
BERE Series/1

SC34-0404-1 LICENSED
PROGRAM

File No. $1-30

IBM Series/1

Event Driven Executive

Indexed Access Method

Version 2 Guide

Program Numbers: 5719-AM4
5719-UT5

- Series/1

 §¢34-0404-1 _ LICENSED
PROGRAM

File No. $1-30

IBM Series/1

Event Driven Executive
Indexed Access Method

Version 2 Guide

Program Numbers: 5719-AM4
5719-UT5

Second Edition (March 1984)

This 15 a major revision of, and makes obsolete, $C34-0404.
This edition applies to the Event Driven Executive Indexed
Access Method Version 2 Modification Level 0: Program Number
5719-AM4, until otherwise tndicated by new editions or technical
newsletters.

Use this publication only for the purpose stated in the Preface.

Changes are periodically made to the information herein; any
such changes will be reported in subsequent revisions or Techni-~
cal Newsletters.

It is possible that this material may contain reference to, or
information about, IBM products (machines and programs), pro-
gramming, or services that are not announced in your country.
Such references or information must not be construed to mean
that IBM intends to announce such IBM products, programming, or
services in your country.

Publications are not stocked at the address below. Requests for
copies of IBM publications should be made to your IBM represen-
tative or the IBM branch office serving your locality.

This publication could contain technical tnaccuracies or
typographical errors. <A form for reader's comments is provided
at the back of this publication. If the form has been removed,
address your comments to IBM Corporation, Information Develop-
ment, Department 28B, P. 0. Box 1328, Boca Raton, Florida 33432.
IBM may use or distribute any of the information you supply in
any way it believes appropriate without incurring any obligation
whatever. You may, of course, continue to use the information
you supply.

(c) Copyright International Business Machines Corporation 1981,
1984

PREFACE

The material in this section 1s a guide to using this book. It defines
the purpose, audience, and content of the book as well as listing aids
for using the book and background materials.

PURPOSE

The purpose of this publication is to describe how to use the Indexed
Access Method Version 2 to set up indexed files and to develop applica-
tion programs using indexed files.

AUDIENCE

This manual is intended for use by:

@ Application designers to design applications which use the Indexed
Access Mathod Version 2.

® Application programmers to develop applications which use the
Indexed Access Method Version 2.

Applications for the Series/l can be developed in several languages.
Unless otherwise noted in this section, material in this book is
intended for use in the development of applications in any of the fol-
lowing languages:

° COBOL

° EDL

° PL/I.

HOW THIS BOOK IS ORGANIZED

This book describes the Indexed Access Method in the following order:

e Chapter 1, “Introduction” provides an overvien of the Indexed
Access Method.

® Chapter 2, “Using the Indexed Access Method,” provides a brief
description of what indexed files are, how to set up an indexed
file, and application program request statements.

e Chapter 3, "Defining Primary Index Files,” describes the format of
the primary index file and how to use the $IAMUTL utility to set up
your tndexed files.

® Chapter 4, “Loading the Primary Index File,” describes loading data
records into a primary index file using an application program.

© Chapter 5, "Building a Secondary Index,™ provides information on
using secondary keys, what a secondary index is and does, and how to
set up and load a secondary index.

e Chapter 6, "Processing the Indexed File," describes how to process
the indexed file with an application program.

e Chapter 7, “Coding The Indexed Access Method Requests,” provides
information needed to code EDL applications which use the Indexed

Preface 1171

AIDS IN

Access Method. This chapter is intended only for EDL application
davelopers.

® Chapter 8, "The SIAMUTL Utility,” provides information needed to use.
SIAMUTL, including the completion codes it generates.

@ Chapter 9, "The SVERIFY Utility,” provides information needed to use
SVERIFY.

® Chapter 10, "Storage and Performance Considerations" describes the
storage and performance characteristics of the Indexed Access Method
and how to tailor the Indexed Access Method to the processing
requirements of your installation.

® Chapter 11, "Error Recovery"™ describe some of the error recovery
procedures available for use with Indexed Access Method
applications.

® Chapter 12, “Installing the Indexed Access Method," provides an
overview of the installation process.

e Appendix A, "Summary of Calculations,” provides a summary of calcu-
lations for calculating the various blocks which make up indexed

files.

e Appendix B, "Preparing Indexed Access Method Programs,™ provides an
overview of preparing an Indexed Access Method application anda
sample SJOBUTIL procedure for an EDL application.

e Appendix C, "Coding Examples,™ provides comprehensive examples of
Indexed Access Method programs. This appendix 1s for application
developers using EDL, COBOL, or PL/I as their application program~-
ming language.

USING THIS PUBLICATION

Illustrations in this book are enclosed in boxes. Many illustrations
display screens generated while using the Event Driven Executive system.
In those cases where the actual data exceeds the size of the box, the
information may be illustrated in a modified format.

In display screens appearing in this manual, operator input is shown in
bold type. This highlighting 1s for illustrative purposes only, to dis-~
tinguish data entered by the operator from that generated by the system.

tv $034-0404-1

SYSTEM PUBLICATIONS

e IBM Series/l Event Driven Executive:

_ Qperator Commands and Utilities Reference, 5034-0444

- Language Reference, 5034-0442

_ Messages and Codes, $C34-0445

_ Internal Design, LY34-0246

- Installation and System Generation Guide, $C034-0436

— Operation Guide, $C34-0437

_ Language Programming Guide, 5C34-0438

_ Communications Guide, 5034-0443

~ Customization Guide, $C34-0440

_ Problem Determination Guide, $C034-0439

RELATED PUBLICATIONS

See the Event Driven Executive Library Guide and Common Index, $C34-0441
for detailed information on related publications.

SUBMITTING AN APAR

If you have a problem with the Series/l Event Driven Executive services,
you are encouraged to fill out an authorized program analysis report
CAPAR) form as described in the IBM Series/l SoftwareService Guide,
GC34-0099.

Preface v

vi $C34-0404-1

CONTENTS

Chapter 1. Introduction i-1
What The Indexed Access Method Does 1-1
Indexed Access Method Features) 1-1
Devices Supported 1-3
Languages Compatible With Indexed Access Method 1-4
Components of Indexed Access Method 1-4

Chapter 2. Using the Indexed Access Method 2-1
Your Data Record 2-1
Setting Up An Indexed File Using S$IAMUT1 2-2
Processing The Indexed File 2-6

Summary 2-8

Chapter 3. Defining Primary Index Files 3-1
Primary Index Files 3-1

Data Record Primary Key 3-2 .
Random and Clustered Record Inserts 3-3
Defining The File Structure With SIAMUT1 3-4

Designing Indexed Files Using S$IAMUT1 - Option 1 3-5
Option 1 3-5

Desianing Indexed Files Using S$IAMUT1 ~- Option 2 3-7
Option 2 3-7 |

Indexed Access Method Blocks 3~/7
Data Blocks 3-9

Free Space 3-10
Index Blocks 3-13
Primary Index Blocks (PIXB) 3-13
Second-level Index Blocks (SIXB) 3-17
Higher-level Index Block CHIXB) 3-19
Free Pool 3-20

File Control Block 3-21
File Structure Types 3-21
Option 2 Examples 3-23

Example 1: Allocating Free Records 3-24
Example 2: Allocating Free Records and Free Blocks 3-26
Example 3: Allocating Reserved Data Blocks 3-28
Example 4: Allocating Reserved Index Entries 3-30
Example 5 - Defining a Totally Dynamic File 3-33

Designing Indexed Files Using SIAMUT1 - Option 3 3-35
SIAMUT1 - Option 3 3-36

Defining, Creating, and Loading a File ~- Summary 3-37

Chapter 4. Loading The Primary Index File 4-1
Loading the Primary Index File 4-1

Loading Base Records using SIAMUT1 4-3
Loading Base Records From An Application Program 4-5
Loading Base Records From a Sequential File in Random Order 4-5

Chapter 5. Building a Secondary Index 5-1
Secondary Keys 5-l |
The Directory 5-2

Allocating and Inserting Entries in a Directory 5-3
Secondary Index 5-7

Defining and Loading A Secondary Index 5-8
Example 1: Defining A Secondary Index Using SIAMUT1 5-10
Option 1 5-10
Qption 2 5-12
Option 3 5-14

Loading a Secondary File With an Application Program 5-16

Chapter 6. Processing The Indexed File 6-1
Connecting and Disconnecting the Indexed File 6-1

Connecting 6-2
Disconnecting 6-2

Accessing the Indexed File 6-4
Direct Reading 6-4
Direct Updating 6-5
Sequential Reading 6-5
Sequential Updating 6-6
Inserting Records 6-7

Contents vii

Vill

Deleting Records 6-7
Extracting Indexed File Information 6-8

Maintaining the Indexed File 6-9
File Backup and Recovery 6-9
Recovery Without Backup 6-10
Reorganizing an Indexed File 6-10
Dumping an Indexed File 6-10
Deleting an Indexed File 6-11
Verifying an Indexed File 6-11

Chapter 7. Coding the Indexed Access Method Requests 7-1
Request Functions Overvien 7-2

Coding Indexed Access Method Requests 7-3
CALL Function Descriptions 7-5

DELETE - Delete Record 7-5
DISCONN - Close File 7-8
ENDSEQ - End Sequential Processing 7-10
EXTRACT - Get File Information 7-12
GET - Get Record 7-15
GETSEQ - Get Record (Sequential Mode) 7-18
LOAD - Open File for Record Loading 7-21
PROCESS - Open File 7-25
PUT - Put Record into File 7-29
PUTDE - Delete Previously Read Record 7-31
PUTUP - Update Record 7-33
RELEASE - Release Record 7-35

EDL CALL Functions Syntax Summary 7-36
Indexed Access Method Return Codes Summary 7-37

Chapter 8. The SIAMUT1 Utility 8-1
SIAMUTIL 8-2
SIAMUT1 Commands 8-3
Br—Tailor the Indexed Access Method Buffers 8-4
DF—Define Indexed File 8-6
DI—Display Parameter Values 8-9
DR—Invoke Secondary Index Directory Functions 8-10
AL——-Allocate Directory 8-11
DE—Delete Directory Entry 8-12
EN——End Directory Function 8-13
TE—Insert Entry 8-14
LE—List Entries 8-15
UE—Update Directory Entry 8-17
EC—-Control Echo Mode 8-19
FF—Display Existing Indexed File Characteristics 8-20
LO—Load Indexed File. 8-22
NP—Deactivate Paging 8-25
PG—Select Paging 8-26
PP—Define Paging Partitions 8-27
PS—Get Paging Statistics 8-28
RE—Reset Parameters 8-29
RO—Reorganize Indexed File 8-30
SE—-Set Parameters) 8-32
UN—Unload Indexed File 8-41

SIAMUTI Completion Codes 8-43

Chapter 9. The $VERIFY Utility 9-1
SVERIFY Functions 9-1
Invoking $SVERIFY 9-2
SVERIFY Input 9-2
Invoking SVERIFY From a Terminal 9-3
Invoking SVERIFY From a Program 9-3

SVERIFY Example 9-5
FCB Report 9-6
FCB Extension Report 9-8
Free Space Report 9-9

SVERIFY Messages 9-11
File Error Messages 9-11
Error recovery procedure 9-12
Other Messages 9-12

SVERIFY Storage Requirements 9-12
Using Default Working Storage Requirements 9-12
Modifying Working Storage Requirements 93-13
Summary 9-13

S$C34-0404-1

Chapter 10. Storage and Performance Considerations 10-1
Determining Storage Requirements) 10-1

The Indexed Access Method Packages 10-1
Indexed Access Mathod Storage Environment 10-2

Performance 10-3
Data Paging 10-3
Other Performance Considerations 10-6

Chapter ll. Error Recovery Ill-1
Handling Errors ll-l

Error Exit Facilities Ii1-1
System Function Return Codes 11-3
The Data-Set-Shut-Down Condition 11-3
SILOG - Error Logging Facility 11-4
Deadlocks and the Long-Lock-Time Condition 11-5
Verifying Requests and Files 11-6

Chapter l2. Installing the Indexed Access Method le-1
Installation Procedures 12-1

Installing The Indexed Access Method i2-l
Assembling And Executing The Installation Verification Program 12-2

Appendix A. Summary of Calculations A-l1

Appendix B. Preparing Indexed Access Method Programs B-1
A Sample SJOBUTIL Procedure and Link-Edit Control Data Set B-2

Appendix ¢C. Coding Examples cC-1
EDL Indexed Access Method Coding Example C-1
EDL Indexed Access Method Coding Example C-2
COBOL Indexed Access Method Coding Example C-6
PL/I Indexed Access Method Coding Example C-13

Index xX-l

Contents ix

x $C€34-0404-1

b
e
p
e
p
e

N
M
D
W
O
D
D
G
W
A
G
H
A
G
A
G
O
G

f
t
f
t
t
t
¢
t
&
@

€
€

€
§

t
6

R
N
H
e
r
H
O
O
N

O
A
U
I
D
I
N
I

€
eo

e
e

e
e

@
e

e
e

¢
e

e
eo

{

FIGURES

Indexed File Logical Structure 3-8
Data Block Format Example 3-10
Cluster Example 3-14
High-level Index Structure 3-19
Indexed File with Free Records 3-25
Indexed File with Free Records/Blocks 3-27
Indexed File with Reserved Data Blocks 3-29
Indexed File with Reserved Index Entries 3-32
Totally Dynamic Indexed File 3-34
Loading and Inserting Records 4-2
Protocol for Sequential Updating 6-7
Indexed Access Method Storage Environment 10-2
Plot of Data Paging Area Sizes 10-5
Volume Space Requirements) 12-1

Figures xi

xii $C34-0404-1

CHAPTER 1. INTRODUCTION

The Indexed Access Method licensed program is a data management facility
that executes on an IBM Series/l processor under the Event Driven Execu-
tive Supervisor and Emulator, Version 3.1 or later. The Indexed Access
Method provides keyed access to each of your individual data records.

WHAT THE INDEXED ACCESS METHOD DOES

INDEXED

This Licensed program builds, maintains, and accesses a data structure
called an indexed file.

Your data records can be loaded by the Indexed Access Method utility,
SIAMUT1, or they can be loaded using an application program. Data
records can then be added, deleted, modified, or accessed quickly and
efficiently for processing by your application program. When reorgan-
ization of an indexed file is required the utility can be used to unload
and reorganize the file.

When this licensed program is used, each of your records is identified
by the contents of a predefined field called a key. The Indexed Access
Method builds and maintains an index for those keys and through this
index fast access to each record 1s provided. Your data records can be
accessed either by key, or sequentially in ascending key sequence, using
Indexed Access Method requests. |

ACCESS METHOD FEATURES

The Indexed Access Method offers the following features:

@ Record access by a primary key or secondary keys - You can access
records in an indexed file by one or more keys. Secondary keys use
a separate index and Indexed Access Method provides the connection
between the primary index files and seconary indexes. Duplication
of secondary key fields is permitted.

® Support for high insert and delete activity - Free space can be dis-
tributed throughout the file and ina free-pool at the end of the
file so that new records can be inserted. The space occupied by a
deleted record is immediately available for inserting a new record.

® Direct and sequential access ~ You can access records either random-
ly by key» or sequentially in ascending key sequence.

e Data paging - You can improve Indexed Access Method performance by
using data paging. With this feature active, the Indexed Access
Method retains recently-used blocks of data records resident in main
storage.

e Dynamic file structure - A dynamic file structure adjusts itself as
needed to handle record additions and deletions. This provides a
quick and easy method of designing an indexed file.

° Concurrent access to a single file by several requests - These
requests can be from one or more programs. Data integrity is main-
tained by a file-, block-, and record-level locking system that pre-
vents other programs from accessing the portion of the file being
modified.

° Implementation as a separate task - A single copy of the Indexed
Access Method executes and coordinates all requests. <A buffer pool
supports all requests and optimizes the space required for physical
I70; the only buffer required in an application program is the one
for the record being processed.

Chapter 1. Introduction 1-1

e Input records - Either blocked or unblocked input records are
accepted.

6 SIAMUT1 - A utility program that allows you to maintain a secondary
index directory, create, format, load, unload, and reorganize an
indexed file. The load and unload functions accept either blocked
or unblocked records.

® SVERIFY - A utility program that allows you to check the integrity
of the index structure, print control blocks, and print a free space
report for an indexed file.

e Error logging - If multiple error return codes occur, errors are
logged in the system error log.

° SILOG - The error log entries can be printed by using the $ILOG
utility.

° File compatibility - Files created by the Event Driven Executive
Indexed Access Mathod are compatible with those created by the IBM
Series/l Realtime Programming System Indexed Access Method licensed
program, 5719-AM1 and 5719-AM2 provided that the block size is a
multiple of 256.

e Data protection —- All input/output operations are performed by sys-
tem functions. Therefore, all data protection facilities offered by
the system also apply to indexed files. The following additional
data protection 1s provided:

—_ The exclusive option specifies that the file 1s for the exclu-
sive use of a requester.

_ File-leveal, block-level, and record-level locking automatically
prevents two requests from accessing the same file, the same
block, or the same data record simultaneously.

_ The immediate write back option causes all file modifications
(delete, insert, update) to be written back to the file imme-
diately.

_ Accidental key modification for primary keys 1s prevented to
help ensure that your index matches the corresponding data.

e Distribution packaging - The Indexed Access Method is distributed
with the following variations available:

— A full function package that is intended to be totally resident.

— A full function package which uses an overlay structure.

_ A totally resident package without data paging.

- A package without data paging which uses an overlay structure.

I-2 $C034-0404-1

DEVICES SUPPORTED

The Indexed Access Method supports indexed files on the following direct
access devices:

4962 Disk Storage Unit

4963 Disk Subsystem

4964 Diskette Unit

4965 Diskette Unit

4966 Diskette Magazine Unit.

In addition, the Indexed Access Metnod supports IBM 4969 Magnetic Tape
Unit for loading and unloading indexed files with the S$IAMUTIL utility.

Input control and output display devices supported for the $IAMUTI,
SILOG, and S$VERIFY utilities are:

IBM 3101 Display Station

IBM 4978 Display Station

IBM 4979 Display Station

IBM 4973, 4974, and 4975 Printers

Teletypewriter Model 335735 or ASCII equivalent.

Chapter 1. Introduction 1-3

LANGUAGES COMPATIBLE WITH INDEXED ACCESS METHOD

The following programming languages can be used to ende Iidexed Access
Method programs.

COBOL

EDL

PL/I.

COMPONENTS OF INDEXED ACCESS METHOD

1-4

The Indexed Access Method consists of the following components:

Four load modules from which you can select to support your applica
tion program Indexed Access Method requests. These load modules are
named:

_ SIAM Cfull function with overlay) STYAyoay

- SIAMRS (full function resident)

_ SIAMNP Coverlay without data paging)

_ SIAMRSNP Cresident without data paging).

The module you select will be named SIAM after installation.

A load module ,SIAMSTGM, which is used to obtain the data paging
area, if the data paging feature is requested.

A set of object modules that you may use to generate a customized
load module. If you use one of the four supplied load modules, you
do not need the object modules.

The object module, IAM, is called a link module. You include IAM
with your application program using the linkage editor to provide
the interface to the Indexed Access Method.

Two copy code modules for inclusion in EDL programs, IAMEQU and
FCBEQU. IAMEQU provides symbolic parameter values for constructing
CALL parameter lists. FCBEQU provides a map of the file control
block.

Load modules for each of the Indexed Access Method utilities
SIAMUTL, SVERIFY, and SILOG.

9€34-0404-1

* (~ tay ; —™, “fe A) pe eS bogey \ A PN(vee OEOO LWTf ry! “4 7Ng LORAC Yy

mova oyna

2D” nk AX\ 4 “ PF yy po ryf oaay. “Ming my MS,4| +P ~y

XV y) 2? ry iy LU YON —™ footy J oeA eT A1ay #Y: “y

aN >PHAZ MOY -FIVMA ayep Jovei wy $37 a j . my pm pep. aay

vronrg tua UVlp Ps ew Ur
“yy y oe fv tly7H) my?! vy Qfs <2AA Yt5 yo

, / Ali,

. er ‘| Ayr J AB ho {oy S L ao/mCSy wp ran ¢

xr 7D xf . moVIS San 293 iy ~~,oP + jl ov,

Py“pO LY,If«Se m2mIYo. “iy *~“Fp Ap2 rind

A ohbh, ByeVY Jd ry gjytf

Pr
aa

g
r
o
r

“
t
c
c

°
j

o
s

w
e

“

“N
Y

y 9)

‘(hdn ayDana9og-caneon | Yad,

MsgBP PPG94 YooUTA

“MO MCAm jf Ileaw 4

 AMA pan

MOPS) F7 Re WO 1] aypSTS FI PIS
ma pande kyr dsb Lasuprk 'UyTS
ym¢:i Rr 12 24,yr] = J CcOy 79 ny x"ae>)

S4ld -Gyr

3

Jeeviet Wiel

Veewou.

S¥B
e

CHAPTER 2. USING THE INDEXED ACCESS METHOD

The purpose of this chapter is to familiarize you with some fundamentals
of the Indexed Access Method. Some of the features mentioned in the
previous chapter will be described only in part here so that a basic
example can be constructed. The purpose of this example 1s to demon-
strate the ease with which you can establish an indexed file and to help
you select which parts of the book apply directly to your application
requirements.

YOUR DATA RECORD

The data records you wish to process with the Indexed Access Method have
the following specific requirements:

® The records must contain a common field that can be used as a prima-
ry key

e Each record must have a unique primary key

e The initial
primary key

records to be loaded must be in ascending order by the

® All records that make up an indexed file must be of the same length.

The primary key is any field you designate within your data records.
The key field must begin at the same location in each record. Each key
field must have the same length. The key in each record must be unique
within the file Cdata set).

The data records that you will initially load must be in ascending
order, based upon the field you use as the key. If your data records
are not ready to be loaded when you define your primary indexed file,
the records can be loaded later by an application program or with the LO
(load) command of SIAMUT1.

Your application might use an employee number as the primary key in an
indexed file for some applications. You might want to define secondary
keys, such as employee name, for the same file for other applications.
Using secondary keys requires a secondary index to be defined. Defining
a secondary index and using secondary keys is described in Chapter
5, "Building a Secondary Index."

Whether you use the S$IAMUTIL utility to load your data records into an
indexed file from a sequential file, or load them with an application
program, you must know the format of your input data record.

Following is a sample record layout. Although the primary key is shown
starting in position 1, 1t could have been anywhere in the record.

< 80 byte data record /7/ >
4/

Empl. Employee Address Zip
Number Name Code

//
< > < > < > <> <—-//

6—-Byte 24-Byte 24&—-Byte 5-Byte 21-Byte
Primary Secondary Address Data
Key Key Field

Chapter 2. Using the Indexed Access Method 2-1

SETTING

The records used for our example have the following attributes:

° Block size 256 bytes

e Record size 80 bytes

® Primary key length 6 bytes

e Key position l.

UP_AN INDEXED FILE USING SIAMUTL

Use the Indexed Access Method utility program, SIAMUT1, to set up an
indexed file. After this utility 1s loaded into the system for exe-
cution, the utility displays a sequence of prompts. The prompts are
questions displayed on a terminal one at a time to which you can reply
using the terminal keyboard. Responding to the questions causes the
utility to perform the required steps to:

1. Set up the structure of the file (space for records to be loaded,
free space for inserts, and an index).

2. Allocate a data set (the utility prompts you for a data set and vol-
ume name and calls S$DISKUT3 to allocate space for the indexed file).

3. Define and format the indexed file.

4. Load the data records into the indexed file.

Loading and using the SE (set parameter) command of the SIAMUTI1 utility
1s described here for the purpose of our example, however, for a com-
plete description of SIAMUTI see Chapter 8, "The SIAMUT1] Utility.”

The responses for our example are shown in bold face type inside the
box. The bold bracketed numbers at the left, outside the box, identify
explanatory remarks that we have written below the box using the same
bracketed numbers. Of course these brackets and explanations do not
appear on the screen when SIAMUTI1 is being used.

The S$IAMUT1 Indexed Access Method utility can be loaded with the Event
Driven Executive operator command §L $IAMUTL.

When SIAMUTI is loaded the first prompt is displayed as follows:

CL] ENTER COMMAND (€?): SE

C1] Entering the letters SE (set parameters), followed by pressing the
ENTER key, causes four options to be displayed:

T FILE DEFINITION PARAMETERS
= EXIT

[2] = SIGNIFICANT PARAMETERS
= ALL PARAMETERS
= PARAMETERS FROM EXISTING INDEXED DATASET+
ER OPTION: 1

27-2 $€34-0404-1

[2] The response digit 'l"*, causes prompts to follow which allows you to
define an indexed file with a minimum of information.
causes a one line prompt to be displayed.

This response

Note: Although the following prompts are displayed one line at a time
when using the utility, the prompts and responses are listed here in
logical groups for simplicity itn describing them.

Se
ou

l

e
e
t
b
e
t
O
O
O
U
T
E
D

o
d

Ga
d
IN

G
m
t
C
D

be
c
he

d
Le

nd
l
Be
n
L
r

Se
re

T
P
P

T
N
E
e

P
Y

B
e
e
d
l
e

fi
re

d
fe
nd

Be
nd

SECONDARY INDEX CY/N)°? N
DEFAULT

RECORD SIZE 0:
KEY SIZE 0
KEY POSITION 1
BLOCKING FACTOR CRECORDS PER BLOCK) 1
NUMBER OF BASE RECORDS 0:
ESTIMATED TOTAL RECORDS | 6
TYPE OF INSERT ACTIVITYCC=CLUSTERED,R=RANDOM) C
DATA SET SIZE IN EDX RECORDS: 15
INDEXED ACCESS METHOD RETURN CODE: 1
SYSTEM RETURN CODE: “1
CREATE/DEFINE FILE CY/N)?: Y

A
I
R
S
UI
G
e
&
6
9 Q

NEW VALUE

[3] The first prompt, "SECONDARY INDEX CY/N)?:" asks if you are specify-
ing a secondary index. The response was N for no, because we are defin-

ing the parameters for a primary indexed file.

[4] The second prompt, "RECORD SIZE” requests the length that the
records are to be in the indexed file which you are defining.

Note that there are two columns near the right-hand edge of the display.
The column on the left is headed by the word "DEFAULT™. In the default
column the values are listed that will be used in setting up the file if
no value is supplied in the response Conly the ENTER key is pressed).
The column on the right, headed "NEW VALUE” is where the decimal value
15 placed from your keyboard response, followed by pressing the ENTER
Key.

In this example we are using a record length of 80.

[5] The "KEY SIZE" prompt is for the length of the primary key in the
data record. In this example we are using a key which is 6 bytes long.

[6] Our key field begins in position 1 of the data record.

[7] We are requesting that our indexed file be blocked with 3 records in
each 256-byte block.

[8] The number of base record slots to be defined is 5. This number is
based on the number of data records we plan to load. You cannot load
more records than this value, however, it does not restrict you from
inserting new data records in the free Cempty) slots later.

[9] The total number of records that we anticipate that this resultant
indexed file will ever contain is 20.

[10] The type of record insert activity is to be R Crandom). The
records added to this file will be inserted by an application program
when those records are available.

The choice of random or clustered is based on the type of record addi-
tions that are anticipated. Random is chosen when the records to be
added are expected to be evenly distributed throughout the file.

Clustered 1s chosen when the records to be added are expected to be in
groups, relative to their range in key value.

Chapter 2. Using the Indexed Access Method 2-3

2-4

[ll] Following the previous response the system will display the number
of records required to contain an tndexed file using the parameters you

have supplied.

[l2] The Indexed Access Method return code (-1) indicates that the
parameters you supplied are acceptable; no Indexed Access Method rules
have been violated.

[13] The system return code (-1) should always be -1 if the Indexed
Access Method return code is -1l. If any errors are encountered, the
return code may provide additional information.

[16] If you have verified that the parameters you entered are correct,
the data set (file) size in EDX records 1s acceptable, and the return
codes are both -1l1, you can reply Y and the file will be defined and cre-

ated.

If you wish to change any of the parameter values that you previously
supplied, respond N to this prompt and you will be prompted for the next
command. To re-enter your responses, reply SE and the prompt sequence
Will be repeated.

A Y in response to this prompt causes the next prompt sequence to begin.

CISJ]}ENTER DATA SET CNAME,VOLUME): IAMFILE,EDXOO03
NEW DATA SET IS ALLOCATED

C16];/DO YOU WANT IMMEDIATE WRITE-BACK? Y . |
EL7])/ INVOKE LOAD/REORGANIZE AFTER CURRENT FUNCTION CY/N)? Y

DEFINE IN PROGRESS
DATA SET SIZE IN EDX RECORDS: 15
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: ~I

CLl8]; INVOKE LOAD (L), REORGANIZE (R) OR END CE) ?L
LOAD ACTIVE

C15] The data set and volume name you reply to this prompt is what
SDISKUT3 uses to allocate a data set for your file. <A successful allo-
cation results in the information message "NEW DATA SET IS ALLOCATED".

[16] The immediate write back option is recommended for most applica-
tions. It means that we want any record in the indexed file that we
process with our application program to be written back to the indexed
file immediately. Otherwise, the record will be held in a buffer until
that buffer is needed by the Indexed Access Method.

[17] If you have data records in a sequential data set which you want
SIAMUT1 to load for you at this time, reply Y to this prompt.

If you are going to load the data records with your application program,

reply N.

For our example we responded Y which causes the following tnformation
messages to be displayed: "DEFINE IN PROGRESS”. The information mes-
sages then inform you with the data set (file) size in EDX records. The
system return code and Indexed Access Method return code values at the
completion of the file allocation and formatting are displayed for your
information.

[i8] Because of the Y response to the previous prompt, this prompt is
generated to allow you to:

@ Load base records (as shown in this example)

® Reorganize an existing indexed file for loading into the file being
defined

© End the current SE command session.

We are going to load records during this session so the response is Y.
Following the "LOAD ACTIVE’ information message, the prompts continue.

$€34-0404-1

C19] |SFSEDIT FILE RECSIZE = 128
[2e0}}/INPUT RECORD ASSUMED TO BE 80 BYTES. OK?: N
T2L]}ENTER RECORD SIZE: 128
F22)]); ENTER INPUT BLOCKSIZE CNULL = UNBLOCKED): 256
[2S];}ENTER INPUT DATA SET CNAME,VOLUME): SEQO01,EDX003

INPUT REC GT OUTPUT REC. TRUNCATION WILL OCCUR
[241;0K TO PROCEED:? Y

LOAD IN PROCESS
END OF INPUT DATA SET

[25] |/ANY MORE DATA TO BE LOADED?: N
5 RECORDS LOADED
LOAD SUCCESSFUL

The next sequence of prompts refers to the input data set containing the
data records that are going to be loaded into the indexed file.

[19] The utility accepts input records which have been prepared by the
Event Driven Executive utility S$FSEDIT. The $FSEDIT record size is
specified as 128.

[290] Because the output data set Cindexed file) records are 80 bytes,
this prompt determines whether the input sequential data set 1s also an
80 byte record data set.

If you use the Event Driven Executive edit utilities to prepare your
data records for input to the Indexed Access Method, remember that these
utilities place one 80-byte line from SFSEDIT in a 128-byte record. The
first record begins at location 1, and the second record begins at
location 129. Two of these 128-byte records make one 256-byte EDX
record.

Because we used S$FSEDIT, we responded N.

[21] This prompt requests the input data record attributes.

Because our input data records were created by $FSEDIT, our 80-byte
rggords were converted to 128-byte records. Therefore, our response is
2s.

[2é] The Indexed Access Method utility, SIAMUT1 accepts your records as
either unblocked Cone record per block) or blocked (more than one record
per block) input. The utility prompts you for the block size of the
input data set being loaded. If the input data set 15 unblocked, reply
to the block size prompt by pressing the Enter Key. See "Blocked and
Unblocked Sequential Data Sets" on page 8-23 for a description of
blocked and unblocked sequential data sets.

If your input data records are unblocked sequential, reply by pressing
the Enter Key. If your input is blocked sequential, reply with the
actual blocksize that was used to prepare your input data records.

Our example uses blocked sequential records, created on every line by
SFSEDIT, with a blocksize of 256.

[23] Reply to this prompt with your input data record data set and vol-
ume name. Our response was SEQ01,EDX003.

[24] This prompt verifies whether truncation of the input records is
acceptable. Because our record size specified 1s actually 80 bytes
long, but we responded 128 because SFSEDIT converts the records to 128
bytes, the following warning message is displayed. "INPUT REC GT OUTPUT
REC. TRUNCATION WILL OCCUR™ This means that the extra bytes attached by
SFSEDIT to our 80-byte data records will now be removed. The response
is Y.

The information message "LOAD IN PROCESS” tells us that SIAMUTI is read-
ing the input data set and loading the input data records into the base
record slots. The information message "END OF INPUT DATA SET" indicates

Chapter 2. Using the Indexed Access Method 2-5

that the end-of-file condition, on the input data set, has been encount-
ered.

[25] This prompt allows you to specify another input data set, if more
data records are to be loaded from another data set. In this example,
only 1 data set is being used and the response of N caused the records
loaded statistics to be displayed, followed by the "LOAD SUCCESSFUL"
message.

The design of an indexed file varies according to your application. A
comprehensive approach to designing your indexed files begins with "De-
fining The File Structure With SIAMUT1" on page 3-4.

PROCESSING THE INDEXED FILE

2-6

Now that the indexed file has been defined, formatted, and loaded with
data records, the file is ready for an application program to access any
of the records in the indexed file for processing. An application pro-
gram might use the following EDL coded requests to open the indexed file
and retrieve a record.

%

% OPEN THE INDEXED FILE FOR PROCESSING
x

[ij CALL IAM, (PROCESS), IACB,(DS1),(OPENTAB), (SHARE)
x

* PERFORM A DIRECT RETRIEVAL OF THE RECORD WHOSE KEY IS JONES PW
x

[2] CALL IAM, (GET),IACB, (BUFF), CKEY1)

KEY1 TEXT ‘JONES PW!
OPENTAB DATA F°O?

DATA ACTIAMERR)
DATA F'O!

IACB DATA FQ!

[1] This Indexed Access Method request opens the primary index file in
process mode so that other requests can be issued for processing records
in the indexed file.

[2] This Indexed Access Method request retrieves a record from the
indexed file. The primary key of this record contains the name 'JONES
PW.

$€034-0404-1

Functions of the Recuests

Following is a list of functions that you can perform using the Indexed
Access Method requests in your application program:

Initiate general purpose access to an indexed file with a PROCESS
request. After the PROCESS request has been issued, any of the follow-
ing functions can be requested:

° Direct reading - Retrieving a single record independently of any
previous request.

e Direct updating - Retrieving a single record for update; complete
the update by either replacing or deleting the record.

° Sequential reading - Retrieving the next logical record relative to
the previous sequential request.

The first sequential request can access the first record in the file
or any other record in the file.

° Sequential updating - Retrieving the next logical record for update;
complete the update by either replacing or deleting the record.

° Inserting - Placing a single record, in its logical key sequence,
into the indexed file.

° Deleting - Removing a single record from the indexed file.

° Extracting ~- Extracting data that describes the file.

Note that the update functions require more than one request.

When a function is complete, another function may be requested, except
that a sequential processing function can be followed only by another
sequential function. You can terminate sequential processing at any
time by issuing a DISCONN or ENDSEQ request. An end-of-data condition
also terminates sequential processing.

A complete list of the Indexed Access Method requests, the operand
descriptions, and correct syntax is described in Chapter 7, “Coding the
Indexed Access Method Requests” on page 7-1. There are also coding
examples using the Indexed Access Method requests in three programming
languages in Appendix C, "Coding Examples." The languages used in the
examples are Event Driven Language, COBOL, and PL/I. The purpose of
these examples is not to show any particular application, but to help
you when planning and writing your application program.

Chapter 2. Using the Indexed Access Method 2-7

SUMMARY

This chapter has introduced some fundamentals of using the Indexed
Access Method. The references in this chapter to other chapters in this
manual were placed there to help you select the specific information you
need for your application. A list of those references is repeated here
to assist you in locating the detailed information on the listed sub-
jects.

° For a complete description of S$IAMUT1 see Chapter 8, "The SIAMUT1
Utility"

® A comprehensive approach to designing your indexed files is
Gescribed in Chapter 3, "Defining Primary Index Files”

e Defining a secondary index for using secondary keys is described in
Chapter 5, "Building a Secondary Index"

© Description of blocked and unblocked sequential data sets is
described in "Blocked and Unblocked Sequential Data Sets" on page
8-23

e The complete list of Indexed Access Method requests, the operand
descriptions, and correct syntax is described in Chapter 7, "Coding
the Indexed Access Method Requests"

e Guide line information on processing the indexed file is located in
Chapter 7, "Coding the Indexed Access Method Requests.” This guide-
line information should be read prior to planning and coding your
application program.

2-8 $C€34-0404-1

PRIMARY

CHAPTER 3. DEFINING PRIMARY INDEX FILES

This chapter presents the following major topics:

@ Primary Indexed Files

© Designing Indexed Files Using $SIAMUTIL - option 1

e Designing Indexed Files Using SIAMUT1 - option 2

_ Indexed Access Method Blocks

- Index Blocks

_ File Control Block

— File Structure Types

_ Option 2 Examples

° Designing Indexed Files Using $IAMUT1 - option 3

° Defining/Creating, and Loading A File - Summary.

This chapter provides information for defining indexed files and is
arranged according to your option selection when using SIAMUT1. The
beginning of the chapter has information which applies to any type of
primary index file design. That general information section is followed
immediately with an example using S$IAMUT1, option 1. The option 2 sec~
tion 15 next and contains information that you will need to know prior
to designing an index file with SIAMUT1, option 2. The fourth section
applies to using S$IAMUTI, option 3.

INDEX FILES

A primary index file contains data records, a multilevel index, control
information, and it can optionally contain free space.

Free space can be distributed throughout the file and at the end of the
file. Free space provides areas for inserting new records and is
described later.

In an indexed file, the records are arranged in ascending order by key.

Chapter 3. Defining Primary Index Files 3-1

DATA RECORD PRIMARY KEY

The primary key can be any field within your data record that you
select, however, it must meet the following requirements:

e The selected field must start at the same location in each record

° All portions of the key field must be contiguous

° The primary key length cannot exceed 254 bytes

e The field must contain data that is unique within the data set.

Defining the Key

Define a single key field by specifying its size and position in the
record when you select the file formatting parameters using the SE (set
parameter) command of the SIAMUT1 utility. The longer the key, the
larger the index. The key should not be longer than necessary but long
enough to ensure uniqueness. <A shorter key is more efficient than a
long key.

ENSURING UNIQUENESS OF THE KEY
To identify each record in an indexed file, each primary key

must be unique. If key duplication is possible, the key field must be
expanded to ensure that it is unique.

For example, customer name is a key which may involve duplicates. To
avoid duplication, lengthen the key field to include other characters
such as part of the customer address or the account number. Because the
characters in the key must be contiguous, you may need to rearrange the
fields in the record.

Another way to eliminate duplication 1s for you to modify new records
dynamically whenever a duplication occurs during loading or processing.
One or more characters at the end of the key field can be reserved for a
suffix code. Whenever a duplicate occurs, add a value to the suffix and
make another attempt to add the record to the file. The result is a
file that can contain a sequence of keys such as SMITH, SMITH1L, and
SMITH2. If you add a suffix, you must use the entire unique key when
accessing a record directly.

Providing Access by More Than Gne Key

To provide good performance with both direct and sequential access, each
indexed file is indexed by a single primary key. At times, however, it
may be useful to locate records by a secondary key. For example, ina
customer file indexed by account number, you might want to locate a
record by customer name.

To provide access by a secondary key, you must build a secondary index
Ca separate file). For a description of setting up secondary indexes,
see Chapter 5, "Building a Secondary Index" on page 5-1.

S72 $€34-0404-1

RANDOM AND CLUSTERED RECORD INSERTS

The Indexed Access Method permits records to be added to an existing
file. The records are inserted by the Indexed Access Method in the
proper locations according to their key value. This keeps the keys
throughout the indexed file in ascending sequence. |

Records to be itnserted are sometimes required to be distributed through-
out the file rather evenly, other times the records to be inserted are
in groups.

When there are more individual records to be inserted throughout the
file, based on their key value, than there are groups of records to be
inserted, this 1s called random record inserts. The following diagram
represents random inserted records among existing records.

 Existing
Records

Inserts cee os oe woe . ee eee

CEach bullet indicates an inserted record)
Record inserts are considered clustered if most of the inserts occur at
only certain places in the file. The following diagram represents clus~
tered inserts by vertically stacked bullets.

 Existing
Records

Inserts . cee . . .

Chapter 3. Defining Primary Index Files 3-3

DEFINING THE FILE STRUCTURE WITH $IAMUTL

Defining an indexed file structure is the process of analyzing the file
requirements and selecting the appropriate file parameters. This allows
you to either precisely define your indexed file or, by proper option
selection, SIAMUTI will define most of the parameters for you.

STAMUT1 is a prompt driven utility. When it is loaded, messages are
displayed requesting information to be entered on a keyboard. The
responses you enter through the keyboard determine how the utility will
operate.

The SE command of the SIAMUTI utility permits you to select one of three
options for defining your indexed file. The parameter selections are
made using the SE command of the S$IAMUTI utility. The SE Cset parame-
ters) command of SIAMNUTI provides three options for you to choose from
to define your tndexed file as follows:

1. Option 1 significant parameters - allows you to define an indexed
file by supplying a minimum of tnformation. The description of your
data records is required and whether you expect random or clustered
record insert activity.

2. Option 2 all parameters - allows more flexibility in precisely

defining your indexed file but requires more parameters to be sup-

plied.

3. Option 3 parameters from existing indexed data set - can be used

when you have an existing indexed file and you wish to use the same

parameters for a new indexed file.

SIAMUTI Option Selection Guide

Having read the preceding material, you are probably ready to make a
choice as to which option you want to use in defining your indexed file.
The following table will help you to find the appropriate information,
based on your indexed file defining objectives.

Your Objective Option Information location

You want the Indexed Access 1 See "Designing Indexed Files
Mathod to calculate and Using SIAMUTL - Option 1" on
structure your file page 3-5

You want to structure a file 2 See "Destgning Indexed Files
and provide specific informa~ Using SIAMUTI - Option 2” on
tion for the parameters page 3-7

You want the Indexed Access 3 See "Designing Indexed Files

Method to structure a file Using SIAMUTI - Option 3" on
using the parameters of an page 3-35
existing file

3-4 9€34-0404-1

DESIGNING INDEXED FILES USING S$IAMUTI] - OPTION 1

OPTION 1

Option 1 is used if you need to set up your itndexed file quickly and
easily. You specify only the necessary information and the utility
determines the proper values for other parameters. An indexed file gen-
erated with this option may not be optimum tn terms of storage space
performance.

If you want to supply more parameters than are available with this
option, or you wish to set up a totally dynamic indexed file, you should
sea "Dasiagning Indexed Files Using SIAMUT1I - Option 2” on page 3-7. If
you already have an indexed file established and you wish to use those
same parameters, you should sea "Designing Indexed Files Using S$IAMUTI1 -
Option 3" on page 3-35.

The Indexed Access Method utility, SIAMUT1, option 1 of the SE (sat
parameters) command, provides you with the opportunity to select only
those parameters necessary to set up an tndexed file.

The SIAMUTI Indexed Access Method utility can be loaded with the Event
Driven Executive operator command $L $IANUTL.

When SIAMUTL is loaded the first prompt displayed is as follows:

ELY; ENTER COMMAND (€?): SE

[l}] Entering SE causes the following option List prompt to be displayed.

SET FILE DEFINITION PARAMETERS
0 = EXIT

C2y}1 = SIGNIFICANT PARAMETERS
2 = ALL PARAMETERS
3 = PARAMETERS FROM EXISTING INDEXED DATA SET
ENTER OPTION: 1

[2] Respond to this prompt by entering the digit "1'. This response
causes a one line prompt from the next prompt sequence to be displayed.

Note: Although the following prompts are displayed one line at a time
when using the utility, the entire prompt list is shown for simplicity
in describing the parameters.

Chapter 3. Defining Primary Index Files 3-5

57-6

C3] SECONDARY INDEX (CY/N)?: WN
DEFAULY NEW VALUE

C4] RECORD SIZE 0:80
C5] KEY SIZE 0:40
[6] KEY POSITION i:
C7] BLOCKING FACTOR CRECORDS PER BLOCK) 1:3
C3] NUMBER OF BASE RECORDS 0:5
C9] ESTIMATED TOTAL RECORDS 6:20
C10] TYPE OF INSERT ACTIVITYCC=CLUSTERED,R=RANDOM) C:R

DATA SET SIZE IN EDX RECORDS: 12
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: ~1

C11] CREATE/DEFINE FILE CY/N)?:

[3] The first line asks, are you specifying a secondary index. The
response should be N for no, because you are defining the parameters for
a primary index file.

[$4] The record length shown is 80, however, the entry you will make is
the actual record length you want your indexed file records.

[5] Enter the length of your data record field that you are using as the
key field. The maximum primary key length is 254.

[6] Enter the position where your primary key field begins. Your data
record begins with 1.

[71] Specify the blocking factor (number of records per block) you want
your indexed file to have. Remember that when a record is accessed, an
entire block is actually read into the system buffer.

[8] Enter the number of base record slots to be defined. This value is
the number of records you will load initially. You cannot load more
records than this value specifies.

[9] Enter the total number of records you expect this file to contain.
This includes records that you plan to insert during processing.

[10] Enter the type of record insert activity you expect to have

[ll] If you have verified that the parameters you entered are correct,
the data set (file) size in EDX records is acceptable, and the return
codes are both -l, you can reply Y and you can create and define the
file. If you wish to change any of the parameters, reply N and you can
reenter the SE command and enter any new values for the parameters.

Replying N terminates the SE function and you can return to this point
by reentering the SE command or the DF command (within the same session
of SIAMUT1). The DF command of $IAMUT1 1s described under "DF—Define
Indexed File™ on page 8-6.

To review the prompts that occur when Y 1s replied at this point return
to the example in Chapter 2, "Using the Indexed Access Methecd."

$€34-0404-1

DESIGNING INDEXED FILES USING S$IAMUTI - OPTION 2

OPTION 2

INDEXED

Option 2 is used if you have performed an analysis of your file require-
ments and you want to precisely define your primary indexed file. This
option provides a wide range of parameters to allow you to specify your
file structure in detail. You can optimize the file structure according
to your application requirements for the best storage use and perform-
ance.

If you want to supply only the minimum parameters you might want to use
option 1 which is described earlier in this chapter under "Designing
Indexed Files Using S$IAMUT1 - Option 1" on page 3-5. If you already
have an indexed file established and you wish to use those same parame-
ters, you should see "Designing Indexed Files Using S$IAMUT1 - Option 3"
on page 3-35.

The following information is provided so that you can supply the
required information to the prompts when defining a primary index file
using option 2 of SIAMUT1. The information is organized in levels of
Indexed Access Method blocks. The material should be read sequentially
because it provides the information which must be understood in order to
apply it to the examples which are placed near the end of this option 2
material.

ACCESS NETHOD BLOCKS

Indexed files consist of three kinds of blocks:

e Data blocks, which contain records

® Index blocks, which contain pointers to data blocks or lower-level
index blocks

° File control blocks, which contain control information.

