fESE " Series/1

SC34-0404-1 LICENSED
PROGRAM

File No. S1-30

IBM Series/1

Event Driven Executive
Indexed Access Method
Version 2 Guide

Program Numbers: 5719-AM4
5719-UTH

= Series/1

SC34-0404-1 LICENSED

PROGRAM
File No. $1-30
IBM Series/1

Event Driven Executive
Indexed Access Method
Version 2 Guide

Program Numbers: 5719-AM4
5719-UTH

second Edition (March 198%4)

This is a major revision of, and makes obsolete, 5C34-0404.

This edition applies to the Event Driven Executive Indexed
Access Method Version 2 Modification Level 0: Program Number
5719-AM4, until otherwise indicated by new editions or technical
newsletters.

Use this publication only for the purpose stated in the Preface.

Changes are periodically made to the information herein; ény
such changes will be reported in subsequent revisions or Techni-
cal Newsletters.

It is possible that this material may contain reference to, or
information about, IBM products (machines and programs), pro-
gramming, or services that are not announced in your country.
Such references or information must not be construed to mean
that IBM intends to announce such IBM products, programming, or
services in your country.

Publications are not stocked at the address below. Requests for
copies of IBM publications should be made to your IBM represen-
tative or the IBM branch office serving your locality.

This publication could contain technical inaccuracies or
typocgraphical errors. A form for reader's comments is provided
at the back of this publication. If the form has been removed,
address your comments to IBM Corporation, Information Develop-
ment, Department 28B, P. 0. Box 1328, Boca Raton, Florida 33432.
IBM may use or distribute any of the information you supply in
any way it believes appropriate without incurring any obligation
whatever. You may, of course, continue to use the information
you supply.

(c) Copyright International Business Machines Corporation 1981,
198¢

PREFACE

The material in this section is a guide to using this book. It defines
the purpose, audience, and content of the book as well as listing aids
for using the book and background materials.

PURPQSE

The purpose of this publication is to describe how to use the Indexed
Access Method Version 2 to set up indexed files and to develop applica-
tion programs using indexed files.

AUDIENCE

This manual is intended for use by:

Application designers to design applications which use the Indexed
Access Method Version 2.

Application programmers to develop applications which use the
Indexed Access Method Version 2.

Applications for the Series/l can be developed in several languages.
Unless otherwise noted in this section, material in this book is
intended for use in the development of applications in any of the fol-
lowing languages:

CoBOL
EDL
PL/I.

HOW THIS BOOK IS ORGANIZED

This book describes the Indexed Access Method in the following order:

Chapter 1, "Introduction" provides an overview of the Indexed
Access Method.

Chapter 2, "Using the Indexed Access Method,"™ provides a brief
description of what indexed files are, how to set up an indexed
file, and application program request statements.

Chapter 3, "Defining Primary Index Files," describes the format of
the primary index file and how to use the $IAMUTI utility to set up
your indexed files.

Chapter 4, "Loading the Primary Index File," de§cribes loading data
records into a primary index file using an application program.

Chapter 5, "Building a Secondary Index,"™ provides information on
using secondary keys, what a secondary index is and does, and how to
set up and load a secondary index.

Chapter 6, "Processing the Indexed File," describes how to process
the indexed file with an application program.

Chapter 7, "Coding The Indexed Access Method Requests,"™ provides
information needed to code EDL applications which use the Indexed

Preface 1iii

AIDS IN

Access Method. This chapter is intended only for EDL application
developers.

° Chapter 8, "The $IAMUT1 Utility," provides information needed to use
$IAMUT1, including the completion codes it generates.

U Chapter 9, "The $VERIFY Utility," provides information needed to use
S$VERIFY.

® Chapter 10, "Storage and Performance Considerations™ describes the
storage and performance characteristics of the Indexed Access Method
and how to tailor the Indexed Access Method to the processing
requirements of your installation.

° Chapter 11, "Error Recovery" describe some of the error recovery
procedures available for use with Indexed Access Method
applications.

L Chapter 12, "Installing the Indexed Access Method,"™ provides an
overview of the installation process.

o Appendix A, "Summary of Calculations," provides a summary of calcu-
lations for calculating the various blocks which make up indexed
files.

. Appendix B, "Preparing Indexed Access Method Programs,"™ provides an
overview of preparing an Indexed Access Method application and a
sample $JOBUTIL procedure for an EDL application.

o Appendix C, "Coding Examples,™ provides comprehensive examples of
Indexed Access Method programs. This appendix is for application
developers using EDL, COBOL, or PL/I as their application program-
ming language.

USING THIS PUBLICATION

Illustrations in this book are enclosed in boxes. Many illustrations
display screens generated while using the Event Driven Executive system.
In those cases where the actual data exceeds the size of the box, the
information may be illustrated in a modified format.

In display screens appearing in this manual, operator input is shown in
bold type. This highlighting is for illustrative purposes only, to dis-
tinguish data entered by the operator from that generated by the system.

iv S5C34-0606-1

SYSTEM PUBLICATIONS

° IBM Series/1 Event Driven Executive:

- Operator Commands and Utilities Reference, 5C34-06444
- Language Reference, SC34-0442

- Messages and Codes, 5C34-06445

- Internal Design, LY34-02646

- Installation and System Generation Guide, S5C34-04636

- Operation Guide, S5C34-0437

- Language Programming Guide, SC34-0438
- Communications Guide, 5C34-04643
- Customization Guide, 5C34-0440

- Problem Determination Guide, SC34-04639

RELATED PUBLICATIONS

See the Event Driven Executive Library Guide and Common Index, S5C34-0641
for detailed information on related publications.

SUBMITTING AN APAR

If you have a problem with the Series/l Event Driven Executive services,
you are encouraged to fill out an authorized program analysis report
(APAR) form as described in the IBM Series/1 Software Service Guide,
6GC34-0099.

Preface v

vi S5C36-064064-1

CONTENTS

Chapter 1. Introduction 1-1

What The Indexed Access Method Does 1-1

Indexed Access Method Features 1-1

Devices Supported 1-3

Languages Compatible With Indexed Access Method 1-4
Components of Indexed Access Method 1-4

Chapter 2. Using the Indexed Access Method 2-1
Your Data Record 2-1
Setting Up An Indexed File Using SIAMUT1 2-2
Processing The Indexed File 2-6

Summary 2-8

Chapter 3. Dafining Primary Index Files 3-1
Primary Index Files 3-1
Data Record Primary Key 3-2
Random and Clustered Record Inserts 3-3
Defining The File Structure With $IAMUT1 3-4
Designing Indexed Files Using $IAMUT1 - Option 1 3-5
Option 1 3-5
Designing Indexed Files Using $IAMUT1 - Option 2 3-7
Option 2 3-7
Indexed Access Method Blocks 3-7
Data Blocks 3-9
Free Space 3-10
Index Blocks 3-13
Primary Index Blocks (PIXB) 3-13
Second-level Index Blocks (SIXB) 3-17
Higher-level Index Block (HIXB) 3-19
Free Pool 3-20
File Control Block 3-21
File Structure Types 3-21
Option 2 Examples 3-23
Example 1: Allocating Free Records 3-24
Example 2: Allocating Free Records and Free Blocks 3-26
Example 3: Allocating Reserved Data Blocks 3-28
Example 4: Allocating Reserved Index Entries 3-30
Example 5 - Defining a Totally Dynamic File 3-33
Designing Indexed Files Using $IAMUT1 - Option 3 3-35
$IAMUT1 - Option 3 3-36
Defining, Creating, and Loading a File - Summary 3-37

Chapter 4. Loading The Primary Index File 6-1
Loading the Primary Index File 64-1
Loading Base Records using SIAMUT1 4-3
Loading Base Records From An Application Program 6-5
Loading Base Records From a Sequential File in Random Order -5

Chapter 5. Building a Secondary Index 5-1
Secondary Keys 5-1
The Directory 5-2
Allocating and Inserting Entries in a Directory 5-3
Secondary Index 5-7
Defining and Loading A Secondary Index 5-8
Example 1: Defining A Secondary Index Using $IAMUT1 5-10
Option 1 5-10
Option 2 5-12
Option 3 5-14
Loading a Secondary File With an Application Program 5-16

Chapter 6. Processing The Indexed File 6-1
Connecting and Disconnecting the Indexed File 6-1
Connecting 6-2
Disconnecting 6-2
Accessing the Indexed File 6-4
Direct Reading 6-4%
Direct Updating 6-5
Sequential Reading 6-5
Sequential Updating 6-6
Inserting Records 6-7

Contents vii

Deleting Records 6-7

Extracting Indexed File Information 6-8
Maintaining the Indexed File 6-9

File Backup and Recovery 6-9

Recovery Without Backup 6-10

Reorganizing an Indexed File 6-10

Dumping an Indexed File 6-10

Deleting an Indexed File 6-11

Verifying an Indexed File 6-11

Chapter 7. Coding the Indexed Access Method Redquests 7-1
Request Functions QOverview 7-2
Coding Indexed Access Method Requests 7-3
CALL Function Descriptions 7-5
DELETE - Delete Record 7-5
DISCONN - Close File 7-8
ENDSEQ - End Sequential Processing 7-10
EXTRACT - Get File Information 7-12
GET - Get Record 7-15
GETSEQ - Get Record (Sequential Mode) 7-18
LOAD - Open File for Record Loading 7-21
PROCESS - Open File 7-25
PUT - Put Record into File 7-29
PUTDE - Delete Previously Read Record 7-31
PUTUP - Update Record 7-33
RELEASE - Release Record 7-35
EDL CALL Functions Syntax Summary 7-36
Indexed Access Method Return Codes Summary 7-37

Chapter 8. The 3IAMUT1 Utility 8-1
SIAMUT1 8-2
$IAMUT1 Commands 8-3
BF—Tailor the Indexed Access Method Buffers 8-%
DF—Define Indexed File 8-6
DI—Display Parameter Values 8-9
DR—Invoke Secondary Index Directory Functions 8-10
AL—Allocate Directory 8-11
DE—Delete Directory Entry 8-12
EN—End Directory Function 8-13
IE—Insert Entry 8-1%
LE—List Entries 8-15
UE—Update Directory Entry 8-17
EC—Control Echo Mode 8-19
EF—Display Existing Indexed File Characteristics 8-20
L0—Lload Indexed File 8-22
NP—Deactivate Paging 8-25
PG—Select Paging 8-26
PP—Define Paging Partitions 8-27
P5—Get Paging Statistics 8-28
RE—Reset Parameters 8-29
RO—Reorganize Indexed File 8-30
SE—Set Parameters 8-32
UN—Unload Indexed File 8-%1
$IAMUT1 Completion Codes 8-43

Chapter 9. The S$VERIFY Utility 9-1
SVERIFY Functions 9-1
Invoking $VERIFY 9-2
SVERIFY Input 9-2
Invoking $VERIFY From a Terminal 9-3
Invoking $VERIFY From a Program 9-3
SVERIFY Example 9-5
FCB Report 9-6
FCB Extension Report %-8
Free Space Report 9-9
SVERIFY Messages 9-11
File Error Messages 9-11
Error recovery procedure 9-12
Other Messages 9$-12
SVERIFY Storage Requirements 9-12
Using Default Working Storage Requirements 9-12
Modifying Working Storage Requirements 9-13
Summary 9-13

viii 5C34-0406-1

Chapter 10. Storage and Performance Considerations 10-1
Determining Storage Requirements 10-1

The Indexed Access Method Packages 10-1

Indexed Access Method Storage Environment 10(-2
Performance 10-3

Data Paging 10-3

Other Performance Considerations 10-6

Chapter 11. Errcr Recovery 11-1
Handling Errors 11-1
Error Exit Facilities 11-1
System Function Return Codes 11-3
The Data-Set-Shut-Down Condition 11-3
$ILOG - Error Logging Facility 11-4
Deadlocks and the Long-Lock-Time Condition 11-5
Verifying Requests and Files 11-6

Chapter 12. Installing the Indexed Access Method 12-1
Installation Procedures 12-1

Installing The Indexed Access Method 12-1

Assembling And Executing The Installation Verification Program

AppandiXx A. Summary of Calculations A-1

AppendiX B. Preparing Indexed Access Method Programs B-1
A Sample $JOBUTIL Procedure and Link-Edit Control Data Set B-2

Appendix C. Coding Examples C-1

EDL Indexed Access Method Coding Example C-1
EDL Indexed Access Method Coding Example C-2
COBOL Indexed Access Method Coding Example C-6
PL/I Indexed Access Method Coding Example C-13

Index X-1

12-2

Contents

ix

x 5C34-06406-1

b

NOOARPUHUHHUUHWHWW

U
HFNEREROONOUTDWN -

« o s e e o o

“ e e e

Indexed File Logical Structure 3-8

Data Block Format Example 3-10

Cluster Example 3-14

High-level Index Structure 3-19

Indexed File with Free Records 3-25

Indexed File with Free Records/Blocks 3-27
Indexed File with Reserved Data Blocks 3-29
Indexed File with Reserved Index Entries 3-32
Totally Dynamic Indexed File 3-34%

Loading and Inserting Records 4-2

Protocol for Sequential Updating 6-7

Indexed Access Method Storage Environment 10-2
Plot of Data Paging Area Sizes 10-5

Volume Space Requirements 12-1

FIGURES

Figures

Xi

xii S5C34-0406-1

CHAPTER 1. INTRODUCTION

The Indexed Access Method licensed program is a data management facility
that executes on an IBM Series/1l processor under the Event Driven Execu-
tive Supervisor and Emulator, Version 3.1 or later. The Indexed Access
Method provides keyed access to each of your individual data records.

HHAT THE INDEXED ACCESS METHOD DOES

INDEXED

This licensed program builds, maintains, and accesses a data structure
called an indexed file.

Your data records can be loaded by the Indexed Access Method utility,
$IAMUT1, or they can be loaded using an application program. Data
records can then be added, deleted, modified, or accessed quickly and
efficiently fTor processing by your application program. When reorgan-
ization of an indexed file is required the utility can be used to unload
and reorganize the file.

When this licensed program is used, each of your records is identified
by the contents of a predefined field called a key. The Indexed Access
Method builds and maintains an index for those keys and through this
index fast access to each record is provided. Your data records can be
accessed either by key, or sequentially in ascending key sequence, using
Indexed Access Method requests.

ACCESS METHOD FEATURES

The Indexed Access Method offers the following features:

U Record access by a primary key or secondary keys - You can access
records in an indexed file by one or more keys. Secondary keys use
a separate index and Indexed Access Method provides the connection
between the primary index files and seconary indexes. Duplication
of secondary key fields is permitted.

° Support for high insert and delete activity - Free space can be dis-
tributed throughout the file and in a free-pool at the end of the
file so that new records can be inserted. The space occupied by a
deleted record is immediately available for inserting a new record.

® Direct and sequential access - You can access records either random-
ly by key, or sequentially in ascending key sequence.

° Data paging - You can improve Indexed Access Method performance by
using data paging. With this feature active, the Indexed Access
Method retains recently-used blocks of data records resident in main
storage.

° Dynamic file structure - A dynamic file structure adjusts itself as
needed to handle record additions and deletions. This provides a
quick and easy method of designing an indexed file.

. Concurrent access to a single file by several requests - These
requests can be from one or more programs. Data integrity is main-
tained by a file-, block-, and record-level locking system that pre-
vents other programs from accessing the portion of the file being
modified.

o Implementation as a separate task - A single copy of the Indexed
Access Method executes and coordinates all requests. A buffer pool
supports all requests and optimizes the space required for physical
I70; the only buffer required in an application program is the one
for the record being processed.

Chapter 1. Introduction 1-1

U Input records - Either blocked or unblocked input records are
accepted.

. $IAMUT1 - A utility program that allows you to maintain a secondary
index directory, create, format, load, unload, and reorganize an
indexed file. The load and unload functions accept either blocked
or unblocked records.

° SVERIFY - A utility program that allows yvou to check the integrity
of the index structure, print control blocks, and print a free space
report for an indexed file.

® Error logging - If multiple error return codes occur, errors are
logged in the system error log.

° $ILOG - The error log entries can be printed by using the $ILOG
utility.

° File compatibility - Files created by the Event Driven Executive
Indexed Access Method are compatible with those created by the IBM
Series/1 Realtime Programming System Indexed Access Method licensed
program, 5719-AM1 and 5719-AM2 provided that the block size is a
multiple of 256.

° Data protection - All input/output operations are performed by sys-
tem functions. Therefore, all data protection facilities offered by
the system also apply to indexed files. The following additional
data protection is provided:

- The exclusive option specifies that the file is for the exclu-
sive use of a requester.

- File-leval, block-level, and record-level locking automatically
prevents two requests from accessing the same file, the same
block, or the same data record simultaneously.

- The immediate write back option causes all file modifications
(delete, insert, update) to be written back to the file imme-
diately.

- Accidental key modification for primary keys is prevented to
help ensure that your index matches the corresponding data.

° Distribution packaging - The Indexed Access Method is distributed
with the following variations available:

- A full function package that is intended to be totally resident.
- A full function package which uses an overlay structure.
- A totally resident package without data paging.

- A package without data paging which uses an overlay structure.

1-2 SC34-0404-1

DEVICES SUPPORTED

The Indexed Access Method supports indexed files on the following direct
access devices:

° 4962 Disk Storage Unit

. 4963 Disk Subsystem

i 4966 Diskette Unit

d %965 Diskette Unit

. 4966 Diskette Magazine Unit.

In addition, the Indexed Access Metnod supports IBM 4969 Magnetic Tape
Unit for loading and unloading indexed files with the $IAMUT1 utility.

Input control and output display devices supported for the $IAMUTL,
$ILOG, and $VERIFY utilities are:

. IBM 3101 Display Station
. IBM 4978 Display Station
. IBM 4979 Display Station
. IBM 4973, 4974, and 4975 Printers

° Teletypewriter Model 33735 or ASCII equivalent.

Chapter 1. Introduction 1-3

LANGUAGES COMPATIBLE WITH INDEXED ACCESS METHOD

The following programming languages can be used to nnde Iadexed Access
Method programs.

COBOL
EDL
PL/I.

COMPONENTS OF INDEXED ACCESS METHOD

1-4

The Indexed Access Method consists of the following components:

Four load modules from which you can select to support your applica-
tion program Indexed Access Method requests. These load modules are
named:

- $IAM (full function with overlay) T R,

- $IAMRS (full function resident)

- SIAMNP (overlay without data paging)

- $TAMRSNP (resident without data paging).

The module you select will be named $IAM after installation.

A load module ,$IAMSTGM, which is used to obtain the data paging
area, if the data paging feature is requested.

A set of object modules that you may use to generate a customized
load module. If you use one of the four supplied load modules, you
do not need the object modules.

The object module, IAM, is called a link module. You include IAM
with your application program using the linkage editor to provide
the interface to the Indexed Access Method.

Two copy code modules for inclusion in EDL programs, IAMEQU and
FCBEQU. IAMEQU provides symbolic parameter values for constructing
CALL parameter lists. FCBEQU provides a map of the file control
block.

Load modules for each of the Indexed Access Method utilities
$IAMUT1, $VERIFY, and SILOG.

§C34-0404-1

R N D RN I RO K

Wb)é/v (= B IS oomy Tray
Vot S iYL

= -~ LT . .

. (*—-\mfx L g f‘v?'/'!'} LWI& I A \‘i ’779 ™~ }/\,«7. i C}Lj

"“"?Mha»»ya
9210 s Py g mmtasy p g
‘ YG 2ay oy)y »u':uwa,‘ ?ﬂ«p MYAW J,T‘v;
A o JSP NIl M $P ey ’“W’m
Yronrg tn QpIf P Yew cuy b
DT s Adm ypyen ! 0 -Gy Ty > q
S g o R el S g i g
FRoan picay IS AN, 77‘777 —4q T 41
%Tzq LH”Iﬁ gg.rr r\/ g’rMﬁ; mTa ‘—\\?m;oq “)pnpq

R K R Al)
(2 g syl
! | v AT

49
/ 9/ Ihy Tl
S(hdh b P radhdy) = (2D - w«mmf@” 7y~ of
,%ﬁ"i,fu /YF ?‘v»"’") "V‘:)u’—/é ?w}lod u/f/TB 5. Q

Mo f'f;u’?/f\ - L‘;’/I,t

M‘Q o~ A }T 7 73 ALY

WOI PN T ”*3”’}“"“’”7 T3 e
EREFIES P 7}1/”7 417 ~,»/)£ '},Jf/‘z.ﬁ M/IB
«}“""?4 %&70{} 13 _._,W*y]v/(} ¢ —»WIP'*Aﬁ }’?/ f)‘}’);

“I1d Oyt

%/l % })

U&""‘\bt—gk

%u

v*e\

o A P - o/
3%]:‘/z 7123 (tﬁ@ LS, J“v’f

-

D I"u{ [w - Cw /\;»4._., e bbb L. e, wie ?L,J Lai,
E:(ig - G ;fés,e, !

¥ h (e M {TA4n ov) AS
VP (getr eod {27n) Mo G
VYIAnW F g

fecy
f h M 5) 7 ? ;1 . !j

7 7
] .
fe o g

day o ‘

) /"mx ’f‘mu‘ FIARO L apel Y/%

CHAPTER 2. USING THE INDEXED ACCESS METHOD

The purpose of this chapter is to familiarize you with some fundamentals
of the Indexed Access Method. Some of the features mentioned in the
previous chapter will be described only in part here so that a basic
example can be constructed. The purpose of this example is to demon-
strate the ease with which you can establish an indexed file and to help
vou select which parts of the book apply directly to your application
requirements.

YOUR DATA RECORD

The data records you wish to process with the Indexed Access Method have
the following specific requirements:

® The records must contain a common field that can be used as a prima-
ry key

® Each record must have a unique primary key

L The initial records to be loaded must be in ascending order by the
primary key

° All records that make up an indexed file must be of the same length.

The primary key is any field vou designate within your data records.
The key field must begin at the same location in each record. Each key
field must have the same length. The key in each record must be unique
within the file (data set).

The data records that you will initially load must be in ascending
order, based upon the field you use as the key. If your data records
are not ready to be loaded when you define your primary indexed file,
the records can be loaded later by an application program or with the LO
(load) command of SIAMUTL.

Your application might use an employee number as the primary key in an
indexed file for some applications. You might want to define secondary
keys, such as employee name, for the same file for other applications.
Using secondary keys requires a secondary index to be defined. Defining
a secondary index and using secondary keys is described in Chapter

5, "Building a Secondary Index."

Whether vou use the $IAMUT1 utility to load your data records into an
indexed file from a sequential file, or load them with an application
program, you must know the format of your input data record.

Following is a sample record layout. Although the primary key is shown
starting in position 1, it could have been anywhere in the record.

< 80 byte data record V4 >
/44
Empl. Employee Address Zip
Number Name Code
/7
< > < > < > < > <=//
6—Byte 24—-Byte 24—Byte 5-Byte 21-Byte
Primary Secondary Address Data
Key Key Field

Chapter 2. Using the Indexed Access Method 2-1

SETTING

The records used for our example have the following attributes:
d Block size 256 bytes

® Record size 80 bytes

° Primary key length 6 bytes

° Key position 1.

UP_AN INDEXED FILE USING $IAMUTI

Use the Indexed Access Method utility program, S$IAMUT1l, to set up an
indexed file. After this utility is loaded into the system for exe-
cution, the utility displays a sequence of prompts. The prompts are
questions displayed on a terminal one at a time to which you can reply
using the terminal keyboard. Responding to the questions causes the
utility to perform the required steps to:

1. Set up the structure of the file (space for records to be loaded,
free space for inserts, and an index).

2. Allocate a data set (the utility prompts you for a data set and vol-
ume name and calls $DISKUT3I to allocate space for the indexed file).

3. Define and format the indexed file.
4. Load the data records into the indexed file.

Loading and using the SE (set parameter) command of the $IAMUT1 utility
is described here for the purpose of our example, however, for a com-
plete description of $IAMUT1 see Chapter 8, "The $IAMUT1 Utility."

The responses for our example are shown in bold face type inside the
box. The bold bracketed numbers at the left, outside the box, identify
explanatory remarks that we have written below the box using the same
bracketed numbers. Of course these brackets and explanations do not
appear on the screen when $IAMUT1 is being used.

The $IAMUT1 Indexed Access Method utility can be loaded with the Event
Driven Executive operator command $L $IAMUTI.

When $IAMUT1 is loaded the first prompt is displayed as follows:

[1J|ENTER COMMAND (?): SE

[1] Entering the letters SE (set parameters), followed by pressing the
ENTER key, causes four options to be displayed:

T FILE DEFINITION PARAMETERS
= EXIT

[21 = SIGNIFICANT PARAMETERS
= ALL PARAMETERS

= PARAMETERS FROM EXISTING INDEXED DATASET
T

ER OPTION: 1

2-2 5C34-04064-1

[2] The response digit "1, causes prompts to follow which allows you to
define an indexed file with a minimum of information. This response

causes a one line prompt to be displaved.

Note: Although the following prompts are displayed one line at a time
when using the utility, the prompts and responses are listed here in

logical groups for simplicity in describing them.

Sl

i = OO W
B T\ = O Lot bl Gl Bk Bl S

B e R e Noa S o N R Ko N o § ™
Sl Svell Sl Sl Bendi

SECONDARY INDEX (Y/N):? N

DEFAULT NEW VALUE

RECORD SIZE 0:80
KEY SIZE 0:6

KEY POSITION 1:1

BLOCKING FACTOR (RECORDS PER BLOCK) 1:3

NUMBER OF BASE RECORDS 0:5

ESTIMATED TOTAL RECORDS 6:20
TYPE OF INSERT ACTIVITY(C=CLUSTERED,R=RANDOM) C:R

DATA SET SIZE IN EDX RECORDS: 15

INDEXED ACCESS METHOD RETURN CODE: -1

SYSTEM RETURN CODE: -1

CREATE/DEFINE FILE (Y/N)?: Y

[3) The first prompt, "SECONDARY INDEX (Y/N)?:"™ asks if you are specify-
ing a secondary index. The response was N for no, because we are defin-

ing the parameters for a primary indexed file.

[4] The second prompt, "RECORD SIZE" requests the length that the
records are to be in the indexed file which you are defining.

Note that there are two columns near the right-hand edge of the display.
The column on the left is headed by the word "DEFAULT"™. In the default
column the values are listed that will be used in setting up the file if
no value is supplied in the response (only the ENTER key is pressed).
The column on the right, headed "NEW VALUE™ is where the decimal value
is placed from vour keyboard response, followed by pressing the ENTER
key.

In this example we are using a record length of 80.

[51 The "KEY SIZE™ prompt is for the length of the primary key in the
data record. In this example we are using a key which is 6 bytes long.

[6]1 Our key field begins in position 1 of the data record.

[7] We are requesting that our indexed file be blocked with 3 records in
each 256-byte block.

[8] The number of base record slots to be defined is 5. This number is
based on the number of data records we plan to load. You cannot load
more records than this value, however, it does not restrict you from
inserting new data records in the free (empty) slots later.

[9] The total number of records that we anticipate that this resultant
indexed file will ever contain is 20.

[10] The type of record insert activity is to be R (random). The
records added to this file will be inserted by an application program
when those records are available.

The choice of random or clustered is based on the type of record addi-
tions that are anticipated. Random is chosen when the records to be
added are expected to be evenly distributed throughout the file.

Clustered is chosen when the records to be added are expected to be in
groups, relative to their range in key value.

Chapter 2. Using the Indexed Access Method 2-3

2-4

[11] Following the previous response the system will display the number
of records required to contain an indexed file using the parameters you
have supplied.

[12] The Indexed Access Method return code (-1) indicates that the
parameters you supplied are acceptable; no Indexed Access Method rules
have been violated.

[13] The system return code (-1) should always be -1 if the Indexed
Access Method return code is -1. If any errors are encountered, the
return code may provide additional information.

[14] If you have verified that the parameters you entered are correct,
the data set (file) size in EDX records is acceptable, and the return
codes are both -1, vou can reply Y and the file will be defined and cre-
ated.

If you wish to change any of the parameter values that you previously
supplied, respond N to this prompt and you will be prompted for the next
command. To re-enter your responses, reply SE and the prompt sequence
Wwill be repeated.

A Y in response to this prompt causes the next prompt sequence to begin.

[151|ENTER DATA SET (NAME,VOLUME): IAMFILE,EDX003

NEW DATA SET IS ALLOCATED

[161|{D0 YOU WANT IMMEDIATE WRITE-BACK? Y .

[171|INVOKE LOAD/REORGANIZE AFTER CURRENT FUNCTION (Y/N)? Y
DEFINE IN PROGRESS

DATA SET SIZE IN EDX RECORDS: 15

INDEXED ACCESS METHOD RETURN CODE: -1

SYSTEM RETURN CODE: -1
[181|INVOKE LOAD (L), REORGANIZE (R) OR END (E) %L

LOAD ACTIVE

[15] The data set and volume name you reply to this prompt is what
$DISKUT3 uses to allocate a data set for your file. A successful allo-
cation results in the information message "NEW DATA SET IS ALLOCATED".

[16]1 The immediate write back option is recommended for most applica-
tions. It means that we want any record in the indexed file that we
process with our application program to be written back to the indexed
file immediately. Otherwise, the record will be held in a buffer until
that buffer is needed by the Indexed Access Method.

[17] If you have data records in a sequential data set which you want
$IAMUT1 to load for you at this time, reply Y to this prompt.

If you are going to load the data records with your application program,
reply N.

For our example we responded Y which causes the following information
messages to be displayed: "DEFINE IN PROGRESSY. The information mes-—
sages then inform vou with the data set (file) size in EDX records. The
system return code and Indexed Access Method return code values at the
completion of the file allocation and formatting are displaved for your
information.

[18] Because of the Y response to the previous prompt, this prompt is
generated to allow you to:

L Load base records (as shown in this example)

° Reorganize an existing indexed file for loading into the file being
defined

U End the current SE command session.

We are going to load records during this session so the response is Y.
Following the "LOAD ACTIVE' information message, the prompts continue.

SC34-0406-1

[19]1|{SFSEDIT FILE RECSIZE = 128
[201|INPUT RECORD ASSUMED TO BE 80 BYTES. OK?: N
[211}ENTER RECORD SIZE: 128
[221|ENTER INPUT BLOCKSIZE (NULL = UNBLOCKED): 256
[231|ENTER INPUT DATA SET (NAME,VOLUME): SEQ01,EDX003
INPUT REC GT OUTPUT REC. TRUNCATION WILL OCCUR
[24]1]0K 70O PROCEED:? Y
LOAD IN PROCESS
END OF INPUT DATA SET
[25]|ANY MORE DATA TO BE LOADED?: N
5 RECORDS LOADED
LOAD SUCCESSFUL

The next sequence of prompts refers to the input data set containing the
data records that are going to be loaded into the indexed file.

[19] The utility accepts input records which have been prepared by the
Event Driven Executive utility $FSEDIT. The $FSEDIT record size is
specified as 128.

[20) Because the output data set (indexed file) records are 80 bytes,
this prompt determines whether the input sequential data set is also an
80 bvte record data set.

If vou use the Event Driven Executive edit utilities to prepare your
data records for input to the Indexed Access Method, remember that these
utilities place one 80-byte line from SFSEDIT in a 128-byte record. The
first record begins at location 1, and the second record begins at
location 129. Two of these 128-byte records make one 256-byte EDX
record.

Because we used $FSEDIT, we responded N.
[21l) This prompt requests the input data record attributes.

Because our input data records were created by $FSEDIT, our 80-byte
Eecords were converted to 128-byte records. Therefore, our response is
28.

[22] The Indexed Access Method utility, $IAMUT]1 accepts vour records as
either unblocked (one record per block) or blocked (more than one record
per block) input. The utility prompts you for the block size of the
input data set being loaded. If the input data set is unblocked, reply
to the block size prompt by pressing the Enter Key. See "Blocked and
Unblocked Sequential Data Sets" on page 8-23 for a description of
blocked and unblocked sequential data sets.

If your input data records are unblocked sequential, reply by pressing
the Enter Key. If vour input is blocked sequential, reply with the
actual blocksize that was used to prepare your input data records.

Our example uses blocked sequential records, created on every line by
$FSEDIT, with a blocksize of 2E56.

[23] Reply to this prompt with your input data record data set and vol-
ume name. Our response was SEQO1,EDX003.

