IBM T IBM PALO ALTO SCIENTIFIC CENTER

, Z2720-6431, June 1976
. ' ASSEMBLE R . TRILO 22 :

‘A FAST ASSEMBLY TECHNIQUE USING APL

H. J. MYERS

IBM INTERNAL USE ONLY

‘H

1974 IBM PALO ALTO SCIENTIFIC CENTER REPORTS
IBM CONFIDENTIAL AND IBM INTERNAL USE ONLY

Z2220-6426 March 1974
P.SMITH and K. PRICE — An Architectural and . .
Design Overview of SCAMP (42 p.) IBM Confidential
until March 1984, Limited Distribution

2220-6427 October 1974
HARRY F.SMITH, JR. — VM/7 Virtual Memory for
the S/7 (68 p.) IBM Confidential until November 1979.

1975 IBM PALO ALTO SCIENTIFIC CENTER REPORTS
IBM CONFIDENTIAL AND IBM INTERNAL USE ONLY

Z2220-6428 February 1975
(\ A.HASSITT and L. E. LYON — The APL Assists
‘ {RPQ S00256) (115 p.) IBM Internal Use Only
\ s

Z2220-6429 June 1975
M. J. BENISTON, R. J. CREASY, A. HASSITT,
J. W. LAGESCHULTE, L. E. LYON — Writing an
APL/CMS Auxiliary Processor (with complete example
- code) (76 p.) IBM Internal Use Only

1976 IBM PALO ALTO SCIENTIFIC CENTER REPORTS
IBM CONFIDENTIAL AND IBM INTERNAL USE ONLY

. Z2Z20-6431 June 1976 2
H..J. MYERS --A Fast Assembly Technique
using APL (19_,p.) IBM Internal Use Only

O

Z2220-6495 August 1975
Abstracts of IBM Confidential and I1BM Internal Use
Only Palo Alto Scientific Center Reports (43 p.)
IBM Confidential

The availability of reports is correct as of the printing date of this report.

* These reports are available only on the need to know basis, please contact the Scientific Center for information on copies.

® Copies are no longer available from the Scientific Center.

”~

IBM PALO ALTO SCIENTIFIC CENTER. TECHNICAL REPORT NO. Z2Z20-6431

A Fast Assembly TechniQue uSing APL
He Joseph Myers

IBM SClentlflc Center

P. O. Box 10500

Palo Alto, California 94304

JUNE 1976.

ABSTRACT

A technique dis described which reduces the cost of
producing assemblers for a wide variety of machine
architectures. Assembly is accomplished by executing
each instruction of the source program as an APL
function. An assembler has been generated capable of
- speeds of " about 2000 lines per minute in an APL
 epv1ronment on an IBM System 370/145. ‘

Index Terms for the IBM Subject Index

> APL)
Assemblers

Performance

IBM Internal Use Only

LT S L o e Layas 3o

O

PAGE 2

INTRODUCTICN

The recent Years have seen the introduction of many
microcomputers in a wide variety of machine architecturese. The
prices of these machines are extremely low (on the order of a few
hundred dollars). Neither the vendors nor the users of these’
machines can invest much capital in programming support for them
without losing the advantages of -their low cost.

.APL presents an excellent environment for low cost programminge

The nature of the APL language also makes it attractive for
implementing computer simulatorse. {Such simulators could be used
by vendors to validate their machine ‘designsy and by buyers to
check out their application programs before actual acquisition of
the harware.) It is naturally desirable to provide an assembler
in the same environment as the simulatore. Howevery, assemblers
written in APL usually execute very slowly (about 100 times
slower 'than comparable assemblers written in machine language on
the same computer). '

A technique has been developed that overcomes this speed '
drawbacky and allows production of (non-macro) assemblers with
performance in the neighborhood of their machine—-language

counterpartse. It also reduces the time to produce an assembler
in an APL environment from 4-5 man—weeks to one or two man—dayse.
The rapid availability and low cost of this type of assembler
will be of considerable benefit to both vendors and buyers of
this new breed of inexpensive computere.

.

OVERVIEW OF THE METHOD

In order to understand the method of fast assembly, one should
first think about the functions, an assembler performse. Each line
of the - source program must be scanned to isolate the tokens of

the * language. ("Tokens" are labels, op—codes, parentheses,
commas and other atomic components that make up the assembler
statements.) Labels wust be entered into a symbol table;

op—codes must be looked up in an op—code table to select the
appropriate actions for each linee. These and many other 1anguagel
processing functions must be carried out by the assemblere. The

‘nature of these language processing functions is not unique to

assemblerse. Indeed, the APL system also performs many of theme

The 'tyﬁical approach to building an assembler in an APL"
environment would consist of writing (in APL) subroutines that
would read a line of source code, break it up into tokens, store
labels in a symbol table, look up op—codesy and so forthe. The
fast assembly technique involves harnessing these functions
already inherent in the APL system itselfe. By doing this we not

only avoid the coding of these functions, but achieve dramatic

performance beneflts because these functions (within the APL
system) are coded in machine languagee.

The organization of a typical two—-pass assembler is diagrammed in

IBM Internal Use Only

PAGE 3

Figure 1. Pass 1 is principally concerned with allocating
storage for each instruction and constant, and with assiligning
values to symbolic labels in the programe Pass 2 uses

information developed by pass 1 to assemble the bit patterns of
instructions and constants that constitute the program into a
loadable formaty and to list the resultse A symbol table and -
inter—pass file constitute the principal data linking the two
passesSe The symbol table contains labels and their values, and
1he inter—pass file contains a copy of the source program,

"usually encoded for efficient interpretation by pass 2.

