2.0

MICRO-TNSTRUCTION SET

The micro-instructions are designed to support a wide ranpge of
applications includling Input/Output control, Resk Caleculator
Functions, Remote Work Stations, Interactive Terminal Opera-
tions, or a completely selfcountained General Purpose-Computer.
The micro-instructions scelected for PALM are couposed of
sixtecen bit control words, grouped into six basic op code
classifications. lu pencral, they support instruction/ eperand
feteh and store, arithmetic and logical operations, test under

mask and jump, bLit manipulation, input/dutput control, and

data transfer. Figure 11 is a summary of the microinstruction .
sct. T

A detailled descriﬁtion of - each group follows. '

e

e

- —— - —— - " - ———— - —

TBM CONFT!I ITIAT,

. . Aot |
‘

T T T e e e e e e e e e e e e e e e . =~ ——— s e e o o e e e o e

2.1 - Jup

OP CODE
[] DATA
— RI] MASK
| R2| MODIFIER :
: o nT y 0] DATA € MASK . (&
e 41 DATA < MASK : Lo .
He N2 DATA = MASK €y)
s 03 NO DATA B17S PRESENT Bo
saa € b ALL DATA RITS PRESENT LG
RIS DATA = ALL MASK BITS Auom
6
7

v 'DVC~3

~e

DATA = NO MASK BITS e
DATA UL = ALL MASK BITS }A en

-

S M &

RSem

0 34 78 11 12 15

— , NOTE: 'Values of 8-F for bits 12-15 cause the correspondlng
test to be performed for a jump on false condntlon

By convention, register #0 of cach 'group of sixteen registers. :
is reserved as the micro-instruction address register. '
Register il is qullallly reserved as the link register Each

time a jump instfuction is encounterved, an address of Lhe jum

instruction plus four is computed.AMND S@PREP N #.’L GF FPALH,

If, as a result of the conditional test, the Jump is not
tdken, the address of Jump -+ 4 is DJuPQd In the link register
(R1). 1In this case, it is‘'assumed that the next sequential
instruction will be a Load RO resulting in an unconditional
branch to a subroutine. If the last instruction of the sub-
routine is a MOVE RO, R1l, control will be returned to the
beginning of the next iustruction following the main line"
unconditional branch. If conditional branching occurs within
the subroutine, it is the vresponsibility of the prograuher to

\ save the link address before issuing the conditional branch or
jump dnstruction. If the mainline juup is taken, the updated
address of Jump + 4 replaces the contents of register #0, with
processing continuing from this point on. By way of illus-
tration, consider the following example.

IBM CONI “ENTTAIL

200 SUB R2,/3 SUBTRACT .R3 FROM R2 -

202 THLT R4, XX PLACE MASK TN R4 1.0
IAR 204 JEQ R3,R4 ‘ COMPARIE RY & R4 & JUMP IT LEQUAL
206 LDHD O,XX— LOAD UTAR with 0400 & BRANCH
TARH 208 ADD R2,R3z-4... ADD R3 to R2 ‘ .
210 . ™
212 |
214 . g
216 . .0
400 LDUD R4, NX¢ LOAD R4 FROM 0OXX ., .2
, 402 : a
404 : ' N
4006 . ‘
408 ’ » : ‘
410 MOVE RO, R1 RETURN TO MATNLINE PROGRAM
2.1.1 JUMP NO DATA BITS PRESENT (JNO R1)
R R
0 3 4 7.8 11 12 15
The low order byte of the repister specified by the Rl field
is tested for a zero condition. If the result is zero and no
bits are equal to 'l', the next sequential instruction is
bypassed. The mask does not participate in this operation
since the test js performed by a foreed ALU condition. This
eliminates the requirement to load a mask prior to execution
of thig instruction. The data byte is not altered as a result
of instruction exccution,
2.1.2 JIP DATA < MASK (JLE RI,R2)
[] R | k2 [0
0 34 78 11 12 15
The low order byte of the register specified by the RL field
is logically compared with the lowv ovder mask byte denoted by
— the R2 [ield. Tf the data byte (Rl) is less than or equal to
the mask byte, the next sequential jnstruction is bypassed.
Fxecution of.this instruction assumes that a valid wmask has
been loaded previously. Heither the mask nor data byte are
altered as a result of instruction execution. Specifying a
" flase condition for this instruction is equivalent to a 'JUMP v
DATA > MHASK' instruction.
.
1 \‘

IBM CONTF; ‘ENTTAT.