Following is an overview diagramshowing the types of blocks and their
general relationships to each other in an indexed file.

Chapter 3. Defining Primary Index Files 3-7

 File
Control
Blocks

Index

Blocks

 Data
Blocks

 —— — — —_— Free
Pool

Figure 3-1. Indexed File Logical Structure

3-8 S$C34-0404-1

The indexed file is composed of a number of fixed length blocks. The
block is the unit of data transferred by the Indexed Access Method
between disk/diskette and the central buffer. Block size must be a mul-
tiple of 256. A block is addressed by its relative block number CRBN).
The first block in the file is located at RBN 0.

Note that the RBN is used only in indexed files by the Indexed Access
Method. An Indexed Access Method block differs from an Event Driven
Executive record in the following ways:

1. The size of a biock is not Limited to 256 bytes; its length can be a
multiple of 256.

2. The RBN of the first block in an indexed file is 0. The record num-
ber of the first Event Driven Executive record ina file is l.

The size, in 256-byte records, of the file is calculated by the SE com-
mand of the SIAMUT1 utility.

As stated initially, three kinds of blocks exist in an indexed file:
data blocks, index blocks, and file control blocks. These blocks are
all the same length, as defined by BLKSIZE, but they contain different
kinds of information. Data blocks contain data records, index blocks
contain tndex entries, and file control blocks contain control informa-
tion.

DATA BLOCKS

Each data block contains a header, one or more data records, and it can
contain free space for additional data records.

The records in each data block are in ascending order, according to the
key field in each record.

Each data block header contains the address of the next sequential data
block, providing sequential processing capability.

A data block contains a header followed by data records. The number of
records that can be contained in a data block depends on the size of the
data block and the size of the record. The header of the block is 16
bytes.

The number of record areas in the block is:

block size - 16
record size

The result is truncated; any remainder represents the number of unused
bytes in the block. For example, if block size is 256 and record size
is 80, the data block can accommodate three records and there is no
unused area. The key field of the last record slot in an index block is
the high key for the data block even if the block is not full.

Chapter 3. Defining Primary Index Files 3-9

However, if the last record of the block has been deleted, the
of the last record slot will contain a key higher than that of
record in the block. Deletion of a record does not reduce the
for the block unless the block is emptied. Figure 3-2 , shows
mat of a data block.

FREE SPACE

3-10

key
any
key
the

field
other
range
for-

When an indexed file is loaded with base records, free space 15 reserved
for records that may be inserted during processing. There are four
kinds of free space: free records, free blocks, reserve blocks,
reserve index entries.

and

FREE RECORDS: Free records are areas reserved at the end of each data
block. The FREEREC. parameter of the SE command of $IAMUTIL, specifies
the number of free records that are reserved in each data block.
remaining recordareas are called allocated records.

The

For example, if a block contains three data record areas and you specify
one free record per block, then there are two allocated records per
block. For the layout of a data block containing two allocated records
and one free record, see Figure 3-2.

When records are leaded (file is open tin load mode), the allocated
records are filled, and the free records are skipped. When additional
records are inserted (file 15 open in process mode), free records are
used to hold inserted records.

HEADER

Data Record

Data Record

Free space
Figure 3-2. Data Block Format Example

For an example of specifying FREEREC, see "Example 1: Allocating Free
Records™ on page 3-24.

FREE BLOCKS: Free blocks follow the allocated data blocks within each
cluster. Free blocks have all of their records marked as free records.
The FREEBLK parameter of option 2 is used to specify the percentage of
blocks that are to be marked as free blocks.

When records are loaded, the allocated record areas in the allocated
data blocks are filled, and the free blocks are skipped. During proc-
essing, as data blocks become full, a free block provides space for
insertions.

For an example of specifying FREEBLK, see "Example 2: Allocating Free
Records and Free Blocks" on page 3-26.

SC34-0404-1

SEQUENTIAL CHAINING: Data blocks in an indexed file are chained together
by forward pointers located in the headers of data blocks. Only allo-
cated data blocks are included in the sequential chain. Chaining pro-
vides for sequential processing of the file with no need to reference
the index. When a free block 15 converted to an allocated block, the
free block 1s included in the chain.

Reserving Space For Record Inserts

If base records are to be loaded and record insertions are expected in
random locations throughout the file, use BASEREC to reserve the number
of base records. Use some combination of the following parameters:
FREEREC to reserve free records in each data block, FREEBLK to reserve
frea blocks in each cluster Cgroup of blocks), and DYN to provide a free
pool.

For example, consider a file with 5 records per block, and 10 data
blocks per cluster. Suppose that the file consists of 300 base records
and 200 inserts.

If the inserts are distributed evenly throughout the file, the pattern
of inserts 15s:

Blocks

Inserts .. we we a

 CEach bullet indicates an inserted record)

With this kind of distribution you can specify 2 free records per block
to absorb the inserts; no free blocks or free pool are needed.

Of course inserts do not usually occur in such an even pattern. Free
blocks help to absorb a concentration of inserts. The more uneven the
expected distribution, the greater the free block specification should
be.

Suppose the same number of inserts is distributed in this pattern:

Blocks

Inserts _— a wee

With this distribution, specify either 3 free records per block, or 20%
free blocks with 2 free records per block.

Chapter 3. Defining Primary Index Files 3-11

3-12

Now suppose the distribution were more uneven:

Blocks

Inserts

In this case a satisfactory mix of free space is 1 free record per block
and 40% free blocks. An alternative is to use 1 free record per block
and the DYN parameter to hold those record inserts of more than 1 record
per block.

Calculating Data Blocks

This calculating information is provided for your convenience if you
choose to calculate the number of blocks for a specific file. For ref-
erence later there is a summary of all calculations in Appendix
A, "Summary of Calculations” on page A-1. However, SIAMUT1 automat-
ically calculates the required data blocks based on the parameters you
provide. The utility also lists at file definition time Cwhen using the
SE command) the number of blocks required according to your parameter
values.

The number of allocated data blocks in a file is the specified number of
base records (BASEREC) divided by the number of allocated records per
data block, with the result rounded up if there is a remainder.

For example, suppose you Intend to load 1000 records in an indexed file
that is formatted for two allocated records and one free record per
block and five allocated blocks and one free block per cluster. The
number of allocated blocks ina file is:

number of base records
number of allocated records per block

The number of allocated blocks in this example is 1000/72 or 500 blocks.

9€34-0404-1

INDEX BLOCKS

PRIMARY

An index block contains a header followed by a number of tndex entries.
Each index entry consists of a key and a pointer. The key is the high-
est key associated with a lower level block; the pointer is the RBN of
that block. The number of entries contained in each index block depends
on block size and key size. The header of the block is 16 bytes. The
RBN field in each entry is 4 bytes. The key field in each entry must be
an even numoer of bytes in length; if the key field 1s an odd number of
bytes in length, the field is padded with one byte to make it even. The
number of tndex entries in an index block is:

block size - 16
& + key length

The result is truncated; any remainder represents the number of unused
bytes in the block.

For example, if block size is 256 and key length is 28, then each index
entry is 32 bytes, there are 7 entries ina block, and the last 16 bytes
of the block are unused.

INDEX BLOCKS (CPIXB)

A set of data blocks is addressed (described) by a single primary index
block (PIXB). Each key in the index block is the highest key in the
data block that its accompanying relative block number CRBN) addresses.
A block is addressed by its RBN. The PIXB and the data blocks it
describes are called a cluster.

Clusters

Primary-Llevel index blocks and data blocks are stored together in the
file in groups called clusters. Each cluster consists of a
primary-~level index block and as many data blocks and free blocks as it
points to. For example, if there are seven entries in an index block,
there are eight blocks in a cluster: one primary-level index block and
up to 7 data/free blocks. If reserve blocks have been specified, the
blocks represented by the reserve block entries are not included until
insert activity has taken place and the required blocks have bean
obtained from the free pool. For example, if there are seven entries in
an tndex block and one of the entries 15 a reserve block entry, the
cluster consists of seven blocks Cone index block and six data blocks).
See Figure 3-3 on page 3-14 for a cluster example.

Chapter 3. Defining Primary Index Files 3-13

37-14

HEADER

RBN of High kev
block Li in block I

RBN of High key
block 2! in block 2

RBN of High key

Olock 3] in block 3

REN of High key
block 7! tin block 7

PIXB

Data
blocks

Figure 3-3.

Primary-Level Index Blocks

Entries In a primary-level
In a primary-level

e Allocated entry

® Free block entry

® Raserve block entry.

ALLOCATED ENTRY: An allocated entry points to an active data block.
initialized to binary ones by the SIAMUTIKey portion of the entry

utility.

R
h

index block

is

Cluster Example

index block point to
15 one of three possible types:

highest key from the data block.

The pointer portion contains the RBN of the data block.
entries are the first entries
entries allocated,
total number of entries per
the other two types (free block entry and raserve block entry).

S9C34-0404-]

when the

in an

indexed file
index block,

After records have been loaded or written to a data block,
Key portion of the entry which potnts to the data block contains the

data blocks. Each entry

Allocated
The number of

initially created,
less the number of entries of

index block.

FREE BLOCK ENTRY: A free block entry points to a free data block. The
key portion of the entry contains binary zeros. The pointer portion
contains the RBN of the free block. Free block entries follow the allo-
cated entries in the index block. The number of index entries formatted
as free entries when the indexed file is initially created is the speci-
fied percentage (CFREEBLK) of the total number of entries in an indexed
block, with the result rounded up if there is a remainder.

RESERVE BLOCK ENTRY: A reserve block entry does not point to a block but
1s reserved for later use as a pointer to a data block which can be tak-
en from the free pool. Both the key and pointer portions of a reserve
block entry are binary zeros. Reserve block entries are at the end of
the index block. When a reserve block entry is converted to a used
entry, the index block is reformatted to move the entry to the allocated
entry area of the block.

Reserve blocks do not exist in the cluster. When all data blocks ina
cluster are used and another data block is needed, a data block can be
created from the free pool. If the primary-level index block contains a
reserve block entry, it is used to point to the record from the free
pool. The reserve block entry in the primary-level index block points
to the block, and the data block becomes an allocated data block.

The number of index entries initially formatted as reserve block entries
is the specified percentage (RSVBLK) of the total number of entries,
with the result rounded up if there is a remainder. However, if the
number of free block entries plus the number of reserve block entries
require all index entries, the number of reserve block entries is
reduced by 1, providing at least one allocated entry per index block.

To calculate the number of primary-level index blocks in an indexed
file, you must know the initial number of data blocks allocated in the
indexed file. ,

Calculating Clusters

This calculating information is provided for your convenience if you
choose to calculate the number of blocks for a specific file. However,
SIAMUT1 automatically calculates the required data blocks based on the
parameter values you provide. The utility also lists at file definition
time Cwhen using the SE command) the number of blocks required according
to your parameter values.

The number of clusters ina file is the number of allocated data blocks
divided by the number of allocated entries in each primary-level index
block, with the result rounded up if there is a remainder.

allocated blocks
allocated entries in each PIXB

Note that in the calculation, if the quotient is not an integer, it is
rounded up Crather than truncated) in order to accommodate all of the
base records.

Chapter 3. Defining Primary Index Files 3-15

3-16

The number of free blocks in the file Cnot tncluding the free pool) is
the number of clusters in the file multiplied by the number of free
entries in each primary-level index block.

The Last Cluster

The last cluster in the file may be different from the other clusters.
It contains the same number of free blocks as the other clusters but
only enough allocated blocks to accommodate the records that you have
specified with the parameter BASEREC. Because rounding occurs in calcu-
lating the number of clusters, a few more allocated records than
required may exist in the last allocated block. The last cluster can be
a short one because only the required number of blocks are used.

If the number of allocated blocks divided by the number of allocated
blocks per cluster leaves a remainder, the remainder represents the num-
ber of allocated entries tin the primary-level index block tn the last
cluster. Unused entries in the last primary-level index block are
treated as reserve block entries.

The initial number of data blocks is the specified number of base
records (CBASEREC) divided by the number of allocated records in a data
block, with the result rounded up if there is a remainder.

BASEREC
data records per block

The number of primary-level index blocks is the initial number of allo-
cated data blocks divided by the number of allocated entries per
primary-level index block, with the result rounded up if there 15 a
remainder.

allocated data blocks
allocated entries per primary-level index block

9C€34-0404-1

SECOND-LEVEL INDEX BLOCKS (SIXB}

If the file is large enough to require more than one cluster, each PIXB
Cor cluster) has an entry in a second-level index block (SIXB). The
entry in a SIXB contains the address of the PIXB and the highest key in
the cluster. The SIXB has the following structure:

HEADER

RBN of High key
PIXB1 in PIXB1

RBN of High key
SIXB PIXB2 in PIXB2

RBN of High key
PIXB3 in PIXB3

RBN of High Key
PIXBS4 in PIXB4

PIXB1L PIXB2 PIXB3 PIXB4

Entries in a second-level index block point to primary-level index
blocks. Each entry in a second-level index block 15 one of two possible
types:

® Allocated entry

© Reserve index entry.

ALLOCATED ENTRY: An allocated entry points to an existing primary-level
index block. The key portion of the entry 1s initialized to binary ones
by the SIAMUTI utility. After records have been loaded or written, the
key portion of the entry contains the highest key from the primary-level
index block. The pointer portion contains the RBN of the primary-level
index block. Allocated entries are the first entries in the tndex
block. The number of index entries allocated when the tndexed file is
loaded is calculated as the total number of entries per index block,
less the number of reserve index entries.

Chapter 3. Defining Primary Index Files 3-17

RESERVE INDEX ENTRY: A reserve index entry does not point to a block but
is reserved for later use as a pointer to a primary-level index block
that can be taken from the free pool. Both the key and pointer portions
of a reserve index entry are binary zeros.

Reserve index entries, in second-level index blocks, provide index space
for the index structure to be expanded by adding new primary-level index
blocks. These, in turn, can have data blocks associated with them, thus
forming new clusters. This process of forming a new cluster is called a
cluster split.

For an example of using RSVIX, refer to "Example 4: Allocating Reserved
Index Entries" on page 3-30.

Reserve index entries are at the end of the index block. The number of
index entries initially formatted as reserve index entries is the speci-
fied percentage (RSVIX) of the total number of entries, with the result
rounded up if there is a remainder. However, if the number of reserve
index entries is the same as the total number of entries in an index
block, the number of reserve index entries is reduced by l, providing at
least one allocated entry per second-level index block.

The number of second-level index blocks is the number of primary-level
index blocks divided by the number of allocated entries per second-level
index block, with the result rounded up if there is a remainder.

number of PIXBs
allocated entries per SIXB

3-18 $C€34-0404-1

HIGHER-LEVEL INDEX BLOCK (CHIXB)

Tf the file is large enough to require more than one SIXB, the SIXBs in
the file are described by one or more higher-level index blocks CHIXB)
1m the same manner as the SIXB describes PIX3Ss. There is always one
index block that describes the entire file.

The index of an indexed file is constructed in several levels so that,
given a key, there is a single path Cone index block per level) cascad-
ing through the index lavels that leads to the data block associated
With that key. The index is built from the bottom up. At the lowest
level are tne primary-level index blocks. At the second level are index
blocks containing entries that point to the primary-level index blocks.
The highest level of the index structure consists of a single index
block.

Entries in a higher-level index block point to tndex blocks at the next
lower level. All antries in higher-level index blacks are allocated
entries. The key portion of the entry contains the highest key from the
index block of the next lower level. The pointer portion contains the
RBN of the next lower level index block. The number of blocks at any
higher index level is the number of index blocks at tne next lower level
divided by the total number of entries per index block, with the result
rounded up if there is a remainder.

If the number of index blocks at any level 15 one, that level is the top
level of the index. Although the Indexed Access Method 15 capable of
initially defining and supporting i7 levels of index, an indexed file is
formatted with only as many index levels as are required for the number.
of records. If an indexed file has not been fully loaded and one or
more higher index levals have not yet been required, the unnecessary
higher levels are not used, even thougn they exist in the file
structure.

ENDEX EXAMPLE: Assume that 500 data blocks are allocated to a file and
that each primary-~level index block contains one free block entry, one
reserve bleck aentry, and five allocated antries. Therefore, the total
number of primary-level index blocks is 106. Each second-level index
block contains one reserve index entry and six allocated entries; there-
fore, the number of second-level index blocks is 17. The number of
entries in higher level index blocks 15 seven, resulting in three index
blocks at the third level and one at the fourth level.

Therefore the file contains a total of i121 index blocks of Which 100 are
primary-lLevel index blocks, i7 are second-level index blocks, 3 are
third-level index blocks, and 1 is a fourth-~ievel index block. This
distinction is important because High-level index blocks are located
contiguously at the beginning of the file Cafter the FCB), while
primary-level index plocks are scattered throughout the file with the
data blocks. Figure 3-4 shows the structure of tne Kigher-level index
blocks.

|

Figure 3-46. High-level Index Structure

Fourth
Ctop)
leval
index

Third
leval
index

Second

lavel

indexAL — =
}
L
t

Chapter 3. Defining Primary Index Files 3-19

FREE POOL

3-20

If you specify that you want a free pool, your indexed file contains a
pool of free blocks at the end of the indexed file. The file control
block contains a potnter to the first block of the free pool, and all
blocks in the free pool are chained together by forward pointers.

A block can be taken from the free pool to become either a data block or
an index block. The block is taken from the beginning of the chain, and
its address (RBN) is placed in the appropriate primary-level index block
Cif the new block i858 to bacome a data block) or in the second level
index block Cif the new block is to become a primary-level index block),
and so on. Any block in the free pool can be used as either a data
block or as an index block.

When a data block becomes empty because of record deletions, the data
block may return to the free pool (depending on the delete threshold
(DELTHR) parameter). If the data block is returned to the free pool,
reference to the block 1s removed from the primary-level index block,
and the block is placed at the beginning of the free pool chain.

Calculating the initial size of the free pool consists of the following
steps:

° Fach reserve block entry ina primary-~level index block represents a
potential data block from the free pool. The number of data blocks
that can be assigned to initial clusters is the number of
primary-~level indax blocks times the number of reserve block entries
in each primary-~level index block.

® Fach reserve index entry ina second-level index block represents a
potential primary-level index block from the free pool. The number
of primary-level index blocks that can be assigned from the free
pool into the index structure set up at file definition time is the
number of second-level index blocks multiplied by the number of
reserve index entries In each second-level index block.

® Each primary-level index block taken from the free pool consists
entirely of empty Creserve block) entries. New data blocks can be
taken from the free pool for the entries in the new primary-level
index block. The number of data blocks 15 the number of entries per
index block multiplied by the number of new primary-level index
blocks (calculated in the previous step).

© The maximum number of blocks that can be taken from the free pool
and placed into the index structure set up at file definition time
75 the sum of the previous three calculations.

@ The actual number of blocks in the free pool is determined in one of
two ways:

_ The percentage (CFPOOL) of the maximum possible free pool as
specified by the RSVIX and RSVBLK parameters. The result is
rounded up if there is a remainder. If the DYN parameter is
also used, its value 1s added te the sum.

“sn The DYN parameter, if specified with no other free space parame-
ters, allocates a free pool of the specified number of blocks.

DELTHR ~ DELETE THRESHOLD: The percentage (0-99) of blocks to retain in
a cluster as records are deleted and blocks made available. This 15
known as the delete threshold DELTHR. When a block becomes empty, this
parameter, if supplied, determines if the block should be returned to
the free pool.

$C34-0404~-1

FILE CONTROL BLOCK

The file control block CFCB) is the first block in the file CRBN 0); it
contains control information.

Indexed files have an FCB Extension as the second block. The FCB Exten-
sion contains the parameters used to define the file.

Note: Indexed files built with a version of the Indexed Access Method
prior to version 2 do not contain an FCB extension.

You can access the FCB and FCB Extension by either of the following
methods:

© Using the EXTRACT function in an EDL program

° Using the SVERIFY utility.

You can locate the field names in the FCB and FCB Extension by examining
a listing of FCBEQU, a copy code module that is supplied as part of the
Indexed Access Method. The FCB Extension contains the parameters that
were used to set up the file using the SIAMUTIL SE command. Control
information i5 also contained in block headers; a description of control
information is contained in "FCB Extension Report™ on page 9-8.

FILE STRUCTURE TYPES

A wide range of file structure is available. You can set up files that
vary from the totally dynamic to the highly structured. Whether a file
is structured or dynamic depends on the degree to which it uses a free
pool.

A free pool is an area in your indexed file which contains a pool of
free blocks. Tha file control block contains a pointer to the first
block of the free pool, and all blocks in the free pool are chained
together by forward pointers. A block can be taken from the free pool
to become etther a data block or an index block.

Dynamic files offer the advantage of easy file design and good space
utilization. They have the disadvantage of a potential performance
decrease.

Structured files offer the advantage of good performance. They have the
disadvantage of a more complex file design and greater space require-
ments.

Either method can result in a need to reorganize the file; the struc~
tured approach because the file can run out of space for inserts, and
the dynamic approach because of performance considerations.

The type of indexed file to be defined, structured or dynamic,
therefore, depends on the file requirements and the efficiency required.

Structured File

A structured file has its base record slots, free space, and the index
structure needed to support them bu1lt at file definition time by the
Indexed Access Method utility using the file structure parameters you
specify. The structured file uses little, if any, free pool. The
structured file offers better performance than the dynamic file but can
result in unused space.

Chapter 3. Defining Primary Index Files 3-21

3-22

Whether or not a structured file has a free pool depends on whether or
not you supply a value for the DYN parameter when the file is defined.
When the DYN parameter is used, the FREEREC, FREEBLK, RSVBLK, RSVIX, and
FPOOL parameters, if supplied, are also used in establishing the struc-
tured free space. The number and types of blocks in a structured file
are the result of calculated values you supply as parameters when defin-
ing the file. Most of the blocks are not taken dynamically from the
free pool as they are needed because they are established at file defi-
nition time.

Dynamic File

The higher the degree to which a file uses a free pool, the more dynamic
it is; the system builds index and data blocks for you as they are
needed.

The Indexed Access Method provides a dynamic file restructuring capabil-
ity. It makes use of any free pool space the file has, even if the file
15 mostly structured.

The Indexed Access Method can restructure a file in two ways:

© As records are inserted and additional space is needed in specific
areas of the file, blocks are taken from the free pool and become
data blocks where needed. If additional tndex blocks are needed;
blocks are taken from the free pool for this purpose as well. Index
blocks can be added at any level, and the number of levels of index
can increase as needed. This function is performed automatically by
the Indexed Access Method on any file that has a free pool associ-~
ated with it.

e As records are deleted and blocks become empty, they are returned to
the free pool. If index blocks become empty (because the blocks
under them have been returned to the free pool) they are also
returned to the free pool. This helps to maintain a supply of
blocks in the free pool to be used if other areas of the file
expand.

For an example of defining a totally dynamic file, see "Example 5 -
Defining a Totally Dynamic File™ on page 3-33.

USING THE DYN PARAMETER: The DYN parameter can be used to adjust how
much the free pool is used. This adjustment varies how dynamic a strucy—
tured file is.

In a totally dynamic file, the initial file defined consists of only the
file control blocks, one primary index block and one data block. The
rest of the file is in the free pool.

To define a totally dynamic file, you need to only supply a value for
the DYN parameter to allow the rest of the file to be assigned to the
free pool.

A dynamic file can be used when the records you want to add to the file
are not sorted into ascending key sequence. In that case, you can place
the records in the file by inserting them in random sequence. The
Indexed Access Method will place them in their proper sequence within
the indexed file.

If base records are to be loaded initially and they are sorted in
ascending key sequence but insert activity 15s unknown, you can use a
totally dynamic file design. Use the BASEREC parameter to reserve the
number of base record slots required. Use the DYN parameter to provide
the free pool needed for record inserts.

Note: When a dynamic file has grown to 1ts working size, it should be
reorganized for more efficient operation.

$€34-0404-1

OPTION 2 EXAMPLES

The examples which follow are provided to show the option 2 prompts and
the effects of certain parameter values. Although the values used are
small for simplicity of explanation, they are usually much larger in an
actual application. Also a given example does not represent a complete
primary index file but addresses a particular part of a file and its
associated parameters which we wish to describe at that place in the
chapter.

Chapter 3. Defining Primary Index Files 3-23

EXAMPLE 1: ALLOCATING FREE RECORDS

The indexed file created using these parameters has only one type of
free space, called free records:

ENTER COMMAND (7): SE

SET FILE DEFINITION PARAMETERS
0 = EXIT
i SIGNIFICANT PARAMETERS
2 ALL PARAMETERS
3 PARAMETERS FROM EXISTING INDEXED DATASET
ENTER OPTION: 2
SECONDARY INDEX CY/N)?: N
PARAMETER DEFAULT NEW VALUE
BASEREC NULL: 10
BLKSIZE 0:256
RECSIZE 0:80
KEYSIZE 740
KEYPOS 2]

C1] FREEREC 7]
FREEBLK 70
RSVBLK NULL:
RSVIX 0:
FPOOL NULL:
DELTHR NULL:
DYN NULL:
TOTAL LOGICAL RECORDS/DATA BLOCK:
FULL RECORDS/DATA BLOCK:
INITIAL ALLOCATED DATA BLOCKS:
INDEX ENTRY SIZE:
TOTAL ENTRIES/INDEX BLOCK:
FREE ENTRIES/PIXB:
RESERVE ENTRIES/PIXBCBLOCKS):
FULL ENTRIES/PIXB:
RESERVE ENTRIES/SIXB:
FULL ENTRIES/SIXB:
DELETE THRESHOLD ENTRIES:
FREE POOL SIZE IN BLOCKS:
OF INDEX BLOCKS AT LEVEL 1:

DATA SET SIZE IN EDX RECORDS:
INDEXED ACCESS METHOD RETURN CODE:
SYSTEM RETURN CODE:

CREATE/DEFINE FILE CY/N)?: N

ENTER COMMAND (72):

H
o
a
a
f

o
o

e

L
f

t
m
=

O
O

M
m
O
U
I
U
T
O
U
I
@
D

O
O
U
I
U
T
D

t
l

3-24 $C34-0404-1

[ll] Because record size was specified as 80 and block size was specified
as 256, there are (256-16)/780 = 3 records per block. Because FREEREC
was specified as 1, there are 2 full (based records per block and 1 free
record per block. Because BASEREC was specified as 10, there are 10/02
base records per block) or 5 initial allocated data blocks (blocks that
contain base records). Because FREEBLK, RSVBLK, RSVIX, FPOOL, and DYN
were not specified, there are no free blocks or free pool blocks allo-
cated. One primary index block is needed.

The number of free blocks is calculated as follows: Free entries per
PIXB times the number of index blocks at level l.

The total blocks allocated for this file is:

Initial allocated data blocks 5
Free blocks 0
Free pool blocks 0
Index blocks 1
File control block + 2

8 Total

Figure 3-5 illustrates the format of the indexed file that would result
from these SE command parameters.

1

2

3

PIXB == 4

5

6

2 3 4 5 6

Data
blocks

Free Free Free Free Free

Figure 3-5. Indexed File with Free Records

Chapter 3. Defining Primary Index Files 3-25

EXANPLE @: ALLOCATING FREE RECORDS AND FREE BLOCKS

3-26

These parameter specifications will generate an indexed file with two
types of free space—free records and free blocks:

ENTER COMMAND (7): SE

SET FILE DEFINITION PARAMETERS
0 = EXIT
1 = SIGNIFICANT PARAMETERS
2 = ALL PARAMETERS
3 = PARAMETERS FROM EXISTING INDEXED DATASET
ENTER OPTION: 2
SECONDARY INDEX CY/N)?: N
PARAMETER DEFAULT NEW VALUE
BASEREC NULL ?10
BLKSIZE 7256
RECSIZE 780
KEYSIZE 740
KEYPOS 7]
FREEREC >]

Cl] FREEBLK 710
RSVBLK NULL:
RSVIX 0:
FPOOL NULL:
DELTHR NULL:
DYN NULL:
TOTAL LOGICAL RECORDS/DATA BLOCK:
FULL RECORDS/DATA BLOCK:
INITIAL ALLOCATED DATA BLOCKS:
INDEX ENTRY SIZE; . 4
TOTAL ENTRIES/INDEX BLOCK:
FREE ENTRIES/PIXB:
RESERVE ENTRIES/PIXBCBLOCKS):
FULL ENTRIES/PIXB:
RESERVE ENTRIES/SIXB:
FULL ENTRIES/SIXB:
DELETE THRESHOLD ENTRIES:
FREE POOL SIZE IN BLOCKS:
QF INDEX BLOCKS AT LEVEL 1:
OF INDEX BLOCKS AT LEVEL 2:

DATA SET SIZE IN EDX RECORDS:
INDEXED ACCESS METHOD RETURN CODE:
SYSTEM RETURN CODE:

CREATE/DEFINE FILE CY/N)?: N
ENTER COMMAND (?):

o
o
a
o
r
e
c
o
o

r
P
N
O
U
U
I
O
L
O
F
U
D
U
I
N

G
W

[
t
e

m
b

A)
[1] The FREEBLK parameter of 10 causes 10% of the total entries in each
index block to point to free blocks. Because KEYSIZE was specified as
40, the index entry size = 40 + 4 CRBN pointer) and the total entries
per index block is (256-16)/44 = 5. Thus, 10% of this total rounded up
is the number of free entries/PIXB (1). Because there are 5 initial
allocated data blocks, one free entry and only 5 total entries per index
block, 2 primary index blocks are needed. This causes a second-level
index block to be allocated.

5€34-0404-1

The total blocks allocated:

Initial allocated data blocks
Free blocks
Free pool blocks
Index blocks
File control block

5
2
0
3

+ 2
12 Total

Figure 3-6 illustrates the format of the indexed file that would result
from these SE command parameters.

2

3

SIXB ==> 9

Unused

3

G

5
PIXBs ==

6

7

8 Free

4 5 6 7

Data
blocks

Free Free Free Free

f
s 0

11 Free

Unused

ll

 Free

Free
block

Free
block

Figure 3-6. Indexed File with Free Records/Blocks

Chapter 3. Defining Primary Index Files 3-27

EXAMPLE 3: ALLOCATING RESERVED DATA BLOCKS

Reserve blocks are allocated using the RSVBLK and FPOOL parameters of
the SE command. The following SE command example shows the specifica-
tion of an indexed file with reserved data blocks.

ENTER COMMAND (7): SE

SET FILE DEFINITION PARAMETERS
0 = EXIT
1 SIGNIFICANT PARAMETERS
2 ALL PARAMETERS
3 = PARAMETERS FROM EXISTING INDEXED DATASET
SECONDARY INDEX CY/ND?: WN
ENTER OPTION: 2
PARAMETER DEFAULT NEW VALUE

(
l
o
a
f

BASEREC NULL: 10
BLKSIZE 0:256
RECSIZE 0:80
KEYSIZE 0:49
KEYPOS 1:1
FREEREC 0:1
FREEBLK 0:10

Cl] RSVBLK NULL: 10
RSVIX 0:

C2] FPOOL NULL :?58
DELTHR NULL:
DYN NULL:
TOTAL LOGICAL RECORDS/DATA BLOCK:
FULL RECORDS/DATA BLOCK:
INITIAL ALLOCATED DATA BLOCKS:
INDEX ENTRY SIZE;
TOTAL ENTRIES/INDEX BLOCK:
FREE ENTRIES/PIXB:
RESERVE ENTRIES/PIXBCBLOCKS):
FULL ENTRIES/PIXB:
RESERVE ENTRIES/SIXB:
FULL ENTRIES/SIXB:
DELETE THRESHOLD ENTRIES:
FREE POOL SIZE IN BLOCKS:
OF INDEX BLOCKS AT LEVEL 1:
OF INDEX BLOCKS AT LEVEL 2:

DATA SET SIZE IN EDX RECORDS:
INDEXED ACCESS METHOD RETURN CODE:
SYSTEM RETURN CODE:

CREATE/DEFINE FILE CY/N)?: N
ENTER COMMAND (7): M

M
R

A
U
N
O
W
R
O
P
O
t

W
G

t
i
e

b
b

ON

C1] In this example RSVBLK was specified as 10. Thus 10% of the total
entries in each PIXB will initially be reserved.

C2] Because the total entries per PIXB is 5, 10% of 5 rounded up will
cause 1 entry in each PIXB to be reserved. Because there are 2 PIXBs,
each with 1 reserve entry, a maximum of 2 free pool blocks can be used.
However, since FPOOL was specified as 50%, only half of these blocks (1
block) will be allocated for the free pool.

The total blocks allocated for this file is:

Initial allocated data blocks 5
Free blocks 2
Free pool blocks 1
Index blocks 3
File control block + 2

313 Total

Figure 3-7 on page 3-29 illustrates the format of the indexed file that
would result from these SE command parameters.

3-28 $C034-0404-1

SIXB ==>

3

G

5
PIXBs ==>

6

7 Free

Reserved

4 5 6

Data
blocks

Free Free Free

Free pool
block

 Unused

Free
block

12

9

10

lil Free

Reserved
 Unused

9 10 11

 Free Free

Free

block

Figure 3-7. Indexed File with Reserved Data Blocks

Chapter 3. Defining Primary Index Files 3-29

EXAMPLE &: ALLOCATING RESERVED INDEX ENTRIES

3-30

In the following example, the index structure is set up to use free pool
blocks for index blocks by allocating reserve index entries using the
RSVIX parameter.

ENTER COMMAND C?): SE

SET FILE DEFINITION PARAMETERS
0 = EXIT

i
i

1 SIGNIFICANT PARAMETERS
2 = ALL PARAMETERS
3 = PARAMETERS FROM EXISTING INDEXED DATASET
ENTER OPTION: @2
SECONDARY INDEX CY/N)?: N
PARAMETER DEFAULT NEW VALUE
BASEREC NULL?190
BLKSIZE -256
RECSIZE 789
KEYSIZE 7&0
KEYPOS
FREEREC
FREEBLK
RSVBLK NULL: 10

Cl] RSVIX 0:10
FPOOL NULL :?59

Cel DEL THR NULL: 40
DYN NULL?25
TOTAL LOGICAL RECORDS/DATA BLOCK:
FULL RECORDS/DATA BLOCK:
INITIAL ALLOCATED DATA BLOCKS:
INDEX ENTRY SIZE:
TOTAL ENTRIES/Z INDEX BLOCK:
FREE ENTRIES/PIXB:
RESERVE ENTRIES/PIXBCBLOCKS):
FULL ENTRIES/PIXB:
RESERVE ENTRIES/SIXB:
FULL ENTRIES/SIXB:
DELETE THRESHOLD ENTRIES:
FREE POOL SIZE IN BLOCKS: 2
OF INDEX BLOCKS AT LEVEL 1:
OF INDEX BLOCKS AT LEVEL a

O
o
r
M
O
O

S&
S

s
¢

e
e

a
e

fe
a

i
N

R
m
N
S
O

D
R
E
S
R
t
A

B
S
U
T
O
U
T

I
N
G
a

DATA SET SIZE IN EDX RECORDS: Gi
INDEXED ACCESS METHOD RETURN CODE: ~I
SYSTEM RETURN CODE: 1

CREATE/DEFINE FILE CY/N3?: N
ENTER COMMAND (€?):

Cl] In this example there are still 5 total entries per index block.
Tne 10 RSVIX parameter causes 10% X 5 Crounded up to 1) of the
second-level tndex block (CSIXB) entries to be reserved.

In this case, 1 reserve entry is allocated in the SIXB leaving ¢ full
entries. Because the block pointed to by a SIXB 1s also an index block
CPIXB), blocks in the free pool are allocated for the PIXB and the total
number of data blocks it can point to. Thus the total free pool size
for these parameters is 1 (Creserve entry) + 5 Ctotal entries/PIXB) + 2
Creserve block entries) = 8. Because only 50% of the total possible
free pool was requested, 4 of the total free pool blocks plus the 25
blocks specified on the DYN parameter for a total of 29 blocks would be
allocated toe the free pool.

9C34-0404-1

The total blocks allocated for this file is:

Initial allocated data blocks 5
Free blocks | 2
Free pool blocks 29
Index blocks 3
File control block + 2

41 Total

[2] The percentage (0-99) of blocks to retain in the cluster as records
are deleted and blocks made available. This is known as the delete
threshold (DELTHR). When a block becomes empty, it is first determined
if the block should be given up to the free pool by checking the
response to this prompt. If the block 15 not given up to the free pool,
it is retained in the cluster, either as a free block or as an active
empty block. The result of this calculation is rounded up so that any
non-zero specification indicates at least one block. The calculation 15s
adjusted to ensure that the cluster always contains at least one block.
In this example, the delete threshold was specified as 40%. This
results in at least 2 blocks always being retained in each cluster.

If the DELTHR parameter is specified as null (€&) and DYN is not speci-
fied, DELTHR defaults to the number of allocated blocks in the cluster
plus one half of the value calculated by the FREEBLK prompt.

If the DELTHR parameter is specified as null anda value is specified
for the DYN parameter, DELTHR defaults to zero.

Figure 3-8 on page 3-32 illustrates the format of the indexed file that
would result from these SE command parameters.

Chapter 3. Defining Primary Index Files 3-31

3-32

SIXB ==>

PIXBs ==>

4

Data
blocks

Free

Free pool

blocks

2

3

8

Reserved

Unused

3 8

Gq 9

5 10

6 li Free

7 Free Reserved

Reserved Unused

5 6 7 9 10

Free Free Free Free

Free

block

12 13 14 15
—> —> —>

Free Free Free Free

1]

Free

block

Figure 3-8. Indexed File with Reserved Index Entries

S$C34-0404-1

EXANPLE 5 - DEFINING A TOTALLY DYNAMIC FILE

To define a totally dynamic file you need only supply the parameters
which describe the format of your records within blocks: BLKSIZE,
RECSIZE, KEYSIZE. If the your keys do not begin in position 1 of your
records, the KEYPOS parameter must be supplied. The DYN parameter must
then be specified in the number of blocks to assign to the free pool.

The following display shows the use of the SE commands of the SIAMUTI
utility to define a totally dynamic indexed file. Note that the result-
ing file has only one allocated data block and one index block. The
rest of the space is in the free pool as specified by the DYN parameter.

ENTER COMMAND (7): SE

SET FILE DEFINITION PARAMETERS
0 = EXIT
1 = SIGNIFICANT PARAMETERS
2 = ALL PARAMETERS .
3 = PARAMETERS FROM EXISTING INDEXED DATASET
ENTER OPTION: 2
SECONDARY INDEX C(Y/N)?: N
PARAMETER DEFAULT NEW VALUE
BASEREC NULL:
BLKSIZE : 256
RECSIZE :70
KEYSIZE 40
KEYPOS
FREEREC
FREEBLK
RSVBLK NULL:
RSVIX 0:
FPOOL NULL:
DELTHR NULL?
DYN NULL:5300
TOTAL LOGICAL RECORDS/BLOCK:
FULL RECORDS/DATA BLOCK:
INITIAL ALLOCATED DATA BLOCKS:
INDEX ENTRY SIZE:
TOTAL ENTRIES/INDEX BLOCK:
FREE ENTRIES/PIXB:
RESERVE ENTRIES/PIXB (BLOCKS):
FULL ENTRIES/PIXB:
RESERVE ENTRIES/SIXB:
FULL ENTRIES/SIXB:
DELETE THRESHOLD ENTRIES:
FREE POOL SIZE IN BLOCKS:
OF INDEX BLOCKS AT LEVEL 1:

DATA SET SIZE IN EDX RECORDS: 5304
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: —1

CREATE/DEFINE FILE CY/N)?: N

ENTER COMMAND (2):

{

o
O
o
r
e
o
o

@
&

o
s

@
8
6

—
ps

bt
pe
a

O
n
N
O
N

O
O
O
N
D
M
W
W

i
n
A
l
S
o

H
S

The total blocks allocated for this file is:

Initial allocated data blocks 1
Free blocks 0
Free pool blocks 5300
Index blocks
File control block o

e

5304 Total

Chapter 3. Defining Primary Index Files 3-33

Figure 3-9 illustrates the format of the indexed file that would result
from these SE command parameters.

2
Primary index
block (PIXB) => 3

3

Data
block =>

Free

4 5 6 5303
—> —> —>

Free pool
blocks =>

Figure 3-9. Totally Dynamic Indexed File

3-34 $C034-0404-1

DESIGNING INDEXED FILES USING STAMUTI - OPTION &

Option 3 allows you to define a new file, using the same parameters that
were used to create an existing file. Using this option you are not
required to manually enter any parameters. You are prompted for the
data set name and volume of the existing indexed file followed by the
prompt "NEW PARAMETERS EXACTLY SAME AS ORIGINAL PARAMETERS CY/N3 7",
The effects of these two possibilities are described below:

Y The new file to be defined is to appear exactly like the existing
file when it was created. In other words, the parameters to be used
for defining the new file will be exactly like those of the existing
file.

An axample of this situation 15 where you are satisfied with the
structure of a currently existing file and now you want to build a
similar file and you expect the same type of insert/delete activity.

The growth of the existing file is to be taken into account in defin-
ing the new file. If the total number of records in the existing
file do net exceed the number of base records when the file was
defined, the existing file parameters will be used without change to
define the new file. However, if the number of records in the exist-
ing file exceed the number of base records, the parameters for the
new file will be adjusted as follows:

@ BASEREC will be set as the current number of records in the
existing file.

° FPOOL will be set to null.

@ DYN will be set to the current number of free pool blocks in the
existing file.

® All other parameters will be the same as the corresponding exist-
ing file parameters.

Replying N to the prompt "NEW PARAMETERS EXACTLY SAME AS ORIGINAL
PARAMETERS CY/N)?™, causes the file size to be adjusted to allow
at least as many records to be loaded in the new file as appear
in the existing file. This reduces the free pool amount based
upon free pool depletion in the existing file.

An example of this situation 1s where you wish to reorganize a file.
The new file should be able to handle as many records as exist in the
old file.

Note: The parameters for a primary file must be set from another prima-
ry file and parameters for a secondary file must be set from another

secondary file.

Chapter 3. Defining Primary Index Files 3-35

SIAMUT1 - OPTION 3

3-36

The SIAMUTI Indexed Access Method utility can be loaded with the Event
Driven Executive operator command $L SIAMNUTI1.

When SIAMUT1 is loaded the first prompt displayed is as follows:

CLI ENTER COMMAND (?): SE

[Ll] Entering SE causes the next prompt to be displayed.

FILE DEFINITION PARAMETERS
EXIT
SIGNIFICANT PARAMETERS
ALL PARAMETERS
PARAMETERS FROM EXISTING INDEXED DATA SET

ER OPTION: 3

m
“
a
d
m

if
t
l
d

C2]

M
I
A
N
R
O
W

N

[2] Respond to this prompt by entering the digit '3'. This response
causes the following prompts to be displayed.

SECONDARY INDEX CY/N)?: N
C3] |NAME OF EXISTING INDEXED DATASET CNAME, VOLUME) : EMPLFILE,EDXOO3
C4] |NEW PARAMETERS EXACTLY SAME AS ORIGINAL PARAMETERS CY/N)? Y¥

DATA SET SIZE IN EDX RECORDS: 15
INDEXED ACCESS METHOD RETURN CODE: I
SYSTEM RETURN CODE: -1

[5] |CREATE/DEFINE FILE CY/N)?: N

[3] Enter the name of the data set and volume whose values you wish this
data set to copy.

[4] If all of the parameter values used to define the existing file ini-
tially are satisfactory, reply Y. However, if you want to change any of
the parameters, based on current file status, or you want to reorganize
the existing file, reply N. Replying N will cause the parameter values
for BASEREC and FPOOL to be adjusted so that you can load as many © |
records into the new file as are now contained tn the existing file.

[5] If you have verified that the parameters you entered are correct,
the data set (file) size in EDX records 15 acceptable, and the return
codes are both -1l, you can reply Y and the file can be defined and cre-
ated. If you wish to change any of the parameters, reply N and you can
reenter the SE command and enter any new values for the parameters.

$C34-0404-1

DEFINING, CREATING, AND LOADING A FILE - SUMMARY

This chapter has presented the structure, content and principles of pri-
mary index files. Several examples have been used to show what results
given parameter values have when defining a primary index file.

In those examples the SE command of SIAMUTI was used extensively. In
replying to the SE prompt "DEFINE/CREATE FILE CY/N)?:", N was used in
this chapter. This allows you to reenter the SE command and go through
the prompt sequence again, changing any parameter values as required.

To see the result of replying Y, see the example used in Chapter
2» “Using the Indexed Access Method" on page 2-1. When you reply Y to
the DEFINE/CREATE prompt, you enter the function called defining the
file. You can enter the define file directly anytime that SIAMUTI1 is
loaded by responding with DF to the prompt "ENTER COMMAND (€?7):." Using
the DF Cdefine file) command is described in detail under "DF-——Define
Indexed File” on page 8-6.

When you reply Y to the prompt, "INVOKE LOADCL), REORGANIZECR) OR ENDCE)
AFTER CURRENT FUNCTION ?:", you are given the opportunity to enter the
SIAMUT1 functions of load, reorganize, or end. While in the SE
function, load, reorganize, and end can be entered by replying with the
letters L, R, or E>, respectively. However, these functions can be
entered directly from the prompt "ENTER COMMAND (€?7):" with LO for load,
RO for reorganize, or EN for end.

Using the LO Cload) command is described in detail under "LO—Load
Indexed File” on page 8-22.

Using the RO Creorganize) command is described in detail under
"RO—Reorganize Indexed File” on page 8-30.

Entering EN Cend) terminates the current session of the SE command of
SIAMUT1. Entering EN to the prompt "ENTER COMMAND (?):" will then ter-
minate the SIAMUT1 utility.

Chapter 3. Defining Primary Index Files 3-37

3-38 $C34-0404-1

LOADING

CHAPTER 4. LOADING THE PRIMARY INDEX FILE

This section describes the process and methods of loading a file.

You can use two methods to load base records:

1. The SIAMUTI utility

2. An application program.

The methods are described in the following sections.

THE PRIMARY INDEX FILE

The Indexed Access Method uses two modes to place records into an
indexed file:

1. Load mode: records are loaded sequentially in ascending order by
key, skipping any free space. The records loaded are called base >
records. Each record loaded must have a key higher than any key
already in the file. :

2. Process mode: records are inserted in their proper key position
relative to records already in the file. Records are inserted using
the free space that was skipped during loading or, if a record has a
new high key, it is placed in a base record after the last loaded
record. If no base records are available, it is placed in the free
space after the last loaded record. |

The total number of base records that can be loaded is established when
the indexed file is defined by the SIAMUT1utility. It is not necessary,
however, to load all Cor any) base records before processing can begin.
The file can be opened for loading some of the base records, closed and
then reopened for processing (including inserts), and later opened for
loading more base records. Figure 4-1 on page 4-2 illustrates this
saquence.

Note: Programs written in COBOL are an exception to this: COBOL pro-
grams can use load mode only once for any given indexed file.
Therefore, all base records loaded in load mode must be loaded together.
Base records loaded later must be inserted in process mode (with slower
performance).

