

IBM Virtual Storage Extended/
POWER

Application Programming
Version 2 Release 3

Program Number 5666-273

Order Number SC33-6276-00
File No. S370/4300-40

First Edition (June 1987)

This edition is an excerpt from the VSE/POWER Installation and
Operations Guide, SH12-5329-5. Changes or additions to the text
and illustrations against that manual are indicated by a
vertical line to the left of the change. This edition applies
to Version 2, Release 3 of IBM Virtual Storage Extended/POWER,
Program Number 5666-273, and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters.

Changes are made periodically to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM System/370, 30XX and 4300
Processors Bibliography, GC20-0001, for the editions that are
applicable and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
licensed program in this document is not intended to state or
imply that only IBM's licensed program may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the addresses given below;
requests for copies of IBM publications should be made to your
IBM representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed either to:

IBM Corporation

Dept. 6R1BP

180 Kost Road

Mechanicsburg, PA 17055, USA

or to:

IBM Deutschland GmbH

Dept. 3164

Schoenaicher Strasse 220

D-7030 Boeblingen, Federal Republic of Germany

IBM may use or distribute whatever information you supply in any
way it believes appropriate without incurring any obligation to
you.

© Copyright International Business Machines Corporation 1987

PREFACE

This manual describes application programming functions of IBM Virtual
Storage Extended/POWER (VSE/POWER for short), a program that schedules
the input and output of jobs. The manual provides guidance and

reference information for the major user task application programming.

The other user tasks, such as planning, installation, operation, and
diagnosis are described in the companion volume VSE/POWER Installation
and Operations Guide, from which this manual has been extracted.

This book contains information about:

. Controlling job accounting and output segmentation from within your
application programs.

° The use of VSE/POWER services in application programs running in one
of the system's partitions, under or outside the control of
VSE/POWER.

® Writing exit routines.

This book is organized in chapters and appendixes which have been taken
over from the VSE/POWER Installation and Operations Guide, SH12-5329-5:

Chapter 1, part of the former Chapter 5 of SH12-5329-5, describes
how to do job accounting and output segmentation.

Chapter 2, the former Chapter 7 of SH12-5329-5, describes the
support available for accessing VSE/POWER services from an
application program running in one of the system's partitions.

Chapter 3, the former Chapter 8, provides the information needed to
have an application program write spooled output to a device under
control of that program.

Appendix A provides information on coding and using reader exit
routines.

Appendix B describes the XECB macro based support for
cross-partition communication. This support is still available to
ensure program compatibility.

At the end of this book, you find:

. A Glossary which explains terms used in this manual. For terms not
explained in this manual, you may refer to the IBM manual Vocabulary
for Data Processing, Telecommunications, and Office Systems,
GC20-1699.

Preface iii

e A Bibliography which lists related documentation.
* An Index to aid you in retrieving information from this manual.
Throughout this book:
Version and release numbers for VSE/POWER and various other products
are shown in the form "n.n." For example, VSE/POWER Version 2,

Release 3 is shown as VSE/POWER 2.3.

If not stated otherwise, information given for the IBM 3800 Printing
Subsystem applies also to the IBM 3200 Printing Subsystem.

iv IBM VSE/POWER Application Programming

CONTENTS

Chapter 1. Job Accounting, Segmentation, IBM 4248 Support . . 1
Job Accounting .o e e 1
PACCNT Macro: Account Record DSECT Generatlon .. e e . 4
PUTACCT Macro: Adding User Information to Account Records .. 22
Output Segmentation . e e e e e e e e e 24
SEGMENT Macro: Control Output Segmentatlon e e e e e e e e 24
VSE/POWER Support of the IBM 4248 e e e e e e e e e e e e e 27
Chapter 2. Spool-Access Support e e e e e e e e e e e e e 29
Concept .. e e e e e e e e e e e e e e e e 30
Set Up a Communlcatlon Path e e e e e e e e e e e e e e e e 33
Request VSE/POWER Access-Services e e e e e e e e e e e e 34
Request a CTL Service e e e e e e e e e e e e e e e e e e 36
Request a GET Service . e e e e e e e 41
Request a PUT Service — General Con51derat10ns . . e e e 58
Request a PUT Service — Submission of Jobs or Job Streams .. 60
Request a PUT Service — Submission of Output Data e e e e 72
End Access to VSE/POWER e e e e e e e e e e e e e 95
Set Up Two or More Communication Paths e e e e e e e e e e e e 97
Description of the Spool-Access Support Macros e e e e e e e 97
MAPXPCCB Macro e 98
PWRSPL Macro e 99
XPCC Macro e 113
XPCCB Macro . e e e e e e e e e e e 118
Spool-Access Support Programmlng Example e e e e e e e e e e 120
Chapter 3. External Device Support 149
Concepts .o e e e e e e e e e e e e e e e e e 149
Set Up a Communlcatlon Path e e e e e e e e e e e e e e e e 152
Start a Device .. e 152
Process Spooled Output e e e e e e e e e e e e e e e e e e e 156
Stop the Device . e e e e e e e e e e e e e e e 168
Handle an Abnormal- End Sltuatlon .o e e e e e e e e e e 173
Process Order-Control Records and Slgnals e e e e e e e e e e 176
Process a Device Order e e e e e e e e e e e e e e e e e e 177
Process a Subsystem Order .o c e e e e e 179
Device/Subsystem Orders and Order Response Records e e e e 179
Process a Signal e 192
General Hints e 194
Appendix A. Reader Exit Routine e e e e e e e e e e e e 197
Appendix B. VSE/POWER SPOOL-Macro Support e e e e e e e s 203
SPL: Generate a Spool Parameter List .o e e e e e e e 205
CTLSPOOL: Control VSE/POWER Jobs e e e e e e e e e e e e e 209
GETSPOOL: Retrieve Data from the Queues e e e e e e e e e 215
PUTSPOOL: Submitting a Job Stream e e e e e e e e e e e e e 220

Contents v

vi

Return Codes

Coding Example for Using the SPOOL-Macro Support

Glossary ¢ i i i v e e e e e e
Bibliography

Index

IBM VSE/POWER Application Programming

223
226

239

245

247

FIGURES

VWOoONOTONETWN -

Account-Record Prefix

Execution Account Record e e

List Account Record

Network Account Record

Punch Account Record

Reader Account Record e

Transmitter- or Receiver-Account Record

RJE,BSC Account Record

RJE,SNA Account Record

VSE/POWER System-Up Account Record .

VSE/POWER Spool-Access Connect Account Record

VSE/POWER Spool-Access Operation Account Record
VSE/POWER Action for IBM 4248-Specific I/0 Commands

The Macros and Control Blocks for Spool Access

Sequence Diagram — Setting up a Communication Path
Sequence Diagram — CTL-Service Processing .

Return and Feedback Codes for CTL-Service Related Requests
Record Prefix Layout .. .
Sequence Diagram — GET Serv1ce for a Complete Queue Entry
Sequence Diagram — Restart of a GET Service .
Return and Feedback Codes for GET-Service Requests
Sequence Diagram — PUT Service, Job Submission

SPL Fields Applicable to a PUT-Job Service Request

Sequence Diagram — Retrieve Messages After a PUT-Job SerV1ce

Return and Feedback Codes for PUT-Job Service Requests
SPL Fields Applicable to a PUT-Output Service Request

Line Counts as Maintained by VSE/POWER e

Sequence Diagram — PUT-Output Close Request

Update SPL Fields Verified by VSE/POWER

. Sequence Diagram — Segmentation During PUT-Output Proce551ng

Sequence Diagram — Checkpoint for PUT-Output Processing
Sequence Diagram — Restart for PUT-Output Processing

SPL Fields to be Updated — Open-Restart Request for Output
SPL Fields to be Updated — Open-Append Request for Output
Output Parameter Text Block (OPTB) Format e e
Spool Parameter List Structure

Return and Feedback Codes for PUT- Output Serv1ce Requests
Sequence Diagram — End Access to VSE/POWER ..
Return and Reason Codes — XPCC Macro

External Device Support Overview .

Coding Sequence for Startlng an External Dev1ce

Coding Sequence for a "No Entry Available" Situation
Coding Sequence for Device Setup and Reactivation

Coding Sequence for a PFLUSH without HOLD

Coding Sequence for a PFLUSH with HOLD

Coding Sequence, Device Stop after End of Output ..
Coding Sequence, Device Stop with a Restart Possibility

Figures

11
12
14
15
16
17
18
19
20
28
32
34
37
40
43
45
51
55
63
65
69
71
74
76
80
81
82
85
88
90
91
92
92
93
96
115
150
155
158
160
165
166
169
171

vii

viii

48.
49.
50.
51.
52.

53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.

64.
65.

Coding Sequence, Abnormal End Because of a Device Failure
Coding Sequence, Processing of Device Orders .
Format of the Device/Subsystem-Order
Format of the Order-Response Control

Data Section and Return
Order .

Data Section and Return
Order .

Data Section and Return
Order .

Data Section and Return
Reactivate-Device Order
Data Section and Return
Restart-Device Order
Data Section and Return
Cancel-Output Order
Data Section and Return
Transmit-Command Order

Return and Feedback Codes for Subsystem Orders

and Feedback

and Feedback

anu feeduaek‘
an& feednaek‘
ané feednaek.
ené feednaek.

and Feedback

Output-Arrived Signal Control Record .
Coding Example of a VSE/POWER Reader Exit Routlne

Return Codes from CTLSPOOL, GETSPOOL, and PUTSPOOL
Coding Example for the Use of SPOOL-Macros
Console Listing of the SPOOL-Macro Example
List Output of SPOOL-Macro Example

IBM VSE/POWER Application Programming

Header Section

Record
Codes

Codes

Codes
Codes
Codes
Cedes

Codes

.

for a Start-Device

for
for
for

for

for

for

a
a

a

Stop-Device

Setup-Device

174
178
180
182

184
185
186
187
188
189
190
191
193
199
224
227

236
237

SUMMARY OF CHANGES

For a complete list of items that are new in this and the preceding
release of version 2 of VSE/POWER, see VSE/POWER Installation and

Operations Guide.

Summary of Changes ix

-~ IBM VSE/POWER Application Programming

CHAPTER 1. JOB ACCOUNTING, SEGMENTATION, IBM 4248 SUPPORT

This chapter describes:

* The use of job accounting:

Collecting accounting information for jobs running under the control
of VSE/POWER. For details, see "Job Accounting."

° How to define output segmentation:

Staging print or punched output of a job. This enables VSE/POWER to
start processing a job's output before all processing for the job is
finished. For details, see '"Output Segmentation' on page 24.

The chapter also contains a short section on user-written channel
programs for the IBM 4248 printer. For details, see "VSE/POWER Support
of the IBM 4248" on page 27.

Throughout this chapter, the information and specifications given for
the IBM 3800 apply also to the IBM 3200 if not specifically stated
otherwise.

JOB ACCOUNTING

To have VSE/POWER job accounting support available, assemble and link
the POWER generation macro with ACCOUNT=YES specified in the macro.
VSE/POWER needs some additional processor and virtual storage, it needs
disk space to accommodate the VSE/POWER account file. For information
about these requirements, refer to Chapter 2: Planning and Installation
of VSE/POWER Installation and Operations Guide.

VSE/POWER automatically collects job accounting information for each
partition that runs under VSE/POWER control. VSE/POWER stores this
information for each job step in chronological order in the account
file. In this file, and also on tape or disk if the file was saved, the
records are stored sequentially; they are in variable unblocked format
on a CKD disk and on tape, they are in variable blocked format on an FBA
disk.

Account-File-Full Condition: If the account file is full and a task of
VSE/POWER must write another account record, this task waits until the
operator issues a PACCOUNT command. Instruct your operator to do one of
the following:

. Save the account records on tape (normally the preferred action).

Chapter 1. Job Accounting, Segmentation, IBM 4248 Support 1

Job Accounting

° Save the account records on disk if a disk extent has been defined
for this purpose.

° Have the contents of the account file spooled to the punch queue and
punched out by starting a punch-writer task with class P.

If VSE/POWER is to spool the account file's contents, then each
card-image (punch) record contains accounting information as follows:

Columns Contents

1 Account-record identifier (field ACIDEN of the account
record).

2-72 Data (bytes 0-70 of the account record) punched in the
same positions as it appears in the account record, in-
cluding the record identifier (not valid for continu-
ation cards).

73-78 Record number of the account file.

79-80 Sequence number of continuation cards. One account
record may require one or more punched cards.

Note: When shared spooling is used, each account record is preceded by
a 16-byte account-record prefix as indicated by the SYSID
operand of the PACCNT macro.

Processing Account Records: VSE/POWER produces various types of account
records, and you may want to write a program of your own to process
these records.

As an aid in writing such a program, you can use the PACCNT macro. The
macro requests a DSECT to be assembled into your program for one, a
selected number, or all types of account records.

The following types of account records are supported (the account-record
identifier is in position 43 of each record):

o Execution account record (for its layout, see Figure 2 on page 7).
. List account record (for its layout, see Figure 3 on page 9).

® Network account record (for its layout, see Figure 4 on page 11).
L Punch account record (for its layout, see Figure 5 on page 12).

. Reader account record (for its layout, see Figure 6 on page 14).

. Transmitter/receiver account record (for its layout, see Figure 7 on
page 15).

. RJE,BSC account record (for its layout, see Figure 8 on page 16).

2 IBM VSE/POWER Application Programming

Job Accounting

d RJE,SNA account record (for its layout, see Figure 9 on page 17).
* System-up account record (for its layout, see Figure 10 on page 18).

. Spool-access connect account record (for its layout, see Figure 11
on page 19).

e Spool-access operation account record (for its layout, see Figure 12
on page 20).

You can cause additional information to be added to each execution
account record by writing a routine that makes use of the PUTACCT macro.
Link this routine as phase $JOBACCT in your system's sublibrary
IJSYSRS.SYSLIB. This causes the IBM supplied dummy phase named $JOBACCT
to be overwritten. For guidance how to write the routine, refer to the
publication VSE/Advanced Functions, System Management Guide; an example
for the use of the PUTACCT macro is given under "Example of the PUTACCT
Macro" on page 23.

The remainder of this section describes the PACCNT macro, shows the
layout of the VSE/POWER provided account records, and discusses the
PUTACCT macro.

Chapter 1. Job Accounting, Segmentation, IBM 4248 Support 3

PACCNT macro

PACCNT Macro: Account-Record DSECT Generation

The macro causes a DSECT of one, a selected number, or all
VSE/POWER-built account records to be assembled into your program.
most account-record types, the generated DSECT includes a fixed (header)
In your program, you would examine the record
identifier and then work with the labels that apply to the specific
record type. Give the generated DSECT a reading before you start coding

part and a variable part.

a program using this DSECT.

For the format of account records when saved in punched cards, refer to

"Account-File-Full Condition" on page 1.

Format of the Macro

The format of the macro as shown below does not include the continuation
character, which you may have to code in column 72.

Name

Operation

Operands

[name]

[o e G ST Ge— —— ———— CH— . — S S— — —— —— ——
o s e e— o e o —— —— ————" S— C— — e cmt]

PACCNT

[ALL={NO|YES}]
[,BSC={NO|YES}]

[,EXEC={NO|YES}]
[,LIST={NO|YES}]
[,PNET={NO|YES}]

[, PUNCH={NO | YES}]
[,READER={NO | YES}]
[,RECV={NO|YES}]
[,SNA={NO|YES}]
[,SYS={NO|YES}]
[,SYSID={NO|YES}]
[, TRANS={NO|YES}]
[,XCONN={NO | YES}]
[,XSPOOL={NO|YES}]

S S S S U S SN

For name (in the name field), specify the label you want to use for

referring to the DSECT for the account record(s).

Description of Operands

ALL={NO| YES}

Specify ALL=YES to have DSECTs generated for all account
If the account prefix is required, then specify also
Any other specification that you may supply is

records.

SYSID=YES.

ignored.

BSC={NO | YES}

Specify BSC=YES to have a DSECT generated for an RJE,BSC account
record (for its layout, see Figure 8 on page 16).

4 IBM VSE/POWER Application Programming

PACCNT macro

EXEC={NO|YES}
Specify EXEC=YES to have a DSECT generated for an execution
account record (for its layout, see Figure 2 on page 7).

LIST={NO|YES}
Specify LIST=YES to have a DSECT generated for a list account
record (for its layout, see Figure 3 on page 9).

PNET={NO|YES}
Specify PNET=YES to have a DSECT generated for a PNET network
account record (for its layout, see Figure 4 on page 11).

PUNCH={NO|YES}
Specify PUNCH=YES to have a DSECT generated for a punch account
record (for its layout, see Figure 5 on page 12).

READER={NO|YES}
Specify READER=YES to have a DSECT generated for a reader
account record (for its layout, see Figure 6 on page 14).

RECV={NO|YES}
Specify RECV=YES to have a DSECT generated for a
transmitter/receiver account record (for its layout, see
Figure 7 on page 15).

SNA={NO|YES}
Specify SNA=YES to have a DSECT generated for an RJE,SNA account
record (for its layout, see Figure 9 on page 17).

SYS={NO|YES}
Specify SYS=YES to have a DSECT generated for a system-up
account record (for its layout, see Figure 10 on page 18).

SYSID={NO|YES}
Specify SYSID=YES to have the 16-byte account-record prefix
generated into and at the beginning of the account-record DSECT
(for its layout, see Figure 1 on page 6).

TRANS={NO|YES}
Specify TRANS=YES to have a DSECT generated for a
transmitter/receiver account record (for its layout, see
Figure 7 on page 15).

XCONN={NO|YES}
Specify XCONN=YES to have a DSECT generated for a spool-access
connect account record (for the record's layout, see Figure 11
on page 19).

XSPOOL={NO|YES}
Specify XSPOOL=YES to have DSECTs generated for a spool-access
operation account record (for the layout of this record, see
Figure 12 on page 20).

Chapter 1. Job Accounting, Segmentation, IBM 4248 Support 5

Legend: C = character (alphameric); B = binary;

T
|Field

| T 1
| l |
| Field | |Type & |
! Name ! Description |Length |
| |
| : 1 1
|ACSYSID |System identifier. | CL1
| ACTYPE |Record type (character) and version (binary). | BL2 |
| ACCOMP |Component identifier: 5666273b, where b=blank. | CL8 |
| cLs |
|

| |Reserved.
[|

Figure 1. Account-Record Prefix

Layout of Account Records

VSE/POWER builds one execution account record for each VSE job step
(each time a // EXEC or /& statement occurs). If a job or job step is
canceled, VSE/POWER's statistics reflect the processing up to the point
of this cancellation. The record can be up to 2008 bytes long.

The same execution account record is used by VSE/POWER itself when the
operator has issued a PEND command. In this VSE/POWER execution account
record, certain fields are set to zero (see below).

6 IBM VSE/POWER Application Programming

Account Record - Execution

Legend: C = character (alphameric); B = binary; P = packed decimal;
E.A.R. = execution account record

f T T

| | |Field

| Field | | Type &

| Name | Description | Length

1 |

f 1

| ACDATE |[Date in the format as defined for the system. CL8

| ACSTRT |Start time of job step (Ohhmmssf, where f = sign). PL4

JACSTOP |Stop time of job step (Ohhmmssf, where f = sign). PL4

| |This time may be higher than the time logged on the

| |console; it accounts for VSE/POWER job termination.

I I

| ACUSER |16 bytes of user information from * $$ JOB card. CL16

| ACNAME |Current VSE/POWER job name or AUTONAME. CL8

| ACNUMB |Job number assigned by VSE/POWER. BL2

| ACIDEN |Record identifier (E). CL1

I I

| ACCANC |VSE/POWER cancel code: BL1

I
I
I
|
|
I
|
I
|
I
I
|
[X'"10' = Normal end of VSE/POWER job or task. The |
| associated VSE job(s) may have been canceled]|
| by the system nevertheless. |
|X'30' = PSTOP command was issued. The code is not |
| stored in the account record if the EOJ op- |
| tion was specified in the PSTOP command. |
| PFLUSH command was issued. |
I I
| I
I
|
I
I
I
I
I
I
|
|
I
I
I
I
I
I
I
I

L e s e G — — T—— — —— — —— —— — — — — — — — —— —— —— S— — — G— — —— — — — . T— — — — — v— o— . q— — ——

X'40' =

X'70' = The job was canceled due to an I/0 error.

|Reserved. CL4
EXFRM |FROM remote ID. BL1

|Reserved BL1
|EXICL |Class. CL1
|EXIPR |Priority. CL1
I I
|EXNLN |Number of lines spooled (zero for VSE/POWER-E.A.R.).| BL4
|EXNCD |Number of cards spooled (zero for VSE/POWER-E.A.R.).| BL4
|EXNPG |Number of pages spooled (zero for VSE/POWER-E.A.R.).| BL2
|EXSIO |Length of SIO table. BL2
| EXTAC |Length of total execution account record. BL2
I I
| |Reserved. CL&
|EXOJ¢# |O0riginal job number, if one exists. BL2
|EXXNODE |Name of execution node. CL8
|[EXFRNO |Name of FROM (originating) node. CL8
!EXFRUS |Identifier of originating user. CL8

]

Figure 2 (Part 1 of 2). Execution Account Record

Chapter 1. Job Accounting, Segmentation, IBM 4248 Support 7

Account Record - Execution

Legend: C = character (alphameric); B = binary; P = packed decimal

r T T]
		Field
Field		Type &
Name	Description	Length
i % 1 —		
EXDJOB	VSE job name from the // JOB card.	CL8
EXDUSER	16 bytes of user information from the // JOB card.	CL16
	On shutdown, the field contains: VSE/POWER-E.A.R.,	I
	where E.A.R. = execution account record.	
EXPID	Partition ID in EBCDIC format.	CL2
EXDCANC	VSE cancel code (see VSE/System Package,	BL1

| |Messages and Codes). | |
| | | |
|[EXTYPE |Type of record; S = job step, L = last step. | CL1
|EXJDUR |Duration of job step (in 300ths of a second) | BL& |
|EXPHASE |Phase name, taken from the // EXEC card. | CL8
EXPASZ	Number of pages multiplied by 2K bytes	BL&4
EXCPUTM	Processor time in 300ths of a second. This is the	BL&4
	actual time used by a job or job step in the system.	

EXOVHTM	Overhead time in 300ths of a second. This is the	BL4
	time needed for activities that cannot be charged	
	to a specific program or partition. For example,	
	the time for calling a routine, for error recovery,	

| |or from the start of the $JOBACCT routine to the | |
| |processing of the EXEC statement. All SVC process- |

| |ing is counted as active processor time for the job |

	or job step. Overhead time is distributed over the	
	number of active partitions.	
EXALLTM	Total system wait time in 300ths of a second. This	BL4
	time is divided by the number of active partitions	
	based on the percentage of used processor time.	
' I l		
EXSIOTB	SIO tables. Six bytes per device defined to the	BL6
	system during system start-up: bytes O and 1 = Ocuu;	for
	bytes 2 through 5 = count of SIOs in current job	each
	step. VSE/POWER updates the SIO tables in the	S10
	execution account record with the number of I/Os it	entry
I		
I	I	
[I		
	l	
	I	
1 | j

|has intercepted for spooling purposes.

EXSIOTB+n|Set by the system to X'20'.

In = total length of the SIO tables (EXSIO)

EXSIOTB+m|User account information (provided via a PUTACCT

|[macro). m = EXSIOTB+n+1.
I

Figure 2 (Part 2 of 2). Execution Account Record

8 IBM VSE/POWER Application Programming

Account Record - List

VSE/POWER builds a list account record for each queue entry that is

processed by a list task.

|The field is set to zero if the list output was

|spooled to tape.

Legend: C = character (alphameric); B = binary; P = packed decimal
r T T]
| | |Field |
| Field | | Type & |
! Name ! Description !Length |
|
r { T !
|ACDATE |Date in the format as defined to the system. | CL8
ACSTRT	Start time of list output (Ohhmmssf, where f = sign).	PL4
ACSTOP	Stop time of list output (Ohhmmssf, where f = sign).	PL&4
ACUSER	16 bytes of user information from the * $$ JOB or the	CL16
	* $$ LST statement.	
l l		
ACNAME	VSE/POWER job name from the * $$ JOB or the // JOB	CL8
	statement.	
ACNUMB	Job number assigned by VSE/POWER (same as that of the	BL2
	associated reader queue entry).	
ACIDEN	[Record identifier (L).	CL1
I I I		
ACCANC	VSE/POWER cancel code:	BL1
	X'10"' = Normal end of VSE/POWER job or task - The	
i associated VSE job(s) may have been canceled		
	by the system nevertheless.	
	X"30"' = PSTOP command was issued. The code is not	
	stored in the account record if the EOJ option	
	was specified in the PSTOP command.	
	X'40' = PFLUSH command was issued.	
	X'70' = The job was canceled due to an I/0 error.	
	l I	
	Reserved.	CL1
LSTADR	Printer or RJE-line address (cuu), SNA, or GSP.	CL3
LSTFRM	FROM remote ID.	BL1
LSTTO	TO remote ID.	BL1
	l	
LSTOCL	Printed output class.	CL1
LSTOPR	Printed output priority number.	CL1
LSTNUM	Number of lines printed (see also LSTEXR).	BL&
		I
LSTTRK	Number of DBLK groups for output storage.	BL2
l		
I		
I I		
J		

Figure 3 (Part 1 of 2). List Account Record

Chapter 1.

Job Accounting, Segmentation, IBM 4248 Support 9

Account Record - List

Legend: C = character (alphameric); B = binary; P = packed decimal

T
|Field

T T |
I l I
| 1e1d | |Type & |
| Nam | Description |Length |
l | | |
I T I {
LSTSUF	Job suffix (segment) number assigned by VSE/POWER.	BL1
	If: X'00' - The only segment for a job.	
	X'82' or higher - The last segment for a job; the	
	seven low-order bits give the number of	
	segments. ‘	
LSTCOP	Number of printed copies. (If more than one, the	BL1
	statistics are totals for all copies).	
LSTFOR	Print-forms identification.	CL&4
LSTEXR	Number of extra records printed due to a restart, a	BL&
	PSETUP request, separator pages, or extra copies.	
l I I		
LSTPAG	Number of pages printed (skips to channel 1 or page	BL2
	filled; see also LSTEXP).	
LSTEXP	Number of extra pages printed due to PRESTART, PSETUP,	BL2
	separator cards, or extra copies.	
	I I	
LSTFLSH	Flash identifier (applies only to 3800 printer).	CL&4
LSTCPYG	Copy groupings (applies only to 3800 printer).	CL8
LSTNODE	[Name of own node (system) in the network.	CL8
LSTTOUS	Destination-user (TO) identification.	CL8
		I
LSTFRNO	Name of originating (FROM) node.	CL8
LSTFRUS	Originating-user (FROM) identification.	CL8
!LSTOJ# |Original job number, if one exists. | BL2 [
I ! |

Figure 3 (Part 2 of 2). List Account Record

10 IBM VSE/POWER Application Programming

Account Record - Network

VSE/POWER builds a network account record for an existing communication
path when a session via this path is terminated. The record contains
information about all activities during the session.

Legend: C = character (alphameric); B = binary; P = packed decimal

i
|Field

l T |
I | |
1e1d		Type &
Nam	Description	Length
1 T]		
NETDTE	Date in the format as defined for the system.	CL8
NETSGN	Sign-on time (Ohhmmssf, where f = sign).	PL4
NETSGF	Sign-off time (Ohhmmssf, where f = sign).	PL&4
INETNODE	Identifier of the connected node.	CL8
l	l	
NETNPAS	Node password.	CL8
NETPSW	Line password.	CL8
INETICNT	Invalid responses per session.	BL2
INETIDEN	Account-record identifier (N)	CcL1
I I I		
INETTERM	ACF/VTAM cancel code:	BL1
	X'02' = Normal ACF/VTAM shutdown.	
	X'04' = Abnormal end of ACF/VTAM.	
IX'08' = An internal error occurred		
	X'10' = A line error occurred or a session was	
	terminated.	
	X'20' = A time-out occurred.]
	X'40" = A remote SIGNOFF occurred.	
	X'80' = Cancel on operator request (one of the com-	
	mands PSTOP and PEND.	
l		I
	Reserved.	BL1
INETLAD	Line address or SNA.	CL3
INETTRAN	Transmission count (of buffers) per session.	BL&4 I
!		
f	1	
For PNET support using BSC	l	
I I		
I[NETTCNT |Timeout count per session. | BL2 |
NETERR |Error count per session. BL2

|

| For PNET support using SNA I
NETRCVE |Buffers received during session BL4

|

|
|NETSOD |Sign-off date. | CL8 |
[!

Figure 4. Network Account Record

Chapter 1. Job Accounting, Segmentation, IBM 4248 Support 11

Account Record - Punch

VSE/POWER builds a punch account record for every punch-queue entry that
is processed by a punch task.

|The field is set to zero if the output was spooled
|to tape.
I

Legend: C = character (alphameric); B = binary; P = packed decimal
I T T]
| | |Field |
| Field | |Type & |
! Name ! Description !Length !
f 1 1 1
|ACDATE |Date in the format defined to the system. | CL8
ACSTRT	Start time of punch output (Ohhmmssf, where f = sign).	PL4
ACSTOP	Stop time of punch output (see ACSTRT, above).	PL&
ACUSER	16 bytes of user information from the * $$ JOB card.	CL16
ACNAME	VSE/POWER job name from the * $§ JOB card.	CL8
ACJOBN	Job number assigned by VSE/POWER (same as that of	BL2
	associated reader queue entry). i	
ACIDEN	Account-record identifier (P).	CL1
		I
ACCANC	VSE/POWER cancel code:	BL1
	X'10' = Normal end of VSE/POWER job or task - The	
	associated VSE job(s) may have been canceled	I
	by the system nevertheless.	
	X'30"' = PSTOP command was issued. The code is not]
] stored in the account record if the EOJ option	I	
] was specified in the PSTOP command.		
	X'40' = PFLUSH command was issued.	I
	X'70' = The job was canceled due to an I/0 error.	
	I I	
	Reserved.	CL1
PUNADR	Punch device or RJE-line address (cuu), SNA, or GSP.	CL3
PUNFRM	FROM remote ID.	BL1
PUNTO	TO remote ID.	BL1
PUNOCL	Punched output class.	CL1
PUNOPR	Punched output priority number.	CL1
PUNNUM	Number of records punched (see also PUNEXR).	BL&4 i
PUNTRK	Number of DBLK groups for output storage.	BL2 l
I]

Figure 5 (Part 1 of 2). Punch Account Record

12 1IBM VSE/POWER Application Programming

Account Record - Punch

Legend: C = character (alphameric); B = binary; P = packed decimal
 — T T 1
	[Field	
Field		Type &
Name	Description	Length
% ! %		
I I l		
PUNSUF	Job suffix (segment) number assigned by VSE/POWER.	BL1
PUNCOP	Number of punched copies (if more than one, the	BL1
statistics are the totals for all copies).		
PUNFOR	Punch-forms identification.	CL&4
I	I	
PUNEXR	Number of additional cards punched due to restart,	BL4
	separator cards, or extra copies.	
PUNNODE	[Name of own node (system) in the network.	CL8
PUNTOUS	[Destination-user (TO) identification.	CL8
PUNFRNO	Name of originating (FROM) node.	CL8
PUNFRUS	Originating-user (FROM) identificatiom.	CL8
BL2 !		

| PUNOJ#
L

|Original job number, if one exists.
1

Figure 5 (Part 2 of 2). Punch Account Record

Chapter 1. Job Accounting, Segmentation, IBM 4248 Support

13

Account Record - Reader

VSE/POWER builds a reader account record for every VSE/POWER job
submitted for spooling. Whether the queue entry has actually been
queued is indicated by the VSE/POWER cancel code. VSE/POWER does not
build reader account records for a writer-only partitionm.

Legend: C = character (alphameric); B = binary; P = packed decimal
I T |]
| | |Field |
| F 1e1d | |Type & |
| Name | Description |Length !
[| |
f T T 1
ACDATE	Date in the format as defined to the system.	CL8
ACSTRT	Start time of read (Ohhmmssf, where f = sign).	PL&4
ACSTOP	Stop time of read (see ACSTRT, above).	PL&
I I		
ACUSER	16 bytes of user information from the * $$ JOB	CcLi6
	statement.	
ACNAME	VSE/POWER job name from the * $$ JOB or the // JOB	CL8
	statement.	
ACNUMB	Job number assigned by VSE/POWER.	BL2
ACIDEN	Record identifier (R).	CL1
l		
ACCANC	VSE/POWER cancel code:	BL1
[X'10"' = Normal end of VSE/POWER job or task - The		
	associated VSE job(s) may have been canceled	
	by the system nevertheless.	
	X'30' = PSTOP command was issued. The code is not I	
	stored in the account record if the EOJ option	
	was specified in the PSTOP command.	
	X'40' = PFLUSH command was issued.	
	X'60' = The job was canceled via RDREXIT.	
	X'70"' = The job was canceled due to an I/0 error.	
I		I
	Reserved.	CL1
RDRADD	Reader device or line address (cuu), SNA, or PSP for	CL3
	submission from a partition.	
RDRFRM	FROM remote ID.	BL1
	Reserved.	BL1
RDRICL	Input class.	CL1
!RDRIPR :Input priority number.	CL1 }	
I		
RDRNUM	Number of records read (including record added or	BL&4
deleted by a reader exit routine).		
RDRTRK	Number of DBLK groups for input storage.	BL2
RDRNODE	Name of own node (system) in the network.	CL8
!RDRFRUSIOriginating-user (FROM) identification.	CL8 J	
I		

Figure 6. Reader Account Record

14 1IBM VSE/POWER Application Programming

Account Record - Transmitter/Receiver

VSE/POWER builds a transmitter/receiver-account record for every job or
output transmission via a connection or during a session.

Legend: C = character (alphameric); B = binary; P = packed decimal

1
|Field

T T]
I I |
| Field | |Type & |
! Name J Description !Length !
[i f !
| ACDTE |Date in the format as defined to the system. | CL8
ACSTRT	Start time (Ohhmmssf, where f = sign).	PL4
ACSTOP	Stop time (Ohhmmssf, where f = sign).	PL&4
ACUSER	User information.	CL16
J]ACNAME	Job name.	CL8
ACNUMB	Job number.	BL2
ACIDEN	Record identifier (V = receiver; M = transmitter).	CL1
		I
ACCANC	VSE/POWER cancel code:	BL1
	X'10' = Normal end of VSE/POWER transmitter or re-	l
	ceiver task.	
	X"30" = PSTOP command was issued. The code is not	

| | stored in the account record if the EOJ |]
| | option was specified in the PSTOP command. | |
| |X'40' = PFLUSH command was issued. | |
| |X'60' = The job was canceled via RDREXIT. |]
	X'70' = The job was canceled due to an I/O error.	
	X'80' = The job or output transmission was canceled	
	due to a receiver-task stop at the other end.	
	Reserved.	CL1
INACLAD	Line address (cuu) or SNA.	CL3
NACQTYP	Queue type (R = reader; L = list; P = punch).	CL1
	Reserved.	BL1
[NACCLAS	Class of job output.	CL1
NACPR	Priority.	CL1
I		
NACCNTD	Data record count.	BL&4
NACORGJ#	0Original job number from job reader.	BL2
INACSUF	Job suffix (segment) number.	CL1
INACCOP	Number of copies.	BL1
NACCNTC	Control record count.	BL2
	Reserved.	BL2
l l		
NACON	Name of originating node.	CL8
INACOUS	Name (user identifier) of remote originator.	CL8
NACTN	Name of destination node.	CL8
INACTUS	Destination-user identifier.	CL8
NACCURR	Current (own VSE) node name.	CL8
INACADJ |Adjacent node name. ! CL8 |

Figure 7. Transmitter- or Receiver-Account Record

Chapter 1. Job Accounting, Segmentation, IBM 4248 Support 15

Account Record - RJE,BSC

VSE/POWER builds an RJE,BSC account record for an RJE,BSC user session
when it processes a sign-off or when a line stop occurs.

Legend: C = character (alphameric); B = binary; P = packed decimal

r T T 1
| | |Field |
| Field | | Type & |
! Name ! Description !Length !
I 1 1 !
|BSCDTE |Date in the format as defined to the system. | CL8 l
BSCSGN	SIGNON time (Ohhmmssf, where f = sign).	PL&
BSCSGF	SIGNOFF time (Ohhmmssf, where f = sign).	PL&4
BSCUSE	16 bytes of user information from the SIGNON command.	CL16
	I I	
BSCPAS	Line password.	CL8
BSCIRS	Number of invalid responses during transmission (see	BL2
	the note below).	
BSCIDN	Record identifier (T).	cL1
l	I	
BSCSFC	SIGNOFF code ‘(any combination of the codes may occur):	BL1
	X'01' = Normal SIGNOFF.	
	X'02' = SIGNOFF forced due to PSTOP cuu.	
	X'04' = SIGNOFF forced due to excessive idle time.	
	X'08' = SIGNOFF forced due to unrecoverable I/O error.	
	X'10' = SIGNOFF forced due to PEND or PSTOP cuu,E0J.	
	X'20' = SIGNOFF forced by lack of processor storage.	
	X'40' = SIGNOFF forced due to PSTOP cuu,FORCE.	
	X'80' = SIGNOFF forced due to line stop at last I/0.	
I I I I		
BSCTEC	Terminal (work-station) error count.	BL1
BSCLAD	Line address.	CL3
BSCRID	Remote identifier.	BL1]
:Reserved. I CL1 :		
BSCTRAN	Transmission count per session (see the note below).	BL2
BSCTCNT	Timeout count per session (see the note below).	BL2
BSCERR	Error count per session (see the note below).	BL2
BSCSOD !SIGNOFF date (mmddyy).	CL6	
]		

Comparing fields BSCTRAN and BSCTCNT gives an indication of idle time
per session. Comparing fields BSCTRAN, BSCTCNT, and BSCERR gives an
indication of line quality.

(e e s e g

Figure 8. RJE,BSC Account Record

16 1IBM VSE/POWER Application Programming

Account Record - RJE,SNA

VSE/POWER builds an RJE,SNA account record when an RJE,SNA user session

ends.
Legend: C = character (alphameric); B = binary; P = packed decimal
I T T 1
| | |Field |
| Field | | Type & |
! Name ! Description | Length |
| 1
I T I !
| SNADTE |Date in the format as defined to the system. | CL8
SNASGN	SIGNON time (Ohhmmssf, where f = sign).	PL&4
SNASGF	SIGNOFF time (Ohhmmssf, were f = sign).	PL4
SNAUSE	16 bytes of user information from the SIGNON command.	CL16
SNALUN	Logical unit name.	cLs
	I	
	Number of invalid responses during transmission.	CL2
SNAIDEN	SNA record identifier (S).	CL1
SNATERM	Session termination code:	BL1
[X'01' = normal termination (LOGOFF or SIGNOFF)		
	X'02' = abnormal termination I	
BL&		
j		

| SNARID |Remote identifier.
L J

Figure 9. RJE,SNA Account Record

Chapter 1. Job Accounting, Segmentation, IBM 4248 Support 17

Account Record - System-Up

VSE/POWER builds a system-up account record on completion of VSE/POWER
start-up.

Legend: C = character (alphameric); B = binary; P = packed decimal
f

1
|Field

T

| |

| Field | |Type &
| Name ! Description |Length
I

i i

|PWRDTE |Date in the format as defined to the system. CL8
|PWRSGN |Start-up time. PL4

| |Reserved. BL4
|PWRVER |Version/Modification level CL4
|PWRLEV |Level identifier. CL4

I I

| PWRPARSZ |Partition size. BL4

| PWRGETSZ |GETVIS size. BL4

| PWRPART |Partition identifier (BG or Fn). CL2
| PWRFLAG |Feature flags. CL4
I I
|PWRIDEN |Record identifier (U). CL1
| PWRDXTN |Number of data file extents. BL1
| PWRDTRK |Number of tracks/blocks in the data file. BL&4
| PWRQTRK |Number of tracks/blocks in the queue file. BL4
BL4

e e e e s e . . —— — — — — — — —— — ke s i e)

%
I
I
I
|
|
I
|
| PWRRELSZ |Reserved processor (real) storage size. | BL&4
|
|
|
l
|
I
|
|
|

| PWNRATRK |Number of tracks/blocks in the account file.
[|

Figure 10. VSE/POWER System-Up Account Record

18 IBM VSE/POWER Application Programming

Account Record - Spool-Access Connect

VSE/POWER builds a spool-access connect account record whenever an
established communication path is terminated, normally or abnormally.

Legend: C = character (alphameric); B = binary; P = packed decimal

T
|Field

f T |
| | |
| Field | | Type & |
! Name ! Description !Length !
r 1 1 !
XCODATE	Date in the format defined to the system.	CL8
XCOSTRT	Connection start time (Ohhmmssf, where f = sign).	PL&
XCOSTOP	Connection stop time (Ohhmmssf, where f = sign).	PL&4
	l	
XCOAPPL	XPCC application identifier.	CL8
XCOMSG#	Number of messages returned in response to a CTL	BL&
	or PUT request.	
XCOCTL#	Number of CTL requests.	BL&4
I I i		
XCOTERM	Connection-termination code:	BL1
XCOTCOK	X'01' = Normal end of communication.	I
XCOTCPD	X'02' = Termination because of a PEND command.	
XCOTCPP	X'04' = Termination because of a PSTOP command (but	
	(not if FORCE is specified).	
XCOTCAT	X'08' = Abnormal end by user application	
XCOTCUE	X'10' = Severe error in the application program	
XCOTCKL	X'20' = Termination because of a PSTOP command (if	I
	FORCE is specified).	
XCOTCSE	X'40' = System or VSE/POWER failure.	
	! l	
	Reserved.	BL1
XCODEVN	Device name (as defined to the device-owning sub-	CL8
	system.	
!XCOIDEN ! Account-record identifier (C) ! CL1 !

Figure 11. VSE/POWER Spool-Access Connect Account Record

Chapter 1. Job Accounting, Segmentation, IBM 4248 Support 19

Account Record - Spool-Access Operation

VSE/POWER builds a spool-access operation account record for a PUT or a
GET service when the processing for a queue entry is finished. If data
is added to an appendable output, VSE/POWER builds an account record of
this type each time a program finishes appending data to this output.

No accounting is performed for CTL requests or for output queue entries
that are held in the queue with a disposition of X (because of an
abnormal termination of VSE/POWER).

Legend: C = character (alphameric); B = binary; P = packed decimal

|
|Field

r T |
| | |
| Field | |Type & |
! Name ! Description !Length !
I T T l
XSPDATE	Date in the format as defined to the system.	CL8
XSPSTRT	Start time of processing (Ohhmmssf, where f = sign).	PL4
XSPSTOP	Stop time of processing (Ohhmmssf, where f = sign).	PL&4
XSPUSER	16 bytes of user information (field SPLDUI of the	CL16
: ; PWRSPL DSECT). : :		
XSPNAME	Name of job (or report).	CL8
XSPNUMB	Job number as assigned by VSE/POWER.	BL2
XSPIDEN	Account-record identifier (X)	CL1
	l I	
XSPCANC	VSE/POWER cancel code:	BL1
	X'10' = Normal end of VSE/POWER job or task - The	
	associated VSE job(s) may have been canceled	
	by the system nevertheless.	1
	X'40' = A PFLUSH command was issued.	
	X'50' = A purge request (during a queue entry re-	
	trieval) or a PDELETE command was issued.	
	X'90' = A quit request was issued.	I
	X'A0' = The operation was terminated because a (
	severe error occurred or the system failed	
	to maintain the communication path.	
	X'BO' = A Close request was issued.	
	X'CO' = Canceled due to lack of disk space.	
	X'DO' = A "quit-and-lock' request was issued.	
	Reserved.	CL1
XSPREQT	Request type (G = GET request; P = PUT request).	CL1
XSPQUID	Queue type (R = reader; L = list; P = punch).	cL1
XSPJSUF	Job-suffix (output segment) number.	BL1
XSPCLSS	Class.	cL1
l I		
XSPPRIO	Priority.	CL1
XSPDISP	Disposition.	CL1
XSPCOPY	Number of copies (output only).	BL1
!XSPCPYG ! Copy groupings (3800 output only).	BL8	
J		

Figure 12 (Part 1 of 2). VSE/POWER Spool-Access Operation Account Record

20 IBM VSE/POWER Application Programming

Account Record - Spool-Access Operation

Legend: C = character (alphameric); B = binary; P = packed decimal

T
|Field

1. The count applies to and is shown for appendable output only.

2. The line-number count is set to the record count if the queue
entry's record format is SCS, 3270 data stream, BMS, or escape

mapping.

3. The total page count is not meaningful for a list queue entry
containing data in the BMS mapping or the 3270 data stream
format. For output of this type, each record is considered to
be a page. If the queue entry contains data in the SCS or the
escape mapping format, the total page count is not meaningful
either and, therefore, set to zero.

r T]
| | l
| Field | | Type & |
| Name | Description |Length |
[| | |
I T | 1
|XSPTRK# | Number of DBLK groups occupied on disk | BL2
	(see Note 1, below).	
XSPOJ#	Original job number.	BL2
XSPREC#	Number of records. The value includes the control	BL&4
	record, even if a spool-access user has not speci-	
	fied CTLREC=YES in the applicable PWRSPL macro.	
	SPL records returned by VSE/POWER are not included	
	in this record count. See also Note 1, below.	
XSPEXR#	Number of extra records.	BL&
	*	l
XSPLNE##	Total number of lines or cards (output only); see	BL&4
	also Notes 1 and 2, below.]
XSPEXL#	Number of extra lines or cards because of separator	BL&
	pages or cards, or because of records repeatedly as	
	a result of a restart (applies only to GET re-	
	quests).	
XSPPGE#	Total number of pages (output only); see also Notes	BL&4
	1 and 3, below.	
		l
XSPEXP#	Number of extra pages such as separator pages or	BL&4
	pages passed repeatedly as a result of a restart]	
	(applies only to GET for output).	
XSPFORM	Forms identification (applies to output only).	CL8
XSPFLSH	Flash identification (applies to 3800 output only).	CL&4
XSPTONM	Name of destination node.	CL8
		l
XSPTOUS	Destination-user identifier.	CL8
XSPRQUS	Requesting-user identifier.	CL8
XSPRQAP	Requesting XPCC application identifier.	CL8
XSPNODE	Name of your own node.	CL8
L	y	
l		
l		
l		
l		
l		
!		
l		
J

Figure 12 (Part 2 of 2). VSE/POWER Spool-Access Operation Account Record

Chapter 1. Job Accounting, Segmentation, IBM 4248 Support 21

PUTACCT Macro

PUTACCT Macro: Adding User Information to Account Records

The macro, which you can use in your $JOBACCT routine, adds additional
information to the end of the execution account record. VSE/POWER calls
your $JOBACCT routine at the end of each job or job step.

Before you issue the PUTACCT macro in your $JOBACCT routine, save
registers 0 and 1. These registers are used and overwritten by
VSE/POWER.

VSE/POWER ignores the macro if job accounting has not been defined for

VSE/POWER control-table generation.

Format of the Macro

T

Name | Operation Operands
|
1

SR SEpE——

[name]| PUTACCT (regl), (reg2)
|

Description of Operands

(regl), (reg2)
For the operands regl and reg2, specify two different general
registers, but not registers 0 and 1. When you issue the macro,
the registers must contain the following:

regl The address of the area that contains the additional
information.
reg?2 The length of the above mentioned ar:a.

The maximum length of the area may not exceed 2,008 bytes minus:
1. Eight bytes for the control field.

2. The length of the execution account record as set up by
VSE/POWER.

An example for using the macro is given on the next page.

22 IBM VSE/POWER Application Programming

PUTACCT Macro

Example of the PUTACCT Macro

The coding example below inserts additional information behind the
VSE/POWER execution account records:

COMRG REG=R&4 GET PARTITION COMMUNICATION REGION
USING CMRG,R&4 DECLARE ADDRESSABILITY
™ POWFLG1,X'80"' ACCOUNT SUPPORT FOR THIS PARTITION
DROP R4
BNO EXIT BRANCH IF NOT
LA R2,ADAC ADDRESS ADDITIONAL INFORMATION
LA R3,L'ADAC LENGTH ADDITIONAL INFORMATION
PUTACCT (R2),(R3) PASS INFORMATION TO VSE/POWER
EXIT DS OH
BR RE RETURN TO $JOBCTLN
ADAC DC C'ADDITIONAL ACCOUNT INFORMATION'
R2 EQU 2 REGISTER 2
R3 EQU 3 REGISTER 3
R4 EQU 4 REGISTER 4

RE EQU 14 REGISTER 14
CMRG MAPCOMR
| +POWFLG1 DS X

END

Chapter 1. Job Accounting, Segmentation, IBM 4248 Support 23

Output Segmentation

OUTPUT SEGMENTATION

VSE/POWER job output can be segmented, that is, part of the output from
a job can be printed or punched before the entire job is finished.

Four types of segmentation are possible based on the event that
initiates the segmentation:

i Program-driven output segmentation:

In your application program you may use the VSE/POWER SEGMENT macro
or the VSE LFCB macro to separate the output. The LFCB macro causes
segmentation before loading the new FCB.

If your output is directed to an IBM 3800, you may use a VSE SETPRT
job control statement requesting a printer setup to cause
segmentation. These are setup requests that require operator
intervention, change copy grouping or the FCB image, or specify a
copy number greater than one.

The following types of output segmentation are described in VSE/POWER
Installation and Operations Guide:

. Count-driven output segmentation
* Data-driven output segmentation

® Multivolume tape segmentation

SEGMENT Macro: Control Output Segmentation

The macro can be used for controlling output segmentation for a job
running in a VSE/POWER-controlled partition. You can use it for the
specification of new output controls that are to apply to the next
segment.

VSE/POWER assigns a new job number for the second and each subsequent
SEGMENT request of your program.

Before using the macro, save your registers 0 and 1 because they are

used and overwritten by VSE/POWER. Register 15 contains the return code
passed by VSE/POWER on completion of the segment request.

24 1IBM VSE/POWER Application Programming

SEGMENT Macro

Format of the Macro

Name | Operation Operands

DEVADDR=SYSxxx
[,FORMS=formnumber]
[,JECL={addr| (reg)}]

l
l
{

[name]| SEGMENT
|
|
| [,NAME={name | (reg)}]
|

U .
N Sp——
| SRS S ISP——

Description of Operands

DEVADDR=SYSxxx
For SYSxxx, specify the system or programmer logical unit
assigned to the device on which the segmentation is to occur.

Your device specification in this operand must match your
specification in the

LST operand of * $$ LST for list output, or
PUN operand of * $$ PUN for punch output

if you supplied a device specification in that statement.

FORMS=formnumber
For formnumber, specify the new one- to four-character form
number which VSE/POWER is to use in its forms-mount messages.

VSE/POWER sets the form number to blanks if you:

1. Omit the operand, and

2. Do not supply a form number in a new * $$ LST or * §§ PUN
statement pointed to by your specification in the JECL
operand.

JECL={address| (reg)}
The operand points to a 71-byte area that contains one of the
following JECL statements: * $$ LST, * $$ PUN, or * §$ JOB.
These statements are described in the VSE/POWER Installation and
Operations Guide.

For address, specify the area's label in your program.
address y

For reg, if you choose register notation, specify the register
that contains the address of the area.

If you omit the specification of an * §$ LST or * $$ PUN
statement, then default spooling values will be set for the new
segment (regardless of any previously established values);
therefore pass only the operands needed to change default values
which do not meet your requirements.

Chapter 1. Job Accounting, Segmentation, IBM 4248 Support 25

SEGMENT Macro

Notes:

1. The macro causes new values to be set for the new segment.
However, passing an * $$ JOB statement with the NAME operand
causes the currently processed segment to be renamed. The
statement should therefore be passed by a separate SEGMENT
macro after an * $$ LST or * $$ PUN statement was passed.
You should pass an * $$ JOB statement only to provide new
user information.

2. If you include an LST or a PUN operand in the passed
* §$ LST or * $$ PUN statement, the specification is
ignored.

3. 1If output segmentation is requested for output on an IBM
3800 printer, VSE/POWER uses the default printer setup for
the new segment. If this is not desirable, supply an
* $§$§ LST statement defining the desired printer setup.
After having issued the SEGMENT macro, you may, in your
program, issue a SETPRT macro requesting the proper printer
setup.

NAME={name| (reg)}
For name, specify a one- to eight-character name that you want
VSE/POWER to assign to the new segment. If you omit this
operand, VSE/POWER uses the name by which the job was placed
into the input queue.

|
If you use register notation, the specified register must point
to an eight-byte field containing the name of the segment.

Example of the SEGMENT Macro

Column 72 —

LA R2,LSTCARD v

SEGMENT DEVADDR=SYSLST,JECL=(R2), C
NAME=TESTOUT

LSTCARD DC CL71'* §$ LST FNO=ACB1,DISP=H,PRI=1'

Return Codes from the SEGMENT Macro

Successful completion of the SEGMENT macro is indicated to the problem
program by a return code of 0 in register 15. If the operation fails,
register 15 contains one of the return codes listed below.

26 1BM VSE/POWER Application Programming

SEGMENT Macro

Code Meaning

X'04' One of the following:

The device specified in the DEVADDR operand is not being
spooled by VSE/POWER.

VSE/POWER is not active.

The partition in which your program is running is not
under control of VSE/POWER.

The spooled device is used for output with a disposition
of N.

The passed JECL statement was not one of:
* §§ JOB

* §$ LST
* §$ PUN

X'os' VSE/POWER cannot accept the JECL statement because either:

The partition was not started as a multitasking partition
and the partition is waiting for work, or

The partition was started as a multitasking partition and
is waiting for work, but no JECL statement was submitted
for the specified device.

| VSE/POWER SUPPORT OF THE IBM 4248

A program that writes to an IBM 4248 printer operating in native mode
can run under control of VSE/POWER. In general, there is no need for
you to change your programs. VSE/POWER handles IBM 4248-specific I/0

As far as user-written channel programs are concerned, some of the IBM
4248-specific 1/0 commands cannot be processed such that they achieve

|
|
|
| requests as described in VSE/POWER Installation and Operations Guide.
I
I
I
|

the expected result. These commands are listed in Figure 13 on page 28.

Chapter 1. Job Accounting, Segmentation, IBM 4248 Support 27

IBM 4248

Command Action by VSE/POWER During

Printing Spooled Output

T
Name |Code Job Execution
|

|
Read Band ID |X'OA'|Returns the requested
| |bytes with all bits set
| |to zero.

Ignores the command.