[24] This prompt verifies whether truncation of the input records is
acceptable. Because our record size specified is actually 80 bytes
long, but we responded 128 because SFSEDIT converts the records to 128
bytes, the following warning message is displayed. YINPUT REC GT OUTPUT
REC. TRUNCATION WILL OCCUR™ This means that the extra bytes attached by
SFSEDIT to our 80-byte data records will now be removed. The response
is Y.

The information message "LOAD IN PROCESS"™ tells us that SIAMUT1 is read-

ing the input data set and loading the input data records into the base
record slots. The information message "END OF INPUT DATA SET" indicates

Chapter 2. Using the Indexed Access Method 2-5

that the end-of-file condition, on the input data set, has been encount-
ered.

[25] This prompt allows you to specify another input data set, if more
data records are to be loaded from another data set. In this example,
only 1 data set is being used and the response of N caused the records
loaded statistics to be displaved, followed by the "LOAD SUCCESSFUL™
massage.

The design of an indexed file varies according to your application. A
comprehensive approach to designing your indexed files begins with "De-
fining The File Structure With SIAMUT1"™ on page 3-4%.

PROCESSING THE INDEXED FILE

2-6

Now that the indexed file has been defined, formatted, and loaded with
data records, the file is ready for an application program to access any
of the records in the indexed file for processing. An application pro-
gram might use the following EDL coded requests to open the indexed file
and retrieve a record.

*
¥ OPEN THE INDEXED FILE FOR PROCESSING
*
[11 CALL IAM, (PROCESS),IACB,(DS1), (OPENTAB), (SHARE)
*
¥ PERFORM A DIRECT RETRIEVAL OF THE RECORD WHOSE KEY IS JONES PW
%
[21 CALL 1IAM,(GET),IACB,(BUFF),(KEY1l)
KEY1 TEXT 'JONES PW'
OPENTAB DATA F'0?
DATA A(IAMERR)
DATA F'0°
IACB DATA F'0'

[1] This Indexed Access Method request opens the primary index file in
process mode so that other requests can be issued for processing records
in the indexed file.

[2] This Indexed Access Method request retrieves a record from the
indexed file. The primary key of this record contains the name 'JONES
PW".

$C34-0604-1

Functions of the Requests

Following is a list of functions that you can perform using the Indexed
Access Method requests in your application program:

Initiate general purpose access to an indexed file with a PROCESS
request. After the PROCESS request has been issued, any of the follow-
ing functions can be requested:

° Direct reading - Retrieving a single record independently of any
previous request.

. Direct updating - Retrieving a single record for update; complete
the update by either replacing or deleting the record.

. Sequential reading - Retrieving the next logical record relative to
the previous sequential request.

The first sequential request can access the first record in the file
or any other record in the file.

. Sequential updating - Retrieving the next logical record for update;
complete the update by either replacing or deleting the record.

. Inserting - Placing a single record, in its logical key sequence,
into the indexed file.

. Deleting - Removing a single record from the indexed file.
. Extracting - Extracting data that describes the file.
Note that the update functions require more than one request.

When a function is complete, another function may be requested, except
that a sequential processing function can be followed only by another
sequential function. You can terminate sequential processing at any
time by issuing a DISCONN or ENDSEQ request. An end-of-data condition
also terminates sequential processing.

A complete list of the Indexed Access Method requests, the operand
descriptions, and correct syntax is described in Chapter 7, "Coding the
Indexed Access Method Requests"™ on page 7-1. There are also coding
examples using the Indexed Access Method requests in three programming
languages in Appendix C, "Coding Examples." The languages used in the
examples are Event Driven Language, COBOL, and PL/I. The purpose of
these examples is not to show any particular application, but to help
you when planning and writing your application program.

Chapter 2. Using the Indexed Access Method 2-7

SUMMARY

This chapter has introduced some fundamentals of using the Indexed
Access Method. The references in this chapter to other chapters in this
manual were placed there to help you select the specific information you
need for your application. A list of those references is repeated here
to assist you in locating the detailed informaticon on the listed sub-
jects.

For a complete description of $IAMUT1l see Chapter 8, "The SIAMUT1
Utility"

A comprehensive approach to designing your indexed files is
described in Chapter 3, "Defining Primary Index Files"™

Defining a secondary index for using secondary keys is described in
Chapter 5, "Building a Secondary Index"

Description of blocked and unblocked sequential data sets is
described in "Blocked and Unblocked Sequential Data Sets" on page
8-23

The complete list of Indexed Access Method requests, the operand
descriptions, and correct syntax is described in Chapter 7, "Coding
the Indexed Access Method Requests™

Guide line information on processing the indexed file is located in
Chapter 7, "Coding the Indexed Access Method Requests." This guide-
line information should be read prior to planning and coding your
application program.

2-8 5C34-0404-1

PRIMARY

CHAPTER 3. DEFINING PRIMARY INDEX FILES

This chapter presents the following major topics:
° Primary Indexed Files
° Designing Indexed Files Using $IAMUT1 - option 1
° Designing Indexed Files Using $IAMUT1 - option 2

- Indexed Access Method Blocks

- Index Blocks

- File Control Block

- File Structure Types

- Option 2 Examples
° Designing Indexed Files Using $SIAMUT1 - option 3
J Defining/Creating, and Loading A File - Summary.
This chapter provides information for defining indexed files and is
arranged according to your option selection when using $IAMUT1. The
beginning of the chapter has information which applies to any type of
primary index file design. That general information section is followed
immediately with an example using $IAMUT1, option 1. The option 2 sec-
tion is next and contains information that you will need to know prior

to designing an index file with $IAMUT1, option 2. The fourth section
applies to using $IAMUTL, option 3.

INDEX FILES
A primary index file contains data records, a multilevel index, control
information, and it can optionally contain free space.

Free space can be distributed throughout the file and at the end of the
file. Free space provides areas for inserting new records and is
described later.

In an indexed file, the records are arranged in ascending order by key.

Chapter 3. Defining Primary Index Files 3-1

DATA RECORD PRIMARY KEY

The primary key can be any field within your data record that you
select, however, it must meet the following requirements:

L The selected field must start at the same location in each record
. All portions of the key field must be contiguous
. The primary key length cannot exceed 254 bytes

. The field must contain data that is unique within the data set.

Defining the Key

Define a single key field by specifying its size and position in the
record when you select the file formatting parameters using the SE (set

parameter) command of the $IAMUT1 utility. The longer the key, the
larger the index. The key should not be longer than necessary but long
fnough to ensure uniqueness. A shorter key is more efficient than a
ong key.

ENSURING UNIQUENESS OF THE KEY

: To identify each record in an indexed file, each primary key
must be unique. If key duplication is possible, the key field must be
expanded to ensure that it is unique.

For example, customer name is a key which may involve duplicates. To
avoid duplication, lengthen the key field to include other characters
such as part of the customer address or the account number. Because the
characters in the key must be contiguous, you may need to rearrange the
fields in the record.

Another way to eliminate duplication is for you to modify new records
dvhamically whenever a duplication occurs during loading or processing.
Ohe or more characters at the end of the key field can be reserved for a
suffix code. Whenever a duplicate occurs, add a value to the suffix and
make another attempt to add the record to the file. The result is a
file that can contain a sequence of keys such as SMITH, SMITH1l, and
SMITH2. If you add a suffix, you must use the entire unique key when
accessing a record directly.

Providing Access by More Than One Key

To provide good performance with both direct and sequential access, each
indexed file is indexed by a single primary key. At times, however, it
may be useful to locate records by a secondary key. For example, in a
customer file indexed by account number, you might want to locate a
record by customer name.

To provide access by a secondary key, you must build a secondary index

(a separate file). For a description of setting up secondary indexes,
see Chapter 5, "Building a Secondary Index" on page 5-1.

3-2 S5C36-06406-1

RANDOM AND CLUSTERED RECORD INSERTS

The Indexed Access Method permits records to be added to an existing
file. The records are inserted by the Indexed Access Method in the
proper locations according to their key value. This keeps the keys
throughout the indexed file in ascending sequence.

Records to be inserted are sometimes required to be distributed through-
out the file rather evenly, other times the records to be inserted are
in groups.

When there are more individual records to be inserted throughout the
file, based on their key value, than there are groups of records to be
inserted, this is called random record inserts. The following diagram
represents random inserted records among existing records.

Existing
Records
Inserts cee . .o cee e . - .o
(Each bullet indicates an inserted record)

Record inserts are considered clustered if most of the inserts occur at
only certain places in the file. The following diagram represents clus-
tered inserts by vertically stacked bullets.

Existing
Records

Inserts . e . . .

LR

Chapter 3. Defining Primary Index Files 3-3

DEFINING THE FILE STRUCTURE WITH $IAMUTL

Defining an indexed file structure is the process of analvzing the file
requirements and selecting the appropriate file parameters. This allows
vou to either precisely define your indexed file or, by proper option
selection, $IAMUT1 will define most of the parameters for vou.

$IAMUT1 is a prompt driven utility. When it is loaded, messages are
displayed requesting information to be entered on a keyvboard. The
responses you enter through the keyboard determine how the utility will
operate.

The SE command of the $IAMUTI utility permits you to select one of three
options for defining yvour indexed file. The parameter selections are
made using the SE command of the S$IAMUTI utility. The SE (set parame-
ters) command of SIAMUT1 provides three options for you to choose from
to define your indexed file as follows:

1. Option 1 significant parameters - allows vou to define an indexed
file by supplying a minimum of information. The description of vour
data records is required and whether you expect random or clustered
record insert activity.

2. Option 2 all parameters - allows more flexibility in precisely
defining yvour indexed file but requires more parameters to be sup-
plied.

3. Option 3 parameters from existing indexed data set - can be used
when you have an existing indexed file and you wish to use the same
parameters for a new indexed file.

$IAMUT1 Option Selection Guide

Having read the preceding material, vou are probably ready to make a
choice as to which option you want to use in defining your indexed file.
The following table will help vou to find the appropriate information,
based on your indexed file defining objectives.

Your Objesctive option Information location

You want the Indexed Access 1 See "Designing Indexed Files
Method to calculate and Using $IAMUT1 - Option 1" on
structure your file page 3-5

You want to structure a file 2 See "Designing Indexed Files
and provide specific informa- Using SIAMUT1 - Option 2" on
tion for the parameters page 3-7

You want the Indexed Access 3 See "Designing Indexed Files
Method to structure a file Using $IAMUT1 - Option 3" on
using the parameters of an page 3-35

existing file

3-4% SC34-0406-1

DESIGNING INDEXED FILES USING $IAMUTL - OPTICN 1

Option 1 is used if yvou need to set up vour indexed file quickly and
easily. You specify only the necessary information and the utility
determines the proper values for other parameters. An indexed file gen-
erated with this option may not be optimum in terms of storage space
performance.

If yvou want to supply more parameters than are available with this
optiecn, or vou wish to set up a totally dynamic indexed file, you should
see "Designing Indexed Files Using $IAMUT1 - Option 2" on page 3-7. If
vou already have an indexed file established and you wish to use those
same parameters, yvou should see "Designing Indexed Files Using $SIAMUT1 -
Option 3" on page 3-35.

OPTION 1

The Indexed Access Method utility, $IAMUT1, option 1 of the SE (set
parameters) command, provides you with the opportunity to select only
those parameters necessary to set up an indexed file.

The $IAMUT1 Indexed Access Method utility can be loaded with the Event
Driven Executive operator command $L S$IAMUTL.

When $IAMUT1 is loaded the first prompt displayed is as follows:

[1J|ENTER COMMAND (?): SE

[1] Entering SE causes the following option list prompt to be displayed.

T FILE DEFINITION PARAMETERS
= EXIT
21 = SIGNIFICANT PARAMETERS
= ALL PARAMETERS
= PARAMETERS FROM EXISTING INDEXED DATA SET
T

ER OPTION: 1

[2] Respond to this prompt by entering the digit "1'. This response
causes a one line prompt from the next prompt sequence to be displayved.

Note: Although the following prompts are displayed one line at a time

when using the utility, the entire prompt list is shown for simplicity
in describing the parameters.

Chapter 3. Defining Primary Index Files 3-5

3-6

[31 SECONDARY INDEX (Y/N)?: N
DEFAULYT NEW VALUE

[4] RECORD SIZE 0:80
[51 KEY SIZE 0:40
{6} KEY POSITION 1:1
[71 BLOCKING FACTOR (RECORDS PER BLOCK) 1:3
[81 NUMBER OF BASE RECORDS 0:5
[9] ESTIMATED TOTAL RECORDS 6:20
[101 TYPE OF INSERT ACTIVITY(C=CLUSTERED,R=RANDOM) C:R

DATA SET SIZE IN EDX RECORDS: 12

INDEXED ACCESS METHOD RETURN CODE: -1

SYSTEM RETURN CODE: -1
[11] CREATE/DEFINE FILE (Y/N)7:

[3] The first line asks, are yvou specifying a secondary index. The
response should be N for no, because you are defining the parameters for
a primary index file.

[4] The record length shown is 80, however, the entry you will make is
the actual record length you want your indexed file records.

[5] Enter the length of your data record field that you are using as the
key field. The maximum primary key length is 254%.

[6]1 Enter the position where your primary key field begins. Your data
record begins with 1.

[7] Specify the blocking factor (number of records per block) you want
your indexed file to have. Remember that when a record is accessed, an
entire block is actually read into the system buffer.

[8] Enter the number of base record slots to be defined. This value is
the number of records you will load initially. You cannot load more
records than this value specifies.

[?2] Enter the total number of records you expect this file to contain.
This includes records that you plan to insert during processing.

[10] Enter the type of record insert activity you expect to have

[11]1 If you have verified that the parameters you entered are correct,
the data set (file) size in EDX records is acceptable, and the return
codes are both -1, vou can reply Y and you can create and define the
file. If you wish to change any of the parameters, reply N and vou can
reenter the SE command and enter any new values for the parameters.

Replying N terminates the SE function and you can return to this point
by reentering the SE command or the DF command (within the same session
of $IAMUT1). The DF command of $IAMUT1l is described under "DF—Define
Indexed File" on page 8-6.

To review the prompts that occur when Y is replied at this point return
to the example in Chapter 2, "Using the Indexed Access Methocd."

5C34-06406-1

DESIGNING INDEXED FILES USING $IAMUT1 - OPTION 2

OPTION 2

INDEXED

Option 2 is used if you have performed an analysis of your file require-
ments and vou want to precisely define your primary indexed file. This
option provides a wide range of parameters to allow you to specify your
file structure in detail. You can optimize the file structure according
to your application requirements for the best storage use and perform-
ance.

If you want to supply only the minimum parameters you might want to use
option 1 which is described earlier in this chapter under "Designing
Indexed Files Using $IAMUT1 - Option 1™ on page 3-5. If you already
have an indexed file established and you wish to use those same parame-
ters, you should see "Designing Indexed Files Using $IAMUT1 - Option 3"
on page 3-35.

The following information is provided so that you can supply the
required information to the prompts when defining a primary index file
using option 2 of $IAMUT1. The information is organized in levels of
Indexed Access Method blocks. The material should be read sequentially
because it provides the information which must be understood in order to
apply if to the examples which are placed near the end of this option 2
material.

ACCESS METHOD BLOCKS

Indexed files consist of three kinds of blocks:
° Data blocks, which contain records

. Index blocks, which contain pointers to data blocks or lower-level
index blocks

. File control blocks, which contain control information.

Following is an overview diagram showing the types of blocks and their
general relationships to each other in an indexed file.

Chapter 3. Defining Primary Index Files 3-7

File
Control
Blocks

Index
Blocks

Data
Blocks

— _— i — Free

Pool

Figure 3-1. Indexed File Logical Structure

3-8 5C34-0404-1

The indexed file is composed of a number of fixed length blocks. The
block is the unit of data transferred by the Indexed Access Method
between disk/diskette and the central buffer. Block size must be a mul-
tiple of 256. A block is addressed by its relative block number (RBN).
The first block in the file is located at RBN 0.

Note that the RBN is used only in indexed files by the Indexed Access
Method. An Indexed Access Method block differs from an Event Driven
Executive record in the following ways:

1. The size of a block is not limited to 256 bytes; its length can be a
multiple of 256.

2. The RBN of the first block in an indexed file is 0. The record num-
ber of the first Event Driven Executive record in a file is 1.

The size, in 256-byte records, of the file is calculated by the SE com-
mand of the $IAMUT1 utility.

As stated initially, three kinds of blocks exist in an indexed file:

data blocks, index blocks, and file control blocks. These blocks are

all the same length, as defined by BLKSIZE, but they contain different

kinds of information. Data blocks contain data records, index blocks

ggntain index entries, and file control blocks contain control informa-
jon.

DATA BLOCKS

Each data block contains a header, one or more data records, and it can
contain free space for additional data records.

The records in each data block are in ascending order, according to the
key field in each record.

Each data block header contains the address of the next sequential data
block, providing sequential processing capability.

A data block contains a header followed by data records. The number of
records that can be contained in a data block depends on the size of the
data block and the size of the record. The header of the block is 16
bytes.

The number of record areas in the block is:

block size - 16
record size

The result is truncated; any remainder represents the number of unused
bytes in the block. For example, if block size is 256 and record size
is 80, the data block can accommodate three records and there is no
unused area. The key field of the last record slot in an index block is
the high key for the data block even if the block is not full.

Chapter 3. Defining Primary Index Files 3-9

However, if the last record of the block has been deleted, the
of the last record slot will contain a key higher than that of
record in the block. Deletion of a record does not reduce the
for the block unless the block is emptied. Figure 3-2 , shous
mat of a data block.

FREE SPACE

3-10

key
any
kay
the

field
other
range
for-

When an indexed file is loaded with base records, free space is reserved

for records that may be inserted during processing. There are four
kinds of free space: free records, free blocks, reserve blocks,

reserve index entries.

and

FREE RECORDS: Free records are areas reserved at the end of each data
block. The FREEREC parameter of the SE command of $IAMUT1, specifies
the number of free records that are reserved in each data block.

remaining record areas are called allocated records.

The

For example, if a block contains three data record areas and you specify

one free record per block, then there are two allocated records per

block. For the layout of a data block containing two allocated records

and one free record, see Figure 3-2.

When records are loaded (file is open in load mode), the allocated
records are filled, and the free records are skipped. When additional
records are inserted (file is open in process mode), free records are

used to hold inserted records.

HEADER

Data Record

Data Record

Free space

Figure 3-2. Data Block Format Example

For an example of specifying FREEREC, see "™Example 1: Allocating Free

Records"™ on page 3-24%.

FREE BLOCKS: Free blocks follow the allocated data blocks within each
cluster. Free blocks have all of their records marked as free records.
The FREEBLK parameter of option 2 is used to specify the percentage of

blocks that are to be marked as free blocks.

When records are loaded, the allocated record areas in the allocated
data blocks are filled, and the free blocks are skipped. During proc-

essing, as data blocks become full, a free block provides space for

insertions.

For an example of specifying FREEBLK, see "Example 2: Allocating Free

Records and Free Blocks"™ on page 3-26.

SC34-04064-1

SEQUENTIAL CHAINING: Data blocks in an indexed file are chained together
by forward pointers located in the headers of data blocks. Only allo-
cated data blocks are included in the sequential chain. Chaining pro-
vides for sequential processing of the file with no need to reference
the index. MWhen a free block is converted to an allocated block, the
free block is included in the chain.

Reserving space For Record Inserts

If base records are to be loaded and record insertions are expected in
random locations throughout the file, use BASEREC to reserve the number
of base records. Use some combination of the following parameters:
FREEREC to reserve free records in each data block, FREEBLK to reserve
fre? blocks in each cluster (group of blocks), and DYN to provide a free
pool.

For example, consider a file with 5 records per block, and 10 data
blocks per cluster. Suppose that the file consists of 300 base records
and 200 inserts.

If the inserts are distributed evenly throughout the file, the pattern
of inserts is:

Blocks

Inserts .. . ce e .

(Each bullet indicates an inserted record)

With this kind of distribution you can specify 2 free records per block
to absorb the inserts; no free blocks or free pool are needed.

0f course inserts do not usually occur in such an even pattern. Free
blocks help to absorb a concentration of inserts. The more uneven the
expected distribution, the greater the free block specification should
be.

Suppose the same number of inserts is distributed in this pattern:

Blocks

Inserts cee e

With this distribution, specify either 3 free records per block, or 20%
free blocks with 2 free records per block.

Chapter 3. Defining Primary Index Files 3-11

Now suppose the distribution were more uneven:

Blocks

Inserts

In this case a satisfactory mix of free space is 1 free record per block
and 40% free blocks. An alternative is to use 1 free record per block
and the DYN parameter to hold those record inserts of more than 1 record
per block.

Calculating Data Blocks

This calculating information is provided for your convenience if you
choose to calculate the number of blocks for a specific file. For ref-
erence later there is a summary of all calculations in Appendix

A, "Summary of Calculations”" on page A-1. However, $IAMUT1 automat-
ically calculates the required data blocks based on the parameters you
provide. The utility also lists at file definition time (when using the
SE command) the number of blocks required according to your parameter
values.

The number of allocated data blocks in a file is the specified number of
base records (BASEREC) divided by the number of allocated records per
data block, with the result rounded up if there is a remainder.

For example, suppose you intend to load 1000 records in an indexed file
that is formatted for two allocated records and one free record per
block and five allocated blocks and one free block per cluster. The
number of allocated blocks in a file is:

number of base records
number of allocated records per block

The number of allocated blocks in this example is 100072 or 500 blocks.

3-12 S5C34-0606-1

INDEX BLOCKS

PRIMARY

An index block contains a header followed by a numbor of index entries.
Each index entry consists of a key and a pointer. The key is the high-
est key associated with a lower level block; the pointer is the RBN of
that block. The number of entries contained in each index block depends
on block size and key size. The header of the block is 16 bytes. The
RBN field in each entry is ¢ bytes. The key field in each entry must be
an even number of bytes in length; if the key field is an odd number of
bytes in length, the field is padded with one byte to make it even. The
number of index entries in an index block is:

block size - 16
& + key length

The result is truncated; any remainder represents the number of unused
bytes in the block.

For example, if block size is 256 and key length is 28, then each index
entry is 32 bytes, there are 7 entries in a block, and the last 16 bytes
of the block are unused.

INDEX BLOCKS (PIXB)

A set of data blocks is addressed (described) by a single primary index
block (PIXB). Each key in the index block is the highest key in the
data block that its accompanying relative block number (RBN) addresses.
A block i1s addressed by its RBN. The PIXB and the data blocks it
describes are called a cluster.

Clusters

Primary-level index blocks and data blocks are stored together in the
file in groups called clusters. Each cluster consists of a
primary-level index block and as many data blocks and free blocks as it
points to. For example, if there are seven entries in an index block,
there are eight blocks in a clustar: one primary-level index block and
up to 7 data/free blocks. If reserve blocks have been specified, the
blocks represented by the reserve block entries are not included until
insert activity has taken place and the required blocks have been
obtained from the free pool. For example, if there are seven entries in
an index block and one of the entries is a reserve block entry, the
cluster consists of seven blocks (one index block and six data blocks).
See Figure 3-3 on page 3-14 for a cluster example.

Chapter 3. Defining Primary Index Files 3-13

3-1¢4

HEADER

RBN of High key
block 1] in block 1

RBN of High key
PIXB block 2| in block 2

RBN of High key
hlock 3} in block 3

RBN of High key
block 7! in block 7

Data e o o
blocks

Figure 3-3. Cluster Example

Primary-Level Index Blocks

Entries in a primary-level index block point to data blocks. Each entry
in a primary-level index block is one of three possible types:

® Allocated entry
® Frea block entry
® Reserve block entry.

ALLOCATED ENTRY: An allocated entry points to an active data block. The
Key portion of the entry is initialized to binary ones by the $IAMUTL
utility. After records have been loaded or written to a data block, the
key portion of the entry which points to the data block contains the
highest key from the data block.

The pointer portion contains the RBN of the data block. Allocated
entries are the first entries in an index block. The number of index
entries allocated, when the indexed file is initially created, is the
total number of entries per index bleck, less the number of entries of
the other two tvpes (free block entry and reserve block entry).

SC34-0406-1

FREE BLOCK ENTRY: A free block entry points to a free data block. The
key portion of the entry contains binary zeros. The pointer portion
contains the RBN of the free block. Free block entries follow the allo-
cated entries in the index block. The number of index entries formatted
as free entries when the indexed file is initially created is the speci-
fied percentage (FREEBLK) of the total number of entries in an indexed
block, with the result rounded up if there is a remainder.

RESERVE BLOCK ENTRY: A reserve block entry does not point to a block but
is reserved for later use as a pointer to a data block which can be tak-
en from the free pool. Both the key and pointer portions of a reserve
block entry are binary zeros. Reserve block entries are at the end of
the index block. When a reserve block entry is converted to a used
entry, the index block is reformatted to move the entry to the allocated
entry area of the block.

Reserve blocks do not exist in the cluster. When all data blocks in a
cluster are used and another data block is needed, a data block can be
created from the free pool. If the primary-level index block contains a
reserve block entry, it is used to point to the record from the free
pnol. The reserve block entry in the primary-level index block points
to the block, and the data block becomes an allocated data block.

The number of index entries initially formatted as reserve block entries
is the specified percentage (RSVBLK) of the total number of entries,
with the result rounded up if there is a remainder. However, if the
number of free block entries plus the number of reserve block entries
require all index entries, the number of reserve block entries is
reduced by 1, providing at least one allocated entry per index block.

To calculate the number of primary-level index blocks in an indexed
file, you must know the initial number of data blocks allocated in the
indexed file.

Calculating Clusters

This calculating information is provided for your convenience if you
choose to calculate the number of blocks for a specific file. However,
$IAMUTL automatically calculates the required data blocks based on the
parameter values you provide. The utility also lists at file definition
time (when using the SE command) the number of blocks required according
to vour parameter values.

The number of clusters in a file is the number of allocated data blocks
divided by the number of allocated entries in each primary-level index
block, with the result rounded up if there is a remainder.

allocated blocks
allocated entries in each PIXB

Note that in the calculation, if the quotient is not an integer, it is
rounded up (rather than truncated) in order to accommodate all of the
base records.

Chapter 3. Defining Primary Index Files 3-15

3-16

The number of free blocks in the file (not including the free pool) is
the number of clusters in the file multiplied by the number of free
entries in each primary-level index block.

The Last Cluster

The last cluster in the file may be different from the other clusters.
It contains the same number of free blocks as the other clusters but
only enough allocated blocks to accommodate the records that you have
specified with the parameter BASEREC. Because rounding occurs in calcu-
lating the number of clusters, a few more allocated records than
required may exist in the last allocated block. The last cluster can be
a short one because only the required number of blocks are used.

If the number of allocated blocks divided by the number of allocated
blocks per cluster leaves a remainder, the remainder represents the num-
ber of allocated entries in the primary-level index block in the last
cluster. Unused entries in the last primary-level index block are
treated as reserve block entries.

The initial number of data blocks is the specified number of base
records (BASEREC) divided by the number of allocated records in a data
block, with the result rounded up if there is a remainder.

BASEREC
data records per block

The number of primary-level index blocks is the initial number of allo-
cated data blocks divided by the number of allocated entries per
primary-level index block, with the result rounded up if there is a
remainder.

allocated data blocks
allocated entries per primary-level index block

SC34-0406-1

SECOND-LEVEL INDEX BLOCKS (SIXB]

If the file is large enough to require more than one cluster, each PIXB
(or cluster) has an entry in a second-level index block (SIXB). The
entry in a SIXB contains the address of the PIXB and the highest key in
the cluster. The SIXB has the following structure:

HEADER

RBN of High key
PIXB1 in PIXB1

RBN of High key
SIXB PIXB2 in PIXB2

RBN of High key
PIXB3 in PIXB3

RBN of High key
PIXB4 in PIXB4

PIXB1 PIXB2 PIXB3 PIXB4

Entries in a second-level index block point to primary-level index
blocks. Each entry in a second-level index block is one of two possible
types:

° Allocated entry
° Reserve index entry.

ALLOCATED ENTRY: An allocated entry points to an existing primary-level
index block. The key portion of the entry is initialized to binary ones
by the S$IAMUT1 utility. After records have been loaded or written, the
key portion of the entry contains the highest key from the primary-level
index block. The pointer portion contains the RBN of the primary-level
index block. Alloccated entries are the first entries in the index
block. The number of index entries allocated when the indexed file is
loaded is calculated as the total number of entries per index block,
less the number of reserve index entries.

Chapter 3. Defining Primary Index Files 3-17

RESERVE INDEX ENTRY: A reserve index entry does not point to a block but
is reserved for later use as a pointer to a primary-level index block
that can be taken from the free pool. Both the key and pointer portions
of a reserve index entry are binary zeros.

Reserve index entries, in second-level index blocks, provide index space
for the index structure to be expanded by adding new primary-level index
blocks. These, in turn, can have data blocks associated with them, thus
forming new clusters. This process of forming a new cluster is called a
cluster split.

For an example of using RSVIX, refer to "Example 4: Allocating Reserved
Index Entries”™ on page 3-30.

Reserve index entries are at the end of the index block. The numbher of
index entries initially formatted as reserve index entries is the speci-
fied percentage (RSVIX) of the total number of entries, with the result
rounded up if there is a remainder. However, if the number of reserve
index entries is the same as the total number of entries in an index
block, the number of reserve index entries is reduced by 1, providing at
least one allocated entry per second-level index block.

The number of second-level index blocks is the number of primary-level
index blocks divided by the number of allocated entries per second-level
index block, wWwith the result rounded up if there is a remainder.

number of PIXBs
allocated entries per SIXB

3-18 SC34-0406-1

HIGHER~-LEVEL INDEX BLOCK (HIXB)

If the file is large encugh to require more than one SIXB, the SIXBs in
the file are described by one or more higher-level index blocks (HIXB)
in the same manner as the SIXB describes PIXBs. Thare is always one
index block that describes the entire file.

The index of an indexed file is constructed in several levels so that,
given a key, there is a single path (one index block per level) cascad-
ing through the index levels that leads to the data block associated
with that key. The index is built from the bottom up. At the lowest
level are the primary-level index blocks. At the second level are index
blocks containing entries that point te the primary-level index blocks.
The highest level of the index structure consists of a single index
block.

Entries in a higher-level index block point to index blocks at the next
lower level. All entries in higher-level index blocks are allocated
entries. The key portion of the entry contains the highest key from the
index block of the next louwer level. The pointer portion contains the
RBN of the next lower level index block. The number of blocks at any
higher index level is the number of index blocks at the next lower level
divided by the total number of entries per index block, with the result
rounded up if there is a remainder.

If the number of index bleocks at any level is one, that level is the top
level of the index. Although the Indexed Access Method i1s capable of
initially defining and supporting 17 levels of index, an indexed file is
formatted with only as many index levels as are required for the number
of records. If an indexed file has not been fully loaded and one or
more higher index levels have not vet been required, the unnecessary
higher levels are not used, even though they exist in the file
structure.

INBEX EXAMPLE: Assume that 500 data blocks are allocated to a file and
that each primary-level index block contains one free block entry, one
reserve bleck entry, and five allocated entries. Therefore, the total

number of primary-level index blocks is 100. Each second-level index
block contains one reserve index entry and six allocated entries; there-
fore, the number of second-level index blocks is 17. The number of

entries in higher level index blocks is seven, resulting in three index
blocks at the third level and one at the fourth level.

Therefore the file contains a total of 121 index blocks of which 100 are
primary-level index blocks, 17 are second-level index blocks. 3 are
third-level index blocks, and 1 is a fourth-level index block. This
distinction is important because high-level index blocks are located
contiguously at the beginning of the file {after the FCBJ), while
primary-level index blocks are scattered throughout the file with the
data blocks. Figure 3-4% shows the structure of the higher-level index
blocks.

Fourth

(top?
[] level
index

n! Third
[1 level
e

]] e

R BRRED 6

Figure 3-4%. High-level Index Structure

1

Chapter 3. Defining Primary Index Files 3-19

FREE POCL

3-20

If you specify that you want a free pool, vour indexed file contains a
pool of free blocks at the end of the indexed file. The file control
block contains a pointer to the first block of the free pool, and all
blocks in the free pool are chained together by forward pointers.

A block can be taken from the free pool to become either a data block or
an index block. The block is taken from the beginning of the chain, and
its address (RBN) is placed in the appropriate primary-level index block
(if the new block is to bacome a data block) or in the second level
index block (if the new block is to become a primary-level index block),
and so on. Any block in the free pool can be used as either a data
block or as an index block.

