
Series/1

$C34-0438-0

Event Driven Executive

Language Programming Guide
Version 4.0

fe » £4

Library Guide and

Common Index

Installation and

Operator Commands

System Generation and

Guide Utilities Reference

K y © oI ft

: y ,@ :Language Communications Messages and

Reference Guide Codes

c »D % I © J

7 r— \ @ >?
E Operation Guide o Event Driven Reference

Language Cards
Programming Guide

: Dp)@
a > » i,

Problem Customization Internal

Determination Guide Design

Guide

j Dp € DD oD

Series/1

9C34-0438-0

Event Driven Executive

Language Programming Guide

a

Event Driven

Language

Programming Guide

First Edition (May 1983)

Use this publication only for the purpose stated in the Preface.

Changesare periodically madeto the information herein; any such changeswill be

reported in subsequentrevisions or Technical Newsletters.

It is possible that this material may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced

in your country. Such referencesor information must not be construed to mean that

IBM intends to announce such IBM products, programming, or services in your
country.

Publications are not stocked at the address given below. Requests for copies of IBM
publications should be made to your IBM representative or the IBM branchoffice

serving yourlocality.

This publication could contain technical inaccuracies or typographicalerrors. A form

for readers’ commentsis providedat the back of this publication. If the form has

been removed, address your comments to IBM Corporation, Information

Development, Department 27T, P. O. Box 1328, Boca Raton, Florida 33432. IBM

may use or distribute any of the information you supply in any wayit believes

appropriate without incurring any obligation whatever. You may, of course, continue

to use the information you supply.

© Copyright International Business Machines Corporation 1983

This book contains an introduction to the Event Driven Language.

Audience

Chapters 1 through 8 of this book are intended for the application programmer whois coding in

the Event Driven Language forthefirst time. Readers should be familiar with basic data

processing terminology and concepts, such as input, output, and datasets.

Chapters 9 through 18 are intended for application programmers who need information about

such advancedtopics as multitasking, data management from a program, communicating with

other programs, and writing graphics or sensor I/O programs.

This book contains eighteen chapters and three appendixes:

e« Chapter 1. Getting Started describes the steps necessary to develop and run a simple Event

Driven Language (EDL) program.

e Chapter 2. Writing a Source Program tells how to use EDLinstructions to do such things as

read data, write data, convert data, and manipulate data.

About This Book ili

ook

How This B

IV SC34-0438

ook is

Organized (continued)

Chapter 3. Entering a Source Program tells how to use the full-screen editor to enter and

modify a source program.

Chapter 4. Compiling a Source Program shows howto use the Event Driven Language

compiler to translate a source program to object code.

Chapter 5. Preparing Object Code for Execution shows howtouse thelinkage editor to

prepare an object program for execution.

Chapter 6. Executing a Program describes how to run a program that has been compiled and

link-edited.

Chapter 7. Finding and Fixing Errors describes a tool you can use to diagnose program logic

errors and exception conditions.

Chapter 8. Reading and Writing Data from Screens shows howto read and write data from

display terminals. The chapter defines roll screens and static screens and describes how to

write programsthat interact with the operator.

Chapter 9. Designing Complex Programs defines what a program anda task are and describes

multitasking, subroutines, program overlays, segment overlays, and unmappedstorage.

Chapter 10. Performing Data Management from an Application Program describes various

ways to do data management from a program. The chapter describes how toallocate,

delete, rename, and open a dataset. In addition, the chapter shows how tosetthe logical

end offile, add records to a tape data set, and find device type from a program.

Chapter 11. Coding Programs That Use Tape tells how to read to and write from a magnetic

tape dataset.

Chapter 12. Communicating with Another Program (Cross Partition Services) shows how

programscan interact with each other, either within the same partition or between

partitions.

Chapter 13. Communicating with Other Programs (Virtual Terminals) shows how one program

can load another program and how the programscan interact with each other.

Chapter 14. Designing and Coding Sensor I/O Programs describes digital and analog

input/output and showshowto read and write to sensor I/O devices.

Chapter 15. Designing and Coding Graphic Programs shows how to codethe instructions that

produce graphic messages and draw curves on a display terminal.

Chapter 16. Controlling Spooling from a Program describes how a program can control

printed output.

Chapter 17. Creating, Storage and Retrieving Program Messages shows howto save storage

or coding time by creating messages than can be used by more than one program.

HowThis B

ook is Organized (continued)

¢ Chapter 18. Queue Processing shows howto create queues, store data in queues, and retrieve

data from queues.

e Appendix A. Tape Labels showsthe layoutof tape labels.

e« Appendix B. Interrupt Processing describes the interrupts that occur when a program interacts

with a terminal.

e« Appendix C. Static Screens and Device Considerations provides more details on reading and

writing static screens to a terminal.

Aids in Using This Book

This book provides the following aids to assist you in using this book:

e A glossary which defines abbreviations and terms

e An index of topics covered in this book

A Guideto the Library

Refer to the Library Guide and Common Index for information on the design andstructure of the

Event Driven Executive, Version 4.0 library and for a bibliography of related publications.

BMabout Problems

Contacting

You can inform IBM of anyinaccuracies or problems you find when using this book by

completing and mailing the Reader’s Comment Form provided in the back of this book.

If you have a problem with the Series/1 Event Driven Executive services, fill out an authorized

program analysis report (APAR) form as described in the JBM Series/1 Authorized Program

Analysis Report (APAR) User’s Guide, GC34-0099. |

About This Book V

Vi SC34-0438

Chapter 1. Getting Started PG-1

Designing a Program PG-2

Coding the program PG-3

Starting the program PG-3

Defining Your Data PG-4

Retrieving Data PG-4

Processing the Data PG-4

Obtaining the Results PG-5

Ending the Program PG-5

Entering the Source Program into a Data Set PG-6

Compiling Your Source Program PG-11
Checking Your Compiler Listing PG-16

Creating a Load Module PG-17

Running Your Program PG-19

Chapter 2. Writing a Source Program PG-21

Beginning the Program PG-22

Defining the Primary Task PG-22

Identifying Data Sets to be Used in Your Program PG-22

Reserving Storage PG-23

Reserving Storage for Integers PG-23

Defining Floating-Point Values PG-24

Defining Character Strings PG-25

Assigning a Value to a Symbol PG-26

Defining an Input/Output Area PG-27
Reading Data into a Data Area PG-28

Reading Data from Disk or Diskette PG-28

Reading Data from Tape PG-29

Reading from a Terminal PG-29

Contents Vii

Vill SC34-0438

Moving Data PG-31

Converting Data PG-32

Converting to an EBCDIC Character String PG-32

Converting to Binary PG-33

Converting from Floating Point to Integer PG-34

Converting from Integer to Floating Point PG-35

Checking for Conversion Errors PG-36

Manipulating Data PG-36

Manipulating Integer Data PG-36

Manipulating Floating-Point Data PG-42

Manipulating Logical Data PG-45

Writing Data from a Data Area PG-49

Writing Data to Disk or Diskette PG-49

Writing Data to Tape PG-49

Writing to a Terminal PG-50

Controlling Program Logic PG-51

Relational Operators PG-51

The IF Instruction PG-52

The Program Loop PG-54

Branching to Another Location PG-56

Ending the Program PG-57

Chapter 3. Entering a Source Program PG-59

Invoking the Editor PG-59

Creating a New Data Set PG-60

Saving Your Data Set PG-62

Modifying an Existing Data Set PG-63

Changing a Line PG-63

Inserting a Line PG-64

Deleting a Line PG-65

Moving Lines PG-67

Chapter 4. Compiling a Program PG-69
Allocating Data Sets PG-70

Running the Compilation PG-74

Checking Your Compiler Listing and Correcting Errors PG-76

Rerunning the Compilation PG-78

Chapter 5. Preparing an Object Module for Execution PG-81

Link-Editing a Single Object Module PG-82

Link-Editing More Than One Object Module PG-84

Using Interactive Mode PG-86

Using Noninteractive Mode PG-92

Prefinding Data Sets and Overlays PG-93

Chapter 6. Executing a Program PG-95

Executing a Program with the Session Manager PG-96

Specifying Data Sets PG-97

Submitting a Program from Another Program PG-99

Chapter 7. Finding and Fixing Errors PG-101

Determining Logic Errors in a Program PG-101

Creating and Running the Program PG-102

Debugging and Fixing the Program PG-103

Using Return Codes to Diagnose Problems PG-110

Task Error Exit Routines PG-111

The System-Supplied Task Error Exit Routine ($$EDXIT) PG-111

Chapter 8. Reading and Writing Data from Screens PG-115

Whento Use Roll Screens PG-116

Whento Use Static Screens PG-116

Reading and Writing One Line at a Time PG-117

Reserving Storage for the Data PG-118

Reading a Data Item PG-118

Writing (Displaying) a Data Item PG-118

Example PG-119

Two Waysto Use Static Screens PG-121

Coding the Screen within a Program PG-122
Defining a Screen as Static PG-122

Getting Exclusive Access to the Terminal PG-122

Erasing the Screen PG-123

Reserving Storage PG-123

Prompting the Operator for a Data Item PG-123

Positioning the Cursor PG-124

Waiting for a Response PG-124

Reading a Data Item PG-124

Writing a Data Item PG-125

Example PG-126

Writing the Screen Image to a Data Set PG-127

Creating a Screen PG-128

Defining the Screen as Static PG-130

Reading the Screen Image into a Buffer PG-130

Getting Exclusive Access to the Terminal PG-131

Displaying the Screen and Positioning the Cursor PG-131

Reserving Storage for Data PG-132

Waiting for a Response PG-132

Reading a Data Item PG-133

Writing a Data Item PG-134

Link-Editing the Program PG-135

Example PG-136

Chapter 9. Designing Programs PG-139

What Is a Task? PG-139

Initiating a Task PG-140

WhatIs a Program? PG-141

Creating a Single-Task Program PG-141

Contents iX

xX 5C34-0438

Creating a Multitask Program PG-143

Synchronizing Tasks PG-143

Defining and Calling Subroutines PG-144

Defining a Subroutine PG-144

Calling a Subroutine PG-146

Reusing Storage using Overlays PG-147
Using Overlay Segments PG-148

Overlay Programs PG-150

Using Large Amounts of Storage (Unmapped Storage) PG-152

WhatIs UnmappedStorage? PG-152

Setting up Unmapped Storage PG-152

Obtaining Unmapped Storage PG-152

Using an UnmappedStorage Area PG-153

Releasing Unmapped Storage PG-153

Example PG-154

Chapter 10. Performing Data Management from a Program PG-157
Performing Data Management from a Program PG-157

Allocating a Data Set PG-158

Opening a Data Set PG-160

Deleting a Data Set PG-162

Releasing Unused Space in a Data Set PG-164

Renaming a Data Set PG-166

Setting End-of-Data on a Data Set PG-168

Performing More Than One Operation at Once PG-170

Opening a Data Set (DSOPEN) PG-172

DSOPEN Example PG-174

Coding for Volume Independence PG-179

Setting Logical End of File (SETEOD) PG-181
Finding the Device Type (EXTRACT) PG-183

Chapter 11. Reading and Writing to Tape PG-185
WhatIs a Standard-Label Tape? PG-185

WhatIs a Nonlabeled Tape? PG-186

Processing Standard-Label Tapes PG-186

Reading a Standard-Label Tape PG-186

Writing a Standard-Label Tape PG-187

Closing Standard-Label Tapes PG-188

Bypassing Labels PG-188

Processing a Tape Containing More than One Data Set PG-190

Reading a Multivolume Data Set PG-191

Processing Nonlabeled Tapes PG-192

Defining a Nonlabeled Tape PG-193

Initializing a Nonlabeled Tape PG-194

Reading a Nonlabeled Tape PG-195

Writing a Nonlabeled Tape PG-195
Adding Records to a Tape File (UPDATE) PG-196

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-199

Loading Other Programs PG-200

Finding Other Programs PG-203

Starting Other Tasks PG-204

Sharing Resources with the ENQ/DEQInstructions PG-206

Synchronizing Tasks in Other Partitions PG-208

Moving Data Across Partitions PG-209

Reading Data acrossPartitions PG-212

Chapter 13. Communicating with Other Programs (Virtual Terminals) PG-215

Defining Virtual Terminals PG-216

Loading from a Virtual Terminal PG-217

Interprogram Dialogue PG-217

Sample Program PG-218

Chapter 14. Designing and Coding Sensor I/O Programs PG-219
Whatis Digital Input/Output? PG-219
Whatis Analog Input/Output? PG-220
Whatare Sensor-Based I/O Assignments? PG-222
Coding Sensor-Based Instructions PG-222

Providing Addressability IODEF) PG-223

Specifying I/O Operations (SBIO) PG-225

Chapter 15. Designing and Coding Graphic Programs PG-233

Graphics Instructions PG-233

The Plot Control Block PG-235

Example PG-236

Chapter 16. Controlling Spooling From A Program PG-241

Determining Whether Spooling Is Active PG-241

Preventing Spooled Printer Output PG-242

Separating Program Output into Several Spool Jobs PG-244

Controlling Spool Job Processing PG-244

Chapter 17. Creating, Storing, and Retrieving Program Messages PG-247

Creating a Data Set for Source Messages PG-248

Coding Messages with Variable Fields PG-248

Sample Source Message Data Set PG-250

Formatting and Storing Source Messages (using $MSGUT1) PG-250

Retrieving Messages PG-252

Defining the Location of a Message Data Set PG-252

The MESSAGEinstruction PG-253

The GETVALUE, QUESTION, and READTEXTInstructions PG-254

Sample Program PG-255

Chanter 1k, Queue Procesccina PG-259
poee a, GF GASewUy EO SLMeer heraeatcx

Defining a Queue PG-259

Putting Data into a Queue PG-260

Contents Xi

Contents

Retrieving Data from a Queue PG-260

Example PG-261

Appendix A. Tape Labels PG-263

Appendix B. Interrupt Processing PG-265

Interrupt Keys PG-265

The Attention Key PG-265

Program Function (PF) Keys PG-266

Enter Key PG-266

Instructions that Process Interrupts PG-266

The READTEXT and GETVALUE Instructions PG-266

The WAIT KEYInstruction PG-267

The ATTNLISTInstruction PG-267

Advance Input PG-268

Appendix C. Static Screens and Device Considerations PG-269

A Description of Static Screens PG-269

Defining Logical Screens PG-270

Structure of the IOCB PG-272

Some Characteristics of the 3101 Display Terminal PG-273

Attribute Characters PG-273

Transmitting Data from the 3101 PG-273

Screen Formats PG-274

4978/4979 Screen Formats PG-274
3101 Screen Formats PG-274

Static Screen Device Independence PG-275

Designing Terminal-Independent Static Screens PG-275

Compatibility Limitation PG-276

Coding EDLInstructions for Device Independence PG-276

Using the $IMAGESubroutines for Device Independence PG-278

$IMAGESubroutines PG-281
SIMOPENSubroutine PG-282
$SIMDEFN Subroutine PG-284
$IMPROTSubroutine PG-285
$IMDATASubroutine PG-287
Screen Image Buffer Sizes PG-288

Example of Using $IMAGESubroutines PG-289
Reading Modified Data PG-292

Reading Modified Data on the 4978 PG-292

Reading Modified Data on the 3101 PG-292

SUNPACKand $PACKSubroutines PG-293
$UNPACKSubroutine PG-293
$PACKSubroutine PG-294

4978/4979 Static Screen Sample Program PG-295
3101 Static Screens PG-297

Summary of Design Considerations PG-297

3101 Static Screen Sample Program PG-298

Xli SC34-0438

3101 Sample Program PG-308

Sample Program Output PG-312

Glossary of Terms and Abbreviations PG-313

Index PG-323

Contents Xiil

XiV SC34-0438

p
=

m
h

pem
mh

om
e

pe
ek

&
W
N

—
_

. Single-Task Application Example PG-142

. Multitask Program Structure PG-143

. Application Overlay Segments PG-148

. Overlay Segmentsin Series/1 Storage PG-148
EDL Overlay Programs PG-150

. EDL Overlay Programsin Series/1 Storage PG-151

. Sensor Device Connections PG-221

. Sensor-Based Symbolic I/O Assignment PG-222

. Graphics Program Output PG-239

. Determining if Spooling is Active PG-242

. Program-Controllable Spooling Flow Chart PG-243

. 4978/4979 Static Screen Sample Program PG-295

. 3101 Static Screen Sample Program PG-308

. 3101 Sample Program Output PG-312

Figures XV

XVI SC34-0438

This chapter is intended for people who have never coded an EDL (Event Driven Language)

program. It describes the steps necessary to develop and run a simple program onthe Series/1.

Specifically, this chapter shows you howto design, code, enter, compile, link-edit, and execute

an Event Driven Language (EDL) program.

Wewill show youall these steps using a simple example program. You may choose to actually

enter and run this program on your Series/1 to gain hands-on experience.

Each of the majorsteps in the development and execution of an EDL programis covered in

greater detail later in this book. The following chart describes these steps and shows you where

in this book the material is covered.

Write the source program Write a source program that does such things as read data,

manipulate data, and write data (Chapter 2).

Enter the source program Enter the source program by using the Session Managerto

build a data set (Chapter 3).

Compile the source program Compile your source program (produce object code from

| source code) (Chapter 4).

Link-edit the program Produce an executable load module (Chapter 5).

Run the program Cause your program to run or ‘“‘execute”’ (Chapter 6).

Chapter 1. Getting Started PG-1

PG-2

gning a Program

SC34-0438

Find and fix errors Use the $DEBUGutility or a task error exit routine to help

you locate and correct any problemsin your program

(Chapter 7).

If you are familiar with EDL and the EDX operating system, skip this chapter and go to

Chapter 2.

Thefirst step in the development of any program is the design of the program. You must be

able to describe what you want the program to accomplish.

Typically, a program reads some data, processes the data, and writes the results. The sample

program wehave chosen doesall of these. The program requests that an operator enter a

numberat the terminal. That numberis added to a storage area ten times, and the results are

displayed on the terminal screen.

Here are some questions you should ask when you plan a program. We have shown how we

answered those questions in our sample program.

Questions In our program

Whereis the data coming from and The data is a numberthat the operator

what form will it take? enters at the terminal.

What do you want to do with the data The numberthat is entered from the

and in what order do you wantto terminal will be added ten times to a

processthe data? storage area that you define.

Wheredo youprint or record the The results are displayed on the terminal

results? screen.

In the next section, we will show you how to implementthis design in an EDL program.

d)

m(continue

On the next few pages, we will show you how the design of this program was implemented. We

will build the program step by step. Wewill not describe every possible operand of the

instructions we use. (Operands for every EDL instruction are fully described in the Language

Reference.)

EDLinstructions and statements have the general format:

label operation operands

where these terms have the following meanings:

label The name youassign an instruction or statement. You can use this name in your

program to refer to that specific instruction or statement. In most cases, the

label is optional. Labels must begin in column 1; must begin with a letter or one

of the special characters $, #, or @; and must be 1 to 8 characters long.

operation The nameof the instruction or statement you are coding. The operation can

begin in column 2 and cannot extend beyond column 71.

operands The data that is required to do an operation, or information on how the system is

to perform the operation.

To continue a line of code on the nextline, place any nonblank character in column 72 and

continue the next line in column 16.

Starting the program

Any EDLprogram begins with the PROGRAM statement.

A PROGRAM statement defines the addressor label of the first instruction to be executed. The

PROGRAM statementalso defines the name of the primary task of the program. (EDL

programs mayconsist of multiple tasks. In our sample program,the primary task is the only task

of the program.)

Our program statementlookslike this:

ADD10 PROGRAM STPGM

ADD10is the task name of the primary (and only)task.

STPGMis the label of the first instruction to be executed.

Chapter 1. Getting Started PG-3

m (continued

Defining Your Data

The program needs two data areas: one to hold the input and oneto hold the results of the

process. Use the DATAstatementto reserve storage for data.

ADD10 PROGRAM STPGM

COUNT DATA F'O'
SUM DATA F'O!

These DATAstatements indicate that the reserved areas are type F (for fullword) and that the

initial value of the areasis 0.

Since DATAstatements do not cause any action to occur, place them either before thefirst

instruction or after the last instruction.

Retrieving Data

The next step is to get input data into the program. In this program, we use a GETVALUE

instruction to get the data.

ADD10 PROGRAM STPGM
oTPGM GETVALUE COUNT, ‘ENTER NUMBER: '

COUNT DATA F'Q'
SUM DATA F'OQ'

When the GETVALUEinstruction executes, the message “ENTER NUMBER: ” appears on

the terminal screen. When someoneenters a numberand presses the ENTER key, the system

stores the numberin the data area called COUNT.

Processing the Data

This program is going to add the numberthatis entered from the terminal to the contentsof

storage area SUM. You need an ADDinstruction to perform the addition. The numberis going

to be added to COUNTten times. So the ADDinstruction is placed inside a DO loop, which

consists of a DO instruction and an ENDDOinstruction. The DOinstruction indicates how

manytimesthe instructions (in this case, an ADDinstruction) is to be executed.

PG-4 SC34-0438

ADD10
STPGM
LOOP

COUNT

Obtaining the Results

At this point, the program includesinstructions to read data and process the data

PROGRAM
GETVALUE
DO

ADD
ENDDO

DATA
DATA

STPGM
COUNT, 'ENTER NUMBER: '
10, TIMES
SUM, COUNT

results, you use two instructions: PRINTEXT and PRINTNUM.

ADD10
STPGM
LOOP

COUNT
SUM

PROGRAM
GETVALUE
DO

ADD
ENDDO
PRINTEXT
PRINTNUM

°

DATA
DATA

STPGM
COUNT, 'ENTER NUMBER: '
10, TIMES
SUM, COUNT

' MRESULT='
SUM

F'O!
F'Q'

. To print the

The PRINTEXTinstruction will print ““RESULT=”on the terminal screen. The “‘@” symbol

will cause ‘““RESULT=”’ to be printed on a new line on the terminal screen. The PRINTNUM

instruction will print the results of the process, which is stored in the SUM dataarea.

The program needs three more statements to be complete. The PROGSTOPstatement stops

the program. You code PROGSTOPafter the last executable instruction in the program.

All EDL programs must end with the ENDPROG and ENDstatements.

The completed program lookslike this:

ADD10
STPGM
LOOP

COUNT
SUM

PROGRAM
GETVALUE
DO

ADD
ENDDO
PRINTEXT
PRINTNUM
PROGSTOP

DATA
DATA
ENDPROG
END

STPGM
COUNT, 'ENTER NUMBER: '
10,TIMES
SUM, COUNT

' @RESULT='
SUM

F'Q!
F'Q!

Chapter 1. Getting Started PG-5

im(continued

The next step is to enter your program into a data set. The instructions and statements that

make up a program are called the source program. We will show you howto use the session

managerto enter the source program. The session manager provides a series of menusto help

you enter a source program.

PG-6 SC34-0438

All the steps for entering the source program are listed below. If you want to actually enter the

sample source program into a data set, follow the numberedsteps.

To invoke the session manager on your terminal:

1. Press the attention Key.

2. Type $L $SMMAIN.

3. Press the enter Key.

Whenyoupressthe enter Key, the logon screen appears:

(‘ssmntos: THIS TERMINAL 1S LOGGED ON TO THE SESSION MANAGER-------------

09:55:31
=> 10/24/82ENTER 1-4 CHAR USER ID

(ENTER LOGOFF TO EXIT)

il lt VvALTERNATE SESSION MENU (OPTIONAL)

To begin a session:

1. Type a uniqueuseridentification (called a user ID). The user id can be oneto four

characterslong.

2. Press the enter key.

This chapter uses ABCDasthe user ID.

Entering the Source Program into a Data Set (continued)

The Primary Option Menu appears on the screen. To enter a source program into a dataset,

select option 1 (TEXT EDITING).

ENTERSELECTSPARAMETERS:

— TEXT EDITING
- PROGRAM PREPARATION
- DATA MANAGEMENT
> TERMINAL UTILITIES

- GRAPHICS UTILITIESss
- EXEC PROGRAM/UT My,
= EXEC $JOBUTIL PROC
= COMMUNICATION UTILITIES
- DIAGNOSTICAIDS ss”

 C
e
e
e
e

2

1. Type ton the SELECT OPTIONline.

2. Press the enter key.

(sumpRin: SESSION MANAGER. PRIMARY OPTION MENU[oT
| ee PRESS PF3 TO EXIT

. “SELECTOPTION=>Le10/24/82.

oo concnn Cah an eee a on am cD am an ame aie me.

The $FSEDIT PRIMARY OPTION MENUappearson the screen. Use option 2 (EDIT) to

create a new dataset.

 OPTION= 2 |

HOST DATASETenn

ENTER A VOLUME NAME AND PRESS ENTER FOR ADIRECTORY List.

---- ‘BROWSE.
---- EDIT. :
---- READ GSTINATIVES |
---- WRITE (HOST/NATIVE)
---- SUBMIT|
---- PRINT
---- MERGE

----END |
~--- HELP ~

(
e
e
e

GrseDIT PRIMARY OPTION MENU wnannnnnnn nn=======2======---STATUS = INIT.
a PRESS PES TO EXIT

DATASET NAME=“ oo dennia

Chapter 1. Getting Started PG-7

Getti
n

Entering

1. Type onthe OPTIONline.

2. Press the enter key.

Your data set then appears. This is where you will type the source program.

{ EDIT --- SSMEABCD , EDX002 0(1089)---------------------- COLUMNS 001 072
| COMMAND INPUT ===> | SCROLL ==> HALF
| AAAKA AAKKK TOP OF NATA REXRKAARAARAKAKAKAAAKKAKARARKARARKRAKRARRARERRRRARERR

F eeeee

i KAKKK KKKKK BOTTOM OF DATA KRKAKKKEKKREKEREKKRKRAKREKRERRKREKKRKRKRRRKRKREKRRRKREK

To enter the source program, do the following:

1. Type the first line of code.

2. Press the enter key to cause a blank entry line to appear.

3. Type the next line of code.

4. Press the enter key.

5. Repeat steps 3 and 4 until you have entered the entire source program.

6. When youfinish entering the source program, move the cursor to the COMMAND INPUT

line and type M(for ‘“‘menu’’).

7. Press the enter key.

(eoit --- SSMEABCD , EDX002 0(1089)------------------------ COLUMNS 001 072 _
COMMAND INPUT ===> M SCROLL ==> HALF
KREKK KKKKSE TOP OF DATA KKAKKEAKKAKEKKRARKRERKRRKKRRKEERKRARRERKRERRERERKRRKKKREKKEREREKEK

00010 ADD10 PROGRAM STPGM
00020 STPGM GETVALUE COUNT, 'ENTER NUMBER: '
00030 LOOP DO 10, TIMES
00040 ADD SUM, COUNT
00050 ENDDO
00060 PRINTEXT ‘@RESULT='
00070 PRINTNUM SUM
00080 PROGSTOP
00090 COUNT DATA F'o'
00100 SUM DATA F'o'
00110 ENDPROG
00120 END
KeAKK KeEAKK BOTTOM OF DATA PKKKKKKARKRRRKRAKRRRKKRARRRKRRRAKARKRRRKRKRRKEAR

PG-8 SC34-0438

The $FSEDIT PRIMARY OPTION MENUappearsagain.

The next step is to write the data set to a volume. When you write the data set, you copy the

data set from the temporary data set that $FSEDIT has been using. The data set name we have

chosen is ADD10 and the volume name is EDX002. Select option 4 (WRITE) to write the data

set to a volume.

SFSEDIT PRIMARY OPTION MENU ---------------wen nnnnnnnn--- STATUS = MODIFIED 2
PRESS PF3 TO EXIT

OPTION ===> 4 os :

DATASET NAME =========> ADDIO —- (CURRENTLY _IN WORK DATASET)
VOLUME NAME ==========> EDX002 es

HOST DATASET ========> ee

ENTER A VOLUME NAME AND PRESS ENTER FOR A DIRECTORY LIST.

1 ---- BROWSE [
2---- EDIT a
3 ---- READ (HOST/NATIVE)
4 ---- WRITE (HOST/NATIVE)
5 ---- SUBMIT ee
6 ---- PRINT
7 ---~ MERGE
8 ---- END
9 ---~ HELP a
a a

1. Type 4o0n the OPTIONline.

2. Type ADD10on the DATASET NAMEline.

3. Type EDX062 on the VOLUME NAMEline.

4. Press the enter key.

The prompt:

| WRITE TO ADD10 ON EDX002 (¥/N)?

appears on the bottom of the screen. Type Y andpressthe enter key.

The message:

| 12 LINES WRITTEN TO ADD10 __,EDX002
:

4

|
ao

appears on the bottom of the screen. This message meansthat your source program is 12 lines

long and has been written to volume EDX002.

Chapter 1. Getting Started PG-9

a set (continued)

Nowthat you have entered and written the source program to a data set, return to the Session

Manager Primary Option Menu.

tsecenit PRIMARY OPTION MENU ---------Jaclesskile----STATUS = SAVED »
as PRESS PF3 TO EXIT

OPTION ===>8

DATASET NAME =========> (CURRENTLY IN WORK DATASET)
VOLUME NAME =S=s22=====> ae

HOST DATASET ========>

ENTER A VOLUME NAME AND PRESS ENTER FOR A DIRECTORY LIST.

1 ---- BROWSE
2 ---- EDIT
3 ---- READ (HOST/NATIVE)
4 ---- WRITE (HOST/NATIVE)
5 ---- SUBMIT
6 ---- PRINT
7 ---- MERGE
8 ---- END
9 ---- HELP

\. Sf

1. Type8 on the OPTIONline.

2. Press the enter key.

PG-10 SC34-0438

Data Set(continued

To prepare a source program to run on the system, you must compile it into object code. To do

this, use $EDXASM, the EDX compiler.

Before you actually begin to compile, you must allocate a data set to hold the output (the object

code). Startby selecting option:3 (DATAMANAGEMENT).

C.SESSIONMANAGERPRIMARYOPTION MENUa
beaaPARAMETERS: CsPRESS Pra TO EXIT~

10: Wo:07 :
10/24/82"SELECT.OPTION= ao

“TEXTEDITING oe
PROGRAMPREPARATION
DATA MANAGEMENT —
TERMINALUTILITIES

GRAPHICSUTILITIES
EXECPROGRAM/UTILITY
EXEC $JOBUTIL PROC =i —st—‘“‘is—
COMMUNI CATION.urikiries
DIAGNOSTICAIDS”

1
4
a
Y
a
p
a
e

l
o
s

 (WONA
U
E
W
N
=
|

1. Type 30n the SELECT OPTIONline.

2. Press the enter key.

Chapter 1. Getting Started PG.

The Data Management Option Menu appears on the screen. To allocate your object code data

set, you select option 1 ($DISKUT1).

f.
SSMM03 SESSION MANAGER DATA BANAGEMENT OPTION MENU~---~-~~-~---~---------
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SELECT OPTION ==> j

- SDISKUT1 (DISK(ETTE) ALLOCATE, LIST DIRECTORY)
- SDISKUT2 (DISK(ETTE) DUMP/LIST DATASETS)
- $COPYUT1 (DISK(ETTE) COPY DATASETS/VOLUMES)
- SCOMPRES (DISK(ETTE) COMPRESS A VOLUME)
- SCOPY (DISK(ETTE) COPY DATASETS/VOLUMES)

SDASDI (DISK(ETTE) SURFACE INITIALIZATION)
- SINITDSK (DISK(ETTE) INITIALIZE/VERIFY)
- SMOVEVOL (COPY DISK VOLUME TO MULTI-DISKETTES)
- SIAMUT1 (INDEXED ACCESS METHOD UTILITY PROGRAM)
- STAPEUT1 (TAPE ALLOCATE, CHANGE, COPY)
- SHXUT1 (H-EXCHANGE DATASET UTILITY)—

O
W

S
O
N
H
W
W
H
w

D
b
—

|

WHEN ENTERING THESE UTILITIES, THE USER IS EXPECTED
TO ENTER A COMMAND. IF A QUESTION MARK (7) IS ENTERED
INSTEAD OF A COMMAND, THE USER WILL BE PRESENTED WITH
A LIST OF AVAILABLE COMMANDS

\ | /
1. Type i on the SELECT OPTIONline.

2. Press the enter key.

PG-12 SC34-0438

am(continued)

The $DISKUT1utility prompts you for the commandandfor information about the data set you

want to create. Use the AL (allocate) command. Call the data set that will hold the object code

ADDOBJ. Allocate a 25-record data set and use the default data type.

7.

8.

LOADING $DISKUTI - 59P,11:00:00, LP=9200, PART= 1

SDISKUT1 - DATA SET MANAGEMENT UTILITY |

USING VOLUME EDX002

COMMAND (2): AL”
‘MEMBER NAME: ADDOBJ
HOWMANY RECORDS? 25 ee
DEFAULT TYPE = DATA - OK (Y/N)? Y
ADDOBJ CREATED

COMMAND (7): EN

‘

Type AL on the COMMAND(7?) line.

Press the enter Key.

Type ADDOBJ on the MEMBER NAMEline.

Press the enter key.

Type 25 next to the HOW MANY RECORDS?prompt.

Press the enter key.

Type Y next to the DEFAULT TYPE = DATA- OK (Y/N)? prompt.

Press the enter key.

A message appearstelling you that the ADDOBJ data set has been created. Enter the EN (end)

commandto return to the Data Management Option Menuscreen.

1. Type EN next to the COMMAND(?) prompt.

2. Press the enter key.

The next step is to return to the Session Manager Primary Option Menuto begin the compile.

To return to that menu, press the PF3 key.

Chapter 1. Getting Started PG-13

Getting Started

Compiling Your Source Program (continued)

From the Session Manager Primary Option Menu,select option 2 (PROGRAM

PREPARATION)to begin the compile step.

 f—

SSMMPRIM: SESSION MANAGER PRIMARY OPTION MENU eaeeeepennennnannanaen-ne
ENTER/SELECT PARAMETERS: | PRESS PF3 TO EXIT

. | | 11:12:07
SELECT OPTION ==> 2 | 10/24/82.

ABCD

~ TEXT EDITING
~ PROGRAM PREPARATION
~ DATA MANAGEMENT
- TERMINAL UTILITIES

GRAPHICS UTILITIES
- EXEC PROGRAM/UTILITY
- EXEC $JOBUTIL PROC
- COMMUNICATION UTILITIES
- DIAGNOSTIC AIDS L

O
C
O
M

O
N
A
S
T
S
w

N
e
=

i

\

1. Type 2o0n the SELECT OPTIONline.

2. Press the enter key.

The Program Preparation Option Menu appears on your screen. To compile the source

program, select option 1 (SEDXASM COMPILER).

(Sn SESSION MANAGER PROGRAM PREPARATION OPTION MENU--------------------

ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SELECT OPTION ==> 1

- SEDXASM COMPILER
- $EDXASM/SEDXLINK
- $S1ASM ASSEMBLER
- SCOBOL COMPILER

SFORT FORTRAN COMPILER
- SPL| COMPILER/SEDXLINK
- SEDXLINK LINKAGE EDITOR
-- SXPSLINK LINKAGE EDITORFOR SUPERVISORS
- SUPDATE

10 - SUPDATEH (HOST)
11=o- SPREFIND | |
12 - SPASCAL COMPILER/SEDXL INK
13 - SEDXASM/$XPSLINKFOR SUPERVISORS

W
O
N
A
U
E
W
N
—

1

1. Type ton the SELECT OPTIONline.

2. Press the enter key.

PG-14 SC34-0438

The $EDXASM Parameter Input Menu appears on your screen. You must enter the name of

your source program (data set ADD10 on volume EDX002) and your object output (data set

ADDOBJ on volume EDX002).

$SMM0201: SESSION MANAGER SEDXASM PARAMETER INPUT MENU------wrcerrscrtr rrln
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SOURCE INPUT (NAME,VOLUME) ==>ADD10,EDX002

OBJECT OUTPUT (NAME ,VOLUME) ==> ADDOBJ,EDX002

OPTIONAL PARAMETERS ==>
(SELECT FROM THELIST BELOW)

oe ae cee ce eee ee ee ae cee ca ee ee et eee me anes ene eee ne ee) ame enh om me ee ens menl c eoe e em me oe eee eee tome noe nm ame mes om eon, oe ome oe moe oe

AVAILABLE PARAMETERS : ABBREVIATION: | DESCRIPTION:
NOLIST NO | | USED TO SUPPRESS LISTING
LIST TERMINAL-NAME L1! TERMINAL-NAME USE LIST * FOR THIS TERMINAL
ERRORS TERMI NAL-NAME ER TERMINAL-NAME USE ERRORS * FOR THIS TERMINAL
CONTROL DATA SET,VOLUME CO DATA SET,VOLUME SEDXASM LANGUAGE CONTROL DATASET
OVERLAY # | OV # | # 1S NUMBER OF AREAS FROM 1 TO 6

DEFAULT PARAMETERS:
| LIST $SYSPRTR CONTROL $EDXL,ASMLIB OVERLAY 4 S

1. Type ADD10,EDx002 next to SOURCE INPUT (NAME,VOLUME).

2. Type ADDOBJ,EDX002 next to OBJECT OUTPUT (NAME,VOLUME).

3. Press the enter key.

$EDXASMthen compiles the source program into object code and puts the object code into

data set ADDOBJ. This data set is used as input to the next step, ‘‘Creating a Load Module.”’

The information listed under DEFAULT PARAMETERSmeansthat the compiler will print a

listing of the program on the system printer, $SYSPRTR.

Chapter 1. Getting Started PG-15

PG-16 SC34-0438

m(continued)

As the compilation runs, the following appears on yourscreen.

LOADING SJOBUTIL 4P111:21:25, LP= 9400, PART= 1 aN
REMARK 7
ASSEMBLE ADD10,EDX002 TO ADDOBJ,EDX002
*** JOB - SEDXASM - STARTED AT 11:21:56 00/00/00 ***

JOB SEDXASM (S$SMP0201) USERID=ABCD
LOADING SEDXASM 78P,11:22:28, LP= 9800, PART= 1

ASSEMBLY STARTED 1 OVERLAY AREA ACTIVE
COMPLETION CODE = -|

SEBXASM ENDED AT 11:22:55

SJOBUTIL ENDED AT 11:22:56

PRESS ENTER KEY TO RETURN Sy

If the screen gets filled up before displaying PRESS ENTER KEY TO RETURN,pressthe

enter key.

A completion code of -1 means that your compilation completed successfully. Any completion

code other than -1 means the program did not compile successfully.

@

mpiler Listing

The compiler prints a listing that consists of statistics, source code statements and object code,

undefined or external symbols, and a completion code.

If you do not receive a completion code of -1, check yourlisting for errors, fix them in your

source data set, and rerun the compilation. For information on fixing compiler errors, see

“Checking Your Compiler Listing and Correcting Errors” on page PG-76.

If you receive a completion code of -1, do the following:

1. Press the enter key to return to the $EDXASM Parameter Input Menu.

2. Press the PF3 key to return to the Program Preparation Option Menu.

mpiling Your Source P

(continued)

Creating a Load Module

Thelast step is creating a load module. The load module runs or “‘executes’’ on the system. In

this example, we use the linkage editor, $EDXLINK,to create the load module. $EDXLINK

LINKAGE EDITORis option 7 on the Program Preparation Option Menu.

SSMMO2 SESSION MANAGER. PROGRAM PREPARATION OPTION MENU----------------------
ENTER/SELECT PARAMETERS: S | : | PRESS PF3 TO RETURN

SELECT OPTION ==>7

~ SEDXASM COMPILER:
- SEDXASM/SEDXLINK .
- $S1ASM ASSEMBLER
- $COBOL COMPILER a

SFORT FORTRAN COMPILER
- $PLI COMPILER/SEDXLINK |
- SEDXLINK LINKAGE EDITOR .
- $XPSLINK LINKAGE EDITOR FOR SUPERVISORS
- SUPDATE:

10 - SUPDATEH (HOST)
11 - SPREFIND |
= 12 - $PASCAL COMP ILER/S$EDXLINK
13 - SEDXASM/SXPSLINK fFOR SUPERVISORS |

W
O
U
K
R
U
E
W
H
=

I

1. Type 7 0n the SELECT OPTIONline.

2. Press the enter key.

The $EDXLINK Parameter Input Menu appears on your screen. Enter an asterisk (*) next to

EXECUTION PARM toindicate that you want the system to prompt youforlinkage editor

statements.

ens oT oe,
$SMMO207: SESSION. MANAGER. SEDXLINK PARAMETER INPUT MENU=~-~=7>=""c-errconnnno

ENTER/SELECT. PARAMETERS : oe 2 : : PRESS PRRTO RETURN

so

| EXECUTION PARM==> *

ENTER A CONTROL DATA SET NAME,VOLUME OR
AN ASTERISK(*) FOR INTERACTIVE MODE. OUTPUT DEVICE (DEFAULTS TO $SYSPRTR) ==> | og

Ne

1. Type *on the EXECUTION PARM line.

Chapter 1. Getting Started PG-17

PG-18 SC34-0438

2. Press the enterkey.

$

NK y,

EDXLINKdisplays the following screen:

LOADING $JOBUTIL 4P,11:27:06, LP= 9400, PART= 1
REMARK
SEDXLINK *
*X*X JOB - SEDXLINK - STARTED AT 11:27:16 11/13/82 ***

JOB SEDXLINK ($SMP0207) USERID=ABCD
LOADING SEDXLINK 89P 11:27:18, LP= 9800, PART= 1

SEDXLINK - EDX LINKAGE EDITOR

SEDXLINK INTERACTIVE MODE
DEFAULT VOLUME = EDX002

STMT (7):
Next, enter an INCLUDEstatementto indicate which object module to use. (Remember, the

object module is ADDOBJ.) Then, enter a LINK statementto indicate the name of the output

data set. When you enter the nameofthis data set (in this case, ADDPGM),the system

allocates the data set.

2.

3.

4.

Type INCLUDE ADDOBJ,EDx002 next to STMT(?).

Press the enter key.

Type LINK ADDPGM,EDx002 next to STMT(?).

Press the enter key.

After the system indicates that the link-edit is successful, return to the Primary Option Menu to

execute your program. To return to the Primary Option Menu:

1.

2.

Type EN next to STMT(7).

Press the enter key.

Press the PF3 key to return to the Program Preparation Option Menu.

Press the PF3 keyagain.

To run (or execute) your program,select option 6 (EXEC PROGRAM/UTILITY).

SSMMPR IM: SESSION MANAGER PRIMARY OPTION MENU ~-~~- nnn nn nrnnnrrrr rrrrrr
ENTER/SELECT PARAMETERS: . PRESS PF3 TO EXIT

oo : | See | 11:42:07.
SELECT OPTION ==> 6 © 10/24/82
- = | | ABCD |

- TEXT EDITING |
- PROGRAM PREPARATION
- DATA MANAGEMENT
- TERMINAL UTILITIES

GRAPHICS UTILITIES
= EXEC PROGRAM/UTILITY
- EXEC $JOBUTIL PROC ~
- COMMUNICATION UTILITIES
- DIAGNOSTIC AIDS W

O
N
K
R
U
E
W
N
—

I

1. Type 6 on the SELECT OPTIONline.

2. Press the enter key.

The Execute Program/Utility menu appears. You must enter the program name (ADDPGM)

and volume (EDX002). Then, type asterisks (*) next to the data sets not used.

aa .
(oe | |
SSMMO6 SESSION MANAGER EXECUTE PROGRAM/UTILITYSREPATOTTRTT
ENTER/SELECT PARAMETERS: | | es PRESS PF3 TO RETURN

PROGRAM/UTILITY (NAME , VOLUME) ==> ADDPGM,EDX002

PARAMETERS ===>

DS1 NOT USED)
DS2 NOT USED)
DS3 NOT USED)

DATA SET 1 (NAME,VOLUME / *
DATA SET 2 (NAME,VOLUME / *
DATA SET 3 (NAME,VOLUME / * W

o
e

ou

h
o
n
o
n

o
w

ot
W
o
W

ou
Vv

NOTE: IF A DATA SET (DS1, DS2 OR DS3) IS NOT USED,
L AN ASTERISK (*) MUST BE ENTERED IN THE DATA SET FIELD.
1. Type ADDPGM,EDx002 next to PROGRAM/UTILITY (NAME,VOLUME).

N Type an asterisk in the DATA SET 1, DATA SET2, and DATASET3 fields.

3. Press the enter key.

Chapter 1. Getting Started

‘

PG-19

Getting Started

Running Your Program

PG-20 5C34-0438

(continued)

The following text appears on the terminal:

LOADING $JOBUTIL =4P,11:48:21, LP= 9400, PART= 1
REMARK | = oes
EXECUTE PROGRAM/UTILITY: ADDPGM
aK JOB - ADDPGM - STARTED AT 11:48:22 11/14/82 *** —

JOB ADDPGM (S$SMP06) USER | D=ABCD
LOADING ADDPGM 2P,11:48:23, LP= 9800, PART= 1
ENTER NUMBER:

The program displays ENTER NUMBERonthe screen and waits for you to enter a number.

(Rememberthat “ENTER NUMBER”was coded on the GETVALUEinstruction.)

1. Type 5 next to ENTER NUMBER.

2. Press the enter key.

LOADING ADDPGM 2P,11:48:55, LP= 9800, PART= 1
ENTER NUMBER: 5

RESULT= 50
ADDPGM ENDED AT 11:48:57

SJOBUTIL ENDED AT 11:48:58

 PRESS ENTER KEY TO RETURN

The program displays the results of the processing. The program:

1.

2.

3.

4.

Stored the number you entered (5) in an area called COUNT.

Added the value of COUNTto the value of SUM, which wasinitialized to 0.

Addedthe two values 10 times.

Displayed the result (RESULT= 50) on the terminal screen.

The PRINTEXTinstruction displayed RESULT=. The PRINTNUMinstruction displayed the

value of SUM (50).

This chapter tells how to use the EDLinstructions to handle the basic functions of the language:

reading and writing data, data conversions, and data manipulation (such as moving, adding, and

subtracting.)

This chapter discusses the following topics:

¢ Beginning the program

e Reserving storage

e Reading data into a data area

« Moving data

e Converting data

e Manipulating data

e Writing data from a data area

e Controlling program logic

e Ending the program

All the instructions are discussed in detail in the Language Reference. This chapterlists the

instructions by function and discusses only a subset of them.

Chapter 2. Writing a Source Program PG-21

Thefirst statement in every EDL program must be a PROGRAMstatement. The PROGRAM

statement defines several things about the program to the Event Driven Executive, only two of

whichare discussed in this section.

Defining the Primary Task

Two important functions of the PROGRAMstatementare to define the “‘primary task’’ and

provide the label of the first “‘executable instruction.”’

The primary task is the first task the system starts when you invoke the program.

An executab/e instruction causes some action to take place. For example, instructions that read,

write, move, or perform arithmetic operations are executable instructions.

The following example shows a program with task name TASK1. Its first executable instruction

is at location START1.

TASK1 PROGRAM START 1

identifying Data Sets to be Used in Your Program

Another important function of the PROGRAMstatementis to identify the data sets that a

program will use.

The DS= keyword operand of the PROGRAM statementallows you to idenfity up to nine data

sets that the program can use. A keyword operand usually contains an equal (=) sign. The

“keyword”to the left of the equal sign identifies what information you are supplying. The

keyword operand must appear, of course, exactly as the system expects it. For example, if you

code the DS= operand as SD=, the system would not recognize it. The advandage of keyword

operandsis that you can code them in any order.

When you specify data set names in the PROGRAM statement, the system opens the datasets

when you load the program.

Whenthe program executes, all data sets must already exist. One wayto allocate data setsis

with the $DISKUT1utility.

If a program uses one dataset and the data set resides on the IPL volume, the PROGRAM

statement might look like this:

UPDATE PROGRAM START1 ,DS=TRANS

The program uses data set TRANSon the IPL volume.

If a program uses more than onedataset and thedatasetsall reside on the IPL volume, the

DS= operand would contain oneset of parenthesesas follows:

UPDATE PROGRAM START 1,DS=(TRANS,MASTIN,MASTOUT)

PG-22 SC34-0438

jy the Program (continued)

The program uses data sets TRANS, MASTIN, and MASTOUT onthe IPL volume.

If the data resides on a volume other than the IPL volume,twosets of parentheses are required.

For example:

TASK1 PROGRAM START1,DS=((DATA1,MYVOL) , MASTER)

The program uses data set DATA1 on volume MYVOLanddata set MASTER onthe IPL

volume.

rving Storage

This section shows howto reserve storage for arithmetic values or characterstrings.

EDLallows youto define arithmetic values in two ways: as “integer” data and as

“floating-point” data. /nteger data consists of positive and negative numbers with no decimal

point. Floating-point data consists of positive and negative numbersthat can have decimalpoints.

For example, you can define the number7 aseither a floating-point numberor an integer. To

define the number 7.5, however, you mustdefine it as a floating-point number.

 Reserving Storage for Integers

To reserve storage for an integer, you can use either the DATA or DC statement. The following

DATAstatement, for example, defines a storage area for a 2-byte signed integer.

NODOGS DATA F'O'

NODOGSis the nameor label of the storage area. This type of storage area is often called a

variable. The F defines a fullword (two bytes) and ‘0’ assigns an initial value of zero to the

area.

To set up more than one 1-word area in one statement, you can use the duplication factor. The

statement:

FITABLE DATA 15F'O'

reserves fifteen 1-word areas and assigns a zero to each.

You can use the areas called NODOGSand FITABLEin data manipulationinstructions such as

ADD and SUBTRACT.

Assigning an Initial Value

To assign an initial value, enclose the value in apostrophesas follows:

FIM DATA F'5280'

Chapter 2. Writing a Source Program PG-23

 (continued

The storage area called FIM will contain the decimal value 5280 throughout the execution of

your program, unless you changeit.

You can also assign a hexadecimal value to a storage area. For example:

XFIM DATA X'14A0'

XFIM contains the hexadecimal value ‘14A0’ (decimal 5280).

 Defining a Halfword or Doubleword Data Area

You can also define a halfword (1-byte) or doubleword (4-byte) data area. The following

statements reserve storage for halfword integers:

MSIX DATA H'-6'
SHVAR DATA H'‘O'

MSIX contains the value of minus 6.

To reserve four bytes of storage, define a data area as follows:

OTRMIL DATA D'250000'
LNGVAR DATA D'O!

QTRMILoccupies a doubleword (4 bytes) of storage and containsaninitial value of 250,000

(decimal).

Defining Floating-Point Values

To define floating-point values, you can use either the DATA or DC statement. How large the

numberis determines how youdefine the storage. If the numberfalls between 10-76 and 1076

and containsless than sevensignificant digits, you can define a single-precision floating-point

data area. Each single-precision floating-point number requires 4 bytes of storage.

The following DATAstatementdefines a storage area for a single-precision floating-point

number.

NETPAY DATA E‘'O00.00'

NETPAYis the nameof the storage area. The E defines a floating-point data area and assigns

it an initial value of zero.

To set up more than one floating-point data area, you can use the duplication factor. The

statement

NPTAB DATA 12E'000.00'

reserves storage for twelve 4-byte floating-point data areas andassignsan initial value of zero to

each.

PG-24 SC34-0438

ge(continued)

Assigning an Initial Value

To assign an intial value to a floating point data area, enclose the value in apostrophesas

follows:

PI DATA E'3.14159'

PI contains the decimal value 3.14159. You can also express the exponentfor a floating-point

data area as in the following examples:

PIE DATA E'.314159E1'
PIE2 DATA E'314.159E-2'

Defining an Extended-Precision Data Area

If a floating-point numberrequires more than 6 and fewerthan 15 significant digits, you must

use extended-precision floating point. Each extended-precision floating-point numberrequires 8

bytes of storage.

The following DATA statements define storage areas for extended-precision floating-point

numbers:

MSMNT DATA L'0.000'
MYCELLS DATA 1L'15063842E12'

Defining Character Strings

To define character strings, you can use either the DATA or DC statement. The following

DATAstatement defines a storage area for a 6-byte characterstring:

NAME DATA C'TILTON'

NAME is the nameorlabel of the storage area. The length of the storage area is the numberof

characters inside the apostrophes.

If you want an area of blanks, you can use the duplication factor:

BLNKS DATA 10c' '!

BLNKSis an area of 10 blanks.

To set up an area that contains a characterstring followed by blanks, define the storage area like

this:

DOLCON DATA CL4'$$'

DOLCONcontains two dollar signs ($$) followed by twoblanks.

Chapter 2. Writing a Source Program PG-25

Assigning é

PG-26 SC34-0438

The EQUstatementassigns a value to a symbol. You can use the symbol (the label on the EQU

statement) as an operandin other instructions wherever symbols are allowed. If you use a label

as an operand in an EQUstatement, you must have defined it previously.

For example, you cannot code:

ABLE EQU BAKER

unless you have previously defined BAKER.

The following example assigns the word value X’0002’ to A.

A EQU 2

If you refer to the equated value with its label, the system assumesyouare referring to a storage

location. For example, if you use A in the following instruction:

MOVE B,A

the system movesthe word at address 0002 to B.

If, however, you want to use the equated value as the number 2, you must precede the label with

a plus sign (+) as follows:

MOVE B,+A

This instruction moves2 to B.

The next example assigns the word value of A to B.

B EQU A

The following example shows how you can use the equated symbols in a program:

fj MOVE C,A
A MOVE C,+A
A MOVE C,+B

a MOVE C,+A, (1,BYTE)

Ba EQU 2
§ 3B EQU A

Cc DATA F

Movethe contents of address 0002 to C.

A Move X’0002’to C.

ye (continued)

3 Move X’0002’ to C.

A Movetheleftmost byte of the word value X’0002’ (X’00’) to C.

Define A with a word value of X’0002’.

g Assign B the value of A (X’0002’).

Defining an Input/Output Area

To define an area to read into or to write from, you must know wherethe data is coming from

or whereit is going. |

If you are reading or writing data from tape, disk, or diskette, you can define an input/output

area with a BUFFERstatement, a DATA statement, or a DC statement.

If you are reading or writing data from a terminal, you can define an input/output area with a

TEXT statement, a DATA statement, or a DC statement.

If you use either a DATA statement or a DC statement, however, you must precede the storage

area with a word (2 bytes) containing the length and count. (Refer to the Language Reference for

information on how the system constructs a storage area defined by a TEXT statement.)

Detining aBUFFER Statement

A BUFFERstatementdefines a data storage area. When youread or write recordsto disk,

diskette, or tape, you can use the BUFFERstatement to define the buffer. To define a

256-byte buffer, use the BUFFERstatement asfollows:

RDAREA BUFFER 256,BYTES

RDAREAis the nameof the buffer.

A buffer consists of an index, a length, and the data storage area. The index and the length each

occupy one word (2 bytes). Therefore, a 256-byte buffer actually occupies 260 bytes of

storage. For more information on the structure of a buffer, refer to the Language Reference.

oeDefining a TEXT Statement

Use the TEXT statement to define a message or storage area. Use the TEXT statementin

conjunction with the PRINTEXT or READTEXTinstructions. The PRINTEXTinstruction

prints the messageor storage area on a terminal. The READTEXTinstruction reads a character

string from a terminalinto the storage area defined by the TEXT statement.

Whenyou code a TEXTstatement, the system creates an area that consists of a 1-byte length,

1-byte count, and the messageor storage area. Therefore, a 24-character message, for example,

requires 26 bytes of storage. The maximum length of a TEXT statementis 254 bytes.

Chapter 2. Writing a Source Program PG-27

Writing a Source Program

Reserving Storage (continued)

The following example creates the message ENTER YOUR NAME:

MSG1 TEXT "ENTER YOUR NAME:'

To cause the message to appear on a terminal, code a PRINTEXTinstruction that references

MSGI, the name of the TEXT statement.

To define a storage area for data that you will read from a terminal, code the following:

ADDRESS TEXT LENGTH=30

A READTEXTinstruction can read data from a terminal into the storage area by referencing

ADDRESS, the name of the TEXT statement.

Reading Data into a Data Area

Whenyouread datainto a data area, the instruction you use depends on the kind of data and

whereit is coming from.

If the data resides on disk, diskette, or tape, use the READinstruction. If the data is coming

from a terminal, use either the READTEXT or GETVALUE instruction. If the data is

alphameric, use READTEXT.If the data consists of one floating-point number or one or more

integers, use GETVALUE.

Reading Data from Disk or Diskette

PG-28 S$C34-0438

You can read disk or diskette data sets either sequentially or directly. When you read, you

always read a multiple of 256 bytes. In EDX, 256 bytesis called an “EDX record”’.

The READ instruction reads a record from one of the data sets you specify in the PROGRAM

statement. The following READ instruction reads a record sequentially from the third data set

defined on the PROGRAM statement.

READ DS3,DISKBUFF,1,0,ERROR=RDERROR, END=NOTFOUND

DISKBUFF BUFFER 256,BYTES

The system reads one record (indicated by 1 in the third operand) sequentially (indicated by 0 in

the fourth operand) into DISKBUFF. If no morerecords exist on the data set, the program

branches to NOTFOUND.If an I/O error occurs, the program branches to RDERROR.

Otherwise, the system places the data in the 256-byte buffer DISKBUFF.

To read a dataset directly, code the fourth operand with an integer greater than zero as follows:

Area (continued)

READ DS2,BUFR,1,52,ERROR=RDERR,END=ALLOVER

BUFR BUFFER 512,BYTES

The system reads the 52nd record (indicated by 52 in the fourth operand) into BUFR.If the

data set does not contain 52 records, the program branches to ALLOVER.If an I/Oerror

occurs, the program branches to RDERR. Otherwise, the system places one record (indicated

by 1 in the third operand) into the 512-byte buffer BUFR.

Reading Data from Tape

You can read tape data sets sequentially only. A tape READretrieves a record from 18 to

32,767 bytes long.

The following READ instruction reads a record from a tape.

READ DS1,BUFF,1,327,END=END1, ERROR=ERR, WAIT=YES

BUFF BUFFER 327,BYTES

The system reads onerecord (indicated by 1 in the third operand). The size of the record is 327

bytes (indicated by 327 in the fourth operand). If no more records exists on the dataset,

control transfers to END1. If an error occurs, control transfers to ERR. The system waits for

the operation to complete before continuing (WAIT=YES). The buffer BUFF is 327 bytes

long.

The following READ instruction reads 2 records into buffer BUFF2.

READ DS1,BUFF2,2,327,END=END1,ERROR=ERR,WAIT=YES

BUFF2 BUFFER 654,BYTES

The system reads tworecords (indicated by 2 in the third operand). The size of each recordis

327 bytes (indicated by 327 in the fourth operand). If no more records exists on the dataset,

control transfers to END1. If an error occurs, control transfers to ERR. The system waits for

the operation to complete before continuing (WAIT=YES). The buffer BUFF2is 654 bytes

long.

Reading from a Terminal

To read data that an operator enters on a terminal, you can use either the READTEXTor

GETVALUE instruction. The READTEXTinstruction allows you to read alphameric data

(alphabetic characters, numbers, and special characters). With the GETVALUE instruction,

you can read numbers (both integer and floating-point) only.

Chapter 2. Writing a Source Program PG-29

Aiphameric Data

Reading Numeric D

PG-30 SC34-0438

To read an alphameric data item into a storage area, use the READTEXTinstruction as follows:

READTEXT COUNTY, 'ENTER YOUR COUNTY: ',SKIP=1,MODE=LINE

COUNTY TEXT LENGTH=20

The instruction displays the prompt ENTER YOUR COUNTY:andthe system waits for a response.

Whenthe operator enters a name and pressesthe enter Key, the system stores the text string in

an area called COUNTY.

The operand SKIP=1 causes the system to skip one line before displaying the prompt. The

operand MODE=LINEallowsblanks in the response.

Unless you know howthe system constructs a storage area defined by a TEXT statement, you

should read into an area defined by a TEXT statement.

For more information on reading alphameric data from terminals, see Chapter8, ““Reading and

Writing Data from Screens” on page PG-115.

ata

The GETVALUE instruction allows you to read either a single floating-point value or more than

One integer from a terminal. The following instruction reads a floating-point number:

GETVALUE BASAL, 'ENTER YOUR BASE SALARY: ', C
TYPE=F,FORMAT=(6,2,F)

BASAL DATA’ E'0.00'

The instruction prompts the operator, waits for a response, reads the response, andstores the

number in BASAL. You must have defined BASALasa floating-point variable. The operand

TYPE=F meansthat the numberwill be a single-precision floating-point number.

The operand FORMAT=(6,2,F) says that the numberwill occupy six positions on the screen

(including the decimal point), that the numberwill contain twodigits to the right of the decimal

point, and that the number will be an “‘F-type’”’ numbersuch as 325.78.

To read more than oneinteger, code a third operand on the instruction as follows:

GETVALUE HEIGHTS, 'ENTER FIVE HEIGHTS (IN INCHES): ',5

The instruction assumes that you have defined HEIGHTSasfollows:

HEIGHTS DATA 5F'!0O'

You can movedata from oneplace in storage to another with the MOVE instruction. Unless

you specify otherwise, the system moves one word (two bytes). For example, the instruction

MOVE OLDDATA,NEWDATA

OLDDATA DATA F'O'
NEWDATA DATA F'O'

moves the word at NEWDATA to OLDDATA. Note that whatever OLDDATAcontained

before the instruction was executed has been overlaid by the data in NEWDATA.

To move more than one word, you must code a third operand. For example, the following

instruction moves 12 words from NEWNAMEto OLDNAME:

MOVE OLDNAME,NEWNAME, 12

OLDNAME DATA F'‘O'
NEWNAME DATA F'O'

To move bytes, code the third operandlike this:

MOVE OLDADDR,NEWADDR, (15,BYTE)

OLDADDR TEXT LENGTH=15
NEWADDR TEXT LENGTH=15

This instruction moves the 15 bytes at NEWADDR to OLDADDR.

To move doublewords, code the third operand asfollows:

MOVE OLDDESC,NEWDESC, (10,DWORD)

OLDDESC DATA 10D'O'
NEWDESC DATA 10D'0O'

This instruction moves the 10 doublewords at NEWDESC to OLDDESC.

To movefloating-point value, you must specify FLOAT(for single-precision) or DFLOAT(for

extended-precision).

MOVE TEMPS,MSMNTS, (4, FLOAT)

TEMPS DATA 4E'0.0'
MSMNTS DATA 4E'0.0'

This instruction movesthe four single-precision floating-point values at MSMNTSto TEMPS.

Chapter 2. Writing a Source Program PG-31

EDLallows you to do twotypes of conversion: from binary to an EBCDICcharacterstring and

from an EBCDICcharacterstring to binary. The CONVTBinstruction converts from binary to

an EBCDIC characterstring, while the CONVTDinstruction converts from an EBCDIC

characterstring to binary.

Converting to an EBCDIC Character String

PG-32 SC34-0438

If a numberhas beenstored as a binary number, you must convert it to an EBCDICcharacter

string if, for example, you want to display the number with the PRINTEXTinstruction.

A binary numberis any variable you have defined as single-precision integer, double-precision

integer, single-precision floating point, extended-precision floating point, or hexadecimal.

You must convert any of the following data items before you can display them:

NODOGS DATA F'O'
POPKANS DATA D'O'
PI DATA E'O.O'
FINMEAS DATA L'O.O'
XTRAS DATA X'O'

The following example converts a single-precision integer to an EBCDIC characterstring.

CONVTB DOGS,NODOGS, PREC=S,FORMAT=(5,0,1)

DOGS TEXT LENGTH=5
NODOGS DATA F'OQ'

The instruction converts the single-precision integer (indicated by PREC=S) in NODOGSand

puts the result in DOGS. The FORMAToperandsays that you want the converted output to be

5 digits long, contain O digits to the right of the decimal point, and be an integer(I).

To convert a double-precision integer, code the CONVTBinstruction as follows:

CONVTB POP, POPKANS, PREC=D,FORMAT=(8,0,I)

POP TEXT LENGTH=8
POPKANS DATA D'O!'

The instruction converts the double-precision integer (indicated by PREC=D) in POPKANS

and puts the result of the conversion in POP. The FORMAToperandsays that you want the

converted output to be 8 digits long, contain 0 digits to the right of the decimal point, and be an

integer (I). |

The following instruction converts a single-precision floating-point variable:

CONVTB PIOP,PI,PREC=F,FORMAT=(15,4,F)

PIOP TEXT LENGTH= 16
PI DATA E'O.0000'

The instruction converts the single-precision floating-point variable (indicated by PREC=F)in

PI and puts the result of the conversion in PIOP. The FORMAToperandsays that you want

the converted output to be 15 digits long, contain 4 digits to the right of the decimal point, and

be a floating-point numeric (F).

To convert an extended-precision floating-point variable:

CONVTB FLOP,OP,PREC=L, FORMAT=(17,3,E)

FLOP TEXT LENGTH=24
OP DATA L

The instruction converts the extended-precision floating-point variable (indicated by PREC=L)

in OP and putsthe result of the conversion in FLOP. The FORMAToperandsaysthat you

want the converted output to be 17 digits long, contain 3 digits to the right of the decimal point,

and be expressed in exponentnotation (E).

Converting to Binary

If you read a number with the READTEXTinstruction, you must convert it to binary before

you can add, subtract, multiply, or divide.