Execute Order|X'33'|Spools the command, Ignores the command if:
| |except a Purge Buffered

|Data order. is not set in the FCB.
- The command is a Purge

Buffered Data order.

— ———— — — o—— o— — — . o, =]

I
|
X'63'|Spools the command, |Passes the command and the
|including the FCB image. |image to the printer.
| |However, VSE/POWER loses
| |control over the printer's
| | FCB.
{ |
|7-byte device identifica-
|tion.

I
I
I
I
I
I
I
I
I
I
|Load FCB
I
I
I
I
I
I
I
|
I

|Sense Inter- |X'14'|Returns the requested Ignores the command.
|mediate Buf-
| fer

I
|Verify Band

|ID

|

|

|

I

|bytes with all bits set |

|to zero. |

|

X'F3'|Returns the requested | Ignores the command.
or |bytes with all bits set |
X'F ;
|

|
|
|
|
|
|
|
I
|
|
Sense ID |X'E4' |Returns the requested | Ignores the command.
|
|
|
|
|
|
|
|
|
! ! B'!to zero.

- Horizontal-copy printing

Printer control commands not listed here are handled by VSE/POWER
in the same way as in the past.

v e G— — C— —— S— — — — — — — — — — — — — — — —— — — —— — — ——— s ottt sk e <]

.

Figure 13. VSE/POWER Action for IBM 4248-Specific I/0 Commands

28 IBM VSE/POWER Application Programming

Spool Access

CHAPTER 2. SPOOL-ACCESS SUPPORT

The spool-access support allows a program running under or outside the
control of VSE/POWER to access VSE/POWER services. A program using the
support can, for example:

. Retrieve queue entries from the local VSE/POWER queues.
i Submit jobs or output data for spooling to the VSE/POWER queues.

. Submit control requests or pass VSE/POWER commands (such as PALTER,
PDISPLAY, PHOLD, PXMIT) to control the handling of specific queue
entries.

Normally, IBM supplied components make use of this kind of support,
transparent to you. If you do not plan to implement applications that
require this support, then there is no need for you to read this
chapter.

Prerequisites: To understand this chapter, you should be familiar with
the conventions and use of assembler language and the coding of macros;
you should also have a good knowledge of the operational concepts of
VSE/POWER and its use.

Also, it might be helpful to have a copy of the VSE/POWER Installation
and Operations Guide readily available for reference.

Program Compatibility: VSE/POWER-access support has been available in
the past with the XECBTAB-based macros CTLSPOOL, GETSPOOL, and PUTSPOOL.
The support provided by these macros (referred to as SPOOL-macro
support) continues to be available to ensure program compatibility. A
description of these macros is given in Appendix B. VSE/POWER's
spool-access support and the previously available SPOOL-macro support
can be used side by side in one program.

Advantages: Using the new spool-access support is of advantage because,
for example:

i It allows more than one program to access VSE/POWER at the same
time.

i It enables VSE/POWER to return a variety of control data if a
display of status information is requested.

. It allows a program to submit data, such as a report or a document,
for spooling into an output queue.

. It supports checkpointing and restarting during both retrieval of
spool records and submission of records for spooling.

Chapter 2. Spool-Access Support 29

Spool Access

CONCEPT

i It allows communication between VSE/POWER and a partition in any
address space.

IBM recommends that you use this new spool-access support in any
application program that is to be changed or redesigned to include
VSE/POWER spool-access services.

This chapter briefly discusses the operational concept of the
spool-access support; it describes how to use the support; it includes a
description of the applicable macros and their operands. The chapter
includes a sample program at the end.

To use the available VSE/POWER-access services, your program must:

1. Set up a communication path to VSE/POWER

2. Issue one or more requests to obtain the desired spool-access
service.

3. Remove the existing communication path when there is no further need
for access services.

You accomplish this by using the macros whose purposes are summarized

below.

For a description of these macros, refer to '"Description of the

Spool-Access Support Macros' on page 97.

XPCCB

MAPXPCCB

XPCC

PWRSPL

Control-block generation macro

The macro builds the control block (called XPCCB) needed to
service the request initiated by an XPCC macro.

DSECT generation macro

The macro builds a DSECT for access to an XPCCB. In this
chapter, references to XPCCB related fields or codes use the
mnemonics that you find also in the generated DSECT.

The actual access-request macro

You use this macro in your program wherever there is a need
for a spool-access service by VSE/POWER. Normally, you issue
a number of such requests for a queue entry retrieval or a job
or output submission; it may be just one request for a
control-type service.

Spool parameter list (SPL) macro
The macro builds a parameter list. The list is used to pass,

to VSE/POWER, the control information needed to render the
desired access service. VSE/POWER requires this list when

30 IBM VSE/POWER Application Programming

Spool Access - Concepts

your program issues the first (or only) request for the access
service.

On request, the macro generates a DSECT of the SPL. In this
chapter, references to SPL-related fields or codes use the
mnemonics that you find also in the generated DSECT.

Figure 14 on page 32 shows how the macros XPCC, XPCCB, and PWRSPL,

relate to each other; it shows how the associated control blocks and
areas are used for setting up an access to VSE/POWER services.

Chapter 2. Spool-Access Support 31

Spool Access - Concepts

XPCC XPCCB=(rl),FUNC=SENDR,...
—.J

: IJBXPCCB
I V 1 —————— XPCCB ———
| register rl o------ >| Generated by macro XPCCB |
L g | |
| IJBXSUSR [
| ———— User Data —|
|| PXUBTYP i
|| PXUBxxxx ====== to VSE/POWER ===>
.. [
| a
| IJBXRUSR |
| ———— User Data — |
|| PXPBTYP]
|| PXPBxxxx <=== from VSE/POWER ====
... [
|t H
| |
Il l'
R s o REPAREA=(name,length) ||
I [
f===-=-------0 BUFFER=(name, length) ||
J
|
|
J

|
|
|
|
|
|
|
I | |
| |Contains one of the following: |
| |- SPL (generated by macro PWRSPL) |

| | for the opening request. ==== to VSE/POWER ===>
| |- A control record. |

| |- Data to be spooled. |

| | I

I J

|

L

Leccaaaa >—— Reply Buffer —

l
|Contains one of the following: |
|- Verification SPL. <=== from VSE/POWER ==
|- Data requested by your program. |

l

J

L

Legend: =====> Data flow (includes control data)
----- > Pointer
..... > Source-to-object code relation

Figure 14. The Macros and Control Blocks for Spool Access

32 IBM VSE/POWER Application Programming

Spool Access - Concepts

When your program issues a service request, the system passes the
associated XPCCB and send buffer to VSE/POWER. The system returns to
your program's XPCCB user data passed by VSE/POWER; it puts data into
your program's reply buffer as applicable.

Before your program issues a request, it must ensure that the preceding
request (if any) is complete.

Separate sections of this chapter deal with setting up a communication
path, issuing access-service requests, and removing an existing
communication path. In studying these sections, you may find it helpful
to have an output listing for an assembly of the following macros:

MAPXPCCB
PWRSPL TYPE=MAP

The assembler produced DSECTs include explanatory comments.

A complete list of the VSE/POWER return and feedback codes is given in
the DSECT PXPUSER, which the assembler generates for a PWRSPL TYPE=MAP
macro. You find the return codes at label PXPRETCD and the feedback
codes at label PXPFBKCD.

To get a feel for the scope and level of the support, consider reading

the description of the PWRSPL macro under "PWRSPL Macro" on page 99.
SET UP A COMMUNICATION PATH

Sequence of Coding: To set up a communication path between your program

and VSE/POWER, include in your program coding in the sequence as shown
in Figure 15 on page 34.

For all access-service requests via an existing path, your program must
use the XPCCB which you supplied for program identification and
connection. The section "Spool-Access Support Programming Example' on
page 120 includes an identify and a connect coding sequence at labels
IDENT and CONCT, respectively.

For each additional communication path established to VSE/POWER, the
connection XPCCB control block must be copied from the original
identification XPCCB. This is described under "Set Up Two or More
Communication Paths' on page 97.

Return Information: Your program should test return information as
follows:

1. Register 15.
2. The return code in the XPCCB field IJBXRETC.

For a complete list of possible return codes, see the section "XPCC
Macro" on page 113.

Chapter 2. Spool-Access Support 33

Spool Access

When the setup of the communication path is complete, your program can
issue access-service requests.

Coding in your

application program Comments
|
\Y
XPCC FUNC=IDENT,... Identifies your program to the
Check the return codes in system. (Required only once
register 15 and in the per program.)

XPCCB (byte IJBXRETC).

\Y
XPCC FUNC=CONNECT,... The macro must refer to the same
Check the return codes in XPCCB you used for program identi-
register 15 and in the fication. (Required for each
XPCCB (byte IJBXRETC). communication path to VSE/POWER.)
|
\

WAIT IJBXCECB

l
\

Wait for the CONNECT ECB to be
posted.

Figure 15. Sequence Diagram — Setting up a Communication Path

REQUEST VSE/POWER ACCESS-SERVICES

You can access VSE/POWER for service requests as follows:

CTL (control) service: one or more Requests to process a command
that is being passed to VSE/POWER explicitly or by way of control
values. This is discussed under "Request a CTL Service" on page 36.

GET (retrieve spooled data) service: requests to retrieve a certain
queue entry from the specified local VSE/POWER queue. For a
discussion of this service, turn to "Request a GET Service" on
page 41.

PUT (submit job or output) service: requests to include, into the
applicable VSE/POWER queue, a job (or job stream) or output data.
For more information see the section "Request a PUT Service —
General Considerations" on page 58.

Via an existing communication path, only one type of service processing
can be handled at a time. You cannot, for example, open GET-service

34 1IBM VSE/POWER Application Programming

Spool Access

processing and issue a CTL-service request before the previously started
GET processing is finished. For all requests which your program issues
via the communication path, it must use the same XPCCB.

You define a request, and also control information needed by VSE/POWER,
primarily in a PWRSPL-generated SPL; to some extent, you specify control
information in the user area of the XPCCB or in a separate control
record.

The requests for a desired service have to be coded in a certain

sequence depending on the type of service. This sequence is shown in
the form of a diagram followed by a discussion of the various requests.

Chapter 2. Spool-Access Support 35

Spool Access - CTL Service

Request a CTL Service

VSE/POWER can process only one control function per CTL-service request.
Open a CTL-service request in your program if you want VSE/POWER to do
one of the following:

Pass a command for processing by VSE/POWER.

Alter certain attributes of a queue entry.

Cancel a job that is being executed.

Delete a reader or an output queue entry.

Display status information about a reader or an output queue entry
or a group of entries.

Release a job or an output queue entry.

Place a reader or an output queue entry into the hold state.

Refer to Figure 16 on page 37, a coding sequence diagram. It shows the
kind of coding you have to supply in your program and in what sequence
this coding is to be. This coding is discussed in the subsequent
paragraphs. The section "Spool-Access Support Programming Example' on
page 120 includes a CTL-service request at label CTLAL.

Issue a Service-Open Request

To open this processing, VSE/POWER requires:

° Byte PXUBTYP of the XPCCB to be set to the value equated to
PXUBTSPL. This tells VSE/POWER that the send buffer contains an
SPL.

° In the send buffer, an SPL set up by a PWRSPL macro with TYPE=GEN or
updated by a PWRSPL macro with TYPE=UPD.

° A reply buffer set up in your program either by specifying
REPAREA=(areaname, length) or by inserting the buffer's address and
length into the four-byte XPCCB fields IJBXRADR and IJBXRLNG,
respectively. Any messages that VSE/POWER generates are returned to
your program in this buffer (see also "Issue a Return-Message
Request' below).

Processing for a CTL service may be discontinued at any time by either a

quit request or by a new function request. This is discussed under
"Issue a Service End Request" on page 38.

36 IBM VSE/POWER Application Programming

Spool Access - CTL Service

Coding in your
application program

I
v

Open the service
XPCC FUNC=SENDR,...
|
\
Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).
I
\Y
IJBXSECB

Check the reason code (in the
XPCCB byte IJBXREAS)

I

\
Check the VSE/POWER return and
feedback codes (in the XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively).

| <

\"
Check for and evaluate messages
returned by VSE/POWER

I

\

Get additional messages, if any

XPCC FUNC=SENDR,...

I
I
I
v

WAIT IJBXSECB

I

\'%
Check the VSE/POWER return and
feedback codes (this is the same]

WAIT

as above). If more messages are|
waiting for transfer, then —
Else |

I

\

End of service

Comments

Your program's send buffer must
contain an SPL generated (or up-
dated) for processing a CTL service.

Wait for the SENDR ECB to be posted.
This indicates that VSE/POWER has
finished processing the service.

If messages are to be returned, then
VSE/POWER passes them to your pro-
gram's reply buffer.

Coding for this purpose is required
only if the feedback code indicates
that more messages are queued. No
SPL need be passed for this request;
your program must set a request code
in the XPCCB.

Wait for the SENDR ECB to be posted.

Loop until VSE/POWER returns the
feedback code PXPOOEOD.

Figure 16. Sequence Diagram — CTL-Service Processing

Chapter 2. Spool-Access Support

37

Spool Access - CTL Service

Issue a Return-Message Request

VSE/POWER queues any messages that may occur while it processes the
requested CTL service. It passes these messages to your program's reply
buffer.

If all of the queued messages fit into your reply buffer, VSE/POWER
indicates this by a return- and feedback-code combination
PXPRCOK/PXPOOEOD. If the generated messages do not fit, VSE/POWER
passes to your program the return- and feedback-code combination
PXPRCOK/PXPOOOK.

To have VSE/POWER pass messages not yet transferred, your program must:

1. Set byte PXUACT1 of the XPCCB to the value equated to PXUATRMR.

2. Issue an XPCC FUNC=SENDR request which passes a null buffer (instead
of an SPL).

The coding sequence at label DSPL2 in the section "Spool-Access Support
Programming Example' on page 120 shows how to set up a null buffer and

how to issue a return-message request.

VSE/POWER deletes messages queued but not yet transferred if your
program does one of the following:

° Issues another, different service request.
d Issues a quit request.

. Ends communication via the currently used path.

Issue a Service End Request

If the processing of a CTL service is to be discontinued before it is
finished, you can do either of the following:

° Issue a new function request, which requires an SPL to be passed to
VSE/POWER.

° Issue a quit request. To do this:
1. Set byte PXUBTYP of the XPCCB to zero.
2. Set byte PXUACT1 of the XPCCB to the value equated to PXUATABR.

3. 1Issue an XPCC FUNC=SENDR request passing a null send buffer,
that is, a buffer with a length of zero.

The coding sequence at label GQUIT in the section ''Spool-Access

Support Programming Example' on page 120 shows how to set up a null
buffer and how to issue a quit request.

28 1IBM VSE/POWER Application Programming

Spool Access - CTL Service

Check the Return Information

For the return information to be checked by your program after an XPCC
request, refer to "XPCC Macro" on page 113.

Your program should also check the return information supplied by
VSE/POWER. Provide for this checking after your program's SENDR ECB has
been posted.

Figure 17 on page 40 lists the return and feedback codes that VSE/POWER
may supply when it processes a CTL-service related request. The list is
ordered in ascending order by code values. It relates the codes to the
applicable request types and gives the names that are equated to the
feedback codes. A complete list of the VSE/POWER return and feedback
codes is given in the DSECT PXPUSER, which the assembler generates for a
PWRSPI, TYPE=MAP macro. You find the return codes at label PXPRETCD and
the feedback codes at label PXPFBKCD.

Chapter 2. Spool-Access Support 39

Spool Access - CTL Service

Request Type
Return Feedback

Mnemonic Code Code CTL Open Get Messages
PXPOOOK 00 00 X X
PXPOOEOD 01 X X
PXP04SOA 04 09 X
PXPO4DNF 0B X
PXPO4TQN 0C X
PXP0O8SPL 08 01 X
PXPOSREQ 02 X
PXPO8SRQ 03 X
PXPO8FB2 04 X
PXP08JNM 05 X
PXP08QID 06 X
PXPO8CLS 07 X
PXPOSPWD 08 X
PXPO8UID 09 X
PXPO8BTS 1A X X
PXPOSIAB 1C X
PXPO8CON 22 X X
PXPOSIBT 24 X
PXP08BOS 27 X
PXPO8JSF 32 X
PXPOCINS 0C 01 X X
PXPOCIXF 02 X X
PXPOCIOE 07 X X
PXP10PSP 10 05 X X
PXP10SIE 06 X X

Figure 17. Return and Feedback Codes for CTL-Service Related Requests

40 IBM VSE/POWER Application Programming

Spool Access - GET Service

Request a GET Service

You

request a GET service if you want VSE/POWER to retrieve a certain

queue entry and make this entry available to your program. In your
program, you issue GET-service requests as follows:

1.

You

An Open request to start the desired retrleval of spool data - For
details, see "Issue a Service-Open Request' on page &44.

One or more GET spool data requests to have VSE/POWER make the
desired spool data available to your program — For details, see
"Issue a GET Spool Data Request' on page 47.

An end-service request, which may be one of the following:

° A Close request to indicate that the retr1eva1 of a specific
queue eue entry is finished — For details, see "Issue a Close
Request'' on page 47.

° A Quit request to end any further retrleval of spool data — For
details, see "Issue a Quit Request" on page 48.

° A Quit-and-Lock request to indicate, for example, that the
proce531ng of an output queue entry failed - For details, see
"Issue a Quit-and-Lock Request' on page 48.

e A Purge request to end any further retrieval of spool data and
to Purge the accessed queue entry from 1ts queue — For details,
see '"Issue a Purge Queue Entry Request' on page 48.

may, in addition, issue:

A Checkpoint request to record a suitable restart point should a
restart be de51rab1e or become necessary — For details, see "Request
a Checkpoint" on page 49.

A Restart request to set up the retrieval of a queue entry' s spool
data at a p01nt other than the beginning — For details, see "Request
a Restart' on page 50.

A Get OPTB request to obtain one or more available output parameter
text blocks (OPTBs) - For details, see "Issue a Get-OPTB Request' on
page 52.

A Modify OPTB request to change an OPTB - For details, see "Issue a
Modify-OPTB Request' on page 53.

Chapter 2. Spool-Access Support &1

Spool Access - GET Service

General Considerations

42

Accessing a Queue Entry: A queue entry, to be retrieved for your
program, must have a disposition of D (dispatchable) or K (keep after
processing). An exception is the retrieval of a queue entry in BROWSE
mode; in other words, retrieval just for the purpose of examining
(viewing on a screen, for example) the contents of the queue entry's
data. In BROWSE mode, any queue entry can be retrieved, regardless of
its disposition.

In addition, your program can get a queue entry only if one of the
following is true:

. The program identifies itself as the owner of the job or output that
is to be accessed.

. The queue entry is an output destined for your program.

. The queue entry is an output with a destination of ANY (which means
that any program accessing VSE/POWER can get this output).

If a queue entry is password protected, your program must supply the
matching password in the SPL.

Disposition of a Retrieved Queue Entry: If you end the retrieval of a
queue entry by a Close request, then this retrieval is, for VSE/POWER,
the same as processing this entry. Therefore, if the entry's
disposition was

D VSE/POWER deletes the entry.
K VSE/POWER retains the entry with the entry's disposition changed
to L.

For further information on disposition refer to the VSE/POWER
Installation and Operations Guide.

Data Passed by VSE/POWER: If your program requests a RDR queue entry,
VSE/POWER does not return the * $$ JOB, * $$ RDR, and * $$ EOJ
statements.

Each record made available by VSE/POWER is preceded by an eight-byte
prefix as shown in Figure 18 on page 43. A DSECT of this prefix,
labeled RECPRFIX, is available to you if you issue a PWRSPL macro with
TYPE=MAP.

IBM VSE/POWER Application Programming

Spool Access - GET Service

| T 1
! Bytes ! Explanation }
- 1 |
| 0 | Carriage control character or X'00'. |
| | |
: 1 : Record type: I
| | X'00' = A normal data record |
| | X'01' = A spool parameter list (SPL) |
| | X'03' = A separator-page (separator-card) start record |
| | X'04' = A 3540 data record (applies only to a RDR queue |
I I ' entry) |
| | X'05' = A control-command record (such as skip to |
| | channel 1 (X'8B) or block data check (X'73") |
| | X'06' = A CPDS (composed page data stream) record |
| | X'07' = A separator-page (separator-card) end record |
| | X'08' = An end-of-copy record |
I | |
| 2-3 | Length of a logical record (in binary notation) |
| | |
| 4-7 | VSE/POWER assigned record number (in binary notation); you |
| | can use this number to specify a restart point should a |
| | restart become necessary. |
L i 1

Figure 18. Record Prefix Layout

The Verification SPL: 1In response to your first (opening) request,
VSE/POWER returns to your program a verification SPL. Consider
analyzing this SPL in your program and coding programmed actions that
may be necessary.

The verification SPL contains the same information as the SPL passed by
your program. Some of the verification SPL's fields contain data about
the currently accessed queue entry and not supplied by your program.

Examples are: record format and length, number of print lines or pages.
Your program may need this information for setting up output processing.

Required Buffers: Your program must provide buffers as follows:

* A send buffer for the opening request, large enough to hold the
required SPL. You can define the buffer by way of the BUFFER
operand of the XPCC or XPCCB macro.

® A reply buffer large enough to hold either of the following
whichever is larger:

~ The verification SPL passed by VSE/POWER in response to your
program's opening request.

— The largest data record of the requested queue entry.

— The largest OPTB.

Chapter 2. Spool-Access Support 43

Spool Access - GET Service

vy
¥

You define the buffer by way of the REPAREA operand of the XPCCB
macro.

Checkpoint and Restart Capability: Your program can request checkpoints
to be recorded. Each time it records a checkpoint, VSE/POWER passes to
your program a checkpoint-response record.

Your program can request VSE/POWER to restart the retrieval of spooled
records, should the need arise. You can request this restart at a
recorded checkpoint (normally the last) or at any other data record.

End the Service: Your program can end a GET-service at any time after
completion of a relevant XPCC SENDR request. This is discussed further
under "Issue an End-Service Request'" on page 47.

Coding ‘Sequence

Figure 19 on page 45, shows the kind and sequence of the coding needed
in your program for the retrieval of a complete queue entry. This
coding is discussed in the subsequent paragraphs. The section
"Spool-Access Support Programming Example" on page 120 includes a
GET-service request at label GETB1.

Issue a Service-Open Request

To open GET-service processing, VSE/POWER requires:

i Byte PXUBTYP of the XPCCB to be set to the value equated to
PXUBTSPL. This indicates to VSE/POWER that the send buffer contains
an SPL.

¢ An SPL as set up by a PWRSPL macro with TYPE=GEN or updated by a
PWRSPL macro with TYPE=UPD.

° A reply buffer to which VSE/POWER passes the verification SPL.

44 1IBM VSE/POWER Application Programming

Spool Access - GET Service

Coding in your
application program

I
v

Open request
XPCC FUNC=SENDR,...
I
\
Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).
|
\
WAIT IJBXSECB
|
\
Check the reason code (in the
XPCCB byte IJBXREAS).
|
\
Check the VSE/POWER return and
feedback codes (in the XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively).
|
\
Check for and evaluate the SPL
from VSE/POWER, if necessary.
I
\Y
See next part

Comments

Your program's send buffer must
contain an SPL generated (or up-
dated) for processing a GET service.

Wait for the SENDR ECB to be posted.

VSE/POWER returns a verification SPL
to your program's reply buffer if
the request has been accepted and
can be processed by VSE/POWER.

Figure 19 (Part 1 of 2). Sequence Diagram — GET Service for a Complete Queue Entry

Chapter 2.

Spool-Access Support 45

Spool Access - GET Service

Coding in your
application program Comments

— From preceding page
| <
\'
GET spool data request
XPCC TFUNC=SENDR,...
I
\'
Check the return codes in re-
gister 15 and in the XPCCB
(byte IJBXRETC).

1
|
I
I
I
I
I
I
I
| I
v |
I
I
I
I
I
I
I
|
I
I

Your program's XPCCB must refer to
a zero-length send buffer.

WAIT IJBXSECB
|
\"
Check the return and feed-
back codes (this is the same
as in Part 1).
I
\'
Deblock the data in the reply
buffer, if necessary. If more Loop until VSE/POWER returns the
records are to be transferred —! feedback code PXPOOEOD.

Wait for the SENDR ECB to be posted.
VSE/POWER places the retrieved data
record(s) into your program's re-
ply buffer.

Else bl
I
\Y
End-retrieval request
XPCC FUNC=SENDR,... Your program's XPCCB must refer to a
| zero-length send buffer.
\%

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

\Y

WAIT TIJBXSECB Wait for the SENDR ECB to be posted.
| This ensures that the communication
\ is free for another service request.

Check the VSE/POWER return and
feedback codes (this is the
same as in Part 1).

|
v

End of Service

Figure 19 (Part 2 of 2). Sequence Diagram — GET Service for a Complete Queue Entry

46 IBM VSE/POWER Application Programming

Spool Access - GET Service

Issue a GET Spool Data Request

After VSE/POWER has passed the verification SPL, your program will
eventually issue one or more GET spool data requests, each one after the
completion of the preceding other. You do this by code in your program
for the following:

1. Set byte PXUBTYP of the XPCCB to zero.

2. Set byte PXUACT1 of the XPCCB to the value equated to PXUATSDR.

3. Issue an XPCC FUNC=SENDR request.

In response to a GET spool data request, VSE/POWER fills your program's
reply buffer with records of the queue entry, one record behind the
other. You define this buffer by the REPAREA operand of your XPCCB

macro; you may want to alter this definition by changing the buffer's
address (in field IJBXRADR) and its length (in field IJBXRLNG).

Issue an End-Service Request

When your program has finished processing the data of a queue entry, it
should issue one of the following requests after VSE/POWER has completed
a relevant XPCC SENDR request:

Close To have VSE/POWER dispose of the queue entry in accordance with
VSE/POWER's disposition rules.

Quit To return the queue entry with its original disposition.

Quit-and-Lock
To indicate that the processing of an output queue entry failed.

Purge To purge the queue entry from the queue.

Issue a Close Request: In your program, you normally issue a Close
request when VSE/POWER has completed the retrieval of the desired queue
entry. However, you can issue a Close request any time during the
retrieval of a queue entry.

When it receives a Close request, VSE/POWER handles the queue entry in
accordance with its disposition rules. If the disposition is:

D VSE/POWER deletes the queue entry.
K VSE/POWER retains the queue entry with a disposition of L.

To issue a Close request in your program:
1. Set byte PXUBTYP of the XPCCB to zero.

2. Set byte PXUACT1 of your XPCCB to the value equated to PXUATRQS.

Chapter 2. Spool-Access Support &7

Spool Access - GET Service

48

3. Issue an XPCC FUNC=SENDR request which passes a null buffer, that
is, a buffer with a length of zero.

The coding in your program is similar to a quit request as shown at
label GQUIT in the section "Spool-Access Support Programming Example' on
page 120. However, the MVI instruction that sets byte PXUACT1 of the
XPCCB is to be replaced by the sample instruction shown as comment with
the label *GCLOSE.

Issue a Quit Request: You can do this at any point during the retrieval
of a queue entry. The request causes VSE/POWER to retain the queue
entry with its originally assigned priority and disposition.

To issue a quit request in your program:
1. Set byte PXUBTYP of the XPCCB to zero.
2. Set byte PXUACT1 of your XPCCB to the value equated to PXUATABR.

3. Issue an XPCC FUNC=SENDR request passing a null send buffer, that
is, a buffer with a length of zero.

The coding sequence at label GQUIT in the section "Spool-Access Support
Programming Example" on page 120 shows how to set up a null buffer and
how to issue a quit request.

Issue a Quit-and-Lock Request: You can do this at any point during the
retrieval of a queue entry. The request causes VSE/POWER to requeue the
currently processed queue entry in the appropriate class chain with a
temporary disposition of Y for the purpose of:

. Indicating that a problem has occurred during output processing, and
. Preventing that the output queue entry is handled again until the
subsystem has taken some special action (for example, issued the

PALTER command to alter the temporary disposition to a dispatchable
one).

To issue a quit-and-lock request in your program:
1. Set byte PXUBTYP of the XPCCB to zero.
2. Set byte PXUACT1 of your XPCCB to the value equated to PXUATIPF.

3. Issue an XPCC FUNC=SENDR request passing a null send buffer, that
is, a buffer with a length of zero.

Issue a Purge Queue Entry Request: You can do this at any point during
the retrieval of a queue entry. The request causes VSE/POWER to delete
the currently processed queue entry from its queue.

To issue a Purge request in your program:

IBM VSE/POWER Application Programming

Spool Access - GET Service

1. Set byte PXUBTYP of the XPCCB to zero.
2. Set byte PXUACT1 of your XPCCB to the value equated to PXUATPRG.

3. Issue an XPCC FUNC=SENDR request passing a null send buffer, that
is, a buffer with a length of zero.

The coding in your program is similar to a quit request as shown at
label GQUIT in the section "Spool-Access Support Programming Example" on
page 120. However, the MVI instruction that sets byte PXUACT1 of the
XPCCB is to be replaced by the sample instruction shown as comment with
the label *GPURGE.

Request a Checkpoint

Checkpointing is meaningful if your program requests a large amount of
spooled data to be retrieved. It is meaningful, for example, if your
- program is to process retrieved spool data in sections. It can save
processing time should a program or system failure occur.

Your program can request VSE/POWER to record a checkpoint at any time
between two GET spool data requests. VSE/POWER records checkpoint

information as follows:

e Logical record number as specified in the checkpoint-control record.
. The output-copy number (if applicable).

To have VSE/POWER record a checkpoint, your program must:
1. Set up a checkpoint-control record in your program's send buffer.

By issuing a PWRSPL macro with TYPE=MAP, the assembler generates a
DSECT of this record at label PXCPDSCT.

In the checkpoint-control record, you can specify a copy number
(field PXCPRCPY) if the control record applies to an output queue
entry. The number tells VSE/POWER, that checkpoint information is
to be recorded for the specified record in the specified output
copy. If you set the field to zero, VSE/POWER uses its current
number-of-copies count.

2. Set byte PXUACT1 of the XPCCB to zero.
3. Set byte PXUBTYP of the XPCCB to the value equated to PXUBTCTL.

This tells VSE/POWER that your program's send buffer contains a
control record.

Chapter 2. Spool-Access Support 49

Spool Access - GET Service

4. Issue an XPCC FUNC=SENDR request.

The request passes to VSE/POWER the checkpoint-control record which
your program has set up in its send buffer.

After having recorded the requested checkp01nt VSE/POWER returns a
checkpoint-response record (in your program's reply buffer). The
assembler generates a DSECT of this record at label PXCRDSCT if you
issue a PWRSPL macro with TYPE=MAP.

As described in the section "Request a Restart," VSE/POWER returns the
last recorded checkpoint of a queue entry when a retrieval of this queue
entry is opened again. In your program, you can then decide whether
VSE/POWER is to continue retrieval at that checkpoint (by issuing a
restart request) or from the beginning (by issuing a GET spool data
request).

Request a Restart

50

Your program can request VSE/POWER to restart retrieval at any point
during GET data processing. It can request such a restart immediately
after processing of the Open request is complete; it can, in fact,
request a restart even after the end-of-data indication has occurred,
but before it passes the end-service request.

Figure 20 on page 51 shows a sequence diagram for a restart request.

The diagram assumes that GET service processing has been opened
successfully. The section "Spool-Access Support Programming Example" on
page 120 includes a restart request at label GETB3.

IBM VSE/POWER Application Programming

Spool Access - GET Service

Coding in your
application program

I
v

WAIT IJBXSECB
I
v
Check the reason code (in the
XPCCB byte IJBXREAS).
|
\Y
Pick up and evaluate the veri-
fication SPL, if necessary.
I
\"
Restart request
XPCC FUNC=SENDR,...
I
\
Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).
I
v
WAIT IJBXSECB
I
\% A
Check the VSE/POWER return and
feedback codes (in the XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively).

I
v

Comments

Wait for the SENDR ECB to be posted.
VSE/POWER returns a verification
SPL to your program's reply buffer.

Your program's send buffer must
contain a restart control record.

Wait for the SENDR ECB to be posted.
VSE/POWER transfers data records to

your program's reply buffer, as many
records as will fit.

At this point, the coding sequence
is the same as for the retrieval of
a complete queue entry.

Figure 20. Sequence Diagram — Restart of a GET Service

To make a restart request, your program must:

1. Set byte PXUACT1 of the XPCCB to zero.

2. Set byte PXUBTYP of the XPCCB to the value equated to PXUBTCTL.

This tells VSE/POWER that your program's send buffer contains a

control record.

3. Set up a restart control record in your program's send buffer.

By issuing a PWRSPL macro with TYPE=MAP, the assembler generates the
restart-control record DSECT labeled PXRSDSCT. In the record, set

field PXRSOPT to:

Chapter 2. Spool-Access Support 51

Spool Access - GET Service

X'00' if the number in field PXRSRECN is a spool-record (card)
number.

X'20' if the number in field PXRSRECN is a page number.

X'80' if the number in field PXRSRECN is a line number.

If an output queue entry is being retrieved, you can specify a copy
number in field PXRSCOPN of the control record. The number tells
VSE/POWER that it is to restart retrieval at the specified record in
the specified output copy. If you set the field to zero, VSE/POWER
uses the current number-of-copies count.

As a help in defining a restart point, VSE/POWER passes to your
program the internal record count in field RECLOGNO of each
retrieved record's prefix. If your program accesses a previously
retrieved and checkpointed queue entry, VSE/POWER gives you the last
recorded checkpoint information in the verification SPL as follows:

¢ The number of the logical record last checkpointed — In field
SPLDCLC.
e The related copy number, if applicable — In field SPLDCCPY.

4. Issue an XPCC FUNC=SENDR request.

The request passes to VSE/POWER the restart-control record set up by
your program in its send buffer.

In response to a valid restart request, VSE/POWER repositions the
retrieval pointer. VSE/POWER then continues processing by passing
records to your reply buffer, starting with the record or line defined
in the restart control record.

| Issue a Get-OPTB Request

52

Your program can request VSE/POWER to retrieve either all available
OPTBs (output parameter text block) or a specific OPTB.

e OPTBs are contained in an output queue entry if the * §$§ LST or
* $$ PUN statement includes any user-defined keywords that have been
defined in autostart DEFINE statements.

e OPTBs can also be passed to VSE/POWER as an appendage of the SPL
(Spool Parameter List) at PUT Open time (see "Specify Output
Parameter Text Blocks (OPTBs)" on page 91).

You can send the Get-OPTB control record to VSE/POWER at any time while
accessing an output queue entry (during GET data processing) or while
spooling output data (PUT function). If OPTBs are present, the SPL
contains a two-byte field indicating the total length of all OPTBs (see
Figure 35 on page 92 and Figure 36 on page 92).

You can obtain the format of the GET-OPTB control record by issuing a
PWRSPL macro with TYPE=MAP. The assembler generates the GET-OPTB

IBM VSE/POWER Application Programming

Spool Access - GET Service

control record DSECT labeled PXGODSCT. In the control record, pass the
desired OPTB identifier in field PXGOID.

If you specify an OPTB identifier in the control record, VSE/POWER
places only this particular OPTB into your program's reply buffer. If
you do not specify an OPTB ID, VSE/POWER places all OPTBs into the reply
area.

To obtain one or more OPTBs your program must:

1. Set up a Get-OPTB control record in your program's send buffer.

2. Set byte PXUACT1 of the XPCCB to zero.

3. Set byte PXUBTYP of the XPCCB to the value equated to PXUBTCTL.

This tells VSE/POWER that your program's send buffer contains a
control record.

4. Issue an XPCC FUNC=SENDR request.

The request passes to VSE/POWER the Get-OPTB control record set up
by your program in its send buffer.

Issue a Modify-OPTB Request

Your program can request VSE/POWER to modify an existing OPTB. Via the
Modify-OPTB control record you can update (overwrite) any OPTB with a
new one, which must have the same length as the old OPTB. You can send
the Modify-OPTB control record to VSE/POWER at any time while accessing
an output queue entry (during GET data processing) or while spooling
output data (PUT function), but not when you are in browse mode.

You can obtain the format of the Modify-OPTB control record by issuing a
PWRSPL macro with TYPE=MAP. The assembler generates the Modify-OPTB
control record DSECT labeled PXMODSCT. In the control record, pass the
OPTB to be modified starting at field PXMOOPTB.

To modify one or more OPTBs your program must:

1. Set up a Modify-OPTB control record in your program's send buffer.
2. Set byte PXUACT1 of the XPCCB to zero.

3. Set byte PXUBTYP of the XPCCB to the value equated to PXUBTCTL.

This tells VSE/POWER that your program's send buffer contains a
control record.

Chapter 2. Spool-Access Support 53

Spool Access - GET Service

4. TIssue an XPCC FUNC=SENDR request.

The request passes to VSE/POWER the Modify-OPTB control record set
up by your program in its send buffer.

Check the Return Information

54

For the return information to be checked by your program after an XPCC
request, refer to "XPCC Macro" on page 113.

For each individual GET-service request, your program should check
return information supplied by VSE/POWER. Provide for this checking
after your program's SENDR ECB has been posted.

Figure 21 on page 55 lists the return and feedback codes that VSE/POWER
may supply when it processes a GET-service related request. The list is
ordered in ascending order by code values; it relates the codes to the
applicable request types; it gives the names that are equated to the
feedback codes.

A complete list of the VSE/POWER return and feedback codes is given in
the DSECT PXPUSER, which the assembler generates for a PWRSPL TYPE=MAP
macro. You find the return codes at label PXPRETCD and the feedback
codes at label PXPFBKCD.

IBM VSE/POWER Application Programming

Spool Access - GET Service

Request Type

Return Feedback GET BROWSE GET Check- Re- GET Modify
Mnemonic Code Code Open Open Data point start OPTB OPTB

PXPOOOK 00 00 X X X X X X X
PXPOOEOD 01 X X

PXPO4NOF 04 01 X X

PXP04JOP 02 X X

PXP0O4BSY 03 X X

PXPO4NDS 04 X

PXPO4RER 06 X

PXPO4CER 07 X

PXP04S0A 09 X X

PXPO4BER 0A X
PXPO4ONF 11 X X
PXPO8SPL 08 01 X X

PXPO8REQ 02 X X

PXPO8JNM 05 X X

PXP0O8QID 06 X X

PXPO8CLS 07 X X

PXPO8PWD 08 X X

PXPO8UID 09 X X

PXPO8BTS 1A X X X X
PXPOSIAB 1C X

PXPO8ICR 1D X X X X
PXPO8CON 22 X X X X X

PXPO8IBT 24 X X X X

PXPO8ROS 25 X

PXP08S0S 26 X X

PXPO8BOS 27 X X

PXPO8FB1 2B X X

PXPO8JNO 31 X X

PXPO8JSF 32 X X

PXPO8IRR 38 X X
PXPO8IOP 39 X
PXPO8OLM 3A X
PXPO8IDH 3D X X
PXPOCINS 0C 01 X X X X X

PXPOCIXF 02 X X X X X

PXPOCIOE 07 X X X X X

PXP10PSP 10 05 X X X X X

PXP10SIE 06 X X X X X

Figure 21 (Part 1 of 2). Return and Feedback Codes for GET-Service Requests

Chapter 2. Spool-Access Support 55

Spool Access - GET Service

Request Type

Return Feedback Quit Flush

Mnemonic Code Code Purge Close Quit Lock Hold*
PXPOOOK 00 00 X X X X X
PXPOOEOD 01

PXPO4NOF 04 01

PXP04JOP 02

PXPO4BSY 03

PXPO4NDS 04

PXPO4RER 06

PXPO4CER 07

PXP04S0A 09

PXPO4BER 0A X X X X X
PXPO8SPL 08 01

PXPOBREQ 02

PXPO8JNM 05

PXP08QID 06

PXPO8CLS 07

PXPO8PWD 08

PXPOSUID 09

PXPO8BTS 1A

PXPOSIAB 1C X X X X X
PXPOSICR 1D

PXPO8CON 22 X X X X X
PXPO8IBT 24

PXPO8ROS 25 X X X X X
PXP08SO0S 26

PXP08BOS 27

PXPO8RPH 28 X
PXPO8FB1 2B

PXP08JSF 32

PXPOCINS oC 01 X X X X X
PXPOCIXF 02 X X X X X
PXPOCIOE 07 X X X X X
PXP10PSP 10 05 X X X X X
PXP10SIE 06 X X X X X

* The flush hold function is part of the external device support.

Figure 21 (Part 2 of 2). Return and Feedback Codes for GET-Service Requests

56 IBM VSE/POWER Application Programming

Spool Access - GET Service

| Abnormal-End Condition During GET

I
I
I
I
I
|
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I

o For an abnormal end of your program or of the VSE/POWER service
task:

If the output being retrieved by the GET service has been created
via the PUT service with the 'protect' option on, the queue entry is
placed into the non-dispatchable queue with disposition Y.

A queue entry is protected when the SPL field SPLDMOHP is set on to
signal: 'Hold when print/punch fails' (see Figure 26 on page 74).

. For an abnormal end of VSE/POWER or of the VSE system, the same
applies as described above.

A queue entry with disposition Y is not automatically processed by the
various VSE/POWER tasks. Your program can make use of the CTL service
to

° Get a display of all queue entries that have a disposition of Y by
entering the PDISPLAY ALL,CDISP=Y command, and

° Alter this disposition for a queue entry to make it eligible for
processing again. To reset disposition Y of a queue entry to its
original one, use the PALTER queue, jobname,DISP=* command.

For further information on disposition refer to the VSE/POWER
Installation and Operations Guide.

Chapter 2. Spool-Access Support 57

Spool Access - PUT Service

Request a PUT Service — General Considerations

Your program would initiate PUT-service processing whenever data is to
be submitted to VSE/POWER for inclusion in one of its queues. Jobs,
including the associated input data, are submitted for inclusion in the
RDR or XMT queue, whichever applies. Output data is submitted for
inclusion in an output queue (LST, PUN, or XMT).

Submission for Inclusion in the XMT Queue

Data Format

To submit a job for processing at another node (of your computer
system's network), specify this in the * $$ JOB statement for the job.

To submit output data for transmission to another node, give the target
node's name and the applicable user-ID in the SPL fields SPLDTNN and
SPLDTUID, respectively.

In the SPL macro, you specify QUEUE=RDR for job input; you specify
QUEUE=LST for list output and QUEUE=PUN for punch output.

The format of the data to be spooled is always the same. Each record
must be preceded by an eight-byte prefix as shown below (a DSECT of this
prefix, labeled RECPRFIX, is available to you if you issue a PWRSPL
macro with TYPE=MAP):

Bytes Explanation
0] Carriage control character, if any.
1 Record type:
X'00' = A normal data record.
X'06' = A CPDS (composed page data stream) record.
2-3 Length of a logical record (in binary notation).
4-7 Reserved.

58 1IBM VSE/POWER Application Programming

Spool Access - PUT Service

Data Lengths

Size of Buff

For normal (type X'00') records, the minimum and maximum lengths are:

Job Data Output Data
Minimum 80 see * 1
Maximum 128 32K-1

* The default assumed by VSE/POWER if your program does not
define a data length (in field SPLDLREC of the SPL).

If an output-spool record includes trailing blanks, your program can
truncate these blanks prior to passing the record to VSE/POWER. This
makes better use of buffer space.

If a record to be passed is longer than the specified maximum length,
VSE/POWER truncates the record and informs your program by a feedback
code; VSE/POWER spools the truncated record as well as the remaining
records in the passed data buffer. For a passed record shorter than the
specified maximum length, VSE/POWER:

0 Expands this record by padding it with blanks at the end if a job is

being submitted.
N Spools the record as presented if output is being submitted.

ers

Your program must define the sizes of your send and reply buffers.

The Send Buffer: The buffer must be large enough to hold your program's
SPL when the processing of the desired service is initiated. It must be
large enough to hold the longest record (including the eight-byte
prefix) that is to be passed to VSE/POWER.

To pass data to VSE/POWER for spooling, your buffer should have a length
equal to the sum of the lengths of the data records (including the
record prefix) that your program is to submit at a time. This may be
just one record or a number of records. A zero data length field in a
record prefix is an end-of-buffer indication for VSE/POWER.

You use the BUFFER operand of the XPCC macro or the XPCCB macro to
define the buffer.

The Reply Buffer: The buffer must be large enough to hold a
verification SPL passed to your program by VSE/POWER. You use the
REPAREA operand of the XPCCB macro to define the buffer.

Chapter 2. Spool-Access Support 59

Spool Access - PUT Service

Retrieval of Messages

VSE/POWER collects all job- or output-specific messages that would
normally go to the system console. They enable your program to
determine whether the job- or output-spool operation was completed
successfully; they inform your program about possible errors and unusual
conditions, if any.

Following your Close request, VSE/POWER sets byte PXPINFO of your
program's XPCCB to the value equated to PXPIMSG if any messages have

been queued. Your program can request these messages to be passed by
VSE/POWER.

If your program does not request the messages to be returned, VSE/POWER
discards them on receipt of the next service request (CTL, GET, or PUT
specified in FUNC=code of the PWRSPL macro).

Messages returned by VSE/POWER have a maximum length of 132 bytes; they
are preceded by an eight-byte header. This header has a format as

follows:
Bytes Contents/Explanation
0 X'00' Set by VSE/POWER
1 X'02' Set by VSE/POWER
2-3 Length of message (in binary)
4-7 Reserved

A reply buffer of 700 bytes, for example, can hold up to five messages
of maximum length.

Request a PUT Service — Submission of Jobs or Job Streams

This PUT service spools the submitted records as a queue entry in the
RDR (XMT) queue.

In your program, you can issue job-related PUT-service requests as
follows:

* An Open request to start the spooling of one or more jobs — For
details, see "Issue a Service-Open Request' on page 62.

4 One or more PUT spool data requests to have VSE/POWER spool the
submitted job(s) — For details, see "Issue a PUT Spool Data Request"
on page 65.

® A Close request to indicate that the submission of job data is
finished and that the submitted job data is to be included in

60 IBM VSE/POWER Application Programming

Spool Access - PUT Service, Job

VSE/POWER's input queues — For details, see "Issue a Close-Service
Request' on page 66.

* A quit request to indicate that no further data is to be submitted
for the currently processed job and that the job should not be
included in VSE/POWER's input queues — For details, see "Issue a
Quit Request' on page 66.

When your program submits job records, VSE/POWER does not insert any
JECL statements. In other words, JECL statements required by VSE/POWER
are to be supplied by your program preceding the job records.

If there is a user-written RDREXIT routine for local input, VSE/POWER
passes to the routine the VSE job-control and JECL statements of the
submitted jobs.

With one PUT-service request, your program can submit just one job or a
job stream consisting of two or more jobs. However, submission of just
one job per service request is the preferred method; it makes evaluation
of returned messages easier. VSE/POWER does not return messages to your
program until the end of data has been reached; as a result, a clear
distinction as to which message belongs to which job is difficult if you
submit two or more jobs following a PUT-service Open request.

After having processed one of the following, VSE/POWER returns to your
program a verification SPL:

. Your Open request.
e Your Close request.

* A PUT-data request for a buffer containing two or more jobs if a
short-on-account-space error ocCcurs.

Besides the data supplied by your program in its SPL, a verification SPL
contains:

. Default values for fields not set in your program's SPL.
° Statistics such as the total number of records spooled for your job

if the verification SPL is passed by VSE/POWER following a Close
request.

Coding Sequence

Refer to Figure 22 on page 63, a coding sequence diagram for the
submission of a job to an input queue. Figure 22 shows the kind of
coding you have to supply in your program and in what sequence this
coding. is to be. The section "Spool-Access Support Programming Example"
includes a PUT-job service request at label PUTAL.

Chapter 2. Spool-Access Support 61

Spool Access - PUT Service, Job

Issue a Service-Open Request

62

To open a PUT service for the submission of a job, VSE/POWER requires:

Byte PXUBTYP of the XPCCB to be set to the value equated to
PXUBTSPL. This indicates to VSE/POWER that the send buffer contains
an SPL.

An SPL as set up by a PWRSPL macro with TYPE=GEN or updated by a
PWRSPL macro with TYPE=UPD.

VSE/POWER requires control data to be passed in your program's SPL
in addition to that specified in the JECL statements for the job.
Figure 23 on page 65 lists the applicable SPL fields. For the
lengths and data types of these fields, see the SPL DSECT which you
get by issuing a PWRSPL macro with TYPE=MAP. Examine the fields of
the SPL DSECT (at label SPLDS) and decide which of the SPL fields
your program should set or change prior to the request.

A reply buffer to which VSE/POWER passes the verification SPL.

IBM VSE/POWER Application Programming

Spool Access - PUT Service, Job

Coding in your

application program Comments
I
\Y
Open the request

XPCC FUNC=SENDR,... Your program's send buffer must
| contain an SPL generated (or up-
v dated) for processing a PUT-job

Check the return codes in service request.

register 15 and in the
XPCCB (byte IJBXRETC).

\Y

WAIT IJBXSECB Wait for the SENDR ECB to be posted.
| VSE/POWER passes a verification SPL
\4 to your program's reply buffer.

Check the reason code (in the
XPCCB byte IJBXREAS).

I

v
Check the VSE/POWER return and
feedback codes (in the XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively).

l

v
Pick up and evaluate the veri-
fication SPL, if necessary.

I

v
See next part

Figure 22 (Part 1 of 2). Sequence Diagram — PUT Service, Job Submission

Chapter 2. Spool-Access Support 63

Spool Access - PUT Service, Job

Coding in your
application program

— From Part 1

| < a

v I
PUT-Data Request |
XPCC FUNC=SENDR,... |

I I

v I

Check the return codes in re- |
gister 15 and in the XPCCB |
(byte IJBXRETC). |

I I
I

I

|

I

I

I

I

I

I

\'
WAIT IJBXSECB
I
v

Check the VSE/POWER return
‘and feedback codes (this is
the same as in Part 1).

Either
Fill your buffer with records
for the next request and ——

Or——-.

\'
Close request
XPCC FUNC=SENDR,...
I
v

Check the return codes in

register 15 and in the

XPCCB (byte IJBXRETC).

I
v
WAIT IJBXSECB
I
\

Check the reason code (in the
XPCCB byte IJBXREAS).

Check the VSE/POWER return and
feedback codes (this is the
same as in Part 1).

Pick up and evaluate the veri-
fication SPL, if necessary.

I
\
End of service

Comments

Your program's send buffer must
contain the records which VSE/POWER
is to spool.

Wait for the SENDR ECB to be posted.
It indicates to your program that
VSE/POWER has finished processing
the records in the send buffer.

Loop until all records for the
queue entry have been passed.

Your program can make this request
with data in its send buffer or
with a null buffer being passed to
VSE/POWER.

Wait for the SENDR ECB to be posted.
VSE/POWER passes a verification SPL
to your program's reply buffer.

Figure 22 (Part 2 of 2). Sequence Diagram — PUT Service, Job Submission

64 IBM VSE/POWER Application Programming

Spool Access - PUT Service, Job

Legend: M = Mandatory; O = Optional

T
Name of | |
Field | | Purpose/Contents
| | :
T T
SPLGQI | M| Queue identifier®
SPLGUS | M | User identifier®
SPLDPRGN | O | Programmer name?
SPLDROOM | O | Room number?
SPLDDEPT | O | Department number?
SPLDBLDG | O | Building number?
SPLDLREC ! 0 | Maximum record length
|

!Normally defined in the PWRSPL macro
along with other spool-control talues.

ZpA + § § JOB specﬁfication overrides these
operands.

You may have to supply additional spool-control
values for the request (for example job name)
by way of an * $$ JOB statement. Submit this
statement as the first one of a job.

I
I
I
|
!
|
I
I
l
I
I
I
|
I
I
I
I
l
I
|
|
I
|
I
I
L

USSP SIS SIS S U U SR —

Figure 23. SPL Fields Applicable to a PUT-Job Service Request

Issue a PUT Spool Data Request

After VSE/POWER has passed the verification SPL, your program must issue
one or more spool-data requests, each one after the completion of the
preceding other. To do this, provide that your program:

1. Fills its buffer with records that are to be spooled by VSE/POWER.

2. Sets byte PXUBTYP of the XPCCB to the value equated to PXUBTNDB.
This indicates that your program's send buffer contains records
which are to be spooled.

3. 1Issues an XPCC FUNC=SENDR request.

VSE/POWER spools the records contained in your send buffer, except when
an error condition is encountered. VSE/POWER indicates successful
completion (or error, if any) to your program by way of return and
feedback codes.

Chapter 2. Spool-Access Support 65

Spool Access - PUT Service, Job

Issue a Close-Service Request

A Close request causes the data submitted up to this point to be placed
into the RDR (XMIT) queue as a complete queue entry.

In your program, you can issue a Close request either:

1. Together with passing the last buffer of spool records for the queue
entry being submitted, or

2. Separately after your program has passed this last buffer.

For either case, set byte PXUACT1 of the XPCCB to the value equated to
PXUATEOD before you issue the requesting XPCC macro. For case 1, this
is all you have to do.

For case 2, a separate Close request following the transfer of the last
buffer, VSE/POWER requires that your program:

1. Sets byte PXUBTYP of the XPCCB to zero.

2. Sets up a null send buffer (by setting field IJBXBLN to the value
equated to IJBXBLN).

3. Issues an XPCC FUNC=SENDR request.

The coding sequence at label PUTA3 in section "Spool-Access Support
Programming Example' at the end of this chapter shows how to issue a
Close request together with the last buffer of data records.

When it receives a Close request, VSE/POWER expects the last record in
the last buffer of spool records to be a valid job-end statement. If a
valid job-end statement is not supplied, VSE/POWER automatically adds
this statement and queues a message about this for your program.

When all records of your job are queued, VSE/POWER returns a
verification SPL to your program's reply buffer. This SPL contains
descriptive job information such as VSE/POWER assigned default values
and the job number. However, if your program submits two or more jobs
before it passes a Close request, then the verification SPL reflects the
characteristics of only the last job.

Issue a Quit Request

56

In your program, you may have to provide for a quit-type end of service
processing; that is, end of the opened processing without any data to be
queued by VSE/POWER.

Your program can issue a quit request any time after an individual
PUT-service request is complete (which is indicated by a posting of
field IJBXSECB of the XPCCB). A quit request causes VSE/POWER to purge
the queue entry that is being built. In case of a multi-job submission,

IBM VSE/POWER Application Programming

Spool Access - PUT Service, Job

a job previously queued by VSE/POWER during the same PUT service remains
unaffected.

