
Series/1

SC34-0439-0

Event Driven Executive

Version 4.0

Problem Determination Guide

\ ¢ > >
: Library Guide and Installation and i Operator Commands

CommonIndex System Generation and

Guide Utilities Reference

“— J X 9 & »

c » e » CG ~

Language Communications Messages and

Reference Guide Codes

e | Z RK J C ;

C » 4 \, £ ‘
Operation Guide Event Driven Reference

Language Cards
Programming Guide

Ke 3 KS I XX

‘ \Y~ , ££ >»
Problem Customization Internal

Determination Guide Design

Guide

L J) € DF a

Series/1

SC34-0439-0

Event Driven Executive

Problem Determination Guide

Version 4.0

 f

Problem

Determination

Guide

First Edition (May 1983)

Use this publication only for the purpose stated in the Preface.

Changesare periodically madeto the information herein; any such changeswill be

reported in subsequentrevisions or Technical Newsletters.

It is possible that this material may contain reference to, or information about, IBM

products (machines and programs), programming,or services that are not announced

in your country. Such references or information must not be construed to meanthat

IBM intends to announce such IBM products, programming, or services in your

country.

Publications are not stocked at the address given below. Requests for copies of IBM

publications should be made to your IBM representative or the IBM branch office

serving yourlocality.

This publication could contain technical inaccuracies or typographical errors. A form

for readers’ commentsis provided at the back of this publication. If the form has

been removed, address your comments to IBM Corporation, Information

Development, Department 27T, P. O. Box 1328, Boca Raton, Florida 33432. IBM

may useordistribute any of the information you supply in any wayit believes

appropriate without incurring any obligation whatever. You may, of course, continue

to use the information you supply.

© Copyright International Business Machines Corporation 1983

This book is a guide to assist you in determining the causes of problems you encounter while

using the system. It explains how to use manyof the diagnostic tools available to help identify

the problem. Use this book when the Messages and Codes cannot point youto the source of the

problem orthe corrective action to take.

This book is intended for anyone whouses the Series/1 and encounters a hardware or software

problem. The Operation Guide describes how you can recognize symptomsof the problems

discussed in this book.

This book contains 9 chapters and 2 appendixes:

e Chapter 1. Some Things You Should Know About Problem Determination overviews the

process of problem determination.

e Chapter 2. Determining the Problem Type presents some common problem symptomsthat can

help you determine the type of problem you encounter.

e Chapter 3. Analyzing and Isolating an IPL Problem describes some proceduresthat can help

identify the cause of an IPL failure.

About This Book ili

Chapter 4. Analyzing and Isolating Run Loops explains how to pinpoint the cause of run loop

in an application program.

Chapter 5. Analyzing and Isolating a Wait State describes how to determine the cause of a

wait state during normal system operation.

Chapter 6. Analyzing and Isolating a Program Check discusses how toisolate the cause of a

system or application program check.

Chapter 7. Analyzing a Failure Using a Storage Dump describes howto to read a stand-alone

or $TRAP storage dumptoisolate failures.

Chapter 8. Tracing Exception Information explains how you canisolate the cause of

exceptions by analyzing the software trace table CIRCBUFF.

Chapter 9. Recording Device I/O Errors discusses the use of the $LOGutility to record

device I/O errors.

Appendix A. How to Use the Programmer Console describes the functions of the programmer

console and how you can use it during problem analysis.

Appendix B. Conversion Table contains a conversion table for hexadecimal, binary, EBDCIC,

and ASCII equivalents of decimal values.

Several aids are providedto assist you in using this book:

A Glossary that defines terms and acronymsusedin this book and in other EDX library

publications.

An Index of topics covered in this book.

B ~6 2S So. 1 Fe tobe Se FF BEM) ee ee Bre 2

A Ce TO TAS UWorearBO) “eg Geteehe Eb See EeeGB Gl a

iv

SC34-0439

Refer to the Library Guide and Common Index for information on the design and structure of the

Event Driven Executive, Version 4.0 library and for a bibliography of related publications.

You can inform IBM of any inaccuracies or problems you find with this book by completing and

mailing the Readers’s Comment Form provided in the back of the book.

If you have a problem with the Series/1 Event Driven Executive services, you shouldfill out an

authorized program analysis report (APAR) form as described in the JBM Series/1 Authorized

Program Analysis Report (APAR) Users’ Guide, GC34-0099.

About This Book V

vi SC34-0439

Some Hintstto Determine the Possible Problem Type PD-3

Can You Operate the System After Pressing the Load Button? PD-3

Is the Run Light On and Solidly Lit? PD-4

Is the System or a Program Idle While You Expect Activity? PD-4

Did the System Issue a Program Check Message? PD-4

Chapter 3. Analyzing and Isolating an (PL Problem PD-5

What You Should Check First PD-5

Howto Recognize a Problem with the IPL Device PD-6

Howto Correct the IPL Text PD-6

Howto Reload the Supervisor PD-7

Determining the Failure in a Tailored Supervisor PD-7

Detecting an IPL Stop Code Error PD-8

Isolating a Failing Terminal Using the Terminal Control Block PD-9

Analyzing the INITTASK Task Control Biock PD-10

Chapter 4. Analyzing and Isolating Run Loops PD-17
Howto Identify a"Program iina‘Run Loop PD-18

Using the Programmer Console to Identify a Looping Program PD-18

Using $C to Identify a Looping Program PD-19

Using $DEBUGtoIsolate a Run Loop PD-19
Determining the Starting and Ending Points of the Loop PD-20

Some Common Causes of Run Loops PD-23

Using the Compiler Listing to Locate the Loop PD-23

Howto Detect Loops Caused by Device Interrupts PD-26

Contents Vii

Viil SC34-0439

Chapter 5. Analyzing ting PD

Howto Find the Address of the Waiting Instruction Using $DEBUG PD-28

Analyzing the Instruction that Caused the Wait State PD-29

Analyzing an ENQ Instruction PD-29

Common Causes of a Program Wait Using QCBs PD-32

Analyzing an ENQTInstruction PD-32

Analyzing a WAIT Instruction PD-33

Common Causes of a Program Wait Using ECBs PD-34

Other Possible Causes of a Wait State PD-35

 Chapter 6. Analyzing and Isolating a Progr

Howto Interpret the Program Check Message PD-38

Interpreting the Standard Program Check Message PD-38

Howto Interpret the Processor Status Word PD-41

Interpreting the Processor Status Word Bits PD-41

Interpreting the Program Check Message from $$EDXIT PD-44
Howto Analyze an Application Program Check PD-48

Some Common Causes of Application Program Checks PD-53

Howto Analyze a System Program Check PD-54

Analyzing the Program Causing the System Program Check PD-54

Chapter 7. Analyzing a Failure Using a Storage Dump PD-57

Interpreting the Dump PD-58

Hardware Level and Register Contents PD-58

Floating-Point Registers and Exception Information PD-62

Segmentation Registers PD-64

Storage Map PD-66

Level Table and TCB Ready Chain PD-68

Terminal Device Information PD-69

Disk, Diskette, and Tape Device Information PD-70

EXIO, BSC, and Timer Information PD-72

Storage Partition Information PD-73

Analyzing a Wait State PD-74

Analyzing a Program Check PD-80

Analyzing a Run Loop PD-85

 Chapter 8. Tracing Exception Information PD-

Displaying the Software Trace Table PD-88

Software Trace Table Format PD-90

Control Information Format PD-90

Exception Entry Format PD-92

Finding the Program Load Point Address PD-95

Chapter 9. Recording Device [/OErrors PD-97

Allocating tthe Log Data Set PD-98

Activating Error Logging PD-99

Printing or Displaying the Log Information PD-100

Interpreting the Printed Output PD-102

Appendix A. Howto Use the Programmer Console PD-105

Reading the Console Indicator Lights PD-106

Displaying Main Storage Locations PD-107

Storing Data into Main Storage PD-108

Displaying Register Contents PD-109

Storing Data into Registers PD-109

Stopping at a Storage Address PD-110

Stopping When an Error Occurs PD-110

Executing OneInstruction at a Time PD-111

8. Conversion Table PD-113

Glossary of Terms and Abbreviations PD-119

Contents 1x

X $C34-0439

W
C
O
I
D
K
N
P
W
N
- . Sample INITTASKregister contents PD-14

. Sample program compiler listing PD-20
Sample trace addresses from $DEBUG PD-22
Sample processor status word bit settings PD-41

. Processorstatus word bit assignments PD-42

Hardwarelevel and register contents PD-58
. Floating-point registers and exception information PD-62
. Segmentation registers of a four-partition system PD-64
. Segmentation registers with supervisor mappedacrosspartitions PD-65

. Storage map PD-66

. Level table and task ready chain PD-68

. Terminal device information PD-69

. Disk, diskette, and tape device information PD-70

. EXIO, BSC,and timer device information PD-72

. Sample contents of a partition PD-73

. Sample storage map for a wait state PD-75

. Sample storage dumpfor a wait state PD-77

. Compilerlisting of wait state program PD-78

. Register contents from program check PD-80

. Storage map andlevel table for program check PD-81

. Compilerlisting of program check program PD-83

. Sample software trace table entries PD-89

. Control information example PD-90

. Example of allocating a log data set PD-98

. Example of starting I/O error logging PD-99

. Exampleof printing the log data set PD-100

. Example of printed log information PD-102

. Indicator lights — example 1 PD-106

. Indicator lights — example 2 PD-106

. Indicator lights — example 3 PD-107

Figures xi

Xli SC34-0439

Problem determination involves analyzing a software or hardware error. The system can

indicate in various ways that a problem exists. The two most commonwaysare bydisplaying

messages on a terminal or by returning a return code to your application program. By using the

Messages and Codes manual before you use this book, you may be able to determine the type of

problem you have andthe corrective action to take. If, however, you cannot determine the type

of problem you have or howto correctit, use this book.

This book can help youisolate the cause of an error and indicate what actions you needto take

to correct the error.

The cause of an error may not always be immediately apparent. An error may occur in an

IBM-supplied software component, a hardware unit, or in an application program. A software

componentrefers to programs or program modules such as $EDXASM, $S1ASM, $EDXLINK,

and the rest of the software youinstall on your Series/1. A hardware unit refers to a particular

device attached to your Series/1. Application programs are programs you write.

Some problems you encounter may require youto place a service call. However, by using this

book before youplace a call for service:

e You might be able to correct the problem and continue operations.

e You might be able to circumvent the problem while you arrangefor servicing.

Chapter 1. Some Things You Should Know AboutProblem Determination PD-1

PD-2 SC34-0439

¢ You mayfind that the problem is caused by equipment or programming other than that

supplied by IBM.

e« The information you gather can reduce the time it takes to correct the problem if you docall

for service.

EDXprovidesvariousaids, such as utilities and operator commands,that help you to pinpoint

the source of a problem. The programmerconsole, an optional hardware feature on the

Series/1, enables you perform more extensive analysis.

Some of the topics presented in this book show the use of the programmerconsole in analyzing

problems. A detailed explanation of using programmerconsole is described in Appendix

A, ‘“‘How to Use the Programmer Console’”’ on page PD-105.

To start the problem investigation, turn to Chapter 2, “Determining the Problem Type”’ on page

PD-3.

Before you begin analyzing a problem, you must determine the type of problem you have. Some

problem types you encounter may be very apparent while others may not be so apparent. The

following section presents some problem indicators and symptomsto help you determine the

problem type.

To help you determine your problem type, review the following problem indicators and

symptoms. After reviewing these items and finding the indicator or symptom that best describes

your problem, turn to the chapter indicated. The chapter you are referred to will help you to

further analyze andisolate the problem.

Whenyoupress the Load button on your Series/1, the system performstheinitial program load

(IPL) process. When the IPL process completes, the system is ready for use. If you cannot use

the system after pressing the Load button, refer to Chapter 3, ‘“‘Analyzing and Isolating an IPL

Problem” on page PD-5.

Chapter 2. Determining the Problem Type PD-3

Did the SystemIssue a Program Check Message?

PD-4

2 System or a Program Idle While

SC34-0439

Whenthe Series/1 performs an operation, the Run light is on. Typically, the Run light flickers

on and off during the operation. However, if you observe that the Run light remains on with a

steady glow, the system or your program may bein a loop. If this is your problem symptom,

Chapter4, ‘Analyzing and Isolating Run Loops” on page PD-17 will help you isolate this

problem type.

Es

You Expect Activity?

Whenthe Series/1 is not performing any operation or servicing an interrupt, the Wait light is on.

The Wait light indicates the system is inactive. If, however, you notice the Wait light on solidly

while programs should be active, the system or a program is probably in a wait state. Another

symptom indicating a wait state is that you do not receive the caret (>) after you press the

attention key on your terminal. If your system or program has these symptoms, see Chapter

5, “Analyzing and Isolating a Wait State’ on page PD-27.

Whenthe system encounters an abnormal condition,it issues a program check message. Two

kinds of program checks can occur: a system program check or an application program check.

The system displays the program check message on the $SYSLOGdevice.

If you observe a program check message, Chapter 6, ‘“‘Analyzing and Isolating a Program

Check”’ on page PD-37 can help you isolate the problem.

If your system fails to IPL correctly, there are a numberof possible causes. This chapter

presents some problem symptomsand proceduresthat can help you identify the failing area and

provide help in solving the problem.

Before you begin troubleshooting the problem, review the items in the following list. By

ensuring that these items are correct, you maybe able to pinpoint the problem immediately:

e Is the power switch in the ON position for all devices?

e Is the IPL Source switch in the correct position for the device from which you are trying to

IPL?

e For diskette IPL, is the [PLable diskette inserted correctly?

e For diskette IPL, is the door on the diskette device closed?

e If this is a new installation (EDXis not installed) and you are trying to IPL the starter

"system, verify with your service representative that the devices are at the addresses

supported in the starter system. Refer to the Program Information Department (PID)

directory or the Installation and System Generation Guide for the device addresses.

Chapter 3. Analyzing and Isolating an IPL Problem PD-5

¢ If EDX is already installed and the supervisor previously IPLed, does a backup supervisor (or

starter system) IPL from the alternate IPL device? If the alternate device IPLs, go to the

section ““How to Recognize a Problem with the IPL Device” on page PD-6.

e If the starter system IPLs but your tailored supervisor does not IPL, go to the section

‘Determining the Failure in a Tailored Supervisor’ on page PD-7.

If the previous items do not point out the problem, the problem maylie in the IPL device, IPL

text, the supervisor, or other attached devices. The following sections describe how toisolate

problemsin thesethreeareas.

If the Load light remains on and you cannot IPL from the primary andthe alternate IPL device

and you have ensuredthat all the items in the section ““What You Should Check First’? on page

PD-5are correct, call your service representative for corrective action. This symptom indicates

that the hardware could not read the IPL text (bootstrap program) from the IPL device. If you

have a programmerconsole, you mayalso notice that the console lights indicate either X‘EO’ or

X‘ES5’. The value X‘EO’ indicates that there is a hardware problem with the IPL device. The

value X‘ES’ mayindicate either a hardware or software problem.

If you can IPL from one IPL device, the following procedures can help you determineif the

failure is due to:

e No IPL text written when the disk or diskette wasinitialized

e Defective IPL text

e IPL text points to an invalid supervisor

e Hardware problem on that IPL device

Use the following procedureto correct the IPL text:

1. Set the IPL Source switch for an IPL from the device from which you can IPL.

2. Press the Load button to IPL the system.

3. Load $INITDSKandrewrite the IPL text (II command)to the failing IPL device.

4. Set the IPL Source switch to IPL from thefailing IPL device.

5. Press the Load button to IPL the system.

PD-6 SC34-0439

If this procedure does not correct the IPL problem, the problem may be with the supervisor on

the failing IPL device orstill be a hardware problem. By reloading the supervisor, you may

correct the problem. Howto dothis is described next.

Use the following procedure to reload the supervisor:

1.

2.

5.

6.

Set the IPL Source switch for an IPL from the device from which you can IPL.

Press the Load button to IPL the system.

Load $COPYUT1 and copy (CM command)the IPLable supervisor from the current IPL

device to the failing IPL device. Copy also $LOADERandanyinitialization modules you

require.

Load $INITDSKandrewrite the IPL text (II command) to point to the supervisor you

copied to the failing IPL device.

Set the IPL Source switch to IPL from the failing IPL device.

Press the Load button to IPL the system.

If this procedure does not correct the IPL problem, you have a hardware problem with that IPL

device. Call your service representative for corrective action.

Review the following items before you begin analyzing the failure:

Did you receive a -1 completion code (successful) from the system generation assembly and

link-edit?

Did youinclude all the modules you need (on the INCLUDEstatements) to support the

attached devices?

Is $EDXNUCthefirst seven characters of the $XPSLINK output?

Doesthis tailored supervisor fail to IPL, although it did IPL previously? If it did IPL

previously, go to the section ‘‘How to Recognize a Problem with the IPL Device”’ on page

PD-6.

If this tailored supervisor never IPLed, the following sections mayassist you in isolating the

failure. In order to use this information, however, you must have a programmerconsole or

be able to use the $D operator command(in partition 1) after the IPL failure.

Chapter 3. Analyzing and Isolating an IPL Problem PD-7

If you do not have a programmerconsole but can use the $D operator command(in partition 1)

after the IPL failure, go to the section “‘Analyzing the INITTASK Task Control Block” on page

PD-10.

If you have a programmerconsole, begin with the section “Detecting an IPL Stop Code Error.”

If you do not have a programmer console and cannot use $D after the failure, do the following:

1. IPL the starter system.

2. Load $IOTEST andverify all hardware configured and their addresses (LD command).

3. Review the system generation listing and ensurethat all devices are defined correctly and

that all modules required to support those devices are included.

PD-8 SC34-0439

If the system encounters an error during terminal initialization or it encounters an error within

the cross-partition supervisor you are trying to IPL, the error could cause the system to enter a

run loop or a wait state. For example, the error could be caused by a defective attachment card

or perhaps a missing random access memory load module. Whensucherrorsexist, the system

issues a stop code. The stop code can help you identify which areais failing.

This section explains how to determine if the failure is due to a stop code error. You will need a

programmerconsole to perform this step.

To determineif the IPL failed because of a stop code, follow these procedures:

1. Set the IPL Source switch to point to the device from which you will IPL.

2. Set the Mode switch to Diagnostic modeposition.

3. If the IPL is from diskette, insert the IPL diskette and close the door on the diskette device.

4. Press the Load button.

If the system encounters a stop code condition, the processor will stop. The Stop light also

comeson.

5. Press the Op Reg button on the programmerconsole.

After pressing the Op Reg button, the stop code is displayed in the indicator lights. The stop

codeis in the form X‘64nn’. The nn portion indicates the error condition. Refer to the

Messages and Codes manual for an explanation of the stop code and the corrective action.

The next section presents another method you can use to determineif a terminal is the cause of

the failure.

isolating a Faili

| Using the Terminal Control Block

This procedure enables you to determineif the system fails to initialize a terminal. The terminal

control block (CCB) maypoint to the failing terminal. To help you detect if a terminal is

causing the problem, you need the system generation link maplisting for your supervisor. Look

in the link map andfind the address of the entry NEXTERM in module TERMINIT.

Using the programmerconsole, do the following:

1.

2.

t
n

9.

Press the Reset key.

Press the Stop On Address Key.

Enter the address of NEXTERM.

Press the Store key.

p
o
m
m
e
l
,

IPL the system. Each time the processorstops, the terminal whose terminal control block

(CCB) addressis in register 3 (R3) has been successfully initialized.

If the processor does not stop, the failure occurred prior to terminalinitialization. If this is

the case, go to the section “‘Analyzing the INITTASK Task Control Block” on page PD-10.

Whenthe processor stops, press R3 on the programmerconsole to determine which terminal

wasinitialized. The address shown in R3 will match a CCB addressin the section

$EDXDEFof the link map. The nameof the terminal also appears beside the address.

Press Start after checking off the CCB address in yourlink map. The system initializes each

terminal in the order the terminals are specified in $EDXDEFSdata set during system

generation.

If the system then enters a run loop ora wait state, the terminal whose address follows the

last CCB that you checkedoff is probably the cause of the problem.

Ensure that all required initialization modules (if any) for that terminal were included during

system generation. Also check tosee if that terminal is defined correctly on the

TERMINAL statement. If both the terminal and the support modulesare defined correctly,

call your service representative for corrective action on that terminal or attachment.

If the system does not enter a run loop, go to step 6.

If you still cannot identify the cause of the IPL failure using the previous procedure, go to the

section “Analyzing the INITTASK Task Control Block” on page PD-10.

Chapter 3. Analyzing and Isolating an IPL Problem PD-9

The technique discussed in this section requires you to examine the INITTASKtask control

block. By examining this control block, you may be able to identify the cause of the IPL failure.

INITTASKis the label of the task control block (TCB) used by the system initialization

routines. The address of INITTASK (in module EDXSTART)is in the supervisor link map

from system generation.

If you have a programmerconsole, begin with the section “Storing the Address of INITTASK”’

on page PD-11.

If, after the IPL failure has occurred, you can press the attention key enter $D from a terminal

in partition 1, and receive a promptfor input, go to the section “Displaying the INITTASK Task

Control Block with $D.”’

PD-10 SC34-0439

Dothe following when you receive the prompt ENTER ORIGIN:from $D:

1. Enter 0000.

The next prompt, ADDRESS,COUNT.:, asks you for an address and the number of words you

want to display.

2. For ADDRESS,enter the address for INITTASK shownin the supervisor link map.

3. For COUNT,enter the value 14. This value represents the first 14 words in the INITTASK

TCB.

The system then displays the 14 words of information.

4. Recordall the values displayed on the terminal.

5. Reply \ to the prompt ANOTHER DISPLAY?

6. Goto the section “Interpreting the Task Control Block Information” on page PD-12.

After you locate the address of INITTASKin the supervisor link map, do the following at the

programmerconsole:

1. Press the Stop key.

2. Press the AKR key.

3. Enter X‘0’.

4. Press the Store key.

5. Press the SAR key.

6. Enter the address of INITTASK.

~y
/

By displaying the values contained in the INITTASKtask control block, you mayget a clue as to

whatis causing the IPL failure.

The procedure discussed here requires you to display and record the first 14 words of

information in the INITTASK TCB.

To read the first word of the TCB:

1. Press the Main Storage key. The contentsis displayed in the indicatorlights.

2. Record the value displayed in the indicatorlights.

Each time you press the Main Storage Key, a new valueis displayed.

3. Repeat the two previous steps 13 more times to obtain the remaining values in the TCB.

Chapter 3. Analyzing andIsolating anIPL Problem PD-11

PD-12 5C34-0439

rpreting the Task Control Block Inform

Thefirst

(ECB).

tion

three words (words 0—2) of the INITTASK TCB makeupthe event control block

The next 11 words (words 3—13) contain the level status block (LSB) information.

This 14-word area looks as follows:

Word 0—2 ECB

Word 3

Word 4

Word 5

Word 6

Word 7

Word 8

Word 9

Word 10

Word 11

Word 12

Word 13

TAR

AKR

LSR

RO

Ri

R2

R3

R4

R5

R6

R7

The information in the LSB (words 3—13 of the TCB) is what you use to identify the failure.

Since many of the system initialization modules are written in EDL, the register contents usually

indicate the following:

IAR

LSR

The instruction address register (IAR) contains the address of the last machine :

instruction the system executed whenthe failure occurred.

The last 3-hexadecimal digits indicate in which address space operand 1, operand 2,

and the IAR reside. Bit 0 of the AKR is the equate operand spaces (EOS)bit. If bit 0

is set to 1, the address space key indicated for operand 2 is the address space key used

for operand 1 and operand 2.

The value of level status register (LSR). The bits, when set, indicate the following:

e Bits O—4 — Thestatus of arithmetic operations. Refer to the processor description

manual for the meaningsof thesebits.

¢« Bit 8 — Program is in supervisorstate.

e Bit 9 — Priority level is in process.

e Bit 10 — Class interrupt tracing is active.

¢ Bit 11 — Interrupt processing is allowed.

Bits 5—7 and bits 12—15 are not used and are alwayszero.

RO Because the supervisor uses this register as a workregister, the contents are usually not

significant.

Rl The addressin storage of the last EDL instruction executed in theinitialization module

whenthe failure occurred.

R2 The address in storage of the active task control block (TCB).

R3 The addressin storage of EDL operand1 of the failing instruction.

R4 The addressin storage of EDL operand 2 (if applicable) of the failing instruction.

R5 The EDL operation code of the failing instruction. The first byte contains flag bits

which indicate how operands are coded. For example, the flag bits indicate whether

the operandis in #1, #2, or specified as a constant. The second byte is the operation

code of the EDLinstruction.

R6 Because the supervisor uses this register as a work register, the contents are usually not

significant. However, you can determine if the system was emulating EDL code when

the failure occurredif R6 is twice the value shownin the second byte of R5. For

example,if the second byte of R5 contained X‘32’ and the system was emulating EDL,

R6 would contain X‘0064’.

R7 The supervisoruses this register as a work register. However, in many cases, R7 may

contain the address of a branch andlink instruction. The address may give you a clue

as to which module passed controlto the address in the IAR.

After you record all the TCB values, compare the value you recorded for R2 against the address

of INITTASK. If these addresses do not match, you either have the wrong storage area or

wrong link map. 7

If R2 does contain the address of INITTASK,start looking at the addresses in the remaining

registers for a possible clue. Not all the registers may point to the failing area, but you should

check the addressesthat the registers point to nevertheless. Comparing the addresses you

recorded and the addressesin the supervisor link map can help you identify the failure.

You can generally get an idea of which deviceis failing by the name or names of the supervisor

modules. For example, if several of the addresses you recorded point to disk routines, you could

assumethat the IPL failure was related to a disk device.

Chapter 3. Analyzing and Isolating an IPL Problem PD-13

The following discussion is presented to illustrate how the register contents can identify the

problem area — the reason for the IPL failure was due to a disk device defined incorrectly

during system generation:

In this example, the registers in the INITTASK TCB,and what they pointed to in the link map,

are shownin Figure 1 . The registers that did not help identify the problem in this example are

shownas “not applicable’’.

Register Address Module pointed to by register

IAR X'27FA’ TAPEO6Oin DISKIO module

AKR ‘0000’ (not applicable)

LSR X‘88D0' (not applicable)

RO X‘0000’ (not applicable)

R1 X'77BE’ DSKINIT1 in module DSKINIT2

R2 X‘20DE’ INITTASK in module EDXSTART

R3 X‘709A’ DINITDS1 in module DISKINIT

R4 X‘O6BA’ DMDDBin module $EDXDEF

R5 ‘0000’ (not applicable)

R6 X‘0000’ (not applicable)

R7 X‘27F6’ TAPEO60 in DISKIO module

Figure 1. Sample INITTASKregister contents

Notice that the names of the supervisor modulesareall disk related. Since the address in R4

(X‘06BA’) in this example is within the module $EDXDEF,youcan identify exactly which

device is causing the failure as follows:

1. Subtract the address of $EDXDEFfrom the address in R4. The link map showedthat

$EDXDEFis at address X‘052E’. Thus, the resulting address is X‘0188’.

2. Using the resulting address from step 1 and the assemblylisting, look at the device

definition statement at that address and identify which device is defined. The device

defined on the definition statement is the cause of the IPL failure.

As waspreviously mentioned, the disk device was defined incorrectly. The disk was defined as a

4963-23. It should have been defined as a 4963-64.

PD-14 SC34-0439

If R5 contains the value X‘0016’, the supervisor has issued a DETACH for INITTASK and has

completed the IPL process. (X‘0016’ is the EDL operation code fora DETACH.) However,if

no IPL completion messages were displayed on $SYSLOG, $SYSLOG maybethepossible
cause of the problem.

Ensure that $SYSLOGis at the address you specified for $SYSLOG during system generation.

If RS is not X‘0016’ and R6 does not contain X‘002C’, look at the remaining TCB values and

see what supervisor modules they point to. The names of the modules may give you a clue as to

which deviceis failing.