LEGSEND

SyYMEOL TRBLE .
NRME F|E |URLUE

cee (LN
|
| SIURCE
LGCATION
COUNTER
Frss 1
A CBJECT
CODE
LOCATION
- COUNTER LISTINGS
. INTEF-PASS
.. FILE...

TYRICAL AHSSEMELER

Figure i.

The fast assembly technique takes advantage of a similarity
between the syntaxes of APL and assembly languagee. One can view
a line of assembly code as a function calle. The instruction
mnemonic is the name of the function. The operand fields of the
instruction, separated by ‘commas, are catenated to form the
{vector) argument of the function. Thus the APL function ADD
would generate the bit pattern for an ADD instruction in the
target machinee. (Note that throughout this report the names of
APL functicns and variables will be italicized.) With this view,
an assembly source program would be an APL function consisting of
a series of calls upon ADD and- other such "assembly functions".

IBM Internal Use Only

O

PAGE 4

Fur thermore, execution of thils source program {in the proper
context) would actually perform the entire assembly. In essencey,
this view is the core of the method we will call the "fast
assembly" techniques " : . S

V SOURCE
{1l A SAMPLE SOURCE PROGRAM
(2] ENTRY A4,ERR -
(31 EXTRN'X1,X2"
(4] ADD NB,NX
(S5 Al:ADDI NB,O
[6] IF NX,GT,NB,Al
[71 CGOTO NByERR,A14A2,A34A4,A5,A6
(R] @A START OF BRANCH GROUP
(9] A2:ADD NA,NC
[{10])] A3:EQU A2+4
[{11) A4:ADD NB,NX-1
(12] AS:ADD(A1+1),Xx2
[137 A6:ADDI X1, 5
{14] R CONSTANTS
[15) NB:DC 3
(16] NA:DS 20
{(17] NX:DC 5
{181 NC:0RG 100
{19) ERR:DC A4
(20] END
v

. Figure 2.

A sample. source program is shown in Figure 2. This program is
both an APL program and an assembly source program for a
hypothetical computer. When SQURCE (in Figure 1) 1s executed,
the first line is skipped because it is a commente. The second
line .'invokes the function ENTRY. ENTRY performs the ' ENTRY
assembly function (described in detail later)e. The third line
invokes the EXTRN function, the fourth line, the ADD function and
SO One By constraining the syntax of the assembly language to
conform to that of APL we can cause this program to take on a

.dual function of allowing the language processing functions of °

the APL system to be applied to the task of assembly. As a
result, approximately two orders of magnitude in speed

- improvement can be achieved over coding these language functions

-

in APL.

The data flow for the fast assembly technique is shown ln'Flgure
3. Pass 1 executes the source programy SOURCE for example, to
collect storage allocation information. Each function called by

'SOURCE is copable of operating in each of . two modes —— pass 1

mode, and pass 2 mode. Because APL line labels have values that
are APL line numbers, (not related to assembly values), operand

fields are dignored during pass 1. (Operand fields of machine
Instructlons typically are not evaluated during pass 1 anyways)
Instead, those instructions,. ordinarily requiring operand

IBM Internal Use Only

we :
]/,uJ»/’M{ ’UW{L‘/ | » . PAGE 5

evaluation durin /pass 1 are deferred. (Their pass 1 action is
to place themselves on a deferral Llist.) After pass 1 but before
pass 2, an "iqtér&ude" process is carried oute. The_ functlon of
the interlude is to_ create the pass 2 context for the second
execution of SOURCE. T

. LEGEWD
SOUPCE
PRSS 1
«SCGURCE : T
'

LOCATION

COUNTER

15CREMENTS

TEFERFED)

- B rusTrUCTIONS
£ T .
| SR LB p”~—7 <:E}rszuoE-
lconrsx;]
FE5T ASSEMELER SOURCE ! FINAL
nATA Ef (il =HODIFIED LOCATION
LlH ' 9 4 ._L / SOURCE CCU”TER
(NOTE: SOUPCE® AND CONTEXT
RRE FUMCTIONS DYNAMICALLY Y
CREATED BY INTERLUDE, THEN CONIEST
EXECUTED AS PASS Z2.) SOURCE !
LISTINGS [oBJECT CoDE

Figure 3.,

In the pass 2 context all APL 1abels are redefined to have the

assembly—related values‘ determined by pass 1. To ‘do this, the
inter Lude brocess creates a "context function" and modifies the
original source programe Pass 2 consists of invocation of the
context function which establishes the new context, executes the
deferred instructlons; and finally calls the modified source
programe In the pass 2 mode all of the functions invoked by
SOURCE (modlfied) generate object code and &associated listings.
Figure 4 shows the call topography of the fast assemblere. (In
Figure 4 levels of call are shown by indentatione Eege ASM
calls SOURCEy AINTERLUDE and ACONTEXT.)

”~

IBM Internal Use Only

PAGE 6

| SOURCE = Pass 1 »
| Assembler Instructions (Pass 1 mode)

| Machine Instructions : . -
| | Code Generator (Pass 1 mode)

| AINTERLUDE (build ACONTEXT and APASSTWO)

| ACONTEXT = Pass 2 '

| | Deferred Instructions (ORG, EQU, DS)

{ | APASSTWO (SOURCE modified) = Pass 2 text

| | | Assembler Instructions (Pass 2 mode)

| | | Machine Instructions

| | | | Code Generator (Pass 2 mode)

Figure 4.

