrancy is preserved in any case).
MFG specifies the address of a 64-byte dynamic storage area, that
is, storage which your program obtained through a GETVIS macro.
This area is required for system use during execution of the macro.

166 VSE/Advanced Functions Macro Reference



GETVIS

- o o n - W = e e = e e e e e R SR e e R M S e M s e M R R e e W e e

[name] GETVIS [ADDRESS={namel| (1)}]
[ , LENGTH={name2| (0)}]
[, PAGE=YES]
[ ,POOL=YES]
[, SVA=YES]

- - - . - e s W e e ee e e e 4R G e A S e e e e e e eGSR S e e AL e G Om M e W e

The GETVIS macro retrieves a block of virtual storage from the
GETVIS area of your partition or of the SVA. If you code the macro
without any operand, the system assumes that the length of the
desired virtual storage area is contained in register O and returns
the start address of the area it retrieved for you in register 1.
If the macro is issued without an operand, the macro must not con-
tain a comment unless the comment begins with a comma.

ADDRESS={namel|(1)}: The start address of the requested virtual
storage area is returned by the system either in the 4-byte field
specified as a symbol by namel or in the specified register. (Reg-
ister 15 must not be used because it contains the return code.) The
returned address is valid only if the return code in register 15 is
zero. If the operand is omitted, the address is returned in regis-
ter 1 only.

LENGTH={name2|(0)}: The length of the requested storage block
may be specified either in the 4-byte field (specified as a symbol
by name2) or in the specified register. The length is specified in
number of bytes. The smallest unit that can be requested by GETVIS
is (a) 128 bytes if the GETVIS area is part of a partition or (b) 16
bytes if the GETVIS area is part of the SVA. If the specified
length is not a multiple of 128 or 16, respectively, it is rounded
to the next higher multiple of 128 or 16. If the operand is
omitted, the system assumes that you have specified the length in
register O.

PAGE=YES: If you want the requested storage area to start on a
page boundary, specify PAGE=YES. This may reduce the number of page
faults.

POOL=YES: 1If POOL=YES is specified, GETVIS starts searching for
the requested virtual storage area at the address specified in reg-
ister 1. In this case, it is your responsibility to provide a valid
address in register 1.

SVA=YES: SVA=YES can be specified only in a program that is exe-
cuted with storage protection key zero. If SVA=YES is specified,
the system retrieves the desired block of virtual storage from the
SVA. Otherwise, it retrieves the block from the pertinent
partition.

Macro Description 167




GETVIS

Return Codes in Register 15

0 GETVIS completed successfully.

4 The size of the (real) partition GETVIS area is OK.

8 The specified length is negative or exceeds the GETVIS area.
12 No more virtual storage is available in the GETVIS area.

20 Invalid GETVIS option.

32 A hardware (storage) failure occurred in the requested real par-
tition GETVIS area.

168 VSE/Advanced Functions Macro Reference




IJBPUB

The IJBPUB macro generates a mapping DSECT, which is used to inter-
pret the information retrieved with the EXTRACT ID=PUB macro. The
channel and device number are contained in the first two bytes.
Device type code and the device characteristic code are stored in
bytes five and six, respectively.

Macro Description 169




IORB

Name Operation Operand
[name] IORB DSECT=YES
or

CCW=namel ,DEVICE=SYSxxx
[ ,ECB=name2]

[ ,FIXLIST=name3]

[ ,FIXFLAG=(option,...)]
[, IOFLAG=(option,...)]

The IORB macro generates an IORB (Input/Output Request Block). The
block is generated when your program is being assembled. For the
layout and contents of an IORB, see Figure 23 .

Bytes
0 T ¥ L 1
» -
R:;:ﬁ:al Transmission CSW reserved
\ information | status bits ,
8 T — LA
CCW address
reserved from CSW
et —+
16
reserved
L 1 AL 1 1 1 1
24

* Same as for a CCB (see Figure 4-1)

Figure 23. Layout and Contents of the I/0 Request Block (IORB)

The IORB is an alternative to the CCB: instead of specifying a CCB
in the EXCP macro, the address of an IORB is given. The IORB macro
requires the specification of areas to be page-fixed for the I/0
operation. Such areas include the IORB and the channel programs
themselves and all input/output areas. Specifying those areas frees
the page-fixing routines from having to scan the channel programs to
determine which areas are to be fixed.

DSECT=YES: 1If the operand is specified, it should be the only
one. Any other parameters specified in the macro are ignored and an
appropriate MNOTE is generated by the assembler.

Specifying DSECT=YES causes the assembler to display, as a DSECT
structure, the IORB and the meaning of its fields.

CCW=namel: This operand gives the name of the first CCW used with

the IORB. This name must be the same as the name specified in the
assembler CCW statement that builds the CCW.

170 VSE/Advanced Functions Macro Reference



IORB

DEVICE=SYSxxx: This operand specifies the logical unit for the
actual I/0 unit with which this IORB is associated.

ECB=name2: This operand specifies the address of the ECB to be
posted when I/0 is complete. The traffic bit (byte 2, bit 0) of the
ECB must have been cleared before issuing the EXCP macro. The ECB
area must be included in the fixlist if the ECB operand is used.

Note: If FIXFLAG=(FIXED) is specified, the ECB must have
been PFIXed.

FIXLIST=name3: This operand specifies the address of the first of
two or more fixlist parts or of the only fixlist part. The FIXLIST
operand is required unless FIXFLAG=(FIXED) is specified. Each
fixlist part consists of one or more 8-byte entries plus an end or
chaining indicator as shown in Figure 24 .

begin address

X'00

end address

chaining indicator

4 5

X'01’

address of next
fixlist part

[ end indicator = X'FF’

Figure 24. Layout of Fixlist

In a fixlist entry, begin address and end address are the addresses
of the first and the last byte of an area which has to be fixed for
the I/0 request (begin address < end address; entries with begin
address > end address will be canceled with an 'invalid address'
message). Each entry describes a storage area that is accessed by
the channel during the I/O request; that is, an area containing the
channel program, an input/output area, or the IORB.

Macro Description 171



IORB

Duplicate entries and entries describing overlapping storage areas
are allowed. As a result, certain areas may be covered more than
once by the fixlist. The system will compress the fixlist so that
each page to be fixed for the channel program is covered only once.
However, specifying FIXFLAG=(COMPRESSED) indicates that this service
is not applicable or has already been done by the user.

FIXFLAG=(option,...): This operand specifies a list of options
which apply to the I/0 fixing procedure. In $/370 mode, this spec-
ification is ignored.

The options you can specify are:

COMPRESSED to indicate that the system does not have to compress
the fixlist. Use this option if the fixlist is already
compressed, that is: each page to be fixed for the I/O
request is covered only once by the fixlist.

FIXED to indicate that all areas which should be fixed for the
I1/0 operation have already been fixed by the user, there

is no fixlist.

IOFLAG=(option,...): A list of options may be specified which
apply to I/0 interrupt handling:

POSTDE to indicate that device end is to be posted.

POSTERR to indicate that an unrecoverable I/0 error is to be
accepted.

SKIPERP to indicate that error recovery by the system is to be
skipped.

172 VSE/Advanced Functions Macro Reference




ISMOD

- o o - - . - - = - = e = = S e e e R SR e M M M M M M M e e s eSS

- - o - o . - . . o = = e s em e = S M W G e e W e e SN M M M Sm G Ge MR MR SN e S SR e Mmoo S S S

[name] ISMOD TOROUT={ LOAD | ADD | RETRVE | ADDRTR}
[ ,CORDATA=YES ]
[ ,CORINDX=YES
[ ,ERREXT=YES]
[ ,HOLD=YES]
[ ,IOAREA2=YES]
[ ,RDONLY=YES ]
[ ,RECFORM={ FIXUNB | FIXBLK | BOTH}]
[ ,RPS=SVA]
[, SEPASMB=YES ]
[, TYPEFLE={ RANDOM | SEQNTL | RANSEQ} ]

The ISMOD macro defines a logic module for an ISAM file. If you do
not provide a name for the module, IOCS generates a standard module
name.

Note: If an ISMOD module precedes an assembler language
USING statement or follows your program, registers 2-12 remain
unrestricted even at assembly time. However, if the ISMOD mod-
ule lies within your program, you should issue the same USING
statement (as that which was issued before the ISMOD module)
directly following the module. This action is necessary
because the ISMOD module uses registers 1, 2, and 3 as base
registers, and the ISMOD CORDATA module uses registers 1, 2,
3, and 5 as base registers. Each time either module is assem-
bled, these registers are dropped.

CORDATA=YES: Include this operand if the module is to add
records to files with the IOSIZE DTFIS operand. If this operand is
included, the IOSIZE operand is required in the DTF. If you omit the
CORDATA=YES operand, you will not have an increase in throughput
when adding records to a file.

CORINDX=YES: Include this operand to generate a module that can
process DTFIS files (add or random retrieve functions) with or with-
out the cylinder index entries resident in virtual storage. If omit-
ted, the module generated cannot process the resident cylinder index
entries.

If an unrecoverable I/0 error occurs while reading indexes into vir-
tual storage, the program will not use the resident cylinder index
entries.

ERREXT=YES: Include this operand if the ERET macro is to be used
with this module or if non-data-transfer error conditions are
returned in filenameC. If HOLD=YES and ERREXT=YES, your program
must issue the ERET macro to return to the ISAM module to free any
held tracks. See the DTF ERREXT and HOLD operands.

Macro Description 173




ISMOD

HOLD=YES: This operand provides for the track hold option for
both data and index records. If the HOLD operand is omitted, the
track hold function is not performed.

Because track hold cannot be performed on a LOAD file, HOLD=YES can-
not be specified when IOROUT=LOAD.

If HOLD=YES and ERREXT=YES, your program must issue the ERET macro
to return to the ISAM module to free any held tracks.

IOAREA2=YES: Include this operand if a second I/0 area is to be
used, that is, if IOAREA2 is specified in any of the DTFs linked to
the logic module. The operand is only valid for load or sequential
retrieval functions. The module can process DTFs with one or two I/0
areas specified. This operand must not be specified if
TYPEFLE=RANSEQ is specified.

IOROUT={LOAD|ADD|RETRVE|ADDRTR}: This operand specifies
the type of module required to perform a given function.

LOAD generates a module for creating or extending a file.
ADD generates a module for adding new records to an existing file.

RETRVE generates a module to retrieve, either randomly or sequen-
tially, records from a file.

ADDRTR generates a module that combines the features of the ADD and
RETRVE modules. This module also processes any file in which only
ADD or RETRVE is specified in the IOROUT operand of the DTF, and in
which the TYPEFLE operand contains the corresponding parameter (or a
subset of it).

RDONLY=YES: This operand causes a read-only module to be gener-
ated. Whenever this operand is specified, any DTF used with the mod-
ule must have the same operand.

RECFORM={FIXUNB|FIXBLK|BOTH}: This operand generates a mod-
ule that creates, adds to, or processes an unblocked (FIXUNB) or
blocked (FIXBLK) file. If BOTH is specified, a module is generated
to process both unblocked and blocked files, and the DTF may specify
either FIXUNB or FIXBLK in the RECFORM operand. The RECFORM operand
is required only when IOROUT specifies ADD or ADDRTR. If IOROUT
specifies LOAD or RETRVE, a module that handles fixed-length blocked
and unblocked files is generated, and the operand is not required.

RPS=SVA: This operand causes the RPS logic modules to be assem-
bled.

SEPASMB=YES: 1Include this operand only if the module is to be

assembled separately. This causes a CATALR card with the filename to
be punched ahead of the object deck and the filename to be defined

174 VSE/Advanced Functions Macro Reference




ISMOD

as an ENTRY point in the assembly. If the operand is omitted, the
assembler assumes that the DTF is assembled together with the prob-
lem program.

TYPEFLE={ RANDOM|SEQNTL|RANSEQ}: This operand is required
when IOROUT specifies RETRVE or ADDRTR. RANDOM generates a module
that includes only random retrieval capabilities. SEQNTL generates a
module that includes only sequential retrieval capabilities. RANSEQ
generates a module that includes random and sequential capabilities.
It also processes any file in which the TYPEFLE operand specifies
either RANDOM or SEQNTL. If TYPEFLE=RANSEQ, IOAREA2=YES must not be
specified.

When all operands are omitted, the ISMOD module can only process

files where IOROUT=RETRVE, TYPEFLE=RANSEQ, CORINDX, CORDATA, HOLD,
and RDONLY are not specified. The name of that module is IJHZRBZZ.

Standard ISMOD Names

Each name begins with a 3-character prefix (IJH) and continues with
a 5-character field corresponding to the options permitted in the
generation of the module.

ISMOD name = IJHabcde

RECFORM=BOTH, IOROUT=ADD or ADDRTR
RECFORM=FIXBLK, IOROUT=ADD or ADDRTR
RECFORM=FIXUNB, IOROUT=ADD or ADDRTR

RECFORM is not specified. (IOROUT=LOAD or RETRVE)

a

wuwun
N C W

IOROUT=ADDRTR
IOROUT=ADD

IOROUT=LOAD
IOROUT=RETRVE
IOROUT=ADDRTR, RPS=SVA
IOROUT=LOAD, RPS=SVA

L 1 O | O | N 1
X<

TYPEFLE=RANSEQ

IOAREA2=YES, TYPEFLE=SEQNTL or IOROUT=LOAD
TYPEFLE=RANDOM

TYPEFLE=SEQNTL

neither is specified (IOROUT=LOAD or ADD)

nwononoan
N QW

CORINDX=YES and HOLD=YES
CORINDX=YES

HOLD=YES

neither is specified

NO QW

CORDATA=YES, ERREXT=YES, RDONLY=YES
CORDATA=YES and ERREXT=YES
CORDATA=YES and RDONLY=YES
CORDATA=YES

ERREXT=YES and RDONLY=YES

oo
»vyoQ@H

Macro Description 175




ISMOD

T ERREXT=YES
Y RDONLY=YES
YA neither is specified

Subset/Superset ISMOD Names

The following chart shows the subsetting and supersetting allowed
for ISMOD names. Five parameters allow supersetting. For example,
the module IJHBABZZ is a superset of the module IJHBASZZ.

+ 4+ ++
IJHAABBF
BIROO
Z++++

+ ABCS
ARSZY
U*+ +
ZLG G

S P

+ 4+

G T

Z Z

B e e I R R R

+ Subsetting/supersetting permitted.
* No subsetting/supersetting permitted.

- . om e e e e e S e e M G D e G D WS NS GE e G e W W e e

If two or more modules with the same entry point are included, the
linkage editor message 21431, (invalid duplication of entry point
label) is generated. (Occasionally these entry points are not obvi-
ous when using the preceding chart, but the module can perform the
indicated functions.) This message can usually be suppressed by
including a superset module. However, modules with and without prime
data in main storage or modules with TYPEFLE=RANDOM and IOAREA2=YES
cannot be combined. Therefore, you should take either of the fol-
lowing actions:

1. Specify prime data in core for each ADD type DTF in your
program. In this case, superset modules are generated.

2. Specify the MODNAME operand in the DTF, and include an ISMOD of
that name. The DTF then generates only the specified module.

176 VSE/Advanced Functions Macro Reference




JDUMP

- . - . = = = o e = - S s s M W e e S R G e M R = mEmEm=
- - . . = s = n e e = S S MR R R W G G G GR GE Gm em R MR R M MR ER S e e e S

This macro provides a hexadecimal dump of the following:

e  The contents of either the entire supervisor area and the used
part of the system GETVIS area, or i some supervisor control
blocks only (see Note below).

¢ The contents of the partition that issued the macro.
e The contents of the registers.

Note: The dump includes the contents of some supervisor con-
trol blocks only, rather than the entire supervisor area, if
the STDOPT job control command specifies DUMP=PART or NO, or
if a job control statement // OPTION PARTDUMP or NODUMP is
submitted.

In addition, the macro causes the job to be terminated if JDUMP was
issued by the main (or only) task of the program. If JDUMP was
issued by a subtask, the macro causes that subtask to be detached
without terminating the program in the partition.

The dump provided by the macro is always directed to SYSLST; SYSLST,
if disk or tape, must be opened; if SYSLST is a tape, that tape must
be positioned as desired.

If JDUMP is issued by a job running in real mode, the storage con-
tents of the partition are dumped only up to the limit as determined
by the SIZE parameter of the EXEC job control statement, plus the
storage obtained dynamically through the GETVIS macro. If SIZE was
not specified, the entire partition will be dumped.

If JDUMP is issued by a program running in virtual mode, the entire
partition is dumped.

Macro Description 177




JOBCOM

[name] JOBCOM FUNCT={ PUTCOM|GETCOM},
AREA={address| (rl)},
LENGTH={length| (r2)}

- e = e e e = e e e e e e e e e e e e e S e e e R N e e SE e e e e

The JOBCOM macro allows for communication between jobs or job steps
in a partition. Information being communicated is stored in a
256-byte area. The system provides such an area for each partition.
Through the JOBCOM macro, a program either moves information into
that area or retrieves information that had previously been stored
there by another program. The area remains unaltered from one job
(or job step) to the next. Unless it is modified through execution
of the JOBCOM macro, the contents of the area remain unchanged over
any number of jobs. The JOBCOM macro is not reentrant.

The program that issues the JOBCOM macro must provide a register
save area 18 fullwords long. Prior to execution of the macro, reg-
ister 13 has to point to that save area.

Note: When the JOBCOM macro is used, registers 1 through 14
are destroyed.

FUNCT={PUTCOM|GETCOM}: This operand describes the function
that the macro is to perform. Specifying PUTCOM causes information
to be stored into the system-supplied area. The number of bytes to
be moved is given by the LENGTH operand. If LENGTH yields a value
smaller than 256, the remainder of the area is left unaltered.

Specifying GETCOM indicates that information is to be retrieved from
the system-supplied area. Again, the number of bytes to be moved is
given by the LENGTH operand.

AREA={address|(r1)}: This operand gives the address of a field
where the program provides (FUNCT=PUTCOM specified) or receives
(FUNCT=GETCOM specified) the information to be moved.

LENGTH={length|(r2)}: This operand specifies the number of bytes
to be moved. The value is either given as a self-defining term or
in register notation. If register notation is used, the specified
register is expected to contain the length value.

Length should be a positive number up to 256. If it is zero or neg-
ative, no information gets moved. If it is greater than 256, only
256 bytes are moved.

178 VSE/Advanced Functions Macro Reference




LBRET

@ o o = = -~ o - - = - - e = = - = e M e = W S === S S

The LBRET macro is issued in your subroutines when you have com-
pleted processing labels and wish to return control to IOCS. LBRET
applies to subroutines that write or check DASD or magnetic tape
user-standard labels, write or check tape nonstandard labels, or
check DASD extents. The operand used - 1, 2, or 3 - depends on the
function to be performed. The functions and operands are explained
below.

Checking DASD Extents: When processing an input file with all vol-
umes mounted, you can process your extent information. After each
extent is processed, use LBRET 2 to receive the next extent. When
extent processing is complete, use LBRET 1 to return control to
I0CS.

Checking User Standard DASD Labels: 10CS passes the labels to you
one at a time until the maximum allowable number is read (and
updated), or until you signify you want no more. In the label rou-
tine, use LBRET 3 if you want IOCS to update (rewrite) the label
just read and pass you the next label. Use LBRET 2 if you simply
want I0CS to read and pass the next label. If an end-of-file record
is read when LBRET 2 or LBRET 3 is used, label checking is automat-
ically ended. If you want to eliminate the checking of one or more
remaining labels, use LBRET 1.

Writing User Standard DASD Labels: Build the labels one at a time
and use LBRET to return to IOCS, which writes the labels. Use LBRET
2 if you want control returned to you after I0CS writes the label.
I1f, however, IOCS determines that the maximum number of labels has
already been written, label processing is terminated. Use LBRET 1 if
you wish to stop writing labels before the maximum number of labels
is written.

Checking User Standard Tape Labels: I0CS reads and passes the labels
to you one at a time until a tapemark is read, or until you indicate
that you do not want any more labels. Use LBRET 2 if you want to
process the next label. If IO0CS reads a tapemark, label processing
is automatically terminated. Use LBRET 1 if you want to bypass any
remaining labels.

Writing User Standard Tape Labels: Build the labels one at a time
and return to I0CS, which writes the labels. When LBRET 2 is used,
I10CS returns control to you (at the address specified in the DTFxx
LABADDR operand) after writing the label. Use LBRET 1 to terminate
the label set.

Macro Description 179




Writing or Checking Nonstandard Tape Labels: You must process all
your nonstandard labels at once. Use LBRET 2 after all label proc-
essing is completed and you want to return control to IOCS.

180 VSE/Advanced Functions Macro Reference




LFCB

Name Operation Operand

[name] LFCB SYSxxx,phasename
[ ,NULMSG]
[ , FORMS=xxxX]
[,LPI=n]

@ e o m o - = = = = = e e e = e = e e e e =SS S

The macro can be used to load the forms control buffer (FCB) of a
printer dynamically. That printer must not be an IBM 3800 Printing
Subsystem; the macro is ignored on an IBM 3800. An FCB whose con-
tents have been changed by means of this macro retains the changed
contents until one of the following occurs:

i another LFCB macro is issued for the printer
. an LFCB command is issued for the printer
. the SYSBUFLD program is executed to reload the printer's FCB
° IPL is performed for the system.
The macro, when executed, generates messages to request operator
action (such as changing forms), whenever manual action is required,
and to inform the operator that the FCB of the specified printer has
been reloaded.

