SC34-0438-0

Event Driven Executive |
Language Programming Guide

Version 4.0

Series/1

Library Guide and
Common Index

"

Ve

o

Installation and
System Generation
Guide

e,

()
Operator Commands

and
Utilities Reference

" o

Guide

Language Communications Messages and
Reference Guide Codes
. L J . J
¢ ~ \ @)
Operation Guide Event Driven Reference
Language Cards
Programming Guide
_ 2 J " U,
P () (£)
Problem Customization Internal
Determination Guide Design

Series/1

SC34-0438-0

Event Driven Executive
Language Programming Guide

Version 4.0

Event Driven
Language
Programming Guide

First Edition (May 1983)
Use this publication only for the purpose stated in the Preface.

Changes are periodically made to the information herein; any such changes will be
reported in subsequent revisions or Technical Newsletters.

It is possible that this material may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced
in your country. Such references or information must not be construed to mean that
IBM intends to announce such IBM products, programming, or services in your
country.

Publications are not stocked at the address given below. Requests for copies of IBM
publications should be made to your IBM representative or the IBM branch office
serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form
for readers’ comments is provided at the back of this publication. If the form has
been removed, address your comments to IBM Corporation, Information
Development, Department 27T, P. O. Box 1328, Boca Raton, Florida 33432. IBM
may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course, continue
to use the information you supply.

© Copyright International Business Machines Corporation 1983

About This Book

This book contains an introduction to the Event Driven Language.

Audience

Chapters 1 through 8 of this book are intended for the application programmer who is coding in
the Event Driven Language for the first time. Readers should be familiar with basic data
processing terminology and concepts, such as input, output, and data sets.

Chapters 9 through 18 are intended for application programmers who need information about

such advanced topics as multitasking, data management from a program, communicating with
other programs, and writing graphics or sensor I/O programs.

How This Book is Organized

This book contains eighteen chapters and three appendixes:

e Chapter 1. Getting Started describes the steps necessary to develop and run a simple Event
Driven Language (EDL) program.

o Chapter 2. Writing a Source Program tells how to use EDL instructions to do such things as
read data, write data, convert data, and manipulate data.

About This Book iii

About This Book

How This Book is Organized (continued)

iv

SC34-0438

Chapter 3. Entering a Source Program tells how to use the full-screen editor to enter and
modify a source program.

Chapter 4. Compiling a Source Program shows how to use the Event Driven Language
compiler to translate a source program to object code.

Chapter 5. Preparing Object Code for Execution shows how to use the linkage editor to
prepare an object program for execution.

Chapter 6. Executing a Program describes how to run a program that has been compiled and
link-edited.

Chapter 7. Finding and Fixing Errors describes a tool you can use to diagnose program logic
errors and exception conditions.

Chapter 8. Reading and Writing Data from Screens shows how to read and write data from
display terminals. The chapter defines roll screens and static screens and describes how to
write programs that interact with the operator.

Chapter 9. Designing Complex Programs defines what a program and a task are and describes
multitasking, subroutines, program overlays, segment overlays, and unmapped storage.

Chapter 10. Performing Data Management from an Application Program describes various
ways to do data management from a program. The chapter describes how to allocate,
delete, rename, and open a data set. In addition, the chapter shows how to set the logical
end of file, add records to a tape data set, and find device type from a program.

Chapter 11. Coding Programs That Use Tape tells how to read to and write from a magnetic
tape data set.

Chapter 12. Communicating with Another Program (Cross Partition Services) shows how
programs can interact with each other, either within the same partition or between
partitions.

Chapter 13. Communicating with Other Programs (Virtual Terminals) shows how one program
can load another program and how the programs can interact with each other.

Chapter 14. Designing and Coding Sensor I/O Programs describes digital and analog
input/output and shows how to read and write to sensor I/O devices.

Chapter 15. Designing and Coding Graphic Programs shows how to code the instructions that
produce graphic messages and draw curves on a display terminal.

Chapter 16. Controlling Spooling from a Program describes how a program can control
printed output.

Chapter 17. Creating, Storage and Retrieving Program Messages shows how to save storage
or coding time by creating messages than can be used by more than one program.

How This Book is Organized (continued)

o Chapter 18. Queue Processing shows how to create queues, store data in queues, and retrieve
data from queues.

o Appendix A. Tape Labels shows the layout of tape labels.

o Appendix B. Interrupt Processing describes the interrupts that occur when a program interacts
with a terminal.

« Appendix C. Static Screens and Device Considerations provides more details on reading and
writing static screens to a terminal.

Aids in Using This Book

This book provides the following aids to assist you in using this book:
« A glossary which defines abbreviations and terms

¢ An index of topics covered in this book

A Guide to the Library

Refer to the Library Guide and Common Index for information on the design and structure of the
Event Driven Executive, Version 4.0 library and for a bibliography of related publications.

Contacting IBM about Problems

You can inform IBM of any inaccuracies or problems you find when using this book by
completing and mailing the Reader’s Comment Form provided in the back of this book.

If you have a problem with the Series/1 Event Driven Executive services, fill out an authorized
program analysis report (APAR) form as described in the IBM Series/1 Authorized Program

Analysis Report (APAR) User’s Guide, GC34-0099.

About This Book Vv

vi SC34-0438

Contents

Chapter 1. Getting Started PG-1
Designing a Program PG-2
Coding the program PG-3
Starting the program PG-3
Defining Your Data PG-4
Retrieving Data PG-4
Processing the Data PG-4
Obtaining the Results PG-5
Ending the Program PG-5
Entering the Source Program into a Data Set PG-6
Compiling Your Source Program PG-11
Checking Your Compiler Listing PG-16
Creating a Load Module PG-17
Running Your Program PG-19

Chapter 2. Writing a Source Program PG-21
Beginning the Program PG-22
Defining the Primary Task PG-22
Identifying Data Sets to be Used in Your Program PG-22
Reserving Storage PG-23
Reserving Storage for Integers PG-23
Defining Floating-Point Values PG-24
Defining Character Strings PG-25
Assigning a Value to a Symbol PG-26
Defining an Input/Output Area PG-27
Reading Data into a Data Area PG-28
Reading Data from Disk or Diskette PG-28
Reading Data from Tape PG-29
Reading from a Terminal PG-29

Contents Vil

Contents

Moving Data PG-31
Converting Data PG-32
Converting to an EBCDIC Character String PG-32
Converting to Binary PG-33
Converting from Floating Point to Integer PG-34
Converting from Integer to Floating Point PG-35
Checking for Conversion Errors PG-36
Manipulating Data PG-36
Manipulating Integer Data PG-36
Manipulating Floating-Point Data PG-42
Manipulating Logical Data PG-45
Writing Data from a Data Area PG-49
Writing Data to Disk or Diskette PG-49
Writing Data to Tape PG-49
Writing to a Terminal PG-50
Controlling Program Logic PG-51
Relational Operators PG-51
The IF Instruction PG-52
The Program Loop PG-54
Branching to Another Location PG-56
Ending the Program PG-57

Chapter 3. Entering a Source Program PG-59
Invoking the Editor PG-59
Creating a New Data Set PG-60
Saving Your Data Set PG-62
Modifying an Existing Data Set PG-63
Changing a Line PG-63
Inserting a Line PG-64
Deleting a Line PG-65
Moving Lines PG-67

Chapter 4. Compiling a Program PG-69
Allocating Data Sets PG-70
Running the Compilation PG-74
Checking Your Compiler Listing and Correcting Errors PG-76
Rerunning the Compilation PG-78

Chapter 5. Preparing an Object Module for Execution PG-81
Link-Editing a Single Object Module PG-82
Link-Editing More Than One Object Module PG-84
Using Interactive Mode PG-86
Using Noninteractive Mode PG-92
Prefinding Data Sets and Overlays PG-93

Chapter 6. Executing a Program PG-95

Executing a Program with the Session Manager PG-96
Specifying Data Sets PG-97

viii SC34-0438

Submitting a Program from Another Program PG-99

Chapter 7. Finding and Fixing Errors PG-101
Determining Logic Errors in a Program PG-101
Creating and Running the Program PG-102
Debugging and Fixing the Program PG-103
Using Return Codes to Diagnose Problems PG-110
Task Error Exit Routines PG-111
The System-Supplied Task Error Exit Routine ($$EDXIT) PG-111

Chapter 8. Reading and Writing Data from Screens PG-115
When to Use Roll Screens PG-116
When to Use Static Screens PG-116
Reading and Writing One Line at a Time PG-117
Reserving Storage for the Data PG-118
Reading a Data Item PG-118
Writing (Displaying) a Data Item PG-118
Example PG-119
Two Ways to Use Static Screens PG-121
Coding the Screen within a Program PG-122
Defining a Screen as Static PG-122
Getting Exclusive Access to the Terminal PG-122
Erasing the Screen PG-123
Reserving Storage PG-123
Prompting the Operator for a Data Item PG-123
Positioning the Cursor PG-124
Waiting for a Response PG-124
Reading a Data Item PG-124
Writing a Data Item PG-125
Example PG-126
Writing the Screen Image to a Data Set PG-127
Creating a Screen PG-128
Defining the Screen as Static PG-130
Reading the Screen Image into a Buffer PG-130
Getting Exclusive Access to the Terminal PG-131
Displaying the Screen and Positioning the Cursor PG-131
Reserving Storage for Data PG-132
Waiting for a Response PG-132
Reading a Data Item PG-133
Writing a Data Item PG-134
Link-Editing the Program PG-135
Example PG-136

Chapter 9. Designing Programs PG-139
What Is a Task? PG-139
Initiating a Task PG-140
What Is a Program? PG-141
Creating a Single-Task Program PG-141

Contents

Contents

Creating a Multitask Program PG-143
Synchronizing Tasks PG-143

Defining and Calling Subroutines PG-144
Defining a Subroutine PG-144
Calling a Subroutine PG-146

Reusing Storage using Overlays PG-147
Using Overlay Segments PG-148
Overlay Programs PG-150

Using Large Amounts of Storage (Unmapped Storage) PG-152
What Is Unmapped Storage? PG-152
Setting up Unmapped Storage PG-152
Obtaining Unmapped Storage PG-152
Using an Unmapped Storage Area PG-153
Releasing Unmapped Storage PG-153
Example PG-154

Chapter 10. Performing Data Management from a Program PG-157
Performing Data Management from a Program PG-157
Allocating a Data Set PG-158
Opening a Data Set PG-160
Deleting a Data Set PG-162
Releasing Unused Space in a Data Set PG-164
Renaming a Data Set PG-166
Setting End-of-Data on a Data Set PG-168
Performing More Than One Operation at Once PG-170
Opening a Data Set (DSOPEN) PG-172
DSOPEN Example PG-174
Coding for Volume Independence PG-179
Setting Logical End of File (SETEOD) PG-181
Finding the Device Type (EXTRACT) PG-183

Chapter 11. Reading and Writing to Tape PG-185
What Is a Standard-Label Tape? PG-185
What Is a Nonlabeled Tape? PG-186
Processing Standard-Label Tapes PG-186
Reading a Standard-Label Tape PG-186
Writing a Standard-Label Tape PG-187
Closing Standard-Label Tapes PG-188
Bypassing Labels PG-188
Processing a Tape Containing More than One Data Set PG-190
Reading a Multivolume Data Set PG-191
Processing Nonlabeled Tapes PG-192
Defining a Nonlabeled Tape PG-193
Initializing a Nonlabeled Tape PG-194
Reading a Nonlabeled Tape PG-195
Writing a Nonlabeled Tape PG-195
Adding Records to a Tape File (UPDATE) PG-196

X SC34-0438

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-199
Loading Other Programs PG-200

Finding Other Programs PG-203

Starting Other Tasks PG-204

Sharing Resources with the ENQ/DEQ Instructions PG-206

Synchronizing Tasks in Other Partitions PG-208

Moving Data Across Partitions PG-209

Reading Data across Partitions PG-212

Chapter 13. Communicating with Other Programs (Virtual Terminals) PG-215
Defining Virtual Terminals PG-216

Loading from a Virtual Terminal PG-217

Interprogram Dialogue PG-217

Sample Program PG-218

Chapter 14. Designing and Coding Sensor I/0 Programs PG-219
What is Digital Input/Output? PG-219
What is Analog Input/Output? PG-220
What are Sensor-Based I/O Assignments? PG-222
Coding Sensor-Based Instructions PG-222
Providing Addressability (IODEF) PG-223
Specifying 1/O Operations (SBIO) PG-225

Chapter 15. Designing and Coding Graphic Programs PG-233
Graphics Instructions PG-233

The Plot Control Block PG-235

Example PG-236

Chapter 16. Controlling Spooling From A Program PG-241
Determining Whether Spooling Is Active PG-241
Preventing Spooled Printer Output PG-242

Separating Program Output into Several Spool Jobs PG-244
Controlling Spool Job Processing PG-244

Chapter 17. Creating, Storing, and Retrieving Program Messages PG-247
Creating a Data Set for Source Messages PG-248

Coding Messages with Variable Fields PG-248

Sample Source Message Data Set PG-250
Formatting and Storing Source Messages (using $MSGUT1) PG-250
Retrieving Messages PG-252

Defining the Location of a Message Data Set PG-252

The MESSAGE instruction PG-253

The GETVALUE, QUESTION, and READTEXT Instructions PG-254
Sample Program PG-255

Chapter 18, Queue Processing PG-259

Defining a Queue PG-259
Putting Data into a Queue PG-260

Contents

xi

Contents

Retrieving Data from a Queue PG-260
Example PG-261

Appendix A. Tape Labels PG-263

Appendix B. Interrupt Processing PG-265
Interrupt Keys PG-265
The Attention Key PG-265
Program Function (PF) Keys PG-266
Enter Key PG-266
Instructions that Process Interrupts PG-266
The READTEXT and GETVALUE Instructions PG-266
The WAIT KEY Instruction PG-267
The ATTNLIST Instruction PG-267
Advance Input PG-268

Appendix C. Static Screens and Device Considerations PG-269
A Description of Static Screens PG-269
Defining Logical Screens PG-270
Structure of the IOCB PG-272
Some Characteristics of the 3101 Display Terminal PG-273
Attribute Characters PG-273
Transmitting Data from the 3101 PG-273
Screen Formats PG-274
4978/4979 Screen Formats PG-274
3101 Screen Formats PG-274
Static Screen Device Independence PG-275
Designing Terminal-Independent Static Screens PG-275
Compatibility Limitation PG-276
Coding EDL Instructions for Device Independence PG-276
Using the $IMAGE Subroutines for Device Independence PG-278
$IMAGE Subroutines PG-281
$IMOPEN Subroutine PG-282
$IMDEFN Subroutine PG-284
$IMPROT Subroutine PG-285
$IMDATA Subroutine PG-287
Screen Image Buffer Sizes PG-288
Example of Using $SIMAGE Subroutines PG-289
Reading Modified Data PG-292
Reading Modified Data on the 4978 PG-292
Reading Modified Data on the 3101 PG-292
$UNPACK and $PACK Subroutines PG-293
$UNPACK Subroutine PG-293
$PACK Subroutine PG-294
4978/4979 Static Screen Sample Program PG-295
3101 Static Screens PG-297
Summary of Design Considerations PG-297
3101 Static Screen Sample Program PG-298

Xii SC34-0438

3101 Sample Program PG-308
Sample Program Output PG-312

Glossary of Terms and Abbreviations PG-313

Index PG-323

Contents Xiil

Xiv SC34-0438

Figures

. Single-Task Application Example PG-142

. Multitask Program Structure PG-143

. Application Overlay Segments PG-148

. Overlay Segments in Series/1 Storage PG-148

EDL Overlay Programs PG-150

. EDL Overlay Programs in Series/1 Storage PG-151
. Sensor Device Connections PG-221

. Sensor-Based Symbolic I/O Assignment PG-222

. Graphics Program Output PG-239

. Determining if Spooling is Active PG-242

. Program-Controllable Spooling Flow Chart PG-243
. 4978/4979 Static Screen Sample Program PG-295

. 3101 Static Screen Sample Program PG-308

. 3101 Sample Program Output PG-312

Figures

XV

Xvi SC34-0438

Chapter 1. Getting Started

This chapter is intended for people who have never coded an EDL (Event Driven Language)
program. It describes the steps necessary to develop and run a simple program on the Series/1.
Specifically, this chapter shows you how to design, code, enter, compile, link-edit, and execute
an Event Driven Language (EDL) program.

We will show you all these steps using a simple example program. You may choose to actually
enter and run this program on your Series/1 to gain hands-on experience.

Each of the major steps in the development and execution of an EDL program is covered in
greater detail later in this book. The following chart describes these steps and shows you where
in this book the material is covered.

Write the source program Write a source program that does such things as read data,
manipulate data, and write data (Chapter 2).

Enter the source program Enter the source program by using the Session Manager to
build a data set (Chapter 3).

Compile the source program Compile your source program (produce object code from
source code) (Chapter 4).

Link-edit the program Produce an executable load module (Chapter 5).

Run the program Cause your program to run or “execute” (Chapter 6).

Chapter 1. Getting Started PG-1

Getting Started

Find and fix errors Use the $DEBUG utility or a task error exit routine to help
you locate and correct any problems in your program
(Chapter 7).

If you are familiar with EDL and the EDX operating system, skip this chapter and go to
Chapter 2.

Designing a Program

PG-2

SC34-0438

The first step in the development of any program is the design of the program. You must be
able to describe what you want the program to accomplish.

Typically, a program reads some data, processes the data, and writes the results. The sample
program we have chosen does all of these. The program requests that an operator enter a
number at the terminal. That number is added to a storage area ten times, and the results are
displayed on the terminal screen.

Here are some questions you should ask when you plan a program. We have shown how we
answered those questions in our sample program.

Questions In our program

Where is the data coming from and The data is a number that the operator
what form will it take? enters at the terminal.

What do you want to do with the data The number that is entered from the
and in what order do you want to terminal will be added ten times to a
process the data? storage area that you define.

Where do you print or record the The results are displayed on the terminal
results? screen.

In the next section, we will show you how to implement this design in an EDL program.

Designing a Program (continued)

Coding the program

On the next few pages, we will show you how the design of this program was implemented. We
will build the program step by step. We will not describe every possible operand of the
instructions we use. (Operands for every EDL instruction are fully described in the Language
Reference.)

EDL instructions and statements have the general format:

label operation operands

where these terms have the following meanings:

label The name you assign an instruction or statement. You can use this name in your
program to refer to that specific instruction or statement. In most cases, the
label is optional. Labels must begin in column 1; must begin with a letter or one
of the special characters $, #, or @; and must be 1 to 8 characters long.

operation The name of the instruction or statement you are coding. The operation can
begin in column 2 and cannot extend beyond column 71.

operands The data that is required to do an operation, or information on how the system is
to perform the operation.

To continue a line of code on the next line, place any nonblank character in column 72 and

continue the next line in column 16.

Starting the program

Any EDL program begins with the PROGRAM statement.

A PROGRAM statement defines the address or label of the first instruction to be executed. The
PROGRAM statement also defines the name of the primary task of the program. (EDL
programs may consist of multiple tasks. In our sample program, the primary task is the only task
of the program.)

Our program statement looks like this:

ADD10 PROGRAM STPGM
ADD10 is the task name of the primary (and only) task.

STPGM is the label of the first instruction to be executed.

Chapter 1. Getting Started PG-3

Getting Started

Coding the program (continued)

Defining Your Data

The program needs two data areas: one to hold the input and one to hold the results of the
process. Use the DATA statement to reserve storage for data.

ADD10 PROGRAM STPGM
COUNT DATA F'O’
SUM DATA F'O’

These DATA statements indicate that the reserved areas are type F (for fullword) and that the
initial value of the areas is 0.

Since DATA statements do not cause any action to occur, place them either before the first

instruction or after the last instruction.

Retrieving Data

The next step is to get input data into the program. In this program, we use a GETVALUE
instruction to get the data.

ADD10 PROGRAM STPGM

STPGM GETVALUE COUNT, 'ENTER NUMBER: '
COUNT DATA F'0'

SUM DATA F'o'

When the GETVALUE instruction executes, the message “ENTER NUMBER: ” appears on
the terminal screen. When someone enters a number and presses the ENTER key, the system
stores the number in the data area called COUNT.

Processing the Data

This program is going to add the number that is entered from the terminal to the contents of
storage area SUM. You need an ADD instruction to perform the addition. The number is going
to be added to COUNT ten times. So the ADD instruction is placed inside a DO loop, which
consists of a DO instruction and an ENDDO instruction. The DO instruction indicates how
many times the instructions (in this case, an ADD instruction) is to be executed.

PG-4 SC34-0438

Coding the program (continued)

ADD10 PROGRAM STPGM
STPGM GETVALUE COUNT, 'ENTER NUMBER: '
LOOP DO 10, TIMES
ADD SUM, COUNT
ENDDO
COUNT DATA F'O'
SUM DATA F'O'

Obtaining the Results

At this point, the program includes instructions to read data and process the data. To print the
results, you use two instructions: PRINTEXT and PRINTNUM.

ADD10 PROGRAM STPGM
STPGM GETVALUE COUNT, 'ENTER NUMBER: '
LOOP DO 10, TIMES
ADD SUM, COUNT
ENDDO

PRINTEXT 'QRESULT='
PRINTNUM SUM

COUNT DATA F'0'
SUM DATA F'0'

The PRINTEXT instruction will print “RESULT=" on the terminal screen. The “(@”’ symbol

will cause “RESULT="" to be printed on a new line on the terminal screen. The PRINTNUM
instruction will print the results of the process, which is stored in the SUM data area.

Ending the Program

The program needs three more statements to be complete. The PROGSTOP statement stops
the program. You code PROGSTOP after the last executable instruction in the program.

All EDL programs must end with the ENDPROG and END statements.

The completed program looks like this:

ADD10 PROGRAM STPGM
STPGM GETVALUE COUNT, 'ENTER NUMBER: '
LOOP DO 10, TIMES
ADD SUM, COUNT
ENDDO

PRINTEXT 'QRESULT='
PRINTNUM SUM

PROGSTOP
COUNT DATA F'0'
SUM DATA F'O'
ENDPROG
END

Chapter 1. Getting Started PG-5

Getting Started

Coding the program (continued)

The next step is to enter your program into a data set. The instructions and statements that
make up a program are called the source program. We will show you how to use the session
manager to enter the source program. The session manager provides a series of menus to help
you enter a source program.

Entering the Source Program into a Data Set

All the steps for entering the source program are listed below. If you want to actually enter the
sample source program into a data set, follow the numbered steps.

To invoke the session manager on your terminal:
1. Press the attention key.

2. Type $L $SMMAIN.

3. Press the enter key.

When you press the enter key, the logon screen appears:

($SMMLOG: THIS TERMINAL IS LOGGED ON TO THE SESSION MANAGER-------------

09:55:31

ENTER 1-4 CHAR USER 1D ==> 10/24/82
(ENTER LOGOFF TO EXIT)

ALTERNATE SESSION MENU ==> ~
\(OPTIONAL))

To begin a session:

1. Type a unique user identification (called a user ID). The user id can be one to four
characters long.

2. Press the enter key.

This chapter uses ABCD as the user ID.

PG-6 5C34-0438

Entering the Source Program into a Data Set (continued)

The Primary Option Menu appears on the screen. To enter a source program into a data set,
select option 1 (TEXT EDITING).

(;;MMPRIM: SESSION MANAGER PRIMARY OPTION MENU ----------------omoommoo e D
ENTER/SELECT PARAMETERS: PRESS PF3 TO EXIT

10:00:00
SELECT OPTION ==> | 10/24/82
: ABCD

- TEXT EDITING ,

- PROGRAM PREPARATION

- DATA MANAGEMENT

- TERMINAL UTILITIES

GRAPHICS UTILITIES

- EXEC PROGRAM/UTILITY

- EXEC $JOBUTIL PROC

- COMMUNICATION UTILITIES ~ : ;
- DIAGNOSTIC AIDS A;/

WONOVIEWN -
i

_

1. Type 1on the SELECT OPTION line.
2. Press the enter key.

The $FSEDIT PRIMARY OPTION MENU appears on the screen. Use option 2 (EDIT) to
create a new data set.

G:QEDIT PRIMARY OPTION MENU ==-===========mmmmooooooooommmooo STATUS = INIT ‘\
PRESS PF3 TO EXIT

OPTION ===> 2

DATASET NAME =========> (CURRENTLY IN WORK DATASET)
VOLUME NAME ==========>

HOST DATASET ========>
ENTER A VOLUME NAME AND PRESS ENTER FOR A DIRECTORY LIST.

---- BROWSE

---- EDIT

---- READ (HOST/NATIVE)
---- WRITE (HOST/NATIVE)
---- SUBMIT

-==- PRINT

---- MERGE

---- END

HELP :
; ~ J

CON OV EWN -

(¥
]
)
i
)

A

Chapter 1. Getting Started PG-7

3

Getting Started

Entering the Source Program into a Data Set (continued)

1. Type

2. Press the enter key.

on the OPTION line.

Your data set then appears. This is where you will type the source program.

EDIT --- $SMEABCD , EDX002

COMMAND INPUT ===>
kkkkk kkkkk TOP OF DATA *rrkkdiidikkkhhdhhhhhhhhhhhhhhskhkhhdhhhhhhhhhhhhikkkk

0(1089)----====-=mmmmmmmmmman COLUMNS 001 072
SCROLL ==> HALF

khkkk Akkkk BOTTOM OF DATA dhkhkhkdkhhhhhhhhhbhhbhhhbhhhhhhbb bbbkt hrk

To enter the source program, do the following:

1. Type the first line of code.

2. Press the enter key to cause a blank entry line to appear.

3. Type the next line of code.

4. Press the enter key.

5. Repeat steps 3 and 4 until you have entered the entire source program.

6. When you finish entering the source program, move the cursor to the COMMAND INPUT

line and type M (for “menu’).

7. Press the enter key.

-

K*hkkk

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110

00120
kkkkk

-

EDIT --- $SMEABCD , EDX002
COMMAND INPUT ===> M

0(1089)---=======mmmmmmmmnmn COLUMNS 001 072
SCROLL ==> HALF

*kkkk TOP OF DATA kkkhhhhhhbhhhhhhhhhhhbbhbhhhhhhbbbbbhhbhbhbbhhhbhhbhhhhhrx

ADD10 PROGRAM

STPGM GETVALUE

LoOP DO

ADD

ENDDO
PRINTEXT
PRINTNUM
PROGSTOP

COUNT DATA

SUM DATA
ENDPROG
END

STPGM

COUNT, 'ENTER NUMBER: '
10,TIMES

SUM,COUNT

'@RESULT='

kkkkk BOTTOM OF DATA khkkhkhhdhhhhhhhhbhhhhhhhhhhhhhhhbhhhhbhbhhhhhhhhhdt

/

PG-8 5C34-0438

Entering the Source Program into a Data Set (continued)

The $FSEDIT PRIMARY OPTION MENU appears again.

The next step is to write the data set to a volume. When you write the data set, you copy the
data set from the temporary data set that $FSEDIT has been using. The data set name we have
chosen is ADD10 and the volume name is EDX002. Select option 4 (WRITE) to write the data
set to a volume.

$FSEDIT PRIMARY OPTION MENU ======mmmmmm oo oo STATUS = MODIFIED)
PRESS PF3 TO EXIT

OPTION ===> 4

DATASET NAME =========> ADD10 (CURRENTLY IN WORK DATASET)

VOLUME NAME ==========> EDX002

HOST DATASET ========>

ENTER A VOLUME NAME AND PRESS ENTER FOR A DIRECTORY LIST.

1 ---- BROWSE
2 ---- EDIT

3 ---- READ (HOST/NATIVE)
4 ---- WRITE (HOST/NATIVE)
5 ---- SUBMIT

6 ---- PRINT

7 ---- MERGE

8 ---- END

9 ---- HELP

p
_

1. Type 4on the OPTION line.

2. Type ADD10onthe DATASET NAME line.
3. Type EDX0¢2on the VOLUME NAME line.
4. Press the enter key.

The prompt:

Lf?ITE TO ADD10 ON EDX002 (Y/N)? ’

appears on the bottom of the screen. Type Y and press the enter key.

The message:

l12 LINES WRITTEN TO ADDI10 ,EDX002 J
N S
appears on the bottom of the screen. This message means that your source program is 12 lines
long and has been written to volume EDX002.

Chapter 1. Getting Started PG-9

Getting Started

Entering the Source Program into a Data Set (continued)

Now that you have entered and written the source program to a data set, return to the Session

Manager Primary Option Menu.

SFSEDIT PRIMARY OPTION MENU —---===-=-==-——mmmmmmmm STATUS = SAVED)
PRESS PF3 TO EXIT
OPTION ===>8
DATASET NAME =========> (CURRENTLY IN WORK DATASET)
VOLUME NAME ===s==s=====> ;
HOST DATASET =====m==D
ENTER A VOLUME NAME AND PRESS ENTER FOR A DIRECTORY LIST.
1 ---- BROWSE
2 ---- EDIT
3 ---- READ (HOST/NATIVE)
4 ---- WRITE (HOST/NATIVE)
5 ---- SUBMIT
6 ---- PRINT
7 ---- MERGE
8 ---- END
9 ---- HELP
\ Y,

1. Type8 on the OPTION line.

2. Press the enter key.

PG-10 SC34-0438

Entering the Source Program into a Data Set (continued)

Compiling Your Source Program

To prepare a source program to run on the system, you must compile it into object code. To do
this, use $EDXASM, the EDX compiler.

Before you actually begin to compile, you must allocate a data set to hold the output (the object
code). Start by selecting option 3 (DATA MANAGEMENT).

$SMHPR|M SESSION MANAGER PRIMARY OPTION MENU -------------—=-—--——eemo
ENTER/SELECT PARAMETERS PRESS PF3 TO EXIT

- ; 10:42:07
SELECT 0PT|0N ==>’3 10/24/82
L S . ABCD

TEXT EDITING

PROGRAM PREPARAT | ON
DATA MANAGEMENT
TERMINAL UTILITIES
GRAPHICS UTILITIES

EXEC PROGRAM/UTILITY
EXEC $JOBUTIL PROC
COMMUNICATION UTILITIES
DIAGNOSTIC AIDS

J ‘ J,

W ONAOVIEWN —
Fache G iR b b B

1. Type 3on the SELECT OPTION line.

2. Press the enter key.

Chapter 1. Getting Started PG-

Getting Started

Compiling Your Source Program (continued)

The Data Management Option Menu appears on the screen. To allocate your object code data
set, you select option 1 ($DISKUT1).

,;;MMOB SESSION

SELECT OPTION

- $DISKUT1
- $DISKUT2
- $COPYUT1
- $COMPRES
- $COPY
$DASD|

- $INITDSK
- $MOVEVOL
- S1AMUT1
- $TAPEUT1
- $HXUT1

— OWoONOWVIEWN =
1

— —

INSTEAD OF A

-

MANAGER DATA MANAGEMENT OPTION MENU------
ENTER/SELECT PARAMETERS:

== 1

(DISK(ETTE) ALLOCATE, LIST DIRECTORY)
(DISK(ETTE) DUMP/LIST DATASETS)
(DISK(ETTE) COPY DATASETS/VOLUMES)
(DISK(ETTE) COMPRESS A VOLUME)
(DISK(ETTE) COPY DATASETS/VOLUMES)
(DISK(ETTE) SURFACE INITIALIZATION)
(DISK(ETTE) INITIALIZE/VERIFY)

(COPY DISK VOLUME TO MULTI-DISKETTES)
(INDEXED ACCESS METHOD UTILITY PROGRAM)
(TAPE ALLOCATE, CHANGE, COPY)
(H-EXCHANGE DATASET UTILITY)

WHEN ENTERING THESE UTILITIES, THE USER IS EXPECTED
TO ENTER A COMMAND. IF A QUESTION MARK (?) IS ENTERED

COMMAND, THE USER WILL BE PRESENTED WITH

A LIST OF AVAILABLE COMMANDS.

~N

PRESS PF3 TO RETURN

1. Type 1 onthe SELECT OPTION line.

2. Press the enter key.

PG-12 sC34-0438

Compiling Your Source Program (continued)

The $DISKUT]1 utility prompts you for the command and for information about the data set you
want to create. Use the AL (allocate) command. Call the data set that will hold the object code
ADDOBIJ. Allocate a 25-record data set and use the default data type.

\

LOADING $DISKUT1 59P,11:00:00, LP=9200, PART= 1
$DISKUT1 - DATA SET MANAGEMENT UTILITY |
USING VOLUME EDX002

COMMAND (7): AL

MEMBER NAME: ADDOBJ

HOW MANY RECORDS? 25

DEFAULT TYPE = DATA - OK (Y/N)? Y
ADDOBJ CREATED

COMMAND (?): EN)

1. Type AL on the COMMAND (?) line.

2. Press the enter key.

3. Type ADDOBJ on the MEMBER NAME line.

4. Press the enter key.

5. Type 25 next to the HOW MANY RECORDS? prompt.

6. Press the enter key.

7. Type Y next to the DEFAULT TYPE = DATA - OK (Y/N)? prompt.
8. Press the enter key.

A message appears telling you that the ADDOBJ data set has been created. Enter the EN (end)
command to return to the Data Management Option Menu screen.

1. Type EN next to the COMMAND (?) prompt.
2. Press the enter key.

The next step is to return to the Session Manager Primary Option Menu to begin the compile.
To return to that menu, press the PF3 key.

Chapter 1. Getting Started PG-13

Getting Started

Compiling Your Source Program (continued)

From the Session Manager Primary Option Menu, select option 2 (PROGRAM
PREPARATION) to begin the compile step.

f

SSMMPR IM: SESSION MANAGER PRIMARY OPTION MENU ---------=-==--o-mmmmmmmmmme
ENTER/SELECT PARAMETERS: PRESS PF3 TO EXIT

11:12:07
SELECT OPTION ==> 2 10/24/82
ABCD

- TEXT EDITING

- PROGRAM PREPARATION

- DATA MANAGEMENT

- TERMINAL UTILITIES

- GRAPHICS UTILITIES

EXEC PROGRAM/UTILITY

- EXEC $JOBUTIL PROC

- COMMUNICATION UTILITIES
- DIAGNOSTIC AIDS

W ONOVIEWN =
1

-

1. Type 2onthe SELECT OPTION line.
2. Press the enter key.

The Program Preparation Option Menu appears on your screen. To compile the source
program, select option 1 ($EDXASM COMPILER).

(

$SMMO2 SESSION MANAGER PROGRAM PREPARATION OPTION MENU----=-=--=-=----~----
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SELECT OPTION ==> 1

- SEDXASM COMPILER

- $EDXASM/SEDXL INK

- $S1ASM ASSEMBLER

- $COBOL COMPILER

$FORT FORTRAN COMPILER

- $PLI COMPILER/SEDXLINK

- $EDXLINK LINKAGE EDITOR

- $XPSLINK LINKAGE EDITOR FOR SUPERVISORS
- SUPDATE

10 - SUPDATEH (HOST)

11 - $PREFIND

12 - $PASCAL COMPILER/SEDXLINK

13 - SEDXASM/S$XPSLINK FOR SUPERVISORS

W OoONAVIEWN —
[}

\

1. Type 1on the SELECT OPTION line.

2. Press the enter key.

PG-14 sC34-0438

Compiling Your Source Program (continued)

The $EDXASM Parameter Input Menu appears on your screen. You must enter the name of
your source program (data set ADD10 on volume EDX002) and your object output (data set
ADDOBJ on volume EDX002).

$SMM0201: SESSION MANAGER $EDXASM PARAMETER |INPUT MENU---=---=-===---=c—mo—mm-
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SOURCE INPUT (NAME,VOLUME) ==>ADD10,EDX002

OBJECT OUTPUT (NAME,VOLUME) ==>ADDOBJ,EDX002

==>

OPTIONAL PARAMETER
(SELECT FROM THE LIST BELOW)

AVAILABLE PARAMETERS: ABBREVIATION: DESCRIPTION:

NOLIST

LIST TERMINAL-NAME
ERRORS TERMINAL-NAME
CONTROL DATA SET,VOLUME
OVERLAY #

NO

L1 TERMINAL-NAME
ER TERMINAL-NAME
CO DATA SET,VOLUME
ov #

USED TO SUPPRESS LISTING

USE LIST * FOR THIS TERMINAL

USE ERRORS * FOR THIS TERMINAL
SEDXASM LANGUAGE CONTROL DATASET
1S NUMBER OF AREAS FROM 1 TO 6

DEFAULT PARAMETERS:
LIST $SYSPRTR CONTROL $EDXL,ASMLIB OVERLAY 4

1

1. Type ADD10,EDX002 next to SOURCE INPUT (NAME,VOLUME).
2. Type ADDOBJ,EDX002 next to OBJECT OUTPUT (NAME,VOLUME).
3. Press the enter key.

$EDXASM then compiles the source program into object code and puts the object code into
data set ADDOBJ. This data set is used as input to the next step, ‘“Creating a Load Module.”

The information listed under DEFAULT PARAMETERS means that the compiler will print a
listing of the program on the system printer, $SYSPRTR.

Chapter 1. Getting Started PG-15

Getting Started

Compiling Your Source Program (continued)

As the compilation runs, the following appears on your screen.

. ™

LOADING $JOBUTIL 4P ,11:21:25, LP= 9400, PART= 1
REMARK

ASSEMBLE ADD10,EDX002 TO ADDOBJ,EDX002

k%% JOB - S$EDXASM - STARTED AT 11:21:56 00/00/00 ***

JoB SEDXASM ($SMP0201) USERID=ABCD
LOAD ING $EDXASM 78P,11:22:28, LP= 9800, PART= 1

ASSEMBLY STARTED 1 OVERLAY AREA ACTIVE
COMPLETION CODE = -1

SEDXASM ENDED AT 11:22:55
$JOBUTIL ENDED AT 11:22:56

PRESS ENTER KEY TO RETURN

_/

If the screen gets filled up before displaying PRESS ENTER KEY TO RETURN, press the
enter key.

A completion code of -1 means that your compilation completed successfully. Any completion
code other than -1 means the program did not compile successfully.

Checking Your Compiler Listing

PG-16

SC34-0438

The compiler prints a listing that consists of statistics, source code statements and object code,
undefined or external symbols, and a completion code.

If you do not receive a completion code of -1, check your listing for errors, fix them in your
source data set, and rerun the compilation. For information on fixing compiler errors, see
“Checking Your Compiler Listing and Correcting Errors” on page PG-76.

If you receive a completion code of -1, do the following:

1. Press the enter key to return to the SEDXASM Parameter Input Menu.

2. Press the PF3 key to return to the Program Preparation Option Menu.

Compiling Your Source Program (continued)

Creating a Load Module

The last step is creating a load module. The load module runs or “‘executes” on the system. In
this example, we use the linkage editor, SEDXLINK, to create the load module. $EDXLINK
LINKAGE EDITOR is option 7 on the Program Preparation Option Menu.

$SMM02 SESSION MANAGER PROGRAM PREPARATION OPTION MENU---------------=---—--
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SELECT OPTION ==> 7

- SEDXASM COMPILER

- SEDXASM/SEDXL INK

- $S1ASM ASSEMBLER

- $COBOL COMPILER

SFORT FORTRAN COMPILER

- $PLI COMPILER/SEDXLINK

- SEDXLINK LINKAGE EDITOR

- $XPSLINK LINKAGE EDITOR FOR SUPERVISORS
- SUPDATE

10 - SUPDATEH (HOST)

11 - SPREFIND

12 - $PASCAL COMPILER/SEDXLINK

13 - SEDXASM/$XPSLINK FOR SUPERVISORS

(G 4

WOoONOVIEZWN —
]

1. Type 7onthe SELECT OPTION line.
2. Press the enter key.

The $EDXLINK Parameter Input Menu appears on your screen. Enter an asterisk (*) next to
EXECUTION PARM to indicate that you want the system to prompt you for linkage editor
statements.

£)

$SMM0207: SESSION MANAGER $EDXLINK PARAMETER INPUT MENU---===--==------------
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

EXECUTION PARM ==> *

ENTER A CONTROL DATA SET NAME,VOLUME OR
AN ASTERISK (*) FOR INTERACTIVE MODE.

OUTPUT DEVICE (DEFAULTS TO $SYSPRTR) ==> <l)

&

1. Type #onthe EXECUTION PARM line.

Chapter 1. Getting Started PG-17

Getting Started

Creating a Load Module (continued)

PG-18

SC34-0438

2. Press the enter key.

$EDXLINK displays the following screen:

LOADING $JOBUTIL kP ,11:27:06, LP= 9400, PART= 1

REMARK
SEDXLINK *

% JOB - $EDXLINK - STARTED AT 11:27:16 11/13/82 *
JOB SEDXLINK ($SMP0207) USERID=ABCD

LOADING $EDXL INK 89P,11:27:18, LP= 9800, PART= 1

SEDXLINK - EDX LINKAGE EDITOR

SEDXLINK INTERACTIVE MODE
DEFAULT VOLUME = EDX002

STMT (?):

\- J

Next, enter an INCLUDE statement to indicate which object module to use. (Remember, the
object module is ADDOBJ.) Then, enter a LINK statement to indicate the name of the output
data set. When you enter the name of this data set (in this case, ADDPGM), the system
allocates the data set.

1. Type INCLUDE ADDOBJ,EDX002 next to STMT (?).

2. Press the enter key.

3. Type LINK ADDPGM,EDX002 next to STMT (?).

4. Press the enter key.

After the system indicates that the link-edit is successful, return to the Primary Option Menu to
execute your program. To return to the Primary Option Menu:

1. Type EN next to STMT (?).
2. Press the enter key.
3. Press the PF3 key to return to the Program Preparation Option Menu.

4. Press the PF3 key again.

Creating a Load Module (continued)

Running Your Program

To run (or execute) your program, select option 6 (EXEC PROGRAM/UTILITY).

(;;MMPRIM: SESSION MANAGER PRIMARY OPTION MENU =-===--=======ommmooomomooooe D
ENTER/SELECT PARAMETERS: PRESS PF3 TO EXIT

11:42:07
SELECT OPTION ==> § 10/24/82
ABCD

TEXT EDITING

PROGRAM PREPARATION
DATA MANAGEMENT
TERMINAL UTILITIES
GRAPHICS UTILITIES

EXEC PROGRAM/UTILITY
EXEC $JOBUTIL PROC
COMMUNICATION UTILITIES
DIAGNOSTIC AIDS

. J

W ONOVIEWN =

1. Type 6 on the SELECT OPTION line.
2. Press the enter key.

The Execute Program/Utility menu appears. You must enter the program name (ADDPGM)
and volume (EDX002). Then, type asterisks (*) next to the data sets not used.

$SMMO6 SESSION MANAGER EXECUTE PROGRAM/UTILITY-===---===--mcmmmmmmmmeo o A
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

PROGRAM/UTILITY (NAME,VOLUME) ==> ADDPGM,EDX002

PARAMETERS ===>

DATA SET 1 (NAME,VOLUME / * = DS1 NOT USED) ===> *

DATA SET 2 (NAME,VOLUME / * = DS2 NOT USED) ===> *

DATA SET 3 (NAME,VOLUME / * = DS3 NOT USED) ===> *

NOTE: |F A DATA SET (DS1, DS2 OR DS3) IS NOT USED,
\\¥ AN ASTERISK (*) MUST BE ENTERED IN THE DATA SET FIELD.)

1. Type ADDPGM,.EDX002 next to PROGRAM/UTILITY (NAME,VOLUME).
2. Type an asterisk in the DATA SET 1, DATA SET 2, and DATA SET 3 fields.

3. Press the enter key.

Chapter 1. Getting Started PG-19

Getting Started

Running Your Program (continued)

PG-20

SC34-0438

The following text appears on the terminal:

LOADING $JOBUTIL 4p,11:48:21, LP= 9400, PART= 1
REMARK

EXECUTE PROGRAM/UTILITY: ADDPGM

% JOB - ADDPGM - STARTED AT 11:48:22 11/14/82 *

Jos ADDPGM ($SMP06) USERID=ABCD
LOAD ING ADDPGM 2P,11:48:23, LP= 9800, PART= 1
ENTER NUMBER:

The program displays ENTER NUMBER on the screen and waits for you to enter a number.
(Remember that “ENTER NUMBER” was coded on the GETVALUE instruction.)

1. Type 5 next to ENTER NUMBER.

2. Press the enter key.

LOADING ADDPGM 2P,11:48:55, LP= 9800, PART= 1
ENTER NUMBER: 5

RESULT= 50
ADDPGM ENDED AT 11:48:57

$JOBUTIL ENDED AT 11:48:58

PRESS ENTER KEY TO RETURN

The program displays the results of the processing. The program:

1. Stored the number you entered (5) in an area called COUNT.

2. Added the value of COUNT to the value of SUM, which was initialized to O.
3. Added the two values 10 times.

4. Displayed the result (RESULT= 50) on the terminal screen.

The PRINTEXT instruction displayed RESULT=. The PRINTNUM instruction displayed the
value of SUM (50).

Chapter 2. Writing a Source Program

This chapter tells how to use the EDL instructions to handle the basic functions of the language:
reading and writing data, data conversions, and data manipulation (such as moving, adding, and
subtracting.)

This chapter discusses the following topics:

+ Beginning the program

« Reserving storage

« Reading data into a data area

« Moving data

« Converting data

¢ Manipulating data

¢ Writing data from a data area

« Controlling program logic

« Ending the program

All the instructions are discussed in detail in the Language Reference. This chapter lists the
instructions by function and discusses only a subset of them.

Chapter 2. Writing a Source Program PG-21

Writing a Source Program

Beginning the Program

The first statement in every EDL program must be a PROGRAM statement. The PROGRAM
statement defines several things about the program to the Event Driven Executive, only two of
which are discussed in this section.

Defining the Primary Task

Two important functions of the PROGRAM statement are to define the ‘“‘primary task’ and
provide the label of the first ‘“‘executable instruction.”

The primary task is the first task the system starts when you invoke the program.

An executable instruction causes some action to take place. For example, instructions that read,
write, move, or perform arithmetic operations are executable instructions.

The following example shows a program with task name TASK1. Its first executable instruction
is at location START1.

TASK1 PROGRAM START1

ldentifying Data Sets to be Used in Your Program

PG-22

SC34-0438

Another important function of the PROGRAM statement is to identify the data sets that a
program will use.

The DS= keyword operand of the PROGRAM statement allows you to idenfity up to nine data
sets that the program can use. A keyword operand usually contains an equal (=) sign. The
“keyword” to the left of the equal sign identifies what information you are supplying. The
keyword operand must appear, of course, exactly as the system expects it. For example, if you
code the DS= operand as SD=, the system would not recognize it. The advandage of keyword
operands is that you can code them in any order.

When you specify data set names in the PROGRAM statement, the system opens the data sets
when you load the program.

When the program executes, all data sets must already exist. One way to allocate data sets is
with the $DISKUT1 utility.

If a program uses one data set and the data set resides on the IPL volume, the PROGRAM
statement might look like this:

UPDATE PROGRAM START1, DS=TRANS
The program uses data set TRANS on the IPL volume.

If a program uses more than one data set and the data sets all reside on the IPL volume, the
DS= operand would contain one set of parentheses as follows:

UPDATE PROGRAM START1,DS= (TRANS,MASTIN,MASTOUT)

Beginning the Program (continued)

The program uses data sets TRANS, MASTIN, and MASTOUT on the IPL volume.

If the data resides on a volume other than the IPL volume, two sets of parentheses are required.
For example:

TASK1 PROGRAM START1,DS=((DATA1,MYVOL) , MASTER)

The program uses data set DATA1 on volume MYVOL and data set MASTER on the IPL
volume.

Reserving Storage

This section shows how to reserve storage for arithmetic values or character strings.

EDL allows you to define arithmetic values in two ways: as “integer” data and as
“floating-point” data. /nteger data consists of positive and negative numbers with no decimal
point. Floating-point data consists of positive and negative numbers that can have decimal points.

For example, you can define the number 7 as either a floating-point number or an integer. To
define the number 7.5, however, you must define it as a floating-point number.

Reserving Storage for Integers

To reserve storage for an integer, you can use either the DATA or DC statement. The following
DATA statement, for example, defines a storage area for a 2-byte signed integer.

NODOGS DATA F'O’

NODOGS is the name or label of the storage area. This type of storage area is often called a
variable. The F defines a fullword (two bytes) and ‘0’ assigns an initial value of zero to the
area.

To set up more than one 1-word area in one statement, you can use the duplication factor. The
statement:

FITABLE DATA 15F'0’
reserves fifteen 1-word areas and assigns a zero to each.

You can use the areas called NODOGS and FITABLE in data manipulation instructions such as
ADD and SUBTRACT.

Assigning an Initial Value

To assign an initial value, enclose the value in apostrophes as follows:

FIM DATA F'5280'

Chapter 2. Writing a Source Program PG-23

Writing a Source Program

Reserving Storage (continued)

The storage area called FIM will contain the decimal value 5280 throughout the execution of
your program, unless you change it.

You can also assign a hexadecimal value to a storage area. For example:

XFIM DATA X'14A0'

XFIM contains the hexadecimal value ‘14A0’ (decimal 5280).

Defining a Halfword or Doubleword Data Area

You can also define a halfword (1-byte) or doubleword (4-byte) data area. The following
statements reserve storage for halfword integers:

MSIX DATA H'-6'
SHVAR DATA H'O'

MSIX contains the value of minus 6.

To reserve four bytes of storage, define a data area as follows:

QTRMIL DATA D'250000'
LNGVAR DATA D'O'

QTRMIL occupies a doubleword (4 bytes) of storage and contains an initial value of 250,000
(decimal).

Defining Floating-Point Values

PG-24

SC34-0438

To define floating-point values, you can use either the DATA or DC statement. How large the
number is determines how you define the storage. If the number falls between 10-76 and 1076
and contains less than seven significant digits, you can define a single-precision floating-point
data area. Each single-precision floating-point number requires 4 bytes of storage.

The following DATA statement defines a storage area for a single-precision floating-point
number.
NETPAY DATA E'000.00'

NETPAY is the name of the storage area. The E defines a floating-point data area and assigns
it an initial value of zero.

To set up more than one floating-point data area, you can use the duplication factor. The
statement
NPTAB DATA 12E'000.00'

reserves storage for twelve 4-byte floating-point data areas and assigns an initial value of zero to
each.

Reserving Storage (continued)

Assigning an Initial Value

To assign an intial value to a floating point data area, enclose the value in apostrophes as
follows:

PI DATA E'3.14159'

PI contains the decimal value 3.14159. You can also express the exponent for a floating-point
data area as in the following examples:

PIE DATA E'.314159E1'
PIE2 DATA E'314.159E-2'

Defining an Extended-Precision Data Area

If a floating-point number requires more than 6 and fewer than 15 significant digits, you must
use extended-precision floating point. Each extended-precision floating-point number requires 8
bytes of storage.

The following DATA statements define storage areas for extended-precision floating-point
numbers:

MSMNT DATA L'0.000'
MYCELLS DATA L'15063842E12'

Defining Character Strings

To define character strings, you can use either the DATA or DC statement. The following
DATA statement defines a storage area for a 6-byte character string:

NAME DATA C'TILTON'

NAME is the name or label of the storage area. The length of the storage area is the number of
characters inside the apostrophes.

If you want an area of blanks, you can use the duplication factor:

BLNKS DATA 10C' '
BLNKS is an area of 10 blanks.

To set up an area that contains a character string followed by blanks, define the storage area like
this:

DOLCON DATA CL4's'

DOLCON contains two dollar signs ($$) followed by two blanks.

Chapter 2. Writing a Source Program PG-25

Writing a Source Program

Reserving Storage (continued)

Assigning a Value to a Symbol

The EQU statement assigns a value to a symbol. You can use the symbol (the label on the EQU
statement) as an operand in other instructions wherever symbols are allowed. If you use a label
as an operand in an EQU statement, you must have defined it previously.

For example, you cannot code:

ABLE EQU BAKER
unless you have previously defined BAKER.

The following example assigns the word value X’0002’ to A.

A EQU 2

If you refer to the equated value with its label, the system assumes you are referring to a storage
location. For example, if you use A in the following instruction:

MOVE B,A
the system moves the word at address 0002 to B.

If, however, you want to use the equated value as the number 2, you must precede the label with
a plus sign (+) as follows:

MOVE B,+A
This instruction moves 2 to B.

The next example assigns the word value of A to B.

B EQU A

The following example shows how you can use the equated symbols in a program:

ﬂ MOVE C,A

MOVE C,+A

MOVE C,+B

4] MOVE C,+A, (1,BYTE)

A EQU 2
s EQU A
C DATA F

1} Move the contents of address 0002 to C.

2] Move X’0002’ to C.

PG-26 SC34-0438

Reserving Storage (continued)

Move X’0002’ to C.

4] Move the leftmost byte of the word value X’0002’ (X’00’) to C.
Define A with a word value of X°0002’.

E Assign B the value of A (X’0002’).

Defining an input/Output Area

To define an area to read into or to write from, you must know where the data is coming from
or where it is going.

If you are reading or writing data from tape, disk, or diskette, you can define an input/output
area with a BUFFER statement, a DATA statement, or a DC statement.

If you are reading or writing data from a terminal, you can define an input/output area with a
TEXT statement, a DATA statement, or a DC statement.

If you use either a DATA statement or a DC statement, however, you must precede the storage
area with a word (2 bytes) containing the length and count. (Refer to the Language Reference for
information on how the system constructs a storage area defined by a TEXT statement.)

Defining a BUFFER Statement

A BUFFER statement defines a data storage area. When you read or write records to disk,
diskette, or tape, you can use the BUFFER statement to define the buffer. To define a
256-byte buffer, use the BUFFER statement as follows:

RDAREA BUFFER 256,BYTES
RDAREA is the name of the buffer.

A buffer consists of an index, a length, and the data storage area. The index and the length each
occupy one word (2 bytes). Therefore, a 256-byte buffer actually occupies 260 bytes of
storage. For more information on the structure of a buffer, refer to the Language Reference.

Defining a TEXT Statement

Use the TEXT statement to define a message or storage area. Use the TEXT statement in
conjunction with the PRINTEXT or READTEXT instructions. The PRINTEXT instruction
prints the message or storage area on a terminal. The READTEXT instruction reads a character
string from a terminal into the storage area defined by the TEXT statement.

When you code a TEXT statement, the system creates an area that consists of a 1-byte length,

1-byte count, and the message or storage area. Therefore, a 24-character message, for example,
requires 26 bytes of storage. The maximum length of a TEXT statement is 254 bytes.

Chapter 2. Writing a Source Program PG-27

Writing a Source Program

Reserving Storage (continued)

The following example creates the message ENTER YOUR NAME:

MSG1 TEXT 'ENTER YOUR NAME:'

To cause the message to appear on a terminal, code a PRINTEXT instruction that references
MSG]1, the name of the TEXT statement.