Chapter 3. Analyzing and Isolating an IPL Problem PD-15

PD-16 SC34-0439

A loop is a sequenceof instructions that the system executes a repeated numberof times. Often

in application programs, you may havea needto intentionally code a loop to manipulate data

and then exit the loop based on some exit condition you establish. However, sometimes due to a

system or programmingerror, the error could cause the system to execute a sequence of

instructions endlessly. This type of loop is not intended and whenit occurs, you mustisolate the

cause. To isolate the cause of the loop, however, you mustbe able to identify the program.

This chapter explains how you can identify which program is in a run loop when multiple

programsare active. In addition, this chapter shows howtoisolate a run loop using $DEBUG.

If you already know which program is in a run loop, refer to the section ‘““Using $DEBUGto

Isolate a Run Loop” on page PD-19.

It is possible for the system to enter a run loop due if a device generates more interrupts than the

system can handle. The section “How to Detect Loops Caused by Device Interrupts” on page

PD-26 explains how you can determineif device interrupts are the cause of a system run loop.

Whentheerror is such that it causes the system to enter a loop and you cannotissue any

operator commands from a terminal, you should take a stand-alone or STRAP dump. Chapter

7, “Analyzing a Failure Using a Storage Dump”’ on page PD-57 explains how to determine

system failures of this sort. Refer to the Operation Guide for details on taking a stand-alone

dump. The Operator Commands and Utilities Reference explains-how to invoke $TRAP.

Chapter 4. Analyzing and Isolating Run Loops PD-17

This section explains how to identify which program is in a run loop when multiple programsare

active. Two methodsare discussed: using the programmer console and using the $C operator

command.

PD-18 SC34-0439

Several steps using the programmerconsole will require you to stopall activity on the system.

Before you begin, consider what effect stopping the system will have on any active programs, in

particular, any time-dependent programs.

To identify the looping program, do the following:

1.

2.

Press the attention key and enter the $A ALL operator command.

Write down the program namesandtheir load point for each partition.

Set the Mode switch on the console to the Diagnostic position.

Look at the Level indicators for levels O—3 on the programmer console. You may notice a

particular level indicator showing moreactivity (pulsing more) than the other Level

indicators. Further, you may notice a particular Level indicator pulsing at the same time the

Run light is on. Noticing these indicators can help you determine on which hardwarelevel

the looping program is running.

Note: Programsgenerally run on level 2 (the default) and level 3. Programs with an

attention list task active (ATTNLISTinstruction) run on level 1.

Press Stop on the programmerconsole. If the Level indicatorlight is on for the level on

which you suspect the program is running (determinedin step 4), go to step 6.

If the Level indicator light is not on, continue pressing Start and Stop until the light is on,

then go to step 6.

Press R1; a value is displayed.

Record the hexadecimal address displayedin thelights.

To identify which program is at the address displayed for R1, you must determine the

partition number:

a. Press AKR.

b. Press the Level indicator for the level you determinedin step 4.

c. Record the sum of the hexadecimal value displayed in lights 5—7. The numberof the

partition in which the program is running is 1 plus the value shownin lights 5—7. For

example,if the sum of the lights had the value X‘3’, the partition numberis partition 4.

8. Do steps 5 through 7 on page PD-18 several times. This sequence will give you a range of

instruction addresses. By comparing these addresses to the program load point addresses

from step 1 on page PD-18, you can get an idea of which program might be looping and

some of the instruction addresses within the loop.

After you have identified which program is in a run loop, you must determine wherein the

program theloop starts. The section ‘“Using $DEBUGto Isolate a Run Loop” explains how to

do this.

$Cto Identify a Looping!

The purpose of using $C is to identify the looping program through a process of elimination.

Before you begin canceling programs, consider what impact that may have on any programs

running normally. Also, consider whether you can recreate the environment from when the loop

began. You maybeable only to identify the failing program and not beable to analyzeit until

that program fails again. It is possible that the loop could be caused bythis particular mix of

running programs. Whenthis is the case, canceling programs may makeit harder to determine

the causeof the loop. Consider taking a stand-alone or $TRAP dumpasanalternative to $C.

Whenyouissue $C,first cancel the programs you suspectare least likely to cause the problem.

If the run loop conditionstill exists, continue canceling programsuntil the problem goes away.

The last program you canceledis probably the cause of the run loop.

After canceling the program that caused the run loop,run that program again in an attempt to

recreate the loop, then go to “Using $DEBUGto Isolate a Run Loop.”’

If you cancel all but one program and the run loop condition still exists, go to the section “Using

$DEBUGto Isolate a Run Loop.”’

This section explains howto isolate a run loop with $DEBUG. The $DEBUGutility is

described in detail in the Operator Commands and Utilities Reference. To show some techniques

of isolating a run loop with $DEBUG,a sample program, MYPROG,is presented. The sample

program contains a coding error which causesit to loop.

The sample program should display a prompt message requesting up to 40 characters of input

data. After receiving input, the program should insert a blank between each character and then

display the data. You end the program byentering a /*.

You will need the compiler listing for your program when using $DEBUG. Figure 2 on page

PD-20 showsthe compiler listing for the sample program MYPROG.

Chapter 4. Analyzing and Isolating Run Loops PD-19

The first step in isolating a run loop is to determine the starting point and ending pointof the

instructions causing the loop. How you dothis using $DEBUGis discussed in the section

“Determining the Starting and Ending Points of the Loop.”

LOC +0 +2 +4 +6 +8
PRINT NODATA

0000 0008 D7D9 D6C7 D9IC1 D440 MYPROG PROGRAM LABEL1
0034 LABEL1 EQU *
0034 8026 1A1A C5D5 E3Cc5 D940 PRINTEXT 'ENTER UP TO 40 CHARACTERS®A'
0052 8026 1C1C C5D5 E3C5 D940 PRINTEXT 'ENTER A ''/*'' TO END PROGRAM®@'
0072 LABEL2 EQU *
0072 402F OOD6 OOO00D READTEXT INPUT,PROMPT=COND
0078 AOA2 OOD6 615C OODO IF (INPUT,EQ,C'/*') ,GOTO, LABEL4
0080 OO5A 0151 OODS5 MOVE COUNT+1,INPUT-1, (1,BYTE)
0086 835C 0000 OODE MOVEA #1,INPUT
008C 835C 0002 0100 MOVEA #2,OUTPUT
0092 LABEL3 EQU *
0092 O65A 0000 0000 MOVE (0,#2),(0,#1),(1,BYTE)
0098 8332 0002 0001 ADD #2,1
OO9E 025A 0000 0152 MOVE (0,#2) ,BLANK, (1,BYTE)
OOA4 8332 0000 0001 ADD #1,1
OOAA 8332 0002 0001 ADD #2,1
OOBO AOA2 0150 OO000 O00C2 IF (COUNT, NE,O) , THEN
OOB8 8035 0150 0001 SUB COUNT, 1
OOBE OOAO 0092 GOTO LABEL3

ENDIF
00c2 0026 0100 PRINTEXT OUTPUT
00C6 902A 0001 OOO00 PRINTEXT SKIP=1
oocc OOAO 0072 GOTO LABEL2
OODO LABEL4 EQU ok
OODO 0022 FFFF PROGSTOP
OOD4 2828 4040 4040 4040 4040 INPUT TEXT LENGTH=40
OOFE 5050 4040 4040 4040 4040 OUTPUT TEXT LENGTH=80
0150 0000 COUNT DATA F'O'
0152 40 BLANK DATA c's!
0154 0000 0000 0000 0234 0000 ENDPROG

END

Figure 2. Sample program compilerlisting

eS, PP, GE Bb arm UE ng ale dey ge a. CY aatata on eee =|Determining the Starting and En
gelle « — es om yoy oo gee. sn, Hi Be ey ere | ge,8

aing Points of the Loop

While the program is running and in a loop,do the following:

1. Load $DEBUGin the samepartition in which the looping program is running.

Try to load $DEBUGfrom a terminal other than the terminal from which the looping

program wasloaded (issue the $CP operator commandto changeto the partition in which

that program is running); if you cannot use a different terminal, then load $DEBUG from

the terminal used by the looping program.

2. Enter the name of the looping program when $DEBUGprompts for a program name.

3. Reply § when promptedfor a new copy of the program.

PD-20 SC34-0439

The following example shows what you would enter for the sample program MYPROGrunning

in partition 1:

> SL SDEBUG | |

LOADING SDEBUG 31P,00:00:00, LP=B600, PART=1

PROGRAM NAME: MYPROG) . | | |

ALREADY ACTIVE AT B400

DO YOU WANT A NEW COPY TO BE LOADED? N

4. Press the attention key and enter AT to set the first breakpoint at the address of the
program’s entry point. The entry point is the address of the first operand of the

PROGRAMstatement. Enter TASKwhen you are prompted for an option. The entry

point for the sample program MYPROGisat address X‘0034’. This sequence follows:

> AT

| OPTION(*/ADDR/TASK/ALL): TASK
| LOW ADDRESS: 34

5. Set the next breakpoint at the address of the last executable instruction. This will ensure

that all instructions within the loop are traced by $DEBUG. Thelast executable instruction

for MYPROGis the PROGSTOPat address X‘O0D0’.

Because only the starting and ending points of the loop are neededat this point, the

NOLIST and NOSTOPoptionsareselected:

HIGH ADDRESS: DO
LIST/NOLIST: NOLIST
STOP/NOSTOP: NOSTOP

1 BREAKPOINT(S) SET

After you enter the breakpoints, $DEBUG displays the addresses of the instructions the

program executes.

Chapter 4. Analyzing and Isolating Run Loops PD-21

PD-22

An example showing the output that $DEBUGdisplays while tracing the sample program

MYPROGfollows. Notice that the low address (starting point of the loop) is X‘0072’. The

high address (ending point of the loop) is X‘OO0CC’.

(; |

TASKO154 CHECKED AT 0072 (low address)
TASKO154 CHECKED AT 0078
TASKO154 CHECKED AT 0080
TASKO154 CHECKED AT 0086
TASKO154 CHECKED AT 0O08C
TASKO154 CHECKED AT 0092
TASKO154 CHECKED AT 0098
TASKO154 CHECKED AT OO9E
TASKO154 CHECKED AT OOA4
TASKO154 CHECKED AT OOAA
TASKO154 CHECKED AT O00BO
TASKO154 CHECKED AT 00C2
TASKO154 CHECKED AT O0C6
TASKO154 CHECKED AT OOCC (high address)
TASKO154 CHECKED AT 0072
TASKO154 CHECKED AT 0078

NX _/
Figure 3. Sample trace addresses from $DEBUG

6. Ensurethat all addresses displayed by $DEBUGarerepeated at least once before you end

$DEBUG. You end $DEBUGbypressing the attention key and entering END. Whenall
the addresses have been repeated, you now haveall the instructions within the loop.

7. Using the trace addresses from $DEBUG,try to determine the cause of the loop from the

compiler listing. ‘Using the Compiler Listing to Locate the Loop’”’ on page PD-23 explains

how youusethe trace addresses to follow the logic of the loop.

The section “Some Common Causes of Run Loops” on page PD-23 gives some hints as to what

might be the cause of the loop.

SC34-0439

Runloops are often caused by someexit condition not being met within a program. The reason

the exit condition is not met could be anyof the following:

e Counters or variables that are neverinitialized when the program begins.

e Counters or variables that are not tested for an exit condition.

e Counters that never reach the limit you expected.

e Control passed to the wrong label in the program.

Check your program listing to be sure that none of the previouslogic errors exist. If you cannot

immediately pinpoint any of these conditions, continue reading this chapter.

LOC

0034
0052
0072
0072
0078

+0

8026
8026

402F
AOA2

The compiler listing and the trace addresses displayed by $DEBUG enable youto follow the

flow of the loop. Do the following steps to determine the problem:

1. Locate in the compiler listing, the lowest trace address displayed by $DEBUG. The lowest

address for the sample program, MYPROG,is X‘0072’ (see Figure 3 on page PD-22).

At address X‘0072’, the instruction executed is a READTEXT.

+2 +4 +6 +8
e

@

e

1A1A C5D5 E3C5 D940 PRINTEXT ‘ENTER UP TO 40 CHARACTERSA'
1C1C C5D5 E3C5 D940 PRINTEXT 'ENTER A ''/*'' TO END PROGRAMA!

LABEL2 EQU *
OOD6 0000 READTEXT INPUT, PROMPT=COND
OOD6 615C OODO IF (INPUT, EQ,C'/*') ,GOTO, LABEL4

The symptomsof the loop appear to be that the READTEXTdid not allow you to enter input

data when the program issued a messageto do so.

Chapter 4. Analyzing and Isolating Run Loops PD-23

PD-24

SC34-0439

\

\

2. Again, reload $DEBUGin the partition of the looping program to determine the problem:

SL SDEBUG
LOADING SDEBUG
PROGRAM NAME: MYPROG
ALREADY ACTIVE AT 8400
DO YOU WANT A NEW COPY TO BE LOADED? N

31P,00:00:00, LP=B600, PART=1

 /
3. Press the attention key to set a breakpoint at the address following the READTEXT

(address X‘0078’):

AT
OPTION(*/ADDR/TASK/ALL): ADDR
BREAKPOINT ADDR: 78
LIST/NOLIST: NOLIST
STOP/NOSTOP: STOP

1 BREAKPOINT(S) SET
_/

Whenthe following message is displayed,DEBUG has suspended the program’s execution:

TASKO154 STOPPED AT 0078

At this point, you can look at any area of storage the program uses. If you set counters or

variables in programs you run, examine those fields first. For MYPROG,you wantto look at

the number of characters the program read in as a result of the READTEXT.

The area labeled INPUT receives the input data upon a READTEXT:

LOC +0 +2 +4 +6

0072 402F OOD6 OO00D

OOD4 2828 4040 4040 4040

+8

e

e

e

READTEXT INPUT, PROMPT=COND

4040 INPUT TEXT LENGTH=40

4. Press the attention key and enter the following to see the numberof characters stored in

INPUT:

List |
OPTION(*/ADDR/RO...R7/#1/#2/1AR/TCODE): ADDR
ADDRESS: D4
LENGTH: |

 MODE(X/F/D/A/C): xX

$DEBUGdisplays the following information:

0OD4 X' 2800'

This information showsthe length and count bytes for INPUT. The X‘28’ indicates the buffer

size is 40 characters in length. However, the X‘00’ indicates that no characters were read in as a

result of the READTEXT. If INPUT contained any data, the count byte would indicate the

numberof bytes.

Because INPUT contains no data, the problem might be either the TEXT statement coded for

INPUT or the READTEXTinstruction. Because you use READTEXTinstructions to receive

input data, the problem is probably with the READTEXT.

5. Review the description of READTEXTin the Language Reference to determineif the

READTEXTis coded correctly. The READTEXTis coded as follows in the sample

program:

READTEXT INPUT, PROMPT=COND

The description for PROMPT=CONDexplains that when you use this operand, you mustalso

code message text. No message text is coded on READTEXTin the sample program. The

description further explains that when no messagetext is specified, READTEXTsets the count

byte to zero and does not wait for input.

Chapter 4. Analyzing and Isolating Run Loops PD-25

The sample program entered a run loop because the READTEXTis codedincorrectly. Isolating

the run loop for this sample program is now complete.

6. Press the attention and enter ENDto end $DEBUG.

7. Cancel the looping program using the $C operator command.

8. Correct the coding error on the READTEXTasfollows:

READTEXT INPUT, 'ENTER NEW DATA: ',PROMPT=COND

9. Recompile the program.

The techniques discussed in this chapter explained howtoisolate a run loop in the sample

program. The error was somewhat obvious. However, you can apply these same techniques

whenthe cause of a run loop in your program is not so apparent.

PD-26 SC34-0439

The system can go into a run loop whendevice interrupts fill up the buffer area the system uses

to contain interrupts. Whenthis is the case, the loop begins at entry point SVCIBFOFin the

supervisor module EDXSVCX. :

If you have a programmerconsoleinstalled, you can detect this condition by setting the Mode

switch in the Diagnostic position while the system is looping. If the interrupt buffer becomes

full, the system will stop and display a X‘6401’ in the console indicatorlights.

This run loop condition can be caused for two reasons:

1. The value you specified on the IABUF= operand of the SYSTEM statement (in

$EDXDEFS)is not large enough to contain the numberof interrupts. The default for

IABUF=is 20. You mayhaveto increase the value specified. Refer to the Installation and

System Generation Guide for details on this operand.

2. A hardware problem on a device causes the device to send excessive interrupts which in turn

causes IABUF to becomefull. Loading the $LOGutility, which records I/O errors, may

identify the device experiencing errors. The $LOGutility is discussed in Chapter

9, “Recording Device I/O Errors”’ on page PD-97.

A wait state is a condition where the system or a program is waiting for the completion of an

event or operation, but because of an error, the completion of the event or operation never

occurs. Whenthis condition exists, you must determine what prevented the event or operation

from completing.

This chapter describes how to determine the cause of a wait state in an application program.

Whenthe wait state is such that after you press the attention key, the system doesnotdisplay a

caret (>), you should take a stand-alone or $TRAP dump. Chapter7, ‘“‘Analyzing a Failure

Using a Storage Dump” on page PD-57 explains how you can determine the cause of the

problem from the dump. Refer to the Operation Guide for details on taking a stand-alone dump.

The Operator Commands and Utilities Reference explains how to invoke $TRAP.

In order to determine what caused the wait state in the application program, you mustfirst find

the address of the waiting instruction. Howto dothis is described next.

Chapter 5. Analyzing and Isolating a Wait State PD-27

PD-28

PER a os
ER Ba we Sse He

Oui? EE a a at 2 e

f
T
E
S
E
S
T

a

p
g
a
a
r
e
a
t
a

SC34-0439

To find the address of the waiting instruction, do the following:

1. Load $DEBUGin the samepartition in which the waiting program wasloaded.

Try to load $DEBUGfrom a terminal other than the terminal from which the waiting

program wasloaded (issue the $CP operator commandto changeto the partition in which

that program is running); if you cannotuse a different terminal, then load $DEBUG from

the terminal used by the waiting program.

2. Enter the nameof the waiting program when $DEBUGprompts for a program name.

3. Reply when prompted for a new copy of the program.

The following example shows what you would enterif the name of the program were

WAITPGMrunningin partition 1:

> $L SDEBUG
LOADING $DEBUG 31P,00:00:00, LP=B600, PART=1
PROGRAM NAME: wAi TPGM
ALREADY ACTIVE AT B400
DO YOU WANT A NEW COPY TO BE LOADED? jf

 4. Press the attention key and enter the Wii!" command. $DEBUGthendisplays the

instruction address where the program is waiting. The following is an example of this

sequence:

> WHERE
TASK1234 AT 00B8

5. Using the address displayed by $DEBUG,look at the compilerlisting of that program to see

whatinstruction is at that address.

6. Press the attention key and enter {Nv} to end $DEBUG.

After you identify the instruction that caused the wait, you must determine the reason whyit

was waiting. The following section can help you analyze the instruction that caused the wait

state.

This section discusses how you can analyze the wait state if the program is stoppedat any of the

following instructions:

e ENQ

e ENQT

e WAIT

If the program is not waiting on anyof these instructions, go to the section “‘Other Possible

Causes of a Wait State’ on page PD-35.

Analyzing an ENQInstruction

Whenthe program is pointing to an ENQ instruction, you must examine the queue control block

(QCB) the program tried to enqueue. By examining the queue control block, you can determine

which task has control of that queue control block.

This section explains how to examine the queue control block when:

e The queue control block is defined within the program with a QCBstatement.

e The queue control block is defined in the system commonarea, $SYSCOM.

ages . % ; | Pe, a 2 f= g 6 gee ae a 8 a, 8 Pee
= WP SRPwUErSePere SO beets CCRRewer &— mer Ferrer if cA fx La PLE LEPONSExamining a Queue Control GIiOoCcK DerTinedin the ProgramSon?

Dothe following steps to examine the queue control block defined in the program:

1. Find the address of the QCB statement in the program compilerlisting.

2. Load $DEBUGin the samepartition in which the waiting program was loaded.

Try to load $DEBUGfrom a terminal other than the terminal from which the waiting

program was loaded (issue the $CP operator commandto changeto the partition in which

that program is running); if you cannot use a different terminal, then load $DEBUG from

the terminal used by the waiting program.

Chapter 5. Analyzing andIsolating a Wait State PD-29

PD-30

3. Enter the name of the waiting program when $DEBUGprompts for a program name.

4. Reply N when prompted for a new copy of the program.

5. Press the attention key and enter the LIST command.

6. Respond to the prompts to display the 5-word queue control block. For example,if the

address of the QCB statement were at X‘O5E8’, you would respond to the prompts as

follows:

OPTION(*/ADDR/RO. . .R7/#1/#2/1AR/TCODE): ADDR
ADDRESS: 5&8
LENGTH: 5

MODE(X/F/D/A/C): X

An example of the output follows:

OSE8 X'0000 0000 0000 CD38 0001'

7. Look at word 3 of the queue control block. Word 3 contains the task control block (TCB)

address of the task that owns the QCB. In the sample output, the TCB address is X‘CD38’.

Word4 contains the address space in which that task resides. Word 4 in the example shows

address space 1 (partition 2).

8. Examine the task at the address (identified in step 7) and determine why that task did not

issue a DEQinstruction.

The section ““Common Causesof a Program Wait Using QCBs’”’ on page PD-32 presents

some hints as to what might be the cause of the problem.

9. Press the attention key and enter ENDto end $DEBUG.

Examining a Queue Control Block D

Dothe following steps to examine the queue control block defined in $SYSCOM:

1. Using the link maplisting of the current supervisor, find the address of the queue control

block in $SYSCOMthat you attempted to enqueue.

2. Press the attention key and enter $CP 1.

3. Press the attention key and enter $D.

4. Enter 0000 as the origin. Enter the queue control block address from step 1. Enter the

number5 for the count.

SC34-0439

The following is an example of the output displayed for a queue control block at address

X‘19D0’:

19D0: 0000 CD38 0000 1F00 0001

The first word of the QCB (word 0) indicates the status of the QCB. The value X‘FFFF’ means

that the QCBis available. A value of X‘0000’ means that the QCB is enqueued upon.

5.

10.

11.

Look at words 3 and 4 of the QCB. Word3 is the task control block (TCB) address of the

task that owns the QCB. In the sample output, this TCB address is X‘1FO0’. Word 4

contains the address space in whichthat task resides. In the sample output, the address

space in whichthat task resides is address space1 (partition 2).

Word 1 contains the TCB addressof the waiting task. Word 2 contains contains the address

space in whichthat task resides. The waiting task is at address X‘CD38” in address space 0

(partition 1).

Press the attention key and enter $CP, specifying the partition number you identified in

Step 5.

Press the attention key and enter $A.

Find the program whoseload point is within the range of the TCB address you identified in

step 5.

Note: If the $A shows that no programsare active, the task whose TCB address you

identified in step 5 is no longer in storage and failed to issue a DEQ. Whenthisis the case,

you must IPL the system to clear the wait state and to release the enqueued QCB.

To prevent this condition in the future, determine what other programs use that QCB.If

possible, also determine which of those programs waspreviously active. Examine those

programs and determine which one failed to dequeue the QCB. The section ““Common

Causes of a Program Wait Using QCBs”’ on page PD-32 presents somehints as to what

might have caused the problem.

Subtract the program load point address from the TCB address of the task that owns the

QCB. In this example, the TCB addressis X‘1F00’.

Using the resulting address from step 9, locate that address in the compilerlisting for that

program.

If that address points to an ENDPROG, ENDTASK, or DETACHstatement, examine that

program and determine whyit did not issue a DEQ.

Chapter 5. Analyzing and Isolating a Wait State PD-31

‘CommonCauses of a Program Wait Using OCB

PD-32 SC34-0439

12. If that address does not point to an ENDPROG, ENDTASK, or DETACHstatement, then

the program in storage is not the program that enqueued the QCB. Whenthis is the case,

you must IPL the system to clear the wait state and to release the enqueued QCB.

To prevent this condition in the future, determine what other programs use that QCB.If

possible, also determine which of those programs was previously active. Examine those

programs and determine which one failed to dequeue the QCB. Thesection “Common

Causes of a Program Wait Using QCBs”’presents some hints as to what might have caused

the problem.

2S

Wait states are often caused when a program:

Fails to issue a DEQ to an enqueued QCB.

Issues an ENQ to a queue control block defined in $SYSCOM when $SYSCOMisnot
mappedin that program’s partition. You map $SYSCOMacross partitions during system

generation (COMMON=operand on the SYSTEM statement).

If $SYSCOMis not mappedin the partition in which you issued the ENQ or DEQ,ensure

you use cross-partition services to enqueue or dequeue the QCB. Also checkthat the field

$TCBADSof the program’s TCB points to the address space in which the QCBresides.

This consideration applies to any QCB notresiding in a program’s partition. See the

Language Reference for examples of cross-partition operations.

Overlays the QCBareain storage. (QCB destroyed)

Review the compiler listing of your program and ensure noneof the previous conditions exist.

Whenthe program is pointing to an ENQTinstruction, you must examine the terminal control

block (CCB) of the device the program tried to enqueue. By examining the terminal control

block, you can determine which task has controlof that device.

Dothe following steps to examine the terminal control block:

1.

2.

In the compiler listing, find the name of the terminal to which the program issued the ENOQOT.

Look in the link map listing of your current supervisor and locate the section labeled

$EDXDEF. In that section, find the label that matches the name of the device the program

tried to enqueue.

Add X‘60’ to the addressof that device. The resulting address points to word 3 ofthe field

¢$CCBOCBin the terminal control block.

8.

9.

At the terminal, press the attention key and enter $CP1.

Press the attention key and enter $D.

Enter 0000 as the origin. Enter the address you calculated in step 3 on page PD-32. Enter

the number2 for the count.

Thefirst word displayed is the task control block (TCB) address of the program that has

control of the device. The partition in which that program is runningis the value of the

second wordplus 1.

Press the attention key and enter $CP, specifying the partition number from step 7.

Press the attention key and enter $A.

10. The TCB address from step 7 will be within the range of the load point address for the

program that has control of the device.

11. Examine the compiler listing of that program and determine whyit has not issued a DEQT.

If the event control block the program is waiting on is defined with an ECB statement, go to the

section ““Common Causes of a Program Wait Using ECBs’”’ on page PD-34 for some hints as to

what might be the problem.

If the event control block the program is waiting on is defined as a result of coding the

EVENT= operand on a PROGRAM orTASKstatement, do the following:

1.

5.

Load $DEBUGin the same partition in which the waiting program wasloaded.

If you cannot load $DEBUGfrom the same terminal where the waiting program was loaded,

load $DEBUG from another terminalif possible. Use the $CP operator commandto
changeto the partition in which the program is running.

Enter the name of the program which contains the EVENT= operand when prompted for a

program name.

Press the attention key and enter the WHERE command.

Using the compilerlisting of that program, locate the instruction address displayed in step 3

and determine whythat program has not ended.

Press the attention key and enter ENDto end $DEBUG.

The section “Common Causes of a Program Wait Using ECBs” on page PD-34 gives some hints

as to what might be the problem.

Chapter 5. Analyzing andIsolating a Wait State PD-33

PD-34 SC34-0439

Nait Using ECB

Wait states are often caused when a program:

Fails to post an event control block (ECB) which another program is waiting on. Ensure

that all attached tasks post the ECB before issuing a DETACH.

Issues a WAIT with the RESET operand specified when the event has already been posted.

Coding a WAIT followed by a RESETinstruction may resolve the problem.

Waits on an ECB defined in $SYSCOM when $SYSCOMis not mappedin the program’s
partition. You map $SYSCOMacrosspartitions during system generation (COMMON=

operand on the SYSTEMstatement).

If $SYSCOMis not mappedin the partition in which you issued the WAIT or POST,ensure

you use cross-partition services to wait or post the ECB. Also checkthatthe field

$TCBADSof the program’s TCB points to the address space the ECBresides. This

consideration applies to any ECB notresiding in a program’spartition. See the Language

Reference for examples of cross-partition operations.

Hasa logic error that unintentionally branches to a WAIT instruction.

Review the compiler listing of your program and ensure none of the previous conditionsexist.