2.1.3

2.1.

2.1,

4

JUMP DATA < MASK (JLO R1,R2)

c | R2 !
- : . 1
0 3.4 78 S 11 12 15
‘ B
The low order byte of the register specified by the R1 field : o

is logically compared with the lov order mask byte denoted by

the R2 field. If the daca byte (R1) is less than the mask ¢

byte (R2), the next scequential instruction is skipped, and the
Instruction addroess ig incremented to the Jump Address + 4.

The data and mask bytes are not altered as a result of instruc-
tion execution.

JUMP DATA = MASK (JEQ RL,R2)

C R1 R2 2.

0 34 78 11 12 15

The data and maslk bytes are logically compared and tested for
an equal condition. -If an equal condition is -found, the next
sequential instruction ig skipped and the instruction address :
is idincremented to the address of Jump + 4,

ileither operand is
altered as a result of instruction execution

JUMP ALL DATA BITS PRESENT (JALL R1)

C Rl R2 {

0 34 78 11 12 15

The low order bytce of the register specified by Rl is tested
for an '"ALL ONES' condition. This test, 1ike the "NO B1TS
PRESIRT' test, is a forced condition and does not require that
a mask be established prior to exccution of the instrmtion.
If the data bits are cqual to FI', the next sequential instruc-
tion is skipped with exccution continuing at the address of
Jump + 4. If the data is not equal to FF, the updated address
is automatically placed in R1 aund the next sequential instruc-
tion fol]owing the jump instruction js executed., The data
byte is not altered by this instruction.

IBM CONFTI “NTIAT,

2.1.6 .

©2.1.7 ..

2

.1.8

0w "'3,14',' 7 8.‘ 11 12 15,
”Vf:The 1ow oxder daca bvtc qpecificd bv R1 1is compnred w1th the‘:

"the data byte contain a binary value of 'l'. 1In order that
“-the test be successful, each position of the mask byte which

JUMP DATA = NO MASK BITS (JNOM'RL,R2) - ool oo v i

JUMP DATA = ALL MASK BITS (JALLM RL,R2) - f‘;}“j:7'.'.'. QJi;'uZJf e

————

c | ok ‘.' R2 5

mask byte to determine whether the corresponding positions of™ "~

coiitaing a '1l' must have a corresponding position within the SR T
data byte also equal to 'l'. Zero positions in the mask byte- L
represcut a don't care condition If the test is succe ssful, - R

' the updated instruction address (Jump + 4) is used ‘as the 4""f7':ffﬂtf

address of the next: log;cal 1nqtrUCC1on

C RL | R2 .

0 L34 78 1112 s

This test is similar to the "DATA = ALL MASK BITS' except in
this case the corresponding positions of- the data byte must
contain a binary value of '0'. The test is successful 1if for
each position of the mask byte which contains a 'l', the
corresponding data byte position is equal to '0'. Nask byte
positions which contain zeros are don't care condltions. As

- an example

1 01 01 1 0 0] MASK

TEST SUCCESSFUL

O D O'D 0O O b D| DATA

JUMP DATA NI = ALL MASK BITS (JHUAM R1,R2)

- —

C R1 R2 . 7

o 34 78 1112 15

Execution of this

instruction is identical to that described-
in section 2.

1.6 except that the data byte involved in the
operation is the HI order byte of the register specifled by
the Rl ficld. If cach of the hi order bits are equal to. their

corresponding mask '1' bits, then a]ump of the next 1nstruc—
tion LJ executoed,

N

L

IBM CONFI “ENTTAL

2.2 . ARITHMRTIC/LOCTCAL OPERATION

. OP_CODE " R RN AR b

o] 'DESTINATTON S |
RI SOURCE "~ =~ =~

: Rl |MODIFIER T

: 0 T |MOVE HALFWORD =2 “*

(Y

1 MOVE HALTWORD =1
2 MOVE HALTUORD +1 '
' 3 MOVE WALEWORD +2 .~
4 MOVE HALFWORD +0 = oy hor o v
5 |AND BYTE I
6 OR BYTE - L T
7 XOR BYTE .
A 8 |ADD BYTE - ‘
' 9. |SUB BYTE = »
AT LADD SPL 1 .
B - |ADD SPL #2 ‘
. C MOVE HL TO LO ce e
{ D . |MOVE LO TO HI =~ = . o A
- DA " |DEST E° |GET TO REG : .
REG F GET & ADD TO REG
0 - 34 78 - 11 12, 15
"These instructions are used to perform arithmetic and logical
operations on data contained in the source and destination .
registers. In gereral, the Rl .fiecld specifies one of sixteen
registers in which the low order byte is sclected as the: o
source operand. Exceptions to this rule occur for the 'MOVE',
"GET TO REGISTER', and 'GET AND ADD TO REGISTER' instructions.
/ The R2 field denotes a halfword destination register, which
f . “contains an operand prior to execution, and the result of the
/ : operation at the end of instruction execcution. The following

subsections describe each operation in detail.