To define a storage area for data that you will read from a terminal, code the following:

ADDRESS TEXT LENGTH=30

A READTEXT instruction can read data from a terminal into the storage area by referencing
ADDRESS, the name of the TEXT statement.

Reading Data into a Data Area

When you read data into a data area, the instruction you use depends on the kind of data and
where it is coming from.

If the data resides on disk, diskette, or tape, use the READ instruction. If the data is coming
from a terminal, use either the READTEXT or GETVALUE instruction. If the data is
alphameric, use READTEXT. If the data consists of one floating-point number or one or more
integers, use GETVALUE.

Reading Data from Disk or Diskette

PG-28

SC34-0438

You can read disk or diskette data sets either sequentially or directly. When you read, you
always read a multiple of 256 bytes. In EDX, 256 bytes is called an “EDX record”.

The READ instruction reads a record from one of the data sets you specify in the PROGRAM
statement. The following READ instruction reads a record sequentially from the third data set
defined on the PROGRAM statement.

READ DS3,DISKBUFF, 1,0, ERROR=RDERROR , END=NOTFOUND

DISKBUFF BUFFER 256,BYTES

The system reads one record (indicated by 1 in the third operand) sequentially (indicated by 0O in
the fourth operand) into DISKBUFF. If no more records exist on the data set, the program
branches to NOTFOUND. If an I/0O error occurs, the program branches to RDERROR.
Otherwise, the system places the data in the 256-byte buffer DISKBUFF.

To read a data set directly, code the fourth operand with an integer greater than zero as follows:

Reading Data into a Data Area (continued)

READ DS2,BUFR, 1,52,ERROR=RDERR, END=ALLOVER

BUFR BUFFER 512,BYTES

The system reads the 52nd record (indicated by 52 in the fourth operand) into BUFR. If the
data set does not contain 52 records, the program branches to ALLOVER. If an 1/0 error
occurs, the program branches to RDERR. Otherwise, the system places one record (indicated
by 1 in the third operand) into the 512-byte buffer BUFR.

Reading Data from Tape

You can read tape data sets sequentially only. A tape READ retrieves a record from 18 to
32,767 bytes long.

The following READ instruction reads a record from a tape.

READ DS1,BUFF, 1,327,END=END1, ERROR=ERR, WAIT=YES

BUFF BUFFER 327,BYTES

The system reads one record (indicated by 1 in the third operand). The size of the record is 327
bytes (indicated by 327 in the fourth operand). If no more records exists on the data set,
control transfers to END1. If an error occurs, control transfers to ERR. The system waits for
the operation to complete before continuing (WAIT=YES). The buffer BUFF is 327 bytes
long.

The following READ instruction reads 2 records into buffer BUFF2.

READ DS1,BUFF2,2,327,END=END1, ERROR=ERR,WAIT=YES

BUFF2 BUFFER 654 ,BYTES

The system reads two records (indicated by 2 in the third operand). The size of each record is
327 bytes (indicated by 327 in the fourth operand). If no more records exists on the data set,
control transfers to END1. If an error occurs, control transfers to ERR. The system waits for
the operation to complete before continuing (WAIT=YES). The buffer BUFF2 is 654 bytes
long.

Reading from a Terminal

To read data that an operator enters on a terminal, you can use either the READTEXT or
GETVALUE instruction. The READTEXT instruction allows you to read alphameric data
(alphabetic characters, numbers, and special characters). With the GETVALUE instruction,
you can read numbers (both integer and floating-point) only.

Chapter 2. Writing a Source Program PG-29

Writing a Source Program

Reading Data into a Data Area (continued)

Reading Alphameric Data

To read an alphameric data item into a storage area, use the READTEXT instruction as follows:
READTEXT COUNTY, 'ENTER YOUR COUNTY: ',SKIP=1,MODE=LINE
COUNTY TEXT LENGTH=20
The instruction displays the prompt ENTER YOUR COUNTY: and the system waits for a response.
When the operator enters a name and presses the enter key, the system stores the text string in

an area called COUNTY.

The operand SKIP=1 causes the system to skip one line before displaying the prompt. The
operand MODE=LINE allows blanks in the response.

Unless you know how the system constructs a storage area defined by a TEXT statement, you
should read into an area defined by a TEXT statement.

For more information on reading alphameric data from terminals, see Chapter 8, “Reading and
Writing Data from Screens” on page PG-115.

Reading Numeric Data

PG-30

SC34-0438

The GETVALUE instruction allows you to read either a single floating-point value or more than
one integer from a terminal. The following instruction reads a floating-point number:

GETVALUE BASAL, 'ENTER YOUR BASE SALARY: ', C
TYPE=F,FORMAT=(6,2,F)

BASAL].DATA E'0.00'

The instruction prompts the operator, waits for a response, reads the response, and stores the
number in BASAL. You must have defined BASAL as a floating-point variable. The operand
TYPE=F means that the number will be a single-precision floating-point number.

The operand FORMAT=(6,2,F) says that the number will occupy six positions on the screen
(including the decimal point), that the number will contain two digits to the right of the decimal
point, and that the number will be an “F-type” number such as 325.78.

To read more than one integer, code a third operand on the instruction as follows:

GETVALUE HEIGHTS, 'ENTER FIVE HEIGHTS (IN INCHES): ',5

The instruction assumes that you have defined HEIGHTS as follows:

HEIGHTS DATA 5F'0Q'

Moving Data

You can move data from one place in storage to another with the MOVE instruction. Unless
you specify otherwise, the system moves one word (two bytes). For example, the instruction

MOVE OLDDATA,NEWDATA

OLDDATA DATA F'O'
NEWDATA DATA F'O'

moves the word at NEWDATA to OLDDATA. Note that whatever OLDDATA contained
before the instruction was executed has been overlaid by the data in NEWDATA.

To move more than one word, you must code a third operand. For example, the following
instruction moves 12 words from NEWNAME to OLDNAME:

MOVE OLDNAME,NEWNAME, 12

OLDNAME DATA F'O'
NEWNAME DATA F'O'

To move bytes, code the third operand like this:

MOVE OLDADDR,NEWADDR, (15,BYTE)

OLDADDR TEXT LENGTH=15
NEWADDR TEXT LENGTH=15

This instruction moves the 15 bytes at NEWADDR to OLDADDR.
To move doublewords, code the third operand as follows:

MOVE OLDDESC,NEWDESC, (10, DWORD)

OLDDESC DATA 10D'O’
NEWDESC DATA 10D'O'

This instruction moves the 10 doublewords at NEWDESC to OLDDESC.

To move floating-point value, you must specify FLOAT (for single-precision) or DFLOAT (for
extended-precision).

MOVE TEMPS,MSMNTS, (4,FLOAT)

TEMPS DATA 4E'0.0'
MSMNTS DATA 4E'0.0'

This instruction moves the four single-precision floating-point values at MSMNTS to TEMPS.

Chapter 2. Writing a Source Program PG-31

Writing a Source Program

Converting Data

EDL allows you to do two types of conversion: from binary to an EBCDIC character string and
from an EBCDIC character string to binary. The CONVTB instruction converts from binary to
an EBCDIC character string, while the CONVTD instruction converts from an EBCDIC
character string to binary.

Converting to an EBCDIC Character String

PG-32

SC34-0438

If a number has been stored as a binary number, you must convert it to an EBCDIC character
string if, for example, you want to display the number with the PRINTEXT instruction.

A binary number is any variable you have defined as single-precision integer, double-precision
integer, single-precision floating point, extended-precision floating point, or hexadecimal.
You must convert any of the following data items before you can display them:

NODOGS DATA F'0O’
POPKANS DATA D'O'

PI DATA E'0.0'
FINMEAS DATA L'0.0'
XTRAS DATA X'O'

The following example converts a single-precision integer to an EBCDIC character string.
CONVTB DOGS,NODOGS, PREC=S, FORMAT= (5,0, 1)

DOGS TEXT LENGTH=5
NODOGS DATA F'O'

The instruction converts the single-precision integer (indicated by PREC=S) in NODOGS and
puts the result in DOGS. The FORMAT operand says that you want the converted output to be
5 digits long, contain 0 digits to the right of the decimal point, and be an integer (I).
To convert a double-precision integer, code the CONVTB instruction as follows:

CONVTB POP, POPKANS, PREC=D,FORMAT=(8,0,I)

POP TEXT LENGTH=8
POPKANS DATA D'0'

The instruction converts the double-precision integer (indicated by PREC=D) in POPKANS
and puts the result of the conversion in POP. The FORMAT operand says that you want the
converted output to be 8 digits long, contain 0 digits to the right of the decimal point, and be an
integer (I).

The following instruction converts a single-precision floating-point variable:

CONVTB PIOP,PI,PREC=F,FORMAT=(15,4,F)

PIOP éEXT LENGTH=16
PI DATA E'0.0000"'

Converting Data (continued)

The instruction converts the single-precision floating-point variable (indicated by PREC=F) in
PI and puts the result of the conversion in PIOP. The FORMAT operand says that you want
the converted output to be 15 digits long, contain 4 digits to the right of the decimal point, and
be a floating-point numeric (F).
To convert an extended-precision floating-point variable:

CONVTB FLOP,OP,PREC=L,FORMAT=(17,3,E)

FLOP TEXT LENGTH=24
opP DATA L

The instruction converts the extended-precision floating-point variable (indicated by PREC=L)
in OP and puts the result of the conversion in FLOP. The FORMAT operand says that you
want the converted output to be 17 digits long, contain 3 digits to the right of the decimal point,
and be expressed in exponent notation (E).

Converting to Binary

If you read a number with the READTEXT instruction, you must convert it to binary before
you can add, subtract, multiply, or divide.

The CONVTD instruction converts a character string to a binary number. You can convert a
character string that contains a number to a single-precision integer, a double-precision integer,
single-precision floating point, or extended-precision floating point.

The following CONVTD instruction converts a single-precision integer to binary:

CONVTD GNUS,NOGNUS, PREC=S,FORMAT=(5,0,1I)

GNUS DATA F'0'
NOGNUS TEXT LENGTH=5

The instruction converts the EBCDIC character string in NOGNUS and puts the result in
GNUS, a single-precision integer variable (indicated by PREC=S).

The FORMAT operand says that the data to be converted is 5 digits long, contains 0 digits to
the right of the decimal point, and is an integer(I).

To convert a number that is greater than 32,767, you must convert it to a double-precision
integer as follows:

CONVTD FLEAS,NOFLEAS,PREC=D,FORMAT=(9,0,1I)

FLEAS DATA D'0'
NOFLEAS TEXT LENGTH=9

Chapter 2. Writing a Source Program PG-33

Writing a Source Program

Converting Data (continued)

The instruction converts the EBCDIC character string in NOFLEAS and puts the result in
FLEAS, a double-precision integer variable (indicated by PREC=D).

The FORMAT operand says that the data to be converted is 9 digits long, contains 0 digits to
the right of the decimal point, and is an integer(I).

To convert to single-precision floating point, code the instruction as follows:

CONVTD AVTEMP,TEMP, PREC=F,FORMAT=(8,2,F)

AVTEMP DATA E'0.0'
TEMP TEXT LENGTH=9

The instruction converts the EBCDIC character string in TEMP and puts the resuit in
AVTEMP, a single-precision floating-point variable (indicated by PREC=F).

The FORMAT operand says that the data to be converted is 8 digits long, contains 2 digits to
the right of the decimal point, and is a floating-point number (F).

To convert to extended-precision floating point, code the instruction as follows:

CONVTD AVCOST,COST,PREC=L,FORMAT=(15,3,E)

AVCOST DATA L'0.00"'
COST TEXT LENGTH=20

The instruction converts the EBCDIC character string in COST and puts the result in AVCOST,
an extended-precision floating-point variable (indicated by PREC=L).

The FORMAT operand says that the data to be converted is 15 digits long, contains 3 digits to
the right of the decimal point, and is expressed in exponent notation (E).

Converting from Floating Point to Integer

PG-34

SC34-0438

If you want to manipulate data, both operands in the operation must be either floating point or
integer.

To convert a single-precision floating-point number to integer, code the FPCONYV instruction as
follows:
FPCONV INTNUM, FPNUM, PREC=SF

INTNUM DATA F'0'
FPNUM DATA E'0.0'

The instruction converts the single-precision floating-point number in FPNUM and puts the
result in INTNUM, a single-precision integer variable. The PREC operand indicates that

Converting Data (continued)

INTNUM is a single-precision integer (S) and that FPNUM is a single-precision floating-point
number (F).

To convert an extended-precision floating-point number to double-precision integer, code the
FPCONYV instruction as follows:
FPCONV INTDBL,FPEXT, PREC=DL

INTDBL DATA D'0’
FPEXT DATA L'0.0'

The instruction converts the extended-precision floating-point number in FPEXT and puts the
result in INTDBL, a double-precision integer variable. The PREC operand indicates that
INTDBL is a double-precision integer (D) and that FPEXT is an extended-precision
floating-point number (L).

Note: When you convert from floating point to integer, remember that the system truncates all
data to the right of the decimal point.

Converting from Integer to Floating Point

To convert a single-precision integer to floating-point, code the FPCONY instruction as follows:

FPCONV FPNUM, INTNUM, PREC=FS

INTNUM DATA F'0’
FPNUM DATA E'0.0'

The instruction converts the single-precision integer INTNUM and puts the result in FPNUM, a
single-precision floating-point variable. The first letter in the PREC operand (F) indicates that
FPNUM is a single-precision floating-point variable. The second letter (S) indicates that
INTNUM is a single-precision integer.

To convert a double-precision integer to floating-point:
FPCONV FPEXT, INTDBL, PREC=LD

INTDBL DATA D'O'
FPEXT DATA L'0.0'

The instruction converts the double-precision integer INTDBL and puts the result in FPEXT, an
extended-precision floating-point variable. The first letter in the PREC operand (L) indicates
that FPEXT is an extended-precision floating-point variable. The second letter (D) indicates
that INTDBL is a double-precision integer.

Chapter 2. Writing a Source Program PG-35

Writing a Source Program

Converting Data (continued) .

Checking for Conversion Errors

Each time you execute an instruction that converts data, the system expects the data to be
numeric. If you try to convert a character other than a number, a conversion error occurs.

If, for example, a program prompts an operator for a number and he or she enters a letter, the
system places a return code in the task code word. You can check for a conversion error as
follows:

BEGIN PROGRAM START

CONVTD GNUS, NOGNUS , PREC=S, FORMAT= (5,0, I)

ERRTEST MOVE TASKRC,BEGIN
IF (TASKRC,NE, -1) ,GOTO, CHECK
ENDIF

.

CHECK PRINTEXT 'CONVERSION ERROR',6SKIP=1
PRINTNUM TASKRC

GOTO END
END PROGSTOP
TASKRC DATA F'0’
GNUS DATA F'O'
NOGNUS TEXT LENGTH=5
ENDPROG
END

The instructions at label ERRTEST compare the return code of the CONVTD instruction with
the successful return code (-1). IF NOGNUS contains a nonnumeric character, the system
branches to CHECK.

You must test the return code before executing any other instruction because the system may
overlay the task code word with the return code of the next instruction.

Manipulating Data

The data manipulation instructions perform arithmetic operations on single- or double-precision
integers and single- or extended-precision floating-point numbers. You can also manipulate two
bit-strings with logical instructions such as inclusive-OR and exclusive-OR.

Manipulating Integer Data

The instructions that manipulate integers add, subtract, multiply, or divide two integers. If two
numbers are floating-point numbers, you must use floating-point instructions.

PG-36 SC34-0438

Manipulating Data (continued)

Adding Integers

If one number is a floating-point number and the other is an integer, use the FPCONV
instruction to convert one of the numbers to match the form of the other.

The instructions have the following general form:

operation operandl,operand2
The flow of data is from operand2 to operand1.

The ADD instruction adds the data in operand2 to the data in operand? and places the results in
operand1.

The SUBTRACT instruction subtracts the data in operand2 from the data in operand? and places
the results in operand?.

The DIVIDE and MULTIPLY instructions multiply or divide the data in operand? by the data in
operand2 and store the results in operand1.

The ADD instruction adds two integers. If A and B are integers, you can add A to B with the
following instruction:

ADD B,A
The resuit of the addition replaces B. The value in A remains unchanged.

To add two integers without altering the first operand, use the RESULT operand as follows:

ADD CAT,DOG,RESULT=GIRAFFE

The instruction adds DOG to CAT and places the result in GIRAFFE. The values in DOG and
CAT remain unchanged.

Adding Double-Precision Integers

Unless you specify otherwise, EDL assumes that the integers are single-precision (1-word)
integers. To add two double-precision (2-word) integers, specify the PREC operand as follows:

ADD TOTVEG,BEETS,PREC=DD
The operand PREC=DD says that both TOTVEG and BEETS are double-precision integers.
If only one of the operands is a double-precision integer, it must be the first operand. In

addition, if you specify the RESULT operand, it must be a double-precision variable. For
example:

ADD GHANA,CHAD,RESULT=TOTPOP, PREC=D

Chapter 2. Writing a Source Program PG-37

Writing a Source Program

Manipulating Data (continued)

The operand PREC=D says that GHANA and TOTPOP are double-precision integers. The
absence of the second letter (D or S) on the PREC operand means that CHAD is a
single-precision integer.

Adding Consecutive Integers

To add more than one set of integers, you can specify the number of integers you want to add.
For example:

ADD NEWTOTS,OLDTOTS, 10

The instruction adds the 1-word integer at OLDTOTS to NEWTOTS. Then the instruction
adds the word in OLDTOTS+2 to the word at NEWTOTS+2. The instruction continues to add
until it adds the word at OLDTOTS+ 18 to the word at NEWTOTS+18. This instruction, then,
adds the 10 consecutive words at OLDTOTS to the 10 consecutive words at NEWTOTS. You
can specify up to 32,767 consecutive additions.

Subtracting Integers

PG-38

SC34-0438

The SUBTRACT instruction subtracts one integer from another. If QUERY and ANSWER are
integers, you can subtract ANSWER from QUERY with the following instruction:

SUBTRACT QUERY , ANSWER
The result of the subtraction replaces QUERY. The value in ANSWER remains unchanged.

To subtract two integers without altering the first operand, use the RESULT operand as follows:
SUBTRACT POOLS, STREAMS, RESULT=LAKES

The instruction subtracts STREAMS from POOLS and places the result in LAKES. The values
in POOLS and STREAMS remain unchanged.

Subtracting Double-Precision Integers

Unless you specify otherwise, EDL assumes that the integers are single-precision (1-word)
integers. To subtract two double-precision (2-word) integers, specify the PREC operand as
follows:

SUBTRACT TOTFRUT, PRUNES ,RESULT=REST , PREC=DD
The instruction subtracts PRUNES from TOTFRUT and places the result in REST. The

operand PREC=DD says that TOTFRUT, PRUNES, and REST are all double-precision
integers.

If only one of the operands is a double-precision integer, it must be the first operand. In
addition, if you specify the RESULT operand, it must be a double-precision variable. For
example:

SUBTRACT ATTEND,MALES, RESULT=FEMALES, PREC=D

Manipulating Data (continued)

The instruction subtracts MALES from ATTEND and places the result in FEMALES. The
operand PREC=D says that ATTEND and FEMALES are double-precision integers. The
absence of the second letter (D or S) on the PREC operand means that MALES is a
single-precision integer.

Subtracting Consecutive integers

To subtract more than one set of integers, you can specify the number of integers you want to
subtract. For example:

SUBTRACT NEWTOTS,OLDTOTS,6

The instruction subtracts the 1-word integer at OLDTOTS from NEWTOTS. Then the
instruction subtracts the word in OLDTOTS+2 from the word at NEWTOTS+2. The
instruction continues to subtract until it subtracts the word at OLDTOTS+ 10 from the word at
NEWTOTS+10. This instruction, then, subtracts the 6 consecutive words at OLDTOTS from -
the 6 consecutive words at NEWTOTS. You can specify up to 32,767 consecutive subtractions.

Multiplying Integers

The MULTIPLY instruction multiplies one integer by another.

If M and N are single-precision integers, you can multiply M by N as follows:

MULTIPLY M,N
The result of the multiplication replaces M.

You can also multiply an integer by a constant. The following instruction multiplies FEET by
the constant 12:

MULTIPLY FEET, 12
The result of the multiplication replaces FEET.

To multiply two integers without altering the first operand, use the RESULT operand as follows:

MULTIPLY BOXES,WEIGHT,RESULT=TOTWGT

The instruction multiplies BOXES by WEIGHT and places the result in TOTWGT. The values
in BOXES and WEIGHT do not change.

Multiplying Double-Precision Integers

Unless you specify otherwise, EDL assumes that integers are single-precision (1-word) integers.
To multiply two double-precision (2-word) integers, specify the PREC operand as follows:

MULTIPLY GRAPES,PITS,RESULT=TOTPITS, PREC=DD

Chapter 2. Writing a Source Program PG-39

Writing a Source Program

Manipulating Data (continued)

Dividing Integers

PG-40

SC34-0438

The instruction multiplies GRAPES by PITS and places the result in TOTPITS. The operand
PREC=DD says that GRAPES, PITS, and TOTPITS are all double-precision integers.

If only one of the operands is a double-precision integer, it must be the first operand. In
addition, if you specify the RESULT operand, it must be a double-precision variable. For
example:

MULTIPLY ATTEND,GAMES,RESULT=TOTATT, PREC=D
The instruction multiplies ATTEND by GAMES and places the result in TOTATT. The
operand PREC=D says that ATTEND and FEMALES are double-precision integers. The

absence of the second letter (D or S) on the PREC operand means that GAMES is a
single-precision integer.

Multiplying Consecutive Integers

To multiply more than one set of integers, you can specify the number of integers you want to
multiply. For example:

MULTIPLY SALRIES,RATES, 400
The instruction multiplies the 1-word integer at RATES by SALRIES and stores the result in
SALRIES. Then the instruction multiplies the word in RATES+2 by the word at SALRIES+2.
The instruction continues to multiply until it multiplies the word at RATES+798 by the word at

SALRIES+798. This instruction, then, multiplies the 400 consecutive words at RATES by the
400 consecutive words at SALRIES. You can specify up to 32,767 consecutive multiplications.

The DIVIDE instruction divides one integer by another. The system places the remainder in the
first word of the task control block (TCB).

If P and Q are single-precision integers, you can divide P by Q as follows:

DIVIDE P,Q

The result of the division replaces P.

“You can also divide an integer by a constant. The following instruction divides FEET by the

constant 3:

DIVIDE FEET, 3
The result of the division replaces FEET.

To divide two integers without altering the first operand, use the RESULT operand as follows:

DIVIDE TOTWGT,BOXES,RESULT=BOXWGT

Manipulating Data (continued)

The instruction divides TOTWGT by BOXES and places the result in BOXWGT. The values in
TOTWGT and BOXES do not change.

Dividing Double-Precision Integers

Unless you specify otherwise, EDL assumes that integers are single-precision (1-word) integers.
To divide double-precision (2-word) integers, specify the PREC operand as follows:

DIVIDE TOTSAL,NOEMPS,RESULT=AVESAL,PREC=DD

The instruction divides TOTSAL by NOEMPS and places the result in AVESAL. The operand
PREC=DD says that TOTSAL, NOEMPS, and AVESAL are all double-precision integers.

If only one of the operands is a double-precision integer, it must be the first operand. In
addition, if you specify the RESULT operand, it must be a double-precision variable. For
example:

DIVIDE TOTATT,GAMES,RESULT=AVEATT, PREC=D

The instruction divides TOTATT by GAMES and places the result in AVEATT. The operand
PREC=D says that TOTATT and AVEATT are double-precision integers. The absence of the
second letter (D or S) on the PREC operand means that GAMES is a single-precision integer.

Dividing Consecutive Integers

To divide more than one set of integers, you can specify the number of integers you want to
divide. For example:

DIVIDE SALRIES,RATES, 100
The instruction divides the 1-word integer at RATES by SALRIES. Then the instruction divides
the word in RATES+2 by the word at SALRIES+2. The instruction continues to divide until it
divides the word at RATES+198 by the word at SALRIES+198. This instruction, then, divides
the 100 consecutive words at RATES by the 100 consecutive words at SALRIES. You can
specify up to 32,767 consecutive divisions.
Accessing the Remainder

One way to access the remainder is to use the TCBGET instruction as in the following example:

DIVIDE SALRIES,RATES
TCBGET REMAIN, $TCBCO

REMAIN DATA F'O'

The instruction puts the first word of the task control block into REMAIN.

Chapter 2. Writing a Source Program PG-41

Writing a Source Program

Manipulating Data (continued)

Manipulating Floating-Point Data

EDL allows you to add, subtract, multiply, and divide floating-point numbers. Floating-point
numbers are positive and negative numbers that can have decimal points.

To use floating-point instructions, you must:
« Have the hardware floating-point feature installed on your system.

« Include floating-point support in the supervisor when it is generated.

Specify FLOAT=YES on both the PROGRAM and TASK statements whenever you use
floating-point instructions in any task within a program.

o Define the variables you are manipulating as floating-point variables.

Adding Floating-Point Data

PG-42

SC34-0438

The FADD instruction adds two floating-point numbers. If A and B are floating-point numbers,
you can add A to B with the following instruction:

FADD B,A
The result of the addition replaces B. The value in A remains unchanged.

To add two floating-point numbers without altering the first operand, use the RESULT operand
as follows:

FADD MYSAL, YOURSAL, RESULT=0OURSALS

The instruction adds MYSAL to YOURSAL and places the result in OURSALS. The values in
MYSAL and YOURSAL remain unchanged.

Adding Extended-Precision Floating-Point Numbers

Unless you specify otherwise, EDL assumes that the floating-point numbers are single-precision
(2-word) floating-point numbers. To add two extended-precision (4-word) floating-point
numbers, specify the PREC operand as follows:

FADD TOTSAL, PRESAL, PREC=LL

The operand PREC=LL says that both TOTSAL and PRESAL are extended-precision
floating-point numbers.

If only one of the operands is an extended-precision floating-point number, the PREC operand
must reflect the precision. In the following example:

FADD MSMNT1,MSMNT2 , RESULT=MSMTS , PREC=LFL

Manipulating Data (continued)

The operand PREC=LFL says that MSMNT1 and MSMTS are extended-precision
floating-point numbers and MSMNT?2 is a single-precision floating-point number.

Subtracting Floating-Point Numbers

The FSUB instruction subtracts one floating-point number from another. If OCTEMP and
NOVTEMP are floating-point numbers, you can subtract NOVTEMP from OCTEMP with the
following instruction:

FSUB OCTEMP,NQVTEMP
The result of the subtraction replaces OCTEMP. The value in NOVTEMP remains unchanged.

To subtract two floating-point numbers without altering the first operand, use the RESULT
operand as follows:

FSUB SAL,DEDUCS, RESULT=NET

The instruction subtracts DEDUCS from SAL and places the result in NET. The values in SAL
and DEDUCS remain unchanged.

Subtracting Extended-Precision Floating-Point Numbers

Unless you specify otherwise, EDL assumes that the floating-point numbers are single-precision
(2-word) floating-point numbers. To subtract two extended-precision (4-word) floating-point
numbers, specify the PREC operand as follows:

FSUB TOTSAL, TOTDUCS , RESULT=TOTNP , PREC=LLL

The instruction subtracts TOTDUCS from TOTSAL and places the result in TOTNP. The
operand PREC=LLL says that TOTSAL, TOTDUCS, and TOTNP are all extended-precision
floating-point numbers.

If only one of the operands is a extended-precision floating-point number, the PREC operand
should reflect the precision. In the following example:

FSUB SMALL, LARGE, RESULT=MINUS, PREC=FLF

The instruction subtracts LARGE from SMALL and places the result in MINUS. The operand
PREC=FLF says that SMALL and MINUS are single-precision and that LARGE is an
extended-precision floating-point number.

Multiplying Floating-Point Numbers

The FMULT instruction multiplies one floating-point number by another.

If M and N are single-precision floating-point numbers, you can multiply M by N as follows:

FMULT M, N

The result of the multiplication replaces M.

Chapter 2. Writing a Source Program PG-43

Writing a Source Program

Manipulating Data (continued)

You can also multiply a floating-point number by an integer constant. The following instruction
multiplies FEET by the integer constant 12:

FMULT FEET, 12
The result of the multiplication replaces FEET.
To multiply two floating-point numbers without altering the first operand, use the RESULT
operand as follows:

FMULT LENGTH,WIDTH, RESULT=AREA

The instruction multiplies LENGTH by WIDTH and places the result in AREA. The values in
LENGTH and WIDTH do not change.

Multiplying Extended-Precision Floating-Point Numbers

Unless you specify otherwise, EDL assumes that floating-point numbers are single-precision
(2-word) floating-point numbers. To multiply two extended-precision (4-word) floating-point
numbers, specify the PREC operand as follows:

FMULT PI,DIAM,RESULT=CIRCUM,PREC=LLL
The instruction multiplies PI by DIAM and places the result in CIRCUM. The operand

PREC=LLL says that PI, DIAM, and CIRCUM are all extended-precision floating-point
numbers.

If only one of the operands is a double-precision floating-point number, the PREC operand
must reflect the precision. The following example:

FMULT BASEAREA,HEIGHT, RESULT=VOLUME, PREC=LFL
multiplies BASEAREA by HEIGHT and places the result in VOLUME. The operand

PREC=LFL says that BASEAREA and VOLUME are extended-precision floating-point
numbers and that HEIGHT is a single-precision floating-point number.

Dividing Floating-Point Numbers

PG-44

SC34-0438

The FDIVD instruction divides one floating-point number by another. The system places the
remainder in the first word of the task control block (TCB).

If P and Q are single-precision floating-point numbers, you can divide P by Q as follows:

FDIVD P,0Q
The result of the division replaces P.

You can also divide a floating-point number by a constant. The following instruction divides
FEET by the integer constant 3:

FDIVD FEET,3

Manipulating Data (continued)

The result of the division replaces FEET.

To divide two floating-point numbers without altering the first operand, use the RESULT
operand as follows:

FDIVD TOTWGT,BOXES, RESULT=BOXWGT

The instruction divides TOTWGT by BOXES and places the result in BOXWGT. The values in
TOTWGT and BOXES do not change.

Dividing Extended-Precision Floating-Point Numbers

Unless you specify otherwise, EDL assumes that floating-point numbers are single-precision
(2-word) floating-point numbers. To divide two extended-precision (4-word) floating-point
numbers, specify the PREC operand as follows:

FDIVD CUBICFT,BASEAREA,RESULT=HEIGHT,PREC=LLL

The instruction divides CUBICFT by BASEAREA and places the result in HEIGHT. The
operand PREC=LLL says that CUBICFT, BASEAREA, and HEIGHT are all
extended-precision floating-point numbers.

If only one of the operands is an extended-precision floating-point number, the PREC operand
must reflect the precision. The following example:

FDIVD TOTSAL,NOEMPS,RESULT=AVESAL, PREC=LFL

divides TOTSAL by NOEMPS and places the result in AVESAL. The operand PREC=LFL
says that TOTSAL and AVESAL are extended-precision floating-point numbers and that
NOEMPS is a single-precision floating-point number.

Manipulating Logical Data

The instructions that manipulate logical data make a bit-by-bit comparison of two bit strings.
The result of the comparison depends on the instruction.

The Exclusive-OR Instruction

The exclusive-OR instruction (EOR) compares two bit strings and produces a third bit string,
called the resulting field.

The instruction compares the two bit strings one bit at a time. If the bits are the same, the
instruction sets a bit in the resulting field to 0. If the bits are not the same, the instructions sets

a bit in the resulting field to 1.

If the bit strings are identical, the resulting field contains all 0’s. If one or more bits differ, the
resulting field contains a mixture of 0’s and 1’s.

The following example compares PHI to CHI and places the result in PHI.

Chapter 2. Writing a Source Program PG-45

Writing a Source Program

Manipulating Data (continued)

ECR PHI,CHI

The following table shows PHI and CHI before and after the instruction executes.

Data Item Hex Binary

PHI (before) 049C 0000 0100 1001 1100
CHI 56AB 0101 0110 1010 1011
PHI (after) 5237 0101 0010 0011 0111

To compare a variable to a constant, code operand2 as follows:

EOR MU,X'5280'

The following table shows MU before and after the instruction executes.

Data Item Hex Binary

MU (before) FOFO 1111 0000 1111 0000
constant 5280 0101 0010 1000 0000
MU (after) A270 1010 0010 0111 0000

To compare two bit strings without altering the first operand, use the RESULT operand as
follows:

EOR SIGMA,DELTA,RESULT=THETA

The instruction compares SIGMA and DELTA and places the resulting field in THETA.
SIGMA and DELTA do not change.

Unless you specify otherwise, EDL assumes that the bit strings you specify are one-word
(2-byte) variables. To compare a byte or more than two bytes, specify the number of
consecutive units (bytes, words, or doublewords) that you want to compare. For example:

EOR CAIN,ABEL, (3,BYTE) ,RESULT=SETH

CAIN DATA X'12A4E6'
ABEL DATA X'0101'
SETH DATA X'000000'

The instruction compares three bytes at CAIN with ABEL and places the result in SETH.

The Inclusive-OR instruction

PG-46

SC34-0438

The inclusive-OR instruction (IOR) compares two bit strings and produces a third bit string,
called the resulting field.

Manipulating Data (continued)

The instruction compares the two bit strings one bit at a time. If either or both bits are 1, the
instruction sets a bit in the resulting field to 1. If neither bit is 1, the instruction sets a bit in the
resulting field to 0.

The following example compares ETA to RHO and places the result in ETA.

IOR ETA,RHO

The following table shows ETA and RHO before and after the instruction executes.

Data Item Hex Binary

ETA (before) 049C 0000 0100 1001 1100
RHO 56AB 0101 0110 1010 1011
ETA (after) 56BF 0101 0110 1011 1111

To compare a variable to a constant, code operand2 as follows:

IOR XI,X'5280°'

The following table shows XI before and after the instruction executes.

Data Item Hex Binary

Xl (before) FOFO 1111 0000 1111 0000
constant 5280 0101 0010 1000 0000
XI (after) F2FO 1111 0010 1111 0000

To compare two bit strings without altering the first operand, use the RESULT operand as
follows:

IOR PETER, PAUL, RESULT=MARY

The instruction compares PETER and PAUL and places the resulting field in MARY. PETER
and PAUL do not change.

Unless you specify otherwise, EDL assumes that the bit strings you specify are one-word
(2-byte) variables. To compare a byte or more than two bytes, specify the number of
consecutive units (bytes, words, or doublewords) that you want to compare. For example:

IOR PIG,COW, (4,DWORD) ,RESULT=POW

The instruction compares the first doubleword at PIG with the four doublewords at COW and
places the resulting field in POW.

The AND Instruction

The AND instruction (AND) compares two bit strings and produces a third bit string, called the
resulting field.

Chapter 2. Writing a Source Program PG-47

Writing a Source Program

Manipulating Data (continued)

PG-48

SC34-0438

The instruction compares the two bit strings one bit at a time. If both bits are 1, the instruction
sets a bit in the resulting field to 1. If either or both bits are 0, the instruction sets a bit in the
resulting field to O.

The following example compares BETA to THETA and places the result in BETA.

AND BETA, THETA

The following table shows BETA both before and after the instruction executes.

Data Item Hex Binary

BETA (before) 049C 0000 0100 1001 1100
THETA 56AB 01010110 1010 1011
BETA (after) 0488 0000 0100 1000 1000

To compare a variable to a constant, code operand2 as follows:

AND LAMBDA,X'5280'

The following table shows LAMBDA both before and after the instruction executes.

Data Item Hex Binary

LAMBDA (before) FOFO 1111 0000 1111 0000
constant 5280 0101 0010 1000 0000
LAMBDA (after) 5080 0101 0000 1000 0000

To compare two bit strings without altering the first operand, use the RESULT operand as
follows:

AND CEMENT, STONE, RESULT=WALL

The instruction compares CEMENT and STONE and places the resulting field in WALL.
CEMENT and STONE do not change.

Unless you specify otherwise, EDL assumes that the bit strings you specify are one-word
(2-byte) variables. To compare a byte or more than two words, specify the number of
consecutive units (bytes, words, or doublewords) that you want to compare. For example:

AND WALL,CEILING, (2,WORD) ,RESULT=ROOM

The instruction compares the first word at CEILING with the two words at WALL and places
the resulting field in ROOM.

Writing Data from a Data Area

When you write data from a data area, the instruction you use depends on the kind of data and
where you write it.

To write data to disk, diskette, or tape, use the WRITE instruction. To write data to a terminal,
use either the PRINTEXT or PRINTNUM instruction. If the data is alphameric, use
PRINTEXT. If the data consists of either one floating-point number or one or more integers,
use PRINTNUM.

Writing Data to Disk or Diskette

You can write disk or diskette data sets either sequentially or directly. When you write, you
always write 256 bytes, an “EDX record.”
The following WRITE instruction writes a record sequentially:

WRITE DS3,DISKBUFF,1,0,ERROR=WRITERR

DISKBUFF BUFFER 256,BYTES

The instruction writes a record to the third data set defined on the PROGRAM statement
(DS3). The system writes one record (indicated by 1 in the third operand) sequentially
(indicated by 0 in the fourth operand) into DISKBUFF. If an I/O error occurs, the program
branches to WRITERR. Otherwise, the system writes the 256-byte buffer DISKBUFF to the
data set.

The following WRITE instruction writes a record directly:
WRITE DS5,BUFR, 1,RECNO, ERROR=BADWRIT

BUFR BUFFER 256,BYTES
RECNO DATA F

The instruction writes a record to the fifth data set defined on the PROGRAM statement (DS5).
The system writes one record (indicated by 1 in the third operand) directly (indicated by the
presence of the label RECNO in the fourth operand) into BUFR. Where the system writes the
record depends on the contents of RECNO. For example, if RECNO contains 150, the system
writes the 150th record.

If an I/O error occurs, the program branches to BADWRIT. Otherwise, the system writes
BUPFR to the data set.

Writing Data to Tape

You can write tape data sets sequentially only. A tape WRITE writes a record from 18 to
32,767 bytes long.

The following WRITE instruction writes a record to a tape:

Chapter 2. Writing a Source Program PG-49

Writing a Source Progr

Writing Data from a Da
WRITE DS1,BUFF,1,327,ERROR=ERR,WAIT=YES

BUFF BUFFER 327,BYTES

The system writes one record (indicated by 1 in the third operand). The size of the record is
327 bytes (indicated by 327 in the fourth operand). If an error occurs, control transfers to
ERR. The system waits for the write operation to complete before continuing execution
(WAIT=YES).

The buffer BUFF is 327 bytes long.

The following WRITE instruction writes 2 records from buffer BUFF2:

WRITE DS1,BUFF2,2,327,ERROR=ERR,WAIT=YES

BUFF2 BUFFER 768,BYTES

The system writes two records (indicated by 2 in the third operand). The size of each record is
327 bytes (indicated by 327 in the fourth operand). If an error occurs, control transfers to
ERR. The system waits for the operation to complete before continuing (WAIT=YES).
BUFF?2 is 768 bytes long because it must be a multiple of 256.

Writing to & Terminal

Two of the instructions that write data to a terminal are the PRINTEXT and PRINTNUM
instructions. The PRINTEXT instruction allows you to write alphameric data (alphabetic
characters, numbers, and special characters). With the PRINTNUM instruction, you can write
numbers (both integer and floating-point) only.

Writing Alphameric Data
To write alphameric data to a terminal, use the PRINTEXT instruction as follows:

PRINTEXT DESC,SKIP=3

DESC TEXT 'NOW IS THE TIME FOR ALL GOOD MEN'

The instruction writes (or disp/ays) the 25 alphameric characters in DESC. The operand
SKIP=3 causes the system to skip three lines before displaying DESC.

Unless you know how the system constructs a storage area defined by a TEXT statement, you
should write from an area defined by a TEXT statement.

For information on writing alphameric data to screens, see Chapter 8, “Reading and Writing
Data from Screens” on page PG-115.

PG-50 SC34-0438

Writing Data from a Data Area (continued)

Writing Numeric Data

The PRINTNUM instruction allows you to write either a single floating-point value or more
than one integer to a terminal. The following instruction writes a floating-point number:

PRINTNUM BASAL,TYPE=F,FORMAT=(6,2,F)
The instruction writes the number contained in the variable BASAL. The operand TYPE=F
means that BASAL is a single-precision floating-point number. The operand
FORMAT=(6,2,F) tells the system to display the number in 6 positions on the screen (including
the decimal point), to display 2 digits to the right of the decimal point, and to display it as an
“F-type” number such as 436.32.

To write more than one integer, code a second operand on the instruction as follows:

PRINTNUM WEIGHTS, 7
The instruction displays the 7 one-word values starting at location WEIGHTS.

The instruction assumes that you have defined WEIGHTS as follows:

WEIGHTS DATA 7F'0’

This section discusses the EDL instructions used to control the logic or execution of instructions.
The following instructions are the primary means of controlling program logic:

« DO - initializes a loop

« ENDDO - ends a loop

o IF - tests a condition

« ELSE - specifies the action for a false condition
« ENDIF - ends an IF-ELSE structure

« GOTO - branches to another location

Relational Operators

The IF and DO statements involve the use of the following relational operators:

« EQ --equal

Chapter 2. Writing a Source Program PG-51

Writing a Source Program

Controlling Program Logic (continued)

¢ NE -- not equal

e GT -- greater than

e LT --less than

e GE -- greater than or equal

e LE -- less than or equal

The IF Instruction

The IF instruction allows you to compare two areas of storage. You can compare data in two
ways: arithmetically or logically.

When you compare data arithmetically, the system interprets each number as a positive or
negative value. The system, for example, interprets X‘OFFF’ as 4095. It interprets X‘FFFD’,
however, as a -3. Though X‘FFFD’ seems to be a larger hexadecimal number than X‘OFFF’,
the system recognizes X‘FFFD’ as a negative number and X‘OFFF’ as a positive number.
X‘FFFD’ is a negative number to the system because the leftmost bit is “on”.

When you compare data logically, the system compares the data byte-by-byte. The system
interprets X‘FFFF’ as 2 bytes with all bits ‘“‘on”.

Comparing Data Arithmetically

PG-52

SC34-0438

The form of the arithmetic comparison is:

IF (datal,operator,data2,width)

If data? has the relationship indicated by operator to data2, the next sequential instruction
executes. Width indicates the length of the data to be compared and must be BYTE, WORD
(the default), DWORD, FLOAT, or DFLOAT.

This is called the true portion of the IF-ELSE-ENDIF structure. For example:

IF (A,EQ,B,WORD)
PRINTNUM A
ELSE
PRINTNUM B
ENDIF

ELSE is an optional part of the structure. The instructions following it are called the false part
of the structure. Therefore, in the preceding example, the instruction following the ELSE
instruction executes if A is not equal to B. If ELSE is not coded and the condition is false,
control passes to the instruction following the ENDIF.

You can test more than two conditions in a single IF statement.

IF (ALPHA,LT,BETA) ,AND, (GAMMA,NE,DELTA)

Controlling Program Logic (continued)

IF ALPHA is less than BETA and GAMMA is not equal to DELTA, the next sequential
instruction executes.

You can also execute the next sequential instruction if either test produces a true condition.

IF (PI,GE,PSI),OR, (CHI,NE,OMEGA)

If PI is greater than or equal to PSI or CHI is not equal to OMEGA, the next sequential
instruction executes.

To compare a variable to a constant, code the constant as data2 as follows:

IF (FEET,EQ,5280)

If FEET equals 5280 (decimal), the next sequential instruction executes.
Comparing Data Logically

The form of the logical comparison is:

IF (datal,operator,data2,width)

If data? has the relationship indicated by operator to data2, the next sequential instruction
executes. Width indicates the length of the data to be compared and must be an integer.

For example:

IF (A,GE,B,4)
PRINTNUM A
ELSE
PRINTNUM B
ENDIF

The instruction(s) that follow the IF instruction is (are) called the true portion of the
IF-ELSE-ENDIF structure. If the 4 bytes in A are greater than or equal to the 4 bytes in B, the
next sequential instruction executes.

The instruction(s) following the ELSE instruction is (are) called the false part of the structure.
ELSE is an optional part of the structure. If the 4 bytes in A are not greater than or equal to
the 4 bytes in B, the instruction following the ELSE instruction executes.

If the ELSE instruction is not coded and the condition is false, control passes to the instruction
following the ENDIF.

Chapter 2. Writing a Source Program PG-53

Writing a Source Program

®

Controlling Program Logic (continued)

The Program Loop

The Simple DO

The DO UNTIL

The DO WHILE

PG-54

SC34-0438

The DO instruction allows you to execute the same code repetitively. The DO instruction starts
a DO loop and the ENDDO instruction ends the loop. The loop consists of the instructions
between the DO and ENDDO. The following sections show the different forms of the DO loop.

The loop executes a specified number of times.

DO 100,TIMES
GETVALUE PSI,PROMPT3
ADD COUNT, PSI
ENDDO

The GETVALUE and ADD instruction execute 100 times.

The loop executes until the condition occurs. (The loop always executes at least once.)

DO UNTIL, (CDED,GT, 1000, FLOAT)
GETVALUE OMICRON, OMPRMPT
FSUB CDED, OMICRON

ENDDO

The GETVALUE and FSUB instructions execute until CDED is greater than 1000.

The loop executes as long as the condition exists.

DO WHILE, (B,NE,C)
GETVALUE B, 'ENTER B'
GETVALUE C, 'ENTER C'

ENDDO

The GETVALUE instructions execute as long as B does not equal C.

Controlling Program Logic (continued)

The Nested DO Loop

A DO loop can contain other DO loops. For example:

DO UNTIL, (ALPHA,LT,BETA,DFLOAT) ,OR, (#1,EQ, 1000)
GETVALUE ALPHA, 'ENTER ALPHA',TYPE=L,FORMAT=(12,3,E)
GETVALUE BETA, 'ENTER BETA', TYPE=L,FORMAT=(12,3,E)
MOVE #1,BETA, (1,DFLOAT)

DO 10,TIMES
FADD GAMMA,ALPHA,PREC=LLL
ENDDO
ENDDO

The FADD statement contained in the inner DO executes 10 times for each execution of the
outer DO.

The Nested IF Instruction

A DO loop can also contain IF statements. For example:

READTEXT CHAR, 'ENTER A CHARACTER'
GETVALUE A, 'ENTER A'
GETVALUE B, 'ENTER B'
DO WHILE, (A,GT,B)
IF (CHAR,EQ,C'A',BYTE)
DO 40,TIMES

.

ENDDO
ELSE

ENDIF

GETVALUE A, 'ENTER A'

GETVALUE B, 'ENTER B'
ENDDO

The outer DO loop executes as long as A is greater than B. The inner DO loop executes 40
times if CHAR equals the letter A.

Chapter 2. Writing a Source Program PG-55

Writing a Source Program

Controlling Program Logic (continued)

Branching to Another Location

The GOTO instruction allows you to transfer control to another location within a program. For
example, the following instruction transfers control to the instruction at label LOC1:

GOTO LOC1

To branch to an address defined by a label, enclose the label in parentheses as follows:

GOTO (CALC)

This instruction branches to the address contained in CALC. You must define CALC as an
address variable as in the following DATA statement:

CALC DATA A(RTNO1)

To branch to a location that is based on the contents of a variable, code the GOTO statement
like this:

GOTO (ERR,L1,L2),I

The instruction branches to L1 if I equals 1, to L2 if I equals 2, and to ERR for any other value
of I. The system branches to the first label in parentheses if the variable is less than 1 or greater
than the number of labels minus 1.

Referring to a Storage {Program) Location

PG-56

SC34-0438

You can use the EQU statement to refer to the next available storage location in a program.
You can use it to generate labels in your program. For example:

CALLA EQU *
MOVE C,+A, (1,BYTE)

GOTO CALLA

Controlling Program Logic (continued)

Ending the Program

Ending a program requires three statements: PROGSTOP, ENDPROG, and END.

The PROGSTOP statement ends the program and releases any storage that it used. It also
signals the end of the executable instructions.

The ENDPROG statement follows the statements that define storage areas and precedes the
END statement.

The END statement follows the ENDPROG statement. It tells the compiler that the program
contains no more statements.

The following example shows the position of the three statements and the general structure of a

program.
PRINT PROGRAM START
START EQU *
PROGSTOP
FIELD1 DATA F'O'
ENDPROG
END

Chapter 2. Writing a Source Program PG-57

Notes

PG-58 SC34-0438

Chapter 3. Entering a Source Program

After you code a source program, you must enter it into a data set. The data set can be on
either disk, diskette, or tape.

This chapter shows how to use the text editor called the $FSEDIT utility. The chapter describes

the commands you need to enter a new source program or change an existing source program.
For a complete list of $FSEDIT commands, refer to Operator Commands and Utilities Reference.

Invoking the Editor

You can invoke the editor in one of two ways. You can load it directly using the $L. command.
Or, you can invoke it using the session manager.

This chapter discusses how to invoke the editor with the session manager. For information on
how to invoke $FSEDIT with the $L. command, refer to Operator Commands and Utilities Reference.

As you learned in Chapter 1 of this book, you load the session manager by pressing the
attention key, typing $L $SSMAIN, and pressing the enter key.

At this point, enter a one to four character ID and press the enter key.

The Session Manager Primary Option Menu appears. From this menu, select option 1 (TEXT
EDITING). The session manager displays the $FSEDIT Primary Option Menu.

Chapter 3. Entering a Source Program PG-59

Entering a Source Program

Invoking the Editor (continued)

Creating a New Data Set

The session manager allocates data sets automatically when you log on. One of these data sets,
a work data set used by $FSEDIT, is named $SMExxxx, where xxxx is the ID you entered when
you logged on to the session manager. For example, if you entered ABCD when you logged on,
the work data set is $SMEABCD.

Use option 2 (EDIT) to put your source program into the work data set.

\
(;;seonr PRIMARY OPTION MENU =======-mmmmmmmmm e STATUS = INIT
PRESS PF3 TO EXIT
OPTION ===> 2
DATASET NAME =========> (CURRENTLY IN WORK DATASET)
VOLUME NAME ==========>
HOST DATASET ========>
ENTER A VOLUME NAME AND PRESS ENTER FOR A DIRECTORY LIST.
1 ---- BROWSE
2 ---- EDIT
3 ---- READ (HOST/NATIVE)
4 ---- WRITE (HOST/NATIVE)
5 ---- SUBMIT BATCH JOB TO HOST SYSTEM
6 ---- PRINT
7 ---- MERGE
8 ---- END
9 ---- HELP
_ J

An empty data set appears on your screen. The name of the data set and the volume on which it
resides are shown at the top of the screen.

EDIT --- $SMEABCD, EDX003 0(1089)--===-===mmmmm e COLUMNS 001 072

COMMAND INPUT ===> SCROLL ==> HALF
kkkkk kkkkk TP OF DATA Fifkkkkkikkkkkihkhhihihhhhhkhhhhhibbbbbbbbbhhhhhihhhhik

.....

*
kkkkk Fhkk BOTTOM OF DATA fhkkkhkhhhhhhhddbhhbhbhhbbbbbbbbhbbb bbb hhhhbhhik

The cursor is located at the first input line. After you finish typing text on this line, press the
enter key.

PG-60 SC34-0438

Creating a New Data Set (continued)

The following example shows how the screen looks after you enter the first line of a source
program. (We have used the source program described in Chapter 1 of this book.) The editor
automatically numbers each line and presents a new blank line.

P

00010

.....

ADD10

EDIT --- $SMEABCD, EDX003

COMMAND [NPUT ===>
kkkkk kkkAE TOp QF DATA Frrriikikiikikiiiiiiirtiiiiiiibbikkkkkkkkkkihiikitkihk

STPGM

PROGRAM

0(1089)---=-===mmmmmmmmomoomoe COLUMNS 001 072

SCROLL ==> HALF

kkkkdk Thit BOTTOM OF DATA khkhhhhhhdhhdhbhbhbhrhhhbbbhbhbbbbhb bbb bbbkt

.

"\

Continue to type each line of your source program. When you finish, press the enter key on a
blank line.

P

*

+00010
+00020
+00030
+00040
+00050
+00060
+00070
+00080
+00090
+00100
+00110

+00120
Khkkk

_

EDIT --- $SMEABCD , EDX003
COMMAND |NPUT ===>
F 33 33

12(1089)----==-====mmmmooeooeee COLUMNS 001 072
SCROLL ==> HALF

% Kkt *
khkkk TOP OF DATA Fhkkkkhdhhhkbbhhhhhhhhbhhhhbhbhhhhhhdhdhhbhhhbhbhhhtd

ADD10
STPGM
LooP

COUNT
SUM

PROGRAM
GETVALUE
DO

ADD
ENDDO
PRINTEXT
PRINTNUM
PROGSTOP
DATA
DATA
ENDPROG
END

STPGM
COUNT, 'ENTER NUMBER: '
10, TIMES

SUM,COUNT

'@RESULT='
SUM

F|0|

Fuol

3 o b b ok
khkkk BOTTOM OF DATA hAkAhhd bbb bbbhhbhbhhhhhhhhbhbbhbbhbbbbbbhhdhthnd

N

J

Chapter 3. Entering a Source Program

PG-61

Entering a Source Program

Creating a New Data Set (continued)

Saving Your Data Set
The next step is to save your data set. Return to the $FSEDIT Primary Option Menu by typing
M (for “menu’’) on the COMMAND INPUT line.
Select option 4 (WRITE) to save the data set. Type the name next on the DATASET NAME

line. (In this example, we named the data set ADD10. Type the volume on the VOLUME
NAME line. (In this example, the volume is EDX002.) Then press the enter key.

™
SFSEDIT PRIMARY OPTION MENU —-—------mmmmmmmmmmm e STATUS = MODIFIED
PRESS PF3 TO EXIT
OPTION ===> &
DATASET NAME =========> ADD10 (CURRENTLY IN WORK FILE)
VOLUME NAME ==========> EDX002
HOST DATASET ====s====>
ENTER A VOLUME NAME AND PRESS ENTER FOR A DIRECTORY LIST.
1 ---- BROWSE
2 --—- EDIT
3 ---- READ (HOST/NATIVE)
4 ---- WRITE (HOST/NATIVE)
5 ---- SUBMIT
6 ---- PRINT
7 ---- MERGE
8 ---- END
9 ---- HELP
_ J

Next, the system prompts you as follows:

QRITE TO ADD10 ON EDX002 (Y/N)? j

Type ¥ and press the enter key.

Then you see a message on your screen indicating that the data set has been written to the
volume. In the example shown above, the following message would appear:

|

¥

vy

|
%;%12 LINES WRITTEN TO ADD10,EDX002

This message means that the source program is 12 records long and has been written to volume
EDX002.

PG-62 SC34-0438

Saving Your Data Set

Modifying an Existing Data Set

R

You have seen how to enter a source program into a new data set. You can also modify an
existing data set.

You must first read the data set you want to modify into the work data set. Select option 3
(READ) from the $FSEDIT Primary Options Menu. On the menu, you specify which data set
you want to read.