Causes of a Wai

Whenthe program stopsat an instruction other than ENQ, ENQT, or WAIT,consider the

following:

Is the program waiting for operator input to instructions such as READTEXT,

GETVALUE, or QUESTION? The problem maybe that the operator never responded to a

prompt message or a prompt message requesting input was not coded.

Is the instruction a READ or WRITE?It is possible that a hardware problem on disk

prevented a device interrupt being sent to the supervisor. The system would wait until it

received the device interrupt signaling completion of the I/O request.

Anyof the following mayverify that a disk problem exists:

— Verifying the disk using $INITDSK (VD command). If $INITDSK indicates errors, load

$DASDIandtry assigning alternate sectors on the device.

— Allocating a data set using $DISKUT1.
— Verifying the hardware configuration using ${OTEST (LS or LD command).

— Sending messages to another terminal using $TERMUT3.

If any orall of these attempts fail, the disk probably has a hardware problem. Contact your

service representative for corrective action.

Is a program, while using full screen support, enqueued to $$SYSLOG? If the supervisoris

unable to display a program check message to $SYSLOG,the system enters a waitstate.

Chapter 5. Analyzing andIsolating a Wait State PD-35

PD-36 SC34-0439

The system issues a program check message to provide you with status information on an error

that occurred during processing. This message is written to the terminal defined as $SYSLOG.

The system provides two types of program check messages: system program check and

application program check.

This chapter explains how to analyze the status information displayed in the message so that you

can determine the cause of the problem. A sample program, that program checks when

executed,is also presented to show the steps required to isolate the cause of the program check.

The first step in determining the cause of the problem is understanding the information

displayed in the message. The following section explains the program check message.

Chapter 6. Analyzing andIsolating a Program Check PD-37

Analyzing andIsolating a Program Check

How to Interpret the Program Check Message

The program check message can be in oneof the following three formats:

1. The standard format issued by the supervisor for application and all system program checks.

The system issues the standard program check message for application programs when you

do not code the ERRXIT= operand on the PROGRAMor TASKstatement. Go to the

section “Interpreting the Standard Program Check Message”’ when youreceive the standard

program check message.

2. The format displayed when you code the ERRXIT= operand on the PROGRAM or TASK

statement and specify the task error exit routine $$EDXIT. Refer to the Event Driven
Language Programming Guide for details on how to use $$EDXIT. Goto the section

“Interpreting the Program Check Message from $$EDXIT” on page PD-44 when you

receive this application program check message.

3. Any format you create when you code the ERRXIT= operand on the PROGRAM or TASK

statement and supply your ownerrorexit routine. Refer to the Customization Guide for

details on how to provide your owntask error exit routine.

Interpreting the Standard Program Check Message

PD-38 SC34-0439

This section explains the information displayed in the standard program check messages. A

description of the information follows the sample messages.

The following is an example of the standard application program check message:

PROGRAM CHECK:
PLP TCB PSW IAR AKR LSR RO RI R2 =R3 R4 RS R6~— R?7
3A00 0120 8002 2AD6 0110 80D0 0064 3B0A 3B20 3A37 3A34 015C 00B8 0000

The next example showsthe system program check message:

SYSTEM PGM CHECK:
PSW IAR AKR LSR RO RI R2 R3 R4& RS R6~— R7
8002 2AD6 0110 80D0 0064 3BO0A 3B20 3A37 3A34 015C 00B8 0000

The 11 words of information beginning with IAR and ending with R7is called the level status

block (LSB).

The headings displayed in the message and whatthe information means follows. (Normally

when you analyze an EDL application program check, you need only be concerned with PLP,

TCB, PSW,R1, R3, and R4.)

How to Interpret the Program Check Message (continued)

PLP

TCB

PSW

IAR

AKR

LSR

The address in storage of the program load point. This is the address at which the

program wasloaded for execution and represents the first word of your program listing.

For a system program check message,this field is omitted becausethe failing

instruction is within the supervisor.

The addressof the active task control block (TCB) as per the compilerlisting

(nonrelocated).

For a system program check message,this field is omitted becausethefailing

instruction is within the supervisor.

The value of the processor status word (PSW) when the program check occurred.

Refer to the section ‘“‘Howto Interpret the Processor Status Word”’ on page PD-41 to

determine the meaningofthis value.

The contents of the instruction address register (IAR)at the time of the error. The

value shownis the address of the machineinstruction currently executing.

The value of the address key register (AKR)at the time of the error. This last

3-hexadecimal digits indicate in which address space operand 1, operand 2, and the

IARreside. Bit 0 of the AKRis the equate operand spaces (EOS)bit. If bit 0 is set to

1, the address space keyindicated for operand 2 is the address space key used for both

operand 1 and operand2.

The value of the level status register (LSR) when the error occurred. The bits, when

set, indicate the following:

e Bits O—4 — Thestatus of arithmetic operations. Refer to the processor description

manual for the meanings of these bits.

e Bit 8 — Program is in supervisorstate.

e Bit 9 — Priority level is in process.

e Bit 10 — Classinterrupttracing is active.

e Bit 11 — Interrupt processing is allowed.

Bits 5—7 and bits 12—15 are not used andare always zero.

Chapter 6. Analyzing and Isolating a Program Check PD-39

PD-40 SC34-0439

The next portion of the program check message displays the contents of the general purpose

registers RO—R7. If the failing program were written in a language other than EDL,refer to the

user’s guide for that language to determine the register usage.

RO

Rl

R2

R3

R4

R5

R6

R7

Because the supervisor usesthis register as a workregister, the contents are usually not

significant to the failing program.

The addressof the failing EDL instruction.

The addressin storage of the active task control block (TCB). The address in R2 is the

sum of the TCB address and the load point address.

The address in storage of EDL operand1 of the failing instruction.

The addressin storage of EDL operand 2 (if applicable) of the failing instruction.

The EDL operation code ofthe failing instruction. The first byte contains flag bits

which indicate how operands are coded. For example, the flag bits indicate whether

the operandis in #1, #2, or specified as a constant. The second byte is the operation

code of the EDL instruction.

Because the supervisor uses this register as a work register, the contents are usually not

significant to the failing program. However, you can determineif the system was

emulating EDL code whenthefailure occurred if R6 is twice the value shownin the

second byte of RS. For example,if the second byte of R5 contained X‘32’ and the

system was emulating EDL, R6 would contain X‘0064”’.

Because the supervisor uses this register as a workregister, the contents are usually not

significant to the failing program. Sometimesthe supervisor uses this register for a

branch andlink instruction. The address may give a clue as to which function passed

control to the address in the IAR.

After reviewing the information shownin the program check message, you must analyze the

contents displayed for the processor status word (PSW).

Theprocessorstatus wordis a 16-bit register the system usesto save error status. By looking at

the processor status word, you can determine whetherthe error is hardware or softwarerelated.

The next section explains how to interpret the processor status word.

wto Inte

rpret the P

 Status

rocessor

The value of the processor status word is shown as 4 hexadecimal digits. Each hexadecimal digit

represents the sum of 4 binary bits. Starting from left to right, the value of each bit (whenset)

is 8, 4, 2, and 1. Thusto interpret what bits are on, you must convert each hexadecimaldigit to

binary. For example, if the PSW indicated the value X‘8002’, the binary representation and the

bit positions would be as shownin Figure 4:

Hex Binary PSW

Figure 4. Sample processor status word bit settings

In the previous example, note that bits 0 and 14 are set. These bit settings are the same as

X‘8002’.

After you convert the value to binary and identify which bit positions are set, refer to

“Interpreting the Processor Status Word Bits” for an explanation of what eachbit indicates.

Rememberthatbit 0 is the leftmost bit in the 16-bit string.

Status VVvordBits

The information indicated by the processor status word bits can be categorized into three types:

e Software problems — bits 0O—6

e Hardware problems — bits 8, 10, or 11

e Processor status — bits 12—15

Figure 5 on page PD-42 shows the PSW bits and their general assignmentfor the different

processors. An explanation of the bit settings follows Figure 5.

Refer to the specific processor description manual for details on class interrupts, I/O interrupts,

and the basic instruction set (including indicator settings and possible exceptions conditions).

If the PSW indicates a hardware error (machine check), call your service representative for

corrective action.

If the PSW indicates a software problem and the program check occurred in an application

program, read the section “‘How to Analyze an Application Program Check”’ on page PD-48.

Chapter 6. Analyzing and Isolating a Program Check PD-41

%bono nam oe gem Coton don gen WEE oe eeek Lege Fe eeeees-rocessor Status Word Bit Description:

PD-42 5C34-0439

Review the section ‘‘How to Analyze a System Program Check” on page PD-54if the error is a

system program check.

Processor
type 495x Class

Bit 2 3 4 6 Condition interrupt

0 X X X X X Specification check Program check
1 X X X X X Invalid storage address Program check
2 X X X X X Privilege violate Program check
3 X X X X Protect check Program check

4 X X X X X Invalid function Soft-exception
5 X X X Floating-point exception Soft-exception
6 X X X X X Stack exception Soft-exception
/ Not used

8 X X X X X Storage parity check Machine check
9 Not used
10 X X X X xX Processor control check Machine check
11 X X X X X |/0 check Machine check

12 X X X X xX Sequence indicator None
13 X X X X X Auto IPL None
14 X X X X Translator enabled None
15 X X X X X Power/thermal warning Power/thermal

Figure 5. Processor status word bit assignments

An explanation of the bit settings follows.

Bit 0 - Specification Check: Set to 1 if (1) the storage address violates the boundary

requirements of the specified data type, or (2) the effective (computed) address is odd.

This error would occur, for example,if a program attempted to do a word moveto an area on an

odd-byte boundary. You can identify which operand (R3 or R4 addresses) violates the

boundaryif the last hex digit of the operand addressis either 1, 3, 7, 9, B, D,or F.

This is a software error.

Bit 1 - Invalid Storage Address: Set to 1 when an attempt is madeto access a storage

address outside the storage size of the partition.

This error would occur, for example, if a program attempted to do a cross-partition move to a

nonexistent partition.

This is a software error.

\ (continued)

Bit 2 - Privilege Violate: Set to 1 if a program in problem state attempts to issue a

privileged instruction. The processor can runin either supervisor or problem state. Some

assembler instructions can be used only while in supervisorstate. If an assembler program in

problem state attempts to issue a privileged instruction, the privilege violate condition occurs.

Normally, this error would never occur in an EDL program.

This is a software error.

Bit 3 - Protect Check: Set to 1 if a program attempts to access protected storage. The

processor can control access to areas in storage by using a storage protect feature. If a program

attempts to address anypart of the protected storage, the protect check indicatoris set.

Normally, this error would never occur in an EDL program.

This is a software error.

Bit 4 - invalid Function: Set to 1 by if any of the following conditions occur:

1. Attempted execution of an illegal operation code or function combination.

2. The processor attempts to execute an instruction associated with a feature that is not

contained in the supervisor.

An EDLprogram can cause this error attempting to use floating-point instructions (FADD,

FSUB, FMULT, or FDVID) whenthe floating-point support is not in the supervisor.

This is a software error.

Bit 5 - Floating-Point Exception: Set to 1 when an exception condition is detected by the

optional floating-point processor. Floating-point hardwaresets this bit to indicate underflow,

overflow, and divide check exceptions. An EDL program can detect these exceptions by the

return code from floating-point instruction. No program check messageis issued whenthis

exception occurs.

This is a software error.

Bit 6 - Stack Exception: Set to 1 when an attempt has been madeto pop an operand from

an empty processor storage stack or push an operandintoa full processor storage stack. A stack

exception also occurs when the stack cannot contain the number of words to be stored by an

assembler Store Multiple (STM)instruction.

Normally, this error would never occur in an EDL program.

This is a software error.

Chapter 6. Analyzing and Isolating a Program Check PD-43

Bit 8 - Storage Parity: Set to 1 when the hardware detects a parity error on data being read

out of storage by the processor.

This is a hardwareerror.

Bit 10 - Processor Control Check: Set to 1 if no levels are active but execution continues.

This is a hardwareerror.

Bit 11 -1/O Check: Set to 1 when a hardware error has occurred on the I/O interface that

may prevent further communication with any I/O device.

This is a hardwareerror.

Bit 12 - SequenceIndicator: Set to 1 to reflect the last I/O interface sequence to occur.

This indicator is used in conjunction with I/O check (bit 11).

This is a status indicator.

Bit 13 - Auto IPL: Set to 1 by the hardware when an automatic IPL occurs.

This is a status indicator.

Bit 14 - Translator Enabled: Set to 1 when the Storage Address Relocation Translator

Feature is installed and enabled.

This is a status indicator.

Bit 15 - Power Warning and Thermal Warning: Set to 1 when these conditions occur

(refer to the appropriate processor manual for a description of a power/thermal warning class

interrupt).

This is a status indicator.

PD-44 SC34-0439

Whenyou specify $$EDXITasthe task error exit for an EDL program,the output you receive

is formatted with descriptive headings. In addition, $$}EDXIT provides more information than

the standard program check message. $$EDXITalso interprets the processor status word and

tells you whatit means.

Whena program check occurs, the program check messageis directed to $SYSLOG and

SSYSPRTR.

The following is an example of a program check message issued by $$EDXIT. An explanation

of each numbered item in the sample output follows the example.

KAKKKKKKKKRAKKEKRERKARKKEKRKKRAKRKRKREKEKERKKKEKR

* WARNING! ! AN EXCEPTION HAS OCCURRED!! *
*

KAKKKEKKEKRKKRREKKKRKKKRERKKREKRRKKRREKRRKRKKREKKERKK

PROGRAM NAME = PCHECK
PROGRAM VOLUME = MYVOL
PROGRAM LOAD POINT = 0000
ADDRESS OF ACTIVE TCB = 0120

EF} ADDRESS OF CCB = OFSE
ER] NUMBER OF DATA SETS = 0

NUMBER OF OVERLAYS = 0
STCBADS = 0001
ADDRESS OF FAILURE
((REL. TO PGM LOAD PT) = 010A
DUMP OF FAIL ADDRESS
O10A: 015C 0000 0034 8332
STCBCO = -1 DEC; FFFF HEX
STCBCO2 = 0 DEC; 0000 HEX
PSW ANALYSIS:

SPECIFICATION CHECK
TRANSLATOR ENABLED

PSW = 8002
Bl iar = 2A06
G AKR = 0110
f) sr = 8000
ER) RO (WORK REGISTER) = 0064

R1 (EDL INSTR ADDR) = 010A
R2 (EDL TCB ADDR) = 0120
R3 (EDL OP1 ADDR) = 0037
R4 (EDL OP2 ADDR) = 0034

BR) RS (EDL COMMAND) = O15C
R6 (WORK REGISTER) = 00B8
R7 (WORK REGISTER) = 0000
#1 = 0037
#2 = 0000

After this message is issued, $$EDXIT displays the following message on the loading terminal:

A MALFUNCTION HAS OCCURRED -- CALL SYSTEM PROGRAMMER

The previous message is not displayed if you code an extension error routine to $$EDXIT with

the entry point name PCHKRTN. Refer to the Customization Guide for details on how to code

an extension to $$}EDXIT.

Chapter 6. Analyzing and Isolating a Program Check PD-45

PD-46 SC34-0439

A description of the sample program check message follows.

{] The PROGRAM NAMEfield identifies the nameof the failing application program. In this

example, the program PCHECKfailed.

The PSW field indicates the value of the processor status word when the error occurred.

$$EDXITinterprets this value and displays its meaning as shownin field of this sample

message.

A detailed description of the processor status word and the associated bits are presented in the

section “Interpreting the Processor Status Word Bits” on page PD-41.

The VOLUME NAMEfield identifies the name of the volume from whichthefailing

application program was loaded. In this example, the name of the volume is MYVOL.

fl The IAR field (instruction address register) contains the address of the currently executing

machineinstruction.

The PROGRAM LOAD POINTfield contains the address at which the program was loaded

for execution. The addressrepresentsthe first word of your program listing.

§ The AKR field contains the value of the address key register (AKR). The last 3-hexadecimal

digits indicate in which address space operand 1, operand 2, and the IAR reside. Bit O of the

AKR is the equate operand spaces (EOS)bit. If bit 0 is set to 1, the address space key indicated

for operand 2 is the address space key used for both operand 1 and operand2.

The ADDRESS OF THE ACTIVE TCBfield contains the address (nonrelocated) of the

active task control block (TCB) as per the compilerlisting.

A The LSRfield level status register (LSR) information. The bits, when set, indicate the

following:

e Bits O—4 — Thestatus of arithmetic operations. Refer to the processor description manual

for the meaningsof thesebits.

e Bit 8 — Program is in supervisorstate.

e Bit 9 — Priority level is in process.

e Bit 10 — Classinterrupttracingis active.

e Bit 11 — Interrupt processing is allowed.

Bits 5—7 and bits 12—15 are not used and are alwayszero.

5 The ADDRESS OF CCBfield contains the address of the terminal control block (CCB)

assigned to the failing program.

The RO field contains the contents of hardware register 0 when the error occurred. Because

the supervisor uses this register as a workregister, the contents are usually not significant when

you analyze the failing program.

fk] The NUMBER OFDATASETSfield shows the numberof data sets specified on the DS=

operand of the PROGRAM statement.

The R1 field contains the address of the failing EDL instruction.

The NUMBER OF OVERLAYSfield indicates the number of overlay programsspecified on

the PGMS= operand of the PROGRAMstatement.

IZ] The R2 field contains the address in storage of the active task control block. This addressis

the sum of the TCB address and the program load point.

The $TCBADSfield contains the target task address space. The valueof this field plus 1

indicates the partition numberin which the program was running.

The R3 field contains the address of EDL operand 1 for the failing EDL instruction.

The ADDRESSOF FAILURE field contains the address of the failing EDL instruction.

This is the address shownin the compiler listing. This is also the address shownin field in

this sample output. In this example, the failing EDL instruction is at address X‘010A’.

fF) The R4 field contains the address of EDL operand 2 (if applicable) for the failing EDL

instruction.

[E) The RS5field contains the EDL operation code of the instruction that was executing when

the failure occurred. Thefirst byte contains flag bits which indicate how operandsare coded.

For example, the flag bits indicate whether the operandis in #1, #2, or specified as a constant.

The second byteis the operation code of the EDL instruction.

The DUMP OF FAIL ADDRESSfield shows the location and contentof the instruction that

was executing whenthe failure occurred. The information at this address also appears in the

compilerlisting.

The R6 field contains the contents of hardware register 6 when the error occurred. Because

the supervisor uses this register as a workregister, the contents are usually not significant when

you analyzethe failing program. However, you can determine if the system was emulating EDL

code whenthefailure occurred if R6 is twice the value shownin the second byte of R5. For

example, if the second byte of R5 contained X‘32’ and the system was emulating EDL, R6

would contain X‘0064’.

Chapter 6. Analyzing and Isolating a Program Check PD-47

The R7field contains the contents of hardware register 7 when the error occurred. Because

the supervisor uses this register as a work register, the contents are usually not significant when

you analyze the failing program.

Sometimes the supervisor uses this register for a branch and link instruction. The address may

give you a Clue as to which function passed control to the addressin the IAR.

The $TCBCOfield showsthe value in the first word of the failing program’s task control

block (TCB). The value is displayed in decimal and followed by the hexadecimal equivalent.

PZ] The #1 field shows the contents of index register 1 when the failure occurred. In this

example, #1 contains the value X‘0037’.

The $TCBCOZ2field shows the value in the second word ofthe failing program’s task

control block (TCB). The value is displayed in decimal and followed by the hexadecimal

equivalent.

The #2 field shows the contents of index register 2 when the failure occurred.

The PSW ANALYSISfield explains the meanings of the bit settings in the processor status

word (PSW). The hexadecimal format of the processor status word is showninfield J. This

information indicates the type of error that occurred.

Refer to the section ‘“‘Processor Status Word Bit Descriptions” on page PD-42 to determine the

type of error the “PSW ANALYSIS”field indicates.

If the error points to hardware,call your service representative for corrective action.

If the error points to software, read the following section.

PD-48 SC34-0439

Whenthe processor status word (PSW)indicates a software error, you needto find out where in

the program the error occurred. The information in the program check message can help you

find the error.

Presented in this section is a sample program check message and the program that caused the

program check. Using both the program check message and the compiler listing of the sample

program,this section will explain the steps required to find the problem. The techniques

described can help youto isolate program checksin your application programs.

The section ‘““SSome Common Causes of Application Program Checks” on page PD-53 presents

some hints as to what may have causedthefailure.

To find the cause of the program check,do the following:

1. Look at the program check message and determine what type of software error the

processorstatus wordindicates.

The program check message from the sample program follows:

PROGRAM CHECK:
PLP TCB PSW IAR AKR LSR RO RI R2 R3 R4& RS R6~ R7
3A00 0120 8002 2AD6 0110 80D0 0064 3B0A 3B20 3A37 3A34 015C O00B8 0000

The PSW indicates that a specification check occurred and that the translater was enabled. A

specification check indicates a boundary violation. Thus, the specification check is the cause of

the error.

2. Look at the addresses for operands 1 and 2 and determine which operandis on an odd-byte

boundary. R3 contains the address of operand 1. R4 contains the address of operand2.

Determining which operandis on an odd-byte boundary can help you analyzethefailing

instruction. |

In the sample program check message, notice that the address of operand 1 (X‘3A37’) is on an

odd-byte boundary.

3. Find the address of the failing instruction. Subtract the program load point (PLP) from the

address of R1. Theresult is the addressof failing instruction.

The program load point of the sample program is X‘3A00’. The value of R1 is X‘3BOA’. The

result of subtracting these addresses is X‘010A’.

At this point you know the address of the failing instructidn and which operandis on an

odd-byte boundary.

4. Look in the compilerlisting and determine if the instruction at the address you calculated in

step 3 is coded correctly.

Chapter 6. Analyzing and Isolating a Program Check PD-49

PD-50

In the compiler listing of the sample program, a MOVE instruction is at address X‘010A’:

LOC +0 +2 +4 +6 +8
0000 0008 D/7D9 DeEC7 DYC1 D440 PCHK PROGRAM START
OOOA 0000 0120 O01A0 0000 OO000
0014 01A4 0000 0000 0000 0100
OO1E O1A2 0000 0000 O000 O000
0028 0000 O000 0000 0000 OO0D0D
0032 0000
0034 4040 A DATA X'4040'
0036 0000 0000 0000 0000 0000 B DATA 100F'O'
OOFE START EQU *
OOFE 835C 0000 0036 MOVEA #1,B
0104 809C 0116 0064 DO 100
O10A 015C 0000 0034 MOVE (0,#1),A
0110 8332 0000 0001 ADD #1,1
0116 O09D 0000 0001 ENDDO
011C 0022 FFFF PROGSTOP
0120 0000 0000 0000 0234 0000 ENDPROG
012A OODO 0000 OOFE 0120 0000
0134 0000 0000 0000 0000 OO000D
013E 0002 0096 0000 0000 FFFF
0148 0000 0000 014C 0000 0000
0152 O14E D7C3 C8D2 4040 4040
015C 0000 0000 0000 0000 0000
0166 0000 0000 FFFF 0000 0000
0170 O000 0000 O000 0120 0000
O17A 0000 0000 0000 O00N0 OO0D0O
0198 0000 0000 0120 0080 0000
O1A2 0000 0000 O0000 0000 OO0D0D
01B6 0000
01B8 END

In this example, the MOVEinstruction and its operands are coded correctly. Because the cause

of the error is not apparent by looking the the failing instruction, you can use $DEBUG totrace

the program’s execution.

5. At the terminal, press the attention key and load $DEBUG. Enter the nameof the program

(and volume if not on EDX002) when $DEBUGprompts youfor the program name. In

this example, the name of the program is PCHK:

. > $L SDEBUG — : ee

| LOADING $DEBUG 31P,00:00:00, ‘LP=0000, PART=2
| PROGRAM NAME: PCHK —
| LOADING PCHK 2P,00:00:00, LP=1F0O, PART==2 a

oe"HELP!To GET LISTOF DEBUG‘COMMANDS
| PCHK(STOPPED ATOOFE=~ |

SC34-0439

6. Press the attention key and enter AT toset the first breakpoint at the address of the

program’s entry point (low address). Enter TASK when you are prompted for an option.

The entry point in the sample program is at address X‘OOFE’. This sequence follows:

|ieeeaera)TASK
|LOWADDRESS:FE

7. Set the next breakpoint at the address of the last executable instruction (high address). The

last executable instruction of the sample program is the PROGSTOPat address X‘011C’.

Because you only need the trace addresses at this point, select the NOLIST and NOSTOP

options:

|HIGHA‘ADDRESS:ae—
|LIST/NOLIST:NOLEST.oe

ee‘NOSTOP .
boBREAKPOINT(S) |SET oe

8. Press the attention key and enter GO.

The program will run until it program checks again. During its execution, however, $DEBUG

will display all the instruction addresses up to the point of the program check.

The following is an example of the trace addresses from the sample program:

O
R
R

-PCHK=CHECKEDAT 0108=
PCHKCHECKEDAT O10QA=
| PCHKCHECKEDAT01100

oSoea-

aaALeMaiaaetthNNeeeer

9. Look at the trace addresses. Notice that in the sample trace output, the instruction at

address X‘010A’ (MOVE)executed successfully the first time. However, the second time

the program executed the instruction at X‘010A’, the program failed with a program check.

The supervisor cancels the program.

Becausethe last instruction the program executed was at address X‘010A’, you needto reload

the program under $DEBUG,set a breakpoint at address X‘010A’, and examine index register 1

(#1). The sample program uses the index of #1 to point to the target address of the MOVE

instruction.

By examining #1 before the program executesthe instruction at X‘010A’, you can determineif

#1 points to an odd-byte boundary.

Chapter 6. Analyzing and Isolating a Program Check PD-51

PD-52

SC34-0439

10. Press the attention key and enter ENDto end the current $DEBUG.

11. Reload $DEBUGandspecify the name of the program.

12. Press the attention key and enter AT.

13. For the sample program, reply to the prompts as follows to set a breakpoint at address

X‘010A’ and to examine #1:

OPTION(*/ADDR/TASK/ALL): ADDR
BREAKPOINT ADDR: 104
LIST/NOLIST: LIST
OPTION(*/ADDR/RO...R7/#1/#2/1AR/TCODE): #1
LENGTH: |
MODE(X/F/D/A/C): xX
STOP/NOSTOP: STOP

1 BREAKPOINT(S) SET
NN S

14. Press the attention key and enter GO.

$DEBUGstops the program’s execution at address X‘010A’ anddisplays the contents of #1.

The following is an example of the output:

PCHK STOPPED AT O10A
#1 PCHK X' 1F36'

The value X‘1F36’ in #1 is the address in storage of the variable labeled “‘B”’. This addressgets

stored in #1 on the previous MOVEAinstruction. Notice that at this point, the address for

operand 1 (#1) points to an even address (wordaligned).

The trace output showed that no problem occurredthefirst time through the DO loop. Thus,

you can assumethat someinstruction after that point caused the address in #1 to point to an

odd-byte boundary.

The next sequence shows howyoucanidentify the cause of the problem.

15. Press the attention key and enter GO.

Again $DEBUGstops the program’s execution at address X‘010A’anddisplays the contents of

#1. The following sample output shows what #1 points to now:

| PCHK STOPPED AT 010A

#1 PCHK X' 1F37'

Notice that the address #1 points to is on an odd-byte boundary (X‘1F37’). Further

examination of the compiler listing shows that immediately after the MOVEinstruction, the

program incrementedthe valuein #1 by 1:

OOFE 835C 0000 0036 MOVEA #1,B
0104 809C 0116 0064 DO 100
O10A 015C 0000 0034 MOVE (O,#1),A
0110 8332 0000 0001 ADD #1,1
0116 O009D 0000 0001 ENDDO

Because the program attempts to move a word of data and #1 points to an odd-byte boundary

(X‘1F37’), the program fails with a specification check.

Although the program check messageindicates that the MOVEinstruction failed, the cause of

the problem is the ADDinstruction at address X‘0110’.

Because the MOVE instruction attempts to move a word of data, the program should have

incremented #1 by 2. Adding 2 to #1 enables the program to receive the next word of data on a

word boundary.