Note: If SYSLOG is assigned to the printer, the results of

an FCB load operation initiated by an LFCB macro are unpre-

dictable.

SYSxXxX: The name of the logical unit associated with the printer
whose FCB is to be loaded.

You can specify one of the following:
° SYSLST
4 SYSLOG

. SYSnnn, a programmer logical unit assigned to a printer owned by
the partition in which the program is executed.

phasename: The name by which the phase containing the applicable
FCB image is cataloged in the core image library. For information
on the contents and format of an FCB image, see VSE/Advanced Func-
tions, System Control Statements, SC33-6095.

Macro Description 181




LFCB

NULMSG: This operand specifies that the 80-character verification
message, which is normally printed following the FCB load operation,
is to be suppressed. This operand, if given, must be specified
immediately after phasename.

If this operand is specified, the system continues normal processing
immediately after the FCB load operation has been completed, and the
operator cannot verify that the proper forms are placed on the
printer.

If the operand is omitted, the system prints the last 80 characters
of the phase identified by phasename, and positions the printer to
the first printable line on the forms.

FORMS=xxxx: This operand specifies the type of forms to be used
on the printer whose FCB is being reloaded. For xxxx, a string of
up to four alphameric characters can be specified. The specified
form number is included in & message to the operator.

LPI=n: This operand, which should not be given for a PRTl-printer
(with a device type code of PRT1), specifies the desired number of
lines per inch. For n, you can specify either 6 or 8.

If the macro is issued for a PRTl-printer and the specified spacing
disagrees with the spacing code in the new buffer image, the system
does not execute the FCB load operation and sets the appropriate
return code in register 15.

If the macro is issued for a non-PRTl-printer, the system includes
the operand in a message to the operator.

Return Codes in Register 15

Successful completion of the FCB load operation is indicated to the
problem program by a return code of 0. Note, however, that for an
IBM 3800, register 15 contains 0, although the macro was not exe-
cuted. If the operation fails, register 15 contains one of the
return codes listed below; in this case the FCB retains its original
contents. The return codes are:

Dec Hex Meaning

4 X'04' The assigned printer is a PRTl-printer and the LPI oper-
and specified in the macro disagrees with the FCB image.

8 X'08' No LUB is available for the specified logical unit.

12 X'0C' The specified logical unit has not been assigned or is
currently unassigned.

16 X'10' The specified logical unit is assigned to a device with-
out an FCB.

182 VSE/Advanced Functions Macro Reference




LFCB

20 X'14' The printer assigned to the specified logical unit is
down.

24 X'18' The specified FCB image phase has not been found.

28 X'1C' The specified FCB image phase is invalid for the printer
assigned to the specified logical unit.

By testing register 15, you can determine in your program whether or
not the operation has failed. If the operation has failed, you can
either terminate the job step or continue processing. Should you
decide to continue processing, then the system bypasses the exe-
cution of the LFCB macro.

Macro Description 183




LITE

[name] LITE {filename| (1)}
[,1light-switches]|, (0)]

This macro lights any combination of pocket lights on a 1419 magnet-
ic character reader or 1275 optical reader/sorter. Before using the
LITE macro, the DISEN macro must be issued to disengage the device.
Processing of the documents should be continued until the unit
exception bit (byte 0, bit 3) of the document buffer status indica-
tors is set on (see Figure 4 on page 31). When this bit is on, the
follow-up documents have been processed, the MICR reader has been
disengaged, and the pocket LITE macro can be issued.

filename|(1): Is the name of the file; this name is the same as
that specified for the DTFMR header entry for the file.

light-switches|(0): Indicates a 2-byte area containing the pocket
light switches. Both operands can be given either as a symbol or in
register notation.

The bit configuration for the pocket light switch area is shown in
Figure 25 . The pocket lights that are turned on should have their
indicator bits set to 1. If an error occurs during the execution of
the pocket lighting I/0 commands, bit 7 in byte 1 is set to 1. This
error condition normally indicates that the pocket light operation
was unsuccessful.

[ ]
|Bits |o]1]2|3|4]5|6|7|8|9|A|B| CDE | F |
I |
I
]

|Pocket Lights |A|B|0]|1|2|3|4|5|6|7]|8|9|Reserved|Error indicator bit
L

Figure 25. Bit Configuration for Pocket Light Switch Area of the
1419

184 VSE/Advanced Functions Macro Reference




LOAD

--—-------_--_--—--—_--_--—_--_--..._..--_-—_--_-—_--_----—---_--....

[name] LOAD {phasename| (S,address)| (1)}
[, loadpoint| (S, loadpoint) | (0)]
[,LIST={1istnamel(S,listname)l(rl)}]
[,SYS=YES]
[ ,DE=YES]
[ ,TXT=NO]
[ ,MFG={area| (S,area)|(r2)}]

-_--_--—---------—_-----------—.--_..----—_-—..----_--_-—_-—-_—...--.-

The LOAD macro loads the phase specified in the first operand (if
this phase is not in the SVA) and returns control to the calling
phase. After execution of the macro, the entry-point address of the
called phase is returned to you in register 1. For a non-relocatable
phase, this address is the entry-point determined at link-edit time.
For a relocatable phase, the entry point is adjusted by the relo-
cation factor. If the phase is in the SVA, it is not loaded; the
entry point address in the SVA, however, is returned in register 1.

phasename|(S,address)|(1): For phasename specify the name of the
required phase. If DE=YES is not specified, the address as speci-
fied in (S, address) or as loaded into a register points to an
8-byte field that contains the phase name. If DE=YES, the operand
has a different meaning; refer to the discussion of the DE operand.

loadpoint| (S, loadpoint) | (0): If loadpoint is provided, the
load-point address specified to the linkage editor is overridden,
and the phase is loaded at the specified address. The address used
must be outside the supervisor area. When an overriding address is
given, the entry-point address is relocated and returned in register
1. An overriding loadpoint address must not be specified for a phase
that had been linked as a member of an overlay structure.

If the phase is non-relocatable, none of the other addresses in the
phase are relocated; if the phase is relocatable, however, the entry
point and address constants are updated with the relocation factor.

If loadpoint is given in register notation, the register used must
not be register 1. Preload the register with the loadpoint address.

With (S,...) notation, the loadpoint address is derived from base
register and displacement as assembled for loadpoint in the
(S,loadpoint) specification.

LIST={listname| (S, listname) |(r1)}: For listname specify the name of
your local directory list generated in the partition by the GENL
macro. When this operand is included, the system scans the local
directory list for the name of the required phase before it initi-
ates a search for this phase name in the pertinent core image
library directory.

Macro Description 185




LOAD

SYS=YES: If SYS=YES is specified, the system scans the system
directory list (SDL) in the SVA and the system core image library
before the private core image library (if a private CIL is assigned
at all). If nothing is specified, the private CIL takes precedence.

DE=YES: This operand is useful if your program frequently loads
one specific phase. DE=YES is invalid if LIST is specified.

DE=YES indicates that your program contains a 38-byte field where
you have placed a single directory entry (like those generated by
the GENL macro). If this directory entry is active, the directory
scan mechanism is bypassed; if not, the entry will be filled in by
the supervisor and then becomes active.

If the first operand is written as phasename (instead of S-type or
register notation) a directory entry will be generated within the
macro expansion. The generated directory entry will contain the
phasename in the first 8 bytes.

If you use (S,address) or register notation for the first operand,
you must set aside the 38-byte field yourself and point to it via
this operand. The directory entry must contain the phase name in the
first 8 bytes (left-justified and padded with blanks), X'OD' at dis-
placement X'OB', and X'00' at displacement X'10'.

TXT=NO: The specification TXT=NO (with LIST=listname or DE=YES)
is useful if a phase is loaded more than once in the course of your
program. It causes a search for the directory entry without transfer
of the contents (or text) of the phase itself and it indicates in
the directory entry if and where the phase was found. This can be
used to accomplish either of the following:

1. The directory entry can be filled in from the core image library
for later FETCH/LOAD calls without the overhead of text
transfer.

2. You can establish whether a given phase is present in a core
image library or the SVA since register 0 contains the address
of the directory entry and byte 16 of the directory entry is:

X'06' if the phase is not found
X'12' if the phase is in the SVA
X'0A' if the phase is in the private CIL

Note: Test for these conditions by means of a Test Under
Mask (TM) instruction, not a Compare instruction. If the phase
is not found and both DE=YES and TXT=NO have been specified,
register 1 is returned with X'00'.

MFG={area|(S,area)|(r2)}: The operand MFG is required if the pro-
gram which issues the LOAD macro is to be reenterable. It specifies
the address of a 64-byte dynamic storage area, that is, storage
which your program obtained through a GETVIS macro. This area is
required for system use during execution of the macro.

186 VSE/Advanced Functions Macro Reference




LOCK

[name] LOCK {name| (S,name) | (r)}
[ ,FAIL={RETURN |WAITC |WAIT}]

The LOCK macro enqueues the task for accessing the named resource.
The resource must have been defined in the program by a DTL (Define
The Lock) control block. A DTL is generated by issuing a DTL or
GENDTL macro; it may be modified by issuing a MODDTL macro.

Note: Do not LOCK a resource in an AB exit routine if this
resource is held by the main task, since a deadlock situation
may occur.

{name|(S,name) |(r)}: Specifies the DTL address.

FAIL={RETURN|WAITC|WAIT}: Defines the system action in case
the resource cannot be obtained:

RETURN causes the system to return control back to the requesting
program in any case. The requesting program has to check the return
code in register 15 to find out whether or not the request was suc-
cessful.

WAITC causes the system to place the requesting task in the wait
state if the requested resource is found to be locked by another
task. In all other cases, control returns to the requesting
program. The requesting program has to check the return code in
register 15 to find out whether the request was successful, or
whether an error occurred.

WAIT requests the system to return control to the requesting task
when the resource can be obtained. If the resource is locked by
another task, the requesting task is set into the wait state until
the resource is freed. In case of an error condition (return codes
12, 16, 20, 24, 32, 36), the requesting task is canceled.

WAIT or WAITC cannot be specified if the resource is defined with
OWNER=PARTITION.

Return Codes in Register 15

0 Successful request: the resource is locked for the task (or for
the partition if the resource is defined with partition owner-
ship).

4L Resource not available: the resource is already locked with a
locking status that allows no concurrent access.

Macro Description 187




LOCK

8 The lock table space is exhausted.

12 The lock request is inconsistent with previous lock requests (by
the same or other tasks).

16 The request would have resulted in a deadlock condition within
the system (deadlocks across systems are not affected).

20 DTL format error.

24 The issuing task tried to lock a resource, which it owns already
exclusively.

28 The lock request resulted in lock file overflow condition. Use
the DLF command to specify a larger size for the lock file.

32 A lock request was issued for a shared DASD file but the corre-
sponding volume is not on-line.

36 An unrecoverable I/0 error occurred on the lock file. This
probably means that the system has to be re-IPLed and the lock
file re-defined. (This has to be done on all sharing systems.)

Figure 26 on page 189 presents a summary of system actions by return
codes, depending on the specification of the FAIL operand.

Figure 27 on page 189 summarizes how the system controls access to a
resource, depending on the specification of the CONTROL and LOCKOPT
operands in the DTL or GENDTL macro. The illustration assumes that
a task issues a LOCK request for a resource which is already locked.

A task or partition may lock a resource more than once. The system
maintains a lock request count for the resource.

When a resource is defined with LOCKOPT=1, a task may issue up to
255 LOCK requests with CONTROL=S. When a resource is defined with
LOCKOPT=2, up to 255 LOCK requests with CONTROL=S and (if no other
task locks the resource exclusively) one LOCK request with CONTROL=E
are allowed.

When a resource is locked more than once by a task, this task has to
issue at least as many UNLOCK requests as it issued LOCK requests
before it gives up the resource completely. If the resource is
defined with OWNER=PARTITION, the unlocking may be done by any task
in the partition.

188 VSE/Advanced Functions Macro Reference




i | LOCK FAIL =

| Return|

| Code | RETURN WAITC |  WAIT
} 0 | RETURN RETURN | RETURN
1 4 | RETURN WAIT |  WAIT
‘ 8 | RETURN RETURN |  WAIT
} 12 | RETURN RETURN | CANCEL
l 16 | RETURN RETURN | CANCEL
% 20 | RETURN RETURN | CANCEL
% 24 | RETURN RETURN | CANCEL
i 28 | RETURN RETURN |  WAIT
} 32 | RETURN RETURN | CANCEL
i 36 | RETURN RETURN | CANCEL

Figure 26. System Actions by Return Code and FAIL Operand

Control definition
in owning DTL

Control definition in requesting DTL

LOCKOPT=1

LOCKOPT=2

CONTROL=S | CONTROL=W | CONTROL=S | CONTROL=W

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

| CONTROL=S | G | W | I | I
LOCKOPT=1 | i l | |
| CONTROL=E | W | W | W | W
| | | I
| CONTROL=S | I | W | G | G
LOCKOPT=2 | | | | | .
| CONTROL=E | I | W | G | W
G The lock request is granted (return code 0).

The lock request is inconsistent with current lock status
(return code 12).

Access to the resource cannot be granted (return code 4 or 16).

_

Figure 27. System Actions Depending on Control Definition in DTLs

LOCK

Macro Description 189




MAPBDY

The MAPBDY macro may be used to interpret the information retrieved
by the EXTRACT ID=BDY macro. If 'name' is omitted, MAPBDY is taken
as default.

DSECT={NO|YES}: DSECT=YES specifies that a mapping DSECT is
generated. If the operand is omitted, in-line code is generated.

190 VSE/Advanced Functions Macro Reference




MAPSSID

- - - - = - =

The MAPSSID macro generates a mapping DSECT which is used to inter-
pret the supervisor information retrieved with the SUBSID macro.

The output shows the supervisor identification string in the follow-

ing format:

Displacement | Length |
Dec. Hex. | Byte

Contents/Description

T ]

Fixed part:

OWoOo~NODND O
W oONOANO
=== BN

Zero

Character string: SUP
Version number

Release number
Modification level
Length of variable part
(maximum 24 bytes)

Variable part:

10 A |
|
|
|
|
|
|
|
|
11 B 1
12 c 1

13 D 1
14 E 2

Flag byte 1:

X'80' /370 mode supervisor
X'40' ECPS:VSE mode supervisor
X'20' CKD support available
X'10' FBA support available
X'08' 3800 support available
X'04' Relocating channels
(ECPS:VSE—mode only)
VMLE mode supervisor |
VMLE active under VM control

Flag byte 2: |
X'80' AF support available

Flag byte 3:

X'80' Security support active

X'40' DASD sharing support available
X'20' For internal use

Flag byte 4: Not used
Library concatenation chain length
|

Macro Description 191




MODDTL

[name] MODDTL ADDR={namel| (S,namel) | (rl)}
[ ,NAME={name2| (S,name2) | (r2)}]
[ ,CHANGE={ ON|OFF}]
[ ,CONTROL={E|S}]
[,LOCKOPT={1|2}]
[ ,KEEP={NO|YES}]
[ ,OWNER={TASK|PARTITION}]
[, SCOPE={ INT |EXT} ]

The MODDTL macro modifies operands (fields) of a DTL (Define The

Lock) control block. A DTL is used by the LOCK/UNLOCK macros to

enqueue/dequeue a specific resource. The control block must have
been generated by the DTL or GENDTL macro.

Operands not specified in the MODDTL macro leave the corresponding
field in the DTL unchanged. There are no default values for the
MODDTL macro.

ADDR={namel|(S,name1)|(r1)}: Specifies the address of the DTL.

NAME={name2|(S,name2)|(r2)}: Specifies the address of the area
where a 12-byte long resource name is stored. If the name is short-
er than 12 bytes, it must be padded with blanks. It is by this
name, that VSE controls shared access of the resource as requested
by active tasks via the LOCK macro. These tasks may all be active
in one partition, or they may be distributed over several
partitions; the resource-share control extends across partitions.

Note that the name must not begin with any of the characters A
through I or V, because these characters are reserved for IBM usage.

CHANGE={ON|OFF}: CHANGE=ON sets up the DTL such that a subse-
quent UNLOCK macro would not release the resource, but reduce its
locking status. Reducing the lock status can be done only when the
current lock status is defined with strongest possible values: CON-
TROL=E and LOCKOPT=1. At least one of the operands CONTROL and
LOCKOPT should be specified, too. CHANGE=0FF causes a subsequent
UNLOCK macro to resume its normal function: to dequeue the resource.

CONTROL={E|S}: Defines how the named resource can be shared
while your program owns it, which is determined by this specifica-
tion and your specification for the operand LOCKOPT. A specifica-
tion of E means the resource is enqueued for exclusive use; a
specification of S means the resource is enqueued as sharable.

LOCKOPT={1|2}: This operand, together with the CONTROL

parameter, determines how the system controls shared access in
response to a LOCK request.

192 VSE/Advanced Functions Macro Reference




MODDTL

. LOCKOPT=1 and CONTROL=E: No other task is allowed to use the
resource concurrently.

. LOCKOPT=1 and CONTROL=S: Other 'S' users are allowed concurrent
access, but no concurrent 'E' user is allowed.

e  LOCKOPT=2 and CONTROL=E: No other 'E' user gets concurrent
access; however, other 'S' users can have access to the
resource.

e  TLOCKOPT=2 and CONTROL=S: Other 'S' users can have concurrent
access and, in addition, one 'E' user is allowed.

All users of a particular resource have to use the same LOCKOPT
specification when they lock the resource. Exception: If LOCKOPT=1
and CONTROL=E, the lock status may be modified.

KEEP={NO|YES}: This operand may be used to lock the named
resource beyond job step boundaries. Only a main task should use
this operand. KEEP=NO indicates that the named resource once
locked, is to be released automatically at the end of the partic-
ular job step. With KEEP=YES, a named resource that is locked
remains locked across job steps; it will be automatically released
at end-of-job. If a job terminates abnormally, all resources with
KEEP=YES are unlocked by the abnormal termination routine.

OWNER={TASK|PARTITION}: Defines whether the named resource,
once locked, can be unlocked only by the task which issued the cor-
responding LOCK request (OWNER=TASK), or whether it can be unlocked
by any task within the partition (OWNER=PARTITION).

When OWNER is defined as PARTITION, a LOCK request for the resource
must not specify FAIL=WAIT or FAIL=WAITC because deadlock prevention
(return code 16) is not supported with OWNER=PARTITION.

SCOPE={INT|EXT}: This operand may be used for locking resources
across systems. SCOPE=EXT specifies that the lock is used across
systems. Specify SCOPE=INT if the locking is to apply to one system
only.

Macro Description 193




MRMOD

S e e e R I R I R

Name Operation Operand
[name] MRMOD [ADDRESS={ SINGLE | DUAL} ]
[ ,BUFFERS=n]

[, SEPASMB=YES]

The MRMOD macro defines a logic module for a MICR or OCR file. If a
module name is omitted, one of the following standard module name is
generated by IOCS:

IJUSZZZZ or IJUDZZZZ

S = single address adapter
D = dual address adapter

ADDRESS={SINGLE|DUAL}: Required only if the dual address
adapter is used for the 1419 or 1275. If the operand is omitted, the
single address adapter is assumed by the assembler.

BUFFERS=n: A numeric value equal to the corresponding value
specified in the DTFMR macro.

SEPASMB=YES: Include this operand only if the module is to be
assembled separately. This causes a CATALR card with the filename to
be punched ahead of the object deck and the filename to be defined
as an ENTRY point in the assembly. If the operand is omitted, the
assembler assumes that the DTF is assembled together with the prob-
lem program.

194 VSE/Advanced Functions Macro Reference




MTMOD

- . am e e e T N S e e G e SR S SR R MR AR R e S SR e e W R SR R P WM e e R M e e

[name] MTMOD [ASCII=YES]
[ ,CKPTREC=YES]
[ ,ERREXT=YES]
[ ,ERROPT=YES]
[ ,NOTEPNT={ YES | POINTS}]
[ ,RDONLY=YES]
[ ,READ={ FORWARD | BACK} ]
[ ,RECFORM=xxxxxX]
[ , SEPASMB=YES]
[ , TYPEFLE={ OUTPUT | INPUT | WORK} ]
[ ,WORKA=YES]

The MTMOD macro defines a logic module for a magnetic tape file.

ASCII=YES: Include this operand if processing of ASCII input or
output files is required (see Appendix B). If this operand is omit-
ted, EBCDIC processing is assumed. ASCII=YES is not permitted for
work files.

CKPTREC=YES: This operand is necessary if an input tape has
checkpoint records interspersed among the data records. The module
also processes tapes that do not have checkpoint records; that is,
those whose DTFs do not specify CKPTREC=YES.

This operand is not needed for work files and must not be included
when ASCII=YES.

ERREXT=YES: Include this operand if additional I/0O errors are to
be indicated and/or the ERET macro is used with this DTF and module.
ERROPT=YES should be specified in this module for work files, but is
not needed for input or output files.

ERROPT=YES: Include this operand if the module is to handle any
of the error options for an error block. Code is generated to handle
any of the three options (IGNORE, SKIP, or name). The module also
processes any files in which the ERROPT operand is not specified in
the DTF. This entry is needed for work files, but it is not needed
for input or output files.

NOTEPNT={POINTS|YES}: This operand applies only to work files
(EBCDIC only). If YES is specified, the NOTE, POINTW, POINTR, or
POINTS macros can be issued for a tape work file. If POINTS is spec-
ified, only POINTS macros can be issued for tape work files.

Modules specifying either one of the two options also process work
files for which the NOTE/POINTx operand is not specified in the DTF.
Modules specifying YES also process work files specifying only
POINTS.