Next, you select option 2 (EDIT) to modify the data set.

The data set appears on your screen.

f:blT -~- ADD10 , EDX002 12(1089)------~--=------mmooe COLUMNS 001 072 B\
COMMAND [NPUT ===> SCROLL ==> HALF
khkkk kkkEA TOp OF DATA HHitiiiiihiiidibibhdhkhkiidbihkkh kAR A AR AR A AR AR AR
00010 ADD10 PROGRAM STPGM
00020 STPGM GETVALUE COUNT, 'ENTER NUMBER:

00030 LOOP DO 10,TIMES
00040 ADD SUM,COUNT
00050 ENDDO

00060 PRINTEXT '@RESULT='
00070 PRINTNUM SUM

00080 PROGSTOP

00090 COUNT DATA F'o'

00100 SUM DATA F'o'

00110 ENDPROG

00120 END

kkkkk kkAEE BOTTOM OF DATA FrAAifiiiiiiiiiiiibiihhhkihhfhdhhhithhhhhhihs

. J

Changing a Line

To change a line, move the cursor to the line and type in the correction. For example, suppose
you wanted to change 10 to 15 in the DO instruction. Move the cursor to the 0 and type a 5.

Or, suppose you wanted to delete the = character in the PRINTEXT instruction. You would
move the cursor to the = character and press the delete key.

Chapter 3. Entering a Source Program PG-63

Entering a Source Program

Modifying an Existing Data Set (continued)

inserting a Line

You can insert a new line into your data set. You insert a line by typing an I in the line number
after which you want to insert.

For example, suppose you want to insert another instruction before PROGSTOP. Type the I as

follows:

/;;IT --- ADD10 , EDX002 12(1089)----------m—mmmm oo - COLUMNS 001 072 iﬁﬁ
COMMAND [INPUT ===> SCROLL ==> HALF
dhkkikh Xhkkk TOP OF BATA AAAARAA A AR AL LA AL AAAAAAAAAAAAAAAA A AAAAAAARAAAAAALAL
00010 ADD10 PROGRAM STPGM
00020 STPGM GETVALUE COUNT, '"ENTER NUMBER: '

00030 LOOP DO 10, TIMES
00040 ADD SUM,COUNT
00050 ENDDO
00060 PRINTEXT '"@RESULT="'
10070 PRINTNUM SUM
00080 PROGSTOP
00090 COUNT DATA F'o'
00100 SUM DATA F'o'
00110 ENDPROG
00120 END
xif*** E3. 333 BOTTOM OF DATA AAAAAAAAAAA AL AELLARARAAARAAALARAL A AR AR AR AR A AR AL
J

After you press the enter key, your data set looks like this:

EDIT --- ADD10 , EDX002 12(1089)-======mmmmmmmmmeeee - COLUMNS 001 072 A
COMMAND INPUT ===> SCROLL ==> HALF
hhkkih Atttk TOP OF DATA A A A A A A A A A A AR A A A A A A A AR A AR AR A AR AR AR A A AL A A AL AkA
00010 ADD10 PROGRAM STPGM
00020 STPGM GETVALUE COUNT, 'ENTER NUMBER: '
00030 LOOP DO 10, TIMES
00040 ADD SUM,COUNT
00050 ENDDO
00060 PRINTEXT '@RESULT="
00070 PRINTNUM SUM
00080 PROGSTOP
00090 COUNT DATA F'o'
00100 SUM DATA F'o'
00110 ENDPROG
00120 END
&:**** khktkk BOTTOM OF DATA KA AR A A A A A AR AR AR A AR AR AR AAARA AN AA AR AR AR A kAL A‘J;

You could now enter your new line of text at the position of the cursor. After you press enter,
the editor assigns a line number to your new line of text. A new blank input line also appears.

You can continue to insert lines or you can press the enter key again to indicate that you have

finished inserting.

PG-64 sC34-0438

Modifying an Existing Data Set (continued)

Deleting a Line

You can delete a line or series of lines from your data set.

To delete a single line, enter a D in the line number you want deleted and press the enter key.

(;MIT --- ADD10 , EDX002 13(1089)-==——=r————crrmemm e COLUMNS 001 072 ‘\
COMMAND [NPUT ===> SCROLL ==> HALF
kkkkk khkkk TOP OF DATA 3333333 F I IIIIIEILIIRIIIISIIIIIITITIF LTSI T4 T
00010 ADD10 PROGRAM STPGM
00020 STPGM GETVALUE COUNT, 'ENTER NUMBER: '

00030 LoOOP Do 10,TIMES

00040 ADD SUM,COUNT

00050 ENDDO

00060 PRINTEXT '@RESULT='

00070 PRINTNUM SUM

00080 *********Delete t"l is 1 'ne**********************
00090 PROGSTOP

00100 COUNT DATA F'o'

00110 SUM DATA F'o'

00120 ENDPROG

00130 END

kkhkkkk kkhkkk BOTTOM OF DATA dhkhkhkhkhhhhhhhhbhbhbhhhhhhhdhhbhbhhhhhhbhhhbbhhhbhhx

& J

After you press the enter key, the editor deletes the line.

(;§|T --- ADD10 , EDX002 12(1089)-=====-==mremceeemccee- COLUMNS 001 072 ‘\
COMMAND INPUT ===> SCROLL ==> HALF

E3 3.3 33 TOP OF DATA dhkdhkhhhhhhhhhhhbhhhhhhbhdbhhhbbhbhhhhhhhhhbhhhhhhhik
00010 ADD10 PROGRAM STPGM
00020 STPGM GETVALUE COUNT, '"ENTER NUMBER: '
00030 LOOP DO 10, TIMES
00040 ADD SUM COUNT
00050 ENDDO
00060 PRINTEXT '@RESULT="
00070 PRINTNUM SUM
00090 PROGSTOP ‘
00100 COUNT DATA F'o'
00110 SUM DATA F'o'
00120 ENDPROG :
00130 END :
khkhk kkkhkk BOTTOM OF DATA dhdkhhkhhhhhhhhhhhbhbdhbbhhhhhhdbhhbhbhhbbhbhhhbhhhhhdt
_ J/
Chapter 3. Entering a Source Program PG-65

Entering a Source Program

Modifying an Existing Data Set (continued)

You can also delete more than one lines.

For example, suppose you want to delete lines 80 through 120 in the following program. Type
DD in line 80 and another DD in line 120.

/EDIT --- ADD10 » EDX002 17(1089)-----=-===-=-comoeeooon COLUMNS 001 072 ‘\
COMMAND INPUT ===> SCROLL ==> HALF
kkkkk kkkAX TOp OF DATA FAAAAAdkdkikdkdkikkkmiikikkkhkhkkkkkkkkhkkkkkkkkkhkhihk
00010 ADD10 PROGRAM STPGM
00020 STPGM GETVALUE COUNT, "ENTER NUMBER: '

00030 LOOP DO 10, TIMES
00040 ADD SUM,COUNT
00050 ENDDO

00060 PRINTEXT '@RESULT="
00070 PRINTNUM

SUM
b e * e e ohe o oo
DDOBQ FEEHHHKKKK Khkkkkhhkhhdhkhhhid

Delete these lines

00090 khkhkhk kkhkkkhkkk

00100 dhkhkhik E3 3.3 333

00110 B3 33333 Xhhhid

DD120 **********Delete these 1 ines*********************

00130 PROGSTOP

00140 COUNT DATA F'o'

00150 SUM DATA F'o'

00160 ENDPROG

00170 END

khhhk khkhk BOTTOM OF DATA dhhkkhdhhhhbbhhrhhhhdbh bbb bbrbhhhb bbb bbb bbb hk

_ J

After you press the enter key, your program looks like this:

/EDIT --- ADD10 , EDX002 12(1089)--=--=-=—mmmmmmm e COLUMNS 001 072 ‘\
COMMAND INPUT ===> SCROLL ==> HALF
kkhkkhkk kkhkkx TOP OF DATA EF T E I LT ISR LTILILLLLILLLILLL LI ILLILL LS SL LT LT LTS LTS
00010 ADD10 PROGRAM STPGM
00020 STPGM GETVALUE COUNT, 'ENTER NUMBER: '

00030 LOOP DO 10,TIMES

00040 ADD SUM,COUNT

00050 ENDDO

00060 PRINTEXT '@RESULT="

00070 PRINTNUM SUM

00130 PROGSTOP

00140 COUNT DATA F'o'

00150 SUM DATA F'o'

00160 ENDPROG

00170 END

kkkkk dhkhkx BOTTOM OF DATA AhAhhhrhkdbbhrrbbhhrhbrbdbbhbhhbbd bbb bbb rihdt
_ J

The editor deletes the lines.

PG-66 SC34-0438

Modifying an Existing Data Set (continued)

Moving Lines

You can move a line or series of lines from one part of your data set to another.

For example, suppose you want to move lines 110 through 130. First type MM in both 110 and

130:

If you want to move these lines after line 10, place an A (for “after’) on line 10 and press the
enter key.

A0010
00020
00030
00040
00050
00060
00070
00080
00090
00100
MM110
00120
MM130
00140

00150
Kkkki

EDIT --- ADD10 , EDX002 15(1089)

COMMAND [NPUT ===>
kkkAk KREEE TOP OF DATA FRRAARAAAAAAAAKARAALALRALALKAAKIARIRRIALLLLLL KRS A KK

ADD10 PROGRAM STPGM
STPGM GETVALUE COUNT, 'ENTER NUMBER:
LOOP DO 10,TIMES
ADD SUM,COUNT

ENDDO

PRINTEXT '@RESULT='

PRINTNUM SUM

PROGSTOP
COUNT DATA F'o'
SUM DATA F'o'
khkkkkkrkMove these 1jnes¥Ektkkkiikkitiiikiihkx
Krkxk Akhkk
kkkkkkrrkMove these 1inesfEEidkfiiikiitihkkiidsx

ENDPROG

END

COLUMNS 001 072
SCROLL ==> HALF

e e e oo ke * o o b oo ol o o e T e e oo sk *
khkkk BOTTOM OF DATA Fhdkhbdb bbb bbbt kbbb ok ok

When you press the enter key, the editor moves the lines to the position after line 10.

00010
+00020
+00030
+00040

00050

00060

00070

00080

00090

00100

00110

00120

00130

00140

00150

Kk

e

EDIT --- ADDI1O
COMMAND INPUT ===>

ADD10 PROGRAM STPGM
*********Move these]ines*******k******k****k***
kkkkk dkkkk
*********Move these ‘ines*****k*************k***
STPGM GETVALUE COUNT, 'ENTER NUMBER:
LOOP DO 10, TIMES
ADD SUM, COUNT

ENDDO

PRINTEXT '@RESULT="

PRINTNUM SUM

PROGSTOP
COUNT DATA F'o'
SUM DATA F'o'

ENDPROG

END

, EDX002 15(1089)--==----=-mnmmmmmomee

FhRKX KAKKX TOp OF DATA FAEFFAAfkAidikiikkhiiotihtihikihhihkthhk ik kst kx

COLUMNS 001 072

SCROLL ==> HALF

* oy % kb ko ok ok fekkokk ok
*kkkk BOTTOM OF DATA Zhhhdhdbrb bbbt b hb bbb bbb d bbbt bbbtk

\

Chapter 3. Entering a Source Program

PG-67

Entering a Source Program

Modifying an Existing Data Set (continued)

PG-68

SC34-0438

After you make changes to your data set, return to the $FSEDIT Primary Options Menu.
Return to that menu by typing M (for “menu’’) on the COMMAND INPUT line. To save the
changes, select option 4 and press the enter key.

You have seen how you can change lines in your programs. You have also seen how to insert
and delete lines and move a series of lines. The session manager was used to invoke $FSEDIT

and to allocate the necessary data sets.

The next chapter explains how to compile your programs using $EDXASM, the EDX compiler.

Chapter 4. Compiling a Program

After you design, code, and enter your source program into a data set, you have to compile the
source program into an object module. This chapter shows you how to compile your source
program using the Event Driven Language Compiler, SEDXASM.

The chapter also shows a step-by-step example of compiling a source program that contains
some syntax errors. The chapter then shows how to correct the errors so that the compilation is
successful.

You can invoke $EDXASM in one of three ways. You can load $EDXASM directly using the
$L. command. You can use the $JOBUTIL utility to invoke SEDXASM. Or, you can run your
compilation under control of the session manager.

This chapter describes how to compile a program using the session manager.

For information on using the $L. command or the $JOBUTIL utility, see Operator Commands and
Utilities Reference.

Chapter 4. Compiling a Program PG-69

Compiling a Program

PG-70

SC34-0438

When you use $EDXASM under control of the session manager, you must provide two data
sets. The first data set is the actual source program to be compiled. You must have entered the
source program on a disk, diskette, or tape data set. Chapter 3, “Entering a Source Program”
on page PG-59 describes how to use the $FSEDIT utility to enter your source programs.

The output of the compiler is a data set that contains an object module. You can allocate this
data set by selecting option 3 (DATA MANAGEMENT) from the Session Manager Primary
Option Menu.

$SMMPRIM: SESSION MANAGER PRIMARY OPTION MENU =--=--==-=-==-c---mmmmmmmmmmm e
ENTER/SELECT PARAMETERS: PRESS PF3 TO EXIT

19:42:07
SELECT OPTION ==> 3 10/24/82
ABCD

- TEXT EDITING

- PROGRAM PREPARATION

- DATA MANAGEMENT

- TERMINAL UTILITIES
GRAPHICS UTILITIES

- EXEC PROGRAM/UTILITY

- EXEC $JOBUTIL PROC

- COMMUNICATION UTILITIES
- DIAGNOSTIC AIDS

OWOoONOVIEWN —
1

S

Note: This example assumes that you logged on to the Session Manager with an ID of ABCD.

Allocating Data Sets (continued)

The Data Management Option Menu appears on the screen. To allocate your object code data
set, select option 1 ($DISKUT1).

$SMMO3 SESSION MANAGER DATA MANAGEMENT OPTION MENU-------==-=---=-=c-ceuo--
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SELECT OPTION

=> 1

- $DISKUT1 (DISK(ETTE) ALLOCATE, LIST DIRECTORY)
- $DISKUT2 (DISK(ETTE) DUMP/LIST DATASETS)

- $COPYUT1 (DISK(ETTE) COPY DATASETS/VOLUMES)

- $COMPRES (DISK(ETTE) COMPRESS A VOLUME)

- $copPy (DISK(ETTE) COPY DATASETS/VOLUMES)
$DASDI (DISK(ETTE) SURFACE INITIALIZATION)

- $INITDSK (DISK(ETTE) INITIALIZE/VERIFY)

- SMOVEVOL (COPY DISK VOLUME TO MULTI-DISKETTES)
- $1AMUT1 (INDEXED ACCESS METHOD UTILITY PROGRAM)
- $TAPEUT1 (TAPE ALLOCATE, CHANGE, COPY)

- $HXUT1 (H-EXCHANGE DATASET UTILITY)

—~ OWOoONOTVNILSWN —
1

—

WHEN ENTERING THESE UTILITIES, THE USER 1S EXPECTED
TO ENTER A COMMAND. IF A QUESTION MARK (?) IS ENTERED
INSTEAD OF A COMMAND, THE USER WILL BE PRESENTED WITH
A LIST OF AVAILABLE COMMANDS.

\- -

The session manager loads the $DISKUT1 utility and prompts for the command you want to
use.

> $L $DISKUTI
LOADING $DISKUT1 59P,19:44:28, LP= 9200, PART=1
$DISKUT1 - DATA SET MANAGEMENT UTILITY |

USING VOLUME EDX002

COMMAND (?): _

- _J

Notice the USING VOLUME EDXO002 message. Unless you change volumes, $DISKUT1
allocates your data set on EDX002.

Chapter 4. Compiling a Program PG-71

Compiling a Program

Allocating Data Sets (continued)

To change the default volume, enter a CV command.

To change the default volume to MYVOL, enter the following CV command:

USING VOLUME EDX002

COMMAND (7): CV MYVOL

The system responds with:

USING VOLUME MYVOL

COMMAND (7): _

Use the CV command only when you do not want to use the default volume.

Use the AL command to allocate your data set.

COMMAND (7): AL
R\?EMBER NAME :

The system then prompts you for the name of the data set. In this example, the data set name is
OBJECT.

MEMBER NAME: OBJECT
HOW MANY RECORDS? _

—

Next, the system prompts for the number of records you want to allocate. A 25- to 50-record
data set should be large enough for most programs. This example defines a 25-record data set.

HOW MANY RECORDS? 25
DEFAULT TYPE = DATA - OK(Y/N)?7 _

PG-72 SC34-0438

Allocating Data Sets (continued)

Finally, the system prompts for the type of information to be contained in the data set. The
default is DATA. Because this data set will contain data, enter a v.

L:EFAULT TYPE = DATA - OK(Y/N)? v A/j

The system responds with:

OBJECT CREATED
COMMAND (7):

Once the data set has been created, enter an EN (for “end”) to return to the Data Management
Option Menu screen.

COMMAND (?): EN
$DISKUT1 ENDED 08:30:24

Return to the Session Manager Primary Option Menu to begin the compilation by pressing the
PF3 key.

Chapter 4. Compiling a Program PG-73

Compiling a Program

Allocating Data Sets (continued)

Running the Compilation

Once you have allocated the data set to hold the output, you are ready to begin compiling the
source program. The following is a listing of the source program to be compiled:

PROGRAM STPGM
STPGM GETVALUE COUNT, 'ENTER NUMBER: '
Loop DO 10, TIMES
ADD SUM,COUNT
ENDDO
PRINTEXT 'RESULT="
PRINTNUM SUM
PROGSTOP
COUNT DATA F'o'
SUM DATA F'o'
ENDPROG
END

This program is similar to the examples we used in Chapter 1 and Chapter 3 of this book.
However, we have included two errors in this source program.

From the Session Manager Primary Option Menu, select option 2 (PROGRAM
PREPARATION) to begin the compile step.

/’
$SMMPRIM: SESSION MANAGER PRIMARY OPTION MENU =--=========-==cooommoooooooo
ENTER/SELECT PARAMETERS: PRESS PF3 TO EXIT

19:48:07
SELECT OPTION ==> 2 10/24/82
ABCD

- TEXT EDITING

- PROGRAM PREPARATION

- DATA MANAGEMENT

- TERMINAL UTILITIES
GRAPHICS UTILITIES

- EXEC PROGRAM/UTILITY

- EXEC $JOBUTIL PROC

- COMMUNICATION UTILITIES
- DIAGNOSTIC AIDS

. J/

O OoONOVIEWN —
]

The Program Preparation Option Menu appears on your screen. To compile the program, select
option 1 ($SEDXASM COMPILER).

PG-74 sC34-0438

Running the Compilation (continued)

/e

$SMM02 SESSION MANAGER PROGRAM PREPARATION OPTI
ENTER/SELECT PARAMETERS:
SELECT OPTION ==> |
- SEDXASM COMPILER
- $EDXASM/SEDXLINK
- $S1ASM ASSEMBLER
- $COBOL COMPILER
$FORT FORTRAN COMPILER
- $PLI COMPILER/$SEDXLINK
- $EDXLINK LINKAGE EDITOR
- $XPSLINK LINKAGE EDITOR FOR SUPE
- SUPDATE
SUPDATEH (HOST)
$PREF IND
$SPASCAL COMPILER/SEDXL INK
SEDXASM/S$XPSLINK FOR SUPERVISORS

WOoONOVIESWN —
I

.

ON MENU--=----========oooee
PRESS PF3 TO RETURN

RVISOR

J

The SEDXASM Parameter Input Menu appears on your screen. Enter the name of your source
input (in this example, ADD10 on volume EDX002). Also enter the name of your object output
(in this example, data set OBJECT on volume MYVOL).

You could enter something on the OPTIONAL PARAMETERS line if you want to change one
of the parameters listed on the DEFAULT PARAMETERS line. In this example, we are using

the defaults.

- N
$SMM0201: SESSION MANAGER $EDXASM PARAMETER INPUT MENU----=-====-==cm=mmemm
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SOURCE INPUT (NAME ,VOLUME) ==> ADD10,EDX002
OBJECT OUTPUT (NAME,VOLUME) ==> OBJECT ,MYVOL
OPTIONAL PARAMETERS ==>
(SELECT FROM THE LIST BELOW)
AVA|LABLE PARAMETERS: ABBREVIATION: DESCRIPTION:
NOLIST NO USED TO SUPPRESS LISTING
LIST TERMINAL-NAME L1 TERMINAL-NAME USE LIST * FOR THIS TERMINAL
ERRORS TERMINAL-NAME ER TERMINAL-NAME USE ERRORS * FOR THIS TERMINAL
CONTROL DATA SET,VOLUME CO DATA SET,VOLUME SEDXASM LANGUAGE CONTROL DATASET
OVERLAY # ov # # 1S NUMBER OF AREAS FROM 1 TO 6

DEFAULT PARAMETERS:

LIST $SYSPRTR CONTROL $SEDXL,ASMLIB OVERLAY 4 d/
Chapter 4. Compiling a Program PG-75

Compiling a Program

Running the Compilation (continued)

Checking Your Compiler Listing and Correcting Errors

The output of the compiler prints on your printer. The listing consists of statistics, source code
statements and object code, undefined or external symbols, and a completion code.

The following is an example of the output listing generated by the compile example being run.

EDX ASSEMBLER STATISTICS

SOURCE INPUT - ADD10,EDX002
WORK DATA SET - WORK1,MYVOL
OBJECT MODULE - OBJECT,MYVOL
DATE: 10/24/82 AT 19:56:18

ASSEMBLY TIME: 4 SECONDS
STATEMENTS PROCESSED - 12
4 STATEMENTS FLAGGED
PAGE 1
LocC +0 +2 +4 +6 +8 SOURCE STATEMENT ADD10 ,EDX002 (5719
PROGRAM STPGM
08 *** TASK NAME NOT SPECIFIED $EDXL 12
0000 802C 0000 OOOA 0001 OEOE STPGM GETVALUE COUNT, 'ENTER NUMBER: '
000A C5D5 E3C5 D940 DSE4 D4C2
0014 C5D5 7A40
08 ***%* ONE OR MORE UNDEFINED LABELS WERE REFERENCED $EDXL 3
0018 809C 0024 000A LOOP DO 10, TIMES
001E 0032 0040 0000 ADD SUM, COUNT
08 *#** ONE OR MORE UNDEFINED LABELS WERE REFERENCED $EDXL 3
0024 009D 0000 0001 ENDDO
002A 8026 0808 D9C5 E2E4 D3E3 PRINTEXT 'RESULT="
0034 7E40 PRINTNUM SUM
003C 0022 FFFF PROGSTOP
COUNT DATA F'O'
08 *** INVALID OR UNDEFINED OPERATION CODE $EDXL 11
0040 0000 SUM DATA F'O’
0042 ENDPROG
0042 END

EXTERNAL/UNDEFINED SYMBOLS
COUNT UNDEFINED

COMPLETION CODE = 8

The previous example shows that the compile did not run successfully. The completion code
expected is a -1. The completion code received is an 8.

PG-76 sC34-0438

Running the Compilation (continued)

The listing shows the compilation errors. They are:

« 08 *** TASK NAME NOT SPECIFIED

« 08 *** ONE OR MORE UNDEFINED LABELS WERE REFERENCED
o 08 *** INVALID OR UNDEFINED OPERATION CODE

To fix these errors, you must understand what caused them. Look the errors up in Messages and
Codes.

The first message, 08 *** TASK NAME NOT SPECIFIED, is a result of not having a taskname
coded on the PROGRAM statement.

The second message, 08 *** ONE OR MORE UNDEFINED LABELS WERE
REFERENCED, means that one of the labels referenced in the instruction has not been defined
to the program. If you check the listing for undefined symbols, you will see that COUNT is
undefined.

The third message, 08 *** INVALID OR UNDEFINED OPERATION CODE, means that
something is wrong with the COUNT definition statement. If you check the statement, you will
see that the label, COUNT, starts in column two. The label must start in column one.

After isolating the errors, you must go back to the source data set and correct them. Use
$FSEDIT as explained in Chapter 3, “Entering a Source Program” on page PG-59 to make the
corrections. After you make the corrections, the source data set looks as follows:

PROG1 PROGRAM STPGM
STPGM GETVALUE COUNT, 'ENTER NUMBER:
LOOP DO 10,TIMES
ADD SUM,COUNT
ENDDO
PRINTEXT "@RESULT="
PRINTNUM SUM
PROGSTOP
COUNT DATA F'o'
SUM DATA F'o'
ENDPROG
END

Chapter 4. Compiling a Program PG-77

Compiling a Program

Running the Compilation (continued)

Rerunning the Compilation

To rerun the compilation, return to the Session Manager Primary Option Menu.

From the Session Manager Primary Option Menu, select option 2 (PROGRAM

PREPARATION).

{;;MMPRIM: SESSION MANAGER PRIMARY OPTION MENU ---------
ENTER/SELECT PARAMETERS:

20:02:07
10/24/82
ABCD

SELECT OPTION ==> 2

- TEXT EDITING

- PROGRAM PREPARA™"|ON

- DATA MANAGEMENT

- TERMINAL UTILITIES
GRAPHICS UTILITIES

- EXEC PROGRAM/UTILITY

- EXEC $JOBUTIL PROC

- COMMUNICATION UTILITIES
- DIAGNOSTIC AIDS

WOoONOWVIEWN —
1

\

PRESS PF3 TO EXIT

J

The Program Preparation Option Menu appears on your screen. Select option 1 ($SEDXASM

COMPILER).

/

$SMMO2 SESSION MANAGER PROGRAM PREPARATION OPTION MENU
ENTER/SELECT PARAMETERS:

SELECT OPTION ==> |

- $EDXASM COMPILER

- SEDXASM/SEDXL INK

- $S1ASM ASSEMBLER

- $COBOL COMPILER

SFORT FORTRAN COMPILER

- $PLI COMPILER/SEDXLINK

- SEDXLINK LINKAGE EDITOR

- $XPSLINK LINKAGE EDITOR FOR SUPERVISORS
- SUPDATE

10 - $UPDATEH (HOST)

11 - $PREFIND

12 - $PASCAL COMPILER/SEDXL INK

13 - SEDXASM/$XPSLINK FOR SUPERVISORS

WOoONAVILEWN —
i

PRESS PF3 TO RETURN

PG-78 SC34-0438

Rerunning the Compilation (continued)

The $SEDXASM Parameter Input Menu appears on your screen. Again, enter the name of your
source input (in this example, ADD10). Also enter the name of your object output (in this
example, data set OBJECT on volume MYVOL).

$SMM0201: SESSION MANAGER $EDXASM PARAMETER INPUT MENU----=-------------——-
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SOURCE INPUT (NAME,VOLUME) ==> ADDI0,EDX002
OBJECT OUTPUT (NAME,VOLUME) ==> OBJECT,MYVOL

OPTIONAL PARAMETERS ==>
(SELECT FROM THE LIST BELOW)

AVAILABLE PARAMETERS: ABBREVIATION: DESCRIPTION:
NOLIST NO USED TO SUPPRESS LISTING
LIST TERMINAL-NAME L1 TERMINAL-NAME USE LIST * FOR THIS TERMINAL
ERRORS TERMINAL-NAME ER TERMINAL-NAME USE ERRORS * FOR THIS TERMINAL
CONTROL DATA SET,VOLUME CO DATA SET,VOLUME SEDXASM LANGUAGE CONTROL DATASET
OVERLAY # ov # # 1S NUMBER OF AREAS FROM 1 TO 6

DEFAULT PARAMETERS:
\:}ST $SYSPRTR CONTROL $EDXL,ASMLIB OVERLAY 4)

Chapter 4. Compiling a Program PG-79

Compiling a Program

Rerunning the Compilation {continued)

The following is an example of the output listing generated by the compiler.

EDX ASSEMBLER STATISTICS

SOURCE INPUT - ADD10,EDX002
WORK DATA SET - $SM1ABCD,EDX002
OBJECT MODULE - OBJECT,MYVOL
DATE: 10/24/82 AT 20:06:18
ASSEMBLY TIME: 4 SECONDS
STATEMENTS PROCESSED - 12

NO STATEMENTS FLAGGED

LoC +0 +2 +4 +6 +8 SOURCE STATEMENT ADD10 ,EDX002 (5719
0000 0008 D7D9 D6D7 D9C1 D440 PROG1 PROGRAM STPGM
0034 802C 0074 OO3E 0001 OEOE STPGM GETVALUE COUNT, 'ENTER NUMBER: '

O003E C5D5 E3C5 D940 D5E4 D4C2
0048 C5D9 7A40

004c 809C 0058 000A LOOP DO 10, TIMES
0052 0032 0076 0074 ADD SUM, COUNT
0058 009D 0000 0001 ENDDO
005E 8026 0808 D9C5 E2E4 D3E3 PRINTEXT 'RESULT="
0068 7E40
006A 0028 0076 0001 PRINTNUM SUM
0070 0022 FFFF PROGSTOP
0074 0000 COUNT DATA F'0’
0076 0000 SUM DATA F'0’
0078 0000 0000 0000 0234 0000 ENDPROG
OOFA 0000 0000 0000 0000 0000
010E 0000
0110 END
EXTERNAL/UNDEFINED SYMBOLS

SvC WXTRN

SUPEXIT WXTRN

SETBUSY WXTRN
COMPLETION CODE = -1

The -1 completion code tells you that the compile was successful. The next step is to link-edit
the object module into program data that can be executed. See the next chapter, Chapter
5, “Preparing an Object Module for Execution” on page PG-81, for details.

PG-80 SC34-0438

Chapter 5. Preparing an Object Module for
Execution

So far in this book, you have learned how to code and enter a source program into a data set.
You have also learned how to compile the source program.

The next step is to prepare your object modules for execution. In this chapter, we will show you
how to use the linkage editor SEDXLINK to prepare your object modules to run on an EDX
system. $EDXLINK links together any separately assembled object modules that make up your
program. $EDXLINK also produces a load module that is ready for execution.

In this chapter, we will show you how to prepare a single object module for execution. We will
also show you an example of link-editing more than one object module.

You can invoke SEDXLINK in one of three ways. You can load $EDXLINK directly using the
$L command. You can use the $JOBUTIL utility to invoke $SEDXLINK. Or, you can use
$EDXLINK under control of the session manager.

This chapter describes how to use $EDXLINK under control of the session manager. For

information on using the $L. command or the $JOBUTIL utility, refer to Operator Commands and
Utilities Reference.

Chapter 5. Preparing an Object Module for Execution PG-81

PG-82

This section shows how to link-edit a single object module.

$EDXLINK LINKAGE EDITOR is option 7 of the Session Manager Program Preparation
Option menu.

 $SMMO2 SESSION MANAGER PROGRAM PREPARATION OPTION MENU----------===--=----
 ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SELECT OPTION ==>

- SEDXASM COMPILER

- $EDXASM/SEDXLINK

- $S1ASM ASSEMBLER

- $COBOL COMPILER

SFORT FORTRAN COMPILER

- $PLI COMPILER/SEDXLINK

- $EDXLINK LINKAGE EDITOR

- $XPSLINK LINKAGE EDITOR FOR SUPERVISORS
- SUPDATE

10 - SUPDATEH (HOST)

11 - $PREFIND

12 - $PASCAL COMPILER/SEDXLINK

13 - $EDXASM/$XPSLINK FOR SUPERVISORS

WO OoONOWVMIESWN —
!

When you select option 7 and press the enter key, the SEDXLINK Parameter Input Menu

appears on your screen.

$SMM0207: SESSION MANAGER $EDXLINK PARAMETER INPUT MENU------=-=====--------
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

EXECUTION PARM ==> °

ENTER A CONTROL DATA SET NAME,VOLUME OR
AN ASTERISK (*) FOR INTERACTIVE MODE.

OUTPUT DEVICE (DEFAULTS TO $SYSPRTR) ==>

You can run $EDXLINK in interactive mode. If you choose interactive mode, the system
prompts you for information about the object module you want to link-edit. To choose
interactive mode, enter an asterisk (*) on the EXECUTION PARM line.

SC34-0438

Link-Editing a Single Object Module (continued)

$EDXLINK then displays the following screen:

/LOADING $JOBUTIL 4P,18:27:16, LP= 9400, PART= 1 N\
REMARK

$SEDXLINK *

*** JOB - $EDXLINK - STARTED AT 18:28:42 03/15/83 ***

JOB $EDXLINK ($SMP0207) USERID=ABCD
LOADING $EDXLINK ~ 89P,18:28:49, LP= 9800, PART= 1

$EDXLINK - EDX LINKAGE EDITOR

$EDXLINK INTERACTIVE MODE
DEFAULT VOLUME = EDX002

eMT (7) j’

$EDXLINK prompts you for a control statement. Control statements are the instructions
$EDXLINK uses to convert the object modules into load modules.

When using interactive mode, you enter the control statements one at a time. (As you will see
later in this chapter, you can write the control statements to a link control data set for execution
in noninteractive mode.)

To link-edit a single object module, use the INCLUDE and LINK statements. (You will learn
about some of the other control statements later in this chapter.)

The INCLUDE statement indicates which object module to use. (Remember that the object
module is the output from $EDXASM, the compiler.) In this example, the object module is
OBIJECT. This is the only module name you enter next to the INCLUDE statement.

ﬁ.OADING $JOBUTIL 4P,10:27:16, LP= 9400, PART= 1 ‘\\
REMARK

$EDXLINK *
##+ JOB - $EDXLINK - STARTED AT 10:27:16 00/00/00 ***

JOB $EDXLINK ($SMP0207) USERID=ABCD
LOADING $EDXLINK 89P,10:27:18, LP= 9800, PART= 1

$EDXLINK - EDX LINKAGE EDITOR

$EDXLINK INTERACTIVE MODE
DEFAULT VOLUME = EDX002

STMT (?): INCLUDE OBJECT MYVOL

- J

Use the LINK statement to name the data set that is the output of $EDXLINK. When you
enter the name of this data set, SEDXLINK allocates it. In the following example, the data set
is named ADDPGM. It will reside on volume EDX002. The word REPLACE says to replace

Chapter 5. Preparing an Object Module for Execution ~PG-83

Preparing an Object Module for Execution

Link-Editing a Single Object Module (continued)

the program if it already exists on volume EDX002. END tells SEDXLINK not to expect any
more statements.

fLOADING $JOBUTIL 4P,10:27:16, LP= 9400, PART= 1 “\
REMARK

$EDXLINK *

*** JOB - SEDXLINK - STARTED AT 10:27:16 00/00/00 ***

JOB $EDXLINK ($SMP0207) USERID=ABCD
LOADING $EDXLINK 89P,10:27:18, LP= 9800, PART= 1

$EDXLINK - EDX LINKAGE EDITOR
$EDXLINK INTERACTIVE MODE
DEFAULT VOLUME = EDX002

STMT (?): INCLUDE OBJECT, EDX002

STMT (?): LINK ADDPGM,EDX002 REPLACE END

J

The system produces a data set (ADDPGM) that can now be executed on the system. In this
example, we link-edited only one object module (OBJECT). The next section shows how to
link-edit more than one object module.

If the system indicates (by returning a -1 completion code) that the link-edit was successful,
return to the Primary Option Menu to execute your program.

Link-Editing More Than One Object Module

PG-84

SC34-0438

This section shows how to specify that a load module consists of more than one object module.
If you divide a large program into modules, those modules can be compiled separately. If you
need to make a change to one of the modules, you need to recompile only that module. When
you are ready to run the program, you can link-edit the individual modules.

You might also have a function that is common to many of your programs. By making this
function a separate module, you could include it wherever needed in your programs.

This section shows how to use both interactiveand noninteractive mode to link-edit the
modules. All examples show $SEDXLINK being used under control of the session manager.

Link-Editing More Than One Object Module (continued)

As you learned earlier in this chapter, SEDXLINK LINKAGE EDITOR is option 7 of the
Session Manager Program Preparation Option menu.

T
$SMM02 SESSION MANAGER PROGRAM PREPARATION OPTION MENU-----======-=ceeue—-
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SELECT OPTION ==> 7

1 - $SEDXASM COMPILER

2 - SEDXASM/SEDXLINK

3 - $S1ASM ASSEMBLER

4 - $SCOBOL COMPILER

5 - SFORT FORTRAN COMPILER

6 - $PL1 COMPILER/SEDXLINK

7 - SEDXLINK LINKAGE EDITOR

8 - SXPSLINK LINKAGE EDITOR FOR SUPERVISORS

9 - $UPDATE

10 - SUPDATEH (HOST)

11 - $PREFIND

12 - $PASCAL COMPILER/SEDXLINK
\“7 13 - SEDXASM/SXPSLINK FOR SUPERVISORS A)
When you select option 7, the SEDXLINK Parameter Input Menu appears on your screen.

‘\

$SMM0207: SESSION MANAGER S$EDXLINK PARAMETER INPUT MENU-----=---====----uou
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

*

EXECUTION PARM ==>

ENTER A CONTROL DATA SET NAME,VOLUME OR
AN ASTERISK (*) FOR INTERACTIVE MODE.

OUTPUT DEVICE (DEFAULTS TO $SYSPRTR) ==>

Chapter 5. Preparing an Object Module for Execution ~PG-85

Preparing an Object Module for Execution

Link-Editing Mlore Than One Object Module (continued)

Using Interactive Mode

You can choose interactive mode or noninteractive mode.

When you choose interactive mode, SEDXLINK displays the following screen:

/I‘.'OADING $JOBUTIL 4P,07:27:16, LP= 9400, PART= 1
REMARK

$EDXLINK *

*** JOB - $EDXLINK - STARTED AT 07:27:16 00/00/00 ***

JOB $EDXLINK ($SMP0207) USERID=ABCD
LOADING $EDXLINK 89P,07:27:18, LP= 9800, PART= 1

$EDXLINK - EDX LINKAGE EDITOR

$EDXLINK INTERACTIVE MODE
DEFAULT VOLUME = EDX002

STMT (?):

.

PG-86 $C34-0438

ink-Editing More Than One Object Module (continued)

including Individual Object Modules

With the INCLUDE statement, you indicate which object modules to use. If the modules reside
on the same volume, you can list them on one INCLUDE statement. In the example shown
below, the first INCLUDE statment includes four object modules from volume EDX003. The
second INCLUDE statment includes two object modules from volume MYVOL.

LOADING $JOBUTIL 4P,07:27:16, LP= 9400, PART= 1

REMARK

$EDXLINK *

#*#+ JOB - $EDXLINK - STARTED AT 07:27:16 00/00/00 ***

JOB $EDXLINK ($SMP0207) USERID=ABCD
LOADING $EDXLINK 89P,07:27:18, LP= 9800, PART= 1

$EDXLINK - EDX LINKAGE EDITOR
$EDXLINK INTERACTIVE MODE
DEFAULT VOLUME = EDX002
STMT (?): INCLUDE OBJ12,0BJ13,0B.14,0BJ15,EDX003

STMT (?): INCLUDE

MYVO!

After you enter the first INCLUDE statement, SEDXLINK prompts you for another statement.
Enter the second INCLUDE statment.

Chapter 5. Preparing an Object Module for Execution ~PG-87

Preparing an Object Module for Execution
Link-Editing More Than One Object Module (continued)

The LINK statement tells the linkage editor what to call the load module and where to put it. In
this example, the output object data set will be named PGM1. It will reside on volume
EDX003. The word REPLACE says to replace the program if it already exists on volume
EDXO003. END tells $EDXLINK not to expect any more statements.

STMT (?): INCLUDE OBJ12,08BJ13,0BJ14,0BJ15 EDX003
STMT (?): INCLUDE SORT,STDEV.MYVOL

STMT (?): LINK PGM1,EDX003 REPLACE END

$EDXLINK EXECUTION STARTED

PGM1 ,EDX003 STORED

PROGRAM DATA SET SIZE= 7 RECORDS
COMPLETION CODE = -1

$EDXLINK ENDED AT 09:33:35

$JOBUTIL ENDED AT 09:33:55

CSESS ENTER KEY TO RETURN j

Once you enter these statements, $EDXLINK produces a load module (PGM1) that is ready for
execution. PGM1 consists of six object modules: OBJ12, OBJ13, OBJ14, OBJ15, SQRT, and

STDEV.

PG-88 SC34-0438

Link-Editing More Than One Object Module (continued)

including Overlay Segments

Your program may include overlay segments. (Overlay segments are described in detail in
“Reusing Storage using Overlays” on page PG-147.) You use the OVERLAY statement to
identify these segments to SEDXLINK.

For example, suppose you had a program made up of a resident segment and two overlays.
Assume the name of the resident segment is TESTROOT and the overlays are named
TESTSUBI1 and TESTSUB2. Your control statements would look like this:

(EEDXLINK INTERACTIVE MODE \
DEFAULT VOLUME = EDX002

STMT (?): INCLUDE TESTROOT, EDX003
STMT (?): OVERLAY

STMT (?): INCLUDE TESTSUB1,EDX003
STMT (?): OVERLAY

STMT (?): INCLUDE TESTSUB2,EDX003
STMT (?): LINK TEST,EDX003 REPLACE END
$EDXLINK EXECUTION STARTED

TEST ,EDX003 STORED

PROGRAM DATA SET SIZE= 26
COMPLETION CODE= -1

$EDXLINK ENDED AT 04:05:35

. J

The first INCLUDE statement identifies the resident (or root) portion of the program. The
INCLUDE statement following the first OVERLAY statement identifies the first overlay
segment. The INCLUDE statement following the second OVERLAY statement identifies the
second overlay segment.

The LINK statement identifies the object output data set.

Chapter 5. Preparing an Object Module for Execution ~PG-89

Preparing an

3

Using the Auto

You can use the AUTOCALL control statement to invoke the autocall feature. You can include
up to three autocall data set names on the AUTOCALL statement. Autocall data sets contain a
list of object module names and volumes, along with their entry points. Use the autocall option
to include modules not explicity included via the INCLUDE statement.

You need to use autocall data sets if, for example, you are link-editing a program that uses
$IMAGE subroutines. Some instructions, such as GETEDIT and PUTEDIT, also require that
you link-edit with the autocall option.

The following is an example of an autocall data set.

PGM1,EDX003 ENTER
PGM2,EDX40 START
PGM3,MYVOL CALC
**END

PGM1, PGM2, and PGM3 are object modules on EDX003, EDX40, and MYVOL. ENTER,
START, and CALC are the entry points for the modules: The module names must begin in
column one and end with a **END statement.

Enter the AUTOCALL statement just before the LINK statement. This example specifies two
autocall data sets: the system-supplied autocall data set (SAUTO on volume ASMLIB) and data
set MYAUTO on volume MYVOL.

If you specify more than one AUTOCALL statement, the linkage editor uses the last one.

Suppose you wanted to add an AUTOCALL statement to the previous example. You would
enter it like this:

- SEDXLINK INTERACTIVE MODE
DEFAULT VOLUME = EDX002

STMT (7): ineiupe T

STMT (7): ¢
STMT (?): (NCLUDE TESTSUBT,EDX003
STMT (?): oviniLAv

STMT (7): iwct

CSTMT (2): AU

‘i‘ STMT (?): LINK TEST,EIL WS REPLALE B

PG-90 SC34-0438

Link-Editing More Than One Object Module (continued)

The system would respond as follows:

SEDXLINK EXECUTION STARTED
TEST ,EDX003 STORED
PROGRAM DATA SET SIZE = 26
COMPLETION CODE = -1

SEDXLINK ENDED AT 04:05:35

The linkage editor also prints, on the system printer, the names of the object modules it

included. For example:

INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

$IMOPEN ,ASMLIB
$IMGEN ,ASMLIB
$GPLIST ,ASMLIB
$GEER ,ASMLIB
$GEAC ,ASMLIB
$IMDTYPE,ASMLIB
$$RETURN, ASMLIB
$UNPACK ,ASMLIB

FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM

$AUTO
$AUTO
$AUTO
$AUTO
$AUTO
$AUTO
$AUTO
$AUTO

Chapter 5. Preparing an Object Module for Execution

,ASMLIB
,ASMLIB
,ASMLIB
,ASMLIB
,ASMLIB
,ASMLIB
,ASMLIB
,ASMLIB

VIA
VIA
VIA
VIA
VIA
VIA
VIA
VIA

AUTOCALL
AUTOCALL
AUTOCALL
AUTOCALL
AUTOCALL
AUTOCALL
AUTOCALL
AUTOCALL

PG-91

Preparing an Object Module for Execution

Link-Editing More Than One Object Module (continued)

Using Noninteractive Mode

PG-92

SC34-0438

Using noninteractive mode means that you do not have to enter control statements each time
you link-edit a program.

When you use noninteractive mode, you must enter the name of a primary control data set on
the SEDXLINK Parameter Input Menu. The primary control data set contains the control
statements to be used by $SEDXLINK.-

You can create the primary control data set using $FSEDIT. Then enter control statements into
the data set.

The following is an example of a primary control data set. Control statements must begin in
column 1. This data set includes comment statements. A comment statement begins with an
asterisk (*).

* PLOT PROGRAM INCLUDES
*

INCLUDE PLOTXY,MYVOL
INCLUDE PLOTXX,MYVOL
INCLUDE PLOTYY,MYVOL
INCLUDE PLOTYX,MYVOL

*

* PERFORM AUTOCALL PROCESSING USING:
*

AUTOCALL MYAUTO,MYVOL $AUTO,ASMLIB
*

* PERFORM THE LINK
*

LINK PLOT,MYVOL REPLACE END

After entering these statements into the data set, you would then specify the name of this data
set next to “EXECUTION PARM” on the $EDXLINK Parameter Input Menu. In this
example, the data set is LINK1 on volume EDX003.

4 ™
$SMM0207: SESSION MANAGER S$EDXLINK PARAMETER INPUT MENU---=-========cm—u-
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

EXECUTION PARM ==> LINK1,EDX003

ENTER A CONTROL DATA SET NAME,VOLUME OR
AN ASTERISK (*) FOR INTERACTIVE MODE.

OUTPUT DEVICE (DEFAULTS TO $SYSPRTR) ==>)

\.

Link-Editing More Than One Object Module (continued)

The primary control data set may also refer to a secondary control data set. The secondary
control data set contains additional control statements. These control statements can be
common control statements that are used frequently for many different link-edits. You use the
COPY control statement to refer to these secondary data sets. For example:

INCLUDE ASMOBJ,EDX003
COPY CTRL,EDX40
LINK PGM3,EDX40 REPLACE END

The linkage editor includes object module ASMOBJ on volume EDX003, copies additional
control statements from data set CTRL on volume EDX40, gives the load module the name

PGM3, and puts it on volume EDX40.

For more information on specifying primary and secondary control statement data sets, refer to
Operator Commands and Utilities Reference.

Prefinding Data Sets and Overiays
You can locate data sets and overlay programs before you load a program by using the
$PREFIND utility. You can improve program performance by using SPREFIND.
You should use $PREFIND if:
« The program uses a large number of data sets
s The program loads several overlay programs
e You load the program frequently

For information on how to use the $PREFIND utility, refer to Operator Commands and Utilities
Reference.

Chapter 5. Preparing an Object Module for Execution ~ PG-93

Notes

PG-94 s5C34-0438

After you have compiled and link-edited a program, you are ready to run (or execute) it.

This chapter shows how to execute a program. You can execute a program in any of the
following ways:

« You can load the program with the $L operator command.

» You can use the $JOBUTIL utility.

« You can use the session manager.

¢ You can submit the program from another program.

« You can use the $SUBMIT utility.

This chapter describes how to use the session manager to execute a program and how to submit

a program from another program. For information on how to use the $1. operator command or
the $JOBUTIL utility or the $SUBMIT utility, refer to Operator Commands and Utilities Reference.

Chapter 6. Executing a Program PG-95

Executing a Program

Executing a Program with the Session Manager

PG-96

SC34-0438

To execute your program, select option 6 (EXEC PROGRAM/UTILITY) on the Primary
Option Menu.

/- N

SSMMPRIM: SESSION MANAGER PRIMARY OPTION MENU =-============m=mommmmmmo
ENTER/SELECT PARAMETERS: PRESS PF3 TO EXIT

11:42:07
SELECT OPTION ==> ¢ 10/24/82
ABCD

TEXT EDITING

PROGRAM PREPARATION
DATA MANAGEMENT
TERMINAL UTILITIES
GRAPHICS UTILITIES

EXEC PROGRAM/UTILITY
EXEC $JOBUTIL PROC
COMMUNICATION UTILITIES

W OoONOVIEWN —
| I A R N R R R A |

DIAGNOSTIC AIDS A,)

.

The Execute Program/Utility menu appears. Enter the program name (ADDPGM) and volume
(EDX002) next to PROGRAM/UTILITY (NAME,VOLUME). Then type an asterisk in the
DATA SET 1, DATA SET 2, and DATA SET 3 fields and press the enter key.

$SMMO6 SESSION MANAGER EXECUTE PROGRAM/UTILITY-----=-=--=-==--c----—momo—o
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN
PROGRAM/UTILITY (NAME,VOLUME) ==> ADDPGM,EDX002
PARAMETERS ===>
DATA SET 1 (NAME,VOLUME / * = DS1 NOT USED) ===> *
DATA SET 2 (NAME,VOLUME / * = DS2 NOT USED) ===> *
DATA SET 3 (NAME,VOLUME / * = DS3 NOT USED) ===> *
NOTE: IF A DATA SET (DS1, DS2 OR DS3) IS NOT USED,
AN ASTERISK (*) MUST BE ENTERED IN THE DATA SET FIELD.)

Putting asterisks in the DATA SET fields means either of two things. Either the program does
not use any data sets or the program specifies the data sets with the DS operand. For example,
the PROGRAM for program ADDPGM might look like this:

BEGIN PROGRAM ST

or this:

BEGIN PROGRAM ST,DS=((MASTER,EDX003), (UPDATES,MYVOL) , (NEWMAST,EDX40))

The following screen then appears on the terminal:

LOADING $JOBUTIL 4P,11:48:21, LP= 9400, PART= 1
REMARK

EXECUTE PROGRAM/UTILITY: ADDPGM

ok JOB - ADDPGM - STARTED AT 11:48:22 00/00/00 ***

Jos ADDPGM ($SMP06) USERID=ABCD
LOADING ADDPGM 2P,11:48:23, LP= 9800, PART= 1
ENTER NUMBER: A)

Specifying Data Sets

You can specify data sets in one of six ways:

1. In the DS= operand of a PROGRAM instruction.

2. In the DS= operand of a LOAD instruction.

3. With the $L operator command.

4. During execution of some system utility programs.

5. On the Execute Program/Utility menu.

6. With the DS command of the $JOBUTIL utility.

You identify a data set by specifying:

1. The data set name (dsname)

2. An optional volume label (volume) which specifies the volume on which the data set resides

The format for a data set specification is:

dsname, volume

Volume is optional. If you omit volume, the system assumes that the data set resides on the
volume from which you performed an IPL. Definitions of dsname and volume are:

dsname An alphameric character string of eight characters. When you specify fewer than
eight characters, the system adds blanks to the right to complete the string.

volume An alphameric character string of six characters. To locate the volume, the

appropriate TAPE or DISK statement must be in the system I/O definition. You
must initialize the disk or diskette with the SINITDSK utility and tapes with the

Chapter 6. Executing a Program PG-97

Executing a Program

Executing a Program with the Session Manager (continued)

$TAPEUT]1 utility. When you specify fewer than six characters, the system adds

blanks to the right to complete the string.

To specify up to three data sets on the Execute Program/Utility menu, enter the data set name

and volume as in the following example:

ENTER/SELECT PARAMETERS:
PROGRAM/UTILITY (NAME,VOLUME)
PARAMETERS ===>
DATA SET 1 (NAME,VOLUME / *

DATA SET 2 (NAME,VOLUME / *
DATA SET 3 (NAME,VOLUME / *

mowon

NOTE: IF A DATA SET (DS1, DS2
AN ASTERISK (*) MUST BE
FIELD.

AN

P
$SMMO6 SESSION MANAGER EXECUTE PROGRAM/UTILITY--=-======-=----ommmmmmmmmm

PRESS PF3 TO RETURN

==> ADDPGM,EDX002

DS1 NOT USED) ===> MASTER,EDX003
DS2 NOT USED) ===> yppATES,MYVOL
DS3 NOT USED) ===> NEWMAST,EDX40

OR DS3) IS NOT USED,
ENTERED IN THE DATA SET

The PROGRAM statement for program ADDPGM might look like this:

BEGIN PROGRAM ST,DS=(??,2?,?27?)

If a program requires less than three data sets, type an asterisk (*) next to the data set(s) not

used.

PG-98 SC34-0438

Executing a Program with the Session Manager (continued)

Submitting a Program from Another Program

A program can submit one or more programs to the EDX job processor. The job queue processor
executes the programs independently of the program that submitted them.

The following example shows how one program can submit programs CALC on volume

EDXO003 and UPDATE on volume MYVOL.

BEGIN PROGRAM START
START EQU *
1} LOAD $SUBMITP, SUBPARM1, LOGMSG=NO, EVENT=SUBEND
B WAIT SUBEND
3] IF (SUBEND, NE, - 1)
PRINTEXT 'ERROR LOADING CALC',SKIP=1
ENDIF
4] LOAD $SUBMITP, SUBPARM?2 , LOGMSG=NO, EVENT=SUBEND
WAIT SUBEND
IF (SUBEND,NE, -1)
PRINTEXT 'ERROR LOADING UPDATE', SKIP=1
ENDIF
PROGSTOP
SUBEND ECB
SUBPARM1 EQU *
B DATA c'sJ’
6 DATA X'0002"
7] DATA CL8'JOBO1'
] DATA CL6'EDX40'
o} DATA A (JOBNO)
SUBPARM2 EQU *
DATA c'sJ!’
DATA X'0002"'
DATA CL8'JOB02'
DATA CL6'EDX40'
DATA A (JOBNO)
i JosNO DATA F'0'
ENDPROG
END
1} Submit a job to the job queue. Point to a parameter list called SUBPARMI, and identify
the event to be posted when the job has been submitted (EVENT=SUBEND).
B Wait for the job to be submitted to the job queue.
Test for successful completion (-1) of the submit.

Chapter 6. Executing a Program

PG-99

Executing a Program

Submitting a Program from Another Program (continued)

PG-100

SC34-0438

a Submit a job to the job queue. Point to a parameter list called SUBPARM?2, and identify
the event to be posted when the job has been submitted (EVENT=SUBEND).

Specify that the job is to be submitted (SJT).
6| Specify the priority of the job (0002).

Identify the name of the data set that contains the job stream processor commands
(JOBO1).

B Specify the volume that contains JOB0O1 (EDX40).
B Specify the address of the field in which the system will put the job number (JOBNO).
10} Reserve storage for the system to put the job number.

The data set called JOBO1 contains job stream processor commands. It might look like the
following:

JOB JOBO1

PROGRAM CALC,EDX003
EXEC

EOJ

The PROGRAM command refers to a program called CALC on volume EDX003.