Because the language functions natlive to APL need not be
explicitly present in the fast assembler, its size is also
(4, considerably reduced. A fast assembler will consist of about 160
' . lines of basic function written in APL, plus two additional APL
-lines for each-instruction in the target machinee. For a machine
of 80 instructions the assembler will consist of 160+2x80 or 320 .
lines of APL codee. (A traditionally coded assembler [1] required -
about 500 lines of APL codee.) This does not tell the whole story
because the 160 machine instruction 1lines are quite simple and
rapidly coded with little probability of errore. The base 160
lines need little modification from one assembler to another.

Another advantage of the technique is that the source program can
be edited with the standard APL function editore. No separate
source program editor need be providede.

DETAILS OF THE METHOD

The APL listings for a sample fast assembler are displayed in the
appendixs We will examine below how 1t works in contrast to a
typical two-pass assemblere. The sample assembler supports object

cﬂ? code. relocation and generates code for a hypothetical machine.
e The target machine has 16-bit words, but is addressable in 8=-bit
' bytess Its instructions are variable in length and consist of of
‘one or more wordse The first word qﬁmggchmﬁnstructlpn“hgydg_}ygi}(‘@/
' op-code, ' o T o ol{C -o/
~ ———— : I
The sample fast assembler supports .the following typical

assembler instructions: EQU, ORG, ENTRY, EXTRN, DS (define
storage), IDC (define constant) and ENDe It is assumed that the
reader is familiar with at least one assembly language, and that
the functions of ‘these assembler instructions are known to him.
(See [2]. for an example of a typical assembler language.) We

* . will now describe the method in detail, using the sample program
called SOURCE shown in Figure 2.

IBM Internal Use Only

' PAGE 7

The user enters

ASM ‘SOURCE"
to invoke the assemblere. The results of the assembly are left in
some APL global variables (described later). This information is:
suff;cient for sope post processor, (not described in this report)

to form a relocatable obJect module e of any desired format, (The
function DUMP d1splays obJect code and relocatlon lnformation to
demonstrate this.)

Typical Pass 1.

A typical assembler will perform certain initializations (eegey
set a location counter to zero) and start the first of two passes
over the source programe A typical pass 1 would perform the
following functions: i '

1) Tokenize each liney copy the encoded line to an
external ‘file (for later use by pass 2), and extract
the label and instruction mnemonice.

2) For those lines containing a label, place the label
in a symbol tables Except ' for EQU and ORG
instructions, place the current location counter
value in the symbol table entry for the label and
set the "relocation" .bit one. In any case, advance
the location counter by an amount depending on the
instructione

3) .For EQU, ORG and DS instructions, the operand field
must be evaluatede Evaluation must take into
account the relocation.attribute of symbolic values.

It also requires parsing and evaluation of the
operand for an infix algebrajc expressione. EQU
assigns 1ts operand value (including relocation bit)
to its label (in the symbol table). ORG and DS
increment _the location counter by the amount
computed from their operands. ORG assigns the new
value to its label if any is present.

4) ENTRY looks up or enters each label from its operand
. into the symbol table. The “entry" bit for each of
these labels is set one.

5) EXTRN enters each of the labels in its operand into
the symbol table and sets the "external bit one

After pass 1, all source program Lines are on an external
(inter—pass) file in an encoded forme. All of the labels in the
symbol table have been assigned a value and had their relocation,
entry and external attribute bits set. Before we go on to
describe pass 2,y let's see how the fast assembler handles the

first passe.) ~

IBM Internal Use Only

PAGE 8

Fast Assembler Pass 1.

- -

The fast assembler, ASM, first establishes a special envVironment
(consisting of constants and empty 1lists) and then executes
SOURCE. (Recall that each line of SOURCE is an APL function with
a name that is an assembler mnemonic.) During the first pass the
following actions are carried outs Co '

1) Machine functions —— such as ADD (using the function
AGENWDS) insert into the vector ALCX a count of the
nunober of addressable" units of _storage they usee.

‘(ALCX has one element for each line in SOURCE)

2) Assembly functions EQU, ORG and DS record their line

numbers on a Lls(, thereby deferring their
executions until the end of the first pass. These
are among the few instructions that cause

manipulations of ‘the source program as texte
'
- 3) Comments are ignored.
4) ENTRY records its arguments on a list.

"5) EXTRN converts its operands into APL variables and -
assigns them external symbol valuese. (Note that the
EXTRN operands must be quoted so as to avolid
evaluation by the APL interpreter —-— line 3 in
SOURCE, This 1s the most noticeable intrusion of
APL syntax into the syntax of the assembly language.
More will be said about syntax in the section on
drawbackse) EXTRN is the other instruction that
causes manipulation of the source program as text.

Fast:Assembler Inter Lude.

At thé»end of pass 1 ASM is not in the same state as the typical
assembler. The location counter increments are held in a vector
ALCX. EQUy ORG and DS have been deferred because the values of.
labels. durlhb pass 17 are thoset_of APL line numbers, not location
countgr_ vg}ues. The deferred instructions are the only ones
which must have their operands evaluated before pass 2 starts.

"'When that evaluation takes place,y, the labels must have the proper

valuese To this endy a function called AINTERLUDE is invoked at

"the end of pass 1. The purpose of the interlude function 1s to

cause the APL 1label variables (AL, A2, NXy, ERR etce) of the
source program to take on thedr assembly values. Once this is
doney, the deferred functions (EQU, ORG and DS) can be executed
and final location counter assignments can be madee.