When a data block becomes empty because of record deletions, the data
block may return to the free pool (depending on the delete threshold
(DELTHR) parameter). If the data block is returned to the free pool,
reference to the block is removed from the primary-level index block,
and the block is placed at the beginning of the free pool chain.

Calculating the initial size of the free pool consists of the following
steps:

° Each reserve block entry in a primary-level index block represents a
potential data block from the free pool. The number of data blocks
that can be assigned to initial clusters is the number of
primary-level index blocks times the number of reserve block entries
in each primary-level index block.

[Each reserve index entry in a second-level index block represents a
potential primary-level index block from the free pool. The number
of primary-level index blocks that can be assigned from the free
pool into the index structure set up at file definition time is the
number of second-level index blocks multiplied by the number of
reserve index entries in each second-level index block.

U Each primary-level index block taken from the free pool consists
entirely of empty (reserve block) entries. New data blocks can be
taken from the free pool for the entries in the new primary-level
index block. The number of data blocks is the number of entries per
index block multiplied by the number of new primary-level index
blocks (calculated in the previous step).

® The maximum number of blocks that can be taken from the free pool
and placed into the index structure set up at file definition time
is the sum of the previous three calculations.

® The actual number of blocks in the free pool is determined in one of
two ways:

- The percentage (FPOOL) of the maximum possible free pool as
specified by the RSVIX and RSVBLK parameters. The result is
rounded up if there is a remainder. If the DYN parameter is
also used, its value is added to the sum.

- The DYN parameter, if specified with no other free space parame-
ters, allocates a free pool of the specified number of blocks.

DELTHR =~ DELETE THRESHOLD: The percentage (0-99) of blocks to retain in
a cluster as records are deleted and blocks made available. This is
known as the delete threshold DELTHR. When a block becomes empty, this
parameter, if supplied, determines if the block should be returned to
the free pool.

SC34-0406-1

FILE CONTROL BLOCK

The file control block (FCB) is the first block in the file (RBN 0); it
contains control information.

Indexed files have an FCB Extension as the second block. The FCB Exten-—
sion contains the parameters used to define the file.

Note: Indexed files built with a version of the Indexed Access Method
prior to version 2 do not contain an FCB extension.

You can access the FCB and FCB Extension by either of the following
methods:

© Using the EXTRACT function in an EDL program
U Using the $VERIFY utility.

You can locate the field names in the FCB and FCB Extension by examining
a listing of FCBEQU, a copy code module that is supplied as part of the
Indexed Access Method. The FCB Extension contains the parameters that
were used to set up the file using the $IAMUT1 SE command. Control
information is also contained in block headers; a description of control
information is contained in "FCB Extension Report™ on page 9-8.

FILE STRUCTURE TYPES

A wide range of file structure is available. You can set up files that
vary from the totally dynamic to the highly structured. Whether a file
is structured or dynamic depends on the degree to which it uses a frees

pool.

A free pool is an area in yvour indexed file which contains a pool of
free blocks. The file control block contains a pointer to the first
block of the free pool, and all blocks in the free pool are chained
together by forward pointers. A block can be taken from the free pool
to become either a data block or an index block.

Dvnamic files offer the advantage of easy file design and good space
utilization. They have the disadvantage of a potential performance
decrease.

Structured files offer the advantage of good performance. They have the
disadvantage of a more complex file design and greater space require-
ments.

Either method can result in a need to reorganize the file; the struc-
tured approach because the file can run out of space for inserts, and
the dynamic approach because of performance considerations.

The type of indexed file to be defined, structured or dynamic,
therefore, depends on the file requirements and the efficiency required.

structured File

A structured file has its base record slots, free space, and the index
structure needed to support them built at file definition time by the
Indexed Access Method utility using the file structure parameters you
specify. The structured file uses little, if any, free pool. The
structured file offers better performance than the dynamic file but can
result in unused space.

Chapter 3. Defining Primary Index Files 3-21

Whether or not a structured file has a free pool depends on whether or
not you supply a value for the DYN parameter when the file is defined.
When the DYN parameter is used, the FREEREC, FREEBLK, RSVBLK, RSVIX, and
FPOOL parameters, if supplied, are also used in establishing the struc-
tured free space. The number and types of blocks in a structured file
are the result of calculated values you supply as parameters when defin-
ing the file. Most of the blocks are not taken dynamically from the
free pool as they are needed because they are established at file defi-
nition time.

Dynamic File

The higher the degree to which a file uses a free pool, the more dynamic
it is; the system builds index and data blocks for you as they are
needed.

The Indexed Access Method provides a dynamic file restructuring capabil-
jty. It makes use of any free pool space the file has, even if the file
is mostly structured.

The Indexed Access Method can restructure a file in two ways:

® As records are inserted and additional space is needed in specific
areas of the file, blocks are taken from the free pool and become
data blocks where needed. If additional index blocks are needed,
blocks are taken from the free pool for this purpose as well. Index
blocks can be added at any level, and the number of levels of index
can increase as needed. This function is performed automatically by
the Indexed Access Method on any file that has a free pool associ-
ated with it.

° As records are deleted and blocks become empty, they are returned to
the free pool. If index blocks become empty (because the blocks
under them have been returned to the free pool) they are also
returned to the free pool. This helps to maintain a supply of
blocks in the free pool to be used if other areas of the file
expand.

For an example of defining a totally dynamic file, see "Example 5 -
Defining a Totally Dynamic File™ on page 3-33.

USING THE DYN PARAMETER: The DYN parameter can be used to adjust how
much the free pool is used. This adjustment varies how dynamic a struc-
tured file is.

In a totally dynamic file, the initial file defined consists of only the
file control blocks, one primary index block and one data block. The
rest of the file is in the free pool.

To define a totally dynamic file, you need to only supply a value for
the DYN parameter to allow the rest of the file to be assigned to the
free pool.

A dynamic file can be used when the records you want to add to the file
are not sorted into ascending key sequence. In that case, you can place
the records in the file by inserting them in random sequence. The
Indexed Access Method will place them in their proper sequence within
the indexed file.

If base records are to be loaded initially and they are sorted in
ascending key sequence but insert activity is unknown, you can use a
totally dynamic file design. Use the BASEREC parameter to reserve the
number of base record slots required. Use the DYN parameter to provide
the free pool needed for record inserts.

Note: When a dynamic file has grown to its working size, it should be
reorganized for more efficient operation.

3-22 5C34-0604-1

OPTION 2 EXAMPLES

The examples which follow are provided to show the option 2 prompts and
the effects of certain parameter values. Although the values used are
small for simplicity of explanation, they are usually much larger in an
actual application. Also a given example does not represent a complete
primary index file but addresses a particular part of a file and its
associated parameters which we wish to describe at that place in the

chapter.

Chapter 3. Defining Primary Index Files 3-23

EXAMPLE 1: ALLOCATING FREE RECORDS

The indexed file created using these parameters has only one type of
free space, called free records:

ENTER COMMAND (?): SE

SET FILE DEFINITION PARAMETERS

0 = EXIT

1 = SIGNIFICANT PARAMETERS

2 = ALL PARAMETERS

3 = PARAMETERS FROM EXISTING INDEXED DATASET

ENTER OPTION: 2

SECONDARY INDEX (Y/N)?: N
PARAMETER DEFAULT NEW VALUE
BASEREC NULL:10
BLKSIZE 1256
RECSIZE :
KEYSIZE :40
KEYPOS N |
[11 FREEREC 1
FREEBLK 0
RSVBLK NULL:

RSVIX 0:

FPOOL NULL:

DELTHR NULL:

DYN NULL:

TOTAL LOGICAL RECORDS/DATA BLOCK:
FULL RECORDS/DATA BLOCK:

INITIAL ALLOCATED DATA BLOCKS:
INDEX ENTRY SIZE:

TOTAL ENTRIES/INDEX BLOCK:

FREE ENTRIES/PIXB:

RESERVE ENTRIES/PIXB(BLOCKS):
FULL ENTRIES/PIXB:

RESERVE ENTRIES/SIXB:

FULL ENTRIES/SIXB:

DELETE THRESHOLD ENTRIES:

FREE POOL SIZE IN BLOCKS:

OF INDEX BLOCKS AT LEVEL 1:

DATA SET SIZE IN EDX RECORDS:
INDEXED ACCESS METHOD RETURN CODE:
SYSTEM RETURN CODE:

CREATE/DEFINE FILE (Y/N)?: N

ENTER COMMAND (?):

ooroOoO
.

.
.
.

Eal

0 POoOUVIUOUICOUTPUINW

3-24 S5C36-0406-1

[1] Because record size was specified as 80 and block size was specified
as 256, there are (256-16)/80 = 3 records per block. Because FREEREC
was specified as 1, there are 2 full (base) records per block and 1 free
record per block. Because BASEREC was specified as 10, there are 10/(2
base records per block) or 5 initial allocated data blocks (blocks that
contain base records). Because FREEBLK, RSVBLK, RSVIX, FPOOL, and DYN
were not specified, there are no free blocks or free pool blocks allo-
cated. One primary index block is needed.

The number of free blocks is calculated as follows: Free entries per
PIXB times the number of index blocks at level 1.

The total blocks allocated for this file is:

Initial allocated data blocks 5
Free blocks 0
Free pool blocks 0
Index blocks 1
File control block + 2

8 Total

Figure 3-5 illustrates the format of the indexed file that would result
from these SE command parameters.

1
2
3
PIXB == 4
5
6
2 3 G 5 6
Data
blocks
Free Free Free Free Free

Figure 3-5. Indexed File with Free Records

Chapter 3. Defining Primary Index Files 3-25

EXAMPLE 2: ALLOCATING FREE RECORDS AND FREE BLOCKS

3-26

These parameter specifications will generate an indexed file with two
types of free space—free records and free blocks:

ENTER COMMAND (?7): SE

SET FIL$ DEFINITION PARAMETERS
0 = EXI

1 SIGNIFICANT PARAMETERS

2 ALL PARAMETERS

3 PARAMETERS FROM EXISTING INDEXED DATASET
ENTER OPTION: 2

SECONDARY INDEX (Y/N)?: N
PARAMETER DEFAULT NEW VALUE
BASEREC NULL:10
BLKSIZE : 256
RECSIZE :80
KEYSIZE 140

KEYPOS 'l

FREEREC 21

[11 FREEBLK 110

RSVBLK NULL:

RSVIX 0:

FPOOL NULL:

DELTHR NULL:

DYN NULL:

TOTAL LOGICAL RECORDS/DATA BLOCK:
FULL RECORDS/DATA BLOCK:

INITIAL ALLOCATED DATA BLOCKS:

INDEX ENTRY SIZE: » 4
TOTAL ENTRIES/INDEX BLOCK:

FREE ENTRIES/PIXB:

RESERVE ENTRIES/PIXB(BLOCKS):

FULL ENTRIES/PIXB:

RESERVE ENTRIES/SIXB:

FULL ENTRIES/SIXB:

DELETE THRESHOLD ENTRIES:

FREE POOL SIZE IN BLOCKS:

OF INDEX BLOCKS AT LEVEL 1:

OF INDEX BLOCKS AT LEVEL 2:

DATA SET SIZE IN EDX RECORDS:
INDEXED ACCESS METHOD RETURN CODE:
SYSTEM RETURN CODE:

CREATE/DEFINE FILE (Y/N)?: N
ENTER COMMAND (?):

o

COROOO
.

FNouUvoP,rOoOFRUNIPAPUINW

[
N

[1] The FREEBLK parameter of 10 causes 10% of the total entries in each
index block to point to free blocks. Because KEYSIZE was specified as
40, the index entry size = 40 + ¢ (RBN pointer) and the total entries
per index block is (256-16)/44 = 5. Thus, 10% of this total rounded up
is the number of free entries/PIXB (l1). Because there are 5 initial
allocated data blocks, one free entry and only 5 total entries per index
block, 2 primary index blocks are needed. This causes a second-level
index block to be allocated.

$C34-0404-1

The total blocks allocated:

Initial allocated data blocks 5
Frea blocks 2
Free pool blocks 0
Index blocks 3
File control block + 2
12 Total

Figure 3-6 illustrates the format of the indexed file that would result
from these SE command parameters.

2
3
SIXB ==> 9
Unused
3 9
G 10
5 11 Free
PIXBs ==>
6 Unused
7
8 Free
4 5 6 7 8 10 11
Data
blocks
Free Free Free Free Free
Free Free
block block

Figure 3-6. Indexed File with Free Records/Blocks

Chapter 3. Defining Primary Index Files 3-27

EXAMPLE 3: ALLOCATING RESERVED DATA BLOCKS

3-28

Reserve blocks are allocated using the RSVBLK and FPOOL parameters of
the SE command. The following SE command example shows the specifica-
tion of an indexed file with reserved data blocks.

ENTER COMMAND (?): SE

SET FILE DEFINITION PARAMETERS
0 = EXIT

1 SIGNIFICANT PARAMETERS

2 ALL PARAMETERS

3 PARAMETERS FROM EXISTING INDEXED DATASET
SECONDARY INDEX (Y/N)?: N

ENTER OPTION: 2

PARAMETER DEFAULT NEW VALUE
BASEREC NULL:10

BLKSIZE 1256

RECSIZE :80

KEYSIZE 1

KEYPOS :1

FREEREC 11

FREEBLK :10

[1] RSVBLK NULL:10

RSVIX 0:

[21] FPOOL NULL:50

DELTHR NULL:

DYN NULL:

TOTAL LOGICAL RECORDS/DATA BLOCK:
FULL RECORDS/DATA BLOCK:
INITIAL ALLOCATED DATA BLOCKS:
INDEX ENTRY SIZE: 4
TOTAL ENTRIES/INDEX BLOCK:

FREE ENTRIES/PIXB:

RESERVE ENTRIES/PIXB(BLOCKS):
FULL ENTRIES/PIXB:

RESERVE ENTRIES/SIXB:

FULL ENTRIES/SIXB:

DELETE THRESHOLD ENTRIES:

FREE POOL SIZE IN BLOCKS:

OF INDEX BLOCKS AT LEVEL 1:
OF INDEX BLOCKS AT LEVEL 2

it

COFROOO

HPNEAJIOUWR U W

[
(%

DATA SET SIZE IN EDX RECORDS:
INDEXED ACCESS METHOD RETURN CODE:
SYSTEM RETURN CODE:

CREATE/DEFINE FILE (Y/N)?: N
ENTER COMMAND (?2):

i
=

[1] In this example RSVBLK was specified as 10. Thus 10%X of the total
entries in each PIXB will initially be reserved.

[2] Because the total entries per PIXB is 5, 10% of 5 rounded up will
cause 1 entry in each PIXB to be reserved. Because there are 2 PIXBs,
each with 1 reserve entry, a maximum of 2 free pool blocks can be used.
However, since FPOOL was specified as 50%, only half of these blocks (1
block) wWill be allocated for the free pool.

The total blocks allocated for this file is:

Initial allocated data blocks 5
Free blocks 2
Free pool blocks 1
Index blocks 3
File control block + 2
13 Total

Figure 3-7 on page 3-29 illustrates the format of the indexed file that
would result from these SE command parameters.

$C34-06404-1

2
3
SIXB ==> 8
Unused

3 8
4 9
5 10

PIXBs ==>
6 11 Free
7 Free Reserved
Reserved Unused
4 5 6 7 9 10 11
Data
blocks
Free Free Free Free Free
Free Free
block block
12
Free pool
block

Figure 3-7. Indexed File with Reserved Data Blocks

Chapter 3. Defining Primary Index Files 3-29

EXAMPLE %: ALLOCATING RESERVED INDEX ENTRIES

3~-30

In the following example, the index structure is set up to use free pool
blocks for index blocks by allocating reserve index entries using the
RSVIX parameter.

ENTER COMMAND (?): SE
SET FILE DEFINITION PARAMETERS

0 = EXIT

1 = SIGNIFICANT PARAMETERS
2 = ALL PARAMETERS

3 =

PARAMETERS FROM EXISTING INDEXED DATASET
ENTER OPTION: 2

SECONDARY INDEX (Ys/N)?: N

PARAMETER DEFAULT NEW VALUE

BASEREC NULL:10

BLKSIZE 1256

RECSIZE 130

KEYSIZE 140

KEYPOS
FREEREC
FREEBLK
RSVBLK NULL:10

[11 RSVIX 0:10

FPOOL NULL:50

[21 DELTHR NULL:4&0

DYN NULL:25

TOTAL LOGICAL RECORDS/DATA BLOCK:
FULL RECORDS/DATA BLOCK:

INITIAL ALLOCATED DATA BLOCKS:
INDEX ENTRY SIZE:

TOTAL ENTRIES/INDEX BLOCK:

FREE ENTRIES/PIXB:

RESERVE ENTRIES/PIXB(BLOCKS):
FULL ERTRIES/PIXB:

RESERVE ENTRIES/SIXB:

FULL ENTRIES/SIXB:

DELETE THRESHOLD ENTRIES:

FREE POOL SIZE IN BLOCKS: 2
OF INDEX BLOCKS AT LEVEL 1:

OF INDEX BLOCKS AT LEVEL 2:

COFRPOC@
v ee se
[%

)

FNONDN W= DU

DATA SET SIZE IN EDX RECORDS: 61
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

CREATE/DEFINE FILE (Y/N)?: N
ENTER COMMAND (72):

[1] In this example there are still 5 total entries per index block.
The 10 RSVIX parameter causes 10% X 5 (rounded up to 1) of the
second-level index block (SIXB) entries to be reserved.

In this case, 1 reserve entry is allocated in the SIXB leaving 4 full
entries. Because the block pointed to by a SIXB is also an index block
(PIXB), blocks in the free pool are allocated for the PIXB and the total
number of data blocks it can point to. Thus the total free pool size
for these parameters is 1 (reserve entry) + 5 (total entries/PIXB) + 2
(reserve block entries) = 8. Because only 50% of the total possible
free pool was requested, ¢ of the total free pool blocks plus the 25
blocks specified on the DYN parameter for a total of 29 blocks would be
allocated to the free pool.

SC34-0406-1

The total blocks allocated for this file is:

Initial allocated data blocks 5
Free blocks 2
Free pool blocks 29
Index blocks 3
File control block + 2
41 Total

[2] The percentage (0-99) of blocks to retain in the cluster as records
are deleted and blocks made available. This is known as the delete
threshold (DELTHR). When a block becomes empty, it is first determined
if the block should be given up to the free pool by checking the
response to this prompt. If the block is not given up to the free pool,
it is retained in the cluster, either as a free block or as an active
empty block. The result of this calculation is rounded up so that any
non-zero specification indicates at least one block. The calculation is
adjusted to ensure that the cluster always contains at least one block.
In this example, the delete threshold was specified as 40%. This
results in at least 2 blocks always being retained in each cluster.

If the DELTHR parameter is specified as null (&) and DYN is not speci-
fied, DELTHR defaults to the number of allocated blocks in the cluster
plus one half of the value calculated by the FREEBLK prompt.

If the DELTHR parameter is specified as null and a value is specified
for the DYN parameter, DELTHR defaults to zero.

Figure 3-8 on page 3-32 illustrates the format of the indexed file that
would result from these SE command parameters.

Chapter 3. Defining Primary Index Files 3-31

3-32

2

3
8
SIXB ==>
Reserved
Unused
3 8
G 9
5 10
PIXBs ==> 6 11 Free
7 Free Reserved
Reserved Unused
4 5 6 7 9 10 11
Data
blocks
Free Free Free Free Free
Free Free
block block
12 13 14 15
—_ —> —_>
Free pool
blocks
Free Free Free Free
Figure 3-8. Indexed File with Reserved Index Entries
5C34-0406-1

EXAMPLE 5 - DEFINING A TOTALLY DYNAMIC FILE

To define a totally dynamic file vou need only supply the parameters
which describe the format of your records within blocks: BLKSIZE,
RECSIZE, KEYSIZE. If the yvour keys do not begin in position 1 of your
records, the KEYPOS parameter must be supplied. The DYN parameter must
then be specified in the number of blocks to assign to the free pool.

The following display shows the use of the SE commands of the $IAMUTI1
utility to define a totally dynamic indexed file. Note that the result-
ing file has only one allocated data block and one index block. The
rest of the space is in the free pool as specified by the DYN parameter.

ENTER COMMAND (?): SE

SET FILE DEFINITION PARAMETERS

0 EXIT

1 SIGNIFICANT PARAMETERS

2 ALL PARAMETERS

3 PARAMETERS FROM EXISTING INDEXED DATASET
ENTER OPTION: 2

SECONDARY INDEX (Y/N)?: N

PARAMETER DEFAULT NEW VALUE

BASEREC NULL:
BLKSIZE 0:256
RECSIZE 0:70
KEYSIZE 0:40
KEYPOS 1:
FREEREC 0:
FREEBLK 0:
RSVBLK NULL:
RSVIX 0:
FPOOL NULL:
DELTHR NULL:
DYN NULL:5300

TOTAL LOGICAL RECORDS/BLOCK: 3
FULL RECORDS/DATA BLOCK: 3
INITIAL ALLOCATED DATA BLOCKS: 1
INDEX ENTRY SIZE: 14
TOTAL ENTRIES/INDEX BLOCK: 17
FREE ENTRIES/PIXB: 0
RESERVE ENTRIES/PIXB (BLOCKS): 0
FULL ENTRIES/PIXB: 17
RESERVE ENTRIES/SIXB: 0
FULL ENTRIES/SIXB: 17
DELETE THRESHOLD ENTRIES: 0
FREE POOL SIZE IN BLOCKS: 5300
OF INDEX BLOCKS AT LEVEL 1: 1
DATA SET SIZE IN EDX RECORDS: 5304
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

CREATE/DEFINE FILE (Y/N)?: N
ENTER COMMAND (?):

The total blocks allocated for this file is:

Initial allocated data blocks 1
Free blocks 0

Free pool blocks 5300
Index blocks 1
File control block 2
5304 Total

Chapter 3. Defining Primary Index Files 3-33

Figure 3-9 illustrates the format of the indexed file that would result
from these SE command parameters.

2
Primary index
block (PIXB) => 3
3
Data
block =>
Free
4 5 6 5303
—_ —_ —_
Free pool
blocks =>

Figure 3-9. Totally Dynamic Indexed File

3-34 S5C34-0406-1

DESIGNING INDEXED FILES USING SIAMUTL - OPTION 3

Option 3 allows vou to define a new file, using the same parameters that
were used to create an existing file. Using this option vou are not
required to manually enter any parameters. You are prompted for the
data set name and volume of the existing indexed file followed by the
prompt "NEW PARAMETERS EXACTLY SAME AS ORIGINAL PARAMETERS (Y/N) 7%,

The effects of these two possibilities are described below:

Y The new file to be defined is to appear exactly like the existing

file when it was created. In other words, the parameters to be used
for defining the new file will be exactly like those of the existing
file.

An example of this situation is where you are satisfied with the
structure of a currently existing file and now you want to build a
similar file and vou expect the same type of insert/delete activity.

N The growth of the existing file is to be taken into account in defin-
ing the new file. If the total number of records in the existing
file do not exceed the number of base records when the file was
defined, the existing file parameters will be used without change to
define the new file. However, if the number of records in the exist-
ing file exceed the number of base records, the parameters for the
new file will be adjusted as follows:

® BASEREC will be set as the current number of records in the
existing file.

° FPOOL will be set to null.

° DYN will be set to the current number of free pool blocks in the
existing file.

° All other parameters will be the same as the corresponding exist-
ing file parameters.

Replying N to the prompt "NEW PARAMETERS EXACTLY SAME AS ORIGINAL
PARAMETERS (Y/N)?", causes the file size to be adjusted to allow
at least as many records to be loaded in the new file as appear
in the existing file. This reduces the free pool amount based
upon free pool depletion in the existing file.

An example of this situation is where you wish to reorganize a file.
The new file should be able to handle as many records as exist in the
old file.

Note: The parameters for a primary file must be set from another prima-

ry file and parameters for a secondary file must be set from another
secondary file.

Chapter 3. Defining Primary Index Files 3-35

$IAMUT1 - OPTION 3

3-36

The $IAMUT1 Indexed Access Method utility can be loaded with the Event
Driven Executive operator command $L $IAMUTI.

When $IAMUT1 is loaded the first prompt displayed is as follows:

[11 |ENTER COMMAND (?): SE

[1) Entering SE causes the next prompt to be displayed.

T FILE DEFINITION PARAMETERS

= EXIT

= SIGNIFICANT PARAMETERS

= ALL PARAMETERS

= PARAMETERS FROM EXISTING INDEXED DATA SET
TER OPTION: 3

[21

[2] Respond to this prompt by entering the digit '3'. This response
causes the following prompts to be displaved.

SECONDARY INDEX (Y/N)?: N
[3) [NAME OF EXISTING INDEXED DATASET (NAME,VOLUME):EMPLFILE,EDX003
[4] |NEW PARAMETERS EXACTLY SAME AS ORIGINAL PARAMETERS (Y/N)? Y

DATA SET SIZE IN EDX RECORDS: 15
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

[51 |CREATE/DEFINE FILE (Y/N)?: N

[3]1 Enter the name of the data set and volume whose values you wish this
data set to copy.

[4] If all of the parameter values used to define the existing file ini-
tially are satisfactory, reply Y. However, if you want to change any of
the parameters, based on current file status, or you want to reorganize
the existing file, reply N. Replying N will cause the parameter values
for BASEREC and FPOOL to be adjusted so that you can load as many
records into the new file as are now contained in the existing file.

[5] If you have verified that the parameters you entered are correct,
the data set (file) size in EDX records is acceptable, and the return
codes are both -1, you can reply Y and the file can be defined and cre-
ated. If you wish to change any of the parameters, reply N and you can
reenter the S5E command and enter any new values for the parameters.

SC34-06406-1

DEFINING, CREATING, AND LOADING A FILE - SUMMARY

This chapter has presented the structure, content and principles of pri-
mary index files. Several examples have been used to show what results
given parameter values have when defining a primary index file.

In those examples the SE command of $IAMUT1 was used extensively. 1In
replying to the SE prompt "DEFINE/CREATE FILE (Y/N)?:%, N was used in
this chapter. This allows vou to reenter the SE command and go through
the prompt sequence again, changing any parameter values as required.

To see the result of replving Y, see the example used in Chapter

2, "Using the Indexed Access Method™ on page 2-1. When you reply Y to
the DEFINE/CREATE prompt, you enter the function called defining the
file. You can enter the define file directly anytime that $IAMUT1 is
loaded by responding with DF to the prompt "ENTER COMMAND (?):." \Using
the DF (define file) command is described in detail under "DF—Define
Indexed File™ on page 8-6.

When you reply Y to the prompt, "INVOKE LOAD(L), REORGANIZE(R) OR END(E)
AFTER CURRENT FUNCTION ?:", you are given the opportunity to enter the
$IAMUT1 functions of load, recorganize, or end. MWhile in the SE
function, load, reorganize, and end can be entered by replying with the
letters L, R, or E, respectively. Houwever, these functions can be
entered directly from the prompt "ENTER COMMAND (?):"™ with LO for load,
RO for reorganize, or EN for end.

Using the LO (load) command is described in detail under "LO0—Load
Indexed File™ on page 8-22.

Using the RO (reorganize) command is described in detail under
"RO—Reorganize Indexed File" on page 8-30.

Entering EN (end) terminates the current session of the SE command of

SIAMUTL. Entering EN to the prompt "ENTER COMMAND (?):"™ will then ter-
minate the $IAMUT1 utility.

Chapter 3. Defining Primary Index Files 3-37

3-38 5C364-0404-1

LOADING

CHAPTER 4. LOADING THE PRIMARY INDEX FILE

This section describes the process and methods of loading a file.
You can use two methods to load base records:

1. The S$IAMUTL1 utility

2. An application program.

The methods are described in the following sections.

THE PRIMARY INDEX FILE

The Indexed Access Method uses two modes to place records into an
indexed file:

1. Load mode: records are loaded sequentially in ascending order by
key, skipping any free space. The records loaded are called base
records. Each record loaded must have a key higher than any key
already in the file.

2. Process mode: records are inserted in their proper key position
relative to records already in the file. Records are inserted using
the free space that was skipped during loading or, if a record has a
new high key, it is placed in a base record after the last loaded
record. If no base records are available, it is placed in the free
space after the last loaded record.

The total number of base records that can be loaded is established when
the indexed file is defined by the $IAMUT1l utility. It is not necessary,
however, to load all (or any) base records before processing can begin.
The file can be opened for loading some of the base records, closed and
then reopened for processing (including inserts), and later opened for
loading more base records. Figure -1 on page %4-2 illustrates this
saquenhce.

Nota: Programs written in COBOL are an exception to this: COBOL pro-
grams can use load mode only once for any given indexed file.

Therefore, all base records loaded in load mode must be loaded together.
Base records loaded later must be inserted in process mode (wWith slower
performance).

Chapter 4. Loading The Primary Index File ¢4-1

LOAD MODE PROCESS MODE

— < First record has
lowest key
<
Step 1. <
Load a portion of <
the base records <
| < —— Step 2.
High key — > = — — — — — — 4 < Insert new records
after step 1 <
— = - - — — — — — A < —High key after
step 2
Step 3.
Load more
base records N
High key —m8m8M8MmMm™m>p~ - — — — — — — <—— Last record has
after step 3 highest key
Unused
space

Figure 6-1. Loading and Inserting Records

The amount of free space for inserts (if any) is specified using the
SIAMUTL utility when the indexed file is built. This free space can be
distributed throughout the file in the form of free records within each
data block, free blocks within each cluster, and in a free pool at the
end of the file.

4-2 5C34-0406-1

LOADING BASE RECORDS USING $IAMUT1

After the indexed file has been defined by the $IAMUT! DF command, you

can load base records from a sequential file into the indexed file.
Loading the file can be done directly by responding Y to the prompt "IN-

VOKE LOAD(L), REORGANIZE(R) OR END(CE) AFTER CURRENT FUNCTION?", when
defining the file, or by using the LO command after the file has been

gefined. The data in the sequential file must be in ascendiny order by
ey.

To load base records using $IAMUT1, do the following:
1. Prepare a sequential file for input to the indexed file

2. Load the sequential file into the indexed file.

Preparing Input for the Indaxed File

Select one of the following methods to prepare the input in a sequential
file to be loaded into an indexed file:

. If your data records are 72 bytes or less, use one of the text edi-
tors to enter your data or one of the communications utilities to
get the data into an Event Driven Executive sequential file. In
either case, you must know the record format used by the utility.
The utilities put two 80-byte records in each 256-byte Event Driven
Executive record. The first record begins at location 1, and the
second record begins at location 129. This results in a blocked
sequential file which can be used to load the indexed file when
using the LO command of $IAMUT1l. (A detailed description of the LO
command is under "LO—Load Indexed File" on page 8-22.) Specify 128
for the input record length and 256 for the input block size.

. If your records have more than 72 bytes of data, you must create a
program that accepts the data records and writes them to a disk,
diskette, or magnetic tape file.

The data must be in ascending order, based upon the field you use as the
key.

Chapter 4. Loading The Primary Index File 6-3

Loading an Indexed File from a Sequential File

The procedure for loading an indexed file from a sequential file is:

1. Invoke $IAMUT! using the system command $L.

2. If you want a hard copy of the terminal prompts and responses, enter
an EC command. Respond to the prompt with a Y. This will print all
further prompts and responses of SIAMUT1 on the $SYSPRTR device and
vour terminal. If a hard copy is not required, omit this step.

3. Enter the LO command.

Respond to the following prompts with your data set information.

ENTER COMMAND (7): LO

LOAD ACTIVE

ENTER OUTPUT DATASET (NAME,VOLUME):

SFSEDIT FILE RECSIZE = 128

INPUT RECORD ASSUMED TO BE 80 BYTES. OK?:
ENTER INPUT BLOCKSIZE (NULL = UNBLOCKED):
ENTER INPUT DATASET (NAME,VOLUME):

LOAD IN PROCESS

END OF INPUT DATASET

ANY MORE DATA 70 BE LOADED?: N
6 RECORDS LOADED

LOAD SUCCESSFUL

4., Enter the EN command to end S$IAMUT1. Your program is now loaded and
you can process the data with your applicetion program.

4-6 SC364-0406-1

LOADING

LOADING

BASE RECORDS FROM AN APPLICATION PROGRAM

Base records are records placed into an indexed file in ascending new
high key sequence. That is, if a record added to the file has a key
higher than any other record in the file, it is placed in a base record
slot. Base records are placed in the base record slots reserved for
them by use of the BASEREC parameter. You can use either the $IAMUT1 LO
command or an application program to load the base records.