The CONVTDinstruction converts a character string to a binary number. You can convert a

characterstring that contains a numberto a single-precision integer, a double-precision integer,

single-precision floating point, or extended-precision floating point.

The following CONVTDinstruction converts a single-precision integer to binary:

CONVTD GNUS,NOGNUS, PREC=S,FORMAT=(5,0,1)

GNUS DATA F'O'
NOGNUS TEXT LENGTH=5

The instruction converts the EBCDIC characterstring in NOGNUSandputs theresult in

GNUS,a single-precision integer variable (indicated by PREC=S).

The FORMAToperandsays that the data to be convertedis 5 digits long, contains O digits to

the right of the decimal point, andis an integer(I).

To convert a numberthat is greater than 32,767, you must convert it to a double-precision

integer as follows:

CONVTD FLEAS,NOFLEAS , PREC=D,FORMAT=(9,0,1)

FLEAS DATA D'O'
NOFLEAS TEXT LENGTH=9

Chapter 2. Writing a Source Program PG-33

Converting from F

PG-34 SC34-0438

' (continued)

The instruction converts the EBCDIC character string in NOFLEASandputstheresult in
FLEAS,a double-precision integer variable (indicated by PREC=D).

The FORMAToperandsays that the data to be converted is 9 digits long, contains O digits to

the right of the decimal point, and is an integer(I).

To convert to single-precision floating point, code theinstruction as follows:

CONVTD AVTEMP,TEMP, PREC=F,FORMAT=(8,2,F)

AVTEMP DATA B'O.0'
TEMP TEXT LENGTH=9

The instruction converts the EBCDIC character string in TEMP andputs the result in

AVTEMP,a single-precision floating-point variable (indicated by PREC=F).

The FORMAToperandsaysthat the data to be converted is 8 digits long, contains 2 digits to

the right of the decimal point, and is a floating-point number(F).

To convert to extended-precision floating point, code the instruction as follows:

CONVTD AVCOST,COST,PREC=L, FORMAT=(15,3,E)

AVCOST DATA L'0.00'
COST TEXT LENGTH=20

The instruction converts the EBCDIC character string in COST andputs the result in AVCOST,

an extended-precision floating-point variable (indicated by PREC=L).

The FORMAToperandsays that the data to be converted is 15 digits long, contains 3 digits to

the right of the decimal point, and is expressed in exponent notation (E).

Point to Integer

If you want to manipulate data, both operands in the operation mustbe either floating point or

integer.

To convert a single-precision floating-point numberto integer, code the FPCONVinstruction as

follows:

FPCONV INTNUM,FPNUM, PREC=SF

INTNUM DATA F'O!'
FPNUM DATA E'O.0'

Theinstruction converts the single-precision floating-point number in FPNUM andputs the

result in INTNUM,a single-precision integer variable. The PREC operandindicates that

rting Data (continued)

INTNUM is a single-precision integer (S) and that FPNUM is a single-precision floating-point

number(F).

To convert an extended-precision floating-point number to double-precision integer, code the

FPCONVinstruction as follows:

FPCONV INTDBL,FPEXT, PREC=DL

INTDBL DATA D'O!
FPEXT DATA L'0.0'

The instruction converts the extended-precision floating-point number in FPEXT and puts the

result in INTDBL,a double-precision integer variable. The PREC operandindicatesthat

INTDBLis a double-precision integer (D) and that FPEXTis an extended-precision

floating-point number(L).

Note: When you convert from floating point to integer, rememberthat the system truncatesall

data to the right of the decimal point.

Converting from Integer to Floating Point

To convert a single-precision integer to floating-point, code the FPCONYVinstruction as follows:

FPCONV FPNUM, INTNUM, PREC=FS

INTNUM DATA F'O'
FPNUM DATA E'O.0'

The instruction converts the single-precision integer INTNUM andputsthe result in FPNUM,a

single-precision floating-point variable. The first letter in the PREC operand (F)indicates that

FPNUM is a single-precision floating-point variable. The second letter (S) indicates that

INTNUM is a single-precision integer.

To convert a double-precision integer to floating-point:

FPCONV FPEXT, INTDBL, PREC=LD

INTDBL DATA D'O'
FPEXT DATA L'0.0'

The instruction converts the double-precision integer INTDBL and puts the result in FPEXT, an

extended-precision floating-point variable. The first letter in the PREC operand (L)indicates

that FPEXTis an extended-precision floating-point variable. The second letter (D) indicates

that INTDBLis a double-precision integer.

Chapter 2. Writing a Source Program PG-35

Writing a Source Program

Converting Data (continued)

Checking for Conversion Errors

Each time you execute an instruction that converts data, the system expects the data to be

numeric. If you try to convert a character other than a number, a conversion error occurs.

If, for example, a program prompts an operator for a numberandheorsheenters letter, the

system places a return code in the task code word. You can check for a conversionerror as

follows:

BEGIN

ERRTEST

CHECK

END
TASKRC
GNUS
NOGNUS

PROGRAM START

CONVTD
MOVE
IF
ENDIF

PRINTEXT
PRINTNUM
GOTO

PROGSTOP
DATA
DATA
TEXT
ENDPROG
END

GNUS , NOGNUS,, PREC=S, FORMAT=(5,0,1)
TASKRC, BEGIN
(TASKRC,NE,-1) ,GOTO, CHECK

"CONVERSION ERROR',SKIP=1
TASKRC
END

F'O!'
F'O'
LENGTH=5

The instructions at label ERRTEST compare the return code of the CONVTDinstruction with

the successful return code (-1). IF NOGNUScontains a nonnumeric character, the system

branches to CHECK.

You musttest the return code before executing any other instruction because the system may

overlay the task code word with the return code of the next instruction.

Manipulating Data

The data manipulation instructions perform arithmetic operations on single- or double-precision

integers and single- or extended-precision floating-point numbers. You can also manipulate two

bit-strings with logical instructions such as inclusive-OR and exclusive-OR.

Manipulating Integer Data

The instructions that manipulate integers add, subtract, multiply, or divide two integers. If two

numbersare floating-point numbers, you must use floating-point instructions.

PG-36 SC34-0438

Adding Integers

If one numberis a floating-point numberandthe otheris an integer, use theFPRCONV

instruction to convert one of the numbers to match the form of the other.

The instructions have the following general form:

operation operand! ,operand2

The flow of data is from operand2 to operand7.

The ADDinstruction adds the data in operand2 to the data in operand? and places the results in

operand.

The SUBTRACTinstruction subtracts the data in operand2 from the data in operand? and places

the results in operand7.

The DIVIDE and MULTIPLYinstructions multiply or divide the data in operand? by the data in

operand2 andstore the results in operand7.

The ADDinstruction adds two integers. If A and B are integers, you can add A to B with the

following instruction:

ADD B,A

The result of the addition replaces B. The value in A remains unchanged.

To add two integers without altering the first operand, use the RESULT operandasfollows:

ADD CAT,DOG,RESULT=GIRAFFE

The instruction adds DOG to CATandplaces the result in GIRAFFE. The values in DOG and

CAT remain unchanged.

Adding Double-Precision integers

Unless you specify otherwise, EDL assumesthat the integers are single-precision (1-word)

integers. To add two double-precision (2-word) integers, specify the PREC operandas follows:

ADD TOTVEG, BEETS , PREC=DD

The operand PREC=DDsaysthat both TOTVEG and BEETSare double-precision integers.

If only one of the operandsis a double-precision integer, it must be the first operand. In

addition, if you specify the RESULT operand, it must be a double-precision variable. For

example:

ADD GHANA, CHAD,RESULT=TOTPOP , PREC=D

Chapter 2. Writing a Source Program PG-37

The operand PREC=Dsays that GHANA and TOTPOPare double-precision integers. The

absence of the second letter (D or S) on the PREC operand means that CHADis a

single-precision integer.

Adding Consecutive Integers

To add more than oneset of integers, you can specify the numberof integers you want to add.

For example:

ADD NEWTOTS,OLDTOTS, 10

The instruction adds the 1-word integer at OLDTOTS to NEWTOTS. Thenthe instruction

adds the word in OLDTOTS+2 to the word at NEWTOTS+2. Theinstruction continues to add

until it adds the word at OLDTOTS+18 to the word at NEWTOTS+18. This instruction, then,

adds the 10 consecutive words at OLDTOTSto the 10 consecutive words at NEWTOTS. You

can specify up to 32,767 consecutive additions.

subtracting Integers

PG-38 SC34-0438

The SUBTRACTinstruction subtracts one integer from another. If QUERY and ANSWERare

integers, you can subtract ANSWER from QUERYwith the following instruction:

SUBTRACT QUERY , ANSWER

The result of the subtraction replaces QUERY. The value in ANSWERremains unchanged.

To subtract two integers withoutaltering the first operand, use the RESULT operandasfollows:

SUBTRACT POOLS, STREAMS , RESULT=LAKES

The instruction subtracts STREAMSfrom POOLSandplaces the result in LAKES. The values

in POOLS and STREAMSremain unchanged.

Subtracting Double-Precision Integers

Unless you specify otherwise, EDL assumesthatthe integers are single-precision (1-word)

integers. To subtract two double-precision (2-word) integers, specify the PREC operand as

follows:

SUBTRACT TOTFRUT, PRUNES, RESULT=REST, PREC=DD

The instruction subtracts PRUNES from TOTFRUTandplaces the result in REST. The

operand PREC=DDsays that TOTFRUT, PRUNES,and RESTareall double-precision

integers.

If only one of the operandsis a double-precision integer, it must be the first operand. In

addition, if you specify the RESULT operand, it must be a double-precision variable. For

example:

SUBTRACT ATTEND ,MALES , RESULT=FEMALES , PREC=D

The instruction subtracts MALES from ATTENDandplaces the result in FEMALES. The

operand PREC=Dsays that ATTEND and FEMALESare double-precision integers. The

absence of the second letter (D or S) on the PREC operand means that MALESis a

single-precision integer.

Subtracting Consecutive Integers

To subtract more than oneset of integers, you can specify the numberof integers you wantto

subtract. For example:

SUBTRACT NEWTOTS ,OLDTOTS ,6

The instruction subtracts the 1-word integer at OLDTOTS from NEWTOTS. Then the

instruction subtracts the word in OLDTOTS+2 from the word at NEWTOTS+2. The

instruction continues to subtract until it subtracts the word at OL.DTOTS+10 from the word at

NEWTOTS+10. This instruction, then, subtracts the 6 consecutive words at OLDTOTSfrom -

the 6 consecutive words at NEWTOTS. You can specify up to 32,767 consecutive subtractions.

Viultiplying Integers

The MULTIPLYinstruction multiplies one integer by another.

If M and aresingle-precision integers, you can multiply M by asfollows:

MULTIPLY M,N

The result of the multiplication replaces M.

You can also multiply an integer by a constant. The following instruction multiplies FEET by

the constant 12:

MULTIPLY FEET, 12

The result of the multiplication replaces FEET.

To multiply two integers without altering the first operand, use the RESULToperandasfollows:

MULTIPLY BOXES,WEIGHT, RESULT=TOTWGT

The instruction multiplies BOXES by WEIGHTandplacesthe result in TOTWGT. Thevalues

in BOXES and WEIGHTdonot change.

Multiplying Double-Precision Integers

Unless you specify otherwise, EDL assumesthat integers are single-precision (1-word) integers.

To multiply two double-precision (2-word) integers, specify the PREC operandasfollows:

MULTIPLY GRAPES, PITS,RESULT=TOTPITS , PREC=DD

Chapter 2. Writing a Source Program PG-39

Writing a Source Program

Manipulating Data (continued)

Dividing Integers

PG-40 SC34-0438

The instruction multiplies GRAPES by PITS andplaces the result in TOTPITS. The operand

PREC=DDsays that GRAPES,PITS, and TOTPITSare all double-precision integers.

If only one of the operandsis a double-precision integer, it must be the first operand. In

addition, if you specify the RESULT operand,it must be a double-precision variable. For

example:

MULTIPLY ATTEND,GAMES,RESULT=TOTATT , PREC=D

The instruction multiplies ATTEND by GAMESandplaces the result in TOTATT. The

operand PREC=Dsays that ATTEND and FEMALESare double-precision integers. The

absence of the second letter (D or S) on the PREC operand means thatGAMESis a

single-precision integer.

Multiplying Consecutive Integers

To multiply more than oneset of integers, you can specify the numberof integers you want to

multiply. For example:

MULTIPLY SALRIES, RATES, 400

The instruction multiplies the 1-word integer at RATES by SALRIESandstoresthe result in

SALRIES. Then the instruction multiplies the word in RATES+2 by the word at SALRIES+2.

The instruction continues to multiply until it multiplies the word at RATES+798 by the wordat

SALRIES+798. This instruction, then, multiplies the 400 consecutive words at RATESby the

400 consecutive words at SALRIES. You can specify up to 32,767 consecutive multiplications.

The DIVIDEinstruction divides one integer by another. The system places the remainderin the

first word of the task control block (TCB).

If P and Q are single-precision integers, you can divide P by Q asfollows:

DIVIDE P,Q

The result of the division replacesP.

‘You can also divide an integer by a constant. The following instruction divides FEET by the

constant 3:

DIVIDE FEET, 3

The result of the division replaces FEET.

To divide two integers withoutaltering the first operand, use the RESULT operandasfollows:

DIVIDE TOTWGT, BOXES , RESULT=BOXWGT

Data(continued)

The instruction divides TOTWGT by BOXESandplaces the result in BOXWGT. The values in

TOTWGTand BOXESdonot change.

Dividing Double-Precision integers

Unless you specify otherwise, EDL assumesthat integers are single-precision (1-word)integers.

To divide double-precision (2-word) integers, specify the PREC operandasfollows:

DIVIDE TOTSAL,NOEMPS,RESULT=AVESAL, PREC=DD

The instruction divides TOTSAL by NOEMPSandplacesthe result in AVESAL. The operand

PREC=DDsays that TOTSAL, NOEMPS, and AVESALare all double-precision integers.

If only one of the operandsis a double-precision integer, it must be the first operand. In

addition, if you specify the RESULT operand, it must be a double-precision variable. For

example:

DIVIDE TOTATT,GAMES , RESULT=AVEATT, PREC=D

The instruction divides TOTATT by GAMESandplaces the result in AVEATT. The operand

PREC=Dsays that TOTATT and AVEATTare double-precision integers. The absence of the

secondletter (D or S) on the PREC operand means that GAMESisa single-precision integer.

Dividing Consecutive Integers

To divide more than oneset of integers, you can specify the numberof integers you wantto

divide. For example:

DIVIDE SALRIES,RATES, 100

The instruction divides the 1-word integer at RATES by SALRIES. Thenthe instruction divides

the word in RATES+2 by the word at SALRIES+2. The instruction continuesto divide until it

divides the word at RATES+198 by the word at SALRIES+198. This instruction, then, divides

the 100 consecutive words at RATESbythe 100 consecutive words at SALRIES. You can

specify up to 32,767 consecutive divisions.

Accessing the Remainder

One wayto access the remainderis to use the TCBGETinstruction as in the following example:

DIVIDE SALRIES, RATES
TCBGET REMAIN, $TCBCO

REMAIN DATA F'O'

The instructionputs the first word of the task control block into REMAIN.

Chapter 2. Writing a Source Program PG-41

Vanipulating

PG-42

SC34-0438

a (continue

Floating-Point Data

EDLallows you to add, subtract, multiply, and divide floating-point numbers. Floating-point

numbersare positive and negative numbers that can have decimal points.

To use floating-pointinstructions, you must:

e Have the hardware floating-point feature installed on your system.

e Include floating-point support in the supervisor whenit is generated.

« Specify FLOAT=YESon both the PROGRAM and TASKstatements whenever you use

floating-point instructions in any task within a program.

e Define the variables you are manipulating as floating-point variables.

ding Floating-Point Data

The FADDinstruction adds two floating-point numbers. If A and B are floating-point numbers,

you can add A to B with the followinginstruction:

FADD B,A

The result of the addition replaces B. The value in A remains unchanged.

To add two floating-point numbers withoutaltering the first operand, use the RESULT operand

as follows:

FADD MYSAL, YOURSAL, RESULT=OURSALS

The instruction adds MYSAL to YOURSAL andplacesthe result in OURSALS. The values in

MYSAL and YOURSAL remain unchanged.

Adding Extended-Precision Floating-Point Numbers

Unless you specify otherwise, EDL assumesthat the floating-point numbersare single-precision

(2-word) floating-point numbers. To add two extended-precision (4-word) floating-point

numbers, specify the PREC operandasfollows:

FADD TOTSAL, PRESAL, PREC=LL

The operand PREC=LLsays that both TOTSAL and PRESAL are extended-precision

floating-point numbers.

If only one of the operands is an extended-precision floating-point number, the PREC operand

must reflect the precision. In the following example:

FADD MSMNT1,MSMNT2,RESULT=MSMTS , PREC=LFL

subtracting Floating-P

a (continued)

The operand PREC=LFLsays that MSMNT1 and MSMTSare extended-precision

floating-point numbers and MSMNT72is a single-precision floating-point number.

oint Numbers

The FSUB instruction subtracts one floating-point number from another. If OCTEMPand

NOVTEMParefloating-point numbers, you can subtract NOVTEMP from OCTEMPwith the

following instruction: _

FSUB OCTEMP , NOVTEMP

The result of the subtraction replaces OCTEMP. The value in NOVTEMPremains unchanged.

To subtract two floating-point numbers withoutaltering the first operand, use the RESULT

operand as follows:

FSUB SAL, DEDUCS , RESULT=NET

The instruction subtracts DEDUCSfrom SAL andplacesthe result in NET. The values in SAL

and DEDUCSremain unchanged.

Subtracting Extended-Precision Floating-Point Numbers

Unless you specify otherwise, EDL assumesthat the floating-point numbersare single-precision

(2-word) floating-point numbers. To subtract two extended-precision (4-word) floating-point

numbers, specify the PREC operandas follows:

FSUB TOTSAL, TOTDUCS , RESULT=TOTNP, PREC=LLL

The instruction subtracts TOTDUCS from TOTSALandplaces the result in TOTNP. The

operand PREC=LLLsays that TOTSAL, TOTDUCS, and TOTNPareall extended-precision

floating-point numbers.

If only one of the operandsis a extended-precision floating-point number, the PREC operand

should reflect the precision. In the following example:

FSUB SMALL, LARGE, RESULT=MINUS , PREC=FLF

The instruction subtracts LARGE from SMALLandplacesthe result in MINUS. The operand

PREC=FLEFsays that SMALL and MINUSare single-precision and that LARGEis an

extended-precision floating-point number.

tiplying Floating-Point Numbers

The FMULTinstruction multiplies one floating-point number by another.

If M andN aresingle-precision floating-point numbers, you can multiply M by asfollows:

FMULT M, = Zz

The result of the multiplication replaces M.

Chapter 2. Writing a Source Program PG-43

You can also multiply a floating-point numberbyan integer constant. The following instruction

multiplies FEET by the integer constant 12:

FMULT FRET, 12

The result of the multiplication replaces FEET.

To multiply two floating-point numbers without altering the first operand, use the RESULT

operand as follows:

FMULT LENGTH , WIDTH, RESULT=AREA

The instruction multiplies LENGTH by WIDTHandplaces the result in AREA. The valuesin

LENGTH and WIDTHdo not change.

Multiplying Extended-Precision Floating-Point Numbers

Unless you specify otherwise, EDL assumesthat floating-point numbersare single-precision

(2-word) floating-point numbers. To multiply two extended-precision (4-word) floating-point

numbers, specify the PREC operandasfollows:

FMULT PI,DIAM, RESULT=CIRCUM, PREC=LLL

The instruction multiplies PI by DIAM andplacesthe result in CIRCUM. The operand

PREC=LLLsays that PI, DIAM, and CIRCUMareall extended-precision floating-point

numbers.

If only one of the operandsis a double-precision floating-point number, the PREC operand

must reflect the precision. The following example:

FMULT BASEAREA, HEIGHT, RESULT=VOLUME, PREC=LFL

multiplies BASEAREA by HEIGHTandplaces the result in VOLUME. The operand

PREC=LFLsays that BASEAREA and VOLUMEare extended-precision floating-point

numbers and that HEIGHTisa single-precision floating-point number.

Dividing Floating-Point Numbers

The FDIVD instruction divides one floating-point number by another. The system places the

remainderin the first word of the task control block (TCB).

If P and Q aresingle-precision floating-point numbers, you can divide P by Q asfollows:

FDIVD P,Q

The result of the division replacesP.

You can also divide a floating-point number by a constant. The following instruction divides

FERETbythe integer constant3:

FDIVD FEET,3

PG-44 SC34-0438

Manipulating Data (continued)

The result of the division replaces FEET.

To divide two floating-point numbers without altering the first operand, use the RESULT

operandas follows:

FDIVD TOTWGT, BOXES , RESULT=BOXWGT

The instruction divides TOTWGT by BOXESandplacesthe result in BOXWGT. Thevalues in

TOTWGTand BOXESdonot change.

Dividing Extended-Precision Floating-Point Numbers

Unless you specify otherwise, EDL assumesthat floating-point numbersare single-precision

(2-word) floating-point numbers. To divide two extended-precision (4-word) floating-point

numbers, specify the PREC operandasfollows:

FDIVD CUBICFT,BASEAREA, RESULT=HEIGHT, PREC=LLL

The instruction divides CUBICFT by BASEAREAandplaces the result in HEIGHT. The

operand PREC=LLLsays that CUBICFT, BASEAREA,and HEIGHTareall

extended-precision floating-point numbers.

If only one of the operandsis an extended-precision floating-point number, the PREC operand

must reflect the precision. The following example:

FDIVD TOTSAL,NOEMPS, RESULT=AVESAL, PREC=LFL

divides TOTSAL by NOEMPSandplacesthe result in AVESAL. The operand PREC=LFL

says that TOTSAL and AVESAL are extended-precision floating-point numbers and that

NOEMPSisa single-precision floating-point number.

Manipulating Logical Data

The instructions that manipulate logical data make a bit-by-bit comparison of two bit strings.

The result of the comparison depends onthe instruction.

The Exclusive-OR Instruction

The exclusive-ORinstruction (EOR) compares twobit strings and producesa third bit string,

called the resulting field.

The instruction comparesthe twobit strings one bit at a time. If the bits are the same, the

instruction sets a bit in the resulting field to 0. If the bits are not the same,the instructions sets

a bit in the resulting field to 1.

If the bit strings are identical, the resulting field contains all 0’s. If one or morebits differ, the

resulting field contains a mixture of Q’s and 1’s.aR aa

The following example compares PHI to CHIandplacestheresult in PHI.

Chapter 2. Writing a Source Program PG-45

EOR PHI ,CHI

The following table shows PHI and CHIbefore andafter the instruction executes.

Data Item Hex Binary

PHI (before) 049C 0000 0100 1001 1100

CHI 56AB 0101 0110 1010 1011

PHI (after) 5237 0101 0010 0011 0111

To comparea variable to a constant, code operand2 as follows:

EOR MU,X'5280'

The following table shows MU before and after the instruction executes.

Data Item Hex Binary

MU (before) FOFO 1111 0000 1111 0000

constant 5280 0101 0010 1000 0000

MU (after) A270 1010 0010 0111 0000

To compare twobit strings withoutaltering the first operand, use the RESULT operand as

follows:

EOR SIGMA,DELTA, RESULT=THETA

The instruction compares SIGMA and DELTAandplacesthe resulting field in THETA.

SIGMAand DELTAdo not change.

Unless you specify otherwise, EDL assumesthat the bit strings you specify are one-word

(2-byte) variables. To compare a byte or more than two bytes, specify the numberof

consecutive units (bytes, words, or doublewords) that you want to compare. For example:

KOR CAIN, ABEL, (3,BYTE) , RESULT=SETH

CAIN DATA X'12A4E6'
ABEL DATA X'0101'
SETH DATA X'0OQ0000'

The instruction compares three bytes at CAIN with ABEL andplacesthe result in SETH.

The inclusive-OR Instruction

PG-46 5C34-0438

The inclusive-OR instruction (IOR) compares twobit strings and producesa third bit string,

called the resultingfield.

 nipulating Data (continued

The instruction comparesthe two bit strings one bit at a time. If either or both bits are 1, the

instruction sets a bit in the resulting field to 1. If neither bit is 1, the instruction sets a bit in the

resulting field to 0.

The following example compares ETA to RHO andplacesthe result in ETA.

IOR ETA, RHO

The following table shows ETA and RHObefore andafter the instruction executes.

Data Item Hex Binary

ETA (before) 049C 0000 0100 1001 1100

RHO 56AB 0101 0110 1010 1011

ETA (after) 56BF 0101 0110 1011 1111

To compare a variable to a constant, code operand2 as follows:

IOR XI,X'5280'

The following table shows XI before and after the instruction executes.

Data item Hex Binary

XI (before) FOFO 1111 0000 1111 0000

constant 5280 0101 0010 1000 0000

XI (after) F2FO 1111 0010 1111 0000

To compare twobit strings without altering the first operand, use the RESULT operandas

follows:

IOR PETER, PAUL, RESULT=MARY

The instruction compares PETER and PAUL andplacesthe resulting field in MARY. PETER

and PAUL do not change.

Unless you specify otherwise, EDL assumesthat the bit strings you specify are one-word

(2-byte) variables. To compare a byte or more than two bytes, specify the numberof

consecutive units (bytes, words, or doublewords) that you want to compare. For example:

IOR PIG,COW, (4,DWORD) , RESULT=POW

The instruction compares the first doubleword at PIG with the four doublewords at COW and

places the resulting field in POW.

The AND Instruction

The ANDinstruction (AND) comparestwo bit strings and producesa third bit string, called the

resulting field.

Chapter 2. Writing a Source Program PG-47

PG-48 SC34-0438

The instruction compares the twobit strings one bit at a time. If both bits are 1, the instruction

sets a bit in the resulting field to 1. If either or both bits are O, the instructionsets a bit in the

resulting field to 0.

The following example compares BETA to THETAandplacesthe result in BETA.

AND BETA, THETA

The following table shows BETA both before and after the instruction executes.

Data Item Hex Binary

BETA(before) 049C 0000 0100 1001 1100

THETA 56AB 0101 0110 1010 1011

BETA (after) 0488 0000 0100 1000 1000

To compare a variable to a constant, code operand2 as follows:

AND LAMBDA, X'5280'

The following table shows LAMBDAboth before andafter the instruction executes.

Data Item Hex Binary

LAMBDA(before) FOFO 1111 0000 1111 0000

constant 5280 0101 0010 1000 0000

LAMBDA(after) 5080 0101 0000 1000 0000

To compare twobit strings withoutaltering the first operand, use the RESULToperandas

follows:

AND CEMENT, STONE, RESULT=WALL

The instruction compares CEMENTand STONEandplacesthe resulting field in WALL.

CEMENTand STONEdo not change.

Unless you specify otherwise, EDL assumesthatthe bit strings you specify are one-word

(2-byte) variables. To compare a byte or more than two words, specify the numberof

consecutive units (bytes, words, or doublewords) that you want to compare. For example:

AND WALL, CEILING, (2,WORD) , RESULT=ROOM

The instruction comparesthe first word at CEILING with the two words at WALL andplaces

the resulting field in ROOM.

Whenyou write data from a data area, the instruction you use depends on the kind of data and

where you write it.

To write data to disk, diskette, or tape, use the WRITEinstruction. To write data to a terminal,

use either the PRINTEXT or PRINTNUM instruction. If the data is alphameric, use

PRINTEXT. If the data consists of either one floating-point numberor one or moreintegers,

use PRINTNUM.

You can write disk or diskette data sets either sequentially or directly. When you write, you

always write 256 bytes, an ‘““EDX record.”

The following WRITEinstruction writes a record sequentially:

WRITE DS3,DISKBUFF,1,0,ERROR=WRITERR

DISKBUFF BUFFER 256,BYTES

The instruction writes a record to the third data set defined on the PROGRAM statement

(DS3). The system writes onerecord (indicated by 1 in the third operand) sequentially

(indicated by 0 in the fourth operand) into DISKBUFF.If an I/O error occurs, the program

branches to WRITERR. Otherwise, the system writes the 256-byte buffer DISKBUFFto the

data set.

The following WRITEinstruction writes a record directly:

WRITE DS5,BUFR,1,RECNO, ERROR=BADWRIT

BUFR BUFFER 256,BYTES
RECNO DATA F

The instruction writes a record to the fifth data set defined on the PROGRAM statement (DSS).

The system writes one record (indicated by 1 in the third operand) directly (indicated by the

presence of the label RECNOin the fourth operand) into BUFR. Where the system writes the

record depends on the contents of RECNO. For example, if RECNOcontains 150, the system

writes the 150th record.

If an I/O error occurs, the program branches to BADWRIT. Otherwise, the system writes

BUERto the dataset.

You can write tape data sets sequentially only. A tape WRITE writes a record from 18 to

32,767 bytes long.

The following WRITEinstruction writes a record to a tape:

Chapter 2. Writing a Source Program PG-49

&

Writing to a Terminal

WRITE DS1,BUFF,1,327,ERROR=ERR,WAIT=YES

BUFF BUFFER 327,BYTES

The system writes one record (indicated by 1 in the third operand). The size of the record is

327 bytes (indicated by 327 in the fourth operand). If an error occurs, control transfers to

ERR. The system waits for the write operation to complete before continuing execution

(WAIT=YES).

The buffer BUFFis 327 bytes long.

The following WRITEinstruction writes 2 records from buffer BUFF2:

WRITE DS1,BUFF2,2,327,ERROR=ERR,WAIT=YES

BUFF2 BUFFER 768,BYTES

The system writes two records (indicated by 2 in the third operand). The size of each recordis

327 bytes (indicated by 327 in the fourth operand). If an error occurs, control transfers to

ERR. The system waits for the operation to complete before continuing (WAIT=YES).

BUFF2is 768 bytes long because it must be .a multiple of 256.

Two of the instructions that write data to a terminal are the PRINTEXT and PRINTNUM

instructions. The PRINTEXTinstruction allows you to write alphameric data (alphabetic

characters, numbers, and special characters). With the PRINTNUMinstruction, you can write

numbers (both integer and floating-point) only.

Writing Ailphameric Data

PG-50 SC34-0438

To write alphameric data to a terminal, use the PRINTEXTinstruction as follows:

PRINTEXT DESC,SKIP=3

DESC TEXT "NOW IS THE TIME FOR ALL GOOD MEN'

The instruction writes (or disp/ays) the 25 alphameric characters in DESC. The operand

SKIP=3 causes the system to skip three lines before displaying DESC.

Unless you know howthe system constructs a storage area defined by a TEXT statement, you

should write from an area defined by a TEXT statement.

For information on writing alphameric data to screens, see Chapter 8, “‘Reading and Writing

Data from Screens” on page PG-115.

Area (continued)

WVriting Numeric Data

The PRINTNUMinstruction allows you to write either a single floating-point value or more

than one integer to a terminal. The following instruction writes a floating-point number:

PRINTNUM BASAL, TYPE=F,FORMAT=(6,2,F)

The instruction writes the number contained in the variable BASAL. The operand TYPE=F

means that BASAL is a single-precision floating-point number. The operand

FORMAT=(6,2,F) tells the system to display the numberin 6 positions on the screen (including

the decimal point), to display 2 digits to the right of the decimal point, and to display it as an

‘““F-type”’ numbersuch as 436.32.

To write more than one integer, code a second operand onthe instruction as follows:

PRINTNUM WEIGHTS, 7

The instruction displays the 7 one-word valuesstarting at location WEIGHTS.

The instruction assumesthat you have defined WEIGHTSasfollows:

WEIGHTS DATA 7F'O'

p | eaoun es

This section discusses the EDL instructions used to control the logic or execution of instructions.

The following instructions are the primary meansof controlling program logic:

« DO initializes a loop

« ENDDO- endsa loop

e IF - tests a condition

e ELSE- specifies the action for a false condition

e ENDIF - ends an IF-ELSEstructure

e GOTO- branches to another location

The IF and DOstatements involve the use of the following relational operators:

« EQ -- equal

Chapter 2. Writing a Source Program PG-51

e NE -- not equal

e GT -- greater than

e LT -- less than

e GE -- greater than or equal

e LE -- less than or equal

The IF Instruction

The IF instruction allows you to compare two areas of storage. You can compare data in two

ways: arithmetically OF logically.

When you comparedata arithmetically, the system interprets each numberasa positive or

negative value. The system, for example, interprets X‘OFFF’ as 4095. It interprets X‘FFFD’,

however, as a-3. Though X‘FFFD’seemsto be a larger hexadecimal number than X‘OFFF’,

the system recognizes X‘FFFD’as a negative number and X‘OFFF’as a positive number.

X‘*FFFD?’is a negative numberto the system because the leftmost bit is ‘‘on’’.

Whenyou compare datalogically, the system comparesthe data byte-by-byte. The system

interprets X*‘FFFF’ as 2 bytes with all bits ‘‘on’’.

Comparing Data Arithmetically

The form of the arithmetic comparisonis:

IF (datal,operator,data2,width)

If data? has the relationship indicated by operator to data2, the next sequential instruction

executes. Width indicates the length of the data to be compared and must be BYTE, WORD

(the default), DWORD, FLOAT, or DFLOAT.

This is called the true portion of the IF-ELSE-ENDIFstructure. For example:

IF (A,EQ,B,WORD)
PRINTNUM A

ELSE
PRINTNUM B

ENDIF

ELSEis an optional part of the structure. The instructions following it are called the false part

of the structure. Therefore, in the preceding example,the instruction following the ELSE

instruction executesif A is not equal to B. If ELSE is not coded and the conditionis false,

control passes to the instruction following the ENDIF.

You can test more than two conditionsin a single IF statement.

IF (ALPHA, LT, BETA) , AND, (GAMMA, NE, DELTA)

PG-52 SC34-0438

IF ALPHAis less than BETA and GAMMAis not equal to DELTA,the next sequential

instruction executes.

You can also execute the next sequential instruction if either test produces a true condition.

IF (PL,GE,PSI) ,OR, (CHI,NE, OMEGA)

If PI is greater than or equal to PSI or CHI is not equal to OMEGA,the next sequential

instruction executes.

To compare a variable to a constant, code the constant as data2 as follows:

IF (FEET,EQ,5280)

If FEET equals 5280 (decimal), the next sequential instruction executes.

Comparing Data Logically

The form of the logical comparisonis:

IF (datal,operator,data2,width)

If data? has the relationship indicated by operator to data2, the next sequential instruction

executes. Width indicates the length of the data to be compared and mustbe an integer.

For example:

IF (A,GE,B,4)
PRINTNUM A

ELSE
PRINTNUM B

ENDIF

The instruction(s) that follow the IF instruction is (are) called the true portion of the

IF-ELSE-ENDIFstructure. If the 4 bytes in A are greater than or equal to the 4 bytes in B,the

next sequential instruction executes.

The instruction(s) following the ELSEinstruction is (are) called the false part of the structure.

ELSEis an optional part of the structure. If the 4 bytes in A are not greater than or equal to

the 4 bytes in B,the instruction following the ELSE instruction executes.

If the ELSE instruction is not coded and the condition is false, control passes to the instruction

following the ENDIF.

Chapter 2. Writing a Source Program PG-53

 PG-54 SC34-0438

The DOinstruction allows you to execute the same coderepetitively. The DO instructionstarts

a DO loop and the ENDDOinstruction ends the loop. The loop consists of the instructions

between the DO and ENDDO.Thefollowing sections show the different forms of the DO loop.

The loop executes a specified numberof times.

DO 100,TIMES
GETVALUE PSI,PROMPT3
ADD COUNT, PSI

ENDDO

The GETVALUE and ADDinstruction execute 100 times.

The loop executes until the condition occurs. (The loop always executesat least once.)

DO UNTIL, (CDED,GT, 1000, FLOAT)
GETVALUE OMICRON, OMPRMPT
FSUB CDED , OMICRON

ENDDO

The GETVALUEand FSUB instructions execute until CDEDis greater than 1000.

The loop executes as long as the condition exists.

DO WHILE, (B,NE,C)
GETVALUE B,'ENTER B'!
GETVALUE C,'ENTER C!

ENDDO

The GETVALUEinstructions execute as long as B does not equal C.

2 Loop

A DO loop can contain other DO loops. For example:

DO UNTIL, (ALPHA,LT,BETA,DFLOAT) ,OR, (#1,EQ,1000)
GETVALUE ALPHA, 'ENTER ALPHA',TYPE=L, FORMAT=(12,3,E)
GETVALUE BETA, 'ENTER BETA' , TYPE=L, FORMAT=(12,3,E)
MOVE #1,BETA, (1,DFLOAT)
DO 10,TIMES

FADD GAMMA,ALPHA, PREC=LLL
ENDDO

ENDDO

The FADDstatement contained in the inner DO executes 10 times for each execution of the

outer DO.

F Instruction

A DO loop canalso contain IF statements. For example:

READTEXT CHAR,'ENTER A CHARACTER'
GETVALUE A,'ENTER A'
GETVALUE B,'ENTER B'
DO WHILE, (A,GT,B)

IF (CHAR,EQ,C'A',BYTE)
DO 40,TIMES

ENDDO
ELSE

ENDIF
GETVALUE A,'ENTER A'
GETVALUE B,'ENTER B'

ENDDO

The outer DO loop executesas long as A is greater than B. The inner DO loop executes 40

times if CHAR equals the letter A.

Chapter 2. Writing a Source Program PG-55

ae

iC (continued)

The GOTOinstruction allows you to transfer control to another location within a program. For

example, the following instruction transfers control to the instruction at label LOC1:

GOTO LOC?1

To branch to an address defined by a label, enclose the label in parentheses as follows:

GOTO (CALC)

This instruction branches to the address contained in CALC. You must define CALC as an

address variable as in the following DATA statement:

CALC DATA A(RTNO1)

To branchto a location that is based on the contents of a variable, code the GOTOstatement

like this:

GOTO (ERR,L1,L2),I1

The instruction branches to L1 if I equals 1, to L2 if I equals 2, and to ERR for any other value

of I. The system branchesto the first label in parenthesesif the variable is less than 1 or greater

than the numberof labels minus1.

Sa ee a f Dan a, 8 ee 2 : a ee Bee Be, Bttorage (Program) Location

PG-56 SC34-0438

You can use the EQU statementto refer to the next available storage location in a program.

You can use it to generate labels in your program. For example:

CALLA EQU *
MOVE C,+A, (1,BYTE)

GOTO CALLA

Sa itm, gustan, lle a, : - Qe -~ ee a a

Control mo ere é

Ending a program requires three statements: PROGSTOP, ENDPROG,and END.

The PROGSTOPstatement ends the program and releasesany storage that it used. It also

signals the end of the executable instructions.

The ENDPROGstatementfollows the statements that define storage areas and precedesthe

ENDstatement.

The ENDstatement follows the ENDPROGstatement. It tells the compiler that the program

contains no more statements.

The following example showsthe position of the three statements and the general structure of a

program.

PRINT PROGRAM START
START EQU *

PROGSTOP
FIELD1 DATA F'Q!

ENDPROG
END

Chapter 2. Writing a Source Program PG-57

PG-58 SC34-0438

After you code a source program, you must enterit into a data set. The data set can be on

either disk, diskette, or tape.

This chapter shows howto usethe text editor called the $FSEDITutility. The chapter describes

the commands you needto enter a new source program or change an existing source program.

For a completelist of $FSEDIT commands,refer to Operator Commandsand Utilities Reference.

You can invoke the editor in one of two ways. You can loadit directly using the $L command.

Or, you can invokeit using the session manager.

This chapter discusses how to invokethe editor with the session manager. For information on

how to invoke $FSEDIT with the $L command,refer to Operator CommandsandUtilities Reference.

As you learned in Chapter 1 of this book, you load the session manager by pressing the

attention key, typing $t SSSMAIN, andpressing the enter key.

At this point, enter a one to four character ID andpressthe enter key.

The Session Manager Primary Option Menu appears. From this menu,select option 1 (TEXT

EDITING). The session manager displays the $FSEDIT Primary Option Menu.

Chapter 3. Entering a Source Program PG-59

The session manager allocates data sets automatically when you log on. Oneof these data sets,

a work data set used by $FSEDIT, is named $SMExxxx, where xxxx is the ID you entered when

you logged on to the session manager. For example, if you entered ABCD when you logged on,

the work data set is$SSMEABCD.

Use option 2 (EDIT) to put your source program into the workdataset.

(oe seviT PRIMARY OPTION MENU --------------------------------- STATUS = INIT
PRESS PF3 TO EXIT

OPTION ===> 2

DATASET NAME =========> (CURRENTLY IN WORK DATASET)
VOLUME NAME ==s2s==<===>

HOST DATASET ========>

ENTER A VOLUME NAME AND PRESS ENTER FOR A DIRECTORY LIST.

---- BROWSE
---- EDIT
---- READ (HOST/NATIVE)
---- WRITE (HOST/NATIVE)
---- SUBMIT BATCH JOB TO HOST SYSTEM
---- PRINT
---- MERGE
---- END
---- HELP

(
2
O
Y

A
R
N
E
W
N
=

S

An empty data set appears on your screen. The nameof the data set and the volume on whichit

resides are shownatthe top of the screen.

(EDIT --- $SMEABCD, EDX003 0(1089) -------------------------- COLUMNS 001 072
| COMMAND INPUT ===> SCROLL ==> HALF
; Kkekkek kkieks TOP OF DATA BKKAARRAKRRRKKKRRRRRRRRRRRRKKKKRRAKKSE

oe e © @ @

: KkeKKK KrAKK* BOTTOM OF DATA KKKKRAKKRKAKRAKRKAKRKKKKKRRRRRRRKRAKES

The cursoris locatedat the first input line. After you finish typing text on this line, press the

enter key.

PG-60 SC34-0438

The following example showshowthe screen looksafter you enterthe first line of a source

program. (Wehaveused the source program described in Chapter 1 of this book.) The editor

automatically numberseach line and presents a new blankline.

00010 ADD 10
08 OL Oe

EDIT --- SSMEABCD, EDX003
COMMAND INPUT ===>
kkk AAA TOD OF DATA RIKRRARAIIRRRRRRRRRIRIRRIKRARARRRRIRIRIRRRIRIR

_ STPGM, PROGRAM

-0(1089)-------------------------- COLUMNS 001 072.
SCROLL ==> HALF

AkKKK Ekkx IEICEISSIOCISGCIIEITOCCATAITOCAABOTTOM OF DATA

¢

~

Continue to type each line of your source program. When youfinish, press the enter key on a

blank line.

[ie

400010 ADD10

+00030 LOOP
~+00040.

-+00050
+00060
-+00070 |

+00080

+00100 SUM
+00110
+00120 NN

EDIT --- $SMEA BCD ,
 COMMAND INPUT

+00020 STPGM

+00090 COUNT

===>

12 1089) onceeeterrecorrectors COLUMNS 001 072EDXOO3
SCROLL ==> HALF

KKKK AAKKK TOP OF DATA JOSEOEICSOOOICICIICISEOCCTCTCTTTTTTITTTITATAAIIE

PROGRAM © ~ STPGM
GETVALUE. COUNT, 'ENTERNUMBER: ae
DO. . 10, TIMES
ADD ‘SUM, COUNT
ENDDO
PRINTEXT —s'@RESULT='
PRINTNUM | SUM
-PROGSTOP
DATA F'o'
DATA F'o'
ENDPROG
END

debe ek hakekkkeR RAKK be keRKKKAKKKKKKK. *?ak BOTTOM OF DATA KRAKKKKKKAKKKE KAKAKKAKEAAKKKKoda kAAAX

Chapter 3. Entering a Source Program

sio
nu
ni

n

 SA

PG-61

The next step is to save your data set. Return to the $FSEDIT Primary Option Menubytyping

Mi (for ““menu’’) on the COMMANDINPUTline.

Select option 4 (WRITE)to save the data set. Type the name next on the DATASET NAME

line. (In this example, we namedthe data set ADD10. Type the volume on the VOLUME

NAMEline. (In this example, the volume is EDX002.) Then press the enter key.

, “
SFSEDIT PRIMARY OPTION MENU ----------------------------- STATUS = MODIFIED

PRESS PF3 TO EXIT
OPTION ===> 4

DATASET NAME =========> ADD10 (CURRENTLY IN WORK FILE)
VOLUME NAME ==========> EDX002

HOST DATASET ========>

ENTER A VOLUME NAME AND PRESS ENTER FOR A DIRECTORY LIST.

1 ---- BROWSE
2 ---- EDIT
3 ---- READ (HOST/NATIVE)
4 ---- WRITE (HOST/NATIVE)
5 ---- SUBMIT
6 ---- PRINT
7 ---- MERGE
8 ---- END
9 ---- HELP

Next, the system prompts youas follows:

i
\WRITE TO ADD10 ON EDX002 (Y/N)?

ey

Type ¥ andpress the enter key.

Then you see a message on yourscreen indicating that the data set has been written to the

volume. In the example shown above, the following message would appear:

i
| 12 LINES WRITTEN TO ADD10,EDX002
4

"
W
a
s
s
o
n

oat

This message meansthat the source program is 12 records long and has been written to volume

EDX002.

PG-62 SC34-0438

ChangingaLine

You have seen how to enter a source program into a new data set. You can also modify an

existing data set.

You mustfirst read the data set you want to modify into the work data set. Select option 3

(READ)from the $FSEDIT Primary Options Menu. On the menu, you specify which data set

you wantto read.

Next, you select option 2 (EDIT) to modify the dataset.

The data set appears on yourscreen.

EDIT --- ADD10
COMMAND INPUT ===>
AAKKK

EDX002 12(1089)------------------------ COLUMNS 001 072
SCROLL ==> HALF

AKKKK TOP OF DATA KEAKKKKKAKKAKKKAKEKKRKKRKKRRREKEKKRKRRAKRKKRRKREKKKKRKKRRKEKKEK

00010 ADD1I0
00020 STPGM
00030 LOOP
00040
00050
00060
00070
00080
00090 COUNT
00100 SUM
00110
00120
KARAK AAAAK

PROGRAM
GETVALUE
DO

ADD
ENDDO
PRINTEXT
PRINTNUM
PROGSTOP
DATA
DATA
ENDPROG
END

BOTTOM OF DATA

STPGM
COUNT, ‘ENTER NUMBER: '
10, TIMES
SUM, COUNT

‘@RESULT='
SUM

KAKAAAAAAKAKARAKARAKERAARARAREKAKERAARAREAARRKAREKR

 /
To change a line, movethe cursorto the line and type in the correction. For example, suppose

you wanted to change 10 to 15 in the DO instruction. Movethe cursor to the 0 and type a 5.

Or, suppose you wantedto delete the = character in the PRINTEXTinstruction. You would

move the cursor to the = character and pressthe delete key.

Chapter 3. Entering a Source Program PG-63

 PG-64 SC34-0438

You can insert a new line into your data set. You insert a line by typing an | in the line number

after which you wantto insert.

For example, suppose you wantto insert anotherinstruction before PROGSTOP. Typethe | as

—

follows:

EDIT --- ADDI0O » EDX002 12(1089)------------------------ COLUMNS 001 072

COMMAND INPUT ===> SCROLL ==> HALF
KKAKKK KKEKK TOP OF DATA KRERRRRKRRERRRRRKRRRKKKKRRRRRRRRRRRKRRKEKKKAKA

00010 ADD10 PROGRAM STPGM

00020 STPGM GETVALUE COUNT, ‘ENTER NUMBER: '

00030 LOOP DO 10,TIMES

00040 ADD SUM, COUNT

00050 ENDDO

00060 PRINTEXT "@RESULT='

10070 PRINTNUM SUM

00080 PROGSTOP

00090 COUNT DATA F'Q'

00100 SUM DATA F'o'

00110 ENDPROG

00120 END
KaRKK KKAKK BOTTOM OF DATA KSKRERAKKARARRRRRRRRRRRRRRRRRRRRAKARRKKKKAKS

After you press the enter key, your data set lookslike this:

 Jf

EDIT --- ADDIO EDX002 12(1089)------------------------ COLUMNS 001 072
COMMAND INPUT ===> SCROLL ==> HALF
RAKKK XKKEK TOP OF DATA XEXRXAKAAAAKAAAAAAAAAKAKAKAKRARARAKRARARRARRRRRRARE

00010 ADD1IO PROGRAM STPGM
00020 STPGM GETVALUE COUNT, ‘ENTER NUMBER: '
00030 LOOP DO 10, TIMES
00040 ADD SUM, COUNT
00050 ENDDO
00060 PRINTEXT '@RESULT='
00070 PRINTNUM SUM

00080 PROGSTOP
00090 COUNT DATA F'O'
00100 SUM DATA F'o'
00110 ENDPROG
00120 END
ARKKK XKKEK BOTTOM OF DATA XXAXAAAAAXAAAAARAAAAAAARAKAAAARAAREARAARKARRRARKARR

You could now enter your new line of text at the position of the cursor. After you press enter,

the editor assigns a line numberto your newline of text. A new blank input line also appears.

You can continue to insert lines or you can press the enter key again to indicate that you have

finished inserting.

eting a Line

You can delete a line orseries of lines from yourdataset.

To delete a single line, enter a D in the line number you wantdeleted andpressthe enter key.

a

00010.

00030

00070
D0080

00100
00110
00121

 Be ale he ale A
AAAee

00020.

00040
00050—i(‘«t
00060

00090 ~~

00130
tik BOTTOM OF DATAJCSCSCOTATTOOTATIIITITIIAIIIT

“EDXO02EDIT --- ADDIO.—,
MM

OeNe TOP. OF DATA JUHICSICSCOSOGTOTSTTITIIIIT
INPUT ===>

a1089)------ceeeroetareontCOLUMNS 001 072
SCROLL ==> HALF

STPGM .
COUNT,‘ENTER ‘NUMBER:

10,TIMES

SUM,COUNT

— "@RESULT='

seeeneeetnelete this [secanosseyea

ADD 10 PROGRAM
STPGM —SGETVALUE
LOOP Do
ADDS

 E—NDDO
_ PRINTEXT
PRINTNUM

| - PROGSTOP |
COUNT. - DATA
SUM DATA
oe _ ENDPROG

END”

Fi
F

0!
‘o'

After you press the enter key, the editor deletes the line.

‘

pee

00020
00030
00040

00060

00090
00100

00120
00130
KAKKK

\ |

(eit -~-- ADDIO
COMMAND INPUT ==>

00050

00070

00110

, EDX002 —12¢ 1089)----n-n-n-nnnenenanennneCOLUMNS 001 072
SCROLL ==> HALF

we he he be *& kk *RARKKTOP OF DATA JOCUOCOOOIIRTREEUETERAKKKKEKK RAN ARKK

ADD10 — - PROGRAM —
STPGM GETVALUE
LOOP =—s—“‘tsésiOOS

ADD
 ENDDO ~
~ PRINTEXT

— PRINTNUM ~
— PROGSTOP-

COUNT DATA”
SUM =———éATAN

_ ENDPROG |
END

 STPGM |
COUNT, ‘ENTER NUMBER: °

10,TIMES. |
SUM,COUNT

'@RESULT='
SUM

AARKK BOTTOM OF. ‘DATA JESSICACCOCOCIIIIIITOTIIIIIIIIISIII

Chapter 3. Entering a Source Program

PG-65

You can also delete more than onelines.

For example, suppose you want to delete lines 80 through 120 in the following program. Type

DD in line 80 and another DDin line 120.

00010
00020
00030
00040
00050
00060
00070
DDO080
00090
00100
00110
DD120
00130
00140
00150
00160
00170
KAKKK

(epit ~-~ ADD10
COMMAND INPUT ===>
AKKKA AKAKK TOP OF DATA KXAKAKAKAAAAKAAAAARARKAKAAARARKARRRRRRRERERRRRARR

ADD10 PROGRAM STPGM |
STPGM GETVALUE COUNT, ‘ENTER NUMBER: '
LOOP DO 10,TIMES

ADD SUM, COUNT
ENDDO
PRINTEXT ‘@RESULT='
PRINTNUM UM |

KEAKKEKARADOTote these lines ttxseeeeeeeekkkiki
dkAk fkkA
kAAK tok dkik
tok dkik tktka
KKAAEEEAAAD EO TOTe these]inesttxeeeeaekereettkbdck

PROGSTOP
COUNT DATA F'Q'
SUM DATA F'O'

ENDPROG
END

he Le be Le whe whe de ate whe oe he bb bh bh
ANA AS BOTTOM OF DATA KARIERREKRARAAKRRRRRAKRRARRRAKKKR RRRKKRARRRRRRRRKKKKAKAAKS

» EDX002 17(1089) ------------------------ COLUMNS 001 072
SCROLL ==> HALF

After you press the enter key, your program lookslike this:

00010
00020
00030
00040
00050
00060
00070
00130
00140
00150
00160
00170
KAKKAK

(EDIT --- ADD10 , EDX002 12(1089)---------------------
COMMAND INPUT ===>
AKAKK KAKA TOP OF DATA KXXXAXAAAAAAAAAKAAAAAARARKAAARARARARARKRARRARRRRRRRRR

ADD 10 PROGRAM STPGM
STPGM GETVALUE COUNT, 'ENTER NUMBER: '
LOOP DO 10, TIMES

ADD SUM, COUNT
ENDDO
PRINTEXT "@RESULT='
PRINTNUM SUM
PROGSTOP

COUNT DATA F'o'
SUM DATA F'o'

ENDPROG
END

khrekaA* BOTTOM OF DATA KKKRRKAKRRRRARRARRARRARRARARREKRKAKKRKKRKKK

The editor deletes the lines.

PG-66 SC34-0438

--- COLUMNS 001 072
SCROLL ==> HALF

 y,

(continued)

You can movea line or series of lines from one part of your data set to another.

For example, suppose you want to movelines 110 through 130. First type Mivin both 110 and

130:

If you want to movetheselines after line 10, place an A (for “‘after’’) on line 10 and press the

enter key.

EDIT -~- ADD10 » EDX002 1§(1089) -------------nnnn-nennn- COLUMNS001 072
COMMAND INPUT ===> SCROLL ==> HALF |
KAKKK KKRAEKK TOP OF DATA KAKKERRRAKKKEKEERRERERRRRRERERARERRRRRERERAEKKKRKEEREK

A0010 ADD10 ~ PROGRAM STPGM |
00020 STPGM GETVALUE COUNT, ENTER NUMBER: '
00030 LOOP —b0 10, TIMES
00040 ADD SUM, COUNT
00050 ENDDO
00060 PRINTEXT ‘@RESULT='
00070 PRINTNUM SUM
00080 PROGSTOP
00090 COUNT DATA F'Q'
00100 SUM DATA ‘O'
MM110 KAAKAKKKRMOVe these | ines ***BAAABARAAREARRRREABS oe

00120 ***** ARKAK a

00140 ENDPROG ee

Ook atok END RAKAARA RAR RRAREKER RARER RARER ARERRRR kek kk .

Whenyoupress the enter key, the editor movesthe lines to the position after line 10.

f Lol
EDIT --- ADDI0O » EDX002 15 (1089) --TATETTTee COLUMNS 001 072.
COMMANDUNEUT ===> : enol=>HALE

00010 ADD10 PROGRAM.

+00020 *********Move these lines’
+00030 hk

+00040 *********Move these lines”
00050 STPGM GETVALUE

00060 LOOP DO |

00070 ADD

00080 ENDDO

00090 PRINTEXT.

00100 PRINTNUM

00110 PROGSTOP

00120 COUNT DATA

00130 SUM DATA

00140 ENDPROG

00150 END
kkk KAAKK BOTTOM OF DATA

ahi

~ COUNT,"EENTER NUMBER:
10, TIMES
SUM, COUNT

'@RESULT='
SUM

KAKAKKEAARAKAARKKAKKAAKEAAKRAAKRRRAKARRKAKKRKKKAKREKARKAKK

Chapter 3. Entering a Source Program

PG-67

Enteringa

Modifying an Existing Data Set (continued)

PG-68 SC34-0438

After you make changesto yourdata set, return to the $FSEDIT Primary Options Menu.

Return to that menu by typing M (for ‘““menu’’) on the COMMANDINPUTline. To save the

changes, select option 4 and press the enter key.

You have seen how you can changelines in your programs. You have also seen howto insert

and delete lines and movea series of lines. The session manager was used to invoke $FSEDIT

andto allocate the necessary datasets.

The next chapter explains how to compile your programs using $EDXASM,the EDX compiler.

After you design, code, and enter your source program into a data set, you have to compile the

source program into an object module. This chapter shows you how to compile your source

program using the Event Driven Language Compiler, SEDXASM.

The chapter also shows a step-by-step example of compiling a source program that contains

some syntax errors. The chapter then shows howto correct the errors so that the compilation is

successful.

You can invoke $EDXASMin one of three ways. You can load $EDXASM directly using the

$L command. You can use the $JOBUTILutility to invoke $EDXASM. Or, you can run your

compilation under control of the session manager.

This chapter describes how to compile a program using the session manager.

For information on using the $L commandor the $JOBUTILutility, see Operator Commands and
Utilities Reference.

Chapter 4. Compiling a Program PG-69

PG-70 SC34-0438

Whenyou use $EDXASM undercontrol of the session manager, you must provide two data

sets. The first data set is the actual source program to be compiled. You must have entered the

source program on a disk, diskette, or tape data set. Chapter 3, ‘“Entering a Source Program”’

on page PG-59 describes how to use the $FSEDIT utility to enter your source programs.

The output of the compiler is a data set that contains an object module. You can allocate this

data set by selecting option 3 (DATA MANAGEMENT)from the Session Manager Primary

Option Menu.

ee “

SSMMPRIM: SESSION MANAGER PRIMARY OPTION MENU ~~----~-~-~-----------3----7----7---
ENTER/SELECT PARAMETERS: PRESS PF3 TO EXIT

19:42:07
SELECT OPTION ==> 3 10/24/82

ABCD

TEXT EDITING
- PROGRAM PREPARATION
~ DATA MANAGEMENT
- TERMINAL UTILITIES

GRAPHICS UTILITIES
- EXEC PROGRAM/UTILITY
- EXEC $JOBUTIL PROC
- COMMUNICATION UTILITIES O

o
C
O
M
O
U
S
w

D
R
—

t

~ DIAGNOSTIC AIDS

\. /

Note: This example assumesthat you logged on to the Session Manager with an ID of ABCD.

The Data Management Option Menuappears on the screen. To allocate your object code data

set, select option 1 (SDISKUT1).

$SMMO3 SESSION

SELECT OPTION

1 - SDISKUTI
2 - $DISKUT2
3 - SCOPYUTI
4 - SCOMPRES
5 - S$COPY
6 - SDASDI
7 - SINITDSK
8 - SMOVEVOL
9 - SIAMUTI
10 - STAPEUTI
11. - $HXUTI

\

MANAGER DATA MANAGEMENT OPTION MENU------------------------
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

==> |

(DISK(ETTE) ALLOCATE, LIST DIRECTORY)
(DISK(ETTE) DUMP/LIST DATASETS)
(DISK(ETTE) COPY DATASETS/VOLUMES)
(DISK(ETTE) COMPRESS A VOLUME)
(DISK(ETTE) COPY DATASETS/VOLUMES)
(DISK(ETTE) SURFACE INITIALIZATION)
(DISK(ETTE) INITIALIZE/VERIFY)
(COPY DISK VOLUME TO MULTI-DISKETTES)
(INDEXED ACCESS METHOD UTILITY PROGRAM)
(TAPE ALLOCATE, CHANGE, COPY)
(H-EXCHANGE DATASET UTILITY)

WHEN ENTERING THESE UTILITIES, THE USER 1S EXPECTED
TO ENTER A COMMAND. IF A QUESTION MARK (7) 1S ENTERED
INSTEAD OF A COMMAND, THE USER WILL BE PRESENTED WITH
A LIST OF AVAILABLE COMMANDS. — aS

o

The session managerloads the $DISKUT1 utility and prompts for the command you wantto

use.

> $L S$DISKUTI
LOADING $DISKUT1

 | COMMAND (7): _
he,

59P,19:44:28, LP= 9200, PART=1

SDISKUT1 - DATA SET MANAGEMENT UTILITY |

USING VOLUME EDX002

Notice the USING VOLUME EDX002 message. Unless you change volumes, $DISKUT1

allocates your data set on EDX002.

Chapter 4. Compiling a Program PG-71

PG-72

To change the default volume, enter a CV command.

To change the default volume to MYVOL,enter the following CV command:

USING VOLUME EDX002

 | COMMAND (7): CY MYVOL

The system responds with:

 USING VOLUME MYVOL

| COMMAND (2): _

Use the CV commandonly when you do not want to use the default volume.

Use the AL commandto allocate your dataset.

COMMAND (7): AL
MEMBER NAME:

|

|

The system then prompts you for the nameof the data set. In this example, the data set nameis

OBJECT.

| MEMBER NAME: OBJECT
| HOW MANY RECORDS? _

Next, the system prompts for the number of records you wantto allocate. A 25- to 50-record

data set should be large enough for most programs. This example defines a 25-record data set.

HOW MANY RECORDS? 25
| DEFAULT TYPE = DATA - OK(Y/N)? _
\

5C34-0438

Finally, the system prompts for the type of information to be contained in the data set. The

default is DATA. Because this data set will contain data, enter a Y.

 | DEFAULT TYPE = DATA - OK(Y/N)? Y

The system respondswith:

| OBJECT CREATED

| COMMAND (7):

Oncethe data set has been created, enter an EN(for “end”’) to return to the Data Management

Option Menuscreen.

| COMMAND (7): EN
:

| SDISKUT1 ENDED 08:30:24

Return to the Session Manager Primary Option Menuto begin the compilation by pressing the

PF3 key.

Chapter 4. Compiling a Program PG-73

PG-74 $C34-0438

Once you haveallocated the data set to hold the output, you are ready to begin compiling the

source program. Thefollowingis a listing of the source program to be compiled:

PROGRAM
STPGM GETVALUE
LOOP DO

ADD
ENDDO
PRINTEXT
PRINTNUM
PROGSTOP

COUNT DATA
SUM DATA

ENDPROG
END

STPGM
COUNT, ‘ENTER NUMBER: '
10,TIMES
SUM , COUNT

'RESULT='
SUM

This program is similar to the examples we used in Chapter 1 and Chapter 3 of this book.

However, we haveincluded twoerrors in this source program.

From the Session Manager Primary Option Menu,select option 2 (PROGRAM

PREPARATION)to begin the compile step.

ENTER/SELECT PARAMETERS:

SELECT OPTION ==> 2

~ TEXT EDITING

O
o

C
O
™
m
N
N
U
N
l
w

p
d
—

|

f
SSMMPRIM: SESSION MANAGER PRIMARY OPTION MENU -~-~--~---~~------------------

~ PROGRAM PREPARATION
- DATA MANAGEMENT
- TERMINAL UTILITIES

GRAPHICS UTILITIES
- EXEC PROGRAM/UTILITY
- EXEC S$JOBUTIL PROC
- COMMUNICATION UTILITIES
- DIAGNOSTIC AIDS

PRESS PF3 TO EXIT

19:48:07
10/24/82
ABCD

a

The Program Preparation Option Menu appears on your screen. To compile the program,select

option 1 (SEDXASM COMPILER).

{ oN
9SMMO2 SESSION MANAGER PROGRAM PREPARATION OPTION MENU--------------------
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SELECT OPTION ==>

1 - SEDXASM COMPILER
2 - SEDXASM/SEDXLINK
3 - $S1ASM ASSEMBLER
4 - SCOBOL COMPILER
S - SFORT FORTRAN COMPILER
6 - S$PLI COMPILER/SEDXLINK
7 - SEDXLINK LINKAGE EDITOR
8 - SXPSLINK LINKAGE EDITOR FOR SUPERVISOR
9 - SUPDATE
10 - SUPDATEH (HOST)
11 - SPREFIND
12 - $PASCAL COMPILER/SEDXLINK
13 - SEDXASM/S$XPSLINK FOR SUPERVISORS

Ne. | J

The $EDXASM Parameter Input Menu appears on yourscreen. Enter the name of your source

input (in this example, ADD10 on volume EDX002). Also enter the name of your object output

(in this example, data set OBJECT on volume MYVOL).

You could enter something on the OPTIONAL PARAMETERSline if you want to change one

of the parameterslisted on the DEFAULT PARAMETERSline. In this example, we are using

the defaults.

$SMMO201: SESSION MANAGER SEDXASM PARAMETER INPUT MENU---------------------
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SOURCE INPUT (NAME,VOLUME) ==> ADD1O,EDx002

OBJECT OUTPUT (NAME,VOLUME) ==> OBJECT MYVOL

OPTIONAL PARAMETERS ==>

(SELECT FRON THE LIST BELOW)

ey ey ie ama eee A i mma cree ones one sims meus mime na mm SUE eur ums anus eanceccemn ema) fa cee DUD eee coy Gere tee em re emits pet, anes ents a Goer: sa) GU GS SU ee eel eta

AVAILABLE PARAMETERS: ABBREVIATION: DESCRIPTION:
NOLIST NO USED TO SUPPRESS LISTING
LIST TERMINAL-NAME Li TERMINAL~NAME USE LIST * FOR THIS TERMINAL
ERRORS TERMINAL~NAME ER TERMINAL-NAME USE ERRORS * FOR THIS TERMINAL
CONTROL DATA SET,VOLUME CO DATA SET,VOLUME SEDXASM LANGUAGE CONTROL DATASET
OVERLAY # OV # # 1S NUMBER OF AREAS FROM 1 TO 6

DEFAULT PARAMETERS:
LIST S$SYSPRTR CONTROL SEDXL,ASMLIB OVERLAY 4

Chapter 4. Compiling a Program PG-75

The output of the compiler prints on yourprinter. The listing consists of statistics, source code

statements and object code, undefined or external symbols, and a completion code.