Program checksin an application program are commonly causedby the following:

e PROGSTOPstatement omitted in the program

e Failure to link-edit programs with external references (EXTRNs)

e Nonexecutable statements coded within inline executable code

e Attempting to move a word of data to an odd-byte boundary

e Reading or moving data into a storage area too small to contain the data

Chapter 6. Analyzing and Isolating a Program Check PD-53

Generally a system program check is caused by either of the following:

e Anerror in the assembly or link-edit of the current supervisor during system generation.

e An application program that somehow overlaysa part of the supervisorin storage.

This section describes some methods you maybeableto useto isolate the cause of a system

program check.

To begin analyzing the system program check,do the following:

1. Review the compiler and link-edit listings of the current supervisor for -1 completion codes.

If either of the listings do not indicate successful completion, correct the errors and perform

another system generation.

2. Try to reproduce the failure by rerunningall the programs that were active. Ensure those

programsrun in the samepartition they were running in whenthe failure occurred. While

you rerun the programs,identify which program causedthefailure.

A program that was running in a partition containing supervisor code or a program doing a

cross-partition move is mostlikely the cause of the problem.

After determining which program causedthe failure, go to the section ““Analyzing the

Program Causing the System Program Check.”’

3. If you determine that the cause of the failure was not due to an application program, submit

an authorized program analysis report (APAR)along with a stand-alone dumpthe next time

the failure occurs.

PD-54 SC34-0439

The program you identified as the cause of the system program check probably overlaid an area

of the supervisor. To correct the problem, you need to find the instruction in the program that

overlays the supervisor area.

This section explains two techniques you can use to isolate the cause of the failure. The

technique you use depends on the contents of the instruction address register (IAR) shownin

the system program message.

If the address shownin the IAR doesnot contain all zeroes, review the following section. Go to

the section ‘““Technique 2 — IARis All Zeroes”’ on page PD-56 whenthe IAR addressis all

Zeroes.

Technique 1 — [ARi Non-Zero

To isolate the problem, do the following:

1.

7.

8.

Record the address shownfor the instruction address register (IAR) in the system program

check message.

Press the Load button to re-IPL the system.

Press the attention key and enter $CP 1.

Press the attention key and enter $D.

Enter 0000 as the origin. Enter the IAR address from step 1. Enter the number1 for the

count.

Record the value displayed for that address.

Press the attention key and load $DEBUG.

Enter the name of the program youidentified as the cause of the problem.

The next sequence of steps enable you to determine if the contents displayed in step 6 change

during the program’s execution. By setting breakpoints at various addresses in the program and

determining when the value from step 6 changes, you canlocate the portion of the program that

causestheerror.

9.

10.

11.

12.

. Enter 0000

Using the compilerlisting of the program, select several addresses throughout the program at

which you want $DEBUGtostop the program’s execution.

Press the attention key and enter AT.

At the prompts, enter ADDR, a breakpoint address, and the NOLIST and STOP options.

Repeat steps 10 and 11 for each breakpoint address youselected.

. Press the attention key and enter GO.

. When $DEBUGstopsthe program’s execution at the breakpoint, press the attention key

and enter $Din partition 1.

as the origin. Enter the IAR address from step 1. Enter the number1 for the

count.

Chapter 6. Analyzing and Isolating a Program Check PD-55

Technique 2 — IAR

PD-56

SC34-0439

16. Determine whether the value now displayed is the same value you recorded in step 6 on page

PD-55.

17. Repeat steps 13 through 16 until you notice a value other than the value shownin step 6 on

page PD-55. When younotice a different value, go to step 18.

18. In the compilerlisting, look at the instructions between the last two breakpoint addresses.

One or more of the instructions within those breakpoint addressesare the instructions that

overlaid a supervisor area and caused a system program check.

19. Determine what instructions caused the failure and correct theerror.

is All Zeroes

This technique uses $DEBUGtotrace the program’s execution. To isolate the problem, do the

following:

1. Press the attention key and enter $CP i.

2. Press the attention key and load $DEBUG.

3. Enter the name of the program you identified as the cause of the problem.

4. Press the attention key and enter A‘ to set the first breakpoint at the address of the

program’s entry point. EnterTASK when $DEBUGpromptsfor an option. For the low

address, enter the address of the program’s entry point.

5. Enter the address of the program’s last executable instruction as the high address.

6. Press the attention key and enter GO.

7. When the system program check occurs, the instruction that caused the failure is most likely

at one of the last few addresses shownin the trace output.

8. Examine the compiler listing and determine whichinstruction caused thefailure.

9. Correct the error and recompile the program.

This chapter explains how you can use a storage dumpcreated by either $TRAP or the

stand-alone dump methodto analyze a failure. The discussions include how to analyze a wait

state, run loop, and a program check.

Very often when you use a dumpto analyze a failure, you may haveto look at control blocks to

find information about the failure. You can obtain a control block equate listing (copy code) by

including a COPYstatement in your program and specifying the name of the control block you

need. The Language Reference contains a list of commonly used control block equate names.

The control block equates reside on volume ASMLIB andend with the characters ‘‘EQU”’. The

Internal Design showsthe control blocksin detail.

Before you begin to analyze a failure using a dump, you need to know howto interpret the

various fields shown in a dump and what they mean. The following section explains the various

fields of a dump.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-57

This section explains the various fields of a sample dump. $TRAP wasused to produce the

sample dumppresented in this section.

Someof the fields shown in a dump differ depending on whether you created the dump using

$TRAP or the stand-alone dump method. These differences are noted in the explanation of the

sample dump where appropriate. In addition, some of the fields that can appear in a dump

depend on the devices and features installed on your system.

The examples presented show how $DUMPprints the information when youselect the ‘‘format

control block” option. The order in which the examples are presented is the same order the

information would appear in a dump.

The various pieces of the dump shown have numbered items. An explanation of the numbered

items follows each example.

PD-58 SC34-0439

Figure 6 showsthefirst part of the dump.

i EVENT DRIVEN EXECUTIVE $TRAP FORMAT STORAGE DUMP

A AT TIME OF TRAP PSW WAS 8006 ON HARDWARE LEVEL 1

A LEVEL O LEVEL 1 LEVEL 2 LEVEL 3 SVC-LSB SVCI-LSB

A TAR 1FFA 2AD6 1F32 1F32 _ TF32 1FOA

8 AKR 0100 0110 0000 0000 OO000 O000

G LSR 8090 QOODO 0090 0090 OOCO OOCO

U RO 0000 0001 0000 0000 0000 0000
R1 0000 0044 QOO000 Q000 0000 0000
R2 O2C2 O2C2 O000 0000 QO000 OO000
R3 O2B6 OO4D Q000 0000 0000 0000
R4 0000 0048 Q000 O000 0000 0000
R5 0001 805C 0002 0003 0001 0000
R6 0000 OOB8 8000 8000 8000 0000
R7 0000 Q0000 QO000 O0000 O000 O000

Figure 6. Hardwarelevel and register contents

/}ip (continued

RA
R

Item {] as shownin Figure 6 on page PD-58 indicates what type of dump was taken. This

example indicates a $TRAP dump. If a stand-alone dump weretaken, the text STAND ALONE

STORAGE DUMP would appear.

Item fj indicates the value of the processor status word (PSW)andthe active hardware interrupt

level. In the sample dump, the PSW value indicates X‘8006’ on hardware level 1. A $TRAP

dump always showsthe value of the PSW andtheactive level; a stand-alone dump never

containsthis line of information.

Refer to the section ‘‘How to Interpret the Processor Status Word” on page PD-41 for the

meaning of the processor status word.

The column headingsat item identify six level status blocks (LSB). There is an 11-word level

status block shown for each of the system’s hardwareinterrupt levels (0Q—3). In addition, the

contents of the SVC (supervisor call) LSB and the SVCI(supervisor call immediate action) LSB

are shown.

The contents of a level status biock for a particular hardware interrupt level is shown vertically

beginning with IAR and ending with R7. The fields shownfor a level status block in the dump

are also displayed in a program check message.

Level 0 is inaccurate in the stand-alone dump. This is the level on which the dump program

runs; therefore, none of the information for level 0 in a stand-alone dumpis relevant to the

problem being analyzed. However,the information shownforlevel 0 in a $TRAP dumpis

reliable; $TRAP saves the information for level 0 as well as levels 1, 2, and 3.

EDX usesthe the four hardwarelevels as follows. Level 0 is the highest priority level:

Level 0 — Timerinterrupts and task dispatcher

Level 1 — Attention list tasks, supervisor tasks, and I/O interrupts

Level 2 — EDLtaskswith a priority of 1-255

Level 3 — EDLtasks with a priority of 256—510

Chapter 7. Analyzing a Failure Using a Storage Dump PD-59

PD-60 SC34-0439

Item A shows the contents of the instruction address register (IAR). The value shownis the

address of the machine instruction currently executing.

Item showsthe value of the address key register (AKR). The last 3-hexadecimal digits

indicate in which address space operand 1, operand 2, and the IARreside. Bit 0 of the AKR is

the equate operand spaces (EOS)bit. If bit 0 is set to 1, the address space key indicated for

operand 2 is the address space key used for both operand 1 and operand 2.

The value of the AKR for level 1 in the sample dump (X‘0110’) indicates operands 1 and 2

reside in address space 1 (partition 2). The IAR resides in address space 0 (partition 1).

Item 8 showsthe value of the level status register (LSR). The bits, whenset, indicate the

following:

e Bits O—4 — Thestatus of arithmetic operations. Refer to the processor description manual

for the meaningsof thesebits.

e Bit 8 — Programis in supervisorstate.

¢« Bit 9 — Priority level is in process.

e« Bit 10 — Classinterrupttracingis active.

e« Bit 11 — Interrupt processingis allowed.

Bits 5—7 and bits 12—15 are not used and are always zero.

The LSR value (X‘OODO’) for level 1 in the sample dumpindicates that bits 8, 9, and 11 are set.

Item showsthe contents of general-purpose registers RO through R7 for each hardware

interrupt level.

For programs written in EDL, the contents of these registers are described as follows. If the

program were written in a language other than EDL,refer to the user’s guide for that language

to determine theregister usage.

RO Becausethe supervisor uses this register as a work register, the contents are usually not

significant to the failing program.

R1 The addressin storage of the failing EDL instruction.

R2 The addressin storage of the active task control block (TCB).

R3 The addressin storage of EDL operand1 of the failing instruction.

R4 ‘The address in storage of EDL operand 2 (if applicable) of the failing instruction.

R5 The EDL operation code of the failing instruction. Thefirst byte contains flag bits which

indicate how operands are coded. For example, the flag bits indicate whether the operand

is in #1, #2, or specified as a constant. The second byte is the operation code of the EDL

instruction.

R6 Because the supervisor uses this register as a workregister, the contents are usually not

significant to the failing program. However, you can determine if the system was

emulating EDL code whenthefailure occurred if R6 is twice the value shown in the

second byte of R5. For example, if the second byte of R5 contained X‘32’ and the system

was emulating EDL, R6 would contain X‘0064’.

R7 Becausethe supervisorusesthis register as a work register, the contents are usually not

significant to the failing program.

If the hardwareregisters in your dump do not follow the EDL register conventions previously

discussed, you should examine the IAR and the AKR.

The IAR contains the address of the last machine instruction the system executed when the

failure occurred. The AKR tells you in which address space the IAR resides.

To determine where the program failed, you must check the AKR for the correct address space

(partition) and check the IAR to find out what was executing at that address.

Lookin the supervisor link map from system generation andsee if the IAR address is within one

of the supervisor modules. If that IAR address appears in the link map, the name of the module

that contains the IAR address maygive you a clue as to what function was executing when the

failure occurred.

Since register usage can vary from one supervisor module to another, the contents of each

register may or may not be meaningful to you. You should, however, check the contents of each

register.

Sometimes a register may point to a control block. For example, if R3 points to a terminal

control block (CCB), you can assumethat the program was doing terminal I/O whenthefailure

occurred.

Sometimes the supervisor uses a register (R7 in many cases) for a branch and link instruction.

The address in R7 may give you a clue as to which function passed control to the current IAR

address.

If the address shownin the IAR is within your program, subtract the program load point from

the IAR. Using the resulting address, look in the compilerlisting and/orlink-edit listing of that

program and determine whichinstruction is at that address and whyit failed.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-61

Figure 7 showsthe next part of the sample dump.

§ FRO FFDF FFFF FFFF
FFFF FFFF 0000

FR1 FFFF FFFF FFFF
O000 0080 OO000

FR2 OODD FFFF' FFFF
FFFF FFFF OOOO

FR3 FFFF FFFF FFFF
0020 0000 O000

f] MACHINE/PROGRAM CHECK

S/EAK TCBA PSW SAR
0100 0120 8006 B437

FFFF FFFF FFFF FFFF FFFF
OOOO O000 OO00 FFFF FFFF

FFDF 0000 0010 0000 OO0O00
0000 0000 0008 0000 0000

FFFF FFFF FRFF FFFF FFFE
0000 OO000 OOOO FFFF FFFF

FFFF 0000 0000 0000 0000
0000 0000 0008 0080 0000

LOG BUFFER - LATEST ENTRY PRINTS LAST

ITAR AKR_ LSR RO R1 R2 R3 R4 R5 R6 R7
2AD6 0000 80D0 0064 850A B520 B437 B434 015C OOB8 OO0O00

Figure 7. Floating-point registers and exception information

Item 8 showsthe contents of the floating-point registers (FRO—FR3) for each hardwarelevel.

This informationis printed if the system has the floating-point feature installed.

Item showsentries from the system’s software trace table, CIRCBUFEF(if included during

system generation). The system uses the software trace table to record any program and

machine-check entries that occurred since the last IPL. The softwaretrace table is described in

greater detail in Chapter 8, ““Tracing Exception Information” on page PD-87.

PD-62 SC34-0439

The 2-byte S/EAK field indicates a state variable and an error address key.

Thestate variable (first byte) can be one of the following values:

0 — Nointerrupt in process

1 — Standard processing (the default value)

2 — Now processingtask error exit

3 — Undefined

The error address key (second byte) is the address key (1 plusthis value is the partition number)

that was in use whentheerror occurred. |

The SAR (storage addressregister) field indicates the address in storage last accessed when the

failure occurred.

The remaining fields shownin item §j also appear in a program check message.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-63

PD-64 SC34-0439

Registers

Item in Figure 8 showsthe nextpart of the dump which contains the segmentation registers.

In this example, the segmentation registers indicate a system with four partitions and no

supervisor mapping acrosspartitions. The partitions are 64K each.

The heading ADSOrepresents partition 1, ADS1 represents partition 2, and so on, up through

ADS7 which represents partition 8.

The leftmost column (BLOCK) showsthe addresses mapped for each segmentation register.

Each segmentation register maps 2K of storage. The segmentation registers are listed below

each address space (ADS) heading.

ff) SEGMENTATION REGISTERS

BLOCK ADSO ADS1 ADS2 ADS3 ADS4 ADS5 ADS6 ADS7

0000 0004 0104 0204 0304
0800 O000C 010C O20C 030C
1000 0014 0114 0214 0314
1800 001C 011C 021C 031C
2000 0024 0124 0224 0324
2800 002C 012C 022C 032C
3000 0034 0134 0234 0334
3800 003C 013C 023C 033C
4000 0044 0144 0244 0344
4800 O04C 014C O24C 034C
5000 0054 0154 0254 0354
5800 O005C 015C 025C 035C
6000 0064 0164 0264 0364
6800 006C 016C O026C 036C
7000 0074 0174 0274 0374
7800 007C 017C 027C 037C
8000 0084 0184 0284 0384
8800 0O08C 018C O028C 038C
9000 0094 0194 0294 0394
9800 O009C 019C 029C 039C
AO0O0O OOA4 O1A4 O2A4 O03A4
A800 OOAC O1AC O2AC O3AC
BOOO OOB4 O01B4 02B4 03B4
B800 OOBC O1BC O2BC O3BC
COOO 00C4 01C4 02C4 03C4
C800 O0CC 01CC O2CC O03CC
DOOO OOD4 01D4 O02D4 03D4
D800 OODC O01DC O2DC O3DC
E000 OOE4 O1E4 O2E4 03E4
E800 OOEC O1EC O2EC O3EC
FOOO OOF4 O1F4 O2F4 O3F4
F800 OOFC O1FC O2FC O3FC

Figure 8. Segmentation registers of a four-partition system

Figure 9 shows another example of the segmentation registers in which the supervisor is mapped

across three partitions.

EDX mapspartitions starting at address X‘0000’. As shownin Figure 9 , address spaces 0 and

1 both have 32 segmentation registers mapped. Address space 2 contains only 10 segmentation

registers.

Becausethefirst five segmentation registers in each partition are identical (up to item f] in

Figure 9), you can seethatthe first 10K of the supervisor in partition 1 is mapped across each

partition. Mapping the partitions in this mannerleaves partitions 1 and 2 with 54K of storage

and partition 3 with 10K of storage which can be used for either supervisor code or application

programs.

SEGMENTATION REGISTERS

BLOCK ADSO

0000 0004
0800 OO0O0C
1000 0014
1800 O01C
2000 0024

1 2800 002C
3000 0034
3800 003C
4000 0044
4800 O04C
5000 0054
5800 005C
6000 0064
6800 006C
7000 0074
7800 007C
8000 0084
8800 008c
9000 0094
9800 009C
AOOO 8=00A4
A800 OOAC
BOOO OOB4
B800 OOBC
COO0O 00C4
C800 OOCC
DOOO OOD4
D800 OODC
E0OO OOE4
E800 OOEC
FOOO OOF4
F800 OOFC

ADS 1

0004
O00C
0014
OO1C
0024

0104
010C
0114
011C
0124
012C
0134
013C
0144
014C
0154
015C
0164
016C
0174
017C
0184
018C
0194
019C
O1A4
O1AC
O1B4
O1BC
01C4
O01CC
01D4

ADS2 ADS3 ADS4 ADS5 ADS6 ADS7

Q004
O00C
0014
OO1C
0024

O1DC
O1E4
O1EC
O1F4
O1FC

Figure 9. Segmentation registers with supervisor mapped across partitions

Chapter 7. Analyzing a Failure Using a Storage Dump PD-65

PD-66 SC34-0439

The next section of the sample dump showsthe activity in each partition when the dump was

taken. This part is called the storage map.

STORAGE MAP: [Ri $SYSCOM AT ADDRESS 19C6

EDXFLAGS 4000 SVCFLAGS 1000

PART# NAME ADDR PAGES ATASK TCB(S)

12

i

[5 P1 ADS=0 0000 256

16 $TRAP B400 23 C9E4(A) C964
$FSEDIT CBOO 331 E8AC

17 #*FREE** EAOO 22

P2 ADS=1 0000 256 EF)
18 SAMPLA 0000 4 02C2(A) 0242 01A6 010E 0072

FREE 0400 252

P3 ADS=2 0000 256
$SMURON 0000 5 038A
$DISKUT1 0500 59 2FF6(A) 2F76
PREE 4000 192

20] P4 ADS=3 0000 256
FREE 0000 256

Figure 10. Storage map

Item in Figure 10 shows the address (X‘19C6’) of the system commonarea, $SYSCOM(if

specified during system generation).

Item fis the EDXFLAGSfield. The first two digits (40) shown for this field represent the

version and modification level of the supervisor. The dump programsdo notusethethird digit.

The last digit (0) indicates the program temporary fix (PTF)level.

Item i, SVCFLAGS,contains status information. The bits, when set, indicate the following:

e Bit 0 — Supervisor busy

e Bit 1 — Interrupt address (IA) buffer active

e Bit 2 — Dequeuerequest

e Bit 3 — Floating-point hardware

Bits 4—15 are not used. The value shownin the example, X‘1000’, indicates floating-point

hardwareis installed.

The column headings at item [J mean the following:

PART# Partition number.

NAME Program name.

ADDR Program load point address.

PAGES Thesize of the address space (partition) or program in pages. A page is 256 bytesin

length. Programs loaded for execution always begin on a page boundary.

ATASK Thetask control block (TCB) address of the attention list task, if one exists. Task

control block addresses of attention list tasks also have (A) beside the address.

TCB(S) The task control block addresses in a task chain. Thefirst address in the task chain is

always the maintask.

Item indicates that partition 1 (address space 0) begins at address X‘O000’ and is 256 pages

in length (64K).

Because the whole supervisor resides in partition 1 in this example, the load point of the first

program in this partition, STRAP, begins at address X‘B400’. $TRAP is shownat item Jj. The
dumpalso showsthat $TRAP is 23 pagesin length.

The TCB address X‘C9E4’is the address of $TRAP’s attention list task. The main TCB for

STRAP is at address X‘C964’.

Item indicates the free space in partition 1 beginning at address X‘EAOO’. The 22 pagesof

free storage are contiguous.

Item [J indicates the program SAMPLAis loaded at address X‘0000’in partition 2 (address

space 1). SAMPLAhasan attention list task at address X‘02C2’. Also notice that the TCB

chain showsthe addresses of four task control blocks (item J). The task control block at

address X‘0242’ is the main TCB for SAMPLA. The program SAMPLAconsists of five task

control blocks.

Task control block addresses shown on the TCB chain are the addresses of the tasks defined

within the main program. If the main program attachesa task that was link-edited to the main

program, and the ATTACHinstruction has CHAIN=NO,the addressof that task does not

appear on the TCB chain.

Because the load point of SAMPLAis at address X‘0000’, all addresses shownfor these tasks

would beidentical to the compilerlisting of SAMPLA.

Item Shows that no programsare running in partition 4 (address space 3) and that there are

256 pages of free contiguousstorage.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-67

PD-68 SC34-0439

Figure 11 showsthe next part of the sample dump.

PE] EDX LEVEL TABLE - TCB READY CHAIN

LEVEL ACTIVE READY (TCB-ADS)

Py] 1 02C2-1 NONE
PE] 2 NONE O010E-1 0242-1

3 NONE NONE

PZ] LOADER QCB CUR-TCB CHAIN (TCB-ADS)

94F4 FFFF NONE NONE

Figure 11. Level table and task ready chain

Item Bi] showsthe level table and TCB ready chain. Thelevel table keeps pointers to the

currently active tasks, all ready tasks for levels 1, 2, and 3, and the address space key in which

the tasks reside.

Item Bj showsan active TCB onlevel 1 at address X‘02C2’. The -1 that appears beside this

address indicates the address space. Notice also that for level 1, there are no TCBs onthe ready

chain.

The active TCB at address X‘02C2’ belongsto the attention list task in partition 2 for program

SAMPLA(item {Jj in Figure 10 on page PD-66).

Item shows notasks active on level 2 and two tasks on the ready chain. Notice that these

two ready tasks are in address space 1 (partition 2).

The TCBat address X‘010E’will be the first task on level 2 to becomeactive if no other task on

level 1 or level 2 (with a higher priority) becomesactive. Also notice that these two ready tasks

reside in program SAMPLA(item [J in Figure 10 on page PD-66).

Item shows the address (X‘94F4’) of the loader queue control block (QCB). This addressis

the entry point of LOADQCRBin the resident loader. This entry point appears in the supervisor

link map from systcm generation.

The value X‘FFFF’indicates that no tasks are enqueued. If programs were being loaded,this

value would be X‘0000’ and the address of a TCB would be shown.

Figure 12 shows the terminals defined in the supervisor (item 25

TERMINAL LIST:

Py NAME CCB ID IODA FEAT QCB CUR-TCB CHAIN

CDRVTA O9OFA FFFF 0040 O800 FFFF NONE NONE
CDRVTB OBAA FFFF 0000 OOOO FFFF NONE NONE

$SYSLOG OD84 0406 0004 0400 0000 E8AC-0 NONE
TERM2 OF5E O40E 0024 0400 0000 02C2-1 NONE
TERM3 1138 O40E 0025 0400 0000 2F76-2 NONE
$SYSPRTR 131C 0306 0021 0020 FFFF NONE NONE
MPRTR 1534 0206 0001 0020 FFFF NONE NONE
T3101 177A 2816 0058 0440 FFFF NONE

Figure 12. Terminal device information

The column headings at item mean the following:

NAME

CCB

ID

IODA

FEAT

QCB

CUR-TCB

CHAIN

The label on the TERMINAL statementfor this device.

The address of the terminal control block (CCB).

This value identifies the type of terminal. The values shown also appear when you

issue the LD or LS commands of $IOTEST. The value X‘FFFF’ as shownin item

indicates that both CDRVTA and CDRVTBarevirtual terminals.

The device address specified on the TERMINAL statement. For virtual terminals,

ignore any addresses that appear underthis heading.

This value indicates the device characteristics defined at system generation, such as

output pause or spoolable device.

The queue control block (QCB) for the terminal. The value X‘FFFF’indicates that

no task has enqueued the terminal. If the value were X‘0000’ as shownin item Bj,

a task has enqueuedthe terminal. For example, the task control block at address

X‘E8AC’in address space 0 (partition 1) belongs to $FSEDIT as shownin the
storage map (Figure 10 on page PD-66).

The address of the task control block and address space of the task currently

enqueued on the terminal.

The task control block chain. If a task issued an ENQTto any of these terminals

while the terminal is currently enqueued bya different task, the TCB address and

address space of the task attempting to enqueue that terminal would appearon the

chain.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-69

 PD-70 SC34-0439

Information on disk, diskette, and tape devices is presented in Figure 13 which is the next

portion of the dump.

These three device types have volumedirectory entry (VDE) and device data block (DDB)

information listed.

The VDE and DDBinformationis listed under separate headings in the dump. Because of the

interrelationship between the VDE and the DDB, the meaningsof the headings are explained

first.

DSK(ETTE) /TAPE VDE

VDE NAME DDB FLAGS QCB CUR-TCB CHAIN (TCB-ADS)

O6DC *DDE* 0738 0800 FFFF NONE NONE
O7OA EDXOO0O2 0738 8000 FFFF NONE NONE
O7FO *DDE* O81E 2900 FFFF NONE NONE

DDB IODA DEVID DSCB-> TASK DSCB-CHAIN

0738 0003 OOCA 94A6-0 O8DE NONE
O81E 0002 0106 CA5SA-O O8DE NONE

Figure 13. Disk, diskette, and tape device information

The column headings for the volume directory entry are shownat item B& and meanthe

following:

VDE The volume descriptor entry (VDE) control block describes a volume ondisk,

diskette, or tape. One VDEis created for each DISK or TAPEstatementspecified

during system generation. If the VOLNAME=operandis coded, one additional

VDEis generated for each performance volume.

NAME The name of the volume.

DDB The device data block (DDB)describes the physical disk, diskette, or tape device.

One DDBis created for each device.

FLAGS This value indicates information about the volume such as performance volume,

diskette, or disk directory.

QCB The queue control block (QCB)for the disk, diskette, or tape device. The value

X‘FFFF’indicates that no task has enqueuedthe device. If the value is X‘O000’, a

task has enqueuedthe device.

CUR-TCB Thetask control block address and address space of the task currently enqueued on

the device.

CHAIN The task control block chain. If a task attempts to enqueue any of these devices

while that device is currently enqueued by a different task, the TCB address and

address spaceof the task attempting to enqueue the device would appear on the

chain.

The column headings for the device data block (DDB) are shownat item and mean the

following:

DDB The device data block (DDB) describesthe physical disk, diskette, or tape

device. One DDBis created for each device.

IODA The device address.

DEVID The value identifies the type of device. The values shown also appear when

you issue the LD or LS commands of $IOTEST.

DSCB-> A pointer to the data set control block (DSCB) thatis currently performing

I/O.

TASK The addressof the disk task TCB. If TASK=YESwere coded on each DISK or

TAPEstatement during system generation, one task control block is created for

each statement.

DSCB-CHAIN Identifies the data set control block (DSCB), and its address space,in the chain

waiting for service.

If the system encounters erroneous data within a DDB, the dump would show *ERROR-x

following the line of DDB information. The ‘“‘x”’ could be any of the following characters:

A Invalid address

D_ Address does notexist

L DSCBchain limit (150) exceeded

T Invalid TCB

Item in Figure 13 on page PD-70 showsthe address of the VDEfor a device descriptor entry

(DDE). A device descriptor entry describes the entire device and points to the volume

directory. The device data block (DDB)for this device is at address X‘0738’. Volume

EDX002, which was defined as a performance volume, also has X‘0738’ as the DDB address.