The data set called JOBO2 contains job stream processor commands. It might look like the
following:

JOB JOBO2

PROGRAM UPDATE,MYVOL
EXEC

EOJ

The PROGRAM command refers to a program called UPDATE on volume MYVOL.

Chapter 7. Finding and Fixing Errors

Up to this point, you have written, compiled, and link-edited your program. However, the
program may not run as you expect it to. Steps may be out of sequence or the program may
come up with the wrong answers. In other words, you have problems with your program’s logic.

The program also may not run to a successful conclusion. An exception condition may occur
that interrupts the execution of a program.

The $DEBUG utility assists you in determining logic errors. The task error exit routine is one of
the tools you can use to diagnose exception conditions.

Determining Logic Errors in a Program

This section tells you how to locate and fix logic errors in your program by using the $DEBUG
utility. $SDEBUG can work from terminals; you do not have to use the console. $DEBUG has
commands that allow you to:

« Stop execution at one or more specific places in a program. The places where you choose to
stop a program are called breakpoints.

» Set up a trace routine. A trace routine allows you to step through program instructions one
at a time. You must specify one or more parts of the program you wish to trace (called a
trace range). Each time the program executes an instruction within any of the specified
trace ranges, the terminal displays a message identifying the task name and the instruction
address just executed. You can stop program execution after each instruction executes
within a trace range.

Chapter 7. Finding and Fixing Errors PG-101

Finding and Fixing Errors

Determmining Logic Errors in a Program (continued)

List additional registers and storage location contents while the program is stopped at a
breakpoint or at an instruction within a trace range.

Change the contents of storage locations, registers, data, or instructions.

Restart program execution. You can restart execution at the breakpoint or trace range
address where it is currently stopped or you may specify another instruction address.

Creating and Running the Program

PG-102

This section shows an EDL program that has a logic error in it. It shows briefly how to enter,
compile, link-edit, and run (execute) the program.

Perform the following steps using the session manager. Give the program the name ADD10.

1.

4.

Enter the following program on your terminal exactly as shown.

ADD10 PROGRAM STPGM
STPGM GETVALUE COUNT, 'ENTER NUMBER: '
LOOP DO 10, TIMES

ADD COUNT, SUM

ENDDO
PRINTEXT 'RESULT="'
PRINTNUM SUM
PROGSTOP

COUNT DATA F'o’

SUM DATA F'O'
ENDPROG
END

This program is supposed to take a number entered on a terminal and add it to itself 10
times. For example, if you enter the number 10, you should get the response:
RESULT=100. However, because of a program logic error, you will not get the expected
answer when you run the program.

Now compile the program. If you have any problems, see Chapter 4, “Compiling a
Program.” Save the compiler listing. You will need it when you run $DEBUG.

Next, link-edit your program. If you have any problems, see Chapter 5, “Preparing an
Object Module for Execution.”

Run the program. If you have any problems, see Chapter 6, “Executing a Program.”

When the prompt ENTER NUMBER appears, enter the number 10.

\

ENTER NUMBER: 10
RESULT= 0

SC34-0438

Determining Logic Errors in a Program (continued)
Because this program has a logic error, the answer returned is 0. The expected result was 100.

Debugging and Fixing the Program

This section describes how to use $DEBUG to find and correct a logic error.
Loading $DEBUG

To start debugging the program, do the following:

1. End the session manager. You cannot run $DEBUG while the session manager is active.
One way to load $DEBUG is with the $L operator command.

2. Enter the following:

i\m > SL $DEBUG ‘/}

The following message appears, telling you that $DEBUG is being loaded.

i
R:PADING $DEBUG 31P,00:48:05, LP= 9E00, PART= 1 A/J

3. Then $DEBUG asks for the name of the program to be debugged. Respond as follows:

H
%PROGRAM NAME: ADD10,EDX002 A/)

$DEBUG displays the following information:

LOADING ADD10 2P,00:48:12, LP= BDOO, PART= 1 !
| REQUEST "HELP'' T0 GET LIST OF DEBUG COMMANDS
{ ADDIO STOPPED AT 0034 }

These messages tell you:

« the load point (LP=) of the program.

« the partition where $DEBUG loaded the program.

« that $DEBUG set a breakpoint and stopped the program at address 0034, which is the first
executable instruction.

Note that you can also enter HELP to see a list of the available $DEBUG commands.

Chapter 7. Finding and Fixing Errors PG-103

Finding and Fixing Errors

Determining Logic Errors in a Program (continued)

$DEBUG Commands

Both $DEBUG and the program have been loaded into partition 1. The program has stopped
and $DEBUG is waiting for a command. To see a list of the $DEBUG commands:

1. Press the attention key.
2. Enter #{eLp.

The list of $DEBUG commands appears on the screen.

/:vHELP ‘\

THE FOLLOWING COMMANDS ARE AVAILABLE:
HELP - LIST DEBUG COMMANDS

WHERE - DISPLAY TASK STATUS

LIST - DISPLAY STORAGE OR REGISTERS
PATCH - MODIFY STORAGE OR REGISTERS
QUALIFY - MODIFY BASE ADDR

AT - ESTABLISH BREAKPOINTS

OFF - REMOVE BREAKPOINTS

GO - START TASK PROCESSING

POST - POST EVENT OR PROCESS INTERRUPT
PRINT - DIRECT LISTING TO PRINTER

BP - LIST BREAK POINTS

GOTO - CHANGE EXECUTION SEQUENCE
END - TERMINATE DEBUG FACILITY

N J

Use the $SDEBUG commands to:

« Set breakpoints and trace ranges (AT).

« List breakpoints and trace ranges (BP).

« End $DEBUG (END).

« Restart a stopped task (GO).

« Restart a stopped task at a different instruction (GOTO).
o List $SDEBUG commands (HELP).

« Display storage or register contents (LIST).

« Remove breakpoints and trace ranges (OFF).

« Change storage or register contents (PATCH).

« Start a task waiting for an event or process interrupt (POST).
« Direct output to another terminal (PRINT).

« Change the base address (QUALIFY).

« Display the current status of each task (WHERE).

You can enter any of the commands by pressing the attention key and entering the command
name. $DEBUG then prompts for the command parameters. For example, if you want to set a
breakpoint, enter the AT command. $DEBUG then prompts for the parameters as shown
below.

PG-104 sC34-0438

Determining Logic Errors in a Program (continued)

> AT
OPTION(*/ADDR/TASK/ALL): ADDR

BREAKPOINT ADDRESS: 4C

LIST/NOLIST: LIST

OPTION(*/ADDR/RO...R7/#1/#2/|AR/TCODE) :

LENGTH: 1

MODE (X/F/D/A/C): X

STOP/NOSTOP: STOP

\\k 1 BREAKPOINT(S) SET W,

This command sets a breakpoint at address 4C. It requests that SDEBUG print the contents of
register 1 (one word) in hexadecimal. STOP tells $DEBUG to stop at address 4C.

For detailed syntax descriptions, refer to each individual command in the Operator Command's and
Utilities Reference.

You can also enter a command and its parameters without going through the prompts. For
example:

kATADDRhCL#?¥XS J

gives you the same results.

Chapter 7. Finding and Fixing Errors PG-105

Finding and Fixing Errors

Determining Logic Errors in a Program (continued)

Finding the Errors

Now that you have loaded $DEBUG, specified your program name, and reviewed the $DEBUG
commands, you are ready to start finding the logic errors in your program. You should have a
listing of the program before you start. Then follow these steps:

1. Use the AT command to set a breakpoint to stop the program after the GETVALUE
executes (address 004C). Respond to the prompts as follows:

> AT
OPTION(*/ADDR/TASK/ALL): ADDR
BREAKPOINT ADDR: 004C
LIST/NOLIST: NOL!IST
STOP/NOSTOP: STOP

1 BREAKPOINT(S) SET

o P ———

-
The breakpoint to stop after the GETVALUE instruction executes is now set.
2. Enter a GO command and, when prompted, enter the number 10.
> GO g
1 BREAKPOINT(S) ACTIVATED :
ENTER NUMBER: 10 §
ADD10 STOPPED AT 004C ,}

Program execution has stopped at the instruction labeled LOOP. The GETVALUE
instruction has executed.

To check to see if the program read the data correctly, use the LIST command to display
data field COUNT at address 0074.

3. Enter a LIST command and respond as follows:

> LIsT
OPTION(*/ADDR/RO...R7/#1/#2/1AR/TCODE): ADDR
ADDRESS: 0074

LENGTH: i

MODE(X/F/D/A/C): D

0074 D' 0010’

[T ————

o

The LIST command shows that 0074 contains 10, the correct input. This indicates proper
logic to this point.

The next set of instructions is the DO loop. Set another breakpoint to stop the program
after execution of the DO loop at address 005E.

PG-106 SC34-0438

Detemining Logic Errors in a Program (continued)

4. Enter an AT command and respond as follows:

> AT

OPTION(*/ADDR/TASK/ALL): ADDR

BREAKPOINT ADDR: 0O05E

LIST/NOLIST: NOLIST

STOP/NOSTOP: STOP .
1 BREAKPOINT(S) SET

The breakpoint to stop after the DO loop instructions executes is now set.

5. Enter a GO command and the following occurs:

> GO
1 BREAKPOINT(S) ACTIVATED
ADD10 STOPPED AT 005E

At this point, the data field SUM at address 0076 should contain the number 100.

To check to see if the data field SUM contains the proper number, use the LIST command
to display data field SUM at address 0076.

6. Enter a LIST command and respond as follows:

> LIST
OPTION(*/ADDR/RO. . .R7/#1/#2/1AR/TCODE): ADDR
ADDRESS: 0076

LENGTH: 1
MODE(X/F/D/A/C): D
0076 D' 0000’

The LIST command shows that this field contains zero. This means that the DO loop or
the ADD instruction in the DO loop is incorrect. If you examine these instructions, you will
see that the DO loop is correct. However, The ADD instruction has a logic error. In order
to receive the proper answer, the COUNT field should be added to the SUM field. The
operands are backwards. The DO loop executes the ADD instruction 10 times but is adding
SUM to COUNT, causing the SUM field to remain O.

Fixing the Problem

To verify that this is the problem without having to recompile and link-edit the program, you can
use the PATCH command of $DEBUG for a temporary fix. This fix is good only for one
execution of the program. PATCH only fixes the copy of the program loaded by $SDEBUG. It

Chapter 7. Finding and Fixing Errors PG-107

Finding and Fixing Errors

Determining Logic Errors in a Program (continued)

does not fix the program on your volume. Once you have verified that the fix is correct, you can
then change the program on your volume.

To verify that the problem is the ADD instruction, do the following:

1. Find address 0052 on your compiler listing. This line contains the ADD instruction. The
-entire line looks like this:

0052 0032 0074 0076 ADD COUNT, SUM

The address of the instruction is 0052. The operation code (0032) does not change. The
next two words, 0074 and 0076, are the addresses of data fields COUNT and SUM.

To fix the logic error, change the instruction to look as follows:

0052 0032 0076 0074

2. Enter a PATCH command and respond to the prompts as follows:

> PATCH
OPTION(*/ADDR/RO...R7/#1/#2/1AR/TCODE): ADDR
ADDRESS: 0054
LENGTH: 2
MODE(X/F/D/A/C): A
NOW 1S
0054 A' 0074 0076'
DATA: 0076 007k

NEW DATA
0054 A' 0076 0074’
YES/NO/CONTINUE: YES
. Y,

The program is now patched. When it executes, it will add COUNT to SUM to arrive at
the expected result. You can test the change by reexecuting the program.

To reexecute the program, you have to know two things: the address where the program is
currently stopped (005E) and the address of the first executable instruction (0034). Then
you can use the GOTO command to restart the program at the first executable instruction.

3. Enter a GOTO command as shown:

> GOTO 005E 0034
1 BREAKPOINT(S) ACTIVATED
ADD10 STOPPED AT 0034

4. The program is now at the beginning. To test it, set all the breakpoints off so that the
program will run to completion.

PG-108 sC34-0438

Determining Logic Errors in a Program (continued)
Enter the following:

§> OFF ALL Aj}

5. Now enter a GO command and respond to the prompts as follows:

> GO
ENTER NUMBER: 10
RESULTS= 100

ADD10 ENDED AT 00:27:56

This time you received the expected result of 100. You have verified that the logic error
was the ADD instruction.

Ending $DEBUG

Now that you have found and fixed the logic error in your program, use the END command to
terminate $DEBUG. Enter the following:

o y

When $DEBUG ends, your program remains in storage with all of its tasks active and operating
if it has not already ended. In our example, however, the program has ended.

To make the fix permanent, change your source program (see Chapter 3, “Entering a Source
Program” on page PG-59), recompile it (seeChapter 4, “Compiling a Program” on page
PG-69), and link-edit your object code module (see Chapter 5, “Preparing an Object Module
for Execution” on page PG-81).

Chapter 7. Finding and Fixing Errors PG-109

Finding and Fixing Errors

Determining Logic Errors in a Program (continued)

Using Return Codes to Diagnose Problems

This section describes how to use the return codes to diagnose problems.

Many EDL instructions return a code to indicate whether or not they execute successfully. Each
time EDX executes one of these instructions, it stores a code, called a return code, in the first two
words, called task code words, of the task control block (TCB). You can access the TCB by
referencing the task name.

In the following example, the instructions at label ERRTEST compare the return code of the
READTEXT instruction with the successful return code (-1).

BEGIN PROGRAM START

READTEXT NAME, 'ENTER NAME: ',SKIP=4,MODE=LINE
ERRTEST MOVE TASKRC,BEGIN
IF (TASKRC,NE,-1) ,GOTO, CHECK

ENDIF

CHECK PRINTEXT 'ERROR IN READING NAME',6 SKIP=1
PRINTNUM TASKRC

GOTO END
END PROGSTOP
TASKRC DATA F'O’

ENDPROG

END

You must test the return code before executing any other instruction because the system may
overlay the task code word with the return code of the next instruction.

PG-110 SC34-0438

Using Return Codes to Diagnose Problems (continued)

Task Error Exit Routines
This section describes the facilities provided by the system in the event that an exception occurs.
These are the supervisor facility and the system-supplied task error exit routine.
When an exception occurs, the supervisor takes certain actions. What action it takes depends on
whether or not you have coded a task error exit routine in your program. If your program does
not have a task error exit routine, the supervisor simply writes a program check message on
$SYSLOG, and terminates the program. If your program has a task error exit routine, either the

one supplied by the system or your own, the supervisor does the following:

1. Stores the hardware status at the time of the exception in a block of storage designated by
the task.

2. Passes control to the task at its task error exit entry point.
At this point, the task error exit routine gains control. The next section discusses only the
system-supplied routine. However, remember that, if necessary, you can substitute your own

routine. (For information on writing your own task error exit routine, refer to Customization
Guide.)

Notes:

1. A task error exit routine is a part of the task it serves. The supervisor passes control to it at
the task level, it is not a subroutine of the supervisor’s error handler.

2. The registers (including the EDL software registers, #1 and #2) used by the error exit
routine are those normally used by the task.

3. To resume executing the task following corrective action by task error exit, branch (if in
Series/ 1 instruction mode) or GOTO (if in EDL mode) the appropriate location.

4. If the error exit is unable to recover from the exception, it should issue a PROGSTOP
instruction.

The System-Supplied Task Error Exit Routine ($$EDXIT]

A task error exit routine named $$EDXIT is available on volume ASMLIB. This routine:

« Captures relevant data from the program header, task control block, and hardware status
area when an exception occurs

« Formats and prints this data on $SYSLOG and $SYSPRTR

« Displays an error message on the loading terminal

Chapter 7. Finding and Fixing Errors PG-111

Finding and Fixing Errors

Task Error Exit Routines (continued)

Using $$EDXIT

To use the supplied routine, you must:

+ Code $$EDXIT as the value of the ERRXIT keyword parameter of each PROGRAM and
TASK statement in your program. For example:

AB PROGRAM,ERRXIT=$$EDXIT

CD TASK «...,ERRXIT=$$EDXIT

« Declare the label $$EDXIT to be an EXTRN.

EXTRN $$EDXIT

The task error exit routine is included in the autocall list AUTO on volume ASMLIB. It is
automatically included when you link-edit any program that references $$EDXIT. A separate
INCLUDE statement is not required for $$EDXIT in the LNKCTRL data set. All you need to
do is code SAUTO,ASMLIB as the autocall data set on the AUTOCALL statement of
$EDXLINK.

The following example shows what $$EDXIT prints on $SYSLOG and $SYSPRTR. It shows
that a program check has occurred in an application program named PCHECK. The numbers to
the left of both columns correspond to the explanations that follows.

khkkhkhhhhhhhhbhhhbbhhrhbbhbhbhhhh it

* WARNING!! AN EXCEPTION HAS OCCURRED!! *
A ALAAL A AR A AR A A A A A A Ak A A AR A AR A AL

El PROGRAM NAME = PCHECK B Psw= 8002

B} PROGRAM VOLUME = EDXWRK IAR = 3124

[} PROGRAM LOAD POINT = 0000 AKR = 0440

[} ADDRESS OF ACTIVE TCB = 016C LSR = 00DO

B Abbress oF ccs = 1802 RO (WORK REGISTER) = 0096
NUMBER OF DATA SETS = 1 [Rt (EDL INSTR ADDR) = OOE7
NUMBER OF OVERLAYS = 0 B R2 (EpL TCB ADDR) = 016C

$TCBADS = 0004 R3 (EDL OP1 ADDR) = OOE7

ADDRESS OF FAILURE R4 (EDL OP2 ADDR) = 00B2

@ (REL. TO PGM LOAD POINT = 00E7 [B R5 (EDL COMMAND) = 0000
DUMP OF FAIL ADDRESS R6 (WORK REGISTER) = 0000

B o00E6: 0000 0028 0028 3635 R7 (WORK REGISTER) = 0000
$TCBCO = -1 DEC; FFFF HEX #1 = 0000
$TCBO2 = 0 DEC; 0000 HEX #2 = 0000

PSW ANALYSIS:

SPECIFICATION CHECK
TRANSLATOR ENABLED

PG-112 sC34-0438

Task Error Exit Routines (continued)

Explanation:
Name of the active program

Name of the volume where the program resides

O O =

The load point of the program

=

Address of the active TCB when the exception occurred

Address of the CCB (terminal that loaded the program)

[o]

Address key where program is loaded if not doing cross-partition move or the target
address key if doing a cross-partition move

Address of the instruction that caused the program check

[|

Dump of the instruction that caused the program check

Indicates the type of exception that occurred

Usually points to the EDL instruction address

Usually contains the EDL TCB address

-

Usually contains the op code of the EDL instruction that was being executed

-y
N

The following message appears on the loading terminal when the program check occurs:

A MALFUNCTION HAS OCCURRED -- CALL SYSTEM PROGRAMMER

Notes:

1. If you are executing either a combination of EDL instructions and Series/1 instructions or
all Series/ 1 instructions, the registers may not contain this information.

2. You can restart the program by writing your own error exit routine to reload it.
$$SEDXIT provides you with information about the program, task, and hardware status when an
exception occurs. You can extend the capabilities of $$EDXIT so that it will also evaluate the

information and make an appropriate response. For more information on writing your own task
error exit routine, refer to Customization Guide.

Chapter 7. Finding and Fixing Errors PG-113

Notes

PG-114 sC34-0438

Chapter 8. Reading and Writing Data from
Screens

The Event Driven Executive allows you to read and write data from a screen that appears on a
terminal. A person at a terminal can supply data to a program and the program can display
information on the terminal screen.

EDX allows you to use two types of screens: roll screens and static screens.

This chapter describes:

¢« When to use roll screens

« When to use static screens

e Reading and writing rolls screens

« Reading and writing static screens

The chapter shows how to write a program to read five data items from a screen and write them
back to the screen. The chapter shows how to use each kind of screen (roll and static).

You can generally code terminal programs using either roll or static screens. However, each
screen offers distinct advantages for certain types of programs.

Chapter 8. Reading and Writing Data from Screens PG-115

Reading and Writing Data from Screens

When to Use Roll Screens

A roll screen is similar to a typewriter. The system reads or writes data line-by-line, starting with
line O at the top of the screen and ending with line 23 at the bottom of the screen. You can use
roll screens to read or write a single data item.

A program that uses roll screens usually prompts the operator for data, waits for an operator
response, and checks the validity of the input data. Roll screens are best suited for application
programs in which:

« A simple question-and-answer dialogue occurs between program and operator.

« A ssingle line is sufficient for each response.

e No Program Function (PF) keys are required.

e An incorrect response requires only a reprompt.

« You want to use a minimum of processor storage.

In addition, the terminal may support roll screens only.

Roll screen dialogue is relatively easy to code and requires little program preparation. You can
code prompts in a tree structure where the choice of the next prompt depends on the reply to
past prompts.

You can print more than one line of text to introduce a prompt. For example, you might want to

offer the choice of several programs to be loaded, each of which may choose to continue the
dialogue at the same terminal. You can also display more than one line of text in a program

reply.

When to Use Static Screens

PG-116

SC34-0438

A static screen is similar to a page of information. The system reads or writes an entire screen at
once. You can use static screens to read or write several data items at one time.

Programming for static screens involves managing the entire screen as a series of protected and
unprotected fields.

A protected field is an area that contains an operator prompt or an input field name. It is
protected from being accidentally changed by the operator.

An unprotected field is an area that is to be filled in by the operator.

When to Use Static Screens (continued)

Static screens are best suited for programs in which:

« The dialogue involves a series of full screens.

¢ More than one line of response may be required.

« You need to manipulate the cursor.

o The program must recognize Program Function (PF) keys.

¢ You need attribute characters such as blinking and non-display.

« The unprotected fields may be scattered across the screen and interspersed with the
protected fields.

e Many related data fields are to be entered at one time.

« Medium to large amounts of data accompany each prompt, operator response, or program
reply.

You can manage static screens most easily by using the $SIMAGE utility to define your screens.

$IMAGE places the screens on direct access storage. The program then can read them into

processor storage. $IMAGE subroutines and terminal I/O statements allow you to read the

screen into the application program, display it at the terminal, position the cursor, scatter read or
write unprotected fields, and wait for a response.

Reading and Writing One Line at a Time

-

Reading and writing a single line from a terminal screen involves reading the data item from the
screen and writing or displ/aying the data item on the screen.

To read and write to a roll screen:
1. Reserve storage for data.
2. Read a data item.

3. Write a data item.

Chapter 8. Reading and Writing Data from Screens PG-117

Reading and Writing Data from Screens

Reading and Writing One Line at a Time (continued)

Reserving Storage for the Data

To reserve storage for a data item that you will read, you must know its maximum length. To
reserve storage for a text string of 30 characters, use the TEXT statement as follows:

NAME TEXT LENGTH=30

The name of the storage is NAME. The next section describes how to put a data item into
NAME.

Heading a Data ltem

To read a data item from a roll screen, you can use either the READTEXT or GETVALUE
instruction. The READTEXT instruction allows you to read a text string. The GETVALUE
instruction allows you to read one or more numbers.

To read a data item into a storage area, use the READTEXT instruction as follows:

READTEXT NAME, 'NAME:',6SKIP=1,MODE=LINE

The instruction displays the prompt NAME: and the system waits for a response. When the
operator enters a name and presses the enter key, the system stores the text string in an area
called NAME.

The operand SKIP=1 causes the system to skip one line before displaying the prompt. The
operand MODE=LINE allows blanks in the response. Since most names contain at least one
blank, you must code MODE=LINE to read the entire name.

Writing (Displaying) a Data item

PG-118

SC34-0438

Writing (or disp/aying) a data item involves transferring the data item from storage to the
terminal screen. You can use either the PRINTNUM or PRINTEXT instruction to transfer data
to the terminal screen. The PRINTNUM instruction transfers one or more numbers. The
PRINTEXT instruction transfers a text string.

To display the data item called NAME, use the PRINTEXT instruction as follows:

PRINTEXT NAME,SKIP=3

The operand SKIP=3 causes the system to skip three lines before displaying NAME.

Reading and Writing One Line at a Time (continued)

Example

Prompt the operator for five data items: name, address, city, state, and zip code. Then display
the five data items. Read from and write to the terminal that loaded the program.

2

EaES

TEST PROGRAM
BEG EQU

READTEXT

READTEXT
READTEXT
READTEXT
READTEXT

PRINTEXT

PRINTEXT
PRINTEXT

PRINTEXT
PRINTEXT
PROGSTOP
NAME TEXT
ADDR TEXT
CITY TEXT
ST TEXT
ZIP TEXT
ENDPROG
END

BEG
*

NAME, NAME: ',SKIP=1,MODE=LINE
ADDR, ' ADDRESS: ' ,MODE=LINE

CITY,' CITY:',MODE=LINE

ST, ' STATE: '

ZIP," ZIP:"

NAME, SKIP=3

ADDR, SKIP=1

CITY, SKIP=1

ST, SPACES=1
ZIP,SPACES=2

LENGTH=30
LENGTH=30
LENGTH=30
LENGTH=2
LENGTH=5

Begin the program and execute the instruction at label BEG.

Prompt the operator for name and read the operator’s response. Allow spaces in the
name (MODE=LINE), skip one line (SKIP=1), and store the response in NAME.

Prompt the operator for address and read the operator’s response. Allow spaces in the
name (MODE=LINE) and store the response in ADDRESS. Because the program
writes to a roll screen, the prompt appears one line below the prompt for name.

Display the data item in NAME. Skip three lines before displaying (SKIP=3).

Display the data item in ADDR. Skip to the beginning of the next line before displaying

(SKIP=1).

Display the data item in ST. Leave one blank space to the right before displaying

(SPACES=1).

Chapter 8. Reading and Writing Data from Screens PG-119

Reading and Writing Data from Screens

Reading and Writing One Line at a Time (continued)

Executing the Example

If you entered, compiled, link-edited, and loaded the example, the system would issue a prompt
for each data item. After entering each data item, press the enter key. After you enter the last
data item (zip code) and press enter, the system displays the data items.

After you enter all five data items, the screen might look like this:

NAME :ROSE PETERSON
ADDRESS: 11 CYPRESS CREEK RD.
CITY:SALINA
STATE :KA
ZIP:45367

When you press the enter key, the program displays the name and address as follows:

ROSE PETERSON
11 CYPRESS CREEK RD.
SALINA KA 45367

Note: Even though CITY is 30 characters long, the system displays only the actual length of the
data.

PG-120 SC34-0438

Reading and Writing One Line at a Time (continued)

Two Ways to Use Static Screens

Reading and writing an entire screen at once involves using static screens. The Event Driven
Executive provides two methods to define static screens.

The first method requires that the format of the screen be defined within the program. Any
change to the screen requires a change to the program.

In addition, programs that use this method are usually not device independent. In other words, a
program that contains instructions that define a static screen may execute successfully on a 4978
or 4979 terminal and not execute on a 3101 terminal.

The section called ‘“Coding the Screen within a Program” on page PG-122 describes the first
method.

The second method for defining screens involves defining the screen with the $IMAGE utility
and saving it in a data set. This method allows more than one program to use the same screen.
In addition, a change to the screen does not necessarily require a change to each program that
uses it.

Finally, you can write programs that are device independent. You can write programs that
execute successfully on 4978, 4979, or 3101 terminals.

The section called “Writing the Screen Image to a Data Set”” on page PG-127 describes the
second method.

For more information on coding static screens, see Appendix C, ““Static Screens and Device
Considerations” on page PG-269.

Chapter 8. Reading and Writing Data from Screens PG-121

Reading and Writing Data from Screens

Two Ways to Use Static Screens (continued)

Coding the Screen within a Program

This section describes reading data from and writing data to a static screen. Instructions in the
program create the static screen. '

For more information on static screens, refer to Appendix C, ‘“Static Screens and Device
Considerations” on page PG-269.

To read and write to a screen that you define in a program, do the following:
1. Define the screen as static.

2. Get exclusive access to the terminal.

3. Erase the screen.

4. Reserve storage for data.

5. Prompt the operator for a data item.

6. Position the cursor.

7. Wait for a response.

8. Read a data item.

9. Write a data item.

Defining a Screen as Static

To define a screen as a static screen, use the IOCB statement as follows:

TERM IOCB SCREEN=STATIC

This statement defines the loading terminal as a static screen. The label TERM defines the
name you will use in other instructions in the program.
For information on defining logical screens, see Appendix C, “Static Screens and Device

Considerations” on page PG-269.

Getting Exclusive Access to the Terminal

Before you can use a terminal as a static screen, you must get exclusive access to it. Use the
ENQT instruction as follows:

PG-122 sC34-0438

Coding the Screen within a Program (continued)

ENQT TERM
The operand TERM is the name you used to define the terminal in an IOCB instruction.

Erasing the Screen

Before you code instructions that prompt the operator for data, you should erase the screen. To
erase the screen, use the ERASE instruction as follows:

ERASE MODE=SCREEN, TYPE=ALL, LINE=0

The operand LINE=0 tells the system to begin erasing on line 0 (the first line) of the screen.
The operand MODE=SCREEN causes the system to erase to the end of the screen. The
operand TYPE=ALL allows the system to erase both protected and unprotected data.

Reserving Storage

To reserve storage for a data item that you read, you must know its maximum length. To
reserve storage for a text string of 30 characters, use the TEXT statement as follows:

NAME TEXT LENGTH=30

The name of the storage is NAME. The READTEXT instruction transfers the data item
containing the name into this area of storage.
Prompting the Operator for a Data Item

One way you can display information on a static screen is by issuing PRINTEXT instructions.
For example, to prompt the operator for a name, use the PRINTEXT instruction as follows:

PRINTEXT 'NAME: ',LINE=1,PROTECT=YES

The instruction displays the prompt NAME:. The operand LINE=1 causes the system to display
the prompt on the second line of the screen. (The lines on a screen are numbered 0-23 and the
columns are numbered 0-79.) The operand PROTECT=YES causes the prompt NAME: to be
protected. A protected is a field that cannot be changed by the operator.

Chapter 8. Reading and Writing Data from Screens PG-123

Reading and Writing Data from Screens

Coding the Screen within a Program (continued)

Positioning the Cursor

If you use PRINTEXT instructions to prompt the operator for several data items, you would
probably want to position the cursor after the first prompt. To position the cursor, you need
two instructions: a PRINTEXT instruction and a TERMCTRL instruction:

PRINTEXT LINE=1,SPACES=13
TERMCTRL DISPLAY

The operands LINE=1 and SPACES=13 cause the system to position the cursor on the
fourteenth space of line 1 (the second line). (The lines of a screen are numbered O through 23.)

Since the PRINTEXT instruction actually accumulates output in the system buffer, the
TERMCTRL instruction is required to cause the cursor to be positioned.

Waiting for a Response

After you issue all the prompts, you must wait for the operator to respond. To wait for a
response, use the WAIT instruction as follows:

WAIT KEY

The operand KEY means that the program will wait until the operator presses either the enter
key or one of the Program Function (PF) keys.

Reading a Data ltem

Reading a data item involves issuing a READTEXT instruction for each data item you want to
read. The READTEXT instruction might look like this:

READTEXT NAME,LINE=1,SPACES=13,MODE=LINE

The instruction reads the data item into the storage area called NAME. The operands LINE=1
and SPACES=13 cause the system to look for the data starting in the fourteenth position of the
second line of the screen. The operand MODE=LINE allows the data to contain blanks.

PG-124 SC34-0438

Coding the Screen within a Program (continued)

Writing a Data ltem

Writing a data item means transferring a data item from a storage area to the screen. A
PRINTEXT instruction might look like this:

PRINTEXT NAME,LINE=11

The instruction writes the data item from the storage area called NAME. The operand
LINE=11 causes the system to display the data starting in the first position of the twelfth line of
the screen.

If you want to display another data item on the next line, you can use the SKIP operand as
follows:

PRINTEXT ADDR, SKIP=1

The SKIP=1 causes the system to skip to the first position of the next line.

To leave spaces between one data item and another, use the SPACES operand as follows:

PRINTEXT CITY,SPACES=2

The SPACES=2 operand causes the system to leave two blanks between the previous data item
and CITY.

Chapter 8. Reading and Writing Data from Screens PG-125

Reading and Writing Data from Screens

Coding the Screen within a Program (continued)

Example

Prompt the operator for five data items: name, address, city, state, and zip code. Then display
the five data items.

g TEST PROGRAM BEG
E TERM IOCB SCREEN=STATIC
BEG ENQT TERM
n ERASE MODE=SCREEN, TYPE=ALL, LINE=0
H PRINTEXT ! NAME: ', LINE=1,PROTECT=YES
E PRINTEXT ! ADDRESS: ' ,SKIP=1,PROTECT=YES
PRINTEXT ! CITY:',SKIP=1,PROTECT=YES
PRINTEXT ! STATE:',SKIP=1,PROTECT=YES
PRINTEXT ! ZIP:',SKIP=1,PROTECT=YES
PRINTEXT LINE=1,SPACES=13
o} TERMCTRL DISPLAY
B WAIT KEY
10 READTEXT NAME,LINE=1,SPACES=13,MODE=LINE
1 1] READTEXT ADDR,LINE=2,SPACES=13,MODE=LINE
READTEXT CITY,LINE=3,SPACES=13,MODE=LINE
READTEXT ST,LINE=4,SPACES=13
READTEXT ZIP,LINE=5,SPACES=13
m PRINTEXT NAME,LINE=11
PRINTEXT ADDR,SKIP=1
PRINTEXT CITY,SKIP=1
14} PRINTEXT ST,SPACES=1
PRINTEXT ZIP,SPACES=2
TERMCTRL DISPLAY
DEQT
PROGSTOP
NAME TEXT LENGTH=30
ADDR TEXT LENGTH=30
CITY TEXT LENGTH=30
ST TEXT LENGTH=2
ZIP TEXT LENGTH=5
ENDPROG
END
1} Begin the program and execute the instruction at label BEG.
B Define the screen as static.
Get exclusive use of the terminal.
E Erase the screen. Erase the entire screen (MODE=SCREEN), including protected and
unprotected fields (TYPE=ALL), and begin on the first line of the screen (LINE=0).
Prompt the operator for name. Display the prompt on the second line of the screen

(LINE=1) and prevent the operator from overlaying the prompt (PROTECT=YES).

PG-126 SC34-0438

Coding the Screen within a Program (continued)

Prompt the operator for address. Display the prompt one line below the previous
prompt (SKIP=1) and prevent the operator from overlaying the prompt
(PROTECT=YES).

Position the cursor on the fourteenth space (SPACES=13) of the second line of the
screen (LINE=1).

Cause the cursor to be positioned (the previous PRINTEXT instruction accumulates
output in the system buffer).

Wait for the operator to respond to the prompts. Resume execution when the operator
presses either the enter key or one of the Program Function keys. ‘

Read the first data item. Look for the data in the fourteenth space (SPACES=13) of
the second line of the screen (LINE=1) and allow blanks in the data (MODE=LINE).

Read the second data item (address). Look for the data in the fourteenth space
(SPACES=13) of the third line of the screen (LINE=2) and allow blanks in the data
(MODE=LINE).

Display the data item NAME. Begin displaying the data on the first position of the
twelfth line of the screen (LINE=11).

Display the data item ADDR. Begin displaying the data on the first position of the next
line (SKIP=1). (In this example, ADDR would appear on the thirteenth line of the
screen.)

Display the data item ST. Begin displaying the data after leaving one space
(SPACES=1). (In this example, data item ST would appear one space to the right of
data item CITY.)

Cause the data in ZIP to be displayed. (The data in ZIP remains in the system buffer
until you issue this instruction or end the program with a PROGSTOP.)

Relinquish exclusive use of the terminal.

Writing the Screen Image to a Data Set

This section shows how to create a screen image and use it in a program. The approach assumes
that you want to write a program that can execute on either a 4978 or 3101 Display Terminal.

For more information on writing a screen image to a data set, see Appendix C, “Static Screens
and Device Considerations” on page PG-269.

Writing a screen to a data set and using it in a program requires that you do the following things:

Chapter 8. Reading and Writing Data from Screens PG-127

Reading and Writing Data from Screens

Writing the Screen Image to a Data Set (continued)

=y

Create the screen.

2. Define the screen as static.

3. Read the screen into a buffer.

4. Get exclusive access to the terminal.

w

Display the screen and position the cursor.
6. Reserve storage for data.

7. Wait for a response.

8. Read a data item.

9. Write a data item.

10. Link-edit the program.

Creating a Screen

To create a screen image, use the $IMAGE utility as follows:

1. From the session manager, select option 4 (TERMINAL UTILITIES) from the primary
option menu.

2. Then select option 4 ($IMAGE). This option loads the $SIMAGE utility.

3. Define a null character when the COMMAND(?) prompt appears by by entering:

k COMMAND (?): NULL @

You will use the null character to define unprotected fields. Unprotected fields are the fields
in which the operator will enter data.

4. Define the screen dimensions as 24 by 80 (full screen) by entering:

L COMMAND (?): DIMS 24 80

PG-128 SC34-0438

Writing the Screen Image to a Data Set (continued)

5. Enter the command EDIT. A blank screen appears.
6. Press the PF1 key to enter define mode. While in define mode, you can define the screen.

7. Enter the text for your screen image. Enter the fixed part of the screen exactly as you want
it to appear on the screen. The fixed fields are called protected fields. Use the null character
(@) to define the unprotected data fields.

The screen looks as follows:

- B

(line 0)

NAME: @PPPEERPLPERPEERRRLLPRPRRRRRRe (1ine 1)
ADDRESS: CRPPPeRRRRLPPAERRRPPLRRPRRRRES (1ine 2)
CITY: CRRPERRRRPPLPRLLRRRPLPRPPEERER (line 3)
STATE: @@ (line &)
ZIP: eeeee (line 5)

8. Press the enter key after you complete the design of your screen image. The enter key takes
you out of define mode.

9. Press the PF3 key to return to the $IMAGE command mode.

10. Save your new screen image in data set APO8CSCR on volume EDX002 by entering:

t\k SAVE APOBCSCR,EDX002

11. In response to the message:

L\» SHOULD THE 3101 DATASTREAM BE SAVED?

reply M. (You would reply v if you coded attributes (such as blinking or nondisplay) that
are available on the 3101 Display Terminal.)

At this point, the system saves the screen. Use the EN command to end the $IMAGE utility.

For more information on creating a screen image, refer to Language Reference.

Chapter 8. Reading and Writing Data from Screens PG-129

Reading and Writing Data from Screens

Writing the Screen Image to a Data Set (continued)

Defini

ng the Screen as Static

To define a screen as static, use the IOCB statement as follows:

TERM IOCB SCREEN=STATIC,
BUFFER=IOBUF,
OVFLINE=YES,
LEFTM=0,
RIGHTM=1919,
TOPM=0,
BOTM=23

DO X XX

This statement defines the loading terminal as a static screen. The label TERM defines the
name you will use in other instructions in the program. The BUFFER operand identifies IOBUF
as the buffer that will be associated with the screen. The OVFLINE operand tells the system to
continue a line that exceeds the right margin on the next line. The next four operands (LEFTM,
RIGHTM, TOPM, and BOTM) define the static screen as the entire physical screen (lines 0-23
and columns 0-79).

Note: Remember that to continue a line, the continued line must begin in column 16.

For information on defining logical screens, see Appendix C, *“Static Screens and Device
Considerations” on page PG-269.

Reading the Screen Image into a Buffer

PG-130

To read the screen you have created, you need to do the following things:

1. Code the name and volume of the screen in a TEXT statement:

DSNAME TEXT 'APO8CSCR,EDX002'

This TEXT statement refers to data set APOSCSCR on volume EDX002. This data set
contains the screen you saved when you used the SIMAGE utility.

2. Reserve storage for the screen with a BUFFER statement:

DISKBFR BUFFER 1024,BYTES

The amount of storage you reserve depends on how many bytes $SIMAGE used to store the
screen image. For example, if $SIMAGE used 900 bytes to store a screen image, use 1024
bytes (the next highest 256-byte increment).

SC34-0438

Writing the Screen Image to a Data Set (continued)

3. Specify the type of image data set you have created:

TERMTYPE DATA (C'4978'

The type of image data set refers to the way you stored the data set. Since you answered N
to the “SHOULD THE 3101 DATASTREAM BE SAVED?” prompt, the system saved the
data set as a 4978 image.

4. Use the CALL instruction to read the screen:

CALL $IMOPEN, (DSNAME) , (DISKBFR) , (TERMTYPE)

The $IMOPEN subroutine reads the screen from the data set defined by DSNAME and
puts the screen into DISKBFR. TERMTYPE refers to the DATA statement that defines
the type of image data set.

Getting Exclusive Access to the Terminal

Before you can use a terminal as a static screen, you must get exclusive access to it. Use the
ENQT instruction as follows:

ENQT TERM
The operand TERM is the name you used to define the terminal in the IOCB instruction.

Displaying the Screen and Positioning the Cursor

Displaying the screen and positioning the cursor involves three instructions.

The first instruction, the CALL $IMPROT instruction, prepares the protected fields for display:

CALL $ IMPROT, (DISKBFR) , (FTABLE)

The presence of the third operand (in this case, FTABLE) causes the instruction to construct
what is called a field table. A field table shows the location and length of each unprotected field
on the screen. Define the field table as follows:

FTABLE BUFFER 15,WORDS

The field table requires 3 words for each unprotected field.

Chapter 8. Reading and Writing Data from Screens PG-131

Reading and Writing Data from Screens

Writing the Screen Image to a Data Set (continued)

The second instruction positions the cursor after the first prompt:

PRINTEXT LINE=1,SPACES=9

Finally, the third instruction displays the screen:

TERMCTRL DISPLAY

Reserving Storage for Data

To reserve storage for a data item that you read, you must know its maximum length. To
reserve storage for a text string of 5 characters, use the TEXT statement as follows:

ZIP TEXT LENGTH=5

The name of the storage is ZIP. This storage area will eventually contain five bytes of data (the
zip code).

Waiting for a Response

After you issue the prompts, you must wait for the operator to respond. To wait for a response,
use the WAIT instruction as follows:

WAIT KEY

The operand KEY means that the program will wait until the operator presses either the enter
key or one of the Program Function (PF) keys.

PG-132 SC34-0438

Writing the Screen Image to a Data Set (continued)

Reading a Data ltem

Reading a data item involves reading all unprotected data from the screen. Use the
READTEXT instruction as in the following example:

READTEXT IOBUF,MODE=LINE,LINE=0,SPACES=0

The instruction reads all unprotected data into the buffer called IOBUF. The operands LINE=0
and SPACES=0 cause the system to look for the data starting in the first position of the screen.
MODE=LINE allows for blanks in the input data.

To move each data item into its own storage area, use the following instructions:

MOVEA #1,I0BUF
MOVE NAME, (O,#1), (30,BYTE)

The MOVEA instruction moves the address of buffer containing the unprotected fields. The
MOVE instruction moves the 30 bytes at the start of the buffer to NAME.

For each additional field, increment register 1 to the next field in IOBUF and move it to its data
area:

ADD #1,FTABLE+4
MOVE ADDR, (0,#1), (30,BYTE)

The ADD instructions adds the size of the first field (NAME) to register 1. The MOVE
instruction moves the 30 bytes at IOBUF+30 to ADDR.

Chapter 8. Reading and Writing Data from Screens PG-133

Reading and Writing Data from Screens

Writing the Screen Image to a Data Set (continued)

Writing a Data item

PG-134

SC34-0438

Writing a data item means transferring a data item from a storage area to the screen. A
PRINTEXT instruction might look like this:

PRINTEXT NAME,LINE=11

The instruction writes the data item from the storage area called NAME. The operand
LINE=11 causes the system to display the data starting in the first position of the twelfth line of
the screen.

If you wanted to display another data item on the next line, you could use the SKIP operand:

PRINTEXT CITY,SKIP=1

The SKIP=1 causes the system to skip to the first position of the next line before displaying the
data item CITY.

To display another data item on the same line, you could use the SPACES operand:

PRINTEXT ST, SPACES=1

SPACES=1 causes the system to skip one space on the same line before displaying the data
item ST. on the same line before displaying the data item ST.

Writing the Screen Image to a Data Set (continued)

Link-Editing the Program

Using the $SIMAGE subroutines ($SIMOPEN, $IMDEFN, and $IMPROT) means that you must
do one more thing when you link-edit the program. You must reference the $IMAGE
subroutines you have used.

You must supply the linkage editor, SEDXLINK, the following ‘“‘control statements”:
AUTOCALL $AUTO,ASMLIB

INCLUDE ASMOBJ,EDX002
LINK APO8C,EDX40 REPLACE END

The first control statement refers to a library of IBM-supplied routines. Unless you have moved
the library, you can code this statement as you see it here.

The second control statement refers to where you put the output of the compiler.
The third control statement says to put the output of the link-edit on volume EDX40, call it
APO8C, and replace it if it already exists. END tells $EDXLINK not to expect any other

control statements.

You can either create a data set containing these control statements or enter the statements
“interactively”” each time you execute $SEDXLINK.

For more information on link-editing, see Chapter 5, ‘‘Preparing an Object Module for
Execution” on page PG-81.

Chapter 8. Reading and Writing Data from Screens PG-135

Reading and Writing Data from Screens

Writing the Screen Image to a Data Set (continued)

Example

Prompt the operator for name, address, city, state, and zip code. Then display the five data
items. Use the screen APOSCSCR on volume EDX002 (already defined with the $IMAGE
utility).

N

1
2
4
5
6

BEHRER™ =
Ul)

—
~

NN TN
WIN|=]O

PG-136 SC34-0438

TEST

TERM

BEG

END
DSNAME
DISKBFR
TERMTYPE
FTABLE

IOBUF
CODE

PROGRAM BEG

EXTRN $ IMOPEN, $ IMDEFN , $ IMPROT, $ IMDATA
I0CB SCREEN=STATIC, C
BUFFER=IOBUF, OVFLINE=YES, LEFTM=0, c
RIGHTM=1919, TOPM=0, BOTM=23
CALL $IMOPEN, (DSNAME) , (DISKBFR) , (TERMTYPE)
MOVE CODE, TEST+2
IF CODE,NE, -1
PRINTEXT 'OPEN ERROR CODE = ',SKIP=1
PRINTNUM CODE
GOTO END
ENDIF
ENQT TERM
CALL $ IMPROT, (DISKBFR) , (FTABLE)

PRINTEXT LINE=1,SPACES=9

TERMCTRL DISPLAY

WAIT KEY

READTEXT IOBUF,MODE=LINE,LINE=0,SPACES=0
MOVEA #1, IOBUF

MOVE NAME, (0, #1), (30,BYTE)
ADD #1,FTABLE+4

MOVE ADDR, (0,#1), (30,BYTE)
ADD #1,FTABLE+10

MOVE CITY, (O,#1), (30,BYTE)
ADD #1,FTABLE+16

MOVE ST, (0,#1), (2,BYTE)
ADD #1,FTABLE+22

MOVE ZIP, (0,#1), (5,BYTE)

PRINTEXT NAME,LINE=11
PRINTEXT ADDR,SKIP=1
PRINTEXT CITY,SKIP=1
PRINTEXT ST,SPACES=1
PRINTEXT ZIP,SPACES=2

DEQT
PROGSTOP

TEXT '"APO8CSCR, EDX002"'
BUFFER 1024 ,BYTES

DATA c'4978"

BUFFER 15, WORDS

BUFFER 1920, BYTES

DC F'0’

Writing the Screen Image to a Data Set (continued)

[o B o BN |

—_ —
— (=)

—_
N

[y
w

— —_
(&) S

NAME TEXT LENGTH=30
ADDR TEXT LENGTH=30
CITY TEXT LENGTH=30
ST TEXT LENGTH=2
ZIP TEXT LENGTH=5
ENDPROG
END

Begin the program and execute the instruction at label BEG.

Define as external references the SIMAGE subroutines that the program uses. The
linkage editor resolves these external references when you use the autocall option.

Define the screen as static.

Read the screen from the data set defined by DSNAME. Put the screen in the buffer
defined by DISKBFR.

Move the return code that resulted from the $IMOPEN subroutine to CODE.

If the return code that resulted from the $IMOPEN subroutine does not indicate
“successful completion,” display an error message and end the program.

Get exclusive use of the terminal.
Prepare the protected fields for display.

Position the cursor on the tenth space (SPACES=9) of the second line of the screen
(LINE=1).

Display the screen.

Wait for the operator to respond to the prompts. Resume execution when the operator
presses either the enter key or one of the Program Function keys.

Read all unprotected data. Look for the data in the first space (SPACES=0) of the first
line of the screen (LINE=0) and allow blanks in the data (MODE=LINE).

Move the address of the buffer (IOBUF) that contains the unprotected data into
register 1.

Move the first 30 characters from the buffer to NAME.
Increment register 1 to point to the next data item (address).

Display the data item NAME. Begin displaying the data on the first position of the
twelvth line of the screen (LINE=11).

Chapter 8. Reading and Writing Data from Screens ~PG-137

Reading and Writing Data from Screens

Writing the Screen Image to a Data Set (continued)

PG-138

SC34-0438

Display the data item ADDR. Begin displaying the data on the first position of the next
line (SKIP=1). (In this example, ADDR would appear on the thirteenth line of the
screen.)

Display the data item ST. Begin displaying the data after leaving one space
(SPACES=1). (In this example, data item ST would appear one space to the right of
data item CITY.)

Point to the data set (APOSCSCR on volume EDX002) that contains the screen created
with the $IMAGE utility.

Reserve storage for the screen. (Except for screens much larger than the one in this
example, 1024 bytes is enough storage.)

Define the type of image data set to be read. (Coding C‘4978’ allows you to read the
screen to a 4978 or a 3101, whether or not you saved the 3101 datastream. C‘3101’
allows you to read the screen to a 3101 if you saved the 3101 datastream. If you code
C¢ ’, you can read the screen to a 4978 or 3101 if you saved the 3101 datastream.)

Reserve storage for the field table.

Reserve storage for the unprotected data.

Chapter 9. Designing Programs

This chapter discusses designing EDL programs.

All of the programs shown so far have had one thing in common: they are all short,
self-contained groups of instructions that perform a simple function without interacting with any
other program.

This chapter:

« Defines the terms program and task and describes how to create a program that consists of
more than one task

« Describes how to use the same group of instructions from more than one program

o Shows how to use the same storage more than once for different parts of a program
(overlays)

« Shows how to improve performance by using storage as a buffer area

What s a Task?

A task is a unit of work that you form by combining instructions. In its simplest form, a task
consists of a TASK statement, instructions, and an ENDTASK statement.

Each task runs independently, competing equally with other tasks for system resources.

Chapter 9. Designing Programs PG-139

Designing Programs

What Is a Task? (continued)

When you code a task, you assign a priority to the task. A priority is a number that determines
the rank of the task. The supervisor uses priority to determine which task receives system
resources. The highest priority is 1 and the lowest is 510.

In the following example, TASKO1 is the name of a task. STARTOL1 is the label on the first
instruction to be executed, and 140 is the priority of the task.

TASKO1 TASK STARTO1,140

ENDTASK

The supervisor places each task in one of five states:
Inactive Task is detached or is not yet attached

Waiting Task is waiting for the occurrence of an event or the
availability of a resource

Ready Task is ready but is not the highest priority task

Active Task is attached and is the highest priority task on
its level

Executing Task is using the processor

Only one task may be active on each of four machine hardware levels. (The supervisor executes
on hardware level 1; application programs usually execute on hardware level 2 or 3.)

The active task in each hardware level is the read task that has the highest priority and is not
waiting for an event or a resource.

Initiating a Task

PG-140

SC34-0438

You can initiate a task either by loading or attaching it. The system places the primary task in
the ready state when you load the program. You can initiate a secondary task with the
ATTACH statement if the task is not already active and you do either of the following:

e You write a program that consists of a primary task and a secondary task.

e You link-edit a primary task with another task. (You must code an EXTRN statement in the
primary task and an ENTRY statement in the secondary task.)

You return a task to the inactive state when you execute either a DETACH instruction or
ENDTASK instruction. The DETACH instruction suspends the task and allows it to be
attached again.

Only one copy of a task may be active at a time. A task in processor storage remains until you
execute an ENDPROG statement in the associated primary task.

What [s a Program?

A program is a disk- or diskette-resident collection of one or more tasks that can be loaded into
storage for execution. Although program and task are sometimes used synonymously (when a
program contains a single task), the basic executable unit is the task; a program is the unit that
the system loads into storage.

You can divide a program into two or more tasks if, for example, you need to synchronize
execution between the tasks. Another reason to divide a program into tasks is to have more
than one task active at the same time.

The name of a program is the name of the data set in which the program resides. A program
can be brought into storage either by a terminal operator, a program, or a supervisor program
such as the job stream processor. It can be loaded more than once, either in the same partition
or in a different partition.

Creating a Single-Task Program

Most applications consist of a single task in a single program. The program contains no
execution overlay. The task competes for system resources with other tasks currently in the
system.

The following example shows the structure of a single-task program:

BEGIN PROGRAM START

.

PROGSTOP
ENDPROG
END

In this example, BEGIN is the name of the task, and START is the label of the first instruction
to be executed.

Note that even though the TASK statement is not required in a simple program, the program still
consists of a single task.

Chapter 9. Designing Programs PG-141

Designing Programs

Creating a Single-Task Program {continued)

Figure 1 is an example of a single-task program structure.

Operator request loads
CUSTOMER FILE UPDATE
program

UPDATE

1. GET CUSTOMER NAME FROM TERMINAL
(OPERATOR INPUT)

2. SEARCH CUSTOMER FILE FOR NAME

3. READ CUSTOMER RECORD

4. DISPLAY CUSTOMER RECORD ON TERMINAL

5. ACCEPT UPDATE FROM TERMINAL (OPERATOR
INPUT)

6. WRITE UPDATED RECORD TO CUSTOMER FILE

GO BACK TO STEP 1 IF MORE RECORDS TO
UPDATE

8. ELSE, END UPDATE PROGRAM

/_\/

Figure 1. Single-Task Application Example

PG-142 sC34-0438

Creating a Single-Task Program (continued)

Creating a Multitask Program

A multitask program contains more than one task. For example:

BEGIN PROGRAM START
ATTACH CALC

PROGSTOP
CALC TASK

instructions

ENDTASK

ENDPROG

END

Note that the PROGRAM and PROGSTOP statements define a task called the primary task. The
TASK and ENDTASK statements define a secondary task, invoked by the ATTACH instruction.

Figure 2 illustrates multitasking in a single program. When you load the program, the system
loads PROGA, called the primary task. The other tasks shown in PROGA start when an active
task issues a command (such as an ATTACH instruction) that tells the tasks to begin.

PROGA Program made up of multiple tasks

e Concurrent (asynchronous) execution
of tasks within program

® Tasks compete for system resources

TASKX with all other tasks currently in system

TASKY

TASKZ

Figure 2. Multitask Program Structure

Once in execution, all tasks within a program compete with one another and with all other tasks
active in the system. The supervisor considers each task as a discrete unit of work and assigns
processor time based on task priority, regardless of whether a task is the primary task of a
program. All tasks compete for resources based on assigned priorities.