AINTERLUDE forms an APL function called ACONTEXT shown in Figure
Se In this function all labels from SOURCE are made into local
APL variablese Each 1Is assigned a value determined by its line
number and the value in the corrésponding position of a variable

IBM Internal Use Only

ADR&{£1

PAGE 9
gt Tafortide (121
. bDSﬁﬂj
named ALC. (ALC~+\AK6\7ALCX) Recalling that ALCX contains only

location counter ''increments, the reader will realize that ALC
contains the location counter setting without it

the effect of ORG_and DS functions. Note that the valueofor each
label is augmented by the contents of AA. AA is an adjustment
(initially AK65) due to location counter manipulation by the ORG'’
and DS functionse AK65=2%16 and is a relocation bit appended to
all location counter values. (More will be said about relocation
bit strategy later.) Note that the deferred functions are
interleaved with the assignments of the labelse They are all in
the same order as they appeared in SOURCE « . o

V ACONTEXT;0A;APASSTWO;A1;A2;A3;A4;A5;A6;NB;NA;NX;NC;ERR
{11} AA~AK65+0xALVe—1+p[]LC
(2] Al ~AA+ 6
[3] A2 ~AA+ 40
(4] A3+~ 10AEQU A2+4

N (51 A4 —ar+ 46 | €

'[6] AS ~AA+- 52 .
(7] A6 ~AA+ S8 , ok
[8] NB ~A0+ 64 , S o
(91 NA- 16ADS .20 o
[10) WX ~AL+ 66 ‘ !
[11] 18 AORG 100 ' ‘ Co
(12] NC AL+ 68 : : .

-[13] ERR = «AA+ 68 :
[14] AMEM~([.5xAK65|[/ALC+ALCX,0)p0 . ’
[15] ALCLAEQL[;0]1-AEQL[:1] o
[16] eCFX AF -

pss 700

: Toath v
Figure So

e et ey

By the +time ACONTEXT reaches line 16 (see Figure 5) all labels
are defined and TEEC}has the 1ocat10n counter values _for each_of_
the lines of the source program.« “We are then ln the same
(a position as the typicé:l assembler was. at the end of pass 1, and . @

are ready to begin pass 2.

——Fypical Pass 2.

R

* At the beginning of pass 2 the typical assembler opens an object
code output filee. It then emits into the buffer of this file
entry and external symbol information from the symbol table.
Then in pass 2 each line of encoded text 1s read from the .
inter—pass file and the following functions are performede

. y ! : 7/‘7"&/ /Im‘/
1) For machine instructions and other bit gedefators)
(such as DC), operand fields are ./ evaluatede 4n~/ﬂg

Evaluation of operands requires parsfng of Infix
algebraic expressionse. The results of evaluation
are packed according to the format requirements of
each instruction. The packed data and its location
counter value are emitted to the output buffere The

IBM Internak Use Only

PAGE 10

location counter is advanced as it was in pass 1.

2) When listing is required, the generated data,
location counter value and source Lline image .is
formatted and placed into an output listing filee.

At the end of pass 2y the symbol table is printed with values and
cross reference information for each label. Error messages, it
anyy are printed just before or after the symbol table. 'Finally,

relocation information from the symbol table is sent to the

output buffer, and assembly is completed.

Fast Assembler Pass 2. .

Pass 2 execution is similarly straight—forward in the fast
assemblere. AINTERLUDE, in addition to preparing ACONTEXT, also
prepared SOURCE for pass 2 execution. The preparation consisted
of removing all the labels, and changing the header line to

.APASSTWO. Figure 6 shows this new version of SOURCE.

V APASSTWO

[1] A SAMPLE SOURCE PROGRAM

(21 ENTRY A4,ERR)

{31 EXTRN'X1,X2¢

(4] ADD NByNX

(51 ADDI NB,O - ‘

(6] IF NX,GT,NB,Al ‘ -
{71 CGOTO NB,ERR,A1,A2,A3,A4,A5,A6
[8] A START OF BRANCH GROUP
[9) ° ADD NA,NC

(10] EQU A2+4

{[11] ADD NB,NX-1

[12] ADD(AL1+1),X2 ..
{131 ADDI X1, 5

[14] A CONSTANTS

(1s1 bpc 3

‘{16] DS 20

[17] DC S

.[181 ORG 100
-[19] DC-A4

{20) END

Figure 6.

ACONTEXT ;(on line 16) calls APASSTWO (the text image of which was

left in AF by AINTERLUDE) and the following actions are carried
out by the assembler functions called from APASSTWO.

1) Machine instructions (through the function AGENWDS)
place the proper data and relocation bits into the
vector AMEM. If listing is required, the function
APRT is called wupone Machine instructlions
(including DC) are the only instructions whose

IBM Internal Use Only

PAGE 11

operands are evaluated during pass 2. When they are
evaluat ed, the values of labels are those
established by ACONTEXT. :
2) Functions EQU, ORG, DS and EXTRN only 1list (their
functions having been completed before pass 2).

Comments are not executede Therefore in order to
list themy the print routine 1looks at the 1line
following each one it prints to see if the successor
is a. commente. If it isy the successor is printed
(and its successor checked). This procedure will
guarantee listing of all "comments except one
appearing on line 1. For this case ASM must perform
the check and call APRT if requirede. '

8}

4) ENTRY forms all of its listed 1items (entry labels)
into the matrix AENL. The values of the items are
taken from ALCe. Listing is performed as required.

At the end of pass 2 (if a listing is requested) the symbol table
is printede. Error messages; if present, are listed and assembly
is completes The equivalent of the object code file 1is held in
the global variables AMEM, AENL, and AEXL.