The following is an example of the outputlisting generated by the compile example being run.

EDX ASSEMBLER STATISTICS

SOURCE INPUT - ADD10,EDXO002
WORK DATA SET - WORK1,MYVOL
OBJECT MODULE - OBJECT,MYVOL

DATE: 10/24/82 AT 19:56:18
ASSEMBLY TIME: 4 SECONDS

STATEMENTS PROCESSED - 12

4 STATEMENTS FLAGGED

PAGE 1

LOC +O +2 +4 +6 +8 SOURCE STATEMENT ADD 10 ,EDXO02 (5719

PROGRAM STPGM

O8 *** TASK NAME NOT SPECIFIED $EDXL 12

OOOO 802C 0000 OOOA 0001 OEOE STPGM GETVALUE COUNT, 'ENTER NUMBER: '

OOOA C5D5 E3C5 D940 D5E4 D4C2
0014 C5D5 7A40

O08 *** ONE OR MORE UNDEFINED LABELS WERE REFERENCED $EDXL 3

0018 809C 0024 OOOA LOOP DO 10, TIMES
OO1E 0032 0040 OOO00 ADD SUM, COUNT

O8 *** ONE OR MORE UNDEFINED LABELS WERE REFERENCED $EDXL 3

0024 OO9D 0000 0001 ENDDO
OO2A 8026 0808 D9C5 E2E4 D3E3 PRINTEXT "RESULT='

0034 7E40 PRINTNUM SUM

O003C 0022 FFFF PROGSTOP

COUNT DATA F'O'

O8 *** TNVALID OR UNDEFINED OPERATION CODE $EDXL 11

0040 OOOO SUM DATA F'OQ!'

0042 ENDPROG

0042 END

EXTERNAL/UNDEFINED SYMBOLS

COUNT UNDEFINED

COMPLETION CODE = 8

The previous example showsthat the compile did not run successfully. The completion code

expected is a-1. The completion codereceived is an 8.

PG-76 SC34-0438

ion (continued

The listing shows the compilation errors. Theyare:

e O08 *** TASK NAME NOT SPECIFIED

e 08 *** ONE OR MORE UNDEFINED LABELS WERE REFERENCED

e 08 *** INVALID OR UNDEFINED OPERATION CODE

To fix these errors, you must understand what caused them. Lookthe errors up in Messages and

Codes.

The first message, 08 *** TASK NAME NOT SPECIFIED,is a result of not having a taskname

coded on the PROGRAM statement.

The second message, 08 *** ONE OR MORE UNDEFINED LABELS WERE

REFERENCED,meansthat one of the labels referenced in the instruction has not been defined

to the program. If you checkthelisting for undefined symbols, you will see that COUNTis

undefined.

The third message, 08 *** INVALID OR UNDEFINED OPERATION CODE,meansthat

something is wrong with the COUNTdefinitionstatement. If you check the statement, you will

see that the label, COUNT,starts in column two. The label must start in column one.

After isolating the errors, you must go backto the source data set and correct them. Use

$FSEDIT as explained in Chapter 3, ‘“‘Entering a Source Program” on page PG-59 to makethe

corrections. After you make the corrections, the source data set looks as follows:

PROG1 PROGRAM STPGM
STPGM GETVALUE COUNT, ‘ENTER NUMBER: '
LOOP DO 10,TIMES

ADD SUM, COUNT
ENDDO
PRINTEXT ‘@RESULT='
PRINTNUM SUM
PROGSTOP

COUNT DATA F'O'
SUM DATA F'O'

ENDPROG
END

Chapter 4. Compiling a Program PG-77

$

pilation (continued)

PG-78 SC34-0438

To rerun the compilation, return to the Session Manager Primary Option Menu.

From the Session Manager Primary Option Menu,select option 2 (PROGRAM

PREPARATION).

/SSMMPRIM: SESSION MANAGER PRIMARY OPTION MENU -~-~~~---30- 3-320 r nner nnnn
ENTER/SELECT PARAMETERS: PRESS PF3 TO EXIT

20:02:07

10/24/82
ABCD

SELECT OPTION ==> 2?

- TEXT EDITING
- PROGRAM PREPARA™ION
- DATA MANAGEMENT
- TERMINAL UTILITIES

GRAPHICS UTILITIES
- EXEC PROGRAM/UTILITY
- EXEC SJOBUTIL PROC
- COMMUNICATION UTILITIES
- DIAGNOSTIC AIDSL

O
C
O
N
T
O
W
b
w

h
b
—

1

 NK A

The Program Preparation Option Menu appears on yourscreen. Select option 1 (SEDXASM

COMPILER).

~

“SSMMO2 SESSION MANAGER PROGRAM PREPARATION OPTION MENU--------------------
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SELECT OPTION ==> |

- SEDXASM COMPILER
- SEDXASM/SEDXL INK
-~ $S1ASM ASSEMBLER
- SCOBOL COMPILER

SFORT FORTRAN COMPILER
- SPLI COMPILER/SEDXL INK
- SEDXLINK LINKAGE EDITOR
- $XPSLINK LINKAGE EDITOR FOR SUPERVISORS
- SUPDATE

SUPDATEH (HOST)
SPREF IND
SPASCAL COMPILER/SEDXLINK
SEDXASM/SXPSLINK FOR SUPERVISORS

(
9
O
m
D
U

Ww
W
P
D
—

{

The $EDXASM Parameter Input Menu appears on your screen. Again, enter the name of your

source input (in this example, ADD10). Also enter the name of your object output (in this

example, data set OBJECT on volume MYVOL).

ENTER/SELECT PARAMETERS:

OPTIONAL PARAMETERS ==>
(SELECT FROM THE LIST BELOW)

AVAILABLE PARAMETERS: — ABBREVIATION:
NOLIST NO ee
‘LIST TERMINAL-NAME L1 TERMINAL-NAME
ERRORS TERMINAL-NAME ER TERMI NAL-NAME
CONTROL DATA SET,VOLUME CO DATA SET,VOLUME
OVERLAY # Ov #

DEFAULT PARAMETERS:
_ LIST SSYSPRTR CONTROL SEDXL,ASML1B OVERLAY 4

$SMM0201: SESSION MANAGER SEDXASM PARAMETER INPUT MENU---------------------

SOURCE INPUT (NAME,VOLUME) ==> APD10,EDX002

OBJECT OUTPUT (NAME,VOLUME) ==> OBJECT ,MYVOL

(ean tee cath atom erm) WE inn TD SUL GR CU CR SEN GON ome SEND Eu) te WE HELL ROU ER Gm SEE SNE ADH GUN GUD QE ERED GH GD GR SD GERD MIND MERE MUD ON MEDD UE OD Ne URE Me Go a cle i Gn eS mn oe ee ee cone

PRESS PF3 TO RETURN

DESCRIPTION:
USED TO SUPPRESS LISTING
USE LIST * FOR THIS TERMINAL
USE ERRORS * FOR THIS TERMINAL
SEDXASM LANGUAGE CONTROL DATASET
1S NUMBER OF AREAS FROM 1 TO 6

Chapter 4. Compiling a Program PG-79

The following is an example of the output listing generated by the compiler.

SOURCE INPUT

COMPLETION CODE

EDX ASSEMBLER STATISTICS

- ADD10,EDX002
WORK DATA SET - $SM1ABCD,EDXO002
OBJECT MODULE - OBJECT,MYVOL

SUPEXIT WXTRN
SETBUSY WXTRN

1

DATE: 10/24/82 AT 20:06:18
ASSEMBLY TIME: 4 SECONDS

STATEMENTS PROCESSED - 12

NO STATEMENTS FLAGGED

LOC +0 +2 +4 +6 +8 SOURCE STATEMENT

0000 0008 D7D9 D6D7 DIYC1 D440 PROG1 PROGRAM

0034 802C 0074 OO3E 0001 OEOE STPGM GETVALUE
OO3E C5D5 E3C5 D940 D5E4 D4c2
0048 C5D9 7A40
O04C 809C 0058 OOOA LOOP DO
0052 0032 0076 0074 ADD
0058 OO9D 0000 0001 ENDDO
OOSE 8026 0808 D9C5 E2E4 D3E3 PRINTEXT
0068 7E40
OO6A 0028 0076 0001 PRINTNUM
0070 0022 FFFF PROGSTOP

0074 0000 COUNT DATA

0076 0000 SUM DATA
0078 0000 0000 0000 0234 O00ND ENDPROG

OOFA 0000 0000 0000 0000 OO00D
010E 0000
0110 END

EXTERNAL/UNDEFINED SYMBOLS

SVC WXTRN

ADD10 ,EDXOO2 (5719

STPGM

COUNT, 'ENTER NUMBER:

10,TIMES
SUM, COUNT

"RESULT='

SUM

F'qo!

F'O'

PG-80

The -1 completion code tells you that the compile was successful. The next stepis to link-edit

the object module into program data that can be executed. See the next chapter, Chapter

5, “Preparing an Object Module for Execution” on page PG-81, for details.

SC34-0438

So far in this book, you have learned how to code and enter a source program into a dataset.

You have also learned how to compile the source program.

The next step is to prepare your object modules for execution. In this chapter, we will show you

how to use the linkage editor $EDXLINKto prepare your object modules to run on an EDX

system. $EDXLINKlinks together any separately assembled object modules that make up your

program. $EDXLINKalso produces a load module that is ready for execution.

In this chapter, we will show you howto prepare.a single object module for execution. Wewill

also show you an example of link-editing more than one object module.

You can invoke $EDXLINKin oneof three ways. You can load $EDXLINKdirectly using the

$L command. You can use the $JOBUTILutility to invoke $EDXLINK. Or, you can use

$EDXLINK undercontrol of the session manager.

This chapter describes how to use $EDXLINKundercontrol of the session manager. For

information on using the $L commandor the $JOBUTILutility, refer to Operator Commands and

Utilities Reference.

Chapter 5. Preparing an Object Module for Execution PG-81

PG-82 SC34-0438

This section shows howtolink-edit a single object module.

$EDXLINK LINKAGEEDITORis option 7 of the Session Manager Program Preparation

Option menu.

SSMMO2 SESSION MANAGER PROGRAM PREPARATION OPTION MENU--------------------
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SELECT OPTION ==> /

- SEDXASM COMPILER
- SEDXASM/SEDXLINK
- $S1ASM ASSEMBLER
- SCOBOL COMPILER

SFORT FORTRAN COMPILER
- $PLI COMPILER/SEDXLINK
- SEDXLINK LINKAGE EDITOR
- SXPSLINK LINKAGE EDITOR FOR SUPERVISORS
- SUPDATE

10 - SUPDATEH (HOST)
11 - SPREFIND
12 - SPASCAL COMPILER/SEDXLINK
13 - SEDXASM/SXPSLINK FOR SUPERVISORS

L
O
C
O
N
A
W
D
W
N

—

t

Whenyouselect option 7 and press the enter key, the $EDXLINK Parameter Input Menu

appears on yourscreen.

-$SMM0207: SESSION MANAGER SEDXLINK PARAMETER INPUT MENU--------------------
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

EXECUTION PARM ==> ©

ENTER A CONTROL DATA SET NAME ,VOLUME OR
AN ASTERISK (*) FOR INTERACTIVE MODE.

OUTPUT DEVICE (DEFAULTS TO $SYSPRTR) ==>

You can run $EDXLINKin interactive mode. If you chooseinteractive mode, the system

prompts you for information about the object module you wantto link-edit. To choose

interactive mode, enter an asterisk (*) on the EXECUTION PARM line.

$EDXLINKthendisplays the following screen:

(LOADING $JOBUTIL 4P, 18:27:16, LP= 9400, PART= 1
REMARK

SEDXLINK *
*** JOB - $EDXLINK - STARTED AT 18:28:42 03/15/83 ***

JOB $EDXLINK($SMP0207) USERID=ABCD
LOADING $EDXLINK 89P,18:28:49, LP= 9800, PART= 1

$EDXLINK - EDX LINKAGE EDITOR

$EDXLINK INTERACTIVE MODE
DEFAULT VOLUME = EDX002 STMT(7): a ;

$EDXLINKprompts you for a control statement. Control statements are the instructions

$EDXLINKuses to convert the object modules into load modules.

Whenusing interactive mode, you enter the control statements one at a time. (As you will see

later in this chapter, you can write the control statements to a link control data set for execution

in noninteractive mode.)

To link-edit a single object module, use the INCLUDEand LINKstatements. (You will learn

about someof the other control statementslater in this chapter.)

The INCLUDEstatementindicates which object module to use. (Rememberthat the object

module is the output from $EDXASM,the compiler.) In this example, the object moduleis

OBJECT. This is the only module name you enter next to the INCLUDEstatement.

~/LOADING $JOBUTIL 4P,10:27:16, LP= 9400, PART= 1
REMARK oe

$EDXLINK *
*** JOB - $EDXLINK - STARTED AT 10:27:16 00/00/00 see

JOB $EDXLINK ($SMP0207) USERID=ABCD
LOADING $EDXLINK 89P,10:27:18, LP= 9800, PART= 1

$EDXLINK - EDX LINKAGE EDITOR

$EDXLINK INTERACTIVE MODE
DEFAULT VOLUME= EDX002 STMT(2): INCLUDE OBJECT, MYVOL

Use the LINK statement to namethe dataset that is the output of SEDXLINK. When you

enter the nameof this data set, $EDXLINKallocates it. In the following example, the data set

is named ADDPGM.It will reside on volume EDX002. The word REPLACEsaysto replace

Chapter 5. Preparing an Object Module for Execution PG-83

, &

a » SS Le asl Ea

' LOADING $JOBUTIL 4P,10:27:16, LP= 9400, PART= 1

o
e

the program if it already exists on volume EDX002. ENDtells $EDXLINK notto expect any

more statements.

REMARK
SEDXLINK *
JOB - $EDXLINK - STARTED AT10:27:16 00/00/00 ***

JOB $EDXLINK ($SMP0207) USERID=ABCD
LOADING $EDXLINK 89P,10:27:18, LP= 9800, PART= 1

$EDXLINK - EDX LINKAGE EDITOR

$EDXLINK INTERACTIVE MODE
DEFAULT VOLUME= EDX002

STMT (?): INCLUDE OBJECT, EDX002

STMT (?): LINK ADDPGM,EDX002 REPLACE ENDge
sg

en
y

. Na
gs

e
e
,

The system produces a data set (ADDPGM)that can now be executed on the system. In this

example, we link-edited only one object module (OBJECT). The next section shows how to

link-edit more than one object module.

If the system indicates (by returning a -1 completion code) that the link-edit was successful,

return to the Primary Option Menuto execute your program.

PG-84 SC34-0438

This section shows howto specify that a load module consists of more than one object module.

If you divide a large program into modules, those modules can be compiled separately. If you

need to make a change to one of the modules, you need to recompile only that module. When

you are ready to run the program, you can link-edit the individual modules.

You might also have a function that is common to many of your programs. By makingthis

function a separate module, you could include it wherever needed in your programs.

This section shows how to use both interactive-and noninteractive modeto link-edit the

modules. All examples show $EDXLINKbeing used undercontrol of the session manager.

As youlearned earlier in this chapter,S$EDXLINK LINKAGE EDITORis option 7 of the

Session Manager Program Preparation Option menu.

'$SMMO2 SESSION MANAGER PROGRAM PREPARATION OPTION MENU--------------------
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SELECT OPTION ==> 7

- SEDXASM COMPILER
- SEDXASM/SEDXLINK
- $S1ASM ASSEMBLER
- SCOBOL COMPILER

SFORT FORTRAN COMPILER
- $PL1 COMPILER/SEDXLINK
- SEDXLINK LINKAGE EDITOR
- SXPSLINK LINKAGE EDITOR FOR SUPERVISORS
- SUPDATE

10 - SUPDATEH (HOST)
11 - SPREFIND
12 - SPASCAL COMPILER/SEDXLINK
13 - SEDXASM/SXPSLINK FOR SUPERVISORS

L
O
C
O
N
T

O
N
U
T
G
o

D
D
=

J

MK f

Whenyouselect option 7, the $EDXLINK Parameter Input Menu appears on yourscreen.

$SMM0207: SESSION MANAGER SEDXLINK PARAMETER INPUT MENU---~-----------------
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

EXECUTION PARM ==> *

ENTER A CONTROL DATA SET NAME , VOLUME OR
AN ASTERISK (*) FOR INTERACTIVE MODE.

OUTPUT DEVICE (DEFAULTS TO $SYSPRTR) ==>

Chapter 5. Preparing an Object Module for Execution PG-85

 PG-86 SC34-0438

You can choose interactive mode or noninteractive mode.

When you choose interactive mode, $EDXLINK displays the following screen:

/LOADING $JOBUTIL 4P,07:27:16, LP= 9400, PART= 1
REMARK
$EDXLINK *
*** JOB - $EDXLINK - STARTEDAT 07:27:16 00/00/00 ***

JOB $EDXLINK ($SMP0207) USERID=ABCD
LOADING $EDXLINK 89P,07:27:18, LP= 9800, PART= 1

$EDXLINK - EDX LINKAGE EDITOR

$EDXLINK INTERACTIVE MODE
DEFAULT VOLUME = EDX002 STMT(?):

With the INCLUDEstatement, you indicate which object modules to use. If the modules reside

on the same volume, you can list them on one INCLUDEstatement. In the example shown

below, the firstINCLUDEstatment includes four object modules from volume EDX003. The

second INCLUDEstatmentincludes two object modules from volume MYVOL.

LOADING $JOBUTIL 4P,07:27:16, LP= 9400, PART= 1
REMARK
$EDXLINK *
*** JOB - $EDXLINK - STARTED AT07:27:16 00/00/00 ***

JOB $EDXLINK ($SMP0207) USERID=ABCD
LOADING $EDXLINK 89P,07:27:18, LP= 9800, PART= 1

$EDXLINK - EDX LINKAGE EDITOR

$EDXLINK INTERACTIVE MODE
DEFAULT VOLUME = EDX002

After you enter the first INCLUDEstatement, $EDXLINK prompts you for another statement.

Enter the second INCLUDEstatment.

Chapter 5. Preparing an Object Module for Execution PG-87

PG-88 SC34-0438

i, LE a B + ee aa 8 2

* 1 o) oe Obiect AVifeverteir« ae.
ae a o eae? ; o) toowas fh OS

The LINKstatementtells the linkage editor what to call the load module and whereto putit. In

this example, the output object data set will be named PGM1.It will reside on volume

EDX003. The word REPLACEsaysto replace the program if it already exists on volume

EDX003. ENDtells $EDXLINK not to expect any more statements.

aoe

STMT(?): INCLUDE OBJ12,0B8.13,0B314,0BI15,EDX003

STMT(?): INCLUDE SORT, STDEV,. MYVOL

STMT(?): LINK PGM17,EDXO003 REPLACE END

$EDXLINK EXECUTION STARTED
PGM1 ,EDX003 STORED
PROGRAM DATA SET SIZE= 7 RECORDS
COMPLETION CODE-

$EDXLINK ENDED AT09:33:35

$JOBUTIL ENDED AT 09:33:55 PRESS ENTER KEY TO RETURN Sy

Once you enter these statements, $EDXLINKproduces a load module (PGM1) thatis ready for

execution. PGM1consists of six object modules: OBJ12, OBJ13, OBJ14, OBJ15, SQRT, and

STDEV.

Including Overi

y Segments

Your program may include overlay segments. (Overlay segments are describedin detail in

“Reusing Storage using Overlays” on page PG-147.) You use the OVERLAYstatementto

identify these segments to SEDXLINK.

For example, suppose you had a program madeupofa resident segment and twooverlays.

Assume the nameof the resident segment is TESTROOTandthe overlays are named

TESTSUB1 and TESTSUB2. Yourcontrol statements would look like this:

“SEDXLINK INTERACTIVE MODE ,
DEFAULT VOLUME= EDX002

STMT(?): INCL

STMT (?):

STMT(?): INCLUDE TESTSUB1,EDXO03

STMT(?): ¢

STMT(?):

STMT(?): LINK TEST,ED:

$EDXLINK EXECUTION STARTED
TEST ,EDX003 STORED
PROGRAM DATASETSIZE = 26
COMPLETION CODE= -1 $EDXLINK ENDED AT 04:05:35

“Res /

Thefirst INCLUDEstatementidentifies the resident (or root) portion of the program. The

INCLUDEstatementfollowing the first OVERLAYstatementidentifies the first overlay

segment. The INCLUDEstatement following the second OVERLAYstatement identifies the

second overlay segment.

The LINKstatementidentifies the object output dataset.

Chapter 5. Preparing an Object Module for Execution PG-89

PG-90 SC34-0438

 STMT (7):

You can use the AUTOCALLcontrol statement to invoke the autocall feature. You can include

up to three autocall data set names on the AUTOCALLstatement. Autocall data sets contain a

list of object module names and volumes, along with their entry points. Use the autocall option

to include modules not explicity included via the INCLUDEstatement.

You need to use autocall data sets if, for example, you are link-editing a program that uses

SIMAGEsubroutines. Someinstructions, such as GETEDIT and PUTEDIT,also require that

you link-edit with the autocall option.

The following is an example of an autocall data set.

PGM1,EDX003 ENTER
PGM2,EDX40 START
PGM3,MYVOL CALC
**END

PGM1, PGM72, and PGMS3are object modules on EDX003, EDX40, and MYVOL. ENTER,

START, and CALCare the entry points for the modules: The module names must begin in

column one and end with a **ENDstatement.

Enter the AUTOCALLstatement just before the LINK statement. This example specifies two

autocall data sets: the system-supplied autocall data set (SAUTO on volume ASMLIB)and data

set MYAUTOon volume MYVOL.

If you specify more than one AUTOCALLstatement, the linkage editor uses the last one.

Suppose you wanted to add an AUTOCALLstatementto the previous example. You would

enterit like this:

SEDXLINK INTERACTIVE MODE
DEFAULT VOLUME = EDX002

STMT (2): ' x:

STMT (7): 5

STMT (2):

STMT (7):

STMT (72):

STMT (?):

The system would respondas follows:

SEDXLINK EXECUTION STARTED
TEST »EDX003 STORED
PROGRAM DATA SET SIZE = 26
COMPLETION CODE = -1

SEDXLINK ENDED AT 04:05:35

Thelinkage editor also prints, on the system printer, the names of the object modulesit

included. For example:

INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

$IMOPEN ,ASMLIB
$IMGEN ,ASMLIB
$GPLIST ,ASMLIB
$GEER ,ASMLIB
$GEAC ,ASMLIB
$IMDTYPE,ASMLIB
$$RETURN, ASMLIB
$UNPACK ,ASMLIB

FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM

$AUTO
$AUTO
$AUTO
$AUTO
$AUTO
$AUTO
$AUTO
$AUTO

Chapter 5. Preparing an Object Module for Execution

, ASMLIB
, ASMLIB
, ASMLIB
,ASMLIB
, ASMLIB
, ASMLIB
, ASMLIB
, ASMLIB

VIA
VIA
VIA
VIA
VIA
VIA
VIA
VIA

AUTOCALL
AUTOCALL
AUTOCALL
AUTOCALL
AUTOCALL
AUTOCALL
AUTOCALL
AUTOCALL

PG-91

PG-92 SC34-0438

Using noninteractive mode meansthat you do not have to enter control statements each time

you link-edit a program.

When youuse noninteractive mode, you must enter the nameof a primary control data set on

the $EDXLINK Parameter Input Menu. The primary control data set contains the control

statements to be used by $EDXLINK..

You can create the primary control data set using $FSEDIT. Then enter control statements into

the dataset.

The following is an example of a primary control data set. Control statements must begin in

column 1. This data set includes comment statements. A comment statement begins with an

asterisk (*).

* PLOT PROGRAM INCLUDES
*

INCLUDE PLOTXY ,MYVOL
INCLUDE PLOTXX,MYVOL
INCLUDE PLOTYY,MYVOL
INCLUDE PLOTYX,MYVOL
*

* PERFORM AUTOCALL PROCESSING USING:
*

AUTOCALL MYAUTO,MYVOL $AUTO,ASMLIB
*

* PERFORM THE LINK
*

LINK PLOT,MYVOL REPLACE END

After entering these statements into the data set, you would then specify the name of this data

set next to “EXECUTION PARM”on the $EDXLINK Parameter Input Menu. In this

example, the data set is LINK1 on volume EDX003.

oe
f ~

9SMMO207: SESSION MANAGER SEDXLINK PARAMETER INPUT MENU----~--~-~-------------
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

EXECUTION PARM ==> LINK? ,EDX003

ENTER A CONTROL DATA SET NAME ,VOLUME OR
AN ASTERISK (*) FOR INTERACTIVE MODE. OUTPUT DEVICE (DEFAULTS TO $SYSPRTR) ==>

en 4 cD

&

. C “A BS — . os bo Z

Pe bed Fae Ge © as

The primary control data set mayalso refer to a secondary control data set. The secondary

control data set contains additional control statements. These control statements can be

common control statements that are used frequently for many different link-edits. You use the

COPYcontrol statement to refer to these secondary data sets. For example:

INCLUDE ASMOBJ,EDXOO03
COPY CTRL,EDX40
LINK PGM3,EDX40 REPLACE END

Thelinkage editor includes object module ASMOBJ on volume EDX003,copies additional
control statements from data set CTRL on volume EDX40,gives the load module the name

PGMS3,and puts it on volume EDX40.

For more information on specifying primary and secondary control statementdatasets, refer to

Operator Commandsand Utilities Reference.

You can locate data sets and overlay programs before you load a program by using the

$PREFINDutility. You can improve program performance by using $PREFIND.

You should use $PREFINDif:

« The program uses a large numberof data sets

e The program loads several overlay programs

e You load the program frequently

For information on how to use the $PREFINDutility, refer to Operator CommandsandUtilities

Reference.

Chapter 5. Preparing an Object Module for Execution PG-93

PG-94 SC34-0438

After you have compiled and link-edited a program, you are ready to run (or execute)it.

This chapter shows howto execute a program. You can execute a program in any of the

following ways:

e You can load the program with the $L operator command.

e You can use the $JOBUTIL utility.

e You can use the session manager.

e You can submit the program from another program.

¢ You can use the $SUBMITutility.

This chapter describes how to use the session manager to execute a program and how to submit

a program from another program. For information on how to use the $L operator command or

the $JOBUTIL utility or the $SUBMITutility, refer to Operator Commandsand Utilities Reference.

Chapter 6. Executing a Program PG-95

 PG-96 SC34-0438

To execute your program, select option 6 (EXEC PROGRAM/UTILITY)on the Primary

Option Menu.

>
/

' SSMMPRIM: SESSION MANAGER PRIMARY OPTION MENU -----------------------------
ENTER/SELECT PARAMETERS: PRESS PF3 TO EXIT

11:42:07
SELECT OPTION ==> 6 10/24/82

ABCD

- TEXT EDITING
- PROGRAM PREPARATION
- DATA MANAGEMENT
- TERMINAL UTILITIES

GRAPHICS UTILITIES
- EXEC PROGRAM/UTILITY
- EXEC $JOBUTIL PROC
- COMMUNICATION UTILITIES 9

C
O
N

D
A
U
M
f
w

h
b
—

J

- DIAGNOSTIC AIDS

\. /

The Execute Program/Utility menu appears. Enter the program name (ADDPGM)and volume

(EDX002) next to PROGRAM/UTILITY (NAME,VOLUME). Then typean asterisk in the

DATA SET 1, DATA SET 2, and DATA SET3 fields and press the enter key.

>

' SSMMO6 SESSION MANAGER EXECUTE PROGRAM/UTILITY------------------7-7nn -
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

PROGRAM/UTILITY (NAME ,VOLUME) ==> ADDPGM,EDXO02

PARAMETERS ===>

DS1 NOT USED) ===> *
DS2 NOT USED) ===> *

DS3 NOT USED) ===> *

DATA SET 1 (NAME,VOLUME / *
DATA SET 2 (NAME,VOLUME / *
DATA SET 3 (NAME,VOLUME / * t

tt
i

NOTE: IF A DATA SET (DS1, DS2 OR DS3) IS NOT USED,
AN ASTERISK (*) MUST BE ENTERED IN THE DATA SET FIELD.

Putting asterisks in the DATA SETfields meanseither of two things. Either the program does

not use any data sets or the program specifies the data sets with the DS operand. For example,

the PROGRAM for program ADDPGM mightlooklike this:

BEGIN PROGRAM ST

or this:

BEGIN PROGRAM ST,DS=((MASTER,EDXO003) , (UPDATES ,MYVOL) , (NEWMAST, EDX40))

The following screen then appears on the terminal:

LOADING $JOBUTIL 4P,11:48:21, LP= 9400, PART= 1
REMARK — A
EXECUTE PROGRAM/UTILITY: ADDPGM |
*** JOB - ADDPGM - STARTED AT 11:48:22 00/00/00 ***

JOB ADDPGM ($SMP06) USERID=ABCD ee
LOADING ADDPGM 2P,11:48:23, LP= 9800, PART= 1
ENTER NUMBER: —

Specifying Data Sets

You can specify data sets in one of six ways:

1. In the DS= operand of a PROGRAMinstruction.

2. In the DS= operand of a LOAD instruction.

3. With the $L operator command.

4. During execution of some system utility programs.

5. On the Execute Program/Utility menu.

6. With the DS commandof the $JOBUTILutility.

You identify a data set by specifying:

1. The data set name (dsname)

2. An optional volume label (volume) which specifies the volume on whichthe data set resides

The format for a data set specification is:

dsname,volume

Volumeis optional. If you omit volume, the system assumesthat the data set resides on the

volume from which you performed an IPL. Definitions of dsname and volumeare:

dsname An alphameric characterstring of eight characters. When you specify fewer than

eight characters, the system adds blanksto the right to complete the string.

volume An alphameric characterstring of six characters. To locate the volume, the

appropriate TAPE or DISK statement must be in the system I/O definition. You

mustinitialize the disk or diskette with the $INITDSKutility and tapes with the

Chapter6. Executing a Program PG-97

$TAPEUT1 utility. When you specify fewer than six characters, the system adds

blanksto the right to complete the string.

To specify up to three data sets on the Execute Program/Utility menu, enter the data set name

and volumeasin the following example:

ENTER/SELECT PARAMETERS:

PROGRAM/UTILITY (NAME , VOLUME)

PARAMETERS ===>

DATA SET 1 (NAME,VOLUME / *
DATA SET 2 (NAME,VOLUME / *
DATA SET 3 (NAME,VOLUME / *

NOTE: IF A DATA SET (DS1, DS2
AN ASTERISK (*) MUST BE
FIELD.

"

~$SMMO06 SESSION MANAGER EXECUTE PROGRAM/UTILITY----------------------------
PRESS PF3 TO RETURN

==> ADDPGM,EDX002

DS1 NOT USED) ===> MASTER ,EDX003
DS2 NOT USED) ===> UPDATES ,MYVOL
DS3 NOT USED) ===> NEWMAST ,EDX4O

OR DS3) IS NOT USED,
ENTERED IN THE DATA SET

The PROGRAM statement for program ADDPGM might look like this:

BEGIN PROGRAM ST,DS=(??,??,??)

If a program requires less than three datasets, type an asterisk (*) next to the data set(s) not

used.

PG-98 SC34-0438

A program can submit one or more programs to the EDX job processor. The job queue processor

executes the programs independently of the program that submitted them.

The following example shows how one program can submit programs CALC on volume

EDX003 and UPDATEon volume MYVOL.

BEGIN PROGRAM START

START EQU *

1 LOAD $SUBMITP , SUBPARM1 , LOGMSG=NO , EVENT=SUBEND

A WAIT SUBEND
Fy IF (SUBEND , NE, -1)

PRINTEXT ‘ERROR LOADING CALC' ,SKIP=1

ENDIF

A LOAD $ SUBMITP , SUBPARM2 , LOGMSG=NO , EVENT=SUBEND
WAIT SUBEND

IF (SUBEND , NE, -1)
PRINTEXT ‘ERROR LOADING UPDATE' ,SKIP=1

ENDIF

PROGSTOP

SUBEND ECB

SUBPARM1 EQU *

Bi DATA c'sg'
8 DATA x'0002'
7 DATA CL8'JOBO1'
8 DATA CL6'EDX40'
A DATA A (JOBNO)

SUBPARM2 EQU *
DATA c'sJ'

DATA X'0002'
DATA CL8'JOBO2'
DATA CL6'EDX40'

DATA A (JOBNO)

fk) JOBNO DATA F'O!'
ENDPROG

END

i Submit a job to the job queue. Point to a parameterlist called SUBPARM1, andidentify

the event to be posted when the job has been submitted (EVENT=SUBEND).

A Wait for the job to be submitted to the job queue.

Test for successful completion (-1) of the submit.

Chapter 6. Executing a Program PG-99

PG-100 SC34-0438

jram (continued)A

A Submit a job to the job queue. Point to a parameterlist called SUBPARM2,andidentify

the event to be posted when the job has been submitted (EVENT=SUBEND).

Specify that the job is to be submitted (SJ).

5 Specify the priority of the job (0002).

Identify the name of the data set that contains the job stream processor commands

(JOBO1).

8 Specify the volume that contains JOBO1 (EDX40).

A Specify the address of the field in which the system will put the job number (JOBNO).

ity Reserve storage for the system to put the job number.

The data set called JOBO1 contains job stream processor commands.It might look like the

following:

JOB JOBOQO1

PROGRAM CALC,EDX003

EXEC

KOJ

The PROGRAM commandrefers to a program called CALC on volume EDX003.

The data set called JOBO2 contains job stream processor commands.It might look like the

following:

JOB JOBO2

PROGRAM UPDATE,MYVOL

EXEC

EOJ

The PROGRAM commandrefers to a program called UPDATE on volume MYVOL.

Up to this point, you have written, compiled, and link-edited your program. However, the

program may not run as you expectit to. Steps may be out of sequence or the program may

come up with the wrong answers. In other words, you have problems with your program’slogic.

The program also may not run to a successful conclusion. An exception condition may occur

that interrupts the execution of a program.

The $DEBUGutility assists you in determining logic errors. The task error exit routine is one of

the tools you can use to diagnose exception conditions.

g Logic Errors

This section tells you howto locate and fix logic errors in your program by using the $DEBUG

utility. $DEBUG can work from terminals; you do not have to use the console. $DEBUG has

commandsthat allow youto:

e Stop execution at one or more specific places in a program. The places where you choose to

stop a program are called breakpoints.

e Set up atrace routine. A trace routine allows you to step through program instructions one

at a time. You must specify one or more parts of the program you wish totrace (called a

trace range). Each time the program executes an instruction within any of the specified

trace ranges, the terminal displays a messageidentifying the task name andthe instruction

address just executed. You can stop program execution after each instruction executes

within a trace range.

Chapter 7. Finding and Fixing Errors PG-101

PG-102

Running the P

List additional registers and storage location contents while the program is stopped at a

breakpointor at an instruction within a trace range.

Change the contents of storage locations, registers, data, or instructions.

Restart program execution. You can restart execution at the breakpointor trace range

address where it is currently stopped or you may specify another instruction address.

This section shows an EDL program that has a logic error in it. It shows briefly howto enter,

compile, link-edit, and run (execute) the program.

Perform the following steps using the session manager. Give the program the name ADD1O.

1.

2.

3.

4.

Enter the following program on your terminal exactly as shown.

ADD10 PROGRAM STPGM
STPGM GETVALUE COUNT, 'ENTER NUMBER: '
LOOP DO 10,TIMES

ADD COUNT, SUM
ENDDO
PRINTEXT "RESULT='
PRINTNUM SUM
PROGSTOP

COUNT DATA F'OQ!'
SUM DATA F'OQ'

ENDPROG
END

This program is supposed to take a numberentered on a terminal and addit to itself 10

times. For example, if you enter the number 10, you should get the response:

RESULT=100. However, because of a program logic error, you will not get the expected

answer when you run the program.

Now compile the program. If you have any problems, see Chapter 4, “‘Compiling a

Program.” Save the compiler listing. You will need it when you run $DEBUG.

Next, link-edit your program. If you have any problems, see Chapter 5, “‘Preparing an

Object Module for Execution.”

Run the program. If you have any problems, see Chapter 6, ““Executing a Program.”

Whenthe prompt ENTER NUMBERappears, enter the number10.

SC34-0438

ENTER NUMBER: [0
RESULT= 0

Because this program hasa logic error, the answer returned is 0. The expected result was 100.

and Fixing the Program
@

This section describes how to use $DEBUGtofind and correcta logic error.

To start debugging the program,do the following:

1. End the session manager. You cannot run $DEBUGwhile the session manageris active.

One wayto load $DEBUGis with the $L operator command.

2. Enter the following:

> SL SDEBUG

?
e
m
m
a

é

The following message appears,telling you that $DEBUGis being loaded.

| LOADING SDEBUG 31P,00:48:05, LP= 9600, PART= 1

3. Then $DEBUGasksfor the name of the program to be debugged. Respondas follows:

a

2a

T
E
N
N

PROGRAM NAME: ADD10,EDX002

a

$DEBUGdisplays the following information:

LOADING ADD10 2P,00:48:12, LP= BDOO, PART= 1

REQUEST "'HELP'' TO GET LIST OF DEBUG COMMANDS
ADD10 STOPPED AT 0034

f
k
E
N
R
A
L
E

\

These messagestell you:

e the load point (LP=) of the program.

e the partition where $DEBUGloadedthe program.

¢« that $DEBUGset a breakpoint and stopped the program at address 0034, whichis thefirst

executable instruction.

Note that you can also enter HELPtoseea list of the available $DEBUG commands.

Chapter 7. Finding and Fixing Errors PG-103

PG-104

ommands

Both $DEBUGandthe program have been loadedinto partition 1. The program has stopped

and $DEBUGis waiting for a command. Toseea list of the $DEBUG commands:

1. Press the attention key.

2. Enter Hep.

The list of $DEBUG commandsappears onthe screen.

f > HELP

HELP
WHERE
LIST
PATCH
QUALIFY
AT
OFF
GO
POST
PRINT
BP
GOTO
END

THE FOLLOWING COMMANDS ARE AVAILABLE:

LIST DEBUG COMMANDS
DISPLAY TASK STATUS
DISPLAY STORAGE OR REGISTERS
MODIFY STORAGE OR REGISTERS
MODIFY BASE ADDR
ESTABLISH BREAKPOINTS
REMOVE BREAKPOINTS
START TASK PROCESSING
POST EVENT OR PROCESS INTERRUPT
DIRECT LISTING TO PRINTER
LIST BREAK POINTS
CHANGE EXECUTION SEQUENCE
TERMINATE DEBUG FACILITY

Use the $DEBUG commandsto:

e Set breakpoints and trace ranges (AT).

« List breakpoints and trace ranges (BP).

e End $DEBUG (END).

e Restart a stopped task (GO).

¢« Restart a stoppedtask at a different instruction (GOTO).

e List $DEBUG commands (HELP).

e Display storage or register contents (LIST).
e Remove breakpoints and trace ranges (OFF).

« Changestorage or register contents (PATCH).

¢ Start a task waiting for an event or processinterrupt (POST).

¢« Direct output to another terminal (PRINT).

e Change the base address (QUALIFY).

e« Display the current status of each task (WHERE).

You can enter any of the commandsbypressing the attention key and entering the command

name. $DEBUGthen prompts for the command parameters. For example, if you wantto set a

breakpoint, enter the AT command. $DEBUGthen prompts for the parameters as shown

below.

SC34-0438

> AT
OPTION(*/ADDR/TASK/ALL): ADDR
BREAKPOINT ADDRESS: 4€
LIST/NOLIST: LIST |
OPTION(*/ADDR/RO. . .R7/#1/#2/1AR/TCODE):
LENGTH: |
MODE(X/F/D/A/C): X
STOP/NOSTOP: STOP
1 BREAKPOINT(S) SET

This commandsets a breakpoint at address 4C. It requests that $DEBUG print the contents of

register 1 (one word) in hexadecimal. STOP tells $DEBUGto stop at address 4C.

For detailed syntax descriptions, refer to each individual commandin the Operator Commands and

Utilities Reference.

You can also enter a commandandits parameters without going through the prompts. For

example:

\> AT ADDR 4C L #11XS

gives you the sameresults.

Chapter 7. Finding and Fixing Errors PG-105

Find

PG-106

ram (continued)

ing the Errors

Nowthat you have loaded $DEBUG,specified your program name, and reviewed the $DEBUG
commands, you are ready to start finding the logic errors in your program. You should have a

listing of the program before you start. Then follow these steps:

1. Use the AT commandtoset a breakpoint to stop the program after the GETVALUE

executes (address 004C). Respondto the prompts as follows:

> AT
OPTION(*/ADDR/TASK/ALL): ADDR
BREAKPOINT ADDR: O04€
LIST/NOLIST: NOLIST
STOP/NOSTOP: STOP

1 BREAKPOINT(S) SET
The breakpoint to stop after the GETVALUE instruction executes is nowset.

2. Enter a GO commandand, when prompted, enter the number 10.

[> Go
1 BREAKPOINT(S) ACTIVATED

| ENTER NUMBER: 10
, ADD 10 STOPPED AT OO04C

Program execution has stopped at the instruction labeled LOOP. The GETVALUE

instruction has executed.

E
R
E

To checkto see if the program read the data correctly, use the LIST commandto display

data field COUNTat address 0074.

3. Enter a LIST commandandrespondasfollows:

> LIST
OPTION(*/ADDR/RO. ..R7/#1/#2/1AR/TCODE): ADDR
ADDRESS: 0074
LENGTH:
MODE(X/F/D/A/C): 0D

_ 0074 D' 0010'

The LIST commandshowsthat 0074 contains 10, the correct input. This indicates proper

logic to this point.

The next set of instructions is the DO loop. Set another breakpointto stop the program

after execution of the DO loop at address OOSE.

SC34-0438

4. Enter an AT commandandrespondasfollows:

> AT
OPTION(*/ADDR/TASK/ALL): ADDR
BREAKPOINT ADDR: OOSE
LIST/NOLIST: NOLIST

 STOP/NOSTOP: STOP | | | Ney 1 BREAKPOINT(S) SET

The breakpoint to stop after the DO loopinstructions executesis nowset.

5. Enter a GO commandandthe following occurs:

> GO

| ADD 10 STOPPED AT OO5E
1 BREAKPOINT(S) ACTIVATED

At this point, the data field SUM at address 0076 should contain the number 100.

To checkto see if the data field SUM contains the proper number, use the LIST command

to display data field SUM at address 0076. |

6. Enter a LIST command andrespondas follows:

\

> LIST oe | 2
OPTION(*/ADDR/RO. ..R7/#1/#2/1AR/TCODE): ADDR
ADDRESS: 0076
LENGTH: j
MODE(X/F/D/A/C): D 0076 D' 0000'

/

The LIST command showsthat this field contains zero. This means that the DO loop or

the ADDinstruction in the DO loop is incorrect. If you examinetheseinstructions, you will

see that the DO loop is correct. However, The ADDinstruction has a logic error. In order

to receive the proper answer, the COUNTfield should be added to the SUM field. The

operands are backwards. The DO loop executes the ADDinstruction 10 times but is adding

SUM to COUNT,causing the SUM field to remain 0.

To verify that this is the problem without having to recompile and link-edit the program, you can

use the PATCH command of $DEBUGfor a temporaryfix. This fix is good only for one

execution of the program. PATCHonly fixes the copy of the program loaded by $DEBUG.It

Chapter 7. Finding and Fixing Errors PG-107

does not fix the program on your volume. Once you have verified that the fix is correct, you can

then change the program on your volume.

To verify that the problem is the ADDinstruction, do the following:

1. Find address 0052 on your compiler listing. This line contains the ADDinstruction. The

‘entire line lookslike this:

0052 0032 0074 0076 ADD COUNT, SUM

The address of the instruction is 0052. The operation code (0032) does not change. The

next two words, 0074 and 0076, are the addresses of data fields COUNT and SUM.

To fix the logic error, change the instruction to look as follows:

0052 0032 0076 0074

2. Enter a PATCH commandand respondto the prompts as follows:

> PATCH
OPTION(*/ADDR/RO...R7/#1/#2/1AR/TCODE): ADDR
ADDRESS: 0054
LENGTH: 2
MODE(X/F/D/A/C): A
NOW IS
0054 A‘ 0074 0076'

DATA: 0076 0074
NEW DATA
0054 A‘ 0076 0074'

YES/NO/CONTINUE: YES
XQ
 Jy

The program is now patched. Whenit executes, it will add COUNT to SUM to arrive at

the expected result. You can test the change by reexecuting the program.

To reexecute the program, you have to know twothings: the address where the program is

currently stopped (OO5E) and the addressof thefirst executable instruction (0034). Then

you can use the GOTO commandto restart the program atthefirst executable instruction.

3. Enter a GOTO commandas shown:

 [> GOTO 005E 0034
| 1 BREAKPOINT(S) ACTIVATED
|ADD10 «STOPPED AT 0034

4. The program is now at the beginning. Totestit, set all the breakpoints off so that the

program will run to completion.

PG-108 SC34-0438

5. Now enter a GO commandandrespondto the promptsas follows:

g

| > GO
| ENTER NUMBER: 10
| RESULTS= 100
| ADD1O0 ENDED AT 00:27:56

This time you received the expected result of 100. You have verified that the logic error

was the ADDinstruction.

Now that you have found andfixed the logic error in your program, use the END commandto

terminate $DEBUG. Enterthe following:

| > END

When $DEBUGends, your program remains in storage with all of its tasks active and operating

if it has not already ended. In our example, however, the program has ended.

To make the fix permanent, change your source program (see Chapter 3, “Entering a Source

Program” on page PG-59), recompile it (seeChapter 4, “Compiling a Program” on page

PG-69), and link-edit your object code module (see Chapter 5, “‘Preparing an Object Module

for Execution” on page PG-81).

Chapter 7. Finding and Fixing Errors PG-109

PG-110 $C34-0438

This section describes how to use the return codes to diagnose problems.

Many EDLinstructions return a code to indicate whether or not they execute successfully. Each

time EDX executes one of these instructions, it stores a code, called a return code, in the first two

words, called task code words, of the task control block (TCB). You can access the TCB by

referencing the task name.

In the following example, the instructions at label ERRTEST compare the return code of the

READTEXTinstruction with the successful return code (-1).

BEGIN PROGRAM START

READTEXT NAME,'ENTER NAME: ',SKIP=4,MODE=LINE
ERRTEST MOVE TASKRC, BEGIN

IF (TASKRC,NE,-1) ,GOTO, CHECK
ENDIF

CHECK PRINTEXT ‘ERROR IN READING NAME',SKIP=1
PRINTNUM TASKRC
GOTO END

END PROGSTOP
TASKRC DATA F'O'

ENDPROG
END

You musttest the return code before executing any otherinstruction because the system may

overlay the task code word with the return code of the nextinstruction.

a & g% @% sends « pew pe ee f2 2 7 FPLC:
a Gers Hy & O&O Gt) Ge aoe £

This section describes the facilities provided by the system in the event that an exception occurs.

These are the supervisor facility and the system-supplied task error exit routine.

Whenan exception occurs, the supervisor takes certain actions. What action it takes depends on

whether or not you have coded task error exit routine in your program. If your program does

not have a task error exit routine, the supervisor simply writes a program check message on

$SYSLOG,and terminates the program. If your program hasa task error exit routine, either the

one supplied by the system or your own,the supervisor does the following:

1. Stores the hardwarestatus at the time of the exception in a block of storage designated by

the task.

2. Passes control to the task at its task error exit entry point.

At this point, the task error exit routine gains control. The next section discusses only the

system-supplied routine. However, rememberthat, if necessary, you can substitute your own

routine. (For information on writing your own taskerror exit routine, refer to Customization

Guide.)

Notes:

1. A task error exit routine is a part of the task it serves. The supervisor passes controlto it at

the task level; it is not a subroutine of the supervisor’s error handler.

2. The registers (including the EDL software registers, #1 and #2) used by theerror exit

routine are those normally used bythetask.

3. To resume executing the task following corrective action by task error exit, branch (if in

Series/1 instruction mode) or GOTO (if in EDL mode) the appropriate location.

4. If the error exit is unable to recover from the exception,it should issue a PROGSTOP

instruction.

A task error exit routine named $$EDXITis available on volume ASMLIB. This routine:

¢« Captures relevant data from the program header, task control block, and hardwarestatus

area when an exception occurs

e Formats and prints this data on $SYSLOG and $SYSPRTR

¢« Displays an error message on the loading terminal

Chapter 7. Finding and Fixing Errors PG-111

Using

PG-112

To use the supplied routine, you must:

¢ Code $$EDXITas the value of the ERRXIT keyword parameter of each PROGRAM and
TASK statement in your program. For example:

AB PROGRAM,ERRXIT=$$EDXIT

CD TASK,ERRXIT=$$EDXIT

¢ Declare the label $$EDXIT to be an EXTRN.

EXTRN $$EDXIT

The task error exit routine is included in the autocall list $AUTO on volume ASMLIB.It is

automatically included when you link-edit any program that references $$EDXIT. A separate

INCLUDEstatementis not required for $$EDXIT in the LNKCTRLdataset. All you need to
do is code $AUTO,ASMLIBasthe autocall data set on the AUTOCALLstatementof

SEDXLINK.

The following example shows what $$EDXITprints on $SYSLOG and $SYSPRTR.It shows
that a program check has occurred in an application program named PCHECK. The numbersto

the left of both columns correspondto the explanationsthat follows.

KAAKKEKKKERKKKERKKKRKKKERKKERKKKERKKKRRKKERKKE

iL a

“ WARNING!! AN EXCEPTION HAS OCCURRED!! *
KAAKAKAAAKAAAAKAKKKRRARRRAIKIIRARIRRKRKK

f] PROGRAM NAME = PCHECK BE) Psw = 8002
FJ PROGRAM VOLUME = EDXWRK IAR = 3124

PROGRAM LOAD POINT = 0000 AKR = 0440
BJ ADDRESS OF ACTIVE TCB = O16C LSR = 00D0

ADDRESS OF CCB = 1802 RO (WORK REGISTER) = 0096
NUMBER OF DATA SETS = 1 ER) R1 (EDL INSTR ADDR) = 00E7
NUMBER OF OVERLAYS = 0 FR) R2 (EDL TCB ADDR) = O16C

STCBADS = 0004 R3 (EDL OP! ADDR) = OOE7
ADDRESS OF FAILURE R4 (EDL OP2 ADDR) = 00B2
(REL. TO PGM LOAD POINT = 00E7 R5 (EDL COMMAND) = 0000

~ DUMP OF FAIL ADDRESS R6 (WORK REGISTER) = 0000
GJ 0066: 0000 0028 0028 3635 R7 (WORK REGISTER) = 0000

STCBCO = -1 DEC; FFFF HEX #1 = 0000
$TCBO2 = 0 DEC; 0000 HEX #2 = 0000

PSW ANALYSIS:

SPECIFICATION CHECK
TRANSLATOR ENABLED

SC34-0438

Explanation:

l

A

Nameof the active program

Nameof the volume where the program resides

The load point of the program

Address of the active TCB whenthe exception occurred

Address of the CCB (terminal that loaded the program)m
k

E
S

Address key where program is loaded if not doing cross-partition moveor the target

address key if doing a cross-partition move

a
a Addressof the instruction that caused the program check

Dumpof the instruction that caused the program check

Indicates the type of exception that occurred

Usually points to the EDL instruction address—
_

o
O

Usually contains the EDL TCB address—
_

—

Usually contains the op code of the EDL instruction that was being executedr
m
R
D
:

The following message appears on the loading terminal when the program check occurs:

A MALFUNCTION HAS OCCURRED -- CALL SYSTEM PROGRAMMER

Notes:

1. If you are executing either a combination of EDL instructions and Series/1 instructions or

all Series/1 instructions, the registers may not contain this information.

2. You can restart the program by writing your ownerror exit routine to reloadit.

$$EDXIT provides you with information about the program, task, and hardware status when an

exception occurs. You can extend the capabilities of $$EDXIT so thatit will also evaluate the

information and make an appropriate response. For more information on writing your own task

error exit routine, refer to Customization Guide.

Chapter 7. Finding and Fixing Errors PG-113

PG-114 8SC34-0438

The Event Driven Executive allows you to read and write data from a screen that appears on a

terminal. A person at a terminal can supply data to a program and the program can display

information on the terminal screen.

EDX allows you to use two types of screens: roll screens and static screens.

This chapter describes:

e Whento useroll screens

e Whentousestatic screens

e Reading and writing rolls screens

e Reading and writing static screens

The chapter shows howto write a program to read five data items from a screen and write them

back to the screen. The chapter shows howto use each kindof screen (roll andstatic).

You can generally code terminal programsusing either roll or static screens. However, each

screen offers distinct advantages for certain types of programs.

Chapter 8. Reading and Writing Data from Screens PG-115

When to Use

PG-116 SC34-0438

A roll screen is similar to a typewriter. The system reads or writes data line-by-line, starting with

line O at the top of the screen and ending with line 23 at the bottom of the screen. You can use

roll screens to read or write a single data item.

A program thatuses roll screens usually prompts the operator for data, waits for an operator

response, and checksthevalidity of the input data. Roll screens are best suited for application

programsin which:

e A simple question-and-answer dialogue occurs between program and operator.

e single line is sufficient for each response.

e No Program Function (PF) keys are required.

e An incorrect response requires only a reprompt.

e You want to use a minimum of processorstorage.

In addition, the terminal may support roll screens only.

Roll screen dialogueis relatively easy to code and requireslittle program preparation. You can

code prompts in a tree structure where the choice of the next prompt depends on the reply to

past prompts.

You can print more than oneline of text to introduce a prompt. For example, you might wantto

offer the choice of several programs to be loaded, each of which may choose to continue the

dialogue at the same terminal. You can also display morethan oneline of text in a program

reply.

Static Screens

A static screen is similar to a page of information. The system reads or writes an entire screen at

once. You can use Static screens to read or write several data items at one time.

Programming forstatic screens involves managing the entire screen as a series of protected and

unprotectedfields.

A protected field is an area that contains an operator promptor an inputfield name. It is

protected from being accidentally changed by the operator.

An unprotected fie/d is an area thatis to be filled in by the operator.

 o Use Static Screens (continued)

Static screens are best suited for programs in which:

° The dialogue involvesa series of full screens.

e More than oneline of response may be required.

e You need to manipulate the cursor.

e The program must recognize Program Function (PF) keys.

e You needattribute characters such as blinking and non-display.

e The unprotected fields may be scattered across the screen and interspersed with the

protectedfields.

e Manyrelated data fields are to be entered at onetime.

e Medium to large amounts of data accompany each prompt, operator response, or program

reply.

You can managestatic screens mosteasily by using the $IMAGEutility to define your screens.

$IMAGEplacesthe screens on direct access storage. The program then can read them into

processor storage. $IMAGEsubroutines and terminal I/O statements allow you to read the

screen into the application program,display it at the terminal, position the cursor, scatter read or

write unprotected fields, and wait for a response.

Reading and Writing One Line at a Time

Reading and writing a single line from a terminal screen involves reading the data item from the

screen and writing or displaying the data item on the screen.

To read and write to a roll screen:

1. Reserve storage for data.

2. Read a data item.

3. Write a data item.

Chapter 8. Reading and Writing Data from Screens PG-117

To reserve storage for a data item that you will read, you must know its maximum length. To

reserve storage for a text string of 30 characters, use the TEXT statementas follows:

NAME TEXT LENGTH=30

The name of the storage is NAME. The next section describes how to put a data item into

NAME.

ga Data item

To read a data item from a roll screen, you can use either the READTEXT or GETVALUE

instruction. The READTEXTinstruction allows you to read a text string. The GETVALUE

instruction allows you to read one or more numbers.

To read a data item into a storage area, use the READTEXTinstruction as follows:

READTEXT NAME, 'NAME: ',SKIP=1,MODE=LINE

The instruction displays the prompt NAME:and the system waits for a response. When the

operator enters a nameandpressesthe enter key, the system stores the text string in an area

called NAME.

The operand SKIP=1 causes the system to skip one line before displaying the prompt. The

operand MODE=LINEallows blanks in the response. Since most names contain at least one

blank, you must code MODE=LINEtoread the entire name.

PG-118 SC34-0438

Writing (or disp/aying) a data item involves transferring the data item from storage to the

terminal screen. You can use either the PRINTNUM or PRINTEXTinstruction to transfer data

to the terminal screen. The PRINTNUMinstruction transfers one or more numbers. The

PRINTEXTinstruction transfers a text string.

To display the data item called NAME, use the PRINTEXTinstruction as follows:

PRINTEXT NAME,SKIP=3

The operand SKIP=3 causes the system to skip three lines before displaying NAME.

Promptthe operatorfor five data items: name, address, city, state, and zip code. Then display

the five data items. Read from andwrite to the terminal that loaded the program.

A

r
a
z

TEST
BEG

NAME
ADDR
CITY
ST
ZIP

PROGRAM
EQU
READTEXT
READTEXT
READTEXT
READTEXT
READTEXT

PRINTEXT

PRINTEXT
PRINTEXT

PRINTEXT
PRINTEXT
PROGSTOP
TEXT
TEXT
TEXT
TEXT
TEXT
ENDPROG
END

BEG
*

NAME, ' NAME: ', SKIP=1,MODE=LINE
ADDR, ' ADDRESS: ' ,MODE=LINE
CITY,' CITY: ' ,MODE=LINE
StT,' STATE: '
ZIP,' ZIP:'
NAME, SKIP=3

ADDR, SKIP=1
CITY, SKIP=1

ST,SPACES=1
ZIP,SPACES=2

LENGTH=30
LENGTH=30
LENGTH=30
LENGTH=2
LENGTH=5

Begin the program and execute the instruction at label BEG.

Prompt the operator for name and read the operator’s response. Allow spacesin the

name (MODE=LINEB),skip one line (SKIP=1), and store the response in NAME.

Prompt the operator for address and read the operator’s response. Allow spaces in the

name (MODE=LINE)andstore the response in ADDRESS. Because the program

writes to a roll screen, the prompt appears one line below the prompt for name.

Display the data item in NAME. Skip three lines before displaying (SKIP=3).

Display the data item in ADDR. Skip to the beginning of the next line before displaying

(SKIP=1).

Display the data item in ST. Leave one blank spaceto the right before displaying

(SPACES=1).

Chapter 8. Reading and Writing Data from Screens PG-119

Executing the Example

If you entered, compiled, link-edited, and loaded the example, the system would issue a prompt

for each data item. After entering each data item, press the enter key. After you enter the last

data item (zip code) and pressenter, the system displays the data items.

After you enterall five data items, the screen might looklike this:

(>
NAME:ROSE PETERSON

ADDRESS:1!? CYPRESS CREEK RD.

CITY: SALINA

STATE:KA

ZIP 345367

Whenyoupress the enter key, the program displays the name and addressas follows:

| ROSE PETERSON
| 11 CYPRESS CREEK RD.
| SALINA KA 45367

Note: Even though CITYis 30 characters long, the system displays only the actual length of the

data.

PG-120 SC34-0438

Reading and writing an entire screen at once involves usingstatic screens. The Event Driven

Executive provides two methodsto define static screens.

The first method requires that the format of the screen be defined within the program. Any

changeto the screen requires a changeto the program.

In addition, programsthat use this method are usually not device independent. In other words, a

program that contains instructions that define a static screen may execute successfully on a 4978

or 4979 terminal and not execute on a 3101 terminal.

The section called ‘‘Coding the Screen within a Program” on page PG-122 describesthefirst

method.

The second method for defining screens involves defining the screen with the $SIMAGEutility

and saving it in a data set. This method allows more than one program to use the samescreen.

In addition, a change to the screen does not necessarily require a change to each program that

usesit.

Finally, you can write programs that are device independent. You can write programsthat

execute successfully on 4978, 4979, or 3101 terminals. |

The section called “‘Writing the Screen Image to a Data Set” on page PG-127 describes the

second method.

For more information on codingstatic screens, see Appendix C,“Static Screens and Device

Considerations” on page PG-269.

Chapter 8. Reading and Writing Data from Screens PG-121

This section describes reading data from and writing data to a static screen. Instructions in the

program create thestatic screen. |

For more information on static screens, refer to Appendix C, ‘‘Static Screens and Device

Considerations”’ on page PG-269.

To read and write to a screen that you define in a program, do the following:

1. Define the screen asstatic.

2. Get exclusive access to the terminal.

3. Erase the screen.

4. Reserve storage for data.

5. Prompt the operator for a data item.

6. Position the cursor.

7. Wait for a response.

8. Read a data item.

9. Write a data item.

atic

To define a screen as a Static screen, use the IOCBstatementas follows:

TERM IOCB SCREEN=STATIC

This statement defines the loading terminal as a static screen. The label TERM defines the

name you will use in other instructions in the program.

For information on defining logical screens, see Appendix C, “‘Static Screens and Device

Considerations”’ on page PG-269.

y Exclusive Accessto the Terminal

Before you can use a terminal as a static screen, you must get exclusive access to it. Use the

ENQTinstruction as follows:

PG-122 SC34-0438

ENQT TERM

The operand TERM is the name you used to define the terminal in an IOCBinstruction.

Before you codeinstructions that prompt the operator for data, you should erase the screen. To

erase the screen, use the ERASEinstruction as follows:

ERASE MODE=SCREEN , TYPE=ALL, LINE=0

The operand LINE=0tells the system to begin erasing online O (thefirst line) of the screen.

The operand MODE=SCREENcausesthe system to erase to the end of the screen. The

operand TYPE=ALLallows the system to erase both protected and unprotected data.

To reserve storage for a data item that you read, you must know its maximum length. To

reserve storage for a text string of 30 characters, use the TEXT statementas follows:

NAME TEXT LENGTH=30

The nameof the storage is NAME. The READTEXTinstruction transfers the data item

containing the nameinto this area of storage.

mpting the Operator for a Data Item

One way you can display information on static screen is by issuing PRINTEXTinstructions.

For example, to prompt the operator for a name, use the PRINTEXTinstruction as follows:

PRINTEXT ‘NAME: ',LINE=1,PROTECT=YES

The instruction displays the prompt NAME:. The operand LINE=1 causes the system to display

the prompt on the secondline of the screen. (The lines on a screen are numbered 0-23 and the

columns are numbered 0-79.) The operand PROTECT=YEScauses the prompt NAME:to be

protected. A protected is a field that cannot be changedbythe operator.

Chapter 8. Reading and Writing Data from Screens PG-123

Positioning the Cursor

If you use PRINTEXTinstructions to prompt the operator for several data items, you would

probably wantto position the cursor after the first prompt. To position the cursor, you need

two instructions: a PRINTEXTinstruction and a TERMCTRLinstruction:

PRINTEXT LINE=1,SPACES=13
TERMCTRL DISPLAY

The operands LINE=1 and SPACES=13 cause the system to position the cursor on the

fourteenth space of line 1 (the second line). (The lines of a screen are numbered 0 through 23.)

Since the PRINTEXTinstruction actually accumulates output in the system buffer, the

TERMCTRLinstruction is required to cause the cursor to be positioned.

After youissue all the prompts, you must wait for the operator to respond. To wait for a

response, use the WAITinstruction as follows:

WALT KEY

The operand KEY meansthat the program will wait until the operator presses either the enter

key or one of the Program Function (PF) keys.

Item

Reading a data item involves issuing a READTEXTinstruction for each data item you want to

read. The READTEXTinstruction might looklike this:

READTEXT NAME, LINE=1,SPACES=13 ,MODE=LINE

Theinstruction reads the data item into the storage area called NAME. The operands LINE=1

and SPACES= 13 cause the system to look for the data starting in the fourteenth position of the

second line of the screen. The operand MODE=LINEallowsthe data to contain blanks.

m(continued)

Writing a Data Item

Writing a data item meanstransferring a data item from a storage area to the screen. A

PRINTEXTinstruction mightlooklike this:

PRINTEXT NAME, LINE=11

The instruction writes the data item from the storage area called NAME. The operand

LINE=11 causes the system to display the data starting in the first position of the twelfth line of

the screen.

If you want to display another data item on the next line, you can use the SKIP operandas

follows:

PRINTEXT ADDR,SKIP=1

The SKIP=1 causes the system to skip to thefirst position of the nextline.

To leave spaces between one data item and another, use the SPACESoperandasfollows:

PRINTEXT CITY,SPACES=2

The SPACES=2 operand causes the system to leave two blanks betweenthe previous data item

and CITY.

Chapter 8. Reading and Writing Data from Screens PG-125

 PG-126 SC34-0438

Prompt the operatorfor five data items: name, address, city, state, and zip code. Then display

the five data items.