By looking at the DDB addressat item ff, you can obtain further information aboutthis device.

This information showsthat the device is at address X‘0003’. The device ID, X‘OOCA’, means

that this device is a 4962 disk model3.

Because TASK=YESwasnotspecified for either device during system generation,the disk task

TCB address (X‘O8DE’) is identical for the DDBs at addresses X‘0738’ and X‘081E’.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-71

PD-72 SC34-0439

ation

Figure 14 showsthe last part of the formatted control block section of the dump.

EXIO DEVICE LIST

NO EXIO DEVICE SYSGENED

BSCA DEVICE LIST

NO BSCA DEVICE SYSGENED

7840 TIMER ATTACHMENT

TIMER DDB CHAIN (TCB-ADS) 10:01:28 mm/dd/yy

O95E 0072-1 01A6-1

Figure 14. EXIO, BSC, and timer device information

Item indicates that no EXIO devices are defined in this system. If any EXIO devices were

defined, the DDB address, device type, and device address would appear.

Item also indicates that no binary synchronous communications (BSC) devices are defined.

An example of the information you would see if BSC devices were defined follows:

BSCA DEVICE LIST

DDB ID IODA

2864 1006 0009

This example shows the DDBat address X‘2864’. The value X‘1006’ indicates a single-line

ACCAconnection. The device address is X‘0009’.

Item indicates the type of timer attached to the system.

Item indicates the time and date of the dump.

Item] shows the timer DDB and the TCB address and address space in the TCB chain. If any
tasks were executing an STIMERinstruction, the entries on the chain are indicated. In this

example, the TCBs at addresses X‘0072’ and X‘01A6’ (both in address space 1) are on the

timer chain. By looking at the storage map section of this sample dump (Figure 10 on page

PD-66), you can see that at item 9F these two TCB addresses are on the TCB chain for the

program SAMPLA.

Partition Information

The next portion of the dump shows someof the information dumped from partition.

ff) 2 BEGINNING AT ADDRESS 0000 FOR 256 PAGES

SNAP DUMP REQUESTED FOR O000 THRU 0400

FF 0000 0808 E2C1 D4D7 D3C1 4040 0000 0242 0034 |..SAMPLA |
0010 0000 OF5E 0344 0000 0000 0000 0100 0342 Jeep eee ee eee eee |
0020 0000 0000 0000 02C2 0000 0000 C5C4 E7FO Ji... eee B....EDXO|
0030 FOF2 0000 0001 0404 C6C9 D5C9 003E 0019 |O2...... FINI....|
0040 OO4E FFFF 805C 004D 0001 001D 0000 FFFF eaeeee |
0050 0000 0001 90A9 1388 0015 0072 FFFF 0015 ee|
6

e

®

03FO 0000 0000 0000 0000 0000 0000 0000 0000 ee|
43| SAME AS ABOVE |
FF] 0400 0000 0000 0000 0000 0000 0000 0000 0000 ee|

Figure 15. Sample contents of a partition

Item indicates which partition number was dumpedandthesize of that partition in pages. In

this example, partition 2 was dumpedandis 256 pagesin length (64K).

Item shows the range of storage addresses dumped. Thepartition addresses X‘O000’ through

X‘0400’ appear becausethe “‘partial dump’”’ option of $DUMPwasselected.

Item i shows the beginning address (X‘0000’) of partition 2. Each line of information shown

for an addressis 8 words in length. The information shownis the contents of this location in

storage when the dump wastaken.

Below item [§], the value X‘E2C1’ is shown. The dump showsthatthis valueis at address

X‘0002’ and begins on a word boundary.

Below item is the EBCDICrepresentation of the values that were in storage. Thus, the value

X‘E2C1’ shownfor item translates to EBCDIC as the characters SA. These are the first two

characters as shown in the name SAMPLA.All characters that are not printable are shown as

periods.

The text at item appears in the dump wheneverthe address, that would have been printed for

this line, containsall null characters (X‘00’). In this example, you can see this because the next

address after X‘O3FO’ is X‘0400’.

Item [I showsthe ending address that was specified for the partial dump display.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-73

PD-74 SC34-0439

This section explains how you analyze a wait state using a stand-alone or $TRAP dump. A

sample program and portions of a $TRAP dumpare presented to show how you analyze the

failure.

When you begin analyzing the dumpfor a wait state, first check to see if a value is shown for

the processor status word (PSW). If a value is shown, examine that value to determineif a

program check occurred also. The section ““Howto Interpret the Processor Status Word” on

page PD-41 explains what the PSW indicates. If the PSW value doesindicate a program check,

refer to the section “‘Analyzing a Program Check’’ on page PD-80 to help you analyze the

failure.

The sample program, WTPGM,prints a test pattern on $SYSPRTR. An ATTNLIST definedin

the program should enable youto print the test pattern again when youpress the attention key

and enter YES. However, when you attempt to repeat the test pattern, the program enters a

wait state.

The following discussion explains how to use the dump and the compilerlisting to identify the

problem:

1. Look in the storage map section of the dump andfindall the task control block (TCB)

addresses of the waiting tasks.

As shownfor item {J in the following sample dump, the TCB addresses of the waiting tasks are

X‘CC28’ and X‘CBA8’. The task control block at address X‘CC28’is the TCB address of the

program’s attention list task. The task control block at address X‘CBAS8’ is the TCB address of

the main task WIT'PGM.

Notice also for item fj that the level table shows no active or ready tasks on any hardwarelevel.

This further indicates that WITPGMis in a wait state. The dumpalso shows that $TRAPis not

active on any hardware level because the dump wastaken using the “programmer console

interrupt” option of STRAP.

STORAGE MAP: $SYSCOM AT ADDRESS 19C6

EDXFLAGS 4000 SVCFLAGS 0000

PART# NAME ADDR PAGES ATASK TCB(S)

PI ADS=0 0000 256
$TRAP B400 23 C9E4(A) C964

A WTPGM CBOO 2 CC28(A) CBA8
PREE CDOO 51

P2 ADS=1 0000 256
PREE 0000 256

P3 ADS=2 0000 256
FREE 0000 256

P4 ADS=3 0000 256
PREE 0000 256

EDX LEVEL TABLE - TCB READY CHAIN

LEVEL ACTIVE READY (TCB-ADS)

2 NONE NONE
2 NONE NONE
3 NONE NONE

LOADER QCB CUR-TCB CHAIN (TCB-ADS)

94F4 FFFF NONE NONE

Figure 16. Sample storage mapfor a wait state

Because no tasks were active on any hardwarelevel (except the supervisor on level zero), the

section of the dump showing the hardwareregisters does not point to the last instruction

executed (R1).

Chapter 7. Analyzing a Failure Using a Storage Dump PD-75

EVENT DRIVEN EXECUTIVE $TRAP FORMAT STORAGE DUMP

AT TIME OF TRAP PSW WAS 0002 ON HARDWARE LEVEL O

LEVEL O LEVEL 1 LEVEL 2 LEVEL 3 SVC-LSB SVCI-LSB
TAR 1F32 1F32 1F32 1F32 1F32 1TFOA
AKR 0000 0000 0000 0000 Q000 0000
LSR OOCO 0090 0090 0090 OOCO OOCO
RO 0000 0000 0000 0000 O000 0000
R1 0000 0000 0000 0000 0000 0000
R2 0000 0000 0000 0000 0000 0000
R3 Q0000 0000 0000 0000 0000 0000
R4 0000 0000 0000 0000 0000 0000
R5 0000 0001 0002 0003 0000 0002
R6 8000 8000 8000 8000 8000 0000
R7 0000 0000 0000 0000 0000 114C

Because you needthe address to which R1 is pointing to determinethat last instruction executed

by each task, you must examine a dumpofthe partition containing the TCB addressfor each

task. By reviewing the dumpof that partition, you can find the address that R1 points to within

the TCB of each task.

Figure 17 on page PD-77 shows a sample dumpofpartition 1. The dump beginsat the

program’s load point (X‘CBO0O’) and continues up to the beginning of the free storage area

(X‘CDO0’).

2. Do the following to find R1 in the TCB:

a. Look in the dump andfind the TCB address (as shown in Figure 16 on page PD-75) of

the first task. The first TCB address of the sample program is at address X‘CC28’. This

address appears underitem in Figure 17.

b. Using the TCB equates, find the R1 save area ($TCBS1) in the dump. You locate this

field by adding the offset X‘OE’ to the address of the TCB. In this case, the address

X‘CC36’ points to the address of R1 for the program’s attention list task. This address

is X‘CB60’ and appears underitem FJ.

c. Subtract the program load point from the address shown for R1. The program load

point of the sample program is at X‘CBOO’. The resulting address for the program’s

attention list task is X‘0060’. You use this address and the compilerlisting to identify

whichinstruction the program was executing when the dump was taken. The compiler

listing for the sample program is shownin Figure 18 on page PD-78.

Because the sample program consists of two tasks (an attention list task and the main program),

you must also determine what address R1 points to for the second task (main program). The

steps you follow are the same as steps 1 through 2c but using the TCB address X‘CBA®’ of the

main task.

The TCBaddress for the main task is shown under item f]. The address R1 points to for the

main task is X‘CB96’ and is shown underitem ff.

Again, after subtracting the program load point from the address R1 points to for the main task,

the resulting address is X‘0096’.

P1 BEGINNING AT ADDRESS 0000 FOR 256 PAGES

SNAP DUMP REQUESTED FOR CBOO THRU CDOO

CBOO 0808 E6E3
CB10 0000 OD84
CB20 0000 0000
CB30 FOF2 0000
CB40 D5D6 CB4C
CB50 0002 0019
CB60 O001D A025
CB70 C9D1 D2D3
CB80 E4E5 E6E7
CB90 7C40 OO1A

CBAO CB62 OOB2

CBBO 0000 88DO
CBCO OO2E 2094
CBDO 0000 0000
CBEO C740 4040
CBFO 0000 FFFF
CCcOoOo 0000 0000

SAME AS ABOVE
CC20 Q0000 0000

CC30 0000 88D0
CC40 OO3A 49D2
CC50 0000 0000
CC60 C1E2 D240
CC70 OO00 FFFF
CC80 0000 0000

SAME AS ABOVE
CCAO 0000 0000
CCBO 0000 0000
CCCO 0000 0000
CCDO O000 O1CE
CCEO 0000 0000
CCFO 0000 0000
CDOO D11E 0000

Figure 17. Sample storage dump for a wait state

D7C7
CCAA
0000
0000
0403
CB34
8026
D4D5
E8E9
CB34

0022

O000
0000
CBD4
0000
0000
0000

CBA8

0000
0000
CC54
0000
0000
0000

CC28
0000
0000
E3C1
0000
0000
D11C

D440
0000
CC28
CBA8
E8C5
FFFF
1212
D6D7
FIF2
0017

FFFF

CB96
O2BE
0000
0000
0000
0000

0080

CB60
0001
CC28
8000
0000
0000

0080
0000
0000
E2D2
0000
0108
BOA2

4040
0000
CBOO
0000
E240
001D
C1C2
D8D9
F3F4
CB34

FFFF

CBA8
0096
0000
0000
131C
0000

FFFF

CC28
OOOA
OD84
49CE
OD84
0000

0000
0000
0000
F340
0000
0000
D1I1E

0000 CBA8
0000 0100
0000 C5C4
0001 0002
CB5A 805C
805C CB3A
C3C4 C5C6
8026 1413
F5F6 F/F8
AOA2 CB3A

0000 0000

CB34 AOA2
O000 OOOO
CBD6 C4C5
0000 0000
CBOO 0000
0000 0000

0000 0000

OD84 FBOO
0000 0000
CC56 5BC1
0000 0000
CBOO QO000
0000 0000

0000 0000
0000 0000
0000 O01CC
4040 OQ000
FFFF QO000
0000 0000
O0000 CDIA

CB3C
CCA8
E7FO
0202
CB3A
0001
C7C8
E2E3
FOFO
0001

2098

0017
O000
C2E4
0000
CBA8
0000

49D6

001D
FFFF
E3E3
0000
CBA8
0000

0000
0000
0000
0000
0000
0000
805C

|..WTPGM |
foc cece eee eee ee |
ereEDXO |
[O2..........-..- |
[NO.<..YES .!.¥*..|
Joc e eee ecw ee *. 2.0
[......0. ABCDEFGH|
| IJIKLMNOPOR....ST|
| UVWXYZ1234567890|
lo. cc we ee ww ww wee |

[oc ee ec ew ee wwe eee |

Joc e cece ee cee eee |
[oc ce ee ew ee ee wee |
f..... Mi... ODEBU|
IG gc ee ce ee ee ee |
occ cc eee wee ee eee |
lowe ec eee wee ew wee |

[oc ce ew eee eee eee O|

J... eee Lc eee |
[...K........20-0- |
[owe ee eee ewes $ATT |
[ASK |
ee|
[occ cc cece eee wee |

en|
pec c cc wee cee ewww |
foc ccc wee wwe ec wee |
| TASK3 . |
ee|
[occ cece cw cee eee |
[J...0...0...... * |

3. Using the resulting address from step 2c on page PD-76,look at the instruction at that

addressin the compiler listing and try to determine what caused the wait.

Figure 18 on page PD-78 showsthe compiler listing of the sample program. The attentionlist

task points to an ENDATTNinstruction at address X‘0060’. This address is shownas item [J in

Figure 18.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-77

PD-78 5C34-0439

The main task points to a WAIT instruction at address X‘0096’. This address is shown as

item Ff.

LOC

0000
OOOA
0014
OO1E
0028
0032
0034
OO3A
003C
0046
OO4C
OO4C
0052
0058
OO5A
OO5A

f] 0060
0062
0062
0064
OO6E
0078
OO7A
0084
O08E
0092

A) 0096
009A
OOA2
OOA4
OOA8
00B2
OOBC
e

e

e

O1BE

+0

0008
0000
O1AA
O1A8
QO000
0000
FFFF
0000
0002
E8C5

805C
0019
001D

805C

001D

A025
8026
C7C8
D8D9
8026
E8E9
F9OFO
OO1A

0017
AOA2
OOB2
0022
0000
OODO
0000

+2

D7D9
OOA8
0000
0000
0000

0000

0202
E240

003A
0034

QOO3A

1212
C9D1

1413
FIF2
7C40
0034

0034
OO3A

FFFF
0000
0000
0000

+4

D6C7
O003C
0000
QO000
QO000

Q0000

D5D6
OO5A

0002
FFFF

0001

C1C2
D2D3

E2E3
F3F4

0001

0000
0062
0000

+6

D9C1
0000
0000
0000
0000

OO4C

C3C4
D4D5

E4E5
F5F6

0062

0234
QOOA8
0000

Figure 18. Compiler listing of wait state program

+8

D440
0000
0100
0128
0000

0403

C5C6
D6D7

E6OE7
F7F8

0000
0000
0000

DEBUG

EVENT
PRINT
ALIST

POST1

POST2

START

PROGRAM

ECB
DATA
ATTNLIST

EQU
MOVE
POST
ENDATTN
EQU
MOVE
ENDATTN
EQU
ENQT
PRINTEXT

PRINTEXT

RESET

WAIT
IF
DEQT
PROGSTOP
ENDPROG

END

START

F'OQ!
(NO, POST1, YES, POST2)

*

PRINT, 2
EVENT

*

PRINT, 1

*

$SYSPRTR
"ABCDEFGHIJKLMNOPOQR'

"STUVWXYZ12345678900 '

EVENT

EVENT
PRINT,EQ,1,START

Because the dumpindicatesthat the attention list task is at the ENDATTN,you can assumethe

program did pass control to the code at label POST2. The code at POST2 handles the YES

response. Atthis label, a value of 1 is moved to the field PRINT. The main task is supposed to

repeat the test pattern (branch to START) when PRINTis equalto 1.

By examining the contents of PRINT in the storage dump, you can see that PRINT does contain

a1. The field PRINT is at address X‘CB3A’andis underitem fj:

P1 BEGINNING AT ADDRESS 0000 FOR 256 PAGES

SNAP DUMP REQUESTED FOR CBOO THRU CDOO

CBOO 0808 E6E3 D7C7 D440 4040 0000 CBA8 CB3C |..WTPGM |
CB10 0000 OD84 CCAA 0000 0000 0000 0100 CCA8 Powe cee wee wee wees |
CB20 0000 0000 0000 CC28 CBOO 0000 C5C4 E7FO Joe cee e eee eee EDXO|

CB30 FOF2 0000 0000 CBA8 O000 Bo 0002 0202 lO2..........2.2.- |

However, even though the value of PRINTsignals the program to repeat the test pattern, the

main taskis still in a wait state.

By further examining the code at label POST2, notice that an ENDATTNis coded immediately

after the MOVE:

OO5A POST2 EQU *
OO5A 805C 003A 0001 MOVE PRINT, 1
0060 OO1D ENDATTN
0062 START EQU *

e

e@

eo

0096 0017 0034 WAIT EVENT
OO9A AOA2 003A 0001 0062 IF PRINT,EQ,1,START

Because the main task is waiting on the event control block EVENT to be posted, you must

determine whatin the program prevents that event control block from being posted.

Closer examination of the code at label POST2 showsthat a POSTinstruction, required to post

the event control block, was omitted. Because the attention list routine that processes the YES

response never posts EVENT,control never passes to the IF instruction which causes a branch

to label START.

In order to correct the problem of the wait state in the sample program,the code at label POST2

should look as follows:

POST2 EQU *
MOVE PRINT, 1
POST EVENT
ENDATTN

Chapter 7. Analyzing a Failure Using a Storage Dump PD-79

PD-80 SC34-0439

This section explains how you analyze a program checkusing a stand-alone or $TRAP dump. A

sample program, SAMPLA,and portions of a $TRAP dumpare presented to show how you

analyzethe failure.

The failure discussed in this section occurred while SAMPLA,which has an attention list, was

executing in partition 2. $FSEDIT was loadedin partition 1 and was enqueued to $SYSLOG.

Whenan operator entered the attention list command FINI, the system stopped processing and

the terminal from which SAMPLAwasloaded would not respond to the attention key. The

operator, in this case, [PLed the system, loaded $TRAP to trap all exception types, and

reproducedthe situation in which the failure occurred. The failure occurred again and the

operator printed the dump using $DUMP. The“format control blocks” option wasselected.

To analyze the failure, do the following:

1. Look at the portion of the dump that shows the contents of the hardware registers andsee if

the processor status word (PSW)indicates a program check. The section ‘Howto Interpret

the Processor Status Word” on page PD-41 explains the meaning of the PSW.

Note: If a stand-alone dump wastaken, begin with step 2 on page PD-81.

Figure 19 shows a portion of the $TRAP dump which contains the hardware registers when the

failure occurred:

EVENT DRIVEN EXECUTIVE $TRAP FORMAT STORAGE DUMP

i AT TIME OF TRAP PSW WAS 8006 ON HARDWARE LEVEL 1

LEVEL 0 LEVEL 1 LEVEL 2 LEVEL 3 SVC-LSB SVCI-LSB
TAR 1FFA 2AD6 1F32 1F32 1F32 1FOA
AKR 0100 0110 0000 0000 0000 0000
LSR 8090 OODO 0090 0090 OOCO OOCO
RO 0000 0001 0000 0000 0000 0000
R1 0000 0044 OOOO 0000 0000 0000
R2 O2C2 O2C2 0000 O0000 0000 0000
R3 O2B6 OO4D 0000 QO000 0000 0000
R4 0000 0048 0000 0000 0000 0000
R5 0001 805C 0002 0003 0001 0000
R6 0000 OOB8 8000 8000 8000 0000
R7 0000 0000 0000 0000 0000 0000

Figure 19. Register contents from program check

Because the PSW value shownat item [J (X‘8006’) indicates that a program check did occur on

level 1, you must determine which task wasactive onlevel 1.

2. Lookat the level table portion of the dump andfind the active task on the highestlevel.

Figure 20 showsthe portion of the sample dump containing the storage map and leveltable.

Item showsthatlevel 1 has an active TCB at address X‘02C2’ in address space 1 (partition 2).

The storage map showsthat this TCBis the attentionlist task (item f]) for program SAMPLA.

The load point for SAMPLAis X‘0000’.

STORAGE MAP:

EDXFLAGS

PART# NAME

P 1

'~ N
O

P3

P4

EDX

ADS=0
$TRAP
$FSEDIT
** EPREB**

ADS=1
SAMPLA
PREE

ADS=2
#*PREE* *

ADS=3
FRER

LEVEL TABLE -

LEVEL ACTIVE

LOADER QCB CUR-TCB

94F4 FFFF NONE

O2C2-1
NONE
NONE

4000 SVCFLAGS

$SYSCOM AT ADDRESS 19C6

1000

ADDR PAGES ATASK TCB(S)

0000
B400
CBOO
EAOO

0000
0000
0400

0000
0000

0000
0000

256
23

22

256
256

256
256

C9E4(A) C964
E8AC

eo (a) O242 01A6 010E 0072

TCB READY CHAIN

READY (TCB-ADS)

NONE
O010E-1 0242-1
NONE

CHAIN (TCB-ADS)

NONE

Figure 20. Storage map and level table for program check

Chapter 7. Analyzing a Failure Using a Storage Dump PD-81

PD-82 SC34-0439

3. Look at the portion of the dump containing the hardwareregisters andsee if the address of

the active TCBis in R2 of the level 1 registers.

At item ff in the following example, notice that the address for R2 on level 1 does show the

address X‘02C2’.

EVENT DRIVEN EXECUTIVE $TRAP FORMAT STORAGE DUMP

AT TIME OF TRAP PSW WAS 8006 ON HARDWARE LEVEL 1

LEVEL 0
IAR 1FFA
AKR 0100
LSR 8090
RO 0000

R1 0000

R2 O2C2
R3 O2B6
R4 Q000
R5 0001
R6 0000
R7 QO000

LEVEL 1
2AD6
0110
OODO
0001

BH 0044
Al 02c2

004D
0048
805C
OOB8
0000

LEVEL 2
1F32
0000
0090
0000

0000

O000
0000
0000
0002
8000
QO000

LEVEL 3
1F32
0000
0090
0000

0000

0000
QO000
0000
0003
8000
0000

SVC-LSB
1F32
0000
OOCO
0000

0000

0000
OO000
0000
0001
8000
0000

SVCI-LSB
1FOA
0000
OOCO
0000

O000

O000
0000
0000
0000
0000
0000

Notice also that the address for R1 (item Bi), which points to the failing EDL instruction, points

to address X‘0044’. Because the program load point for SAMPLAis at address X‘0000’, the

address X‘0044’ corresponds to address X‘0044’ in the compiler listing of SAMPLA.

Whena program load pointis other than X‘0000’, subtract the load point address from the

address of R1. Use the resulting addressto find the failing EDL instruction in the compiler

listing.

4. Using the addressof the failing EDL instruction (the address in R1 in this case), look at that

address in the compilerlisting and determinethe cause of the failure.

LOC

0000
0034
OO03E

§ 0044
OO4A
004c
OO4E
0054
0058
OO5E
0064
OO6A
NNER TE
VVOL

0072
OOF2

0106
O10E
O018E

019E
O01A6
0226

0236
O23E
0242

+0

0008
0001
0019

805C
001D
0000
0000
90A9
0015
0015
0015
0017
OnnOOAO

0000
835C

0016
0000
835C

0016
0000
835C

0016
0022
0000

+2

D7D9
0404
OO4E

OO4D

0000
1388
0072
O10E
01A6
OO4E
023E
0000
0000

FFFF
0000
0000

FFFF
0000
0000

FREE
FFFF
0000

+4

D6C7
C6cg
FFFF

0001

0000

FREE
FFFF
FFFF

0000
0014

OOAO
0000
0028

OOAOQ.
0000
0080

OOAO

0000

+6 +8

D9C1 D440
D5C9 003E

0234 0000

OOF2
0234 0000

O18E
0234 0000

0226

0234 OO000

Figure 21. Compiler listing of program check program

Chapter 7. Analyzing a Failure Using a Storage Dump

SAMPLA

DONE

WORD
ECB
START

TASK1
START 1

TASK2
START2

TASK3
START3

END

PRINT
PROGRAM
ATTNLIST
POST

MOVE
ENDATTN
DC
ECB
STIMER
ATTACH
ATTACH
ATTACH
WAIT
GOTO
TASK
MOVE
e

e

e

ENDTASK
TASK
MOVE
e

e

e

ENDTASK
TASK
MOVE
@

e

e

ENDTASK
PROGSTOP
ENDPROG
END

Figure 21 showsthe compilerlisting for the program SAMPLA. As shownforitem §, notice

that at address X‘0044’ the program attempts to move a word of data to an odd-byte boundary

(WORD+1).

NODATA
START
(FINI, DONE)
ECB

WORD+1, 1

F'O'
O
5000 ,WAIT
TASK1
TASK2
TASK3
ECB
END
START 1
#1,20

START2
#1,40

START3
#1,128

PD-83

PD-84 SC34-0439

In the following example of the hardwareregisters for level 1, item shows that R3 (operand 1)

is at address X‘004D’, which is on an odd-byte boundary. Item {J showsthat the address of R4

(operand 2) is at address X‘0048’, which is on a word boundary. Thus, any attempt to move a

word of data to a byte boundary causes a specification check as indicated by item {].

EVENT DRIVEN EXECUTIVE $TRAP FORMAT STORAGE DUMP

1 AT TIME OF TRAP PSW WAS 8006 ON HARDWARE LEVEL 1

IAR
AKR
LSR
RO
R1
R2

R3

LEVEL O
1FFA
0100
8090
O000
0000
O02C2

O2B6

0000
0001
0000
0000

LEVEL 1
2AD6
0110
OODO
0001
0044
02C2

HW 004D
f) 0048

805C
OOB8
0000

LEVEL 2
1F32
0000
0090
0000
0000
0000

0000

0000
0002
8000
0000

LEVEL 3
1F32
0000
0090
0000
0000
0000

0000

0000
0003
8000
0000

SVC-LSB
1F32
0000
OOCO
0000
0000
0000

0000

0000
0001
8000
0000

SVCI-LSB
1FOA
0000
OOCO
0000
0000
0000

0000

0000
OO00
0000
Q000

Because $FSEDIT had the $SYSLOGterminal enqueued, the system was unable to display the

program check message, andasa result, caused the system to stop processing.

This section explains an approach you canuse to analyze a run loop with the help of a

stand-alone or $TRAP dump.

Because a run loop occurs within a range of instruction addresses in a program, the dump would

only show the instruction address at which the program was executing when the dump was

taken. You can, however, use a dumpto identify which task was active and the hardware level

on which the task was executing.

To analyze a run loop using a dump,do the following:

1. Lookat the level table in the dump and find the TCB addressof the active task on the

highest level.

2. Look in the storage map of the dumpandfind the name of the program whose TCB address

matches the TCB address from step 1 .

3. Rerun that program.

4. Turn to the section “Determining the Starting and Ending Points of the Loop”’ on page

PD-20. That section explains how to trace the addresses within the loop using DEBUG.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-85

PD-86 SC34-0439

The system sets aside an area in storage that it uses to record program check, soft exception, and

machine check information. This area in storage is called the software trace table. However, in

order for this storage area to be present, you must include the module CIRCBUFFduring

system generation.

The software trace table provides you with an alternate method of identifying the cause of an

exception. For example, if for some reason you were notable to record the information

displayed in a program check message, you could use the informationin the trace table to help

you analyze the exception.

The system makesan entry into the software trace table when an exception occurs. The system

does not record exceptions that occur in a program ortask that has the ERRXIT= operand

coded on the PROGRAMor TASKstatement.

The software trace table can contain a maximum ofeight entries. When the maximum number

of entires is reached, the system overlays the oldest entry in the table with the newest entry.

Thus, the system records these entries in a “‘circular”’ fashion.

The entries in the trace table reflect the number of exceptionssince the last IPL. The system

resets (clears) this table during each IPL.

If any entries are in the trace table when youtake a stand-alone or $TRAP dump,these entries

are also shown in the dump. Figure 7 on page PD-62 shows an example of how an entry

appears in a dump.