ERROR CHECKING

Many of the errors in the soufce program will be detected by APL
itself. If there . are any syntax errors they will occur in pass
1. Assembly will stop and the user can usually correct them by

editing the source programy and then resuming the assembly as he

. would +the execution of any APL program. This should not be
confusing because the APL error messages come out in the context
of the source programe The code displayed is familiar to the
users . This is contrary to the usual case where an APL error
messége is in the context of the assembler -— a program the user
did not write. APL checking also eliminates considerable code
that would have to be included in the-typic&l assemblere.

!&L29~QCQOLS will occur either during pass 1 (when a label is
misspelled or missing)y or during the interlude (when the operand
of a deferred instruction is not defined earlier in the source
program). If the error Iin either of these cases 1s not in the

line at which the assembler stopped, the assembly must be aborted

before the correction is madee. Otherwise, the line causing the

error may be modified and the assembly resumede

The assembler makes a number of checks itself AGENWDS checks data
and relocation bits it is paessed for compatabilitye. If +they
don't match an error message is issued, but the assembly
continuese. EQUy ORG and DS check their operands for proper shape
and value and issue any needed . error messagese All error
messages are set up by a common routine, AERR. AERR places the
message and line number on an error list. If no listing is

IBM Internal Use Only

PAGE 12

requested, the source line image is lncluded on the Lliste. At the
end "of assembly, any accumulated error messages are printed
following the symbol table. '

Some errors will escape detectione For example, duplicate labels

will not be noticed. Some relocatable expressions (like A+B, A+X

and X+1, where A and B are relocatable labels, and X is an
external label) will be wrong without being noted. These could
be detected at additional cost of assembly speed. - There are no

~attempts to catch errors introduced through malicious use (such

as real numbers or quoted strings in the operand fields). These
errors will cause +the assembler to stop with some APL error
message (probably INDEX or DOMAIN error)e.

RELOCATION CONVENTIONS

For this particular machine -architecture (16-bit words) it is
convenient to include the relocation bits as part. of the label

value. These bits are the 17th and 18th bits (counting from the

right) of a binary representation-of +the label values Bit 171s
one if the value 1is relocatable. Bit 18 is one |if the’Tﬁk—T__E
an external label. These 1 values are easlly tested for relocation
type determination by the loadere The object code vector, AMEM,
readily holds one 16-bit word plus two relocation bits per

elemente (On a S/370 implementation of APL up to 56 bits can be

held per elements) The final format of the relocatable object
code is beyond the scope of this reporte. Such a format depends
heavily upon the relocating’ loader requirementse However,

sufficient information is produced by the assembler to allow the

construction of any desired formate. 'Inclusion of an object code

formatter would not appreciably increase assembly timee.

-

MACROS

This report describes only a basic assembler that has no macro_

capabilitye. Inmplementation of macros so that macro definitions
could -appear as part of the source program would lead to
relatively slow text processinge. However, one can, without
significant loss of execution speedy implement what are

classically called "built in" macrose That isy, one can implement:
"APL functions which generate multiple machine instructions per

invokatione Such APL functions can take on all of the properties
generally associated with conditional macros e The only

" difference between these macros and definable macros is that they

operate in terns of “inside the assembler" rather as. part of the
source languagee.

DRAWBACKS

‘The fast assembly technique described above has a number of

drawbacksy none judged 1o be serjiouse. The source program format
is dictated by APL syntax requirementse. Labels must appear
followed by a colone (Some people will wview this as .an
advantagee.) Comments can’ appear .only on comment lines (a

IBM Internal Use Only

— ik

Ax¢S)

PAGE 13

distinct disadvantagel. Operands must be evaluated right to left
without operator precedences -This means that all operands but
the rightmost must be enclosed in parentheses if they contain an
-operatore. (See line 12 in SOURCE.) Program labels cannot be the
same as op—-codes because all names are in the same APL symbol
tablee The labels DUMP and ASM 'can't be used, . though this
restriction could be removed. (Note +that all intermal assembler
functions and variables have names beginning with 'A%'.) Nelither
mor e complete error checking, macro processing nor label-use
recording can be achieved without considerable loss in assembly
speed. Some features such as literals, hexadecimal and EBCDIC
data specification are not included in the sample assembler, ‘but
could be added with little cost in speed or implementation time.

TIMINGS AND CONCLUSIONS

The sample assembler has been tested and timed to a limited
extent on an IBM S/370/145 (under VM/370) and on an IBM 5100.
The timing formulas for assemblies with and without listings are
shown belowe The output from the aséembly of our sample program
is show in Figure 7 at the end of this report. ’

on S/370/145 (with microcode assist) Maximum
with listing seconds = .037xLINES + .141 1608 l1pm
without listing seconds = <029xLINES + .106 2077 lpm

on 5100
with listing seconds = 5.71xLINES + 22.5 11 lpm
without listing seconds = 2.70xLINES + 16.7 22 1lpm

The numbers following the formulas (under the heading "“"Maximum'),
give the maximum number of lines per minute achievable according
to the formulase. .

The 'fast assembler was implemented in two man—-daysy once the
concebt was perceived by the authore. A similar assembler ([1]
using "typical" techniques was constructed by the author in about
four man—weekSe. It is estimated that only one or two man~days
would be required to write and check out an assembler for any of
a variety“ of typical machine architecturese. This low
implementation costy coupled with the high execution speed brings
the cost of the fast APL assembler to the point of viability in
the realm of micro—computer economicse. ’

REFERENCES

1) Myers, He Joseph, and Friedl, Paul Jey "A

" Terminal-Oriented Assembler/Simulator for System/7",

IBM Scientific Center Report ZZ220-6412, December
1971« (IBM Internal Use Only.)