If a primary task ends before the secondary task, the secondary task runs to completion.
Synchronizing Tasks

You can synchronize tasks with the WAIT and POST instructions or with the DETACH and
ATTACH instructions. If you use the WAIT and POST instructions, the waiting task must

Chapter 9. Designing Programs PG-143

Designing Programs

Creating a Multitask Program (continued)

contain an event control block (ECB) that can be posted by the POST instruction. Execution
then continues in the waiting task at the first instruction after the WAIT instruction. A task can
also wait for the operator to press a Program Function (PF) key, for a time interval to occur, or
for a program to finish execution.

While waiting to be posted, the task enters a waiting state. The task also enters a waiting state if
it is waiting for a read or write operation to occur or if it has executed a DETACH instruction.

You can use the DETACH and ATTACH instruction to synchronize tasks the same way you
use the WAIT and POST instruction, with the following differences:

« The attached task becomes enqueued to the currently active terminal for the task that issued
the ATTACH instruction.

o The system provides the ECB.

« You cannot use the ATTACH and DETACH instructions from within subroutines.

Defining and Calling Subroutines

In a program, certain functions may need to be repeated at different points in a program. For
example, you do not need to code the same sequence of instructions each time your program
needs to perform a given arithmetic function. You can code the instructions once and define
them as a subroutine. You can than enter and execute that subroutine from as many points in
your program as needed. You can also use the subroutine in another program by including it at
link-edit time.

The following instructions provide the means for defining and calling subroutines:

CALL Transfers control to a subroutine

RETURN Returns control from the subroutine to the calling program

SUBROUT Defines the entry point and parameters of a subroutine

EXTRN Defines an external reference

ENTRY Defines a program entry point

Defining a Subroutine

PG-144

SC34-0438

Use SUBROUT to define the entry point of a subroutine. You can specify up to five parameters
as arguments in the subroutine. The subroutine must include a RETURN instruction to provide
linkage back to the calling task. You can have nested subroutines, and a maximum of 99
subroutines are permitted per program. If you assemble your subroutine as an object module

Defining and Calling Subroutines (continued)

that can be link-edited, you must code an ENTRY statement for the subroutine entry point
name.

You can call a subroutine from more than one task. When called, the subroutine executes as
part of the calling task. Because subroutines are not reentrant, you should ensure serial use of
the subroutine with the ENQ and DEQ instructions.

Note: Do not code a TASK statement within a subroutine.

The syntax of the SUBROUT instruction is as follows:
label SUBROUT name,parl,...,par5

Required: name
Defaults: none
Indexable: none

Code the name operand with the symbolic name of the subroutine to be referred to by other
instructions. The /abe/ field is optional. Do not confuse the /abe/ field with the subroutine name
you specify in the name operand.

Passing Parameters in a Subroutine (Example)

Par1 through par5 are the parameter names to be passed to the subroutine when it is entered.
These names must be unique to the whole program. All parameters defined outside the
subroutine are known within the subroutine. Thus, you need to define only parameters that may
vary with each call to a subroutine.

For instance, assume two calls to the same subroutine. The first call passes parameters A and C
and the second CALL passes parameters B and C. Because C is common to both, you need not
define it in the SUBROUT instruction.

In the following example, a program calls subroutine CHKBUFF, passing two parameters. The
first (BUFFLEN) is a variable containing the maximum allowable buffer count. The second
(BUFFEND) is the address of the instruction to be executed if the buffer is full.

SUBROUT CHKBUFF,BUFFLEN, BUFFEND

SUBTRACT BUFFLEN, 1

IF (BUFFLEN, GE, MAX)
GOTO (BUFFEND)
ENDIF
ADD BUFFLEN, 1
RETURN
MAX DATA F'256'

Chapter 9. Designing Programs PG-145

Designing Programs

Defining and Calling Subroutines (continued)

Calling a Subroutine

Use the CALL instruction to execute your subroutine.

If the called subroutine is a separate object module to be link-edited with your program, then
you must code an EXTRN statement for the subroutine name in the calling program.

The syntax of the CALL instruction is as follows:
label CALL name,parl,...,par5,P1=,...,P6=

Required: name
Defaults: none
Indexable: none

The name operand is the name of the subroutine to be executed.

Par1 through par5 are the parameters associated with the subroutine. You can pass Up to five
single-precision integers, labels of single-precision integers, or null parameters to the subroutine.
The actual constant or the value at the named location moves to the corresponding subroutine
parameter.

If you enclose the parameter name in parentheses, the address of the variable passes to the
subroutine. The address can be the label of the first word of any type of data item or data array.
Within the subroutine, you must move the passed address of the data item into index registers #1
or #2 to reference the data item. If the parameter name enclosed in parentheses is a symbol
defined by an EQU instruction, the system passes the value of the symbol.

If the parameter to be passed is the value of a symbol defined by an EQU instruction, it can also
be preceded by a plus (+) sign. This causes the value of the EQU to be passed to the
subroutine. If not preceded by a +, the EQU is assumed to represent an address and the data at
that address is passed as the parameter.

Subroutine Call Examples

PG-146

The following example passes the value 5 to the subroutine PROG:

CALL PROG, 5

The following example passes the value 5 and the null parameter O to the subroutine CALC:

CALL CALC,5,

The following example passes the contents of PARMI1, the address of PARM?2, and the value of
the EQU symbol FIVE:

CALL SUBROUT,PARM1, (PARM2) ,+FIVE

SC34-0438

Defining and Calling Subroutines (continued)

Calling a Subroutine Passing Integer Parameters (Example)

The following example shows a program that passes integers to a subroutine:

SUBEXAMP PROGRAM START

START CALL CALC, 50, SUM1

c2 CALL CALC,SUM1,SUM2
PROGSTOP

INTEGERA DATA F'10"'

INTEGERB DATA F'15'

SUM1 DATA F'O'

SUM2 DATA F'o’

SUB1 SUBROUT CALC, XVAL, YVAL

Al ADD INTEGERA, XVAL,RESULT=YVAL
RETURN
ENDPROG
END

In the first CALL, the first parameter (the integer value 50) corresponds to the first parameter
defined in the subroutine (XVAL). Program location SUMI1 corresponds to the second
parameter (YVAL). When the ADD instruction executes, the system substitutes 50 for XVAL
and location SUM1 for YVAL. After the ADD instruction, SUM1 equals 60, the sum of
INTEGERA and 50.

The second call causes 70, the sum of SUM1 and INTEGERA, to be put in location SUM2.
Because INTEGERA does not change, you do not need to pass it as a parameter.

Reusing Storage using Overlays

You can reuse a single storage area allocated to a program by using overlays. EDL provides two
kinds of overlays: overlay segments and overlay programs.

An overlay segment is a self-contained portion of a program that is called and executed as a
synchronous task. The program that calls the overlay segment need not be in storage while the
overlay segment is executing. Overlay segments perform a specific function and generally
execute only once.

An overlay program is a self-contained portion of a program that is loaded and executed as an

asynchronous task. Overlay programs require a main control program that controls the execution
of up to nine overlay programs.

Chapter 9. Designing Programs PG-147

Designing Programs

Reusing Storage using Overlays (continued)

Using Overlay Segments

Figure 3 shows the structure of an application program that is split into a root segment and three
overlay segments. When you load the main program, the loader reserves enough space for the
root segment, the overlay area manager, the overlay control table, and the largest overlay
segment as shown in Figure 4 .

APPLICATION PROGRAM

Root Segment

Overlay Area Manager

Overlay Overlay Overlay
Segment 1 Segment 2 Segment 3

Figure 3. Application Overlay Segments

SERIES/1 STORAGE

Root (Resident) Segment

$OVLMGR
Over lay Manager

SOVLCT
Overlay Control Table

Overlay Area
(Large enough to contain
segment 2)

Available Storage

Figure 4. Overlay Segments in Series/1 Storage

PG-148 SC34-0438

Reusing Storage using Overlays (continued)

The following example shows a root segment and three overlay segments:

BEGIN PROGRAM START

EXTRN CALC,UPDATE,WRITE

CALL CALC

CALL UPDATE

CALL WRITE

PROGSTOP

ENDPROG

END
ok 3k ok ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok sk sk ok ok ok sk ok ok ok ok ok ok sk ok ok sk ok o ok sk ok sk ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok
* OVERLAY SEGMENT 1 *

3k 3k 3% %k 3k 3k 3k 3k 3k 3%k 3k 3k k sk 3k 3k 3k 3k 3k 3k 3k 3%k 3k 3k 3%k 3k 3k 3k 3%k 3%k 3%k 3k 3k 3%k 3%k 5k 3k 5%k 3k 3k 3%k 3%k %k 5%k 3% 3k 5%k %k 3%k 3%k 3k %k 3% %k 3%k %k %k %k % %k %k 3%k %k *k %k %k

SUBROUT CALC
ENTRY CALC

instructions
RETURN
END
sk ok ke ok ok sk ok ok ok ok ok ok sk sk ok sk 3k 3k 3K 3K oK 3K 3K sk 3K 3k 3K 3K 3K K 3 % % 3 ok ok sk sk ok ok sk ok sk ok ok ko K ok ok 3k K 3K 3k 3K 3K 3k 3K ok 3K oK oK 3K oK K K
* OVERLAY SEGMENT 2 *

3k 2k 3k 3k 3k 3k 3k 3k 3k 3k e 3k 3k 3k 3k 3k ok 3k 3k 3k ok 5k 3k ok 3k 3k 3k 3k 3k 3k %k 3k 3k dk 3k 3k 3k 3k 3k 3k %k 3k 3k 3k sk %k 3k 3k %k 3k %k 3%k 3k % 3k %k 3k %k % %k %k 3k %k 3k %k k

SUBROUT UPDATE
ENTRY UPDATE

instructions
RETURN
END
ke ke ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok sk sk ok ok ok sk sk sk 3k 3k 3k 3K 3K K K 3 % ok ok o ok ok ok 3k ok ok ok ok ok ok oK oK oK 3K 3k 3k 3K ok ok ok ok ok ok ok 3k 3k 3k ok >k
* OVERLAY SEGMENT 3 *

3% 3% 3k %k 3k 3k 3%k 3k 3%k 3k ok 3k 3k 3%k 3k 3k 3%k 3%k 3k %k 3%k %k 3%k 3k 3k 3k 3k 3k 3%k sk 3k 3%k 3%k 3k 5%k 3k 3k %k 3%k %k 5%k 3%k 3%k 3%k %k 3k 3%k % 3%k sk 5k 3%k 5%k 3%k 3k 5k 3%k %k %k %k ok %k %k %k 5k k
SUBROUT WRITE
ENTRY WRITE
instructions
RETURN
END

Each of the overlay segments is a subroutine that you can compile separately.

Creating an Overiay Structure

To create an overlay structure, use the linkage editor SEDXLINK. The linkage editor allows
you to combine the overlay segments you link-edited separately into a program segment overlay
structure. $EDXLINK automatically includes an overlay manager with the root segment, along
with an overlay area equal to the largest overlay segment. A CALL (or transfer of control) to a
module within an overlay segment triggers the overlay area manager to load the overlay segment
into the overlay area and transfer control to it. Overlay segments execute as synchronous tasks.
An overlay segment cannot call another overlay segment.

Overlay segments are specified in the OVERLAY statement of $EDXLINK which is discussed
in detail in Chapter 5, ‘“Preparing an Object Module for Execution” on page PG-81.

Chapter 9. Designing Programs PG-149

Designing Programs

Reusing Storage using Overlays (continued)

Overlay Programs

PG-150

SC34-0438

An overlay program is a program in which certain control sections can use the same storage
location at different times during execution. Overlay programs execute concurrently as
asynchronous tasks with other programs and are specified in the PROGRAM statement in the
main program.

With overlay programs, the main program loads the overlay programs. The loader allocates the
overlay area for overlay programs at main program load time. The overlay area is equal to the
largest overlay program listed in the main program header.

In Figure 5, the application is split into separate programs. PHASE]1, the primary program,
loads the overlay programs (PHASE2, PHASE3, and PHASE4) as requested. When PHASEI1 is
loaded, the loader recognizes that overlay programs are referenced. The loader looks at each
overlay program and reserves enough storage to hold PHASE1 plus the largest overlay program
(PHASES3) as shown in Figure 6 on page PG-151.

PHASE1

application

program

PHASE1
PHASE?2
PHASE3

T T T T T

PHASE4

Figure 5. EDL Overlay Programs

Reusing Storage using Overlays (continued)

Series/1 storage

Supervisor
Space for
PHASE1 plus PHASE1
overlay area |JH———————] Overlay area large
reserved (Overlay area) enough for PHASE3,
when PHASE1 the largest overlay
is loaded program

(Available
storage)

Figure 6. EDL Overlay Programs in Series/1 Storage

As each overlay program completes execution, PHASET1 loads the next overlay program, until all
required programs have run. When PHASE1 terminates, the system releases the storage
reserved for PHASE1 and its overlay programs. See the Language Reference for information on
coding the PROGRAM statement for overlays.

Chapter 9. Designing Programs PG-151

Designing Programs

Reusing Storage using Overlays (continued)

Using Large Amounts of Storage (Unmapped Storage)

Unmapped storage allows you to write a program that uses large amounts of storage.
Unmapped storage allows you to store large amounts of data and retrieve data faster than you
could retrieve it from disk or diskette. This section describes setting up, obtaining, accessing,
and releasing unmapped storage.

What Is Unmapped Storage?

Unmapped storage is storage that has not been reserved by the SYSTEM statement.

Setting up Unmapped Storage

Use the STORBLK statement to define the size and number of the unmapped storage areas a
program will use. The TWOKBLK operand defines the size of each unmapped storage area.
For example, if you need unmapped storage areas to accommodate 6000 bytes of data, code
TWOKBLK=3 (6K = 6144 bytes). The maximum size of an unmapped storage area is 65,536
bytes (TWOKBLK=32).

The MAX operand defines the number of unmapped storage areas. For example, if you need
ten unmapped storage areas, code MAX=10.

In the following example, HOLD defines 16 (MAX=16) 2K-byte areas of unmapped storage.

HOLD STORBLK TWOKBLK=1,MAX=16

The STORBLK statement also sets up a mapped storage area the same size as the unmapped
storage area.

Obtaining Unmapped Storage

PG-152

Use the GETSTG instruction to obtain the mapped and unmapped storage areas you defined in
the STORBLK statement. For example:

GETSTG HOLD,TYPE=ALL

This instruction obtains the mapped and unmapped storage that you defined in the STORBLK
statement with the label HOLD. The size of the area depends on the TWOKBLK operand of
the STORBLK statement. The operand TYPE=ALL tells the system to obtain the unmapped
and mapped storage areas. The number of unmapped storage areas the system obtains depends
on the MAX parameter of the STORBLK statement.

If you want to obtain only one unmapped storage area, code the GETSTG instruction as
follows:

GETSTG HOLD, TYPE=NEXT

SC34-0438

Using Large Amounts of Storage (Unmapped Storage) (continued)

The instruction causes the system to obtain an unmapped storage area that you defined in the
STORBLK statement with the label HOLD. The size of the area depends on the TWOKBLK
operand of the STORBLK statement. The system obtains one unmapped storage area. For
example, if you specified MAX=24 on the STORBLK statement and the system had already
obtained fifteen unmapped storage areas, the system would obtain the sixteenth one.

Using an Unmapped Storage Area

You can use an unmapped storage area just like you would use any other storage area. For
example, you can move data into the area or perform calculations on data within the area.

The SWAP instruction allows you to use an unmapped storage area. For example:

SWAP HOLD, USANO

The instruction allows you to access the unmapped storage area defined by the STORBLK
statement at label HOLD. The operand USANO refers to the label of a DATA statement that
defines the number of the unmapped storage area you want to access. For example, if USANO
contains “5”’, the SWAP instruction allows the program to access the fifth unmapped storage
area.

You can also code the number of the unmapped storage area you want to use:

SWAP HOLD, 10

This instruction allows you to use the tenth unmapped storage area defined by the STORBLK
statement at label HOLD. Until you execute another SWAP instruction, you can use only the
tenth unmapped storage area.

Notes:
1. You can use only one unmapped storage area at a time.

2. While you are using an unmapped storage area, you cannot use the mapped storage area.

Releasing Unmapped Storage

Use the FREESTG instruction to release any unmapped storage area that you obtained with the
GETSTG instruction. For example:

FREESTG HOLD,TYPE=ALL
This instruction releases the unmapped storage areas defined by the STORBLK statement at
label HOLD. The operand TYPE=ALL causes the instruction to release all of the storage

areas. For example, if the STORBLK statement specifies MAX =16, this instruction causes all
sixteen unmapped storage areas and the mapped storage area to be released.

Chapter 9. Designing Programs PG-153

Designing Programs

Using Large Amounts of Storage (Unmapped Storage) (continued)

Example

The following example uses sixteen unmapped storage areas, one for each country in South
America, to create a table of actuarial data. The table for each of the sixteen countries consists
of three-digit mortality rates. The program accumulates 100 rates for both men and women.
The unmapped storage the program uses is determined by the country number.

The input records have the following format:

Country number 2 bytes
Sex code 1 byte
Age 2 bytes
Death rate 3 bytes
The program:
INSURE PROGRAM ST,DS=((ACTTAB,EDX40))
1} COPY STOREQU
ST EQU *
E GETSTG HOLD, TYPE=ALL
(initialize storage areas)
B READ READ DS1,MORTAL, 1, END=STOP
4] MOVE USANO, CNTRY, (2,BYTES)
E MOVE #1,HOLD+$STORMAP
6} SWAP HOLD , USANO
7] MOVE #2,AGE
B MULT #2,3
o} ADD #1,#2
m IF (SEX,EQ, 1)
1 1] MOVE (+MENTBL, #1) ,RATE
ELSE
MOVE (+WMNTBL, #1) , RATE
ENDIF
GOTO READ
STOP EQU *
(save the unmapped storage areas)
PROGSTOP
USANO DATA F'0'
[HoLD STORBLK TWOKBLK=1,MAX=16
MENTBL EQU 0
WMNTBL EQU MENTBL+300
MORTAL BUFFER 256,BYTES
CNTRY EQU MORTAL
SEX EQU MORTAL+2
AGE EQU MORTAL+3
RATE EQU MORTAL+5
ENDPROG
END

PG-154 sC34-0438

Using Large Amounts of Storage (Unmapped Storage) (continued)

1} Copy the storage control block equates into the program.

2) Obtain the mapped and unmapped storage (one 2K-byte mapped storage area and
sixteen 2K-byte unmapped storage areas) specified in the STORBLK statement with the
label HOLD.

Read an input record from data set ACTTAB on volume EDX40 into the buffer with the
label MORTAL.

[L]

Move the country number in the input record to USANO.

m B3

Move the address of the mapped storage area into register 1.

Use the country number to access the appropriate unmapped storage area.

B

Move the age into register 2.

Multiply the age by 3 to arrive at the proper offset into the table.
Add the offset to the address of the mapped storage area.

Test the sex code for 1 (1 = men).

Move the mortality rate into the appropriate slot in the MENTBL (the men’s mortality
rate table).

Set up a 2K-byte mapped storage area and sixteen 2K-byte unmapped storage areas.

Chapter 9. Designing Programs PG-155

Notes

PG-156 SC34-0438

Chapter 10. Performing Data Management from
a Program

This section describes ways to accomplish data management from a program. Topics discussed
are:

« Allocating, deleting, and renaming a data set

« Opening a data set

« Setting logical end of file

« Finding the device type

To perform other data management functions from an application program such as allocating,

deleting, and renaming volumes, see Chapter 13, “Communicating with Other Programs (Virtual
Terminals)”’ on page PG-215.

Performing Data Management from a Program

The $DISKUT3 program enables you to perform the following data management operations
from a program:

« Allocate a data set.

« Open a data set.

Chapter 10. Performing Data Management from a Program PG-157

Performing Data Management from a Program

Performing Data Management from a Program (continued)

« Delete a data set.

« Release unused space in a data set.

« Rename a data set.

« Set end-of-data on a data set.

$DISKUT3 allows you to open and set end-of-data on disk, diskette, or tape data sets. You can
perform the other four operations (allocating, deleting, releasing unused space, and renaming)
on disk or diskette data sets only.

For more information on $DISKUT3, including a list of return codes, refer to Language Reference.
You might use $DISKUT?3 for any of the following reasons:

« Your program requires more than nine data sets.

¢ You do not know, at the time you load a program, whether or not the program will need a
data set.

e You need to perform several data management functions in one program.

« You want the processor storage that $DISKUT3 requires to be available when $DISKUT3
finishes executing.

To use $DISKUT3, you should be aware of the following factors:
e $DISKUTS3 requires about 6.25K bytes of processor storage.
« If you need only to open a data set, $DISKUT3 will be slower than DSOPEN.

+ You need to perform error recovery if the system cannot load $DISKUT3.

Allocating a Data Set

The following example shows how to allocate a data set from an application program:

TASK PROGRAM GO
GO EQU *
1 LOAD $DISKUT3, LISTPTR1, EVENT=DSK3EVNT
B WAIT DSK3EVNT
PROGSTOP

PG-158 SC34-0438

Performing Data Mlanagement from a Program (continued)

DSK3EVNT ECB 0
B LISTPTR1 DC A(LIST1)
LIST1 DC A (REQUEST1)
] DC F'0'
REQUEST1 DC F'2'
B DC A(DSX)
B DC D'50"
10 DC F'1'
DSCB DS#=DSX,DSNAME=DATA4
B COPY DSCBEQU
ENDPROG
END
Load $DISKUTS3 to allocate data set DATA4. Specify the address (LISTPTR1) of the
list of requests (in this case, a single request). Identify the event
(EVENT=DSK3EVNT) to be posted when $DISKUT3 completes.
B Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT.
Set the initial state of the event control block to. Zero.
Point to the list of requests at LIST1.
Point to the specific allocate request.
6] Indicate the end of the list of requests.
Request an allocate (2).
B Point to the DSCB for the data set to be allocated. (The allocate function requires that

the data set being allocated be defined by a DSCB.)
o] Indicate that 50 records are to be allocated.
10] Indicate that the data set type is data.
Define a DSCB for the data set to be allocated.
Copy the DSCB equates into the program.

If you attempt to allocate a data set that already exists, $DISKUT3 considers the operation
successful if:

« The type of the data set that already exists matches the type on the data set you are
allocating

« The size of the data set that already exists matches the size of the data set you are ailocating

Chapter 10. Performing Data Management from a Program PG-159

Performing Data Mlanagement from a Program

Performing Data Management from a Program (continued)

Opening a Data Set

PG-160

SC34-0438

If you have defined a data set with a DSCB, you need to open the data set from your application
program.

The following example shows how to open a data set from an application program:

TASK PROGRAM GO
GO EQU *
1} LOAD $DISKUT3,LISTPTR1, EVENT=DSK3EVNT
B WAIT DSK3EVNT
 DSK3EVNT ECB 0
B LISTPTRT DC A(LIST1)
B Lism DC A (REQUEST1)
6} DC F'0'
f REQUEST1 DC F'1'
o} DC A(DSY)
B DC D'O’
[10 DC F'-1"
[11] DSCB DS#=DSY,DSNAME=DATA4
12) COPY DSCBEQU
ENDPROG
END

Performing Data Management from a Program (continued)

o 3 &2 @

B =3

Load $DISKUT3 to open data set DATA4. Specify the address (LISTPTR1) of the list
of requests (in this case, a single request). Identify the event (EVENT=DSK3EVNT)
to be posted when $DISKUT3 completes.

Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT.

Set the initial state of the event control block to zero.

Point to the list of requests at LIST1.

Point to the specific open request.

Indicate the end of the list of requests.

Request an open (1).

Point to the DSCB for the data set to be opened.

This doubleword is not used for an open request.

Tell $DISKUTS3 to return the type of the data set being opened (0 for undefined, 1 for
data, 3 for program).

Define a DSCB for the data set to be opened.

Copy the DSCB equates into the program.

Chapter 10. Performing Data Management from a Program PG-161

Performing Data Mlanagement from a Program

Performing Data Mlanagement from a Program (continued)

Deleting a Data Set

PG-162

SC34-0438

The following example shows how to delete a data set from an application program:

TASK PROGRAM
GO EQU

LOAD
WAIT

DSK3EVNT ECB
LISTPTR1 DC
LIST1 DC
DC
REQUEST1 DC
DC
DC
DC

COPY
ENDPROG
END

E!E!E][:EEII!EI!HH [~]]

GO, DS=((MASTER, EDX002) , (UPDATE, EDX003))
%*

$DISKUT3,LISTPTR1, EVENT=DSK3EVNT
DSK3EVNT

0
A(LIST1)

A (REQUEST1)
F'O'

F'g!

A(DS2)

D'0’

F'-1"
DSCBEQU

Performing Data Management from a Program (continued)

1 Load $DISKUT3 to detete data set UPDATE on volume EDX003. Specify the address
(LISTPTR1) of the list of requests (in this case, a single request). Identify the event
(EVENT=DSK3EVNT) to be posted when $DISKUT3 completes.

2] Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT.

Set the initial state of the event control block to zero.

4] Point to the list of requests at LIST1.

Point to the specific delete request.

6} Indicate the end of the list of requests.

Request a delete (4).

a Point to the DSCB for the data set to be deleted (UPDATE on volume (EDX003).

8 This doubleword is not used for an delete request.

10} Tell $DISKUT3 to return the type of the data set being deleted (0 for undefined, 1 for

data, 3 for program).
Copy the DSCB equates into the program.

If you try to delete a data set that does not exist, SDISKUT3 considers the operation to be
successful.

Chapter 10. Performing Data Management from a Program PG-163

Performing Data Management from a Program

Performing Data Management from a Program (continued)

Releasing Unused Space in a Data Set

PG-164

SC34-0438

The following example shows how to release unused space in a data set from an application

program:

TASK PROGRAM
GO EQU

LOAD
WAIT

DSK3EVNT ECB
LISTPTR1 DC
LISTI1 DC
DC
REQUEST1 DC
DC
DC
DC
DSCB

COPY
ENDPROG
END

EIE!E!!J[JE![EEEE!!I [~]]

GO
*

$DISKUT3,LISTPTR1, EVENT=DSK3EVNT
DSK3EVNT

0

A(LIST1)

A (REQUEST1)

F'O'

F'5'

A (DSX)

D'O'

F'—1"

DS#=DSX, DSNAME=TRANS
DSCBEQU

Performing Data Mlanagement from a Program (continued)

-U -N

o

E =

Load $DISKUTS3 to release space on data set TRANS. Specify the address (LISTPTR1)
of the list of requests (in this case, a single request). Identify the event
(EVENT=DSK3EVNT) to be posted when $DISKUT3 completes.

Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT.

Set the initial state of the event control block to zero.

Point to the list of requests at LIST1.

Point to the specific release request.

Indicate the end of the list of requests.

Request a release (5).

Point to the DSCB for the data set on which space to be released (TRANS).

This doubleword is not used for a release request.

Tell $DISKUT3 to return the type of the data set on which space is being released (0 for
undefined, 1 for data, 3 for program).

Define a DSCB for the data set on which to release unused space.

Copy the DSCB equates into the program.

Chapter 10. Performing Data Management from a Program PG-165

Performing Data Mlanagement from a Program

Performing Data Management from a Program (continued)

Renaming a Data Set

PG-166

SC34-0438

The following example shows how to rename in a data set from an application program:

TASK
GO
i
2
B DSK3EVNT
a LISTPTR1
5} LISTI
g
7| REQUEST 1
g
g
i
1]
iB
NEWNAME

PROGRAM
EQU

LOAD
WAIT

ECB
DC
DC
DC
DC
DC
DC
DC
DC
COPY

DC
ENDPROG
END

GO,DS=((MASTER,EDX003))
*

$DISKUT3,LISTPTR1, EVENT=DSK3EVNT
DSK3EVNT

0
A(LIST1)

A (REQUEST1)
F'0'

F'3'

A(DS1)

F'0'

A (NEWNAME)
F'-1'
DSCBEQU
CL8'NEWMAST '

Performing Data Management from a Program (continued)

-u -N

HEEIEIEEEE
~

—
w

Load $DISKUT3 to rename data set MASTER. Specify the address (LISTPTR1) of the
list of requests (in this case, a single request). Identify the event
(EVENT=DSK3EVNT) to be posted when $DISKUT3 completes.

Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT.

Set the initial state of the event control block to zero.

Point to the list of requests at LIST1.

Point to the specific rename request.

Indicate the end of the list of requests.

Request a rename (3).

Point to the DSCB for the data set to be renamed (MASTER on volume EDX003).
This word is not used for a rename request.

Point to the new data set name.

Tell $DISKUT3 to return the type of the data set being renamed (0 for undefined, 1 for
data, 3 for program).

Copy the DSCB equates into the program.

Define the new name for the data set.

Chapter 10. Performing Data Management from a Program PG-167

Performing Data Management from a Program

Performing Data Management from a Program (continued)

Setting End-of-Data on a Data Set

PG-168

SC34-0438

If you define a data set with a DSCB, you need to set end-of-data from your application

program.

The following example shows how to set end-of-data on a data set from an application program:

TASK PROGRAM
GO EQU

LOAD
WAIT

DSK3EVNT ECB
LISTPTR1 DC
LIST1 DC
DC
REQUEST1 DC
DC
DC
DC

COPY
ENDPROG
END

E!E’!][JE![IEIEIII [~]

GO,DS=((MASTER,EDX003))
*

$DISKUT3,LISTPTR1,EVENT=DSK3EVNT
DSK3EVNT

0

A(LIST1)

A (REQUEST1)
F'0'

F'6'

A(DS1)

D'O"

F'-1'
DSCBEQU

Performing Data Mlanagement from a Program (continued)

Load $DISKUTS3 to set end-of-data on data set MASTER. Specify the address
(LISTPTR1) of the list of requests (in this case, a single request). Identify the event
(EVENT=DSK3EVNT) to be posted when $DISKUT3 completes.

Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT.

Set the initial state of the event control block to zero.

4} Point to the list of requests at LIST1.

Point to the specific end-of-data request.

] Indicate the end of the list of requests.

Request end-of-data (6).

B Point to the DSCB for the data set on which to set end-of-data (MASTER on volume
EDX003).

E Indicate that the last record is full. (If the last record is not yet full, this field would

contain the number of bytes in the last record.)

10} Tell $DISKUTS3 to return the type of the data set on which end-of-data is being set (0
for undefined, 1 for data, 3 for program).

Copy the DSCB equates into the program.

Chapter 10. Performing Data Management from a Program PG-169

Performing Data Management from a Program

Performing Data Mlanagement from a Program (continued)

Performing More Than One Operation at Once

PG-170

SC34-0438

$DISKUT3 allows you to perform more than one operation with one invocation of the program.
For example, you can delete two data sets and allocate a third without loading $DISKUT3 more

than once.

The following example shows how to delete two data sets and allocate one data set:

TASK PROGRAM
GO EQU

LOAD
WAIT

[~]]

DSK3EVNT ECB
LISTPTR1 DC
LIST1 DC
DC
DC
DC
REQUEST1 DC
DC
DC
DC
REQUEST2 DC

DC
DC
DC

REQUEST3 DC
DC
DC
DC
COPY

DSCB
ENDPROG
END

EEERRoOS@mee
=

—_

N —
(=) ~ (2]

GO,DS=((MASTER, EDX003) , (UPDATE, EDX002))
*

$DISKUT3,LISTPTR1, EVENT=DSK3EVNT
DSK3EVNT

0

A(LIST1)

A (REQUEST1)
A (REQUEST?2)
A (REQUEST3)
F'0'

F'4"

A(DS1)

D'O’

F'-1"'

F'4'

A(DS2)

D'O'

F'-1"

F'2’

A(DSAa)
D'300'

F'1'
DSCBEQU
DS#=DSA,DSNAME=NEWMAST , VOLSER=EDX003

Performing Data Mlanagement from a Program (continued)

1 Load $DISKUTS3 to delete data sets MASTER and UPDATE and to allocate data set
NEWMAST. Specify the address (LISTPTR1) of the list of requests (in this case, a
single request). Identify the event (EVENT=DSK3EVNT) to be posted when
$DISKUT3 completes.

B Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT.

Set the initial state of the event control block to zero.

4] Point to the list of requests at LIST1.

Point to the request to delete data set MASTER.

6} Point to the request to delete data set UPDATE.

Point to the request to allocate data set NEWMAST.

B Indicate the end of the list of requests.

o} Request a delete (4).

10} Point to the DSCB for the first data set to be deleted (MASTER on volume EDX003).

11] This doubleword is not used for delete requests.

B Tell $DISKUT3 to return the type of the data set being deleted (0 for undefined, 1 for
data, 3 for program).

Request a delete (4).

14] Point to the DSCB for the second data set to be deleted (UPDATE on volume
EDXO002).

Request an allocate (2).

Point io the DSCB for the data set to be allocated (NEWMAST).

Allocate 300 records.

16} Indicate that the data set type is data.

m Copy the DSCB equates into the program.

m Define a DSCB for the data set being allocated (NEWMAST on volume EDX003).

Chapter 10. Performing Data Management from a Program PG-171

Performing Data Management from a Program

Opening a Data Set (DSOPEN)

Error Exits

PG-172

SC34-0438

You can open a disk, diskette, or tape data set from a program with the DSOPEN copy code.
DSOPEN does the same thing that the system does when you specify a data set in the
PROGRAM statement and load the program with either the $L. operator command or the
LOAD instruction.

Note: Only one DSCB can be open to a tape at a time. If you open a tape data set, you must
close the data set before you can open another tape data set.

You might use DSOPEN for any of the following reasons:
e Your program requires more than nine data sets.

¢ You do not know, at the time you load a program, whether or not the program will need a
data set.

« You need to open a data set and do not want to load $DISKUT3 (the system does not need
to load DSOPEN).

« The processor storage that SDISKUT3 requires is not available (DSOPEN requires about
1.5K bytes).

DSOPEN performs the following functions:

o Verifies that the specified volume is online
« Verifies that the specified data set is in the volume
« Initializes the DSCB

To use DSOPEN, you must first copy the source code into your program by coding:

COPY TCBEQU
COPY PROGEQU
COPY DDBEQU
COPY DSCBEQU
COPY DSOPEN

Note: You must code the equates in the order given.

During execution, invoke DSOPEN with the CALL instruction as follows:

CALL DSOPEN, (dscb)

If an error occurs while DSOPEN executes, the system transfers control to one of several error
exit routines. You must define these routines in your program and move their addresses to
labels that are contained in DSOPEN before you call DSOPEN. The routines cannot be
subroutines.

Opening a Data Set (DSOPEN) (continued)

The labels and their meanings are as follows:

Label Description

$DSNFND Data set name not found in directory. If DSOPEN cannot find the data set, then
it does not fill in the DSCB.

$DSBVOL Volume not found in disk directory. The system set the DDB pointer in the
DSCB to 0 ($DSCBVDE does not equal 0).

$DSIOERR Read error occurred while DSOPEN was searching the directory. (For more
information, refer to the Language Reference more information. See the READ
instruction return codes for more information.

$SEXIT Exit address. If $$EXIT is 0 and $DSCBNAME is $$ or $$EDXVOL,
DSOPEN initializes the DSCB to the first record (first record in the library) of
the volume specified in the $DSCBVOL. If $$EXIT is 0 and $DSCBNAME is
$$EDXVOL, DSOPEN initializes the DSCB to the first record of the device
where the volume specified on $DSCBVOL resides.

$DSDCEA Address of an area for DSOPEN to store the directory control entry (DCE).
This label contains a 0 if this area does not exist.

If you define an error exit routine as a word of zeroes or move a zero to one of the labels,
DSOPEN transfers control to the next sequential instruction after the CALL instruction. For
example, the following instruction causes control to return to the next sequential instruction if
DSOPEN cannot find the data set:

MOVEA $DSNFND,LIBEXIT

LIBEXIT DATA F'0’

The following instruction causes control to return to the next sequential instruction if DSOPEN
cannot the volume:

MOVEA $DSBVOL, 0

DSOPEN Considerations

When you use DSOPEN, you should know the following things:

e You must have a 256-byte work area labeled DISKBUFR in your program as follows:

DISKBUFR DC 128F'0Q’
o The DSCB to be opened can be DS1-DS9 or a DSCB defined in your program with the

DSCB statement. The DSCB must be initialized with a six-character volume name in
$DSCBVOL and an eight-character data set name in $DSCBNAM.

Chapter 10. Performing Data Management from a Program PG-173

Performing Data Mlanagement from a Program

Opening a Data Set (DSOPEN) (continued)

« To reopen a data set, initialize $DSCBVDE to zero; DSOPEN ignores all other fields.

« If you specify the volume name as six blanks, DSOPEN searches the IPL volume for the
data set.

« After DSOPEN completes, #1 contains the number of the directory record containing the
member entry and #2 contains the displacement within DISKBUFR to the member entry.

« The fields $DSCBEND and $DSCBEDB contain the next available logical record data, if
any, placed in the directory by SETEOD.

« You can open only one data set on any tape volume at a time.

DSOPEN Example

The following example shows how to open a data set when the data set is not known when the
program is loaded. Program MAINPGM, the primary task, prompts the operator for the data
set name and volume and calls secondary task OPENPGM. If the operator does not enter
volume name, the program assumes the IPL volume.

PG-174 SC34-0438

Opening a Data Set (DSOPEN) (continued)

I S DR S0 Y

(O) = =T=T1= =lTololSTo]
el K=J ~ f 01 (%] o

=

Lo]

MAINPGM PROGRAM START,MAIN=YES

EXTRN OPENPGM

START MOVEA #1,DS1
READDS READTEXT RESPONSE, '@3ENTER DSNAME,VOLUME - '
IF (RESPONSE-1,EQ,X'00',BYTE) , THEN
GOTO READDS
ENDIF
MOVE ($DSCBVOL, #1) , IPLVOL, (6,BYTE)
MOVE WHERE, O
FIND Cc',',RESPONSE, 15, WHERE , DSONLY
MOVE #2,WHERE
MOVE ($DSCBVOL, #1), (1,42), (6,BYTE)
MOVE (0,#2) ,BLANKS, (8,BYTE)
DSONLY MOVE ($DSCBNAM, #1) ,RESPONSE, (8,BYTE)
CALL OPENPGM, (DS1)
MOVE CODE, DS
IF (CODE,NE, -1) , THEN
PRINTEXT '®ERROR DURING DSOPEN. RETURN CODE = '
PRINTNUM CODE
ELSE
ENDIF
PROGSTOP
COPY DSCBEQU
CODE DC F'0'
IPLVOL EQU =*
BLANK8 DC cL8' '
WHERE DC F'0'
RESPONSE TEXT ' ', LENGTH=15
DSCB DS#=DS 1, DSNAME=DUMMY
ENDPROG
END

Begin the program at START and identify this task as the primary task (MAIN=YES).

Identify as an external entry the subroutine that this task will call.

Place the address of the DSCB in register 1.

Prompt the operator for the data set name. When the operator responds, the system
places the response in RESPONSE.

Test for a null entry. RESPONSE-1 contains the length of the operator’s response.

Initialize the volume field (DSCBVOL) of the DSCB to blanks.

Initialize the comma locator to zero.

Chapter 10. Performing Data Management from a Program PG-175

Performing Data Management from a Program

Opening a Data Set (DSOPEN) (continued)

PG-176

SC34-0438

- - [© Iy ©]
4] [

=
~

Find a comma in the operator’s response. If no comma exists, branch to DSONLY.
Move the position of the comma to register 2.

Move the volume name to the volume field (DSCBVOL) of the DSCB.

Blank the volume name and the comma preceding it.

Move the data set name to the data set name field (DSCBNAM) of the DSCB.

Call the routine that opens the data set. Pass the address of the DSCB (pointed to by
DS1) to the subroutine.

Move the return code into CODE.

If the return code does not indicate successful completion (-1), print an error message
and the return code.

Process the data set with READ/WRITE instructions. ($DSCBEND contains the
number of records in the data set.)

Cause the DSCB equates to be copied into the program.
Reserve storage for the subroutine return code.

Set up a default value for IPL volume.

Reserve storage for an index to be used in locating the comma.
Reserve storage for the operator’s response.

Generate a data set control block (DSCB). Give the data set name field (DSCBNAM)
the temporary name DUMMY.

Opening a Data Set (DSOPEN) (continued)

Program OPENPGM consists of a subroutine and error exit routines for DSOPEN. The
subroutine calls DSOPEN.

I!I:Ea IIE!!][JE![HIE!:!IHIII
=

—_f =
N1O o

N
(=]

0

Py

w | w NININDININ TN N
O INjO D |w]|[NN]—

OPENPGM PROGRAM MAIN=NO

LIBEXIT

VOLEXIT

IOEXIT

RETURN

ENTRY
SUBROUT
MOVE
MOVE
MOVE
MOVE
MOVEA
MOVEA
MOVEA

CALL
GOTO

EQU
MOVE

MOVE
PRINTEXT
GOTO

EQU
MOVE

MOVE
PRINTEXT
GOTO

EQU
MOVE

MOVE
PRINTEXT
GOTO

MOVE
MOVE
RETURN
COPY
COPY
COPY
COPY
COPY

DISKBUFR DC

SAVE1
SAVE2

DC

DC
END

OPENPGM
OPENPGM, ADSN

SAVET, #1

SAVE2, #2

#1,ADSN

(0,#1),-1

$DSNFND, LIBEXIT

$DSBVOL, VOLEXIT

$DSIOERR, IOEXIT

DSOPEN, ADSN

RETURN

*

#1,ADSN

(0, #1),1

"aDATA SET NOT FOUND DURING DSOPENQ'
RETURN

*

#1,ADSN

(0,#1),2

'9VOLUME NOT FOUND DURING DSOPEN3'
RETURN

*

#1,ADSN

(0,#1),3
' 9ERROR ENCOUNTERED DURING DSOPENa'
RETURN

#1,SAVE1
#2,SAVE2

TCBEQU
PROGEQU
DDBEQU
DSCBEQU
DSOPEN
128F'0"
F'0'
F'0'

Identify the name of the subroutine as OPENPGM. Specify that it is not the main
program (MAIN=NO).

Chapter 10. Performing Data Management from a Program PG-177

Performing Data Management from a Program

Opening a Data Set (DSOPEN) (continued)

PG-178

= =

= = =
34 W

=
~

N N
d N

SC34-0438

Identify the name of the subroutine as an entry. (In conjunction with the EXTRN
statement in the main program, this statement allows the linkage editor to resolve
external references.)

Define a subroutine with the name OPENPGM. Define a parameter (ADSN) that is
passed by the calling program.

Save index register 1.
Save index register 2.

Move the parameter that was passed from the calling program (the address of the
DSCB) to register 1.

Initialize the return code to indicate successful completion (-1).

Move the address of the data-set-not-found routine to the proper error exit within
DSOPEN.

Move the address of the invalid-volume routine to the proper error exit within DSOPEN.
Move the address of the 1/0 error routine to the proper error exit within DSOPEN.
Call DSOPEN, passing the address of the DSCB.

Indicate the beginning of the data-set-not-found exit routine.

Move the address of the DSCB to register 1.

Move a 1 to the first word of the DSCB, indicating data set not found.

Indicate the beginning of the invalid-volume exit routine.

Move the address of the DSCB to register 1.

Move a 2 to the first word of the DSCB, indicating an invalid volume.

Indicate the beginning of the 1/0 error exit routine.

Move the address of the DSCB to register 1.

Move a 3 to the first word of the DSCB, indicating an I/0O error.

Restore index register 1.

Restore index register 2.

Return to the calling program.

Opening a Data Set (DSOPEN) (continued)

Cause the TCB equates to be copied into the program.

Cause the PROGRAM equates to be copied into the program.

N
(34

Cause the DDB equates to be copied into the program.

N
(2]

Cause the DSCB equates to be copied into the program.

N
~

Cause the DSOPEN equates to be copied into the program.

Reserve a 256-byte area for DSOPEN. (This area must have the label DISKBUFR.)

Reserve an area in which to save register 1.

w
(=]

Reserve an area in which to save register 2.

Coding for Volume Independence

You may code your applications so that they are independent of the volume in which they
reside. To achieve volume independence, place all programs and data sets in a single volume on
any system and specify the characters ## in the volume name field of any DS= operand or
PGMS= operand of the PROGRAM statement. (For information on the PROGRAM
statement, refer to the Language Reference.)

You can also insert the volume name from which your program was loaded into any DSCB you
have coded in your program. If you insert the volume name into a DSCB, you must do so
before invoking DSOPEN or $DISKUT3. The volume name, a six-byte field, is located in the
$PRGVOL field of the program header.

Chapter 10. Performing Data Management from a Program PG-179

Performing Data Mlanagement from a Program

Opening a Data Set (DSOPEN) (continued)

The following example shows a routine that retrieves the volume name and invokes DSOPEN to
open the data set JOURNAL, located in the same volume from which the program was loaded.

COPY TCBEQU
COPY PROGEQU
COPY DDBEQU
COPY DSCBEQU
COPY DSOPEN

ENTER TCBGET TCBADDR

1

B MOVE #1,TCBADDR

B MOVE #2, ($TCBPLP, #1)

4] MOVEA #1,INDS

B MOVE ($DSCBVOL, #1) , ($PRGVOL, #2), (6,BYTE)
B CALL DSOPEN, (INDS)

i DSCB DS#=INDS, DSNAME=JOURNAL

B DISKBUFR DC 128F'0"

B TcBAaDDR DC F'0'

n Get the address of the task control block (TCB).

B Move the address of the TCB into register 1.

Move the address of the program header into register 2.

E Move the address of the data set control block (DSCB) into register 1.
Move the volume into the DSCB.

6] Call DSOPEN, passing the DSCB as a parameter.

Define the DSCB.

ﬂ Define a work area for DSOPEN.

a Define an area for the TCB address.

PG-180 SC34-0438

Opening a Data Set (DSOPEN) (continued)

Setting Logical End of File (SETEOD)

The copy code routine SETEOD allows you to indicate the logical end of file on disk. If your
program does not use SETEOD when creating or overwriting a file, the READ end of data
exception will occur at either the physical or logical end that was set by some previous use of the
data set.

The relative record number of the last full physical record is placed in the $$FPMF field of the
directory member entry (DME).

Notes:

1. If the SDSCBEDB field is zero, the $$FPMF field is set to the next record pointer field
($DSCBNEX) minus one.

2. If the $DSCBEDRB field is not zero, the $$FPMF field is set to the $DSCBNEX minus two.

If the last physical record is partially filled, the number of bytes contained in this record is
placed in the $$FPMD of the DME. Otherwise, a zero is placed in this field. (This is done by
copying the $DSCBEDRB field of the DSCB directly into the DME.) (Further information on
the DME can be found in /nternal Design.)

If the next record pointer field (SDSCBNEX) in the DSCB is 1 when SETEOD is executed, the
DME is set to indicate that the data set is empty and $DSCBEND is set to X’-1’, indicating that
the data set is empty. If $DSCBEOD is zero, the data set is unused.

SETEOD can be used before, during, or after any READ or WRITE operation. It does not
inhibit further I/O and can be used more than once. The only requirement is that the DSCB
passed as input must have been previously opened.

The POINT instruction modifies the $DSCBNEX field. If SETEOD is used after a POINT
instruction, the new value of $DSCBNEX is used by SETEOD.

SETEOD requires that the DSOPEN copy code, PROGEQU, TCBEQU, DDBEQU, and
DSCBEQU be copied in your program.

Chapter 10. Performing Data Management from a Program PG-181

Performing Data Management from a Program

Setting Logical End of File (SETEOD) (continued)

To use SETEOD, copy the source code into your program and allocate a work data set as

follows:
COPY TCBEQU
COPY PROGEQU
COPY DDBEQU
COPY DSCBEQU
COPY DSOPEN
COPY SETEOD
DISKBUFR DC 128F'0" WORK AREA FOR DSOPEN

You invoke SETEOD as a subroutine through the Event Driven Language CALL statement,
passing the DSCB and an I/O error exit routine pointer as parameters.

CALL SETEOD, (DS1) , (IOERROR)

where:
DS1 Names a previously opened DSCB

IOERROR Names the routine in the application program to which control is passed if an I/0
error occurs

PG-182 SC34-0438

Setting Logical End of File (SETEOD) (continued)

Finding the Device Type (EXTRACT)

The intine copy code routine EXTRACT determines the device type from the device descriptor
block. This routine is provided for applications that are sensitive to device type. For example,
an application may need to allocate a data set unless the data set were to reside on a tape.
Before attempting to execute instructions that would not execute successfully, the EXTRACT
routine may be used to determine the device type.

To use EXTRACT, you must copy the source code inline into your program. The routine
requires the address of a DSCB in #1 and returns the device type in #1.

MOVEA #1,DS1
COPY EXTRACT
IF (#1,EQ,X"'3186"') ,GOTO, TAPEDS

In this example, X‘3186’ is the device ID of an IBM 4969 Magnetic Tape.

To get a list of the device IDs on your system, use the LD command of the $IOTEST utility.

Chapter 10. Performing Data Management from a Program PG-183

Notes

PG-184 SC34-0438

Chapter 11. Reading and Writing to Tape

This chapter describes the tape facilities you can use when using tape as part of your EDL
program.

For information on how to allocate tape data sets, copy data sets from one medium to another,
and change tape attributes, refer to the $TAPEUT!1 utility in the Operator Commands and Utilities
Reference or the Operation Guide.

For more information on how to access magnetic tape data sets, refer to the Language Reference.

For information on data set naming conventions, refer to the “Specifying Data Sets” on page
PG-97.

What Is a Standard-Label Tape?

A standard-label tape consists of data sets separated by 80-character label records and
tapemarks.

A Jabel record is a record that the system writes on a tape to do such things as identify the
volume, indicate the beginning of a data set, and indicate the end of a data set.

Standard label tapes contain a volume label (VOL1) and a header label (HDR1) before each
data set and a trailer label (EOF1) after each data set. For the contents of the labels, see
Appendix A, ‘“Tape Labels” on page PG-263.

A tapemark is a control character that the system writes on a tape. The hardware uses tapemarks
to recognize such things as the beginning or end of a data set.

Chapter 11. Reading and Writing to Tape ~ PG-185

Reading and Writing to Tape
What Is a Standard-Label Tape? (continued)

You would use standard-label tapes to maintain data security or to control an extensive library
of tapes.

What Is a Nonlabeled Tape?

A nonlabeled tape consists of data sets separated only by tapemarks.
Nonlabeled tapes allow you to read tapes that have unknown record length or an unknown label.

You would use nonlabeled tapes if you do not need to maintain strict data security or if you use
only a small number of tapes.

Processing Standard-Label Tapes

This section describes how to:
« Read a standard-label tape
o Write a standard-label tape
e Close a standard-label tape
o Bypass standard labels

« Process a tape containing more than one data set

Reading a Standard-Label Tape

The READ instructions allows you to retrieve a record from 18 to 32767 bytes long.
In the following example:
TASKO4 PROGRAM START,DS=(UPDATES, (MASTER,56390))

READ DS2,BUFF, 1,120, END=NMRCDS , ERROR=00PS , WAIT=YES

BUFF].DATA 60F'0"'
the system reads one record (indicated by 1 in the third operand) from the second file listed on

the PROGRAM statement (data set MASTER on volume serial 56390) into BUFF. (The term
volume serial means the same as the term vo/ume.)

PG-186 $C34-0438

Processing Standard-Label Tapes (continued)

The size of the record is 120 bytes (indicated by 120 in the fourth operand). If no more records
exist on the data set, control transfers to NMRCDS. If an error occurs, control transfers to
OOPS. The system waits (WAIT=YES) for the read operation to complete before executing
the next sequential instruction.

The following READ instruction reads 2 records into BUFF2. BUFF2 must be 654 bytes long.

TASK37 PROGRAM BEGIN,DS=((UPDATES,73499), (MASTER,56390))
READ DS1,BUFF2,2,327,END=END1, ERROR=ERR , WAIT=YES

BUFF2 DATA 327F'0"

The system reads two records (indicated by 2 in the third operand) from the first data set
(UPDATES on volume serial 73499) listed on the PROGRAM statement. The size of the
record is 327 bytes (indicated by 327 in the fourth operand). If no more records exists on the
data set, control transfers to END1. If an error occurs, control transfers to ERR. The system
waits (WAIT=YES) for the read operation to complete before executing the next sequential
instruction.

Writing a Standard-Label Tape

The WRITE instruction allows you to write a record from 18 to 32767 bytes long.
In the following example:
TASKO4 PROGRAM START,DS=(UPDATES, (MASTOUT,b00032))

WRITE DS2,BUFF, 1,120, ERROR=GOOF,WAIT=YES

BUFF DATA 60F'O"

the system writes one record (indicated by 1 in the third operand) to the second file listed on the
PROGRAM statement (data set MASTOUT on volume serial 00032) from BUFF. The size of
the record is 120 bytes (indicated by 120 in the fourth operand). If an error occurs, control
transfers to GOOF. The system waits (WAIT=YES) for the write operation to complete before
executing the next sequential instruction.

The following WRITE instruction writes 2 records from BUFF2. BUFF2 must be 654 bytes
long.
TASK74 PROGRAM BEGIN,DS=((DATES,28345), (MASTER,56390))

WRITE DS1,BUFF2,2,327,ERROR=ERROR,WAIT=YES

BUFF2 DATA 327F'0"

Chapter 11. Reading and Writing to Tape PG-187

Reading and Writing to Tape

Processing Standard-Label Tapes (continued)

The system writes two records (indicated by 2 in the third operand) to the first data set (DATES
on volume serial 28345) listed on the PROGRAM statement. The size of the record is 327
bytes (indicated by 327 in the fourth operand). If an error occurs, control transfers to ERROR.
The system waits (WAIT=YES) for the read operation to complete before executing the next
sequential instruction.

Closing Standard-Label Tapes

Whether you read or write a standard-label tape, you should close the tape data set when you
finish reading or writing. Closing a tape data set causes the system to write trailer labels. Use
the CONTROL instruction to close a tape data set as follows:

TASK98 PROGRAM BEGIN,DS=((DATES,28345), (MASTER,56390))

CONTROL DS1,CLSOFF

The system closes the first data set (DATES on volume serial 28345) listed on the PROGRAM
statement. CLSOFF causes the system to rewind the tape and set the tape drive offline.

For information on other ways to close a tape, refer to Language Reference.

Bypassing Labels

PG-188

SC34-0438

If you want to bypass the labels on a standard-label tape, you must have defined a tape drive as
BLP during system generation or changed the label processing attribute with the $TAPEUT1
utility. For information on defining a BLP drive, refer to /nstallation and System Generation Guide.