You can display the contents of the trace table on a terminal using the $D operator command.

How youdothis is described next.

Chapter 8. Tracing Exception Information PD-87

PD-88 5C34-0439

You can display the contents of the software trace table at your terminal. In order to display the

trace table, first you need the supervisor link map listing from system generation.

To display the software trace table, do the following:

1. Change your terminal to partition 1 by pressing the attention key and entering $CP 1.

 2. Press the attention key and enter $D.

3. At the prompt for ORIGIN;:, enter 0000.

The next prompt, ADDRESS,COUNT.:, asks you for an address and the number of words you

wantto display.

4. For ADDRESS,enter the address of the software trace table. The address of the software

trace table appears beside the entry point name CIRCBUFFin the supervisor link map

listing.

5. For COUNT,enter the value 125. This value is the number of wordsin storagethe trace

table occupies.

The system then displays the contents of the trace table at the terminal. An explanation of the

information displayed is in the section “Software Trace Table Format’’ on page PD-90.

6. Reply N to the prompt ANOTHER DISPLAY?

Figure 22 is an example showing steps 1 through 5 on page PD-88. The address of the trace

table (CIRCBUFF)in this example is X‘8F64’. The trace table contains two entries.

 2 OO1E (000120
 BSOA B520.

00 0101O1A88002
192013c01A8 019AO01

00000 00000000¢
000000000000+

00000000|

19080000
000

000000000
000

0000 00000000000000000
000

000000000000

|ozk.b0co.0000000000000000000000000¢
| 9034:0000000000000000000000000000

44:0000000000000000000000000000 oo
oeee00000000er

Figure 222.2.Samplessoftwaretitrace table entries

oe

oe

on
0000 ..

oo

The next section explains the format and contents of the software trace table.

Chapter 8. Tracing Exception Information

PD-89

The software trace table is a 125-word area in processor storage. The trace table consists of

control information and exception entries. This area in storage is describedin the following

sections.

Control Information Format

PD-90 SC34-0439

The first 5 words of the trace table are control information. This 5-word area contains the

following information:

Word

0

Figure 23 showsseveral lines of control information from the previous example. An explanation

Contents

The address of the first entry in the table.

The address at which the next entry will be written.

The ending address of the table. This address points to the first byte beyond the end

of the table.

The number of exceptions that occurred since the last IPL.

The size (in bytes) of each entry in the table. This field contains the value X‘1E’

which indicates each entry is 30 bytes (15 words) in length.

of each numbereditem follows Figure 23.

SFO64:
SF74:

SF84:

SFIA:

SFOE
B437

B434
2B86

OO5E

SFAA
2AD6

015C
0110

OOBC

ose
O000

OOB8
80D0

QOO00

0000 O000 0000

oz
80D0

0000
0192

p
O000

0000

Bie
O064

of,
013C

OO000

Boo

Foo 0120 8002
B50A B520 B437

0O1A8 8002 0O1A9
O1A8 019A 01A9

0000 0000 OO0O0D

Figure 23. Control information example

The address (X‘8F6E’) shown below item {J points to the first exception entry inthe trace table.

The first exception entry is shown below item §.

The address (X‘8FAA’) shown below item fj points to the address at which the next exception

entry will be written. This address is shown below item J.

Item points to the first byte of storage following the trace table. This address (X‘905E’) is not

shownin the example, but would begin immediately after item §J.

Item 4 indicates that two exceptions have occurred since the last IPL. The second exception

entry begins below item ff.

The value (X‘001E’) below item indicates the length (in bytes) of each entry.

The next section explains the format and contents of an exception entry.

Chapter 8. Tracing Exception Information PD-91

Exception Entry Format

PD-92 SC34-0439

Each exception entry in the trace table is 15 words (30 bytes) in length. The first entry, which

follows the five words of control information, begins at word 5 in the table. When the maximum

numberof entries (eight) is reached, the system writes the next entry at word 5 again,

overlaying the previous entry. Each entry contains the following information:

Word Contents

0 This word contains a state variable and an addresskey.

The state variable, whichis the first byte, can have any of the following values:

0 — Nointerrupt in process

1 — Standard (default) processing

2 — Nowprocessing task error exit

3 — Undefined

The address key, which is the second byte, indicates the address space that was in use

when the exception occurred. The partition in which the exception occurredis this

value plus 1.

1 The task control block (TCB) address of the failing task.

2 The value of the processor status word (PSW). The section “‘Howto Interpret the

Processor Status Word” on page PD-41 explains the meaningofthis value.

3 The contents of the storage address register (SAR). This field indicates the addressin

storage last accessed whenthefailure occurred.

4 The contents of the instruction address register (IAR). This field indicates the

address of the machine instruction currently executing.

5 The contents of the address key register (AKR). Thelast 3-hexadecimal digits

indicate in which address space operand 1, operand 2, and the IAR reside. Bit 0 of

the AKR is the equate operand spaces (EOS)bit. If bit 0 is set to 1, the address

space key indicated for operand 2 is the address space key used for operand 1 and

operand2.

6 The contents of the level status register (LSR). The bits, when set, indicate the

following:

Bits O—4 — Thestatus of arithmetic operations. Refer to the processor

description manual for the meanings ofthesebits.

10

11

12

13

14

Bit 8 ——- Program is in supervisorstate.

Bit 9 — Priority levelis in process.

Bit 10 — Class interrupt tracingis active.

Bit 11 — Interrupt processing is allowed.

Bits 5—7 and bits 12—15 are not used and are always zero.

The contents of hardware register 0 (RO). Because the supervisor uses this register as

a workregister, the contents are usually not significant to the failing program.

The contents of hardware register 1 (R1). This field contains the address in storage

of the failing EDL instruction.

The contents of hardware register 2 (R2). This field contains the addressin storage

of the active task control block (TCB).

The contents of hardware register 3 (R3). This field contains the address in storage

of EDL operand1 of the failing instruction.

The contents of hardware register 4 (R4). This field contains the address in storage

of EDL operand 2 (if applicable) of the failing instruction.

The contents of hardware register 5 (R5). This field contains the EDL operation code

of the failing instruction. The first byte contains flag bits which indicate how

operands are coded. For example, the flag bits indicate whether the operandis in #1,

#2, or specified as a constant. The second byte is the operation code of the EDL

instruction.

The contents of hardware register 6 (R6). Because the supervisor usesthis register as

a workregister, the contents are usually not significant to the failing program.

However, you can determineif the system was emulating EDL code whenthefailure

occurred if R6 is twice the value shownin the second byte of R5. For example,if the

second byte of R5 contained X‘32’ and the system was emulating EDL, R6 would

contain X‘0064’.

The contents of hardware register 7 (R7). Because the supervisor usesthis register as

a workregister, the contents are usually not significant to the failing program.

However, in many cases, R7 may contain the address of a branch and link instruction.

The address may give you a clue as to which module passed control to the addressin

the IAR.

Chapter 8. Tracing Exception Information PD-93

PD-94 SC34-0439

Excluding the address of the program load point, all entries in the trace table contain the same

information that the system displays in a program check message, plus two additionalfields: the

state variable and address key word, and the storage address register (SAR). The section

“Finding the Program Load Point Address” on page PD-95 explains how you can find the

address of the program load point.

The following application program check message caused the system to create the exception

entry in the trace table shown below the message.

PROGRAM CHECK:
PLP TCB PSW IAR AKR LSR RO RI R2 R3 R4 RS R6~— R7
B400 0120 8002 2AD6 0000 80D0 0064 BS50A B520 B437 B434 015C 00B8 0000

The exception entry for the previous program check message begins below item {J and ends

below item fj.

8F64: 8FOE 8FAA 905E 0002 OOIE fo oF20 aMo2

p p
8F74: B437 2AD6 Boo 80D0 0064 BS50A B520 B437

SF84: oe, JE. OOB8 O000 0101 01A8 8002 01A9
Item {J showsthe value of the state variable and address key. The value of the state variable

(X‘01’) indicates standard processing. The address key indicates address space 0 (partition 1).

Item fj showsthe task control block (TCB) address X‘0120’.

Item showsthe value of the processor status word (PSW). The value X‘8002’ indicates a

specification check occurred and that the translator was enabled. The specification check was

caused by a word moveto a odd-byte boundary.

Item | showsthe value (X‘B437’) of the storage address register (SAR).

Item showsthe value (X‘2AD6’) of the instruction address register (IAR).

Item § showsthe value (X‘0000’) of the address key register (AKR).

Item showsthe value (X‘80D0’) of the level status register (LSR).

Items {J through show the contents of hardware registers RO through R7.

In order to determine where thefailure occurred in the application program, you need the

address of the program load point. An exception entry in the trace table does not contain this

address, but you can find the load point address by using the value of the address key and the

TCBaddress.

If the area in storage that contained the failing program’s task control block (TCB) has been

overlaid by other active tasks, you cannot find the load point address in the failing program’s

TCB. The note under step 1 may apply, however.

This discussion assumesthat you are using the most recent exception entry in the trace table and

that you were unable to record the program check message displayed for this exception. The

following steps explain how to find the program load point address:

1. Look at the value in the address key (word 0, second byte) and determinethe partition in

whichthe failing program wasactive.

Note: If the failing program wasthe only program active in that partition, the load point

address is the address at which the partition begins. The $A ALL operator command

displays the beginning addressof each partition. Using the beginning addressof that

partition as the program load point address and the rest of the information in the exception

entry, turn to the section ‘““How to Analyze an Application Program Check” on page PD-48.

If multiple programs were active in that partition, go to step 2.

2. Add the value X°52’ to the address shown for the TCB (word 1 in the exception entry).

Addingthis value to the TCB address points to the field $TCBPLP in the task control block.

$TCBPLPcontains the program load point address.

3. Press the attention key and enter $CP specifying the partition numberfrom step 1.

4. Press the attention key and enter $D.

5. At the prompt for ORIGIN:, enter 0000.

6. At the prompt for ADDRESS,COUNT.:, enter the address you calculated in step 2. Enter

the value 1 for the count.

The value the system displaysis the program load point address of the failing program.

7. Reply N to the prompt ANOTHER DISPLAY?

Chapter 8. Tracing Exception Information PD-95

PD-96 SC34-0439

The following items are ways in which you can determineif the program load pointis valid:

e Checkto see if the address is within the size of the partition in which the program was

running.

e Subtract the load point address from the address shown for R1 (word 8 in the exception

entry). Using the resulting address and the compilerlisting of the failing program,

determineif that addressis within the program.

e Makesurethat if the address is within the program,it is the address of an executable

instruction.

If all of the above items seem correct, the address of the program load point is probably valid

and belongsto the failing program. Using this program load point address andtherest of the

information in the exception entry, turn to the section ““How to Analyze an Application Program

Check” on page PD-48.

The $LOGutility provides you with a method of recording I/O errors from I/O devices
attached to your Series/1. When $LOGis active and it detects a device I/O error,it writes

status information to a log data set on disk or diskette. This information is useful when you are

experiencing intermittent I/O errors and you haveto call a service representative to analyze the

problem.

To provide this I/O error logging support in your system, you must include the supervisor

module SYSLOG during system generation. The supervisorin the starter system already

contains SYSLOG. |

This chapter discussesallocating the log data set, how to run $LOG,print the log information,

and howto identify the I/O device experiencing an I/Oerror.

Chapter 9. Recording Device I/O Errors PD-97

PD-98

SC34-0439

> SLSDISKUTTet
LOADING $DISKUT1 =. 59P,00:00:15, LP= B4OO, PART=10

\

Before you use $LOGfor I/O error logging, you must allocate a data set on disk or diskette

using $DISKUT1 (AL command). This is the data set in which $LOG writes the status

information or “log record”. You can namethe data set anything you wish (1 to 8 characters)

and that data set can reside on any disk or diskette volume.

The log data set requires one 256-byte record for each error entry. Allocate as manyrecords as

you feel you require. You mustallocate at least three records, since $LOG usesthefirst two

records of the data set for control information.

The following example showshowto allocate a log data set that can contain 30 log records. In

this example, the name of the log data set is LOGGERandresides on volume EDX002:

$DISKUT1 -DATA SET MANAGEMENT UTILITY |

USING VOLUME EDXx002

COMMAND (2): AL LOGGER 30 D
LOGGER CREATED

COMMAND (7): EN
Figure 24. Example of allocating a log data set

If the log data set becomesfull during I/O error logging, $LOGreturnsto the third record in the

data set and begins writing over the previous entries.

If the log data set was previously used, any new entries are addedafter the old ones. If you

initialize the data set, a new log control record is written, indicating that no entries are in the log

data set.

To activate I/O error logging, use the $L operator commandto load $LOGinto anypartition.

$LOG prompts you for the name and volumeof the log data set. After you specify the data set

name and volume, $LOGis readyto start logging device I/O errors.

$LOG has attention commandsthat enable you to controlits activity. These commands enable

you to stop, restart, or terminate error logging. You can also reinitialize (clear) the log dataset.

Figure 25 shows an example of howto start I/O error logging.

In the following example, item f] shows how to load $LOG. The promptat item Fj requests the

name and volumeof the log data set. This example showsthe data set created in Figure 24 on

page PD-98. Notice that in this example, $LOGis loadedin partition 2. Item EJshows the

attention commands you canenter to control $LOG. You can issue those commandsat any

time. $LOG displays the message shownat item f to indicate logging is active.

LOGGER.moe
23P00:00:ney1P=0000,a

.INEATTN/SLOGOFF.“>TEMPORARILY.DEACTIVATELOGGING. —

-—ATTN/SLOGON=REACTIVATE LOGGING 8 —) |
——ATTN/SLOGINIT= INITIALIZELOG DATA.SETi
— REACTIVATELOGGING|
es=TERMINATE LOGGING
oF | REISSUECOMMANDList.

“WARNING:DONOTCANCEL.(sc).THISPROGRAM
ae

eGee
Figure 25. Example of starting I/O error logging

If while I/O error logging is active and $LOG cannot handle the numberof I/O errorinterrupts

being presented,it issues the following message:

Chapter 9. Recording Device I/O Errors PD-99

By reviewing the log information, you can determine if any device I/O errors have occurred

(while $LOGis active). The $DISKUT2 utility enables you to display the log information at a

terminal (LL command)orprint it on any printer (PL command). In addition, $DISKUT2

enables you to print or display log entries for an I/O device at a particular address. You can

also print or display log entries for all I/O device addresses. If you do not know the I/O device

addresses on your system, load the $IOTESTutility and issue the LS or LD command.

Figure 26 shows an example of how to print the log information for all I/O devices. An

explanation of the numbered items follows the example.

> $L SDISKUT2. | ee
LOADING $DISKUT2 —-551P,,00:29:36, LP=0000, PART= 2=

 — SDISKUT2- DATA SET MGMT. UTILITY11

USINGVOLUME EDX002~— f
a

COMMAND(?): PLO
LOG DS NAME: LOGGER
DEVICE ADDRESS (NULL FOR ALL):

m
e
s

DUMP ALL OF LOG? Y -COMMAND(?): EN

Figure 26. Example of printing the log data set

PD-100 SC34-0439

Item {J shows how you load $DISKUT2after pressing the attention key.

As shownat item fj, $DISKUT2 assumesthat you are using the IPL volume. If the log data set

does not reside on the IPL volume, enter the CV command (change volume)at thefirst

COMMANDpromptandspecify the volume on which the log data set resides.

The PL commandenteredat item indicates that the log informationis to print at a printer.

$SYSPRTRis the default printer. If you enter the LL command, $DISKUT2displays the log
information at your terminal.

The promptat item J requests the nameof the log data set. In this example, the nameof the log

data set is LOGGER.

The prompt shownat item requests you for the address of the I/O device for which you want

log records printed. Enter the address of the device or press the enter keyto print the log

recordsfor all I/O devices.

The promptat item 8 asks if you wanttheentire log data set printed. Reply Y to thi

reply of N causes $DISKUT2 to prompt you again for a device addressor a null repl

key).

Chapter 9. Recording Device I/O Errors PD-101

PD-102 SC34-0439

Figure 27 shows an example of the printed output created by $DISKUT2. An explanation of

the numbereditems follows the example.

iH ERROR LOG LIST, DATASET: LOGGER

ON EDXO002

A I/O LOG ERROR COUNTERS (BY DEVICE ADDR):

0000 0000 Boo 0000 0000 0000 0000 OOOO ODDD
0010 0000 0000 0000 0000 C000 0000 0000 \ODNDND

0020 me 0000 0000 0000 0000 OOOO OOOO ODDN
0030 0000 0000 0000 0000 0000 0000 0000 ODND
0040 0000 0000 0000 0000 0000 0000 0000 OONDND
0050 0000 0000 0000 0000 OOOO ODDO 0000 \OND0ND
0060 OO00 0000 0000 OO00O O0DO ODDO ON0D0D OODNDD
0070 0000 0000 0000 0000 OOOO 0000 O0D0D0D0 \ODDN
0080 0000 0000 0000 0000 0000 0000 0000 O000
0090 0000 0000 0000 OOOO 0000 D000 0000 ODNDD
OOAO 0000 0000 0000 0000 OOOO 0000 OO0D0D {ODDN
OOBO 0000 0000 0000 0000 0000 0000 0000 OD0D00
OOCcO 0000 0000 0000 OOOO OOOO ODDO DODCO CODON
OODO 0000 0000 0000 0000 OOOO ODDO O000DN ODDND
OOEO 0000 0000 0000 0000 COOO 0000 O000D0 ODDD
OOFO 0000 0000 0000 0000 0000 0000 OD0DD ADDN

5 PERM ERR
u

DEV ADDR: 0002 EV ID: 0106

9
DATE: 5/15/83 LVL: 0001 AKR: 0000

TIME: 0:20:22 RETRY: 10 IDCB: 7002 0852

INTCC: 0002 ISB: 0080

iS DCB 1: 8007 0000 0000 0000 0000 0862 OCO00D ODDO

DCB 2: 8005 0001 0000 0001 0000 0872 0000 ODDD

DCB 3: 2109 0000 0000 1001 0001 O000 0100 1D4c

fi csswW: 0881 4000 1001 0001

PERM ERR & F3
DEV ADDR: 00 DEV ID: O06
DATE: 5/15/83 LVL: 0003 AKR: 0100
TIME: O: 2:53 RETRY: 2 IDCB: 0000 OO000
INTCC: 0002 ISB: 0080
CSSW: 12D1 2041 0015 4200 0000 FFFF OOF8 6080
LOG LISTING ENDED

Figure 27. Example of printed log information

Item {J identifies the name and volumeof the log data set. $DISKUT2is printing. In this

example, the log data set is LOGGER on volume EDX002.

The information shown below item A lists device addresses and an I/O error count. The device

addresses range from X‘00’—X‘FF’, or 0—255.

Each byte indicates a device address and the numberof I/O errors (in hexadecimal) logged at

that addresssince the log data set waslast initialized. For example, the value X‘01’ shown

below item {] indicates that one I/O error occurred at device address X‘02’. Further, item JJ

indicates that one I/O error occurred at device address X‘21’.

If the log data set has not wrapped (oldest entries overlaid), the count also indicates total

numberof log records currently in the log dataset.

Item § indicates the type of I/O error. $DISKUT2indicates either a permanent error (PERM

ERR) or a soft-recoverable error (SOFT RECOV ERR). A permanenterror is an I/O error from

which the device cannot recover after attempting to retry the I/O operation.

A soft-recoverable error is one that through re-trying the I/O operation, the device is able to

recover from theerror.

Item § identifies the address of the device encountering the I/O error. The device addressis

contained in the right-most byte of the word. In this example, the device is at address X‘02’

Item] identifies the device type. The value X‘0106’in this the example, indicates a 4964

diskette unit. The device type is also shown whenyouissue the LS or LD commandof

$IOTEST.

Item §j showsthe date, according to the system clock, when the I/O error occurred.

Item fj indicates the the hardwareinterrupt level that was active when the I/O error occurred.

This example showsthat hardwareinterrupt level 1 wasactive.

Item fj showsthe value of the address key register (AKR). This value indicates the address

space that contained the active task when the error occurred. In this example, address space 0

(partition 1) contained the active task.

Item 11] showsthe time, according to the system clock, when the I/Oerror occurred.

Item shows the numberof times that the supervisor issued the I/O instruction to the device

before logging the error.

Item shows two words of immediate device control block (IDCB) information. Thefirst

word contains the I/O operation and the device address. The second word can contain either an

immediate data word, a DCB address, or zeros. The contents of this word is device dependent.

Refer to the device description manual for the meaning of the two words of IDCB information.

Chapter 9. Recording Device I/O Errors PD-103

PD-104 SC34-0439

Item [J] showsthe value of the interrupt condition code. The codeindicates successful or

unsuccessful completion of the I/O operation. The meaningof the interrupt condition codeis

device dependent. Refer to the device description manual for the meaningof this code.

Item showsthe value of the interrupt status byte (ISB). The ISB contains additional

information about the I/O error. The meaning of the ISB is device dependent. Refer to the

device description manual for the meaning of this value.

Item 6| shows the device control block (DCB) information for this device when the I/O error

occurred. If the device did not require a DCBto perform the I/O operation, this item would not

appearin the listing. This example showsthe contents of three chained DCBsthe device needed

to perform the I/O.

Item showsthe contents of the cycle steal status words (CSSW) whenthe I/O error
occurred. Each word provides some information about the error. The numberof words varies

by device type and in somecases byerror type. Refer to the device description manual for the

meaning of the cycle steal status words.

Item if shows information about the I/O error that occurred on the device at address X‘21’.

Item J showsthat only one I/O error occurredat this address.

The value X‘0306’ shown below item [J meansthat this device is a 4973 printer.

Notice that for this device, no DCBs were required to do the I/O andthat eight words of cycle

steal status were logged.

The programmerconsole, which is an optional Series/1 processor feature, is a useful tool when

you analyze problems. Several of the chapters in this book mention the use of the programmer

console to display storage locations. However, you can perform many morefunctions with the

programmer console. This appendix explains some additional functions you can do. You can

use the programmerconsoleto:

e Display or alter main storage locations

e Store data into main storage

e Display or alter register contents

e Store data into registers

e Stop on selected address

e Stop on an error condition

e Execute oneinstruction at a time

The topics discussed in this appendix use the term “‘console” whenreferring to the programmer

console.

Before the various functions of the console are discussed, a section on howto read the indicator

lights is presented. This section follows.

Appendix A. Howto Use the Programmer Console PD-105

PD-106 SC34-0439

Acrossthe top of the console is a row of 16 indicator lights. These lights represent the 16

binary bits of a Series/1 word or two bytes. You refer to each indicatorlight as a bit position.

The bit positions are numberedleft to right as bit position 0 through bit 15. When an indicator

light is on, this means that that bit is on or set to 1.

The value displayed in the lights may represent data in storage or registers, or it may represent a

storage address. What the value represents depends on the function you are performing. How

the console represents a value and how youreadthat value is described as follows.

Each group of four binary indicators represents four bits of a word area. Byte 0 (group 1 and

group 2) is the leftmost byte. Each light in a group of four has a binary-coded decimalvalue, as

follows:

X X X X X X X X X X X X X X X X
842 1 842 1 842 1 842 1

Group 1 Group 2 Group 3 Group 4
Figure 28. Indicator lights — example 1

If you add the values of any one group of four lights when eachof the lights are on in that

group, the total is 15 or F in hexadecimal.

Because data and addressesin the Series/1 are represented in hexadecimal, it is good practice to

convert the binary-coded decimal values displayed by the lights to hexadecimal. Appendix

B, “Conversion Table” on page PD-113 contains a table to help you convert from binary to

hexadecimal.

In the following example, assumethat the top row represents the indicatorlights. The 0

represents lights that are off (set to 0) and X represents the lights that are on (set to 1).

000 xX 00X00 0X OX X 000

1 2 ho 8

Group 1 Group 2 Group 3 Group 4
Figure 29. Indicator lights — example 2

In the second rowis the decimal equivalent that correspondsto the X above the value. Add the

values within each group of four to get the total value of each group. Thus, the value of the

indicatorlights in Figure 29 is 1 2 5 8.

Figure 30 showsa value which requires conversion to hexadecimal. The value of the indicator

lights in this example is 13 9 A.

000 xX 00 X X X00 X X0X0
1 2 1 8 1 8 2

Group 1 Group 2 Group 3 Group 4
Figure 30. Indicator lights— example 3

The remaining sections explain the various functions of console.

To display an area in main storage, do the following:

1.

2.

Press the Stop key.

Press the AKR (addresskey register) key. The contents of the AKR are displayed in the

indicatorlights.

Key in one hexadecimal value (new address key). This is the value of the address space

(partition number minus 1) in which you want to display main storage. For example, to

display main storage in partition 2, you would key in the value 1 on the console. The value

you enteris displayed in bits 13—15 of the indicatorlights.

Press the Store key to store the new address key into the AKR.

Press the SAR (storage address key) key. The contents of the SAR are displayed in the

indicatorlights.

Keyin the address (four hexadecimal characters) you want to display. This addressis

displayed in the indicatorlights.

Press the Store key. The address displayedin the lights is stored into the SAR.

Press the Main Storage key. The contents of storage at the address you enteredis displayed

in the indicator lights. To display sequential main storage locations, continue pressing the

Main Storage key.

Each time you press the Main Storage key, the system increments the storage address by 2 and

displays the contents at that address.

Appendix A. How to Use the Programmer Console PD-107

PD-108 SC34-0439

To store data area into main storage, do the following:

1.

2.

10.

Press the Stop key.

Press the AKR (address key register) key. The contents of the AKR are displayed in the

indicatorlights.

Key in one hexadecimal value (new address key). This is the value of the address space

(partition number minus 1) in which you wantto store data. For example, to store data in

partition 1, you would keyin the value 0 on the console. The value you enteris displayed in

bits 13—15 of the indicatorlights.

Press the Store key to store the new address key into the AKR.

Press the SAR (storage addressregister) key. The contents of the SAR are displayed in the

indicatorlights.

Keyin the address (four hexadecimal characters) at which you wantto store data. The

address you enter is displayed in the indicatorlights.

Press the Store key. The address displayed in the indicatorlights is stored into the SAR.

Press the Main Storage key. The contents of the address you enteredis displayed in the

indicator.

Keyin the data (four hexadecimal digits) that you want stored at that address in main

storage. The value you enteredis displayedin the indicatorlights.

Press the Store key. The value shownin the indicatorlights is stored at the address you

entered in step 6.

Each time you press the Store key, the system increments the SAR by2, and the data stored at

that location is displayed.

To display the contents of a register, do the following:

1. Press the Stop key.

2. Press the Level key for the hardwarelevel that contains the register(s) you wantto display.

Timers run on level 0. The supervisor and attention list tasks run on level 1. User programs

and tasks run onlevels 2 and 3.

You can display the contents of any of the following registers on that level by pressing the

Key for that register:

LSR Level status register

AKR Addresskeyregister

IAR Instruction address register

RO—R7 Hardwareregisters 0 through 7

You can store data into the IAR or registers RO—R7 using the following procedure. The address

key register (AKR)andlevel status register (LSR) are displayable only.

To store data into a register, do the following:

1.

2.

Press the Stop Key.

Press the Level key for the hardwarelevel that contains the register(s) in which you wantto

store data.

Press the key for the register in which the data is to be stored. The contents of that register

are displayedin the indicatorlights.

Keyin the data that you want to store. The value youenteris displayed in the indicator

lights.

Press the Store key. The value displayed in the indicatorlights is stored in the register you

selected.

Appendix A. How to Use the Programmer Console PD-109

To stop on an address, do the following:

1.

2.

Press the Stop Key.

Press the AKR (address key register) key. The contents of the AKR are displayed in the

indicatorlights.

Keyin one hexadecimal value (new address key). This is the value of the address space

(partition number minus 1) which contains the address on which you want the system to

stop. For example, to set a stop address in partition 1, you would key in the value 0 on the

console. The value you enteris displayed in bits 13—15 of the indicatorlights.

Press the Store key to store the new address key into the AKR.

Press the Stop On Address key.

Key in the address at which you want execution to stop.

Press the Store key. The address and address key are placed in the stop on address buffer.