2) IBM Coproration, "IBM System/360 Disk and Tape
Operating System Assembler Language', Form C24-3414,
19690 ”~

IBM Internal Use Only

PAGE 14

ASM 'SOURCE '

LOC OPR OPND OPND OPND | SOURCE PAGE 1
c—- L C1]n SAMPLE SOURCE PROGRAM o
0000: ; - 2| ENTRY A4,ERR .
. 0000: ' 3] EXTRN'X1,X2"
‘'~ 0000:003B 0040 0056 4| ADD NB,NX
' . 0006:003D 0040 0000 5|41 ADDI NB,O
' 000C:1057 0056 0040 0006 6| - IF NX,GTNB,Al
- 0014:0056 0040 0006 0064 7| CGOTO NB,ERRyAl1,A2,A3,A4,A5, A6
. ' 0006 0028 002C 002E
' 0034 0034 : ,
c—- ' 8|@ START OF BRANCH GROUP
0028:003B 0042 0064 9{A2 ADD. NA,NC
0o02c: ‘ ' 10143 EQU A2+4
. 002E:003B 0040 0055 ' 11]44 ADD NB,NX-1
0034:003B 0007 0001 12]45 ADD(A1+1),Xx2
003A:003D 0000 FFFB 13]46 ADDI X1,°5
(:) c—- 14| A CONSTANTS
- 0040: 0003 15|NB DC 3
0042: ~ 16|NA ~ DS 20
0056: 0005 17|NX DC 5
0064: . 18|NC ORG 100)
0064:002E ‘ 19| ERR DC A4
0066 P 20| END °
. dea. / X
SYMBOL TABLE | v
Al 5 6=R 0006
A2 9 40=R 0028
A3 10 44=R 002C
A4 11 46=R 002E
AS .12 52=R 0034
. A6 13 58=R 0034
3 . ERR 19 100=R 0064 .
NB . 15 64=R 0040 :
NA .- - 16 66=R 0042
X NX ° 17 86=R 0056 :
\(:) NC 18 100=R 0064 ,)
ENTRIES
A4 = 1~ 46
. ERR = 1 100
. EXTERNAL. SYMBOLS
X1 ‘ o rrs
, X2 |

Figure 7.

IBM Internal Use Only

\‘ 74 a .
&;v‘(’"’

. \‘ » R APPENDIX: A SAMPLE FAST ASSEMBLER

U
/&“\ . {,-

" gt / PAGE 15
\ o !
\

(‘
‘\ vV ASM 'AN; ALSTSW; ALCX; APASS2;AH4; AF; ACONTEXT ; AK65;I0;
APGN; APGH ALCT ; ALV, AEQL; AERL;ASY ;AMT ; ALBL; AHEX ; ALC
(11 AMT—AENL+~AECL~AERL~ASY~pAPGN~ALCT~APASS2«[I0+~0

(2] P=12>pALCX~(1tpAF+<[JCR AN) 10 7
(3] ALSTSW«' *eAN L%LﬁJ{ | : ' 7u¢xﬁyu,
(4] ALV—1+pLC " _
. [51 ALBL-t6 -

(6] AK65«L 2%16
(71 AH4<4p16 _
(8] AEXL~0 OpAHEX~'0123456789ABCDEF?

- [9] . &A N \C;.’ T z,/\,._,\,.‘g 7 1,,(S}U/Y’T_e ’rn_t{
[10] ~ APASS2+1. o '

~-[11] APGH*EAV[5p169],'LOC OPR OPND OPND OPND | *+4F[O

7J,* PAGE ¢
-(12) 2[FX AINTERLUDE
(W {13] APRSYM
: _ Vo vow (ONTERT

V Z~AINTERLUDE;;I;Ji;K;L3iMi;N
[1)] a EXTRACT LINE LABELS (FOR SYMBOL TABLE)
[2] ASY~AF[;ALBL)
(3] I~M/tpM~=OSYVe=':1 (nlr dloc et 'i')
[4] ASY-ASY(I;]
(5] ASY~(N<pASY) p(J+=Vv\ASY=":1)8ASY,["0.5]' !
{6] A EXTRACT EQU/DS LINES (FOR CONTEXT FUNCTION)
(7]F L ~K=OF(L-(0<AEQL)/BEQL;] :
g" (8] “a CREATE PASS 2 FUNCTION (PASS 1 _LESS LABELS)
@*@‘ (91 AF[0;)-(11pAFjt*APASSTWO"
AN ["10] AF[{I;ALBL1<Np(J+1,0 "11l~J)OAF[I;ALBL],["0.5]* *
\ © {1117 AF[LALBL~I; 1= (N=+/J)$AF(I;] o
(12] a CONVERT EQU/DS TO AEQU/ADS (FOR CONTEXT FUNCTION)
~ [13] ALC~+\AK65,ALCX
[14]-VI~(J%ASY).'*' PAT LAY, 4V 0 OFALC[(J=~ALBL€eAEQL) /ALBL)
A EQUIADS 10—y AKES — ah g .
—[15] Ko(=N)d'+1,(3 0FLoe+,0)4%8%,0 14(N-"14(~J)/N) K T o
(D [16] A EXTRACT ORG LINES (FOR CONTEXT EUNCTION)
{(17)] NeAF[L-|(AEQL<0)/AEQL;]
~[18]/XN~(ULO +,0),'A,N
T (19) a COMBINE SEGMENTS INTO CONTEXT FUNCTION
“ — (201~ L=21[pZ~(Z#"' ')/Z+<*ACONTEXT; AA;APASSTWO® 44 ;' 4 ASY
~[21] Ze(L1Z),4(0 S]Lf'AA*AK65+OXALV*—1+pDLC'k . ,
(221 1-K‘*avcat N avcar T JrE L0 o G
. [23) &BOL-0 2pK«(N/AEQL) o (~N-AEQL>0)/AEQL
(241 Z~Z AVCAT. I[A(|K)y(~ALBL€K)/ALBL;)
[25) 2Z~Z AVCAT AINT1
{26] a PREPARE SYMBOL TABLE
(27] ASY=MXASY ’ v
(28] ASY[(I/epI+-oF[;:;01='a';]1«-0AV[255]
[(29] .—=c'a'#AF([1;0] .
" [30] 'C:--:'APRT 1
. v