Processing Standard-Label Tapes (continued)

The following sample program shows how to bypass standard labels.

n PROG8 PROGRAM START,DS=((XYZ,TAPEO1))
START EQU *

READ DS1,BUFFER, 1,80, ERROR=ERR
READ DS1,BUFFER, 1,80,ERROR=ERR1

CONTROL DS1,FSF
LOOP EQU *

S

GOTO LOOP
ALLDONE EQU *

6| READ DS1,BUFFER, 1,80, ERROR=ERR
ENDIT EQU *
PROGSTOP
ERR1 EQU *
PRINTEXT 'ALABEL ERROR - RC= '
PRINTNUM DS1
GOTO ENDIT
ERR2 EQU *
PRINTEXT 'aAREAD ERROR - RC= '
PRINTNUM DS1
QUESTION 'aDO YOU WANT TO CONTINUE? ',
YES=LOOP, NO=ENDIT
BUFFER DATA 40F'0’
ENDPROG
END

READ DS1,BUFFER, 1,50, ERROR=ERR2, END=ALLDONE

1} Identify the tape as data set XYZ on tape ID TAPEO1. The system ignores the data set

name but you must supply it.

B Read the first of the standard label records (the VOL1 label) into BUFFER. (You can

insert instructions after this instruction to process the label.)

Read the second of the standard label records (the HDR1 label) into BUFFER. (You

can insert instructions after this instruction to process the label.)

a Forward space the file one tapemark. This instruction causes the system to skip any

remaining blocks in the header and position itself at the first record of the file.

Process the data. This instruction reads a 50-character record (indicated by 50 in the
third operand) into BUFFER. If an error occurs, control transfers to ERR2. If no more

records exist on the data set, control transfers to ALLDONE.

6} Read the trailer label (the EOF1 label) into BUFFER. You can insert instructions after

this instruction to process the label.

Chapter 11. Reading and Writing to Tape

PG-189

Reading and Writing to Tape

Processing Standard-Label Tapes (continued)

Processing a Tape Containing More than One Data Set

To process a tape that contains more than one data set, use the $VARYON operator command
to position the tape to the data set you want to read. For example, to position a tape at address
4C to the fourth data set, issue the following command:

'$VARYON LT

The system responds as follows:

kIfPEOI ONL INE

TAPEOL1 is the ID that was assigned to the tape drive at system generation.

After you use the $VARYON operator command, you can process the data set as you would
any other tape data set.

PG-190 SC34-0438

Processing Standard-Label Tapes (continued)

Reading a Multivolume Data Set

To read a multivolume data set, you must add instructions to your program to process the data
set. The following program reads a multivolume data set.

n PROGX PROGRAM START,DS=??

START EQU *
B READ DS1,BUFFER, 1,80, ERROR=ERR 1, END=CHKEND
GOTO START
ENDIT EQU *
PROGSTOP
CHKEND EQU *
B CONTROL DS1,CLSOFF
a IF (DS1,EQ, 33)
B PRINTEXT 'aEOV ENCOUNTERED - ENTER VOL1 OF NEXT VOLUME]'
6} READTEXT NEWVOL
7] MOVEA #1,DS1
o} MOVE ($DSCBVOL, #1) ,NEWVOL, (3,WORD)
o] MOVEA $DSNFND, ERRDSN
MOVEA $DSBVOL, ERRVOL
MOVEA $DSIOERR, ERRIO
1 0] QUESTION 'aREPLY Y WHEN THE NEXT VOLUME IS MOUNTED AND ONLINEQ'
NO=ENDIT
CALL DSOPEN, (DS1)
GOTO START
ENDIF
GOTO ENDIT
ERRDSN EQU *
MOVEA MSGX , MSG1
GOTO ERRMSG
ERRVOL EQU *
MOVEA MSGX , MSG2
GOTO ERRMSG
ERRIO EQU *
: MOVEA MSGX , MSG3
ERRMSG ~ EQU *
PRINTEXT 'aDSOPEN ERROR -2a'
PRINTEXT MSG1,P1=MSGX
PRINTEXT SKIP=1
GOTO ENDIT
MSG1 TEXT 'DATA SET NOT FOUND'
MSG2 TEXT 'VOLUME NOT FOUND'
MSG3 TEXT 'I/O ERROR'
ERR1 EQU *

PRINTEXT '@READ ERROR - RC='
PRINTNUM DS1
GOTO ENDIT

Chapter 11. Reading and Writing to Tape ~ PG-191

~

Reading and Writing to Tape

Processing Standard-Label Tapes (continued)

BUFFER DATA 40F'0’ 80 BYTE BUFFER
1

NEWVOL TEXT

! HOLDS NEW VOLUME #

REPLY TEXT LENGTH=2

COPY DSOPEN
COPY DSCBEQU
COPY PROGEQU
COPY DDBEQU

DISKBUFR DC 128F'0"

o B3 ™

|~ . O]

ENDPROG
END

Cause the system to issue a prompt for the data set name and volume of the input data
set.

Read an 80-character record into BUFFER. If an error occurs transfer control to
ERRI1. If no more records exist, transfer control to CHKEND.

Close the input data set, rewind the tape, and set the tape drive offline.

Test for a return code of 33, indicating that the system found an end-of-volume label.
Prompt the operator for the volume serial of the next tape.

Read the volume serial into NEWVOL.

Move the address of the DSCB for the data set into software register 1.

Move the volume serial into the $DSCBVOL field of the DSCB.

Set the DSOPEN error exits in this instruction and in the next two instructions.
Prompt the operator for a response when he/she has mounted the tape.

Call the DSOPEN routine to open the next volume of the data set.

Resume processing the data.

Processing Nonlabeled Tapes

PG-192

SC34-0438

This section describes how to:

Define a nonlabeled tape

Initialize a nonlabeled tape

Processing Nonlabeled Tapes (continued)

« Read a nonlabeled tape

« Write a nonlabeled tape

Defining a Nonlabeled Tape

To read and write from a nonlabeled tape, you must define the drive as nonlabeled. If the tape
drive hasn’t already been defined as nonlabeled, you must:

1. Vary the tape drive offline.
2. Change the label processing attribute to nonlabeled using the STAPEUT]1 utility.
3. Vary the tape drive online.

To vary the tape drive offline, use the $VARYOFF operator command as follows:

SVARYOFF 4C
TAPEO1 OFFLINE

The command varies offline the tape drive at address 4C. TAPEOL1 is the ID that was assigned
during system generation.

The following example shows how to use the $TAPEUT1 utility to change the label processing
attribute:

$L $TAPEUTI
COMMAND (?) CT

ENTER TAPEID (1-6 CHARS): TAPEO1
TAPE TAPEO1 AT ADDR 4C is SL 1600 BPI

DO YOU WISH TO MODIFY?: Y

LABEL (NULL,SL,NL,BLP)?: NL
DENSITY (NULL,800,1600)?: 800

TAPE TAPEO1 AT ADDRESS 4C 1S NL 800 BPI

COMMAND ? EN

This example changes tape TAPEQ1 to nonlabeled 800 bytes per inch.

To vary the tape drive online, use the $VARYON operator command as follows:

Chapter 11. Reading and Writing to Tape ~ PG-193

Reading and \

iting to Tape

Processing Nonlabeled Tapes (continued)

B

| SVARYON 48

gTAPEOI ONL I NE
g

The command varies online the tape drive at address 48. TAPEO1 is the ID that was assigned
during system generation.

Initializing a Nonlabeled Tape

PG-194

To initialize a nonlabeled tape, you must:
1. Vary the tape drive offline.

2. Initialize the tape.

3. Vary the tape drive online.

To vary the tape drive offline, use the $VARYOFF operator command as follows:

i
§$VARY0FF L
xlAPEOl OFFLINE

SC34-0438

\ _J

The command varies offline the tape drive at address 4C. TAPEOI1 is the ID that was assigned
during system generation.

To initialize the tape, use the $TAPEUT!1 utility as follows:

SL STAPEUT1

COMMAND (?) IT

TAPE ADDR (1 - 2 HEX CHARS): 4C
NO LABEL 800 BPI? Y

TAPE INITIALIZED

COMMAND ? EN

Processing Nonlabeled Tapes (continued)

To vary the tape drive online, use the $VARYON operator command as follows:

SVARYON 4C
TAPEO1 ONLINE

The command varies online the tape drive at address 4C. TAPEO1 is the ID that was assigned
during system generation.

Reading a Nonlabeled Tape

The READ instructions allows you to retrieve a record from a nonlabeled tape. The records can
be from 18 to 32767 bytes long.

In the following example:

TASKO4 PROGRAM START,DS=(UPDATES, (MASTER,TAPEO1))
READ DS2,BUFFER, 1,80, END=NOMORE , ERROR=ERROR , WAIT=YES

BUFFER DATA 60F'0"

the system reads one record (indicated by 1 in the third operand) from the second file listed on
the PROGRAM statement (data set MASTER on tape ID TAPEO1) into BUFFER. The size of
the record is 80 bytes (indicated by 80 in the fourth operand). If no more records exist on the
data set, control transfers to NOMORE. If an error occurs, control transfers to ERROR. The
system waits (WAIT=YES) for the read operation to complete before executing the next
sequential instruction.

Writing a Nonlabeled Tape

The WRITE instruction allows you to write a nonlabeled record from 18 to 32767 bytes long.

In the following example:

TASKO4 PROGRAM START,DS=(UPDATES, (MASTOUT,TAPEO1))

WRITE DS2,BUFF, 1,120, ERROR=GOOF ,WAIT=YES

BUFF DATA 60F'O'
the system writes one record (indicated by 1 in the third operand) to the second file listed on the

PROGRAM statement (data set MASTOUT on tape ID TAPEO1) from BUFF. The size of the
record is 120 bytes (indicated by 120 in the fourth operand). If an error occurs, control

Chapter 11. Reading and Writing to Tape PG-195

‘Reading and Writing to Tape

Processing Nonlabeled Tapes (continued)

transfers to GOOF. The system waits (WAIT=YES) for the write operation to complete before
executing the next sequential instruction.

Adding Records to a Tape File (UPDATE)

PG-196

SC34-0438

The copy code routine UPDTAPE allows you to add records to an existing (or new) tape file.
The records added are placed after existing records on the file. On standard label tapes, the
routine updates the block count counters in the EOF1 label.

To use UPDTAPE, you must copy the source code into your program by coding:

COPY UPDTAPE

You invoke UPDTAPE as a subroutine through the CALL instruction, passing the DSCB as a
parameter.

CALL UPDTAPE, (DS1)
where DS1 is a previously opened DSCB.
After the CALL, you must check the return code in the first word of the DSCB for the tape

motion return codes. A -1 return code indicates that the tape is positioned correctly for writing
records.

Adding Records to a Tape File (UPDATE) (continued)

The following example adds 1000 records to a tape data set. The program prompts the operator
for the data set name and volume.

n UPDTAP PROGRAM START,DS=((TAPEDS,??))

2

O 3 =

I S

START EQU *
CALL UPDTAPE, (DS1)
IF (DS1,NE, -1)

PRINTEXT '®@ERROR - UPDTAPE RC ='
PRINTNUM DS1
PRINTEXT SKIP=1
GOTO ENDIT
ENDIF

DO 1000, TIMES

WRITE DS1,BUFF,ERROR=ERR
ADD BUFFNUM, 1

ENDDO
ENDIT EQU *
IF (DS1,EQ,-1)

PRINTEXT 'QTAPE UPDATED SUCCESSFULLY®'
CONTROL DS1,CLSRU
IF (DS1,NE,-1)
PRINTEXT '&CLOSE ERROR - RC ='
PRINTNUM DS1
PRINTEXT SKIP=1
ENDIF
ENDIF
PROGSTOP
ERR EQU *
PRINTEXT 'AWRITE ERROR - RC ='
PRINTNUM DS1
PRINTEXT SKIP=1

GOTO ENDIT
BUFF DC 127X 'FFFF'
BUFFNUM DC F'1'

COPY DSCBEQU

COPY TDBEQU

COPY DDBEQU

COPY UPDTAPE

ENDPROG

END

Cause the system to prompt for the name and volume of the tape data set.
Call the subroutine, passing the DSCB as a parameter.
Check the return code from the subroutine.

Add 1000 records to the tape data set.

Write a record to the data set from buffer BUFF. If an error occurs, branch to ERR.

Chapter 11. Reading and Writing to Tape

PG-197

Notes

PG-198 SC34-0438

Chapter 12. Communicating with Another
Program (Cross Partition Services)

To communicate with another program, you can use cross partition services. Cross partition
services require synchronization logic in your programs but no additional storage in the
SUpervisor.

Communication is possible between two programs within the same partition and between
programs in different partitions. Cross partition services permit asynchronous but coordinated
execution of application programs running in different partitions.

Use these services when interrelated programs and tasks in your application cannot be
accommodated in a single partition.

When your task is attached, its TCB ($TCBADS) is updated to contain the number of the
address space in which it is executing. The address space value (the partition number minus
one) is also known as the hardware address key. This key, along with an address you supply, is
used to calculate the target address used in cross partition services. For some functions, you put
the address key of the target partition in $TCBADS.

The following sections contain examples of the different uses of the cross partition services.

Chapter 12. Communicating with Another Program (Cross Partition Services) = PG-199

Communicating with Another Program (Cross Partition
Services)

Loading Other Programs

PG-200

SC34-0438

In the following example, PROGA loads PROGB into partition two and passes the parameters
at PROGASWI1 to it. When PROGB terminates, the supervisor posts the ECB at ENDWAIT,
signaling PROGA that PROGB has ended.

In this example, the system queues the program loaded (PROGB) to the terminal that is
enqueued by the loading program (PROGA).

$TCBADS is not modified by the LOAD instruction.

PROGA, the loading program, looks like this:

f§ eproGa PROGRAM START, 1,MAIN=YES
B aTLIS ATTNLIST (CA,PROGASTP)
PROGASTP EQU *
B MOVE #1,PROGASW1
4] MOVE (0,4#1),1,TKEY=1
ENDATTN
START EQU *
B TCBGET PROGAKEY, $TCBADS
6} LOAD PROGB, PROGASW1, EVENT=ENDWAIT, LOGMSG=YES, PART=2
7] IF (PROGA,EQ,-1) , THEN
WAIT ENDWAIT
ELSE
PRINTEXT 'LOAD FAILED',SKIP=1
ENDIF
PROGSTOP
ENDWAIT ECB
PROGASW1 DATA A (PROGASW1)
PROGAKEY DATA F'O'
ENDPROG
END

Loading Other Programs (continued)

Notes on PROGA are as follows:

Define the primary task (MAIN=YES). Assign priority 1 to the task.

Define an attention-interrupt-handling routine. When the operator enters “CA” and
presses the attention key, branch to PROGASTP.

Move PROGASWI1 into register 1. (When this instruction executes, PROGASW1
contains the address of CANCELSW in PROGB.)

Move 1 to address (0,#1). Indicate the address key of the loaded program (TKEY=1).
Address (0,#1) points to the address of CANCELSW. In PROGRB, the IF instruction
finds that CANCELSW contains a 1 and passes control to the label STOP.

Put PROGA'’s address key into PROGAKEY.

Load PROGSB, passing the parameters beginning at label PROGASW1. Identify the
event to be posted when PROGB completes (EVENT=ENDWAIT), indicate that the
PROGRAM LOADED message is to appear on the terminal, and load the program into
partition 2 (PART=2).

If PROGB loads successfully, wait for PROGB to post the event ENDWAIT.

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-201

Communicating with Another Program (Cross Partition
Services)

Loading Other Programs (continued)

PG-202

SC34-0438

The following program, PROGB, is the program being loaded.

When the operator presses the attention key and enters “CA”, the attention-interrupt-handling
routine at label CANCEL in PROGA begins executing.

f§ ProGB PROGRAM START,509,PARM=2
START EQU *
2| PRINTEXT 'TO CANCEL HIT > CA',SKIP=1
PRINTEXT SKIP=1
B MOVEA PROGAWRK , CANCELSW
4] MOVE #1, $PARM1
B MOVE (0,#1) ,PROGAWRK , TKEY=$PARM2
B roop IF (CANCELSW,EQ, 1) ,GOTO, STOP
GOTO LOOP
STOP EQU *
7] PROGSTOP -1,LOGMSG=NO
PROGAWRK DATA F'O'
CANCELSW DATA F'O'
ENDPROG
END

Specify the length of the parameter list that PROGB receives from PROGA
(PARM=2). The system recognizes each word in the parameter list by the label
$PARMXx, where “x” indicates the position of the word in the list. $PARMI1 refers to
the first word in the list (PROGASW1) and $PARM2 refers to the second word in the

list (PROGAKEY).
Display a prompt that tells the operator how to cancel PROGB.
Move the address of CANCELSW into PROGAWRK.
a Move the first parameter (the address of PROGASW1) into software register 1.
Move the contents of PROGAWRK to the address (0,#1) in PROGA. The TKEY

operand of the MOVE instruction supplies the address key of PROGA.
Loop until the operator cancels the program.

Post the loading program (PROGA) with a -1. Suppress the PROGRAM ENDED
message (LOGMSG=NO).

Note: When you execute a LOAD instruction for an overlay or nonoverlay program, the default
terminal address or the currently active terminal address of the program issuing the LOAD is
placed in the program header of the loaded program. This address is taken from $PRGCCB in
the issuing program’s program header and placed into $PRGCCB of the loaded program’s
program header. This address is a CCB address.

Loading Other Programs (continued)

Finding Other Programs

The following example uses the WHERES instruction to find another program and return the
address key and the load point of a program.

1 WHERES PROGB, ADDRB,KEY=KEYB
PROGB DATA C'PROGB '

B ProOGB DATA C'PROGB '

ADDRB DATA F'0'

Al KEYB DATA F'0'

1 Find program PROGB. Put the load point address in ADDRB and the address key in

KEYB.
B Define the program to be found (the name you give the program when you link-edit it).
Define storage for the load-point address.
4] Define storage for the address key.

Chapter 12. Communicating with Another Program (Cross Partition Services) =~ PG-203

Communicating with Another Program (Cross Partition
Services)

Finding Other Programs (continued)

Starting Other Tasks

PG-204

€

You can start a task in another partition with the ATTACH instruction.

In the following example, PROGA starts (or ‘‘attaches”) the task labeled TASKADDR in

PROGB.
PROGA PROGRAM START
1} COPY PROGEQU
B COPY TCBEQU
START EQU *
B WHERES PROGB,ADDRB,KEY=KEYB
a IF (PROGA,EQ,0) , THEN
PRINTEXT 'PROGRAM NOT FOUND',SKIP=1
GOTO DONE
ENDIF
B TCBGET #1, $TCBVER
6| MOVE SAVEKEY, ($TCBADS, #1)
7] MOVE ($TCBADS, #1) ,KEYB
o} ADD ADDRB,X'34',RESULT=TASKADDR
o} ATTACH *,P1=TASKADDR
10| MOVE ($TCBADS, #1) , SAVEKEY
DONE PROGSTOP
SAVEKEY DATA F'0'
B PproGB DATA C'PROGR '
ADDRB DATA F'0'
KEYB DATA F'0'
ENDPROG
END
1} Copy the PROGRAM equates into the program.
B Copy the task control block (TCB) equates into the program.

Find the load-point address and address key of PROGB. Place the load-point address of
PROGB into ADDRB and the address key of the program into KEYB.

4] If the WHERES instruction returns a zero, indicating an error, print an error message
and end the program.

Place the address of PROGA'’s task control block (TCB) in software register 1.

6} Save PROGA'’s address key in SAVEKEY.

Move PROGB’s address key to the address key field (S TCBADS) of the TCB.

SC34-0438

Starting Other Tasks (continued)

Add X’34’ to the load point of PROGB. Put the result of the addition in TASKADDR.
(PROGA assumes that PROGB defines the task to be attached immediately after the
PROGRAM statement. The PROGRAM statement generates 52 bytes (X’34’) of
code.)

Attach the task. Assume that the address of the task to be attached is contained in
TASKADDR (calculated by the ADD instruction).

Restore PROGA'’s address key from SAVEKEY.

Indicate the name of the program to be found. (The name of the program is the name
assigned to it when the program was link-edited.)

The following program contains task NEXT that PROGA attaches. This program must be in
storage when PROGA issues the WHERES instruction.

PROGB PROGRAM ~ START
f TASKADDR TASK NEXT
B NEXT ENQT $SYSPRTR

B3

o & =

Notes:

1.

PRINTEXT 'aSUBTASK IS ATTACHED'

DEQT
ENDTASK

START EQU *

PRINTEXT '@aPROGB STARTED'
WAIT KEY

PROGSTOP
ENDPROG
END

Define a task with the name TASKADDR.

Enqueue the system printer ($SYSPRTR).

Print the message PROGB STARTED.

Wait for the operator to press the enter key. (The example assumes that the operator

will not press the enter key until the task labeled TASKADDR in PROGB has
executed.)

When an ATTACH instruction is executed, the default terminal address or the currently
active terminal address of the task issuing the ATTACH is placed into STCBCCB.

When you issue an ATTACH instruction, the system places into $STCBCCB the default
terminal address or the terminal address of the task that issued the ATTACH instruction.

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-205

Communicating with Another Program (Cross Partition
Services)
Starting Other Tasks (continued)

Sharing Resources with the ENQ/DEQ Instructions

You can share serially reusable resources with programs in other partitions by using the ENQ
and DEQ instructions.

In the following example, SQROOT is a subroutine that has been link-edited by several other
programs. The subroutine is serially reusable because only one program can use the subroutine
at a time. PROGA attempts to enqueue the queue control block (QCB) in PROGB. PROGA
must enqueue the QCB before it can call the subroutine labeled SQROOT.

PROGA PROGRAM START
1} COPY TCBEQU
B EXTRN SQROOT
START EQU *
B WHERES ~ PROGB,ADDRB,KEY=KEYB
a IF (PROGA,EQ, 0) , THEN
PRINTEXT 'PROGRAM NOT FOUND', SKIP=1
GOTO DONE
ENDIF
5| TCBGET #1,$TCBVER
6} MOVE SAVEKEY, ($TCBADS, #1)
7| MOVE ($TCBADS, #1) ,KEYB
8 ADD ADDRB, X '34',RESULT=PROGBQCB
o} ENQ * , BUSY=CANTHAVE , P1=PROGBQCB
10} CALL SQROOT
11 DEQ
B MOVE ($TCBADS, #1) , SAVEKEY
GOTO DONE
CANTHAVE EQU *
PRINTEXT 'aRESOURCE BUSY'
MOVE ($TCBADS, #1) , SAVEKEY
DONE PROGSTOP
SAVEKEY DATA F'0'
B PproGB DATA C'PROGB '
ADDRB DATA F'0'
KEYB DATA F'O'
ENDPROG
END
1} Copy the task control block (TCB) equates into the program.
B Identify the subroutine as an external entry (to be resolved at link-edit time).
Find the load-point address and address key of PROGB. Place the load-point address of

PROGB into ADDRB and the address key of the program into KEYB.

PG-206 SC34-0438 "

Sharing Resources with the ENQ/DEQ Instructions (continued)

M I &

= = (o]
[%] [=]

If the WHERES instruction returns a zero, indicating an error, print an error message
and end the program.

Place the address of PROGA'’s task control block (TCB) in software register 1.

Save PROGA'’s address key in SAVEKEY.

Move PROGB’s address key to the address key field (STCBADS) of the TCB.

Add X’34’ to the load point of PROGB. Put the result of the addition in PROGBQCB.
(PROGA assumes that PROGB defines the queue control block (QCB) immediately
after the PROGRAM statement. The PROGRAM statement generates 52 bytes (X’34’)

of code.)

Enqueue the subroutine. Assume that the address of the task to be attached is contained
in PROGBQCB (calculated by the ADD instruction).

Call the SQROOT subroutine.
Dequeue the subroutine.
Restore PROGA'’s address key from SAVEKEY.

Indicate the name of the program to be found. (The name of the program is the name
assigned to it when the program was link-edited.)

The subroutine link-edited with PROGA looks like:

SUBROUT SQROOT
ENTRY SQROOT
PRINTEXT '@SUBROUTINE HAS BEGUN'

RETURN
END

PROGB could look like this:

PROGB PROGRAM START
OCB1 QOCB
START EQU *

WAIT KEY
PROGSTOP
ENDPROG

END

Wait for an operator to press the enter key. (The program contains the QCB and should
remain active while other programs in the system are using the SQROOT subroutine.)

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-207

Communicating with Another Program (Cross Partition
Services)

Synchronizing Tasks in Other Partitions

PG-208

SC34-0438

You can synchronize two or more tasks in different partitions with the WAIT and POST
instructions. The following programs show how to issue a POST instruction to a program in
another partition.

The first program, PROGA, finds the second program, PROGB, finds its event control block
(ECB), and posts the ECB. In this example, PROGB must be loaded before PROGA.

PROGA assumes that PROGB contains an ECB immediately following the PROGRAM
statement.

PROGA PROGRAM START
COPY TCBEQU
START EQU *
E WHERES PROGB,ADDRB, KEY=KEYB
B IF (PROGA,EQ, 0) , THEN
PRINTEXT 'PROGRAM NOT FOUND'
GOTO DONE
ENDIF
4] TCBGET #1, $TCBVER
B MOVE SAVEKEY, ($TCBADS, #1)
6 MOVE ($TCBADS, #1) ,KEYB
ADD ADDRB, X '34',RESULT=PGMBECB
] POST *,-1,P1=PGMBECB
B MOVE ($TCBADS, #1) , SAVEKEY
DONE PROGSTOP
PROGB DATA C'XP12B !
SAVEKEY DATA F'0'
ADDRB DATA F'0'
KEYB DATA F'O'
ENDPROG
END
1} Copy the task control block (TCB) equates into the program.
B Find the program defined at PROGB, put the address of the program in ADDRB, and
put the address key of the program in KEYB.
If the WHERES instruction returns a zero, print an error message and end the program.
4] Put the address of PROGA'’s task control block (TCB) in register 1.
Save PROGA’s address key in SAVEKEY.
6} Move PROGB’s address key to the address key field ($STCBADS) of the TCB.
Add a hexadecimal 34 to the load point address returned by the WHERES instruction.
Put the resuits of the addition in PGMBECB. (PROGA assumes that PROGB defines

Synchronizing Tasks in Other Partitions (continued)
an ECB immediately after the PROGRAM statement. The PROGRAM statement
generates 52 bytes (X’34) of code.)

o} Post the ECB with a -1. The operand P1=PGMBECSB allows the ECB to be calculated
by the ADD instruction.

o] Restore PROGA'’s address key from SAVEKEY.

Indicate the name of the program to be found. The name of the program is the name
assigned to it when the program was link-edited.

The following program shows how PROGB receives the POST from PROGA. This program
must be in storage when PROGA issues the WHERES instruction.

il PrOGB PROGRAM START

B EcB1 ECB
START EQU *

B WAILT ECB1

PROGSTOP
ENDPROG
END

Identify the label at which to start executing (START).

B Define an event control block (ECB). The program defines the ECB here because it will
always be 52 bytes (X’34’) from the program load point.

Wait for PROGA to post the program.

Moving Data Across Partitions

You can also move data across partitions. The following programs show how to move data to a
program in another partition.

The first program, PROGA, finds the second program, PROGB, stores its address key, and

moves data to the dynamic storage area of PROGB. In this example, PROGB must be loaded
before PROGA.

Chapter 12. Communicating with Another Program (Cross Partition Services) ~PG-209

Communicating with Another Program (Cross Partition
Services)

Moving Data Across Partitions (continued)

PROGA PROGRAM START

1} COPY PROGEQU
B COPY TCBEQU
START EQU *
B WHERES PROGB, ADDRB,KEY=KEYB
4] IF (PROGA,EQ, 0) , THEN
PRINTEXT 'PROGRAM NOT FOUND'
GOTO DONE
ENDIF
B READTEXT MSG, 'daENTER UP TO 30 CHARACTERS',MODE=LINE
6} MOVE #2,ADDRB
7| TCBGET #1,$TCBVER
B MOVE PROGBBUF, ($PRGSTG, #2) ,FKEY=KEYB
B MOVE SAVEKEY, ($TCBADS, #1)
1 0} MOVE ($TCBADS, #1) ,KEYB
11} MOVE #2, PROGBBUF
B MOVE (0,%#2),MSG, (30,BYTE) , TKEY=KEYB
13] MOVE ($TCBADS, #1) , SAVEKEY
DONE PROGSTOP
MSG TEXT LENGTH=30
PROGBBUF DATA F'O'
[proGB DATA C'PROGB '
SAVEKEY DATA F'0'
ADDRB DATA F'0'
KEYB DATA F'0'
ENDPROG
END

1} Copy the PROGRAM equates into the program.

Copy the task control block (TCB) equates into the program.

Find the program defined at PROGB, put the address of the program in ADDRB, and
put the address key of the program in KEYB.

a If the WHERES instruction returns a zero, print an error message and end the program.

Prompt the operator for data and place the operator’s response in MSG.

6} Move the address of PROGB in register 2.

Put the address of PROGA’s task control block (TCB) in register 1.

e} Move the address of PROGB’s dynamic storage area to PROGBBUF. Indicate

PROGB’s address key (FKEY=KEYB). PROGB has STORAGE=256 on its
PROGRAM statement. This operand causes the system to acquire a 256-byte area of

PG-210 SC34-0438

Moving Data Across Partitions (continued)

- =
=

storage when it loads PROGB. The address of this area is in PROGB’s program header
(at $PRGSTG).

Save PROGA'’s address key in SAVEKEY.

Move PROGB’s address key to the address key field ($STCBADS) of the TCB.

Move the address of PROGB’s dynamic storage area to register 2.

Move the data that the operator entered (MSG) into PROGB’s dynamic storage area.
Move 30 bytes and indicate the address key of the program to which the data is being

moved (TKEY=KEYB).

Restore PROGA'’s address key from SAVEKEY. Note that $TCBADS is immediately
restored to its original value. Doing so avoids unpredictable results.

Indicate the name of the program to be found. The name of the program is the name
assigned to it when the program was link-edited.

The following program shows how PROGB receives the data from PROGA. The program must
be in storage when PROGA issues the WHERES instruction.

fl PrOGB PROGRAM START, STORAGE=256
START EQU *
MOVE #1, $STORAGE
4] MOVE MSG2, (0, #1), (30,BYTE)
PRINTEXT 'ATHE DATA THAT WAS PASSED WAS'

4

PRINTEXT MSG2
PROGSTOP

MSG2 TEXT LENGTH=30

ENDPROG
END

Identify the label at which to start executing (START). Specify 256 bytes of dynamic
storage. (Even though the program requires only 30 bytes, the system rounds up to a
multiple of 256.)

Insert instructions here to wait for PROGA to send data.

Move the address of the dynamic storage area (contained in $STORAGE) to register 1.

Move 30 bytes from the dynamic storage area to MSG2.

Print the data.

$TCBADS is used to calculate the partition and address to/from which data will be transferred.

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-211

Communicating with Another Program (Cross Partition
Services)

Reading Data across Partitions

PG-212

SC34-0438

You can read data across partitions with the READ instruction.

In the following example, program PROGA reads data and passes it to a buffer in program
PROGB. PROGA assumes that PROGB is in another partition.

I PROGA PROGRAM START,DS=ACCOUNTS

B COPY PROGEQU
COPY TCBEQU
START EQU *
4] WHERES PROGB,ADDRB,KEY=KEYB
IF (PROGA,EQ,0) , THEN
PRINTEXT 'PROGRAM NOT FOUND',SKIP=1
GOTO DONE
ENDIF
6} MOVE #2, ADDRB
TCBGET #1,$TCBVER
E MOVE PROGBBUF, ($PRGSTG, #2) ,FKEY=KEYB
B MOVE SAVEKEY, ($TCBADS, #1)
10 MOVE ($TCBADS, #1) ,KEYB
1 1] READ DS1,*,P2=PROGBBUF
MOVE ($TCBADS, #1) ,SAVEKEY
DONE PROGSTOP
SAVEKEY DATA F'0O’
PROGB DATA C'PROGB !
ADDRB DATA F'O'
KEYB DATA F'0O'
ENDPROG
END
1} Define data set ACCOUNTS on the IPL volume.
2] Copy the PROGRAM equates into the program.
B Copy the task control block (TCB) equates into the program.
4] Find the load-point address and address key of PROGB. Place the load-point address of
PROGB into ADDRB and the address key of the program into KEYB.
If the WHERES instruction returns a zero, indicating an error, print an error message

and end the program.

6} Move the address key of PROGB into software register 2.

Place the address of PROGA'’s task control block (TCB) in software register 1.

o} Move the address of PROGB’s dynamic storage area into PROGBBUF in PROGA. The
STORAGE= operand on the PROGRAM statement of PROGB causes the system to

acquire a 256-byte storage area when it loads the program. The address of this storage
area is in PROGB’s program header (at $PRGSTG).

Reading Data across Partitions (continued)

Save PROGA'’s address key in SAVEKEY.

Moves PROGB’s address key to the address key field (S TCBADS) of the TCB.

Read one record from the data set ACCOUNTS into PROGBBUF. Because
PROGBBUF is the label of the P2= operand on the READ instruction, the system uses
the contents of PROGBBUF as the location where the data is to be stored.

Restore PROGA'’s address key from SAVEKEY.

Indicate the name of the program to be found. (The name of the program is the name
you give the program when you link-edit it.)

The following program shows how PROGB receives the data from PROGA. The program must
be in storage when PROGA issues the WHERES instruction.

PROGB PROGRAM START, STORAGE=256
START EQU *
B MOVE #1, $STORAGE
MOVE OuUTPUT, (O,#1), (50,BYTE)
PRINTEXT '@THE DATA RECEIVED FROM PROGA IS :'
PRINTEXT OUTPUT, SKIP=1
OUTPUT TEXT LENGTH=50
ENDPROG
END
1} Identify the label at which to start executing (START). Specify 256 bytes of dynamic
storage. (Even though the program requires only 50 bytes, the system rounds up to a
multiple of 256.)
Move the address of the dynamic storage area (contained in $SSTORAGE) to software
register 1.
Move 50 bytes of data from the dynamic storage area into OUTPUT.
Print a message.
Print the data.

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-213

Notes

PG-214 SC34-0438

Chapter 13. Communicating with Other
Programs (Virtual Terminals)

A virtual terminal is a logical EDX device that simulates the actions of a physical terminal. An
EDL application program can acquire control of, or enqueue, a virtual terminal just as it would
an actual terminal. By using virtual terminals, programs can communicate with each other as if
they were terminal devices. One program (the primary) loads another program (the secondary)
and takes on the role of an operator entering data at a physical terminal.

The secondary program can be an application program or a system utility, such as $COPYUT1.
You can use virtual terminals, for example, to provide simplified menus for running system
utilities. An operator could load a virtual terminal program, select a utility to run, and allow the
program to pass predefined parameters to the utility.

Virtual terminals simulate roll screen devices. The terminals communicate through EDL
terminal I/O instructions contained in the virtual terminal programs. The programs use a set of
virtual terminal return codes to synchronize communication.

For example, an EDL program, the primary program, loads a system utility such as $§COPYUT]1.
The program cannot distinguish between connection to a real terminal or a virtual terminal. The
program uses the READTEXT instruction to read the prompts from the utility. Then it uses the
PRINTEXT instruction to send replies to the utility.

Chapter 13. Communicating with Other Programs (Virtual Terminals) PG-215

Communicating with Other Programs (Virtual Terminalis)

Defining Virtual Terminals

PG-216

To define a virtual terminal connection during system generation, you must:
¢ Define two TERMINAL configuration statements.
« Include the supervisor module IOSVIRT.

For informationon how to define TERMINAL statements and include IOSVIRT, refer to
Installation and System Generation Guide.

You can find out if your system has virtual terminals by using the LA command of the
$TERMUTT1 utility. If your system has virtual terminals, $TERMUT]1 lists the virtual terminals
as follows:

NAME ADDR TYPE PART HARDCOPY ON-LINE
CDRVTA ** VIRT 1 YES CONNECTED CDRVTB
CDRVTB ** VIRT 1 YES CONNECTED CDRVTA

The output from $TERMUT1 indicates that CDRVTA is the primary program (SYNC=YES).

The DEVICE and ADDRESS parameters of the TERMINAL statement define the terminals as
virtual terminals. The two TERMINAL statements must reference each other, as shown below.

CDRVTA TERMINAL DEVICE=VIRT,ADDRESS=CDRVTB, SYNC=YES
CDRVTB TERMINAL DEVICE=VIRT,ADDRESS=CDRVTA

The SYNC parameter of terminal CDRVTA designates it as the terminal to which
synchronization events will be posted. The synchronization between virtual terminals is
discussed in “Interprogram Dialogue” on page PG-217.

SC34-0438

SYNC=YES

Defining Virtual Teminals (continued)

Loading from a Virtual Temminal

When an EDX program is loaded from a real terminal, that terminal becomes its ‘‘primary”’
communication port. When one program loads another, the current terminal of the first program
is “passed” and becomes the primary terminal of the second. It is this convention that allows a
new program to establish a virtual terminal as the primary port for the loaded program. For

example:
ENQT SEC
LOAD $TERMUT 1, LOGMSG=NO, EVENT=ENDWAIT
ENQT PRIM
PRIM IOCB CDRVTA
SEC IOCB CDRVTB

After this sequence, $TERMUT1 has CDRVTB (the “other” end of the channel) as its primary
port, and the loading program has CDRVTA (“this” end of the channel) as its current port.

Interprogram Dialogue

Once the connection between the two communicating programs has been established, you can
use the PRINTEXT, READTEXT, PRINTNUM and GETVALUE instructions to send and
receive data. You can generate attention interrupts with the TERMCTRL instruction. (Refer
to the Language Reference for information on the TERMCTRL instruction.) The usual
conventions with respect to output buffering and advance input apply.

To use virtual terminals, you must know something about communications protocol (such as

knowing when a program is ready for input or has ended). You can use the task code word to
find out this information.

Chapter 13. Communicating with Other Programs (Virtual Terminals) PG-217

Communicating with Other Programs (Virtual Terminals)

Interprogram Dialogue (continued)

Sample Program

The following sample program uses virtual terminals to process the prompt/reply sequence of
the $INITDSK utility. The program initializes volume EDX003.

The replies to $INITDSK prompts begin at label REPLIES+2. (The six bytes in each TEXT
statement is preceded by two length/count bytes.)

Each reply is 8 bytes long (six bytes of text plus two length/count bytes). The program issues a
READTEXT until $INITDSK prompts for input. Then the program issues a PRINTEXT to
send the reply to the SINITDSK prompt. After SINITDSK ends, the program prints a
completion message to the terminal.

INIT PROGRAM BEGIN
COPY PROGEQU
A I0CB CDRVTA SYNC TERMINAL
B I0CB CDRVTB
DEND ECB
BEGIN EQU *
ENQT B
LOAD $INITDSK, LOGMSG=NO, EVENT=DEND
ENQT A GET SYNC TERMINAL
MOVEA #1,REPLIES+2
DO 7, TIMES REPLY TO PROMPTS
DO UNTIL, (RETCODE,EQ,8) BREAK CODE
READTEXT LINE,MODE=LINE LOOP FOR PROMPT MSGS
MOVE RETCODE, INIT SAVE RETURN CODE
ENDDO
PRINTEXT (O, #1) SEND REPLY
ADD #1,8 NEXT REPLY
ENDDO
READTEXT LINE,MODE=LINE PGM END MSG
WAIT DEND WAIT FOR END EVENT
DEQT
PRINTEXT 'EDX003 INITIALIZED'
PROGSTOP
RETCODE DATA F'0' RETURN CODE
LINE TEXT LENGTH=80
REPLIES EQU *
TEXT "IV ' COMMAND?
TEXT "EDX003' VOLUME?
TEXT 'y ' CONTINUE?
TEXT '60 ' NBR OF DATA SETS?
TEXT 'N ' VERIFY?
TEXT 'N ' NUCLEUS?
TEXT "EN ' COMMAND?
ENDPROG
END

PG-218 SC34-0438

Chapter 14. Designing and Coding Sensor |/0
Programs

This chapter provides the information you need to code a sensor I/O application program.
Topics covered include:

« Sensor I/0 devices
« Symbolic I/O assignments
« Sensor I/0 instructions

The chapter also provides several examples.

What is Digital Input/Output?

A unit of digital sensor I/0 is a physical group of sixteen contiguous points. The entire group of
sixteen points is accessed as a unit on the I/O instruction level: programming support allows
logical access down to the single point level.

Digital input (DI) is usually used to acquire information from instruments which present binary
encoded output, or to monitor contact/switch status (open/closed). Digital output (DO) is used
to control electrically operated devices through closing relay contacts, such as pulsing stepping
motors.

Process interrupt (PI) is a special form of digital input. If a point of digital input changes state,
and then changes state again, without an intervening READ operation from the program, the

Chapter 14. Designing and Coding Sensor I/0O Programs PG-219

Designing and Coding Sensor 1/0 Programs

What is Digital input/Output? (continued)

status change will be undetected. With process interrupt, a point changing from the off state to
on generates a hardware interrupt, which is then routed through software support to an
interrupt-servicing application program that can respond to the external event which caused the
interrupt. Process interrupt is often used for monitoring critical or alarm conditions, which must
be serviced quickly, the occurrence of which must not go undetected.

What is Analog Input/Output?

PG-220

SC34-0438

A physical unit of analog input (AI) can be a group of eight points or sixteen points, depending
on the type. Analog output (AO) is installed in groups of two points. Each point of analog
input or analog output is accessed separately.

Analog input is used to monitor devices that produce output voltages proportional to the
physical variable or process being measured. Examples include laboratory instruments, strain
gauges, temperature sensors, or other nondigitizing instruments. Digital input was described as
monitoring an on/off status; only two conditions were possible. With analog input, the
information is carried in the amplitude of the voltage sensed rather than in its presence or
absence.

The starter supervisor contains no support for sensor I/0. You must do a tailored system
generation to include the required support modules in your own supervisor.

Figure 7 on page PG-221 shows how sensor devices are connected to a Series/1 through the
4982 sensor I/O unit. The devices (DI, DO, PI, AO, and Al) attach to a controller, which in
turn attaches to the Series/1. The sensor I/O attachment (controller), and each of the devices
attaching to it, have unique hardware addresses. In this figure, the physical connections are
there, and the hardware addresses are assigned (wired in), but the starter supervisor in storage
lacks the support necessary to operate the devices.

What is Analog Input/Output? (continued)

Series/1
Slfpervisor .+ | Digital output
with Sensor 1/0 : ¢ | group address 70
sensor 1/0 attachment .
support - -
Digital output
H group address 71
Address 68 . .| Digital input

group address 72

—

Figure 7. Sensor Device Connections

Building a tailored supervisor involves the assembly of a series of system configuration
statements that reflect the I/O configuration you wish to support. For more information on
system configuration statements, refer to /nstallation and System Generation Guide. When programs
reference these devices, they use symbolic references, rather than actual addresses. The I/0
definition statement (IODEF) establishes the logical link between the addresses defined in the
supervisor, and the symbols used to read from and write to the devices at those addresses from
an application program.

All sensor-based input/output operations are performed by executing a sensor-based 1/0
(SBIO) instruction. The type of operation is determined by the type of device referenced in the
instruction. For more information on the SBIO statement, refer to Language Reference. The
symbolic reference to a logical device in the SBIO statement is linked to the definition in the
IODEF statement, which relates that device to the hardware address specified by the system
configuration statement at system generation time.

Chapter 14. Designing and Coding Sensor I/O Programs PG-221

Designing and Coding Sensor I/0 Programs

What is Analog Input/Output? (continued)

What are Sensor-Based /0 Assignments?

The sensor-based 1/0 instruction (SBIO) refers to the I/O devices using a three- or
four-character name. The first two characters identify the type of device: Al, DI, PI, AO, and
DO for analog input, digital input, process interrupt, analog output, and digital output,
respectively. The next one or two characters are the identification for the device, a number
between 1 and 99. For example, if you have three analog input terminals, you may identify
them as AI1, AlI2, and AI3. Before the application program is compiled, the sensor-based I/0O
definition statement (IODEF) assigns the actual physical addresses. All SBIO instructions are
independent of the physical location of the sensor 1/O points.

The assignment of sensor I/O symbolic addresses is described under “Providing Addressability
(IODEF)” on page PG-223. Figure 8 shows the relationship between sensor-based I/0
instructions, definition statements, and configuration statements.

Sensor—based Sensor-based Sensor-based
1/0 execution /0 definition configuration
instruction instruction statement
(sB10) (10DEF) (SENSORI0)

CCx —»| CCx

—>
Specifies Specifies Describes
the action the physical the physical
location device

CC can be: Specifies

Al logical

A0 device

DI

DO
x can be:

1-99

Figure 8. Sensor-Based Symbolic I/O Assignment

Coding Sensor-Based Instructions

PG-222

SC34-0438

This section describes the instructions used in sensor-based I/O applications. The following
instructions are defined:

« IODEF - provides addressability by specifying physical location

« SBIO - specifies the 1/O operation to be performed

Coding Sensor-Based Instructions (continued)

« SPECPIRT - allows control to be returned to the supervisor from a special process-interrupt
routine

Providing Addressability (IODEF)

Use the IODEF instruction to provide addressability for the sensor-based I/O facilities which
are referenced symbolically in an application program. The specific form used varies with the
type of I/0O being performed.

Group all IODEF statements of the same form (Al, AO, DI, DO, or PI) together in the program
and place them ahead of the SBIO instructions that reference them.

All IODEF statements must be in the same assembly module as the TASK or ENDPROG
statement. For high level languages, see the appropriate manual for instructions on how to
accomplish this. If the SBIO instructions are to be in a separate module, you can provide
addressability using ENTRY/EXTRN statements.

Each IODEF statement creates an SBIOCB control block. The contents of the SBIOCB is
described in the /nternal Design.

The IODEF statement generates a location into/from which data is read/written. You must
create a separate IODEF for each task; different tasks cannot use the same IODEF statement.

See the Language Reference for the syntax of PI, DO, DI AQO, and AL

Examples

The following IODEF instructions define two process interrupts, a digital output group, a digital
output group as external sync, a digital input group, an analog input point, and an analog output
point.

IODEF PI1,ADDRESS=48,BIT=2
IODEF PI2,ADDRESS=49,BIT=15

IODEF DO1,TYPE=GROUP,ADDRESS=4B

IODEF DO2,TYPE=EXTSYNC,ADDRESS=4A

IODEF DI1,TYPE=GROUP,ADDRESS=49

IODEF AI1,ADDRESS=72,POINT=1,RANGE=50MV,ZCOR=YES
IODEF AO2,ADDRESS=75,POINT=1

The SBIO instruction references the digital and analog I/O points as described under the SBIO
instruction. Process interrupts are referenced by the POST and WAIT instructions and are
described under the respective instruction. Further examples of IODEF statements are shown
following the SBIO instruction.

SPECPI - Process Interrupt User Routine

The SPECPI option of the IODEF statement defines a special process interrupt routine. The
supervisor executes a routine written in Series/1 assembler language when the defined interrupt
occurs. The purpose is to provide the minimum delay before service of the interrupt, by

Chapter 14. Designing and Coding Sensor I/O Programs PG-223

Designing and Coding Sensor I/0 Programs

Coding Sensor-Based Instructions (continued)

bypassing the normal supervisor interrupt servicing. Multiple special process-interrupt routines
are allowed in a program.

TYPE=BIT Control is given to the specified routine when an interrupt occurs on the
specified bit. On return to the supervisor, the contents of R1 must be the same
at entry to the user’s routine and RO must contain either ‘0’ or a POST code. In
the latter case, R3 must contain the address of an ECB to be posted by the
POST instruction. Register 7 contains the supervisor return address upon entry.
If the user routine is in partition 1, you can return to the supervisor with the BXS
(R7) instruction. Otherwise, you must return with the SPECPIRT instruction.
You can use SPECPIRT in partition 1. The value that is in R7 upon entry may
be used to return to the supervisor using BXS (R7) only if the user routine is in
partition 1.

TYPE=GROUP Control is given to the specified routine if any bit in the PI group occurs. The PI
group is not read or reset by the supervisor; this is the routines responsibility.
Return to the supervisor is done with a branch to the entry point SUPEXIT. The
module $EDXATSR must be included with the PROGRAM to use SUPEXIT. If
interrupt is processed on level 0, the routine may issue a Series/1 hardware exit
level instruction (LEX) instead of returning to SUPEXIT. This improves
performance significantly.

Note: To use TYPE=GROUP, you must be familiar with the operation of the Series/1 process
interrupt feature. Your routine must contain all instructions necessary to read and reset the
referenced process-interrupt group.

Using the Special Process-Interrupt Bit

PG-224

IODEF PI2,ADDRESS=48,BIT=3,TYPE=BIT,SPECPI=FASTPI

FASTPI1 EQU *
MVW R1,SAVER1 SAVE R
MVA PI2,R3 PUT THE ADDR OF PI2 IN R3
MVWI 3,R0 POSTING CODE IN RO
MVW SAVER1,R1 RESTORE R1
SPECPIRT RETURN TO SUPERVISOR

In the following example, control is given to the user at label FASTPI2.
IODEF PI6,ADDRESS=49,TYPE=GROUP,SPECPI=FASTPI2

FASTPI2 EQU *

SC34-0438

Coding Sensor-Based Instructions (continued)

Specifying I/0 Operations (SBIO)

The SBIO instruction provides communication using analog and digital I/O. Options allow you
to:

o Index using a previously defined BUFFER statement.
o Update a buffer address in the SBIO instruction after each operation.

« Use a short form of the instruction, omitting loc (data location) to imply a data address
within the SBIOCB.

Options available with digital input and output provide PULSE output and the manipulation of
portions of a group with the BITS=(u,v) keyword parameter.

SBIO instructions are independent of hardware addresses. The actual operation performed is
determined by the definition of the sensor address in the referenced IODEF statement.

The IODEF statement generates a location into/from which data is read/written. You must
create a separate IODEF for each task; different tasks cannot use the same IODEF statement.

A sensor based input/output control block (SBIOCB) is inserted into an application program for
each referenced sensor I/O device. The SBIOCB, containing a data I/O area and an event
control block (ECB), supplies information to the supervisor. When an SBIO instruction
executes, the supervisor either stores data (for Al and DI operations) or fetches data (for AO
and DO operations) from a location in the IOCB with the label of the referenced 1/0 point (for
example, All, DI2, DO33, AO1). An application program can reference these locations the
same way any other variable is referenced, allowing you to use the short form of the SBIO
instruction (for example, SBIO DI1), and subsequently reference DI1 in other instructions. You
may equate a more descriptive label to the symbolic names (for example SWITCH EQU DI15),
but the SBIO instruction must use the symbolic name as described above.

Each control block also contains an ECB to be used by those operations which require the
supervisor to service an interrupt and ‘post’ an operation complete. These include analog input
(AI), process interrupt (PI), and digital I/O with external sync (DI/DO). For process interrupt,
the label on the ECB is the same as the symbolic 1/0 point (for example PIx). For analog and
digital I/O, the label is the same as the symbolic 1/0 point with the suffix ‘END’ (for example
DIXEND).

Chapter 14. Designing and Coding Sensor I/O Programs ~ P(-225

Designing and Coding Sensor |/0 Programs

Coding Sensor-Based Instructions (continued)

Reading Analog Input (example)

This example shows SBIO instructions and IODEF statements to read analog input.

IODEF

SBIO
SBIO
SBIO
SBIO
SBIO

SBIO
or
SBIO

Writing Analog Output {example)

PG-226

AI1,ADDRESS=72,POINT=5

AI1

AI1,DAT
AI1,BUF,INDEX
AI1, (BUF,#1)
AI1,BUF,2,SEQ=YES

AI1,BUF,2

AI1,BUF, 2, SEQ=NO

DATA INTO LOCATION AI1
DATA INTO LOCATION DAT
AI1 INTO NEXT LOC OF
AI1 INTO LOCATION (BUF,#1)
READ 2 SEQUENTIAL AI PTS INTO
NEXT 2 LOCATIONS OF 'BUF'
READ THE SAME POINT TWO TIMES
AND PUT INFORMATION IN TWO
LOCATIONS OF BUFF

'BUF'

This example shows SBIO instructions and IODEF statements to write analog output.

SC34-0438

IODEF

SBIO
SBIO
SBIO
SBIO
SBIO

AO1,ADDRESS=63

A01
AO1,DATA

201, 1000

AO1, (O, #1)
AO1,BUF, INDEX

SET AO1
SET AO1
SET AO1
SET AO1
SET AO1

TO VALUE IN
TO VALUE IN
TO 1000

TO VALUE IN
TO VALUE IN

'AOT!
'DATA'

(0,#1)
NEXT

Coding Sensor-Based Instructions (continued)

Reading Digital Input (example)

This example shows SBIO instructions and IODEF statements to read digital input.

IODEF
IODEF
IODEF

SBIO
SBIO
SBIO
SBIO
SBIO

SBIO
SBIO
SBIO
SBIO
SBIO

SBIO

Writing Digital Qutput (example)

DI1, TYPE=GROUP, ADDRESS=49
DI2, TYPE=SUBGROUP,ADDRESS=48,BITS=(7,3)
DI3, TYPE=EXTSYNC, ADDRESS=62

DI DATA INTO LOC 'DI1'

DI1,DATA DI1 INTO LOC 'DATA'

DI1, (0,#1) DI1 INTO LOC (O, #1)

DI1,BUF, INDEX DI1 INTO NEXT LOC OF 'BUF'
DI1,BDAT,BITS=(3,5) BITS 3 TO 7 OF DI1 INTO 'BDAT'
DI2 BITS 7-9 OF DI2 INTO 'DI2'
DI2,DAT2 BITS 7 TO 9 OF DI2 INTO 'DAT2'
DI2,D,BITS=(0,3) BITS 7-9 OF DI2 INTO 'D'
DI2,E,BITS=(0,1) BIT 7 OF DI2 INTO 'E'

DI2,F,BITS=(2,1),LSB=7 BIT 9 OF DI2 INTO
LOCATION F BIT 7
DI3,G, 128 READ 128 WORDS INTO 'G'
USING EXTERNAL SYNC

This example shows SBIO instructions and IODEF statements to write digital output.

IODEF
IODEF
IODEF

SBIO
SBIO
SBIO
SBIO
SBIO

SBIO
SBIO

SBIO
SBIO

DO3, TYPE=GROUP, ADDRESS=4B
D012, TYPE=SUBGROUP, ADDRESS=4A,BITS=(5,4)
D013, TYPE=EXTSYNC, ADDRESS=A4F

DO3 VALUE OF LOCATION 'DO3' to DO3
DO3, DODATA VALUE OF 'DODATA' TO DO3
D03, 1023 SET DO3 TO 1023
DO3, (DATA, #1) VALUE AT (DATA,#1) TO DO3
Do3,7,BITS=(3,3) SET BITS 3 TO 5 OF DO3 TO 7
DO12,15 SET BITS 5 TO 8 OF DO12 TO 15
DO12,X,BITS=(0,4) SET BITS 5 TO 8 OF DO12

TO VALUE IN 'X'
DO12,1,BITS=(0,1) SET BIT 5 OF DO12 TO 1
DO13,Y,80 WRITE 80 LOCATIONS OF 'Y'

TO DO13 EXTERNAL SYNC

Chapter 14. Designing and Coding Sensor I/O Programs PG-227

Designing and Coding Sensor /0O Programs

Coding Sensor-Based Instructions (continued)

Puise Digital Output (example)

This example shows pulse digital output.