Macro Description 195




MTMOD

RDONLY=YES: This operand causes a read-only module to be gener-
ated. Whenever this operand is specified, any DTF used with the
module must have the same operand.

Each time a read-only module is entered, register 13 must contain
the address of a 72-byte doubleword-aligned save area. Each task
should have its own uniquely defined save area, and each time an
imperative macro (except an OPEN, OPENR, or LBRET) is issued, regis-
ter 13 must contain the address of the save area associated with the
task. The fact that the save areas are unique for each task makes
the module reentrant (that is, capable of being used concurrently by
several tasks).

If the operand is omitted, the module generated is not reenterable
and no save area is required.

READ={FORWARD|BACK}: This operand generates a module that
reads tape files forward or backward. If FORWARD is specified, only
code to read tape forward is generated. Any DTF used with the module
must not specify BACK in the READ operand.

If BACK is specified, code to read tape files both forward and back-
ward is generated, and any DTF used with the module may specify
either FORWARD or BACK as its READ operand. READ=BACK does not han-
dle multi-volume files.

This entry is not needed for work files.

RECFORM={FIXUNB|FIXBLK|VARUNB|VARBLK|SPNBLK|SPNUNB|
UNDEF}: This operand generates an input/output module that proc-
esses either EBCDIC or ASCII fixed-length, variable-length, or unde-
fined records.

If FIXUNB or FIXBLK is specified, a module is generated that allows
processing of both fixed-length blocked and fixed-length unblocked
records. Similarly, if VARUNB/SPNUNB or VARBLK/SPNBLK is specified,
a module is generated that allows processing of both types of vari-
able and spanned records. ASCII files are not permitted in spanned
record format.

If UNDEF is specified, a module for processing undefined record
types is generated. Any DTF used with the module must specify the
same record format type as the module. For example, if the module
specifies RECFORM=FIXUNB, either RECFORM=FIXUNB or RECFORM=FIXBLK
may be specified in the DTF.

This operand is not needed for work files.

If this operand is omitted, the module generated will allow process-
ing of both fixed-length blocked and fixed-length unblocked records.

SEPASMB=YES: Include this operand only if the module is to be
assembled separately. This causes a CATALR card with the module name
(standard or user-specified) to be punched ahead of the object deck

196 VSE/Advanced Functions Macro Reference




MTMOD

and the module to be defined as an ENTRY point in the assembly. If
the operand is omitted, the assembler assumes that the module is
assembled together with the DTF and the problem program, and no
CATALR card is punched.

TYPEFLE={OUTPUT|INPUT|WORK}: This operand generates a module
that processes either GET/PUT macros or READ/WRITE, NOTE/POINTx and
CHECK macros for work files (EBCDIC only). If WORK is specified,
code to process work files is generated. Otherwise, a module to
handle both input and output files is assumed. Only DTFs for work
files may be used with work file modules. Only DTFs for input or
output files may be used with an input/output module.

Note: INPUT and OUTPUT have the same table format and logic
modules.

WORKA=YES: If I/0 records are processed in work areas instead of
I/0 areas, specify this operand. WORKA=YES is required for spanned
record processing. The module also processes files that do not use
a work area. The operand is not needed for work files.

Standard MTMOD Names

Each name begins with a 3-character prefix (IJF) and continues with
a 5-character field corresponding to the options permitted in the
generation of the module.

In MTMOD there are two module classes: the module class for handling

GET/PUT functions and the module class for handling READ/WRITE,

NOTE/POINTx, and CHECK functions (work files). Modules handling

fixed-length (F and X) and undefined (U and N) records are mutually

exclusive of each other and of all forms of the module that process
. variable-length records (V, R, and S).

Name list for GET/PUT type modules:

MTMOD name = IJFabcde

a =F RECFORM=FIXUNB or FIXBLK, EBCDIC mode
= X  RECFORM=FIXUNB or FIXBLK, ASCII mode
=V  RECFORM=VARUNB or VARBLK, EBCDIC mode
= R RECFORM=VARUNB or VARBLK, ASCII mode
= S RECFORM=SPNUNB or SPNBLK
= U RECFORM=UNDEF, EBCDIC mode
= N  RECFORM=UNDEF, ASCII mode
b = B  READ=BACK
= 7  READ=FORWARD, or if READ is not specified
CKPTREC=YES

(9]
o
Q

Z CKPTREC=YES is not specified

Macro Description 197




MTMOD

[N
nn

N £

N < Z X

WORKA=YES
WORKA=YES is not specified

ERREXT=YES, RDONLY=YES
ERREXT=YES

RDONLY=YES

ERREXT and RDONLY not specified

Name list for work file type modules (TYPEFLE=WORK):

MTMOD name = IJFabcde

a=W Always
b = E ERROPT=YES
= 7 ERROPT is not specified
¢ = N  NOTEPNT=YES
= §  NOTEPNT=POINTS
= 7Z NOTEPNT is not specified
d =2 Always
e = M ERREXT=YES and RDONLY=YES
= N  ERREXT=YES
=Y  RDONLY=YES
= 7  ERREXT and RDONLY not specified
Subset/Superset MTMOD Names
The following chart shows the subsetting and supersétting allowed
for MTMOD names. Four of the GET/PUT parameters allow subsetting.
For example, the module IJFFBCWZ is a superset of the module

I1JFFBZWZ specifying fixed-length records.

198 VSE/Advanced Functions Macro Reference




MTMOD

- o= e - S = - e e S W N SR W R R e

For GET/PUT

IJF

Nw +

<w+Xa™mzZHE X

For Workfile Type Modules:
++ 4+

IJFWENZM

ZSs Y

+

N

Z

+ Subsetting/supersetting permitted.
* No subsetting/supersetting permitted.

Macro Description 199




MVCOM

The MVCOM macro modifies the content of bytes 12 through 23 of the
communication region of the partition from which the macro is
issued. This area is commonly referred to as the user area.

The following example shows how to move three bytes from the symbol-
ic location DATA into bytes 16 through 18 of the communication
region:

MVCOM 16,3,DATA

to: Specifies the address (relative to the first byte of the
region) of the first communication region byte to be modified.

length: Represents the number of bytes (1 to 12) to be inserted.

from|(0): Represents the address (either as a symbol or in regis-
ter notation) of the bytes to be inserted.

200 VSE/Advanced Functions Macro Reference




NOTE

- o - . - e e = = e e e . e e e G em R e SR G e Gs e Gm W Gm M W R e e AR S e
- - - = . " . - an e - e e e = e e e e e M em M M SR Mm e M R M e SR R E M W e e e e

The NOTE macro obtains identification for a physical record or log-
ical block that is read or written during processing. At least one
READ or WRITE operation should be successfully completed by means of
the CHECK macro before issuing the NOTE macro. To NOTE a desired
record successfully, the POINTR, POINTS, or POINTW macros must not
be issued between CHECK and NOTE.

For magnetic tape, the last record read or written in the specified
file is identified by the number of physical records read or written
from the load point. The physical record number is returned in
binary in the three low-order bytes of register 1. The high-order
byte contains binary zero. )

For CKD DASD, the binary number returned in register 1 is in the
form cchr, where

cc = cylinder number,
h = track number,
r = record number within the track.

Register 0 contains the unused space remaining on the track follow-
ing the end of the identified record.

For FBA devices, register 1 contains an address relative to the
beginning of the file in the form cccb, where ccc is the relative
number of the current control interval (origin 0), and b is the rel-
ative block number within the current CI (origin 1). Register 0
contains the length of the longest logical block that could com-
pletely fit in the CI following the NOTEd logical block.

You must provide a four- or six-byte field and store in it the
record identification and the remaining capacity so that it can be
used later by a POINTR or POINTW macro to find the NOTEd record
again. The two-byte track or CI capacity remaining is needed only
when a WRITE SQ is to follow the POINTR or POINTW.

Macro Description 201




OPEN, OPENR

- - - - = = - = - - e = e en = e e e D e e = e e W SR R e G M e S T e

[name] OPEN 1filenamel]| (rl)}
[,filename2|,(r2)],...

o - - . o = = = e e e e e e e e e e e e e R G S M R MR TR T T M MR m e e R W e e

The format of the OPENR macro is the same as that of the OPEN macro,
except that you code OPENR instead of OPEN in the operation field.

The OPEN or OPENR macro activates all files.

When OPENR is specified, the symbolic address constants that OPENR
generates from the parameter list are self-relocating. When OPEN is
specified, the symbolic address constants are not self-relocating.
Throughout the manual the term OPEN also implies OPENR, unless
stated otherwise.

OPEN need not be issued for DTFCN and DTFPT files in a
non-self-relocating environment. However, self-relocating programs
using LIOCS must specify OPENR for all files, including console
files.

If OPEN attempts to activate a file whose device is unassigned, the
job is terminated. If the device is assigned IGN, OPEN does not
activate the file, but turns on the DTF byte 16, bit 2, to indicate
that the file is not activated. If DTF byte 16, bit 2 is on after
issuing an OPEN, I/0 operations should not be attempted for the
file, as unpredictable results may occur.

filename|(r1): Enter the symbolic name of the file (DTF filename)
to be opened in the operand field. A maximum of 16 files may be
opened with one OPEN or OPENR by entering additional filenames.
Alternatively, you can load the address of the filename in a regis-
ter and specify the register using ordinary register notation.

202 VSE/Advanced Functions Macro Reference




ORMOD

- - - - - = = - - = e = e e = A S e e M SR Me tm Gm M e N e e SR R M R M R S M R MR e e

[name] ORMOD [BLKFAC=YES]
[ ,CONTROL=YES]
,DEVICE={1287D|1287T}
[, IOAREA2=YES]
[ ,RECFORM={ FIXUNB | FIXBLK | UNDEF}]
[, SEPASMB=YES]
[ ,WORKA=YES]

The ORMOD macro defines a logic module for a 1287 or 1288 optical
reader file.

Note: ORMOD is not used for the 3881 Optical Mark Reader.
The 3881 uses CDMOD.

BLKFAC=YES: Include this operand if RECFORM=UNDEF and groups of
undefined journal tape records are to be processed as blocks of
data. (See the DTFOR BLKFAC=n operand.) The DTFOR used with this
module must also include RECFORM=UNDEF and BLKFAC=n.

CONTROL=YES: Include this operand if CNTRL macros are to be
used with the associated DTFs. The module also processes files that
do not use the CNTRL macro.

DEVICE={1287D|1287T}: This operand must be included to specify
the I/0 device associated with this file. 1287D specifies a 1287 or
1288 document file. 1287T specifies a 1287 journal tape file.

IOAREA2=YES: Include this operand (journal tape only) if a sec-
ond I/0 area is used. The DTFOR used with this module must also
include the IOAREA2 parameter.

RECFORM={FIXUNB |FIXBLK|UNDEF}: This operand generates a mod-
ule that processes the specified record format. Any DTF used with
the module must have the same operand.

SEPASMB=YES: Include this operand only if the module is to be
assembled separately. This causes a CATALR card with the filename to
be punched ahead of the object deck and the filename to be defined
as an ENTRY point in the assembly. If the operand is omitted, the
assembler assumes that the DTF is assembled together with the prob-
lem program.

WORKA=YES: Include this operand (journal tape only) if records

are to be processed in work areas instead of in I/0 areas. Any DTF
used with the module must have the same operand.

Macro Description 203




ORMOD

Standard ORMOD Names

Each name begins with a 3-character prefix (IJM) followed by a
5-character field corresponding to the options permitted in the gen-
eration of the module.

ORMOD name = IJMabcde

RECFORM=FIXUNB
RECFORM=FIXBLK
RECFORM=UNDEF

RECFORM=UNDEF and BLKFAC=YES

a

o nu
ocx-

CONTROL=YES
CONTROL=YES is not specified

o
o
N O

JOAREA2=YES
WORKA=YES

both are specified
neither is specified

wnun
N W E ~

device is in tape mode
device is in document mode

oA

(]
]
N

always

Subset/Superset ORMOD Names

The following chart shows the subsetting and supersetting allowed
for ORMOD names. One of the parameters allows subsetting. For
example, the module IJMFCITZ is a superset of the module IJMFZITZ.

- - - - = - " e . = e Gm M wm M= e e e e e M e = e A w S W

+ Subsetting/supersetting permitted
* No subsetting/supersetting permitted

204 VSE/Advanced Functions Macro Reference




PAGEIN

You can code the macro in either of the following two formats:

- - - = . - e - em e e G e EE e e MR AE e W e e S R W MR GE W R ee TS M W Mm M e em e e

- . o - - - - . o e e Gm e = AR s e S SE SR R T G R SR s M SR GD TR R e W R M S e e

[name] PAGEIN beginaddr,endaddr
[ ,beginaddr,endaddr]...
[ ,ECB={ecbname| (0)}]

[name] PAGEIN {listname| (1)}
[ ,ECB={ecbname| (0)}]

- - - - - = = . = wn e e = m e e e e GR Ge Ge M S R R e M R e T S W G e e e

The PAGEIN macro causes specific areas to be brought into real stor-
age before their contents are needed by the requesting program. If
the requested area is already in real storage the attached page
frame will get low priority for the next page-outs. This function,
however, does not include any fixing, so that it cannot determine
whether all areas requested will still be in real storage when the
entire request has been completed.

The system can handle up to 15 active PAGEIN requests at any point
in time. On a system that was generated with VM=YES (in the SUPVR
generation macro), execution of the macro results in a null opera-
tion. If the ECB operand is specified, the ECB will be posted.
beginaddr: Points to the first byte of the area to be paged in.
endaddr: Points to the last byte of the area to be paged in.

listname|(1): Is the name of a list of consecutive 8-byte entries
as shown below.

—
| X'00' | address constant | length minus 1
t g

0

~

1 4
where:

address constant = Address of the first byte of
the area to be paged in.

A binary constant indicating
the length of the area to be
paged in.

length

A non-zero byte following an entry indicates the end of the list.

Macro Description 205




PAGEIN
ECB=ecbname(0): Specifies the name of the ECB, a fullword defined

by your program, which is to be posted when the operation is com-
plete. An invalid ECB address causes the task to be canceled.

Return Information

The return information can be obtained from the ECB, byte 2. The
meaning of these bits is shown below.

Bit Meaning if bit is one:

0 PAGEIN request is finished.

1 The page table is full, the request cannot be queued at this
time for further handling; the request is ignored, bit 0 is

set.

2 One or more of the requested pages are outside the requesting
program's partition; PAGEIN is not performed for these pages.

3 At least one negative length has been detected in the area
specifications; PAGEIN is not performed for these areas.

4 List of areas that are to be paged in is not completely in the
requesting program's partition; the request is ignored, bit 0
is set.

5 Paging activity is too high in the system, no performance
improvement is possible; the request is terminated, bit O is
set.

6-7 Reserved.

Any combination of the return bits in the ECB is possible.

Use the WAIT macro with the ecbname as operand for completion of the
PAGEIN macro, before the bits in byte 2 of the ECB are tested.

The PAGEIN function runs asynchronously with the requesting user

task; therefore, if no ECB has been specified, the requesting task
cannot be notified when the PAGEIN function is completed.

206 VSE/Advanced Functions Macro Reference




PDUMP

- - = = = - = = = = = e e M e ==

[name] PDUMP {address1]|(rl)},{address2]|(r2)}
[ ,MFG={area|(S,area)|(r3)}]

This macro provides a hexadecimal dump of the general registers and
of the virtual storage area contained between the two address
expressions (addressl and address2). The contents of registers 0
and 1 are over-written, but the CPU status is retained. Thus, PDUMP
furnishes a dynamic dump (snapshot) useful for program checkout.
Processing continues with your next instruction.

The dump is always directed to SYSLST with 121-byte records. If
SYSLST is not assigned, the PDUMP macro is ignored. The first byte
is an ASA control character. When SYSLST is a disk drive, you must
issue an OPEN macro to any DTF assigned to SYSLST after each PDUMP
that is executed. The OPEN macro updates the disk address main-
tained in the DTF table to agree with the address where the PDUMP
output ends. If the OPEN is not issued, the address is not updated,
and the program is canceled when the next PUT is issued.

I1f non-addressable areas were included in the range of PDUMP, a mes-
sage will be printed to indicate this.

{address1](r1)},{address2|(r2)}: One or both of the addresses can
be specified in register notation. If address2 is not greater than
addressl, or addressl is greater than the highest address in the
allocated virtual storage, the macro results in no operation. If
the value in address2 is greater than the end of the allocated vir-
tual storage area, the virtual storage between addressl and the end
of the allocated virtual storage is dumped.

MFG={area|(S,area)|(r3)}: The MFG operand is required if the pro-
gram which issues the PDUMP is to be reenterable. It specifies the
address of a 64-byte dynamic storage area, that is, storage which
you obtained by a GETVIS macro; this area is needed by the system
during execution of the macro.

Macro Description 207




PFIX

You can code the macro in either of the following two formats:

Name Operation Operand
[name] PFIX beginaddr,endaddr

[ ,beginaddr,endaddr]...
[name] PFIX {listname| (1)}

- G ae - O s e Wn e G en e Ge e S GRS A SR G D e S M e e D A R e G NS D G N ER WS Ge e WD e e M M e

The PFIX macro causes specific pages to be brought into real storage
and fixed in their page frames until they are released at some later
time. The maximum number of pages that may be fixed at any one time
is specified via the ALLOCR command. Each time a page is fixed a
counter for that page is incremented. This counter may never exceed
255 for any page.

If your supervisor was generated with VM=YES (in the SUPVR gener-
ation macro), execution of the macro results in a null operation;
the return code is set to zero.

beginaddr: Points to the first byte of the area to be fixed.

endaddr: Points to the last byte of the area to be fixed.

listhame|(1): 1Is the name of a list of consecutive 8-byte entries
as shown below.

X'00' | address constant | length minus 1

~N

0 1 4
where:

address constant = Address of the first byte of
the area to be fixed.

length A binary constant indicating
the length of the area to

be fixed.

A non-zero byte following an entry indicates the end of the list.
Register notation may be used.

208 VSE/Advanced Functions Macro Reference




PFIX

Exceptional Conditions

Return Codes in

If a PFIX causes the count of fixes for a page to exceed 255,
the task issuing the PFIX is canceled.

If it is not possible to fix all pages requested, then none will
be fixed.

If PFIX is issued in a program running in real mode, it is
ignored and register 15 contains 0.

Register 15

0

4

12

The pages were successfully fixed.

The number of pages to be fixed for one request exceeds the num-
ber of PFIXable page frames; in order for this PFIX request to
be satisfied, more PFIXable storage must be allocated through
the ALLOCR command.

Not enough page frames are available in the partition because of
previous PFIXes or current system resource usage; this PFIX
request could, however, be satisfied at another time without
reallocating PFIXable storage.

One of the specified addresses was invalid.

Macro Description 209




PFREE

You can code the macro in either of the following two formats:

Name Operation Operand

[name] PFREE beginaddr,endaddr
[,beginaddr,endaddr]...

[name] PFREE {listname| (1)}

Each page in the virtual address area is assigned a 'PFIX counter'.
If a page is not fixed - that is, if it is subject to normal page
management - the counter is 0. Whenever a page is fixed by using a
PFIX macro its counter is increased by one. All pages whose count-
ers are greater than O remain fixed in real storage.

The PFREE macro decrements the counter of a specified page by 1. If
a PFREE is issued for a page whose counter is 0, that PFREE is
ignored since the page has already been freed.

If your supervisor was generated with VM=YES (in the SUPVR gener-
ation macro), execution of the macro results in a null operation;
the return code is set to zero.

beginaddr: Points to the first byte of the area to be freed.
endaddr: Points to the last byte of the area to be freed.

listhname(1): 1Is the symbolic name of a list of consecutive 8-byte
entries as shown below.

X'00' | address constant | length minus 1

T
|

1

0 1 4 7
where:

address constant = Address of the first byte of
the area to be freed.

length A binary constant indicating
the length of the area to

be freed.

A non-zero byte following an entry indicates the end of the list.

210 VSE/Advanced Functions Macro Reference




PFREE

Exceptional Conditions

If PFREE is issued by a program running in real mode, the macro is
ignored.

Return Codes in Register 15

0 The pages were successfully freed.

12 One of the specified addresses 'as invalid.

Macro Description 211




POINTR

[name] POINTR {filename| (1)}
,{address| (0)}

The POINTR macro repositions the file specified by filename to the
record identified by previously issuing a NOTE macro.

If a READ follows the POINTR, the NOTEd record is the record read
(tape or DASD).

For magnetic tape, a WRITE must not follow a POINTR.

For DASD work files, if a WRITE UPDATE follows the POINTR, the NOTEd
record is written (or overwritten). If a WRITE SQ follows the
POINTR, the record after the NOTEd record is written (or
overwritten) and, on CKD DASD, the remainder of the track is erased
(overwritten with zeros). On FBA devices, the remainder of the CI is
erased (overwritten with zeros) and an SEOF is written (the follow-
ing CI is also overwritten with zeros).

filename|(1): The filename may be expressed either as a symbol or
in register notation.

address|(0): Specifies a virtual storage location in which is
stored either a four-byte record identifier or a four-byte record
identifier plus a two-byte track or CI capacity. The four- or
six-byte number must be in the form obtained from the NOTE macro.
The two-byte track or CI capacity is required only when a WRITE SQ
is to be issued following the POINTR.

212 VSE/Advanced Functions Macro Reference




POINTS

The POINTS macro repositions a file to its beginning.

For a tape file, the tape is rewound. If the file contains any head-
er labels, they are bypassed, and the tape is positioned to the
first record following the label set.