TBM CONTFI DENTIAL ' -

2.2.1

'2.2.2

.2.2.3

“and no incrementing or decrementing is performed

C(MVML R2 JR1)

. Vd/ f K B N ;." ‘ :‘,:i‘f
OV HALFWORD e T T
o | w2 | m 0 | subtracT 2 -
- K . 1 | SURTRACT.1 :
2 a1
e 37 {ADD 2
' 4

NO MODIFICATION WT:V

This instruction provides a mecans for incrementing and decre-
menting counters, creating mnltlp] copies of operands, and
effecting a subroutine return. The contents (16 DITS) of the
register specified by the Rl field replaces the contents of . N e
the register denoted by the R2 field. DBy proper selection of - n'rT,'A"

“the modifier, the source operand .(R1) -can be moved and incre- T ST

mented or decremented before insertion In the destination
register. - The source operand is unaltered by this instruction.
If the source. and destination operands are oune and -the same,

, the instrucs. 1

tion functions as.a no-op. O xzooe

oo T sTve o o S
Corresponding mnemonics are as follows: . o R L

(MVM2 R2,R1) L
(MVPL R2,R1) o o C . S :
(VP2 R2,R1) '

(MOVE R2,R1)

AND BYTE (AND R2,R1)

0 R2 |° Rl \ 5

0 34 7 8 11 12 15

The low order byte of the source register (R1) is logically

YAWDED' with the low order byte of the destination register

(R2). The result replaces the low order byte of the des-

tination vegister while the high order byte remains uneffected.. .
The source opcrand is not altered by this operation. .. uﬂ.‘ O

OR BYTE (ORB R2,R1) . o _ o - Lo

- register and the source operand are unaltered by this operation,

0 - R2 R . 6

0o - 34 78 11 12 . 15

The low order byte of the source register (R1) 1is logically .
"ORED' with the low order byte.of the destination replster

(R2). The result replaces the low order byte of the desti- S .
nation register while the high order byte of the destination o u"’j, o

. | : : ;35/
IBM_CONFTDENTIAL .° e

2.2.4

2.2.5

2.2.6

EXCLUSIVE OR (XOR R2,R1) N S S

om] r | w 7|

0 34 78 1112 1S L

-

.1f§$v;ﬂ C

DYC =3

The low order byte of the source register (R1) is 'EXCLUSIVELY.
ORED' with the low ovrder byte of the destination register. o
‘The result réplaces the low order byte of the destination oo
register while the high order byte of the destination register

and the source operand are unaltered by this operation.

v

"ADD (ADD R2,R1)

o | mr2_ R1 8

0 34 78 11 12 15

The low order byte of the source register (R1) is ‘logically
added to the low order byte of the destination register (R2).
Resulting carries from the addition are propagated into the
high order byte of the destination register (R2'HL). If the
original value of the high order destination byte is equal to
zero, a resulting carry will be trapped alone at the end of
instruction execution.

SUBTRACT (SUB R2,R1)

T T

0 3 4 78 1112 15

The low order byte of the source register (R1) is logically
subtracted from the low order byte of the destination register
(R2). If a borrow occurs, it is a sipnal to decrement the
high order byte of the destination register by one. Tn order
to perform variable length operand subtraction, the "ADD
SPLCIAL #2' instruction is used to propagate borrows as-suc-
cessive bytes arc subtracted. This will be mdre fully explained
in Section 2.2.8. The sipn of the result can be determined by
executing an .'ADD SPECIAL #1' to a destination repgister con-
taining zero, cmitting FF to a mask repister, and issuing a
JUMP EQUAL' dinstruction. Tf the result is nepative, the high
order byte of the destination register should contain the
value FF. TFor address avithmetic, this instruction can.be

Cused to subtract an eight bit unsigned binary quantity from a

sixteen bit unsigned quantity.