Chapter 4%. Loading The Primary Index File 4-1

LOAD NODE PROCESS MODE

 <————— First record has

lowest key
<

Step l. <
Load a portion of <
the base records <

< ——~- Step 2.
High key >Pr- mr Orr < Insert new records
after step l <

cuetlteelnedielieediendtieeies 7 < —High key after
step 2

Step 3.
Load more
base records

High key > P77 oT ero — <——— Last record has
after step 3 highest key

Unused
space

Figure 4-1. Loading and Inserting Records

The amount of free space for inserts Cif any) is specified using the
SIAMUTL utility when the indexed file is built. This free space can be
distributed throughout the file in the form of free records within each
data block, free blocks within each cluster, and ina free pool at the
end of the file.

4-2 $C€34-0404-1

LOADING BASE RECORDS USING $IAMUT1

After the indexed file has been defined by the S$IAMUT! DF command, you
can load base records from a sequential file into the indexed file.
Loading the file can be done directly by responding Y to the prompt "IN-
VOKE LOADCL), REORGANIZECR) OR ENDCE) AFTER CURRENT FUNCTION?", when
defining the file, or by using the LO command after the file has been
defined. The data in the sequential file must be in ascendiny order by
kay.

To load base records using SIAMUTI1, do the following:

1. Prepare a sequential file for input to the indexed file

2. Load the sequential file into the indexed file.

Preparing Input for the Indexed File

Select one of the following methods to prepare the input ina sequential
file to be loaded into an indexed file:

° If your data records are 72 bytes or less, use one of the text edi-
tors to enter your data or one of the communications utilities to
get the data into an Event Driven Executive sequential file. In
either case, you must know the record format used by the utility.
The utilities put two 80-byte records in each 256-byte Event Driven
Executive record. The first record begins at location 1, and the
second record begins at location 129. This results ina blocked
sequential file which can be used to load the indexed file when
using the LO command of $IAMUT1. CA detailed description of the LO
command is under "LO—Load Indexed File™ on page 8-22.) Specify 128
for the input record length and 256 for the input block size.

Vt & te

° If your records have more than 72 bytes of data, you must create a
program that accepts the data records and writes them to a disk,
diskette, or magnetic tape file.

The data must be in ascending order, based upon the field you use as the
key. |

Chapter 4. Loading The Primary Index File 4-3

Loading an Indexed File from a Sequential File

The procedure for loading an indexed file from a sequential file is:

1. Invoke S$IAMUT1 using the system command SL.

2. Lf you want a hard copy of the terminal prompts and responses, enter
an EC command. Respond to the prompt with a Y. This will print all
further prompts and responses of SIAMUTIL on the SSYSPRTR device and
your terminal. If a hard copy is not required, omit this step.

3. Enter the LO command.

Respond to the following prompts with your data set information.

ENTER COMMAND (7): LO
LOAD ACTIVE
ENTER OUTPUT DATASET CNAME,VOLUME):
SFSEDIT FILE RECSIZE = 128
INPUT RECORD ASSUMED TO BE 80 BYTES. OK?:
ENTER INPUT BLOCKSIZE CNULL = UNBLOCKED):
ENTER INPUT DATASET CNAME,VOLUME):
LOAD IN PROCESS

END OF INPUT DATASET
ANY MORE DATA TO BE LOADED?: N

6 RECORDS LOADED
LOAD SUCCESSFUL

4. Enter the EN command to end SIAMUT1. Your program is now loaded and
you can process the data with your applicetion program.

4-4 $C34-0404-1

LOADING BASE RECORDS FROM AN APPLICATION PROGRAM

LOADING

Base records are records placed into an indexed file in ascending new
high key sequence. That is, if a record added to the file has a key
higher than any other record in the file, it 1s placed in a base record
slot. Base records are placed in the base record slots reserved for
them by use of the BASEREC parameter. You can use either the SIAMUT1 LO
command or an application program to load the base records.

Base records must be loaded in ascending order by key. If you are writ-
ing your own program to load the file, use a LOAD request to connect the
file to load base records. Then issue a PUT for each record. When the
desired records have been loaded, issue a DISCONN request to terminate
the load procedure. The only requests that can follow a LOAD request
are: PUT, EXTRACT, and DISCONN.

You can also insert base records in process mode by using a PROCESS
request to connect the file, followed by a PUT request for each record
to be loaded. Loading records in process moda with an application pro-
gram 1s discouraged because of slower performance.

Unless the base record loading program is written in COBOL, it need not
load all base records at one time. A file that already contains records
can be reconnected to load more records, but the key of each new record
must be higher than any key already in the file.

COBOL programs must either load all the base records in load mode at
once (because only one use of load mode is allowed on a given file) or

insert the records in process mode as needed.

The limit on base records as specified on the SE command of the Indexed
Access Method utility program (SIAMUT1) cannot be exceeded. If you
attempt to load a record after the last allocated record area has been
filled, an end-of-file condition occurs.

BASE RECORDS FROM A SEQUENTIAL FILE IN RANDOM ORDER

In order to load base records from a sequential file where keys are in
random order, code an EDL program to open the indexed file in load mode.
Load the SORT/MERGE program with an output exit routine specified.
Write CPUT) each record to the indexed file as it is received in the
output exit routine from SORT/MERGE. The output exit routine can also
screen out duplicates or other unwanted records. For information on
using the SORT/MERGE Program Product, refer to IBM Series/l] Event Driven
Executive Sort/Merge Programmer's Guide, SL23-0016.

Chapter 4%. Loading The Primary Index File 4-5

4-6 S$C34-0404-1

CHAPTER 5. BUILDING A SECONDARY INDEX

Indexed files, like most data record files, can be a common base for
many applications. You can assign secondary keysS in your indexed files
for greater flexibility in accessing records in indexed files.

Secondary keys are accessed through a secondary index (a separate file).
Your application program requests records by their secondary key and
secondary index file name. The secondary index is used to retrieve the
record by its secondary key from the primary index file.

You can have more than one secondary index for a given primary index
file. In order for the Indexed Access Mathod to know the relationships
between secondary indexes and primary index files, you must create and
maintain a @irectory with that information.

SECONDARY KEYS

Secondary keys are not required to be unique; different records in an
indexed file can have the same key values in their secondary key field.

The secondary key can be any field within your data record that you
selact, however, it must meet the following requirements:

® The selected field must start at the same location in each record.

° All portions of the key field must be contiguous.

© The secondary key length cannot exceed 250 bytes.

In a secondary index, the Indexed Access Method assigns a sequence num-
ber to each secondary key. The sequence number shows the sequence of
loading or inserting secondary index entries.

A sample layout of a secondary index record follows:

Relative
Secondary Sequence Primary Block
Key Number Key Number

SMITH 0001 12345AB RBN

Chapter 5. Building a Secondary Index 5-l

THE DIRECTORY

In order for the Indexed Access Method to know the relationships between
secondary indexes and primary index files, you must create and maintain
a directory with that information. The directory describes all indexed
files in the system which are either secondary indexes,» or primaries
which have secondary indexes associated with them. Primary index files
which do not have secondary indexes associated with them are not in the
directory. Use the SIAMUTI utility to create and maintain the
directory.

The directory name is SIAMDIR and it resides on the IPL volume.

The directory contains one or more groups of entries. Each group begins
With an entry for the primary file and is followed by an entry for each
secondary tndex which references that primary file.

You have the responsibility of maintaining the directory using the
SIAMUTI utility.

Each entry in the directory contains the following information:

e File name

° Volume name

e Primary file or secondary index indicator

e Independent indicator

° Invalid index indicator (secondary entry only)

® Automatic update indicator Csecondary entry only).

FILE NAME: The file name is the data set name supplied when the primary
index file or secondary index entry 1s inserted in the directory.

VOLUME NANE: The file location is the volume label name where the index
resides that this entry is for.

INDEPENDENT PROCESSING INDICATOR: Each entry in the directory contains
an independent indicator. Independent means that the file is to be
treated as an independent file without regard to associated primary or
secondary files. If the independent indicator is set on for a file that
is explicitly opened, the automatic update indicator 1s ignored.

In the case of a secondary index, this means that records retrieved are
internal secondary index records, not data records from the primary
file. In addition, independent means that any modification to the file
Ceither primary or secondary) will not be reflected in its associated
files. Also any changes made tn a secondary index will not be reflected
In the associated primary or other secondary index files.

In the case of a primary entry, any modification to the primary file
Will not be reflected in the associated secondary index files.

5-2 $C€346-0404-1

INVALID INDICATOR: The invalid indicator is initially turned on in the
directory, by the directory function of SIAMUT1, when the secondary
entry is inserted in the directory.

A secondary index entry is marked invalid until the secondary index has
been loaded.

The load function of the utility turns off the tnvalid indicator.

If you build the secondary index with an application program, you must
also turn off the indicator. The UE subcommand of the DR function in
SIAMUTL is used to turn off the invalid indicator, after you have suc~
cessfully loaded your secondary index.

AUTOMATIC UPDATE INDICATOR: Each secondary index entry in the directory
contains an automatic update indicator. Any modification to the primary
file Ceither directly or through any secondary index activity) results
in an automatic update to all secondary indexes whose automatic update
indicator in the directory was specified with Y. Thus, a secondary
index flagged as auto-update can be thought of as "dynamic." Each secu
ondary index remains open until all users of it have closed. However,
if the independent indicator is set on for a file that is explicitly
opened, the automatic update indicator is ignored.

If the automatic update indicator was specified as N, changes are not
reflected in that secondary index. This would be a "Static™ index. The
assumption is that a static index would be rebuilt periodically to bring
it up to date.

ALLOCATING AND INSERTING ENTRIES IN A DIRECTORY

Although the Indexed Access Method references the directory, it never
modifies the directory. The one function that is performed on the
directory automatically is that the secondary load option sets the
invalid indicator off following successful completion.

To define the existence of a secondary index, use SIAMUT1 to perform the
following two steps:

1. Allocate a directory using the DR (directory function) of SIAMUTI

2. Establish the fact that a secondary index will exist by making an
entry in the directory using the IE Cinsert entry) command of
SIAMUTI.

Remember that primary index file entries precede their associated sec~-
ondary index entries. The SIAMUT1 Indexed Access Method utility can be
loaded with the Event Driven Executive operator command $L §$IANUTIL.

Chapter 5. Building a Secondary Index 5-3

5-4

When STAMUTI 1s loaded, the first prompt displayed is as follows:

CLJ;ENTER COMMAND (€?): DR

Cl] Entering DR causes the following prompt sequence.

ENTER DIRECTORY COMMAND (€?): AL
MAX # OF DIRECTORY ENTRIES: 10
THE DIRECTORY DS REQUIRES 1 EDX RECORDS, CONTINUE CY|N|EN)? Y

DIRECTORY DATA SET ALLOCATED: $SIAMDIR,EDX002s
a
m
r

r
y

U
W

G
I
R
O

le
ne

ew
e
a
l

See
el

[2] Responding to this prompt with AL Callocate) causes a directory
allocation sequence to begin.

Note: The allocation sequence is only required the first time you set
up secondary indexes. Future entries can be added using CIE) insert

directory function.

C3] Reply with maximum number of directory entries you want allocated
for the directory. You will need one entry for each secondary index and
one entry for each primary that has a secondary index associated with
it. A null response will allocate the maximum (default) of 47 entries.

[4] Based on your previous response, the size of the required directory
1s calculated and you are informed of the number of EDX records required
to allocate your requested directory. You are also given three options
as follows:

1. YY - the opportunity to continue the directory allocation

2. WN - do not allocate the directory; allow me to change the size of
the directory

3. EN - end the allocate function; return to [1] of the DR function of
SIAMUT1 to enter another command.

[5] Because [Y] was replied, the directory is allocated. If the direc-
tory is allocated successfully, you are informed that it has been allo-
cated, the name of the directory of course is SIAMDIR, and the IPL
volume where 1t is always allocated is displayed.

Note: The allocation sequence is only required the first time you set
up secondary indexes.

$€034-0404-1

The prompt sequence continues.

[6] ENTER DIRECTORY COMMAND (7): IE

C7] CDSNAME, VOLUME): EMP#, EDX002
C3] IS THIS A SECONDARY ENTRY CY/N) N

[9] DIRECTORY INSERT SUCCESSFUL

CLO] ENTER DIRECTORY COMMAND (?): IE
[6] Replying IE Cinsert entry) allows you to insert entries into the
directory. A primary entry must be inserted before its associated secuy
ondary index entries.

Note: Primary files may exist at this time, however, secondary indexes
cannot be created until an entry for it has been inserted in the direc
tory.

[7] Your data set name and volume name where your primary index file or
secondary index resides. The volume name is not required if the data
set 15 on system volume such as EDX002.

[81] This prompt lets $I
ary entry indicator. R
primary index entry.

AMUTI know Whether to set the primary or second-
eply Y for a secondary index entry, or N for a

[9] This message informs you that the entry has been successfully
Inserted into the directory.

[10] At this point you can end the directory function by responding to
the prompt with EN, or reply any other directory function.

Because this was a primary entry we can now respond with IE and insert
secondary directory entries. In this case, secondary entries are being
made and that is why we responded with IE and caused the prompts to con-
tinue as follows:

CliJ| (DSNAME,VOLUME): NANE,EDX002
C12]/IS THIS A SECONDARY ENTRY CY/N)? Y

[13] |ASSOCIATED PRIMARY ENTRY CDSNAME,VOLUME): EMP#,EDX002
C14] |AUTO-UPDATE CY/N)? Y

CIS] |DIRECTORY INSERT SUCCESSFUL

C16] /ENTER DIRECTORY COMMAND (7): IE
[ll] The secondary index data set name is NAME on volume EDX002 and
therefore, the volume name could have been omitted.

[12] Because this is an entry for a secondary index, the correct reply
is Y. At this point in the prompt sequence the prompts change from the
previous sequence because of the positive reply, Y.

[13] The associated primary entry data set name, which the previous
entry sequence (5 - 9) was for, is EMP#,EDX002. This is the point where
the secondary indexes establish their association to the primary index
files for which the secondary index is built.

[14] The response to this prompt establishes whether automatic update
option is to be effective for this secondary index. For a description
of automatic update, see "Automatic Update Indicator” on page 5-3. The
recommended response is Y, also if a null entry is supplied, the default
is Y Cyes).

Chapter 5. Building a Secondary Index 5-5

[i5] You are informed when the insert is successfully completed.

[16] As seen previously, you again have the option of selecting another
directory function. In this description, IE was again selected to
insert the following two secondary index entries.

A second secondary index entry named CITY,EDX002, is inserted for the
associated primary index file named EMP#.

CDSNAME, VOLUME): CITY,EDX002
IS THIS A SECONDARY ENTRY CY/N) Y

ASSOCIATED PRIMARY ENTRY CDSNAME,VOLUME): EMP#,EDX002
AUTO-UPDATE (Y/N)? ¥

DIRECTORY INSERT SUCCESSFUL

ENTER DIRECTORY COMMAND (2): IE

A third secondary index entry named LEVEL,EDX002, is inserted for the
associated primary index file named EMP#.

CDSNAME, VOLUME): LEVEL,EDX002
IS THIS A SECONDARY ENTRY (Y/N) Y¥

ASSOCIATED PRIMARY ENTRY CDSNAME,VOLUME): EMP#,EDX002
AUTO-UPDATE CY/N)? N

DIRECTORY INSERT SUCCESSFUL

The following example uses a different directory function: LE Clist
directory entries). This example shows the directory which was just
allocated and four entries inserted; one primary and three secondaries.

[LJ} ENTER DIRECTORY COMMAND (?): LE

C2} ;ENTRY CDSNAME,VOLUME) BLANK=ALL:

C3] PRIMARY INDE- AUTO
DSNAME VOLUME DATA SET PENDENT INVALID UPDATE

C4] EMP # EDX002 YES NO *KKM %HH
[5] NAME EDX002 NO NO YES YES
C6] CITY EDX002 NO NO YES YES
C7] LEVEL EDX002 NO NO YES NO

C8]}/NUMBER OF DIRECTORY ENTRIES USED = 4
[9O]}NUMBER OF AVAILABLE ENTRY SLOTS = 6

DIRECTORY LIST COMPLETED

5-6 $C34-0404-1

[1] The DR Cdirectory) subcommand LE prints specified directory statis-
tics.

[2] Respond to this prompt with the specific data set name and volume
you wish the statistics listed for, or press the Enter key with no
DSNAME or VOLUME name specified to list the entire directory. This
request is for all entries in the directory which was just allocated and
inserts made in the previous examples.

[3] Column headings for the listed information from the directory show-
ing the following information:

e Data set name that the statistics are for

e Volume name where the data set resides

@ Whether this is a primary or secondary index

° Is the independent indicator on for the named data set (yes or no)

e Is the invalid index indicator on for the named data set (yes or no)

e Is the auto-update indicator on for the named data set (yes or no).

[4] For the primary index file (data set) named EMP#, on volume EDX002,
the independent indicator is off, there 15 no invalid indicator for a
primary file, there 1s no auto-update indicator for a primary file.
Modifications are always made to the primary index file if the independ-
ent indicator is not on.

[5] For the secondary index named NAME, on volume EDX002, the independ-
ent indicator is off, the invalid index indicator 1s on because the
index has not been loaded, the auto-update indicator 15 on as requested
when the entry for this secondary index was inserted.

[6] Same statistics as previous data set.

[71] For the secondary index named LEVEL, on volume EDX002, the inde-
pendent indicator is off, the invalid indicator is on Cindex 18 not
loaded), and the auto-update indicator is off.

[8] There were 10 entries allocated and 4 inserts (Cone primary and
three secondaries).

[9] The resulting empty directory slots for additional inserts is six.

SECONDARY INDEX

Depending upon your need, you may have one or several secondary indexes
for a given primary index file. A secondary index is built for a spe-
cific primary index file and cannot be used with any other file. Each
secondary tndex 15 a separate Indexed Access Method file.

Application programs accessing indexed records by their secondary key
are required to open the secondary index and access the records using
the secondary key. When primary index records are updated, inserted or
deleted, some or all secondary indexes associated with that primary
index file can be updated automatically by the Indexed Access Mathod,
according to the options selected when the secondary index directory is
set up.

Chapter 5. Building a Secondary Index 5-7

Setting up a Secondary Index

To provide access by a secondary key, you must build a secondary index.
The secondary index must have a unique file name.

To set up a secondary index, you must do the following using $IAMUTIL:

1. Create the secondary index

2. load the secondary index.

DEFINING AND LOADING A SECONDARY INDEX

Your secondary index should be structured so that the base records
parameter is equal to or greater than the number of records in the pri-
mary index file. This will assure that when you build your secondary
index, it will be large enough to hold at least as many records as there
are in the primary index file.

Note: If the associated primary index file, for which the secondary i5
being defined, is an existing Version 1 created file, you must use $VER-
IFY to update the record counts before defining the secondary file.

The key size and key position specified for the secondary index must be
the key size and starting position of the secondary key within the pri-

mary index record.

You can create a secondary index the same way you create a primary index
file, using the SIAMUT1 utility SE Cand DF) commands. The utility
prompts you requesting whether the secondary index being defined 1s also
to be loaded. If YES is specified, the utility does the following:

1. Creates the secondary index but does not format it

2. Opens the primary file, reads the records sequentially, and extracts
the primary and secondary keys from each record, retaining the rela-
tive data block address (CRBN) of each record

3. Invokes the Sort/Merge Program Product to sort by secondary key Cand
by primary key within secondary)

4. Opens the secondary index, formats the sorted keys, their sequence
numbers which are now assigned, and the relative data block
addresses of the primary file data records into blocks

5. Writes the blocks into the secondary index.

Before a secondary index can be loaded, it must have been defined using
SIAMUT1L. A secondary index can be deleted, then created and loaded
again at any time. If a primary file has more than one secondary index,
each must be created and loaded separately.

5-8 $C34-0404-1

SIAMUT1 Option Selecticn Guide

Having read the preceding material, you are probably ready to make a
choice as to which option you want to use in defining your secondary
index. The following table will help you to find the appropriate infor-
mation, based on your secondary index defining objectives.

Your Objective Option Information location

You want the Indexed Access Option 1 See "Option 1" on page 5-10
Method to calculate and
structure your index

You want to structure your Option 2 See "Option 2" on page 5-12
secondary index using specif-
ic parameters

 You want to structure your Option 3 See "Option 3” on page 5-14
secondary index using the
parameters of an existing
secondary index

Chapter 5. Building a Secondary Index 5-9

EXAMPLE 1: DEFINING A SECONDARY INDEX USING SIAMUTI

OPTION 1

5-10

The Indexed Access Method utility, SIAMUT1, option 1, provides you with
the opportunity to select only those parameters necessary to set up a
secondary index.

The SIAMUT1 Indexed Access Method utility can be loaded with the Event
Driven Executive operator command $L SIAMUTI.

When SIAMUT1 is loaded the first prompt displayed is as follows:

CLU;ENTER COMMAND (?): SE

Cl] Entering SE causes the following option List prompt to be displayed.

SET FILE DEFINITION PARAMETERS
0 = EXIT

[21}1 = SIGNIFICANT PARAMETERS
2 = ALL PARAMETERS
3 = PARAMETERS FROM EXISTING INDEXED DATA SET
ENTER OPTION: IN

[2] Respond to this prompt by entering the digit "1'. This response
causes a one line prompt from the next prompt sequence to be displayed.

$C34-0404-1

Note: Although the following prompts are displayed one line at a time
when using the utility, all the prompts are listed here in logical
groups for simplicity in describing the parameters.

[3] |SECONDARY INDEX CY/N)?: Y¥Y
[C4] }ENTER SECONDARY DATASET CNAME,VOLUME): CITY,EDX002
[5]; SECONDARY KEY SIZE 7G
[C&6];}/SECONDARY KEY POSITION :5

DATA SET SIZE IN EDX RECORDS: 10
INDEXED ACCESS METHOD RETURN CODE: ~1
SYSTEM RETURN CODE: “1
CREATE/DEFINE FILE (CY/4N)?: ¥
NEW DATA SET IS ALLOCATED
DO YOU WANT IMMEDIATE WRITE-BACK? N
INVOKE LOADCL), REORGANIZECR) OR ENDCE) AFTER CURRENT FUNCTION? L
DEFINE IN PROGRESS
DATA SET SIZE IN EDX RECORDS: 10
INDEXED ACCESS METHOD RETURN CODE: “1
SYSTEM RETURN CODE: “i
PROCEED WITH LOAD/REORGANIZE CY/N)? Y

[7}|} SECONDARY INDEX LOAD ACTIVE
ANSWER NULL FOR ALLOCATING DEFAULT WORK DATASET SSORTWRK

[81)}SORT WORK DATASET CDSNAME, VOLUME):
SORT WORK DATASET REQUIRES 20 EDX RECORDS

5 RECORDS LOADED
SECONDARY LOAD SUCCESSFUL

[3] Reply Y to this prompt because you are defining a secondary index.

[4] Enter the data set name and volume where this index is being
defined.

[5] Specify the length of the secondary key within the primary index
record for which this index is being defined.

[6] Specify the starting position of the secondary key within the prima-
ry index file record. The first byte of the record is number 1.

[7] The secondary index load function is active.

[8] At this point there are four possible responses:

1. A load error may occur while trying to load $SORT due to a lack of
sufficient main storage in the partition. If this happens, you can
either change to another partition or end one or more programs in
the current partition. However, do not cancel SIAM.

2. A null response, just pressing the enter key, will cause S$SORTWRK to
be allocated on the IPL volume if space is available. The size of
the data set is calculated by the utility. If SSORTWRK already
exists, this tndicates that another user is using the default work
data set and you will be prompted again for a work data set name.

3. Entering a comma (,) followed immediately with a volume name, then
pressing the enter key, causes the utility to try to allocate
SSORTWRK on the specified volume.

4. Entering a data set name and optionally a volume name (no volume
name entered causes the IPL volume to be used) causes the utility to
calculate the size of data set required and allocate it according to
your response.

Chapter 5. Building a Secondary Index 5-11

Notes:

1.

OPTION 2

If SIAMUT1 allocates the data set for you, the data set will be
automatically deleted at the end of the sort operation. However, if
you provide either the name of an already existing data set (Cother
than SSORTWRK) or a data set name you want SIAMUT1 to allocate, the
data set will not be deleted at the end of the sort.

The sort work data set cannot always be calculated precisely because
the size 15 dependent on several variables related to the input
file. In most cases the calculated size will be adequate. However,
if the size calculated is tco small, the sort will end prematurely.
If this happens you can preallocate a data set with a larger size
than that calculated by SIAMUT1 and execute the sort again.

The S$IAMUT1 Indexed Access Method utility can be loaded with the Event
Driven Executive operator command $L $IAMUT1.

When SIAMUTI1 is loaded the first prompt displayed is as follows:

Cl]

C1]

[2]

C2]

ENTER COMMAND (€?): SE

Entering SE causes the following option list prompt to be displayed.

SET FILE DEFINITION PARAMETERS
0 = EXIT
1 = SIGNIFICANT PARAMETERS
2 = ALL PARAMETERS
3 = PARAMETERS FROM EXISTING INDEXED DATA SET
ENTER OPTION: 2N
Respond to this prompt by entering the digit '2". This response

causes a one line prompt from the next prompt sequence to be displayed.

Note: Although the following prompts are displayed one line ata
time when using the utility, the entire prompt list is shown for
simplicity in presentation.

5-12 $C€34-0404-1

C31] SECONDARY INDEX CY/N)?: Y
[4]} ENTER SECONDARY DATASET CNAME,VOLUME): NAME,EDX002
[52] PARAMETER DEFAULT NEW VALUE

BASEREC 20:20
BLKSIZE 256:
KEYSIZE q:
KEYPOS 5:
FREEREC 0:
FREEBLK Q:
RSVBLK NULL:
RSVIX 0:
FPOOL NULL:
DELTRR NULL:
DYN NULL=05
TOTAL LOGICAL RECORDS/DATA BLOCK: 15
FULL RECORDS/DATA BLOCK: 15
INITIAL ALLOCATED DATA BLOCKS: 2
INDEX ENTRY SIZE: 12
TOTAL ENTRIES/INDEX BLOCK: 20
FREE ENTRIES/PIXB: 0
RESERVE ENTRIES/PIXBCBLOCKS): 0
FULL ENTRIES/PIXB: 20
RESERVE ENTRIES/SIXB: 0
FULL ENTRIES/SIXB: 20
DELETE THRESHOLD ENTRIES 0
FREE POOL SIZE IN BLOCKS 5
OF INDEX BLOCKS AT LEVEL 1: i
DATA SET SIZE IN EDX RECORDS: 10
INDEXED ACCESS METHOD RETURN CODE: ~i
SYSTEM RETURN CODE: -i
CREATE/DEFINE FILE CY/N)?: Y
DATA SET EXISTS ALREADY AND IS LARGE ENOUGH
DO YOU WISH TO USE IT (Y/N): ¥
DO YOU WANT IMMEDIATE WRITE-BACK? WN
TNVOKE LOADCL), REORGANIZECR) OR ENDCE) AFTER CURRENT FUNCTION? L
DEFINE IN PROGRESS
DATA SET SIZE IN EDX RECORDS: 10
INDEXED ACCESS METHOD RETURN CODE: “1
SYSTEM RETURN CODE: “1
PROCEED WITH LOAD/REORGANIZE CY/N)? Y

C61) SECONDARY INDEX LOAD ACTIVE
ANSWER NULL FOR ALLOCATING DEFAULT WORK DATASET SSORTWRK

C77) SORT WORK DATASET CDSNAME,VOLUME):
SORT WORK DATASET REQUIRES 20 EDX RECORDS

5 RECORDS LOADED
SECONDARY LOAD SUCCESSFUL

[3] Reply Y to this prompt because you are defining a secondary index.

[4] Enter the data set name and volume where this index is being
defined.

[S] The following parameter list allows you to precisely define the sec~
ondary index structure.

[6] The secondary index load function is active.

[7] If the name of a data set and volume are entered, Sort/Merge will
use it for the work data set. If a null response is made, the utility
Will calculate the size data set required and allocate it with the name
SSORTHWRK on the IPL volume.

Chapter 5. Building a Secondary Index 5-13

Notes:

1. For a more complete description of the responses available and the
possible conditions that could exist, see step 8 description under
"Option 1."

2. The following messages are from the IBM Sort/Marge Program Product;
program number 5719-SM2. The following message list is the result
of the secondary load function calling and executing Sort/Merge.
For a description of the Sort/Merge program and its messages refer
to IBM Series/l Event Driven Executive Sort/Merge Programmer's
Guide, SL23-0016..

SORTO9SN
SORTOOQ*
SORTOOIP
SORTOO0X
SORTOO0x
SORTOO00X
SORTO00x
SORTO75P
SORTO76P
SORTO82P
SORTO85P
SORTO86P
SORTO88&P
SORTO89N
SORTO9SON

me ee ef ee mee J eeeeDeemfemeFemfeGemeepeene Fermnt

LOSSYSPRTR
SORT/MERGE SPECIFICATION PHASE STARTED
HSORTR I12A0DP
DW $SORTWRKTVOL
FNCOO91 12
FR
SPECIFICATION PHASE ENDED
INPUT PHASE STARTED
INPUT PHASE ENDED 5 1 1
FINAL MERGE PHASE STARTED 1 4 5
FINAL MERGE PHASE ENDED
RECORDS READ FROM INPUT DATA SETCS):
RECORDS INSERTED BY INPUT EXIT ROUTINE:
RECORDS DELETED BY INPUT EXIT ROUTINE:

0
5
0

SORTO9IN RECORDS INSERTED BY OUTPUT EXIT ROUTINE: 0
SORTC9Z2N RECORDS DELETED BY OUTPUT EXIT ROUTINE: 0
SORTOS3N RECORDS WRITTEN TO OUTPUT DATA SET: 0
SORTOSGN I70 ERRORS ACCEPTED: 0
SORTO95N [70 ERRORS SKIPPED: 0
SORTI¢9N RECORDS SORTED OR MERGED: 5
SORTO97P NORMAL ENDING FOR SORT/MERGE PROCESSING

OPTION 3

5-14

The SIAMUT1 Indexed Access Method utility can be loaded with the Event
Driven Executive operator command $L $IAMUT1.

When SIAMUT1 is loaded the first prompt displayed is as follows:

[CL] ENTER COMMAND (727): SE

[ll] Entering SE causes the following option list prompt to be displayed.

SET FILE DEFINITION PARAMETERS
0 = EXIT
1 = SIGNIFICANT PARAMETERS
2 = ALL PARAMETERS |

[21/3 = PARAMETERS FROM EXISTING INDEXED DATA SET
ENTER OPTION: 3

§$€34-0404-1

[2] Respond to this prompt by entering the digit '3'. This response
causes a one line prompt from the next prompt sequence to be displayed.

Note: Although the following prompts are displayed one line at a time
when using the utility, the entire prompt list is shown for simplicity
in describing the parameters.

[3] |SECONDARY INDEX CY/N)?: Y¥
CGI} ENTER SECONDARY DATASET CNAME,VOLUME): LEVEL,EDX002
[SI |NAME OF EXISTING INDEXED DATA SET CNAME,VOLUME): CITY,EDX002
[6] }NEW PARAMETERS EXACTLY SAME AS ORIGINAL PARAMETERS CY/N)? Y

DATA SET SIZE IN EDX RECORDS: 10
INDEXED ACCESS METHOD RETURN CODE: —I
SYSTEM RETURN CODE: “1
CREATE/DEFINE FILE CY/N)?: Y
NEW DATASET IS ALLOCATED
DO YOU WANT IMMEDIATE WRITE-BACK? Y
INVOKE LOADC(L), REORGANIZECR) OR ENDCE) AFTER CURRENT FUNCTION? L
DEFINE IN PROGRESS
DATA SET SIZE IN EDX RECORDS: 10
INDEXED ACCESS METHOD RETURN CODE: ~l
SYSTEM RETURN CODE: “1
PROCEED WITH LOAD/REORGANIZE CY/N)? Y
SECONDARY INDEX LOAD ACTIVE
ANSWER NULL FOR ALLOCATING DEFAULT WORK DATASET SSORTWRK

C71)}SORT WORK DATASET CDSNAME, VOLUME):
SORT WORK DATASET REQUIRES 20 RECORDS

5 RECORDS LOADED
SECONDARY LOAD SUCCESSFUL

[3] Reply Y to this prompt because you are defining a secondary index.

[4] Enter the data set name and volume where this index is being
defined.

[5] Enter the data set name and volume of the secondary index whose
parameters are to be used for this index.

[6] If all parameters are to be the same as those initially set for the
data set name entered in prompt [3], reply Y. However, if you want the
parameters adjusted, based on current file status, reply N.

[7] If the name of a data set and volume are entered, Sort/Merge will
use it for the work data set. If a null response is made, the utility
will calculate the size data set required and allocate it with the name
SSORTWRK on the IPL volume.

Note: For a more complete description of the responses available and
the possible conditions that could exist, see step 8 description under
"Option 1."

Chapter 5. Building a Secondary Index 5-15

LOADING A SECONDARY FILE WITH AN APPLICATION PROGRAN

5-16

You have the option of allowing SIAMUT1 to load your secondary file at
the time 1t 15 created, as was demonstrated in "Option 2" on page 5-12,
or you can load it with an application program. The sequence of opera-
tion for loading your secondary index with an application program is
described here.

A secondary file has the following format:

Relative
Secondary Sequence Primary Block
Key Number Key Number

SMITH O001 12345AB RBN

Ls bytes L« bytes

In preparation for loading your secondary index, allocate the following
sort data sets:

° Sort input data set

° Sort output data set

e Sort work data set.

The size of the records in the Input and output data sets is calculated
using the lengths of keys from the primary index file record plus four
bytes for the sequence number and four bytes for the RBN.

Secondary key length + primary key length + 8 bytes

If you have the Sort/Merge licensed program product, program number
5719-SM2, refer to the IBM Series/1] Event Driven Executive Sort/Merge
Programmer's Guide, SL23-0016, for details of the sort work data set and
sort specification data sets. Otherwise, use your own sort program.

Loading your secondary index requires the following sequence:

1. Open the primary index file in process mode.

2. Retrieve a primary index file record with a GETSEQR request (re-
trieves the primary record plus the RBN).

a. When end-of-data condition 15 reached, go to step 6.

SC34-0404-1

3. Using values from the retrieved record, build a secondary record
With the following format:

Secondary Double word Primary Primary
Key of X'O0' Key RBN

0000

L_« bytes— |4 bytes—|

4. Move the newly built secondary record into the sort input data set.

5. Return to step 2 and repeat the sequence.

6. Sort the records in the sort input data set using the following sort
specifications.

a. Sort the input records on position 1 through n-4 into ascending
sequence (n= the length of the records as calculated previously
for the sort data sets).

7. Open the secondary index, which is to be loaded, in load mode.

If your program 15 written tin Event Driven Language CEDL), specify
the independent option when you open the secondary index. If you
are using a high level language, use S$IAMUT1 to turn on the inde-
pendent indicator.

8. Read a record from the sorted output.

a. When end-of-file 1s reached, go to step 14.

9. Move a sequence number into the retrieved record's sequence number
field Cuse X'0000' for the first record).

10. Increment the sequence number by a value of 1.

ll. Use a PUT request to load the record into the secondary file.

12. Return to step 8 and repeat the sequence.

13. Issue a DISCONNECT to the primary index file and secondary index.

14. Using the SIAMUTI utility, turn off the invalid indicator for this
secondary index entry in your directory. Also, turn off the inde-

pendent indicator if you turned it on in step 7.

Chapter 5. Building a Secondary Index 5-17

5-18 $C34-0404-1

CHAPTER 6. PROCESSING THE INDEXED FILE

This chapter provides information for designing applications that use
the Indexed Access Method. It contains information about:

@ Connecting and disconnecting the indexed file

e Accessing the indexed file

e Maintaining the indexed file.

Chapter 7, "Coding the Indexed Access Method Requests" contains a
detailed description of the EDL coding syntax of each Indexed Access
Method request. You may wish to refer to it while reading this chapter.

CONNECTING AND DISCONNECTING THE INDEXED FILE

An indexed file must be defined and formatted by using the $IAMUT1 util-
ity set parms (SE) and define (CDF) commands before issuing a LOAD or
PROCESS request to the file.

Prior to using an indexed file, you must issue either a LOAD or PROCESS
request to connect it to your program. The file must be defined in your
PROGRAM statement or by a DSCB statement. <A CALL statement specifying
either LOAD or PROCESS automatically opens the Indexed Access Method
file. If you have an already open DSCB for the Indexed Access Method
file you can pass it as a parameter, but that is not required...

However, if the indexed file has already been connected to any program
by a LOAD or PROCESS request, make sure that the DSCB passed on any sub-
sequent LOAD or PROCESS request for this indexed file contains the data
set name and volume name before you issue the request.

Chapter 6. Processing The Indexed File 6-1

CONNECTING

A LOAD or PROCESS request builds an indexed access control block CIACB)
that is associated with an indexed file. The IACB connects a request to
the file.

In load mode, data records are placed in the file sequentially (free
records and blocks are skipped). When in process mode, data records are
placed in the first appropriate slot in the file (free space is used)
unless the record has a new high key. In the case of a new high key,
the record is placed in the next available base record slot.

Only one LOAD request can be active for a given file. However, process~-
ing can take place concurrently with loading.

Multiple IACBs can be associated with the same file. Data integrity is
maintained by a locking system that assigns file locks, record locks, or
block locks to the requesting IACB. This prevents concurrent modifica-
tion of index or data records, thereby avoiding the possibility of a
double update situation.

Some applications will need to wait for a lock to be released on a
record, block, or buffer. In these situations you might want to use the
conditional requests available for some Indexed Access Method functions.
The conditional function requests allow control to be returned imme-
diately to the requesting program for other processing, then return lat-
er to attempt to retrieve the recard which was locked. The conditional
requests are described in Chapter 7, "Coding the Indexed Access Method
Requests.”

An IACB can hold only one lock at a time; 1f your application requires
concurrent execution of functions that obtain locks Cdirect update or
sequential update - see "Accessing the Indexed File" on page 6-4 for a
description of these functions), you must issue multiple PROCESS
raquests to build multiple IACBs.

DISCONNECTING

6-2

A DISCONN request disconnects an IACB from the file, releases the stor-
age for that IACB, releases locked blocks or records being held by that
IACB, and writes out to disk any blocks that are being held in the buff-
er. The DISCONN request can be issued at any time during loading or
processing.

There is no automatic DISCONN on task termination. Failure to discon-
nect your indexed files prior to task termination may prevent resources
that were allocated to your task from being allocated to other tasks and
updated records from being written to your file.

$C034-0404-1

Using Secondary Keys

To access a file by a secondary key, you issue either a LOAD or PROCESS
request, specifying the file name of the secondary index and specifying
secondary keys when referencing data records. The Indexed Access Method
datermines the relationships among the files by using the directory and
automatically opens the primary file. All subsequent operations done
under this LOAD or PROCESS access the file using the secondary index.
You must open a file by the primary name to access it by the primary
keys.

Direct retrievals use the secondary index, and sequential retrievals
return records in order by secondary key. Records within a group which
have the same secondary key are returned in the order which the records
were written into the file. Each application must determine whether the
correct record has been retrieved when duplicate keys are possible; the
Indexed Access Method provides no facility for that determination.

When records are updated, inserted, or deleted, in primary index files,
some or all secondary indexes can be updated automatically according to
the options you selected in the directory entries. These options are:
auto-update and independent processing.

Tf the auto-update indicator is on in the directory entry for a second-
ary index and you open the associated primary file to insert, delete, or
update records, the associated secondary index will be updated automat-
ically. There is no consideration for whether the independent indicator
is on for the secondary. However, if the invalid indicator for the sec-
ondary entry is on, the secondary index is not updated.

If the auto-update indicator is on in the directory entry for a second-
ary index and you open the associated primary file to insert, delete, or
update records, use only conditional requests. To do this, code those
requests that modify the file as DELETEC, PUTC, PUTDEC, or PUTUPC. Con-
ditional requests are described in Chapter 7, "Coding the Indexed Access
Method Requests" on paga 7-1.

The independent indicator is used when a secondary index is opened in
load mode to add new entries to the file.

Note: When records are accessed by their secondary key, you must
ascertain through your application program that you have retrieved

the correct record because of the possibility of duplicate keys.

Chapter 6. Processing The Indexed File 6-3

ACCESSING THE INDEXED FILE

Initiate general purpose access to an indexed file with a PROCESS
request. After the PROCESS request has been issued, any of the follow-
ing functions can be requested:

° Direct reading - Retrieving a single record independently of any
previous request.

e Direct updating - Retrieving a single record for update; complete
the update by either replacing, deleting, or releasing the record.

° Sequential reading - Retrieving the next logical record relative to
the previous sequential request.

The first sequential request can access the first record in the file
or any other record in the file by key Cexcept COBOL applications).

° Sequential updating - Retrieving the next logical record for update}
complete the update by either replacing, deleting, or releasing the
record.

° Inserting - Placing a single record, in its logical key sequence,
into the indexed file.

e Deleting - Removing a single record from the indexed file.

° Extracting - Extracting data that describes the file.

Note that the update functions require more than one request.

When a function is complete, another function may be requested, except
that a sequential processing function may be followed only by another
sequential function. You can terminate sequential processing at any
time by issuing a DISCONN or ENDSE@Q request. An end-of-data condition
also terminates sequential processing.

6

DIRECT READING

6-4

Use the GET request to read a record using direct access. The key
parameter is required and must be the address of a field of full key
length regardless of the key length specification.

The record retrieved is the first record in the file that satisfies the
search argument defined by the key and key relation (krel) parameters.
The key field in your program is updated to reflect the key contained in
the record that satisfied the search.

If the key length is specified as less than the full key length, only
part of the key field is used for comparison when searching the file.
For example, the keys ina file are AAA, AAB, ABA, and ABB, the key
field contains ABO, and key relation 1s EQ. If key length 1s zero, the
search argument defaults to the full key ABO and a record-not-found code
15 returned. If the key length specification 1s 2 and the search argu-
ment is AB, the third record 15 returned. If the key length
specification 15 1 and the search argument is A, the first record 15
returned.

9€34-0404-1

DIRECT UPDATING

To update a record using direct access:

1. Retrieve the record with a GET request, specifying the key and key
relation (Ckrel)d parameters. |

2. Complete the update by doing one of the following:

® If you want to change the record, modify the record in your
buffer C€do not change the key field of the record). Issue a
PUTUP request to return the updated record to the file.

® If you do not want to change the record, issue a RELEASE
request.

@ If you want to delete the record, issue a PUTDE request.

The key parameter must be specified as the address of a field of full
key length. The primary key cannot be modified during the update; a
secondary key can.

The only valid requests, other than DISCONN and EXTRACT, that can follow
GET for direct update are PUTUP, PUTDE, and RELEASE. :

During the update, the subject record is locked (made unavailable) to
any other request until the update is complete. Even if no action 15
taken after the GET request is issued, the RELEASE request is required
to release the lock on the record. You may wish to use the conditional
option on your requests to avoid unnecessary wait for locks. For condi-
tional request coding see Chapter 7, "Coding the Indexed Access Method
Requests" on page 7-1. For details on long lock time or dead lock con-
dition, see "Deadlocks and the Long-Lock-Time Condition" on page 11-5.

SEQUENTIAL READING

Use the GETSE@ request for sequential access to records. After a
sequential processing request has been initiated, only sequential func-
tions can be requested until an end-of-data condition occurs or an
ENDSE@ request is issued. Processing is terminated when a DISCONN
request is 1ssued or an error or warning 1s returned.

Figure 6-1 on page 6-7 summarizes the protocol for sequential
processing. :

Note: You can sequentially process a file more than once.

To begin sequential access with the first record in a file, set the key
address to zero. To start with any other record, specify a search argu-
ment by specifying the key and key relation (krel) parameters.

If you specify a search argument, the key field is modified to reflect
the key of the first record found. :

After the first retrieval, a GETSE@ retrieves the next sequential record
regardless of any key or key relation specification. Therefore, you can
use the same GETSEQ statement to retrieve all records. A search argu-
ment on succeeding retrievals is ignored and the key field is not modi-~
fied.

Chapter 6. Processing The Indexed File 6-5

When using secondary keys, you access the duplicate keys with a sequen-

tial get request. For example:

GETSEQ SMITH

Issuing the same request repeatedly will return all of the secondary
keys whose value is SMITH. You must check to determine when the key
changes, or when you have retrieved the particular record you want with-
in that sequence of keys.

Specify ENDSE@ to stop reading before the end of data is reached. Read-
ing ends automatically at the end of data. The end-of-data condition
eccurs when an attempt 1s made to retrieve a record after the last
record in the file.

If you specify the end-of-data exit CEODEXIT) parameter on the PROCESS
request, control is transferred to the address specified by the EQDEXIT

parameter when the end-of-data condition occurs.

During sequential reading, the block that contains the record is locked,
making all records in the block unavailable toe other requesters until
the last record of the block is processed or sequential precessing is
ended. For details on long lock time or dead lock condition, see "Dead-
locks and the Long~Lock-Time Condition™ on page 11-5.

SEQUENTIAL UPDATING

6-6

To update a record using sequential access:

1. Retrieve the record with a GETSE@ request for update, specifying the
key and one of the update key relation Ckrel) parameters. The key
7s used only on the first retrieval. Do not specify a key if proc-
essing 1s to begin with the first record in the file.

2. Complete the update by doing one of the following:

e If you want to change the record, modify the record in your
buffer (Cdo not attempt to change the primary key field of the
record). Issue a PUTUP request to return the updated record to
thefile.

® If you do not want to change the record, issue a RELEASE
request.

e If you want to delete the record, issue a PUTDE request.

During sequential updating, the block that contains the record is
locked, making all records in the block unavailable to other requesters
until the last record of the block 15 processed or sequential processing
is ended.

SC34-0404-1

Terminate processing with an ENDSE@ request or a DISCONN request either
before or after completing the update.
an end-of-data condition.

Precessing is also terminated on

Reaquest/sCondition Can be Follonad by:

GETSE
DISCONN
END-OF-DATA CONDITION
ENDSE
PUTUP
PUTDE
RELEASE

End-of-data condition or
ENDSE@ request DISCONN

GET
PUT
DELETE

PUTUP
DISCONN
ENDSER
GETSEQ

PUTDE
DISCONN
ENDSEQ
GETSER

RELEASE DISCONN
ENDSE@
GETSE®

Figure 6-1. Protecol for Sequential Updating

INSERTING RECORDS

To insert a new record ina file,
been connected with a PROCESS.
mary key of the record to

issue a PUT request after the file has
The Indexed Access Method uses the pri-

insert the record into the file.

The primary key of the inserted record must be different from any key in
the file; otherwise, a duplicate key error occurs. The key can be high-
er than any key in the file.

If you are not loading base records, and want to insert records into the
file in random order, the following should be satisfied:

© For files defined by option 1, ensure that random (R) was specified

e For files defined by option 2,
space Was specified.

DELETING RECORDS

Use DELETE to delete a record from the file.

ensure that sufficient free pool

Specify the full key of
the record. If no record exists with the specified key, a warning
return code 1s returned.

Chapter 6. Processing The Indexed File 6-7

EXTRACTING INDEXED FILE INFORMATION

6-8

The EXTRACT request provides information about a file from the file con-
trol block CFCB) or FCB Extension. It can also return data paging sta-
tistics to the calling program with an option to reset the counters.
Data paging is described under "Data Paging™ on page 10-3.