Your program should check the quit-request return and feedback codes for
successful completion of the request. This ensures that the
communication path to VSE/POWER is free again for opening another
service request.

If additional jobs are to be submitted for spooling, your program must
reopen the PUT service by issuing an XPCC macro that passes a suitable
SPL.

To issue a quit request in your program:

1. Set byte PXUBTYP of the XPCCB to zero.

2. Set byte PXUACT1 of your XPCCB to the value equated to PXUATABR.

3. Issue an XPCC FUNC=SENDR request passing a null send buffer, that
is, a buffer with a length of zero.

This is the same as a quit request for a GET service. The section

"Spool-Access Support Programming Example" on page 120 includes a coding
sequence for a quit request at label GQUIT.

Issue a Return-Message Request

A general discussion of message retrieval is given under "Retrieval of
Messages' on page 60.

VSE/POWER makes the generated messages available on request. Your
program can pick them up in the defined reply buffer, one message behind
the other.

If all messages fit into the reply buffer, VSE/POWER indicates this by
the return- and feedback-code combination PXPRCOK and PXPOOEOD. If
additional messages are waiting to be transferred, VSE/POWER passes to
your program a return- and feedback-code combination of PXPRCOK and

PXPOOOK. In that case, your program should issue another return-message
request.

VSE/POWER deletes messages queued but not yet transmitted if your
program does one of the following:

i Issues another, different open-service request passing a new SPL.
° Issues a quit request.

° Ends communication via the currently used path.

Figure 24 on page 69, a coding sequence diagram, shows the kind of

coding you have to supply in your program and in what sequence this

Chapter 2. Spool-Access Support 67

Spool Access - PUT Service, Job

coding is to be. Figure 24 assumes that PUT-data requests have been
serviced by VSE/POWER for the complete queue entry.

The Section "Spool-Access Support Programming Example" on page 120
includes a message-retrieval request at label PUTA4. This coding
sequence gets control if VSE/POWER passed XPCCB-user data with byte
PXPINFO containing the value equated to PXPIMSG.

68 IBM VSE/POWER Application Programming

Spool Access - PUT Service, Job

Coding in your
application program

I
v

Close request
XPCC TFUNC=SENDR,...
I
\')
Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).
I
\
IJBXSECB
I
I

Check the reason code in the
XPCCB.
Check the VSE/POWER return and
feedback codes.
Pick up and evaluate the veri-
fication SPL, if necessary.
Check info byte for queued
messages.
| <

WAIT

V'

Return-message request

XPCC FUNC=SENDR,...
I
\

IJBXSECB
I
\'

Check the VSE/POWER return and
feedback codes (this is the
same as above). If more mes-
sages are to be transferred by

WAIT

VSE/POWER, then
Else 4

I
s

End of Service

Comments

Your program issues a Close request
when all records of a job have been
submitted.

The WAIT required in your program to
ensure that VSE/POWER has finished
the necessary Close processing.
VSE/POWER returns a verification
SPL.

No SPL need be transferred for this
request; your program must set a re-
quest code in the XPCCB.

Wait for the SENDR ECB to be posted.

No SPL is required for this request;
your program must set a request code
Loop until VSE/POWER returns the
feedback code PXPOOEOD.

Figure 24. Sequence Diagram — Retrieve Messages After a PUT-Job Service

Chapter 2. Spool-Access Support

69

Spool Access - PUT Service, Job

To have VSE/POWER pass messages, your program must:

1. Set byte PXUBTYP of the XPCCB to zero.

2. Set byte PXUACT1 of the XPCCB to the value equated to PXUATRMR.

3. Issue an XPCC FUNC=SENDR request passing a null send buffer, that
is, a buffer with a length of zero. The coding sequence at label

PUTA4 in the section "Spool-Access Support Programming Example" on
page 120 shows how to set up a null buffer.

Check the Return Information

For the return information to be checked by your program after an XPCC
request, refer to "XPCC Macro" on page 113.

For each individual PUT-job type service request, your program should
also check the return information supplied by VSE/POWER. Provide for
this checking after your program's SENDR ECB has been posted.

Figure 25 on page 71 lists the return and feedback codes that VSE/POWER
may supply when it processes a PUT-service related request for job
submission. The list is in ascending order by code values. It relates
the codes to the applicable request types and gives the names that are
equated to the feedback codes.

A complete list of the VSE/POWER return and feedback codes is given in
the DSECT PXPUSER, which the assembler generates for a PWRSPL TYPE=MAP
macro. You find the return codes at label PXPRETCD and the feedback
codes at label PXPFBKCD.

70 IBM VSE/POWER Application Programming

Spool Access - PUT Service, Job

Request Type

Return Feedback PUT PUT Get
Mnemonic Code Code Open Data Close Quit Message
PXPOOOK 00 00 X X X X X
PXPOOEOD 01 X
PXPOONJB 02 X
PXPOONRS 03 X X
PXPOORTR 04 X X
PXPOOZBF 05 X
PXP04SOD 04 08 X X
PXP04SOA 09 X
PXPO8SPL 08 01 X
PXPO8REQ 02 X
PXP08QID 06 X
PXPOSUID 09 X
PXPO8BTS 1A X
PXPO8IAQ 1B X
PXPO8SIAB 1C X
PXPO8PRG 1E X
PXPO8ROO 1F X
PXPOSDPT 20 X
PXPOSBLD 21 X
PXPO8CON 22 X X X X X
PXPO8ROL 23 X
PXPO8IBT 24 X X
PXPO8ROS 25 X X
PXP08S0S 26 X X X
PXP08BOS 27 X
PXPO8SRPH 28 X
PXPOSRPW 2A X
PXPO8FB1 2B X
PXPO8IML 2C X
PXP0O8SPA 2E X
PXPOCINS 0C 01 X X X X X
PXPOCIXF 02 X X X X X
PXPOCBTL 03 X
PXPOCIOE 07 X X X X X
PXP10PSP 10 05 X X X X X
PXP10SIE 06 X X X X X

Figure 25. Return and Feedback Codes for PUT-Job Service Requests

Chapter 2.

Spool-Access Support

71

Spool Access - PUT Service, Output

Request a PUT Service — Submission of Output Data

This PUT service spools the submitted records as a queue entry in an
output (LST, PUN, or XMT) queue. In your program, you issue
output-related PUT-service requests as follows:

i An Qpen request to start the spooling of output:

— To create a new output queue entry. This is the same as for the
opening of a job-related PUT service; for details see "Issue a
Service-Open Request' on page 62.

— To restart an existing queue entry. This is discussed under
"Request a Restart" on page 86.

—= To append output to an existing queue entry. This is discussed
under "Append Output to an Existing Spool File" on page 89.

— To specify Output Parameter Text Blocks (OPTBs). This is
discussed under "Specify Output Parameter Text Blocks (OPTBs)"
on page 91.

° One or more PUT spool data requests to have VSE/POWER spool the
submitted output. This is the same as for the submission of
job-related spool data; for details, see "Issue a PUT Spool Data
Request" on page 65.

® A Close request to end the submission of output:

— If there is no need to add additional spool data later on — This
is the same as for the closing of a job-related PUT service; for
details, see "Issue a Close-Service Request" on page 66.

— If additional spool data is to be added later on — This is
discussed under "Append Output to an Existing Spool File" on
page 89.

d A quit request to indicate that no further data is to be submitted
and that the output so far spooled is not to be included in a
VSE/POWER output queue. This is the same as for a quit request
during the spooling of job-related data; for details, see "Issue a
Quit Request" on page 66.

®* An output-segmentation request. For details, see "Request
Output-Segmentation" on page 82.

®* A checkpoint request. For details, see "Request a Checkpoint" on
page 84.

®* A restart request. For details, see "Request a Restart" on page 86.
. A Get-OPTB request. This is the same as for a Get-OPTB request

during Get service processing; for details see '"Issue a Get-OPTB
Request" on page 52.

72 IBM VSE/POWER Application Programming

Spool Access - PUT Service, Output

. A Modify-OPTB request. This is the same as for a Modify-OPTB
request during GET service processing; for details see "Issue a
Modify-OPTB Request' on page 53.

There is one major difference between this service processing and the
submission of a job: for the spooling of output, a number of the fields
of the required SPL may have to be set up by your program. To
accomplish this, you should:

1. Code in your program the PWRSPL macro with TYPE=GEN or TYPE=UPD and
specifying the operands

JOB=jobname
USER=userid

2. Use the available SPL DSECT to access the SPL.
For a list of the applicable SPL fields, see Figure 26 on page 74. For
the lengths and data types of these fields, see the SPL DSECT that you

get by a PWRSPL macro with TYPE=MAP; this DSECT gives additional
explanations.

Chapter 2. Spool-Access Support 73

Spool Access - PUT Service, Output

Name of
Field

SPLORCFM

SPLGCL
SPLGPW

SPLDDP
SPLDPR
SPLDSID
SPLDMOHP

SPLDUI
SPLDTNN
SPLDTUID

SPLDPRGN
SPLDROOM
SPLDDEPT
SPLDBLDG

SPLDCREC
SPLDLREC

SPLONCPY
SPLOCOMP
SPLOFORM
SPLOEWTR
SPLOFCB

SPLOUCB

SPLOUCBO
SPLONSEP
SPLEOPOF
SPLEOPLN
SPLEOPTB

Legend: M = Mandatory; O = Optional

Applies to

LST

PUN

Purpose/Contents

M

[oNoNoNe] [eNoNe] [oNeoNoNe) [oNe)

[oNe}

[oNeoNoNoNoNoNoRoNoNoNo]

M

loNoNe) [cNoNeoNe) oNe]

eNeoNeoNe

loNe]

oNe)

OO0O0O0

Record format

Job (output) class
Password

Output disposition

Output priority

Output-system identifier

Protect option: Hold (with disposition Y)
when print/punch fails

User information

Name of destination node

Name of destination user

—— e —————— e

Programmer name
Room number
Department number
Building number

PUT-open restart record number
Maximum record length

Number of copies

Name of compaction table
Form number

External writer subsystem
Name of FCB-image phase
Name of UCB-image phase
UCB options

Number of separator pages/cards
Offset to OPTB area
Length of passed OPTBs
First (or only) OPTB

Figure 26 (Part 1 of 2). SPL Fields Applicable to a PUT-Output Service Request

74 1IBM VSE/POWER Application Programming

Spool Access - PUT Service, Output

Legend: M = Mandatory; O = Optional

Name of Applies to
Field LST PUN Purpose/Contents

3200/3800 Specifications

SPL3TAB1 0 Character-arrangement table 1

SPL3TAB2 0 Character-arrangement table 2

SPL3TAB3 0 Character-arrangement table 3

SPL3TAB4 0 Character-arrangement table 4

SPL3MODF 0 Copy-modification phase

SPL3CCHR 0 Character-arrangement table for
copy-modification text

SPL3CPYG 0 Copy-group values

SPL3FLSH 0] Flash-ID

SPL3FLCT 0 Number of copies to be flashed

SPL3FLG1 0 Options byte (bit SPL3F138 must be set

if any 3200/3800 option is specified)

Figure 26 (Part 2 of 2). SPL Fields Applicable to a PUT-Output Service Request

General Considerations

Format of Spool Records: Every output record that is to be spooled by
VSE/POWER must have an eight-byte record prefix as shown in Figure 18 on
page 43. A carriage-control character, if any, has to be inserted into
this prefix. Special format data such as graphics is handled as is.

VSE/POWER does not check the validity of any carriage control character
that might be associated with a spool record; it ignores the
specification of carriage control characters for special-format data
records.

The carriage control characters X'FF', X'FE', and X'FD' are reserved for
use by VSE/POWER.

Page and Line Counts: For the records being spooled, VSE/POWER
maintains page and line counts depending on the record type. The table
in Figure 27 on page 76 shows how VSE/POWER maintains these counts.

Chapter 2. Spool-Access Support 75

Spool Access - PUT Service, Output

Type of Records Line Count Page Count (see *)

T—-

With ASA Incremented for each Updated in accordance
record. with carriage-control

characters.
With MCC Updated in accordance | Updated in accordance

with carriage-control
characters.

with carriage-control
characters. X'00' and
X'01' (write-no-space)
is counted as a line.

Incremented for each
page.

Incremented for each
record.

BMS, 3270 mapping,
and CPDS
All others

Incremented for each Set to 1

record.

Incremented for a

CPDS record. For non-
CPDS records, see ASA-
or MCC-type records,
above.

Incremented for a

CPDS record. For non-
CPDS records, see ASA-
or MCC-type records,
above.

CPDS intermixed
with records hav-
ing ASA or MCC.

b o s s s s —— ri—— —— —— — — — —— —— —— A— — — o eelers o o

* Is set to 1 if, at the end of spooling, this count is still zero
and the line count is 1 or greater.

e e e e e e e e e e e —— s e e e . s e e v e e)

Figure 27. Line Counts as Maintained by VSE/POWER

76 1IBM VSE/POWER Application Programming

Spool Access - PUT Service, Output

VSE/POWER Account Records: VSE/POWER performs accounting for submitted
output as follows:

* For output without a restart or a later expansion by an append
operation, VSE/POWER's spool-record count is the same as for the
output of a job submitted from a unit record input device.

. For output to be appended to an existing queue entry, VSE/POWER
builds an extra set of spool-access account records:

— Each time records are submitted in order to be appended, and
— Only for the records subm..ted during the append operation.

o For output involving a restart, VSE/POWER counts the spooled output
records only once. Assume, your program:

1. Submits 1000 records for spooling.
2. Requests a restart at record position 901.
3. Submits another 200 records before it issues a Close request.

VSE/POWER's record count then is 1100 records.

Verification SPLs: VSE/POWER returns a verification SPL:

1. After having successfully opened PUT-service processing.

This SPL contains the same information that your program supplied in
the request SPL, plus default values assigned by VSE/POWER for
values not specifically supplied.

2. At the end of data submission for the queue entry.

VSE/POWER passes this verification SPL in response to your Close
request when submission of job output is complete or after having
completed a segmentation request. In addition to the information
supplied by your program, the SPL includes:

. All of the VSE/POWER-generated job information such as job
number and job suffix (segment number).

. The default values used by VSE/POWER for values not specifically
supplied by your program.

. Statistics such as the total number of records spooled for your
output.

Checking this SPL can be of significance for spooling output. You
need, for example, the VSE/POWER-assigned job number if data is to
be appended to this queue entry or if spooling is to be restarted.

Handling an Abnormal-End Condition During PUT: If an abnormal-end
occurs while VSE/POWER spools the output data, VSE/POWER's actions are
as follows:

Chapter 2. Spool-Access Support 77

Spool Access - PUT Service, Output

° For an abnormal end of your program or of the VSE/POWER service
task:

If the output is checkpointed, VSE/POWER retains the queue entry's
spool data up to the last recorded checkpoint. The queue entry's
disposition is X to avoid that another task can process the entry.

If the output is not checkpointed, VSE/POWER deletes the currently
processed queue entry, except as indicated below:

— The failure occurred after successful completion of an
open-restart request by VSE/POWER. In this case, the previously
submitted data up to (but not including) the restart record
still exists in the affected queue entry.

VSE/POWER retains this queue entry with a disposition of X, and
your program can set up the requested restart once more.

—~ The failure occurred after successful completion of an
open-append request by VSE/POWER. In this case, the data
previously submitted (prior to the open-append request) still
exists in the affected queue entry.

VSE/POWER retains this queue entry with a disposition of X, and
your program can set up a restart request.

How to perform a restart is discussed under '"Request a Restart" on
page 86.

. For an abnormal end of VSE/POWER or of the VSE system:

During VSE/POWER start-up, VSE/POWER searches the queue file for
incomplete queue entries.

- If the queue entry is checkpointed, VSE/POWER sets the spool
pointer immediately behind the record last checkpointed. 1In
addition, it adds the queue entry to the applicable class chain.
When VSE/POWER start-up is complete, the queue entry is
accessible for a restart request from your program or for
printing if the central operator alters the entry's disposition.

- If the queue entry is not checkpointed, VSE/POWER deletes this
queue entry and the related space of the data file.

. For an abnormal end because of an I/0O error on the data file:

- If the output is checkpointed, VSE/POWER retains the queue
entry's queue record and associated DBLK groups up to the last
recorded checkpoint. The queue entry's disposition is set to X
to avoid that another task can process the entry.

- If the output is not checkpointed, VSE/POWER deletes the queue
entry.

78 1IBM VSE/POWER Application Programming

Spool Access - PUT Service, Output

Coding Sequence

In general, the coding sequence for output submission is the same as for
the submission of a job (or jobs) for queuing in an input queue. Your
program issues an Open request, followed by a number of PUT-data
requests, followed by a Close request and one or more message retrieval
requests; your program can issue a quit request any time after a
PUT-data request is complete. As mentioned earlier, this section deals
primarily with output specific PUT requests.

Coding-sequence diagrams are given in context as each of these services
is discussed.

Issue a Close-Service Request

Refer to Figure 28 on page 80, a coding-sequence diagram for a
PUT-output Close request. You issue the request by setting byte PXUACT1
of your program's XPCCB to either of the following:

o The value equated to PXUATEOD — If no additional data is to be
appended.

i The value equated to PXUATROE — If additional data is to be appended
at a later point in time. Appending additional data is discussed
under "Append Output to an Existing Spool File" on page 89.

Your‘program may pass the Close request in one of the following ways:

. Together with a null send buffer

If you do this (after having successfully passed a send buffer
containing data), your program must:

1. Set byte PXUBTYP of the XPCCB to zero.

2. Set up a null buffer. How to do this is shown in the section
"Spool-Access Support Programming Example' on page 120 at the
label GQUIT.

3. Issue an XPCC FUNC=SENDR request after having set up the
request.

®* Together with a send buffer containing data records
These records are the last output records spooled by VSE/POWER for
the currently processed queue entry. The coding sequence at the

label SDEOD in the section 'Spool-Access Support Programming
Example" on page 120 shows how to do this.

Chapter 2. Spool-Access Support 79

Spool Access - PUT Service, Output

Coding in your
application program

I
v

WAIT IJBXSECB
I
v
Check the VSE/POWER return
and feedback codes (in the
XPCCB bytes PXPRETCD and
PXPFBKCD, respectively).
I
v
Close request
XPCC FUNC=SENDR,...
I
v
Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

I
\

WAIT IJBXSECB
|
\
Check the reason code (in the
XPCCB byte IJBXREAS).

I
v

Gheck the VSE/POWER return and
feedback codes (this is the
same as above).

I
\Y

Pick up and evaluate the veri-
fication SPL, if necessary.

I
v

End of service

Comments

Wait for the SENDR ECB to be posted
after the PUT-data request that is
to precede your Close request.

You can issue the request either:
- With the send buffer containing
data or an SPL.

- With a null buffer being passed.

Wait for the SENDR ECB to be posted.
VSE/POWER passes a verification SPL
to your program's reply buffer.

Figure 28. Sequence Diagram — PUT-Output Close Request
L)

Together with a send buffer containing an update SPL

If you do this (after having successfully passed a send buffer
containing data), your program must:

1. Set byte PXUBTYP of the XPCCB to PXUBTSPL.

80 IBM VSE/POWER Application Programming

Spool Access - PUT Service, Output

Build the SPL in (or move it to) your program's send buffer.

VSE/POWER analyzes the SPL and updates the control values for
the currently processed output queue entry. This SPL is some
kind of a last-minute change of the queue entry's job
characteristics. However, VSE/POWER verifies only those of this
SPL's fields which are listed in Figure 29; it ignores all other
specifications passed by your program.

Issue an XPCC FUNC=SENDR request after having set up the

request.

VSE/POWER returns a verification SPL to your program's reply buffer.
This SPL includes the VSE/POWER assigned job number.

* Can be updated only if the submitted output is to be spooled
into a local queue.

If the output's destination is another node, VSE/POWER spools this
output into the XMT queue rather than into the local LST or PUN queue.

f T

| Field Name | Contents of Field

[|

I i

| SPLGJB | The job name.

| SPLGCL | The desired output class.

| * SPLDDP | The output disposition.

| * SPLDPR | The desired output priority.

| I

| SPLDSID | The identifier of the system that is to process the

| | output (applies to a shared spooling environment;

| | only the identifier of the VSE system is valid).

| I

| SPLDTNN | The name of the destination node.

| |

| SPLDTUID | The destination (remote) user ID.

| SPLONCPY | The number of desired copies.

| SPLOFORM | The form number to be used.

} |

|

|

L

Figure 29. Update SPL Fields Verified by VSE/POWER

Chapter 2.

Spool-Access Support 81

Spool Access - PUT Service, Output

Request Output-Segmentation

Refer to Figure 30, a coding-sequence diagram for an output-segmentation

request.

Coding in your
application program

I
\

WAIT TIJBXSECB
I
\'

Check the VSE/POWER return
and feedback codes (in the
XPCCB bytes PXPRETCD and
PXPFBKCD, respectively).

I
\'
Segmentation request

XPCC FUNC=SENDR,...

I
\%

Check the return codes in

register 15 and in the

XPCCB (byte IJBXRETC).

I
\
WAIT IJBXSECB
|
v

Check the reason code (in the

XPCCB byte IJBXREAS).
\

Check the VSE/POWER return and
feedback codes (this is the
same as above).

\
Pick up and evaluate the veri-
fication SPL, if necessary.
\
PUT-Data Request
XPCC FUNC=SENDR,...

|
v

Comments

Wait for the SENDR ECB to be posted
after the PUT-data request that is
to precede your output-segmentation
request.

You can issue the request either:

— With the send buffer containing
data or an SPL.

— With a null buffer being passed.

Wait for the SENDR ECB to be posted.
VSE/POWER returns a verification SPL
to your program's reply buffer.

Continue after having filled your
program's send buffer again.

The first data record in your pro-
gram's send buffer goes into the
new output segment.

Figure 30. Sequence Diagram — Segmentation During PUT-Output Processing

82 1IBM VSE/POWER Application Programming

Spool Access - PUT Service, Output

Your program can request output-segmentation at any time after
successful completion of a PUT-data request. You code this request in
your program by setting byte PXUACT1 of the XPCCB to the value equated
to PXUATSGM. You pass this request to VSE/POWER in one of the following
ways:

° Together with a null send buffer
If you do this, your program must:
1. Set byte PXUBTYP of the XPCCB to zero.

2. Set up a null buffer. How to do this is shown in the section
"Spool-Access Support Programming Example" on page 120 at the
label GQUIT.

3. Issue an XPCC FUNC=SENDR request after having set up the
request.

® Together with a send buffer containing data records

This causes VSE/POWER to include the buffer's contents in the
currently processed output segment. The contents of the next buffer
that your program passes to VSE/POWER become part of the newly
created output segment.

¢ Together with a send buffef containing an update SPL
If you do this, your program must:
1. Set byte PXUBTYP of the XPCCB to PXUBTSPL.
2. Build the SPL in (or move it to) your program's send buffer.

VSE/POWER analyzes the SPL and updates the control values for
the currently processed output queue entry. This SPL is some
kind of a last-minute change of the queue entry's job
characteristics. However:

— VSE/POWER verifies only those of the SPL's fields which are
listed in Figure 29 on page 81; it ignores all other
specifications passed by your program.

— Any changed (or new) specifications that your program
supplies in this update SPL are used by VSE/POWER also for
the subsequent segment(s). If this is not desirable, your
program has to pass another update SPL at the end of the
next segment.

3. Issue an XPCC FUNC=SENDR request after having set up the
request.

Just like for a Close request, VSE/POWER returns a verification SPL
after having successfully queued the segment. This SPL gives the

Chapter 2. Spool-Access Support 83

Spool Access - PUT Service, Output

VSE/POWER assigned job-suffix (segment) number. VSE/POWER is then ready
to accept further output for spooling into a new output segment.

The coding sequence in the section "Spool-Access Support Programming

Example" on page 120 includes an output-segmentation request at the
label PUTB2.

Request a Checkpoint

Consider requesting checkpoints to "save" the processing of records
already passed to VSE/POWER should an abnormal-end condition occur.
Your program can issue a checkpoint request before the first PUT-data
request and after successful completion of any subsequent PUT-data
request.

In processing a checkpoint request, VSE/POWER marks the queue entry as
having been checkpointed and returns a checkpoint-response record. This
response record contains the VSE/POWER-recorded number of the record
spooled for the queue entry just before the checkpoint was taken. For
the layout of a checkpoint-response record, see the DSECT at the label
PXCRDSECT.

The number of the checkpointed record may not be the same as the number
of this record according to your program's own record count. Therefore,
your program should:

1. Relate the checkpoint record number to the corresponding record
number of the program's own count.

2. Save this relation for a later restart, should this become
necessary.

By relating this number to your own program's record count, you can
synchronize your program's output with the record count maintained by
VSE/POWER.

Refer to Figure 31 on page 85, a coding-sequence diagram for a
checkpoint request. In your program, you code this request as follows:

1. Set byte PXUACT1 of the XPCCB to the value equated to PXUATCHK.

2. Make a reply buffer available.

3 Pass the request to VSE/POWER. To do this, issue an XPCC FUNC=SENDR
request with either of the following:

e Data contained in your program's send buffer. In this case,
VSE/POWER spools that buffer's contents first and then processes
the checkpoint request.

¢ A null send buffer. This requires that your program:

a. Sets byte PXUBTYP of the XPCCB to zero.

b. Sets up a null buffer (how to do this is shown in the
section "Spool-Access Support Programming Example' at the
end of this chapter — at label GQUIT, for example).

84 IBM VSE/POWER Application Programming

Spool Access - PUT Service, Output

Coding in your
application program

I
\

WAIT IJBXSECB
I
\
Check the VSE/POWER return
and feedback codes (in the
XPCCB bytes PXPRETCD and
PXPFBKCD, respectively).
I
\
Checkpoint request
XPCC FUNC=SENDR,...
I
\
Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).
I
\
WAIT IJBXSECB

I
v

Check the reason code (in the

XPCCB byte IJBXREAS).

I
v

Check the VSE/POWER return and

feedback codes (this is the
same as above).
I
\"
PUT-data request
XPCC FUNC=SENIR,..
I
\%
End of service

Comments

Wait for the SENDR ECB to be posted
after the PUT-data request that is
to precede your checkpoint request

You can issue the request either:

- With the send buffer containing
data or an SPL.

- With a null buffer being passed.

Wait for the SENDR ECB to be posted.
VSE/POWER passes a checkpoint re-
sponse record to your program's re-
ply buffer.

Continue after having filled your
program's send buffer again.

Figure 31. Sequence Diagram — Checkpoint for PUT-Output Processing

Chapter 2. Spool-Access Support

85

Spool Access - PUT Service, Output

Request a Restart

86

VSE/POWER permits your program to request a restart as follows:

During PUT-output processing, behind a previously spooled record.

This restart causes the specified restart record and all subsequent
records spooled previously to be overwritten.

A restart during processing can be risky. Your program's record
count (if maintained) may be different from that of VSE/POWER
because VSE/POWER inserts an additional record whenever a
write-and-skip to channel 1 occurs. Section "Request a Checkpoint"
on page 84 indicates how your program can use VSE/POWER's
checkpoint-response records to keep track of suitable restart
points.

Together with or immediately after an Open request for an existing
queue entry.

As the restart point, you can specify 0 (or nothing). In this case,
VSE/POWER sets its restart pointer immediately behind the last
record in the queue entry's data file. For a checkpointed queue
entry with disposition X, this is the record last checkpointed by
VSE/POWER.

Specifying O may be risky. If a system or program failure occurs
after VSE/POWER has passed a recorded checkpoint and before your
program could record this checkpoint, then VSE/POWER and your
program are not synchronized.

To avoid problems, you can specify a suitable restart point as
recorded by your program. VSE/POWER indicates in its verification
SPL the corresponding, check-pointed record court.

In case of a restart, VSE/POWER examines a specified restart point.
If this point:

— Is higher than the last recorded checkpoint, VSE/POWER accepts
this restart point as specified.

- Is equal to or lower than the last recorded checkpoint,
VSE/POWER lowers the checkpoint value to the restart value,
minus 1, and notifies your program of the change
(return/feedback code = PXPRCOK/PXPOOCIA).

Restart During PUT-Output Processing: If, in its restart control

record, your program specifies a restart record number lower than or
equal to the logical record last checkpointed, then VSE/POWER:

1.

Positions the spool pointer as requested, just as if the queue entry
were not checkpointed.

IBM VSE/POWER Application Programming

Spool Access - PUT Service, Output

2. Records the specified restart record number (minus one) as the new
checkpoint-record number.

VSE/POWER returns to your program a checkpoint-response record
together with applicable return and feedback codes. The response
record confirms to your program the newly recorded checkpoint. For
the layout of a checkpoint-response record, see the DSECT generated
by PWRSPL TYPE=MAP at the label PXCRDSCT.

Refer to Figure 32 on page 88, a coding-sequence diagram for a restart
request.

Chapter 2. Spool-Access Support 87

Spool Access - PUT Service, Output

Coding in your

application program Comments
l
\'
WAIT IJBXSECB Wait for the SENDR ECB to be posted
| after the PUT-data request that pre-
\' cedes your restart request.

Check the VSE/POWER return

and feedback codes (in the

XPCCB bytes PXPRETCD and

PXPFBKCD, respectively).
I
v

Restart request

XPCC FUNC=SENDR,... Your program's send buffer must
| contain a restart control record.
\Y

Check the return codes in

register 15 and in the

XPCCB (byte IJBXRETC).

\
WAIT IJBXSECB Wait for the SENDR ECB to be posted.
| VSE/POWER may pass a checkpoint-
\ response record to your program's
Check the VSE/POWER return and reply buffer.
feedback codes (this is the
same as above).
l
\'
Pick up and evaluate the check-
point response record, if this
is applicable.
I
v
PUT-data request At this point, the coding sequence
XPCC TFUNC=3ENDR,... is the same as for the submission of
| data records for spooling.
\'

End of service

Figure 32. Sequence Diagram — Restart for PUT-Output Processing

88 IBM VSE/POWER Application Programming

Spool Access - PUT Service, Output

To set up and pass the request to VSE/POWER, your program must:

1. Set byte PXUBTYP of the XPCCB to the value equated to PXUBTCTL.
This indicates that your program's send buffer contains a control
record.

2. Set up a restart control record in your program's send buffer. For
the layout of this record, see the DSECT at label PXRSDSCT. The
record specifies the number of the logical record at which output
spooling is to be resumed.

3. Issue an XPCC macro with FUNC=SENDR.
Restart with an Open Request: This kind of a restart applies if output

spooling is to be restarted because, for example, an abnormal-end
condition had occurred.

A restart with an Open request is possible if the following is true:

. The applicable queue entry is queued with one of the dispositions D,
H, K, L, and X.

. The requestor is the owner (originator) of the queue entry.
If your program does not pass a restart-record number, then:

. For a queue entry with disposition X, VSE/POWER positions the spool
pointer behind the entry's last checkpointed record.

° For a queue entry with a disposition other than X, VSE/POWER
positions this pointer to the end of the entry's data file.

If your program passes a restart-record number, it should provide for a
routine verifying that VSE/POWER's record count and your program's
record count are synchronized. How you can do this is indicated under
"Restart During PUT-Output Processing" on page 86.

Your program requests the desired restart by issuing an XPCC macro with
FUNC=SENDR and passing to VSE/POWER a restart SPL (MODE=RESTART
specified in the PWRSPL macro). In the SPL, certain fields are to be
updated as listed in Figure 33 on page 90. VSE/POWER confirms the
request in the same way as it confirms a normal open PUT-service
request: by passing a verification SPL to your program.

Append Output to an Existing Spool File

VSE/POWER permits additional data to be appended to (added at the end
of) an existing output queue entry if your program:

1. 1Is the owner (originator) of this queue entry.

Chapter 2. Spool-Access Support 89

Spool Access - PUT Service, Output

2. Closed the original spool request with the append-option bit
PXUATROE set in byte PXUACT1 of its XPCCB.

Legend: M = Mandatory; O = Optional

f |
l |
} T JI
| Name of | Applies to | |
| Field | LST | PUN | Purpose/Contents |
| | | |]
| T T T |
SPLGFB1L	M	Mo Set restart function	
SPLGCL	M	Mo Job (output) class	
SPLGJB	M	Mo Job name	
SPLGIJN	M	M	Job number
SPLGUS	M	M	User identifier
SPLGQI	M	M Queue identifier	
SPLGRQB	M	M	Request type (PUT)
I I		l	
SPLGJS	O	0	Job suffix
SPLGOPT	O	0	Set no-wait option
SPLGPW	0	0	Password
l		l !	
SPLDCREC ! o	0	PUT-open restart record number	
[| | J

Figure 33. SPL Fields to be Updated — Open-Restart Request for Output

3. Issues an open-append request (which reinitiates PUT-service
processing for the queue entry) by passing to VSE/POWER an SPL that
specifies the append option. This SPL should contain the values
passed by VSE/POWER in its original verification SPL in the fields
listed in Figure 34 on page 91. You may find it convenient to have
your program save the verification SPL and use it as request SPL for
the append request.

90 IBM VSE/POWER Application Programming

Spool Access - PUT Service, Output

Legend: M = Mandatory; O = Optional

r

|

I T

| Name of | Applies to | |

| Field | LST ! PUN ! Purpose/Contents

| |

| 1 T T

| SPLGFB1 | M | M Set append function |

| SPLGCL | M | M | Job (output) class |

| SPLGJB | M | M | Job name |

| SPLGJN | M | M Job number |

| SPLGUS | M | M | User identifier |

| SPLGQI | M | M | Queue identifier |

| SPLGRQB | M | M | Request type (PUT) |

| | | | |

| SPLGJS | 0 | 0 | Job suffix (segment number) |

| SPLGOPT | O | O | Set no-wait option ‘

! SPLGPW ! 0 ! o | Password !
1

Figure 34. SPL Fields to be Updated — Open-Append Request for Output

VSE/POWER confirms the request in the same way as it confirms a normal
open PUT-service request: by passing a verification SPL to your program.
After having passed this SPL, VSE/POWER is ready to accept PUT-data

requests from your program.

Specify Output Parameter Text Blocks (OPTBs)

In your program you can specify one or more Output Parameter Text Blocks
(OPTBs) when describing the characteristics of the output queue entry

being passed to VSE/POWER.

An OPTB represents a user-defined keyword

(in a * $$ LST or * $$ PUN statement) that has been defined in an

autostart DEFINE statement.

An OPTB is structured as a sequence of text units. The number and
sequence of text blocks is arbitrary. The format of the OPTBs is shown

in Figure 35 on page 92.

Chapter 2. Spool-Access Support 91

Spool Access - PUT Service, Output

l I I T 1 T | // 1
| ID | CC | LL | Data element | LL | Data element | |

l | I | 1 | 1 // J
Bytes: 2 2 2 n 2 n

ID Registered (unique) keyword identifier

cC Count of the data elements supplied for the keyword
parameter. The valid range is from 0 to 16,383. A count of 0
indicates either a missing positional or defaulted parameter.
In this case, no data elements should follow the count field.

LL Length of the data element (keyword parameter value).
The valid range is from O to 16,383. A length of 0 indicates
a null value.

Figure 35. Output Parameter Text Block (OPTB) Format

Passing OPTBs to VSE/POWER

The OPTBs are passed to VSE/POWER as an appendage of the SPL at PUT Open
time. As shown in Figure 36, the SPL contains two 2-byte fields
indicating the total length of the OPTB area and the offset to this
area. A length of zero indicates that no such area exists.

| <————————— OPTB Area ————>|
| T T T T // T
| Normal SPL |SPLEOPOF |SPLEOPLN| OPTB1 | OPTB2 | | OPTBn
I | L | i // 1
| | I
| < Length of normal SPL >|< Length of all OPTBs >|
| |
| < Length of total SPL >|

where: SPLEOPOF = Two-byte field containing the offset from the
beginning of the SPL to the OPTB area

Two-byte field containing the length of the OPTB area

SPLEOPLN
Figure 36. Spool Parameter List Structure

If one or more OPTBs are appended to the SPL, VSE/POWER checks the OPTBs
for correct specification. An OPTB representing a keyword which is not
defined within VSE/POWER is taken as is (see also the autostart DEFINE
statement in VSE/POWER Installation and Operations Guide). If all OPTBs
are valid, VSE/POWER builds an output processing section and includes it
in the data set header record (DSHR).

The total length of all OPTBs, including the length of all other
sections (such as the general or the 3800 section) present in the DSHR
may not exceed 32.760 bytes.

92 1IBM VSE/POWER Application Programming

Spool Access - PUT Service, Output

Note: All OPTBs which are of the type binary must have the same length
as specified in the appropriate DEFINE statement.

Check the Return Information

For the return information to be checked by your program after an XPCC
request, refer to the section "XPCC Macro" on page 113.

For each individual PUT-output type service request, your program should
also check the return information supplied by VSE/POWER. Provide for
this checking after your program's SENDR ECB has been posted.

Figure 37 lists the return and feedback codes that VSE/POWER may supply
when it processes a PUT-service related request for the submission of
output data. The list is ordered in ascending order by code values; it
relates the codes to the applicable request types; it gives the names
that are equated to the feedback codes.

A complete list of the VSE/POWER return and feedback codes is given in
the DSECT PXPUSER, which the assembler generates for a PWRSPL TYPE=MAP
macro. You find the return codes at label PXPRETCD and the feedback
codes at label PXPFBKCD.

Request Type

Ret. Fdbk PUT PUT Check- Re- Seg- Get Get Mod.
Mnemonic Code Code Open Data point start ment Close Quit Msg OPTB OPTB
PXPOOOK 00 00 X X X X X X X X X X
PXPOOEOD 01 X
PXPOONRS 03 X X X X
PXPOORTR 04 X X
PXPOOZBF 05 X
PXPOOCIA 06 X
PXPO4NOF 04 01 X
PXP04JOP 02 X
PXPO4IDP 05 X
PXPO4RER 06 X
PXP04SOD 08 X X X X
PXP0O4SOA 09 X X X X
PXPO4BER 0A X
PXPO4NMU 0D X
PXPO4WDP OE X
PXP04JSR OF X
PXPO4ONF 11 X X

Figure 37 (Part 1 of 3). Return and Feedback Codes for PUT-Output Service Requests

Chapter 2. Spool-Access Support 93

Spool Access - PUT Service, Output

Request Type

Ret. Fdbk PUT PUT Check- Re- Seg- Get Get Mod.
Mnemonic Code Code Open Data point start ment Close Quit Msg OPTB OPTB
PXPOSSPL 08 01 X
PXPOSREQ 02 X
PXPO8JINM 05 X X X
PXP0O8QID 06 X
PXPO8CLS 07 X X X
PXPOSPWD 08 X
PXPO8UID 09 X
PXPOSRFM 0A X
PXPO8DSP 0B X X X
PXPOSPRY oC X X X
PXP08SID 0D X X X
PXPO8TNN OE X X X
PXPOSTUN OF X X X
PXPOSFNO 10 X X X
PXPOSFCB 11 X
PXPO8UCB 12 X
PXPOSFLH 14 X
PXPO8CPT 15 X
PXPO8CGP 16 X
PXPO8CHR 17 X
PXPO8SMOD 18 X
PXPO8CCR 19 X
PXPO8BTS 1A X X
PXPOSIAB 1C X X X X X
PXPOSICR 1D X X X X
PXPOSPRG 1E X
PXPO8ROO 1F X
PXPOSDPT 20 X
PXPO8BLD 21 X
PXPOSCON 22 X X X X X X X X
PXPOSROL 23 X
PXPOSIBT 24 X X X X X X X X
PXPO8ROS 25 X X
PXP08S0S 26 X X X X X X X
PXPO8BOS 27 X X X X

Figure 37 (Part 2 of 3). Return and Feedback Codes for PUT-Output Service Requests

94 1IBM VSE/POWER Application Programming

Spool Access - PUT Service, Output

Request Type

Ret. Fdbk PUT PUT Check- Re- Seg- Get Get Mod.
Mnemonic Code Code Open Data point start ment Close Quit Msg OPTB OPTB
PXPOBRPW 08 2A X X
PXPO8FB1 2B X
PXPO8IML 2C X
PXPOBIEX 2D X
PXPO8SPA 2E X X
PXPO8ICC 2F X X
PXPO8IRR 38 X X
PXPO8IOP 39 X X
PXPOSOLM 3A X
PXPO8DOP 3B X
PXPO8OTL 3C X
PXPO8IDH 3D X X
PXPOCINS O0C 01 X X X X X X X X
PXPOCIXF 02 X X X X X X X X
PXPOCBTL 03 X
PXPOCIOE 07 X X X X X X X X
PXP10PSP 10 05 X X X X X X X X
PXP10SIE 06 X X X X X X X X

Figure 37 (Part 3 of 3). Return and Feedback Codes for PUT-Output Service Requests

END ACCESS TO VSE/POWER

To end accessing VSE/POWER services via a communication path, this path
is to be removed. This can be done either by a request from your
program or by a request from VSE/POWER. A request from your program is
indicated when there is no need for further access requests via a
certain communication path and VSE/POWER has finished processing the
last access request.

End of Access Requested by Your Program

Coding Sequence: Refer to Figure 38 on page 96, a coding-sequence
diagram for the removal of a communication path from within your
program. The section "Spool-Access Support Programming Example" on
page 120 includes a disconnect and terminate coding sequence at labels
DISCT and TERMN, respectively.

Chapter 2. Spool-Access Support 95

Spool Access

Check the Return Information: Your program should check the return
codes set by the system on completion of the XPCC macro request. This
These macro-return codes are

ensures an orderly termination processing.

listed and briefly described under "XPCC Macro" on page 113.

Coding in your
application program

I
v

WAIT IJBXSECB
I
\%

Check the VSE/POWER return
and feedback codes (in the
XPCCB bytes PXPRETCD and
PXPFBKCD, respectively).

I
\'
Disconnect request

XPCC FUNC=DISCONN,...

|
\%

Check the return codes in

register 15 and in the

XPCCB (byte IJBXRETC).

I
\'
Terminate request

XPCC FUNC=TERMIN,...

|

I

\'
Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

Comments

Wait for the SENDR ECB to be posted
after your program's last access-
service request.

Following this request, the communi-
cation path set up in your program
by XPCC FUNC=CONNECT is no

longer available. To set up the
path again, should this be desir-
able, issue an XPCC request with
FUNC=CONNECT.

This is some sort of a log off by
your program. To set up the path
again, should this be desirable,
start out with an XPCC request
specifying FUNC=IDENT.

This ensures orderly discontinuation
of using the spool-access support.

Figure 38. Sequence Diagram — End Access to VSE/POWER

End of Access Requested by VSE/POWER

VSE/POWER indicates this condition by return and feedback codes in field
IJBXRUSR of the XPCCB. A complete list of the VSE/POWER return and
feedback codes is given in the DSECT PXPUSER, which the assembler
generates for a PWRSPL TYPE=MAP macro. You find the return codes at
label PXPRETCD and the feedback codes at label PXPFBKCD.

96 IBM VSE/POWER Application Programming

Spool Access

SET UP TWO OR MORE COMMUNICATION PATHS

You may, if this is desirable, have your program set up two or more
communication paths to VSE/POWER. To do this, proceed as follows after
having identified your program (by an XPCC macro with FUNC=IDENT as
described in section "Set Up a Communication Path" on page 33):

1. Copy the XPCCB used for identification

On successful completion of the request, the VSE system returns an X
(= cross partition) identifier in field IJBXIDK of your XPCCB. The
system expects an XPCCB with this identifier for a subsequent XPCC
request with FUNC=CONNECT. It follows then that your program needs
a copy of the XPCCB with the returned X identifier for every
communication path which is to be set up.

2. Issue an XPCC request with FUNC=CONNECT

The system provides a uniquely identified communication path by
inserting a P (= path) identifier in field IJBXPID of the XPCCB you
use.

For any additional communication path that you want to set up, issue
a new XPCC request with FUNC=CONNECT. Each of these requests must
use a new copy of the XPCCB which you used for identification.

A connect request must be complete before you can issue the next
one.

DESCRIPTION OF THE SPOOL-ACCESS SUPPORT MACROS

For each of the described macros, the information is given in applicable
sections as follows:

1. A short summary of the macro's purpose.

2. The macro's format as used for access to VSE/POWER services.
3. A description of the macro's operands.

4. Possible return codes (applies only to the XPCC macro).

For the meaning of symbols used in showing the formats of the macros,
refer to Chapter 1 of VSE/POWER Installation and Operations Guide.
Continuation codes that may be required in column 72 are not shown as
part of the macro formats.

The codes given under the heading "Return Information" represent
hexadecimal values.

Chapter 2. Spool-Access Support 97

Spool Access - MAPXPCCB Macro

MAPXPCCB Macro

The macro causes a DSECT of the XPCCB to be generated.

It has no
operands.

Format of the Macro

T

Name |Operation Operands
|

P —

T
[name] |MAPXPCCB
1

S Ep——

For name, you may assign to the DSECT a label of your own choosing.

The macro has no operands.

98 IBM VSE/POWER Application Programming

Spool Access - PWRSPL Macro

PWRSPL Macro

You can use the macro to do one of the following:

Generate a spool parameter list (SPL).

Update an SPL.

Generate DSECTs of the SPL and of the various request control
records and VSE/POWER-response records.

For complex applications, the macro may not offer the scope of required
control. The macro does not offer the required scope of control for
applications involving the submission of output.

If the macro's scope does not meet your application's requirements,
provide for setting up certain fields of the SPL by coding of your own.
You do this by accessing the applicable SPL (field) via a generated
DSECT.

Format of the Macro

Name |Operation Operands

PWRSPL TYPE={GEN|MAP|UPD}
[,CLASS={class| (reg)}]
[,FUNC={ (ALTER, attrib-type) |
CANCEL|
COMMAND |
DELETE |
DISPLAY|
HOLD |
RELEASE}]
[,JOBN={ jobname| (reg)}]
[,JNUM={fieldname| (reg)}]
[,JSUF={fieldname| (reg)}]
[,MODE={ APPEND |
BROWSE |
GENERIC|
RESET]|
RESTART}]
[,NEWVAL={field]| (reg)}]
[,OPT={RESET]|
([ALLCPY] [,CTLREC] [,FORMAT]
[,NOWAIT] [,RETSEP])}]
[, PRFX=xxx]
[,PWD={password| (reg)}]
[,QUEUE={RDR | LST| PUN|XMT}]
[,REQ={CTL|GET|PUT}]
[,SPL={splname| (reg)}]
[,USERID={userid| (reg)}]

[name]

e e e s —— ——— — — — — — —— — — —— —— — — — —— S— ————— S——— ——— t— e s +=3
u———.————-—..——-—————.———.——————————-——_—_-—L_—_

Chapter 2. Spool-Access Support 99

Spool Access - PWRSPL Macro

Description of Operands

TYPE={GEN|MAP|UPD}
The operand specifies the desired type of macro expansion:

GEN Causes an SPL to be generated.

MAP Causes a DSECT of the SPL to be generated. Only the
operand PRFX=xxx is meaningful together with a TYPE=MAP
specification.

UPD Requests that an SPL defined in the program by PWRSPL
TYPE=GEN be updated in accordance with the specified
operands. SPL fields corresponding to omitted operands
remain unchanged.

CLASS={class|(reg)}
The operand specifies the class that:

® Matches the class of the queue entry which is to be
retrieved (REQ=GET is specified).

° Is to be assigned to the output queue entry (REQ=PUT is
specified).

. Is to be used as a search argument if a control function is
to be processed (REQ=CTL is specified).

As class value, specify the desired input or output class — one
of those defined for your location. The class values 0 through
9 (partition related) are valid only for manipulating the RDR or
the XMT queue.

If the macro specifies TYPE=GEN, then:

You cannot use register notation.
. Class A is used as default.

If you use register notation (together with TYPE=UPD), the
specified register must point to a one-byte field that contains
the class value.

FUNC={ (ALTER, attrib-type) | CANCEL | COMMAND | DELETE | DISPLAY | HOLD | RELEASE}
The operand applies only if you specify also REQ=CTL; it
specifies the type of function to be performed.

ALTER
Causes VSE/POWER to alter, for a job (or group of jobs) in
the accessed queue, the attribute that you specify for
attrib-type.

For attrib-type, you can specify one of the attributes

discussed under NEWVAL={field|(reg)}, below. Only one
attribute can be changed per CTL request.

100 IBM VSE/POWER Application Programming

Spool Access - PWRSPL Macro

CANCEL

Causes VSE/POWER to cancel (flush) the job identified by job
name and, optionally, by job number.

COMMAND

Indicates that VSE/POWER is to process the command supplied
in the field SPLCFLD of the SPL that is being generated or
updated. VSE/POWER accepts the command without error
checking for the command.

For passing a command to VSE/POWER, the following rules have
to be observed:

The command must be set up using upper-case letters.

The command cannot be longer than 72 bytes.

Continuation of the command is not supported.

At least one blank must follow the command verb (such as
PDISPLAY or just D).

The table below lists the commands that VSE/POWER accepts
via a spool-access communication path:

PALTER jobname (see Note 1 below)

PBRDCST

PCANCEL jobname (see Note 1 below)

PDELETE jobname (see Note 1 below)

PDELETE MSG

PDISPLAY jobname (see Note 1 below)
PDISPLAY MSG

PDISPLAY A

PDISPLAY T

PDISPLAY PNET

PDISPLAY TAPE (see Note 2 on page 102 below)
PDISPLAY VIO (see Note 2 on page 102 below)
PFLUSH DEV (see Note 2 on page 102 below)
PGO DEV (see Note 2 on page 102 below)
PHOLD jobname (see Note 1 below)

PINQUIRE

PRELEASE jobname (see Note 1 below)
PRESTART DEV (see Note 2 on page 102 below)
PSETUP DEV (see Note 2 on page 102 below)
PSTART DEV (see Note 2 on page 102 below)
PSTOP DEV (see Note 2 on page 102 below)
PXMIT nodeid

PXMIT DEV (see Note 2 on page 102 below)

Notes:

1.

Accepted only if there is a match of the recorded and
specified user-IDs (origin or target) and, if
applicable, also these passwords.

Only the owner of an entry can manipulate a target entry

Chapter 2. Spool-Access Support 101

Spool Access - PWRSPL Macro

102

with a destination of ANY (unless his own userid is ANY
which, however, is not recommended).

2. Only for authorized users — For example the subsystem
administrator, if there is one.

DELETE

Causes VSE/POWER to delete the named job from the specified
queue.

DISPLAY
Causes VSE/POWER to return information about the queue
entries as described by one or a combination of the
following: job name, job number, and class.

HOLD
Causes VSE/POWER to change the disposition of one or more
jobs to:

H (hold) if it was D (dispatchable)
L (leave) if it was K (keep).

RELEASE
Causes VSE/POWER to take one or more jobs out of the hold or
leave state and make them available for processing.

JOBN={ jobname| (reg)}

The operand specifies the VSE/POWER job name that is to be used
for the execution of the request. The job name you specify must
be alphameric and not longer than eight characters.

If the macro specifies TYPE=GEN, then:

i You must define the name in your program as a character
constant.

. Omission of the operand causes AUTONAME to be used as the
default name.

If you code this operand together with TYPE=UPD, specify for
jobname the label of an eight-byte field that contains the job
name left justified and padded with blanks.

If you use register notation, the specified register must point
to an eight-byte field that contains the name.

JNUM={ fieldname| (reg)}

The operand can be used only together with TYPE=UPD. It
specifies the number which VSE/POWER assigned to the job whose
queue entry is to be manipulated or whose data is to be
retrieved.

If you use register notation, the specified register must
contain the job number. If you do not use register notation,

IBM VSE/POWER Application Programming

Spool Access - PWRSPL Macro

then fieldname must be the label of a half-word that contains
the job number in binary notation.

If you do not want to supply a job-number, set the field (or
register) to binary zeros.

JSUF={fieldname| (reg)}

The operand can be used only together with TYPE=UPD. It
specifies the job-suffix (segment) number assigned to the queue
entry that is to be manipulated or to be retrieved.

If register notation is used, the specified register must
contain the number. If you do not use register notation, then
fieldname must be the label of a half-word containing the number
(in binary).

MODE={ APPEND | BROWSE | GENERIC | RESET | RESTART}

The operand specifies the mode of operation for the requested
service:

APPEND
Spooling is to continue at the end of an already existing
queue entry. This applies only to the PUT output function.

BROWSE
Useful primarily if you intend to examine (but not to
update) a queue entry.

If you specify BROWSE, you must also provide the name of the
job to be accessed, with or without the applicable job
number and job suffix. A queue entry accessed in BROWSE
mode is left unchanged in its queue even if the entry's
disposition is D.

For a retrieval in BROWSE mode, VSE/POWER accepts only a
subset of GET-service requests (with an action code in byte
PXUACT1 of the XPCCB field IJBXSUSR) as shown below:

Mnemonic Equated

Type of Request to the Action Code
A retrieval request PXUATSDR
A quit request PXUATABR
A restart request Not applicable (see *)

* You submit this request by passing (to VSE/POWER) a
restart-control record.

GENERIC
Causes VSE/POWER to retrieve the first eligible queue entry
destined for a certain user within the specified class.
When processing a retrieval request in this mode, VSE/POWER

Chapter 2. Spool-Access Support 103

Spool Access - PWRSPL Macro

ignores the specification of a job name, a job number, or a
job suffix.

VSE/POWER selects, for retrieval, the queue entry whose
characteristics are closest to the ones defined in the
PWRSPL macro.

You can include in your request up to three additional
classes by:

1. Inserting the additional classes left justified in the
field SPLGNV of your SPL followed by a blank.

2. Setting the flag SPLGOACL in byte SPLGOPT, the SPL's
option byte.

RESET
Causes the mode settings to be reset to the default values.

RESTART
Spooling is to begin at a certain record of an already
existing queue entry (PUT-output function). This record is
either of the following:

¢ The one whose number your program supplies in field
SPLDCREC of the applicable SPL.

¢ The record last checkpointed by VSE/POWER if your
program does not supply a record number in this SPL
field.

NEWVAL={field| (reg)}
The operand names the field that contains the new value to be
used by VSE/POWER as attribute for the named queue entry. This
value must be defined as a character constant if you use the
operand together with TYPE=GEN.

The meaning of the value depends on your specification in the
FUNC=(ALTER,attrib-type) operand. This meaning is given below
by alter attribute:

CLASS
The name of a one-byte field that contains the new class of
the queue entry. If you use register notation, the register
must point to the one-byte field.

CMPACT
The label of a four-byte field which contains the name of
the new compaction table set to be used for transmitting the
queue entry to an SNA work station. Supply this table set's
name left justified without leading blanks.