For disk work files, the file is repositioned to the lower limit of
the first extent. A POINTS should not be followed by a WRITE UPDATE.
If a POINTS is followed by a WRITE SQ, the first record in the file
is overwritten. For CKD DASD, the remainder of the track is then
erased (overwritten with zeros). For FBA devices, the remainder of
the CI is erased (overwritten with zeros) and an SEOF is written
(the following CI is also overwritten with zeros).

filename|(1): The filename may be expressed either as a symbol or
in register notation.

Macro Description 213




POINTW

- n e e e e e em e e Sn SR e e e e e e e e G = e e e e e e e e e e Mm e e e e e

[name] POINTW {filename| (1)}
,{address| (0)}

The POINTW macrc repositions the file specified by filename to the
record following the record identified by previously issuing a NOTE
macro. A READ or WRITE following a POINIW macro results in the fol-
lowing:

d For magnetic tape, a READ following a POINTW causes the record
following the NOTEd record to be read.

e For DASD work files, a READ following a POINTW causes the NOTEd
record to be read.

. For magnetic tape, a WRITE UPDATE following a POINTW causes the
record following the NOTEd record to be overwritten.

N For DASD work files, a WRITE UPDATE following a POINTW causes
the NOTEd record to be overwritten.

If a WRITE SQ follows the POINTW, the record after the NOTEd record
is written (or overwritten) and, on CKD DASD, the remainder of the
track is erased (overwritten with zeros). On FBA devices, the
remainder of the CI is erased (overwritten with zeros) and an SEOF
is written (the following CI is also overwritten with zeros).

filename|(1): The filename may be expressed either as a symbol or
in register notation.

address|(0): Specifies a virtual storage location in which is
stored either a four-byte record identifier or a four-byte record
identifier plus a two-byte track or CI capacity. The four- or
six-byte number must be in the form obtained from the NOTE macro.
The two-byte track or CI capacity is required only when a WRITE SQ
is to be issued following the POINTW.

214 VSE/Advanced Functions Macro Reference




POST

S o iutiadbatidiidiede it

[name] POST {ecbname| (1)}
[ ,SAVE={savearea] (0)}]

e ittt

This macro provides intertask communication by posting an ECB (it
turns on byte 2, bit 0). A POST issued to an ECB removes a task
waiting for the ECB from the wait state.

ecbname|(1): Provides the address of the ECB that is to be posted.

SAVE={savearea|(0)}: This operand may be used for taking a spe-
cific waiting task out of the wait state. The operand causes the
system to locate the save area whose address is specified in the
operand and to take only the subtask associated with this save area
out of the wait state. This task normally is waiting for the speci-
fied ECB to be posted.

Although time is saved by specifying this operand, other tasks wait-

ing for this ECB are not taken out of the wait state for this event

by this issuance of the POST macro. This does not guarantee that
they will stay in the wait state until another POST is issued. On
the contrary, other events could cause the other tasks to be dis-
patched. For this reason the POST macro should not be used with the
SAVE operand to control subtask operation unless separate ECB's are
used. Otherwise, it should be used only to save time. When a POST
is issued without the SAVE operand, all tasks waiting for the ECB
are taken out of the wait state, and the highest priority task
regains control.

Macro Description 215




PRMOD

- e e e - . e e e e e e G e e m e S e R e e e m T e e e e e e M e e e e e e e . e e

[name] PRMOD [CONTROL=YES]
[ ,CTLCHR={YES |ASA}]
[ ,DEVICE=xxxXxX]
[ ,ERROPT=YES]
[ ,FUNC=xxx]
[ , IOAREA2=YES]
[ ,PRINTOV=YES]
[ ,RDONLY=YES]
[ ,RECFORM={FIXUNB |VARUNB |UNDEF}]
[ , SEPASMB=YES]
[, STLIST=YES]
[ ,TRC=YES]
[ ,WORKA=YES]

- . e e e e e e e e on G Om R e G e e G e e e e e e e S e M e R e MR e e w e e W e e e e e G e e

The PRMOD macro defines a logic module for a printer file.

If advanced printer buffering is used on your 3800 Prlnter
Subsystem, the PRMOD macro is not needed.

CONTROL=YES: 1Include this operand if CNTRL macros are used with
the associated DTFs. The module also processes files that do not use
the CNTRL macro. If CONTROL is specified, the CTLCHR operand must
not be specified.

The CONTROL operand is not allowed for the 2560 or 5424/5425.

CTLCHR={YES|ASA}: 1Include this operand if first-character car-
riage control is used. Any DTF used with the module must have the
same operand. If CTLCHR is specified, CONTROL must not be
specified.

CTLCHR must not be specified for the 2560 or 5424/5425.

If CTLCHR=ASA is specified for the 3525, the + character is not
allowed. For 3525 print (not associated) files, you must issue
either a space 1 command or skip to channel 1 command to print on
the first line of a card. For 3525 print associated files, you must
issue a space 1 command to print on the first line of a card.

If, in a multitasking environment, several DTFPRs address the same
device, and at least one DTF specified CTLCHR=ASA, overprinting may
occur. Therefore, while a DTFPR (with CTLCHR=ASA) is doing an I/0
operation, no other DTFPR should be allowed to do I/0O on the same
device.

DEVICE={1403|1443|2245|2560P | 2560S | 3203|3211|3525|3800|5203|
5425P|5425S|PRT1}: This operand specifies which device is used
for the file. The 'P' and 'S' included with the '2560' and '5425'

216 VSE/Advanced Functions Macro Reference




PRMOD

parameters specify primary or secondary input hoppers; regardless of
which is specified, however, the module generated will handle DTFs
specifying either hopper. Specify 5425P/S for 5424P/S.

Any DTF to be used with this module must have the same operand (ex-
cept as just noted concerning the 'p' and 'S' specification for the
2560 or 5424/5425).

ERROPT=YES: This operand must be specified if ERROPT=name is
specified in a DTFPR that is to be used with the module.
(ERROPT=name is applicable to a PRT1 printer only.) If ERROPT is not
specified in the DTFPR, or if ERROPT=RETRY (3211) or ERROPT=IGNORE
(3525) is specified, ERROPT=YES must be omitted.

FUNC={W[T]|RW[T]IRPW[T]|PW[T]}: This operand specifies the
type of file to be processed by the 2560, 3525, or 5424/5425. Any
DTF used with the module must include the same operand. W indicates
print, R indicates read, P indicates punch, and T (for the 3525
only) indicates an optional 2-line printer.

RW[T], RPW[T], and PW[T] are used to specify associated files; when
one of these parameters is specified for a printer file it must also
be specified for the associated file(s).

If a 2-line printer is not specified for the 3525, multi-line print
is assumed. T is ignored if CONTROL or CTLCHR is specified.

IOAREA2=YES: Include this operand if a second 1/0 area is used.
Any DTF used with the module must also include the IOAREAZ operand.

PRINTOV=YES: Include this operand if PRTOV macros are used with
the associated DTFs. The module also processes any files that do not
use the PRTOV macro.

This operand is not allowed for the 2560 or 5424/5425.

RDONLY=YES: This operand causes a read-only module to be gener-
ated. Whenever this operand is specified, any DTF used with the mod-
ule must have the same operand.

RECFORM={FIXUNB|VARUNB|UNDEF}: This operand causes a module
to be generated that processes the specified record format:
fixed-length, variable-length, or undefined. Any DTF used with the
module must include the same operand.

SEPASMB=YES: Include this operand only if this module is to be
assembled separately. This causes a CATALR card with the filename to
be punched ahead of the object deck and the filename to be defined
as an ENTRY point in the assembly. If the operand is omitted, the
assembler assumes that the DTF is assembled together with the prob-
lem program.

STLIST=YES: Include this operand if the selective tape listing
feature (1403 only) is used. If this entry is specified, the

Macro Description 217




PRMOD

CONTROL, CTLCHR, and PRINTOV entries are not valid, and are ignored
if supplied. If this operand is specified, RECFORM must specify
FIXUNB.

TRC=YES: 1Include this operand to specify whether the module is to
test the TRC bit in the DTFPR or iqnore that bit. If TRC=YES is
specified, the generated module can process output files with table
reference characters and those without.

WORKA=YES: Include this operand if records are processed in work

areas instead of in I/0 areas. Any DTF used with the module must
have the same operand.

Standard PRMOD Names

Each name begins with a 3-character prefix (IJD) followed by a
5-character field corresponding to the options permitted in the gen-
eration of the module.

PRMOD name = IJDabcde
RECFORM=FIXUNB

RECFORM=VARUNB
RECFORM=UNDEF

a

o
a<<™m

CTLCHR=ASA

CTLCHR=YES

CONTROL=YES

STLIST=YES

None of these is specified
DEVICE=3525 with 2-line printer
DEVICE=2560

DEVICE=5425

<cHNWNnO>

ERROPT=YES and PRINTOV=YES

PRINTOV=YES, DEVICE is not 3525, and ERROPT is not specified
PRINTOV=YES, DEVICE=3525, and FUNC=W[T] or omitted
PRINTOV=YES, DEVICE=3525, and FUNC=RW[T]

PRINTOV=YES, DEVICE=3525, and FUNC=PW[T]

PRINTOV=YES, DEVICE=3525, and FUNC=RPW[T]

Neither PRINTOV nor ERROPT is specified, and DEVICE is not a
3525

PRINTOV=YES not specified, DEVICE=3525, and FUNC=W[T] or
omitted

PRINTOV=YES not specified, DEVICE=3525, and FUNC=RW[T]
PRINTOV=YES not specified, DEVICE=3525, and FUNC=PW[T]
PRINTOV=YES not specified, DEVICE=3525, and FUNC=RPW[T]
ERROPT=YES and PRINTOV=YES is not specified

FUNC=W or omitted and DEVICE=2560 or 5425

FUNC=RW and DEVICE=2560 or 5425

FUNC=PW and DEVICE=2560 or 5425

FUNC=RPW and DEVICE=2560 or 5425

W anwunn
NOQHHWYWW

I
o

LI T | I T | O T 1 I 1}
NE<CHI®VX

218 VSE/Advanced Functions Macro Reference




PRMOD

d = I IOAREA2=YES

= 7 TOAREA2=YES is not specified
e = V RDONLY=YES and WORKA=YES

= W WORKA=YES

= Y RDONLY=YES

= 7 Neither is specified

Subset/Superset PRMOD Names

Two of the operands allow subsetting. For example, the module name
IJDFCPIW is a superset of the module names IJDFCZIW and IJDFZZIW. No
subsetting or supersetting of PRMOD names is allowed for the 2560 or
5424/5425.

The IBM-supplied preassembled logic modules do not have TRC=YES. The
system programmer can reassemble them with TRC=YES to support 3800
table reference characters. Although the code that is generated for
a module assembled with TRC=YES is different from the code that is
generated for a module with TRC=NO, the module name is the same. If
some, but not all PRMOD logic modules are reassembled this way, it
may interfere with subsetting or supersetting.

@ o o o e . - e G . A e S e e Ae Se e me e Gm Am M Pe W ke SR e M SR AR R SR

% E
IJDF Iv
\Y Z W

U Y

Z

NO+ <O R

Mo+ +0nQ++0H+0H+FNT+MXECH

+ Subsetting/supersetting permitted.
* No subsetting/supersetting permitted.

o o om - = o o - = e e e T e e e e e e e e M W e R s S0

Macro Description 219



PRTOV

[name] PRTOV {filename| (1)},{9]12}
[ ,routine-name|, (0)]

The PRTOV (printer overflow) macro is used with a printer file to
specify the operation to be performed when a carriage overflow con-
diticn occurs. To use this macro, the PRINTOV=YES operand must be
included in the DTFPR macro.

filename|(1): This operand is required. Must be the filename,
written either as a symbol or in register notation.

9]112: This operand is required. Specifies the number of the car-
riage control channel (9 or 12) used to indicate the overflow. When
an overflow condition occurs, IOCS advances the printer carriage to
the first printing line on the form (channel 1), and normal printing
continues.

routine-name|(0): Specify this operand only if you prefer to
branch to your own routine on an overflow condition, rather than
skipping directly to channel 1. It specifies the name of the
routine, as a symbol or in register notation. However, the name
should never be preloaded into register 1.

If you specify the third parameter, IOCS does not advance the car-
riage to channel 1.

Return from the overflow routine via register 14.

220 VSE/Advanced Functions Macro Reference




PTMOD

-—..----.—--_--_--.._-_-—__-..---—----.—--_..-_-_----_-----—------

[name] PTMOD [DEVICE={2671]1017]|1018}]
[ ,RECFORM={F IXUNB | UNDEF} ]
[,SCAN=YES]
[, SEPASMB=YES]
[ TRANS=YES]

The PTMOD macro defines a logic module for a paper tape file. If
you do not provide a name for the module, IOCS generates a standard
module name.

DEVICE={2671|1017|1018}: Required only to specify an I/0 device
other than 2671 used by the module. Any DTF used with the module
must have the same operand. 2671 is assumed if this operand is omit-
ted.

RECFORM={FIXUNB|UNDEF}: Required only if the operand SCAN=YES
is present. If records of undefined format using the SCAN option are
translated, specify the UNDEF parameter. If records of fixed
unblocked format are translated, the FIXUNB parameter may be speci-
fied or omitted.

SCAN=YES: Required for records containing shift characters
and/or characters that are automatically deleted by IOCS.

SEPASMB=YES: Include this operand only if the module is assem-
bled separately. This causes a CATALR card with the module name
(standard or user-specified) to be punched ahead of the object deck
and defines the module name as an ENTRY point in the assembly. If
the operand is omitted, the assembler assumes that the module is
being assembled with the DTF and the problem program and no CATALR
card is punched.

TRANS=YES: Required only if records using an unshifted code are
translated and if the operand SCAN=YES is not specified.

Standard PTMOD Names

Each name begins with a 3-character prefix (IJE) and continues with
a 5-character field corresponding tc the options permitted in the
generation of the module.

PTMOD name =IJEabcde

S SCAN=YES
Z SCAN=YES is not specified

Macro Description 221




PTMOD

TRANS=YES (SCAN=YES is not specified)
TRANS=YES is not specified

SIS

(2]

F RECFORM=FIXUNB, and SCAN=YES
RECFORM=UNDEF, and SCAN=YES
Z SCAN=YES is not specified, and/or DEVICE=1018

o
c

1 DEVICE=1017
DEVICE=1018
Z DEVICE=2671, or if this entry is omitted

Wonon
[ 3]

2 = L always

Subset/Superset PTMOD Names

The following chart shows the PTMOD names. No subsetting or super-
setting is allowed.

o,
b

NNOHENNGMHENN

e e w Gn e e Tm R DGR ER G e Ge e G TR e R R M e e en e e Cm Gm G s e ew e ee e e e S

B Tl I I Lk "

222 VSE/Advanced Functions Macro Reference




PUT

----------------------_-----..-----—-...----_..-..--_-_-_---—-

[name] PUT {filename| (1)}
[ ,workname|, (0)]
[,STLSP={controlfie1d|(rl)}]
[,STLSK={controlfie1d|(r2)}]

--------------------------—-----—--_-_--_---—-—----—-—-—_

PUT writes, prints, or punches logical records which are built
directly in the output area or in a specified work area. PUT can be
used for any sequential output file defined by a DTF macro, and for
any type of record: blocked or unblocked, fixed or variable length,
and undefined. It operates much the same as GET but in reverse. It
is issued after a record has been built.

filename|(1): This operand must be the same as the name of the DTF
macro for the file that is being built. The operand can be specified
as a symbol or in either special or ordinary register notation. The
high-order eight bits of the register must be zero, or unpredictable
results may occur. Use register notation if your program is to be
self-relocating.

workname|(0): This operand specifies a work area name or a regis-
ter (in either special or ordinary register notation) containing the
address of the work area. The work area address should never be
preloaded into register 1. This operand is used if records are built
in a work area which you define yourself (for example, using a DS
instruction). If the operand is specified, all PUTs for the named
file must use either a register or a workname. PUT then moves each
record from the work area to the output area.

Individual records for a logical file may be built in the same work
area or in different work areas. Each PUT macro specifies the work
area where the completed record was built. However, only one work
area can be specified in any one PUT macro.

Whenever a PUT macro transfers an output data record from an output
area (or work area) to an I/0 device, the data remains in the area
until it is either cleared or replaced by other data. IOCS does not
clear the area. Therefore, if you plan to build another record whose
data does not use every position of the output area or work area,
you must clear that area before you build the record. If this is
not done, the new record will contain interspersed characters from
the preceding record.

STLSP={controlfield|(r1)}: This operand specifies a control byte
that allows for spacing while using the selective tape listing fea-
ture on the 1403 printer. To use this feature, the operand
STLST=YES must be specified in the DTFPR. Up to 8 paper tapes may be
independently spaced. The control byte is set up like any other
data byte in virtual storage. You can also use ordinary register

Macro Description 223




PUT

notation to provide the address of the control byte. Registers 2
through 12 are available without restriction. You determine the
spacing (which occurs after printing) by setting on the bits corre-
sponding to the tapes you want to space. The correspondence between
control byte bits and tapes is as follows:

| I
|Control byte bits| 0 | 1 | 2 | 3 | 4| 5| 6| 7|
| |
| Tape position | 8| 7| 6]|5]4]3]2]1

| ]

The tape position 1 is the leftmost tape on the selective tape list-
ing device.

Note: Double-width tapes must be controlled by both bits of
the control field.

STLSK={controlfield|(r2)}: This operand specifies a control byte
that allows for skipping while using the selective tape listing fea-
ture on the 1403 printer. To use this feature, the operand
STLIST=YES must be specified in the DTFPR. Up to 8 paper tapes may
be independently skipped. The control byte is set up like any other
data byte in virtual storage. You can also use ordinary register
notation to provide the address of the control byte. Registers 2
through 12 are available without restriction. You determine the
skipping (which occurs after printing) by setting on the bits corre-
sponding to the tapes you want to skip. The correspondence between
control byte bits and tapes is shown in the figure under
"STLSP=control field", above.

224 VSE/Advanced Functions Macro Reference



PUTR

- - - . = . = e ee e em - e e e e M em e Se e Sm Sm G e e M e M S Gm e e e

[name] PUTR {filename| (1)}
[,{worknamel]|(0)},
{workname2]| (2)}]

The PUTR (PUT with reply) macro is used for the display operator
console, to issue a message to the operator which requires operator
action and which will not be deleted from the display screen until
the operator has issued a reply.

You may also use PUTR with the 3210 or 3215 console
printer-keyboard, in which case PUTR functions the same as PUT fol-
lowed by GET for these devices, but provides the message
non-deletion code for the display operator console. Use of PUTR for
the 3210 or 3215 is therefore recommended for compatibility if your
program may at some time be run on the display operator console
instead of the 3210 or 3215.

Use PUTR for fixed unblocked records (messages). Issue PUIR after a
record has been built.

Do not use register 2 as base register in any of the PUTR operands.

filename|(1): This operand must be the same as the name of the
DTFCN for the file that is being built. The filename can be speci-
fied as a symbol or in either special or ordinary register notation.
The latter is necessary to make your programs self-relocating.

workname1|(0): This operand specifies the output work area name
or a register (in either special or ordinary register notation) con-
taining the address of the output work area. The work area address
should never be preloaded into registers 1 or 2. This parameter is
used if records are built in a work area which you define yourself
(for example, using a DS instruction). The length of the work area
is defined by the BLKSIZE parameter of the DTFCN macro. If worknamel
is specified, workname2 must also be specified.

workname2|(2): This operand specifies the input work area name or
a register (in either special or ordinary register notation) con-
taining the address of the input work area. The work area address
should never be preloaded into registers O or 1. This parameter is
used if records are built in a work area which you define yourself
(for example, using a DS instruction). The length of the work area
is defined by the INPSIZE parameter of the DTFCN macro. If workname2
is specified, worknamel must also be specified.

Macro Description 225




RCB

- - - e o e e e e e e e e e e e e e e e e e e e e e M G e e R AR e e

The RCB macro generates an 8-byte word-aligned resource control
block (RCB); this block allows you to protect a user-defined
resource if the ENQ macro is issued before (and the DEQ macro is
issued after) each use of the resource. The format of the RCB and
its use is shown below.

Bytes Purpose of bits

0 All bits are set to 1 to indicate that the resource has been
placed in a priority queue by the ENQ macro.

1-3 Reserved.

4 bit 0=1: Another task is waiting to use the resource.
Bits 1-7: Reserved.

5-7 ECB address of current resource owner.

226 VSE/Advanced Functions Macro Reference




RDLNE

- - - . o= - - " e &S s we e Ms W M Ge ee M e M OB G R em e M M W M MR M e e W em e R
- - - - - s - - e e e e e G e s S Gm e e em e MM Gm D GD W RS e T SR NS G aE Ge W e em e S e e e o o

- n - . e e e o e S e M e e e - e e e e M ME e W M e G W MR e W W W M O MR S e Ge e M e oe

The RDLNE macro provides selective on-line correction when process-
ing journal tapes on the 1287 optical reader. This macro reads a
line in the on-line correction mode while processing in the cff-line
correction mode. RDIM? should be used in the CORLIIL routine o,
or else the line following the one in error will be read in on-lins
correction mode.

If the 1287 cannot read a character, IOCS first resets the input
area to binary zeros and then retries the line containing the char-
acter that could not be read. If the read is unsuccessful, you are
informed of this condition via your error correction routine (speci~
fied in DTFOR COREXIT). The RDINE macro may then be issued to cause
another attempt to read the line. If the character in the line still
cannot be read, the character is displayed on the 1287 display
scope. The operator keys in the correct character, if possible. If
the operator cannot readily identify the defective character, he may
enter the reject character in the error line. This condition is
posted in filename+80 for your examination. Wrong-length records and
incomplete read conditions are also posted in filename+80.

filename|(1): The symbolic name of the 1287 file from which the

record is to be retrieved. This name is the same as that specified
in the DTFOR header entry for the file.

