VSE/Advanced Functions

System Management Guide

Program Product

SC33-6094-1
File No. S370/4300-34

VSE/Advanced Functions

System Management Guide

Program Number 5746-XE8

Version 1 Release 3
Modification Level 5

Second Edition (June 1983)

This edition applies to VSE/Advanced Functions Version 1,
Release 3, Modification Level 5, Program Number 5746-XE8, with
the required DOS/VSE SCP and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters.
Changes are made periodically to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this document is not intended to state or
imply that only IBM's program product may be used. Any func-
tionally equivalent program may be used instead.

Publications are not stocked at the addresses given below;
requests for copies of IBM publications should be made to your
IBM representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed either to:

IBM Corporation

Dept 812BP

1133 Westchester Avenue
White Plains, NY 10604, USA

or to:

IBM Deutschland GmbH

Dept 3248

Schoenaicher Strasse 220

D-7030 Boeblingen, Federal Republic of Germany

IBM may use or distribute whatever information you supply in any
way it believes appropriate without incurring any obligation to
you.

© Copyright International Business Machines Corporation 1979,
1983

THIS MANUAL ...

is a guide to using the functions available with the licensed
VSE/Advanced Functions and its complementary system control program-
ming (SCP) code.

'"VSE' refers to the IBM Disk Operating System/Virtual Storage
Extended (DOS/VSE). VSE comprises your entire operating system, that
is, not only VSE/Advanced Functions, which is the minimum required
support, but also any optional installed system support. The latter
may consist of IBM-supplied support programs (such as VSE/POWER,
VSE/ICCF) or of system support programs that you supplied yourself.

System management, which is discussed on a conceptual and functional
level, refers not only to the way VSE/Advanced Functions is organ-
ized, but also to the way you, the user, can efficiently manage your
system.

Before you begin reading this manual, you should be familiar with
the information contained in the VSE System General Information Man-
ual.

This book is not a guide to data management; instead, a separate
manual is provided for this purpose, called VSE/Advanced Functions
Data Management Concepts.

After reading this manual and the above mentioned manuals, you
should be able to turn directly to the VSE library of reference man-
uals in order to work with your operating system. A reference manu-
al is organized so that you can easily retrieve specific information
on the formats of the control statements, macro instructions,
labels, and messages, which you deal with daily.

This manual is divided into three chapters:

Chapter 1: VSE/Advanced Functions Overview
provides conceptual information on multiprogramming, virtual
storage, and multitasking.

Chapter 2: Using the System
provides information on how to use the system, in particular on
the use of the IPL, job control, linkage editor, and librarian
programs.

Chapter 3: Using the Facilities and Options of VSE/Advanced Func-
tions

THIS MANUAL ... iii

provides guidance information on how to use facilities and
options of VSE/Advanced Functions; for example, writing IPL and
job control user exit routines, checkpointing and restarting a
program, or designing programs for virtual mode execution.

For reference purposes the organization of the system residence disk
file (SYSRES) is shown in Appendix A.

Related Publications

For details of other literature quoted in this manual, refer to the
Bibliography at the end of the book.

iv VSE/Advanced Functions System Management Guide

SUMMARY OF AMENDMENTS

Editorial changes have been made throughout the publication to
improve its usability.

The chapter Planning the System has been removed from this manual.
See VSE/Advanced Functions Planning and Installation for detailed
planning information. Note that the information therein applies to
VSE/Advanced Functions systems installed individually as well as to
those installed under the Installation Productivity Option/Extended
(System IPO/E).

Following is a list of functions and computing services new with
Version 1, Release 3,Modification Level 5 of VSE/Advanced Functions:

New Hardware Support

o IBM 3033 - A processing unit which VSE/Advanced Functions sup-
ports only for operation in single processor mode.

o IBM 3375 — A CKD disk device which is supported similar to an
IBM 3350.

. IBM 3430 — A tape I/0 device supported as a 3410 compatible
tape unit. The support allows you to take advantage of IBM
3430's higher read/write density.

J IBM 3279 Model 2C — A color display operator console for
attachment to an IBM 4300 processor. VSE/Advanced Functions
includes support for color display on this console device.

. ISP — A printer, similar to an IBM 3800, for which Kanji output
support is available.

o IBM 3262 Model 5, and 4245 - New printers that are supported
as line printers of type PRT1.

. FBA disk support also in 370 mode — The FBA disk support
available in ECPS:VSE mode in the past is now also available in
370 mode.

. SIO improvement — System routines make use of the improved
Start I/0 Fast Release machine instruction, if this instruction
is included in the processing unit's instruction set.

e More virtual storage in 370 mode — In 370 mode, the virtual
address range may overlap the real address range at the high end
of processor storage.

Availability Improvements

e End-of-task and error-exit handling — The task-to-supervisor
linkage control allows a task to do its own error handling.

Summary of Amendments v

Usability Improvements

* Defining system files by volume serial number — During initial
program load, system files such as the page data set or the VSAM
master catalog may be defined by volume-serial number instead of
device address.

Removed Support: The following system utilities have been removed
from VSE/Advanced Functions and are no longer available:

. ALTBLK (Assign Alternate Block)
. INTDK (Initialize Disk FBA)
SURFANAL (Surface Analysis for FBA)

The services of these utilities are available through Device Support
Facilities, a corequisite support for VSE/Advanced Functions.

vi VSE/Advanced Functions System Management Guide

CONTENTS

Chapter 1. VSE/Advanced Functions Overview e e e e
Multiprogramming e e e e e e e e e e e e e
Partitions
Partition Pr10r1t1es
Storage Protection .o
Device Considerations Under Multlprogrammlng
Virtual Storage .
Virtual Storage in VSE
Storage Management . .
Relating Virtual Storage to Locatlons in Processor Storage
Virtual Storage Implementation under VSE/Advanced Functions
Division of Address Space
Processor Storage Utilization . .
Executing Programs in Virtual and Real Mode
Storage Allocation
Multitasking .
Two Types of Multltasklng
Independent Subtasks
Dependent Subtasks
Cross-Partition Event Control
Rellablllty/Avallabll1ty/SerV1ceab111ty
Recovery Management Support .
Chapter 2: Using the System e e e e e e e e e e e
Starting the System . e e e e e e e e e e e
Initial Program Loadlng (IPL) .
Establishing the Communication DeV1ce for IPL
IPL Commands
ASI Procedures
Automatic Functions of IPL
IPL Communication Device List
Building the SDL and Loading the SVA
Automatic SVA Loading .
User Options for the SVA
Creating the System Recorder File
Creating the Hard Copy File
User-Defined Processing after IPL
Entering RDE Data
Allocating Address Space to the Partltlons
Allocating Processor Storage to the Partitions
Initiating Foreground Partitions
Allocate Storage to the Partition
Activate the Partition
Automated System In1t1allzat10n (ASI)
Implementation Requirements
Contents of ASI IPL Procedures
Contents of ASI JCL Procedures
Example of an ASI JCL Procedure Set

Contents

O 00 UTLUTWWWN H -

vii

Invoking VM/370 Llnkage Support
Controlling Jobs . .
Defining a Job
Job Streams .
Job~-to-Job Communlcatlon
Relating Files to Your Program
Symbolic I/0 Assignment
Logical Units .
Types of Device A551gnments

Device Assignments in a Multlprogrammlng System

Additional Assignment Considerations
Processing of File Labels

Overview .o

TLBL Statement

DLBL and EXTENT Statements

Processing Labeled Files

The File Name

The File-ID

Label Information for Flles on Dlskette Dev1ces
Label Information for Files on Direct Access Devices

Label Information for Files on Magnetic Tape

Storing Label Information

Label Area Search Order

LSERV Program . .
Job Control for Library Deflnltlons

Establishing a Library Definition

Resetting a Library Definition

Displaying Library Definitions
Tape and Print Operations

Controlling Magnetic Tape

Controlling Printed Output
Executing a Program

Assembling/Compiling, Llnk Edltlng, and Executlng a Program

Defining Options for Program Execution

Communicating with Problem Programs via Job Control

Executing in Virtual or Real Mode

Dynamic Allocation of Storage .o
System Files on Tape, Disk or Diskette

System Files on Tape

System Files on Disk

System Files on Diskette

Interrupting SYSIN Job Streams on DlSk Dlskette, or Tape

Record Formats of System Files
Using Cataloged Procedures .
Retrieving Cataloged Procedures
Temporarily Modifying Cataloged Procedures
The Modifier Statement .
Several Job Steps in One Procedure
Modifying Multistep Procedures
SYSIPT Data in Cataloged Procedures
Partition-Related Cataloged Procedures
Linking Programs
Structure of a Program
Source Modules

viii VSE/Advanced Functions System Management Guide

58
59
60
63
64
64
65
67
69
70
74
76
76
76
76
76
78
78
79
80
84
85
87
88
89
89
92
93
93
93
94
96
96
101
102
103
105
108
109
110
113
114
115
116
116
117
118
120
122
124
125
126
127
128

Object Modules
Program Phases
The Three Basic Appllcatlons of the Llnkage Edltor
Cataloging Phases into the Core Image Library
Link Edit and Execute
Assemble (or Compile), Link Edlt, and Execute
Link and Go Technique .
Processing Requirements for the Llnkage Edltor
Library Definitions
Symbolic Units Required
Linkage Editor Work Files in VSAM managed Space
Preparing Input for the Linkage Editor ..
Assigning a Name to a Program Phase
Multiphase Programs
Storage Considerationms
Defining a Load Address for a Phase

Building Phases from Object Modules with the INCLUDE

Statement . .
Linkage Editor Storage Requlrements
The AUTOLINK Feature

Specifying Linkage Editor A1ds for Problem Determlnatlon or

Prevention

Clearing the Unused Portlon of the Core Image lerary

Obtaining a Storage Map

Terminating an Erroneous Job
Designing an Overlay Program .

Relating Control Sections to Phases
Using FETCH and LOAD Macros
Examples of Linkage Editor Appllcatlons

Catalog to the System Core Image Library Example

Catalog to a Private Core Image Library Example
Link Edit and Execute Example
Compile and Execute Example
Using the Libraries

The Librarian Programs e e e e e e e e e
Maintaining the Libraries: the MAINT Program
Organizing the Libraries
Using the Service Functions of the L1brar1an

Creating and Working with Private Libraries
Private Library Creation (CORGZ)
Using Private Libraries .

Chapter 3: Using the Facilities and Optlons of VSE/Advanced

Functions
User-Written Exit Routlnes

Program Exit Routines

Interval Timer Exit

Program Check Exit

Abnormal Termination Exit

Operator Communications Exit

Task Timer Exit . .

Page Fault Handling Overlap Ex1t
Writing an IPL User Exit Routine .
Writing a Job Control User Exit Routine

.

Contents

129
129
130
131
132
133
134
135
135
136
136
137
138
138
138
140

141
142
143

144
144
145
146
146
146
148
149
149
151
152
154
155
157
160
175
184
188
188
192

199
199
199
200
200
201
201
202
202
202
204

ix

Writing a Job Accounting Interface Routine
Job Accounting Information
Programming Considerations
Tailoring the Program
Checkpointing Facility .
Restarting a Program from a Checkp01nt
DASD Switching under VSE/Advanced Functions
DASD Sharing by Multiple VSE Systems
Reserving Devices for Exclusive Use
Resource Locking .
Internal and External Locklng
VSE/VSAM File Locking
IBM-Provided Macros
Lock Communication File
How to Initialize a Shared VSE Env1ronment
Defining a DASD as Shareable and Switchable
Defining the Lock File
DASD Sharing by Virtual Machlnes .
Special Considerations for Shared lerarles .
Recorder, Hard Copy, and History Files in a DASD Sharlng
Environment . e e
An Example of a Two- System Installatlon
Error Recovery after System Break-Down
Recovery by System Reset
Recovery by IPL or UNLOCK Command .
Designing Programs for Virtual Mode Execution
Programming Hints for Reducing Page Faults
General Hints for Reducing the Working Set
Using Virtual Storage Macros . .
Fixing/Freeing Pages in Processor Storage
Indicating the Execution Mode of a Program (RUNMODE Macro)
Influencing the Paging Mechanism (RELPAG FCEPGOUT, PAGEIN
Macros) . e e e e
Balancing Telecommunlcatlon Act1v1ty
Coding for the Shared Virtual Area

Appendix A. System Layout on Disk e e e e e e e
IPL Records e e e e e e e e e e e .
System Volume Label
User Volume Label
System Directory .
Library Directories and lerarles
Label Information Area

Bibliography o0 0 000 e e e e e e e
Glossary ¢ . . . 00 e e e e e
Index

x VSE/Advanced Functions System Management Guide

209
209
212
213
216
217
218
220
221
221
222
222
223
224
224
224
225
226
226

227
227
231
231
231
231
232
232
235
235
237

237
238
239

241
241
241
241
241
241
242

245
247
257

FIGURES

1. The Partitions of a VSE System .o .. 2
2. Assigning Different Physical Devices to the Same Loglcal

Units 4
3. Virtual Storage and Processor Storage . . 6
4. Storage Management Concept -- VSE/Advanced Functlons 7
5. Running a Program in Virtual Storage 9
6 Loading Program Pages into Page Frames S |
7 Storing Pages on the Page Data Set (Pageouts) e e e .12
8. Managing the Page Pool . . e e 13
9. Supervisor Area in Virtual Storage Address Space 15
10. Partition Distribution in a Four-Partition System 16
11. Shared Virtual Area in a Four Partition System e ... 17
12. Supervisor Routines -- Fixed and Pageable .o . 18
13. Address Space for 2048K Bytes of Virtual Storage and 512K

Bytes of Processor Storage . 20
14. Supervisor and Partition Locatlon in Both ECPS VSE and 370

Mode . A |
15. A 4- Partltlon System in ECPS VSE and 370 Mode o e . .. 23
16. Executing in Real Mode 25
17. A 4-Partition System in ECPS: VSE and 370 Mode w1th the

GETVIS Areas . e e e e e e e e e e e 2T
18. Example of an ASI IPL Procedure O L
19. Example for the Creation of a CDL .o 41
20. Example for the Creation of the SYSREC Flle and for Loadlng

User Phases in the SVA .o e e e e e e e e 46
21. Example of an ASI JCL Procedure Set - Y
22. Example of VSE/POWER AUTOSTART Statements .o . . 58
23. Control Statements Defining a Job Consisting of Two Job

Steps O < 3
24. Example of a Job Stream .. O X<
25. Example of Symbolic I/0 A551gnment P 1
26. Possible Device Assignments .o e e e e e T2
27. Device Assignments Required for an Assembly S
28. File Label Processing o e
29. Summary of Label Option Functlons .o 88
30. Job Control Statements to Assemble, Llnk Edlt, and Execute

a Program in One Job .o T 2
31. Submitting Input Data on SYSIPT RN 98
32. System Operation of an Assemble, Link Ed1t and Execute Job 100
33. Storage Layout of a Partition With Default GETVIS Area 106
34. Storage Layout of a Partition After the SIZE Command is

Given .o e e e e e e 107
35. Program Executlon w1th the SIZE Parameter e e e e e 108
36. Creation of SYSIN on Tape .o e e 110
37. Processing System Input and Output Flles on DlSk Coe 112
38. Interrupting a Job Stream on Disk .o e e e e e 115
39. Example of Modifying a Three-Step Procedure e e e e 123
40. Stages of Program Development e e e e e e e e e e e 128

Figures xi

xii

41.
42,

43.

44,
45,
46.
47.
48.
49.

50.
51.

52.
53.
54.

55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.

Record Types of an Object Module .
A Job Stream to Catalog a Program into the Core Image
Library . .

A Job Stream to L1nk Edlt a Program for Immedlate
Execution .

A Job Stream to Assemble, Llnk Ed1t and Execute
Naming Multiphase Programs

Overlay Tree Structure .

Link Editing an Overlay Program

Organization of the Directories and L1brar1es on SYSRES
Summary of Librarian Programs, Their Functions, and Real
Mode Requirements . .
Library Sharing Capab111t1es of L1brar1an Programs
Assembling and Cataloging to the Relocatable Library in
the Same Job . . e e
Example of Deleting and Conden51ng

Disk Space Available for System L1brar1es .
Symbolic Unit Names and File Names Requlred to Create
Private Libraries

Search Sequence for § and Non $ Phases .
Library Status Report for SYSRES on an FBA Dev1ce
Summary of Program Exit Conditions (STXIT Macros)

IPL User Exit Example .o

Register Contents Returned by Phase $JOBEXIT

Job Control User Exit Example e

Job Accounting Table .

Job Accounting Routine Example

Example of a RESTART Job . .

Example of a DASD Sharing Conflguratlon

Example of ASI IPL Procedures for Two DASD Sharlng Systems
PFIX and PFREE Example . e . .
Example of Conventions for SVA Codlng .

System Residence Organization on CKD Devices

System Residence Organization on FBA Devices

VSE/Advanced Functions System Management Guide

129

132

133
134
139
147
148
157

158
159

163
171
179

189
195
196
200
204
205
207
211
214
218
228
229
237
240
243
244

CHAPTER 1. VSE/ADVANCED FUNCTIONS OVERVIEW

VSE/Advanced Functions is a combination of programs that interact
with user-written programs running on an IBM System/370 or an IBM
3031, an IBM 3033 or an IBM 43xx Processor. A reference to
System/370 implies, in this manual, a reference to the IBM 3031.
When installed on a 43xx Processor, VSE/Advanced Functions may run
in either 370 mode or ECPS:VSE mode. VSE/Advanced Functions
installed on a System/370 or an IBM 3031 runs in 370 mode only.

This chapter presents conceptual information about the following
topics:

. Multiprogramming
e Virtual storage

o Multitasking

MULTIPROGRAMMING

Multiprogramming is a technique that allows the concurrent execution
of more than one program in a single computer system. Multiprogram-
ming balances the difference between the speed of the central
processor (also called central processing unit or, abbreviated, CPU)
and the relatively slower speed of the I/O devices, and improves the
overall throughput of the system.

When a single executing program requests an I/0 operation, it may
not be able to continue processing until the I1/0 request has been
satisfied. During this time, the CPU is idle. With multiprogramming,
when one program stops processing, the CPU is put at the disposal of
another program.

A program is said to be in control of the system when its
instructions are being executed by the CPU. A program can voluntar-
ily yield control of the CPU, or control can be withdrawn from it.
Programs that share the use of the CPU in multiprogramming do not
have an equal claim on the CPU. Instead, one program is given a
greater priority than another.

When a program must wait for an event to occur before it can contin-
ue processing, it yields control of the CPU. The operating system
then passes control to a program of lower priority. Conversely, the
operating system withdraws control from a program whenever a program
with higher priority is ready to resume processing. This generally
happens when the I/0 operation for which the program has been wait-
ing is completed.

Chapter 1. VSE/Advanced Functions Overview 1

Partitions

Multiprogramming, therefore, allows the I/0 operations of one pro-
gram to be overlapped by the processing of other programs. When a
program has to wait for the completion of an I/0 operation, the sys-
tem sets the program in the wait state and selects another program
for execution on the basis of its priority and readiness to run.
This process, called task selection, is performed by the supervisor
program of VSE/Advanced Functions. The supervisor is always resi-
dent in storage and controls many functions of VSE/Advanced Func-
tions. The supervisor is discussed in detail in the section
Tailoring the Supervisor in VSE/Advanced Functions Planning and
Installation.

Efficient use of the system relates not only to the degree of CPU
activity but also to storage management. Storage is allocated to
partitions to accommodate the programs that will be executed in
them. At times, only a portion of the partition is used by the pro-
gram being executed. Some programs require a large partition. The
operating system automatically balances the storage demands made by
programs by making processor storage not being used by one program
available to a program in another partition as required.

The number of partitions supported equals the number of problem pro-
grams that can be executed concurrently within the system. There is
always support for one background (BG) partition and one foreground
(F1) partition. Optionally, support for up to ten additional fore-
ground partitions can be requested; see Figure 1 . The actual num-
ber of partitions in a particular configuration is a supervisor
generation option, and as such is described in the section Tailoring
the Supervisor in VSE/Advanced Functions Planning and Installation.

A

Background
Foreground-11
Storage
available X =
to problem
programs

Foreground-3

Foreground-2

Foreground-1

Y
Figure 1. The Partitions of a VSE System

2 VSE/Advanced Functions System Management Guide

The background partition is automatically activated by IPL. A fore-
ground partition must be activated via the BATCH or START operator
command. (The BATCH and START operator commands are discussed in
detail in VSE/Advanced Functions Operation.)

Partition Priorities

During supervisor generation, default priorities are established for
each partition defined in the system. The default priorities are
(from low to high): BG, FB, FA, F9, ... F2, F1.

During processing the operator can display the partition priorities
and change them dynamically by issuing the PRTY command. This can be
used to accelerate the execution of a given program. However, the
priorities should be reset to the installation standards as soon as
possible to handle the normal flow of jobs through the system.

Besides assigning a fixed priority to a certain partition, you can
also specify two or more partitions for balancing. Balanced parti-
tions are treated as a single entity within which the supervisor
assigns priorities; that is, dynamically distributes CPU time to the
individual partitions.

Changing priorities while jobs are being executed should be done
with special care if the licensed program VSE/POWER or teleprocess-
ing, which normally run in a high-priority partition, are active in
the system.

Storage Protection

Storage protection, which is standard on all System/370 and 4300
processor models, ensures that the instructions and data of one pro-
gram in a given partition do not interfere with those of another
program in another partition.

Device Considerations Under Multiprogramming
Generally, the same physical I/0 device (or extent of a direct
access or diskette device) may not be used concurrently by programs
being executed in different partitions. Exceptions to this are:
. The device or extents assigned to the system logical units:

SYSRES for system residence

SYSREGC for the recording of system information such as console
messages and hardware statistics

SYSLOG for system-operator communication

SYSDMP for alternate dump files

Chapter 1. VSE/Advanced Functions Overview 3

SYSCAT for use with VSE/VSAM, a licensed VSE access method.

These devices (extents) are considered to belong to the system
as a whole, rather than to individual partitions. (A description
of these system logical units is contained in the section Sym-
bolic I/0 Assignment in Chapter 2: Using the System.).

o The page data set.

. The lock communication file, used for DASD sharing across com-
puting systems.

. A private library can be defined and used in any partition,
except when being condensed in another partition (for more
information refer to Using the Libraries in Chapter 2: Using the

System).

. A file on a direct access device can be accessed across parti-
tions, providing it is not being created simultaneously by pro-
grams in more than one partition (see Track Hold Option in
VSE/Advanced Functions Planning and Installation for information
on protection when updating a file concurrently by separate
tasks).

If, for example, you wish to link edit programs in different parti-
tions concurrently, different physical devices or extents (except
for SYSRES and SYSLOG) must be assigned for each partition to all
logical units used by the linkage editor program. Figure 2 shows an
example of the device assignments in order to link edit in two par-
titions concurrently.

I 1
Logical Unit | F1 Partition | BG Partition |
| |
| 1
| SYSIN | 181 00C |
SYSLST | 182 0OE]
SYSLOG | 01F 01F l
SYSLNK | 131 132 |
SYS001] 131 132 l
SYSRES | 130 | 130 !

1 1

Figure 2. Assigning Different Physical Devices to the Same Logical
Units

In this case, the output on SYSLST in F1 is written on a tape. A
listing of this output can be obtained by printing the tape after
the job is completed. If VSE/POWER is used, the listing could be
automatically obtained whenever a printer becomes available.

4 VSE/Advanced Functions System Management Guide

VIRTUAL STORAGE

The objective of the virtual storage concept is to achieve greater
throughput. Multiprogramming, for example, increases throughput by
sharing CPU time between two or more partitions. Virtual storage
enables you to improve real (processor) storage utilization.

In the previous multiprogramming discussion the statement is made
that "Multiprogramming . . . allows the concurrent execution of more
than one program . . . " Note that concurrent does not mean simul-
taneous. Even in the multiprogramming environment, when two or more
programs are executing in storage, the CPU can execute only one
instruction at a time. Hence, the space in storage used by all oth-
er instructions, data areas etc. is temporarily not needed. All
that must be in storage at any one point in time is the instruction
(and its associated data areas) that is being executed. The Virtual

Storage concept exploits this fact.

Virtual Storage in VSE

Through a combination of hardware design and programming support,
VSE has an address space, called virtual storage, that can extend to
the maximum allowed by the system's addressing scheme, which is
16,777,216 bytes, or 16 megabytes (16M).

How much of the maximum address space (16M) will be used in a par-
ticular system depends on a number of factors: the size of the com-
puter's processor storage, the amount of disk storage available, the
number of partitions, their sizes, and the characteristics of the
installation's programs and operating environment.

Your programs are conceptually loaded and run in address space. See
Figure 3 on page 6. Of course, each instruction of a program must
be in processor storage when the instruction is executed, and so
must the data this instruction manipulates. The other instructions
and data of that program in virtual storage need not be in processor
storage at that same moment; they can reside on auxiliary storage
until needed. The file used for this purpose is called the page
data set.

It would be inefficient, however, to bring every instruction and its
associated data into processor storage individually. Virtual storage
is manipulated in sections called pages; the size of a page in VSE
is 2K bytes. Processor storage is also divided into 2K byte
sections; these are called page frames. Page frames accommodate
pages of a program during execution.

The resident routines of the VSE/Advanced Functions supervisor occu-
py the low address page frames, while the remaining page frames are
available for the execution of processing programs and the pageable
routines of the supervisor. These remaining page frames are collec-
tively called the page pool.

Chapter 1. VSE/Advanced Functions Overview 5

Virtual Storage
0K)

Processor Storage

o
=

u n o8 QAP

Your Program

' nK

© 0T ®n

L |

max.=16M-1 bytes
It is in the address space that programs conceptually run.

Figure 3. Virtual Storage and Processor Storage

When a program is loaded from the core image library into virtual
storage, all its pages are brought into page frames of the page
pool. If there are not enough page frames available to contain all
the pages of a program, the system writes the contents of some page
frames to the page data set. See Figure 4 on page 7.

6 VSE/Advanced Functions System Management Guide

Core _‘/ Page

Data

Image

Library Set

%
‘,"\\X\\\\—_/
\‘X\"/
\\ \\
A X7
\ ‘
v|x
Qix
iX]
[]
1,1
:— I'XI
: X X X X
|
| X X X X
l
T — S N x | x| x| x
| PROGX _)_(__2(]__)_(__?_(___)_(___)‘(,
VX XXX
{ LG,
: = X | x| x| X
|
! | x| x| x| x
: } Processor Storage
L e —— — -

Virtual Storage
A program named PROGX (A) is 'conceptually' loaded into virtual storage

(B). The supervisor finds page frames in the
storage (C). When there are not enough page frame

PROGX, the supervisor stores the contents

data set (D). The remaining pages of the program can then be loaded.

Figure 4. Storage Management Concept -- VSE/Advanced Functions

page pool of processor

s to accommodate all of

}Page

Pool

of some page frames on the page

Chapter 1. VSE/Advanced Functions Overview

Storage Management

The following discussion amplifies the concept of storage management
shown in Figure 4 on page 7

When programs are loaded for execution they may be loaded in
non-contiguous page frames of processor storage. The supervisor
knows what processor storage locations pages of a given program
occupy. If the program should cancel, due to an error, the listing
(dump) produced by the system reflects the virtual addresses where
the program was conceptually running. In Figure 5 on page 9 , a
16K-byte program named INVEN, is conceptually loaded at the virtual
storage location 1024K. As shown, the system selected eight page
frames of processor storage which are not contiguous. If the pro-
gram were to end abnormally, and a listing representing storage was
produced (on SYSLST), the INVEN program would be shown as occupying
addresses 1024K through 1040K minus 1.

All of the information pertaining to the virtual storage and page
frames is maintained within the system in a series of tables. It is
through these tables that the virtual storage exists. Entries in
these tables reflect the current status of a given page of virtual
storage.

8 VSE/Advanced Functions System Management Guide

Virtual Storage

OKr |
|
|
|
|
|
|
Page Pool of 128 K
F1024K } T T T T T T]
| INVEN (16K) 1| | I [.
I | | |
' 1 T |
— n | I | | I l
| 1040K-1] | S
| | b
| |
r |
| I | I |
| [
1 T a
I |
| L
1 T
| I| |
| } %
| |
L
— 1 |
| | |
| L | 1 I | | L L
| Processor Storage
|

L |

I = a page of program INVEN. 8 page frames are occupied by this 16K
program.

Figure 5. Running a Program in Virtual Storage

Relating Virtual Storage to Locations in Processor Storage

Since the system does not anticipate where in processor storage a
page will be loaded, the virtual addresses must be translated into
real addresses when required for execution. The address translation
is performed by a combination of the system hardware and the
VSE/Advanced Functions supervisor.

If an entire program fits in processor storage, none of the pro-
gram's pages will be placed on the page data set.

In the example shown in Figure 5 , no page of INVEN will be paged

out as long as the demand on processor storage does not exceed the
number of available page frames.

Chapter 1. VSE/Advanced Functions Overview 9

If a second program were to be executed (multiprogramming) and this
program together with INVEN were larger in size than the number of
frames available in the page pool, the system would store as many
pages as necessary on the page data set to keep both programs run-
ning.

In Figure 6 on page 11 a program called PAYROLL is being executed as
well as INVEN. PAYROLL is a 118K program. As the page pool in this
example is only 128K, the total demand (INVEN + PAYROLL) of 134K
exceeds the processor storage resource by 6K or three page frames.

The program PAYROLL will not start executing until all of its pages
have been loaded into processor storage. After having loaded 112K
of program PAYROLL, the supervisor must make three page frames
available for that program. It does this by selecting the three
least recently used pages and storing them on the page data set. See
Figure 7 on page 12 . Once the pages have been saved on the page
data set the page frames are available for the last three pages of
the program PAYROLL. See Figure 8 on page 13 .

10 VSE/Advanced Functions System Management Guide

0K

1024K

1060K

Virtual Storage

Page Pool of 128K

INVEN (16K)
1040K—1
PAYROLL (118K)
P|P|P
T178K—1~_ _

rleflP|lP]1]P
plelir|P|P|P
plep|P|P|P]|P
rle|lpP|P|1]P
ple|P|l1t]|P]|P
P Pl P|P|P
plP|P|lP|P|P
plplP|P|P|P

Processor Storage

| = a page of program INVEN

P =a page of program PAYROLL
3 pages of PAYROLL not yet loaded

Figure 6. Loading Program Pages into Page Frames

Chapter 1. VSE/Advanced Functions Overview

11

Virtual Storage

Page v
Data

Set I '

Page Pool of 128K

MVU4Kp——-———e e
P
INVEN (16K)

:

1040K-1
O T T O O
1060K | p p b | - -
PAYROLL (118K) pPlpP|lP|I1|P|P]|P
PIP]P Pli|P|pP|P|P]|P
78K 1~ el elrleleleloe
\\\\\\ P P P P P P P

Processor Storage

= a page of INVEN
P =a page of PAYROLL
3 pages of INVEN have been paged out to the
page data set making room for the 3 remaining
pages of PAYROLL.

Figure 7. Storing Pages on the Page Data Set (Pageouts)

12 VSE/Advanced Functions System Management Guide

Virtual Storage

0K
D ——
ata m
1024K
INVEN (16K)
P| P PP | P|I
1040K—1
plpP|P|P|P|P]|P
1060K vleleplP|r|P|P
P| P
PAYROLL (118K) P ! P P P
pl1|P|P|P|P]|P
M78KIT~ . plp|P|P|P|P]|P
“~\\PPPPPPP
Processor Storage
| = a page of INVEN
P =a page of PAYROLL
The last 3 pages of PAYROLL are loaded and
execution begins.

During execution, whenever a required instruction or

some data is not present in processor storage, execution
is interrupted by a so-called page fault.

The required page must then be read into processor storage.

Figure 8. Managing the Page Pool

Chapter 1. VSE/Advanced Functions Overview

13

Virtual Storage Implementation under VSE/Advanced Functions

Division of

Under VSE/Advanced Functions you may generate a system that will
execute on 4300 or /370 hardware. Using the 4300 hardware, your VSE
system may be generated to run in either ECPS:VSE mode or 370 mode.
VSE on the System/370 hardware may run only in 370 mode.

The generated supervisor in 370 mode is functionally the same,
whether the hardware is System/370 or a 4300 processor.

The concepts of virtual storage are the same in both modes of exe-
cution; however, the implementation differs slightly.

This section discusses: virtual storage, processor storage, and pro-
gram execution (with and without paging). The implementation of
most of these items is the same in both modes. The differences
between the two execution modes (ECPS:VSE or /370) are discussed and
illustrated later in this section.

Address Space

As stated earlier, all programs, including the supervisor, run in an
address space called virtual storage. This address space is divided
into areas: for the supervisor, the partitions, and the shared vir-
tual area (SVA).

SUPERVISOR AREA: The address space reserved for the supervisor is
the low addresses of your virtual storage. The supervisor area
begins at location OK and extends up to the size of your generated
supervisor (see Figure 9 on page 15).

14 VSE/Advanced Functions System Management Guide

Virtual Storage

0K 1 A
| |
| |
| Resident Supervisor I
| Routines |
fom o =
| Pageable Supervisor |
| Routines | I
fomm e =
Resident Supervisor |
Routines |
% {nK
| |
| |
| Address
Space
|
|
|
\

Figure 9. Supervisor Area in Virtual Storage Address Space

PARTITIONS: The virtual storage contains the areas which are used
by the partitions. Programs run in these areas. The number of par-
~ titions is determined during supervisor generation. See
VSE/Advanced Functions Planning and Installation. The distribution
of the partitions in the address space follows the default partition
priority scheme, that is, the lower priority partitions have the
lower addresses. The sequence is always BG, F4, F3, F2, F1 for a
five partition system.

Figure 10 on page 16 shows the layout of virtual storage for a
4-partition VSE system. In this figure each partition is 200K in
size.

Chapter 1. VSE/Advanced Functions Overview 15

Virtual Storage

F512K
l

| BG Partition

—_————

|

I

|

|

|

|

I

F712K: |

Address | |

Space | F3 Partition |

| l

F912K |

I | l

| F2 Partition |

I |

F1112K |

| |

| F1 Partition |

| |

L |

| 1

| |

| | |
\Y

Figure 10. Partition Distribution in a Four-Partition System

THE SHARED VIRTUAL AREA (SVA): The SVA occupies the address space
immediately following the partitions, see Figure 11 on page 17
Certain frequently used programs are loaded into the SVA. Such pro-
grams (or parts of programs), which are relocatable and
re-enterable, are available for concurrent use by programs executing
in any partition. Additional information on the use of the SVA is
contained in this guide where appropriate.

Processor Storage Utilization

Under VSE/Advanced Functions, processor storage is used as follows:

° For the accommodation of the resident supervisor routines.

N For the loading and execution of the pageable supervisor rou-
tines.

i For the loading and execution of programs.

As shown Figure 12 on page 18 , all page frames of processor storage
not needed for the resident supervisor routines are available to the
page pool. It is from this page pool that the system selects page
frames for pages of executing programs (including the pageable rou-
tines of the supervisor).

16 VSE/Advanced Functions System Management Guide

A Virtual Storage

| |

| |

b5 12K —

| |

| BG I

| I

F712K .
Address | |

Space | F3 |

|

k912K

|

| F2

l

F1112K

|

| F1

|

F1312K

|

| Shared Virtual Area

| |

\

Figure 11. Shared Virtual Area in a Four Partition System

Chapter 1. VSE/Advanced Functions Overview 17

Virtual Storage Processor Storage

Resident Supervisor Routines Resident Supervisor Routines
____________________ - ~
Pageable Routines of Supervisor S S S
"'—E;Ee}}"s:p;@m Routines Resident Supervisor Routines
S S S S
S
\ Page
Pool

N~ |

S =pages of pageable supervisor routines

Figure 12. Supervisor Routines -- Fixed and Pageable

Executing Programs in Virtual and Real Mode

All programs when executing are conceptually running in the address
space associated with a partition. The operating system selects page
frames from the page pool for pages of the executing programs. The
execution can be in one of two modes:

EXECUTION IN VIRTUAL MODE: The page frames occupied by pages of
programs running in virtual mode continue to be part of the page
pool. The operating system manages the processor storage. It
places some pages on the page data set, when necessary, and
retrieves them as required. Programs in virtual mode are pageable.

EXECUTION IN REAL MODE: The page frames occupied by pages of pro-
grams running in real mode are taken out of the page pool for the
duration of that program's execution; the page frames will not be
selected for another program of higher priority; the program is
fixed in processor storage and is non-pageable.

To have a program executed in real mode, an amount of processor
storage must be allocated to the partition in which that program is
to run. The allocated processor storage remains part of the page

18 VSE/Advanced Functions System Management Guide

pool until real mode execution begins. Certain programs -- such as
those with critical time dependencies -- may have to run in real
mode. A partition may execute in only one mode at a given point in
time; for example, the BG partition can not initiate both real and
virtual execution at the same time.

Storage Allocation

From a storage management point of view, only minor differences
exist in virtual and processor storage utilization techniques
between ECPS:VSE and 370 mode. These differences are indicated as
the following topics are being discussed:

Address space layout

Partition allocation

Processor storage allocation for real mode execution
Dynamic storage areas.

e o o o

ADDRESS SPACE LAYOUT: In ECPS:VSE mode, the virtual storage is one
area whose size is determined at Initial Microprogram Load (IML).

In 370 mode, the virtual storage is divided logically into two
areas: real address space and virtual address space. See Figure 13
on page 20 . Generally, the size of the real address space is the
size of processor storage as determined by the system at Initial
Program Load (IPL). The size of the virtual address space is as
specified in the VSIZE parameter entered by the operator at IPL or
coded in the IPL procedure. The total size of the virtual storage
is then the sum of real address space size and virtual address space
size. For example, a processor storage size of 5M and a specifica-
tion of VSIZE=10M give a virtual storage size of 15 megabytes. The
supervisor routines occupy the low address end of the real address
space. The rest of processor storage is available as the page pool.
See Figure 14 on page 21 , Case 1.

You can allocate portions of the page pool to the partitioms, using
the ALLOCR command. However, you must take care to leave enough
page frames for programs running in virtual mode to be paged in.
For details, see VSE/Advanced Functions Planning and Installation.

A special case is when you specify a VSIZE so large that the sum of
VSIZE and processor storage is greater than 16 megabytes. This may
occur if you want to run very large programs in virtual mode, or if
you have a large amount of processor storage installed. The virtual
storage may not be greater than 16M because of the addressing
scheme, as explained above. Therefore the system overlaps the vir-
tual address space and the processor storage. See Figure 14 on page
21 , Case 2. This gives you a virtual address space of the size you
specified in the VSIZE operand, and a real address space which is
smaller than the processor storage in your system. The space avail-
able for the page pool is still processor storage size minus the
space occupied by the supervisor routines.

Chapter 1. VSE/Advanced Functions Overview 19

oK

2048K

However, the amount of processor storage which can be allocated
using ALLOCR commands is now the real address space minus the space
occupied by the supervisor routines. This is not the same as
processor storage minus supervisor, as in the Case 1.

It is therefore important to note the difference between real
address space and processor storage. Note that, when processor
storage plus VSIZE specification are greater than or equal to 16M,
making the VSIZE specification larger makes the space available for
real partition allocation (ALLOCR) smaller. The area of processor
storage which is overlapped by the virtual address space is always
available for paging.

If you specify a VSIZE which is greater than 16M minus supervisor
size, the system does not give you the full specified amount of vir-
tual address space. In this case the system keeps just enough real
address space for the supervisor routines. The remainder of the 16M
of virtual storage is the virtual address space, and there is no
area of processor storage available for allocation to the partitions
via ALLOCR commands.

ECPS:VSE-Mode 370-Mode
0K
Real Address Space
512K
The Address Space
Virtual Address Space
2048K
Virtual Storage Virtual Storage

Figure 13. Address Space for 2048K Bytes of Virtual Storage and 512K Bytes of

Processor Storage

20 VSE/Advanced Functions System Management Guide

ECPS:VSE-Mode

370-Mode

0K r oK 5\
Supervisor Supervisor
128K 128K Real
& Address
Space
512K
The
Address ¢
Space
Virtual
> Address
Space
2048K - 2048K J
Virtual Storage Virtual Storage
370 Mode in Systems with Large Processor Storage and VSIZE:
Case 1: Case 2:
Processor Storage = 5M Processor Storage = 5M
Specified VSIZE = 10M Specified VSIZE = 12M
0 3 0 N
Supervisor Supervisor Real
1M Real M > , Address
Processor
Processor Address Page poo| r Space
Storage Page Pool ’ Space Storage /// aM
5M / / £ 4
5M : BMl— — — — Partitions . . — —.
and
Partitions SVA
and
SVA
Virtual Virtual
Address \ Address
Space Space
10M 12M
15M J 16M J
Virtual Storage Virtual Storage

128K and 1M as supervisor sizes are arbitrary numbers, somewhere above the
minimum supervisor size.

Figure 14. Supervisor and Partition Location in Both ECPS:VSE and 370 Mode

Chapter 1.

VSE/Advanced Functions Overview 21

PARTITION ALLOCATION: Only the number of partitions but not their
sizes are defined when the supervisor is assembled. IPL allocates
all of the address space available for the partitions to the Back-
ground (BG). After IPL, you allocate the foreground (Fn) partition
sizes using the ALLOC command. See Chapter 2: Using the System.

Figure 15 on page 23 shows the layout of a 4-partition system after
IPL and allocation, respectively, has taken place.

22 VSE/Advanced Functions System Management Guide

ECPS:VSE-Mode 370-Mode

0],¢ 0K w
Supervisor Supervisor
128K 128K
Real
$ Address
Space
BG
512K ﬁ
BG
712K
F3 F3
912K
F2 F2
112K Virtual
L Address
F1 F1 Space
1312K
SVA SVA
2048K J
Virtual Storage Virtual Storage

This figure assumes a virtual storage size of 2048K and a processor
storage size of 512K. The supervisor will occupy the low address
128K of this system.

In ECPS:VSE mode, the address space from the end of the supervisor to
the beginning of the Foreground 3 partition belongs to the BG partition (584K).

In 370 mode, the BG partition's address space starts at the beginning of
virtual address space (512K). The real address space is the address space

from which programs running in real mode are executed.

Figure 15. A 4-Partition System in ECPS:VSE and 370 Mode

Chapter 1. VSE/Advanced Functions Overview 23

PROCESSOR STORAGE ALLOCATION FOR REAL MODE EXECUTION: A specific
number of page frames of processor storage may be allocated to any
of the partitions for real mode execution. The allocation may be
done at any time with the ALLOCR command.

Submitting
ALLOCR BG=20K,F1=24K
for example, causes the following:

¢ In ECPS:VSE mode: The operating system notes that partitions
BG and F1 have 10 page frames and 12 page
frames respectively of processor storage
available for real mode execution.

* In 370 mode: 20K and 24K of real address space are allo-
cated to partitions BG and F1 respectively.
In addition, when real mode execution takes
place, the processor storage addresses used
by the operating system are the same as the
addresses within the allocated real address
space.

With the above ALLOCR command the largest program that can be exe-
cuted real in the two partitions are 20K in BG and 24K in F1.

When not occupied by a program running in real mode, the page frames
allocated to a partition are part of the page pool.

When a program running in real mode does not require all the allo-
cated page frames, the unused page frames may be made available to
the page pool by specifying the amount of storage required by the
program in the SIZE operand of the EXEC job control statement for
the program. In order to execute a program in real mode an EXEC
statement with the REAL parameter must be used. For more details on
the EXEC statement see Chapter 2: Using the System.

Figure 16 on page 25 shows the results of the above discussed ALLOCR
command with a 20K-program REALRUN executing in the BG partition in
real mode.

24 VSE/Advanced Functions System Management Guide

ECPS:VSE-Mode

0K
10K ——————— Supervisor - — — — — —
128K
REALRUN (20K)
BG <

S~

Virtual Storage

370-Mode
0K

100Kl — — - —— —- Supervisor - — — — — — — —
128K

REALRUN (20K) }BG
148K

Allocated to F1
162K —-—————————————— ———

Virtual Storage

Figure 16. Executing in Real Mode

0K g

100K

Processor Storage

0K p

100K |-

Processor Storage

R = pages of REALRUN in processor storage
S = pages of supervisor pageable routines in storage

In Figure 16, the shaded portions of processor storage are not part
of the page pool at this time. The illustration assumes a supervisor
with 100K resident routines and 28K pageable routines. The program

Chapter 1. VSE/Advanced Functions Overview 25

REALRUN is 20K in size and is executing in real mode in the BG par-
tition. Note that in ECPS:VSE mode the page frames are selected
randomly from the page pool, while in 370 mode the page frames occu-
pied by REALRUN have the same processor storage addresses as the
pages that are occupied by REALRUN within virtual storage. The allo-
cation for Fl has not affected the page pool.

FIXING PAGES IN PROCESSOR STORAGE: The allocated page frames are
used not only for programs running in real mode, but may also be
used for programs running in virtual mode.

Some programs that run in virtual mode contain instructions or data
that must be in processor storage when needed and therefore cannot
tolerate paging. The pages containing such code or data can be fixed
via the PFIX macro instruction, and freed immediately after use via
the PFREE macro instruction. The licensed program VSE/POWER is an
example of an IBM program that uses PFIX/PFREE macros.

When pages of a program running in a given partition are fixed in
response to the PFIX macro, they are fixed in the page frames allo-
cated to the partition. If a PFIX macro is issued and not enough
storage is allocated, the pages are not fixed, and a completion code
indicating this is returned to the program.

Fixing pages in processor storage means that, in a multiprogramming
environment, fewer page frames are available to other programs run-
ning in virtual mode, potentially degrading total system
performance. When channel programs with large I/0 areas are
involved, the initial size of the page pool may be too small. Con-
sider this effect carefully before allowing the use of the PFIX mac-
ro at your installation.

DYNAMIC STORAGE AREAS: Under VSE/Advanced Functions there is a
requirement for certain system functions to acquire virtual storage
dynamically during program execution. An area called GETVIS area is
used for this purpose. Each partition has its own partition GETVIS
area, and the SVA includes the system GETVIS area. The GETVIS areas
occupy the high address space associated with each partition and the
SVA. Figure 17 on page 27 shows the virtual storage layout in
ECPS:VSE and 370 mode with the GETVIS areas included. For further
information on the size and use of GETVIS areas see Chapter 2: Using

the System.

26 VSE/Advanced Functions System Management Guide

0K

128K

ECPS:VSE-Mode

Supervisor

BG

e e - —— — — — ———— — o]

e e e —— —— . ——— ——

GETVIS Area F1

SVA

System GET VIS

Virtual Storage

oK

128K

512K

712K

912K

1112K

1312K

2048K

370-Mode

GETVIS Area F1

Supervisor
L Real
Address
Space
|7/
)
BG
______ GETVISAreaBG |
F3
T é- E?_/E;r:a—f:g—.———
F2
T T T GETVIS AreaF2
Virtual
F1 > Address
Space

SVA

e e e ———— — —— — ——— — ——]

System GETVIS

Virtual Storage

Figure 17. A 4-Partition System in ECPS:VSE and 370 Mode with the GETVIS Areas

MULTITASKING

At the beginning of this chapter, we defined multiprogramming as the
ability to execute more than one program concurrently in separate
partitions within a single computer system. Multitasking can be

regarded as an extension of multiprogramming in that it provides the
ability to execute more than one program concurrently in a single

partition. In simple terms, therefore, multitasking can be regarded
as multiprogramming within one partition.

Chapter 1. VSE/Advanced Functions Overview 27

Some installations using former versions of DOS/VS, employed multi-
tasking to run more than five programs in a 5-partition system. The
additional partitions that VSE/Advanced Functions provides serve the
same purpose. However, running programs concurrently in separate
partitions usually requires less preparation than running programs
concurrently in the same partition.

Two Types of Multitasking

Independent

Programs (or parts of a program) that are executed concurrently in a
given partition are called tasks. A distinction is drawn between the
main task in a partition and one or more subtasks in the same parti-
tion. The main task is that program (or program part) which is ini-
tiated by job control. The subtasks are programs (or program parts)
that are initiated through the use of the ATTACH macro in an assem-

bler language routine.

A subtask executed in a given partition may be
i logically independent, or

o logically dependent.

Subtasks

In the first case, one (usually the main) task monitors the exe-
cution of the subtasks, treating them as independent programs. Such
subtasks may be coded in any programming language. This type of
multitasking is sometimes called multiprogramming within a
partition. It is a suitable technique to use, for example, for con-
current execution of more programs than partitions are available.

Dependent Subtasks

In the second case, both the main task and the subtasks are program
routines that are logically part of the same program. Thus, the
tasks can communicate with one another. In this case the subtasks
are likely to be coded in assembler language to allow the use of the
task intercommunication macros. They can share code (in particular,
an access method or subroutines), provided that it is of a read-omnly
nature (that is, that the code or subroutines are not modified dur-
ing execution). This technique is complex and can best be under-
stood after studying the first type of multitasking.

The maximum number of subtasks that can be active at any one time
within the entire system is a supervisor generation option.

CROSS-PARTITION EVENT CONTROL

Highly complex applications may have a need for communication
between programs executing in separate partitions. For example, two

28 VSE/Advanced Functions System Management Guide

such programs may need to perform operations on a common file, and
the operations may require actual communication between the two pro-
grams.

Through cross-partition event control macros, one partition can
delay the execution of part of a program until another partition
signals the completion of a critical event. This allows synchronized
multiprogramming in separate partitions -- thus protecting programs
against inadvertent destruction of each other -- while at the same
time providing for any necessary communication between them. IBM
licensed programs require this support in certain complex applica-
tions. One example is the licensed program VSE/POWER generated with
SPOOL=YES. For details about cross-partition event control, see the
manual VSE/Advanced Functions Application Programming: Macro Refer-
ence.

RELIABILITY/AVAILABILITY/SERVICEABILITY

VSE/Advanced Functions includes routines that analyze and record
CPU, channel, and device errors and attempt to recover from them.
The data is stored on the system recorder file (SYSREC). The infor-
mation obtained from this file serves not only as an aid in diagnos-
ing machine errors, but also helps IBM customer engineers to
increase reliability, availability and serviceability (RAS) of your
system.

If on-line recovery is impossible, the system may be placed in a
hard wait state. After the new IPL you can run the EREP program to
obtain diagnostic data. These data help you and the IBM customer
engineer to locate and solve the problem.

On the IBM System/370 Models 115 and 125, errors in the CPU and
channel-attached input/output devices (for example, card
reader/punch, disk and printer) are recorded on the system diskette.
IBM System/370 Model 158, the IBM 3031 and the 4300 processors have
a similar hardware error recording feature in addition to a software
error recording facility. This hardware error recording is inde-
pendent of the software routines.

Recovery Management Support

The Recovery Management Support routines, referred to as RMS, pro-
vide the following RAS facilities:

N Machine Check Analysis and Recovery
N Channel Check Handler

These facilities provide hardware error analysis and attempt recov-
ery. Another RAS facility, the Recovery Management Support Recorder
(RMSR) provides for recording of error and operational statistics on
SYSREC as follows:

Chapter 1. VSE/Advanced Functions Overview 29

Machine Check (CPU)

Channel Check

Unit check

Tape/disk error statistics by volume

MDR (Miscellaneous Data Recorder)

IPL information

End-of-Day statistics held in main storage

30 VSE/Advanced Functions System Management Guide

CHAPTER 2: USING THE SYSTEM

This chapter is intended primarily for programmers who are responsi-
ble for optimum system throughput and for servicing the installa-
tion's libraries. The topics discussed are:

Starting the System -- describes the initial program load (IPL) pro-
cedure. It also describes how to create the file required for
recording error information, how to allocate storage to a partition,
and how to start a foreground partition.

Controlling Jobs -- describes the required input to the job control
program, which controls the execution of a job; it includes a brief
discussion of label processing.

Linking Programs -- describes the input to the linkage editor pro-
gram, which links the modules produced by language translators,
produces executable phases and places them in the core image
library.

Using the Libraries -- provides the information on how to alter,
copy, and inspect the contents of the libraries. It also describes
how to allocate space to the libraries and how to create private
libraries.

STARTING THE SYSTEM

Before a job can be submitted for execution, the supervisor must be
read into processor storage, and the job control program must be
loaded into the background partition. To do this, the operator
starts the system by following the initial program load (IPL) proce-
dure.

On a 4331 processor the amount of virtual storage available can be
altered during IML (Initial Microprogram Load), which is done prior
to the IPL procedure. Refer to section Virtual Storage Size in
VSE/Advanced Functions Planning and Installation and also to the
Operator's Guide manual for the processor.

This section describes the use of the IPL commands. The exact for-
mats of these commands are contained in VSE/Advanced Functions Sys-
tem Control Statements and VSE/Advanced Functions Operation. This
section also provides a summary of the automatic functions of IPL;
descriptions of how to load the shared virtual area, and how to cre-
ate the system recorder file (SYSREC) and the hard copy file; a sec-
tion on the optional user exit routine for user-defined processing
after IPL; and a section on entering data into SYSREC.

Chapter 2: Using the System 31

You must perform the IPL procedure each time you have to do one of
the following:

° Load a new supervisor (for normal system start-up, for different
supervisor options, or to recover from a system malfunction.
For the last, refer to VSE/Advanced Functions Diagnosis: Ser-
vice Aids).

. Modify the shared virtual area size.

. Add devices to or delete them from the system configuration.
. Set or change the time-of-day clock value.

i Set or change the system's time zone value.

. Change the channel and unit assignment of the system residence
(SYSRES), the VSE/VSAM master catalog (SYSCAT), the system
recorder file (SYSREC), or the page data set due to hardware
problems with the channel or disk drive.

. Create SYSREC (for the first time or because of hardware prob-
lems).

. Replace SYSRES or the page data set because of a hardware prob-
lem with the pack.

] Switch to a different label information area.

° Reallocate the lock communication file.

Initial Program Loading (IPL)

For IPL, you place the system residence disk pack on a disk drive
and set the address of that drive in the load unit switches, ready
SYSLOG and the device containing the page data set and press LOAD on
the console (on the video display/keyboard console, type in the
address of the drive and press ENTER).

Now, the Automated System Initialization (ASI) is ready to control
the IPL process. If you want to prevent ASI from executing your cat-
aloged IPL procedure, press the INTERRUPT key immediately after you
pressed LOAD. This allows you either to specify different ASI pro-
cedures or to leave ASI and continue with an interactive IPL. ASI
is discussed in more detail under Automated System Initialization
(ASI), below. The remainder of this section describes the interac-
tive IPL process.

Next, the system enters the wait state. You now must indicate the
device that is to be used as the operator comsole (SYSLOG). To do
so, press the Request key (or END/ENTER) on the selected device.