104 IBM VSE/POWER Application Programming

Spool Access - PWRSPL Macro

Instead of the name of a compaction table, you may specify
either:

* To indicate that the default compaction table is to be
used.
NO To indicate that no compaction should be performed.

If you use register notation, the register must point to the
four-byte field.

COPY

The name of a three-byte field that contains, in character
format, the new number of copies (any value from 1 to 255).
If you supply the number right justified, leading zeros are
required.

If register notation is used, the register must point to the
three-byte field.

The specification applies only to output queue entries; it
is ignored if you specify it for an input queue entry.

DISP

NODE

PRI

The name of a one-byte field that contains, in character
format, the new disposition (D, K, H, or L) of the affected
queue entry. If you use register notation, the register
must point to the one-byte field.

For further information on disposition refer to the
VSE/POWER Installation and Operations Guide.

How the operator is to handle dispositions X and Y is
described in the Chapter "Operating with VSE/POWER" of that
manual.

The label of an eight-byte field that contains, in character
format, the new target destination of the queue entry. In
this field, supply the destination left justified without
leading blanks. If you use register notation, the register
must point to the eight-byte field.

The name of a one-byte field that contains, in character
format, the new priority. If you use register notation, the
register must point to the one-byte field.

REMOTE

The label of a three-byte field that contains, in character
format, the new remote identifier. This is a value from 0
to 250.

Chapter 2. Spool-Access Support 105

Spool Access - PWRSPL Macro

If you supply the number right justified, leading zeros are
required. If you use register notation, the register must
point to the three-byte field.

The specification applies only to output queue entries; it
is ignored if you specify it for an input queue entry.

SYSID
The label of a one-byte field that contains, in character
format, the new system identifier. If you use register
notation, the register must point to the one-byte field.

USER
The label of an eight-byte field that contains, in character
format, the new target user-ID of the queue entry. In that
field, supply this ID left justified without any leading
blanks. If you use register notation, the register must
point to the eight-byte field.

OPT={RESET| ([ALLCPY] [,CTLREC] [,FORMAT] [,NOWAIT] [,RETSEP])}
The operand specifies options for performing the requested
service.

You may omit the enclosing parentheses if you specify only one
of the options. Do not code a comma preceding your first option
of your list.

If a specified option does not apply to the requested function,
VSE/POWER ignores this option.

RESET
Causes VSE/POWER to reset (turn off) any option specified
previously.

ALLCPY
Causes VSE/POWER to return all copies of an output queue
entry to the requestor. The specification applies only if
you specified REQ=GET.

Each copy of the queue entry starts with record number 1 and
an SPL that describes the copy.

CTLREC
Causes VSE/POWER to return also immediate control records
(such as skip to channel 1 and space 2 lines) when
‘ retrieving an output queue entry. A control record consists
of a record prefix and one byte of data. The command code
is contained in the record prefix.

FORMAT
Causes the result of a requested queue-related display to be
returned as fixed format records rather than free-format
messages.

106 IBM VSE/POWER Application Programming

Spool Access - PWRSPL Macro

The specification applies only if you specify REQ=CTL
together with the QUEUE operand; it is effective only on the
local queues..

If you specify PWRSPL with TYPE=MAP, the assembler generates
a DSECT of the fixed-format display message (label PXFMDSCT)
into your program.

If you request a queue display in free format, VSE/POWER
returns the requested information in the form of console
messages.

NOWAIT .
Requests control to be returned to the requestor when a wait
condition occurs because of lack of disk space. If you do
not specify NOWAIT, VSE/POWER waits for such space to become
available. What this means for your program is discussed
below.

During GET-service processing, VSE/POWER may find that the
account-file is full. The situation may come up when
VSE/POWER executes one of the following subfunctions:

. Close the processing for the currently accessed queue
entry.

. Perform a FLUSH-HOLD for the spool request (applies only
to an application involving external device support).
Purge the involved queue entry.

Quit processing the request.

When the account-file-full condition occurs, the function
has already been performed. Therefore, VSE/POWER cannot
inform your program right away. If no other GET (CTL or
PUT) request follows, your program does not become aware of
this situation. However, a subsequent GET (CTL or PUT)
request from your program is rejected with applicable return
and feedback codes supplied by VSE/POWER. In your program,
you can then decide, whether you want to wait and retry
after a certain time interval or to setup a new
communication path to VSE/POWER in order to start the new
function.

During a PUT-service processing, VSE/POWER may run into a
"short of disk space' situation as indicated:

. While VSE/POWER is spooling a job or job output.

VSE/POWER stops further spooling of the submitted job or
output. This results in the following:

- If an output file is being spooled without being

checkpointed, this file is lost, and VSE/POWER
queues an information message. If the file is

Chapter 2. Spool-Access Support 107

Spool Access - PWRSPL Macro

checkpointed, VSE/POWER queues the file up to last
committed checkpoint; the file's remaining data is
lost.

- If a single job is being spooled, the job is lost,
and VSE/POWER queues an information message.

— If multiple jobs are being spooled, the jobs already
spooled are kept in the input queue, but the job
being processed and all subsequent ones are lost.
VSE/POWER queues a message and returns a
verification SPL for the last job spooled
successfully.

VSE/POWER ignores input that is being read from a
diskette as a result of the processing of a * $$ RDR
statement in the failing job. However, the
diskettes are fed as for normal processing until the
end of this diskette (SYSIN) input is reached.

- If a segment-output request is being processed,
VSE/POWER may or may not pass to your program a
verification SPL in addition to the data-file-full
indication.

By passing this SPL, VSE/POWER informs your program
that all data submitted up to this point has been
spooled and a queue entry for the segment exists.
Processing for building another segment cannot
continue.

If VSE/POWER passes only the data-file-full |
indication, all data submitted since the last
successful segment request or checkpoint (whichever
applies) is lost.

d When VSE/POWER tries to write into the account file.

This can occur after a Close, quit, or segment request;
it can occur after a spool-data request during
multiple-job submission.

— For a Close or quit request, VSE/POWER returns a
successful completion indication. However,
VSE/POWER rejects any subsequent PUT, GET or CTL
function as long as the account-file-full situation
exists. For the new function request, VSE/POWER
performs no error checking; instead it returns to
your program the return- and feedback-code
combination PXPRCOKF and PXPS04SOA to indicate that
the account file is full.

108 IBM VSE/POWER Application Programming

Spool Access - PWRSPL Macro

— For a segment request, VSE/POWER returns the
PXPRCOKF/PXPSOSOA return/feedback-code combination
together with the SPL that describes the output
segment just queued. VSE/POWER does not accept any
further spool requests.

— For multiple-job submission (with one open
PUT-service request), VSE/POWER returns a
verification SPL together with the
PXPRCOKF/PXPS04SOA return/feedback code combination.
This SPL applies to the job that was queued, but for
which no account record could be written. Any
subsequent job-spool requests are rejected by
VSE/POWER.

Your program may submit an * $$ RDR statement and
effect multiple-job submission via diskette input.
An account-file full condition during the processing
of an end-of-job statement causes VSE/POWER to
ignore all subsequent diskette data and the data
behind the * $$ RDR statement in your program's send
buffer.

RETSEP
Causes separator pages (or cards) to be returned as normal
data records in front and at the end of the requested output
queue entry. Separator pages (cards) that VSE/POWER builds
are passed with their MCCs.

The option applies only if you specified REQ=GET and if a
JSEP value other than zero was specified for the queue
entry. .

PRFX=xxx
Use this operand if, for the generated SPL or SPL DSECT, you
want the field names to begin with characters other than SPL.
This avoids the occurrence of duplicate names if your program
includes the macro two or more times; for example several times
with TYPE=GEN and once with TYPE=MAP.

For xxx, specify the string of up to three characters with which
you want the field names to begin.

PWD={password| (reg)}
The operand specifies the password associated with the queue
entry to be retrieved or manipulated. The password must be
alphameric and not longer than eight characters; if it is
shorter, it is to be defined left justified and padded with
blanks.

For a request with TYPE=GEN, specify a password (if this is
feasible) as a character constant.

Chapter 2. Spool-Access Support 109

Spool Access - PWRSPL Macro

110

For a request with TYPE=UPD, specify the label of an eight-byte
field that contains the password.

If you omit the operand, VSE/POWER defaults to a password of
eight blanks. This does not give your program access to a queue
entry submitted without password protection via a local spool
device.

If you use register notation, the specified register must point
to the eight-byte field that contains the password.

QUEUE={LST|PUN|RDR| XMT}

The operand specifies the queue that is to be accessed. The
queue specifications valid for the various function requests are
indicated by an X in the table below:

QUEUE=
Function Specification LST PUN RDR XMT
REQ=CTL X X X X
REQ=GET X X X
REQ=PUT: spooling job(s) X
REQ=PUT: spooling output X X

If your program submits a job for processing at another node (of
your computer system's network), then it must define this in the
* §$ JOB statement for the job.

If your program submits output data for transmission to another
node, then the target node's name and user-ID must be defined in
the fields SPLDTNN and SPLDTUID, respectively, of the applicable
SPL.

REQ={CTL|GET | PUT}

The operand specifies the type of function to be performed. The
set of operands that applies to each of these basic function
requests is given below. In the operand lists, M = mandatory
and O = optional. Specify:

CTL To pass to VSE/POWER a control request or a command for
execution. Operands that apply to a CTL request (where: M
= mandatory; O = optional):

IBM VSE/POWER Application Programming

Spool Access - PWRSPL Macro

FUNC=function

JOBN={ jobname | (reg)}
QUEUE={RDR | LST | PUN | XMT}
USERID={userid| (reg)}

See * below
See * below

XXX

CLASS={class|(reg)}
JNUM={fieldname| (reg)}
JSUF={fieldname| (reg)}
NEWVAL=(field| (reg)}
OPT=FORMAT
PWD={password| (reg)}

(cNoNoNoNeNel

* Optional if your program passes a command to VSE/POWER.

GET To retrieve, from the specified VSE/POWER queue, the named
queue entry. Operands that apply to a GET request (where:
M = mandatory; O = optional):

CLASS={class|(reg)}
JOBN={ jobname| (reg)}
QUEUE={RDR | LST | PUN}
USERID={userid|(reg)}

2R

JNUM={fieldname| (reg)}
JSUF={fieldname]| (reg)}

MODE=BROWSE

MODE=GENERIC

OPT=([ALLCPY][,CTLREC] [,NOWAIT][,RETSEP])
PWD={password| (reg)}

[eNeoNeoNoNoNe

PUT To have job(s) spooled to VSE/POWER input queues (RDR, XMT)
and Job output to the VSE/POWER output queues (LST, PUN,
XMT) .

Operands that apply to a PUT-job request (where: M =
mandatory; O = optional):

QUEUE=RDR M
USERID={userid| (reg)} M
OPT=NOWAIT 0
PWD={password| (reg)} 0

Chapter 2. Spool-Access Support 111

Spool Access - PWRSPL Macro

112

Operands that apply to a PUT-output request (where: M =
mandatory; O = optional):

QUEUE={LST|PUN}
JOBN={ jobname| (reg)}
USERID={userid| (reg)}

XX

CLASS={class]| (reg)}
MODE={ APPEND | RESTART}
OPT=NOWAIT
PWD={password| (reg)}

[eNoNeoNe)

Spooling of output data may require that your program sets
up a certain number of SPL fields 1nd1V1dually For more
information about setting up SPL fields, see "Request a PUT
Service — Submission of Output Data' on page 72.

Note: For spooling job(s) or output to the XMT queue, see
the description of the QUEUE operand.

SPL={splname| (reg)}

The operand specifies the address of the spool parameter list
(SPL) that is to be used. The operand applies only if your
specify TYPE=UPD.

If you do not use register notation, then the code generated for
your PWRSPL macro causes a p01nter to the SPL to be loaded into
register 1. Save this register's content before you issue the
macro. If you code the macro with a name in the name field,
that name must be identical with the symbolic address you
specify for splname.

USERID={userid] (reg)}

The operand specifies the user identifier associated with the
queue entry that is to be retrieved, submitted, or manipulated.

Note: ANY is not recommended as userid.

For a request with TYPE=GEN, specify the actual identifier as a
character constant.

For a request with TYPE=UPD, specify the label of an eight-byte
field that contains the identifier left justified and padded
with blanks.

If you use register notation, the specified register must point
to the eight-byte field that contains the identifier.

IBM VSE/POWER Application Programming

Spool Access - XPCC Macro

XPCC Macro

The macro initiates a cross-partition communication service.

Macro Format

| T T 1
| Name |Operation | Operands |
| | | |
f i | !
[name]	XPCC	XPCCB={address	(1)](S,address)},
		FUNC={function	(reg-no.)}
]	[,BUFFER={buffname]	(reg-no.)	(S,addr)}]
L L] J

Description of Operands

XPCCB={address| (1)} (S,address)},
The operand defines the address of the XPCCB, a control block
containing request-related information. For more details about
the block, see "XPCCB Macro" on page 118.

FUNC={function| (reg-no.)}
The operand defines the type of request. You can specify:

CONNECT

DISCONN

DISCPRG

IDENT

To have the system provide a communication path to
VSE/POWER. Your program can have twe or more
communication paths set up by using for each path a
separate copy of the XPCCB you used for program
identification (FUNC=IDENT).

To have the system disconnect the currently used (and
no longer required) communication path to VSE/POWER.

To have the system remove the existing communication
path (set up by a FUNC=CONNECT) at once. This may
interrupt the transfer of data from your program to
VSE/POWER or vice versa.

For GET-service processing, VSE/POWER retains the
affected queue entry with its disposition and priority
unchanged.

For PUT-service processing, the interrupted submission
has to be restarted either at a checkpoint or from the
beginning.

To make your program known to the system as a

spool-access support user. This is some kind of a
"log-on" service.

Chapter 2. Spool-Access Support 113

Spool Access - XPCC Macro

SENDR To have VSE/POWER process the desired service.

TERMIN To finish using the spool-access support. This is some
kind of a "log-off" service. Specify this operand if
none of your program's tasks requires any further
access to VSE/POWER services.

BUFFER={buffname| (reg-no.)|(S,addr)}
The operand may be used to define your program's send buffer.
If you use the operand, the system ignores the area definition
given by BUFFER=specification in the associated XPCCB macro.

Return Information

114

The system supplies return information in register 15 and in field
IJBXRETC of the XPCCB; it may supply additional return information in
field IJBXREAS. You should test this information along with testing the
posting of IJBXSECB, the send-event control block.

VSE/POWER supplied return information in the XPCCB's user data area
(field IJBXRUSR) is listed in the preceding sections that discuss CTL,
GET, and PUT service requests.

Figure 39 on page 115 lists the mnemonics that you can use to test the
return and reason codes supplied by the system. This list is followed
by a short description of these mnemonics. The mnemonics are also
listed and described in the DSECT generated by the assembler for the
MAPXPCCB macro.

IBM VSE/POWER Application Programming

Spool Access - XPCC Macro

Mnemonic in
XPCCB Field FUNC=

Reg.
15 IJBXRETC IJBXREAS CONNECT DISCONN DISPRG IDENT SENDR TERMIN

00 IJBXREOK X X X X X X

04 IJBXAPSP X
IJBXDAPP X
IJBXNIDN X
IJBXNCNN X

08 IJBXCBSY X
IJBXNDC1 X
IJBXNDC2 X
IJBXNOC1 X

TIJBXNOC2 X
IJBXNOC3 X
IJBXNOSY X
IJBXNSTO X

IJBXNTRM X
IJBXQSCE X

IJBXTMCR X X

IJBXWCBA X

"
o]

IJBXWCBK X X X X
IJBXWIDK X X
IJBXWIND
IJBXWLST

TJBXWOWN X X
IJBXWPID X X

o] >

IJBXCPRG
IJBXDISC
IJBXABDC

ool e

Figure 39 (Part 1 of 3). Return and Reason Codes — XPCC Macro

Chapter 2. Spool-Access Support 115

Spool Access - XPCC Macro

The Codes in Field IJBXRETC (Return Codes)

Equated

Mnemonic Value Explanation

IJBXREOK 00 Request completed successfully.

IJBXAPSP 02 Identification is requested with the same applica-
tion from the same partition. Connect to VSE/POWER
is possible.

IJBXCBSY 12 The communication path to be used is busy.

IJBXDAPP 01 Identification is requested with the same applica-
tion from a different partition. Connect to
VSE/POWER is possible.

IJBXNCNN 05 VSE/POWER has identified itself but not issued a
CONNECT request (see "Note'" below).

IJBXNDC1 15 The communication path is being used (a request
from your program is being processed).

IJBXNDC2 16 The communication path is being used (a request
issued by VSE/POWER is being processed).

IJBXNIDN 04 VSE/POWER has not yet identified itself to the
system (see 'Note" below).

IJBXNOC1 18 The communication path to be used does not exist.

IJBXNOC2 19 VSE/POWER came to a normal end of processing.

IJBXNOC3 1A VSE/POWER came to an abnormal end of processing.

IJBXNOSY OF The name specified for TOAPPL in XPCCB is not
SYSPWR.

IJBXNSTO OE No storage available for setting up the required
control blocks.

IJBXQSCE 17 VSE/POWER is being shut down.

IJBXTMCR oD Too many CONNECT requests were issued by the re-

questor.
Note: Have your program wait for field IJBXCECB to be posted.

Figure 39 (Part 2 of 3). Return and Reason Codes — XPCC Macro

116 IBM VSE/POWER Application Programming

Spool Access - XPCC Macro

The Codes in Field IJBXRETC (Return Codes) — Continued

Equated

Mnemonic Value Explanation

IJBXWCBA 1C The request uses an XPCCB other than the one used
with the FUNC=CONNECT request for setting up the
communication path.

IJBXWCBK 06 The XPCCB has an invalid format.

IJBXWIDK 07 Wrong system-assigned cross-partition identifier.

IJBXWIND 0A In the defined buffer list, at least one of the
indicators is wrong.

IJBXWLST 0B One of the following:
— Too many buffers are specified.
— The total length of the buffers exceeds 16M bytes.
— One of the buffers in the list has a length of

zero.

IJBXWOWN 09 The task that issued the request is not authorized
to use the communication path.

IJBXWPID 08 Wrong system-assigned path identifier.

The Codes in Field IJBXREAS (Reason Codes)

Equated
Mnemonic Value Explanation
IJBXDISC 40 VSE/POWER issued a disconnect request (see "Note'
below).
IJBXABDC 80 VSE/POWER was disconnected as a result of an

abnormal end (see ''Note" below).
Note: The reason code, if it occurs, is inserted into field

IJBXREAS by an OI instruction.

Figure 39 (Part 3 of 3). Return and Reason Codes — XPCC Macro

Chapter 2. Spool-Access Support‘ 117

Spool Access - XPCCB Macro

XPCCB Macro

The macro sets up a cross-partition control block. Logically, the block
represents one communication path.

Format of the Macro

I

Name |Operation]| Operands
|

1
[name] | XPCCB | APPL=name,TOAPPL={ANY|SYSPWR}

| [,BUFFER={buffname| (buffname,length)}]
|

|

[,REPAREA=(areaname,length)]

Description of Operands

APPL=name
For name, specify the name of your program. The characters SYS
as the first three characters of a name are reserved for IBM
subsystems.

BUFFER={buffname | (buffname, length)}
In the operand, buffname is the name of your program's send
buffer.

For length, specify the buffer's length in number of bytes. For
the transfer of data to VSE/POWER, this buffer may have a length
of up to 64K bytes.

If you do not specify a length, your program must insert this
length into field IJBXBLN of the XPCCB.

REPAREA=(areaname, length)
In the operand, areaname is the name of your program's reply
buffer.

For length, specify the buffer's length in number of bytes. For
the transfer of data from VSE/POWER, this buffer may have a
length of up to 64K bytes.

TOAPPL={ANY | SYSPWR}
Specify:

TOAPPL=ANY
If your application makes use of the external device support
(for more details see Chapter 3).

118 1IBM VSE/POWER Application Programming

Spool Access - XPCCB Macro

TOAPPL=SYSPWR
If your application accesses VSE/POWER services for queue
manipulation and for the retrieval or submission of jobs and
output.

Chapter 2. Spool-Access Support 119

Spool Access - Programming Example

SPOOL-ACCESS SUPPORT PROGRAMMING EXAMPLE

This section consists of:

1. The set of statements that causes the source code of the
spool-accesss support example to be assembled, linked, and executed.

2. An inline macro definition.

3. The source code, which is provided under "Programming Example Source
Code" on page 123 primarily for study and reference purposes.

For ease of locating labels, a "Labels-to-Page Cross Reference" is
provided below. Referenced page numbers are given in the upper
right-hand corner on odd-numbered pages and in the upper left-hand
corner on even-numbered pages.

Labels-to-Page Cross Reference

120

Example Example
Label Page Label Page
ABNPOW 22 FAILM4 24
FAILFUNC 24
BADREAS 22 FAILLABL 24
BUFLN 23 FAILMSG 24
BUFPTR 23 FAILREAS 24
FAILRETC 24
CONCT 5 FAILPWFB 24
CONNOK 5 FAILPWRC 24
CTLAl "9 FILLBUF 7
CTLA2 9 FILLBUFO 15
CTLA3 10 FINDUMP 20
FINEND 20
DATACARD 25 FORMS 23
DATAPTR 23 F1 24
DATDSPLY 17 F2 24
DISCT 19 F3 24
DISP 23 F&4 24
DISPLAY 17 F5 24
DSPLO 18 Fé6 24
DSPL1 18 F7 24
DSPL2 18
DSPL3 18 GETB1 11
GETB2 12
EIGHT 23 GETB3 12
EIGHTDC 23 GETFCT 23
ENDIND 25 GQUIT 13
FAILM1 24 HELP 23
FAILM2 24
FAILM3 24

IBM VSE/POWER Application Programming

Spool Access - Programming Example

Example

Label Page
IDENT 4
INTECB 23
JCL1 25
JCL2 25
JECL1 25
JECL2 25
JECL3 25
JOBNAME 23
JOBNLAB 23
JOBNUM 23
KEEPRCT 16
LAB1 15
LASTPREC 25
LISTCECB 23
LISTEND 23
MSGDSPLY 20
MSGRCFB 20
MSGREAS 20
MSGRETC 20
M1 23
M7 23
NOOFRECS 23
NOTNLB 16
ONE 23
OWNSPL 26
OWNSPLDS 26
OWNXPCCB 25
POSTBIT 23
PRIOR 23
PUTA1 6
PUTA2 7
PUTA3 7
PUTA4 10
PUTB1 14
PUTB2 15
PUTB3 16
PWRRECNO 23
RA 26

Example

Label Page
RB 26
RC 26
RD 26
RE 26
REASOK 23
RECORDCT 23
REPLBUF 25
REQFAIL 19
RF 26
RO 26
R1 26
R2 26
R3 26
R4 26
R5 26
R6 26
R7 26
R8 26
R9 26
SAMPIN 3
SENDBUF 25
SDEOD 16
SDNDB 16
SEPPAGE 23
SENDR 21
SUCCM1 24
suUcCcM2 24
SUCCM3 24
SUCCM4 24
succMé 24
succM? 24
succMs 24
TERMCONN 22
TERMN 19
TERMQSCE 5
TESTRETC 22
TRTAB 23
WAITCECB 5
WAITLIST 23
WAITSECB 22
ZERO 23

Chapter 2.

Spool-Access Support

121

Spool Access - Programming Example

Control Statements for Assembly, Link-Editing, and Execution

* $§$ JOB JNM=PWRSARUN,CLASS=A,DISP=D

// JOB PWRSARUN

// OPTION CATAL

// LIBDEF *,/SEARCH=(...)

* PROVIDE FOR (...) SEARCH CHAIN FOR VSE/POWER SUBLIBRARY
* AND VSE/AF SUPERVISOR MACRO SUBLIBRARY

N\
"~

// LIBDEF *,CATALOG=...

* PROVIDE FOR ... LINK SUBLIBRARY FOR PWRSASEX
// EXEC ASSEMBLY,SIZE=100K
COPY PWRSASEX
END
// EXEC LNKEDT
// EXEC PWRSASEX
/&
* §$§ EOJ

Inline Macro Definition

This macro definition, which precedes the source code, provides for a display of
messages on the system console. Only the beginning and end of the instructions of
this definition are shown here.

122

TITLE 'PWRSASEX - SAS EXAMPLE PROGRAM'
MACRO

&LABEL DPLAY &LINE,&LENGTH,&ID=1
GBLB &FDSP(15)
LCLA &LINLEN,&LENLEN
LCLC &LENREG,&LINREG,&DISP
LCLB &LENSW,&LINSW,&TXT,&DEF
AIF (T'&ID EQ 'N' AND &ID LE 15).L001
MNOTE 8,'ID NOT NUMERIC OR GREATER THAN 15'
MEXIT

.Loo1 AIF (T'&LINE NE '0').L002

.1018 ANOP
L 0,=A(&LINE)
.1019 ANOP
STCM 0,7,DSCCW&ID+1
L 1,=A(DSCCB&ID)
EXCP (1)
WAIT (1)
MEND

IBM VSE/POWER Application Programming

Spool Access - Programming Example

Programming Example Source Code

Page 1 of 26
PUNCH ' PHASE PWRSASEX,*'

dedvlodededededededededelodedodeledededelodededededededede
e Wk
dese PWRSAGSEHZX o
e ek
wok VSE/POWER SPOOL ACCESS SUPPORT: EXAMPLE PROGRAM il
e o
Fedededededededededodedededodededededededededededelodedededodeledededededededodedededed
¥ ¥*
* THIS PROGRAM - NAMED PWRSASEX - ACTS AS A SPOOL-ACCESS-SERVICE *
* USER THAT INTERACTS WITH VSE/POWER VIA USING THE AVAILABLE *
* SPOOL-ACCESS SUPPORT. *
e =«

* PWRSASEX CAN RUN IN ANY PARTITION, UNDER OR OUTSIDE THE CONTROL *
* OF VSE/POWER. FOR SUCCESSFUL COMPLETION, HOWEVER, AN ADDITIONAL *
* PARTITION UNDER CONTROL OF VSE/POWER AND WITH EXECUTION CLASS=A *

¥ MUST BE WAITING FOR WORK. w*
e %
* THE PROGRAM'S OPERATIONAL STEPS ARE: ¥
% %
* 1. IDENTIFY ITSELF TO THE SYSTEM'S XPCC SUPPORT WITH THE USER *
* - IDENTIFICATION "PWRSASEX." %
b o
* 2. TRY TO ESTABLISH A COMMUNICATION PATH TO VSE/POWER -- TERMIN- *
% ATE IF THIS PATH CANNOT BE ESTABLISHED WITHIN TWO MINUTES %*
=« %
* 3. USE THE PUT SERVICE TO SUBMIT THE JOB 'EXAMPLE' TO THE *
% VSE/POWER RDR QUEUE FOR EXECUTION IN CLASS=A. %
% %
* 4. USE THE CTL SERVICE TO SUBMIT A FIXED-FORMAT PDISPLAY COMMAND *
% IN ORDER TO LOCATE THE OUTPUT OF JOB 'EXAMPLE' IN THE %
¥* VSE/POWER LST QUEUE, AND SHOW THE QUEUE-DISPLAY MESSAGE ON *
* THE CONSOLE. IF THE OUTPUT IS NOT YET AVAILABLE, THE PROGRAM *
* REISSUES THE PDISPLAY COMMAND EVERY 10TH OF A SECOND FOR TWO
* MINUTES. IF THEN THE OUTPUT IS STILL NOT AVAILABLE, PWRSASEX *
* TERMINATES. ¥
* %
* 5. RETRIEVE THE LST QUEUE ENTRY 'EXAMPLE' USING THE GET SERVICE. *
% %
% THE PROGRAM CAUSES THE COMPLETE ENTRY TO BE DISPLAYED ON THE *
* CONSOLE. PWRSASEX ISSUES A GET-RESTART REQUEST THAT POSITIONS*
* THE RETRIEVAL POINTER IN THE MIDDLE OF THE QUEUE ENTRY AND
¥ REDISPLAYS THE SECOND HALF. ¥
* %
% PWRSASEX ENDS GET PROCESSING BY ISSUING A QUIT REQUEST. %
% *
B O e e e e e e i e L e e e e L

Chapter 2. Spool-Access Support 123

Spool Access - Programming Example

Page 2 of 26

B R R R R R R R R R R B E LR L R R b B L S Rt C e o i e e e T S e A o e b D e S L

%

* 6. SUBMIT THE DATA CARDS OF JOB 'EXAMPLE' TO THE VSE/POWER

* LST-QUEUE AS ENTRY 'EXAMPSEG' AND ISSUE PUT-SEGMENT REQUESTS
% TO GET THREE SEGMENTS OF EQUAL SIZE.

*

* NOTE: THE ASA CONTROL 'CHARACTER PRINT-AND-SKIP-2' IS USED
* FOR THE SUBMITTED LINES.

%

% 7. DISCONNECT THE COMMUNICATION PATH TO VSE/POWER.

%

* 8. TERMINATE (LOG OFF FROM) THE VSE XPCC SUPPORT.

%

s
w

%

ok ok % k%

ote
W

B R Rk T E R T L LR R e e e L e e o e e e e e L S e e e B

THE FOLLOWING MACROS ARE REQUIRED:

SYSTEM MACROS: XPCC
XPCCB
MAPXPCCB

% % ok %k

SETIME
WAITM
WAIT

VSE/POWER: PWRSPL

AN INLINE MACRO (AVAILABLE WITH THE EXAMPLE). IT IS USED FOR
DISPLAYING MESSAGES ON THE CONSOLE. THE MACRO CALLS ARE IN
THE FORMAT:

DPLAY MESSAGE-LABEL,LENGTH
DPLAY (REG1), (REG2)

NOTE: LINES WITH THE @-SIGN AT THE END REPRESENT THE INTERFACE
TO VSE/POWER.
LINES WITHOUT THE @-SIGN AT THE END REPRESENT THE INTERFACE
TO THE SYSTEM'S XPCC SUPPORT (STEPS 1, 2, 7, AND 8).

ok Sk ok ok ok ko ok ok N k% ko N N N % N

o

B L R R R R R T o L o T e ot S LR i At e e i T e U o B B S D B

124 IBM VSE/POWER Application Programming

Spool Access - Programming Example

Page 3 of 26
EJECT
SPACE 2
REGISTER USAGE
SPACE 2
RO - #¥¥%* - WORK REGISTER
R1 - #¥%#%% - WORK REGISTER, ALSO USED BY PWRSPL MACRO
R2 - #¥%¥%% - WORK REGISTER
R3 - #¥%¥%¥% - WORK REGISTER
R4 - #%%% - ADDR REG FOR CROSS PARTITION CONTROL BLOCK XPCCB
R5 = #¥%¥%% - ADDRESS REGISTER FOR USER DATA TO BE SENT
R6 - #%#%% - ADDRESS REGISTER FOR RECEIVED USER DATA
R7 =~ #¥%%% - ADDRESS REGISTER FOR SPL DSECT
R8 = #%%% - FIRST BASE REGISTER OF PWRSASEX
R9 - #¥%¥% - SECOND BASE REGISTER OF PWRSASEX
RA - #%%¥% - WORK REGISTER
RB - #¥%¥%¥% - WORK REGISTER
RC - #%¥%¥% - WORK REGISTER
RD - #%%% - BRANCH AND LINK REGISTER FOR SENDR SUBROUTINE
RE - #%%% - BRANCH AND LINK REGISTER FOR DATDSPLY SUBROUTINE
RF =~ #%%% - MACRO CALL RETURN CODE REGISTER
EJEC
START 120 START OF THIS SAMPLE PROGRAM
BALR R8,0 GET START ADDRESS
USING *,R8,R9 ESTABLISH ADDRESSABILITY
SPACE 2
LA R9,4095(,R8) LOAD SECOND BASE REGISTER WITH
LA R9,1(,R9) CONTENTS OF FIRST + 4096
SPACE 2
LA R4 ,OWNXPCCB GET ADDR OF CROSS PART. CONTROL BLK
USING IJBXPCCB,R&4 ESTABLISH ADDRESSABILITY FOR DSECT
SPACE 2
LA R5,IJBXSUSR GET ADDR OF USER DATA TO BE SENT
USING PXUUSER,R5 ESTABLISH ADDRESSABILITY FOR DSECT
SPACE 2
LA R6,IJBXRUSR GET ADDR OF RECEIVED USER DATA
USING PXPUSER,R6 ESTABLISH ADDRESSABILITY FOR DSECT
SPACE 2
LA R7 ,0WNSPL GET ADDR OF SPL
USING OWNSPLDS,R7 ESTABLISH ADDRESSABILITY FOR DSECT
EJECT

Chapter 2. Spool-Access Support 125

Spool Access - Programming Example

Page 4 of 26

Sonte lestestentostontantoute testartontostostostastastasta atoateatonteatanteatuate! ootostontantoslostontotoatoatant ale oo tantoatonte oo otoute o O tostentoslesionts
Yededededededededededededededededededeledededededededededediedeicdedeodededededededededededededeiededodede oo dedededede e dededede e e

ok >> IDENTIFY PWRSASEX AS VSE/AF XPCC USER << o
*% IF THE MACRO FAILS, THE PROGRAM DISPLAYS A MESSAGE AND TERMINATES:¥**
%% - WITHOUT A DUMP IF IT FAILED BECAUSE OF LACK OF STORAGE e

*% - WITH A DUMP OTHERWISE. e

eSO ot stoatontastes X tontes S DRSSP SRCSPESHE ST SOESPC JUSIUINE SHC SO SOE M SOE ST SHCSHE SR JC SO SPC JHCJE SO0 SOE JHE SR S S S stestesestestesios
Fededededededsdededodededodedededededelededededodede oo e e dededede oo dededededededededodedededeododedede dededededededededededededs

SPACE 1

IDENT DS OH
SPACE 1
XPCC XPCCB=(R4),FUNC=IDENT IDENTIFY 'PWRSASEX' TO AF-XPCC
SPACE 1
CLM RF,M1,EIGHTDC WAS RETURN CODE X'08' GIVEN BACK ?
BNO CONCT ..NO, CONTINUE WITH CONNECTION
SPACE 1
MVC FAILFUNC,=C'IDENTIFY' INSERT FAILING FUNCTION INTO MSG
BAL RE,MSGRETC INSERT XPCC RETURN CODE INTO MSG
MVC FAILLABL,=C'IDENT' INSERT CODE LABEL FOR DIAGNOSTIC
BAL RE,MSGDSPLY DISPLAY MESSAGE ON CONSOLE
CLI IJBXRETC,IJBXNSTO DID IDENT FAIL DUE TO NO STORAGE ?
BE FINEND ..YES, TERMINATE WITH EOJ MACRO
B FINDUMP BRANCH TO TERMINATION WITH DUMP
EJECT

126 IBM VSE/POWER Application Programming

Spool Access - Programming Example

Page 5 of 26

Fefdededededededede oot et de e e e e e el e Tk e e e e e e b e e ek

>> ESTABLISH THE XPCC CONNECTION TO VSE/POWER << Fe
%% IF THE MACRO FAILS, THE PROGRAM DISPLAYS A FAILURE MESSAGE AND i
NATES. THE PROGRAM WAITS UP TO TWO MINUTES FOR THE CONNEC- #*%*

wede

*% TERMI

#*¥% TION TO BE COMPLETED.
*% IF THE CONNECTION IS ESTABLISHED AS REQUESTED, THE PROGRAM DIS- #¥

Ly

%% PLAYS A CONFIRMATION MESSAGE. o
Kot dedodedodedefededededededode T T e dedede dedededododk e e Yoo Yoo e dede e de ek e e e e s b e s e b e b e el
SPACE 1
CONCT DS OH
SPACE 1
XPCC XPCCB=(R4) , FUNC=CONNECT CONNECT TO VSE/POWER
SPACE 1
LTR RF,RF IS CONNECTION ALREADY AVAILABLE ?
BZ CONNOK ..YES, BYPASS WAIT FOR CONNECTION
SPACE 1
CIM RF,M1,EIGHTDC WAS RETURN CODE X'08' GIVEN BACK ?
BL WAITCECB ..NO, MUST BE '04', SO WAIT FOR CECB
CLI IJBXRETC,IJBXQSCE DID POWER GIVE XPCC TERMQSCE ?
BE TERMQSCE ..YES, GO TO HANDLE THAT STATE
MVC FAILFUNC,=C'CONNECT ' INSERT FAILING FUNCTION INTO MSG
BAL RE,MSGRETC INSERT XPCC RETURN CODE INTO MSG
MVC FAILLABL,=C'CONCT' INSERT CODE LABEL FOR DIAGNOSTIC
BAL RE,MSGDSPLY DISPLAY MESSAGE ON CONSOLE
CLI IJBXRETC,IJBXNSTO DID CONNECT FAIL DUE TO NO STOR. ?
BE TERMN ..YES, GO TO CLOSE XPCC INTERFACE
SPACE 1
B FINDUMP GO TO TERMINATION WITH DUMP
SPACE 1
TERMQSCE DS OH
DPLAY FAILM1,72 DISPLAY FAILURE MESSAGE
SPACE 1
B TERMN GO TO CLOSE XPCC INTERFACE CORRECTLY
SPACE 1
WAITCECB DS OH CONNECTION IS STILL 'PENDING'
SETIME 120, INTECB INSTALL WAIT INTERVAL OF TWO MIN.
LA R3,IJBXCECB LOAD ADDRESS OF CONNECTION ECB
ST R3,LISTCECB COMPLETE WAITLIST
WAITM WAITLIST WAIT FOR CONNECTION OR 2 MIN. COMPL.
TM IJBXCECB+2,POSTBIT CONNECTION COMPLETE?
BO CONNOK ...YES, CONTINUE AT CONNOK
SPACE 1
DPLAY FAILM3,72 ISSUE MSG THAT TIME LIMIT EXCEEDED
'SPACE 1
B DISCT GO TO DISCONNECT AND TERMINATE
SPACE 1
CONNOK DS OH NOW, CONNECTION ECB IS POSTED
DPLAY SUCCM1,72
EJECT

Chapter 2. Spool-Access Support 127

Spool Access - Programming Example

Page 6 of 26
*s'c********s'n‘n’r*v'c******:‘:s'r***7':*7‘:-.'r'k:’r*v'dr***-.‘r**v‘n’c*s’:s'ﬂ'\'s'ﬁ':s'.-*1‘:3‘:7‘:‘.‘:7’:7‘:7\'*7’:*7’:‘.':'.’::’:7‘:7':7’::’:7‘:@
W >> PUT-REQUEST TO RDR QUEUE << *@
#% THE JOB 'EXAMPLE' IS SUBMITTED TO THE VSE/POWER RDR QUEUE. *Q@
o e L e e L O D R R R R U LSO e L R S D SR PR PRt

SPACE 1
* REGISTER USAGE FOR PUT-REQUEST TO RDR QUEUE
SPACE 2
* R3 - #%¥¥¥ - WORK REGISTER
¥* RA - BUFPTR - POINTER FOR THE SEND BUFFER
¥* RB - DATAPTR - POINTER FOR THE INPUT CARDS
* RC - ¥ - TEMPORARY ADDR. REG FOR SPL DSECT
SPACE 2
¥* THE GENERATED SPL (OWNSPL) IS UPDATED INDICATING A PUT OPEN
¥* REQUEST AND THEN SENT TO VSE/POWER.

SPACE 2
PUTA1 DS OH
PWRSPL TYPE=UPD,SPL=OWNSPL,REQ=PUT,QUEUE=RDR

SPACE 2
MVI PXUBTYP, PXUBTSPL INDICATE BUFFER TYPE = SPL
MVI PXUACT1,0 CLEAR ALL OTHER BYTES IN PXUUSER,
MVI PXUSIGNL,O0 WHICH MAY BE CHANGED BY THE USER
SPACE 1 ‘
* THE SPL IS DIRECTLY USED AS XPCC SEND BUFFER
SPACE 1
STCM R7,M7,IJBXADR INSERT SPL ADDRESS AS BUFFER ADDR.
LA R3,SPLGLEN LOAD LENGTH OF SPL
ST R3,IJBXBLN INSERT BUFFER LENGTH INTO XPCCB
SPACE 1
MVC FAILLABL,=C'PUTA1' INSERT CODE LABEL FOR DIAGNOSTIC
BAL RD,SENDR GO TO SENDR ROUTINE
CLI PXPRETCD, PXPRCOK WAS POWER RETURN CODE ZERO?
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE
*¥ THE EXTENDED SPL RETURNED BY VSE/POWER IS IGNORED
SPACE 2

DDA DEDE®D®D®B® @@

* THE SEND BUFFER IS FILLED WITH INPUT CARDS (EACH CARD

* PRECEDED BY A RECORD PREFIX) UNTIL NO MORE CARD FITS.

* THE BUFFER IS THEN PASSED TO VSE/POWER IN THE ACTUALLY

* USED LENGTH.
SPACE 1
MVI PXUBTYP,PXUBTNDB BUFFER TYPE = NORMAL DATA BUFFER
MVI PXUACT1,0 CLEAR ACTION BYTE
SPACE 1
LA BUFPTR, SENDBUF GET ADDRESS OF SEND BUFFER
STCM BUFPTR,M7,IJBXADR INSERT BUFFER ADDRESS INTO XPCCB
LA DATAPTR,JECL1 GET ADDR OF FIRST INPUT CARD
SPACE 1

128 IBM VSE/POWER Application Programming

Spool Access - Programming Example

Page 7 of 26

FILLBUF DS OH @
CLC ENDIND,O(DATAPTR) END OF FILE REACHED? @
BE PUTA3 YES, GO TO SEND FINAL BUFFER @
CL BUFPTR, LASTPREC ENOUGH SPACE FOR ONE MORE RECORD? @
BH PUTA2 NO, GO TO SEND NORMAL BUFFER @
USING RECPRFIX,BUFPTR GET DSECT FOR RECORD LAYOUT @
XC 0 (RECPRFXL,BUFPTR), 0 (BUFPTR) CLEAR BYTES FOR PREFIX @
MVI RECTYPE,RECTNORM INSERT REC. TYPE IN REC. PREFIX @
LA R3,L'DATACARD LOAD LENGTH OF DATA CARD @
STH R3,RECLNGTH INSERT LENGTH OF DATA CARD IN PREF.@
LA BUFPTR,RECPRFXL(,BUFPTR) SKIP PREFIX IN BUFFER @
DROP BUFPTR @
MVC O(L'DATACARD,BUFPTR),0(DATAPTR) MOVE DATA INTO BUFFER @
LA BUFPTR,L'DATACARD(,BUFPTR) POINT TO NEXT FREE B.SPACE@
LA DATAPTR,L'DATACARD(,DATAPTR) POINT TO NEXT INPUT CARD @
B FILLBUF TRY TO FILL IN NEXT INPUT CARD @
SPACE 1 @
PUTA2 DS OH @
LA R3, SENDBUF GET AGAIN START ADDR OF SEND BUFFER@
SR BUFPTR,R3 CALC. ACTUALLY USED BUFFER LENGTH @
ST BUFPTR, IJBXBLN INSERT ACTUAL BUF.LENGTH INTO XPCCB@
MVC FAILLABL,=C'PUTA2' INSERT CODE LABEL FOR DIAGNOSTIC @
BAL RD,SENDR GO TO SENDR ROUTINE @
CLI PXPRETCD, PXPRCOK WAS POWER RETURN CODE ZERO? @
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @
LA BUFPTR, SENDBUF GET AGAIN ADDRESS OF SEND BUFFER @
B FILLBUF GO TO FILL BUFFER AGAIN @
SPACE 1 @
* THE BUFFER BEING FILLED WHEN END OF FILE WAS DETECTED @
* IS PASSED TO VSE/POWER AS FINAL BUFFER WITH AN END OF DATA @
* INDICATION IN THE USER DATA (=PUT CLOSE REQUEST). @
SPACE 1 @
PUTA3 DS OH @
SPACE 1 @
MVI PXUACT1,PXUATEOD INDICATE END OF DATA @
LA R3,SENDBUF GET AGAIN START ADDR OF SEND BUFFER@
SR BUFPTR,R3 CALC. ACTUALLY USED BUFFER LENGTH @
ST BUFPTR, IJBXBLN INSERT ACTUAL BUF.LENGTH INTO XPCCB@
MVC FAILLABL,=C'PUTA3' INSERT CODE LABEL FOR DIAGNOSTIC @
BAL RD,SENDR GO TO SENDR ROUTINE @
CLI PXPRETCD, PXPRCOK WAS POWER RETURN CODE ZERO? @
BNE REQFAIL : NO, GO TO HANDLE REQUEST FAILURE @
CLI PXPFBKCD, PXP0OOOK WAS POWER FEEDBACKCODE ALSO ZERO? @
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @
SPACE 1 Q

Chapter 2. Spool-Access Support

129

Spool Access - Programming Example

%

ol
r

THE EXTENDED SPL RETURNED BY VSE/POWER IS ANALYZED.

JOBNAME AND JOBNUMBER ARE SAVED.

IF MESSAGES ARE QUEUED, A RETURN MESSAGE REQUEST IS SENT. SUB-
SEQUENTLY, THE DATDSPLY ROUTINE IS CALLED IN ORDER TO DISPLAY

THE RETURNED MESSAGES.

SPACE
LA
USING
MVC
MVC
DROP
USING
SPACE
™
BNO
SPACE

PUTA4 DS

130

XC
MVI
MVI
MVC
BAL
CLI
BNE
BAL
EJECT

1
RC,REPLBUF
OWNSPLDS,RC
JOBNAME , SPLGJB
JOBNUM, SPLGJIN

RC

OWNSPLDS,R7

1

PXPINFO, PXPIMSG
CTLA1

1

OH

IJBXBLN, IJBXBLN
PXUBTYP, 0
PXUACT1,PXUATRMR
FAILLABL,=C'PUTA4'
RD, SENDR
PXPRETCD , PXPRCOK
REQFAIL

RE ,DATDSPLY

Page 8 of 26

oDOE MO M

GET AD. OF REPLY AREA FOR SPL DSECT@
ESTABLISH ADDRESSABILITY FOR DSECT @
SAVE JOBNAME RETURNED BY POWER

SAVE JOBNUMBER RETURNED BY POWER

REESTABLISH ADDRESSABILITY FOR SPL

ARE MESSAGES QUEUED?
NO, CONTINUE WITH CONTROL REQUEST

INDICATE ZERO BUFFER LENGTH

CLEAR BUFFER TYPE BYTE IN USER DATA
INDICATE RETURN MESSAGE REQUEST
INSERT CODE LABEL FOR DIAGNOSTIC

GO TO SENDR ROUTINE

WAS POWER RETURN CODE ZERO?

NO, GO TO HANDLE REQUEST FAILURE
YES, GO TO DISPLAY RETURNED MSG-S

DO D

DOEEO OO

IBM VSE/POWER Application Programming

Spool Access - Programming Example

Page 9 of 26

i L G e e O G

dee >> CONTROL REQUEST << *@
*% A FIXED FORMAT PDISPLAY COMMAND IS SUBMITTED IN ORDER TO LOCATE *@
%% THE OUTPUT OF JOB 'EXAMPLE' IN THE LST QUEUE AND DISPLAY THE *Q@
*% ENTRY ON THE CONSOLE. *@
**@
SPACE 1
* REGISTER USAGE FOR CTL-REQUEST
SPACE 2
¥* RA - ¥¥¥¥%*% - COUNTER FOR NUMBER OF WAIT INTERVALS
SPACE 2
* THE SPL IS NOW UPDATED INDICATING A CTL REQUEST.
SPACE 1 ,

CTLAl DS OH
PWRSPL TYPE=UPD,SPL=OWNSPL,QUEUE=LST,REQ=CTL,CLASS=S,
JOBN=JOBNAME , JNUM=JOBNUM, FUNC=DISPLAY

*

SPACE 1 :
LA RA,12 PREPARE COUNTER FOR WAIT INTERVALS
MVI PXUBTYP,PXUBTSPL INDICATE BUFFER TYPE = SPL
MVI PXUACT1,0 CLEAR ACTION BYTE
SPACE 1
* THE UPDATED SPL IS DIRECTLY USED AS XPCC BUFFER.
SPACE 1
STCM R7,M7,IJBXADR INSERT SPL.ADDRESS AS BUFFER ADDR.
SPACE 1 '

* FOR A CTL REQUEST IT IS NOT NECESSARY TO PASS THE WHOLE SPL
* TO VSE/POWER. THEREFORE THE SHORT VERSION IS USED.

DO OOMODOOOOOOOOOOR OO MmMm®D

SPACE 1

LA R3,SPLGSLEN LOAD LENGTH OF SPL (SHORT VERSION)

ST R3,IJBXBLN INSERT BUFFER LENGTH INTO XPCCB

SPACE 1

MVC FAILLABL,=C'CTLA2' INSERT CODE LABEL FOR DIAGNOSTIC
CTLA2 DS OH

BAL RD,SENDR GO TO SENDR ROUTINE

CLI PXPRETCD,PXPRCOK WAS POWER RETURN CODE ZERO?

BE CTLA3 YES, CONTINUE WITH MSG DISPLAY

SPACE 1

Chapter 2. Spool-Access Support 131

Spool Access - Programming Example

* % kX %k % % %

Page 10 of 26

THE PROGRAM TESTS THE POWER RC/FBKCD TO SEE IF THE OUTPUT OF THE @
JOB 'EXAMPLE' COULD BE LOCATED. @
IF THIS OUTPUT COULD NOT YET BE LOCATED, THE PROGRAM REPEATS THE Q@
CTL REQUEST EVERY 10 SECONDS IN ORDER TO WAIT FOR REQUEST COMPLE- @
TION. HOWEVER PWRSASEX DISCONNECTS AFTER 12 UNSUCCESSFUL AT- Q
TEMPTS. @
ANY OTHER RC/FBKCD COMBINATION SHOULD NOT OCCUR AND INDICATES A @
FAILURE OF THE REQUEST. @
SPACE 1 Q

CLI PXPRETCD,PXPRCOKF WAS POWER RETURN CODE X'0&' @

BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @

CLI PXPFBKCD,PXPO4DNF WAS JOB NOT FOUND (=NOT YET COMPL.)@

BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @
SPACE 1 @
SETIME 10,INTECB INSTALL WAIT INTERVAL OF 10 SEC. @

WAIT INTECB WAIT @

BCT RA,CTLA2 LOOP (MAX. 12 TIMES) @
SPACE 1 @
DPLAY FAIIM4,72 DISPLAY FAILURE MESSAGE @
SPACE 1 Q

B DISCT DISCONN AND TERMIN XPCC LINK, EOJ @
SPACE 1 @
CTLA3 DS OH @
BAL RE,DATDSPLY GO TO DISPLAY RETURNED QUEUE ENTRY @
EJECT @

132

IBM VSE/POWER Application Programming

Spool Access - Programming Example

Page 11 of 26

**@

sk >> GET REQUEST FROM LST QUEUE << @
*% THE GET SERVICE IS USED TO RETRIEVE THE LST QUEUE ENTRY OF JOB *@
*% 'EXAMPLE' AND TO DISPLAY THE ENTRY ON THE CONSOLE. *@
*% SUBSEQUENTLY, THE RESTART FUNCTION IS USED TO DISPLAY THE SECOND *@
%% HALF OF THE ENTRY AGAIN. *@
kk*****k@
SPACE 1
* REGISTER USAGE FOR GET-REQUEST FROM LST QUEUE
SPACE 2
¥* R3 =~ ks - WORK REGISTER
¥* RA - BUFPTR - POINTER FOR THE SEND BUFFER
SPACE 2
* ONLY PARAMETERS WHICH ARE DIFFERENT FROM THOSE USED IN THE
* PREVIOUS CTL-REQUEST ARE SPECIFIED IN THE UPDATE SPL.
SPACE 1
DPLAY SUCCM7,72 DISPLAY MESSAGE
SPACE 1

GETB1 DS OH
PWRSPL TYPE=UPD,SPL=(R7),REQ=GET

DEOOOOOOOOOOOOOMOOOMOROMD®M MO M

SPACE 1

MVI PXUBTYP,PXUBTSPL INDICATE BUFFER TYPE = SPL

MVI PXUACT1,0 CLEAR ACTION BYTE 1

SPACE 1

STCM R7,M7,IJBXADR INSERT SPL ADDRESS AS BUFFER ADDR.
LA R3,SPLGSLEN LOAD LENGTH OF SPL (SHORT VERSION)
ST R3,IJBXBLN INSERT BUFFER LENGTH INTO XPCCB
SPACE 1

MVC FAILLABL,=C'GETB1' INSERT CODE LABEL FOR DIAGNOSTIC
BAL RD,SENDR GO TO SENDR ROUTINE

CLI PXPRETCD , PXPRCOK WAS POWER RETURN CODE ZERO?

BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE
SPACE 1

Chapter 2. Spool-Access Support 133

Spool Access - Programming Example

Page 12 of 26

* THE VERIFICATION SPL RETURNED BY VSE/POWER, WHICH COULD BE CHECKED@
* FOR USEFUL INFORMATION (SUCH AS FORMSID), IS IGNORED BY PWRSASEX. @

* THEREFORE, A NULL BUFFER WITH THE 'SEND DATA' REQUEST CAN BE @
* PASSED TO VSE/POWER IMMEDIATELY. @
SPACE 1 @
GETB2 DS OH @
XC IJBXBLN, IJBXBLN INDICATE ZERO BUFFER LENGTH @
MVI PXUBTYP,O CLEAR BUFFER TYPE BYTE IN USER DATA@
MVI ~ PXUACT1,PXUATSDR INDICATE SEND DATA REQUEST @
MVC FAILLABL,=C'GETB2' INSERT CODE LABEL FOR DIAGNOSTIC @
BAL RD,SENDR GO TO SENDR ROUTINE @
CLI PXPRETCD,PXPRCOK WAS POWER RETURN CODE ZERO? @
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @
MVI GETFCT,C'G' INDICATE: DATDSPLY IS CALLED BY GET@
BAL RE,DATDSPLY GO TO DISPLAY RETURNED DATA @
* AND DO NOT RETURN UNTIL LAST DATA @
* RECORD IS DISPLAYED
MVI GETFCT,C' ' RESET INDICATION
SPACE 1
DPLAY SUCCM2,72 DISPLAY MSG TO INDICATE RESTART RQ.
SPACE 1

% A RESTART CONTROL RECORD IS BUILT IN THE SEND BUFFER AND
PASSED TO VSE/POWER. THE LOGICAL RECORD NUMBER - PREVIOUSLY
SAVED IN THE DATDSPLY ROUTINE - IS USED AS RESTART POINT.