The FCB includes information such as key length, key displacement, block
size, record size, and other data regarding the file structure. The FCB
Extension contains the $IAMUT1 utility SE command parameters that were
used to define the file.

The EXTRACT request copies the file control block or the FCB Extension
to an area that you provide. The file must have been connected by a
LOAD or PROCESS request.

The contents of the FCB block and the FCB Extension are described by
FCBEQU, a unit of copy code that is supplied with the Indexed Access
Method. Use COPY FCBEQU to include these equates in an EDL program.

An EXTRACT issued for a secondary file returns the primary FCB with the
secondary key size and position of the secondary key. If you want the
actual FCB of the secondary file, you must open the secondary file inde-
pendently and then the secondary index FCB will be returned for the
EXTRACT request. The FCB extension returned is always the secondary FCB
extension.

$C€34-0404-1

MAINTAINING THE INDEXED FILE

This section describes how to maintain Indexed Access Method files. The
following topics are discussed:

® File backup and recovery

° File recovery without backup

6 Reorganizing the file

@ Dumping the file

e Deleting the file

° Verifying an indexed file.

FILE BACKUP AND RECOVERY

To protect against the destruction of data, copy the indexed file (Cor
the volume in which the file exists) at regular intervals using the
SCOPY utility. See the Operator Commands and Utilities Reference for
instructions on using the Event Driven Executive utilities.

To obtain a sequential dump of an indexed file, use the SIAMUT1 utility
UN command. During the interval between making copies, you should keep
a journal file of all transactions made against the indexed file.

The journal file can be a consecutive file containing records that
describe the type of transaction and the pertinent data. <A damaged
indexed file can be recovered by updating the backup copy from the jour-
nal file.

For example, suppose an indexed file named REPORT jis lost because of
physical damage to the disk. The condition that caused the error has
been repaired and the file must be recovered. Delete REPORT, copy the
backup version of REPORT to the desired volume, and process the journal
file to recreate the file.

If a data-~set-shut-down condition exists, cancel SIAM and reload it.
Then issue a PROCESS to the REPORT file and, using the journal file,
reprocess the transactions that occurred after the backup copy was made.
ror,more information, see "The Data-Set-Shut-Down Condition” on page
11-3.

Backing Up A Secondary Index

A secondary index can be backed up the same as primary index files.
However, if your primary file 1s backed up you can rebuild your second-
ary from the backup copy of the primary indexed file.

Duplicate secondary keys are maintained in the order they are inserted
by a secondary key sequence number. This sequence number 1s incremented
with each new insert. When a secondary index is reloaded the secondary
key sequence numbers are reassigned. Therefore, the history of which
records were written to the file file first is lost.

Note: If your application is dependent on the secondary key sequence
number history, you would not want to rebuild your secondary index
because the sequence numbers are reset.

Chapter 6. Processing The Indexed File 6-9

RECOVERY

REORGANI

DUMPING

6-10 SC

WITHOUT BACKUP

If you do not use the backup procedures as described previously under
"File Backup and Recovery"™ on page 6-9, and you encounter a problem with
your file, you still may be able to recreate your file. However, the
status of requests that were in process at the time of the problem is
uncertain.

To recreate your file, follow the steps in "Reorganizing an Indexed

File” to reorganize your file. After recreating the file, verify the

status of the requests that were in process when the problem occurred.

ZING AN INDEXED FILE

An tndexed file must be reorganized when a record cannot be inserted
because of lack of space. This condition does not necessarily mean that
there 15 no more space in the file; 1t means that there 15 no space in
the area where the record would have been placed. Therefore, you may be
able to reorganize without increasing the size of the file. Perform the
following steps to reorganize a file:

1. Ensure that all outstanding requests against the file have been com-
pleted; issue a DISCONN for every current IACB.

2. Use the set parms CSE) or define (DF) commands of the S$IAMUTI1 utili-
ty to define a new indexed file. Estimate the number of base
records and the amount and mix of free space tin order to minimize
the need for future reorganizations. See Chapter 3, "Defining Pri-
mary Index Files™ for guidelines for making these estimates.

You can use Option 3 of the SE command to define the new file like
the original tndexed file.

3. Use the reorganize command CRO) of the SIAMUTI utility to load the
new indexed file from the indexed file to be reorganized.

Alternatively, you can use the unload command (CUN) of the SIAMUTI
utility to transfer the data from an indexed file to a sequential
file, then use the load command (LO) to load it back into the
indexed file.

4. Use the S$DISKUTI utility to delete the old file and rename the new
file.

REQRGANIZING A SECONDARY INDEX: Reorganizing a secondary index does not
reset the secondary key sequence numbers during the reorganization. The
records are placed tn another Indexed Access Mathod file without any
modification within the individual records. The secondary key sequence
numbers will be reset however, when the index is loaded.

AN INDEXED FILE

To produce a hexadecimal dump of an indexed file, use the DP command of
the S$DISKUT2 utility. The dump includes control information, index
blocks, and data blocks. For information on the SDISKUT2 utility, refer
to the Operator Commands and Utilities Reference.

34-0404-1

DELETING AN INDEXED FILE

Delete an indexed file the same way you delete any other file. Froma
terminal, use the DE command of the SDISKUT1 utility; from a program,
use the SDISKUT3 data management utility. (Refer to the Utilities Ref-
erence for a description of S$DISKUT1, and to the Installation and System
Generation Guide for a description of $DISKUT3).

VERIFYING AN INDEXED FILE

SVERIFY helps you check the validity of an indexed file and prints con-
trol block and free space information about the file on SSYSPRTR.

With SVERIFY you can:

° Verify that all pointers in an indexed file are valid and that the
records are in ascending sequence by key.

° Print a formatted File Control Block (CFCB) listing, including the
FCB Extension block. The FCB Extension block contains the original
file definition parameters.

° Print a report showing the distribution of free space in your file.

e Verify secondary files against primary files.

For details on using SVERIFY, see Chapter 9, "The SVERIFY Utility” on
page 9-1.

Chapter 6. Processing The Indexed File 6-11

6-12 $C34-0404-1

CHAPTER 7. CODING THE INDEXED ACCESS METHOD REQUESTS

This chapter describes the syntax used to code Event Driven Language
requests for the Indexed Access Method.

The information in this chapter is intended for use as a reference when
coding EDL application programs that use the Indexed Access Method. For
information on coding Indexed Access Method applications in other lan-
guages, refer to the appropriate language manual.

Included for each request is a description of the purpose of the
request, the detailed coding syntax, a description of each parameter,
and all of the return codes associated with using these requasts.

At the end of this chapter is a summary of the syntax of the EDL CALL
instructions used to invoke the functions provided by the Indexed Access
Method.

For a complete example of using the Indexed Access Method requests,
refer to Appendix C, "Coding Examples" on page C-l.

Chapter 7. Coding the Indexed Access Method Requests 7-1

REQUEST FUNCTIONS OVERVIEN

This section provides an overview of the Indexed Access Method requests
and how to code them.

Request

DELETE

DISCONN

ENDSE@

EXTRACT

GET

GETSEQ

LOAD

PROCESS

PUT

PUTDE

PUTUP

RELEASE

7-2 $€34-0404-1

The Indexed Access Method callable requests are:

Description

Deletes a single record, identified by its key, from the file.
Use DELETE to delete a record; the record cannot have been
retrieved for update.

Disconnects an IACB from an indexed file, thereby releasing
any locks held by that IACB; writes out all buffers associated
with the file; and releases the storage used by the IACB.

Terminates sequential processing.

Provides information about the file from the File Control
Block, File Control Block Extension, and data paging statis~
tics.

Directly retrieves a single record from the file. If you
specify the update mode, the record is locked (made unavairl-
able to other requests) and held for possible modification or
deletion. Use GET to retrieve a single record from the file.

Sequentially retrieves a single record from the file. If you
specify update mode, the block containing the record is locked
(made unavailable to other requests) and held for possible
modification or deletion. Use GETSE@ When you are performing
sequential operations.

Builds an Indexed Access Control Block CIACB) and connects it
to an indexed file. You can then use the IACB to issue LOAD
requests to that file to load records.

Builds an Indexed Access Control Block CIACB) and connects it
to an indexed file. You can then use the IACB to 1ssue
requests to that file to read, update, insert, and delete
records. A program can issue multiple PROCESS functions to
obtain more than one IACB for the same file, enabling the file
to be accessed by several requests concurrently within the
same program.

Loads or inserts a new record depending on whether the file
was opened with the LOAD or PROCESS request. Use PUT when you
are adding records to a file.

Deletes a record that 1s being held for update. Use PUTDE to
delete a record that has been retrieved in update mode.

Replaces a record that is being held for update. Use PUTUP to
modify a record.

Releases a record that is being held for update. Use RELEASE
when a record that was retrieved for update is not changed.

CODING INDEXED ACCESS METHOD REQUESTS

All Indexed Access Method services are requested by using the CALL
Instruction. Parameters on the CALL instructions can have the following

forms:

NAME: passes tne value of the variable with the label 'NAME'

CNAME}: passes the address of the variable 'NAME’ or the value of a sym-
bol defined using an EQU statement

For additional information, refer to the description of the CALL
instruction in the Lanquage Reference.

General Statement Format

The general form of all Indexed Access Method calls is as follows:

CALL IAM, Cfunc),iacb, Cparm3), Cparm4), (parm5)

The request type is determined by the operand ‘func’. In addition to
the function request, you will notice that some functions allow a suffix
of C, R, or CR. The C means perform the function requested condi-
tionally. The condition is that the function 1s to be executed only if
the record, the block containing the record, or the buffer containing
the record 1s not locked. If any of those three items are locked for
the record being requested, control is to be returned to the requesting
program immediately. A return code is set to indicate that a lock was
encountered. A conditional request can still wait on a resource 1f it
15 dGduring the process of updating an index for a delete or insert.

The appended character, R, means return the record and the relative
block number CRBN) of the record being requested. Again this can be a
conditional request by preceding the letter R with the letter C. The
combination CR, indicates that the record and RBN is to be returned con-
ditionally; return the record and RBN only if the record, block, or
buffer is not locked by another request.

If the RBN is requested and the record, block, and buffer are free, the
RBN 15 returned as a 4-byte value. The 4¢-byte RBN value is returned at
the end of the retrieved record. Therefore, when using the suffix R,
ensure that your buffer is large enough to accommodate the record
length, plus the -byte RBN value.

The RBN can be used if you are building or maintaining your own second-
ary index. However, because records in an indexed file are subject to
being moved to different locations CRBNs) due to insert and delete
activity, the RBN is not guaranteed to remain accurate if insert and
delete activity to the primary index file occur.

The option of C, R, or CR is indicated in the boxed instructions with a
vertical bar (|). The presence of this bar indicates that a choice must
be made. Only one of the requests can be used in any one statement.
For example, PUT|PUTC, you must choose one or the other when coding the
request.

Depending on the type of function the remaining parameters may or may
not be required. The symbols used for func and parmd are provided by
EQU statements in the IAMEQU copy code module and are coded as shown in
the syntax descriptions. These symbols are treated as addresses; there-
fore the MOVEA instruction should be used if it is necessary to move
them into a parameter list.

Chapter 7. Coding the Indexed Access Method Requests 7-3

7-4

Since these symbols are equated to constants, they may also be manipu-
lated using other instructions by prefixing them with a plus (+) sign.
Use the COPY statement to include IAMEQU in your program.

Notes You can not use the software registers (#1 and #2) on Indexed
Access Method calls.

Using Program Variables

If you use variables for parameters parm3, parm4, and parmd (that 15,
you code them without parentheses or a plus sign), they are set to zero
by the Indexed Access Method before returning. Those parameters must be
reinitialized before executing the CALL instruction again.

Link-edit Considerations

Programs which call the Indexed Access Method must be processed by
SEDXLINK to include the subroutine module IAM. IAMEQU has an EXTRN
statement for IAM. Refer to the Installation and System Generation
Guide for information on SEDXLINK and how to perform the link-edit proc-
ess.

Return Codes

All Indexed Access Method requests pass a return code reflecting a con-
dition that prevailed when the request completed. This code is passed
in the task code word Creferred to by task name) of the TCB associated
with the requesting task. These return codes fall into three
categories:

-] = Successful completion
Positive = Error
Negative = Warning Cother than —1)

Note: Return codes 1, 7, 8» and 22 are positive value return codes but
they do not cause the error exit routine to be entered, even when
ERREXIT 1s coded. Also the negative (warning) return codes do not cause
error exits. For details on coding ERREXIT, see "LOAD ~- Open File for
Record Loading” on page 7-21, or "PROCESS - Open File” on page 7-25.

The return codes associated with each request are included with the
description of the request.

The Indexed Access Method also has the capability of logging errors in
the system error log. Automatic updates for secondary indexes could
encounter several errors within one request. These errors will be
logged in the system error log if $LOG is active. This may provide
additional information when analyzing errors.

$€34-0404-1

CALL FUNCTION DESCRIPTIONS

The Indexed Access Method CALL functions are described on ‘the following
pages and are arranged in alphabetic order.

DELETE - DELETE RECORD —

The DELETE request deletes. a specific record from the file. The record
to be deleted is identified by its key. The deletion makes space avail-
able for a future insert. The file must be opened in the PROCESS mode.

The DELETE/DELETEC request obtains a block lock to delete a record from
a block. In order to obtain a block lock without waiting, there can be
no other block lock or record locks in effect for the block.

The DELETEC request deletes a specific record from the file only if the
record, block, or buffer is not locked.

Syntax:

label CALL IAM, CDELETE|DELETEC),iacb, (key)

Required: all
Defaults: none

Operands Description

1acb The label of a word containing the IJACB address returned by
PROCESS.

(key) The label of your key area containing the full key identifying
the record to be deleted.

Chapter 7. Coding the Indexed Access Method Requests 7-5

DELETE Return Codes

Code Condition

-j Successful
~58 Record not found
-85 Record not found
-90 Request cancelled because the request was conditional

and a wait on a lock or buffer would be required
7 Link module in use, syncronize use of link

module with the program
8 Load error for SIAM, verify SIAM exists and enough

storage 15 available to load it
10 Invalid request
12 Data set shut down due to error; see Chapter ll,

"Error Recovery '
13 A required module is not included in SIAM
14 Invalid index block found - during processing an

incorrect index block type was found, recreate the file
22 Address supplied by your program 15 not a valid IACB
76 DSOPEN error occurred - The system error field in the

OPEN table contains the DSOPEN error:
21 - DSNAME,VOLUME not found
ec ~ VOLSER error
25 ~ I/O error

80 Write error - FCB. See system return code
100 Read error ~- check system return code
101 Write error - check system return code
230 Directory read error for SIAMDIR - check system return code
242 Secondary index is out of syne with primary file.

Must rebuild file to get back in sync
244 Error in opening auto-update file on secondary modification

request
245 Auto update PUTDE to a secondary failed,

Auto-update processing continues
247 During auto-update processing a GETSEQ to a secondary

failed, auto-update processing continues

7-6 $€34-0404-1

DELETE Example

The following example deletes the record whose key is 'KEY0001' from the
file. The file is identified by the field named 'FILE1"’.

CALL IAM, CDELETE),FILE1, (KEY)

FILEL DATA F'O! TACB ADDRESS FROM PROCESS
KEY TEXT '"KEYO0001',LENGTH=7

Chapter 7. Coding the Indexed Access Method Requests 7-7

DISCONN - CLOSE FILE

The DISCONN request disconnects an IJACB from an indexed file and
releases the storage used for the IACB. It releases any locks held by
that IACB and writes out any modified blocks from the file that are
being held in the system buffer. Other users connected to this file are
not affected.

Syntax:

label CALL TAM, C(DISCONN), 1acb

Required: all
Defaults: none

Operands Description

iacb The label of a word containing the IACB address returned by
PROCESS or LOAD.

DISCONN Return Codes

Code Condition

-1 Successful
7 Link module in use, syncronize use of link

module with the program
8 Load error for SIAM, verify SIAM exists and enough

storage 15 available to load it
12 Data set shut down due to error; see Chapter 11,

Error Recovery '° :
13 Module not included in load module SIAM
22 Address supplied by your program 1s not a valid IACB

100 Read error - check system return code
101 Write error ~- check system return code
110 Write error, file closed

7-8 $€34-0404-1

DISCONN Example

The oy towing example closes the file identified by the field named
"FILE1'.

CALL TAM, CDISCONN)D, FILEL

FILEL DATA F'O! TACB ADDRESS FROM PROCESS

Chapter 7. Coding the Indexed Access Method Requests 7-9

ENDSEQ - END SEQUENTIAL PROCESSING

7-10

The ENDSE@ request ends sequential processing, during which a block is
locked and fixed in the system buffer. Sequential processing 15s
normally terminated by an end-of-data condition. The ENDSEQ request is
useful for freeing the locked block when the sequence need not be com-
plated. ENDSEQ is valid only during sequential processing.

Note: After sequential processing has been terminated, it can be

restarted again anywhere in the file.

Syntax:

label CALL IAM, CENDSEQ),1acb

Required: all
Defaults: none

Cperands Description

1acb The label of a word containing the IACB address returned by
PROCESS.

ENDSEQ Return Codes

Code Condition

-j Successful

7 Link module in use, syncronize use of link
module with the program

8 Load error for SIAM, verify SIAM exists and enough
storage is available to load it

10 Invalid request
12 Data set shut down due to error; see Chapter ll,

"Error Recovery '*
13 A required module is not included in SIAM
22 Address supplied by your program is not a valid ITACB

SC34-0404-1

ENDSEQ Example

The following example ends sequential processing for the file identified
by the field named 'FILE1l*.

CALL TAM, CENDSEQ),FILE1L

FILEL DATA F'0!? IACB ADDRESS FROM PROCESS

Chapter 7. Coding the Indexed Access Method Requests 7-l1]l

EXTRACT - GET FILE INFORMATION

The EXTRACT function returns information to the calling program. Ona
specific call, it performs one of the following:

® Returns information from a File Control Block CFCB). The FCB con-
tains such things as the block size, key length, and data set and
volume names of the indexed file. The FCBEQU copy code module con-
tains a set of eaquates to map the File Control Block.

An EXTRACT request issued for a secondary file returns the primary
FCB with the secondary key size and key position for the secondary
index. If you want the FCB of the secondary file, you must open the
secondary index with the independent option then the secondary index
FCB will be returned. The FCB extension returned is always the FCB
extension for the secondary index.

° Returns information from a File Control Block Extension. The FCB
Extension contains the parameters used to define the file. The
FCBEQU copy code module contains a set of equates to map the FCB
Extension.

° Returns data paging statistics. These can be used to calculate page
Whit™ ratios.

e Returns data paging statistics, then resets them to begin accumulat-
ing new statistics.

Syntax

label CALL IAM, CEXTRACT),i1acb, (buff), (size), (type)

Required: jiacb Conly if type is FCBNRM or FCBEXT)
buff

Defaults: size = Full FCB
type = FCBNRM

Operands Description

1acb The label of a word containing the IACB address returned by
PROCESS or LOAD. Required only if type=FCBNRM or FCBEXT; oth-
erwise ignored.

(buff) The label of the user area into which the data is returned.

If type=FCBNRM or FCBEXT, the File Control Block is returned
in this area. The area must be large enough to contain the
requested portion of the FCB. Use the COPY statement to
include FCBEQU in your program so that the FCB and FCB Exten-
sion fields can be referenced by symbolic names.

If type=PAGST or PAGSTR, the paging statistics are returned in
this area. In this case, the size parameter is ignored, and
this area must be 16 bytes in length to accommodate the sta-
tistics. The paging statistics are returned in four
double-word fields:

1. Write Miss Count
2. Write Hit Count
3. Read Miss Count
4. Read Hit Count

7-12 $C34-0404-1

(size) Used only if type=FCBNRM or FCBEXT; otherwise ignored. The
number of bytes of the FCB or FCB Extension to be copied. The
size of the FCB is the value of the symbol FCBSIZE in the
FCBEQU equate table. The size of the FCB Extension 1s the
value of the symbol FCBXSIZ in the FCBEQU equate table.
Either of these symbols can be coded as the size parameter.

(type) Type of data to be returned. The following are defined:

FCBNRM Extract the FCB.

FCBEXT Extract the FCB Extension.

PAGST Returns data paging statistics to the buffer. It
always returns 16 bytes.

PAGSTR Same as PAGST, except the data paging statistics are
reset to zero after being copied to the buffer. This
allows a new set of statistics to be accumulated.

EXTRACT Return Codes

Code Condition

-] Successful
7 Link module in use, syncronize use of link module with the

program
8 Load error for SIAM, verify SIAM exists and enough storage

is available to load it
12 Data set shut down due to error; see Chapter 11,

"Error Recovery '
13 A required module is not included in $IAM
22 Address supplied by your program is not a valid IACB

100. Read error - check system return code
120 Invalid extract type
122 File does not contain FCB extension
123 Cannot extract paging statistics. Data paging not active

Chapter 7. Coding the Indexed Access Method Requests 7-13

7-14

EXTRACT Examples

The following example retrieves the current paging statistics and places
than into the four double words provided.

CALL TAM, CEXTRACT),0, CWRMIS),0,CPAGST)

WRMIS DATA D'O! WRITE MISS COUNT
WRHIT DATA D*‘O! WRITE HIT COUNT
RDMIS DATA D*‘O! READ MISS COUNT
RDHIT DATA D*0' READ HIT COUNT

The following example gets the attributes of the file identified by the
field named FILE1 from the FCB and places them into an area called WORK.

CALL IAM, CEXTRACT), FILEL, (WORK), CFCBSIZE)

FILE DATA D*0? IACB ADDRESS FROM PROCESS
WORK DATA 256F"O' FCB COPY AREA

COPY FCBEQU FCB EQUATES

$C34-0404~-1

GET - GET RECORD

The GET request retrieves a single record from the indexed file and
places the record in aouser area. The file must have been opened using
the PROCESS request before the GET request is issued.

The requested record is located by key. The search may be modified by a
Key relation Ckrel} or a key length Cklen). The first record in the
file that satisfies the key condition is the one that is retrieved.

Retrieve for update can be specified if the requested record is intended
for possible modification or deletion. The record is locked and remains
unavailable to any other requests until the update is completed by a
PUTUP, PUTDE or by a RELEASE. The record is also released if an error
occurs or processing 1s endad with a DISCONN.

During an update, you must not change the primary key field in the
record or the field addressed by the key parameter. The Indexed Access
Method checks for and prohibits primary key modification.

The GETC request retrieves a single record from the indexed file and
Places the record in a user area only if the record, block, or buffer is
not locked.

The GETR request retrieves the RBN of a specified record from the
indexed file and places the record and RBN in a user area.

The GETCR request retrieves the RBN of a specified record from the
indexed file and places the record and RBN in a user area only if the
record, block, or buffer is not locked.

Syntax:

label CALL IAM, (GET|GETC|]GETR|GETCR), iach, (buff), (key),
(mode/krel)

Required: 1acb,buff, key
Defaults: mode/krel=EQ

Operands Description

iach The label of a word containing the IACB address returned by
PROCESS.

(buff) The label of the user area into which the requested record
is placed. When the RBN is requested, the RBN is returned
at the end of the record. The user buffer must be four
bytes longer than the record length to accommodate the RBN.

(key) The label of your key area containing the key identifying
the record to be retrieved and preceded by the lengths of
the key and area. This area has the standard TEXT format
and may be declared using the TEXT statement. If you do not
use the TEXT statement for this field, you must code it tn
the same format as the TEXT statement generates.

Chapter 7. Coding the Indexed Access Method Requests 7-15

7-16

(mode/krel)

5$€34-0404-1

The TEXT statement format is as follons:

Offset Field

key - 2 LENGTH Cl byte)
key - 1 KLEN (1 byte)

length

klen

key ar

Key Key area C"LENGTH"™ bytes)

The length of the key area. It must be equal to
or greater than the full key length for the file
in use.

The actual length of the key in the key area to
be used as the search argument for the
operation. It must be less than or equal to the
full length of the keys in the file in use. If
klen is 0, the full key length is assumed.

A generic key search is performed when klen is
less than the full key size. The first n bytes
Cas specified by klen) of the key area are
matched against the first n bytes of the keys in
the file. The first matching key determines the
record to be accessed. The full key of tha
record is returned in the key area.

ea The area containing the key to be used as a
search argument. If you are using a generic

key, after a successful GET request this area

contains the full key of the record accessed.

Retrieval type and key relational operator to be used.
The fo

EQ

GT

GE

UPEQ

UPGT

UPGE

llowing are defined:

Retrieve only key equal

Retrieve only key greater than

Retrieve only key greater than or equal

Retrieve for update key equal

Retrieve for update key greater than

Retrieve for update key greater than or equal

GET Return Codes

Code Condition

-90 Request cancelled because the request was conditional anda
Wait on a lock or buffer would be required

-58 Record not found
-l Successful.
7 Link module in use, syncronize use of link module with the

program
8 Load error for SIAM, verify SIAM exists and enough storage is

available to load it
10 Invalid request
12 Data set shut down due to error; see Chapter 11,

"Error Recovery’
13 A required module is not included in SIAM
22 Address supplied by your program 1s not a valid IACB

100 Read error - check system return code
101 Write error - check system return code
200 Error occurred while accessing the primary file
242 Secondary index is out of sync with primary file
247 During auto-update processing a GETSEQ to a secondary file

failed, auto-update processing continues
248 I70 error on primary file during a secondary request
249 GET UPDATE error occurred trying to update a bad RBN

GET Example

The following example gets a record whose key is 'JONES'. The file
records are 80 bytes in length and the key length is 20 bytes. The
record is returned in the area named RECORD, and because this 1s a GETR
request, the RBN is also returned in the area named RBN, which must fol-
low immediately after the record area.

FILE
KEY
RECORD
RBN

CALL TAM, (GETR),FILE1, (RECORD), (KEY)

DATA F*‘0O! IACB ADDRESS FROM PROCESS
TEXT 'JONES',LENGTH=20 RECORD KEY
DATA 128F'0! RECORD AREA
DATA D‘'0° RBN

Chapter 7. Coding the Indexed Access Method Requests 7-17

GETSEQ - GET RECORD (SEQUENTIAL MODE)

7-18

The GETSEQ request retrieves a single record from the indexed file and
places the record in a user area (buff). The file must be opened in the
PROCESS mode.

The first GETSEQ of a sequence 1s performed like a GET; the first record
in the file that satisfies the key condition is the one that is
retrieved. If key is zero, the first record in the file 1s retrieved.
Subsequent requests in the sequence locate the next sequential record in
the file and the key parameter is ignored if specified. The sequence 15
terminated by an end-of-data condition, by an ENDSEQ@, by a DISCONN, or
by an error. During the sequence, direct-access requests are invalid.

Retrieval for update can be specified if the requested record is
intended for possible modification or deletion. If update is used the
record is locked and remains unavailable to any other requests until the
update is completed by a PUTUP, PUTDE or RELEASE. The record is also
released by ending the sequence with an ENDSEQ or by ending processing
with a DISCONN or by an error.

During an update, the user must not change the primary key field in the
record or the field addressed by the primary key parameter. The Indexed
Access Method checks for and prohibits key modification.

The GETSEQC request retrieves a single record from the indexed file and

places the record in a user area only if the record, block, or buffer 15
not locked. The file must be opened in the PROCESS mode.

The GETSEQCR request retrieves the RBN of the specified record from the
indexed file and places the record in a user area only if the record,
block, or buffer is not locked. The file must be opened in the PROCESS
mode.

Syntax:

label CALL IAM, CGETSEQ] GETSEQC | GETSEQR|GETSEQCR),iacb,
(buff), Ckey), Cmode/krel)

Required: tacb,buff,key
Defaults: mode/krel=EQ

Operand Description

1aCb The label of a word containing the IACB address returned by
PROCESS.

(buff) The label of the user area into which the requested record
is placed. When the RBN is requested, the RBN is returned

at the end of the record. The user buffer must be four

bytes longer than the record length to accommodate the RBN.

(key) The label of the user key area containing the key identitfy-
ing the record to be retrieved and preceded by the lengths
of the key and area. If the first record of the file is to
be retrieved, this field as specified should be 0. The key
field, if specified, has the standard TEXT format and may be
declared using the TEXT statement. If you do not use the
TEXT statement for this field, you must code it in the same
format as the TEXT statement generates.

$€34-0404-1

The TEXT statement format is as follows:

Offset Field

key - 2 LENGTH C1 byte)
kay - |j KLEN C1 byte)
key Key area (C"LENGTH™ bytes)

length

klen

key area

(modeskrel) Retrieval

The length of the key area. It must be equal to
or greater than the full key length for the file
in use.

The actual length of the key in the key area to
be used as the search argument for the
operation. It must be less than or equal to the
full length of the keys in the file in use. If
klen is 0, the full key length 1s assumed.

A generic key search is performed when klen is
less than the full key size. The first n bytes
Cas specified by klen) of the key area are
matched against the first n bytes of the keys in
the file. The first matching key determines the
record to be accessed. The full key of the
record 1S returned in the key area.

The area containing the key to be used asa
search argument. If you are using a generic
key, after the first successful GETSEQ request
this area contains the full key of the record
accessed.

type and key relational operator to be used.
The following are defined:

EQ Retrieve only key equal

GT Retrieve only key greater than

GE Retrieve only key greater than or equal

UPEQ Retrieve for update key equal

UPGT Retrieve for update key greater than

UPGE Retrieve for update key greater than or equal

After the first GETSEQ of a sequence only the retrieval type is meaning-
ful. The keys are not checked for equal or greater than relationship.

Chapter 7. Coding the Indexed Access Method Requests 7-19

GETSEQ Return Codes

Code Condition

-90 Request cancelled because the request was conditional
| and a wait ona lock or buffer would be required

-§0 End of data
-58 Record not found
-] Successful
7 Link module in use, syncronize use of link

module with the program
8 Load error for SIAM, verify SIAM exists and enough

storage is available to load it
10 Invalid request
12 Data set shut down due to error; see Chapter 11,

"Error Recovery'
13 A required module is not included in SIAM
22 Address supplied by your program is not a valid IACB

100 Read error ~ check system return code
101 Write error - check system return code
200 Error occurred while accessing the primary file
242 Secondary index is out of sync with primary file.
248 I/O error on primary file during a secondary request.
249 GET UPDATE error occurred trying to update a bad RBN.

GETSEQ Example

The following example gets the record whose key is 'KEYO001' and places
it in an area called 'BUFFER'. The file is identified by the field
named "FILE1L'. Subsequent GETSEQ requests result in the next sequential
record being returned.

CALL TAM, (GETSEQ),FILE1, (BUFFER), (KEY)

FILEI DATA FO! TACB ADDRESS FROM PROCESS
BUFFER DATA 256F'O' I70 BUFFER
KEY TEXT ‘"KEYO001°,LENGTH=7 RECORD KEY

7-20 $C34-0404-1

S Ss t
e
t

LOAD - OPEN FILE FOR RECORD LOADING

The LOAD request builds an indexed access control block CIACB) associ-
ated with the file specified by the DSCB parameter. The address
returned tn the jiacb variable is the address used to connect requests
under this LOAD to this file.

To access the file by primary key, specify the primary file name as the
DSCB parameter. On all subsequent requests, specify a primary key.

To access the file by secondary key, specify the secondary file name as
the DSCB parameter. On all subsequent requests, specify a secondary
key. The Indexed Access Method automatically opens the primary file
when you specify a secondary file.

Note: The directory must be set up to reflect the relationship among
the primary file and any secondary files.

LOAD opens the file for loading base records; the only acceptable proc-
essing requests in this mode are PUT, EXTRACT and DISCONN. Only one
user of a file can use the LOAD function at one time.

If an error exit is specified, the error exit routine is executed when-
ever any Indexed Access Method request under this LOAD terminates with a
positive return code.

Note: Return codes 1, 7, 8» and 22 are positive value return codes but
they do not cause the error exit routine to be entered, even when
ERREXIT is coded. The negative (warning) return codes also do not cause
error exits.

Syntax:

label CALL IAM, CLOAD),iacb, (dscb), Copentab) , (mode)

Required: 1iacb,dscb,opentab
Defaults: mode=(SHARE)D

Operands Description

iach The label of a l-word variable into which the address of the
indexed access control block CIACB) is returned.

(dscb) The name of a valid DSCB. This name is DSn, where n is a num
ber from 1-9, corresponding to a file defined by the PROGRAM
statement. It can also be a name supplied by a DSCB state-
ment. The CALL statement specifying LOAD causes the Indexed
Access Method to open the index file in load mode.

(opentab) The label of a 3 word open table. The open table contains
information used during this LOAD. The format of this table
15 as follows:

Chapter 7. Coding the Indexed Access Method Requests 7-21

7-22

(mode)

$€34-0404-1

Offset Field

0 SYSRTCD
2 ERREXIT
G (0) reserved

Field

SYSRTCD

ERREXIT

RESERVED

Specifies

SHARE

ISHARE

EXCLUSV

ITEXCLUSV

Description

A l-word variable into which the return code from
any system function Csuch as READ and WRITE) is
placed when requested under this LOAD by the
Indexed Access Method.

Your error exit routine address. If this address
15 zero, the error exit will not be taken. Note
that error exits handle only positive return codes.

Note: Return codes 1, 7, 8» and 22 are positive
return codes which do not cause the error exit rou-
tine to be entered, even if ERREXIT is coded.

Must be 0 for LOAD requests.

shared or exclusive use of the file.

Allows shared read/write access by PROCESS
requests.

Allows shared read/write access by PROCESS requests
with the tndependent processing flag on.

The I prefix on SHARE mode prevents any automatic
update functions on any associated secondary
Indexes, even if the auto-update flag 15S on in the
directory entry for those associated secondary
indexes.

For a secondary index, the index 15 opened as an

independent file and the records returned are secy

ondary index records, not user data records.

You can access the file in exclusive mode CEXCLUSV)
only if there are no outstanding PROCESS or LOAD
requests. No other user can access the file while
exclusive use 15 1n effect.

You can access the file only if there are no out-
standing PROCESS or LOAD requests. No other usar
can access the file while independent exclusive
CTEXCLUSV) use is tn effect.

The I prefix on EXCLUSV mode prevents any automatic
update functions on any associated secondary
indexes, even if the auto-update flag is on in the
directory entry for those associated secondary
indexes.

For a secondary index, the tndex 15 opened as an

independent file and the records returned are sec-

ondary index records, not user data records.

LOAD Return Codes

Code Condition

-79 Warning - File was opened and not closed during the
last session. Normal processing continues

~-75 Warning - File has either not been formatted, or the
invalid indicator is on in the directory for that file

-57 Data set has been loaded
~l Successful
7 Link module in use, syncronize use of link

module with the program
8 Load error for SIAM, verify SIAM exists and enough

storage 1s available to load it
12 Data set shut down due to error; see Chapter ll,

"Error Recovery’
13 A required module is not included in SIAM
14 Invalid index block found - during processing of an index

block, an incorrect block type was found.
17 IAM 15 inactive - not enough storage available. Use

SIAMUTI1 BF command to readjust storage size.
23 Insufficient number of IACBs, use BF command of

SIAMUT1 to allocate more
50 File opened exclusively
51 Data set already opened in load mode
52 File in use, cannot open exclusively
54 SIAM buffer too small to process a file with this block size

Use the BF command of SIAMUTI1 to increase the buffer size
55 Insufficient FCBs
56 Read error - FCB. Refer to system return code
76 DSOPEN error occurred - The system error field in the

open table contains the DSOPEN error:
21 - DSNAME,VOLUME not found
22 ~ VOLSER error
23 - I/0 error

77 Record save area not large enough - use S$IAMUTI1 BF
command to set maximum record size for secondary
index processing

78 Attempted to open a secondary file for LOAD, file is not
opened independently

230 Directory READ error for SIAMDIR. Check system return code
234 Directory error — DSNAME,VOL not found in S$IAMDIR
243 Primary file failed to open on a secondary OPEN request

Chapter 7. Coding the Indexed Access Method Requests 7-23

LOAD Example

The following example opens the file identified by '"DS3' for record
loading in exclusive mode. The field named "IACB* is set to the address
of the IACB for this open. Subsequent requests use this field to refer
to this file. The system return code is placed in the field named
‘OPEN’. An error opening the file results in the routine named 'ERROR’
being executed.

CALL TAM, (LOAD), ACB, (DS3), (OPEN), CEXCLUSV)

IACB DATA FrQ*
OPEN DATA Fro’ RETURN CODES

DATA A'ERROR* ERROR EXIT ROUTINE ADDRESS
DATA Fro’ NOT USED

7-24 $C34-0404-1

PROCESS - OPEN FILE

The PROCESS request builds an indexed access control block CIACB) asso~-
ciated with the file specified by the DSCB parameter. The address
returned in the IACB variable is the address used to connect requests
under this PROCESS to this file.

To access the file by primary key, specify the primary file name as the
DSCB parameter. On all subsequent requests, specify a primary key.

To access the file by secondary key, specify the secondary file name as
the DSCB parameter. On all subsequent requests, specify a secondary
key. The Indexed Access Method automatically opens the primary file
when you specify a secondary file.

Notes The directory must be set up to reflect the relationship between
the primary file and any secondary files.

PROCESS opens the file for retrievals, updates, insertions, and
deletions. Multiple users can PROCESS the same file. However, only one
user at a time can use the LOAD function for a given file.

If ERREXIT is specified, the error exit routine is executed whenever any
Indexed Access Method request under this PROCESS terminates with a posi-
tive return code.

Note: Return codes 1, 7, 8» and 22 are positive value return
codes but they do not cause the error exit routine to be entered,
even when ERREXIT is coded. Also the negative (warning) return
codes do not cause error exits.

If EQDEXIT is specified, the end-of-data exit routine is executed when-
ever a GETSE@ associated with PROCESS attempts to access a record after
the last record in the file.

Syntax:

label CALL IAM, CPROCESS),iacb, Cdscb), Copentab), (mode)

Required: 1tacb,dscb,opentab
Defaults: mode=CSHARE)

Operands Description

1acb The label of a l-word variable into which the address of the
indexed access control block CIACB) is returned.

(dsch) The name of a valid DSCB. This name is DSn, where n is a num-
ber from 1 - 9, corresponding to a file defined by the PRO-
GRAM statement. It can also be a name supplied by a DSCB
statement. The CALL statement specifying PROCESS causes the
Indexed Access Method to open the index file in process mode.

(opentab) The label of a 3 word open table. The open table contains
information used during this PROCESS. The format of this
table is as follows:

Offset Field

0 -SYSRTCD
> ERREXIT
4 EOQDEXIT

Chapter 7. Coding the Indexed Access Method Requests 7-25

7-26

(mode)

5C34-0404-1

Field

SYSRTCD

ERREXIT

EQDEXIT

Specifies

SHARE

ISHARE

EXCLUSV

TEXCLUSV

Description

A i-word variable into which the return code from
any system function (€Csuch as READ and WRITE) 15
placed when requested under this PROCESS by the
Indexed Access Method.

Your error exit routine address. If this address
1s 0, the error exit will not be used. Note that

error exits handle only positive return codes.

Your end-of-data exit routine address. If this
address is 0, the end-of-data exit will not be
used. |

shared or exclusive access to the file.

Allows shared read/write access by multiple PROCESS
or LOAD requests.

Allows shared read/write access by PROCESS requests

With the independent processing flag on.

The I prefix on SHARE mode prevents any automatic
update functions on any associated secondary
indexes, even if the auto-update flag is on in the
directory entry for those secondary indexes.

For a secondary index, the index 15 opened as an

independent file and the records returned are sec~

ondary index records, not user data records.

The user can access the file only if there are no
outstanding PROCESS or LOAD requests. No other
user can access the file while EXCLUSV Cexclusive
access) 15 1n effect.

You can access the file only if there are no out-
standing PROCESS or LOAD requests. No other user
can access the file while independent exclusive
CITEXCLUSV) use 15 tn effect. The I prefix on
EXCLUSV mode prevents any automatic update func-
tions on any associated secondary indexes, even if
the auto-update flag is on in the directory entry
for those associated secondary indexes.

For a secondary index, the index 15 opened as an

independent file and the records returned are sec~

ondary tndex records, not user data records.

PROCESS Return Codes

Code Condition

-79 Warning - File was opened and not closed during the
last session. Normal processing continues

-75 Warning - File has either not been formatted, or the
invalid indicator 15 on tn the directory for that file

-j Successful
7 Link module in use, syncronize use of link

module with the program
8 Load error for SIAM, verify SIAM exists and enough

storage 1s available to load it
le Data set shut down due to error; see Chapter ll,

"Error Recovery'
13 A required module is not included in SIAM
17 IAM is inactive - not enough storage available. Use

SIAMUT1 BF command to readjust storage size.
23 Insufficient number of IACBs, use BF command of

SIAMUTL to allocate more
50 File opened exclusively
52 File in use, cannot open exclusively
54 SIAM buffer too small to process a file with this block size

Use the BF command of SIAMUT1 to increase the buffer size
55 Insufficient FCBs
56 Read error -~ FCB. Refer to system return code
76 DSOPEN error occurred - The system error field in the

open table contains the DSOPEN error:
21 - DSNAME,VOLUME not found
2e ~ VOLSER error
25 ~ I/0 error

77 Record save area not large enough - use SIAMUTI BF
command to set maximum record size for secondary
index processing

230 Directory READ error for SIAMDIR. Check system return code
234 Directory error - DSNAME,VOL not found in SIAMDIR
243 Primary file failed to open on a secondary OPEN request

Chapter 7. Coding the Indexed Access Method Requests 7-27

PROCESS Example

The following example opens the file identified by '"DS1' for general
access in shared access mode. The field named 'IACB’ is set to the
address of the IACB for this open. Subsequent requests use this field
to refer to this file. The system return code 1s placed in the field
named "OPENTAB'. An error opening the file results in the routine named
*ERROR' being executed. An end-of-data condition on a subsequent
request results in the transfer of control to the code at the label
END’,

CALL TAM, CPROCESS),1IACB,(DS1),COPENTAB), CSHARE)

OPENTAB DATA Fro’ RETURN CODES
DATA ACERROR) ADDRESS OF ERROR EXIT ROUTINE
DATA ACEND) ADDRESS OF EOD EXIT ROUTINE

ITACB DATA F'O*

7-28 $C034-0404-1

PUT - PUT RECORD INTO FILE

The PUT request processes the record that is in your buffer (buff)
according to the way the file was opened (LOAD or PROCESS).

If the current open is for LOAD, the record must have a higher key than
the highest key already in the file and onlybase record slots are used
Crefer to "Loading Base Records From An Application Program" on page 4-5
for a description of load mode). If the current open is for PROCESS,
the record may have any key and is placed in key order in either a base
record or ina free slot in the appropriate place in the file.

The PUTC request requires a block lock. The request processes the
record in your buffer (buff) according to the way the file was opened
CLOAD or PROCESS). In order to obtain a block lock without waiting,
chere can be no other block lock or record locks in effect for the
block.

Syntax:

label CALL IAM, CPUT|[PUTC), iach, (buff)

Raquired: all
Defaults: none

Operands Description

iach The label of a word containing the IACB address returned by
PROCESS or LOAD. |

(buff) The label of the user area containing the record to be added
to the file.

Chapter 7. Coding the Indexed Access Method Requests 7-29

PUT Return Codes

Code Condition

-90 Request cancelled because the request was conditional
and a wait on a lock or buffer would be required

-] Successful
7 Link module In use, syncronize use of link

module with the program
8 Load error for SIAM, verify SIAM exists and enough

storage is available to load it
10 Invalid request
12 Data set shut down due to error; see Chapter ll,

"Error Recovery’
13 A required module is not included in SIAM
14 Invalid index block found - during processing an

Incorrect index block type was found, recreate the file
oe Address supplied by your program 15 not a valid IACB
60 Out of sequence or duplicate key CLOAD mode only?)
61 End of file Cin LOAD mode)
62 Duplicate key found CPROCESS mode only)
70 No space for insert; ,;eorganize the file
76 DSOPEN error occurred - The system error field in the

OPEN table contains the DSOPEN error:
21 - DSNAME,VOLUME not found
e2 ~ VOLSER error
2353 - I/O error

90 Internal key save area temporarily in use by another request
100 Read error - check system return code
101 Write error - check system return code
230 Directory read error for SIAMDIR. Check system return code
244 Error in opening auto-update on modification request
246 Auto-update processing an INSERT to a secondary

ile failed, auto-update processing continues
248 /0 error on primary file during a secondary request

PUT Example

The following example puts the record in the area named "'BUFFER* into
the file. The file is identified by the field named 'FILEI1’.

B

CALL TAM, CPUT),FILE1, CBUFFER)

FILE DATA Fto? ITACB ADDRESS RETURNED HERE
UFFER DATA 256F'O'* I70 BUFFER

7-30 $C34-0404-1

PUTDE - DELETE PREVIOUSLY READ RECORD

The PUTDE request deletes a record from an indexed file. The record
must have been previously retrieved by a GET or GETSEQ in update mode.
Deleting the record creates free space in the file. The PUTDE releases
the lock placed on the record by the GET or GETSEQ.

The PUTDEC request deletes a record from an indexed file only if the
block or buffer is not locked.

Syntax:

label CALL IAM, CPUTDE|PUTDEC), iach, (buff)

Required: all
Defaults: none

Operands Description

iach The label of a word containing the IACB address returned by
PROCESS.

(buff) The name of the area containing the record previously
retrieved by GET or GETSEQ.

Chapter 7. Coding the Indexed Access Method Requests 7-31

PUTDE Return Codas

Code Condition

-90 Request cancelled because the request was conditional
and a wait on a lock or buffer would be required

-85 Record not found
-1 Successful
v Link module in use, syncronize use of link

module with the program
8 Load error for SIAM, verify SIAM exists and enough

storage is available to load it
10 Invalid request
12 Data set shut down due to error; see Chapter 11,

"Error Recovery’
13 A required module is not included in SIAM
14 Invalid index block found - during processing an incorrect

index block was found. Recreate the file
22 Address supplied by your program is not a valid IACB
76 DSOPEN error occurred - The system error field in the

OPEN table contains the DSGPEN error:
21 - DSNAME,VOLUME not found
ce ~ VOLSER error
23 ~- I/0 error

85 Key was modified by user
100 Read error - check system return code
101 Write error - check system return code

230 Directory read error for SIAMDIR. Check system return code
242 Secondary index 1s out of sync with primary file.

Must rebuild file to get back In sync.
244 Error in opening auto-update on modification request
245 Auto update PUTDE to a secondary file failed,

auto-update processing continues.
247 During auto-update processing a GETSEQ to a secondary

file failed, auto-update processing continues.
248 I/0 error on primary file during a secondary request.

PUTDE Example

The following example deletes the record in the area named "BUFFER'
the file. The record was read with either a GET or GETSE@ request
update mode. The file is identified by the field named 'FILE1’.

from

mn

CALL IAM, CPUTDE),FILE1, (BUFFER)

FILE DATA Fto" IACB ADDRESS FROM PROCESS
BUFFER DATA 256F‘O' I70 BUFFER

7-32 $C€34-0404-1

PUTUP - UPDATE RECORD

The PUTUP request replaces the record in the file with the record in
your buffer. The record must have been retrieved by a GET or GETSE@ in
update mode. You must not change the primary key field in the record or
the contents of the key area in your program returned by the GET or
GETSEQ request. The Indexed Access Mathod checks for and prohibits pri-
mary key modification. The PUTUP releases the lock placed on the record
by the GET or GETSEQ.