This causes an interrupt and automatically transmits the address of

32 VSE/Advanced Functions System Management Guide

this device to the system. (If you have installed an IPL communi-
cation device list, the system accepts the interrupt only if the
address of the device is contained in the list). IPL assigns SYSLOG
to the device. This assignment remains valid until the next IPL or
until SYSLOG gets reassigned.

At this point, you are requested to specify the supervisor you want
to be used. You indicate this by one of the following:

¢ pressing ENTER or the Request key
. entering: supervisorname,P|N,VSIZE=nK,LOG|NOLOG

Pressing ENTER or the Request key indicates that the pageable
default supervisor is to be loaded ($$A$SUP1,P,LOG).

Specifying P causes the loaded supervisor (default or your own) to
have certain routines pageable; specifying N causes the loaded
supervisor (default or your own) to be non-pageable. If, on enter-
ing the supervisor name, you specify neither P nor N, P will be
assumed.

The VSIZE parameter applies only to a supervisor generated for 370
mode. You use this parameter if you want to override the default
value as determined by the system.

By setting the list-option to NOLOG, you can prevent IPL from list-
ing the IPL commands on SYSLOG. If you don't specify the
list-option, LOG will be taken as default; that is, all IPL commands
are listed on SYSLOG. 1Invalid commands are always listed.

IPL now reads the supervisor into low processor storage from the
core image library. If an irrecoverable error is sensed while read-
ing the supervisor, an error message is displayed on SYSLOG; the
system goes into a hard wait state, and sets an error code in the
first four bytes of processor storage. The IPL procedure must then
be restarted. For more information on wait states, refer to
VSE/Advanced Functions Diagnosis: Service Aids.

Establishing the Communication Device for IPL

When it has read in the supervisor, the system goes into a wait
state with all interrupts enabled (see Note). Now you must indicate
which device is to be used to communicate the IPL commands to the
system. The specific manual operation you must perform depends on
the selected device:

i If you wish to use the console (SYSLOG), press the Request key

on the console. (On the video display/keyboard console, you can
press the Enter key, the Request key, or the Cancel key.)

Chapter 2: Using the System 33

. If you wish to use a card reader, ready this card reader. The
system then assigns SYSRDR to this device for the duration of
IPL.

. If you wish to use an IBM 3540 Diskette I/O Unit, ready it. The
IPL program assumes that the file IJIPL is part of the diskette
and that it contains the IPL commands in card image format (un-
blocked 80-byte records).

Note: Because any interrupt will (on a first-come basis)
establish the issuing device as the IPL communication device,
it is advisable that TP installations and terminal-oriented
installations with locally attached terminals, (for example,
IBM 3277) install the IPL-phase $$ASCDLO. (See IPL Communi-
cation Device List later in this section.)

IPL Commands

IPL commands serve to set or change various characteristics of your
system. They operate on the following items:

I/0 configuration -ADD and DEL commands
System date and time -SET command

System disk file assignments -DEF command

Page data set -DPD command

Label information area

outside of SYSRES -DLA command
Supervisor parameters -SYS command

Lock communication file -DLF command

Shared Virtual Area size -SVA command

ADD and DEL commands precede all other commands. The DLF command
(if any) must immediately follow all ADD/DEL commands. The SVA com-
mand is the last command to be submitted.

THE ADD COMMAND: Use the ADD command to define all your input and
output devices to your system. This definition specifies for a
device the channel and unit address, the device type, the mode (if
applicable), whether automatic channel switching is desired, and
whether the device is a shared disk device.

Each individual drive of a DASD (of a 3333/3330 or 3310, for

example) requires a specification in an ADD command. Note that one
physical spindle may contain two or more logical spindles (for exam-

34 VSE/Advanced Functions System Management Guide

ple, when CKD disks are being emulated on an FBA disk). In this
case ADD commands must be issued for each of these logical spindles
as well as for the physical spindle.

The following requirement should be kept in mind: you can add a
device only if the number of devices specified in the IODEV parame-
ter of the IOTAB generation macro is not exhausted. If this
requirement is not satisfied, you will get an appropriate error mes-
sage. You must then provide space in the control blocks for the
additional device by:

. deleting unnecessary devices of the type you want to add and
then re-issuing the ADD command, or

. re-assembling the supervisor.

Note: For an IBM 3031 CPU, one service record file 7443 must
be defined. This allows the operating system to access the
system diskette on the service support console. After having
created the system recorder (SYSREC) file and encountered the
first // JOB statement, the system reads machine check frames
and channel check frames from the service record file and
writes them onto the SYSREC file. These frame records will be
available as input for the Environmental Recording Editing and
Printing (EREP) program when that program is executed.

THE DEL COMMAND: Use the DEL command to drop an I/0 device from the
configuration you had established via ADD commands; this may be nec-
essary if, for example, you defined (ADDed) more devices than you
had allowed yourself in the IOTAB generation macro, or if you want
to correct the device type for one of the preceding ADD commands.
Because all references to the device are removed, any subsequent
ASSGN job control statement that refers to a deleted device will not
be accepted.

THE SET COMMAND: You can use the SET command to set the system
date, the time-of-day clock, and the system time zone. If you spec-
ify a time-of-day clock setting, set the time-of-day clock switch to
the 'enable set' position at the exact time specified in the SET
command. The SET command is required only if the time-of-day clock
has not been set. If this is the case, a message at IPL will prompt
the operator.

THE DEF COMMAND: You use the DEF command to assign the SYSCAT,
SYSDMP, and SYSREC files. This command is mandatory.

The SYSCAT file, the VSAM master catalog, is required if you have
the licensed program VSE/VSAM installed. If you do not have
VSE/VSAM installed, specify DEF SYSCAT=UA. SYSREC is the symbolic
name used for the system recorder file, the hard copy file and the
system history file. As described in VSE/Advanced Functions Plan-
ning and Installation, the SYSDMP file can be used instead of SYSLST
to hold system dumps, dump command output, and the output of your
installation's stand-alone dump program.

Chapter 2: Using the System 35

The DEF command must be submitted after any ADD and DEL commands and
prior to the SVA command. The ASSGN job control statement or com-
mand is not valid for SYSDMP, SYSCAT or SYSREC assignments.

THE DPD COMMAND: The DPD command is used to define the disk attri-
butes of your page data set. The operands of the command allow you
to specify

e a device address.

° whether the page data set resides on multiple extents.

. the size of a particular extent.

° whether the page data set is treated as a data secured file.
. the beginning address of the disk extent.

N the disk volume ID.

i whether or not the page data set should be formatted.

Because formatting the page data set is time-consuming, you should
request it only if the pack was damaged. The first time you use the
page data set, it will be formatted automatically.

The page data set can reside on any DASD supported by VSE/Advanced
Functions as a system residence device. Restriction: Do not define
the page data set on a 3340 disk extent which has alternate tracks
allocated. To help ensure better performance, the page data set

should not reside on a pack that is subject to heavy I/0 requests.

The DPD command is mandatory (except when your supervisor was gener-
ated with VM=YES in which case the DPD command is invalid). It must
be submitted after any ADD and DEL commands and prior to the SVA
command.

If your page data set is to be allocated to multiple extents, you
submit the corresponding number of DPD commands. After accepting
the first DPD command, the IPL program prompts for additional DPD
commands until either the entire virtual storage is covered by the
specified extents or you have submitted a total of 15 commands ,
which is the maximum.

THE DLA COMMAND: Use the DLA command to define or reference a label
information area separate from the one within the SYSRES file.

When, for example, two CPUs or two VSE systems under VM/370 share a
SYSRES file, two separate label information areas enable the two
systems to distinguish between dedicated system file names. The two
label information areas must be defined using two separate DLA com-
mands.

36 VSE/Advanced Functions System Management Guide

The additional label information area may be located on a volume

different from the one that contains the SYSRES file; you would then
have to specify the UNIT parameter. Its format and layout are iden-
tical to the format and layout of the SYSRES label information area.

When you define the area, you specify its beginning address by the
CYL or BLK parameter of the DLA command. By specifying NCYL or NBLK
you may deviate from the default size of a SYSRES label information
area. At the time of definition you supply a name by which this
label area is referenced during subsequent IPLs.

To define a label area of 300 blocks on an FBA device, you might
submit the following DLA command:

DLA NAME=MYLABEL,UNIT=280,BLK=125000,NBLK=300

At subsequent IPLs, you may refer to this area by issuing the com-
mand

DLA NAME=MYLABEL,UNIT=280

In the above example, the SYSRES file resides on a different volume;
therefore, the UNIT parameter is required.

If the DLA command is used, it must be submitted after any ADD and
DEL commands and prior to the SVA command.

THE DLF COMMAND: This command serves to either newly define or to
reference a cross-system communication file (also called lock file).
This file must be present when two or more VSE systems share data on
disk.

To define a lock file, you specify
N its physical device address
° the beginning address on the volume that is to contain the file.

You may also indicate whether the file should become a data secured
file or not.

After the file has been allocated, it may later, at subsequent IPLs,
be referred to by simply giving its physical device address; for
example:

DLF UNIT=131

The DLF command is required whenever your supervisor was generated
with DASD sharing support and, at the time of IPL, DASD devices are
present which are defined with the SHR option in the ADD command.
The DLF command (if given at all) must immediately follow any ADD
and DEL commands.

Chapter 2: Using the System 37

For a more comprehensive description of DASD sharing, refer to sec-
tion DASD Sharing by Multiple VSE Systems in Chapter 3: Using the
Facilities and Options of VSE/Advanced Functioms.

THE SYS COMMAND: This command sets parameters within the
VSE/Advanced Functions supervisor:

1. By issuing the PAGEIN macro, a program may request to have one
or more pages brought into processor storage 'in advance', that
is, ahead of the time when they actually need to be in processor
storage. Use of the PAGEIN macro helps to reduce page faults.
The system assumes a (default) number of page-in requests that
can be queued at any one time. You may deviate from this number
by specifying an appropriate value in the PAGEIN parameter of
the SYS command.

2. EXTENT, the second parameter of the SYS command, is used in con-
nection with DASD file protection. For a supervisor generated
with DASDFP=YES, the IPL program allocates a so-called extent
block area in the system GETVIS area. The IBM-set default value
of 4K may prove to be insufficient after a large number of DASD
files (some of them with multiple extents perhaps) have been
opened. In this case, you should specify a larger EXTENT value
next time you IPL the system.

3. The BUFSIZE parameter determines the number of supervisor buff-
ers used for I/0 processing. Their function, together with min-
imum and default values, is discussed in VSE/Advanced Functions
Planning and installation.

4. The SEC parameter activates access authorization checking and
security event logging. You can also use it to specify the num-
ber of entries to be used in the logging queue. SEC= is valid
only if support for checking and logging was generated via the
SEC parameter of the FOPT generation macro.

The SYS command is optional. If used, it is accepted any time prior
to the SVA command.

THE SVA COMMAND: This command must be the last IPL command submit-
ted. The SVA command may be given with or without parameters.

The command parameters (SDL, PSIZE, GETVIS, PSLD) are used to
increase the SVA size beyond the size set by the IPL program. They
serve to add space for

N System Directory List (SDL) entries

. phases that you want to have loaded into the SVA

. the system GETVIS area

° second level directory entries for private core image libraries.

38 VSE/Advanced Functions System Management Guide

If the parameters are not specified during IPL, no user SDL or phase
space is reserved in the SVA for user phases. An SVA will be allo-
cated which is large enough to contain:

. Phases required for use by VSE/Advanced Functions.

. Phases required for installed licensed programs.

° The default system GETVIS area.

. Required SDL entries.

The PSLD parameter is useful if you anticipate a need for more than
the minimum of 5 entries per private core image library. The value
you specify should equal the largest number of actually used direc-

tory blocks (on FBA devices) or tracks (on CKD devices) for any pri-
vate core image library, up to a maximum of 32 entries.

ASI Procedures

The facility allows you to place all your 1PL commands into a proce-
dure. In addition to IPL commands, you include a specification of
your SYSLOG device and optionally, among other things, the supervi-
sor name you intend to use. After you have cataloged this procedure
into the (system) procedure library, you may let the IPL program
execute the procedure whenever you IPL your system. Figure 18 shows
a typical ASI IPL procedure (the first record specifies SYSLOG and a
supervisor name; the ADD command preceding the DEF command defines
the SYSLOG device type):

01F,$$A$SUP3,P,NOLOG,VSIZE=5120K
ADD 280, 3420T9
ADD 281, 3420T9

ADD 162,3330

ADD 163,3330

ADD 00C, 3505

ADD OOE, 1403U

ADD 00D, 3525P

ADD O1F,125D

DEF SYSREC=160,SYSCAT=160,SYSDMP=161
DPD UNIT=161,VOLID=PDSWRK,CYL=300,DSF=N
SYS PAGEIN=20

SVA SDL=100,PSIZE=150K,GETVIS=150K,PSLD=32
/+ END OF IPL PROCEDURE

Figure 18. Example of an ASI IPL Procedure

Other ASI procedures contain job control information that serves to
prepare partitions for operation: they allocate partition space,
store label information, assign devices to logical units etc.

Chapter 2: Using the System 39

Therefore, the entire sequence of IPL and job control commands
needed for system initialization may proceed without your inter-
vention.

A detailed description of how to set up ASI procedures is given in
section Automated System Initialization (ASI) later in this section.

Automatic Functions of IPL

Apart from the Automated System Initialization, IPL performs the
following operations automatically:

. Builds the required control blocks and device tables.

¢ Determines the size of the real and virtual address space.

. Unassigns any DASD assignments for devices that are not opera-
tional at this time (so as to prevent the error recovery rou-
tines from trying to establish error recording statistics for

these devices).

. Loads the printer-control buffers with the installation defined
standard buffer images.

. Initializes the VSE/Advanced Functions RMS routines.

A Loads into the SVA required system phases and licensed program
phases.

After IPL completes these operations, the system loader loads the
job control program into the background partition and places the
system in the problem program state. The message "READY FOR COMMUNI-
CATIONS" appears on the console immediately after IPL is complete.

IPL Communication Device List

For telecommunication installations and for installations with
locally attached terminals (such as the IBM 3277), devices allowed
to present an interrupt during IPL should be restricted because an
unsolicited interrupt might interfere with your system start-up pro-
cedures. By installing an IPL communication device list, you can
avoid a device outside the operator's control establishing itself as
the device used for submitting IPL commands.

To build a restrictive pool of IPL communication devices, you assem-
ble an IPL communication device list (CDL) and catalog the list
under the phasename $$AS$CDLO in the system core image library. Dur-
ing IPL, this phase (if present) is loaded into storage. When the
system enters the wait state and an interrupt occurs, the CDL can
now be searched for the address of the device issuing the interrupt.
If the address is listed, the interrupting device is accepted as an

40 VSE/Advanced Functions System Management Guide

IPL communication device and processing continues. If the address
is not found, the system remains in the wait state. Installation of
the CDL is optional.

For IPL to be successful, once $$ASCDLO is installed, the SYSLOG
device address must be present in the CDL. If you intend to submit
IPL commands from card reader or diskette, you must enter their
addresses in the CDL as well. To ensure backup in case of hardware
errors during IPL, consider stand-by devices, such as another card
reader, diskette, or even an additional SYSLOG device in the CDL.

The CDL may have up to eight entries, each of which is four bytes
long:

reserved cc uu

r T
I I
L |
Bytes 0] 2 3
where: cc = channel number
uu = unit number

You create the CDL by submitting a job that catalogs $$ASCDLO into
the system core image library. The example in Figure 19 creates a
CDL with five entries.

// JOB CATALOG CDL

// OPTION CATAL,NODECK
PHASE $$A$CDLO,+0

// EXEC ASSEMBLY

$SASCDLO CSECT

DC XL&'ooc' card reader
DC XL&4'009' 1052
DC XL&4'O1F' SYSLOG (DOC)
DC XL&'OBD' 3277
DC XL&'240' diskette
END

/*

// EXEC LNKEDT

/&

Figure 19. Example for the Creation of a CDL

Once phase $$A$CDLO has been cataloged, the CDL addresses remain
effective for subsequent IPLs. However, you may:

* Replace the phase by another one, either by assembling and link
editing a new phase or by using the MAINT librarian program to
rename an already cataloged CDL that has a name other than
$SASCDLO.

Chapter 2: Using the System 41

e Override any CDL entry by manual intervention, which is the sug-
gested approach should an erroneous CDL be cataloged in the core
image library. The procedure for manually overriding the CDL is
given in VSE/Advanced Functions Diagnosis: Service Aids.

Building the SDL and Loading the SVA

There are two methods of loading phases in the shared virtual area
(SvVA):

. Automatic loading of pre-defined phases

. Loading of user-chosen phases defined in the options of the SVA
command.

Automatic SVA Loading

A fresh copy of the SVA is built at each IPL. The IPL program loads
phases into the SVA from the system core image library. It uses
pre-defined load lists to find the appropriate phases. The load
lists that identify required system phases are shipped in the system
core image library ready for use at IPL.

If you install an IBM program product that includes SVA eligible
phases, you must catalog a load list for that licensed program. The
licensed program documentation will describe this procedure and tell
you how much space in the SVA the loaded phases require. Although
the IPL program automatically allocates sufficient SVA space (by
checking the load lists), you should know how much virtual storage
will remain to be allocated to the partitions. (In 370 mode, your
specification in the VSIZE parameter at the beginning of IPL is
dependent on this information.)

The IPL program builds entries in the system directory list (SDL)
for each phase that it automatically loads into the SVA. Each of
those entries contains a pointer to the associated phase in the SVA.

Entries in the SDL are copies of specific (system or private) core

image library directory entries. Having entries in the SDL speeds up
the loading of the corresponding phases.

User Options for the SVA

SPACE REQUIREMENTS: In order to load user chosen elements into the
SVA (phases or SDL entries or both) the SVA space must be made large
enough to accommodate the new entries. Space for user entries may be
defined at IPL via the SVA command (see The SVA Command earlier in
this section). The SET SDL command is available for building SDL
entries and loading phases into the SVA.

42 VSE/Advanced Functions System Management Guide

LOADING A PHASE: Processing of the SET SDL command involves, for
each specified phase, a search through one or more directories of
the core image libraries that you have concatenated to your back-
ground partition. The search order for concatenated libraries is
described in section Using Private Libraries later in this chapter.
If a search chain is not defined (which is the case immediately
after IPL), only the system core image library will be searched.

BUILDING AN SDL ENTRY AND LOADING A PHASE: Building an SDL entry and
loading into the SVA may only be done from libraries that are not
defined as access control protected to the Access Control facility
of VSE/Advanced Functions.

A phase that you want to load into the SVA must be SVA eligible,
that is: it must have been cataloged with the SVA parameter speci-
fied in the linkage editor PHASE statement. Link editing for inclu-
sion in the SVA is further discussed in Linking Programs in this
chapter.

BUILDING THE SDL ENTRY ONLY: As mentioned before, you can build SDL
entries for phases that are not SVA eligible. Note, however, that
these phases must be in the system core image library in order to
receive an SDL entry.

THE SET SDL COMMAND: The command used to create SDL entries and to
load phases in the SVA is the SET SDL job control command. This
command can be given only in the background (BG) partition. The
command may be given at any time after IPL. There is no limit to
the number of times it may be given.

Following the SET SDL command the input should be in the format of:
phasename[,SVA]

where phasename is any valid phase name and SVA indicates whether or
not the phase is to be loaded into the SVA. If you specify SVA and
the phase is SVA eligible, the job control program loads that phase.

If the requested phase is not found, the job control program issues
a message on SYSLST (or SYSLOG if SYSLST is not available); the SDL
receives a dummy entry indicating that the phase is uncataloged (in-
active). If you subsequently catalog a phase into the system core
image library under a name listed in the SDL as uncataloged, the
entry in the SDL is activated. Additionally, the phase is imme-
diately loaded into the SVA if you had specified

phasename,SVA
under the SET SDL command and cataloged the phase as SVA eligible.
Duplicate phase names within one SET SDL command are ignored. Note
that a fresh copy of the phase is loaded each time a SET SDL command

for that phase is issued; multiple specifications may thus lead to
an 'SVA full' condition.

Chapter 2: Using the System 43

It is recommended that you create a SET SDL job stream, catalog it
as a procedure in a procedure library and run that procedure imme-
diately after IPL. For compatibility with DOS/VS or DOS/VSE, SET
SDL=CREATE will be accepted by VSE/Advanced Functions. If the SET
SDL job stream is not being entered through a procedure, it may be
submitted to job control through SYSRDR or SYSLOG (depending on the
device from which job control is reading). This job stream can be
entered via the IPL communication device. Figure 20 on page 46
illustrates such a job stream.

Make sure that prior to execution of the SET SDL command/procedure
the proper chain of libraries is established.

It is recommended that you run the librarian program DSERV after a
SET SDL job stream to be certain that all entries have been entered
the way you wish. Include the DSERV control statement DSPLY SDL.

FAST B/C-TRANSIENT FETCH: You have to issue the SET SDL command if

you want to utilize the Fast B/C-transient Fetch facility. Normally,
a request to load or fetch a logical transient routine results in an
I1/0 operation. The Fast B/C-transient Fetch avoids this I/0 opera-

tion by obtaining a copy from the SVA and moving it into the super-

visor's logical transient area. Even if this action necessitates a

page I/0 operation, a performance improvement can be gained because

no directory search operation is involved.

The transient routine must be self-relocating, the first character
of its name must be a '$', and it must have been loaded into the SVA
by the SET SDL command. To build an SDL entry for the transient and
to load it into the SVA, supply the following statement (behind a
SET SDL statement):

phasename ,MOVE

VSE/Advanced Functions provides a SET SDL procedure, called
'"FASTFTCH', which performs the above operation for certain B- and
C-transients.

REPLACING PHASES STORED IN THE SVA: Occasionally, a phase stored in
the SVA needs to be changed; that is, it must be replaced by an
updated version. To replace a phase in the SVA, link edit the
updated version of the phase to the system core image library. Link
editing to a library other than the system core image library does
not cause an update in the SVA (the same applies to a deletion or a
renaming of a phase). Immediately after the link edit operation,
the updated phase is loaded into the SVA. The old version of the
phase remains in the SVA, but is not addressable.

The change or resetting of a search chain that was used for the

processing of a SET SDL command has no effect on the SVA. Therefore,
phases loaded from a concatenated library will stay in the SVA.

44 VSE/Advanced Functions System Management Guide

Creating the System Recorder File

The recovery management support of VSE/Advanced Functions requires a
disk extent on which to record statistical information about machine
errors and environmental information. This disk extent is called the
system recorder file and is identified by the symbolic name SYSREC.
The SYSREC file must exist before job control encounters the first
// JOB statement after IPL. Usually, you create the SYSREC file only
after the first IPL following a system generation (not after each
IPL). If the SYSREC file has been damaged, however, you must re-IPL
and re-create SYSREC.

If your system is running on an IBM 3031 or 3033, the SYSREC file
must be evaluated (via program IFCEREP1) and recreated each time a
hardware (microcode) change is installed which affects the frame
records on the 3031 or 3033's Service Record File. For details on
IFCEREP1, refer to 0S/VS, DOS/VSE, VM/370 Environmental Recording
Editing and Printing (EREP) Program.

On a CKD device the SYSREC file requires a minimum of ten tracks
(not including an alternate track), and it cannot be a split cylin-
der file. On an FBA device the SYSREC file requires a minimum of 72
blocks of 512 bytes each. You must define SYSREC as an extent of a
permanently online disk device that VSE/Advanced Functions supports
as a system residence device.

The IBM 3031 and 3033 require additional space on the recorder file
to accommodate machine check frames and channel check frames (these
frames are peculiar to the IBM 3031 and 3033). On an IBM 3330, for
example, this space amounts to approximately 9 tracks. If the SYSREC
file resides on an FBA device with blocksize of 512 bytes, add 164
blocks. The exact amount of additional space needed for the record-
ing of those frames can be calculated after the first // JOB state-
ment has been processed and message '1193I RECORDER FILE IS nnn%
FULL' is issued.

The SYSREC file label information must be included in the standard
label portion of the label information area. Therefore, submit a

// OPTION STDLABEL statement when you create the SYSREC file. A
more detailed description of preparing standard label information is
given under section Controlling Jobs later in this chapter.

Figure 20 on page 46 illustrates a job stream (via SYSLOG) to create
the system recorder file. The IPL commands are included in the fig-
ure to show the proper placement of the statements that create the
SYSREC file. Be sure that you do not submit a // JOB statement
until you have supplied all the information applicable to SYSREC.
This is because the SYSREC file is opened when the first // JOB
statement is encountered. Note that the file name IJSYSRC is
required in the DLBL job control statement.

When the system is to be shut down, you should issue the Record On
Demand (ROD) command to ensure that no statistical data is lost.

For a 370 Model 115 or 125, the U command of the mode select
display, should also be issued to save disk usage statistics on the

Chapter 2: Using the System 45

01301 DATE=../../..,CLOCK=../../..,ZONE=../.. /..
0110A GIVE IPL CONTROL COMMANDS

ADD...

ADD...

.

ADD...

SET...

DEF SYSREC=190

DPD...

SVA

01201 IPL COMPLETE FOR . ..

BG 1100A READY FOR COMMUNICATIONS
BG SET SDL

1S511 ENTER PHASE NAME OR /*
BG USERONE

1S511 ENTER PHASE NAME OR /*
BG USERTWO,SVA

1S511 ENTER PHASE NAME OR /*
BG

BG

BG

BG /*

BG ASSGN

.

BG SET RF=CREATE
BG //OPTION STDLABEL L

R , Submit with the rest of the
BG // DLBL 1JSYSRC,’VSE/AF.RECORDER.FILE ™ STDLABEL statements
BG // EXTENT SYSREC,,,, 1700,43

BG /*
BG //JOB FIRST

Figure 20. Example for the Creation of the SYSREC File and for Load-
ing User Phases in the SVA

system diskette. These commands are not valid for recording statis-
tics on telecommunication operation; refer to the appropriate tele-
communication guides for more information.

To obtain a listing of the SYSREC file, run the EREP program as
described in 0S/VS, DOS/VSE, VM/370 Environmental Recording Editing
and Printing (EREP) Program. During execution of the EREP program,
recording on SYSREC is suppressed.

Creating the Hard Copy File

On a system that supports a video display/keyboard console, all mes-
sages displayed on the screen and all information typed in by the

46 VSE/Advanced Functions System Management Guide

operator are saved in a file on the device assigned to SYSREC. This
file, called the hard copy file, can be used to obtain hard
(printed) copies of the file whenever required.

You must create the hard copy file after the first IPL and before
you submit the first // JOB statement.

The control statements and commands needed to create the hard copy
file are the same as those shown in Figure 20 on page 46 for the
SYSREC file with the exception that you specify HC=CREATE in the SET
command, and the filename IJSYSCN in the DLBL job control statement.
More information about creating and printing the hard copy file is
given in VSE/Advanced Functions Operation and VSE/Advanced Functions
System Utilities.

User-Defined Processing after IPL

At large VSE installations, it may be desirable to perform certain
processing at the end of an IPL procedure. It may, for instance, be
important to know who performed the procedure, whether the right
system pack was mounted, and whether the correct date was entered
for the new work session. Moreover, if you work with labeled data
files it is important that they bear the correct creation date, so
as to guarantee that data files are protected until their expiration
date.

After the IPL procedure has been completed, control can be passed to
a user exit routine (phase name = $SYSOPEN) that you may include for
the purpose of checking system security and integrity. This routine
is entered once after every IPL procedure. The VSE/Advanced Func-
tions distribution volume contains a dummy phase $SYSOPEN in the
system core image library. If you do not use the facility, this
phase has no effect on your system. Conventions for writing this
kind of user exit routine, together with an example, are contained
in the section Writing an IPL User Exit Routine in Chapter 3: Using
the Facilities and Options of VSE/Advanced Functions.

Entering RDE Data

Standard VSE/Advanced Functions support includes the reliability
data extractor (RDE). In an interactive (that is, non-automated)
IPL, you are asked by a message to SYSLOG to provide a 2-character
IPL reason code when the first // JOB statement after IPL is proc-
essed. The system may have been started at the beginning of normal
operation or restarted because of a machine error, a program error,
an operator error, etc. In addition, the system requests you to
supply a subsystem identifier, a code which identifies the device
type or program type that failed. On the basis of these replies job
control will build a record for SYSREC.

Before shutting down at the end of the day (or processing period),
you must ensure that no environmental data is lost, by issuing the

Chapter 2: Using the System 47

ROD command. This command also causes the RDE end-of-day record to
be written on the disk assigned to SYSREC. To obtain a listing of
this file, run the EREP program as described in 0S/VS, DOS/VSE,
VM/370 Environmental Recording Editing and Printing (EREP) Program.

RDE information can be very valuable to your operations management.
By replying with the exact reason code that applies in each case,
you are in fact ensuring a permanent record of the reason why you
had to re-IPL.

Refer to the VSE/Advanced Functions Operation, for more information
on the RDE messages and the valid replies to them.

Allocating Address Space to the Partitions

For each partition specified in the NPARTS parameter of the SUPVR
generation macro, address space must be allocated. The address space
available to the partitions is all of the address space from the end
of the supervisor area (in ECPS:VSE mode) or the end of the real
address space (in 370 mode) to the beginning of the SVA. The minimum
size of that address space is 512K.

Allocation of address space to a foreground partition must be done
explicitly. Space not allocated to a foreground partition belongs to
the BG partition. If no allocations are made, for example immediate-
ly after IPL, then all available address space belongs to the BG
partition. In this case, the BG partition has the following size:

ECPS:VSE mode: Virtual storage size (16M default or as specified
at Initial Microprogram Load)
minus supervisor size
minus SVA size;

370 mode: Virtual address space size (system default or VSIZE
value as specified at the start of IPL)
minus SVA size.

Through the use of the job control ALLOC command you allocate the
foreground partitions. Address space allocations are in multiples
of 2K. The minimum amount of address space that may be allocated to
a partition (explicitly or implied) for execution in virtual mode is
128K. This 128K size includes a minimum partition GETVIS area of
48K.

If a foreground partition is defined (via the NPARTS parameter of
the SUPVR generation macro), but not needed for a while, you can set
its size to OK by submitting an appropriate ALLOC command.

During certain periods of processing, the operator can modify the
allocations to the individual partitions, again by using the ALLOC
command. Details on the ALLOC command are given in VSE/Advanced
Functions Operation and VSE/Advanced Functions System Control State-
ments.

48 VSE/Advanced Functions System Management Guide

Allocating Processor Storage to the Partitions

Processor storage is allocated to the partitions to enable the fol-
lowing:

N Program execution in real mode.
N Fixing pages by means of the PFIX/PFREE macros.

When processor storage is used for running a program in real mode or
for fixing pages of a program running in virtual mode (for example,
VSE/POWER), the page pool is reduced by the number of page frames
required for real mode execution or page fixing, respectively.
Because reducing the page pool may reduce total system throughput,
the use of real mode execution and PFIX/PFREE macros should be care-
fully considered.

Processor storage is allocated to the partitions via the ALLOCR com-
mand. For a partition's allocation to be affected, the partition
identifier (BG, F1, F2, ...) must be specified. The allocation is
made in multiples of 2K, with 2K being the smallest allocation per-
missible. Absence of the partition identifier means: do not change
the current allocation. An allocation of 2K allocates one page
frame, 20K allocates 10 page frames etc.

Note: 1In 370 mode, when the ALLOCR command is issued, the
system delineates real address space as well as allocating
processor storage frames. In 370 mode, programs executing real
execute in the real address space.

The size of a given processor storage allocation for a partition is
determined either by the largest program you must run in real mode,
or by the maximum number of pages a program may fix. The number of
pages that can be fixed by the PFIX macro is limited by the amount
of processor storage allocated to that partition.

With an allocation of
ALLOCR BG=20K,F3=10K

you could PFIX 10 pages in BG (while executing in BG) or 5 pages in
F3 (while executing in F3). You could not PFIX 15 pages from one
program in either partition without reallocating processor storage.

PAGE POOL: The page pool is all processor storage (in ECPS:VSE mode)
or all real address space (in 370 mode) beyond the resident supervi-
sor routines. When you use the ALLOCR command you are potentially
reducing the size of the page pool. The page pool is not reduced
until the processor storage page frames are taken for real mode exe-
cution or for PFIX use in virtual mode. The minimum page pool size
is 24K. If you allocate processor storage to partitions you must
ensure that at least 24K remain unallocated. A program running in
virtual mode that needs more than 6K for its I/0 processing requires
a corresponding increase of the minimum page pool size.

Chapter 2: Using the System 49

Initiating Foreground Partitions
An Automated System Initialization (ASI) procedure may be used to

start foreground partitions by including, in the appropriate proce-
dure, the required partition start-up statements.

Allocate Storage to the Partition

In order to initiate a foreground partition, at least 128K of virtu-
al storage must be allocated to that partition. The allocation is
made after IPL with the ALLOC job control command.

Since the IPL program automatically determines the size of the SVA,
it is recommended that you issue the MAP command prior to any virtu-
al storage allocation. The MAP command will display the current
allocations and you can determine the amount of virtual storage
available for allocation to the foreground partitions.

The ALLOC command is both a job control and an attention routine
command. (The attention routine is loaded when you press the
Request key on the console keyboard; that routine is in control of
the system when AR is displayed on SYSLOG.) When the ALLOC command
is given through the attention routine it cannot decrease the size
of an active partition.

The initial allocation of foreground partitions decreases the size
of the BG partition because all available virtual storage is allo-
cated to BG at IPL. Since, after IPL, the BG partition is active,
the ALLOC command must be given through job control.

Activate the Partition

Once virtual storage is allocated to the foreground partitions, they
may be made 'active' through the attention routine. Issuing the
BATCH or START command, specifying a foreground partition, causes
that foreground partition to be initiated. For example:

AR BATCH F1

causes the job control program to be loaded into the virtual storage
allocated to the F1 partition.

Input may now be submitted to the F1 partition. Submitting jobs is
described in section, Controlling Jobs, later in this chapter.

Automated System Initialization (ASI)
During IPL and during the subsequent setting up of the system envi-

ronment, normally the same commands, the same prompting messages and
replies, the same job control information are processed.

50 VSE/Advanced Functions System Management Guide

ASI allows you to place the required control information in proce-
dures that are cataloged in the (system) procedure library and to
let the system execute those procedures, without operator inter-
vention, each time an IPL and a partition start-up occur. The ASI
procedures can be reused as long as your system environment remains
unchanged. Thus, your effort for a total system bring-up is reduced
to merely activating the initial microcode load. In exceptional sit-
uations, you may have to bypass ASI and perform a non-automated,
that is, an interactive system initialization.

Implementation Requirements

THE PROCEDURE LIBRARY: Your system residence (SYSRES) file must
contain the procedure library because you may catalog the ASI proce-
dures only into the system procedure library. Use the librarian pro-
gram MAINT and its CATALP function. The librarian programs are
described in Section Using the Libraries, later in this chapter.

THE SET OF PROCEDURES: ASI requires one procedure for IPL (ASI IPL
procedure), and one job control procedure per partition (ASI JCL
procedure) if this partition is to be started under control of ASI.

DEFAULT PROCEDURE NAMES: ASI assumes certain default names unless
you instruct it to use different names. The defaults are:

IPL: $IPL370 (for 370 mode)
$IPLE (for ECPS:VSE mode)

JCL: $0JCL370 (for 370 mode)
$1JCL370
$2JCL370

$OJCLE (for ECPS:VSE mode)
$1JCLE
$2JCLE

USER-CHOSEN PROCEDURE NAMES: You might want to use different names.
For example, the initialization of your system during the day devi-
ates from that of the night shift: the day shift runs a 5-partition
VSE (including VSE/POWER, ACF/VTAM, CICS/VS) whereas the night shift
runs only simple batch jobs in 3 partitions. In this case, you might
prefer to use procedure names as follows: $IPLD, $0JCLD, $1JCLD,
$2JCLD, $3JCLD, $4JCLD for the day shift, and $IPLN, $OJCLN, $1JCLN,
$2JCLN for the night shift.

If you catalog ASI procedures by names other than ASI's default
names, be sure to delete procedures with ASI's default names if they
are cataloged; ASI looks for those names first and, when it finds
them, executes the corresponding procedure. When the default proce-

Chapter 2: Using the System 51

dures are not present, ASI prompts the operator to specify an ASI
procedure; in the above example, he may then enter $IPLD and $$JCLD,
or $IPLN and $$JCLN.

When you catalog a set of ASI JCL procedures, you must observe the
same naming rule as when you catalog a partition-related procedure.
The first character must be a $. The second character identifies the
partition: 0 for the BG-partition, 1 for the Fl-partition etc. The
remaining characters must be identical for all procedures belonging
to one set. When you specify to ASI which set of JCL procedures are
to be used, replace the partition identifier with a $. If, as in
the example above, you specify:

...,JCL=$$JCLD
ASI executes the procedures:
$0JCLD, $1JCLD, $2JCLD, $3JCLD and $4JCLD.

ASI MASTER PROCEDURE: If two or more CPUs share one SYSRES file, it
may be advisable to have a separate set of procedures cataloged for
each CPU by a separate set of procedure names. ASI still performs a
completely automated system initialization if you have the ASI mas-
ter procedure $ASIPROC cataloged. Each record within this procedure
describes the ASI procedure set to be used for a specific CPU and
the processing mode of that CPU.

An ASI master procedure is also useful

- If you have only one procedure set, but want to use other than
default names, or

- If you plan to use the ASI STOP facility; for example when you
are still 'debugging' your ASI procedures.

The STOP facility allows you to specify, via the STOP parameter (see
below), up to four different IPL commands. Upon encountering the
first of a particular command type, the automatic IPL process inter-
rupts itself and gives the operator a chance to enter or update IPL
commands via SYSLOG.

To build the master procedure, submit one statement per procedure
set. The statement allows you to specify the following parameters,
separated by commas and terminated by a blank.

CPU=cpu-id Specifies 12 hexadecimal digits to identify the CPU
on which an ASI procedure is to be run. The CPU-id
should be taken from message 0I04I which is issued
during an interactive IPL. The format of the CPU-id
corresponds to the first 6 bytes of the result field
from execution of an STIDP (Store CPU ID) assembler
instruction and can be looked up in the applicable
Principles of Operations manual.

52 VSE/Advanced Functions System Management Guide

Contents of

IPL=proc-name Specifies the ASI IPL procedure to be used.

JCL=proc-name Specifies the name of the JCL procedure. The name
must start with $$ if you want the system to execute
a set of ASI JCL procedures;

Default: $$JCLE in ECPS:VSE mode
$$JCL370 in 370 mode.

MODE=370|E Indicates the processing mode of CPU.
Default: 370

STOP=stoplist A list of up to four different IPL commands, in
arbitrary sequence. If more than one is specified,
the commands must be enclosed within parentheses and
separated by a comma. The first of a specified com-
mand type that is encountered during IPL initiates
an interrupt; before the command is processed, the
operator may enter additional IPL commands.

The parameters may be specified in any sequence. Parameters CPU and
IPL are mandatory. The parameter proc-name must start with an
alphabetic character or §, and may consist of up to eight alphameric
characters.

The following is an example of how to catalog a master procedure:

//JOB CATALP $ASIPROC

//EXEC MAINT

CATALP $ASIPROC

CPU=FF0713800138,IPL=$IPLE ,MODE=E
CPU=000713800138,IPL=$IPLX,JCL=$$JCLX,STOP=(DEF,DPD)
/+

/&

The 'FF' in the first CPU-id indicates a virtual machine. If the
CPU-id of a virtual machine is equal (except for the first two dig-
its) to another CPU-id in the master procedure, the entry for the
virtual machine must be the first entry within the master procedure.

ASI IPL Procedures

The ASI IPL procedure contains all IPL commands that you want to
have executed by the IPL routines. Use the same format as in an
interactive IPL.

In addition to IPL commands, you must submit a first record which
specifies in

columns 1 through 3: SYSLOG device address

Chapter 2: Using the System 53

Contents of

beginning in column &: ,supervisor name, paging option,

(optionally) virtual storage size, list option (for a
description of these parameters, refer to
section Initial Program Loading at the
beginning of this chapter.)

The address you specify in columns 1 through 3 must be a
VSE/Advanced Functions supported console device. Specification of
an address which does not represent a VSE/Advanced Functions sup-
ported console device may produce unpredictable results.

The address is meaningful only

i in IPL procedures referenced in $ASIPROC
. in procedure $IPL370 or S$IPLE.

All other situations cause ASI to prompt for a procedure name from
SYSLOG. This can be done only when SYSLOG has been defined via
REQUEST/ENTER; the SYSLOG device address specified in the ASI proce-
dure will then be ignored.

Following is an example of a skeleton ASI IPL procedure:

01F, $$AS$SUPX,N,NOLOG
ADD 180,3330
ADD 04C,2540R

DPD UNIT=180,CYL=400,DSF=N

DEF SYSREC=180
SVA

If your page data set is allocated to multiple extents, you should
place all DPD commands necessary to define the extents into the pro-
cedure. This prevents the IPL program from prompting the operator
to define the remaining extents.

The SET command should not be part of the ASI IPL procedure. The
command must be given only if the time-of-day clock is inoperative
or is not set; if this is the case, the operator will be prompted to
provide the actual date values.

ASI JCL Procedures

ASI JCL procedures should contain all those job control commands or
statements that you would normally submit during an interactive sys-
tem start-up. Complete information on the principles of using job
control commands is given in section Controlling Jobs, later in this
chapter.

54 VSE/Advanced Functions System Management Guide

ASI BACKGROUND PROCEDURE: This procedure must contain all job con-
trol statements and commands necessary to initialize the BG parti-
tion and the system as a whole.

ALLOC and ALLOCR commands to allocate space to the foreground
partitions you intend to start.

All permanent library definitions or assignments of logical
units needed in the BG partition.

The SIZE command if needed.

// STDOPT command for the definition of standard (permanent)
options (see Note 2, below).

// OPTION STDLABEL, together with label information, to set up
the system standard label subarea if it was not set up during a
previous system initialization.

// OPTION PARSTD, together with label information, to set up
(background or foreground) partition standard label subareas if
they were not set up during a previous system initialization.

// JOB jobname for the initialization of RSMR recording and of
the hard copy file.

START Fn for each foreground partition to be started from this
BG partition.

STOP if the BG partition is to be spooled by VSE/POWER. The
STOP command should immediately follow the START command for the
VSE/POWER partition.

Notes:

1.

The placement of the STOP and START commands, as given here for
VSE/POWER, applies also to other permanently running programs
such as VSE/ICCF or CICS/VS.

It is advisable to place a // PAUSE statement before the follow-
ing // OPTION statement (if any). This would give you a chance
to enter the SET command if the recorder file or the hardcopy
file needs to be (re)created. Or, you could enter CANCEL to
bypass the writing of labels whenever you are sure that the
label information is already set up the way you want.

ASI FOREGROUND PROCEDURE: This procedure must contain job control
statements and commands necessary to initialize a particular fore-
ground partition:

// OPTION PARSTD, followed by label information, to set up the
foreground partition standard label subarea if it was not set up
during a previous system initialization or from the background
partition.

Chapter 2: Using the System 55

. All permanent library definitions or assignments of logical
units needed in the particular foreground partition.

Note that a foreground partition can be started through execution of
the ASI BG-procedure or via VSE/POWER or via an attention routine
START command.

SYSRDR or SYSIN cannot be assigned within a procedure. However, you
can have them assigned automatically at the end of an ASI JCL proce-
dure. Specify the appropriate ASSGN statement in the comments por-
tion of the end-of-procedure statement, for example:

/+ // ASSGN SYSIN,...
or
/+ // ASSGN SYSRDR,...

Only one // ASSGN statement can be specified as a comment. The com-
mand form (no //) is not allowed. When the procedure is being exe-
cuted for the first time after IPL, job control treats the comment
as if it were a valid statement following the procedure. If the JCL
procedure is executed again, the ASSGN in the comments portion is
ignored.

Example of an ASI JCL Procedure Set

Figure 21 on page 57 shows a skeleton example of an ASI JCL proce-
dure set. It assumes a 3-partition system with VSE/POWER running in
the Fl-partition. Figure 22 on page 58 shows the associated
sequence of VSE/POWER AUTOSTART commands on SYSIPT. Alternatively,
the AUTOSTART commands can be contained within the ASI procedure, as
is illustrated in the right-hand part of Figure 21 on page 57 (note
that in this case you would have to specify DATA=YES when cataloging
the procedure).

56 VSE/Advanced Functions System Management Guide

* AST PROCEDURE FOR BG
ALLOC F1=300K,F2=200K
ALLOCR F1R=80K,F2R=24K
ASSGN SYSINK, 131
ASSGN SYS001,131
ASSGN SYS002,131
ASSGN SYS003,131
// PAUSE SET RF/HC
// OPTION STDLABEL
// DLBL IJSYSRS
// EXTENT SYSRES,...
/] ...
// OPTION PARSTD
// DLBL IJSYSO1
// EXTENT SYS001,...
/] ...
1 // OPTION PARSTD=F1
// DLBL IJSYSIN
// EXTENT SYSIPT,SYSRES,,,4000,2
/] ...
// JOB ADAM
START F1
STOP
ASSGN SYSLST,PRINTER
ASSGN SYSPCH,PUNCH
/+ // ASSGN SYSIN,00C,PERM

o~ W

O

* ASI PROCEDURE FOR F1 * ASI PROCEDURE FOR F1
* CATALP WITH DATA=YES

wn

6 ASSGN SYSIPT,SYSRES

ASSGN ... ASSGN ...
7 // EXEC POWER // EXEC POWER
/+ ... AUTOSTART statements
/+ (EOP)

* ASI PROCEDURE FOR F2
// OPTION PARSTD
// DLBL IJSYSO1
// EXTENT SYS001,...
/! ..
ASSGN SYSINK, 130
ASSGN SYS001,130
/+ (EOP)
10 // ASSGN SYSIN,O00C,PERM

Figure 21. Example of an ASI JCL Procedure Set

Notes:

1. Label information is written to the F1 partition standard label
subarea.

2. This // JOB statement initializes RSMR recording, and the hard
copy file (if applicable).

Chapter 2: Using the System 57

O 0

Activates the F1 partition where VSE/POWER is to run.
Deactivates the BG partition which is to be spooled by
VSE/POWER.

When the F1 partition becomes active, the ASI JCL procedure for
F1 is called automatically.

Assigns SYSIPT to a disk file in which VSE/POWER AUTOSTART
statements had been recorded in an earlier run of the OBJMAINT
system utility. '

Calls VSE/POWER which starts to read the AUTOSTART statements
from the SYSIPT file. VSE/POWER starts the F2 partition at which
point the F2 JCL procedure is executed. VSE/POWER also reacti-
vates the BG partition.

The BG partition continues under control of VSE/POWER.

SYSIN is assigned to a spool device. The same happens

. At the end of the F2 JCL procedure.

PSTART RDR,00C

PSTART LST,O00E

PSTART PUN,00D

PSTART F2,2 ke F2 ke
READER=00C

PRINTERS=00E

PUNCHES=00D

PSTART BG,0 Fdek BG
READER=00C

PRINTERS=00E

PUNCHES=00D

/ W%

Figure 22. Example of VSE/POWER AUTOSTART Statements

Notes:

1.
2.

Starts the F2 partition.
Reactivates the BG partition from where the VSE/POWER partition
was started.

Invoking VM/370 Linkage Support

You can generate a supervisor with the high performance VM/370 Link-
age facility (VM=YES specified in the SUPVR generation macro as
described in VSE/Advanced Functions Planning and Installation). In
order to invoke the support during VM/370 start-up, proceed as fol-
lows:

1.

2.

Log on in the normal way.

Prepare your virtual machine on which VSE is to operate (you may
omit this step if your VM directory entries are already set):

58 VSE/Advanced Functions System Management Guide

. If you use a supervisor with VM=YES in 370 mode, make sure
that the storage size of the virtual machine is equal to or
greater than the sum of 200K plus the VSIZE value as deter-
mined during IPL. The real address space available to the
VSE system is given by the size that you defined for the
virtual machine minus VSIZE. If you use a supervisor gener-
ated with VM=YES in ECPS:VSE mode, the entire virtual
machine storage is available as VSE address space.

i Set EC mode on by issuing the VM/370 command:
SET EC ON

3. Perform IPL using as the virtual machine's load unit the device
that contains your VSE. The IPL program already issued the com-
mands :

SET PAGEX ON
SET RUN ON

4. If you wish to turn off the pseudo-page-fault handling support
(only useful with more than one partition and processing
multi-tasking applications), wait for message 0I20I, indicating
that the IPL is completed, and then enter the VM/370 command :

SET PAGEX OFF

PAGEX should be used with care, especially in a high-paging
environment where its use can aggravate the thrashing condition.

Note: Some programs (such as VSE/ICCF or SDAID) need PAGEX
to be set OFF. These programs automatically set PAGEX OFF.
Therefore, be sure not to set it ON again.

CONTROLLING JOBS

After the system has been successfully started by means of the IPL
program, the following messages are displayed on the console:

BG 1I00A READY FOR COMMUNICATIONS
BG

This shows that the job control program is in the background parti-
tion ready to accept input.

At this point, the job control program will accept commands submit-
ted through the console (SYSLOG). Job control's normal input source,
however, is the logical unit SYSRDR.

Job control reads from SYSRDR if, at this point, you press the ENTER

key on the console without entering any commands. Normally, SYSRDR
is assigned to a card reader or diskette device.

Chapter 2: Using the System 59

The unit of work that is submitted to the system for execution is
called a job. A job, and the environment in which it is to run, must
be defined to the system through job control statements and
commands. These job control statements and commands are processed by
the job control program which is automatically loaded into storage
as required.

The job control program runs in virtual mode in any partition. It
performs its functions only between jobs and job steps, and is not
present in the partition while a problem program is being executed.

After each job control statement or command is read, control can be
given to a user exit routine for examining and altering the input
before it is processed by the system. For a description of this
facility refer to Chapter 3: Using the Facilities and Options of
VSE/Advanced Functions.

The difference between job control statements and commands is not
discussed here because there is no need for a distinction in this
section. Whenever applicable, it is simply stated whether the func-
tion can be performed using statements, commands, or both. The
description of the job control statements and commands in this sec-
tion is limited to their use and functions; formats and character-
istics of statements and commands are detailed in VSE/Advanced
Functions System Control Statements.

This section describes how to define a job, how to relate files to a
program, and how to work with cataloged procedures.

Defining a Job

The beginning and end of a job are defined by the // JOB and /&
(end-of-job) statements.

If you have the Access Control Facility of VSE/Advanced Functions
implemented, you must also submit an ID statement which specifies
your user identifier together with a password. For more information
about this service, see the publication Data Security Under the VSE

System.

The program to be executed in a job is requested through an EXEC
statement. The occurrence of an EXEC statement with a program name
is called a job step. Each job may consist of one or more job
steps.

You may include as many job steps in a job as you wish. However, it
is not advisable to execute, in one job, several programs that are
completely independent of one another because, if one step termi-
nates abnormally (and a // JOB statement was provided), the job con-
trol program ignores the remaining job steps up to the next /& or

// JOB statement. A typical example of related job steps that
should form a single job are assembling, link editing, and executing

60 VSE/Advanced Functions System Management Guide

a program, where correct execution of one job step depends on suc-
cessful completion of the preceding one. Figure 23 on page 61 shows
an example of a multistep job.

/]
/]
//

/&

Defines the beginning of a job. For jobname, you may specify
a name of your own choosing.

Additional job control statements if required. |
The two job steps. Job control is reloaded into storage at
the end of each job step, enabling the reading of subsequent

job control statements.

At the end of the CHEX program's execution job control is
reloaded and reads the end-of-job indicator. |

JOB jobname

EXEC PAYROLL

EXEC CHEX

Figure 23. Control Statements Defining a Job Consisting of Two Job Steps

Following are some additional details about the JOB and End-of-Job
(/&) statements. The EXEC statement is discussed later in this chap-
ter.

THE JOB STATEMENT: The JOB statement indicates the beginning of
control information for a job. The specified job name is stored in
the communication region of the corresponding partition and is used,
for example, by job accounting and to identify listings produced
during the execution of the job.

If the JOB statement is omitted, the system uses NO NAME as the job
name. If the JOB statement is without a job name it is rejected by
job control as an invalid statement. The JOB statement should not be
omitted, as many VSE/Advanced Functions functions assume its pres-
ence. If, for example, the operator cancels a job using the atten-
tion routine CANCEL command, the job control program normally

Chapter 2: Using the System 61

bypasses all statements on SYSRDR until encountering a /&. However,
if the job in question was submitted without a JOB statement, no
statements in the job stream are bypassed even though job NO NAME
was canceled.

Having JOB statements with specific job names is useful when you
issue the MAP command in a multiprogramming environment. The MAP
command displays on SYSLOG the storage allocations for each parti-
tion, together with the name of a job that is currently active in
the corresponding partition.

The JOB statement is always printed in positions 1 through 72 on
SYSLST and SYSLOG; also, the time of day is printed. The JOB state-
ment causes a skip to a new page before printing is started on
SYSLST.

THE END-OF-JOB (/&) STATEMENT: This statement is the last one for
each job (not job step). It signals the end of the input stream for
the job. When job control encounters /& on SYSRDR during normal
operation, the permanent assignment for SYSIPT becomes effective and
SYSIPT is checked for an end-of-file condition.

If the /& statement is omitted, the next JOB statement will cause
control to be transferred to the end-of-job routine to simulate the
/& statement.

When a /& statement is encountered, the job control program performs
such operations as the following:

i Resets all job control options for the partition to standard:
either as established by the STDOPT command, or the system
default if the particular option was not set through a STDOPT
command.

° Resets all system and programmer logical unit assignments for
the partition to the permanent assignment established by job
control commands. Logical unit assignment is discussed under
Relating Files to Your Program later in this chapter.

i Deactivates all temporary library chains for the partition.
® Modifies the communication region as follows:

1. Resets the date from the DATE statement to the one specified
in the SET command during IPL.

2. Stores the job name NO NAME.
3. Sets the user area and the UPSI byte to zero.

° Displays an end-of-job (EOJ) message on SYSLST and SYSLOG with
the time and duration of the job.

. Ensures that end-of-file has been reached on SYSIPT.

62 VSE/Advanced Functions System Management Guide

¢ Deletes the temporary labels in the label information area on
SYSRES. (See Storing Label Information, later in this chapter.)

i Checks whether the condense limits of any of the libraries have
been reached (if library maintenance has been done in the job).

Job Streams

The job control program provides automatic job-to-job transition.