P
. J¢
_IBM.CONF . DENTIAL . oo

KA O BV TR

'2.2.7© ADD SPECIAL f1 (ADDS1, R2,R1)
0 R2 RL A A\; ; |
o 3 o 7e salaz o1s) L

The primary purpose of this instruction is to provide a means %
for adding together two variable length numeric fields.. The.
4nstriction allows the carry-from a previous 'ADD' operation '.

3
to.be used as input to a current partial sum. The low order R
byte of the source repister (R1) is added to the high order .. ,_ﬁy-ﬁ*
" byte of the destination vregister and the result is placed in i+ = it

the low order byte of the deétination repister (R2)., 1Tt is
assumed that the high order byte of the destination rejister
originally contains a carry, if any, from a normal "ADD' e
operation. 1f an additional carry is penerated as. a result of .
adding the previous carry, it will be propapated into the high
order bvte of the destination repister. Combining this instruc-
tion and the normal 'ADD' and 'LOAD BYTE INDIRLCT' instructions
provides a means for positioning individual bits or hezadecimal
digits within a particular byte. As an -example: '

LDRT .RQ,RB,O FETCIl AN OPERARD AND PLACE IN R2 1O
ADD R2,R2 ©OSUTFT LEFT ONE POSTTION

ADDS1 R1,R2 ADD SPILL BIT TO L0 BYTE OF R2
This sequence is equivalent to a shift left and rotate.

2.2.8 ADD SPECIAL #2 (ADDS2 R2,R1)

|

0 \ R2 R1 | B.

o - 34 78 1112 15

This instruction is used to propagate '"PORROWS' during field
subtraction operations. The low order byte of the source
register (R1) is added to the high order byte of the des*®

tination register (R2) and the vesult is placed in the low '.f?
order byte of the destination repgister. The destination high

order byte is cleared and a '"NO CARRY' condition causes a
" "BORROW' to propagate into it, ie FF. :

S

a

As an example -- Subtract‘Fiéld #1. from Field {#2:

CFIELD #1° .0 OP 7 . OPS5S . OP3 ‘0P 1 -
FILLD #2 .~ . op 8 or 6 - op4 Top2
C UORIGINAL ... " ML . L0« & 0w
o0 SOURCE -~8 < 0 0. " OP.1l.. ‘- SUBTRACT OP1,0P2"
. Lo LR SRR
ORIGINAL ’ - HI Lo
DESTINATION D 0 0 oP 2
" RESULT D BORROW OP2-OP1 STORE PAﬁTIAL‘RESULT.jf-;“ l
“NEW SOURCFE. S S RS PO JER:
OPERAND s 0 0 " op3- : SR SN i
' ADDS 2 . '
. RESULT D "X X . 0P 34 BORROW. o it
00 If carry from destination Lo~ - .. .' - . f“j; .

2.2.9

2.2.10

FFF' If no carry from destination Lo

NOTE: Before e\ccutlng an "ADD SPECIAL #2' instruction, che
program should test the high order byte to see if a borrow

actually did occur as a result of a previous subtract opera-
tion. If a borrow had not occurred, and an 'ADD SPECIAL #2°'

© is executed, a borvow will propagate into the high order byte

of the destination register. Subsequent execution of this

instruction can result in the Addition/Subtraction of an
erroncous borrow.

. ‘ ' . o L " " ;..t‘,l."-
HI.TO LO (UTL R2,R1) " o . ' EE

0 ' R2 R1 C

0 34 78 1112 15

The. high order byte of the source vegister (R1) replaccq the

low order byte of the destination register (R2). The hlgh

order bytes of- the source and destination registers are not RN
altered as a result of 1neruct10n,e>Lcutlon I

'

LO T0 NI (IHH R2, R1)

0 n2- 1 D

The low order byte of the source repister (R1) feplhcés the

'order bytes of the source and destination repisters are not

0 34 78 1112 15

high order byte of the destination repister (R2). The low:

altered as a result of instruction exccution

__TBM CONF DENTTAT,

2.2.11 GET TO REGISTER (GETR DA, Rl) L Y
[“ DA RL E 1'.' |
‘ 3 4.._ 78 1112 15
Execcution of this instruction is used to transfer a byte of v
‘data from an 1/0 device; whose address is specified by the DA e
field, to the low order position of the register specified by o
the R1 field. The high order byte of this vegister is not
altered as a result of instruction execution. In addition, f
- the low order byte off the destination rengLer is placed on Lo
_bus out during instruction execution. The TAG 11ne will be at ~:ﬂ}?ﬁﬂfﬂ”
"a down level during this instruction. } LT
2.2.12 GET .TO REGISTER AND ADD (GETA DA,R1)
0 DA {~ RL | F
0 ‘34 . 18 11 12 15
:This instruction causes a three bit quantity, derived from the
information placed on BUS IN by the specified device(s) (DA),
to be added to the contents of the destination register (R1). '
The quantity to be added is derived from the following chart:
BUS BIT: 0123 456.7 Quantity
: I . Added
- ©1111111x 0)
Wa e ma o dec 1111110 x 2
A 0 b 1102110 % x 4
Uodd haa ok 111.10x xx 6
beodt oty 1110xxxx 8
110xx x x X A -
1 0x x x % x.x C F
"0 XX X X X X X E
The TAG line will be at a down level during this instruction.
Bus In parity is not checked during this instruction. :
N *
If the destination register (R1) is specified to be Register
#0 (IAR), the result of the instruction is an elghL way prlorlty
branch, conLLOl]od by the QDLCLflLd dcv1cc()(DA)
B L S S o o '
- - b‘_(‘_*_ » N ‘ B () - Sntga 3\;-\ . S
\ . \‘n-.f-: '-’-\5*(;5\.'/!_-\;-;\ o S’*“j Yogas QK
L A ' . » o ' '
i (..-n"\\h"))g LR V';.h“ 0 L, \3'5).

TBM CONF FNTTAT,

2.2.13.1

2.2.13.2

SHIFT & ROTATE -

~device address of a '"GET BYTYE' instruction is equal to zero ' .. v
" and modifiers C,D,E or F are specified. T the device address-lgfgﬁ“ﬁ'*?

ek

op_conr - P . ST
L | DA T LI P PR A
0| DATA SRR L PR S
R | MODIFIER . DR
C | Shift Right 1 & Pad ;
o) Shift Ripht & Rotate 1
K . " E Shift Right & Rotate:'!3 .
: T Shift Right & Rotate 4 . v
0 3478 1112 15 : BT

A shift right and rotate function is performed when. the

is zero, and modifiers other than C,D,E or T are used, "the
{nstruction executes as a normal GET BYTE. Due to the delibe-

‘rate selection of shift quantities, any combination of right

or left byte shifts with '0' or 'l' padding can be accom-
plished with three micro-instructions or less.

SHIFT RIGHT 1 (SUFTR,RL)

E 1‘“%-0' } : .Rl C

0 -3 4 .18 11 12 15

The low order bvte of the register specified by the Rl field . -
1s shifted to the right one position and the vacated high
order bit of the low order byte is padded with a value equal -

“to the low order bit of the high order byte. The low order

bit of the repister is dropped eacli time a shift right instruc-
tion is executed. The reason for padding in the manner des-

“eribed is to help facilitate sixteen bit shift operations.

The high order byvte of the register is not affected by execu-

tion of a shift instruction. .

SHIFT RICHT & ROTATE 1 (ROTR,R1)

E 0 R1 D
0 34 -7 8- 11 12 15 .
The low ordcr.hyte of the repister specified by the Rl field i
is shifted right one position. The low order bit replaces the-
high order bit of the byte shifted. . The hiph order byte of -
the register is not affected by.execution of the shift.and o
rotate -instruction. : ' R v

IBM CONI'IDENTTAL

- 2,2.13.3 SUIFT RICHT

& ROTATE' 3 (SRR3,R1) |
- | E 0 -_] RL _{ B | “ e
- o 34 ., .78 1;:12;'$_15'1’“ ;L:LQQ,f;af59r{i:jﬁfﬁ
;7 i ' J':.; :Thé'low o¥dcr_byterfnthg‘fegister?;pebificdzbyr;h; R1 fiéldi; :{
L : is shifted vight threce positions with the corresponding spill
bits replacing thc'threg high order bits of the byte shifted.”
\ - , . BEFORE EXECUTION | - '
\ ' , : .
LT ooy