K
o
d
E
S
e
e

R
e
o
.

a
—
~

(6
3

w
w

ma
e
&

TEST

TERM

BEG

NAME
ADDR
CITY
ST
ZIP

PROGRAM
IOCB
ENQT
ERASE
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
TERMCTRL
WAIT
READTEXT
READTEXT
READTEXT
READTEXT
READTEXT

PRINTEXT

PRINTEXT
PRINTEXT

PRINTEXT
PRINTEXT
TERMCTRL
DEQT
PROGSTOP
TEXT
TEXT
TEXT
TEXT
TEXT
ENDPROG
END

BEG

SCREEN=STATIC

TERM

MODE=SCREEN , TYPE=ALL, LINE=0

' NAME: ' , LINE=1,PROTECT=YES

ADDRESS: ', SKIP=1, PROTECT=YES
CITY: ',SKIP=1,PROTECT=YES

STATE: ', SKIP=1, PROTECT=YES
ZIP:',SKIP=1,PROTECT=YES

LINE=1,SPACES=13
DISPLAY
KEY
NAME, LINE=1, SPACES=13 , MODE=LINE
ADDR, LINE=2, SPACES=13 , MODE=LINE
CITY, LINE=3 , SPACES=13 , MODE=LINE
ST, LINE=4 , SPACES=13
ZIP, LINE=5 , SPACES=13
NAME, LINE=11
ADDR, SKIP=1
CITY, SKIP=1
ST, SPACES=1
ZIP,SPACES=2
DISPLAY

LENGTH=30
LENGTH=30
LENGTH=30
LENGTH=2
LENGTH=5

Begin the program and execute the instruction at label BEG.

Define the screenasstatic.

Get exclusive use of the terminal.

Erase the screen. Erase the entire screen (MODE=SCREEN),including protected and

unprotected fields (TYPE=ALL,), and begin onthefirst line of the screen (LINE=0).

Prompt the operator for name. Display the prompt on the secondline of the screen

(LINE=1) and prevent the operator from overlaying the prompt (PROTECT=YES).

Prompt the operator for address. Display the prompt one line below the previous

prompt (SKIP=1) and prevent the operator from overlaying the prompt

(PROTECT=YES).

Position the cursor on the fourteenth space (SPACES=13) of the second line of the

screen (LINE=1).

Cause the cursor to be positioned (the previous PRINTEXTinstruction accumulates

output in the system buffer).

Wait for the operator to respond to the prompts. Resume execution when the operator

presses either the enter key or one of the Program Function keys. |

Readthe first data item. Look for the data in the fourteenth space (SPACES= 13) of

the secondline of the screen (LINE=1) and allow blanks in the data (MODE=LINE).

Read the second data item (address). Look for the data in the fourteenth space

n (LINE=2) andallow blanks in the data(SPACES= 13) of the third line of the screen

(MODE=LINE).

Display the data item NAME. Begin displaying the data on the first position of the

twelfth line of the screen (LINE=11).

Display the data item ADDR. Begin displaying the data on the first position of the next

line (SKIP=1). (In this example, ADDR would appear on the thirteenth line of the

screen.)

Display the data item ST. Begin displaying the data after leaving one space

(SPACES=1). (In this example, data item ST would appear one spaceto theright of

data item CITY.)

Cause the data in ZIP to be displayed. (The data in ZIP remains in the system buffer

until you issue this instruction or end the program with a PROGSTOP.)

Relinquish exclusive use of the terminal.

This section shows howto create a screen image anduse it in a program. The approach assumes

that you want to write a program that can execute on either a 4978 or 3101 Display Terminal.

For more information on writing a screen image to a data set, see Appendix C, “‘Static Screens

and Device Considerations” on page PG-269.

Writing a screen to a data set and using it in a program requires that you do the following things:

Chapter 8. Reading and Writing Data from Screens PG-127

9.

10.

Creating a Screen

PG-128

Create the screen.

Define the screen asStatic.

Read the screen into a buffer.

Get exclusive access to the terminal.

Display the screen and position the cursor.

Reserve storage for data.

Wait for a response.

Read a dataitem.

Write a data item.

Link-edit the program.

To create a screen image, use the $IMAGEutility as follows:

1.

From the session manager, select option 4 (TERMINAL UTILITIES) from the primary

option menu.

Then select option 4 (SIMAGE). This option loads the $IMAGEutility.

Define a null character when the COMMAND(?) prompt appears by by entering:

COMMAND (7): NULL @

You will use the null character to define unprotected fields. Unprotected fields are the fields

in which the operator will enter data.

Define the screen dimensions as 24 by 80 (full screen) by entering:

COMMAND (7): DIMS 24 80

SC34-0438

5. Enter the command EDIT. blank screen appears.

6. Press the PF1 key to enter define mode. While in define mode, you can define the screen.

7. Enter the text for your screen image. Enter the fixed part of the screen exactly as you want

it to appear on the screen. The fixedfields are called protected fields. Use the null character

(@) to define the unprotected datafields.

The screen looks as follows:

fi

| (line 0)

NAME: @@@CCCCRECEOCCEEEEEREECPeCECCEe (line 1)
ADDRESS: C@COCRRECOEPOEEOEOOOECCOEOEEEECEE (line 2)

CITY: COPRRECOOEOEOORECOEPOEEEECOECCE (line 3)
STATE: @@ 7 , | (line 4)

ZIP: C@CeO | (line 5)
8. Press the enter key after you complete the design of your screen image. The enter key takes

you out of define mode.

9. Press the PF3 key to return to the SIMAGE command mode.

10. Save your new screen image in data set APO8CSCR on volume EDX002 by entering:

SAVE APOSCSCR,EDX002

11. In response to the message:

SHOULD THE 3101 DATASTREAM BE SAVED?

reply N. (You would reply y if you codedattributes (such as blinking or nondisplay) that

are available on the 3101 Display Terminal.)

At this point, the system saves the screen. Use the EN commandto end the $IMAGEutility.

For more information on creating a screen image, refer to Language Reference.

Chapter 8. Reading and Writing Data from Screens PG-129

PG-130

Defining the Screen as Static

To define a screen as static, use the IOCB statementas follows:

TERM IOCB SCREEN=STATIC,
BUFFER=IOBUF,
OVFLINE=YES,
LEFTM=0,
RIGHTM=1919,
TOPM=O,
BOTM=2 3

m
M

OS
OO

OO
OX

This statement defines the loading terminal as a static screen. The label TERM defines the

name you will use in other instructions in the program. The BUFFER operandidentifies IOBUF

as the buffer that will be associated with the screen. The OVFLINEoperandtells the system to

continue a line that exceeds the right margin on the next line. The next four operands (LEFTM,

RIGHTM, TOPM, and BOTM)definethestatic screen as the entire physical screen (lines 0-23

and columns 0-79).

Note: Rememberthat to continue a line, the continued line must begin in column 16.

For information on defining logical screens, see Appendix C,“Static Screens and Device

Considerations” on page PG-269.

an image into a Buffer

To read the screen you have created, you need to do the following things:

1. Code the name and volume of the screen in a TEXT statement:

DSNAME TEXT '‘'APO8CSCR,EDXO002'

This TEXT statement refers to data set APO8CSCR on volume EDX002. This data set

contains the screen you saved when you used the $IMAGEutility.

2. Reserve storage for the screen with a BUFFERstatement:

DISKBFR BUFFER 1024,BYTES

The amountof storage you reserve depends on how many bytes $IMAGEusedtostore the

screen image. For example, if SIMAGE used 900 bytesto store a screen image, use 1024

bytes (the next highest 256-byte increment).

SC34-0438

ita Set (continued) image toa

3. Specify the type of image data set you have created:

TERMTYPE DATA C'4978'

The type of image data set refers to the way you stored the data set. Since you answered N

to the “SHOULD THE 3101 DATASTREAM BE SAVED?” prompt, the system saved the

data set as a 4978 image.

4. Use the CALLinstruction to read the screen:

CALL $IMOPEN, (DSNAME) , (DISKBFR) , (TERMTYPE)

The $IMOPENsubroutine reads the screen from the data set defined by DSNAMEand

puts the screen into DISKBFR. TERMTYPErefers to the DATA statementthat defines

the type of image dataset.

ss to the Termi

ing Exclusive Acce

Before you can use a terminal as a static screen, you must get exclusive access to it. Use the

ENOQTinstruction as follows:

ENQT TERM

The operand TERM is the name you used to define the terminal in the IOCB instruction.

he Screen and Positio

ing the Cursor

Displaying the screen and positioning the cursor involves three instructions.

Thefirst instruction, the CALL $IMPROTinstruction, prepares the protected fields for display:

CALL $IMPROT, (DISKBFR) , (FTABLE)

The presence of the third operand (in this case, FTABLE)causes the instruction to construct

whatis called a field table. A field table showsthe location and length of each unprotectedfield

on the screen. Define the field table as follows:

FTABLE BUFFER 15,WORDS

The field table requires 3 words for each unprotectedfield.

Chapter 8. Reading and Writing Data from Screens PG-131

2t (continued)

The second instruction positions the cursor after the first prompt:

PRINTEXT LINE=1,SPACES=9

Finally, the third instruction displays the screen:

TERMCTRL DISPLAY

Reserving Storage for Data

To reserve storage for a data item that you read, you must know its maximum length. To

reserve storage for a text string of 5 characters, use the TEXT statement as follows:

ZIP TEXT LENGTH=5

The nameof the storage is ZIP. This storage area will eventually contain five bytes of data (the

zip code).

Waiting for a Response

After you issue the prompts, you must wait for the operator to respond. To wait for a response,

use the WAITinstruction as follows:

WAIT KEY

The operand KEY meansthat the program will wait until the operator presses either the enter

key or one of the Program Function (PF) keys.

PG-132 SC34-0438

a Set (continued)

Reading a Data Item

Reading a data item involves reading all unprotected data from the screen. Use the

READTEXTinstruction as in the following example:

READTEXT IOBUF,MODE=LINE, LINE=0 , SPACES=0

The instruction reads all unprotected data into the buffer called IOBUF. The operands LINE=0

and SPACES=0cause the system to look for the data starting in the first position of the screen.

MODE=LINEallowsfor blanks in the input data.

To move each data item into its own storage area, use the following instructions:

MOVEA #1,IOBUF
MOVE NAME, (0,#1),(30,BYTE)

The MOVEAinstruction movesthe address of buffer containing the unprotected fields. The

MOVEinstruction movesthe 30 bytes at the start of the buffer to NAME.

For each additional field, increment register 1 to the next field in IOBUF and moveit to its data

area:

ADD #1, FTABLE+4
MOVE ADDR, (0,#1) , (30,BYTE)

The ADDinstructions adds the size of the first field (NAME)to register 1. The MOVE

instruction movesthe 30 bytes at IOBUF+30 to ADDR.

Chapter 8. Reading and Writing Data from Screens PG-133

et (continued

Writing a Data item

PG-134 SC34-0438

Writing a data item meanstransferring a data item from a storage area to the screen. A

PRINTEXTinstruction might looklike this:

PRINTEXT NAME, LINE=11

The instruction writes the data item from the storage area called NAME. The operand

LINE=11 causes the system to display the data starting in the first position of the twelfth line of

the screen.

If you wantedto display another data item on the nextline, you could use the SKIP operand:

PRINTEXT CITY,SKIP=1

The SKIP=1 causes the system to skip to the first position of the next line before displaying the

data item CITY.

To display another data item on the same line, you could use the SPACESoperand:

PRINTEXT ST,SPACES=1

SPACES=1 causes the system to skip one space on the sameline before displaying the data

item ST. on the sameline before displaying the data item ST.

Using the $IMAGEsubroutines (SIMOPEN, $IMDEFN, and $IMPROT)meansthat you must

do one more thing when you link-edit the program. You must reference theS$IMAGE

subroutines you have used.

You must supply the linkage editor, SEDXLINK,the following “‘control statements”’:

AUTOCALL $AUTO,ASMLIB
INCLUDE ASMOBJ,EDX002
LINK APO8C,EDX40 REPLACE END

The first control statement refers to a library of IBM-supplied routines. Unless you have moved

the library, you can code this statement as youseeit here.

The second control statement refers to where you put the output of the compiler.

The third control statement says to put the outputof the link-edit on volume EDX40,call it

ists. END tells SEDXLINKnot to expect any otherNeaeAPO8C,and replace it if it already exi

control statements.

You can either create a data set containing these control statements or enter the statements

“interactively” each time you execute $EDXLINK.

For more information on link-editing, see Chapter5, “Preparing an Object Module for

Execution’’ on page PG-81.

Chapter 8. Reading and Writing Data from Screens PG-135

Prompt the operator for name, address,city, state, and zip code. Then display the five data

items. Use the screen APO8CSCR on volume EDX002 (already defined with the $IMAGE

utility).

|

A
S
E
E
R
E
E
?
!
"

o
o
o

ba
ne
~

N
NI
T
R
.

w
e

—
j
}
)
O
.

PG-136 SC34-0438

TEST

TERM

BEG

END

DSNAME

DISKBFR

TERMTYPE

FTABLE

IOBUF
CODE

PROGRAM BEG
EXTRN $IMOPEN, $IMDEFN, $IMPROT, $IMDATA
IOCB SCREEN=STATIC, Cc
BUFFER=IOBUF , OVFLINE=YES , LEFTM=0, Cc
RIGHTM=1919, TOPM=0 , BOTM=23

CALL $IMOPEN, (DSNAME) , (DISKBFR) , (TERMTYPE)
MOVE CODE, TEST+2
IF CODE,NE,-1

PRINTEXT 'OPEN ERROR CODE = ' SKIP=1
PRINTNUM CODE
GOTO

ENDIF

ENQT
CALL
PRINTEXT
TERMCTRL
WAIT
READTEXT
MOVEA
MOVE
ADD
MOVE
ADD
MOVE
ADD
MOVE
ADD
MOVE

PRINTEXT

PRINTEXT
| PRINTEXT
PRINTEXT
PRINTEXT
DEQT
PROGSTOP
TEXT
BUFFER
DATA
BUFFER
BUFFER
DC

END

TERM
$IMPROT, (DISKBFR) , (FTABLE)
LINE=1,SPACES=9
DISPLAY
KEY
IOBUF , MODE=LINE, LINE=0 , SPACES=0
#1, ITOBUF
NAME, (0,#1), (30, BYTE)
#1,FTABLE+4
ADDR, (0,#1) , (30,BYTE)
#1,FTABLE+10
CITY, (0,#1), (30,BYTE)
#1, FTABLE+16
ST, (0,#1),(2,BYTE)
#1,FTABLE+22
ZIP, (0,#1),(5,BYTE)
NAME , LINE=11
ADDR, SKIP=1
CITY,SKIP=1

ST, SPACES=1
ZIP, SPACES=2

' APOSCSCR, EDX002'
1024,BYTES
C'4978'
15,WORDS
1920,BYTES
F'Q!

=
c
a

| o
O

NAME TEXT LENGTH=30
ADDR TEXT LENGTH=30
CITY TEXT LENGTH=30
ST TEXT LENGTH=2
ZIP TEXT LENGTH=5

ENDPROG
END

Begin the program and executethe instruction at label BEG.

Define as external references the $IMAGEsubroutines that the program uses. The

linkage editor resolves these external references when you usethe autocall option.

Define the screen asstatic.

Read the screen from the data set defined by DSNAME. Putthe screen in the buffer

defined by DISKBFR.

Movethe return code that resulted from the $IMOPENsubroutine to CODE.

If the return code that resulted from the $IMOPENsubroutine does not indicate
“successful completion,” display an error message and end the program.

Get exclusive use of the terminal.

Prepare the protected fields for display.

Position the cursor on the tenth space (SPACES=9) of the second line of the screen

(LINE=1).

Display the screen.

Wait for the operator to respond to the prompts. Resume execution whenthe operator

presses either the enter key or one of the Program Function keys.

Readall unprotected data. Look for the data in the first space (SPACES=0)ofthefirst

line of the screen (LINE=0) andallow blanks in the data (MODE=LINE).

Movethe address of the buffer (IOBUF) that contains the unprotected data into

register 1.

Movethefirst 30 characters from the buffer to NAME.

Incrementregister 1 to point to the next data item (address).

Display the data item NAME. Begin displaying the data on thefirst position of the

twelvth line of the screen (LINE=11).

Chapter 8. Reading and Writing Data from Screens PG-137

PG-138 SC34-0438

Display the data item ADDR. Begin displaying the data onthefirst position of the next

line (SKIP=1). (In this example, ADDR would appearon thethirteenth line of the

screen.)

Display the data item ST. Begin displaying the data after leaving one space

(SPACES=1). (In this example, data item ST would appear one space to theright of

data item CITY.)

Point to the data set (APO8CSCR on volume EDX002) that contains the screen created

with the $IMAGEutility.

Reserve storage for the screen. (Except for screens muchlarger than the onein this

example, 1024 bytes is enough storage.)

Define the type of image data set to be read. (Coding C‘4978’allows you to read the

screen to a 4978 or a 3101, whether or not you saved the 3101 datastream. C‘3101’

allows you to read the screen to a 3101 if you saved the 3101 datastream. If you code

C‘ ’, you can read the screen to a 4978 or 3101 if you saved the 3101 datastream.)

Reserve storagefor the field table.

Reserve storage for the unprotected data.

This chapter discusses designing EDL programs.

All of the programs shownso far have had one thing in common:theyareall short,

self-contained groupsof instructions that perform a simple function without interacting with any

other program.

This chapter:

¢« Defines the terms program andtask and describes how to create a program that consists of

more than one task

e Describes how to use the same group of instructions from more than one program

e Showshowto use the same storage more than once for different parts of a program

(overlays)

e Shows how to improve performance by using storage as a buffer area

A task is a unit of work that you form by combining instructions. In its simplest form, a task

consists of a TASK statement, instructions, and an ENDTASKstatement.

Each task runs independently, competing equally with other tasks for system resources.

Chapter 9. Designing Programs PG-139

Initiating a Task

PG-140 5C34-0438

Whenyoucode a task, you assign a priority to the task. A priority is a number that determines

the rank of the task. The supervisoruses priority to determine which task receives system

resources. The highest priority is 1 and the lowest is 510.

In the following example, TASKO1is the name of a task. STARTO1is the label on the first

instruction to be executed, and 140is the priority of the task.

TASKO1 TASK STARTO1,140

ENDTASK

The supervisor places each task in oneof five states:

Inactive Task is detached oris not yet attached

Waiting Task is waiting for the occurrence of an event or the

availability of a resource

Ready Task is ready but is not the highest priority task

Active Task is attached and is the highest priority task on

its level

Executing Task is using the processor

Only one task may beactive on each of four machine hardwarelevels. (The supervisor executes

on hardwarelevel 1; application programs usually execute on hardwarelevel 2 or3.)

The active task in each hardwarelevel is the read task that has the highest priority and is not

waiting for an event or a resource.

You can initiate a task either by loading or attaching it. The system places the primarytask in

the ready state when you load the program. You can initiate a secondary task with the

ATTACHstatementif the task is not already active and you doeither of the following:

e You write a program that consists of a primary task and a secondarytask.

e You link-edit a primary task with another task. (You must code an EXTRNstatementin the

primary task and an ENTRYstatementin the secondarytask.)

You return a task to the inactive state when you execute either a DETACHinstruction or

ENDTASKinstruction. The DETACHinstruction suspendsthe task and allowsit to be

attached again.

Only one copy of a task may beactive at a time. A task in processor storage remains until you

execute an ENDPROGstatementin the associated primary task.

A program is a disk- or diskette-resident collection of one or more tasks that can be loaded into

storage for execution. Although program and task are sometimes used synonymously (when a

program contains a single task), the basic executab/e unit is the task; a program is the unit that

the system loads into storage.

You can divide a program into two or moretasks if, for example, you need to synchronize

execution between the tasks. Another reason to divide a program into tasks is to have more

than one task active at the same time.

The name of a program is the nameof the data set in which the program resides. A program

can be broughtinto storage either by a terminal operator, a program, or a supervisor program

such as the job stream processor. It can be loaded more than once,either in the same partition

or in a different partition.

Most applications consist of a single task in a single program. The program contains no

execution overlay. The task competes for system resources with other tasks currently in the

system.

The following example showsthestructure of a single-task program:

BEGIN PROGRAM START

PROGSTOP
ENDPROG
END

In this example, BEGINis the name of the task, and STARTis the label of the first instruction

to be executed.

Note that even though the TASK statementis not required in a simple program,the programstill

consists of a single task.

Chapter 9. Designing Programs PG-141

PG-142

C PrOOQram| comtsnue:

Figure 1 is an example of a single-task program structure.

Operator request loads

CUSTOMER FILE UPDATE

program

UPDATE

1. GET CUSTOMER NAME FROM TERMINAL

(OPERATOR INPUT)

2. SEARCH CUSTOMER FILE FOR NAME

3. READ CUSTOMER RECORD

4. DISPLAY CUSTOMER RECORD ON TERMINAL

5. ACCEPT UPDATE FROM TERMINAL (OPERATOR

INPUT)

6. WRITE UPDATED RECORD TO CUSTOMER FILE

GO BACK TO STEP 1 IF MORE RECORDS TO

UPDATE

8. ELSE, END UPDATE PROGRAM

TS
Figure 1. Single-Task Application Example

SC34-0438

A multitask program contains more than one task. For example:

BEGIN PROGRAM START

ATTACH CALC

PROGSTOP

CALC TASK

instructions
ENDTASK

ENDPROG

END

Note that the PROGRAM and PROGSTOPstatements define a task called the primary task. The

TASK and ENDTASKstatements define a secondary task, invoked by the ATTACHinstruction.

Figure 2 illustrates multitasking in a single program. When you load the program, the system

loads PROGA,called the primary task. The other tasks shown in PROGAstart when an active

task issues a command (such as an ATTACHinstruction) that tells the tasks to begin.

PROGA Program made up of multiple tasks

® Concurrent (asynchronous) execution

of tasks within program

@ Tasks compete for system resources

TASKX with all other tasks currently in system

TASKY

TASKZ

Figure 2. Multitask Program Structure

Oncein execution,all tasks within a program compete with one another and with all other tasks

active in the system. The supervisor considers each task as a discrete unit of work and assigns

processor time based on task priority, regardless of whethera task is the primarytask of a

program. All tasks compete for resources based on assignedpriorities.

If a primary task ends before the secondarytask, the secondary task runs to completion.

chronizing Tasks

You can synchronize tasks with the WAIT and POSTinstructions or with the DETACH and

ATTACHinstructions. If you use the WAIT and POST instructions, the waiting task must

Chapter 9. Designing Programs PG-143

contain an event control block (ECB)that can be posted by the POST instruction. Execution

then continuesin the waiting task at the first instruction after the WAIT instruction. A task can

also wait for the operator to press a Program Function (PF) key, for a time interval to occur, or

for a program to finish execution.

While waiting to be posted, the task enters a waiting state. The task also enters a waiting state if

it is waiting for a read or write operation to occurorif it has executed a DETACHinstruction.

You can use the DETACHand ATTACHinstruction to synchronize tasks the same way you

use the WAIT and POSTinstruction, with the following differences:

e The attached task becomes enqueuedto the currently active terminal for the task that issued

the ATTACHinstruction.

e The system provides the ECB.

e You cannot use the ATTACH and DETACHinstructions from within subroutines.

Defining

PG-144

SC34-0438

In a program, certain functions may need to be repeated at different points in a program. For

example, you do not need to code the same sequence of instructions each time your program

needs to perform a given arithmetic function. You can codethe instructions once and define

them as a subroutine. You can than enter and execute that subroutine from as manypoints in

your program as needed. You can also use the subroutine in another program by includingit at

link-edit time.

The following instructions provide the meansfor defining and calling subroutines:

CALL Transfers control to a subroutine

RETURN Returns control from the subroutine to the calling program

SUBROUT Defines the entry point and parameters of a subroutine

EXTRN Defines an external reference

ENTRY Defines a program entry point

subroutine

Use SUBROUT to define the entry point of a subroutine. You can specify up to five parameters

as arguments in the subroutine. The subroutine must include a RETURNinstruction to provide

linkage back to the calling task. You can have nested subroutines, and a maximum of 99

subroutines are permitted per program. If you assemble your subroutine as an object module

g Subroutines (continued)

that can be link-edited, you must code an ENTRYstatementfor the subroutine entry point

name.

You can call a subroutine from more than one task. When called, the subroutine executes as

part of the calling task. Because subroutines are not reentrant, you should ensureserial use of

the subroutine with the ENQ and DEQinstructions.

Note: Do not code a TASK statement within a subroutine.

The syntax of the SUBROUTinstruction is as follows:

label SUBROUT name,parl1,...,par5

Required: name
Defaults: none

Indexable: none

Code the name operand with the symbolic name ofthe subroutine to be referred to by other

instructions. The /abe/ field is optional. Do not confuse the /abe/ field with the subroutine name

you specify in the name operand.

Passing Parameters in a Subroutine (Example)

Par?! through pard5 are the parameter namesto be passed to the subroutine whenit is entered.

These names must be unique to the whole program. All parameters defined outside the

subroutine are known within the subroutine. Thus, you need to define only parameters that may

vary with each call to a subroutine.

For instance, assume twocalls to the same subroutine. Thefirst call passes parameters A and C

and the second CALLpasses parameters B and C. Because C is commonto both, you need not

define it in the SUBROUT instruction.

In the following example, a program calls subroutine CHKBUFF,passing two parameters. The

first (BUFFLEN)is a variable containing the maximum allowable buffer count. The second

(BUFFEND)is the address of the instruction to be executedif the bufferis full.

SUBROUT CHKBUFF, BUFFLEN, BUFFEND

SUBTRACT BUFFLEN, 1
IF (BUFFLEN, GE, MAX)

GOTO (BUFFEND)
ENDIF
ADD BUFFLEN, 1
RETURN

MAX DATA F'256'

Chapter 9. Designing Programs PG-145

PG-146

Use the CALLinstruction to execute your subroutine.

If the called subroutine is a separate object module to be link-edited with your program, then

you must code an EXTRNstatement for the subroutine namein thecalling program.

The syntax of the CALLinstruction is as follows:

label CALL name,parl,...,par5,Pl=,...,P6=

Required: name
Defaults: none

Indexable: none

The name operandis the name of the subroutine to be executed.

Par? through par5 are the parameters associated with the subroutine. You can pass Up to five

single-precision integers, labels of single-precision integers, or null parameters to the subroutine.

The actual constant or the value at the named location movesto the corresponding subroutine

parameter.

If you enclose the parameter name in parentheses, the address of the variable passes to the

subroutine. The address can be thelabel of the first word of any type of data item or dataarray.

Within the subroutine, you must move the passed address of the data item into index registers #1

or #2 to reference the data item. If the parameter name enclosed in parentheses is a symbol

defined by an EQUinstruction, the system passes the value of the symbol.

If the parameter to be passedis the value of a symbol defined by an EQUinstruction, it can also

be preceded bya plus (+) sign. This causes the value of the EQU to be passedto the

subroutine. If not preceded by a +, the EQUis assumedto represent an address and the dataat

that address is passed as the parameter.

Subroutine Call Examples

The following example passes the value 5 to the subroutine PROG:

CALL PROG, 5

The following example passes the value 5 and the null parameter 0 to the subroutine CALC:

CALL CALC,5,

The following example passes the contents of PARM1, the address of PARM2,and the value of

the EQU symbol FIVE:

CALL SUBROUT, PARM1, (PARM2) ,+FIVE

S$C34-0438

Calling a Subroutine Passing Integer Parameters (Example)

The following example shows a program that passesintegers to a subroutine:

SUBEXAMP
START

C2

INTEGERA
INTEGERB
SUM1
SUM2
SUB1
Al

PROGRAM
CALL

CALL

PROGSTOP
DATA
DATA
DATA
DATA
SUBROUT
ADD
RETURN
ENDPROG
END

START
CALC,50,SUM1

CALC, SUM1,SUM2

F'10!
F'15!
F'Q!'
F'Q'
CALC, XVAL, YVAL
INTEGERA , XVAL, RESULT=YVAL

In the first CALL,the first parameter (the integer value 50) correspondsto the first parameter

defined in the subroutine (XVAL). Program location SUM1 correspondsto the second

parameter (YVAL). When the ADDinstruction executes, the system substitutes 50 for XVAL

and location SUM1 for YVAL. After the ADD instruction, SUM1 equals 60, the sum of

INTEGERA and50.

The secondcall causes 70, the sum of SUM1 and INTEGERA,to beputin location SUM2.

Because INTEGERA does not change, you do not needto pass it as a parameter.

You can reusea single storage area allocated to a program by using overlays. EDL provides two

kinds of overlays: overlay segments and overlay programs.

An overlay segment is a Self-contained portion of a program that is called and executed as a

synchronous task. The program that calls the overlay segment need not bein storage while the

overlay segment is executing. Overlay segments perform a specific function and generally

execute only once.

An overlay program is a self-contained portion of a program that is loaded and executed as an

asynchronous task. Overlay programs require a main contro/ program that controls the execution

of up to nine overlay programs.

Chapter 9. Designing Programs PG-147

g Overlays (continued)

Using Overlay Segments

Figure 3 showsthe structure of an application program thatis split into a root segment and three

overlay segments. When you load the main program, the loader reserves enough space for the

root segment, the overlay area manager, the overlay control table, and the largest overlay

segment as shownin Figure 4 .

APPLICATION PROGRAM

Root Segment

Overlay Area Manager

Over lay Over lay Over lay
Segment 1 Segment 2 Segment 3

Figure 3. Application Overlay Segments

SERIES/1 STORAGE

Root (Resident) Segment

SOVLMGR
Overlay Manager

SOVLCT
Overlay Control] Table

Over lay Area
(Large enough to contain

segment 2)
 Available Storage

Figure 4. Overlay Segments in Series/1 Storage

PG-148 SC34-0438

The following example showsa root segment and three overlay segments:

BEGIN PROGRAM START
EXTRN CALC, UPDATE ,WRITE

CALL CALC

CALL UPDATE

CALL WRITE

PROGSTOP
ENDPROG
END

2eeRe Re eeERARK

* OVERLAY SEGMENT 1 *
She eRe Ae Re A ReeAKAEAIAREACA2EEEeEoEea ie ae oie oi ie oi eo oie 2 ok

SUBROUT CALC
Bet NY NS od Neereb Ne

ENTRY CALC

instructions
RETURN

END
ofoi oe ie ie oe oie i fe fe ae oo oeeeoo oo oo CoIRO ooRR ekRaoRoeRook

* OVERLAY SEGMENT 2 *
ORE He Ae Ke AKeAARRRRRRRRRRRKKK KKK

SUBROUT UPDATE

ENTRY UPDATE

instructions
RETURN

END
She KeA Re KE ke fe oe2RRRRRRRRRRRKKKKK

* OVERLAY SEGMENT 3 *
2 ee a a ke 2 2 aeeeaAeeaoo

SUBROUT WRITE
ENTRY WRITE

instructions
RETURN

END

Each of the overlay segments is a subroutine that you can compile separately.

Creating an Overiay Structure

To create an overlay structure, use the linkage editor $EDXLINK. The linkage editor allows

you to combine the overlay segments you link-edited separately into a program segment overlay

structure. $EDXLINK automatically includes an overlay manager with the root segment, along

with an overlay area equal to the largest overlay segment. A CALL(ortransfer of control) to a

module within an overlay segmenttriggers the overlay area managerto load the overlay segment

into the overlay area and transfer control to it. Overlay segments execute as synchronoustasks.

An overlay segment cannot call another overlay segment.

Overlay segmentsare specified in the OVERLAYstatement of $EDXLINKwhichis discussed

in detail in Chapter 5, ‘“‘Preparing an Object Module for Execution” on page PG-81.

Chapter 9. Designing Programs PG-149

 PG-150 5C34-0438

An overlay program 1s a program in which certain control sections can use the same storage

location at different times during execution. Overlay programs execute concurrently as

asynchronoustasks with other programsandare specified in the PROGRAMstatementin the

main program.

With overlay programs, the main program loads the overlay programs. The loaderallocates the

overlay area for overlay programs at main program load time. The overlay area is equal to the

largest overlay program listed in the main program header.

In Figure 5, the application is split into separate programs. PHASE1, the primary programm,

loads the overlay programs (PHASE2, PHASE3, and PHASE4) as requested. When PHASE1is

loaded, the loader recognizes that overlay programs are referenced. The loader looks at each

overlay program and reserves enough storage to hold PHASE!plusthe largest overlay program

(PHASE3) as shownin Figure 6 on page PG-151.

PHASE1

application

program

PHASE1

PHASE2

PHASE3

pePSS

PHASE4
Figure 5. EDL Overlay Programs

Series/1 storage

Supervisor

Space for

PHASE1 plus PHASE?

overlay area --—-—-—-—H- Overlay area large

reserved enough for PHASE3,
(Overlay area)

when PHASE1 the largest overlay

is loaded program

(Available

storage)
Figure 6. EDL Overlay Programs in Series/1 Storage

As each overlay program completes execution, PHASE1 loads the next overlay program,until all

required programs have run. When PHASE1terminates, the system releases the storage

reserved for PHASE] andits overlay programs. See the Language Reference for information on

coding the PROGRAM statementfor overlays.

Chapter 9. Designing Programs PG-151

Unmappedstorage allows you to write a program that uses large amounts of storage.

Unmappedstorage allows you to store large amounts of data and retrieve data faster than you

could retrieve it from disk or diskette. This section describes setting up, obtaining, accessing,

and releasing unmappedstorage.

What Is Unmapped Storage?

Unmappedstorage is storage that has not been reserved by the SYSTEM statement.

p Unmapped Storage

Use the STORBLKstatement to define the size and numberof the unmappedstorageareas a

program will use. The TWOKBLKoperanddefinesthe size of each unmappedstorage area.

For example, if you need unmappedstorage areas to accommodate 6000 bytes of data, code

TWOKBLK=3(6K = 6144 bytes). The maximum size of an unmappedstorage area is 65,536

bytes (TWOKBLK=3272).

The MAX operanddefines the number of unmappedstorage areas. For example, if you need

ten unmappedstorage areas, code MAX=10.

In the following example, HOLD defines 16 (MAX=16) 2K-byte areas of unmappedstorage.

HOLD STORBLK TWOKBLK=1,MAX=16

The STORBLKstatementalso sets up a mappedstorage area the samesize as the unmapped

storage area.

Obtaining Unmapped Storage

PG-152 SC34-0438

Use the GETSTGinstruction to obtain the mapped and unmappedstorage areas you defined in

the STORBLKstatement. For example:

GETSTG HOLD, TYPE=ALL

This instruction obtains the mapped and unmappedstorage that you defined in the STORBLK

statement with the label HOLD. Thesize of the area depends on the TWOKBLKoperand of

the STORBLKstatement. The operand TYPE=ALLtells the system to obtain the unmapped

and mappedstorage areas. The number of unmappedstorage areas the system obtains depends

on the MAX parameter of the STORBLKstatement.

If you want to obtain only one unmappedstorage area, code the GETSTGinstruction as

follows:

GETSTG HOLD , TYPE=NEXT

The instruction causes the system to obtain an unmappedstorage area that you defined in the

STORBLKstatement with the label HOLD. Thesize of the area depends on the TWOKBLK
operand of the STORBLKstatement. The system obtains one unmappedstorage area. For

example,if you specified MAX=24 on the STORBLKstatement and the system hadalready

obtained fifteen unmappedstorage areas, the system would obtain the sixteenth one.

Using an Unmapped Storage Area

You can use an unmappedstorage areajust like you would use any other storage area. For

example, you can movedata into the area or perform calculations on data within the area.

The SWAP instruction allows you to use an unmappedstorage area. For example:

SWAP HOLD , USANO

The instruction allows you to access the unmappedstorage area defined by the STORBLK

statement at label HOLD. The operand USANOrefersto the label of a DATA statementthat
defines the numberof the unmappedstorage area you want to access. For example, if USANO

contains “‘5’’, the SWAP instruction allows the program to access the fifth unmapped storage

area.

You can also code the numberof the unmappedstorage area you wantto use:

SWAP HOLD, 10

This instruction allows you to use the tenth unmappedstorage area defined by the STORBLK

statement at label HOLD. Until you execute another SWAPinstruction, you can use only the

tenth unmappedstorage area.

Notes:

1. You can use only one unmappedstorage areaat a time.

2. While you are using an unmappedstorage area, you cannot use the mapped storagearea.

Releasing Unmapped Storage“eu i “ee Gee

Use the FREESTGinstruction to release any unmappedstorage area that you obtained with the

GETSTGinstruction. For example:

FREESTG HOLD, TYPE=ALL

This instruction releases the unmappedstorage areas defined by the STORBLKstatementat

label HOLD. The operand TYPE=ALLcausestheinstruction to release all of the storage

areas. For example,if the STORBLK statement specifies MAX=16,this instruction causesall

sixteen unmappedstorage areas and the mappedstoragearea to be released.

Chapter 9. Designing Programs PG-153

) (continued)

The following example uses sixteen unmappedstorage areas, one for each country in South

America, to create a table of actuarial data. The table for each of the sixteen countries consists

of three-digit mortality rates. The program accumulates 100 rates for both men and women.

The unmappedstorage the program usesis determined by the country number.

The input records have the following format:

Country number
Sex code

Age

Death rate

The program:

INSURE

ST

READ

E
R
V
e
S
s
a
n
s
a
r
s

iN
a

—
|

STOP

USANO

i HOLD
MENTBL
WMNTBL
MORTAL
CNTRY
SEX
AGE
RATE

PG-154 SC34-0438

PROGRAM

COPY
EQU
GETSTG

2 bytes
1 byte
2 bytes
3 bytes

ST, DS=((ACTTAB, EDX40))
STOREQU
*

HOLD, TYPE=ALL
(initialize storage areas)

READ

MOVE

MOVE

SWAP

MOVE

MULT

ADD

IF

MOVE
ELSE

MOVE
ENDIF
GOTO
EQU

(save

PROGSTOP

DATA

STORBLK
EQU
EQU
BUFFER
EQU
EQU
EQU
EQU
ENDPROG
END

DS1,MORTAL, 1, END=STOP
USANO, CNTRY, (2,BYTES)
#1, HOLD+$STORMAP
HOLD , USANO
#2,AGE
#2,3

#1,#2

(SEX, EQ,1)
(+MENTBL, #1) ,RATE

(+WMNTBL, #1) , RATE

READ
*

the unmapped storage areas)

F'O'

TWOKBLK=1 , MAX=16

0
MENTBL+300

256,BYTES

MORTAL

MORTAL+2

MORTAL+3

MORTAL+5

m
s

S
F

f
F

E
E

E
S

Copythe storage control block equates into the program.

Obtain the mapped and unmappedstorage (one 2K-byte mappedstorage area and

sixteen 2K-byte unmapped storage areas) specified in the STORBLK statement with the

label HOLD.

Read an input record from data set ACTTAB on volume EDX40into the buffer with the

label MORTAL.

Movethe country numberin the input record to USANO.

Movethe address of the mappedstorage area into register 1.

Use the country number to access the appropriate unmappedstorage area.

Movethe age into register 2.

Multiply the age by 3 to arrive at the proper offset into the table.

Addthe offset to the address of the mapped storagearea.

Test the sex code for 1 (1 = men).

Movethe mortality rate into the appropriate slot in the MENTBL (the men’s mortality

rate table).

Set up a 2K-byte mappedstorage area and sixteen 2K-byte unmappedstorageareas.

Chapter 9. Designing Programs PG-155

PG-156 SC34-0438

This section describes ways to accomplish data managementfrom a program. Topics discussed

are:

« Allocating, deleting, and renaming a data set

e Opening a data set

Setting logical end offile

e Finding the device type

To perform other data managementfunctions from an application program suchasallocating,

deleting, and renaming volumes, see Chapter 13, “Communicating with Other Programs(Virtual

Terminals)” on page PG-215.

 rming Data Managementfroma Program

The $DISKUT3 program enables you to perform the following data managementoperations

from a program:

e Allocate a data set.

e Open a dataset.

Chapter 10. Performing Data Management from a Program PG-157

am(continued)

e Delete a data set.

e Release unused spacein a dataset.

e Renamea dataset.

e Set end-of-data on a data set.

$DISKUT3 allows you to open and set end-of-data on disk, diskette, or tape data sets. You can

perform the other four operations (allocating, deleting, releasing unused space, and renaming)

on disk or diskette data sets only.

For more information on $DISKUT3, includinga list of return codes, refer to Language Reference.

You might use $DISKUT3for any of the following reasons:

e Your program requires more than nine datasets.

e You do not know,at the time you load a program, whether or not the program will need a

data set.

e You need to perform several data management functions in one program.

¢ You want the processor storage that $DISKUT3 requires to be available when $DISKUT3

finishes executing.

To use $DISKUT3, you should be aware of the following factors:

¢ $DISKUT3 requires about 6.25K bytes of processor storage.

¢ If you need only to open a data set, SDISKUT3 will be slower than DSOPEN.

« You need to perform error recovery if the system cannot load $DISKUT3.

a Data Set

PG-158 SC34-0438

The following example shows howto allocate a data set from an application program:

TASK PROGRAM GO
GO EQU *

a LOAD $DISKUT3, LISTPTR1,EVENT=DSK3EVNT
A WAIT DSK3EVNT

PROGSTOP

B

a

o
B
19)
i
12

m
S
a

c
E

E
F

K
i

DSK3EVNT ECB 0

LISTPTR1 DC A(LIST1)
LIST1 DC A (REQUEST 1)

DC F'Q!
REQUEST1 DC F'Q!

DC A (DSX)
DC D'50!
DC F'q!
DSCB DS#=DSX,DSNAME=DATA4
COPY DSCBEQU
ENDPROG
END

Load $DISKUT3to allocate data set DATA4. Specify the address (LISTPTR1) of the

list of requests (in this case, a single request). Identify the event

(EVENT=DSK3EVNT)to be posted when $DISKUT3 completes.

Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT.

Set the initial state of the event control block to Zero.

Point to the list of requests at LIST1.

Point to the specific allocate request.

Indicate the end of the list of requests.

Request anallocate (2).

Point to the DSCBfor the data set to be allocated. (The allocate function requires that

the data set being allocated be defined by a DSCB.)

Indicate that 50 records are to be allocated.

Indicate that the data set type is data.

Define a DSCBfor the data set to be allocated.

Copy the DSCB equatesinto the program.

If you attempt to allocate a data set that already exists, $DISKUT3 considers the operation

successfulif:

The type of the data set that already exists matches the type on the data set you are

allocating

The size of the data set that already exists matches the size of the data set you areallocating

Chapter 10. Performing Data Management from a Program PG-159

Opening a Data Set

If you have defined a data set with a DSCB, you need to open the data set from your application

program.

The following example shows how to open a data set from an application program:

TASK PROGRAM GO
GO EQU *

i LOAD $DISKUT3,LISTPTR1, EVENT=DSK3EVNT
Fy WAIT DSK3EVNT

f} DSK3EVNT ECB 0
fl LISTPTR1 DC A(LIST1)
fo 2=OLIST1 DC A (REQUEST 1)
6 DC F'O!'
H REQUEST1 DC F'q'
8 DC A (DSY)
A DC D'0'
ET DC FY!
14] DSCB DS#=DSY,DSNAME=DATA4
iF COPY DSCBEQU

ENDPROG
END

PG-160 SC34-0438

m
S
r
a

a
a

K
a

m(continued)

Load $DISKUT3 to open data set DATA4. Specify the address (LISTPTR1) of thelist

of requests (in this case, a single request). Identify the event(EVENT=DSK3EVNT)

to be posted when $DISKUT3 completes.

Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT.

Set the initial state of the event control block to zero.

Point to the list of requests at LIST1.

Point to the specific open request.

Indicate the end of the list of requests.

Request an open (1).

Point to the DSCBfor the data set to be opened.

This doubleword is not used for an open request.

Tell $DISKUT3to return the type of the data set being opened (0 for undefined, 1 for

data, 3 for program).

Define a DSCBfor the data set to be opened.

Copy the DSCB equatesinto the program.

Chapter 10. Performing Data Management froma Program PG-161

PG-162 SC34-0438

The following example shows howto delete a data set from an application program:

TASK PROGRAM
GO EQU

LOAD

WALT

DSK3EVNT ECB

LISTPTR1 DC

LIST1 DC

DC

REQUEST1 DC

DC

DC

DC

COPY
ENDPROG
END

R
A
V
e
S
s
u
n
s
e

GO,DS=((MASTER, EDX002) , (UPDATE, EDXO03))
*

$DISKUT3, LISTPTR1 , EVENT=DSK3EVNT

DSK3EVNT

0
A(LIST1)
A (REQUEST 1)
F'O!
F'Qq!
A(DS2)

D'0O'
F'-1!
DSCBEQU

n (continued)

i Load $DISKUT3to detete data set UPDATE on volume EDX003. Specify the address
(LISTPTR1) of the list of requests (in this case, a single request). Identify the event

(EVENT=DSK3EVNT)to be posted when $DISKUT3 completes.

Fy Wait for the system to indicate the end of $SDISKUT3 by posting DSK3EVNT.

Set the initial state of the event control block to zero.

A Point to the list of requests at LIST1.

Point to the specific delete request.

8 Indicate the end of the list of requests.

Request a delete (4).

6 Point to the DSCBfor the data set to be deleted (UPDATEon volume (EDX003).

ej This doublewordis not used for an delete request.

it Tell $DISKUT3to return the type of the data set being deleted (0 for undefined, 1 for

data, 3 for program).

i) Copy the DSCB equatesinto the program.

If you try to delete a data set that does not exist,|DISKUT3 considers the operation to be

successful.

Chapter 10. Performing Data Management froma Program PG-163

Releasing Unused Space in a Data Set

The following example shows howto release unused space in a data set from an application

program:

TASK PROGRAM GO
GO EQU *

f LOAD $DISKUT3, LISTPTR1, EVENT=DSK3EVNT
Fy WAIT DSK3EVNT

fF) DSK3EVNT ECB 0
fl LISTPTR1 DC A(LIST1)
Ho LIST1 DC A (REQUEST1)
8 DC F'O'
HM REQUEST1 DC F'5'
8 DC A (DSX)
A DC D'0'
i DC F'-1!
fl DSCB DS#=DSX , DSNAME=TRANS
fF) COPY DSCBEQU

ENDPROG
END

PG-164 SC34-0438

m
S
f
z

~
~
>

Load $DISKUTS3to release space on data set TRANS. Specify the address (LISTPTR1)

of the list of requests (in this case, a single request). Identify the event

(EVENT=DSK3EVNT)to be posted when $DISKUT3 completes.

Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT.

Set the initial state of the event control block to zero.

Point to the list of requests at LIST 1.

Point to the specific release request.

Indicate the end of the list of requests.

Requesta release (5).

Point to the DSCB for the data set on which spaceto be released (TRANS).

This doublewordis not used for a release request.

Tell $DISKUT3to return the type of the data set on which space is being released (0 for

undefined, 1 for data, 3 for program).

Define a DSCBforthe data set on which to release unused space.

Copy the DSCB equatesinto the program.

Chapter 10. Performing Data Management froma Program PG-165

Renaming a Data Set

PG-166 SC34-0438

m(continued)

The following example shows how to renamein a data set from an application program:
R
a
y
e
e
S
o
n
n
l
r
s

TASK
GO

DSK3EVNT

LISTPTR1

LIST 1

REQUEST1

NEWNAME

PROGRAM
EQU

LOAD

WALT

ECB

DC

DC

DC

DC

DC

DC

DC

DC

COPY

DC

ENDPROG

END

GO,DS=((MASTER, EDX003))
*

$DISKUT3, LISTPTR1, EVENT=DSK3EVNT

DSK3EVNT

0
A(LIST1)
A (REQUEST1)
F'Q!
F'3!
A(DS1)
F'OQ!
A (NEWNAME)
Fr-4!
DSCBEQU
CL8'NEWMAST '

E
S

E
t

E
S

a
"

—

[
o
e

ie
)

Load $DISKUT3 to rename data set MASTER.Specify the address (LISTPTR1) of the

list of requests (in this case, a single request). Identify the event

(EVENT=DSK3EVNT)to be posted when $DISKUT3 completes.

Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT.

Set the initial state of the event control block to zero.

Point to the list of requests at LIST1.

Point to the specific rename request.

Indicate the end of the list of requests.

Request a rename(3).

Point to the DSCBfor the data set to be renamed (MASTER on volume EDX003).

This word is not used for a rename request.

Point to the new data set name.

Tell $DISKUT3to return the type of the data set being renamed (0 for undefined, 1 for

data, 3 for program).

Copy the DSCB equates into the program.

Define the new nameforthe dataset.

Chapter 10. Performing Data Management from a Program PG-167

PG-168

SC34-0438

Data ona Data Set

1 (continued)

If you define a data set with a DSCB, you needto set end-of-data from your application

program.

The following example shows how to set end-of-data on a data set from an application program:

TASK PROGRAM
GO EQU

LOAD

WAIT

DSK3EVNT ECB
LISTPTR1 DC
LIST1 DC

DC
REQUEST1 DC

DC
DC
DC
COPY
ENDPROG
END

E
a
V
e
S
s
v
c
a
n
e

GO,DS=((MASTER, EDX0OO3))
*

$DISKUT3 , LISTPTR1 , EVENT=DSK3EVNT

DSK3EVNT

0
A(LIST1)
A (REQUEST1)
F'Q'
F'6!
A(DS1)
D'0O'
F'-1!
DSCBEQU

1)

Load $DISKUT3to set end-of-data on data set MASTER. Specify the address

| (LISTPTR1) of the list of requests (in this case, a single request). Identify the event

(EVENT=DSK3EVNT)to be posted when $DISKUT3 completes.

Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT.

Set the initial state of the event control block to zero.

A Point to the list of requests at LIST 1.

Point to the specific end-of-data request.

g Indicate the end ofthe list of requests.

Request end-of-data (6).

6 Point to the DSCBfor the data set on which to set end-of-data (MASTERon volume
EDX003).

B Indicate that the last recordis full. (If the last record is not yet full, this field would

contain the numberof bytesin the last record.)

Tell $DISKUT3 to return the type of the data set on which end-of-data is being set (0

for undefined, 1 for data, 3 for program).

fl Copy the DSCBequatesinto the program.

Chapter 10. Performing Data Management froma Program PG-169

PG-170 SC34-0438

$DISKUT3allows you to perform more than one operation with one invocation of the program.

For example, you can delete two data sets and allocate a third without loading $DISKUT3 more

than once.

The following example shows how to delete two data sets and allocate one dataset:

TASK PROGRAM GO,DS=((MASTER, EDX003) , (UPDATE, EDX002))
GO EQU *

i LOAD $DISKUT3, LISTPTR1, EVENT=DSK3EVNT
a WAIT DSK3EVNT

f)J DSK3EVNT ECB 0
fl LISTPTR1 DC A(LIST1)
ff LIsT1 DC A (REQUEST 1)
6 DC A (REQUEST2)
U DC A (REQUEST3)
8 DC F'O'
f} REQUEST1 DC F'4!
i DC A(DS1)
fl DC D'0'
ie DC F'-1'
IE) REQUEST2 DC F'4'
iz DC A(DS2)

DC D'0!'
DC F'-1'

fh REQUEST3 DC F'2'
16 DC A (DSA)
i DC D'300'
18 DC F'4'
19 COPY DSCBEQU
20 DSCB DS#=DSA , DSNAME=NEWMAST , VOLSER=EDX003

ENDPROG
END

S
i
i

G
i
&

~
_

Ww
W

~
|

~
on

Load $DISKUT3to delete data sets MASTER and UPDATEandto allocate data set

NEWMAST. Specify the address (LISTPTR1) of the list of requests (in this case, a

single request). Identify the event (EVENT=DSK3EVNT) to be posted when

$DISKUT3 completes.

Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT.

Set the initial state of the event control block to zero.

Pointto the list of requests at LIST1.

Point to the request to delete data set MASTER.

Point to the request to delete data set UPDATE.

Point to the request to allocate data set NEWMAST.

Indicate the end of the list of requests.

Request a delete (4).

Point to the DSCBforthe first data set to be deleted (MASTER on volume EDX003).

This doubleword is not used for delete requests.

Tell $DISKUT3to return the type of the data set being deleted (0 for undefined, 1 for

data, 3 for program).

Requesta delete (4).

Point to the DSCB for the second data set to be deleted (UPDATE on volume

EDX002).

Requestan allocate (2).

Point to the DSCB forthe data set to be allocated (NEWMAST).

Allocate 300 records.

Indicate that the data set type is data.

Copy the DSCBequatesinto the program.

Define a DSCBforthe data set being allocated (NEWMASTon volume EDX003).

Chapter 10. Performing Data Management froma Program PG-171

Error Exits

PG-172 5C34-0438

You can open a disk, diskette, or tape data set from a program with the DSOPENcopycode.

DSOPENdoesthe samething that the system does when youspecify a data set in the

PROGRAMstatement and load the program with either the $L operator commandor the

LOADinstruction.

Note: Only one DSCBcan be opento a tape at a time. If you open a tape data set, you must

close the data set before you can open anothertape dataset.

You might use DSOPENforany of the following reasons:

e Your program requires more than ninedata sets.

« You do not know,at the time you load a program, whether or not the program will need a

data set.

¢« You need to open a data set and do not want to load $DISKUT3 (the system does not need

to load DSOPEN).

¢ The processor storage that $DISKUT3 requires is not available (DSOPENrequires about

1.5K bytes).

DSOPENperformsthe following functions:

e Verifies that the specified volumeis online

¢« Verifies that the specified data set is in the volume

e Initializes the DSCB

To use DSOPEN,you must first copy the source code into your program by coding:

COPY TCBEQU
COPY PROGEQU
COPY DDBEQU
COPY DSCBEQU
COPY DSOPEN

Note: You must code the equates in the order given.

During execution, invoke DSOPENwith the CALLinstruction as follows:

CALL DSOPEN, (dscb)

If an error occurs while DSOPENexecutes, the system transfers control to one of several error

exit routines. You must define these routines in your program and movetheir addresses to

labels that are contained in DSOPEN before you call DSOPEN. The routines cannot be

subroutines.

(continued)

The labels and their meaningsare as follows:

Label Description

$DSNFND Data set name not foundin directory. If DSOPEN cannotfind the data set, then

it does not fill in the DSCB.

$DSBVOL Volumenot foundin disk directory. The system set the DDB pointerin the

DSCBto 0 ($SDSCBVDEdoesnot equal 0).

$DSIOERR Read error occurred while DSOPENwassearching the directory. (For more

information, refer to the Language Reference more information. See the READ

instruction return codes for more information.

$$EXIT Exit address. If $$EXIT is 0 and $DSCBNAMEis $$ or $$EDXVOL,
DSOPENinitializes the DSCBto the first record (first record in the library) of

the volume specified in the $DSCBVOL. If $$EXIT is 0 and $DSCBNAMEis

$$EDXVOL, DSOPENinitializes the DSCBto thefirst record of the device

where the volume specified on $DSCBVOLresides.

$DSDCEA Address of an area for DSOPENtostore the directory control entry (DCE).

This label contains a 0 if this area does not exist.

If you define an error exit routine as a word of zeroes or movea zero to one ofthe labels,

DSOPENtransfers control to the next sequential instruction after the CALLinstruction. For

example, the following instruction causes control to return to the next sequential instructionif

DSOPENcannotfind the data set:

MOVEA $DSNFND,LIBEXIT

LIBEXIT DATA F'OQ'

The following instruction causes control to return to the next sequential instruction if DSOPEN

cannot the volume:

MOVEA $DSBVOL,O

DSOPEN Considerations

When you use DSOPEN,you should know the following things:

e You must have a 256-byte work area labeled DISKBUFRin your program asfollows:

DISKBUFR DC 128F'O'

e The DSCBto be opened can be DS1-DS9 or a DSCB defined in your program with the

DSCBstatement. The DSCB must beinitialized with a six-character volume namein

$DSCBVOLandaneight-character data set name in $DSCBNAM.

Chapter 10. Performing Data Management from a Program PG-173

(continued)

¢ To reopen a dataset, initialize $DSCBVDEto zero; DSOPENignoresall otherfields.

« If you specify the volume nameas six blanks, DSOPENsearches the IPL volumefor the

data set.

« After DSOPEN completes, #1 contains the numberof the directory record containing the

memberentry and #2 contains the displacement within DISKBUFRto the memberentry.

¢« The fields $DSCBEND and $DSCBEDBcontain the nextavailable logical record data,if

any, placed in the directory by SETEOD.

e You can open only one data set on any tape volumeata time.

DSOPENExample

PG-174 SC34-0438

The following example shows how to open a data set when the data set is not known when the

program is loaded. Program MAINPGM,the primary task, prompts the operator for the data

set name and volume andcalls secondary task OPENPGM. If the operator does not enter

volume name, the program assumes the IPL volume.

|
A

o
=

T
m

E
I

nN
mm

_
_

C
R
I
s

a

MAINPGM PROGRAM START,MAIN=YES

EXTRN OPENPGM
START MOVEA #1,DS1
READDS READTEXT RESPONSE,'Q@ENTER DSNAME,VOLUME - '

IF (RESPONSE-1,EQ,X'00', BYTE) , THEN
GOTO READDS

ENDIF
MOVE ($DSCBVOL, #1) , IPLVOL, (6, BYTE)
MOVE WHERE, 0
FIND C',',RESPONSE, 15,WHERE, DSONLY
MOVE #2 ,WHERE
MOVE ($DSCBVOL, #1), (1,#2) , (6, BYTE)
MOVE (0,#2) , BLANK8, (8, BYTE)

DSONLY MOVE ($DSCBNAM, #1) , RESPONSE, (8, BYTE)
CALL OPENPGM, (DS1)
MOVE CODE,DS1
IF (CODE, NE,-1) , THEN

PRINTEXT 'dERROR DURING DSOPEN. RETURN CODE = '
PRINTNUM CODE

ELSE

ENDIF
PROGSTOP
COPY DSCBEQU

CODE DC F'Q!
IPLVOL EQU ~~ ¥*
BLANK8 DC CL8' '
WHERE DC F'0!'
RESPONSE TEXT ' ' LENGTH=15

DSCB DS#=DS 1, DSNAME=DUMMY
ENDPROG
END

Begin the program at STARTandidentify this task as the primary task (MAIN=YES).

Identify as an external entry the subroutinethat this task will call.

Place the address of the DSCBinregister 1.

Prompt the operator for the data set name. Whenthe operator responds, the system

places the response in RESPONSE.

Test for a null entry. RESPONSE-1 contains the length of the operator’s response.

Initialize the volume field (DSCBVOL,)of the DSCBto blanks.

Initialize the comma locatorto zero.

Chapter 10. Performing Data Management froma Program PG-175

PG-176 SC34-0438

a
y

ar
y

a
s

Z
o

2

Find a commain the operator’s response. If no commaexists, branch to DSONLY.

Movethe position of the commato register 2.

Movethe volume nameto the volume field (DSCBVOL)of the DSCB.

Blank the volume name and the commaprecedingit.

Movethe data set nameto the data set name field (DSCBNAM)of the DSCB.

Call the routine that opens the data set. Pass the address of the DSCB (pointed to by

DS1) to the subroutine.

Movethe return code into CODE.

If the return code does not indicate successful completion (-1), print an error message

and the return code.

Process the data set with READ/WRITEinstructions. ($DSCBENDcontains the

number of records in the data set.)

Cause the DSCB equates to be copied into the program.

Reserve storage for the subroutine return code.

Set up a default value for IPL volume.

Reserve storage for an index to be used in locating the comma.

Reserve storage for the operator’s response.

Generate a data set control block (DSCB). Give the data set name field (DSCBNAM)

the temporary name DUMMY.

Opening a Data Set (DSOPEN) (continued)

Program OPENPGMconsists of a subroutine and error exit routines for DSOPEN. The

subroutine calls DSOPEN.

f] OPENPGM PROGRAM MAIN=NO
Fy ENTRY OPENPGM
Fj SUBROUT OPENPGM,ADSN

A MOVE SAVE1,#1

5 MOVE SAVE2, #2
8 MOVE #1,ADSN
O MOVE (O,#1) ,-1
8 MOVEA $DSNFND , LIBEXIT
A MOVEA $DSBVOL, VOLEXIT
ir MOVEA $DSIOERR, IOEXIT
fi CALL DSOPEN , ADSN

GOTO RETURN
[fi LIBEXIT EQU *
fe MOVE #1,ADSN
EE) MOVE (O,#1) ,1

PRINTEXT '@DATA SET NOT FOUND DURING DSOPEN@'
GOTO RETURN

fe) VOLEXIT EQU *

16 MOVE #1,ADSN
fe MOVE (0,#1),2

PRINTEXT '@VOLUME NOT FOUND DURING DSOPEN®@'
GOTO RETURN

[) IOEXIT EQU *

1.9] MOVE #1,ADSN
20 MOVE (0,#1) ,3

PRINTEXT '@ERROR ENCOUNTERED DURING DSOPEN@'
GOTO RETURN

PE] RETURN MOVE #1,SAVE1

22 MOVE #2,SAVE2

23 RETURN
24 COPY TCBEQU
25] COPY PROGEQU
Ba COPY DDBEQU
yy) COPY DSCBEQU

Py COPY DSOPEN
PE] DISKBUFR DC 128F'0!
Ff) SAVE! DC F'O!'
ER] SAVE2 DC F'O'

END

i Identify the name of the subroutine as OPENPGM.Specify that it is not the main

program (MAIN=NO).

Chapter 10. Performing Data Management from a Program PG-177

Opening a Data Set (DSOPEN

PG-178

c
K

a
a

c
o

o
l

(o
S)

a ~

ad w

SC34-0438

) (continued)

Identify the name of the subroutine as an entry. (In conjunction with the EXTRN

statement in the main program,this statement allows the linkage editor to resolve

external references.)

Define a subroutine with the name OPENPGM.Define a parameter (ADSN)thatis

passed bythe calling program.

Save indexregister 1.

Save index register 2.

Movethe parameter that was passed from the calling program (the address of the

DSCB)to register 1.

Initialize the return code to indicate successful completion (-1).

Movethe address of the data-set-not-found routine to the propererror exit within

DSOPEN.

Movethe address of the invalid-volume routine to the propererror exit within DSOPEN.

Movethe addressof the I/O error routine to the proper error exit within DSOPEN.

Call DSOPEN,passing the address of the DSCB.

Indicate the beginning of the data-set-not-found exit routine.

Movethe address of the DSCBto register1.

Movea 1 to thefirst word of the DSCB,indicating data set not found.

Indicate the beginning of the invalid-volume exit routine.

Movethe address of the DSCBto register 1.

Movea 2 to the first word of the DSCB,indicating an invalid volume.

Indicate the beginning of the I/O errorexit routine.

Movethe address of the DSCBto register 1.

Movea 3 to the first word of the DSCB,indicating an I/O error.

Restore indexregister 1.

Restore index register 2.

Return to the calling program.

N) (continued)

Cause the TCB equatesto be copied into the program.

Cause the PROGRAMequatesto be copied into the program.

Cause the DDB equates to be copied into the program.

Cause the DSCBequatesto be copied into the program.Le
)

b
a

Cause the DSOPENequatesto be copied into the program.

Reserve a 256-byte area for DSOPEN. (This area must have the label DISKBUFR.)

Reserve an area in which to save register 1.(o
s)

o
O

Reserve an area in which to save register 2.

Coding for Volume Independence

You may code yourapplications so that they are independentof the volume in which they

reside. To achieve volume independence, place all programs and datasets in a single volume on

any system and specify the characters ## in the volume namefield of any DS= operand or

PGMS=operand of the PROGRAMstatement. (For information on the PROGRAM

statement, refer to the Language Reference.)

You can also insert the volume name from which your program was loaded into any DSCB you

have coded in your program. If you insert the volume name into a DSCB, you must do so

before invoking DSOPEN or $DISKUT3. The volume name,a six-byte field, is located in the
$PRGVOLfield of the program header.

Chapter 10. Performing Data Management froma Program PG-179

Performing Data Managementfrom a Program

Opening a Data Set (DSOPEN)(continued)

PG-180 SC34-0438

The following example showsa routine that retrieves the volume name and invokes DSOPENto

open the data set JOURNAL,located in the same volume from which the program wasloaded.

COPY TCBEQU

COPY PROGEQU
COPY DDBEQU

COPY DSCBEQU
COPY DSOPEN

i ENTER TCBGET TCBADDR

Fy MOVE #1,TCBADDR

Fy MOVE #2, ($TCBPLP, #1)

A MOVEA #1,INDS

5 MOVE ($DSCBVOL, #1) , ($PRGVOL, #2) , (6, BYTE)
5 CALL DSOPEN, (INDS)

DSCB DS#=INDS , DSNAME=JOURNAL

f) DISKBUFR DC 128F'0'
f) TCBADDR DC F'O'

i Get the address of the task control block (TCB).

A Movethe address of the TCBinto register 1.

Movethe address of the program headerintoregister 2.

A Movethe address of the data set control block (DSCB)into register 1.

Movethe volume into the DSCB.

8 Call DSOPEN,passing the DSCB as a parameter.

Define the DSCB.