The PUTUPC request replaces the record in the file with the record in
your buffer only if the record, block, or buffer is not locked.

Syntax:

label CALL IAM, CPUTUP|PUTUPC), iach, (buff)

Required: all
Defaults: none

Operands Description

1acb The label of a word containing the IACB address returned by
PROCESS.

(buff) The label of the user area containing the record to replace
the one previously retrieved.

Chapter 7. Coding the Indexed Access Method Requests 7-33

PUTUP Return Codes

Code Condition

-90 Request cancelled because the request was conditional
and a wait on a lock or buffer would be required

-j Successful

qd Link module in use, syncronize use of link
module with the program

8 Load error for SIAM, verify SIAM exists and enough
storage 1s available to load it

10 Invalid request
12 Data set shut down due to error; see Chapter ll,

‘Error Recovery’
13 A required module is not included in SIAM
14 Invalid index block found - during processing an incorrect

index block was found. Recreate the file
oe Address supplied by your program is not a valid IACB
76 DSOPEN error occurred ~- The system error field in the

OPEN table contains the DSOPEN error:
21 - DSNAME,VOLUME not found
ee ~ VOLSER error
23 - I/0 error

85 Key was modified by user
100 Read error ~- check system return code
101 Write error - check system return code
230 Directory read error for SIAMDIR. Check system return code
242 Secondary index is out of sync with primary file.

Must rebuild file to get back in sync.
244 Error in opening auto-update on modification request
245 Auto update PUTDE to a secondary file failed,

auto-update processing continues.
246 Auto-update processing an INSERT to a secondary file failed,

auto-update processing continues
247 During auto-update processing a GETSEQ to a secondary

file failed, auto-update processing continues.
248 I70 error on primary file during a secondary request.

PUTUP Example

The following example puts the updated record in the area named
back into the file. The record was read with either a GET or GETSE@
request in update mode. The file is identified by the field named

"BUFFER’

"FILEI1’.

CALL TAM, CPUTUP),FILE1, (BUFFER)

FILE DATA Fro? TACB ADDRESS FROM PROCESS
BUFFER DATA 256F'0' I/0 BUFFER

7-34 $C34-0404-1

RELEASE - RELEASE RECORD

The RELEASE request frees a record that has been locked by a GET or
GETSE® for update. A record lock is normally released by a PUTUP or
PUTDE. The RELEASE request
the update need not be completed. RELEASE 1s valid only when a record
is locked for update.

Svntax:

label CALL IAM, CRELEASE),iacb

Required: all
Defaults: none

Operands Description

1acb The label of a word containing the IACB address returned by
PROCESS.

RELEASE Return Codes

Code Condition

~I

10
i2

13
22

Successful
Link module in use, syncronize use of link
module with the program
Load error for SIAM, verify SIAM exists and enough
storage 15 available to load it
Invalid request
Data set shut down due to error; see Chapter 11,
"Error Recovery’
A required module is not included in SIAM
Address supplied by your program 15 not a valid IJACB

RELEASE Example

The following example releases the record that was read with either a
GET or GETSEQ request in update mode. The file is identified by the
field named "FILE.

FILE

CALL TAM, CRELEASE),FILEL

DATA Fro? ITACB ADDRESS FROM PROCESS

Chapter 7. Coding the Indexed Access Method Requests 7-35

is useful for freeing the locked record when

EDL CALL FUNCTIONS SYNTAX SUMMARY >

Following is a summary of the syntax of the EDL CALL instructions used
to invoke the functions provided by the Indexed Access Method.

label CALL IAM, (CDELETE]DELETC),iacb, (key)
label CALL IAM, CDISCONN),iacb
label CALL IAM, CENDSEQ),iacb
label CALL IAM, CEXTRACT),iacb, (buff), (size), Ctype)
label CALL IAM, CGET|[GETCIGETR|GETCR), iacb, (buff), (key), (mode/krel)
label CALL IAM, (CGETSEQ|GETSEQC]|GETSEQCR|GETSEQR),iach, (buff),

Ckey), (mode/krel)
label CALL IAM,CLOAD),iacb, Cdscb), Copentab), (mode)
label CALL IAM, CPROCESS),iacb, Cdscb), Copentab), (mode)
label CALL IAM, CPUT]PUTC),iacb, (buff)
label CALL IAM, CPUTDE!PUTDEC),iacb, (buff)
label CALL IAM, CPUTUP|PUTUPC),iacb, (buff)
label CALL IAM, CRELEASE),iacb

7-36 $C34-0404-1

INDEXED ACCESS METHOD RETURN CODES SUMMARY

Return
Code Condition

-90 Request cancelled because the request was conditional
and a wait ona lock or buffer would be required.
Any locks obtained by this IACB were released.

-85 Record to be deleted not found
—-80 End of data
-79 Warning - File was opened and not closed during

the last session, normal processing continues
-75 Warning - File has either not been formatted or

the invalid indicator is on in the directory for
that file

~538 Record not found
-57 Data set has been loaded
-1 Successful completion
01 Invalid function specified on CALL to SIAM
07 Link module in use, syncronize use of link

module with the program
08 Load error for SIAM, verify SIAM exists and enough

storage 15 available to load it
10 Invalid request
12 Data set shut down due to error; see Chapter 11,

"Error Recovery'
13 A required module is not included in SIAM
14 Invalid index block found - during processing an

incorrect index block type was found, recreate the file
17 IAM is inactive - not enough storage available

Use SIAMUT1 BF command to readjust storage size
22 Address supplied by your program is not a valid IACB
23 Insufficient number of IACBs, use BF command of

SIAMUTL to allocate more
50 Data set is opened for exclusive use,

cannot be opened by another user
51 Data set already opened in load mode
52 Data set is opened, cannot be opened exclusively
54 SIAM buffer too small to process a file with this block size

Use the BF command of SIAMUT1 to increase the buffer size
55 Get storage error - FCB ,
56 READ error - FCB, refer to system return code
60 Out of sequence or duplicate key in LOAD mode
61 End of file in LOAD mode
62 Duplicate key found in PROCESS mode
70 No space for insert. Reorganize the file

Chapter 7. Coding the Indexed Access Method Requests 7-37

Return
Code Condition

76 DSOPEN error occurred - The system error field in the
OPEN table contains the DSOPEN error:

21 ~ DSNAME,VOLUME not found
22 - VOLSER error
23 - I/O error

a7 Record save area not large enough - use $IAMUT1 BF command
to set maximum record size for secondary file processing

78 Attempted to open a secondary file for LOAD, file is not
opened independently

80 FCB WRITE error during DELETE processing - see system
return code

85 Key field modified by user
90 Internal key save area temporarily in use by another

request
100 READ error ~- check system return code
101 WRITE error - check system return code
110 WRITE error - data sat closed
120 Invalid EXTRACT type
122 File does not contain FCB extension
123 Cannot extract paging statistics. Data paging is not active
150 Not enough storage available for data paging
200 Error occurred while accessing the primary file
230 Directory read error for SIAMDIR
231 SIAMQCB not found. Check sysgen for include of SIAMQCB
234 Directory error - DSNAME,VOL not found in SIAMDIR
242 Secondary index is out of sync with primary file.

Must rebuild file to get back in sync.
243 Primary file failed to open on secondary open request
244 Error in opening an auto-update file on a modification

request
245 Auto-update PUTDE to a secondary file failed; auto-update

processing continues
246 Auto-update processing an INSERT to a secondary

file failed, auto-update processing continues
247 During auto-update processing a GETSEQ to a secondary

file failed, auto-update processing continues
248 I/0 error on primary file during a secondary request
249 GET UPDATE error occurred trying to update a bad RBN

Note: For return codes 243 through 249, multiple errors may have
occurred. Use SILOG to display the errors.

7-38 $C34-0404-1

CHAPTER 8. THE SIAMUTI] UTILITY

This chapter describes how to use the SIAMUT1 utility to build and main-
tain your indexed files. Each command is described, including its func”
tion, parameters, and an example of how to use it. The file definition
parameters are also described.

The chapter is arranged in alphabetic order. Following is the list of
commands and the location of their descriptions:

"“BF——-Tailor the Indexed Access Method Buffers" on page 8-4

"DF—Define Indexed File” on page 8-6

"DI—Di splay Parameter Values” on page 8-9

"DR-—Invoke Secondary Index Directory Functions™ on page 8-10

"EC-——Control Echo Mode” on page 8-19

"EF——-Display Existing Indexed File Characteristics” on page 8-20

"LO-—-Load Indexed File” on page 8-22

"NP—Deactivate Paging” on page 8-25

"PG—Select Paging” on page 8-26

"PP——Define Paging Partitions” on page 8-27

"PS-—-Get Paging Statistics” on page 8-28

"RE--Reset Parameters" on page 8-29

"RO-—Reorganize Indexed File™ on page 8-30

"SE-—-Set Parameters" on page 8-32

"UN——-Unload Indexed File” on page 8-41

The subcommands of the directory function (CDR), are listed alphabet-
ically under the DR description. Those subcommands are:

AL allocate/reallocate directory

EN end directory function

DE delete entry

IE insert entry

LE list entries

VE update entry

Chapter 8. The S$IAMUT1 Utility 8-1

SIAMUT1

SIAMUTI can be invoked using the $L command, $JOBUTIL, or the Session
Manager. SIAMUT1 functions use dynamic storage for work and buffer
areas. The SIAMUTI utility is shipped with sufficient dynamic storage
to handle input and output block sizes of up to 512 bytes. This enables
you to define an indexed file with a maximum block size of 512 bytes,
and to load, unload, and reorganize indexed files with a maximum block
size of 512 bytes. S$IAMUTI1 determines if enough dynamic storage has
been provided. If sufficient storage has not been provided, S$IAMUTI1
displays a message. In order to handle large blocks of data, a larger
dynamic storage area Will have to be provided to SIAMUT1. Additional
dynamic storage can be provided by one of two ways: provide the storage
parameter on the $L command, or use the SS command of the SDISKUT2 util-
ity.

The load, unload and reorganize functions use the entire dynamic storage
available to minimize the number of disk I/0 operations. Improved per-
formance, therefore, can be obtained by specifying as large a dynamic
area as possible.

SIAMUT1 updates data set SIAM when it executes certain commands, such as
PG, NP, PP, and BF. S$IAMUT1 searches for data set SIAM in the following
sequence:

1. The volume from which $IAMUTI1 was loaded.

2. The IPL volume.

When using these commands, SIAMUT1 updatesthe first occurrence of data
set SIAM that it finds.

SIAMUTI1 updates directory data set SIAMDIR when it executes some direc-
tory commands, such as AL, IE, DE, and UE. Directory data set $IAMDIR
resides on the IPL volume.

8-2 $C34-0404-1

SIAMUT] COMMANDS

The commands available under $IAMUT1 are listed below. To display this
list at your terminal, enter a question mark in response to the prompt-
ing message ENTER COMMAND (?):.

The command descriptions in this chapter are arranged in alphabetic
order.

ENTER COMMAND (?): ?

EC - SET/RESET ECHO MODE
EF - DISPLAY EXISTING FILE CHARACTERISTICS
DR ~- SECONDARY INDEX DIRECTORY FUNCTIONS
EN - END THE PROGRAM

SE - SET DEFINE PARAMETERS
DF ~- DEFINE AN INDEXED FILE |
DI - DISPLAY CURRENT SE PARAMETERS
RE - RESET CURRENT VALUES FOR DEFINE

LO - LOAD INDEXED FILE FROM SEQUENTIAL FILE
RO - REORGANIZE INDEXED FILE
UN - UNLOAD INDEXED FILE TO SEQUENTIAL FILE

PG - SELECT DATA PAGING
NP ~ DESELECT DATA PAGING
PP - DEFINE PAGING PARTITIONS
PS - DATA PAGING STATISTICS
BF - SET BUFFER SIZES

ENTER COMMAND (?):
After the commands are displayed, you are again prompted with ENTER COM-
MAND €?):. Respond with the command you wish to use.

Chapter 8. The $SIAMUT1L Utility 8-3

BF

BFTAILOR THE INDEXED ACCESS METHOD BUFFERS

The BF command specifies the amount of storage that the Indexed Access
Method (SIAM) is to use for buffers and control blocks and the maximum
record size for any file with a secondary index.

BF prompts you for each of the following parameters by displaying the

current value and accepting new settings.

BUFFER SIZE Indicates the amount of storage (in bytes) to be
used for the central buffer. Use the following
formula to calculate your minimum buffer s1ze:

Buffer Size = (2 x blocksize) + (28 x blocksize/256)
+ €n x blocksize) + (n x 28 x blocksize/256)

where: blocksize = maximum block size
n = maximum number of PUT operations Cin LOAD

mode) and GETSEQ operations that can be
in effect at any point in time

8-4

NUMBER OF IACBS

NUMBER OF FCBS

MAXIMUM RECORD SIZE

Indicates the number of the IACBs. The maximum
number of IACBs is 64. There 1s an IACB associ-
ated with each PROCESS or LOAD that is issued.
When calculating the number of IACBs you should
consider the number of concurrent users you may
have at any one time.

Indicates the number of FCBs. The maximum number
of FCBs is 6%. There is one FCB for every file
that 18s open. When calculating the number of FCBs
you should consider the maximum number files that

might be open at a given time.

Indicates the maximum record size of any file with
an associated secondary index. If no files have a
secondary index, this value can be zero. The
actual amount of storage reserved as a result of
this parameter is twice the value specified plus 8
bytes.

None of these take effect until the next time the Indexed Access Method
1s loaded.

$€34-0404-1

BF

BF Command Example

This example sets the central buffer size to 540 bytes, leaves the num-
ber of ITACBs at 3, leaves the number of FCBs at 3, and sets the maximum
record size of any file with a secondary index to 120 bytes.

ENTER COMMAND (2): BF
PARAMETER DEFAULT NEW VALUE
BUFFER SIZE 1080 «6: 540
NUMBER OF IACBs 3
NUMBER OF FCBS 3
MAXIMUM RECORD SIZE 256 : 1290
VALUECS) SET
STORAGE FOR SIAM HAS BEEN SET TO 2048
BECOMES EFFECTIVE ON NEXT LOAD OF SIAM

ENTER COMMAND (23:

Chapter 8. The SIAMUTI Utility 8-5

BF

DF-"DEFINE INDEXED FILE

8-6

The DF command allocates, defines, and formats an indexed file. The DF
function will optionally invoke the load or reorganize function for you.
Before entering DF, you must use the SE command to set up parameters
that determine the size and format of the indexed file. The DF command
uses those SE parameters to optionally allocate and format the file.
The DF function can be invoked at the end of the SE function.

The allocate step consists of using the file size computed during the SE
step to dynamically allocate the file. If the file already exists, the
size is verified to ensure that it is large enough. The define step
consists of writing the file control block CFCB) and its extension to
the indexed file. Finally, the optional format step initializes all
records in the indexed file to provide an empty structured file.

INVOKING THE LOAD AND REORGANIZE FUNCTIONS FROM DF: You can invoke the
LOAD or REORGANIZE functions directly from the DF Cor SE) command. If
you invoke these functions, DF does not format the file because LOAD and
REORGANIZE wili format the file. If you do not invoke the LOAD or REOR-
GANIZE function, DF formats the file so you can load the file using an
application program or the LO command.

Notes:

1. You can use the LOAD/REORGANIZE command later to load the file, if
you do not invoke it from the DF command.

2. An application program cannot access an unformatted indexed file.

3. The prompt for the load/reorganize function occurs before the file
15 actually defined.

G4. A secondary index file cannot be loaded with the LO command, though
it can be reorganized using the RO function.

Defining the File

The define function prompts for the file to be allocated. If the file
already exists, its size 1s checked. If the size is at least as large
as needed, DF prompts you as to whether the file should be reused as
follows:

ENTER COMMAND (7): DF
ENTER DATA SET CNAME,VOLUME) : IAMFILE,EDX003
DATA SET ALREADY EXISTS AND IS LARGE ENOUGH
DO YOU WISH TO REUSE IT CY/N)?: Y

If the file exists, but 1t 15 not as large as needed, you have the
option of deleting and reallocating it as shown in the following
example:

ENTER COMMAND (7): DF
ENTER DATA SET CNAME,VOLUME) : MASTER, VOL123
DATA SET ALREADY EXISTS AND IS TOO SMALL
DELETE AND REALLOCATE CY,N)? : Y
DELETE AND REALLOCATE COMPLETED

$€34-0404-1

DF

If the file does not exist, it its allocated as follows:

ENTER COMMAND (7): DBF
ENTER DATA SET CNAME,VOLUME) : MASTER,VOLIe3
NEW DATA SET IS ALLOCATED

Using Immediate Write-Back

DF prompts you to select whether or not you want to use the immediate
write-back option. Immediate write-back has the same effect on primary
or secondary indexed files.

Each request to insert, delete, or update a data record causes the
affected blocks to be read into the Indexed Access Method buffer. The
actual modification to the block is performed in the buffer.

If you enter N to the immediate write-back prompt, file modifications
are held in the main storage buffer and not written back to the indexed
file until the buffer space is needed for another block or until the
file 1s closed. If the device where the file resides was powered off
before the block was written back to the file, the modification to the
file would not have been performed.

If you enter Y to the immediate write-back prompt, you are assured that
the changed block is written back to the file immediately.

The prompt 15 as follows:

DO YOU WANT IMMEDIATE WRITE-BACK? Y

Chapter 8. The SIAMUT1] Utility 8-7

DF

8-8

DF Command Example

The following example shows a use of the DF command to define a file
named MASTER on volume VOL123. Immediate write-back is selected and the
request to invoke LOAD or REORGANIZE is indicated.

ENTER COMMAND (7): DF
ENTER DATA SET (CNAME,VOLUME) : MASTER, VOL123
NEW DATA SET IS ALLOCATED
DO YOU WANT IMMEDIATE WRITE-BACK? Y |
INVOKE LOADCL), REORGANIZECR) OR ENDCE) AFTER CURRENT FUNCTION? L
DEFINE IN PROGRESS
DATA SET SIZE IN EDX RECORDS: 17
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: 1
PROCEED WITH LOAD/REORGANIZE CY/N)

$C34-0404-1

DF

DIW~“DISPLAY PARAMETER VALUES

DI displays the current parameter values entered during the current ses~-
sion of SIAMUTIL SE command. The parameter values can be used to format
a file using the DF command or they can be modified by reusing the SE
command.

Note: You can also use the EF command to display the parameters of an
existing file.

The following example shows a use of the DI command.

ENTER COMMAND (?): DI
CURRENT VALUES FOR SE COMMAND ARE:
FILE TYPE = PRIMARY
BASEREC 100
BLKSIZE 256
RECSIZE 80
KEYSIZE 28
KEYPOS 1
FREEREC 1
FREEBLK 10
RSVBLK NULL
RSVIX 0
FPOOL NULL
DELTHR NULL
DYN NULL

For a secondary file, the record size is not displayed.

Chapter 8. The SIAMUTI Utility 8-9

DR

DR7~~INVOKE SECONDARY INDEX DIRECTORY FUNCTIONS

The DR command provides access to secondary itndex directory functions.
Those functions are made available by replying DR when SIAMUT1 requests
VENTER COMMAND €?73:". You can then respond to the "ENTER DIRECTORY COM-
MAND €?3:" with a subcommand. To obtain a list of the available subcom-
mands, reply with a question mark (€?) as follows:

ENTER COMMAND (€?): DR

ENTER DIRECTORY COMMAND (€?): ?

AL - ALLOCATE/REALLOCATE DIRECTORY
LE - LIST ENTRIES
TE - INSERT ENTRY
DE - DELETE ENTRY
UE - UPDATE ENTRY
EN - END DIRECTORY FUNCTION

ENTER DIRECTORY COMMAND (?):

The directory function commands are arranged in alphabetic order as DR -
xx, where xx 15 the two letter directory subcommand. Their specific
locations are listed below:

WAL—Allocate Directory” on page 8-11

"DE—-Delete Directory Entry™ on page 8-12

"EN——End Directory Function™ on page 8-13

"TE—Insert Entry” on page 8-14

YWLE—-List Entries” on page 8-15

"UE—Update Directory Entry" on page 8-17

8-10 S$C34-0404-1

DR ~ AL

AL~~ALLOCATE DIRECTORY

The AL subcommand allocates a directory for secondary indexes. Ifa
directory already exists, this subcommand gives the option to delete and
reallocate it.

Mote: To use this subcommand, you must first use the DR command.

You are prompted to enter the maximum number of directory entries.
Enter the number of entries you want the directory to be able to hold.
Each entry describes a primary file or secondary index. The maximum
number of entries defaults to 4/7.

The directory, SIAMDIR, is always allocated on the IPL volume.

The following example shows a use of the AL subcommand to allocate a new
directory with a capacity of 10 entries:

ENTER DIRECTORY COMMAND (27): AL
VAX # OF DIRECTORY ENTRIES: 10
THE DIRECTORY DATA SET REQUIRES 1 EDX RECORDS, CONTINUE CY/NZEN)D? Y
DIRECTORY DATA SET ALLOCATED: SIAMDIR,EDX002

The next example assumes a directory already exists and allocates a new

one.

ENTER DIRECTORY COMMAND (€?): AL
DIRECTORY EXISTS, OPTIONS ARE:
BN - BUILD NEW DIRECTORY
AS ~- ADJUST SIZE
EN ~ END DIRECTORY ALLOCATE

ENTER OPTION: BN

ALL DIRECTORY ENTRIES WILL BE DELETED, CONTINUE CY/N)? Y¥
MAX # OF DIRECTORY ENTRIES: 20
THE DIRECTORY DS REQUIRES 2 EDX RECORDS, CONTINUE CY/N/EN) ? Y

DIRECTORY DATA SET ALLOCATED: SIAMDIR,EDX002
The following example, adjusts the size of the directory data set. All
existing entries will be retained.

ENTER DIRECTORY COMMAND (€?): AL
DIRECTORY EXISTS, OPTIONS ARE:
BN - BUILD NEW DIRECTORY
AS - ADJUST SIZE
EN - END DIRECTORY ALLOCATE

ENTER OPTION: AS
MAX # OF DIRECTORY ENTRIES: 1
THE DIRECTORY DS REQUIRES 1 EDX RECORDS, CONTINUE CY/N/EN) ? Y

DIRECTORY DATA SET ALLOCATED: S$IAMDIR,EDX002
Chapter 8. The SIAMUTL Utility 8-11

DR ~- DE

DE“~DELETE DIRECTORY ENTRY

The DE subcommand deletes an entry from the directory. If you delete a
primary entry, all associated secondary index entries are also deleted.

Note: To use this subcommand, you must first use the DR command.

The following example shows the deletion of the directory entry for the
file named MASTER on the volume named VOL123. MASTER is a primary index
file entry which has secondary indexes associated with it.

ENTER DIRECTORY COMMAND (7): DE
ENTRY CDSNAME,VOLUME): MASTER, VOQL123
ASSOCIATED SECONDARY ENTRIES WILL BE DELETED, CONTINUE CY/N)? Y
DELETE SUCCESSFUL, NUMBER OF ENTRIES DELETED: 2

The following example shows the deletion of the directory entry for a
file named MASTER, on the volume named VOL123. MASTER is a primary
index file entry which no longer has any secondary indexes associated
With it.

ENTER DIRECTORY COMMAND (€?): DE
ENTRY CDSNAME,VOLUME): MASTER
ENTRY FOR MASTER ,EDX002 WILL BE DELETED, CONTINUE CY/N)? Y
DELETE SUCCESSFUL, NUMBER OF ENTRIES DELETED: 1

8-12 $C34-0404-1

DR - EN

EN“"END DIRECTORY FUNCTION

The EN subcommand terminates the directory functions (DR) and returns to
SIAMUTL for your next command.

Chapter 8. The SIAMUTI Utility 8-13

DR - IE

IE~~INSERT ENTRY

The IE subcommand inserts a new entry into the secondary index
directory. It is used to
However,
entries can be inserted.

For a primary entry,
which the entry is being inserted.
ONDARY ENTRY CY/N)?."

For secondary entries,
ary index for which the entry is being inserted and specify that

You are then prompted for additionalsecondary index.

insert either a primary or secondary entry.
the primary entry must be inserted before any of its secondary

enter the data set name and volume of the file for
Specify N when asked "IS THIS A SEC-

enter the data set name and volume of the second-
it is a

information.

Specify the name of the primary index file which the secondary index is
to be associated with. You can select automatic update, which tndicates
that any change to a primary file is to be reflected in the secondary
index. The default for automatic update 15 yes.

The following example inserts a directory entry for a primary index
file:

ENTER DIRECTORY COMMAND (?): IE
ENTRY (CDSNAME,VOLUME): TOMPRI,EDX002
IS THIS A SECONDARY ENTRY CY/N)? N

DIRECTORY INSERT SUCCESSFUL

The following example inserts a directory entry for a secondary index

named

File "TOMPRI,EDX002".
"*TOMSECL,EDX002" which jis to be associated with the primary index

Automatic update is selected.

ENTER DIRECTORY COMMAND (€?): IE
ENTRY (DSNAME,VOLUME) TOMSECL,EDX002
IS THIS A SECONDARY ENTRY? Y

ASSOCIATED PRIMARY ENTRY CDSNAME, VOLUME):
AUTO-UPDATE (Y/N)? ¥

TOMPRI,EDX002

Note: To use this subcommand,

8-14 SC34-0404-1 —

you must first use the DR command.

DR - LE

LE-~LIST ENTRIES

The LE subcommand lists the contents of one or more directory entries.
Specify the name of a primary indexed file to get information about that
file and its secondary indexes. Specify the name of a secondary index
to get information about only that secondary index. To obtain a com-
plete list of all information in the directory, just press the Enter Key
Without supplying any data set name or volume.

Note: To use this subcommand>, you must first use the DR command.

The following example lists the directory entries related to the primary
file named "TOMPRI* on volume 'EDX002'.

ENTER DIRECTORY COMMAND (7): LE
ENTRY CDSMANE,VOLUME) BLANK=ALL: TOMPRI

PRIMARY INDE- AUTO
DSNAME VOLUME DATA SET PENDENT INVALID UPDATE

TOMPRI EDX002 YES NO KX XXX
TOMSEC1L EDX002 NO NO YES YES
TOMSEC2 EDX092 NO NO YES NO

NUMBER OF DIRECTORY ENTRIES USED = 5
NUMBER OF AVAILABLE ENTRY SLOTS = 42
DIRECTORY LIST COMPLETED

Chapter 8. The SIAMUT1 Utility 8-15

DR - LE

The following example lists all directory entries.

PRIMARY
DSNAME VOLUME DATA SET

EDXIAM EDX003 YES
EDXIAMS1 EDX003 NO

TOMPRI EDX002 YES
TOMSECI1 EDX002 NO
TOMSEC2 EDX002 NO

DIRECTORY LIST COMPLETED

ENTER DIRECTORY COMMAND (?): LE
ENTRY CDSNAME,VOLUME) BLANK=ALL:

INDE-
PENDENT

NO
NO

NO
NO
NO

NUMBER OF DIRECTORY ENTRIES USED
NUMBER OF AVAILABLE ENTRY SLOTS =

INVALID

% KKH
YES

KRXX
YES
YES

AUTO
UPDATE

HRM
YES

HX
YES
NO

8-16 $C34-0404-1

DR - UE

UE-"UPDATE DIRECTGRY ENTRY

The UE subcommand updates an entry in the secondary index directory.
You can use this command as follows:

Specify null values for parameters to remain unchanged Cpress the
Enter key when you are prompted for them).

° Enter new values for parameters to be modified.

Note: You cannot change a primary entry to a secondary entry or a sec
ondary entry to a primary entry. To do this,» you must delete the old
entry and insert a new one.

The following example updates a primary directory entry named
"MASTER, VOL123', changes the volume name from VOL123 to EDX002 and
leaves the DSNAME MASTER as it is.

ENTER DIRECTORY COMMAND (7): UE

ENTRY CDSNAME,VOLUME) MASTER, VOLL23

THIS IS A PRIMARY ENTRY

IN THE FOLLOWING, ENTER NEW VALUE OR,
ENTER NULL LINE TO RETAIN CPRESENT VALUE)

DSNAME CMASTER):
VOLUME CVOL123): EDx00e
INDEPENDENT (N):

DIRECTORY UPDATE SUCCESSFUL

Chapter 8. The SIAMUT1 Utility 8-17

| DR = UE]

The following example updates a secondary directory entry named
changes the VOLUME name to EDX002 and leaves the DSNAME

leaves the independent proc-
"MASTER, VOL123',
MASTER as it is. It sets automatic update,
essing flag as it 1s, and sets the invalid indicator off.

ENTER DIRECTORY COMMAND (?): UE

ENTRY CDSNAME,VOLUME) MASTER,VOLL23

THIS IS A SECONDARY ENTRY
IN THE FOLLOWING, ENTER NEW VALUE OR,
ENTER NULL LINE TO RETAIN CPRESENT VALUE)

DSNAME CMASTER)D:
VOLUME CEDX123): EDX002
INDEPENDENT (CN):
INVALID INDICATOR CY): N
AUTO-UPDATE (Y): Y¥

DIRECTORY UPDATE ENDED

Note: To use this subcommand, you must first use the DR command.

8-18 $C34-0404-1

EC

EC“-CONTROL ECHO MODE

EC anables you to enter or leave echo mode. When in echo mode, all
SIAMUT1 input and output is logged on the SSYSPRTR device. This enables
you to save information about the files you maintain using $IAMUTI.
When in echo mode, all input and output is logged until either the cur-
rent utility session is ended or echo mode is reset by use of the EC
command. Echo mode is off when SIAMUTI is loaded.

Note: Input and output from SDISKUT3 is not logged.

The following examples show the commands to set and reset echo mode:

ENTER COMMAND (2): EC
DO YOU WANT ECHO MODE? CY/N)?: ¥ (Set echo mode)
FUNCTION COMPLETED

ENTER COMMAND (7): EC
DO YOU WANT ECHO MODE? CY/N)?: N (Reset echo mode)
FUNCTION COMPLETED

Chapter 8. The SIAMUTI Utility 8-19

EF

EF“"DISPLAY EXISTING INDEXED FILE CHARACTERISTICS

The EF command displays the file definition parameters that were used to
set up the file. The information is obtained from the FCB Extension
block. This command does not give the size of the file in Event Driven
Executive blocks.

EF Command Example for Primary Files

This example shows how to display the file parameters used to set up the
file.

ENTER COMMAND (7): EF
EXHIBIT FUNCTION ACTIVE
ENTER DATASET CNAME,VOLUME): EDXIAM1,EDX003

FILE TYPE = PRIMARY
2BASEREC

BLKSIZE 256
RECSIZE 80
KEYSIZE 4
KEYPOS 1
FREEREC 0
FREEBLK 0
RSVBLK NULL
RSVIX 0
FPOOL NULL
DELTHR NULL
DYN 10
EXHIBIT FUNCTION COMPLETED

8-20 $C€34-0404-1

EF

EF Command Example for Secondary Files

This example shows how to display the file parameters used to set up the
file.

ENTER COMMAND (27): EF
EXHIBIT FUNCTION ACTIVE
ENTER DATASET (CNAME,VOLUME): EDXIAM11, EDXO003

FILE TYPE = SECONDARY
20BASEREC

BLKSIZE 256
KEYSIZE 6
KEYPOS 9
FREEREC 0
FREEBLK 0
RSVBLK NULL
RSVIX 0
FPOOL NULL
DELTHR NULL
DYN 10

Note: If you create this secondary file with the SE option 1 com-
mand, your secondary and primary file will look the same except
for KEYSIZE and KEYPOS.

Chapter 8. The SIAMUTI1 Utility 8-21

LO

LO-m~“LOAD INDEXED FILE

8-22

LO loads a primary indexed file from a sequential Cblocked or unblocked)
input file. CA secondary indexed file must be loaded by using the DF or
SE command). <A primary indexed file can be loaded in one of two envi-
ronments. Loading an empty file 1s referred to as the initial load.
For an indexed file that already contains some records, the LO command
can be used to add records with higher keys Ckeys of higher value than
those already in the indexed file). This is called load in extend envi-
ronment.

Blocks are read from the sequential file with the EDL READ instruction
and de-blocking 15 performed, if necessary. In the initial load envi-
ronment, data records are formatted into Indexed Access Method blocks
and written to the indexed file with the EDL WRITE instruction. Corre-
sponding index blocks are written as required. The remainder of the
indexed file is formatted if formatting was not completed during the DF
function. In the extend environment, records are loaded into the
indexed file using Indexed Access Method PUT requests.

The sequential input file can contain blocked or unblocked records. For
a description of blocked and unblocked sequential data sets, see
"Blocked and Unblocked Sequential Data Sets” on page 8-23. The records
in the sequential file must be in ascending order by the data contained
in the key field. If a record with a duplicate or out of sequence key
15 found, you are given the option to either omit the record and contin-
ue loading, or to end loading. The indexed file must have been defined
by using the SE and DF commands before using the LO command.

Your response to the prompt message "ENTER INPUT BLOCKSIZE", defines to
the LO command whether the input is a blocked or unblocked sequential
file. A null response to the prompt "ENTER INPUT BLOCKSIZE”™ indicates
an unblocked input file and the block size is then calculated using the
Input record size value, rounded up to the next 256-byte multiple value.
If the actual block size value is entered as your response to this
prompt, a blocked sequential tnput file is indicated.

The record lengths of the input and output files do not have to be the
same. When the indexed file is opened, the record length is displayed
on the terminal. At this point, you can specify the record Length of
the sequential file if it is different than that of the indexed file.
If the indexed file records are longer than the sequential file records,
the loaded records are left justified and filled with binary zeroes. If
the indexed file records are shorter than the sequential file records,
the following message appears on the terminal:

INPUT REC GT OUTPUT REC. TRUNCATION WILL OCCUR.
OK TO PROCEED?

Reply ‘'Y' to proceed Crecords will be truncated).

Reply "N* to terminate the load function.

If the end of the input sequential file 1s reached, you can continue
loading from another sequential file. You are asked if there 1s more
data to load. If you reply yes (Y), you are prompted for the file and
volume name of the new input sequential file to use. The load operation
continues, putting the first record of the new input sequential file in
the next available record slot of the indexed file.

Note: The record lengths and block sizes of subsequent input files are
assumed to be the same as the initial input file.

If the end of input file is reached and you do not name another input
file, the load operation is complete.

9€34-0404-1

LO

Note: If you are loading the indexed file from a tape file, S$IAMUTI
does not close the tape file upon completion of the load. Use the
SVARYOFF command to close the tape file Crefer to the Operator Commands
and Utilities Reference for a description of the SVARYOFF command).

The following example shows use of the LO command:

ENTER COMMAND (7): LO

LOAD ACTIVE
ENTER OUTPUT DATASET CNAME,VOLUME): IAMFILE,EDX003
SFSEDIT FILE RECSIZE = 128
INPUT RECORD ASSUMED TO BE 80 BYTES. OK?: ¥
ENTER INPUT BLOCKSIZE CNULL = UNBLOCKED):
ENTER INPUT DATASET (CNAME,VOLUME): SEQO1,EDX003
LOAD IN PROCESS

END OF INPUT DATASET
ANY MORE DATA TO BE LOADED?: N

6 RECORDS LOADED
LOAD SUCCESSFUL

Blocked and Unblocked Sequential Data Sets.

The LO Cload) function of SIAMUT1 will accept either blocked or
unblocked sequential data sets as input when loading an indexed file.
The UN Cunload) function will either block or unblock data as requested
when unloading an indexed file to a sequential data set.

UNBLOCKED SEQUENTIAL DATA SET: An unblocked sequential data set contains
one record in each block. The blocksize must be a multiple of 256
bytes. The record size must be equal or less than the block size. A
block can span one or more EDX records.

The following diagram illustrates the relationship of a data record of
300 bytes to a block size of 512 bytes in an unblocked data set.

 < 512 byte block >

300 byte 212 bytes
data record unused

 < 2 EDX records >

BLOCKED SEQUENTIAL DATA SET: In a blocked sequential data set a block
can contain multiple logical records. The block size must be a multiple
of 256 bytes. The record size must be equal to or less than the block
size. A block can span one or more EDX records.

The following diagram illustrates 6 data records of 80 bytes each within
a block of 512 bytes ina blocked data set.

Chapter 8. The SIAMUT1 Utility 8-23

LO

8-24

< 512 byte block >

80 byte 80 byte 80 byte 80 byte 80 byte 80 byte |[32
data data data data data data bytes
record record record record record record unused

< &2 EDX records >

Both the blocked and unblocked forms of sequential data sets, used by
the utility, are compatible with the language processors,
data sets produced by S$FSEDIT.
prepare your data records for

one 80-byte line from SFSEDIT

When you use such a data set as sequential
specify the record length as 128 and the block size as 256.

is defined as having a record length of 80,
15 acceptable because

tj On»

your indexed file

receive the message "TRUNCATION WILL OCCUR.”

Input,

Sort/Merge and

If you use the EDX edit utilities to

This

into a 128-byte SFSEDIT record.
remember that these utilities put

, Two of
these 128-byte records are then used to form one 256-byte EDX record.

Input for the LO Cload) func

you W

Indexed Access Method strips off the extra bytes added by SFSEDIT.

The last block of a blocked sequential data set may not have enough
records for a full block.

1s set to binary zeroes.block

Inveking the LOAD and REORGANIZE Functions

You can
command. If you

In this case,

invoke these functions,

because LOAD and REORGANIZE will do it.

or REORGANIZE function,
using an application program or SIAMUT1 at a later time.

Notes:

all of the unused space in

1. You can use the LOAD/REORGANIZE command later to load the file,
1t from the DF command.you do not Invoke

If
111

the

invoke the LOAD or REORGANIZE functions directly from the DF
DF does not format the file
If you do not

DF formats the file so you can load the file
invoke the LOAD

1 f

2. An application program cannot access an unformatted indexed file.

3. The prompt for the load/reorganize function occurs before the define
step.

9€34-0404-1

NP

NP-—-DEACTIVATE PAGING

The NP command directs that data paging be deselected the next time the
Indexed Access Method is loaded.

Page area sizes are not affected by this command.

NP Command Example

This example shows how to indicate data paging is to be deselected on
the next invocation of the Indexed Access Method.

ENTER COMMAND (2): NP
DATA PAGING MARKED AS NOT ACTIVE
BECOMES EFFECTIVE ON NEXT LOAD OF $IAM

Chapter 8. The SIAMUT1 Utility 8-25

PG

PGw"SELECT PAGING

The PG command directs that data paging be selected the next time the
Indexed Access Method is loaded.

Page area sizes are not affected by this command.

PG Command Example

This example shows how to indicate data paging is to be selected on the
next invocation of the Indexed Access Method.

ENTER COMMAND (2): PG
DATA PAGING MARKED AS SELECTED
BECOMES EFFECTIVE ON NEXT LOAD OF $IAM
SEE INDEXED ACCESS METHOD GUIDE CONCERNING
REMOVAL OF PAGING MODULES FROM STORAGE.

ENTER COMMAND (7):

8-26 S$C34-0404-1

PP

PP-"DEFINE PAGING PARTITIONS

The PP command defines the amount of storage in each partition that the
Indexed Access Method should reserve for paging. Storage is actually
used for paging only when paging 1s active.

PP prompts you for the size of the paging area for each partition by
displaying the partition number and current paging area size for that
partition. Respond with a null entry (Cjust press the Enter key) to
retain that size. Enter a new size toa change the space allocation.
Sizes are displayed and entered in K bytes (C1K = 1024), and should be
entered as evan numbers (multiple of 2K). If not, they are adjusted up
to the next even number. The new sizes do not take effect until the
next time the Indexed Access Method is loaded with paging active.

PP Command Example

This example sets the paging area size in partition 3 to 40K and
Increases the paging area In partition 5 from 6K to 10K.

ENTER COMMAND (2): PP
PARTITION CURRENT NeW

1 OK
OK 3
OK =: 490
OK
6K =: 10
OK:
OK 3
OK :

PAGE AREA SIZECS) RESET
BECOMES EFFECTIVE ON NEXT LOAD OF SIAM
TOTAL PAGE AREA SIZE IS 50K
SEE INDEXED ACCESS METHOD GUIDE CONCERNING
REMOVAL OF PAGING MODULES FROM STORAGE.

C
O
N
T
R
U
T
D
G
M

Notes:

1. The letter K is optional on input, and is assumed if missing.

2. the new total page area size is 50K and becomes effective on the
next LOAD of SIAM.

Chapter 8. The SIAMUT1 Utility 8-27

PS

PS—"GET PAGING STATISTICS

8-28

The PS command displays data paging information about the currently exe-
cuting Indexed Access Method. It shows "hit™ information for reads,
writes and overall.

The Indexed Access Method increments a "hit™ counter each time a refer-
enced block is found tin the paging area. It increments a "miss™ counter
each time a referenced block is not found in the paging area. The PS
command displays these numbers, along with "hit percentages.™ Use the
hit percentages to determine how efficiently the paging area 15 being
used.

After the statistics are displayed, you have the option of resetting the
counters to zero so that a new set of paging statistics can be gathered.

PS Command Example

Display the current paging statistics and reset them.

ENTER COMMAND €?): PS
FUNCTION HITS MISSES HIT %

READ 45678 81205 36
WRITE 2450 0 100
OVERALL 48128 81205 37

RESET STATISTICS (Y/N)? Y
STATISTICS RESET

$C34-0404-1

RE

RE“"RESET PARAMETERS

RE resets the parameters set up by the SE command to their default val-
ues.

The following example shows a use of the RE command:

ENTER COMMAND (€?): RE
PARAMETERS RESET

Chapter 8. The SIAMUTI1 Utility 8-29

RO

RO-"REORGANIZE INDEXED FILE

8-30

RO reorganizes a primary or secondary indexed file. It unloads an
indexed file filled by insert activity into an empty indexed file and
reorgantzes the records to provide space for additional inserts.

This command requires two existing indexed files of the same type. Both
the input file and the output file must beprimary indexed files, or
both must be secondary index files. Records are read sequentially from
the input file using the Indexed Access Method GETSEQ request. The
records are loaded into the output file in a manner similar to the ini-
tial load of the LO command.

All reserved and free space is retained as free space.

Reorganizing a secondary index does not reset the secondary key sequence
numbers during the reorganization, because it does not use the primary
file. The records are placed in another Indexed Access Method file
without any modification within the individual records.

The output indexed file must have been defined by using the SE or DF
commands before using the RO command. The SE Option 3 will format an
output file like the original file, or SVERIFY will show the number of
records in the file so that you can set up an output file.

The record lengths of the two files need not be the same. Unloaded
records are truncated or filled with binary zeroes if record lengths
differ (see LO command). The key fields and key positions of the two
files must be the same; however, the other file specifications (SE
parameters) may differ.

INVOKING THE LOAD AND REORGANIZE FUNCTIONS FROM DF: You can invoke the
LOAD or REORGANIZE functions directly from the DF command. If you
invoke these functions, DF does not format the file because LOAD and
REORGANIZE will do that, thus saving time. If you do not invoke the
LOAD or REORGANIZE function, DF formats the file so you can load the
file using an application program or the LO command.

Notes:

1. You can use the LOAD/REORGANIZE command later to load the file, if
you do not invoke it from the DF command.

2. An application program cannot access an unformatted indexed file.

3. The prompt for the load/reorganize function occurs before the define
step.

$€34-0404-1

RO

The following example shows use of the RO command:

ENTER COMMAND (€?): RO

REORG ACTIVE
ENTER INPUT DATASET CNAME,VOLUME): IAMFILE,EDX003
ENTER OUTPUT DATASET CNAME,VOLUME): IAMNFIL2,EDX003
REORG IN PROCESS

END OF INPUT DATASET

100 RECORDS LOADED
REORG SUCCESSFUL

ENTER COMMAND (7): EN

Chapter 8. The SIAMUT1 Utility 8-31

SE

SE~~SET PARAMETERS

8-32

SE prompts you for parameters that determine the structure and size of
the indexed file. An explanation of the SE command parameters follow
and an example of each is included with the description.

The parameter values entered are saved by SIAMUT1. This enables you to

reuse the SE command to change one or more parameters without having to
reenter all of them. The current values can be displayed by the DI com-
mand.

The SE command provides three methods of setting up an indexed file.

Option 1 Significant Parameters—Enter a minimal set of SE parameters.
The utility internally converts the smaller set to the com-
plete set.

Option 2 All Parameters—Enter the complete set of SE parameters.

Option 3 Parameters from Existing Data Set—Use the set of SE parame-
ters that were used previously to define an existing indexed
file.

Note: Information which 15 common to all three options appears near the
end of the SE description under "All Options™ on page 8-39.

When you specify the SE command, you are prompted to select one of the
options as shown in the following display.

SET FILE DEFINITION PARAMETERS
0 = EXIT
1 = SIGNIFICANT PARAMETERS
2 = ALL PARAMETERS
3 = PARAMETERS FROM EXISTING INDEXED DATASET
ENTER OPTION:

Option 1

Option 1 prompts for a minimal set of parameters. It issues a prompt to
determine 1f a secondary index is being defined. If so, the secondary
file name, key size, and key position are requested. If a primary file
1s being defined, different prompts are issued. S$IAMUTI internally con-
verts the option 1 parameters to option 2 parameters.

When the SE option 1 is invoked for the first time, the prompts and
default values are as follows (sample values are shown for parameters
that must be entered):

SECONDARY INDEX CY/N)?: N

DEFAULT BO. VALUE
RECORD SIZE 0
KEY SIZE 0: 4
KEY POSITION 1:
BLOCKING FACTOR CRECORDS PER BLOCK) 1:
NUMBER OF BASE RECORDS 200:
ESTIMATED TOTAL RECORDS 24:
TYPE OF INSERT ACTIVITYCC=CLUSTERED,R=RANDOM) C:oa

9034-0404-1

SE

On subsequent invocations of the SE option 1, the defaults are taken
from the parameter values since the last SE option 1 invocation. Option
1 and 3 values do not carry over to option 2.

The estimated total records value defaults to the last value, provided
this value equals or exceeds the current base records. Otherwise it
defaults to 1.2 times the current base records.

To set up a secondary index, enter the following:

SECONDARY INDEX CY/N)?: ¥
ENTER SECONDARY DATASET NAME (DS,VOL): FILEO1,EDX002
SECONDARY KEY SIZE:10
SECONDARY KEY POSITION: 36

Before you can define a secondary index, you must place an entry into
the directory for the associated primary index file and the primary file
must exist. The directory is searched to obtain the data set name and
volume of the associated primary file which will then be used to compute
the remainder of the secondary SE parameters.

Parameter Descriptions for Option 1

The attributes of the file are determined by the following SE command
parameters:

RECORD SIZE: The length, in bytes, of each record in the file.

KEY SIZE: The length of the key to be used for this file. The minimum
key length is 1. For primary files, the maximum key length is 254.

KEY POSITION: The position, in bytes, of the key within the record. The
first byte of the record is position l.

BLOCKING FACTOR CRECORDS PER BLOCK): The total number of records to be
placed in an Indexed Access Method block. This value and the record
51ze Will be used to compute the actual Indexed Access Method block
size, rounded up to the next 256-byte value. The rounding up action may
Increase the actual blocking factor.