Base records must be loaded in ascending order by key. If vou are writ-
ing your ouwn program to load the file, use a LOAD request to connect the
file to load base records. Then issue a PUT for each record. When the
desired records have been loaded, issue a DISCONN request to terminate
the load procedure. The only requests that can follow a LOAD request
are: PUT, EXTRACT, and DISCONN.

You can also insert base records in process mode by using a PROCESS
request to connect the file, followed by a PUT request for each record
to be loaded. Loading records in process moda with an application pro-
gram is discouraged because of slower performance.

Unless the base record loading program is written in COBOL, it need not

load all base records at one time. A file that already contains records
can be reconnected to load more records, but the key of each new record

must be higher than any key already in the file.

COBOL programs must either load all the base records in load mode at
once (because only one use of load mode is allowed on a given file) or
insert the records in process mode as needed.

The limit on base records as specified on the SE command of the Indexed
Access Method utility program ($IAMUT1) cannot be exceeded. If you
attempt to load a record after the last allocated record area has been
filled, an end-of-file condition occurs.

BASE RECORDS FROM A SEQUENTIAL FILE IN RANDOM ORDER

In order to load base records from a sequential file where keys are in
random order, code an EDL program to open the indexed file in load mode.
Load the SORT/MERGE program with an output exit routine specified.

Write (PUT) each record to the indexed file as it is received in the
output exit routine from SORT/MERGE. The output exit routine can also
screen out duplicates or other unwanted records. For information on
using the SORT/MERGE Program Product, refer to IBM Series/1 Event Driven
Executive Sort/Merqe Programmer's Guide, S5L23-0016.

Chapter 4. Loading The Primary Index File 4-5

4-6 SC36-0406-1

CHAPTER 5. BUILDING A SECONDARY INDEX

Indexed files, like most data record files, can be a common base for
many applications. You can assign secondary keys in your indexed files
for greater flexibility in accessing records in indexed files.

Secondary keys are accessed through a secondary indeX (a separate file).
Your application program requests records by their secondary key and
secondary index file name. The secondary index is used to retrieve the
record by its saecondary key from the primary index file.

You can have more than one secondary index for a given primary index
file. In order for the Indexed Access Method to know the relationships
between secondary indexes and primary index files, you must create and
maintain a directory with that information.

SECONDARY KEYS

Secondary keys are not required to be unique; different records in an
indexed file can have the same key values in their secondary key Tfield.

The secondary key can be any field within your data record that you
select, however, it must meet the following requirements:

e The selected field must start at the same location in each record.
° All portions of the key field must be contiguous.

° The secondary key length cannot exceed 250 bytes.

In a secondary index, the Indexed Access Method assigns a sequence num-
ber to each secondary key. The sequence number shouws the sequence of

loading or inserting secondary index entries.

A sample lavout of a secondary index record follows:

Relative
Secondary Sequence Primary Block
Key Number Key Number
SMITH 0001 12345AB RBN

Chapter 5. Building a Secondary Index 5-1

TJHE DIRECTORY

In order for the Indexed Access Method to know the relationships between
secondary indexes and primary index files, you must create and maintain
a directory with that information. The directory describes all indexed
files 1in the system which are either secondary indexes, or primaries
which have secondary indexes associated with them. Primary index files
which do not have secondary indexes associated with them are not in the
directory. Use the $IAMUT1 utility to create and maintain the
directory. :

The directory name is SIAMDIR and it resides on the IPL volume.

The directory contains one or more groups of entries. Each group begins
with an entry for the primary file and is followed by an entry for each
secondary index which references that primary file.

You have the responsibility of maintaining the directory using the
SIAMUTY utility.

Each entry in the directory contains the following information:
e File name

. Volume name

° Primary file or secondary index indicator

L Independent indicator

° Invalid index indicator (secondary entry only)

° Automatic update indicator (secondary entry only).

FILE NAME: The file name is the data set name supplied when the primary
index file or secondary index entry is inserted in the directory.

VOLUME NAME: The file location is the volume label name where the index
resides that this entry is for.

INDEPENDENT PRCCESSING INDICATOR: Each entry in the directory contains
an independent indicator. Independent means that the file is to be
treated as an independent file without regard to associated primary or
secondary files. If the independent indicator is set on for a file that
is explicitly opened, the automatic update indicator is ignored.

In the case of a secondary index, this means that records retrieved are
internal secondary index records, not data records from the primary
file. 1In addition, independent means that any modification to the file
(either primary or secondary) will not be reflected in its associated
files. Also any changes made in a secondary index will not be reflected
in the associated primary or other secondary index files.

In the case of a primary entry, any modification to the primary file
Wwill not be reflected in the associated secondary index files.

5-2 SC36-0406-1

INVALID INDICATOR: The invalid indicator is initially turned on in the
directory, by the directory function of S$IAMUT1, when the secondary
entry is inserted in the directory.

A secondary index entry is marked invalid until the secondary index has
been loaded.

The load function of the utility turns off the invalid indicator.

If vou build the secondary index with an application program, you must
also turn off the indicator. The UE subcommand of the DR function in
SIAMUTL is used to turn off the invalid indicator, after you have suc-
cessfully loaded your secondary index.

AUTOMATIC UPDATE INDICATOR: Each secondary index entry in the directory
contains an automatic update indicator. Any modification to the primary
file (either directly or through any secondary index activity) results
in an automatic update to all secondary indexes whose automatic update
indicator in the directory was specified with Y. Thus, a secondary
index flagged as auto-update can be thought of as "dynamic." Each sec-
ondary index remains open until all users of it have closed. However,
if the independent indicator is set on for a file that is explicitly
opened, the automatic update indicator is ignored.

If the automatic update indicator was specified as N, changes are not
reflected in that secondary index. This would be a "static"™ index. The
assumption is that a static index would be rebuilt periodically to bring
it up to date.

ALLOCATING AND INSERTING ENTRIES IN A DIRECTORY

Although the Indexed Access Method references the directory, it never
modifies the directory. The one function that is performed on the
directory automatically is that the secondary load option sets the
invalid indicator off following successful completion.

To define the existence of a secondary index, use $IAMUT1 to perform the
following two steps:

1. Allocate a directory using the DR (directory function) of $IAMUTL
2. Establish the fact that a secondary index will exist by making an
entry in the directory using the IE (insert entry) command of

S$IAMUTL.
Remember that primary index file entries precede their associated sec-

ondary index entries. The $IAMUT1 Indexed Access Method utility can be
loaded with the Event Driven Executive operator command $L $IAMUTI.

Chapter 5. Building a Secondary Index 5-3

When $IAMUT]1 is loaded, the first prompt displaved is as follows:

[1J]ENTER COMMAND (?): DR

[1] Entering DR causes the following prompt sequence.

[2]J|ENTER DIRECTORY COMMAND (?): AL

[31[MAX # OF DIRECTORY ENTRIES: 10

[4]|THE DIRECTORY DS REQUIRES 1 EDX RECORDS, CONTINUE (Y|N|JEN)? Y
[51|DIRECTORY DATA SET ALLOCATED: $IAMDIR,EDX002

[2] Responding to this prompt with AL (allocate) causes a directory
allocation sequence to begin.

Note: The allocation sequence is only required the first time vou set
up secondary indexes. Future entries can be added using (IE) insert
directory function.

[3] Reply with maximum number of directory entries you want allocated
for the directory. You will need one entry for each secondary index and
one entry for each primary that has a secondary index associated with
it. A null response will allocate the maximum (default) of 47 entries.

[4] Based on vour previous response, the size of the required directory
is calculated and you are informed of the number of EDX records required
to allocate your requested directory. You are also given three options
as follouws:

1. Y - the opportunity to continue the directory allocation

2. N - do not allocate the directory; allow me to change the size of
the directory

3. EN - end the allocate function; return to [1] of the DR function of
S$IAMUTL to enter another command.

[5] Because [Y] was replied, the directory is allocated. If the direc-
tory is allocated successfully, you are informed that it has been allo-
cated, the name of the directory of course is $IAMDIR, and the IPL
volume where it is always allocated is displayed.

Note: The allocation sequence is only required the first time yvou set
up secondary indexes.

5-4 SC364-0406-1

The prompt sequence continues.

[6] ENTER DIRECTORY COMMAND (?): IE

[71 (DSNAME, VOLUME) : EMPH,EDX002
[81 IS THIS A SECONDARY ENTRY (Y/N) N

[91 DIRECTORY INSERT SUCCESSFUL
[101 |ENTER DIRECTORY COMMAND (?): IE

[6] Replying IE (insert entry) allows vou to insert entries into the
directory. A primary entry must be inserted before its associated sec-
ondary index entries.

Note: Primary files may exist at this time, however, secondary indexes
cannot be created until an entry for it has been inserted in the direc-
tory.

[7] Your data set name and volume name where your primary index file or
sacondary index resides. The volume name is not required if the data
set is on system volume such as EDX002.

[8]1 This prompt lets $IAMUT1 know whether to set the primary or second-
ary entry indicator. Reply Y for a secondary index entry, or N for a
primary index entry.

[9] This message informs you that the entry has been successfully
inserted into the directory.

[10] At this point yvou can end the directory function by responding to
the prompt with EN, or reply any other directory function.

Because this was a primary entry we can now respond with IE and insert
secondary directory entries. In this case, secondary entries are being
made and that is why we responded with IE and caused the prompts to con-
tinue as follows:

[111](DSNAME,VOLUME): NAME,EDX002

[121]1IS THIS A SECONDARY ENTRY (Y/N)? Y

[131{ASSOCIATED PRIMARY ENTRY (DSNAME,VOLUME): EMP#,EDX002
[141|AUTO-UPDATE (Y/N)? Y

[151|DIRECTORY INSERT SUCCESSFUL
[161|ENTER DIRECTORY COMMAND (?): IE

[11l] The secondary index data set name is NAME on volume EDX002 and
therefore, the volume name could have been omitted.

[12] Because this is an entry for a secondary index, the correct reply
is Y. At this point in the prompt sequence the prompts change from the
previous sequence because of the positive reply, Y.

[13] The associated primary entry data set name, which the previous
entry sequence (5 - 9) was for, is EMPH#,EDX002. This is the point where
the secondary indexes establish their association to the primary index
files for which the secondary index is built.

[14] The response to this prompt establishes whether automatic update
option is to be effective for this secondary index. For a description
of automatic update, see "Automatic Update Indicator”™ on page 5-3. The
recommend?d response is Y, also if a null entry is supplied, the default
is Y (yes).

Chapter 5. Building a Secondary Index 5-5

[15] You are informed when the insert is successfully completed.

[16]1 As seen previously, you again have the option of selecting another
directory function. 1In this description, IE was again selected to
insert the following two secondary index entries.

A second secondary index entry named CITY,EDX002, is inserted for the
associated primary index file named EMP#.

(DSNAME,VOLUME): CITY,EDX002
IS THIS A SECONDARY ENTRY (Y/N) Y

ASSOCIATED PRIMARY ENTRY (DSNAME,VOLUME): EMP#,EDX002
AUTO-UPDATE (Y/N)? Y

DIRECTORY INSERT SUCCESSFUL
ENTER DIRECTORY COMMAND (?): IE

A third secondary index entry named LEVEL,EDX002, is inserted for the
associated primary index file named EMP#.

(DSNAME,VOLUME): LEVEL,EDX002
IS THIS A SECONDARY ENTRY (Y/N) Y

ASSOCIATED PRIMARY ENTRY (DSNAME,VOLUME): EMP#,EDX002
AUTO-UPDATE (Y/N)? N

DIRECTORY INSERT SUCCESSFUL

The following example uses a different directory function: LE (list
directory entries). This example shows the directory which was just
allocated and four entries inserted; one primary and three secondaries.

[1J}ENTER DIRECTORY COMMAND (?): LE
[21[ENTRY (DSNAME,VOLUME) BLANK=ALL:

[3] PRIMARY INDE- AUTO

DSNAME VOLUME DATA SET PENDENT INVALID UPDATE
[6] EMP# EDX002 YES NO 3 3 % % 33 %%
[5] NAME EDX002 NO NO YES YES
[6] CITY EDX002 NO NO YES YES
[71 LEVEL EDX002 NO NO YES NO
[81|NUMBER OF DIRECTORY ENTRIES USED = %
[91|NUMBER OF AVAILABLE ENTRY SLOTS = 6

DIRECTORY LIST COMPLETED

5-6 SC34-0406-1

[1] The DR (directory) subcommand LE prints specified directory statis-
tics.

[2] Respond to this prompt with the specific data set name and volume
vou wish the statistics listed for, or press the Enter key with no
DSNAME or VOLUME name specified to list the entire directory. This
request is for all entries in the directory which was just allocated and
inserts made in the previous examples.

[3]1 Column headings for the listed information from the directory show-
ing the following information:

U Data set name that the statistics are for
U Volume name where the data set resides

° Whether this is a primary or secondary index

. Is the independent indicator on for the named data set (yes or no)
° Is the invalid index indicator on for the named data set (yes or no)
e Is the auto-update indicator on for the named data set (yes or no).

[4] For the primary index file (data set) named EMP#, on volume EDX002,
the independent indicator is off, there is no invalid indicator for a
primary fTile, there is no auto-update indicator for a primary file.
Modifications are always made to the primary index file if the independ-
ent indicator is not on.

[51 For the secondary index named NAME, on volume EDX002, the independ-
ent indicator is off, the invalid index indicator is on because the
index has not been loaded, the auto-update indicator is on as requested
when the entry for this secondary index was inserted.

[6] Same statistics as previous data set.

[7]1 For the secondary index named LEVEL, on volume EDX002, the inde-
pendent indicator is off, the invalid indicator is on (index is not
loaded), and the auto-update indicator is off.

[8] There were 10 entries allocated and 4 inserts (one primary and
three secondaries).

[9] The resulting empty directory slots for additional inserts is six.

SECONDARY IHNDEX

Depending upon your need, you may have one or several secondary indexes
for a given primary index file. A secondary index is built for a spe-

cific primary index file and cannot be used with any other file. Each

secondary index is a separate Indexed Access Method file.

Application programs accessing indexed records by their secondary key
are required to open the secondary index and access the records using
the secondary key. When primary index records are updated, inserted or
deleted, some or all secondary indexes associated with that primary
index file can be updated automatically by the Indexed Access Method,
according to the options selected when the secondary index directory is
set up.

Chapter 5. Building a Secondary Index 5-7

setting up a Secondary Index

To provide access by a secondary key, you must build a secondary index.
The secondary index must have a unique file name.

TJo set up a secondary index, you must do the following using $IAMUTL:
1. Create the secondary index

2. Load the secondary index.

DEFINING AND LOADING A SECONDARY INDEX

Your secondary index should be structured so that the base records
parameter is equal to or greater than the number of records in the pri-
mary index file. This will assure that when you build vour secondary
index, it will be large enough to hold at least as many records as there
are in the primary index file.

Note: If the associated primary index file, for which the secondary is
being defined, is an existing Version 1 created file, you must use $VER-
IFY to update the record counts before defining the secondary file.

The key size and key position specified for the secondary index must be
the key size and starting position of the secondary key within the pri-
mary index record.

You can create a secondary index the same way you create a primary index
file, using the $IAMUT1 utility SE (and DF) commands. The utility
prompts yvou requesting whether the secondary index being defined is also
to be loaded. If YES is specified, the utility does the following:

1. Creates the secondary index but does not format it

2. Opens the primary file, reads the records sequentially, and extracts
the primary and secondary keys from each record, retaining the rela-
tive data block address (RBN) of each record

3. Invokes the Sort/Merge Program Product to sort by secondary key (and
by primary key within secondary)

4. Opens the secondary index, formats the sorted keys, their sequence
numbers which are now assigned, and the relative data block
addresses of the primary file data records into blocks

5. Writes the blocks into the secondary index.
Before a secondary index can be loaded, it must have been defined using
S$IAMUT1. A secondary index can be deleted, then created and loaded

again at any time. If a primary file has more than one secondary index,
each must be created and loaded separately.

5-8 S5C364-0406-1

$IAMUT1 Option Selecticn Guide

Having read the preceding material, you are probably ready to make a
choice as to which option you want to use in defining vour secondary
index. The following table will help you to find the appropriate infor-
mation, based on your secondary index defining objectives.

Your Objzctive option Information location

You want the Indexed Access Option 1 See "0Option 1" on page 5-10
Method to calculate and
structure your index

You want to structure vour Option 2 See "Option 2" on page 5-12
secondary index using specif-
ic parameters

You want to structure your Option 3 See "Option 3" on page 5-1¢
secondary index using the
parameters of an existing
secondary index

Chapter 5. Building a Secondary Index 5-9

EXAMPLE 1: DEFINING A SECONDARY INDEX USING $IAMUTI

OPTION 1

5-10

The Indexed Access Method utility, S$IAMUT1, option 1, provides you with
the opportunity to select only those parameters necessary to set up a
secondary index.

The $IAMUT! Indexed Access Method utility can be loaded with the Event
Driven Executive operator command $L $IAMUTL.

When $IAMUT1 is loaded the first prompt displaved is as follows:

[1J|ENTER COMMAND (?): SE

[1] Entering SE causes the following option list prompt to be displayed.

ET FILE DEFINITION PARAMETERS

EXIT

SIGNIFICANT PARAMETERS

ALL PARAMETERS

PARAMETERS FROM EXISTING INDEXED DATA SET

N;ER GPTION: 1

[21

-

S
0
1
2
3
E

[2] Respond to this prompt by entering the digit '"1'. This response
causes a one line prompt from the next prompt sequence to be displaved.

$C34-0606-1

Note: Although the following prompts are disnlayed one line at a time
when using the utility, all the prompts are listed here in logical
groups for simplicity in describing the paramcters.

[31|SECONDARY INDEX (Y/N)?: Y

[4]|ENTER SECONDARY DATASET (NAME,VOLUME): CITY,EDX002

[5]|SECONDARY KEY SIZE 16

[&1|SECONDARY KEY POSITION :5
DATA SET SIZE IN EDX RECORDS: 10
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

CREATE/DEFINE FILE (Y/N)?: Y

NEW DATA SET IS ALLOCATED

DO YOU WANT IMMEDIATE WRITE-BACK? N

INVOKE LOAD(L), REORGANIZE(R) OR END(CE)> AFTER CURRENT FUNCTION? L
DEFINE IN PROGRESS

DATA SET SIZE IN EDX RECORDS: 10
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

PROCEED WITH LOAD/REORGANIZE (Y/N)? Y
[7)|SECONDARY INDEX LOAD ACTIVE
ANSWER NULL FOR ALLOCATING DEFAULT WORK DATASET $SORTWRK
[81|SORT WORK DATASET (DSNAME,VOLUME):
SORT WORK DATASET REQUIRES 20 EDX RECORDS
5 RECORDS LOADED
SECONDARY LOAD SUCCESSFUL

[3] Reply Y to this prompt because you are defining a secondary index.

[4] Enter the data set name and volume where this index is being
defined.

[5] Specify the length of the secondary key within the primary index
record for which this index is being defined.

[6]1 Specify the starting position of the secondary key within the prima-
ry index file record. The first byte of the record is number 1.

[7]1 The secondary index load function is active.
[8] At this point there are four possible responses:

1. A load error may occur while trying to load $SORT due to a lack of
sufficient main storage in the partition. If this happens, you can
either change to another partition or end one or more programs in
the current partition. However, do not cancel SIAM.

2. A null response;, just pressing the enter key, will cause $SORTWRK to
be allocated on the IPL volume if space is available. The size of
the data set is calculated by the utility. If $SORTWRK already
exists, this indicates that another user is using the default work
data set and you will be prompted again for a work data set name.

3. Entering a comma (,) followed immediately with a volume name, then
pressing the enter key, causes the utility to try to allocate
$SORTWRK on the specified volume.

4. Entering a data set name and optionally a volume name (no volume
name entered causes the IPL volume to be used) causes the utility to
calculate the size of data set required and allocate it according to
your response.

Chapter 5. Building a Secondary Index 5-11

Notes:

1.

OPTION 2

If $SIAMUT1 allocates the data set for you, the data set will be
automatically deleted at the end of the sort operation. However, if
vou provide either the name of an already existing data set (other
than $SO0RTWRK) or a data set name you want SIAMUT1 to allocate, the
data set will not be deleted at the end of the sort.

The sort work data set cannot always be calculated precisely because
the size is dependent on several variables related to the input
file. In most cases the calculated size will be adequate. However,
if the size calculated is tco small, the sort will end prematurely.
If this happens you can preallocate a data set with a larger size
than that calculated by $IAMUT]l and execute the sort again.

The $IAMUT1 Indexed Access Method utility can be loaded with the Event
Driven Executive operator command $L S$IAMUTL.

When $IAMUT1 is loaded the first prompt displaved is as follows:

[11

[11

[23

[21

ENTER COMMAND (?): SE

Entering SE causes the following option list prompt to be displayed.

FILE DEFINITION PARAMETERS
EXIT
SIGNIFICANT PARAMETERS
ALL PARAMETERS
= PARAMETERS FROM EXISTING INDEXED DATA SET
NTER OPTION: 2

e u-—-

muNr~roWw

Respond to this prompt by entering the digit '2'. This response

causes a one line prompt from the next prompt sequence to be displaved.

Note: Although the following prompts are displayed one line at a
time when using the utility, the entire prompt list is shown for
simplicity in presentation.

5-12 SC34-04064-1

[3]] SECONDARY INDEX (Y/N)?: Y
[%]| ENTER SECONDARY DATASET (NAME,VOLUME): MNAME,EDX002
(51| PARAMETER DEFAULT NEW VALUE
BASEREC 20:20
BLKSIZE 256:
KEYSIZE G
KEYPOS 5:
FREEREC 0:
FREEBLK 0:
RSYBLK NULL:
RSVIX 0:
FPOOL NULL:
DELTHR NULL:
DYN NULL:05
TOTAL LOGICAL RECORDS/DATA BLOCK: 15
FULL RECORDS/DATA BLOCK: 15
INITIAL ALLOCATED DATA BLCCKS: 2
INDEX ENTRY SIZE: 12
TOTAL ENTRIES/INDEX BLOCK: 20
FREE ENTRIES/PIXB: 0
RESERVE ENTRIES/PIXB(BLOCKS): 0
FULL ENTRIES/PIXB: 20
RESERVE ENTRIES/SIXB:]
FULL ENTRIES/SIXB: 20
DELETE THRESHOLD ENTRIES 0
FREE POOL SIZE IN BLOCKS 5
OF INDEX BLOCKS AT LEVEL 1: 1
DATA SET SIZE IN EDX RECORDS: 10
INDEXED ACCESS METHGD RETURN CODE: -1
SYSTEM RETURN CODE: -1

CREATE/DEFINE FILE (Y/N)?: Y

DATA SET EXISTS ALREADY AND IS LARGE ENOUGH

DO YOU WISH TO USE IT (Y/N): Y

DO YOU WANT IMMEDIATE WRITE-BACK? N

INVOKE LOAD(L), REORGANIZE(R) OR ENDCE) AFTER CURRENT FUNCTION? L
DEFINE IN PROGRESS

DATA SET SIZE IN EDX RECORDS: 10
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

PROCEED WITH LOAD/REORGANIZE (Y/N)>? Y
[61| SECONDARY INDEX LOAD ACTIVE
ANSWER NULL FOR ALLOCATING DEFAULT WORK DATASET $SORTWRK
[71}] SORT WORK DATASET (DSNAME,VOLUME):
SORT WORK DATASET REQUIRES 20 EDX RECORDS
5 RECORDS LOADED
SECONDARY LOAD SUCCESSFUL

[3] Reply Y to this prompt because vou are defining a secondary index.

[6] Enter the data set name and volume where this index is being
defined.

[5] The following parameter list allows you to precisely define the sec-
ondary index structure.

[6]1 The secondary index load function is active.
[7) If the name of a data set and volume are entered, Sort/Merge will
use it for the work data set. If a null response is made, the utility

will calculate the size data set required and allocate it with the name
$SORTWRK on the IPL volume.

Chapter 5. Building a Secondary Index 5-13

Notes:

1. For a more complete description of the responses available and the
possible conditions that could exist, see step 8 description under
"Option 1.7

2. The following messages are from the IBM Sort/Merge Program Product,
program number 5719-SM2. The following message list is the result
of the secondary load function calling and executing Sort/Merge.
For a description of the Sort/Merge program and its messages refer
to IBM Series/]l Event Driven Executive Sort/Merge Proarammer's
Guide, SL23-0016..

SORTO9GN —-=-t-=-—]=m—otmem—Pmm e e e m e mmmf e mmmp e == f e
SORT000% LOSSYSPRTR

SORTO001P SORT/MERGE SPECIFICATION PHASE STARTED

SCRTO000% HSORTR 12A0DP

SORT000% DW $SORTWRKTVOL

SORTO000% FNCOOO1 12

SOQRT000% FR

SORTO075P SPECIFICATION PHASE ENDED

SORTO076P INPUT PHASE STARTED

SORTO082P INPUT PHASE ENDED 5 1 1
SORT085P FINAL MERGE PHASE STARTED 1 4 5
SORT086P FINAL MERGE PHASE ENDED

SORT088P RECORDS READ FROM INPUT DATA SET(S):

SORTO089N RECORDS INSERTED BY INPUT EXIT ROUTINE:

SORTO090N RECORDS DELETED BY INPUT EXIT ROUTINE:

SORTO091IN RECORDS INSERTED BY OUTPUT EXIT ROUTINE:
SORT092N RECORDS DELETED BY OUTPUT EXIT ROUTINE:

SORTO93N RECORDS WRITTEN TO OUTPUT DATA SET:

SORT094N I/0 ERRORS ACCEPTED:

SORTO95N I-/0 ERRORS SKIPPED:

SORT149N RECORDS SORTED OR MERGED:

SORT097P NORMAL ENDING FOR SORT/MERGE PROCESSING

UVooocooouUio

OPTION 3

The $IAMUT1 Indexed Access Method utility can be loaded with the Event
Driven Executive operator command $L $IAMUTI.

When $IAMUT1 is loaded the first prompt displayved is as follows:

[11|ENTER COMMAND (?): SE

[1] Entering SE causes the following option list prompt to be displayed.

FILE DEFINITION PARAMETERS

EXIT

SIGNIFICANT PARAMETERS

ALL PARAMETERS

= PARAMETERS FROM EXISTING INDEXED DATA SET
NTER OPTION: 3

E

-

S
0
1
2
[21]3
E

5-14 5C34-06406-1

[2] Respond to this prompt by entering the digit "3'. This response
causes a one line prompt from the next prompt sequence to be displaved.

Note: Although the following prompts are displayed one line at a time
when using the utility, the entire prompt list is shown for simplicity
in describing the parameters.

[31|SECONDARY INDEX (Y/N)?: ¥
[411ENTER SECONDARY DATASET (NAME,VOLUME): LEVEL,EDX002
[SI|NAME OF EXISTING INDEXED DATA SET (NAME,VOLUME): CITY,EDX002
[61|NEW PARAMETERS EXACTLY SAME AS ORIGINAL PARAMETERS (Y/N)? Y
DATA SET SIZE IN EDX RECORDS: 10
INDEXED ACCESS METHGD RETURN CODE: -1
SYSTEM RETURN CODE: -1

CREATE/DEFINE FILE (Y/N)?7: Y

NEW DATASET IS ALLOCATED

DO YOU WANT IMMEDIATE WRITE-BACK? Y

INVOKE LOAD(L), REORGANIZE(R) OR ENDCE) AFTER CURRENT FUNCTION? L
DEFINE IN PROGRESS

DATA SET SIZE IN EDX RECORDS: 10
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

PROCEED WITH LOAD/REORGANIZE (Y/N)? Y
SECONDARY INDEX LOAD ACTIVE
ANSWER NULL FOR ALLOCATING DEFAULT WORK DATASET $SORTWRK
[71]S0RT WORK DATASET (DSNAME,VOLUME):
SORT WORK DATASET REQUIRES 20 RECORDS
5 RECORDS LOADED
SECONDARY LOAD SUCCESSFUL

[3] Reply Y to this prompt because you are defining a secondary index.

[4] Enter the data set name and volume where this index is being
defined.

[5] Enter the data set name and volume of the secondary index whose
parameters are to be used for this index.

[6]1 If all parameters are to be the same as those initially set for the
data set name entered in prompt [3], reply Y. However, if yvou want the
parameters adjusted, based on current file status, reply N.

[7] If the name of a data set and volume are entered, Sort/Merge will
use it for the work data set. If a null response is made, the utility
will calculate the size data set required and allocate it with the name
SSORTHWRK on the IPL volume.

Note: For a more complete description of the responses available and

the possible conditions that could exist, see step 8 description under
"Option 1.7

Chapter 5. Building a Secondary Index 5-15

LOADING A SECONDARY FILE WITH AN APPLICATION PROGRAM

5-16

You have the option of allowing $IAMUTLl to load your secondary file at
the time it is created, as was demonstrated in "Option 2" on page 5-12,
or you can load it with an application program. The sequence of opera-
tion for loading your secondary index with an application program is
described here.

A secondary file has the following format:

Relative
Secondary Sequence Primary Block
Key Number Key Number
SMITH 0001 12345AB RBN

L—4 bytes—J L‘é bytes--—l

In preparation for loading your secondary index, allocate the following
sort data sets:

° Sort input data set

. Sort output data set

. Sort work data set.

The size of the records in the input and output data sets is calculated

using the lengths of keys from the primary index file record plus four
bytes for the sequence number and four bytes for the RBN.

Secondary key length + primary key length + 8 bytes

If vou have the Sort/Merge licensed program product, program number
5719-5SM2, refer to the IBM Seriess/l1 Event Driven Executive Sort/Merge
Programmer's Guide, S5L23-0016, for details of the sort work data set and

sort specification data sets. Otherwise, use your own sort program.
Loading vour secondary index requires the following sequence:
1. Open the primary index file in process mode.

2. Retrieve a primary index file record with a GETSEQR request (re-
trieves the primary record plus the RBN).

a. MWhen end-of-data condition is reached, go to step 6.

SC34-0406-1

3. Using values from the retrieved record, build a secondary record
with the following format:
Secondary Double word Primary Primary
Key of X'00° Key RBN
0000
L——4 bytes——-J L——4 by‘ces-—-"-l
4. Move the newly built secondary record into the sort input data set.
5. Return to step 2 and repeat the sequence.
6. Sort the records in the sort input data set using the following sort
specifications.

a. Sort the input records on position 1 through n-4¢ into ascending
sequence (n= the length of the records as calculated previously
for the sort data sets).

7. Open the secondary index, which is to be loaded, in load mode.

If your program is written in Event Driven lLanguage (EDL), specify

the independent option when you open the secondary index. If vou

are using a high level language, use $IAMUT1 to turn on the inde-
pendent indicator.
8. Read a record from the sorted output.

a. When end-of-file is reached, go to step 1l4.

9. Move a sequence number into the retrieved record's sequence nhumber
field (use X'0000" for the first record).

10. Increment the sequence number by a value of 1.

11. Use a PUT request to load the record into the secondary file.

12. Return to step 8 and repeat the sequence.

13. Issue a DISCONNECT to the primary index file and secondary index.

16, Using the $SIAMUT1 utility, turn off the invalid indicator for this

secondary index entry in your directory. Also, turn off the inde-
pendent indicator if you turned it on in step 7.

Chapter 5. Building a Secondary Index 5-17

5-18 S5C34-0404-1

CHAPTER 6. PROCESSING THE INDEXED FILE

This chapter provides information for designing applications that use
the Indexed Access Method. It contains information about:

® Connecting and disconnecting the indexed file
. Accessing the indexed file
. Maintaining the indexed file.

Chapter 7, "Coding the Indexed Access Method Requests" contains a
detailed description of the EDL coding syntax of each Indexed Access
Method request. You may wish to refer to it while reading this chapter.

CONNECTING AND DISCONNECTING THE INDEXED FILE

An indexed file must be defined and formatted by using the $IAMUT1 util-
ity set parms (SE) and define (DF) commands before issuing a LOAD or
PROCESS request to the file.

Prior to using an indexed file, you must issue either a LOAD or PROCESS
request to connect it to your program. The file must be defined in your
PROGRAM statement or by a DSCB statement. A CALL statement specifying
either LOAD or PROCESS automatically opens the Indexed Access Method
file. If you have an already open DSCB for the Indexed Access Method
file you can pass it as a parameter, but that is not required. .