%k

SPACE 1
GETB3 DS OH
SPACE 1
MVI PXUBTYP,PXUBTCTL BUFFER TYPE = CONTROL RECORD
MVI PXUACT1,0 CLEAR ACTION BYTE 1
LA BUFPTR, SENDBUF GET ADDRESS OF SEND BUFFER
STCM BUFPTR,M7,IJBXADR INSERT BUFFER ADDRESS INTO XPCCB
SPACE 1
USING PXRSDSCT,BUFPTR GET DSECT FOR RESTART CONTROL REC.

XC 0 (PXRSLENG, BUFPTR), 0 (BUFPTR) CLEAR RESTART CONTROL R.
MVI PXRSTYPE ,PXRSTRST INDICATE RECORD TYPE = RESTART CTL.
MVC PXRSRECN,PWRRECNO INSERT PREVIOUSLY SAVED LOG. REC.#

LA R3,PXRSLENG LOAD LENGTH OF RESTART CTL. REC.
STH R3,PXRSRLEN INSERT LENGTH INTO RESTART CTL. REC
ST R3,IJBXBLN INSERT LENGTH INTO XPCCB

DO DD

DROP BUFPTR

134 1IBM VSE/POWER Application Programming

Spool Access - Programming Example

Page 13 of 26

SPACE 1 @
MVC FAILLABL,=C'GETB3' INSERT CODE LABEL FOR DIAGNOSTIC @
BAL RD,SENDR GO TO SENDR ROUTINE @
CLI PXPRETCD,PXPRCOK WAS POWER RETURN CODE ZERO? @
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @
MVI GETFCT,C'G' INDICATE: DATDSPLY IS CALLED BY GET@
BAL RE,DATDSPLY YES, GO TO DISPLAY RETURNED DATA @
* AND DO NOT RETURN UNTIL LAST DATA @
* RECORD IS DISPLAYED @
MVI GETFCT,C' ' RESET INDICATION @
SPACE 1 @
* A ZERO BUFFER INDICATING A QUIT REQUEST IS NOW SENT TO @
* VSE/POWER @
SPACE 1 Q@
GQUIT DS OH @
XC IJBXBLN, IJBXBLN INSERT ZERO BUFFER LENGTH @
MVI PXUBTYP,O CLEAR BUFFER TYPE BYTE IN USER DATA@
MVI PXUACT1,PXUATABR INDICATE QUIT REQUEST @
SPACE 1 @
* IF A CLOSE OR PURGE REQUEST IS DESIRED, ONE OF THE FOLLOWING @
% STATEMENTS MUST BE CODED INSTEAD OF THE PREVIOUS ONE @
SPACE 1 @
*GCLOSE MVI PXUACT1,PXUATRQS REQUIRED SETTING FOR A CLOSE REQU. @
*GPURGE MVI PXUACT1,PXUATPRG REQUIRED SETTING FOR A PURGE REQU. @
SPACE 1 @
MVC FAILLABL,=C'GQUIT' INSERT CODE LABEL FOR DIAGNOSTIC @
BAL RD,SENDR GO TO SENDR ROUTINE @
CLI PXPRETCD,PXPRCOK WAS POWER RETURN CODE ZERO? @
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @
SPACE 2 @
EJECT @

Chapter 2. Spool-Access Support 135

Spool Access - Programming Example

Page 14 of 26

**@

Wk >> PUT REQUEST TO LST QUEUE << *@

%% THE DATA CARDS OF THE EXAMPLE JOB ARE SUBMITTED TO THE VSE/POWER *@

** LST QUEUE AS 'EXAMPSEG'. A SEGMENT REQUEST IS ISSUED *@

*% AFTER EACH SEVENTH RECORD. *@

**@

SPACE 1 @

* REGISTER USAGE FOR PUT-REQUEST TO LST QUEUE Q@

SPACE 2 Q@

* R2 - RECORDCT - RECORD COUNTER FOR SEGMENTATION IN LOOP @

* RA - BUFPTR - POINTER FOR THE SEND BUFFER Q@

* RB - DATAPTR - POINTER FOR THE INPUT CARDS @

SPACE 2 @

* AN UPDATED SPL IS SENT TO VSE/POWER INDICATING A PUT OPEN REQUEST @

* FOR OUTPUT. Q@

SPACE 2 @

DPLAY SUCCM8,72 DISPLAY MESSAGE Q@

SPACE 1 @

PUTB1 DS OH @
PWRSPL TYPE=UPD,REQ=PUT,SPL=OWNSPL,CLASS=Z,JOBN=JOBNLAB,

QUEUE=LST ,MODE=RESET Q@

SPACE 2 @

¥* SET OUTPUT SPECIFIC FIELDS IN THE SPL @

MVI SPLDDP,DISP INDICATE OUTPUT DISPOSITION @

MVI SPLONSEP,SEPPAGE INDICATE OUTPUT SEPARATOR PAGES @

MVI SPLDPR,PRIOR INDICATE OUTPUT PRIORITY @

MVC SPLOFORM, FORMS INDICATE OUTPUT FORMS @

MVI SPLORCFM,SPLORASA INDICATE ASA CC FOR OUTPUT @

SPACE 1 @

MVI PXUACT1,0 CLEAR ACTION BYTE 1 IN USER DATA @

MVI PXUBTYP, PXUBTSPL INDICATE BUFFER TYPE = SPL Q@

SPACE 1 @

STCM R7,M7,IJBXADR INSERT SPL ADDRESS AS BUFFER ADDR. @

LA R3,SPLGLEN LOAD LENGTH OF SPL @

ST R3,IJBXBLN INSERT BUFFER LENGTH INTO XPCCB @

SPACE 1 @

MVC FAILLABL,=C'PUTB1' INSERT CODE LABEL FOR DIAGNOSTIC @

BAL RD,SENDR GO TO SENDR ROUTINE @

CLI PXPRETCD , PXPRCOK WAS POWER RETURN CODE ZERO? Q@

BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @

SPACE 2 @

136 1IBM VSE/POWER Application Programming

Spool Access - Programming Example

VY
W

PUTB

THE EXTENDED SPL RETURNED BY VSE/POWER IS IGNORED.
THE SEND BUFFER IS FILLED WITH INPUT CARDS, AND EACH CARD IS

PRECEDED BY A RECORD PREFIX.

THE OUTPUT IS ALWAYS SEGMENTED AFTER SEVEN CARDS.

SPACE

2 DS
MVI
MVI
SPACE
LA
STCM
LA
SPACE
LA

FILLBUFO DS

LAB1

CLC
BE
SPACE
CL

BH
SPACE
USING
XC
MVI
MVI
LA
CLR
BNE
MVI
SPACE
DS

LA
STH
LA
MVC
LA

LA
BCT
SPACE
CLC
BE
MVI

1

OH
PXUBTYP,PXUBTNDB
PXUACT1,0

1

BUFPTR, SENDBUF
BUFPTR,M7, IJBXADR
DATAPTR,DATACARD
1

RECORDCT ,NOOFRECS
OH

JCL2(3),0(DATAPTR) END OF DATA REACHED?

SDEOD

1
BUFPTR,LASTPREC
SDNDB

1
RECPRFIX,BUFPTR

O (RECPRFXL,BUFPTR),0(BUFPTR) CLEAR BYTES FOR PREFIX

RECTYPE, RECTNORM
RECCCODE,C'-"
R3,NOOFRECS
RECORDCT,R3

LAB1
RECCCODE,C'1"'

1

OH

R3,L'DATACARD
R3,RECLNGTH

Page 15 of 26

BUFFER TYPE = NORMAL DATA BUFFER
CLEAR ACTION BYTE 1 IN USER DATA

GET ADDRESS OF SEND BUFFER
INSERT BUFFER ADDRESS INTO XPCCB
GET ADDR OF FIRST INPUT CARD

INITIALIZE RECORD COUNTER

YES, GO TO SEND FINAL BUFFER

ENOUGH SPACE FOR ONE MORE RECORD?
NO, GO TO SEND NORMAL BUFFER

GET DSECT FOR RECORD LAYOUT

OO OODOOOO@DEM@ODE®O®OM®0

INSERT REC. TYPE INTO REC. PREFIX
SET ASA CC IN REC. PREFIX TO SKIP2 @
MAX NUMBER OF RECORDS IN A SEGMENT @

FIRST RECORD OF SEGMENT? @
NO, CONTINUE AT LABEL LABL1 @
SET ASA CC IN REC.PREF. TO NXT.PAGE@
@
@
LOAD LENGTH OF DATA @

INSERT LENGTH OF DATACARD IN PREFIX@

BUFPTR,RECPRFXL(,BUFPTR) SKIP PREFIX IN BUFFER @
O(L'DATACARD,BUFPTR),0(DATAPTR) MOVE DATA IN BUFFER @
BUFPTR,L'DATACARD(,BUFPTR) POINT TO NEXT FREE BUFSPACE @
DATAPTR,L'DATACARD (,DATAPTR) POINT TO NEXT INPUT CARD @

RECORDCT,FILLBUFO
1

. DO LOOP AND DECREMENT RECORDCOUNTER@

@

JCL2(3),0(DATAPTR) END OF DATA REACHED?

SDEOD
PXUACT1,PXUATSGM

@
YES, GO TO SEND FINAL BUFFER @
INDICATE OUTPUT SEGMENTATION @

Chapter 2. Spool-Access Support

137

Spool Access - Programming Example

THE EXTENDED SPL RETURNED BY VSE/POWER IS IGNORED.

SDNDB DS OH
LA R3, SENDBUF
SR BUFPTR,R3
ST BUFPTR, IJBXBIN
MVC FAILLABL,=C'SDNDB'
BAL RD,SENDR
CLI PXPRETCD,PXPRCOK
BNE REQFAIL
LA BUFPTR, SENDBUF
LTR RECORDCT,RECORDCT
BNZ KEEPRCT
LA RECORDCT ,NOOFRECS
KEEPRCT DS OH
MVI PXUACT1,0
B FILLBUFO
SPACE 2
SDEOD DS OH
MVI PXUACT1,0
MVI PXUACT1,PXUATEOD
LA R3, SENDBUF
SR BUFPTR,R3
ST BUFPTR, IJBXBIN
L R3, IJBXBLN
LTR R3,R3
BNZ NOTNLB
MVI PXUBTYP,0
NOTNLB DS OH
MVC FAILLABL,=C'SDEOD'
BAL RD,SENDR
CLI PXPRETCD,PXPRCOK
BNE REQFAIL
SPACE 2
=
SPACE 1
PUTB3 DS OH
™ PXPINFO,PXPIMSG
BNO DISPLAY
MVC FAILLABL,=C'PUTB3'
XC IJBXBLN, IJBXBLN
MVI PXUBTYP,O
MVI PXUACT1,PXUATRMR
BAL RD,SENDR
CLI PXPRETCD,PXPRCOK
BNE REQFAIL
BAL RE,DATDSPLY
SPACE 1

138

Page 16 of 26

@
GET AGAIN START ADDR. OF SEND BUFF @
CALC. ACTUALLY USED BUFFER LENGTH @
INSERT ACTUAL BUF.LENGTH INTO XPCCB@
INSERT PART OF CODE LABEL FOR DIAGN@
GO TO SENDR ROUTINE
WAS POWER RETURN CODE ZERO?
NO, GO TO HANDLE REQUEST FAILURE
GET ADDRESS OF SEND BUFFER
IS RECORD COUNTER ZERO?
NO, KEEP ACTUAL VALUE OF RECORDCT
INITIALIZE REC COUNTER AGAIN

CLEAR ACTION BYTE 1 IN USER DATA
GOTO CHECK NEXT INPUT CARD

CLEAR ACTION BYTE 1 IN USER DATA
ACTION BYTE = END OF DATA

GET AGAIN START ADDR. OF SEND BUFF @
CALC. ACTUALLY USED BUFFER LENGTH @
INSERT ACTUAL BUF.LENGTH INTO XPCCB@
LOAD ACTUAL SEND BUFFER LENGTH
IS BUFFER LENGTH ZERO?

NO, IND. NORMAL DATA BUFFER
CLEAR BUFFER TYPE IN USER DATA

DEODOODOOO®M®OO O M0

DO M

INSERT PART OF CODE LABEL FOR DIAGN
GO TO SENDR ROUTINE

WAS POWER RETURN CODE ZERO?

NO, GO TO HANDLE REQUEST FAILURE

MESSAGES QUEUED?

NO, GO TO DISPLAY INFO MESSAGES
INSERT CODE LABEL FOR DIAGNOSTIC
INDICATE ZERO BUFFER LENGTH
CLEAR USER DATA IN XPCCB

INDICATE RETURN QUEUED MESSAGES
GO TO SENDR ROUTINE

WAS POWER RETURN CODE ZERO?

NO, GO TO HANDLE REQUEST FAILURE
YES, GO TO DISPLAY RETURNED MSG'S

OO

IBM VSE/POWER Application Programming

Spool Access - Programming Example

Page 17 of 26

DISPLAY DS OH @
DPLAY SUCCM3,72 DISPLAY MESSAGE @
DPLAY SUCCM4,72 DISPLAY MESSAGE @
DPLAY SUCCM6,72 DISPLAY MESSAGE @
SPACE 1 @
B DISCT DISCONN AND TERMIN XPCC LINK, EOJ @
EJECT @
**@
W >> DATDSPLY ROUTINE << *@

**% THIS ROUTINE DISPLAYS MESSAGES AND DATA RETURNED BY VSE/POWER. *@
**@

SPACE 1 @
* REGISTER USAGE FOR DATDSPLY ROUTINE @
SPACE 2 @
% RA - BUFPTR - POINTER FOR THE REPLY BUFFER @
% RC - BUFIN - REG TO CALCULATE THE LENGTH OF THE DATA STILL @
* TO BE DISPLAYED @
% RO, R1, R2, R3 - WORK REGISTER @
% @
* CALLED FROM: PUT REQUEST TO RDR QUEUE @
* CTL REQUEST Q@
% GET REQUEST Q@
% PUT REQUEST TO LST QUEUE Q@
% @
¥ EXIT TO CALLER IF ALL AVAILABLE MESSAGES/DATA ARE DISPLAYED @
SPACE 2 @
DATDSPLY DS OH @
SR RO,RO SET RO TO ZERO @
CIM RO,M7,IJBXSLN NO MORE DATA TO DISPLAY? @
BER RE RETURN TO CALLER @
LA BUFPTR ,REPLBUF POINT TO REPLY BUFFER @
SR BUFLN, BUFLN CLEAR REGISTER @
ICM BUFLN,M7,IJBXSLN GET LENGTH OF DATA TO BE DISPLAYED @
SPACE 1 @
* PWRSASEX DISPLAYS, RECORD AFTER RECORD, THE DATA OR MESSAGES RE- @
% TURNED BY VSE/POWER. THE RECORD PREFIX OF EACH DATA RECORD IS @
% ANALYZED BUT NOT DISPLAYED. @
* IF DATDSPLY IS CALLED BY THE GET FUNCTION, THE LOGICAL RECORD @
* NUMBER OF THE 12TH DATA CARD OF JOB 'EXAMPLE' IS SAVED. THE PRO- @
* GRAM USES THIS NUMBER LATER AS A RESTART POINT. @
SPACE 1 @

Chapter 2. Spool-Access Support 139

Spool Access - Programming Example

DSPLO DS
USING
CLI
BNE
CLC
BNE
MVC
SPACE

DSPL1 DS
LH
LA
SPACE
DPLAY
SPACE
LA
SR
LA
LTR
BNZ
SPACE
CLI
BER
SPACE

* IF THIS ROUTINE IS CALLED BY THE GET FUNCTION, 'SEND (MORE) DATA'
% HAS TO BE INDICATED IN THE ACTION BYTE. IN ALL OTHER CASES

OH
RECPRFIX,BUFPTR
GETFCT,C'G’
DSPL1

RECPRFXL(4,BUFPTR),=C'* 12'

DSPL1

PWRRECNO ,RECLOGNO
1

OH

R2 ,RECLNGTH

BUFPTR,RECPRFXL(, BUFPTR)

1

(BUFPTR), (R2)

1
R1,RECPRFXL(,R2)
BUFLN,R1
BUFPTR,0(R2,BUFPTR)
BUFLN, BUFLN

DSPLO

1
PXPFBKCD,PXPOOEOD
RE

1

GET DSECT OF RECORD LAYOUT
WAS DATDSPLY CALLED BY GET?

NO, GO TO DSPL1

GET LENGTH OF FIRST/NEXT DATA REC.
SKIP RECORD PREFIX

DISPLAY CURRENT DATA RECORD

IS THE CURRENT CARD NO.12
NO, GO TO DSPL1
SAVE LOGICAL RECORD NUMBER

Page 18 of 26

DEOOOOOO®R M0 MM

CALC. LENGTH OF RECORD INCL. PREFIX@
CALC.LENGTH OF DATA STILL IN BUFFER@

POINT TO NEXT RECORD
ALL DATA IN BUFFER DISPLAYED?
NO, GO TO DISPLAY NEXT DATA REC.

END OF DATA?

YES, RETURN TO CALLER

¥* "RETURN (MORE) MESSAGES' MUST BE SET.

SPACE
DSPL2 DS
XC
MVI
MVI
CLI
BNE
MVI
DSPL3 DS
MVC
BAL
CLI
BNE
B
EJECT

1
OH

IJBXBLN, IJBXBLN
PXUBTYP, 0
PXUACT1,PXUATRMR
GETFCT,C'G'

DSPL3
PXUACT1,PXUATSDR
OH
FAILLABL,=C'DSPL2'
RD, SENDR
PXPRETCD , PXPRCOK
REQFAIL

DATDSPLY

INDICATE ZERO BUFFER LENGTH
CLEAR BUFFER TYPE BYTE

DO O®O® D

INDICATE A 'RETURN MESSAGE' REQUEST@
WAS DATDSPLY CALLED BY GET? @
NO, KEEP RETURN MESSAGE INDICATIONG@

INDICATE A 'SEND DATA' REQUEST

INSERT CODE LABEL FOR DIAGNOSTIC

GO TO SENDR ROUTINE

WAS POWER RETURN CODE ZERO?
NO, GO TO HANDLE REQUEST FAILURE
YES, START DISPLAYING AGAIN

140 IBM VSE/POWER Application Programming

DO M

Spool Access - Programming Example

Page 19 of 26

VIV IWIWIWWIWIWWRWWNWN TITIWIWIRWWWRT

*k >> ROUTINE TO HANDLE REQUEST FAILURES << *@
*% THE ROUTINE IS CALLED IF POWER RC/FBKC WAS NOT ZERO *@

JESSCSRCSCSPESE SHE SR SO S JHC SIS SO S SO M S SO DO AR S SR SR SR PR S L SP SR MHC AR MR SO JOR DU SR SR JHR SR S SO SO SR PR JE SHC S SR SR SPR SRR JUE SO SO SYC U SO DSV S SO L SHC IR SO S
dedededededefdden edededededede e dede 3 Sledededededede e dedededededededele e de e dedodedededededededededede ke n@

R e e e e e e e e e e L S e b R G

WIWIWWRT VITITITITWWWWW

SPACE 1

REQFAIL DS OH
MVC FAILFUNC,=C'SENDR ' INSERT FAILING FUNCTION INTO MSG
BAL RE,MSGRCFB PREPARE RC/FBK CODE DISPLAY
BAL RE,MSGDSPLY DISPLAY MESSAGE ON CONSOLE
B FINDUMP GO TO TERMINATION WITH DUMP
EJECT

A o mle ot leslactanlecleutactaataat aleateatentenl ol wts ! B o T e o oy . AT O, JA JP JOPSC DU PP TSNP S IS, e e e o T
Sedededededededededododede oo dodededededededede e dededededede o dodededededededededededede e e de el Tk e e de ek ol dede e B dede e Nk

W >> DISCONNECT THE XPCC COMMUNICATION LINK TO VSE/POWER << W
% IF THE MACRO FAILS, THE PROGRAM DISPLAYS A DIAGNOSTIC MESSAGE AND #¥*
** TERMINATES WITH A DUMP.
Jededeldededededededodededo N dedede ol Tl N dede oo Vededede oot N dededede e dededededededede e de et de e N oo dedededededededee NN
SPACE 1
DISCT DS OH
XPCC XPCCB=(R4),FUNC=DISCONN DISCONNECT LINK TO VSE/POWER
SPACE 1
LTR RF,RF WAS DISCONNECT SUCCESSFUL, RF='00' ?
BZ TERMN ..YES CONTINUE WITH XPCC TERMINATION
SPACE 1
MVC FAILFUNC,=C'DISCONN ' INSERT FAILING FUNCTION
BAL RE ,MSGRETC INSERT XPCC RETURN CODE INTO MSG
MVC FAILLABL,=C'DISCT' INSERT CODE LABEL FOR DIAGNOSTIC
BAL RE,MSGDSPLY DISPLAY MESSAGE ON CONSOLE
B FINDUMP GO TO TERMINATION WITH DUMP
EJECT

slestentontontontestutanttaatastontostastaslostontostastontantoatastastuatotastostu staslustantantontaatontastostaslostastastactantontastoatastante e steslantantastontante slaatastaate slanta slo atasto nta st alaote
Sdededededefededodedededededo oo dedede e dede e dedede e e e e e e Mo de o e e e e e e e e e e e e e v e e e e e e e e

ok >> TERMINATE INTERACTION WITH THE VSE/AF XPCC SUPPORT << i
*% IF THE MACRO FAILS, THE PROGRAM DISPLAYS A DIAGNOSTIC MESSAGE AND **

OO OO

ot alests
*% TERMINATES WITH A DUMP. s
Sedesededededsdedededededededededodedededodededodeodedededededededededededededede

SPACE 1

TERMN DS OH
XPCC XPCCB=(R4),FUNC=TERMIN TERMINATE CROSS PART. INTERFACE
LTR RF,RF DID WE GET A ZERO RET-CODE ?
BZ FINEND ..YES, GO TO NORMAL EOJ MACRO
SPACE 1
MVC FAILFUNC,=C'TERMIN ' INSERT FAILING FUNCTION INTO MSG
BAL RE,MSGRETC INSERT XPCC RETURN CODE INTO MSG
MVC FAILLABL,=C'TERMN' INSERT CODE LABEL FOR DIAGNOSTIC
BAL RE,MSGDSPLY DISPLAY MESSAGE ON CONSOLE
B FINDUMP GO TO TERMINATION WITH DUMP
EJECT

Chapter 2. Spool-Access Support

141

Spool Access - Programming Example

Page 20 of 26

B LR R T L b e b e b T o e L L e T

Wk >> TERMINATE PWRSASEX << ok
e T T e Y T e e e e e S e e e e e e e e e e e e et e
SPACE 1
FINDUMP DS OH TERMINATION FORCED DUE TO ERROR
* DUMP A PARTITION DUMP CAN BE FORCED IF
* NECESSARY FOR DEBUG PURPOSES
SPACE 1
FINEND DS OH NORMAL TERMINATION
EQJ NORMAL END OF PWRSASEX PROGRAM
EJECT
B R T R R T R R TR o T B e S e e e e B e
ik >> MESSAGE BUILD ROUTINE FOR FAILMSG << o
#% BRANCHED TO FROM ANY CALLER TO FILL SELECTED FIELDS OF THE DIAG- #*
#% NOSTIC MESSAGE. RETURNS TO CALLER VIA REGISTER 14 (RE). Fee
B R R B LR R Rk o O L S e S e e e e e B e
SPACE 1

MSGRETC DS OH
UNPK HELP,IJBXRETC(2)
TR HELP(2),TRTAB
MVC FAILRETC,HELP
BR RE
SPACE 1

MSGREAS DS OH
UNPK HELP,IJBXREAS(2)
TR HELP(2),TRTAB
MVC FAILREAS,HELP
BR RE
SPACE 1

MSGRCFB DS OH
UNPK HELP,PXPRETCD(2)
TR HELP(2),TRTAB
MVC FAILPWRC,HELP
SPACE 1
UNPK HELP,PXPFBKCD(2)
TR HELP(2),TRTAB
MVC FAILPWFB,HELP
BR RE
SPACE 1

MSGDSPLY DS 0H
DPLAY FAILMSG,72
SPACE 1
BR RE
EJECT

UNPACK HEX XPCC RETURN CODE
CONVERT TO PRINTABLE HEX-VALUE
INSERT PRINTABLE XPCC RET. CODE
RETURN TO CALLER

UNPACK HEX XPCC REASON CODE
CONVERT TO PRINTABLE HEX-VALUE
INSERT PRINTABLE XPCC REAS. CODE
RETURN TO CALLER

UNPACK HEX POWER RETURN CODE
CONVERT TO PRINTABLE HEX-VALUE
INSERT PRINTABLE POWER RET. CODE

UNPACK HEX POWER FEEDBACK CODE
CONVERT TO PRINTABLE HEX-VALUE
INSERT POWER FEEDBACK CODE
RETURN TO CALLER

DISPLAY FAILURE MESSAGE

142 IBM VSE/POWER Application Programming

Spool Access - Programming Example

Page 21 of 26

sedededededededededededededededeiedededededededeledede el et e de e de e de e e R R R e b e e e e e e e ek

ik >> CENTRAL XPCC SENDR ROUTINE << *%
**% BEFORE THIS ROUTINE IS CALLED, THE PROGRAM INSERTS THE CALLING **
% POINT IN THE DIAGNOSTIC MESSAGE THAT IS ISSUED SHOULD THE SENDR #%

%% MACRO FAIL. THIS ROUTINE: ¥
%% - ISSUES THE XPCC MACRO WITH FUNC=SENDR AND WAITS FOR THE wi
ek SECB TO BE POSTED. IT CHECKS REGISTER 15 (RF) AND THE VSE i
%% - CHECKS REGISTER 15 (RF) AND THE VSE RETURN- AND REASON CODES #*¥*
W IN FIELDS IJBXRETC AND IJBXREAS, RESPECTIVELY. i
%% - CHECKS THE VSE/POWER RETURN CODE IN FIELD PXPRETCD IF kil
Feke VSE/POWER DISCONNECTS THE COMMUNICATION PATH WITH A PURGE. wo
*% THE ROUTINE RETURNS TO THE CALLER IF THE XPCC MACRO CALL COM- W

*% PLETED SUCCESSFULLY OR, IN CASE OF A FAILURE, THE VSE/POWER RE- %
#% TURN CODE IS NOT TOO SEVERE. RETURN IS PROVIDED VIA REGISTER e

*% 13 (RD). ik
TRl RS dedededededdohdeveddedetedelsdededededede e dede et dededededededede dede oo de e e el e e e e e e o e ke e e ke ke

SPACE 1 ~ @
¥ REGISTER USAGE FOR SENDR ROUTINE @

SPACE 2 @
* R3 - WORK REGISTER (FOR WAIT) @
* RD - REGISTER USED TO RETURN TO CALLER Q@
* @
¥* CALLED FROM: PUT REQUEST TO RDR QUEUE @
* CTL REQUEST @
¥ GET REQUEST @
#* PUT REQUEST TO LST QUEUE @
* DATDSPLY ROUTINE Q@
LG @
* EXIT TO CALLER (SEE COMMENT ABOVE) @
* OR TO DISCT OR FINDUMP IN CASE OF A FAILURE @
* @

SPACE 2 @

SPACE 1
SENDR DS OH

XPCC XPCCB=(R4),FUNC=SENDR SEND BUFFER TO VSE/POWER

LTR RF,RF DID WE GET A ZERO RETURN CODE ?

BZ WAITSECB ..YES, THEN WAIT FOR REPLY OF POWER

SPACE 2

Chapter 2. Spool-Access Support 143

Spool Access - Programming Example

* % % % %

SPACE
TESTRETC DS
CLI
BE
MVC
BAL
CLI
BE
BAL
B
SPACE
ABNPOW DS
DPLAY
SPACE
B
SPACE

k% % % %

SPACE
WAITSECB DS

LA

WAIT

CLI

BER

SPACE
BADREAS DS

™

BO

MVC

BAL
TERMCONN DS

BAL

BAL

CLI

BE

B

EJECT

1

OH

IJBXRETC, IJBXNOC3
ABNPOW
FAILFUNC,=C ' SENDR
RE ,MSGRETC
IJBXRETC, IJBXNOC2
TERMCONN

RE ,MSGDSPLY
FINDUMP

1

OH

FAILM2,72

1

DISCT

2

1

OH

R3,IJBXSECB

(R3)
IJBXREAS,REASOK
RD

1

OH
IJBXREAS,IJBXABDC
ABNPOW
FAILFUNC,=C 'SENDR
RE ,MSGREAS

OH

RE ,MSGRCFB

RE ,MSGDSPLY
PXPRETCD , PXPRCPVL
FINDUMP

DISCT

Page 22 of 26

IF THE SENDR MACRO COMPLETES WITH RF=X'08', THEN THE ROUTINE:

1. FILLS THE DIAGNOSTIC MESSAGE ACCORDING TO THE VSE RETURN CODE.
2. DISPLAYS THE MESSAGE.
3. TERMINATES WITH OR WITHOUT A DUMP.
THERE IS NO RETURN TO THE CALLER OF SENDR.

DID POWER ABNORMALLY TERMINATE ?
..YES, THEN GO TO STOP PWRSASEX
! INSERT 'SENDR ' INTO MSG TEXT
PUT XPCC RETURN CODE INTO MSG

DID POWER GIVE A DISCONNECT PURGE ?
..YES,THEN GO TO SHOW WHY, TERMINATE
DISPLAY DIAGNOSTIC MESSAGE ON CONS.
TERMINATE PWRSASEX WITH PART.DUMP

DISCONN AND TERMIN XPCC LINK, EOJ

THE ROUTINE WAITS FOR THE SEND ECB TO BE POSTED. IT RETURNS TO THE
CALLER IF THE SYSTEM PASSED A REASON CODE OF ZERO, THAT IS, THE
XPCC CONNECTION IS ERROR FREE.

FOR A NON-ZERO REASON CODE, THE ROUTINE DISPLAYS A DIAGNOSTIC
MESSAGE AND TERMINATES WITH OR WITHOUT A DUMP.

LOAD ADDRESS OF SEND COMPLETION ECB
WAIT FOR COMPLETION OF SENDR
DID ANY CONNECTION ERROR OCCUR ?

. NO, THEN RETURN TO CALLER

DID POWER TERMINATE ABNORMALLY ?
.. YES, GIVE MESSAGE AND GO TO EOJ
! INSERT 'SENDR ' INTO MSG TEXT
FILL XPCC REASON CODE INTO MSG

PUT POWER RETURN/FEEDBACK TO MSG
DISPLAY DIAGNOSTIC MESSAGE

POWER RC = PROTOCOL VIOLATION?
.. YES, USER ERROR

..YES, SYSTEM ERROR

144 IBM VSE/POWER Application Programming

Spool Access - Programming Example

Page 23 of 26

e s o L S g L e e e K AR Lk R e o L TSR R RV NSO U TR

sk DEFINITIONS e
e L e g T e L e L L e O R L e b e S T R R PR PR TV R
SPACE 2
TRTAB EQU *-240 ENTRY POINT FOR TRANSLATE TABLE
DC X'FOF1F2F3F4F5F6F7F8F9C1C2C3C4C5C6' TRANSLATE TABLE
SPACE 1
EIGHTDC DC X'og' BYTE TO TEST RETURN CODE
HELP DC CL3' ' FIELD FOR UNPACK RET CODE
SPACE 1
WAITLIST DC A(INTECB) 1ST ELEMENT OF WAITLIST
LISTCECB DC A(0) IJBXCECB = 2ND ELEM. OF WAITLIST
LISTEND DC X'FF' INDICATE END OF WAITLIST
SPACE 1
INTECB DS F ECB USED TO WAIT FOR TIMER INTERVALS
SPACE 1
EIGHT EQU X'08' RETURN CODE X'08'
POSTBIT EQU X's0' MASK FOR A POSTED ECB
REASOK EQU X'oo' ZERO VSE/AF REASON CODE
EJECT

....... sestostontontantaate. JE PR SRR N SN S0 JC SPLRE JCORK DO SOE VUSSR WO MRS SHE SHU SR S DR SOU SAR SE SO DG JOC SO SO SR TS DR
T e e e e e L o o e L O e R LR AR R LR PR TR T

o«

o oostactot o slestostatontonte stanteatastaatantaatoteatostoate st nte ot ol ntotoalanto st ote stante clastastosfontaatoale cfa alo foata slo st alo ato atantantotastaatantants
Sededededededededededededededetdedede e e oo de e et e e oo e et de e e e e e e e Y e dede e e e e de e e e e Mo dede de e de de e e e e s

M1
M7
ZERO
ONE

NOOFRECS
DISP
PRICR
SEPPAGE

RECORDCT
BUFPTR
DATAPTR
BUFLN

JOBNAME
JOBNUM
PWRRECNO

GETFCT
*

FORMS
JOBNLAB

DEFINITIONS FOR PUT,CTL AND GET REQUEST

SPACE
EQU
EQU
EQU
EQU
SPACE
EQU
EQU
EQU
EQU
SPACE
EQU
EQU
EQU
EQU
SPACE
DS

DS

DS

DC

SPACE
DC
DC
EJECT

1

R

N BPFPOQNF RO
O

CL8'AABB'
CL8'EXAMPSEG'

MASK BIT SETTING
MASK BIT SETTING

Chapter 2.

NUMBER OF RECORDS IN A SEGMENT
DISPOSITION OF OUTPUT TO BE SENT
PRIORITY OF OUTPUT TO BE SENT
NUMBER OR SEPARATOR PAGES/CARDS

USE R2 AS REC COUNTER IN LOOP
USE RA AS BUFPOINTER

USE RB AS DATA POINTER
USE RC TO CALC REMAINING BUFLEN

FIELD TO SAVE JOBNAME RET'D BY POW.
FIELD TO SAVE JOBNUMB.RET'D BY POW.
FIELD TO SAVE POW. LOGICAL REC NO.
FIELD TO IDENTIFY GET AS CALLER OF

DATDSPLY

FORMS OF OUTPUT TO BE SENT
NAME OF OUTPUT TO BE SPOOLED

Spool-Access Support

leetententoalonts,
WIWIWWITWHN

N

ry

™

OO OEDDEDODDODODOOO M

145

Spool Access - Programming Example

Page 24 of 26

...

...

FAILMSG
F1
FAILFUNC
F2
FAILLABL
F3
FAILRETC
F4
FAILREAS
F5
FAILPWRC
Fé6
FAILPWFB
F7

FAILM1

FAILM2

FAILM3

FAILM4

SUCCM1

SUCCM2
SUCCM3

SUCCM4

SUCCMé
SUCCM7

SUCCM8

SPACE
DS
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
SPACE
DC

DC

DC
DC

SPACE
DC

DC
DC

DC

DC
DC

DC

EJECT

1

0CL72

C'FUNC="

cLs' ' REQUESTED FUNCTION

C' FAILED AT: '

cLs' ' CODE LABEL OF FAILING FUNCTION

C' VSE-RETC/REAS='

CL2'00' RETURN CODE RECEIVED IN IJBXRETC

C'/'

cL2'o0' REASON CODE RECEIVED IN IJBXREAS

C' PWR-RC/FDBK='

cL2'oo' VSE/POWER RETURN CODE IN IJBXRUSR

Ct/r

cL2'oo' VSE/POWER FEEDBACK CODE IN IJBXRUSR

cL3' '

1

CL72'VSE/POWER ALREADY IN TERMINATION, NO MORE CONNECTIO*

N REQUEST ACCEPTED'

CL72'VSE/POWER ABNORMAL TERMINATION, CONNECTION DISRUPTE*

Dl

CL72'CONNECTION COULD NOT BE COMPLETED WITHIN 2 MINUTES'

CL72'LIST QUEUE ENTRY COULD NOT BE FOUND, PWRSASEX WILL *

STOP'

1

CL72'>>> XPCC CONNECTION TO VSE/POWER SUCCESSFULLY BUILT¥*
<<<!

CL72'>>> NOW PWRSASEX WILL RESTART ON RECORD NO.12 <<<'

CL72'>>> THE VSE/POWER LIST QUEUE MUST NOW CONTAIN 3 SEG*

MENTS.. <<<'

CL72'>>> NAMED EXAMPSEG AND A SINGLE ENTRY NAMED EX*

AMPLE] <<<'

CL72'>>> %% SUCCESSFUL TERMINATION OF PWRSASEX ##¥% <<<'

CL72'>>> NOW FOLLOWS THE DISPLAY OF THE LIST ENTRY: EXAM*

PLE <<<'

CL72'>>> NEXT PWRSASEX WILL SUBMIT DATA TO THE LIST QUEU*

E <<<'

146 1IBM VSE/POWER Application Programming

Spool Access - Programming Example

Page 25 of 26

e o o o g T h T e e o B L o L L e e T L e A b b L e L e S LD

* JOB 'EXAMPLE' TO BE PASSED TO VSE/POWER %

T e e e e T e D R R et T
SPACE 1

JECL1 DC C'* $$ JOB JNM=EXAMPLE,DISP=D,CLASS=A

JECL2 DC C'* $§$ LST DISP=K,CLASS=S

JCL1 DC C'// JOB EXAMPLE !

DATACARD DC C'* Ql-------=cccccmcmmnann LR LR e e 01 *'
DC C'* 02---ccmmcemcaccccaaa % g g 02 !
DC C'* 03--cccemccacccaaaaa ¥ Fecmcmccccnmcnnnaa 03 *'
DC C'* (A % T - 04 %!
DC C'* 05--=ccmmcccca- * Fewmmmcmamanna 05 '
DC C'* 0f-~=mmmmm == % e emecmccmm- 06 %!
DC C'% Q7-memmmmn ¥* T, 07 !
DC C'* 08~==a=== % Feweaau-= 08 '
DC C'* 09----- * Fmemma o 09 !
DC c's 10---% Fe==10 %'
DC C's 11-* *-11 %!
DC C'# 12---% Feea12 ®!
DC C'* 13----- * Hmmmm = 13 '
DC C'* 14--mm=u=n * Focmmmaa 14 =
DC C'*]5-cecceeaa ¥ Hmmmmmc - 15
DC C'* 16-=cmmmcmmen % Nemmeceenen- 16 ="
DC C'* 17--cmmmecee e ¥ N mmmcecm————— 17 !
DC C'* 18-=--=mcemceaaaaa % Fovwcmomoaacaana 18 ='
DC C'¥* 19-cecmcmccccccc e * Hemcrcrmcen e e 19 '
DC C'* 20--cmemecaaan ——————— % Feeesocmmcmcccccacaa 20 '
DC C'#* 2]-ccccccccccniacaaaa iy 21 '

JCL2 DC C'/&&

JECL3 DC C'* $$ EOJ

ENDIND DC c'/+'
EJECT

o e e e e e e e e e B i o o O o o o e D e e R S L L PR R SR SR e T

* CROSS PARTITION CONTROL BLOCK %

tedeveTe T e ve s s ne e sl e stontante st ctaatato ctosteataato ot st atato st ntont oo slantastonto oot atoatastastaslo sto st steatoetesloata clostastontastontoatostoate sl atosto atla st o atoatants
dFedededededededededededededododededededede oo e e e N e e e e e e e oo e e de e e e e de e e NN de e e dede e e e e NNl NN NNt dedede e

SPACE 1
OWNXPCCB XPCCB APPL=PWRSASEX,TOAPPL=SYSPWR, *
BUFFER=(SENDBUF,400) ,REPAREA=(REPLBUF,500)
SPACE 2
L e e e g O e R L L s e e e L e e S e o)
* STORAGE RESERVATION FOR XPCC SEND AND REPLY BUFFER *
Fededvieddedrlededededodeededededede e e de e e e de e N e e dedede et e S e ek
SPACE 1
SENDBUF DS CL400 BUFFER USED FOR XPCC SENDR TO POWER
LASTPREC DC A(SENDBUF+L' SENDBUF -RECPRFXL-L'DATACARD) LAST POSSIBLE
* RECORD THAT FITS INTO SEND BUFFER
REPLBUF DS CL500 BUFFER FOR RECEIPT OF DATA FROM POWER
EJECT

1
|

Chapter 2. Spool-Access Support 147

Spool Access - Programming Example

Page 26 of 26

************************************f**********************************
LTORG
****************************%.***k*************************************
EJECT
**@
dee >> GENERATE S P L << %
e THIS SPL IS LATER ON UPDATED IN ORDER TO INDICATE A *@
¥k GET, PUT, OR CTL REQUEST WITH THE DESIRED PARAMETERS *@
**@
SPACE 1 Q@
OWNSPL PWRSPL TYPE=GEN,USERID=SASUSER1,PRFX=0WN @
EJECT a

%* DUMMY SECTION OF VSE/POWER SPOOL PARAMETER LIST (SPL) %
B R T B R B
SPACE 1
OWNSPLDS PWRSPL TYPE=MAP
EJECT
B R R LR o R L e e o e e R e e e e
* DUMMY SECTION OF CROSS PARTITION CONTROL BLOCK (XPCCB) *
edefedodede e e Teredode e e e Tere T Tt e e T e e e e e Y e T e e e e e e e e e de sl de e el e
SPACE 1
MAPXPCCB
EJECT
k************************
* GENERAL EQUATES %
Sefetertedeve e de e T e v e e e T e e e e e e S e Y e e e e e e e e b el e edtedteae el
SPACE 1
RO EQU
R1 EQU
R2 EQU
R3 EQU
R4 EQU
R5 EQU
R6 EQU
R7 EQU

WORK REGISTER

WORK REGISTER + USED BY PWRSPL MACRO

WORK REGISTER

WORK REGISTER

ADDR REG FOR XPCCB DSECT

ADDR REG FOR USER DATA TO BE SENT

ADDR REG FOR RECEIVED USER DATA

ADDR REG FOR SPL DSECT

R8 EQU FIRST BASE REGISTER OF PWRSASEX

R9 EQU SECOND BASE REGISTER OF PWRSASEX

RA EQU* 10 WORK REGISTER

RB EQU 11 WORK REGISTER ¢

RC EQU 12 WORK REGISTER

RD EQU 13 BRANCH AND LINK REGISTER FOR SENDR

RE EQU 14 BRANCH AND LINK REG. FOR DATDSPLY

RF EQU 15 MACRO CALL RETURN CODE REGISTER
SPACE 1

WOSNATUMEWNE-O

148 1IBM VSE/POWER Application Programming

External Device Support

CHAPTER 3. EXTERNAL DEVICE SUPPORT

CONCEPTS

This support is a dedicated application of the spool-access support
described in Chapter 2; give that chapter a thorough reading before you
study this chapter.

The support shifts the control for writing spooled output to a device
from VSE/POWER to a subsystem (or application program), occasionally
also referred to as device-driving system (DDS). This subsystem may run
in a partition under or outside the control of VSE/POWER. The support
allows you, for example, to process output spooled to the LST or PUN
queue on a device which is not supported by VSE/POWER.

Using the support requires you to implement extensive coding of your own
in your program. This coding must be done in assembler language.

This chapter briefly discusses the operational concepts of the support
and describes how to use it. The macros you need to implement the
support in your program are documented in Chapter 2.

Programming Prerequisites: Figure 40 on page 150 shows how a device
controlling subsystem communicates with VSE/POWER. Before a
subsystem-controlled device can be started for output of spooled data,
this subsystem must:

1. Identify itself to the system.

2. Issue one or more connect-any requests, one per device that is to be
used for the processing of spooled output. A connect-any request
ensures that VSE/POWER can establish a communication path when a
PSTART command for the device is issued.

User Responsibilities: The subsystem must provide for all of the
services normally available for a device under VSE/POWER control. This
includes services such as device recovery, measurement techniques for
performance and accounting, and protection of spooled data after
VSE/POWER has passed this data to the subsystem.

Operational Overview: Following is an overview of the operational steps
involved in writing spooled output to a device under subsystem control.
This overview assumes that the device-owning subsystem is up and
running. It further assumes that the output device to be used is ready.

1. VSE/POWER processes a PSTART command for the device — for example:

PSTART DEV,PLOT1,GRAPHAPP,G,...

Chapter 3. External Device Support 149

Ext. Dev. Support - Concepts

The command causes VSE/POWER to activate a device service task (DST)
which, in turn, establishes a communication path to the subsystem
named GRAPHAPP.

..................

: XPCC Interface :

|

| — | Do | E—
| | DST |< >| | <====>|0Output |
| — 2 | |Device |
| Vv | : | Subsystem or | L—_
| S | : | Application |

| E — | : | Program | 1
|/ | DST |< > | | <====>|Output |
| P] 2 | |Device |
| o | . 1 L
| W |

| E — | |] E—
| R | DST |< > | | <====>|Output |
| — | l | |Device |
| | | Subsystem or | S
| | | Application |

| — | | Program | E——
| | DST |< >| | <====>|0Output |
|] : 2 | |Device |
' I : XPCC Interface : ! — L

Legend: =====> Data flow (includes control data)
DST = Device service task

Figure 40. External Device Support Overview

2. When the communication path is established, the device owning
subsystem passes to VSE/POWER a request for a device order.

3. In response to the request, VSE/POWER passes to the subsystem a
"start device'" order. This order includes all of the control values
that were specified in the above PSTART command.

4. The subsystem, after having confirmed the order by passing an
order-response record, would normally issue a GET-GENERIC request.
An example of such a request is given below:

PWRSPL TYPE=UPD,CLASS=G,MODE=GENERIC,QUEUE=LST,REQ=GET, SPL=MYSPL...
Passing this updated SPL to VSE/POWER via XPCC FUNC=SENDR causes
VSE/POWER to return to your program any output queued with the

specified class (G in the above example) of the LST queue for the
device PLOT1.

150 IBM VSE/POWER Application Programming

Ext. Dev. Support - Concepts

The retrieval of a complete queue entry requires the subsystem to
issue a series of Get spool data requests with XPCC FUNC=SENDR. Per
request, VSE/POWER passes a unit of transfer, one or more records of
data, to your program's reply buffer.

Note that before your program can set up an XPCC FUNC=SENDR request,
it must always clear the XPCCB User Data IJBXSUSR.

5. The subsystem writes each unit of transfer to the output device
selected by the PSTART command.

6. When the processing of a queue entry is complete, the subsystem
issues a close request followed by another GET-GENERIC request to
open the retrieval of the next eligible queue entry.

The above sequence of operational steps continues as long as there is
work to do. This sequence, although not all inclusive, shows that your
program must synchronize its operation with VSE/POWER primarily by:

1. Picking up and analyzing any device order that VSE/POWER may pass.

2. Responding to a device order by passing to VSE/POWER the
corresponding order-response record. This response record must
indicate how your program is going to handle the device order.

Shared Spooling Considerations: For operation with external device
support in a shared spooling environment, the following restrictions
exist:

° Only one system operator can control your program's output devices:
the operator of the system on which your program is running.

. Messages passed to VSE/POWER for routing to a user of one of the
other sharing systems cannot be forwarded to this user by VSE/POWER.

The remaining sections of this chapter discuss the sequences of the
coding required to ensure proper handling of spooled output. These
sequences are discussed as part of the applicable communication and
device-control functions.

IBM recommends that you obtain a listing of the DSECTS that are
generated by the assembly of the PWRSPL TYPE=MAP macro and that you have
this listing readily available at your finger tips. This may be helpful
for the study of the chapter.

Chapter 3. External Device Support 151

Ext. Dev. Support - Concepts

SET UP A COMMUNICATION PATH

Your program must initiate the setup of required communication paths.
To do this, provide code in your program to:

1. Identify your program to the system.
You do this by way of an XPCC macro specifying FUNC=IDENT.
2. Initiate setting up a communication path, one per device.

You do this by way of an XPCC FUNC=CONNECT with TOAPPL=ANY specified
in the related XPCCB macro.

In your program, you can issue as many XPCC FUNC=CONNECT requests as
you have devices to control for the processing of spooled output. A
connect request must be complete before you can issue the next one.

For more information about establishing a communication path, see the
section "Set Up a Communication Path" on page 33. The section "Set Up

Two or More Communication Paths' on page 97 describes how to establish
two or more communication paths.

START A DEVICE

Starting a device is triggered by a PSTART command issued by one of the
following:

The central operator.

An authorized subsystem administrator.

Via PNET.
In processing the command, VSE/POWER tries to set up a communication
path within two minutes. If VSE/POWER cannot set up the path within
this time, then the originator of the PSTART command receives a message.
VSE/POWER expects this originator to respond to the message. This
response may be an instruction to wait until the subsystem is prepared

for this setup or to stop the device by a PSTOP DEV command.

Your program must include code which does the following (assuming that
you have properly initiated the setup of a communication path):

1. Waits for the communication path to be set up.

You do this by checking whether the system has posted the connect
ECB (field IJBXCECB of the applicable XPCCB).

2. Passes to VSE/POWER a request for a device order.

You do this by issuing an XPCC FUNC=SENDR request which:

152 IBM VSE/POWER Application Programming

Ext. Dev. Support - Start Device

o Passes a null buffer
¢ Has XPCCB bytes set as follows:

PXUACT1 to PXUATROR
PXUBTYP to zero

and by checking for successful completion or, if necessary, by
analyzing return information that the system may have set in the
fields IJBXRETC and later in IJBXREAS of the XPCCB.

3. Analyzes the start device order which VSE/POWER passes in the reply
buffer for the communication path.

4. Passes to VSE/POWER the corresponding order-response record.
To do this, issue an XPCC FUNC=SENDR request with this record set up
in the communication path's send buffer. Before you issue this
request, clear the XPCCB User Data IJBXSUSR.

For a more detailed discussion of the start-device sequence, see the

related sections that follow.

Process a Start-Device Order

The Device Can be Started: Refer to Figure 41 on page 155, the coding
sequence for starting a device under subsystem control. For the layout
and contents of order-control and response records, see the section
"Process Order-Control Records and Signals' on page 176.

The Device Cannot Be Started: Your program may not be prepared to
process output on the device as requested. You must indicate this and
give a reason by setting a return and feedback code in your
order-response record for one of the following, for example:

Device unknown
Device in use (busy)
Device out of service

A return code other than X'00' causes VSE/POWER to break the connection.
For details about these codes, see the section "Start-Device Order' on
page 184.

Based on your program's control data, VSE/POWER builds a message and
routes it to the command originator.

Chapter 3. External Device Support 153

Ext. Dev. Support - Start Device

Start a Device with Setting Logical Destinations

154

If your program does not use a set-logical-destinations order, VSE/POWER
takes the specified device name (PLOT1 for example) as the only valid
destination name for the device.

If you use a set-logical-destinations order, your program can define to
VSE/POWER up to eight logical destination names for one device. Assume
that a device has been started in your program with a device name of
PLOT1. You could then request VSE/POWER by a set-logical-destinations
order to route, via the path for PLOT1, output to the following
destinations, for example:

D1210UT
D1220UT
D1230UT
and so on

If any of these logical destinations is specified as destination user of
an output, then VSE/POWER routes this output to the external device
named PLOT1.

However, if the device name used in the PSTART command is to be used as
userid for routing output further on, that name must be included in the
list of logical destinationms.

Note: The logical destination name LOCAL returns queue entries either
destined for local processing or destined for the userid LOCAL.

IBM VSE/POWER Application Programming

Ext. Dev. Support - Start Device

Coding in Your Program

Comments

XPCC FUNC=CONNECT
Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).
WAIT IJBXCECB
|
\')
Request a device order to be passed
XPCC FUNC=SENDR
Check the return codes
as shown above.
WAIT IJBXSECB
Check the VSE reason codes
in XPCCB byte IJBXREAS.
Check the VSE/POWER return
and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.
Analyze the device order
I
\"
Respond to the order
XPCC FUNC=SENDR
Check the return codes
as shown above.
WAIT IJBXSECB
Check the VSE reason codes
in XPCCB byte IJBXREAS.
Check the VSE/POWER return
and feedback codes as
shown above.

I
v

Connect with TOAPPL=ANY

The communication path exists when
the ECB is posted.

Field IJBXTOAP of XPCCB contains
"SYSPWRD'.

A device order is in your program's
reply buffer when the ECB is posted.

Normally, your program finds a start
device order after successful setup
of a communication path.

VSE/POWER has finished processing

your order-response record and returned

a null buffer when the ECB is posted.
If these codes indicate success-

ful processing of the order-response

record, then VSE/POWER is ready to

process GET-service requests.

Figure 41. Coding Sequence for Starting an External Device

The coding sequence for a device start with setting logical destinations
is the same as for a normal device start (see Figure 41). In addition,
however, your program must pass to VSE/POWER a set-logical-destinations
order. You do this after VSE/POWER has successfully processed your
order-response record for the start-device order. VSE/POWER responds to
your order by passing an order-response record to your program's reply

buffer.

For the layout and contents of control records, see the section "Process
Order-Control Records and Signals" on page 176.

Chapter 3. External Device Support 155

Ext. Dev. Support - Process Output

PROCESS SPOOLED OUTPUT

156

When your program is ready to process an output queue entry, it should
issue a generic GET-service request. To do this, open the GET-service
request by passing to VSE/POWER an SPL for which you defined, for
example, the following:

Column 72 —

\%

PWRSPL TYPE=UPD,SPL=(4),CLASS=G,MODE=GENERIC, C
QUEUE=LST,REQ=GET

VSE/POWER then retrieves from the accessed queue (LST in the example)
the first queue entry that it finds to have:

Class G assigned.

A disposition of D or K.

A user identifier matching one of the logical destinations of the
device.

In response to your open-service request, VSE/POWER passes to your
program's reply buffer an SPL which describes the queue entry's
characteristics. Your program must analyze this SPL and decide whether
VSE/POWER is to proceed with data retrieval or whether any other action
is to be initiated.

The subsystem, your program, has to handle certain situations which
VSE/POWER handles when processing the output of spooled data on a local
device. The handling of these situations is normally triggered by a
device order passed to your program by VSE/POWER. Of course, the
handling of a device failure, should one occur, cannot be triggered by
VSE/POWER. Some of these situations are discussed in sections as
indicated below; they should give you a feel for the involved
programming effort:

* No selectable entry in the accessed queue — See "Handle a
No-Selectable-Entry Situation" on page 157.

e A device setup is required to process the output — See "Handle a
Device-Setup Situation" on page 157.

* Output processing is to be canceled — See "Cancel Output Processing"
on page 163.

. VSE/POWER-queued device orders or signals are to be requested — See
"Request an Order or a Signal" on page 164.

Note: No password checking is done for a queue entry that is to be
processed by a subsystem for output under subsystem control.