Macro Description 227




READ

- n e e e e e e e w e e e e e e e S SR e e e Sm M e e Ee e e e e e M e we S R R R G G G e e M e G Gm e TR e G e e e

Name Operation Operand
[name] READ {filename| (1)}
{,8Q,{area| (0)}[,1length|,(r1)],S]
|, ID
| ,KEY

| ,OR,{name| (r2)}
| ,DR,{name| (r3) |number ,number}
| MR}

8 e A e - e Gn MR U e e e GE MG S GG ES Ge M e Ge We Se e W S SR S G e e e e e s Ge e R e e G NS M M ee G M Y M M W e e e s o

The READ macro transfers a record or part of a record from an input
file to an area in virtual storage.

filename|(1): Specifies the name of the file from which the record
is to be read. The name is the same as that specified in the DTF
header entry.

SQ: Required for sequential files.
area|(0): The name of the input area used by a sequential file.

length|(r1)]|S: Used only for sequential files of undefined format
(RECFORM=UNDEF). Specifies the actual number of bytes to be read, or
the register where the number is to be found. S specifies that the
entire record is to be read. The length of the record is taken from
the DTF filenameL field.

ID: For DAM, specifies that the reference is to be by ID (identi-
fier in the count area of the record).

KEY: For ISAM, KEY is required. For DAM, specifies that the

record reference is to be by record key (control information in the
key area of the DASD record).

OR: Signifies that the file is for a 1287 or 1288 optical charac-
ter reader.

name|(r2): Specifies the CCW list address to be used to read a
document from the 1287 or 1288.

DR: Indicates a 3886 Optical Character Reader is the input device.

The line number to be read and the format record for the line are
specified in one of three ways:

. name provides the symbolic address of a 2-byte hexadecimal

field containing the line number in the first byte and the for-
mat record number in the second byte.

228 VSE/Advanced Functions Macro Reference




e (r3) provides the number of the register that contains the
address of the two-byte hexadecimal field.

e number,number provides the decimal line number to be read (any
number from 1 through 33), followed by the format record number

used to read the line (0-63).

MR: Signifies that the file is for a magnetic ink character reader
(MICR).

Macro Description 229




REALAD

e e e e e N e W e U Gm A €3 e e e e e M M e T e e M Ge e e s e e Se W e 7 M M G R S e e e e
0 . . e m ee T e Un G wm e e W e T e e M SR G e R e AR G e e e e S e WM Gm e m e e e e e G

e v e e e e M SO A e A e W e G G ee e e MA e e s Cw Gm W e e G L WM S e R e e W R e e e S e

In S$/370 mode, the REALAD macro returns the real address correspond-
ing to a specified virtual address. If issued in ECPS:VSE mode, the
macro returns the specified virtual address.

address|{1): Is the virtual address to be converted. It can be
specified as a symbol or in register notation.

Register 0 returns the address corresponding to the specified virtu-
al address if and only if the virtual address points to a PFIXed
page, otherwise register 0 contains 0. Thus, the macro can be used
to test if a page is PFIXed.

Note: The pages of a partition running in real mode are
treated as if they were fixed.

230 VSE/Advanced Functions Macro Reference



RELEASE

[name] RELEASE (SYSnnn[,SYSnnn]...)
[ ,savearea]

RELEASE specifies the names of programmer logical units to be
released. RELEASE may be used only for units used within a given
partition

SYSnnn: Specifies the programmer logical unit that is to be
released. Up to 16 units may be specified in a list, which must be
enclosed in parentheses.

All the units specified are checked by the assembler to assure that
no system logical units are requested for release. If system log-
ical units are specified, an MNOTE is issued and such units are
ignored. Before any release is attempted, a check is made for own-
ership of the unit. If the requesting partition does not own the
unit, or if the unit is already unassigned, the request is ignored.

savearea: Is the name of an 8-byte word-aligned area where regis-
ters 0 and 1 are saved for your program. If the operand is not pro-
vided, the contents of registers 0 and 1 are over-written.

The macro expansion includes a unit table and loads the table's
address into register 0. If the savearea operand is specified, the
macro expansion saves registers 0 and 1.

If there is no permanent assignment, the device is unassigned. If
the device is at permanent assignment level, no action is taken on
the unit.

Recommendation: You should inform the system operator via a mes-
sage that the assignment was released.

Macro Description 231




RELPAG

You can code the macro in either of the following two formats:

- en . . e W S SR A e e e R A e e e e M A6 e G MR M e S s o Gm % M Be M M B TR e S e e e e e G

" e e o T e e Gm e e e e G e G e e M e M e Be MR G e e S R Ge e s N G Gn G SR WD G M W WS e em e

[name] RELPAG beginaddr,endaddr
[ ,beginaddr,endaddr]...

[name] RELPAG listname| (1)}

- v I T e

The RELPAG macro causes the contents of one or more storage areas to
be released. If the affected areas are in real storage when the
RELPAG macro is executed, their contents are not saved but are over-
written when the associated page frames are needed to satisfy pend-
ing page frame requests.

After the RELPAG macro has been executed for an area and a location
in that area is referenced again during the current program exe-
cution, the related page is attached to a page frame which contains
all zeros.

The storage area is released only if it contains at least one full
page. You can be sure of this only if the specified area is 4K
minus 1 byte, or bigger (see Figure 22 on page 150).

beginaddr: Points to the first byte of the area to be released.

endaddr: Points to the last byte of the area to be released.

listname|(1): 1Is the symbolic name of a list of consecutive 8-byte
entries as shown below.

X'00' | address constant | length minus 1

-

0
!
0 1 4

where:

address constant = Address of the first byte of
the area to be released.

length A binary constant indicating

the length of the area to be
released.

A non-zero byte following an entry indicates the end of the list.

Register notation may be used.

232 VSE/Advanced Functions Macro Reference



RELPAG

Exceptional Conditions

Return Codes in

The program is running in real mode.

The area is, fully or partially, outside of the virtual parti-
tion of the requesting program.

A page handling request is pending for the referenced page(s).
The page(s) is (are) fixed. For these pages, the RELPAG request

will be ignored.

Register 15

0

16

Any

All referenced pages have been released or the request has been
ignored because the requesting program is running in real mode.

The begin address is greater than the end address, or a negative
length has been found.

The area, fully or partially, does not belong to the partition
where the issuing program is running. The release request has
only been executed for those pages which belong to the partition
of the issuing program.

a. At least one of the requested pages is temporarily fixed (via
CCW-translation) and/or PFIXed. The release request has only
been executed for the unfixed pages.

b. A page handling request (page fault, temporary fix, PFIX) for
at least one of the requested pages is pending (caused by asyn-
chronous processing within a partition). The release request
has not been executed for those pages which are involved in a
page handling request.

List of areas that are to be released is not completely in the
requesting program's partition. The request is ignored.

combination of the return codes 2, 4, and 8 is possible.

Macro Description 233




RELSE

The RELSE (release) macro is used with blocked input records read
from a DASD device, or updated on a DASD device. This macro is also
used with blocked input records read from magnetic tape.

The macro allows you to skip the remaining records in a block and
continue processing with the first record of the next block when the
next GET macro is issued. When used with blocked spanned records,
RELSE makes the next GET skip to the first segment of the next
record.

filename|(1): The symbolic name of the file, specified in the DTF

header entry. It is the only parameter required for this macro and
can be specified as a symbol or in register notation.

234 VSE/Advanced Functions Macro Reference



RESCN

- - - - - = . . = e e e = R e e G e e N R M MR W e W R L e S

U g e e R R I I

[name] RESCN {filename| (1)}
,(r1),(r2)[,nl][,n2]

The RESCN macro selectively rereads a field on a document if ome or
more defective characters make this type of operation necessary.

The field is always right-justified into the area (normally within
I0AREA1) that was originally intended for this field as specified in
the CCW. The macro first resets this area to binary zeros.

Note: For the 1287 models 3 and 4 and the 1288, this macro
can only be used with READ BACKWARD commands. If used with
READ FORWARD commands, the input area is not cleared. When
1288 unformatted fields are read, the RESCN macro should not
be used.

filename|(1): Specifies the symbolic name of the 1287D file as
specified in the DTFOR header entry for the file.

(r1): Specifies a general-purpose register from 2 to 12 into which
the program places the address of the load format CCW.

(r2): Specifies a general-purpose register from 2 to 12 into which
the program places the address of the load format CCW for reading
the reference mark.

The previous three parameters are always required, and result in one
attempted reread for the field.

nl: Allows you to specify the number of attempts (one to nine
allowed) to reread the unreadable field. If this parameter is omit-
ted, one is assumed. If nl is omitted but n2 is specified, a comma
must be coded instead of nl to indicate its absence.

n2: Indicates one more reread which forces on-line correction of
any unreadable character(s) by individually projecting the unread-
able character(s) on the 1287 display scope.

The operator must key in a correction (or reject) character(s). This
operand cannot be used for 1288 processing.

Macro Description 235



RETURN

The RETURN macro restores the registers whose contents were saved
and returns control to the calling program.

The operands rl,r2 specify the range of the registers to be reloaded
from the save area of the program that receives control. The oper-
ands are written as self-defining values. When inserted in an LM
machine instruction, the operands cause the desired registers in the
range from 14 through 12 (14, 15, O through 12) to be restored from
words &4 through 18 of the save area. If r2 is omitted, only the
register specified by rl is restored. To access this save area,
register 13 must contain the save area address. Therefore, the
address of the save area should be loaded into register 13 before
execution of the RETURN macro.

236 VSE/Advanced Functions Macro Reference




RUNMODE

The RUNMODE macro returns the following information to the program
issuing it:

. Register 1 contains 0 if the issuing program is running in vir-

tual mode.

Register 1 contains 4 if the issuing program is running in real
mode.

No operand is required for this macro.

Macro Description 237




SAVE

The SAVE macro stores the contents of specified registers in the
save area provided by the calling program.

The operands rl,r2 specify the range of the registers to be stored
in the save area of the calling program. The address of this area
is passed to the program in register 13. The operands are written
as self-defining values so that they cause desired registers in the
range of 14 through 12 (14, 15, 0 through 12) to be stored when
inserted in an STM assembler instruction.

Registers 14 and 15, if specified, are saved in words 4 and 5 of the
save area. Registers 0 through 12 are saved in words 6 through 18
of the save area. The contents of a given register are always
stored in a particular word in the save area. For example, register
3 is always saved in word 9 even if register 2 is not saved.

If r2 is omitted, only the register specified by rl is saved.

238 VSE/Advanced Functions Macro Reference




SECTVAL

[name] SECTVAL [DDKR={namel]| (0)}]
[ ,DVCTYP=name2]

o o  n on - e e e e Sm e S M e e R G s e YR M m e e SR SR e MR M TR M W e R e M R M e

The SECTVAL macro calculates the sector value of the address of the
requested record on the track of a disk storage device when RPS is
used. The macro returns this value in register O.

The sector value is calculated from data length, key length, and
record number information. Values are calculated for fixed or vari-
able length and for keyed and non-keyed records.

DDKR={name1|(0)}: The information needed to calculate the sector
value should be specified in the 4-byte field at namel, or in the
specified register. If no operand is specified, register 0 is the
default and should contain the necessary information. The four
bytes of information have the format DDKR, where

DD= 2-byte field which specifies:
i for fixed length records, the data length of each record, or

. for variable length records, the number of data bytes used on
the track, excluding standard RO length up ‘to the current
record. Bit 0 of the first byte must be set on and the record
field (R) or key field (K) must be non-zero.

If the K and R fields are zero, the DD field is considered as a
16-bit integer number specifying the total number of bytes used
so far on the track (except RO, but including all other
overhead). ‘

P
"

a 1-byte field indicating the key length:

° for fixed length records, the actual key length must be speci-
fied;

. for variable length records, any non-zero value is sufficient to
indicate the presence of keys.

Note: For non-keyed records the value should be 0.

R= a 1-byte record number field which specifies the number of the
record of which the sector value is being requested.

DVCTYP=name2: The device type code is specified at name2. If no
operand is specified, it is assumed that byte 0 of register 1 con-
tains the code. The following device type codes (which are the same
as the device type codes generated in the DTF) are valid for:

Macro Description 239




SECTVAL

3330, Models 1 and 2: X'04'
3330, Model 11: X'05'

3340: X'08', X'09', or X'0A'
3350: X'07'

3375: X'0B'

The calculated sector value is returned in register 0. If any

errors are detected in calculating the sector value, a no-operation
sector value (X'FF') is returned.

240 VSE/Advanced Functions Macro Reference



SEOV

The SEOV (system end-of-volume) macro must only be used with phys-
ical IOCS to automatically switch volumes if SYSLST or SYSPCH are
assigned to a tape output file. SEOV writes a tapemark, rewinds and
unloads the tape, and checks for an alterunate Lape. If none is
found, a message is issued to the operator who can mount a new tape
on the same drive and continue. If an alternate unit is assigned,
the macro fetches the alternate switching routine to promote the
alternate unit, opens the new tape, and makes it ready for process-
ing. When using this macro, you must check for the end-of-volume
condition in the CCB.

Macro Description 241




SETDEV

[name] SETDEV {filename| (1)}
,{phasename| (r)}

The SETDEV macro changes format records during execution of the pro-
gram. When the new format record has been loaded into the 3886, con-
trol returus tu the next sequential instruction in your program. If
the operation is not successful, the completion code is posted at
EXITIND and control is passed to the COREXIT routine, or the job is
canceled. If you issue the SETDEV macro and no documents remain to
be processed and the end-of-file key has been pressed on the device,
control is passed to the end-of-file routine.

filename|(1): Specifies the same name as that used in the DTFDR
header entry. Register notation must be used if your program is to
be self-relocating.

phasename|(r): Specifies the name of the format record to be

loaded; or indicates the register containing the address of an
8-byte area that contains the phasename.

242 VSE/Advanced Functions Macro Reference




SETFL

- - " - - - - - G o e A e e W e R M Ge e e G S G M N W R SR M e TS A SR MR D M mEm S
- o - e G . - wn . = e G T e e e SR ME e M G e SR e e MR UE e e R RGN e M MR S M e e e e

The SETFL (set file load mode) macro causes ISAM to set up the file
so that the load or extension function can be performed. This macro
must be issued whenever the file is loaded or extended.

When loading a file, SETFL preformats the last track of each track
index. When extending a file, SETFL preformats only the last track

of the last track index plus each new track index for the extension
of the file. This allows prime data on a shared track to be refer-

enced even though no track indexes exist on the shared track.

filename|(0): The name of the file loaded is the only parameter
required for this macro and is the same as that specified in the
DTFIS header entry for the file. It can be specified as a symbol or
in register notation. Register notation is necessary if your pro-
gram is to be self-relocating.

Macro Description 243




SETIME

[name] SETIME {timervalue| (1)}
[,tecbname|, (r)][,PREC]

The SETIME macro sets the interval timer to the specified value. If
the tecbname operand is specified, bit 0 of byte 2 in the TECB is
set to 0 so that a subsequent WAIT/WAITM macro can be issued by the
task issuing the SETIME macro. A SETIME macro without the tecbname
operand is used in combination with a previous STXIT IT macro.

Note: Any previous STXIT IT specification is overwritten
when using the SETIME macro with the tecbname operand.

When the interval specified in timervalue elapses, the interrupt
routine is entered or the TECB is posted. If tecbname is omitted,
the interrupt routine specified in a previous STXIT IT macro is
entered (if no STXIT IT macro was issued prior to the time of the
interrupt, the interrupt is ignored). If tecbname is specified, the
TECB is posted (bit O of the TECB is set to 1) and the task is
posted ready to run if it is already waiting.

timervalue|(1): Specifies the amount of time for the interval. This
value can be specified either as an absolute expression or in regis-
ter notation. If register notation is used, the pertinent register
must contain the time value.

The largest allowable value is 55,924 seconds (equivalent to 15
hours, 32 minutes, 4 seconds) if PREC is omitted, and 8,388,607
(equivalent to 7 hours, 46 minutes, 2 seconds) if PREC is specified.

tecbname|(r): Specifies the name (address if register notation is
used) of a timer event control block (TECB) which must have been
defined previously in your program by a TECB macro. If you use reg-
ister notation, register 0 and 1 must not be used. After having
executed the SETIME macro, the system returns the TECB address in
register 1.

If you omit tecbname but want to specify PREC, you must code a comma
instead of tecbname to indicate the omission.

PREC: Indicates that the timer value specified in the first oper-

and is expressed in 1/300 of a second. When PREC is omitted, the
timer value is in seconds.

244 VSE/Advanced Functions Macro Reference




SETL

- - - - - = - = = - - = e G M Sw e e M em e Tm W M e W M em = m e S =SS

[name] SETL {filename| (r1)}
,{id-name| (r2) |KEY|BOF | GKEY}

- - - - . e = e e e - M em e e e mn e G M Gm m L SR e S Gm M e em W =S

The SETL (set limits) macro initiates the mode for sequential
retrieval and initializes ISAM to begin retrieval at the specified
starting address.

Note: Sequential processing must always be terminated by
issuing an ESETL macro. The ESETL (end set limit) macro should
be issued before issuing a READ or WRITE if ADDRTR and/or
RANSEQ are specified in the same DTF. Another SETL can be
issued to restart sequential retrieval.

filename|(r1): Specifies the same name as that used in the DTFIS
header entry, as a symbol or in register notation. Register notation
is necessary if your program is to be self-relocating.

id-name|(r2): Specifies that processing is by record ID. The
operand specifies the symbolic name of the 8-byte field in which you
supply the starting (or lowest) reference for ISAM use. This field
contains the information shown in Figure 28 on page 246 .

KEY: Specifies that processing begins with a key you supply. The
key is supplied in the field specified by the DTFIS KEYARG operand.
If the specified key is not present in the file, an indication is
given at filenameC.

BOF: Specifies that retrieval is to start at the beginning of the
logical file.

GKEY: Indicates that selected groups of records within a file
containing identical characters or data in the first locations of
each key can be selected. GKEY allows processing to begin at the
first record (or key) within the desired group. You must supply a
key that identifies the significant (high order) bytes of the
required group of keys. The remainder (or insignificant) bytes of
the key must be padded with blanks, binary zeros, or bytes lower in
collating sequence than any of the insignificant bytes in the first
key of the group to be processed. For example, a GKEY specification
of D6420000 would permit processing to begin at the first record (or
key) containing D642xxxx, regardless of the characters represented
by the x's. Your program must determine when the generic group is
completed. Otherwise, ISAM continues through the remainder of the
file.

Note: If the search key is greater than the highest key on

the file, the filename status byte is set to X'10' (no record
found) .

Macro Description 245




SETL

|
|Byte |Identifier| Contents in Hexadecimal | Information

0 m 02-F5

|[Number of the extent in which
|the starting record is located

|
|
|
| 0000 (disk)
|
l

|
|
l
| 1-2 | |Always zero for disk
| |
34 | cc |Cylinder number for disk:
| | 0000-00C7 (2311,2314,2319) ]| for 2311, 2314, 2319: 0-199
| 0000-0193 (3330, 3333) for 3330, 3333: 0—-403
| | 0000-015B (3348 model 35) |for 3340 with 3348 model 35:
| | 0-347
| 0000-02B7 (3348 model 70) |for 3340 with 3348 model 70:
| 0-695
| |
| 5-6 hh | 0000-0009 (2311) Head position for disk
[ 0000-0013 (2314, 2319)
l 0000-0012 (3330, 3333)
l |0000-000B (3340)
| l
| 7 | r 01-FF Record location
|

Figure 28. Field Supplied for

SETL Processing by Record ID

246 VSE/Advanced Functions Macro Reference




SETPFA

- - - - o - e - - - S S M e e e M SR S G e W e M N R e =SS

The SETPFA macro either establishes or terminates linkage to a page
fault appendage routine that is to be entered each time a page fault
occurs or is completed.

If your supervisor was generated with VM=YES (in the SUPVR gener-
ation macro), execution of the macro results in a null operation.

entryaddress|(0): If an entry address is specified, execution of
the macro establishes linkage to the appendage routine. The routine
at that address will be entered every time a page fault in the asso-
ciated task occurs or is satisfied. The routine to be entered and
all areas referenced by the routine must be fixed in real storage
using the PFIX macro before SETPFA is issued. The entry address may
be specified as a symbol or in register notation.

If SETPFA is issued without an operand, the linkage to the page
fault appendage is terminated. Each issuance of SETPFA supersedes
all previous SETPFA's for that task. Only one task per partition is
allowed to have a page-fault appendage.

A page fault appendage is called only when a page fault occurs in
the task owning the appendage. If a page fault occurs while a
supervisor service routine is working for the owning task, the
appendage is not called. The same may apply to an IBM-supplied com-
ponent such as AFC/VTAM.

Macro Description 247




SETT

B I I N e e e e el e R Y

The SETT macro sets the task timer to the value, in milliseconds,
specified in the operand. The largest allowable value is 21474836
milliseconds. A register can be specified, and if it is, that reg-
ister must contain the number of milliseconds in binary. You can
use the SETT macro only if your supervisor was generated with
TTIME=partition-ID specified in the FOPT generation macro.

The SETT macro can be issued only by the main task of the partition
owning the task timer. If it is issued by a program running in a
partition not owning the task timer, the program is canceled and an
error message indicating illegal SVC is printed.