AFTER EXECUTION

| - [XXXKXXXX0011101 0] | N '
&¢;> © The high order byte of the reéister remains unchaﬁged. ‘
2.2.13.4 SHIFT ﬁICHT & ROTATE 4 (SRRQ,Rl).
L an 0 ‘ R1 » r
0 34 78 11 12 15 .
This instruction'cxecﬁtcs in the same mannerlas that described
for the SHIFT RIGUT & ROTATE .3 except that the degree of
po : rotation is four rather than three. The high order byte
remains unchanged.
2.3 " STORAGE OPERATIONS | |
| DIRECT ‘o ;_2/3 REG _ML*_n_h___fgﬂﬁyiSS fnwz
o INDIﬁECT" §2§76/7 l::gEG :'[*—“égpn_ﬁﬁa““ HoDp1F TER
- . 0 34 - | A

i
1112 - 15 :
Storage operations are classified as being direct or indirect.
Direct. fetch and store instructions derive the operand
address from the low order byte of the micro-instruction. S
This eight bit address is used to fetch or store sixteen bit
operands within. the first 256 halfvords-storage locations.

__.IBM CONFIDENTIAL

L2032

2.3.3

boundaries.

- DIRECT WALFWORD STORE (STID R1, #4) or (STHD R1,$A)

Indirect instructions arc used to fetch and store’ either bytes"
are indirect and are referenced by specifying one of sixtcen

halfword-rcgisturs, which in turn contains the operand address.,
The individual storage operations aie described as follows:

- DIRECT IALFWORD FETCH (LDID R1,##) ‘or (LDUD R1,$A) 1
- . i ‘f 1 A
2 R1 HEX ADDRESS LTy -j_"fjjf"-'
0 34 78 15

3o

This instruction is used to fetch a sixteen bit quantity from
the storape location defined by bits 8-15 and place it in one-

“of sixteen halfword registers as defined by the R1 field.
.This operation replaces the original contents of the des-""

tination register. Storage addresscs are on even halfword

30 CR1 - HEX ADDRESS

0 34 78 15

This instruction is used to store a sixtecn bit ‘quantity in
the storage location defined by bits €-15. The operand to be
stored is contained in one of sixtcen registers denoted by the

Rl field. Storage addresses are located on halfword bound-
aries. o ' . ' '

INDIRECT HALFWORD FETCH (LDHT R1,R2,#)

D- RI1. R2 HODIFIER]

0 34 78 1112 s

The halfword‘operand, located at an address specified by the
contents of the R2 repister, is feteched from storage ande .
placed in the register denoted by the Rl field. The indirect
addresscs are, located on halfword‘boundaries. ‘The modifier
field is usecd to increment or decremont the indivect address
after the feteh operation has been performed. Modifier value
0-3 add the corresponding mmeric valucs of I-4 to the indireet
address, while valucs 4 7 subtract the corresponding numeric
values of 1-4 from the indirect address. Values »> 7 perform

no address modification. -~ The updated indirect address is then

written back to the register spoecified by the R2 ficld: If pp '

and R2 specify the sane repister, the modifier has no affect,
and the fetched data replaces the previous register content., .

v o= ::-—l
ﬁ\'t (AN f—‘ Lo q
J}‘_‘ v,) \‘ y L. ‘
’ D %Ay g 3,
Ly (3w .
:1' . . xl')) [
PO {

_IBM CONF | DENTT AL

‘or halfvovds anywhereo within physical storage. .Operand addressos

.‘ v

‘}J

PN
\-\)-'"f \

o Vio il
N "Al_‘ ! "‘\‘:‘.
2.3.4 INDIRECT MALFWORD STORE (STHI Rl,RZ,ﬂ)
5 \ RL \ - R2 MQDIFIER
S0 . 3 b4 78 11,12 o 15
Execution of this instruction is basically the same as that of =" " .
the YINDIRECT DALTWORD FETCH'. In this casc, bowever, the S e
sixtecn bit quantity countained by register Rl is stored.at an<vf.‘? . ?j"
indirect address specificd by the contents of the register oo .T?{-"
“denoted as R2, Addvess modification is the same as ' o
~that dcscrjbcd in Section 2.3.3. .
2.3.5 INDIRECT BYTE FETCH- (LDBT R1,R2,{):
‘ 6 R1 R2. "~ MODIFIER -
0 34 78 1112 - 15° .
This instruction is used to fetch a byte from storage and
place it in the low order byte position of the repister
specified by the Rl fiecld. The high order byte of this .
register is automatically set to zevo for a fetch byte
operation. Indirect addresses are not limited to halfword
boundaries and can therefore be used to address any individual
byte within physical storvage. llodification of the indirect
address is the same as previously discussed.
.2.3.6 TNDIRECT BYTE STORE (SIRT RL,R2,4)
' [7 R1 R2 MODTFIER .| -
0 34 "7 8 1112 15
This instruction is used to store a byte of data at a location
specified by the contents of the register denoted ° _ 4 .
S~ X by R2. The byte to be stored is' taken frem the low order - ° = v -
B - position of the register specified by the RIL field. The Coa
high and- low order bytes of this repister are not altered : v 1"

as a result of instructicn execution. Storape addresses can

be specificed for any individual byte within physical storage.