IBM VSE/POWER Application Programming

Ext. Dev. Support - Process Output

Handle a No-Selectable-Entry Situation

If there is no selectable queue entry, VSE/POWER informs the system
operator about this. In addition, it informs your program by way of
return and feedback codes in the VSE/POWER-set user area of the XPCCB.
VSE/POWER then waits for one of the following:

An order from your program (message or set-logical-destination).
A 'wait-for-order/signal' request from your program.

A command from the operator.

A selectable output queue entry to be queued.

Figure 42 on page 158 shows the sequence of the coding which you should
provide in your program to cover the situation.

Instead of passing a wait-for-order/signal indication to VSE/POWER, your
program may take either of the actions below.

Give up the communication path (by an XPCC FUNC=DISCONN).

Define or change one or more of the logical destination names for
the device (by a set-logical-destination order), followed by another
generic GET request.

Handle a Device-Setup Situation

Your program should analyse the verification SPL which VSE/POWER passes
after the Get-service open request. As a result of this analysis, your
program may have to initiate a device setup. The operational steps for
this setup normally are as follows:

1.

Your program passes a send-message order control record.

This order instructs VSE/POWER to route the included message to the
destination given in the order. VSE/POWER forwards the message to

this destination, normally the operator responsible for the output

device which is to be set up.

Your order-control record may request VSE/POWER to hold a copy of
the message in storage: the message may fail to reach its
destination, and VSE/POWER's device-service task may therefore be
operator bound. A copy of the message is helpful in this case; it
enables the central operator to redisplay the message by means of a
PDISPLAY M command. For more information about processing a
send-message order, see the section "Send-Message Order" on

page 191.

Your program waits for the reactivation of this output processing.
The program does this by passing to VSE/POWER a

wait-for-order/signal request (XPCCB bytes set as follows: PXUACT1
to PXUATWFR; PXUBTYP to zero).

Chapter 3. External Device Support 157

Ext. Dev. Support - Process Output

When a device order or a signal gets queued for the communication
path to your program, then VSE/POWER passes this order or signal.

Coding in Your Program

Comments

Open GET service
XPCC FUNC=SENDR
Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).
WAIT IJBXSECB
Check the VSE reason codes
in the XPCCB byte IJBXREAS.
Check the VSE/POWER return
and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.
| .

I
v

Pass a wait-for-order/signal request

XPCC FUNC=SENDR
Check the return codes as
| shown above.

WAIT IJBXSECB

Check the VSE reason codes
as shown above.

Check the VSE/POWER return
and feedback codes as shown
above.

Analyze the order/signal

This should be a generic GET-service
request. VSE/POWER expects an (up-
dated) SPL in your program's send
buffer.

A return SPL is in your program's
reply buffer when the ECB is posted,
provided an eligible queue entry
was found.

The feedback code (byte PXPFBKCD)

is set to PXPO4NOF if

VSE/POWER cannot find a selectable
queue entry. The remainder of the
sequence chart applies to this case.

Pass a null buffer to VSE/POWER and
be sure the wait-for-order/signal
flag (PXUACT1 set to PXUATWFR)

is set in the XPCCB (see Note).
VSE/POWER has passed an order or a
signal when the ECB is posted.

VSE/POWER passes an output-arrived
signal as soon as a selectable queue
entry is queued.

Let's assume that VSE/POWER did
pass the signal. This means that
VSE/POWER is ready to accept a GET-
service request via the communica-
tion path.

Figure 42 (Part 1 of 2). Coding Sequence for a "No Entry Available" Situation

158 IBM VSE/POWER Application Programming

Ext. Dev. Support - Process Output

Coding in Your Program

Comments

— From Part 1
\
Open GET service
XPCC FUNC=SENDR

Figure 42 (Part 2 of 2). Coding Sequence for a "No Entry Available" Situation

A retry of the originally passed
generic GET-service request.

Again, a selectable queue entry

may not be available for processing.
By the time VSE/POWER processes your
program's request, the queued entry
may have been manipulated from an-
other source.

Note: Since no selectable

queue entry is available and no
'order pending' is indicated by

VSE/POWER, your program should use the

PXUATWFR request. This results in a
VSE/POWER wait for the next order

or signal, while a PXUATROR request
would return immediate information

about the availability of an order/signal.

Chapter 3. External Device Support

159

Ext. Dev. Support - Process Output

3. Output processing is reactivated.

The operator issues a PGO command to indicate that the required
setup work is done. This causes VSE/POWER to queue a
reactivation-device order so that it can be passed to your program.

Your program cannot reactivate output processing until VSE/POWER has
passed a reactivate-device order. If VSE/POWER passes a device
order other than reactivate (or setup), your program must respond to
this order and reissue the wait-for-order/signal request.

Figure 43 shows the sequence of the coding which you should provide to
cover the needs of a device setup and a reactivation of output
processing. For more details about the processing of device orders,
order-response records, and device signals, see the section "Process
Order-Control Records and Signals'" on page 176.

Coding in Your Program

Comments

Open GET service
XPCC FUNC=SENDR

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB

Check the VSE reason codes
in the XPCCB byte IJBXREAS.

Check the VSE/POWER return
and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.

Analyze the verification SPL.

I
\'
Pass a send-message order
XPCC FUNC=SENDR

Check the return codes as

shown above.
WAIT IJBXSEGB

Check the VSE reason codes
as shown above.

Check the VSE/POWER return
and feedback codes as shown
above.

I
\'
To Part 2

This should be a generic GET-service
request. VSE/POWER expects an (up-
dated) SPL in your program's send
buffer.

A verification SPL is in your pro-
gram's reply buffer when the ECB is
posted.

The remainder of the chart assumes
that the indicated device character-
istics require a device setup.

The order tells VSE/POWER where to
route the message which is part of
the order-control record.

VSE/POWER's order response record
is in your program's reply buffer
when the ECB is posted.

Figure 43 (Part 1 of 4). Coding Sequence for Device Setup and Reactivation

160 IBM VSE/POWER Application Programming

Ext. Dev. Support - Process Output

Coding in Your Program

Comments

—— From Part 1
\
Pass a wait-for-order/signal request
XPCC FUNC=SENDR
Check the return codes as
shown above.
I
\"
WAIT IJBXSECB

Check the VSE reason codes
as shown above.

Check the VSE/POWER return
and feedback codes as
shown above.

Analyze the device order.

I
v

Pass an order-response record
XPCC FUNC=SENDR

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB

Check the VSE reason codes
in the XPCCB byte IJBXREAS.

Check the VSE/POWER return
and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.

|
\)
GET spool data request
XPCC FUNC=SENDR
Check the return codes as
shown above.
WAIT IJBXSECB

Check the VSE reason codes
as shown above.

Check the VSE/POWER return
and feedback codes as
shown above.

Process the records in your re-
ply buffer.
End of last setup page 1; else

D

‘-

[

\"
To Part 3

Pass a null buffer to VSE/POWER and
be sure the "wait for order/signal'
flag is set in the XPCCB.

VSE/POWER has passed an order or

a signal when the ECB is posted.
Let's assume that VSE/POWER passed
a setup-device order.

It indicates the number of pages
the operator asks your program to
retrieve from VSE/POWER and pass to
the device for setup purposes.

VSE/POWER has processed the response
record and returned a null buffer
when the ECB is posted.

Required programmed action:

1. Request VSE/POWER to pass the de-
fined number of setup pages.

2. Reactivate normal processing when
the setup action is complete.

When the ECB is posted, your pro-
gram's reply buffer is filled with
spooled output records retrieved
from the accessed queue entry.

The data being passed may have to
be replaced by strings of Xs.

Figure 43 (Part 2 of 4). Coding Sequence for Device Setup and Reactivation

Chapter 3. External Device Support

161

Ext. Dev. Support - Process Output

Coding in Your Program

r— From Part 2
\Y

Pass the setup-processed signal

Pass a wait-for-order/signal request

I
v

XPCC FUNC=SENDR
Check the return codes as
shown above.
WAIT IJBXSECB
Check the VSE reason codes
as shown above.
Check the VSE/POWER return
and feedback codes as shown
above.

I
v

XPCC FUNC=SENDR
Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).
WAIT IJBXSECB
Check the VSE reason codes
in the XPCCB byte IJBXREAS.
Check the VSE/POWER return
and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.
Analyze the order/signal

l
v

Pass an order-response record

XPCC FUNC=SENDR
Check the return codes as
shown above.

WAIT IJBXSECB

Check the VSE reason codes
as shown above.

Check the VSE/POWER return
and feedback codes as shown
above.

I
\
To Part 4

Comments

Your program passes a null buffer
with PXUSIGNL of the XPCCB set to
PXUSSET.

This causes VSE/POWER to reset its

retrieval pointers to the beginning
of the queue entry being processed.
VSE/POWER has processed the signal

and returned a null buffer

when the ECB is posted.

Your program passes a null buffer
and the wait-for-order/signal flag
in the XPCCB.

VSE/POWER has passed an order or a
signal when the ECB is posted.

Let's assume that VSE/POWER passed
a reactivate-device order.

VSE/POWER is ready to accept GET-
service requests and returned a
null buffer when the ECB is
posted; VSE/POWER's return

and feedback codes are OK.

Figure 43 (Part 3 of 4). Coding Sequence for Device Setup and Reactivation

162

IBM VSE/POWER Application Programming

Ext. Dev. Support - Process Output

Coding in Your Program

Comments

— From Part 3
\Y
GET spool data request <———
XPCC FUNC=SENDR
Check the return codes as
shown above.
WAIT IJBXSECB

Check the VSE reason codes
as shown above.

Check the VSE/POWER return
and feedback codes as
shown above.

Process the data passed by
VSE/POWER. If:
More data is to be processed —
Else
I
\Y%
Pass a close request
XPCC FUNC=SENDR

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB

Check the VSE reason codes
in the XPCCB byte IJBXREAS.

Check the VSE/POWER return
and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.

|
\
Process the next selectable
queue entry or end the re-
trieval of output.

When the ECB is posted, your
program's reply buffer is filled
with spooled output records re-
trieved from the accessed queue
entry.

Your program passes a null send buf-
fer with the XPCCB bytes set as follows:

PXUACT1 to PXUATRQS

PXUBTYP to zero
When the ECB is posted, VSE/POWER
has disposed of the just processed
queue entry in accordance with the
assigned disposition:

D — The entry is deleted

K — The entry's disposition is

changed to L.

Figure 43 (Part 4 of 4). Coding Sequence for Device Setup and Reactivation

Cancel Output Processing

Output processing is to be canceled when VSE/POWER receives a PFLUSH
command for the device under your program's control. The command may
request this cancelation with or without a HOLD specification.

For the PFLUSH command, VSE/POWER builds and queues a flush-device
order. This order is passed to your program in response to a
return-order/signal request.

Chapter 3. External Device Support 163

Ext. Dev. Support - Process Output

Your program may delay the requested cancellation until a certain point
in its processing; it may ignore the order by returning a not-accepted
response. Normally, however, .a subsystem would handle the device order
as shown: .

. In Figure 44 on page 165 for a PFLUSH without a HOLD specification.
. In Figure 45 on page 166 for a PFLUSH with a HOLD specification.

If HOLD is specified, your program should continue output processing
until a meaningful boundary (end of a page, for example) is reached.
This may require your program to request a certain number of output
records even after VSE/POWER passed the flush-device order. 1In
addition, your program should request a checkpoint to be taken
before it stops processing for the output that is to be canceled.

If a cancel message is to be written at the end of the canceled output,
your program must build the message and write it to the device.

Request an Order or a Signal

VSE/POWER chains and passes device orders (or signals), using the
first-in/first-out method. When it chains an order or signal, VSE/POWER
indicates this by setting the user byte PXPINFO to PXPIORD. Your
program should monitor the presence of a device order by testing this
byte along with the VSE/POWER return and feedback codes.

For VSE/POWER to pass the order next in line, you must code the
following in your program:

e If no order is queued and your program needs a certain order to
continue -

A wait-for-order/signal request. You do this by passing to
VSE/POWER an XPCC FUNC=SENDR with a null send buffer and PXUACT1 set
to PXUATWFR. You would use this method, for example, in a
device-setup situation after your program has passed a send-message
order.

° If an order is queued -

A return-order/signal request. You do this by passing to VSE/POWER
an XPCC FUNC=SENDR with a null send buffer and PXUACT1 set to
PXUATROR.

Whenever VSE/POWER passes to you a device order, it expects you to
return (in your send buffer) an order-response. For more information
about the processing of orders, see the section "Process Order-Control
Records and Signals" on page 176.

164 IBM VSE/POWER Application Programming

Ext. Dev. Support - Process Output

Coding in Your Program

Comment.s

Pass a return-order/signal request
XPCC FUNC=SENDR

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB

Check the VSE reason codes
in the XPCCB byte IJBXREAS.

Check the VSE/POWER return
and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.

Analyze the order/signal

|
\"
Pass an order-response record
XPCC FUNC=SENDR
Check the return codes as
shown above.
WAIT IJBXSECB

Check the VSE reason codes
as shown above.

Check the VSE/POWER return
and feedback codes as shown
above.

I
\")
Pass a close request
XPCC FUNC=SENDR

Check the return codes as

shown above.

WAIT IJBXSECB
Check the VSE reason codes
as shown above.

Check the VSE/POWER return
and feedback codes as shown
above.

I

v
Get-service request for the
next selectable queue entry

Assumption: During GET data
processing the PXPIORD

(order signal queued) indication
is set in the your program's XPCCB.

Your program passes a null buffer
and the return-order/signal flag
in the XPCCB.

VSE/POWER has passed an order or a
signal when the ECB is posted.

Let's assume that VSE/POWER passed
the device order for a PFLUSH with-
out HOLD.

VSE/POWER has processed the response
record and returned a null buffer
when the ECB is posted.

Your program passes a null send buffer
with the XPCCB bytes set as follows:
PXUACT1 to PXUATRQS
PXUBTYP to zero
VSE/POWER has processed the request
and returned a null buffer when the
ECB is posted. VSE/POWER
deletes the currently processed
queue entry if the entry's disposi-
tion was D. VSE/POWER retains the
entry, with a disposition of L, if
its original disposition was K.

Figure 44. Coding Sequence for a PFLUSH without HOLD

Chapter 3. External Device Support

165

Ext. Dev. Support - Process Output

Coding in Your Program Comments

Assumption: During GET data
processing the PXPIORD

(order signal queued) indication
is set in your program's XPCCB.

Pass a return-order/signal request

XPCC FUNC=SENDR Your program passes a null buffer
Check the return codes in and the return-order/signal flag
register 15 and in the in the XPCCB.
XPCCB (byte IJBXRETC).
WAIT IJBXSECB VSE/POWER has passed an order or a
Check the VSE reason codes signal when the ECB is posted.
in the XPCCB byte IJBXREAS. Let's assume that VSE/POWER
Check the VSE/POWER return passed a device order for a PFLUSH
and feedback codes in XPCCB with HOLD.
bytes PXPRETCD and PXPFBKCD,
respectively.

Analyze the order/signal
l
\'
Pass an order-response record
XPCC FUNC=SENDR
Check the return codes as
shown above.

WAIT IJBXSECB VSE/POWER has processed the response
Check the VSE reason codes record and returned a null buffer
as shown above. when the ECB is posted.

Check the VSE/POWER return and
feedback codes as shown above.
I
\%
GET spool data request <—————
XPCC FUNC=SENDR |
Check the return codes as |
shown above. |
WAIT IJBXSECB | When the ECB is posted, your
Check the VSE reason codes | program's reply buffer is filled
as shown above. | with spooled output records re-
Check the VSE/POWER return | trieved from the accessed queue
and feedback codes as | entry.
shown above. |
If the end of the current |
page is reached 7; else —
]

!
v

To Part 2

Figure 45 (Part 1 of 2). Coding Sequence for a PFLUSH with HOLD

166 1IBM VSE/POWER Application Programming

Ext. Dev. Support - Process Output

Coding in Your Program Comments

—— From Part 1

\
Pass a checkpoint request
XPCC FUNC=SENDR Your program passes a checkpoint-
Check the return codes in control record in its send buffer.

register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB When the ECB is posted, VSE/POWER
Check the VSE reason codes has passed a checkpoint-response
in the XPCCB byte IJBXREAS. record to your program's reply buf-
Check the VSE/POWER return fer.

and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,

respectively.
l
\%
Pass a flush-hold request
XPCC FUNC=SENDR Your program passes a null send buf-
Check the return codes as fer and XPCCB bytes set as follows:
shown above. PXUACT1 set to PXUATFLH
PXUBTYP set to zero
WAIT IJBXSECB VSE/POWER has processed the request
Check the VSE reason codes and returned a null buffer
as shown above. when the ECB is posted; process-
Check the VSE/POWER return ing of the affected output queue
and feedback codes as shown entry by VSE/POWER is canceled.
above. The complete output queue entry

| is retained in its output queue with
| the class and priority assignments
| unchanged. The queue entry's dis-
| position, however, is changed to:
| H if it was D.
\' L if it was K.
Get-service request for
the next selectable
queue entry.

Figure 45 (Part 2 of 2). Coding Sequence for a PFLUSH with HOLD

Chapter 3. External Device Support 167

Ext. Dev. Support - Stop Device

STOP THE DEVICE

Normally, the stopping of a device is triggered by VSE/POWER when it
processes a PSTOP DEV command for the device or a PEND command.

Either command causes VSE/POWER to build a stop-device order and to add
this order to the order chain for the device. The order may request the
device to be stopped:

® At the end of the currently processed output

A PSTOP command with EOJ or a PEND command was issued. Your program
must provide for continued processing of output until the end of the
currently processed output is reached. Figure 46 on page 169 shows
the coding sequence that should be followed.

® At once for restart at the point of interruption
A PSTOP command with RESTART was issued. Your program must provide
for continued processing of output until the end of a logical
boundary (a page for a printer, for example) is reached. At this
point, have your program request a checkpoint because setting up
output processing on restart for the queue entry is your program's
responsibility. Figure 47 on page 171 shows the coding sequence
that should be followed.

¢ At once for restart from the beginning

Neither EOJ nor RESTART was specified in the PSTOP command. In this
case, your program should:

1. Purge the data that may be contained in a device buffer, if any.

2. Issue a quit request.

168 IBM VSE/POWER Application Programming

Ext. Dev. Support - Stop Device

Coding in Your Program Comments

Assumption: During GET data
processing the PXPIORD

(order signal queued) indication
is set in your program's XPCCB.

Pass a return-order/signal request

XPCC FUNC=SENDR Your program passes a null buffer
Check the return codes in and the return-order/signal flag
register 15 and in the in the XPCCB.
XPCCB (byte IJBXRETC).
WAIT IJBXSECB VSE/POWER has passed an order or a
Check the VSE reason codes signal when the ECB is posted.
in the XPCCB byte IJBXREAS. Let's assume that VSE/POWER
Check the VSE/POWER return passed a device order for a PSTOP
and feedback codes in XPCCB with EOJ.
bytes PXPRETCD and PXPFBKCD,
respectively.

Analyze the order/signal
I
\'
Pass an order-response record
XPCC FUNC=SENDR
Check the return codes as
shown above.

WAIT IJBXSECB VSE/POWER has processed the response
Check the VSE reason codes record and returned a null buffer
as shown above. when the ECB is posted.

Check the VSE/POWER return and
feedback codes as shown above.
|
\Y
GET spool data request <————
XPCC FUNC=SENDR |
Check the return codes as |
shown above. |
WAIT IJBXSECB | When the ECB is posted, your
Check the VSE reason codes | program's reply buffer is filled
as shown above. | with output records retrieved
Check the VSE/POWER return | from the accessed queue entry.
and feedback codes as |
shown above. |
If the end of the queue |
entry is reached 7; else —!
]

I
v

To Part 2

Figure 46 (Part 1 of 2). Coding Sequence, Device Stop after End of Output

Chapter 3. External Device Support 169

Ext. Dev. Support - Stop Device

Coding in Your Program

Comments

— From Part 1
I

\%
Empty hardware I/0 buffers

I
I
I
|
I
I
I
v

Issue a Close request
XPCC FUNC=SENDR

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

|
WAIT IJBXSECB

Check the VSE reason codes
in the XPCCB byte IJBXREAS.

Check the VSE/POWER return
and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.

|
\'
Pass a device-stopped signal
XPCC FUNC=SENDR

Check the return codes as

shown above.
I
WAIT IJBXSECB

Check the VSE reason codes
as shown above.

Check the VSE/POWER return
and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.

I
\'
Give up the communication path
XPCC FUNC=DISCPRG

Check the return codes as

shown above.

|
v

Applies if the device is buffered or
connected via a communication link.

Your program must ensure that re-
cords still in a hardware buffer are
actually written to the device before
the retrieval service for the output
is closed. This avoids that VSE/POWER
deletes the output before all of the
output records have been transferred
to and processed by the device.

Your program passes a null buffer
with the XPCCB byte
PXUBTYP set to zero
PXUACT1 equated to PXUATRQS
When the ECB is posted, VSE/POWER:
- Has returned a null buffer.
- Has deleted the output if this
this output's disposition was D.
- Has changed the output's dis-
position to L if this disposition
was K.

Your program passes a null send buf-
fer with XPCCB bytes set as follows:

PXUSIGNL to PXUSDSTP

PXUBTYP to zero
VSE/POWER has processed the signal
and returned a null buffer
when the ECB is posted.

VSE/POWER informs about the de-
vice-stopped condition by a message
to the PSTART device operator and to
the user who issued the PSTOP
(or PEND) command, thus disconnecting
the communication path.

The communication path is removed.

Figure 46 (Part 2 of 2). Coding Sequence, Device Stop after End of Output

170 IBM VSE/POWER Application Programming

Ext. Dev. Support - Stop Device

This chart shows only how a stop with a restart possibility differs
from a stop after end of job.

Coding in Your Program Comments

Pass the required order-response
record
XPCC FUNC=SENDR
Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB VSE/POWER has processed the response
Check the VSE reason codes record and returned a null buffer
in the XPCCB byte IJBXREAS. when the ECB is posted.

Check the VSE/POWER return
and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.
I
v
GET spool data request <———
XPCC FUNC=SENDR |
Check the return codes as |
shown above. |
WAIT IJBXSECB | When the ECB is posted, your
Check the VSE reason codes | program's reply buffer is filled
as shown above. | with output records retrieved
Check the VSE/POWER return | from the accessed queue entry.
and feedback codes as |
shown above. |
If the end of a logical |
boundary is reached q; else —!
]

[

l
v

To Part 2

Figure 47 (Part 1 of 2). Coding Sequence, Device Stop with a Restart Possibility

Chapter 3. External Device Support 171

Ext. Dev. Support - Stop Device

Coding in Your Program

Comments

r— From Part 1
I
v
Pass a checkpoint request
XPCC FUNC=SENDR
Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).
WAIT IJBXSECB
Check the VSE reason codes
in the XPCCB byte IJBXREAS.
Check the VSE/POWER return
and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.
I
\
Empty hardware I/0 buffers

I
v

Pass a quit request
XPCC FUNC=SENDR

Check the return codes as
shown above.

|
\
WAIT IJBXSECB

Check the VSE reason codes
as shown above.

Check the VSE/POWER return
and feedback codes as
shown above.

|
\
Pass a device-stopped signal

Figure 47 (Part 2 of 2). Coding Sequence, Device Stop with a Restart Possibility

Your program passes a checkpoint-
contrel record in its send buffer.

When the ECB is posted, VSE/POWER
has passed a checkpoint-response
record to your program's reply buf-
fer.

This is the same as for a termina-
tion after end of job; see the
coding sequence shown in the preced-
ing illustration.

Your program passes a null send buf-
fer and XPCCB bytes set as follows:
PXUACT1 set to PXUATABR
PXUBTYP set to zero

VSE/POWER has processed the request
when the ECB is posted. The queue
entry being processed is retained

by VSE/POWER with unchanged priority
and disposition assignments.

This and the remainder of the coding
sequence is the same as for a term-
ination after end of job (see the
preceding illustration).

172 1IBM VSE/POWER Application Programming

Ext. Dev. Support - Abnormal End

HANDLE AN ABNORMAL-END SITUATION

An abnormal-end situation may arise because of an error condition that
occurs during the processing of an output queue entry. Such a situation
may also occur because of an error condition within VSE/POWER. This
section briefly discusses the two kinds of abnormal-end situations.

Qutput-Related Abnormal End

This type of an abnormal-end situation may be determined by VSE/POWER or
by your program:

Abnormal-end situation determined by VSE/POWER: VSE/POWER removes
the communication path immediately. It writes a message to the
system operator and to the device owner to inform about this
abnormal end of output processing. VSE/POWER retains the currently
processed queue entry in the entry's output queue with priority and
disposition assignments unchanged. It performs the required
accounting.

Abnormal-end situation determined by your program: Your program

should analyze the situation and then do one of the following:

— Cancel itself. This action is indicated if there is no chance
for continued useful work. If this occurs, VSE/POWER is
informed about it by the XPCC interface.

— Remove the communication path by an XPCC request specifying
FUNC=DISCPRG. This action is indicated if there is no chance
for continued useful processing of data passed via the
communication path to or from your program.

In either of the above cases, VSE/POWER's action is the same as for

an abnormal-end situation determined by VSE/POWER, which is

discussed in the next section.

— Remove the communication path by an XPCC request specifying
FUNC=DISCONN when the last FUNC=SENDR request has been completed
(SECB posted). This action is indicated if, for example, your
program can no longer write to the output device.

Your program should inform the system operator and, if possible,
also the device owner of the type of failure. If the device was
active when the failure occurred, have your program save a
checkpoint, a VSE/POWER-assigned record number lower than the
number of the failing record. Your program can use this record
number as a restart point when processing of the interrupted
queue entry is resumed.

Output processing failure for a 'protected' queue entry: See

"Abnormal-End Condition During GET" on page 57.

Figure 48 on page 174 shows the coding sequence that should be followed.

Chapter 3. External Device Support 173

Ext. Dev. Support - Abnormal End

Coding in Your Program

Comments

Pass a send-message order
XPCC FUNC=SENDR
Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).
WAIT IJBXSECB
Check the VSE reason codes
in the XPCCB byte IJBXREAS.
Check the VSE/POWER return
and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.
I
\'
Pass a checkpoint request
XPCC FUNC=SENDR
Check the return codes as
shown above.
WAIT IJBXSECB
Check the VSE reason codes
as shown above.
Check the VSE/POWER return and

feedback codes as shown above.

l
v

Pass a quit request
XPCC FUNC=SENDR
Check the return codes as
shown above.
I
\
WAIT IJBXSECB

Check the VSE reason codes
as shown above.

Check the VSE/POWER return
and feedback codes as
shown above.

I
\"
Give up the communication path
XPCC FUNC=DISCONN

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

I
v

Tells VSE/POWER where to route the
message which is part of the order-
control record.

VSE/POWER's order response record is
in your program's reply buffer when
the ECB is posted.

Your program passes a checkpoint-
control record in its send buffer.

When the ECB is posted, VSE/POWER
has passed a checkpoint-response
record to your program's reply buf-
fer.

Your program passes a null send buf-
fer and XPCCB bytes set as follows:
PXUACT1 set to PXUATABR
PXUBTYP set to zero

VSE/POWER has processed the request
when the ECB is posted. The inter-
rupted queue entry is retained by
VSE/POWER with unchanged priority
and disposition assignments.

The communication path is removed.

Figure 48. Coding Sequence, Abnormal End Because of a Device Failure

174 1IBM VSE/POWER Application Programming

Ext. Dev. Support - Abnormal End

Output-processing failure indicated by your program

You can issue a 'quit-and-lock' request at any point during the
retrieval of a queue entry. The request causes VSE/POWER to requeue
the currently processed queue entry in the appropriate class chain
with a temporary disposition of Y for the purpose of:

— Indicating that a problem has occurred during output processing,
and

— Preventing that the output queue entry is handled again until
the subsystem has taken some action (for example, issued the
PALTER command to alter the temporary disposition to a
dispatchable one).

A queue entry with disposition Y is not automatically processed by
the various VSE/POWER tasks. Your program can make use of the CTL
service to

— Get a display of all queue entries that have a disposition of Y
by entering the PDISPLAY ALL,CDISP=Y command, and

— Alter this disposition for a queue entry to make it eligible for
processing again. To reset disposition Y of a queue entry to
its original one, use the PALTER queue, jobname,DISP=* command.

For further information on disposition refer to the VSE/POWER
Installation and Operations Guide.

Abnormal End of VSE/POWER

VSE/POWER itself may happen to be canceled during output processing.
The XPCC interface informs your program about this by passing to your
program XPCCB return or reason codes of IJBXNOC3 and IJBXABDC,
respectively. Your program can, in this case:

1.

2.

Empty hardware-output buffers, if any.

When VSE/POWER is up again, restart the interrupted processing
either:

° At a suitable checkpoint (if the output was checkpointed).
Obtaining checkpoints during data retrieval is described under
"Request a Checkpoint" on page 49; restarting at a checkpoint is
discussed in the section "Request a Restart" on page 50.

° At the beginning of the interrupted output.

For more information about the retrieval and restart of a queue entry,
see "Request a GET Service" on page 41.

If VSE/POWER or the XPCC interface happens to be canceled while
processing a 'protected' output queue entry, VSE/POWER recovery (at

Chapter 3. External Device Support 175

Ext. Dev. Support - Abnormal End

system warm start) or the VSE/POWER device-service task will requeue the
output entry with disposition Y to the non-dispatchable queue. For
creation of a protected queue entry see 'Abnormal-End Condition During
GET" on page 57.

PROCESS ORDER-CONTROL RECORDS AND SIGNALS

Orders and signals are used to synchronize a VSE/POWER device-service
task with your program.

An order is a control record which is passed from one side of a
communication path to the other. A signal is a status indication that
is passed to the other end of the communication path. Orders that
VSE/POWER can pass to your program are referred to as device orders;
orders that your program can pass to VSE/POWER are called subsystem
orders.

VSE/POWER-Built Device Orders: VSE/POWER builds a device order whenever
it processes any of the following commands for a device under your
program's control:

Command Order-Type

PSTART Start-device order

PSTOP Stop-device order

PRESTART Restart-device order

PGO Reactivate-device order
PSETUP Setup-device order

PFLUSH Cancel-output device order
PXMIT Transmit-command device order

VSE/POWER handles device orders in a first-in first-out way by chaining
them, one behind the other, separately for each device controlled by
your program. VSE/POWER accepts a command for a device even after a
PSTOP DEV command was processed for this device, that is, until your
program has passed a device-stop signal.

Subsystem-Originated Orders: The subsystem (your program) would build
an order and pass it to VSE/POWER whenever the need arises. Your
program can build and pass orders of the following type:

Send-message order.
Set-logical-destination order.

176 1IBM VSE/POWER Application Programming

Ext. Dev. Support - Orders and Signals

Process a Device Order

Process Overview: When having passed a device order to your program,
VSE/POWER expects that the program analyses the order immediately and
returns a corresponding order-response record. If your program fails to
return this record, VSE/POWER discontinues the communication path and
informs your program by a return code of PXPRCPVL together with the
applicable feedback code. VSE/POWER discontinues the communication path
also if your program's order-response record does not correspond to the
type of order passed by VSE/POWER.

The order-response record indicates your program's decision: accepted or
not accepted. If the decision is not accepted, the record may also
indicate a reason for rejecting the device order; it may include a
message for VSE/POWER to route to the user whose command triggered the
the device order. For the programmed actions that are to be coded in
order to return an order-response record, refer to Figure 49 on

page 178.

A message generated by VSE/POWER in response to a command is routed to
the command originator whose nodeid and userid may be derived from the
device-order header. A message passed to VSE/POWER as part of an
order-response control record is routed to the user indicated in this
record; by default, this is the originator of the command. For details
on message routing, refer to Figure 51 on page 182.

A device order, once accepted by an order-response record, may be
processed by your program some time later. For example, after having
accepted an immediate-stop device order, your program can request a
checkpoint to be taken before it processes the order. There is one
exception, however: the start-device order. Your program must process
this order immediately and return the result of this processing by way
of an order-response record valid for this device order.

Sequence of Events

1. VSE/POWER chains a device order for being passed via a communication
path when it processes a command for the involved device. This may
occur at any time. VSE/POWER indicates the chaining of a device
order.

2. VSE/POWER indicates the chaining of a device order by setting the
order-pending flag in the XPCCB for the communication path. When
this XPCCB is passed to the other end (your program), VSE/POWER
expects, sooner or later, a return-order/signal request to be
returned. In short, your program should be ready to pick up and
analyze a device order each time after VSE/POWER has passed to your
program a block of output records.

3. In response to a return-order/signal request, VSE/POWER passes the

device order at the head of the chain if two or more such orders are
chained for the communication path. The order-pending flag remains

Chapter 3. External Device Support 177

Ext. Dev. Support - Orders and Signals

set as long as a device order waits for being passed to your
program.

Figure 49 shows the coding sequence which you should follow in your
program for the handling of device orders.

Size of Your Reply Buffer: An order-control record may have a length of
up to 180 bytes. Therefore, the size of your program's reply buffer
should be 180 bytes or larger.

Coding in Your Program Comments

GET spool data request for the
next block
XPCC FUNC=SENDR
Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB When the ECB is posted, your
Check the VSE reason codes program's reply buffer is filled
in the XPCCB byte IJBXREAS. with spooled output records re-
Check the return and feedback trieved from the accessed queue

codes in XPCCB bytes PXPRETCD entry.
and PXPFBKCD, respectively.
Check the XPCCB byte PXPINFO An order or signal is chained if the
| PXPIORD bit of this byte is set on.

\
Process the data passed by Prepare this data for writing it
VSE/POWER to the involved output device.
I
v
Pass a return-order/signal request
XPCC FUNC=SENDR Your program passes a null buffer
Check the return codes as with XPCCB bytes set as follows:
shown above. PXUBTYP to zero
| PXUACT1 to PXUATROR
\'
WAIT IJBXSECB When the ECB is posted, VSE/POWER
Check the VSE reason codes has passed an order or a signal, if
as shown above. there was one; if there was none,

Check the VSE/POWER return and VSE/POWER indicates this by a re-
feedback codes as shown above. turn- and feedback-code combination

Analyze the order of PXPRCOKF and PXPO4NOQ.
| Let's assume that VSE/POWER
\ passed a device order.

To Part 2

Figure 49 (Part 1 of 2). Coding Sequence, Processing of Device Orders

178 1IBM VSE/POWER Application Programming

Ext. Dev. Support - Orders and Signals

Coding in Your Program Comments

r— From Part 1

\Y
Pass the required order-response
record
XPCC FUNC=SENDR With only the control record in
Check the return codes in your program's send buffer and with
register 15 and in the the XPCCB's byte PXUBTYP set to
XPCCB (byte IJBXRETC). PXUBTCTL.
WAIT IJBXSECB VSE/POWER has processed the response
Check the VSE reason codes record and returned a null buffer
in the XPCCB byte IJBXREAS. when the ECB is posted.

Check the return and feedback
codes in XPCCB bytes PXPRETCD
and PXPFBKCD, respectively.

I
v

Figure 49 (Part 2 of 2). Coding Sequence, Processing of Device Orders

Process a Subsystem Order
To pass an order to VSE/POWER, your program must:

1. Set up the device order as the only data in the communication path's
send buffer.

2. Issue an XPCC request specifying FUNC=SENDR. The XPCCB used for the
request must have its user-information byte PXUBTYP set to PXUBTCTL.

VSE/POWER analyzes the order and returns to your program the
corresponding order-response record. For information about the format
and contents of the orders and response records, see "Device/Subsystem
Orders and Order Response Records' below.

Device/Subsystem Orders and Order Response Records

Device/subsystem orders and order-response records are similar in
format. Both types of control records have a header section and a
variable-data section. Following below are:

1. The format and description of the header section of a
device/subsystem order. The description includes a general
discussion of the data section; the required details about order
data sections are given separately by device/subsystem orders.

2. The format and description of the order-response record, including
its data section.

Chapter 3. External Device Support 179

Ext. Dev. Support - Orders and Signals

Device/Subsystem-Order Header Section

For the format of this record section and a discussion of its contents,
refer to Figure 50. In the assembly output listing for the PWRSPL macro
with TYPE=MAP, you find a DSECT for the record section at the label
PORDER.

Field
Bytes Name Contents / Description

0 -1 PORDRLEN Record length (in binary notation).

2 PORDTYPE X'05' — Device-order indicator.
3 PORDMOD Device-order type:
Symbol Value Order-Type Triggered By

PORDMSTR X'01' Start device PSTART
PORDMSTP X'02' Stop device PSTOP
PORDMRST X'03' Restart device PRESTART
PORDMPGO X'04' Reactivate device PGO
PORDMSET X'05' Setup device PSETUP
PORDMFLH X'06' Cancel processing PFLUSH
PORDMXMT X'07' User defined PXMIT
PORDMSND X'10' Send message Subsystem
PORDMSLD X'11' Set logical destination Subsystem

Figure 50 (Part 1 of 2). Format of the Device/Subsystem-Order Header Section

180 IBM VSE/POWER Application Programming

Ext. Dev. Support - Orders and Signals

orders.

Field
Bytes Name Contents / Description
4 PORDFLAG Flag byte — to be set to X'80' by the subsystem in a
send-message order if the message is to be held for
redisplay (by a PDISPLAY M command).
5 PORDMSGL Length of message (in binary notation) — To be
supplied by the subsystem in a send-message order.
6 -7 Reserved.
8 - F PORDSUBS Requesting subsystem's name (in character notation).

10 - 17 PORDNODE Requesting node's name (in character notation). Your
own VSE system's node name (or blank) if the trigger-
ing command was submitted within the domain of your node.

18 - 1F PORDUSER Requesting user's identifier (in character notation).
Blank if the triggering command was entered by a central
operator.

20 -~ n Variable-data area — See also "Note" below.

Note: Details are given in the sections discussing the device/subsystem
The variable-data area includes a parameter string if one was
specified in the triggering command. This string normally provides oper-
ator-specified information that your program needs. Tell your operator
what to specify and how.

VSE/POWER's requirements regarding the parameter string are:

It may not be longer than 60 characters. This includes blanks or
commas that your program may need as delimiters.

It must start with an alphameric character in the first character

position.

It must include at least one blank in any of the second through 16th
character positionms.

An apostrophe (') within the string must be entered by the operator
as two apostrophes ('').

Figure 50 (Part 2 of 2). Format of the Device/Subsystem-Order Header Section

Chapter 3. External Device Support

181

Ext. Dev. Support - Orders and Signals

Order-Response Record

When VSE/POWER passes a device order, it expects your program to return
the corresponding order-response record with your program's next XPCC
request. If your program passes an invalid response record, VSE/POWER:

1. Rejects this record with a return/feedback-code combination of
PXPRCERR/PXPO8UXR in the XPCCB bytes PXPRETCD and PXPFBKCD.

2. Waits for a new corrected response record.
When your program passes a subsystem order, VSE/POWER returns the
corresponding order-response record also in response to the next XPCC

request.

For the format of the record and a discussion of its contents refer to
Figure 51. In the assembly output listing for the PWRSPL macro with

TYPE=MAP, you find a DSECT for the record section at the label PORDRESP.

| Field
Bytes Name Contents / Description
0 -1 PORSRLEN Record length (in binary notatiom).
2 PORSTYPE X'06' — Order-response record indicator.
3 PORSMOD Device-order type — The type indicator of the de-
I vice order to which a response is being made.
|| Consider picking up field PORDMOD of the device order,
| | which is discussed
| under "Device/Subsystem-Order Header Section' on page 180.
4 Reserved.
5 PORSMSGL Length of the message (in binary notation), if there
is one; else X'00'.
6 PORSRETC Order return code:

Symbol Value Explanation

PORSOK X'00' Order accepted.
PORSINV X'08' Order not accepted.

e e e

Figure 51 (Part 1 of 2). Format of the Order-Response Control Record

182 IBM VSE/POWER Application Programming

Ext. Dev. Support - Orders and Signals

Field
Bytes Name Contents / Description
7 PORSFDBK Order feedback code:

Symbol Value Explanation

From the subsystem to VSE/POWER:

PORSFOK X'00' All OK.

PORSFPAR X'0Ol1' Missing or invalid parameter string.

PORSFONA X'02' Subsystem-internal reason.

PORSFDUN X'03' Device to be started is unknown.

| PORSFDBS X'04' Device to be started is busy.

| PORSFDOS X'0O5' Device to be started is out of service.

PORSFDRJ X'06' Device start rejected for sub-
system-internal reason.

From VSE/POWER to the subsystem:

PORSFINV X'0Ol1' Order is invalid or unknown.

PORSFOTS X'02' Order is too short.

PORSFMSG X'03' Message text is too long.

PORSFSLD X'04' 1Invalid destination in a preceding
set-logical destination order.

8 - F PORDSUBS Destination subsystem's name (in character notation).

I 10 - 17 PORDNODE Destination node's name (in character notation).
| Blank if the message passed with the order-response
record is to be routed to the system operator.

18 - 1F PORDUSER Destination user's identifier (in character notation).
Blank if the message passed with the order-response
record is to be routed to the system operator.

20 - 97 PORSMSG Message text — See '"Note" below.

Note: Applies to order-response records from the subsystem to
VSE/POWER.

The contents of this field are picked up by VSE/POWER. These contents,
the message text, must be alphameric; it can be up to 120 characters long.
A shorter text must be padded with blanks at its end. Your program

can include an error message here if, for example, the parameter

string passed with the device order is in error. VSE/POWER routes

this message to the user identified by fields PORDSUBS, PORDNODE,
PORDUSER, and translates the message text to uppercase.

Figure 51 (Part 2 of 2). Format of the Order-Response Control Record

Chapter 3. External Device Support 183

Ext. Dev. Support - Orders and Signals

Start-Device Order

VSE/POWER passes the order to your program when a PSTART DEV command is

processed for a device under your program's control.

Not until it has

accepted the order (by a corresponding order-response record) can your
program request VSE/POWER to pass output spooled for the device.

If the device cannot be started, your program must indicate this and

give a reason by setting the return and feedback codes in the

order-response record.

VSE/POWER to discontinue the communication path.

Figure 52 shows the format of the device order's data section and the
return and feedback codes that your program may have to supply in the

response record.

A return code other than PORSROK (X'00') causes

Device-Order Data Section:

r

Return Code Feedback Code

Field
Bytes Name Contents / Description
20 - 27 PORDSDEV Device name specified in the PSTART command.
28 - 2B PORDSCLS Class(es) specified in the PSTART command.
2C - 2E Reserved.
2F PORDSPSL Length of parameter string (in binary notation).
30 - 6B - Parameter string as supplied in the PSTART command.

Response-Record Return and Feedback Codes:

Symbol Value Symbol Value Explanation
PORSROK X'00' PORSFOK X'00' Order accepted, device started.
PORSRINV X'08' Order not accepted.
PORSFPAR X'01' Parameter string is missing or invalid.
PORSFONA X'02' Subsystem-internal reason.
PORSFDUN X'03' Device to be started is unknown.
PORSFDBS X'04' Device to be started is busy.
PORSFDOS X'05' Device to be started is out of service.
PORSFDRJ X'06' Device start rejected for subsystem-

internal reason.

—

Figure 52. Data Section and Return and

Feedback Codes for a Start-Device Order

184 IBM VSE/POWER Application Programming

Ext. Dev. Support - Orders and Signals

Stop-Device Order

Figure 53 shows the format of the device order's data section and the
return and feedback codes that your program may have to supply in the
response record.

VSE/POWER passes the order to your program when either of the following
occurs:

. A PSTOP DEV command is processed for a device under your program's
control.

. An orderly VSE/POWER shutdown in response to a PEND command is in
process.

VSE/POWER honors your program's GET-spooled data requests even after the
program has passed the corresponding response record. In fact, it
honors these requests until your program has passed its device-stopped
signal.

Device-Order Data Section:

1
|
|
|
Field I
Bytes Name Contents / Description |
|
20 PORDPTRB Termination request byte: |
Symbo1l Value Explanation |
|
| PORDPEOJ X'80' Stop at end of job
PORDPIMM X'40' Stop immediately
PORDPRST X'20' Stop for later restart |
| 21 - 22 Reserved.
I 23 PORDPPSL Length of parameter string

24 - 5F PORDPPRM Parameter string |
Response-Record Return and Feedback Codes:

Return Code Feedback Code |

Symbol Value Symbol Value Explanation

PORSROK X'00' PORSFOK X'00' Order accepted.
PORSRINV X'08' Order not accepted. |
PORSFPAR X'0Ol' Parameter string is missing or invalid. |
PORSFONA X'02' Subsystem-internal reason.

Figure 53. Data Section and Return and Feedback Codes for a Stop-Device Order

Chapter 3. External Device Support 185

Ext. Dev. Support - Orders and Signals

A PSTOP DEV,..,FORCE command does not cause a stop-device order to be
passed by VSE/POWER. Instead, VSE/POWER discontinues the communication
path immediately. VSE/POWER informs your program about this by a
return- and feedback-code combination of PXPRCNOC and PXP10PSP.

Setup-Device Order

VSE/POWER passes the order to your program when a PSETUP DEV command is
processed for a device under your program's control. The order
indicates the number of pages that are to be printed so that the
operator can do the required device setup. As a help for the device
operator, consider having your program replace on the setup pages:

All letters by the character X.
Each digit of a number by a 9.

Figure 54 below shows the format of the device order's data section and
the return and feedback codes that your program may have to supply in
the response record.

r

Device-Order Data Section:

Field
| Bytes Name Contents / Description

20 - 23 PORDUPGE Number of pages (in binary notation).

| 24 - 2E Reserved.

] 2F PORDUPSL Length of parameter string (in binary notation).
30 - 6B PORDUPRM Parameter string

Response-Record Return and Feedback Codes:

Return Code Feedback Code

I Symbol Value Symbol Value Explanation

PORSROK X'00' PORSFOK X'00' Order accepted.

PORSRINV X'08' Order not accepted.
PORSFPAR X'0O1' Parameter string is missing or invalid.
PORSFONA X'02' Subsystem-internal reason.

Figure 54. Data Section and Return and Feedback Codes for a Setup-Device Order

186 IBM VSE/POWER Application Programming

Ext. Dev. Support - Orders and Signals

Your program must inform VSE/POWER when it is finished with the setup
processing. This is done by passing a setup-processed signal. The
signal causes VSE/POWER to re-positions its retrieval pointers to the
beginning of the currently processed queue entry.

Reactivate-Device Order

VSE/POWER passes the order to your program when a PGO DEV command is
processed for a device under your program's control. Figure 55 above
shows the format of the device order's data section and the return and
feedback codes that your program may have to supply in the response
record.

Restart Device Order

VSE/POWER passes the order to your program when a PRESTART DEV command
is processed for a device under your program's control. Figure 56 on
page 188 shows the format of the device order's data section and the
return and feedback codes that your program may have to supply in the
response record.

Device-Order Data Section:

Bytes Name Contents / Description

Field

20 - 22 Reserved.
24 - 5F PORDGPRM Parameter string
Response-Record Return and Feedback Codes:

Return Code Feedback Code

PORDGPSL Length of parameter string

Symbo1l Value Symbol Value Explanation

PORSROK X'00' PORSFOK X'00' Order accepted.
PORSRINV X'08' Order not accepted.

PORSFPAR X'01' Parameter string is missing or invalid.
PORSFONA X'02' Subsystem-internal reason.

Figure 55. Data Section and Return and Feedback Codes for a Reactivate-Device Order

Chapter 3. External Device Support 187

Ext. Dev. Support - Orders and Signals

Device-Order Data Section:

Field
Bytes Name Contents / Description
20 PORDTFLG Restart-sign flag:
Symbol Value Explanation
PORDTPOS X'80' Plus sign (forward count)
PORDTMIN X'40' Minus sign (backward count)
PORDTABS X'20' No sign (start from the beginning)
21 - 23 Reserved.

24 - 27 PORDTPGE Number of pages/printlines — How to interpret
this number depends on your application.

28 - 2E Reserved.
2F PORDTPSL Length of parameter string

30 - 6B PORDTPRM Parameter string

Response-Record Return and Feedback Codes:

Return Code Feedback Code

Symbol Value Symbol Value Explanation

PORSROK X'00' PORSFOK X'00' Order accepted.

PORSRINV X'08' Order not accepted.
PORSFPAR X'01' Parameter string is missing or invalid.
PORSFONA X'02' Subsystem-internal reason.

Figure 56. Data Section and Return and Feedback Codes for a Restart-Device Order

Cancel-Output Order

VSE/POWER passes the order to your program when a PFLUSH DEV command is
processed for a device under your program's control.

Figure 57 on page 189 shows the format of the device order's data

section and the return and feedback codes that your program may have to
supply in the response record.

188 IBM VSE/POWER Application Programming

Ext. Dev. Support - Orders and Signals

Device-Order Data Section:

Field
Bytes Name Contents / Description
20 PORDFFLG HOLD indicator — HOLD was specified in the
command if the byte is set to PORDFHLD (X'80');
else, the byte is set to X'00'.
21 - 22 Reserved.
23 PORDFPSL Length of parameter string

24 - 5F PORDFPRM Parameter string

Response-Record Return and Feedback Codes:

Return Code Feedback Code

Symbol Value Symbol Value Explanation I

PORSROK X'00' PORSFOK X'00' Order accepted.

PORSRINV X'08' Order not accepted.
PORSFPAR X'01' Parameter string is missing or invalid.
PORSFONA X'02' Subsystem-internal reason.

Figure 57. Data Section and Return and Feedback Codes for a Cancel-Output Order

Transmit-Command Order

VSE/POWER passes the order to your program when a PXMIT DEV command is
processed for a device under your program's control. The command
specified in the PXMIT command is passed to your program unchanged.

Figure 58 on page 190 shows the format of the device order's data

section and the return and feedback codes that your program may have to
supply in the response record.

Chapter 3. External Device Support 189

Ext. Dev. Support - Orders and Signals

Device-Order Data Section:

|
l
|
I
I
I
I

Field
Bytes Name Contents / Description
I
20 PORDXPSL Length of the specified command.

21 - A4 PORDXPRM The command specified in the PXMIT command.

Response-Record Return and Feedback Codes:

Return Code Feedback Code

Symbol Value Symbol Value Explanation

PORSROK X'00' PORSFOK X'00' Order accepted.

PORSRINV X'08' Order not accepted.
PORSFONA X'02' Subsystem-internal reason.

Figure 58. Data Section and Return and Feedback Codes for a Transmit-Command Order

Subsystem Orders

VSE/POWER accepts from your program and processes subsystem orders as
follows:

Send-message order
A Set-logical-destination order

To pass an order to VSE/POWER, your program must:

1. Set the buffer-type flag in the XPCCB to indicate that your
program's send buffer contains a control record.

2. Ensure that the buffer contains the correct order-control record and
nothing else.

3. Issue an XPCC request with FUNC=SENDR.

Your program can pass an order at any time after completion of a
preceding request.

190 IBM VSE/POWER Application Programming

Ext. Dev. Support - Orders and Signals

VSE/POWER replies to the order with the corresponding response record.
Figure 59 on page 191 shows the return and feedback codes which
VSE/POWER may set in its .response record.

Return Code Feedback Code

Symbol Value Symbol Value Explanation

PORSROK X'00' PORSFOK X'00' Order accepted.

PORSRINV X'08' Order not accepted. .
PORSFINV X'0l1' Order is invalid or unknown.
PORSFOTS X'02' Order is too short.
PORSFMSG X'03' Message text is too long.
PORSFSLD X'04' 1Invalid destination in a preceding
set-logical destination order.

Figure 59. Return and Feedback Codes for Subsystem Orders

Send-Message Order: Your program would pass a send-message order when
it detects an error or an intervention-required condition on the
involved device. This order includes the message that your program
wants to be routed to the responsible operator or user.

VSE/POWER routes the message as instructed — to the system console if
the order does not include a user identifier. It issues the message
with all alphabetic characters converted to uppercase.

If the message cannot be forwarded to its final destination, then
VSE/POWER discards the message without informing your program.
Therefore, if your program requires a reply to the message, be sure to
supply the identifier of a user that you know to be online.

The data section of a send-message order (labeled PORDMSG) contains the
free-format message as set up by your program. This message can have a
length of up to 120 alphameric characters.

Set-Logical-Destination Order: A user can route a job's output to a
certain destination. This is done by specifying, in an * §§ LST

(* $$ PUN) statement for the output, a user identifier with or without a
node name. If this identifier is the name of a device under your
program's control, then the output is selectable for processing by your
program.

By way of a set-logical-destination order, you can instruct VSE/POWER to
"equate" up to eight names to the one by which the involved output

Chapter 3. External Device Support 191

Ext. Dev. Support - Orders and Signals

device is known in your program. VSE/POWER then selects an output for
processing by this device if it is destined for an equated user.

However, if the original name by which the output device is known in
your program is to be used as userid for routing output further, that
name must be included in the list of logical destinations. An operator
who issued a PSTART DEV command for a device can control that device
only by commands using the same device name.

You may define identical logical destinations for several (or all)
devices used under your program's control for the processing of spooled
output. If you do this, two or more of these devices are available for
the processing of output for certain logical destinations. In other
words, you get a certain pool effect for your output devices. Consider
this if you see a need for load levelling for the involved output
devices.

You can pass a set-logical-destination order for a device at any time
after this device has been started in response to a start-device order.

VSE/POWER uses the defined logical destination names when your program
passes the next generic GET-open service request via the same
communication path. Therefore, code a set-logical-destination order
followed by a generic GET-open service request at the point where your
program finds VSE/POWER's service task waiting for work. The
set-logical-destination order may make one or more output queue entries
selectable for processing by your program.

In a set-logical-destination order, bytes 0 through 3 of the header
section are used as shown in Figure 50 on page 180; the remaining bytes
of this section are of no significance. The order's data section, an
area of 64 bytes at label PORDDLOG, is used for the definition of
logical destinations, names of up to eight alphameric characters, as
follows:

1. Fill the area with blanks.
2. Specify the destination names, one after the other and one per name
slot of eight bytes. Include the logical name of the output device,

if necessary. For VSE/POWER, a blank in the first character
position of a name slot means that no more names follow.

Process a Signal
Signals supply status information required at the other end of a
communication path. VSE/POWER and your program can work with status
signals as follows:
. Output-arrived signal
VSE/POWER passes this signal to your program when an output queue

entry has become available for processing on the involved device.

192 1IBM VSE/POWER Application Programming

Ext. Dev. Support - Orders and Signals

If you operate in a shared-spooling environment, this output may
have been placed into the output queue by one of the other sharing
systems.

The format of this signal, a control record, is shown in Figure 60.
VSE/POWER passes the record as the only one to your program's reply
buffer for the communication path after a wait-for-order/signal or
return-order/signal request. VSE/POWER needs no specific response
after having passed an output-arrived signal.