: ’/\, Lo anewm IV

ey

~O

IBM Internal Use Only

¢ ’ . PAGE 16

L V N AGENWDS A:I;JiLiM;T
[1] —~APASS2/A1
—[21] AchtltALvtELc]~2xpN
31 -0 .
(4] Al:L-lO0. 5xM<65|T-—ALcw--'pALvrr_'Lcl ' ,
"[5]1 . —=(0=I+-pN)/A4 -
(6] ~(NA.=AK65<A«~ItA) /A3
b (71 J AERRYRELOCATION ERROR!
b (8] A3:AMEM[L+c.I]<A
[9] A4:-(~ALSTSW
[10] I+~,(RAHEX[AH4TT A)),* ¢
(111 I(4])erz:t
(12) I APRT J
v

R ASSEMBLER INSTRUCTIONS -

(—7 vV EQU L;I

[1] ~APASS2/A3XALSTSW . o -
(2] T IevipitaLviCLe .- s A &hf' ‘%’4"?64&r¥)
(3] —=(1=Lep,L)/AL <
(4] I AERR(®L),"' OPERANDS®
[S] Al:=(':%veAF[I;ALBL1)/A2 7> o INT 4
{61 I AERRYLABEL MISSING* 5 3 3og' L
ol I ! ATIEN & (r.5xa M{[f/ALCmZOY 00,
[8] A2:AEQL-AEQL,I ‘ -
(9] -0 "Z[ZJ‘“AZC[AE&L[/Q]]‘:— QEQLL 1] .
IIOJVAS:AyT AGENWDS AMT ' ZB]Q’ L FXAF

V Z«N AEQU L
-(1] —-((2xAK65)>L) /A1
(21 N AERR'RELOCATION ERROR"
[3] L-0 ,<f
(4] Al AEQL*AEQL [OIN, Z*utL// ‘

.C? N

V ORG L
(1] .~APASS2/A1XALSTSW
{2] AEQL-AEQL ='*pALV LC
, (3] -0
[4] ' Al:AMT AGENWDS AMT
. v N N

V N AORG L
(11~ =(~2|L)rA1
(2] N AERR'ODD ORIGIN?'

(3] L~L+1 . .
(4] A1:AA«AA+ALCX[N]- (L«AK65|L) AKGSIALC[N] A4 Aﬂu/¢qu34/uu4
[5] AEQL-AEQL ,{OIN,L+AK65 -
[6] ALC~+\AK65,0LCX

v

”~

IBM Internal Use Only

PAGE 17

V DS L
(1] "EQU L
v

V Z-N ADS L
[1]° —=(0<L~1tL)/A1
[2] N AERR'ILLEGAL NEGATIVE"
[3] L+0

<~(4] A1:-(AK65>L) /A2 . -

[5] N AERR?! RELOCATION ERROR!

(6] L+0

[7] A2:Z«<ALC[N]

(8] AD-AL+ALCX{N]-L

[9) ALC~+\AK65,ALCX # | \
: v

V ENTRY L
(1] ~APASS2/A1+~ALSTSW) o (
(2] AENL*AENL L '

- (3] -0

(4] A1l:auMmT AGENWDS AMT
(5] =1 2=ppAENL
(6] AENL—ASY[AENL;],'=' ,3Q(3,AK65) TALC[AENL]
v to 7 ' -
5 .