8 Define a work area for DSOPEN.

A Define an area for the TCB address.

Opening a Data Set (DSOPEN)/continued)

Setting Logical End of File (SETEOD

The copy code routine SETEODallows youto indicate the logical end of file on disk. If your

program does not use SETEOD whencreating or overwriting a file, the READ end of data

exception will occur at either the physical or logical end that was set by some previous use of the

data set.

The relative record numberofthe last full physical record is placed in the $$FPMFfield of the
directory member entry (DME).

Notes:

1. If the $DSCBEDBfield is zero, the $$FPMFfield is set to the next record pointerfield

($DSCBNEX) minusone.

2. If the $DSCBEDBfield is not zero, the $$FPMFfield is set to the $DSCBNEX minustwo.

If the last physical record is partially filled, the number of bytes containedin this recordis

placed in the $$FPMD of the DME. Otherwise, a zero is placed in this field. (This is done by

copying the $DSCBEDBfield of the DSCBdirectly into the DME.) (Further information on

the DMEcan befoundin /nterna/ Design.)

If the next record pointer field ($DSCBNEX)in the DSCBis 1 when SETEODisexecuted, the

DMEisset to indicate that the data set is empty and $DSCBENDisset to X’-1’, indicating that

the data set is empty. If $DSCBEODis zero, the data set is unused.

SETEODcanbeused before, during, or after any READ or WRITE operation. It does not

inhibit further I/O and can be used more than once. The only requirementis that the DSCB

passed as input must have been previously opened.

The POINTinstruction modifies the $DSCBNEXfield. If SETEODis used after a POINT

instruction, the new value of $DSCBNEXis used by SETEOD.

SETEODrequires that the DSOPEN copy code, PROGEQU, TCBEQU, DDBEQU,and

DSCBEQUbecopied in your program.

Chapter 10. Performing Data Management froma Program PG-181

PG-182 SC34-0438

To use SETEOD,copy the source code into your program andallocate a work data set as

follows:

COPY TCBEQU
COPY PROGEQU
COPY DDBEQU
COPY DSCBEQU
COPY DSOPEN
COPY SETEOD

DISKBUFR DC 128F'0' WORK AREA FOR DSOPEN

You invoke SETEODasa subroutine through the Event Driven Language CALL statement,

passing the DSCB andan I/Oerror exit routine pointer as parameters.

CALL SETEOD, (DS1) , (IOERROR)

where:

DS1 Namesa previously opened DSCB

IOERROR Namesthe routine in the application program to which control is passed if an I/O

error occurs

setting Logical End of F

) (eontinued)

Finding the Device Type (EXTRACT)

The inline copy code routine EXTRACTdetermines the device type from the device descriptor

block. This routine is provided for applications that are sensitive to device type. For example,

an application may need to allocate a data set unless the data set were to reside on a tape.

Before attempting to execute instructions that would not execute successfully, the EXTRACT

routine may be used to determine the device type.

To use EXTRACT, you must copy the source code inline into your program. The routine

requires the address of a DSCBin #1 andreturns the device type in #1.

MOVEA #1,DS1
COPY EXTRACT
IF (#1,EQ,X'3186') ,GOTO, TAPEDS

In this example, X‘3186’ is the device ID of an IBM 4969 Magnetic Tape.

To get a list of the device IDs on your system, use the LD commandof the $IOTESTutility.

Chapter 10. Performing Data Management from a Program PG-183

Notes

PG-184 $C34-0438

 Writing to Tape

This chapter describes the tape facilities you can use whenusing tape as part of your EDL

program.

For information on howto allocate tape data sets, copy data sets from one medium to another,

and changetapeattributes, refer to the STAPEUT1utility in the Operator CommandsandUtilities

Reference or the Operation Guide.

For more information on howto access magnetic tape data sets, refer to the Language Reference.

For information on data set naming conventions, refer to the “‘Specifying Data Sets” on page

PG-97.

What Is a Standard-Label Tape?

A standard-label tape consists of data sets separated by 80-character label records and

tapemarks.

A label record is a record that the system writes on a tape to do suchthingsas identify the

volume, indicate the beginning of a data set, and indicate the end of a dataset.

Standard label tapes contain a volume label (VOL1) and a header label (HDR1) before each

data set and a trailer label (EOF1) after each data set. For the contents of the labels, see

Appendix A, “Tape Labels” on page PG-263.

rena

A tapemark is a control character that the system writes on a tape. The hardware uses tapemarks

to recognize such things as the beginning or end of a dataset.

Chapter 11. Reading and Writing to Tape PG-185

| Tape? (continued)

You would use standard-label tapes to maintain data security or to control an extensive library

of tapes.

Nonlabeled Tape?

A nonlabeled tape consists of data sets separated only by tapemarks.

Nonlabeled tapes allow you to read tapes that have unknownrecord length or an unknownlabel.

You would use nonlabeledtapes if you do not need to maintain strict data security or if you use

only a small numberof tapes.

 ProcessingSta

This section describes how to:

e Read a standard-label tape

e Write a standard-label tape

e Close a standard-label tape

e Bypass standardlabels

e Process a tape containing more than one data set

Reading a Standard-Label Tape

The READinstructions allows youto retrieve a record from 18 to 32767 bytes long.

In the following example:

TASKO4 PROGRAM START ,DS= (UPDATES, (MASTER, 56390))

READ DS2,BUFF,1,120,END=NMRCDS , ERROR=OOPS , WAIT=YES

BUFF DATA 60F'O!

the system reads one record (indicated by 1 in the third operand) from the secondfile listed on

the PROGRAMstatement (data set MASTERon volumeserial 56390) into BUFF. (The term

volume serial means the sameas the term vo/ume.)

PG-186 SC34-0438

The size of the record is 120 bytes (indicated by 120 in the fourth operand). If no more records

exist on the data set, control transfers to NMRCDS.If an error occurs, control transfers to

OOPS. The system waits (WAIT=YES) for the read operation to complete before executing

the next sequential instruction.

The following READ instruction reads 2 records into BUFF2. BUFF2 must be 654 byteslong.

TASK37 PROGRAM BEGIN, DS=((UPDATES, 73499) , (MASTER, 56390))

READ DS1,BUFF2,2,327,END=END1,ERROR=ERR, WAIT=YES

BUFF2 DATA 327F'0'

The system reads two records (indicated by 2 in the third operand) from thefirst data set

(UPDATESon volumeserial 73499) listed on the PROGRAMstatement. Thesize of the

record is 327 bytes (indicated by 327 in the fourth operand). If no more records exists on the

data set, control transfers to END1. If an error occurs, control transfers to ERR. The system

waits (WAIT=YES)for the read operation to complete before executing the next sequential

instruction.

Writing a Standard-Label Tape

The WRITEinstruction allows you to write a record from 18 to 32767 byteslong.

In the following example:

TASKO4 PROGRAM START,DS=(UPDATES, (MASTOUT, 00032))

WRITE DS2,BUFF,1,120,ERROR=GOOF,WAIT=YES

BUFF DATA 60F'O'

the system writes one record (indicated by 1 in the third operand) to the secondfile listed on the

PROGRAMstatement (data set MASTOUTon volumeserial 00032) from BUFF. Thesize of

the record is 120 bytes (indicated by 120 in the fourth operand). If an error occurs, control

transfers to GOOF. The system waits (WAIT=YES)for the write operation to complete before

executing the next sequential instruction.

The following WRITEinstruction writes 2 records from BUFF2. BUFF2 must be 654 bytes

long. |

TASK74 PROGRAM BEGIN,DS=((DATES, 28345) , (MASTER, 56390))

BUFF2 DATA 327F'0!

Chapter 11. Reading and Writing to Tape PG-187

Processing S

The system writes two records (indicated by 2 in the third operand) to the first data set (DATES

on volumeserial 28345) listed on the PROGRAM statement. The size of the record is 327

bytes (indicated by 327 in the fourth operand). If an error occurs, control transfers to ERROR.

The system waits (WAIT=YES) for the read operation to complete before executing the next

sequential instruction.

Closing Standard-Label Tapes

Whether you read or write a standard-label tape, you should close the tape data set when you

finish reading or writing. Closing a tape data set causes the system to write trailer labels. Use

the CONTROLinstruction to close a tape data set as follows:

TASK98 PROGRAM BEGIN,DS=((DATES, 28345) , (MASTER,56390))

CONTROL DS1,CLSOFF

The system closesthe first data set (DATES on volumeserial 28345) listed on the PROGRAM

statement. CLSOFFcauses the system to rewind the tape and set the tape drive offline.

For information on other waysto close a tape, refer to Language Reference.

Bypassing Labels

PG-188 SC34-0438

If you want to bypass the labels on a standard-label tape, you must have defined a tape drive as

BLP during system generation or changed the label processing attribute with the $TAPEUT1

utility. For information on defining a BLPdrive, refer to /nstal/ation and System Generation Guide.

Processing Standard-Label Tapes(continued)

The following sample program showshowto bypassstandardlabels.

f}] PROG8 PROGRAM START,DS=((XYZ,TAPEO1))
START EQU *

Fy READ DS1,BUFFER,1,80,ERROR=ERR1

A READ DS1,BUFFER,1,80,ERROR=ERR1

A CONTROL DS1,FSF
LOOP EQU *

a READ DS1,BUFFER,1,50,ERROR=ERR2 , END=ALLDONE

GOTO LOOP

ALLDONE EQU *
8 READ DS1,BUFFER,1,80,ERROR=ERR1

ENDIT EQU *
PROGSTOP

ERR1 EQU *
PRINTEXT 'dLABEL ERROR - RC= '

PRINTNUM DS1

GOTO ENDIT

ERR2 EQU *
PRINTEXT '@READ ERROR - RC= '

PRINTNUM DS1

QUESTION 'a@DO YOU WANT TO CONTINUE? ', C

YES=LOOP , NO=ENDIT

BUFFER DATA 4OF'O'

ENDPROG

END

A Identify the tape as data set XYZ on tape ID TAPEO1. The system ignoresthe data set

name but you mustsupplyit.

A Readthe first of the standard label records (the VOLI1 label) into BUFFER. (You can

insert instructionsafter this instruction to process the label.)

Read the second of the standard label records (the HDR1 label) into BUFFER. (You

can insert instructions after this instruction to processthe label.)

A Forward spacethe file one tapemark. This instruction causes the system to skip any

remaining blocks in the header and position itself at the first record of thefile.

Process the data. This instruction reads a 50-character record (indicated by 50 in the

third operand) into BUFFER.If an error occurs, control transfers to ERR2. If no more

records exist on the data set, control transfers to ALLDONE.

G Readthe trailer label (the EOF 1 label) into BUFFER. You can insert instructions after

this instruction to processthe label.

Chapter 11. Reading and Writing to Tape PG-189

Processing a Tape Containing More than One Data Set

To process a tape that contains more than onedata set, use the $VARYONoperator command

to position the tape to the data set you want to read. For example, to position a tape at address

4C to the fourth data set, issue the following command:

| SVARYON he &

The system respondsas follows:

| TAPEO! ONLINE

TAPEO1is the [ID that was assigned to the tape drive at system generation.

After you use the $VARYONoperator command, you can processthe data set as you would

any other tape dataset.

PG-190 SC34-0438

 apes (continued)

Reading a Multivolume Data Set

To read a multivolume data set, you must add instructions to your program to process the data

set. The following program reads a multivolumedataset.

i PROGX
START

g

ENDIT

CHKEND

R
r

i
S

L
O
T
o
l
|
O
p
]
&

we
|

ERRDSN

ERRVOL

ERRIO

ERRMSG

MSG1
MSG2
MSG3
ERR1

PROGRAM START,DS=??
EQU *
READ DS1,BUFFER,1,80,ERROR=ERR1,END=CHKEND

°°

GOTO START
EQU *
PROGSTOP
EQU x
CONTROL DS1,CLSOFF
IF (DS1,EQ, 33)
PRINTEXT 'dEOV ENCOUNTERED - ENTER VOL1 OF NEXT VOLUME®'

READTEXT NEWVOL

MOVEA #1,DS1

MOVE ($DSCBVOL, #1) ,NEWVOL, (3,WORD)

MOVEA $DSNFND,ERRDSN
MOVEA $DSBVOL, ERRVOL
MOVEA $DSIOERR, ERRIO
QUESTION 'dREPLY Y WHEN THE NEXT VOLUME IS MOUNTED AND ONLINE@'

NO=ENDIT
CALL DSOPEN, (DS1)
GOTO START
ENDIF
GOTO ENDIT
EQU *
MOVEA MSGX,MSG1
GOTO ERRMSG
EQU *
MOVEA MSGX , MSG2
GOTO ERRMSG
EQU *
MOVEA MSGX , MSG3
EQU *
PRINTEXT '@DSOPEN ERROR -@'
PRINTEXT MSG1,P1=MSGX
PRINTEXT SKIP=1
GOTO ENDIT
TEXT 'DATA SET NOT FOUND'
TEXT 'VOLUME NOT FOUND'
TEXT 'T/O ERROR'
EQU *
PRINTEXT 'Q®READ ERROR - RC='
PRINTNUM DS1
GOTO ENDIT

Chapter 11. Reading and Writing to Tape PG-191

~

Reading and V

Vriting to Tape

Processing Standard-Label Tapes (continued)

BUFFER DATA 40F'O' 80 BYTE BUFFER
'NEWVOL TEXT HOLDS NEW VOLUME #

REPLY TEXT LENGTH=2
COPY DSOPEN
COPY DSCBEQU
COPY PROGEQU
COPY DDBEQU

DISKBUFR DC 128F'0O'

c
s
e
s

ENDPROG
END

Cause the system to issue a prompt for the data set name and volumeof the input data

set.

Read an 80-character record into BUFFER. If an error occurs transfer control to

ERR1. If no more records exist, transfer control to CHKEND.

Close the input data set, rewind the tape, and set the tape drive offline.

Test for a return code of 33, indicating that the system found an end-of-volumelabel.

Prompt the operator for the volumeserial of the next tape.

Read the volumeserial into NEWVOL.

Movethe address of the DSCBfor the data set into software register 1.

Movethe volumeserial into the $DSCBVOLfield of the DSCB.

Set the DSOPENerrorexits in this instruction and in the next two instructions.

Prompt the operator for a response when he/she has mountedthetape.

Call the DSOPENroutine to open the next volumeof the dataset.

Resume processing the data.

Processing Noniabeled Tapes

PG-192 SC34-0438

This section describes how to:

Define a nonlabeled tape

Initialize a nonlabeled tape

Processing N

e Read a nonlabeled tape

¢« Write a nonlabeled tape

Defining a Nonlabeled Tape

To read and write from a nonlabeled tape, you must define the drive as nonlabeled. If the tape

drive hasn’t already been defined as nonlabeled, you must:

1. Vary the tape drive offline.

2. Changethelabel processing attribute to nonlabeled using the $TAPEUT1 utility.

3. Vary the tape drive online.

To vary the tape drive offline, use the $VARYOFF operator commandasfollows:

SVARYOFF 4C
TAPEO! OFFLINE

The commandvaries offline the tape drive at address 4C. TAPEO1is the ID that was assigned

during system generation.

The following example shows howto use the $TAPEUT1utility to change the label processing

attribute:

SL STAPEUTI

COMMAND (2?) CT.

ENTER TAPEID (1-6 CHARS): TAPEOI
TAPE TAPEO! AT ADDR AC is SL 1600 BPI

DO YOU WISH TO MODIFY?: Y

LABEL (NULL,SL,NL,BLP)?: NL
DENSITY (NULL,800,1600)?: 800

TAPE TAPEOI AT ADDRESS 4C IS NL 800 BPI COMMAND 7 EN

This example changes tape TAPEO1 to nonlabeled 800 bytes per inch.

To vary the tape drive online, use the $VARYONoperator commandas follows:

Chapter 11. Reading and Writing to Tape PG-193

The commandvaries online the tape drive at address 48. TAPEO1is the ID that was assigned

during system generation.

To initialize a nonlabeled tape, you must:

1. Vary the tape drive offline.

2. Initialize the tape.

3. Vary the tape drive online.

To vary the tape drive offline, use the $VARYOFFoperator commandasfollows:

SVARYOFF 4C
TAPEO! OFFLINE

The commandvaries offline the tape drive at address 4C. TAPEO1isthe ID that was assigned

during system generation.

To initialize the tape, use the $TAPEUT1utility as follows:

SL STAPEUTI

COMMAND (7)

TAPE ADDR (1 - 2 HEX CHARS): AC

NO LABEL 800 BPI? Y

TAPE INITIALIZED

COMMAND ?. EN

To vary the tape drive online, use the $VARYON operator commandasfollows:

| SVARYON 4c
| TAPEO1 ONLINE

The commandvaries online the tape drive at address 4C. TAPEO1is the ID that was assigned

during system generation.

g a Nonlabeled Tape

The READinstructions allows you to retrieve a record from a nonlabeled tape. The records can

be from 18 to 32767 bytes long.

In the following example:

TASKO4 PROGRAM START,DS=(UPDATES, (MASTER, TAPEO1))

READ DS2,BUFFER, 1,80, END=NOMORE, ERROR=ERROR, WAIT=YES

BUFFER DATA 60F'O'

the system reads one record (indicated by 1 in the third operand) from the secondfile listed on

the PROGRAMstatement (data set MASTER on tape ID TAPEO1) into BUFFER. Thesize of

the record is 80 bytes (indicated by 80 in the fourth operand). If no more recordsexist on the

data set, control transfers to NOMORE.If an error occurs, control transfers to ERROR. The

system waits (WAIT=YES)for the read operation to completebefore executing the next

sequential instruction.

Writing a Nonlabeled Tape

The WRITEinstruction allows you to write a nonlabeled record from 18 to 32767 bytes long.

In the following example:

TASKO4 PROGRAM START,DS=(UPDATES, (MASTOUT,TAPEO1))

WRITE DS2,BUFF,1,120,ERROR=GOOF,WAIT=YES

BUFF DATA 60F'0'

the system writes one record (indicated by 1 in the third operand) to the secondfile listed on the

PROGRAM statement (data set MASTOUTon tape ID TAPEO1) from BUFF. Thesize of the

record is 120 bytes (indicated by 120 in the fourth operand). If an error occurs, control

Chapter 11. Reading and Writing to Tape PG-195

Reading and W

Processing Noniabeled Tapes (continued)

transfers to GOOF. The system waits (WAIT=YES) for the write operation to complete before

executing the next sequential instruction.

Adding Recordsto a Tape File (UPDATE)

PG-196 SC34-0438

The copy code routine UPDTAPEallows you to add records to an existing (or new) tapefile.

The records addedare placed after existing records on the file. On standard label tapes, the

routine updates the block count counters in the EOF1 label.

To use UPDTAPE,you must copy the source code into your program by coding:

COPY UPDTAPE

You invoke UPDTAPEas a subroutine through the CALLinstruction, passing the DSCB as a

parameter.

CALL UPDTAPE, (DS1)

where DS1 is a previously opened DSCB.

After the CALL, you must check the return code in the first word of the DSCB for the tape

motion return codes. A -1 return code indicates that the tape is positioned correctly for writing

records.

Adding Recordsto a TapeFile (UP!

\TE) (continued)

The following example adds 1000 recordsto a tape data set. The program prompts the operator

for the data set name and volume.

PROGRAM START,DS=((TAPEDS,??))
EQU *

CALL UPDTAPE, (DS1)

IF (DS1,NE,-1)
PRINTEXT ‘'@ERROR - UPDTAPE RC ='
PRINTNUM DS1
PRINTEXT SKIP=1
GOTO ENDIT

ENDIF

DO 1000, TIMES
WRITE DS1,BUFF,ERROR=ERR
ADD BUFFNUM,1

ENDDO
EQU *
IF (DS1,EQ,-1)
PRINTEXT '@TAPE UPDATED SUCCESSFULLY@'
CONTROL DS1,CLSRU
IF (DS1,NE,-1)
PRINTEXT '@CLOSE ERROR - RC ='
PRINTNUM DS1
PRINTEXT SKIP=1

ENDIF
ENDIF
PROGSTOP
EQU *
PRINTEXT 'QWRITE ERROR - RC ='
PRINTNUM DS1
PRINTEXT SKIP=1
GOTO ENDIT
DC 127X'FFFF!
DC F'ty'
COPY DSCBEQU
COPY TDBEQU
COPY DDBEQU
COPY UPDTAPE
ENDPROG
END

Cause the system to prompt for the name and volumeof the tape data set.

Call the subroutine, passing the DSCBas a parameter.

Check the return code from the subroutine.

Add 1000 recordsto the tape data set.

Write a record to the data set from buffer BUFF. If an error occurs, branch to ERR.

i UPDTAP
START

B

B

ENDIT

ERR

BUFF
BUFFNUM

1

B

B

Chapter 11. Reading and Writing to Tape PG-197

PG-198 SC34-0438

To communicate with another program, you canusecross partition services. Cross partition

services require synchronization logic in your programs but no additional storage in the

supervisor.

Communication is possible between two programswithin the same partition and between

programsin different partitions. Cross partition services permit asynchronous but coordinated

execution of application programs runningin different partitions.

Use these services when interrelated programs andtasks in your application cannot be

accommodated in a single partition.

Whenyourtask is attached, its TCB ($TCBADS)is updated to contain the numberof the

address space in whichit is executing. The address space value (the partition number minus

one) is also knownas the hardware address key. This key, along with an address you supply,is

used to calculate the target address used in cross partition services. For some functions, you put

the address key of the target partition in $TCBADS.

The following sections contain examples of the different uses of the cross partition services.

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-199

PG-200 SC34-0438

In the following example, PROGAloads PROGBinto partition two and passes the parameters

at PROGASW1to it. When PROGBterminates, the supervisor posts the ECB at ENDWAIT,

signaling PROGAthat PROGBhasended.

In this example, the system queues the program loaded (PROGB)to the terminal that is

enqueuedby the loading program (PROGA).

$TCBADSis not modified by the LOADinstruction.

PROGA,the loading program,lookslike this:

f] PROGA PROGRAM START, 1,MAIN=YES
ATLIS ATTNLIST (CA,PROGASTP)
PROGASTP EQU *

3 MOVE #1,PROGASW1
A MOVE (0,#1),1,TKEY=1

ENDATTN
START EQU *

A TCBGET PROGAKEY,$TCBADS
8 LOAD PROGB , PROGASW1, EVENT=ENDWAIT , LOGMSG=YES , PART=2
o IF (PROGA,EQ,-1) , THEN

WAIT ENDWAIT
ELSE

PRINTEXT ‘LOAD FAILED',SKIP=1
ENDIF
PROGSTOP

ENDWAIT ECB
PROGASW1 DATA A (PROGASW1)
PROGAKEY DATA F'Q'

ENDPROG
END

ams (continued

Notes on PROGAareasfollows:

Define the primary task (MAIN=YES). Assignpriority 1 to the task.

Define an attention-interrupt-handling routine. When the operator enters ‘“‘CA”’ and

presses the attention key, branch to PROGASTP.

Move PROGASW/1into register 1. (When this instruction executes, PROGASW1

contains the address of CANCELSW in PROGB.)

Move1 to address (0,#1). Indicate the address key of the loaded program (TKEY=1).

Address (0,#1) points to the address of CANCELSW. In PROGB,the IF instruction

finds that CANCELSWcontains a 1 and passes control to the label STOP.

Put PROGA’s address key into PROGAKEY.

Load PROGB,passing the parameters beginning at label PROGASW1. Identify the

event to be posted when PROGB completes (EVENT=ENDWAIT), indicate that the

PROGRAM LOADEDmessageis to appear on the terminal, and load the program into

partition 2 (PART=2).

If PROGBloadssuccessfully, wait for PROGBto post the event ENDWAIT.

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-201

 PG-202 5C34-0438

The following program, PROGB,is the program being loaded.

Whenthe operatorpresses the attention key and enters ‘“‘CA”’, the attention-interrupt-handling

routine at label CANCEL in PROGAbegins executing.

PROGB PROGRAM START,509,PARM=2

START EQU *

2 PRINTEXT 'TO CANCEL HIT > CA',SKIP=1

PRINTEXT SKIP=1

A MOVEA PROGAWRK , CANCELSW
A MOVE #1, $PARM1

8 MOVE (0,#1) , PROGAWRK , TKEY=$PARM2
§ Loop IF (CANCELSW,EQ, 1) ,GOTO, STOP

GOTO LOOP

STOP EQU *
7 PROGSTOP -1,LOGMSG=NO

PROGAWRK DATA F'OQ'

CANCELSW DATA F'O'

ENDPROG

END

Specify the length of the parameterlist that PROGBreceives from PROGA

(PARM=2). The system recognizes each word in the parameterlist by the label

$PARMx, where “‘x”’ indicates the position of the word in the list. $PARM1refers to

the first word in the list (PROGASW1) and $PARM2refers to the second wordin the

list (PROGAKEY).

Display a promptthattells the operator how to cancel PROGB.

Movethe address of CANCELSW into PROGAWRK.

A Movethe first parameter (the address of PROGASW1)into software register 1.

Movethe contents of PROGAWRK to the address (0,41) in PROGA. The TKEY

operand of the MOVE instruction supplies the address key of PROGA.

g Loop until the operator cancels the program.

Post the loading program (PROGA)with a -1. Suppress the PROGRAM ENDED

message (LOGMSG=NO).

Note: When you execute a LOADinstruction for an overlay or nonoverlay program, the default

terminal address or the currently active terminal address of the program issuing the LOADis

placed in the program headerof the loaded program. This addressis taken from $PRGCCBin

the issuing program’s program header and placed into $>RGCCBofthe loaded program’s

program header. This address is a CCB address.

The following example uses the WHERESinstruction to find another program and return the

address key andthe load point of a program.

f WHERES PROGB,ADDRB,KEY=KEYB

PROGB DATA C'PROGB '

A PROGB DATA C'PROGB '

f] ADDRB DATA F'O'
Al KEYB DATA F'O'

1 Find program PROGB. Putthe load point address in ADDRBandthe address Keyin

KEYB.

A Define the program to be found (the name you give the program when youlink-editit).

Define storage for the load-point address.

A Define storage for the addresskey.

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-203

oe

You can start a task in anotherpartition with the ATTACHinstruction.

In the following example, PROGAstarts (or “‘attaches’’) the task labeled TASKADDRin

PROGB.

PROGA PROGRAM START
i COPY PROGEQU
Fy COPY TCBEQU

START EQU *
Fy WHERES PROGB,ADDRB,KEY=KEYB
A IF (PROGA,EQ,0) , THEN

PRINTEXT 'PROGRAM NOT FOUND',SKIP=1
GOTO DONE

ENDIF
A TCBGET #1,$TCBVER
G MOVE SAVEKEY, ($TCBADS, #1)
7 MOVE ($TCBADS,#1),KEYB

6 ADD ADDRB,X'34',RESULT=TASKADDR
A ATTACH *,P1=TASKADDR
1.0} MOVE ($TCBADS , #1) , SAVEKEY

DONE PROGSTOP
SAVEKEY DATA F'O'
PROGB DATA C'PROGB
ADDRB DATA F'Q'
KEYB DATA F'Q!'

ENDPROG
END

f Copy the PROGRAMequatesinto the program.

Fy Copy the task control block (TCB) equatesinto the program.

Fy Find the load-point address and address key of PROGB. Place the load-point address of

PROGB into ADDRBandthe address key of the program into KEYB.

Al If the WHERESinstruction returns a zero, indicating an error, print an error message

and end the program.

Place the address of PROGA’stask control block (TCB) in softwareregister 1.

8 Save PROGA’s address key in SAVEKEY.

Move PROGB’s address keyto the address key field (STCBADS) of the TCB.

PG-204 SC34-0438

Starting Other Tasks (continued)

Add X’34’ to the load point of PROGB. Put the result of the addition in TASKADDR.

(PROGAassumes that PROGBdefines the task to be attached immediately after the

PROGRAMstatement. The PROGRAMstatement generates 52 bytes (X’34’) of

code.)

Attach the task. Assumethat the address of the task to be attached is contained in

TASKADDR(calculated by the ADDinstruction).

Restore PROGA’s address key from SAVEKEY.

Indicate the name of the program to be found. (The nameof the program is the name

assigned to it when the program waslink-edited.)

The following program contains task NEXT that PROGAattaches. This program must be in

storage when PROGAissues the WHERESinstruction.

PROGB PROGRAM START
f] TASKADDR TASK NEXT
A) NEXT ENQT $SYSPRTR

PRINTEXT '@SUBTASK IS ATTACHED'

DEQT
ENDTASK

START EQU *
Fy PRINTEXT '@PROGB STARTED'
A WAIT KEY

PROGSTOP

ENDPROG

END

H Define a task with the name TASKADDR.

A Enqueuethe system printer ($SYSPRTR).

Print the message PROGB STARTED.

A Wait for the operator to press the enter key. (The example assumesthat the operator

will not press the enter key until the task labeled TASKADDR in PROGBhas

executed.)

Notes:

1. When an ATTACHinstruction is executed, the default terminal address or the currently

9ae

active terminal addressof the task issuing the ATTACHis placed into $TCBCCB.

Whenyou issue an ATTACHinstruction, the system places into $TCBCCBthe default

terminal address or the terminal address of the task that issued the ATTACHinstruction.

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-205

PG-206

You can shareserially reusable resources with programsin other partitions by using the ENQ

and DEOinstructions.

In the following example, SQROOTis a subroutine that has been link-edited by several other

programs. The subroutineis serially reusable because only one program can use the subroutine

at a time. PROGAattempts to enqueue the queue control block (QCB) in PROGB. PROGA

must enqueue the QCBbeforeit can call the subroutine labeled SQROOT.

PROGA PROGRAM START

COPY TCBEQU
Fy EXTRN SQROOT

START EQU +
Fy WHERES PROGB,ADDRB,KEY=KEYB
A IF (PROGA,EQ,0) , THEN

PRINTEXT "PROGRAM NOT FOUND',SKIP=1

GOTO DONE

ENDIF

8 TCBGET #1,$TCBVER

6 MOVE SAVEKEY, ($TCBADS, #1)

7 MOVE ($TCBADS,#1),KEYB

8 ADD ADDRB, X'34' , RESULT=PROGBOCB

A ENO * , BUSY=CANTHAVE, P1=PROGBOCB

it CALL SQROOT

i DEQ
F) MOVE ($TCBADS, #1) , SAVEKEY

GOTO DONE

CANTHAVE EQU *
PRINTEXT 'd®RESOURCE BUSY'

MOVE ($TCBADS, #1) ,SAVEKEY

DONE PROGSTOP

SAVEKEY DATA F'O'

EE) PROGB DATA C'PROGB
ADDRB DATA F'O'
KEYB DATA F'O!

ENDPROG
END

i Copythe task control block (TCB) equates into the program.

2 Identify the subroutine as an external entry (to be resolved at link-edit time).

Find the load-point address and address key of PROGB. Place the load-point address of

PROGBinto ADDRBandthe address Key of the program into KEYB.

SC34-0438 *

Sharing Resourceswith the E!

E
X

K
H

K
E

—
c
e

nm
COS

If the WHERESinstruction returns a zero, indicating an error, print an error message

and end the program.

Place the address of PROGA’s task control block (TCB) in softwareregister 1.

Save PROGA’s address key in SAVEKEY.

Move PROGB’saddresskeyto the address key field ($TCBADS) of the TCB.

Add X’34’ to the load point of PROGB. Putthe result of the addition in PROGBQCB.

(PROGAassumes that PROGBdefines the queue control block (QCB) immediately

after the PROGRAMstatement. The PROGRAMstatement generates 52 bytes (X’34’)

of code.)

Enqueue the subroutine. Assumethat the address of the task to be attached is contained

in PROGBOQCB(calculated by the ADDinstruction).

Call the SQROOTsubroutine.

Dequeuethe subroutine.

Restore PROGA’s address key from SAVEKEY.

Indicate the name of the program to be found. (The nameof the program is the name

assigned to it when the program waslink-edited.)

The subroutine link-edited with PROGAlookslike:

SUBROUT SQROOT
ENTRY SQROOT
PRINTEXT 'QSUBROUTINE HAS BEGUN'

RETURN
END

PROGBcould look likethis:

PROGB PROGRAM START
QCB1 QCB
START EQU *

WAIT KEY
PROGSTOP
ENDPROG
END

Wait for an operator to press the enter key. (The program contains the QCB and should

remain active while other programs in the system are using the SQROOTsubroutine.)

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-207

Partition

You can synchronize two or more tasks in different partitions with the WAIT and POST

instructions. The following programs show howto issue a POSTinstruction to a program in

anotherpartition.

The first program, PROGA,finds the second program, PROGB,finds its event control block

(ECB), and posts the ECB. In this example, PROGB must be loaded before PROGA.

PROGAassumesthat PROGBcontains an ECB immediately following the PROGRAM

statement.

PROGA PROGRAM START
COPY TCBEQU

START EQU *
A WHERES PROGB,ADDRB,KEY=KEYB
Fj IF (PROGA,EQ,0) , THEN

PRINTEXT 'PROGRAM NOT FOUND'
GOTO DONE

ENDIF
A TCBGET #1,$TCBVER
5 MOVE SAVEKEY , ($TCBADS, #1)
g MOVE ($¢TCBADS,#1),KEYB

7 ADD ADDRB,X'34', RESULT=PGMBECB

8 POST *,-1,P1=PGMBECB
A MOVE ($TCBADS,#1) ,SAVEKEY

DONE PROGSTOP
PROGB DATA C'XP12B
SAVEKEY DATA F'0!'
ADDRB DATA F'Q!
KEYB DATA F'O!

ENDPROG
END

fl Copy the task control block (TCB) equatesinto the program.

A Find the program defined at PROGB,put the address of the program in ADDRB,and

put the address key of the program in KEYB.

Fy If the WHERESinstruction returns a zero, print an error message and end the program.

A Put the address of PROGA’s task control block (TCB)in register1.

Bj Save PROGA’s address key in SAVEKEY.

§ Move PROGB’s addresskeyto the address key field (STCBADS) of the TCB.

Add a hexadecimal 34 to the load point address returned by the WHERESinstruction.

Put the results of the addition in PGMBECB. (PROGAassumes that PROGBdefines

PG-208 SC34-0438

Synchronizing Tasks in Other Partitions (continued)

an ECB immediately after the PROGRAMstatement. The PROGRAMstatement

generates 52 bytes (X’34) of code.)

8 Post the ECB with a -1. The operand P1=PGMBECHRHallows the ECBto becalculated

by the ADDinstruction.

A Restore PROGA’s address key from SAVEKEY.

Indicate the name of the program to be found. The nameof the program is the name

assigned to it when the program waslink-edited.

The following program shows how PROGBreceives the POST from PROGA. This program

must be in storage when PROGAissues the WHERESinstruction.

f] PROGB PROGRAM START
R) ECB1 ECB

START EQU *
A WAIT ECB1

PROGSTOP

ENDPROG

END

1 Identify the label at which to start executing (START).

Fy Define an event control block (ECB). The program defines the ECB here becauseit will

always be 52 bytes (X’34’) from the program load point.

Wait for PROGAtopost the program.

Moving Data Across Partitions

You can also move data acrosspartitions. The following programs show how to movedata to a

program in anotherpartition.

Thefirst program, PROGA,finds the second program, PROGB,storesits address key, and

movesdata to the dynamic storage area of PROGB. In this example, PROGB must be loaded

before PROGA.

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-209

CommunicatinO

Services)

with Another Program (Cross Partition

Mioving Data Across Partitions (continued)

PG-210 SC34-0438

S
e
W
e

R
e
e
c
e

L
o

S
|

|
C
c

E
F

c
z

PROGA PROGRAM START

COPY PROGEQU

COPY TCBEQU
START EQU x

WHERES PROGB , ADDRB, KEY=KEYB

IF (PROGA,EQ,0) , THEN
PRINTEXT 'PROGRAM NOT FOUND'
GOTO DONE

ENDIF

READTEXT MSG,'dENTER UP TO 30 CHARACTERS' ,MODE=LINE

MOVE #2,ADDRB

TCBGET #1,$TCBVER

MOVE PROGBBUF, ($PRGSTG, #2) , FKEY=KEYB

MOVE SAVEKEY, ($TCBADS, #1)

MOVE ($TCBADS,#1),KEYB

MOVE #2, PROGBBUF

MOVE (0,#2) ,MSG, (30,BYTE) , TKEY=KEYB

MOVE ($TCBADS, #1) ,SAVEKEY
DONE PROGSTOP
MSG TEXT LENGTH=30
PROGBBUF DATA F'Q!

PROGB DATA C'PROGB '
SAVEKEY DATA F'O'
ADDRB DATA F'Q'
KEYB DATA F'OQ!

ENDPROG
END

Copy the PROGRAMequatesinto the program.

Copy the task control block (TCB) equatesinto the program.

Find the program defined at PROGB,put the address of the program in ADDRB,and

put the address key of the program in KEYB.

If the WHERESinstruction returns a zero, print an error message and end the program.

Prompt the operator for data and place the operator’s response in MSG.

Movethe address of PROGBin register 2.

Put the address of PROGA’s task control block (TCB)in register 1.

Movethe address of PROGB’s dynamic storage area to PROGBBUF. Indicate

PROGB’s address key (FKEY=KEYB). PROGB has STORAGE=256onits

PROGRAMstatement. This operand causes the system to acquire a 256-byte area of

ions (continued)

storage when it loads PROGB. The addressof this area is in PROGB’s program header

(at $PRGSTG).

Save PROGA’s address key in SAVEKEY.

Move PROGB’saddresskey to the address keyfield ($TCBADS) of the TCB.

Movethe address of PROGB’s dynamicstorageareato register2.

Movethe data that the operator entered (MSG) into PROGB’s dynamicstorage area.

Move30 bytes and indicate the address key of the program to whichthe datais being

moved (TKEY=KEYB).

Restore PROGA’s address key from SAVEKEY. Note that $TCBADSis immediately

restored to its original value. Doing so avoids unpredictable results.

Indicate the name of the program to be found. The nameof the program is the name

assigned to it when the program waslink-edited.

The following program shows how PROGBreceives the data from PROGA. The program must

be in storage when PROGAissues the WHERESinstruction.

o

PROGB PROGRAM START,STORAGE=256

START EQU x

MOVE #1,$STORAGE

MOVE MSG2, (0,#1) , (30, BYTE)
PRINTEXT ‘a@THE DATA THAT WAS PASSED WAS'

PRINTEXT MSG2

PROGSTOP

MSG2 TEXT LENGTH=30

ENDPROG

END

Identify the label at which to start executing (START). Specify 256 bytes of dynamic

storage. (Even though the program requires only 30 bytes, the system rounds up to a

multiple of 256.)

Insert instructions here to wait for PROGAtosenddata.

Movethe address of the dynamic storage area (contained in $STORAGE)to register 1.

Move 30 bytes from the dynamic storage area to MSG2.

Print the data.

$TCBADSis used to calculate the partition and address to/from which datawill be transferred.

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-211

Communicating with Another Program (Cross Partition

Services)

Reading Data across Partitions

PG-212 SC34-0438

You can read data across partitions with the READ instruction.

In the following example, program PROGAreads data andpassesit to a buffer in program

PROGB. PROGAassumes that PROGBis in anotherpartition.

fj PROGA PROGRAM START ,DS=ACCOUNTS

BA COPY PROGEQU
Fj COPY TCBEQU

START EQU *
A WHERES PROGB, ADDRB, KEY=KEYB

8 IF (PROGA,EQ,0) , THEN
PRINTEXT "PROGRAM NOT FOUND',SKIP=1

GOTO DONE

ENDIF

8 MOVE #2,ADDRB
7 TCBGET #1,$TCBVER

8 MOVE PROGBBUF, ($PRGSTG,#2) , FKEY=KEYB

A MOVE SAVEKEY, ($TCBADS, #1)

iT) MOVE ($TCBADS, #1) ,KEYB

11 READ DS1,*,P2=PROGBBUF
ie MOVE ($TCBADS, #1) ,SAVEKEY

DONE PROGSTOP

SAVEKEY DATA F'OQ'

fE) PROGB DATA C'PROGB '
ADDRB DATA F'O'

KEYB DATA F'O'

ENDPROG

END

1 Define data set ACCOUNTSonthe IPL volume.

Fy Copy the PROGRAMequatesinto the program.

Copy the task control block (TCB) equates into the program.

A Find the load-point address and address key of PROGB. Place the load-point addressof

PROGBinto ADDRBandthe address Key of the program into KEYB.

If the WHERESinstruction returns a zero, indicating an error, print an error message

and end the program.

g Movethe address key of PROGBinto softwareregister 2.

Place the address of PROGA’s task control block (TCB) in softwareregister 1.

8 Movethe address of PROGB’s dynamic storage area into PROGBBUF in PROGA. The

STORAGE= operand on the PROGRAMstatement of PROGBcauses the system to

acquire a 256-byte storage area whenit loads the program. The addressof this storage

area is in PROGB’s program header (at $PRGSTG).

Reading Data across Partitions (continued)

IE

Save PROGA’s address key in SAVEKEY.

Moves PROGB’s address key to the address key field (STCBADS) of the TCB.

Read onerecord from the data set ACCOUNTSinto PROGBBUF. Because

PROGBBUFisthelabel of the P2= operand on the READinstruction, the system uses

the contents of PROGBBUFasthe location where the data is to be stored.

Restore PROGA’s address key from SAVEKEY.

Indicate the nameof the program to be found. (The nameof the program is the name

you give the program whenyoulink-edit it.)

The following program shows how PROGBreceivesthe data from PROGA. The program must

be in storage when PROGAissues the WHERESinstruction.

PROGB PROGRAM START, STORAGE=256

START EQU *

A MOVE #1,$STORAGE
Fy MOVE OUTPUT, (0,#1), (50,BYTE)

A PRINTEXT 'd@THE DATA RECEIVED FROM PROGA IS :'

PRINTEXT OUTPUT, SKIP=1

OUTPUT TEXT LENGTH=50

ENDPROG

END

1 Identify the label at which to start executing (START). Specify 256 bytes of dynamic

storage. (Even though the program requires only 50 bytes, the system roundsup to a

multiple of 256.)

2 Movethe address of the dynamic storage area (contained in $STORAGE)to software

register 1.:

Move 50 bytes of data from the dynamic storage area into OUTPUT.

A Print a message.

Print the data.

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-213

PG-214 SC34-0438

A virtual terminal is a logical EDX device that simulates the actions of a physical terminal. An

EDLapplication program can acquire control of, or enqueue,a virtual terminal just as it would

an actual terminal. By using virtual terminals, programs can communicate with each otherasif

they were terminal devices. One program (the primary) loads another program (the secondary)

and takes on the role of an operator entering data at a physical terminal.

The secondary program can be an application program or a system utility, such as $COPYUT1.

You can use virtual terminals, for example, to provide simplified menus for running system

utilities. An operator could load a virtual terminal program,select a utility to run, and allow the

program to pass predefined parameters to the utility.

Virtual terminals simulate roll screen devices. The terminals communicate through EDL

terminal I/O instructions contained in the virtual terminal programs. The programsusea set of

virtual terminal return codes to synchronize communication.

For example, an EDL program,the primary program,loads a system utility such as$;COPYUT1.

The program cannotdistinguish between connection to a real terminal or a virtual terminal. The

program uses the READTEXTinstruction to read the prompts from theutility. Then it uses the

PRINTEXTinstruction to send replies to the utility.

Chapter 13. Communicating with Other Programs (Virtual Terminals) PG-215

Communicating with Other P irtual Terminals)

Defining Virtual Terminals

PG-216 SC34-0438

To definea virtual terminal connection during system generation, you must:

e Define two TERMINAL configuration statements.

e Include the supervisor module IOSVIRT.

For informationon how to define TERMINALstatements and include IOSVIRT,refer to

Installation and System Generation Guide.

You can find out if your system has virtual terminals by using the LA commandof the

$TERMUT1utility. If your system has virtual terminals, $TERMUT1lists the virtual terminals
as follows:

NAME ADDR TYPE PART HARDCOPY ON-LINE

CDRVTA * VIRT 1 YES CONNECTED CDRVTB SYNC=YES
CDRVTB * VIRT 1 YES CONNECTED CDRVTA

The output from $TERMUT1indicates that CDRVTAis the primary program (SYNC=YES).

The DEVICE and ADDRESSparameters of the TERMINAL statement define the terminals as

virtual terminals. The two TERMINAL statements must reference each other, as shown below.

CDRVTA TERMINAL DEVICE=VIRT,ADDRESS=CDRVTB, SYNC=YES
CDRVTB TERMINAL DEVICE=VIRT,ADDRESS=CDRVTA

The SYNC parameter of terminal CDRVTAdesignates it as the terminal to which

synchronization events will be posted. The synchronization between virtual terminals is

discussed in “Interprogram Dialogue” on page PG-217.

| Terminals (continued)

oma Virtual Terminal

When an EDXprogram is loaded from a real terminal, that terminal becomesits “‘primary”’

communication port. When one program loads another, the current terminal of the first program

is “‘passed”’ and becomesthe primary terminal of the second. It is this convention that allows a

new program to establish a virtual terminal as the primary port for the loaded program. For

example:

ENQT SEC
LOAD | $TERMUT1 , LOGMSG=NO, EVENT=ENDWAIT

ENQT PRIM

PRIM IOCB CDRVTA

SEC IOCB CDRVTB

After this sequence, $TERMUT1 has CDRVTB(the ‘“‘other’”’ end of the channel) as its primary

port, and the loading program has CDORVTA(“‘this” end of the channel) as its current port.

Interprogram Dialogue

Once the connection between the two communicating programs has beenestablished, you can

use the PRINTEXT, READTEXT, PRINTNUM and GETVALUE instructions to send and

receive data. You can generate attention interrupts with the TERMCTRLinstruction. (Refer

to the Language Reference for information on the TERMCTRLinstruction.) The usual

conventions with respect to output buffering and advance inputapply.

To use virtual terminals, you must know something about communications protocol (such as

knowing whena program is ready for input or has ended). You can use the task code wordto

find out this information.

Chapter 13. Communicating with Other Programs (Virtual Terminals) PG-217

Virtual Terminals)

sample Program

PG-218 SC34-0438

The following sample program uses virtual terminals to process the prompt/reply sequence of

the $INITDSKutility. The program initializes volume EDX003.

The replies to $INITDSK prompts begin at label REPLIES+2. (The six bytes in each TEXT

statement is preceded by two length/countbytes.)

Eachreply is 8 bytes long (six bytes of text plus two length/count bytes). The program issues a

READTEXTuntil $INITDSK prompts for input. Then the program issues a PRINTEXTto

send the reply to the $INITDSK prompt. After $INITDSKends, the program prints a
completion message to the terminal.

INIT PROGRAM BEGIN
COPY PROGEQU

A TOCB CDRVTA SYNC TERMINAL
B TOCB CDRVTB
DEND ECB
BEGIN EQU *

ENOT B
LOAD $ INITDSK , LOGMSG=NO , EVENT=DEND
ENOT A GET SYNC TERMINAL
MOVEA #1,REPLIES+2
DO 7,TIMES REPLY TO PROMPTS

DO UNTIL, (RETCODE,EQ,8) BREAK CODE
READTEXT LINE,MODE=LINE LOOP FOR PROMPT MSGS
MOVE RETCODE, INIT SAVE RETURN CODE

ENDDO
PRINTEXT (0,#1) SEND REPLY
ADD #18 NEXT REPLY
ENDDO
READTEXT LINE,MODE=LINE PGM END MSG
WAIT DEND WAIT FOR END EVENT
DEQT
PRINTEXT 'EDX003 INITIALIZED'
PROGSTOP

RETCODE DATA F'O! RETURN CODE
LINE TEXT LENGTH=80
REPLIES EQU *

TEXT 'Iv COMMAND?
TEXT 'EDX003' VOLUME?
TEXT 'y CONTINUE?
TEXT '60 NBR OF DATA SETS?
TEXT 'N VERIFY?
TEXT 'N NUCLEUS?
TEXT ‘EN ' COMMAND?
ENDPROG
END

This chapter provides the information you need to code a sensor I/O application program.

Topics covered include:

e Sensor I/O devices

¢ Symbolic I/O assignments

e Sensor I/O instructions

The chapter also provides several examples.

A unit of digital sensor I/O is a physical group of sixteen contiguous points. The entire group of

sixteen points is accessed as a unit on the I/O instruction level: programming support allows

logical access downto the single point level.

Digital input (DI) is usually used to acquire information from instruments which present binary

encoded output, or to monitor contact/switch status (open/closed). Digital output (DO)is used

to control electrically operated devices through closing relay contacts, such as pulsing stepping

motors.

Process interrupt (PI) is a special form of digital input. If a point of digital input changesstate,

and then changesstate again, without an intervening READ operation from the program,the

Chapter 14. Designing and Coding Sensor I/O Programs PG-219

Designing and Coding Sensor |/O Programs

Whatis Digital Input/Output? (continued)

status change will be undetected. With process interrupt, a point changing from theoff state to

on generates a hardware interrupt, which is then routed through software support to an

interrupt-servicing application program that can respondto the external event which caused the

interrupt. Process interrupt is often used for monitoring critical or alarm conditions, which must

be serviced quickly, the occurrence of which must not go undetected.

Whatis Analog Input/Output?

PG-220 SC34-0438

A physical unit of analog input (AI) can be a group of eight points or sixteen points, depending

on the type. Analog output (AO)is installed in groups of two points. Each point of analog

input or analog output is accessed separately.

Analog input is used to monitor devices that produce output voltages proportional to the

physical variable or process being measured. Examples include laboratory instruments, strain

gauges, temperature sensors, or other nondigitizing instruments. Digital input was described as

monitoring an on/off status; only two conditions were possible. With analog input, the

informationis carried in the amplitude of the voltage sensed rather than in its presence or

absence.

The starter supervisor contains no support for sensor I/O. You must do a tailored system

generation to include the required support modules in your own supervisor.

Figure 7 on page PG-221 shows howsensordevices are connectedto a Series/1 through the

4982 sensor I/O unit. The devices (DI, DO, PI, AO, and AI) attach to a controller, which in

turn attaches to the Series/1. The sensor I/O attachment (controller), and each of the devices

attaching to it, have unique hardware addresses. In this figure, the physical connectionsare

there, and the hardware addresses are assigned (wired in), but the starter supervisor in storage

lacks the support necessary to operate the devices.

What is Analog Input/Output? (continued)

Series/1

Supervisor - +

|

Digital output
with Sensor 1/O : 1

|

group address 70
sensor |/O attachment _
support . .

; Digital output

; ; group address 71

Address 68 . . |Digital input
group address 72

 —

Figure 7. Sensor Device Connections

Building a tailored supervisor involves the assembly of a series of system configuration

statementsthat reflect the I/O configuration you wish to support. For more information on

system configuration statements, refer to /nsta/lation and System Generation Guide. When programs

reference these devices, they use symbolic references, rather than actual addresses. The I/O

definition statement (IODEF)establishes the logical link between the addresses defined in the

supervisor, and the symbols used to read from and write to the devices at those addresses from

an application program.

All sensor-based input/output operations are performed by executing a sensor-based I/O

(SBIO) instruction. The type of operation is determined by the type of device referenced in the

instruction. For more information on the SBIO statement, refer to Language Reference. The

symbolic reference to a logical device in the SBIO statementis linked to the definition in the

IODEFstatement, which relates that device to the hardware address specified by the system

configuration statement at system generation time.

Chapter 14. Designing and Coding Sensor I/O Programs PG-221

 PG-222 SC34-0438

The sensor-based I/O instruction (SBIO) refers to the I/O devices using a three- or
four-character name. Thefirst two characters identify the type of device: AI, DI, PI, AO, and

DOfor analog input, digital input, process interrupt, analog output, and digital output,

respectively. The next one or two characters are the identification for the device, a number

between 1 and 99. For example, if you have three analog input terminals, you may identify

them as AI1, AI2, and AI3. Before the application program is compiled, the sensor-based I/O

definition statement (IODEF)assignsthe actual physical addresses. All SBIO instructions are
independent of the physical location of the sensor I/O points.

The assignment of sensor I/O symbolic addressesis described under ‘Providing Addressability

(IODEF)”on page PG-223. Figure 8 showsthe relationship between sensor-based I/O

instructions, definition statements, and configuration statements.

Sensor—based Sensor—based Sensor—based
[1/0 execution 1/0 definition configuration
instruction instruction Statement

(SBI0) (1ODEF) (SENSOR1IO)

CCx — CCx

—>
Specifies Specifies Describes
the action the physical the physical

location device

CC can be: Specifies
Al logical
AO device
D |
DO

x can be

1-99

d instructions

This section describes the instructions used in sensor-based I/O applications. The following

instructions are defined:

e IODEF- provides addressability by specifying physical location

¢« SBIO - specifies the I/O operation to be performed

Coding Sensor-Based Instructions (continued)

e SPECPIRT- allows control to be returned to the supervisor from a special process-interrupt

routine

Providing Addressability (IODEF)

Use the IODEFinstruction to provide addressability for the sensor-based I/O facilities which

are referenced symbolically in an application program. The specific form used varies with the

type of I/O being performed.

Group all IODEF statements of the same form (AI, AO, DI, DO, or PI) together in the program

and place them ahead of the SBIO instructionsthat reference them.

All IODEF statements must be in the same assembly module as the TASK or ENDPROG

statement. For high level languages, see the appropriate manualfor instructions on how to

accomplish this. If the SBIO instructions are to be in a separate module, you can provide

addressability using ENTRY/EXTRNstatements.

Each IODEFstatement creates an SBIOCB control block. The contents of the SBIOCBis

described in the /nterna/ Design.

The IODEFstatement generates a location into/from which data is read/written. You must
create a separate IODEFforeachtask; different tasks cannot use the same IODEFstatement.

See the Language Reference for the syntax of PI, DO, DI AO,and AI.

Examples

The following IODEFinstructions define two processinterrupts, a digital output group,a digital

output group as external sync,a digital input group, an analog input point, and an analog output

point.

IODEF PI1,ADDRESS=48 ,BIT=2
IODEF P1I2,ADDRESS=49,BIT=15
IODEF DO1,TYPE=GROUP , ADDRESS=4B
IODEF DO0O2,TYPE=EXTSYNC,ADDRESS=4A
IODEF DI1,TYPE=GROUP,ADDRESS=49
IODEF AI1,ADDRESS=72,POINT=1,RANGE=50MV, ZCOR=YES
IODEF AO2,ADDRESS=75, POINT=1

The SBIO instruction references the digital and analog I/O points as described under the SBIO

instruction. Process interrupts are referenced by the POST and WAITinstructions and are

described under the respective instruction. Further examples of IODEFstatements are shown

following the SBIO instruction.

SPECPI - Process Interrupt User Routine

The SPECPIoption of the IODEF statement defines a special process interrupt routine. The

supervisor executes a routine written in Series/1 assembler language when the defined interrupt

occurs. The purpose is to provide the minimum delay before service of the interrupt, by

Chapter 14. Designing and Coding Sensor I/O Programs PG-223

ing and Coding Sensor I/O Programs

Coding Sensor-Based Instructions (continued)

bypassing the normal supervisor interrupt servicing. Multiple special process-interrupt routines

are allowed in a program.

TYPE=BIT

TYPE=GROUP

Control is given to the specified routine when an interrupt occurs on the

specified bit. On return to the supervisor, the contents of R1 must be the same

at entry to the user’s routine and RO must contain either ‘0’ or a POST code. In

the latter case, R3 must contain the address of an ECBto be posted by the

POST instruction. Register 7 contains the supervisor return address upon entry.

If the user routine is in partition 1, you can return to the supervisor with the BXS

(R7) instruction. Otherwise, you must return with the SPECPIRTinstruction.

You can use SPECPIRTin partition 1. The value that is in R7 upon entry may

be used to return to the supervisor using BXS (R7) only if the user routine is in

partition 1.

Control is given to the specified routine if any bit in the PI group occurs. The PI

groupis not read or reset by the supervisor; this is the routines responsibility.

Return to the supervisor is done with a branchto the entry point SUPEXIT. The

module $EDXATSR must beincluded with the PROGRAMto use SUPEXIT. If
interrupt is processed on level 0, the routine may issue a Series/1 hardwareexit

level instruction (LEX)instead of returning to SUPEXIT. This improves

performancesignificantly.

Note: To use TYPE=GROUP,you must be familiar with the operation of the Series/1 process

interrupt feature. Your routine must contain all instructions necessary to read andreset the

referenced process-interrupt group.

Using the Special Process-Interrupt Bit

PG-224

IODEF PI2,ADDRESS=48, BIT=3, TYPE=BIT, SPECPI=FASTPI1

FASTPI1 EQU *

MVW R1,SAVER1 SAVE R1

MVA PI2,R3 PUT THE ADDR OF PI2 IN R3
MVWI 3,R0 POSTING CODE IN RO
MVW SAVER1,R1 RESTORE R1
SOPECPIRT RETURN TO SUPERVISOR

In the following example, control is given to the user at label FASTPI2.

IODEF PI6,ADDRESS=49 , TYPE=GROUP, SPECPI=FASTPI2

FASTPI2 EQU *

SC34-0438

edInstructions(continued

Specifying [/O Operations (SBIO)

The SBIO instruction provides communication using analog and digital I/O. Options allow you

to:

e Index using a previously defined BUFFER statement.

e Update a buffer address in the SBIO instruction after each operation.

e Use short form of the instruction, omitting loc (data location) to imply a data address

within the SBIOCB.

Optionsavailable with digital input and output provide PULSE output and the manipulation of

portions of a group with the BITS=(u,v) keyword parameter.

SBIO instructions are independent of hardware addresses. The actual operation performed is

determined by the definition of the sensor addressin the referenced IODEF statement.

The IODEFstatement generates a location into/from which data is read/written. You must
create a separate IODEFfor each task; different tasks cannot use the same IODEF statement.

A sensor based input/output control block (SBIOCB)is inserted into an application program for

each referenced sensor I/O device. The SBIOCB,containing a data I/O area and an event
control block (ECB), supplies information to the supervisor. When an SBIOinstruction

executes, the supervisor either stores data (for AI and DI operations) or fetches data (for AO

and DO operations) from a location in the IOCB with the label of the referenced I/O point (for

example, AI1, DI2, DO33, AO1). An application program can reference these locations the

same way any other variable is referenced, allowing you to use the short form of the SBIO

instruction (for example, SBIO DI1), and subsequently reference DI]1 in other instructions. You

may equate a more descriptive label to the symbolic names (for example SWITCH EQU DI15),

but the SBIO instruction must use the symbolic nameas described above.

Each control block also contains an ECBto be used by those operations which require the

supervisor to service an interrupt and ‘post’ an operation complete. These include analog input

(AI), process interrupt (PI), and digital I/O with external sync (DI/DO). Forprocess interrupt,

the label on the ECBis the sameas the symbolic I/O point (for example PIx). For analog and

digital I/O, the label is the same as the symbolic I/O point with the suffix ‘END’ (for example

DIxEND).

Chapter 14. Designing and Coding Sensor I/O Programs PG-225

Programs

(continued)

This example shows SBIO instructions and IODEFstatementsto read analog input.

IODEF

SBIO
SBIO
SBIO
SBIO
SBIO

SBIO
or

SBIO

gy Analog Output (example)

AI1,ADDRESS=72 , POINT=5

AI1
AI1,DAT
AI1,BUF, INDEX
AI1, (BUF, #1)
AI1,BUF,2,SEQ=YES

AI1,BUF,2

AI1,BUF,2,SEQ=NO

DATA INTO LOCATION ATI1
DATA INTO LOCATION DAT
AI1 INTO NEXT LOC OF
AI1 INTO LOCATION (BUF, #1)
READ 2 SEQUENTIAL AI PTS INTO
NEXT 2 LOCATIONS OF 'BUF'
READ THE SAME POINT TWO TIMES
AND PUT INFORMATION IN TWO
LOCATIONS OF BUFF

"BUF!

This example shows SBIO instructions and IODEFstatements to write analog output.

IODEF

SBIO
SBIO
SBIO
SBIO
SBIO

PG-226 SC34-0438

AO1,ADDRESS=63

AO1
AO1,DATA
AO1,1000
AO1, (0, #1)
AO1,BUF, INDEX

SET AO1
SET AO1
SET AO1
SET AO1
SET AO1

TO VALUE IN
TO VALUE IN
TO 1000
TO VALUE IN
TO VALUE IN

"AO1'
'DATA'

(0, #1)
NEXT

Writing Digital

Digital Input (example)

This example shows SBIO instructions and IODEFstatementsto read digital input.

IODEF DI1,TYPE=GROUP, ADDRESS=49
IODEF DI2,TYPE=SUBGROUP, ADDRESS=48, BITS=(7,3)
IODEF D1I3,TYPE=EXTSYNC,ADDRESS=62

SBIO
SBIO
SBIO
SBIO
SBIO

SBIO
SBIO
SBIO
SBIO
SBIO

SBIO

Output (example)

DI1
DI1,DATA
DI1, (0, #1)
DI1,BUF, INDEX

DATA INTO LOC 'DI1'
DI1 INTO LOC 'DATA'
DI1 INTO LOC (0,#1)
DI1 INTO NEXT LOC OF 'BUF'

DI1,BDAT,BITS=(3,5) BITS 3 TO 7 OF DI1 INTO 'BDAT'

DI2
DI2,DAT2
DI2,D,BITS=(0,3)
DI2,E,BITS=(0,1)

BITS 7-9 OF DI2 INTO 'DI2'
BITS 7 TO 9 OF DI2 INTO 'DAT2'
BITS 7-9 OF DI2 INTO 'D'
BIT 7 OF DI2 INTO 'E'

DI2,F,BITS=(2,1),LSB=7 BIT 9 OF DI2 INTO

DI3,G,128
LOCATION F BIT 7

READ 128 WORDS INTO 'G'
USING EXTERNAL SYNC

This example shows SBIO instructions and IODEF statementsto write digital output.

IODEF
IODEF
ITODEF

SBIO
SBIO
SBIO
SBIO
SBIO

SBIO
SBIO

SBIO
SBIO

DO3 , TYPE=GROUP, ADDRESS=4B
DO12, TYPE=SUBGROUP , ADDRESS=4A, BITS= (5,4)
DO13, TYPE=EXTSYNC, ADDRESS=4F

DO3
DO3,DODATA
DO3, 1023
DO3, (DATA, #1)
DO3,7,BITS=(3,3)

DO12,15

DO12,X,BITS=(0,4)

DO12,1,BITS=(0,1)
DO13,Y,80

VALUE OF LOCATION 'DO3' to DO3
VALUE OF 'DODATA' TO DO3
SET DO3 TO 1023
VALUE AT (DATA,#1) TO DO3
SET BITS 3 TO 5 OF DO3 TO 7

SET BITS 5 TO 8 OF DO12 TO 15
SET BITS 5 TO 8 OF DO12
TO VALUE IN 'X'
SET BIT 5 OF DO12 TO 1
WRITE 80 LOCATIONS OF 'Y'
TO DO13 EXTERNAL SYNC

Chapter 14. Designing and Coding Sensor I/O Programs PG-227

Designing and Coding Sensor |/O Programs

Coding Sensor-BasedInstructions (continued)

Pulse Digital Output (example)

This example showspulse digital output.

IODEF DO13,TYPE=SUBGROUP, BITS=(3,1)
IODEF DO14, TYPE=SUBGROUP, BITS=(7,4)

SBIO DO13, (PULSE, UP) PULSE DO13 BIT 3 TO ON
AND THEN OFF

SBIO DO14, (PULSE, DOWN) PULSE DO14 BITS 7-10
OFF AND THEN ON

Returning from the Process-Interrupt Routine (SPECPIRT)

Use the SPECPIRTinstruction to return control to the supervisor from a special process

interrupt (SPECPI) routine. If the user routineis in partition 1, a branch instruction is used to

return. Return from another partition requires execution of a Series/1 assembler SELB

instruction after registers RO and R3 are savedin the level block to be selected. SPECPIRTis

used only for TYPE=BIT SPECPI routines. See the description of IODEF (SPECPI) for

additional information.

label SPECPIRT

Required: none
Defaults: none

Indexable: none

Analog Input Sample

PG-228 SC34-0438

This program takes 256 samples from analog input address AI1 at a sampling rate of 10

points/second. Set the run light on in the lab at the start of the run andturnit off at the end.

The runlight is connected to bit 3 of group DO2.

TKNAME PROGRAM START
IODEF DO2 , TYPE=GROUP , ADDRESS=87
IODEF AI1,ADDRESS=83

START SBIO DO2,1,BITS=(3,1) TURN ON RUN LIGHT
*

DO 256,TIMES SET UP FOR 256 PTS
STIMER 100 SET TIMER FOR 100 MS
SBIO AI1,BUFR,INDEX READ AI1 WITH

* AUTOMATIC INDEXING INTO THE BUFFER 'BUFR'
* AND THEN WAIT FOR THE TIMER TO EXPIRE

WAIT TIMER
ENDDO END OF LOOP

*

SBIO DO2,0,BITS=(3,1) TURN OFF RUN LIGHT
*

* . . . CONTINUE PROGRAM
*

BUFR BUFFER 256 256 WORD BUFFER

The program begins by writing a 1 into bit 3 of digital output group DO2. A DO loopinitializes

for 256 cycles. At this point, a software timer is set up for 100 milliseconds to provide sampling

at 10 points/second. The analog data is read into BUFRusing the SBIO instruction with

Coding Sensor-BasedInstructions (continued)

automatic indexing. After the data is read, the program waits for the timer to expire before

returning for the next sample. Whenall the data is collected, the run light is turned off by

writing a 0 into bit 3 of DO2.