SETT must not be used within an abnormal termination exit routine.

The time interval is decremented only while the task is executing.
When the specified time interval has elapsed, the task timer routine
supplied in the STXIT TT macro is entered.

If a routine is not supplied to the supervisor by the time of the
interruption, the interrupt is ignored. When a program is restarted
from a checkpoint, timer intervals set by a SETT macro are not
restarted.

248 VSE/Advanced Functions Macro Reference




STXIT

To establish linkage:

[name] STXIT {AB|IT|OC|PC|TT}
,{rtnaddrl(0)},{savearea|(1)}
[,OPTION={DUMPINODUMP|EARLY}]
[ ,MFG={area| (S,area)|(r)}]

To terminate linkage:
[name] STXIT {AB|IT|OC|PC|TT}

The STXIT (set exit) macro establishes or terminates linkage from

the supervisor to an exit routine of your program for handling the
specified condition. Linkage must be established before an inter-
rupt occurs. Always use the EXIT macro to return from these rou-

tines.

When restarting a program from a checkpoint, any STXIT linkages
established prior to the checkpoint are destroyed.

If, in an exit routine, you are issuing I1/0 request(s) requiring the
same logic module as your main routine, you must generate a
read-only module by specifying RDONLY=YES in the DTF and in the log-
ic module. Both the main routine and the exit routine require a
save area of their own. Detailed information on the save area and
interrupt status is given in VSE/Advanced Functions Diagnosis: Ser-
vice Aids, SC33-6099.

Macro Description 249




STXIT

Hexadecimal Specific abnormal termination code meaning
representation
00 Default value for all cases other than those listed
|below.
,.
0A Access control processing error.
0B Access violation.
oC Operator/ICCF system request.
| )} |Program check in subsystem or appendage.
I
| OE Page fault in subsystem or appendage.
OF Invalid FBA DASD address for SYSFIL.
10 Normal EOJ.
11 No channel program translation for unsupported device.
12 Insufficient buffer space for channel program
translation.
I
13 CCW with count greater than 32K.
14 Page pool too small.
| 15 Page fault in disabled program (not a supervisor
routine).
16 Page fault in MICR stacker select or page fault
| appendage routine.
17 Main task issued a CANCEL macro with subtask still
attached.
18 Main task issued a DUMP macro with subtask still
|attached.
19 Operator replied cancel as the result of an I/0 error
message.

Figure 29 (Part 1

250 VSE/Advanced

of 3). Abnormal Termination Codes

Functions Macro Reference




{ﬁexadecimal |Specific abnormal termination code meaning
representation
1A An I/0 error has occurred (see interrupt status
| information).
| 1B |Channel failure.
1C | CANCEL ALL macro issued in another task.
[ 1D |Main task terminated with subtask still attached.
} 1E |I/0 error on external lock file.
{ 1F |CPU failure.
20 A program check occurred.
21 An invalid SVC was issued by the problem program
or macro.
22 Phase not found.
23 CANCEL macro issued.
24 |Canceled due to an operator request.
25 %Invalid virtual storage address given
| (outside partition).
26 1SYSxxx not assigned (unassigned LUB code).

Figure 29 (Part

2 of 3). Abnormal Termination Codes

Macro Description 251

STXIT



STXIT

Hexadecimal |Specific abnormal termination code meaning
representation|

27 }Undefined logical unit.

28 ;Reserved.

29 IReserved.

2A !I/O error on page data set.

2B {I/O error during fetch from library.
| 2C gPage fault appendage routine passed illegal parameter

|to supervisor.

2D |Program cannot be executed/restarted due to a
| failing storage block.

! 2E | Invalid resource request (possible deadlock).
| 2F gMore than 255 PFIX requests for one page.

| 30 iRead past a /& statement.

g 31 }Reserved.

% 32 }Invalid DASD address.

; 33 INo long seek on a DASD.

; 35 gJob control open failure.

% 36 EPage fault in I/0 appendage routine.

% 38 {Wrong privately translated CCW.

‘ 39 IError in SYSLOG channel program.

} 40 !ACF/VTAM error, invalid condition.

; 41 {ACF/VTAM error, invalid condition.

i 42 IInvalid extent information violates DASD file
| | protection.

i I'F {Unrecognized cancel code.

Figure 29 (Part 3 of 3). Abnormal Termination Codes

252 VSE/Advanced Functions Macro Reference



STXIT

AB: An abnormal task termination routine is entered if a task is
terminated for some reason other than a CANCEL, DETACH, DUMP, JDUMP,
RETURN, or EOJ macro being issued by the user program itself. Upon
entry to the task's abnormal termination routine:

. Termination messages and a partition dump are produced, depend-
ing on selected options (see the OPTION operand below).

i Register O contains the abnormal termination code in its low
order byte (see Figure 29 on page 250 ).

° Register 1 points to the task's abnormal-termination save &rea,
which contains the interrupt status information and the contents
of registers 0 through 15 at the time of abnormal termination.

The abnormal termination routine can then examine this data and take
whatever action is necessary.

Macros which should be used in this routine are, for instance, POST
and CLOSE. Macros which should not be used are CHKPT, ENQ, LOCK,
some I/0 macros, or WAIT and WAITM in combination with ECBs, since
the usage of these macros may result in an abnormal termination con-
dition or a wait condition.

Note: An abnormal termination condition within the abnormal
termination exit routine causes this routine to be terminated
immediately. A deadlock situation may occur if a wait condi-
tion occurs within a subtask's abnormal termination exit rou-
tine that has to be posted by the main task.

After the appropriate action is taken, your abnormal termination
routine may either resume processing using the EXIT AB macro (main
task only) or terminate the task with CANCEL, DETACH, DUMP, JDUMP,
EO0J, or RETURN (if RETURN=YES in the ATTACH macro). For a main
task, the whole job is terminated if OPTION=DUMP has been specified
explicitly or by default. Only the current job step is terminated
if OPTION=NODUMP and the termination macro used was either DUMP or
E0J.

If your routine issues the DUMP or JDUMP macro, the system produces
a storage map of the partition even if job control option NODUMP was
specified. For the partition, SYSLST may be assigned to a 3211
printer. If, in addition, indexing was used before your abnormal
termination routine received control, a certain number of characters
on every line of the printed dump may be lost, unless you reload the
printer's FCB (forms control buffer) by issuing an LFCB macro before
you issue the DUMP macro. The FCB image to be loaded in this case
must not have an indexing byte.

Any task in a partition can attach a subtask with an ABSAVE operand.
This assumes the subtask will use the attaching task's abnormal ter-
mination routine. However, the subtask may override this specifica-
tion by issuing its own STXIT AB macro.

Macro Description 253




STXIT

If an abnormal termination condition occurs in a main task and link-
age has not been established to an abnormal termination routine,
processing in the partition is abnormally terminated. However, if
the abnormal termination condition occurs in a subtask without exit
linkage, only the subtask is terminated.

When subtasks are detached or canceled, associated time intervals
and exit linkages are cleared.

IT: An interval timer interruption routine is entered when the
epecified interval elapses. If the program issuing the STXIT macro
insitiuction is a ACF/VTAM application program, the interruption exit
will not be taken while ACF/VTAM is processing any request on behalf
of the application program. The exit will be taken when ACF/VTAM
has completed the program's request.

An interval timer interruption is ignored if no exit linkage has
been established.

If an interval timer interrupt occurs while an interval timer exit
routine is still processing, the handling of the interrupt is
delayed. When processing ends with EXIT IT, the IT exit routine is
entered again to process the new IT interrupt. (This can only occur
if a short time interval was issued in your exit routine).

OC: An operator communication interruption routine is entered when
the operator presses the request key on the console and types the
MSG command. In case of multitasking, only the main task can proc-
ess this condition.

An operator communication interruption is ignored if no exit linkage
has been established.

PC: A program check interruption routine is entered when a program
check occurs. If a program check occurs in a routine being executed
from the logical transient area, the job containing the routine is
abnormally terminated.

A program check interruption routine can be shared by more than one
task within a partition. To accomplish this, issue the STXIT macro
in each subtask with the same routine address but with separate save
areas. To successfully share the same PC routine, the routine must
be reenterable, that is, it must be capable of being used concur-
rently by two or more tasks. (The specified exit is not taken if
the program check occurs while ACF/VTAM is processing a request
issued by the program.)

If a program check condition occurs in a main task without exit
linkage, processing in the partition is terminated. However, if
this same condition occurs in a subtask, only the subtask is termi-
nated.

254 VSE/Advanced Functions Macro Reference




STXIT

TT: Linkage to a task timer interruption routine can be estab-
lished only if TTIME=partition-ID was specified in the FOPT macro
for supervisor assembly.

A task timer interruption routine is entered when the time interval
specified in the SETT macro has elapsed. The STXIT (and EXIT) TT
macro can be issued only by the main task of the partition owning
the task timer. If it is issued by a program running in a partition
not owning task timer, the program is canceled and an error message
indicating illegal SVC is printed.

A task timer interruption is ignored if no exit linkage has been
established. A task timer interrupt is ignored if it occurs while a
task timer exit routine is still processing. (This can happen only
if a short time interval was issued in your exit routine).

rtnaddr: Entry point address of the routine that processes the
condition described in the first operand. Your exit routine may be
located anywhere in the program.

savearea: Address of a 72-byte area in which the supervisor stores
the old interrupt status information and general registers 0 through
15, in that order. Your program must have a separate save area for
each routine that is included.

OPTION={DUMP |NODUMP|EARLY}: This operand can be used only
when setting up linkage (STXIT AB) to an abnormal termination exit
routine. It determines whether termination messages and a dump will
be issued upon entry to the routine.

. If the OPTION operand is omitted or if OPTION=DUMP is specified,
termination messages are issued upon entry to the abnormal ter-
mination routine. In addition, a partition dump is produced
unless the job control option NODUMP is active.

. If OPTION=NODUMP is specified, neither a termination message nor
a dump is produced. However, if the abnormal termination rou-
tine terminates abnormally, termination messages and the dump
are given regardless of the OPTION specification in the STXIT
macro.

If your routine ends with a DUMP macro and the STXIT macro was
specified without OPTION=NODUMP, you will obtain two dumps.

. If OPTION=EARLY is specified (for subsystems only), the AB exit
routine will be invoked for any type of termination (normal or
abnormal) and, for a main task, before propagating the termi-
nation to its subtasks.

An exit with OPTION=EARLY can be set up only once during the
whole lifetime of a task. Any subsequent request to modify or
reset this exit is ignored and one of the following return codes
is set in register 15:

Macro Description 255




STXIT
X'00' Exit successfully set
X'04' Exit already set
X'08' Reset not allowed
X'0C' No subsystem request

This protects the early exit from being overwritten by any user
code that is executed under the same task as the subsystem.

OPTION=EARLY can be set only in a subtask or in the main task
and cannot be transferred via the ATTACH (ABSAVE=) macro.

MFG={area|(S,area)|(r)}: This operand is required if the AB or PC

exit routines are to be reenterable. It specifies the address of a

64-byte dynamic storage area which the system needs during execution
of the macro. Registers 0 and 1 may not be used for register nota-

tion.

Figure 30 shows what happens when one of the five exit conditions
occurs while an STXIT routine is being processed within a particular

partition.
T
| Condition Occurring
Routine being
Processed AB | IT | oC | PC | TT
| I I
AB c|] | 1 D| D
| | |
IT s| E| H H H |
l |
oC S| H| 1| H H
I | | |
| PC | s| H| H T| H|
| | | | |
TT | s| H| H H| 1|
]

Figure 30. Effect of an AB, IT, 0C, PC, or TT Interrupt During STXIT
Routine Execution
C Job canceled immediately without entering AB routine again.
D Interrupt is delayed and the TT or IT exit routine is entered
after the EXIT AB macro is issued. If no EXIT AB is issued, the

interrupt is ignored.

E Handling of new timer interrupt delayed until execution of EXIT
IT for original interrupt.

256 VSE/Advanced Functions Macro Reference



STXIT

H Condition honored. When processing of new routine completes,
control returns to interrupted routine.

I Condition ignored.

S Execution of the routine being processed is suspended, and con-
trol transfers to the AB routine.

T Job abnormally terminated. If AB routine is present, its exit
is taken. Otherwise, a system abnormal termination occurs.

Notes:

1. If an operator communication interruption routine or a program
check interruption routine is in process when a timer interrupt
occurs, your timer routine will be processed; when it completes,
control returns to the interrupted routine.

2. If a task is using a logical transient routine when a timer

interrupt occurs, your timer routine is not entered until the
logical transient routine is released.

Macro Description 257




SUBSID

- . - - = . = . = = G = . e e e e MR R em S e e e S M e e R R R M Gm B SR M MM T e SR e e e S e e e

[name] SUBSID INQUIRY
,NAME={namel| (S,namel) | (rl)}
,AREA={name2| (S,name2) | (r2)}
,LEN={length| (r3)}
[,LVLTEST={NO|YES}]
[ ,MFG={name& | (r4)}]

The SUBSID macro allows you to make inquiries about the supervisor.
The information about the supervisor (such as version number, mod-
ification number, or some indicators) is described by a byte string,
which may be interpreted with the help of the macro MAPSSID.

NAME={namel|(S,namel1)|(r1)}: Specifies the address of a &4-byte
field containing the name SUPb, where b indicates a blank.

AREA={name2|(S,name2)|(r2)}: Specifies the address of the area
into which the requested information is to be stored.

LEN={length|(r3)}: Specifies the length of the area as an integer,
a self-defining term, or as a value in a register. The length to be
specified can be obtained from the DSECT generated by the MAPSSID
macro.

LVLTEST={NO|YES}: Specify LVLTEST=YES if it is possible that
the program might make the inquiry on a prior-release supervisor
that does not support the SUBSID function. This will prevent the
program from being canceled. If LVLTEST=NO is specified and the
inquiry is made by a program running on a supervisor without the
SUBSID function, the inquiring program is canceled.

MFG={name4|(r4)}: The MFG operand is required if the program is
to be reenterable. It specifies the address of a 64-byte dynamic
storage area, that is: storage which your program obtained through
a GETVIS macro. This area is required for system use during exe-
cution of the macro.

Return Codes in Register 15

0 Information returned.

8 Returned information truncated, because the area specified is
too short. Register O contains the total length in the 2 right-
most bytes.

16 Name not found.

20 SUBSID function not available because this is a back-level
supervisor (only if LVLTEST=YES).

258 VSE/Advanced Functions Macro Reference




TECB

The TECB macro generates a timer event control block which can be
referred to by the symbol you specify in the name field. This block
contains an event bit that indicates when the time interval speci-
fied in SETIME has elapsed. The format of this block is as follows:

Byte Purpose of bits
0-1 Reserved
2 Bit O: If O, time specified in SETIME has not elapsed.
If 1, time specified in SETIME has elapsed.
Bit 1-7: Reserved

3 Reserved

Macro Description 259




TESTT

o - - - - G S e e W R e em e M SR Ge M e = e Ge % R R e R S e
- e s e e e e e Ee e SR e e R e e Gn e e S e S e Ge G B e M SR e M e e e e

m e e — e e s v D e =S SR S e Sm e e e Ou Ee e G M S e G ee &P Gm SR e N N R SR N e YR e W e e

The TESTT macro can be used only if TTIME=partition ID was specified
in the FOPT generation macro for supervisor assembly.

The TESTT macro is used to test the amount of time that has elapsed
from a task timer interval set by an associated SETT. The TESTT
macro returns the time remaining in the interval, expressed in hun-
dredths of milliseconds in binary, in register O.

The TESTT macro can be issued only by the main task of the partition
owning the task timer. If it is issued by a program running in a
partition not owning the task timer, the program is canceled and an
error message indicating illegal SVC is printed.

CANCEL: If CANCEL is specified, the remaining time of the inter-
val is canceled, and the task timer exit routine is not entered.

If the macro is issued without an operand, the macro must not con-
tain a comment unless the comment begins with a comma.

260 VSE/Advanced Functions Macro Reference



TPIN

- - e - - - . . . e 0 e e e e an Se s Ge Se e e BR TR MR W e R W e e e e S e e
- . = e e e e e em e e e Gm e e R e A 4m M e em e e e M M R MR G e e M e e e e e

The TPIN macro is available primarily for the telecommunication
applications that require immediate system response. The macro
causes one or more partitions (other than the one issuing the macro}
to be deactivated. The number of partitions that can be deactivate
is specified in the TPBAL command. The partitions to be deactivated
are the ones with the lowest priorities. This request is ignored in
each of the following cases:

e The operator has not made TP balancing active by means of the
TPBAL command.

. None of the partitions specified in the TPBAL command contains a
program running in virtual mode.

* The only partition that could be affected by TP balancing is the
partition that issued the TPIN request.

¢ There is no paging in the system.

The TPIN macro must always be used in conjunction with the TPOUT
macro. The operand field is ignored.

If your supervisor was generated with VM=YES (in the SUPVR gener-
ation macro), execution of the macro results in a null operation.

Macro Description 261



TPOUT

- o . . e n —n . o e e e Sm S e A e G R e SR e SE MR S S R R R SN R e SR T R R W e e e
[ e e e R e e N R I ]

- e e o e . - o e we e A e SR em e e Gn e e e S WS Ge e e W e e Ee M e Gm Wb Gm e Gm er e Gm R e e e e

The TPOUT macro causes the system to reactivate partitions that had
been deactivated by the TPIN macro.

Failure to issue the TPOUT macro can cause considerable and unneces-
sary performance degradation in the batch partition(s). The operand
field is ignored.

If your supervisor was generated with VM=YES (in the SUPVR gener-
ation macro), execution of the macro results in a null operation.

262 VSE/Advanced Functions Macro Reference



TRUNC

- . - . - e e e e Gm e Gm e e e e e SR e G e W R MR W D e M e AR A W em e e e
- - . - - . e e em e e A M R SR e e e M R S e W TR MM R e P MR Mm e R M e e

The TRUNC (truncate) macro is used with blocked output records writ-
ten on DASD or magnetic tape. It allows you to write a short block

of records. Blocks do not include padding. Thus, the TRUNC macro can
be used for a function similar to that of the RELSE macro for input

records. That is, when the end of a category of records is reached,
the last block can be written and the new category can be started at
the beginning of a new block.

Note that TRUNC will not necessarily cause a physical write to an
FBA DASD unless PWRITE is also specified.

filename|(1): The symbolic name of the file, specified in the DTF
header entry, is the only parameter required in this macro.

Macro Description 263



TTIMER

The TTIMER macro is used to test how much time has elapsed of an
interval which was set in the same task by the associated SETIME
macro. The TTIMER macro returns the time remaining of the interval,
expressed in hundredths of seconds in binary, in register 0.

CANCEL: If CANCEL is specified, the time interval set in that
task is canceled. As a result of the TTIMER CANCEL macro, the
interval timer interruption routine of the task (to which linkage
may have been established by an STXIT IT macro) does not receive
control. If the associated SETIME macro specified the same name of
a TECB, that TECB's event bit is set on.

If the macro is issued without an operand, the macro must not con-
tain a comment unless the comment begins with a comma.

264 VSE/Advanced Functions Macro Reference



UNLOCK

- e . " e = e = e e W e e e e ee s S R R ME T e R MmO e e
- = = - = = = e e e R e e e e S M e R e B T W W e en S e e

- s - - - - e = . e e = = R e e e Ge Me e e e MS e s M e M ME R MR R R e e Ee e e e

The UNLOCK macro dequeues the issuing task (or partition) from the
named resource, to which the task had previously been enqueued via
the LOCK macro. The resource must have been defined to the system
by a DTL or GENDTL macro.

In addition, the UNLOCK macro can be used to lower the lock control
level. Reduction of the lock control level may be done only if the
issuing task is currently locked, onto the resource, with the most
stringent control level possible: CONTROL=E and LOCKOPT=1 (the CON-
TROL and LOCKOPT parameters are described with the DTL macro). The
resource then continues to be held by the task; however, another
task waiting for this resource can be dispatched again and may or
may not gain shared access (see also the description of the LOCK
macro). In order to use the UNLOCK macro for this purpose, the
MODDTL macro must have been issued with the CHANGE operand set ON.

{name|(S,name)|(r)}: Specifies the DTL address.

ALL: TFrees all resources which are locked by the task and whose
DTLs were defined with KEEP=NO. If UNLOCK ALL is issued by the main
task, not only the resources locked by that task are unlocked, but
also those which have been locked by subtasks, with OWNER=PARTITION
specified for DTL generation.

Return Codes in Register 15

0 Successful request; the resource has been unlocked.
4 The resource is not locked for the unlocking task.
8 TL format error.

The UNLOCK ALL macro does not provide a return code; register 15
remains unchanged.

Macro Description 265




VIRTAD

i g e e A R e
I i g g R e e e e e R R R I R

In S/370 mode, the VIRTAD macro returns the virtual address corre-
sponding to a specified real address.

address|(1): Is the real storage address to be converted. It can
be given as a symbol or in register notation.

In ECPS:VSE mode, only a virtual address can be specified as input.
The macro returns that same address.

Register O returns the virtual address only if:

4 for S/370 mode, the specified real address points to a page
frame that contains a PFIXed page,

b for ECPS:VSE mode, the specified virtual address points to a
PFIXed page.

Otherwise register O contains 0. Thus, the macro can be used to
test if a page is PFIXed.

Note: The pages of a program running in real mode are con-
sidered to be fixed.