In other words, an unlimited number of jobs can be submitted to the
system in one batch, and job control processes one job after the
other without requiring intervention by the operator. The job or
jobs submitted are referred to as a job stream (see Figure 24 for an
example of a payroll job stream).

f’?ﬁ

[/7/ EXEC PAYCHK

(r}/ PAUSE LOAD PAYCHECKS

I Time cards L

rf// EXEC PAYRUN Lu
[// EXTENT SYS001
(’}/ DLBL FILEP,'PAYFILE'

(r;} ASSGN SYS001,160
rr)/ ASSGN SYSLST, O0OE

// JOB PAY1

Figure 24. Example of a Job Stream

When setting up a job stream for a partition, you should bear in
mind that all jobs will get the priority of that partition. The
selection of the jobs for a particular partition in a multiprogram-
ming system can help to improve the efficiency of your installation.
For example, jobs which have a relatively low CPU usage and a rela-
tively high rate of I/0 activity, and which therefore spend most of
their time waiting for the completion of I/O operations, should run
in a high priority partition. Conversely, CPU-intensive jobs should
be in a partition with a lower priority.

Chapter 2: Using the System 63

The operator may interrupt the processing of a job stream in any
partition to make last-minute changes to one of the jobs or to
squeeze in a special rush job. He does this by using the PAUSE
statement or command.

A PAUSE statement may be included anywhere among the job control
statements of a job stream (see Figure 24 on page 63). It becomes
effective at the point where it was inserted; processing is sus-
pended in the affected partition, and the operator comsole is
unlocked for input. The PAUSE statement can contain instructions to
the operator and is always displayed on SYSLOG.

The PAUSE statement may also be helpful when SYSIN is assigned to a
5424 or 5425 card reader (neither of which have an end-of-file but-
ton). Place the // PAUSE card after the last /& card; this will
force control to be given to the console-keyboard, which enables the
console operator to control subsequent system operation.

A PAUSE command may be entered either through the operator console
(after pressing the request key), or within a job stream together
with the job control statements for a job. If entered through the
console to the attention routine, the command must specify the par-
tition that is to pause (if the background partition is intended,
however, no operand is required). After encountering a PAUSE com-
mand, the system passes control to the operator (through the
console) into the specified partition, at the end of the current job
step (which may also be the end of the job). If the PAUSE command
specifies the EOJ operand, control passes to the operator at the end
of the current job, regardless of the number of steps needed to
reach that point.

Job-to-Job Communication

The macro JOBCOM allows you to do job-to-job communication. You may
store information (up to 256 bytes) in one job to be passed to and
retrieved by a subsequent job running in the same partition.
VSE/Advanced Functions Application Programming: Macro Reference
provides a detailed description of the JOBCOM macro.

Relating Files to Your Program

Most programs perform some kind of input/output operation (that is,
they process files) on auxiliary storage devices. Before such files
can be processed, certain information about them must be provided to
the system. This information includes:

. The address of the I/0 device on which each of the files
resides.

. For files on direct access storage devices (DASD), the exact
location of the file on the storage medium.

64 VSE/Advanced Functions System Management Guide

. For files on DASD, on diskette, or on labeled magnetic tape, a
description of the file, called a label, which is used for
checking and protection purposes.

The above information, specified in job control statements, is

stored in the system by the job control program for use by the data
management routines. How this is done is described below.

Symbolic I/0 Assignment

Whenever a processing program needs access to a file on auxiliary
storage the program need not specify an actual device address, but
only a symbolic name which refers to a logical, rather than
physical, unit. Before the program is executed this logical unit
must be associated with an actual device. This is done by the oper-
ating system when it executes an ASSGN job control statement or com-
mand which specifies the symbolic name of the logical unit and one
of the following:

d A general device class or specific device type, with or without
volume serial number.

4 The physical address (channel and unit number) of the I/0
device.

i A list of physical addresses.
. Another logical unit.

See Figure 25 on page 66 for an illustration of some of these combi-
nations.

ASSGN statements may be submitted as part of ASI JCL procedures or
between jobs or job steps.

Another way of relating a file to a physical device can be employed
if the file is a VSE library and is defined by the LIBDEF job con-
trol statement. Here the key parameter is the volume identifier
(VOLID) of the library pack rather than the logical unit name; the
operating system automatically finds the physical device address on
which the volume with that particular VOLID is mounted. The LIBDEF
statement and its use for defining libraries is described in section
Job Control for Library Definition, later in this chapter.

Chapter 2: Using the System 65

Processing Program

DEVADDR=SYS002

Job Control

// ASSGN SYS002,(130,131) @)
// ASSGN SYS003,3330,VOL=000003 ()
// ASSGN SYS004,TAPE (®

000001 000002 000003
130 131 132

Q Device list — if drive 130 is unassigned SYS002 will be assigned to it, if it is
assigned the operating system tries 131.
@ Device type — the operating system searches for the device type (3330 in

this case) that is available and has the volume-id 000003.

G Device class — the operating system searches for an available tape device.

Figure 25 (Part 1 of 2). Example of Symbolic I/O Assignment

66 VSE/Advanced Functions System Management Guide

Processing Program

DEVADDR=SYS008
|

[
1
1
Job Control "

4
// ASSGN SYS008,00E

1/0 Device

1. The logical unit specified in the processing program (via
DTF or CCB or IORB) is a print file referred to by the
symbolic device name SYS008.

2. An ASSGN statement is used to associate SYS008 with the
physical address OOE of a printer.
This information is stored in the system by job control and can
be accessed when a program is executed.

Figure 25 (Part 2 of 2). Example of Symbolic I/0 Assignment

Logical Units

There are two types of logical units: system logical units, primari-
ly used by the system control and service programs, and programmer
logical units, primarily used by the processing programs. The fol-

Chapter 2: Using the System 67

lowing list shows the names of the logical units and the I/0 devices
that each of these logical units can represent. In the case of disk
devices, the logical unit is not assigned to the entire volume
mounted on the device but only to the referenced extent(s).

Logical

Unit Name

SYSRDR

SYSIPT

SYSPCH

SYSLST

SYSLOG

SYSLNK

SYSRES

SYSCLB

SYSSLB

SYSRLB

SYSREC

SYSDMP

SYSCAT

SYSCTL

SYSnnn

Type of 1/0 Device
Card reader, magnetic tape unit, disk device, or diskette
used as input unit for job control statements or commands.

Card reader, magnetic tape unit (single volume), disk, or
diskette extent used as input unit for programs.

Card punch, magnetic tape unit, disk, or diskette extent
used as the unit for punched output.

Printer, magnetic tape unit, disk, or diskette extent used
as the unit for printed output.

Operator console used for communication between the system
and the operator.

Disk extent used as input to the linkage editor.

System residence extent on a disk pack.

Disk extent used for a private core image library.

Disk extent used for a private source statement library.
Disk extent used for a private relocatable library.

One disk extent is used to store error recnrds collected
by the recovery management support recorder (RMSR) func-
tion. If a display operator console (DOC) is installed,
messages to or from the operator are stored in the hard
copy file, a separate SYSREC extent so that a hard copy
listing of these messages can be produced. A third SYSREC
extent may hold the system history file.

Disk extent(s) for alternate dump file(s).

Disk extent used to hold the VSAM master catalog.

For system use.

Format for coding programmer logical units which are dis-
cussed later in this section.

SYSTEM LOGICAL UNITS: All of the above logical unit names, except
SYSnnn, represent system logical units (as opposed to programmer
logical units). Of these system logical units, user-written pro-

68 VSE/Advanced Functions System Management Guide

grams may use SYSIPT and SYSRDR for input, SYSLST and SYSPCH for
output, and SYSLOG for communication with the operator. All other
system logical units may not be used within user-written programs
(or EXTENT statements, which are discussed later in this section).

Two additional symbolic names, SYSIN and SYSOUT, are used under cer-
tain conditions:

SYSIN Can be used if you want to assign SYSRDR and SYSIPT to the
same card reader or magnetic tape unit. You should not
assign SYSRDR and SYSIPT to the same disk or diskette
extent; assign SYSIN to that extent instead.

SYSOUT Must be used if you want to assign SYSPCH and SYSLST to
the same magnetic tape unit. SYSOUT cannot be used to assign
SYSPCH and SYSLST to disk or diskette because these two
units must refer to separate extents.

SYSIN and SYSOUT are valid only to job control and cannot be refer-
enced in a user-written program. Examples for the use of SYSIN and
SYSOUT are given in the section System Files on Tape, Disk, or
Diskette later in this chapter.

PROGRAMMER LOGICAL UNITS: Programmer logical units may be assigned
to any device installed on the system used for processing program
input and output. Each partition has at least 5 programmer logical
units (except for the background partition where the minimum is 10)
and a maximum of 255 (SYSO00 - SYS254). The number of programmer
logical units is a supervisor generation option.

Types of Device Assignments

Device assignments are either permanent or temporary, depending on
the time of the assignment and the type of ASSGN statement or com-
mand used.

PERMANENT DEVICE ASSIGNMENTS: A permanent assignment is set up
between jobs or job steps any time after IPL by the ASSGN job con-
trol command (no //) or the // ASSGN job control statement with the
PERM operand. It is valid until the next IPL procedure unless
superseded by another ASSGN job control command. A permanent
assignment can be changed for the duration of a job or job step by a
// ASSGN statement or by an ASSGN command with the TEMP option.

TEMPORARY DEVICE ASSIGNMENTS: A temporary assignment is established
either by a // ASSGN statement or by an ASSGN command with the TEMP
option. It is valid for a single job only, unless superseded by
another temporary or permanent assignment. Temporary assignments
are reset to permanent by

. a /& or JOB statement, whichever occurs first, or by

. a RESET job control statement or command.

Chapter 2: Using the System 69

RESTRICTIONS: The type of device assignment is restricted under
certain conditions:

1. If one of the system logical units SYSRDR, SYSIPT, SYSLST, or
SYSPCH is assigned to a disk device or diskette, the assignment
must be permanent. If SYSCLB is assigned, its assignment must
also be permanent.

2. If SYSRDR and SYSIPT are to be assigned to the same disk or
diskette extent, SYSIN should be assigned instead, and this
assignment must be permanent.

3. SYSOUT, if used, must be a permanent assignment.
4. The SYSLOG assignment is restricted when IPL was done from

either a 125D or 3277 device. You may not assign SYSLOG to a
125D if IPL was done from a 3277 and vice-versa.

Device Assignments in a Multiprogramming System

Each partition has its own set of system logical units. For
example, the BG partition has a SYSRDR, SYSLST, SYSIPT etc. as do
all the other generated partitions. As each partition is started,
assignments must be made for the system logical units. Some assign-
ments need be made only in one partition and are valid for all par-
titions. These are logical units that service the system rather than
one partition. The page data set and the lock communication file
(defined via the DPD and DLF commands, respectively) and the follow-
ing units fall into this category:

Logical Name How Assigned

SYSLOG ASSGN job control command

SYSREC DEF IPL command

SYSDMP DEF IPL command

SYSCTL automatically assigned by the system
SYSRES disk address entered at IPL

SYSCAT DEF IPL command

All of the other system logical unit assignments must be made for
each individual partition.

Each partition also has its own set of programmer logical units
(SYS000 through SYSnnn) where nnn is the number of programmer log-
ical units specified for the partition minus 1.

You must make assignments of the programmer logical units as needed
by the programs running in each partition. Certain IBM supplied pro-

70 VSE/Advanced Functions System Management Guide

grams require specific programmer logical unit assignments. For
example the linkage editor requires SYS001 and the assembler
requires SYS001, SYS002, and SYS003.

SHARING ASSIGNMENTS: Within the same partition, different logical
units may be assigned to the same physical device. For example:

// ASSGN SYSLST,00E
// ASSGN SYS007,00E

Both logical names SYSLST and SYS007 are assigned to the device at
address OOE.

Normally it is not possible to share physical devices (except DASD)
between partitions. For example, if you have a tape drive assigned
to the BG partition, but not used by that partition, you must first
unassign it in BG before attempting to assign it in F2. If,
however, you use a spooling package, such as the program product
VSE/POWER, you can share unit record devices (card reader, card
punch, for example) and diskette between partitions (see the
licensed program VSE/POWER documentation for more details).

With direct access devices this problem does not exist because each
extent on a disk can be thought of as a separate device.

Furthermore, if programs in several partitions need only to read and
not to update a file on disk, the one extent may be assigned to all
of those partitions. Certain VSE service programs (for example, the
librarian programs) are allowed to share a library even for
updating. A library is not defined as a disk volume, only as an
extent on the disk volume. The assignment from each partition where
a librarian program is running is established to the same extent.
Extents are discussed under Processing of File Labels in this chap-
ter.

It is not possible to share a diskette between partitions.

Figure 26 on page 72 illustrates possible device assignments.

Chapter 2: Using the System 71

BG SYS005 - 191

LOCOCY

F2 SYS005 - 192
F1 SYS005 - 193
9 BG SYS005
F2 SYS006 191
F1 SYS007
O BG SYS005
BG SYS006 280
BG SYS007
BG SYSCLB
F2 SYSCLB 191
F1 SYSCLB

Each partition has its own set of programmer logical units.

Each assignment must be for a separate extent on the disk unless the partitions
only have to read a file and not update it.

These assignments allow access to the tape volume by three different logical
unit names. No assignments to this tape are valid from a partition other than
BG at this time.

This example assumes that librarian programs update the same library; the
assignments are for one extent.

© © ©°©

Figure 26. Possible Device Assignments

72 VSE/Advanced Functions System Management Guide

Figure 27 on page 73 shows the logical units needed for an assembly.
The illustration shows that the ASSGN statements must always precede
the EXEC statement of the job step for which they are to be effec-
tive. (The device assignments for compilers are similar to the
device assignments shown in this assembler example; any variations
are documented in the applicable programmer's guides.)

- =
! I
/"‘L-“‘\l |
Y
| Sm———-
| p—
L~
-, ~ |
/ \ |
Vo)
ﬁ [

Only if the program is to

be link-edited -l
(JopPTION... | [.
{7/ ASSGN SYSLNK..... {- |
Only if an object deck -~
e ired ™/ ASSGN SYSPCH,.... C L——z Y :
(7 ASSGN SYS003,.... T
[
(71 ASSGN SYS002,.... ! I
P N
(/l ASSGN SYS001,... 0 RN |
(71 ASSGN SYSLST,.... { L
(11 ASSGN SYSIPT,.... /,’
// JOB.... <=-
Page r————- 9
Data SYSRDR | |
Set N -
SOURCE e O
PROGRAM f__,,J" |
| —d
SYSIPT L -
Ve Y
/ \\ |
1
) l____—’)
,/
L
System CPU SYSLST
Residence
L/—
SYSRES
3 Work | sys001
files SYS002
SYS003
SYSLOG
SYSLNK
SYSPCH (Optional)
(Optional)

Figure 27. Device Assignments Required for an Assembly

Chapter 2: Using the System 73

Additional Assignment Considerations

The following summarizes the functions of the job control ASSGN
statement (or command). Also included are statements (commands) that
can be used with logical unit assignments.

THE ASSGN STATEMENT/COMMAND: The ASSGN statement or command is used
to connect a logical I/O unit to a general device class, a specific
device type, a physical device or a list of physical devices, or
another logical unit. An ASSGN statement or command can also be
used:

° to specify a temporary or permanent assignment.
i to specify a volume serial number for a tape, disk, or diskette.

. to specify that a disk is shareable by more than one partition
or logical unit.

i to unassign a logical unit to free it for assignment to another
partition.

. to ignore the assignment of a logical unit, that is, program
references to the logical unit are ignored (useful in testing
and certain rerun situations).

* to specify an alternate tape unit to be used when the capacity
of the original is exhausted.

The assignment routines check the operands of the ASSGN
statement/command for the relationship between the physical device,
the logical unit, the type of assignment (permanent or temporary),
etc. The following list summarizes the most important items to
remember when making assignments:

e Assignments are effective only for the partition in which they
are issued.

. Apart from the operator console, no physical device except DASD
can be assigned to more than one active partition at the same

time.

e All system input and output file assignments to disk or diskette
must be permanent.

e SYSIN must be assigned if both SYSRDR and SYSIPT are to be
assigned to the same extent.

° SYSOUT cannot be assigned to disk or diskette; it must be a per-
manent assignment if assigned to tape.

74 VSE/Advanced Functions System Management Guide

. SYSINK must not be assigned if it is placed in VSAM-managed
space. If not in VSAM-managed space, SYSLNK may, but need not,
be assigned before issuing the LINK or CATAL option in an OPTION
statement.

. SYSINK must not be assigned to a magnetic tape unit.

i Before a tape unit is assigned to SYSLST, SYSPCH, or SYSOUT, all
previous assignments to this tape unit must be permanently unas-
signed. This may be done by using a DVCDN command as discussed
below.

. The assignment of SYSLOG cannot be changed while a foreground
partition is active.

i SYSRES, SYSCAT, SYSREC, SYSDMP, the page data set and the lock
communication file can never be assigned by an ASSGN statement
or command. An IPL is required to change these assignments.

THE RESET STATEMENT/COMMAND: The RESET statement or command can be
used to reset temporary assignments of a partition to permanent.
With one RESET statement or command you can reset

all logical units.

all system logical units.

all programmer logical units.

one specific system or programmer logical unit.

e o o o

THE LISTIO STATEMENT/COMMAND: With the LISTIO statement or command
you can obtain a listing of the current status of the I/0O assign-
ments in your system. This may be done for all devices or individ-
ual devices as required. If the LISTIO command is used (no //), the
output goes to SYSLOG, otherwise the output is on SYSLST.

THE DVCDN COMMAND: The DVCDN (device down) command informs the sys-
tem that a device is no longer physically available for system oper-
ations. This command releases all logical assignments to the
device.

When the device becomes available again for system operatioms, a
DVCUP (device up) command must be given and new assignments made,
before the device may be used.

THE DVCUP COMMAND: The DVCUP (device up) command informs the system
that a device is available for system operations after it has been
down.

Chapter 2: Using the System 75

Processing of File Labels

Overview

As shown above, the operating system relates physical devices to
logical names, used in programs, via the ASSGN job control statement
(or command). Certain device types (magnetic tape, disk, and
diskette) have removable volumes. It is important to ensure that the
volume(s) containing the file(s) to be processed are present on the
assigned device(s). Magnetic tape, disk and diskette files are
identified through file labels which are processed by the data man-
agement routines. Magnetic tape file labels are optional, though
desirable for reasons of data integrity. Disk and diskette file
labels are required.

File labels are written when a file is created based on label infor-
mation submitted through job control statements.

TLBL Statement

To write a file label on magnetic tape, job control uses the // TLBL
statement. This label is written immediately preceding the associ-
ated file.

DLBL and EXTENT Statements

To write a file label on disk or on diskette, job control uses the
// DLBL and // EXTENT statements. The label is written into the
volume table of contents (VITOC), and a utility program, LVTOC, is
available to list all labels included in this VIOC. Details on the
DLBL and EXTENT statements are given in VSE/Advanced Functions Sys-
tem Control Statements.

Processing Labeled Files

When a labeled file is to be processed, the required // TLBL,

// DLBL and // EXTENT information must be available, so that job
control can perform the desired label checking on your existing
file. TFigure 28 on page 77 shows the relationship of label informa-
tion that you provide by the above mentioned statements to file
labels and programs. For a detailed discussion of label processing,
refer to VSE/Advanced Functions Disk, Diskette, and Tape Labels.

76 VSE/Advanced Functions System Management Guide

// ASSGN SYS021,281

// TLBL PAYPMO,’PAY MARCH78’

// ASSGN SYS011,DISK,VOL=444444

// DLBL PAYROLL,"MASTER',99/365,SD
// EXTENT SYS011,1,0,100,50

Label Information provided
by the user is stored in the
label information area.

Label Information Area

Executing Program Data Management Routines
OPEN PAYROLL,PAYPMO The Data Management routines search the label information
— area for the file names PAYROLL and PAYPMO.
- Once the label information is found, the file ID's MASTER
The OPEN invokes the b ————— -1 and PAY MARCH78 are searched for on the mounted
Data Management routines. f—e—————— volumes.

B PAY MARCHTS [

| 444424 . -
' . ' Begin B End

Data of File Master
(50 tracks)

Figure 28. File Label Processing

Chapter 2: Using the System

77

The // TLBL, // DLBL, and // EXTENT job control statements may be
submitted with each execution of a given program that processes
labeled files. Job control temporarily stores these statements in
the label information area. A recommended alternative for frequent-
ly accessed files is to store the label information permanently in
the label information area. The section Storing Label Information
later in this chapter describes how to permanently store label
information.

When the program that processes the file is executed, the data man-
agement routines access the label information

. if the file is to be created, to write the appropriate labels
onto the storage volume, and to check that no unexpired files
are overwritten, or

i if an existing file is to be processed, to check the contents of
the label information area against the label(s) of the file to
ensure, for example, that the correct volume is mounted.

The File Name

The File-ID

The first two parameters of both the // TLBL and // DLBL statements
are the same:

// TLBL filename,'file-id'
// DLBL filename, 'file-id'

The filename is not part of the file label. You code a filename in
your program to identify your file.

° In assembler language it is the DTF (Define The File) name.
. In DOS/VS RPG II it is the FILENAME.
. In DOS/VS COBOL it is the name specified in the SELECT clause.

. In PL/I it is the identifier (with the FILE attribute) in the
DECLARE statement.

o In FORTRAN it is the file name associated with the data set ref-
erence number.

The filename from your program is used as a search argument by the
data management routines in searching for label information in the
label information area. Accordingly you must code a matching
filename in your // TLBL or // DLBL statements.

The file-id is part of the file label. After the DLBL or TLBL
statements are located (based on filename), the file-id is used to:

78 VSE/Advanced Functions System Management Guide

create a label for an output file.
. locate and check the labels of an input file.

Example of label checking:

// JOB UPDATE

// ASSGN SYS007,00C

// ASSGN SYS008,280

% PLEASE MOUNT CURRENT ACCOUNTS RECEIVABLE TAPE
// PAUSE

// TLBL ACCT, 'ACCTS.REC.FILE'
// EXEC UPDATE

data cards

/7‘:

// MTC REW,SYS008

// ASSGN SYS010,280

// ASSGN SYS007,00E

// TLBL ARFILE, 'ACCTS.REC.FILE'
// EXEC ARREPORT

/&

The two programs UPDATE and ARREPORT access the same file
"ACCTS.REC.FILE'. The two programs happen to use different file
names and different programmer logical units.

UPDATE opens a file named ACCT on logical unit SYS008 and ARREPORT
opens a file named ARFILE on SYS010. 1In both cases the file
accessed is 'ACCTS.REC.FILE'. 1If the two programs had used the same
file name and programmer logical units, one ASSGN statement and one
// TLBL statement permanently stored in the label information area
would suffice.

Label Information for Files on Diskette Devices

After you have informed the system, via the ASSGN statement or com-
mand, on which physical device the file is to reside, you must sup-
ply the following information to allow the creation and checking of
diskette labels:

1. A description of the characteristics of the file. You specify
this in the DLBL job control statement.

2. The volume(s) the file is contained on. You specify this in one
or more EXTENT job control statements.

The label information you supply in the DLBL job control statement
may include the following:

. The name of the file. This name must be identical to the corre-

sponding file name specified in your program. For programs writ-
ten in assembler language, this would be the name of the DTF.

Chapter 2: Using the System 79

4 An identification of the file. This name is the one contained in
the file label on the diskette. It is associated with the file
name via the DLBL statement.

e The expiration date of the file.

° The type of access method used to process the file; always coded
as DU.

A diskette file consists of a data area on one or more volumes; each
volume contains only one data area for a particular file. For each
of these data areas, called extents, you must supply the following
information on an EXTENT job control statement:

N The symbolic name of the device on which the volume containing
the file is mounted.

. The serial number of the volume.
. The type of extent; always coded as 1.

In the following example, the program CREATE creates a diskette (DU)
file named SALES that has a file-id of MONTHLY and is to be retained
for 30 days. The file comprises up to three diskettes. The
diskettes have the volume serial numbers 111111, 111112, and 111113,
and are mounted on the drive assigned to the symbolic device named
SYS005.

// JOB EXAMPLE

// ASSGN SYS005,060

// DLBL SALES, 'MONTHLY',30,DU
// EXTENT SYS005,111111,1

// EXTENT SYS005,111112,1

// EXTENT SYS005,111113,1

// EXEC CREATE

/&

The job control program checks the DLBL and EXTENT statements for
correctness and stores the supplied information in the label infor-
mation area for the duration of the job (see Storing Label Informa-
tion later in this chapter).

Label Information for Files on Direct Access Devices

After you have informed the system, via the ASSGN job control state-
ment or command, which volume or physical device you want, you must
supply the following information to allow the creation and checking
of DASD labels:

1. A description of the characteristics of the file (label informa-
tion). You specify this in the DLBL job control statement.

80 VSE/Advanced Functions System Management Guide

2. The exact location of the file on the storage medium. You spec-
ify this in one or more EXTENT job control statements.

The label information you supply in the DLBL job control statement
may include the following:

o The name of the file. This name must be identical to the corre-
sponding file name specified in your program. For programs
written in assembler language this would be the name of the DTF.

. An identification of the file which may include generation and
version numbers of the file. This name is the one contained in
the file label on the storage device. It is associated with the
file name via the DLBL statement.

i The expiration date of the file.
N The type of access method used to process the file.

4 An indication of whether or not a data secured file is to be
created.

L The blocksize to be used for this file on an IBM 3330-11 or 3350
device.

. The control interval size (CISIZE) if your file is a sequential
disk file and resides on an FBA device.

A DASD file can consist of one or more data areas on one or more
volumes. For each of these data areas, called extents, you supply
the following extent information on an EXTENT job control statement:

° The symbolic name of the device on which the volume containing
the file extent is mounted.

L The serial number of this volume.

. The type of the extent. An indexed sequential file, for
instance, can consist of data areas, index areas, and overflow
areas. For each of these areas an extent must be defined, and
its type (data, index, or overflow) must be specified.

. The sequence number of the extent within the file.

L For CKD devices: The number of the track (relative to zero) on
which the file extent begins. The amount of space (in tracks)
the file occupies.

. For FBA devices: The block number on which the file extent
begins. The amount of space (in blocks) the file occupies.

EXAMPLES FOR SUBMITTING LABEL INFORMATION FOR DASD FILES: Here are a

number of examples of how to code the job control statements
required to create or access the labels for the various types and

Chapter 2: Using the System 81

organizations of DASD files. It is helpful if you are familiar with
the formats of the DLBL and EXTENT job control statements as
described in VSE/Advanced Functions System Control Statements.
Detailed information on the possible organizations and access meth-
ods for DASD files is given in VSE/Advanced Functions Data Manage-
ment Concepts.

SEQUENTIALLY ORGANIZED DISK FILES (SINGLE DRIVE, SINGLE VOLUME): In
the following example, the program CREATE creates a sequential disk
(SD) file named SALES that is to be retained until the end of 1984.
The file comprises one extent of 190 tracks on a CKD device, start-
ing on relative track number 1320. The disk pack has the volume
serial number 111111 and is mounted on the drive assigned to the
symbolic device name SYS005:

// JOB EXAMPLE

/] ASSGN SYS005,DISK,VOL=111111,SHR

// DLBL SALES,'ANNUAL SALES RECORDS',84/365,SD
// EXTENT SYS005,111111,1,0,1320,190

// EXEC CREATE

/&

The job control program checks the DLBL and EXTENT statements for
correctness and stores the supplied information in the label infor-
mation area for the duration of the job or job step.

SEQUENTIALLY ORGANIZED DISK FILES (SINGLE DRIVE, MULTIVOLUME):
Assume that a program PROG100 needs a sequential disk file located
on three different disk packs that are to be mounted successively on
the same device (SYS005). The file consists of four extents on an
3330 disk device: two on the pack with serial number 000020, one on
pack 000100, and one on pack 000006. The following job stream shows
the label statements required:

// JOB SAMLABEL

// ASSGN SYS005,3330,VOL=000020,SHR

// DLBL FILNAME,'FILE.ID',99/365,SD ¥
// EXTENT SYS005,000020,1,0,10,2010

// EXTENT SYS005,000020,1,1,4000,1510

// EXTENT SYS005,000100,1,2,64,1300

/] EXTENT SYS005,000006,1,3,50,636

o
bt

// EXEC PROG100 ok
/& dededs
* Only one DLBL statement is required, because only one file is

being used. TFor each extent one EXTENT statement must be sup-
plied in the sequence in which the extents are processed.

** Logical IOCS in PROG100 opens the first extent using the file

name and file ID in the DLBL statement, .and the logical unit
and volume serial number in the first EXTENT statement to

82 VSE/Advanced Functions System Management Guide

locate the actual label on the disk pack. After PROG100 has
processed the first extent, logical IOCS opens the second
extent, based on the extent sequence number.

For the third extent, volume serial number 000100 is specified
while the volume currently mounted on SYSO05 has the number
000020. The OPEN routine of LIOCS notifies the operator of
this discrepancy, and the operator can mount the correct
volume, at which time the OPEN routine regains control. The
same is true for the fourth extent.

The /& statement causes the label information stored in the
label information area to be cleared. Thus, if the next job
requires the same file, the label statements must be resubmit-
ted (see Storing Label Information later in this chapter).

SEQUENTIALLY ORGANIZED DISK FILES (MULTIPLE DRIVES): This example
has the same requirements as the preceding 'Single Drive' example
except that the three volumes are mounted on three different drives.
The required job control statements are as follows:

//
//
/1
/!
//
//
//
//
//

//
/&

JOB SAMILABEL

ASSGN SYS005,DISK,VOL=000020,SHR
ASSGN SYS006,DISK,VOL=000100,SHR
ASSGN SYS007,DISK,VOL=000006,SHR

DLBL FILNAME,'FILE.ID',99/365,SD *
EXTENT SYS005,000020,1,0,10,2010
EXTENT SYS005,000020,1,1,4000,1510
EXTENT SYS006,000100,1,2,64,1300
EXTENT SYS007,000006,1,3,50,636

EXEC PROG100 sk

All label statements submitted are identical to the 'Single
Drive' example except for SYSnnn in the EXTENT statements.

Logical IOCS opens each extent in the same way as described in
the 'Single Drive' example except that processing does not stop
for removal and mounting of packs, because enough devices are
online to contain the file. A combination of this and the 'Sin-
gle Drive' example could be used to reduce handling time with-
out excessively increasing the total drive requirements.

DA FILES: The program PROG101l processes a direct access file con-
sisting of four extents contained on three CKD disk packs. The three
packs must be ready at the same time. The following job stream shows
the label statements required to process the file:

Chapter 2: Using the System 83

// JOB DALABEL

// ASSGN SYS005,DISK,VOL=000065,SHR
// ASSGN SYS006 ,DISK,VOL=000025,SHR
// ASSGN SYS007,DISK,VOL=000002,SHR
// DLBL FILNAME,'FILE.ID',99/365,DA *
// EXTENT SYS005,000065,1,0,1320,190
// EXTENT SYS005,000065,1,1,80,740

// EXTENT SYS006,000025,1,2,50,906

// EXTENT SYS007,000002,1,3,1275,64
// EXEC PROG101

* The label statements follow the same pattern as for sequential
files (described in the preceding examples) except that the
DLBL statement must specify DA to indicate direct access.

Note: Library files are single extent, single drive files.
You specify the label information as for sequentially organ-
ized disk files, but you must never include the CISIZE or
BLKSIZE parameter.

Label Information for Files on Magnetic Tape

Files on magnetic tape can be processed with or without labels. For
tape files with IBM standard labels, the label information must be
submitted through the TLBL job control statement. (A tape file can
also have standard-user or non-standard labels; for these labels no
job control statements are required. More information on tape
labels is given in VSE/Advanced Functions Data Management Concepts).

The standard label information submitted in the TLBL statement may
include the following:

. The name of the file. This name must be identical to the corre-
sponding filename (DTF name) specified in your program.

. An identification of the file.

. Creation date for input and expiration date (or retention
period) for output files.

. The volume serial number of the tape reel that contains the
file.

. For files that extend over more than one volume, the sequence
number of the volume.

. For volumes that contain more than one file, sequence number of
the file.

. The version and modification number of the file.

84 VSE/Advanced Functions System Management Guide

As with DASD files, the label information you supply in the TLBL job
control statement is checked and stored in the label information
area (see Storing Label Information, below).

Storing Label Information

Job control stores label information in the label information area.
The label information is stored temporarily (for the duration of one
job or job step) or permanently.

As label information is submitted, the job control program acquires
a portion of the label information area which is referred to as a
label subarea.

The minimum size of a label subarea is one track for a CKD device
and 2K for an FBA device, the maximum size is the entire label
information area. For details on creating label subareas, see also
the DLA statement in VSE/Advanced Functions System Control State-
ments. There are three types of label subareas:

. partition temporary subarea
. partition standard subarea
i system standard subarea

Label information stored in either of the two types of partition
subareas may be accessed only from one particular partition. Label
information stored in the system subarea may be accessed from all
partitions. The type of subarea used is controlled by the following
three options of the OPTION job control statement:

USRLABEL causes all disk, diskette, and tape label information to be
stored temporarily for one job or job step. Label information sub-
mitted between job steps overlays the label information from the
former job step. The label information is written to a partition
temporary subarea (one per partition) and is accessible only by the
partition in which it was submitted. It is a good idea to include
all TLBL, DLBL, and EXTENT statements in the first step of a job
(preceding the // EXEC statement). If no option is specified, or if
the OPTION statement is omitted, USRLABEL is assumed.

PARSTD causes DASD, diskette, and tape label information to be
stored permanently for all subsequent jobs. The label information is
written to a partition standard subarea (one per partition) and is
accessible only by the partition for which it was submitted.

Partition standard labels can be submitted in the partition to which
they belong. Foreground partition standard labels can also be sub-
mitted through a job running in the background partition. The job
stream must contain the following statement:

// OPTION PARSTD=Fn

Chapter 2: Using the System 85

All label information following this statement is put into the par-
tition standard subarea of partition Fn (n is the number of the
foreground partition). The above statement can be given only when
partition Fn is inactive.

STDLABEL causes DASD, diskette, and tape label information to be
stored permanently for all subsequent jobs. The label information
is written to the system standard subarea and is accessible by all
partitions, but can only be submitted in the background partition.
This ensures that the system standard label information is not
updated simultaneously by two partitions. Logical unit numbers con-
tained in the submitted label information must not be greater than
the highest logical unit number specified for background at system
generation.

When PARSTD or STDLABEL is given without an operand, any label
information currently in the respective subarea is completely over-
written by the newly supplied data. If you want to retain the old
label information and only add more labels to it, code the parameter
as PARSTD=ADD or STDLABEL=ADD, respectively.

Specifying
// OPTION PARSTD=DELETE or
// OPTION STDLABEL=DELETE

causes labels to be deleted from the respective subarea. Such a
statement must be followed by one or more statements of the form

filename

where filename indicates which label is to be deleted. The last
filename statement must be followed by a /*. A DELETE operation is
somewhat time-consuming because the label is physically deleted from
the label area, and the label area space is condensed each time a
DELETE request is processed.

An ADD or DELETE apply only to the partition in which they are
issued; therefore, ADD and DELETE are not allowed in conjunction
with PARSTD=Fn.

Note: When the label information area is located on an FBA
disk device, the operating system blocks user-supplied label
information before writing that information to disk. There-
fore, you should terminate your // OPTION PARSTD or

// OPTION STDLABEL job stream with a // OPTION USRLABEL state-
ment. This ensures that all label information is actually
written to the label information area as permanent partition
or system standard labels. Labels in the system standard sub-
area are accessible from other partitions only after they have
been written completely. The OPTION statement with USRLABEL

86 VSE/Advanced Functions System Management Guide

specified indicates to the operating system that no further
partition or system standard labels will follow. The same
effect is accomplished by a /&, // JOB, or // EXEC statement.

A good practice would be to follow the same technique if the label
information area is located on a CKD device. Failing to do so could
lead to erroneous results when you display the stored label informa-
tion using the LSERV program.

A partition can have only one temporary and one standard subarea at
any point in time. As the subareas are variable in size it is possi-
ble that disk space is not available in the label information area
when job control attempts to write label information. When this
occurs, a message will be displayed on the console stating that the
label area is exhausted. To clear a subarea (in order to run the
current job), you can do one of the following:

e Submit a /& in another partition to clear that partition's tem-
porary subarea.

. Submit a // OPTION PARSTD followed by a /& in any partition to
clear that partition's standard subarea.

Do not clear the system standard subarea. If you find that the sys-
tem standard subarea is using more disk space than you want, reor-
ganize your label information area. For example if you have an
application that always runs in the same partition (such as the
licensed program VSE/POWER) the labels for that application should
be put on that partition's standard label subarea, not the system
standard subarea.

Label Area Search Order

During program execution, the data management routines search the
label information area in the following sequence:

1. user label information (partition temporary subarea)
2. partition standard information (partition standard subarea)
3. system standard information (system standard subarea).

It is important to distinguish between the conditions under which a
label option remains in effect and the conditions that govern the
retention of the label data in the label information area. For
example, the label data submitted following an OPTION statement with
the PARSTD option is retained for all subsequent jobs until over-
written by another PARSTD option, but the PARSTD option is canceled
at the end of the job or job step in which it was specified. This
is shown in the summary of label options in Figure 29 on page 88

Chapter 2: Using the System 87

| T | T T

| | | | |

| Option in | Type of | Option | Label | For |

| Search | Label | in Effect | Information

| Sequence | Information | Until | Retained

| | | | | |

} % % i §

| USRLABEL *| temporary | STDLABEL or | For ome job. | The partition

| | | PARSTD is | /& statement | in which the

| | | specified | causes the temp.| option was

I | | | label area to be| specified.

| | | cleared.w#¥% | |

| l |
3 {

| PARSTD | permanent |a) End of job| For all subse— The partition

I | step | quent jobs until| in which the

| |b) End of job| deleted. ** option was

| c) USRLABEL specified or
or STDLABEL | as specified
is specified]| in PARSTD=Fn.
Sedededel
| :
STDLABEL permanent |a) End of Job| For all subse— All partitions
step | quent jobs until| *¥%*
b) End of job| deleted. **
| |c) USRLABEL |
| or PARSTD |
specified. |
| Fededelede I
| | |
| I I ! i
| * If no option is given or if the OPTION statement is omitted,

| USRLABEL is assumed.

Wk Either explicitly deleted (=DELETE) or by giving the option without|
an operand.

Fekw Label information stored with the STDLABEL option is available to
all partitions but can be submitted only through the background
partition.

#%%% Additional label information from a subsequent job step will over-—
lay previous information.

“*%%%% It is recommended that a URSLABEL option be submitted following the

PARSTD or STDLABEL job stream when SYSRES is on an FBA device. |
J

Figure 29. Summary of Label Option Functions

LSERV Program

Stored label information may be displayed using program LSERV as

follows:

88 VSE/Advanced Functions System Management Guide

// JOB

// EXEC LSERV
/:‘:

/&

Job Control for Library Definitions

Establishing a Library Definition

Libraries must be defined to job control. The ASSGN statement is
applicable to any file. For libraries only, a more versatile job
control statement is available to define the You do this using the
LIBDEF statement.

A LIBDEF definition may be established permanently, that is, for all
succeeding jobs (parameter PERM specified) or only for the duration
of the job (by default or parameter TEMP specified). DLBL and
EXTENT information must be available when the LIBDEF statement is
processed. The library name must be identical with the file name on
a DLBL statement.

The operands of the LIBDEF statement indicate which library of which
type (core-image, relocatable, and so on) is to be used, and whether
it is to be used when searching for or cataloging an element.

In certain circumstances, you can use an ASSGN job control statement
or command to define the library to be used. If you include, for
example,

ASSGN SYSCLB,cuu

in a linkage editor job stream, you tell the linkage editor program
to place a phase into a private core image library.

To define a private procedure library, you must use an ASSGN com-
mand. The LIBDEF command or statement is not valid for these
libraries.

LIBRARY CHAINING (CONCATENATION): The SEARCH parameter allows you to
establish a chain of libraries. The chain is given through a list
of file names that correspond to file names in DLBL statements, for
example:

// DLBL YOURLIB,...

// EXTENT ,111111,...

// DLBL MYLIB,...

// EXTENT ,222222,...

// LIBDEF CL,SEARCH=(YOURLIB,MYLIB)

The position within the list determines the sequence in which
libraries are searched for a given member. When, in the above exam-

Chapter 2: Using the System 89

ple, a phase is to be FETCHed or LOADed, two private core image
libraries are searched for that phase: first the library YOURLIB,
and then, if the phase is not found there, library MYLIB.

Each type of library requires its own LIBDEF, with a corresponding
identifier:

CL for a FETCH or LOAD, or the processing of a SET SDL command from
a core image library

RL for retrieval of object modules by the linkage editor
SL. for retrieval of source statements by a language translator
PL for retrieval of cataloged procedures.

When you define, for a particular library type, two chains, one tem-
porary and one permanent, the temporary chain will be searched
before the permanent chain. The system library is always assumed to
be the last member of the chain; of the permanent chain if one is
defined, otherwise of the temporary chain. You do not have to
include it explicitly in the SEARCH list. If you want to place the
system library at a different position within the chain, you include
that library in the list of file names at the desired position.
Whatever the library type, you identify the system library by the
name IJSYSRS.

Special conditions apply to the search order of core image
libraries. They are discussed in section Using Private Libraries,
later in this chapter.

The number of file names you can give per SEARCH chain depends on
what you specified in the LCONCAT parameter of the FOPT supervisor
generation macro; 15 is the maximum. With that maximum, the follow-
ing library chain could be set up:

- 15 libraries defined as temporary

- 15 libraries defined as permanent

- the system library at the end of the chain.

LIBRARIAN INPUT: In the FROM parameter you define the library that
is to be used as input by

- the librarian service programs such as SSERV, DSERV etc.
— the CORGZ librarian program.

OUTPUT LIBRARIES: In the TO parameter you define the library that is
to be used as output by

- the linkage editor program when it catalogs a phase into a
(private or system) core image library

90 VSE/Advanced Functions System Management Guide

— the MAINT librarian program
— the CORGZ librarian program for a MERGE function.

A NEWLY CREATED LIBRARY: The NEW parameter defines a private library
to be created by the CORGZ librarian program. NEW can only be used
for a temporary library definition. The NEW library name must not
appear within the SEARCH, TO or FROM parameters of the same LIBDEF
statement.

The following example shows a job stream with two job steps: one
linkage editor step followed by an execution step. Permanent and
temporary library chains are defined: two chains for relocatable
libraries and two chains for core image libraries. Also, a private
core image library (file name TESTCIL) is defined for the linkage
editor output.

// DLBL PRELO1,'PRIVATE.RELO.LIB.1',...
// EXTENT ,VOLIDA,...
// DLBL PRELO2,'PRIVATE.RELO.LIB.2',...
// EXTENT ,VOLIDB,...
// DLBL PCIL1,'PRIVATE.CIL.1',...
// EXTENT ,VOLIDA,...
LIBDEF RL,SEARCH=(PRELO1,PRELO2),PERM
LIBDEF CL,SEARCH=PCIL1,PERM
// JOB TEST
// DLBL TESTRLB, 'TEST.RELO.LIB',...
// EXTENT ,VOLID1,...
// DLBL PRELO3,'PRIVATE.RELO.LIB.3',...
// EXTENT ,VOLID2,...
// DLBL TESTCIL, 'TEST.CIL.FOR.APARS',...
// EXTENT ,VOLID1,...
// DLBL PRODCIL,'PRODUCTION/HISTORY CIL',...
// EXTENT ,VOLID3,...
LIBDEF RL,SEARCH=(TESTRLB,PRELO3),TEMP
LIBDEF CL,SEARCH=(TESTCIL,PRODCIL),TO=TESTCIL,TEMP
// OPTION LINK

INCLUDE LINKBOOK
// EXEC LNKEDT
// EXEC
/&

You may catalog part of the above job stream into a procedure
library. If, for example, all DLBL and EXTENT statements and the
permanent library definitions were cataloged as procedure PARCONCA,
the above job stream might look as follows:

Chapter 2: Using the System 91

Resetting a

// JOB TEST
// EXEC PROC=PARCONCA
LIBDEF RL,SEARCH=(TESTRLB,PRELO3),TEMP
LIBDEF CL,SEARCH=(TESTCIL,PRODCIL),TO=TESTCIL,TEMP
// OPTION LINK
INCLUDE LINKBOOK
// EXEC LNKEDT
// EXEC
/&

The above example contains library definitions valid for one parti-
tion. Similar definitions can be established for other partitions.
A particular library may appear in chains of several partitions.

One cannot mix, within a partition and for a particular library
type, library definitions via ASSGN and those via LIBDEF. It is
conceivable, however, to use an ASSGN for one library type and a
LIBDEF for another, as in the following skeleton example:

// DLBL IJSYSCL, 'OLD.PRIVATE.CIL',...
// EXTENT SYSCLB,VOLIDC,...
// DLBL PRVPROC, 'NEW.PRIVATE.PROC',...
// EXTENT ,VOLIDP,...

ASSGN SYSCLB,...
LIBDEF PL,SEARCH=PRVPROC

// EXEC PROC=...

You will notice that the second EXTENT statement has the first
parameter, the logical unit name, omitted. For one thing, no system
logical unit name exists for a private procedure library (and you
must not use a name beginning with IJSYS...). Secondly, whenever
libraries are defined via LIBDEF, the operating system does not need
the SYSxxx specification; it is capable of determining the physical
device address via the volume identification in the EXTENT statement
(the vol-id's must be unique within the system). If, however, you
do include the SYSxxx number, a corresponding ASSGN statement is
required.

Note: A private library that is defined as access control
protected may appear only in a temporary LIBDEF definition. A
permanent ASSGN for a secured private source statement or
relocatable library is allowed, but not for a private core
image library. :

Library Definition

The LIBDROP statement resets, for a particular library type, a defi-
nition that had been given through a LIBDEF statement. The usage of
parameters is similar to the one in the LIBDEF statement. By speci-

fying ALL you may drop all library definitions for one library type

within a partition.

92 VSE/Advanced Functions System Management Guide

A library definition is reset also when one LIBDEF specification
overrides a preceding one that is still active.

If not reset explicitly, all temporary library definitions will be
reset at end-of-job. A permanent library definition will be automat-
ically reset when the partition is deactivated (via UNBATCH). If a
HOLD command was given before, the permanent library definitions are
not deactivated and are available again when the partition is
restarted. The UNBATCH and HOLD commands are described in
VSE/Advanced Functions Operation.

Displaying Library Definitions

Through the LIBLIST statement, you request a display of the current-
ly active library definitions, for a particular library type. Only
those definitions are listed which had been given through a LIBDEF
statement. The display may cover one partition only or all parti-
tions. And you may choose to direct the display to the system con-
sole or to SYSLST.

For a detailed description of the LIBDEF, LIBDROP and LIBLIST state-
ments, refer to VSE/Advanced Functions System Control Statements.

Tape and Print Operations

Controlling Magnetic Tape

The MTC job control statement or command controls certain magnetic
tape operations, for example, file positioning. Files on magnetic
tape are almost invariably processed sequentially. This means, for
example, that if you have five files on one tape reel and you want
to process the last one, you have to read four files before you can
access the one you need. You can, however, instruct the job control
program to position the tape at a particular file.

The MTC job control statement or command controls operations such
as:

o Spacing the tape backward or forward to the required file.

. Spacing the tape backward or forward a specified number of
records.

i Rewinding the tape to the beginning.
* VWriting a tapemark to indicate the end of a file.

In the following example, program PROGA creates a labeled tape file
named RATES on tape volume 222222. At the end of the first job step,

Chapter 2: Using the System 93

an MTC job control statement is used to rewind (REW) the tape to the
beginning of the tape volume so that the newly created file can be
processed by PROGB.

// JOB TAPE

// ASSGN SYS004,TAPE,VOL=222222

// TLBL RATES, '"MASTER',75/365,222222
// EXEC PROGA

// MTC REW,SYS004

// EXEC PROGB

/&

Controlling Printed Output

Most of the VSE/Advanced Functions supported printers use a forms
control buffer (FCB) to control the length of forms skips. In addi-
tion, printers may be equipped with the universal character set fea-
ture, which is controlled by a universal character set buffer (UCB).
Examples of printers equipped with these buffers are the 3203 and
3211 printers.

The buffers of these printers must be loaded during or immediately
after IPL, and they may have to be reloaded later between job steps
or, occasionally, while a job step using the printer is being exe-
cuted.

The following methods for loading the buffers are available:

To load the FCB

i Automatic loading during IPL

. Using the SYSBUFLD program between job steps or immediately
after IPL

. Using the LFCB command

N Using the LFCB macro in the problem program

i Using the FCB parameter in the VSE/POWER * $$ LST statement.
To load the UCB

. Automatic loading during IPL (applies to PRT1 and 5203U
printers)

. Using the SYSBUFLD program between job steps or immediately
after IPL

. Using the LUCB command

i Using the UCS command (applies only to a 1403 UCS printer).

94 VSE/Advanced Functions System Management Guide

The method of loading the buffers by using the SYSBUFLD program
offers the advantage that hardly any operator activity is involved;
on the other hand, loading the buffers by using the LFCB or LUCB
command does not require the operator to wait for a partition to
finish processing.

When the contents of an FCB or a UCB are replaced by a new buffer
image, the system uses this new image to control printed output
until the buffer is reloaded (or until the next IPL). None of the
above methods provides automatic resetting of the buffer load to the
original contents (see note below). It may be necessary to reset
the buffer to the original contents before taking a storage dump, to
ensure that the dump is printed in the correct format, without any
part of it being left out.

Note: When using the FCB parameter in the VSE/POWER * §$$ LST
statement, the FCB will be automatically reset during process-
ing of the * $§$ EOJ statement.

Details on how to load the FCB and UCB are contained in VSE/Advanced
Functions System Control Statements.

THE 3800 PRINTING SUBSYSTEM: The 3800 Printing Subsystem is a
non-impact, high-speed, general-purpose system printer that uses an
electrophotographic technique with a low-powered laser to print out-
put. It provides more features than current impact printers.

The following methods of controlling the 3800 are available:

o The SETPRT job control statement or command, which allows you to
set the 3800 with user-specified control values. These values
are reset at the end of the current job to the installation's
default control values as specified in the SETDF operator com-
mand, or to the hardware defaults if SETDF is not specified.

° The SETDF operator command, which allows the operator to set
and/or reset default control values for the 3800. A SETDF com-
mand can set default control values for the following:

— One character arrangement table

— The forms control buffer

— The copy modification phase

— The paper forms identifier

— The forms overlay name

- Bursting and trimming or continuous forms stacking

— The setting of all hardware defaults with one command.

° The SETPRT macro instruction, which is generally invoked via the
preceding statements but can also be used directly by the pro-
grammer to initialize or dynamically change the setup of the
3800.

For information on available techniques for controlling the 3800,
see DOS/VSE IBM 3800 Printing Subsystem Programmer's Guide.

Chapter 2: Using the System 95

Executing a Program

After you have properly defined the I/0 requirements of your program
to the system you can instruct job control to prepare your program
for execution. How this is done and how the supplied information is
processed is described in the following section.

Assembling/Compiling, Link Editing, and Executing a Program

In VSE/Advanced Functions, three processing steps are necessary to
obtain results from a problem program once the source program has
been written:

1. Assembly or compiling of the source program into an object mod-
ule. (Object modules are discussed in section Linking Programs
later in this chapter.)

2. Link editing of the object module to form an executable program
phase.

3. Execution of the program phase.

Each of these steps is initiated by the job control program in
response to an EXEC job control statement. The EXEC statement must
be the last of the job control statements submitted for any one job
step. Figure 30 on page 97 shows an example of the job control
statements needed to assemble, link edit, and execute a source pro-
gram.

96 VSE/Advanced Functions System Management Guide

// JOB EXECUTE
(1) // OPTION LINK
(2) // EXEC ASSEMBLY
(3) // EXEC LNKEDT
(4) // EXEC

/&

| 1. To link edit a program, the LINK option must be set ON.

2. The assembler is fetched from the core image library and
starts execution.

3. The linkage editor is fetched from the core image library
l and starts execution.

4. When an EXEC statement without a program name is

encountered, the program last stored (if stored within the
| same job) in a core image library by the linkage editor is
fetched for execution.

Figure 30. Job Control Statements to Assemble, Link Edit, and Execute a Program
in One Job

Instead of submitting three EXEC statements, you may invoke all
three steps by one EXEC statement. Specifying the GO parameter in
the statement which invokes the assembler (compiler) causes the
linkage editor and your executable program to be invoked automat-
ically once the assembly (compilation) is finished. Only the source
program and any additional data required by your program must be
submitted.

Language translators read their input from SYSIPT. If SYSRDR and
SYSIPT are assigned to the same device, the source statements of
your program must follow the corresponding EXEC job control state-
ment. In this example, the assembler language statements would have
to follow the // EXEC ASSEMBLY statement. The end of the input data
submitted for one program must be indicated by a /* (end-of-data)
statement. The /* statement is not processed by job control; it is
read by the logical IOCS routines of VSE/Advanced Functions.

(Note: For an input file on an IBM 5424 MFCU, the /* card must be
followed by a blank card.) The placement of input data and the /¥
statement is shown in Figure 31 on page 98 .

Chapter 2: Using the System 97

// JOB INPUT
// OPTION LINK
// EXEC ASSEMBLY

source program

ot
W

// EXEC LNKEDT
// EXEC

input data for user program

Figure 31. Submitting Input Data on SYSIPT

How the job shown in Figure 31 is processed by the system is illus-
trated in Figure 32 on page 100 . The numbers to the left of the
subsequent paragraphs refer to the encircled numbers in that illus-
tration. The inclusion of SYSIPT data in job streams in the proce-
dure library is described under SYSIPT Data in Cataloged Procedures,
later this section.

1. Job control reads the JOB statement and stores the job name in
the supervisor. Other functions of the JOB statement are
described under Defining a Job, earlier in this chapter.

2. Job control reads the OPTION statement with the LINK option and
sets the LINK bit in the supervisor. This indicates

a. to the assembler, that the assembled object module is to be
written onto SYSLNK,

b. to job control that link editing is allowed in this job,

c. to the linkage editor, that the executable program is to be
stored in the core image library only temporarily for exe-
cution in the same job.

3. On encountering the // EXEC ASSEMBLY statement, job control
transfers control to the supervisor passing it the name of the

assembler program.

4. The supervisor loads the assembler into the partition, replacing
job control.

98 VSE/Advanced Functions System Management Guide

10.

11.

12.

13.

14.

15.

16.

17.

18.

The assembler reads the source program, assembles it, and stores
the object module on SYSLNK (not shown).

The assembler transfers control to the supervisor.

The supervisor loads job control into storage, replacing the
assembler.