Analog Input With Buffering To Disk

This program takes analog data readings at equal time intervals. The numberof data points and

the time interval in milliseconds are read in from the operator’s terminal. The program will

allow from 10 to 10,000 data points to be taken at time intervals between 10 milliseconds and

10 seconds (10,000 msec). The data collection is initiated by a process interrupt start signal.

The program is aborted by using the keyboard function ‘AB’. Also, a second keyboardfunction,

‘NP’, is used to print a status switch. The switch will be equal to zero if the start signal has not

been received or equal to the numberof data points to be read if the start signal has been

received and data collection has begun.

* TITLE 'SAMPLE ANALOG DATA ACQUISITION PROGRAM'
*
*

READATA PROGRAM BEGIN,DS=??
ATTNLIST (AB,ABORT,NP,SWPRNT)

*

* ABORT THE EXPERIMENT

*

ABORT MOVE SWITCH, 1

ENDATTN
*

* PRINT OUT EXPERIMENT SWITCH
*

SWPRNT PRINTEXT TXT10
PRINTNUM SWITCH
PRINTEXT SKIP=1

. ENDATTN

IODEF AI1,ADDRESS=91 , POINT=0
. IODEF PI1,ADDRESS=94,BIT=15

. EXPERIMENT INITIALIZATION

BEGIN PRINTEXT TXT1
GETVALUE RUNUM,TXT2 REQUEST RUN IDENTIFIER

GETINT GETVALUE INTVL,TXT3 REQUEST TIME INTERVAL
IF (INTVL,LT,10) ,OR, (INTVL,GT, 10000) ,GOTO,GETINT

GETPTS GETVALUE NPTS,TXT4 REQUEST NO. OF POINTS
IF (NPTS,LT,10),OR, (NPTS,GT, 10000) ,GOTO,GETPTS

*

WRITE DS1,RUNUM RUN PARAMETERS IN 1ST SECTOR
RESET SWITCH

Chapter 14. Designing and Coding Sensor I/O Programs PG-229

PG-230 SC34-0438

* THIS

*

ATTACH

* START

*

TWAILIT

ENDLOOP
*

STOP

S (continued)

PRINTEXT TXT9 PRINT READY MESSAGE
WAIT PI1,RESET WAIT FOR START SIGNAL
MOVE SWITCH,NPTS SET SWITCH TO NPTS
IS THE DATA ACQUISITION PORTION OF THE PROGRAM

DO NPTS LOOP COUNT SET ABOVE
STIMER INTVL TIME INTERVAL SET ABOVE
SBIO AI1,BUFFER,INDEX READ A DATA POINT
IF (BUFINDEX,EQ,128),GOTO,ATTACH 1ST BUFFER

FULL?
IF (BUFINDEX,NE,256),GOTO,TWAIT NO, IS 2ND

FULL?
MOVE BUFINDEX,0 ..YES, RESET BUFFER INDEX
ADD POINTCNT,256 INCREMENT DATA COUNTER

IF (DISK,NE,-1) ,GOTO, STOP IS DISK TASK
ATTACHED?

DISK OUTPUT TASK
ATTACH DISKTASK

WAIT TIMER WAIT FOR END OF TIME INTERVAL
IF (SWITCH, EQ,1),GOTO,STOP TEST FOR 'ABORT'
ENDDO

IF (BUFINDEX,EQ,0) ,OR, (BUFINDEX,EQ,128),GOTO,STOP
WAIT DS1 ..YES, WAIT FOR DISK WRITE
ADD POINTCNT,BUFINDEX UPDATE DATA COUNTER
ATTACH DISKTASK START LAST DISK OUTPUT

WAIT DS1 WAIT FOR LAST OUTPUT OPERATION
ENOT GET CONTROL OF TERMINAL
PRINTEXT TXT6 PRINT TERMINATING MESSAGE
PRINTNUM POINTCNT
PRINTEXT TXT7
DEQT RELEASE TERMINAL
PROGSTOP

d Instructions (continued)

* THIS IS THE DATA RECORDING TASK. IT IS ATTACHED BY
* THE DATA ACQUISITION TASK EACH TIME THAT 128 WORDS OF
* DATA HAVE BEEN READ IN. ONE PORTION OF THE BUFFER WILL
* BE TRANSFERRED TO DISK WHILE DATA IS SIMULTANEOUSLY
* BEING READ INTO THE OTHER PORTION OF THE BUFFER.

* THIS TASK RUNS ON LEVEL 3 AT A LOWER PRIORITY THAN
* THE DATA ACQUISITION TASK IN ORDER TO MAXIMIZE
* TIMING ACCURACY.
DISKTASK TASK DISK1,300,EVENT=DISK
DISK1 WRITE DS1,BUFFER1,ERROR=DISKERR

DETACH -1 . -OK
WRITE DS1,BUFFER2 , ERROR=DISKERR
DETACH —-1 - OK
GOTO DISK1

* PRINT DISK ERROR MESSAGE
* ;

DISKERR MOVE ERROR,DISKTASK SAVE ERROR CODE
ENQOT GET CONTROL OF TERMINAL
PRINTEXT TXT5
PRINTNUM ERROR
PRINTEXT SKIP=1
DEQT RELEASE TERMINAL
ENDTASK 1 DETACH WITH CODE = 1

*

*

* DATA AND CONSTANTS
*

TXT1 TEXT 'QSAMPLE ANALOG DATA ACQUISITION PROGRAM@'
TXT2 TEXT '@ENTER RUN NUMBER '
TXT3 TEXT '@dENTER INTERVAL IN MS (10-10000) '
TXT4 TEXT 'QENTER NO. OF POINTS (10-10000) '
TXT5 TEXT '@DISK ERROR '
TXT6 TEXT 'QRUN ENDED AFTER '
TXT7 TEXT ' POINTSA'
TXTO TEXT '@READY FOR PI SIGNAL TO BEGIN TAKING DATA@'
TXT10 TEXT 'QEXPERIMENT SWITCH = '

POINTCNT DATA F'O! NUMBER OF POINTS TAKEN
SWITCH DATA F'O! SET TO '1' FOR 'ABORT'
RUNUM DATA F'O' RUN IDENTIFIER
INTVL DATA F'O' TIME INTERVAL
NPTS DATA F'O' NUMBER OF POINTS TO TAKE
ERROR DATA F'O'
BUFFER BUFFER 256, INDEX=BUFINDEX DATA BUFFERS
BUFFER1 EQU BUFFER FIRST 128 WORDS
BUFFER2 EQU BUFFER+256 SECOND 128 WORDS
*

ENDPROG
END

Digital Input and Averaging

This example illustrates the programmingof a simple time averaging application. The program

reads digital input group DI1 every time a processinterrupt occurs on PI2. One complete scan is

i128 data points. Each scan is added to a double-precision averaging buffer. The numberof

scans is read from the terminal as aninitialization parameter. Also, the program asks whether to

Chapter 14. Designing and Coding Sensor I/O Programs PG-231

PG-232 SC34-0438

reset the averaging buffer before starting to scan. The maximum numberof scans must be less

than 1000.

START GETVALUE NSCAN,TXT1 GET NO. OF SCANS
IF (NSCAN,GE, 1000) ,GOTO, ERROR
RESET PI2
QUESTION TXT2,NO=BEGIN RESET AVERG. BUFFER?
MOVE ABUFR,0,256 YES - RESET IT

BEGIN DO NSCAN SET UP FOR NSCANS
DO 128 SET FOR 128 POINTS
WAIT PI2 WAIT FOR INTERRUPT
RESET PI2 RESET INTERRUPT
SBIO DI1,BUFR,INDEX READ DI1(INDEXING)
ENDDO

% ONE SCAN COMPLETE - MOVE DATA TO AVERG BUFFER

ADDV ABUFR, BUFR, 128, PREC=D
MOVE I,0 RESET BUFFER INDEX
ENDDO

*

* ALL SCANS COMPLETE
PRINTEXT TXT3

THE REST OF THE PROGRAM

TXT 1 TEXT "@NUMBER OF SCANS - '
TXT2 TEXT ' RESET AVERAGING BUFFER? '
TXT3 TEXT " ALL SCANS COMPLETE®)'
NSCAN DATA F'O!
BUFR BUFFER 128, INDEX=I
ABUFR BUFFER 256
*

ERROR PRINTEXT TXT4 PRINT ERROR MESSAGE
GOTO START RETURN FOR INPUT

TXT4 TEXT " TOO MANY SCANS - RE-ENTERO'

In this example, the numberof scans to be done is read from the terminal and checked against

1000.If it is greater than or equal, an error message is printed and the program returns for a

new input parameter. The operatoris asked if the averaging buffer is to be reset. If yes, the

MOVE instruction sets the averaging buffer (ABUFR) to 0. A loopis then initialized for the

numberof scans desired. A second loop is set up for a single scan of 128 points. The program

waits for an interrupt on PI2 and, when it occurs, resets the interrupt for the next point, reads

the digital input DI1 using automatic indexing into the buffer BUFR. Whena scan is complete,

the data is added to the ABUFRbuffer. The buffer index,I, is reset to 0. Whenall scans are

complete, a message is printed. The output from the program isillustrated in the following

example:

NUMBER OF SCANS - 33

RESET AVERAGING BUFFER? Y
ALL SCANS COMPLETE

The Event Driven Executive provides various graphics-oriented tools that can assist you in the

developmentof a graphics application.

The graphics tools you can use are the EDL graphics instructions and the graphicsutilities. This

section describes the graphic instructions supported by the Event Driven Executive. The graphic

utilities are described in the Operator Commands and Utilities Reference.

Graphics Instructions

Seven graphics instructions are provided by the Event Driven Executive. These graphics

instructions, used with the terminal support described, can aid in the preparation of graphic

messages, allow interactive input, and draw curves on a display terminal.

These instructions are only valid for ASCII terminals that have a point-to-point vector graphics

capability and are compatible with the coordinate conversion algorithm described in /nterna/

Design for graphics mode control characters. The function of the various ASCII control

characters used by a terminal are described in the appropriate device manual. Such terminals

may be connectedto the Series/1 via the #7850 Teletypewriter Adapter.

Use the graphics instructions in the same manneras other Event Driven Languageinstructions,

except that the supporting code is included in your program rather than in the supervisor. If you

code all the instructions in a program,this code requires approximately 1500 bytesof storage.

Chapter 15. Designing and Coding Graphic Programs PG-233

Graphics Instructions (continued)

PG-234 SC34-0438

Whenusingthe graphics instructions described, detailed manipulation of terminal instructions

and text messages is not required.

All graphics instructions deal with ASCII data. Therefore, when you send an ASCIItext string

to the terminal, code the XLATE=NOparameter on the PRINTEXTinstruction.

Use of the graphics instructions requires that your object program be processed bythe linkage

editor, $EDXLINK,to include the graphics functions which are supplied as object modules.

Refer to Chapter 5, ‘Preparing an Object Module for Execution” on page PG-81 for the

description of the autocall option of $EDXLINK,and for information on the use of the

“AUTO=$AUTO,ASMLIB”option of $EDXLINK.

The followingis a list of the graphics instructions provided by the Event Driven Executive.

These instructions are described in detail in the Language Reference.

e The CONCATstatement concatenates two text strings or a text string and a graphic control

character.

e The GIN instruction allows you to specify unscaled coordinates interactively, rings the bell,

displays cross hairs, waits for the operator to position the cross hairs and Keyin anysingle

character, returns the coordinates of the cross-hair cursor, and optionally returns the

character entered by the user.

e The PLOTGIN instruction allows you to specify scaled coordinates, rings the bell, displays

the cross hairs, and waits for the operator to position the cross-hairs and key any character.

e The SCREENinstruction converts x and y numbersrepresenting a point on the screen of a

terminal to the 4-character text string which will be interpreted by the terminal as the

graphic address of the point.

« The XYPLOTinstruction is used to draw a curve on the display connecting points specified

by arrays of x and y values.

e The YTPLOTinstruction draws a curve on the display connecting points equally spaced

horizontally and having heights specified by an array of y values. Data values are scaled to

screen addresses according to the plot control block, and points outside the range are placed

on the boundary ofthe plot area.

The plot control block is required by the PLOTGIN, XYPLOT, and YTPLOTinstructions.

The plot control block is 8 words of data defined by DATAstatements which provide definition

of size and position of the plot area on the screen and the data values associated with the edges

of the plot area. Indirectly, the scale of the plot is specified. The format of a plot control block

1S:

label DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA

F'xls'
F'xrs'
F'xlv'
Fixrv'
F'ybs'
F'yts'
F'ybv'
F'ytv'

All 8 explicit values (no addresses) are required and havethe following meaning:

xls

Xrs

xlv

Xv

ybs

ybv

x screen locationat left edge of plot area

x screen location at right edge of plot area

x data valueplotted at left edge of plot

x data value plotted at right edge of plot

y screen location at bottom edge of plot

y screen location at top edge of plot

y data value plotted at bottom edge of plot

y data value plotted at top edge of plot

Chapter 15. Designing and Coding Graphic Programs PG-235

PG-236 SC34-0438

| Block (continued)

In the following example, the graphic control characters (GS, US, ESC,etc.) are assumed to

have certain meanings for the terminal. A different terminal may require the use of different

control characters to perform a similar functions.

The example showsthe use of the graphics instructions described on the preceding pages. This

program prints a message, plots a curve with axes, puts the cross hair on the screen, waits for the

user to position the cross hair and press a key and carriage return, and then displays the

character entered and x,y coordinates of the cross-hair position. You may then end the program

or start it again.

Example (continued)

GTEST
START

f
a
r
A
e
P
M
N
S

F
y

TEXT 1
TEXT3
TEXT4
TEXT5
TEXT6

CHAR
YDATA

X1
NPTS
YAXISX
YAXISY

PROGRAM
EQU
PRINTEXT
READTEXT
CONCAT

CONCAT

PRINTEXT

STIMER

CONCAT

SCREEN

CONCAT

PRINTEXT
PRINTEXT

YTPLOT

XYPLOT
XYPLOT

PLOTGIN

PRINTEXT
PRINTEXT
PRINTEXT
PRINTNUM

QUESTION
PROGSTOP
TEXT
TEXT
TEXT
TEXT
TEXT
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

START
*

"GRAPHICS TEST PROGRAM PRESS ENTER @'
TEXT 1

TEXT1,ESC,RESET
TEXT1,FF
TEXT1,XLATE=NO
1000,WAIT
TEXT1,GS,RESET
TEXT1,520,300,CONCAT=YES
TEXT1,US
TEXT1,XLATE=NO

TEXT3

YDATA,X1,PCB,NPTS, 1
YAXISX, YAXISY,PCB, TWO

XAXISX, XAXISY, PCB, TWO
X,Y,CHAR, PCB
TEXT4
CHAR , XLATE=NO

TEXTS
X,2

TEXT6 ,NO=START

LENGTH=30
'X-AXIS LABEL'
"@CHARACTER STRUCK WAS '
"@X,Y COORDINATES ='
"@END PROG (Y/N)? '
X'0201'
F'O'
F'Q!'
F'i'
F'OQ!'
F'2'
F'O!'
Fi!
F'-2'
F'-1!
F'O!'
F'8!
2F'O'
FIr-5!'
F'5!

Chapter 15. Designing and Coding Graphic Programs PG-237

PG-238 SC34-0438

S
e

f
T

E&
I

S
F

E
F

E
E

E
S

XAXISX DATA F'O'
DATA F'10'

XAXISY DATA 2F'0'
TWO DATA F'2'
PCB DATA F'500'

DATA F'1000'
DATA F'O'
DATA F'10'
DATA F'100'
DATA F'600'
DATA F'-5'
DATA F'5'

X DATA F'Q'
Y DATA F'O'

ENDPROG
END

Print a message.

Reset the text string character count and put the ESC code into TEXT1.

Put the FF character into TEXT1.

Erase the screen and send the alpha cursor to the homeposition (upper left corner).

Delay for a secondto allow the erase sequence to complete.

Reset the text string again and insert the graph mode character (GS)to the text string.

Form the 4 characters required to draw a dark vectorto the screen address (520,300).

The 4 characters represent the Hi Y, Lo Y, Hi X, and Lo X values.

Write an axis label at this position by returning to alpha mode (US).

Perform the full operation. Prevent conversion of data (XLATE=NO),asit is already

in ASCII.

Plot the data, YDATA(8 points). The plot area and coordinates are given by the 8

wordsat the label PCB. The plot area in screen addresses is 500 to 1000 in the

x-direction (horizontal) and 100 to 600 in the y-direction (vertical). The corresponding

plot area in the user’s coordinatesis O to 10 in the x-direction and -5 to 5 in the

y-direction.

Draw the X and Y axes with this and the next instruction. Each of these is simply a

2-point plot, from the origin to the end point.

Put the cross-hair cursor on the screen. The operator should position the cursor and

enter a character. When the program receives the character, it converts the cursor

position to the plot coordinates as specified at PCB, and stores the results at X and Y.

Example (continued)

Print the results.

EZ) Askif the operator wishes to end the program.

X-axis label

Figure 9. Graphics Program Output. This figure shows the result of the preceding program.

Chapter 15. Designing and Coding Graphic Programs PG-239

PG-240 SC34-0438

This chapter describes how application programs can control the waytheir output is handled by

spooling under the following headings:

e Determining whether spoolingis active

e Preventing spooled printer output

¢« Separating program output into several spool jobs

e Controlling spool job processing

Figure 11 on page PG-243 depicts the decisions made by the EDL application programmerin

designing an application which generates reports.

An EDLapplication might be such that it should not be run unless spooling has been activated

(or deactivated). Such an application can determine if spooling is active and use that

information to instruct the operator to activate or deactivate spooling. An application program

can also decide whetheror not to print a spool-control record, depending on whetheror not

spooling is activated.

Chapter 16. Controlling Spooling From A Program PG-241

 Controlling Spooling FromA Program

Determining Whether Spooling Is Active (continued)

The following EDL coding example shows how an application program can determine if the

spooling facility has been activated:

MOVE #2,$CVTSPL, FKEY=0 GET $IOSPTBL ADDRESS
IF #2,NE,0 IF IOSPOOL IN SYSTEM
MOVE #2, (+$IOSPSPM, #2) , FKEY=0 GET $SPM ADDRESS

ENDIF ENDIF
IF #2,NE,0 IF SPOOLING ACTIVATED

ENDIF

COPY PROGEQU COPY CVG EQUATES
COPY $IOSPTBL COPY SPOOLING TABLE

Figure 10. Determining if Spooling is Active

High-level language programscancall this type of EDL subroutine to determine if spooling is

active.

Preventing Spooled Printer Output

An EDLapplication program can prevent its output from being spooled by coding a parameter

on the ENOT command. The parameteris codedasfollows:

ENQT SPOOL=NO

This causes the printer to be enqueueddirectly, when available, and prevents output spooling.

The SPOOL= parameteris ignored if coded on an ENQTto a device not designated as a spool

device or if spooling is not active.

The default is ENQT SPOOL=YES. This allows output spooling.

Note: ENOT SPOOL=NOwithout the BUSY= operand coded causes the program to wait if a

spool writer is started to the device, even if the writer is temporarily stopped. The writer must

be terminated to free the device.

PG-242 SC34-0438

Want

output

spooled

?

 No ENOT non-spool

x device or

ENOT SPOOL=NO

Another
ENOQOTspool report DEQT

device to print printer

?

Want to PROGSTOP

control

printing

v

Want

separate DEOQOTprinter

output CLOSE=NO

PRINTEXT ?
spool control | >

record

+ DEQTprinter

v CLOSE=YES

PRINTEXT

report line

No

Is

report

complete

?

Figure 11. Program-Controllable Spooling Flow Chart

Chapter 16. Controlling Spooling From A Program PG-243

Controlling S|p00ling FromA Program

Separating Program Output into Several Spool Jobs

Spooling treats all spooled printer output of a program to the sameprinter as a single spoo/ job, a

group of records printed together. However, a program can produce more than one spooljob.

To do so, code the DEQTinstruction as follows after you create each spool job.

DEOQT CLOSE=YES

Each time youissue this instruction, the spool job just created becomesreadyforprinting.

A subsequent ENQTto the sameprinter indicates the start of a new spooljob.

If a program contains more than onetask that creates a spool job, you must execute the tasks

serially. You must execute a peat ctose=yes instruction to close each spool job before you execute

the next task.

If two tasks spool to the same spool job and onetask issues a peat ctose=ves instruction before the

other task has completed spooling, unpredictable results can occur.

The CLOSE= parameteris ignored if coded on a DEQTto a device not designated as a spool

device or if spooling is notactive.

Note: DEQT CLOSE=NOisthe default. It causes any later output of the program directed to

the sameprinter to be concatenated to the output already spooled.

Controlling Spool Job Processing

The application program can control the printing and disposition of its spooled output. This is

accomplished by meansof a spool-control record.

The Spool-Control Record

PG-244 5C34-0438

The spool-control record, if used, consists of a special print record which mustbethefirst item

printed by the program after the device is enqueued.

The spool-control record allows the application program to specify:

e Whetheror not the spooljob is to be held and notprinted.

e Whetheror not the spool job is to be kept after printing.

e The type of formsto be usedto print the output.

e The numberof copies to be printed.

e The separator page headingto be printed.

e Whether forms alignment should be done.

Controlling S

pool Job Processing (continued)

The spool-control record applies only to the spool job which followsit. Thus, if a program

creates more than one spooljob, and is to control the printing and disposition of each spooljob,

each spool job must have its own spool-controlrecord.

Note: The $S ALT command,if used by the operator, overrides the spool-control record.

The format of the spool-control record is as follows:

Position Contents

1-8 ***SPOOL
9 blank
10-12 Numberof copiesto print (1-127)
13 blank
14 Hold disposition (Y=yes, N=no)
15 blank
16 Keep disposition (Y=yes, N=no)
17 blank
18-21 Forms type

22 blank
23-30 Report identification
31 blank
32 Forms aligmment (Y=yes, N=no)

If you use the spool-control record, use care to specify the fields exactly as shown. Thefields

with a Y/N option default to N. If any character other than a Y or N is entered, the default will

be used.

Note: Do not generate the spool-control record in an application program unless spooling has

been activated. If spooling is not active, the line is printed as ordinary text to the printer (see

“Determining Whether Spooling Is Active’’ on page PG-241 for a description of how an

application program can determine if the spooling facility is active).

Chapter 16. Controlling Spooling From A Program PG-245

PG-246

*,

e

SC34-0438

‘continued}

The following program uses the spool-control record to create 10 copies with report

identification SPOOLPRG,hold and keep disposition in effect, specify forms type ABCD, and

specify no forms alignment. The report printed consists of two messages.

SPOOL PROGRAM START
START EQU *

ENOT
PRINTEXT '***SPOOL 010 Y Y ABCD SPOOLPRG N'
PRINTEXT '@MESSAGE 1!
PRINTEXT '@MESSAGE 2'
DEQT
PROGSTOP
ENDPROG
END

onsicerations

You should be aware of the following things when you spool output:

A program can activate spooling by loading the spool managerinto storage. You canstart a

spool writer automatically when the spool session begins.

Use the forms alignment option for any report that must be registered precisely on a form.

The cetstore and putstore functions of the termcrtrt instruction have no effect on a spool

device.

If the spool data set is out of space or the control blocks required by spooling are not

available, any program thatis spooling waits until space is available.

If you direct a spool job to a 4975 printer, the program should issue a TERMCTRL SET,RESTORE

instruction at the beginning and endofthe job.

If you define an IOCBfor a printer and you specify operands on the IOCB,code a termctrt

pisPLAY instruction after you issue an ENQTinstruction and before you issue any subsequent

ENOQOTsto the same IOCB.

If you designate $SYSLOGasa spool device, a program check will not print.

Chapter 17.C

id Retrieving
SSages

Whendesigning EDL programs, you can save storage space or coding time by placing prompt

messages and other message text in a separate message data set. EDL instructions enable your

program to retrieve the appropriate message text when the program executes.

By storing messages in a data set, you can changethe text of a message without havingto alter

and recompile each program that uses that message.

You can store program messages in two ways. You can store them on disk or diskette. You can

also store them as a module that you can link-edit with a program.

Creating and using your own program messagesinvolvesthe following steps:

1.

2.

Creating a data set for your source messages

Entering your source messages

Formatting and storing your source messages using the message utility, $MSGUT1

Retrieving program messages using the COMPstatement and the MESSAGE, GETVALUE,

QUESTION or READTEXTinstructions

The following sections describe how to create, store, and retrieve program messages.

Chapter 17. Creating, Storing, and Retrieving Program Messages PG-247

Coding Messages with Variable Fields

PG-248

SC34-0438

You create a data set for source messages with the text editor described in Chapter 3, ‘‘Entering

a Source Program” on page PG-59. You can create one or more source message data sets and

can store them on any volume. Messages can be simple statements or questions, or they can

include variable fields which are filled with parameters supplied by your program.

To enter your source messages, observe the following rules:

e Begin each message in column 1.

e Precede each variable field with two /ess than symbols (<<) and follow each variable field

with two greater than symbols (>>).

¢ End each message with the characters: /*

¢ Begin and end comments with double slashes (//comment//). A comment must be
associated with a message.

e« Usetheat sign (@) to cause the message to skip to the nextline.

e Code source messages a maximum length of 253 bytes long. You can calculate the length of

a message by adding one byte for each character in the text and one byte for each variable

field.

e Continue a message on a new line by coding any non-blank character in column 72. Begin

the continued line in the first column.

The system identifies each message by its position in the source message data set. For example,

the system assigns a message numberof3 to the third message in the source message dataset.

Once you format your source messages with the $MSGUT1utility, you should add any new

messages you haveto the end of the source message data set. If you no longer need certain

message, you should leaveit in the source message data set or replace it with a new message to

preserve the numbering scheme.

To construct a message that can return information supplied or generated by your program, you

can code a message with one or more variable fields. When you execute your program,the

system inserts the appropriate parameters in these variable fields and prints a complete message.

For example, if you want to construct a messagethat tells a program operator how manyrecords

are in a particular data set on a particular volume, you could code the following:

THERE ARE <<SIZE>S> RECORDS IN <<DATA SET NAME>T> ON <<VOLUME>T>./*

The variable fields in the previous example are the numberof records in the data set (SIZE), the

data set name, and the volume name. Thevariable field names do not need to correspond with

namesin a program.

ages (continued

Note: To print or display a message with variable fields, you must have included the FULLMSG

module in your system during system generation.

The variable fields are set off from the message text with two /ess than and twogreater than

symbols (<< >>). The symbols should enclose a description of the field. The system treats

the field description as a comment. You can include up to eight variable fields within a single

message.

As shownin the previous example,all variable fields must also contain a control character that

describes the type of parameter your program will pass to the variable field. S is the control

character in the field <<SIZE>S>>; 7 is the control character in the field <<VWOLUME>T>.

The followingis a list of valid control characters and their descriptions:

C Character data. Specify a length for the data by coding a value from 1 to 253 before the

‘C’ (for example, <<NAME>8C>). There is no default.

T Text. No length is necessary. (The system derives the length from the TEXT statement.)

H Hexadecimal data. The length is four EBCDIC characters.

Ss Single-word integer. Specify a length for the data by coding a value from 1 to 6 before

the ‘S’. The default is six EBCDIC characters. The valid range for a single-word integer

value is from -32768 to 32767.

D Double-word integer. Specify a length for the data by coding a value from 1 to 11 before

the ‘D’. The default is six EBCDIC characters. The valid range for a double-word

integer value is from -2147483648 to 2147483647.

Your program passes parameters to a message in the order you specified the parameters in the

instruction. The following example shows a message instruction with the parameterlist operand

(PARMS=):

MSG PROGRAM START, DS= ((MSGSET, EDX003))

MESSAGE 2,COMP=ID, PARMS= (DSNAME, VOLUME, SIZE)

ID COMP "SRCE',DS1,TYPE=DSK
SIZE DC F'100'
DSNAME TEXT "DATA SET 1'
VOLUME TEXT "EDXO002'

The instruction will retrieve message number 2. The source message for message number 2

appears as follows:

<<DATA SET NAME>T> ON <<VOLUME>T> IS ONLY <<SIZE>S> RECORDS./*

The system places the first parameter (DSNAME)in thefirst variable field, the second

parameter (VOLUME)in the second field, and the third parameter (SIZE) in the third field.

Chapter 17. Creating, Storing, and Retrieving Program Messages PG-249

Storing, and Retrieving Program Messages

Creatinga |

ata Set for Source Messages(continued)

You may, however, wantto alter or reword the message in the previous example. To change the

order of the variable fields in your source message without changing the order of the parameter

list in your program, you can code an additional numberafter the control character. This

number, from 1 to 8, points to the parameter that the system should insert into the variable field.

The numbercorrespondsto the position of the parameter in the parameter list. For example,

<<NAME>C3>tells the system to retrieve the third parameter in a parameterlist.

In the following example, the order of the variable fields in message number 2 has been

switched, but a numberfollowing the control character points to the correct parameterfor the

variable field:

THERE ARE ONLY <<SIZE>S3> RECORDS IN <<DATA SET NAME>T1> ON C

<<VOLUME>T2>./*

‘S3’ points to the third parameterin the list (SIZE), “T'1’ points to the first parameterin thelist

(DSNAMEB), and ‘T2’ points to the second parameterin the list (VOLUME).

Sample Source Message Data Set

The following is sample of a source message data set. The data set is named SOURCEon

volume EDX40.

//THIS IS A COMMENT J/+
DO YOU WANT TO ENTER A NUMBER? /*
ENTER <<TYPE OF VALUE>T> VALUE LESS THAN <<VALUE>S>./*
THE PROGRAM HAS PROCESSED THE INPUT DATA./*
ENTER YOUR <<FIRST/LAST/FULL NAME>10C>./*
//THIS IS ANOTHER COMMENT. // +
ALL INPUT DATA HAS BEEN RECEIVED./*
THE VALUE YOU ENTERED IS: <<VALUE>S1> /*
THE DATA YOU ENTERED IS: <<DATA>T> /*
THE DEVICE <<ID>H1> AT ADDRESS <<DEVICE ADDRESS>H2> IS IN USE./*
THIS MESSAGE WILL BE CONTINUED @ ON THE NEXT LINE./*

PG-250 SC34-0438

Once you have created a source message data set, you must use the messageutility, $MSGUT1,

to convert the source messages into a form the system can use. The utility copies the source

messages, formats them, and stores the formatted messages in another data set or module that

you specify. (Refer to the Operator Commandsand Utilities Reference for a detailed explanation of

how to use the message utility.)

Each time you add new messagesto the source message data set, you must reformat the data set

with $MSGUT1.

| COMMAND (2): DSK
| MESSAGE SOURCE DATA SET (NAME,VOLUME): SOURCE ,EDX40
| DISK RESIDENT DATA SET (NAME ,VOLUME): MESSAGE ,EDX40
| START OF DISK MESSAGE PROCESSING BEGINS

DISK RESIDENT MESSAGES STORED IN MESSAGE ,EDX40
:

| START OF STORAGE MESSAGE PROCESSING

The $MSGUT1utility allows you to:

e Format a source message data set and store the formatted messages on disk or diskette.

e Format a source message data set as a module that you link-edit with a program. Usethis

option for systems without disk or diskette storage or to improve performance.

e Obtain a hard-copylisting of the messages contained in a specific source message dataset.

Before you load the $MSGUT1utility, you must allocate a work file. You can use the AL

command of the $DISKUT1utility to allocate the work file. Allocate a data-type data set large

enough to hold the source message data set (one record for every source message).

Whenyou load $MSGUT1, the utility prompts you for the name and volume of the workfile as

follows:

WORKFILE (NAME,VOLUME):

Respond with the data set name and volumethat you allocated with the $DISKUT1 utility.

In the following example, $MSGUT1 formats the source message data SOURCE shownin the

previous section. The example uses the DSK option and stores the formatted messagesin the

data set MESSAGEon volume EDX40.

Whentheutility finishes formatting and storing the messages, it returns the following message:

The following example uses the STG option and stores the module in data set MSG on volume

EDX003.

COMMAND (7): STG
MESSAGE SOURCE DATA SET (NAME,VOLUME): MSGSRC ,EDX003
STORAGE RESIDENT MODULE (NAME,VOLUME): MSG,EDX003

Chapter 17. Creating, Storing, and Retrieving Program Messages PG-251

Retrieving IV

Whenthe utility finishes formatting and storing the messages,it returns the following message:

srorac RESIDENT MODULE STORED IN MSG,EDX003 J

If the $MSGUT1.utility encounters errors, it prints an error message on the system printer.

lessages

To retrieve a message from storage and include it in your program, you must code a COMP

statement and any one of the following instructions: MESSAGE, GETVALUE, QUESTION,

and READTEXT. (Refer to the Language Reference for a full description of these instructions and

how to code them to retrieve messages.)

The system retrieves program messages from the data set or module that you created with

$MSGUT1. If you stored your formatted messages on disk or diskette, you must code the name

of the data set that contains the messages and the volumeit resides on in the PROGRAM

statement for your program.

If you formatted the messages as a module, you must link-edit your program with the module.

Defining the Location of a Message Data Set

PG-252 SC34-0438

The COMPstatementdefines the location of a message data set or the name youassigned the

module when you used the STG option of the $MSGUT1utility. To retrieve a message, the

MESSAGE, GETVALUE, QUESTION, and READTEXTinstructions must refer to the label of

a COMPstatement. More than one instruction can refer to the same COMPstatement. You

must code a separate statement, however, for each message data set your program uses.

If your messages are in a module, you must code the name of the module. If your message data

resides on disk or diskette, you must indicate the data set in the PROGRAM statement. You

indicate the correct data set by specifying its position in the datasetlist.

In addition to coding the location of the message data set, you must also code a four-character

prefix. The system prints this prefix and the numberof the message youretrieved if you specify

(MSGID=YES) on the MESSAGE, GETVALUE, QUESTION, or READTEXTinstructions.

The following example shows a COMP statementthat refers

Retrieving Messages (continued)

to the second data set on the PROGRAM statement. DS2 points to data set MESSAGE on

volume EDX40.

MESSAGE PROGRAM START ,DS=(DATA, (MESSAGE, EDX40))

PROGSTOP

DISKMSG COMP "ERRS' ,DS2,TYPE=DSK

The following example shows a COMPstatementthat refers to a module that contains

messages.

MESSAGE PROGRAM START

PROGSTOP
STGMSG COMP 'ERRS' ,MSG, TYPE=STG

The MESSAGEinstruction

The MESSAGEinstruction retrieves a message from a data set on disk, diskette, or from a

module. Then theinstruction prints or displays the message. You must code the numberof the

message you wantdisplayed or printed and the label of the COMPstatementthat gives the

location of the message (COMP=).

You can pass parameters to variable fields in a message by coding the parameters on the

PARMS=operandof the instruction. If you code MSGID=YES,the system prints or displays

the numberof the message andthe four-character prefix you coded on the COMPstatementin

front of the messagetext.

In the following example, the MESSAGEinstruction retrieves the third message in a message

data set and passes the parameter PART# to the message. The COMPstatementdefines the

message dataset as the first data set in the PROGRAMstatementlist.

STOCK PROGRAM START, DS= (PARTS , DATA)
MESSAGE 3, COMP=PARTS , PARMS=PART# ,MSGID=YES

PROGSTOP
PARTS COMP "PART',DS1,TYPE=DSK
PART# DC F'56'

In the following example, the MESSAGEinstruction retrieves the second message in a module

that has been link-edited with the program and passes the message the parameter PART#. The

COMPstatement defines the message data set as module MSG.

STOCK PROGRAM START
MESSAGE 2,COMP=PARTS , PARMS=PART# , MSGID=YES

PROGSTOP
PARTS COMP 'PART' ,MSG, TYPE=STG
PART# DC F'43'

Chapter 17. Creating, Storing, and Retrieving Program Messages PG-253

Tne

PG-254 SC34-0438

-ADTEXT Instructions

Instead of coding prompt messages on the GETVALUE, QUESTION, and READTEXT

instructions, you can retrieve prompt messages from a message data set or module. You code

the numberof the message you wantto retrieve for the second operand of the GETVALUEand

READTEXTinstructions and the first operand of the QUESTIONinstruction. In addition, you

must code the label of the COMPstatementthat gives the location of the message (COMP=).

You can pass parametersto variable fields in a message by coding the parameters on the

PARMS=operandof the instruction. By coding MSGID=YES,the system prints or displays

the number of the message and the four-character name you coded on the COMPstatementat

the front of the message text.

In the following example, the GETVALUE instruction retrieves the fifth message from a

module, called MSGTEXT, that has been link-edited with your program. The instruction also

passes the message the parameters VALUE and SIZEto the message.

GETVALUE INPUT,5,COMP=PROMPT, PARMS= (VALUE, SIZE)

PROGSTOP
PROMPT COMP 'TASK' ,MSGTEXT, TYPE=STG
VALUE TEXT "AN INTEGER'
SIZE DC F'75'

In the following example, the GETVALUE instruction retrieves the ninth message from a data

set on disk or diskette. The instruction passes the message the parameters VALUEand SIZE.

BEGIN PROGRAM START ,DS=MSGS

GETVALUE INPUT, 9,COMP=PROMPT, PARMS= (VALUE, SIZE)

PROGSTOP
PROMPT COMP 'TASK' ,DS1,TYPE=DSK
VALUE TEXT "AN INTEGER'
SIZE DC F'75!'

Sample Program

Retrieving Messages(continued)

The following sample program retrieves five program messages from a disk data set formatted in

the previous section. (See ““Example 1”’ on page PG-251.) The nameof the datasetis

MESSAGEandit resides on EDX40.

1] MESSAGE PROGRAM START ,DS=((MESSAGE, EDX40))

A START QUESTION 1,NO=NAME, SKIP=1,COMP=DISKMSG

Fj GETVALUE A,2,SKIP=1,COMP=DISKMSG, PARMS=(P1,P2)
PRINTEXT "@THE NUMBER IS: '

A PRINTNUM A,SKIP=1
A NAME READTEXT B,+MSG4,SKIP=1,COMP=DISKMSG, PARMS=TXT

PRINTEXT '@THE DATA ENTERED IS: '

8 PRINTEXT B,SKIP=1
U MESSAGE +MSG6 , COMP=DISKMSG, SKIP=2,PARMS=A, C

MSGID=YES

6 MESSAGE +MSG7 , COMP=DISKMSG, SKIP=2, PARMS=B, Cc
MSGID=YES

MESSAGE +MSG9 , COMP=DISKMSG, SKIP=2,PARMS=B, C

MSGID=YES
PROGSTOP

fF msG4 EQU 4
MSG6 EQU 6
MSG7 EQU 7
MSG9 EQU 9

10} DISKMSG COMP "SRCE' ,DS1,TYPE=DSK

fel a DATA F'O!'
B TEXT LENGTH=40

P1 TEXT "AN INTEGER'

P2 DATA F'10'

TXT DATA CL10'LAST NAME '

ENDPROG

END

1 Begin the program andidentify the data set name and volume of the message data set

(MESSAGEon volume EDX40).

A Display the prompt message DO YOU WANT TO ENTER A NUMBER? Thefirst

operand (1) identifies the message as the first message in the data sett MESSAGE. The

COMP=operandrefers to a COMPstatement labeled DISKMSG.If the operator

enters Y, the next sequential instruction, the GETVALUEinstruction, executes. If the

operator enters NV, control passes to the label NAME.

Use the second message in the message data set as a prompt message. The instruction

retrieves the prompt message andinserts parameters P1 and P2 into the message. The

operator receives the prompt message ENTER AN INTEGER VALUELESS THAN10.

4| Print the numberthe operatorenters.

Chapter 17. Creating, Storing, and Retrieving Program Messages PG-255

PG-256 SC34-0438

1 (continued)

Retrieve the fourth message (because MSGIis equated to 4) from the messagedata set

and inserts parameter TXT into the message. The operator receives the prompt message

ENTER YOUR LAST NAME.

Print the name the operator enters.

Print or display the sixth message (because MSG6is equated to 6) from the message

data set. The COMP= operandrefers to the COMPstatement labelled DISKMSG. The

instruction uses the integer value the operator entered as the parameter for the message.

If the operator entered a 6, for example, the system would print or display: THE VALUE
YOU ENTEREDIS 6.

Print or display the seventh message (because MSG7is equated to 7) from the message

data set. The COMP= operandrefers to the COMPstatement labelled DISKMSG. The

instruction uses the last name the operator entered as the parameter for the message. If

the operator entered the name FRENCH,for example, the system would print or

display: SRCEO007 THE DATA YOU ENTEREDIS FRENCH.

Equate MSG4to the fourth message in the message dataset.

it) Define the message dataset as thefirst data set on the PROGRAMstatement. Identify

the data set as a disk- or diskette-resident data set (TYPE=DSK). SRCEis the prefix

that would appear if you coded MSGID=YESon a QUESTION, PRINTEXT,

GETVALUE, or READTEXTinstruction.

1.1 Define a parameter (used bythe first MESSAGEinstruction).

The program uses the following source message dataset:

//THIS IS A COMMENT //+
DO YOU WANT TO ENTER A NUMBER? /*
ENTER <<TYPE OF VALUE>T> VALUE LESS THAN <<VALUE>S>./*
THE PROGRAM HAS PROCESSED THE INPUT DATA. /*
ENTER YOUR <<FIRST/LAST/FULL NAME>10C>./*
//THIS IS ANOTHER COMMENT. // +
ALL INPUT DATA HAS BEEN RECEIVED./*
THE VALUE YOU ENTERED IS: <<VALUE>S1> /*
THE DATA YOU ENTERED IS: <<DATA>T> /*
THE DEVICE <<ID>H1> AT ADDRESS <<DEVICE ADDRESS>H2> IS IN USE./*
THIS MESSAGE WILL BE CONTINUED @ ON THE NEXT LINE./*

The program might produce outputlike the following:

(Do YOU WANT TO ENTER A NUMBER? Y

ENTER AN INTEGER VALUE LESS THAN 10: 4

THE NUMBER IS: 4
ENTER YOUR LAST NAME : MEGATH

THE DATA ENTERED IS: MEGATH

SRCEOOO06 THE VALUE YOU ENTERED IS: 4

SRCEOOO7 THE DATA YOU ENTERED IS: MEGATH

SRCE0009 THIS MESSAGE WILL BE CONTINUED
ON THE NEXT LINE.

Chapter 17. Creating, Storing, and Retrieving Program Messages PG-257

PG-258 SC34-0438

You can use the queue processing instructions of EDL tostore and retrieve large amounts of

data. You can retrieve data from a queue oneithera first-in-first-out or last-in-last-out basis.

To define a queue, use the DEFINEQ statement. The following DEFINEQstatement defines a

queue with ten queue elements. A queue e/ement is either an address or data that you wantto

store.

MSGQ DEFINEQ COUNT=10

The queue called MSGQcan contain ten one-word addresses or one-word data items.

If you want to store data items that are longer than one word, code the SIZE operandasfollows:

QUEUE DEFINEQ COUNT=15,SIZE=30

The queue called QUEUEcan contain 15 thirty-byte queue elements.

Chapter 18. Queue Processing PG-259

Queue Processing

Defining a Queue(continued)

Putting Data into a Queue

To put data into a queue, use the NEXTQinstructions as follows:

NEXTQ MSGQ,ADDR

ADDR DATA F'O'

The instruction puts ADDRinto the queue called MSGQ. ADDRcan contain either one word

of data or an address.

To put more than one word of data into a queue, use the FIRSTQinstructions to find the

address of the first storage area into which data can be moved.

FIRSTQ QUEUE, #1

QUEUE DEFINEQ COUNT=15,SIZE=20

The instruction puts into register 1 the addressof the first storage area into which you can move

twenty bytes of data.

You could use the following instructions to prompt the operator for data and store the response

in QUEUE:

READTEXT ELEMENT, 'ENTER YOUR NAME: '
MOVE (0,#1) ,ELEMENT, (20,BYTE)

The READTEXTinstruction prompts the operator and places the response in ELEMENT. The

MOVEinstruction movesthe response to the address retrieved by the FIRSTQinstruction.

Retrieving Data from a Queue

PG-260 SC34-0438

To retrieve data from a queue, use either the FIRSTQ or LASTQinstruction.

Use the FIRSTQinstruction to retrieve the oldest entry from a queue. The following example

FIRSTQ QUEUE, #2

puts into register 2 the address of the oldest element in the queue called QUEUE.

Use the LASTQ instruction to retrieve the newest entry from a queue. The following example

LASTQ QUEUE, ADDR

puts into ADDRthe address of the oldest element in the queue called QUEUE.

Retrieving Data from a Queue(continued)

To transfer control if the queue becomes empty, code the EMPTY operandas follows:

FIRSTQ QUEUE,ADDR, EMPTY=MT

MT EQU *

ADDR DATA EF

The instruction retrieves an element from the queue called QUEUE,puts the address of the

element in ADDR,and causes a branch to MTif no more elements exist in the queue.

Example

The following example promptsthe operator for 20 characters of data, stores the data in one

queue, movesthe addresses of the elements to another queue, and prints the elements on a

first-in-first-out (FIFO) basis.

OTEST PROGRAM START
START EQU *

DO 10, TIMES
Hl FIRSTQ QUEUE1,#1
2 READTEXT MSG,'ENTER UP TO 20 CHARACTERS: '
F MOVE (0,#1) ,MSG, (20, BYTE)
A NEXTQ QUEUE2,#1,FULL=FULLQ

ENDDO
GOTO PRINT

FULLQ EQU *
PRINTEXT '@QUEUE2 FULL. '

PRINT EQU *
DO 10, TIMES

Bi FIRSTOQ QUEUE1,#1,EMPTY=DONE
g MOVE MSG, (0,#1) , (20,BYTE)
U PRINTEXT MSG,SKIP=1
8 NEXTOQ QUEUE1, #1

ENDDO
DONE PROGSTOP

f) QUEUE1 DEFINEQ COUNT=10, SIZE=20
ff) QUEUE2 DEFINEQ COUNT=10

MSG TEXT LENGTH=20
ENDPROG
END

Chapter 18. Queue Processing PG-261

PG-262 SC34-0438

E
I

K
J

o
s

=
z

Put the address of the oldest element into register 1.

Prompt the operator for twenty characters of data. Put the prompt in MSG.

Movethe operator’s response into QUEUE 1, to the addressretrieved by the FIRSTQ

instruction.

Store in QUEUE2the address where the response was stored in QUEUEI1.

Retrieve the oldest element from QUEUE1and put the address of the data into

register 1.

Movetwenty bytes from the address pointed to by register 1 to MSG.

Print the data, skipping a line between each data item (SKIP=1).

Put back into QUEUE1the elementretrieved by the FIRSTQinstruction.

Define a queue large enough to accommodate ten 20-character data items.

Define a queue large enough to accommodate ten 1-word data items or addresses.

The followingis the layout of the VOL1label:

Field Name Bytes Initialized Contents

Label identifier 3 VOL

Volumelabel number 1 1

Volumeserial 6 XKXXXKX

Volume security 1 0

Datafile directory 10 blanks

Reserved 10 blanks

Reserved 10 VOL

Owner name 10 NAME

Reserved 29 blanks

The followingis the layout of the HDR1label:

Field Name Bytes initialized Contents

Label identifier 3 HDR

File label number 1 1

File identifier (DSN) 17* Data set name (DSN)

File serial number 6 XXXXXXK

Volume sequence number 4 0001

File sequence number 4 OONN

Generation number 4 blanks

Generation version number 2 blanks

Creation date 6 YYDDD

Expiration date 6 YYDDD

File security 1 0

Block count 6 000000

System code 13 IBMEDX1

Reserved 7 blanks

* EDX supports an 8-byte nonblank data set name (DSN). EDX ignoresthelast 9 bytes of the

DSN.

Appendix A. Tape Labels PG-263

Notes

PG-264 SC34-0438

Interrupts apply to the interaction between a program anda terminal operator. For example, a

program can wait for an interrupt, such as an operator response to a prompt, or a terminal

operator can cause an interrupt by pressing a Program Function key.

Whenaninterrupt occurs,if it is completing an outstanding operation, control is returned to the

next sequential instruction if there are no errors. If the interrupt was unsolicited (caused by the

attention key or a PF key), then either the system or user ATTNLIST begins executing as an

asynchronoustask competing for system resources.

interrupt Keys

The keys that can cause interrupts are the attention key, Program Function (PF) keys and the

enter key.

The Attention Key

Whenthe attention key is recognized, the greater than symbol (>) is displayed and the operator

can enter either a system function code (for example, $L) or a program function code defined in

an ATTNLIST.

The attention key on the 4978 and 4979is the key marked ATTN. Forteletype terminals, the

ESC (escape) keyis usually the attention key. For the 3101 Display Terminal, the PF8 keyis

the default attention key.

Appendix B. Interrupt Processing PG-265

Interrupt Keys (continued)

Program Function (PF) Keys

Enter Key

PG-266

Instructions tha

SC34-0438

Any program function key on the 4978/4979 and 3101 is recognized by the attention list code

$PF (except for a PF key definedas the attention key). In addition, individual keys can be

separately recognized by $PF1 to $PF254. You can provide separate entry points to the
application code for particular keys, or a single entry point for all keys or a group of keys for

rapid response.

The order of the PF keysin the attentionlist is significant because it defines the entry points to

the application code. For example:

ATTNLIST ($PF1,ENT1,$PF5,ENT2,$PF,ENT3)

causes the program to be entered at ENT3 for all PF keys except PF1 and PFS.

On the 4978/4979, pressing the PF6 key causesthe screen image to be printed on any

designated hard-copy terminal (unless that terminal is a spool device and spoolis loaded). This

is not true for PF6 on the 3101.

The 3101 keyboard has eight PF keys. EDX supports these keys when the 3101 is operated in

both character and block mode. To use the PF keys on the 3101, hold down the ALT key (on

the lowerright-hand side of the keyboard) while you press the appropriate numeric key.

The enter Key indicates the end of typed input, for example, the end of the operatorinput for a

READTEXTinstruction. Youalso use it in conjunction with the WAIT KEYinstruction.

On the 4978 and 4979 keyboards, the enter key is marked ENTER. For the 3101 in block

mode, the SEND keyis the enter key. For the 3101 in character mode, the new line keyis the

enter key.

 rocess Interrupts

Instructions that process interrupts are READTEXT, GETVALUE, WAIT KEYand

ATTNLIST.

The READTEXT and GETVALUEInstructions

In manycases a program needsto wait for an interrupt, such as an operator response to a

request for input. This program-wait capability is provided automatically by the READTEXT

and GETVALUE instructions. These instructions have an “implied wait.”They wait for the

terminal operator to enter data and pressthe enter key.

 KEY Instruction

An application program can wait at any point for a 4978/4979 or 3101 terminal operator to

press the enter or one of the PF keys. This is done byissuing the WAIT KEYinstruction.

Whenthe enter or a PF keyis pressed, the program resumesoperation, and the keyis identified

to the program in the second task code word at taskname+2. The code value for the enter key

is 0. The value for a PF Keyis the integer corresponding to the assigned function code; 1 for

PF1, 2 for PF2, and so on.

The PF keys do notinitiate attention list processing during execution of the WAIT KEY

instruction. They only cause the WAIT KEYinstruction to terminate, allowing subsequent

instructions to be executed.

nstruction

The ATTNLIST instruction provides entry to interrupt processing routines. When a PF keyis

pressed, the ATTNLIST task for that key gets control if ATTNLIST was codedin the

application program. If ATTNLIST was not coded, the system search for a PF key matchfails

and the message ‘““FUNCTION NOT DEFINED”is displayed on the screen. Except for the

4978/4979 hard-copy print key (normally PF6), the 4978 attention key (normally PFO) and the

3101 attention key (normally PF8), the PF keys are always matched against user-written

ATTNLIST(s) as described above.

Whentheattention key on a terminal is pressed, the system prompts the operator for a

command. This commandis first matched against the system ATTNLIST and then against

user-written ATTNLIST(s).

If the command matches the system ATTNLIST, appropriate system action is taken (for

example, $D or $L) unless the task is busy. If the command entered was $C, $VARYONor

$VARYOFFandthis task is busy, the message “> NOT ACKNOWLEDGED?”is displayed;

whenthe task is completed, $C, $VARYON or $VARYOFFis then executed. If the command

entered was $P or $D andthis task is busy, the commandis ignored.

If the command matchesa user-written ATTNLIST, the corresponding ATTNLISTtask gets

control. The appropriate application program attention routine then runs underthis task. If the

attention key invoked the ATTNLISTandthetask is already busy, the message “> NOT

ACKNOWLEDGED?”is displayed on the terminal.

If there is no match against any ATTNLIST, the message “FUNCTION NOT DEFINED”is

displayed.

When the ATTNLISTtask for a PF key gets control, the code for that key is placed in the

second word of the ATTNLIST task control block. You can obtain the code for an interrupting

key by coding the TCBGETinstruction.

Appendix B.Interrupt Processing PG-267

PG-268 5C34-0438

As a terminal user, your interaction with an application or utility program is generally conducted

through prompts which request you to enter data. Once you have become familiar with the

dialogue sequence, however, prompting becomesless necessary. The READTEXTand

GETVALUE instructions include a conditional prompting option which enables you to enter

data in advance and therebyinhibit the associated prompts.

Advance input is accomplished by entering more data on a line than has been requested by the

program. Subsequentinputinstructions specifying PROMPT=CONDwill read data from the

remainderof the buffered line, and issue a prompt only when the pre-entered data has been

exhausted. If you specify PROMPT=UNCONDwithaninput instruction, an associated prompt

is issued and the system waits for input. The prompt causes, as does every output instruction,

cancellation of any outstanding advanceinput.

EDXterminal support enables some degree of device independence between the 4978/4979

Display Station and 3101 Display Terminal in block mode. This device independenceis

achieved by using the $IMAGEsubroutinesand certain parameters of some EDLinstructions,

namely READTEXT, PRINTEXT and TERMCTRL. This type of device independence applies

only whenthe terminals are using static screens.

This chapterfirst discusses static screens, including how to design static screen applications for

terminal independence. The $IMAGEsubroutines are described and an example of using them

is shown. Two sample programsare provided, one for the 4978/4979 and onefor the 3101 in

block mode.

The final section of the chapter deals with characteristics unique to certain EDX terminals,

namely teletypewriter terminals, ACCA terminals, and EDX terminals that are other processors.

A Description of Static Screens

A static screen is a display screen formatted with predetermined protected and unprotected

areas. Areas defined as operator promptsor input field namesare protected to prevent

accidental overlay by input data. Areas defined as input areas are not protected andare usually

filled in by the terminal operator. The screen is treated as a page of information.

The object of static screen managementis to provide the application program with complete

control over the screen image, and to allow the terminal operator to modify an entire screen

Appendix C.Static Screens and Device Considerations PG-269

Defining Logical S

image before data entry. Static screens are therefore distinguished from roll screens in the

following ways:

¢ Forms control operations which would cause a page-eject for roll screens simply wrap

aroundto the top for static screens. No automatic erasure is performed; selected portions of

the screen can be erased with the ERASEinstruction.

e Protected fields can be written; this function is not available forroll screens.

e The cursor position, relative to the logical screen margins, can be determined by the

application program using the RDCURSORinstruction.

e Input operations directed to static screens normally do not cause a task suspension wait for

the enter key; they are executed immediately. This allows the program to read selected

fields from the screen after the entire display has been modified by the operator.

Operator/program signaling is iiaplemented using the Program Function keys and the

WAIT KEYinstruction.

¢« To allow convenient operator/program interaction, QUESTION, READTEXT,and

GETVALUE instructions which include prompt messagesare executedas if they were

directed to a roll screen (automatic task suspension for input).

e The character @ is treated as a normal data character. It does notindicate a new line.

The utility program $IMAGE(see Operator CommandsandUtilities Reference) constructs formatted

screen images in a interactive mode and saves them in disk or diskette data sets. The images are

retrieved and displayed by application programs through the use of system-provided subroutines

called the $IMAGEsubroutines. See ‘‘Using the $IMAGESubroutines for Device

Independence”’ on page PG-278 for details.

cre

ens

A logical screen is a screen defined by margin settings, such as the TOPM, BOTM, LEFTM and

RIGHTM parameters. Logical screens can be defined either during system generation (using

the TERMINAL statement) or at the time an ENQTinstruction is executed (using the IOCB

statement).

PG-270 SC34-0438

The following example of using the TERMINAL statementdefines a static screen to be used for

data entry and display. Programs can be loaded from the terminal, but the terminal I/O

instructions issued will be interpreted for a static screen unless the configuration is changed to

roll by an IOCBstatement. This is a typical definition for a terminal to be used for data entry.

TERM2 TERMINAL DEVICE=4979,ADDRESS=14,SCREEN=STATIC

A Description of Static Screens(contin

The next example showsa split screen configuration. The roll screen is the bottom 12 lines of

the screen; the top half can be usedfor otherlogical screens defined upon execution of ENQT.

TERM3 TERMINAL DEVICE=4978,ADDRESS=24,TOPM=12,NHIST=6

The next exampledefines a roll screen occupying the upper-right quadrant of the screen. In

general, logical screens with less than an 80-characterline size suffer some performance

disadvantages (such as slower erasure) but can be useful for special applications. Note that

NHISTis zero here becausescreen shifting will not be performed; a non-zero value for NHIST

would merely cause the history area to be unused.

TERM4 TERMINAL DEVICE=4979,ADDRESS=34, LEFTM=39, C
BOTM=11,NHIST=0

The final example defines a static screen for the 3101 in block mode. A 3101 can have only a

single roll or a single static screen. The Multifunction Attachmentis used to connect the

terminal to the Series/1.

TERM5 TERMINAL DEVICE=ACCA,ADDRESS=59 ,MODE=3101B, C
SCREEN=STATIC, LMODE=RS422 , ADAPTER=MFA

Using [OCB and ENOTto Define a Logical Screen

Logical screens can also be defined by the ENQTinstruction referencing an IOCB. The IOCB

statementis used to define many of the “‘soft’’ characteristics of a terminal (such as margins,

page size or line length) and to establish the connection between the ENQT and TERMINAL

statements at execution time. Using an ENQTinstruction which references an IOCB, you can

modify the soft characteristics of a specific terminal defined by the TERMINALstatement. The

IOCB statementandits operands are fully described in the Language Reference.

In the following example, the IOCB labeled TOPHALFdefines the top half of the screen (from

which the program was loaded) asa static screen. If the terminal were defined as in TERM3 on

the previous page, the program could have been loaded by entering $L program-namein theroll

screen area (the bottom half of the screen). Since no terminal nameis specified on the IOCB

statement, the ENQOTrefers to the loading terminal. The program then might display tabular

information on the static screen, execute DEQTandthen end. The information displayed on the

Static screen part of the screen will remain on the screen while the terminal operator performs

other operations usingthe roll screen.

Appendix C.Static Screens and Device Considerations PG-271

DISPLAY PROGRAM BEGIN
TOPHALF IOCB
BEGIN ENOT

DEQT

BOTM=11,SCREEN=STATIC
TOPHALF

PROGSTOP
ENDPROG
END

The next example showsterminal access by using the symbolic name of the terminal. TERM1,

TERM2, TERMS3, and TERM4have all been defined with TERMINAL configuration

statements. The use of a static screen ensures that only physical line 0 of each screen will be

altered. (LINE=0forroll screens causes a page eject and erasure of information.)

Note: On a 4979, unprotected fields should be of even length.

NOTICE PROGRAM
TERMX IOCB
NAMETAB DATA

DATA
DATA
DATA

BEGIN MOVEA
DO

MOVE
ENOT

BEGIN
SCREEN=STATIC
CL8'TERM1'
CL8'TERM2'
CL8'TERM3!
CL8'TERM4'
#1,NAMETAB
4

TERMX, (0, #1) , (8, BYTES)
TERMX

PRINTEXT ‘SYSTEM ACTIVE', LINE=0
DEQT
ADD

ENDDO
PROGSTOP
ENDPROG
END

PG-272 SC34-0438

#1,8

The structure of the IOCBis given in the following table. The structure may change with future

versions of the Event Driven Executive.

Field Name

Terminal name

Flags

Byte(s) Contents

0-7 EBCDIC,blankfilled

8 Bit O off indicates that the nameis

the only element of the |OCB.

Further information on this field can

be found in /nternal Design.

Description of Static Screens (continued)

Field Name Byte(s) Contents

Top of working area 9 Equal to TOPM+NHIST

Top margin 10 TOPM orzero

Bottom margin 11 BOTM,or X'FF’ if unspecified

Left margin 12 LEFTM or zero

Page size 13 Equal to X’00’ if unspecified

Line size 14-15 Equal to X’7FFF’if unspecified

Currentline 16 Initialized to TOPM+NHIST

Current indent 17 Initialized to left margin

Buffer address 18-19 Zero if unspecified

 some Characteristics of the 3101 Display Termi

Attribute Characters

The 3101 usesattribute characters (or bytes) to define fields on the screen. An attribute byte

defines the start of each field and the properties of the field (such as protected/unprotected,

high/low intensity). Each attribute byte appears as a protected blank onthescreen.

The collection of attribute characters, special sequences required by the terminal, and user data

is called a “‘data stream”. Any invalid (unprintable) characters encountered in the data stream

will cause the alarm to ring. This condition might occur, for instance, when displaying a

non-EBCDICdisk or diskette record.

Transmitting Data from the 3101

On a 3101 static screen, the application program must determine where the output datais

positioned,relative to the first position of the screen. For READTEXToperations, modified,

data, or all fields are read from the beginning of the screen (regardless of forms control),

depending on the TYPE parameter of the READTEXTinstruction.

In response to a read request, the 3101 transmits the attribute characters that precede the input

field. To suppress the attribute characters from the data stream, the EDX 3101 support

removesthese special characters andleft-justifies the data.

Appendix C.Static Screens and Device Considerations PG-273

Static Screens and Device Considerations

Some Characteristics of the 3101 Display Terminal (continued)

A feature is provided that allows an application program to have complete control of the

input/output data transmitted to or from the terminal. To dothis, the program must build the

complete data stream, either in EBCDIC or ASCII codes. The basic terminal I/O support

simply handles the transmission of the data stream. Refer to the description of the TERMCTRL

SET,STREAM=YES/NOinstruction and the XLATE parameter of PRINTEXT/READTEXT
instructions in the Language Reference when this mode of data transmissionis desired.

Screen Formats

A screen formatis a representation of the protected fields on a screen. Screen formats and

input/output are handled differently on the 4978/4979 and 3101. References to the 3101
Display Terminal in this section mean a 3101 model 2x operating in block mode.

4978/4979 Screen Formats

The format of a 4978/4979 screen is defined as each character is written to the terminal. Fields

are defined as follows:

e Each character or group of characters written with PROTECT=YESdefines a protected

field.

e Each character or group of characters written without PROTECT=YESdefines an

unprotected field.

e Null characters (X‘00’) can never be protected, so both protected and unprotected fields can

be defined by writing data with interspersed nulls with PROTECT=YES.

Oncethe fields of a screen have been defined, the 4978/4979 knowsinternally whether each of

the 1920 positions on the screen is protected or unprotected; this is transparent to the user.

On the 4978/4979 there are two ways to write and read unprotected fields. Thefirst is to

read/write all the unprotected fields with one input/output operation. All the unprotected fields

can be filled with data by one “‘scatter write’ operation (PRINTEXT MODE=LINE). The

unprotected fields can be read using one “gather read’’ operation (READTEXT

MODE=LINE). The other wayis to read or write individualfields by specifying screen

coordinates (the LINE= and SPACES= parameters).

3101 Screen Formats

- PG-274 SC34-0438

Like the 4978/4979, the format of a 3101 screen is defined by how thedatais written, either

protected or unprotected. However, on the 3101, the field definitions are not transparent to the

user because attribute bytes separate protected and unprotectedfields.

e An attribute byte defines the start of each field and the properties of the field.

e Each field continues until another attribute byte is encountered.

e Eachattribute byte occupies one character position on the screen andis displayed as a

protected blank precedingthefield.

e« Attribute bytes are like any other character on the screen in that they can be overwritten by

data or anotherattribute byte. Whenanattribute byte is overwritten, the screen format can

change.

On a 3101it is not possible to do a scatter write with a PRINTEXTinstruction; however, you

can specify screen coordinates on output (PRINTEXT LINE=,SPACES=). You can doa

gather read by specifying READTEXT MODE=LINE. However,the input of a specific field

(by means of READTEXT LINE=,SPACES=) always executes as though LINE=0 and

SPACES=0 had been coded.

As a result of these differences between the 4978/4979 and the 3101, it can be difficult to write

terminal independent code using READTEXT/PRINTEXTinstructions. However, $SIMAGE

can be used to perform terminal independent input/output.