Note: A generic GET-open service request in response to an
output-arrived signal may nevertheless result in a "no entry
available'" response by VSE/POWER. Another user of your
system may have requested that this selectable output queue
entry be processed, or the entry's class may have changed.

Device-stopped signal

VSE/POWER expects this signal from your program after (but not
necessarily in immediate response to) a stop-device order. Your
program should pass the signal to VSE/POWER after all available
records have been processed on the involved device.

r T T !
| | Field | |
|Bytes | Name | Contents / Description |
| | | 1
l 1 T !
|0 - 1 |PSGNRLEN | Record length. |
| I | l
| 2 |PSGNLTYP | X'07' - Signal-control record indicator. |
I | I I
| 3 |PSGNLMOD | X'01' - Output-arrived indicator. |
l | | I
|4 - 7 | | Reserved. |
L | I j

Figure 60. Output-Arrived Signal Control Record

Setup-processed signal

VSE/POWER expects this signal from your program after (but not
necessarily in immediate response to) a setup-device order. Your
program should pass the signal to VSE/POWER when the program's
processing for the necessary setup activity is complete.

To pass a signal to VSE/POWER, your program must:

1.

2.

Set up a null send buffer.

Set byte PXUBTYP of the XPCCB to zero.

Chapter 3. External Device Support 193

Ext. Dev. Support - Orders and Signals

3. Set byte PXUSIGNL of the XPCCB to PXUSDSTP (for device-stopped) or
PXUSSET (for setup processed).

4., 1Issue an XPCC request specifying FUNC=SENDR.

S. Check the return codes in register 15 and in the XPCCB byte
IJBXRETC.

6. Issue a WAIT IJBSECB.

7. When the ECB is posted, VSE/POWER has returned a null buffer and
passed return/feedback codes in the XPCCB user data. Check the VSE
reason code in field IJBXREAS, and the VSE/POWER return and feedback
codes.

GENERAL HINTS

The following remarks generally apply to using the external device
support.

Routing of VSE/POWER-Generated Messages for External Devices

If the device owner issuing the PSTART DEV,devname command is not the
local central operator but, for example, a remote-node operator (or an
authorized subsystem administrator), then VSE/POWER routes all messages
concerning the device status to

1. The device owner (PSTART DEV operator), and to

2. The central operator, if required by the severity of the message, or
even to

3. The command originator, if DEV-type commands for an already started
output device originated from a third party.

Range of Support for Communicating with a Subsystem

194

Throughout the preceding discussion of the external device support it
was assumed that, to process an output queue entry, your program would
normally issue a generic GET-service request with PWRSPL...QUEUE=LST
specified. However, it is also possible to issue a GET request to the
PUN queue, as well as a CTL request to any of the VSE/POWER queues. GET
requests to the RDR queue and PUT requests are not allowed.

No password checking is done for a queue entry that is to be processed
under subsystem control.

IBM VSE/POWER Application Programming

Ext. Dev. Support - General Hints

| Use of VSE/POWER Commands During Program Debug Activities

As a help in program debugging, you can consult the output as displayed
by the following commands:

e PDISPLAY A,DEV
* PINQUIRE DEV={devname|ALL}

For both commands, see the examples in VSE/POWER Installation and
Operations Guide, following the description of the respective commands.

Use the PSTOP DEV,devname,FORCE command if you want to force an
immediate termination of the communication path to a subsystem device.

Chapter 3. External Device Support 195

196 IBM VSE/POWER Application Programming

Appendixes

APPENDIX A.

READER EXIT ROUTINE

VSE/POWER supports user-written reader exit routines for local input and
for input from the network. This appendix discusses the routine for
local input; for a discussion of the exit routine for networking input,
see the publication VSE/POWER Networking User's Guide.

To write a reader-exit routine for local input, consider the following:

Conversion of control statements to uppercase characters

VSE/POWER performs this conversion for all VSE/POWER JECL statements
and for the VSE job control statements // JOB and // EXEC.

Passing of control to the exit routine

The routine receives control from VSE/POWER when a VSE job control
or a VSE/POWER JECL statement is being read, either from a local or
a remote reader, but not if DISP=I is used. VSE/POWER passes to the
routine statements as listed below, including continuation lines, if
any:

All statements beginning with //
All statements beginning with /.
All statements beginning with *
/%
/&

Coding conventions for the routine

The routine must be re-enterable if two or more VSE/POWER reader
tasks are running at the same time. A reader task in this context
is:

— A task started by a PSTART RDR,... command.

~ A task servicing a job-input spool request from another
partition.

—~ An RJE reader task started when a work station sends job data to
VSE/POWER.

The routine may change or delete any VSE job control or JECL
statement; it may insert other statements. The routine may not
perform an operation that causes a wait condition.

If the routine inserts a statement, VSE/POWER handles this statement
and then passes to the routine once more the original statement.
After having made all the insertions, the routine must indicate
whether to delete or process the original statement.

Appendix A. Reader Exit Routine 197

Reader Exit

VSE/POWER processes each statement as it is received from the
routine.

Note: If the routine inserts statements after it has passed the
* $$ EOJ statement, VSE/POWER runs out of processor storage
during end-of-job processing, and the operator gets a wait
message. Be sure to avoid a situation such as this.

When the exit routine gets control from VSE/POWER, register O
contains the address of the statement read and register 1 the length
of the statement. To return to VSE/POWER, issue a BR 14
instruction.

The exit routine may not alter the contents of registers 10, 11, 12,
and 13. These registers are reserved for VSE/POWER. Register 11
points to the task control block of the read task and may be used to
identify the task.

The exit routine must return control to VSE/POWER with one of the
following return codes in register 15:

X'00' Process the statement passed to the routine. The exit
routine may update fields within the statement but may not
change its length or address.

X'04' Ignore this statement.

x'o8' Insert and process the new statement; return the original
statement to the exit routine once more. Any number of
statements may be inserted.

The address of the statement that is to be inserted must be
provided in register O, the statement's length in register
1. This length must be X'50".

x'oc' Terminate the VSE job. This code is valid only when
VSE/POWER passed a // JOB statement.

X'10' Terminate the VSE/POWER job.
Termination conditions (return codes X'OC' and X'10') at VSE/POWER

job boundary (first statement of a VSE/POWER job) are ignored, and
VSE/POWER issues a message.

If ACCOUNT=YES was specified, the number-of-records count in the reader
account record reflects records added or deleted by the exit routine.

Figure 61 gives a coding example for a reader exit routine.

198 1IBM VSE/POWER Application Programming

Reader Exit

PUNCH * PHASE IPW$SREX,+0 °

SPACE
PO T T T TR S PR R R L e L L L L A g h i d b il
*ok ok : LR

*xk READER EXIT ROUTINE *xx
ok k k%

Rk EXANMPLE L
*ok K T T

*********#*********t***t***#*##**t*##*t##**#*‘*#***t***##‘t*****#*t"**
SPACE 2
* THIS READER EXIT PHASE IS A NON RESIDENT ROUTINE
* LOCATED IN ITS OWN CONTROL SECTION WITHIN THE
* PAGEABLE AREA OF THE VSE/POWER PARTITION.
SPACE
SINCE THE FOLLOWING CODE IS NOT REENTRANT, IT IS
ASSUMED THAT ONLY ONE READER (PHYSICAL DEVICE)
IS ACTIVE AT A TIME.
SPACE :
THE FOLLOWING ADDRESSABILITY IS ASSUMED AT ENTRY TO
THE READER EXIT ROUTINE.
SPACE 2
RO - ADDRESS OF STATEMENT BEING PASSED FROM VSE/POWER
R1 - LENGTH OF STATEMENT BEING PASSED PROM VSE/POWER
R10 - ADDRESS OF VSE/POWER NUCLEUS (DO NOT CHANGE)
R11 - ADDRESS OF TASK CONTROL BLOCK (DO NOT CHANGE)
R12 - ASYNCHRONOUS CONTROL REG (DO NOT CHANGE)
R13 - SAVE AREA ADDRESS REGISTER (DO NOT CHANGE)
R14 - RETURN ADDRESS
R15 - BASE REG OF THIS ROUTINE -RETURN CODE
SPACE
*******t*********t****#********##******##***#*#******t****#*t*#*#*#****
* THIS ROUTINE EXAMINES THE ACTION CODE *
* (LOCATED IN COLUMN 80 OF A CARD) *
* AND DETERMINES THE CORRECT ACTION TO BE TAKEN *
t#**#**********t***t****#***#‘*********##********#*t*****‘*‘***#**#t‘**
SPACE
THE ACTION CODES ARE:-
C*D® - DELETE THIS CARD
C'I* - INSERT A CARD BEFORE THIS CARD
C'F* ~ FLUSH THIS DOS/VSE JOB
ctpr - FLUSH THIS VSE/POWER JOB
C*C* - CHANGE THIS CARD
Cv * - RETURN THIS CARD UNCHANGED
SPACE
BEFORE RETURNING CONTROL TO VSE/POWER, A RETURN CODE
IS SET IN REGISTER 15.
SPACE
00000000
00000004
00000008
0000000C
00000010
EJECT
IPWSSREX START O ESTABLISH CSECT
USING *,R15 BASE REG ESTABLISHED BY VSE/POWER

* # #

* #*

LR B 20 SR BE BE B

LR R K SR BE B 3

* *

NORMAL RETURN, PROCESS THIS STATMENT
DELETE, DELETE THIS STATEMENT
INSERT, INSERT NEW STATEMENT (ADD)
FLUSH THE DOS/VSE JOB

FLUSH THE VSE/POWER JOB

LI R IR AR 2

Figure 61 (Part 1 of 3). Coding Example of a VSE/POWER Reader Exit Routine

Appendix A. Reader Exit Routine 199

Reader Exit

L 2R 2R 2R 2K 2R 2% JR /

LR

NOTE:

EJECT

R2,R0

GET ADDR OF RECORD

IT IS NOW THE USERS RESPONSIBILITYI TO
DEVELOP RIS OWN ROUTINE CONCERNING HIS

PROBLEN DEFINITION.

SEEERRE R RER AR AR R R RR KK AR AR AR R AR AR A RRA R AB AR KRR AR XX R AREER AR ARKRRAS R KRR &S

*
*
*
*
=
*

IPRNED

IPWPLT

IPWNCH

e

PWEXX

THE POLLOWING PIECE OF CODE IS USED TO OBTAIN THE
ACTION TYPE AND GETS THE RELATED RETURN CODE FOR
VSE/POWER

EJECT
DS
USING
SPACE
LA
CLI
BE
SPACE
CLI

CL1
BNE
nvI
MVC
DS
SR

RETURR TO VSE/POWER

DS
LR
BR
DROP

OH
CDSECT, R2

R3,4
ACTION,C*D®
IPWEXX

ACTION,C*I®
IPWFLT

33'8
ACTIOR,C* »*
RO, INSERT
R1,L*INSERT
IPWEXX

OH

R3,12
ACTION,C°F®*
IPHEXX

R3, 16
ACTION,C'P*®
IPWEXX

ACTION,C'C®
IPWNCH
ACTION,C* *
FIELD,NOTCHA
]}

R3,R3

0H
R15,R3
R4

R2

ERERAEEER AR ER RS RRERARRERBABK KRR KBER AR AR ABEB AR AR K KRR ERKRRBR AR XS R K S &

ENTRY POR TEST FOR INSERT
ESTABLISH ADDREBSSABILITY

ASSUME DELETE
DO WE WANT TO DELETE THIS CARD
BRANCH IF YES

DO WE WANT TO INSERT
««s BRANCH IF NOT

SET PROPER RETURN CODE
BLANK OUT ACTION CODE
POINT TO CORRECT CARD
GET PROPER LENGTH
RETURN TO VSE/POWER

ASSUME FLUSH DOS/VSE JOB

DO WE WANT TO FPLUSH DOS/VSE JOB
BRANCH IF YES

ASSUME FLUSH OF VSE/POWER JOB

DO WE WANT TO FPLUSH VSE/POWER JOB
BRANCH IF YES

DO WE WANT TO CHANGE THIS CARD
... BRANCH IF NOT

BLANK ACTION CODE

MOVE IN CHANGE INFORMATION

GBT NORMAL RETURN CODE

SET RETURN CODE
RETURN TO VSE/POWER
RELEASE ADDRESSABILITY

Figure 61 (Part 2 of 3). Coding Example of a VSE/POWER Reader Exit Routine

200 IBM VSE/POWER Application Programming

*
*
*
*
*
3

Reader Exit

EJECT

SERRRERERSEAEAARRKEBERRBABREEERE AR KRR A RS RRBREK AR L AR AR R R R & &
% *
* DEPINITIONS »
* *
AXREKEBREEARER R AR REREEE KRS AR ERRA R RAR AR RERR R RSB RERR R E KRR AR
SPACE 2
INSERT DC CLBO®* THIS RECORD IS INSERTED®
NOTCHA DC C*CHANGED® CHANGE INFO
SPACE 2
EEARERRERER AR XA SRS AR RRARRE AR E AR RE XA KR RERARRR KRB AR R K
SPACE
CDSECT DSECT
DS CL72
FIBLD DS CL7 CHANGE FIELD
ACTION DS C ACTION TYPE CODE
SPACE 2
*
* REGISTER EQUATS
*
RO EQU 0 GENERAL PURP. REG. 0
R1 EQU 1 GENERAL PURP. REG. 1
R2 EQU 2 GENERAL PURP. REG. 2
R3 EQU 3 GENERAL PURP. REG. 3
RY EQU & GENERAL PURP. REG. 4
R5 EQU 5 GENERAL PURP. REG. 5
R6 EQU 6 GENERAL PURP. REG. 6
R7 BQU 7 GENERAL PURP. REG. 7
R8 EQU 8 GENERAL PURP. REG. 8
R9 EQU 9 GENERAL PURP. REG. 9
R10 EQU 10 GENERAL PURP. REG. 10
R11 EQU 11 GENERAL PURP. REG. 11
R12 EQU 12 GENERAL PURP. REG. 12
R13 EQU 13 GENERAL PURP. REG. 13
R14 EQU 14 GENERAL PURP. REG. 14
R15 BEQU 15 GENERAL PURP. REG. 15
END

Figure 61 (Part 3 of 3). Coding Example of a VSE/POWER Reader Exit Routine

Appendix A. Reader Exit Routine 201

Appendixes

202 IBM VSE/POWER Application Programming

Appendixes

APPENDIX B. VSE/POWER SPOOL-MACRO SUPPORT

This Appendix describes the XECB-macro based cross-partition
communication (SPOOL-macro) support. This support has been available
for accessing VSE/POWER services from within a program; it is retained
to ensure program compatibility, and you can use it side by side with
the newly available XPCC-macro based support described in Chapter 2.
Continued use of the SPOOL-macro support requires that, for VSE/POWER
table generation, you specify SPOOL=YES in the POWER macro.

For using the SPOOL-macro support, macros are available as listed below.
For a description of these macros, refer to the indicated sectionms.

CTLSPOOL See "CTLSPOOL: Control VSE/POWER Jobs" on page 209.
GETSPOOL See "GETSPOOL: Retrieve Data from the Queues'" on page 215.
PUTSPOOL See "PUTSPOOL: Submitting a Job Stream' on page 220.

SPL See "SPL: Generate a Spool Parameter List" on page 205.

In addition, you need the VSE macro XECBTAB, which is described in the
publication VSE/Advanced Functions, Application Programming: Macro
Reference.

To connect to VSE/POWER, use the VSE XECBTAB macro with the following
operands:

XECBTAB TYPE=DEFINE,
XECB={ SPMXECB | ICRXECB}
ACCESS=XWAIT

Specify XECB=SPMXECB for a GETSPOOL or a CTLSPOOL macro, specify
XECB=ICRXECB for a PUTSPOOL macro. An XECB (cross-partition event
control block) must be at least eight bytes long.

VSE/POWER requires the three-byte address of a spool parameter list
(SPL) to be inserted into the XECB before your program issues a service
request. You insert this address at:

SPMXECB+5 for a GETSPOOL or a CTLSPOOL request.
ICRXECB+5 for a PUTSPOOL request.

Other than XECBTAB, no VSE macro is required for VSE/POWER's SPOOL-macro
support. Issue an XECBTAB=DELETE for the defined XECBs when the support
is no longer required by your program.

Coding Practices: Only one user of the PUTSPOOL macro, and only one
user of either the GETSPOOL or the CTLSPOOL macro may be active at any
point in time. You can bypass this restriction and also avoid many a
contention situation by using the support described in Chapter 2 on
page 29.

Appendix B. VSE/POWER SPOOL-Macro Support 203

SPOOL Macro Support

For the conventions used in presenting macro formats in this appendix,
refer to Chapter 1 of VSE/POWER Installation and Operations Guide. A
coding example for using the SPOOL-macro support is given under "Coding
Example for Using the SPOOL-Macro Support" on page 226.

Notes:

1.

VSE/POWER responds to spooling requests from the SVA. However, the
required SPLs and data areas must reside in the partitions that
contain the requesting programs.

A program using the SPOOL-macro support must include an SPL TYPE=MAP
macro.

The operand PBUF=buffaddr must be specified in either the definition
macro SPL, or in the execution macro (CTLSPOOL, GETSPOOL, or
PUTSPOOL) that is executed first in the program.

A system error may occur if:

a. The partition using the SPOOL-macro support has a higher
priority than VSE/POWER.

b. An abnormal end or shut down of VSE/POWER occurs before all
active SPOOL-macro service tasks have completed.

Before using the support, you must save your registers 0, 1, 13, 14,
and 15 (they are used and overwritten by VSE/POWER). Register 15
contains the return code.

The operands CLASS= and DISP= are not supported in the PUTSPOOL
macro or its associated SPL.

To specify the output class or disposition for a job submitted by
PUTSPOOL, include an * $$ LST or * $$ PUN statement at the beginning
of the job. If you supply an * $$ JOB statement, include the

* $$ LST or * $$ PUN statement immediately behind the * §$§ JOB
statement.

If these PUTSPOOL operands have already been coded in an existing
program, VSE/POWER updates the SPL with the specified value (in case
the SPL is used later by a GETSPOOL or CTLSPOOL macro).

If you use these operands in a modified source program, then:
You receive a warning comment if they occur in the SPL macro.

. You receive an assembler generated MNOTE if they occur in the
PUTSPOOL macro.

204 IBM VSE/POWER Application Programming

SPOOL Macro Support

SPL: Generate a Spool Parameter List

The macro builds a spool parameter list (SPL) for use by the execution
macros PUTSPOOL, GETSPOOL, and CTLSPOOL. Any specification you make in
an SPL is in effect for the execution macro using this SPL, except if
(a) the specification is overridden by a corresponding operand of the
execution macro or (b) the REQ= operand is not specified in the CTLSPOOL
macro; in that case the class specification is modified.

Correct use of the macro requires you to:
1. Store the SPL address into the correct XECB.
2. Load the pointer register named in the SPL=(reg) operand of the

CTLSPOOL, GETSPOOL, or PUTSPOOL macro.

Format of the Macro

The macro can be used with two distinct sets of operands as shown below.

Name | Operation Operands

TYPE=DEFINE
[,CBUF=firstbuffaddr]
[,CLASS={A|class}]
[,DISP={K|disposition}]
[, JOBN={DUMMY| jobname}]
[,NEWVAL=value]
[,PBUF=buffaddr]
[,PBUFL={88 |bufflength}]
[,PWD=password]
[,REQ={ CANCEL|

CLASS |

COMMAND |

DISP|

LOOKUP|

PRI |

REMOTE |

SCRATCH |

STATUS | }]
[,USERID=userid]

[name]| SPL

TYPE=MAP
[, ICRXECB={YES|
[, SPMXECB={YES|

0}]
0}]

1818
e s e s e s — — — —— — —— ——— —— —— — — — ——— a—t— —a— ek e =]

Appendix B. VSE/POWER SPOOL-Macro Support 205

SPOOL Macro Support - SPL Macro

Description of Operands

TYPE=DEFINE
The operand causes an SPL to be set up with the specified
values.

CBUF=firstbuffaddr
The operand specifies the address of the first buffer of a chain
of buffers that contain the job stream. Each of the buffers has
a length of 88 bytes and a format as follows:

Bytes 0 - 3 = Pointer to the next buffer in the chain; set to
zero in the last buffer.
Bytes 4 - 7 Reserved.

Bytes 8 - 87 Spool record.

Up to 4095 such buffers may be chained for each PUTSPOOL access.

CLASS={A|class}
The operand specifies the VSE/POWER output class (A-Z) for the
affected job. The operand is ignored if specified in an SPL for
PUTSPOOL.

DISP={K|disposition}
The operand specifies the output disposition for the affected
job. The operand is ignored if specified in an SPL for
PUTSPOOL.

JOBN={DUMMY | jobname}
The operand specifies the job name to be assigned to the
affected input queue entry for a PUTSPOOL operation or to be
searched for in case of a CTLSPOOL or GETSPOOL operation.

NEWVAL=value
The operand is meaningful only if the SPL is to be used with
CTLSPOOL.

For value in the operand, specify the new value that is to be
assigned in accordance with your specification in the REQ
operand of the CTLSPOOL macro. You can specify a new value for
one of the following:

Class of the job: REQ=CLASS in CTLSPOOL.
Disposition of the job: REQ=DISP in CTLSPOOL.
Priority of the job: REQ=PRI in CTLSPOOL.

A remote identifier: REQ=REMOTE in CTLSPOOL.

The value can be specified in one of the following ways:

C'x' TFor example, NEWVAL=C'A'
X'nn' For example, NEWVAL=X'01'

206 IBM VSE/POWER Application Programming

SPOOL Macro Support - SPL Macro

PBUF=buffaddr
For buffaddr, specify the address of an area for use by
VSE/POWER and for VSE/POWER feedback information on certain
error conditions.

PBUFL={88|bufflength}
For bufflength, specify (in number of bytes) the length of the
buffer whose address is given in PBUF=buffaddr. Define your
buffer's length large enough for your longest data record to fit
into the buffer. VSE/POWER truncates the trailing blanks of a
record; it indicates the length of each record after truncation
in either:

o The four-byte SPL field SPRL if data records are not
blocked, or

° Bytes 2 and 3 of the record prefix if the data records are
blocked (see also the MODE=BUF operand of the GETSPOOL
macro).

The minimum length you can specify is 88.

PWD=password
The operand specifies the password that must be associated with
the request.

If you omit this operand, VSE/POWER sets the SPL's password
field to blanks. Should a password be required nevertheless,
then supply this in your request macro (CTLSPOOL, GETSPOOL, or
PUTSPOOL) .

Note: The default password setting for access requests from a
program is different from the default password setting
for locally submitted jobs. Your program can access a
locally submitted job (or its output) only if a password
was assigned to this job explicitly and if your program
presents this password in the request SPL.

The password can be any alphameric string of up to eight
characters.

REQ={CANCEL|CLASS | COMMAND | DISP | LOOKUP | PRI | REMOTE | SCRATCH | STATUS }
The operand defines a default for CTLSPOOL requests. For a
description of the various specifications, refer to the
description of the CTLSPOOL macro.

USERID=userid
For userid, specify the identifier of the user who originates
the affected queue entry, if this is possible. Normally, you
would supply this identifier in the applicable PUTSPOOL request.

Supply a user identifier, an alphameric string of up to eight
characters, whenever you submit a job to VSE/POWER. This helps

Appendix B. VSE/POWER SPOOL-Macro Support 207

SPOOL Macro Support - SPL Macro

preventing unauthorized access to the job or to output produced
by the job.

TYPE=MAP
The operand causes a DSECT of the SPL to be generated. An SPL
macro with TYPE=MAP must be specified at least once in a program
using the SPOOL-macro support.

ICRXECB={YES |NO}
Specify ICRXECB=YES if the DSECT to be generated is to apply to
an SPL for use with PUTSPOOL.

SPMXECB={ YES |NO}

Specify SPMXECB=YES if the DSECT to be generated is to apply to
an SPL for use with CTLSPOOL or GETSPOOL.

208 IBM VSE/POWER Application Programming

SPOOL Macro Support

CTLSPOOL: Control VSE/POWER Jobs
The macro requests VSE/POWER to do one of the following:

Alter the attributes of a VSE/POWER job.

Cancel a submitted job prior to its execution.

Delete the list or punch output of a job after its execution.
Display the status of any job or of all jobs.

Send a message to another user, remote operator, or central
operator.

° Submit a VSE/POWER command for execution.

Nearly all of the macro's operands allow you to use register notation
(indicated by '"(reg)" as a possible specification). You can use for
this purpose any register, except the registers 0, 1, 14, and 15.

Format of the Macro

Name | Operation Operands

CTLSPOOL SPL=(reg)
[,CCLASS={value| (reg)}]
[,IJNUM={SPL| (reg)}]
[,JOBN={ jobname| (reg)}]
[,MODE=SPOOL]
[,NEWVAL={value| (reg)}]
[,PBUF={buffaddr|(reg)}]
[,PWD={password| (reg)}]
[,QUEUE={ LST | PUN|RDR | XMT}]
[,REQ={ CANCEL |

CLASS |

COMMAND |

DISP|

LOOKUP |

PRI |

REMOTE |

SCRATCH |

STATUS |

(reg)}]
[,USERID={userid|(reg)}]

[name]

[T
| I
F i
| I
I |
I I
| I
I I
I I
I I
| |
| I
I I
I |
I I
I I
I I
| |
I I
I |
I |
I I
| |
|

et e S S U SU
e s e e e i s i o e, e . e . i et s s s, e snmes k. e)

L

Appendix B. VSE/POWER SPOOL-Macro Support 209

SPOOL Macro Support - CTLSPOOL

Description of Operands

210

SPL=(reg)

This mandatory operand specifies the register which contains the
address of the spool parameter list (SPL) to be used. The SPL
defines the request to VSE/POWER.

CCLASS={value| (reg)}

For value, specify the class of the queue entries to which the
CTLSPOOL request is to apply. You can specify the value in one
of the following forms:

C'x' TFor example, CCLASS=C'A’
X'nn' For example, CCLASS=X'F1'

If you use register notation, the specified register must
contain the class in its low-order byte.

This operand is valid only with one of the following:

REQ=CLASS
REQ=DISP
REQ=PRI
REQ=REMOTE

JNUM={SPL| (reg)}

The operand specifies the job number that is to be used as a
search argument together with the job name.

Specify JNUM=SPL if VSE/POWER is to use the job number currently
stored in the SPL.

If you use register notation, the specified register must
contain the job number.

If you omit this operand, VSE/POWER takes the first job with a
matching name.

JOBN={ jobname | (reg)}

For jobname, specify the name by which the affected job is known
to VSE/POWER.

If you use register notation, the specified register must
contain a pointer to an eight-byte storage field containing the
job's name.

MODE=SPOOL

The operand causes VSE/POWER to write its response to the
CTLSPOOL request into the LST queue and to return the LST queue
entry's job name and number in the SPL used for the request.
Issue a GETSPOOL request to retrieve this response from the LST
queue.

IBM VSE/POWER Application Programming

SPOOL Macro Support - CTLSPOOL

MODE=SPOOL is valid only if REQ=COMMAND is specified and the
submitted command is "PDISPLAY queue' or "PDISPLAY PNET." The
job name assigned to the queue entry by VSE/POWER is $SPLnnnn
(where nnnn = the job number assigned by VSE/POWER). The queue
entry's class and disposition are the ones contained in the SPL.

NEWVAL={value| (reg)}
For value, specify the new value that is to be used by VSE/POWER
as the job attribute. You can specify this value in one of the
following forms:

C'x' For example: NEWVAL=C'A'
X'nn' For example: NEWVAL=X'F1'
n For example: NEWVAL=5

The operand is valid only together with one of the following
specifications:

REQ=CLASS For a new class of the job.
REQ=DISP For a new disposition of the job.
REQ=PRI For a new priority of the job.
REQ=REMOTE For a new remote identifier.

If you use register notation, the specified register must
contain the new value.

PBUF={buffaddr| (reg)}
The operand specifies the address of a buffer which is for use
by VSE/POWER and for VSE/POWER feedback information. The length
of this buffer must be 88 bytes.

If you use register notation, the specified register must
contain the buffer's address.

PWD={password| (reg)}
For password, specify the password associated with the affected
VSE/POWER job or output.

If a password was defined on input or in an * $$ LST or * $$ PUN
statement, then the same password is to be specified to have
VSE/POWER execute any queue manipulation commands (such as
PALTER or PDELETE). If there is no match of the passwords, then
VSE/POWER rejects the request with a return code in the
error/feedback bytes of the SPL for the request.

Omission of this operand (and also in the SPL macro) does not
give you access to a queue entry submitted without password
protection via a local spool device.

If you use register notation, the specified register must point

to an eight-byte field that contains the password
left-justified.

Appendix B. VSE/POWER SPOOL-Macro Support 211

SPOOL Macro Support - CTLSPOOL

QUEUE={LST | PUN|RDR | XMT}
The operand specifies the queue to be used for the CTLSPOOL
request:

LST For list queue

PUN For punch queue

RDR For reader queue

XMT For transmission queue

The operand is ignored if one of the following is specified

REQ=CANCEL
REQ=COMMAND
REQ=STATUS

REQ={CANCEL|CLASSICOMMANDlDISPILOOKUPIPRI|REMOTE|SCRATCH|STATUS|(reg)}
The operand specifies the requested operation as follows:

CANCEL
Applies only to job input; causes the affected job to be
deleted from the input queue if it has not yet been
processed.

CLASS
Alters the job class of the job on the specified VSE/POWER
queue. Requires a NEWVAL=value specification in order to be
valid.

COMMAND
Indicates that you have supplied a VSE/POWER command in the
area defined in the PBUF operand. No error detection is
performed for the command, and no error code is returned,
except for an invalid request (an invalid SPL address, for
example). You must analyze the PBUF area in your program
for a possible return message.

Your program can pass only one of the following commands per
CTLSPOOL request:

PALTER queue, jobname See "Note" below
PBRDCST

PCANCEL jobname See "Note" below
PDELETE queue, jobname See '"Note' below
PDELETE MSG

PDISPLAY queue, jobname

PDISPLAY MSG

PDISPLAY A

PDISPLAY T

PDISPLAY PNET

PHOLD queue, jobname See "Note' below
PINQUIRE

PRELEASE queue, jobname See "Note' below
PXMIT

212 IBM VSE/POWER Application Programming

SPOOL Macro Support - CTLSPOOL

Note: The command can be used in a networking environment
for execution at another node if that other node is
controlled by VSE/POWER.

VSE/POWER processes the command on your own VSE node if:

. Both the user-ID and the password match the user-ID and
password specified for the job or its output, or

i At least the supplied password matches the password
defined for the job or its output, should the user-ID
not match.

On another node controlled by VSE/POWER, the command is
presented only if the user-ID matches the one specified for
the affected job or its output.

DISP
Alters the disposition of the affected queue entry.
Requires a NEWVAL=value specification in order to be valid.

LOOKUP
Causes status information about the specified job or output
to be returned in applicable fields of the SPL. VSE/POWER
returns the following information:

Job number

Class

Disposition

Number of lines or cards

Flag (indicating that more than one queue entry exists)

PRI Alters the priority of the affected queue entry. Requires a
NEWVAL=value specification in order to be valid.

REMOTE
Alters the remote identifier to which output of the job is
to be routed. Requires a NEWVAL=value specification in
order to be valid.

SCRATCH
Causes the named job to be deleted from the affected
VSE/POWER output (LST, PUN, or XMT) queue.

STATUS
Causes the following to be passed to the named SPL:

. The disposition of the named job in the field SPQD of
the SPL.

e The job's queue indicator in the field SPSQ of the SPL.
This indicator may be:

L = The job is in the LST queue.

Appendix B. VSE/POWER SPOOL-Macro Support 213

SPOOL Macro Support - CTLSPOOL

214

N = Nothing to display (the specified job name is
unknown) .

The job is in the PUN queue.

The job is in the RDR queue.

P
R
X The job is in the XMT queue.

If the job exists in more than one queue, only its first
occurrence is returned. The queues are searched in this
sequence: LST, RDR, PUN, XMT.

(reg)
Indicates that a request code is provided in the specified
register. You can specify one of the following codes in
this register:

Request Correspond-
Code Type Requested Function ing Command
X'01' PRI Alter the priority PALTER
X'02' DISP Alter the disposition PALTER
X'04' CLASS Alter the class PALTER
X'08' REMOTE Alter the remote ident- PALTER

ifier

X'10' CANCEL Cancel input PDELETE RDR
X'20' SCRATCH Scratch output PDELETE queue
X'40' STATUS Display the status of PDISPLAY

the named job
X'80' COMMAND Process the passed -
VSE/POWER command

USERID={userid| (reg)}

For userid, specify the user identifier of the queue entry that
is to be manipulated. This identifier was defined when the job
was submitted to VSE/POWER. If you omit the operand, VSE/POWER
uses, for your CTLSPOOL request, the user identifier currently
stored in the request SPL.

VSE/POWER rejects your request if:

e You specified an identifier which does not match the
originally defined one.

N You did not specify an identifier, but the identifier
currently stored in the SPL does not match the originally
defined one.

i You did not specify an identifier, no identifier is stored
in the SPL, and an identifier was defined for the affected
queue entry.

If you use register notation, the specified register must point
to an eight-byte field that contains the identifier
left-justified.

IBM VSE/POWER Application Programming

SPOOL Macro Support

GETSPOOL: Retrieve Data from the Queues

The macro requests the retrieval of data currently held in VSE/POWER
queues on disk. VSE/POWER returns the requested data to the buffer area
of the partition issuing the GETSPOOL macro.

VSE/POWER accepts the request only if the affected queue entry's
disposition is D or K. As for an output task, the entry's disposition
is changed to L after processing if this disposition was K, the entry is
deleted if this disposition was D. Therefore, before you can retrieve a
queue entry processed by VSE/POWER previously, you must issue a CTLSPOOL
request that changes this entry's disposition from L to K again.

If you use GETSPOOL and do not read to the end of data, a problem can

occur. The accessed queue entry remains in the VSE/POWER queue in an

active state and the operator is unable to delete the entry (VSE/POWER

displays DISP=*). You can avoid this by one of the following actions:

i Delete the entry using a CTLSPOOL request.

. Submit a CTLSPOOL request following your GETSPOOL, for example:
CTLSPOOL SPL=(reg),REQ=STATUS

. Always read a queue entry until end-of-data.

° Request a GETSPOOL operation for another queue entry.

Any of these actions causes the entry to be deleted (disposition was D)
or closed and retained with disposition L (disposition was K).

In response to the first GETSPOOL request, VSE/POWER returns, in your
SPL, the number of records which the entry contains.

When end of data is reached, VSE/POWER returns the EOF indicator as a
dummy record after the last data record. With buffered GETSPOOL
requests, VSE/POWER returns the EOF indicator in the prefix of the last
data record.

Appendix B. VSE/POWER SPOOL-Macro Support 215

SPOOL Macro Support - GETSPOOL

Format of the Macro

-
| Name | Operation Operands
L

—

[name]| GETSPOOL | SPL=(reg)

[,CC={YES|NO}]

[,CLASS={class| (reg)}]
[,IJNUM={SPL| (reg)}]

[,JOBN={ jobname| (reg)]
[, LINENO={number| (reg)}]
[, MODE=BUF]

[,PBUF={buffaddr|(reg)}]
[,PBUFL={bufflength| (reg)}]
[,PWD={password| (reg)}]
[,QUEUE={ LST | PUN}]

[,USERID={userid|(reg)}]

e e e e — — — — ———— —— . c—]

Description of Operands

SPL=(reg)
This mandatory operand specifies the register which contains the
address of the SPL to be used. The SPL defines the request to
VSE/POWER.

If you used the LINENO operand in a preceding GETSPOOL request,
specify the address of the same SPL in this request; else, line
positioning gets lost.

CC={YES |NO}
Specify CC=YES to have VSE/POWER return the command code of the
CCW for the currently processed data record. VSE/POWER inserts
this code in the field SPCC of the SPL, except when you specify
also MODE=BUF.

If you specify also MODE=BUF, VSE/POWER passes all command
codes, including those which have no associated data, to your
program's buffer.

CLASS={class| (reg)}
For class, specify the class value assigned to the queue entry
(by PUTSPOOL, for example). If you use register notation,
supply the applicable class value in the specified register.

JNUM={SPL| (reg)}

Use this operand if two or more jobs in the accessed queue have
the same name.

216 IBM VSE/POWER Application Programming

SPOOL Macro Support - GETSPOOL

S

Specify JNUM=SPL if VSE/POWER is to use the job number currently
stored in the SPL. Supply the VSE/POWER-assigned job number in
the specified register otherwise. If you omit the operand,
VSE/POWER sets the SPL's job number field to zero.

JOBN={ jobname| (reg)
For jobname, specify the name by which VSE/POWER knows the queue
entry that is to be retrieved. It is the name that was assigned
to the entry (by PUTSPOOL, for example).

If you use register notation, the specified register must point
to an eight-byte field containing the name in that field
left-adjusted.

LINENO={number| (reg)}
Use this operand in your first GETSPOOL request for a queue
entry if retrieval is to begin with a certain output record.
The operand causes retrieval to begin at the specified line
number relative to the beginning of the file. If you use
register notation, supply the line number in the specified
register.

The maximum value that you can specify for number is 16777215.

If you omit the operand, VSE/POWER starts retrieval at the
beginning of the queue entry's spool data.

Do not use this operand in a second or subsequent GETSPOOL
request for the same queue entry. Specifying the operand in a
subsequent GETSPOOL request causes VSE/POWER's line pointer to
be repositioned. Ensure, however, that the subsequent GETSPOOL
requests use the same SPL as the initial request for this
retrieval operation.

MODE=BUF
Specify this operand if VSE/POWER is to retrieve more than one
record per request. The operand causes VSE/POWER to fill the
area named in the PBUF operand with as many records as will fit.
Each data record in that area has a four-byte prefix as follows:

Byte Contents

0 Command code. If VSE/POWER is to pass also
command-code-only records (such as a skip to
channel 1), you must specify CC=YES in addition.

1 X'80"' = The last record in the buffer.

X'CO' = The last record of the spool data.
2-3 Length (in binary) of a data record, including
the four-byte prefix.

Deblocking is to be done in your program.

Appendix B. VSE/POWER SPOOL-Macro Support 217

SPOOL Macro Support - GETSPOOL

218

PBUF={buffaddr| (reg)}

For buffaddr, specify the symbolic address of the buffer into
which VSE/POWER is to pass retrieved data records or feedback
information (on certain error conditions) or both. If you use
this operand, you must also specify PBUFL=bufflength.

You can omit this operand and the PBUFL operand if you defined a
buffer in your SPL.

If you use register notation, the specified register must point
to the buffer which VSE/POWER is to use.

PBUFL={bufflength| (reg)}

The operand specifies the length (in number of bytes) of the
buffer whose address is given in the PBUF operand. Define your
buffer's length large enough for your longest data record to fit
into the buffer. VSE/POWER truncates the trailing blanks of a
record; it indicates the length of each record after truncation
in either:

e The four-byte SPL field SPRL if data records are not
blocked, or

b Bytes 2 and 3 of the record prefix if the data records are
blocked (see also the MODE=BUF operand).

The minimum length you can specify is 88.

If you use register notation, the specified register must
contain the buffer's length.

PWD={password| (reg)}

For password, specify the password associated with the queue
entry that is to be retrieved. If there is no match of the
passwords, then VSE/POWER rejects the request with a return code
in the error/feedback bytes of the SPL for the request.

Omission of this operand (and also in the SPL macro) does not
give you access to a queue entry submitted without password
protection via a local spool device.

If you use register notation, the specified register must point
to an eight-byte field that contains the password
left-justified.

QUEUE={LST | PUN}

The operand specifies the queue to which the GETSPOOL request
applies:

LST For list queue
PUN For punch queue

IBM VSE/POWER Application Programming

SPOOL Macro Support - GETSPOOL

USERID={userid| (reg)}
For userid, specify the user identifier associated with the
queue entry that is to be retrieved. This identifier was
defined when the job was submitted to VSE/POWER. If you omit
the operand, VSE/POWER uses, for your GETSPOOL request, the
identifier currently stored in the request SPL.

If you use register notation, the specified register must point
to an eight-byte field that contains the identifier
left-justified.

Appendix B. VSE/POWER SPOOL-Macro Support 219

SPOOL Macro Support

PUTSPOOL: Submitting a Job Stream

220

You use the macro to submit a job stream from your program's buffer to
the:

¢ VSE/POWER input (RDR) queue for later execution of this job stream
in a partition under control of VSE/POWER

. VSE/POWER transmission (XMT) queue for transmission of this job
stream to another node.

VSE/POWER analyses only those JECL statements which you submit with the
first PUTSPOOL request for a queue entry. VSE/POWER places these
statements into the input queue. For example, if you wish to specify
output characteristics (such as class or disposition) other than the
default values, supply an * $$ LST or * $$ PUN statement.

If your program does not pass an * $$ JOB statement, VSE/POWER builds
this statement (in accordance with your specifications for the
applicable SPL) and inserts it into your job stream.

For the second and subsequent PUTSPOOL requests, VSE/POWER passes your
input from the buffer to the VSE/POWER input queue. No more checking is
performed. When the last statement of the input has been read from the
buffer and no more continuation input exists, VSE/POWER inserts an

* §$ EOJ statement if one has not been passed.

The job number assigned by VSE/POWER is returned to your program in the
job-number field of the SPL. You may want to use this job number later
together with the job name in order to retrieve the job's output.

An * $$ RDR statement may be inserted into the data submitted via
PUTSPOOL. Thus, data from a diskette can be included into the input job
stream. However, PUTSPOOL communication is blocked for the duration of
this diskette input. It is also blocked if the diskette unit is not
ready or a wrong diskette is inserted.

If there is a user-written RDREXIT routine for local input, VSE/POWER
passes to this routine the VSE job-control statements and JECL
statements of the submitted jobs.

IBM VSE/POWER Application Programming

SPOOL Macro Support - PUTSPOOL

Format of the Macro

Name | Operation Operands

PUTSPOOL SPL=(reg)

[,CBUF={firstbuffaddr| (reg)}]
[,CONT=(reg)]

[,JOBN={ jobname| (reg)]

[,PBUF={buffaddr| (reg)}]

[,PWD={password| (reg)}]

[,USERID={userid|(reg)}]

[name]

o S Sh— ——— —— — e o——
‘U U W—
e e ————— — e

Description of Operands

SPL=(reg)
For reg, specify the register that contains the address of the
SPL that is to be used by the PUTSPOOL macro. The SPL defines
the request to VSE/POWER.

CBUF={firstbuffaddr| (reg)}
For firstbuffaddr, specify the symbolic address of the first of
the 88-byte buffers that contain the job stream. The format of
an 88-byte buffer is as follows:

Bytes Contents
0-3 A pointer to the next buffer in the chain (0 for
the last buffer).
4-7 Reserved.
8-87 An 80-byte data buffer area.

If the CONT operand is specified together with CBUF, the same
buffers must be reused for the continuation data. If register
notation is used, the continuation routine must reset the
previously used register contents each time continuation data is
made available. See also the description of the CONT operand
below.

The CBUF pointer in the SPCB field of the SPL is used as a work
area and is set to zero when PUTSPOOL processing is ended. If
the PUTSPOOL macro uses an SPL which has already been used, or
if the PUTSPOOL macro is entered more than once with the same
SPL, then one of the following is required:

° CBUF is specified to reset the field SPCB of the SPL.

Appendix B. VSE/POWER SPOOL-Macro Support 221

SPOOL Macro Support - PUTSPOOL

° The field SPCB of the SPL is updated (a maximum of 4,095
input buffers is allowed for each PUTSPOOL access).

i The buffer defined by CBUF is the only one (its chain
pointer is zero).

CONT=(reg)
If the buffers processed by this execution of PUTSPOOL do not
contain the complete job stream, this operand should be used to
give the address of a continuation routine. In this routine,
you can submit further data buffers associated with the same job
stream. However, no other operands can be changed in the
continuation routine.

When this operand is used, then also the CBUF operand must be
specified.

To exit from the routine, set the specified register to zero and
return to the PUTSPOOL macro or, via register 14, to VSE/POWER.

JOBN={ jobname| (reg)
For jobname, specify the (unique) name that is to be assigned to
the job in the VSE/POWER input queue. This name is to be used
if, for example, the job's output is to be retrieved by a
GETSPOOL macro or if the job is to be accessed by a CTLSPOOL
macro.

PBUF={buffaddr| (reg)
For buffaddr, specify the address of a buffer for use by
VSE/POWER and for VSE/POWER feedback information on certain
error conditions. The size of this buffer must be at least 88
bytes. If register notation is used, the specified register
must contain a pointer to this buffer.

PWD={password| (reg)}
Use this operand to define the password for this VSE/POWER job.

A password which you specify in a PUTSPOOL macro:

. Overrides the password that may be stored in the request
SPL.
Must be used in any subsequent GETSPOOL macro for the job.
Can be overridden for output by the PWD operand of an * §§
LST statement or * $§$§ PUN statement.

The password can be any string of up to eight alphameric
characters.

USERID={userid| (reg)}
For userid, specify the identifier which is to be associated
with the queue entry that is to be placed into one of the
VSE/POWER queues (RDR or XMIT).

222 IBM VSE/POWER Application Programming

Spool Macro Support - Return Codes

If you use register notation, the specified register must point
to an eight-byte field containing the identifier left-justified.

If you omit this operand and do not supply a user-ID with the
SPL macro defining the request SPL, VSE/POWER spools the
applicable job input without a user-ID.

Return Codes

Return Codes in the SPL: Figure 62 shows the return codes that your
program receives following the execution of a PUTSPOOL, GETSPCOL, or
CTLSPOOL macro. VSE/POWER supplies these codes as follows:

° In the SPL bytes SPER and SPER2.

° In a byte which you can access using the DSECT generated by SPL
TYPE=MAP, ...

You access this byte by referring to field xxxXECB+4, where xxx is
either SPM or ICR depending on the type of SPL.

Additional information is passed to your program in error-feedback byte
2 (SPER2) of the SPL:

Mnemonic Hex.
of Equate Value Meaning
SPAI 80 Wrong password - access denied.
SPDDR 02 3540 data-mode record is being processed.

Return Codes in Register 15: VSE/POWER's SPOOL-macro support makes use
of the VSE macros XPOST and XWAIT; your program should examine their
return codes in register 15. For a description of these macros and
their return codes, see the publication VSE/Advanced Functions,
Application Programming: Macro Reference. XPOST return codes are
multiplied by 16 to maintain code uniqueness.

Register 15 contains the code X'40' if VSE/POWER control tables were
generated without SPOOL=YES specified in the POWER generation macro.

Appendix B. VSE/POWER SPOOL-Macro Support 223

Spool Macro Support - Return Codes

224

r T T 1
| | | Passed in |
| I I T I
Return		xxxXECB	
Code	Meaning	+4	SPER
] l			
I 1 1 T i			
X'0x'	Miscellaneous:		
I			
X'08' |End of data encountered during a GETSPOOL | X | X |
I g

| | request, or invalid LINENO specified in | | |
[| GETSPOOL. I | |
| | | | l
|X'09' |Task was waiting on queue/account file space. | | |
I | | I |
|X'1x' |Invalid specification: | | |
I I | l |
|X'11' |Command not allowed. | X | X |
| | I | I
|X'12' |Invalid VSE/POWER output disposition in SPL. | X | X |
I | I |
|X'14' |Invalid output class (not A-Z) in SPL. | X | X |
I I | I I
|X'16' |Invalid queue specified. | X | X |
I I | I I
[X'17' |Invalid password specified. | X | X |
| I l I |
|X'18"' |Invalid job name in SPL. | X | X |
| I I I |
|X'2x' |Job processing errors: | | |
I I | I |
[X'21' |The PBUF buffer area is smaller than 88 bytes | X | X |
| |or not large enough to hold the largest output | | |
| |data record (PBUFL in GETSPOOL too small). | | |
I | | | |
|X'22' |GETSPOOL was unable to locate output file b | X |1 X |

p y

	specified job name, job class, and dispatch-		
	able VSE/POWER disposition, or requested output		
	file is in use. If an invalid password was		
	specified, X'80' appears in field SPER2		
	of the SPL also. I I I		
I I	I		
X'24'	A loop occurred in the PUTSPOOL buffer chain,	X	X
	or more than 4095 buffers were used per		
	request.		
I I	I		
X'28'	Invalid CTLSPOOL REQ operand.	X	X
[L L | j
Figure 62 (Part 1 of 2). Return Codes from CTLSPOOL, GETSPOOL, and

IBM VSE/POWER

PUTSPOOL

Application Programming

Spooi Macro Support - Return Codes

-

Passed in

T
xxxXECB |

displacement 28 of the buffer defined by the PBUF operand.

N

. No spool management error detection is done for a CTLSPOOL with
REQ=COMMAND. Your program must analyse the message returned by
VSE/POWER in the buffer defined by the PBUF operand. If the com-
mand passed by a CTLSPOOL request results in more than one message,
VSE/POWER returns only the message that best describes the condi-
tion.

w

. All values specified in the NEWVAL operand of CTLSPOOL must conform
to the related VSE/POWER rules.

T T 7
| I I |
I I I I
|Return| I I
| Code | Meaning | +4 | SPER |
i | | | |
f T T T 1
|X'4x' |VSE/POWER diagnostic: | | |
I | | I |
| I I I |
[X'41' |VSE/POWER terminated normally, or | X | |
	VSE/POWER terminated abnormally, or	X	
	VSE/POWER spool management task terminated [X		
	abnormally.		
! I I I			
[X'42'	A VSE/POWER message was logged during CTLSPOOL	X	X
	(see notes below).		
I	I	I	
X'44'	A VSE/POWER error occurred during GETSPOOL	X	X
	(see notes below).		
		I I	
X'48"'	A VSE/POWER error occurred during PUTSPOOL	X	X
	(see notes below).		
I I I	I		
X'49'	Task waiting on queue/account file space. This		
	return code will not appear when the PUTSPOOL/		
	GETSPOOL user receives control back from		[
	VSE/POWER.		
I I I I I			
X'8x"'	Invalid address pointer:		
	I I I		
X'82'	Invalid data buffer chain (PUTSPOOL).	X	X
I		I I	
X'84"'	Invalid VSE/POWER buffer address (PBUF).	X	X
I I I I			
X'88"'	Invalid SPL address.	X [
L i			
[1			
1. The first 60 characters of the VSE/POWER message are displayed at			
I			
I I			
I I			
I			
I I			
I			
I I			
I			
I			
I			
I			
L ;

Figure 62 (Part 2 of 2). Return Codes from CTLSPOOL, GETSPOOL, and
PUTSPOOL

Appendix B. VSE/POWER SPOOL-Macro Support 225

Spool Macro Support - Example

Coding Example for Using the SPOOL-Macro Support

226

Figure 63 gives a coding example for the use of the SPOOL-macro support.
Figure 64 shows the console listing that resulted from running the
example, and Figure 65 shows the corresponding list output.

The example submits a job made up of numbered card-image records. The
output of the job is retrieved, with GETSPOOL, both sequentially and
randomly. The output is displayed at the same time.

In the example, the F2 partition is used by VSE/POWER, the F3 partition
processes the reader CLASS=A input, and the job runs in the BG
partition.

Columns 119 and 120 of Figure 65 contain the CCW command code on account
of the CC=YES specification in the GETSPOOL macro.

IBM VSE/POWER Application Programming

Spool Macro Support - Example

PUNCH * PHASE EXAMPLE,S®
% % & & % %k % &k X X & 2 X & ¥ X & X X X X & X & £ X & %X %% X2

VSE/POWER

*
]
*
=
CROSS-PARTITIORNR EXAMPLE *
*
]
]

LR 2R BE BN 3R BN JX J

#*‘t*‘#“‘#t**t*#“.#tt#t‘#.“t“#
SPACE 3

* THE POLLOWING IS AN EXAMPLE OF THE USAGE OF VSE/POWER CROSS-PARTITION

* SUPPORT. IT CONFORMS TO THE SUGGESTED PROGRANMING PRACTICBS SO AS

* TO ALLOW A MAXIMUM OF PRICTION-FREE EXISTENCE BETWEEN MULTIPLE USERS.

Y

* REGISTER USAGE:

*
* RO - VSE WORK REG (SETINE MACRO)
* R1 - WORK REGISTER,DOS/VSE WORK REG (XECBTAB HACRO)
* R2 - WORK RBGISTER
* R3 - WORK REGISTER
* R4 - WORK REGISTER
* RS - PNTR TO PUTSPOOL CARD INPUT AREA,WORK REGISTER
* R6 - LINK RETURN REG: PUT,TESTSTAT,HEXCONV ROUTINES
* R7 - BASE REG 2
* R8 - GETSPOOL LINENO= PARAHETER VALUE
* R9 - BASE REG 1 '
* R10 - LINK RETURN REG: GBTSUB,XRETRY ROUTINES
* R11 - SPL PNTR
* R12 - PUTSPOOL CONT= PNTR
* R13 -
* R14 - VSE WORK REG (XECBTAB MACRO)
* R15 - VSE WORK REG
SPACE 1
RO EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
RU EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQUO 8
R9 EQU 9

R10 EQU 10
R11 EQU 1
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
SPACE 3

PRINT NOGEN

BALR R9,0 BESTABLISH ADDRESSABILITY
USING *,R9,R7

Figure 63 (Part 1 of 9). Coding Example for the Use of SPOOL-Macros

Appendix B. VSE/POWER SPOOL-Macro Support 227

Spool Macro Support - Example

LA R7,40695 (,R9)

LA R7,1(,R7)

SPACE

OPEN SYSLST

SPACE

HVC LIFE,=CL120°EXANPLE BEGIN®

BAL R6,PUT PRINT START OF EXEC MSG

SPACE
SRREEERERVRERERERERBREE R KPR E SRR EERR KRR EZERR K S KRR ok ook ook ol ol ook ok o ook ok

® PUTSPOOL SECTION *
BLERRRRERRXBREASRERERE REERRXREARESEREEE R BESB AR AR R RRREER KBRS RRRE SR KK

SPACE

% THE PUTSPOOL XECB IS DEFINED AKD IF DEFINE IS NOT SUCCESSFUL,
* TBEN A RETRY WITH A COUNTER 1S MADE. IF NOT SUCCESSFUL, THEN
* BITHER ANOTHER USER HAS IT 'RESERVED, OR THE VSE XECB
* TABLE IS FULL.