Press the Start key. Execution begins at the current [AR address on the current hardware

level.

Whenthe system loads the address you specified into the IAR, the processor enters the stop

state. At this point, you can examinethe contents of storage. To exit the stop state, press the

Start key; execution begins at the next sequential address.

PD-110 SC34-0439

Pressing the Stop On Error key causes the system to stop immediately if it detects a program

check, machine check, or power/thermal warning. To determine the error type, press the PSW

(processor status word) key. The value of the PSW is displayed in the indicator lights. The

section “Interpreting the Processor Status Word Bits’’ on page PD-41 explains whatthe bits

indicate.

To restart the processor, press the Reset key then the Start key. Pressing only the Start key

enables the processor to proceed with its error handling as if stop mode had not occurred.

ng One Instruction at a Time

Pressing the Instruct Step key causes the system to execute one instruction and then stop.

To enable the system to execute oneinstruction at a time, do the following:

1. Press the Stop key.

2. Press the AKR (address key register) key. The contents of the AKR are displayed in the

indicatorlights.

3. Key in one hexadecimal value (new address key). This is the value of the address space

(partition number minus 1) which contains the IAR address on which you want the system

to stop. For example, if the IAR address wasin partition 1, you would key in the value 0 on

the console. The value you enteris displayed in bits 13—15 of the indicatorlights.

4. Press the Store key to store the new address key into the AKR.

5. Press the Stop On Address key.

6. Key in the IAR address at which you wantthe system to stop.

7. Press the Store key. The IAR address and address key are placed in the stop on address

buffer.

8. Press the Start key. When the system attempts to execute the IAR address, the processor

stops.

9. Press the Instruct Step key. The system resets the Stop On Addresstooff.

10. Press the Start key. The system executesthe instruction at the IAR address you entered and

then stops. The system updates the IAR to point to the next instruction address.

Each time youpressthe Start key, one instruction is executed and the IAR is updated to the

next instruction address.

If your supervisor contains timer support, interrupts will occur while you are single-instruction

stepping through your program. Whenthis happens, you enter the system interrupt handlerat

the time you press the Start key. You can set stop-on-address mode on your program’s next

instruction and press the Start key; then, single-step until the next interrupt.

If the processoris in run state, pressing the Instruct Step key causes the processorto enter the

stop state. Pressing the Instruct Step key a secondtimeresets instruction-step mode; the

processor remainsin the stop state.

Appendix A. How to Use the Programmer Console PD-111

PD-112 SC34-0439

This appendix contains a conversion table for the hexadecimal, binary, EDCBIC, and ASCII

equivalents of decimal values. The table also contains transmission codes for communications

devices.

Appendix B. Conversion Table PD-113

Conversion Table

ASCII EBASC*

(see Notes 1 (see Notes 2

Decimal Hex Binary EBCDIC and 3) and 3) EBCD CRSP

0 00 0000 0000 NUL NUL NUL

1 01 0001 SOH SOH NUL space space

2 02 0010 STX STX @ 1 1,]

3 03 0011 ETX ETX @

4 04 0100 PF EOT space 2 2

5 05 0101 HT ENO space

6 06 0110 LC ACK ‘

7 07 0111 DEL BEL ‘ 3

8 08 1000 BS DLE 4 5

9 09 1001 RLF HT DLE

10 OA 1010 SMM LF P

11 OB 1011 VT VT P 5 7

12 OC 1100 FF FF 0

13 OD 1101 CR CR 0 6 6

14 OE 1110 SO SO p 7 8

15 OF 1111 S| Sl p

16 10 0001 0000 DLE DLE BS 8 4

17 11 0001 DC1 DCi BS

18 12 0010 DC2 DC2 H

19 13 0011 TM DC3 H 9 0

20 14 0100 RES DC4 (

21 15 0101 NL NAK (0 Z

22 16 0110 Bs SYN h (D) (EOA) (D) (EOA),9
23 17 0111 IL ETB h

24 18 1000 CAN CAN CAN

25 19 1001 EM EM CAN

26 1A 1010 CC SUB Xx RS RS

2/7 1B 1011 CU1 ESC Xx

28 1C 1100 IFS FS 8 upper case upper case

29 ID 1101 IGS GS 8 =
30 1E 1110 IRS RS x

31 1F 1111 1US US x (Cc) (EOT) (C) (EOT)
32 20 0010 0000 DS space EOT @ t

33 21 0001 SOS | EOT

34 22 0010 FS _ D

35 23 0011 Ff D / x

36 24 0100 BYP $ $

37 25 0101 LF % $ S n

38 26 0110 ETB & d t u

39 27 0111 ESC ‘ d

40 | 28 1000 (DC4

41 29 1001) DC4 e

42 2A 1010 SM * T d

43 2B 1011 CU2 + T

44 2C 1100 , 4 Ww k

45 2D 1101 ENQ - 4

46 2E 1110 ACK . t

47 2F 1111 BEL / t x Cc

48 30 0011 0000 0 form feed

49 31 0001 1 form feed y |

50 32 0010 SYN 2 L Zz h

*The no-parity TWX code for any given character is the code that has the rightmost bit position off.

PD-114 SC34-0439

ASCII EBASC*

(see Notes 1 (see Notes 2

Decimal Hex Binary EBCDIC and 3) and 3) EBCD CRSP

51 33 0011 3 L

52 34 0100 PN 4 ,

53 35 0101 RS 5 '

54 36 0110 UC 6 1 SOA

55 37 0011 0111 EOT 7 1 (S) (SOA),comma b
56 38 1000 8 FS

57 39 1001 9 FS

58 3A 1010 : \

59 3B 1011 CU3 ; \ index index
60 3C 1100 DC4 < <

61 3D 1101 NAK = < (EOB)
62 3E 1110 > |
63 3F 1111 SUB ? |
64 40 0100 0000 space @ STX (N) (NAK),- !

65 41 0001 A STX

66 42 0010 B B

67 43 0011 C B i m

68 44 07100 D i”

69 45 0101 E " k .

70 46 0110 F b | v

71 47 0111 G b

72 48 1000 H DC2

73 49 1001 | DC2 m ‘

74 4A 1010 ¢ J R n r

75 4B 1011 . K R

76 4C 1100 < L 2 O i
77 4D 1101 (M 2

78 4E 1110 + N r

79 4F 1111] O r p a

80 50 0101 0000 & P line feed

81 51 0001 Q line feed q O

82 52 0010 R J r S

83 53 0011 S J

84 54 0100 T *

85 55 0101 U *

86 56 0110 V j

87 57 0111 WwW j $ w

88 58 1000 Xx SUB

89 59 1001 Y SUB

90 5A 1010 I Z Zz

91 5B 1011 $ [Zz CRLE CRLF

92 5C 1100 * \ :

93 5D 1101)] backspace backspace

94 5E 1110 : /\ z idle idle

95 5F 1111 | —__ Zz

96 60 0110 0000 - \ ACK

97 61 0001 / a ACK & j

98 62 0010 b F a g

99 63 0011 Cc F

100 64 0100 d & b

101 65 0101 e &

102 66 0110 f f

103 67 0111 g f Cc f

Appendix B. Conversion Table PD-115

ASCH EBASC*

(see Notes 1 (see Notes 2

Decimal Hex Binary EBCDIC and 3) and 3) EBCD CRSP

104 68 1000 h SYN d p

105 69 1001 | SYN

106 6A 1010 ; j V
107 6B 1011 , k V e

108 6C 1100 % 1 6

109 6D 1101 m 6 f q

110 6E 1110 > n Vv g comma
111 6F 1111 ? O Vv

112 70 0111 0000 p shift out h /

113 71 0001 q shift out

114 72 0010 r N

115 73 0011 S N y

116 74 0100 t

117 75 0101 u ,

118 76 0110 Vv n (Y) (YAK),period
119 77 0111 Ww n

120 78 1000 x RS

121 79 1001 y RS

122 7A 1010 z /\ horiz tab tab
123 7B 1011 # | A
124 7C 1100 @ | > lower case lower case
125 7D 1101 ' >
126 7E 1110 = ~ Vv

127 7F 1111 DEL VY delete

128 80 1000 0000 NUL SOH

129 81 0001 a SOH SOH space space

130 82 0010 b STX A = +[

131 83 0011 Cc ETX A

132 84 0100 d EOT | < @
133 85 0101 e ENO |

134 86 0110 f ACK a

135 87 0111 g BEL a #

136 88 1000 h BS DC1 %

137 89 1001 HT DC1

138 8A 1010 LF O

139 8B 1011 VT OQ % &

140 8C 1100 FF 1

141 8D 1101 CR 1 ¢

142 SE 1110 SO q > *
143 SF 1111 S| q

144 90 1001 0000 DLE horiz tab * $

145 91 0001 j DC1 horiz tab

146 92 0010 k DC2 |

147 93 0011 | DC3 | ()
148 94 0100 m DC4)

149 95 0101 n NAK)) Z

150 96 0110 O SYN i D (EOA),” (
151 97 0111 p ETB i

152 98 1000 q CAN EM

153 99 1001 r EM EM

154 9A 1010 SUB Y

155 9B 1011 ESC Y

156 9C 1100 FS 9 upper case upper case

PD-116 SC34-0439

ASCII EBASC*
(see Notes 1 (see Notes 2

Decimal Hex Binary EBCDIC and 3) and 3) EBCD CRSP

157 9D 1101 GS)
158 9E 1110 RS y
159 OF 1111 US y C (EOT) C (EOT)
160 AO 1010 0000 Space ENO ¢ T

161 Al 0001 ! ENO
162 A2 0010 5 " E
163 A3 0011 t # E ? x
164 A4 0100 u $ %
165 A5 0101 v % % S N
166 A6 1010 0110 w & e T U
167 A7 0111 x ' e
168 A8 1000 v (NAK
169 AQ 1001 Zz) NAK U E
170 AA 1010 * U V D
171 AB 1011 + U
172 AC 1100 5 Ww K
173 AD 1101 - 5
174 AE 1110 u
175 AF 1111 / u x C
176 BO 1011 0000 0 return
177 B1 0001 1 return Y L

178 B2 0010 2 M Zz H
179 B3 0011 3 M
180 B4 0100 4 -
181 B5 0101 5
182 B6 0110 6 m
183 B7 0111 7 m (Ss) (soa), | B
184 B8 1000 8 GS
185 B9 1001 9 GS
186 BA 1010]
187 BB 1011] index index
188 BC 1100 < =

189 BD 1101 = = (EOB),ETB
190 BE 1110 > }
191 BF 1111 ? {
192 Co 1100 0000 t @ ETX (N) (NAK),—
193 C1 0001 A A ETX
194 C2 0010 B B Cc
195 C3 0011 C Cc C J M
196 C4 0100 D D Ht
197 C5 0101 E E # K
198 C6 0 0110 F F c L V
199 C7 0111 G G c
200 C8 1000 H H DC3
201 cg 1001 |] DC3 M "
202 CA 1010 J S N R
203 CB 1011 K S
204 CC 1100 J L 3 O
205 CD 1101 M 3
206 CE 1110 T N 5
207 CF 1111 O 5 p A
208 DO 1101 0000 t P vertical tab

209 D1 0001 J Q vertical tab Q O

Appendix B. Conversion Table PD-117

ASCII EBASC*

(see Notes 1 (see Notes 2

Decimal Hex Binary EBCDIC and 3) and 3) EBCD CRSP

210 D2 0010 K R K R S

211 D3 0011 L S K

212 D4 0100 M T +

213 D5 0101 N U +

214 D6 0110 O V k

215 D7 0111 P WwW k | WwW

216 D8 1000 Q Xx ESC

217 D9 1001 R Y ESC

218 DA 1010 Z [

219 DB 1011 [[CRLF CRLF

220 DC ~ 1100 \ ;

221 DD 1101] : backspace backspace

222 DE 1110 /\ | idle idle
223 DF 1111 — {

224 EO 1110 0000 \ bell

225 E1 0001 a bell + J

226 F2 0010 S b G A G

227 E3 0011 T Cc G

228 E4 0100 U d ’ B +

229 E5 0101 V e

230 E6 0110 Ww f g

231 E7 0111 x g g C F

232 E8 1000 Y h ETB D P

233 E9 1001 Z ETB

234 EA 1010 j WwW

235 EB 1011 k W E

236 EC 1100 r | 7
237 ED 1101 m 7 F QO

238 EE 1110 n w G comma

239 EF 1111 oO w

240 FO 1111 0000 0 p shift in H ?

241 F1 0001 1 q shift in

242 F2 0010 2 r O

243 F3 0011 3 S O | Y

244 F4 0100 4 t /

245 F5 0101 5 u /

246 F6 o110 |6 v 0 (Y) (YAK),
247 F7 0111 7 Ww oO

248 F8 1000 8 x US

249 FQ 1001 9 y US

250 FA 1010 LVM z — horiz tab tab

251 FB 1011 —
252 FC 1100 | ? lower case lower case

253 FD 1101 { ?

254 FE 1110 ~ DEL

255 FF 1111 DEL DEL delete

Notes:

1. ASCII terminals attached via #1310, #7850, #2095 with #2096, or #2095 with RPO DO2350.

2. ASCII terminals attached via #1610 or #2091 with #2092.

3. There are two entries for each character, depending on whetherthe parity is odd or even.

PD-118 SC34-0439

This glossary defines terms and abbreviations used in the Series/1 Event Driven Executive software publications. All software and
hardware terms pertain to EDX. This glossary also serves as a supplementto the /BM Data Processing Glossary, GC20- 1699.

$SYSLOGA, $SYSLOGB.The nameofthe alternate system
logging device. This deviceis optional but, if defined, should be
a terminal with keyboard capability, not just a printer.

$SYSLOG. The nameof the system logging device or operator
station; must be defined for every system. It should be a terminal

with keyboard capability, not just a printer.

$SYSPRTR. The name of the system printer.

abend. Abnormal end-of-task. Termination of a task prior to its

compietion because of an error condition that cannot be resoived

by recovery facilities while the task is executing.

ACCA. Seeasynchronous communications control adapter.

address key. Identifies a set of Series/1 segmentation registers
and represents an address space. It is one less than the partition

number.

address space. Thelogical storage identified by an address key.
An address spaceis the storagefor a partition.

application program manager. The componentof the Multiple

Terminal Managerthat provides the program management

facilities required to process user requests. It controls the

contents of a program area and the execution of programs within

the area. |

application program stub. A collection of subroutines that are

appendedto a program bythelinkage editor to providethelink

from the application program to the Multiple Terminal Manager

facilities.

asynchronous communications control adapter. An ASCII

terminal attached via #1610, #2091 with #2092, or #2095 with
#2096 adapters. .

attention key. The key on the display terminal keyboardthat,if

pressed, tells the operating system that you are entering a

command.

attention list. A series of pairs of 1 to 8 byte EBCDIC strings
and addressespointing to EDL instructions. Whenthe attention

key is pressed on the terminal, the operator can enter one of the

strings to cause the associated EDLinstructions to be executed.

backup. A copy of data to be usedin the event the original data

is lost or damaged.

base record slots. Spacein an indexedfile that is reserved for

based recordsto be placed.

PD-119Glossary of Terms and Abbreviations

base records. Recordsare placed into an indexedfile while in

load modeorinserted in process mode with a newhighkey.

basic exchange format. A standard format for exchanging data

on diskettes between systemsor devices.

binary synchronous device data block (BSCDDB). A control
block that provides the information to control one Series/1

Binary Synchronous Adapter. It determinestheline

characteristics and provides dedicated storagefor thatline.

block. (1) See data block or index block. (2) In the Indexed

Method, the unit of space used by the access methodto contain

indexes and data.

block mode. The transmission modein which the 3101 Display

Station transmits a data data stream, which has been edited and

stored, when the SEND keyis pressed.

BSCAM. Seebinary synchronous communications access

method.

binary synchronous communications access method. A form

of binary synchronousI/O control used by the Series/1 to
perform data communications between local or remote stations.

BSCDDB. Seebinary synchronousdevice data block.

buffer. An area of storage that is temporarily reserved for usein

performing an input/output operation, into which data is read or

from which data is written. See input buffer and output buffer.

bypasslabel processing. Access of a tape without any label

processing support.

CCB. See terminal control block.

central buffer. The buffer used by the Indexed Access Method

for all transfers of information between main storage and indexed
files.

character image. An alphabetic, numeric, or special character

defined for an IBM 4978 Display Station. Each character image

is defined by a dot matrix that is coded into eight bytes.

character imagetable. An area containing the 256 character
images that can be defined for an IBM 4978 Display Station.

Each character imageis codedinto eight bytes, the entire table of
codes requiring 2048 bytes of storage.

character mode. The transmission mode in which the 3101

Display Station immediately sends a character when a keyboard

key is pressed.

cluster. In an indexedfile, a group of data blocksthat is pointed

to from the same primary-level index block, and includes the

primary-level index block. The data records and blocks

containedin a cluster are logically contiguous, but are not

necessarily physically contiguous.

PD-120 SC34-0439

COD (changeofdirection). A character used with ACCA
terminal to indicate a reverse in the direction of data movement.

cold start. Starting the spoolfacility by erasing any spooled jobs

remaining in the spool data set from any previous spoolsession.

command. A characterstring from a source externalto the

system that represents a request for action by the system.

commonarea. A user-defined data area that is mapped into the

partitions specified on the SYSTEM definition statement. It can

be used to contain control blocks or data that will be accessed by

more than one program.

completion code. Anindicatorthat reflects the status of the

execution of a program. The completion codeis displayed or

printed on the program’s output device.

constant. A value or address that remains unchanged thoughout

program execution.

controller. A device that has the capability of configuring the

GPIB bus by designating which devices are active, which devices

are listeners, and which deviceis the talker. In Series/1 GPIB
implementation, the Series/1 is always the controller.

conversion. See update.

control station. In BSCAM communications, the station that

supervises a multipoint connection, and performspolling and

selection of its tributary stations. The status of control station is

assigned to a BSCline during system generation.

cross-partition service. A function that accesses data in two

partitions.

cross-partition supervisor. A supervisor in which one or more

supervisor modulesreside outside of partition 1 (address space

QO).

data block. In an indexedfile, an area that contains control

information and data records. These blocksare a multiple of 256

bytes.

data record. In an indexedfile, the records containing customer

data.

data set. A group of records within a volume pointed to by a

directory memberentry in the directory for the volume.

data set control block (DSCB). A control block that provides
the information required to access a data set, volumeor directory

using READ and WRITE.

data set shut down. An indexed data set that has been marked

(in main storage only) as unusable due to anerror.

DCE. Seedirectory control entry.

device data block (DDB). A control block that describes a disk

or diskette volume.

direct access. (1) The access method used to READ or WRITE
records on a disk or diskette device by specifying their location
relative the beginning of the data set or volume. (2) In the
indexed Access Method,locating any record via its key without
respect to the previous operation. (3) A condition in terminal |/O
where a READTEXT or a PRINTEXTis directed to a buffer which

waspreviously enqueued upon by an IOCB.

directory. (1) A series of contiguous records in a volumethat

describe the contents in terms of allocated data sets and free.

space. (2) A series of contiguous records on a device that
describe the contents in terms of allocated volumes and free

space. (3) For the Indexed Access Method Version 2, a data set
that defines the relationship between primary and secondary

indexedfiles (secondary index support).

directory control entry (DCE). The first 32 bytes of thefirst
record of a directory in which a description of the directory is
stored

directory memberentry (DME). A 32-byte directory entry
describing an allocated data set or volume.

display station. An IBM 4978, 4979, or 3101 display terminal or
similar terminal with a keyboard and a video display.

DME. Seedirectory memberentry.

DSCB. See data set control block.

dynamic storage. An increment of storage that is appended to a
program whenit is loaded.

end-of-data indicator. A codethat signals that the last record of
a data set has been read or written. End-of-data is determined

by an end-of-data pointer in the DMEor by the physical end of

the data set.

ECB. See event control block.

EDL. See Event Driven Language.

emulator. The portion of the Event Driven Executive supervisor

that interprets EDL instructions and performs the function

specified by each EDL statement.

end-of-tape (EOT). A reflective marker placed near the end of a
tape and sensed during output. The markersignals that the tape
is nearly full.

enter key. The key on the display terminal keyboard that,if

pressed,tells the operating system to read the information you

entered.

event control block (ECB). A control block used to record the

status (occurred or not occurred) of an event; often used to

synchronize the execution of tasks. ECBs are used in conjunction

with the WAIT and POSTinstructions.

Event Driven Language (EDL). The languagefor input to the
Event Driven Executive compiler (SEDXASM), or the Macro and
Host assemblers in conjunction with the Event Driven Executive

macro libraries. The output is interpreted by the Event Driven

Executive emulator.

EXIO (execute input or output). An EDLfacility that provides
user controlled access to Series/1 input/output devices.

external label. A label attached to the outside of a tape that

identifies the tape visually. It usually contains items of

identification such as file name and number, creation data,

number of volumes, department number, and so on.

external name (EXTRN). The 1- to 8-character symbolic
EBCDIC namefor an entry point or data field that is not defined

within the module that references the name.

FCA. Seefile contro! area.

FCB. Seefile control block.

file. A set of related records treated as a logical unit. Although
file is often used interchangeably with data set, it usually refers to

an indexed or a sequential data set.

file control area (FCA). A Multiple Terminal Manager data area
that describes a file access request.

file control block (FCB). The first block of an indexedfile. It

contains descriptive information about the data contained in the

file.

file control block extension. The second block of an indexed

file. It contains the file definition parameters used to define the

file.

file manager. A collection of subroutines contained within the

program managerof the Multiple Terminal Managerthat provides
commonsupport forall disk data transfer operations as needed

for transaction-oriented application programs. It supports

indexed anddirect files under the control of a single callable

function.

floating point. A positive or negative number that can have a

decimal point.

formatted screen image. A collection of display elements or
display groups (such as operator prompts andfield input names

and areas) that are presented together at one time on a display

device.

free pool. In an indexed data set, a group of blocks that can be
used for either data biocks or index biocks. These differ from

other free blocks in that these are notinitially assigned to specific

logical positionsin thefile.

PD-121Glossary of Terms and Abbreviations

free space. In an indexedfile, records blocks that do not

currently contain data, and are available foruse.

free space entry (FSE). An 8-byte directory entry defining an
area of free space within a volume or a device.

FSE. See free spaceentry.

general purposeinterface bus. The IEEE Standard 488-1975

that allows various interconnected devices to be attached to the

GPIB adapter (RPQ DO2118).

GPIB. See general purposeinterface bus.

group. A unit of 100 recordsin the spool data set allocated to a

spool job.

H exchange format. A standard format for exchanging data on

diskettes between systemsor devices.

host assembler. The assemblerlicensed program that executes

in a 370 (host) system and produces object output for the
Series/1. The source input to the host assembleris codedin
Event Driven Language or Series/1 assembler language. The

host assemblerrefers to the System /370 Program Preparation

Facility (5798-NNQ).

host system. Any system whose resourcesare used to perform

services such as program preparation for a Series/1. It can be

connected to a Series/1 by a communicationslink.

IACB. See indexed accesscontrol block.

IAR. See instruction addressregister.

ICB. See indexed access control block.

11B. See interrupt information byte.

image store. The area in a 4978 that contains the character

imagetable.

immediate data. A self-defining term used as the operand of an
instruction. It consists of numbers, messages or values which

are processed directly by the computer and which do not serve as

addressesorpointers to other data in storage.

index. In an indexed file, an ordered collection of pairs of keys

and pointers, used to sequenceandlocate records.

index block. In an indexedfile, an area that contains control

information and index entries. These blocks are a multiple of 256

bytes.

indexed access control block (IACB/ICB). The control block

that relates an application program to an indexedfile.

indexed access method. An access methodfor direct or

sequential processing of fixed-length records by use of a

record'skey.

PD-122 $SC34-0439

indexed data set. Synonym for indexedfile.

indexed file. A file specifically created, formatted and used by

the Indexed Access Method. An indexedfile is sometimes called

an indexed data set.

index entry. In an indexedfile, a key-pointer pair, where the

pointer is used to locate a lower-level index block or a data block.

index register (#1, #2). Two words defined in EDL and
containedin the task control block for each task. They are used

to contain data or for address computation.

input buffer. (1) See buffer. (2) In the Multiple Terminal
Manager, an area for terminal input and output.

input output control block (IOCB). A control block containing
information about a terminal such as the symbolic name, size and

shape of screen, the size of the formsin a printer, or an optional

reference to a user provided buffer.

instruction address register (IAR). The pointer that identifies

the machine instruction currently being executed. The Series/1

maintains a hardware IAR to determine the Series/1 assembler

instruction being executed. It is located in the level status block

(LSB).

integer. A positive or negative numberthat has no decimal
point.

interactive. The modein which a program conductsa

continuous dialogue between the user and the system.

internal label. An area on tape usedto recordidentifying

information (similar to the identifying information placed on an

external label). Internal labels are checked by the system to

ensure that the correct volume is mounted.

interrupt information byte (1B). In the Multiple Terminal
Manager, a word containing the status of a previous input/output

request to or from a terminal.

invoke. To load and activate a program,utility, procedure, or

subroutine into storage soit can run.

job. A collection of related program execution requests

presented in the form of job control statements, identified to the

jobstream processor by a JOB statement.

job control statement. A statementin a job that specifies

requests for program execution, program parameters, data set

definitions, sequence of execution, and, in general, describes the

environment required to execute the program.

job stream processor. The job processing facility that reads job

control statements and processes the requests made by these

statements. The Event Driven Executive job stream processoris

$JOBUTIL.

jumper. (1) A wire or pair of wires which are used forthe
arbitrary connection between twocircuits or pins in an

attachment card. (2) To connect wire(s) to an attachment card or
to connect twocircuits.

key. In the Indexed Access Method, one or more consecutive

characters usedto identify a record and establish its order with

respect to other records. Seealso keyfield.

key field. A field, located in the same position in each record of

an indexedfile, whose content is used for the key of a record.

level status block (LSB). A Series/1 hardware data area that
contains processor status. This area is eleven wordsin length.

library. A set of contiguous records within a volume. It contains

a directory, data sets and/oravailable space.

line. A string of characters accepted by the system as a single

input from a terminal; for example, all characters entered before

the carriage return on the teletypewriter or the ENTER key on the

display station is pressed.

link edit. The process of resolving external symbols in one or

more object modules. A link edit is performed with $EDXLINK

whoseoutputis a loadable program.

listener. A controller or active device on a GPIB busthatis

configured to accept information from the bus.

load mode. In the Indexed Access Method, the mode in which

records are loaded into base record slots in an indexedfile.

load module. A single module having cross references resolved
and preparedfor loading into storage for execution. The module

is the output of the SUPDATE or $UPDATEHutility.

load point. (1) Address in the partition where a program is
loaded. (2) A reflective marker placed near the beginning of a
tape to indicate wherethefirst record is written.

lock. In the Indexed Access Method, a method of indicating that
a record or blockis in use and is not available for another request.

logical screen. A screen defined by margin settings, such as the

TOPM, BOTM, LEFTM and RIGHTM parameters of the
TERMINALor 1OCB statement.

LSB. Seelevel status block.

mapped storage. The processorstorage that you defined on the

SYSTEM statement during system generation.

member. A term used to identify a named portion of a

partitioned data set (PDS). Sometimes memberis also used as a

synonym for a data set. See data set.

menu. A formatted screen image containing a list of options.