NUMBER OF BASE RECORDS: The number of indexed record slots to be set up
In the indexed file for LOAD mode. The number of base records must be
greater than zero to allow the file to load any data records. Thesa
record slots can be loaded with data records by $IAMUT1 or by a PUT
request after either a LOAD or PROCESS request.

ESTIMATED TOTAL RECCRDS: The total number of records you expect the
indexed file to contain after insert processing activity.

TYPE OF INSERT ACTIVITY(C=CLUSTERED,R=RANDOM): Inserts are considered
clustered if most of the inserts occur at only certain places in the
file. The following diagram represents clustered inserts by vertically
stacked bullets.

Chapter 8. The SIAMUTI Utility 8-33

SE

Blocks

Inserts

The next diagram represents randomly inserted records. Inserts are con-
sidered random if few or no points in the file have a concentration of
activity; inserts are expected throughout the file.

Blocks

Inserts ...

SECONDARY KEY SIZE: The length, in bytes, of the secondary key within
the primary record. For secondary keys the maximum key length 1s 250.

SECONDARY KEY POSITION: The position, in bytes, of the secondary key
Within the primary record.

Option 2

The following list shows the default values for parameters when the SE
command is invoked the first time Call values are decimal):

BASEREC NULL
BLKSIZE 0
RECSIZE 0
KEYSIZE 0
KEYPOS > 4
FREEREC 0.
FREEBLK 0

— RSVBLK NULL
RSVIX 0
FPOOL NULL
DELTHR NULL
DYN NULL

On subsequent invocations of the SE command, the option 2 defaults are
taken from the parameter values set according to the last SE command,
regardless of the option used. If the default value is acceptable,
press the enter key when prompted for the parameter. If you wish to
change the value for any parameter, enter the new value in response to
the prompting message.

The new value becomes the new default value for the current SIAMUT1 ses-
Sion. The parameters for which a null can be specified are BASEREC,
FREEREC, FREEBLK, RSVBLK, RSVIX, FPOOL, DELTHR, and DYN. To specify a
null parameter after the original default has been modified, enter an
ampersand (&) In response to the prompting message.

8-34 S$C34-0404-1

SE

The following example shows a use of the SE command in establishing the
size and structure of an indexed file.

PARAMETER DEFAULT NEW VALUE
BASEREC NULL :100
BLKSIZE 06 :256
RECSIZE 0 :80
KEYSIZE 0 328
KEYPOS 1:1]
FREEREC 0:1]
FREEBLK 0 :10
RSVBLK NULL :
RSVIX 0
FPOOL NULL
DELTHR NULL
DYN NULL

Following the response to the DYN parameter, the following list is dis-
played. The list shows the details of how the indexed file will be con-
structed using the parameters just entered.

TOTAL LOGICAL RECORDS/DATA BLOCK:
FULL RECORDS/DATA BLOCK:
INITIAL ALLOCATED DATA BLOCKS:
INDEX ENTRY SIZE: |
TOTAL ENTRIES/INDEX BLOCK:
FREE ENTRIES/PIXB:
RESERVE ENTRIES/PIXBCBLOCKS):
FULL ENTRIES/PIXB:
RESERVE ENTRIES/SIXB:
FULL ENTRIES/SIXB
DELETE THRESHOLD ENTRIES:
FREE POOL SIZE IN BLOCKS:
OF INDEX BLOCKS AT LEVEL
OF INDEX BLOCKS AT LEVEL
OF INDEX BLOCKS AT LEVEL

DATA SET SIZE IN EDX RECORDS:

W
O

A
N

W
F
P
N
D
B
O
N
N
O
D
O
F
N
N
O
N

W
w

~
J

Chapter 8. The SIAMUTI Utility 8-35

SE

8-36

If a secondary file is being defined, the list of prompts 1s the same
except for the following:

the reply to the prompt "SECONDARY INDEX CY/N)?:" is Y

the secondary data set name is requested

the RECSIZE prompt is omitted; the Indexed Access Method computes
the correct record size

SECONDARY INDEX CY/N): ¥
ENTER SECONDARY DATASET CNAME, VOLUME):

Parameter Descriptions for Option 2

The attributes of the file are determined by these SE command
parameters:

BASEREC

BLKSIZE

RECSIZE

KEYSIZE

KEYPOS

FREEREC

FREESLK

$C34-0404-1

The estimated number of records to be initially loaded into
the file in ascending key sequence. These records can be
loaded by SIAMUT1 or by a PUT request after either a LOAD or
PROCESS request.

The number of records must be greater than zero to allow the
file to load any data records.

If DYN is not specified, BASEREC defaults to null, resulting
in an error condition. In this case, specify BASEREC as a
positive number.

If DYN is specified, BASEREC defaults to one.

The length, in bytes, of blocks in the file. It must be a
multiple of 256. The Indexed Access Method uses 16 bytes in
each block for a header.

The length, in bytes, of each record in the file. Record
length must not exceed block length minus 16.

The length of the key to be used for this file. The minimum
key length is 1. For primary files, the maximum key length 15
254. For a secondary index, the maximum key length is 250.

The position, in bytes, of the key within the record. The
first byte of the record is position 1.

The number of free records to be reserved in each block. It
must be less than the number of records per block (block size
minus 16, divided by record size). If not, an error message
75 15ssued. The calculation 15 adjusted to ensure that there
1s at least one allocated record in the block; that 1s, there
cannot be 100% free records.

FREEREC defaults to zero.

The percentage (0-99) of each cluster to reserve for free
blocks. The percentage calculation result 1s rounded up so
that at least one free block results. The calculation 1s
adjusted to ensure that there is at least one allocated block
in the cluster; that 15, there cannot be 100% free blocks.

FREEBLK defaults to zero.

RSVBLK

RSVIX

FPOOL

DELTHR

The percentage of the entries in each primary index block to
reserve for cluster expansion. These reserved entries are
used to point to new data blocks as they are taken from the
free pool to expand the cluster. The result of the calcu-
lation is rounded up so that any non-zero specification indi-~
cates at least one reserved index entry. The calculation is
adjusted to ensure that there is at least one allocated block
in the cluster.

Enter a null character (&) for this prompt if you do not want
initial reserved blocks and do not want the indexed access
method to create reserved blocks as records are deleted and
blocks become empty. Specify a value of zero for this prompt
if you do not want initial reserved blocks but you do want the
indexed access method to create reserved blocks a5 records are
deleted and blocks become empty (See the DELTHR prompt).

Note that the sum of the FREEBLK and RSVBLK prompts must be
less than 100 or an error message 1s issued. This value
defaults to null if the DYN parameter is not specified. If
the DYN parameter 1s specified, this value defaults to zero.

The percentage (0-99) of the entries in each second level
index block to reserve for use in case of cluster splits. A
cluster split 1S required when there is no room to insert a
new record ina cluster. Each cluster split uses one reserved
entry of the second-level index block to create a new cluster
with blocks from the free pool. The result of this calcu-
lation 1s rounded up so that any non-zero specification
indicates at least one reserved index entry. The calculation
is adjusted so that there is at least one unreserved entry in
each second level index block. This value defaults to zero.

The percentage (0-100) of the maximum possible free pool to
allocate as determined by the RSVIX and RSVBLK parameters.
The RSVBLK and RSVIX prompts result in a file structure set up
to draw on the free pool for expansion.

If insertion activity is evenly distributed throughout the
file, every reserve entry of every index block can be used.
The number of blocks drawn from the free pool to support this
unlikely condition is the maximum free pool sitze needed for
the file. In more realistic cases, insertion activity is not
evenly distributed throughout the file, so fewer free blocks
are needed. The percentage specified here represants the
evenness of the distribution of inserted records. Specify a
large number (90, for example) if you expect insertions to be
evenly distributed. Specify a small number (209, for example)
if insertions are anticipated to be concentrated in specific
key ranges.

If a null character (&) is specified for this prompt, a free
pool is not created for this indexed file Cyou can use the DYN
parameter to override this and create a free pool). If zero
is specified, an empty free pool 15 created. Blocks can then
be added to the free pool as records are deleted and blocks
become empty (see the DELTHR prompt explanation). If you do
not specify a null for this prompt, the RSVBLK must not be
null and/or the RSVIX must be non-zero or an error is
returned. Conversely, if the RSVBLK and/or RSVIX is non-zero,
FPOOL must not be null or an error is returned.

The default for FPOOL is a null; no free pool 1s created.

The percentage (0-99) of blocks to retain in the cluster as
records are deleted and blocks made available. This is known
as the delete threshold. When a block becomes empty, it 15
first determined if the block should be given up to the free
pool by checking the response to this prompt. If the block is
not given up to the free pool, it is retained in the cluster,
either as a free block or as an active empty block. The

Chapter 8. The SIAMUT1 Utility 8-37

SE

8-38

result of this calculation is rounded up so that any non-zero
specification indicates at least one block. The calculation
is adjusted to ensure that the cluster always contains at
least one block.

If the DELTHR parameter is specified as null (€&/) and DYN 1s
not specified, DELTHR defaults to the number of allocated
blocks in the cluster plus one half of the value calculated by
the FREEBLK prompt. If the DELTHR parameter is specified as
null and a value is specified for the DYN parameter, DELTHR
defaults to zero.

DYN The number of blocks to be assigned to, or added to, the free
pool. When DYN is used with other free pool parameters, the
free pool size 1s calculated as specified by the FPOOL parame-
ter plus the value specified for DYN.

If DYN is specified without the FPOOL parameter, the free pool
is the number of blocks specified for DYN.

If DYN is specified, other parameters assume the following
default values when specified as null:

BASEREC =]l
BLKSIZE = Q
RECSIZE = 0
KEYSIZE = 0
KEYPOS = 1
FREEREC = 0
FREEBLK = Q
RSVBLK = NULL
RSVIX = 0
FPOOL = NULL
DELTHR = NULL

When you specify the number of blocks for the DYN parameter,
remember that the Indexed Access Method can store several data
records ina block, depending on the record size and block
Size you specify. Each block contains a 16 byte header. The
number of records that can be contained in each block can be
calculated by the following formula:

Records per block = CBLKSIZE-16)/RECSIZE

In the above calculation, use the integer quotient only; dis-
card any remainder.

Blocks can be taken from the free pool for use as index blocks
as well as for data blocks, so provide some extra blocks for
these. A reasonable estimate of the number of index blocks
required 1s 10%. Thus, if you know the number of data records
you would like to add to the file, you can calculate the num-
ber of blocks to specify for the DYN parameter as follows:

DYN = CNumber of records to insert) x 1.1
(Records per block)

$€34-0404-1

SE

Opticn 3

Option 3 issues a prompt to determine what existing file to obtain the
parameters from. The parameters can be set exactly according to the
parameters of the original file by replying Y to the appropriate prompt.
Otherwise, the parameters will be set based on the current condition of
the existing data set to reflect insert activity.

SECONDARY INDEX CY/N)?: N
NAME OF EXISTING INDEXED DATA SET CNAME,VOLUME): IAMFILE, EDX003
NEW PARAMETERS EXACTLY SAME AS ORIGINAL PARAMETERS CY/N) 7? ¥

DATA SETSIZE IN EDX RECORDS: 17
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

All Gptions

For all three options, the prompts are followed by the option of enter-
ing the DF Cdefine file) function directly from the SE command. This
simplifies the file definition process. The prompt is as follows:

CREATE/DEFINE FILE (Y/N) ? Y
ENTER DATASET CNAME,VOLUME): FILE01,EDX003
NEW DATASET IS ALLOCATED

The immediate write-back option is then queried:

DO YOU WANT IMMEDIATE WRITE-BACK? Y

Chapter 8. The SIAMUTI1 Utility 8-39

SE

The next prompt allows you the option of invoking the load or reorganize
functions as follows:

INVOKE LOADCL), REORGANIZE(R) OR ENDCE) AFTER CURRENT FUNCTION? L
DEFINE IN PROGRESS

Size calculations are performed using the parameter values you specify.

After the values are entered, the following is displayed showing the
size and structure of the defined tndexed file.

DATA SET SIZE IN EDX RECORDS: 17
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -]j

CREATE/DEFINE FILE CY/N)?:

8-40 $€34-0404-1

UN

UN—"UNLOAD INDEXED FILE

UN unloads an indexed file to a sequential file. Records are read from
the indexed file with the Indexed Access Method GETSE@ request and writ-
ten into the sequential file with the EDL WRITE instruction. If a sec
ondary indexed file 1s specified, the primary file will be unloaded in
secondary key sequence.

You can unload a secondary index independent of its primary if you first
usa the UE subcommand of the DR command of SIAMUT1 to set the indepeand-
ent indicator. You must turn the tndependent indicator off when the
unload operation 1s completed.

The record lengths of the two files need not be the same. Unloaded
records are truncated or padded with zeroes if the records lengths of
the two data sets differ. For further detail, sea the LO command.

Records are placed into the sequential file in ascending key sequence as
indicated by the indexed file. Unloaded records can be blocked or
unblocked. For a description of blocked and unblocked data sets, see
"Blocked and Unblocked Sequential Data Sets" on page 8-23.

The UN command prompts you for the block size of the file to be
unloaded. A null response or a value less than or equal to the record
size causes the indexed file to be unloaded to an unblocked sequential
file. The sequential file block size is calculated as the record size
rounded up to the next 256-byte multiple value. If you want the file to
be unloaded to a blocked sequential file, specify the actual block size
value to the prompt "OUTPUT BLOCK SIZE". The record and block sizes of
subsequent output sequential files are assumed to be the same as the
Initial output sequential file.

If the indexed file contains more records than are allocated in the
sequential file, you are given the option to continue unloading to
another sequential file. If you choose to continue unloading, you are
prompted for the name of the file and volume to use to continue the
unload operation. The unload operation continues, putting the records
read from the indexed file into the new sequential file. If the end of
the output file is reached and you choose not to continue, the unload
operation ends.

Note: Do not specify the same file for input and output.

Chapter 8. The SIAMUT1 Utility 8-41

UN

The following example shows the use of the UN command to put 80-byte
records into a blocked sequential file.

ENTER COMMAND (7): UN

UNLOAD ACTIVE
ENTER INPUT DATASET CNAME,VOLUME): EDXFO2,AN&VOL
ENTER OUTPUT DATASET CNAME,VOLUME): SEQO1,EDX003
OUTPUT RECORD ASSUMED TO BE 80 BYTES. OK?: ¥Y
ENTER OUTPUT BLOCK SIZE CNULL = UNBLOCKED): 256
UNLOAD IN PROCESS

END OF INPUT DATASET
100 RECORDS UNLOADED

UNLOAD SUCCESSFUL
ENTER COMMAND (€?): EN

8-42 $€34-0404-1

STAMUTI COMPLETION CODES

Completion
Code Condition

-j Successful completion
7 Link module in use
8 Load error for SIAM

12 Data set shut down
13 Module not included in load module SIAM
23 Get storage error ~- IACB
30 Inconsistent free space parameters were specified.
31 FCB WRITE error during IDEF processing,

check system return code
32 Blocksize not multiple of 256
34 Data set is too small
36 Invalid block size during file definition processing
37 Invalid record size
38 Invalid index size
39 Record size greater than block size
G0 Invalid number of free records
G1 Invalid number of clusters
G2 Invalid key size
43 Invalid reserve index value
& 4 Invalid reserve block value
G5 Invalid free pool value
46 Invalid delete threshold value
G7 Invalid free block value
G8 Invalid number of base records
49 Invalid key position
50 Data set 15s already opened for exclusive use
51 Data set opened in load mode
52 Data set 15 opened, cannot be opened exclusively
54 Invalid block size during PROCESS or LOAD
55 Get storage for FCB error
56 FCB READ error, check system return code
60 LOAD mode key is equal to or less than previous

high key tn data set
61 End of file in LOAD mode
62 Duplicate key found in PROCESS mode

Note: For completion codes number 30 and 37 through 493, check
your parameters for consistency.

Chapter 8. The SIAMUTI1 Utility 8-43

Completion
Code Condition

100 READ error, check system return code
101 WRITE error, check system return code
110 WRITE error ~- data set closed
20l Request failed because the primary file for this

secondary could not be cpened. Check system
return code

210 Request failed because SDISKUT3 could not be
loaded

230 Directory read error for SIAMDIR, verify that
directory exists

231 SIAMQCB not found, check sysgen for include
of SIAMQCB

232 Directory open error for SIAMDIR, verify that
directory exists

233 Directory related primary request 15 a primary entry
234 Directory error ~—- DSNAME,VOL not found in SIAMDIR
235 Directory resource has not been requested
239 Directory write error. Refer to previously displayed

message

8-44 $C€34-0404-1

SVERIFY

CHAPTER 9. THE SVERIFY UTILITY

SVERIFY checks the validity of an indexed file and prints control block
and free space information about the file on a user-specified printer
(such as SSYSPRTR).

This SVERIFY deascription contains the following topics:

¢

SVERIFY Functions

Invoking SVERIFY

SVERIFY Example

SVERIFY Messages

SVERIFY Storage Requirements.

FUNCTIONS

With SVERIFY you can:

Verify that all pointers in an indexed file are valid and that the
records are in ascending sequence by key.

Verify the contents of a secondary index against the primary file
and report any discrepancies.

Print a formatted File Control Block CFCB) listing, including the
FCB Extension block. The FCB Extension block contains the original
file definition parameters.

Note: The FCB Extension block does not exist and file definition
parameters are not saved in the FCB for indexed files defined prior
to version 1.2 of the Indexed Access Method. The reorganize (RO)
SIAMUTI1 command can be used to reformat those files by adding an FCB
Extension block to make use of all the SVERIFY facilities.

Print a report showing the distribution of free space in your file.

Determine if any space is available for inserts.

Chapter 9. The SVERIFY Utility 9-1

INVOKING SVERIFY

SVERIFY

SVERIFY can be invoked from either a terminal or a program coded in
Event Driven Language. You supply the same input in either case. If
you invoke S$VERIFY from a terminal, supply the input required in
response to prompts. If you invoke SVERIFY from a program, supply the
input required as parameters passed to the program.

INPUT |

This section describes the input required to execute $VERIFY.

cutput printer The name of a printer to which the report should
be directed. The default printer is SSYSPRITR.

nama, volume Data set and volume names for the primary index
file or secondary indax to be processed. (Ensures
that all chains within this data set are correct).

Option The type of processing you want SVERIFY to do.
The three options are:

Y The FCB and the FCB Extension blocks are for-
matted and printed. The file is verified. A
free space report is printed.

N The FCB and the FCB Extension blocks are for-
matted and printed. The file is verified. No
free space report is printed.

F The FCB and the FCB Extension blocks are for-
matted and printed. No free space report is
printed, but the '# OF AVAILABLE BLOCKS IN
FREEPOOL* entry can be examined to determine if
space 1s available for inserts; if the value is
greater than zero (>0), space is available.

Cross verify option The type of check you want SVERIFY to do between
the primary index files and secondary indexes.
The options are:

Y ase. If a primary index file was specified above
as the data set name, this will check that all
entries in the primary index file are in the
secondary index.

b. If a secondary index was specified above as
the data set name, this will check that all
entries in the secondary index are in the asso-
ciated primary indexed file.

N Do not perform any cross vertfication.

secname, volume Data set and volume names of the secondary index
to be verified. Specify "ALL* to verify all sec-
ondary indexes associated with the primary file.

9-2 5C034-0404-1

INVGKING $VERIFY FROM A TERMINAL

Load the SVERIFY program as follows:

> $L $VERIFY

When SVERIFY begins execution, you are prompted for the parameters
described previously. <A complete example of a SVERIFY invocation from a
terminal is shown under "SVERIFY Example" on page 9-5.

INVOKING $VERIFY FROM A PROGRAM

SVERIFY can be invoked by EDL programs with the LOAD tnstruction. ©The
only required parameter is the address of a 38-byte area that contains:

Hex Length
Displacement (Bytes)

Data set name 0 8
Volume name 8 6
Detail listing request E 1
CY, N, or F)
Secondary file cross verify F 1
CY or WN)
Secondary index file name 10 8
Secondary index file volume 18 6
Output Printer 1E 8

The next example shows the use of $VERIFY to verify a file named IJAMFILE
in the volume EDX0902. A file verification and free space report are ©
requested. The secondary file named SECIAM in the volume EDX002 is also
verified.

Chapter 9. The SVERIFY Utility 9-3

9-4

EXAMPLE PROGRAM START
START EQU

LOAD S$VERIFY,PARMLIST,EVENT=VERIFY
WAIT VERIFY WAIT FOR POST COMPLETE

PROGSTOP
PARMLIST EQU x
DSNAME DC CL8'IAMFILE' INDEXED DATA SET NAME
VOLUME DC CL6'EDXO02' VOLUME NAME
DETAIL DC CLiry' PROCESSING OPTION
SECONDRY DC CLiry' SECONDARY FILE VERIFICATION
SECDSN DC CLE"SECIAM' SECONDARY FILE NAME
SECVOL DC CL6"EDXO02' SECGNDARY FILE VOLUME
PRINTER DC CLE'SSYSPRTR* OUTPUT PRINTER
XNOTE: BLANKS CAUSE DEFAULT TO SSYSPRTR
VERIFY ECB -1 EVENT CONTROL BLOCK

ENDPROG
END

S$C34-0404-1

SVERIFY EXAMPLE

This section presents the input and output for an example run of
SVERIFY, along with descriptions of the material presented.

SVERIFY is invoked from the terminal as follows:

[1]|> $L $VERIFY
[C2)}INDEXED ACCESS METHOD FILE VERIFICATION PROGRAM ACTIVE

CS3]}ENTER NAME OF OUTPUT PRINTER. (BLANK = SSYSPRTR):

C4] CNAME,VOLUME): DPRIM1,EDXIAM

ES53;DO0 YOU WANT DETAIL LISTING? CY/N/F/2)?: Y

[6]/DO YOU WISH TO VERIFY SECONDARY VS PRIMARY INDEXES CY/N):N

C7] ;VERIFICATION COMPLETE, 0 ERRORCS) ENCOUNTERED

C8]1)/SVERIFY ENDED

I
a

[lJ] In this example, the first line loads and executes $VERIFY.

[2] The second line is printed by the program to indicate that execution
has begun.

[3] This line allows you to direct the output to a particular printer.
You can also press the Enter key without supplying a device name and the
output will be printed on SSYSPRTR.

[4] In the fourth line, the program prompts for the data set name and
volume of the indexed file to be referenced by the program. In this
example the reply indicates that the data set is DPRIM1, located on vol-
ume EDXIAM.

[5] In the fifth line, the program prompts for the amount of detail to
be provided as output. The response of Y indicates that maximum detail
15 to be provided.

[S$] In the sixth line, the program prompts for verification of secondary
indexes. The response of N indicates that secondary indexes are not to
be verified. As the program executes, it provides output to the
printer, as shown in the example outputs that follow.

[7] Finally, messages are displayed to indicate the number of errors
found.

[8] This information message is provided stating that the program has
ended.

Chapter 9. The SVERIFY Utility 9-5

FCB REPORT

Th
al

e first page of the example output from SVERIFY follows. This page is
Ways printed.

VERIFY REPORT. FILE = DPRIM1 , VOLUME = EDXIAM

FLAGI : FILE FILE
LOADED TYPE

Y i CO=PRPQ, L=PP)
HK HK HH EK EE KEK KK EKEEKEKEKKEKEEEEER

KEY SIZE = 6
KEY POSITION = 1
BLOCK SIZE = 256
RECORD SIZE = 60
INDEX ENTRY SIZE = 10
RBN OF HIGH LEVEL INDEX BLOCK IN USE = 2
RBN OF LAST DATA BLOCK IN USE = 786
RBN OF FIRST DATA BLOCK IN USE = 6
TOTAL RECORDS PER DATA BLOCK = 4
TOTAL ENTRIES PER INDEX BLOCK = 24
LOAD POINT VALUE FOR A DATA BLOCK = 4
LOAD POINT VALUE FOR AN INDEX BLOCK = 24
HEHE HK HEH IK KK HK KK EK KKEKKKEKEOKEKKHK

FLAG2 : IMMEDIATE SECONDARY FILE
WRITE-BACK INDEX FILE FORMATTED

YN N
FE HK HK HE HK HE EK IK HK HE HK KK KE EKKEKK HK EKEEKKKKKKKKK

VERSION NUMBER = 2.0
DELETE THRESHOLD CRECORDS) = 0
OF AVAILABLE BLOCKS IN FREEPOOL 30
RBN OF IST FREE POOL BLOCK = 787
RBN OF HIGHEST LOGICAL INDEX BLOCK = 2
LEVEL QF HIGHEST INDEX BLOCK IN USE= 3
CURRENT NO. OF RECORDS IN FILE = 3000

Th

Th

e preceding sample report is interpreted as follows:

e first line shows the data set name and volume.

FLAGIL: These three lines show the significant bits of the first flag

KE

byte in the FCB. The first two of the three lines are a heading.
The third line shows the bit value (1 = on and 0.= off or Y = on and
N = off). The headings are defined as follows:

FILE LOADED: Data set has been loaded flag. This flag is set when
any record has been successfully loaded into the file
in load mode.

FILE TYPE: This flag indicates whether the indexed file was cre-
ated with the Realtime Programming System Indexed
Access Method PRPQ (bit=0) or either the Event Driven
Executive or Realtime Programming System Indexed Access
Method Program Product (bit=1).

¥ SIZE: Shows the size of the key in bytes.

KEY POSITION: Shows the byte displacement of the key from the start of
the record.

BLOCK SIZE: Shows the byte length of blocks in the file.

RECORD SIZE: Shows the byte length of records in the file.

9-6 SC34- 0404-1

INDEX ENTRY SIZE: Shows the number of bytes in each index entry. This
length should be the key length plus 4, rounded up to a multiple of
two bytes.

RBN OF HIGH LEVEL INDEX BLOCK IN USE: Shows which index block is to be
used as the starting point when the index is to be searched.

REN OF LAST BATA BLOCK IN USE: Points to the last logical data block
in the file which has been used.

RBN OF FIRST DATA BLOCK IN USE: Points to the first logical data block
in the file which has been used. It is used as the starting point
when a sequential read operation is begun with no key specified.

TOTAL RECORDS PER DATA BLOCK: Shows how many data records can be con-
tained in a data block.

TOTAL ENTRIES PER INDEX BLOCK: Shows how many index entries can be
contained in an index block.

LOAD POINT VALUE FOR A DATA BLOCK: The number of records that can be
placed in each data block while in load mode. This value is calcu-
lated at file definition time to provide the requested number of free
records.

LOAD POINT VALUE FOR AN INDEX BLOCK: The number of data blocks in each
cluster to be used while in load mode. This value is calculated at
file definition time to provide the space requested by the RSVBLK,
RSVIX and FREEBLK parameters.

FLAG2: Another byte of flags described by a pair of lines: a heading
line followed by a data line. The heading has the following meaning:

IMMEDIATE WRITE~BACK: Immediate write back flag. If set (Y), this
flag indicates that the immediate write back
option was specified when the indexed file was
defined.

SECONDARY INDEX FILE: A Y indicates that this 15 a secondary file.
N indicates that this 18S a primary file.

FILE FORMATTED: Y indicates that the file has been formatted.
N indicates that only the parameters have been
specified and the file allocated. The file has
not been formatted.

VERSION NUMBER: Shows the version number and modification level of the
Indexed Access Method that was used to define the indexed file.

DELETE THRESHHOLD CRECORDS): Indicates the number of data blocks to
retain in each cluster as records are deleted and blocks become
empty. This value is calculated when the file is defined and is based
on the DELTHR parameter.

OF AVAILABLE BLOCKS IN FREEPCOL: The number of available blocks in
the free pool. This count is updated as blocks are taken from or
returned to the free pool.

Chapter 9. The SVERIFY Utility 9-7

REN OF IST FREE POOL BLOCK: Points to the last block which was put tn
the free pool (which is the next block to be taken from the free
pool).

REN OF HIGHEST LOGICAL INDEX BLOCK: Points to the logical top of the
index. In some cases (Cif the file has not been completely loaded),
this RBN might not agree with the RBN OF HIGHEST LEVEL INDEX BLOCK IN
USE. If it does not agree, then the file is structured with index
blocks that are not yet needed because the file does not contain
enough records.

LEVEL OF HIGHEST INDEX BLOCK IN USE: Indicates how many levels of the
index are currently in use.

CURRENT NO. OF RECORDS IN FILE: The current number of records that are
now contained in the file.

FCB EXTENSION REPORT

9-8

The second page of the example output from SVERIFY follows. This page
1s always printed.

This information is obtained from the FCB Extension block and shows the
parameters that were specified when the file was defined. Some informa-
tion (BLKSIZE, RECSIZE, KEYSIZE, KEYPOS) is duplicated on the FCB and
FCB Extension report because 1t is contained in both control blocks.
The values should correspond with each other. The word NULL for the
value of a parameter indicates that no value was specified when the file
was defined.

VERIFY REPORT. FILE = DPRIML , VOLUME = EDXIAM

INDEX FILE DEFINED WITH THESE PARAMETERS:

BASEREC= 3000
BLKSIZE= 256
RECSIZE= 60
KEYSIZE= 6
KEYPOS= 1
FREEREC= 0
FREEBLK= 0
RSVBLK= NULL
RSVIX= 0
FPOOL= NULL
DELTHR= NULL
DYN= 30

Note: The parameters are the file definition parameters that were spec
ified using the SE command of the S$IAMUTIL utility when the file was
defined.

$C34-0404-1

FREE SPACE REPORT

The following is a free space report of the example output from $VERIFY.
The free space report is printed only if the SVERIFY option is specified

as Y.

VERIFY REPORT. FILE = XMPL1 , VOLUME = EDX002
TOTAL USED UNUSED RESERVE FREE AVAILABLE HIGH KEY

RBN LVL ENTRIES ENTRIES ENTRIES ENTRIES BLOCKS RECORD SLOTS CFIRST
20 CHAR.)

2 3 24 2 0 22 0 -— 143949

3 2 24 24 0 16 0 -~ 130536
4 2 24 8 0 16 0 -- 143349

5 1 24 24 0 0 0 0 044932
30 1 24 24 0 0 0 0 046750
55 1 24 24 0 0 0 0 048655
8&0 l 24 24 0 0 0 0 050527

105 1 24 24 0 0 0 0 0523932
130 1 24 24 0 0 0 0 054225
155 1 24 24 0 0 0 0 056075
180 1 c4% 24 0 0 0 0 057930
205 1 24 24 0 0 0 0 059829
230 1 24 24 0 0 0 0 061640
255 1 24 2% 0 0 0 0 063548
280 1 24 24 0 0 0 0 065389
305 1 24 24 0 0 0 0 067297
330 i 24 24 0 0 0 0 069166
355 1 24 24 Q 0 0 0 071029
380 1 24 24 0 0 0 0 072887
405 J 2% 24 0 0 0 0 074731
430 1 24 24 0 0 0 0 076586
455 1 24 24 0 0 0 0 078441
430 1 24 24 0 0 0 0 080329
505 1 24 24 0 0 0 0 082175
539 1 24 24 0 0 0 0 084006
555 1 24 24 0 0 0 0 085861
580 1 24 24 0 0 0 0 130536
605 1 24 24 0 0 0 0 132395
630 1 24 2% 0 6 0 0 134205
655 1 24 24 0 0 0 0 136097
680 1 24 24 0 0 0 0 137929
705 1 24 24 0 0 0 0 139815
730 1 24 24 0 0 0 0 141655
755 1 24 24 0 0 0 0 143523
780 1 24 6 0 18 0 0 143949

VERIFICATION COMPLETE, 0 ERROR(CS) ENCOUNTERED

Chapter 9. The SVERIFY Utility 9-9

9-10

In this report, each printed line represents an index block. The col-
umns have the following meanings:

REN: The relative block number within the indexed file, based on the
block size specified when the file was defined. The first block
in the file is relative block number zero.

LVL: The level of the index block analyzed. Lowest level CPIXB) 1s l,
second level (SIXB) is 2, etc.

TOTAL ENTRIES: The maximum number of index entries that can fit tn an
index block. ,

USED ENTRIES: The number of entries used in this index block.

UNUSED ENTRIES: The number of entries in the tndex block which are
neither used nor reserved.

RESERVE ENTRIES: The number of reserve entries in this tndex block.
This number represents the number of new index blocks that can be
obtained from the free pool for creation of new blocks, provided
there are enouch blocks remaining tn the free pool.

FREE BLOCKS: The number of free blocks associated with this index
block.

AVAILABLE RECORD SLOTS: The maximum number of records that can be
inserted into this cluster without obtaining blocks from the free
pool.

HIGHEST KEY IN BLOCK: #£=The first 20 bytes of the highest key in the
block.

$€34-0404-1

SVERIFY MESSAGES

As SVERIFY executes, any
being written describing

FILE ERROR MESSAGES

errors encountered result in an error message
the type of error and where the error occurred.

The following messages indicate that the indexed file contains errors:

BLOCKS IN FREEPOOL CHAIN

BLOCK OUT OF SEQUENCE. RBN

HIGH KEY IN RBN DOES

POINTERS IN HEADER OF HIGH

RBN CONTAINS INVALID

RBN CONTAINS INVALID

RBN CONTAINS INVALID

RECORD MATCH NOT FOUND FOR
PRIMARY=
SECONDARY=

RBN IS IN FREEPOOL CHAIN, BUT IS NOT A VALID FREEPOOL BLOCK.

RECORD OUT OF SEQUENCE NEAR RBN

DOES NOT MATCH FREE POOL COUNT IN FCB.

NOT MATCH INDEX ENTRY IN RBN

INDEX BLOCK ARE NOT ZERO.

UPWARD POINTER.

BACKWARD POINTER.

FORWARD POINTER.

SEC INDEX.
If any of these messages are printed, the indexed file has at least one
error.

Possible sources of the error include:

° The data set is not an indexed file.

® Data in the file has been inadvertently destroyed. ~

° Secondary index is not auto-update.

° The Indexed Access Method has a program error.

Chapter 9. The SVERIFY Utility 9-11

ERROR RECOVERY PROCEDURE

If any of the SVERIFY file error messages are printed, use the following
procedure:

° Dump the file or portion of the file which SVERIFY indicated has
errors.

® Attempt to reorganize the file with the SIAMUTI utility RO command.

e If reorganization fails, submit an APAR, including the file dump.

° Secondary indexes may need to be regenerated. Invoke SVERIFY for
each of the secondaries to datermine if they are error free. If
errors are indicated rebuild the index from the primary data sets
after the problem has been corrected.

OTHER MESSAGES

SVERIFY

Any other messages tha. are generated by SVERIFY can be found in the
Messages and Codes manual.

STORAGE REQUTRENENTS

Working storage space is required for SVERIFY and the amount required
varies, depending on the maximum number of blocks at the SIXB level and

the block size of the file.

USING DEFAULT WORKING STORAGE REQUIRENENTS

The default working storage specification is 4K bytes. For a file with
a block size of 256,this default 1s sufficient to handle up to 896
blocks at the SIXB level. The larger the block size of the file, the
fewer the maximum number of SIXBs that can be processed.

The following formula can be used to calculate the maximum number of
blocks at the SIXB level that SVERIFY can process,» given the block size
of the indexed file:

NS = (©4096 - (2 ® BLKSIZE)) 7 4

NS is the number of blocks at the SIXB level
BLKSIZE is the block size of the indexed file

9-12 $C€34-0404-1

MODIFYING WORKING STORAGE REQUIREMENTS

SUMMARY

The default working storage allocation is intended to satisfy the
requirements of most indexed files. It may be necessary or desirable to
modify the amount of working storage space available to SVERIFY.

The following formula can be used to calculate the amount of working
storage required to process a file with a given block size and number of
blocks at the SIXB level.

DS = (4 *® NS) + (2 * BLKSIZE)

Where:
DS is the amount of dynamic storage required
NS is the number of blocks at the SIXB level
BLKSIZE is block size of the indexed file

The number of SIXBs in a file can be determined by examining the free
space report.

You can override the default working storage size at load time Cif
loaded by a program), or with the $S command of the $SDISKUT2 utility.

SVERIFY requires a variable amount of working storage which defaults to
4K bytes. Increase the working storage size if SVERIFY runs out of
space during execution.

Decrease the working storage size if the number of SIXBs is significant~-
ly less than that supported by the default working storage allocation
(896 with a block size of 256) and your available storage is limited.

Chapter 9. The SVERIFY Utility 9-13

9-14 $C34-0404-1

CHAPTER 10. STORAGE AND PERFORMANCE CONSIDERATIONS

This chapter describes the storage required for the Indexed Access Meth-
od and suqgestions for Improving performance. The main topics are:

© Determining Storage Requirements

Data Paging

Other Performance Considerations.

DETERMINING STORAGE REQUIREMENTS

The minimum amount of storage required by the Indexed Access Method is
dependent upon the package you choose to install, plus the link module
and any error exit routine you may have written. The approximate sizes
of the available packages are included here for planning purposes.

THE INDEXED ACCESS METHOD PACKAGES

The Indexed Access Method program product is shipped with four packages:

e

°

SIAM

SIAMRS

SIAMNP

SIAMRSNP

You select the particular package to install on your system which meets
your requirements for function, storage, and performance. The individ-
ual packages are described below:

1. SIAM——-C18K). A full function Indexed Access Method package using
overlay structure. It 1s expected to satisfy the needs of most
users.

SIAMRS——C27K). A full function Indexed Access Method as a fully
resident package. It requires more storage than SIAM, but offers
maximum performance. |

SIAMNP—C15K). This package is similar to $IAM Cusing an overlay
structure) but does not include data paging. It is designed for
users who have severe storage limitations.

SITAMRSNP—C24K). This package is similar to SIAMRS (fully resident)
but does not include data paging. This package provides the per-
formance of a resident system but 1s intended for users who do not
pave sufficient storage to take advantage of the data paging
feature.

Notes:

1. The storage values above do not include Indexed Access Method con-
trol blocks, the central buffer Cminimum of 2 X block size), and
secondary index update buffers (minimum of 2 X record size).

To find the exact size of your Indexed Access Method package, load
SIAM with the operator command $L. A message will be displayed
about the loaded program. The number, followed by the letter P,
indicates the size of the program in 256-byte pages. Multiplying
this number by 256 yields the size in bytes of SIAM, including con-
trol blocks, work areas and buffers.

Chapter 10. Storage and Performance Considerations 10-1

INDEXED ACCESS METHOD STORAGE ENVIRONMENT

A single copy of the Indexed Access Method load module SIAM serves the
entire system.

Figure 10-1 shows the components of the Indexed Access Method, and their
relationship to the operating system.

The Indexed Access Method control blocks, buffers and programs are con-
tained in a single module, which can be loaded in any partition (but
only one copy on the system).

Application programs in any partitions Cincluding the partition contain-~
ing the Indexed Access Method) can invoke Indexed Access Method services
using the IBM supplied link module, which must be tncluded in the appli-
cation program.

If the data paging feature of the Indexed Access Method 1s active, it
uses storage in the partition(€s) you select for performance improvement.
This storage is in the form of a load module, SIAMSTGM.

Link Module
EDX

Supervisor
Space

Application
Programs

Calling
the
Indexed
Access Data Paging
Method Area

Control Blocks

Central
Buffer

Indexed
Access Method

Programs

Partition l Partition 2 Partition 3

Figure 10-1. Indexed Access Method Storage Environment

Because SIAM is loaded automatically when the first Indexed Access Meth-
od request is issued, it does not need to be explicitly loaded before
being used by any program. When loaded automatically on the first
Indexed Access Method request, SIAM is loaded into partition 1 if enough
storage is available there. If not, attempts are made to load SIAM into
successively higher numbered partitions until space is found or no more
partitions are available. Once loaded, the Indexed Access Mathod
remains in storage until cancelled with the $C operator command.

The Indexed Access Method can also be loaded manually by using the SL
operator command or automatically at IPL time through the automatic
initialization capability. See the Installation and System Generation
Guide for a description of the automatic initialization capability.
SIAM can be loaded into any partition, including partition one. It can
be povoked Cthrough the link module) from application programs in any
partition.

10-2 $C34-0404-1

PERFORNANCE

Performance can be improved by various factors and the performance will
be different for each application. One performance consideration has
been described previously, the residant Indexed Access Mathod packaces
SITAMRS and SIAMRSNP. Another supplied performance feature is data pag-
ing.

DATA PAGING

Data paging 18S a performance feature that uses main storage space for a
paging area Ca cache) to improve the performance of the Indexed Access
Method. This paging area retains recently used index and data blocks
which have been retrieved for processing. As blocks are read from an
indexed file, they are retained in the paging area on the assumption
that they will probably be requested again. When a block is requested
again, if it 18 in the paging area, no I/0 operation is required; the
block 1s moved directly into the central buffer.

The paging area 1s divided into 2K-byte (2048-byte) pages. Each indexed
file can also be thought of as being divided into 2K-byte pages. When
data 15 read from the file, a 2K-byte page 1s read and saved in the pag-
ing area. When data 1s written to the file, only the modified block
(not the 2@K-byte page) 15 written.

When the paging area becomes full, pages are overlaid according to a
least-recently-used algorithm. The Indexed Access Method data paging
algorithm handles direct access records differently from the way it han-
dles sequential access records.

SEQUENTIAL ACCESS AND DATA PAGING: All of the pages in the page area can
be used for direct access. However, because sequential access can cause
the page area to be flushed out (negating the advantages of data
paging), only 25% of the pages are set aside for use in sequential mode.
Therefore, pages referenced in sequential mode will only use a small
portion of the page area. This causes the pages to tend to preempt
themselves instead of flushing out the page area.

REMOVAL OF STCGRAGE MODULES: The data paging area 15 obtained by loading
a copy of SIAMSTGM into one or more partitions. Each copy of SIAMSTGM
remains in storage, even if you cancel SIAM. Cancelling SIAM is not
recommended unless you have ascertained that no files are currently open
and no requests are about to be issued. If you have cancelled SIAMyou
can use the $C SIAMSTGM operator command to remove the data paging stor-
age module from each partition. SIAMSTGM should never be cancelled
until you have first cancelled SIAM.

Adjusting the Size of the Paging Area

Because every application 1s different you should not regard any infor-
mation relative to the following described example as being directly
applicable to your application. However, the general principles should
apply to most applications.

Figure 10-2 on page 10-5 shows the effect of various data paging area
sizes on the percentage of times a requested block was in the paging
area C¥Hit Ratio™) and the resultant performance Cresponse time indica-
tor) for one application. The data was acquired by measuring the per-
formance, and printing data paging statistics, while the application was
running. The total size of all indexed files being accessed during the
run was 365932 sectors (9.3M-bytes). It must be stressed that this is
only one application, and your application may not behave in the same
manner.

Chapter 10. Storage and Performance Considerations 10-3

10-4

The use of data paging does not affect the timing of the write. The
timing of the write is always controlled by the immediate write-back
function Cdescribed in paragraph [16] of "Setting Up An Indexed File
Using SIAMUTL" on page 2-2).

The three variables considered in data paging described itn this example
are:

® storage size dedicated to data paging

e the percentage of times that the block requested is in the paging
area C™HiIt Ratio™)

® read/write ratio

STORAGE SIZE: The figure shows general trends for various storage sizes.
Note that there is a minimum amount of storage which can provide a bene-
fit. In this example the minimum storage to acquire a performance
improvement is approximately 20k-bytes. This is because the data paging
algorithms in the Indexed Access Method require a certain amount of
processing, which is additional overhead. Your application may have a
differant minimum. If you cannot supply enough storage to provide a ben-
efit, you are better off not to use data paging. Within certain Limits,
the more storage you supply, the better the performance. However, there
are optimal minimum and maximum limitations. Figure 10-2 on page 10-5
shons that, for this example application, the minimum amount 1s about
20k-bytes.

The optimal maximum amount of storage, beyond which the benefit of using
more storage becomes less pronounced, is about 70k-bytes for the example
shown in Figure 10-2 on page 10-5. You must determine, based on your
own storage/performance tradeoff requirements, how much storage to dedi-
cate to data paging for the performance improvement you receive. Larger
files require a proportionately larger paging area to attain the same
hit ratio.

THE "HIT RATIO”: The values shown at the left side of Figure 10-2 on
page 10-5 is called a "Hit Ratio™. This ratio 15 a percentage of how
often an index block or data block requested is already in the paging
area. Most applications tend to concentrate activity ina few areas of
the file for a time, then move on to other areas of the file. These
applications can use data paging to good advantage because there is a
probability that the data being requested has been recently requested.

If your application references data tn a completely random manner, data
paging will be less efficient. Random applications result in a smaller
hit ratio for a given paging area size than applications that concen-
trate on certain areas of the file. Therefore, larger paging area is
required to obtain the same hit percentage.

THE READ/WRITE RATIO: The data paging function 15 optimized for read
operations. In order to insure file integrity, write operations cause a
write-through to the file. This means that there is no benefit itn using
data paging for write operations. In fact, due to paging overhead,
write operations are less efficient with data paging than without data
paging.

The higher your ratio of reads to writes, the more efficiently the data
paging algorithm works, thus the better your performance improvement.
In the example shown itn Figure 10-2 on page 10-5, 80% of the requests
were reads, 20% were writes.

9C34-0404-1

100 28

90 F 4 36
H | R
i 80 F 1 44 e
t S

70 &F ° 1 52 p
° 0

R 60 Ff ° 1 60 n
a e 5
t 50 Ff ° + 68 e
1 :

o 40 F e 4 76 T

30 FL U*®. _ _ No Paging 7 84 1
m

20 F e@ 4 92 e

10 + e 4+ 100

0 j I t j } j] I } I I

0 50K LOOK 150K 200K 250K 300K
Data Paging Area Size

This graph shows how the size of the data paging area (shown across the
bottom) affects the hit ratio (shown on the left margin), and the
results in the response time Cshown on the right margin). The unit of
time for the response time scale is not given because it is application
dependent. For this application, a hit ratio of at least 28% (which can
be achieved with a paging area size of about 20K) 1s required to attain
performance equal to that without data paging active. This is due to
data paging processing overhead. Also note that a paging area size of
greater than about 70K provides relatively little response improvement
for the amount of storage dedicated. | |

Figure 10-2. Plot of Data Paging Area Sizes

Using Data Paging

The Indexed Access Method is distributed with the paging area size set
to zero; therefore, the data paging function is not enabled. To use
paging, use the SIAMUT1 PP command to set the paging area size for each
partition and the SIAMUT1 PG command to activate paging.

When SIAM is loaded, the loader attempts to obtain storage in the
requested partition. When storage is requested in a particular parti-
tion to activate paging, you are informed of the results with appropri-~
ate messages. The messages returned to inform you of the paging status
are written to the $SYSLOG device. If $SYSLOG is not available, the
messages are written to SSYSPRTR device. Following are the conditions
which can result:

1. Data paging is successfully initialized. The storage you requested
or the default amount of storage required for data paging is avail-
able. The following message is displayed:

"DATA PAGING ACTIVE."

2. Data paging 1s not successfully initialized.

a. If you have attempted to activate paging and you requested zero
for the storage amount, or the minimum amount of storage neces-
sary for paging 1s not available in the partition you specified,
the following message is displayed:

"NOT ENOUGH STORAGE AVAILABLE FOR DATA PAGING."
"NATA PAGING NOT ACTIVE."