Static Screen Device Independence

Screen design for both the 4978/4979 and 3101 can be as simple as screen design for only the

4978/4979. This section describes how to design such terminal independentstatic screens, and

discusses a limitation in compatibility between the 4978/4979 and 3101.

This section mentions both the $IMAGEutility and the $IMAGEsubroutines. For a complete

description of the $IMAGEutility, see the Operator CommandsandUtilities Reference. For

descriptions of the $IMAGEsubroutines, see ““S$SIMAGESubroutines” on page PG-281 in this

chapter.

Designing Terminal-Independent Static Screens

The $IMAGEutility and subroutines treat an unprotected field as a string of unprotected

characters. In the 4978/4979 unprotected characters are null characters. If the $IMAGE null

character werethe at sign (@), then an unprotectedfield, eight characters long, could be

defined as:

ENTER NAME HERE == aVAIAADAAA

This field could be defined the same way for a 3101; $IMAGEautomatically inserts the

attribute characters. In this case, the attribute byte immediately preceding the unprotected field

would specify an unprotected and high intensity field. Somewhere preceding the protected field

(ENTER NAME HERE) would be anattribute byte specifying a protected and low intensity

Appendix C.Static Screens and Device Considerations PG-275

ence(continued)

field. Thus, if you do not want to define unique attributes (such as blinking), you can design

screens for the 4978/4979 and use them on 3101 terminals with default attributes.

You can also design 3101 screens with uniqueattribute characters; in this case, a 3101 data

stream is created by $IMAGEaswell as a 4978/4979 image. The 3101 data stream is ignored

for display on the 4978/4979. If the pound sign (‘#’) were defined as the blinking attribute,

both fields in the previous example could be made to blink as follows:

#ENTER NAME HERE ==> #adddddd000

On a 3101, a blinking, protected attribute byte would replace the first pound sign and a blinking,

unprotected attribute byte would replace the second pound sign. The poundsign does not

change the protect status of the field, merely its display properties; the ‘‘null’’ character

determines whetherthe field is protected or unprotected.

Compatibility Limitation

This schemehasa limitation because anattribute byte is displayed as a protected blank. The

character preceding a field (protected or unprotected) is always displayed as a blank on a 3101,

even if a protected (non-blank) character appears on a 4978/4979. For example, the following

screen is designed to display the month, day, and year as MM/DD/YY:

aa/aa/OA

On a 4978/4979, the date would appearas:

10/30/80

On a 3101, however, the date would appearas:

10 30 80

The slash characters on the 4978/4979 are replaced by attribute bytes on the 3101. Therefore,

screens designed for the 4978/4979 do not have to be changed for use on the 3101. However,

you have to alter them if you do not want protected characters to disappear when displayed on a

3101.

Coding EDL Instructions for Device Independence

PG-276 SC34-0438

To achieve static screen device independence between the 4978/4979 Display Station and the

3101 Display Terminal in block mode, you must use functionally equivalent terminal instructions

on both terminals. The following considerations show one approach which provides some

device independence.

Static Screen Device Independence (continued)

Use the 4978 screen images produced by $IMAGEfor 4978/4979/3101 compatible
applications. The 3101 data streams are not required.

Specify an image type of C‘4978’ on calls toS$IMOPEN.

Specify FTAB on calls to SIMPROT. The FTAB bufferis initialized to describe each

unprotected field on the screen and requires three wordsperentry.

Use calls to S$IMDATAto “scatter write” to either type terminal.

PRINTEXT MODE=LINEdoesnot produce a scatter write operation on the 3101 (asit

does on the 4978/4979). A call to $IMDATA,specifying the FTAB producedbytheprior
call to $IMPROTandthe user buffer, performs the scatter write operation on the

4978/4979 and simulates the scatter write on the 3101.

$IMDATAcan be usedto write either default unprotected data from the screen image or

user data contained in a user buffer.

For “gather read” operations use:

READTEXT MODE=LINE, TYPE=DATA, LINE=0, SPACES=0

Read operations from the 3101 in block modestart with the first data field encountered,

beginning with the upperleft corner and continuing to the end of the screen. Specifying

LINE=0,SPACES=0 makes the READTEXTfrom the 4978/4979 functionally equivalent

to the 3101.

In addition, the 3101 prefixes each field transmitted with three bytes of control information;

this results in a 3101 data stream. Although EDX compresses outthis control information,

the user buffer must be large enough to contain the entire data stream that is transmitted.

Using care, individual fields can be changed with:

PRINTEXT MODE=LINE,LINE= ,SPACES=

1. When directed to a 3101, the PRINTEXTinstruction first writes an attribute byte,

foliowed by the text data. The data field thus appears displaced one position to the right

when comparedto the result of a PRINTEXTdirected to the 4978/4979. To suppress

writing an attribute byte to the screen, use:

TERMCTRL SET,ATTR=NO

prior to the PRINTEXT(s). After the last PRINTEXT, code TERMCTRL

SET,ATTR=YES. The 4978/4979 ignores these TERMCTRLinstructions.

2. Be careful to ensure that the data being sent to the 3101 does not extend beyond one

data field; if it does, it will overlay and eliminate existing attribute characters. Once the244 WAL ili io LaWUVeE AJ7Liwwy thlsw

screen attributes are changed, the FTAB no longerrepresents the screen and $IMDATA

operations will produce undesiredresults.

Appendix C.Static Screens and Device Considerations PG-277

3. Writing protected nulls to create additional unprotected 4978/4979fields is not

supported in 3101 block mode. Avoid this practice.

e Avoid the combination of ‘‘count’? and TYPE=DATAin the ERASEinstruction. On the

3101, the erase starts at the current cursor position and continuesto the end of screen; the

count operandis ignored.

e Avoid the combinations of TYPE=DATA,MODE=LINEand

TYPE=DATA,MODE=FIELDin the ERASEinstruction. Although these combinations

work as anticipated on the 4978/4979, the 3101 forces the MODE= parameterto

SCREEN.

e Avoid the combination of “‘count’”’, TYPE=ALL and MODE=FIELDin the ERASE

instruction. The 3101 forces MODE=FIELD to MODE=LINE.The operation terminates

when the count reaches zero or the current line ends, whichever occursfirst.

e To erase unprotected fields which do not end at end of line or end of screen, use one of the

following techniques: :

1. Use a PRINTEXTinstruction with LINE and SPACESparameters to write blank

characters to each individual field, being careful not to change or eliminate 3101

attribute bytes.

Note: [f the 3101 screen attributes are changed or eliminated, then the screen format

will no longer match the FTAB andthe data will not be directed to the correct locations

on the 3101 screen. To re-establish the screen, call $IMPROTbeforecalling

$SIMDATA.

2. Use READTEXT TYPE=DATAtoread all unprotected data from the screen into a

user buffer. Next, blank out (or change) the appropriate fields in the buffer. Then use

the ‘USER’buffer features of $IMDATAto rewrite the unprotected data.

 Using the SIMAGES

ubroutines for Device Independe

This section presents a way to write terminal-independent applications that use static screens.

Using this method, the $IMAGEutility creates screen images and stores them on disk or

diskette. Later, your application program can display and use the imagesbycalling

system-provided subroutines. Collectively these subroutines are called the ‘““$IMAGE

subroutines’.

There are seven $IMAGEsubroutines; see ‘“$IMAGE Subroutines” on page PG-281 for

individual descriptions of each. Ordinarily, your programs will not need to use all seven.

The Basic Steps

This section describes the basic steps in an application program which displays and processes a

Static screen (with a size of 24 lines and 80 charactersperline):

PG-278 SC34-0438

Static Screen Device Independence(continued)

e Retrieve the screen

e Display the protected data

e Display andretrieve the unprotected data

Retrieving the Screen Format: Thefirst step is to retrieve the screen formatby calling

$IMOPEN. Thetype operandspecifies the type of format to be retrieved. If the type operand

is set to blanks, the format retrieved corresponds to the type of terminal upon which the

program is running. If a 3101 format is needed but unavailable, the 4978/4979 formatis

retrieved and converted dynamically to a 3101 data stream. For example:

CALL $IMOPEN, (DSNAME) , (FORMAT) , (TERMTYPE)

DSNAME TEXT LENGTH=15 format dataset name

FORMAT BUFFER n,BYTES format buffer

TERMTYPE DATA CL4' ' adapt to running terminal

Displaying the Protected Data: The screen formatitself (the protected data) can be

displayed with a call to SIMPROT.

CALL $IMPROT, (FORMAT) , (FTAB)

FTAB BUFFER n,WORDS field table

For the 3101, the field table (FTAB)is required. For a description of the field table, see

‘“SIMPROTSubroutine” on page PG-285.

Displaying the Unprotected Data: At this point many applications generate and then

display some data in the unprotected fields. On a 4978/4979 you can use PRINTEXT

MODE=LINEto perform a scatter write operation. However,since this is not supported on a

3101, you should use $IMDATAto perform the scatter write operation and thus preserve device

independence.

$IMDATAwritesall the unprotected fields in a screen image. When directing data to the 3101,

the field table generated by $IMPROT must be used. To write default unprotected data, use the

buffer containing the screen image or specify a user buffer containing the application-provided

data.

When $IMDATAis used with a user buffer, the application program must:

e Set the characters ‘USER’in the first four positions of the buffer

e Set the message length, excluding ‘USER’, in the buffer index word (buffer-4)

Appendix C.Static Screens and Device Considerations PG-279

evice Independence(continued)

MOVE USERDATA,CUSER,DWORD set up user message

MOVE DATALEN ,8 set message length
MOVE USERDATA+4 ,MESSAGE, (8,BYTES) get message

CALL $IMDATA, (USERDATA) , (FTAB)
e

e

e

USERDATA BUFFER 12,BYTES, INDEX=DATALEN for user data
MESSAGE DATA CL8'HI THERE' data
CUSER DATA CL4'USER'

Retrieving the Unprotected Data: After the operator has entered data,all the data in the

unprotected fields can be read by a single statement. Both the 4978/4979 and 3101 support a

“gather read” using READTEXT MODE=LINE.

READTEXT SCRNDATA,MODE=LINE

SCRNDATA BUFFER n,BYTES

In this example, n is the number of data bytes being read plus three bytes perfield being read.

A READTEXTwith MODE=LINEinto a buffer from 4 3101 screen has somespecial

considerations. A READTEXTto the 3101 always reads from the beginning of the screen,

regardless of the cursor position specified by LINE and SPACES.The 3101 has only three read

options: read the entire screen (TYPE=ALL), read all the unprotected fields

(TYPE=DATA),or read only the modified unprotected data (TYPE=MODDATA). (For more

information on 3101 read options, see ““Reading Modified Data on the 3101” on page PG-292).

The data will be read concatenated into the buffer. But the buffer must be large enough to

accommodate the data plus three bytes (TYPE=DATA and TYPE=ALL)orfour bytes

(TYPE=MODDATA)per unprotected field. This extra data includes escape sequences and

attribute bytes which are edited out of the buffer before presentation to the application program

(as long as the default of STREAM=NOisin effect).

Although the 4978 has the capability to read a specific unprotectedfield, the 3101 does not. To

perform a similar operation, the application can readall the unprotected data and then use the

field table lengths to displace into the buffer andarrive at the desired datafield.

Using TERMCTRL SET,ATTR=NO

PG-280 SC34-0438

Both the 4978 and 3101 can do a PRINTEXTwith LINE and SPACESto a specific screen

coordinate. However, for the 3101, doing this has ramifications for subsequent I/O to the

screen. When a PRINTEXTis issued to a 3101 without a previous TERMCTRL

SET,ATTR=NO,the terminal support inserts an attribute byte. This attribute byte appears as a

protected blank at the screen coordinate specified by LINE and SPACES,andthe data follows.

Normally, this displaces the data one byteto the right, and therefore the data writes over the

next attribute byte (which usually describes a protected field).

 Static Screen Device Independence(continued)

For example, assume the screen coordinate 5,5 (LINE=5,SPACES=5) contains a ten byte

unprotected field which the application wantsto fill with ten Xs. If a PRINTEXT

LINE=5,SPACES=5of ten Xs is issued with no previous TERMCTRL SET,ATTR=NO,then

an attribute byte is added and written at location 5,5 and the tenth X overwrites the next

attribute byte for the following protected field. This leaves the screen with one large

unprotected field instead of a 10 byte unprotected field followed by a protectedfield.

A subsequent READTEXTof the unprotected data will result in much more data being returned

to the application than expected. In addition, the returned data stream might contain escape

sequencesandattribute bytes which on a subsequent PRINTEXTfrom the same bufferwill

cause the cursor to act unpredictably. The data will also be written incorrectly on the screen.

To avoid such problems, a TERMCTRL SET,ATTR=NOshould alwaysbe issued before a

PRINTEXTwith LINE and SPACES. A TERMCTRL SET,ATTR=YESshould follow the
PRINTEXT.

Converting 4978 Screens for Use on the 3101

Many 4978-based applications can be converted to run on the 3101. In somecases,it is

sufficient to convert uses of PRINTEXT MODE=LINEtocalls to $IMDATA.If the

application uses READTEXTto specify screen coordinates with LINE and SPACES,the

technique described abovein “Using TERMCTRL SET,ATTR=NO”can be used.

Screens might also need to be changed becausetheattribute bytes are displayed as protected

blanks on the 3101; see “3101 Screen Formats” on page PG-274.

DIMMAGE Subroutines

Formatted screen images can be created and savedin disk or diskette data sets using the

$SIMAGEutility. The $IMAGEsubroutines can be used to retrieve and display these images.

These subroutines provide support for both the 4978/4979 and 3101 in block mode. In

addition, screen images created on a 4978/4979 can be presented on a 3101 and vice versa with

use of these subroutines. The intermixing of terminal screen imagesis also described in the

Operator CommandsandUtilities Reference.

The $IMAGEsubroutines perform screen formatting and input/output operations independent

of the type of terminal upon whichthe application runs. The orientation is towards

writing/reading all unprotected fields with one operation. In this context the data in

unprotected fields is of primary concern.

Static screen applications use the S$IMOPEN, $IMDTYPE, $UNPACK, $IMGEN, $IMGEN31,

SIMGEN49, and $IMGEN3X< subroutine packagesto processstatic screens defined using the

$SIMAGEutility.

Appendix C.Static Screens and Device Considerations PG-281

$IMDTYPEis required forall static screen applications. In addition, the SIMOPEN and
$UNPACKsubroutines are also required, plus one of the following:

« $IMGENto intermix both 3101 and 4978 images, and to display those images on either

device

« $IMGEN3X to intermix both 3101 and 4978 images, and to display those images on a 3101

¢ $IMGEN31 for 3101 images, and to display those images on a 3101

¢ $IMGEN49for 4978 images, and to display those images on a 4978 or 4979

During link-edit the $IMxxxx subroutines are included with your application through the use of

the autocall library. Normally $IMGENis included. If you want one of the alternate

($IMGENxx) routines, explicitly INCLUDE that module.

For formatted screen images presented on a 3101, storage requirements and internal conversion

time is reduced whenyouselect only the subroutine support that processes 3101 images.

An EXTRNstatement must be coded for each subroutine name that your program references.

You must link-edit the subroutines with your application program. $AUTO,ASMLIB should be

specified as the autocall library to automatically include the screen formatting subroutines. See

Chapter 5, ‘‘Preparing an Object Module for Execution’’for details on the AUTOCALLfeature

of $EDXLINK.

The CALLsyntax for the subroutines should be coded exactly as shown. Where an address

argumentis required by the subroutine, the label of the variable enclosed in parentheses causes

the address to the passed (see the CALLinstruction in the Language Reference).

If an error occurs, the terminal I/O return code will be in the first word of the task control block

(TCB). These errors can come from instructions such as PRINTEXT, READTEXT, and

TERMCTRL.

SIMOPEN Subroutine

PG-282 SC34-0438

The $IMOPENsubroutine reads the designated image from disk or diskette into your program

buffer. You can also perform this operation by using the DSOPENsubroutine or defining the

data set at program load time, and issuing the disk READ instruction. Refer to the section

“Screen Image Buffer Sizes” on page PG-288 to determinethe size of the buffer. SIMOPEN

updates the index word of the buffer with the numberof actual bytes read. To access it code

buffer-4.

label CALL SIMOPEN,(dsname),(buffer),(type),

P2=,P3=,P4=

Required: dsname, buffer

Defaults: type=C'4978'

Indexable: None

Operands Description

dsname The label of a TEXT statement which contains the name of the screen image

data set. A volume label can be included, separated from the data set name by a

comma.

buffer The label of a BUFFERstatementallocating the storage into which the image

data will be read. The storage should be allocated in bytes, as follows:

label BUFFER 1024,BYTES

type The label of a DATA statementthat reserves a 4-byte area of storage and

specifies the type of image dataset to be read. Specify one of the following

types:

C’‘4978' An image data set with a 4978/4979 terminal format is read. If type

is not specified, C‘4978’is the default.

C’3101' An image data set with a 3101 terminal formatis read.

Cc’ ’ An image data set whose format corresponds with the type of

terminal enqueued. If neither a 4978/4979 or 3101 is enqueued

(ENQT), a 4978 image format is assumed.

Px Parameter naming operands. See the CALLinstruction and chapter1 in the

Language Reference.

The following is an example of $IMOPEN:

CALL $IMOPEN, (IMGDS) , (IMGBUFF) , (IMGTYP)

IMGDS TEXT "IMGDS ,MYVOL'
IMGBUFF BUFFER 1024,BYTES
IMGTYP DATA C'3101'

Appendix C.Static Screens and Device Considerations PG-283

\GE Subroutin

es (continued)

MOPEN Return Codes

The following are the return codes (returned in taskname+2) from the $IMOPENsubroutine.

Code Condition

Successful completion

Disk |/O error
Invalid data set name

Data set not found
Incorrect header or data set length
input buffer too small

Invalid volume name

No 3101 imageavailable
Data set name longerthan eight bytes

I

O
N
O
M
A
R
W
H

-
>

SIMDEFN Subroutine

PG-284 SC34-0438

The $IMDEFNsubroutine is used to construct an IOCBfor a formatted screen image. The

IOCBcan also be codeddirectly, but the use of $IMDEFNallows the image dimensions to be

modified with the $IMAGEutility without requiring a changeto the application program.

$IMDEFNupdates the IOCB to reflect OVFLINE=YES.Refer to the TERMINAL

configuration statement in the /nsta//ation and System Generation Guide for a description of the

OVFLINEparameter.

Once an IOCBforthestatic screen has been defined, the program can then acquire that screen

through ENQT.Oncethe screen has been acquired, the program can call the $IMPROT

subroutine to display the image and the $IMDATAsubroutine to display the initial unprotected

fields.

label CALL SIMDEEFN, (iocb), (buffer),topm, leftm,
P2=,P3=,P4=,P5=

Required: iocb, buffer

Defaults: None

Indexable: None

Operands Description

iocb The label of an IOCB statementdefining a static screen. The IOCB need not

specify the TOPM, BOTM, LEFTM nor RIGHTM parameters;theseare “‘filled

in’’ by the subroutine. The following IOCB statement would normally suffice:

label IOCB terminal ,SCREEN=STATIC

buffer The label of an area containing the screen image in disk storage format. The

formatis described in the section ‘Screen Image Buffer Sizes’”’ on page PG-288.

topm This parameterindicates the screen position at which line 0 will appear.If its

value is such that lines would be lost at the bottom of the screen, then it is forced

to zero. This parameter must equal zero for all 3101 terminal applications. The

default is also zero.

leftm This parameter indicates the screen position at which the left edge of the image

will appear. If its value is such that characters would belost at the right of the

screen, then it is forced to zero. This parameter must equal zero forall 3101

terminal applications. The default is also zero.

Px Parameter naming operands. See the CALLinstruction and Chapter 1 in the

Language Reference.

The following is an example of $IMDEFN:

ENOQT IMGIOCB

CALL $IMDEFN, (IMGIOCB) , (IMGBUFF) ,0,0

IMGIOCB IOCB SCREEN=STATIC
IMGBUFF BUFFER 1024,BYTES

>ROT Subroutine
This subroutine uses an image created by the $IMAGEutility to prepare the defined protected

and blank unprotectedfields for display. At the option of the calling program,a field table can

be constructed. The field table gives the location (LINE and SPACES) and length of each

unprotected field.

Uponreturn from $IMPROT,your program can force the protected fields to be displayed by

issuing a TERMCTRL DISPLAY.This is not required if a call to $IMDATAfollows because

SIMDATAinherently forces the display of screen data.

All or portions of the screen may be protected after $SIMPROTexecutes. Because the operator

cannot key data into protected fields, subsequent read instructions (such as QUESTION,

GETVALUE,and READTEXT)should be directed to unprotected areas of the screen, or the

protected areas should be erased.

Appendix C.Static Screens and Device Considerations PG-285

PG-286 SC34-0438

s (continued)

label CALL SIMPROT(buffer), (ftab),P2=,P3=

Required: buffer,ftab (see note)

Defaults: None

Indexable: None

buffer The label of an area containing the screen image in disk storage format. The format

is described in the section “Screen Image Buffer Sizes” on page PG-288.

ftab The label of a field table constructed by $IMPROT giving the location (lines,

Spaces) and size (characters) of each unprotected data field ofthe image.

Note: The ftab operandis required only if the application executes on a 3101in

block modeorif a user buffer is used in $IMDATA.

Px Parameter naming operands. See the CALLinstruction and Chapter 1 in the

Language Reference.

The field table has the following form:

label-4 numberof fields

label-2 number of words

label line * FIELD 1 (one word)

spaces (one word)

size (one word)

label+6 line * FIELD 2

spaces

size
*

*

*

label+6(n- 1) line * FIELD n

spaces

size
The field numbers correspondto the following ordering: left to right in the top line, left to right

in the secondline, and so on tothelast field in the last line. Storage for the field table should be

allocated with a BUFFERstatement specifying the desired number of words using the WORDS

parameter. The buffer control wordat label-2 will be used to limit the amountof field

information stored, and the buffer index word at buffer-4 will be set with the numberof fields

for which information wasstored, the total number of words being three timesthat value. If the

field table is not desired, code zero for this parameter.

SIMAGE Subroutines (continued)

The following is an example of $IMPROT:

CALL $IMPROT, (IMGBUFF) , (FTAB)
PRINTEXT FTAB,SPACES=FTAB+2 POSITION CURSOR
READTEXT INPUT,FTAB+3 OPERATOR INPUT

IMGBUFF BUFFER 1024,BYTES
F'TAB BUFFER 3,WORDS
INPUT TEXT LENGTH=20

SIMPROT Return Codes

The following are the return codes (returned in taskname+2) from the $IMPROTsubroutine.

Code Condition

-1 Successful completion
9 Invalid format in buffer

10 Ftab truncated due to insufficient buffer

size

11 Error in building ftab from 3101 format;
partial ftab created

SIMDATA Subroutine

$IMDATAcanbecalled to display the initial data values for an image whichis in disk storage

format. $IMDATAis used:

¢ To display the unprotected data associated with a screen image, if the content of the buffer

is a screen format retrieved via $IMOPEN.

¢ To “scatter write” the contents of a user buffer to the input fields of a displayed screen

image.

If the buffer is retrieved with SIMOPEN,the buffer begins with either the characters ‘IMAG’or

‘IM31’ and the buffer index (buffer-4) equals the data length excluding the characters ‘IMxx’.

A user buffer can be specified containing application-generated data. Set the first four bytes of

the buffer to ‘USER’and set the buffer index (buffer-4) to the data length excluding the

characters ‘USER’.

All or portions of the screen may be protected after $IMDATAexecutes. Because the operator

cannot key data into protected fields, subsequent read instructions (such as QUESTION,

GETVALUE,and READTEXT)should be directed to unprotected areas of the screen, or the

protected areas should be erased.

Appendix C.Static Screens and Device Considerations PG-287

e Considerations

ubroutines (continued)

Required: buffer,ftab (see note)
Defaults: None

Indexable: None

buffer The label of an area containing the image in disk-storage format.

ftab The label of a field table constructed by $IMPROTgiving the location

(lines,spaces) and size (characters) of each unprotected data field of the image.

Note: The ftab operand is required only if the application executes on a 3101 in

block modeor if a user buffer is used in $SIMDATA.

Px Parameter naming operands. See the CALLinstruction and Chapter1 in the

Language Reference.

The following is an example of $SIMDATA:

CALL $IMDATA, (IMGBUFF) , (FTAB)
PRINTEXT FTAB, LINE=FTAB, SPACES=FTAB+2 POSITION CURSOR

IMGBUFF BUFFER 1024,BYTES
FTAB BUFFER 300,WORDS

SIMDATA Return Codes

PG-288

SC34-0438

The following are the return codes returned (returned in taskname+2) from the $IMDATA

subroutine:

Code Condition

-1 Successful completion

9 Invalid format in buffer

lage Buffer Sizes

Under normalcircumstancesthe size of the disk buffer can vary between 256 and 3096 bytes.

Because data compressionis used in storing the images, many imageswill require only 512

bytes, and 1024 bytes will be adequate for typical applications using 4978/4979 images. 3101

data stream images are muchlarger.

The $IMAGEutility tells you the required buffer sizes for the 4978 and 3101 buffers. If your

application program will run on either type of terminal, use the larger of the two buffersizes.

The display subroutines normally write images to the terminalin line-by-line fashion.

Performance can be improved by providing a terminal buffer large enough to contain multiple

lines. Since the display subroutines perform concatenated write operations wheneverpossible,

using a larger buffer results in fewer such operations and,therefore, faster generation of the

display image.

For example, for a full screen image (24 x 80), a time vs. space trade-off can be made by

choosing a buffer size that is a multiple of 80 bytes (1 line), up to a maximum of 1920 bytes. A

temporary buffer can be defined by coding the BUFFER= parameter on the IOCB whichis

used to access the screen. This buffer should be unique and should not be confused with the

disk image buffer.

Example of Using SIMAGE Subroutines

The following program shows the $IMAGEsubroutinesin a general application program.

Underdirection of the terminal operator, this program displays on a 4978, 4979 or 3101 any

image stored on disk. For each image, a field table (ftab) is constructed and used to modify

initial data values.

In this example, use of the field size from the field table is for illustrative purposes only. Each

unprotected output operation is terminated by the beginning of the next protected field, unless

MODE=LINEis coded.

Additional examples on the use of the $I[MAGEsubroutines are in the appendix of the Language

Reference.

Appendix C. Static Screens and Device Considerations PG-289

ns deratIOns

PG-290 5C34-0438

*
*

PROGRAM BEGIN
EXTRN $IMOPEN, $IMDEFN, $IMPROT, $IMDATA

GET TERMINAL NAME FOR SCREEN PRINTOUT

READTEXT IMAGE,'TERMINAL: '

GET IMAGE DATA SET NAME

READTEXT DSNAME,'DATA SET: ',PROMPT=COND

OPEN IMAGE DATA SET

CALL $IMOPEN, (DSNAME) , (DISKBFR)
MOVE CODE, IMDISP+2 * SAVE RETURN CODE
IF CODE ,NE,-1 * CHECK RETURN CODE FOR ERRORS
PRINTEXT ‘'QOPEN ERROR CODE'
PRINTNUM CODE * PRINT ERROR CODE
GOTO NEXT * ASK IF TRY AGAIN

ENDIF

CONSTRUCT IOCB

CALL $IMDEFN, (IMAGE) , (DISKBFR) ,0,0
ENQT IMAGE * ACQUIRE STATIC SCREEN
TERMCTRL BLANK * BLANK SCREEN

* WRITE PROTECTED FIELDS
* AND BUILD FIELD TABLE
* AT FTAB

*

*
%*

&
&

*%
*

B1
B2
REPBFR

DISKBFR

IMAGE
CODE
FTAB
LINE

nes (continued)

DISPLAY PROTECTED FIELD DATA ON
TERMINAL SCREEN

CALL $IMPROT, (DISKBFR) , (FTAB)

DISPLAY DEFAULT DATA ON
TERMINAL SCREEN

CALL $IMDATA, (DISKBFR) , (FTAB)
* SET CURSOR AT 1ST FIELD

PRINTEXT LINE=FTAB, SPACES=FTAB+2
TERMCTRL DISPLAY * UNBLANK SCREEN
DEQT * RETURN TO THIS TERMINAL
WAIT KEY * WAIT FOR OPERATOR
ENQT IMAGE * BACK TO TARGET TERMINAL
TERMCTRL BLANK * BLANK SCREEN

DISPLAY #'S IN DATA FIELDS

ENQT
CALL
DEQT
WAIT
ENOQT
ERASE
DEQT
QUESTION
PROGSTOP
TEXT

IMAGE * ACQUIRE STATIC SCREEN
$IMDATA, (REPBFR) , (FTAB)

ALLOW VIEWING TIME
IMAGE * ACQUIRE STATIC SCREEN
LINE=0 , MODE=SCREEN,TYPE=ALL * ERASE

* BACK TO ROLL SCREEN
', YES=BEGIN

KEY *

"ANOTHER IMAGE?

LENGTH=16 * DATA SET NAME

BUILD A BUFFER OF #'S FOR A SECOND DATA
FIELD DISPLAY

DC
DC
DC
DC
DC
BUFFER
DC
IOCB
DC
BUFFER
TEXT
ENDPROG
END

F'72' * Bl AND B2 INDEX REPBFR
F'76!' * THAT HIGHLIGHTS THE DATA
C'USER' * FIELDS FOR USER
CieHHHHH HH tH Ht HHEHHHHHHOEO
CleaHHH HH HH HHH HHFHHEHHHHOH
1064,BYTES * DISK BUFFER
X'0808' * TEXT CONTROL FOR NAME
SCREEN=STATIC * IOCB FOR IMAGE
F'OQ' * RETURN CODE
300
LENGTH=80

Appendix C. Static Screens and Device Considerations PG-291

SIMAGE Subroutines (continued)

Reading Modified Data

Reading modified data is supported on the 4978 Display Station and the 3101 Display Terminal;

it is not supported on the 4979.

Reading Modified Data on the 4978

Both protected and unprotected fields on the 4978 are defined as a set of contiguous characters

that may span line boundaries. A protected field ends when an unprotected field is encountered.

Similarly, an unprotected field ends when a protected field is encountered. Neither an

unprotected nor a protected field necessarily ends at an EDX partial screen boundary.

An unprotected field becomes a modified field when any character within the field is modified

by the operator. A modified field is read using the READTEXTinstruction with

TYPE=MODDATA.Reading the field leaves its modified status unchanged. A modified field

becomes an unmodifiedfield by either writing or erasing all the characters in the field. For

additional information, refer to /BM Series/1 4978-1 Display Station (RPQ D02055) and Attachment (RPQ

D02038), General Information, GA34-1550.

Reading Modified Data on the 3101

PG-292

On the 3101, an unprotected field is considered to be a modified field when:

e Any character within the field is changed by the operator

e Certain ERASEinstructions are executed

e The modified data tag (MDT) in the attribute byte is on

The modified data tags are reset when the data is read by a READTEXT TYPE=MODDATA

instruction or transmitted by pressing the SEND key. To return a protectedfield using

READTEXT TYPE=MODDATA,designthe field with the modified data tag set on in the

attribute byte.

To read ali the modified fields from a screen, the operator must position the cursor on a

protected line which does not contain any modified fields. If the cursor is not on such a line and

the operator pressesthe enter key to satisfy a WAIT KEYinstruction, the MDTsonthatline are

reset. A subsequent READTEXTwouldtherefore not return to the program the modified data

on that line. If a PF key instead of the SEND keyis usedto satisfy the WAIT KEY, the MDTs

are not changed.

The [OCB BUFFER= parameter or the CCB buffer must be large enough to contain the

received 3101 data stream prior to editing of the ESC sequences (four bytes for each modified

field). If the CCB buffer is not large enough, use the IOCB buffer.

SC34-0438

Reading Modified Data (continued)

SUNPACKand $PACK Subroutines

The $UNPACKand $PACKsubroutines move and translate compressed/noncompressed byte
strings. These subroutines are used internally by the $IMPROT and $IMDATAsubroutines as
well as by the $IMAGEutility. However, they can also be called directly by an application

program.

The program preparation needed for applications calling $UNPACK and $PACKis similar to

that needed for the $IMAGEsubroutines. An EXTRNstatement is required in the application

and the autocall to $AUTO,ASMLIBis required in the link-control data set (input to

$EDXLINK).

SUNPACK Subroutine

This subroutine movesa series of compressed and noncompressedbytestrings and translates the

byte strings to noncompressed form.

label CALL SUNPACK,source, dest, P2=, P3=

Required: source,dest

Defaults: None

Indexable: None

source The label of a fullword containing the address of a compressed bytestring (see

Appendix D for the compressed format). At completion of the operation, this

parameteris increased by the length of the compressedstring.

dest The label of a fullword containing the address at which the expandedstringis to

be placed. The length of the expandedstring is placed in the byte precedingthis

location. The $UNPACKsubroutine can, therefore, conveniently be used to

move and expand a compressedbytestring into a TEXT buffer.

Appendix C.Static Screens and Device Considerations PG-293

The following example showsusing the $UNPACKsubroutine to unpack the compressed

protected data of a $IMAGEscreen format:

MOVEA
MOVEA

MOVE
MOVE
DO

CALL
MOVE

ADD
ENDDO

OUTAREA DATA
*

CPOINTER DATA

LINECNT DATA

STRGPTR DATA
*

STRING TEXT
*

CBUF BUFFER

S$PACK Subroutine

PG-294

#1 ,OUTAREA
CPOINTER , CBUF+12

LINECNT , CBUF+4
MOVELNG , CBUF+6
LINECNT

POINT TO EXPAND BUFFER
POINT TO FIRST BYTE OF

COMPRESSED DATA
INIT DO LOOP CTR
INIT MOVE LENGTH CODE

$UNPACK , CPOINTER, STRGPTR UNPACK COMPRESSED DATA
(0,#1),STRING, (0,BYTE) , P3=MOVELNG MOVE

UNPACKED DATA
#1 ,MOVELNG

CL1920' '' WILL CONTAIN ALL OF THE
UNPACKED DATA

A'0! POINTER TO COMPRESSED DATA
F'Q! NBR OF FORMAT LINES TO UNPACK
A (STRING) ADDR OF TEMP LOCATION TO

RECEIVE UNPACKED DATA
LENGTH=80 TEMP LOCATION TO RECEIVE

UNPACKED DATA
1000,WORDS CONTAINS $IMAGE FORMAT

WITH PACKED DATA

This subroutine movesa bytestring and translates it to compressed form.

label CALL $PACK,source, dest, P2=,P3=

Required: source, dest

Defaults: None

Indexable: None

source The label of a fullword containing the address of the string to be compressed.

The length of the string is taken from the byte preceding this location, and the

string could, therefore, be the contents of a TEXT buffer.

dest The label of a fullword containing the address at which the compressedstring is

to be stored. At completion of the operation, this parameter is incremented by

the length of the compressedstring.

5C34-0438

Line-oriented input/output instructions provide a straightforward way to construct and read

data from static screens. However, whenindividual data fields on the 4978/4979 are accessed

frequently, excessive screen flicker can result. This problem can beeliminated bytransferring

an entire screen image to the display with one I/O operation. Figure 12 showsthis technique.

The program accessesthe top six lines of a static screen and initially formats the screen with a

sequence of protected fields. An array of integers is displayed on lines 0—5 of the screen and a

pause is executed to allow the operator to enter a new set of values in corresponding positions of

lines 6—11. The new values are then displayed on lines O—5 of the screen.

In this program, terminal I/O operations are performed through concatenation of TEXTstrings.

If the application requires more complex formatting of the screen image,orif input of more than

254 bytes at a time is necessary, then direct access to the buffer is appropriate. See the

PRINTEXT and READTEXTinstructions in the Language Reference for details.

DISPLAY PROGRAM BEGIN

Bf} SCREEN IOCB SCREEN=STATIC, BOTM=11, C
BUFFER=BUFF, RIGHTM=959

I DATA F'Q!'
BUFF BUFFER 960,BYTES

DATA X'0202'
NULLS DATA X'OO00'
NUMS DATA A8F'O'
VALS TEXT LENGTH=254
BEGIN ENQT SCREEN

ERASE TYPE=ALL, LINE=0
DO 96, INDEX=I
PRINTEXT 'FIELD',PROTECT=YES

PUTEDIT FORMAT1,VALS, ((1I)) ,PROTECT=YES

PRINTEXT ' ',PROTECT=YES
PRINTEXT NULLS, PROTECT=YES
ENDDO
PRINTEXT LINE=0

WRITE PUTEDIT FORMAT1,VALS, ((NUMS,48)), C
ACTION=STG

PRINTEXT VALS,MODE=LINE, LINE=0
PRINTEXT LINE=6,SPACES=8

TERMCTRL DISPLAY

WAIT KEY

GOTO (TRANSFER, QUIT) , DISPLAY+2a

S
y

ee
—
l
-
T
—

C
O
R
S
B

Figure 12 (Part 1 of 2). 4978/4979 Static Screen Sample Program

Appendix C. Static Screens and Device Considerations PG-295

4978/4979 S

PG-296

SC34-0438

ff] TRANSFER READTEXT VALS,MODE=LINE, LINE=6
Pe GETEDIT FORMAT1,VALS, ((NUMS,48)), Cc

ACTION=STG
29] ERASE LINE=6 , MODE=SCREEN , TYPE=DATA
3| GOTO WRITE
FE] QUIT DEQT

PROGSTOP
FORMAT1 FORMAT (12)

ENDPROG
END

Figure 12 (Part 2 of 2). 4978/4979 Static Screen Sample Program

The following numbersreferto lines (in the left margin) of the preceding figure:

A Define the static screen with the terminal I/O buffer to be in the application program at

BUFF,with a length of 960 bytes (half of the 4979 display screen).

5 Allocate storage for the buffer. Note that in this program the buffer is never accessed

directly; the space is merely allocated here for use by the supervisor.

8 Define a TEXT message consisting of two null characters (EBCDIC code X‘00’).

—} —& Define the array of integers (initially zero) and the TEXTbuffer that will be used for
output of the data in EBCDIC form.

Ef) ER] Acquire the terminal, erase all data and establish the screen position for the first I/O

operation. Since several text strings will be concatenated to form thefirst outputline,

the screen position must be established in advance.

fF Begin a DO loopto constructthe initial screen image. This will consist of 96 protected

fields of the form FIELDxx, where xx is a sequential field number, each followed by one

protected blank and two unprotected data positions. Note the conditions required for

forming a concatenated line: the protect mode of the PRINTEXTinstructions must not

change (either all PROTECT=YESorall PROTECT=NO),and nointervening forms

control operations can be executed. The TERMCTRL DISPLAYinstruction prints the

contents of the terminal buffer.

Write ‘FIELD’to the buffer.o
o

w

Convert the sequence number to two EBCDICcharacters and write it to the buffer.

Write a protected separation character.a o
i

Write the two null characters to define the data positions. Null characters always

generate unprotected positions on the screen; PROTECT=YESis nevertheless required

here in order to maintain concatenation.

497
8
/49

79

N
O

R
O

Ls
)

O
o

w
e
d

Le
)

[o
2)

i
e

~~
“

L
S

(w
s

N
O

m
d

(o
)

Se
)

Static Screen S

ample Program (continued)

Write the concatenatedline to the display. Any convenientline control operation or the

DEOQTinstruction will accomplishthis.

Convert the integer array to two-character EBCDIC values andstore the resulting line in

the TEXT buffer VALS.

Write the values into successive unprotected positions of the display beginningat

LINE=0,SPACES=0. This “‘scatter write” operation is defined by MODE=LINE;

without MODE=LINEtheprotectedfields of the display would be overwritten.

Define the cursor to be at the first unprotected position.

Display the cursorat its defined position.

Wait for the operatorto press an interrupt key.

Go to QUITif PF1 was pressed. Go to TRANSFERif the ENTERkeyor any key other

than PF1 waspressed.

Read the updated values entered by the operatorin lines 6-11. MODE=LINE

indicates a “‘scatter read’’.

Convert the EBCDIC representations to binary and store the binary values in the array

NUMS.

Erase the unprotected (data) fields in lines 6—11 of the screen.

Repeat.

Release the terminal. The buffer designated in the IOCB will be released and the screen

configuration restored to that defined by the TERMINALstatement.

3101 Static Screens

Summary of Design Considerations

The following list summarizes the items you should consider when designing a static screen

application for the 3101.

The 3101 uses a data stream which is a collection of special characters, commands, and data

which tell the 3101 to do something.

A simple PRINTEXTof ‘HI THERE’results in a data stream of:

Appendix C. Static Screens and Device Considerations PG-297

3101 Static Screens (continued)

ESC.Y.ROW.COL.ESC.3.ATTR.HI THERE

where ESC.Yis a set cursor address command followed by row and column position, and

ESC.3 is a start-of-field followed by an attribute byte defining thefield.

e An attribute byte defines how data will appear on the screen. It occupies one character

position on the screen, and appears as a protected blank.

e Special attributes supported by the 3101 are high intensity, low intensity, blinking, and

nondisplay.

¢ TERMCTRL SET,ATTR=sets the attribute byte.

e If an attribute is not required, a TERMCTRL SET,ATTR=NOshould be done before a

PRINTEXTto a specific X,Y location.

e Escape sequencestake up space in the buffer. Therefore, it takes more than 1920 bytes to

read a complete screen. Depending on the TERMCTRL SET ATTR= and TREAM=

parameters in effect, a PRINTEXT operation could require the data length plus (7 x #

fields). A READTEXTrequires the data length plus (3 x # fields) for TYPE=ALL and

TYPE=DATA,andthe data length plus (4 x # fields) for TYPE=MODDATA.

e A READTEXT TYPE=DATAreadsall unprotected data. If MODE=WORD,fields are

separated by blanks. If MODE=LINE,fields are concatenated.

e A WAIT KEYprior toa READTEXT TYPE=MODDATAshould besatisfied with a PF

key and not the SEND key. If MODE=WORD,fields are separated by blanks. If

MODE=LINE,fields are concatenated.

e A READTEXTwithout a prompt transmits data from the beginning of the screen,

regardless of the cursor position.

e After the SEND keyis pressed, a RDCURSORreturnsas the cursor position thefirst

position of the nextline. If a PF Keyis pressed, it does not movethe cursor.

3101 Static Screen Sample Program

PG-298

This 3101 sample program showsthe use of READTEXT/PRINTEXTcodingfora static

screen application. It is presented in three parts:

e “Coding Techniques” contains coding segments from the sample program with text

explaining the functions and techniques used.

‘**3101 Sample Program”’ shows the complete program. It can be executed on a 3101in

block mode.

e “Sample Program Output’’ showsthe fields that are created on the display at program

execution time.

SC34-0438

EDX supportfor static screens on the 3101 is designed to read and write data by positioning the

cursor, writing attribute bytes and issuing chained read buffer commands. These functions are

sufficient to develop many formatted screen applications.

This sample program uses these functions and some additional 3101 hardware functions through

the READTEXT, PRINTEXT, GETVALUE, RDCURSOR, GETEDIT, PUTEDIT, and

PRINTNUM instructions.

A user buffer is not required unless a data stream read or written exceeds the CCB buffersize

(generated from the TERMINAL statement). The techniques used perform input/output on a

selected field-by-field basis. Therefore the data stream length is controlled so that it does not

exceed the CCB buffer size (203 bytes for 3101 in block mode).

STREAM=YESis not used; this means that EDX will write the attribute bytes and escape

sequences. The only exceptions are functions that EDX does not support; in these cases

EBCDICstreamsare used and EDXtranslates them.

In mostcases, the attribute byte position is used for the LINE and SPACESparameters. This
7

allows use of the same LINE/SPACESconsistently for a given field; therefore, a field table

approach could be used but is not shownin this example.

Coding Techniques

Enqueuethe Static Screen

The program must enqueue to change the function to static screen. The screensize is forced to

24 x 80 and the CCB buffer of 203 bytes is used.

TOCB1 IOCB SCREEN=STATIC

ENQT TOCB1

Change Attribute to LowIntensity

The default attribute is high intensity. After it is changed, this program alwaysrestoresit to

high intensity.

TERMCTRL SET,ATTR=LOW

Erase the Entire Screen

Erasing the screen defaults the count to 1920.

ERASE TYPE=ALL

Appendix C.Static Screens and Device Considerations PG-299

vice Considerations

ns and De

3101 Static Screens (continued)

Protect the First Field

The first field defined is a protected field at 0,0. This ensures that the whole screen will be

formatted and that no unformatted data areas will be returned on whole screen reads, whether

the read is TYPE=ALL, TYPE=DATA or TYPE=MODDATA.

Printing the null character (defined in the DATA statement ATTRBUTE) with STREAM=NO

in effect to LINE/SPACEScauses EDXto:

e Generate the set cursor address sequence to the LINE/SPACESspecified

¢« Generate thestart field sequence, including the current attribute which will create or cause

an attribute at LINE/SPACESto be rewritten

The data stream is shown below;the attribute byte is shownas ‘#?’.

ESC.Y.ROW.COL.ESC.3.#.X'00'

The null data is required to force the start field sequence; however, a null character is ignored by

the 3101.

DATA X'0101' DUMMY TEXT STATEMENT CNT=1 LGTH=1
ATTRBUTE DATA X'OOOO' NULL TO FORCE ATTRIBUTE TO WRITE

PRINTEXT ATTRBUTE, LINE=0,SPACES=0, PROTECT=YES
TERMCTRL SET,ATTR=HIGH RESTORE ATTRIBUTE

Create Unprotected Fields

To create unprotected fields on the screen (‘“‘holes”’ in which the operator can enter data), start

each field with an unprotected attribute byte and end it with a protectedattribute byte.

PRINTEXT ATTRBUTE, LINE=4,SPACES=29

TERMCTRL SET, ATTR=LOW
PRINTEXT ATTRBUTE, LINE=4, SPACES=34, PROTECT=YES

Write Protected Fields

The next step is to create protected field descriptions. This could be done with ATTR=NO

PG-300 SC34-0438

reens(continue

since the screen is already defined as protected in these areas. This program, however, uses a

standard PRINTEXTto write a protected attribute byte at LINE/SPACES,followed by the

literal data.

PRINTEXT HEAD1, LINE=1,SPACES=20, PROTECT=YES
PRINTEXT 'ENTER A NUMBER',LINE=4,SPACES=2,PROTECT=YES

V/rite a Nondisplay Field

The program usesa field description whichis notinitially displayed on the screen. To create a

nondisplayfield, set the attribute to blank.

NONDISP TERMCTRL SET,ATTR=BLANK
PRINTEXT 'ENTER ANOTHER NUMBER' , LINE=12,SPACES=2,PROTECT=YES
TERMCTRL SET, ATTR=HIGH RESTORE ATTRIBUTE

GETVALUE using LINE/SPACES

Two EDLinstructions that have an implied wait are:

e READTEXTwith prompt

e GETVALUE with prompt

The LINE and SPACESparametersof these instructions specify the position of the attribute

byte of the unprotected promptfield. Printing a null promptfield positions the attribute byte

and cursor differently than for a prompt whichis data. For example:

Normal GETVALUE = #prompt#_
Null prompt GETVALUE = #_

NULPRMPT TEXT LENGTH=0 USED ON IMPLIED WAIT INSTRUCTIONS

GETVAL GETVALUE FIELD1NO,NULPRMPT, LINE=4,SPACES=29

Write a Blinking Field

The program also uses a protected blinkingfield.

BLINK TERMCTRL SET,ATTR=BLINK
PRINTEXT 'FIELD1 MUST BE EVEN ',LINE=2,SPACES=5,PROTECT=YES
TERMCTRL SET,ATTR=HIGH RESTORE ATTRIBUTE

Erase Individual Fields

The program erases individual fields using the erase end-of-field/end-of-line function of the

Appendix C.Static Screens and Device Considerations PG-301

PG-302 SC34-0438

| (continue
d

3101. To do this an ESC.I is sent as data. The field to be erased is specified by

LINE/SPACES,andthe currentattribute byte is rewritten followed by the ESC.I. The data

stream lookslike:

ESC.Y.ROW.COL.ESC.3.#.ESC.1

DATA X'0202' ERASE END OF FIELD
ERASEFLD DATA X'27C9' ESC.I

ERASEF PRINTEXT ERASEFLD, LINE=4 ,SPACES=29

Blank the Blinking Field

Once an even numberis entered, the blinking field is blanked out by changing the attribute byte

to nondisplay.

TERMCTRL SET,ATTR=BLANK
PRINTEXT ATTRBUTE, LINE=2,SPACES=5, PROTECT=YES

Simulate a Scatter Write

To simulate a scatter write, a horizontal tab characteris inserted betweenfields. This is done

using PUTEDIT; however, you could also use the CONCATinstruction or indexed moves. The

data stream is shown below; an EBCDICtabis a X‘05’.

ESC.Y.ROW.COL.ESC.3.#.DATA1.HT.DATA2

DATA X'O101' HORIZONTAL TAB
TAB DATA X'O500' TAB TO NEXT FIELD

SCATTER PUTEDIT FORMAT1,TEXTOUT, (AS,TAB,BS) , LINE=6,SPACES=29

FORMAT1 FORMAT (A15,A1,A15) ,PUT
TEXTOUT TEXT LENGTH=31 SIZE OF DATA STREAM

Use the QUESTION Instruction

The program uses a standard QUESTIONinstruction.

QUEST QUESTION 'WANT TO SEE MORE ?' ,NO=ENDIT, LINE=10,SPACES=5

3101 Static Screens (continued)

Aninvalid response to a QUESTION(anything other than Y or N)is handled by the supervisor,

whichre-issues the read. This results in a string of two new fields: a question mark and a

responsefield.

#PROMPTH?#?# 2H 2H_

Find and Blank Fields

To clear this string of fields, you could overwrite them with a protected field of blanks. Instead,

this program finds each field and changesthe attribute to blank protected.

RDCURSOR LINE, SPACES FIND CURSOR
PRINTEXT LINE=LINE, SPACES=SPACES
TERMCTRL DISPLAY FORCE SOFT CURSOR ADDRESS

* TO BE UPDATED
DO UNTIL, (SPACES, EQ,5) , AND, (LINE, EQ, 10)

A backtab commandis sent as data to position the cursor in the first position of

field preceding the current cursor address. SET,ATTR=NOis used to prevent EDX from

generating the attribute byte and preceding start field sequence. The data stream lookslike:

ESC.2

DATA X'0202'
BACKTAB DATA X'27F2' BACK TAB TO FIRST CHARACTER
* POSITION OF NON-PROTECTED FIELD

TERMCTRL SET, ATTR=NO
PRINTEXT BACKTAB
RDCURSOR LINE,SPACES FIND NON-PROTECTED FIELD CURSOR

* IS IN
SUB SPACES, 1 ADJUST TO ATTRIBUTE BYTE
TERMCTRL SET,ATTR=BLANK PREPARE TO BLANK IT
PRINTEXT ATTRBUTE, LINE=LINE, SPACES=SPACES , PROTECT=YES

ENDDO

Change Field from Blank to Display

Nowthe program displays the nondisplay field previously discussed (ENTER ANOTHER

NUMBER). The attribute that is currently blank protected is rewritten to low protected.

LIGHT TERMCTRL SET, ATTR=LOW
PRINTEXT ATTRBUTE, LINE=12,SPACES=2,PROTECT=YES

Appendix C.Static Screens and Device Considerations PG-303

PG-304 SC34-0438

 Create a Data Entry Field

Next the program creates a new unprotected field with the cursor in place; this is useful for data

entry. To create a unprotected field on demand with the cursor in place, write the end-of-field

attribute first and then the start of field attribute.

CREATEU TERMCTRL SET,ATTR=LOW
PRINTEXT ATTRBUTE, LINE=12,SPACES=34,PROTECT=YES
TERMCTRL SET,ATTR=HIGH RESTORE ATTRIBUTE
PRINTEXT ATTRBUTE, LINE=12,SPACES=29
WAIT KEY

 Hardware Considerations for Reading Modified Data

A read of modified data has several implications:

e A field is modified by entering data or erasing the field. The modified datatag (MDT) in

the attribute byte is turned on by the 3101.

¢ The modified data tag could be on whentheattribute byte is written. $IMAGE provides

this capability for 3101 data streams.

¢ Group 2, switch 4 on the 3101 enables the SEND keyto function as the SEND LINEkey.

When the SEND keyis pressed, the data that is on the sameline as the cursor is sent. The

type of data that is sent depends on the type of read in effect, namely all data, unprotected

or modified.

e Once a modified field is sent to the Series/1 via the SEND keyor a read buffer, the

modified data tag in the attribute byte is turnedoff.

At this point during program execution, another number (FIELD4 data) has been entered and

the SEND key has been pressed. The cursor was probably on the same line as FIELD4;if it was,

FIELD4 data wassent to satisfy the WAIT KEYand the modified data tag was turned off. A

subsequent READTEXT of TYPE=MODDATAwould not return FIELD4 unless the cursor

were movedto a line not containing modified fields, or a PF key were usedto satisfy the WAIT

KEY.

To read only the fields in which numbers were entered, the program re-writes the attribute bytes

for those two fields with the modified data tags on. Before the modified fields are read, there is

an intervening write, so the program locks the keyboard.

TERMCTRL LOCK
TERMCTRL SET,ATTR=NO TO WRITE MDT ON ATTRIBUTE

3101 Static Screens (continued)

Force Modified Data Tag On

A start field sequence with a unprotected, high intensity, MDT onattribute is written as data.

The data stream lookslike:

ESC.Y.ROW.COL.ESC.3.E

DATA X'0303' TO FORCE MODIFIED DATA TAG ON
SETMOD DATA X'27F3' START FIELD SEQUENCE

DATA X'C500' ATTRIBUTE=HIGH, UNPROTECTED ,MDT ON

PRINTEXT SETMOD, LINE=12,SPACES=29
PRINTEXT SETMOD, LINE=4,SPACES=29

Read Modified Data

Now the program issues a READTEXT with TYPE=MODDATA,;this readsall the modified

data on the screen, in this case twofields.

READMOD READTEXT MTEXT, TYPE=MODDATA , MODE=LINE
IF (MTEXT,NE,MTEXT+4,4) PSEUDO TESTING

MTEXT TEXT LENGTH=8 READ OF MODDATA: STREAM
* LENGTH = DATA + (4*NOFLDS) = 16

Appendix C.Static Screens and Device Considerations PG-305

Static Screens and Device

Considerations

3101 Static Screens (continued)

PG-306 SC34-0438

Erase Fields Another Way

To erase a field, do an ERASE with a count value equal to the field length + 1 and

TYPE=ALL.The + 1 is for the unprotected attribute.

ERASEF2 ERASE 5, TYPE=ALL, LINE=4, SPACES=29 ERASE FLD1

Erase to End of Screen

To prepare to erase the remaining fields, position the cursor to the secondfield.

PRINTEXT LINE=6,SPACES=29
TERMCTRL DISPLAY

Using ERASE with TYPE=DATA,all the unprotected fields from the current cursor position to

the end of screen are erased. The count value is not used and modeis forced to screen.

ERASUNP ERASE TYPE=DATA ERASE REMAINING UNPROTECT FIELDS

ected Fields

GETEDITis used to get all the unprotected fields under format control. You could also use a

READTEXTwithout a prompt; this would read all the unprotected data from thestart of the

screen.

GETALL GETEDIT FORMAT2,TEXTAMT, (NO1,ALPH1,ALPH2,NO2)

TEXTAMT TEXT LENGTH=38 GETEDIT STREAM LENGTH =
* DATA + (3*NOFLDS) = 50
FORMAT2 FORMAT (14,A15,A15,14),GET

Write to LINE/SPACES

A standard PRINTNUMis used to write to LINE/SPACES.

PRINTNUM NO1,FORMAT=(5,0,1) , LINE=18, PROTECT=YES

Read from LINE/SPACES

To do a read from LINE/SPACES,a promptfield is required. The null prompt text statement

(NULPRMPT)is used.

TERMCTRL SET,ATTR=HIGH
READTEXT TEXTIN,NULPRMPT, LINE=23 ,SPACES=70

Appendix C.Static Screens and Device Considerations PG-307

PG-308 SC34-0438

SAMPLE
TOCB1

PROGRAM
ITOCB

He 2 2 ee ie ie 2 ooo ie 2 OK Ke ie 2 2 oe eKKKKK2KK ok eo Ke 2 OK OK 2K OK OK OK KK OK OK KOK OK OK OK KK

START

SCREEN=STATIC

* EBCIDIC ESC SEQUENCES AND DATA STREAMS VIA PRINTEXT
2ee fe ie ee eeee22 2 oo22aoooeoook ok ok Ok

DATA X'0202' ERASE END OF FIELD
ERASEFLD DATA X'27C9! ESC.I

DATA X'0303' TO FORCE MODIFIED DATA TAG ON
SETMOD DATA X'27F3' START FIELD SEQUENCE

DATA X'C500! ATTRIBUTE=HIGH, UNPROTECTED ,MDT ON
DATA X'0101' DUMMY TEXT STATEMENT CNT=1,LGTH=1

ATTRBUTE DATA X'0000' NULL TO FORCE ATTRIBUTE TO WRITE
DATA X'0202' ERASE END OF FIELD

BACKTAB DATA X'27F2' BACK TAB TO FIRST CHARACTER
* POSITION OF NON-PROTECTED FIELD

DATA X'0101' HORIZONTAL TAB
TAB DATA Xx'0500! TAB TO NEXT FIELD
OK OK Oe eK KK KK OK KK KK OK OK KK KK KK KOK OK KK OK KK KK OK OK OK KKEK ok KOK Ok KOK KK OK KK KK KK ok OK OK Ok OK OK OK OK Ok Kk

NULPRMPT TEXT LENGTH=0 USED ON IMPLIED WAIT INSTUCTIONS
26 OK OK 2 oe eK ok 2K OK KK KK OK KOK OK OK KK KK KK OK OK KK OK KK OK OK KK OK KK ok KK OK KK OK OK OK OK KK OK OK OK OK OK OK OK Kk OK OK KOK OK KOK K

START EQU *
ENQT IOCB1
TERMCTRL SET,ATTR=LOW
ERASE TYPE=ALL

* START SCREEN WITH PROTECTED FIELD AT 0,0
PRINTEXT ATTRBUTE, LINE=0,SPACES=0, PROTECT=YES
TERMCTRL SET,ATTR=HIGH RESTORE ATTRIBUTE

* CREATE NON PROTECTED FIELDS
PRINTEXT ATTRBUTE, LINE=4,SPACES=29
PRINTEXT ATTRBUTE, LINE=6,SPACES=29
PRINTEXT ATTRBUTE, LINE=8,SPACES=29

* NOW SET THE END OF NON PROTECTED FIELDS
TERMCTRL SET,ATTR=LOW
PRINTEXT ATTRBUTE, LINE=4,SPACES=34,PROTECT=YES
PRINTEXT ATTRBUTE, LINE=6,SPACES=45 , PROTECT=YES
PRINTEXT ATTRBUTE, LINE=8,SPACES=45 , PROTECT=YES

CREATE PROTECTED LITERALS AS NEW FIELDS
THIS COULD BE DONE WITH ATTR=NO AS SCREEN IS PROTECTED
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT

HEAD1, LINE=1,SPACES=20 , PROTECT=YES
"ENTER A NUMBER' ,LINE=4,SPACES=2,PROTECT=YES
"THIS IS FIELD2',LINE=6,SPACES=9, PROTECT=YES
'THIS IS FIELD3',LINE=8,SPACES=9, PROTECT=YES

Figure 13 (Part 1 of 4). 3101 Static Screen Sample Program

NONDISP

*

*

GETVAL

BLINK

ERASEF

*

SCATTER

*

QUEST
*

*

*

LIGHT

TERMCTRL
PRINTEXT

TERMCTRL

GETVALUE
DIVIDE
IF

*

TERMCTRL
PRINTEXT

TERMCTRL
*

PRINTEXAT
GOTO

ELSE
*

TERMCTRL
PRINTEXT
TERMCTRL
*

PUTEDIT
ENDIF

QUESTION
*

*

*

RDCURSOR

PRINTEXT

TERMCTRL

DO
TERMCTRL
PRINTEXT
RDCURSOR

SUB
TERMCTRL
PRINTEXT

ENDDO

TERMCTRL
PRINTEXT
PRINTEXT

NON-DISPLAY THIS LITERAL FIELD AT THIS TIME
SET, ATTR=BLANK
'ENTER ANOTHER NUMBER',LINE=12,SPACES=2 Cc
PROTECT=YES
SET, ATTR=HIGH RESTORE ATTRIBUTE
NORMAL GETVALUE = #PROMPT#_
NULL PROMPT GETVALUE = #_
FIELD1NO,NULPRMPT, LINE=4 , SPACES=29
FIELD1NO,2,RESULT=DUMMY
(SAMPLE, NE, 0)
CREATE NEW PROTECTED BLINKING FIELD

SET, ATTR=BLINK
'FIELD1 MUST BE EVEN
PROTECT=YES
SET, ATTR=HIGH RESTORE ATTRIBUTE
GOING TO ERASE AN INDIVIDUAL FIELD USING ERASE
ERASEFLD, LINE=4 , SPACES=29
GETVAL

', LINE=2,SPACES=5, C

BLANK OUT BLINKING FIELD BY GOING NON-DISPLAY
SET, ATTR=BLANK
ATTRBUTE, LINE=2 ,SPACES=5 , PROTECT=YES
SET, ATTR=HIGH RESTORE ATTRIBUTE
DO SCATTER WRITE BY INSERTING TAB CHARACTER

FORMAT1,TEXTOUT, (AS,TAB,BS) , LINE=6, SPACES=29

GOING TO DO STANDARD QUESTION
'WANT TO SEE MORE ?',NO=ENDIT, LINE=10,SPACES=5
QUESTION AND INVALID RESPONSES CAN YIELD
#PROMPTH?#?H#? #24_
NEED TO FIND ALL ATTRIBUTES '#'

LINE, SPACES FIND CURSOR
LINE=LINE , SPACES=SPACES
DISPLAY FORCE SOFT CURSOR ADDRESS

TO BE UPDATED
UNTIL, (SPACES,EQ,5) , AND, (LINE,EQ, 10)

SET, ATTR=NO
BACKTAB
LINE, SPACES

AND CLEAR

FIND NON-PROTECTED FIELD CURSOR
IS IN

SPACES, 1 ADJUST TO ATTRIBUTE BYTE
SET, ATTR=BLANK PREPARE TO BLANK IT
ATTRBUTE , LINE=LINE, SPACES=SPACES , PROTECT=YES

LIGHT UP NON DISPLAY FIELD4 PROMPT
SET, ATTR=LOW
ATTRBUTE, LINE=12,SPACES=2, PROTECT=YES
"ON A WAIT KEY NOW',LINE=13,SPACES=9, PROTECT=YES

Figure 13 (Part 2 of 4). 3101 Static Screen Sample Program

Appendix C.Static Screens and Device Considerations PG-309

PG-310 SC34-0438

*

CREATEU

(EEE EEE EEE EEE ESE ESSE EEE ESE EEE ESE ESSE ESE SESE SSS EEE ES EEE SE EE SS ES SE ES SS

*

*

LEE SESE EEE EERE EEE EEE SEE EEE ESE SEES SESE REESE ESSE EE SES SS SE ES SE ESSE SS ES

READMOD

ERASEF2

ERASEUNP

GETALL

ENDIT

CREATE
TERMCTRL
PRINTEXT
TERMCTRIE
PRINTEXT
WAIT

NEW NON-PROTECTED FIELD WITH CURSOR IN PLACE
SET, ATTR=LOW
ATTRBUTE, LINE=12,SPACES=34, PROTECT=YES
SET, ATTR=HIGH RESTORE ATTRIBUTE
ATTRBUTE, LINE=12,SPACES=29
KEY

LOCK THE KEYBOARD, RE-WRITE ATTRIBUTES WITH MDT ON,
READ THESE TWO FIELDS WITH TYPE=MODDATA

TERMCTRL LOCK
TERMCTRL SET,ATTR=NO TO WRITE MDT ON ATTRIBUTE
PRINTEXT SETMOD, LINE=12,SPACES=29
PRINTEXT SETMOD, LINE=4, SPACES=29
TERMCTRL SET,ATTR=YES RESTORE
READTEXT MTEXT, TYPE=MODDATA,MODE=LINE
IF (MTEXT, NE, MTEXT+4, 4) PSEUDO TESTING
TERMCTRL SET,ATTR=BLINK
PRINTEXT 'FLD4 MUST = FLD1 ',LINE=13,SPACES=9,

PROTECT=YES
TERMCTRL SET,ATTR=HIGH RESTORE
ERASE 5, TYPE=ALL, LINE=4,SPACES=29 ERASE FLD1
PRINTEXT LINE=6,SPACES=29
TERMCTRL DISPLAY |
ERASE TYPE=DATA ERASE REMAINING UNPROTECTED FIELDS
TERMCTRL UNLOCK
GOTO GETVAL

ENDIF
TERMCTRL UNLOCK
GETEDIT FORMAT2,TEXTAMT, (NO1,ALPH1,ALPH2,NO2)
TERMCTRL SET,ATTR=BLINK
PRINTEXT 'YOU ENTERED: ',LINE=16, PROTECT=YES
TERMCTRL SET,ATTR=HIGH
PRINTNUM NO1,FORMAT=(5,0,1),LINE=18,PROTECT=YES
PRINTEXT ALPH1,LINE=19, PROTECT=YES
PRINTEXT ALPH2,LINE=20, PROTECT=YES
PRINTNUM NO2,FORMAT=(5,0,1),LINE=21,PROTECT=YES
TERMCTRL DISPLAY
EQU *
TERMCTRL SET,ATTR=LOW
PRINTEXT ‘IF YOU WANT TO SEE IT AGAIN ENTER

LINE=23,SPACES=5, PROTECT=YES
TERMCTRL SET, ATTR=HIGH

Figure 13 (Part 3 of 4). 3101 Static Screen Sample Program

''AGAIN'' >', X

3101 Static Screens (continued)

READTEXT
IF
PROGSTOP

FORMAT1 FORMAT
TEXTOUT TEXT
LINE DATA
SPACES DATA
FIELDINO DATA
HEAD1 TEXT
MTEXT TEXT
DATABFR DATA
AS EQU
BS EQU
TEXTAMT TEXT
FORMAT2 FORMAT
NO1 DATA
NO2 DATA
ALPH1 TEXT
ALPH2 TEXT
CAGAIN DATA
TEXTIN TEXT
TNT YAR mNam
DUMMY DATA

ENDPROG

END

FINALLY A READTEXT TO LINE AND SPACES
TEXTIN,NULPRMPT, LINE=23 ,SPACES=70
(TEXTIN, EQ, CAGAIN,5) ,GOTO, START
LOGMSG=NO
(A15,A1,A15) , PUT
LENGTH=3 1 SIZE OF DATA STREAM
F'Q!'
F'Q!
F'Q!'
'*** 3101 SAMPLE PROGRAM ¥*#**!
LENGTH=8 READ OF MODDATA LGTH=DATA + (4*NOFLDS)
C' AAAAAAAAAAAAAAABBBBBBBBBBBBBBB'
DATABFR
AS+15
LENGTH=38 GETEDIT STREAM LGTH= DATA + (3*NOFLDS)
(I4,A15,A15,14) ,GET
F'Q!
F'Q!
LENGTH=15
LENGTH=15
C'AGAIN'
' ' LENGTH=5
F'O!