Address modification is performed in the same manner as ST
previously described. ‘

.IHH YRR VIR | NG

2.4,

2.2

A

1

2,42

3

BIT MANTPULATTON

These instructions
for setting or clearing individual data bits, emitting masks
or constants from the program streaﬁ“and effectlng a one stcp
emit/add. operation. s A

FH11 (IHTT R1,##) or (ENIT R1, QA)

-are dcqlpned to’ prov1de a convenlcnt _means .

(s

| I;j___ DATA OR bb\%ﬂ

lto-

The Emit instruction provides a means for fenevating masks to
be used by the '"JUMP' instruction, or emitting an eight bit
binary quantity to the low order position of the register
specificd by the Rl field. The high order byte of the des-
‘tlnaLJon rgp1stcr is unaffected by this opcratwon.

CLFAR BIT (CLRI Rl

34

78 - 15

Al : v

9

0

Bit 8-15 of this 1n9LrucLJon qpcc:fy particular bit positions,

34

R1

BIT MASK AV = AV N~ AR

78 15

within the low order byte of the register specified by R1,
which are to be cleared or set to zevro. Lach bit- position of
the mask which.contains a '1l' will clear the corresponding bit
position in the lou order byt~ of the destination register.
‘Mask bit positions which contain a '0' do not alter the
corlerondJng destination register bit positions. The high

corder byte of the destination rcglstcr (R1) is not-altered by
.this instruction,

ADD IMMEDIATE + L (ADDI R1,##) or (ADDI R1, $A)

N

R1

DATA BYTE

0

This 1nst1uct1on adds the eight bit quantity spec1fied by bits®
8~15 to the lew order bVLL of the repister specified by the R1

field.

34

A carrvy,

78 15

which way occur as a result of the addition,

will be propagated into the high order b/Lo of the destination:

register.

+ 1",

no carry results from the addition, the high omdcr byte of the

Since

the -dnstruction is an "ADD TIMMEDTATE

specifying 00 for bits 8-15 will causc a '"1' to be
added to the 16w order byte of the destination register. TIf

dcstinat1on foLS(Ll will not be altered.

IBM CONI'i DENTTAL

vt e .

»

v 2.4.5¢

2.5

2.5.1

SET BIT (SETI RL,{##).

B SR BIT MASK

0. 3w 78 1S R TSR IE ASL

.except In this casc mask bits which contain 'l' set the

: -‘ e Nt

-, :)

: NN L e
P

This instruction is similar to the clear bit instruction, -)

corrcspondLnr bits of the low order destination repister- to a
value of '"1'. HMask bits contalning '0' do not alter the e
corresponding bit positions of the destination repister. The . . ‘}l: n
high order byte of the destination repister is not altered by .
this operation. ’

SUBTRACT TMMEDIATE MINUS-1 (SUBT R1,##) or (SUBI R1,$A) - '-yVﬂhj,%*

(SR

F [RL DATA BYTE: T
o 34 78 . 15

This instruction subtracts the eight bit quantity specified by =
bits 8-15 from the low order byte-of the register denoted by - '
the R1 field. A 'BORROW', which may occur as a result of the
subtraction, will be propagated into the high order byte of

the destination register. Since the instruction is a 'SUBTRACT
TMMEDIATE MINUS L', specifying 00 for bits 8-15 will cause a

'1' to be subtracted from the low order byte of the destina=- -

tion repister. If a '"LDORROW' does not occur as a result of

the subtraction, the hip h order byte of the destination register
will not be altered.

CONTROL OPERATIONS

Control instructions are used to transmit command informat:ion
to the various system input/output devices. Commands can bo
uscd to resct attachments, request device status, ov cguse the
device to take some mechanical -acticn such as rewinding a’

tape, positioning a print head, or causing a file to seek.

CONTROL (CTL DA,)

1 DA COMMAND

' ! ‘. v . ’ v

"whose address i specificd by the DA field.

o 34 78 15

Bits 8-15 of this instruction are transférred to the device .