Job control reads the // EXEC LNKEDT statement, as well as any
preceding linkage editor statements, and transfers control to
the supervisor, passing it the name of the linkage editor.

The supervisor loads the linkage editor into storage, replacing
job control.

The linkage editor reads the object module from SYSLNK and link
edits it.

The linkage editor stores the executable program in the core
image library.

The linkage editor transfers control to the supervisor.
The supervisor loads job control into storage.

Job control reads an EXEC statement without a program name and
transfers control to the supervisor.

The supervisor loads the program last stored in the core image
library by the linkage editor replacing job control.

The user program is executed. It reads and processes the data
from SYSIPT and, at end-of-job, returns control to the supervi-
sor.

The supervisor loads job control.

When job control reads the /& statement, it turns off the LINK
option and replaces the jobname stored in the supervisor by NO
NAME. Other functions of the /& statement are described under
Defining a Job, earlier in this chapter.

Chapter 2: Using the System 99

Input on SYSIN

JOB CONTROL

// JOB INPUT - © T
// OPTION LINK - @ L LINK
// EXEC ASSEMBLY — = \

: SEVBLER) ASSEMBLER

. ASSEM INPUT] [—
source program »——= @ LINK

@‘1'?: ——___i'—_
/* JOB CONTROL
|_[JOB CONTRO L} -

// EXEC LNKEDT

Any Partition Supervisor Core Image Library

-~ O

LINKAGE EDITOR

LINK.EDITOR |

LINK EXECUTABLE USER
0
© D— crocram

JOB CONTROL

JOB CONTROL

A
%
C
3

/l EXEC el 14
EXECUTABLE USER
CseR PROGRAM
=% INPUT | [

PROGRAM \FTFNR‘%

input data —————1— @ : @
JOB CONTROL

/* _[10B CONTROL] e L ronave
/& - O

e

— Transfer of data

Transfer of control

) Loading from core image library

Figure 32. System Operation of an Assemble, Link Edit and Execute Job

EXECUTING CATALOGED PROGRAMS: Programs may be cataloged permanently
in a core image library after they have been assembled and link
edited. This saves assembling and link editing a program for every
run.

Cataloging into a core image library is done by the linkage editor
in response to an OPTION job control statement with the CATAL option
(see Linking Programs later in this chapter).

100 VSE/Advanced Functions System Management Guide

To execute a cataloged program you use an EXEC job control statement
specifying the name under which the program was cataloged (as shown
for the assembler and linkage editor in the preceding example).
For example, the following job executes a program that was cataloged
in a core image library under the name PROGA; data cards are submit-
ted on SYSIPT:

// JOB CAT

assignment, label statements,
and library definition, if required

// EXEC PROGA
input data

e
/&

Defining Options for Program Execution

In the preceding section, it was shown how the OPTION job control
statement can be used

. to specify the type of label information to be stored for a file
(USRLABEL, PARSTD, STDLABEL options), and

. to define whether a program is to be link edited (LINK option).

There are a number of additional functions which you can invoke
through the OPTION job control statement. The most important ones
are:

// OPTION LOG

Logs all job control statements submitted to the system on SYSLST.
This facilitates diagnosing the job control statements in case of an
error.

// OPTION PARTDUMP
Dumps the contents of the registers, a formatted portion of the
supervisor area, and the current partition on SYSLST in case of

abnormal program termination. To obtain the entire supervisor area
unformatted, // OPTION DUMP may be used.

Chapter 2: Using the System 101

// OPTION DECK

puts an object module on SYSPCH. The object module can then be com-
bined with other object modules by the linkage editor to form one
executable program, or it can be used as input to the library main-
tenance program to catalog it into a relocatable library.

// OPTION LIST,LISTX,SYM,XREF,ERRS

Prints various listings produced by the language translators (com-
pilers) on SYSLST. These listings include object code, symbol table,
cross-reference, and error lists which are useful debugging aids
during the test period of a program. SXREF may be specified instead
of XREF to obtain a cross reference listing that includes only the
referenced labels in the assembled program.

These (and other) options may be permanently set by using the STDOPT
command. The specified options become effective after the next /&
statement or // JOB statement.

Permanent options are valid for all jobs unless overridden by an
OPTION job control statement. Options specified in an OPTION state-
ment remain in effect until

. a contrary option is read or

. a JOB or /& statement is encountered which resets the options to
permanent.

Certain of these options can be suppressed by specifying the prefix
NO (for example, NOLIST, NODUMP). A complete list of the available
options is given in VSE/Advanced Functions System Control
Statements.

Communicating with Problem Programs via Job Control

PROGRAM SWITCHES (UPSI): A program can be instructed to take a spe-
cific path of action by using a job control statement to set program
switches. These switches can then be tested by the problem program
at the time during program execution.

The // UPSI statement causes job control to set the bits of the user
program switch indicator (UPSI) byte to 'on' (1) or 'off' (0). The
specific meaning attached to each bit in the UPSI byte depends on
the design of the program. The statement

// UPSI 10000110

for example, sets bits 0, 5, and 6 of the UPSI byte to 1, and bits
1, 2, 3, 4, and 7 to zero. A program can inspect these switches and
take a specific path based on their setting. Since the // JOB
statement sets all eight bits of the UPSI byte to zero, the // UPSI
statement should follow the // JOB statement.

102 VSE/Advanced Functions System Management Guide

UPSI switches might be useful, for example, in an accounting appli-
cation that prepares reports of daily, weekly, and monthly accounts.
Through the program switches, the application can be instructed as
to when the daily, weekly, or monthly reports are due.

For more details on the UPSI statement see VSE/Advanced Functions
System Control Statements.

PASSING A PARAMETER TO THE PROBLEM PROGRAM: Another way of passing
information to the problem program before it starts execution is by
way of the EXEC statement: in the PARM parameter, you may specify up
to 100 bytes of information.

Example:

// EXEC PROGA,SIZE=PROGA,PARM='TUESDAY WEDNESDAY'

The job control program stores the PARM value into the partition
GETVIS area. When the problem program receives control, register 1
points to a 4-byte field which contains the address of the parameter
value minus two. In other words, this address is the address of the
two bytes preceding the parameter value field. These two bytes con-
tain the length of the parameter value.

In order to test whether a PARM value had indeed been passed, regis-
ters 1 and 15 must be compared; if they are equal, a PARM value was
not specified.

Because the PARM value is stored in the partition GETVIS area, this
area must exist. When executing in virtual mode, a minimum GETVIS
area is always available. Before running a program in real mode,
however, GETVIS space must have been explicitly reserved through the
SIZE parameter of the EXEC statement (for further explanations refer
to the following two sections).

Executing in Virtual or Real Mode

All programs invoked for execution through an EXEC job control
statement are normally executed in virtual mode.

REAL MODE EXECUTION: To run a program in real mode, you specify the
REAL operand in the EXEC statement. Example:

// JOB NAME

// EXEC PROGA,REAL
/&

Chapter 2: Using the System 103

If, for the above example, job control runs in partition F2, then
the program PROGA will be loaded and executed in real mode provided
there is sufficient processor storage allocated to the F2 partition
to hold the entire program PROGA.

If a program executing in real mode is smaller than the allocated
processor storage, the unused allocated processor storage should
remain part of the page pool. Specifying the size of the program in
the SIZE operand of the EXEC statement accomplishes this. Example:

// JOB NAME

// EXEC PROGA,REAL,SIZE=30K
/&

Assuming the F2 partition has 50K of processor storage allocated and
the program PROGA has a size of 30K bytes, the remaining 20K bytes
of that partition will remain in the page pool.

If you specify SIZE=AUTO or SIZE=phasename, job control automat-
ically uses the information in the program's core image directory
entry to calculate the size of the program to be loaded. SIZE=AUTO
directs job control to take the program size from the largest pro-
gram with the same first four characters. With SIZE=phasename, the
actual size of the named phase is used.

Running programs in real mode implies temporarily forfeiting a num-
ber of page frames in the page pool (the size of the ALLOCR specifi-
cation), which may lead to degradation of system throughput.
Therefore, real mode execution should be used sparingly.

With a few exceptions, all IBM-supplied and user-written programs
can be executed under VSE/Advanced Functions either in virtual or

real mode. These exceptions are listed in the following section.

PROGRAMS THAT MUST RUN IN REAL MODE: The IBM-supplied program OLTEP
(On-line Test Executive Program) must be executed in real mode.

User-written programs must be executed in real mode if they contain
channel programs for devices not supported by VSE/Advanced

Functions.

User-written programs must be executed in real mode or modified if
they

. contain MICR stacker selection routines or other time-dependent
code for execution of I/0 requests.

. contain channel programs that are modified during command exe-
cution.

° contain I/0 appendage routines causing page faults.

104 VSE/Advanced Functions System Management Guide

A program may request to obtain additional storage from the parti-
tion GETVIS area (this area is described in the following section,
Dynamic Allocation of Storage). During real mode execution, that
storage is obtained from the unused allocated processor storage.
Specifying a SIZE value, therefore, allows you to issue GETVIS
requests from a program running in real mode (contrary to execution
in virtual mode, a default partition GETVIS area is not provided for
real mode execution).

For a program that is executed in real mode, allow 16K per open
file, and allow additional processor storage if double buffering is
used or if FBA files with large CI-sizes or VSE/VSAM files are
opened. For most IBM-supplied programs that you want to run real, an
allocation of 48K for GETVIS requests suffices.

Note that the FREEVIS macro releases GETVIS space which was obtained
through a GETVIS macro; that space is again available for subsequent
GETVIS requests. When issued from a program running in real mode,
however, the space is not returned to the page pool until the exe-
cution of the particular job is finished.

Dynamic Allocation of Storage

VIRTUAL MODE EXECUTION VSE dynamic storage areas, called GETVIS
areas, are part of the virtual storage. The system GETVIS area is
located in the SVA and used only by the operating system. Each par-
tition has an area called the partition GETVIS area. These areas
occupy the high address space of a partition's virtual storage. The
minimum GETVIS area for a partition is 48K, which is the IBM-set
default. This default is not applicable to real mode execution; in
this case, you have to reserve storage yourself (as described in the
preceding section).

The partition GETVIS area is used by certain VSE/Advanced Functions
system components for functions such as opening of files, 1label
processing etc. Programs using rotational position sensing (RPS)
require 256 to 512 bytes in the partition GETVIS area for each open
file. This value should be added to the minimum system requirement
of 48K.

Programmers writing in assembler language may request space from the
partition GETVIS area via the GETVIS macro. When no longer needed
by the requesting program, area so acquired can be released by issu-
ing the FREEVIS macro. For details about using these macros, refer
to the publication VSE/Advanced Functions Application Programming:
Macro User's Guide.

Figure 33 on page 106 shows the virtual storage layout of a 200K
partition with a default-size partition GETVIS area.

Chapter 2: Using the System 105

Problem
Program
Execution 200K

______________ ¥
Partition GETVIS Area 48K

1 X

The largest size program that could execute in the shown partition is one
that is 152K.

Figure 33. Storage Layout of a Partition With Default GETVIS Area

You may increase the size of a partition GETVIS area through:

A the SIZE job control or attention routine command.

. the SIZE parameter of the job control EXEC statement.

With the SIZE command/parameter, you specify the amount of virtual
storage available for program execution in a given partition. The

balance of that partition's allocation is the partition GETVIS area.

Given SIZE BG=140K, the result is a storage layout for the parti-
tion as shown in Figure 34 on page 107

106 VSE/Advanced Functions System Management Guide

-
Problem
Program
Execution 200K
Partition GETVIS Area 60K
X X

Figure 34. Storage Layout of a Partition After the SIZE Command is

Given

The boundaries set by the SIZE command are permanent until (1)

another SIZE command for the same partition or (2) the

You may temporarily alter the partition GETVIS area by
SIZE parameter on the job control EXEC statement. The
ter establishes boundaries in the same way as the SIZE
except that the parameter value holds only for one job
EXEC). At the end of the job step, the GETVIS size is

next IPL.

using the
SIZE parame-
command,
step (the
set to the

system default (48K) or the amount established by a previous SIZE

command. See Figure 35 on page 108 .

Chapter 2: Using the System 107

Given:

// EXEC PROGX,SIZE=110K

PROGX

200K

Partition GETVIS Area
Permanent artition 90K

GETVIS 50K
Allocation _L

X X

When PROG X is finished executing the partition GET VIS area size returns to its
permanent allocation.

Figure 35. Program Execution with the SIZE Parameter

With the SIZE parameter you may also specify SIZE=AUTO or
SIZE=phasename, in which case job control uses the information
available in the associated core image library directory to deter-
mine the amount of storage needed by the program and then allocates
the remainder of the partition as GETVIS area.

IBM licensed programming support (for example VSE/VSAM) may have
partition GETVIS requirements beyond 48K bytes. Consult the appro-
priate licensed program documentation to determine the partition
GETVIS area size requirements.

System Files on Tape, Disk or Diskette

As mentioned earlier in this chapter, I/0 devices (except DASD) can-
not be assigned to more than one active partition at the same time.
This means that, in an installation with only one card reader, for
instance, the input job stream on SYSRDR and SYSIPT for one parti-
tion must have been completely processed by job control and unas-
signed for that partition before job streams can be read by another
partition. This also applies accordingly to the system output on
SYSLST and SYSPCH if only one printer and one card punch are avail-
able.

Since this situation can cause a considerable decrease of system
throughput, VSE/Advanced Functions permits storing the input job

108 VSE/Advanced Functions System Management Guide

streams and the system output on a direct access device or, if
enough tape units are available, on magnetic tape. This allows
several partitions simultaneously to read system input from or to
write system output to high-speed devices, thus increasing system
throughput and, due to reduced CPU wait time, improving the overall
performance.

Note: If system logical units (SYSIPT, SYSLST, SYSPCH,
SYSRDR) are to be device independent, DTFDI must be used in
application programs that refer to any of these system logical
units.

The following section describes how to store system input and output
on high-speed devices and to read and process the job streams from
these devices.

The same improvements as those gained by having system files on
high-speed devices - but far more efficient and easier to use - can
be achieved by using a spooling program such as VSE/POWER. The
spooling program stores the job streams on disk, transfers the jobs
to the partitions for execution, and stores list and punch output on
disk before it is finally printed or punched.

System Files on Tape

If the system input units SYSRDR and SYSIPT are assigned to the same
magnetic tape unit, they may (but need not) be referred to as SYSIN.
If the system output units SYSLST and SYSPCH are assigned to the

~ same magnetic tape they must be referred to as SYSOUT. The tapes may
be unlabeled or they may have standard labels. If SYSLST or SYSPCH
is assigned to a standard label tape and no new label information is
supplied, the old labels will remain on the tape. SYSIPT assigned to
a magnetic tape cannot be a multiple-volume file.

To store the input stream on magnetic tape you must write your own
program that transfers the job stream to the tape. Assume, in the
following example, that you have written such a program and cata-
loged it in the core image library under the name CDTOTP; the pro-
gram CDTOTP uses SYS004 to read the input job stream, and SYS005 for
the tape onto which the job stream is to be written; the end of
input data for CDTOTP is indicated by %% The example in Figure 36
on page 110 shows how to use the program CDTOTP to create a combined
system input file on tape.

Chapter 2: Using the System 109

// JOB BUILDIN
(1) // ASSGN SYS004,00C
(2) // ASSGN SYS005,182
(3) // EXEC CDTOTP

// JOB A

read from SYSRDR

job stream

// JOB B read from SYS004

/&
(4)]
/& End of Job BUILDIN from SYSRDR

L__.__.__.T.______J e——

I

|

|

I

|

|

|

|

|

| .

| /&

l

|

|

|

|

|

|

| 1. SYS004 is assigned to the card reader from which CDTOTP reads

} the job stream.

2. SYS005 is assigned to the tape which is to receive the job
stream.

3. The CDTOTP program is executed and writes the job stream onto
tape.

| 4. *% (or any other significant character combination) signals
end-of-data to CDTOTP

e e e e e e —_————— e ————

Figure 36. Creation of SYSIN on .Tape

After completion of the job BUILDIN shown in Figure 36 you can
assign SYSIN to the tape containing the job stream; job control will
then read and process the jobs A and B from the tape just as it
would have done from the card reader.

In the same way you can direct the system output on SYSLST and
SYSPCH to go on magnetic tape and then use your own or an
IBM-supplied program to print or punch the contents of the tape on
the printer or card punch, respectively.

System Files on Disk

When both SYSRDR and SYSIPT are assigned to disk, they must refer to
the same disk extent, and should be referred to as SYSIN. Since the
output units SYSLST and SYSPCH have different record lengths, they
must be assigned to separate disk extents; SYSOUT therefore cannot
be used if SYSLST and SYSPCH are assigned to disk. Note that only
single extent system files are supported.

110 VSE/Advanced Functions System Management Guide

For system files on disk, you must provide the required label infor-
mation by means of DLBL and EXTENT job control statements. In these
statements, use the following predefined file names:

IJSYSIN for SYSRDR, SYSIPT, SYSIN
IJSYSPH for SYSPCH
IJSYSLS for SYSLST

For example, the label information for SYSIN assigned to a disk
extent could be submitted by the following job control statements:

// DLBL IJSYSIN, 'DISKINFILE'
// EXTENT SYSIN,DOSRES,1,0,1260,30

The assignment of a system file to a disk extent must always be per-
manent, and it must follow the DLBL and EXTENT statements.

Example:

// DLBL IJSYSIN, 'DISKINFILE'
// EXTENT SYSIN,DOSRES,1,0,1260,30
ASSGN SYSIN,131

After a system file on disk has been processed, it must be closed by
a CLOSE job control command (no //). The second (optional) operand
of the CLOSE command can be used to unassign a system logical unit
or reassign it to another device. The following command closes the
SYSIN file on disk and reassigns SYSIN to the card reader at address
00C:

CLOSE SYSIN,00C

The CLOSE command can either be entered on SYSLOG by the operator or
it can be included at the end of the job stream on disk.

If SYSIPT is assigned to a disk extent, the CLOSE command must pre-
cede the /&. Multiple SYSIPT data files can be read via multiple job
steps with one /& at the end of the job stream.

The example in Figure 37 on page 112 shows the job control state-
ments needed to

1. write a job stream on disk,

2. execute the job stream from disk and store the print output on
disk, and

3. print the output from disk on the printer.
The example assumes that you have written your own programs to write

the job stream on disk (CDTODISK) and to list on the printer the
print output stored on disk (DISKTOPR).

Chapter 2: Using the System 111

@ // JOB STORE

// ASSGN SYS001,00C

// ASSGN SYS006,190

// DLBL DASDOUT,'DASDOUTFILE’

// EXTENT SYS006,DOSRES, 1,0,1260,30
// EXEC CDTODISK

&
/1 J0B B

JOB STREAM
IS EXECUTED
FROM DISK

/&
CLOSE SYSLST,00
CLOSE SYSIN,00C

@ // DLBL 1JSYSLS,"OUTPR’
// EXTENT SYSLST,PVRLST,1,0,1970,20
ASSGN SYSLST, 191

// DLBL 1JSYSIN,'DASDOUTFILE'
// EXTENT SYSIN,DOSRES,1,0,1260,30
ASSGN SYSIN, 190

@ // JOB PRINT

// ASSGN SYS001,191

// ASSGN SYS002,00E

// DLBL OUTPR

// EXTENT SYS001,PVRLSL,1,0,1970,20
// EXEC DISKTOPR

/&

PRINT
OUTPUT

PRINTED
LISTING

@ The program CDTODISK reads the following job stream from the card reader (SYS001) and stores it on disk (SYS006). The end
of the job stream is indicated to COTODISK by **.

@ SYSLST and SYSIN are switched to disk. Job control now reads the job stream from the disk on device 190. The job stream is
executed and the print output is stored on the disk on device 191. The CLOSE commands at the end of the job stream will close
the system files on disk and reassign them to the printer and card reader, respectively.

@ The program DISKTOPR reads the print output from disk (SYS001) and lists it on the printer (SYS002).

Figure 37. Processing System Input and Output Files on Disk

SYSTEM FILES ON FIXED BLOCK ARCHITECTURE (FBA) DASD: If an FBA DASD
has a system logical unit assigned to it, the supervisor will block
and deblock system file records into the FBA Control Interval-based

112 VSE/Advanced Functions System Management Guide

data format, handle all special conditions, and update the Disk
Information Block (DIB). This permits existing DTFDI and DTFCP pro-
grams to process system files on FBA devices without making logic
changes to handle the FBA blocking.

Note, however, that the DTFSD support for system files on disk is

limited to sequential GET or PUT for fixed unblocked records. (That
is, the UPDATE=YES parameter is not supported.)

System Files on Diskette

If the system input units SYSRDR and SYSIPT are assigned to a
diskette extent, they must be referred to as SYSIN. Since the output
units SYSLST and SYSPCH have different record lengths, they must be
assigned to separate diskette extents; SYSOUT therefore cannot be
used if SYSLST and SYSPCH are assigned to diskette.

For system files on diskette, you must provide the required label
information by means of DLBL and EXTENT job control statements. In
those statements, use the following predefined file names:

IJSYSIN for SYSRDR, SYSIPT, SYSIN
IJSYSPH for SYSPCH
IJSYSLS for SYSLST

For example, the label information for SYSIN assigned to a diskette
extent could be submitted by the following job control statements:

// DLBL IJSYSIN,'DISKETTE',,DU
// EXTENT SYSIN,DSKETE,1

The assignment of a system file to a diskette extent must always be
permanent, and it must follow the DLBL and EXTENT statements.

Example:

// DLBL IJSYSIN,'DISKETTE',,DU
// EXTENT SYSIN,DSKETE,1
ASSGN SYSIN, 060

After a system file on diskette has been processed, it must be
closed by a CLOSE job control command (no //). The second
(optional) operand of the CLOSE command can be used to unassign a
system logical unit or reassign it to another device. The following
command closes the SYSIN file on diskette and reassigns SYSIN to the
card reader at address 00C.

CLOSE SYSIN,00C

The CLOSE command can either be entered on SYSLOG by the operator or
it can be included at the end of the job stream on diskette.

Chapter 2: Using the System 113

If SYSIPT is assigned to a 3540 diskette, the CLOSE command must
precede the /&. Multiple input data files can be read via multiple
job steps with one /& at the end of the job stream.

When job control encounters /& on SYSRDR during normal operation,
the standard assignment for SYSIPT becomes effective and SYSIPT is
checked for an end-of-file condition. If the standard assignments
for SYSRDR and SYSIPT are not to the same device, SYSIPT is advanced
to the next /* statement.

Interrupting SYSIN Job Streams on Disk, Diskette, or Tape

After a SYSIN or SYSRDR job stream has been prepared on tape,
diskette, or disk, it may be necessary to interrupt the normal
schedule to execute a rush job. To do this, press the Request key
on the operator console and enter a PAUSE command with the EOJ oper-
and causing the corresponding partition to suspend processing at the
end of the current job. At this point you can make a temporary
assignment for SYSIN to a card reader to execute the rush job. At
the end of this job, processing of the job stream on disk, diskette,
or tape will resume at the point of interruption. This is illus-
trated in Figure 38 on page 115 . Starting an urgent job that uses
a cataloged procedure by means of a single EXEC statement is dis-
cussed under Partition-Related Cataloged Procedures later in this
section.

114 VSE/Advanced Functions System Management Guide

Card Reader Disk Extent Operator Console

// DLBL WJSYSIN, .. .
// EXTENT SYSIN, . ..

ASSGN SYSIN, 191 :@D /1 OB A

/&

//JOB B @
. Press REQUEST key and
. enter PAUSE xx, EOJ
. where xx is the 1D of
. the partition

/&
// JOB RUSH oottt // ASSGN SYSIN,00C
. /1JoB C
. —\
&
/] J0B D <; (6 CLOSE SYSIN,00C
&
// JOBE
/&

SYSIN is assigned to disk and processing of the jobstream on disk begins.
While job B is being executed a PAUSE command is entered at the operator console.

At the end of job B control comes to the operator who can now enter a temporary assign-
ment for SYSIN to the card reader.

The job RUSH is read and processed from the card reader. Note that the temporary
assignment of SYSIN is not reset by the //JOB RUSH statement but is retained to end of
the job.

The /& statement resets the temporary assignment of SYSIN to permanent (190) and
the next job in the stream on disk is read and executed.

The CLOSE command closes the system file on disk and reassigns SYSIN to the card
reader to process jobs D and E.

®@ © © 00

Figure 38. Interrupting a Job Stream on Disk

Record Formats of System Files

SYSLST records are 121 characters and SYSPCH records 81 characters
in length. From SYSRDR and SYSIPT, job control accepts either 80-
or 81l-character records.

The first character of the SYSLST and SYSPCH records is assumed to
be an ASA carriage control or stacker selection character. SYSIPT,
SYSRDR, SYSPCH, and SYSLST records assigned to DASD have no keys,

Chapter 2: Using the System 115

and record lengths are the same as stated above. (For CKD devices
the records are unblocked; for FBA devices, the operating system
automatically blocks records into the FBA format and also deblocks
them.)

Using Cataloged Procedures

This section describes how to retrieve a cataloged procedure from a
procedure library and how to modify the contents of a cataloged pro-
cedure. How a procedure is cataloged in a procedure library is dis-
cussed in Using the Libraries later in this chapter.

Retrieving Cataloged Procedures

To retrieve a cataloged procedure from the procedure library you use
the PROC parameter in the EXEC job control statement, specifying the
name of the cataloged procedure. Assume that a program called PAY-
ROLL uses the following and that these statements have been cata-
loged in a procedure library under the name PAY.

// ASSGN SYS017,SYSRDR

// ASSGN SYS018,SYSPCH

// ASSGN SYS019,00E

// ASSGN SYS020,TAPE

// ASSGN SYS021,DISK,VOL=111111

// TLBL TAPFILE, 'FILE-IN'

// DLBL DSKFLE, 'FILE-OUT',99/365,SD
// EXTENT SYS021,111111,1,0,200,400
// EXEC PAYROLL

If the program PAYROLL is to be executed, the programmer or operator
would simply prepare the following job control statements:

// JOB USER1
// EXEC PROC=PAY
/&

When the job control program starts reading the job control state-
ments in the input stream on SYSRDR and finds the EXEC statement, it
knows by the operand PROC that a cataloged procedure is to be
inserted. It takes the name of the procedure to be used (PAY) and
retrieves the procedure with that name from the procedure library.

You may have cataloged some or all of your procedures into private
procedure libraries. Whether the job control program uses the system
procedure library and/or private procedure libraries for retrieval
depends on your library definitions. The LIBDEF job control state-
ment (or command) allows you to define a chain of libraries to be
searched. For example, if you wanted job control to search in the
following order :

1. system procedure library

116 VSE/Advanced Functions System Management Guide

2. private procedure library with filename 'PROLIB1’
3. private procedure library with filename 'PROLIB2'

your library chain definition might look as follows:

// LIBDEF PL,SEARCH=(IJSYSRS,PROLIB1,PROLIB2),PERM
If no LIBDEF definition is active, job control searches the system
procedure library only. For a more detailed description of the

LIBDEF statement, refer to section Job Control for Library Defi-
nitions, earlier in this chapter.

After the procedure PAY has been retrieved, SYSRDR is temporarily
assigned to the procedure library. Job control reads and processes
the job control statements in its normal fashion. The statement

// EXEC PAYROLL

causes the program PAYROLL to be loaded and given control. When exe-
cution of PAYROLL is complete, the job control program reads the
next statement from the procedure library and, in this example,
would find an end of procedure indicator (/+). The end of procedure
indicator returns the SYSRDR assignment to its permanent device,
where the job control program finds the /& statement and performs
end-of-job processing as usual.

Note: The listing of job control statements on SYSLOG and/or
SYSLST will show the message EOP PAY at the end of the
inserted procedure.

Temporarily Modifying Cataloged Procedures

The preceding example is the simplest case of the use of cataloged
procedures. It will work as long as the requirements of the program
do not change.

It may happen, however, that some of the statements in a cataloged
procedure must be modified for a specific run of a program. For
example, the printer normally used (00E in the preceding example)
may be temporarily unavailable and a different printer must be
assigned. It does not make much sense to delete the old procedure
and to catalog a new one because the old procedure will be needed
again as soon as the normal printer becomes operational again.

Likewise, it may be necessary to add or remove certain statements to
or from a cataloged procedure for a specific run of a program. You
may wish, for example, to process a different copy of the file
FILE-OUT (see the preceding example). You must therefore temporar-
ily suppress the corresponding DLBL and EXTENT statements in the
cataloged procedure and replace them by statements that identify the
file you want to process instead.

Chapter 2: Using the System 117

For cases like this, one or more statements in a cataloged procedure
may be

° temporarily modified (thus, overriding what was present).
i temporarily suppressed (deleted) without modifying them.

° temporarily incorporated at desired locations.

The Modifier Statement

You can request temporary modification of statements in a cataloged
procedure by supplying the corresponding modifier statements in the
input stream.

Since normally not all statements need be modified, you must estab-
lish an exact correspondence between the statement to be modified
and the modifier statement by giving them the same symbolic name.
This symbolic name may have from one to seven characters, and must
be specified in columns 73 through 79 of both statements.

Note: An unnamed statement cannot be modified. Therefore, to
be able to modify any statement in a cataloged procedure for
any usage of the procedure you should name each statement when
cataloging. Moreover, the modifier statements must be in the
sequence in which modification is to be performed on the cata-
loged statements. The JOB statement cannot be modified; also,
job control continuation statements cannot be overridden.

A single character in column 80 of the modifier statement specifies
which function is to be performed:

A - Indicates that the statement is to be inserted after the state-
ment in the cataloged procedure that has the same name.

B - Indicates that the statement is to be inserted before the state-
ment in the cataloged procedure that has the same name.

D - Indicates that the statement in the cataloged procedure that has
the same name is to be deleted.

Any other character or a blank in column 80 of the modifier state-
ment indicates that the statement is to replace (override) the
statement in the cataloged procedure that has the same name.

If the LOG function is active (by having issued the LOG job control
command), statements to be deleted are printed, with a D in column
80, on the console, but not 'executed'.

In addition to naming the statements and indicating the function to

be performed, you must inform the job control program that it has to
carry out a procedure modification. This is done

118 VSE/Advanced Functions System Management Guide

1. by specifying an additional parameter (OV for overriding) in the
EXEC statement that calls the procedure, and

2. by using the statement // OVEND to indicate the end of the modi-
fier statements.

Placement of the // OVEND statement is as follows:
e directly behind the last modifier statement or,

. if the last modifier statement overwrites a // EXEC statement
and is followed by data input, between the /* and the /&.

The following examples show how you can temporarily modify a cata-
loged procedure.

Assume that a procedure named PROC5 for the program PAYROLL contains
the following statements:

Columns

73 - 79
// ASSGN SYS017,SYSRDR PAY0001
// ASSGN SYS018,SYSPCH PAY0002
// ASSGN SYS019,SYSLST PAY0003
// ASSGN SYS020,181 PAY0004
// ASSGN SYS021,DISK,VOL=111111,SHR PAY0005
// TLBL TAPFLE, 'FILE-IN' PAY0006
// DLBL DSKFLE, 'FILE-OUT' PAY0007
// EXTENT SYS021,111111,1,0,200,200 PAY0008
// EXEC PAYROLL PAY0009

/+

Assume further that the programmer wants to use tape unit 183
instead of 181. The input stream on SYSRDR, in this case, would have
to be as follows:

Columns
73 - 80
// JOB USER
// EXEC PROC=PROC5,0V
// ASSGN SYS020,183 PAYOO004R
// OVEND
/&

The form of the EXEC statement in the input stream indicates that
(1) the procedure PROC5 is to be used and (2) this procedure is to
be modified in some way. The first three procedure statements are
processed without change. The procedure statement named PAY0004 is
replaced by the corresponding statement in the input stream. As any
character other than A, B, or D specifies override, an R (for

Chapter 2: Using the System 119

Several Job

replaced by the corresponding statement in the input stream. As any
character other than A, B, or D specifies override, an R (for
replace) was used to indicate this. An M (for modified) would have
done just as well. The remaining procedure statements are again
processed without change.

As another example, assume that the program PAYROLL is to use file
FILE-OUT1 instead of FILE-OUT and that this file resides on two
extents of a disk pack that has the volume serial number 111112.
The input stream might then look as follows:

Columns
73 - 80
// JOB USER
// EXEC PROC=PROC5,0V
// ASSGN SYS021,DISK,VOL=111112,SHR PAYOOO5R
// DLBL DSKFLE, 'FILE-OUT1' PAYOOO7R
// EXTENT SYS021,111112,1,0,100,200 PAYOO008R
// EXTENT SYS021,111112,1,1,500,200 PAY0OO008A
// OVEND
/&

Processing would be as follows: The JOB statement and all procedure
statements up to the statement named PAY0004 are processed without
modification. The procedure statements labeled PAYO005, PAY0007,
and PAY0008 are replaced by the corresponding statements in the
input stream. The second EXTENT statement in the input stream has
the character A in column 80, which indicates that the statement is
to be inserted after the (replaced) statement named PAY0008. The
procedure statement named PAY0009 is processed without modification.

The possibility of modification as described above makes the use of
cataloged procedures more flexible. Cften, however, it is simpler
and more economical to have different procedures for the same pro-
gram than to have a single procedure and modify it.

SYSIPT data in a cataloged procedure cannot be overridden by the
procedure override facility.

Steps in One Procedure

A cataloged procedure may contain more than one EXEC statement, that
is, it may contain control statements for more than one job step
(within the same job). However, as the number of job steps in a
procedure increases, so does the time required to re-execute the
whole procedure after an error occurs.

A program written in assembler language, for instance, requires
three job steps to assemble, link edit, and execute the program. For
the use of a cataloged procedure, your input stream for the entire
job (on SYSIN for simplicity) would contain the following:

120 VSE/Advanced Functions System Management Guide

// JOB USER

// OPTION LINK

// EXEC ASSEMBLY

source deck of program to be assembled
/7\-

// EXEC LNKEDT

// EXEC

data for program to be executed

/’7‘:

/&

If the OPTION statement and the three EXEC statements were cataloged
under the name ASDPROC, the input stream could be simplified as
shown below. The solid lines in the example show the flow of con-
trol between the SYSIN job stream and the cataloged procedure.

Input from SYSIN Procedure ASDPROC

// JOB USER
// EXEC PROC=ASDPROC
L

1
// OPTION LINK
// EXEC ASSEMBLY
|

source statements of
program to be

assembled
/7&'-
' !
// EXEC LNKEDT
// EXEC
:]
data to be
processed
/-.‘r.
L
]
/+ (end indicator)
J
I
/&

The same can be done for any number of job steps that logically
belong together and are frequently executed. A stock control program
STOCK, for instance, may be run daily to compile statistics that can
be used to prepare the following lists:

Chapter 2: Using the System 121

1. An exception list that shows which items are low in stock.
Required daily.

2. A list that shows the sales in currency for a certain item or
group of items. Required weekly.

3. A list that shows the sales in number of units for each item or
group of items. Required monthly.

4., An inventory list. Required half-yearly.
To simplify processing, four procedures may have been cataloged:

STKPR1 two job steps: the first to execute STOCK, the second to
prepare list 1.

STKPR2 three job steps: the first two are the same as for STKPRI1,
the third to prepare list 2.

STKPR3 four job steps: the first three the same as for STKPR2,
the fourth to prepare list 3.

STKPR4 five job steps: the first four the same as for STKPR3, the
fifth to prepare list 4.

Which lists are printed after every run of STOCK then depends on
what cataloged procedure is used.

Modifying Multistep Procedures

Multistep procedures may be modified in the same way as the
single-step procedure described earlier. However, a number of con-
siderations apply to the ordering of the modification statements in
the input stream when a logical unit used for data input (SYSIPT) is
assigned to the same physical unit as SYSRDR.

. It is advisable to avoid using identical symbolic names for the
statements in the procedure.

. The modifier statements must be in the same sequence as the
statements in the referenced procedure.

. Modifier statements are normally placed immediately following
the EXEC PROC=procedure,0OV statement.

When input data is read by a job step (EXEC statement) executed
from the procedure, the following cautions should be observed:

1. The first statement following the EXEC PROC=procedure,OV

must be a modifier statement (see 'l' in Figure 39 on page
123).

122 VSE/Advanced Functions System Management Guide

2. Modifier statements that take affect after the input data is
read are placed following the input data except for the
first modifier, which must precede the input data (see '1'
and the modifier statement ASSGN SYSSLB,UA in Figure 39 on
page 123).
3. An exception to point 2 above is when the input data is
processed by a job step that itself was modified (see '3'
and '4' in Figure 39). In this case the next modifier must
follow the data (see statement '3' and the modifier ASSGN
SYSCLB,UA in Figure 39).
Figure 39 shows an example of modifying the second and third steps
of a three-step procedure.
In the example given in Figure 39, it is assumed that SYSRDR and
SYSIPT are assigned to the same physical unit.
SYSIN Input Stream Procedure CATO1 Containing JCL Only
Column 73-79 Column 73-79
// JOB EXAMPLE
// EXEC PROC=CATO01,0V
0 // ASSGN SYSRLB,UA STMT3 // EXEC PSERV STMT1
(2) DSPLY CATO1
/* ASSGN SYSCLB,130 STMT2
// ASSGN SYSRLB,130 STMT3
// ASSGN SYSSLB,UA STMT4 // ASSGN SYSSLB,130 STMT4
6 // EXEC DSERV,REAL STMTS // EXEC DSERV STMTS
(4) DSPLY CD,RD,SD
/*
ASSGN SYSCLB,UA STMT6 // ASSGN SYSSLB,UA STMT6
// OVEND // EXEC DSERV,REAL STMT7?
(5) DSPLY CD, PD I+
/*
/&
o This is the first modifier statement. It refers to the second job step.
@ This statement provides SYSIPT data for PSERV.
@ This modification overwrites the EXEC statement.
0 This statement provides SYSIPT data for DSERV (STMT5).
@ This statement provides SYSIPT data for DSERV (STMT7).

Figure 39. Example of Modifying a Three-Step Procedure

Chapter 2: Using the System 123

SYSIPT Data in Cataloged Procedures

In the example shown in Figure 39 on page 123 the librarian service
programs PSERV and DSERV accessed data from the logical unit SYSIPT.
This 'SYSIPT' data may be made part of your cataloged procedure.
System utility, system service programs, and language translators
all read their input fram SYSIPT.

When you catalog a procedure containing SYSIPT data, the directory
entry for the procedure indicates this. When you execute such a pro-
cedure, job control checks to see whether or not it contains SYSIPT
data. If it does, both SYSRDR and SYSIPT are assigned to the proce-
dure library until the end of the procedure. SYSIPT data in a cata-
loged procedure cannot be overridden by the procedure library
override facility.

Inline SYSIPT data in procedures may also be any data that is proc-
essed under control of the device independent IOCS used by your pro-
gram or IBM-supplied programs. Normally, though, you would not
catalog source programs or data for your problem programs in a pro-
cedure library.

Inline SYSIPT data in procedures is useful and convenient mainly in
the case of control information for system utility and service pro-
grams.

A job stream for condensing libraries could contain the following
control statements (the statements are shown in skeleton format
only):

// JOB ...

// ASSGN ...
// EXEC MAINT
CONDS CL
CONDS RL
/7':
/&

The job control statements are read from SYSRDR, the librarian con-
trol statements are read from SYSIPT. You can catalog both the job
control and utility control statements (for example, under the name
CODENS):

// ASSGN ...

// EXEC MAINT
CONDS CL
CONDS RL

/:‘:

/+

To run the condense job, only the following statements are now
required on SYSRDR: ‘

124 VSE/Advanced Functions System Management Guide

// JOB NAME
// EXEC PROC=CONDENS
/&

If two or more programs in a procedure read SYSIPT data, the SYSIPT
data must be handled in a consistent manner, that is, if the SYSIPT
data is included in the procedure for one job step, it must be
included for all job steps in that procedure which require SYSIPT
data.

Partition-Related Cataloged Procedures

Although a given procedure may be executed in any partition, a par-
ticular job may need a specific set of job control statements,
dependent on the partition of execution. For example, you may want
to run a job to store DLBL and EXTENT statements in the partition
label subarea for each partition (OPTION PARSTD). Since each parti-
tion requires a different set of label information, you would need a
cataloged procedure for each of your partitions. Partition-related
cataloged procedures then allow you to retrieve and execute the
appropriate procedure with one version of the EXEC PROC statement,
no matter which partition you are running in. One benefit of this
feature lies in the ease with which unscheduled jobs can be started.

To use the feature, you must first create separate procedures that
conform to the specific partitions in your system. Most probably,
the difference in these procedures will be in the EXTENT and DLBL
statements because of the different device and DASD space assign-
ments from partition to partition. Next, in order to distinguish
between the procedures and relate them to the appropriate
partitions, the following naming convention must be used for cata-
loging these procedures:

First character of name: §

Second character: 0 for BG partition
1 for Fl partition, 2 for F2 partition,
etc.
A for FA partition (partition 10)
B for FB partition (partition 11)

Third to last characters: any alphameric character

In the EXEC statement used to start the job, the first two charac-
ters of the procedure name must be $§$, with the remaining characters
identical to the third to last characters of the cataloged name.

To continue the previous example, the procedures may be named
SOPARSTD for the BG partition, $1PARSTD for the Fl1 partition and so
on. The statement thus needed to invoke the appropriate procedure
is

// EXEC PROC=$$PARSTD

Chapter 2: Using the System 125

Partition related procedures or procedures for the starting of
urgent jobs are of great help to the operator. Full details on the
use of cataloged procedures by the operator are given in
VSE/Advanced Functions Operation.

LINKING PROGRAMS

This section describes the role of the linkage editor and how you
can communicate with it through control statements. Before they are
executed in the processor, all programs must be placed in a core
image library by the linkage editor.

The name linkage editor appropriately reflects the editing and the
linking operations that this program performs. The linkage editor
prepares a program for execution by editing the output of a language
translator into one or more executable phases. The linkage editor
also combines separately assembled or compiled program sections or
subprograms (called object modules) into phases. This process is
referred to as linking.

A program can be link edited into one or more phases and

. cataloged permanently,
cataloged permanently and executed immediately, or
cataloged temporarily and executed immediately.

When a phase is cataloged permanently into a core image library, the
linkage editor is no longer required for that phase, because the
supervisor can load it directly from the library in response to an
EXEC job control statement, or a FETCH or LOAD macro. On the other
hand, if the phase is cataloged temporarily and executed
immediately, the linkage editor is required again the next time the
phase is to be run.

Phases are stored either temporarily or permanently, depending on
the option specified in the OPTION job control statement:

// OPTION LINK
If the LINK option is specified, the phase is stored temporarily for
immediate execution in the same job. This phase will be overwritten
in the core image library by the next phase that is link edited.

// OPTION CATAL

If the CATAL option is specified, the phase is stored permanently
and can be executed any time after the link edit run.

The linkage editor runs in any partition, and the phases produced by

the linkage editor are executable in any partition. The linkage edi-
tor can at the same time run in more than one partition without

126 VSE/Advanced Functions System Management Guide

endangering the integrity of your program data. This holds true even
if each executing linkage editor program updates (that is, catalogs
into) the same core image library.

Note, however, that updating from multiple partitions is sequential,
not concurrent: the particular core image library is locked by one
partition. When linking in this partition is completed, the linkage
editor program running in another partition becomes eligible for
updating the core image library.

Structure of a Program

To understand the functions of the linkage editor, you must under-
stand the structure of a program during the various stages of its
development. Figure 40 on page 128 summarizes the three sections
that follow, which discuss source modules, object modules, and pro-
gram phases.

A set of source statements, or source module (1), must be processed
by a language translator, but can first be cataloged as a book (2)
into the source statement library. The output of the language
translator is called an object module (3), which must be processed
by the linkage editor, but can first be cataloged as a module (4)
into the relocatable library. The output of the linkage editor is
called a phase (5), which is cataloged into a core image library
temporarily or permanently, and can also be loaded into the shared
virtual area.

Chapter 2: Using the System 127

SOURCE MODULE OBJECT MODULE

__JI> Language __J> ____>
Translator

Relocatable Core Image
Library Library

Linkage
Editor

O,

=t
=

Source Statement
Library

A set of source statements, or source module (1), must be processed by a language translator, but can first
be cataloged as a book (2) into the source statement library. The output of the language translator is called
an object module (3), which must be processed by the linkage editor, but can first be cataloged as a module
(4) into the relocatable library. The output of the linkage editor is called a phase (5), which is cataloged
into a core image library temporarily or permanently, and can also be loaded into the shared virtual area.

Figure 40. Stages of Program Development

Source Modules

After planning the most logical approach to your application, you
write a set of source statements in a programming language. Your set
of source statements, called a source module, is processed by a lan-
guage translator. The language translator assembles source modules
written in assembler language, or it compiles source modules written
in a high-level language (for instance, COBOL, PL/I, or RPG II).

The language translator transforms the source module into an object
module, which is in machine language.

You can either submit your source module directly to the language
translator for processing, or you can catalog it into a sublibrary
of the source statement library for processing at a later time by
the language translator.

Source modules are written in one or more control sections (CSECTs).
Using assembler language the programmer defines the control
sections. Source modules written in a high-level language have
their control sections defined by the various compiler options used.

128 VSE/Advanced Functions System Management Guide

Object Modules

An object module, the output of a language translator, consists of
the dictionaries and text of one or more control sections. The dic-
tionaries contain the information needed by the linkage editor to
modify portions of the text for relocation and to resolve
cross-references between different object modules. The text con-
sists of the actual instructions and data fields of the object mod-
ule. You can either submit your object module directly to the
linkage editor for processing, or catalog it into a relocatable
library for later inclusion in a linkage editor job stream.

For each object module the language translator produces four types
of records as illustrated and summarized in Figure 41. For more
information about these records see VSE/Advanced Functions System
Control Statements.

°—° i

Byte 0 1 4

0 Contains X'02'. Identifies the record as one of an object module.

e Indicates the record type and can be one of the following:

C’ESD’ -- External symbol dictionary. Contains symbols defined in this mo-
dule and referred to by one or more other modules and symbols referred to
in this module but defined in another module.

C’'TXT’ - Text. Contains actual code plus control information needed by the
linkage editor.

C’RLD’ -- Relocation list dictionary. Identifies those portions of the text
which must be modified when the program is relocated for execution.

C’END’ -- End of module. Indicates the end of a module. The record may
contain an address where execution is to begin (transfer address) or the length
of the control section or both.

B
Figure 41. Record Types of an Object Module

If you want to change information in a TXT record, you can prepare a
REP record (user replace record) and submit it with your object mod-
ule for cataloging into the relocatable library or for linkage edi-
tor processing. A REP record must be submitted between the TXT
record it modifies and the END record; otherwise, the TXT record is
not modified. Usually, you place the REP record(s) immediately
before the END record.

Program Phases

The linkage editor produces a program phase from the object
module(s) you identify in linkage editor control statements. A

Chapter 2: Using the System 129

phase is the functional unit (consisting of one or more control
sections) that the system loader can load into a partition in
response to a single EXEC job control statement (or a FETCH or a
LOAD macro instruction in an assembler language program).

In the PHASE control statement you instruct the linkage editor to
produce one of three types of phases: relocatable, self-relocating,
or non-relocatable.

RELOCATABLE PHASES: A phase is relocatable if it can be loaded for
execution in any partition's address area. The linkage editor
produces a relocatable phase unless you specify an absolute origin
(load) address instead of a relative address. However, IBM recom-
mends that you always specify a relative origin address. An address,
in order to be relative, is represented by a symbol with or without
a displacement; for details see VSE/Advanced Functions System Con-
trol Statements.

If a relocatable phase is also designed as a re-enterable phase, it
is eligible to be loaded into the shared virtual area (SVA). Phases
resident in the SVA can be shared concurrently by programs running
in either real or virtual mode.

SELF-RELOCATING PHASES: Before a loader with the relocating capa-
bility became available, some users coded self-relocating programs
in order to gain the advantages of relocatability. If you have to
perform maintenance on such a program, you must write this program
in assembler language according to the rules described in
VSE/Advanced Functions Application Programming: Macro User's Guide.
In the PHASE control statement you indicate an origin address of +0.
The program must relocate all its addresses at execution time to
correspond with the addresses available in the partition where the
program is loaded.

NON-RELOCATABLE PHASES: A non-relocatable phase is link edited to
be loaded at a specific location (absolute address) associated with
a partition. When you request execution of a non-relocatable phase
in a given partition, the starting and ending addresses of the phase
must lie within that partition. Otherwise, the job is canceled. If
you wish to execute a non-relocatable phase in more than one parti-
tion, you must catalog a separate copy of the phase for each parti-
tion.

The Three Basic Applications of the Linkage Editor
The three basic applications of the linkage editor are:
cataloging phases into the core image library
link edit and execute
° assemble (or compile), link edit, and execute.
The following sections include a discussion of the system flow dur-

ing each of these applications.

130 VSE/Advanced Functions System Management Guide

Cataloging Phases into the Core Image Library

When you have an operational program (as an object deck in cards or
on tape, for example) and you expect to use that program frequently,
you should catalog it into a core image library. You can do this in
a single job step, which is shown in Figure 42 on page 132 , and
described below.

Job control copies, onto SYSLNK, the linkage editor control state-
ments present on SYSRDR. The INCLUDE statement, without operands,
signals job control to read all object modules that exist on SYSIPT.
If an ENTRY statement is not encountered before the // EXEC LNKEDT
statement, job control writes one on SYSLNK. An ENTRY statement
signals termination of the input to the linkage editor.

The linkage editor is loaded into the partition where the job stream
was submitted; it uses SYS001 as a work file.

Because the CATAL operand of the OPTION statement was specified, the
linkage editor places the executable program permanently into a core
image library. Which particular core image library serves as target
library depends on your library definition to job control (see Proc-
essing Requirements for the Linkage Editor, later in this section).
The library descriptor entry in the core image directory for cata-
loged phases is updated.

If the phase is already in the shared virtual area (SVA) or (via the
SET SDL command) has been requested to be loaded into the SVA, the
phase is also loaded into the SVA after it has been cataloged to the
system core image library as SVA eligible. Also, if the phase has
an entry in the system directory list, the entry is updated.

CATALOGING A SUPERVISOR: Supervisors may also be cataloged perma-
nently into the core image library as described above. Be sure, when
doing this, to specify a unique name (eight alphameric characters)
for each supervisor.

Chapter 2: Using the System 131

1

|

|

// JOB CATALOG 1 |

// OPTION CATAL | |

| ACTION I read from SYSRDR |
| PHASE | |
INCLUDE J |

1 |

| . | |
| object | I
module } read from SYSIPT |

. | l

| | |
| /7\- J |
| ENTRY o |
| // EXEC LNKEDT } read from SYSRDR |
| /& 4 |
| |
L |

Figure 42. A Job Stream to Catalog a Program into the Core Image
Library

Link Edit and Execute

You do not always need to catalog a permanent copy of your program
into the core image library in order to execute the program. For
instance, you may have modified parts of your program and want to
test these modifications with the entire program. In this case, you
can specify the LINK option, which instructs the linkage editor to
place a temporary copy of the program into the core image library.
Again, the INCLUDE statement signals job control to read the follow-
ing input from SYSIPT. The underscored statements in Figure 43 on
page 133 illustrate how this job stream differs from Figure 42.

By specifying an EXEC statement without a program name operand after
the EXEC LNKEDT statement, the program just link edited is loaded
for execution. The space temporarily occupied by this program in
the core image library is overwritten the next time a program is
link edited.

132 VSE/Advanced Functions System Management Guide

// JOB TEMP

// OPTION LINK
ACTION
PHASE
INCLUDE

read from SYSRDR

7
i
F
|
J
1
. |
object |
module I read from SYSIPT
|
l
4
1
3
|
J

/*
ENTRY
// EXEC LNKEDT
// EXEC
/&

read from SYSRDR

Figure 43. A Job Stream to Link Edit a Program for Immediate Exe-
cution

Assemble (or Compile), Link Edit, and Execute

You can also combine the job steps described above with a job step
for assembly (or compilation) of your source program. This is espe-
cially useful when you are developing a program. Figure 44 on page
134 shows how your job stream should be set up. The underscored
statements in the figure illustrate how this job stream differs from
that shown in Figure 43. Linkage editor control statements are not
required when linking single-phase programs temporarily into the
core image library.

You direct the language translator to write the object module
directly to SYSINK by specifying the LINK option at the beginning of
the job. After the linkage editor has processed the input from
SYSLNK, your program is loaded for execution.

The // EXEC statement (without a program name operand) causes this
program to be loaded for execution immediately.

The // OPTION CATAL statement may also be used in this job stream.

In this case, the program that was cataloged (permanently) is exe-

cuted immediately. When // OPTION CATAL is specified a PHASE state-
ment is required.

Chapter 2: Using the System 133

Link and Go Technique

Instead of submitting three job steps, you may specify the GO param-
eter in the EXEC statement that invokes the assembler (compiler).
This causes the linkage editor and your executable program to be
invoked automatically. Only the source program and any additional
data for the go step are required. For multiple assemblies (compi-
lations), an OPTION LINK statement must precede the first EXEC
statement for an assembly or compilation. This is true also when
linkage editor control statements like INCLUDE or PHASE are used.

If no LINK option is set, the GO parameter will be in effect only
for the EXEC statement it appears on, and the ACTION default will be
set to NOMAP (linkage editor control statements are described below,
in Preparing Input for the Linkage Editor, later in this section).
When you make use of the GO parameter, your executable program has
to run in virtual mode, and the partition GETVIS area available to
this program will be of the IBM set default size unless you override
this value through the SIZE command.

If errors occur in one job step causing an abnormal termination, the
remaining job steps are ignored. Certain linkage editor errors do
not cause job step termination. If you do not want to execute the
program when these errors occur, you may specify ACTION CANCEL after
the // OPTION LINK.

1

I

|

// JOB TEST 1 |

// OPTION LINK I read from SYSRDR |

// EXEC ASSEMBLY J |

| : 1 |
l . l |
source | |
module I read from SYSIPT |

l | |
| | |
| /7‘: J |
| // EXEC LNKEDT 1 |
| // EXEC I read from SYSRDR |
| /& . I
| |
L |

Figure 44. A Job Stream to Assemble, Link Edit, and Execute

134 VSE/Advanced Functions System Management Guide

Processing Requirements for the Linkage Editor

Library Definitions

RELOCATABLE LIBRARY: Job control statements (commands) are avail-
able to define one or more private relocatable libraries. It is from
these libraries that the linkage editor retrieves object modules
whenever an INCLUDE or the AUTOLINK function requests such a
retrieval.