Chapter 10. Storage and Performance Constderations 10-5

b. If you have requested more storage for paging than 1s available
in the partition you specified, the following message is dis-
played:

LOAD FAILED FOR SIAMSTGM RC=xxx, PTN= Y, SIZE= 22

where: XXX represents the return code from the LOAD instruction
V represents the partition number requested
Zz represents the size in 1024-bytes of storage

you requested

OTHER PERFORMANCE CONSIDERATIONS

10-6

Following is a list of subjects followed by some ideas you might use to
affect the performance of your application:

° Looking at the File Structure

° Controlling the File size

° Reducing the Number of Index Levels

° Increasing the Buffer Size

® Avoiding Resource Contention

LOOKING AT THE FILE STRUCTURE: Performance of the Indexed Access Method
i5 primarily determined by the structure of the indexed file being used.
This structure 1s determined by parameters you specify when you create
the file. The best performance from an indexed file is attatned when
the file structure 15 well planned and the free pool 15 rarely used, if
it exists at all. For descriptions of the file parameters, see Chapter
8, "The SIAMUT1 Utility.™ For examples of the effects of parameter val-
ues, see Chapter 3, "Defining Primary Index Files."

Use the SIAMUTI utility to see the effects of the various parameters on
the file structure.

FILE SIZE: A large file spans more cylinders of the direct access
davice, so the average seek to get the record you want is longer.
Splitting files into smaller files according to application type, or
moving seldom used records to a "history file™ might be viable solutions
for file size reductions.

If your records contain unused or unnecessary fields, delete those
fields and reduce your record length before defining and loading your
file. The Sort/Merge Program Product contains facilities to accomplish
this while sorting your records by key.

REDUCING THE NUMBER OF INDEX LEVELS: A file with many index levels
requires more accesses to get to the desired data record, thus degrading
performance. Factors which influence the number of index levels are:

® Number of records in file—see "File Size™ previously described.

° Amount and type of free space-—see "File Structure™ previously
described.

° Block size-—when defining your indexed file, remember larger block
sizes usually require fewer I/0 operations.

© Key size-—shorter keys are more efficient than long keys. If only a
portion of your key field provides uniqueness, set your key position
and key length to that portion of the field when you define the
file.

$€034-0404-1

INCREASING THE BUFFER SIZE: The buffers required for I/0 operations for
all Indexed Access Method requests throughout the system are taken from
a single buffer pool. The size can be changed at any time (Cto become
effective during the next load of SIAM) as described in "BF—Tailor the
Indexed Access Mathod Buffers™ on page 8-4. If you provide a large
buffer when you install the Indexed Access Method, it is more likely
that blocks Cespecially high-level index blocks) needed are already in
storage and need not be recalled from the file.

AVOIDING RESOURCE CONTENTION: Application programs that use the Indexed
Access Method are executed the same as other application programs.
Because the Indexed Access Method and the indexed files are resources
available to all tasks, delays can occur. When more than one task uses
the Indexed Access Method, contention can occur between tasks for any of
the following resources:

An entire indexed file
An index block in the file
A data block in the file
A data record in the file
Buffer space from the system buffer pool.

For example, during the execution of a request from task A, some buffer
space 15 required and an index block, data block, or record is locked
(made unavailable to other requests). <A request from task B requires
more buffer space than 1s available or attempts to retrieve a block or
record that was locked by task A. Task B must wait until the required
resource becomes available.

Resources required by the Indexed Access Method are allocated only for
the duration of a request except under the following circumstances:

e During an update, when control returns to the task after a GET or
GETSEQ for update, the subject record is locked. The lock is.
released when the update is completed with a PUTUP, PUTDE, RELEASE,
or DISCONNK.

° During sequential processing, when control returns to the task after
a GETSEQ@, the block containing the subject record is locked and held
in the buffer.

Subsequent GETSEQ requests pick up records directly from the buffer.
When a GET requires a record from the next block, the current block
and buffer are released. Pending requests for a buffer area are
satisfied and the next block is lockad and held in tne buffer.
Except for momentary release of the buffer area between blocks, a
block is locked while it is being processed. Processing is termi-
nated by an end-of-data condition, an ENDSE@ request, a DISCONN
request, or an error condition.

Use the following guidelines to avoid resource contention:

e Disconnect all indexed files before task termination. The DISCONN
request releases locked records or blocks and writes records that
have not already been written.

° Use conditional requests whenever possible so that your application
can be productive while a resource is unavailable.

° Try to schedule applications so that they do not execute at the same
time.

e If a file 1s used for "read only™ by more than one application, con-
sider multiple copies of the file using unique file names.

Chapter 10. Storage and Performance Considerations 10-7

10-8

e With multiple Indexed Access Method applications, use direct access
to retrieve a group of records. A suggested method is the
following:

1. Retrieve the first record by key.

2. Extract the key from the record and save it for the next
retrieval.

3. Retrieve the next record using the saved key anda greater than
key relational operator CGT or UPGT).

4. Repeat the second and third steps until processing is complete.

Secondary Index Functions

Using secondary indexes affects the performance of the Indexed Access
Method. Some of those reasons are described here.

DIRECT RETRIEVAL: Direct retrievals are somewhat slower when using a
secondary index because of the extra accesses required to retrieve the
data record from the primary file.

SEQUENTIAL RETRIEVAL: Sequential Retrievals are slower when using a secn-
ondary index because the records are returned in order by secondary key.
The primary file containing the data records 15S in order by the primary
key. Therefore, the records are not stored in the same sequence that
they are retrieved. This requires random accesses to obtain the
records.

RECORD INSERTS: Record inserts are slower if any associated secondary
indexes have the auto-update indicator on. A new record must be
inserted into each auto-update secondary index, as well as the primary,
Whether the original insert was a primary or a secondary.

RECORD DELETE: Record deletes are slower for the same reason as for
inserts; records must be deleted from secondary indexes that have the
auto-update indicator on. However, the impact for deletion 15 more
severe than for insertion. This 18 because a search 15 required when
multiple records have the same value for their secondary key as the
record being deleted. The group of records having the same key must be

‘sequentially searched until the record with the required primary key is
found. This time could be quite significant if you have large groups of
duplicate keys.

RECORD UPDATE: Record updates that modify the secondary key must also
update any associated secondary index which has the auto-update indica-
tor on. The secondary index is updated by deleting the old key and
inserting the new key.

DATA RECORD MOVEMENT: Each record in a secondary index contains a point-
er to the RBN where the record is located in the primary index file. If
a data record has been moved, due to insert/delete activity in nearby
areas of the primary file, the RBN in the secondary index record will be
wrong. When the affected data record is retrieved through the secondary
index, the error is detected. A full retrieval is then performed, using
the primary key to obtain the data record. The RBN in the secondary
index record is then updated for the benefit of future retrievals. This
activity will affect the performance.

SVERIFY PERFORMANCE: The SVERIFY performance will be slower when the
primary file being verified has a secondary index with large numbers of
duplicate secondary keys. This 1s because the entire group of duplicate
keys must be searched for the proper record. Because $VERIFY retrieves
all records in the file, these tmpacts accumulate and the total exe-
cution time can be longer than expected.

5$€34-0404-1

CHAPTER 11. ERROR RECOVERY

This chapter describes how to handle Indexed Access Method errors and
how to diagnose application program errors.

HANDLING ERRORS

All Indexed Access Method requests return a code in the task code word
of the Task Control Block CTCB). The task code word is the same name as
the task name. The return code reflects the condition of the requested
function. Return codes are grouped in the following categories:

=I Successful completion

Positive Error

Negative Warning Cother than -1)

ERROR EXIT FACILITIES

There are three types of error exits for your application:

° Task error exit, provided by the supervisor

° Error exit, provided by the Indexed Access Method

e The task error exit used by the Indexed Access Method itself in case
of an error.

Task Error Exit

You can specify a task error exit routine that will receive control if
your application program causes a soft exception or if a machine check
occurs during the execution of your application.

Because your application may have requests pending (for example, a
record is being held for update or a file is being processed sequential-
ly), you should issue a DISCONN request before terminating your applica-
tion. The task error exit allows you to release records, disconnect
from any file you are connected to, and make your resources available to
other applications. Use of the task error exit facility helps to ensure
data integrity and allows proper termination or continuation of your
application.

Implementing the task error exit facility is described in the Installa-
tion and Svstem Generation Guide.

Note: An error exit is taken if an error is encountered on a

DISCONN call to the Indexed Access Method; this could result ina
continuous loop.

Chapter ll. Error Recovery i11-l1

11-2

Error Exit

In PROCESS and LOAD requests, the address of an error exit routine can
be specified by the ERREXIT parameter. If specified, this routine 15
executed whenever an Indexed Access Method request terminates with a
positive return code, except for return codes 1; 7, 8)» and 22.

If the exit routine is not specified, the next sequential instruction
after the request is executed regardless of the value of the return
code.

SIAM Task Error Exit

The Indexed Access Method itself has a task error exit. If this error
exit is given control by the supervisor, it writes these messages to the
SSYSLOG device:

SIAM HAS INCURRED A SEVERE ERROR
STAM CENTRAL BUFFER ADDRESS IS xxxx - PARTITION n
PSW LSB
YYWVWY 2222 2222 Z222 2222 Z222Z 2ZZZZ Z2zZ2Z2 22Z2Z Z2ZZZ 2222 2222

Where xxxx is the address of the SIAM central buffer, and nn is the par-
tition containing SIAM.

The PSW Cyyyy), and LSB contents (2222), are also listed. For an expla-
nation of the PSW Cprogram status word) and the LSB Clevel status
block), refer to the Operator Commands and Utilities Reference.

SIAM then goes into an unrecoverable wait and will not process any
access requests. You can dump the central buffer with the $D system
command and take appropriate action to quiesce your application Crefer
to the Operator Commands and Utilities Reference for a description of
the $D command).

You can use the recovery and backup procedures, described under "File
Backup and Recovery" on page 6-9, to restore the file, or you can resume
execution of your application. To restart your application, you can
either IPL or cancel SIAM and reload it.

If you wish to extend the logic of the error exit, code your own exit to
replace the SIAM task error exit. Then rename CDIERR (the SIAM task
error exit), name your error exit CDIERR, and rebuild SIAM.

$€34-0404-1

SYSTEM FUNCTION RETURN CODES

If a system function called by an Indexed Access Method request termi-
nates with a positive return code, the return code 15 placed into a
location named by the SYSRTCD parameter in the PROCESS or LOAD request.
This location is used until a DISCONN is issued.

For example, the GET request uses the supervisor read function. If the
read terminates with a positive return code, that return code is saved
in the location named by the SYSRTCD parameter in the PROCESS request
associated with the GET request. The GET request also terminates with a
positive return code in the task control word. The positive return code
indicates that a read error has occurred. The cause of the read error
can be determined by examining the Location named by the SYSRTCD parame-
ter,

Note: When analyzing errors, the Indexed Access Method return
code in the task code word should be checked prior to the system
return code.

The following example is a method of obtaining the return code value
from the location SYSRTCD. This routine gets the task SYSRTCD, and com-
pares it to the EDX successful return code, negative one (-1).

YOURPRGM PROGRAM START

SUBROUT ERRTEST
MOVE TASKRC,SYSRTCD get system return code
IF CTASKRC,EQ,-1) if -l, return now

if not -1l then perform
. your diagnosis

ENDIF
RETURN

TASKRC DATA Fro? saved system return code

THE DATA-SET-SHUT~-DOWN CONDITION

Sometimes an I/0 error occurs that is not associated with a specific
request. For example, task A issues a GET on file X. To secure buffer
Space to satisfy the request, the Indexed Access Method attempts to
write a block to file Y and, in writing the record, an error occurs.
Data set Y is damaged but there is no requesting program to accept an
error return code.

The error is indicated by setting the data-~set~shut-down condition for
file Y. After this condition occurs, no requests except a DISCONN are
accepted for file Y.

Later, if task B issues a GET on file Y, the request is terminated with
a data-set~shut-down return code. Task B should issue a DISCONN and use
recovery and backup procedures as described under "File Backup and
Recovery" on page 6-9, to reconstruct the file. To cancel the
data-set-shut-down condition, initial program load CIPL) or cancel SIAM.

Chapter li. Error Recovery 11-3

S$ILOG - ERROR LOGGING FACILITY

You can have the Indexed Access Method log errors in the system error
log data set.

To use the error logging facility, allocate a system error log data set.
The data set must be a minimum of 3 256-byte EDX records. The first two
records are used for control, and this would allow one error log entry.
The error log entries are entered in the log data set one after the oth-
er as they occur. When the data set becomes full, the new entries over-
lay the old entries starting at the front of the data set again.
Therefore the size of the data set should be based on the frequency of
errors, and the frequency with which the data set is listed or examined.
Each error log entry requires a 256-byte EDX record.

You can load $LOG into any partition. The system command $LOGINIT ini-
tializes and activates error logging for any Indexed Access Method
errors.

The following format is used to record Indexed Access Method associated
errors in the error log data set:

Displacement into each EDX $IAM error log entry

Hex (Dec) Field

00 C 0) Indexed Access Method entry identifier 'CDIIAM'
06 C 6) User TCB Address
08 C 8) Data Set Name
10 (16) Volume Name
16 (22) Original Function Byte
17 (233 Current Function Byte
18 (24) Indexed Access Method Return Code
1A (26) System Return Code
1C (28) User AKR Value

To list the Indexed Access Method error log entries currently in the
system error log, you can load S$ILOG using the system command §&L.
Respond to the prompt "CDSNAME,VOLUME):" with system error log data set
and volume name.

The list will be directed to the terminal which was used to load $ILOG.

Following 15S a sample of the printed error report showing two error
records:

INDEXED ACCESS METHOD LOG REPORT PROGRAM ACTIVE

TCB ORIG CURR SIAM SYSTEM
PTN ADDR DSNAME VOLUME FNCTN FNCTN RTCODE RTCODE DATE TIME

2 1F64 QJAMFILE EDX002 PUTNW PUTNW 62 -1 00700700 00:00:00
2 1F64 QIAMFILE EDX002 PUTNW PUTNW 62 -1 00700700 00:00:00

2 INDEXED ACCESS METHOD LOG ENTRIES LOCATED

SILOG ENDED

11-4 $C34-0404-1

DEADLOCKS AND THE LONG-LOCK-TIMNE CONDITION

Because the Indexed Access Method uses record and block locks to pre-
serve file integrity, deadlock and long-lock-time conditions may occur.

The deadlock condition occurs when two or more tasks interact In such a
way that one or more resources becomes permanently locked, making fur-
ther progress impossible. A deadlock can also occur When two requests
from the same task require a lock on the same record or a lock on the
same block in sequential mode.

A long-lock-time condition occurs when your program acquires a record
for update and does not return the record to SIAM for a leng time.

Application tasks should avoid using the Indexed Access Method in such a
way that a record or block remains locked for a long period of time,
because other tasks may attempt to use the same record or block. Ina
terminal-oriented system, make every effort to ensure that a record or
block is not locked during operator "think" time. Specifically, you
should attempt to follow these rules:

° Do not retrieve a record for update, display the record at the ter-
minal, and wait for the operator to modify it.

° Do not retrieve a record in sequential mode, display the record at
the terminal, and wait for an operator response.

In both of these cases, a record or block is locked during operator
"think”™ time and could be locked indefinitely.

A deadlock cannot be broken except by freeing the locks Crecords) that
are being waited on.

If your application uses more than one IACB, deadlocks are possible.
For example, one task has read record A and attempts to read record B,
while another task has read record B and attempts to read record A. If
you are using more than one IACB per task, such as in Multiple Terminal
Manager applications, use ENQ/DEQ@ and interprogram communications to
avoid the deadlocks.

You can avoid the long-lock-tima condition by using one of the following
two methods:

1.

a. Retrieve the desired record without specifying update.

b. Perform processing in a work area.

c. Retrieve the record, specifying update.

d. Compare the record read in step 1 with the record read in step

e. If the records are identical, issue a PUTUP request, specifying
the address of the copy in the work area. If they are not iden-
ical, issue a RELEASE request for the record read in step 3,

and repeat steps 1 through 5.

2. Use conditional requests which do not wait for locks. (See Chapter
7,» "Coding the Indexed Access Method Requests” for descriptions of
coding conditional requests.)

To retrieve records in sequential mode, use the technique described
in "Avoiding Resource Contention" on page 10-7.

Chapter 11. Error Recovery 11-5

VERIFYING REQUESTS AND FILES

11-6

Following are two steps you can take to help you isolate and correct
malfunctions in your Indexed Access Method application program.

e Request verification-—to determine that requests are correct check
all parameters specified or defaulted on the Indexed Access Method
CALL statements:

— PROCESS/LOAND requests—When issuing a PROCESS or LOAD, check
that the specified file name is the correct file control block
(DSCB) for the file you are verifying.

_ GET-PUT-DELETE-RELEASE requests—For these requests, carefully
check the key, its position, length, and the relational operator
Cif used). Ensure that the correct address for the indexed
access control block CIACB) is passed from the PROCESS or LOAD
request, and that the record area address 18 correct.

e File verification-—read your SVERIFY report or indexed file dump to
determine whether data or index records are missing or incorrect.

Note: Be sure that the combination of parameters specified by the SE
command of the SIAMUT1 utility to define your file is correct. See
Chapter 8, "The SIAMUT1 Utility"™ for a description of the S$IAMUT1 param-
eters.

5€034-0404-1

CHAPTER 1lé. INSTALLING THE INDEXED ACCESS METHOD

This chapter presents an overview of how to install the Indexed Access
Method.

The Indexed Access Method is distributed on two double surface diskettes
With external ID AM4001- and AMGO02-V2MO0BASVOLO1. The diskettes are
formatted at 256 bytes per sector.

INSTALLATION PROCEDURES

The installation information which follows is for planning purposes
only. The specific details for installing the product are tncluded in
the "Program Directory", which is shipped with the product.

INSTALLING THE INDEXED ACCESS METHOD

Installing the Indexed Accass Method consists of two steps:

1. Step i

a. Ensure that adequate space is available for the installation
according to the requirements shown in Figure l2-l1.

Volume Data Sets EDX Records Contents

FEDX002 Gq 507 Load Modules
ASMLIB 2 197 Source Modules
ASMILIB l 7 Link Module

Figure 12-1. Volume Space Requirements

2. Step 2

a. Copy the Indexed Access Method load module (SIAM), the utility
program (CSIAMUT1), the file verification program (SVERIFY), and
the log report program (SILOG), to the EDX002 volume.

b. Copy the following source modules and link module to the ASMLIB
volume.

e ITAMEQU
e FCBEQU
® TAM.

Chapter 12. Installing the Indexed Access Method 12-1

ASSEMBLING AND EXECUTING THE INSTALLATION VERIFICATION PROGRAM

To assemble and execute the installation verification program:

1. Submit to the S$JOBUTIL utility, the "'proc’ $SSAMPROC provided on vol-
ume AM4G001 to assemble and link edit the verification program.

The source statements for the installation verification program are
contained in a data set named SAMPLE on volume AM4001.

Use S$IAMUTL to define and allocate an indexed file to be used by the
installation verification program. Respond to the SE option 2
prompts with the indicated values:

BASEREC 10 FREEBLK 10
BLKSIZE 256 RSVBLK 0
RECSIZE &0 RSVIX 0
KEYSIZE 28 FPOOL 0
KEYPOS 1 DELTHR 0
FREEREC 1 DYN 10

3. Load S$SAMPLE and when prompted for the data set and volume, respond
with the name for the file allocated in the previous step
CSAMPFILE).

Note: The procedure S$SAMPROC assumes that ASMWORK and LINKWORK
data sets exist on EDX002. Allocate these data sets if they do
not already exist with the S$DISKUT1L Event Driven Executive
Utility. Refer to the Operator Commands and Utilities Reference
for details on allocation of these data sets.

12-2 $C€34-0404-1

APPENDIX A. SUMMARY OF CALCULATIONS

The following calculations can be used to define an indexed data set.
For a more detailed description of these calculations, see Chapter
3, "Defining Primary Index Files™ on page 3-1. In the calculations
requiring division, results with non-zero remainders are either trun-
cated or rounded up. To truncate is to drop the remainder; to round up
is to add one Conly if the remainder is non-zero), and truncate.

Data block

Records per data block = block size minus 16, divided by G) = (BLKSIZE —16)/RECSIZE Q)

record size; result truncated

@) Free records per block (2) = FREEREC

(3) Allocated records per data block = Records per block (3) = G) _ (2)

minus free records per block

Index block (general)

Index entry size = key length plus 4; must be even—add (4) = KEYSIZE+4 (+1 if odd)

1 if odd
|

Total entries per index block = block size minus 16, (5) = (BLKSIZE —16)/ (4)Q

divided by index entry size; result truncated

Index block (PIXB)

Free entries per primary index block (PIXB)= specified (6) = FREEBLK & of (s) ‘oO

percentage of total entries per index block; result rounded up

Reserve entries per PIXB = specified percentage of total (7) = RSVBLK % of G) a)

entries per index block; result roundedup.If free entries per (-1 if ©) + eo - (s))

PIXB andreserve entries per PIXB require all PIXBentries,
subtract one from reserve entries per PIXB

Allocated entries per PIXB = total entries per index block = (s) _ (6) — (7)

minusfree entries per PIXB, minusreserve entries per PIXB

Index block (SIXB)

Reserve entries per secondary index block (SIXB)= (9) = RSVIX % of Cs) Ct)

specified percentage of total entries per index block; result (—-1 if (9) = (5))
rounded up.If reserve entries per SIXB require all SIXB

entries, subtract 1.

Allocated entries per SIXB = total entries per index = (s) —
block minusreserve entries per SIXB

Appendix A. Summary of Calculations A-1

A-2

Delete threshold

The number of blocks to retain in cluster (delete threshold)

is calculated in one of three ways:

a. If the RSVBLKparameter was not specified: Numberof

blocks to retain in cluster = total entries per index block

b. If the RSVBLK parameter was specified, but the DELTHR

parameter was not specified: Number of blocksto retain

in cluster = allocated entries per PIXB, plus one-half of

free entries per PIXB; result rounded up

c. If the RSVBLK parameter wasspecified and the DELTHR

parameter was specified: Numberof blocks to retain in

cluster = specified percentage of total entries per index

block; result rounded up.If the result is zero, set it to 1.

Data in data set

Initial allocated data blocks = base records divided by

allocated records per data block; result rounded up

G3) Numberof clusters in data set = initial allocated data

blocks, divided by allocated entries per PIXB; result rounded

up

Total number of tree blocks in data set = number of

clusters in data set, times free entries per PIXB

Indexes in data set

@9 Number of primary index blocks (PILXBs) = number of

clusters in data set

Number of secondary index blocks (SLXBs) = number

of PIXBs, divided by allocated entries per SLXB;result

rounded up

G7) Calculate the number of index blocks for levels 3 to n.

Note that levels 1 (PIXB) and 2 (SLXB) have already been

calculated. When the number of index blocksat a level is 1,

n has been reached andthe calculationis finished.

Number of index blocks at level i (i = 3 to n) = number of

index blocksat next lowerlevel, divided by total entiresper

index block; result rounded up

Total number of index blocks = sum of index blocksat
each level until a level containing a single index blockis

attained

§C34-0404-1

@

©

©

-@®
"®+O x ®

=DELTHR%of (3) C)
(If 0, set (11) to 1)

= BASEREC/ (@) Cf)

QO! OOtt
tl @ *©

Free pool

© @Number of new data blocks which can beassigned to existing

clusters = reserve entries per PIXB, times number of PIXBs

© © @
©

Number of new clusters (PIXBs) which can be created = reserve

entries per SLXB, times number of SIXBs

(21) Numberof new data blocks which can be assigned to new

clusters = total entries per index blocks, times number of new clusters

which can be created.

Q®
®

q
°

+
@©

(3
)

@)Maximum possible free pool = number of new data blocks which

can be assigned to existing clusters, plus number of new clusters

(PIXBs) which can be created, plus number of new data blocks

which can be assigned to new clusters.

= FPOOL% of (2) Cf)@Actual numberof free pool blocks = specified percentage of

maximumpossible free pool; result rounded up.

Size ofdata set

Total number of blocksin data set = 1 (for file control =1+ + (2) + + @3)
block), plus total number of index blocks, plusinitial allocated

data blocks, plus total numberof free blocksin dataset, plus

actual nubmerof free pool blocks.

Appendix A. Summary of Calculations A-3

A-& $C34-0404-1

APPENDIX B. PREPARING INDEXED ACCESS METHOD PROGRANS

To prepare an application program that issues Indexed Access Method
requests, perform the following steps:

1. Enter your source program scatements, using one of the Event Driven
Executive text editors (SFSEDIT, SEDIT1, or SEDITIN).

Create the SEDXLINK control statements required to combine your pro-
gram with IAM Cthe link module) and any other object modules you may
need in your application. Use one of the text editors to perform
this operation.

Assemble or compile your source program.

Use the linkage editor, SEDXLINK, to combine the object modules into
a single load module, using the control statements prepared in Step
2.

When the preceding steps are completed, the program 1s ready to be exe-
cuted.

Appendix B. Preparing Indexed Access Method Programs B-1l

A SAMPLE SJOBUTIL PROCEDURE AND LINK-EDIT CONTROL DATA SET

The following are examples of a $JOBUTIL procedure and a link-edit con-
trol file used to prepare a program.

Sampla $JOBUTIL Procedure

The following SJOBUTIL procedure is an example of preparing an EDL pro-

gram.

HEHE HK HE EIEIOEE IE HE IE EK DE IE HE HE EK HK EKKE HE DE HEE EE KEE EE EE EEE KE KE EOE HE EK

¥

* THESE STATEMENTS WILL COMPILE, LINK, AND UPDATE THE
*¥ APPLICATION.
*

JOB COMPILE
% KX COMPILE USERPROG SOURCE Xxx
LOG SSYSPRTR
PROGRAM SEDXASM,ASMLIB
DS USERPROG, EDX002 SOURCE MODULE
DS ASMNORK, EDXO002 ASSEMBLER WORK DATA SET
DS USEROBJ, EDX002 ASSEMBLER OUTPUT
PARM LIST SSYSPRTR
EXEC
JUMP END,GT,4&
JOB LINK
LOG SSYSPRTR
PROGRAM SEDXLINK,EDX002
DS LINKWORK, EDX002 WORK DSNAME
% LINK-CONTROL DATA SET
PARM LINKCNTL,EDX002 SSYSPRTR
EXEC
LABEL END
EQJ

B-2 $C34-0404-1

Link Edit Control Data Set Example

The following Link-edit control records can be used to link-edit an
Indexed Access Method application with the Indexed Access Method.

HEE IE IEE EI DE DE DE DE IEE HE OE I DE HEE BK DK DK OE 3 DE DE EE IE EKEKOKO DE EEEEEEMEKMH
*
* LINK EDIT CONTROL DATA SET CLINKCTL)
x
HSE HEHE HEHE IE DE DE DE DE 3 DE IE HE IE DK DE DE 3K DK DK DE DE DE DEE DE IEE EK OK HOEK OE DEEEEMMEMH
INCLUDE USEROBJ,EDX002 INCLUDE APPLICATION PGM OBJECT
IHCLUDE IAM,ASMLIB INCLUDE INDEXED ACCESS METHOD
LINK USERPROG,EDX002 REPLACE END
END

Appendix B. Preparing Indexed Access Method Programs B-3

B-4 $C34-0404-1

APPENDIX C. CODING EXAMPLES

This chapter demonstrates how to code the Indexed Access Method request
functions by means of sample programs. This example uses Event Driven
Language CALL functions. The second example uses the COBOL language.
The third example in this chapter is coded using PL/I language.

EDL INDEXED ACCESS METHOD CODING EXAMPLE

This program gives an example for each of the Indexed Access Method
function calls. The indexed file is opened first in load mode and ten
base records are loaded followed by a DISCONNECT. Next, the same file
is opened for processing. A GET request is performed for the first
record whose key is greater than "JONES PW'. Two more records are
retrieved sequentially and then the ENDSEQ call releases the file from
sequential mode. A record is then retrieved directly by key and
updated. Another record is retrieved sequentially and deleted. A new
record is inserted and another one is deleted by their unique keys.
Finally, an example of extracting information from the file control
block is shown. Upon successful completion the message "Verification
Complete™ is displayed on the console.

Although using secondary keys is not demonstrated in this example the
requests are coded the same for secondary keys as they are for primary
keys. When accessing secondary keys use the secondary index file name
instead of the primary index file name. The Indexed Access Method will
open the primary index file and retrieve the data record according to
the secondary key requested if the secondary file has not been opened
independently.

This program requires that an Indexed Access Method file has been
defined with the SIAMUT1 utility with the following specifications:

BASEREC 10
BLKSIZE 256
RECSIZE 80
KEYSIZE 28
KEYPOS
FREEREC
FREEBLK 1
RSVBLK
RSVIX
FPOOL
DELTHR
DYN Q

o
O
o
o
o
o
o
r
t
r
e

Appendix C. Coding Examples C-1

EDL INDEXED ACCESS METHOD CODING EXAMPLE

x

K
K

K
K
K

OK
K
K

XK
K
K
K
K
K

SAMPLE PROGRAM START,DS=??7,ERRXIT=TEECB
START EQU x

ENQT
PRINTEXT LOGON,LINE=0 PRINT LOGON MESSAGE
DEQT

OPEN THE INDEXED ACCESS METHOD DATA SET FOR LOADING

CALL IAM, CLOAD), IACB, (CDS1), COPENTAB), CSHARE)

LOAD THE INDEXED ACCESS METHOD DATA SET

MOVEA POINTER,RECORDI POINTER <== ACRECORD1)
DO RECNUM, TIMES

CALL IAM, CPUT),IACB, (X),P4=POINTER
ADD POINTER, 80 POINT TO NEXT RECORD

ENDDO
GET OUT OF LOAD MODE

CALL IAM, CDISCONN), TACB
EJECT

OPEN THE INDEXED FILE FOR PROCESSING

CALL JAM, CPROCESS),IACB, (DS1),COPENTAB), CSHARE)

PERFORM A DIRECT RETRIEVAL OF THE FIRST RECORD WHOSE KEY IS
GREATER THAN 'JONES PW'. THE KEY FIELD WILL BE MODIFIED TO
REFLECT THE KEY OF THE RECORD RETRIEVED.

CALL IAM, (CGET),IACB, (BUFF), CKEY3), (GT)
MOVE RTICODE,SAMPLE
IF CSAMPLE,NE,-1),GOTO,IAMERR

%

* PERFORM A SEQUENTIAL RETRIEVAL OF THE FIRST TWO RECORDS
* WHOSE KEYS ARE GREATER THAN OR EQUAL TO ‘JONES PW!
%

CALL IAN, (GETSEQ),IACB, (BUFF), C(KEY1), (GE)
MOVE RTCODE,SAMPLE
IF CSAMPLE,NE,-1),GO0TO,TAMERR
CALL IAM, (CGETSEQ),ITACB, (BUFF)
MOVE RTCODE,SAMPLE
TF CSAMPLE,NE,-1),G0T0O,TAMERR
CALL IAM, CENDSEQ),IACB, (BUFF) END SEQUENTIAL MODE

C-2 $C34-0404-1

UPDATE THE RECORD WHOSE KEY IS "JONES PW' BY A DIRECT UPDATE

CALL IAM, (GET), IACB, (BUFF), CKEYL), CUPEQ)
MOVE RTCODE,SAMPLE
IF CSAMPLE,NE,~-1),G0T0O,IAMERR

%

* MAKE THE DESIRED MODIFICATIONS TO THE RECORD NOW IN BUFFER
x

MOVE BUFF+30,0
CALL IAM, CPUTUP),IACB, (BUFF)

*

* DELETE THE RECORD WHOSE KEY IS ‘JONES PW! BY A
* SEQUENTIAL UPDATE
x

CALL IAM, (CGETSEQ),IACB, (BUFF), CKEY1), CUPEQ)
MOVE RTCODE,SAMPLE
IF C(SAMPLE,NE,-1),GOTO,IAMERR
CALL IAM, CPUTDE),IACB, (BUFF)
CALL IAM, CENDSEQ),IACB END SEQUENTIAL MODE

x

* INSERT A NEW RECORD WITH A KEY OF 'MATHIS GR’
x

CALL IAM, (PUT), IACB, CNEWREC)
%

* DELETE THE RECORD WHOSE KEY IS ‘LANG LK’
¥

CALL IAM, (DELETE), IACB, C(KEY2)
MOVE RTCODE,SAMPLE
IF CSAMPLE,NE,-1),GO0TO,IAMERR
EJECT

%

* EXTRACT THE FILE CONTROL BLOCK INTO THE EXTRACT BUFFER
*

CALL IAM, CEXTRACT), IACB, CEXTBUF), CFCBSIZE), CFCBNRM)
MOVEA #1, EXTBUF #1 <-- ACEXTRACT BUFFER)
MOVE FLAGBYTE,(0,#1),BYTE OBTAIN FCB FLAG BYTE
SPACE 5

*

* WRITE VERIFICATION COMPLETE MESSAGE TO THE OPERATOR
x%

ENQT
PRINTEXT SKIP=1
PRINTEXT VERIF,SPACES=0

DEQT
GOTO FINISH JUMP AROUND ERROR ROUTINES

SYSERR EQU ¥ GETS CONTROL ON SYSTEM OR PROGRAM CHECK

Appendix C. Coding Examples C-3

* WHEN A TASK ERROR EXIT IS SPECIFIED IN AN INDEXED
* ACCESS METHOD PROGRAM, YOU CAN RELEASE ALL ACTIVE
* RECORD AND BLOCK LEVEL LOCKS AS WELL AS DISCONNECT
* THE FILE ITSELF BY ISSUING THE 'DISCONN' CALL FOR
x EACH FILE THAT IS OPEN.
x

GOTO FINISH
EJECT

TAMERR EQU GETS CONTROL UPON INDEXED
x METHOD ERRORS

MOVE RTCODE,SAMPLE
ENQT

| PRINTEXT SKIP=2
PRINTEXT RTCODMSG
PRINTNUM RTCODE,TYPE=S, FORMAT=(3,0,1)
PRINTEXT SKIP=1
PRINTEXT ERRMSG, SPACES=0

DEQT
FINISH EQU x

CALL IAM, CDISCONN)D, IACB
PROGSTOP
EJECT

%

* DATA DEFINITION AND STORAGE AREAS
%

RECNUM DATA Flo’ NUMBER OF RECORDS TO LOAD
RTCODE DATA F*OQ! INDEXED ACCESS METHOD RETURN CODE
OPENTAB DATA Fro? SYSTEM RETURN CODE

DATA ACIAMERR) ERROR EXIT ROUTINE ADDRESS
DATA F'gQ' END OF DATA ROUTINE ADDRESS

RECORDI DATA CL80*BAKER RG’
RECORD2 DATA CL8O0"DAVIS EN
RECORD3 DATA CL8O0*HARRIS SL'*
RECORD4 DATA CLESO0'JONES PW!
RECORD5 DATA CL8O0"JONES TR’
RECORD6& DATA CL&O"LANG LK’
RECORDZ DATA CL8O0'PORTER JS'
RECORD&8 DATA CL80"SMITH AR*
RECORDS DATA CL80'SMITH GA*
RECORDIO DATA CLEO'THOMAS SN!*
FLAGBYTE DATA H'O' FCB FLAG BYTE

DATA H'O'

C-G $C034-0404-1

NEWREC
BUFF
KEY1I
KEY2

KEYS
TACB
EXTBUF
LOGON
VERIF
ERRMSG
RTCODMSG

x

DATA
DATA
TEXT
TEXT
DATA
DATA
DATA
DATA
DATA
TEXT
TEXT
TEXT
TEXT
EJECT

CL80"MATHIS GR*
CL80!
"JONES PW',LENGTH=28
"LANG LK',LENGTH=28
X'1C!
X'o0'

TOTAL LENGTH OF KEY
USE ALL OF KEY

CL28'JONES PW!’
Frg’

128F'0'
ADDR OF IACB PUT HERE
FCB PUT HERE BY EXTRACT

"INSTALLATION VERFICATION PROGRAM ACTIVE’
"VERIFICATION COMPLETE!
"VERIFICATION INCOMPLETE DUE TO BAD RETURN CODES’
"INDEXED ACCESS METHOD RETURN CODE: !

* THE FOLLOWING STORAGE IS USED BY TASK ERROR EXIT HANDLING
¥

TEECB

x

* HARDWARE STATUS AREA.
x

EQU
DATA
DATA
DATA

¥

FY2'
ACSYSERR)
ACHSA)

TASK ERROR EXIT CONTROL BLOCK
OF DATA WORDS THAT FOLLOW
ADDRESS OF EXIT ROUTINE
ADDRESS OF HARDWARE STATUS AREA

THIS STORAGE WILL BE FILLED IN BY
HARDWARE UPON SYSTEM OR PROGRAM CHECK INTERRUPT

x

HSA

HSALSB

EQU x
DATA FO!
EQU x
DATA F'Q!?
DATA F'O!
DATA Frot. |
DATA 8F'o!
COPY IAMEQU
COPY FCBEQU
ENDPROG
END

PROCESSOR STATUS WORD
LEVEL STATUS BLOCK:

INSTRUCTION ADDRESS REGISTER
ADDRESS KEY REGISTER
LEVEL STATUS REGISTER

GENERAL REGISTERS 0-7

Appendix C. Coding Examples C-5

COBOL INDEXED ACCESS METHOD CODING EXAMPLE

This coding example inserts, deletes, and updates records in an indexed
file, using primary and secondary keys to retrieve the records. The

indexed file is described below under "Input File”.

Program Description

This program reads a record and based on a transaction coda, either
updates, deletes, or inserts records to a current Indexed Access Method
file. The transaction type also determines whether tndexing 1s done
using a secondary or primary key.

Input Fila

I. TRANSACTION FILE.

TRANSACTION RECORD FORMAT:
EMPLOYEE NUMBER 1-6 C6)
LAST NAME 7-21 (15)
FIRST NAME 22-31 (19)
ADDRESS 32-56 (25)
CITY 57-68 (12)
STATE 63-70 C2)
AGE 71-72 C2)
START DATE 73-78 C6)
TYPE 79 C1)
ACTION &0 C1)

II. UPDATE FILE

A. MASTER FILE.
PRIMARY. KEY IS EMPLOYEE NUMBER

B. NAME FILE
SECONDARY. KEY IS LAST NAME.
EMPLOYEE RECORD FORMAT
EMPLOYEE NUMBER 1-6 (6)
LAST NAME @~-2]1 C15)
FIRST NAME 22-31 (190)
ADDRESS 32-56 (€25)
CITY 57-68 (12)
STATE 69-79 C2)
AGE 71-72 (2)
START DATE 73-78 C6)
FILLER 79-80 C2)

C-6 SC34-0404~1

IDENTIFICATION DIVISION.
PROGRAM-ID. © COBOL1.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-S1.
OBJECT-COMPUTER. IBM-Si.
SPECIAL-NAMES.

SYSOUT IS PRINTER.
INPUT-OQUTPUT SECTION.
FILE-CONTROL.

SELECT EMPLOYEE-MASTER ASSIGN TO DS2 "EMPMAST™ "EDXTST"
ORGANIZATION IS INDEXED
ACCESS MODE IS RANDOM
RECORD KEY IS EMPLOYEE-NUMBER
FILE STATUS IS SK.

SELECT EMP-NAME-FILE ASSIGN TO DS3 "“EMPNAME™ “EDXTST"™
ORGANIZATION IS INDEXED
ACCESS MODE IS RANDOM
RECORD KEY IS E-LAST-NAME
FILE STATUS IS SK.

SELECT TRANSACTION-FILE ASSIGN TO DS¢ “TRANSF"™ "EDXTST"
ORGANIZATION IS SEQUENTIAL
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS SK.

DATA DIVISION.
FILE SECTION.
FD EMPLOYEE-MASTER

LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 3 RECORDS.

01 MASTER-RECORD. |
05 EMPLOYEE-NUMBER PICTURE X(06).
05 FILLER PICTURE X74).

FD EMP-~NAME-FILE
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 3 RECORDS.

01 EMP-NAME-RECORD.
05 FILLER PICTURE X(06).
05 E-LAST-NAME PICTURE X(€15).
05 FILLER PICTURE X(€59).

FD TRANSACTION-FILE
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 3 RECORDS
RECORD CONTAINS 80 CHARACTERS.

01 TRANS-ACTION-RECORD PICTURE X(€80).

Appendix C. Coding Examples C-7

T-5050-9£9S8-9

“NOTI9SS-1O0A8LNODWdOsddd
YdLNITddNOdNGQaODSA-NOTLOVSNVYLaaAVIdSTO

T=LONAORAl
“ddLNTddNOdNwdlaldWOOONTISSA900dUdAlIANOTLOVSNVALaAVIdSTA

404OLTSAOWGNALV
GYOOSA-NOTLOVSNVALOLNIAIIA-NOTLOVSNVALGVaa

*NOTLIAS-SSAD0Ud

"NNAdOLS
“SSLNIddNOdNwalTdNODDOSddN3S019uwAVIdSIG

"dN-a3SO10WdOdedad
“T=d03TILNNNOITLOSAS-SS3008dWdOddad

aOOuw=ASAl

*“TN3d0-a1IdWdOsddad
“ONISSSQI0Ud-NI9RG

“NOISITAIG3agndsao0dd

NOTIOV-SN¥VdLOT
AdAL-SNVALOT

“ACOD-NOTLOVSNVALG0

AYNLIId
AaNLoId

°
°

o
n
r
™

a

°

os
e

°
°

e
e

°

a
a
e
a
e
e
e
e
e

I
N
O
L
A
I
A
A
L
S
O

e
t
e

a
A
A
N
A
O
O
O
D

O
G

S
e
e
N
e
N
e

N
e
t
e
d
e
d

Mh
OK
K
O
K

OK
O
K
O
K
E
R

OK

°C90)XAaNLIId

N
Y
N
t
e
e

aK
OK

OK
e
d

x

AaadNLIId
JuNLIId
daNLoid
ddNLIId
dAaNLIId
aaNLIId
AaNLIId

AaNLITd
AdNLITd
AaNLIId
AgNLIId
AaNLIId
AaNLIId
AYNLIId
AYNLIId

AaNLIId

ALVd-Lavis-1
AOV-L

ALVIS-1L
ALTI-L

SSaaddqgv-Ladals-1
AWVN-1SSIsd-1OT
AWVN-LSVI-LOT

“AWVN-L
aaaWnAN-L

G0
G0
G0
G0
G0

G0
G0

“OYO9Sa-NOTLOVSNVAL

aa1114
ALVG-LAVILS

d9V
ALViS
ALI

SSAuddqav-Lasddls
AWVN-LSUTdOT
AIWVN-LSV1OT

“AWVN
Yaad@WNN-NVW

G0
G0
GQ
G0
G0
G0

G0
G0

TO

“deOo0aae-aAAaAOTdWSTO

“OYSZANIVACeOIKAANLITdASLe
“OdaZzANIVACTOIXAUNLIIdHILIMS-YdaZé
“OaazANIVA(T0096AaNLoIId404£2

“NOTL9OSSASVAOLS-ONTAYOM

6-9SatdwuexgBultpo9)°9xipuaddy

“SSAuddV-LaadlsOLSSAxdavV-LasyulS-1lJAOW
Sd0VdS=LONSS3xddV-LadadiS-LAI

Sd9VdS=LONAWVYN-1SdTsd-1idI
“AWVN-1SV¥1OLAWVYN-LSV1I-1AAOW

SANVdS=LONSAWYN-1LSV1I-1AI
"208d-JaLVadnNn

“SSLNTddNOdN
4SaaAWVN-LSVI-Lad31TIVaAVSAYXVGNO0SSaAVIdSIG

aQOu=LONXSAI
“SHS31INIdNOdNSWVN-LSVI-L

wmASnXAYVAONOOSSAIIVANIaAVIdSIGAANAITVANI
GQagdsae-agyAOQldWSaOLNISIISH-AWVN-dW3dvVad

"AWVN-LSVI-dOLSWVN-LSV1I-1SJAQN
“SMSLNTddNOdNAWVYN-LSVI-Luw=ASXHaAVIdSTIG

“SMSLNIGdNOdNwdVadAYVGNOOASONTANGaAVIdSIA
*“AXYVGNODSAS-QvVad

“dadiNIdd
NOdANASw«waASAGWAN-LawGAITVAAVAdAAVYWIddaAVIdSIG

aQQuw=LONXSAI

“MSLNTadNOdN
SSEGWNN-LwASHAAXVWISdGIIVVANIaAVIdSTGAdyXAIIVANI

GQdODSe-aSAOTdWaOLNIAALSVW-SaSA0I1dWSGVaAd
“SYSEWNN-SaSAOQ]dWaOLASGWAN-LSAOW

“MSLNTYdNOdNYAGNNN-Law=ASXuwAVIdSTIG
“SSLNIYdNOdNwGVadAYVWIiddONTANGaAVIdSId

*“AAYVNITdd-dvaa

“AAVGNOVAS-GVaadWaeOsdad
3$173

ASaVWidd-dVaadWaOsddad
ada=NOILOV-SN¥UYLGI

“NOTLISS-dVaad
“90dd-ALVddAWUOdddd

49174
VONd-ddyWaosadad
¢=NOTLOV-SN¥aLAl

4$173
VOed-3L1e1adWeOss3ad

T=NOTLOVY-SNVALAI
“NOTLOSS-GV3aeWeOsAsSad

acu=LONNOILOV-SNVdL4I
“NOTLOSS—TOSXLNOD

IF T-CITY NOT = SPACES
MOVE T-CITY TO CITY.

IF T-STATE NOT = SPACES
MOVE T-STATE TO STATE.

IF T-AGE NOT = SPACES
MOVE T-AGE TO AGE.

IF T-START-DATE NOT = SPACES
MOVE T-START-DATE TO START-DATE.

IF TRANS-TYPE = "Pp"
PERFORM PRIMARY-REWRITE

ELSE
PERFORM SECONDARY-REWRITE.

PRIMARY-REWRITE.
DISPLAY ™ BEGIN PRIMARY REWRITE KEY = ™ T-NUMBER

UPON PRINTER.
MOVE T-NUMBER TO EMPLOYEE-NUMBER.
REWRITE MASTER-RECORD FROM EMPLOYEE-RECORD

INVALID KEY DISPLAY "INVALID PRIMARY KEY"
T-NUMBER UPON PRINTER.

IF SK NOT = "00" |
DISPLAY "PRIMARY WRITE FAILED™ T-NUMBER ™ ™ SK
UPON PRINTER.

DISPLAY ™ PRIMARY REWRITE COMPLETE™ UPON PRINTER.

SECONDARY-REWRITE.
DISPLAY ™ BEGIN SECONDARY REWRITE KEY = * T-LAST-NAME

UPON PRINTER.
MOVE T-LAST-NAME TO E-LAST-NAME.
REWRITE EMP-NAME-RECORD FROM EMPLOYEE-RECORD

INVALID KEY DISPLAY "INVALID SECONDARY KEY™
"om T-LAST-NAME UPON PRINTER.

IF SK NOT = "00"
DISPLAY "SECONDARY WRITE FAILED” T-LAST-NAME * *
SK UPON PRINTER.

DISPLAY ™ SECONDARY REWRITE COMPLETE” UPON PRINTER.