Figure 13 (Part 4 of 4). 3101 Static Screen Sample Program

Appendix C. Static Screens and Device Considerations PG-311

 Static Screens an

3101 Static Screens (continued)

Sample Program Output

Figure 14 showsthe fields that the 3101 sample program creates on the display at program

execution time.

(: 13101 SAMPLE PROGRAM
SFIELD1 MUST BE EVEN

'ENTER A NUMBER @....!

ITHIS IS FIELD2 Woe cee eee ee!

ITHIS 1S FIELD3 @. cece ee!

Wl ccc cece ee eeeDc ccc ccc ccc ee ee ee ce te eee ee eee eee eee eee teeta eee eeeees
vsaaaaarepiireghte ted eee ee Pei eie ces gna te entnen ees

!0N A WAIT KEY NOW

SYOU ENTERED:

e@eeseee #8 #@ @ @ @ © #@ © © @ ee 8 ee +e FT PO eB Oe eee ee om oe eH Oe He ee eee He eee hl hl hl hlUhc hlc hlUr hl hh huh hh hUhhUchFhUhhUhhUhMhUhFrhUhMhUhOhUMhHhUhhUhHhUhHhUhHhUh OhUlUhOlhUhhUhhUh}HhUh}HM Lh] UO

Ko YOU WANT TO SEE IT AGAIN ENTER '‘AGAIN'> @........

Figure 14. 3101 Sample Program Output

PG-312 SC34-0438

This glossary defines terms and abbreviations used in the Series/1 Event Driven Executive software publications. All software and

hardware terms pertain to EDX. This glossary also serves as a supplement to the /BM Data Processing Glossary, GC20- 1699.

$SYSLOGA, $SYSLOGB. The nameof the alternate system
logging device. This device is optional but, if defined, should be

a terminal with keyboard capability, not just a printer.

$SYSLOG. The nameof the system logging device or operator
station; must be defined for every system. It should be a terminal

with keyboard capability, not just a printer.

$SYSPRTR. The nameof the system printer.

abend. Abnormal end-of-task. Termination of a task prior to its

completion because of an error condition that cannot be resolved

by recovery facilities while the task is executing.

ACCA. See asynchronous communications control adapter.

address key. Identifies a set of Series/1 segmentation registers
and represents an address space. It is one less than the partition

number.

address space. Thelogical storage identified by an address key.

An address spaceis the storage for a partition.

application program manager. The component of the Multiple
Terminal Managerthat provides the program management
facilities required to process user requests. It controls the

contents of a program area and the execution of programs within

the area.

application program stub. A collection of subroutines that are

appendedto a program bythelinkage editor to providethe link

from the application program to the Multiple Terminal Manager

facilities.

asynchronous communications control adapter. An ASCII

terminal attached via #1610, #2091 with #2092, or #2095 with

#2096 adapters.

attention key. The key on the display terminal keyboardthat,if

pressed,tells the operating system that you are entering a

command.

attention list. A series of pairs of 1 to 8 byte EBCDIC strings

and addressespointing to EDL instructions. Whenthe attention

key is pressed on the terminal, the operator can enter one of the

strings to cause the associated EDL instructions to be executed.

backup. A copy of data to be usedin the event the original data

is lost or damaged.

base record slots. Spacein an indexedfile that is reserved for

based recordsto be placed.

PG-313Glossary of Terms and Abbreviations

base records. Recordsare placed into an indexedfile while in

load modeorinserted in process modewith a new highkey.

basic exchange format. A standard format for exchanging data

on diskettes between systemsor devices.

binary synchronous device data block (BSCDDB). A control
block that provides the information to control one Series /1

Binary Synchronous Adapter. It determinesthe line

characteristics and provides dedicated storageforthatline.

block. (1) See data block or index block. (2) In the Indexed

Method, the unit of space used by the access methodto contain

indexes and data.

block mode. The transmission modein which the 3101 Display

Station transmits a data data stream, which has been edited and

stored, when the SENDkeyis pressed.

BSCAM. See binary synchronous communications access
method.

binary synchronous communications access method. A form

of binary synchronous |/O control used by the Series/1 to
perform data communications betweenlocal or remote stations.

BSCDDB. See binary synchronous device data block.

buffer. An area of storage that is temporarily reserved for usein

performing an input/output operation, into which data is read or

from which data is written. See input buffer and output buffer.

bypass label processing. Accessof a tape without any label

processing support.

CCB. See terminal control block.

central buffer. The buffer used by the Indexed Access Method

for all transfers of information between main storage and indexed

files.

character image. An alphabetic, numeric, or special character

defined for an IBM 4978 Display Station. Each character image

is defined by a dot matrix that is codedinto eight bytes.

character image table. An area containing the 256 character

images that can be defined for an IBM 4978Display Station.

Each character image is codedinto eight bytes, the entire table of

codes requiring 2048 bytes of storage.

character mode. The transmission modein which the 3101

Display Station immediately sends a character when a keyboard

key is pressed.

cluster. In an indexedfile, a group of data blocks that is pointed

to from the same primary-level index block, and includes the

primary-level index block. The data records and blocks
containedin a cluster are logically contiguous, but are not

necessarily physically contiguous.

PG-314 SC34-0438

COD(changeof direction). A character used with ACCA
terminal to indicate a reverse in the direction of data movement.

cold start. Starting the spool facility by erasing any spooled jobs

remaining in the spool data set from any previous spool session.

command. A characterstring from a source external to the

system that represents a request for action by the system.

commonarea. A user-defined data area that is mappedinto the

partitions specified on the SYSTEM definition statement. It can

be used to contain control blocks or data that will be accessed by

more than one program.

completion code. Anindicator that reflects the status of the

execution of a program. The completion codeis displayed or

printed on the program’s output device.

constant. A value or address that remains unchanged thoughout

program execution.

controller. A device that has the capability of configuring the

GPIB bus by designating which devicesare active, which devices
are listeners, and which device is the talker. In Series/1 GPIB
implementation, the Series/1 is always the controller.

conversion. See update.

control station. In BSCAM communications, the station that

supervises a multipoint connection, and performs polling and

selection of its tributary stations. The status of control station is

assigned to a BSCline during system generation.

cross-partition service. A function that accesses data in two

partitions.

cross-partition supervisor. A supervisor in which one or more

supervisor modules reside outside of partition 1 (address space

0).

data block. In an indexedfile, an area that contains control

information and data records. These blocks are a multiple of 256

bytes.

data record. In an indexedfile, the records containing customer
data.

data set. A group of records within a volume pointed to by a

directory memberentry in the directory for the volume.

data set control block (DSCB). A control block that provides
the information required to access a data set, volumeordirectory

using READ and WRITE.

data set shut down. An indexed data set that has been marked

(in main storage only) as unusable dueto anerror.

DCE. See directory control entry.

device data block (DDB). A control block that describes a disk

or diskette volume.

direct access. (1) The access method used to READ or WRITE

records on a disk or diskette device by specifying their location

relative the beginning of the data set or volume. (2) In the
Indexed Access Method, locating any record via its key without

respect to thé previous operation. (3) A condition in terminal I/O
where a READTEXTor a PRINTEXTis directed to a buffer which

waspreviously enqueued uponby an IOCB.

directory. (1) A series of contiguous records in a volumethat
describe the contents in terms of allocated data sets and free

space. (2) A series of contiguous records on a device that
describe the contents in terms of allocated volumes and free

space. (3) For the Indexed Access MethodVersion 2, a data set

that defines the relationship between primary and secondary

indexed files (secondary index support).

directory control entry (DCE). The first 32 bytes of thefirst
record of a directory in which a description of the directory is

stored.

directory memberentry (DME). A 32-byte directory entry
describing an allocated data set or volume.

display station. An IBM 4978, 4979, or 3101 display terminal or

similar terminal with a keyboard and a video display.

DME. See directory memberentry.

DSCB. See data set control block.

dynamic storage. An increment of storage that is appended to a

program whenit is loaded.

end-of-data indicator. A code that signals that the last record of

a data set has been read or written. End-of-data is determined

by an end-of-data pointer in the DME orby the physical end of

the data set.

ECB. See event control block.

EDL. See Event Driven Language.

emulator. The portion of the Event Driven Executive supervisor

that interprets EDL instructions and performs the function

specified by each EDL statement.

end-of-tape (EOT). A reflective marker placed near the end of a
tape and sensed during output. The markersignals that the tape

is nearly full.

enter key. The key on the display terminal keyboard that,if

pressed,tells the operating system to read the information you

entered.

event control block (ECB). A control block used to record the

status (occurred or not occurred) of an event; often used to

synchronize the execution of tasks. ECBs are used in conjunction

with the WAIT and POSTinstructions.

Event Driven Language (EDL). The languagefor input to the
Event Driven Executive compiler (SEDXASM), or the Macro and

Host assemblers in conjunction with the Event Driven Executive

macro libraries. The output is interpreted by the Event Driven

Executive emulator.

EX1O (execute input or output). An EDL facility that provides
user controlled access to Series/1 input/output devices.

external label. A label attached to the outside of a tape that

identifies the tape visually. It usually contains items of

identification such as file name and number, creation data,

numberof volumes, department number, and so on.

external name (EXTRN). The 1- to 8-character symbolic

EBCDIC nameforan entry pointor datafield that is not defined

within the module that references the name.

FCA. Seefile control area.

FCB. Seefile control block.

file. A set of related records treated as a logical unit. Although
file is often used interchangeably with data set, it usually refers to

an indexed or a sequential data set.

file control area (FCA). A Multiple Terminal Manager data area
that describes a file access request.

file control block (FCB). The first block of an indexedfile. It
contains descriptive information about the data contained in the

file.

file control block extension. The second block of an indexed

file. It contains the file definition parameters used to define the

file.

file manager. A collection of subroutines contained within the

program managerof the Multiple Terminal Managerthat provides

common support forall disk data transfer operations as needed

for transaction-oriented application programs. It supports

indexed anddirectfiles under the control of a single callable

function.

floating point. A positive or negative numberthat can have a

decimal point.

formatted screen image. A collection of display elements or

display groups (such as operator prompts andfield input names

and areas) that are presented together at one time on a display

device.

free pool. In an indexed data set, a group of blocks that can be

used for either data blocks or index blocks. These differ from

otherfree blocks in that these are notinitially assigned to specific

logical positionsin thefile.

PG-315Glossary of Terms and Abbreviations

free space. In an indexedfile, records blocks that do not
currently contain data, and are available for use.

free space entry (FSE). An 8-byte directory entry defining an
area of free space within a volumeor a device.

FSE. See free space entry.

general purposeinterface bus. The IEEE Standard 488-1975

that allows various interconnected devices to be attached to the

GPIB adapter (RPQ DO2118).

GPIB. See general purposeinterface bus.

group. A unit of 100 recordsin the spool data set allocated to a

spooljob.

H exchange format. A standard format for exchanging data on
diskettes between systemsor devices.

host assembler. The assembler licensed program that executes

in a 370 (host) system and producesobject output for the
Series/1. The source input to the host assembleris codedin
Event Driven Languageor Series/1 assembler language. The

host assembler refers to the System/370 Program Preparation

Facility (5798-NNQ).

host system. Any system whoseresources are used to perform

services such as program preparation for a Series/1. It can be

connected to a Series/1 by a communicationslink.

IACB. See indexed accesscontrol block.

IAR. Seeinstruction addressregister.

ICB. See indexed access control block.

1B. See interrupt information byte.

image store. The area in a 4978 that contains the character

imagetable.

immediate data. A self-defining term used as the operand of an

instruction. It consists of numbers, messagesor values which

are processed directly by the computer and which do not serve as

addressesor pointers to other data in storage.

index. In an indexedfile, an ordered collection of pairs of keys

and pointers, used to sequence andlocate records.

index block. In an indexed file, an area that contains control

information and index entries. These blocks are a multiple of 256

bytes.

indexed access control block (IACB/ICB). The control block
that relates an application program to an indexedfile.

indexed access method. An access method for direct or

sequential processing of fixed-length records by use of a

record's key.

PG-316 SC34-0438

indexed data set. Synonym forindexedfile.

indexedfile. A file specifically created, formatted and used by

the Indexed Access Method. An indexed file is sometimes called

an indexed data set.

index entry. In an indexedfile, a key-pointer pair, where the

pointer is used to locate a lower-level index block or a data block.

index register (#1, #2). Two words defined in EDL and
contained in the task control block for each task. They are used

to contain data or for address computation.

input buffer. (1) See buffer. (2) In the Multiple Terminal
Manager, an area for terminal input and output.

input output control block (IOCB). A control block containing
information about a terminal such as the symbolic name, size and

shape of screen, the size of the formsin a printer, or an optional

reference to a user provided buffer.

instruction address register (IAR). The pointer that identifies
the machineinstruction currently being executed. The Series/1
maintains a hardware IAR to determine the Series/1 assembler
instruction being executed. It is located in the level status block

(LSB).

integer. A positive or negative number that has no decimal

point.

interactive. The mode in which a program conducts a

continuous dialogue betweenthe user and the system.

internal label. An area on tape usedto recordidentifying

information (similar to the identifying information placed on an

externallabel). Internal labels are checked by the system to

ensure that the correct volume is mounted.

interrupt information byte (IIB). In the Multiple Terminal
Manager, a word containing the status of a previous input/output

request to or from a terminal.

invoke. To load and activate a program,utility, procedure, or

subroutine into storage so it can run.

job. A collection of related program execution requests

presented in the form of job control statements, identified to the

jobstream processor by a JOB statement.

job control statement. A statementin a job that specifies
requests for program execution, program parameters, data set
definitions, sequence of execution, and, in general, describes the

environment required to execute the program.

job stream processor. The job processingfacility that reads job

control statements and processes the requests made by these

statements. The Event Driven Executive job stream processoris

$JOBUTIL.

jumper. (1) A wire or pair of wires which are used for the
arbitrary connection between twocircuits or pins in an

attachment card. (2) To connect wire(s) to an attachment card or
to connecttwocircuits.

key. In the Indexed Access Method, one or more consecutive

characters usedto identify a record and establish its order with

respect to other records. Seealso keyfield.

key field. A field, located in the same position in each record of

an indexedfile, whose content is used for the key of a record.

level status block (LSB). A Series/1 hardware data area that
contains processor status. This area is eleven wordsin length.

library. A set of contiguous records within a volume. It contains

a directory, data sets and/oravailable space.

line. A string of characters accepted by the system as a single

input from a terminal; for example, all characters entered before

the carriage return on the teletypewriter or the ENTER key on the

display station is pressed.

link edit. The process of resolving external symbols in one or

more object modules. A link edit is performed with $EDXLINK
whoseoutputis a loadable program.

listener. A controller or active device on a GPIB busthat is
configured to accept information from the bus.

load mode. In the Indexed Access Method, the modein which

records are loaded into base recordslots in an indexedfile.

load module. A single module having cross references resolved

and preparedfor loading into storage for execution. The module

is the output of the $UPDATE or $UPDATEHutility.

load point. (1) Address in the partition where a program is
loaded. (2) A reflective marker placed near the beginning of a
tape to indicate wherethefirst record is written.

lock. In the Indexed Access Method, a methodof indicating that
a record or blockis in use and is not available for another request.

logical screen. A screen defined by margin settings, such as the

TOPM, BOTM, LEFTM and RIGHTM parameters of the

TERMINALor 1OCB statement.

LSB. Seelevel status block.

mapped storage. The processorstorage that you defined on the

SYSTEM statement during system generation.

member. A term used to identify a named portion of a

partitioned data set (PDS). Sometimes memberis also used as a
synonym for a data set. See data set.

menu. A formatted screen image containing a list of options.

The user selects an option to invoke a program.

menu-driven. The modeof processing in which input consists of

the responses to prompting from an option menu.

message. In data communications, the data sent from one

station to anotherin a single transmission. Stations

communication with a series of exchanged messages.

multifile volume. A unit of recording media, such as tapereel or

disk pack, that contains more than onedatafile.

multiple terminal manager. An Event Driven Executive licensed
program that provides support for transaction-oriented

applications on a Series/1. It provides the capability to define
transactions and managethe programsthat support those

transactions. It also manages multiple terminals as needed to

support these transactions.

multivolumefile. A data file that, due to its size, requires more

than one unit of recording media (such as tapereel or disk pack)

to contain the entirefile.

new high key. A key higher than any other key in an indexed

file.

nonlabeied tapes. Tapes that do not contain identifying labels

(as in standard labeled tapes) and contain only files separated by

tapemarks.

null character. A user-defined character used to define the

unprotected fields of a formatted screen.

option selection menu. A full screen display used by the

Session Managerto point to other menus or system functions,

one of whichis to be selected by the operator. (See primary

option menu and secondary option menu.)

output buffer. (1) See buffer. (2) In the Multiple Terminal
Manager, an area used for screen output and to pass data to

subsequent transaction programs.

overlay. The technique of reusing a single storage area allocated
to a program during execution. The storage area can be reused

by loading it with overlay programsthat have been specified in

the PROGRAMstatement of the program orbycalling overlay

segments that have been specified in the OVERLAY statementof

$EDXLINK.

overlay area. A storage area within a program reservedfor

overlay programsspecified in the PROGRAMstatementor

overlay segments specified in the OVERLAY statementin

$SEDXLINK.

overlay program. A program in whichcertain control sections

can use the samestoragelocation at different times during

execution. An overlay program can execute concurrently as an

asynchronoustask with other programsandis specified in the

EDL PROGRAMstatementin the main program.

overlay segment. A self-contained portion of a program thatis

called and sequentially executes as a synchronous task. The

PG-317Glossary of Terms and Abbreviations

entire program that calls the overlay segment need not be

maintained in storage while the overlay segmentis executing. An

overlay segmentis specified in the OVERLAYstatement of
$EDXLINK or $XPSLINK (forinitialization modules).

overlay segment area. A storage area within a program or

supervisor reserved for overlay segments. An overlay segment

area is specified with the OVLAREA statement of $EDXLINK.

parameterselection menu. A full screen display used by the

Session Managerto indicate the parameters to be passed to a

program.

partition. A contiguous fixed-sized area of storage. Each

partition is a separate address space.

performance volume. A volume whose nameis specified on

the DISK definition statement so that its address is found during
IPL, increasing system performance when a program accesses

the volume.

physical timer. Synonym for timer (hardware).

polling. In data communications, the process by which a

multipoint control station asks a tributary tf it can receive

messages.

precision. The number of wordsin storage neededto contain a

value in an operation.

prefind. To locate the data sets or overlay programs to be used

by a program andto store the necessary information so that the

time required to load the prefound items is reduced.

primary file. An indexedfile containing the data records and

primary index.

primary file entry. For the Indexed Access Method Version 2,

an entry in the directory describing a primary file.

primary index. The index portion of a primary file. This is used

to access data records whentheprimary keyis specified.

primary key. In an indexedfile, the key used to uniquely identify

a data record.

primary-level index block. In an indexedfile, the lowest level

index block. It contains the relative block numbers (RBNs) and

high keys of several data blocks. See cluster.

primary menu. The program selection screen displayed by the

Multiple Terminal Manager.

primary option menu. Thefirst full screen display provided by

the Session Manager.

primary station. In a Series/1 to Series/1 attachment, the

processor that control communication between the two

computers. Contrast with secondary station.

PG-318 SC34-0438

primary task. Thefirst task executed by the supervisor when a

programis loadedinto storage. It is identified by the PROGRAM

statement.

priority. A combination of hardwareinterrupt level priority and a

software ranking within a level. Both primary and secondary

tasks will execute asynchronously within the system according to

the priority assigned to them.

process mode. In the Indexed Access Method, the modein

which records can beretrieved, updated, inserted or deleted.

processorstatus word (PSW). A 16-bit register used to (1)
record error or exception conditions that may prevent further

processing and (2) hold certain flags that aid in error recovery.

program. A disk- or diskette-resident collection of one or more

tasks defined by a PROGRAMstatement; the unit that is loaded

into storage. (See primary task and secondary task.)

program header. The control block found at the beginning of a

program thatidentifies the primary task, data sets, storage

requirements and other resources required by a program.

program/storage manager. A componentof the Multiple

Terminal Managerthat controls the execution and flow of

application programs within a single program area and contains

the support neededtoallow multiple operations and sharing of

the program area.

protected field. A field in which the operator cannot use the

keyboard to enter, modify, or erase data.

PSW. See processor status word.

QCB. See queue control block.

QD. See queue descriptor.

QE. See queue element.

queuecontrol block (QCB). A data area used to serialize access
to resources that cannot be shared. Seeserially reusable

resource.

queue descriptor (QD). A control block describing a queue built
by the DEFINEQinstruction.

queue element (QE). An entry in the queue defined by the
queue descriptor.

quiesce. To bring a device or a system to a halt by rejection of

new requests for work.

quiesce protocol. A method of communication in one direction

at a time. When sending node wants to receive, it releases the

other node from its quiescedstate.

record. (1) The smallest unit of direct access storage that can be
accessed by an application program ona disk or diskette using

READ and write. Records are 256 bytes in length. (2) In the
Indexed Access Method,the logical unit that is transferred

between $IAM andthe user's buffer. The length of the bufferis
defined by the user. (3) In BSCAM communications, the portions
of data transmitted in a message. Record length (and, therefore,

message length) can be variable.

recovery. The use of backup data to recreate data that has been

lost or damaged.

reflective marker. A small adhesive marker attached to the
reverse (nonrecording) surface of a reel of magnetic tape.
Normally, two reflective markers are used on eachreel of tape.

Oneindicates the beginning of the recording area on the tape
(load point), and the other indicates the proximity to the end of
the recording area (EOT) on thereel.

relative block address (RBA). The location of a block of data on

a 4967 disk relative to the start of the device.

relative record number. Aninteger value identifying the
position of a record in a data setrelative to the beginning of the

data set. The first record of a data set is record one, the second
is record two, the third is record three.

relocation dictionary (RLD). The part of an object module or
load module that is used to identify address and name constants

that must be adjusted by the relocating loader.

remote managementutility control block (RCB). A control
block that provides information for the execution of remote

managementutility functions.

reorganize. The process of copying the data in an indexedfile to

another indexedfile in a manner that rearranges the data for more
optimum processing and free spacedistribution.

restart. Starting the spool facility w the spool data set contains

jobs from a previous session. The jobs in the spool data set can

be either deleted or printed when the spoolfacility is restarted.

return code. An indicator that reflects the results of the

execution of an instruction or subroutine. The return codeis

usually placed in the task code word (at the beginning of the task

control block).

roli screen. A display screen whichis logicaiiy segmented into

an optional history area and a work area. Output directed to the

screen Starts display at the beginning of the work area and

continues on downin a line-by-line sequence. When the work

area gets full, the operator presses ENTER/SEND andits contents

are shifted into the optional history area and the workarea itself

is erased. Output now starts again at the beginning of the work

area.

SBIOCB. See sensor based I/O control block.

second-level index block. In an indexed data set, the

second-lowest level index block. It contains the addresses and

high keys of several primary-level index blocks.

secondary file. See secondary index.

secondary index. For the Indexed Access Method Version 2, an

indexed file used to access data records by their secondary keys.

Sometimescalled a secondary file.

secondary index entry. For the Indexed Access Method

Version 2, this an an entry in the directory describing a secondary

index.

secondary key. For the Indexed Access Method Version 2, the

key used to uniquely identify a data record.

secondary option menu. In the Session Manager, the secondin

a series of predefined procedures grouped togetherin a

hierarchical structure of menus. Secondary option menus provide

a breakdownofthe functions available under the session

manageras specified on the primary option menu.

secondary task. Any task other than the primary task. A

secondary task must be attached by a primary task or another

secondary task.

secondary station. In a Series/1 to Series/1 attachment, the
processorthat is under the control of the primary station.

sector. The smallest addressable unit of storage on a disk or

diskette. A sector on a 4962 or 4963 disk is equivalent to an

Event Driven Executive record. On a 4964 or 4966 diskette, two

sectors are equivalent to an Event Driven Executive record.

selection. In data communications, the process by which the

multipoint control station asks a tributary station if it is ready to

send messages.

self-defining term. A decimal, integer, or character that the
computertreats as a decimal, integer, or character and not as an

addressor pointer to data in storage.

sensor based I/O control block (SBIOCB). A control block
containing information related to sensor |/O operations.

sequential access. The processing of a data set in order of

occurrence of the records in the data set. (1) In the Indexed

Access Method, the processing of records in ascending collating

sequence orderof the keys. (2) When using READ/WRrITE, the

processing of records in ascending relative record number
sequence.

serially reusable resource (SRR). A resource that can only be
accessed by onetask at a time. Serially reusable resources are

usually managed via (1) a acB and ENQ/DEQ statements or (2) an
ECB and WAIT/POST statements.

service request. A device generated signal used to inform the

GPIB controller that service is required by the issuing device.

PG-319Glossary of Terms and Abbreviations

Glossary of Term Abbreviations

session manager. series of predefined procedures grouped

together as a hierarchical structure of menus from which you

select the utility functions, program preparation facilities, and

language processors needed to prepare and execute application

programs. The menusconsist of a primary option menuthat

displays functional groupings and secondary option menusthat

disple~ a breakdownof these functional groupings.

shared resource. A resource that can be used by more than one

task at the sametime.

shut down. See data set shut down.

source module/program. A collection of instructions and

statements that constitute the input to a compiler or assembler.

Statements may be created or modified using one of the text

editing facilities.

spool job. The set of print records generated by a program

(including any overlays) while engueued to a printer designated as

a spool device.

spool session. An invocation and termination of the spool

facility.

spooling. The reading of input data streams and the writing of

output data streams on storage devices, concurrently with job

execution, in a format convenient for later processing or output

operations.

SRQ. Seeservice request.

stand-alone dump. An image of processor storage written to a

diskette.

stand-alone dumpdiskette. A diskette supplied by IBM or

created by the $DASDI utility.

standard labels. Fixed length 80-character records on tape
containing specific fields of information (a volumelabel

identifying the tape volume, a headerlabel preceding the data

records, and trailer label following the data records).

static screen. A display screen formatted with predetermined

protected and unprotected areas. Areas defined as operator

prompts or input field namesare protected to prevent accidental

overlay by input data. Areas defined as input areas are not

protected and are usually filled in by an operator. The entire

screen Is treated as a page of information.

station. In BSCAM communications, a BSCline attached to the

Series/1 and functioning in a point-to-point or multipoint
connection. Also, any other terminal or processor with which the

Series /1 communicates.

subroutine. A sequenceof instructions that may be accessed

from One or more points in a program.

PG-320 SC34-0438

supervisor. The component of the Event Driven Executive

capable of controlling execution of both system and application

programs.

system configuration. The process of defining devices and

features attached to the Series/1.

SYSGEN. See system generation.

system generation. The processing of defining |/O devices and

selecting software options to create a supervisortailored to the

needsof a specific Series/1 hardware configuration and
application.

system partition. The partition that contains the root segment

of the supervisor (partition number 1, address space OQ).

talker. A controller or active device on a GPIB busthatis

configured to be the source of information (the sender) on the
bus.

tape device data block (TDB). A resident supervisor control

block which describes a tape volume.

tapemark. A control character recorded on tape used to

separatefiles.

task. The basic executable unit of work for the supervisor. Each

task is assigned its ownpriority and processortimeis allocated

according to this priority. Tasks run independently of each other

and compete for the system resources. Thefirst task of a

program ts the primary task. All tasks attached by the primary

task are secondary tasks.

task code word. Thefirst two words (32 bits) of a task’s TCB;

used by the emulator to pass information from system to task

regarding the outcomeof various operations, such as event

completion or arithmetic operations.

task control block (TCB). A control block that contains
information for a task. The information consists of pointers, save

areas, work areas, and indicators required by the supervisor for

controlling execution of a task.

task supervisor. The portion of the Event Driven Executive that

managesthe dispatching and switching of tasks.

TCB. See task control block.

terminal. A physical device defined to the EDX system using the

TERMINALconfiguration statement. EDX terminals include

directly attached IBM displays, printers and devices that

communicate with the Series/1 in an asynchronous manner.

terminal control block (CCB). A control block that defines the
device characteristics, provides temporary storage, and contains

links to other system control blocks for a particular terminal.

terminal environment block (TEB). A control block that
contains information on a terminal's attributes and the program

manager operating under the Multiple Terminal Manager. It is

used for processing requests betweenthe terminal servers and

the program manager.

terminal screen manager. The component of the Multiple

Terminal Managerthat controls the presentation of screens and

communications between terminals and transaction programs.

terminal server. A group of programsthat perform all the

input/output and interrupt handling functions for terminal devices

under control of the Multiple Terminal Manager.

terminal support. The support provided by EDX to manage and

control terminals. See terminal.

timer. The timer features available with the Series/1 processors.

Specifically, the 7840 Timer Feature card (4955 only) or the native
timer (4952, 4954, and 4956). Only one or the otheris supported
by the Event Driven Executive.

trace range. A specified numberof instruction addresses within

which the flow of execution can betraced.

transaction oriented applications. Program execution driven by

operator actions, such as responses to prompts from the system.

Specifically, applications executed under control of the Multiple

Terminal Manager.

transaction program. Seetransaction-oriented applications.

transaction selection menu. A Multiple Terminal Manager
display screen (menu) offering the user a choice of functions,
such as reading from a datafile, displaying data on a terminal, or

waiting for a response. Based uponthe choice of option, the

application program performs the requested processing

operation.

tributary station. In BSCAM communications, the stations

under the supervision of a control station in a multipoint

connection. They respondto the control station’s polling and

selection.

unmapped storage. The processor storage in your processor

that you did not define on the SYSTEM statement during system

generation.

unprotected field. A field in which the operator can use the

keyboard to enter, modify or erase data. Also called

non-protectedfield.

update. (1) To alter the contents of storage or a data set. (2) To
convert object modules, produced as the output of an assembly

or compilation, or the output of the linkage editor, into a form that

can be loadedinto storage for program execution and to update

the directory of the volume on whichthe loadable program is
stored.

user exit. (1) Assembly languageinstructions included as part of
an EDL program andinvoked via the USER instruction. (2) A
point in an |BM-supplied program where a user written routine

can be given control.

variable. An area in storage, referred to by a label, that can

contain any value during program execution.

vary offline. (1) To change the status of a device from online to
offline. When a deviceis offline, no data set can be accessed on

that device. (2) To place a disk or diskette in a state whereit Is
unknownbythe system.

vary online. To place a device in a state whereit is available for

use by the system.

vector. An ordered set or string of numbers.

volume. A disk, diskette, or tape subdivision defined using

SINITDSK or $TAPEUT1.

volume descriptor entry (VDE). A resident supervisor control
block that describes a volume on a disk or diskette.

volumelabel. A label that uniquely identifies a single unit of

storage media.

PG-321Glossary of Terms and Abbreviations

PG-322 SC34-0438

‘Special Characters

$$EDXIT task error exit routine
description PG-111

output example PG-112

using PG-112
$DEBUGutility

changing storage PG-102
commands PG-104
description PG-101
ending PG-109
finding errors PG-106
listing registers PG-101
listing storage location PG-106
loading PG-103
patching a program PG-107
restarting a program PG-102
setting a breakpoint PG-104
trace routine PG-101

$DISKUT1 utility
allocating data set for compiler PG-70
allocating object data set PG-13

$DISKUTS3 program
allocating a data set PG-158
deleting a data set PG-162
description PG-157

opening a data set PG-160

performing more than one operation PG-170

releasing unused space PG-164
renaming a data set PG-166
setting end-of-data PG-168

$EDXASM Event Driven Language compiler
checking the listing PG-16
correcting compiler errors PG-76
description PG-69

listing example PG-80

overview PG-69

parameter input menu PG-15

$EDXLINK linkage editor
autocall feature PG-90
control statements PG-83

AUTOCALL PG-90
INCLUDE PG-87
LINK PG-88
OVERLAY PG-89

creating a load module PG-17

creating overlay segments PG-149
link-editing a single object module PG-82
link-editing more than one object module PG-84
overview PG-81

parameter input menu PG-17

primary control statement data set

example PG-92

program that uses $!MAGE subroutines PG-90
required for PUTEDIT PG-90
using interactive mode PG-82, PG-86
using noninteractive mode PG-92

$FSEDIT full-screen editor
creating primary control data set PG-92

overview PG-59

$IMAGEutility
example PG-289

general description PG-281
use for device independence PG-278

$IMDATA subroutine
description PG-287

example PG-279, PG-288, PG-289
return codes PG-288

$IMDEFNsubroutine
description PG-284

example PG-285, PG-289

$IMOPENsubroutine

Index PG-323

description PG-282

example PG-279, PG-283, PG-289
reading a screen image PG-130
return codes PG-284

$IMPROTsubroutine
description PG-285

example PG-279, PG-287, PG-289
return codes PG~287

GJOBUTIL job stream processor
submitting a program from a program PG-99, PG-100

S$MSGUT1 utility
examples PG-251

format messages PG-250
store messages PG-250

$PACKsubroutine
description PG-294

$PREFIND utility
overview PG-93

$SMMO2 secondary option menu PG-11
$SUBMITP program

example PG-99

sample job stream processor commands PG-100

submitting a program from a program PG-99

$TAPEUT1 tapeutility
changing thelabel processing attribute PG-193

$UNPACKsubroutine
description PG-293

example PG-294

$VARYON - set device online
processing a tape containing more than one data

set PG-190

A

A/I|
See analog input

A/O
See analog output

add

consecutive integers PG-38

double-precision integers PG-37
extended-precision floating point PG-42

floating point PG-42

integer data PG-37
recordsto a tape file PG-196

ADD instruction

adding consecutive integers PG-38

adding double-precision integers PG-37
adding integer data PG-37
example PG-37

advance input PG-268

Al
See analog input

allocate

data set from a program PG-158

data sets for compiler PG-70

PG-324 SC34-0438

object data set PG-12

alphameric data, reading PG-30
alphameric data, writing PG-50
analog input

analog input PG-226
description PG-220

IODEF statement PG-223

sample PG-228, PG-229

SBIO instruction PG-225

analog output

analog output PG-226
description PG-220

IODEF statement PG-223

SBIO instruction PG-225

AND instruction

comparing bit strings PG-47
AO

See analog output
arithmetic comparison PG-52

arithmetic operations PG-36

arithmetic values, defining PG-23, PG-24
ASCII terminal

used in graphics application PG-233
assign

sensor |/O addresses PG-222
ATTACHinstruction

synchronizing tasks PG-143

attention key PG-265

ATTNLIST statement

use in terminal support PG-267

attribute characters, 3101 PG-273, PG-276

autocall feature

example PG-90

including task error exit routine PG-112

invoking PG-90

with static screen program PG-135

binary

converting to PG-33
binary to EBCDIC conversion PG-32

blanks, defining PG-25

blinking field PG-301

branch

to another location PG-56

breakpoint, setting PG-104
buffer

contents of PG-27

defining PG-27

index PG-27

BUFFER statement

coding PG-27

bypassing standard labels, tape PG-188

cf
&

CALLinstruction

calling a subroutine PG-146

loading an overlay segment PG-149
overview PG-144

change

attribute byte PG-303

line of data set PG-63
screen attribute PG-299
storage locations PG-102

characterstring

converting to PG-32
defining PG-25

close

standard-label tape PG-188

code

a program PG-3
comparing bit-strings

AND instruction PG-47

exclusive-OR PG-45
inclusive-OR PG-46

comparing storage

logically PG-53
comparing storage arithmetically PG-52
compile

a program PG-11, PG-69
compiler

See $EDXASM Event Driven Language compiler
compiler errors, correcting PG-76
compressedbyte string PG-294
CONCATstatement

overview PG-234

continuation line PG-3
CONTROLinstruction

closing a standard-label tape PG-188
conventions, data set PG-97
convert

checking for conversion errors PG-36
data PG-32
floating-point to integer PG-34
integer to floating-point PG-35
source messages PG-250
to binary PG-33
to EBCDIC PG-32
4978 screens PG-281

CONVYTBinstruction
converting to EBCDIC PG-32

CONVTDinstruction

converting to binary PG-33
create

data entry field PG-303
data set for program messages PG-248
load module PG-17
source data set PG-60
static screen PG-128
unprotected fields PG-300

cross- partition services

description and examples PG-199

finding a program PG-203

loading a program PG-200

moving data across partitions PG-209
reading data across partitions PG-212

sharing resources PG-206

starting a task PG-204

synchronizing tasks PG-208

D

See digital input
D/O

See digital output

adding PG-37

alphameric, reading PG-30

alphameric, writing PG-50
comparing PG-52
converting PG-32
defining PG-4
logical PG-45

manipulating PG-36

manipulating floating point PG-42
‘manipulating logical PG-45
moving PG-31
moving acrosspartitions PG-209
numeric, reading PG-30
numeric, writing PG-51
processing PG-4

reading PG-28
reading acrosspartitions PG-212

reading from a static screen PG-124
reading from disk/diskette PG-28
reading from tape PG-29
reading from terminal PG-29

retrieving PG-4
writing PG-49
writing to a static screen PG-125

writing to disk/diskette PG-49
writing to tape PG-49

writing to terminal PG-50
data managementfrom a program PG-157

data management program ($DISKUT3) PG-157
data set

creating PG-60

delete from a program PG-162
entering a program into PG-6

format PG-97
identifying in a program PG-22

locating before loading a program PG-93

modifying PG-63
name, defined PG-97

naming conventions PG-97
open from a program PG-160
release unused space PG-164

renaming from a program PG-166
saving PG-62
saving screen image PG-127
setting end-of-data PG-168

Indey PG-325

specifying PG-97

volume, defined PG-97

data set control block (DSCB)
allocating a data set from a program PG-158
opening a data set from a program PG-160

data set, allocating

for compiler PG-70

from a program PG-158
with $DISKUT3 PG-157

DATA statement

assigninganinitial value PG-23
characterstrings, defining PG-25
defining a doubleword PG-24
defining a halfword PG-24
defining floating point PG-24
duplication factor PG-23

reading from static screen PG-133
reserving storage for integers PG-23
writing to static screen PG-134

data storage area, coding PG-27
DC statement

characterstrings, defining PG-25
defining floating point PG-24
reserving storage for integers PG-23

debugging utility

See $DEBUGutility
decimal arithmetic operations PG-36

define

character strings PG-25

data PG-4, PG-23

floating-point values PG-24

input/output area PG-27
location of message data set PG-252

primary task PG-22

static screen PG-122
subroutine PG-144

TEXT statement PG-27

virtual terminals PG-216
definition statements

data PG-23
delete

data set from a program PG-162
line from data set PG-65

more than one line PG-66
design

a program PG-2

DETACH instruction

synchronizing tasks PG-143

device independence

between 4978/4979 and 3101 PG-269, PG-275
coding EDL instructions PG-276

for static screens PG-275

using the $IMAGE subroutines PG-278
device type, finding PG-183

DI
See digital input

digital input

description PG-219

digital input PG-227

example PG-231

PG-326 SC34-0438

IODEF statement PG-223

SBIO instruction PG-225

digital output

description PG-219

digital output PG-227

IODEF statement PG-223

SBIO instruction PG-225

directory memberentry (DME)

updated by SETEOD PG-181

display

protected data PG-279

unprotected data PG-279

display processorutilities, general description PG-233

divide

accessing the remainder PG-41

consecutive integers PG-41

double-precision integers PG-41

extended-precision floating point PG-45

floating point PG-44

integers PG-40

DIVIDE instruction

accessing the remainder PG-41
dividing consecutive integers PG-41
dividing double-precision integers PG-41

dividing integers PG-40

DO

See digital output

DO instruction

DO UNTIL PG-54

DO WHILE PG-54

executing code repetitively PG-54

nested DO loop PG-55

nested IF instruction PG-55

overview PG-51

simple DO PG-54

double-precision

floating-point arithmetic PG-42

DSOPENsubroutine

considerations PG-173

description PG-172

error exits PG-172

example PG-174

duplication factor PG-24

i

EBCDIC
converting to PG-32

EBCDIC to binary conversion PG-33

EDL programming

basic functions PG-21

coding PG-3

compiling PG-11, PG-69
correcting compiler errors PG-76

creating a load module PG-17

designing PG-2
entering PG-6

executing PG-19, PG-95

running PG-19, PG-95

EDX record, defined PG-28

ELSEinstruction

overview PG-51

end

a program PG-5, PG-57
END statement

overview PG-57

_end-of-file, indicating with SETEOD PG-181
ENDDOinstruction

overview PG-51

ENDIF instruction

overview PG-51

ENDPROGstatement

overview PG-57

ENOQTinstruction

getting exclusive access to a terminal PG-131
use with logical screens PG-271
use with static screen PG-122

enqueue
static screen PG-299

enter

a program into a data set PG-6
advance input PG-268

EORinstruction

comparing bit strings PG-45
EQ (equal) PG-51
EQU statement

coding PG-26
examples PG-26

used to generate labels PG-56
erase

static screen PG-299

ERASEinstruction

erasing a static screen PG-123, PG-299
individual field PG-301
to end of static screen PG-306

error codes

See return codes

error handling

checking for conversion errors PG-36
DSOPEN PG-172
system-supplied PG-111

task error exit PG-111

errors
finding program PG-101

errors, compiler PG-76

Event Driven Language

See EDL programming
exclusive-OR PG-45

executable instruction, defined PG-22

execute
a program PG-19, PG-96

exit, error (DSOPEN) PG-172

EXTRACT copy code routine PG-183

F

FADDinstruction

adding extended-precision floating point PG-42

adding floating point PG-42

FDIVDinstruction

dividing extended-precision floating point PG-45
dividing floating point PG-44

field table (FTAB)
$IMDATAsubroutine PG-288
$IMPROTsubroutine PG-286
format of PG-286

file

See data set
find

device type PG-183

logic errors in a program PG-106
program PG~-203

FIRSTQ instruction
retrieving data from a queue PG-260

floating-point
adding PG-42
assigning an initial value PG-25
converting integer to PG-35
converting to binary PG-34
converting to EBCDIC PG-32
converting to integer PG-34
defined PG-23
defining PG-24

defining more than one data area PG-24

extended-precision PG-25

manipulating PG-42
requirements to use instructions PG-42

single-precision PG-24
FMULTinstruction

multiplying extended-precision floating point PG-44

multiplying floating-point data PG-43
FPCONVinstruction

converting from floating point to integer PG-34
converting from integer to floating point PG-35

FREESTGinstruction
releasing unmapped storage PG-153

FSUB instruction
subtracting extended-precision floating point PG-43
subtracting floating-point data PG-43

full-screen text editor (SFSEDIT) PG-59

G

gather read operation PG-274, PG-277, PG-280

GE (greater than or equal) PG-51
GETSTGinstruction

obtaining unmappedstorage PG-152
GETVALUEinstruction

processing interrupts PG-266
reading numeric data PG-30
retrieving prompts from a data set PG-254

GIN instruction
coding description PG-234

Index PG-327

Index

overview PG-234

GOTOinstruction

overview PG-51

transfer to another location PG-56

graphics

functions overview PG-233

hardware considerations PG-233

instructions

CONCAT PG-234

GIN PG-234

PLOTGIN PG-234

XYPLOT PG-234

YTPLOT PG-234

programming example PG-236
requirements PG-233

GT (greater than) PG-51

Hi

hexadecimal, defining PG-24

I

identify

data sets in a program PG-22

IF instruction

comparing areas of storage PG-52

overview PG-51

image, formatted screen

See screen images
INCLUDEcontrol statement (SEDXLINK) PG-87
inclusive-OR PG-46

independence, volume PG-179

index, part of standard buffer PG-27

initial value, assigning PG-23

initialize

nonlabeled tape PG-194

input

area, defining PG-27
reading from disk PG-28

reading from diskette PG-28

reading from tape PG-29
reading from terminal PG-29

input menu

compiler PG-15

linkage editor PG-17, PG-85
input/output control block

See IOCB instruction
insert

line in data set PG-64
integer

adding PG-37

assigning an initial value PG-23

converting floating-point to PG-34

converting to binary PG-33
converting to EBCDIC PG-32
converting to floating-point PG-35
defined PG-23

PG-328 SC34-0438

doubleword, defining PG-24
halfword, defining PG-24
manipulating PG-36
reserving storage for PG-23

interactive debugging PG-101

interrupt

terminal PG-265
interrupt keys

attention key PG-265

enter key PG-266

program function (PF) keys PG-266
interrupt servicing

instructions PG-266

invoke

session manager PG-6

text editor PG-59
{OCB instruction

defining a static screen PG-130
structure PG-272
use in defining logical screen PG-271

IODEF statement

function PG-222

SPECPI processinterrupt user routine PG-223

IOR instruction

comparing bit strings PG-46

J

job, submitting from a program PG-99

K

keyword operand definition PG-22

L

label

definition PG-3
generating PG-56

labels, tape PG-263

LE (less than or equal) PG-51

LINK control statement (SEDXLINK) PG-88
link-edit

a program PG-17
a single object module PG-82
creating segmentoverlay structure PG-149
more than one object module PG-84

required for GETEDIT PG-90

static screen program PG-135
linkage editor PG-17

list

registers PG-101

storage location PG-106
load

a program PG-19, PG-95

program from a program PG-200

program from a virtual terminal PG-217

LOADinstruction
submitting a job from a program PG-99
used with overlays PG-151

load module
creating PG-81
executing PG-95

load module, creating PG-17
locate

data set before loading a program PG-93
logic errors in a program PG-101

logical comparison PG-53
description PG-45

logical end-of-file on disk PG-181
logical screen

examples PG-271, PG-272

using l|OCB and ENOTto define PG-271
using TERMINALto define PG-270

logon menu, session manager PG-6
loops, repetitive PG-54

LT (less than) PG-51

M

magnetic tape

See tape

manipulating data PG-36
menu PG-17
menus

primary option menus PG-60

message
defining PG-27

MESSAGEinstruction
example PG-253

retrieving a message from a data set PG-253

messages, program
creating PG-248
defining the location PG-252
formatting PG-250
retrieving PG-252
retrieving a message PG-253
sample program PG-255

sample source message data set PG-250
storing PG-250
variable fields PG-248

modified data PG-305
reading from the 3101 PG-292
reading from the 4978 PG-292
3101 considerations PG-304
3101 example PG-305

modified data tag PG-305
modified data tags PG-304
modify

existing data set PG-63
move

data PG-31
data acrosspartitions PG-209

MOVEinstruction
moving data PG-31

moving data across partitions PG-209
movelines in a data set PG-67
multiply

consecutive integers PG-40

double-precision integers PG-39

extended-precision floating point PG-44
floating point PG-43
integers PG-39

MULTIPLY instruction

multiplying consecutive integers PG-40

multiplying double-precision integers PG-39

multiplying integers PG-39

N

naming conventions, data set PG-97

NE (not equal) PG-51

NEXTQ instruction
putting data into a queue PG-260

noncompressedbyte string PG-293

nondisplay field PG-301

nonlabeled tapes
defined PG-186
defining PG-193
initializing PG-194
reading PG-195
writing PG-195

numbers, defining PG-23, PG-24
numeric data, reading PG-30
numeric data, writing PG-51

O

object module

creating PG-69
link-editing PG-82, PG-84

open
data set PG-172
data set from a program PG-160

operand

definition PG-3
operation

definition PG-3

option menu

data management PG-12

program preparation PG-13

text editing PG-7
output

area, defining PG-27
compiler PG-80

writing to a terminal PG-50
writing to disk PG-49
writing to diskette PG-49

writing to tape PG-49

overlay

area PG-150
creating PG-149

defined PG-147

Index PG-329

example PG~149

overlay program

defined PG-147

described PG-150

overlay segment
link-editing PG-89
structure PG-148

specifying PG-150

OVERLAYcontrol statement (SEDXLINK) PG-89

parameter
passing to a subroutine PG-145

passing parameters

using virtual terminals PG-217
patch

program PG-107
PF keys

See program function (PF) keys
PI

See processinterrupt

plot control block (graphics) PG-234
PLOTCB control block PG-234
PLOTGIN instruction

overview PG-234

POSTinstruction

synchronizing tasks PG-143
synchronizing tasksin other partitions PG-208

precision

floating-point arithmetic PG-42
preparing object modules for execution PG-81

link-edit PG-82
primary control data set PG-92

primary option menu

session manager PG-7
primary option menu, $FSEDIT PG-60
primary program PG-215

primary task

defined PG-22
print

See write

printer spooling

controlling from a program

controlling spool job processing PG-244

finding if spooling active PG-241
preventing spooled output PG-242
programmingconsiderations PG-246
separating spooled output PG-244

summary PG-241

spool control record

example PG-246

format PG-245
functions PG-244

PRINTEXTinstruction

positioning the cursor PG-124, PG-131
printing a message buffer PG-27
prompting for data PG-123

use in terminal support

PG-330 SC34-0438

changing individual fields PG-277
using on 3101 terminals PG-280

writing to a roll screen PG-118
writing to a static screen PG-125
writing to a terminal PG-50

PRINTNUMinstruction

writing numeric data to a terminal PG-51
writing to a terminal PG-50

priority

assigned to tasks PG-139

processinterrupt

description PG-219

IODEF statement PG-223
user routine PG-223

program
beginning PG-3, PG-22
compiling PG-13, PG-69
concepts PG-139

creating a multitask program PG-143
data management from PG-157

defined PG-141

ending PG-5, PG-57

entering PG-6, PG-59
executing PG-96
finding PG-203
loading from a program PG-200
loading from a virtual terminal PG-217
logic, controlling PG-51

modifying PG-63
multitask PG-143

name PG-143
opening a data set PG-172

overlay PG-150

repetitive loops PG-54

single-task PG-141

structure PG-141
using task error exit routine PG-112

program communication PG-199

program function (PF) keys
use in terminal support PG-266

use with attention lists PG-267

program loading

See LOADinstruction
program messages

See messages, program
program preparation

$EDXASM PG-69
program sequencing functions PG-51
PROGRAMstatement

example PG-22

identifying data sets PG-22

simplest form PG-22

specifying overlay program PG-150

starting a program PG-3
program, source PG-6
PROGSTOPstatement

overview PG-57
protected field

defined PG-116
displaying PG-279

writing PG-300

pulse digital output PG-228

queue processing

description PG-259

example PG-261

putting data into a queue PG-260

retrieving data from a queue PG-260
queue, job PG-99

read

alphameric data from a terminal PG-30

analog input PG-226
data acrosspartitions PG-212

data from a terminal PG-29

data from disk PG-28
data from diskette PG-28

data from tape PG-29
data into data area PG-28

digital input PG-227
directly PG-28

from a roll screen PG-118

from a static screen PG-124

modified data PG-292, PG-305

nonlabeled tape PG-195

one line from a terminal PG-117
reading a multivolume tape data set PG-191
readingall unprotected fields PG-307
sequentially PG-28, PG-29
standard-label tape PG-186

tape PG-185

READinstruction

reading a multivolume tape data set PG-191
reading a nonlabeled tape PG-195

reading a standard-label tape PG-186

reading data acrosspartitions PG-212
READTEXTinstruction

gather read operations PG-277
processing interrupts PG-266

reading a character string PG-27
reading data from static screen PG-133

reading from a static screen PG-124

reading unprotected data PG-278, PG-280
retrieving prompts from a data set PG-254

using on 3101 terminals PG-280
record, defined PG-28

relational statements PG-51

release

data set from a program PG-164
rename

data set from a program PG-166
repetitive loops PG-54

resources, sharing PG-206
restart

a program PG-102
retrieve

data from a queue PG-260
program-messages PG-252
screen format PG-279

~ unprotected deta PG-280

retrieve data PG-4
return codes

$IMDATA subroutine PG-288
$IMOPENsubroutine PG-284
$IMPROT subroutine PG-287

defined PG-110

using to diagnose problems PG-110

RETURNinstruction

overview PG-144

roll screen

defined PG-116

differences from static screen PG-269

displaying data PG-118

example PG-119

reading data PG-118
writing data PG-118

running a program PG-19, PG-95

save

data set PG-62

SBIO instruction

description PG-225

function PG-222

scatter write PG-302

scatter write operation PG-274, PG-277, PG-279

screen

reading PG-115
roll screen

See roll screen

static screen

See static screen

writing PG-115

screen formats

for 3101 PG-274

for 4978/4979 PG-274

sample for 3101 static screen program PG-312

using $IMOPENto retrieve PG-279
screen images

buffer sizes PG-288

retrieving and displaying PG-278

using $IMAGE subroutines PG-281
SCREENinstruction

overview PG-234

coding description PG-234
secondary control data set PG-92

secondary program PG-215

segment, overlay

defined PG-147

link-editing PG-89
send

data to virtual terminal PG-217

Index PG-331

sensor based |/O
assignments PG-222

statement overview PG-222

SENSORIO statement
relationship with instructions PG-222

sequencing instructions, program PG-51

serially reusable resource (SRR) PG-206
session manager

data management menu PG-12

entering user ID PG-6

executing a program PG-19, PG-96
invoking PG-6
primary option menu PG-7

program preparation PG-13

text editing manu PG-7

set
breakpoint PG-104

end-of-data from a program PG-168
SETEODsubroutine PG-181
sharing resources PG-206
single-task program PG-141
source program

compiling PG-11

creating a new data set PG-60
defined PG-6

entering PG-59

entering into a data set PG-6

modifying PG-63

changing a line PG-63
deleting a line PG-65
deleting more than one line PG-66
inserting a line PG-64
moving lines PG-67

saving a data set PG-62

spaces, defining PG-25

specifying a data set PG-97

SPECPI processinterrupt routine PG-223

SPECPIRTinstruction

coding description PG-228

function PG-222

spooling

See printer spooling
standard labels, tape

bypassing PG-188

closing PG-188
defined PG-185

reading PG-186

writing PG-187
start

task PG-140

task from a program PG-204

static screen

blanking a blinking field PG-302

changeattribute byte PG-303
changing attribute PG-299

creating a screen PG-128

creating data entry field PG-303

creating unprotected fields PG-300

defined PG-116

defining a screen PG-130

PG-332 SC34-0438

defining a static screen PG-122
description PG-269

designing for device independence PG-275
differences from roll screen PG-269

displaying a static screen PG-131

enqueuing PG-299

erasing individual fields PG-301
erasing the screen PG-123, PG-299

erasing to end of screen PG-306
example PG-126, PG-136

getting exclusive access PG-122

getting exclusive accessto a terminal PG-131

link-editing a program PG-135

positioning the cursor PG-124, PG-131
prompting for data PG-123
reading a screen image PG-130
reading all unprotected fields PG-307

reading data PG-133
reading modified data PG-305
scatter write PG-302

two waysto define PG-121

waiting fora response PG-124, PG-132
writing blinking fields PG-301
writing data PG-134

writing nondisplay fields PG-301

writing protected fields PG-300

3101 considerations PG-297
3101 sample program PG-298, PG-308

4978/4979 sample program PG-295
stop

a program PG-101
storage

comparing PG-52
reading data into PG-28
reserving PG-23
unmapped PG-152

writing data from PG-49

STORBLKstatement
setting up unmapped storage PG-152

store

program messages PG-250

strings, character PG-25

submit

a program from a program PG-99

SUBROUTstatement
overview PG-144

subroutines

$DISKUT3 PG-157
SIMAGE PG-281
calling PG-144, PG-146

defining PG-144

DSOPEN PG-172
examples PG-146

passing parameters PG-145
program PG-144
SETEOD PG-181

subtract

consecutive integers PG-39
double-precision integers PG-38

extended- precision floating point PG-43

floating-point data PG-43
integers PG-38

SUBTRACTinstruction
subtracting consecutive integers PG-39
subtracting double-precision integers PG-38
subtracting integers PG-38

supervisor

states PG-140
SWAPinstruction

accessing unmapped storage PG-153

symbol

assign a value to PG-26
synchronizing tasks PG-208

T

tape
adding recordsto a file PG-196

label record PG-185
labels PG-263
nonlabeled

defined PG-186

defining PG-193
initializing PG-194
reading PG-195
when to use PG-186
writing PG-195

processing a tape containing more than one data

set PG-190

reading a multivolume data set PG-191

standard-label

bypassing PG-188

closing PG-188
defined PG-185
reading PG-186
when to use PG-185

writing PG-187
tapemark, defined PG-185

task

basic executable unit PG-141
concepts PG-139

defined PG-139
defining PG-22
initiating PG-140
multitask program PG-143
overview PG-139

primary task PG-143

priority PG-139

single-task program PG-141

starting PG-140
Starting from a program PG-204
states PG-140

structure PG-139

synchronizing PG-143, PG-208
task code word

accessing PG-110
defined PG-110

task error exit routine

description PG-111

example PG-112

including ina program PG-112
system-supplied PG-111

TCBGETinstruction

accessing remainder of divide PG-41

TERMCTRLinstruction

displaying a static screen PG-131

positioning the cursor PG-124
use on 3101 terminals PG-280

terminal

read alphameric data PG-30

read from PG-29

write alphameric data PG-50

write numeric data PG-51

write to PG-50

terminal |/O
advance input PG-268

3101 sample static screen program PG-298
4978/4979 sample static screen program PG-295

TERMINALstatement

defining virtual terminals PG-216
text buffers, defining PG-27
text editing utilities

full-screen editor $FSEDIT PG-59
text messages, defining PG-27
TEXT statement

defining buffers PG-27

defining messages PG-27
structure PG-27

trace
program execution PG-101

U

unmapped storage

accessing PG-153

defined PG-152

example PG-154

obtaining PG-152

overview PG-152

releasing PG-153
setting up PG-152

unprotectedfield

defined PG-116

displaying PG-279

reading from static screen PG-133

retrieving PG-280
UPDTAPEroutine PG-196

Vv

variable fields in program messages PG-248
vary

processing a tape containing more than one data

set PG-190
virtual terminals

defined PG-215
defining PG-216

Index PG-333

examples of use PG-215

interprogram dialogue PG-217
loading from a virtual terminal PG-217

sample program PG-218
volume

indep2zndence PG-179

volume serial, tape PG-186

WwW

WAITinstruction

synchronizing tasks PG-143

synchronizing tasks in other partitions PG-208
use of WAIT KEYin terminal support PG-267

waiting for an operator to respond PG-132

waiting for operator response PG-124, PG-267

WHERESinstruction

finding a program PG-203
write

alphameric data to a terminal PG-50

analog output PG-226
blinking field PG-301

digital output PG-227

directly PG-49

from a data area PG-49

nondisplay field PG-301

nonlabeled tape PG-195

numeric data to a terminal PG-51

protected fields PG-300

sequentially PG-49

source data set PG-9

standard-label tape PG-187

tape PG-185

to a static screen PG-125

to a terminal PG-50

to disk PG-49

to diskette PG-49

to static screen PG-134

to tape PG-49

WRITEinstruction

writing a nonlabeled tape PG-195
writing a standard-label tape PG-187

PG-334 SC34-0438

writing to disk PG-49
writing to diskette PG-49
writing to tape PG-49

X

XYPLOTinstruction

overview PG-234

Y

YTPLOTinstruction

coding description PG-234

overview PG-234

3

3101 Display Terminal

attribute characters PG-273

compatibility limitation PG-276

converting 4978 screens PG-281
data stream PG-273

device independence PG-275

PF key support PG-266

reading modified data PG-292, PG-304
sample static screen program PG-308

static screen considerations PG-297

static screen sample program PG-298

transmitting data from PG-273

4

4978 Display Station

device independence PG-275

static screen sample program PG-295

4979 Display Station

device independence PG-275

static screen sample program PG-295

St
ap

le
s
c
a
n
c
a
u
s
e
p
r
o
b
l
e
m
s
w
i
t
h
a
u
t
o
m
a
t
e
d

ma
il

so
rt
in
g
e
q
u
i
p
m
e
n
t
.

N
o
t
e
:

Pl
ea

se
us
e
pr
es
su
re

se
ns

it
iv

e
or

o
t
h
e
r
g
u
m
m
e
d

t
a
p
e
to

se
al

th
is

f
o
r
m
.

a
E
S
G
S

«
G
E
E

G
e
n
e

G
u
n
d
e

(
O
U
R
S
C
U
e
e
o
e
o
S
s
O

s
v
e
s
s

e
e
s
S
S

s
e
n
s
u

ca
rE
ES
D
S
E
S
S

G
u
e
u
e
G
S
G
e

s
e
n

o
e
m
:
G
n
G
E

G
E
O
G
e
e

s
E
E
N
E
Y
G
u
s

G
E
E
S
E
G
U
E

a
u
e
D
G
e
e

G
E
E
R
w
e
e
S
E

e
e
n
o
n
e
G
e
e
G
e
e
G
e
e

G
e
e
s
e
e
e

e
e
e
w
e
q
u
e
s
c
e

e
e
e
o
e

e
e
e
e
e
e
e
e
e

o
m
e
e
e
e
e
e
e
e
e

e
e
e
e

e
e
e
e
e

e
e
e
e
e

e
e

e
e
e
e
e
e
e
e
e
e
e
e

e
e
e
e
e
e
e
e
e
e
e

e
e
e
e
e
e
e
e
e

IBM Series/1 Event Driven Executive READER’S
Language Programming Guide COMMENT

SC34-0438-0 FORM

This manualis part of a library that serves as a reference source for systems analysts, programmers, and

operators of IBM systems. You mayuse this form to communicate your comments about this publication,

its organization, or subject matter, with the understanding that IBM mayuse ordistribute whatever

information you supplyin any way it believes appropriate without incurring any obligation to you.

Your commentswill be sent to the author’s department for whatever review and action, if any, are deemed

appropriate.

Note: Copies ofIBM publications are not stocked at the location to which this form is addressed.

Please direct any requests for copies ofpublications, or for assistance in using your LBM system,to

vour IBMrepresentative or to the IBM branch office serving vourlocality.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM

office or representative will be happy to forward your comments or you may mail directly to the address

in the Edition Notice on the back ofthetitle page.)

SC34-0438-0

Printed in U.S.A.

‘Reader’s Comment Form

Fold and tape

Fold and tape

Please Do Not Staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK,N.Y.
POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation

Information Development, Department 27T

P.O. Box 1328

Boca Raton, Florida 33432

Please Do Not Staple

Fold and tape

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

Fold and tape

—
—
e
e

e
e

e
e
e
e

o
t
H
U
O
I

YY
P
I
O
Y

1
0
1
0
D
O
o

1

\

a
=
®

=WY (

Binder Labels

Ss Tear this page along the perforations
= to separate the twolabels.

he 7
& oS Insert the labels into the clear plastic
oe 5 sleeves.

Xe a

®

oS

@ ©
a

©) >

= 5 §€ =
re SE
© QA PE x v

Ss Nessa
oO © e ©) o) ne |
> c ooo I |
—_ "= a iS o \N Lo__J
Gud5 oe
® 6G To stand the easel binder up, open it
6 ke (> and fold it as shown.

Lu SY
Sk. £
oo z
a 2 ©
O ©) 2

© = |
ms ~ 5 ° ©$2 2 {2Oo

O

. eG = (|9

Event Driven Executive

Language

Programming Guide

S
e
r
i
e
s
/
1

P
G

International Business Machines Corporation

SC34-0438-0

Program Numbers: 5719-XS4, 5719-XX5

File No.: $1-20

Printed in U.S.A.