However, if the indexed file has already been connected to any program
by a LOAD or PROCESS request, make sure that the DSCB passed on any sub-
sequent LOAD or PROCESS request for this indexed file contains the data
set name and volume name before vou issue the request.

Chapter 6. Processing The Indexed File 6-1

CONNECTING

A LOAD or PROCESS request builds an indexed access control block (IACB)
that is associated with an indexed file. The IACB connects a request to
the file.

In load mode, data records are placed in the file sequentially (free
records and blocks are skipped). khen in process mode, data records are
placed in the first appropriate slot in the file (free space is used)
unless the record has a new high key. In the case of a new high key,
the record is placed in the next available base record slot.

Only one LOAD request can be active for a given file. However, process-
ing can take place concurrently with loading.

Multiple IACBs can be associated with the same file. Data integrity is
maintained by a locking system that assigns file locks, record locks, or
block locks to the requesting IACB. This prevents concurrent modifica-
tion of index or data records, thereby avoiding the possibility of a
double update situation.

Some applications will need to wait for a lock to be released on a
record, block, or buffer. In these situations you might want to use the
conditional requests available for some Indexed Access Method functions.
The conditional function requests allow control to be returned imme-
diately to the requesting program for other processing, then return lat-
er to attempt to retrieve the record which was locked. The conditional
requests are described in Chapter 7, "Coding the Indexed Access Method
Requests.™

An IACB can hold only one lock at a time; if vour application requires
concurrent execution of functions that obtain locks (direct update or
sequential update - see "Accessing the Indexed File" on page 6-4 for a
daescription of these functions), yvou must issue multiple PROCESS
requests to build multiple IACBs.

DISCONNECTING

A DISCONN request disconnects an IACB from the file, releases the stor-
age for that IACB, releases locked blocks or records being held by that
IACB, and writes out to disk any blocks that are being held in the buff-
er. The DISCONN request can be issued at any time during loading or
processing.

There is no automatic DISCONN on task termination. Failure to discon-
nect your indexed files prior to task termination may prevent resources
that were allocated to your task from being allocated to other tasks and
updated records from being written to your file.

6-2 5C34-0406-1

Using Secondary Keys

To access a file by a secondary key, you issue either a LOAD or PROCESS
request, specifying the file name of the secondary indexX and specifying
secondary keys when referencing data records. The Indexed Access Method
determines the relationships among the files by using the directory and
automatically opens the primary file. All subsequent operations done
undar this LOAD or PROCESS access the file using the secondary index.
You must open a file by the primary name to access it by the primary
keys.

Direct retrievals use the secondary index, and sequential retrievals
return records in order by secondary key. Records within a group which
have the same secondary key are returned in the order which the records
were written into the file. Each application must determine whether the
correct record has been retrieved when duplicate keys are possible; the
Indexed Access Method provides no facility for that determination.

When records are updated, inserted, or deleted, in primary index files,
some or all secondary indexes can be updated automatically according to
the options you selected in the directory entries. These options are:
auto-update and independent processing.

If the auto-update indicator is on in the directory entry for a second-
ary index and you open the associated primary file to insert, delete, or
update records, the associated secondary index will be updated automat-
ically. There is no consideration for whether the independent indicator
is on for the secondary. However, if the invalid indicator for the sec-
ondary entry is on, the secondary index is not updated.

If the auto-update indicator is on in the directory entry for a second-
ary index and you open the associated primary file to insert, delete, or
update records, use only conditional requests. To do this, code those
requests that modify the file as DELETEC, PUTC, PUTDEC, or PUTUPC. Con-
ditional requests are described in Chapter 7, "Coding the Indexed Access
Method Requests"™ on page 7-1.

The independent indicator is used when a secondary index is opened in
load mode to add new entries to the file.

Note: When records are accessed by their secondary key, you must

ascertain through your application program that you have retrieved
the correct record because of the possibility of duplicate keys.

Chapter 6. Processing The Indexed File 6-3

ACCESSING THE INDEXED FILE

Initiate general purpose access to an indexed file with a PROCESS
request. After the PROCESS request has been issued, any of the follow-
ing functions can be requested:

. Direct reading - Retrieving a single record independently of any
previous request.

. Direct updating - Retrieving a single record for update; complete
the update by either replacing, deleting, or releasing the record.

. Sequential reading - Retrieving the next logical record relative to
the previous sequential request.

The first sequential request can access the first record in the file
or any other record in the file by key (except COBOL applications).

® Sequential updating - Retriaving the next logical record for update;
complete the update by either replacing, deleting, or releasing the
record.

° Inserting - Placing a single record, in its logical key sequence,
into the indexed file.

° Deleting - Removing a single record from the indexed file.
. Extracting - Extracting data that describes the file.
Note that the update functions require more than one request.

When a function is complete, another function may be requested, except
that a sequential processing function may be followed only by another
sequential function. You can terminate sequential processing at any
time by issuing a DISCONN or ENDSEQ request. An end-of-data condition
also terminates sequential processing.

.

DIRECT READING

Use the GET request to read a record using direct access. The key
parameter is required and must be the address of a field of full key
length regardless of the key length specification.

The record retrieved is the first record in the file that satisfies the
search argument defined by the key and key relation (krel) parameters.
The key field in your program is updated to reflect the key contained in
the record that satisfied the search.

If the key length is specified as less than the full key length, only
part of the key field is used for comparison when searching the file.
For example, the keys in a file are AAA, AAB, ABA, and ABB, the key
field contains ABO, and key relation is EQ. If key length is zero, the
search argument defaults to the full key ABO0 and a record-not-found code
is returned. If the key length specification is 2 and the search argu-
ment is AB, the third record is returned. If the key length
specification is 1 and the search argument is A, the first record is
returned.

6-4 S5C34-0404-1

DIRECT UPDATING

To update a record using direct access:

1. Retrieve the record with a GET request, specifyihg the key and key
relation (krell) parameters.

2. Complete the update by doing one of the followinét

° If vou want to change the record, modify the record in your
buffer (do not change the key field of the record). Issue a
PUTUP request to return the updated record to the file.

° If vou do not want to change the record, issue a RELEASE
request.

U If vou want to delete the record, issue a PUTDE request.

The key parameter must be specified as the address of a field of full
key length. The primary key cannot be modified during the update; a
secondary key can.

The only valid requests, other than DISCONN and EXTRACT, that can follow
GET for direct update are PUTUP, PUTDE, and RELEASE.

During the update, the subject record is locked (made unavailable) to
any other request until the update is complete. Even if no action is
taken after the GET request is issued, the RELEASE request is required
to release the lock on the record. You may wish to use the conditional
option on your requests to avoid unnecessary wait for locks. For condi-
tional request coding see Chapter 7, "Coding the Indexed Access Method
Requests" on page 7-1. For details on long lock time or dead lock con-
dition, see "Deadlocks and the Long-Lock-Time Condition"™ on page 11-5.

SEQUENTIAL READING

Use the GETSEQ request for sequential access to records. After a
sequential processing request has been initiated, only sequential func-
tions can be requested until an end-of-data condition occurs or an
ENDSEQ request is issued. Processing is terminated when a DISCONN
request is issued or an error or warning is returned.

Figure 6-1 on page 6-7 summarizes the protocol for sequential
processing. :

Note: You can sequentially process a file more than once.

To begin sequential access with the first record in a file, set the key
address to zero. To start with any other record, specify a search argu-
ment by specifying the key and key relation (krel) parameters.

If vou specify a search argument, the key field is modified to reflect
the key of the first record found.

After the first retrieval, a GETSEQ retrieves the next sequential record

regardless of any key or key relation specification. Therefore, you can

use the same GETSEQ statement to retrieve all records. A search argu-

¥9n§ on succeeding retrievals is ignored and the key field is not modi-
jed.

Chapter 6. Processin§ The Indexed File 6-5

khen using secondary keys, you access the duplicate keys with a sequen-
tial get request. For example:

GETSEQ SMITH

Issuing the same request repeatedly will return all of the secondary
keys whose value is SMITH. You must check to determine when the key
changes, or when you have retrieved the particular record you want with-
in that sequence of keys.

Specify ENDSEQ to stop reading before the end of data is reached. Read-
ing ends automatically at the end of data. The end-of-data condition
cccurs when an attempt s made to retrieve a record after the last
record in the file.

If vou specifty the end-of-data exit (EODEXIT) parameter on the PROCESS
request, control is transferred to the address specified by the EODEXIT
parameter when the end-of-data condition occurs.

During sequential reading, the block that contains the record is locked,
making all records in the block unavailable to other requesters until
the last record of the block is processed or sequential processing is
ended. For details on long lock time or dead lock condition, see "Dead-
locks and the Long-Lock-Time Condition™ on page 11-5.

SEQUENTIAL UPDATING

6-6

To update a record using sequential access:

1. Retrieve the record with a GETSEQ request for update, specifying the
key and one of the update key relation (krel) parameters. The key
is used only on the first retrieval. Do not specify a key if proc-
essing is to begin with the first record in the file.

2. Complete the update by doing one of the following:

° If you want to change the record, modify the record in your
buffer (do not attempt to change the primary key field of the
record). Issue a PUTUP request to return the updated record to
the file.

° If you do not want to change the record, issue a RELEASE
request.

° If vou want to delete the record, issue a PUTDE request.

During sequential updating, the block that contains the record is
locked, making all records in the block unavailable to other requesters
until the last record of the block is processed or sequential processing
is ended.

SC34-0406-1

Terminate processing with an ENDSEQ request or a DISCONN request either
before or after completing the update. Prccessing is also terminated on
an end-of-data condition.

RequestsCondition can be Feollouad by:

GETSEQ

DISCONN

END-OF-DATA CONDITION
ENDSERQ

PUTUP

PUTDE

RELEASE

End-of-data condition or
ENDSEQ request DISCONN
GET
PUT
DELETE

PUTUP
DISCONN
ENDSEQ
GETSEQ

PUTDE
DISCONN
ENDSEQ
GETSEQ

RELEASE
DISCONN
ENDSEQ
GETSEQ

Figure 6-1. Protocol for Sequential Updating

INSERTING RECORDS

To insert a new record in a file, issue a PUT request after the file has
been connected with a PROCESS. The Indexed Access Method uses the pri-
mary key of the record to insert the record into the file.

The primary key of the inserted record must be different from any key in
the file; otherwise, a duplicate key error occurs. The key can be high-
er than any key in the file.

If you are not loading base records, and want to insert records into the
file in random order, the following should be satisfied:

° For files defined by option 1, ensure that random (R) was specified

. For files defined by option 2, ensure that sufficient free pool

space was specified.

DELETING RECORDS

Use DELETE to delete a record from the file. Specify the full key of
the record. If no record exists with the specified key, a warning
return code is returned.

Chapter 6. Processing The Indexed File 6-7

EXTRACTING INDEXED FILE INFORMATICN

6-8

The EXTRACT request provides information about a file from the file con-
trol block (FCB) or FCB Extension. It can also return data paging sta-
tistics to the calling program with an option to reset the counters.
Data paging is described under "Data Paging”™ on page 10-3.

The FCB includes information such as key length, key displacement, block
size, record size, and other data regarding the file structure. The FCB
Extension contains the $IAMUTL utility SE command parameters that were
used to define the file.

The EXTRACT request copies the file control block or the FCB Extension
to an area that you provide. The file must have been connected by a
LOAD or PROCESS request.

The contents of the FCB block and the FCB Extension are described by
FCBEQU, a unit of copy code that is supplied with the Indexed Access
Method. Use COPY FCBEQU to include these equates in an EDL program.

An EXTRACT issued for a secondary file returns the primary FCB with the
secondary key size and position of the secondary key. If you want the
actual FCB of the secondary file, you must open the secondary file inde-
pendently and then the secondary index FCB will be returned for the
EXTRACT request. The FCB extension returned is always the secondary FCB
extension.

5C34-0406-1

MAINTAINING THE INDEXED FILE

This section describes how to maintain Indexed Access Method files. The
following topics are discussed:

] File backup and recovery

° File recovery without backup
. Reorganizing the file

d Dumping the file

® Deleting the file

° Verifying an indexed file.

FILE BACKUP AND RECOVERY

To protect against the destruction of data, copy the indexed file (or
the volume in which the file exists) at regular intervals using the
SCOPY utility. See the 0Operator Commands and Utilities Reference for
instructions on using the Event Driven Executive utilities.

To obtain a sequential dump of an indexed file, use the SIAMUT1 utility
UN command. During the interval between making copies, you should keep
a journal file of all transactions made against the indexed file.

The journal file can be a consecutive file containing records that
describe the type of transaction and the pertinent data. A damaged
indexed file can be recovered by updating the backup copy from the jour-
nal file.

For example, suppose an indexed file named REPORT is lost because of
physical damage to the disk. The condition that caused the error has
been repaired and the file must be recovered. Delete REPORT, copy the
backup version of REPORT to the desired volume, and process the journal
file to recreate the file.

If a data-set-shut-down condition exists, cancel $IAM and reload it.
Then issue a PROCESS to the REPORT file and, using the journal file,
reprocess the transactions that occurred after the backup copy was made.
Egrsmore information, see "The Data-Set-Shut-Down Condition"™ on page

Backing Up A Secondary Index

A secondary index can be backed up the same as primary index files.
However, if your primary file is backed up you can rebuild your second-
ary from the backup copy of the primary indexed file.

Duplicate secondary keys are maintained in the order they are inserted
by a secondary key sequence number. This sequence number is incremented
with each new insert. When a secondary index is reloaded the secondary
key sequence numbers are reassigned. Therefore, the history of which
records were written to the file file first is lost.

Note: 1If your application is dependent on the secondary key sequence

number history, you would not want to rebuild your secondary index
because the sequence numbers are reset.

Chapter 6. Processing The Indexed File 6-9

RECOVERY HITHOUT BACKUP

If you do not use the backup procedures as described previously under
"File Backup and Recovery" on page 6-9, and you encounter a problem with
vour file, you still may be able to recreate your file. However, the
status of requests that were in process at the time of the problem is
uncertain.

To recreate your file, follow the steps in "Reorganizing an Indexed
File" to reorganize your Tile. After recreating the file, verify the
status of the requests that were in process when the problem occurred.

REDRGANIZING AN INDEXED FILE

DUMPING

An indexed file must be reorganized when a record cannot be inserted
because of lack of space. This condition does not necessarily mean that
there is no more space in the file; it means that there is no space in
the area where the record would have been placed. Therefore, you may be
able to reorganize without increasing the size of the file. Perform the
following steps to recrganize a file:

1. Ensure that all outstanding requests against the file have been com-
pleted; issue a DISCONN for every current IACB.

2. Use the set parms (SE) or define (DF) commands of the $IAMUT1 utili-
ty to define a new indexed file. Estimate the number of base
records and the amount and mix of free space in order to minimize
the need for future reorganizations. See Chapter 3, "Defining Pri-
mary Index Files™ for guidelines for making these estimates.

You can use Option 3 of the SE command to define the new file like
the original indexed file.

3. Use the reorganize command (RO) of the $IAMUT1 utility to load the
new indexed file from the indexed file to be reorganized.

Alternatively, vou can use the unload command (UN) of the SIAMUT1
utility to transfer the data from an indexed file to a sequential
file, then use the load command (LO) to load it back into the
indexed file.

4., Use the $DISKUT1 utility to delete the old file and rename the new
file.

RECQRGANIZING A SECONDARY INDEX: Reorganizing a secondary index does not
reset the secondary key sequence numbers during the reorganization. The
records are placed in another Indexed Access Method file without any
modification within the individual records. The secondary key sequence
numbers will be reset however, when the index is loaded.

AN INDEXED FILE

To produce a hexadecimal dump of an indexed file, use the DP command of
the $DISKUT2 utility. The dump includes control information, index
blocks, and data blocks. For information on the $DISKUT2 utility, refer
to the Operator Commands and Utilities Reference.

6-10 SC34-0404-1

DELETING AN INDEXED FILE

Delete an indexed file the same way you delete any other file. From a
terminal, use the DE command of the $DISKUT1 utility; from a program,
use the $DISKUT3 data management utility. (Refer to the Utilities Ref-
erence for a description of $DISKUT1l, and to the Installation and Svstem
Generation Guide for a description of $DISKUT3I).

VERIFYING AN INDEXED FILE
SVERIFY helps you check the validity of an indexed file and prints con-
trol block and free space information about the file on $SYSPRTR.
With SVERIFY you can:

. Verify that all pointers in an indexed file are valid and that the
records are in ascending sequence by key.

U Print a formatted File Control Block (FCB) listing, including the
FCB Extension block. The FCB Extension block contains the original
file definition parameters.

. Print a report showing the distribution of free space in your file.

. Verify secondary files against primary files.

For details on using $SVERIFY, see Chapter 9, "The $VERIFY Utility" on
page 9-1.

Chapter 6. Processing The Indexed File 6-11

6-12 SC34-0406-1

CHAPTER 7. CODING THE INDEXED ACCESS METHOD REQUESTS

This chapter describes the syntax used to code Event Driven Language
requests for the Indexed Access Method.

The information in this chapter is intended for use as a reference when
coding EDL application programs that use the Indexed Access Method. For
information on coding Indexed Access Method applications in other lan-
guages, refer to the appropriate language manual.

Included for each request is a description of the purpose of the
request, the detailed coding syntax, a description of each parameter,
and all of the return codes associated with using these requests.

At the end of this chapter is a summary of the syntax of the EDL CALL
instructions used to invoke the functions provided by the Indexed Access
Method.

For a complete example of using the Indexed Access Method requests,
refer to Appendix C, "Coding Examples"™ on page C-1.

Chapter 7. Coding the Indexed Access Method Requests 7-1

REQUEST FUNCTIOMS OVERVIEW

This section provides an overview of the Indexed Access Method requests
and how to code them. The Indexed Access Method callable requests are:

Requast

DELETE

DISCONN

ENDSEQ
EXTRACT

GET

GETSEQ

LOAD

PROCESS

PUT

PUTDE

PUTUP

RELEASE

7-2 5C36-06406-1

Description

Deletes a single record, identified by its key, from the file.
Use DELETE to delete a record; the record cannot have been
retrieved for update.

Disconnects an IACB from an indexed file, thereby releasing
any locks held by that IACB; writes out all buffers associated
with the file; and releases the storage used by the IACB.

Terminates sequential processing.

Provides information about the file from the File Control
Block, File Control Block Extension, and data paging statis-
tics.

Directly retrieves a single record from the file. If you
speciTy the update mode, the record is locked (made unavail-
able to other requests) and held for possible modification or
deletion. Use GET to retrieve a single record from the file.

Sequentially retrieves a single record from the file. If you
specify update mode, the block containing the record is locked
(made unavailable to other requests) and held for possible
modification or deletion. Use GETSEQ when you are performing
sequential operations.

Builds an Indexed Access Control Block (IACB) and connects it
to an indexed file. You can then use the IACB to issue LOAD
requests to that file to load records.

Builds an Indexed Access Control Block (IACB) and connects it
to an indexed file. You can then use the IACB to issue
requests to that file to read, update, insert, and delete
records. A program can issue multiple PROCESS functions to
obtain more than one IACB for the same file, enabling the file
to be accessed by several requests concurrently within the
same program.

Loads or inserts a new record depending on whether the file
was opened with the LOAD or PROCESS request. Use PUT when you
are adding records to a file.

Deletes a record that is being held for update. Use PUTDE to
delete a record that has been retrieved in update mode.

Replaces a record that is being held for update. Use PUTUP to
modify a record.

Releases a record that is being held for update. Use RELEASE
when a record that was retrieved for update is not changed.

CODING INDEXED ACCESS METHOD REQUESTS

All Indexed Access Method services are requested by using the CALL
instruction. Parameters on the CALL instructions can have the following
forms:

NAME: passes the value of the variable with the label 'NAME!'

{NAME): passes the address of the variable 'NAME' or the value of a sym-
bol defined using an EQU statement

For additional information, refer to the description of the CALL
instruction in the Language Reference.

Ganeral Statemant Format

The general form of all Indexed Access Method calls is as follows:

CALL IAM,(func),iacb,(parm3),(parmé), (parmb5)

The request type is determined by the operand "func'. In addition to
the function request, you will notice that some functions allow a suffix
of C, R, or CR. The C means perform the function requested condi-
tionally. The condition is that the function is to be executed only if
the record, the block containing the record, or the buffer containing
the record is not locked. If any of those three items are locked for
the record being requested, control is to be returned to the requesting
program imnediately. A return code is set to indicate that a lock was
encountered. A conditional request can still wait on a resource i1f it
is during the process of updating an index for a delete or insert.

The appended character, R, means return the record and the relative
block number (RBN) of the record being requested. Again this can be a
conditional request by preceding the letter R with the letter C. The
combination CR, indicates that the record and RBN is to be returned con-
ditionally; return the record and RBN only if the record, block, or
buffer is not locked by another request.

If the RBN is requested and the record, block, and buffer are free, the
RBN is returned as a 4-byte value. The 4-byte RBN value is returned at
the end of the retrieved record. Therefore, when using the suiffix R,
ensure that your buffer is large enough to accommodate the record
length, plus the 4-byte RBN value.

The RBN can be used if you are building or maintaining yvour own second-
ary index. However, because records in an indexed file are subject to
being moved to different locations (RBNs) due to insert and delete
activity, the RBN is not guaranteed to remain accurate if insert and
delete activity to the primary index file occur.

The option of C, R, or CR is indicated in the boxed instructions with a
vertical bar (]). The presence of this bar indicates that a choice must
be made. Only one of the requests can be used in any one statement.

For example, PUT]|PUTC. vou must choose one or the other when coding the
request.

Depending on the type of function the remaining parameters may or may
not be required. The symbols used for func and parm5 are provided by
EQU statements in the IAMEQU copy code module and are coded as shown in
the syntax descriptions. These symbols are treated as addresses; there-
fore the MOVEA instruction should be used if it is necessary to move
them into a parameter list.

Chapter 7. Coding the Indexed Access Method Requests 7-3

7-4

Since these symbols are equated to constants, they may also be manipu-
lated using other instructions by prefixing them with a plus (+) sign.
Use the COPY statement to include IAMEQU in your program.

Note: You can not use the software registers (#1 and #2) on Indexed
Access Method calls.

Using Program Variables

If you use variables for parameters parm3, parm%, and parm5 (that is,
you code them without parentheses or a plus sign), they are set to zero
by the Indexed Access Method before returning. Those parameters must be
reinitialized before executing the CALL instruction again.

Link~-edit Considerations

Programs which call the Indexed Access Method must be processed by
$EDXLINK to include the subroutine module IAM. IAMEQU has an EXTRN
statement for IAM. Refer to the Installation and System Generation
Guide for information on $EDXLINK and how to perform the link-edit proc-
ess.

Return Codes

All Indexed Access Method requests pass a return code reflecting a con-
dition that prevailed when the request completed. This code is passed
in the task code word (referred to by task name) of the TCB associated
with the requesting task. These return codes fall into three
categories:

-1 = Successful completion
Positive = Error
Negative = Warning (other than -1)

Note: Return codes 1, 7, 8, and 22 are positive value return codes but
they do not cause the error exit routine to be entered, even when
ERREXIT is coded. Also the negative (warning) return codes do not cause
error exits. For details on coding ERREXIT, see "LOAD - Open File for
Record Loading™ on page 7-21, or "PROCESS - Open File" on page 7-25.

The return codes associated with each request are included with the
description of the request.

The Indexed Access Method also has the capability of logging errors in
the system error log. Automatic updates for secondary indexes could
encounter several errors within one request. These errors will be
logged in the system error log if $LOG is active. This may provide
additional information when analyzing errors.

5C36-06406-1

CALL FUNCTION DESCRIPTIONS

The Indexed Access Method CALL functions are described on the following
pages and are arranged in alphabetic order.

DELETE - DELETE RECORD

The DELETE request deletes a specific record from the file. The record
to be deleted is identified by its key. The deletion makes space avail-
able for a future insert. The file must be opened in the PROCESS mode.

The DELETE/DELETEC request obtains a block lock to delete a record from
a block.
no other block lock or record locks in effect for the block.

In order to obtain a block lock without waiting, there can be

The DELETEC request deletes a specific record from the file only if the

record, block, or buffer is not locked.
Syntax:
label CALL IAM, (DELETE|DELETEC), iacb, (keay)
Required: all
Defaults: none

Operands Description

iach

(key)

The label of a word containing the IACB address returned by
PROCESS.

The label of vour key area containing the full key identifying
the record to be deleted.

Chapter 7. Coding the Indexed Access Method Requests 7-5

DELETE Return Codes

Code Condition
-1 Successful
-58 Record not found
-85 Record not found
-90 Request cancelled because the request was conditional
and a wait on a lock or buffer would be required
7 Link module in use, syncronize use of link
module with the program
8 Load error for $IAM, verify $IAM exists and enough
storage is available to load it
10 Invalid request
12 Data set shut down due to error; see Chapter 11,
'Error Recovery !
13 A required module is not included in $IAM
14 Invalid index block found - during processing an
incorrect index block type was found, recreate the file
22 Address supplied by your program is not a valid IACB
76 DSOPEN error occurred - The system error field in the
OPEN table contains the DSOPEN error:
21 - DSNAME,VOLUME not found
22 - VOLSER error
23 - 170 error
80 Write error - FCB. See system return code
100 Read error - check system return code
101 Write error - check system return code
230 Directory read error for $IAMDIR - check system return code
242 Secondary index is out of sync with primary file.
Must rebuild file to get back in sync
244 Error in opening auto-update file on secondary modification
request
245 Auto update PUTDE to a secondary failed,
Auto-update processing continues
267 During auto-update processing a GETSEQ to a secondary
failed, auto-update processing continues
7-6 SC34-0604-1

DELETE EXample

The following example deletes the record whose key is 'KEY0001' from the
file. The file is identified by the field named 'FILELl'.

CALL IAM, (DELETE),FILEL, (KEY)

FILEL DATA F'Q' IACB ADDRESS FROM PROCESS
KEY TEXT 'KEYO0001',LENGTH=7

Chapter 7. Coding the Indexed Access Method Requests 7-7

DISCOKRN

- CLOSE FILE

The DISCONN request disconnects an IACB from an indexed file and
releases the storage used for the IACB. It releases any locks held by
that IACB and writes out any modified blocks from the file that are

being held in the system buffer. Other users connected to this file are

not affected.
Syntax:

label CALL IAM, (DISCONN),iach

Required: all
Defaults: none

Operands Description

iach The label of a word containing the IACB address returned by
PROCESS or LOAD.

DISCONN Return Codes

Code Condition
-1 Successful
7 Link module in use, syncronize use of link
module with the program
8 Load error for $IAM, verify $IAM exists and enough
storage is available to load it
12 Data set shut down due to error; see Chapter 11,
'"Error Recovery '
13 Module not included in load module $IAM
22 Address supplied by your program is not a valid IACB
100 Read error - check system return code
101 Write error - check system return code
110 Write error, file .closed

7-8 5C34-0404-1

DISCONN Example

TheLEollowing example closes the file identified by the field named
YFILEl".

CALL IAM, (DISCONN),FILEL

FILEL DATA F'0’ IACB ADDRESS FROM PROCESS

Chapter 7. Coding the Indexed Access Method Requests 7-9

ENDSEQ - END SEQUENTIAL PROCESSING

7-10

The ENDSEQ request ends sequential processing, during which a block is
locked and fixed in the system buffer. Sequential processing is
normally terminated by an end-of-data condition. The ENDSEQ request is
useful for freeing the locked block when the sequence need not be com-
pleted. ENDSEQ is valid only during sequential processing.

Note: After sequential processing has been terminated, it can be
restarted again anywhere in the file.

Syntax:

label CALL IAM, (ENDSEQ),iach

Required: all
Defaults: none

Operands Description

iach The label of a word containing the IACB address returned by
PROCESS.

ENDSEQ Return Codes

Code Condition
-1 Successful
7 Link module in use, syncronize use of link
module with the program
8 Load error for $IAM, verify $IAM exists and enough
storage is available to load it
10 Invalid request
12 Data set shut down due to error; see Chapter 11,
"Error Recovery '
13 A required module is not included in $IAM
22 Address supplied by your program is not a valid IACB
5C34-0406-1

ENDSEQ Example

The following example ends sequential processing for the file identified
by the field named 'FILELl"'.

CALL IAM, (ENDSEQ),FILE1L

FILEL DATA F'0' IACB ADDRESS FROM PROCESS

Chapter 7. Coding the Indexed Access Method Requests 7-11

EXTRACT - GET FILE INFORMATION

7-12

The

EXTRACT function returns information to the calling program. 0On a

specific call, it performs one of the following:

Returns information from a File Control Block (FCB). The FCB con-
tains such things as the block size, key length, and data set and
volume names of the indexed file. The FCBEQU copy code module con-
tains a set of equates to map the File Control Block.

An EXTRACT request issued for a secondary file returns the primary
FCB with the secondary key size and key position for the secondary
index. If you want the FCB of the secondary file, you must open the
secondary index with the independent option then the secondary index
FCB will be returned. The FCB extension returned is always the FCB
extension for the secondary index.

Returns information from a File Control Block Extension. The FCB
Extension contains the parameters used to define the file. The
FCBEQU copy code module contains a set of equates to map the FCB
Extension.

Returns data paging statistics. These can be used to calculate page
"hit" ratios.

Returns data paging statistics, then resets them to begin accumulat-
ing new statistics.

Svyntax

label CALL IAM, (EXTRACT),iacbh, (buff);(size), (type)
Required: jacb (only if type is FCBNRM or FCBEXT)
Defaults: size = Full FCB

buff

type FCBNRM

Operands Description

iach The label of a word containing the IACB address returned by
PROCESS or LOAD. Required only if type=FCBNRM or FCBEXT; oth-
erwise ignored.

(buff) The label of the user area into which the data is returned.
If type=FCBNRM or FCBEXT, the File Control Block is returned
in this area. The area must be large enough to contain the
requested portion of the FCB. Use the COPY statement to
include FCBEQU in your program so that the FCB and FCB Exten-
sion fields can be referenced by symbolic names.

If type=PAGST or PAGSTR, the paging statistics are returned in
this area. In this case, the size parameter is ignored, and
this area must be 16 bytes in length to accommodate the sta-
tistics. The paging statistics are returned in four
double-word fields:

1. Write Miss Count

2. Write Hit Count

3. Read Miss Count

4. Read Hit Count

SC34-04046-1

(size) Used only if type=FCBNRM or FCBEXT; otherwise ignored. The
number of bytes of the FCB or FCB Extension to be copied. The
size of the FCB is the value of the symbol FCBSIZE in the
FCBEQU equate table. The size of the FCB Extension is the
value of the symbol FCBXSIZ in the FCBEQU equate table.

Either of these symbols can be coded as the size parameter.

(type) Type of data to be returned. The following are defined:
FCBNRM Extract the FCB.
FCBEXT Extract the FCB Extension.

PAGST Returns data paging statistics to the buffer. It
always returns 16 bytes.

PAGSTR Same as PAGST, except the data paging statistics are

reset to zero after being copied to the buffer. This
allows a new set of statistics to be accumulated.

EXTRACT Return Codes

Code Condition
-1 Successtul
7 Link module in use, syncronize use of link module with the
program
8 Load error for $IAM, verify $IAM exists and enough storage
is available to load it
12 Data set shut down due to error; see Chapter 11,
'"Error Recovery !
13 A required module is not included in $IAM
22 Address supplied by your program is not a valid IACB
100 Read error - check system return code
120 Invalid extract type
122 File does not contain FCB extension
123 Cannot extract paging statistics. Data paging not active

Chapter 7. Coding the Indexed Access Method Requests 7-13

EXTRACT Examples

The following example retrieves the current paging statistics and places
then into the four double words provided.

CALL IAM, (EXTRACT), 0, (WRMIS), 0, (PAGST)

WRMIS DATA D'0" WRITE MISS COUNT
WRHIT DATA D'0" WRITE HIT COUNT
RDMIS DATA D'0" READ MISS COUNT
RDHIT DATA D'0' READ HIT COUNT

The following example gets the attributes of the file identified by the
field named FILEl from the FCB and places them into an area called WORK.