The LIBDEF job control statement defines a chain of relocatable
libraries (note that this 'chain' may consist of only one library).
For example, if you want to instruct the linkage editor to search,
in that sequence, the two private relocatable libraries with file
names MYRELOl and MYRELO2, you would specify

// LIBDEF RL,SEARCH=(MYRELO1l,MYRELOZ)
This chain implicitly includes a third member to be searched, namely
the system relocatable library. If you wanted the linkage editor to
search first the system library and then the other libraries, the
SEARCH parameter would look as follows:
SEARCH=(IJSYSRS,MYRELO1,MYRELO2)

The LIBDEF statement was introduced earlier in this chapter, in sec-
tion Job Control for Library Definitioms.

Your job stream may start with an assemble/compile step. What has
been said about the relocatable library definition holds equally
true for the source statement library: you may define a chain of
source statement libraries. The LIBDEF statement would contain the
parameter SL instead of RL.

If only one private relocatable library needs to be defined, you may
simply use the ASSGN job control statement

// ASSGN SYSRLB,cuu

Note that both ASSGN and LIBDEF need matching DLBL/EXTENT informa-
tion.

CORE IMAGE LIBRARY: The link edited phase is placed into one of the
following:

— the core image library in a (temporary or permanent) library
definition of the form

LIBDEF CL,TO=filename,...

— the system core image library if no LIBDEF definition is
present.

Chapter 2: Using the System 135

An ASSGN of SYSCLB will be treated as a
LIBDEF CL,SEARCH=(IJSYSCL),FROM=IJSYSCL,TO=IJSYSCL,PERM
Note: If a LIBDEF CL definition is present, but no TO
library specified, the system core image library will not be
taken as default; the link edit job is canceled, instead.
When OPTION LINK is in effect, the execution step retrieves the

phase to be executed from the library that served as target library
in the link edit step.

Symbolic Units Required

The linkage editor requires the following symbolic units:
SYSIPT Module input (if any)

SYSLST Programmer messages and listings (if SYSLST is not assigned,
no map is printed and programmer messages appear on SYSLOG)

SYSLOG Operator messages
SYSRDR Control statement input (via job control)

SYSLNK Input to the linkage editor; must not be assigned to a mag-
netic tape unit

SYS001 Work file. Used only if a large number of RLD items (approx-
imately 400) is to be processed.

Note that SYSRDR and SYSIPT may contain input for the linkage
editor. This input is written on SYSLNK by job control.

If output from the linkage editor is to be placed in a private core
image library and you do not use the LIBDEF statement, the following
symbolic unit is required:

SYSCLB The private core image library. It may be assigned anywhere
in the job stream but before job control reads the
// EXEC LNKEDT statement.

If object modules from a private relocatable library are to be link

edited and you do not use the LIBDEF statement, the symbolic unit
SYSRLB must be assigned.

Linkage Editor Work Files in VSAM-managed Space

Linkage editor work files may be placed in VSAM-managed space if you
have the VSE/VSAM Space. Management for SAM Feature installed. How
you address those files in your job control depends on whether the
work files are defined explicitly or implicitly. A file is defined

136 VSE/Advanced Functions System Management Guide

explicitly via the DEFINE CLUSTER command of VSAM's Access Method
Services (for a detailed description refer to the publication Using
the VSE/VSAM Space Management for SAM Feature). If not defined
explicitly, the file is defined implicitly when the linkage editor
opens the IJSYSIN (SYSLNK) and IJSYSO1l (SYS001) files.

Assume you had explicitly defined the two files with file-id's
9%FILE.LINK and %FILE.ONE. The corresponding job control statements
would look as follows:

// DLBL IJSYSO1,'%FILE.ONE',,VSAM
// DLBL IJSYSIN, '%FILE.LINK',,fVSAM

If the files are defined implicitly, you must also supply informa-
tion on space allocations, record sizes and volume id's, as in the
following example:

// DLBL IJSYSO1,'%FILE.ONE',,VSAM,RECORDS=10,RECSIZE=4089
// EXTENT ,volid

// DLBL IJSYSIN,'%FILE.LINK',,VSAM,RECORDS=100,RECSIZE=322
// EXTENT ,volid

The EXTENT statements may be omitted if a default SAM ESDS model has
been defined into the VSAM catalog.

Note that these job control statements use partition independent
file-id's so that, if they are placed in the system standard label
area or with the job, concurrent linkage editor execution in multi-
ple partitions will not cause interference between linkage editor
files.

Also note that RECORDS and RECSIZE specify the primary allocation.
On the average, 800 RLD items can be stored in a 4089-byte long
record on IJSYSO1l. Two text cards or one single control card can be
stored in a 322-byte record on IJSYSLN.

Preparing Input for the Linkage Editor

The input you prepare for the linkage editor consists of job control
statements, linkage editor control statements, and object modules.
Job control reads the job control statements and the linkage editor
control statements from the device assigned to SYSRDR and object
modules from SYSIPT. The linkage editor control statements and
object modules are copied to the disk extent assigned to SYSLNK.

The linkage editor control statements direct the execution of the
linkage editor. The statements are: ACTION, ENTRY, INCLUDE, and
PHASE. A description of how to prepare these control statements is
given on the following pages. Here, the various operands of the
control statements are described under headings that indicate their
function.

Chapter 2: Using the System 137

Assigning a Name to a Program Phase

Each program phase the linkage editor is to produce should have a
name, which you specify in the PHASE statement. When a phase is
cataloged in the core image library, the phase name identifies that
phase for subsequent retrieval. In other words, the same phase name
you supplied in the PHASE statement when permanently cataloging the
initial or only phase of a program must be used as the operand in
the EXEC job control statement or in a FETCH or a LOAD macro.

When you catalog a phase with the same name as a phase already
residing in the core image library, the earlier entry with the same
phase name is deleted from the core image directory (and, if appli-
cable, the system directory list in the SVA) and cannot be accessed
again.

Multiphase Programs

The choice of a phase name has a bearing on retrieval efficiency and
the subsequent use of the librarian programs. Job control scans the
directory of the appropriate library for all phases starting with
the same four characters as the program name specified in the EXEC
statement.

Any phases with the same first four characters of their phase name
will be classified as a multiphase program.

Storage Considerations

When a phase of a multiphase program is fetched, the available
address space must be large enough to contain the largest of those
phases even if that phase is not part of the program which is being
executed. In order to circumvent this mechanism, specify
SIZE=phasename in the EXEC statement. This directs the job control
program to acquire only as much space as the particular phase needs
and to therefore disregard the space requirements of any other
phase.

Phase names may be formed only from characters 0-9, A-Z, /, #, §,
and @. Otherwise, the phase statement is invalid. The names 'S',
'"ALL', and 'ROOT' are invalid phase names.

In choosing a name for any multiphase program, make sure that the
first four characters are the same for all phases of that program
but different from those of other programs. Such names simplify the
deleting, displaying, punching, merging, and copying of the entire
program. Figure 45 on page 139 summarizes the above
recommendations.

Note: A phase name '//' cannot be placed into the System
Directory List via the job control command SET SDL.

138 VSE/Advanced Functions System Management Guide

Different names should be given to each
multiphase program; each phase of a
multiphase program should be named

with the same first four characters. This

simplifies library maintenance.

Prog1 Prog3
ABCD1 ANN11 WXYZzZ1
ABCD2 ANN12 WXYZ2
ABCD3 ANN13 WXYZ3
ABCD4 ANN14

ANN15
WXYZn

Simplified library maintenance means, for example, that one simple control state-
ment deletes all phases of Prog1:

f)ELETC ABCD.ALL

If the programs had been named:

Prog1 Prog2 Prog3
ABCD1 ABCD5 ABCD10
ABCD2 ABCD6 ABCD11
ABCD3 ABCD7 ABCD12
ABCD4 ABCDS8 .

ABCD9
ABCDn

the statement required to delete Prog1 would be:

(DELETC ABCD1, ABCD2, ABCD3, ABCD4

Figure 45. Naming Multiphase Programs

Chapter 2: Using the System 139

Defining a Load Address for a Phase

For link editing, you specify where your program is to be loaded for
execution. You have several choices.

A phase can be link edited to be loaded into and executed from:
a partition's address area

the shared virtual area
an absolute address.

e o o

A phase can be link edited as a relocatable phase, a self-relocating
phase, or a non-relocatable phase.

The load address you specify in the PHASE statement determines the
relocatability status of the link edited phase:

i For a phase to be relocatable, specify a symbolic address with
or without a displacement.

. For a phase to be non-relocatable, specify an absolute address.
e For a phase which you wrote to be self-relocating, specify +0.
Full details on possible load address (also called origin address)

specifications are given in VSE/Advanced Functions System Control
Statements.

LINK EDITING FOR EXECUTION AT ANY ADDRESS: If the linkage editor
determines that a phase is to be given the relocatable format, it
flags the core image directory entry for that phase, and inserts the
relocation information behind the text of the phase in the core
image library.

When a relocatable phase is link edited, it is assigned a load
address relative to the partition's address area in which the link-
age editor was executed. When executing the phase from the same
partition, relocation is not required. (This assumes that virtual
storage allocations were not changed between link editing and exe-
cuting the phase.)

Executing the phase from a different partition requires relocation
by the operating system. Loading and relocating a phase takes more
processing time than just loading.

LINK EDITING FOR INCLUSION IN THE SHARED VIRTUAL AREA: If a relocat-
able phase is also re-enterable, it can be included in the shared
virtual area (SVA). Phases resident in the SVA can be shared con-
currently by more than one partition. It is advantageous to include
frequently-used phases in the SVA because these are then resident
when requested for execution (they are not reloaded from the core
image library).

140 VSE/Advanced Functions System Management Guide

To indicate that a phase should reside in the SVA, you must specify
the SVA operand in the PHASE statement when cataloging the phase.
This operand is ignored if the phase is not relocatable; otherwise,
the SVA operand is accepted and the phase is said to be
SVA-eligible.

The linkage editor cannot check whether a phase is re-enterable;
however, a protection check can occur when executing a phase from
the SVA that modifies itself and therefore is not re-enterable.
Because the system directory list (SDL) is sorted before phases are
loaded into the SVA, the packaging of phases which are to be exe-
cuted together should be done using the linkage editor.

Immediately after a phase is cataloged as SVA eligible into the sys-
tem core image library, it is loaded into the SVA if this phase
either is already in the SVA or (via the SET SDL command) has been
requested to be loaded into the SVA. See the section Building the
SDL and Loading the SVA earlier in this chapter.

LINK EDITING FOR EXECUTION AT AN ABSOLUTE ADDRESS: If you specify an
absolute address in the PHASE statement, your program can be loaded
only at this address at the time of program execution. Not only
must the address you specify be within the address range of your
installation's virtual storage, but also the entire program must be
included within the boundaries of the area allocated to the parti-
tion where you request the program to be executed.

In 370 mode, if you wish to force a phase to be executed in real
mode, you may link edit that phase with the absolute address of a
given partition's real address space.

Using Self-Relocating Programs: You should identify self-relocating
programs by a PHASE statement with an origin point of +0:

PHASE PROGA,+0

The linkage editor assumes that the program is loaded at location
zero, and computes all addresses accordingly. The job control EXEC
function recognizes a zero phase address and adjusts the origin
address to compensate for the current partition boundary save area
and label area. It then gives control to the updated entry address
of the phase.

Building Phases from Object Modules with the INCLUDE Statement

You indicate which object modules or parts of object modules are to
be included in a phase by specifying the INCLUDE statement. The
format of the INCLUDE statement indicates the location of the mod-
ules. The object modules can be either on the card reader, tape
unit, disk or diskette device assigned to SYSIPT, or in a relocata-
ble library, or on the disk device assigned to SYSINK. The modules
are extracted in the same order as the INCLUDE statements are
issued.

Chapter 2: Using the System 141

INCLUDING MODULES FROM SYSIPT: If the object modules you want to
include in a phase are on the SYSIPT file, specify the INCLUDE
statement without operands. Job control copies the data from SYSIPT
until it encounters end-of-data (/%*).

INCLUDING MODULES FROM A RELOCATABLE LIBRARY: You may want to
include in a phase object modules or parts of an object module that
are cataloged in a relocatable library. To include an entire
module, specify the module name in the INCLUDE statement. To
include part of a module, specify the name of the module followed by
the names of the control section(s) you wish to be included.

INCLUDING PARTS OF MODULES FROM SYSLNK: You do not need an INCLUDE
statement unless you want to change the sequence of control sectioms
or to extract certain control sections from an object module. For
either of these cases, specify the names of the control sections in
an INCLUDE statement.

Linkage Editor Storage Requirements

The storage requirements for a link edit run depend on the number of
PHASE statements and number of ESD items processed during a link
edit run.

In a minimum size virtual partition of 128K the linkage editor can
process for example 10 phases with a total number of 380 unique ESD
items.

A unique ESD item is defined as being an occurrence in the control
dictionary. All symbols that appear in the MAP are unique occur-
rences. A symbol that occurs several times in the input stream is
normally incorporated into a unique ESD item. However, if the same
symbol occurs in different phases (for example, control sections),
each resolved occurrence of the symbol within a different phase is a
unique ESD item.

You can use the following formula for storage estimates:

56,000 + 40 * x + 20 * y <P

x= number of PHASE statements
y= total number of unique ESD items
P= storage available to the partition,

excluding GETVIS space.

To execute the linkage editor in real mode requires an allocation of
processor storage:

. For the linkage editor program itself 64K

142 VSE/Advanced Functions System Management Guide

e For the GETVIS area an amount that varies with the number of
work files and their associated device types; 48K should be
enough in most cases.

A larger allocation allows for larger I/0 buffers thus reducing the
number of I/0 operations and leading to a better performance.

The AUTOLINK Feature

For each phase the automatic library look-up feature (referred to as
AUTOLINK) collects any external references and attempts to resolve
them. An external reference is an ER item in the control dictionary
that has not been matched with an entry point. AUTOLINK searches
any defined private relocatable directory and then the system relo-
catable directory until a cataloged module with the same name as the
external reference is found (or the end of the directory is
reached). If found, the module is included in the phase
(autolinked). This retrieved module must have an entry point match-
ing the external reference in order to resolve its address.

When you have a chain of relocatable libraries defined, use of
AUTOLINK may give you a performance gain: the directories (of the
libraries in the SEARCH chain) will in most cases be searched only
once. On the other hand, when using INCLUDE statements, a search
through the directories occurs each time an INCLUDE statement is
processed.

The following examples show how the AUTOLINK feature works.

Assume that the relocatable library contains the following:

Module Name Entry Name External References
A A, B, C

D A

E B

F A, C

Examples:

In your linkage editor input stream you specify INCLUDE D. A will
be autolinked (included with module D) because the external refer-
ence A is also a module name in the relocatable library.

If you specify INCLUDE E, then A will not be autolinked because the
external reference B does not relate to a module name. In this
case, you must also specify INCLUDE A, so that the external refer-
ence B can be resolved. No autolink is required.

If you specify INCLUDE D and INCLUDE E, then A will be autolinked by

module D and the external reference B in module E can then be
resolved.

Chapter 2: Using the System 143

If you specify INCLUDE F, then module A will be autolinked by the
reference to A, and the reference to C will also be resolved.

SUPPRESSING THE AUTOLINK FEATURE: The AUTOLINK feature is always
active unless it is suppressed:

. By specifying NOAUTO in a PHASE statement, to cancel AUTOLINK
for that phase only.

M By specifying NOAUTO in the ACTION statement, to cancel AUTOLINK
for this execution of the linkage editor.

. By writing a weak external reference (WXTRN), to cancel AUTOLINK
for one symbol. You can do this in assembler language by speci-
fying for example:

DC A(LABEL)
WXTRN LABEL

or

DC V(LABEL)
WXTRN LABEL

For more information, refer to the assembler language publica-
tions.

NOAUTO can be used to force a CSECT into a specific phase within an
overlay structure. For example, four phases of a program have a
V-type address constant called PETE, but in the overlay structure
you want the coding for PETE included only in the third phase.

PHASE PROGA,* ,NOAUTO
PHASE PROGB,* ,NOAUTO
PHASE PROGC,*

PHASE PROGD,* ,NOAUTO

cause PETE to be included in PROGC only.

Specifying Linkage Editor Aids for Problem Determination or Prevention

You can specify that the linkage editor aid you in avoiding certain
problems in your programs or determining what they are. The actioms
discussed below are CLEAR, MAP, and CANCEL, which may be specified
as operands of the ACTION statement.

Clearing the Unused Portion of the Core Image Library

If you used DS (define storage) statements in your source module, it
may be advantageous to fill these areas with binary zeros when the
program is link edited. This eliminates the risk that residual data

144 VSE/Advanced Functions System Management Guide

Obtaining a

from a previously linked program be loaded with your program when it
is executed. Such irrelevant data might disrupt your program consid-
erably. By specifying CLEAR in the ACTION statement, you request
that the unused portion of the core image library is to be set to
binary zeros.

Because CLEAR is a time-consuming function, you might want to use DC

statements instead of DS statements when designing future programs;
but do use ACTION CLEAR when cataloging a supervisor.

Storage Map

You can obtain a linkage editor storage map and a listing of linkage
editor error diagnostics, which assist you in determining the rea-
sons for particular errors in your program. If SYSLST is assigned,
ACTION MAP is the default. You can specify ACTION NOMAP if you are
not interested in this service of the linkage editor.

The storage map contains such information as:

N The lowest and highest addresses that each phase occupies in the
partition in which it is link edited.

e The starting disk address of the phase in the core image
library.

° The names of all control sections and entry points, their load
addresses and relocation factors.

o The names of relocatable modules from which CSECTs were
included.

i The names of all external references that are unresolved.

. An indication whether the phase is relocatable, non-relocatable,
self-relocating, or SVA eligible.

The error diagnostics warn you, for example, if:

° The ROOT phase has been overlaid.

d A control section has a length of zero.

. An address constant could not be resolved.

A sample storage map, together with a description of how to inter-

pret it, is included in VSE/Advanced Functions Diagnosis: Service
Aids.

Chapter 2: Using the System 145

Terminating an Erroneous Job

If errors are present in the input to the linkage editor, the output
of the linkage editor will most likely also be erroneous. If you
specify CANCEL in the ACTION statement, the entire job is terminated
when any of the type of errors represented by messages 21001 through
21701 occurs. Refer to these messages in VSE/Advanced Functions
Messages and Codes.

Designing an Overlay Program

The nature of virtual storage makes it unnecessary to write programs
in an overlay structure, because virtual partitions can be allocated
to accommodate very large programs.

However, overlay structures are still supported, and you may need to
do maintenance on existing overlay programs at your installation.

Overlay programs consist of control sections organized in an overlay
tree structure. An example of an overlay tree structure is shown in
Figure 46 on page 147. This structure does not imply the order of
execution, although the root phase is normally the first to receive
control.

The manner in which control should pass between control sections is
discussed below under Using FETCH and LOAD Macros.

Relating Control Sections to Phases

After having organized the control sections of your program into an
overlay tree structure, you must prepare a corresponding set of
linkage editor control statements.

Link edit your complete overlay program in a single job step, and
conversely, do not include in this job step any phases that are not
related to the overlay. Otherwise, the linkage editor may be unable
to resolve external references correctly.

The PHASE and INCLUDE statements you prepare are critical to ensure
the overlay tree structure you designed. Figure 47 on page 148 is
an example of the job stream that results in the overlay tree struc-
ture shown in Figure 46 on page 147,

The letters A through N represent control sections, which are organ-
ized to form nine phases in one program. The root phase resides in
storage during the entire execution of the program. The remaining
phases can overlay each other during execution.

You must guarantee a partition size that is equal to the longest
combination of phases that can possibly reside in storage together,

146 VSE/Advanced Functions System Management Guide

namely, phases 1, 2, 4, and 5, which total 42,000 bytes.

If the

program had not been organized in an overlay structure, it would

have required an address space of 92,000 bytes.

Root
Phase 1
(6000)
ta
]
|
1
S,
)
Phase 2 ' Phase 7
(5000) 'B (6000)
-l B ittt Tl R [
i {9
' 1
[1
P yoT
Phase 3 ! Phase 4 Phase 8 | Phase 9
(5000) 1 D (3000) (3000) i+ K (8000)
r———-—— | R —— ,— | S, .’
] : | 1
: Phase 5 ~-—-- Phase6 L)
| (7000) G (3000) i ' M
e ¢——--—- dememm - -- Lemon H
: : : '
i , ! v
O : | H
W H N
' '
! '
| I Cocum

The letters A through N represent control sections, which are organized to form nine
phases in one program. The root phase resides in storage during the entire execution

of the program. The remaini

ng phases can overlay each other during execution.

You must guarantee a partition size that is equal to
that can possibly reside in storage together, namely,

the longest combination of phases
phases 1, 2, 4 and 5, which total

42,000 bytes. If the program had not been organized in an overlay structure, it would

have required an address space of 92,000 bytes.

Figure 46. Overlay Tree Struct

ure

Chapter 2: Using the System

147

// JOB OVERLAY

// OPTION CATAL
PHASE PHASE1,ROOTPHASE1
INCLUDE , (CSECTA,CSECTB)
PHASE PHASE2,*
INCLUDE , (CSECTC,CSECTD)
PHASE PHASE3,*
INCLUDE , (CSECTE)
PHASE PHASE4,PHASE3
INCLUDE , (CSECTF,CSECTG)
PHASE PHASES,*
INCLUDE , (CSECTH)
PHASE PHASE6,PHASE5
INCLUDE , (CSECTI)
PHASE PHASE7,PHASE2
INCLUDE , (CSECTJ,CSECTK)
PHASE PHASES,*
INCLUDE , (CSECTL)
PHASE PHASE9,PHASES
INCLUDE , (CSECTM,CSECTN)
INCLUDE

PHASE1 stays in storage during
execution of the entire program.
PHASE2 is to be loaded
immediately behind PHASE1.

Since PHASE3 needs PHASE2,
PHASE3 may not to overlay PHASE2.
PHASE4 will occupy the same
storage locations as PHASE3.
PHASE5 will be loaded
immediately behind PHASE4.
PHASE6 will be loaded at the
same address as PHASES.

PHASE7 will be loaded at the
end of the root phase.

PHASE8 will be loaded at the
end of PHASE7?.

PHASE9 will overlay

PHASES.

(Object modules containing CSECTs A through N)

// EXEC LNKEDT
/&

Figure 47. Link Editing an Overlay Program

Using FETCH and LOAD Macros

During execution, an overlay program communicates with the supervi-
sor to request that a subsequent phase be brought into the
partition. You include FETCH or LOAD macros within your phases for
this purpose.

Use a LOAD macro in a phase that is to remain in control after the
requested phase is brought into the partition.

Use a FETCH macro if you want the requested phase to gain control
immediately after it is brought into the partition. If a phase
loaded by the FETCH macro is relocatable, it will be relocated if
necessary. You cannot issue a FETCH macro for a self-relocating
phase.

Parameters in FETCH and LOAD allow use of the LDL (local directory
list), thereby reducing fetching and loading time.

148 VSE/Advanced Functions System Management Guide

VSE/Advanced Functions Application Programming: Macro Reference
contains details on the format of the FETCH and LOAD macros.

Examples of Linkage Editor Applications

The linkage editor examples on the following pages illustrate the
use of and relation between linkage editor and job control state-
ments. After studying these examples, you should be able to set up
a link edit job for your own purposes.

Catalog to the System Core Image Library Example

// JOB CATALCIL
* LINK EDIT AND CATALOG TO SYSTEM CORE IMAGE LIBRARY
* SINGLE PHASE, ELIGIBLE FOR LOADING INTO SHARED
% VIRTUAL AREA, MULTIPLE OBJECT MODULES,
% MIXTURE OF CATALOGED AND UNCATALOGED
* MODULES
(1) // ASSGN SYSINK, 190
(2) // OPTION CATAL
(3) PHASE PROGB,*,SVA
4) INCLUDE
Object deck

/.h
"

INCLUDE SUBRX
INCLUDE SUBRY
INCLUDE

object
deck

/ ~
(5) // EXEC LNKEDT
/&

EXPLANATION FOR CATALOG TO THE SYSTEM CORE IMAGE LIBRARY: This
example illustrates the cataloging of a single phase composed of
multiple object modules. These modules are located in the input
stream and the system relocatable library.

Statement 1: The statement is required, unless SYSLNK is permanent-
ly assigned. If the statement is included, it must precede the
OPTION statement (Statement 2).

Statement 2: The OPTION CATAL statement sets the LINK switch, as
well as the CATAL switch. If SYSINK is not assigned, the statement
is ignored. The linkage editor control statements are not accepted
unless the OPTION statement is processed. Link-editing and catalog-
ing to the system core image library is requested.

Chapter 2: Using the System 149

Statement 3: Only one PHASE is produced. It is cataloged to the
system core image library and may be retrieved by the name PROGB.
Because there is only one phase, the origin point * indicates that
this phase originates at the starting address of the partition plus
the length of the partition save area, and the COMMON pool (if any).
The SVA operand indicates that the phase should be considered
SVA-eligible. If the phase PROGB either is already loaded in the SVA
or has been requested (via the SET SDL command) to be loaded into
the SVA, PROGB is loaded into the shared virtual area immediately
after it is cataloged into the system core image library. (This
would not occur if PROGB were link edited with OPTION LINK.)

Note: COMMON is used by FORTRAN programs to store data
shared by multiple programs.

Statement 4: Four modules make up this phase. The first and last
are not cataloged in the relocatable library; therefore the object
decks must be on SYSIPT, and each must be followed by the
end-of-data record (/*). SUBRX and SUBRY were cataloged previously
to the relocatable library by those names. Job control puts the
uncataloged modules on SYSINK in place of their INCLUDE statements.
Job control copies onto SYSLNK the INCLUDE statements for the cata-
loged modules.

Statement 5: The EXEC LNKEDT statement causes the linkage editor
program to be loaded. SYSINK now becomes input to the linkage edi-
tor. It contains:

PHASE PROGB,*,SVA

First uncataloged relocatable deck
INCLUDE SUBRX

INCLUDE SUBRY

Second uncataloged relocatable deck
ENTRY

The modules are link edited into one phase so that they occupy con-
tiguous addresses in the sequence in which they appear in the input
stream. When the linkage editing is completed, cataloging to the
core image libary occurs because of the CATAL option.

In addition, the linkage editor prints a status report that reflects
the usage and available space in the core image library. (This does
not occur in a LINK situation.)

The example can be modified to illustrate a catalog-and-execute
operation by inserting the following statements between the EXEC
LNKEDT and /& statements:

i Any job control statements required for execution of PROGB

d A // EXEC statement

. Card reader input for PROGB, if any.

150 VSE/Advanced Functions System Management Guide

The example does not include an ENTRY statement. Job control,
therefore, writes an ENTRY statement on SYSLNK instructing the link-
age editor that:

o There is no more input on SYSLNK.

e The entry point defined in the source program should be the
entry point of the produced phase.

Catalog to a Private Core Image Library Example

// JOB CATLCIL
% TLINK EDIT AND CATALOG TO PRIVATE CORE IMAGE
% TLIBRARY SINGLE PHASE, ALIGNED ON A PAGE
% BOUNDARY, MULTIPLE OBJECT MODULES, MIXTURE
% OF CATALOGED AND UNCATALOGED OBJECT MODULES
LIBDEF RL,SEARCH=(RSUBLIB,PRVRELO)
(1) LIBDEF CL,TO=PRIVCIL
(2) // ASSGN SYSLNK, 190
(3) // OPTION CATAL
(4) PHASE PROGB,S,PBDY
(5) INCLUDE
object deck
/ %
INCLUDE SUBRX
INCLUDE SUBRY
INCLUDE
Object deck
/ *
(6) // EXEC LNKEDT
/&

EXPLANATION FOR CATALOG TO PRIVATE CORE IMAGE LIBRARY: This example
illustrates how to define private libraries. Object modules SUBRX
and SUBRY are to be included from private relocatable libraries
whose file names are RSUBLIB and PRVRELO. Phase PROGB, the output
of the linkage editor is to be cataloged into a library with
filename PRIVCIL.

Statement 1: These LIBDEF statements define the private libraries.
Label information must have been stored in the label information
area or, if appropriate, DLBL and EXTENT statements must precede the
LIBDEF statements. Instead of the second LIBDEF statement, an ASSGN
SYSCLB,cuu command could have been used.

Statements 2 through 6: They are the same as statements 1 through 5
in the preceding example (Catalog to the System Core Image Library).

Just like the preceding example, so can this example be modified to
illustrate a catalog-and-execute operation.

Chapter 2: Using the System 151

Link Edit and Execute Example

// JOB LINKEXEC
* LINK EDIT AND EXECUTE SINGLE PHASE,
* SINGLE OBJECT MODULE NOT CATALOGED
(1) // ASSGN SYSLNK, 190
(2) // OPTION LINK
(3) PHASE PROGA,*
(4) INCLUDE
object deck
/%
(5) // EXEC LNKEDT
(6) Any job control statement required for
execution such as ASSGN or label
statements input data as required
(7) // EXEC
/7':
/&

EXPLANATION FOR LINK EDIT AND EXECUTE: This example illustrates the
basic concept of link editing and executing by using a single phase

that is constructed from a single object module contained in punched
cards.

Statement 1: No assignments are necessary because the system units
required for link editing are assumed to be permanently assigned.
An ASSGN for SYSLNK is included to illustrate its position relative
to the OPTION statement in case an assignment is required.

Statement 2: The statement indicates that a link edit operation is
to be performed. If SYSINK has not been assigned, the statement is
ignored. Linkage editor control statements are not accepted until
the OPTION statement is processed. Because the option is LINK, and
not CATAL, only link editing will be performed.

Statement 3: The PHASE statement is copied on SYSINK. Job control
checks only the first operand; remaining operands are checked by the
linkage editor when that program uses SYSINK as input.

Only one phase is built by the linkage editor because only one PHASE
statement is submitted for the entire run. The name of this phase
is PROGA, as specified in the first operand. The second operand
indicates the origin point for the phase. Because an * has been
used, the phase begins in the next storage location available, with
forced doubleword alignment. Because this is the first and only
phase, it is located at the beginning of the partition plus the
length of the save area plus the length of any area assigned to the
COMMON pool (as designated by a CM entry in the object module).

A displacement, either plus or minus, may be used with the *, such

as *+1024. This causes the origin point of the phase to be set rel-
ative to the * by the amount of the displacement.

152 VSE/Advanced Functions System Management Guide

Statement 4: The INCLUDE statement has no operands so the records
are read from SYSIPT and written on SYSINK until SYSIPT has an
end-of-data (/%) record. The data on SYSIPT is expected to be the
object module in card image format that is used in this linkage edi-
tor operation.

Statement 5: On encountering the EXEC LNKEDT statement, job control
writes an ENTRY statement with no operand on SYSLNK and causes the
linkage editor program to be loaded.

Using the data just placed on SYSINK as input, the linkage editor
produces executable code. The output is placed in the next avail-
able space of the core image library (immediately after the last
cataloged phase). This is true regardless of whether the program is
cataloged permanently (OPTION CATAL) or temporarily (OPTION LINK).
However, if OPTION LINK is specified, the temporarily cataloged pro-
gram is overlaid by the next program that is link edited. A program
that is cataloged temporarily must be link edited each time it is
used. No ACTION options are specified. Therefore, in resolving the
external references, the system makes use of the AUTOLINK feature.
Error diagnostics and a storage map are written on SYSLST, assuming
that SYSLST is assigned.

Statement 6: Because the program is not cataloged, it must be exe-
cuted immediately. Any necessary job control statements are entered
at this point.

Statement 7: An EXEC statement with no program name operand indi-
cates that the phase to be executed has just been link edited.
Therefore, no search of the core image directory for linked phases
is required. The program is brought into storage and control trans-
ferred to its entry point. Because the automatic ENTRY statement is
in effect for this example, the entry point is the address specified
in the program.

This example can be modified to illustrate the following:

1. Catalog and execute. To cause this phase to be cataloged perma-
nently, change the OPTION statement (2) from LINK to CATAL.

2. Catalog only. To catalog only, change the OPTION statement (2)
from LINK to CATAL and remove all statements following the EXEC
LNKEDT statement (5) up to the /& statement.

3. Include object module from relocatable library. The name of the
object module in the relocatable library must be supplied by an
additional INCLUDE statement. If the name is RELOCA, the state-
ment is INCLUDE RELOCA. This form of the INCLUDE statement is
written on SYSLNK when it is read by job control. The linkage
editor retrieves the object module when it encounters the
INCLUDE statement because it uses SYSLNK for input.

Chapter 2: Using the System 153

Compile and Execute Example

// JOB COMPEXEC
* COMPILE OR ASSEMBLE, LINK EDIT AND EXECUTE
SINGLE PHASE, MULTIPLE OBJECT MODULES,
INPUT TO LINKAGE EDITOR FROM LANGUAGE
TRANSLATOR, SYSTEM RELOCATABLE LIBRARY
AND SYSIPT
(1) // ASSGN SYSINK, 190
(2) // OPTION LINK
(3) PHASE PROGA,S
(4) // EXEC FCOBOL
COBOL source statements
/ %
(5) INCLUDE SUBRX
INCLUDE
object module
/=
(6) ENTRY BEGIN1
// EXEC LNKEDT
Any job control statements required for PROGA
exXecution
// EXEC
Any input data required for PROGA execution
/ kS
/&

EXPLANATION FOR COMPILE AND EXECUTE: The language translators pro-
vide the option of placing their ocutput on SYSLNK. Because the
linkage editor uses SYSLNK for input, a program can be assembled or
compiled, link edited and executed, all in one job.

ok -

*k

All three sources of object module input to the linkage editor are
used: SYSIPT, the (system) relocatable library, and the output from
a language translator. It is assumed that only sequential DASD files
or unlabeled tape files are processed.

Statement 1: The SYSLNK assignment is given to show the position of
ASSGN statements relative to the OPTION statement. ASSGN statements
are not required in the job if there are permanent assignments for
the partition.

Statement 2: The statement is required.

Statement 3: The PHASE statement must always precede the relocata-
ble modules to which it applies; it is written on SYSLNK first for
later use by the linkage editor. S is the origin point, that is,
the phase originates with the first doubleword in the partition plus
the length of the partition save area and label area, plus the
length of the area assigned to the COMMON pool (if any). This gives
the same effect as * gives for a single phase or the first phase of
a multiphase link edit run. As with the *, the S may be used with a
relocation factor, for example, S+1024.

154 VSE/Advanced Functions System Management Guide

USING THE

Statement 4: The appropriate language translator is called (in this

case, DOS/VS COBOL). The normal rules for compiling are followed;

the source deck must be on the unit assigned to SYSIPT and the /*
defines the end of the source data. The output of the language
translator is written on SYSLNK.

Statement 5: The INCLUDE SUBRX statement is written on SYSINK. The
linkage editor retrieves the named module from the system relocata-
ble library. Because it has no operand, the next INCLUDE statement
signifies that the relocatable module is on SYSIPT. The data on
SYSIPT is copied on SYSLNK up to the /* statement.

Statement 6: The ENTRY statement is written on SYSINK as the last
linkage editor control statement. The symbol BEGIN1 must be the
name of a CSECT or a label definition (which occurs in an ENTRY
source statement) defined in the first or only phase. The address
of BEGIN1 becomes the transfer address for the first or only phase
of the program. The ENTRY is used to provide a specific entry point
rather than to use the point specified in the program.

The rest of the statements follow the same pattern as discussed in
the Link Edit and Execute example. The input from SYSLNK to the
linkage editor is:

PHASE PROGA,S

Relocatable module produced by COBOL compilation
INCLUDE SUBRX

Relocatable module from SYSIPT

ENTRY BEGIN1

If certain types of errors are detected during compilation of a
source program, the LINK option is suppressed. Under these circum-
stances the EXEC LNKEDT and EXEC statements are ignored and the mes-
sage 'STATEMENT OUT OF SEQUENCE' results. This LINK option
suppression should be kept in mind if a series of programs is to be
compiled and cataloged as a single job. Failure of one job step
would cause failure of all succeeding steps.

An OPTION LINK cannot be given if OPTION CATAL is in effect. The
message 'STATEMENT OUT OF SEQUENCE' results.

LIBRARIES

After you have planned the size, contents, and location of the
libraries (see VSE/Advanced Functions Planning and Installation) you
need to know how to allocate space to a library, how to create pri-
vate libraries and how to alter, copy, and inspect the contents of
the libraries. All these functions are performed by a group of
library processing programs, collectively referred to as the librar-
ian.

Associated with each library is a.directory that is located at the
beginning of the space allocated to that library. For each element

Chapter 2: Using the System 155

in a library, the corresponding directory contains a unique entry
describing the element. A directory entry contains such information
as name, disk address, size, load address (core image library only),
and version number (relocatable, source statement, and procedure
libraries only) of the element. These directory entries are used by
the system to locate elements in and retrieve them from a library.

The begin addresses of the individual system library directories are
stored in a separate directory, the system directory. At the begin-
ning of each directory is a library descriptor. This entry contains
information such as the address of the next available record, the
number of active and deleted blocks, and the amount of space allo-
cated to the library. The library descriptor entry comprises the
first block of each directory on FBA devices. On CKD devices, the
library descriptor information is in the first entry of the core
image library directory, and the first five entries of the other
library directories.

A core image library may contain a large number of program phases.
Thus, searching for a specific phase can become rather time consum-
ing. To reduce the search time, the core image library directory
entries are in alphameric sequence. The second level directory con-
tained in the supervisor assists in locating directory entries. This
is discussed in Second Level Directories for Core Image Libraries in
VSE/Advanced Functions Planning and Installation.

The organization of the directories on SYSRES is shown in Figure 48
on page 157. A more detailed description of the complete SYSRES
organization is given in Appendix A: System Layout on Disk.

If you keep your libraries on multiple volumes, it is strongly
recommended that all volumes receive volume identifiers (vol-id's)
that are unique within your system.

156 VSE/Advanced Functions System Management Guide

System Directory

T
Core Image | Cataloged Phases
Directory e |

| Linked Phases
1

Core Image Library

ey

Relocatable Directory

I Relocatable Library

Source Statement Directory

Source Statement Library

Procedure Directory

Procedure Library

——-—_W——
S S S R

Figure 48. Organization of the Directories and Libraries on SYSRES

The Librarian Programs

This section describes how you can manage and control your libraries
with the use of the librarian programs. The librarian programs fall
into three functional groups: maintenance, organization, and
service. The functions are applicable both to the system and pri-
vate libraries. Figure 49 on page 158 is a summary of the librarian
programs and their functions. The figure also lists the storage
requirements for real mode execution: a value (ALLOCR command) to
allocate processor storage and a value (SIZE command or SIZE parame-
ter in the EXEC statement) to reserve space for the partition GETVIS
area. Restriction: Do not specify SIZE=AUTO in the EXEC statement
for librarian programs. No special considerations apply to exe-
cution in virtual mode; any librarian program will fit into the min-
imum partition size (except for a CORGZ COPYC between 3350 devices
where a partition size of 138K is required).

Chapter 2: Using the System 157

GROUP PROGRAM FUNCT IONS ALLOCR Size
NAME
Maintenance |MAINT Catalog 128K 80K
Delete
Rename
Condense (Note 1)
Establish Condense Limit
Update for Source Statement Library
Organization|CORGZ Allocate a new SYSRES 128K 80K
Create private libraries (Note 2)
Transfer elements between any two librarics of
the same type
COPYSERV |Compare library contents and generate input for 68K 20K
CORGZ (Note 3)
Service DSERV Display the contents of the library directories 68K 20K
(Note 4)
CSERV Display, punch, or display and punch the contents
RSERV of the Core Image, Relocatable, Source Statement, 68K 20K
SSERV or Procedure library
PSERV
ESERV Convert edited macros to source format. Display 112K 6UK
and/or punch converted macros
Note 1 Refer to the discussion of the condense function for restrictions related to
execution of the CONDS function of the MAINT program,
Note 2 CORGZ COPY between 3350 devices requires an allocation (ALLOCR) of 138K and a
SIZE value of 90K,
Note 3 COPYSERV does not support the LIBDEF job control statement, shared libraries
and FBA devices.
Note U4 when requesting sorted DSERV output, an allocation (ALLOCR) of 128K together
with a specification of SIZE=80K in the EXEC statement will improve the
performance.

Figure 49. Summary of Librarian Programs, Their Functions, and Real Mode

Requirements

You invoke the individual functions of the librarian programs by
means of librarian control statements. The use of these control
statements is described and demonstrated by examples in the follow-
ing section. Their formats are contained in VSE/Advanced Functions

System Control Statements.

Librarian control statements can be cataloged into a procedure
library. This excludes maintenance functions for a procedure
library itself.

The librarian programs run in any partition (an exception is the
CONDS function of the MAINT program). Two or more librarian pro-

158 VSE/Advanced Functions System Management Guide

grams may run at any point in time, even if they update or catalog
to the same library. When one librarian program attempts to update
a given library while a second librarian program is already in the
process of updating that library, the first program has to wait
until the other finishes its update job. This kind of control is
called 'locking' and 'unlocking' of a resource. If the resource
being protected is a system library, locking is limited to the
library; it does not extend over the entire SYSRES file.

Figure 50 shows which partitions can share the libraries allocated
for the librarian programs.

r’ T T

! Program/Function | Library of SYSRES | Private Library
| |

r | 1

| MAINT | |

| CATAL | BG, Fn | BG, Fn

l DELETE BG, Fn | BG, Fn

| RENAME BG, Fn | BG, Fn

| UPDATE BG, Fn | BG, Fn

I CONDL BG, Fn | BG, Fn

| CONDS BG (Note 1) | BG, Fn (Note 2)

| CORGZ |

| MERGE into| BG, Fn | not applicable |

| SYSRES | BG, Fn | BG, Fn

| other l |

l functions | I

| xSERV | BG, Fn | BG, Fn

| Linkage | BG, Fn | BG, Fn

! Editor | |
| I

.

Note 1: Foreground partitions must be inactive. |

Note 2: The library to be condensed must be dedicated |
to the partition from where the condensing was
requested.

Figure 50. Library Sharing Capabilities of Librarian Programs

In this context, the linkage editor may be considered as performing
some kind of librarian function when it places a phase into a core
image library. Therefore, the linkage editor is included in the
above chart. When OPTION LINK is in effect, the core image library
which is locked by the linkage editor will not be unlocked until the
associated execution steps are finished. If you foresee a
long-running execution step, try to avoid having other partitions
compete to update the core image library at the same time. When
OPTION CATAL is in effect, the core image library is locked only as
long as the linkage editor is executing.

Chapter 2: Using the System 159

Maintaining

The library sharing support described above uses the same facilities
as the sharing of data across computing systems (which is presented
in the following chapter) and, therefore, depends on the same hard-
ware restrictions.

The librarian programs, as mentioned above, ensure that only one
update operation can be executed for a given library at any point in
time. However, they allow read access to this library during the
update operation. In view of this share control concept, there is a
need for installation defined procedures which avoid the retrieval
of a library member while it is being updated or replaced.

The examples in this section do not always show DLBL/EXTENT state-

ments, assignments or library definitions. Wherever these are miss-
ing, it is assumed that the information is stored permanently.

the Libraries: the MAINT Program

The maintenance functions of the librarian help you to perform fre-
quent operations such as:

e Cataloging members to the libraries
. Deleting members from the libraries
° Condensing the libraries
. Establishing limits for condense
. Renaming members of the libraries
o Updating books in the source statement library.
The maintenance program is invoked by the job control statement:

// EXEC MAINT
The functions to be performed are specified in librarian control
statements which must follow the EXEC MAINT statement on SYSIPT (If
SYSIPT is assigned to a tape unit, it must be a single file and a
single volume). Any combination of the maintenance functions can be
performed in a single run. The functions available are: CATALX,

DELETx, CONDL, RENAMx and UPDATE.

A sample maintenance job (in skeleton form) is shown below:

160 VSE/Advanced Functions System Management Guide

// JOB ANYMAINT

assignments, if necessary

// éXEC MAINT

1ib£arian control statements

/:':
/&

Whenever the maintenance on one library is completed, a status
report of the library just updated is printed on SYSLST.

DEFINING THE LIBRARY: In order to identify a private library to the
MAINT program, you must define the library through a LIBDEF job con-
trol statement. For example, you could use:

LIBDEF RL,TO=PRVRELO

to catalog modules in a private relocatable library. The file name
in the TO parameter can be freely determined, but it must agree with
the file name in the corresponding DLBL statement. Exception: to
define private procedure libraries, you must use an ASSGN command or
statement. This method may also be used for other private
libraries, in which case the following symbolic unit names must be
used:

Private core image library SYSCLB
Private relocatable library SYSRLB
Private source statement library . . . SYSSLB

To perform maintenance on system libraries, supply a LIBDEF defi-
nition specifying IJSYSRS in the TO parameter. If you omit this
definition, the requested librarian functions are applied to the
system library by default. However, this default is valid only if
the corresponding private library is unassigned.

The ASSGN and LIBDEF statements are explained in section Controlling
Jobs, earlier in this chapter. The library definitions (or, if
applicable, the symbolic unit assignments) required for the individ-
ual maintenance functions are described in VSE/Advanced Functions

System Control Statements.

CATALOGING MEMBERS INTO THE LIBRARIES: The catalog function adds a
module to a relocatable library, a book to a source statement
library, or a procedure to a procedure library. Phases are cata-
loged to the core image library by the linkage editor.

Chapter 2: Using the System 161

The catalog control statements specify the name of the member to be
cataloged and, optionally, a change level number. The control state-
ments are:

Relocatable library CATALR
Source statement library CATALS
Procedure library CATALP

The catalog function implies a delete for members with the same
name. Therefore, if you want to retain an existing member, you
should rename it before cataloging a new member of the same name.
Then, when the new member has been successfully tested, the old mem-
ber may be deleted.

When you add to the contents of a library, watch the status of the
system directory, which is printed at the end of the catalog run.

If the libraries are becoming full, you may wish to condense them or
to create larger libraries. (Condensing is described later in this
section.)

Cataloging to the Relocatable Library: To catalog an object module
to the relocatable library, you must submit the object module on
SYSIPT immediately behind the CATALR control statement. The follow-
ing job catalogs two object modules, named MOD1 and MOD2, to the
relocatable library; the object modules were produced by language
translators in previous jobs:

// JOB CATREL
// EXEC MAINT
CATALR MOD1

object module for MOD1
CATALR MOD2

cbject module for MOD2

/% .
/&

You may compile or assemble a program and catalog the resulting
object module in the relocatable library in the same job. In this
case, you assign SYSPCH, which receives the output of the language
translator, to a disk, diskette or tape and then use the object mod-
ule on that device as input to the MAINT program. An example using
a magnetic tape for SYSPCH is shown in Figure 51 on page 163 . To
assign SYSPCH to a disk or diskette, you must supply the necessary
DLBL and EXTENT job control statements.

162 VSE/Advanced Functions System Management Guide

(1)

(2)
(3)

Y
(5)
(6)
|
(8)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/!
//
/7
/!

/-.'r
//
/7
//
//
//
/&

1. A magnetic tape device is assigned to SYSPCH to receive
the assembler output.

2. The assembler will punch a CATALR statement on SYSPCH.

3. The assembler processes the source module and writes the
object module onto SYSPCH following the CATALR statement. |

4. Tapemarks are written on SYSPCH to indicate the end of the
object module .

5. The tape is rewound to its load point.
6. The tape is unassigned as SYSPCH.

7. The tape is assigned to SYSIPT to serve as input for the MAINT
program.

8. MAINT reads the object module from the tape and catalogs
it in the relocatable library.

JOB CATREL

OPTION DECK

ASSGN SYSPCH, 180

EXEC ASSEMBLY
PUNCH 'CATALR MODULE1'
source module

MTC WTM,SYSPCH, 2
MTC REW,SYSPCH
RESET SYSPCH
ASSGN SYSIPT,180
EXEC MAINT

Figure 51. Assembling and Cataloging to the Relocatable Library in the Same Job

All modules in the relocatable library that have the first three
characters of the module name in common are considered to belong to
one program. This simplifies the control statements to delete, dis-
play, punch, merge, and copy an entire program. The names of
IBM-supplied modules in the relocatable library begin with the let-
ter I, which should therefore be considered reserved so that you can
easily distinguish your modules from IBM's.

Cataloging to the Source Statement Library: To add a book to the
source statement library, you use the CATALS statement specifying
the name of the book and the sublibrary to which it belongs. A sub-

Chapter 2: Using the System 163

library is defined by an alphameric character preceding the
bookname. For example, the statement

CATALS L.NEWBOOK

adds the book NEWBOOK to sublibrary L. Note that the sublibraries in
the range from A to I, P, R, and Z are reserved for IBM components.

A -- is the assembler copy sublibrary. It contains books of assem-
bler source code and source macro definitions. See
VSE/Advanced Functions System Control Statements for details.

B -- is the network definition sublibrary for ACF/VTAM.
C -- is the COBOL sublibrary.
D -- 1is the alternate assembler copy sublibrary. It contains

non-edited macros and copy books for programs that are to be
executed in a telecommunications network control unit.

E -- 1is the assembler macro sublibrary. It contains IBM-supplied
and user-written macro definitions in an edited (partially
processed) format. See Guide to the DOS/VSE Assembler for
details.

F -- 1is the alternate assembler macro sublibrary. IBM uses it to
distribute edited macros for use by programs that are to be
executed in a telecommunications network control unit.

P -- is the PL/I sublibrary.
R -- is the RPG II sublibrary.
Z -- contains sample programs supplied by IBM.

The rest of the reserved characters (G, H, I) will be used by IBM
for future additions to the source statement library. You should
avoid, wherever possible, cataloging to one of the reserved subli-
braries. If you must catalog to a sublibrary that is reserved for
IBM components, ensure that you do not use duplicate names. You can
obtain a listing of the contents of each sublibrary by means of the
SSERV librarian program discussed later in this section. You can
obtain a listing of the book names within each sublibrary by means
of the DSERV librarian program.

Users of previous versions of DOS, who have books in a sublibrary
which is reserved under VSE/Advanced Functions can easily transfer
this sublibrary from the IBM range to the user range by means of the
librarian rename function of the MAINT program.

Edited macro definitions that are to be cataloged in the assembler

sublibrary must be preceded by a MACRO statement and followed by a
MEND statement. Example:

164 VSE/Advanced Functions System Management Guide

// JOB CATMAC

// EXEC MAINT
CATALS E.MBOOK
MACRO

edited macro definition statements

MEND

Books other than macro definitions that are to be cataloged must be
preceded and followed by BKEND statements. Example:

// JOB CATBOOK

// EXEC MAINT
CATALS L.SBOOK
BKEND

source statements

BKEND
/ *
/&

The BKEND statement can have optional operands specifying that a
sequence check or a card count be performed on the statements to be
cataloged, or that the book to be cataloged is in compressed format.
If you desire these functions when you catalog a macro definition,
BKEND statements can be included in addition to the MACRO and MEND
statements.

Cataloging to the Procedure Library: To catalog a procedure in a
procedure library you submit a CATALP statement specifying the pro-
cedure name. Rules for the naming of procedures are given in
VSE/Advanced Functions System Control Statements.

The control statements to be cataloged follow the CATALP statement;
they can be job control or linkage editor control statements or
both. The end of the control statements to be cataloged must be
indicated by an end-of-procedure delimiter, which is normally a /+.

Each control statement cataloged in the procedure library should
have a unique identity. This identity is required if you want to be
able to modify the job stream at execution time. Therefore, when
cataloging, identify each control statement in columns 73-79 (blanks
may be embedded). Refer also to the section Temporarily Modifying
Cataloged Procedures earlier in this chapter.

The following job catalogs the procedure PROCA in the procedure
library:

Chapter 2: Using the System 165

// JOB CATPROC
// EXEC MAINT
CATALP PROCA

control statements to be cataloged

/+ END OF PROCEDURE
/*k
/&

Inline SYSIPT Data: You can include inline SYSIPT data in the cata-
loged procedure. The presence of SYSIPT data must be indicated to
the MAINT program by the DATA parameter of the CATALP statement. In
addition, you must indicate the end of inline data by the /* state-
ment. The following example catalogs a procedure consisting of con-
trol statements and SYSIPT data:

// JOB CATPROC
// EXEC MAINT
CATALP PROCA,DATA=YES

conérol statements
éYSIPT data

/* éND OF SYSIPT DATA

con£r01 statements

/+ END OF PROCEDURE
/7'\‘
/&

Restrictions: The following restrictions apply when you catalog
procedures to the procedure library:

1. A cataloged procedure cannot contain control statements or
SYSIPT data for more than one job.

2. If the cataloged control statements include the // JOB statement
you must not have a // JOB statement when you retrieve the pro-
cedure through the EXEC statement.

3. A cataloged procedure must not include either of the following
statements:

166 VSE/Advanced Functions System Management Guide

[//] RESET SYS
[//] RESET ALL

4. A cataloged procedure with DATA=YES must not include any of the
following statements for SYSIN, SYSRDR, or SYSIPT:

[//] ASSGN
[//] CLOSE
[//] RESET
/&

5. A cataloged procedure without inline SYSIPT data must not
include any of the following statements for SYSIN or SYSRDR:

[//] ASSGN
[//] CLOSE
[//] RESET
/&

6. Cataloged procedures cannot be nested, that is, a cataloged pro-
cedure cannot contain an EXEC statement that invokes another
cataloged procedure.

7. When cataloging a procedure that contains an imbedded // JOB
statement, in a partition controlled by VSE/POWER, use * $$ JOB
and * $$ EOJ statements to define the cataloging job.

Assigning Change Levels: When you catalog a member in one of the
libraries, you can assign a change level to the member, which will
enable you to keep track of the current version of your programs.
The change level is specified in the catalog control statement by a
version and a modification number. The following statement catalogs
version 1, modification 3, of module MOD1 in the relocatable
library:

CATALR MOD1,1.3

Change levels are stored in the directory entry for the member and
can be displayed by the librarian service program DSERV. A change
level is not used by the system for identification purposes, that

is, a change level is not sufficient to allow two elements having

the same name to coexist in a library.

Verifying Change Levels: For the source statement library only, you
can request verification of the change level before a book is
updated. This can prevent unintentional updating of the wrong ver-
sion of a book in a particular sublibrary. Specify the character C
in the CATALS statement to request change level verification. Exam-
ple:

CATALS M.BOOK1,1.1,C

Chapter 2: Using the System 167

To update the book you must supply the current change level of the
book in the update control statement. This change level is then
checked against the change level in the directory entry and, if they
match, the book is updated and its change level is increased by one
to reflect the new status of the book. If you want to overwrite the
version and modification numbers of a book, supply the new change
level information in the END statement of the update function. If
change level verification is requested for a particular book, the
letter C will appear in the column headed LEV CHK (level check) in
the DSERV listing.