IODEF DO13, TYPE=SUBGROUP,BITS=(3,1)
IODEF DO14,TYPE=SUBGROUP,BITS=(7,4)

SBIO DO13, (PULSE,UP) PULSE DO13 BIT 3 TO ON
AND THEN OFF
SBIO DO14, (PULSE,DOWN) PULSE DO14 BITS 7-10

OFF AND THEN ON

Returning from the Process-Interrupt Routine (SPECPIRT)

Use the SPECPIRT instruction to return control to the supervisor from a special process
interrupt (SPECPI) routine. If the user routine is in partition 1, a branch instruction is used to
return. Return from another partition requires execution of a Series/1 assembler SELB
instruction after registers RO and R3 are saved in the level block to be selected. SPECPIRT is
used only for TYPE=BIT SPECPI routines. See the description of IODEF (SPECPI) for
additional information.

label SPECPIRT
Required: none

Defaults: none
Indexable: none

Analog Input Sample

PG-228

SC34-0438

This program takes 256 samples from analog input address All at a sampling rate of 10
points/second. Set the run light on in the lab at the start of the run and turn it off at the end.
The run light is connected to bit 3 of group DO2.

TKNAME PROGRAM START
IODEF DO2, TYPE=GROUP , ADDRESS=87
IODEF AI1,ADDRESS=83
START SBIO DO2,1,BITS=(3,1) TURN ON RUN LIGHT
%*
DO 256, TIMES SET UP FOR 256 PTS
STIMER 100 SET TIMER FOR 100 MS
SBIO AI1,BUFR,INDEX READ AI1 WITH
* AUTOMATIC INDEXING INTO THE BUFFER 'BUFR'
* AND THEN WAIT FOR THE TIMER TO EXPIRE
WAIT TIMER
ENDDO END OF LOOP
*
SBIO D02,0,BITS=(3,1) TURN OFF RUN LIGHT
*
* . . . CONTINUE PROGRAM
*
BUFR BUFFER 256 256 WORD BUFFER

The program begins by writing a 1 into bit 3 of digital output group DO2. A DO loop initializes
for 256 cycles. At this point, a software timer is set up for 100 milliseconds to provide sampling
at 10 points/second. The analog data is read into BUFR using the SBIO instruction with

Coding Sensor-Based Instructions (continued)

automatic indexing. After the data is read, the program waits for the timer to expire before
returning for the next sample. When all the data is collected, the run light is turned off by
writing a 0 into bit 3 of DO2.

Analog Input With Buffering To Disk

This program takes analog data readings at equal time intervals. The number of data points and
the time interval in milliseconds are read in from the operator’s terminal. The program will
allow from 10 to 10,000 data points to be taken at time intervals between 10 milliseconds and
10 seconds (10,000 msec). The data collection is initiated by a process interrupt start signal.
The program is aborted by using the keyboard function ‘AB’. Also, a second keyboard function,
‘NP’, is used to print a status switch. The switch will be equal to zero if the start signal has not
been received or equal to the number of data points to be read if the start signal has been
received and data collection has begun.

* TITLE 'SAMPLE ANALOG DATA ACQUISITION PROGRAM'
*

*

READATA PROGRAM BEGIN,DS=?7?

ATTNLIST (AB,ABORT,NP,SWPRNT)
*

* ABORT THE EXPERIMENT
*
ABORT MOVE SWITCH, 1
ENDATTN
*
* PRINT OUT EXPERIMENT SWITCH

%*

SWPRNT PRINTEXT TXT10
PRINTNUM SWITCH
PRINTEXT SKIP=1

. ENDATTN

IODEF AI1,ADDRESS=91,POINT=0
. IODEF PI1,ADDRESS=94,BIT=15
: EXPERIMENT INITIALIZATION
BEGIN PRINTEXT TXT1

GETVALUE RUNUM,TXT2 REQUEST RUN IDENTIFIER
GETINT GETVALUE INTVL,TXT3 REQUEST TIME INTERVAL

IF (INTVL,LT,10),0R, (INTVL,GT, 10000) ,GOTO,GETINT
GETPTS GETVALUE NPTS,TXT4 REQUEST NO. OF POINTS

IF (NPTS,LT,10),0R, (NPTS,GT, 10000) ,GOTO,GETPTS
*

WRITE DS1,RUNUM RUN PARAMETERS IN 1ST SECTOR

RESET SWITCH

Chapter 14. Designing and Coding Sensor 1/0O Programs PG-229

Designing and Coding Sensor I/0O Programs

Coding Sensor-Based Instructions (continued)

PRINTEXT TXT9 PRINT READY MESSAGE
WAIT PI1,RESET WAIT FOR START SIGNAL
MOVE SWITCH,NPTS SET SWITCH TO NPTS
* THIS IS THE DATA ACQUISITION PORTION OF THE PROGRAM
*
DO NPTS LOOP COUNT SET ABOVE
STIMER INTVL TIME INTERVAL SET ABOVE
SBIO AI1,BUFFER,INDEX READ A DATA POINT
IF (BUFINDEX,EQ, 128) ,GOTO,ATTACH 1ST BUFFER
FULL?
IF (BUFINDEX,NE, 256) ,GOTO, TWAIT NO, IS 2ND
FULL?
MOVE BUFINDEX,O0 ..YES, RESET BUFFER INDEX
ADD POINTCNT,256 INCREMENT DATA COUNTER
%*
ATTACH IF (DISK,NE,-1) ,GOTO, STOP IS DISK TASK
ATTACHED?

* START DISK OUTPUT TASK
ATTACH DISKTASK

*

TWAIT WAIT TIMER WAIT FOR END OF TIME INTERVAL
IF (SWITCH,EQ,1),GOTO,STOP TEST FOR 'ABORT'

ENDLOOP ENDDO

*

IF (BUFINDEX,EQ,O0),OR, (BUFINDEX,EQ, 128) ,GOTO, STOP

WAIT DS1 ..YES, WAIT FOR DISK WRITE
ADD POINTCNT,BUFINDEX UPDATE DATA COUNTER
ATTACH DISKTASK START LAST DISK OUTPUT

*

STOP WAIT DS1 WAIT FOR LAST OUTPUT OPERATION
ENQT GET CONTROL OF TERMINAL
PRINTEXT TXT6 PRINT TERMINATING MESSAGE

PRINTNUM POINTCNT

PRINTEXT TXT7

DEQT RELEASE TERMINAL
PROGSTOP

PG-230 SC34-0438

Coding Sensor-Based Instructions (continued)

* ¥ X ¥ *

*
*
*

THIS IS THE DATA RECORDING TASK. IT IS ATTACHED BY

THE DATA ACQUISITION TASK EACH TIME THAT 128 WORDS OF
DATA HAVE BEEN READ IN. ONE PORTION OF THE BUFFER WILL
BE TRANSFERRED TO DISK WHILE DATA IS SIMULTANEOUSLY
BEING READ INTO THE OTHER PORTION OF THE BUFFER.

THIS TASK RUNS ON LEVEL 3 AT A LOWER PRIORITY THAN
THE DATA ACQUISITION TASK IN ORDER TO MAXIMIZE
TIMING ACCURACY.

DISKTASK TASK DISK1,300,EVENT=DISK

DISK1

*
*

WRITE DS1,BUFFER1, ERROR=DISKERR
DETACH -1 ..OK
WRITE DS1,BUFFER2, ERROR=DISKERR
DETACH -1 ..0OK
GOTO DISK1

PRINT DISK ERROR MESSAGE

DISKERR MOVE ERROR,DISKTASK SAVE ERROR CODE

POINT
SWITC
RUNUM
INTVL
NPTS

ERROR

ENQT GET CONTROL OF TERMINAL
PRINTEXT TXT5

PRINTNUM ERROR

PRINTEXT SKIP=1

DEQT RELEASE TERMINAL
ENDTASK 1 DETACH WITH CODE = 1

DATA AND CONSTANTS

TEXT 'aSAMPLE ANALOG DATA ACQUISITION PROGRAMQ'
TEXT 'QAENTER RUN NUMBER '

TEXT 'QENTER INTERVAL IN MS (10-10000) '

TEXT 'Q@ENTER NO. OF POINTS (10-10000) '

TEXT 'aDISK ERROR '

TEXT 'aRUN ENDED AFTER '

TEXT ' POINTS?'

TEXT '@AREADY FOR PI SIGNAL TO BEGIN TAKING DATAQ'

TEXT 'Q@EXPERIMENT SWITCH = '

CNT DATA F'0O' NUMBER OF POINTS TAKEN

H DATA F'0' SET TO '1' FOR 'ABORT'
DATA F'0O' RUN IDENTIFIER
DATA F'O’ TIME INTERVAL
DATA F'0O’ NUMBER OF POINTS TO TAKE
DATA F'0O'

BUFFER BUFFER 256, INDEX=BUFINDEX DATA BUFFERS
BUFFER1 EQU BUFFER FIRST 128 WORDS
BUFFER2 EQU BUFFER+256 SECOND 128 WORDS

*

ENDPROG
END

Digitai input and Averaging

This example illustrates the programming of a simple time averaging application. The program
reads digital input group DI1 every time a process interrupt occurs on PI2. One complete scan is
128 data points. Each scan is added to a double-precision averaging buffer. The number of
scans is read from the terminal as an initialization parameter. Also, the program asks whether to

Chapter 14. Designing and Coding Sensor 1/0O Programs

PG-231

Designing and Coding Sensor /0 Programs

Coding Sensor-Based Instructions (continued)

PG-232

SC34-0438

reset the averaging buffer before starting to scan. The maximum number of scans must be less
than 1000.

START GETVALUE NSCAN, TXT1 GET NO. OF SCANS
IF (NSCAN, GE, 1000) , GOTO, ERROR
RESET PI2
QUESTION TXT2,NO=BEGIN RESET AVERG. BUFFER?
MOVE ABUFR, 0,256 YES - RESET IT
BEGIN DO NSCAN SET UP FOR NSCANS
DO 128 SET FOR 128 POINTS
WAIT PI2 WAIT FOR INTERRUPT
RESET PI2 RESET INTERRUPT
SBIO DI1,BUFR,INDEX READ DI1(INDEXING)
ENDDO

*

ONE SCAN COMPLETE - MOVE DATA TO AVERG BUFFER

ADDV ABUFR, BUFR, 128, PREC=D
MOVE 1,0 RESET BUFFER INDEX
ENDDO

*

* ALL SCANS COMPLETE

PRINTEXT TXT3

.

. THE REST OF THE PROGRAM

TXT1 TEXT ' aNUMBER OF SCANS - '

TXT2 TEXT ' RESET AVERAGING BUFFER? '

TXT3 TEXT ' ALL SCANS COMPLETEQ®'

NSCAN DATA F'O'

BUFR BUFFER 128, INDEX=I

ABUFR BUFFER 256

*

ERROR PRINTEXT TXT4 PRINT ERROR MESSAGE
GOTO START RETURN FOR INPUT

TXT4 TEXT ' TOO MANY SCANS - RE-ENTERQ'

In this example, the number of scans to be done is read from the terminal and checked against
1000. If it is greater than or equal, an error message is printed and the program returns for a
new input parameter. The operator is asked if the averaging buffer is to be reset. If yes, the
MOVE instruction sets the averaging buffer (ABUFR) to 0. A loop is then initialized for the
number of scans desired. A second loop is set up for a single scan of 128 points. The program
waits for an interrupt on PI2 and, when it occurs, resets the interrupt for the next point, reads
the digital input DI1 using automatic indexing into the buffer BUFR. When a scan is complete,
the data is added to the ABUFR buffer. The buffer index, I, is reset to 0. When all scans are
complete, a message is printed. The output from the program is illustrated in the following
example:

NUMBER OF SCANS - 33

RESET AVERAGING BUFFER? Y
ALL SCANS COMPLETE

Chapter 15. Designing and Coding Graphic
Programs

The Event Driven Executive provides various graphics-oriented tools that can assist you in the
development of a graphics application.

The graphics tools you can use are the EDL graphics instructions and the graphics utilities. This
section describes the graphic instructions supported by the Event Driven Executive. The graphic
utilities are described in the Operator Commands and Utilities Reference.

Graphics instructions

Seven graphics instructions are provided by the Event Driven Executive. These graphics
instructions, used with the terminal support described, can aid in the preparation of graphic
messages, allow interactive input, and draw curves on a display terminal.

These instructions are only valid for ASCII terminals that have a point-to-point vector graphics
capability and are compatible with the coordinate conversion algorithm described in /nternal
Design for graphics mode control characters. The function of the various ASCII control
characters used by a terminal are described in the appropriate device manual. Such terminals
may be connected to the Series/1 via the #7850 Teletypewriter Adapter.

Use the graphics instructions in the same manner as other Event Driven Language instructions,

except that the supporting code is included in your program rather than in the supervisor. If you
code all the instructions in a program, this code requires approximately 1500 bytes of storage.

Chapter 15. Designing and Coding Graphic Programs PG-233

Designing and Coding Graphic Programs

Graphics Instructions (continued)

PG-234

SC34-0438

When using the graphics instructions described, detailed manipulation of terminal instructions
and text messages is not required.

All graphics instructions deal with ASCII data. Therefore, when you send an ASCII text string
to the terminal, code the XLATE=NO parameter on the PRINTEXT instruction.

Use of the graphics instructions requires that your object program be processed by the linkage
editor, $SEDXLINK, to include the graphics functions which are supplied as object modules.
Refer to Chapter 5, “Preparing an Object Module for Execution” on page PG-81 for the
description of the autocall option of SEDXLINK, and for information on the use of the
“AUTO=$AUTO,ASMLIB” option of $EDXLINK.

The following is a list of the graphics instructions provided by the Event Driven Executive.
These instructions are described in detail in the Language Reference.

« The CONCAT statement concatenates two text strings or a text string and a graphic control
character.

« The GIN instruction allows you to specify unscaled coordinates interactively, rings the bell,
displays cross hairs, waits for the operator to position the cross hairs and key in any single
character, returns the coordinates of the cross-hair cursor, and optionally returns the
character entered by the user.

o The PLOTGIN instruction allows you to specify scaled coordinates, rings the bell, displays
the cross hairs, and waits for the operator to position the cross-hairs and key any character.

« The SCREEN instruction converts x and y numbers representing a point on the screen of a
terminal to the 4-character text string which will be interpreted by the terminal as the
graphic address of the point.

e The XYPLOT instruction is used to draw a curve on the display connecting points specified
by arrays of x and y values.

« The YTPLOT instruction draws a curve on the display connecting points equally spaced
horizontally and having heights specified by an array of y values. Data values are scaled to
screen addresses according to the plot control block, and points outside the range are placed
on the boundary of the plot area.

Graphics Instructions (continued)
The Plot Control Block

The plot control block is required by the PLOTGIN, XYPLOT, and YTPLOT instructions.

The plot control block is 8 words of data defined by DATA statements which provide definition
of size and position of the plot area on the screen and the data values associated with the edges

of the plot area. Indirectly, the scale of the plot is specified. The format of a plot control block
is:

label DATA F'xls'
DATA F'xrs'
DATA F'xlv'
DATA F'xrv'
DATA F'ybs'
DATA F'yts'
DATA F'ybv'
DATA F'ytv'

All 8 explicit values (no addresses) are required and have the following meaning:
xls x screen location at left edge of plot area

xrs X screen location at right edge of plot area

xlv x data value plotted at left edge of plot

xrv X data value plotted at right edge of plot

ybs y screen location at bottom edge of plot

yts y screen location at top edge of plot

ybv y data value plotted at bottom edge of plot

ytv y data value plotted at top edge of plot

Chapter 15. Designing and Coding Graphic Programs ~ PG-235

Designing and Coding Graphic Programs
The Plot Control Block (continued)

Example

In the following example, the graphic control characters (GS, US, ESC, etc.) are assumed to
have certain meanings for the terminal. A different terminal may require the use of different
control characters to perform a similar functions.

The example shows the use of the graphics instructions described on the preceding pages. This
program prints a message, plots a curve with axes, puts the cross hair on the screen, waits for the
user to position the cross hair and press a key and carriage return, and then displays the
character entered and x,y coordinates of the cross-hair position. You may then end the program
or start it again.

PG-236 SC34-0438

Example (continued)

EIE: E!E! (ool]olalbloln B -]

GTEST
START

TEXT1
TEXT3
TEXT4
TEXT5
TEXT6

CHAR
YDATA

X1
NPTS
YAXISX
YAXISY

PROGRAM
EQU

PRINTEXT
READTEXT

CONCAT
CONCAT
PRINTEXT
STIMER
CONCAT
SCREEN
CONCAT

PRINTEXT
PRINTEXT

YTPLOT

XYPLOT
XYPLOT

PLOTGIN

PRINTEXT
PRINTEXT
PRINTEXT
PRINTNUM

QUESTION
PROGSTOP
TEXT
TEXT
TEXT
TEXT
TEXT
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

START
*

'GRAPHICS
TEXT1

TEXT1,ESC,

TEXT1,FF

TEST PROGRAM PRESS ENTER d'

RESET

TEXT1,XLATE=NO

1000, WAIT

TEXT1,GS,RESET

TEXT1,520,
TEXT1,US

300, CONCAT=YES

TEXT1, XLATE=NO

TEXT3

YDATA,X1,PCB,NPTS, 1
YAXISX,YAXISY,PCB, TWO

XAXISX,XAXISY,PCB, TWO
X,Y,CHAR, PCB
TEXT4
CHAR, XLATE=NO
TEXTS
X,2
TEXT6 , NO=START
LENGTH=30

'X-AXIS LABEL'

' 9CHARACTER STRUCK WAS '
'dX,Y COORDINATES ='
'9END PROG (Y/N)? '

X'0201"
F'0’
F'O'
F'1'
F'O'
F'2"
F'O'
F'1!
F'-2'
F'-1"'
F'0'
F'8'
2F'0"’
F'-5'
F'5'

Chapter 15. Designing and Coding Graphic Programs

PG-237

Designing and Coding Graphic Programs

Example (continued)

PG-238

O B3 @ &N =3

B =

SC34-0438

XAXISX DATA F'0’
DATA F'10'

XAXISY DATA 2F'0’

TWO DATA F'2

PCB DATA F'500'
DATA F'1000'
DATA F'O’
DATA F'10"'
DATA F'100'
DATA F'600'
DATA F'-5"
DATA F'5!

X DATA F'O’

Y DATA F'O'
ENDPROG
END

Print a message.

Reset the text string character count and put the ESC code into TEXT1.

Put the FF character into TEXT1.

Erase the screen and send the alpha cursor to the home position (upper left corner).
Delay for a second to allow the erase sequence to complete.

Reset the text string again and insert the graph mode character (GS) to the text string.

Form the 4 characters required to draw a dark vector to the screen address (520,300).
The 4 characters represent the Hi Y, Lo Y, Hi X, and Lo X values.

Write an axis label at this position by returning to alpha mode (US).

Perform the full operation. Prevent conversion of data (XLATE=NO), as it is already
in ASCIL

Plot the data, YDATA (8 points). The plot area and coordinates are given by the 8
words at the label PCB. The plot area in screen addresses is 500 to 1000 in the
x-direction (horizontal) and 100 to 600 in the y-direction (vertical). The corresponding
plot area in the user’s coordinates is O to 10 in the x-direction and -5 to 5 in the
y-direction.

Draw the X and Y axes with this and the next instruction. Each of these is simply a
2-point plot, from the origin to the end point.

Put the cross-hair cursor on the screen. The operator should position the cursor and
enter a character. When the program receives the character, it converts the cursor
position to the plot coordinates as specified at PCB, and stores the results at X and Y.

Example (continued)

Print the results.

14} Ask if the operator wishes to end the program.

X-axis label

Figure 9. Graphics Program Output. This figure shows the result of the preceding program.

Chapter 15. Designing and Coding Graphic Programs ~PG-239

Notes

PG-240 sC34-0438

Chapter 16. Controlling Spooling From A
Program

This chapter describes how application programs can control the way their output is handled by
spooling under the following headings:

« Determining whether spooling is active

« Preventing spooled printer output

« Separating program output into several spool jobs
« Controlling spool job processing

Figure 11 on page PG-243 depicts the decisions made by the EDL application programmer in
designing an application which generates reports.

Determining Whether Spooling Is Active

An EDL application might be such that it should not be run unless spooling has been activated
(or deactivated). Such an application can determine if spooling is active and use that
information to instruct the operator to activate or deactivate spooling. An application program

can also decide whether or not to print a spool-control record, depending on whether or not
spooling is activated.

Chapter 16. Controlling Spooling From A Program PG-241

Controlling Spooling From A Program

Determining Whether Spooling Is Active (continued)

The following EDL coding example shows how an application program can determine if the

spooling facility has been activated:

MOVE #2,$CVTSPL,FKEY=0
IF #2,NE, O
MOVE #2, (+$IOSPSPM, #2) ,FKEY=0
ENDIF
IF #2,NE, O

ENDIF
COPY PROGEQU

COPY $IOSPTBL

Figure 10. Determining if Spooling is Active

GET $IOSPTBL ADDRESS
IF IOSPOOL IN SYSTEM
GET $SPM ADDRESS

ENDIF
IF SPOOLING ACTIVATED

COPY CVG EQUATES
COPY SPOOLING TABLE

High-level language programs can call this type of EDL subroutine to determine if spooling is

active.

Preventing Spooled Printer QOutput

PG-242

SC34-0438

An EDL application program can prevent its output from being spooled by coding a parameter
on the ENQT command. The parameter is coded as follows:

ENQT SPOOL=NO

This causes the printer to be enqueued directly, when available, and prevents output spooling.
The SPOOL= parameter is ignored if coded on an ENQT to a device not designated as a spool

device or if spooling is not active.

The default is ENQT SPOOL=YES. This allows output spooling.

Note: ENQT SPOOL=NO without the BUSY= operand coded causes the program to wait if a
spool writer is started to the device, even if the writer is temporarily stopped. The writer must

be terminated to free the device.

Preventing Spooled Printer QOutput (continued)

Start

Want
output
spooled

ENQT spool
device

Want to
control
printing

ENQT non-spool
device or

ENQT SPOOL=NO

Another
report
to print
?
Yes

Y

DEQT
printer

PROGSTOP

?

Figure 11. Program-Controllable Spooling Flow Chart

Want .
separate No DEQT printer
output CLOSE=NO
PRINTEXT ?
spool control I
record Yes ‘
) DEQT printer
¥ CLOSE=YES
PRINTEXT
report line
No
Is
report Yes
complete

Chapter 16. Controlling Spooling From A Program

PG-243

Controlling Spooling From A Program

Separating Program Output into Several Spool Jobs

Spooling treats all spooled printer output of a program to the same printer as a single spoo/ job, a
group of records printed together. However, a program can produce more than one spool job.
To do so, code the DEQT instruction as follows after you create each spool job.

DEQT CLOSE=YES
Each time you issue this instruction, the spool job just created becomes ready for printing.
A subsequent ENQT to the same printer indicates the start of a new spool job.
If a program contains more than one task that creates a spool job, you must execute the tasks
serially. You must execute a pear cLose=ves instruction to close each spool job before you execute

the next task.

If two tasks spool to the same spool job and one task issues a pear cLose=ves instruction before the
other task has completed spooling, unpredictable results can occur.

The CLOSE= parameter is ignored if coded on a DEQT to a device not designated as a spool
device or if spooling is not active.

Note: DEQT CLOSE=NO is the default. It causes any later output of the program directed to
the same printer to be concatenated to the output already spooled.

Controlling Spool Job Processing

The application program can control the printing and disposition of its spooled output. This is
accomplished by means of a spool-control record.

The Spool-Control Record

PG-244

SC34-0438

The spool-control record, if used, consists of a special print record which must be the first item
printed by the program after the device is enqueued.

The spool-control record allows the application program to specify:
e Whether or not the spool job is to be held and not printed.

« Whether or not the spool job is to be kept after printing.

o The type of forms to be used to print the output.

« The number of copies to be printed.

« The separator page heading to be printed.

« Whether forms alignment should be done.

Controlling Spool Job Processing (continued)

The spool-control record applies only to the spool job which follows it. Thus, if a program
creates more than one spool job, and is to control the printing and disposition of each spool job,
each spool job must have its own spool-control record.

Note: The $S ALT command, if used by the operator, overrides the spool-control record.

The format of the spool-control record is as follows:

Position Contents

1-8 ***SPOOL

9 blank

10-12 Number of copies to print (1-127)
13 blank

14 Hold disposition (Y=yes, N=no)
15 blank

16 Keep disposition (Y=yes, N=no)
17 blank

18-21 Forms type

22 blank

23-30 Report identification

31 blank

32 Forms aligmment (Y=yes, N=no)

If you use the spool-control record, use care to specify the fields exactly as shown. The fields
with a Y/N option default to N. If any character other than a Y or N is entered, the default will
be used.

Note: Do not generate the spool-control record in an application program unless spooling has
been activated. If spooling is not active, the line is printed as ordinary text to the printer (see
“Determining Whether Spooling Is Active” on page PG-241 for a description of how an
application program can determine if the spooling facility is active).

Chapter 16. Controlling Spooling From A Program PG-245

Controlling Spooling From A Program

Controlling Spool Job Processing (continued)

Example

The following program uses the spool-control record to create 10 copies with report
identification SPOOLPRG, hold and keep disposition in effect, specify forms type ABCD, and
specify no forms alignment. The report printed consists of two messages.

SPOOL PROGRAM START
START EQU *

ENQT

PRINTEXT '***SPOOL 010 Y Y ABCD SPOOLPRG N'

PRINTEXT 'aMESSAGE 1'

PRINTEXT 'aMESSAGE 2'

DEQT

PROGSTOP

ENDPROG

END

Programming Considerations

PG-246

SC34-0438

You should be aware of the following things when you spool output:

A program can activate spooling by loading the spool manager into storage. You can start a
spool writer automatically when the spool session begins.

Use the forms alignment option for any report that must be registered precisely on a form.

The cerstore and putstore functions of the TermcTrL instruction have no effect on a spool
device.

If the spool data set is out of space or the control blocks required by spooling are not
available, any program that is spooling waits until space is available.

If you direct a spool job to a 4975 printer, the program should issue a TERMCTRL SET,RESTORE
instruction at the beginning and end of the job.

If you define an IOCB for a printer and you specify operands on the IOCB, code a termcTrL
pispLAY instruction after you issue an ENQT instruction and before you issue any subsequent
ENQTs to the same IOCB.

If you designate $SYSLOG as a spool device, a program check will not print.

Chapter 17. Creating, Storing, and Retrieving
Program Messages

When designing EDL programs, you can save storage space or coding time by placing prompt
messages and other message text in a separate message data set. EDL instructions enable your
program to retrieve the appropriate message text when the program executes.

By storing messages in a data set, you can change the text of a message without having to alter
and recompile each program that uses that message.

You can store program messages in two ways. You can store them on disk or diskette. You can
also store them as a module that you can link-edit with a program.

Creating and using your own program messages involves the following steps:

1. Creating a data set for your source messages

2. Entering your source messages

3. Formatting and storing your source messages using the message utility, SMSGUT1

4. Retrieving program messages using the COMP statement and the MESSAGE, GETVALUE,
QUESTION or READTEXT instructions

The following sections describe how to create, store, and retrieve program messages.

Chapter 17. Creating, Storing, and Retrieving Program Messages PG-247

Creating, Storing, and Retrieving Program Messages

Creating a Data Set for Source Messages

You create a data set for source messages with the text editor described in Chapter 3, “Entering
a Source Program” on page PG-59. You can create one or more source message data sets and
can store them on any volume. Messages can be simple statements or questions, or they can
include variable fields which are filled with parameters supplied by your program.

To enter your source messages, observe the following rules:
e Begin each message in column 1.

¢ Precede each variable field with two /ess than symbols (< <) and follow each variable field
with two greater than symbols (>>).

« End each message with the characters: /*

» Begin and end comments with double slashes (//comment//). A comment must be
associated with a message.

« Use the at sign ((@) to cause the message to skip to the next line.

o Code source messages a maximum length of 253 bytes long. You can calculate the length of
a message by adding one byte for each character in the text and one byte for each variable
field.

« Continue a message on a new line by coding any non-blank character in column 72. Begin
the continued line in the first column.

The system identifies each message by its position in the source message data set. For example,
the system assigns a message number of 3 to the third message in the source message data set.
Once you format your source messages with the $MSGUT1 utility, you should add any new
messages you have to the end of the source message data set. If you no longer need a certain
message, you should leave it in the source message data set or replace it with a new message to
preserve the numbering scheme.

Coding Messages with Variable Fields

PG-248

SC34-0438

To construct a message that can return information supplied or generated by your program, you
can code a message with one or more variable fields. When you execute your program, the
system inserts the appropriate parameters in these variable fields and prints a complete message.
For example, if you want to construct a message that tells a program operator how many records
are in a particular data set on a particular volume, you could code the following:

THERE ARE <<SIZE>S> RECORDS IN <<DATA SET NAME>T> ON <<VOLUME>T>./*

The variable fields in the previous example are the number of records in the data set (SIZE), the
data set name, and the volume name. The variable field names do not need to correspond with
names in a program.

Creating a Data Set for Source Messages (continued)

Note: To print or display a message with variable fields, you must have included the FULLMSG
module in your system during system generation.

The variable fields are set off from the message text with two /ess than and two greater than
symbols (<< >>). The symbols should enclose a description of the field. The system treats
the field description as a comment. You can include up to eight variable fields within a single
message.

As shown in the previous example, all variable fields must also contain a control character that
describes the type of parameter your program will pass to the variable field. S is the control
character in the field <<SIZE>S>; T is the control character in the field <<VOLUME>T>.
The following is a list of valid control characters and their descriptions:

c Character data. Specify a length for the data by coding a value from 1 to 253 before the
‘C’ (for example, <<NAME>8C>). There is no default.

T Text. No length is necessary. (The system derives the length from the TEXT statement.)

H Hexadecimal data. The length is four EBCDIC characters.

S Single-word integer. Specify a length for the data by coding a value from 1 to 6 before
the ‘S’. The default is six EBCDIC characters. The valid range for a single-word integer
value is from -32768 to 32767.

D Double-word integer. Specify a length for the data by coding a value from 1 to 11 before
the ‘D’. The default is six EBCDIC characters. The valid range for a double-word
integer value is from -2147483648 to 2147483647.

Your program passes parameters to a message in the order you specified the parameters in the
instruction. The following example shows a message instruction with the parameter list operand

(PARMS=):
MSG PROGRAM START,DS=((MSGSET, EDX003))
MESSAGE 2,COMP=ID,PARMS= (DSNAME, VOLUME, SIZE)
ID COMP '"SRCE',DS1, TYPE=DSK
SIZE DC F'100'
DSNAME TEXT "DATA SET 1'
VOLUME TEXT 'EDX002"'

The instruction will retrieve message number 2. The source message for message number 2
appears as follows:

<<DATA SET NAME>T> ON <<VOLUME>T> IS ONLY <<SIZE>S> RECORDS./*

The system places the first parameter (DSNAME) in the first variable field, the second
parameter (VOLUME) in the second field, and the third parameter (SIZE) in the third field.

Chapter 17. Creating, Storing, and Retrieving Program Messages PG-249

Creating, Storing, and Retrieving Program Messages

Creating a Data Set for Source Messages (continued)

You may, however, want to alter or reword the message in the previous example. To change the
order of the variable fields in your source message without changing the order of the parameter
list in your program, you can code an additional number after the control character. This
number, from 1 to 8, points to the parameter that the system should insert into the variable field.
The number corresponds to the position of the parameter in the parameter list. For example,
<<NAME>C3> tells the system to retrieve the third parameter in a parameter list.

In the following example, the order of the variable fields in message number 2 has been
switched, but a number following the control character points to the correct parameter for the
variable field:

THERE ARE ONLY <<SIZE>S3> RECORDS IN <<DATA SET NAME>T1> ON C

<<VOLUME>T2>. /*

‘S3’ points to the third parameter in the list (SIZE), “T1’ points to the first parameter in the list
(DSNAME), and ‘T2’ points to the second parameter in the list (VOLUME).

Sample Source Message Data Set

The following is sample of a source message data set. The data set is named SOURCE on
volume EDX40.

//THIS IS A COMMENT //+
DO YOU WANT TO ENTER A NUMBER? /*

ENTER <<TYPE OF VALUE>T> VALUE LESS THAN <<VALUE>S>./*

THE PROGRAM HAS PROCESSED THE INPUT DATA./*

ENTER YOUR <<FIRST/LAST/FULL NAME>10C>./*

//THIS IS ANOTHER COMMENT. // +
ALL INPUT DATA HAS BEEN RECEIVED./#*

THE VALUE YOU ENTERED IS: <<VALUE>S1> /*

THE DATA YOU ENTERED IS: <<DATA>T> /*

THE DEVICE <<ID>H1> AT ADDRESS <<DEVICE ADDRESS>H2> IS IN USE./*

THIS MESSAGE WILL BE CONTINUED @ ON THE NEXT LINE./*

Formatting and Storing Source Messages (using SMSGUT1)

Once you have created a source message data set, you must use the message utility, $MSGUT1,
to convert the source messages into a form the system can use. The utility copies the source
messages, formats them, and stores the formatted messages in another data set or module that
you specify. (Refer to the Operator Commands and Utilities Reference for a detailed explanation of
how to use the message utility.)

Each time you add new messages to the source message data set, you must reformat the data set
with $MSGUT]1.

PG-250 5C34-0438

Formatting and Storing Source Messages (using $MSGUT1) (continued)

Example 1

Example 2

The $SMSGUT1 utility allows you to:
o Format a source message data set and store the formatted messages on disk or diskette.

« Format a source message data set as a module that you link-edit with a program. Use this
option for systems without disk or diskette storage or to improve performance.

« Obtain a hard-copy listing of the messages contained in a specific source message data set.

Before you load the $MSGUT1 utility, you must allocate a work file. You can use the AL
command of the $DISKUT1 utility to allocate the work file. Allocate a data-type data set large
enough to hold the source message data set (one record for every source message).

When you load $MSGUT1, the utility prompts you for the name and volume of the work file as
follows:

WORKFILE (NAME,VOLUME) :

Respond with the data set name and volume that you allocated with the $DISKUT1 utility.

In the following example, $MSGUT1 formats the source message data SOURCE shown in the
previous section. The example uses the DSK option and stores the formatted messages in the
data set MESSAGE on volume EDX40.

COMMAND (7): DSK

MESSAGE SOURCE DATA SET (NAME,VOLUME): SOURCE,EDX40
DISK RESIDENT DATA SET (NAME,VOLUME): MESSAGE,EDX40
START OF DISK MESSAGE PROCESSING BEGINS

When the utility finishes formatting and storing the messages, it returns the following message:

(\DISK RESIDENT MESSAGES STORED IN MESSAGE,EDX40 44}}

The following example uses the STG option and stores the module in data set MSG on volume
EDXO003.

COMMAND (?): STG

MESSAGE SOURCE DATA SET (NAME,VOLUME): MSGSRC,EDX003
STORAGE RESIDENT MODULE (NAME,VOLUME): MSG,EDX003
START OF STORAGE MESSAGE PROCESSING

Chapter 17. Creating, Storing, and Retrieving Program Messages PG-251

Creating, Storing, and Retrieving Program Messages

Formatting and Storing Source Messages (using SMSGUT1) (continued)

When the utility finishes formatting and storing the messages, it returns the following message:

EORAGE RESIDENT MODULE STORED IN MSG,EDX003)

If the $SMSGUT1. utility encounters errors, it prints an error message on the system printer.

Retrieving Messages

To retrieve a message from storage and include it in your program, you must code a COMP
statement and any one of the following instructions: MESSAGE, GETVALUE, QUESTION,
and READTEXT. (Refer to the Language Reference for a full description of these instructions and
how to code them to retrieve messages.)

The system retrieves program messages from the data set or module that you created with
$MSGUT1. If you stored your formatted messages on disk or diskette, you must code the name
of the data set that contains the messages and the volume it resides on in the PROGRAM
statement for your program.

If you formatted the messages as a module, you must link-edit your program with the module.

Defining the Location of a Message Data Set

PG-252

SC34-0438

The COMP statement defines the location of a message data set or the name you assigned the
module when you used the STG option of the $SMSGUT1 utility. To retrieve a message, the
MESSAGE, GETVALUE, QUESTION, and READTEXT instructions must refer to the label of
a COMP statement. More than one instruction can refer to the same COMP statement. You
must code a separate statement, however, for each message data set your program uses.

If your messages are in a module, you must code the name of the module. If your message data
resides on disk or diskette, you must indicate the data set in the PROGRAM statement. You
indicate the correct data set by specifying its position in the data set list.

In addition to coding the location of the message data set, you must also code a four-character
prefix. The system prints this prefix and the number of the message you retrieved if you specify
(MSGID=YES) on the MESSAGE, GETVALUE, QUESTION, or READTEXT instructions.

The following example shows a COMP statement that refers

Retrieving M

The MESSAGE i

essages (continued)

to the second data set on the PROGRAM statement. DS2 points to data set MESSAGE on
volume EDX40.

MESSAGE PROGRAM START,DS=(DATA, (MESSAGE, EDX40))
PROGSTOP
DISKMSG COMP 'ERRS"',DS2, TYPE=DSK

The following example shows a COMP statement that refers to a module that contains
messages.

MESSAGE PROGRAM START
PROGSTOP

STGMSG COMP '"ERRS',MSG, TYPE=STG

nstruction

The MESSAGE instruction retrieves a message from a data set on disk, diskette, or from a
module. Then the instruction prints or displays the message. You must code the number of the
message you want displayed or printed and the label of the COMP statement that gives the
location of the message (COMP=).

You can pass parameters to variable fields in a message by coding the parameters on the
PARMS= operand of the instruction. If you code MSGID=YES, the system prints or dispiays
the number of the message and the four-character prefix you coded on the COMP statement in
front of the message text.

In the following example, the MESSAGE instruction retrieves the third message in a message
data set and passes the parameter PART# to the message. The COMP statement defines the
message data set as the first data set in the PROGRAM statement list.

STOCK PROGRAM START,DS=(PARTS,DATA)
MESSAGE 3,COMP=PARTS, PARMS=PART#,MSGID=YES
PROGSTOP

PARTS COMP 'PART',DS1,TYPE=DSK

PART# DC F'56'

In the following example, the MESSAGE instruction retrieves the second message in a module
that has been link-edited with the program and passes the message the parameter PART#. The
COMP statement defines the message data set as module MSG.

STOCK PROGRAM START
MESSAGE 2 ,COMP=PARTS , PARMS=PART#,MSGID=YES
PROGSTOP

PARTS COMP 'PART' ,MSG, TYPE=STG

PART# DC F'43'

Chapter 17. Creating, Storing, and Retrieving Program Messages PG-253

Creating, Storing, and Retrieving Program Messages

Retrieving Messages (continued)

The GETVALUE, QUESTION, and READTEXT Instructions

PG-254

SC34-0438

Instead of coding prompt messages on the GETVALUE, QUESTION, and READTEXT
instructions, you can retrieve prompt messages from a message data set or module. You code
the number of the message you want to retrieve for the second operand of the GETVALUE and
READTEXT instructions and the first operand of the QUESTION instruction. In addition, you
must code the label of the COMP statement that gives the location of the message (COMP=).

You can pass parameters to variable fields in a message by coding the parameters on the
PARMS= operand of the instruction. By coding MSGID=YES, the system prints or displays
the number of the message and the four-character name you coded on the COMP statement at
the front of the message text.

In the following example, the GETVALUE instruction retrieves the fifth message from a
module, called MSGTEXT, that has been link-edited with your program. The instruction also
passes the message the parameters VALUE and SIZE to the message.

GETVALUE INPUT,5,COMP=PROMPT, PARMS= (VALUE, SIZE)

PROGSTOP

PROMPT COMP 'TASK' ,MSGTEXT, TYPE=STG
VALUE TEXT 'AN INTEGER'
SIZE DC F'75"

In the following example, the GETVALUE instruction retrieves the ninth message from a data
set on disk or diskette. The instruction passes the message the parameters VALUE and SIZE.

BEGIN PROGRAM START ,DS=MSGS

GETVALUE INPUT, 9, COMP=PROMPT, PARMS= (VALUE, SIZE)

PROGSTOP

PROMPT COMP 'TASK',DS1, TYPE=DSK
VALUE TEXT 'AN INTEGER'
SIZE DC F'75"

Retrieving Messages (continued)

Sample Program

The following sample program retrieves five program messages from a disk data set formatted in
the previous section. (See “Example 1” on page PG-251.) The name of the data set is
MESSAGE and it resides on EDX40.

I MESsAGE PROGRAM START,DS=((MESSAGE, EDX40))
B sTarT QUESTION 1,NO=NAME,SKIP=1,COMP=DISKMSG
B GETVALUE A, 2,SKIP=1,COMP=DISKMSG, PARMS=(P1,P2)
PRINTEXT 'dTHE NUMBER IS: '
a PRINTNUM A,SKIP=1
B w~aME READTEXT B,+MSG4,SKIP=1,COMP=DISKMSG, PARMS=TXT
PRINTEXT 'dTHE DATA ENTERED IS: '
6} PRINTEXT B,SKIP=]
7} MESSAGE +MSG6 , COMP=DISKMSG, SKIP=2, PARMS=A, c
MSGID=YES
B MESSAGE +MSG7,COMP=DISKMSG, SKIP=2,PARMS=B, c
MSGID=YES
MESSAGE +MSG9, COMP=DISKMSG, SKIP=2, PARMS=B, C
MSGID=YES
PROGSTOP
B wMsca EQU 4
MSG6 EQU 6
MSG7 EQU 7
MSG9 EQU 9
[} piskMsG COMP 'SRCE',DS1, TYPE=DSK
1192 DATA F'0'
B TEXT LENGTH=40
P1 TEXT 'AN INTEGER'
P2 DATA F'10'
TXT DATA CL10'LAST NAME '
ENDPROG
END
Begin the program and identify the data set name and volume of the message data set

(MESSAGE on volume EDX40).

B Display the prompt message DO YOU WANT TO ENTER A NUMBER? The first
operand (1) identifies the message as the first message in the data set MESSAGE. The
COMP= operand refers to a COMP statement labeled DISKMSG. If the operator
enters Y, the next sequential instruction, the GETVALUE instruction, executes. If the
operator enters N, control passes to the label NAME.

Use the second message in the message data set as a prompt message. The instruction
retrieves the prompt message and inserts parameters P1 and P2 into the message. The

operator receives the prompt message ENTER AN INTEGER VALUE LESS THAN 10.

n Print the number the operator enters.

Chapter 17. Creating, Storing, and Retrieving Program Messages PG-255

Creating, Storing, and Retrieving Program Messages

Sample Program (continued)

PG-256

SC34-0438

Retrieve the fourth message (because MSG1 is equated to 4) from the message data set
and inserts parameter TXT into the message. The operator receives the prompt message
ENTER YOUR LAST NAME.

6} Print the name the operator enters.

Print or display the sixth message (because MSG6 is equated to 6) from the message
data set. The COMP= operand refers to the COMP statement labelled DISKMSG. The
instruction uses the integer value the operator entered as the parameter for the message.

If the operator entered a 6, for example, the system would print or display: THE VALUE
YOU ENTERED IS 6.

B Print or display the seventh message (because MSG?7 is equated to 7) from the message
data set. The COMP= operand refers to the COMP statement labelled DISKMSG. The
instruction uses the last name the operator entered as the parameter for the message. If
the operator entered the name FRENCH, for example, the system would print or
display: SRCE0007 THE DATA YOU ENTERED IS FRENCH.

o} Equate MSG4 to the fourth message in the message data set.

10 Define the message data set as the first data set on the PROGRAM statement. Identify
the data set as a disk- or diskette-resident data set (TYPE=DSK). SRCE is the prefix
that would appear if you coded MSGID=YES on a QUESTION, PRINTEXT,
GETVALUE, or READTEXT instruction.

m Define a parameter (used by the first MESSAGE instruction).

The program uses the following source message data set:

//THIS IS A COMMENT //+
DO YOU WANT TO ENTER A NUMBER? /*

ENTER <<TYPE OF VALUE>T> VALUE LESS THAN <<VALUE>S>./*

THE PROGRAM HAS PROCESSED THE INPUT DATA./*

ENTER YOUR <<FIRST/LAST/FULL NAME>10C>./*

//THIS IS ANOTHER COMMENT. // +
ALL INPUT DATA HAS BEEN RECEIVED./*

THE VALUE YOU ENTERED IS: <<VALUE>S1> /*

THE DATA YOU ENTERED IS: <<DATA>T> /*

THE DEVICE <<ID>H1> AT ADDRESS <<DEVICE ADDRESS>H2> IS IN USE./*

THIS MESSAGE WILL BE CONTINUED @ ON THE NEXT LINE./*

Sample Program (continued)

The program might produce output like the following:

fBO YOU WANT TO ENTER A NUMBER? Y R
ENTER AN INTEGER VALUE LESS THAN 10: 4

THE NUMBER 1IS: 4
ENTER YOUR LAST NAME : MEGATH

THE DATA ENTERED IS: MEGATH
SRCE0006 THE VALUE YOU ENTERED IS: 4
SRCEO007 THE DATA YOU ENTERED IS: MEGATH

SRCEOOO9 THIS MESSAGE WILL BE CONTINUED
ON THE NEXT LINE.

Chapter 17. Creating, Storing, and Retrieving Program Messages PG-257

Notes

PG-258 sC34-0438

Chapter 18. Queue Processing

You can use the queue processing instructions of EDL to store and retrieve large amounts of
data. You can retrieve data from a queue on either a first-in-first-out or last-in-last-out basis.

Defining a Queue
To define a queue, use the DEFINEQ statement. The following DEFINEQ statement defines a

queue with ten queue elements. A queue element is either an address or data that you want to
store.

MSGQ DEFINEQ COUNT=10
The queue called MSGQ can contain ten one-word addresses or one-word data items.

If you want to store data items that are longer than one word, code the SIZE operand as follows:

QUEUE DEFINEQ COUNT=15,SIZE=30

The queue called QUEUE can contain 15 thirty-byte queue elements.

Chapter 18. Queue Processing PG-259

Queue Processing

Defining a Queue (continued)

Putting Data into a Queue

To put data into a queue, use the NEXTQ instructions as follows:

NEXTQ MSGQ,ADDR

ADDR DATA F'0’

The instruction puts ADDR into the queue called MSGQ. ADDR can contain either one word
of data or an address.

To put more than one word of data into a queue, use the FIRSTQ instructions to find the
address of the first storage area into which data can be moved.

FIRSTQ QUEUE,#1

QUEUE DEFINEQ COUNT=15,SIZE=20

The instruction puts into register 1 the address of the first storage area into which you can move
twenty bytes of data.

You could use the following instructions to prompt the operator for data and store the response
in QUEUE:

READTEXT ELEMENT, 'ENTER YOUR NAME: '
MOVE (0,#1) ,ELEMENT, (20,BYTE)

The READTEXT instruction prompts the operator and places the response in ELEMENT. The
MOVE instruction moves the response to the address retrieved by the FIRSTQ instruction.

Retrieving Data from a Queue

PG-260

SC34-0438

To retrieve data from a queue, use either the FIRSTQ or LASTQ instruction.

Use the FIRSTQ instruction to retrieve the oldest entry from a queue. The following example

FIRSTQ QUEUE, #2
puts into register 2 the address of the oldest element in the queue called QUEUE.

Use the LASTQ instruction to retrieve the newest entry from a queue. The following example

LASTQ QUEUE,ADDR

puts into ADDR the address of the oldest element in the queue called QUEUE.

Retrieving Data from a Queue (continued)

To transfer control if the queue becomes empty, code the EMPTY operand as follows:

FIRSTQ QUEUE,ADDR,EMPTY=MT

MT EQU *

.

ADDR DATA F

The instruction retrieves an element from the queue called QUEUE, puts the address of the
element in ADDR, and causes a branch to MT if no more elements exist in the queue.

Example

The following example prompts the operator for 20 characters of data, stores the data in one
queue, moves the addresses of the elements to another queue, and prints the elements on a
first-in-first-out (FIFO) basis.

QTEST PROGRAM START

START EQU *
DO 10, TIMES
1} FIRSTQ QUEUE1, #1
B READTEXT MSG, 'ENTER UP TO 20 CHARACTERS: '
MOVE (0,#1),MSG, (20,BYTE)
4] NEXTQ QUEUE2, #1, FULL=FULLQ
ENDDO
GOTO PRINT
FULLQ EQU *
PRINTEXT 'AQUEUE2 FULL.'
PRINT EQU *
DO 10, TIMES
B FIRSTQ QUEUE1, #1, EMPTY=DONE
6} MOVE MSG, (0,#1), (20,BYTE)
7| PRINTEXT MSG,SKIP=1
] NEXTQ QUEUE1, #1
ENDDO
DONE PROGSTOP
B QUEUE1 DEFINEQ COUNT=10,SIZE=20
[} QUEUE2 DEFINEQ COUNT=10
MSG TEXT LENGTH=20
ENDPROG
END

Chapter 18. Queue Processing PG-261

Queue Processing

Example (continued)

1} Put the address of the oldest element into register 1.

2) Prompt the operator for twenty characters of data. Put the prompt in MSG.

Move the operator’s response into QUEUEI, to the address retrieved by the FIRSTQ
instruction.

Store in QUEUE2 the address where the response was stored in QUEUEL.

Retrieve the oldest element from QUEUET1 and put the address of the data into
register 1.

o1]

Move twenty bytes from the address pointed to by register 1 to MSG.

El =

Print the data, skipping a line between each data item (SKIP=1).
Put back into QUEUEL1 the element retrieved by the FIRSTQ instruction.

Define a queue large enough to accommodate ten 20-character data items.

Define a queue large enough to accommodate ten 1-word data items or addresses.

PG-262 SC34-0438

Appendix A. Tape Labels

The following is the layout of the VOL1 label:

Field Name Bytes
Label identifier 3
Volume label number 1
Volume serial 6
Volume security 1

Data file directory 10
Reserved 10
Reserved 10
Owner name 10
Reserved 29

Initialized Contents

VOL

1
XXXXXX
0

blanks
blanks
VOL
NAME
blanks

The following is the layout of the HDR1 label:

Field Name Bytes

Label identifier 3
File label number 1
File identifier (DSN)

s
~
*

File serial number
Volume sequence number
File sequence number
Generation number
Generation version number
Creation date

Expiration date

File security

Block count

System code

Reserved

\l(—‘;m—lO’Qthhm

Initialized Contents

HDR
1
Data set name (DSN)

XXXXXX
0001
OONN
blanks
blanks
YYDDD
YYDDD
0
000000
IBMEDX1
blanks

* EDX supports an 8-byte nonblank data set name (DSN). EDX ignores the last 9 bytes of the

DSN.

Appendix A. Tape Labels PG-263

Notes

PG-264 SC34-0438

Appendix B. Interrupt Processing

Interrupts apply to the interaction between a program and a terminal operator. For example, a
program can wait for an interrupt, such as an operator response to a prompt, or a terminal
operator can cause an interrupt by pressing a Program Function key.

When an interrupt occurs, if it is completing an outstanding operation, control is returned to the
next sequential instruction if there are no errors. If the interrupt was unsolicited (caused by the
attention key or a PF key), then either the system or user ATTNLIST begins executing as an
asynchronous task competing for system resources.

Interrupt Keys

The keys that can cause interrupts are the attention key, Program Function (PF) keys and the
enter key.

The Attention Key

When the attention key is recognized, the greater than symbol (>) is displayed and the operator
can enter either a system function code (for example, $L) or a program function code defined in
an ATTNLIST.

The attention key on the 4978 and 4979 is the key marked ATTN. For teletype terminals, the

ESC (escape) key is usually the attention key. For the 3101 Display Terminal, the PF8 key is
the default attention key.

Appendix B. Interrupt Processing PG-265

Interrupt Processing

Interrupt Keys (continued)

Program Function (PF) Keys

Enter Key

Any program function key on the 4978/4979 and 3101 is recognized by the attention list code
$PF (except for a PF key defined as the attention key). In addition, individual keys can be
separately recognized by $PF1 to $PF254. You can provide separate entry points to the
application code for particular keys, or a single entry point for all keys or a group of keys for
rapid response.

The order of the PF keys in the attention list is significant because it defines the entry points to
the application code. For example:

ATTNLIST ($PF1,ENT1,$PF5,ENT2,$PF,ENT3)
causes the program to be entered at ENT3 for all PF keys except PF1 and PF5.

On the 4978/4979, pressing the PF6 key causes the screen image to be printed on any
designated hard-copy terminal (unless that terminal is a spool device and spool is loaded). This
is not true for PF6 on the 3101.

The 3101 keyboard has eight PF keys. EDX supports these keys when the 3101 is operated in
both character and block mode. To use the PF keys on the 3101, hold down the ALT key (on
the lower right-hand side of the keyboard) while you press the appropriate numeric key.

The enter key indicates the end of typed input, for example, the end of the operator input for a
READTEXT instruction. You also use it in conjunction with the WAIT KEY instruction.

On the 4978 and 4979 keyboards, the enter key is marked ENTER. For the 3101 in block
mode, the SEND key is the enter key. For the 3101 in character mode, the new line key is the
enter key.

Instructions that Process Interrupts

Instructions that process interrupts are READTEXT, GETVALUE, WAIT KEY and
ATTNLIST.

The READTEXT and GETVALUE Instructions

In many cases a program needs to wait for an interrupt, such as an operator response to a
request for input. This program-wait capability is provided automatically by the READTEXT
and GETVALUE instructions. These instructions have an “implied wait.”" They wait for the
terminal operator to enter data and press the enter key.

PG-266 sC34-0438

Instructions that Process Interrupts (continued)

The WAIT KEY Instruction

An application program can wait at any point for a 4978/4979 or 3101 terminal operator to
press the enter or one of the PF keys. This is done by issuing the WAIT KEY instruction.

When the enter or a PF Key is pressed, the program resumes operation, and the key is identified
to the program in the second task code word at taskname+2. The code value for the enter key
is 0. The value for a PF key is the integer corresponding to the assigned function code; 1 for
PF1, 2 for PF2, and so on.

The PF keys do not initiate attention list processing during execution of the WAIT KEY
instruction. They only cause the WAIT KEY instruction to terminate, allowing subsequent
instructions to be executed.

The ATTNLIST Instruction

The ATTNLIST instruction provides entry to interrupt processing routines. When a PF key is
pressed, the ATTNLIST task for that key gets control if ATTNLIST was coded in the
application program. If ATTNLIST was not coded, the system search for a PF key match fails
and the message “FUNCTION NOT DEFINED” is displayed on the screen. Except for the
4978/4979 hard-copy print key (normally PF6), the 4978 attention key (normally PF0) and the
3101 attention key (normally PF8), the PF keys are always matched against user-written
ATTNLIST(s) as described above.