SPACB

XR R2,R2 SET RETRY COUNTER

HYC LINE,BRRHSGO INIT HSG AREA
XDEFPUT XECBTAB TYPE=DEFINE,XECB=ICRXECB,ACCESS=XWAIT

LTR R15,R15 ERROR RETURN?
BZ POTSPOOL RO
SPACE
% XPCBTAB BRROR RETURN
LA R10,XDEFPUT LOAD RETRY RETOURN PNTR
B XRETRY RETRY
SPACE

% THE PUTSPOOL XECB IS ROW OWNED.
* THE POINTER REGS ARE LOADED FOR THE PUTSPOOL CALL.
PUTSPOOL HVC LINE,=CL120°EXANPLE PUTSPOOL:"*

BAL R6,PUT PRINT HEADER
SPACE :
LA R11,SPLEX LOAD PUTSPOOL SPL= PNTR

USING SPL,R11
ST R11,ICRXECB+4 ISITIALIZE XECB

LA R12,PUTCORT LOAD PUTSPOOL CONT= PNTR
LA R5,CARDS1 LOAD PUTSPOOL CBUF= PNTR
SPACE
PUTLOOP PUTSPOOL SPL=(R11) ,CONT=(R12) ,CBUF=(R5) ,JOBN=EXANPLE
SPACE

¢ DO BERROR CHECKING POLLOWING PUTSPOOL.
HYC LINE,BRRESG1 INIT MSG AREA

LTR R15,R15 VSE ERROR RTH ?

BRZ ERRX YES

HvC LINE,ERRESG2 INIT HSG AREA

LA R2,ICRXECB INIT PETR FOR PUTSPOOL ERR RTN CHECK
BAL R6, TESTSTAT CHECK FOR PUTSPOOL ERROR RTN

SPACE

* DELETE THE PUTSPOOL XECB ROW TO ALLOW OTHER USERS ACCESS
XECBTAB TYPE=DELETE,XECB=ICRXECB

B JOBWAIT

SPACE 3
SEEEEERREPERRRRAREER KX X RREEREERERXRRERAER AR XRR R RBEREB R X R EEK KRR RXEE K
» PUTSPOOL CONTINUATION ROUTINE

ERREBRRLRRRREREERE AR ERRRERAE B EREE R AR R R KRR R ARSR R SRR R R R R A KRR RKE KR ER E &

Figure 63 (Part 2 of 9). Coding Example for the Use of SPOOL-Macros

228 1IBM VSE/POWER Application Programming

Spool Macro Support - Example

SPACE
* DO ERROR CHECKING

PUTCONT MVC LINE, ERRMSG1 INIT MSG AREA
LTR R15,R15 VSE ERROR RTN?
BNZ ERRX YES

INIT MSG AREA
LOAD PNTR FOR PUTSPOOL ERR RTN CHECK

CHECK FOR PUTSPOOL ERROR RTN

MVC LINE, ERRMSG2
LA R2,ICRXECB
BAL R6,TESTSTAT
SPACE

*# SET UP FOR PUTSPOOL CONTINUATION AND RETURN TO PUTSPOOL.
LA R5,CARDS2 LOAD PNTR TO NEXT INPUT

LA R12,0 INDICATE END OF INPUT

3 PUTLOOP RETURN TO PUTSPOOL

SPACE 3
#*##*i*#***#*t***###**#*t**#*tt#*###*#***t*tt******#*t*t**#t*t*'***
* CHECK POR JOB COMPLETION

*******#*#*#####******#**##**#***##**#***t##*****#***#*#*#*##**‘#**#‘t*
A WAIT WITH TIMER INTERRUPT IS SCHEDULED IN ORDER TO ALLOW ANY
PARTITIONS WITH A LOWER PRIORITY TO EXECUTE WHILE WAITIRG OR
PUTSPOOL INPUT TO EXECUTE. THIS IS ESPECIALLY
IMPORTANT IF THIS PARTITION HAS A HIGHER PRIORITY THAN THE
VSE/PORER PARTITION!!

SPACE

* # * % #

JOBWAIT LA R11,SPLEX
ST R11,SPMXECB+4 INIT XECB
SPACE
CTLLOOP SETIME 1,TECB SET TIHER INTERRUPT
WAIT TECB
SPACE
* DEFINE CTL/GETSPOOL XECB
XR R2,R2 INIT RETRY COUNTER
XDEFCTL XECBTAB TYPE=DEPINE,XECB=SPMXECB,ACCESS=XWAIT
LTR R15,R15 ERROR RTN?
BZ CTLSP1 NO
SPACE

* XECBTAB ERROR RETURN

NVC LINE, ERRMSG3 INIT MSG AREA

LA R10,XDEFCTL LOAD PNTR FOR XRETRY
B XRETRY

SPACE

XECB IS NOW OWNED AFTER TIMER PAUSE. NOW PROCEED WITH CTLSPOOL CALL.
CTLSP1 CTLSPOOL SPL=(R11) ,REQ=STATUS
SPACE
* CHECK FOR ERROR
MvVC LINE, ERRMSGU INIT MSG AREA
LTR R15,R15 VSE ERBOR RTN?
BNZ ERRX YES
MvVC LINE, ERRMSGS INIT MSG AREA
LA R2,SPMXECB LOAD PNTR FOR TESTSTAT
BAL R6,TESTSTAT CHECK FOR CTLSPOOL ERROR RTN
SPACE
CLI SPSQ,C*R*®
BE CTLDEL
CLI SPsQ,C*L®
BE GETSPOOL

JOB STILL IN RDR QUEUE?
YES,DELETE XECB AND LOOP

IS JOB IN THE LST QUEJE?

YES, KEEP XECB AND DO GETSPOOL

Figure 63 (Part 3 of 9). Coding Example for the Use of SPOOL-Macros

Appendix B. VSE/POWER SPOOL-Macro Support 229

Spool Macro Support - Example

BvVC LINE,ERRMSGX ERROR MSG AREA, IFIT MSG AREA
BAL R6,PUT
SPACE
* DELETE XECB AND EXIT
XECBTAB TYPE=DELETE,XECB=SPMXECB
EOJ
SPACE
* DELETE XECB AND RETRY AFTER TIMER WAIT
CTLDEL XECBTAB TYPE=DELETE,XECB=SPMXECB DELETE CTL/GETSPOOL XECB
B CTLLOOP LOOP

EJECT
SRR AR AR R AR R RO R R KRR R R R R R R R Rk ok Rk R Rk Rk

* GETSPOOL SECTION - SEQUENTIAL RETRIEVAL
e e R e PR e et e R L Ll b h it

SPACE
GETSPOOL MVC LINE,=CL120°*EXAMPLE GETSPOOL SEQUENTIAL:"®
BAL R6,PUT

SPACE
GETLOOP XC PBUF,PBUF CLEAR OUTPUT BUFFER
SPACE
GETSPOOL SPL=(R11) ,CC=YES RETRIEVE WITH CHMND CODES
SPACE

* CHECK FOR ERROR
Hve LINE,ERRMSG6 INIT KSG AREA

LTR R15,R15 VSE ERROR RTH?
BNZ ERRX YES
MVC LIKE,ERBMSG7 INIT MSG AREA
LA R2, SPMXECB LOAD PNTR POR TESTSTAT
BAL R6,TESTSTAT CHECK FOR GETSPOOL ERROR RTN
SPACE
* PRINT OUT RECORD RETRIEVED WITH COMMAND CODE.
MVC LINE,PBUF MOVE RETRIEVED OUTPUT TO PRINT BUP
XR R3,R3
IC R3,SPCC LOAD LST RECORD CMND CODE
LA RY4,CC
BAL R6,HEXCONV CONVERT CHND CODE TO EBCDIC
BAL R6,PUT PRINT OUTPUT REC
SPACE
* TEST POR END OF OUTPUT
™ SPER,SPLR END OF DATA?
BKO GETLOOP NO, LOOP BACK AND GET NEXT RECORD
SPACE 3
E2 323332222222 823 *******#**#t#****##*t**#‘**##**t***t*#*****#**#*****t * %
* GETSPOOL SECTION - BROWSING (RANDOM RETRIEVAL)
#********t***#******##*****#‘##*‘*‘*ttt‘*#*t*#*t##**#*#*******t#**#t***
SPACE

* JOB NOW HAS DISP=L APTER RETRIEVAL. CHANGE BACK TO DISP=K IN ORDER
% TO RETRIEVE AGAIR.

SPACE

CTLSPOOL SPL=(R11) ,REQ=DISP,NERVAL=C*K®

SPACE
* CHECK FOR ERROR

MVC LINE,ERRMSGS INIT HSG AREA

LTR R15,R15 VSE ERROR RTR?

BNZ ERRX YES

Figure 63 (Part 4 of 9). Coding Example for the Use of SPOOL-Macros

230

IBM VSE/POWER Application Programming

Spool Macro Support - Example

MVC LINE, ERRMSGY INIT MSG AREA

LA R2,SPMXECB LOAD PNTR FOR TESTSTAT
BAL R6,TESTSTAT CHECK FOR CTLSPOOL ERROR RTN
SPACE

* PRINT OUT HEADER
MvC LINE,=CL120 *EXAMPLE GETSPOOL RANDOM RETRIEVAL:'

BAL R6,PUT

SPACE
* GET LINE 3

LA RS,3 LOAD LINENO VALUE

BAL R10,GETSUB CALL GETSPOOL AND PRINT LINE

SPACE
* GET LINE 2

LA R8,2 LOAD LINENO VALUE

BAL R10,GETSUB CALL GETSPOOL AND PRINT LINE

SPACE
* GET LINE U4

LA R84 LOAD LINENO VALUE

BAL R10,GETSUB CALL GETSPOOL AND PRINT LINE

SPACE 3
*******'##***t#**#*t**t#‘*ttt*‘##'“‘*#t*#“#‘#*#**‘**t“.#“**#‘**“*‘
* DELETE OUTPUT AND BXIT
tt*##tt*tttttt*#*t##tt‘t*‘###‘#‘#‘#‘t#““*t*#t*##tt*#‘ﬁt#“#“‘3t#

SPACE

CTLSPOOL SPL=(R11) ,REQ=SCRATCH

SPACE

* CHECK FOR ERROR
MVC LINE,ERRMSG10 INIT MSG AREA

LTR R15,R15 VSE ERROR RTN?

BNZ ERRX YES

HVC LINE,ERRMSG1t IRIT MSG AREA

LA R2,SPMXECB LOAD PNTR FOR TESTSTAT
BAL R6,TESTSTAT CHECK CTLSPOOL ERROR RTN
SPACE 3

MVC LINE,=CL120 *EXAMPLE SUCCESSFUL®
BAL R6,PUT
SPACE

ERREND DS OH
*# EXIT - XECB'S DEFINED AT THIS TIME ARE DELETED BY VSE AT EO0J, SO
*

NO XECBTAB TYPE=DELETE IS NECESSARY

EOJ
SPACE 3
EJECT
ti**##***#*###**‘*‘**#‘**#“*##3**##‘tt##’#*t****#**“*#t#ti*#*#*
* GETSPOOL SUBROUTINE

*#ti#*t#‘t#t*#******#t**#**‘t#t#*#t****##*tt*#****##*‘***t##t#‘*‘*#‘###

* SUBROUTINE TO DO RANDOM GETSPOOL.

* INPUT REGS:

* R8 - LINENO VALUE

R10 - LINK REG

R11 - SPL PNTR

SPACE

GETSUB XC PBUF,PBUF CLEAR GETSPOOL OUTPUT AREA
GETSPOOL SPL=(R11) ,LINENO=(R8)
SPACE

*
*

Figure 63 (Part 5 of 9). Coding Example for the Use of SPOOL-Macros

Appendix B. VSE/POWER SPOOL-Macro Support 231

Spool Macro Support - Example

¢ CHECK FOR ERROR
NvC LINE,BRRMSG12 INIT MSG AREA

LTR R15,R15 VSE BRROR RTN?

BNZ ERRX YBS

MVC LINB,ERRMSG13 INIT MSG AREA

La R2,SPHXECB LOAD PNTR FOR TESTSTAT

BAL R6,TESTSTAT CHECK FOR GETSPOOL ERROR RTN
SPACE

* PRINT RETRIBVED LINE
NvC LINE,=CL120°LINE XX =

LR R3,R8
LA RU,LINE+S
BAL R6,HEBXCONV CONVERT LINE NUMBER TO EBCDIC
BAL R6,PUT PRINT LINE NUMBER
SPACE
NVC LINE,PBUP
BAL R6,PUT PRINT PBUP
SPACE
BR R10 RETURN
SPACE 5
SRR EERERRRREERERE RS AR R B R SRR REEERRELEERREEE AR R SRS RERE RS AR LR ER R ER kS X %
* EXIT ROUTINE POR VSE BRROR RTN HANDLING
AR RRERERER KRR R R RREE KRR EREER XA RERE AR R R KKK R R AR E 2k 3333333333333 23222
SPACE
ERRX LR R2,R15 LOAD VSE ERROR RTN CODE TO R2
BAL R6,PUT PRINT MSG AREA

Mve LINE,=CL120°* ERROR RTN CODE IN REGISTER 2°
BAL R6,PUT

* DUMP DUMP

B ERREND EXIT

EJECT
SRR REREERARRRR AR R AR R RRRRKEEEAERRRAERERERRRKARKBEREAXRXERR SRR Sk kk %%
* TESTSTAT SUBROUTINE - TESTS THE VSE/POWER RETURN CODE

BEERERRERRRRRERERERERRRAEERERE AR KR SRR ERERBERERREKRRR KKK KEDEBR AR EX AR RR XK
* INPUT REGS:

* R2 - ADDR OF CORRESPONDIRG VSE/POWER XECB

* R6 - LINK REG
SPACE

TESTSTAT TH 4 (R2) ,SPIA+SPPP+SPUE+SPPI ERROR RETURN ?2
BZR R6 NO
SPACB

* PRINT PREPARED MESSAGE WITH RTN CODE
XR R3,R3
IC R3,4 (R2) LOAD RETURN CODE
LA R4 ,RTNCODE POINRT TO HEXCORV OUTPUT AREA
BAL R6 ,HEXCONYV CONVERT RTN CODE TO HEX
BAL R6,PUT PRINT OUT PREPARED MESSAGE AREA
SPACE

* PRINT PBUFP POR POSSIBLE MESSAGE FROM VSE/POWER
NVC LINE,=CL120*PBUF="
BAL R6,PUT
MvC LINE,PBUP
BAL R6,PUT
SPACE
* DUMP

Figure 63 (Part 6 of 9). Coding Example for the Use of SPOOL-Macros

232 IBM VSE/POWER Application Programming

Spool Macro Support - Example

B ERREND

SPACE 5
ARRRERREREREERRE AR R R R R AR ER R R KRR R R R ER R ARk R Rk kR
* HEXCONV SUBROUTINE - CONVERTS SINGLE BYTE TO TWO EBCDIC BYTES

HEREERKERAER R R RRR R R KRR KRR KA AR AR KRR R ER R ER S & &
* INPUT REGS:

* R3 = INPUT BYTE TO CONVERT
* R4 = PNTR TO OUTPUT AREA (TWO BYTES LONG)
* R6 = LINK REG
HEXTBL DC C*0123456789ABCDEF*® HEX CONVERT TABLE
SPACE
HEXCONV SLDL R2,28 SHIFT LEPT HALF-BYTE TO R2 LOW ORDER
STC R2,0 (RU) STORE LEFT HALF-BYTE TO OUTPUT + 0
SRL R3,28 SHIPT RIGHT HALP-BYTE TO R3 LOW ORDER
STC R3,1(R4) STORE RIGHT HALF-BYTE TO OUTPUT + 1
TR 0(2,RY4) ,AEXTBL TRANSLATE OUTPUT
BR R6 RETURN
EJECT
o o o ol o o ok o o o o o K ok R A K R R o KRR o ok R Rk Rk R R R R ke
* YRETRY SUBROUTINE - RETRYS BLOCKED XECBTAB MACRO

A o ok o e o ook ok ol oo ol o ok K o o R R o o o o o o K R A ok R R R ok R ROR Rk Rk R R

* PRINTS A WARNING MESSAGE EVERY 16 'SEC.
* INPUT REGS:

* R2 - RETRY COUNTER (BEGINNING WITH ZERO)

* R6 - RETURN REG
SPACE

XRETRY LA R2, 1(,R2) INCREMERT COUNTER
ST R2,RETRYCNT STORE FOR TRACING
SPACE

* SET TIMER INTERRPT FOR 1 SEC.
SETIME: 1,TECB

WAIT TECB
SPACE
c R2,RETRYNAX RETRY LIMIT EXCEEDED ?
BH XEND YES, PRINT MSG AND EXIT
SPACE
™ RETRYCNT+3,X*0F® RETRY COUNTER DIVISABLE BY 162
BNZR R10 NO, RETRY WITHOUT WARNING MESSAGE
SPACE
* PRINT INITIALIZED BUFFER MESSAGE
BAL R6,PUT PRINT WARNING MESSAGE
BR R10 RETRY
SPACE
* PRINT ERROR MESSAGE AND EXIT
XEND MVYC LINE,ERRMSG14
BAL R6,PUT
B ERREND
SPACE 5
o ok ok o o o o e e o o ok o ok ol ol o ok ol oo o o e o ook o o o o ok o OR R R R R AR R ok ok ok Rk
* PUT SUBROUTINE -~ PRINTS LINE ON CONSOLE AND SYSLST
30 A o o o o o o o o o e o o o kol o o oK A AR R o o oo o o A o o oo A ok o o R ok ok kR
SPACE
PUT LA R1,CCB
EXCP (R1)
WAIT (R1)

Figure 63 (Part 7 of 9). Coding Example for the Use of SPOOL-Macros

Appendix B. VSE/POWER SPOOL-Macro Support 233

Spool Macro Support - Example

PUT SYSLST

BR R6

BJECT
AEERAREARRERREERERRRRRKERARERRERRARERRAER R EREEEERRRRERKARRRRRRRE RS AKX &
* CONSTANRTS
SRR ERRRARKREREEE AR RRARAERREEEERERRERAERRRERRRARRERRER SRR KRR REEREAL 4%

SPACE

* XECB'S
ICRXECB DC a(0,%-%)
SPMXECB DC A (0,%*-%)

SPACE
* ECB'S
TECB TECB
SPACE
* I/0 BUFPERS
PBOF DC CL120° °*
LINEX DC X*09°
LINE DC CL120° *
ORG LIRE+118
cc DS 2x
ORG ’
RTNCODE EQU LINE+39
SPACE

* PUTSPOOL INPUT
CARDS1 DC A (*+88,0)
pC CL80'// JOB XYZ*®
pC A (0,0)
DC CL80'* CARD 2°
CARDS2 DC A (*+88,0)
nC CL8O'* CARD 3°'
pC A {0,0)
pC CLBO'/&4"

SPACE
* RETRY VALUES
RETRYCNT DC A (%-%) CURRENT MAXIMUM RETRIES
RETRYMAX DC F®600°* MAX RETRY - 10 MINUTES
SPACE

* SPL MACRO'S
SPLEX SPL TYPE=DEFINE,PBUP=PBUF,PBUFL=120
SPACE

* MESSAGES
ERRNSGO DC CL120°EXAMPLE WARNING:XECBTAB DEFINE OF ICRXECB BLOCKED *®

ERRNSG1 DC CL120*EXAMPLE ERROR:XPOST/XWAIT ERROR RTN FROH PUTSPOOL *
BRRNSG2 DC CL120°*EXAMPLE ERROR:PUTSPOOL ERROR RTN CODE=*

ERRNSG3 DC CL120°EXAMPLE WARNING:XECBTAB DEFINE OF SPLXECB BLOCKED *
ERRNSG4 DC CL120°'EXAMPLE ERROR:XPOST/XWAIT ERROR RTN FRON CTLSPOOL 1*
ERRMSG5 DC CL120°*EXAMPLE ERROR:CTLSPOOL1 ERROR RTN CODE="*

ERRNSGX DC CL120°EXAMPLE ERROR:JOB LST OUTPUT NOT IN LST QUEUE®

* (CAUSE IS EITHER ANOTHER TASK/X-PARTITION USER PROCESSED
* THE OUTPUT, OR IT WAS NOT SPOOLED DURING EXECUTION)
ERRESG6 DC CL120*EXAMPLE ERROR:XPOST/XWAIT ERROR RTN FROM GETSPOOL 1t
ERRNSG7 DC CL120*EXAMPLE ERROR:GETSPOOL1 ERROR RTN CODE=*

ERRNSG8 DC CL120°EXAMPLE ERROR :XPOST/XWALT ERROR RTN FROM CTLSPOOL2"*
ERRNSG9 DC CL120°EXAMPLE ERROR:CTLSPOOL2 ERROR RTN CODE=*

ERRNMSG10 DC CL120*EXAMPLE ERROR:XPOST/XWAIT ERROR RTN FROH CTLSPOOL3®

Figure 63 (Part 8 of 9). Coding Example for the Use of SPOOL-Macros

234

IBM VSE/POWER Application Programming

Spool Macro Support - Example

ERRMSG11 DC CL120°*EXAMPLE ERROR:CTLSPOOL3 ERROR RTN CODE="*
ERRNSG12 DC CL120°*EXANPLE ERROR:XPOST/XWAIT BRROR RTN FROM GETSPOOL2®
ERRNSG13 DC CL120°EXANPLE ERROR:GETSPOOL2 ERROR RTN CODE=*
ERRNSG14 DC CL120°*EXAMPLE ERROR:XECB DEFINE BLOCKED®
SPACE 5
* I/0 SECTION
CCB CcCB SYSLOG,CCW
CCW CcCw X*09*,LINE,X*20°,80
SPACE
SYSLST DTFDI DEVADDR=SYSLST,IOAREA 1=LINEX,RECSIZE=121,MODNAME=MODNAME
SPACE
MODNAME DIMOD TYPEPLE=OUTPUT
EJECT
PRINT GEN
* DSECT'S
SPL SPL TYPE=MAP
CSECT
LTORG
END

Figure 63 (Part 9 of 9). Coding Example for the Use of SPOOL-Macros

Appendix B. VSE/POWER SPOOL-Macro Support 235

Spool Macro Support - Example

BG

exec exaaple

BG

EXAHPLE BEGIN

BG

EXAMPLE PUTSPOOL:

F2

1471 F3 EXAMPLE 00026 FROM 000
F3

// JOB XYZ

DATE 07/11/78,CLOCK 0%8/04/51

EXAHPLE GETSPOOL SEQUENTIAL:
BG

BG

// JOB XYZ
BG

* CARD 2

BG

BG
EXAMPLE GETSPOOL RANDOM RETRIEVAL:

EXAMPLE SUCCESSFUL

BG

1I00A READY FOR COMMUNICATIONS.
BG

Figure 64. Console Listing of the SPOOL-Macro Example

236 1IBM VSE/POWER Application Procgramming

Spool Macro Support - Example

EXEC EXAMPLE

EXAMPLE BEGIN

EXAMPLE PUTSPOOL:

EXAMPLE GETSPOOL SEQUENTIAL:

// JOB XYZ
* CARD 2
* CARD 3
EOJ XY2

EXAMPLE GETSPOOL RANDOM RETRIEVAL:
LINE 03 =

* CARD 3

LINE 02 =

* CARD 2

LINE 04 =

EOJ XYZ

EXAMPLE SUCCESSFUL

DATE

DATE.

ee e e s e

DATE. .coveeocencas

Figure 65. List Output of SPOOL-Macro Example

Appendix B.

VSE/POWER SPOOL-Macro Support 237

238 IBM VSE/POWER Application Programming

Glossary

GLOSSARY

The following terms are defined as they
are used in this book. If you do not
find the term you are looking for, refer
to the index or to the IBM Vocabulary
for Data Processing, Telecommunications,
and Office Systems, GC20-1699.

This glossary includes definitions
developed by the American National
Standards Institute (ANSI) and the
International Organization for
Standardization (ISO). This material is
reproduced from the American National
Dictionary for Information Processing,
(c) 1977 by the Computer and Business
Equipment Manufacturers Association,
copies of which may be purchased from
the American National Standards
Institute, 1430 Broadway, New York, New
York 10018. Definitions of ANSI are
marked with an asterisk (*); definitions
of ISO include (ISO) before the
definition.

ACB. Access method control block.
account file. A file on disk maintained
by VSE/POWER to hold the accounting
information collected by VSE/POWER for
the programs which it controls.

ACF/VTAM. Advanced Communication
Function for the Virtual
Telecommunication Access Method.
program product that provides
single-domain network capability, and
optionally, multiple-domain capability.

An IBM

adjacent nodes. Two nodes that are
connected by a data link with no
intervening nodes.

alternate route. The routing path that
is used for the transmission of jobs or
output from the local node to the
destination node if the primary route is
not active and signed-on.

* ASCIl. American National Standard
Code for Information Interchange. The
standard code, using a coded character
set consisting of 7-bit coded characters
(8 bits including parity check), used
for information interchange among data
processing systems, data communication
systems, and associated equipment. The
ASCII set consists of control characters
and graphic characters.

APIl. Application program identifier.
ASI|. (automated system initialization)
A method of starting a VSE system with
input from cataloged procedures.

autostart. A VSE/POWER function that
starts VSE/POWER automatically based on
input from SYSIPT or an ASI JCL
procedure.

Binary synchronous communication
(BSC). Communication using binary
synchronous transmission.

BSC. See binary synchronous
communication

BSC line. A data transmission line
that allows binary synchronous
communication (BSC).

channel-to-channel attachment (CTCA).
An extension of VSE/POWER's networking
function that allows data to be
exchanged between two virtual machines
under control of VM/System Product.

class. A means of grouping output or
jobs that require the same set of

resources for their execution.

CMS. Conversational monitor system, a
component of VM/SP

Glossary 239

Glossary

cold start. The initialization of input
and output work queues. All information
present in the queues before the cold
start is lost.

CTCA. See channel-to-channel
attachment.
data block. The unit of transfer

(buffer) that VSE/POWER uses for both
disk and tape.

data file. A file on disk, maintained by
VSE/POWER to hold the input and output
program data records required and
generated by VSE programs under control
of VSE/POWER.

DBLK (data block) group. The smallest
unit of space that can be allocated to a
VSE/POWER job on the data file. This
allocation is independent of any device
characteristics.

device service task. A task of
VSE/POWER. The task controls the
transfer of output for being printed or
punched out by a device owned by a
subsystem or program in another
partition.

direct link. A direct link is a
connection between two adjacent nodes in
a network.

disposition. A means of indicating to
VSE/POWER how job input and output is to
be handled. A job may, for example, be
deleted or kept after processing.

drain. To end the transmission of data
across a network such that the
transmitter (receiver) task being used
is no longer available for other work.

Compare also with "flushing".
end node. A node designated as the
final destination for a job or output.

An end node can be the local or any
other node within a network.

240

IBM VSE/POWER Application Programming

execution node. A node at which a job
is executed; it is the end node for
jobs. An execution node may be another
VSE/POWER node or any other node that
supports the networking protocol used by
VSE/POWER.

flushing. The discontinuation of a job
that is being processed by a VSE/POWER
task.

intermediate storage. A storage device
used by VSE/POWER for spooling job input
before execution and job output during
execution. In case of spooled output,
VSE/POWER uses the device as input the
VSE/POWER list and punch tasks. or
both.

job entry control language (JECL). A
control language that allows the
programmer to specify how VSE/POWER is
to handle a certain job.

list task. A VSE/POWER task. It
controls the writing of spooled job
output to a printer. See also '"task."

local device. A channel-attached
input/output device.

local node. The node at which a user is
located and operating. Normally the own
VSE system.

multitasking. Concurrent execution of
one or more sub-tasks attached to a main
task within one partition.

MVS. Multiple virtual storage. A
short name for the OS/MVS, an operating
system.

name of node. See nodeid.
name of user. See user identifier.

* petwork.
nodes.

An interconnected group of

networking function. A VSE/POWER
function that allows communication
between nodes within a network.

Glossary

Transmission can be via BSC or SDLC
lines or CTCA.

networking protocol. A set of records
which must be transmitted in a set
sequence in order to:

° start a network session

° control the flow of data across
through the network

° terminate a network session

The protocol is an agreed standards to
which all member nodes in the network
must adhere.

node. In a network, an end point of a
link or a junction common to two or more
links in a network. Nodes can vary in
routing and other functional
capabilities.

nodeid. Node identifier; the name by
which a node is known within a network.

OPTB.
Block.

See Output Parameter Text

Output Parameter Text Block (OPTB).
In VSE/POWER's spool-access support,
information that is contained in an
output queue record if a * $$ LST or
* $$§ PUN statement includes any
user-defined keywords that have been
defined for autostart.

page fault. A program interruption that
occurs when a page marked "not in real
storage'" is referred to by an active

page. Synonymous with page translation
exception.
PNET. See networking function.

primary route. The preferred routing
path out of two such paths that are
provided by a direct link for the
transmission jobs or job output from the
local node to a node with which no
direct link exists.

priority. A rank assigned to each job
within its class that determines its

precedence in receiving system
resources.

punch task. A VSE/POWER task. It
controls the writing of spooled job

output to a punch device. See also
1" 1"
task
purge. To purge a job or output from

the queues means to delete all
references to this job or output from
VSE/POWER spool files.

queue. A waiting line or list formed
by items in a system waiting for
service.

queue entry. The queue record of a
certain job or output and the related
data records, both stored on disk.

queue file. A file on disk, maintained
by VSE/POWER to control the processing
of user jobs in the system.

queue record. A record in the queue
file containing descriptive information
about a job or job output.

receiver task. Receives jobs, list and
punch output, messages, and commands;
writes the received jobs or output to
the spool files; queues commands and
messages for further transmission or for
processing and display, respectively.

remote job entry (RJE) function.

Allows jobs to be submitted at RJE work
stations for execution by the system and
for output to be obtained at a work
station.

remote work station. An input/output
control unit and one or more
input/output devices attached to a
system through a transmission control
unit.

resource. Any code, control block,

table, record, or file used by a task.
More properly called "serial resource'.

Glossary 241

Glossary

resource management. The mechanisms
that protect serial resources from
concurrent access by competing tasks.

routing. The process of transmitting
jobs and output from one node to
another. Routing paths and destinations
can be specified in the PNODE generation
macro and in JECL statements. See also
"alternate route" and "primary route".

RSCS. Remote spooling communications
subsystem, a component of VM/SP.

SDLC.
control.

See synchronous data link

segmentation. A VSE/POWER facility to
break bulky list or punch output into
segments so that printing or punching
can be started before execution of the
generating user program has been
completed.

session. The period of time during
which a user of a remote user can
communicate with an interactive system.
A session can exist between any two
nodes in a network and is established by
the use of ACF/VTAM or ACF/VTAME.

shared spooling. A VSE/POWER function
that allows two or more VSE systems
running under VSE/POWER to share a
single set of VSE/POWER spool files and
one account file.

spool-access support task. A VSE/POWER
task that controls the access of
VSE/POWER services for spooling job or
output data and for queue manipulation.

spool files. The queue file and data
file on disk, used by VSE/POWER for
spooling job input and job output.

spooling. The storing of job input and
of job output on an auxiliary storage
device, concurrently with job execution
and in a format convenient for later
processing and actual output, again
concurrently with job execution.

242

IBM VSE/POWER Application Programming

storage page. A unit of program
address space of 2K or 4K bytes and
aligned on a 2K or 4K boundary.

synchronous data link control (SDLC).
A discipline for managing synchronous,
transparent, serial-by-bit information
transfer over a communication channel.

task. The basic unit of synchronous
program execution. It consists of
instructions operating upon program
data. Although a task is executed
synchronously with respect to its own
instructions, these are executed
asynchronously with respect to all other
tasks existing in the system.

* transmission. The sending of data
from one place for reception elsewhere.

transmitter task. Controls the
transmission, from the local node, of
jobs, list and punch output, messages,
and commands.

TSO.
of MVS

Time sharing option, a component

unit of transfer. The amount of virtual
storage needed to hold a block of data
that is transferred to or from an I/0
device by one I/0 request.

user identifier. A character string that
identifies the user who submitted or is
to receive a job or output.

USS. Unformatted system services.

VIO area. See virtual I/0 area.

virtual 1/0 (VIO) area. An area on the
page-data-set volume used by system
programs.

VM/SP. Virtual Machine/System
Product, an IBM program product.

VSE/ICCF. Interactive Computing and
Control Facility, an IBM program
product.

Glossary

warm start. A restart that allows and output work queues. Contrast with
reuse of previously initialized input cold start.

Glossary 243

Glossary

244 IBM VSE/POWER Application Programming

Bibliography

BIBLIOGRAPHY

Following is a list of IBM publications
which you may need to consult. For
additional related publications, refer
to the latest IBM System/370, 30XX and
4300 Processors Bibliography, GC20-0001.

VSE /POWER:

Installation and Operations Guide,
SH12-5329

Remote Job Entry User's Guide,
SH12-5328

Networking User's Guide, SC33-6140.

Reference Summary, SH12-5435.

VSE/System Package, Messages and Codes,?

SC33-6181 plus SC33-6184 if your
VSE/POWER runs on Version 2 of
VSE/SP

SC33-6310 if your VSE/POWER runs on
Version 3 of VSE/SP

VSE/Advanced Functions:

System Management Guide, SC33-6191.

Planning and Installation,
SC33-6193.

System Control Statements, SC33-6198

Operation, SC33-6194.

Application Programming: Macro Users
Guide, SC33-6196.

Application Programming: Macro
Reference, SC33-6196.

Network Program Products, Planning,
SC27-0658

Network Job Entry: Formats and Protocols
for System/370 Program Products,
GG22-9373.

0S/VS-DOS/VSE-VM/370, Assembler
Language, SC33-4010.

DOS/VS IBM 3800 Printing Subsystem
Programmer's Guide, GC26-3900.

IBM 3200 Printing Subsystem Support
Program, Programmer's Guide, SC18-0100.

1 All VSE/POWER messages are now contained in Volume 1 of this VSE/SP manaul;
the former VSE/POWER Messages manual, SH12-5520 has been discontinued.

Bibliography 245

Bibliography

246 IBM VSE/POWER Application Programming

Index

INDEX

| A |
L

abnormal end
external device support 173
spool-access support, at
GET-output 57
spool-access support, at PUT

output 77
access support (see spool-access
support)

account records
card format of 2
DSECTs for 4
execution 7
list 9
network 11
prefix for 5
processing of 2
punch 12
reader 14
recejver task 15
RJE,BSC 16
RJE,SNA 17
spool-access connect 19
spool-access operation 20
system-up 18
transmitter task 15
types of &
align forms (see forms alignment)
alter job attributes
from partition, spool-access
support 100
from partition, SPOOL-macro
support 212
amendments, summary of ix
application programming
access VSE/POWER 29, 203
job accounting 2
output segmentation 24
spool-access support 29
SPOOL macros support 203

authorization (see command
authorization)

| B |
L

BSC work station (see remote job entry

BSC)

buffers
reply, external device support 178
reply, spool-access support 32
send, spool-access support 32
spool-access GET service 43
spool~-access PUT 59
spool-access support, overview 32

cancel (see stopping)
cancel codes (job-accounting)
execution account record 7
list account record 9
network account record 11
punch account record 12
reader account record 14
receiver task account record 15
RJE,BSC account record 16
RJE,SNA account record 17
spool-access connect account
record 19
spool-access operation account
record 20
transmitter task account record 15
cancel output order 188
central operator commands
authority to use, spool-access
support 101
authority to use, SPOOL-macro
support 212

Index 247

Index

central operator commands (continued)
debugging aid, external device
support 195
examples (see examples)
PACCOUNT, use of 1
used as debugging aid, external
device support 195
change (see alter)
channel programs for IBM 4248 27
checkpoint, spool access
GET-service 49
PUT-output service 84
close request, spool access
GET service 47
PUT-job service 66
PUT-output service 79
coding sequence, external device support
abnormal end 174
cancel with HOLD 166
cancel without HOLD 165
‘device failure 174
device-order processing 178
device setup 160
device stop, end of output 169
device stop, restart after 171
no entry in queue 158
reactivation 160
starting a device 155
coding sequence, spool access
CTL service 37
GET service, complete queue entry 45
GET service, restart 51
PUT service, checkpoint for
output 85
PUT service, close with SPL 80
PUT service, get messages 69
PUT service, job/output
submission 63
PUT service, output segmentation 82
PUT service, restart for output 88
set up a communication path 34
command authorization
spool-access support 101
SPOOL-macro support 212
commands (see central operator commands)
communication path
external device support 152
for SPOOL-macro support 203
multiple for spool-access 97

248 IBM VSE/POWER Application Programming

communication path (continued)
removal of 95
single for spool-access 33
compaction table (see data compaction)
compatibility
spool-access support 29
concepts
external device support 149
job accounting 1
output segmentation 24
spool-access support 29
SPOOL macro support 203
CONCT (label of spool-access support
example) 127
connection-termination code 19
considerations
SPOOL-macro support 203
control
by CTLSPOOL of SPOOL-macro
support 209
control service
by CTL macro, SPOOL-macro
support 209
count-driven output segmentation 24
cross-partition communication (see
spool-access/SPOOL-macro support)
CTL service, spool-access support
coding sequence 37
end by quit 38
message retrieval 38
opening of 36
possible functions 36
return information 39
CTLA1l (label of spool-access support
example) 131
CTLSPOOL macro 209

—
| D
(I

data-driven output segmentation 24
data format, spool-access support 58
data input

using spool-access support 58

using SPOOL-macro support 220
data length

input, spool-access support 59

Index

data retrieval (see retrieval of data)
DEVADDR (SEGMENT operand) 25
device failure, coding for 174
device order
cancel output 188
coding sequence for 177
formats of 179
header section 180
parameter string in 180
PFLUSH, data section 189
PGO, data section 187
PRESTART, data section 188
processing of 177
PSETUP, data section 186
PSTART, data section 184
PSTOP, data section 185
PXMIT, data section 190
reactivate-device 187
request for 152
response to, header section 182
restart-device 187
setup-device 186
start-device 184
stop-device 185
transmit-command 189
device setup
external device support 157
device-stopped signal 193
device support, external (see external
device support)
devices
external (see external device
support)
DISCT (label of spool-access support
example) 141
display (see status display)
disposition Y
external device support 175
spool-access GET service 57
spool-access PUT service 74
disposition, changing of
by CTLSPOOL macro 213
from partition by spool access 105
to L after GETSPOOL 215
to L after spool-access GET 42

| E |
L

end spool access 95
end spool-access service

CTL processing 38
GET service 47
PUT-job service 66
PUT-output service 79

examples

add information for job

accounting 23

coding, SPOOL-macro support 226
reader exit routine 197

segment output (program-driven output
segmentation) 26

spool-access support programming 120

execution (see control)
external device support

abnormal-end, of VSE/POWER 175
abnormal-end, output-related 173
cancelation of output 163
communication path for 152
concepts 149

data retrieval 156

debugging a program 195

device for, start 152
device-order request 152

device orders, format of 179
device orders, processing of 177
device setup 157

logical destinations 154
message routing by 194

no output available 157
order-parameter string 180
order-response header section 182
order/signal request 164

orders header section 180

output displays 195

overview 149

password checking 194
processing spooled output 156
program debugging 195
programming prerequisites 149
range of support 194

routing of messages by 194
signals 192

stopping the device 168

Index 249

Index

external device support (continued)
subsystem orders (see subsystem
orders)
use of VSE/POWER commands for
debugging 195
user responsibilities 149
with shared spooling 151

| F |

feedback codes (see return information)

flush (see stopping)
format

account records (see account records)

device orders 180
macros, spool-access support 97
macros, SPOOL macro support 205
subsystem orders 180
FORMS (SEGMENT operand) 25
forms alignment
on external device 157
functions of VSE/POWER
job accounting 1
segmentation (of output) 24
spool-access support 29
SPOOL-macro support 203

| G |
L

GCLOSE (label of spool-access support
example) 135
Get-OPTB request, spool-access
support 52
GET service, spool-access support
checkpoint request 49
~ close request 47
coding sequence, complete queue
entry 45
coding sequence, restart 51
considerations 42
data request 47
Get-OPTB request 52
Modify-OPTB request 53

250 IBM VSE/POWER Application Programming

GET service, spool-access support
(continued)
open processing 44
output failure 48, 175
purge request 48
quit-and-lock request 48, 175
quit request 48
restart request 50
return information 54
GETB1 (label of spool-access support
example) 133
GETB3 (label of spool-access support
example) 134
GETSPOOL macro 215
GPURGE (label of spool-access support
example) 135
GQUIT (label of spool-access support
example) 135

N
I |
L

IDENT (label of spool-access support
example) 126
information (see status display)
input
using spool-access support 58
using SPOOL-macro support 220
inquire (see status display)

—
J |
L

JECL (see job entry control language)

JECL (SEGMENT operand) 25

job (see job, VSE/POWER)

job accounting
account records, DSECTs for 4
add user information 22
execution account record 7
list account record 9
network account record 11
PACCNT macro &
punch account record 12
PUTACCT macro 22

Index

job accounting (continued)
‘reader account record 14
receiver task account record 15
RJE,BSC account record 16
RJE,SNA account record 17
spool-access connect account
record 19
spool-access operation account
record 20
spool access, output submission 77
summary 1
system-up account record 18
transmitter task account record 15
job entry control language (JECL)
output segmentation, data-driven 24
job name
submission, PUTSPOOL 222
submission, spool access 102
job output segmentation (see output
segmentation)
job submission (see PUT service, spool
access)
job, VSE/POWER
controlling by CTLSPOOL 209
segmentation of output 24
submission (cross-partition using
SPOOL support) 220

| L |

label-to-code reference, spool-access
support example 120
list output
delay of 24
logical destinations, setting of 154

| M|
L]

macros
CTLSPOOL 209
GETSPOOL 215
job accounting, VSE/POWER 4
MAPXPCCB 98

macros (continued)

PACCNT &
PUTACCT 22
PUTSPOOL 220
PWRSPL 99
SEGMENT 24
SPL 205

spool-access support, overview 30
XPCC 113
XPCCB 118
MAPXPCCB macro 98
message retrieval
CTL service, spool access 38
PUT service, spool-access, coding

for 67
PUT service, spool access,
general 60

message routing (external device
support) 194

Modify-OPTB request, spool-access
support 53

multivolume tape segmentation 24

| N |
L1

n.n 1iv
NAME (SEGMENT operand) 26
networking function
account record for 11
command authority (SPOOL-macro
support) 212
command authority, spool-access
support 101
receiver account record 15
transmitter account record 15

| 0|
L

open spool-access service
CTL-service processing 36
GET-service processing 44
PUT-service processing 62

Index 251

Index

operations
command authority
(cross-partition) 212
operator commands (see central operator
commands)
OPTB (see Output Parameter Text
Block) 52, 53, 91, 92
options of VSE/POWER
job accounting (PACCOUNT command) 1
output segmentation 24
output segmentation, data-driven 24
order-response control record 182
orders, external device
cancel output 188
formats of 179
processing of 176
reactivate-device 187
request passing of 164
restart-device 187
send-message 191
set-logical-destination 191
setup-device 186
start-device 184
stop-device 185
subsystem (see subsystem orders)
transmit-command 189
VSE/POWER originated 176
output (see also list/punch output)
segmented (staged) 24
submission, failure during 77
to external device, coding for 156
to partition, spool-access
support 41
to partition, SPOOL-macro
support 215
unavailable, external device
support 157
output-arrived signal 192
Output Parameter Text Block
(spool-access support)
format 91
Get-OPTB request 52
Modify-OPTB request 53
passing 92
specifying 91
output segmentation
coding example (SEGMENT macro) 26
count-driven 24
data-driven 24

252 1IBM VSE/POWER Application Programming

output segmentation (continued)
macro SEGMENT 24
overview 24
program-driven 24
return codes, SEGMENT macro 26
SEGMENT macro 24
types of segmentation 24
output submission (see PUT-type service,
spool access)
overviews
account records 4
external device support 149
job accounting 1
output segmentation 24
spool-access support 29
SPOOL macros support 203

| P |
L]

PACCNT macro &
page count
VSE/POWER maintained 75
parameter string, external device
support 180
partition priority
with SPOOL-macro support 204
PNET function (see networking function)
program-driven output segmentation 24
program-driven segmentation
causes for 24
macro for 24
protected output entry (spool-access
support) 57, 74
punch output
delay of 24
purge request, spool-access support 48
PUT service, spool access
close processing, job submission 66
close service for output 79
coding sequence, checkpoint for
output 85
coding sequence, close with SPL 80
coding sequence, get messages 69
coding sequence, job/output
submission 63
coding sequence, output
segmentation 82

Index

PUT service, spool access (continued)
coding sequence, output submission
restart 88
data format 58
data length 59
end of data indication 59
general considerations 58
job(s) to input queue 60
message retrieval, coding for 67
message retrieval, general 60
open processing 62
output data 72
output submission, failure of 77
passing OPTBs 92
PUT-data request 65
quit request 66
return information, job
submission 70
return information, output
submission 93
specifying OPTBs 91
PUTACCT macro 22
PUTA1 (label of spool-access support
example) 128
PUTA3 (label of spool-access support
example) 129
PUTA4 (label of spool-access support
example) 130
PUTB2 (label of spool-access support
example) 137
PUTSPOOL macro 220
PWRSPL macro 99

queue entry

retrieval of 41

submission of, job 60

submission of, output 72
quit-and-lock request

external device support 175

spool-access GET service 48
quit request, spool access

GET service 48

PUT service 66

—
| R
[

reactivate-device order 187
reader exit
example for local input 197
receiver task
account record 15
record count
application to VSE/POWER 84
synchronization of 84
VSE/POWER maintained 75
record length
in record prefix 43, 58
maximum/minimum for spool-access
PUT 59
record prefix 43
register use
reader-exit 198
SPOOL-macro support 204
release number iv
remote job entry BSC
account record for 16
remote job entry SNA
RJE,SNA account record 17
reply buffer, spool access
for CTL service 36
for GET service 43
for PUT service 59
purpose of 32
response records
cancel output 188
formats of 179
processing of 177
reactivate-device 187
restart-device 187
send-message 191
set-logical-destination 191
setup-device 186
start-device 184
stop-device 185
transmit-command 189
restart-device order 187
restart, spool access
GET-service 50
PUT-output service 86
restrictions
external devices and shared
spooling 151

Index

253

Index

restrictions (continued)
PUTACCT macro use 22
shared spooling and external
devices 151
retrieval of data from queues
GET-service, spool-access &1
GETSPOOL macro 215
return codes (see also return
information)
CTLSPOOL, GETSPOOL, PUTSPOOL 223
on return from reader exit 198
SEGMENT macro 26
XPCC macro (spooled-access
support) 115

XPOST 223

XWAIT 223
return information, external device
support

cancel-output order 189
reactivate-device order 187
restart-device order 188
set-up device order 186
start-device order 184
stop-device order 185
transmit-command order 190
return information, spool access
CTL-service processing 39
GET-service processing 5&
on access termination 96
PUT-job service 70
PUT-output service 93
RJE (see remote job entry)
routines, user-written
job accounting 22
reader exit (example) 197

| s |
L

SEGMENT macro 24
segmentation (see output segmentation)
send buffer, spool access

for CTL service 36

for GET service 43

for PUT service 59

purpose of 32

254 IBM VSE/POWER Application Programming

send-message order 191
session termination code 17
set-logical-destination order 191
set up forms (see forms alignment)
setup-device order 186
setup-processed signal 193
shared spooling
with external device support 151
signals, external device support
device-stopped 193
output-arrived 192
processing of 192
request passing of 164
setup-processed 193
SIGNOFF code 16
SNA work station (see remote job entry
SNA)
SPL (see spool parameter list)
SPL macro (cross-partition) 205
SPLDMOHP field (spool-access
support) 57, 74
spool-access support
advantages 29
communication path for 33
concept 30
control service 36
end use of 95
Get-OPTB request 52
GET-service 41
job submission 60
label-to-code reference for
example 120
macros for, description 97
macros for, summary 30
MAPXPCCB macro 98
Modify-OPTB request 53
OPTB (see Output Parameter Text
Block 52, 53, 91, 92
output submission 72
passing OPTBs 92
purpose of 29
PUT job service 60
PUT output service 72
PUT service, general 58
PWRSPL macro 99
reply buffer 32
send buffer 32
service types, overview 34
specifying OPTBs 91

Index

spool-access support (continued)
submission to XMT queue 58
XPCC macro 113
XPCCB macro 118
SPOOL-macro support
command authority 212
connect to VSE/POWER 203
controlling jobs (by CTLSPOOL) 209
disconnect from VSE/POWER 203
job submission (PUTSPOOL) 220
partition priority 204
performance considerations 203
programming example 226
purpose of 203
register use 204
retrieve data from queues
(GETSPOOL) 215
SPL macro 205
spool parameter list 205
VSE macros required 203
spool parameter list, spool access
definition macro for 99
fields of for job submission 65
fields of for output (append) 91
fields of for output (restart) 90
fields of for output submission 74
GET service 43
PUT-job service 61
PUT-output service 77
with PUT-output close 80
spool parameter list, SPOOL macro
support
defining to VSE/POWER 206
DSECT for 208
macro for definition 205
pointer to 203
staged output 24
start-device order 184
status (see status display)
status display
job status (SPOOL-macro support) 213
job/output characteristics,
spool-access support 102
stop-device order 185
stopping
external device 168
output 163
spool access 95

subsystem-order header section 180
subsystem orders 179

processing of 190

send-message 191

set logical destination 191
summary of amendments ix

| T |
L

task (see receiver or transmitter task)
terminate (see stopping)
TERMN (label of spool-access support
example) 141
terms, definition of (see Glossary)
transmit-command order 189
transmitter task
account record 15
TYPE specification
of spool parameter list, spool-access
support 100
of spool parameter list, SPOOL macro
support 206, 208

—
| U
(I

unit of transfer (see also buffers)
spool-access support 33
user information
additional, for job accounting 22
user-written channel programs for IBM
4248 27
user-written routines (see routines)

—
| Vv |
L

version number iv

VSE macros
for SPOOL-macro support 203
LFCB causing segmentation 24

Index 255

Index

| X |
J

XECBTAB macro (for SPOOL-macro
support) 203
XMIT-command order 189
XMT (transmission) queue
job submission to 58
output submission to 58
XPCC macro 113
XPCCB macro 118

1
Numerics |
| I

3200 relation to 3800 iv
3800 printing subsystem
relation to 3200 iv
4248
user-written channel programs for 27

256 1IBM VSE/POWER Application Programming

IBM Virtual Storage Extended/ READER’S

iOV;’El:l P . COMMENT
pplication Programming

Order No. SC33-6276-00 FORM

This form may be used to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any, are deemed
appropriate. Comments may be written in your own language; English is not required.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM repre-
sentative or to the IBM branch office serving your locality.

Your comments:

Note: Staples can cause problems with automated mail sorting equipment. Please use pressure sensitive or
other gummed tape to seal this form.

If you wish a reply, give your name and address on the reverse side of this form.

Thank you for your cooperation. No postage stamp is necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address in
the Edition Notice on the back of the title page).

S$C33-6276-00
cut

OR
FOLD
ALONG
LINE

Reader’s Comment Form

Fold And Tape Please Do Not Staple Fold And Tape
NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

RN

fr T
BUSINESS REPLY MAIL ——

RSN
FIRST CLASS PERMIT NO.40 ARMONK, N.Y.

PR]

R
POSTAGE WILL BE PAID BY ADDRESSEE:

R
International Business Machines Corporation L
Department 6R1BP R ARIR
180 Kost Road
Mechanicsburg, PA 17055 TR

Fold And Tape Please Do Not Staple Fold And Tape

If you would like a reply. please print:

Your Name

Company Name/Department

Street Address

City

State/Zip Code

IBM Branch Office serving you

"ll
sllM

IBM Virtual Storage Extended/ READER’S
POWER COMMENT

Application Programming
Order No. SC33-6276-00 FORM

This form may be used to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any, are deemed
appropriate. Comments may be written in your own language; English is not required.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM repre-
sentative or to the IBM branch office serving your locality.

Your comments:

Note: Staples can cause problems with automated mail sorting equipment. Please use pressure sensitive or
other gummed tape to seal this ferm.

If you wish a reply, give your name and address on the reverse side of this form.

Thank you for your cooperation. No postage stamp is necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address in
the Edition Notice on the back of the title page).

S$C33-6276-00
cut

FOLD

ALONG
LINE

Reader’s Comment Form

Fold And Tape Please Do Not Staple Fold And Tape
NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

L]

A
BUSINESS REPLY MAIL I —

]
FIRST CLASS PERMIT NO.40 ARMONK, N.Y.

]

R
POSTAGE WILL BE PAID BY ADDRESSEE:

N
International Business Machines Corporation I
Department 6R1BP S
180 Kost Road EEETS—
Mechanicsburg, PA 17055 ER———

mFoid Anc;l"l:'ape o o "F."Ie;se D;)"i\.lot Sta;l.(; Fol.d And Tape

If you would like a reply, please print:

Your Name

Company Name/Department

Street Address

City

State/Zip Code

IBM Branch Office serving you

| |
(TN
III 1
<.::|l“
T

IBM Virtual Storage Extended/ READER’S

iOWﬁEl:. P : COMMENT
pplication Programming

Order No. SC33-6276-00 FORM

This form may be used to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any, are deemed
appropriate. Comments may be written in your own language; English is not required.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM repre-
sentative or to the IBM branch office serving your locality.

Your comments:

Note: Staples can cause problems with automated mail sorting equipment. Please use pressure sensitive or
other gummed tape to seal this form.

If you wish a reply, give your name and address on the reverse side of this form.

Thank you for your cooperation. No postage stamp is necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address in
the Edition Notice on the back of the title page).

SC33-6276-00

CUT
OR
FOLD
ALONG
LINE
Reader’'s Comment Form
Fold And Tape Please Do Not Staple Fold And Tape
NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
o e]
[l]
BUSINESS REPLY MAIL ——————
]
FIRST CLASS PERMIT NO.40 ARMONK, N.Y.
B
RS n e]
POSTAGE WILL BE PAID BY ADDRESSEE:
[
International Business Machines Corporation [
Department 6R1BP R SETERH
180 Kost Road TS
Mechanicsburg, PA 17055 L]
Fold And Tape Plea.se Do N‘(;.t. étaple Fold }\nd Tape '

If you would like a reply, please print:

Your Name

Company Name/Department

Street Address

City

State/Zip Code

IBM Branch Office serving you

ol

IBM Virtual Storage Extended/
POWER

(File No. S370/4300-40)
Printed in U.S.A.

SC33-6276-00