DELETING MEMBERS FROM THE LIBRARIES: You can delete an unwanted mem-
ber from a library either by cataloging a new member with the same
name or by means of the delete function of the librarian, using the
following control statements:

Core image library DELETC
Relocatable library DELETR
Source statement library DELETS
Procedure library DELETP

To delete individual elements from the libraries, you must specify
each member name in full in the delete control statement. If a group
of members is to be deleted, however, you can simplify the specifi-
cation of the control statement provided that the recommended naming
conventions were used:

. If all the phases of one program in the core image library were
named with the same first four characters, you need to specify
only these four characters to delete the entire program.

o You can delete all modules in the relocatable library that have
the first three characters in common by specifying these three
characters in one delete control statement.

e Similarly, you can delete an entire sublibrary from the source
statement library by specifying the sublibrary name.

Since no special naming conventions apply to the procedure library,
each cataloged procedure to be deleted must be specified individual-

ly.

To make the space occupied by the deleted elements available for new
elements, you must condense the library.

You can also use the delete ALL function to delete all elements of a
relocatable library, source statement library, procedure library, or
private core image library. In this case, the system directory
information is updated to show that all blocks of the library in
question are available for cataloging programs; no condense opera-
tion is required. You cannot delete the entire system core image
library, but only individual phases or programs.

The following job deletes

168 VSE/Advanced Functions System Management Guide

e all phases whose names begin with PHAS from the core image
library,

. modules MOD1 and MOD2 from the relocatable library,

i sublibrary P from the source statement library, and
all the elements of the procedure library:

// JOB DELETE

// EXEC MAINT
DELETC PHAS.ALL
DELETR MOD1,MOD2
DELETS P.ALL
DELETP ALL

/7’:

/&

When you request the deletion of a library member, the name of the
member is no longer addressable in the corresponding directory
entry. The system is then no longer able to recognize the member
although it is still physically present in the library. The area
taken up by such a member can be referred to as unavailable free
space. To make such space available again for cataloging programs,
use the condense function of the MAINT program. The delete and con-
dense functions are illustrated in Figure 52 on page 171.

When an entire component is deleted, the component entry in the sys-
tem history file should also be deleted using the service program
MSHP (Maintain System History Program).

When a phase is deleted from the system core image library, it is
also flagged as not present in the system directory list (if appli-
cable). The shared virtual area cannot be condensed; it must be
recreated. See Building the SDL and Loading the SVA under Starting
the System earlier in this chapter.

CONDENSING THE LIBRARIES: When you delete a member from a library,

the space occupied by the 'deleted' member is unavailable for cata-
loging new members (see Figure 52 on page 171). The condense func-
tion of the MAINT program removes the corresponding entry from the

directory and makes the space available for cataloging.

To condense any of the system libraries you use the CONDS control
statement specifying which of the libraries is (are) to be
condensed. The following job condenses the core image, relocatable,
and source statement libraries after the deletion of members from
the libraries:

Chapter 2: Using the System 169

// JOB DELCOND

// EXEC MAINT
DELETC PHAS1,PHAS5,PROGA
DELETR MOD.ALL
DELETS P.ALL
DELETP ALL
CONDS CL
CONDS RL
CONDS SL

/'k

/&

170 VSE/Advanced Functions System Management Guide

Assume that phases A, B, and C are cataloged in the
core image library (c.i.l.). Each core image directory
(c.i.d.) entry, which refers to one of these phases,
points to the beginning disk address of the phase.

First area available
for cataloging

@ If phase B is no longer desired in the core image

library, specify [DELETC B |, which deletes the YSRE

name B from the directory.
C A } c.i.d.
c.i.l.

First area available This pecomes unavailable free

for cataloging space — unavailable because
no other program can be cata-
loged in this area.

@To make full use of the core image library, eliminate
the unavailable free spaces by specifying

(cons cL].

First area available
for cataloging

Figure 52. Example of Deleting and Condensing

Chapter 2: Using the System 171

Note that you need not condense a library -- in the above example,
the procedure library -- if that library is deleted entirely.

If a condense operation is interrupted by a hardware error or by an
operator intervention before the next statement is read, the library
being condensed is unusable and must be rebuilt. Note that the con-
dense program shows all the symptoms of a looping program, but
should never be canceled by the operator.

When Condense Can Be Performed: While the condense function is
being executed, the library directories do not represent the actual
status of the library. Thus, if a program in any partition were to
attempt to use the library in any way, the results would be unpre-
dictable. For this reason, various controls are provided to mini-
mize the chances of unpredictable results:

i Condensing of a system library can only be done from the BG par-
tition, and no foreground partition may be active at the time.
(A partition is inactive if it has never been activated with a
START or BATCH command or has been deactivated with an UNBATCH
command. Even if a program such as VSE/POWER is not doing any
work, if it is resident in a partition, that partition is con-
sidered to be active.)

° A private library can be condensed from any partition; however,
the library must be dedicated to that partition.

. A job stream to condense a procedure library cannot be executed
from a cataloged procedure.

There are two methods for condensing libraries that do not use the
MAINT program. Both methods involve copying only the undeleted
library members to a new volume.

. The utility programs BACKUP and RESTORE can be used if your
installation has magnetic tape drives installed. The BACKUP pro-
gram copies libraries to tape but does not copy deleted members.
The RESTORE program copies the tape volume to a disk recreating
your libraries. For more details see VSE/Advanced Functions Sys-
tem Utilities.

. The Copy and Reorganize program (CORGZ) copies libraries from
one disk extent to a different disk extent. Deleted members are
not copied. See the section Organizing the Libraries later in
this chapter for information on the CORGZ program.

Specifying the Condense Limit You can specify that a message is to
be delivered to the operator whenever the number of available blocks
in a library drops below a specified minimum, which is referred to
as the condense limit. Through the CONDL statement you specify the
library or libraries and the condense limit(s).

172 VSE/Advanced Functions System Management Guide

Example:

// JOB CONDSLMT

// EXEC MAINT
CONDL CL=10

/7‘:

/&

In the above example, the CONDL statement specifies that, whenever
the number of available library blocks falls below 10, a message is
to be issued. (Note that the term 'block' as used here should not
be confused with the block on an FBA device. A library block is a
general physical entity and applies to both CKD and FBA devices.)

The condense limit should always be less than the number of blocks
allocated to the library; otherwise this message is given after each
maintenance function. The MAINT program stores the condense limits
in the library descriptor, which can be displayed at the end of each
librarian maintenance job. If a library has reached a condense lim-
it, this is indicated in the status report by a note. The CONDL
control statement (which sets the condense limits) can be submitted
with the MAINT program at any time.

RENAMING MEMBERS IN THE LIBRARIES: To change the name of a library
member, use the rename function. In a control statement, you supply
the existing name and the name to which you want to change it. If
the new name is identical to a name already cataloged in the
library, an error message is issued. You must then select a differ-
ent name and resubmit the job.

When you name a phase in the system core image library that is also
listed in the system directory list, the old phase name in the SDL
is replaced by the new one.

After a valid rename operation, the system recognizes only the new
name. The version and modification level (change level) is not

changed by the rename function.

Each type of library has a unique rename control statement:

Core image library RENAMC
Relocatable library RENAMR
Source statement library RENAMS
Procedure library RENAMP

The rename function can be used to establish naming conventions.

All phases in the core image library that have the first four char-
acters in common are considered to belong to one program. All mod-
ules in the relocatable library that have the first three characters
in common are considered to belong to one program. Since the names
of IBM-supplied relocatable modules begin with the letter I, it is
of advantage to avoid this first character when naming user modules.
Similarly, you should avoid the use of the first characters A
through I, P, R, and Z when renaming sublibraries in the source

Chapter 2: Using the System 173

statement library. These prefixes are reserved for IBM-supplied
components. Names for procedures cataloged in a procedure library
can consist of any combination of alphanumeric characters as long as
they adhere to the naming rules for procedure names.

Renaming a member of a library can be advantageous in a testing
environment. For example, after making changes to your source deck,
rename the previous version residing in the library and catalog the
new source under the original name. This assures you of a backup
until your new program is in working order, at which time you can
delete the old (renamed) version(s).

UPDATING BOOKS IN THE SOURCE STATEMENT LIBRARY: The update function
applies only to a source statement library. This function revises
one or more source statements within a particular book. By using
update you can make minor changes to a book, without having to cata-
log an entire new book.

Besides adding, deleting, or replacing a certain number of source
statements within a book, the update function allows you to:

. re-sequence statements within a book.
. revise a change level (version and modification) of a book.
o add or remove the requirement for change level verification.

i copy an entire book and rename the old book (for backup
purposes).

The UPDATE control statement identifies the update function. This
statement may also be followed by one or more of these additional
statements as required:

) ADD -- To add source statements
) DEL -- To delete source statements
) REP -- To replace source statements.

The) END statement indicates the end of updates to the particular
book specified in the UPDATE control statement.

If the requirement for change level verification was specified in
the CATALS control statement when a book was cataloged, the version
and modification level must be specified in the UPDATE control
statement that refers to this book. This change level must agree
with the current change level in the directory entry for that book.
(Check the DSERV listing for the current change level and/or
requirement for change level verification. For more information on
the DSERV program, refer to the section Displaying the Directories.)
The specification of the version and modification level in the
UPDATE statement prevents you from inadvertently making an update
based on a book with the wrong version and modification. Regardless
of whether or not the requirement is in effect, the version and mod-

174 VSE/Advanced Functions System Management Guide

ification level are incremented by one after each update. If a ver-
sion and modification level is specified in the)END statement, this
overrides the current change level.

Organizing the Libraries

The Copy and Reorganize (CORGZ) program and the Copy Service
(COPYSERV) program are tools for establishing and organizing your
libraries during system installation or any time afterwards. The
following discusses these programs, their functions, and their
application to your library organization requirements.

COPY AND REORGANIZE PROGRAM (CORGZ). The functions, and correspond-
ing control statements, of the CORGZ program are:

i ALLOC and COPY, to create a new system residence (SYSRES).

i MERGE and COPY, to transfer members between any two existing
libraries of the same type, as follows:

- all members, or

- some members, or

— only those members which do not yet exist in the receiving
library.

i NEWVOL, to create private libraries.
The first two points are described in this section. The creation of

private libraries is discussed in Creating and Working with Private
Libraries, later in this chapter.

The CORGZ program can be executed in any partition. The program is
invoked by the statement

// EXEC CORGZ

After an update of a library, a status report of the library just
updated is printed on SYSLST.

Input and output devices must be of the same disk architecture (CKD
or FBA). Given, for instance, a CKD device as input, output cannot
be an FBA device.

The functions to be performed by the CORGZ program are specified in
a set of librarian control statements, which are discussed below.

Creating a New System Residence: When system installation is com-
pleted, you will want a backup SYSRES, which can save you
re-installing the system from your distribution medium if the opera-
tional pack is inadvertently destroyed. This backup SYSRES is usu-
ally kept on tape (from which it can be restored using the RESTORE
utility program), but may also be kept on a disk of the same device
type as the original SYSRES. If the backup SYSRES is to be on disk,

Chapter 2: Using the System 175

use the CORGZ program with the ALLOC and COPY control statements to
define the new SYSRES file and copy the entire contents of the ori-
ginal SYSRES file onto it.

You can also copy the SYSRES file selectively; that is, the new sys-
tem residence will contain only part of the original SYSRES. This
may be useful in an installation that uses certain components only
during specific processing periods. For instance, if telecommuni-
cation and support for five partitions is required only during the
prime shift, a different system configuration (for instance, no
telecommunication and three partitions) could be used during the
second shift. Therefore, you could copy onto a new SYSRES file only
those components required for the second shift and add any addi-
tional components needed to that SYSRES. In this case, you must
assemble a new supervisor and catalog it into the new SYSRES file.
The effect is a smaller supervisor and smaller libraries on both
system residence packs which means faster access to library elements
and, thus, improved overall system performance.

When you create a new system residence, SYS002 must be assigned to
the device on which the new SYSRES pack resides. The device types
of SYS002 and SYSRES must be identical. Note that the IBM 3330-1
and 3330-11 are of the same device type; the same is true for the
IBM 3340-35MB and 3340-70MB. In addition, you must define the
extents of the new SYSRES file by means of DLBL and EXTENT job con-
trol statements. The file name in the DLBL statement must be
IJSYSRS. The lower extent limit must be relative track 1 for a CKD
device or block 2 for an FBA device, and the upper extent limit must
include the label information area.

The information to be copied from the original to the new SYSRES is
specified in one or more of the following COPY control statements:

COPY ALL to copy’ the entire system residence file. You can use
this form of the COPY statement only if all four system
libraries are allocated on the original SYSRES file; oth-
erwise, you must use a combination of the following COPY

statements.
COPYC to copy one or more members, one or more
COPYR groups of members, or all members of the
COPYS Core image, Relocatable, Source statement
COPYP or Procedure libraries respectively.

If more than one copy control statement is submitted for several
libraries, these statements should be grouped per library (for exam-
ple, first all COPYC statements, then all COPYR statements, and so
on). A COPY ALL or COPYx ALL statement must neither be preceded nor
followed by any other copy statement for the same library.

Note: The names of all members copied are printed on SYSLST
if you specify // UPSI 10000000.

176 VSE/Advanced Functions System Management Guide

Creating the SYSRES on CKD: The following job creates a backup
SYSRES file on a 3330 disk drive. The example assumes that the ori-
ginal SYSRES file does not contain a procedure library:

// JOB BACKUP
// ASSGN SYS002,131
// DLBL IJSYSRS, 'VSE SYSRES BACKUP',99/365,SD
// EXTENT SYS002,111111,1,0,0001,2127
// EXEC CORGZ
ALLOC CL=50(5),RL=30(5),SL=30(5),PL=0(0)
COPYC ALL
COPYR ALL
COPYS ALL
/ x
/&

Since the 3330 is a CKD device, all space allocations in the ALLOC
statement are in number of cylinders. The number of tracks in the
EXTENT statement (2127) is the sum of: the library allocations (110
cylinders x 19 tracks), minus 1 track (cylinder 0, track 0); plus
the label information area (2 cylinders x 19 tracks). For FBA
devices the space allocations are given in number of blocks.

Allocating the New SYSRES: For each CORGZ run to create a new SYSRES
file, an ALLOC librarian control statement (not job control state-
ment) is required, preceding any COPY statements. If you wish to
exclude an entire library from being copied, specify a 'zero' allo-
cation (for example, RL=0(0)). But note that you cannot eliminate
the system core image library because it is required for system
operation.

Creating the SYSRES on FBA: Assume that you have a SYSRES file that
contains all four system libraries and you want to create a second
SYSRES file containing only selected information from the core image
library and the entire relocatable library. The following job cre-
ates this new SYSRES file (device type FBA assumed):

// JOB SYSRES

// ASSGN SYS002,131

// DLBL IJSYSRS,'VSE SYSRES II',99/365,SD

// EXTENT SYS002,111111,1,0,0002,12708

// EXLC CORGZ
ALLOC CL=7500(75),RL=5000(50),SL=0(0),PL=0(0)
COPYC PHAS.ALL,PROG.ALL,ABCD.ALL
COPYR ALL

/7‘:

/&

The EXTENT statement reflects a SYSRES file beginning at block 2
comprising 12,708 blocks: 12,500 blocks make up the libraries, 200
blocks are allocated as the label information area, and the first 8
blocks are to be reserved for system information. This means that
the extent for the system core image library (SYSCLB) starts at

Chapter 2: Using the System 177

block 10 on an FBA device. The corresponding address on a CKD
device is track 2. You must bear this in mind when defining the
SYSCLB for use as a private core image library.

Automatically Copied Phases: Phases whose names start with a '$' are
automatically copied by the CORGZ program. This provides you with
the essential components of VSE/Advanced Functions listed below:

o IBM supplied supervisor ($$AS$SUPn)

° Initial program load (IPL)

e All logical and physical transients

e Job control

i Linkage editor

User created elements can also be copied automatically:

* Phases that you have cataloged with a '$' as the first character
(such as a tailored supervisor)

. Partition and system standard labels (cataloged with the PARSTD
and STDLABEL options) from the label information area (see
Note).

Therefore you may execute the CORGZ program without any COPY state-
ments, and the above items will be copied automatically onto the new
SYSRES file.

Note: The CORGZ program does not copy an alternate label
information area that you defined through the DLA command.

Changing the Size of the System Libraries: You can use the CORGZ
program to

. increase the size of a system library for further additions

. decrease the size of a system library; for example, to provide
space for extending other libraries.

The size changes appear only on the new SYSRES file.

When you increase the size of one library, you must consider the
space remaining for the libraries that follow.

Figure 53 on page 179 shows the available disk space by device type.

FBA space requirements are in number of FBA blocks, all others are
shown in number of cylinders.

178 VSE/Advanced Functions System Management Guide

I T 1 1

Device Type | vTOoC | Label | Disk Space |

| | Information | Available |

| | | Area | |

| | | | |

I T 1 [1

CKD: | | | |

2314/2319 | 1 | 2 | 197 |

l | | |

3330/3333 l | | l

Model I | 1 | 2 | 401 |

Model II | 1 | 2 | 803 |

| | | |

I 3340 | | | |

| w/3348 M35 | 1 | 3 | 344 |
| w/3348 M70 | 1 3 | 692

| | | |

| 3350 | 1 | 1 | 554 |

| I | I

| FBA (see note) | l |

| 3310 | 16 200 | 125798 |

| 3370 | 16 200 | 557782 |

l | 1 | _J

Note:

FBA space requirements show the default sizes in FBA blocks;

the size of the VIOC may be changed by an Initialize Disk utility run
and that of the label information area by a RESTORE utility run.

For more information, see VSE/Advanced Functions System Utilities.

Figure 53. Disk Space Available for System Libraries

Assume, for example, that the SYSRES library space on a 2314 was
allocated during system generation as

CL=90(5),RL=40(2),SL=60(3) ,PL=6(5)

An attempt to allocate 120 cylinders to the core image library on
the new SYSRES pack would fail, because there is not enough space
available for all of the following libraries. To avoid this, you
must reduce one or more of these libraries to compensate for the
increase. For example, reduce the combined sizes of the relocatable
and source statement libraries by 29 cylinders. In this case, the
ALLOC statement should read:

ALLOC CL=120(7),RL=30(2),8L=41(3),PL=6(5)
The following example shows the job control statements required to

allocate the new system libraries as discussed above when the SYSRES
device type is 2314/2319:

Chapter 2: Using the System 179

// JOB REALLOC
// ASSGN SYS002,131
// DLBL IJSYSRS,'VSE SYSTEM RESIDENCE I11',99/365,SD
// EXTENT SYsS002,111111,1,0,0001,3979
// EXEC CORGZ
ALLOC CL=120(7),RL=30(2),SL=41(3),PL=6(5)
COPY ALL
/7':
/&

For CKD devices, like the 2314 in the above example, allocations are
given in cylinders for the libraries. Because the SYSRES file
begins at cylinder O track 1, the EXTENT statement must take the
following into account:

CL = 120 cylinders x 20 tracks = 2400
RL = 30 cylinders x 20 tracks = 600
SL = 41 cylinders x 20 tracks = 820
PL = 6 cylinders x 20 tracks = 120
3940

Label information area (2314/19)
2 cylinders x 20 = 40
3980
Minus cylinder 0, track O = 1
3979

This SYSRES file comprises 3979 tracks.

No special considerations apply for reducing the size of a library
except that you must also supply the necessary label information for
the new SYSRES extent. Reducing a library does not cause any gaps,
that is, the libraries following the one that was reduced are 'moved
up' to close the gap. If your allocations are too small for the
existing library members, the job is canceled and an appropriate
message is displayed. At this point in time, the libraries are
still intact.

Transferring Members between Libraries: If you work with more than
one system residence pack or private library, you may want to trans-
fer members from one library to another. You can use the CORGZ pro-
gram with a MERGE statement to transfer the elements. This is
especially useful for system generation when a new version of the
system is installed; you can then copy the library elements directly
from the old version to the new one.

180 VSE/Advanced Functions System Management Guide

You use the MERGE control statement to define the characteristics of
the libraries to be merged and the direction of transfer between the
libraries. The operands of the MERGE control statement are:

RES -- For the system libraries on the system residence file.

NRS -- TFor the system libraries on a modified or duplicate system
residence file that is not currently IPLed.

PRV -- For any private libraries.

For example, the statement MERGE RES,PRV indicates to the CORGZ pro-
gram that elements are to be transferred from one or more libraries
on the system residence file to the corresponding private libraries.

The device types of the input and output devices may be different,
within the same disk architecture (CKD or FBA).

Restrictions:
* When requesting

MERGE RES,NRS or
MERGE NRS,RES

the device types must be the same. The libraries specified for
RES and NRS must either be on disk volumes with different
volume-id's, or their starting addresses must be different, or
both.

i Furthermore, it is not possible to request a copy operation
within one architecture and have it followed, in the same job
step, by a copy operation within another disk architecture.

Note that the IBM 3330-1 and 3330-11 are of the same device
type; the same is true for the IBM 3340-35MB and 3340-70MB.

The type of library involved and the elements to be transferred are
specified in COPY statements immediately following the MERGE state-
ment. (The COPY statements are the same as those described under
Creating a New System Residence earlier in this chapter.)

You must define the extents of the libraries involved in a merge
operation by DLBL and EXTENT job control statements. The file names
to be used and the necessary library definitions and symbolic unit
assignments are described in detail in VSE/Advanced Functions System
Control Statements.

When the CORGZ program performs a merge operation, it does not auto-
matically copy the basic system components as it does when a new
system residence is created (see preceding section). You must spec-
ify COPYC ALL to transfer the entire core image library or COPY ALL
to transfer the entire SYSRES extent.

Chapter 2: Using the System 181

The job in the following example adds the contents of the core image
library on a duplicate SYSRES file (NRS) to the elements in a pri-
vate core image library (PRV). Any elements with duplicate names
(supervisor, job control etc.) are deleted from the receiving
library.

// ASSGN SYS002,130
// DLBL IJSYSRS, 'VSE SYSRES II',99/365,SD
// EXTENT SYS002,111111,1,0,0001,2519
// DLBL NEWCIL,'PRIVATE CIL',99/365,SD
// EXTENT ,222222,1,0,1600,200

LIBDEF CL,TO=NEWCIL
// EXEC CORGZ

MERGE NRS,PRV

COPYC ALL
/7’:
/&

Alternatively, for the COPYC, COPYR, COPYS, and COPYP statements,
the NEW operand can be used to copy only those members that do not
already exist in the receiving library. However, for COPYC NEW:

. supervisor phases are never copied, and
. a number of system phases are always copied.

For a list of phases that are always copied see VSE/Advanced Func-
tions System Control Statements. In addition, when using the NEW
operand, ensure that your receiving library has sufficient space
allocated to accommodate the library members that are copied from
the other library.

The job in the following example also adds the phases of the core
image library on a duplicate SYSRES file (NRS) to the phases in a
private core image library (PRV). In this example, only
non-duplicate elements are copied.

// JOB NRSPRV
// ASSGN SYS002,130
// DLBL IJSYSRS, 'VSE SYSRES II',99/365,SD
// EXTENT SYS002,111111,1,0,0001,2519
// DLBL NEWCIL,'PRIVATE CIL',99/365,SD
// EXTENT,222222,1,0,1600,200
LIBDEF CL,TO=NEWCIL
// EXEC CORGZ
MERGE NRS,PRV
COPYC NEW
/7‘:
/&

Each major CORGZ operand (ALLOC, MERGE, or NEWVOL) may be followed
by several COPY statements. (The NEWVOL operand is described in the
section Creating and Working With Private Libraries later in this

182 VSE/Advanced Functions System Management Guide

chapter. A mix of the major operands within one job step is not
allowed; however, several MERGE operands may appear within one job
step.

Placing several MERGE operands into one job step poses a requirement
on your partition's GETVIS space. Therefore, a good practice would
be to create a separate job step for each MERGE operation.

COPY SERVICE PROGRAM (COPYSERV). This program compares library
directories and, on finding differences in contents, produces corre-
sponding COPY statements for use with the CORGZ program. It thus
provides a similar function as a MERGE COPYx NEW of CORGZ, but with-
out actually merging the libraries.

The program allows comparison of both system and private libraries.
The libraries you wish to have compared must be defined by the
appropriate ASSGN, DLBL, and EXTENT statements.

Restrictions:

e The COPYSERV program supports CKD devices only.

i The LIBDEF statement cannot be used.

. If a private library has been created with a LIBDEF definition
and predetermined file names (IJSYSxx) have not been used,
COPYSERV cannot access that library.

° The new (or target) library must be assigned to SYS003, with a
file name of IJSYSNR. If private libraries are involved, it is
necessary to provide an additional definition of your compare

requirements by means of the UPSI statement.

COPYSERV can be executed in any partition; it is invoked by the
statement // EXEC COPYSERV.

COPYSERV OUTPUT: At the completion of a COPYSERV run, you will
receive the following types of statements on SYSPCH which you can
include in a CORGZ job stream:

// EXEC CORGZ

MERGE RES,PRV
COPYC phasename

/ %
/&

For ease of correcting the output, you get this output sorted by
member names.

COPYSERV, in addition, provides a printout with

Chapter 2: Using the System 183

. A listing of the punched output.

. The number of additional directory entries needed in the new
library.

° The number of additional library blocks needed to accommodate
the new library.

With the job stream shown below, a comparison between a current and
a new private source statement library is executed by COPYSERV.

// JOB COPYSERV

// DLBL IJSYSSL, 'OLD.PVT.SOURCE.STMT.LIBRARY'
(1) // EXTENT SYSSLB

// ASSGN SYSSLB,132

// DLBL IJSYSNR, 'NEW.PRV.SOURCE.STMT.LIBRARY'
(2) // EXTENT SYS003

// ASSGN SYS003,133
(3) // UPSI 00100010

// EXEC COPYSERV

/&

1. Label and assignment statements for the current (or source)
library.

2. Label and assignment statements for the new (or target) library.

3. Required UPSI setting for comparing two private source statement
libraries.

For more details on the COPYSERV program see VSE/Advanced Functions
System Control Statements.

Using the Service Functions of the Librarian

The service functions of the librarian enable you

. to obtain reports on the contents of your libraries by display-
ing the directories on SYSLST.

. to print the contents of your libraries on SYSLST, to punch
these contents on SYSPCH, or both (in order to transfer the
library members to a different location or to correct them).

. to prepare macro definitions in the assembler macro (E) subli-
brary for update.

If you use private libraries, the service functions apply only to
the defined private libraries; 'defined' means: either you identi-
fied the library in the FROM parameter of a LIBDEF statement, or you
ASSGNed the logical unit nname of the library. If you access a sys-
tem library and do not identify it via LIBDEF, make sure that the

184 VSE/Advanced Functions System Management Guide

corresponding private library is unassigned. A system library, if
specified in the FROM parameter, is identified by the file name
IJSYSRS, regardless of the type of library.

DISPLAYING THE DIRECTORIES: Using the directory service program
(DSERV), you can obtain a listing of the following directories:

d Core image directory, or the directory entry of a specific phase
or group of phases in the core image library together with their
change level, if present

e System directory list (SDL)
d Relocatable directory

e Source statement directory
° Procedure directory

d Status report. Size and level of contents of the defined private
libraries and of the system libraries. (This directory is
always listed before any of the directories is are printed.)

SORTED/UNSORTED DISPLAY: Depending on the control statement used,
the entries of a directory can be displayed in the order as they
appear in the directory (DSPLY control statement) or sorted (DSPLYS
control statement).

Note: The entries in the core image directory are always
stored in alphameric sequence and therefore displayed in that
sequence.

Within a single job step you can obtain multiple displays of the
same directory, either sorted or unsorted, by supplying a separate
control statement for each desired display. Similarly, any number
of directories can be displayed within one job step, depending on
the operands in the control statement. The following job produces a
sorted listing of all $-phases and unsorted listings of the relocat-
able and source statement libraries:

// JOB DISPDIR

// EXEC DSERV
DSPLYS TD
DSPLY RD,SD

/7‘:

/&

STATUS REPORT: If you specify // EXEC DSERV without any control
statements, a status report of all libraries present on SYSRES and
all private libraries defined (if any) is printed on SYSLST.

DISPLAYING AND PUNCHING THE CONTENTS OF THE LIBRARIES: You can use

the library service programs to obtain a listing, a card deck, or a
card image copy of the elements in a library. There is a service

Chapter 2: Using the System 185

program for each library:

CSERV -- Core image library
RSERV -- Relocatable library
SSERV -- Source statement library
PSERV -- Procedure library.

You request the library service functions by invoking (with // EXEC)
the appropriate service program and one of the following control
statements:

DSPLY to print entries of a directory or the members of a library
on SYSLST.

PUNCH to punch the members of a library on SYSPCH.

DSPCH to print and punch the members of a library on SYSLST and
SYSPCH, respectively.

Each of these statements can specify one or more individual members,
one or more groups of members, or all members of a library to be
printed or punched. The following job prints the entire sublibrary
P and punches phases PHAS1 and PHAS3 of the core image library:

// JOB LIBSERV
// EXEC SSERV
DSPLY P.ALL
/ o
// EXEC CSERV
PUNCH PHAS1,PHAS3
/ *
/&

The SYSPCH output (in cards or on tape, diskette, or disk) of any
service program can be used as input for recataloging into the type
of library from which it was extracted.

With the PUNCH or DSPCH statements the CSERV program produces a
PHASE statement, naming the output phase, as the first statement on
SYSPCH. For the same operations the other service programs produce
a CATALR, CATALS, CATALP statement immediately preceding each member
on SYSPCH.

CSERV, RSERV and SSERV SYSPCH output is followed by a /*. PSERV
SYSPCH output has the end-of-procedure delimiter (default /+) fol-
lowing each procedure and a /* following the last output procedure.
Such output can therefore be submitted as it is with a // EXEC MAINT
statement for recataloging.

RECATALOGING PUNCHED OQUTPUT: The SYSPCH output of the CSERV program
is suitable as input to the linkage editor for recataloging to the
core image library. The control statement stream would be as fol-
lows:

186 VSE/Advanced Functions System Management Guide

// JOB RECATAL
// OPTION CATAL
INCLUDE

----- CSERV output

// EXEC LNKEDT
/&

The PHASE statement produced by the CSERV program reflects the sta-
tus of the phase when it was first cataloged (relocatable,
self-relocating, non-relocatable or SVA eligible). If you wish to
change the status you must change the PHASE statement prior to
re-linking.

Printed output from any of the service programs is useful for debug-
ging purposes. For instance, after determining an error from a dump
or source listing, you implement a change to the RSERV object deck
by inserting the appropriate REP card(s) directly before the END
card and run the MAINT program to recatalog the object module; then
to verify that the REP card was correct, execute the RSERV program
to obtain a listing. An SSERV listing may be necessary before a
single statement update can be performed; after locating the state-
ment in error in the listing, submit an UPDATE maintenance run to
implement the change in the source statement library.

PREPARING EDITED MACROS FOR UPDATE (ESERV): The assembler uses two
sublibraries of the source statement library: the macro sublibrary
(sublibrary E) and the copy sublibrary (sublibrary A). All macro
definitions in the assembler macro (E) sublibrary have been preproc-
essed by the assembler; they are said to be edited. An edited macro
definition cannot be directly updated; instead, the source macro,
either in a card deck or in the copy (A) sublibrary, is updated.
After the changed macro has been tested and debugged, it must be
edited again before it can be recataloged in the macro sublibrary.

If the macro to be updated is not available in source format, you
can use the ESERV program to convert the edited macro back to source
format: this is called de-editing. If the output of the ESERV pro-
gram is to be used directly as input to the assembler, you can spec-
ify the GENEND control statement to cause the END card and a /* card
to be included after the last macro. If the output is to be cata-
loged directly into the copy (A) sublibrary, you can specify the
GENCATALS control statement. This causes a CATALS card to be gener-
ated before each macro in the run and a /* card after the last
macro. If neither the GENEND nor the GENCATALS control statement is
specified after the // EXEC ESERV statement, GENCATALS is assumed.

The remainder of the control statements that you can submit to the
ESERV program are the same as for the other librarian service pro-
grams: DSPLY, PUNCH, and DSPCH. The following job de-edits the
macro named MAC1:

Chapter 2: Using the System 187

// JOB DEEDIT

// EXEC ESERV
GENEND
PUNCH E.MAC1

/*

/&

The output of the above job is the macro MAC1l in source format on
SYSPCH. An END card and a /* card are included after the macro.
You can now update the macro, edit it, and catalog it back into the
E sublibrary of the source statement library.

You can de-edit and update a macro in a single run by submitting the
necessary update control statements. The following job de-edits and
updates the macro MAC2. The result will be the updated macro in
source format on SYSPCH and a listing of the updated macro on
SYSLST:

// JOB EDTUPDTE

// EXEC ESERV
GENCATALS
DSPCH E.MAG2

update control statements

/7': '
/&

The update function of the librarian is described in Updating Books
in the Source Statement Library, earlier in this section. Detailed
information on editing, de-editing, and updating macro definitions
is given in the Guide to the DOS/VSE Assembler.

Creating and Working with Private Libraries

Private libraries are created and maintained by the system librarian
programs. All librarian functions are available for private
libraries and performed in the same manner as for system libraries.
To change the extents of a private library, create a new private
library and copy the contents of the old library into it.

The following sections describe how to create private libraries and
what you must consider when you use private libraries.

Private Library Creation (CORGZ)

You can create private libraries either during system generation or
at any time thereafter. Private libraries can reside on the SYSRES

188 VSE/Advanced Functions System Management Guide

pack (outside the SYSRES extent) or on separate disk packs. You can
define any number of private core image, relocatable, source state-
ment, and procedure libraries.

You create private libraries with the CORGZ librarian program. The
creation of an operational private library involves two stages:

° Defining the extents of the library by means of a NEWVOL (new
volume) control statement.

. Transferring information to the library from an existing library
by means of COPY and/or MERGE control statements. (Note that
the NEWVOL and MERGE statements may not appear in one job step.)

DEFINING THE DEVICE (LIBDEF, ASSGN): To define the device on which
a private library is to be created and the disk extents occupied by
the library, you must supply a set of LIBDEF (or ASSGN), DLBL, and
EXTENT job control statements.

DEFINING WITH ASSGN: Use of the ASSGN requires the specification of
the following predetermined symbolic unit names and file names (see
Figure 54).

[

Private Library i Symbolic Unit Name i File Name

Core Image I SYS003 i IJSYSPC

Relocatable | SYSRLB i IJSYSRL |
Source Statement SYSSLB E IJSYSSL

Figure 54. Symbolic Unit Names and File Names Required to Create
Private Libraries

You cannot use an ASSGN for the creation of a private procedure
library.

DEFINING WITH LIBDEF: If you use a LIBDEF statement, you need not
be concerned about predetermined names. The logical unit number in
the EXTENT statement should be left out altogether, and the file
name of the TO parameter in the LIBDEF statement can be a name of
your own choosing. The file names on the LIBDEF statement and the
corresponding DLBL statement must, of course, be identical.

You can store the label information submitted by DLBL and EXTENT
statements either temporarily (option USRLABEL) or permanently (op-
tion PARSTD or STDLABEL). Temporary labels must be resubmitted with
every job (or job step, if new labels are submitted in an intermedi-
ate job step) that accesses the corresponding library; permanent
labels are valid for all subsequent jobs.

Chapter 2: Using the System 189

DEFINING PRIVATE LIBRARIES (NEWVOL): The following example shows
the job control and librarian control statements necessary to define
the extents of a private relocatable and a private source statement
library on CKD devices. The NEWVOL control statement indicates the
type of library to be created and the number of cylinders to be
allocated to each library and the number of tracks to be allocated
to each directory.

// JOB DEFINE
// DLBL RELO111, 'VSE.PRIVATE.RL',99/365,SD
// EXTENT ,111111,1,0,20,800
// DLBL SOURCE2, 'VSE.PRIVATE.SSL',99/365,SD
// EXTENT ,222222,1,0,500,600
LIBDEF RL,NEW=RELO111
LIBDEF SL,NEW=SOURCE2
// EXEC CORGZ
NEWVOL RL=40(5),SL=30(5)
/ *
/&

Note that the EXTENT statements have the first parameter, the log-
ical unit number omitted. The logical unit specification is neces-
sary when using ASSGN statements, as seen in the following example
job stream. Private procedure libraries cannot be defined using
ASSGN, because they are not allowed to IJSYSxx file names.

// JOB DEFINE
// ASSGN SYSRLB, 191
// ASSGN SYSSLB,192
// DLBL IJSYSRL,'VSE PRIVATE RL',99/365,SD
// EXTENT SYSRLB,111111,1,0,20,800
// DLBL IJSYSSL,'VSE PRIVATE SSL',99/365,SD
// EXTENT SYSSLB,222222,1,0,500,600
// EXEC CORGZ
NEWVOL RL=40(5),SL=30(5)
/7':
/&

After you have defined the extents of the private libraries you can
either use the merge function of the CORGZ program to transfer mem-
bers from existing libraries or the catalog function of the MAINT
program to store new members.

To create a private library and at the same time copy information
into it from the corresponding system library, you submit a COPY
statement following the NEWVOL statement. To transfer information
from an existing private library, a MERGE statement must precede the
COPY statement. Note that NEWVOL and MERGE statements must not
appear within one job step. The following job creates a private
relocatable library and copies into it the contents of the system
relocatable library and of an existing private relocatable library:

190 VSE/Advanced Functions System Management Guide

// JOB CREATE
// DLBL IJSYSRL,'NEW PRIVATE RL',99/365,SD
// EXTENT ,111111,1,0,1700,1200
// DLBL IJSYSPR,'OLD PRIVATE RL',99/365,SD
// EXTENT ,222222,1,0,700,400
// LIBDEF RL,NEW=IJSYSRL
// EXEC CORGZ
NEWVOL RL=60(8)
COPYR ALL
/7':
// LIBDEF RL,FROM=IJSYSPR,TO=IJSYSRL
// EXEC CORGZ
MERGE PRV,PRV
COPYR ALL
/7‘:
/&

The LIBDEF statement illustrates that you may very well restrict
yourself to predetermined file names, but you do not have to. Two
job steps are required, because NEWVOL and MERGE may not appear in
one job step.

Note: If you want to merge from a private relocatable
library using ASSGN statements, you must assign SYS001l to the
device containing the library and specify the file name
IJSYSPR in the DLBL statement. The logical unit assignments
and file names required for the various merge operations are
described in VSE/Advanced Functions System Control Statements.

If you want to change the extents of a private library, you must
create a new private library and copy the contents of the old
library into it.

PRIVATE CORE IMAGE LIBRARY CREATION: The organization of a private
core image library is the same as that of the system core image
library. A private core image library, however, may start on any
track. The space requirements must be entered in the NEWVOL state-
ment.

For example, on a 3330 device, the statement NEWVOL CL=20(5) creates
a directory of five tracks and a library of 20 cylinders. To create
this private core image library starting at relative track number
190, you submit the following control statements:

// JOB PCIL
// ASSGN SYS003,191
// DLBL IJSYSPC,'VSE PRIVATE CL',99/365,SD
// EXTENT SYS003,111111,1,0,0190,380
// EXEC CORGZ
NEWVOL CL=20(5)
/ %
/&

Chapter 2: Using the System 191

In the above example, the core image directory resides on cylinder
10 (tracks 0-4), and the private core image library on cylinders
10-29.

Transferring phases from another core image library would require a
second job step.

If you want to start a private core image library on track 1 of cyl-
inder 0 (of a CKD disk) and have it end on a cylinder boundary, the
EXTENT statement specifies a number of tracks that is one less than
in the corresponding NEWVOL specification. The EXTENT statement in
the preceding example then reads:

// EXTENT S§YS003,111111,1,0,1,379
Restriction: Note that a core image library defined in this way can-

not be restored to its original extent after it has been backed up.

Using Private Libraries

In order to use private libraries, you must make them known to the
various programs that access the libraries. This is done by LIBDEF
or ASSGN job control statements.

USING THE ASSGN STATEMENT: When private libraries are defined to
job control through ASSGN statements (or commands), the following
rules should be observed:

To access the private libraries via ASSGN SYSxLB, you must assign
the following symbolic unit names to the device(s) containing the

libraries:
SYSCLB -- Private core image library
SYSRLB -- Private relocatable library
SYSSLB -- Private source statement library

EXCEPTIONS IN THE USE OF FILE NAMES: To create a private core image
library, the symbolic unit name is SYS003 and, in the DLBL
statement, file name IJSYSPC must be specified. To access the pri-
vate core image library, symbolic unit name and file name are SYSCLB
and IJSYSCL, respectively. For private relocatable and source
statement libraries, the symbolic unit names are the same for cre-
ation and subsequent access.

You can assign private relocatable libraries and private source
statement libraries either temporarily or permanently by an ASSGN
command or statement; you can assign private core image libraries
only by an ASSGN command (that is, permanently). An ASSGN statement
(or command) can never be used for a private procedure library.

It is a good thing to catalog partition or system standard labels

for frequently-used private libraries; if you do not, you must sub-
mit DLBL and EXTENT statements

192 VSE/Advanced Functions System Management Guide

e when you assign a private core image library

. with every job that accesses a private source statement or pri-
vate relocatable library.

The file names and file identifications in the DLBL statements must
be identical to those specified when the libraries were created.

A private library must be unassigned if maintenance and service
functions are to be performed on the corresponding system library
because the librarian programs assume that the private library is
intended whenever assigned. Therefore if, by mistake, your private
relocatable library is assigned when you request changes in the sys-
tem relocatable library, these changes will be performed on the pri-
vate relocatable library, and you may have to rebuild this library,
depending on the nature of the changes. The only system service
programs that can access the system libraries when SYSRLB and SYSSLB
are assigned are the linkage editor and the CORGZ librarian program.

You can have an unlimited number of private libraries in your
system; however, no more than one private core image, one private
relocatable, and one private source statement library can be
assigned at one time to the same partition.

USING THE LIBDEF FUNCTION: Usage of LIBDEF library definition not
only removes the above restrictions, but also helps you to expand on
your private library setup. For example, you can have the system
core image library treated as a private core image library by
including it in a LIBDEF search chain. (The LIBDEF job control
statement is introduced earlier in this chapter, in section Control-
ling Jobs; you will find a detailed description in VSE/Advanced
Functions System Control Statements.)

Over and above what is possible with the ASSGN statement, the LIBDEF
statement allows you

o to define private procedure libraries.

. to define private core image libraries temporarily, that is, for
the duration of the current job only.

d to perform maintenance and service on system libraries while the
corresponding private libraries are still assigned (via ASSGN)
or defined (via LIBDEF).

. to have more than one private library of a given type defined at
any point in time, within one partition, in a search chain.

i to access a private library under a file name that is different
from the one specified when the library was created (the file
identifications, however, must always be identical).

The possibility of concatenating libraries (by defining search

chains) allows you to distribute the contents of a given library

Chapter 2: Using the System 193

type over several libraries. This gives more flexibility in allo-
cating the entire disk space available at your installation. Also,
smaller libraries allow for more economical library maintenance.

ESTABLISHING SEARCH CHAINS: Defining a SEARCH chain makes the con-
tents of several libraries appear as one library for search
purposes. As a general rule, the search sequence is in the order
that you indicated in the SEARCH parameter of the LIBDEF statement.
Special considerations apply for searching of core image libraries;
they are described below.

Concatenation of several libraries allows you to tailor the library
definition for a particular partition or for a particular applica-
tion. Among other things, you may

i change the normal library definitions for a special-purpose run
or for a test run. Assuming that you normally execute programs
with a library definition of

LIBDEF CL,SEARCH=(TRANSNT,PRODCIL),PERM

and you want to test a new version of a program before you cata-
log it into the production library (file name PRODCIL), you
would define for the test run the following chain:

// DLBL TESTCIL, 'UNTESTED PROGRAMS',...
// EXTENT ,VOL0O3,...
LIBDEF CL,SEARCH=(TRANSNT,TESTCIL,PRODCIL),TEMP

N add your own libraries to the ones supplied by IBM. For
example, if you assemble a program for a telecommunication
application and use

- the system source statement library
CICS/VS macros
— your own macros,

library chain definition might look as follows:

[+})

LIBDEF SL,SEARCH=(MYMACRO,CICSSS)

Search Order for Private Core Image Libraries: When a phase is to
be fetched or loaded or a SET SDL command is processed, various
directories are searched until the phase is found. The sequence in
which the directories are searched depends on the name of the phase
and on the job control definition of libraries.

Figure 55 on page 195 shows the search sequence for phases starting
with § and those starting without §, ordered by type of library
definition (LIBDEF versus ASSGN job control statements).

194 VSE/Advanced Functions System Management Guide

| T T

| | LIBDEF | ASSGN

| T] T

| | Non—$ Phase | $ Phase | Non—$ Phase | $ Phase

| | | | |

| 1 1 1 1

| (1)] SDL | SDL | SDL | SDL

| | | |

| (2)| temporary | system core | private core | system core |

| | search chain | image library | image library | image library |
| | | (if assigned) | |
| | | l

| (3)| permanent | temporary | system core private core |

	search chain	search chain	image library image library
		(if assigned)	

(4)] system core | permanent | |

| image library | search chain | I
| L I |

Figure 55. Search Sequence for § and Non-$§ Phases

By default, the system directory list (SDL) is searched first. You
may override that default by placing the SDL anywhere in a temporary
search chain. Specify 'SDL' at the appropriate position within the
list of file names in the LIBDEF SEARCH parameter; for example:

LIBDEF CL,SEARCH=(PRODCL1,PRODCL2,SDL),TEMP

However, if you intend to include explicitly both SDL and IJSYSRS
(for the system core image library) in the search chain, place SDL
ahead of IJSYSRS. This ensures that linkage to an SVA resident
phase is in fact established when a FETCH for that phase is
requested. If you specified the two keywords the other way round,
the phase would get loaded into your partition, and linkage to the
SVA would not be set up.

If you link edit a non-$ phase with OPTION LINK and you request exe-
cution of the linked program, the link directory of the temporary
TO-library (if provided) is searched first. If only a permanent
TO-library is defined, its link directory will be searched first.
These directories are searched last, if the phase link edited vith
OPTION LINK is a $ phase.

The search sequence during the processing of a SET SDL command is as
described in Figure 55; however, only the BG partition is taken into
account.

USING SYSTEM LIBRARIES AS PRIVATE LIBRARIES: It may be desirable to
use the system libraries as private libraries for certain applica-
tions. This is a helpful technique when upgrading your system; you
could, for example, assign system libraries of a follow-on release
as private libraries in your present system.

Chapter 2: Using the System 195

In order to use any of the four eligible libraries as a private
library you must know their start and end locations on the disk vol-
ume. This information is found in the library status report which
you can get by running the DSERV program. You should note that,
when you use the system core image library as a private library, it
does not begin at the low address of the SYSRES extent. For CKD
disk devices, although the SYSRES extent begins at cylinder 0, track
1, the library begins at cylinder 0, track 2. For FBA devices SYSRES
begins at block 2, and the library begins at block 10. Figure 56 is
a sample of a status report produced for a SYSRES file on an FBA

device.
STATUS REPCRT DATF: 06/15/779 (MM/DC/YY) TIME: 17.30 (HH,MM) DECIMAL NUMBERS
LIBRARIES ON FIXED STARTING NEXT AVAILABLE LAST RLOCK BLOCKXS BLOCKS 5L0OCKS ENTRIES ACTIVE LIR
BLOCK ARCHITtCTURE ADDRESS ENTRY 4 MEMBER ALLOCATED ALLOCATED ACTIVE DELETED & BLOCKS ENTRIES &
(FRA) DEVICES {BLOCKNO) (BLOCKND BYTE) (RLOCKNO) AVAILABLE CONDLLIMIT (%)
YSRFS VOL .SER.SYSRES
ORE IMAGE DIRECTORY 10 59 452 210 201 50 2500 831 25
LIBRARY 211 5565 8009 7799 5378 &4 2445 69
SYSRES VOL «SER.SYSRES
RELGCCATABLE DIRECTORY A010 8017 434 8210 201 8 5239 192 4
LIBRARY 83211 9959 16009 7799 1748] 6051 o 22
SYSRES VOL .SER,SYSRES
SOURCE-STMT DIRECTGORY 15010 16011 2 1621C 201 2 5246 Q 1
LIBRARY 16211 16211 24009 7799 C [¢] 7799 V] [/}
gYSRFS VOL «SFR,SYSRES
ROCEDURE CIRECTORY 24010 24011 2 24210 201 2 5246 [1
LIBRARY 24211 24211 32009 7799 (4] 0 7799 o] [V]
NUMBER OF ENTRIES IN SYSTEM DIRECTORY LIST: 18
SHARED VIRTUAL AREA ACDRESSFS (HEX) START® £228¢C NEXT AVAILABLE LGCATION: FA317 END: 13FFFF

Figure 56. Library Status Report for SYSRES on an FBA Device

When accessing a system file as a private library, the file name of
the DLBL statement should reflect the private library name. The
file-ID of the DLBL statement must be the original file-ID of the
SYSRES file.

The following job stream would be used to merge from a system resi-
dence into a duplicate system residence whose 20 cylinder relocata-
ble library is being used as a private library. (Assume the disk
packs are 3330s).

// JOB MERGE
// DLBL DUPLSYS, 'DOS.SYSRES.FILE'
// EXTENT ,SYSRES,1,0,570,380
// LIBDEF RL,TO=DUPLSYS
// EXEC CORGZ
MERGE RES,PRV
COPYR M001,M002

196 VSE/Advanced Functions System Management Guide

The DLBL/EXTENT statements refer to the target library. DLBL/EXTENT
information describing the IPL SYSRES file is assumed to be in the
standard label area.

BACKUP OF THE SYSTEM CORE IMAGE LIBRARY: As another example, you
may want to create a backup copy of your system core image library
as a private library on tape. The following job stream illustrates
the use of the Backup System utility to achieve this. The system
core image library takes up blocks 10 through 8009 of an FBA device
(see the Status Report in Figure 56 on page 196).

// JOB BACKUP

// ASSGN SYS005,UA

// DLBL IJSYSHF, 'DOS.SYSTEM.HISTORY.FILE'

// EXTENT SYSREC,,1,0,5339,57 IBM 3330
// DLBL IJSYSCL, 'DOS.SYSRES.FILE'

// EXTENT 8YS007,,1,0,10,8000

// ASSGN SYS007,131 SYSRES FILE ON
// ASSGN SYS006,281,C0 FBA BACKUP TAPE
// EXEC BACKUP

/%

/&

USING PRIVATE LIBRARIES UNDER DIFFERENT RELEASES: You may want to
use private libraries that were created under a release prior to
Release 2 of VSE/Advanced Functions. These were created and used
with standard file names IJSYSPC, IJSYSCL, IJSYSRL or IJSYSSL. You
can continue to use these names. The LIBDEF statement allows you to
specify a different file name; the file id in the DLBL information,
however, must be identical to the one used under the earlier system.

When a core image library on a CKD device was created under a
release prior to Release 2 of VSE/Advanced Functions and is updated
for the first time under Release 2 (or later) of VSE/Advanced Func-
tions, the directory is reformatted. The new directory will gener-
ally occupy more space.

Special care must be taken when going back to a release prior to
Release 2 of VSE/Advanced Functions (such as DOS/VSE). For
instance, if you performed a delete or rename operation on a private
core image library under Release 2 (or a later release) and then
want to update that library with a release prior to Release 2, you
must first condense the library using Release 2 (or a later
release).

Chapter 2: Using the System 197

198 VSE/Advanced Functions System Management Guide

CHAPTER 3: USING THE FACILITIES AND OPTIONS OF VSE/ADVANCED
FUNCTIONS

This chapter discusses methods of monitoring certain activities of
the system. This involves the coding of program exit routines and
user programs to be used as IPL and job control exit routines and
the coding of a job accounting interface routine. In addition, this
chapter discusses the checkpointing facility, DASD switching under
VSE/Advanced Functions and designing programs for virtual mode exe-
cution. The SDAID program, which is an effective debugging and
measurement tool, is discussed in VSE/Advanced Functions Diagnosis:
Service Aids.

USER-WRITTEN EXIT ROUTINES

Program Exit Routines

If required, the supervisor can permit user routines to gain control
when any of the following types of events occur:

Interval Timer Interrupt (IT)

Program Check Interrupt (PC)

Abnormal Termination (AB)

Operator Communication Interrupt (0C)
Task Timer Interrupt (TT)

Page Fault Handling Overlap (PHO)

Both the supervisor and the problem program that contains the user
routine must have the proper code to establish an interface.

The problem program that wants to utilize the options must contain
code to set up the interface. For the first five events, code can
be generated by the STXIT macro. For the last event, code is gener-
ated by the SETPFA macro. This code is assembled in the main line
of a problem program.

Figure 57 on page 200 is a summary of the supervisor-determined con-
ditions for which an exit routine may be coded and the operand to be
coded in the STXIT macro.

The STXIT operands and their use are discussed in VSE/Advanced Func-
tions Application Programming: Macro Reference. ‘

Chapter 3: Using the Facilities and Options of VSE/Advanced Functions 199

Condition Operand of the

STXIT Macro

M T —
| | |
l | |
: : %
| Abnormal termination of the| AB |
| problem program I |
| | |
1 1 1
| Interval timer external | IT

| interrupt | |
} } f
| Operator communication | 0C

| interrupt | |
| | x
| | 1
| Program check interrupt | PC

| | |
(1 1
| Task timer interrupt | TT

L | j

Figure 57. Summary of Program Exit Conditions (STXIT Macros)

Short descriptions of the support for each of the types of program
exit routines follow, indicating the associated problem program
macros. For information on how multitasking affects this support
and what happens if multiple events coincide, refer to VSE/Advanced
Functions Macro Application Programming: User's Guide. Some
high-level languages offer similar facilities, for details of which
see the appropriate programmer's guide.

Interval Timer Exit

Suppose you want to take a checkpoint on a job at a certain time
after it has started. ‘Code the STXIT to set up the interface of
your user-exit routine with the supervisor; use the SETIME macro to
set a time interval. When that interval elapses, an interval timer
interrupt occurs and control is given to your user routine. The
user routine need not be entered immediately. For instance, if the
user routine is in the BG partition, and a foreground partition is
active, the user routine will not be entered until the BG partition
becomes active.

To find out the time remaining in an interval, a program can issue
the TTIMER macro instruction. The supervisor then loads this value
in general register 0. This macro can also be used to cancel the
remaining time in the interval.

Program Check Exit

Programs can establish linkage from the supervisor to a user
program-check exit routine by coding an STXIT macro. If a program
check occurs within the program, the supervisor gives control to the

200 VSE/Advanced Functions System Management Guide

user routine instead of discontinuing the program. The user routine
can analyze the program check and choose to ignore, to correct, or
to accept it.