V EXTRN AL;AI;AJ;A , <
[1] —~APASS2/A1xALSTSW
(2] = (0=110pAL)VvO0=p,AL
(3] AJ«(AJ,pALl—O 1+AJ-AI/epAI-AL=

[4] ~t0epad+~(0=[NC AJ)fAJ«(pAJ)p('AJ—AJo.>cr/AJ)\(~AI)/AL

[5] AEXL+~AEXL AVCAT AJ

[6] AJ<((1ipaJd)1'Aa"), [0]AJ-AT, =2, ¥ ((=11pAJ) te1tpAEXL)OO+,
2xAK65 i

[71 e[(JFX AJ ‘

(81 -0 e

(9] " A1:AMT AGENWDS AMT ‘ ' .
v. - . . G
vV END

(1] * —=A1xAPASS2AALSTSW
(2] "Al1:AMT AGENWDS AMT

v
? Haie
' i MW4,(/AL
z~ AVCAT J
: - oY e
(11 z=0,"11(pI)lpJ DX

2] . z-—((zr.ou.u).[onzrpdfw

v

V J AERR M
(1] M~CAV[73),(4 0®J),': ' ,M
(2] ~ALSTSW/A1 .
(3] M—(29tM), |, AF[J;])
(4] ALl:AERL~AERL.,M

v

IBM Internal Use Only

' . . PAGE 18

V I APRT J;L
(11} -1 ~ALSTSW
(2] A1:—(O0<ALCT+-ALCT—-1)/A2
(31 E~(5x1-APGN)1APGH,v4PGN~APGN+1 .
(4] ALCT«60 '
[5) A2:—=(' *=1t1)/A3
[6] L-((L#[AV[285])/L~ASY(J;1),4F(J;]
[7] C-(25t1),(4 0®J) 4| ',L
(81 A3:-(252pI)/44
[9] [+25t1-! ',251r
(10] -A1
[11) Ad:—=c(1tpAF)<Jde=Jd+1"
" [12) TIet'C-=¢)
(13] —Atxfa'=aF(J;0) AF(3F] & - L o
a1 (‘u— JA(aF (3] zay ;aFlH
DA% L
. V APRSYM;I;J;CR
(WJ_[ll CR~[AV[73]
(2] —-(~ALSTSW) /A3
{31 =(0epASY—(~a5Y[;0]e* ',(JAV[255])#4SY)/A2
(4] =((ALCT-5)>2+11p45Y) /Al
(5] C~(ALCT+6) p[0AV[169] ' CoL
{6)] AL1:[+~CR,*SYMBOL TABLE" .
[71 ASY-ASY,0 obALBL,[0.5](xJ)xAKéslz«lJ«ALc(ALBL]
(81 ‘J«Asy,'—',' R'(2|LlI%*AK65],"' ' ,RAHEX[AHAT,J]
[9] Ce0 ,J(b ABCDEFGHIJKLMNOPQRSTUVWXYZ'LJ[0l]:]
{10] —=(0epAENL)/A2
[11] E*CR,'ENTRIES'
= [12] [C«' ',AENL
- (13} A2.~(0epAEXL)/A3
(14] [O«CRy"EXTERNAL SYMBOLS!"
[15] [O«' *,AEXL
(16] A3:I~[EX AEXL
[17] -¢0=pAERL
(18] [C~CRy"ERRORS:',AERL
v -

A ‘MACHINE INSTRUCTIONS
V ADD L
++ [1] RADD T,F
[2] 0 1 1 AGENWDS 59,L ..
R v .

v LS voappr L
~(1)] @ADDI T,FI
(2] 0 1 0 AGENWDS 61,L

v v
Vv GOTO L
[1] 0O 1 AGENWDS 85,L
v

~

IBM Internal Use Only

R

, PAGE 19

’ ' "V CGOTO L
— (11 'n,ccoro IXyERRyL19L2¢eeeqLN
[2) (0 1 0O, 11L L)AGENWDS 86 +L{O0),(T24pL),11iL
v -

V IF L
[1]1 AIF A,CPyB,LOC (WHERE CP= GT, EQ, GEy LT, NE OR LE)
— (2] 0 1 1 1 AGENWDS(87+L(1]),1 0 1 1/L
v

v IFI L
~[1] aIFI A,cP,BI,LOC (WHERE CP= GTy EQ, GE, LT, NE OR LE)
[2] 01 0 1 AGENWDS(32855+L[1]),1 0 1 1/L o -
v . .

Vv DC L
[1] ADC V14V2,eeeyVN
(3 (2] (L>2AK65) AGENWDS L+,L
v

R AUXILIARY FUNCTIONS

vV Z~A
[1)] —=(~Z<~APASS2
_[2] Z~ALC["' pALVI[JLC]

©)
V Z-DUMP N;I;J;KiL;CR:[IO

{1} Z+=0pCR-JAV[73+[I0+~0]

[2] NelL |2tN$2

(31 I-N[O]

(4] Ne={"1+pAMEM) L[/21N

[5] Al:-'N<I

(61 —<((K#1)AJL[OJAe=J-AMEM[I+tK-8l L+N-I1)/A2

[7) “"Z=Z4CRy(TLIACVH Ix2)4%: "4,ACVB J
(3 [8] . " =Al,I~I+K
R (9) A2:LerI

[10]) A3:—~(N<I+-I+K)/A4

(11}, “(J[O]A.—AMEM[I+;K*8[1+N—1])/A3

- [12] A4:2<Z,CR," *y(ACVH 2xL),'THRU Vo (ACVH 2xI=1),4"
N CONTAIN ',ﬁgzgﬁdto : !
(131 -A1 '

'V Z~ACVH N -
(1} Z~49(R'0123456789ABCDEF' (16 16 16 16T N]),* ¢

V Z~ACVB N _
[1) Z=3 16 16 16 16T4N

[2] Z~' RX'{z[0;1xN201,[0)'0123456789ABCDEF'[1 0}2Z]
(3] Z~4®1 0 1 1 1 1 0XZ ' '

”~

IBM Internal Use Only

SCIENTIFIC CENTER REPORT INDEXING INFORMATION

1. AUTHOR(S) : 9. SUBJECT INDEX TERMS '
' H.J. Myers ‘ - C
= . ' APL .
2. TITLE : : Assemblers
o . . ce
A Fast Assembly Technique Using APL Performan
3. ORIGINATING DEPARTMENT - ‘
Palo Alto ‘Scientific Center ‘
4. REPORT NUMBER
2220-64 31 _
Sa. NUMBER OF PAGES 5b. NUMBER OF REFERENCES
19° 0
6a. DATE COMPLETED 6b. "DATE OF INITIAL PRINTING | 6c. DATE OF LAST PRINTING
O) May 5, 1976 June 1976

7. ABSTRACT :

A technique is described which reduces the cost of
producing assemblers for a wide variety of machine
architectures. Assembly is accomplished by executing
each instruction of the source program as an APL
function. An.assembler has been generated capable of
speeds of about 2000 lines per minute in an API,
environmenton an IBM System 370/145. '

.

Juvd

o

[A KON

8. REMARKS :

”~

IBM INTERNAL USE ONLY °