- Device commands
may have bit positional significance, or may.be binarily
encoded for certain units. . '

i 21

IBM CONI'y INI1AL

"ABTCSTIG O3PT) O3 PIIDJUULOD ST xq<a uayn iTuo pilea

s® pasn
suwodax

3o uoTI3
°xe [-0 P
sn ag ue

‘TeisuasS ujg
¢nﬁoo 2y

InQ sng syl
Urm umcuo YySe3 JOo 3uspu

IS5V LId 0=¥Ud I0¥I1

'2ULLyIEIIT YOFED An pezTu
ICnD5 SS31ppe BOTADP ®
*SU0TIBNITS 218D

"S1-8

221 13531

.vmn«mvmu u
Qmer sa1e

u32s4s

1012100
912 poqIadsap
13U02 3yl o3
ITQwOd TedI1SoT
mznﬂ>HwCﬂ auL

[et e = . .

. uo1diTidsaq Aeydsig =3¢

Hw itg
Quwely

T 330N~

93IMnS 3poy

§ 322135
RERFEN
puz ‘141
39s9y

AT 30N

X[= 3719 20y
T @30y

£

310 Lerdstg

4I3IMG
Soi1g

= 319 30N

374 InQ sng

OFNTIAT,

CONT

IBM

" o ——.—

10SS32014g

«
S e Sy bt = & v 114y

e

2.6

2.6.1

'subsequcnt’chnrt.

Control commands with device addresses hetween' 1 and F-are
‘general purpose and are Left to the user to define for nhis'
particular application. Device address 0 has pre-assigned .
functions which block Cru interrupts, reset error conditions,f'
cnable and disable displayv unitsg (if used), resets che‘CPUf“_

IPL trigger, and togples the select ROS enable switch, A
sumnmary of their respective functions .ig illustrated by a . "

VN .
- U
+

1/0, DATA_TRANSTER

Two instructiens are used to transfer datn between main storage ..
and the various input/output devices., A single byte of data L
is transferved for each I/0 dinstruction exccuted, e

PUT BYTL (PUTB DA,R1, 1)

4 '-T pA | Rl MODIFIE@J ‘jf}i‘A"?“-'_:ﬁf

0 34 78 . 11 12 s R RERTRCE

The 'PUT LYTE' instruction is used to transfer a _byte of data I
from main. storage to an I/0 device whose address is specified o o
by bits 4-7 of the micro-instruction. The address of the daca

to be transferred ig specified by the contents of the repister

defined by bics S5=11. Thisg indirect addresg can be modified o

in the same manner as.discussed in Section 2.3,3, Main storage .

is not altered as a result of instruction execution)

GET BYTE (GETR DA, RL, #)

| e | o [‘HODIFI;E‘J' e
| 5

0o 34 78 11 12

This instruction is used to transfer a byte of data from an
1/0 device, vhose address is specified by bits 4-7, to main - , L
storage. The byte is placed in main storage at an addregs . TSI
specilied by the contents of the register defined by bits 8~ Cremie
11. The indircet storagce address can be modified in the same N
manner as discussed in Section 2.3.3, The low order byte of o :ﬂf
the indirect address. register is placed on busg out during
instruction execution. The TAG line will be at a up level
during this instruction.

7¢

IBM CONFIRENTIAL .

o —

The 'CET BYTE' instruction functions as described only for .
device addresses preater than zero and with modificrs less .
3 U than 'C'. If the device address is not “cro, and modifiers ..' .
. - . C,D,E or I are used, the instruction executes like a 'GET TO,,g'
., REGISTER' instruction. In this case, the R1 field actually

" specifies the Repister into which the data will be laced. s

_ Data will be placed into.the low order. byte of the 'selected:
o -, .. . register. . . ' t : S : ’

: A : R PR ' ! R
P h e . ‘ N R S L
K g .

, Execution of a 'GET BYTE' instruction with a device address of

zero and modifiers greater than "B' will perform an cntirely {
different function as described . in Section 2.2.13; R
2.7 . Instruétion,Eﬁycution Times" ‘ AR
See Figure 11,
Figure 11 assumes a storage cycle of 529.6ns and no stolen R J
cycles. Execution times will be slightly larger. when micre- ;- . b
instructions are exccuted out of TSU ROS. ' i
\ 4
. ’ . ks .
!
: -
.“‘\ ’ v :
v
. |
l S/ .
‘ /

N IBM CONFTDENTIAL -