If the check is ignored, control can be given back to the supervisor
by executing an EXIT PC macro; if the user routine can correct the
error condition, the routine can request via the EXIT macro that
processing of the main line program continue.

If the problem cannot be resolved, the program check is accepted as
valid. The user routine can then terminate further processing of the
program by issuing a CANCEL, DUMP, JDUMP, or EOJ macro.

The ability to include a user routine to process program checks can
be especially advantageous when using LIOCS. In that case, I/0
housekeeping such as closing files and freeing tracks can be per-
formed before termination of the job or task.

Abnormal Termination Exit

Programs can establish linkage from the supervisor to an abnormal
termination exit routine by issuing an STXIT AB macro.

The macro allows a user routine to get control from the supervisor
before an abnormal end-of-job condition discontinues the processing
of the program. The user routine normally ends with one of the ter-
mination macros (CANCEL, DUMP, JDUMP or E0J) to terminate the prob-
lem program and to return control to the supervisor, rather than by
initiating the continuation of the problem program.

Operator Communications Exit

VSE/Advanced Functions allows problem programs to provide a routine
for handling external interrupts from the operator. This support is
useful in a number of applications, for example:

. When a change in the environment is needed. A message is then
issued by the program. For example: MOUNT TAPE xxx ON UNIT xxx
AND PRESS THE INTERRUPT KEY.

i In telecommunications. The OC exit allows the operator to start
and stop activities on certain lines or terminals, or to invoke
diagnostic procedures. In this case, program run sheets with
explicit instructions may be required to ensure understanding
between programmer and operator.

The external interrupt that links to an OC user exit routine is
caused by pressing the request key and, when the attention routine
identifier AR appears, replying MSG followed by the partition iden-
tifier (such as BG or F2).

Chapter 3: Using the Facilities and Options of VSE/Advanced Functions 201

Task Timer Exit

Task timer support is included in the supervisor by the TTIME param-
eter of the FOPT generation macro. This parameter also identifies
the partition owning the task timer. Only the main task in the own-
ing partition can utilize the task timer.

The time interval is specified in the SETT macro and is decremented
only when the main task is executing. The exit routine specified in
the STXIT TT macro is entered when the interval has elapsed, pro-
vided linkage between that routine and the supervisor has already
been established at that point of program execution.

To find out the time remaining in an interval, the task can issue a
TESTT macro. This causes the time remaining in the interval to be

returned in register 0. The task can also issue a TESTT CANCEL to

cancel the remaining interval time. In this case the exit routine

is not entered.

Page Fault Handling Overlap Exit

A user routine can continue processing during the time a page fault
is being handled by the system, provided this page fault occurs in
the same task and not in a supervisor routine invoked by this task.
This support is of interest only for programs executed in virtual
mode and making use of user-developed subtasking rather than
IBM-supplied multitasking.

Such programs may issue the SETPFA macro instruction to establish
linkage from the page management routines in the supervisor to a
user routine, called the page fault appendage routine. Linkage can
be established for only one task per partition. The usage of the
SETPFA macro is described in VSE/Advanced Functions Application Pro-
gramming: Macro User's Guide.

Writing an IPL User Exit Routine
The IPL Exit allows you to do some processing at the end of IPL and
prior to execution of the job control program. You may want to
check about the options of the loaded supervisor, for example wheth-
er support for job accounting or access control is included.
Before you start coding your exit routine, take account of any sys-
tem requirements that should be met at the time the routine is to be
executed. The exit routine and any routines that are called by your
routine must be present in the system core image library.
Moreover, your routine must adhere to the following conventions:

e Register 15 contains the entry point of the routine.

* Register 14 contains the return address to job control.

202 VSE/Advanced Functions System Management Guide

. The format of the PHASE statement must be as follows:
PHASE $SYSOPEN.

After IPL, the job control program executes the exit routine as an
overlay phase; an area of 4K has been reserved for the exit routine.
While the routine is being executed, the job control program is una-
ble to read any job control statements.

In your exit routine, you may issue SVCs and perform I/0 operations
to SYSLOG and/or SYSRES. To do so, you may only use the EXCP macro.
Any use of LIOCS or of a DTFPH would obstruct proper execution of
the job control program. If you code your routine in assembler lan-
guage, use DC instructions instead of DS instructions.

Phase $SYSOPEN will be executed with a storage protect key of zero.
If the phase is abnormally terminated, the job control program will
be loaded for execution.

Figure 58 on page 204 illustrates a user-written routine that is
executed once each time the IPL procedure is performed.

Immediately after IPL, only a few system units are assigned, the
most important ones being SYSLOG and SYSRES. If you want to open a
job accounting file, place the necessary ASSGN statements, label
information (if not already present in the system standard, the par-
tition standard, or the user label area) and EXEC statement in your
ASI BG JCL procedure, ahead of the statements that activate the
foreground partitions. This enables you to use the normal facili-
ties of the system, including LIOCS.

Chapter 3: Using the Facilities and Options of VSE/Advanced Functions 203

* THIS PROGRAM CHECKS WHETHER THE INSTALLATION INCLUDES
* JOB ACCOUNTING SUPPORT. IPL OF A SUPERVISOR WITHOUT
* THIS SUPPORT IS CONSIDERED AS NOT ALLOWED.

* A MESSAGE INFORMS THE OPERATOR WHY HE/SHE HAS TO

* REPEAT IPL. THEN A HARD WAIT IS FORCED.

[1
I |
| |
| |
l |
| |
I |
| l
I |
| STARTO !
| USING *,R15 |
| BEGIN ST R14 ,RETURN SAVE RETURN ADDRESS |
| COMRG REG=R2 |
| ™ 56 (R2),X'80" JOB ACCOUNTING SUPPORTED? |
| BZR R14 YES, RETURN TO JOB CONTROL |
| LA R1,LOGCCB NO, WRITE MESSAGE TO |
| EXCP (1) OPERATOR |
| WAIT (1) |
| L R11,HWCODE LOAD HARD WAIT CODE |
| ST R11,0 STORE IT IN LOW CORE |
| oI SVCNPSW+1,X'02"' SET ON WAIT BIT |
| sve 7 FORCE HARD WAIT |
| SVCNPSW EQU 96 LOCATION OF SVC NEW PSW l
| LOGCCB CCB SYSLOG,LOGCCW |
| LOGCCW CCWX '09',LOGMSG,X'20',L'LOGMSG (column 72)

| LOGMSG DCC 'JOB ACCOUNTING SUPPORT MISSING, RE-IPL c |
| CORRECT SUPERVISOR' |
| RETURN DC 0! |
| HWCODE DG C'NOJA' |
| RO EQU o0 |
| R1 EQU 1 |
| R2 EQU 2 |
| R11 EQU 11 |
| Ri12 EQU 12 |
| R13 EQU 13 |
| Rla EQU 14 l
| R15 EQU 15 |
| END BEGIN l
| I
L]

Figure 58. IPL User Exit Example

Writing a Job Control User Exit Routine

It is often desirable to exercise certain control on how a job step
is executed, thereby enhancing security, serviceability, and reli-
ability. After a job control statement (or command) has been read,
control can be passed to a user exit routine for the purpose of
examining and altering the statement (or command) before it is proc-
essed by job control.

204 VSE/Advanced Functions System Management Guide

Restriction: Job control commands and statements which have contin-
uation lines cannot be treated in this way, nor can the continuation
lines themselves.

The VSE/Advanced Functions distribution volume contains a dummy
phase $JOBEXIT in the system core image library which is automat-
ically loaded into the SVA at IPL. If you do not use the
Job-control-exit facility, it has no effect on your system.

In your routine you are free to modify the operands of the job con-
trol statement and to add comments. You must not, however, modify
the operation field of the statement. For example, // EXEC IBM can
be modified to // EXEC USER; the operation field (EXEC) cannot be
modified. In your exit routine neither perform any I/0 operations
nor issue any SVCs nor request the system to cancel the job step.

Link-edit your routine to the system core image library using a
PHASE statement as follows:

PHASE $JOBEXIT,S[,NOAUTO],SVA ,PBDY

Your routine must be coded re-enterable; it must be SVA eligible,
and it must reside in the SVA. The PHASE statement must include the
SVA parameter. This ensures that when the phase is cataloged it
will also be loaded into the SVA, replacing the dummy phase provided
by IBM.

Phase $JOBEXIT is executed with a storage protection key of zero.
The code is shared between partitions.

When your routine receives control, registers contain control infor-
mation as shown in Figure 59.

Register Number Contents of Register

]

Address of partition communication region.
Address of system communication region.
Address of job control vector table.
Address of buffer that contains the
currently processed job control statement.
Return address to job control

Entry point to $JOBEXIT; at completion of
the routine it contains the return code
for job control.

|
|
1
System Identification characters 'SDOS'. |
|
|

POWNRO

—— e —— e — —

Figure 59. Register Contents Returned by Phase $JOBEXIT

Before returning control to job control, your routine must store a
return code value into register 15:

Chapter 3: Using the Facilities and Options of VSE/Advanced Functions 205

A zero value Requests job control to continue processing the
current statement.

A non-zero value Requests job control to print the statement on
SYSLST, to display it on SYSLOG, and from then
on to ignore it.

The vector table whose layout is given below shows which job control
statement is being processed by job control. You must not modify
its contents. Use it for comparison only. The size of the buffer
into which the job control statement is loaded (left-justified) is
120 bytes, the first 71 bytes of which are printed on the console
printer. The full length of 120 bytes is printed on the printer
assigned to SYSLST. The /& (End-of-job) statements are not dis-
played.

In the buffer, you may modify the statement up to and including byte
71, except for the operation field. Bytes 72-80 could contain a
statement identification, such as for procedure overwrites, and
therefore should not be modified. After setting the return code,
your routine should pass control back to job control.

Layout of the vector table:

Bytes 0 - 6 Operation field (name of job control statement)

Bytes 7 - 9: Internal control information

Do not attempt to modify the table or modify the operation field in
the buffer.

Note: Make sure your exit routine is free of errors that
could cause abnormal termination in a production environment.

Figure 60 on page 207 illustrates a job control user exit routine.

206 VSE/Advanced Functions System Management Guide

_‘___,__,_f____~_7

// JOB EXIT ROUTINE

// OPTION CATAL,NODECK

PHASE $JOBEXIT,S,NOAUTO,SVA,PBDY
// EXEC ASSEMBLY

--

* THIS PROGRAM PHASE $JOBEXIT EXAMINES ALL EXEC CONTROL
% STATEMENTS AND EXEC COMMANDS WHETHER THEY WANT TO EXECUTE
* A PROGRAM NAMED 'IBM'. THIS PROGRAM IS ASSUMED TO BE
* RESTRICTED FOR GENERAL USE AND THE STATEMENT:
*[[//] EXEC IBM
* IS CHANGED TO:
*[[//] EXEC USER
* MESSAGE, 'PROG. IBM RESTRICTED FOR ALL USERS', IS PLACED INTO
« THE EXEC CARD AND PRINTED ON SYSLOG (IF LOG IS ON) AND SYSLST.

-le
“w

ot
w

% THE PHASE NAMED USER MUST BE CATALOGED IN THE CIL
< $JOBEXIT IS RE-ENTERABLE AND SVA ELIGIBLE AND MUST BE
* LOADED INTO THE SVA

..

EJECT
JOBEXIT START O
BALR R12,0 ESTABLISH
USING *,R12 ADDRESSABILITY
* CHECK FOR EXEC STATEMENT

* REG.3 POINTS TO JOB CONTROL VECTOR TABLE

CLC EXECNAM,0(R3) IS IT AN EXEC STATEMENT?

BNE RETURN IF NOT RETURN
* EXAMINE THE STATEMENT
g REG.4 POINTS TO STATEMENT BUFFER
L R6,=F'1' INCREMENT VALUE FOR SEARCH LOOP
L R7,=F'67' COUNT MAXIMUM FOR SEARCH LOOP
SR R5,R5 CLEAR R5,USED AS INDEXING REG.
% FIND POSITION OF EXEC STATEMENT

Figure 60 (Part 1 of 2). Job Control User Exit Example

Chapter 3: Using the Facilities and Options of VSE/Advanced Functions

207

SEARCHE

EXFOUND

SEARCHP

o
K
-t
"

o
w

PFOUND

RETURN

EXECNAM
PROGNAM
USERTXT
R3

R4

R5

R6

R7

R8

R12

R14

R15

/*

/&

EQU*
LAR
CLC
BE
BXLE
LA
BR
EQU*
LA
EQU*
LA
CLC
BE
BXLE
B

8,0(R5,R4)
EXECNAM, 0 (R8)
EXFOUND
R5,R6, SEARCHE
R15,8

R14

R5,5(R5)

R8,0(R5,R4)
PROGNAM, 0 (R8)
PFOUND

R5,R6, SEARCHP
RETURN

POINT TO INDEXED POS. IN STMNT. BUF
DETERMINE POSITION OF EXEC

FOUND THE STATEMENT

INCREMENT INDEX AND LOOP

NO EXEC FOUND, RETURN CODE=8

RETURN TO CALLER

SKIP OVER EXEC TO PROGNAME

POINT TO INDEXED POS. IN STMNT. BUF
LOOK FOR PROGRAM-NAME IBM
PROGRAM-NAME FOUND

INCREMENT INDEX AND LOOP

IF ANY OTHER OR NO PROG.-NAME RETURN

PROGRAM-NAME -IBM-FOUND PROCESSING

EQU*
LA
MVC

R4,0(R5,R4)

POINT TO PROG.-NAME IN BUFFER

0(L'USERTXT,R4) ,USERTXT MOVE USERTXT TO BUFFER

PREVIOUS MVC CHANGED PROGRAM-NAME IBM INTO PROGRAM-NAME USER
AN ADDITIONAL MESSAGE IS MOVED INTO THE BUFFER

EQU*
SR
BR
DC
DC
DC
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
END

// EXEC LNKEDT

R15,R15
R14
C'EXEC'
c'IBM'
C'USER =%

ONONUL P W

12
14
15
JOBEXIT

RETURNCODE ZERO TO REG.15
RETURN TO CALLER

PROG. IBM RESTRICTED FOR ALL USERS'

——— e e e e e

Figure 60 (Part 2 of 2). Job Control User Exit Example

208 VSE/Advanced Functions System Management Guide

WRITING A JOB ACCOUNTING INTERFACE ROUTINE

A VSE/Advanced Functions supervisor generation option provides job
interface support for all partitions in the system. At the end of
each job step or job, accounting information is accumulated in a
table for that partition and can be processed by a user-written rou-
tine. This routine can extract data for such purposes as charging
system usage and supervising system operation, or for planning new
applications or changing the system configuration.

The routine must be relocatable, and it must be SVA eligible (see
Note below). With the distribution volume, IBM provides a dummy
phase $JOBACCT as part of the system core image library. If you
decide to use the job accounting facility, you must catalog your
routine to the system core image library. At IPL, the phase is
automatically loaded into the SVA.

When you catalog your routine, the PHASE statement must include the
SVA parameter; this causes the phase, after it has been cataloged,
to be loaded into the SVA, replacing the dummy phase provided by
IBM.

Since the processing of the information is an overhead, the user
routine should be efficient and avoid unnecessary reduction or
reformatting of data.

If your installation uses VSE/POWER with the job accounting facility
included, you do not need such a user routine. For more information
about this facility under VSE/POWER, refer to the documentation for
this licensed programming support.

Note: Normally, an SVA eligible routine is programmed to be
read-only and re-enterable. The job accounting interface rou-
tine is an exception. $JOBACCT runs with a PSW protection key
of 0 which means it does not have to be read-only and may mod-
ify itself or tables contained within itself. Also, it is
called by job control, and the job control program serializes
$JOBACCT execution. In other words, concurrent execution for
more than one partition cannot happen and, therefore, the rou-
tine need not be re-enterable.

Job Accounting Information

When support is generated for basic job accounting, a job accounting
table comprising fourteen fields is included for each partition in
the system. At the end of each job step and job, information is
stored in fields 1 to 14 of the Job Accounting table (see Figure 61
on page 211).

In addition, you may request (at the time of supervisor generation)
to have included the number of SIO (Start I/0) instructions issued

Chapter 3: Using the Facilities and Options of VSE/Advanced Functions 209

per device for each job step and job. The job accounting table for
each partition is then extended to contain the additional fields 15
and 16 shown in Figure 61 on page 211.

SIO accounting is performed for the number of devices specified to
be supported by the facility for each partition. The maximum is 255
and has no relation to the number of devices specified for the total
VSE system. If more devices are accessed than the number specified,
SIOs on the excess devices will not be counted.

210 VSE/Advanced Functions System Management Guide

Field

Displacement

Contents

-

o
'
~

o | Byte Length

Job name. 8-byte character string taken from
JOB statement.

-
-]

User Information. 16 characters of information
taken from the JOB statement.

24-25

Partition ID, BG, ..., F2, or F1.

26

Cancel Code. Refer to VSE/Advanced Functions Messages.

27

Type of Record. S = job step; L = last step of job.

28-35

Date when job step endea mm/dd/yy or dd/mm/yy
depending on supervisor option.

36 - 39

Job Step Start Time. OhhmmssF, where h hours,
m minutes, s seconds, F is a sign (in packed
decimal format).

40 - 43

Job Step Stop Time (in same format as start time).

44 -47

Reserved.

48 - 55

Phase Name. 8-byte character string taken from the
EXEC card.

56 - 59

Real Mode Processing:

Number of fixed pages, multiplied by 2K; equivalent to the
partition’s allocated processor storage minus the portion of
the partition GETVIS area that was not used up by GETVIS
requests.

Virtual Mode Processing:

Number of pages referenced in the partition, multiplied

by 2K.

12

CPU Time. 4 binary bytes given in 300ths of a second.
Time is calculated from exit of the user-written routine
called during job control to next entry of the routine.
Time used by the user-written output routine is charged
to overhead of the next record.

13

Overhead Time. 4 binary bytes given in 300th of a second.
Includes time taken by functions that cannot be charged
readily to one partition (such as attention routine and
error recovery). System overhead time is distributed to the
partitions in proportion to the used CPU time.

68- 71

All Bound Time. 4 binary bytes in 300th of a second.
This is the time the system is in the wait state divided by
the number of partitions running.

72 -

SIO Tables. Variable number of bytes. Six bytes are

reserved for each device specified in the JA parameter.

First two bytes are X'Ocuu’, next four are hex count of
S10s for job step. Unused entries contain X'10" followed by
five bytes of zeros. Stacker select commands for MICR
devices are not counted. Error recovery SIOs are not charged
to the JOB Accounting Table. Devices are added to the table
as they are used.

16

Overflow. Normally X'20’. Set to X'30' if more devices are
used than set by the JA parameter at system generation time.

Figure 61. Job Accounting Table

Notes:

1.

Chapter 3: Using the Facilities and Options of VSE/Advanced Functions

The cancel code in Field 4 is not necessarily that of the last
I1f LISTLOG is called by job control after a

job step executed.
step has been cancelled, the Job Accounting Table contains the

cancel code of the cancelled job step.

2. In the job accounting table, the difference between Start and
Stop times will not necessarily equal the sum of CPU, All Bound,
and Overhead times. All Bound and Overhead times will vary,
depending on the number of active partitions and the type of
partition activity. CPU time is accurate for each partition,
but it may not be reproducible. That is, the same job being
executed under different system conditions (varying number of
active partitions, logical transients available, etc.) may show
differences in CPU time.

Programming Considerations

If physical IOCS is used for printing, you must 'space after' to
prevent overwriting of job control statements.

For efficiency, an overlay structure should be avoided and the
length of the program should preferably not exceed one core image
library block.

If the job accounting program is canceled as the result of an error
condition, the current information cannot be retrieved. The job
accounting information for the current job step is therefore unreli-
able. However, provision is made for the job accounting information
for any subsequent job steps to be correct, provided the cancella-
tion was not caused by an error in the $JOBACCT routine itself. If
there was an error in the $JOBACCT routine, you must correct it
first.

In order to avoid unintentional cancellation of the job accounting
program by operator action, the operator should issue the MAP com-
mand and check the job name for the running partition. If the job
name is 'JOB ACCT', the job accounting routine is active; the CANCEL
command should not be issued until the original job name is dis-
played after another MAP command. If you do cancel a partition
while 'JOB ACCT' is active, you must re-IPL the system to
re-activate the job accounting routine.

REGISTER USAGE: Important data for the user's job accounting rou-
tine are passed in the following general registers:

12 Base address for $JOBACCT

15 Address of the job accounting table

11 Length of the job accounting table

13 Address of the user save area

14 Return address to job control

If $JOBACCT uses LIOCS, the contents of general registers 14 and 15

must be saved (also registers 0 and 1 if necessary) because LIOCS
uses these registers.

212 VSE/Advanced Functions System Management Guide

SAVE AREA FOR THE USER'S ROUTINE: The address of a save area that
can be used by the job accounting routine is passed in general reg-
ister 13. This save area is 16 bytes long unless a greater length
(up to 1024 bytes for saving DTF information for LIOCS) was speci-
fied during system installation. However, CCBs and executable CCWs
must not be included.

USER'S AREA FOR LIOCS LABEL PROCESSING: If your job accounting rou-
tine uses LIOCS for processing such items as standard tape labels,
DTFDA, or DTFPH with MOUNTED=ALL, then a special label area must be
specified at supervisor generation.

Tailoring the Program

The requirements of the program may be simply to record the account-
ing information as part of the SYSLST output for each job step or
job, or it may be to accumulate information to be used for equitably
allocating the costs of a computing center.

If data is to be written out on a disk or tape, the save area can be
used for communicating between job steps. Such information as the
disk address for the next record or an indication that tape labels
have been successfully processed, or even the DTF used to control
the output, may be stored in the save area.

Figure 62 on page 214 illustrates a job accounting program that
writes records to disk without additional processing.

Chapter 3: Using the Facilities and Options of VSE/Advanced Functions 213

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

JAACT CSECT
USING
USING
LR
LA
GETVIS
LTR
BNZ
LA
STXIT
LA
™
BO
BM

* PERFORM LABEL
MVC
OPENR
MVC
MVC
MVI
MVC

* RELOCATE CCWS
MVC
LA
STCM
LA
STCM
LA
STCM
LA
STCM
MVI

* WRITE JOB ACCO

JAOPEN STCM
MVC
EXCP
WAIT

* UPDATE SEEK AD
TR
CLI
BNE
TR
CLI
BNE
LH
LA
STH

* R12

JASAVE,R13
R9,R15

RO, JADTFLNG+L' JABSAVE
LENGTH=(0)
R15,R15

JARET1

RO, JABROUT

AB, (0), (1)
R1,L'JABSAVE(R1)
JASTATSW,X'CO'
JARET
JAOPEN

JOB ACCT SAVE AREA
SAVE ADDR OF TBL
LENGTH FOR GETVIS

GET SPACE IN PARTITION
CHECK RETURN CODE

NO GETVIS SPACE

AB ROUTINE

SET ABNRML TERM EXIT
UPDATE GETVIS POINTER
TEST STATUS

DISK AREA FULL

SAVE AREA INITIALIZED

PROCESSING AND INITIALIZE SAVE AREA

0(JADTFLNG,R1) ,JADTF
(R1)

JACCB,0(R1)
JASEEK,58(R1)
JAR,X'01'

JAHIGH, JADTF+54

JASKCCW(32) , JAMODCCW
R10,JASEEK
R10,7,JASKCCW+1
R10,JASRCH
R10,7,JASRCCW+1
R10, JASRCCW
R10,7,JATIC+1

R10, JASKCCW
R10,7,JACCB+9
JASTATSW,X'80"
UNTING TABLE TO DISK
R9,7,JADATA+1
0(16,R1),JACCB

(1)

(1)

DRESS

JAR, JARECTAB
JAR,X'01"

JARET
JAHEAD+1 (1) , JAHDTAB
JAHEAD+1,X' 00"
JAHTST

R10,JACYL
R10,1(R10)

10, JACYL

MOVE DTF TO PARTITION
OPEN FILE (see Note)
MOVE CCB TO SAVE AREA
EXTENT LOWER LIMIT
FIRST RECORD

HIGH EXTENT LIMIT

PUT MOD CCWS IN SVE AREA
SEEK ADDRESS

PUT ADDRESS IN CCW
SEARCH ADDRESS

PUT ADDRESS IN CCW
SEARCH CCW ADDRESS

PUT ADDRESS IN CCW
CHANNEL PROGRAM ADDR

PUT ADDRESS IN CCB

IND SAVE AREA INIT

PUT ADDR OF TBL IN CCW
MOVE CCB TO PARTITION
WRITE DATA

WAIT FOR COMPLETION

RECORD

NEW TRACK

NO

HEAD

NEW CYLINDER

NO

CYLINDER ADDRESS
INCREMENT BY ONE
REPLACE IN SEEK ADDR

Figure 62 (Part 1 of 3). Job Accounting Routine Example

214 VSE/Advanced Functions System Management Guide

|
|
|

JAHTST

JARET

JARET1
JABROUT

JAMODCCW

JACCBL
JABSAVE
JADTF

JADTFLNG

ORG
JAMSG1
JAMSG2
JAERR1
JAERR2
JARECTAB
JAHDTAB
JASAVE
JASEEK
JABB
JASRCH
JACYL
JAHEAD
JAR
JASTATSW
JACCB

CLC JAHIGH,JASRCH

BH JARET

MVC 0(16,R1),JACCBL

LA R2,JAMSG1

STCM R2,7,9(R1)

EXCP (1)

WAIT (1)

0I JASTATSW,X'40"

FREEVIS LENGTH=(0)

STXIT AB

BR R14

LA R1,L'JABSAVE(R1)

MVC 0(16,R1),JACCBL

LA R2, JAMSG2

STCM R2,7,9(R1)

EXCP (1)

WAIT (1)

EOJ

ccw X'o7',*%,X'60',6

CCW X'31',*,X'60',5

ccw x'os',*,x'00',1

CCW X'05',*,X'20',246

CCB SYSLOG,*

DS 0CL72

DTF PHTYPEFLE=INPUT,
DEVICE=2314,
MOUNTED=SINGLE

EQU *-JADTF

ORG JADTF

DC X'00000B0O'

BEYOND UPPER LIMIT

NO

MOVE CONSOLE CCB TO PARTITION
ERROR MESSAGE

PUT ADDRESS IN CCB

INFORM OPERATOR

WAIT FOR COMPLETION

INDICATE DISK FULL

FREE PARTITION SPACE

RESET EXIT LINKAGE

RETURN

RESTORE ADDR IN GETVIS AREA
MOVE CONSOLE CCB TO PARTITION
ERROR MESSAGE

PUT ADDRESS IN CCB

INFORM OPERATOR

WAIT FOR COMPLETION

MEANS CHECK LABELS

SET CCB OPTION BITS

CCW X'09',JAERR1,X'20',L'JAERR1

CCW X'09',JAERR2,X'20',L'JAERR2

DC C'JOB ACCOUNTING DISK FULL'

DC C'JOB ACCOUNTING ROUTINE CANCELED'

DC X'0002030406060708090A0BOCODOEOF101112131401"
DC X'0102030406060708090A0BOCODOEOF1011121300"

DSECT

DS 0XL6
DS XL2
DS OXL5
DS XL2
DS XL2
DS X

DS X

DS XL16

SEEK ADDRESS BBCCHH
BB
SEARCH ADDRESS CCHHR
cC
HH
R

COMMAND CONTROL BLOCK

Figure 62 (Part 2 of 3).

Job Accounting Routine Example

Chapter 3: Using the Facilities and Options of VSE/Advanced Functions

215

JAHIGH DS XL4 HIGH EXTENT LIMIT
DS XL4

JASKCCW CCW X'07',JASEEK,X'60',6 SEEK CCW

JASRCCW CCW X'31',JASRCH,X'60',5 SEARCH CCW

[1
| |
| |
| |
| |
| JATIC CCW X'08',JASRCCW,X'00',1 TIC CCW

| JADATA CCW X'05',*,X'20',246 WRITE DATA ASSUMING 29 |
| =* SIO DEVICES TRACED |
| RO EQU 0 |
| R1 EQU 1 |
| R2 EQU 2 |
| R9 EQU 9 |
| R10 EQU 10 |
| R11 EQU 11 |
| R12 EQU 12 |
| R13 EQU 13 [
| Rl4 EQU 14 |
| R15 EQU 15 |
| END |
| |
L |

Figure 62 (Part 3 of 3). Job Accounting Routine Example

Notes:

1. As this example is self relocating, the self-relocating form of
the OPEN macro (OPENR) is used; for a routine that will be
linked relocatable, OPEN may be used instead.

2. The DSECT labeled JASAVE through JADATA defines the layout of
the job accounting user save area, which resides within the
supervisor. The address of this area is passed, in register 13,
to your job accounting phase. When generating your supervisor
you must specify the desired length of this save area by substi-
tuting a value for s, the first operand of the JALIOCS parameter
of the FOPT macro. If the operand is omitted or if JALIOCS=NO
is specified, the length of the user save area is set to 16
bytes by default.

CHECKPOINTING FACILITY

The progress of a program that performs considerable processing in
one job step should be protected against destruction in case the
program is canceled. VSE/Advanced Functions provides support for
taking up to 9999 checkpoint records in a job. Through this facili-
ty, information can be preserved at regular intervals and in suffi-
cient quantity to allow the restarting of a program at an
intermediate point.

216 VSE/Advanced Functions System Management Guide

The CHKPT macro (or the corresponding high-level language statement)
causes the checkpoint record to be stored on a magnetic tape or
disk. For more details about taking checkpoints, refer to
VSE/Advanced Functions Application Programming: Macro Reference if
you use assembler language or to the appropriate high-level language
manual.

The RSTRT job control statement restarts the program from the last
or any specified checkpoint taken before cancelation.

When a checkpointed program is to be restarted, the partition must
start at the same location as when the program was checkpointed and
its end address must not be lower than at that time unless a lower
end address was specified in the CHKPT macro instruction. Unless
the user re-establishes all linkages to SVA phases himself, the con-
tents and location of the modules in the SVA when restarting must
also be the same as when the program was checkpointed. The SDL must
be identical if the restarted program uses a local directory list
(for example, one that was generated by the assembler language macro
GENL) .

If any pages of a virtual mode program were fixed when the check-
point record was taken, then, in 370 mode, the real address area
allocation for the partition must also start at the same or a lower
location and its end address must be at least as high as at that
time. The pages that were fixed are refixed by the supervisor when
the program is restarted.

Restarting a Program from a Checkpoint

To restart a program from a checkpoint the RSTRT job control state-
ment is used. The sequence of job control statements that must be
submitted to restart a program is as follows:

1. A JOB statement specifying the jobname used when the checkpoints
were taken.

2. ASSGN statements, if necessary, to establish the I/0 assignments
for the program that is to be restarted.

3. A RSTRT statement specifying

a. the symbolic name of the tape or disk device on which the
checkpoint records are stored.

b. the sequence number of the checkpoint record to be used for
restart.

c. for checkpoint records on disk the filename (DTF name) of
the checkpoint file.

4. An end-of-job (/&) statement.

Chapter 3: Using the Facilities and Options of VSE/Advanced Functions 217

Figure 63 on page 218 shows the sequence of job control statements
needed to restart a checkpointed program that ended abnormally due
to, for example, a power failure. Following are the characteristics
of the checkpointed program that must be considered for restart:

4 The job name specified in the JOB statement was CHECKP; the same
name must be used for restart.

¢ The checkpoint records were written on magnetic tape; therefore,
no filename need be specified in the RSTRT statement.

* The symbolic device name SYS006 is used for the checkpoint file.

¢ The sequence number of the last checkpoint record written was
0013; this or any previous checkpoint record can be used for
restart (the sequence numbers are printed by VSE/Advanced Func-
tions on the SYSLOG device).

In reconstructing the job stream note that the // RSTRT statement
physically and functionally replaces the // EXEC statement ori-
ginally used.

Another important consideration is the repositioning of files on
magnetic tape or disk. Assembler language users may consult
VSE/Advanced Functions Programming Application: Macro Reference,
which discusses the topic in context with using the CHKPT macro.
High-level language users should consider printing a file processing
status record for each checkpoint that is taken during the execution
of a program. This record should indicate the name of the file(s)
read or written on magnetic tape or disk when the checkpoint is tak-
en.

// JOB CHECKP

// ASSGN SYS006,380 CHKPT TAPE
// ASSGN ..

// ASSGN ...

// RSTRT SYS006,0013

/&

Figure 63. Example of a RESTART Job

DASD SWITCHING UNDER VSE/ADVANCED FUNCTIONS

The standard I/0 interface between an I/0O device and the processor
is a channel and a control unit.

218 VSE/Advanced Functions System Management Guide

Normally, this interface provides one, and only one, path by which a
processor communicates with an I/0 device. However, it may be
desirable to access a device, especially a DASD device, by more than
one path. For example, a second processor may be required to
back-up the host processor such that should the host processor
become inoperable, the attached DASD devices may be switched imme-
diately to (made accessible by) the back-up processor. Multiple
processors may also need to access the same data base.

A single processor may require back-up channels and control units,
providing alternate paths to the same DASD devices.

In order to do this device sharing, the hardware provides a
two-level switching mechanism that allows you to comnect one or more
DASDs either dynamically or manually to different I/O paths. This
mechanism is known as channel switching and string switching.

CHANNEL SWITCHING: Channel switching provides the switching mech-
anism at the control unit level. The channel switch allows you to
connect the control unit to up to four channels, which may belong to
the same or different processors thus providing up to four distinct
I/0 paths. A maximum of two channels may connect to one processor.
If two channels connect to one processor, their channel addresses
must be consecutive. The connection of any channel can be manually
enabled or disabled. When enabled, the switch is dynamically con-
trolled by the hardware.

STRING SWITCHING: In the case of string switching, the switching
mechanism is at the DASD string level. String switching allows you
to connect a string of DASDs to two distinct control units, or inte-
grated disk attachments. The two I/O paths may be connected to a
single or two different processors.

USING DASD SWITCHING: In both types of this hardware-supported
switching, a desired I/O path may be selected in one of two ways.

Two Types of Connection

Type 1: Connection is made dynamically when an I/0 command is
issued for a device. Provided that the control unit (in channel
switching) and the DASD string (in string switching) are free for
connection, the target DASD device can be accessed by the requesting
processor. Once a connection is established by one processor, the
other processor receives device busy status if attempting to access
a device on the string.

This hardware-supported switching of DASD devices between two or
more processors is called 'DASD Sharing'. VSE/Advanced Functions
offers some help in preventing processors from making conflicting
references to shared disks (see the next section, DASD Sharing by
Multiple VSE Systems).

Chapter 3: Using the Facilities and Options of VSE/Advanced Functions 219

Type 2: The operator may switch the shareable devices manually to
the desired processor (via the Enable/Disable toggle switches). It
should be noted that in this case an entire string of DASD is dis-
connected from the other processor.

If the manual DASD switching feature is being used, it is your
responsibility to resolve conflicting processor references to shared
devices (or files) and thus ensure data integrity.

Through scheduling of processor file referencing, ensure that only
one processor that is updating the file is connected to the shared
DASD. The operator needs only to switch the manual control to the
updating processor for that period of time.

Further hardware details on channel or string switching may be found
in the appropriate DASD hardware manuals, and also in the hardware
manuals for the IBM 370/115 and 370/125.

DASD SHARING BY MULTIPLE VSE SYSTEMS

If your installation consists of more than one computing system,
each running under VSE/Advanced Functions, you may consider sharing
some or all DASD devices between the different VSE systems. Rather
than assigning a fixed number of disk drives to the different sys-
tems, you can combine the total number of available drives into a
disk pool which is shared by all VSE systems. DASD sharing between
two or more VSE systems has several advantages:

. Library maintenance is easier, if only one set of libraries has
to be maintained.

. The total system throughput increases when the VSE systems run-
ning under VSE/POWER share the POWER work files.

. Direct access storage space may be saved, as only one copy of
the data is required instead of multiple copies.

As long as the different VSE systems access the shared devices for
reading only, the integrity of your data is preserved.

If, however, data on the shared DASD devices are accessed in write
mode by more than one system at the same time, data integrity is no
longer ensured, unless special precautions are taken. The Track
Hold and DASD File Protect functions (described in VSE/Advanced
Functions Planning and Installation) do not apply here because none
of the sharing systems is aware of what the other is doing.

VSE/Advanced Functions provides programming support which allows
access to a DASD device from different VSE systems in read and write
mode. This programming support is based on the channel switching
and/or the string switching feature and is available for the 33xx
CKD devices and for the 3370 FBA device.

220 VSE/Advanced Functions System Management Guide

Reserving Devices for Exclusive Use

Channel command words are available to allow one I/0 interface to
reserve a disk drive for exclusive use. Any other I/O interface
that attempts to access such a reserved disk drive will receive a
'device busy' indication.

Reserving DASD devices has several disadvantages:

. An entire disk pack has to be reserved even if only a single
record is to be updated. This may lead to severe performance
degradation.

. If one processor tries to access a volume which is already
reserved by another processor, no clear-cut indication is given
that the volume is not available.

. When an application program terminates abnormally, the system
does not automatically release reserved disk drives; the other
VSE system(s) may have to wait indefinitely if they try to
access data on the reserved disk drives.

VSE/Advanced Functions provides a method that avoids these risks.
The sharing of data on disk is controlled on the resource level, not
on the device level. This method, called 'resource locking', is
described in the remainder of this section.

Resource Locking
A program running under VSE/Advanced Functions is capable of pro-
tecting data by reserving ('locking') and releasing ('unlocking') a
named resource. This resource may, for example, be a table in stor-

age, a phase name, a DASD volume identifier, or a library name.

In assembler programs, the macros used are LOCK, UNLOCK, DTL, GENDTL
and MODDTL.

Locking and unlocking occurs

* VWithin a partition: the resource is shared between tasks belong-
ing to the partitionm,

. Within one computing system: the resource is shared between par-
titions, or

i Within a multiple-processor installation: the resource (a cata-
log or a file, for example) is shared between VSE systems.

Chapter 3: Using the Facilities and Options of VSE/Advanced Functions 221

Internal and External Locking

Locking within one computing system is called 'internal locking',
locking across systems is called 'external locking' or 'cross-system
locking'. All functions provided for internal locking are available
for externdl locking as well.

Compared with the method of reserving of entire volumes, locking by
named resource offers the following advantages:

. Protection can be limited to a portion of an entire volume (a
file, for example);

° data can be shared, comparable to share options 1 and 2 of
VSE/VSAM, that is, locking is not necessarily exclusive;

. If a lock request cannot be satisfied because the corresponding
resource is already under exclusive control by another task (by
another VSE system perhaps), the requestor can be immediately
notified if so desired.

VSE/VSAM File Locking

If you are just planning to switch from a one-system to a
multiple-system setup and you have used the VSE/VSAM access method
in the past, you do not have to change your source programs in order
to utilize DASD sharing across systems. Resource protection across
systems is accomplished by the VSAM open routine. For SAM files in
VSAM-managed space, the open routine performs the cross-system lock-
ing, too.

If a VSAM file defined with share option 1 or 2 is opened for update
by one program, then no other user (in another partition of the same
VSE system or in another system) can open the file for update at the
same time. Concurrent updating of a VSAM file defined with share
option 4 is allowed for the programs running in one system, but not
for those running in different systems: while that file is opened
for update by one program, a second program running in another par-
tition within the same system may open the file for update. A third
program, this one running in another system, would not be able to
open the file for update while the file is already opened for update
in the first system; across computing systems, VSAM files defined
with share option 4 are treated as files of share option 2 type.

Files of other types should be locked explicitly in order to have
the file protected against concurrent update by other tasks.

IBM-supplied programs such as the linkage editor or the librarian

programs do this locking whenever they are about to update a
library.

222 VSE/Advanced Functions System Management Guide

IBM-Provided Macros

If you want to do your own resource locking, you must use the assem-
bler language macros

. DTL, GENDTL, and/or MODDTL to define the named resource
* LOCK and UNLOCK to perform the actual locking control.

Via the resource definition macros, a resource lock control block is
generated. Among other things, it defines

. the name of the resource
. the level of locking: exclusive or shared with other tasks
i the scope of locking: within one system or across systems

d the time of automatic unlocking: at the end of the job step or
at end-of-job.

Note that the locking mechanism functions only if each task that
shares a particular resource subjects itself to the lock control and
uses one and only one name for the resource.

The following macro statement
EXAMPLE DTL NAME=SHAREFL,CONTROL=S,LOCKOPT=2,SCOPE=EXT

defines a lock control block for the resource SHAREFL. The SCOPE
parameter indicates that the resource should be shared across sys-
tems. The combination of CONTROL=S and LOCKOPT=2 means: for a lock
request to be granted, other tasks with a definition of CONTROL=S
may have concurrent access, but not more than one task with a defi-
nition of CONTROL=E.

The LOCK macro requests access to a named resource. The requestor
may specify which action the system is to take if the lock request
cannot be granted. For the above DTL, the statement

LOCK EXAMPLE,FAIL=WAIT

requests access to the resource with the name SHAREFL. If the
resource is locked such that no concurrent access is allowed, the
requesting task should be set into the wait state until the access
can be granted.

The use of the lock control macros is described in detail in
VSE/Advanced Functions Application Programming: Macro User's Guide
and VSE/Advanced Functions Application Programming: Macro
Reference.

Chapter 3: Using the Facilities and Options of VSE/Advanced Functions 223

Lock Communication File

Resource protection across systems requires a special system file
which reflects the system-wide locking status to all the sharing
systems at any time. A resource which is locked across systems will
be entered by the operating system into this lock communication file
(or 'lock file' for short). The DASD device where this file resides
must be accessible from all the sharing systems.

There must be an agreement between the sharing systems which ensures
that all systems use the same lock communication file. All systems
which take part in the DASD sharing must define the disk drive,
where this file is located, as shareable.

How to Initialize a Shared VSE Environment

Across-system DASD sharing is generated by specifying DASDSHR=YES in
the FOPT supervisor generation macro. This provides for a
cross-system locking facility to ensure data integrity when a string
of DASD devices is accessible from two or more VSE systems via the
channel and/or string switching mechanism.

Programs can check for the DASDSHR option via the SUBSID macro.
This macro is described in VSE/Advanced Functions Application Pro-
gramming: Macro Reference.

Defining a DASD as Shareable and Switchable

To define a DASD device as shareable across systems, you must
include the SHR parameter in the IPL command ADD as follows:

ADD cuu,device-type,SHR
Example:

ADD 140,3330,SHR
A1l DASD devices of the shared disk pool should be defined (in all
sharing systems) as shareable. Especially the disk drive where the

lock file resides has to be defined as shareable.

A1l DASD devices of the shared disk pool except the lock file device
may be defined as switchable between channels.

Example:
ADD 161(S),3330,SHR

The disk drive where the lock communication file resides must not be
defined as switchable.

224 VSE/Advanced Functions System Management Guide

The DASDs which are shareable are the 33xx CKD disk devices and 3370
FBA disk devices. See VSE/Advanced Functions System Control State-
ments for details on the ADD command.

Defining the Lock File

The lock communication file is created as a special system file with
the dedicated file name 'DOS.LOCK.FILE' via the IPL command DLF (De-
fine Lock File).

The DLF command has to be issued immediately after the ADD and DEL
commands. When the DLF command is missing in the IPL procedure
although a supervisor with DASD sharing support was IPLed and at
least one device ADDed as shareable, the operator is prompted to
enter the DLF command. If no DASD devices are ADDed as 'shared',
the DASD Sharing support in the supervisor is reset and the system
works as if the supervisor were generated with DASDSHR=NO.
Two versions of the DLF command are available:
. a long version used to create the lock file and
. a short version to refer to an already existing lock file.
The long version

DLF UNIT=cuu,CYL=n,DSF=Y|N (for a CKD device)

DLF UNIT=cuu,BLK=n,DSF=Y|N (for an FBA device)
is used to create the lock file.
UNIT specifies the disk unit where the lock file is to be located.
You should try to place the lock file on a disk drive that is not
subject to frequent I/0 activity; for example, keep it separate from
files such as SYSRES, the page data set, or POWER files.
CYL/BLK define the starting cylinder/block address.
The parameter DSF defines the lock file as secured or not secured.
The DASD sharing support depends heavily on the availability and
integrity of the lock communication file. This file should there-

fore be defined as a secured file.

The lock file occupies one cylinder on a CKD device or 80 blocks on
an FBA device.

The short form of the DLF command
DLF UNIT=cuu
is used by the other processors which join the sharing environment

to reference the already existing lock file. The short form may be

Chapter 3: Using the Facilities and Options of VSE/Advanced Functions 225

used also by the first IPLing processor if you want to resume with
the lock file as it existed at the end of a preceding production
period. On the other hand, submitting the long form for an already
existing lock file is not harmful.

For details on the DLI' command see VSE/Advanced Functions System
Control Statements.

Note: During the execution of the DLF command, no other
sharing system can access the lock file. Therefore, lock and
unlock requests cannot be serviced. A performance degradation
may be encountered on the already active systems while another
(new) system is in the process of IPLing.

DASD Sharing by Virtual Machines

DASD sharing is also possible under VM/370 or VM/System Product.
Disks which are defined with the multiple write feature can be used
by different VM users as shared disks (minidisks or full disk
packs).

Resource sharing across systems functions properly only if each
sharing (virtual) machine is discernible by a unique CPU identifica-
tion. Therefore, a different CPU identification must be defined for
every virtual machine. Before IPLing a virtual machine, the VM user
has to define a unique CPU identification via the CP command 'SET
CPUID xxxxxx'. Without this command, catastrophic errors regarding
the lock file will occur.

Special Considerations for Shared Libraries

Libraries may reside on shared DASDs and may be accessed by more
than one processor. IBM's librarian and linkage editor programs
utilize the LOCK/UNLOCK management, and so protect libraries against
concurrent write access.

The following precautions should be kept in mind:

1. If an SVA-resident phase is updated in a shared core image
library, the update is not reflected in the SVA/SDL of the other
sharing systems. You have two options: either continue to work
on the other system with the old copy of the particular phase,
or run a SET SDL with the appropriate phase name which would
refresh the contents of the SDL or SVA, respectively.

2. When a library to be condensed resides on a shared DASD, the
MAINT librarian program issues a warning message; it expects an
operator decision as to whether the condense can be started, or
should be skipped. The operator should start a condense of the
system core image library only if the other processor(s) are
shut down. After re-IPL, these processors would get a fresh -
and correct - copy of the SDL.

226 VSE/Advanced Functions System Management Guide

3. Multiple VSE/ICCF systems may not share one ICCF library, rather
should have their own dedicated ICCF library, each.

Recorder, Hard Copy, and History Files in a DASD Sharing Environment

An Example

Two system files are referenced by the logical unit name SYSREC:
. the recorder file (file name IJSYSRC).

¢ the hard copy file (file name IJSYSCN).

Note that these files cannot be shared between processors.

The IPL DEF command 'assigns' SYSREC to a physical device. Because
the DEF command allows only one SYSREC=cuu specification, these two
files must reside on the same pack. It is a good practice to place
the history file (file name IJSYSHF) on this pack, too. For the
placement of these files within a DASD Sharing environment, the fol-
lowing rules should be observed.

To ensure that library maintenance under control of the MSHP program
is recorded in only one history file, the system standard label area
of each sharing system has to contain identical DLBL/EXTENT informa-
tion for the history file. The definition (DEF SYSREC=cuu) or
assignment (ASSGN SYSnnn,cuu) must be for the same physical device
on which the common history file resides. This enables you to do
library maintenance on the shared SYSRES file and on any of the
shared or non-shared private libraries without loosing track of the
change status of your libraries.

As to the hard copy file (IJSYSCN), each sharing system has to keep
its own extent on the pack where SYSREC is defined. The DLBL state-
ment must contain, for each sharing system, a unique file identifier
of IJSYSCN; non-overlapping extents on the SYSREC pack must be
defined in the EXTENT statement. Similar rules apply for the
recorder file (IJSYSRC).

of a Two-System Installation

The following example shows how two VSE systems are set up to share
a string of 3340 disks. One system runs on a 4341 processor, the
other one on a System/370 Model 145. Figure 64 on page 228 presents
the configuration of disk devices.

Chapter 3: Using the Facilities and Options of VSE/Advanced Functions 227

Number of | Device Types

[I 1
| | |
! Devices ! !
[I 1
4341 8	3370
Processor: 6	2314
4	3340
! ! 4	3340 (shared)

{ T I 1
370 Model 2	3350 in native mode
145: 1	3350 in 3330-1 mode
1	3350 in 3330-11 mode
l	4
	2
!	4
]

Figure 64. Example of a DASD Sharing Configuration

The shared 3340 disks are shared via a control unit which has a
2-channel switch installed. The switch allows addressing of the
3340 disks through two different channels from one processor or from
two different processors. In the configuration presented here, the
4341 uses channel number 3, and the 145 uses channel number 2.

The following files are shareable by the two systems:

the SYSRES file

the history file

VSE/POWER files

private libraries

VSAM catalog and VSAM files
other data files

Two supervisors are generated with DASDSHR=YES specified in the FOPT
generation macro. Each supervisor is cataloged with a unique name;
one for execution in ECPS:VSE mode, the other for 370 mode.

Similarly, since VSE/POWER is being used, two POWER phases are gen-
erated, each with a unique name; the POWER macro must specify the
SYSID and SHARED parameters. (You can operate with only one POWER
phase if SYSID is changed dynamically at autostart time.) Format-
ting of POWER files should be requested only by the first IPLing
system. If during POWER bring-up no FORMAT statement is included in
the AUTOSTART file, the operator will be prompted as to whether POW-
ER files are to be formatted or not. If the operator replies '"D,A"
or the AUTOSTART file contains a FORMAT=D,A statement, the POWER
program asks the operator whether another system is already IPLed
and whether the shared files can be formatted.

Figure 65 on page 229 shows two sets of IPL commands that are cata-
loged as ASI (Automated System Initialization) procedures.

228 VSE/Advanced Functions System Management Guide

i ASI procedure for Model 145:

01F, $$A$SUPS,P,NOLOG,VSIZE=8800K
ADD 148:149,3350
ADD 14A,3330
ADD 16A,3330
ADD 140:143,3330
ADD 144:145,3333B
(1) ADD 2D0:2D3,3340,SHR VIA CHANNEL 2

unit record devices, terminals, etc.

(2) DLF UNIT=2D1
(3) DEF SYSREC=2D0,SYSCAT=2D1,SYSDMP=148
(4) DLA NAME=SYST145,UNIT=148
DPD UNIT=149,CYL=450,DSF=N
SVA SDL=100,PSLD=20,PSIZE=100K,GETVIS=100K

° ASI procedure for the 4341:

01F, $$AS$SUPE,P,NOLOG
ADD 340:343,FBA
ADD 350:353,FBA
ADD 690:695,2314
ADD 300:303,3340
(1) ADD 330:333,3340,SHR VIA CHANNEL 3

unit record devices, terminals, etc. |

(2) DLF UNIT=331
(3) DEF SYSREC=330,SYSCAT=331,SYSDMP=340
(&) DLA NAME=SYST4300,UNIT=340
DPD UNIT=341,BLK=80000,DSF=N
SVA SDL=100,PSLD=20,PSIZE=100K,GETVIS=100K

Figure 65. Example of ASI IPL Procedures for Two DASD Sharing Systems

Chapter 3: Using the Facilities and Options of VSE/Advanced Functions 229

Notice that both ADD commands for the shared disks (statement 1 in
Figure 65) refer to the same packs although they specify different
device addresses. Each processor accesses the shared disks via dif-
ferent channels: 2 and 3.

The short form of the DLF command is shown here (statement 2); if
ever the first IPLing system refers to a nonexistent lock file, it
prompts the operator to submit the long form of the DLF command. On
the 4341 processor, for example, the long form would include the
specifications CYL=694 and DSF=Y. Similar considerations apply to
the DLA commands.

The SYSREC specifications (statement 3), just as the ADD commands,
refer to the same pack by different device addresses. Each system
uses its own label information area, defined on separate packs and
with unique names (statement 4).

Complete ASI JCL procedures are not shown here. These procedures
would contain DLBL/EXTENT statements for the following shared

resources,

. To be cataloged in the system standard label area (OPTION

STDLABEL):
IJSYSRS SYSRES file
IJSYSHF History file

e To be cataloged in the system standard label area (OPTION
STDLABEL) or in the partition standard label area (OPTION

PARSTD):

IJAFILE POWER account file
IJQFILE POWER queue file

IJDFILE POWER data file

IJSYSCT VSAM catalog

VSMSPCE VSAM data space

XXXXXXX Shared private libraries

i In addition, of course, labels for the following non-shared
resources must be uniquely defined for each system:

IJSYSCN Hard copy file
IJSYSRC Recorder file
DOSDMPF Dump file
DOSDMPG Dump file

230 VSE/Advanced Functions System Management Guide

XXXXXXX Dedicated files and libraries

IJSYSIN POWER AUTOSTART file (non-shared only if the
two POWER systems use different input param-
eters)

Error Recovery after System Break-Down

Recovery by

When one of the sharing systems breaks down, for example, due to
hardware malfunction, the other systems may enter the wait state.

Two recovery methods are available, depending on the cause of the
malfunction:

System Reset

Recovery by

The hardware malfunction occurred while the system was executing a
LOCK or UNLOCK request. The system has reserved the disk drive con-
taining the lock file by a 'DEVICE RESERVE' channel program. Thus
the other systems are unable to execute LOCK or UNLOCK requests.

The operator should press 'system reset' on the failing processor;
the device reserves will be reset.

IPL or UNLOCK Command

DESIGNING

Before the system break-down, the failing VSE system locked some

vital resources (for example, a VSAM catalog). The sharing VSE sys-
tems trying to lock these resources go into a wait state. They will
remain in the wait state until the failing system has been re-IPLed.

If an IPL on the failing system is not possible, use the attention
routine command 'UNLOCK SYSTEM=xxxxxx' to unlock all resources
locked by the failing processor. You should be extremely careful
with the use of the attention routine command UNLOCK. Enter this
command only when you are absolutely sure that the failing system
has stopped and a new IPL is not possible. The attention routine
command UNLOCK when used to break the lock of a running system will
cause severe errors.

PROGRAMS FOR VIRTUAL MODE EXECUTION

This section describes programming techniques which may improve the
efficiency of programs executing in virtual mode. Consider these
techniques for new programs to be written and old programs to be
revised. The section also contains information on the use of cer-
tain macros that are provided especially for virtual storage. Pro-
gramming conventions for the shared virtual area are also discussed.