266 VSE/Advanced Functions Macro Reference




WAIT (PIOCS)

- - - - . . " = = = e W= S Ge SR MR G EE Se eR M TR R MR R e e e e M S M e o e e
- - - - . . . = e e e e e e ee e e e e e R R TR SR MR R W em M S e em e e ee

Issue this macro whenever your program requires that an I/0 opera-
tion (started by an EXCP macro) be completed before execution of the
program continues.

With the WAIT macro a task sets itself into the wait state until the
specified control block (CCB or IORB) is posted (bit 0 of byte 2
turned on). Control blocks are normally used to synchronize tasks
within the same partition. Do not use the WAIT macro for waiting on
a CCB or IORB other than the one associated with the task, or with
an I/0 operation started by the same task. (For a description of the
CCB or IORB see the corresponding macros).

When WAIT is processed, and the corresponding control block is not
posted, the issuing task is set into the wait state. Control is then
passed to the supervisor, which makes the processor available to
another task in the same or in another partition.

The task issuing the WAIT macro remains in the wait state until the
corresponding control block has been posted. In this case the event
bit in the control block will be turned on.

blockname|(1): The blockname (specified as a symbol or in register
notation) of the CCB or IORB established for the I/O device is the
only operand required. This is also the same name as that specified
in the EXCP macro for the device.

Macro Description 267



WAIT

- - - - n o e - . e e == e T em Me e m e e S SR R G R T M SR e m N e W M M e e e
- o - e = en . e e e e N R e R em m e e G e G SR R G R AR R e R e e

- - - . o - e P M e . WS e e G S R e M e TR W e e e A S WS SS SR R TR Me W M e e e e

With the WAIT macro a task sets itself into the wait state until the
specified event control block (ECB, XECB, TECB, RCB, CCB, or IORB)
is posted (bit O of byte 2 turned on). ECBs are normally used to
synchronize tasks within the same partition. Use XECB support when
tasks belong to different partitions. Do not use the WAIT macro for
waiting on a telecommunication ECB, an RCB, a TECB, a CCB, or an
IORB other than the one associated with the task (for instance,
elapsed timer interval) or with an I/0 operation started by the same
task. (For a description of an ECB see the ATTACH macro. For a
description of the RCB, TECB, CCB, or IORB see the corresponding
macros.)

When WAIT is processed, and the corresponding event control block is
not posted, the issuing task is set into the wait state. Control is
then passed to the supervisor, which makes the processor available
to another task in the same or in another partition.

The task issuing the WAIT macro remains in the wait state until the
corresponding event control block has been posted. In this case the
event bit in the event control block will be turned on.

Note: When a wait is processed and the corresponding event
bit is turned on, the task will keep control. If an ECB,
TECB, or XECB is to be used more than once, it is the task's
responsibility to reset the event bit as soon as possible
after it has been posted.

268 VSE/Advanced Functions Macro Reference



WAITF

[name] WAITF {filenamel|(rl)}
[,filename2]|,(r2)],..

- - n o = = . = s e R e R R e W e e T R e e W MR M em e e e e e

The WAITF macro is issued to ensure that the transfer of a record is
complete. It is valid for both DAM and ISAM, but for SAM only with
MICR and OCR devices. Filename is the same as that used in the DTF
header entry, and may be specified either as a symbol or in register
notation. Note that multiple filenames are valid only when using
SAM to read MICR records.

The WAITF macro is issued after any READ or WRITE for a file and
before the succeeding READ or WRITE for the same file. If the I/O
operation is not completed when WAITF is issued, the active parti-
tion is placed in a wait state until the data transfer is completed.
This allows processing of programs in other partitions while waiting
for completion. When data transfer is complete, and if no errors
were encountered, processing continues with the next sequential
instruction. If an error is encountered, control passes to the
errdr-handling routine provided for in the DTF.

If, however, you are using the multiple filename format of the WAITF
macro while using MICR records, and if any of the files have records
or errors ready to be processed, control remains in the partition
and processing continues with the instruction following the WAITF.

Macro Description 269




WAITM

o o - - - - . = = e e e e e G e SR GR W SR M M e e Gm Gm Ge e SN AR R A WO ML s R TR M R e e e
- . m e e - . . e e e e e e S R M e e e e s e G Gm e M MR SR G G SR M SN R MR Gn e R e e e W e e e e

- - - . - v = e e e e s Ee e e e e e SR e e e R R L e R MR S R S e

The WAITM macro enables your program or task to wait for one of a
number of events to occur. Control returns to the task when at
least one of the event control blocks specified in the WAITM macro
is posted. Refer to the WAIT macro for a description of the types
of event control blocks and the restrictions on their usage.

The operand provides the addresses of the ECBs to be waited upon.
The names of ecbl, ecb2... are assumed when at least two operands
are supplied. A maximum of 16 names can be coded. If one operand
is supplied, it is assumed to be the name (listname) of a list of
consecutive full-word addresses that point to the ECBs to be waited
upon. The first byte following the last address in the list must be
nonzero to indicate the end of the list.

When control returns to a waiting task, register 1 points to the
posted event control block (byte 2, bit 0 set on).

Note that a MICR CCB gets posted only when the device stops, not
when a record is read. Furthermore, telecommunication ECBs and all
RCBs must not be waited for, because their format does not satisfy a
WAIT or a WAITM (that is, bit 0 of byte 2 would not be posted).

270 VSE/Advanced Functions Macro Reference




WRITE

o o e " =n em o - o o - e . TR M e G e e e S T Sm Gm e M M SR W M GE MR M R R e Gm MR SR e

- n o m e e e o . e e em e e e e e e e Au e Ee e e Sm G e e e ee Gm Ge m T T MR G MR e e e e s SR R s

[name]  WRITE {filename| (1)}
{,{SQ|UPDATE},{area| (0)}[,length|, (r)]
| ,AFTER[ ,EOF ]
|,ID
| ,KEY
| ,NEWKEY
| ,RZERO}

The WRITE macro transfers a record from virtual storage to an output
file. .

filename|(1): Filename specifies the same name as that used in the
DTF header entry. Register notation must be used if your program is
to be self-relocating.

SQ|UPDATE: For sequential files, specify SQ for magnetic tape
files. For disk work files, specify SQ for a formatting write and
UPDATE for a non-formatting write.

When you are using control interval (CI) format, as with an FBA
DASD, a non-formatting WRITE (with UPDATE) writes the current CI,
while a formatting WRITE (with SQ) writes the CI and follows it
immediately with a Software-End-O0f-File (SEOF).

When not writing in CI format, as with CKD disk, a formatting WRITE
writes count, key, and data, while a non-formatting WRITE writes
only data.

area|(0): For sequential files, specifies the name, as a symbol or
in register notation, of the output area used by the file.

length|(r): Specifies the actual number of bytes to be written on a
sequential file. Is used only for records of undefined format
(RECFORM=UNDEF) .

AFTER: For DA files, specify AFTER to write a record after the
last record written, regardless of key or identifier.

EOF: Is optional and applies only to the WRITE...AFTER form of the
macro. Specify to write an end-of-file on a track after the last

record on the track.

ID: For DA files, specify ID to write in a location determined by
the record identifier in the count area of the records.

Macro Description 271




WRITE

KEY: For indexed sequential files, specify KEY for random
updating. For direct access files, specify KEY to write in a
location determined by the record key (control information in the
key area of the records).

NEWKEY: For indexed sequential files only; specify NEWKEY to
write a new (not updated) record in the file. When loading or
extending the file, precede the WRITE filename,NEWKEY with a SETFL
macro and follow it with an ENDFL macro. When adding a record after
sequential retrieval, issue an ESETL macro before writing the
record.

RZERO: For DA files, specify RZERO to reset the capacity record
of a track to its maximum value and erase the track after record
zero.

272 VSE/Advanced Functions Macro Reference



XECBTAB

- - . - . e . e = = e e . e S e e e e e e Ge R SR e R TR M e SR M MmO S Re e e

[name] XECBTAB TYPE={DEFINE | DELETE |
CHECK |RESET | DELETALL}
,XECB=xecbname
[,XECBADR={xerfield|
(S,xecbfield) | (rl)}]
[, ACCESS={XPOST | XWAIT}]
[ ,MFG={area| (S,crca)|(r2)}

The XECBTAB macro can be used

° to define, for the specified cross-partition event control block
(XECB), an entry in the supervisor's XECB table,
to delete such an entry,
to check for the presence of an entry, or
to reset an entry.

An XECB for which an entry has been defined to the supervisor can be
referred to by XPOST and XWAIT macros; an XECB can be referred to
also by a WAIT or WAITM macro if the task issuing the macro has pre-
viously defined the XECB (with ACCESS=XWAIT).

TYPE={DEFINE|DELETE|CHECK|RESET|DELETALL}: The operand
specifies the type of operation to be performed:

DEFINE causes a new XECB table entry to be defined to the
supervisor.

DELETE causes an entry to be deleted from the supervisor's XECB
table. TYPE=DELETE can be specified only for an XECB for which an
entry has been defined previously in the same program.

CHECK causes the system to check whether or not an entry for a spe-
cific XECB has been defined already. If that entry is present,
specifying CHECK causes the address of both the XECB and the associ-
ated XECB table entry to be returned.

RESET causes the system to clear the information in the supervisor
XECB table that indicates which task communicates with the program
having defined the XECB. TYPE=RESET can be specified only for an
XECB for which an entry has been previously defined in the same pro-
gram.

After RESET, any task can attempt to establish a new connection with
the owner. With ACCESS=XPOST, however, if the task currently con-
nected to the XECB is issuing an XWAIT macro (at the time of RESET),
this task will probably establish connection again, nullifying the
RESET operation.

Macro Description 273




XECBTAB

DELETALL performs three actions:

e Causes all entries in the XECB table that were defined previous-
ly by the issuing task to be deleted.

. Breaks the communication between any XECB owner and the issuing
task (that is, clears the information in the XECB table that
indicates that the issuing task communicates with the XECB
owner).

° Posts all tasks as ready-to-run that are waiting for an XPOST by
the issuiig task. Also, the abnormal termination bit in the ECB
is set on (bit 1 of byte 2). If these tasks are XWAITing on the
XECB, they will get a return code of X'08' if they own the XECB.

Notes:

1. If TYPE=DELETALL is specified, the XECB and ACCESS operands must
not be specified. XECBTAB with TYPE=DELETALL specified does not
provide a return code; all registers remain unchanged.

2. XPOST partition abnormal termination is not indicated to tasks
using WAIT or WAITM macro.

XECB=xecbname: Specifies the name of the XECB. If the XECBADR
operand is not present, xecbname is the symbolic address of the
4-byte (or larger) XECB field. If, however, XECBADR is specified,
xecbname is the name by which the control block is known between
partitions; the symbolic address of the control block field is given
by XECBADR.

The XECB field must be defined in your program, except when
TYPE=CHECK is specified: in that case, the XECB field may be defined
in another program.

XECBADR={xecbfield| (S, xecbfield) |(r1)}: XECBADR is used only if
TYPE=DEFINE is specified. It provides the symbolic address of the
4-byte (or larger) field that is to be used as XECB.

ACCESS={XPOST|XWAIT}: This operand can be used together with
TYPE=DEFINE to specify whether the program will be allowed to post
the XECB or wait for another program to do the posting.

XPOST is assumed if the operand is omitted. It specifies that the
program will be allowed to post the XECB. Specifying XPOST implies
that only one other active task is allowed to issue an XWAIT macro
against the XECB.

XWAIT specifies that the program will be allowed to wait for one
other task to post the XECB.

MFG={area|(S,area)|(r2)}: The MFG operand is required if the pro-
gram that issues the XECBTAB macro is to be reenterable. The oper-

274 VSE/Advanced Functions Macro Reference




XECBTAB
and specifies the address of a 64-byte storage area, that is,
storage which your program obtains by a GETVIS macro. This area is
needed for use by the system during execution of the macro.

The MFG operand is only useful in conjunction with XECBADR coded in

either of the two notations (S,xecbfield) or (rl).

Feedback Information

Figure 31 shows the return codes that are supplied in register 15.
The illustration also indicates whether or not the system returns

the addresses of the pertinent XECB and the associated table entry
in registers 1 and 14, respectively.

|

| |  x'00' | x'04' | Xx'08" |

I |

DEFINE | XECB named |XECB named |The XECB |
|is stored |is already |table is

I |in the in the full **

| |table | table ** |
| |

DELETE | XECB named |XECB named |The issuing]
|is removed |was not program did
| from the found ** not define

| | table ¥ the XECB ¥

| |

| CHECK | XECB named |XECB named

I |was found |was not N/A I
|in the | found ** |
| table * | |
| |

|RESET | XECB named |XECB named |The issuing|
| communicat—|was not program did|
| ion bytes |found ¥* not define |
|cleared ** | | the XECB **

o

* Register 1 contains the address of the
| XECB and register 14 the address of the
| table entry.
|

|

**% Registers 1 and 14 are set to zero.

L

Figure 31. XECBTAB Feedback Information

Macro Description 275



XPOST

L R e e e e e e e R

Name Operation Operand
[name] XPOST XECB={xecbname| (1)}
POINTRG=(14)

The XPOST macro provides for cross-partition communication by post-
ing the specified XECB (the macro sets bit 0 of byte 2 to 1). An
XPOST macro issued against an XECB causes the task waiting for this
XECB to be removed from the wait state (the waiting task may have
issued an XWAIT, WAIT or WAITM with a previously defined XECB).
This task may have been activated in the same or in another parti-
tion.

If the XPOST macro is used in a main-line loop, the macro should be
preceded by a test which ensures that the other partition's task
waiting for the event that is being posted must receive control and
execute the function for which this event is a prerequisite.

To perform this test, a second XECB needs to be defined. This XECB
allows the originally waiting task in its main-line loop to post
completion of its function as an event for which the originally
posting task must wait.

Resetting bit O of byte 2 of the XECB is a user responsibility.

Once a task has issued an XPOST macro for an XECB (with
ACCESS=XWAIT), no other task can issue an XPOST for this XECB, until
the connection is ended.

XECB={xecbname|(1)}: Specifies the name of the XECB to be
posted. The name you specify must be the same as the one used to
define the XECB. If register notation is used, the specified regis-
ter must point to an 8-byte character field that contains the XECB
name left-justified and padded with blanks. Do not specify 14 or 15
if you choose to use ordinary register notation.

POINTRG=(14): Specifies the register that points to the XECB
table entry associated with the named XECB. Do not specify register
1 or 15 if you choose to use ordinary register notation.

To obtain the address of the associated XECB table entry, issue ear-
lier in the program an XECBTAB macro for the same XECB and with
TYPE=CHECK or TYPE=DEFINE specified. When the system executes the
XECBTAB macro, it returns, in register 14, the address of the perti-
nent XECB table entry. Figure 5-8, which shows a coding example for
the use of the XWAIT macro, applies to the XPOST macro accordingly.

Note that if the POINTRG register contains O (or any invalid value),
all entries in the XECB table are searched to determine the correct
address; no error is indicated.

276 VSE/Advanced Functions Macro Reference



XPOST

Return Codes in Register 15

When the system returns control to the issuing task, register 15
contains one of the following return codes:

X'00'

X'04'

X'oD'

X'OE'

Successful completion. The named XECB has been posted.

The named XECB has no associated table entry in the XECB
table.

The XECB referred to in the XPOST macro was defined with
ACCESS=XPOST specified in the XECBTAB macro, but the task
that issued the XPOST macro does not own this XECB.

The XECB referred to in the XPOST macro was defined with
ACCESS=XWAIT specified in the XECBTAB macro and either (1)
the task that issued the XPOST macro also defined the XECB or
(2) the XECB has been posted previously during the same exe-
cution by another task.)

Note: Following the execution of an XPOST macro, registers 1
and 14 are set to zero.

Macro Description 277



XWAIT

L R e e R R T T Y

[name] XWAIT XECB={xecbname| (1)}
POINTRG=(14)

L I R i e e e e e I

The XWAIT macro enables the issuing task to wait for an XECB to be
posted by another task that is executing in the same or in another
partition. Control returns to the issuing task when the XECB is
posted or if an error condition is detected.

Once a task has issued an XWAIT macro for an XECB (with
ACCESS=XPOST) to be posted, no other task can issue an XWAIT for
this XECB, until the connection is ended.

XECB={xecbname|(1)}: Specifies the name of the XECB, which may
be defined in the same or another program. The name you specify must
be the same as the one used to define the XECB. If register notation
is used, the specified register must point to an 8-byte field that
contains the name of the XECB left-justified and padded with blanks.
Do not specify register 14 or 15 if you choose to use ordinary reg-
ister notation.

POINTRG=(14): Specifies the register that points to the XECB
table entry associated with the named XECB. Do not specify register
1 or 15 if you choose to use ordinary register notation.

To obtain the address of the associated XECB table entry, issue ear-
lier in the program an XECBTAB macro for the same XECB and with the
TYPE=CHECK or TYPE=DEFINE specified. When the system executes the
XECBTAB macro, it returns, in register 14, the address of the perti-
nent XECB table entry. Figure 32 on page 279 shows a coding example
for the use of the XWAIT macro; in that example, the required con-
tinuation character is not shown. The example assumes that the XECB
was defined by a program executing in another partition by (source)
instructions as follows:

XECBTAB  TYPE=DEFINE,
XECB=MYECB

MYECB DC F'o'

278 VSE/Advanced Functions Macro Reference



XWAIT

WAITLP XECBTAB TYPE=CHECK,

XECB=MYECB
LTR 15,15
BNZ ERROR
LA 1,XECBNAME

XWAIT XECB=(1),
POINTRG=(14)

XECBNAME DC CL8 'MYECB !

— e e ———————————————————

L

Figure 32. Coding Example Showing the Use of XECBTAB with TYPE=CHECK
and of XWAIT

Note that if the POINTRG register contains O (or any invalid value),
all XECBs are searched to determine the correct address; no error is
indicated.

Return Codes in Register 15

When the system returns control to the issuing task, register 15
contains one of the following return codes:

X'00' Successful completion. The named XECB has been posted.

X'04' The named XECB has no associated table entry in the XECB
table or the owner of the XECB issued a DELETALL.

X'08' The other task using this XECB has broken communication with-
out issuing an XPOST. The task issuing the XWAIT is owner of
the XECB.

X'0D' The XECB referred to in the XWAIT macro was defined with
ACCESS=XWAIT specified in the XECBTAB macro, but the task
that issued the XWAIT macro does not own this XECB.

X'OE' The XECB referred to in the XWAIT macro was defined with
ACCESS=XPOST specified in the XECBTAB macro and either @)
the task that issued the XWAIT macro also defined the XECB or
(2) the task did not define the XECB, but another task is
already waiting for the XECB to be posted.

Note: Following the execution of an XWAIT macro, registers 1
and 14 are set to zero.

Macro Description 279



280 VSE/Advanced Functions Macro Reference



APPENDIX A. CONTROL CHARACTER CODES

CTLCHR=ASA

If the ASA option is chosen, a control character must appear in each
record. If the control character for the printer is not valid, a
message is given and the job is canceled. If the control character
for card devices other than the 2560, 5424, and 5425 is not V or W,
the card is selected into stacker 1. The codes are listed in

Figure 33 on page 282.

Appendix A. Control Character Codes 281




Code | Interpretation

]
|
I
|
blank | Space one line before printing# |
0 | Space two lines before printing |
— | Space three lines before printing |
+ | Suppress space before printing |
1 | Skip to channel 1 before printing* |
2 | Skip to channel 2 before printing |
| 3 | Skip to channel 3 before printing |
4 | Skip to channel 4 before printing |
5 Skip to channel 5 before printing |
6 Skip to channel 6 before printing
7 Skip to channel 7 before printing |
8 Skip to channel 8 before printing |
9 Skip to channel 9 before printing [
A Skip to channel 10 before printing
B | Skip to channel 11 before printing
c Skip to channel 12 before printing
\ Select stacker 1
W Select stacker 2
X | Select stacker 3 (2560 and 5424/5425 DTFCD files only)
Y | Select stacker 4 (2560 and 5424/5425 DTFCD files only)
X | Select stacker 5 (2560 DTFCD files only)

For DTFDI files on 2560 and 5424/5425:

| Primary hopper: select stacker 1
| Primary hopper: select stacker 2
| Secondary hopper: select stacker 5
| Secondary hopper: select stacker &
| Secondary hopper: select stacker 3

(on 2560)
(on 5424/5425)

E<<ES

| * For 3525 print (not associated) files, either space one

| or skip to channel 1 must be used to print on the first
line of a card. For 3525 print associated files, only

space one must be used to print on the first line of a card.

Figure 33. ASA Control Characters

CTLCHR=YES

The control character for this option is the command-code portion of
the CCW used in printing a line or spacing the forms. The control
codes are listed in Figure 34 on page 283 and Figure 35 on page 284.

282 VSE/Advanced Functions Macro Reference



Hexadecimal
Code

l
I

Punch |
Combination |

Function

Stacker selection on 1442 and 2596:

81 | 12,0,1 | Select into stacker 1
c1 | 12,1 | Select into stacker 2
Stacker selection on 2520:
01 | 12,9,1 | Select into stacker 1
41 | 12,0,9,1 | Select into stacker 2
Stacker selection on 2540:

01 | 12,9,1 | Select into stacker 1

41 | 12,0,9,1 Select into stacker 2

81 12,0,1 Select into stacker 3

13 11,3,9 Primary hopper: select into stacker 1
23 | 0,3,9 Primary hopper: select into stacker 2
33 3,9 Primary hopper: select into stacker 3
43 12,0,3,9 | Primary hopper: select into stacker 4
53 12,11,3,9 Primary hopper: select into stacker 5

(2560 only)

93 | 12,11,3 Secondary hopper: select into stacker 1
A3 11,0,3 | Secondary hopper: select into stacker 2
B3 12,11,0,3 Secondary hopper: select into stacker 3
C3 12,3 Secondary hopper: select into stacker 4
D3 11,3 Secondary hopper: select into stacker 5

| (2560 only)

Stacker selection on 3504, 3505, and 3525:

01
41

12,9,1
12,0,9,1

| Select into stacker 1
| Select into stacker 2

Figure 34. Stacker Selection Codes

Appendix A.