When the attention key on a terminal is pressed, the system prompts the operator for a
command. This command is first matched against the system ATTNLIST and then against
user-written ATTNLIST(s).

If the command matches the system ATTNLIST, appropriate system action is taken (for
example, $D or $L) unless the task is busy. If the command entered was $C, $VARYON or
$VARYOFF and this task is busy, the message “> NOT ACKNOWLEDGED” is displayed;
when the task is completed, $C, SVARYON or $VARYOFF is then executed. If the command
entered was $P or $D and this task is busy, the command is ignored.

If the command matches a user-written ATTNLIST, the corresponding ATTNLIST task gets
control. The appropriate application program attention routine then runs under this task. If the
attention key invoked the ATTNLIST and the task is already busy, the message “> NOT
ACKNOWLEDGED?” is displayed on the terminal.

If there is no match against any ATTNLIST, the message “FUNCTION NOT DEFINED” is
displayed.

When the ATTNLIST task for a PF key gets control, the code for that key is placed in the

second word of the ATTNLIST task control block. You can obtain the code for an interrupting
key by coding the TCBGET instruction.

Appendix B. Interrupt Processing PG-267

Interrupt Processing

Advance Input

PG-268

SC34-0438

As a terminal user, your interaction with an application or utility program is generally conducted
through prompts which request you to enter data. Once you have become familiar with the
dialogue sequence, however, prompting becomes less necessary. The READTEXT and
GETVALUE instructions include a conditional prompting option which enables you to enter
data in advance and thereby inhibit the associated prompts.

Advance input is accomplished by entering more data on a line than has been requested by the
program. Subsequent input instructions specifying PROMPT=COND will read data from the
remainder of the buffered line, and issue a prompt only when the pre-entered data has been
exhausted. If you specify PROMPT=UNCOND with an input instruction, an associated prompt
is issued and the system waits for input. The prompt causes, as does every output instruction,
cancellation of any outstanding advance input.

Appendix C. Static Screens and Device
Considerations

EDX terminal support enables some degree of device independence between the 4978/4979
Display Station and 3101 Display Terminal in block mode. This device independence is
achieved by using the $IMAGE subroutines and certain parameters of some EDL instructions,
namely READTEXT, PRINTEXT and TERMCTRL. This type of device independence applies
only when the terminals are using static screens.

This chapter first discusses static screens, including how to design static screen applications for
terminal independence. The $IMAGE subroutines are described and an example of using them
is shown. Two sample programs are provided, one for the 4978/4979 and one for the 3101 in
block mode.

The final section of the chapter deals with characteristics unique to certain EDX terminals,
namely teletypewriter terminals, ACCA terminals, and EDX terminals that are other processors.

A Description of Static Screens

A static screen is a display screen formatted with predetermined protected and unprotected
areas. Areas defined as operator prompts or input field names are protected to prevent
accidental overlay by input data. Areas defined as input areas are not protected and are usually
filled in by the terminal operator. The screen is treated as a page of information.

The object of static screen management is to provide the application program with complete
control over the screen image, and to allow the terminal operator to modify an entire screen

Appendix C. Static Screens and Device Considerations PG-269

Static Screens and Device Considerations

A Description of Static Screens (continued)

image before data entry. Static screens are therefore distinguished from roll screens in the
following ways:

« Forms control operations which would cause a page-eject for roll screens simply wrap
around to the top for static screens. No automatic erasure is performed; selected portions of
the screen can be erased with the ERASE instruction.

« Protected fields can be written; this function is not available for roll screens.

« The cursor position, relative to the logical screen margins, can be determined by the
application program using the RDCURSOR instruction.

« Input operations directed to static screens normally do not cause a task suspension wait for
the enter key; they are executed immediately. This allows the program to read selected
fields from the screen after the entire display has been modified by the operator.
Operator/program signaling is itaplemented using the Program Function keys and the
WAIT KEY instruction.

« To allow convenient operator/program interaction, QUESTION, READTEXT, and
GETVALUE instructions which include prompt messages are executed as if they were
directed to a roll screen (automatic task suspension for input).

« The character (@ is treated as a normal data character. It does not indicate a new line.

The utility program $IMAGE (see Operator Commands and Utilities Reference) constructs formatted
screen images in a interactive mode and saves them in disk or diskette data sets. The images are
retrieved and displayed by application programs through the use of system-provided subroutines
called the $IMAGE subroutines. See ‘“Using the $IMAGE Subroutines for Device
Independence” on page PG-278 for details.

Defining Logical Screens

A logical screen is a screen defined by margin settings, such as the TOPM, BOTM, LEFTM and
RIGHTM parameters. Logical screens can be defined either during system generation (using
the TERMINAL statement) or at the time an ENQT instruction is executed (using the IOCB
statement).

Using TERMINAL to Define a Logical Screen

PG-270

SC34-0438

The following example of using the TERMINAL statement defines a static screen to be used for
data entry and display. Programs can be loaded from the terminal, but the terminal I/0
instructions issued will be interpreted for a static screen unless the configuration is changed to
roll by an IOCB statement. This is a typical definition for a terminal to be used for data entry.

TERM2 TERMINAL DEVICE=4979,ADDRESS=14,SCREEN=STATIC

A Description of Static Screens (continued)

The next example shows a split screen configuration. The roll screen is the bottom 12 lines of
the screen; the top half can be used for other logical screens defined upon execution of ENQT.

TERM3 TERMINAL DEVICE=4978,ADDRESS=24,TOPM=12,NHIST=6

The next example defines a roll screen occupying the upper-right quadrant of the screen. In
general, logical screens with less than an 80-character line size suffer some performance
disadvantages (such as slower erasure) but can be useful for special applications. Note that
NHIST is zero here because screen shifting will not be performed; a non-zero value for NHIST
would merely cause the history area to be unused.

TERM4 TERMINAL DEVICE=4979,ADDRESS=34,LEFTM=39, C
BOTM=11,NHIST=0

The final example defines a static screen for the 3101 in block mode. A 3101 can have only a
single roll or a single static screen. The Multifunction Attachment is used to connect the
terminal to the Series/1.

TERM5 TERMINAL DEVICE=ACCA,ADDRESS=59,MODE=3101B, c
SCREEN=STATIC, LMODE=RS422,ADAPTER=MFA

Using IOCB and ENQT to Define a Logical Screen

Logical screens can also be defined by the ENQT instruction referencing an IOCB. The IOCB
statement is used to define many of the ‘“‘soft” characteristics of a terminal (such as margins,
page size or line length) and to establish the connection between the ENQT and TERMINAL
statements at execution time. Using an ENQT instruction which references an IOCB, you can
modify the soft characteristics of a specific terminal defined by the TERMINAL statement. The
IOCB statement and its operands are fully described in the Language Reference.

In the following example, the IOCB labeled TOPHALF defines the top half of the screen (from
which the program was loaded) as a static screen. If the terminal were defined as in TERM3 on
the previous page, the program could have been loaded by entering $L. program-name in the roll
screen area (the bottom half of the screen). Since no terminal name is specified on the IOCB
statement, the ENQT refers to the loading terminal. The program then might display tabular
information on the static screen, execute DEQT and then end. The information displayed on the
static screen part of the screen will remain on the screen while the terminal operator performs
other operations using the roll screen.

Appendix C. Static Screens and Device Considerations PG-271

Static Screens and Device Considerations

A Description of Static Screens (continued)

DISPLAY PROGRAM BEGIN
TOPHALF IOCB BOTM=11, SCREEN=STATIC
BEGIN ENQT TOPHALF

DEQT
PROGSTOP
ENDPROG
END

The next example shows terminal access by using the symbolic name of the terminal. TERM1,
TERM?2, TERM3, and TERM4 have all been defined with TERMINAL configuration
statements. The use of a static screen ensures that only physical line 0 of each screen will be
altered. (LINE=0 for roll screens causes a page eject and erasure of information.)

Note: On a 4979, unprotected fields should be of even length.

NOTICE PROGRAM BEGIN

TERMX I0CB SCREEN=STATIC
NAMETAB DATA CLS'TERM1"'
DATA CL8'TERM2'
DATA CL8'TERM3'
DATA CL8'TERM4'
BEGIN MOVEA #1,NAMETAB
DO 4
MOVE TERMX, (O, #1), (8,BYTES)
ENQT TERMX
PRINTEXT 'SYSTEM ACTIVE',LINE=0
DEQT
ADD 41,8
ENDDO
PROGSTOP
ENDPROG
END

Structure of the IOCB

The structure of the IOCB is given in the following table. The structure may change with future
versions of the Event Driven Executive.

Field Name Byte(s) Contents
Terminal name 0-7 EBCDIC, blank filled
Flags 8 Bit O off indicates that the name is

the only element of the IOCB.
Further information on this field can
be found in /nternal Design.

PG-272 5C34-0438

A Description of Static Screens (continued)

Field Name Bytel(s) Contents

Top of working area 9 Equal to TOPM+NHIST

Top margin 10 TOPM or zero

Bottom margin 11 BOTM, or X'FF’ if unspecified
Left margin 12 LEFTM or zero

Page size 13 Equal to X'00' if unspecified
Line size 14-15 Equal to X'7FFF’ if unspecified
Current line 16 Initialized to TOPM+NHIST
Current indent 17 Initialized to left margin

Buffer address 18-19 Zero if unspecified

Some Characteristics of the 3101 Display Terminal

Attribute Characters

The 3101 uses attribute characters (or bytes) to define fields on the screen. An attribute byte
defines the start of each field and the properties of the field (such as protected/unprotected,
high/low intensity). Each attribute byte appears as a protected blank on the screen.

The collection of attribute characters, special sequences required by the terminal, and user data
is called a ““data stream”. Any invalid (unprintable) characters encountered in the data stream
will cause the alarm to ring. This condition might occur, for instance, when displaying a
non-EBCDIC disk or diskette record.

Transmitting Data from the 3101

On a 3101 static screen, the application program must determine where the output data is
positioned, relative to the first position of the screen. For READTEXT operations, modified,
data, or all fields are read from the beginning of the screen (regardless of forms control),
depending on the TYPE parameter of the READTEXT instruction.

In response to a read request, the 3101 transmits the attribute characters that precede the input

field. To suppress the attribute characters from the data stream, the EDX 3101 support
removes these special characters and left-justifies the data.

Appendix C. Static Screens and Device Considerations PG-273

Static Screens and Device Considerations

Some Characteristics of the 3101 Display Temminal (continued)

A feature is provided that allows an application program to have complete control of the
input/output data transmitted to or from the terminal. To do this, the program must build the
complete data stream, either in EBCDIC or ASCII codes. The basic terminal I/O support
simply handles the transmission of the data stream. Refer to the description of the TERMCTRL
SET,STREAM=YES/NO instruction and the XLLATE parameter of PRINTEXT/READTEXT
instructions in the Language Reference when this mode of data transmission is desired.

Screen Formats

A screen format is a representation of the protected fields on a screen. Screen formats and
input/output are handled differently on the 4978/4979 and 3101. References to the 3101
Display Terminal in this section mean a 3101 model 2x operating in block mode.

4978/4979 Screen Formats

The format of a 4978/4979 screen is defined as each character is written to the terminal. Fields
are defined as follows:

« Each character or group of characters written with PROTECT=YES defines a protected
field.

« Each character or group of characters written without PROTECT=YES defines an
unprotected field.

« Null characters (X‘00’) can never be protected, so both protected and unprotected fields can
be defined by writing data with interspersed nulls with PROTECT=YES.

Once the fields of a screen have been defined, the 4978/4979 knows internally whether each of
the 1920 positions on the screen is protected or unprotected; this is transparent to the user.

On the 4978/4979 there are two ways to write and read unprotected fields. The first is to
read/write all the unprotected fields with one input/output operation. All the unprotected fields
can be filled with data by one “‘scatter write” operation (PRINTEXT MODE=LINE). The
unprotected fields can be read using one ‘“gather read” operation (READTEXT
MODE=LINE). The other way is to read or write individual fields by specifying screen
coordinates (the LINE= and SPACES= parameters).

3101 Screen Formats

PG-274

SC34-0438

Like the 4978/4979, the format of a 3101 screen is defined by how the data is written, either
protected or unprotected. However, on the 3101, the field definitions are not transparent to the
user because attribute bytes separate protected and unprotected fields.

« An attribute byte defines the start of each field and the properties of the field.

Screen Formats (continued)

« Each field continues until another attribute byte is encountered.

« Each attribute byte occupies one character position on the screen and is displayed as a
protected blank preceding the field.

« Attribute bytes are like any other character on the screen in that they can be overwritten by
data or another attribute byte. When an attribute byte is overwritten, the screen format can
change.

On a 3101 it is not possible to do a scatter write with a PRINTEXT instruction; however, you
can specify screen coordinates on output (PRINTEXT LINE=,SPACES=). Youcando a
gather read by specifying READTEXT MODE=LINE. However, the input of a specific field
(by means of READTEXT LINE=,SPACES=) always executes as though LINE=0 and
SPACES=0 had been coded.

As a result of these differences between the 4978/4979 and the 3101, it can be difficult to write
terminal independent code using READTEXT/PRINTEXT instructions. However, $SIMAGE
can be used to perform terminal independent input/output.

Static Screen Device Independence

Screen design for both the 4978/4979 and 3101 can be as simple as screen design for only the
4978/4979. This section describes how to design such terminal independent static screens, and
discusses a limitation in compatibility between the 4978/4979 and 3101.

This section mentions both the $IMAGE utility and the $IMAGE subroutines. For a complete
description of the $IMAGE utility, see the Operator Commands and Utilities Reference. For
descriptions of the SIMAGE subroutines, see “$IMAGE Subroutines” on page PG-281 in this
chapter.

Designing Terminal-Independent Static Screens

The $IMAGE utility and subroutines treat an unprotected field as a string of unprotected
characters. In the 4978/4979 unprotected characters are null characters. If the $IMAGE null
character were the at sign (@), then an unprotected field, eight characters long, could be
defined as:

ENTER NAME HERE == 220222223

This field could be defined the same way for a 3101; $IMAGE automatically inserts the
attribute characters. In this case, the attribute byte immediately preceding the unprotected field
would specify an unprotected and high intensity field. Somewhere preceding the protected field
(ENTER NAME HERE) would be an attribute byte specifying a protected and low intensity

Appendix C. Static Screens and Device Considerations PG-275

Static Screens and Device Considerations

Static Screen Device Independence (continued)

field. Thus, if you do not want to define unique attributes (such as blinking), you can design
screens for the 4978/4979 and use them on 3101 terminals with default attributes.

You can also design 3101 screens with unique attribute characters; in this case, a 3101 data
stream is created by $IMAGE as well as a 4978/4979 image. The 3101 data stream is ignored
for display on the 4978/4979. If the pound sign (‘4’) were defined as the blinking attribute,
both fields in the previous example could be made to blink as follows:

#ENTER NAME HERE ==> #2202022323

On a 3101, a blinking, protected attribute byte would replace the first pound sign and a blinking,
unprotected attribute byte would replace the second pound sign. The pound sign does not
change the protect status of the field, merely its display properties; the ‘“‘null” character
determines whether the field is protected or unprotected.

Compatibility Limitation

This scheme has a limitation because an attribute byte is displayed as a protected blank. The
character preceding a field (protected or unprotected) is always displayed as a blank on a 3101,
even if a protected (non-blank) character appears on a 4978/4979. For example, the following
screen is designed to display the month, day, and year as MM/DD/YY:

22/20/8d

On a 4978/4979, the date would appear as:
10/30/80

On a 3101, however, the date would appear as:

10 30 80

The slash characters on the 4978/4979 are replaced by attribute bytes on the 3101. Therefore,
screens designed for the 4978/4979 do not have to be changed for use on the 3101. However,
you have to alter them if you do not want protected characters to disappear when displayed on a
3101.

Coding EDL Instructions for Device Independence

PG-276

SC34-0438

To achieve static screen device independence between the 4978/4979 Display Station and the
3101 Display Terminal in block mode, you must use functionally equivalent terminal instructions
on both terminals. The following considerations show one approach which provides some
device independence.

Static Screen Device Independence (continued)

Use the 4978 screen images produced by $IMAGE for 4978/4979/3101 compatible
applications. The 3101 data streams are not required.

Specify an image type of C‘4978’ on calls to $IMOPEN.

Specify FTAB on calls to $IMPROT. The FTAB buffer is initialized to describe each
unprotected field on the screen and requires three words per entry.

Use calls to $IMDATA to “scatter write” to either type terminal.

PRINTEXT MODE=LINE does not produce a scatter write operation on the 3101 (as it
does on the 4978/4979). A call to SIMDATA, specifying the FTAB produced by the prior
call to SIMPROT and the user buffer, performs the scatter write operation on the
4978/4979 and simulates the scatter write on the 3101.

$IMDATA can be used to write either default unprotected data from the screen image or
user data contained in a user buffer.

For “gather read” operations use:

READTEXT MODE=LINE, TYPE=DATA,LINE=0,SPACES=0

Read operations from the 3101 in block mode start with the first data field encountered,
beginning with the upper left corner and continuing to the end of the screen. Specifying
LINE=0,SPACES=0 makes the READTEXT from the 4978/4979 functionally equivalent
to the 3101.

In addition, the 3101 prefixes each field transmitted with three bytes of control information;
this results in a 3101 data stream. Although EDX compresses out this control information,
the user buffer must be large enough to contain the entire data stream that is transmitted.

Using care, individual fields can be changed with:
PRINTEXT MODE=LINE,LINE= ,SPACES=
1. When directed to a 3101, the PRINTEXT instruction first writes an attribute byte,
followed by the text data. The data field thus appears displaced one position to the right

when compared to the result of a PRINTEXT directed to the 4978/4979. To suppress
writing an attribute byte to the screen, use:

TERMCTRL SET,ATTR=NO

prior to the PRINTEXT(s). After the last PRINTEXT, code TERMCTRL
SET,ATTR=YES. The 4978/4979 ignores these TERMCTRL instructions.

2. Be careful to ensure that the data being sent to the 3101 does not extend beyond one
data field; if it does, it will overlay and eliminate existing attribute characters. Once the
screen attributes are changed, the FTAB no longer represents the screen and $IMDATA
operations will produce undesired results.

Appendix C. Static Screens and Device Considerations PG-277

Static Screens and Device Considerations

Static Screen Device Independence (continued)

3. Writing protected nulls to create additional unprotected 4978/4979 fields is not
supported in 3101 block mode. Avoid this practice.

+ Avoid the combination of “count’ and TYPE=DATA in the ERASE instruction. On the
3101, the erase starts at the current cursor position and continues to the end of screen; the
count operand is ignored.

e Avoid the combinations of TYPE=DATA MODE=LINE and
TYPE=DATA MODE=FIELD in the ERASE instruction. Although these combinations
work as anticipated on the 4978/4979, the 3101 forces the MODE= parameter to
SCREEN.

+ Avoid the combination of “count”, TYPE=ALL and MODE=FIELD in the ERASE
instruction. The 3101 forces MODE=FIELD to MODE=LINE. The operation terminates
when the count reaches zero or the current line ends, whichever occurs first.

« To erase unprotected fields which do not end at end of line or end of screen, use one of the
following techniques: ‘

1. Use a PRINTEXT instruction with LINE and SPACES parameters to write blank
characters to each individual field, being careful not to change or eliminate 3101
attribute bytes.

Note: If the 3101 screen attributes are changed or eliminated, then the screen format
will no longer match the FTAB and the data will not be directed to the correct locations
on the 3101 screen. To re-establish the screen, call $SIMPROT before calling
$IMDATA.

2. Use READTEXT TYPE=DATA to read all unprotected data from the screen into a
user buffer. Next, blank out (or change) the appropriate fields in the buffer. Then use
the ‘USER’ buffer features of SIMDATA to rewrite the unprotected data.

Using the $IMAGE Subroutines for Device Independence

The Basic Steps

PG-278

SC34-0438

This section presents a way to write terminal-independent applications that use static screens.
Using this method, the $IMAGE utility creates screen images and stores them on disk or
diskette. Later, your application program can display and use the images by calling
system-provided subroutines. Collectively these subroutines are called the “$IMAGE
subroutines”.

There are seven $IMAGE subroutines; see “$IMAGE Subroutines” on page PG-281 for
individual descriptions of each. Ordinarily, your programs will not need to use all seven.

This section describes the basic steps in an application program which displays and processes a
static screen (with a size of 24 lines and 80 characters per line):

Static Screen Device Independence (continued)

« Retrieve the screen
« Display the protected data
« Display and retrieve the unprotected data

Retrieving the Screen Format: The first step is to retrieve the screen format by calling
$IMOPEN. The type operand specifies the type of format to be retrieved. If the type operand
is set to blanks, the format retrieved corresponds to the type of terminal upon which the
program is running. If a 3101 format is needed but unavailable, the 4978/4979 format is
retrieved and converted dynamically to a 3101 data stream. For example:

CALL $IMOPEN, (DSNAME) , (FORMAT) , (TERMTYPE)
DSNAME TEXT LENGTH=15 format dataset name
FORMAT BUFFER n,BYTES format buffer
TERMTYPE DATA CcL4' ! adapt to running terminal

Displaying the Protected Data: The screen format itself (the protected data) can be
displayed with a call to $IMPROT.

CALL $IMPROT, (FORMAT) , (FTAB)

FTAB BUFFER n, WORDS field table

For the 3101, the field table (FTAB) is required. For a description of the field table, see
“$IMPROT Subroutine” on page PG-285.

Displaying the Unprotected Data: At this point many applications generate and then
display some data in the unprotected fields. On a 4978/4979 you can use PRINTEXT
MODE-=LINE to perform a scatter write operation. However, since this is not supported on a
3101, you should use $SIMDATA to perform the scatter write operation and thus preserve device
independence.

$IMDATA writes all the unprotected fields in a screen image. When directing data to the 3101,
the field table generated by $IMPROT must be used. To write default unprotected data, use the
buffer containing the screen image or specify a user buffer containing the application-provided
data.

When $IMDATA is used with a user buffer, the application program must:

« Set the characters ‘USER’ in the first four positions of the buffer

o Set the message length, excluding ‘USER’, in the buffer index word (buffer-4)

Appendix C. Static Screens and Device Considerations PG-279

Static Screens and Device Considerations

Static Screen Device Independence (continued)

MOVE USERDATA,CUSER,DWORD set up user message
MOVE DATALEN, 8 set message length
MOVE USERDATA+4 ,MESSAGE, (8,BYTES) get message
CALL $IMDATA, (USERDATA) , (FTAB)

°

[]

L]
USERDATA BUFFER 12,BYTES, INDEX=DATALEN for user data
MESSAGE DATA CL8'HI THERE' data
CUSER DATA CL4'USER'

Retrieving the Unprotected Data: After the operator has entered data, all the data in the
unprotected fields can be read by a single statement. Both the 4978/4979 and 3101 support a
“gather read” using READTEXT MODE=LINE.

READTEXT SCRNDATA,MODE=LINE

SCRNDATA éUFFER n,BYTES
In this example, n is the number of data bytes being read plus three bytes per field being read.

A READTEXT with MODE=LINE into a buffer from a 3101 screen has some special
considerations. A READTEXT to the 3101 always reads from the beginning of the screen,
regardless of the cursor position specified by LINE and SPACES. The 3101 has only three read
options: read the entire screen (TYPE=ALL), read all the unprotected fields
(TYPE=DATA), or read only the modified unprotected data (TYPE=MODDATA). (For more
information on 3101 read options, see ‘‘Reading Modified Data on the 3101” on page PG-292).

The data will be read concatenated into the buffer. But the buffer must be large enough to
accommodate the data plus three bytes (TYPE=DATA and TYPE=ALL) or four bytes
(TYPE=MODDATA) per unprotected field. This extra data includes escape sequences and
attribute bytes which are edited out of the buffer before presentation to the application program
(as long as the default of STREAM=NO is in effect).

Although the 4978 has the capability to read a specific unprotected field, the 3101 does not. To
perform a similar operation, the application can read all the unprotected data and then use the
field table lengths to displace into the buffer and arrive at the desired data field.

Using TERMCTRL SET, ATTR=NO

PG-280

SC34-0438

Both the 4978 and 3101 can do a PRINTEXT with LINE and SPACES to a specific screen
coordinate. However, for the 3101, doing this has ramifications for subsequent I/0 to the
screen. When a PRINTEXT is issued to a 3101 without a previous TERMCTRL
SET,ATTR=NO, the terminal support inserts an attribute byte. This attribute byte appears as a
protected blank at the screen coordinate specified by LINE and SPACES, and the data follows.
Normally, this displaces the data one byte to the right, and therefore the data writes over the
next attribute byte (which usually describes a protected field).

Static Screen Device Independence (continued)

For example, assume the screen coordinate 5,5 (LINE=5,SPACES=5) contains a ten byte
unprotected field which the application wants to fill with ten Xs. If a PRINTEXT
LINE=5,SPACES=5 of ten Xs is issued with no previous TERMCTRL SET,ATTR=NO, then
an attribute byte is added and written at location 5,5 and the tenth X overwrites the next
attribute byte for the following protected field. This leaves the screen with one large
unprotected field instead of a 10 byte unprotected field followed by a protected field.

A subsequent READTEXT of the unprotected data will result in much more data being returned
to the application than expected. In addition, the returned data stream might contain escape
sequences and attribute bytes which on a subsequent PRINTEXT from the same buffer will
cause the cursor to act unpredictably. The data will also be written incorrectly on the screen.

To avoid such problems, a TERMCTRL SET,ATTR=NO should always be issued before a
PRINTEXT with LINE and SPACES. A TERMCTRL SET,ATTR=YES should follow the
PRINTEXT.

Converting 4978 Screens for Use on the 3101

Many 4978-based applications can be converted to run on the 3101. In some cases, it is
sufficient to convert uses of PRINTEXT MODE=LINE to calls to $IMDATA. If the
application uses READTEXT to specify screen coordinates with LINE and SPACES, the
technique described above in “Using TERMCTRL SET,ATTR=NO” can be used.

Screens might also need to be changed because the attribute bytes are displayed as protected
blanks on the 3101; see “3101 Screen Formats” on page PG-274.

$IMAGE Subroutines

Formatted screen images can be created and saved in disk or diskette data sets using the
$IMAGE utility. The $IMAGE subroutines can be used to retrieve and display these images.
These subroutines provide support for both the 4978/4979 and 3101 in block mode. In
addition, screen images created on a 4978/4979 can be presented on a 3101 and vice versa with
use of these subroutines. The intermixing of terminal screen images is also described in the
Operator Commands and Ultilities Reference.

The $IMAGE subroutines perform screen formatting and input/output operations independent
of the type of terminal upon which the application runs. The orientation is towards
writing/reading all unprotected fields with one operation. In this context the data in
unprotected fields is of primary concern.

Static screen applications use the $IMOPEN, $IMDTYPE, $UNPACK, $IMGEN, $IMGEN31,

$IMGEN49, and $IMGEN3X subroutine packages to process static screens defined using the
$IMAGE utility.

Appendix C. Static Screens and Device Considerations ~PG-281

Static Screens and Device Considerations

$IMAGE Subroutines (continued)

$IMDTYPE is required for all static screen applications. In addition, the $IMOPEN and
$UNPACK subroutines are also required, plus one of the following:

« $IMGEN to intermix both 3101 and 4978 images, and to display those images on either
device

« $IMGENS3X to intermix both 3101 and 4978 images, and to display those images on a 3101
+ $IMGENS31 for 3101 images, and to display those images on a 3101
« S$IMGEN49 for 4978 images, and to display those images on a 4978 or 4979

During link-edit the $IMxxxx subroutines are included with your application through the use of
the autocall library. Normally $IMGEN is included. If you want one of the alternate
($IMGENTZXx) routines, explicitly INCLUDE that module.

For formatted screen images presented on a 3101, storage requirements and internal conversion
time is reduced when you select only the subroutine support that processes 3101 images.

An EXTRN statement must be coded for each subroutine name that your program references.
You must link-edit the subroutines with your application program. $AUTO,ASMLIB should be
specified as the autocall library to automatically include the screen formatting subroutines. See
Chapter 5, “Preparing an Object Module for Execution”for details on the AUTOCALL feature
of SEDXLINK.

The CALL syntax for the subroutines should be coded exactly as shown. Where an address
argument is required by the subroutine, the label of the variable enclosed in parentheses causes
the address to the passed (see the CALL instruction in the Language Reference).

If an error occurs, the terminal I/O return code will be in the first word of the task control block
(TCB). These errors can come from instructions such as PRINTEXT, READTEXT, and
TERMCTRL.

$IMOPEN Subroutine

PG-282

SC34-0438

The $IMOPEN subroutine reads the designated image from disk or diskette into your program
buffer. You can also perform this operation by using the DSOPEN subroutine or defining the
data set at program load time, and issuing the disk READ instruction. Refer to the section
“Screen Image Buffer Sizes” on page PG-288 to determine the size of the buffer. $IMOPEN
updates the index word of the buffer with the number of actual bytes read. To access it code
buffer-4.

SIMAGE Subroutines (continued)

label CALL $IMOPEN, (dsname), (buffer),(type),
P2= P3=,P4=
Required: dsname,buffer
Defaults: type=C’'4978’
Indexable: None
Operands Description
dsname The label of a TEXT statement which contains the name of the screen image
data set. A volume label can be included, separated from the data set name by a
comma.
buffer The label of a BUFFER statement allocating the storage into which the image

data will be read. The storage should be allocated in bytes, as follows:

label BUFFER 1024 ,BYTES

type The label of a DATA statement that reserves a 4-byte area of storage and
specifies the type of image data set to be read. Specify one of the following

types:

C'4978’ An image data set with a 4978/4979 terminal format is read. If type
is not specified, C‘4978’ is the default.

c'3101° An image data set with a 3101 terminal format is read.

c An image data set whose format corresponds with the type of
terminal enqueued. If neither a 4978/4979 or 3101 is enqueued
(ENQT), a 4978 image format is assumed.

Px Parameter naming operands. See the CALL instruction and chapter 1 in the
Language Reference.

The following is an example of $SIMOPEN:

CALL $IMOPEN, (IMGDS) , (IMGBUFF) , (IMGTYP)

IMGDS TEXT ' IMGDS ,MYVOL'
IMGBUFF BUFFER 1024,BYTES
IMGTYP DATA c'3101"

Appendix C. Static Screens and Device Considerations PG-283

Static Screens and Device Considerations

$IMAGE Subroutines (continued)

S$IMOPEN Return Codes

The following are the return codes (returned in taskname+2) from the $SIMOPEN subroutine.

Code Condition

Successful completion

Disk 1/0 error

Invalid data set name

Data set not found

Incorrect header or data set length
Input buffer too small

Invalid volume name

No 3101 image available

Data set name longer than eight bytes

1
ONOODWN =

$IMDEFN Subroutine

The $IMDEFN subroutine is used to construct an IOCB for a formatted screen image. The
IOCB can also be coded directly, but the use of SIMDEFN allows the image dimensions to be
modified with the $IMAGE utility without requiring a change to the application program.
$IMDEFN updates the IOCB to reflect OVFLINE=YES. Refer to the TERMINAL
configuration statement in the /nstallation and System Generation Guide for a description of the
OVFLINE parameter.

Once an IOCB for the static screen has been defined, the program can then acquire that screen
through ENQT. Once the screen has been acquired, the program can call the $IMPROT
subroutine to display the image and the $IMDATA subroutine to display the initial unprotected

fields.
label CALL SIMDEFN, (iocb), (buffer), topm, leftm,
P2=,P3=,P4=,P5=
Required: iocb,buffer
Defaults: None
Indexable: None
Operands Description
iocb The label of an IOCB statement defining a static screen. The IOCB need not

specify the TOPM, BOTM, LEFTM nor RIGHTM parameters; these are “filled
in” by the subroutine. The following IOCB statement would normally suffice:

label 1IOCB terminal,SCREEN=STATIC

PG-284 5C34-0438

SIMAGE Subroutines (continued)

buffer The label of an area containing the screen image in disk storage format. The
format is described in the section “Screen Image Buffer Sizes” on page PG-288.

topm This parameter indicates the screen position at which line 0 will appear. If its
value is such that lines would be lost at the bottom of the screen, then it is forced
to zero. This parameter must equal zero for all 3101 terminal applications. The
default is also zero.

leftm This parameter indicates the screen position at which the left edge of the image
will appear. If its value is such that characters would be lost at the right of the
screen, then it is forced to zero. This parameter must equal zero for all 3101
terminal applications. The default is also zero.

Px Parameter naming operands. See the CALL instruction and Chapter 1 in the
Language Reference.

The following is an example of $SIMDEFN:

ENQT IMGIOCB
CALL $IMDEFN, (IMGIOCB) , (IMGBUFF),0,0
IMGIOCB IOCB SCREEN=STATIC

IMGBUFF BUFFER 1024,BYTES

$IMPROT Subroutine

This subroutine uses an image created by the $IMAGE utility to prepare the defined protected
and blank unprotected fields for display. At the option of the calling program, a field table can
be constructed. The field table gives the location (LINE and SPACES) and length of each
unprotected field.

Upon return from $IMPROT, your program can force the protected fields to be displayed by
issuing a TERMCTRL DISPLAY. This is not required if a call to $IMDATA follows because
‘$IMDATA inherently forces the display of screen data.

All or portions of the screen may be protected after SIMPROT executes. Because the operator
cannot key data into protected fields, subsequent read instructions (such as QUESTION,
GETVALUE, and READTEXT) should be directed to unprotected areas of the screen, or the
protected areas should be erased.

Appendix C. Static Screens and Device Considerations PG-285

Static Screens and Device Considerations

SIMAGE Subroutines (continued)

PG-286

SC34-0438

label CALL $IMPROT, (buffer),(ftab),P2=,P3=
Required: buffer,ftab (see note)
Defaults: None
Indexable: None
buffer The label of an area containing the screen image in disk storage format. The format

is described in the section ‘“Screen Image Buffer Sizes” on page PG-288.

ftab The label of a field table constructed by $IMPROT giving the location (lines,
spaces) and size (characters) of each unprotected data field of the image.

Note: The ftab operand is required only if the application executes on a 3101 in
block mode or if a user buffer is used in $SIMDATA.

Px Parameter naming operands. See the CALL instruction and Chapter 1 in the
Language Reference.

The field table has the following form:

label-4 number of fields
label-2 number of words
label line *FIELD1 (one word)
spaces (one word)
size (one word)
label+6 line * FIELD 2
spaces
size
*
*
*
label+6(n-1) line * FIELD n
spaces
size

The field numbers correspond to the following ordering: left to right in the top line, left to right
in the second line, and so on to the last field in the last line. Storage for the field table should be
allocated with a BUFFER statement specifying the desired number of words using the WORDS
parameter. The buffer control word at label-2 will be used to limit the amount of field
information stored, and the buffer index word at buffer-4 will be set with the number of fields
for which information was stored, the total number of words being three times that value. If the
field table is not desired, code zero for this parameter.

S$IMAGE Subroutines (continued)

The following is an example of $IMPROT:

CALL $IMPROT, (IMGBUFF) , (FTAB)
PRINTEXT FTAB,SPACES=FTAB+2 POSITION CURSOR
READTEXT INPUT,FTAB+3 OPERATOR INPUT
IMGBUFF BUFFER 1024 ,BYTES
FTAB BUFFER 3,WORDS
INPUT TEXT LENGTH=20

$IMPROT Return Codes

The following are the return codes (returned in taskname+2) from the $SIMPROT subroutine.

Code Condition

-1 Successful completion
9 Invalid format in buffer
10 Ftab truncated due to insufficient buffer
size

11 Error in building ftab from 3101 format;
partial ftab created

$IMDATA Subroutine

$IMDATA can be called to display the initial data values for an image which is in disk storage
format. $IMDATA is used:

« To display the unprotected data associated with a screen image, if the content of the buffer
is a screen format retrieved via $SIMOPEN.

o To “scatter write” the contents of a user buffer to the input fields of a displayed screen
image.

If the buffer is retrieved with $IMOPEN, the buffer begins with either the characters ‘IMAG’ or
‘IM31’ and the buffer index (buffer-4) equals the data length excluding the characters ‘IMxx’.

A user buffer can be specified containing application-generated data. Set the first four bytes of
the buffer to ‘USER’ and set the buffer index (buffer-4) to the data length excluding the
characters ‘USER’.

All or portions of the screen may be protected after SIMDATA executes. Because the operator
cannot key data into protected fields, subsequent read instructions (such as QUESTION,
GETVALUE, and READTEXT) should be directed to unprotected areas of the screen, or the
protected areas should be erased.

Appendix C. Static Screens and Device Considerations ~PG-287

Static Screens and Device Considerations

$IMAGE Subroutines (continued)

Required: buffer,ftab (see note)
Defaults: None
Indexable: None

buffer The label of an area containing the image in disk-storage format.

ftab The label of a field table constructed by $SIMPROT giving the location
(lines,spaces) and size (characters) of each unprotected data field of the image.

Note: The ftab operand is required only if the application executes on a 3101 in
block mode or if a user buffer is used in SIMDATA.

Px Parameter naming operands. See the CALL instruction and Chapter 1 in the
Language Reference.

The following is an example of SIMDATA.:

CALL $IMDATA, (IMGBUFF) , (FTAB)

PRINTEXT FTAB,LINE=FTAB, SPACES=FTAB+2 POSITION CURSOR
IMGBUFF BUFFER 1024,BYTES
FTAB BUFFER 300, WORDS

$IMDATA Return Codes

The following are the return codes returned (returned in taskname+2) from the $IMDATA
subroutine:

Code Condition

-1 Successful completion
9 Invalid format in buffer

Screen Image Buffer Sizes

PG-288

SC34-0438

Under normal circumstances the size of the disk buffer can vary between 256 and 3096 bytes.
Because data compression is used in storing the images, many images will require only 512
bytes, and 1024 bytes will be adequate for typical applications using 4978/4979 images. 3101
data stream images are much larger.

S$IMAGE Subroutines (continued)

The $IMAGE utility tells you the required buffer sizes for the 4978 and 3101 buffers. If your
application program will run on either type of terminal, use the larger of the two buffer sizes.

The display subroutines normally write images to the terminal in line-by-line fashion.
Performance can be improved by providing a terminal buffer large enough to contain multiple
lines. Since the display subroutines perform concatenated write operations whenever possible,
using a larger buffer results in fewer such operations and, therefore, faster generation of the
display image.

For example, for a full screen image (24 x 80), a time vs. space trade-off can be made by
choosing a buffer size that is a multiple of 80 bytes (1 line), up to a maximum of 1920 bytes. A
temporary buffer can be defined by coding the BUFFER = parameter on the IOCB which is
used to access the screen. This buffer should be unique and should not be confused with the
disk image buffer.

Example of Using $IMAGE Subroutines

The following program shows the $SIMAGE subroutines in a general application program.
Under direction of the terminal operator, this program displays on a 4978, 4979 or 3101 any
image stored on disk. For each image, a field table (ftab) is constructed and used to modify
initial data values.

In this example, use of the field size from the field table is for illustrative purposes only. Each
unprotected output operation is terminated by the beginning of the next protected field, unless
MODE=LINE is coded.

Additional examples on the use of the $IMAGE subroutines are in the appendix of the Language
Reference.

Appendix C. Static Screens and Device Considerations PG-289

Static Screens and Device Considerations

$IMAGE Subroutines (continued)

PG-290

SC34-0438

IMDISP

*

*

PROGRAM BEGIN

EXTRN $IMOPEN, $ IMDEFN, $IMPROT, $ IMDATA

GET TERMINAL NAME FOR SCREEN PRINTOUT

READTEXT IMAGE, 'TERMINAL:

GET IMAGE DATA SET NAME

READTEXT DSNAME, 'DATA SET:

OPEN IMAGE DATA SET

' , PROMPT=COND

CALL $IMOPEN, (DSNAME) , (DISKBFR)

MOVE CODE, IMDISP+2
IF CODE, NE, -1

* SAVE RETURN CODE
* CHECK RETURN CODE FOR ERRORS

PRINTEXT '@OPEN ERROR CODE'

PRINTNUM CODE
GOTO NEXT
ENDIF

CONSTRUCT IOCB

* PRINT ERROR CODE
* ASK IF TRY AGAIN

CALL $IMDEFN, (IMAGE) , (DISKBFR),0,0

ENQT IMAGE
TERMCTRL BLANK

%*

* O X ¥

ACQUIRE STATIC SCREEN
BLANK SCREEN

WRITE PROTECTED FIELDS
AND BUILD FIELD TABLE
AT FTAB

$IMAGE Subroutines (continued)

* *

* ¥ ¥ *

*

*

B1
B2
REPBFR

DISKBFR

IMAGE
CODE
FTAB
LINE

DISPLAY PROTECTED FIELD DATA ON
TERMINAL SCREEN

CALL $IMPROT, (DISKBFR) , (FTAB)

DISPLAY DEFAULT DATA ON
TERMINAL SCREEN

CALL $IMDATA, (DISKBFR), (FTAB)

¥ SET CURSOR AT 1ST FIELD
PRINTEXT LINE=FTAB,SPACES=FTAB+2
TERMCTRL DISPLAY * UNBLANK SCREEN

DEQT * RETURN TO THIS TERMINAL
WAIT KEY ¥ WAIT FOR OPERATOR

ENQT IMAGE ¥ BACK TO TARGET TERMINAL
TERMCTRL BLANK * BLANK SCREEN

DISPLAY #'S IN DATA FIELDS

ENQT IMAGE * ACQUIRE STATIC SCREEN
CALL $IMDATA, (REPBFR) , (FTAB)

DEQT

WAIT KEY * ALLOW VIEWING TIME
ENQT IMAGE * ACQUIRE STATIC SCREEN
ERASE LINE=0,MODE=SCREEN, TYPE=ALL * ERASE
DEQT * BACK TO ROLL SCREEN
QUESTION 'ANOTHER IMAGE? ',YES=BEGIN

PROGSTOP

TEXT LENGTH=16 * DATA SET NAME

BUILD A BUFFER OF #'S FOR A SECOND DATA
FIELD DISPLAY

DC F'72"' ¥ B1 AND B2 INDEX REPBFR
DC F'76' * THAT HIGHLIGHTS THE DATA
DC C'USER' * FIELDS FOR USER

DC C'#### i ## AR HHAHH A AR R AR A AR AR H AR AR’
DC C'#####4H#HHHHHHHHHHHHHHHHRH SRR R AR SRR
BUFFER 1064,BYTES ¥ DISK BUFFER

DC X'0808' *¥* TEXT CONTROL FOR NAME
IOCB SCREEN=STATIC ¥ TIOCB FOR IMAGE

DC F'0' * RETURN CODE

BUFFER 300

TEXT LENGTH=80

ENDPROG

END

Appendix C. Static Screens and Device Considerations

PG-291

Static Screens and Device Considerations

$IMAGE Subroutines (continued)

Reading Modified Data

Reading modified data is supported on the 4978 Display Station and the 3101 Display Terminal;
it is not supported on the 4979.

Reading Modified Data on the 4978

Both protected and unprotected fields on the 4978 are defined as a set of contiguous characters
that may span line boundaries. A protected field ends when an unprotected field is encountered.
Similarly, an unprotected field ends when a protected field is encountered. Neither an
unprotected nor a protected field necessarily ends at an EDX partial screen boundary.

An unprotected field becomes a modified field when any character within the field is modified
by the operator. A modified field is read using the READTEXT instruction with
TYPE=MODDATA. Reading the field leaves its modified status unchanged. A modified field
becomes an unmodified field by either writing or erasing all the characters in the field. For
additional information, refer to /BM Series/1 4978-1 Display Station (RPQ D02055) and Attachment (RPQ
D02038), General Information, GA34-1550.

Reading Modified Data on the 3101

PG-292

On the 3101, an unprotected field is considered to be a modified field when:
« Any character within the field is changed by the operator

o Certain ERASE instructions are executed

« The modified data tag (MDT) in the attribute byte is on

The modified data tags are reset when the data is read by a READTEXT TYPE=MODDATA
instruction or transmitted by pressing the SEND key. To return a protected field using
READTEXT TYPE=MODDATA, design the field with the modified data tag set on in the
attribute byte.

To read all the modified fields from a screen, the operator must position the cursor on a
protected line which does not contain any modified fields. If the cursor is not on such a line and
the operator presses the enter key to satisfy a WAIT KEY instruction, the MDTs on that line are
reset. A subsequent READTEXT would therefore not return to the program the modified data
on that line. If a PF key instead of the SEND key is used to satisfy the WAIT KEY, the MDTs
are not changed.

The IOCB BUFFER= parameter or the CCB buffer must be large enough to contain the
received 3101 data stream prior to editing of the ESC sequences (four bytes for each modified
field). If the CCB buffer is not large enough, use the IOCB buffer.

SC34-0438

Reading Modified Data (continued)

SUNPACK and $PACK Subroutines

The $UNPACK and $PACK subroutines move and translate compressed/noncompressed byte
strings. These subroutines are used internally by the $IMPROT and $IMDATA subroutines as
well as by the $SIMAGE utility. However, they can also be called directly by an application
program.

The program preparation needed for applications calling §UNPACK and $PACK is similar to
that needed for the SIMAGE subroutines. An EXTRN statement is required in the application
and the autocall to $AUTO,ASMLIB is required in the link-control data set (input to
$EDXLINK).

$UNPACK Subroutine

This subroutine moves a series of compressed and noncompressed byte strings and translates the
byte strings to noncompressed form.

label CALL SUNPACK,source,dest,P2=,P3=
Required: source,dest
Defaults: None

Indexable: None

source The label of a fullword containing the address of a compressed byte string (see
Appendix D for the compressed format). At completion of the operation, this
parameter is increased by the length of the compressed string.

dest The label of a fullword containing the address at which the expanded string is to
be placed. The length of the expanded string is placed in the byte preceding this
location. The SUNPACK subroutine can, therefore, conveniently be used to
move and expand a compressed byte string into a TEXT buffer.

Appendix C. Static Screens and Device Considerations PG-293

Static Screens and Device Considerations

SUNPACK and $PACK Subroutines (continued)

The following example shows using the §UNPACK subroutine to unpack the compressed
protected data of a $IMAGE screen format:

MOVEA
MOVEA

MOVE

MOVE

DO
CALL
MOVE

ADD
ENDDO

OUTAREA DATA
*
CPOINTER DATA
LINECNT DATA
STRGPTR DATA
*

STRING TEXT
*

CBUF BUFFER

$PACK Subroutine

PG-294

#1,0UTAREA
CPOINTER, CBUF+12

LINECNT,CBUF+4
MOVELNG , CBUF+6
LINECNT

POINT TO EXPAND BUFFER

POINT TO FIRST BYTE OF
COMPRESSED DATA

INIT DO LOOP CTR

INIT MOVE LENGTH CODE

$UNPACK, CPOINTER, STRGPTR UNPACK COMPRESSED DATA
(O,#1),STRING, (0,BYTE) ,P3=MOVELNG MOVE

#1,MOVELNG

CL1920" "
A'O'
F'0'
A (STRING)
LENGTH=80

1000, WORDS

UNPACKED DATA

WILL CONTAIN ALL OF THE
UNPACKED DATA

POINTER TO COMPRESSED DATA

NBR OF FORMAT LINES TO UNPACK

ADDR OF TEMP LOCATION TO
RECEIVE UNPACKED DATA

TEMP LOCATION TO RECEIVE
UNPACKED DATA

CONTAINS $IMAGE FORMAT
WITH PACKED DATA

This subroutine moves a byte string and translates it to compressed form.

label CALL $PACK,source,dest, P2=,P3=
Required: source,dest
Defaults: None
Indexable: None
source The label of a fullword containing the address of the string to be compressed.

The length of the string is taken from the byte preceding this location, and the
string could, therefore, be the contents of a TEXT buffer.

dest The label of a fullword containing the address at which the compressed string is
to be stored. At completion of the operation, this parameter is incremented by
the length of the compressed string.

SC34-0433

4978/4979 Static Screen Sample Program

Line-oriented input/output instructions provide a straightforward way to construct and read
data from static screens. However, when individual data fields on the 4978/4979 are accessed
frequently, excessive screen flicker can result. This problem can be eliminated by transferring
an entire screen image to the display with one I/O operation. Figure 12 shows this technique.

The program accesses the top six lines of a static screen and initially formats the screen with a
sequence of protected fields. An array of integers is displayed on lines 0—5 of the screen and a
pause is executed to allow the operator to enter a new set of values in corresponding positions of
lines 6—~11. The new values are then displayed on lines 0—5 of the screen.

In this program, terminal I/O operations are performed through concatenation of TEXT strings.
If the application requires more complex formatting of the screen image, or if input of more than
254 bytes at a time is necessary, then direct access to the buffer is appropriate. See the
PRINTEXT and READTEXT instructions in the Language Reference for details.

DISPLAY PROGRAM BEGIN

SCREEN IOCB SCREEN=STATIC,BOTM=11, c
BUFFER=BUFF , RIGHTM=959
I DATA F'0'
BUFF BUFFER 960, BYTES
DATA X'0202"
NULLS DATA X'0000"
NUMS DATA 48F'0"
VALS TEXT LENGTH=254
BEGIN ENQT SCREEN
ERASE TYPE=ALL, LINE=0
DO 96, INDEX=I

PRINTEXT 'FIELD',PROTECT=YES
PUTEDIT FORMAT1,VALS, ((I)),PROTECT=YES

PRINTEXT ' ',PROTECT=YES
PRINTEXT NULLS,PROTECT=YES
ENDDO
PRINTEXT LINE=0
WRITE PUTEDIT FORMAT1,VALS, ((NUMS,48)), C
ACTION=STG

PRINTEXT VALS,MODE=LINE,LINE=0
PRINTEXT LINE=6,SPACES=8

TERMCTRL DISPLAY
WAIT KEY
GOTO (TRANSFER,QUIT) ,DISPLAY+2

AN =ST=T= == TS Tolo S To o IS
al [~ JIHB[JWIN]—=

Figure 12 (Part 1 of 2). 4978/4979 Static Screen Sample Program

Appendix C. Static Screens and Device Considerations ~PG-295

Static Screens and Device Considerations

4978/4979 Static Screen Sample Program (continued)

PG-296

SC34-0438

m TRANSFER READTEXT VALS,MODE=LINE,LINE=6

GETEDIT FORMAT1,VALS, ((NUMS,48)), C
ACTION=STG
2 9] ERASE LINE=6,MODE=SCREEN, TYPE=DATA
GOTO WRITE
QUIT DEQT
PROGSTOP
FORMAT1 FORMAT (I2)
ENDPROG
END

Figure 12 (Part 2 of 2). 4978/4979 Static Screen Sample Program
The following numbers refer to lines (in the left margin) of the preceding figure:

2] Define the static screen with the terminal I/O buffer to be in the application program at
BUFF, with a length of 960 bytes (half of the 4979 display screen).

Allocate storage for the buffer. Note that in this program the buffer is never accessed
directly; the space is merely allocated here for use by the supervisor.

6} Define a TEXT message consisting of two null characters (EBCDIC code X‘00’).

B B Define the array of integers (initially zero) and the TEXT buffer that will be used for
output of the data in EBCDIC form.

I BB Acquire the terminal, erase all data and establish the screen position for the first I/O
operation. Since several text strings will be concatenated to form the first output line,
the screen position must be established in advance.

B Begin a DO loop to construct the initial screen image. This will consist of 96 protected
fields of the form FIELDxx, where xx is a sequential field number, each followed by one
protected blank and two unprotected data positions. Note the conditions required for
forming a concatenated line: the protect mode of the PRINTEXT instructions must not
change (either all PROTECT=YES or all PROTECT=NO), and no intervening forms
control operations can be executed. The TERMCTRL DISPLAY instruction prints the
contents of the terminal buffer.

Write ‘FIELD’ to the buffer.

=y
w

Convert the sequence number to two EBCDIC characters and write it to the buffer.

Write a protected separation character.

=y
(%)

Write the two null characters to define the data positions. Null characters always
generate unprotected positions on the screen; PROTECT=YES is nevertheless required
here in order to maintain concatenation.

4978/4979 Static Screen Sample Program (continued)

~N N N
(5 W N

N
o

N
~

w w N
— (=) ©O

Write the concatenated line to the display. Any convenient line control operation or the
DEQT instruction will accomplish this.

Convert the integer array to two-character EBCDIC values and store the resulting line in
the TEXT buffer VALS.

Write the values into successive unprotected positions of the display beginning at
LINE=0,SPACES=0. This “scatter write’’ operation is defined by MODE=LINE,;
without MODE=LINE the protected fields of the display would be overwritten.
Define the cursor to be at the first unprotected position.

Display the cursor at its defined position.

Wait for the operator to press an interrupt key.

Go to QUIT if PF1 was pressed. Go to TRANSFER if the ENTER key or any key other
than PF1 was pressed.

Read the updated values entered by the operator in lines 6—11. MODE=LINE
indicates a ‘““scatter read”.

Convert the EBCDIC representations to binary and store the binary values in the array
NUMS.

Erase the unprotected (data) fields in lines 6—11 of the screen.
Repeat.

Release the terminal. The buffer designated in the IOCB will be released and the screen
configuration restored to that defined by the TERMINAL statement.

3101 Static Screens

Summary of Design Considerations

The following list summarizes the items you should consider when designing a static screen
application for the 3101.

The 3101 uses a data stream which is a collection of special characters, commands, and data
which tell the 3101 to do something.

A simple PRINTEXT of ‘HI THERE’ results in a data stream of:

Appendix C. Static Screens and Device Considerations PG-297

Static Screens and Device Considerations

3101 Static Screens (continued)

ESC.Y.ROW.COL.ESC.3.ATTR.HI THERE

where ESC.Y is a set cursor address command followed by row and column position, and
ESC.3 is a start-of-field followed by an attribute byte defining the field.

An attribute byte defines how data will appear on the screen. It occupies one character
position on the screen, and appears as a protected blank.

Special attributes supported by the 3101 are high intensity, low intensity, blinking, and
nondisplay.

TERMCTRL SET,ATTR = sets the attribute byte.

If an attribute is not required, a TERMCTRL SET,ATTR=NO should be done before a
PRINTEXT to a specific X,Y location.

Escape sequences take up space in the buffer. Therefore, it takes more than 1920 bytes to
read a complete screen. Depending on the TERMCTRL SET ATTR= and TREAM=
parameters in effect, a PRINTEXT operation could require the data length plus (7 x #
fields). A READTEXT requires the data length plus (3 x # fields) for TYPE=ALL and
TYPE=DATA, and the data length plus (4 x # fields) for TYPE=MODDATA.

A READTEXT TYPE=DATA reads all unprotected data. If MODE=WORD, fields are
separated by blanks. If MO<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>