Chapter 3: Using the Facilities and Options of VSE/Advanced Functions 231

Programming Hints for Reducing Page Faults

It is definitely worthwhile to spend some extra programming effort
for tuning virtual-mode programs which are used frequently or
require a lot of processor time, so that they will cause fewer page
faults during execution. Page faults generally occur when the size
of the virtual-mode program exceeds the number of page frames avail-
able to it during execution. Efforts to reduce the number of page
faults occurring in a program generally involve techniques for
reducing the size of the working set of the program. The term work-
ing set is one that recurs often in discussions of virtual storage
systems.

The working set of a program comprises those program pages which
contain the most frequently used sequences of instructions for a
given period of time. The working set of a program is not a fixed
number of pages or instructions of that program; this set changes as
the execution of the program proceeds. For example, a program doing
an internal sort and writing a formatted table based on the results
of this sort would have two completely different basic working sets;
one for the sort function and one for the write functions.

What does execute efficiently mean? Essentially, this means that a
program will not execute appreciably slower than if the entire pro-
gram were in processor storage during its entire execution.

Although the following section does not tell you how to determine
the size of the working set, it does provide techniques for reducing
its size.

General Hints for Reducing the Working Set

There are three general rules to keep in mind when working toward a
reduction of a program's working set.

The first is locality of reference; that is, instructions and
data used together should be in storage near each other.

The second is minimum processor storage. In other words, the
amount of processor storage necessary for a program to do some-
thing should be kept as low as possible.

The third is validity of reference, that is, references should
be made only to data which will actually be used.

LOCALITY OF REFERENCE: The chief means of achieving locality of
reference is to make execution sequential whenever possible by
avoiding excessive branching.

A program that executes sequentially normally requires a partition
larger than the same program when it does not execute sequentially.
For example, the functions of a section of code repeat themselves
several times throughout the logic of your program. You are tempted

232 VSE/Advanced Functions System Management Guide

to write this code once and branch to it whenever necessary, but
branching violates the principle of locality of reference. Branch-
ing may cause more page faults than would coding the routine in line
each time it is used. Also, it is easier for someone else to follow
the logic of a program which is written to execute sequentially.

Locality of reference can be achieved only to a limited extent by
programs written in a high-level language.

Elements in arrays in FORTRAN or PL/I can be referred to in the
order in which they appear in storage.

In FORTRAN, for example, arrays are ordered by columns. The ele-
ments of the array DIMENSION (2,2,2) are arranged as follows in con-
tiguous virtual storage locations:

(1,1,1) (2,1,1)
(1,2,1) (2,2,1)
(1,1,2) (2,1,2)
(1,2,2) (2,2,2)

For array structures of other compilers, refer to the appropriate
programming language reference manuals.

A routine which processes all the elements of such an array should
refer to them in this order. If only certain elements of an array
are processed, the elements should be arranged in the order in which
they are to be processed. If arranging an array in a certain manner
causes it to be processed advantageously one time, but
disadvantageously another time, you should consider writing two
arrays, even at the cost of additional virtual storage.

In an assembler language program, you should keep frequently used
data and constants near each other in storage, and near the
instructions which use them. This contrasts with the traditional
practice of having one area at the end of the program reserved for
all the data areas and constants. By the same token, seldom used
data should be separated from the frequently used data and placed
with the routines which use it.

Avoid, if possible, using chains which must be searched each time a
data item is required. If chains are unavoidable they should be
kept in a compact area of storage. This may result in some wasted
(virtual) storage but will be better than searches of large areas of
storage.

Another good practice to help reduce paging is to initialize vari-
ables just before they are to be used. In PL/I, for example,
instead of the following:

Chapter 3: Using the Facilities and Options of VSE/Advanced Functions 233

DCL A FIXED INIT (10);

DO B=1 TO 100;
A=A+B;
END;

use:

DCL A FIXED;

A=10;

DO B=1 TO 100;
A=A+B;

END;

In the first method of coding, PL/I initializes the automatic vari-
able at the beginning of execution. The second method of coding
does not require the page containing A to be in processor storage
until just before A is used.

MINIMIZING PROCESSOR STORAGE: An important help in reducing the
amount of processor storage needed for execution is to keep coding
used for errors or other unusual occurrences in a separate routine.
If, for example, the main routine contains code for conditions that
occur only 5% of the time, by moving this error code to a separate
section of your program, you can reduce the amount of needed
processor storage for 95% of the processing.

SUBROUTINE LOADING: Frequently-used subroutines should be loaded
near each other. Because of their frequent use, these routines tend
to be in processor storage almost continuously. If they are scat-
tered over several pages, each of these pages will need to be in
‘processor storage most of the time, thus increasing the size of the
working set. By loading these routines near each other, you reduce
the number of pages required in processor storage at any one time.

VALIDITY OF REFERENCE: Subroutines should be designed to do as much
processing as possible whenever they are called. It is better to
duplicate some code from the calling routine in the called routine
in order to avoid switching back and forth between routines. One
technique for accomplishing this is to have the calling program pass
several parameters to the subroutine and make one call, rather than
passing one parameter at a time and make several calls.

PAGE BOUNDARY CONSIDERATIONS: You should try to keep code that can
be modified and code that cannot be modified in separate sections of
a large program. This will reduce paging activity by reducing the
number of pages that are changed. Also, try to prevent I/0 buffers
from crossing page boundaries unnecessarily. Check the assembler
listing and the linkage editor map to determine where 2K boundaries
occur in your programs.

234 VSE/Advanced Functions System Management Guide

Using Virtual Storage Macros

The macros designed for use by virtual-mode programs, which are dis-
cussed below, perform the following services:

. fix pages in processor storage (PFIX macro) and later free the
same pages for normal paging (PFREE macro).

. indicate the mode of execution of a program (RUNMODE macro).

. influence the paging mechanism in order to reduce the number of
page faults, to minimize the page I/O activity, and to control
the paging within a specific partitionm.

In order to use these macros you must be programming in assembler
language or, if your program is written in a high-level language,
you must write an assembler subroutine to make use of them. Refer
to VSE/Advanced Functions Application Programming: Macro Reference
for a detailed description of these macros.

Fixing/Freeing Pages in Processor Storage

I/0 AREAS: In VSE/Advanced Functions, parts of virtual-mode pro-
grams must be in processor storage only at certain times. These
parts include not only the instructions and data being processed at
any one moment, but also data areas for use by channel programs.
Instructions and data are always in processor storage when being
used. Because of the nature of I/0 operations, the data areas for
these operations could be paged out during the I/0 operation if
something were not done to keep them in processor storage during the
entire operation. The operating system therefore fixes I/0 areas in
processor storage for the duration of the I/O operation.

TIME DEPENDENT ROUTINES: There are other parts of a program, howev-
er, which cannot tolerate paging, and these parts are not necessar-
ily kept in storage by the operating system. For instance, programs
which control time-dependent I/0 operations cannot tolerate paging.
A familiar example is a MICR (Magnetic Ink Character Reader) stacker
select routine. If a page fault were to occur during the execution
of one of these programs, the results would be unpredictable. A
page fault in one of these programs can be avoided by fixing the
affected pages in processor storage, using the PFIX macro.

PAGE FIX LIMITS: The pages that you fix by the PFIX macro are fixed
in the processor storage allocated to the partition in which the
PFIX request is issued. Only as many pages may be fixed by a pro-
gram at any one time as there are page frames allocated to the par-
tition. This is done to prevent a loop in one program from fixing
all the pages in the system, and to enable other programs to issue a
PFIX macro concurrently.

Chapter 3: Using the Facilities and Options of VSE/Advanced Functions 235

DUPLICATE PAGE FIX REQUESTS: The PFIX macro fixes the pages in
processor storage, regardless of whether these pages are stored in
contiguous page frames or not. The supervisor keeps a count of the
number of times a page has been fixed without being freed. A page
that is fixed more than once without having been freed (via the
PFREE macro) is not brought in a second time and given another page
frame. Instead, the counter for that page is just increased by one
and the page remains in the same page frame.

PAGE FREE MECHANISM: The PFREE macro does not directly free a page
for paging out, but each time it is issued, the counter of fixes is
reduced by one. As soon as the counter for a page reaches zero, the
page can be paged out. At the end of a job step, all pages that
have been fixed during the job step are freed.

The PFREE macro should be used as soon as possible to make a maximum
possible number of page frames available to all programs running in
virtual mode.

RETURN CODES FROM THE PFIX MACRO: Figure 66 on page 237 is a skele-
ton example using the PFIX and PFREE macros. After the execution of
a PFIX macro, a return code is given in register 15. The meanings of
the return codes are:

0 The pages were fixed successfully.

4 You requested more page frames than the number of PFIXable page
frames available to the partition.

8 Insufficient number of free page frames were available at the
time.

12 You specified invalid addresses in your macros.
Note in the example how the return code can be used to establish a

branch to parts of the program that handle these specific
conditions.

236 VSE/Advanced Functions System Management Guide

FIXER

————————

| HERE

| ARTN
ARTNEND
NOPAGES
CANCL
WAIT
END

| OPCCB

OPCCW
MSG

PFIX ARTN,ARTNEND+2 FIX ARTN IN STORAGE

B *+4(15) BRANCH ACCORDING TO RETURN CODE
B HERE CONTINUE IF OK

B NOPAGES GO TO CANCEL IF PART TOO SMALL
B WAIT GO TO WAIT UNTIL PAGES FREED

B CANCL GO TO CANCEL IF ADDR INVALID
BAL 14,ARTN GO TO ARTN

PFREE ARTN,ARTNEND+2 FREE ROUTINE AFTER EXECUTION

(time dependent processing which cannot be
paged out during execution)

BR R14

LA R1,0PCCB
EXCP (1)

WAIT (1)
CANCEL ALL

(routine to free other pages)

EOJ

CCB SYSLOG,OPCCW |
ccw X'09',MSG,X'20',61
DC CL32'AM CANCELING PLEASE ENLARGE REAL'

RETURN

WRITE MESSAGE TO OPERATOR
WAIT FOR COMPLETION

DC CL29 'ADDR AREA AND RESTART THE JOB' |

Figure 66. PFIX and PFREE Example

Indicating the Execution Mode of a Program (RUNMODE Macro)

Influencing

You may have a program that must do different processing depending
upon its execution mode. It may be impractical to have two separate
programs cataloged in the core image library (one program for real
mode and another program for virtual mode). The RUNMODE macro can
be issued during the execution of the program to inquire which mode
of execution is being used. A return code is issued to the program

in register 1.

the Paging Mechanism (RELPAG, FCEPGOUT, PAGEIN Macros)

RELEASING PAGES:

With the RELPAG macro, you inform the page manage-

ment routines that the contents of one or more pages is no longer
required and need not be saved on the page data set. Thus, page

frames occupied by these released pages can be claimed for use by
other pages, and page I/0 activity is reduced.

Chapter 3: Using the Facilities and Options of VSE/Advanced Functions 237

FORCING PAGE-OUT: The FCEPGOUT macro is used to inform the page
management routines that one or more pages will not be needed until
a later stage of processing. The pages are given the highest
page-out priority, with the result that other pages, which may be
needed immediately, are kept in storage. Except when the RELPAG
macro is in operation, the contents of any pages written out are
saved.

PAGE-IN IN ADVANCE: The PAGEIN macro allows you to request that one
or more pages be read into processor storage in advance, in order to
avoid page faults when the specified pages are needed in processor
storage. If the specified pages are already in processor storage
when the macro is issued, they are given the lowest priority for
page-out.

Balancing Telecommunication Activity

The use of telecommunication and production processing at the same
time may, occasionally, result in long or erratic telecommunication
response times. This may be especially true if you have
over-committed processor storage, thus causing excessive paging.
The telecommunication application may have to compete so strongly
for page frames (because of high processing activity in the other
partitions) that response time increases substantially.

Telecommunication balancing improves response time by trading off
telecommunication response time against production partition
throughput. TP balancing tends to reduce response times, or at
least to stabilize them.

ACTIVATING TP BALANCING: After IPL, the operator can activate TP
balancing by issuing the TPBAL command, which specifies the number
of partitions that can tolerate delayed processing. These will be
the lowest priority partitions. The TPBAL command is also used to
change or display the current setting (for more information, see
VSE/Advanced Functions Operation).

USING TP BALANCING: Once activated, the TP balancing function can
be invoked by using TPIN/TPOUT macros. The TPIN macro signals to
the operating system that an immediate demand for system resources
is being made by the telecommunication application, for instance,
when a message has arrived. After processing is completed, TPOUT
informs the operating system that the telecommunication application
has no further processing to do for the time being, and that the
system resources that were exclusively used for telecommunication
should be released. Failure to issue the TPOUT macro can cause
serious performance degradation in production partition throughput.

The TPIN and TPOUT macros have been made available primarily for use
in IBM licensed telecommunication support (for example, ACF/VTAM and
CICS/VS). There is no need for these macros to be used in
user-written application programs that run under control of IBM sup-
plied telecommunication support.

238 VSE/Advanced Functions System Management Guide

Coding for the Shared Virtual Area

Besides accommodating the system directory list (SDL) and phases
that are needed by the operating system (for example, end-of-job
step routines), the shared virtual area (SVA) may contain
user-written phases that can be used concurrently by more than one
program. The SVA phases must be re-enterable and relocatable; code
that modifies itself will cause a protection check when executed
from the SVA. This section presents some advice on coding phases to
use SVA facilities and suggests some standards for base-register
usage.

The basic assumptions for coding an SVA phase are:

° The re-enterable code must not modify any storage within its own
storage area. Therefore, the code must not contain DTFs, CCBs,
or other control blocks that are modified during execution.

. The phase can modify registers only if it saves and restores
them for each user.

d A user-specified work area (within the calling partition) must
be provided for storing registers and for any storage modifica-
tions.

Suggested register conventions:

. Use register 12 as the base register in both the main routine
and the re-enterable code.

. Use register 13 as base for the working storage area. It is the
responsibility of the main routine to provide addressability to
the work area by loading register 13; the re-enterable routine
must not modify register 13. The easiest way to address the
working storage area in the re-enterable code is by a DSECT that
defines the fields of the work area and a USING dsectname,13.

In this way symbolic addressing can be used.

. Use CALL, SAVE, and RETURN macros. Since register 13 is the
base register, SAVE (14,12) and RETURN (14,12) result. Use reg-
ister notation for CALL, for example, CALL (15). Before issuing
the CALL, load register 15 with the transfer address. Register
14 will always contain the return address. The standard is thus
established of register 15 for calling and register 14 for
returning.

i Switches, and other areas that may be modified, can be placed in
the working storage area using base register 13.

Figure 67 on page 240 illustrates the suggested conventions: MASTER
is the main routine, SLAVE is the SVA phase.

Chapter 3: Using the Facilities and Options of VSE/Advanced Functions 239

MASTER

-l
w

SAVE
WORKAREA
SWITCH
TECB
FIELDA
FIELDB

SLAVE

EXIT
DATA1
DATA2

WORKAREA
FIELDC
FIELDD

CSECT

BALR 12,0

USING *,12

LA 13,SAVE

LOAD SLAVE,WORKAREA CANCELS IF SLAVE NOT IN CIL
LOADS SLAVE INTO WORKAREA
IF SLAVE IS NOT IN SVA

LR 15,1

CALL (15),(SWITCH,TECB,FIELDA,FIELDB,WORKAREA)

EOJ

DS 9D

DS 200D SLAVE IS LOADED HERE
IF NOT IN SVA

DC XL1'00'

DS CL&

DS CL15

DS CL11

END

CSECT MUST BE SEPARATE ASSEMBLY

SAVE (14,12)

BALR 12,0

USING *,12

USING WORKAREA, 6

LM 2,6,0(1)

MVC 0(15,4),DATA1

MVC 0(11,5),DATA2

CLI 0(2),X'Fr'

BE EXIT

SETIME 3, (3)SETIME ALTERS THE TECB

WAIT (3)

XI 0(2),X'FF'

RETURN (14,12)

DC

DC
LTORG
DSECT
DS

DS
END

CL15'THIS IS FIELDA'
CL11'THIS IS FIELDB'

3D
3D

Figure 67. Example of Conventions for SVA Coding

240 VSE/Advanced Functions System Management Guide

APPENDIX A. SYSTEM LAYOUT ON DISK

Figure 68 on page 243 and Figure 69 on page 244 illustrate how the
system residence (SYSRES) file is organized. The volume containing
the system residence file can be any IBM DASD device supported by
VSE/Advanced Functions except a 2311 disk.

IPL Records

This area contains the initial program load (IPL) bootstrap records,
which cause the IPL retrieval program to be read from SYSRES and
loaded into processor storage. For CKD devices the IPL retrieval
program is at cylinder 0, track 1, record 5. For FBA devices it is
contained within blocks 3 through 9.

System Volume Label

The volume label (VOL1 label) contains the address of the volume
table of contents (VTOC) established when the pack was initialized.
To initialize a pack, use the initialize function of DSF (Device
Support Facilities). This program is described in Device Support
Facilities,. The VIOC must be located outside of the SYSRES extent.

User Volume Label

The user volume label area is provided for any additional standard
volume labels (VOL2-VOL8 labels). This area can extend from record &
through the end of track O on CKD devices or from the end of the
system volume label to the end of block 1 on FBA devices.

System Directory

The SYSRES file starts with the system directory. This directory
contains the starting addresses of the 4 library directories and the
address of the label information area.

Library Directories and Libraries

The purpose of these areas of the SYSRES file is discussed in Chap-
ter 2 of this manual.

Appendix A. System Layout on Disk 241

Label Information Area

The SYSRES file ends with the label information area. The purpose
of this area is described in VSE System VSE/Advanced Functions Plan-
ning and Installation .

242 VSE/Advanced Functions System Management Guide

Starting Disk Address Number

Component of Tracks R i Req‘uired
cc HH R (Alloc.) O = Optional
IPL Record 00 00 1 R
(Phase $$A$IPLT)
IPL Record 00 00 2 R
1
System Volume Label 00 00 3 R
User Volume Label 00 00 4 (0]
Record 1 00 01 1 R
Record 2 00 01 2 R
System Directory
Record 3 00 01 3 1 R
Record 4 00 01 4 R
IPL Records (Phase $$A$PLBK) 00 01 5 R
Cataloged Phases
Core Image Directory 00 02 * R
Linked Phase

Core Image Library Members X Y+1 1 * R
Relocatable Directory Z+1 00 1 * 0
Relocatable Library Members X Y+1 1 * 0
Source Statement Directory Z+1 00 1 * 0
Source Statement Library Members X Y+1 1 * (o)
Procedure Directory Z+1 00 1 * 0
Procedure Library Members X Y+1 1 * o
Label Information Area Z+1 00 1 Device R
dependent

" Allocation Dependent on User Requirements Note: Track 0 of cylinder 0 is not part of the SYSRES file.
X = Ending CC of the Preceding Directory

Y = Ending HH of the Preceding Directory

Z= Ending CC of the Preceding Library

Figure 68. System Residence Organization on CKD Devices

Appendix A. System Layout on Disk 243

Component Starting Disk Address | Number of | R=Required
Block Number Blocks 0O=0Optional

IPL Records 0 1 R

(Phase $SASIPLO)

System Volume Label! 1 1

System Directory 2 1

IPL Retrieval Program 3 7 R

(Phase $$ASPLBF)

Core Image Directory 10 » R

Core Image Library A

Members X+1 R

Relocatable Directory Y+1 * 0

Relocatable Library .

Members X+1 0

Source Statement Directory Y+1 * 0

Source Statement Library N

Members X+1 0

Procedure Directory Y+1 * 0

Procedure Library Members X+1 * fo)

Label Information Area Y+1 200 2 R

* = Allocation dependent on user requirements
Last block of preceding directory
= Last block of preceding library

- < X

Optional user volume labels if written will be in the same block following the
system volume label.

2 Using the Restore program you may allocate a label information area different
than the default size of 200 blocks.

Note:
Blocks 0 and 1 are not part of the SYSRES file.

Figure 69. System Residence Organization on FBA Devices

244 VSE/Advanced Functions System Management Guide

BIBLIOGRAPHY

IBM System /370 Principles of Operation, GA22-7000

IBM 4300 Processors Principles of Operation

nor ECPS:VSE Mode, GA22-7070

Using the VSE/VSAM Space Management for SAM Feature, SC24-5192

VSE/Advanced Functions Data Management Concepts, GC24-5209

VSE/Advanced Functions Application Programming:

Macro User's Guide,

SC24-5210

VSE/Advanced Functions Application Programming:

Macro Reference,

SC24-5211

VSE/Advanced Functions Disk, Diskette, and Tape Labels, SC24-5213

DOS/VSE IBM 3800 Printing Subsystem Programmer's Guide, GC26-3900

0S/VS, DOS/VSE, VM/370 Environmental Recording Editing

and Printing (EREP) Program, GC28-0772

Guide to the DOS/VSE Assembler, GC33-4024

DOS/VSE OLTEP, GC33-5383

Data Security Under the VSE System, GC33-6077

VSE/Fast Copy Data Set

Installation Reference, SC33-6082

VSE/Advanced

Functions

System Control Statements, SC33-6095

VSE/Advanced

Functions

Planning and Installation, SC33-6096

VSE/Advanced

Functions

Operation, SC33-6097

VSE/Advanced

Functions

Messages and Codes, SC33-6098

VSE/Advanced

Functions

Diagnosis: Service Aids, SC33-6099

VSE/Advanced

Functions

System Utilities, SC33-6100

VSE/Advanced

Functions

Maintain

System History Program

Reference, SC33-6101

The VSE System General

Information, GC33-6108

VSE/Operator Communication Control

Bibliography

245

Facility General Information, GC33-6113

Device Support Facilities, GC35-0033

246 VSE/Advanced Functions System Management Guide

GLOSSARY

This glossary includes definitions
developed by the American National
Standards Institute (ANSI) and the
International Organization for
Standardization (ISO). This material
is reproduced from the American
National Dictionary for Information
Processing, copyright 1977, by the

Computer and Business Equipment Man-
ufacturers Association, copies of
which may be purchased from the Ameri-
can National Standards Institute, 1430
Broadway, New York, New York 10018.

ANSI and ISO definitions are marked by
an asterisk (¥).

Glossary 247

access control. A facility that pro-
vides for programmed control of a
user's authorization to access pro-
tected data.

access method. A technique for mov-
ing data between virtual storage and
input/output devices.

ACF/VTAM. An enhanced program ver-
sion of the IBM Virtual Telecommuni-
cations Access Method (VTAM).

* address. (1) An identification, as
represented by a name, label, or num-
ber, for a register, location in stor-
age, or any other data source or
destination such as the location of a
station in a communication network.
(2) Loosely, any part of an instruc-
tion that specifies the location of an
operand for the instruction.

address translation. The process of
changing the address of an item of
data or an instruction from its virtu-
al address to its real storage
address. See also dynamic address
translation.

alphameric characters. The alphabetic
characters A through Z, the digits 0
through 9, and the characters #, §$,
and @.

alternate track. One of a number of
tracks set aside on a disk pack for
use as alternatives to any defective
tracks found elsewhere on the disk
pack.

application program. A program writ-
ten for or by a user that applies to
his own work.

assembler language. A source lan-
guage that includes symbolic machine
language statements in which there is
a one-to-one correspondence with the
instruction formats and data formats
of the computer.

asynchronous operator
communication. A facility which

allows the operator to defer the reply
to a system message that requires a
response.

auxiliary storage. Data storage other
than real storage; for example storage
on magnetic tape or disk. Synonymous
with external storage, secondary stor-
age.

batch partition. Partition in which
batch processing takes place.

batch processing. Sequential proc-
essing of programs submitted to the
computer as a collection (batch) of
jobs that are separated from one
another by job control statements.

block. A set of logical records, usu-
ally the unit of data for a transfer
of data from processor storage to an
I/0 device and vice versa.

blocking. Combining two or more log-
ical records into one block.

book. A group of source statements
written in any of the languages sup-
ported by VSE and stored in a source
statement library.

buffer. An area of storage that is
temporarily reserved for use in per-
forming an input/output operation,
into which data is read or from which
data is written. Synonymous with I/0
area.

byte. A sequence of eight adjacent
binary digits that are operated upon
as a unit and that constitute the
smallest addressable unit of the sys-
tem.

card punch. A device to record
information in cards by punching holes
in the cards to represent letters,
digits, and special characters.

card reader. A device which senses
and translates into machine code the
holes in punched cards.

248 VSE/Advanced Functions System Management Guide

cardless system. A computing system
configured without a card reader or
card punch, but with an IBM diskette
input/output unit.

catalog. To enter a phase, module,
book, or procedure into one of the
system or private libraries.

* central processing unit. A unit of
a computer that includes the circuits
for controlling the interpretation and
execution of instructions. Abbrevi-
ated CPU.

central processor. Synonym for cen-
tral processing unit.

channel. (1)* A path along which
signals can be sent, for example, data
channel, output channel. (2) A hard-
ware device that connects the central
processor and its associated storage
with the I/0 control units.

CKD (count-key-data) device. A disk
storage device storing data in the
format: count field, normally followed
by a key field, followed by the actual
data record. The count field contains,
among others, the address of the
record in the format CCHHR (CC = cyl-
inder number, HH = head or track num-
ber, R record number) and the length
of the data; the key field contains
the record's key (search argument).
See also FBA (fixed-block- architec-
ture) device.

compile. To prepare a machine lan-
guage program from a computer program
written in a high-level language by
making use of the overall logic struc-
ture of the program, or generating
more than one machine instruction for
each symbolic statement, or both, as
well as performing the function of an
assembler.

compiler. A program that translates
high-level language statements into
machine language instructioms.

component. A functional part of VSE
(for example: job control program,
VSE/POWER) .

configuration. The group of machines,
devices, etc., which make up a data
processing system.

control program. A program that is
designed to schedule and supervise the
performance of data processing work by
a computing system. See also system
control program.

control unit. A device that controls
the reading, writing, or display of
data at one or more input/output
devices.
count-key-data device. See CKD
device.

CPU. See central processing unit.

data file. A collection of related
data records organized in a specific
manner. For example, a payroll file
(one record for each employee, showing
his rate of pay, deductions, etc., or
an inventory item, showing the cost,
selling price, number in stock, etc.).
See also file.
data integrity. See integrity.

data management. A major function
of the operating system; the function
involves organizing, storing,
locating, retrieving, and updating
data.

data security. See security.
deblocking. The action of making the
first and each subsequent logical
record of a block available for proc-
essing one record at a time.

default value. The choice among
exclusive alternatives made by the
system when no explicit choice is
specified by the user.

Glossary 249

diagnostic routine. A program that
facilitates detection and isolation of
malfunctions or mistakes.

direct access. Retrieval or storage
of data by a reference to its location
on a volume, other than relative to
the previously retrieved or stored
data.

directory. An index that is used by
the system control program to locate
one or more sequential blocks of pro-
gram information that is stored on
direct access storage.

disk pack. A direct access storage
volume containing magnetic disks on
which data is stored. Disk packs are
mounted on a disk storage drive, such
as the IBM 3330 Disk Storage Drive.

diskette. A flexible magnetic oxide
coated disk suitable for data storage
and retrieval.

dump. (1) To copy the contents of
all or part of virtual storage. (2)
The data resulting from the process as
in (1).

dynamic address translation

(DAT). (1) The change of a virtual
storage address to an address in
processor storage during execution of
an instruction. (2) A hardware func-
tion that performs the translation.

dynamic partition balancing.
tition balancing.

See par-

ECPS/VSE (extended control program
support:VSE). An implementation of
the virtual storage concept which does
not require software participation in
the translation of virtual addresses
into real addresses.

error message. The communication
that an error has been detected.

error recovery procedures. Proce-
dures designed to help isolate, and,

when possible, to recover from errors
in equipment. The procedures are often
used in conjunction with programs that
record the statistics of machine mal-
functions.

extent. A continuous space on a
direct-access storage device, occupied
by or reserved for a particular file.

external storage.
age.

See auxiliary stor-

FBA (fixed-block-architecture)
device. A disk storage device storing
data in blocks of fixed size; these
blocks are addressed by block number
relative to the beginning of the file.

FBA block. A unit of data of fixed
length on which the FBA architecture
is based.

* file. A collection of related
records treated as a unit. For
example, one line of an invoice may
form an item, a complete invoice may
form a record, the complete set of
such records may form a file, the col-
lection of inventory control files may
form a library, and the libraries used
by an organization are known as its
data bank.

fixed-block-architecture. See FBA
device.
hard copy. A printed copy of machine

output in a visually readable form,
for example, printed reports,
listings, documents, and summaries.

hard wait state. In general, a wait
state is the condition of a CPU when
all operations are suspended. In a
hard wait state, the system does not
accept any commands. Operations can be
restarted only by a new initial pro-
gram load (IPL).

* hardware. Physical equipment, as
opposed to the computer program or
method of use: for example,

250 VSE/Advanced Functions System Management Guide

mechanical, magnetic, electrical, or
electronic devices. Contrast with
software.

idle time. That part of available
time during which the hardware is not
being used.

index. In data management, a table
used to locate the records of a file.

initial program load (IPL). The
initialization procedure that causes
the operating system to be loaded into
virtual storage and to commence opera-
tion.

integrity. Preservation of data or
programs for their intended purpose.

* |/O:. Abbreviation for
input/output.

IPL. See initial program load.

job. (1) * A specified group of tasks
prescribed as a unit of work for a
computer. By extension, a job usually
includes all necessary computer pro-
grams, linkages, files, and
instructions to the operating system.
(2) A collection of related problem
programs, identified in the input
stream by a JOB statement followed by
one or more EXEC statements.

job accounting interface. A function
that accumulates, for each job step,
accounting information such as job
step start and stop times and counts
of I/0 operations.

job control. A program that is called
into storage to prepare each job or
job step to be run. Some of its func-
tions are to assign I/O devices to
certain symbolic names, set switches
for program use, log (or print) job
control statements, and fetch the
first program phase of each job step.

job step. The execution of a single
processing program.

K. When referring to storage capaci-
ty, 1024 bytes.

* key. One or more characters asso-
ciated with an item of data; these
characters are used to identify it or
control its use.

label. An identification record for a
volume of data on magnetic tape, disk,
or diskette; an identification record
of an individual file on such a volume
of data.

label information area. An area on a
DASD device that stores label informa-
tion read from job control statements
or commands. Synonymous with label
area.

language translator. A general term
for any assembler, compiler, or other
routine that accepts statements in one
language and produces equivalent
statements in another language.

librarian. The set of programs that
maintains, services, and organizes the
system and private libraries.

library. A collection of data ele-
ments to which the system has quick
access. All elements in a particular
library are of the same type. For
example, a core image library is a
collection of phases, a procedure
library a collection of job control
procedures.

linkage editor. A processing program
that prepares the output of language
translators for execution. It combines
separately produced object modules,
resolves symbolic cross references
among them, and produces executable
code (a phase) that is ready to be
fetched or loaded into virtual
storage.

load. (1) * In programming, to enter

instructions or data into storage or
working registers. (2) In VSE, to

Glossary 251

bring a program phase from a core
image library into virtual storage for
execution.

message.
message.

See error message, operator

* multiprogramming. A mode of opera-
tion that provides for the interleaved
execution of two or more computer pro-
grams by a single central processor.

multiprogramming system. A system
that controls more than one program
simultaneously by interleaving their
execution.

object code. Output from a compiler
or assembler which is suitable for
processing by the linkage editor to
produce executable machine code.

* object module (program). A module
(program) that is the output of an
assembler or compiler and is input to
a linkage editor. Contrast with
source program.

operand. (1) * That which is oper-
ated upon. An operand is usually iden-
tified by an address part of an
instruction. (2) Information entered
with a command name to define the data
on which a command processor operates
and to control the execution of the
command processor.

operator command. A statement to
the control program, issued via a con-
sole device, which causes the control
program to provide requested informa-
tion, alter normal operations, initi-
ate new operations, or terminate
existing operations.

operator message. A message from the
operating system or a problem program
directing the operator to perform a
specific action, such as mounting a
tape reel, or informing him of specif-
ic conditions within the system, such
as an error condition.

page. (1) A 2K block of
instructions, of data, or of both
which can be transferred between
processor storage and the page data
set. (2) To transfer instructions,
data, or both between processor stor-
age and the page data set.

page data set. One or more extents
in auxiliary storage in which pages
are stored.

page frame. 2K block of processor
storage that can contain a page.

page in. The process of transferring
a page from the page data set to
processor storage.

page out. The process of trans-
ferring a page from processor storage
to the page data set.

page pool. The set of all page
frames available for paging
virtual-mode programs.

paging. The process of transferring
pages between processor storage and
the page data set.

* parameter. A variable that is giv-
en a constant value for a specific
purpose or process.

partition. A contiguous area of vir-
tual storage available for the exe-
cution of programs.

partition balancing. A facility which
allows the user to specify two or more
or all partitions of the system to
have their processing priorities
changed dynamically such that each of
these partitions receives approximate-
ly the same amount of CPU processing
time.

peripheral equipment. A term used to
refer to card devices, magnetic tape
and disk devices, printers, and other
equipment bearing a similar relation
to the central processor.

252 VSE/Advanced Functions System Management Guide

phase. The smallest complete unit
that can be referred to in a library
containing executable programs.

printer. A device that writes output
data from a system on paper.

priority. A rank assigned to a parti-
tion that determines its precedence in
receiving processing time.

private library. A user-owned library
that is separate and distinct from the
system library.

problem program. Any program that
is executed when the central process-
ing unit is in the problem state; that
is, any program that does not contain
privileged instructions. This includes
IBM-distributed programs, such as lan-
guage translators and service
programs, as well as programs written
by a user.

processing program. (1) A general
term for any program that is not a
control program. (2) Synonymous with
problem program.

processor storage. The general pur-
pose storage of a computer. Processor
storage can be accessed directly by
the operating registers. Synonymous
with real storage.

queue. (1) A line or list formed by
items in a system waiting for service;
for example, tasks to be performed or
messages to be transmitted in a mes-
sage switching system. (2) To arrange
in, or form, a queue.

real address. The address of a
location in real storage.

real address area. The area of virtu-
al storage where virtual addresses are
equal to real addresses.

real mode. The execution mode of a
program that may not be paged.

real storage. The storage of a com-
puting system from which the central
processing unit can directly obtain
instructions and data, and to which it
can directly return results. Synony-
mous with processor storage.

relocatable library. A library of
relocatable object modules and IOCS
modules required by various compilers.
It allows the user to keep frequently
used modules available for combination
with other modules without recompila-
tion.

restore. To write data previously
copied from disk (onto magnetic tape,
for example) back onto disk.

* routine. An ordered set of
instructions that may have some gener-
al or frequent use.

SCP. See system control program.

SDL. See system directory list.
See auxiliary

secondary storage:.
storage.

security. Prevention of access to, or
use of, data or programs without
authorization (see also access
control).

sequential file. A file whose records
are organized on the basis of their
successive physical positions, con-
trast with direct access.

service program. A program that
assists in the use of a computing sys-
tem, without contributing directly to
the control of the system or the pro-
duction of results.

shared virtual area (SVA). An area
located in the highest address range
of virtual storage. It can contain a
system directory list (SDL) of highly
used phases, resident programs that
can be shared between partitions, and
an area for dynamic allocation to com-
ponents of VSE.

Glossary 253

software. A set of programs concerned
with the operation of the hardware in
a data processing system.

* source program. A computer program
written in a source language. Con-
trast with object program.

source statement library. A col-
lection of books (such as macro defi-
nitions) cataloged in the system by
the librarian program.

spooling. The reading and writing of
input and output streams on auxiliary
storage devices, concurrently with job
execution, in a format convenient for
later processing or output operations.

stand-alone dump. A program that
displays the contents of the registers
and of virtual storage and that runs
independently of (is not controlled
by) the system.

standard label. A fixed-format iden-
tification record for a tape or disk
file. Standard labels can be written
and processed by the system.

storage protection. An arrangement
for preventing unauthorized access to
storage.

supervisor. A component of the con-
trol program. Coordinates the use of
resources and controls the flow of
operations in a data processing
system.
SVA. See shared virtual area.
switched line. A communication line
in which the connection between the
computer and a remote station is
established by dialing. Synonymous
with dial line.

system control programming

(SCP). 1IBM-supplied programming sup-
port that is fundamental to the opera-
tion and service of the system.

system directory list (SDL). A list
containing directory entries of fre-
quently used phases and of all phases
resident in the shared virtual area.
This list is placed in the shared vir-
tual area.

system residence device. The direct
access device on which the system res-
idence volume is mounted.

system residence volume. The volume
on which the basic operating system
and all related supervisor code is
located.

telecommunication. Data transmission
between a computing system and remote-
ly located devices via a unit that
performs the necessary format conver-
sion and controls the rate of trans-
mission.

teleprocessing. The processing of
data that is received from or sent to
remote locations by way of telecommu-
nication lines.

teleprocessing balancing. A supervi-
sor function that allows teleprocess-
ing users who have concurrent batch
processing in a paging environment to
obtain better teleprocessing response
times at the expense of slower job
execution in the batch partition(s).

terminal. (1) * A point in a system
or communication network at which data
can either enter or leave. (2) Any
device capable of sending and receiv-
ing information over a communication
channel.

throughput. The total volume of work
performed by a computing system over a
given period of time.

* track. The portion of a moving
storage medium, such as a magnetic
tape, or disk, that is accessible to a
given reading head position.

transient area. An area within the
control program and fixed in processor

254 VSE/Advanced Functions System Management Guide

storage, used for temporary storage of
executable high-priority code (tran-
sient routines).

unit record. A card containing one
complete record; a punched card. Also
a line-printer output record.

universal character set (UCS). A
printer feature that permits the use
of a variety of character arrays.

user label. An identification record
for a tape or disk file; the format
and contents are defined by the user,
who must also write the necessary
processing routines.

utility program. A problem program
designed to perform a routine task,
such as transcribing data from one
storage device to another.

virtual address. An address that
refers to virtual storage and must,
therefore, be translated into a real
storage address when it is used.

virtual address area. In 370-mode,
the area of virtual storage whose
addresses are greater than the highest
address of the real address area.

virtual mode. The operating mode of a
program which may be paged.

virtual storage. Addressable space
that appears to the user as processor
storage from which instructions and
data are mapped into processor storage
locations.

Virtual Storage Access Method
(VSAM). An access method (available
as the licensed program product

VSE/VSAM) for direct or sequential
processing of fixed and
variable-length records on direct
access devices; designed for use in a
virtual storage environment.

Virtual Telecommunications Access
Method (VTAM). An IBM program
(available as a licensed program prod-
uct) that control communication
between application programs and ter-
minals in a telecommunications
network.

volume. That portion of a single
unit of storage media which is acces-
sible to a single read/write
mechanism, for example, a disk pack or
a reel of magnetic tape. (2) A record-
ing medium that is mounted and dis-
mounted as a unit.

volume table of contents. A table on
a direct access volume that describes
each file on the volume. Abbreviated
VTOC.

VSAM.
Method.

See Virtual Storage Access

VSAM catalog. A file, with an index,
containing extensive file and volume
information that VSE/VSAM requires to
locate files, to allocate and
de-allocate storage space, to verify
the authorization of a program or
operator to gain access to a file, and
to accumulate usage statistics for
files.

VTAM. See Virtual Telecommuni-
cations Access Method.

VTOC.

See volume table of contents.

Glossary 255

256 VSE/Advanced Functions System Management Guide

INDEX

Special Characters

$SYSOPEN 47

A

access control facility 60
accounting information 209
ACTION CANCEL (linkage
editor) 146
ACTION statement (linkage
editor) 137
ADD command (IPL) 34
address space 5
ALLOC command (JC) 22, 48, 50
ALLOC statement (CORGZ) 177
ALLOCR command (JC) 19, 24, 49
ASI (automated system
initialization) 32
ASI background procedures 55
ASI foreground procedure 55
ASI IPL procedure 53
ASI JCL procedure 54
ASI master procedure 52
ASI procedures 39
assembly 96
ASSGN statement (JC) 74, 65
assignment by volume serial
number 74
assignments, resetting 62
automated system initialization
(see ASI)

B

BACKUP utility program 197
BATCH command 3, 50
books, updating 174

C

CALL macro 239
CATAL option (EXEC LKEDT) 126
cataloged procedures (see proce-
dures)
cataloged programs 100
cataloging phases 131
cataloging procedures 165
change levels 167
channel switching 219
checkpoint restart procedure 217
checkpoints 216
CHKPT macro 217
clearing core image library 144
communication device list

(CDL) 40
compile, link and go 97
compiling 96
concurrent execution 1, 5
copy service program 183
create system residence 175
cross partition event control 28

D

DASD file labels 80

DASD locking vs. sharing 222
DASD sharing 71

DASD sharing under VM 226
DASD sharing, initializing 224
DASDSHR option 224

data integrity 220
de-editing macros 187

DEF command (IPL) 35

DEL command (IPL) 35
diagnostic aids 29

diskette labels 79

DLA command (IPL) 36

DLBL statement (JC) 80

DLF command (IPL) 37, 225
DPD command (IPL) 36

DSF oprand (DLF command) 225
DTL macro 223

dump 8

DVCDN command (JC) 75

DVCUP command (JC) 75

Index 257

E

ECPS:VSE mode 14
edited macros 187
end-of-job statement (JC) 62
ENTRY statement (linkage
editor) 137
error recovery 29
ESD (external symbol
dictionary) 142
examples
assembler coding for virtual
execution 233
assign system file to
disk 111
backup system to private
library 197
cataloged procedure 116
comparing libraries
(COPYSERV) 184
CORGZ MERGE 196
creating and copying to a pri-
vate library 191
creating backup SYSRES 177
creating libraries 91
creating private CIL 191
creating private
libraries 190
creating SYSRES 177
CSERV output as linkage editor
input 187
DASD file label
specification 81-84
DASD sharing 227
de-editing macros 188
defining search chain 194
displaying and punching
libraries 186
displaying library
directories 185
FORTRAN coding for virtual
execution 233
linkage editor 149-155
linkage editor work file
definition 137
merging libraries (CORGZ) 182
merging system and private
libraries 196
multi-step procedure 121
overriding procedures 119
PL/I coding for virtual
execution 233
program execution 101
real mode execution 104

setting condense limit 173
SYSIPT data in cataloged
procedure 124
SYSRES backup 180
system file on diskette 113
tape operation (MTC
command) 94
EXEC PROC statement (JC) 116
EXEC statement (JC) 60, 96
execution mode 237
EXIT PC macro 200
exit routines
abnormal termination 201
interval timer 200
IPL 202
IPL, register usage 202
job control 204
job control, register
usage 205
open 47
operator communication 201
overview 199
page fault handling
overlap 202
program check 200
task timer 202
EXTENT statement (JC) 80
external reference 143

F

fast fetch 44
FCB command (JC) 94
FCEPGOUT macro 238
FETCH macro 148
file definition 64
file labels
checking 78
file identifier 78
file names 78
on DASD 80
on disk and diskette 76
on diskette 79
on tape 76, 84
overview 76
writing 78
file names 81, 84
file protection 38
file-id 81
file-id operand (TLBL and
DLBL) 78
filename operand (TLBL and
DLBL) 78

258 VSE/Advanced Functions System Management Guide

fixing pages 235

forcing page-out 238

forms control buffer (FCB) 94
freeing pages 236

FREEVIS macro 105

G

GENDTL macro 223

GETVIS area 26, 105
GETVIS macro 105

GO operand (EXEC) 97, 134

H

hard copy file, creation 46

I/0 assignment 65
I/0 assignment, listing 75
I/0 assignment, permanent 69
I/0 assignment, resetting 75
I/0 assignment, temporary 69
I/0 buffers 38
idle time 1
INCLUDE statement (linkage
editor) 137
including phases 141
initial program load (see IPL)
inline SYSIPT data 97
interrupting jobs 64, 114
IPL (initial program load)
ADD command 34
altering procedures 52
alternate procedures 32

ASI background procedures 55

ASI foreground procedure 55

ASI IPL procedure 53

ASI JCL procedure 54

ASI master procedure 52

ASI procedures 39

automated 32, 50

commands, entering 33

communication device list
(CDL) 40

DEF command 35

DEL command 35

DLA command 36

DLF command 37

DPD command 36
procedures 32, 51-58
purpose 31

SET command 35, 47

supervisor specification 33

SVA command 38
SYS command 38
IPL retrieval program 241

J

job accounting 209

job accounting information 209

job accounting routine 212

job accounting routine, register

usage 212

job control
ASSGN statement 74, 65
DLBL statement 78, 79, 80
DVCDN command 75
DVCUP command 75
end-of-job statement 62
EXEC PROC statement 116
EXEC statement 60, 96
EXTENT statement 80
FCB command 94
JOB statement 61
LIBDEF statement 89
LIBDROP statement 92
LIBLIST statement 93
LISTIO command 75
loading in partition 50
MTC command 93
OPTION PARSTD 85
OPTION statement 101
OPTION STDLABEL 86
OPTION USRLABEL 85
overview 59
PAUSE command 64, 114
RESET command 75
resetting options 62
RSTRT statement 217
SIZE command 106
TLBL statement 78
UCB command 94

job control program 59

job names 61

job priority 63

JOB statement (JC) 61

job steps 60

job streams 63

jobs 59

Index

259

L RSERV 185
sharing libraries 159

label areas 32, 62, 241 SSERV 185
label areas, definition 36 UPDATE statement (MAINT) 174
label information areas 85 libraries
adding labels 86 backup 197
deleting labels from 86 cataloging books 163
displaying 88 cataloging members 161
partition standard 85 chaining 89
partition temporary 85 change level 167, 174
search order 87 changing size of 178
system standard 86 CIL search order 194
LIBDEF statement (JC) 89 condense limit 63, 172
LIBDROP statement (JC) 92 condensing 169
LIBLIST statement (JC) 93 core image, directory 156
librarian programs creating 91
ALLOC statement (CORGZ) 177 defining 89
BKEND statement (MAINT) 165 defining as input 90
CATALP statement (MAINT) 165 defining as output 90
CONDL statement (MAINT) 172 deleting members 168
CONDS statement (MAINT) 169 . deleting members
COPY ALL statement implicitly 162
(CORGZ) 176 deleting whole library 168
COPYC statement (CORGZ) 176 directories 155
COPYP statement (CORGZ) 176 disk space requirements 179
COPYR statement (CORGZ) 176 displaying 185
COPYS statement (CORGZ) 176 displaying definitions 93
COPYSERV 183 displaying directories 185
COPYSERV output 183 free space 169
CORGZ control statements 176 maintenance 160
CORGZ overview 175 merging 180
CSERV 185 organizing 175
DELETC statement (MAINT) 168 overview 155
DELETP statement (MAINT) 168 private core image 191
DELETR statement (MAINT) 168 private, creating 188
DELETS statement (MAINT) 168 private, defining 189
DSERV 185 private, using 192
ESERV 187 punching 185
GENCATALS statement relocatable 135
(ESERV) 187 renaming members 173
GENEND statement (ESERV) 187 resetting definition 92
MAINT 160 search chain definition 194
MAINT CATALS 163 search chains 135
MAINT CATALx 161 shared 226
MAINT definition 161 symbolic unit names 192
MEND statement (MAINT) 164 system as private 195
MERGE statement (CORGZ) 180 temporary chains 62
overview 157 updating books 174
PSERV 185 link editing 96
punched output 186 LINK option (EXEC LKEDT) 126
RENAMC statement (MAINT) 173 linkage editor
RENAMP statement (MAINT) 173 AUTOLINK feature 143
RENAMR statement (MAINT) 173 AUTOLINK feature,
RENAMS statement (MAINT) 173 suppressing 144

260 VSE/Advanced Functions System Management Guide

canceling 146

cataloging phases 131
CLEAR option 144
compile, link and go 133
control statements 137
diagnostics 144

external references 143
FETCH macro 148

GO option 134

INCLUDE statement 141
input 129, 186

input, preparing 137
library definitions 135-136
link and go 132

load address 140

LOAD macro 148

logical units 136

N

NOAUTO option (linkage
editor) 144
NOLOG option 33

o)

object modules 129

option CATAL (linkage
editor) 100

OPTION statement (JC) 101

OV operand (EXEC) 119

OVEND operand (EXEC) 119

map 145 P

option CATAL 100

output 129 page boundaries 234
overlay programs 146 page data set 5

overview 126 page data set definition 36
permanent linkage 126 page faults 13, 232

storage requirements 142 page frames 5

SVA phases 140 page pool 5, 16, 19, 49

temporary linkage 126 page-in in advance 238
work files 136 PAGEIN macro 238
LISTIO command (JC) 75 pages 5
load address 140 parameters, passing to
LOAD macro 148 programs 103
locality of reference 232 partition related procedures 125
lock file 224, 225 partitions
lock file definition 37 activation 3
lock file, re-assigning 32 allocating processor

LOCK macro 223 storage 19
locking shared DASDs 221 balancing 3
LOG option 33 BG size 50

communication between 28
foreground, starting 50
number 2
M overview 2
priority 3, 15, 238
processor storage
allocation 49
real storage allocation 24
shared resources 3
starting foreground 50
virtual storage
allocation 22, 48
password 60
PAUSE command (JC) 64, 114
PFIX macro 235
PFIX macro, return codes 236
PFREE macro 236

LSERV program 88

main task 28
MAINT program 160
minimize storage
requirements 232
MODDTL macro 223
modifier statement 118
MTC command (JC) 93
multi-phase programs, naming 138
multiple processor
environment 220

Index 261

262

pg=major.automated system
initialization (ASI) 50
PHASE statement (linkage
editor) 137
phases 129
phases, automatic copying 178
phases, naming 138
print buffers, loading 40
printer operation 94
priority 1, 3, 238
procedures
cataloging 165
inserting statements 118
library search order 116
modifier statement 118
modifying 117, 165
modifying statements 118
multi-step 120
multi-step, modifying 122
overriding 119
partition related 125
retrieving 116
suppressing statements 118
symbolic name 118
SYSIPT data 124
processor storage 19
program execution 96
program execution, real mode 103
program execution, virtual
mode 103, 105
program options 101
program parameters 103
program products, installing 42
program structure 127
program switches 102
programmer logical units 69

R

read only access 71
real address space 19
real mode execution 18, 24
REA1 operand (EXEC) 24, 103
recorder file 29, 32
recorder file, creation 45
recorder file, label
information 45
recorder file, size 45
recovering shared systems 231
releasing pages 237
relocatable library 135
RELPAG macro 237, 238
reserving shared DASDs 221

RESET command (JC) 75
resetting assignments 62
resource protection 222
restart from program
checkpoint 217
restrictions
cataloged procedures 166
changing private library
extents 191
condensing libraries 172
COPYSERV library
definition 183
diskette sharing 71
GETVIS for CORGZ MERGE 183
I/0 assignment 74
logical unit assignment 70
merging libraries 181
overriding SYSIPT data 120,
124
page fixing 26
partition size for CORGZ 157
phase names 138
POWER and TP priority 3
real storage for
partitions 20
restoring core image
libraries 192
RETURN macro 239
ROD command (JC) 46
RSTRT statement (JC) 217
RUNMODE macro 237

S

SAVE macro 239

SDL, building entries 43
search chains 89

security checking 38
sequential execution 232
SET command (IPL) 35, 47

SET SDL command (IPL) 43
SETPFA macro 202

SETT macro 202

shared logical units 71
shared virtual area (see SVA)
sharing DASD devices 220
sharing hard-copy file 227
sharing history file 227
sharing libraries 226
sharing recorder file 227
sharing system files 222
SHR operand (ADD command) 224
SIZE command (JC) 106

VSE/Advanced Functions System Management Guide

SIZE operand (EXEC) 24, 104, 106
source modules 128
source statement library 174
standard labels 84
START command 3, 50
stop list 52
storage allocation, dynamic 105
storage protection 3
STXIT AB macro 201
STXIT TT macro 202
subroutines for virtual
execution 234
SUBSID macro 224
subtask 28
supervisor area 14
supervisor buffers 38
supervisor specification 33
supervisor, loading 32
SVA (shared virtual area) 16
SVA (shared virtual area)
definition 38
SVA command (IPL) 38
SVA phases 140
SVA phases, coding 239
SVA phases, loading 42
SVA phases, replacing 44
SVA, loading phases 43
SVA, modifying 32
SVA, space requirements 42
switching DASD devices 218-220
symbolic names 165
SYS command (IPL) 38
SYSCAT definition 35
SYSDMP definition 35
SYSIPT data 97, 166
SYSLOG, defining 32
SYSREC 29, 32
SYSREC definition 35
SYSRES layout 241
SYSRES, creating 175
SYSRES, reassigning 32
system directory list (SDL) 42
system files 108-116

on disk 110

on diskette 113

on FBA disk 112

on tape 109

record formats 115
system logical units 68
system phases, loading 40

T

tape labels 84

tape operation 93

task 28

task selection 2
teleprocessing balancing 238

TESTT macro 202

TOD (time of day) clock,
setting 32

TPBAL command 238

TPIN macro 238

TPOUT macro 238

transient routines 44

TTIMER macro 200

U

UCB command (JC) 94

unit record device, sharing 71

universal character-set buffer
(UCB) 94

UNLOCK macro 223

UPSI byte 102

user exit routines (see exit rou-
tines)

user labels 84

\%

validity of reference 232, 234
virtual address space 19
virtual mode execution 18
virtual storage

address space 5

address space layout 19

address space size 40

address translation 9

allocation to partitions 48

ECPS:VSE mode 19

executing in 10

fixing pages 26

macros 235-238

maximum 5

overview 5

page fault 13

page pool 16

partitions 15

programming for 231

supervisor area 14

SVA (shared virtual area) 16

370 mode 19

Index 263

VM linkage 58 3

VSAM 222
VSE/VSAM 35 370 mode 14
VSIZE parameter 19, 33 3800 printing subsystem 95

VTOC address 241

w

working set 232

264 VSE/Advanced Functions System Management Guide

SC33-6094-1

VSE/Advanced Functions System Management Guide (File No. S370/4300-34)

Printed in U.S.A. SC33-6094-1

Please use pressure sensitive or other gummed tape to seal this form.

Note: Staples can cause problems witn automated mail sorting equipment.

READER’'S
COMMENT
VSE/Advanced Functions FORM
System Management Guide
Order No. SC33-6094-1

This form may be used to communicate your views about this publication. They will be sent to
the author’s department for whatever review and action, if any, is deemed appropriate.
Comments may be written in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course, continue to use the
information you supply.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.
Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp is necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you may
mail directly to the address in the Edition Notice on the back of the title page.)

SC33-6094-1

sur Buojy pjSd 10 inD--

Reader’'s Comment Form

Fold and tape Please Do Not Staple Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 812 BP

1133 Westchester Avenue

White Plains, New York 10604

(7€-00€%/0LES "ON 2li4) 2PIND Juswabeue|y WalsAg SUOHOUNY PAOUBAPY /ISA

Fold and tape Please Do Not Staple Fold and tape

L-¥609-€€DS VSN ul pajuld