DELETE-PROC.
IF TRANS-TYPE = "P"
PERFORM PRIMARY-DELETE

ELSE
PERFORM SECONDARY-DELETE.

C-10 59C34-0404-1

PRIMARY-DELETE.
fOVE TRANS-ACTION-RECORD TO MASTER-RECORD.
DISPLAY ™ PRIMARY DELETE STARTED” UPON PRINTER.
DELETE EMPLOYEE-MASTER RECORD

INVALID KEY DISPLAY "INVALID PRIMARY KEY"
T-NUMBER UPON PRINTER.

IF SK NOT = "00"
DISPLAY "PRIME KEY FOR DELETE NOT FOUND”
UPON PRINTER.

DISPLAY ™ PRIMARY DELETE FINISHED” UPON PRINTER.

SECONDARY-DELETE.
MOVE TRANS-ACTION-RECORD TO EMP-NAME-RECORD.
DISPLAY ™ SECONDARY DELETE STARTED" UPON PRINTER.
DELETE EMP-RAME-FILE RECORD

INVALID KEY DISPLAY "INVALID SECONDARY KEY"
T-LAST-NAME UPON PRINTER.

IF SK NOT = "O00" DISPLAY
WSECONDARY KEY FOR DELETE NOT FOUND" UPON PRINTER
DISPLAY TRANSACTION-RECORD UPON PRINTER.

DISPLAY ™ SECONDARY DELETE FINISHED™ UPON PRINTER.

ADD-PROC.
MOVE TRANSACTION-RECORD TO EMPLOYEE-RECORD
IF TRANS-TYPE = "Pp"

PERFORM PRIMARY-ADD
ELSE
PERFORM SECONDARY-ADD.

PRIMARY-ADD.
WRITE MASTER-RECORD FROM EMPLOYEE-RECORD

INVALID KEY DISPLAY "INVALID PRIMARY KEY"
T-NUMBER UPON PRINTER. .

IF SK NOT = "00" DISPLAY
"INSERT FAILED FOR PRIME FILE" UPON PRINTER
DISPLAY TRANSACTION-RECORD UPON PRINTER.

SECONDARY-ADD.
WRITE EMP-NAME-RECORD FROM EMPLOYEE-RECORD

INVALID KEY DISPLAY "INVALID SECONDARY KEY"
T-~LAST-NAME UPON PRINTER.

IF SK NOT = "OO"
DISPLAY "INSERT FAILED FOR SECONDARY FILE”
UPON PRINTER.

Appendix C. Coding Examples C-1i1

FILE-OPEN1.
OPEN I-O EMPLOYEE-MASTER.
IF SK NOT = "00"

DISPLAY "OPEN FAILED FOR EMPMAST™ SK UPON PRINTER
ELSE

OPEN I-O EMP-NAME-FILE
IF SK NOT = "00"

DISPLAY "OPEN FAILED FOR EMPNAME™ SK UPON PRINTER
ELSE

OPEN INPUT TRANSACTION-FILE
IF SK NOT = "00"

DISPLAY "OPEN FAILED FOR TRANSACTION-FILE” SK
UPON PRINTER.

DISPLAY ™ FILE OPEN COMPLETE” UPON PRINTER.

CLOSE-UP. :
DISPLAY ™ BEGIN CLOSE UP PROC ™ UPON PRINTER.
CLOSE TRANSACTION-FILE.
CLOSE EMP-NAME-FILE.
IF SK NOT = "00" |

DISPLAY "CLOSE FAILED FOR EMPNAME, RC= ™" SK
UPON PRINTER.

ELSE
DISPLAY ™ EMP-NAME-FILE CLOSED ™ UPON PRINTER.

CLOSE EMPLOYEE-MASTER.
IF SK NOT = "00"

DISPLAY "CLOSE FAILED FOR EMPMAST, RC= " SK
UPON PRINTER.

ELSE |
DISPLAY " EMP-MAST-FILE CLOSED ™ UPON PRINTER.

C-12 $C034-0404-1

PL/I INDEXED ACCESS METHOD CODING EXAMPLE

This PL/I coding example inserts, deletes, and updates records in an
indexed file, using primary and secondary keys to retrieve the records.
The indexed file is described below under "Input File".

Program Description

This program reads a record and based on a transaction code, either
updates, deletes, or inserts records to a current Indexed Access Method
file. The transaction code also determines whether index access is done
using a secondary key or primary key.

Input File.

I. INPUT FILE
A. TRANSACTION FILE,

TRANSACTION RECORD FORMAT:

EMPLOYEE NUMBER 1-6 (6)
LAST NAME 7-21 (15)
FIRST NAME 22-31 (10)
ADDRESS 32-56 (25)
CITY 57-68 (12)
STATE 69-70 (2)
AGE 71-72 (2)
START DATE 73-78 (6)
TYPE 79 =" (1)
ACTION 80 (1)

If. UPDATE FILE
A. MASTER FILE.

PRIMARY. KEY IS EMPLOYEE NUMBER
B. NAME FILE

SECONDARY. KEY IS LAST NAME.
EMPLOYEE RECORD FORMAT
EMPLOYEE NUMBER 1-6 (6)
LAST NAME 7-21 C15)
FIRST NAME 22-31 (10)
ADDRESS 32-56 (25)
CITY 57-68 (12)
STATE 69-70 (2)
AGE 71-72 (2)
START DATE 73-78 (6)
FILLER 79-80 C2)

Appendix C. Coding Examples C-13

PLITEST:
DCL EMPMAST

DCL EMPNAME

DCL TRANSFL

DCL SYSPRINT

I

I

I

I

I

I

DCL 1 SFCBLST
STATIC
EXTERNAL,

2 SFCBCNT
FIXED BINC15)

2 SFCBF1
CHARC8)

2 SFCBD1
CHARC8)

2 SFCBV1
CHAR (6)

2 SFCBF2
CHARC8)

2 SFCBD2
CHAR(8)

PROCEDURE OPTIONSCMAIN);
7% EMPLOYEE MASTER FILE
7% PRIMARY |
7% KEY IS EMPLOYEE NUMBER

FILE RECORD
DIRECT
UPDATE
KEYED
ENVCFB BLKSIZEC256) RECSIZEC(80) INDEXED

KEYLENGTHC6) KEYLOC(1));

7*® EMPLOYEE NAME FILE
7*% SECONDARY
7*® KEY IS EMPLOYEE NAME

FILE RECORD
DIRECT
UPDATE
KEYED
ENVCFB BLKSIZEC256) RECSIZEC80) INDEXED

KEYLENGTH(15) KEYLOC(7));

7* TRANSACTION FILE
FILE RECORD “7*% INPUT FILE
SEQUENTIAL
INPUT
ENVCFB BLKSIZEC240) RECSIZEC80) CONSECUTIVE);

7* STANDARD OUTPUT FILE
FILE PRINT
ENVCF BLKSIZEC121));

CONTROL BLOCK LIST7% FILE

7* FILE COUNT

NITC4),
7% FILE #1 NAME

NITC'EMPMAST'),
7* FILE #1 DATA SET

NITC"EMPMAST'),
/* FILE #1 VOLUME

NITC'EDXTST'),
7*¥ FILE #2 NAME

NITC'EMPNAME'),
/*¥ FILE #2 DATA SET

NITC'EMPNAME'),

x/

%/

%/

%/

x/

x/

%/

xf

%/

x/

%/

x/

%/

%/

%/

*/

C-14 $C€34-0404-1

DCL 1

SFCBV2
CHAR(6)
INITC’EDXTST"),

SFCBF3
CHAR(8)
INITC'TRANSFL"),

SFCBD3
CHAR(8)
INITC'TRANSFL"),

SFCBV3
CHAR(6)
INITC'EDXTST'),

SFCBF4
CHAR(8)

--INITC'SYSPRINT"),
$FCBD4

CHAR(8)
INITC'SYSPRINT"),

SFCBTL4
FIXED BIN(15)
INIT(1),

SFCBBL4 |
FIXED BIN(C15)
INIT(66),

SFCBHL4
FIXED BIN(15)
INITCO0);

EMP_RECORD
STATIC,
2

2

N
N
N

N
M

M
H

K
N

R
N

EMP_NUMBER
CHAR(C6),

NAME,
3 LAST_NAME

CHARC15),
3 FIRST_NAME

CHARC10),
STREET_ADDRESS

CHARC25),
CITY

CHAR(C12),
STATE

CHARC2),
AGE

CHARC2),
START_DATE

CHAR(C6),
FILLER

CHARC2);

7%

7%

7%

/%

7%

7%

7%

7%

1%

7%

FILE #2 VOLUME

FILE #3 NAME

FILE #3 DATA SET

FILE #3 VOLUME

FILE #4 NAME

FILE #4 DEVICE NAME

FILE #4 TOP LINE

FILE #4 BOTTOM LINE

NOT USED

IAM BUFFER FORMAT

x/

x/

*%/

%/

*%/

x/

%/

x/

%/

%/

Appendix C. Coding Examples C-15

DCL 1 TRANSACTIONR
STATIC,
2 TEMP_NUMBER

CHAR(6),
2 TNAME, |

3 TLAST_NAME
~ CHARCL5),

3 TFIRST_NAME
CHAR(10),

TSTREET_ADDRESS
CHAR(25),

TCITY
CHAR(12),

TSTATE
CHAR(2),

TAGE
CHAR(2),

TSTART_DATE
CHAR(6),

TRANSACTION_CODE,
3 TRANS_TYPE

CHAR(1),
3 TRANS_ACTION

CHAR(1);
DCL BLANK

STATIC
CHAR (6)
INITC! "23

DCL CIOERR,
FOERR)

STATIC
CHAR(C1)
INITC’F");

DCL TRUE
STATIC
CHAR(C1)
INITC'T!'),

FALSE
STATIC
CHAR(1)
INITC'F!);

DCL R_CODE
STATIC.
FIXED BINC15)
INIT(CO);

m
M

N
N

K
R

N
M

N
M

W
N

7%

7%

7%

7%

7%

7%

7*® TRANSACTION RECORD FORMAT ¥/

"PY = PRIMARY 'S' = SECONDARY */

1 = DELETE 2 = INSERT
3 = UPDATE
FIELD OF BLANKS

INPUT/OUTPUT ERROR FLAG
OPEN ERROR FLAG

TRUE VALUE FOR FLAGS

7*® FALSE VALUE FOR FLAGS

7* RETURN CODE

*/

%/

x/

*/

*%/

x/

x/

*/

C-16 SC34-0404-1

DCL ONCODE 7* ON CONDITION CODE *%/
BUILTIN;

DCL EOF “/* END OF FILE FLAG ¥%/

7%

7%

STATIC
CHARC]1)
INITC'F");

HE 3 3 3 HK 3 EKKE DEE EEEEEKEIM MAIN PROGRAM 3365636 5€ 3€ 3€ 3 3 0 IE 5E 5 3 DE DE OE KEEE/
%/

THK KH IIH IEE HEE EEEEEKEMK ON CONDITION FOR EQF XXXX35/

/%

1%

7%

7%

/¥®

7%

7%

ON ENDFILECTRANSFL)
BEGIN; |

PUT LISTC'X** TRANSACTION FILE PROCESSING COMPLETE ®x');
EOF = TRUE;
CLOSE 7* CLOSE ALL FILES ¥/
FILECEMPMAST), |
FILECEMPNAME),
FILECTRANSFL);

STOP TASK;
END; |

 ¥/7
MMMMKKKKKKKKKK ON CONDITIONS FOR FILE OPEN ERRORS XXXRKKHXS

ON UNDFCEMPMAST) FOERR = TRUE;
ON UNDFCEMPNAME) FOERR = TRUE;
ON UNDFCTRANSFL) FOERR = TRUE;

x/
HE EEE EEEEKEEEEEK ON CONDITIONS FOR I/0 ERRORS XXHHRKKKRKKHEKKS

ON KEYCEMPMAST) IGQERR = TRUE;
ON KEYCEMPNAME) IOERR = TRUE;

%/
YE HE EE HEE EE EE HEE IEE IEEEEEK OPEN ALL FILES 333KKRMKK,

*/
CALL OPEN; |

/RRNXRRKXX INITIATE PROCESSING UNTIL EOF CONDITION IS REACHED XxXxXxXxX/
DO WHILE CEOF -= TRUE);

TOERR = FALSE;
FOERR = FALSE;
CALL PROCESS; 7% INVOKE PROCESS SUBROUTINE X/

END; 7* END DO WHILE */
AHHH HK HK EKIK KKKEIEIOEND MAIN PROGRAM 3333333 1 1EEEKKEHS
7% %/

OPEN: PROC;
OPEN FILECEMPMAST) UPDATE;
IF FOERR = TRUE THEN

DO; |
R_CODE = ONCODE; 7* SET RETURN CODE */
PUT LISTC'OPEN FAILED FOR EMPMAST') SKIP;
PUT LISTC'ON CODE = ',R_CODE) SKIP;

END;
Appendix C. Coding Examples C-17

IF FOERR = FALSE THEN
DO;

OPEN FILECEMPNAME) UPDATE;
IF FOERR = TRUE THEN

DO;
R_CODE = ONCODE; /*® SET RETURN CODE X/
PUT LISTC'*OPEN FAILED FOR EMPNAME’) SKIP;
PUT LISTC'ON CODE = ',R_CODE) SKIP;

END;
END;

1X */

IF FOERR = FALSE THEN
DO;

OPEN FILECTRANSFL);
IF FOERR = TRUE THEN

DO;
RCODE = ONCODE; 4% SET RETURN CODE X/
PUT LISTC'OPEN FAILED FOR TRANSFL*) SKIP;
PUT LISTC'ON CODE = ',R_CODE);

END;
END;

7% x/
IF FOERR = TRUE

THEN
STOP TASK;

/* */

END; “* END OPEN PROCEDURE 7
SKK HHH IIH IK IK HHH HHEHKIENK PROCESS PROCEDURE3x33KKHHHKK
7% x/

7% 1) READS IN A TRANSACTION RECORD */
7% 2) IF ACTION = 1 DELETES RECORD WITH CORRESPONDING KEY. %/
7% = 2 INSERTS RECORD ONTO IAM FILE. x /
7 ¥ = 3 READS RECORD WITH CORRESPONDING KEY, Xf
7% ALLOWS UPDATE, REWRITES RECORD. */
7% 3) IF TYPE = 'P* ALL INDEXING IS DONE WITH A PRIMARY KEY X/
/¥ = 'S' ALL INDEXING IS DONE WITH A SECONDARY KEYX/
7% 4) ALL IDENTIFIERS, FILES AND RECORDS USED ARE GLOBAL x/
7% x /

SHIHIIHIIE IE IE IE HE IE HEHE HEHE 33 3 3 DE DE DE DK DK DE DE DE IE DE HE HE HEE EE OE IE KOK IE IE IEI HE IEHEEKES
PROCESS: PROCEDURE;

READ FILECTRANSFL) INTO CTRANSACTIONR);
IF JOERR = TRUE THEN

DO;
R_CODE = ONCODE;
PUT LISTC'READ HAS FAILED FOR TRANSFL*') SKIP;

ENDS LISTC'ON CODE = ',R_CODE) SKIP;
D;

C-18 $C34-0404-1

IF TRANS_ACTION = *1° & IQERR FALSE THEN
CALL DELETE; 7* BEGIN DELETE %/

IF TRANS_ACTION = '3* & IOERR = FALSE THEN
CALL UPDATE;

IF TRANS_ACTION = "2° & IOERR = FALSE THEN
CALL INSERT;

END; 7% END PROCEDURE PROCESS X/

DELETE: PROC;
IF TRANS_TYPE = ‘P*

THEN
DELETE FILECEMPMAST) KEYCTEMP_NUMBER) ;

ELSE
DELETE FILECEMPNAME) KEYCTLAST_NAME);

END; “7* END DELETE X/
7¥ K/

UPDATE: PROC;
IF TRANS_TYPE = 'P*

THEN
CALL PRIM_READ;

ELSE
CALL SEC_READ;

IF IOERR = FALSE THEN
DO;

IF TLAST_NAME ~= BLANK
THEN

LAST_NAME = TLAST_NAME;
IF TFIRST_NAME -= BLANK

THEN
FIRST_NAME = TFIRST_NAME;

IF TSTREET_ADDRESS -= BLANK
THEN

STREET_ADDRESS = TSTREET_ADDRESS;
IF TCITY -= BLANK

THEN
CITY = TCITY;

IF TSTATE == BLANK
THEN

STATE = TSTATE;

Appendix C. Coding Examples C-19

IF TAGE -~= BLANK
THEN

AGE = TAGE;
IF TSTART_DATE -= BLANK

THEN
START_DATE = TSTART_DATE;

CALL REWRITE;

END; “7* END UPDATE %/
END;
1% %/

PRIM_READ: PROC;
READ FILECEMPMAST) INTOCEMP_RECORD)

KEVCTEME_NUMBER);
IF IOERR = TRUE THEN

DO;
R_CODE = ONCODE;
PUT LISTC'EMPMAST PRIMARY READ HAS FAILED") SKIP;
PUT LISTC'KEY = °,TEMP_NUMBER);
PUT LISTC'ONCODE = ',R_CODE);

END;
END; “* END PRIMARY READ %/
/% */

SECREAD: PROC;
“READ FILECEMPNAME) INTOCEMP_RECORD)

KEYCTLAST_NAME);
IF IOERR = TRUE THEN

DO;
R_CODE = ONCODE;
PUT LISTC' EMPMAST SECONDARY READ HAS FAILED") SKIP;
PUT LISTC'KEY = ',TLAST_NAME);
FUT LISTCONCODE = ',R_CODE);

END;
END; 7/*® END SECONDARY READ X/

REWRITE: PROC;
IF TRANS_TYPE = 'P' 7* BEGIN REWRITE */

THEN
REWRITE FILECEMPMAST) FROMCEMP_RECORD)

KEY CTEMP_NUMBER) ;
ELSE
REWRITE FILECEMPNAME) FROMCEMP_RECORD)

D KEYCTLAST_NAME);
END;

C~-20 S$C34-0404-1

T2-9seTdwexgBuipoy*4xXitpuaddy

‘L1S43LTidGN

$(30094‘.=3GO9N0,.)1S1I1ind
-CAWYNI‘Ss=ASWNAILSTTLd

-dIXS
(,G3171IVaSVHNOTLYASNIAdVGQNOOSSLSVWdWSa,d1ST1LAd

‘3AQQ9NO=3009&
-0d

NSHLandi=wasao0lrAl
SCAWYNLSVILIWOSSARY

CHNOTLOVSNVALIWOdACAWVNdWS3IS31IadSLIM
Od
4$174

>CN3
_{Na

£(C3qd09_a’.=3GO00N0,)1S1I1Lfd
SCYSOWNNdW3i‘.=ABNAILSTITLd

SdINs
C(,Ga1IVSSVHNOTLYSSNIAYVONOOSSLSVWNdWa.dLSTTLAd

S3Q09NG=3009&
-Od

NSHLSANYl=aeesaoOrAl
>CYSEWNNdWSLINOYAAAY

CAHNOTLOVSNVALINOdACLSVYWdWadIATIAdALIYM
*0Oq

_NAL
ada=SdAlSNVALAl

>20Ud:LYSASNI

C-22 S$C34-0404-1

Special Characters

SIAM package 10-1
SIAM, cancelling 10-3
SIAMDIR Cdirectory) 5-
SIAMNP package 10-1
SIAMNRS package 10-1
SIAMRSNP package 10-1
SIAMUTI

See utility, Indexed Access Method
SIAMUTI, defining file 3-4
SIAMUTL, setting up ifile 2-2
SILOG :

See error logging facility
SJOBUTIL procedure B-2
SJOBUTIL sample procedure B-2
SSAMPROC 12-2
SVERIFY utility

default working storage
requirements 9-12

description 9-1
error recovery procedure 9-12
axample 9-3
FCB Extension report 9-8
FCB listing 9-1
file error messages 9-11
free space report 9-9
functions 9-1
input required to execute 9-2
invoking 9-2
invoking from a program 9-3
messages 9-ll
modifying working storage 9-13
storage requirements) 9-12
summary 9-13

2

A

accessing by different keys 3-2
accessing file

PROCESS request 6-4
AL subcommand 8-]
AL subcommand CSIAMUT1) 8-11
algorithm, least-recently-used 10-3
allocate/insert entries,
directory 5-3

allocated entry, PIXB 3-14
application program

SJOBUTIL procedure B-2
link-edit control data set B-2
loading base records from 4-5
loading secondary file with 5-16
preparing B-1

assembling install verify
program 12-2

auto-update, secondary index 6-3
automatic update indicator

secondary indexes 5-3

backing up secondary index 6-9
backup, file 6-9
BASEREC (Ccalculation for
defining) A-l

BF command (CSIAMUT1) 8-4
BLKSIZE Ccalculation for
defining) A-l

block locks 6-2
blocked sequential 8-23
blocks

calculations for defining A-1l
clusters) 3-13
clusters, calculating 3-15
data 3-9
data block format example 3-10
data block, calculating 3-12
data paging 10-3
data, calculating intial
number 3-16

free 3-10 |
higher-level index,
calculating 3-19
index 3-13
index block, calculating 3-13
last cluster 3-16
locked during sequential
reading 6-6

primary index (PIXB) 3-13
primary-~level index 3-14
primary-level index,
calculating 3-16
releasing locked 6-2
reserve 3-15
second-level index 3-17
second-level index,
calculating 3-18

buffers
central buffer, paging 10-3
increasing size 10-6
tailoring 8-4

cache 10-3
calculating

BASEREC A-1
BLKSIZE A-l
clusters 3-15
data blocks 3-12
defining data set A-1
delete threshold A-l
DELTHR A-l
FPOOL A-1
FREEBLK A-I
FREEREC A-1
higher-level index blocks 3-19
Index blocks 3-13
initial number, data blocks 3-16
intial size, free pool 3-20
KEYSIZE A-l
primary~level index blocks 3-16
RSVBLK A-l
RSVIX A-1l

Index X-l

second-level index blocks 3-18
calculations
CALL instructions 7-3
cancelling SIAM 10-3
chaining, sequential 3-11
clustered record inserts 3-3
clusters

calculating 3-15
last 3-16
record inserts, clustered 3-3

COBOL coding example C-6
COBOL programs, loading 4-1, 4-5
codes

-1 (Csuccessful) 7-4
error Cpositive) 7-4
negative 7-4
positive 7-4
requests 7-4
return code summary, Indexed Access
Method 7-37
return, obtatning 11-3
successful (€-1) 7-4
sucessful 7-4
system function return 11-3
task code word 7-4&
Warning Cnegative) 7-4

coding Indexed Access Mathod
Requests 7-3

components, Indexed Access
Mathod 1-4, 10-2

concurrent execution 6-2
conditional requests 6-2
connecting file 6-1
contention for resource,
avoiding 10-7
control

returning 6-2

data |
block, calculating 3-12
integrity 6-2
protection 6-393
records 2-l

data blocks
calculating 3-12
format example 3-10

data paging
adjusting size, paging area 10-3
and sequential access 10-3
bytes per page 10-3
deactivate with NP 8-25
define partitions (PP) 8-27
description 10-3
get statistics (PS) 8-28
hit ratio 10-4
least-recently-used algorithm 10-3
other performance
considerations 10-6

overlaying 10-3
plot of paging area sizes 10-5
read/write ratio 10-4
select with PG 8-26
set page area size 10-5
set paging area size 8-27
storage size 10-4
using 10-5

X-2 $C34-0404-1

data record primary key 3-2
data sets

calculations for defining A-l
indexed 1-l
link-edit control B-2
shut-down condition 6-9, 11-3
sort, input 5-16
sort, loading secondary index 5-16
sort, output 5-16
sort, work 5-16
system error log 11-4

data-set-shut-down condition 6-9,
11-3

DE subcommand 8-1
DE subcommand CSIAMUT1) 8-12
deadlocks 11-5
defining

secondary index, and loading 5-8
defining indexed file 8-6
DELETE record Request 7-5
delete threshold 3-20
delete threshold (calculating) A-l
deleting directory entry 8-12
deleting file 6-11
deleting records 6-7
DELTHR Ccalculation for
defining) A-1

DELTHR parameter 3-20
devices supported 1-3
DF command CSIAMUT1) 8-6
DI command (SIAMUT1) 8-9
direct reading 6-4
direct updating 6-5
directory

SIAMDIR Cdirectory name) 5-2
AL subcommand 8-]l1
allocate/insert entries 5-3
allocate, with AL 8-11
automatic update indicator 5-3
DE subcommand 8-1
delete, with AL 8-12
description 5-2
EN subcommand 8-l
end function with EN 8-13
file name 5-2
IE subcommand 8-l
independent processing
indicator 5-2

insert secondary index entry 8-14
invalid indicator 5-3
invoke secondary itndex
functions 8-10

LE subcommand 8-l
list entries with LE 8-15
subcommands 8-1
UE subcommand 8-l
update entry with UE 8-17
volume name 5-2

DISCONN Request 7-8
disconnecting, file 6-1
diskettes for install 12-1
displaying indexed file
parameters 8-3

DR command C(SIAMUT1) 8-10
dump

hexadecimal 6-10
sequential 6-9

DYN parm, adjust free pool 3-22
dynamic file 3-22
dynamic secondary index 5-3

EC command (SIAMUT1) 8-19
echo mode 8-19
EDL CALL Function syntax 7-36
EDL coding example C-]1
EDL program, preparing B-2
EF command CSIAMUT1) 8-20
EN subcommand 8-1
EN subcommand (SIAMUT1) 8-13
ENDSEQ Request 7-10
entries in directory,
allocate/insert 5-3

environment, Indexed Access Method
storage 10-2

ERREXIT Cprocess mode) 7-25
ERREXIT parameter 11-2
error

SIAM task, exit 11-2
SVERIFY messages 9-11
data-set-shut-down condition 11-3
deadlocks 11-5
exit 11-2
handling 11-1
log data set 11-4
logging facility 11-4
long-lock-time condition 11-5
malfunctions, isolate 11-6
messages to S$SYSLOG 11-2
recovery procedure 9-12
task, exit 11-1
verifying requests and files 11-6

error Logging facility
error return code, Request 7-4
examples

SJOBUTIL sample procedure B-2
calculations for defining data
set A-l

COBOL coding C-6
EDL coding C-1
how to use Indexed Access
Method 2-1
link-edit control data set B-3
option 2 3-23

allocating free records 3-24
allocating free records & free
blocks 3-26

allocating reserved data
blocks 3-28

allocating reserved index
entries 3-30

defining a totally dynamic
file 3-33

option 3 3-36
PL“I coding C-13
sample programs C-1
verifying a file 9-3

execution
concurrent 6-2
installation verify program 12-2

exit
STAM task error 11-2
error 11-2
routine 11-2
task error 11-1

EXTRACT request 6-8, 7-12

FCB
See file control block

FCB Extension
See file control block extension

FCBEQU 6-8
FCBEQU module 7-12
file
file control block

description 6-8
extension 3-21
extracting file information 7-12
FCBEQU 6-8
location 3-21
report, SVERIFY 9-6

file control block extension
See also file control block exten-
s10n

description 6-8
extracting file information 7-12
FCBEQU 6-8
report, SVERIFY 9-8

format, secondary record 5-17
forward pointers 3-11
FPOOL (calculation for defining) A-1
free block entry, PIXB 3-15
free block entry, SIXB 3-17
free blocks 3-10
free pool

adjusting with DYN 3-22
calculating 3-20
delete threshold 3-20
DELTHR parameter 3-20
description 3-20

free records 3-10
free space

blocks 3-10
records 3-10
reserve blocks 3-10
reserve index entries 3-10

FREEBLK (calculation for
defining) A-1
FREEREC Ccalculation for
defining) A-li

G

GET record Request 7-15
GETSEQ Request 7-18

H

header 3-9
hexadecimal dump of file 6-10
higher-level index block

calculating 3-19
calculations for defining A-l
description 3-19
index levels, performance 10-6
structure 3-19

hit ratio 10-4
HIXB

See higher-level index block
how to use Indexed Access Method 2-1

Index X-3

ILACBs
disconnect from file 6-2
holding lock 6-2
multiple 6-2

IE subcommand 8-1
IE subcommand CSIAMUT1) 8-14
immediate write-back option 2-4
independent processing indicator 5-2
index block

calculating 3-13
primary level 3-14

index blocks 3-13
Indexed Access Method

components 1-4, 10-2
devices supported 1-3
features 1-1
installing 12-1
languages compatible with 1-4
packages 10-1
performance 10-3
requests 2-7
storage requirements) 10-1
what it does 1-1

indexed data sets I1-l1
indexed file

accessing 6-4
backup and recovery 6-9
blocks 3-7
calculations for defining A-1
connecting, disconnecting 6-1
control block CFCB) 3-21
data paging 10-3
define with DF 8-6
defining and loading 2-]l1
defining using existing data
set 3-4

defining with SIAMUT1 3-4
defining with all parameters 3-4
defining with minimum
parameters 3-4

defining, all parms 3-7
defining, minimum parms 3-5
defining, with existing file
parms 3-35

deleting 6-11
deleting records from 6-7
disconnect [ACB from 6-2
display characteristics 8-20
dynamic 3-22
error messages 9-11
extracting information 6-8
failure to disconnect 6-2
FCB 6-8
FCB Extension 3-21, 6-8
file name, directory 5-2
frea space 3-10
independent 5-2
inserting new records in 6-7
inserting record, no space
for 6-10

journal 6-9
levels affect performance 10-6
load with LO 8-22
loading secondary with application
program 5-16
loading, from a sequential
file 4-4
loading, primary 4-1
logical structure 3-8
maintaining 6-9

X-4& $C34-0404-1

open CPROCESS) 7-25
open for loading (LOAD) 7-21
pointers, verify 9-1
preparing input for 4-3
primary 3-1
prior to using 6-1
processing 2-6
put record in 7-29
record, no space for
inserting 6-10

recovery without backup 6-10
reorganize (RO) 8-30
reorganizing 6-10
resetting parameters 8-29
secondary, format 5-16
sequential blocked 8-23
sequential unblocked 8-23
set parms, structure/size 8-32
size/performance 10-6
structure affects performance 10-6
structure types 3-21
structure, defining 3-4
structured 3-21
unload Cwith UN) 8-41
verifying 6-11, 11-6
verifying, example 9-3

indicator
automatic update 5-3
independent 5-2
invalid 5-3

information, extracting 6-8
input/output

buffer size, increasing 10-6
echo mode 8-19
error 11-3
preparing input for indexed
file 4-3

insert/allocate entries,
directory 5-3
inserting records 6-7
inserts

clustered 3-3
random 3-3
reserving space for 3-11

installation
diskettes for 12-1
Indexed Access Method 12-1
planning for 12-1
running verify program 12-2

integrity, data 6-2
invalid indicator 5-3

journal file 6-9

key
defining 3-2
defining primary 3-2
duplicate, retrieval 6-3
ensuring uniqueness 3-2
more than one 3-2
primary 2-l
random order, loading 4-5
secondary 2-1, 5-1

key relational parameter

See krel
KEYSIZE Ccalculation for
defining) A-]

krel
record retrieving using 67-4

languages to code Indexed Access Meth-
od programs 1-4

last cluster 3-16
LE subcommand 8-l
LE subcommand CSIAMUT1) 8-15
least-recently-used algorithm 10-3
link module 12-1
link-edit application program B-2
link-edit considerations 7-4
LO command (CSIAMUT1) 8-22
load mode 4-1
load module 12-1
LOAD Request 7-21
loading

SIAMUT1, using 4-3
and defining secondary index 5-8
base records from application
program 4-5

base records from sequential
file 4-5

COBOL programs 4-1
indexed file from sequential
file 4-4

load mode 4-1
module 12-1
open file for 7-21
primary file 4-1
process mode ¢-1, 6-2
secondary, sort data sets 5-16
sequentially 6-2
unloading (with UN) 8-41

locked record during update 6-5
locks

deadlocks 11-5
long-lock-time condition 11-5
record or block 6-2
release 6-5

log, system error 11-4
logging facility, error 11-4
long-lock-time condition 11-5

M

maintaining indexed file 6-9
malfunctions, isolate 11-6
messages

SVERIFY 9-11
file error 9-11

modules
link 12-1
load 12-1
removal of storage 10-3
source l2-l

multitasking environment, overlay 67-4

N

negative return code 7-4
NP command CSIAMUT1) 8-25

0

open file, using PROCESS
options

examples, option 2 3-2
examples, option 3 3-3
selection guide 3-4
selection guide, secondary
indexes 5-9
define secondary index 5-101,

1,
2»
2»
3
3,

define with minimum
define secondary ind
define with specific
define secondary ind
defining with existi

parms 3-35
output

FCB Extension report 39
FCB report 9-6
free space report 9-39

overlay
in multitasking environment

packages
SIAM 10-1
SIAMNP 10-1
SIAMNRS 10-1
SIAMRSNP 10-1

paging
See data paging

parameters
defining file with all
defining file with minimum 3-4
defining using existing data
set 3-4

display with DI command 8-9
parm3, parm4, parm5 7-4
reset 8-29
set (with SE) 8-32
values, display 8-9

parm3 3 parm4, parm5S 7-4
performance

data paging feature 10
file size affects 10-6
file structure affects
reducing index levels
secondary index affects

PG command (CSIAMUTI1) 8-26
PIXB

See primary-~level index
PL/I coding example C-13
planning for install 12-1
pointers, forward 3-11
pointers, verify 9-1
positive return code 7-4
PP command (SIAMUT1) 8-27
primary index blocks 3-13
primary index files 3-1
primary-~level index block

7-25

3
5

parms 3
ex 5-12
parms

ex 5-14

ng

8

374

-3

10-6
10-6

10-8

block

Index

-5

3-7

6-4

X-5

allocated entry 3-14
calculating 3-16
calculations for defining A-1
free block entry 3-15
index levels, performance 10-6
reserve blockentry 3-15

process mode 4-1
process mode, loading 67-2
PROCESS Request 7-25
PROCESS request, access file 6-4
processing indexed file 2-6
program

application, link-edit B-2
application, preparing B-1
loading base records from 4-5
variables 7-4

protecting data 6-9
PS command (SIAMUT1) 8-28
PUT Request 7-29
PUTDE Request 7-31
PUTUP Request 7-33, 7-35

random loading, base records 4-5
random record inserts 3-3
RBN Crelative block number) 3-21
RE command CSIAMUT1) 8-29
read/write ratio 10-4
reading, direct 6-4
reading, sequential 6-5
record

base, loading 4-l
calculations for defining A-1
clustered inserts 3-3
concurrent modification 6-2
delete previously read 7-31
deleting 6-7
direct reading 6-4
direct updating 6-5
free 3-10
GETSEQ request 6-5
insert, no space for 6-10
inserting 3-3, 6-7
loading from application
program 4-5

loading from sequential file, ran-
dom order 4-5

locked during update 6-5
locks 6-2
put in file 7-29
random inserts) 3-3
releasing 6-2
releasing lock 6-5
reserving space for inserts 3-11
retrieving 6-3
sample layout 2-1
secondary, format 5-17
sequential reading 6-5
sequential updating 6-6
setting up with SIAMUT1 2-2
update 7-33, 7-35
verify sequence 9-1

recovery
file backup 6-9
procedure, SVERIFY 9-12
Without backup 6-10

recreating file 6-10
relative block number (RBN) 3-21
release lock on record 6-5
releasing locked blocks 6-2

X-6 $C34-0404-1

reorganize indexed file 6-10, 8-30
reorganizing secondary index 6-10
reports

FCB 9-6
FCB Extension 9-8
free space 9-9

request functions, coding C-l
requests/conditions, sequential
updating 6-7
requests, Indexed Access Method 2-7

CALL instructions 7-3
coding 7-3
DELETE Cdelete record) 7-
DISCONN (close file) 7-8
ENDSE@ Csequential
processing) 7-10

error return code 7/7-4%
EXTRACT Cget file
information) 7-12

GET (get record) 7-15
GETSEQ (get record,
sequential) 7-18

link-edit considerations 7-4
list and description 7-2
LOAD Copen file for loading) 7-21
PROCESS Copen filed 7-25
program variables 7-4 |
PUT Cput record in file) 7-29
PUTDE Cdelete record) 7-31
PUTUP Cupdate record) 7-353
RELEASE Crecord) 7-35
return codes 7-4
successful return code 7-4
warning return code 7-4

requests, verifying 11-6
reserve block entry, PIXB 3-15
reserve index entry, SIXB 3-18
resetting indexed file
parameters) 8-29
resource contention, avoiding 10-7
resources, locked 11-5
retrieving

direct, secondary index 6-3
duplicate keys 6-3
sequential, secondary key 6-3

return codes
See codes

RO command CSIAMUT1) 8-30
routine, exit 11-2
RSVBLK Ccalculation for defining)
RSVIX (Ccalculation for defining)

5

i
a
e

f
f

f
e
a
p
e

SE command (CSIAMUT1) 8-32
search argument 6-4
second-level index blocks

calculating 3-18
calculations for defining A-1
description 3-17
free block entry 3-17
index levels, performance 10-6
reserve index entry 3-18

secondary index
allocate/insert entries,
directory 5-3

application programs 5-7
auto-update 6-3
automatic update indicator 5-3
backing up 6-9

define options, guide for
selecting 5-9

defining with existing parms 5-14
defining with minimum parms) 5-10
defining with specific parms 5-12
defining/loading 5-8
description 5-1
direct retrieval 6-3
directory 5-2
dynamic 5-3
example, defining using
SIAMUT1 5-10

file format 5-16
file name 5-2
guide for selecting options 5-9
independent processing
indicator 5-2
insert entry with IE 8-14
Invalid indicator 5-3
invoke directory 8-10
list entries with LE 8-15
loading with application
program 5-16

option selection guide 5-9
performance considerations 10-8
reorganizing 6-10
secondary key 5-1
secondary keys 6-3
secondary record format 5-17
setting up 5-8
sort data sets for loading 5-16
static 5-3
structure 5-8
update entries with UE 8-17
verify contents (SVERIFY) 9-1
volume name 5-2

secondary keys
accessing file by 6-3
sequential retrieval 6-3
using 6-3

sequential
access and data paging 10-3
chaining 3-11
dump 6-9
ENDSEQ Request 7-10
file, loading base records
from 4-5 .

file, loading from 4-4
GETSEQ Request 7-18
load mode 4-1, 6-2
reading 6-5
retrieval 6-3
updating 6-6
updating, requests/conditions 6-7

SIXB
See second-level index blocks

soft exception 11-1
sort tnput data set 5-16
sort output data set 5-16
sort work data set 5-16
Sort/Merge, sort data sets 5-16
source module 12-1]

load
FCBEQU 12-]l
TAM 12-1
ITAMEQU 12-1

space
calculations for defining A-l
free 3-10
reserving 3-11
reserving for inserts 3-l1l

static secondary index 5-3
statistics, extracting 7-12
storage

SVERIFY requirements 9-12
default, working 9-12
environment, Indexed Access
Method 16-2
increasing buffer size 10-6
modify, working 9-13
paging, additional
considerations 10-6
removal of modules 10-3
requirements, determining 10-1
resource contention, avoiding 10-7
size, data paging 10-4
use by data paging 10-3

structure
defining file 3-4
file 3-21
high-level index 3-19
of file affects performance 10-6

structured file 3-21
successful return code 7-4
syntax

EDL CALL 7-36
system error log data set 11-4
system function return codes 11-3

tailoring buffers 8-4
tailoring the Indexed Access
Method 8-4
task code word 7-4, l1-l
task error exit Ill-l
task error exit, SIAM 11-2
task termination 6-2
TCB 7-4
terminal

invoking SVERIFY from 9-3

U

UE subcommand 8-1
UE subcommand CSIAMUT1) 8-17
UN command CSIAMUT1) 8-41
unblocked sequential 8-23
unique keys 3-2
unloading indexed file 8-41
updating, direct 6-5
updating, sequential 6-6
utility, Indexed Access Method

SVERIFY 9-1
AL subcommand Cof DR) 8-11
BF command 8-4
commands 8-3
DE subcommand (of DR) 8-12
description 8-1, 8-2
DF command 8-6
DI command 38-9
DR command 8-10
EC command 8-19
echo mode (EC) 8-19
EF command 8-20 |
EN subcommand Cof DR) 8-13
IE subcommand Cof DR) 8-14
LE subcommand Cof DR) 8-15
LO command 8-22
NP command 8-25
PG command 8-26
PP command 8-27

Index X-7

PS

RO
9E
UE
UN

command 8-28
command 8-29
command 8-30
command 8-32
subcommand Cof DR) 8-17
command 8-41

V

variables, program 7-4
verification program for install 12-2
verify utility :

See SVERIFY utility
verifying file 6-11
volume name, directory 5-2

X-8 $C34-0404-1

W

warning return code, Request
write operations and paging

write-back option 2-4

7-4
10-4

Note: Staples can cause problems with automated mail sorting equipment.

Please use pressure sensitive or other gummedtape to seal this form.

IBM Series/1 Event Driven Executive Indexed Access Method READER'S
Version 2 Guide COMMENT

Order No. SC34-0404-1 FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and

operators of IBM systems. You may use this form to communicate your comments aboutthis publication,

its organization, or subject matter, with the understanding that IBM may use ordistribute whatever

information you supply in any wayit believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any, are deemed

appropriate.

Note: Copies ofIBM publications are not stocked at the location to which this form is addressed.

Please direct anv requests for copies ofpublications, or for assistance in using vour IBM svstem, to

vour IBMrepresentative or to the IBM branchoffice serving vour locality.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM

office or representative will be happy to forward your comments or you may mail directly to the address

in the Edition Notice on the back ofthetitle page.)

SC34-0404-1

Printed in U.S.A.

Reader’s Comment Form

Fold and tape Please Do Not Staple Fold and tape —
—
_
—
e
e
e

n
r

sn
r
se

r
as
e
e
a
e
7

B
u
o
l
y
p
l
o
y

4
0
j
n
n
a
—
—
—
—
—

-

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK,N.Y.

Fold and tape

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation

Information Development, Department 28B

P.O. Box 1328

Boca Raton, Florida 33432

Please Do Not Staple

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

Fold and tape

Note: Staples can cause problems with automated mail sorting equipment.

Please use pressure sensitive or other gummed tape to seal this form.

——e mmm omen eee cere eevee ene mswmm rere meme meee mem teem remem semeeeeERS GD EE GENER GE ES GE EY GEE SPITE GaN «GE GSD EE GSEEeoeee ee ee ee ee

IBM Series/1 Event Driven Executive Indexed Access Method READER'S
Version 2 Guide COMMENT

Order No. $C34-0404-1 FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and

operators of IBM systems. You mayuse this form to communicate your comments about this publication,

its organization. or subject matter, with the understanding that IBM mayuseor distribute whatever

information you supply in anv wavyit believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed

appropriate.

Note: Copres of [BM publications are not stocked at the location to which this form is addressed.

Please direct anv requests for copies ofpublications, or for assistance in using vour [BAL system, to

vour IBM representative or to the IBM branch office serving vour locality.

Thank youfor your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere. an IBM

office or representative will be happy to forward your comments or you may mail directly to the address

in the Edition Notice on the back of the title page.)

SC34-0404-1

Printed in U.S.A.

Reader’s Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.
POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation

Information Development, Department 28B

P.O. Box 1328

Boca Raton, Florida 33432

Fold and tape Piease Do Not Staple

Fold and tape

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

Fold and tape
S
e

e
a
e
e
r
e
r
a
r
!

G
u
o
l
y
p
l
o
y

40
j
n
o
—
—
—

e
S

A
A

T
Y
E
S
S
F
N
S

S
E
T
G
e

G
E
E
G
R
E

S
T
E
E
R
S
G
E
E

G
E
E
G
U

G
E
D
G
U
.

G
e
E
S
G
E

S
E
E
K
S

G
E
E
S

E
S
S
E

A
E
S
.
O
E
S

e
m
m
a
w
e
n
m
e

Note: Staples can cause problems with automated mail sorting equipment.

Please use pressure sensitive or other gummed tape to seal this form.

ne eee cence ewes «memes, meme wenn ememegm cere emperors, memes, armen recentemS SEIT UENO MeN GoTo SEED OES GG «GG ENING GEGEN EE SS GGDRASE SE Ge A ee Se

IBM Series/1 Event Driven Executive Indexed Access Method READER'S
Version 2 Guide COMMENT

Order No. SC34-0404-1 FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and

operators of IBM systems. You mayuse this form to communicate your comments about this publication,

its organization. or subject matter. with the understanding that IBM may use or distribute whatever

information vou supply in anv wavit believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed

appropriate.

Note: Copies of IBM publications are not stockedat the location to which this formts addressed.

Please direct anv requests for copies of publications, or for assistance in using vour IBMsystem, to

vour IBMrepresentative or to the IBM branch office serving vour locality.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM

office or representative will be happy to forward your comments or you may mail directly to the address

in the Edition Notice on the back ofthe title page.)

SC34-0404-1

Printed in U.S.A.

Reader’s Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK,N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation

Information Development, Department 28B

P.O. Box 1328

Boca Raton, Florida 33432

Fold and tape Please Do Not Staple

Fold and tape

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

Fold and tape
—
—
—
e
e
e
e

a
e
a
r
e
r
e
e
D
D

B
H
U
O
l
Y
P
l
o
y

41
03
NO
Q=
-—
e
o

Note: Staples can cause problems with automated mail sorting equipment.

Please use pressure sensitive or other gummed tape to seal this form.

smn ecw crc Mec etmumevems coments GOVE EONAR, QU, rues GENESEE, cits EES “USSN) sceneries remem: «emer cums, ema SEND >, emesis em cme mma cmt teem cermse eee mee eamesgeeeeee

IBM Series/1 Event Driven Executive Indexed Access Method READER’S
Version 2 Guide COMMENT

Order No. $C34-0404-1 FORM

This manual is part of a library that serves as a reference source for systemsanalysts, programmers, and

operators of IBM systems. You mayuse this form to communicate your comments about this publication,

its organization, or subject matter, with the understanding that IBM may use or distribute whatever

information you supply in any wayit believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed

appropriate.

Note: Copies of [BM publications are not stocked at the location to which this form is addressed.

Please direct anv requests for copies of publications, or for assistance in using vour IBMsvstem, to

vour [BAL representative or to the IBM branch office serving vour locality.

Thank youfor your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere. an IBM

office or representative will be happy to forward your comments or you may mail directly to the address

in the Edition Notice on the back ofthe title page.)

SC34-0404-1

Printed in U.S.A.

Reader’s Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK,N.Y.
POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation

Information Development, Department 28B

P.O. Box 1328

Boca Raton, Florida 33432

FORKS HATAHSH SH TH TRH AEDES KHSHRSHSRRHTASEKRHRTSS KSA THHSR CTH ESE HHTHHKHEHT SHH THTETE SSH THER RRARRRKE EORTC HRHCKT STRATES K RRR HPETHTEEHSKRE OHO HMR HOCK REE REET EGERBEHRHHPHe eeeeee

Fold and tape Please Do Not Staple

Fold and tape

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

Fold and tape

—
—
—
—
e
r
a
I

B
U
O
I
Y
P
l
o
y

4
0
1
n
N
D
=
—
—
—
—

|

International Business Machines Corporation

SC34-0404-1

Program Numbers: 5719-AM4

5719-UT5

File No. $1-30

Printed in U.S.A.