CALL IAM, (EXTRACT),FILEL1, (WORK), (FCBSIZE)

FILE DATA D'0' IACB ADDRESS FROM PROCESS
WORK DATA 256F'0" FCB COPY AREA
COPY FCBEQU FCB EQUATES

7-16 S5C34-0406-1

GET - GET RECORD

The GET request retrieves a single record from the indexed file and
places the record in a user area. The file must have been opened using
the PROCESS request before the GET request is issued.

The requested record is located by key. The search may be modified by a
key relation (krel? or a key length (klen). The first record in the
file that satisfies the key condition is the one that is retrieved.

Retrieve for update can be specified if the requested record is intended
for possible modification or deletion. The record is locked and remains
unavailable to any other requests until the update is completed by a
PUTUP, PUTDE or by a RELEASE. The record is also released if an error
occurs or processing is ended with a DISCONN.

During an update, you must not change the primary key field in the
record or the field addressed by the key parameter. The Indexed Access
Method checks for and prohibits primary key modification.

The GETC request retrieves a single record from the indexed file and
places the record in a user area only if the record, block, or buffer is
not locked.

The GETR request retrieves the RBN of a specified record from the
indexed file and places the record and RBN in a user area.

The GETCR request retrieves the RBN of a specified record from the
indexed file and places the record and RBN in a user area only if the
record, block, or buffer is not locked.

Syntax:

label CALL IAM, (GET|GETC|GETR|GETCR), iach, (buff), (key),
{modes/krel)

Required: iacb,buff,key
Defaults: mode/krel=EQ

Operands Description

iach The label of a word containing the IACB address returned by
PROCESS.

(buff) The label of the user area into which the requested record

is placed. When the RBN is requested, the RBN is returned
at the end of the record. The user buffer must be four
bytes longer than the record length to accommodate the RBN.

(key) The label of your key area containing the key identifying
the record to be retrieved and preceded by the lengths of
the key and area. This area has the standard TEXT format
and may be declared using the TEXT statement. If you do not
use the TEXT statement for this field, you must code it in
the same format as the TEXT statement generates.

Chapter 7. Coding the Indexed Access Method Requests 7-15

7-16

(modeskrel)

5C34-0404-1

The TE

XT statement format is as follows:

Offset Field

key - 2 LENGTH (1 byte)
key - 1 KLEN (1 byte)

length

klen

key ar

key Key area ("LENGTH" bytes)

The length of the key area. It must be equal to
or greater than the full key length for the file
in use.
The actual length of the key in the key area to
be used as the search argument for the
operation. It must be less than or equal to the
full length of the keys in the file in use. If
klen is 0, the full key length is assumed.
A generic key search is performed when klen is
less than the full key size. The first n bytes
(as specified by klen) of the key area are
matched against the first n bytes of the keys in
the file. The first matching key determines the
record to be accessed. The full key of the
record is returned in the key area.

ea The area containing the key to be used as a

search argument. If you are using a generic
key, after a successful GET request this area
contains the full key of the record accessed.

Retrieval type and key relational operator to be used.

The fo
EQ

GT

GE
UPERQ
UPGT
UPGE

llowing are defined:

Retrieve only key equal

Retrieve only key greater than
Retrieve only key greater than or equal
Retrieve for update key equal

Retrieve for update key greater than

Retrieve for update key greater than or

equal

GET Return Codes

Code Condition
-90 Request cancelled because the request was conditional and a
wait on a lock or buffer would be required
-58 Record not found
-1 Successful
7 Link module in use, syncronize use of link module with the
program
8 Load error for $IAM, verify S$IAM exists and enough storage is
available to load it
10 Invalid request
12 Data set shut down due to error; see Chapter 11,
"Error Recovery'
13 A required module is not included in $IAM
22 Address supplied by your program is not a valid IACB
100 Read error - check system return code
101 Write error - check system return code
200 Error occurred while accessing the primary file
262 Secondary index is out of sync with primary file
267 During auto-update processing a GETSEQ to a secondary file
failed, auto-update processing continues
268 I/0 error on primary file during a secondary request
2649 GET UPDATE error occurred trying to update a bad RBN

GET Example

The following example gets a record whose key is "JONES'. The file
records are 80 bytes in length and the key length is 20 bytes. The

record is returned in the area named RECORD, and because this is a GETR
request, the RBN is also returned in the area named RBN, which must fol-

low immediately after the record area.

CALL IAM, (GETR),FILELl, (RECORD), (KEY)

FILEL DATA F'0? IACB ADDRESS FROM PROCESS
KEY TEXT '"JONES',LENGTH=20 RECORD KEY

RECORD DATA 128F'0" RECORD AREA

RBN DATA D'0’ RBN

Chapter 7. Coding the Indexed Access Method Requests

7-17

GETSEQ - GET RECORD (SEQUENTIAL MODE)

7-18

The GETSEQ request retrieves a single record from the indexed file and
places the record in a user area (buff). The file must be opened in the
PROCESS mode.

The first GETSEQ of a sequence is performed like a GET; the first record
in the file that satisfies the key condition is the one that is
retrieved. If key is zero, the first record in the file is retrieved.
Subsequent requests in the sequence locate the next sequential record in
the file and the key parameter is ignored if specified. The sequence is
terminated by an end-of-data condition, by an ENDSEQ, by a DISCONN, or
by an error. During the sequence, direct-access requests are invalid.

Retrieval for update can be specified if the requested record is
intended for possible modification or deletion. If update is used the
record is locked and remains unavailable to any other requests until the
update is completed by a PUTUP, PUTDE or RELEASE. The record is also
released by ending the sequence with an ENDSEQ or by ending processing
with a DISCONN or by an error.

During an update, the user must not change the primary key field in the
record or the field addressed by the primary key parameter. The Indexed
Access Method checks for and prohibits key modification.

The GETSEQC request retrieves a single record from the indexed file and
places the record in a user area only if the record, block, or buffer is
not locked. The file must be opened in the PROCESS mode.

The GETSEQCR request retrieves the RBN of the specified record from the
indexed file and places the record in a user area only if the record,
block, or buffer is not locked. The file must be opened in the PROCESS
mode.

Syntax:

label CALL IAM, (GETSEQ|GETSEQC|GETSEQR|GETSEQCR), iach,
(buff), (key), (mode/krel)

Required: iach,buff,key
Defaults: modeskrel=EQ

Operand Description

iach The label of a word containing the IACB address returned by
PROCESS.

(buff) The label of the user area into which the requested record

is placed. When the RBN is requested, the RBN is returned
at the end of the record. The user buffer must be four
bytes longer than the record length to accommodate the RBN.

(key) The label of the user key area containing the key identify-
ing the record to be retrieved and preceded by the lengths
of the key and area. If the first record of the file is to
be retrieved, this field as specified should be 0. The key
field, if specified, has the standard TEXT format and may be
declared using the TEXT statement. If you do not use the
TEXT statement for this field, you must code it in the same
format as the TEXT statement generates.

SC34-0404-1

The TEXT statement format is as follows:

Offset Field

key - 2 LENGTH (1 byte)
key - 1 KLEN (1 byte)
key Key area ("LENGTH"™ bytes)

length

klen

key area

(modeskrel) Retrieval

The length of the key area. It must be equal to
or greater than the full key length for the file
in use.

The actual length of the key in the key area to
be used as the search argument for the
operation. It must be less than or equal to the
full length of the keys in the file in use. If
klen is 0, the full key length is assumed.

A generic key search is performed when klen is
less than the full key size. The first n bytes
(as specified by klen) of the key area are
matched against the first n bytes of the keys in
the file. The first matching key determines the
record to be accessed. The Tull key of the
record is returned in the key area.

The area containing the key to be used as a
search argument. If you are using a generic
key, after the first successful GETSEQ request
this area contains the full key of the record
accessed.

type and key relational operator to be used.

The following are defined:

EQ Retrieve only key equal
GT Retrieve only key greater than
GE Retrieve only key greater than or equal

UPEQ Retrieve for update key equal

UPGT Retrieve for update key greater than

UPGE Retrieve for update key greater than or equal

After the first GETSEQ of a sequence only the retrieval type is meaning-
ful. The keys are not checked for equal or greater than relationship.

Chapter 7.

Coding the Indexed Access Method Requests 7-19

7-20

GETSEQ Return Codas

Code Condition
-90 Request cancelled because the request was conditional
and a wait on a lock or buffer would be required
-80 End of data
-58 Record not found
-1 Successful
7 Link module in use, syncronize use of link
module with the program
8 Load error for $IAM, verify $IAM exists and enough
storage is available to load it
10 Invalid request
12 Data set shut down due to error; see Chapter 11,
"Error Recovery'
13 A required module is not included in $IAM
22 Address supplied by your program is not a valid IACB
100 Read error - check system return code
101 Write error - check system return code
200 Error occurred while accessing the primary file
2642 Secondary index is out of sync with primary file.
2648 I/0 error on primary file during a secondary request.
249 GET UPDATE error occurred trying to update a bad RBN.

GETSEQ Example

The following example gets the record whose key is 'KEY0001' and places
it in an area called 'BUFFER'. The file is identified by the field
named *FILEL'. Subsequent GETSEQ requests result in the next sequential
record being returned.

CALL IAM, (GETSEQ),FILELl, (BUFFER), (KEY)

FILEL DATA F'0' IACB ADDRESS FROM PROCESS

BUFFER DATA 256F'0" I/0 BUFFER

KEY TEXT '"KEY0001',LENGTH=7 RECORD KEY
SC34-0404-1

|
/
!

N 'u/*?/' Ml

'M‘\m sl,o bA,
s/ﬁ[x/\‘

§leeh s
L(,Zx\(:@ A/é’.izuﬁg(./é// wiur s ”‘LWM

cx.,..\,M pmeMM { > b e B L)'M

BN AV

CoC

P

‘\/Wm S&Lmﬁ vcfueNAM MH/\ L/K/*)K wvivd dey
hey - Fedd .04 &A‘;Zyww/;sf[v F i'éwx b Gl
V& v M"?G‘-(-ﬁ./é’h\,

[/m.j phtef, des me/N man

LOAD - OPEN FILE FOR RECORD LOADING

The LOAD request builds an indexed access control block (IACB) associ-
ated with the file specified by the DSCB parameter. The address
returned in the iacb variable is the address used to connect requests
under this LOAD to this file.

To access the file by primary key, specify the primary file name as the
DSCB parameter. On all subsequent requests, specify a primary key.

To access the file by secondary key, specify the secondary file name as
the DSCB parameter. On all subsequent requests, specify a secondary
key. The Indexed Access Method automatically opens the primary file
when you specify a secondary file.

Note: The directory must be set up to reflect the relationship among
the primary file and any secondary files.

LOAD opens the file for loading base records; the only acceptable proc-
essing requests in this mode are PUT, EXTRACT and DISCONN. Only one
user of a file can use the LOAD function at one time.

If an error exit is specified, the error exit routine is executed when-
ever any Indexed Access Method request under this LOAD terminates with a
positive return code.

Note: Return codes 1, 7, 8, and 22 are positive value return codes but
they do not cause the error exit routine to be entered, even when
ERREXIT is coded. The negative (warning) return codes also do not cause
error exits.

Svntax:

label CALL IAM, (LOAD),iacb, (dscb), (opentab), (mode)

Required: iach,dscbh,opentab
Defaults: mode=(SHARE)

Operands Description

iach The label of a l-word variable into which the address of the
indexed access control block (IACB) is returned.

(dscb) The name of a valid DSCB. This name is DSn, where n is a num-
ber from 1-9, corresponding to a file defined by the PROGRAM
statement. It can also be a name supplied by a DSCB state-
ment. The CALL statement specifying LOAD causes the Indexed
Access Method to open the index file in load mode.

(opentab) The label of a 3 word open table. The open table contains

information used during this LOAD. The format of this table
is as follows:

Chapter 7. Coding the Indexed Access Method Requests 7-21

(modea)

7-22 S5C36-0406-1

Cffset Field

0 SYSRTCD
2 ERREXIT
% (0) reserved

Field
SYSRTCD

ERREXIT

RESERVED

Specifies

SHARE

ISHARE

EXCLUSV

IEXCLUSV

Description

A l-word variable into which the return code from
any system function (such as READ and WRITE) is
placed when requested under this LOAD by the
Indexed Access Method.

Your error exit routine address. If this address
is zero, the error exit will not be taken. Note
that error exits handle only positive return codes.

Note: Return codes 1, 7, 8, and 22 are positive
return codes which do not cause the error exit rou-
tine to be entered, even if ERREXIT is coded.

Must be 0 for LOAD requests.
shared or exclusive use of the file.

Allows shared read/write access by PROCESS
requests.

Allows shared read/write access by PROCESS requests
with the independent processing flag on.

The I prefix on SHARE mode prevents any automatic
update functions on any associated secondary
indexes, even if the auto-update flag is on in the
directory entry for those associated secondary
indexes.

For a secondary index, the index is opened as an
independent file and the records returned are sec-
ondary index records, not user data records.

You can access the file in exclusive mode (EXCLUSV)
only if there are no outstanding PROCESS or LOAD
requests. No other user can access the file while
exclusive use is in effect.

You can access the file only if there are no out-
standing PROCESS or LOAD requests. No other user
can access the file while independent exclusive
(IEXCLUSVY) use is in effect.

The I prefix on EXCLUSV mode prevents any automatic
update functions on any associated secondary
indexes, even if the auto-update flag is on in the
directory entry for those associated secondary
indexes.

For a secondary index, the index is opened as an
independent file and the records returned are sec-
ondary index records, not user data records.

LOAD Return Codes

Code Condition
-79 Warning - File was opened and not closed during the
last session. Normal processing continues
=75 Warning - File has either not been formatted, or the
invalid indicator is on in the directory for that file
-57 Data set has been loaded
-1 Successful
7 Link module in use, syncronize use of link
module with the program
8 Load error for $IAM, verify $IAM exists and enough
storage is available to load it
12 Data set shut down due to error; see Chapter 11,
"Error Recovery'
13 A required module is not included in $IAM
14 Invalid index block found - during processing of an index
block, an incorrect block type was found.
17 IAM is inactive - not enough storage available. Use
$IAMUT1 BF command to readjust storage size.
23 Insufficient number of IACBs, use BF command of
SIAMUT1 to allocate more
50 File opened exclusively
51 Data set already opened in load mode
52 File in use, cannot open exclusively
54 $IAM buffer too small to process a file with this block size

Use the BF command of $IAMUT1 to increase the buffer size
55 Insufficient FCBs
56 Read error - FCB. Refer to system return code
76 DSOPEN error occurred - The system error field in the
open table contains the DSOPEN error:
21 - DSNAME,VOLUME not found
22 - VOLSER error
23 - I/0 error
77 Record save area not large enocugh - use $IAMUT1 BF
command to set maximum record size for secondary
index processing

78 Attempted to open a secondary file for LOAD, file is not
opened independently
230 Directory READ error for $IAMDIR. Check system return code
234 Directory error - DSNAME,VOL not found in $IAMDIR
2643 Primary file failed to open on a secondary OPEN request

Chapter 7. Coding the Indexed Access Method Requests 7-23

LOAD Example

The following example opens the file identified by '"DS3' for record
loading in exclusive mode. The field named 'IACB' is set to the address
of the IACB for this open. Subsequent requests use this field to refer
to this file. The system return code is placed in the field named
'OPEN'. An error opening the file results in the routine named 'ERROR'
being executed.

CALL IAM, (LOAD),IACB,(DS3),(0PEN), (EXCLUSV)

IACB DATA F'Q"

OPEN DATA F'o’ RETURN CODES
DATA A'ERROR' ERROR EXIT ROUTINE ADDRESS
DATA Fror NOT USED

7-24 SC36-06406-1

PROCESS - OPEN FILE

The PROCESS request builds an indexed access control block (IACB) asso-
ciated with the file specified by the DSCB parameter. The address
returned in the IACB variable is the address used to connect requests
under this PROCESS to this file.

To access the file by primary key, specify the primary file name as the
DSCB parameter. On all subsequent requests, specify a primary key.

To access the file by secondary key, specify the secondary file name as
the DSCB parameter. On all subsequent requests, specify a secondary
key. The Indexed Access Method automatically opens the primary file
when you specify a secondary file.

Note: The directory must be set up to reflect the relationship between
the primary file and any secondary files.

PROCESS opens the file for retrievals, updates, insertions, and
deletions. Multiple users can PROCESS the same file. However, only one
user at a time can use the LOAD function for a given file.

If ERREXIT is specified, the error exit routine is executed whenever any
Indexed Access Method request under this PROCESS terminates with a posi-
tive return code.

Note: Return codes 1, 7, 8, and 22 are positive value return
codes but they do not cause the error exit routine to be entered,
even when ERREXIT is coded. Also the negative (warning) return
codes do not cause error exits.

If EODEXIT is specified, the end-of-data exit routine is executed when-
ever a GETSEQ associated with PROCESS attempts to access a record after
the last record in the file.

Svntax:
label CALL IAM, (PROCESS),iacb,(dscb),(opentab), (mode)
Required: iacb,dscb,opentab
Defaults: mode=(SHARE)

Operands Description

iach The label of a 1-word variable into which the address of the
indexed access control block (IACB) is returned.

(dsch) The name of a valid DSCB. This name is DSn, where n is a num-
ber from 1 - 9, corresponding to a file defined by the PRO-
GRAM statement. It can also be a name supplied by a DSCB
statement. The CALL statement specifying PROCESS causes the
Indexed Access Method to open the index file in process mode.

(opentab) The label of a 3 word open table. The open table contains
information used during this PROCESS. The format of this
table is as follows:

0ffset Field
0 SYSRTCD
2 ERREXIT
4 EODEXIT

Chapter 7. Coding the Indexed Access Method Requests 7-25

7-26

(mode)

5C364-0404-1

Field
SYSRTCD

ERREXIT

EODEXIT

Specifies

SHARE

ISHARE

EXCLUSV

IEXCLUSY

Description

A l-word variable into which the return code from
any system function (such as READ and WRITE) is
placed when requested under this PROCESS by the
Indexed Access Method.

Your error exit routine address. If this address
is 0, the error exit will not be used. Note that
error exits handle only positive return codes.

Your end-of-data exit routine address. If this
address is 0, the end-of-data exit will not be
used.

shared or exclusive access to the file.

Allows shared read/uwrite access by multiple PROCESS
or LOAD requests.

Allows shared read/wurite access by PROCESS requests
with the independent processing flag on.

The I prefix on SHARE mode prevents any automatic
update functions on any associated secondary
indexes, even if the auto-update flag is on in the
directory entry for those secondary indexes.

For a secondary index, the index is opened as an
independent file and the records returned are sec-
ondary index records, not user data records.

The user can access the file only if there are no
outstanding PROCESS or LOAD requests. No other
user can access the file while EXCLUSV (exclusive
access) is in effect.

You can access the file only if there are no out-
standing PROCESS or LOAD requests. No other user
can access the file while independent exclusive
(IEXCLUSY) use is in effect. The I prefix on
EXCLUSYV mode prevents any automatic update func-
tions on any associated secondary indexes, even if
the auto-update flag is on in the directory entry
for those associated secondary indexes.

For a secondary index, the index is opened as an
independent file and the records returned are sec-
ondary index records, not user data records.

PROCESS Return Codes

Code Condition
-79 Warning - File was opened and not closed during the
last session. Normal processing continues
-75 Warning - File has either not been formatted, or the
invalid indicator is on in the directory for that file
-1 Successful
7 Link module in use, syncronize use of link
module with the program
8 Load error for $IAM, verify $IAM exists and enough
storage is available to load it
12 Data set shut down due to error; see Chapter 11,
"Error Recovery'
13 A required module is not included in $IAM
17 IAM is inactive - not enough storage available. Use
$IAMUT1 BF command to readjust storage si:ze.
23 Insufficient number of IACBs, use BF command of
SIAMUTL to allocate more
50 File opened exclusively
52 File in use, cannot open exclusively
56 S$IAM buffer too small to process a file with this block size

Use the BF command of S$IAMUT1l to increase the buffer size
55 Insufficient FCBs
56 Read error - FCB. Refer to system return code
76 DSOPEN error occurred - The system error field in the
open table contains the DSOPEN error:
21 - DSNAME,VOLUME not found
22 - VOLSER error
23 - 1I/0 error
77 Record save area not large enough - use SIAMUT1 BF
command to set maximum record size for secondary
index processing

230 Directory READ error for $IAMDIR. Check system return code
234 Directory error - DSNAME,VOL not found in S$IAMDIR
243 Primary file failed to open on a secondary OPEN request

Chapter 7. Coding the Indexed Access Method Requests 7-27

PRCCESS Example

The following example opens the file identified by '"DS1' for general
access in shared access mode. The field named 'IACB' is set to the
address of the IACB for this open. Subsequent requests use this field
to refer to this file. The system return code is placed in the field
named YOPENTAB'. An error opening the file results in the routine named
"ERROR' being executed. An end-of-data condition on a subsequent
request results in the transfer of control to the code at the label
END'.

CALL IAM, (PROCESS),IACB,(DS1), (OPENTAB), (SHARE)

OPENTAB DATA F'o’ RETURN CODES
DATA ACERROR) ADDRESS OF ERROR EXIT ROUTINE
DATA ACEND) ADDRESS OF EOD EXIT ROUTINE

IACB DATA Fro?

7-28 SC36-0606-1

PUT - PUT RECCORD INTO FILE

The PUT request processes the record that is in your buffer (buff)
according to the way the file was opened (LOAD or PROCESS).

If the current open is for LOAD, the record must have a higher key than
the highest key already in the file and only base record slots are used
(refer to "lLoading Base Records From An Application Program"™ on page 4-5
for a description of load mode). If the current open is for PROCESS,
the record may have any key and is placed in key order in either a base
record or in a free slot in the appropriate place in the file.

The PUTC request requires a block lock. The request processes the
record in your buffer (buff) according to the way the file was opened
(LOAD or PROCESS). In order to obtain a block lock without waiting,
there can be no other block lock or record locks in effect for the
block.

Svntax:

label CALL IAM, (PUT|PUTC),iacb, (buff)

Required: all
Defaults: none

Operands Description

iach The label of a word containing the IACB address returned by
PROCESS or LOAD.

(buff) The label of the user area containing the record to be added
to the file.

Chapter 7. Coding the Indexed Access Method Requests 7-29

PUT Return Codes

Code Condition
-90 Request cancelled because the request was conditional
and a wait on a lock or buffer would be required
-1 Successful
7 Link module in use, syncronize use of link
module with the program
3 Load error for $IAM, verify $IAM exists and enough
storage is available to load it
10 Invalid request
12 Data set shut down due to error; see Chapter 11,
"Error Recovery'
13 A required module is not included in $IAM
14 Invalid index block found - during processing an
incorrect index block type was found, recreate the file
22 Address supplied by your program is not a valid IACB
60 Out of sequence or duplicate key (LOAD mode only)
61 End of file (in LOAD mode)
62 Duplicate key found (PROCESS mode only)
70 No space for insert; i eorganize the file
76 DSOPEN error occurred - The system error field in the
OPEN table contains the DSOPEN error:
21 - DSNAME,VOLUME not found
22 - VOLSER error
23 - 170 error
90 Internal key save area temporarily in use by another request
100 Read error - check system return code
101 Write error - check system return code
230 Directory read error for $IAMDIR. Check system return code
2646 Error in opening auto-update on modification request
246 Auto-update processing an INSERT to a secondary
ile failed, auto-update processing continues
2648 /0 error on primary file during a secondary request

PUT Example

The following example puts the record in the area named 'BUFFER'
the file. The file is identified by the field named 'FILELl"'.

into

CALL IAM, (PUT),FILEL, (BUFFER)

FILE1 DATA F'0’ IACB ADDRESS RETURNED HERE
BUFFER DATA 256F'0° I/0 BUFFER

7-30 5C34-04064-1

PUTDE - DELETE PREVIOUSLY READ RECORD

The PUTDE request deletes a record from an indexed file. The record
must have been previously retrieved by a GET or GETSEQ in update mode.
Deleting the record creates free space in the file. The PUTDE releases
the lock placed on the record by the GET or GETSERQ.

The PUTDEC request deletes a record from an indexed file only if the
block or buffer is not locked.

Svntax:

label CALL IAM, (PUTDE|PUTDEC), iach, (buff)

Required: all
Defaults: none

Opaerands Description

iach The label of a word containing the IACB address returned by
PROCESS.
(buff) The name of the area containing the record previously

retrieved by GET or GETSEQ.

Chapter 7. Coding the Indexed Access Method Requests 7-31

PUTDE Return Codas

Code Condition
=90 Request cancelled because the request was conditional
and a wait on a lock or buffer would be required
-85 Record not found
-1 Successful
7 Link module in use, syncronize use of link
module with the program
8 Load error for $IAM, verify $IAM exists and enough
storage is available to load it
10 Invalid request
12 Data set shut down due to error; see Chapter 11,
"Error Recovery'
13 A required module is not included in $IAM
14 Invalid index block found - during processing an incorrect
index block was found. Recreate the file
22 Address supplied by your program is not a valid IACB
76 DSOPEN error occurred - The system error field in the
OPEN table contains the DSOPEN error:
21 - DSNAME,VOLUME not found
22 - VOLSER error
23 - I/0 error
85 Key was modified by user
100 Read error - check system return code
101 Write error - check system return code
230 Directory read error for SIAMDIR. Check system return code
262 Secondary index 1s out of sync with primary file.
Must rebuild file to get back in sync.
244 Error in opening auto-update on modification request
245 Auto update PUTDE to a secondary file failed,
auto-update processing continues.
247 During auto-update processing a GETSEQ to a secondary
file failed, auto-update processing continues.
248 I/0 error on primary file during a secondary request.

PUTDE Example

The following example deletes the record in the area named

'"BUFFER'

from

the file. The record was read with either a GET or GETSEQ request in
update mode. The file is identified by the field named 'FILEL"'.

CALL IAM, (PUTDE),FILE1l, (BUFFER)

FILE1l DATA F'0" IACB ADDRESS FROM PROCESS
BUFFER DATA 256F'0" I/0 BUFFER

7-32 SC34-0404-1

PUTUP - UPDATE RECORD

The PUTUP request replaces the record in the file with the record in
yvour buffer. The record must have been retrieved by a GET or GETSEQ in
update mode. You must not change the primary key field in the record or
the contents of the key area in your program returned by the GET or
GETSEQ request. The Indexed Access Method checks for and prohibits pri-
mary key modification. The PUTUP releases the lock placed on the record
by the GET or GETSEQ.

The PUTUPC request replaces the record in the file with the record in
vour buffer only if the record, block, or buffer is not locked.

Svntax:

label CALL IAM, (PUTUP|PUTUPC), iachb, (buff)

Required: all
Defaults: none

Operands Dascription

1achb The label of a word containing the IACB address returned by
PROCESS.
(buff) The label of the user area containing the record to replace

the one previously retrieved.

Chapter 7. Coding the Indexed Access Method Requests 7-33

PUTUP Return Codes

Code Condition
-90 Request cancelled because the request was conditional
and a wait on a lock or buffer would be required
-1 Successful
7 Link module in use, syncronize use of link
module with the program
8 Load error for $IAM, verify $IAM exists and enough
storage is available to load it
10 Invalid request
12 Data set shut down due to error; see Chapter 11,
'"Error Recovery'
13 A required module is not included in SIAM
14 Invalid index block found - during processing an incorrect
index block was found. Recreate the file
22 Address supplied by your program is not a valid IACB
76 DSOPEN error occurred - The system error field in the

OPEN table contains the DSOPEN error:
21 - DSNAME,VOLUME not found
22 - VOLSER error
23 - I/0 error

85 Key was modified by user
100 Read error - check system return code
101 Write error - check system return code
230 Directory read error for $IAMDIR. Check system return code
262 Secondary index is out of sync with primary file.
Must rebuild file to get back in sync.
2644 Error in opening auto-update on modification request
245 Auto update PUTDE to a secondary file failed,
auto—update processing continues.
266 Auto-update processing an INSERT to a secondary file failed,
auto-update processing continues
247 During auto-update processing a GETSEQ to a secondary
file failed, auto-update processing continues.
248 I70 error on primary file during a secondary request.

PUTUP Example

The following example puts the updated record in the area named 'BUFFER'
back into the file. The record was read with either a GET or GETSEQ
request in update mode. The file is identified by the field named

'FILEL".
CALL IAM, (PUTUP),FILEL, (BUFFER)
FILEL DATA F'Q' IACB ADDRESS FROM PROCESS
BUFFER DATA 256F'0" I70 BUFFER

7-364 S5C34-0406-1

RELEASE - RELEASE RECORD

The RELEASE request frees a record that has been locked by a GET or
GETSEQ for update. A record lock is normally released by a PUTUP or

PUTDE.

The RELEASE request is useful for freeing the locked record when
the update need not be completed.

RELEASE is valid only when a record

is locked fTor update.

Svntax:

label

CALL IAM, (RELEASE),iach

Required: all

Defaults: none
Operands Dascription
iach The label of a word containing the IACB address returned by

PROCESS.

RELEASE Return Codes

Code

Condition

-1

10
12

13
22

Successful

Link module in use, syncronize use of link

module with the program

Load error for $IAM, verify $IAM exists and enough
storage is available to load it

Invalid request

Data set shut down due to error; see Chapter 11,
'"Error Recovery'

A required module is not included in SIAM

Address supplied by your program is not a valid IACB

RELEASE Example

The following example releases the record that was read with either a
GET or GETSEQ request in update mode. The file is identified by the
field named "FILEL'.

FILEL

CALL IAM, (RELEASE),FILEl

DATA Fro’ IACB ADDRESS FROM PROCESS

Chapter 7. Coding the Indexed Access Method Requests 7-35

EDL CALL FUNCTIONS SYNTAX SUMMARY

Following is a summary of the syntax of the EDL CALL instructions used
to invoke the functions provided by the Indexed Access Method.

label CALL IAM,(DELETE|DELETC),iach, (key)

label CALL TIAM, (DISCONN),iach

label CALL IAM, (ENDSEQ),iach

label CALL IAM, (EXTRACT),iacb,(buff),(size),(type)

label CALL IAM,(GET|GETC|GETR|GETCR),iach,(buff), (key), (mode/krel)

label CALL IAM,(GETSEQ|GETSEQC|GETSEQCR|GETSEQR),iacb, (buff),
(key), (mode/krel)

label CALL 1IAM,(LOAD),iachb,(dscb),(opentab), (mode)

label CALL IAM, (PROCESS),iacb,(dscb), (opentab), (mode)

label CALL IAM,(PUT|PUTC),iachb, (buff)

label CALL IAM,(PUTDE|PUTDEC),iacb, (buff)

label CALL IAM, (PUTUP|PUTUPC),iacb,(buff)

label CALL IAM,(RELEASE),iach

7-36 SC36-0404-1

INDEXED ACCESS METHOD RETURN CODES SUMMARY

Return
Code Condition
-90 Request cancelled because the request was conditional
and a wait on a lock or buffer would be required.
Any locks obtained by this IACB were released.
-85 Record to be deleted not found
-30 End of data
=79 llarning - File was opened and not closed during
the last session, nhormal processing continues
-75 Warning - File has either not been formatted or
the invalid indicator is on in the directory for
that file
-58 Record not found
-57 Data set has been loaded
-1 Successful completion
01 Invalid function specified on CALL to S$IAM
07 Link module in use, syncronize use of link
module with the program
08 Load error for $IAM, verify $IAM exists and enough
storage is available to load it
i0 Invalid request
12 Data set shut down due to error; see Chapter 11,
"Error Recovery'
13 A required module is not included in $IAM
14 Invalid index block found - during processing an
incorrect index block type was found, recreate the file
17 IAM is inactive - not enough storage available
Use $IAMUT1 BF command to readjust storage size
22 Address supplied by your program is not a valid IACB
23 Insufficient number of IACBs, use BF command of
SIAMUTL to allocate more
50 Data set is opened for exclusive use,
cannot be opened by another user
51 Data set already opened in load mode
52 Data set is opened, cannot be opened exclusively
54 $IAM buffer too small to process a file with this block size
Use the BF command of $IAMUT1 to increase the buffer size
55 Get storage error - FCB
56 READ error - FCB, refer to system return code
60 Out of sequence or duplicate key in LOAD mode
61 End of file in LOAD mode
62 Duplicate key found in PROCESS mode
70 No space for insert. Reorganize the file

Chapter 7. Coding the Indexed Access Method Requests

7-37

Return
Code Condition
76 DSOPEN error occurred - The system error field in the
OPEN table contains the DSOPEN error:
21 - DSNAME,VOLUME not found
22 - VOLSER error
23 - I/0 error
77 Record save area not large enough - use $IAMUT1 BF command
to set maximum record size for secondary file processing
78 Attempted to open a secondary file for LOAD, file is not
opened independently
80 FCB WRITE error during DELETE processing - see system
return code
85 Key field modified by user
S0 Internal key save area temporarily in use by another
request
100 READ error - check system return code
101 WRITE error - check system return code
110 WRITE error - data set closed
120 Invalid EXTRACT type
122 File does not contain FCB extension
123 Cannot extract paging statistics. Data paging is not active
150 Not enough storage available for data paging
200 Error occurred while accessing the primary file
230 Directory read error for $IAMDIR
231 $IAMQCB not found. Check sysgen for include of $IAMQCB
234 Directory error - DSNAME,VOL not found in S$IAMDIR
242 Secondary index is out of sync with primary file.
Must rebuild file to get back in sync.
263 Primary file failed to open on secondary open request
244 Error in opening an auto-update file on a modification
request
245 Auto-update PUTDE to a secondary file failed; auto-update
processing continues
246 Auto-update processing an INSERT to a secondary
file failed, auto-update processing continues
247 During auto-update processing a GETSEQ to a secondary
file failed, auto-update processing continues
268 I/0 error on primary file during a secondary request
249 GET UPDATE error occurred trying to update a bad RBN

Mote: For return codes 243 through 249, multiple errors may have
occurred. Use SILOG to display the errors.