The user selects an option to invoke a program.

menu-driven. The mode of processing in which input consists of
the responses to prompting from an option menu.

message. In data communications, the data sent from one

station to anotherin a single transmission. Stations
communication with a series of exchanged messages.

multifile volume. A unit of recording media, such astape reelor
disk pack, that contains more than onedatafile.

multiple terminal manager. An Event Driven Executive licensed

program that provides support for transaction-oriented

applications on a Series/1. It provides the capability to define
transactions and managethe programsthat support those

transactions. It also manages multiple terminals as needed to
support these transactions.

multivolumefile. A data file that, due to its size, requires more

than one unit of recording media (such as tape reel or disk pack)
to contain the entirefile.

new high key. A key higher than any other key in an indexed

file.

nonlabeled tapes. Tapes that do not contain identifying labels

(as in standard labeled tapes) and contain only files separated by
tapemarks.

null character. A user-defined character used to define the

unprotected fields of a formatted screen.

option selection menu. full screen display used by the

Session Managerto point to other menus or system functions,

one of whichis to be selected by the operator. (See primary

option menu and secondary option menu.)

output buffer. (1) See buffer. (2) In the Multiple Terminal
Manager, an area used for screen output and to pass data to

subsequenttransaction programs.

overlay. The technique of reusing a single storage area allocated

to a program during execution. The storage area can be reused

by loading it with overlay programsthat have been specified in

the PROGRAMstatementof the program orbycalling overlay

segments that have been specified in the OVERLAY statementof

$EDXLINK.

overlay area. A storage area within a program reserved for

overlay programsspecified in the PROGRAM statementor

overlay segments specified in the OVERLAYstatementin

$SEDXLINK.

overlay program. A program in which certain control sections

can use the samestoragelocation at different times during

execution. An overlay program can execute concurrently as an

asynchronoustask with other programsandis specified in the

EDL PROGRAMstatementin the main program.

overlay segment. A self-contained portion of a program that is

called and sequentially executes as a synchronous task. The

PD-123Glossary of Terms and Abbreviations

entire program that calls the overlay segment need not be
maintained in storage while the overlay segmentis executing. An

overlay segmentis specified in the OVERLAYstatement of
$EDXLINK or $XPSLINK(forinitialization modules).

overlay segmentarea. A storage area within a program or

supervisor reserved for overlay segments. An overlay segment

area is specified with the OVLAREAstatement of $EDXLINK.

parameterselection menu. A full screen display used by the

Session Managerto indicate the parameters to be passedto a

program.

partition. A contiguous fixed-sizedarea of storage. Each

partition is a separate address space.

performance volume. A volume whose nameis specified on

the DISK definition statement so that its address is found during

IPL, increasing system performance when a program accesses

the volume.

physical timer. Synonym for timer (hardware).

polling. In data communications, the process by which a

multipoint control station asks a tributary if it can receive

messages.

precision. The numberof wordsin storage neededto contain a

value in an operation.

prefind. To locate the data sets or overlay programsto be used

by a program andto store the necessary information so that the

time required to load the prefound itemsis reduced.

primary file. An indexed file containing the data records and

primary index.

primary file entry. For the Indexed Access Method Version 2,

an entry in the directory describing a primary file.

primary index. The index portion of a primary file. This is used

to access data records whenthe primary keyis specified.

primary key. !n an indexed file, the key used to uniquely identify

a data record.

primary-level index block. In an indexedfile, the lowest level

index block. It contains the relative block numbers (RBNs) and
high keys of several data blocks. See cluster.

primary menu. The program selection screen displayed by the

Multiple Terminal Manager.

primary option menu. Thefirst full screen display provided by

the Session Manager.

primary station. In a Series/1 to Series/1 attachment, the
processorthat control communication between the two

computers. Contrast with secondary station.

PD-124 $C34-0439

primary task. Thefirst task executed by the supervisor when a

programis loadedinto storage. It is identified by the PROGRAM

statement.

priority. A combination of hardwareinterrupt level priority and a

software ranking within a level. Both primary and secondary

tasks will execute asynchronously within the system according to

the priority assigned to them.

process mode. In the Indexed Access Method, the modein

which records can beretrieved, updated, inserted or deleted.

processor status word (PSW). A 16-bit register used to (1)
record error or exception conditions that may prevent further

processing and(2) hold certain flags that aid in error recovery.

program. A disk- or diskette-resident collection of one or more

tasks defined by a PROGRAMstatement; the unit that is loaded

into storage. (See primary task and secondary task.)

program header. The control block found at the beginning of a
program thatidentifies the primary task, data sets, storage

requirements and other resources required by a program.

program/storage manager. A componentof the Multiple

Terminal Managerthat controls the execution and flow of

application programs within a single program area and contains

the support neededto allow multiple operations and sharing of

the program area.

protected field. A field in which the operator cannot use the
keyboard to enter, modify, or erase data.

PSW. See processor status word.

QCB. See queue control block.

QD. See queue descriptor.

QE. See queue element.

queue control block (QCB). A data area used to serialize access

to resources that cannot be shared. Seeserially reusable

resource.

queue descriptor (QD). A control block describing a queuebuilt
by the DEFINEQinstruction.

queue element (QE). An entry in the queue defined by the
queuedescriptor.

quiesce. To bring a device or a system to a halt by rejection of

new requests for work.

quiesce protocol. A method of communication in one direction

at a time. When sending node wantsto receive, it releases the

other node from its quiesced state.

record. (1) The smallest unit of direct access storage that can be
accessed by an application program ona disk or diskette using

READ and write. Records are 256 bytesin length. (2) In the
Indexed Access Method,the logical unit that is transferred
between $IAM andthe user's buffer. The length of the bufferis
defined by the user. (3) In BSCAM communications, the portions
of data transmitted in a message. Record length (and, therefore,
messagelength) can bevariable.

recovery. The use of backup data to recreate data that has been

lost or damaged.

reflective marker. A small adhesive marker attached to the
reverse (nonrecording) surface of a reel of magnetic tape.
Normally, two reflective markers are used on eachreelof tape.

Oneindicates the beginning of the recording area on the tape

(load point), and the other indicates the proximity to the end of
the recording area (EOT) on thereel.

relative block address (RBA). The location of a block of data on

a 4967 disk relative to the start of the device.

relative record number. An integer value identifying the
position of a record in a data set relative to the beginning of the
data set. Thefirst record of a data set is record one, the second

is record two,the third is record three.

relocation dictionary (RLD). The part of an object module or

load module that is used to identify address and name constants

that must be adjusted by the relocating loader.

remote managementutility control block (RCB). A control
block that provides information for the execution of remote

managementutility functions.

reorganize. The process of copying the data in an indexedfile to

another indexedfile in a manner that rearranges the data for more
optimumprocessing and free space distribution.

restart. Starting the spoolfacility w the spool data set contains

jobs from a previous session. Thejobsin the spool data set can

be either deleted or printed whenthe spool facility is restarted.

return code. An indicator that reflects the results of the

execution of an instruction or subroutine. The return codeis

usually placed in the task code word (at the beginning of the task

control block).

roll screen. A display screen whichis logically segmentedinto

an optional history area and a work area. Output directed to the

screen starts display at the beginning of the work area and
continues on downin a line-by-line sequence. When the work

area getsfull, the operator presses ENTER/SEND andits contents

are shifted into the optional history area and the workareaitself

is erased. Output now starts again at the beginning of the work
area.

SBIOCB. See sensor based |/O control block.

second-level index block. In an indexed data set, the

second-lowestlevel index block. It contains the addresses and

high keys of several primary-level index blocks.

secondary file. See secondary index.

secondary index. For the Indexed Access Method Version 2, an

indexed file used to access data records by their secondary keys.

Sometimes called a secondary file.

secondary index entry. For the Indexed Access Method

Version 2, this an an entry in the directory describing a secondary

index.

secondary key. For the Indexed Access Method Version 2, the

key used to uniquely identify a data record.

secondary option menu. In the Session Manager, the secondin

a series of predefined procedures grouped togetherin a
hierarchical structure of menus. Secondary option menusprovide

a breakdownof the functions available under the session

manageras specified on the primary option menu.

secondary task. Any task other than the primary task. A

secondary task must be attached by a primary task or another

secondary task.

secondary station. In a Series/1 to Series/1 attachment, the
processorthat is under the control of the primary station.

sector. The smallest addressable unit of storage on a disk or
diskette. A sector on a 4962 or 4963 disk is equivalent to an

Event Driven Executive record. On a 4964 or 4966 diskette, two
sectors are equivalent to an Event Driven Executive record.

selection. In data communications, the process by which the

multipoint control station asks a tributary stationif it is ready to

send messages.

self-defining term. A decimal, integer, or character that the
computertreats as a decimal, integer, or character and not as an

address or pointer to data in storage.

sensorbased I/O control block (SBIOCB). A control block
containing information related to sensor |/O operations.

sequential access. The processing of a data set in orderof

occurrence of the records in the data set. (1) In the Indexed
Access Method, the processing of records in ascending collating

sequenceorderof the keys. (2) When using READ/w,ite, the

processing of records in ascending relative record number

sequence.

serially reusable resource (SRR). A resource that can only be
accessed by onetask at a time. Serially reusable resources are

usually managedvia (1) a QCB and ENQ/DEQ statementsor (2) an
ECB and WAIT/POST statements.

service request. A device generated signal used to inform the
GPIB controller that service is required by the issuing device.

PD-125Glossary of Terms and Abbreviations

session manager. A series of predefined procedures grouped

togetheras a hierarchical structure of menus from which you

select the utility functions, program preparationfacilities, and

language processors needed to prepare and execute application

programs. The menusconsist of a primary option menuthat

displays functional groupings and secondary option menusthat

display a breakdownof these functional groupings.

shared resource. A resource that can be used by more than one

task at the sametime.

shut down. See data set shut down.

source module/program. A collection of instructions and

statements that constitute the input to a compiler or assembler.

Statements may be created or modified using one of the text
editing facilities.

spool job. The set of print records generated by a program

(including any overlays) while engueued to a printer designated as

a spool device.

spool session. An invocation and termination of the spool

facility.

spooling. The reading of input data streams and the writing of

output data streams on storage devices, concurrently with job

execution, in a format convenient for later processing or output

operations.

SRQ. Seeservice request.

stand-alone dump. An image of processor storage written to a

diskette.

stand-alone dumpdiskette. A diskette supplied by IBM or

created by the $DASDIutility.

standard labels. Fixed length 80-character records on tape
containing specific fields of information (a volumelabel

identifying the tape volume, a headerlabel preceding the data

records, and trailer label following the data records).

static screen. A display screen formatted with predetermined

protected and unprotected areas. Areas defined as operator

prompts orinput field names are protected to prevent accidental

overlay by input data. Areas defined as input areas are not

protected and are usually filled in by an operator. The entire

screen is treated as a page of information.

station. In BSCAM communications, a BSC line attached to the

Series/1 and functioning in a point-to-point or multipoint
connection. Also, any other terminal or processor with which the

Series /1 communicates.

subroutine. A sequenceof instructions that may be accessed

from one or more points in a program.

PD-126 SC34-0439

supervisor. The componentof the Event Driven Executive

capable of controlling execution of both system and application

programs.

system configuration. The process of defining devices and

features attached to the Series/1.

SYSGEN. See system generation.

system generation. The processing of defining |/O devices and

selecting software options to create a supervisortailored to the

needs of a specific Series/1 hardware configuration and
application.

system partition. The partition that contains the root segment

of the supervisor (partition number 1, address space 0).

talker. A controller or active device on a GPIB busthatis
configured to be the source of information (the sender) on the
bus.

tape device data block (TDB). A resident supervisor control
block which describes a tape volume.

tapemark. A control character recorded on tape used to

separatefiles.

task. The basic executable unit of work for the supervisor. Each

task is assigned its own priority and processortimeis allocated

according to this priority. Tasks run independently of each other

and compete for the system resources. The first task of a

program is the primary task. All tasks attached by the primary

task are secondary tasks.

task code word. Thefirst two words(32 bits) of a task’s TCB;
used by the emulator to pass information from system to task

regarding the outcomeof various operations, such as event

completion or arithmetic operations.

task control block (TCB). A control block that contains
information for a task. The information consists of pointers, save

areas, work areas, and indicators required by the supervisor for

controlling execution of a task.

task supervisor. The portion of the Event Driven Executive that

managesthe dispatching and switching of tasks.

TCB. See task control block.

terminal. A physical device defined to the EDX system using the

TERMINALconfiguration statement. EDX terminals include

directly attached IBM displays, printers and devices that

communicate with the Series/1 in an asynchronous manner.

terminal control block (CCB). A control block that defines the
device characteristics, provides temporary storage, and contains

links to other system control blocks for a particular terminal.

terminal environment block (TEB). A control block that
contains information on a terminal's attributes and the program

manageroperating under the Multiple Terminal Manager. It is
used for processing requests betweenthe terminal servers and

the program manager.

terminal screen manager. The componentof the Multiple
Terminal Managerthat controls the presentation of screens and

communications between terminals and transaction programs.

terminal server. A group of programsthat perform all the

input/output and interrupt handling functions for terminal devices

under control of the Multiple Terminal Manager.

terminal support. The support provided by EDX to manage and

control terminals. See terminal.

timer. The timer features available with the Series/1 processors.

Specifically, the 7840 Timer Feature card (4955 only) or the native
timer (4952, 4954, and 4956). Only one or the other is supported

by the Event Driven Executive.

trace range. A specified numberof instruction addresses within
which the fiow of execution can be traced.

transaction oriented applications. Program execution driven by

operator actions, such as responses to prompts from the system.

Specifically, applications executed under control of the Multiple

Terminal Manager.

transaction program. See transaction-oriented applications.

transaction selection menu. A Multiple Terminal Manager

display screen (menu) offering the user a choice of functions,

such as reading from a datafile, displaying data on a terminal, or
waiting for a response. Based uponthe choice of option, the
application program performs the requested processing

operation.

tributary station. In BSCAM communications, the stations

under the supervision of a control station in a multipoint
connection. They respondto the control station’s polling and
selection.

unmapped storage. The processor storage in your processor

that you did not define on the SYSTEM statement during system
generation.

unprotectedfield. A field in which the operator can use the

keyboard to enter, modify or erase data. Also called

non-protectedfield.

update. (1) To alter the contents of storage or a data set. (2) To
convert object modules, produced as the output of an assembly

or compilation, or the output of the linkage editor, into a form that

can be loadedinto storage for program execution and to update
the directory of the volume on which the loadable program is

stored.

user exit. (1) Assembly languageinstructions included as part of

an EDL program andinvokedvia the USERinstruction. (2) A
point in an IBM-supplied program wherea user written routine

can be givencontrol.

variable. An area in storage, referred to by a label, that can
contain any value during program execution.

vary offline. (1) To change the status of a device from online to
offline. When a device is offline, no data set can be accessed on

that device. (2) To place a disk or diskette in a state whereit is
unknownby the system.

vary online. To place a device in a state whereit is available for

use by the system.

vector. An ordered set or string of numbers.

volume. A disk, diskette, or tape subdivision defined using
$INITDSK or $TAPEUT1.

volume descriptor entry (VDE). A resident supervisor control
block that describes a volume on a disk or diskette.

volumelabel. A label that uniquely identifies a single unit of

storage media.

PD-127Glossary of Terms and Abbreviations

PD-128 SC34-0439

Special Characters

$$EDXIT task error exit routine
interpreting the output PD-46

message description PD-45

output example PD-44

$DEBUGutility
analyzing program checks PD-50
analyzing wait state PD-28
isolating run loops PD-19

$EDXNUCsupervisordata set
analyzing problems with PD-7

reloading PD-7
rewriting IPL text PD-6

$LOGutility
commands PD-99
description PD-97

invoking PD-99
log data set PD-98
print or display errors PD-100

sample output, explanation PD-103

STRAPutility
interpreting the dump PD-58

A

activate error logging PD-97
address key register (AKR) PD-12, PD-60
address,failing instruction PD-40, PD-60
AKR

See address key register (AKR)
analyze failures, how to

IPL problems PD-5

programs checks PD-37, PD-80
run loops PD-17, PD-85

wait states PD-27, PD-74

auto IPL, description PD-44

bit settings, processor status word PD-41

bootstrap, rewriting PD-6
boundary violations PD-42, PD-49

breakpoint and trace range settings PD-21, PD-50

&@%

i

CCB
See terminal control block (CCB)

CIRCBUFF, software trace table PD-87
class interrupt descriptions PD-42

codes, obtaining IPL stop PD-8
console, programmer

displaying main storage PD-107
dispiaying registers PD-109
instruction step PD-111

reading indicator lights PD-106
stop on address PD-110

stop on error PD-110
storing data into main storage PD-108
storing data into registers PD-109

control blocks
analyzing queue control block PD-29

INITTASK task control block PD-10
cross-partition supervisor

obtaining IPL stop codes PD-8
segmentation registers PD-65

Index PD-129

Index

D

dump,interpreting a storage
BSC information PD-72

disk/diskette information PD-70
exception information PD-62

EXIO information PD-72

floating-point registers PD-62

hardware level and registers PD-58
level table PD-68
loader QCB PD-68
partition contents PD-73

segmentation registers PD-64

storage map PD-66

tape information PD-70

TCB ready chain PD-68

terminal information PD-69

timer information PD-72

K

ENOTinstruction

examining the terminal control block PD-33

identifying the task in control PD-32
error handling

1/O error logging PD-97
program checks PD-37

errors
determining the type of PD-3

recording |/O PD-97
event control block

causes of a wait state PD-34

waiting task, identifying PD-33
exceptions

how to trace PD-87

types of PD-42

IF

floating-point exception, description PD-43

hardwarelevel, determining the active PD-18
hardwareregisters, contents

during program check PD-39
INITTASK task control block PD-12

software trace table PD-92

storage dump PD-58

PD-130 $C34-0439

i

1/O check, description PD-44
|/O error logging

data setlist utility, SDISKUT2 PD-100
invoking PD-99
log data set PD-98
utility, $LOG PD-97

initial program load, problems with PD-5
INITTASK, analyzing at IPL

interpreting register contents PD-12

using $D operator command PD-10
using programmer console PD-11

instruction address register (IAR) PD-60
instruction address register, displaying PD-54

instruction address, failing PD-40, PD-60
instruction step (console) PD-111
interrupt descriptions, class PD-42

invalid function, description PD-43

invalid storage address, description PD-42

IPL problems, analyzing
detecting stop codes PD-8

disk/diskette device PD-6
initialization failures

displaying INITTASK PD-10, PD-11

no messages on $SYSLOG PD-15
register contents PD-12

isolating terminal control blocks PD-9
reloading supervisor PD-7

rewriting IPL text PD-6

tailored supervisor PD-7

terminal errors PD-8
whatto checkfirst PD-5

L

level status block (LSB), contents PD-12, PD-38, PD-59, PD-92
level status register (LSR) PD-60
level, determining active hardware PD-18
Load light, symptom at IPL PD-6

log data set for 1/O errors PD-98
logging errors (SLOG) PD-97
loops, analyzing run

caused by device interrupts PD-26

how to identify the program

using $C operator command PD-19
using the programmerconsole PD-18

locating the loop in the compilerlisting PD-23
some common causes PD-23

using $DEBUG
examining storage locations PD-24

sample trace output PD-22

setting breakpoints PD-21
tracing the loop addresses PD-20

M

main storage, storing data into PD-108
mapping storage PD-64
messages,interpreting exception

$$EDXIT program check PD-44
application program check PD-38

system program check PD-38

N

NEXTERM, stop on address PD-9
nucleus, reloading PD-7

O

odd-byte boundary, analyzing PD-49

P

partition size, shown in a dump PD-64
power/thermal warning, description PD-44
privilege violate, description PD-43
problem determination

definition PD-1

how to start PD-1

identifying problem type PD-3
processor control check, description PD-44

processorstatus word

bit descriptions PD-42

auto IPL indicator PD-44

floating-point exception PD-43
1/O check PD-44
invalid function PD-43
invalid storage address PD-42
power/thermal warning PD-44
privilege violate PD-43
processorcontrol check PD-44

protect check PD-43

sequenceindicator check PD-44

specification check PD-42

stack exception PD-43
storage parity PD-44

translator enabied indicator PD-44

converting to bits PD-41
how to interpret PD-41

program check

analyzing PD-37
analyzing system PD-54

bit settings, interpreting PSW PD-41
exception types PD-42

failing instruction PD-40
how to analyze application PD-49

locating failing instruction PD-60
message description PD-39
message types PD-38

$$EDXIT error exit PD-45
application check PD-38
system check PD-38

processor status word, analysis PD-41

register contents at failure PD-40, PD-60

using $DEBUGto analyze PD-50
programmerconsole

displaying main storage PD-107

displaying registers PD-109
instruction step PD-111

reading indicator lights PD-106
stop on address PD-110
stop on error PD-110

storing data into main storage PD-108
storing data into registers PD-109

protect check, description PD-43

PSW
See processor status word

Q

queue control block, analyzing

causes of wait state PD-32

defined in $SYSCOM PD-30
defined in program PD-29
task ownership PD-30, PD-31

R

registers
contents during program check PD-40

contents in a storage dump PD-60
displaying PD-109
floating-point PD-62

INITTASKduring IPL failure PD-12
level status block PD-59
segmentation PD-64

shownin software trace table PD-92
storing data into PD-109

run loops, analyzing

causedby device interrupts PD-26

howto identify the program

using $C operator command PD-19
using the programmer console PD-18

locating the loop in the compilerlisting PD-23

some common causes PD-23
using $DEBUG

examining storage locations PD-24

sample trace output PD-22

setting breakpoints PD-21

tracing the loop addresses PD-20

Index PD-131

S

segmentation registers, mapping of PD-64
sequenceindicator error, description PD-44

software trace table, CIRCBUFF

control table format PD-90

displaying PD-88
exception entry format PD-92

specification check, description PD-42

stack exception, description PD-43

stand-alone dump

BSC information PD-72

disk/diskette information PD-70
EXIO information PD-72

floating-point registers PD-62
hardwarelevel and registers PD-58

interpreting PD-58
level table PD-68
loader QCB PD-68
partition contents PD-73

segmentation registers PD-64
storage map PD-66

tape information PD-70

TCB ready chain PD-68

terminal information PD-69

timer information PD-72

standard program check message, formats PD-38
stop codes, obtaining PD-8
stop on error PD-110

storage dump

howto interpret PD-57

used to analyze a program check PD-80

used to analyze a run loop PD-85

used to analyze a wait state PD-74

storage mapping PD-64

storage parity error, description PD-44

storage, displaying PD-107

supervisor, reloading PD-7
system program check, analyzing PD-54

PD-132 SC34-0439

T

task control block (TCB)
INITTASK during IPL PD-10

ready chain in dump PD-68

task error exit, S$EDXIT PD-44
terminal control block (CCB)

displaying during IPL PD-9

enqueuing task, determining PD-32
task partition, determining PD-33

terminal errors, IPL PD-8

trace

exceptions PD-87

loop addresses PD-20

program check addresses PD-50
trace table, CIRCBUFF software

control table format PD-90

displaying PD-88

exception entry format PD-92

translator enabled, description PD-44

types of problems, determining PD-3

W

WAIT instruction, analyzing PD-33

wait state, using a dumpto analyze

finding the TCB address PD-74

locating R1 in the TCB PD-76
locating the error in the compilerlisting PD-77

sample program PD-78

wait states, analyzing

analyzing a WAITinstruction PD-33

analyzing an ENQinstruction PD-29

analyzing an ENQTinstruction PD-32

finding the waiting instruction PD-28
some common causes PD-32, PD-34, PD-35

St
ap

le
s
c
a
n
c
a
u
s
e
p
r
o
b
l
e
m
s
w
i
t
h
a
u
t
o
m
a
t
e
d

ma
il

so
rt

in
g
e
q
u
i
p
m
e
n
t
.

Pl
ea

se
us
e
pr
es
su
re

se
ns
it
iv
e
or

o
t
h
e
r
g
u
m
m
e
d
t
a
p
e
t
o

se
al

th
is

f
o
r
m
.

N
o
t
e
:

IBM Series/1 Event Driven Executive READER’S
Problem Determination Guide COMMENT

SC34-0439-0 FORM

This manualis part of a library that serves as a reference source for systems analysts, programmers, and

operators of IBM systems. You may use this form to communicate your comments about this publication,

its organization, or subject matter, with the understanding that IBM may useordistribute whatever

information you supply in any way it believes appropriate without incurring any obligation to you.

Your commentswill be sent to the author’s department for whatever review and action, if any, are deemed

appropriate.

Note: Copies ofIBM publications are not stocked at the location to which this form is addressed.

Please direct any requests for copies ofpublications, or for assistance in using your IBM system, to

vour IBM representative or to the IBM branch office serving yourlocality.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM

office or representative will be happy to forward your comments or you may mail directly to the address

in the Edition Notice on the back ofthe title page.)

S$C34-0439-0

Printed in U.S.A.

Reader’s Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK,N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation

Information Development, Department 27T

P.O. Box 1328

Boca Raton, Florida 33432

Fold and tape Please Do Not Staple

Fold and tape

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

Fold and tape
e
e

U
I
]

H
U
I

P
I
O
Q

10
I
N
]
—
—
—

St
ap

le
s
c
a
n
c
a
u
s
e
p
r
o
b
l
e
m
s
w
i
t
h
a
u
t
o
m
a
t
e
d

ma
il

so
rt

in
g
e
q
u
i
p
m
e
n
t
.

N
o
t
e
:

Pl
ea

se
us
e
pr
es
su
re

se
ns

it
iv

e
or

o
t
h
e
r
g
u
m
m
e
d

ta
pe
t
o

se
al

th
is

f
o
r
m
.

2
—
—
o
n

e
e
e
S
e
e
e
e
e
e
e
e

c
o
e
S
e
e
e

c
e
e
G
e

e
e
u

G
e
r
e
G
e
:
e
e
e
e
e

o
s
e
e
e
C
e

G
e
e

a
m
e
s
s
e
e
G
e
e
S
e
e
e
e
e
e
e
e
e
e

s
e
e
e
e
e
e
e
e
G
E

e
e
n
s
G
D

G
e
e
s

G
E
E
e
R
C
E
G
e

G
e
e
e
e
e
e
e
e
e
e
G
e
e
e
e
e
e

e
e
e
o
w
e
G
e
e

q
u
e
s
e
e
e
e
e
e
S
e
e
e
e
e
e
e
e

c
e
e
c
e
e
e
e
e
q
e

e
e
e

s
e
e
c
o
e
e
w
e
o
e

e
e
e
G
e
e
a
e
a
e
e
e
e
e
o
e
o
o
o
e

e
e
e
e
e
e
e
e
e

e
e
e
e
e
e

e
e

e
e
e
e
e
e
e
e
e
e
e
e

IBM Series/1 Event Driven Executive READER’S
Problem Determination Guide COMMENT

SC34-0439-0 FORM

This manualis part of a library that serves as a reference source for systemsanalysts, programmers, and

operators of IBM systems. You may use this form to communicate your comments about this publication,

its organization, or subject matter, with the understanding that IBM mayuseor distribute whatever

information you supply in any way it believes appropriate without incurring any obligation to you.

Your commentswill be sent to the author’s department for whatever review and action, if any, are deemed

appropriate.

Note: Copies ofIBMpublications are not stocked at the location to which this form is addressed.

Please direct any requests for copies ofpublications, or for assistance in using your IBM system, to

vour IBMrepresentative or to the IBM branch office serving vourlocality.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM

office or representative will be happy to forward your comments or you may mail directly to the address

in the Edition Notice on the back of the title page.)

SC34-0439-0

Printed in U.S.A.

Reader’s Comment Form

Fold and tape Please Do Not Staple Fold and tape —
—
e
e
e
e
U
I

B
U
I

D
I
O
G

10
JT
L]
—
—

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation

Information Development, Department 27T

P.O. Box 1328

Boca Raton, Florida 33432

Fold and tape Please Do Not Staple

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

Fold and tape

S
e
r
i
e
s
/
1

S
e
r
i
e
s
/
1

S
C
3
4
-
0
4
3
9
-
0

Binder Labels

Tear this page along the perforations

to separate the twolabels.

Insert the labels into the clear plastic

sleeves.

r
y

eo 7)

£6
® #

EG
K 2

o ~

® e
Oo Q
= 8

2 :
5s 3

gd OO
—> © e J

Oo ¢
r

SE '
cL
®o @ c

20 s
Sen ©

eO§ ce
~~ = O D2 =o

Cc 8 < Q 2°
© oO § ro 3
Lu 2. $ \ J

Event Driven Executive

Problem Determination Guide
CQ
Q.

 —
—
—
<
—
=
—
>

o
>

h
e
e
w
e
s
:
e
S

To stand the easel binder up, openit
and fold it as shown.

7

International Business Machines Corporation

SC34-0439-0

Program Number: 5719-XS4

File No. S$1-37

Printed in U.S.A.