Control Character Codes

283



Hexadecimal | Punch | Function
Code | Combination |
Printer control (except for 3525):

01 | 12,9,1 | Write (no automatic space)

09 12,9,8,1 | Write and space 1 line after printing

11 11,9,1 | Write and space 2 lines after printing

19 11,9,8,1 | Write and space 3 lines after printing

89 12,0,9 | Write and skip to channel 1 after printing
91 12,11,1 | Write and skip to channel 2 after printing
99 | 12,11,9 Write and skip to channel 3 after printing
Al 11,0,1 Write and skip to channel 4 after printing
A9 11,0,9 Write and skip to channel 5 after printing
Bl 12,11,0,1 Write and skip to channel 6 after printing
B9 | 12,11,0,9 Write and skip to channel 7 after printing
C1 | 12,1 Write and skip to channel 8 after printing
Cc9 12,9 Write and skip to channel 9 after printing
D1 11,1 Write and skip to channel 10 after printing
D9 11,9 | Write and skip to channel 11 after printing
El 11,0,9,1 Write and skip to channel 12 after printing
0B 12,9,8,3 Space 1 line immediately

13 11,9,3 Space 2 lines immediately

1B 11,9,8,3 Space 3 lines immediately

8B | 12,0,8,3 Skip to channel 1 immediately

93 12,11,3 | Skip to channel 2 immediately

9B 12,11,8,3 Skip to channel 3 immediately

A3 11,0,3 Skip to channel 4 immediately

AB 11,0,8,3 Skip to channel 5 immediately

B3 12,11,0,3 Skip to channel 6 immediately

BB 12,11,0,8,3 Skip to channel 7 immediately

c3 | 12,3 Skip to channel 8 immediately

CB | 12,0,9,8,3 Skip to channel 9 immediately

D3 11,3 | Skip to channel 10 immediately

DB 12,11,9,8,3 | Skip to channel 11 immediately

E3 | 0,3 Skip to channel 12 immediately

03 | 12,9,3 No operation

Figure 35 (Part 1

of 2). Printer Control Codes

284 VSE/Advanced Functions Macro Reference




(4,

Hexadecimal |

Code

Punch |
Combination |

Function

Printer control for 3525 with Print Feature:

|

I

I

I

I

| oD
| 15
| 1D
| 25
| 2D
| 35
| 3D
| 45
| 4D
| 55
| 5D
65
6D
75
| 7D
I 85
8D
95
9D
A5
AD
B5
BD
C5
CD

I
|
|
I
!
I

PR EEOUOUOO KK

0,5,8
12,11,0,5,9
5,8

12,0,5
12,0,5,8
12,11,5
12,11,5,8
11,0,5
11,0,5,8
12,11,0,5
12,11,0,5,8 |
12,5
12,0,5,8,9

Print
Print
Print
Print
Print
Print
Print
Print
Print
Print
Print
Print
Print
Print
Print
Print
Print
Print
Print
Print
Print
Print
Print
Print
Print

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

line
line
line
line
line
line
line
line
line
line 10
line 11
line 12
line 13
line 14
line 15
line 16
line 17
line 18
line 19
line 20
line 21
line 22
line 23
line 24
line 25

OWOoONOANULEWN -

Figure 35 (Part 2 of 2). Printer Control Codes

Appendix A.

Control Character Codes

285



286 VSE/Advanced Functions Macro Reference



APPENDIX B. AMERICAN NATIONAL STANDARD CODE FOR INFORMATION
INTERCHANGE (ASCII)

In addition to the EBCDIC mode, VSE accepts magnetic tape files
written in ASCII, a 128-character 7-bit code. The high-order bit in
this 8-bit environment is zero. ASCII is based on the specifica-
tions of the American National Standards Institute, Inc..

VSE processes ASCII files in EBCDIC with the help of two translate
tables, which are loaded into the SVA. Using these tables, logical
10CS translates from ASCII to EBCDIC all data as it is read into the
I1/0 area. For ASCII output, logical IOCS translates data from
EBCDIC to ASCII just before writing the record.

Figure 36 on page 288 shows the relative bit positions of the ASCII
character set. An ASCII character is described by its column/row
position in the table. The columns across the top of the figure list
the three high-order bits. The rows along the left side of the fig-
ure are the four low-order bits.

For example, the letter P in ASCII is under column 5 and row 0 and
is described in ASCII notation as 5/0. ASCII 5/0 and EBCDIC X'50'
represent the same binary configuration (B'01010000'). However, P
graphically represents this configuration in ASCII and & in EBCDIC.
ASCII notation is always expressed in decimal. For example, the
ASCII Z is expressed as 5/10 (not 5/A).

For those EBCDIC characters that have no direct equivalent in ASCII,
the substitute character (SUB) is provided during translation. See
Figure 37 on page 289 for ASCII to EBCDIC correspondence.

Note: If an EBCDIC file is translated into ASCII, and you
translate back into EBCDIC, this substitute character may not
receive the expected value.

Appendix B. American National Standard Code for Information Interchange
(ASCII) 287



[®, 0 0 0 0 1 ] 1
by 0 0 | | 0 0 | |
by 0 | 0 | | 0 ]
B;'(f) bg | b3 |b2 |by lomaf 1 2 3 4 5 6 7
bLd[d 4 [Rowy
olofo]o 0 NUL | DLE P 0 @ P . P
olo]o| ! SOH | pei LON I A Q a q
olof1]o 2 STX | DC2 " 2 8 R b '
olo |1 |1 3 ETX | DC3 ’ 3 C 5 c s
ol1]o]o 4 EOT | DC4 $ 4 D T d 1
ol1]o 5 ENQ | NAK % 5 E U e u
o1 {1 }o 6 ACK | SYN & 6 F v f v
o111 7 BEL | ETB : 7 G W g w
11ofo]o 8 BS CAN ( 8 H X h x
11001 9 HT EM ) 9 ] Y i y
1lof1]o 10 LF SUB g : J z i z
1o 1 | 1" VT ESC + ; K [ k 1
1{1]o]o 12 FF FsS , < L \ | i
Ty pofl 13 CR GS - M ] m !
BREERE 14 SO | Rs . > N A@| ~
R 15 sl us / ? o) _ o DEL

@ The graphic | (Logical OR) may also be used instead of ! (Exclomation Point).

@ The graphic “iLogical NOT) may olso be used instead of A (Circumflex).

@ The 7 bit ASCII code expands to 8 bits when in storage by adding a high order 0 bit.

Example: Pound sign () is represented by

Control Chorocter Representations

NUL
SOH
STX
ETX
£OT

(CC)
(FE)
(s

Null

Start of Heading (CC)
Start of Text (CC)

End of Text (CC)

End of Transmission (CC)
Enquiry (CC)
Acknowledge (CC)

Bell

Backspace (FE)
Horizontal Tabulation (FE)
Line Feed (FE)

Vertical Tabulation (FE)
Form Feed (FE)

Carriage Return (FE)
Shift Out

Shift In

Communication Control
Format Effector
Information Separator

bs by

by by b
0o 1 1

Data Link Escape (CC)
Device Control |

Device Control 2

Device Control 3

Device Control 4

Negative Acknowledge (CC)
Synchronous Ildie (CC)

End of Transmission Block (CC)
Cancel

End of Medium

Substitute

Escape

File Separator (1S)

Group Separator (15)

Record Separator (1S)

Unit Separator (I5)

Delete

Figure 36. ASCII Character Set

288 VSE/Advanced Functions Macro Reference

Special Graphic Characters

SP Space

Exclamation Point
Logical OR

Quotation Marks
Number Sign

Dollar Sign

Percent

Ampersand

Apostrophe

Opening Parenthesis
Closing Parenthesis
Asterisk

+ Plus

, Comma

- Hyphen (Minus)

. Period (Decimal Point)
/ Slant
: Colon

; Semicolon

AR I

*

I>=- oV A

- ,'

Less Than

Equals

Greater Than

Question Mark
Commercial At

Opening Bracket

Reverse Slant

Closing Bracket
Circumflex

Logical NOT

Underline

Grave Accent

Opening Brace

Vertical Line (This graphic
is stylized to distinguish it
from Logical OR)

Closing Brace

Tilde



ASCII EBCDIC

; . Col } Row
Character Col ' Row Bit 4 Bit Comments

f Pattern A Pattern

, (in Hex)

A

T v \
NUL 0o , 0 0000 ' 0000 0! 0 0000 [ 0000
SOH 0, 1 0000 i 0001 0 ' 1 0000 ! 0001
STX 0 1+ 2 0000 ! 0010 0o " 2 0000 ! 0010
ETX 0 1+ 3 0000 X 0011 0 ., 3 0000 ' 0011
£EOT 0 ' 4 0000 X 0100 3, 7 0011 N 011
ENQ 0 : B 0000 \ 0101 2 1« D 0010 N 1101
ACK 0o | 6 0000 ] 0110 2 ' E 0010 ] 1110
BEL o, 7 0000 [ o 2 T °F 0010 ! KK
B8S 0 8 0000 1 1000 T s 0001 T 0110
HT 0 + 9 0000 T 100! 0 . 5 0000 j 0101
LF 0 ' 10 0000 N 1010 2, 5 0010 ¥ 010
VT 0o T n 0000 X 1011 0o , B 0000 M 1011
FF 0 12 0000 \ 1100 0 1 C 0000 \ 1100
CR 0 , 13 0000 ] 1101 0 + D 0000 | 1101
SO 0, 14 0000 ' 1110 0 ' € 0000 ] 1110
S| 0, 15 0000 i nn 0o ' °F 0000 ] 1
DLE 1 0 0001 . 0000 ) 000! T 0000
DCl [ 0001 N 0001 T, 0001 N 0001
DC2 1 : 2 0001 X 0010 1, 2 000! L 0010
DC3 1 3 0001 \ 0011 1 1 3 000! ] 0011
DC4 1, 4 0001 | 0100 3 1 C 0011 ) 1100
NAK N 0001 ' 0101 3 ' D 0011 ! 1101
SYN T 6 0001 T 0110 3 T 2 0011 ! 0010
ETB 1 7 0001 N 0111 2 . 6 0010 T 0110
CAN 1 ' 8 0001 N 1000 1, 8 0001 N 1000
EM 1 l 9 0001 ) 100! T 9 0001 \ 1001
SUB 110 0001 1 1010 3 v F 0011 ) nn
ESC L 0001 | 1011 2 ' 7 0010 ' 0111
FS T, 12 0001 T 1100 T ' C 000! ! 1100
GS 1 13 0001 v 1101 ) 0001 ) 1101
RS L 000! i 1110 1, E 000! N 1110
us i T 15 0001 N 1 1, F 0001 \ Nl
SP 2 : 0 0010 \ 0000 4 0 0100 ) 0000
10) 2 1 0010 ' 0001 4 1+ F 0100 \ 1n Logical OR
; 2, 7 0010 ] 0010 7 ' F [ ] T

2, 3 0010 ! 0011 7 ' B o1 [ 1011

s 2, 4 0010 ! 0100 5 ' B 0101 D 1011
% 2 . 5 0010 ! 0101 6 ., C 0110 K 1100
& 2 1 6 0010 N 0110 5 , 0 0101 N 0000
' 2 ' 7 0010 L o111 7 , D 0111 X 1101
( 2 ' 8 0010 \ 1000 4 1+ D 0100 1 1101
) 2, 9 0010 ) 1001 5 1__D 0101 1 1101
. 2, 10 0010 ] 1010 5 ' C [ 0101 1 1100
+ 2, N 0010 ! 1011 4 T E 0100 ' 1110
J 2 1 12 0010 ; 1100 6 B 0110 T 1011
- 2 1+ 13 0010 N 1101 6 , 0 0110 X 0000 Hyphen, Minus
. 2 ' 14 0010 L 1110 4 , 8 0100 . 1011
/ 2 ' s 0010 ' 111 6 1 0110 f 000
0 3 . 0 0011 i 0000 F ' 0 K 1 0000
1 3, 1 0011 i 0001 F ' 1 11 ' 0001
2 3 12 0011 T 0010 F ' 2 11 T 0010
3 3 v 3 0011 K 0011 F ., 3 111 N 0011}
4 I 0011 N 0100 F , 4 111 N 0100
5 3 T 5 0011 \ 0101 F |, 5 nn N 0101
6 3 : 6 0011 ) 0110 F 1+ 6 1 \ 0110
7 3, 7 0011 ' 0111 F ' 7 nm ] 0Nl
8 3, 8 0011 T 1000 F ' 8 111 i 1000
9 3 9 0011 j 1001 F , 9 1N T 1001
: 3 0+ 10 0011 X 1010 7 , A o111 N 1010
; 3 0011 | 1011 5 | E 0101 X 1110
< 3 2 0011 \ 1100 4 1 C 0100 | 1100
= 3, 13 0011 ] 1101 7 1 _E o1 ] 1110
> 3, 14 0011 ' 1110 6 1 € 0110 ] 1110
? 3, 15 0011 ' nn 6 T F 0110 T m

Figure 37 (Part 1 of 2). ASCII to EBCDIC Correspondence

Appendix B. American National Standard Code for Information Interchange
(ASCII) 289



ASCH EBCDIC
1 T
[} . Col ! Row .
Character Col 1 Row PO'B':"‘ ‘ : Pa:le'm Commaents
: (in H'ex)
@ 4 ' 0 0, 0000 7 L c o, 1100
A 4 ' 0100 N 0001 [ 1100 N 0001
8 4 | 2 0100 1 0010 C 1 2 1100 | 0010
C 4, 3 0100 1 0011 cC 1 3 1100 1 0011
D 4 1 4 0100 ! 0100 [ 1100 ! 0100
E 4 | 5 0100 T 0101 [ 1100 N 0101
F 4 1 6 0100 N 0110 [ 1100 M 0110
G 4 ' 7 0100 N 0111 [N 1100 | 0111
H 4 | 8 0100 \ 1000 cC , 8 1100 | 1000
| 4 , 9 0100 1 1001 [ 1100 1 1001
J 4 , 10 0100 ! 1010 D ' 1 1101 ! 0001
K 4 1 0100 ! 101} D ' 2 1101 T 0010
L 4 a2 0100 N 1100 D ' 3 1101 N 0011
M 4 ' 13 0100 N 1101 D |, 4 1101 | 0100
N 4 ' 14 0100 N 1110 D , 5 1101 \ 0101
[0) 4, 15 0100 \ 111 D , 6 1101 ) 0110
P 5 ., 0 0101 ] 0000 D 7 1101 1 0111
Q 5 41 0101 [ 0001 D + 8 1101 T 1000
R 5 12 0101 T 0010 D ' 9 1101 T 1001
S 5 1 3 0101 N 0011 E T 2 1110 N 0010
i 5 1T 4 0101 N 0100 E , 3 1110 N 0011
U . 5 T 5 0101 \ 0101 E |, 4 1110 | 0100
v 5 . 6 0101 | 0110 [ 1110 | 0101
W 5 , 7 0101 [ 0111 E 1+ 6 1110 ] 0110
X 5 1 8 0101 T 1000 E 7 1110 T 0111
Y 5 19 0101 T 1001 E ' 8 1110 T 1000
Z 5 T 10 0101 N 1010 E T 9 1110 M 1001
{ 5 ' n 0101 X 1011 4 . A 0100 | 1010
N\ 5 7 12 0101 ' 1100 E , O 1110 ' 0000 Reverse Slant
] 5 , 13 0101 ] 1101 5 1 A 0101 | 1010
- Q@ 5 , 14 0101 ! 1110 5 1+ F 0101 ! 1111 Logical NOT
— 5 . 15 0101 ' 111 6 ' D 0110 T 1101 Underscore
* 6 1+ 0 0110 N 0000 7 T 9 o N 1001 Grave Accent
a 6 ' 1 0110 K 0001 g . 1 1000 N 0001
b 5 ' 2 0110 A 0010 8 , 2 1000 X 0010
c 6 |, 3 0110 \ 0011 8 , 3 1000 \ 0011
d 5 | 4 0110 ] 0100 8 1 4 1000 ] 0100
e 6 1 5 0110 ] 0101 8 1 5 1000 ! 0101
f 6 16 0110 T 0110 8 ' 6 1000 N 0110
9 6 ' 7 0110 N 0111 8 ' 7 1000 M 0111
h 5 ' 8 0110 X 1000 8 . 8 1000 N 1000
i 6 ' 9 0110 | 1001 8 ., 9 1000 | 1001
i 6 10 0110 1 1010 9 4 1 1001 ) 0001
k s, 1 0110 i ToN 5 1 2 T001 1 010
| 5 1 12 0110 T 1100 5 ' 3 1001 i 0011
m 6 ' 13 0110 T 1101 9 ' 4 1001 ! 0100
n 6 ' 14 0110 N 1110 9 ' 5 1001 N 0101
o 6 ' 15 0110 N N1 9 . 6 1001 | 0110
p 7 0 0111 ' 0000 S, 7 1001 ) 0111
q 7, 1 0111 \ 0001 9 | 8 1001 [ 1000
r 7, 2 0111 [ 0010 5 1 9 1001 T 1001
s 7 3 0111 T 0011 A ' 2 1010 T 0010
t 7 1 4 0111 N 0100 AT 3 1010 N 0011
u 7 V5 0111 N 0101 A | 4 1010 X 0100
v 7 Vs 0111 | 0110 A, 5 1010 | 0101
w 7 . 7 0111 | 0111 A | 6 1010 ) 0110
x 7 . 8 0111 ] 1000 A 7 1010 | 0111
y 7 1 9 0111 1 1001 A 1 8 1010 [ 1000
z 71 10 1BA T 01D AT 9 1010 N TO01
{ 7 V11 0111 N 1011 [ 1100 N 0000
: 7 ' 12 0111 N 1100 5 ' A 0110 | 1010 Vertical Line
7 7 ' 13 0111 | 1701 D , © 1101 L 0000
~ 7 . 14 oIl 1 1110 A, 1 1010 \ 0001 Tilde
DEL 7, 15 o111 [ [N R 0000 | o

@ The graphic ! (Exclamation Point) con be used instead of | (Logical OR).

@ The graphic » (Circumflex) con be used instead of T (Logical NOT).

Figure 37 (Part 2 of 2). ASCII to EBCDIC Correspondence

290 VSE/Advanced Functions Macro Reference







$C24-5211-1

VSE/Advanced Functions Application Programming: Macro Reference
(File No. S370/4300-30) Printed in U.S.A. SC24-5211-1

my
[T
— -'v



Please use pressure sensitive or other gummed tape to seal this form.

Note: Staples can cause problems with automated mail sorting equipment.

READER’S
COMMENT
VSE/Advanced Functions FORM
Application Programming: Macro Reference
Order No. SC24-5211-1

This form may be used to communicate your views about this publication. They will be sent to
the author’s department for whatever review and action, if any, is deemed appropriate.
Comments may be written in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course, continue to use the
information you supply.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.
Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank fsl'ou for your cooperation. No postage stamp is necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you may
mail directly to the address in the Edition Notice on the back of the title page.)



SC24-56211-1

our Buojy pjog 10 Iy

Reader's Comment Form

Fold and tape Please Do Not Staple Fold and tape

............................................................................................

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

]

L]

.|

BUSINESS REPLY MAIL —
FIRST CLASS PERMIT NO.40 ARMONK, N.Y. =
]

]

POSTAGE WILL BE PAID BY ADDRESSEE: —
]

International Business Machines Corporation I
Department 812 BP —
1133 Westchester Avenue po—————
White Plains, New York 10604 [r——
]

Foid and tape Please Do Not Staple Fold and tape

(0E-00€Y/0LES "ON @lid)

adualajey osoe :BuiuwesBold uoneosiddy suonoung pasueAp™ /3SA

1-L1ZS-#2OS VSN ul pejulld




Note: Staples can cause problems with automated mail sorting equipment.

Please use pressure sensitive or other gummed tape to seal this form.

READER’S
COMMENT

VSE/Advanced Functions FORM
Application Programming: Macro Reference
Order No. SC24-5211-1

This form may be used to communicate your views about this publication. They will be sent to
the author’s department for whatever review and action, if any, is deemed appropriate.
Comments may be written in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course, continue to use the
information you supply.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.
Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp is necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you may
mail directly to the address in the Edition Notice on the back of the title page.)



S§C24-5211-1

ouyy Buojy pjog4 10 InD--

Reader’'s Commsnt Form

Fold and tape Please Do Mot Stapie Fold and tape
I ' I I | NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

TSR

]

BUSINESS REPLY MAIL e ——

]

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. fite ot ]

R

SRR

POSTAGE WILL BE PAID BY ADDRESSEE: RIS

R

international Business Machines Corporation —

Department 812 BP rmm—" e ——

1133 Westchester Avenue ]

i : [ ]
White Plains, New York 10604

[

EERT

Fold and tape Please Do Not Staple Fold and tape

(0E-00€/0LES "ON 211d)

aoualayay osoely :Bulwwesboid uonediddy suondouny padueApY /3SA

1-LLeS-#COS ‘V'S'N ul pajuld