7-38 5C34-0404-1

CHAPTER 8. THE $IAMUT] UTILITY

This chapter describes how to use the $IAMUT1 utility to build and main-
tain your indexed files. Each command is described, including its func-
tion, parameters, and an example of how to use it. The file definition

parameters are also described.

The chapter is arranged in alphabetic order. Following is the list of
commands and the location of their descriptions:

"BF—Tailor the Indexed Access Method Buffers" on page 8-6
"DF—Define Indexed File™ on page 8-6

"DI—Display Parameter Values™ on page 8-9

"DR—Invoke Secondary Index Directory Functions™ on page 8-10
"EC—Control Echo Mode™ on page 8-19

"EF—Display Existing Indexed File Characteristics™ on page 8-20
"L0—Lload Indexed File" on page 8-22

"NP—Deactivate Paging™ on page 8-25

"PG—Select Paging™ on page 8-26

"PP—Define Paging Partitions™ on page 8-27

"PS—Get Paging Statistics™ on page 8-28

"RE—Reset Parameters" on page 8-29

"RO—Reorganize Indexed File™ on page 8-30

"SE—Set Parameters"™ on page 8-32

"UN—Unload Indexed File™ on page 8-4¢l

The subcommands of the directory function (DR), are listed alphabet-
ically under the DR description. Those subcommands are:

AL allocate/reallocate directory
EN end directory function

DE delete entry

IE insert entry

LE list entries

UE update entry

Chapter 8. The $IAMUT1 Utility 8-1

$TAMUTL

$IAMUTL can be invoked using the $L command, $JOBUTIL, or the Session
Manager. $IAMUT1 functions use dynamic storage for work and buffer
areas. The S$IAMUTI utility is shipped with sufficient dynamic storage
to handle input and output block sizes of up to 512 bytes. This enables
vou to define an indexed file with a maximum block size of 512 bytes,
and to load, unload, and reorganize indexed files with a maximum block
size of 512 bytes. $IAMUT1 determines if enough dynamic storage has
been provided. If sufficient storage has not been provided, SIAMUT1
displays a message. In order to handle large blocks of data, a larger
dynamic storage area will have to be provided to $IAMUT1. Additional
dynamic storage can be provided by one of two ways: provide the storage
P:rameter on the $L command, or use the 55 command of the $DISKUT2 util-
ity.

The load, unload and reorganize functions use the entire dynamic storage
available to minimize the number of disk I/0 operations. Improved per-
formance, therefore, can be obtained by specifying as large a dynamic
area as possible.

$IAMUT1 updates data set $IAM when it executes certain commands, such as
PG, NP, PP, and BF. $IAMUTl searches for data set $IAM in the following
sequence:?

1. The volume from which $IAMUT1 was loaded.

2. The IPL volume.

When using these commands, $IAMUT1 updates the first occurrence of data
set $IAM that it finds.

SIAMUT1 updates directory data set $IAMDIR when it executes some direc-

tory commands, such as AL, IE, DE, and UE. Directory data set $IAMDIR
resides on the IPL volume.

8-2 5C36-0406-1

$IAMUT] COMMANDS

The commands available under $IAMUT1 are listed below. To display this
list at your terminal, enter a question mark in response to the prompt-
ing message ENTER COMMAND (?2):.

The command descriptions in this chapter are arranged in alphabetic
order.

EC
EF
DR
EN

SE
DF
DI
RE

Lo
RO
UN

PG
NP
PP
PS
BF

ENTER COMMAND (?): 2

ENTER COMMAND (?):

SET/RESET ECHO MODE

DISPLAY EXISTING FILE CHARACTERISTICS
SECONDARY INDEX DIRECTORY FUNCTIONS
END THE PROGRAM

SET DEFINE PARAMETERS

DEFINE AN INDEXED FILE

DISPLAY CURRENT SE PARAMETERS
RESET CURRENT VALUES FOR DEFINE

LOAD INDEXED FILE FROM SEQUENTIAL FILE
REORGANIZE INDEXED FILE
UNLOAD INDEXED FILE TO SEQUENTIAL FILE

SELECT DATA PAGING
DESELECT DATA PAGING
DEFINE PAGING PARTITIONS
DATA PAGING STATISTICS
SET BUFFER SIZES

After the commands are displayed, you are again prompted with ENTER COM-
MAND (?):. Respond with the command you wish to use.

Chapter 8. The $IAMUT1 Utility 8-3

BF

BF—TAILOR THE

INDEXED ACCESS METHOD BUFFERS

The BF command specifies the amount of storage that the Indexed Access
Method ($IAM) is to use for buffers and control blocks and the maximum
record size for any file with a secondary index.

BF prompts you for each of the following parameters by displaying the
current value and accepting new settings.

BUFFER SIZE

Indicates the amount of storage (in bytes) to be
used for the central buffer. Use the following
formula to calculate your minimum buffer size:

where: blocksize

Buffer Size = (2 x blocksize) + (28 x blocksize/256)
+ (n x blocksize) + (n x 28 x blocksizes256)

= maximum block size

n = maximum number of PUT operations (in LOAD
mode) and GETSEQ operations that can be
in effect at any point in time

8-4

NUMBER OF IACBs

NUMBER OF FCBs

MAXIMUM RECORD SIZE

Indicates the number of the IACBs. The maximum
number of IACBs is 64. There is an IACB associ-
ated with each PROCESS or LOAD that is issued.
llhen calculating the number of IACBs you should
consider the number of concurrent users you may
have at any one tima.

Indicates the number of FCBs. The maximum number
of FCBs is 64. There is one FCB for every file
that is open. When calculating the number of FCBs
vou should consider the maximum number files that
might be open at a given time.

Indicates the maximum record size of any file with
an associated secondary index. If no files have a
secondary index, this value can be zero. The
actual amount of storage reserved as a result of
this parameter is twice the value specified plus 8
bytes.

None of these take effect until the next time the Indexed Access Method

is loaded.

5C364-0404~1

BF

BF Command Example

This example sets the central buffer size to 540 bytes, leaves the num-
ber of IACBs at 3, leaves the number of FCBs at 3, and sets the maximum
record size of any file with a secondary index to 120 bytes.

ENTER COMMAND (?): BF

PARAMETER DEFAULT NEW VALUE
BUFFER SIZE 1080 : 540
NUMBER GF IACBs 3

NUMBER OF FCBS 3

MAXIMUM RECORD SIZE 256 : 120

VALUE(S) SET
STORAGE FOR $IAM HAS BEEN SET TO 2048
BECOMES EFFECTIVE ON NEXT LOAD OF SIAM

ENTER COMMAND (?):

Chapter 8. The $IAMUTI Utility 8-5

BF

DF—DEFINE INDEXED FILE

8-6

The DF command allocates, defines, and formats an indexed file. The DF
function will optionally invoke the load or reorganize function for you.
Before entering DF, you must use the SE command to set up parameters
that determine the size and format of the indexed file. The DF command
uses those SE parameters to optionally allocate and format the file.

The DF function can be invoked at the end of the SE function.

The allocate step consists of using the file size computed during the SE
step to dynamically allocate the file. If the file already exists, the
size is verified to ensure that it is large enough. The define step
consists of writing the file control block (FCB) and its extension to
the indexed file. Finally, the optional format step initializes all
records in the indexed file to provide an empty structured file.

INVOKING THE LOAD AND REORGANIZE FUNCTIONS FROM DF: You can invoke the
LOAD or REORGANIZE functions directly from the DF (or SE) command. If
vou invoke these functions, DF does not format the file because LOAD and
REORGANIZE will format the file. If you do not invoke the LOAD or REOR-
GANIZE function, DF formats the file so you can load the file using an
application program or the LO command.

Notes:

1. You can use the LOAD/REORGANIZE command later to load the file, if
you do not invoke it from the DF command.

2. An application program cannot access an unformatted indexed file.

3. The prompt for the load/reorganize function occurs before the file
is actually defined.

4. A secondary index file cannot be loaded with the LO command, though
it can be reorganized using the RO function.

Defining the File

The define function prompts for the file to be allocated. If the file
already exists, its size is checked. If the size is at least as large
as needed, DF prompts you as to whether the file should be reused as
follows:

ENTER COMMAND (?): DF

ENTER DATA SET (NAME,VOLUME) : IAMFILE,EDX003
DATA SET ALREADY EXISTS AND IS LARGE ENOUGH
DO YOU WISH TO REUSE IT (Y/N)?: Y

If the file exists, but it is not as large as needed, you have the
option of deleting and reallocating it as shown in the following
example:

ENTER COMMAND (?): DF

ENTER DATA SET (NAME,VOLUME) : MASTER,VOL123
DATA SET ALREADY EXISTS AND IS TOO SMALL
DELETE AND REALLOCATE (Y,N)? : Y

DELETE AND REALLOCATE COMPLETED

5C364-0404-1

DF

If the file does not exist, it is allocated as follows:

ENTER COMMAND (7): DF
ENTER DATA SET (NAME,VOLUME) : MASTER,VOL123
NEW DATA SET IS ALLOCATED

Using Immediate Write-Back

DF prompts you to select whether or not you want to use the immediate
write-back option. Immediate write-back has the same effect on primary
or secondary indexed files.

Each request to insert, delete, or update a data record causes the
affected blocks to be read into the Indexed Access Method buffer. The
actual modification to the block is performed in the buffer.

If you enter N to the immediate write-back prompt, file modifications
are held in the main storage buffer and not written back to the indexed
file until the buffer space is needed for another block or until the
file is closed. If the device where the file resides was pouwered off
before the block was written back to the file, the modification to the
file would not have been performed.

If you enter Y to the immediate write-back prompt, vou are assured that
the changed block is written back to the file immediately.

The prompt is as follows:

DO YOU WANT IMMEDIATE WRITE-BACK? Y

Chapter 8. The $IAMUT1 Utility 8-7

DF

DF Command Example

The following example shows a use of the DF command to define a file

named MASTER on volume VOL123. Immediate write-back is selected and the

request to invoke LOAD or REORGANIZE is indicated.

ENTER COMMAND (?): DF

ENTER DATA SET (NAME,VOLUME) : MASTER,VOL123

NEW DATA SET IS ALLOCATED

DO YOU WANT IMMEDIATE WRITE-BACK? Y

INVOKE LOAD(L), REORGANIZE(R) OR END(E) AFTER CURRENT FUNCTION? L
DEFINE IN PROGRESS

DATA SET SIZE IN EDX RECORDS: 17
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

PROCEED WITH LOAD/REORGANIZE (Y/N)

8-8 S5C34-0406-1

DI—DISPLAY PARAMETER VALUES

DF

DI displays the current parameter values entered during the current ses-
sion of S$IAMUTLl SE command. The parameter values can be used to format
a file using the DF command or they can be modified by reusing the SE

command.

Note: You can also use the EF command to display the parameters of an

existing file.

The following example shows a use of the DI command.

BASEREC
BLKSIZE
RECSIZE
KEYSIZE
KEYPOS
FREEREC
FREEBLK
RSVBLK
RSVIX
FPOOL
DELTHR
DYN

ENTER COMMAND (?):
CURRENT VALUES FOR SE COMMAND ARE:
FILE TYPE = PRIMARY

100
256
80
28

1

1

10
NULL
0
NULL
NULL
NULL

DI

For a secondary file,

the record size is not displayed.

Chapter 8. The $IAMUT1 Utility 8-9

DR

DR—INVOKE SECONDARY INDEX DIRECTORY FUNCTIONS

8-10

The DR command provides access to secondary index directory functions.

Those functions are made available by replying DR when $IAMUT1 requests
"ENTER COMMAND (?3:". You can then respond to the "ENTER DIRECTORY COM-
MAND (?):" with a subcommand. To obtain a list of the available subcom-

mands,

reply with a question mark (?) as follows:

AL
LE
IE
DE
UE
EN

ENTER COMMAND (?): DR
ENTER DIRECTORY COMMAND (?): ?

[T R A O |

ENTER DIRECTORY COMMAND (?):

ALLOCATE/REALLOCATE DIRECTORY
LIST ENTRIES

INSERT ENTRY

DELETE ENTRY

UPDATE ENTRY

END DIRECTORY FUNCTION

The directory function commands are arranged in alphabetic order as DR -
XX, where xx is the two letter directory subcommand. Their specific
locations are listed below:

"AL—Allocate Directory™ on page 8-11

"DE—Delete Directory Entry™ on page 8-12

"EN—End Directory Function"™ on page 8-13

"IE—Insert Entry" on page 8-14

"LE—List Entries™ on page 8-15

"UE—Update Directory Entry™ on page 8-17

5C34-0404-1

DR -~ AL

AL—ALLOCATE DIRECTORY

The AL subcommand allocates a directory for secondary indexes. If a
directory already exists, this subcommand gives the option to delete and
reallocate it.

Note: To use this subcommand, you must first use the DR command.

You are prompted to enter the maximum number of directory entries.
Enter the number of entries you want the directory to be able to hold.
Each entry describes a primary file or secondary index. The maximum
number of entries defaults to 47.

The directory, $IAMDIR, is always allocated on the IPL volume.

The following example shows a use of the AL subcommand to allocate a new
directory with a capacity of 10 entries:

ENTER DIRECTORY COMMAND (?): AL

FAX # OF DIRECTORY ENTRIES: 10

THE DIRECTORY DATA SET REQUIRES 1 EDX RECORDS, CONTINUE (Y/N/EN)? Y
DIRECTORY DATA SET ALLOCATED: $IAMDIR,EDX002

The next example assumes a directory already exists and allocates a new
one.

ENTER DIRECTORY COMMAND (?): AL
DIRECTORY EXISTS, OPTIONS ARE:
BN - BUILD NEW DIRECTORY

AS - ADJUST SIZE

EN - END DIRECTORY ALLOCATE

ENTER OPTION: BN

ALL DIRECTORY ENTRIES WILL BE DELETED, CONTINUE (Y/N)>? Y

MAX # OF DIRECTORY ENTRIES: 20

THE DIRECTORY DS REQUIRES 2 EDX RECORDS, CONTINUE (Y/N/EN) ? Y

DIRECTORY DATA SET ALLOCATED: $IAMDIR,EDX002

The following example, adjusts the size of the directory data set. All
existing entries wWwill be retained.

ENTER DIRECTORY COMMAND (?): AL
DIRECTORY EXISTS, OPTIONS ARE:
BN - BUILD NEW DIRECTORY

AS - ADJUST SIZE

EN - END DIRECTORY ALLOCATE

ENTER OPTION: AS
MAX # OF DIRECTORY ENTRIES: 1
THE DIRECTORY DS REQUIRES 1 EDX RECORDS, CONTINUE (Y/N/EN) ? Y

DIRECTORY DATA SET ALLOCATED: $IAMDIR,EDX002

Chapter 8. The $IAMUTL Utility 8-11

DR - DE

DE—DELETE DIRECTORY ENTRY

The DE subcommand deletes an entry from the directory. If you delete a
primary entry, all associated secondary index entries are also deleted.

Note: To use this subcommand, yvou must first use the DR command.
The following example shows the deletion of the directory entry for the

file named MASTER on the volume named V0OL123. MASTER is a primary index
file entry which has secondary indexes associated with it.

ENTER DIRECTORY COMMAKND (?): DE

ENTRY (DSNAME,VOLUME): MASTER,VOL123

ASSOCIATED SECONDARY ENTRIES WILL BE DELETED, CONTINUE (Y/N)? Y
DELETE SUCCESSFUL, NUMBER OF ENTRIES DELETED: 2

The following example shows the deletion of the directory entry for a
file named MASTER, on the volume named V0OL123. MASTER is a primary
index file entry which no longer has any secondary indexes associated
with it.

ENTER DIRECTORY COMMAND (?): DE

ENTRY (DSHAME,VOLUME): MASTER

ENTRY FOR MASTER ,EDX002 WILL BE DELETED, CONTINUE (Y/N)? Y
DELETE SUCCESSFUL, NUMBER GF ENTRIES DELETED: 1

8-12 S5C34-0404-1

DR - EN

EN—END DIRECTORY FUNCTION

The EN subcommand terminates the directory functions (DR) and returns to
$IAMUT1 for your next command.

Chapter 8. The $IAMUTI Utility 8-13

DR - IE

IE—INSERT ENTRY

The IE subcommand inserts a new entry into the secondary index
directory. It is used to insert either a primary or secondary entry.
However, the primary entry must be inserted before any of its secondary
entries can be inserted.

For a primary entry, enter the data set name and volume of the file for
which the entry is being inserted. Specify N when asked "IS THIS A SEC-
ONDARY ENTRY (Y/N)?."™

For secondary entries, enter the data set name and volume of the second-
ary index for which the entry is being inserted and specify that it is a
secondary index. You are then prompted for additional information.

Specify the name of the primary index file which the secondary index is
to be associated with. You can select automatic update, which indicates
that any change to a primary file is to be reflected in the secondary
index. The default for automatic update is ves.

The following example inserts a directory entry for a primary index
file:

ENTER DIRECTORY COMMAND (?): IE
ENTRY (DSNAME,VOLUME): TONMPRI,EDX002
IS THIS A SECONDARY ENTRY (Y/N)>? N

DIRECTORY INSERT SUCCESSFUL

The following example inserts a directory entry for a secondary index
named "TOMSEC1,EDX002' which is to be associated with the primary index
file "TOMPRI,EDX002'. Automatic update is selected.

ENTER DIRECTORY COMMAND (?): IE
ENTRY (DSNAME,VOLUME) TOMSEC1,EDX002
IS THIS A SECONDARY ENTRY? Y

ASSOCIATED PRIMARY ENTRY (DSNAME,VOLUME): TOMPRI,EDX002
AUTO-UPDATE (Y/N)? Y

Note: To use this subcommand, vou must first use the DR command.

8-14 SC34-0406-1

DR - LE

LE—LIST ENTRIES

The LE subcommand lists the contents of one or more directory entries.
Specify the name of a primary indexed file to get information about that
file and its szcondary indexes. Specify the name of a secondary index
to get information about only that secondary index. To obtain a com-
plete list of all information in the directory, just press the Enter Key
without supplying any data set name or volume.

Note: To use this subcommand, you must first use the DR command.

The following example lists the directory entries related to the primary
file named "TOMPRI' on volume 'EDX002'.

ENTER DIRECTORY COMMAND (?): LE
ENTRY (DSMANE,VOLUME) BLANK=ALL: TOMPRI

PRIMARY INDE- AUTO
DSNAME VOLUME DATA SET PENDENT INVALID UPDATE
TOMPRI EDX002 YES NO ¥ % % % X % % %
TOMSECL EDX002 NO NO YES YES
TOMSEC2 EDX002 NO NO YES NO
NUMBER OF DIRECTORY ENTRIES USED = 5
NUMBER OF AVAILABLE ENTRY SLOTS = 42

DIRECTORY LIST COMPLETED

Chapter 8. The $IAMUT1 Utility 8-15

DR - LE

The following example lists all directory entries.

ENTER DIRECTORY COMMAND (?): LE
ENTRY (DSNAME,VOLUME) BLANK=ALL:

PRIMARY INDE-

EDXIAM EDX003 YES NO ¥ %X %
EDXIAMS1 EDX003 NO NO YES
TOMPRI EDX002 YES NO 3% %
TOMSEC1 EDX002 NO NO YES
TOMSEC2 EDX002 HO NO YES
NUMBER OF DIRECTORY ENTRIES USED =

NUMBER OF AVAILABLE ENTRY SLOTS = 42

DIRECTORY LIST COMPLETED

DSNAME VOLUME DATA SET PENDENT INVALID

AUTO
UPDATE

¥ XX %
YES

3 % %
YES
NO

8-16 SC34-0406-1

DR - UE

UE—UPDATE DIRECTORY ENTRY

The UE subcommand updates an entry in the secondary index directory.
You can use this command as follows:

° Specify null values for parameters to remain unchanged (press the
Enter key when you are prompted for them).

. Enter new values for parameters to be modified.

Note: You cannot change a primary entry to a secondary entry or a sec-
ondary entry to a primary entry. To do this, you must delete the old
entry and insert a new one.

The following example updates a primary directory entry named
"MASTER,VOL123', changes the volume name from VOL123 to EDX002 and
leaves the DSNAME MASTER as it is.

ENTER DIRECTORY COMMAND (?): UE
ENTRY (DSNAME,VOLUME) MASTER,VOL123
THIS IS A PRIMARY ENTRY

IN THE FOLLOWING, ENTER NEW VALUE OR,
ENTER NULL LINE TO RETAIN (PRESENT VALUE)

DSNAME (MASTER):
VOLUME (VOL123): EDX002
INDEPENDENT (ND:

DIRECTORY UPDATE SUCCESSFUL

Chapter 8. The $IAMUT1 Utility 8-17

DR - UE

The following example updates a secondary directory entry named
"MASTER,VO0L123', changes the VOLUME name to EDX002 and leaves the DSNAME
MASTER as it is. It sets automatic update, leaves the independent proc-
essing flag as it is, and sets the invalid indicator off.

ENTER DIRECTORY COMMAND (?): UE
ENTRY (DSNAME,VOLUME) MASTER,VOL123

THIS IS A SECONDARY ENTRY
IN THE FOLLOWING, ENTER NEW VALUE OR,
ENTER NULL LINE TO RETAIN (PRESENT VALUE)

DSNAME (MASTER):

VOLUME (EDX123): EDX002
INDEPENDENT (N):

INVALID INDICATOR (Y): N
AUTO-UPDATE (Y): Y

DIRECTORY UPDATE ENDED

Note: To use this subcommand, yvou must first use the DR command.

8-18 S5C34-04064-1

EC

EC—CONTROL ECHC MODE

EC enables yvou to enter or leave echo mode. When in echo mode, all
$IAMUTL input and output is logged on the $SYSPRTR device. This enables
you to save information about the files you maintain using $IAMUTL.

When in echo mode, all input and output is logged until either the cur-
rent utility session is ended or echo mode is reset by use of the EC
command. Echo mode is off when $IAMUT1 is loaded.

Note: Input and output from $DISKUT3 is not logged.

The following examples show the commands to set and reset echo mode:

ENTER COMMAND (?): EC
DO YOU WANT ECHO MODE? (Y/N)?: Y (Set echo mode)
FUNCTION COMPLETED

ENTER COMMAND (?): EC
DO YOU WANT ECHO MODE? (Y/N3)?: N (Reset echo mode)
FUNCTION COMPLETED

Chapter 8. The $IAMUT1 Utility 8-19

EF

EF—DISPLAY EXISTING INDEXED FILE CHARACTERISTICS

The EF command displays the file definition parameters that were used to
set up the file. The information is obtained from the FCB Extension
block. This command does not give the size of the file in Event Driven
Executive blocks.

EF Command Example for Primary Files

This example shows how to display the file parameters used to set up the
file.

ENTER COMMAND (?): EF
EXHIBIT FUNCTION ACTIVE
ENTER DATASET (NAME,VOLUME): EDXIAM1,EDX003

FILE TYPE = PRIMARY
2

BASEREC

BLKSIZE 256
RECSIZE 30
KEYSIZE 4
KEYFOS 1
FREEREC 0
FREEBLK 0
RSVBLK NULL
RSVIX 0
FPOOL NULL
DELTHR NULL
DYN 10

EXHIBIT FUNCTION COMPLETED

8-20 S5C34-0404-1

EF

EF Command Example for Secondary Files

This example shows how to display the file parameters used to set up the
file.

ENTER COMMAND (?): EF
EXHIBIT FUNCTION ACTIVE
ENTER DATASET (NAME,VOLUME): EDXIAM11,EDX003

FILE TYPE = SECONDARY

BASEREC 20
BLKSIZE 256
KEYSIZE 6
KEYPOS 9
FREEREC 0
FREEBLK 0
RSVBLK NULL
RSVIX 0
FPOOL NULL
DELTHR NULL
DYN 10

Note: If you create this secondary file with the SE option 1 com-
mand, your secondary and primary file will look the same except
for KEYSIZE and KEYPOS.

Chapter 8. The $IAMUT1 Utility 8-21

LO

LO—LOAD INDEXED FILE

L0 loads a primary indexed file from a sequential (blocked or unblocked)
input file. (A secondary indexed file must be loaded by using the DF or
SE command). A primary indexed file can be loaded in one of two envi-
ronments. Loading an empty file is referred to as the initial load.

For an indexed file that already contains some records, the LO command
can be used to add records with higher keys (keys of higher value than
those already in the indexed file). This is called load in extend envi-
ronment.

Blocks are read from the sequential file with the EDL READ instruction
and de-blocking is performed, if necessary. In the initial load envi-
ronment, data records are formatted into Indexed Access Method blocks
and written to the indexed file with the EDL WRITE instruction. Corre-
sponding index blocks are written as required. The remainder of the
indexed file is formatted if formatting was not completed during the DF
function. In the extend environment, records are loaded into the
indexed file using Indexed Access Method PUT requests.

The sequential input file can contain blocked or unblocked records. For
a description of blocked and unblocked sequential data sets, see
"Blocked and Unblocked Sequential Data Sets"™ on page 8-23. The records
in the sequential file must be in ascending order by the data contained
in the key field. If a record with a duplicate or out of sequence key
is found, vou are given the option to either omit the record and contin-
ue loading, or to end loading. The indexed file must have been defined
by using the SE and DF commands before using the LO command.

Your response to the prompt message "ENTER INPUT BLOCKSIZE"™, defines to
the LO command whether the input is a blocked or unblocked sequential
file. A null response to tha prompt "ENTER INPUT BLOCKSIZE"™ indicates
an unblocked input file and the block size is then calculated using the
input record size value, rounded up to the next 256-byte multiple value.
If the actual block size value is entered as your response to this
prompt, a blocked sequential input file is indicated.

The record lengths of the input and output files do not have to be the
same. WKhen the indexed file is opened, the record length is displayed
on the terminal. At this point, vou can specify the record length of
the sequential file if it is different than that of the indexed file.

If the indexed file records are longer than the sequential file records,
the loaded records are left justified and filled with binary zeroes. If
the indexed file records are shorter than the sequential file records,
the following message appears on the terminal:

INPUT REC GT OUTPUT REC. TRUNCATION WILL OCCUR.
0K TO PROCEED?

Reply "Y' to proceed (records will be truncated).
Reply 'N' to terminate the load function.

If the end of the input sequential file is reached, you can continue
loading from another sequential file. You are asked if there is more
data to load. If vou reply ves (Y), you are prompted for the file and
volume name of the new input sequential file to use. The load operation
continues, putting the first record of the new input sequential file in
the next available record slot of the indexed file.

Note: The record lengths and block sizes of subsequent input files are
assumed to be the same as the initial input file.

If the end of input file is reached and you do not name another input
file, the load operation is complete.

8-22 5C34-0404-1

LO

Note: If you are loading the indexed file from a tape file, $IAMUTL
does not close the tape file upon completion of the load. Use the
$VARYOFF command to close the tape file (refer to the Operator Commands
and Utilities Reference for a description of the $VARYOFF command).

The following example shows use of the L0 command:

ENTER COMMAND (?): LO

LOAD ACTIVE

ENTER OUTPUT DATASET (NAME,VOLUME): IAMFILE,EDX003
SFSEDIT FILE RECSIZE = 128

INPUT RECORD ASSUMED TO BE 80 BYTES. OK?: Y
ENTER INPUT BLOCKSIZE (NULL = UNBLOCKED):

ENTER INPUT DATASET (NAME,VOLUME): SEQ01,EDX003
LOAD IN PROCESS

END OF INPUT DATASET

ANY MORE DATA TO BE LOADED?: N
6 RECORDS LOADED

LOAD SUCCESSFUL

Blocked and Unblocked Sequential Data Sets

The LO (load) function of S$IAMUT1 will accept either blocked or
unblocked sequential data sets as input when loading an indexed file.
The UN (unload) function will either block or unblock data as requested
when unloading an indexed file to a sequential data set.

UNELOCKED SEQUENTIAL DATA SET: An unblocked sequential data set contains
one record in each block. The blocksize must be a multiple of 256
bytes. The record size must be equal or less than the block size. A
block can span one or more EDX records.

The following diagram illustrates the relationship of a data record of
300 bytes to a block size of 512 bytes in an unblocked data set.

< 512 byte block >

300 byte 212 bytes
data record unused

< 2 EDX records >

BLOCKED SEQUENTIAL DATA SET: In a blocked sequential data set a block
can contain multiple logical records. The block size must be a multiple
of 256 bytes. The record size must be equal to or less than the block
size. A block can span one or more EDX records.

The following diagram illustrates 6 data records of 80 bytes each within
a block of 512 bytes in a blocked data set.

Chapter 8. The $IAMUT1 Utility 8-23

Lo

3-26

< 512 byte block >
80 byte 80 byte 80 byte 80 byte 80 byte 80 byte |32
data data data data data data bytes
record record record record record record unused

< 2 EDX records >

Both the blocked and unblocked forms of sequential data sets, used by

the utility,

are compatible with the language processors,

data sets produced by $FSEDIT.

Sort/Merge and

If you use the EDX edit utilities to

prepare your data records for input, remember that these utilities put
one 80-byte line from $FSEDIT into a 128-byte S$FSEDIT record. Two of
these 128-byte records are then used to form one 256-byte EDX record.
When you use such a data set as sequential input for the LO (load) func-
tion, specify the record length as 128 and the block size as 256. If
vour indexed file is defined as having a record length of 80, yocu will
receive the message "TRUNCATION WILL OCCUR.™ This is acceptable because
Indexed Access Method strips off the extra bytes added by $FSEDIT.

The last block of a blocked sequential data set may not have enough
records for a full block. In this case, all of the unused space in the
block is set to binary zeroes.

Inveking the LOAD and REORGANIZE Functions

You can invoke the LOAD or REORGANIZE functions directly from the DF
command. If you invoke these functions, DF does not format the file
because LOAD and REORGANIZE will do it. If you do not invoke the LOAD
or REORGANIZE function, DF formats the file so yvou can load the file
using an application program or $IAMUT1 at a later time.

Notes:

1. You can use the LOAD/REORGANIZE command later to load the file, if
you do not invoke it from the DF command.

2. An application program cannot access an unformatted indexed file.

3. The prompt for the load/reorganize function occurs before the define
step.
5C34-0404-1

NP

NP—DEACTIVATE PAGING
The NP command directs that data paging be deselected the next time the
Indexed Access Method is loaded.

Page area sizes are not affected by this command.

NP Command Example

This example shows how to indicate data paging is to be deselected on
the next invocation of the Indexed Access Method.

ENTER COMMAND (?2): NP
DATA PAGING MARKED AS NOT ACTIVE
BECOMES EFFECTIVE ON NEXT LOAD OF $IAM

Chapter 8. The $IAMUT1 Utility 8-25

PG

PG—SELECT PAGING

The PG command directs that data paging be selected the next time the
Indexed Access Method is loaded.

Page area sizes are not affected by this command.

PG Command Example

This example shows how to indicate data paging is to be selected on the
next invocation of the Indexed Access Method.

ENTER COMMAND (?): PG

DATA PAGING MARKED AS SELECTED

BECOMES EFFECTIVE ON NEXT LOAD OF $IAM

SEE INDEXED ACCESS METHOD GUIDE CONCERNING
REMOVAL OF PAGING MODULES FROM STORAGE.

ENTER COMMAND (?):

8-26 S5C34-0404-1

PP

PP—DEFINE PAGING PARTITIONS

The PP command defines the amount of storage in each partition that the
Indexed Access Method should reserve for paging. Storage is actually
used for paging only when paging is active.

PP prompts you for the size of the paging area for each partition by
displaying the partition number and current paging area size for that
partition. Respond with a null entry (just press the Enter key) to
retain that size. Enter a new size to change the space allocation.
Sizes are displayed and entered in K bytes (1K = 1624%), and should be
entered as even numbers (multiple of 2K). If not, they are adjusted up
to the next even number. The new sizes do not take effect until the
next time the Indexed Access Method is loaded with paging active.

PP Command Example

This example sets the paging area size in partition 3 to 40K and
increases the paging area in partition 5 from 6K to 10K.

ENTER COMMAND (?): PP
PARTITION CURRENT NEW

0K

0K ¢

0K : 60

oK ¢

6K : 10

0K 3

0K

0K

PAGE AREA SIZE(S) RESET

BECOMES EFFECTIVE ON NEXT LOAD OF $IAM
TOTAL PAGE AREA SIZE IS 50K

SEE INDEXED ACCESS METHOD GUIDE CONCERNING
REMOVAL OF PAGING MODULES FROM STORAGE.

CONOUID LN

Notes:
1. The letter K is optional on input, and is assumed if missing.

2. The new total page area size is 50K and becomes effective on the
next LOAD of $IAM.

Chapter 8. The $IAMUT1 Utility 8-27

PS

PS—GET PAGING STATISTICS

8-28

The PS command displays data paging information about the currently exe-
cuting Indexed Access Method. It shows "hit" information for reads,
writes and overall.

The Indexed Access Method increments a "hit" counter each time a refer-
enced block is found in the paging area. It increments a "miss" counter
each time a referenced block is not found in the paging area. The PS
command displays these numbers, along with "hit percentages.”" Use the
hit percentages to determine how efficiently the paging area is being
used.

After the statistics are displaved, yvou have the option of resetting the
counters to zero so that a new set of paging statistics can be gathered.

PS Command Example

Display the current paging statistics and reset them.

ENTER COMMAND (?): PS

FUNCTION HITS MISSES HIT X%
READ 45678 81205 36
WRITE 2650 0 100
OVERALL 48128 81205 37

RESET STATISTICS (Y/N)? Y
STATISTICS RESET

SC34-0406-1

RE

RE—RESET PARAMETERS

RE resets the parameters set up by the SE command to their default val-
ues.

The following example shows a use of the RE command:

ENTER COMMAND (?): RE
PARAMETERS RESET

Chapter 8. The SIAMUT1 Utility 8-29

RO

RO—REORGANIZE INDEXED FILE

8-30

RO reorganizes a primary or secondary indexed file. It unloads an
indexed file filled by insert activity into an empty indexed file and
reorganizes the records to provide space for additional inserts.

This command requires two existing indexed files of the same type. Both
the input file and the output file must be primary indexed files, or
both must be secondary index files. Records are read sequentially from
the input file using the Indexed Access Method GETSEQ request. The
records are loaded into the output file in a manner similar to the ini-
tial load of the LO command.

All reserved and free space is retained as free space.

Reorganizing a secondary index does not reset the secondary key sequence
numbers during the reorganization, because it does not use the primary
file. The records are placed in another Indexed Access Method file
without any modification within the individual records.

The output indexed file must have been defined by using the SE or DF
commands before using the RO command. The SE Option 3 will format an
output file like the original file, or $VERIFY will show the number of
records in the file so that vou can set up an output file.

The record lengths of the two files need not be the same. Unloaded
records are truncated or filled with binary zeroes if record lengths
differ (see LO command). The key fields and key positions of the two
files must be the same; however, the other file specifications (SE
parameters) may differ.

INVOKING THE LOAD AND REORGANIZE FUNCTIONS FROM DF: You can invoke the
LOAD or REORGANIZE functions directly from the DF command. If you
invoke these functions, DF does not format the file because LOAD and
REORGANIZE will do that, thus saving time. If you do not invoke the
LOAD or REORGANIZE function, DF formats the file so you can load the
file using an application program or the L0 command.

Notes:

1. You can use the LOAD/REORGANIZE command later to load the file, if
you do not invoke it from the DF command.

2. An application program cannot access an unformatted indexed file.

3. The prompt for the load/reorganize function occurs before the define
step.

SC34-06406-1

RO

The following example shows use of the RO command:

ENTER COMMAND (?): RO

REORG ACTIVE

ENTER INPUT DATASET (NAME,VOLUME): IAMFILE,EDX003
ENTER OUTPUT DATASET (NAME,VOLUME): IAMFILZ2,EDX003
REORG IN PROCESS

END OF INPUT DATASET

100 RECORDS LOADED
REORG SUCCESSFUL

ENTER COMMAND (?): EN

Chapter 8. The $IAMUT1 Utility 8-31

SE

SE—SET PARAMETERS

8-32

SE prompts yvou for parameters that determine the structure and size of
the indexed file. An explanation of the SE command parameters follow
and an example of each is included with the description.

The parameter values entered are saved by $IAMUT1. This enables you to
reuse the SE command to change one or more parameters without having to
reenter all of them. The current values can be displayed by the DI com-
mand.

The SE command provides three methods of setting up an indexed file.

Option 1 Significant Parameters—Enter a minimal set of SE parameters.
The utility internally converts the smaller set to the com-
plete set.

Option 2 All Parameters—Enter the complete set of SE parameters.

Option 3 Parameters from Existing Data Set—Use the set of SE parame-
ters that were used previously to define an existing indexed
file.

Note: Information which is common to all three options appears near the
end of the SE description under "All Options" on page 8-39.

When you specify the SE command, you are prompted to select one of the
options as shown in the following display.

SET FILE DEFINITION PARAMETERS

0 = EXIT

1 = SIGNIFICANT PARAMETERS

2 = ALL PARAMETERS

3 = PARAMETERS FRCM EXISTING INDEXED DATASET
ENTER OPTION:

option 1
Option 1 prompts for a minimal set of parameters. It issues a prompt to
determine if a secondary index is being defined. If so, the secondary

file name, key size, and key position are requested. If a primary file
is being defined, different prompts are issued. $IAMUT1 internally con-
verts the option 1 parameters to option 2 parameters.

When the SE option 1 is invoked for the first time, the prompts and
default values are as follows (sample values are shown for parameters
that must be entered):

SECONDARY INDEX (Y/N)?: N
DEFAULT NEW VALUE
: 80

RECORD SIZE 0
KEY SIZE 0: 4
KEY POSITION 1:
BLOCKING FACTOR (RECORDS PER BLOCK) 1:
NUMBER OF BASE RECORDS : 20

0
ESTIMATED TOTAL RECORDS 24
TYPE OF INSERT ACTIVITY(C=CLUSTERED,R=RANDOM) C

.
.
.

$C36-06404-1

SE

On subsequent invocations of the SE option 1, the defaults are taken
from the parameter values since the last SE option 1 invocation. Option
1 and 3 values do not carry over to option 2.

The estimated total records value defaults to the last value, provided
this value equals or exceeds the current base records. Otherwise it
defaults to 1.2 times the current base records.

To set up a secondary index, enter the following:

SECONDARY INDEX (Y/N)?: Y

ENTER SECONDARY DATASET NAME (DS,VOL): FILEO1l,EDX002
SECONDARY KEY SIZE:10

SECONDARY KEY POSITION:36

Before you can define a secondary index, you must place an entry into
the directory for the associated primary index file and the primary file
must exist. The directory is searched to obtain the data set name and
volume of the associated primary file which will then be used to compute
the remainder of the secondary SE parameters.

Paramater Descriptions for Option 1

The attributes of the file are determined by the following SE command
parameters:

RECORD SIZE: The length, in bytes, of each record in the file.

KEY SIZE: The length of the key to be used for this file. The minimum
key length is 1. For primary files, the maximum key length is 254.

KEY POSITION: The position, in bytes, of the key within the record. The
first byte of the record is position 1.

BLOCKING FACTOR (RECORDS PER BLOCK]): The total number of records to be
placed in an Indexed Access Method block. This value and the record
size will be used to compute the actual Indexed Access Method block
size, rounded up to the next 256-byte value. The rounding up action may
increase the actual blocking factor.

NUMBER OF BASE RECORDS: The number of indexed record slots to be set up
in the indexed file for LOAD mode. The number of base records must be
greater than =zero to allow the file to load any data records. These
record slots can be loaded with data records by $IAMUT]1 or by a PUT
request after either a LOAD or PROCESS request.

ESTIMATED TOTAL RECCRDS: The total number of records vou expect the
indexed file to contain after insert processing activity.

TYPE OF INSERT ACTIVITY(C=CLUSTERED,R=RANDOM): Inserts are considered
clustered if most of the inserts occur at only certain places in the
file. The following diagram represents clustered inserts by vertically
stacked bullets.

Chapter 8. The $IAMUT1 Utility 8-33

SE

Blocks
Inserts . .o . .
The next diagram represents randomly inserted records. Inserts are con-

sidered random if few or no points in the file have a concentration of
activity; inserts are expected throughout the file.

Blocks

Inserts ce e e .

SECONDARY KEY SIZE: The length, in bytes, of the secondary key within
the primary record. For secondary keys the maximum key length is 250.

SECONDARY KEY POSITICN: The position, in bytes, of the secondary key
within the primary record.

Option 2

The following list shows the default values for parameters when the SE
command is invoked the first time (all values are decimal):

BASEREC NULL
BLKSIZE 0
RECSIZE 0
KEYSIZE 0
KEYPOS 1
FREEREC 0
FREEBLK 0
RSVBLK NULL
RSVIX 0
FPOOL NULL
DELTHR NULL
DYN , NULL

On subsequent invocations of the SE command, the option 2 defaults are
taken from the parameter values set according to the last SE command,
regardless of the option used. If the default value is acceptable,
press the enter key when prompted for the parameter. If you wish to
change the value for any parameter, enter the new value in response to
the prompting message.

The new value becomes the new default value for the current $IAMUT] ses-
sion. The parameters for which a null can be specified are BASEREC,
FREEREC, FREEBLK, RSVBLK, RSVIX, FPOOL, DELTHR, and DYN. To specify a
null parameter after the original default has been modified, enter an
ampersand (&) in response to the prompting message.

8-34 SC364-06406-1

SE

The following example shows a use of the SE command in establishing the
size and structure of an indexed file.

PARAMETER DEFAULT NEW VALUE
BASEREC NULL :100
BLKSIZE 0 :256
RECSIZE 6 :80
KEYSIZE 0 :28
KEYPOS 1 :1
FREEREC 0 :1
FREEBLK 0 :10
RSVBLK NULL :
RSVIX 0 :
FPOOL NULL
DELTHR NULL

DYN NULL

Following the response to the DYN parameter, the following list is dis-
played. The list shows the details of how the indexed file will be con-
structed using the parameters just entered.

TOTAL LOGICAL RECORDS/DATA BLOCK:
FULL RECORDS/DATA BLOCK:
INITIAL ALLOCATED DATA BLOCKS:
INDEX ENTRY SIZE:

TOTAL ENTRIES/INDEX BLOCK:
FREE ENTRIES/PIXB:

RESERVE ENTRIES/PIXB(BLOCKS):
FULL ENTRIES/PIXB:

RESERVE ENTRIES/SIXB:

FULL ENTRIES/SIXB

DELETE THRESHOLD ENTRIES:

FREE POOL SIZE IN BLOCKS:

OF INDEX BLOCKS AT LEVEL 1
OF INDEX BLOCKS AT LEVEL 2:
OF INDEX BLOCKS AT LEVEL 3:

DATA SET SIZE IN EDX RECORDS:

w U

.

W FNVONYNOTORNNONW

~

Chapter 8. The $IAMUT1 Utility 8-35

SE

8-36

If a secondary file is being defined, the list of prompts is the same
except for the following:

the reply to the prompt "SECONDARY INDEX (Y/N)?:™ is Y

the secondary data set name is requested

the RECSIZE prompt is omitted; the Indexed Access Method computes
the correct record size

SECONDARY INDEX (Y/N): Y
ENTER SECONDARY DATASET (NAME,VOLUME):

Parameter Daescriptions for Option 2

The attributes of the file are determined by these SE command
parameters:

BASEREC

BLKSIZE

RECSIZE

KEYSIZE

KEYPOS

FREEREC

FREEBLK

SC34-0404-1

The estimated number of records to be initially loaded into
the file in ascending key sequence. These records can be
loaded by $IAMUT1 or by a PUT request after either a LOAD or
PROCESS request.

The number of records must be greater than zero to allow the
file to load any data records.

If DYN is not specified, BASEREC defaults to null, resulting
in an error condition. In this case, specify BASEREC as a
positive number.

If DYN is specified, BASEREC defaults to one.

The length, in bytes, of blocks in the file. It must be a
multiple of 256. The Indexed Access Method uses 16 bytes in
each block for a header.

The length, in bytes, of each record in the file. Record
length must not exceed block length minus 16.

The length of the key to be used for this file. The minimum
key length is 1. For primary files, the maximum key length is
254. For a secondary index, the maximum key length is 250.

The position, in bytes, of the key within the record. The
first byte of the record is position 1.

The number of free records to be reserved in each block. It

must be less than the number of records per block (block size
minus 16, divided by record size). If not, an error message

is issued. The calculation is adjusted to ensure that there

is at least one allocated record in the block; that is, there
cannot be 100% free records.

FREEREC defaults to zero.

The percentage (0-99) of each cluster to reserve for free
blocks. The percentage calculation result is rounded up so
that at least one free block results. The calculation is
adjusted to ensure that there is at least one allocated block
in the cluster; that is, there cannot be 100% free blocks.

FREEBLK defaults to zero.

RSVBLK

RSVIX

FPOOL

DELTHR

SE

The percentage of the entries in each primary index block to
reserve for cluster expansion. These reserved entries are
used to point to new data blocks as they are taken from the
free pool to expand the cluster. The result of the calcu-
lation is rounded up so that any non-zero specification indi-
cates at least one reserved index entry. The calculation is
adjusted to ensure that there is at least one allocated block
in the cluster.

Enter a null character (&) for this prompt if you do not want
initial reserved blocks and do not want the indexed access
method to create reserved blocks as records are deleted and
blocks become empty. Specify a value of zero for this prompt
if you do not want initial reserved blocks but you do want the
indexed access method to create reserved blocks as records are
deleted and blocks become empty (See the DELTHR prompt).

Note that the sum of the FREEBLK and RSVBLK prompts must be
less than 100 or an error message is issued. This value

defaults to null if the DYN parameter is not specified. If
the DYN parameter is specified, this value defaults to zero.

The percentage (0-99) of the entries in each second level
index block to reserve for use in case of cluster splits. A
cluster split is required when there is no room to insert a
new record in a cluster. Each cluster split uses one reserved
entry of the second-level index block to create a new cluster
with blocks from the free pool. The result of this calcu-
lation i1s rounded up so that any non-zero specification
indicates at least one reserved index entry. The calculation
is adjusted so that there is at least one unreserved entry in
each second level index block. This value defaults to zero.

The percentage (0-100) of the maximum possible free pool to
allocate as determined by the RSVIX and RSVBLK parameters.

The RSVBLK and RSVIX prompts result in a file structure set up
to draw on the free pool for expansion.

If insertion activity is evenly distributed throughout the
file, every reserve entry of every index block can be used.
The number of blocks drawn from the free pool to support this
unlikely condition is the maximum free pool size needed for
the file. In more realistic cases, insertion activity is not
evenly distributed throughout the file, so fewer free blocks
are needed. The percentage specified here represents the
eveness of the distribution of inserted records. Specify a
large number (90, for example) if vou expect insertions to be
evenly distributed. Specify a small number (20, for example)
if insertions are anticipated to be concentrated in specific
key ranges.

If a null character (&) is specified for this prompt, a free
pool is not created for this indexed file (vou can use the DYN
parameter to override this and create a free pool). If zero
is specified, an empty free pool is created. Blocks can then
be added to the free pool as records are deleted and blocks
become empty (see the DELTHR prompt explanation). If vou do
not specify a null for this prompt, the RSVBLK must not be
null and/or the RSVIX must be non-zero or an error is
returned. Conversely, if the RSVBLK and/or RSVIX is non-zero,
FPOOL must not be null or an error is returned.

The default for FPOOL is a null; no free pool is created.

The percentage (0-99) of blocks to retain in the cluster as
records are deleted and blocks made available. This is known
as the delete threshold. MWhen a block becomes empty, it is
first determined if the block should be given up to the free
pool by checking the response to this prompt. If the block is
not given up to the free pool, it is retained in the cluster,
either as a free block or as an active empty block. The

Chapter 8. The S$IAMUT1 Utility 8-37

SE

8-38

result of this calculation is rounded up so that any non-zero
specification indicates at least one block. The calculation
is adjusted to ensure that the cluster always contains at
least one block.

If the DELTHR parameter is specified as null (&) and DYN is
not specified, DELTHR defaults to the number of allocated
blocks in the cluster plus one half of the value calculated by
the FREEBLK prompt. If the DELTHR parameter is specified as
null and a value is specified for the DYN parameter, DELTHR
defaults to =zero.

DYN The number of blocks to be assigned to, or added to, the free
pool. When DYN is used with other free pool parameters, the
free pool size is calculated as specified by the FPOOL parame-
ter plus the value specified for DYN.

If DYN is specified without the FPOOL parameter, the free pool
is the number of blocks specified for DYN.
If DYN is specified, other parameters assume the following
default values when specified as null:

BASEREC =1

BLKSIZE = 0

RECSIZE = 0

KEYSIZE = 0

KEYPOS =1

FREEREC = 0

FREEBLK = 0

RSVBLK = NULL

RSVIX =0

FPOOL = NULL

DELTHR = NULL
When you specify the number of blocks for the DYN parameter,
remember that the Indexed Access Method can store several data
records in a block, depending on the record size and block
size yvou specify. Each block contains a 16 byte header. The
number of records that can be contained in each block can be
calculated by the following formula:

Records per block = (BLKSIZE-16)/RECSIZE
In the above calculation, use the integer quotient only; dis-
card any remainder.
Blocks can be taken from the free pool for use as index blocks
as well as for data blocks, so provide some extra blocks for
these. A reasonable estimate of the number of index blocks
required is 10%. Thus, if you know the number of data records
vou would like to add to the file, you can calculate the num-
ber of blocks to specify for the DYN parameter as follows:

DYN = (Number of records to insert) x 1.1

(Records per block)
S$C34-0404-1

SE

Option 3

Option 3 issues a prompt to determine what existing file to obtain the
parameters from. The parameters can be set exactly according to the
parameters of the original file by replying Y to the appropriate prompt.
Otherwise, the parameters will be set based on the current condition of
the existing data set to reflect insert activity.

SECONDARY INDEX (Y/N)?: N

NAME OF EXISTING INDEXED DATA SET (NAME,VOLUME): IAMFILE,EDX003
NEW PARAMETERS EXACTLY SAME AS ORIGINAL PARAMETERS (Y/N) ? Y

DATA SETSIZE IN EDX RECORDS: 17
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

All Options

For all three options, the prompts are followed by the option of enter-
ing the DF (define file) function directly from the SE command. This
simplifies the file definition process. The prompt is as follows:

CREATE/DEFINE FILE (Y/N) 7 Y
ENTER DATASET (NAME,VOLUME): FILEO1l,EDX003
NEW DATASET IS ALLOCATED

The immediate write-back option is then queried:

DO YOU WANT IMMEDIATE WRITE-BACK? Y

Chapter 8. The $IAMUT1 Utility 8-39

SE

The next prompt allows you the option of invoking the load or reorganize
functions as follows:

INVCKE LOAD(L), REORGANIZE(R) OR ENDCE) AFTER CURRENT FUNCTION? L
DEFINE IN PROGRESS

Size calculations are performed using the parameter values you specify.

After the values are entered, the following is displayed showing the
size and structure of the defined indexed file.

DATA SET SIZE IN EDX RECORDS: 17
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

CREATE/DEFINE FILE (Y/N)?:

8-40 5C34-06064-1

UN

UN—UNLOAD INDEXED FILE

UN unloads an indexed file to a sequential file. Records are read from
the indexed file with the Indexed Access Method GETSEQ request and writ-
ten into the sequential file with the EDL WRITE instruction. If a sec-
ondary indexed file is specified, the primary file will be unloaded in
secondary keay sequence.

You can unload a secondary index independent of its primary if you first
use the UE subcommand of the DR command of $IAMUT1 to set the independ-
ent indicator. You must turn the independent indicator off when the
unload operation is completed.

The record lengths of the two files need not be the same. Unloaded
records are truncated or padded with zeroes if the records lengths of
the two data sets differ. For further detail, see the LO command.

Records are placed into the sequential file in ascending key sequence as
indicated by the indexed file. Unloaded records can be blocked or
unblocked. For a description of blocked and unblocked data sets, see
"Blocked and Unblocked Sequential Data Sets"™ on page 8-23.

The UN command prompts you for the block size of the file to be
unloaded. A null response or a value less than or equal to the record
size causes the indexed file to be unloaded to an unblocked sequential
file. The sequential file block size is calculated as the record size
rounded up to the next 256-byte multiple value. If you want the file to
be unlocaded to a blocked sequential file, specify the actual block size
value to the prompt "OUTPUT BLOCK SIZE"™. The record and block sizes of
subsequent output sequential files are assumed to be the same as the
initial output sequential file.

If the indexed file contains more records than are allocated in the
sequential file, you are given the option to continue unloading to
another sequential file. If you choose to continue unloading, you are
prompted for the name of the file and volume to use to continue the
unload operation. The unload operation continues, putting the records
read from the indexed file into the new sequential file. If the end of
the output file is reached and you choose not to continue, the unload
operation ends.

Note: Do not specify the same file for input and output.

Chapter 8. The $IAMUT1 Utility 8-41

"UN

The following example shows the use of the UN command to put 80-byte
records into a blocked sequential file.

ENTER COMMAND (?): UN

UNLOAD ACTIVE

ENTER INPUT DATASET (NAME,VOLUME): EDXF02,AM&VOL
ENTER OUTPUT DATASET (NAME,VOLUME): SEQO01l,EDX003
OQUTPUT RECORD ASSUMED TO BE 80 BYTES. 0K?: Y
ENTER OUTPUT BLOCK SIZE (NULL = UNBLOCKED): 256
UNLOAD IN PROCESS

END OF INPUT DATASET
100 RECORDS UNRLOADED

UNLOAD SUCCESSFUL

ENTER CCMMAND (?): EN

8-62 S5C34-064064-1

$IAMUT1 COMPLETION CODES

Completion
Code Condition
-1 Successful completion
7 Link module in use
8 Load error for $IAM
12 Data set shut down
13 Module not included in load module $IAM
23 Get storage error - IACB
30 Inconsistent free space parameters were specified.
31 FCB WRITE error during IDEF processing,
check system return code
32 Blocksize not multiple of 256
34 Data set is too small
36 Invalid block size during file definition processing
37 Invalid record size
38 Invalid index size
39 Record size greater than block size
40 Invalid number of free records
61 Invalid number of clusters
42 Invalid key size
43 Invalid reserve index value
1 Invalid reserve block value
65 Invalid free pool value
46 Invalid delete threshold value
47 Invalid free block value
48 Invalid number of base records
49 Invalid key position
50 Data set is already opened for exclusive use
51 Data set opened in load mode
52 Data set is opened, cannot be opened exclusively
564 Invalid block size during PROCESS or LOAD
55 Get storage for FCB error
56 FCB READ error, check system return code
60 LOAD mode key is equal to or less than previous
high key in data set
61 End of file in LOAD mode
62 Duplicate key found in PROCESS mode

Note:

For completion codes number 30 and 37 through 49, check

vour parameters for consistency.

Chapter 8. The SIAMUT1 Utility 8-43

Completion
Code Condition
100 READ error, check system return code
101 WRITE error, check system return code
110 WRITE error - data set closed
201 Request failed because the primary file for this
secondary could not be opened. Check system
return code
210 Request failed because $DISKUT3 could not be
loaded
230 Directory read error for $IAMDIR, verify that
directory exists
231 SIAMQCB not found, check sysgen for include
of $IAMQCB
232 Directory open error for $IAMDIR, verify that
directory exists
233 Directory related primary request is a primary entry
234 Directory error - DSNAME,VOL not found in $IAMDIR
235 Directory resource has not been requested
239 Directory write error. Refer to previously displaved
message

8-44 SC36-0404-1

SVERIFY

CHAPTER 9. THE $&VERIFY UTILITY

SVERIFY checks the validity of an indexed file and prints control block
and free space information about the file on a user-specified printer
(such as $SYSPRTR).

This $VERIFY description contains the following topics:

$VERIFY Functions
Invoking S$VERIFY
SVERIFY Example
$VERIFY Messages

$VERIFY Storage Requirements.

FUNCTIONS

With $VERIFY you can:

Verify that all pointers in an indexed file are valid and that the
records are in ascending sequence by key.

Verify the contents of a secondary index against the primary file
and report any discrepancies.

Print a formatted File Control Block (FCB) listing, including the
FCB Extension block. The FCB Extension block contains the original
file definition parameters.

Note: The FCB Extension block does not exist and file definition
parameters are not saved in the FCB for indexed files defined prior
to version 1.2 of the Indexed Access Method. The reorganize (R0O)
SIAMUT1 command can be used to reformat those files by adding an FCB
Extension block to make use of all the $VERIFY facilities.

Print a report showing the distribution of free space in your file.

Determine if any space is available for inserts.

Chapter 9. The $VERIFY Utility 9-1

INVOKING SVERIFY

$VERIFY

$VERIFY can be invoked from either a terminal or a program coded in
Event Driven lLanguage. You supply the same input in either case. If
vou invoke $VERIFY from a terminal, supply the input required in
response to prompts. If you invoke $VERIFY from a program, supply the
input required as parameters passed to the program.

INPUT

This section describes the input required to execute $VERIFY.

cutput printer The name of a printer to which the report should
be directed. The default printer is $SYSPRTR.

nama, volunme Data set and volume names for the primary index
file or secondary index to be processed. (Ensures
that all chains within this data set are correct).

option The type of processing you want $VERIFY to do.
The three options are:

Y The FCB and the FCB Extension blocks are for-
matted and printed. The file is verified. A
free space report is printed.

N The FCB and the FCB Extension blocks are for-
matted and printed. The file is verified. No
free space report is printed.

F The FCB and the FCB Extension blocks are for-
matted and printed. No free space report is
printed, but the '# OF AVAILABLE BLOCKS IN
FREEPOOL' entry can be examined to determine if
space is available for inserts; if the value is
greater than zero (>0), space is available.

cross verify option The type of check you want $VERIFY to do between
the primary index files and secondary indexes.
The options are:

Y a. If a primary index file was specified above
as the data set name, this will check that all
entries in the primary index file are in the
secondary index.

b. If a secondary index was specified above as
the data set name, this will check that all
entries in the secondary index are in the asso-
ciated primary indexed file.

N Do not perform any cross verification.
secnama, voluma Data set and volume names of the secondary index

to be verified. Specify 'ALL' to verify all sec-
ondary indexes associated with the primary file.

9-2 5C€34-0404-1

INVOKING $VERIFY FRCM A TERMIMAL

Load the $VERIFY program as follows:

> $L $VERIFY

When S$VERIFY begins execution, yvou are prompted for the parameters
described previously. A complete example of a SVERIFY invocation from a
terminal is shown under "SVERIFY Example" on page 9-5.

INVOKING $VERIFY FROM A PROGRAM

$VERIFY can be invoked by EDL programs with the LOAD instruction. The
only required parameter is the address of a 38-byte area that contains:

Hex Length

Displacement (Bytes)
Data set name 0 8
Volume name 3 6
Detail listing request E 1
(Y, N, or F)
Secondary file cross verify F 1
(Y or N)
Secondary index file name 10 8
Secondary index file volume 18 6
Output Printer 1E 8

The next example shows the use of $VERIFY to verify a file named IAMFILE
in the volume EDX002. A file verification and free space report are
requested. The secondary file named SECIAM in the volume EDX002 is also
verified.

Chapter 9. The $VERIFY Utility 9-3

9-4

EXAMPLE PROGRAM START
START EQU *
LOAD SVERIFY,PARMLIST,EVENT=VERIFY
WAIT VERIFY WAIT FOR POST COMPLETE
PROGSTOP
PARMLIST EQU ¥
DSNAME DC CL8'IAMFILE" INDEXED DATA SET NAME
VOLUME DC CL6'EDXOO02? VOLUME NAME
DETAIL DC cLi'y? PROCESSING OPTION
SECONDRY DC cL1'Yy! SECONDARY FILE VERIFICATION
SECDSN DC CL3'SECIAM' SECONDARY FILE NAME
SECVOL DC CL6"EDXC02" SECONDARY FILE VOLUME
PRINTER DC CL8'$SYSPRTR' OUTPUT PRINTER
¥NOTE: BLANKS CAUSE DEFAULT TO $SYSPRTR
VERIFY ECB -1 EVENT CONTROL BLOCK
ENDPROG
END

SC34-0404-1

SVERIFY EXAMPLE

This section presents the input and output for an example run of
SVERIFY, along with descriptions of the material presented.

$YERIFY is invoked from the terminal as follous:

1{> SL $VERIFY
J|INDEXED ACCESS METHOD FILE VERIFICATION PROGRAM ACTIVE

[31]ENTER NAME OF OUTPUT PRINTER. (BLANK = $SYSPRTR):

[41] (NAME,VOLUME): DPRIMI1,EDXIAM

{51|D0 YOU WANT DETAIL LISTING? (Y/N/F/2)7: Y

[61|D0 YOU WISH TO VERIFY SECONDARY VS PRIMARY INDEXES (Y/N):N
[71{VERIFICATION COMPLETE, 0 ERROR(S) ENCOUNTERED
[81|$VERIFY ENDED

[
[

I

[1] In this example, the first line loads and executes $VERIFY.

[2] The second line is printed by the program to indicate that execution
has begun.

[3] This line allows you to direct the output to a particular printer.
You can also press the Enter key without supplying a device name and the
output will be printed on $SYSPRTR.

[4] In the fourth line, the program prompts for the data set name and
volume of the indexed file to be referenced by the program. In this
example the reply indicates that the data set is DPRIM1l, located on vol-
ume EDXIAM.

[51 In the fifth line, the program prompts for the amount of detail to
be provided as output. The response of Y indicates that maximum detail
is to be provided.

[6] In the sixth line, the program prompts for verification of secondary
indexes. The response of N indicates that secondary indexes are not to
be verified. As the program executes, it provides output to the
printer, as shown in the example outputs that follow.

[7]1 Finally, messages are displayed to indicate the number of errors
found. :

[8] This information message is provided stating that the program has
ended.

Chapter 9. The $VERIFY Utility 9-5

FCB REPORT

9-6

The first page of the example output from $VERIFY follows. This page is
always printed.

VERIFY REPORT. FILE = DPRIM1 , VOLUME = EDXIAM

FLAGL : FILE FILE
LOADED TYPE
1 (0=PRPQ, 1=PP)
3636 36 3 36 363 K 36 D6 3 56 3K 2 K K 36 56 3 H 36 56 3 2 3 K K 36 3 K 6 36 36 3 2 3 3 % 3¢ %

KEY SIZE = 6
KEY POSITION = 1
BLOCK SIZE = 256
RECORD SIZE = 60
INDEX ENTRY SIZE = 10
RBN OF HIGH LEVEL INDEX BLOCK IN USE = 2
RBN OF LAST DATA BLOCK IN USE = 786
RBN OF FIRST DATA BLOCK IN USE = 6
TOTAL RECORDS PER DATA BLOCK = 4
TOTAL ENTRIES PER INDEX BLOCK = 24
LOAD POINT VALUE FOR A DATA BLOCK = 4
LOAD POINT VALUE FOR AN INDEX BLOCK = 24

3636 36 3 3 3 X 3 3 33 XK 3K 3K 3 5 2 3 3 36 3 K 3K K 3 3 3 K 2 X 2 XK 6 K 2 % 2 %
FLA<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>